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Introduction

Texas Instruments, the company that ignited the microchip revolution by inventing
the silicon transistor, the integrated circuit, and the microprocessor, now drives the
32-bit minicomputer to the micro level with the TI32000™ family of Microprocessor
Chip Sets.

The TI32000 family consists of the following components:

BUS
COMPONENT | INTERNAL | DATA | ADDRESS DESCRIPTIONT
T132032T 32 32 24 Microprocessor (CPU)
T132032D% 32 32 32 Microprocessor (CPU)
Ti32032DC* 32 32 32 Microprocessor (CPU), CMOS
TI32016T 32 16 24 Microprocessor (CPU)
T132008T# 32 8 24 Microprocessor (CPU)
TI32081W 64 16 Floating Point Unit (FPU)
TI32081D* 64 32 - Floating Point Unit (FPU)
Ti32082W 32 16 24 Memory Management Unit
(MMU)
TI32082WA*Y 32 16 24 Memory Management Unit, No
Breakpoints
TI32082DC* 32 32 32 Memory Management Unit
(MMU), CMOS
Ti32202W 16 8/16 - Interrupt Control Unit (ICU)
TI32202B% 8 8 - Interrupt Control Unit (ICU)
T132201 Not Applicable Timing Control Unit (TCU),
Bipolar

The T132000 family is the solution for users wishing to standardize on a software
transportable 32-bit, 16-bit, and 8-bit microprocessor family. Its elegant, symmetrical
architecture makes it suitable for applications including powerful PCs, multiuser
business computers, engineering workstations, super-mini computers and high-speed
digital communications equipment.

™TI32000 is a trademark of Texas Instruments.
Except where noted, all devices are implemented in NMOS technology.
*Product is currently undergoing development.
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1.1 Typical Applications of the TI32000 Family

COMPUTERS COMMUNICATIONS
Personal Computers PABX
Multiuser Business Systems Central Office Switching
Graphics Display Terminals Digital Transmission
Large Plotters Networks
Copiers
Transaction Systems CONSUMER PRODUCTS
— Home Computers
2* INDUSTRIAL Automotive Controllers
8_ CAD/CAE Systems
c Automatic Test Equipment MILITARY
8 Instrumentation Weapons Systems
g Process Control Aircraft Controllers
Robotics Land Vehicles

Numerical Processing
1.2 Mainframe Performance at a Microprocessor Price

The TI32000 family provides total hardware support for Demand-Paged Virtual
Memory, high-speed floating-point operations, and High-Level Language (HLL)
constructs. It has greatly extended the capabilities of even the latest generation of
super minicomputers in its handling of HLL modules. Its highly symmetrical instruction
set, comparable to the popular VAX™ architecture, makes it particularly well suited
to powerful operating systems such as UNIX™. Furthermore when it comes to software
productivity, any code written for the 32-bit TI32032 CPU will run just as well on
the 16-bit TI32016 or 8-bit TI32008 CPU, and vice versa. Consider this absolute
upward-to-downward and downward-to-upward object code compatibility in contrast
to the upward-only compatibility of all other microprocessor families. This means
programs written for your top-of-the-line 32-bit machines will also run on 8- and 16-bit
systems, thus reducing repetitive software development, maintenance, and overhead
costs. Further, each new product can rely on existing software and be much quicker
to market.

1.3 Coprocessors Increase System Performance

Included in the T132000 family of chip sets is the TI32082 Memory Management Unit
(MMU) Coprocessor. The MMU implements Demand-Paged Virtual Memory
management in systems where inexpensive secondary storage (e.g., a Winchester disk)
‘is used to supplement physical memory (RAM) in support of large programs and data
structures. The MMU incorporates two-level page indexing, as found in IBM
mainframes, to avoid the many problems found in single-level indexing.

Another coprocessor, the TI32081 Floating Point Unit (FPU), accelerates floating-point
calculations and appears as a software-transparent extension of the CPU. A user can
also design his own “’Application-Specific Coprocessor Unit"" which communicates
with the CPU in the same manner as the dedicated coprocessors. As coprocessors

VAX is a trademark of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.
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appear as transparent extensions of the CPU to TI32000 programers, the decision
to include or omit them in your end-products (for cost/performance reasons) will not
affect software compatibility across your range of products.

1.4 System Support Chips

Support chips in the TI32000 family include the T132202 Interrupt Control Units (ICU)
and the TI132201 Timing Control Unit (TCU). A single T132202 ICU provides 16
prioritized, vectored hardware interrupts; and when cascaded with other ICUs, up to
256 prioritized external interrupts are possible. (The TI32202B, a simplified version
of the TI32202W, provides only 8 external interrupts, 64 cascaded.) The T132201
TCU provides bus cycle timing, read-write control signals, various modes of bus cycle
extension, and CPU timing.

1.5 TI32000: The 32-Bit Solution

By matching a TI32000 CPU with the appropriate combination of coprocessors and
support chips, a system designer can accurately match cost and performance to his
end product. Clearly, the TI32000 family of microprocessor chip-sets provides a total
system solution for your design, be it 8, 16, or 32 bits.

1.6 Key Features of the TI32000 Family

Some of the features that set the TI32000 family apart as the best choice for 32-bit
designs are as follows:

Family of Microprocessor Chip Sets
The TI32000 is more than just a single chip set, it is a family of chip sets.
By mixing and matching TI32000 CPUs with compatible coprocessors and
support chips, a system designer has an unprecedented degree of flexibility
in matching cost and performance to the end product.

Cleanest 32-Bit Super Mini Computer Architecture
The T132000 was designed around a 32-bit architecture from the beginning.
It has a fully symmetrical instruction set so that all addressing modes and
all data types can be operated on by all instructions. This makes it easy
to learn the architecture; easy to program in assembly language; and easy
to write code-efficient, high-level language compilers.

8, 16, 32, and 64-Bit Compatible Architecture
The TI32000 has an absolute upward and downward object code
compatible architecture. This allows upgrading a product line while still
preserving your entire software data base, thus reducing development costs
and the risks involved in introducing new products. Tl's commitment does
not stop there. Even future 64-bit family members will be designed to
maintain compatibility across the entire product range.

Demand-Paged Virtual Memory Management
The TI132000 provides hardware support for Demand-Paged Virtual Memory
Management. This allows use of low-cost disk storage to increase the
apparent size of main memory, and is an efficient method for managing
very large address spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and mainframes.

1-5
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Application-Specific Coprocessors

The TI32000 architecture allows users to design their own application-
specific coprocessors to interface with the existing chip set. These
coprocessors can be used to increase your overall system performance
by accelerating customized CPU instructions that you would otherwise
implement in software. At the same time, software compatibility is
maintained, i.e., it is always possible to substitute lower-cost software
modules in place of the coprocessor.

Floating-Point Coprocessor

The T132081 Floating-Point Coprocessors provide high-speed arithmetic
computation with high precision and accuracy at low cost. They support
the entire TI32000 family of CPUs and comply with the proposed IEEE
standard for floating-point arithmetic, Task P754.

Operating System Support

TI132000 features such as hardware support for Demand-Paged Virtual
memory management, user software protection and modular programming
make it much easier to implement powerful, reliable and efficient operating
systems. These features along with its symmetrical architecture and
powerful instruction set make the TI32000 the most efficient and highest
performance UNIX engine.

High-Level Language Support

The TI32000 has special features that support high-level languages, thus
improving software productivity and reducing development costs. For
example, there are special instructions that help the compiler deal with
structured data types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware registers, software
instructions, an external addressing mode, and architecturally supported
link tables.
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2 Architecture Overview
2.1 Computer Architecture

2.1.1

introduction

The architecture of a computer describes what that computer looks like to people
who write software for it. More precisely, the architecture is the complete and
detailed specification of the interface between the computer and software. The
architecture specifies those elementary instructions that are decoded and executed
directly by the machine. But it is important to keep in mind that architecture
describes only whatthe computer does, not how it does it. Two machines are said to
have the same architecture if all the software written for one can execute on the
other, even if the actual hardware construction of the two machines is entirely
different. For example, the members of the IBM System 360-370 family all have
basically the same architecture, but the technology used to implement that
architecture ranges from discrete transistors to Very Large Scale Integration.

Occasionally, the term architecture is used in a more general sense as the boundary
between different levels of the whole system. (For example, terms such as
“operating system architecture” are occasionally employed.) In this document we
will use “architecture” exclusively for the boundary between the actual machine
hardware and the software.

A computer architect is someone who designs computer architectures. The terms
architecture and architect obviously have been adapted from their ordinary use in
the building construction industry. The words are apt because in many ways the job
of a computer architect is similar to that of an ordinary architect. Both are more
concerned with the overall design of a structure and its appearance to users than
with the exact details of the construction, which is the province of the structural
engineer or general contractor in the building industry and the hardware designerin
the computer industry.

The relationship between computer architect and computer implementor is
analogous to the relationship between an architect and a general contractor. The
architect designs the overall appearance of the building, balancing a number of
conflicting goals (e.g., the desirable view provided by many large windows and the
equally desirable goal of energy efficiency), always keeping in mind whatis possible
with current construction technology (the availability and cost of materials). The
general contractor is responsible for translating the architect's vision into a building.
If the contractor discovers that some detail of the building’s architecture will be too
difficult or too expensive to build, or that it will lead to an unsafe structure, the
architect will have to make changes.

2-3
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Similarly, the computer architect designs the external appearance (to software) of
the computer, balancing a number of conflicting goals (e.g., complete protection vs
simplicity of use), always keeping in mind the current state of semiconductor
technology. The computer implementor translates this design into silicon. If the
implementor finds that some feature of the computer architecture is too difficult or
too expensive to implement, or if another feature causes the computer to run
significantly slower, the computer architect may have to make changes.

The role of the architect in both industries is to make an intelligent compromise
among a number of desirable goals and to balance this against the limitations of
current technology to get a cost-effective design. Architectural mistakes usually
result when one goal is single-mindedly pursued to the exclusion of other goals, or
when a desired goal is simply not technologically feasible.

A certain amount of controversy currently surrounds a number of issues associated
with computer architecture. As defined, computer architecture is the boundary
between the hardware and software. The controversy is fundamentally over where
that boundary should be drawn and what trade-offs should be made between
various features for reasons of performance. Discussion has centered around three
main topics:

® What is the best way to support high-level languages?

® How should memory be organized?

® What protection features should be provided by the hardware?
In the remaining sections of this chapter we will examine these three topics,
introduce some of the points at issue, and present the TI32000™ approach to each
topic.

High-Level Language Support

All evidence suggests that programming in a high-level language (e.g., Pascal) is
more productive than programming in assembly language. Some researchers have
found that high-level language programmers produce the same number of
debugged lines of code per day as assembly language programmers. Since a line of
code in a high-level language usually performs a more complex operation than a
line of code in assembly language, the high-level programmer is more productive.

Studies have shown that both the time to debug a program and the difficulty in
understanding and maintaining it are proportional to the number of instructions,
with little dependency on the complexity of each instruction. Since several
instructions might be required for each high-level language statement, the savings
in programming time and cost over an equivalent assembly language program are
obvious.

Before the advent of the TI32000, however, these advantages had been partially
offset by the inherent inefficiency of high-level languages as opposed to assembly
language programs. Depending on the compiler, the computer, and the application,
a compiled program might be anywhere from 0% to 300% longer and slower than
the best assembly language program. The basic reason for the inherent inefficiency

TI32000 is a trademark of Texas Instruments Incorporated.
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of high-level languages (HLLs) when they are targeted to contemporary
architectures is that these architectures were not designed to support compilers.

Deficiencies of Current Architectures

The shortcomings of current computer architectures are largely attributable to what
Glenford Myers has called the semantic gap,' a measure of the difference between
the concepts in high-level languages and the concepts in the computer architecture.
The objects and operations reflected in these architectures are seldom closely
related to the objects and operations provided in the programming languages. This
semantic gap contributes to software unreliability, performance problems,
excessive program size, compiler complexity, and distortions of the language.

Here are some of the heavily used conceptsin high-level languages, along with a few
comments on the architectural support for these concepts provided by most
computer architectures.

Arrays. The array is one of the most frequently used data structures in most HLLs. An
array is a set of entries, each with the same data type (i.e., arrays of integers, arrays
of characters, etc.). Most languages provide for multidimensional arrays,
performing operations on entire arrays and checking to see that array subscripts do
not exceed the boundary of the array. However, most computer architectures
provide very limited architectural features to support any of these constructs.

Records. A record consists of a number of components (usually called fields) that
may be of different data types. Thus a record might consist of characters, integers,
and real numbers. Until now, there was nothing in the architecture of most
microprocessors to support records.

Strings. Most languages contain the concepts of fixed and variable sized strings and
of string processing operations such as concatenation and searching for a specified
substring within a string. Many microprocessor architectures provide no string
processing instructions at all.

Procedures. The basic program unit in modern HLLs is the procedure. A procedure
call entails saving the state of the calling procedure, dynamically allocating and
initializing local storage for the called procedure, passing arguments, and executing
the called procedure. Most microprocessor architectures provide no support for any
of these operations.

Modules. Modern HLLs (Pascal, Ada) implement the concept of a software module
containing several procedures and associated data. Each module may be developed
independently of all other modules and combined for final execution. This
modularization reduces software development cost and time, increases design
flexibility, and simplifies system design. To date, most processors have not
supported the modular software concept.

One source of current problems is that contemporary architectures are asymmetric,
and therefore do not permit the concepts in HLLs to be efficiently modeled in

1. Glenford J. Myers, Advances in Computer Architecture, Wiiey, 1978.
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machine language. Symmetry is the degree.to which all addressing modes exist for
all operands and all required operators that exist for every data type.

Section 2.2 discusses symmetry in detail and also defines the key terms, such as
“addressing mode” and “data type”.

The TI32000 Approach

The deficiencies in contemporary microprocessor architectures have been
addressed by the designers of the TI32000. They have made a major effort to bridge
the semantic gap with this new architecture. The TI32000 architecture, in fact, is
designed specifically to support high-level language compilers; it enables even
relatively unsophisticated compilers to produce efficient code. Special addressing
modes are provided to access such HLL constructions as arrays and records, and
new operators that are specifically tailored for high-level languages.

Addressing Modes. The TI132000 architecture supports four standard addressing
modes (i.e., mechanisms for accessing operands) common to most processors:
register, immediate, absolute, and register relative. In addition, the TIi32000
introduces four HLL-oriented addressing modes: Top-of-Stack mode is very useful
for evaluating arithmetic expressions in high-level languages; Scaled Indexing
mode can be used to access elements in byte, word, double word, or quad word
arrays; Memory Relative mode can be used for manipulating fields in a record; and
External mode can be used to access data in separately compiled modules. (See
section 2.2 for a discussion of addressing modes.)

New Operators. In addition to the conventional CPU instructions, such as data
movement, arithmetic logic, and shifts, the architecture includes advanced
instructions which are very useful in an HLL environment. These advanced
instructions are: the CHECK instruction which determines whether an array index is
within bounds; the INDEX instruction which implements the recursive indexing step
for multidimensional arrays; the STRING instruction which manipulates data
strings; and the ENTER and EXIT instructions which minimize the overhead in
procedure calls by managing the resources (registers, stack frame) allocated at the
beginning of a procedure and reclaimed at the end. (See section 2.2 for more on
these instructions.)

Controversial Topics

The addressing modes and new operators provided by the TI32000 clearly represent
an advance over contemporary architectures. Yet two of the issues faced by the
TI32000 designers remain controversial.
® Should three operand instructions be provided?
® Should instructions be primarily register oriented, memory-to-memory, or
top-of-stack? -

Three-Operand Instructions. It is occasionally claimed that an architecture must
provide general three operand instructions if it truly is to support an HLL. (A three-
operand instruction is, as the name implies, an instruction which contains two
source operands as well as a destination. For example, an instruction to directly
implement the FORTRAN statement,

A=B+C



would be a three-operand instruction with operands A, B, C and the operator +. The
reasoning behind this claim is basically that if three-operand statements are
common in high-level languages, then the presence of three-operand instructions in
the architecture will result in greater code density. The VAX-11™, for example,
permits three-operand instructions for most arithmetic operations.

However, a study by D.E. Knuth? of Stanford University in 1971 showed that in
250,000 lines of FORTRAN code, 80% of ail statements were of the form

AopBorA =8B

It follows that three-operand HLL statements are extremely rare and the need for
such constructs in the architecture is unproven. Moreover, since provision for three-
operand instructions imposes a certain burden of its own (whether in code density
or execution speed), the utility of this instruction category must certainly be
questioned. The designers of the TI32000 felt that the need for three operand
instructions was not great enough to justify that overhead. In fact, the T132000
provides greater code density than the VAX-11.

Registers. It is also occasionally claimed (for example by Glenford Myers in his book
Advances in Computer Architecture3) that registers are alien to the concepts in HLLs
and should be done away with in the interests of bridging the semantic gap. The
designers of the TI32000 disagree. The high-level language concept that relates
most strongly to registers is the idea of the set of variables that are local to a
procedure. The modular programming methodology described above encourages
the use of a number of small procedures instead of large monolithic programs. Each
of these procedures usually makes use of only a few variables of its own, but these
variables are used over and over again in that procedure. For instance, a procedure
that manipulates an array must constantly refer to the array index.

The chief advantage of registers is that they allow a working set of variables to be
kept close at hand where they can be accessed quickly.

This working set of variables is stored in the register set. Studies by William Wulf,
or et al4 have indicated that five registers are sufficient for almost all applications.
TI32000 CPU uses 8 (i.e., 23) address-data registers and several specialized registers
for particular pointers. The TI32000 architecture allows memory-to-memory
operations, but it does not require them.

Registers allow the compiler writer to optimize the execution of HLL statements,
whereas a purely memory-to-memory machine must constantly carry the overhead
of referencing all variables in main memory. A pure stack-oriented machine (i.e., an
architecture where all variables are assumed to be on the top two locations of the

VAX-11 is a trademark of Digital Equipment Corporation.

2. D. E. Knuth, “An Empirical Study of FORTRAN Programs,” Software Practice and Experience, 1, 2 (April-
June, 1971) 105-133.

3. Meyers, op. cit.,, p. 23
4. W. A. Wulf, et al., The Design of an Optimizing Compiler, North Holland, 1975
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stack) is essentially equivalent to a machine with two registers. Many studies have
shown that pure stack machines do not give any significant advantage over a
general register machine

2.1.3 Memory Organization

2-8

There are three aspects to memory organization: (1) the overall memory
architecture, which is basically how the logical memory looks to the computer
program; (2) logical-to-physical address translation (mapping), which maps the
logical structure of memory onto hardware; and (3) virtual memory mechanisms.
The TI32000 has a linear memory architecture; it supports page-based mapping;
and it provides a number of mechanisms which support a virtual memory system.

Linear vs Segmented Memory Architecture

The main memory of a computer is organized as a set of consecutively numbered
storage cells. In most computers these memory cells contain eight bits (a byte). The
location number associated with one of these physical storage cells is called a
physical address, and the set of all physical addresses is called physical address
space.

The physical address space is thus determined by the actual hardware in the
computer’s memory system.

On the other hand, a program running on a computer can generate a set of
addresses that is limited only by the number of bits in its address registers. This set
of addresses is not necessarily related to the actual amount of physical memory in
the system. For example, consider a computer with a 16-bit address field in
instructions and 4,096 (4K) bytes of memory. A program on this computer can
address 65,536 (64K) locations, for the simple reason that 216 (65,536) 16-bit
numbers exist. The set of these numbers is called logical address space; itis the set
of logically possible addresses (even if they are not realized physically); itis the set
of all addresses that can be generated by a program. The organization of the logical
address space defines the memory architecture. The two main types of memory
architecture are linear and segmented.

In a linear address space, addresses start at location zero and proceed in a linear
fashion (i.e., with no holes or breaks) to the upper limitimposed by the total number
of bits in a logical address. In TI32000 systems there can be up to 32 bits in a logical
address, resulting in over 4 billion (232) bytes.

The alternative to a linear memory architecture is a segmented memory
architecture. A segmented address space is basically a collection of small linear
address spaces. A rigid distinction is made between the segment (the particular
address space in which a datum is located) and the displacement of the datum
within the segment (the distance in bytes from the start of the segment to the
location in question). Asegmented address is consequently atwo-component value.
The first component (the segment selector) picks out a particular segment while the
second component specifies the displacement within the segment. {See Figure 1 for
a comparison of linear and segmented memory.)

5. Meyers, op. cit., p. 49
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Figure 1. Linear vs Segmented Address Space

The advantages of segmented memory center around protection issues. The claim
is made that a segmented memory better suits the organization of modern, modular
programs and structured data than does a linear memory. Conseguently,
mechanisms for preventing access to segments, or preventing segments from
being read or written into can be used to protect meaningful program units. In other
words, since the logical address space of a segmented architecture reflects the
logical structure of the program, protection mechanisms provided for segments
naturally accrue to meaningful program units.

This is in fact true. However, except for a few processors (e.g., the MULTICS
processor), few segmented machines have consistently carried out this program.
For example, most current segmented architectures impose a limit of 64K bytes on
the length of a segment. But in order for segmentation to realize its protection
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advantages, segments should be allowed to have arbitrary size. A 2M byte segment,
after all, will be needed to hold a 2M byte array, if the program organization is to
reflect the program structure. Also, in modern bit-mapped graphics systems (a
typical application for 16-bit microcomputers), 2M byte arrays are common.
Moreover, since programs can consist of hundreds or even thousands of modules, it
is important for the architecture to support large numbers of segments if
segmentation is to be used properly.

Large data bases are a typical application that will require either segments of
arbitrary size or a great many segments.

Unfortunately, most segmented architectures allow only small segments (i.e., less
than 64K bytes) and usually support only a limited number of them (typically, fewer
than 128). The size limitation is an artifact of earlier days when the entire (linear)
address space was only 64K bytes long. The designers of segmented machines
expanded the address space of their earlier processors, while attempting to
preserve some measure of software compatibility by making the old 64K-byte linear
address space one of the new 64K bytes segments. The 8086 and its relationship to
the 8080 is the most painful illustration of this phenomenon.

In such segmented architectures, all data structures larger than the maximum
segment size must be broken down to fit into several segments, since an address
pointer cannot be incremented from the top of one segment to the bottom of another
segment. By contrast, a linear address space can accommodate data structures of
any size up to the maximum size of memory.

The TI32000 provides the protection advantages of segmentation without the
segment size disadvantages, by permitting segments to be constructed out of an
arbitrary number of fixed-size memory units. These memory units are called pages,
and they form the basis for the TI32000 mapping, virtual memory, and memory
protection mechanisms.-

The TI32000 permits a form of segmentation, that is, it lets the operating system
keep track of collections of pages with the same protection attributes, but it does not
require segmentation by building it into the architecture. Moreover, the
segmentation permitted by the TI32000 is more general than that built into standard
segmented architectures (for example, segments can have arbitrary size).

Page-Based Mapping and Alternatives

Mapping is based on the distinction between logical address space and physical
address space. Basically, mapping is the process of translating a logical address into
an arbitrary physical address. Without mapping, logical addresses are simply
equated with physical addresses; by exploiting mapping, a logical address can be
assigned to an arbitrary physical address. Mapping thus provides a kind of
generalized relocation mechanism.

Unmapped memory is adequate for simple, single-user, single-task systems, which
is why most microcomputer applications until now have been unmapped. However,
the large memory and increased power of 16-bit microcomputers have led to their
being employed in multiuser, multitasking applications. And in these cases mapping



is highly desirable. Because, without mapping, the different programs in a
multiprogramming system or the different tasks in a multitasking system must
operate within the same logical address space. Consequently, each program or task
must be careful not to access any address outside its assigned partition, and in
general everyone must be familiar with the detailed organization of memory in order
to make full use of it.

By contrast, mapping allows each program or task to be assigned its own logical
address space, with the mapping mechanism responsible for translating these
independent logical address spaces into the same physical address space. Since the
programs and tasks have separate logical address spaces, there is no chance of
interference.

Since it is too cumbersome to control the translation of each logical address
individually, mapping is ordinarily done in blocks of addresses. The simplest and
historically the earliest mapping systems mapped the entire logical address space of
a program as one unit. (See Figure 2 for a diagram of such a system.)
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Figure 2. Mapping the Entire Address Space

More recent systems are based on mapping smaller chunks of memory, rather than
the entire logical address space of a program. Basically, there are two kinds of
address translation schemes, differing only in the structure of the mapping blocks:
One based on variable sized segments; and the other based on fixed-size units
called “pages.” The TI32000 employs a page-based mapping system.

In TI32000 systems with 24 address bits, the logical address space is broken up into
32,768 pages, each with a fixed size of 512 bytes. The physical address space is
broken up into the same number of pieces, each the same size as a page. These
pieces of physical memory into which the pages are mapped are called page frames.
Figure 3 shows a part of the TI32000 mapping scheme.
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A page-based mapping system is usually more efficient than a segment-based
mapping system because of the memory fragmentation problem associated with
segment-based systems. This problem occurs often in segmented multiprogram
systems when the available memory space becomes fragmented into many small
pieces and not enough contiguous physical memory is available to contain one large
segment. By contrast, since all pages are the same size, if any physical page frame is
available, it can hold any page.

The mapping operation is performed by the TI32082 Memory Management Unit
(MMU) and is explained thoroughly in section 2.3.2. This translation process is
performed automatically, making use of a table in memory that contains the physical
addresses of each page frame.

Each program or task can have its own set of translation tables, and changing the
selected group of tables is simply a matter of updating an MMU register that points
to the starting address of the top-level page table. Therefore, each program or task
can have its own map from logical memory to physical memory, and each program
or task can have its own logical address space.
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Figure 3. Page-Based Mapping
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Entries in the translation tables contain protection bits along with physical
addresses. These protection bits are used to provide each page with a set of
protection attributes (e.g., read only). The Operating System can treat a collection of
pages with the same attributes as a segment. Thus, page-based mapping provides a
mechanism for implementing segmentation.

Virtual Memory

In many computer systems, the logical address space is far larger than the actual
memory hardware. Virtual memory is a mechanism for circumventing the limits on
physical memory size. Under a virtual memory system, it appears to users as if the
entire logical address space is available for storage. But, in fact, at any given
moment only a few pages of the logical address space are mapped into physical
space. The other pages are not present in main memory at all; instead, the
information in these pages is stored on a secondary storage device, such as a disk,
whose cost-per-bit is more economical.

In a virtual memory system, whenever the computer generates a memory address,
the hardware checks whether that address lies in a page that is actually in memory. If
it does, the address is translated to the appropriate physical address, and the
memory reference takes place normally. If the indicated page is not in memory, an
operation called a page swapis performed, and the operating system software loads
the missing page from disk. If this operation is performed swiftly, the user will have
the illusion of a gigantic physical memory. For efficiency, when the referenced
location has to be brought from the peripheral to the main memory, other locations
likely to be referenced next may be brought in. Information not currently in use is
removed from the main memory and returned to peripheral storage, thus making
room for the new material.

Of course the beauty of virtual memory is that the user or programmer does not
have to be aware of the process. He uses one consistent set of addresses called
logical addresses. The memory management hardware keeps track of where the
irformation resides at any given time and translates the logical address into a real
location in physical memory. When the CPU finds the requested logical address to be
unavailable in main memory, it notifies the operating system which initiates a swap.

When the data to be replaced has not been modified during the time it was resident
in main memory, there is no need to write it back to the peripheral device since an up-
to-date copy already exists there. Under such a circumstance, the old data is
overwritten with the new data.

Virtual memory was first implemented on the Atlas computer at Manchester
University, using special hardware. All computers with virtual memory since the
Atlas have also required special hardware functions to implement virtual memory.
Current microprocessors do not have adequate mechanisms to support virtual
memory systems. For example, in both the Z8000 and the 68000 no provision is
made for restarting an instruction that causes a page fault. In TI32000 virtual
memory systems, this special hardware is provided by the TI32082 MMU (with some
support from the CPU chip).

Architecture M
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2.1.4 Protection

The last major area of debate about computer architecture concerns the whole topic
of protection: memory protection, program protection, and user protection. The
basic issue is what should be the granularity of the protection mechanisms that are
provided. The basic difficulty is that the finer the granularity, the more the overhead
associated with protection.

Some systems implement a hierarchy of protection levels from most privileged to
least privileged. These levels are often called rings. Each ring has its own access
control information for a page. Generally, a more privileged ring has access to all the
information in a less privileged ring. However, the number of rings is severely
limited, usually to four, and tasks often do not have a strictly hierarchical
relationship; therefore, ring systems are seldom flexible enough for modern
operating systems.

Instead, a capability-based protection system is often proposed as an aiternative
which allows non-hierarchical relationships between an arbitrary number of tasks.
In a capability-based operating system, each task has a table of operations it is
allowed to perform that may affect other tasks in the system. This table is protected
from direct modification by the task. Thus, the only way a task can perform an
operation which could affect another task is if it has the appropriate capability in its
capability table. A task may give a specific capability to another task. By restricting
the distribution and type of capabilities it gives out, a task may tightly control access
to the services it provides.

One problem with most capability-based systems is that the concept is carried to
such lengths that it interferes with efficient accessing and processing of information
within a task. Since the cost of protection is always high in these capability systems,
performance suffers.

The designers of the TI32000 felt that a capability-based protection scheme could be
implemented at some level in the system, but that the appropriate level to do this
was in the kernel of the operating system, not in the architecture itself. The basic
reason for leaving capabilities out of the architecture is twofold: (1) the extra burden
should not be imposed on all programmers who use this architecture or on every
memory reference; (2) the implementation of a capability-based system is such a
new and complex task that locking such a system into silicon before itis thoroughly
proven can be very risky. The designers of the TI32000 preferred to work out the bugs
in their operating system before they froze it permanently in silicon.

The protection features actually implemented in the TI32000 architecture can be
divided into three groups:
1. Operating System/User mode. A distinction is made between two
operating modes of the CPU: Operating System mode in which all the
power of the instruction set is available and User mode in which only a
restricted subset of the instructions are available. Operating System mode
is intended for operating systems and other trusted programs. User mode
is intended for those programs that are not trusted.



2. Separate address spaces for each task. Each task running on the T132000
has its own collection of pages constituting its address space. Access to
another task’s address space is impossible.

3. Protection bits in the page and pointer table entries. Associated with each
page are bits that define whether that page can be read but not written into,
read and written into, or neither read nor written into. (See section 2.3.4.)

2.2 High-Level Language Support on the Ti32000

2.2.1 Introduction

In the previous section it was shown that with conventional architectures the gainin
programming efficiency produced by writing in high-level languages instead of
assembly language is usually undermined by the larger amount of memory
required to store the code. This phenomenon is a result of the large number of
instructions that must be generated by the compiler to map HLL concepts onto the
more restricted repertoire of machine instructions. Performance is also diminished
because of the large number of memory transactions generated by the instructions.
In addition, when the differences between the abstractions called for by a problem
and the capabilities directly implemented in the computer’s hardware is very great,
the code generation portion of a compiler must be extremely complex.

A primary design objective for the T132000 is for the structure and behavior of the
processor’s architecture to correspond in a reasonable way with the objects and
operations of high-level languages. The goal was to develop a symmetrical
architecture particularly suited to being the target for compilers. The architecture of
the TI32000 meets that goal; it enables symmetric use of address-data registers,
memory locations, addressing modes, data types, and instructions.

Compilers can easily generate high-performance (very dense and efficient) code for
the T132000. The TI32000 is particularly well suited to the Pascal high-level language.
Because of the TI32000’s Address-Data registers, the program also executes faster. In
addition, the architecture avoids special-case instructions and addressing modes
that compilers have difficulty using.

In this section we will examine in detail the means by which the concepts of HLLs are
supported by the TI32000 architecture; namely, by a symmetrical architecture, a
sophisticated instruction set, and expanded addressing capabilities.

2.2.2 Data Types Supported

The objects and concepts of a high-level language include constants, variables,
expressions, and functions. Each of these has a particular data type which
determines the range of values that the constant, variable, expression, or function
may assume in the program.

A data type is said to be supported by a computer if the computer’s instruction set
contains operators that directly manipulate the data type, or has operators and
addressing modes that facilitate its manipulation. Data types directly manipulated
by the hardware are called primitive data types. Those data types supported by the
hardware, but not manipulated directly, consist of ordered collections of primitive
types and are called structured data types.
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The TI32000 supports the following data types:

® Primitive Data Types (see Figure 4)
Integers (signed and unsigned)
Floating-Point
Booleans
Binary Coded Decimal (BCD) digits
Bit Fields

e Structured Data Types
Arrays
Records
Strings

Stacks
2 2.2.2.1 Integer Data Types

The integer data type is used to represent integers, i.e., whole numbers without
fractional parts. Integers may be signed (negative as well as positive) or unsigned
(positive only). Integer data types on the TI32000 are available in three sizes: 8-bit
(byte), 16-bit (word) and 32-bit (double word). Signed integers are represented as
binary two's complement numbers and have values in the range —27 to 27 -1,
—215t0 215—1 or —231 to 231—1; unsigned integers have values in the range 0 to
28—1, 0 to 216—1, 0 to 232—1. When integers are stored in memory, the least
significant byte is stored at the lowest address; the most significant byte at the
highest address.

2.2.2.2 Floating-Point Data Types

>
=
o
=
=
(1]
o
~*
c
-
®

The floating-point data type is used to represent real numbers, i.e., numbers with
fractional parts. Floating-point numbers are represented by an encoded version of
the familiar scientific notation:

n=sxfx 10¢

where s is the sign of the number, f is called the fraction, or mantissa, and e is a
positive or negative integer called the exponent. (Figure 4 shows how these values
are represented by fields within the number.) Floating-point numbers are available
in two sizes: 32-bit (single-precision) and 64-bit (double-precision). Double-
precision offers both a larger range (larger exponent) and more precision (larger
mantissa). The TI32000 floating-point data type is compatible with the proposed
IEEE floating-point standard (Task P754).

Manipulation of the floating-point data type is actually handled by the TI32081
Floating-Point Processor (FPU) (see section 2.4.4). If an FPU exists in the system, the
user can treat floating-point numbers (both single- and double-precision) as any
other TI32000 data types and may use any of the TI32000 addressing modes to
reference them. Also, conversion is provided from every integer and floating format
to every other integer and floating format. If an FPU is not present, these functions
must be simulated in software.



2.2.2.3

INTEGER

BYTE 8 BITS

7 0
WORD 16 BITS
15 0
[ DOUBLE WORD I 32 BITS
31 0

FLOATING POINT

s EXPONENT FRACTION 32 BITS
31 30 23 22 0
V4
s EXPONENT FRACTION i 64
‘e BITS
63 62 52 51 o 0
BOOLEANS
e
oo | | P [ ]| xxxxxxxxxx'j]
L.
7 0o 15 0 31 0
BIT
[Jror
BIT FIELDS
Y
BIT FIELD} UP TO 32 BITS
JIIVIIIIIIVIFY .
BCD DIGITS

DIGIT 1| DIGIT 0] 8 BITS
7 4 3 0

DIGIT 3| DIGIT 2| DIGIT 1|DIGIT 0} 16 BITS
15 12 1n 8 7 4 3 0

DIGIT 7| DIGIT 6| DIGIT 5| DIGIT 4| DIGIT 3| DIGIT 2| DIGIT 1|DIGIT 0f 32BITS
31 28 27 24 23 20 19 16 15 12 1 8 7 4 3 0
Figure 4. Primitive Data Types

Other Primitive Data Types

The Boolean (or logical) data type is a single bit whose value, 1 or 0, represents the
two logic values true and false. A Boolean data type has many usesin a program, for
example, to save the results of comparisons, to mark special cases, and in general to
distinguish between two possible outcomes or conditions. Booleans are
represented on the TI32000 by integers (byte, word, or double word). True is
integer 1; false is integer 0.

2-17

Architecture N



ain}oaYyoIy E

2-18

The bit field data type is different from other primitive data types in that the basic
addressable unit is measured in bits instead of bytes. On the TI32000, bit fields may
be 1 to 32 bits long, and located arbitrarily with respect to the beginning of a byte.
They are useful when a data structure includes elements of nonstandard lengths,
since they allow programs to manipulate fields smaller than a byte.

With the binary-coded decimal (BCD) data type, unsigned decimal integers can be
stored in the computer, using 4 bits for each decimal digit. The BCD data type is
represented on the TI32000 by three formats, consisting of 2, 4, or 8 digits. Two BCD
digits may be packed into a byte, four to a word, or eight to a double word. Thus one
byte may represent the values from 0 to 99, as opposed to 0 to 225 for a normal
unsigned 8-bit number. Similarly, aword can represent values in the range 0to 9,999,
or a double word can represent values in the range 0 to 99,999,999.

Although BCD requires more bits to represent a large decimal number, it does have
certain advantages over binary. For many business applications, the amount of
actual computing to be done between source input and output is small, so that
converting data from binary to decimal formats can represent a significant portion
of the total processing overhead. BCD arithmetic eliminates this conversion
overhead since the computations are actually performed in decimal. Also of
importance to business applications is the loss of accuracy which can result from
conversions from decimal to binary and back again, a loss which is avoided by using
decimal arithmetic.

Arrays. An array is a structured data type consisting of a number of components, all
of the same data type, such that each data element can be individually identified by
anintegerindex. Arrays represent a basic storage mode for all high-level languages.

In Pascal programs, for example, each element of an array is referenced by the array
name and an index value giving the component's position in the array. Arrays range
from simple one-dimensional vector arrays to more complex multidimensional
arrays. The elements of an array may be integers, floating-point numbers, Booleans,
characters, or more complex objects built up from these types.

The TI32000 provides special operators that facilitate calculation of the array index
and determination if the index is outside the limits of the array. In addition, certain
TI32000 addressing modes facilitate quick access to array elements. (See
section 2.2.5.2.)

Records. A record, like an array, is a structured data type with several components.
However, unlike arrays, the components of a record may each be of a different data
type. In high-level languages, such as Pascal, a component of a record is selected by
using both the name of the record variable and the name of the component. Usually,
records are grouped into large arrays, called files in COBOL, structuresin PL/1, and
record structures in Pascal.

The TI32000 addressing modes facilitate quick access to record elements. (See
section 2.2.5.2.)



Strings. A string is an array of integers, all of the same length. The integers may be
bytes, words, or double words. Strings are common data structures in high-level
languages. For example, strings of ASCll characters (i.e., bytes) are commonly used
to contain alphanumeric text.

On the TI32000, a string is represented by a sequence of integers stored in
contiguous memory. Special instructions exist that facilitate comparison of strings,
movement of strings, and searching strings for particular integer values. (See
section 2.2.3.4.)

Stacks. A stack is a one-dimensional data structure in which values are entered and
removed one item at atime at one end, called the top-of-stack. It consists of a block of
memory and a variable called the stack pointer.

Stacks are important data structures in both systems and applications
programming. They are used to store return address and status information during
subroutine calls and interrupt servicing. Also, algorithms for expression evaluation
in compilers and interpreters depend on stacks to store intermediate results. Block-
structured HLLs such as Pascal keep local data and other information on a stack.
Parameters of a procedure in a block-structured HLL are usually passed on a stack,
and assembly language programs sometimes use this convention as well.

The TI32000 supports both a User Stack and an Interrupt Stack. Depending on the
mode of operation, one of two stack pointers (SPO or SP1) contains the memory
address of the top item on the stack. Instructions exist which allow for explicit
manipulation of the stack pointer, and the current stack can be used in almost all
TI32000 instructions to hold an operand.

For example, an item may be pushed onto the stack by subtracting the length of the
item from the stack pointer (since stacks, by convention, grow downward in
memory) then moving the item to the address now pointed to by the stack pointer.
An item may be popped off the stack by moving the item pointed to by the stack
pointer to the destination then adding the length of the item to the stack pointer. Both
of these operations are performed by selecting the Top-of-Stack Addressing mode.

Instructions also exist which push or pop the contents of one or more registers. For
example, the Jump to Subroutine instruction causes the Program Counter's
contents to be pushed on the stack, and the Enter instruction causes the contents of
the Frame Pointer and specified address-data registers to be pushed on the stack.
(See section 2.2.3.6.)

Instruction Set

One of the most important considerations in evaluating a computer architecture is
the relationship between the machine’s primitive data types and the instructions that
manipulate those data types. For example, if a processor has byte, word, and double
word integers, it should have an Add instruction that operates on each of these data
types in a uniform and consistent manner. In the TI32000 architecture, a complete
and comprehensive set of instructions is available for every hardware recognized
primitive data type. In addition, special instructions are available that facilitate
manipulation of structured data types.

Architecture m
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The instruction setincludes over 100 basic instruction types, chosen on the basis of a
study of the use and frequency of specific instructions in various applications;
special case instructions, which compilers cannot use, have been avoided. The
instruction set is further expanded through the use of special coprocessors, acting
as extensions to the CPU.

Thisinstruction setis symmetrical; that is, instructions can be used with any general
addressing mode, any operand length (byte, word, and double word), and can make
use of any address-data register.

The TI32000 instructions are genuine two operand instructions, although many
instructions use more (up to five) operands. This, combined with the consistent and
symmetric architecture, reduces the code size considerably.

Integer Instructions

Alarge set of arithmetic instructions are provided for integer manipulation: addition
and subtraction, multiplication and division (with various remainder, rounding,
modulus and result-length options), two’s complement, and absolute value. Other
instructions include:
® Move instructions that allow either zero or sign extension (a useful feature
when the size of the destination exceeds the size of the source).
e Shift instructions allowing logical and arithmetic shifts, as well as rotation
left or right, both by any amount.
® Boolean instructions (AND, OR, Exclusive OR, Complement, and Bit Clear)
allowing each bit in a data word to be manipulated independently.
® Two BCD arithmetic instructions, Add and Subtract, handling up to eight
digits at a time.
® Extended Multiply and Divide instructions which return a result which is
twice the size of the operands which they read.

Floating-Point (FPU) Instructions
The TI32000 supports 32-bit and 64-bit precision floating-point calculations, as well

as 8-, 16-, and 32-bit fixed-point calculations. In addition to the floating Add,
Subtract, Multiply, Divide, and Compare instructions, there is a Move instruction that
doubles as a conversion instruction for converting from integer to floating-point
format. Instructions are also provided to Round off a floating-point number toward
zero, and to convert a floating-point number to the largest integer less than or equal
to itself (the Floor of that number). For positive floating-point numbers these last two
operations have the same effect; they differ, however, for negative numbers. For

example, —3.17 truncates to —3, but its Floor is —4.

These instructions are implemented by the FPU and display the same symmetry,
addressing modes, and flexibility as the rest of the instruction set. The architecture
ofthe TI32000 makes available to the FPU all the TI32000 addressing modes, and any
instructions can be register-to-register, memory-to-register, or memory-to-memory.

Boolean, Bit, and Bit Field Instructions

Boolean instructions treat a data word as an array of bits and allow each bit to be
handled independently. Boolean operators include AND, OR, Exclusive OR,
Complement, and Bit Clear.
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The TI32000 family provides a special Boolean Not instruction for implementing
high-level languages which require that TRUE = 1 and FALSE = 0. To simplify the
handling of Boolean expressions in compilers, a Set-on-Condition instruction stores
a ‘1" into its only operand if a condition code check is satisfied; if not, it stores a ‘0’".

Bit instructions allow convenient handling of individual bits or arbitrarily large bit
arrays. In addition to the ability to set, clear, complement or test any bitin memory or
in aregister, the TI32000 family provides semaphore primitives (test and set, test and
clear) for multiprocessing and multitasking coordination. Also provided is a Convert
to Bit-Field Pointer instruction which converts a byte address and a bit offset into a
bit address. This allows a field address to be converted to an integer and thus passed
to a procedure or function, which is very useful in HLLs. A Find First Set instruction
searches a sequence of bits, either in memory or in a register, and returns the bit
number of the first ‘1’ bit it sees.

Two Bit Field instructions can access bit fields up to 32 bits in length anywhere in
memory, independent of byte alignments. The Extract instruction reads a bit field,
expands the result to the length specified in the opcode, and then stores the
expanded result into another operand. An Insert instruction reads an operand of the
length specified in the opcode and stores the low-order part into a bit field.

Block, String, and Array Instructions

For the many iterative operations which are required in high-level languages, the
Block Move and Block Compare instructions facilitate efficient generation of
compiler code. They are written the same way as the standard memory-to-memory
move and comparison instructions, except for the addition of a third displacement
operand which specifies how many elements (bytes, words or double words) are to
be moved or compared.

Strings of bytes, words, or double words are easily manipulated with the Move
String, Compare String, and Skip instructions. To avoid destructive overwriting,
move and compare operations can proceed from low addresses to high addresses,
or vice versa. These operations can proceed unconditionally or be terminated when
a comparison condition is met (when either a specific value is encountered or when
avalueis no longerencountered). Also, a string of instructions may be interrupted or
aborted, and then restarted where it left off. These string instructions are
comparable in their power to those available on large minicomputer and mainframe
computers.

For array handling, two instructions are provided, Check and Index. The Check
instruction determines whether an array index is within bounds. It allows the user to
specify both an upper and a lower bound. It also subtracts the lower bound from the
value being checked and stores the difference in aregister, where it can be used in an
Index instruction or in an index addressing mode.

The array Index instruction performs one step of a multidimensional array-address
calculation. The opcode specifies the length of the second and third operands; the
first operand is an address-data register. The Index instruction performs a
multiplication and an addition, leaving the resultin a register. The result is then used
in another Index instruction for the next dimension, or it is used in an index
addressing mode.

2-21
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Jumps, Branches, and Calls

A number of different Jumps and Branches are implemented: simple Jump, Jump
to Subroutine, simple Branch, Conditional Branch, and Multiway Branch (abranch is
a PC-relative Jump). Since the displacement in these instructions can be as large as
the PC, there is no limit to their range. In addition, several different returns are
supported: return from subroutine, return from trap, and return from interrupt. The
latter two are discussed in more detail in the section covering interrupts and traps,
(section 2.4.3).

Register Manipulation Instructions

Any address-data register can be accessed via the general addressing modes. Thus
any TI32000 instruction that uses a general addressing mode to access one of its
operands can manipulate these registers. In addition, several instructions are
provided explicitly for register manipulation.

The Save and Restore instructions manipulate the address-data registers. The
instruction format for these operations includes an immediate field of 8 bits, each bit
specifying which of the eight address-data registers are to be stored or fetched from
the stack.

Instructions manipulating the dedicated registers allow these registers to be loaded
and stored; bits in the program status register may be set and cleared, and the stack
pointer may be adjusted.

Instruction Format

The TI32000 has a variable-length instruction format in which instructions are
represented as a series of bytes. Figure 5 shows the general format of a TI32000
instruction.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
N\ /\
Vs / \
pisp2 | Di1sP1 SCALED|SCALERP| GEN | GEN
IMPLIED INDEX | INDEX |ADDR.|ADDR. OPCODE
OPERAND(S) BYTE BYTE | MODE |MODE
IMM2 | IMM1
2 1 1 2
N
// AN
b AN
GEN. ADDR.
MODE REG. NO.
7 3 2 0

i
<

INCREASING MEMORY

Figure 5. General Instruction Format



The Basic Instruction is one to three bytes long and contains the Opcode and up to
two 5-bit General Addressing mode (gen) fields. Following the Basic Instruction field
is a set of optional extensions, which may appear depending on the instruction and
the addressing modes selected.

The Opcode specifies the operation to be performed, for example, ADD, MOV, etc.,
and the number of operands to be used in the instruction. The specification of an
operand length (B, W, D, F or L) is written appended to the opcode. For example,
ADDW specifies the addition of two word-long operands, while MOVF specifies a
move to a single-precision floating-point operand. The length specification in
integer instructions is encoded in the basic instruction as B=00, W=01,or D=11;
the length specification in floating-point instructions is encoded in the basic opcode
as F=1orL=0.

The General Addressing mode fields specify the addressing mode to be used to
access the instruction’s operands.

Index Bytes appear in the instruction format when either or both gen fields specify
Scaled Index mode. In this case, the gen field specifies only the Scale Factor (1, 2, 4
or 8), and the Index Byte specifies which address-data register to use as the index
and which addressing mode calculation to perform before indexing.

Following Index Bytes come any displacements (addressing constants) or
immediate values associated with the selected addressing modes. Each
Displacement/Immediate (Disp/Imm) field may contain one or two displacements,
or one immediate value. The size of a Disp field is encoded within the top bits of that
field, with the remaining bits interpreted as a signed (two's complement) value (see
Figure 6). The size of an immediate value is determined from the Opcode field.

7 0
{ o | siGnep pispLAceEmENT |
BYTE DISPLACEMENT: RANGE = —64 TO +63

7 0
1 I 0 | MENT
‘ LACENE |
D D\SP
S\GNE
WORD DISPLACEMENT: RANGE = —8K TO 8K —1
7 0
1 I 1 I 6“‘
™
N
o°\$?
<
o

DOUBLE WORD DISPLACEMENT:
RANGE = —1/2GB TO 1/2GB-1

Figure 6. Displacement Encodings
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Special Encodings

Two other special encodings, reg and quick, allow the very compact encoding of
frequently used instructions. For example, there are quick forms of add, move and
compare instructions which encode a small integer operand (range from —8to +7)
in place of a second general addressing mode. Some instructions require additional,
‘implied’ immediates and/or displacements, apart from those associated with
addressing modes. Any such extensions appear at the end of the instruction, in the
order that they appear within the list of operands in the instruction definition.

2.2.4 Register Set

2.2.41

2.2.4.2
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The TI32000 architecture supports 33 registers, grouped into two register sets: 16
address-data registers and 17 dedicated registers (see Figure 7). Eight of the
address-data registers are located on the CPU and eight are located on the FPU. The
17 dedicated registers include nine on the CPU, one on the FPU, and seven on the
MMU. Besides storing operands and the results from arithmetic operations, these
registers may also be used for the temporary storage of program instructions and
control information concerning which instruction is to be executed next.

CPU Address-Data Registers

Internal to the CPU are eight 32-bit address-data registers RO through R7, which
provide local, high speed storage for the processor. They can be used to store bytes,
words, double words, and quadruple words.

All address-data registers are available to all instructions. Thus, the compiler has
freedom in its use of the registers and needn’t do much housekeeping. The
architecture also enables address-data registers to be used as accumulators, data
registers, and address pointers. This represents a great improvement over
machines that permit only a few registers to serve as address pointers, creating a
bottleneck in address calculations, a very important function in high-level language
programming.

CPU Dedicated Registers

The nine dedicated registers on the CPU chip are used for storing address and status
information. The MOD register and the Processor Status Register are both 16 bits;
the other registers are effectively 24 bits in length, although an additional eight bits
(which in the current implementation are always set to zero) have been provided to
allow for future expansion.

PC: The Program Counter register is a pointer to the first byte of the currently
executing instruction. After the instruction is completed, the program counter is
incremented to point to the next instruction. Since this register is 24 bits wide, all
16M bytes of memory can be directly addressed without the need for segmented
addresses.

SPO, SP1: The SPOregister points to the lowest address of the lastitem stored on the
Interrupt Stack. This stack is normally used only by the operating system, primarily
for temporary data storage and for holding return information for operating system
subroutines and interrupt and trap service routines. The SP1 register points to the
lowest address of the last item stored on the User Stack. This stack can be used by
normal user programs to hold temporary data and subroutine return information.



CPU REGISTERS

DEDICATED ADDRESS-DATA
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l PROGRAM COUNTER ] ec ro | ]
| STATIC BASE K rR1 | |
I FRAME POINTER | e Rz | ]
[ USER STACK PTR. | s R3 | |
[ INTERRUPT STACK PTR. ] sro ra | |
| INTERRUPT BASE | wrease  ms | |

|¢———16 BITS ——p] R6 I J
| procramsTaTus | sk fr | I
| MODULE ] moo
CONFIGURATION (CFG)
4BITS
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DEDICATED | DEDICATED
je 32 BITS —» ' ¢ 32BITS >
| PAGE TABLE BASE ] preo I I FLOATING POINT STATUS |
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|  error/nvaLIDATE ADDRESS | e I 1« 32BITS j"
| MEMORY STATUS ] msr l o |
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| BREAKPOINT ] eera l 2 L
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[¢————— 24 BITS ————p]
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I rs | ]
| [ B
]
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Figure 7. Register Set
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FP: The Frame Pointerregister is used by a procedure to access parameters and local
variables on the stack. Itis set up when a procedure is entered and points to the stack
frame of the currently executing procedure, which contains the parameters for the
currently executing subroutine and also the volatile (as opposed to static) local
variables. The procedure parameters are addressed with positive offsets from the
frame pointer; the local variables of the procedure are addressed with negative
offsets from the frame pointer.

SB: The Static Base register points to the global variables of a software module. All
references to a module’s data are relative to this register. (See section 2.4.2.)

INTBASE: The Interrupt Base register holds the address of the dispatch table for
interrupts and traps. (See sections 2.4.3.2 and 2.4.3.3.)

MOD: The Module register holds the address of the Module Descriptor of the
currently executing software module. (See section 2.4.2.2.)

PSR: The Processor Status register holds the CPU status and control flags for the
TI32000. The PSR is 16 bits long and is divided into two eight-bit halves. The low-
order eight bits are accessible to all programs, but the high-order bits are accessible
only to programs executing in Operating System mode. Among the bits in the PSR
are the Carry bit, the Trace bit, (which causes a trap to be executed after every
instruction), the Mode bit (which is set when the processor is in User Mode), the
Interrupt Enable bit (which if set will cause interrupts to be accepted), and several
other bits which can be used by comparison instructions.

CFG: The | bit indicates the presence of external interrupt vectoring circuitry
(specifically, the TI32202 Interrupt Control Unit). If the CFG | bit is set, interrupts
requested through the INT pin are ‘vectored’; if it is clear, these interrupts are ‘non-
vectored’. The E M, and C bits indicate the presence of the FPU, MMU, and
Application-Specific Coprocessors. If these bits are not set, the corresponding
instructions are trapped as being undefined.

FPU Registers

The Floating Point Unitregisters are located on the Floating Point Unit coprocessors
and consist of eight 32-bit address-data registers and a dedicated 32-bit Floating-
Point Status Register. The eight floating-point registers can each store a single-
precision operand or half of a double-precision operand. When 64-bit double-
precision operands are to be operated upon, the specified register (n) and the next
register (n + 1) are concatenated for the operation. Register n + 1 contains the high-
order bits.

The Floating-Point Status register (FSR) holds mode control information, error bits,
and trap enables. Like the other registers, the FSR is 32 bits wide. (See section
244.2)

MMU Registers

The optional memory management architecture uses the following 32-bit dedicated
registers to control address translation:



The Page Table Baseregisters (PT0and PTB1) are controlled by the operating system
and point to the starting location of the address translation tables in physical
memory. All Operating System mode addresses are translated with the PTBO
register. User mode addresses are translated using this register if the Dual Space
(DS) bit in the Memory Status Register (MSR) is one; if this bit is zero, the PTB1
register is used.

EIA: The Error/Invalidate Address register is used to invalidate addresses in the
translation buffer. The translation buffer is a transparent cache of the most recently
used pointer table entries. When an entry in a table is modified in memory, the copy
of it in the translation buffer is deleted by writing the address of the affected virtual
page into the EIA register. When a PTB register is modified, all cache entries made
using that register are deleted. The EIA is also used to store the address which
caused a memory management exception to occur.

MSR: The Memory Status register holds fields which control and examine the
memory management status, and is accessible only in the Operating System mode.
(See sections 2.4.4.2 and 2.4.4.3.)

Other registers in the MMU provide high-level software debug facilities during
program execution.

2.25 Addressing Modes

2.2.5.1

Information encoded in an instruction includes a specification of the operation to be
performed, the type of operands to be manipulated, and the location of these
operands. An operand can be located in a register, in the instruction itself (as an
immediate operand), or in memory. Instructions specify the location of their
operands by nine addressing modes. Two addressing modes are used to access
operands in registers and in instructions — Register mode and Immediate mode.
The other modes are used to access operands in memory. The address of the
operand is calculated in accordance with the desired addressing mode. The
calculation is done by taking the sum of up to three components:

® a displacement element in an instruction

® a pointer (i.e., an address) in a register or in memory

® an index value in a register

The nine addressing modes may also be divided into standard modes for
microprocessor architectures and those modes which are particularly suited to the
operations and data structures of high-level languages.

Standard Modes

The following standard addressing modes are supported by the TI32000
architecture (see Figure 8 for a diagram of each one):

e Register

® Immediate

e Absolute

® Register relative
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REGISTER: In the Register addressing mode, the operand is in one of the eight
address-data registers. In certain Coprocessor instructions, an auxiliary set of eight
registers may be referenced instead.

IMMEDIATE: The immediate mode operand is in the instruction. The length of the
immediate mode operand is specified by the operand length or by the basic
instruction length.

ABSOLUTE: With absolute mode, the operand address is the value of a
displacement in the instruction.

REGISTER RELATIVE: The register relative mode computes an effective address (the
operand address) by adding a displacement given in the instruction to a pointerin an
address-data register.

ADDR-DATA REGISTER

REGISTER | REGISTER a
MODE | ADDRESS

OPERAND ADDRESS = ADDR-DATA REGISTER

OPERAND

A-D REG.
REGISTER

RELATIVE | DISP RAE-g ADDRESS OPERAND
MODE 1 .

OPERAND ADDRESS = ADDR-DATA REGISTER + DISP.

IMMEDIATE
P
MODE OPERAND
OPERAND = IMMEDIATE VALUE
ABSOLUTE
MODE DIsP OPERAND

OPERAND ADDRESS = DISP.
Figure 8. Standard Addressing Modes

2.2.5.2 High-Level Language Modes

In addition to these standard addressing mode types, the TI32000 employs several
addressing mode types which, in combination with the already powerful instruction
set, make the TI32000 a superb vehicle for high-level languages. They are listed
below and diagrammed in Figure 9:

® Memory Space

® Memory Relative

® External

® Top-of-Stack

® Scaled Index
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ADDRESSING INSTRUCTION REGISTER MEMORY
MODE

REGISTER DED. REG.

RELATIVE
MODE I DISP. IDED.REG.ADDR. ADDRESS o OPERAND
|

OPERAND ADDRESS = DED. REG. + DISP.

SPO OR SP1

TOP OF STACK I SPO OR SP1 SPECIFIER ADDRESS OPERAND

OPERAND ADDRESS = TOS

MEMORY SB, FP OR SP
DISP AD
MODE DISP2|DISPT| | MODE ADDRESS DRESS
{
»(+ OPERAND
OPERAND ADDRESS = (DED. REG. & DISP2) + DISP1
SCALED A-D REGISTER
INDEX ] [ INDEX VALUE
MODE INDEX SCALE
SPECIFIER FACTOR

1,2,4,0R8

EFFECTIVE ADDR.

OF A SECOND + OPERAND

GEN ADDR. MODE
OPERAND ADDRESS = MODE + A-D REG. X INDEX
MOD REGISTER

EXTERNAL SEn 4
MODE lmspz DI e MODE ADDRESS ® N ADDR}

T 4
»(%)

31 MOD TABLE 0

e
[ 31 LINKTABLE 0
OPERAND ADDR. I

»(T)e¢

¢

EXTERNAL STORAGE

OPERAND

OPERAND ADDRESS = (LINK TABLE ENTRY + DISP1) + DISP2

Figure 9. High-Level Language Addressing Modes

MEMORY SPACE: This addressing mode is identical to Register Relative, discussed
above, except that the register used is one of the dedicated registers — PC, SP SB or
FP. These registers point to data areas generally needed by high-level languages.

MEMORY RELATIVE: The Memory Relative mode allows pointers located in
memory to be used directly, without having to be loaded into registers (as is required
in other microprocessors). Memory relative mode is useful for handling address
pointers and manipulating fields in a record. When this addressing mode is used,
the instruction specifies two displacements. The first displacement is added to a
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specified dedicated register, and a double word is fetched from this address. The
operand address is the sum of this value and the second displacement. In accessing
records, the second displacement specifies the location of a field in the record
pointed to by the double word. The exact size of the contents of this field is
programmable.

EXTERNAL: The External Addressing mode is unique to the TI32000, and supports
the software module concept, which allows the modules to be relocated without
linkage editing. This mode is used to access operands that are external to the
currently executing module. Associated with each module is a Link Table, containing
the absolute addresses of external variables. The external addressing mode
specifies two displacements: the ordinal number of the external variable (i e., the
Link Table entry to be used) and an offset to a subfield of the referenced variable
(e.g., a subfield of a Pascal record). (See section 2.4.2.)

TOP-OF-STACK: In this addressing mode, also unique to the TI32000, the currently
selected Stack Pointer (SP0 or SP1) specifies the location of the operand. Depending
on the instruction, the SP will be incremented or decremented, allowing normal
push and pop facilities. This addressing mode allows manipulation or accessing of
an operand on the stack by all instructions. For instance, the Top-of-Stack (TOS)
value can be added to the contents of a memory location, a register, or to itself, and
the result saved on the stack. On most other microprocessors, in which top-of-stack
addressing is limited to a very small number of instructions, these manipulations
would require several instructions to achieve the same results. The great advantage
of this addressing mode is that it allows quick reference using a minimum number of
bits to intermediate values in arithmetic computations.

SCALED INDEX: This addressing mode computes the operand address from one of
the address-data registers and a second addressing mode. The register value is
multiplied by one, two, four or eight (index byte, index word, index double, or index
quad). The effective address of the second addressing mode is then added to the
multiplied register value to form the final operand address. The Scaled Index mode
is used for addressing into arrays, when the elements of the array are bytes, words,
double words, floating-point numbers or long floating-point numbers.

2.3 Memory Organization

2.3.1
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Introduction

Microprocessors were first developed when the design of complex, special-purpose
chips became so expensive that it was more cost effective to use a general-purpose
programmable device instead of a special-purpose chip. The programs for these
early microprocessors were very small, typically requiring 2K to 8K bytes of memory
and rarely exceeding 16K bytes. (This was just as well, since memory was very
expensive.)

Now, almost exactly a decade since the microprocessor was invented, the memory
requirements for typical applications approach those of minicomputers or even
mainframes. Consequently, the memory organization issues discussed in section
2.1 have arisen.



In this section, we will cover the memory organization and memory management
mechanisms of the TI32000. The key topics to be discussed are page-based
mapping, virtual memory, memory protection, and virtual machines. The address
translation, virtual memory, and memory protection mechanisms of the TI32000
architecture are contained in the T132082 Memory Management Unit (MMU). The
MMU also contains the logic for debugging as well as on-chip cache. Special
instructions are provided in the TI32000 instruction set to control the MMU.

2.3.2 Mapping Mechanisms in the TI32000

2.3.2.1

Present TI32000 systems have a logical address space of 16 million bytes divided
into 32,768 pages, each with a fixed size of 512 bytes. The potential physical address
space is the same size and is also divided into similarly sized page frames. As
described earlier, address translation (mapping) is the process of translating a
logical address to a physical address. In the TI32000 architecture, address
translation is done in units of a page. Thus two addresses next to each other in the
same logical page will be next to each other in the same physical page frame,
although two pages which are contiguous in logical memory may not be contiguous
in physical memory.

For purposes of implementing the address translation, the 24 bits of a logical
address may be thought of as consisting of two fields: the page selector field, which
is the upper 15 bits, and the offset field, which is the lower 9 bits. Only the page
selector bits are actually translated in the mapping process. The 9 bits of the offset
specify a location within a page and are passed through the mapping process
unaltered. The mapping process is performed automatically by the MMU.

Basically the mapping operation consists of treating the page selector field as an
index into a table of physical addresses. Entries in this table hold the upper 15 bits of
the physical address of a page frame. When a logical address is sentto the MMU, its
lower 9 bits are appended to the 15-bit physical address in the table and the resulting
24-bit physical address is actually used to fetch data. (See Figure 10 for a diagram of
this operation. This figure shows an abstract view of the TI32000 mapping
operation; in reality, a two-level mapping is employed.)

Page Tables, Pointer Tables, and Entries

The address translation mechanism is carried out by tables in memory. The MMU
contains a special register (PTB1) that points to the beginning of the page table. This
table has 256 entries, each of which is 4 bytes wide, thus its total size is 1,024 bytes.
Each entry in the page table points to a pointer table. Pointer tables contain 128
entries of 4 bytes, thus the pointer tables are each contained in a page. Each entry in
a pointer table points to a physical page. (See Figure 11 for a diagram of this pointer
tree.)

Each program or task can have its own page table. Changing the page table is simply
a matter of changing an MMU register that points to the starting address of the
current page table. Therefore, each program or task can have its own map from
logical memory to physical memory and each program or task can have its own
logical address space.
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Figure 10. Mapping

Each entry in the page table or in one of the pointer tables has the same basic format
(see Figure 12).

The high-order 23 bits contain the starting physical address of the specified page
frame.

Bits 0 through 4 contain status bits:

V The Valid Bit indicates whether the entry specifies a page that is present in
memory. (See section 2.3.3.1, Page Faults and the Valid Bit.)

R The Referenced Bit indicates whether the page has been accessed. This bit is
automatically set when the corresponding page has been accessed for
reading or writing. (See section 2.3.3.3, Support for Page Swapping
Algorithms.)

M The Modified Bit indicates whether the page has been written into. This bit is
automatically set when any attempt is made to write to the corresponding
page.

PL The Protection Level field indicates the level of protection provided for the
page. (See section 2.3.4, Protection.)
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Figure 12. Page or Pointer Table Entry

2.3.2.2 The Complete Mapping Process
The mapping operation shown schematically in Figure 10, above, is actually
accomplished by the following process:

The page selector component of the logical address (the high-order 15 bits), shown
in Figure 10, actually consists of two subfields: the high-order 8 bits, which select an
entry in the page table, and the low-order 7 bits, which select an entry in the
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appropriate pointer table. (The offset component of a logical address specifies the
displacement from the base of a page to the specified item.) Figure 13 shows a more
complete version of the mapping process outlined in Figure 10.
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Figure 13. Table Driven Mapping
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To speed up the mapping process, the MMU provides an associative cache on the
chipitself. The cache contains the 32 most recently accessed logical addresses along
with their translated physical addresses. Each entry consists of the high-order
15 bits of a logical address and the high-order 15 bits of the translated physical
address (see Figure 14).

When a logical address is passed from the CPU to the MMU, the MMU first attempts
to match that logical address with an entry in the cache. If the entry is present, the
physical address portion of the entry is used immediately. If the entry is not present,
the MMU must fetch the page table and pointer table entries from memory before
address translation can be performed.

Ifthe entry is present, address translation requires only one clock cycle. If the entry is
not present, address translation will take slightly longer. This associative table is
transparent to the user and calculations indicate that it dramatically speeds up
address translation since the hit ratio (the percentage of time the cache contains the
entry) is about 98%.

MMU

LOGICAL ASSOCIATIVE PHYSICAL
CACHE
TABLE

ADDRESS ADDRESS

CPU MEMORY

< DATA OR INSTRUCTION REFERENCE >

Figure 14. Associative Cache

2.3.3 Virtual Memory Mechanisms of the TI32000

Programs share many traits in common with human beings. For example, they obey
Parkinson’s Law. Just as work expands to fill the time available, so programs tend to
expand over their lifetime to fill the physical memory available to them. Once the
memory limits have been reached, further expansion of the program is difficult and
error prone, usually requiring hard to manage overlays. The ideal solution to this
problem is to give the program a virtually infinite (limitless) memory. A program in
an infinite memory can be enlarged without bumping into any barriers.
Unfortunately, memory costs usually preclude enormous physical memories.
However, virtual memory gives the programmer the illusion of a gigantic memory at
minimal cost.
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With virtual memory, the user regards the combination of main and peripheral
storage as a single large storage. The user can write large programs without
worrying about the physical memory limitations of the system. To accomplish this,
the operating system places some of the user programs and data in peripheral
storage and brings them into main memory only as they are needed.

The TI32000 makes virtual memory operating systems easy to implement by means
of its page-based mapping mechanism. Programs and data are swapped between
main memory and secondary storage units of a page, as was described in section
2.1. In addition, the architecture provides several other mechanisms which support
virtual memory.

Three bits in the page entry are important for virtual memory systems. These bits
were discussed briefly in section 2.3.2.1. In the following three subparagraphs we
will cover in much greater detail the use of these three bits in virtual memory
systems. Also covered will be the instruction abortion/reexecution facility, the other
TI32000 feature specifically designed to support virtual memory.

Page Faults and the Valid Bit

The Valid Bit in a page or pointer table entry indicates whether the corresponding
page is present in main memory or not. Whenever an address is generated by the
CPU and passed to the MMU for translation into a physical address, the MMU checks
the valid bit of the table entry specified by the incoming logical address. If the valid
bitis 1, the page is assumed to be present in main memory and address translation
proceeds in the normal fashion.

However, if the valid bit is 0, then the page is assumed not to be in main memory and
a page fault occurs. A page fault is a hardware generated trap that is used to tell the
operating system to bring the missing page in from secondary storage. The page
fault occurs in the MMU, which generates an Abort signal to the CPU. The Abort
signal causes the CPU to immediately halt execution of the current instruction.

Instruction Aborting and Reexecution

When a page fault occurs, for whatever reason, the MMU sends the Abort signal to
the CPU. At this point the CPU will stop executing the instruction and return any
register that was altered by the instruction to its condition before the instruction
started. The operating system will then be called to initiate a page swap. Once the
appropriate page is in memory, the CPU and MMU also must insure that the aborted
instruction can be reexecuted.

One of the problems in implementing virtual memory systems is that an instruction
may generate a page fault at any time during the course of its execution. If the
instruction itself occupies several bytes, it may overlap a page boundary and the act
of fetching an instruction may itself cause a page fault. Or the process of fetching the
source or destination operand may cause a page fault.

In order to permit the instruction to be restarted, the Abort signal usually causes the
CPU to be returned to its state before the aborted instruction happened. The
program counter is automatically saved as are the processor status register, the
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stack pointer, and several other registers. When the operating system has completed
the page swap, it executes a RETURN FROM TRAP instruction and execution
resumes with the aborted instruction, with all registers being restored to their old
values.

String handling instructions require special treatment during an abort. Obviously it
is not desirable to have a long string instruction repeated from the beginning if an
abort occurs somewhere in the string. The TI32000 provides for the aborted
instruction to be reexecuted from the point where the problem occurred.

Support for Page Swapping Algorithms

To facilitate virtual memory implementation, two other bits in the page and pointer
table entries are used: the Referenced Bit (R) and the Modified Bit (M).

It has been tacitly assumed that there is a vacant page frame in which to put the
newly loaded page. In general, such will not be the case and it will be necessary to
remove some page (i.e., copy it back into the secondary memory) in order to make
room for the new page. Thus, an algorithm that decides which page to remove is
needed.

Choosing a page to remove at random is certainly not a good idea. If the page
containing the instruction is the one chosen, another page fault will occur as soon as
an attempt is made to fetch the next instruction. Most operating systems try to
predict which of the pagesin memory is the least useful, in the sense that its absence
would have the smallest adverse effect on the running program. One way of doing
so is to make a prediction when the next reference to each page will occur and
remove the page whose next reference lies farthest in the future. In other words, to
try to select the page that will not be needed for a long time.

One popular algorithm evicts the page least recently used because that page has a
high probability of not being in the working set. This algorithm is called the Least
Recently Used algorithm. The Referenced bit can be used to implement a version of
this algorithm.

The Referenced bit is set by the hardware when the page is referenced (read or
written) by an instruction. By periodically checking and clearing this bit in all page
and pointer table entries, the operating system can gain insight into the frequency
with which pages are being used.6 Thisinformation can be used to select pages to be
swapped out, for example, on a least recently used basis.

If a page about to be evicted has not been modified since it was read in (a likely
occurrence if the program contains program rather than data), then it is not
necessary to write it back into secondary memory, as an accurate copy already exists
there. If, however, it has been modified since it was read in, the copy in secondary
storage is no longer accurate and the page must be rewritten. The Modified bit is set
by the hardware whenever a page is written to during the time it is resident in main
memory.

6. Peter J. Denning, ‘Working Sets Past and Present,’ IEEE Transactions on Software Engineering, SE-6, No. 1,
1980.
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When the time comes to swap this page, the operating system can check this bit to
see if there is a need for updating the copy on disc. If the bit is 1 (i.e., the page has
been modified), then the page must be swapped out to secondary storage. However,
if this bitis 0, then the page has not been modified since it was last read in and it can
simply be discarded.

2.3.4 Memory Protection Mechanisms on the TI32000 Family

The page mechanism can also provide the basis for memory protection within a
logical address space. Each page can have attributes associated with it that indicate
how the page can be accessed. These attributes can allow reads only, reads and
writes, or they can prevent any access at all. Entries in the page and pointer tables
contain protection bits (the PL field) along with physical addresses (see section
2.3.2.1). These protection bits define the attribute of that page (e.g., read only).

The interpretation of the protection bits depends on the operating mode of the CPU.
A given setting of the PL field will be interpreted differently when the CPU is in
Operating System mode than when the CPU is in User mode. The bits have the
following interpretation.

PL I Operating System Mode | User Mode

00 read only no access

01 read and write no access

10 read and write read only

11 read and write read and write

The operating system can treat a collection of pages with the same attributes as a
segment. For example, a constants segment might be a set of pages containing data
with the read-only attribute set, so users could .not modify the data. Thus, page-
based mapping provides a mechanism for implementing segmentation.

Intertask protection is accomplished by giving each task its own set of page tables.
Thus each task has its own address space, providing maximum flexibility and virtual
memory for each task. By changing the single register that points to the page table,
one can switch to the new task’s address space.

2.3.5 Virtual Machines

2-38

If the virtual memory hardware allows application software to execute in a different
address space from the operating system, then it is possible to implement virtual
machines. Software running on a virtual machine believes that it is running on a
processor whose hardware provides the functions that are, in fact, provided by the
operating system. In fact, the virtual memory hardware and I/O devices are
simulated by the operating system with the aid of the real memory management
hardware and I/0 devices. Thus software which normally must be run alone (e.g., an
operating system) can be run under the control of another operating system. This
can be very useful for debugging a new operating system or running several
incompatible operating systems on the same machine.



Figure 15 shows a simplified diagram of such a virtual machine.
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L T132000 J
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Figure 15. Virtual Machines

Operating system A and operating system B run in different address spaces. System
A manipulates the actual TI32000 hardware, whereas system B manipulates an
illusory machine consisting of the TI32000 hardware and virtual peripherals
simulated by system A. The actual mechanisms employed to create such a virtual
machine are somewhat technical and are covered in detail in the T7/32000
Programmer’s Reference Manual. Basically, system A constructs a simulated table
onto the real page table. Virtual I/0O devices are simulated similarly.

2.4 Other Features of the Ti32000 Architecture

2.4.1 Introduction

This section will discuss additional architectural features of the TI32000 that reduce
the traditional gap between the semantics of high-level programming languages
and microprocessor architectures. Specifically, these are features which support
good software design and programming practices. The topics covered include
support for modular software design, input/output implementation, extension of
the instruction set by means of coprocessors, and software debugging support.

2.4.2 Modular Software

Modular programming is one of the principle techniques for the systematic design
of well-structured software. Large programs are among the most complex creations
of human intellect. This complexity has been a major factor contributing to software
unreliability. The concept of modularity in software design provides a means of
overcoming natural human limitations for dealing with programming complexity by
specifying the subdivision of large and complex programming tasks into smaller
and simpler subtasks, or modules, each of which performs some well-defined
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portion of the complete processing task. Such modules may then be independently
designed, written, tested, and compiled, perhaps by different programmers working
in parallel.

Programs which are written as a set of modules are more likely to be correct. They
are more easily understandable and therefore more easily modified, maintained,
and documented. Also, because communication between modules is permitted
only through well-defined interfaces, the inner workings of a module need not be
known to other modules. This protects a module’s code and allows design changes
to be done locally to a module without side effects on other modules or on the use of
the system.

Nearly all HLLs incorporate features to support modular programming. For
example, programs in Ada, the new Department of Defense high-order language,
are composed of one or more program units — subprograms, packages or tasks —
which can be compiled separately. In Pascal, separately compiled program modules
may refer to variables, functions or procedures declared in another module by using
certain extensions to the language, e.g., Import and Export directives.

The ultimate extension of the concept of modularity and the ultimate simplicity in
software design and implementation is achieved when the modules are written to
be used in ROM form. (For example, the VRTX real-time executive from Hunter &
Ready, Inc.) Such software modules are simple hardware-like components and
require a minimal amount of program design overhead.

Up to now, microprocessor architectures have provided inadequate and
cumbersome architecture support for a modular programming methodology. The
following section will discuss the problems associated with the implementation of
modularity by a microprocessor; and the two subsequent sections will explain the
TI32000's architectural solutions to these difficulties.

Overview

The major difficulty limiting the widespread use of libraries of ROM modules has
been the necessity of modifying a module’s addresses when it is linked with other
separately compiled modules and loaded into memory for execution. Since
addresses in ROM cannot be modified, it has been difficult to devise a uniform
method of employing ROM modules in programs. Even when the module’s code can
be modified (e.g., modules on disk), this is a tedious and often lengthy enterprise.

The problems result from the fact that when several modules are combined into a
single memory image, a module’s final position can vary widely. Consequently, all
addresses in jumps and calls or in data accesses that are dependent on knowing the
module’s absolute address at run time must be different according to where the
moduleis loaded. Similarly, when a module calls another module, the address of the
called module will be dependent on the relative position of the two modules. Thus, a
module’s code will not be identical for each position it occupies in memory and a
linkage editor must be used to modify the addresses in each module according to its
assigned position in memory.



2.4.2.2 Support Mechanisms

Software modules which have been compiled and assembled are known as Object
Modules and are typically stored in relocatable object code. The function of a linkage
editor is to merge the object modules into a single linear address space which may
then be loaded into memory for execution. This requires binding (converting to an
absolute value) all unresolved addresses. Relocation refers to the binding of the
nonsequential addresses within the module (calls, returns, branches, and
nonsequential data references); linking is the process of binding the addresses of
subroutines or variables in other modules.

On the TI132000, editing of nonsequential addresses (jumps) within a module is not
required, since TI32000 assembly language code is Position-Independent Code
(PIC). This is achieved by the use of addressing modes which form an effective
memory address relative to a base register — PC, FR, SP or SB. Since the relative
distance between two nonsequential addresses remains constant, the same offset
relative to the base register can be used in all positions in memory. This means a
program can be loaded anywhere in memory and run correctly. In addition, facilities
provided by the MMU allow a program to be moved in memory after it has been
linked and loaded. This is especially important in time-sharing systems where
programs must be swapped in and out of main memory to allow sharing of the
processor. Also, because the base register relative addressing mode allows 30-bit
signed displacements, which is 6 bits more than any present logical address, no
code editing is ever necessary for branching, regardless of the amount of code in a
module.

Position-independent code combined with the TI32000 virtual memory mechanism
allows a program to be relocated in the logical address space as well as the physical
address space. Machines that use paging or a relocation register, but lack base
register relative addressing, allow programs to be moved in physical memory, but
do not allow them to be moved to a different logical address after linking.

For references to variables and subroutines in other modules, the TI32000 provides
a sophisticated linkage facility such that no editing of a module’s external addresses
is required.

To begin with, all programs for the TI32000 are organized as modules. Each module
consists of three components:

1. The Program Code component contains the code to be executed by the
processor and the module’s constant data (or ‘literals’).

2. The Static Data component contains the module’s global variables and
data, i.e., data which may be accessed by all procedures within the module.
In a Pascal program, for example, this component would contain the data
structures declared in the outermost block.

3. The Link Table contains two types of entries: External Variable Descriptors
and External Procedure Descriptors. The External Variable Descriptor is the
absolute address of a variable located in the static data component or
program code area of another module. This value is used in the External
Addressing mode, in conjunction with the current Mod Table address (see
below), to compute the effective address of the external variable. The
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External Procedure Descriptor is used in the Call External Procedure (CXP)
instruction and will be discussed later. There is one entry in the Link Table
for each external variable and procedure referenced by the module.

In a typical system, the linker program (in conjunction with the loader) specifies the
locations of the three components of a module. The static data and Link Table
typically reside in RAM; the code component can be either RAM or ROM. The three
components can be mapped into noncontiguous locations in memory and each can
be independently relocated. Since the Link Table contains the absolute addresses of
external variables, the linker need not assign absolute memory addresses for these
in the module itself; they may be assigned at load time.

To allow the transfer of control from one module to another, the TI32000 provides
three structures: a Module Table in memory and two dedicated registers on the CPU.
1. The Module Table is set up in random-access memory starting at logical
address 0 and contains a Module Descriptor for each module in the address
space of the program. A Module Descriptor has four 32-bit entries
corresponding to each component of a module:
® The Static Base entry contains the base address of the beginning of the
module’s static local data area.
® The Link Base points to the beginning of the module’s Link Table.
® The Program Base is the address of the beginning of the code and
constant data for the module. Since a module may have multiple entry
points, this pointer is used with an offset from the Link Table to find them.
One entry is currently unused but has been allocated to allow for future
expansion.
2. The Mod Register on the CPU contains the address of the Module
Descriptor for the current module.
3. The Static Base Register contains a copy of the Static Base component of
the Module Descriptor of the currently executing module, i.e., it points to
the beginning of the current module’s static data area.

See Figure 16 for a illustration of a module’s environment.

On the TI32000, modules need not be linked together prior to loading. As modules
are loaded, a linking loader simply updates the Module Table and fills the linkage
table entries with the appropriate values. No modification of a module's code is
required. Thus, modules may be stored in read-only memory and may be addedto a
system independently of each other, without regard to their individual addressing.
Also, since the pointers in the Module Table reach any point within the address
space, modules can be located anywhere in memory.

Programming with Modules

The Call External Procedure (CXP) instruction is used to execute a procedure
residing in another module. Recall that the Link Table contains two types of entries
for each module in the program'’s address space: External Variable Descriptors and
External Procedure Descriptors. The latter entries consist of two 16-bit fields each.
The MODULE field contains the address of the referenced procedure’s Module Table
entry. The OFFSET field is an unsigned number giving the position of the entry point



relative to the new module’s Program Base pointer (in called module’'s Mod Table).
This allows a called procedure to be found automatically, without requiring the
calling routine to supply any addressing information.

STATIC BASE
REG
- ~_ STATIC DATA
A 4 L
MOD REG MOD TABLE
° SB e
PROG. COUNTER LB e » MK TABLE
< e PB
p—— | EXT. VAR.
DESCRIPTION

GLOBAL DATA
L

~

PROGRAM CODE

Figure 16. Module Run-Time Environment

Figure 17 depicts the execution of the CXP instruction where Module #2 calls
Module #3.

This instruction automatically performs the following sequence of operations.

1. The External Procedure Descriptor for Module #3 is found by adding a
displacement specified in the instruction to the Link Table address of
Module #2. In the assembly language program this displacement is
represented by a label name; the actual numerical value of the
displacement is assigned by the assembler.

2. The current status of Module #2 is saved by pushing the contents of its PC
and Mod registers onto the stack.

3. The Module field of the Link Table's External Procedure Descriptor for
Module #3 is moved into the MOD register so that this register now points
to the Module Table for Module #3.
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4. The Static Base value in the Module Table is placed in the Static Base
Register (this is done to speed up accesses to the module’s static variables,
which would otherwise be referenced by indexing into the Module Table).

5. The Offset field in the External Procedure Descriptor is added to the
contents of the Mod Table's Program Base and this value is placed in the PC.
The CPU is now in the environment of Module #3.

PROG CODE
PC #2 . #2 -
[ o—» cxp I DISP. o
~ LY
MOD REG #2 MOD TABLE #2
- =
LB e
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LINK TABLE #2

»
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OFF- o
€ MOD SET ®

MOD |REG #3

SB

STATIC DATA #3

&~
MOD TABLE #3
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PB o-—bé-b

PROG CODE #3

Figure 17. CXP Instruction

The Call External Procedure with Descriptor (CXPD) instruction allows an External
Procedure Descriptor to be passed as a parameter to a called module. The address of
afunction or procedure from the calling module’s Link Table is pushed onto the stack
and the called module may then use this value to call the procedure.

The Enter and Exit instructions minimize the overhead in procedure calls by
automatically managing the resources that must be allocated at the beginning of a

procedure and reclaimed at the

end.



The Enter instruction saves the Frame Pointer (FP) of the calling module on the stack
and loads the Stack Pointer value into the FP register so that they now point to the
same location, i.e., the saved FP value on the stack. Space on the stack is allocated for
the procedure’s local variables and a specified number of registers required for use
by the procedure are pushed on the stack. See Figure 18 for an example of one
procedure calling another.

15 0
sP—p| SAVED R2
SAVED R1
LOCAL
VARS
(6 BYTES)
15 0 FP1-p] FPO 15 )
SP— PC PC Sitnd pC
mMoD mMoD mMoD
DUMMY pUMMY DUMMY
ARG2 ARG2 ARG2
s 0 ARG1 ARG1 ARG1 5 o
sP—p| SP—p
FPo-»l FPO-p FPO-p, FPO -,
STATE BEFORE STATE AFTER: STATE AFTER: STATE AFTER: STATE AFTER:
CALL SEQUENCE  ADDR ARG1. TOS  ENTER [R1,R2],6  EXIT [R1, R2] RXP 6

MOVW ARG2. TOS

CXP OUTWORD MAIN PROCEDURE

CODE FOLLOWS
AT THIS POINT

Figure 18. Stack Flow for Procedure Calls

The TI32000’s use of the FP allows the procedure to allocate local variables on the
stack and address them as fixed offsets from the FP Also, once the local storage is
allocated, the stack can still be used for temporary storage without affecting the
addressing of the local variables. The programmer need not keep track of the
changing offset between the SP and local storage, which is especially advantageous
for nested procedure calls and recursive functions.

The Exit instruction automatically restores the registers saved by the Enter
instruction, loads the value of the FP into the Stack Pointer thus deallocating the
procedure variables, and restores the previous FP.

The Return from External Procedure (RXP) instruction restores the Static Base, the
Mod register, and the PC of the calling procedure. In addition, this instruction may be
used to remove the parameters which were passed to the called procedure.
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Data accesses by modules are provided in the following manner.

1. Parameters and local variables on the stack may be stored and accessed
with the Memory Space addressing mode or the Memory Relative
addressing mode using the FP register. Parameters are addressed with
positive offsets from the FP; local variables are addressed with negative
offsets-from the FP

2. A module’s static data is accessed by using the Memory Space addressing
mode with the Static Base (SB) register. Since displacement fields relative
to SB register can be 1, 2 or 4 bytes, no limit is imposed on the amount of
static data a module may have. Note that on other microprocessors, which
handle static data in the same way as any other external references, no
protection is provided for accesses by other modules. The TI32000 provides
this protection at the hardware level. The Mod Table allows each module to
have its own static data area so that a procedure being executed by a
module will not modify that module’s data. In applications requiring two or
more tasks to be executing the same code concurrently, this protection is
essential to insure reentrancy.

3. For operands that are external to the currently executing module, the
External addressing mode is used. This addressing mode specifies two
displacements. The first is added to the Link Base entry in the Mod Table to
obtain the External Variable Descriptor entry in the Link Table. The second
displacement is added to the External Variable Descriptor to compute the
effective address of the operand. Since both displacements may be as large
as the logical address space, there is no limit to the size of the Link Table or
to the size of the external variable (which might be a structure rather than a
single data element).

Indexing by the contents of any one of the CPU’s eight address-data registers is an
option on all addressing modes which generate an effective address to memory, so
that a static or external variable can also be an array. For example, to access an array
that has been passed by reference, the starting address of the array may be found by
using the Memory Space mode relative to the FP; this value can then be loaded into
an address-data register and used with the Scaled Index mode.

Input/Output

The input/output structure defined by a computer’s architecture provides the
interface between the central processor and the outside world, as well as between
the processor and its secondary storage devices, external support circuits, and
coprocessors.

The first two sections will discuss one aspect of the TI32000's architectural support
for /O operations, specifically, its sophisticated and efficient exception handling
mechanism.

Overview

Program exceptions are conditions which alter the normal sequence of instruction
execution, causing the processor to suspend the current process and call the
operating system for service. An exception resulting from the activity of a source
external to the processor is known as an interrupt; an exception which is initiated by



some action or condition in the program itself is called a trap. Thus, an interrupt
need not have a relationship to the executing program, while a trap is caused by the
executing program and will recur each time the program is executed. The TI32000
recognizes 12 exceptions: 9 traps and 3 interrupts.

The exception handling technique employed by an interrupt-driven processor
determines how fast the processor can perform input/output transfers, the speed
with which transfers between tasks and processes can be achieved, and the
software overhead required for both. Therefore, it determines to a large extent the
efficiency of a processor’s multiprogramming and multitasking (including real-time)
capabilities.

Exception handling on the TI32000 makes use of the hardware structures provided
for external procedure calls and, in addition, establishes a Dispatch Tablein memory
whose base address is contained in the CPU Interrupt Base register. This table
contains an External Procedure Descriptor for each interrupt service procedure
required. See Figure 19.

INT BASE bl °T
0 NVI NONVECTORED INTERRUPT
1 NMI NONMASKABLE INTERRUPT
2 ABT ABORT
3 FPU FPU TRAP
a4 ILL ILLEGAL OPERATION TRAP
5 svC SUPERVISOR CALL TRAP
6 bvz DIVIDE BY ZERO TRAP
7 FLG FLAG TRAP
8 BPT BREAKPOINT TRAP
9 TRC TRACE TRAP
10 UND UNDEFINED INSTRUCTION TRAP
~ n

od -
11-15 RESERVED

16 [VECTORED
INTER-
RUPTS

Figure 19. Dispatch Table

For purposes of addressing the Dispatch Table, each of the 12 exceptions has been
assigned a number. This exception number (or Interrupt vector) is used to compute
the starting address of the service procedure for the particular exception required,
i.e., the exception number is multiplied by 4, added to the contents of the Interrupt
Base register, and this value is used as an index into the Dispatch Table to obtain the
External Procedure Descriptor of the service routine to call.
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When an exception occurs, the CPU automatically preserves the complete machine
state of the program immediately prior to the occurrence of the exception.
Depending on the kind of exception, it will restore and/or adjust the contents of the
Program Counter, the Processor Status register, and the current Stack Pointer. A copy
of the PSR is made and pushed onto the Interrupt Stack. The PSR is set to reflect
Operating System mode and the selection of the service routine’s Interrupt Stack.
The Interrupt exception number is then used to obtain the address of the External
Procedure Descriptor from the Dispatch Table and an External Procedure Call is
made. As with any such call, the Mod register and the Program Counter are pushed
onto the Interrupt Stack. See Figure 20.

 DISPATCH TABLE

INT BASE REG ) »
DESCRIPTOR
EXCEPTION /_-A-—-\{
#0-15 . u MOD| OFFSET
-0 )
MOD REG
] <
MOD TABLE
® SB
) 4 LB
NEW . )'
SB REG. <+ o PB
PC -
o ¢
PROGRAM CODE
EXCEPTION
el HANDLING
0 ROUTINE
> RETURN
ADDRESS
INTERRUPT STACK
ON ENTRY INTO | PSR | MoD
EXCEPTION
HANDLING
ROUTINE

Figure 20. Nonvectored Interrupts and Traps

To return control to the interrupted program, one of two instructions is used. The
Return From Trap instruction (RETT) is used for all traps and nonmaskable
interrupts. It restores the PSR, the Mod register, and the PC and SB registers to their



previous contents and, since traps are often used deliberately as a call mechanism
for Operating System mode procedures, it discards a specified number of

parameters from the User’s stack. See Figure 21.

For maskable interrupts, the Return from Interrupt (RETI) instruction is used.

Itis

basically the same as the Return From Trap instruction except that any Interrupt
Control Units (see section 2.4.3.3) are informed that interrupt service has completed.
Also, since interrupts are generally asynchronous external events, this instruction

does not pop any parameters.

The TI32000 implements a five level priority system for scheduling exceptions which

occur in the same instruction. They are ordered as follows:

1. Traps other than trace (highest priority)
2. Abort trap
3. Nonmaskable interrupt
4. Maskable interrupts
5. Trace trap (lowest priority)
PC REGISTER INTERRUPT STACK
pop (¢ RETURN
ADDRESS
PSR REGISTER MOD
pop e psr | M

MOD REGISTER

[ 4 <

sl
. MOD TABLE
L8
e sB
SB REGISTER
LB
<
PB
USER STACK
PARAMETERS
n
BYTES

POP AND DISCARD

Figure 21. Return from Trap Instruction

Maskable interrupts may individually be assigned separate relative priorities (see

below). Exceptions with the same priority are serviced in the order received.
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This, then, is the basic plan for exception handling on the TI132000. The specifics of
interrupt and traps are discussed in the following two sections of this chapter.

Interrupts

The TI32000 provides three types of interrupts: Nonmaskable, Vectored, and
Nonvectored.

Nonmaskable interrupts cannot be disabled and occur when catastrophic events
(such as imminent power failure) require immediate handling in order to preserve
system integrity. A nonmaskable interrupt also occurs when a breakpoint condition
is met. (See section 2.4.5.2)

The Nonvectored interrupt mode may be used by smaller systems in which an
interrupt priority system is not required. In this case, ho index into the Dispatch Table
is needed and the CPU simply uses a default vector of zero.

For Vectored interrupts, prioritization of interrupt requests is provided by the
TI32202 Interrupt Control Unit. The basic idea in a priority interrupt mechanism is
that each device, along with its interrupt handler, is assigned a rank indicating its
priority. An interrupt handler can then be interrupted only by devices with a higher
priority.

Each Interrupt Control Unit can prioritize up to 16 interrupt requests, eight of which
can be from external peripheral devices. The ICU provides a vector used as an index
into the Dispatch Table to obtain the address of the service routine required.
In a system with only one ICU, the vectors provided must be in the range of 0
through 127.

To further expand the interrupt handling capability of a system, a single T132202,
acting as the Master ICU, can be cascaded with up to 16 additional Ti32202s,
providing up to 256 levels of hardware or software interrupt. To support the
cascaded configuration, a Cascade Table is established in memory, in a negative
direction from the Dispatch Table. The entries in the table are the 32-bit addresses
pointing to the Vector Registers in each ICU. To address the Cascade Table, the ICU
provides a negative vector number. The fact that it is a negative number indicates to
the CPU that the interrupt vector is from a cascaded ICU. See Figure 22 for a detailed
explanation of cascaded interrupts.

The Interrupt Control Unit can function in either a fixed priority or an auto-rotate
mode. In auto-rotate mode, the interrupt source, after being serviced, is rotated
automatically to the lowest priority position.

All interrupts except the nonmaskable interrupt may be disabled by the program
with the Bit Clear in PSR instruction; each of the ICU’s 16 interrupt sources can be
individually masked by setting a bit in that device's Mask Register.

Interrupt handling on the TI32000 provides a number of features which contribute
to efficiency and programming flexibility. For example, on some microprocessors,
all registers are automatically saved when an interrupt occurs. The TI32000
automatically saves only the Program Counter, the Program Status Register and the
Mod register; the other registers are under program control. They may be saved and
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restored by specifying the required ones in a single instruction, allowing for extreme
flexibility in adjusting interrupt response speed. Fast context switching for
interrupts is facilitated by the treatment of all memory locations as though they are
internal address-data registers by virtue of memory-to-memory operations. This
allows a temporary variable to be left in memory during a context switch. Also, the
use of an Interrupt Stack allows context switching in a multiprogramming or
multitasking environment to be done without having to disable interrupts.

X
MASTER ICU 0
CASCADE
INTERRUPT #(0-15) ] TABLE
i ENTRIES
~ ~
- - FOR
CASCADED
@O
15 J
INTBASE ]
FIXED INTERRUPTS 16
AND TRAPS DESCRIPTORS
INT VECTOR #1—p
+ i~ DISPATCH
INT [ TABLE
° @ VECTOR #n—p 256
DESCRIPTORS
P

(e Je

|
L

CASCADED ICU
VECTOR REG

Figure 22. Cascaded Vectored Interrupts

Traps

The TI32000 recognizes nine traps. Three of the traps are implemented by explicit
instructions: the Flag Trap (FLAG) allows overflow checking in any arithmetic
operation and is enabled by setting the F bit in the PSR; the Supervisor Call Trap
(SVC) is used to transfer to system mode software in a controlled way, typically to
access facilities provided by the operating system. The Breakpoint Trap (BPT)
instruction is used for program debugging, and is discussed in section 2.4.5.2.

The Abort Trap (ABT) occurs when an attempt is made to access a protected page in
memory or when page swapping is required in the MMU. If the page fault occursina
string instruction, the processor state is set to reflect the progress made by the
instruction up to the time of the trap; all other instructions are reexecuted from the

beginning.
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The lllegal Trap (ILL) results when a privileged instruction occurs while the processor
is in the User mode. Traps are also provided for undefined opcodes (UND), for
attempted division by zero (DVZ), and for the occurrence of an exceptional condition
in an FPU or Application Specific Coprocessor (ACU) instruction. The Trace Trap is
enabled by setting the T bit in the PSR and is used for program debugging.

All traps except the Trace trap occur as an itegral part of the execution of an
instruction, and are serviced before interrupts. The return address pushed by any
trap except the Trace trap is the address of the first byte of the instruction during
which the trap occurred; the return address of a Trace trap is the address of the next
instruction to be traced.

Memory-Mapped I/0

The architecture of the TI32000 implements a memory-mapped I/0 system, in which
peripheral devices are treated as a specified section of memory. The basic
motivation of a memory-mapped system is to allow the use of the full range of the
microprocessor’s instructions and addressing modes for I/O operations.

Each device interface is organized as a set of registers (or ports) that responds to
read and write commands to locations in the normal address space of the
microprocessor. For example, a memory store becomes an I/O write if a peripheral
device is addressed; a load from memory becomes an I/O read. A compare with
memory is a very powerful instruction that can take a group of input data and
successively compare their magnitude with a value in a register. Also, data in an
external device register can be tested or modified directly, without bringing it into
memory or disturbing the address-data registers.

Memory-mapped I/O allows I/0 operations to be performed directly in a high-level
language, i.e., an /O device may be declared as a data structure and then
manipulated with the use of pointers. In an isolated I/O system, assembly language
subroutines for /0 must be written and then called by the HLL. Memory-mapped I/0
also insures that the 1/O space is protected by the same memory management
facilities that are used to protect critical areas of memory.

2.4.4 Coprocessors

2-52

A coprocessor is an auxiliary processing unit that operates in coordination with the
TI32000 CPU, allowing architectural capabilities which, in view of the limitations in
contemporary integration technology, could not otherwise be provided.
Communication between the master CPU and the coprocessors takes place by
means of a very fast, well defined, and self-contained protocol, which is transparent
to the programmer.

The TI32000 family now includes two coprocessors: the TI32081 Floating Point Unit
and the TI32082 Memory Management Unit. In addition, the TI32000 CPUs provide
the capability of communicating with a user-defined, generalized Application-
Specific Coprocessor.
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24.4.2

Overview

A TI32000 CPU recognizes three groups of instructions as being executable by
external coprocessors: 1) Memory Management Instructions, 2) Floating-Point
Instructions, and 3) Application-Specific Coprocessor Instructions.

Coprocessor instructions have a three-byte Basic Instruction field, consisting of an
ID byte followed by an Operation Word. The ID Byte identifies the instruction as
being a coprocessor instruction, specifies which coprocessor will execute it, and
determines the format of the following Operation Word of the instruction. The
Operation Word specifies the size and number of operands, the addressing modes
used to access them, and the type of operation to be performed.

In all coprocessor operations, the CPU fetches the instruction, performs any address
calculation that may be needed, and then routes the instruction with the appropriate
data to the coprocessor for execution. The actual data manipulation is handled by
the coprocessor. If the necessary coprocessor chip is not in the system, the CPU
generates a software trap, allowing the instruction to be emulated with software
routines.

Though the coprocessor is external to the host CPU, all of the CPU’s registers and
facilities (such as effective address calculation, memory bus interface, etc.) can be
considered an integral part of the system.

A four-bit CFG register, located in the control section of the TI32000 CPU, indicates to
the CPU the presence of coprocessors in the system configuration (see Figure 7). The
FE M, and C bits indicate the availability of the FPU, the MMU, and an Application-
Specific Coprocessor. The | bit indicates the presence of the TI32202 Interrupt
Control Unit. These four bits must be set by the user during system initialization with
the Set Configuration instruction (SETCFG).

There are no restrictions on the number of coprocessors that can be used in the
system, aslong as only one coprocessor of each kind is on the bus. Thus, four or five
coprocessors, each with a different instruction set, could work alongside the CPU on
the same bus.

The coprocessor concept has two main advantages for software development. First,
the coprocessors are so designed that when integration technology advances to the
point where coprocessor hardware can be incorporated within the CPU chip, no
software modifications will be required — the same programs will simply execute
much faster. Second, the programmer has the option of building an entry-level
system without coprocessors by using software emulators. Later, higher
performance systems can be built by simply adding the coprocessor chips and
removing the emulators.

MMU

The MMU provides dynamic address translation, virtual memory management,
memory protection, and both hardware and software debugging support.

The MMU address translation and virtual memory mechanisms are described in
section 2.3; section 2.4.5 covers the debugging facilities of the MMU. In addition, six
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instructions are provided for manipulating the MMU's status. The Read Address
Validate (RDVAL) instruction and the Write address validate (WRVAL) instruction
provide read and write address translation validation for the user mode. The Load
MMU Register (LMR) instruction allows the programmer to store data into any of the
MMU registers. The Store MMU Register (SMR) instruction allows any register to be
read.

The MOVSU and MOVUS instructions permit the operating system to transfer data
to and from user space. Without these instructions, the operating system would
have no way of accessing data in the user's address space. Many microprocessors
that distinguish Operating System mode from User mode lack this instruction and
the design of operating systems for these machines is adversely affected.

FPU

The FPU extends the TI32000 instruction set with very high-speed floating-point
operations for both single- and double-precision operands, as well as 8, 16 and
32-bit fixed point calculations.

The FPU contains eight 32-bit data registers and a 32-bit Floating-Point Status
Register (FSR) which contains mode control information, the floating-point error
bits, and trap enables. The data registers contain 32-bit single-precision operands;
for 64-bit double-precision operands, two registers are concatenated.

Unlike other microprocessors which support floating-point operations, the
architecture of the TI132000 makes available to the FPU all the TI32000 addressing
modes. For example, the Scaled Index mode permits an array of floating-point data
elements to be addressed by its logical index, rather than its physical address. Also,
any instructions can be register-to-register, register-to-memory, or memory-to-
memory.

The FPU executes 18 instructions which supplement the integral arithmetic
instructions and provide conversion from one precision type to another. Three
separate processors in the chip manipulate the mantissa, sign, and exponent,
respectively, under the control of microcode stored on the chip. (See section 2.2.3.2)

Traps are provided for overflow, underflow, divide by zero, reserved operand, invalid
operations, illegal instructions, and inexact results. All traps can be individually
enabled or disabled by the programmer.

Application-Specific Coprocessors

The user-defined Application-Specific Coprocessor (ACU) instruction set can be
used to control any generic external chip. This chip is assumed to need some
opcodes for arithmetic-like calculations, some opcodes for data moves, and some
opcodes for examining and modifying status registers. The instruction set defines
the instruction formats, the operand classes, and the communication protocol. Left
to the user are the interpretations of the Op Code fields, the programming model of
the ACU, and the actual types of data transferred The protocol specifies only the size
of an operand, not its data type.
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2.45.2

Debugging is one of the most difficult stages in program development. Though
structured design techniques and modular programming have helped to reduce
program debugging time, 20% of software development effort remains committed
to this enterprise. Clearly, any debugging assistance provided by the hardware is of
particular value. The support provided by the TI32000 is unique for
microprocessors.

Overview

Hardware support is provided for an operation crucial to program debugging:
breakpointing. The implementation of this operation uses a set of registers on the
MMU and the Breakpoint Trap instruction.

Breakpoint Trap and MMU Breakpoint Registers

Setting breakpoints is a technique for halting a program'’s execution at a particular
instruction or data access for purposes of examining the program's state and
thereby determining the cause of improper program behavior.

On the TI32000, breakpoints may be set either when a specified address is accessed
or after a specified number of such accesses have been made. Also, more than one
breakpoint address may be simultaneously selected, allowing a halt to be
implemented after either fork of a conditional branch. These facilities are provided
by the Breakpoint Trap instruction (BPT) and three dedicated registers located on the
MMU.

The Breakpoint Trap instruction is a one byte instruction which replaces the first byte
ofthe opcode of the instruction that is to be breakpointed. To allow breakpoints to be
set in PROM, as well as RAM, two Breakpoint registers, BPRO and BPR1, are
provided. These registers hold the double word addresses of two selected
breakpoints which are compared with the contents of the address bus for every
memory cycle. When a breakpoint address appears in the program and other
conditions specified by the contents of the register are met, a nonmaskable Interrupt
occurs.

Because these registers are located in the MMU, they may be selected to ook at
either the logical addresses from the CPU or the physical addresses from the MMU.
In addition, the Breakpoint registers may be designated to operate when the
indicated address is either written to or read from or when there is an instruction
fetch.

A third register on the MMU, the Breakpoint Count register, specifies the number of
matches of the BPRO register breakpoint condition to pass over before a breakpoint
occurs. This is useful for selecting a particular iteration in a loop instruction. See
Figure 23 for a schematic representation of the operation of the three Breakpoint
registers. In this example, the program contains a loop which will be executed 100
times. For purposes of debugging, the breakpoint is set to occur on the last time
through the loop. This is done by setting BPRO to the address of the particular
instruction and by setting the BC register to 99, this being one less than the number
of times the loop will be executed in the program.
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EXAMPLE PROGRAM
L P -~

:

N =100

MMU REGISTERS J

BPRO &—————P] N=N-1
BPR1

BC =99

NO

Figure 23. Breakpointing

In most other microprocessors, breakpointing is provided by a trap or breakpoint
instruction which single steps the CPU. This can result in a myriad of problems for a
virtual memory system. First and foremost is the fact that all addresses emanating
from the CPU are logical addresses. It is often necessary when debugging Operating
System mode software to be able to set breakpoints at absolute addresses; i.e., at
addresses in physical memory. This is not possible with CPU-based debugging
techniques, since the CPU has no concept of the distinction between the two types of
addresses. Also, the setting of breakpoints with special instructions that overlay
existing code can cause much additional overhead for the memory manager. For
these and other reasons, the designers of the TI32000 have chosen to implement
debug support on the MMU.
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3.1 TI32032T Microprocessor
3.1.1 Programming Model

The T132000 microprocessor family architecture includes 16 registers on the T132032T

Central Processing Unit (CPU) (Figure 1).
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Figure 1. Address-Data and Dedicated Registers

3.1.1.1 Address-Data Registers

The TI132032T contains eight registers (RO through R7) for meeting high-speed general-
storage requirements, such as for holding temporary variables and addresses. These
registers are free for any use by the programmer. Each is 32 bits in length. If an Address-
Data Register is specified for an operand that is 8 or 16 bits long, only the low part
(8 or 16 bit section) of the register is used and the high part is not referenced or

modified.

3.1.1.2 Dedicated Registers

The eight dedicated registers of the TI32032T are assigned specific functions.

PC: THE PROGRAM COUNTER Register is a pointer to the first byte of the instruction
currently being executed. The PC Register is used to reference memory in the program
section. In the TI32032T CPU, the upper eight (most significant) bits of this register

are always zero.

SPO, SP1:The function of the STACK POINTER Registers is as follows: (1) The SPO
Register points to the lowest address of the last item stored in the Interrupt Stack.
This stack is normally used only by the operating system. It is primarily used for storing
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temporary data, and holding return information for operating system subroutines and
interrupt and trap service routines. (2) The SP1 Register points to the lowest address
of the last item stored on the User Stack. This stack is used by normal user programs
to hold temporary data and subroutine return information.

In this document, reference is made to the SP Register. The terms 'SP Register’’ or
"“SP"’ refers to either SPO or SP1, depending on the setting of the S bit in the Processor
Status Register (PSR). If the S bit in the PSR is O, then SP refers to SPO. If the S bit
in the PSR is 1, then SP refers to SP1. In the TI32032T CPU, the upper eight (most
significant) bits of these registers are always zero.

Stacks in the TI32000 microprocessor family grow downward in memory. A Push
operation predecrements the Stack Pointer by the operand length. A Pop operation
postincrements the Stack Pointer by the operand length.

FP: The FRAME POINTER Register is used by a procedure to access parameters and
local variables on the stack. The FP Register is set up on procedure entry with the
ENTER instruction and stored on procedure termination with the EXIT instruction.

The FP Register holds the address in memory occupied by the old contents of the Frame
Pointer. In the TI32032T CPU, the upper eight (most significant) bits of this register
are always zero.

SB: The STATIC BASE Register points to the global variables of the software module.
This register is used to support relocatable global variables for software modules. The
SB Register holds the lowest address in memory occupied by the global variables of
a module. In the TI32032T CPU, the upper eight (most significant) bits of this register
are always zero.

INTBASE: The INTERRUPT BASE Register holds the address of the dispatch table for
interrupts and traps (section 3.1.3.8). The INTBASE register holds the lowest address
in memory occupied by the dispatch table. (In the TI32032T CPU, the upper eight
(most significant) bits of this register are always zero.

MOD: The MODULE REGISTER holds the address of the module descriptor of the
currently executing software module. The MOD register is 16 bits long, therefore the
module table must be contained within the first 64k bytes of memory.

PSR: The PROCESSOR STATUS Register holds the status codes for the TI32032T
microprocessor. The PSR, as shown in Figure 2, is 16 bits long, divided into two 8-bit
halves. The low-order 8 bits are accessible to all programs, but the high-order 8 bits
are accessible only to programs executing in Operating System Mode.

15 817 0
DXL e s T v 2 [ XX T T ]

Figure 2. Processor Status Register

C: The C bit indicates that a carry or borrow occurred after an addition or subtraction
instruction. It can be used with the ADDC and SUBC instructions to perform multiple-
precision integer arithmetic calculations. It may have a setting of O (no carry or borrow)
or 1 (carry or borrow).



T: The T bit causes program tracing. If this bitis a 1, a Trace Trap (TRC) is executed
after every instruction (section 3.1.3.8.5).

L: The L bit is altered by comparison instructions. In a comparison instruction, the
L bitis setto '*1'" if the second operand is less than the first operand, and both operands
are interpreted as unsigned integers. Otherwise, it is set to ‘‘0O’’. In floating-point
comparisons,this bit is always cleared.

F: The F bit is a general condition flag, which is altered by many instructions (e.g.,
integer arithmetic instructions use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a comparison instruction, the
Z bit is set to ‘’1"’" if the second operand is equal to the first operand; otherwise it
is set to 'O"".

N: The N bit is altered by comparison instructions. In a comparison instruction, the
N bit is set to “1"" if both operands are interpreted as signed integers and the second
operand is less than the first operand. Otherwise, it is set to "‘0"".

U: If the U bitis "’1’’, no privileged instructions may be executed. If the U bitis ’0"’,
then all instructions may be executed. When U = 0, the TI32032T is said to be in
Operating System Mode; when U = 1, the TI32032T is said to be in User Mode. A
User Mode program is restricted from executing certain instructions and accessing
certain registers which could interfere with the operating system. For example, a User
Mode program is prevented from changing the setting of the flag used to indicate its
own privilege mode. An Operating System Mode program is assumed to be a trusted
part of operating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO Register or SP1 Register is used as the Stack
Pointer. The S bit is automatically cleared on interrupts and traps. It may have a setting
of O (use SPO Register) or 1 (use SP1 Register).

P: The P bit prevents a TRC trap from occurring more than once for an instruction
(section 3.1.3.8.5}. It may have a setting of O (no trace pending) or 1 (trace pending).

I: When the | bitis ‘“1’’, all interrupts will be accepted (section 3.1.3.8). If the I-bit
is "’0"’, only the NMl interrupt is accepted. Trap enables are not affected by this bit.

3.1.1.3 Configuration Register (CFG)

Within the Control section of the TI32032T CPU is a four-bit CFG Register that declares
the presence of certain external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of system initialization after
reset. The format of the CFG Register is shown in Figure 3.

cfmfefi]

Figure 3. CFG Register

3-5
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The CFG | bit declares the presence of external interrupt vectoring circuitry, specifically,
the T132202 Interrupt Control Unit. If the CFG | bitis **1", interrupts requested through
the INT pin are ‘’vectored’’. If it is clear, these interrupts are ‘‘nonvectored’’
(section 3.1.3.8).

The F, M, and C bits declare the presence of the Floating Point Unit (FPU), Memory
Management Unit (MMU), and Application-Specific Coprocessors. If these bits are Os,
the corresponding instructions are trapped as being undefined.

3.1.1.4 Memory Organization

3-6

The main memory of the TI32032T is a uniform linear address space. Memory locations
are numbered sequentially starting at O and ending at 224 — 1. The number specifying
a memory location is called an address. The contents of each memory location is a
byte consisting of 8 bits. Unless otherwise noted, diagrams in this document show
data stored in memory with the lowest address on the right and the highest address
on the left. In addition, when data is shown vertically, the lowest address is at the
top of a diagram and the highest address is at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given the number O, and is shown
at the right of the diagram. Bits are numbered in increasing significance and toward
the left.

7 0

1

A
Byte at Address A.

Two contiguous bytes are called a word. Except where noted (section 3.1.2.1), the
least significant byte of a word is stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word may start at any address.

15 87 0

I MS BYTE ] LS BYTE |
le—A + 1ple— A —

Word at Address A.

Two contiguous words are called a double word. Except where noted (section 3.1.2.1),
the least significant word of a double word is stored at the lowest address and the
most significant word of the double word is stored at the address two greater. In
memory, the address of a double word is the address of its least significant byte, and
a double word may start at any address.

31 24 23 16 15 87 0

| msevre | | | sevre |
A+ 3 A+ 2 A+ 1 A

Double word at Address A.



Although memory is addressed as bytes, it is actually organized as double words. Note
that access time to a word or a double word depends upon its address, e.g., double
words that are aligned to start at addresses that are multiples of four will be accessed
more quickly than those not so aligned. This also applies to words that cross a double-
word boundary.

3.1.1.5 Dedicated Tables

Two of the TI32032T dedicated registers (MOD and INTBASE) serve as pointers to
dedicated tables in memory (section 3.1.3.8).

The INTBASE Register points to the Interrupt Dispatch and Cascade tables.

The MOD register contains a pointer into the Module Table, whose entries are called
Module Descriptors. A Module Descriptor contains four pointers, three of which are
used by the TI132032T. At any time, the MOD register contains the address of the
Module Descriptor for the currently running module. It is automatically updated by
the Call External Procedure instructions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 4. The Static Base entry contains
the address of static data assigned to the running module.lt is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The Program Base entry
contains the address of the first byte of instruction code in the module. Since a module
may have multiple entry points, the Program Base pointer serves only as a reference
to find them.

15 0

MOD

STATIC BASE k——

LINK TABLE ADDRESS

PROGRAM BASE
RESERVED

A A

Figure 4. Module Descriptor Format

The Link Table Address points to the Link Table for the currently running module. The
Link Table provides the information needed for:

1. Sharing variables between modules. Such variables are accessed through the
Link Table via the External addressing mode.

2. Transferring control from one module to another. This is done via the Call
External Procedure (CXP) instruction.

3-7
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3.1.2
3.1.2.1

3-8

The format of a Link Table is shown in Figure 5. A Link Table Entry for an external
variable contains the 32-bit address of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module field contains the new MOD
register contents for the module being entered. The Offset field is an unsighed number
giving the position of the entry point relative to the new module’s Program Base pointer.

ENTRY “J° 31 e g
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET | MODULE (PROCEDURE)
A~ #

Figure 5. A Sample Link Table

For further details of the functions of these tables, refer to the 7/32000 Programmer’s
Reference Manual.

Instruction Set
General Instruction Format

Figure 6 shows the general format of a TI32000 instruction. The Basic Instruction
is one to three bytes long and contains the Opcode and up to two 5-bit General
Addressing Mode (gen) fields. Following the Basic Instruction field is a set of optional

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
o\ /\
7 \Y% A}

|
DISP2 ]DTSNIDISPZ DISP1 i

i
GEN GEN
IMPLIED | |
IMMEDIATE DISP DISP INDEX 'gg’f: 3.2';2 I ggg: | OPCODE
OPERANDIS) BYTE A | 8 |
MM IMM | |
1 1

T B

Figure 6. General Instruction Format

extensions, which may appear depending on the instruction and the addressing modes
selected. Index Bytes appear when either or both gen fields specify Scaled Index. In
this case, the gen field specifies only the Scale Factor (1, 2, 4, or 8) and the Index
Byte specifies which Address-Data Register to use as the index and which addressing
mode calculation to perform before indexing. See Figure 7.



GEN. ADDR. MODE REG. NO.

Figure 7. Index Byte Format

Following Index Bytes come any displacements (addressing constants) or immediate
values associated with the selected addressing modes. Each Displacement/Immediate
(Disp/IMM) field may contain one or two displacements, or one immediate value. The
size of a Displacement field is encoded within the top bits of that field, as shown in
Figure 8, with the remaining bits interpreted as a signed (two's complement) value.
The size of an immediate value is determined from the Opcode field. Both Disp and
IMM fields are stored most significant byte first. Note that this is different from the
memory representation of data (section 3.1.1.4).

17 of

0 SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE -64 TO +63

17 ol

gV

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)

Figure 8. Displacement Encodings

Some instructions require additional, “‘implied’’ immediates and/or displacements, apart
from those associated with addressing modes. Any such extensions appear at the end
of the instruction, in the order that they appear within the list of operands in the
instruction definition (section 3.1.2.3).

3.1.2.2 Addressing Modes

The T132032T CPU generally accesses an operand by calculating its Effective Address
based on information available when the operand is to be accessed. The method to
be used in performing this calculation is specified by the programmer as an ‘‘addressing
mode’’.

3-9
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3.1.2.3

3-10

Addressing modes in the TI32032T are designed to optimally support high-level
language accesses to variables. In nearly all cases, a variable access requires only one -
addressing mode within the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

TI32032T Addressing Modes fall into nine basic types:

1.

Table 1

Register — The operand is available in one of the eight Address-Data Registers.
In certain Coprocessor instructions, an auxiliary set of 8 registers may be
referenced instead.

. Register Relative — An Address-Data Register contains an address to a

diplacement value from the instruction, yielding the Effective Address of the
operand in memory.

. Memory Space — ldentical to Register Relative above, except that the register

used is one of the dedicated registers PC, SP, SB, or FP. These registers point
to data areas generally needed by high-level languages.

. Memory Relative — A pointer variable is found within the memory space

pointed to by the SP, SB, or FP register. A displacement is added to that pointer
to generate the Effective Address of the operand.

. Immediate — The operand is encoded within the instruction. This addressing

mode is not allowed if the operand is to be written.

. Absolute — The address of the operand is specified by a displacement field

in the instruction.

. External — A pointer value is read from a specified entry of the current Link

Table. To this pointer value is added a displacement, yielding the Effective
Address of the operand.

. Top-of-Stack — The currently selected Stack Pointer (SPO or SP1) specifies

the location of the operand. The operand is pushed or popped, depending on
whether it is written or read.

. Scaled Index — Although encoded as an addressing mode, Scaled Indexing

is an option on any addressing mode except Immediate or another Scaled
Index. It has the effect of calculating an Effective Address, then multiplying
any Address-Data Register by 1, 2, 4, or 8 and adding it to the total, yielding
the final Effective Address of the operand.

is a brief summary of the addressing modes. For a complete description of

their actions, see the 7/32000 Programmer’s Reference Manual.

Instruction Set Summary

Table 2 presents a brief description of the TI32032T instruction set.The Format Column
refers to the Instruction Format Tables (See Appendix).The Instruction Column gives
the instruction as coded in assembly language, and the Description column provides
a short description of the function provided by that instruction. Further details of the
exact operations performed by each instruction may be found in the 7/32000
Programmer’s Reference Manual.



Notations:

integer length suffix: B = Byte
w Word
D Double Word

1]

f = Floating Point length suffix: F = Standard Floating
L = Long Floating
gen = General operand: Any addressing mode can be specified.

short = A 4-bit value encoded within the Basic Instruction (see Appendix for
encoding).

imm = Implied immediate operand. An 8-bit value appended after any addressing
extensions.

disp = displacement (addressing constant): 8, 16, or 32 bits. All three lengths
equal.

reg = Any address-data register: RO-R7.

areg = Any Dedicated address register: SP, SB, FP, MOD, INTBASE, PSR,US
(bottom 8 PSR bits).

mreg = Any Memory Management Status/Control Register.
creg = An Application-Specific Coprocessor Register (Implementation Dependent).

cond = Any condition code, encoded as the 4-bit field within the Basic Instruction
(see Appendix for encodings).

3.1.3 Functional Description

3.1.3.1

Power and Grounding

The TI132032T requires a single 5-V power supply, applied on pin 18 (Vcc). See DC
specifications in the TI32032T data sheet.

Grounding connections are made on three pins. Logic Ground (GNDL, pin 44) is the
common pin for on-chip logic, and Buffer Grounds (GNDB1, pin 43 and GNDB2, pin 11)
are the common pins for the output drivers. For optimal noise immunity, it is
recommended that GNDB1 and GNDB2 be connected together through a single
conductor, and GNDL be directly connected to the center of this conductor. All other
ground connections should be made to the common line as shown in Figure 9.

In addition to Vcc and GND, the T132032T CPU uses an internally generated negative
voltage. It is necessary to filter this voltage externally by attaching a pair of capacitors
(Figure 9) from the BBG pin to ground. Recommended values for these are:
C1: 1 uF, Tantalum.
C2: 1000 pF, low inductance. This should be either a disc or monolithic ceramic
capacitor.

TI132032T Microprocessor m
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ENCODING

Register
00000
00001
00010
00011
00100
00101
00110
00111

Register

Relative
01000

01001
01010
01011
01100
01101
01110
01111
Memory

Relative
10000

10001

10010

Immediate
10100

Absolute
10101

External
10110

Table 1. TI32000 Addressing Modes

MODE ASSEMBLER SYNTAX
Register O RO or FO
Register 1 R1 or F1
Register 2 R2 or F2
Register 3 R3 or F3
Register 4 R4 or F4
Register 5 R5 or F5
Register 6 R6 or F6
Register 7 R7 or F7
Register O relative disp(RO)
Register 1 relative disp(R1)
Register 2 relative disp(R2)
Register 3 relative disp(R3)
Register 4 relative disp(R4)
Register 5 relative disp(R5)
Register 6 relative disp(R6)
Register 7 relative disp(R7)

Frame memory relative
Stack memory relative

Static memory relative

Immediate

Absolute

External

Top of Stack

10111

Top of Stack

disp2(disp1(FP))
disp2(disp1(SP))

disp2(disp1(SB))

value

@disp

EXT (disp1) + disp2

T0S

EFFECTIVE ADDRESS

None: Operand is in the
specified register

Disp + Register.

Disp 2+ Pointer; Pointer found
at address Disp1 + Register.
"“SP’’ is either SPO or SP1, as
selected in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is
found at Link Table Entry
number Disp1.

Top of current stack, using
either User or Interrupt Stack
Pointer, as selected in PSR.
Automatic Push/Pop included.



Table 1. TI32000 Addressing Modes (Continued)

ENCODING MODE
Memory
Space

11000 Frame memory

11001 Stack memory

11010 Static memory

11011 Program memory
Scaled Index

11100 Index, bytes

11101 Index, words

11110 Index, double words

11111 Index, quad words

ASSEMBLER SYNTAX

disp(FP)
disp(SP)

disp(SB)
* +disp

mode|Rn:B]

mode[Rn:W]|
mode[Rn:D]
mode[Rn:Q|

EFFECTIVE ADDRESS

Disp + Register, 'SP’ is either
SPO or SP1, as selected in
PSR.

EA (mode) + Rn.

EA (mode) + 2 x Rn.

EA (mode) + 4 x Rn.

EA (mode) + 8 x Rn.
"Mode’’ and ‘‘n’’ are contained
within the Index Byte.
EA(mode) denotes the effective
address generated using mode.

T132032T Microprocessor m
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Table 2. Ti32000 Instuction Set Summary

MOVES
Format  Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVaQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).
7 MOovzBw gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move Effective Address.
INTEGER ARITHMETIC
Format  Operation Operands Description
4 ADDi gen,gen Add.
2 ADDQiI short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBI gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply
7 QUOI gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEli gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.
INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format  Operation Operands Description
4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean

variable of size i.



Table 2. T132000 Instruction Set Summary (Continued)

SHIFTS
Format  Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gengen Arithmetic Shift, left or right.
6 ROTI gen,gen Rotate, left or right.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are
PACKED arrays and records used in Pascal. “’Extract’’ instructions read and align a bit
field. ““Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp  Extract bit field (array oriented).
8 INSi reg,gen,gen,disp  Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS

Format  Operation Operands Description

8 CHECK:i reg,gen,gen Index bounds check.
. 8 INDEXi reg,gen,gen Recursive indexing step for multiple-

dimensional arrays.
STRINGS
String instructions assign specific functions to the Address-Data Registers:
R4 — Comparison Value
R3 — Translation Table Pointer
R2 — String 2 Pointer
R1 — String 1 Pointer
RO — Limit Count

Options on all strong instructions are:

B (Backward): Decrement string pointers after each step rather than incrementing.
U (Until match):  End instruction if String 1 entry matches R4.

W (While match): End instruction if String 1 entry does not match R4.

All string instructions end when RO decrements to zero.

TI132032T Microprocessor m
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Format
5

JUMPS AND LINKAGE

Format
3

A8 m s W= = WN WO O

[ NI |

Table 2. TI32000 Instruction Set Summary (Continued)

Operation
MOVSi
MOVST

CMPSi
CMPST

SKPSi
SKPST

Operation
JUMP
BR
Bcond
CASEi
ACBi
JSR
BSR
CXP
CXPD
SvC
FLAG
BPT
ENTER

EXIT

RET
RXP
RETT
RETI

Operands
options
options

options
options

options
options

Operands

gen

disp

disp

gen
short,gen,disp
gen

disp

disp

gen

[reg list],disp
[reg list]
disp

disp
disp

Descriptions
Move string 1 to String 2.
Move string, translating bytes.

Compare String 1 to String 2.
Compare, translating String 1 bytes.

Skip over String 1 entries.
Skip, translating bytes for Until/While.

Description
Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure.
Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
Save registers and allocate stack frame (Enter
Procedure).
Restore registers and reclaim stack frame (Exit
Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)



Table 2. TI32000 Instruction Set Summary (Continued)

CPU REGISTER MANIPULATION

Format Operation Operands
1 SAVE [reg list]
1 RESTORE {reg list]
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG loption list]
FLOATING POINT
Format  Operation Operands
11 MOV§ gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCi gen,gen
9 FLOOR fi gen,gen
11 ADDf gen,gen
11 SuBf gen,gen
11 MULf gen,gen
11 DIVf gen,gen
1M CMPf gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
9 LFSR gen
9 SFSR gen
MEMORY MANAGEMENT
Format Operation Operands
14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen
8 MOVUSI gen,gen

Description
Save Address-Data Registers.
Restore Address-Data registers.
Load Dedicated Register. (Privileged if PSR or
INTBASE)
Store Dedicated Register. (Privileged if PSR or
INTBASE)
Adjust Stack Pointer.
Set selected bits in PSR. (Privileged if not Byte
length)
Clear selected bits in PSR. (Privileged if not Byte
length)
Set Configuration Register. (Privileged)

Description
Move a Floating Point value.
Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.

Convert any integer to Standard or Long Floating.

Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to
value.

Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.

Store FSR.

Description
Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)
Move a value from Operating System
Space to User Space. (Privileged)
Move a value from User Space to Operating
System Space. (Privileged)

T132032T Microprocessor m
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Table 2. TI32000 Instruction Set Summary (Concluded)

MISCELLANEOUS

Format
1
1
1

Operation
NOP
WAIT
DIA

Operands

Description
No Operation.
Wait for interrupt.
Diagnose. Single-byte ‘‘Branch to Self’’ for
hardware breakpointing. Not for use in
programming.

APPLICATION-SPECIFIC COPROCESSOR (ACU)

Format
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.1
15.1
15.1
15.1
15.1
15.1
15.1
15.1
15.0
15.0
15.0
15.0

Operation
CCALOc
CCAL1c
CCAL2c
CCAL3c

CMOVOc
CMOV1c
CMOV2c
CCMPc

CCVOci
CCVici
CCV2ci
CCV3ci
CCv4DQ
CCvsQD

LCSR
SCSR
CATSTO
CATST1
LCR
SCR

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen

gen

gen
creg,gen
creg,gen

Description
ACU Calculate.

ACU Move.

ACU Compare.
ACU Convert.

Load ACU Status Register.
Store ACU Status Register.
ACU Address/Test. (Privileged)
(Privileged)

Load ACU Register. (Privileged)
Store ACU Register. (Privileged)
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CPU (18) I
TI32032T
. (50)
c1 |c2
(16)
GNDB2 | TO OTHER
51 CONNECTIONS
GNDL
(52)
GNDB1 |

Figure 9. Recommended Supply Connections

3.1.3.2 Clocking

The T132032T inputs clocking signals from the T132201 Timing Control Unit(TCU),
which presents two nonoverlapping phases of a single clock frequency. These phases
are called CLK1 (pin 26) and CLK2 (pin 27). Their relationship to each other is shown
in Figure 10.

Each positive edge of CLK1 defines a transition in the timing state (T-State) of the
CPU. One T-State represents the execution of one microinstruction within the CPU,
and/or one step of an external bus transfer. See the ac timing requirements in the
T132032T data sheet for complete specifications on CLK1 and CLK2.

ONE

I‘-— T-STATE—.l

CLK1 \ 1
—»ll¢ dlle-
CLK2 ’ \

NONOVERLAPPING

Figure 10. Clock Timing Relationships

Since the TCU presents signals with very fast transitions, it is recommended that the
conductors carrying CLK1 and CLK2 be kept as short as possible, and that they not
be connected anywhere except from the TCU to the CPU and, if present, the Memory
Management Unit (MMU). A TTL Clock signal (CTTL) is provided by the TCU for all
other clocking.

TI32032T Microprocessor m
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3.1.3.3 Resetting

3-20

The RST/ABT pin serves both as a Reset for on-chip logic and as the Abort input for
Memory-Managed systems. For its use as the Abort command, see section 3.1.3.5.4.

The CPU may be reset at any time by pulling the RST/ABT pin low for at least 64 clock
cycles. Upon detecting a reset, the CPU terminates instruction processing, resets its
internal logic, and clears the Program Counter (PC) and Processor Status Register (PSR)
to all zeros.

On application of power, RST/ABT must be held low for at least 50 us after Vcc is
stable. This is to ensure that all on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must remain active for not less than 64 clock cycles.
The trailing (positive-going) edge must occur while CLK1 is high, and no later than
10 ns before the CLK1 trailing edge. See Figures 11 and 12.

ya

4.5 V = 124
Veg w——
CLK1 J ﬂ
—

l¢— =64 cLock

CYCLES —————————

RST/ABT ﬁlf—/

i¢———— =50 ysec ————P

Figure 11. Power-On Reset Requirements

Ig._____ =64 CLOCK __;l
CYCLES —
{ L

— §=

xl
4
>|
=]
=1

Figure 12. General Reset Timing

The TI132201 Timing Control Unit (TCU) provides circuitry to meet the reset
requirements of the TI32032T CPU. Figure 13 shows the recommended connections
for a non-Memory-Mananaged system. Figure 14 shows the connections for a Memory-
Managed system.



Vce

TCU CpPU
T132201 T132032T

F======7

I
| RESET -1l RSTI RSTO o—@—Q| RST/ABT
! | 1
| I - |
EXTERNAL RESET I I
(OPTIONAL) | | > 50 usec
= SYSTEM RESET

| S -
RESET SWITCH
(OPTIONAL)

Figure 13. Recommended Reset Connections, Non-Memory-Managed System

Vce

TCU MMU CcPU
T132201 T132082W T132032T

r==-=—--"
[

§ RESET RSTI RSTO O—QI RST ABT D—CO] RST/ABT

| R R — |

EXTERNAL RESET >50 usec
(OPTIONAL) | | -
RESET SWITCH
(OPTIONAL)

Figure 14. Recommended Reset Connections, Memory-Managed System

3.1.3.4 Bus Cycles

The TI32032T CPU has a strap option that defines the Bus Timing Mode as either
with or without Address Translation. For details covering the use of the strap, refer
to section 3.1.3.5.

The CPU will perform a bus cycle for one of the following reasons:

1. To write or read data, to or from memory or a peripheral interface device.
Peripheral input and output are memory-mapped in the TI32000 family.

2. To fetch instructions into the 8-byte instruction queue. This happens whenever
the bus would otherwise be idle and the queue is not already full.

3. To acknowledge an interrupt and allow external circuitry to provide a vector
number, or to acknowledge completion of an interrupt service routine.

4. To transfer information to or from a Coprocessor.

In terms of bus timing, cases 1 through 3 above are identical. The only external
difference between cases 1 through case 3 is the 4-bit code placed on the Bus Status
pins (STO-ST3). Coprocessor cycles differ in that separate control signals are applied.
Refer to section 3.1.3.4.6

3-21
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The sequence of events in a noncoprocessor bus cycle is shown in Figure 16 for a
Read cycle and Figure 17 for a Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating with the CPU at full speed.
If it is not, then cycle extension may be requested through the RDY line. Refer to Section
3.1.3.4.1.

DDIN

. —
8
D24-D31 "7“—7
BUFFER 32

ADO0-AD23 -‘7"-?4,"- s =
24

24 .

Ti32032T > D0-D31 .

. 4 BEO-BE3
BEO-BE3 7 >

ADS & Y

24 20,

A Al

> LATCH 22 4
A2-A23

CLK1 CLK2 DS/FLT

1 DS >
\ 4 4

CLK1 CLK2 ADS DDIN DBE RD >
— »
RD WR
TI32201 WR pes——

—_— TSO
TSO >

Figure 15. Bus Connections

A full-speed bus cycle is performed in four cycles of CLK1, labeled T1 through T4.
Clock cycles not associated with a bus cycle are designated Ti (for “‘idle’’).

During T1, the CPU applies an address on pins ADO-AD23. It also provides a low-
going pulse on the ADS pin, which serves the dual purpose of informing external
circuitry that a bus cycle is starting and of providing control to an external latch for
demultiplexing Address bits 0-23 from the ADO-AD23 pins. See Figure 15. Also during
this time the status signals DDIN, indicating the direction of the transfer, and BEO-BE3,
indicating which of the four bus bytes are to be referenced, become valid.

During T2, the CPU switches the Data Bus ADO-AD31 to either accept or present data.
It also starts the Data Strobe (DS), signalling the beginning of the data transfer.
Associated signals from the T132201 Timing Control Unit are also activated at this
time: RD (Read Strobe) or WR (Write Strobe), TSO (Timing State Output, indicating
that T2 has been reached), and DBE (Data Buffer Enable).
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3.1.3.4.

The T3 state provides for access time requirements, and it occurs at least once in
a bus cycle. At the beginning of T3, on the rising edge of the CLK1 clock, the RDY
line is sampled to determine whether the bus cycle will be extended (section 3.1.3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-AD31) is sampled at the
falling edge of CLK2 in the last T3 state. However, data must be held at least until
the beginning of T4. DS and RD are guaranteed not to go inactive before this point,
so the rising edge of either of them may safely be used to disable the device providing
the input data.

The T4 state finishes the bus cycle. At the beginning of T4, the DS, RD or WR, and
TSO signals go inactive, and on the rising edge of CLK2, DBE goes inactive, having
provided for necessary data hold times. Data during Write cycles remains valid from
the CPU throughout T4. Note that the Bus Status lines (STO-ST3) change at the
beginning of T4, anticipating the following bus cycle (if any).

1 Cycle Extension

To allow sufficient strobe widths and access times for any speed of memory or
peripheral device, the TI32032T provides for extension of a bus cycle. Any type of
bus cycle except a coprocessor cycle can be extended.

In Figures 16 and 17, note that during T3 all bus control signals from the CPU and
TCU are flat. Therefore, a bus cycle can be cleanly extended by causing the T3 state
to be repeated. This is the purpose of the Ready (RDY) pin.

At the end of T2, on the falling edge of CLK2, the RDY line is sampled by the CPU.
If RDY is high, the next T-states will be T3 and T4, ending the bus cycle. If RDY is
low, an additional T3 state will be inserted after the initial T3 state and the RDY line
will again be sampled on the falling edge of CLK2. Each additional T3 state after the
first is referred to as a “"Wait State’’. See Figure 18.

] T1 | T3 T3 l
T2 l I (WAIT)

CLK1 '
—

w | OO

* 4

T4 l

NEXT NEXT
STATE: STATE:
T3 T4

Figure 18. RDY Pin Timing
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The RDY pin is driven by the TI32201 Timing Control Unit, which applies wait-states
to the CPU as requested on three sets of pins:

1. CWAIT (Continuous Wait), which holds the CPU in wait-states until removed.

2. WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn), which may be given
a 4-bit binary value requesting a specific number of wait-states from 0-15.

3. PER (Peripheral), which inserts five additional wait-states and causes the TCU
to reshape the RD and WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various Wait requests are both legal and useful. For details on
their use, see section 3.6.

Figure 19 illustrates a typical Read cycle, with two wait-states requested through the
TCU WAITn pins.

3.1.3.4.2 Bus Status
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The Ti32032T CPU presents 4 bits of Bus Status information on pins STO-ST3. The
various combinations on these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

Referring to Figures 16 and 17, note that Bus Status leads the corresponding Bus Cycle,
going valid one clock cycle before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if desired, latch the decoded
signals before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a 4-bit value, with STO the least significant
bit. Their values decode as follows:

0000 The bus is idle because the CPU does not yet need access to the bus.
0001 The bus is idle because the CPU is executing the Wait instruction.
0010 (Reserved for future use.)

0011 The bus is idle because the CPU is waiting for a coprocessor to complete
an instruction.

0100 Master Interrupt Acknowledge. The CPU is performing a read cycle.To
acknowledge receipt of a Non-maskable Interrupt (on NMI) it will read
from address FFFFOOqg but will ignore any data provided. To
acknowledge receipt of a Maskable Interrupt (on TNT) it will read from
address FFFF00 g, expecting a vector number to be provided from the
Master T132202 Interrupt Control Unit (ICU). If the vectoring mode
selected by the last SETCFG instruction was nonvectored, then the CPU
will ignore the value it has read and will use a default vector instead,
having assumed that no TI32202 is present (section 3.1.3.4.5).

0101 Cascaded Interrupt Acknowledge. The CPU is reading a vector number
from a Cascaded TI32202 Interrupt Control Unit. The address provided
is the address of the TI32202 Hardware Vector register
(section 3.1.3.4.5).

0110  Master End of Interrupt. The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI) instruction
(section 3.1.3.4.5).



CPU BUS SIGNALS

PREV. CYCLE T132032T NEXT CYCLE
) T3 13
T4 OR r.| T I T l T | l T4 |1 !
I 2 3 | wam | wam 1 ORTi

wn [ LML
el | I

n

w00z [ 77K een Y- 00

DATA

D24-D31 I: ZV///,,///;

AN

00

DATA

ADS [

STO-ST3 [ ZX STATUS VALID

NEX

T STATU

wn [ 227

BEO-BE3 [ Z% VALID

NEXT

=[ 1

T132201
A

TCU CYCLE EXTENSION SIGNALS

¥

s | 2

Y

\\

2

Y

W,

\N

= [ Z22 0/ 02

vz

v

N\

Wi || 27707706 R 2022

i

Y

Y

N

A 4

RDY [ \

Y

/

(TCU TO CPU)

P[]

TI32201

TCU BUS SIGNALS

/
w[
L/

DBE [

\

/

w[ Y \

/

NOTE: Arrows on CWAIT, PER, WAITn indicate points at which the TCU samples. Arrows on ADO-AD15

and RDY indicate points at which the CPU samples.

Figure 19. Extended Cycle Example

3-27

T132032T Microprocessor m



10ss9204d0IDIN 1ZE0ZEIL E

0111

1000

1001

1010

1011

1100

1101

1110

1111

Cascaded End of Interrupt. The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through RETI) from an
interrupt service routine requested by that unit (section 3.1.3.4.5).
Sequential Instruction Fetch. The CPU is reading the next sequential
word from the instruction stream into the Instruction Queue. It will do
so whenever the bus would otherwise be idle and the queue is not
already full.

Nonsequential Instruction Fetch. The CPU is performing the first fetch
of instruction code after the Instruction Queue is purged. This will occur
as a result of any jump or branch, or any interrupt or trap, or execution
of certain instructions.

Data Transfer. The CPU is reading or writing an operand of instruction.
Read RMW Operand. The CPU is reading an operand which will
subsequently be modified and rewritten. If memory protection circuitry
would not allow the following write cycle, it must abort this cycle.
Read for Effective Address Calculation. The CPU is reading information
from memory in order to determine the Effective Address of an operand.
This will occur whenever an instruction uses the Memory Relative or
External addressing mode.

Transfer Coprocessor Operand. The CPU is either transferring an
instruction operand to or from a coprocessor, or it is issuing the
Operation Word of a coprocessor instruction (section 3.1.3.9.1)
Read Coprocessor Status. The CPU is reading a Status Word from a
coprocessor. This occurs after the coprocessor has signaled completion
of an instruction. The transferred word tells the CPU whether a trap
should be taken, and in some instructions it presents new values for
the CPU Processor Status Register bits N,Z,L, or F (section 3.1.3.9.1).
Broadcast Coprocessor |ID. The CPU is initiating the execution of a
coprocessor instruction. The ID Byte (first byte of the instruction) is
sent to all Coprocessors, one of which will recognize it. From this point
the CPU is communicating with only one coprocessor
(section 3.1.3.9.1)

3.1.3.4.3 Data Access Sequences

The 24-bit address provided by the TI32032T is a byte address; that is, it uniquely
identifies one of up to 16,777,216 eight-bit memory locations. An important feature
of the TI32032T is that the presence of a 32-bit data bus imposes no restrictions on
the data alignment; any data item, regardless of size, may be placed starting at any
memory address. TheTI32032T provides special control signals, Byte Enable (BEO-BE3)
which facilitate individual byte accessing on a 32-bit bus.
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Memory is organized as four 8-bit banks, each bank receiving the double-word address
(A2-A23)) in parallel. One bank, connected to Data Bus pins ADO — AD7 is enabled
when BEO is low. The second bank, connected to data bus pins AD8 — AD15, is
enabled when BE1 is low. The third and fourth banks are enabled by BE2 and BE3,
repectively. See Figure 20.
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Figure 20. Memory Interface

Since operands do not need to be aligned with respect to the double-word bus access
performed by the CPU, a given double-word access can contain one, two, three, or
four bytes of the operand being addressed; these bytes can begin at various positions,
as determined by A1 and AO.Table 3 lists the 10 resulting access types.

Accesses of operands requiring more than one bus cycle are performed sequentially,
with no idle T-States separating them. The number of buscycles required to transfer
an operand depends on its size and its alignment. Table 4 lists the bus cycles performed
for each situation.

Bit Accesses. The Bit Instructions perform byte accesses to the byte containing the
designated bit. The Test and Set Bit instruction (SBIT), for example, reads a byte, alters
it, and rewrites it, having changed the contents of the one bit.

Bit Field Accesses. An access to a Bit Field in memory always generates a Double-
Word transfer at the address containing the least significant bit of the field. The Double
Word is read by an Extract Instruction; an Insert instruction reads a Double Word,
modifies it, and rewrites it.

3-29

T132032T Microprocessor m



10ss8204dosdiN 1ZE0ZEIL n

Table 3. Bus Access Types

TYPE BYTES A1.A0 E3 BE2 BE1 BEO
ACCESSED
1 1 00 1 1 1 0
2 1 01 1 1 0] 1
3 1 10 1 0 1 1
4 1 1 0 1 1 1
5 2 00 1 1 0 0
6 2 01 1 0 0 1
7 2 10 0 0 1 1
8 3 00 1 0 0 0
9 3 01 0 0 0 1
10 4 00 0 0 0 0

Extending Multiply Accesses. The Extending Multiply Instruction (MEI) will return a
result which is twice the size in bytes of the operands it reads. If the multiplicand is
in memory, the most significant half of the result is written first (at the higher address),
then the least significant half. This is done in order to support retry if this instruction
is aborted.

3.1.3.4.4 Instruction Fetches

Instructions for the TI32032T CPU are '‘prefetched’’; that is, they are input before
being needed into the next available entry of the eight-byte Instruction Queue. The
CPU performs two types of Instruction Fetch cycles: Sequential and Nonsequential.
These can be distinguished from each other by their differing status combinations on
pins STO-ST3. (section 3.1.3.4.2)

A Sequential Fetch will be performed by the CPU whenever the Data Bus would
otherwise be idle and the Instruction Queue is not currently full. Sequential Fetches
are always type 8 Read cycles (Table 3).

A Nonsequential Fetch occurs as a result of any break in the normally sequential flow
of a program. Any jump or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Nonsequential. In addition, certain instructions flush
the instruction queue, causing the next instruction fetch to display Nonsequential
status. Only the first bus cycle after a break displays Nonseqguential status, and that
cycle depends on the destination address.

3.1.3.4.5 Interrupt Control Cycles

3-30

Activating the INT or NMI pin on the CPU will initiate one or more bus cycles whose
purpose is interrupt control rather than the transfer of instructions or data. Execution
of the Return from Interrupt instruction (RETI) will also cause Interrupt Control bus
cycles. These differ from instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences associated with each
interrupt and with the return from its service routine. For full details of the TI32032T
interrupt structure, see section 3.1.3.8.
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Table 4. Access Sequences

DATA BUS

CYCLE TYPE  ADDRESS BE3 BE2 E1 BEO  BYTE 3 BYTE 2 BYTE 1 BYTE O
A. Word at address ending with 11 BYTE 1|BYTE O <A

1. 4 A 0 1 1 1 Byte O X X X

2. 1 A+ 1 1 1 1 0 X X X Byte 1
B. Double word at address ending with 01 [BYTE 3[BYTE 2|BYTE 1[BYTEO| <A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte O X

2. 1 A+ 3 1 1 1 0 X X X Byte 3
C. Double word at address ending with 10 LBYTE 3| BYTE 2[ BYTE 1 IBYTE O] <A

1. 7 A 0 (o] 1 1 Byte 1 Byte O X X

2. 5 A+ 2 1 1 0 0 X X Byte 3 Byte 2
D. Double word at address ending with 11 [BYTE 3|BYTE 2|BYTE 1|BYTEO]| <A

1. 4 A 0 1 1 1 Byte O X X X

2. 8 A+ 1 1 ) 0 0 X Byte 3 Byte 2 Byte 1
E. Quad word at address ending with 00 [BYTE 7[BYTE 6[BYTE 5[BYTE 4[BYTE 3|BYTE 2|BYTE 1|BYTEO| <« A

1. 10 A 0 0 0 0 Byte 3 Byte 2 Byte 1 Byte O

Other bus cycles (instruction prefetch or coprocessor) can occur here.

2. 10 A+ 4 0 0 0 0 Byte 7 Byte 6 Byte 5 Byte 4
F. Quad word at address ending with 01 |BYTE 7| BYTE 6|BYTE 5[BYTE 4[BYTE 3{BYTE 2[BYTE 1|BYTEO| <A
1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte O X
2. 1 A+ 3 1 1 1 0 X X X Byte 3

Other bus cycles (instruction prefetch or coprocessor) can occur here.
3. 9 A+ 4 ) ) 0 1 Byte 6 Byte 5 Byte 4 X
a. 1 A+7 1 1 1 0 X X X Byte 7

TI32032T Microprocessor
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Table 4. Access Sequences (Concluded)

DATA BUS
CYCLE  TYPE  ADDRESS BES  BE2Z  BEI BEG  BYTE 3 BYTE2 BYTE1  BYTEO

G. Quad word at address ending with 10 [BYTE 7[BYTE 6 [BYTE 5]BYTE 4 [BYTE 3[BYTE 2[BYTE 1[BYTEO| <A

1. 7 A 0 0 1 1 Byte 1 Byte O X X
2. 5 A+ 2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or coprocessor) can occur here.
3. 7 A+ 4 [¢] 6] 1 1 Byte 5 Byte 4 X X
4. 5 A+ 6 1 1 0 0 X X Byte 7 Byte 6
H. Quad word at address ending with 11 | BYTE 7[BYTE 6 [BYTE 5|BYTE 4 |BYTE 3|BYTE 2|BYTE 1[BYTE O] ~ A
1. 4 A 0 1 1 1 Byte O X X X
2. 8 A+ 1 1 0 0 0 X Byte 3 Byte 2 Byte 1
Other bus cycles (instruction prefetch or coprocessor) can occur here.
1. 4 A+ 4 0 1 1 1 Byte 4 X X X
2. 8 A+ 5 1 0 0 0 X Byte 7 Byte 6 Byte 5

X = Don’t Care
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Table 5. Interrupt Sequences

DATA BUS
A\

CYCLE STATUS ADDRESS DDIN  BE3 BE2 BE1T BEO Byte3 Byte2 Byte 1
A. Nonmaskable Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFFOO1g6 0 1 1 1 0 X X X

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.
B. Nonvectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFEOO1g 0 1 1 1 0 X X X
Interrupt Return
1 0110 FFFEOO1 g 0 1 1 1 0 X X X

C. Vectored Interrupt Sequences: Noncascaded
Interrupt Acknowledge
1 0100 FFFEOO1 6 0 1 1 1 0 X X X

Interrupt Return
1 0110 FFFEOO1¢ 0 1 1 1 o] X X X

TIR20A2T Mircrnnrncessor m
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Byte O

Vector:
Range: 0-127
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in Previous Int.
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Table 5. Interrupt Sequences (Concluded)

DATA BUS
/\

CYCLE STATUS ADDRESS DDIN  BE3 BE2 BE1 BEO Byte3 Byte2 Byte1 Byte O

D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge

1 0100 FFFEOO1¢ 0 1 1 1 [¢] X X X Cascade Index:
range —16 to -1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 See Note Vector, range 9-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFEQO1g 0 1 1 1 0 X X X Cascade Index:
Same as in
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note X X X X
Address

X = Don’t Care
Note: BEO-BE3 signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. the
vector value can be in the range 0-255.



3.1.3.4.6 Coprocessor Communication

In addition to its use as the Address Translation strap (section 3.1.3.5.1), the AT/SPC
pin is used as the data strobe for coprocessor transfers.

In this role, it is referred to as Coprocessor Control (SPC). Ina Coprocessor bus cycle,
data is transferred on the Data Bus (ADO-AD15), and the least significant two bits
of CPU cycle status (STO-ST1) are monitored by each coprocessor in order to determine
the type of transfer being performed. SPC is bidirectional, but is driven by the CPU
during all coprocessor bus cycles (section 3.1.3.9) (Figure 21).

Coprocessor Bus Cycles. A coprocessor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 22 and 23). During a Read cycle, SPCis activated
at T1, data is sampled at T4, and SPC is removed. The Cycle Status pins lead the
cycle by one clock period, and are sampled at the leading edge of SPC. During a write
cycle, the CPU applies data and activates SPC at T1, removing SPC at T4. The
coprocessor latches status on the leading edge of SPC and latches data on the trailing
edge.

16
AD(0-15) ju@upefpumed D(0-15)
AT/SPC —aq—p—] SPC

Ti32032T
CPU COPROCESSOR
STO-ST3 $— STO-ST3

Figure 21. Coprocessor Connections

Since the CPU does not pulse the Address Strobe (ADS), no bus signals are generated
by the TI32201 Timing Control Unit. The direction of a transfer is determined by the
sequence ('‘protocol’’) established by the instruction under execution; but the CPU
indicates the direction on the DDIN pin for hardware debugging purposes.

Operand Transfer Sequences. A coprocessor operand is transferred in one or more
coprocessor bus cycles. A Byte operand is transferred on the least significant byte
of the Data Bus (ADO-AD7), and a Word operand is transferred on bits ADO-AD15.
A Double-Word is transferred in a consecutive pair of bus cycles, least significant word
first. A Quad-Word is transferred in two pairs of Coprocessor cycles, with other bus
cycles possibly occurring between them. The word order is from least signficant word
to most significant word.

Note that the TI32032T uses only the two least significant bytes of the data bus for
coprocessor cycles. This is to maintain compatibility with existing coprocessors.

3.1.3.5 Memory-Management Option

The Ti32032T CPU, in conjunction with the TI32082W Memory Management Unit
(MMU), provides full support for address translation, memory protection, and memory
allocation techniques up to and including Demand-Paged Virtual Memory.
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Figure 22. CPU Read from Coprocessor

3.1.3.5.1 Address-Translation Strap

The Bus Interface Control section of the TI32032T CPU has two bus timing modes;
with or without address-translation. The mode of operation is selected by the CPU
by sampling the AT/SPC (Address Translation/Coprocessor Control) pin on the rising
edge of the family Reset (RST) pulse. If AT/SPC is sampled as high, the bus timing
is as previously described insection 3.1.3.4. If it is sampled as low, two changes occur:
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Figure 23. CPU Write to Coprocessor

1. An extra clock cycle, Tmmu, is inserted into all bus cycles except coprocessor

transfers. —_
2. The DS/FLT pin changes in function from a Data Strobe output (DS) to a Float-

Command input (FLT).

The TI32082 MMU will itself pull the CPU AT/SPC pin low when it is reset. In non-
Memory Managed systems, this pin should be pulled up to Vcc through a 10-kQ
resistor.

Note that the Address Translation strap does not specifically declare the presence of
a TI32082W MMU, but only the presence of external address translation circuitry.
MMU instructions will still trap as being undefined unless the SETCFG (Set
Configuration) instruction is executed to declare the MMU instruction set valid.
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3.1.3.56.2 Translated Bus Timing

Figures 24 and 25 illustrate the CPU activity during a read cycle and a write cycle
in Address Translation mode. The additional T-State, Tmmu, is inserted between T1
and T2. During this time the CPU places ADO-AD23 into the 3-state (high-impedance
state) mode, allowing the MMU to assert the translated address and issue the physical
address strobe PAV. T2 through T4 of the cycle are identical to their counterparts
without Address Translation. Note that in order for the TI32082W MMU to operate
correctly it must be set to the TI32032T mode by strapping A24 to ground during reset.

In this mode the bus lines AD16-AD23 are floated after the MMU address has been
latched, since they are used by the CPU to transfer data. Figures 26 and 27 show
a read cycle and a write cycle as generated by the TI32032T/TiI32082W/TI32201

CLK1

CLK2

ADQ-AD23

D24-D31

STO-ST3

DDIN

RDY
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Figure 24. Read Cycle with Address Translation (CPU Action)
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Figure 25. Write Cycle with Address Translation (CPU Action)

group. Note that with the CPU ADS signal going to the MMU, and with the MMU PAV
signal substituting for ADS everywhere else, Tmmu through T4 look exactly like T1
through T4 in a non-Memory-Managed system. For the connection diagram, see
Figure 28.

3.1.3.5.3 The FLT (Float) Pin

In Address Translation mode, the DS/FLT pin is treated as the input command FLT
(Float). Activating FLT during Tmmu causes the CPU to wait longer than Tmmu for
address translation and validation. This feature is used occasionally by the TI32082
MMU in order to update its internal translation cache from page tables in memory,
or to update certain status bits within them.
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Figure 29. FLT Float Command Timing

Figure 29 shows the effects of FLT. Upon sampling-F-L—T low late in Tmmu, the CPU
enters idle T-States (Tf) during which it:

1. Sets ADO-AD23, D24-D31, and DDIN to the 3-state (high-impedance)
condition (Floating).
2. Suspends further internal processing of the current instruction. This ensures
that the current instruction remains abortable with retry. (See RST/ABT
description, section 3.1.3.5.4)
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Note that the ADO-AD23 pins may be briefly asserted during the first idle T-State.
The above conditions remain in effect until FLT again goes high.
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3.1.3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its reset function (section 3.1.3.3), also serves as the
means to ‘‘abort’’, or cancel, a bus cycle and the instruction,if any, which initiated
it. An Abort request is distinguished from a Reset in that the RST/ABT pin is held active
for only one clock cycle.If RST/ABT is pulled low during Tmmu or T¥, this signals that
the cycle must be aborted. The CPU itself will enter T2 and then Ti, thereby terminating
the cycle. Since it is the MMU PAV signal which triggers a physical cycle, the rest
of the system remains unaware that a cycle was even started.

The TI132082W MMU will abort a bus cycle for either of two reasons:

1. The CPU is attempting to access a logical address which is not currently
resident in physical memory. The referenced page must be brought into
physical memory from mass storage to make it accessible to the CPU.

2. The CPU is attempting to perform an access which is not allowed due to the
protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction which caused it to occur
is also aborted in such a manner that it is guaranteed to be reexecutable later. The
information that is changed irrecoverably by such a partly executed instruction does
not affect its reexecution.

The Abort Interrupt. Upon aborting an instruction, the CPU immediately performs an
interrupt through the ABT vector in the Interrupt Table. The Return Address pushed
on the Interrupt Stack is the address of the aborted instruction, such that a Return
from Trap (RETT) instruction will automatically retry it.

The one exception to this sequence occurs if the aborted bus cycle was an instruction
prefetch. If so, it is not yet certain that the aborted prefetch code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus cycle, and stops
prefetching. If the information in the instruction Queue runs out, meaning that the
instruction will actually be executed, the ABT interrupt will occur, in effect aborting
the instruction that was being fetched.

Hardware Considerations. In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules are followed by the TI32082W
MMU.

1. If FLT has not been applied to the CPU, the Abort pulse must occur during
or before Tmmu.

2. If FLT has been applied to the CPU, the Abort pulse must be applied before
the T-State in which FLT goes inactive. The CPU will not actually respond
to the Abort command until FLT is removed.

3. The Write half of a Read-Modify-Write operand access may not be aborted.
The CPU guarantees that this will never be necessary for Memory Management
functions by applying a special RMW status (Status Code 1011) during the
Read half of the access. When the CPU presents RMW status, that cycle must
be aborted if it would be illegal to write to any of the accessed addresses.
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If RST/ABT is pulsed at any time other than as indicated above, it will abort either
the instruction currently under execution or the next instruction and will act as a very
high-priority interrupt. However,the program which was running at the time is not
guaranteed recoverable.

3.1.3.6 Bus Access Control

3.1.3.7

3-46

The TI32032T CPU has the capability of relinquishing its access to the bus upon request
from a DMA device or another CPU. This capability is implemented on the HOLD (Hold
Request) and HLDA (Hold Acknowledge) pins. By asserting HOLD low, an external
device requests access to the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set ADO-AD23, D24-D31, ADS, DDIN,
and BE3-BEO pins to the 3-state condition. To return control of the bus to the CPU,
the device sets HOLD inactive, and the CPU acknowledges return of the bus by setting
HLDA inactive.

How quickly the CPU releases the bus depends on whether it is idle on the bus at
the time the HOLD request is made, as the CPU must always complete the current
bus cycle. Figure 30 shows the timing sequence when the CPU is idle. In this case,
the CPU grants the bus during the immediately following clock cycle. Figure 31 shows
the sequence if the CPU is using the bus at the time that the HOLD request is made.
If the request is made during or before the clock cycle shown (two clock cycles before
T4), the CPU will release the bus during the clock cycle following T4. If the request
occurs closer to T4, the CPU may already have decided to initiate another bus cycle.
In that case it will not grant the bus until the next T4 state. Note that this situation
will also occur if the CPU is idle on the bus but has initiated a bus cycle internally.

In Memory-Managed systems, the HLDA signal is connected in a daisy-chain through
the TI32082W, such that the MMU can release the bus if it is using it.

Instruction Status

In addition to the four bits of Bus Cycle Status (STO-ST3), the TI32032TCPU also
presents Instruction Status information on three separate pins.These pins differ from
STO-ST3 in that they are synchronous to the CPU’s internal instruction execution
section rather than to its bus interface section.

PFS (Program Flow Status) is pulsed low as each instruction begins execution. It is
intended for debugging purposes, and is used that way by the TI32082W MMU.

u/s originates from the U bit of the Processor Status Register, and indicates whether
the CPU is currently running in User or Operating System mode. It is sampled by the
MMU for mapping, protection, and debugging purposes. Although it is not synchronous
to bus cycles, there are guarantees on its validity during any given bus cycle.

(ILO) (Interlocked Operation) is activated during a Set Bit Interlocked (SBITI) or (CBITI)
Clear Bit, Interlocked instruction. It is made available to external bus arbitration circuitry
in order to allow these instructions to implement the semaphore primitive operations
for multiprocessor communication and resource sharing. As with the U/S pin, there
are guarantees on it is validity during the operand accesses performed by the
instructions.
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Figure 31. HOLD Timing, Bus Initially Not Idle
3.1.3.8 TI32032T Interrupt Structure

1. W, on which maskable interrupts may be requested

2. NMI, on which nonmaskable interrupts may be requested, and

3. RST/ABT, which may be used to abort a bus cycle and any associated
instruction. It generates an interrupt request if an instruction was aborted
(section 3.1.3.5.4).

In addition, there is a set of internally generated ‘‘traps’’ which cause interrupt service
to be performed as a result of exceptional conditions (e.g., attempted division by zero)
or of specific instructions whose purpose is to cause a trap to occur (e.g., the Supervisor
Call instruction).
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Figure 32. Interrupt Dispatch and Cascade Tables

General Interrupt/Trap Sequence
Upon receipt of an interrupt or trap request, the CPU goes through four major steps:

1. Adjustment of Registers. Depending on the source of the interrupt or trap,

the CPU may restore and/or adjust the contents of the Program Counter (PC),
the Processor Status Register (PSR), and the currently selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set to reflect Operating
System Mode and selection of the Interrupt Stack.

. Saving Processor Status. The PSR copy is pushed onto the Interrupt Stack

as a 16-bit quantity.

. Vector Acquisition. A vector is either obtained from the Data Bus or is supplied

by defauit.

. Service Call. The Vector is used as an index into the Interrupt Dispatch Table,

whose base address is taken from the CPU Interrupt Base (INTBASE) Register.
See Figure 32. A 32-bit External Procedure Call is read from the table entry,
and an External Procedure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed on the Interrupt Stack.

This process is illustrated in Figure 33, from the viewpoint of the programmer.

Full sequences of events in processing interrupts and traps may be found in
section 3.1.3.8.7.
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Figure 34. Return from Trap (RETTn) Instruction Flow

3.1.3.8.2 Interrupt/Trap Return

To return to an interrupted program, one of two instructions is used.The RETT (Return
from Trap) instruction (Figure 34) restores the PSR, MOD, PC, and SB registers to
their previous contents and, since traps are often used deliberately as a call mechanism
for Operating System Mode procedures, it also discards a specified number of bytes
from the original stack as surplus parameter space. RETT is used to return from any
trap or interrupt except the Maskable Interrupt. For this, the RETI (Return from interrupt)
instruction is used, which also informs any external Interrupt Control Units that interrupt
service has completed. Since interrupts are generally asynchronous external events,
RETI does not pop parameters. See Figure 35.

3.1.3.8.3 Maskable Interrupts (INT pin)
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The INT pin is a level-sensitive input. A continuous low level is allowed for generating
multiple interrupt requests. The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register | bit is set. The | bit is
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Figure 35. Return from Interrupt (RETI) Instruction Flow

automatically cleared during service of an INT, NMI, or Abort request, and is restored
to its original setting upon return from the interrupt service routine via the RETT or

RETI instruction.

The INT pin may be configured via the SETCFG instruction as either Nonvectored (CFG
Register bit | = 0) or Vectored (CFG Register bit | = 1).

Nonvectored Mode. In the Nonvectored mode, an interrupt request on the INT pin will
cause an Interrupt Acknowledge bus cycle, but the CPU will ignore any value read
from the bus and use instead a default vector of zero. This mode is useful for small
systems in which hardware interrupt prioritization is unnecessary.

Vectored Mode: Noncascaded Case. In the Vectored mode, the CPU uses a T!32202W
Interrupt Control Unit (ICU) to prioritize up to 16 interrupt requests. See Figure 36.
Upon receipt of an interrupt request on the INT pin, the CPU performs an “‘Interrupt
Acknowledge, Master’’ bus cycle (section 3.1.3.4.2) reading a vector value from the
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Figure 36. Interrupt Control Unit Connections (16 Levels)

low-order byte of the Data Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for the proper interrupt service
procedure. The service procedure cventually returns via the Return from Interrupt (RET!)
instruction, which performs an End of Interrupt bus cycle, informing the ICU that it
may reprioritize any interrupt requests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it also needs to inform a Cascaded
ICU (see below).

In a system with only one ICU (16 levels of interrupt), the vectors provided must be
in the range of O through 127; that is, they must be positive numbers in eight bits.
By providing a negative vector number, an ICU flags the interrupt source as being a
Cascaded ICU (see below).

Vectored Mode: Cascaded Case. In order to allow up to 256 levels of interrupt, provision
is made both in the CPU and in the TI32202W ICU to transparently support cascading.
Figure 37 shows a typical cascaded configuration. Note that the Interrupt output from
the Cascaded ICU goes to an Interrupt Request input of the Master ICU, which is the
only ICU which drives the CPU INT pin.
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In a system which uses cascading, two tasks must be performed upon initialization:

1. For each Cascaded ICU in the system, the Master ICU must be informed of
the line number (0-15) on which it receives the cascaded requests.

2. A Cascade Table must be established in memory. The Cascade Table is located
in a Negative direction from the location indicated by the CPU Interrupt Base
(INTBASE) Register. Its entries are 32-bit addresses, pointing to the Vector
Registers of each of up to 16 Cascaded ICUs.

Figure 32 illustrates the position of the Cascade Table. To find the Cascade Table entry
for a Cascaded ICU, take its Master ICU line number (0-15) and subtract 16 from it,
giving an index in the range — 16 to — 1. Multiply this value by 4 and add the resulting
negative number to the contents of the INTBASE Register. The 32-bit entry at this
address must be set to the address of the Hardware Vector Register of the Cascaded
ICU. This is referred to as the ‘‘Cascade Address’’.

Upon receipt of an interrupt request from a Cascaded ICU, the Master ICU interrupts
the CPU and provides the negative Cascade Table index instead of of a (positive) vector
number. The CPU, seeing the negative value, uses it as an index into the Cascade
Table and reads the Cascade Address from the referenced entry. Applying this address,
the CPU performs an “‘Interrupt Acknowledge, Cascaded’’ bus cycle
(section 3.1.3.4.2), reading the final vector value. This vector is interpreted by the
CPU as an unsigned byte, and can therefore be in the range of O through 255.

In returning from a Cascaded Interrupt, the service procedure executes the Return from
Interrupt (RETI) instruction, as it would for any Maskable Interrupt. The CPU performs
an "'End of Interrupt, Master’’ bus cycle, (section 3.1.3.4.2) whereupon the Master
ICU again provides the negative Cascade Table index. The CPU, seeing a negative
value, uses it to find the corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an ‘‘End of Interrupt, Cascaded’’ bus cycle, informing
the Cascaded ICU of the completion of the service routine. The byte read from the
Cascaded ICU is discarded.

3.1.3.8.4 Nonmaskable Interrupt (NMI pin)

The Nonmaskable Interrupt is triggered whenever a falling edge is detected on the
NMI pin. The CPU performs an “‘Interrupt Acknowledge’’ bus cycle when processing
of this interrupt actually begins. The Interrupt Acknowledge cycle differs from that
provided for Maskable Interrupts in that the address presented is FFFFOO1g. The vector
value used for the Nonmaskable Interrupt is taken as 1, regardless of the value read
from the bus.

The service procedure returns from the Nonmaskable Interrupt using the Return from
Trap (RETT) instruction. No special bus cycles occur on return.

For the full sequence of events in processing the Nonmaskable Interrupt, see
section 3.1.3.8.7.

3.1.3.8.5 Traps
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A trap is an internally generated interrupt request caused as a direct and immediate
result of the execution of an instruction. The Return Address pushed by any trap except
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Trace (TRC) is the address of the first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are not associated with external
events. Traps recognized by the CPU are:

Trap (FPU):  An exceptional condition was detected by the TI32081 Floating
Point Unit (FPU) or another coprocessor during the execution of
a coprocessor instruction. This trap is requested via the Status
Word returned as part of the coprocessor protocol
(section 3.1.3.9.1).

Trap (ILL): Illegal operation. A privileged operation was attempted while the
CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was executed.

Trap (DVZ): An attempt was made to divide an integer by zero. (The FPU trap
is used for floating point division by zero.)

Trap (FLG): The FLAG instruction detected a ‘“1’’ in the CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was exectuted.

Trap (TRC): The instruction just completed is being traced.

Trap (UND): An undefined opcode was encountered by the CPU.

A special case is the Trace Trap (TRC), which is enabled by setting the T bit in the
Processor Status Register (PSR). At the beginning of each instruction, the T bit is copied
into the PSR P (““Trace Pending’’) bit. If the P bit is set at the end of an instruction,
then the trace trap is activated. If any other trap or interrupt request is made during
a traced instruction, its entire service procedure is allowed to complete before the trace
Trap occurs. Each interrupt and trap sequence handles the P bit for proper tracing,
guaranteeing one and only Trace Trap per instruction, and guaranteeing that the Return
Address pushed during a Trace Trap is always the address of the next instruction to
be traced.

6 Prioritization

The TI132032T CPU internally prioritizes simultaneous interrupt and trap requests as
follows:

1. Traps other than Trace (Highest priority)
2. Abort

3. Non-Maskable Interrupt

4. Maskable Interrupts

5. Trace Trap (Lowest priority)

7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of interrupt and trap service
sequences, a single sequence called ‘‘service’’ is defined in Table 6. Upon detecting
any interrupt request or trap condition, the CPU first performs a sequence dependent
upon the type of interrupt or trap. This sequence will include pushing the Processor
Status Register and establishing a Vector and a Return Address. The CPU then performs
the Service sequence.
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Maskable/Nonmaskable Interrupt Sequence. This is sequence is performed by the CPU
when the NMI pin receives a falling edge, or the INT pin becomes active with the PSR
| bit set. The interrupt sequence begins either at the next instruction boundary or, in
the case of String instructions, at the next interruptible point during its execution:

1. If a String instruction was interrupted and not yet completed:

a. Clear the Processor Status Register P Bit.

b. Set ‘“Return Address’’ to the address of the first byte of the interrupted
instruction. Otherwise, set ‘‘Return Address’’ to the address of the next
instruction.

2. Copy the Processor Status Register (PSR) into a temporary register, then clear
PSR bits S,U,T,P, and I.

3. If interrupt is Nonmaskable:

a. Read a byte from FFFFOO1g, applying Status Code 0100 (interrupt
Acknowledge, Master). Discard the byte read.

b. Set ““Vector’” to 1.

c. Go to Step 8.

4. If the interrupt is Nonvectored:

a. Read a byte from address FFFFOO1g, applying Status Code 0100
(Interrupt Acknowledge, Master (section 3.1.3.4.2). Discard the byte
read.

b. Set ‘“Vector’’ to O.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘'Byte’’ from address FFFEOO g, applying
Status Code 0100 (Interrupt Acknowledge, Master (section 3.1.3.4.2).

6. If “Byte’’ is greater than or equal to O, then set "'Vector’’ to ‘‘Byte’’ and
go to Step 8.

7. 1f “’Byte’’ is in the range — 16 through —1, then the interrupt source is
Cascaded. (More negative values are reserved for future use.) Perform the
following:

a. Read the 32-bit Cascade Address from memory. The address is
calculated as INTBASE +4 x Byte.

b. Read ‘“Vector'’ applying the Cascade Address just read and Status Code
0101 (Interrupt Acknowledge) (section 3.1.3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Table 6.

Trap Sequence: Traps other than Trace.

1. Restore the currently selected Stack Pointer and the Processor Status Register
to their original values at the start of the trapped instruction.
2. Set “"Vector’' to the value corresponding to the trap type:

FPU: Vector =
ILL: Vector =
SVC: Vector =
DVZ: Vector =
FLG: Vector =
BPT: Vector =
UND: Vector =

= 0oNOOOPd W



4.
5. Set ‘’Return Address’’ to the address of the first byte of the trapped

6.

. Copy the Processor Status Register (PSR) into a temporary register, then clear

PSR bits S, U, P, and T.
Push the PSR copy onto the Interrupt Stack as a 16-bit value.

instruction.
Perform Service (Vector, Return Address), Table 6.

Trace Trap Sequence

1

DA WN

. In the Processor Status Register (PSR), clear the P bit.

. Copy the PSR into a temporary register, then clear PSR bits S, U, and T.

. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
. Set “"Vector'’ to 9.

. Set ‘"Return Address’’ to the address of the next instruction.
. Perform Service (Vector, Return Address), Table 6.

Abort Sequence

1

ook wN

~

. Restore the currently selected Stack Pointer to its original contents at the

beginning of the aborted instruction.
. Clear the PSR P bit.

. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
. Set “"Vector’' to 2.

instruction.
. Perform Service (Vector, Return Address), Table 6.

Table 6. Service Sequence
Invoked during all interrupt/trap sequences

Service (Vector, Return Address):

1)

2)
3)

4)

5)
6)

7)

Read the 32-bit External Procedure Descriptor from the Interrupt Dispatch Table:
address is Vector*4 + INTBASE Register contents.

Move the Module field of the Descriptor into the MOD Register.

Read the new Static Base pointer from the memory address contained in MOD, placing
it into the SB Register.

Read the Program Base pointer from memory address MOD + 8, and add to it the Offset
field from the Descriptor, placing the result in the Program Counter.

Flush Queue: Non-sequentially fetch first instructin of Interrupt Routine.

Push MOD Register onto the Interrupt Stack as a 16-bit value. (The PSR has already
been pushed as a 16-bit value.)

Push the Return Address onto the Interrupt Stack as a 32-bit quantity.
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. Copy the PSR into a temporary register, then clear PSR bits S, U, T, and |.

Set ‘“Return Address’’ to the address of the first byte of the aborted
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3.1.3.9 Coprocessor Instructions

The TI32032T CPU recognizes three groups of instructions as being executable by
external coprocessors:

FLoating Point Instruction Set
Memory Management Instruction Set
Application-Specific Coprocessor Instruction Set

Each Coprocessor Instruction Set is validated by a bit in the Configuration Register
(section 3.1.1.3). Any Coprocessor Instruction which does not have its corresponding
Configuration Register bit set will trap as undefined, without any coprocessor
communication attempted by the CPU. This allows software simulation of a nonexisting
coprocessor.

3.1.3.9.1 Coprocessor Protocol
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Coprocessor instructions have 3-byte Basic Instruction field, consisting of an ID Byte
followed by an Operation Word. The ID Byte has three functions:

1. It identifies the instruction as being a coprocessor instruction.
2. It specifies which Coprocessor will execute it.
3. It determines the format of the following Operation Word of the instruction.

Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in
Table 7. While applying Status Code 1111 (Broadcast ID) (section 3.1.3.4.2) the CPU
transfers the ID Byte on the least significant byte of the Data Bus (ADO-AD7). All
coprocessors input this byte and decode it. The coprocessor selected by the ID Byte
is activated, and from this point the CPU is communicating only with it. If any other
coprocessor protocol was in progress (e.g., an aborted coprocessor instruction), this
transfer cancels it.

Table 7. Coprocessor Protocol

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

~ STEP STATUS ACTION
1 ID CPU Send ID Byte.
2 oP CPU Sends Operation Word.
3 oP CPU Sends Required Operands.
4 - Coprocessor Starts Execution. CPU Pre-Fetches.
5 - Coprocessor Pulses SPC low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Results (If Any).

The CPU next sends the Operation Word while applying Status Code 1101 (Transfer
Coprocessor Operand) (section 3.1.3.4.2). Upon receiving it, the Coprocessor decodes
it, and at this point the CPU and the Coprocessor are aware of the number of operands
to be transferred and their sizes. The Operation Word is swapped on the Data Bus:
that is, bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear on pins ADO-AD7.



Using the Addressing Mode fields within the Operation Word, the CPU starts fetching
operands and issuing them to the Coprocessor. To do so, it references any Addressing
Mode extensions which may be appended to the Coprocessor instruction. Since the
CPU is solely responsible for memory accesses, these extensions are not sent to the
coprocessor. The Status Code applied is 1101 (Transfer Coprocessor Operand)
(section 3.1.3.4.2).

After the CPU has issued the last operand, the Coprocessor starts the actual execution
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To
allow for this and for the address strap translation function, AT/SPC is normally held
high only by a pull-up device of approximately 5 kQ inside the CPU.

While the coprocessor is executing the instruction, the CPU is free to prefetch
instructions into its queue. If it fills the queue before the coprocessor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for Coprocessor)
(section 3.1.3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to read a Status Word from the
coprocessor, applying Status Code 1110 (Read Coprocessor Status)
(section 3.1.3.4.2). This word has the format shown in Figure 38. If the Q bit (*'Quit"’,
Bit O) is set, this indicates that an error has been detected by the coprocessor. The
CPU will not continue the protocol, but will immediately trap through the FPU vector
in the Interrupt Table. If the instruction being performed is CMPf and the Q bit is not
set, the CPU loads Processor Status Register (PSR) bits N,Z, and L from the
corresponding bits in the Status Word. The TI32081 FPU always sets the L bit to zero.

15 8 7 0

000000O0OO0OfNZFOOLOOQ

NEW PSR BIT VALUE(S) ,
“QUIT"": TERMINATE PROTOCOL, TRAP(FPU).

Figure 38. Coprocessor Status Word Format

The last step in the protocol is for the CPU to read a result, if any, and transfer it to
the destination. The Read cycles from the Coprocessor Processor are performed by
the CPU while applying Status Code 1101 (Transfer Coprocessor Operand)
(section 3.1.3.4.2).

An exception to the protocol above is the LMR (Load Memory Management Register)
instruction, and a corresponding Application-Specific Coprocessor instruction (LCR:
Load ACU Register). In executing these instructions, the protocol ends after the CPU
has issued the last operand. The CPU does not wait for an acknowledgment from the
coprocessor, and it does not read status.

3.1.3.9.2 Floating-Point Instructions

Table 8 gives the protocols followed for each Floating-Point instruction. The instructions
are referenced by their mnemonics. For the bit encodings of each instruction, see the
Appendix.

3-59

TI132032T Microprocessor n



108$9204d0IOIN 1 ZEOZEIL n

3-60

Table 8. Floating-Point Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC ¢ ass CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.
ADDf read.f rmw.f f f f to Op. 2 none
SuBf read.f rmw.f f f f to Op. 2 none
MULf read.f rmw.f f f f to Op. 2 none
DIVf read.f rmw.f f f f to Op. 2 none
MOVf read.f write.f f N/A f to Op. 2 none
ABSf read.f write.f f N/A fto Op. 2 none
NEGf read.f write.f f N/A fto Op. 2 none
CMPf read.f read.f f f N/A N,Z,L
FLOOR(i read.f write.i f N/A i to Op. 2 none
TRUNCHi read.f write.i f N/A ito Op. 2 none
ROUNDfi read.f write.i f N/A ito Op. 2 none
MOVFL read.F write.L F N/A L to Op. 2 none
MOVLF read.L write.F L N/A F to Op. 2 none
MOVif read.i write.f i N/A fto Op. 2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A D to Op. 2 none
Note:

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

f = Floating-Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

The Operand Class Columns give the Access Class for each general operand, defining
how the addressing modes are interpreted (see TI32000 Programmer’s Reference
Manual).

The Operand Issued Columns show the sizes of the operands issued to the Floating
Point Unit by the CPU:
D" indicates a 32-bit double word.

TR

i’ indicates that the instruction specifies an integer size for the operand (B
= Byte, W = Word, D = Double Word).

"§'’ indicates that the instruction specifies a floating-point size for the operand

(F = 32-bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the size of any returned value
and where the CPU places it. The PSR Bits Affected column indicates which PSR bits,
if any, are updated from the Coprocessor Status Word (Figure 38).

Any operand indicated as being of type ‘‘f’* will not cause a transfer if the Register
Addressing Mode is specified. This is because the Floating Point Registers are physically
on the Floating Point Unit and are therefore available without CPU assistance.



3.1.3.9.3 Memory Management Instructions

Table 9 gives the protocols for memory management instructions. Encodings for these
instructions may be found in the Appendix.

In executing the RDVAL and WRVAL instructions, the CPU calculates and issues the
32-bit Effective Address of the single operand. The CPU then performs a single-byte
read cycle from that address, allowing the MMU to safely abort the instruction if the
necessary information is not currently in physical memory. Upon seeing the memory
cycle complete, the MMU continues the protocol, and returns the validation result in
the F bit of the Coprocessor Status Word.

The size of the Memory Management operand is always a 32-bit double word. For
further details of the Memory Management Instruction set, see the 7/32000
Programmer’s Manual and the Appendix.

Table 9. Memory Management Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC ¢ ass CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.
RDOVALT addr N/A D N/A N/A F
WRVALT addr N/A D N/A N/A F
LMRT read.D N/A D N/A N/A none
SMRT write.D N/A N/A N/A D to Op. 1 none

Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-
byte Read cycle from that memory address. For details, see the TI32000 Programmer’s Reference Manual
and the TI32081W Memory Management Unit Data Sheet.

D = Double Word

T = Privileged Instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

3.1.3.9.4 Application Specific Coprocessor Instructions

Provided in the T132032T is the capability of communicating with a user-defined,
" Application-Specific’” Coprocessor. The instruction set provided for an Application-
Specific Coprocessor defines the instruction formats, the operand classes, and the
communication protocol. Left to the user are the interpretations of the op code fields,
the programming model of the Application-Specific Coprocessor, and the actual types
of data transfered. The protocol specifies only the size of an operand, not its data type.

Table 10 lists the relevant information for the Application-Specific Coprocessor
instruction set. The designation ‘‘c’’ is used to represent an operand which can be
a 32-bit (’D’’) or 64-bit ("'Q’’') quantity in any format: the size is determined by the
suffix on the mnemonic. Similarly, an "*i"’ indicates an integer size (Byte, Word, Double

Word) selected by the corresponding mnemonic suffix.

Any operand indicated as being of type ‘‘c’’ will not cause a transfer if the register
addressing mode is specified. It is assumed in this case that the coprocessor is already
holding the operand internally.

For the instruction encodings, see the Appendix.
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Table 10. Application-Specific Coprocessor Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC — ciass CLASS  ISSUED  ISSUED TYPE AND AFFECTED
: DEST.

CCALOc read.c rmw.c c c ctoOp. 2 none
CCAL1c read.c rmw.c [ [ ctoOp. 2 none
CCAL2c read.c rmw.c c c c to Op. 2 none
CCAL3c read.c rmw.c c c cto Op. 2 none
CMOVOc read.c write.c c N/A cto Op. 2 none
CMOV1ic read.c write.c c N/A ctoOp. 2 none
CMOV2c read.c write.c c N/A ctoOp. 2 none
CCMPc read.f read.c c c N/A N,Z,L
CCVOci read.c write.i [ N/A ito Op. 2 none
CCVici read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i [ N/A i to Op. 2 none
CCV3ic read.i write.c i N/A cto Op. 2 none
CCv4DQ read.D write.Q D N/A Q to Op. 2 none
CCvsQD read.Q write.D Q N/A D to Op. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A ' N/A D to Op. 2 none
CATSTOT addr N/A D N/A N/A F

CATST11 addr N/A D N/A N/A F

LCRT read.D N/A D N/A N/A none
SCRT write.D N/A N/A N/A D to Op. 1 none

NOTE:
D = Double Word
i Integer size (B, W, D) specified in mnemonic.

¢ = ACU size (D:32 bits or Q:64 bits) specified in mnemonic.
T = Privileged instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.
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3.2 TI32016T Microprocessor
3.2.1 Programming Model

The TI132000 microprocessor family architecture includes 16 registers on the TI32016T
Central Processing Unit (CPU) (Figure 1).

ADDRESS-DATA

- DEDI(;:TED . - S .
|o| rroGram counter | rc ro | = | ]
[o] STATIC BASE ]se | ; ! ]
lo] rramepomter e R : i J
o] userstackprr.  |sp1 R3 | H ]
L o] mverrupT sTack pTR. ] spo s Ra | ! i ]
[o]  mrermupTBAsE | nTBASE Rs = : B

PSR mMoD Re | H ! ]
| starus | wooue | r7[ : = ]

Figure 1. Address-Data and Dedicated Registers

3.2.1.1 Address-Data Registers

The TI32016T contains eight registers (RO through R7) for meeting high-speed general-
storage requirements, such as for holding temporary variables and addresses. These
registers are free for any use by the programmer. Each is 32 bits in length. If an Address-
Data register is specified for an operand that is 8- or 16-bits long, only the low part
(8 or 16 bit section) of the register is used and the high part is not referenced or
modified.

3.2.1.2 Dedicated Registers
The eight dedicated registers of the TI32016T are assigned specific functions.

PC: The PROGRAM COUNTER Register is a pointer to the first byte of the instruction
currently being executed. The PC Register is used to reference memory in the program
section. In the TI32016T CPU, the upper 8 (most significant) bits of this register are
always zero.

SP0,SP1: The function of the STACK POINTER Registers is as follows (1) The SPO
register points to the lowest address of the last item stored in the Interrupt Stack.
This stack is normally used only by the operating system. It is primarily used for storing
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temporary data, and holding return information for operating system subroutines and
Interrupt and Trap service routines. (2) The SP1 register points to the lowest address
of the last item stored on the User Stack. This stack is used by normal user programs
to hold temporary data and subroutine return information.

In this document, reference is made to the SP register. The terms ‘'SP register’’ or
"*SP’’ refer to either SPO or SP1, depending on the setting of the S bit in the Processor
Status Register (PSR). If the S bit in the PSR is O, then SP refers to SPO. If the S bit
in the PSR is 1, then SP refers to SP1. In the TI32016T CPU, the upper 8 (most
significant) bits of these registers are always zero.

Stacks in the TI32000 microprocessor family grow downward in memory. A Push
operation predecrements the Stack Pointer by the operand length. A Pop operation
post increments the Stack Pointer by the operand length.

FP: The FRAME POINTER Register is used by a procedure to access parameters and
local variables on the stack. The FP Register is set up on procedure entry with the
ENTER instruction and stored on procedure termination with the EXIT instruction.

The FP Register holds the address in memory occupied by the old contents of the Frame
Pointer. In the TI32016T CPU, the upper 8 (most significant) bits of this register are
always zero.

SB: The STATIC BASE Register points to the global variables of the software module.
This register is used to support relocatable global variables for software modules. The
SB Register holds the lowest address in memory occupied by the global variables of
a module. In the TI32016T CPU, the upper 8 (most significant) bits of this register
are always zero.

INTBASE: The INTERRUPT BASE Register holds the address of the dispatch table for
interrupts and traps (section 3.2.3.8). The INTBASE register holds the lowest address
in memory occupied by the dispatch table. In the TI32016T CPU, the upper 8 (most
significant) bits of this register are always zero.

MOD: The MODULE Register holds the address of the module descriptor of the currently
executing software module. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64k bytes of memory.

PSR: The PROCESSOR STATUS Register holds the status codes for the TI32016T
microprocessor. The PSR, as shown in Figure 2, is 16 bits long, divided into two 8-bit
halves. The low-order 8 bits are accessible to ail programs, but the high-order eight
bits are accessible only to programs executing in Operating System Mode.

18 gls .
K"Z‘K‘W '~IP|SIU NI»ZIF t171c

Figure 2. Processor Status Register

C: C bit indicates that a carry or borrow occurred after an addition or subtraction
instruction. It can be used with the ADDC and SUBC instructions to perform multiple-
precision integer arithmetic calculations. It may have a setting of O (no carry or borrow)
or 1 (carry or borrow). "



T: The T bit causes program tracing. If this bitis a 1, a Trace Trap (TRC) is executed
after every instruction (section 3.2.3.8.5).

L: The L bit is altered by comparison instructions. In a comparison instruction, the
L bitis set to *’1"" if the second operand is less than the first operand, and when both
operands are interpreted as unsigned integers. Otherwise, itis set to “’0O"’. In floating
point comparisons, this bit is always cleared.

F: The F bit is a general condition flag, which is altered by many instructions (e.g.,
integer arithmetic instructions use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a comparison instruction, the
Z bit is set to “’1"" if the second operand is equal to the first operand; otherwise it
is set to "O"".

N: The N bit is altered by comparison instructions. In a comparison instruction, the
N bitis set to ‘1"’ if both operands are interpreted as signed integers and the second
operand is less than the first operand. Otherwise, it is set to "'0O"".

U: If the U bitis *“1'", no privileged instructions may be executed. If the U bitis *0O"’,
then all instructions may be executed. When U = 0, the TI32016T is said to be in
the Operating System Mode; when U = 1, the TI32016T is said to be in User Mode.
A User Mode program is restricted from executing certain instructions and accessing
certain registers which could interfere with the operating system. For example, a User
Mode program is prevented from changing the setting of the flag used to indicate its
own privilege mode. An Operating System Mode program is assumed to be a trusted
part of the operating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1 register is used as the Stack
Pointer. The S bit is automatically cleared on interrupts and traps. It may have a setting
of O (use SPO register) or 1 (use SP1 register).

P: The P bit prevents a TRC trap from occurring more than once for an instruction
(section 3.2.3.8.5). It may have a setting of O (no trace pending) or 1 (trace pending).

I: When the | bitis "*1"’, all interrupts will be accepted (section 3.2.3.8). If the | bit
is "’0’’, only the NMlI interrupt is accepted. Trap enables are not affected by this bit.

3.2.1.3 Configuration Register (CFG)

Within the Control section of the TI32016T CPU is a 4-bit CFG register that declares
the presence of certain external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of system initialization after
reset. The format of the CFG Register is shown in Figure 3.

Figure 3. CFG Register
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The CFG | bit declares the presence of external interrupt vectoring circuitry, specifically,
the TI_3_2202 Interrupt Control Unit. If the CFGI bitis '*1"’, interrupts requested through
the INT pin are ‘Vectored’'. If it is 'O’", these interrupts are ‘‘nonvectored’’

(section 3.2.3.8). .
The F,M, and C bits declare the presence of the Floating Point Unit (FPU), Memory

Management Unit (MMU), and Application-Specific Coprocessors. If these bits are Os,
the corresponding instructions are trapped as being undefined.

3.2.1.4 Memory Organization
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The main memory of the TI32016T is a uniform linear address space. Memory locations
are numbered sequentially starting at O and ending at 224 — 1. The number specifying
a memory location is called an address.The contents of each memory location is a
byte consisting of 8 bits. Unless otherwise noted, diagrams in this document show
data stored in memory with the lowest address on the right and the highest address
on the left. In addition, when data is shown vertically, the lowest address is at the
top of a diagram and the highest address is at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given the number O, and is shown
at the right of the diagram. Bits are numbered in increasing significance and toward
the left.

7 0

]

A

Byte at Address A.

Two contiguous bytes are called a word. Except where noted (section 3.2.2.1), the
least significant byte of a word is stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word may start at any address.

15 8 7 0
l MS BYTE I LS BYTE 1

| A+ 1 | A I

Word at Address A.

Two contiguous words are called a double word. Except where noted (section 3.2.2.1),
the least significant word of a double word is stored at the lowest address and the
most significant word of the double word is stored at the address two greater. In
memory, the address of a double word is the address of its least significant byte, and
a double word may start at any address.



31 24 23 16 15 8 7 0

l_ys BYTE | | | tsevre |
I A+3I| A+2 A+ I A |

Double-word at Address A.

Although memory is addressed as bytes, it is actually organized as words. Therefore,
words and double words that are aligned to start at even addresses (multiples of two)
are accessed more quickly than words and double words that are not so aligned.

3.2.1.5 Dedicated Tables

Two of the TI32016T dedicated registers (MOD and INTBASE) serve as pointers to
dedicated tables in memory (section 3.2.3.8).

The INTBASE register points to the Interrupt Dispatch and Cascade tables.

The MOD Register contains a pointer into the Module Table whose entries are called
Module Descriptors. A Module Descriptor contains four pointers, three of which are
used by the TI32016T. At any time, the MOD register contains the address of the
Module Descriptor for the currently running module. It is automatically updated by
the Call External Procedure instructions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 4. The Static Base entry contains
the address of static data assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The Program Base entry
contains the address of the first byte of instruction code in the module. Since a module
may have multiple entry points, the Program Base pointer serves only as a reference
to find them.

15 0

MOD

_ > oY

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE
RESERVED

r y
Figure 4. Module Descriptor Format

The Link Table Address points to the Link Table for the currently running module. The
Link Table provides the information needed for:

1. Sharing variables between modules. Such variables are accessed through the
Link Table via the External addressing mode.

2. Transferring control from one module to another. This is done via the Call
External Procedure (CXP) instruction.
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The format of a Link Table is shown in Figure 5. A Link Table Extry for an external
variable contains the 32-bit address of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module field contains the new MOD
register contents for the module being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new module’s Program Base pointer.

For further details of the functions of these tables, refer to the 7/32000 Programmer’s
Reference Manual.

ENTRY 7]~ 31 oT
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET | MODULE {PROCEDURE)
~ Pl

Figure 5. A Sample Link Table

Instruction Set

General Instruction Format

Figure 6 shows the general format of a TI32000 instruction. The Basic Instruction
is one to three bytes long and contains the Opcode and up to two 5-bit General
Addressing Mode (gen) fields. Following the Basic Instruction field is a set of optional
extensions, which may appear depending on the instruction and the addressing modes
selected. Index Byts apear when either or both gen fields specify Scaled Index. In this
case, the gen field specifies only the Scale Factor (1, 2, 4, or 8) and the Index Byte
specifies which Address-Data Register to use as the index and which addressing mode
calculation to perform before indexing. See Figure 7.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
— \a /\
/ A\Y4 AY

DISP2 |DISP1|DISP2|DISP1

GEN GEN
IMPLIED
INDEX INDEX ADDR ADDR
IMMEDIATE DISP DISP OPCODE
OPERAND(S) BYTE BYTE MiDE COBDE

MM IMM

T o

he e — — —

Figure 6. General Instruction Format



GEN. ADDR. MODE

REG. NO.

Figure 7. Index Byte Format

Following Index Bytes come any displacements (addressing constants) or immediate
values associated with the selected addressing modes. Each Displacement/Immediate
(disp/imm) field may contain one or two displacements, or one immediate value. The
size of a disp field is encoded within the top bits of that field, as shown in Figure 8,
with the remaining bits interpreted as a signed (two’s complement) value.The size
of an immediate value is determined from the opcode field. Both disp and imm fields
are stored most significant byte first. Note that this is different from the memory
representation of data (section 3.2.1.4).

Some instructions require additional, “‘implied’’ immediates and/or displacements, apart
from those associated with addressing modes. Any such extensions appear at the end
of the instruction, in the order that they appear within the list of operands in the
instruction definition (section 3.2.2.3).

7

0

SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE -64 TO +63

0

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)

3.2.2.2 Addressing Modes

Figure 8. Displacement Encodings

The T132016T CPU generally accesses an operand by calculating its Effective Address
based on information available when the operand is to be accessed. The method to
be used in performing this calculation is specified by the programmer as an ‘’addressing

mode”’
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3.2.2.3
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Addressing modes in the TI32016T are designed to optimally support high-level
language accesses to variables. In nearly all cases, a variable access requires only one
addressing mode within the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

TI32016T Addressing Modes fall into nine basic types:

1.

Table 1

Register — The operand is available in one of the eight Address-Data Registers.
In certain coprocessor instructions, an auxiliary set of eight registers may be
referenced instead.

. Register Relative — An Address-Data Register contains an address to which

is added a displacement value from the instruction, yielding the Effective
Address of the operand in memory.

. Memory Space — ldentical to Register Relative, except that the register used

is one of the dedicated registers: PC, SP, SB, or FP. These registers point
to data areas generally needed by high-level languages.

. Memory Relative — A pointer variable is found within the memory space

pointed to by the SP, SB, or FP register. A displacement is added to that pointer
to generate the Effective Address of the operand.

. Immediate — The operand is encoded within the instruction. This addressing

mode is not allowed if the operand is to be written.

. Absolute — The address of the operand is specified by a displacement field

in the instruction.

. External — A pointer value is read from a specified entry of the current Link

Table. To this pointer value is added a displacement, yielding the Effective
Address of the operand.

. Top-of-Stack — The currently selected Stack Pointer (SPO or SP1) specifies

the location of the operand. The operand is pushed or popped, depending on
whether it is written or read.

. Scaled Index — Although encoded as an addressing mode, Scaled Indexing

is an option on any addressing mode except Immediate or another Scaled
Index. It has the effect of calculating an Effective Address, then multiplying
any Address-Data Register by 1, 2, 4, or 8 and adding it to the total, yielding
the final Effective Address of the operand.

is a brief summary of the addressing modes. For a complete description of

their actions, see the T/32000 Programmer’s Reference Manual.

Instruction Set Summary

Table 2 presents a brief description of the TI32016T instruction set. The Format Column
refers to the Instruction Format Tables (See Appendix). The Instruction Column gives
the instruction as coded in assembly language, and the Description column provides
a short description of the function provided by that instruction. Further details of the
exact operations performed by each instruction may be found in the 7/32000
Programmer’s Reference Manual.



Notations:

gen
short

mm =

disp
reg
areg

mreg
creg
cond

integer length suffix:

B = Byte

W= Word

D = Double Word

Floating Point length suffix:
F = Standard Floating

L = Long Floating

= General operand: Any addressing mode can be specified.

A 4-bit value encoded within the Basic Instruction (see Appendix for encoding).
Implied immediate operand. An 8-bit value appended after any addressing
extensions.

= displacement (addressing constant): 8, 16, or 32 bits. All three lengths equal.

Any Address-Data register: RO-R7.

= Any Dedicated address register: SP, SB, FP, MOD, INTBASE, PSR, US (bottom

8 PSR bits).

= Any Memory Management Status/Control Register.

An Application-Specific Coprocessor Register (Implementation Dependent).

= Any condition code, encoded as the 4-bit field within the Basic Instruction

(see Appendix for encodings).

3.2.3 Functional Description

3.2.3.1 Power and Grounding

The TI32016T requires a single 5-V power supply, applied on pin 18 (V). See DC
specifications in the TI32016T data sheet.

Grounding connections are made on two pins. Logic Ground (GNDL, pin 24) is the
common pin for on-chip logic, and Buffer Ground (GNDB, pin 25) is the common pin
for the output drivers. For optimal noise immunity, it is recommended that GNDB and
GNDL be connected together through a single conductor. All other ground connections
should be made to the common line as shown in Figure 9.

5V

(48

l Vee )

~
~ ~-i
T TI32016T
CPU  pos (29)
C1 C2

(24) (25) OTHER GROUND

I—— GNDL GNDB CONNECTIONS

Figure 9. Recommended Supply Connections
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Table 1. TI32000 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS
Register
00000 Register O RO or FO None: Operand is in the
00001 Register 1 R1 or F1 specified register
00010 Register 2 R2 or F2
00011 Register 3 R3 or F3
00100 Register 4 R4 or F4
00101 Register 5 R5 or F5
00110 Register 6 R6 or F6
00111 Register 7 R7 or F7
Register
Relative
01000 Register O relative disp(RO) Disp + Register.
01001 Register 1 relative disp(R1)
01010 Register 2 relative disp(R2)
01011 Register 3 relative disp(R3)
01100 Register 4 relative disp(R4)
01101 Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)
Memory
Relative
10000 Frame memory relative disp2(disp1(FP)) Disp 2+ Pointer; Pointer found
10001 Stack memory relative  disp2(disp1(SP)) at address Disp1 + Register.
10010 Static memory relative  disp2(disp1(SB)) "’SP’" is either SPO or SP1, as
selected in PSR.
Immediate
10100 Immediate value None: Operand is input from
instruction queue.
Absolute
10101 Absolute @disp Disp.
External
10110 External EXT (disp1) +disp2 Disp2 + Pointer; Pointer is

found at Link Table Entry
number Disp1.

Top of Stack
10111 Top of Stack TOS Top of current stack, using
either User or Interrupt Stack
Pointer, as selected in PSR.
Automatic Push/Pop included.
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ENCODING

Memory

Space
11000
11001

11010
11011

Scaled Index
11100
11101
11110
1M1

Table 1. TI32000 Addressing Modes (Continued)

MODE

Frame memory
Stack memory

Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

disp(FP)
disp(SP)

disp(SB)
* +disp

mode[Rn:B|
mode[Rn:W|
mode[Rn:Dj
mode[Rn: Q]

EFFECTIVE ADDRESS

Disp + Register, ‘SP’’ is either
SPO or SP1, as selected in
PSR.

EA (mode) + Rn.

EA (mode) + 2 X Rn.

EA (mode) + 4 x Rn.

EA {(mode) + 8 x Rn.

"Mode’’ and ‘'n’’ are contained
within the Index Byte.
EA(mode) denotes the effective
address generated using mode.
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Table 2.  T132000 Instuction Set Summary

MOVES
Format  Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVAQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move Effective Address.
INTEGER ARITHMETIC
Format Operation Operands Description
4 ADDi gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBI gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULI gen,gen Multiply
7 QUOI gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DiVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MELi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.
INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format  Operation Operands Description
4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean

variable of size i.
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Table 2. Ti32000 Instruction Set Summary (Continued)

SHIFTS
Format  Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gengen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are
PACKED arrays and records used in Pascal. ‘‘Extract’’ instructions read and align a bit
field. “‘Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp  Extract bit field (array oriented).
8 INSi reg,gen,gen,disp  Insert bit field (array oriented).
8 INSi reg,gen,gen,disp  Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg.gen,gen Convert to Bit Field Pointer.

ARRAYS

Format  Operation Operands Description
8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-

dimensional arrays.
STRINGS
String instructions assign specific functions to the Address-Data Registers:
R4 — Comparison Value
R3 — Translation Table Pointer
R2 — String 2 Pointer
R1 String 1 Pointer
RO — Limit Count

|

Options on all strong instructions are:

B (Backward): Decrement string pointers after each step rather than incrementing.

U (Until match):  End instruction if String 1 entry matches R4.
W (While match): End instruction if String 1 entry does not match R4.
All string instructions end when RO decrements to zero.
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Table 2. TI32000 Instruction Set Summary (Continued)

Format Operation Operands ‘Descriptions

5 MOVSi options Move string 1 to String 2.
MOVST options Move string, translating bytes.

5 CMPS;i options Compare String 1 to String 2.
CMPST options Compare, translating String 1 bytes.

5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.

JUMPS AND LINKAGE
Format Operation Operands Description

3 JUMP gen Jump. ‘

0 BR ' disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 CXP disp Call external procedure.

3 CXPD gen Call external procedure using descriptor.

1 SvC Supervisor Call.

1 FLAG Flag Trap.

1 BPT Breakpoint Trap.

1 ENTER [reg list],disp  Save registers and allocate stack frame (Enter

Procedure).
1 EXIT [reg list] Restore registers and reclaim stack frame (Exit
Procedure).

1 RET disp Return from subroutine.

1 RXP disp Return from externalyprocedure call.

1 RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)
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Table 2. TI32000 Instruction Set Summary (Continued)

CPU REGISTER MANIPULATION

Format Operation Operands
1 SAVE [reg list]
1 RESTORE [reg list]
2 LPRi areg.gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRIi gen
5 SETCFG [option list}
FLOATING POINT
Format  Operation Operands
11 MOV§ gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MoOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCfi gen,gen
9 FLOOR fi gen,gen
11 ADDf gen,gen
11 SUBf gen,gen
11 MULf gen,gen
11 DIVf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSf dgen,gen
9 LFSR gen
9 SFSR gen
MEMORY MANAGEMENT
Format Operation Operands
14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen
8 MOVUSI gen,gen

Description
Save Address-Data Registers.
Restore Address-Data registers.
Load Dedicated Register. (Privileged if PSR or
INTBASE)
Store Dedicated Register. (Privileged if PSR or
INTBASE)
Adjust Stack Pointer.
Set selected bits in PSR. (Privileged if not Byte
length)
Clear selected bits in PSR. (Privileged if not Byte
length)
Set Configuration Register. (Privileged)

Description
Move a Floating Point value.
Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.
Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to
value.
Add.
Subtract.
Multiply.
Divide.
Compare.
Negate.
Take absolute value.
Load FSR.
Store FSR.

Description
Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)
Move a value from Operating System
Space to User Space. (Privileged)
Move a value from User Space to Operating
System Space. (Privileged)
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Table 2. TI32000 Instruction Set Summary (Concluded)

MISCELLANEOUS

Format Operation Operands Description
1 NOP No Operation.
1 WAIT Wait for interrupt.
1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for

hardware breakpointing. Not for use in
programming.
APPLICATION-SPECIFIC COPROCESSOR (ACU)
Format Operation Operands Description

15.56 CCALOc gen,gen ACU Caiculate.

15.5 CCAL1c gen,gen

15.5 CCAL2c gen,gen

15.5 CCAL3c gen,gen

15.5 CMOVOc gen,gen ACU Move.

15.5 CMOV1ic gen,gen

15.5 CMOV2c gen,gen

15.5 CCMPc gen,gen ACU Compare.
15.1 CCVOci gen,gen ACU Convert.
15.1 CCVici gen,gen

15.1 CCV2ci gen,gen

15.1 CCV3ic gen,gen

15.1 CCcv4DQ gen,gen
15.1 CCvsQD gen,gen

15.1 LCSR gen Load ACU Status Register.

156.1 SCSR gen Store ACU Status Register.
15.0 CATSTO gen ACU Address/Test. (Privileged)
15.0 CATST1 gen (Privileged)

15.0 LCR creg,gen Load ACU Register. (Privileged)
15.0 SCR creg,gen Store ACU Register. (Privileged)
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In addition to V¢ and GND, the TI32016T CPU uses an internally generated negative
voltage. It is necessary to filter this voltage externally by attaching a pair of capacitors
(Figure 9) from the BBG pin to ground. Recommended values for these are:

C1: 1 uF, Tantalum
C2: 1000 pF, low inductance. This should be either a disc or monolithic ceramic
capacitor.

3.2.3.2 Clocking

The TI32016T inputs clocking signals from the T132201 Timing Control Unit (TCU),
which presents two nonoverlapping phases of a single clock frequency. These phases
are called CLK1 (pin 26) and CLK2 (pin 27). Their relationship to each other is shown

in Figure 10.
ONE
€— T-STATE—p»
CLK1J- \ [ \ ’ \ I_
D¢ Dl
CLK2

NON-OVERRLAPPING
Figure 10. Clock Timing Relationships

Each positive edge of CLK1 defines a transition in the timing state (T-State) of the
CPU. One T-State represents the execution of one microinstruction within the CPU,
and/or one step of an external bus transfer. See the ac timing characteristics in the
TI132016T Data Sheet for complete specifications on CLK1 and CLK2.

Since the TCU presents signals with very fast transitions, it is recommended that the
conductors carrying CLK1 and CLK2 be kept as short as possible, and that they not
be connected anywhere except from the TCU to the CPU and, if present, the Memory
Management Unit (MMU). A TTL Clock signal (CTTL) is provided by the TCU for all
other clocking.

3.2.3.3 Resetting

The RST/ABT pin serves both as a Reset for on-chip logic and as the Abort input for
Memory-Managed systems. For its use as the Abort command, see section 3.2.3.5.4.

The CPU may be reset at any time by pulling the RST/ABT pin low for at least 64 clock
cycles. Upon detecting a reset, the CPU terminates instruction processing, resets its
internal logic, and clears the Program Counter (PC) and Processor Status Register (PSR)
to all zeros.

On application of power, RST/ABT must be held low for at least 50 us after V¢ is
stable. This is to ensure that all on-chip voltages are completely stable before operation.
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Whenever a Reset is applied, it must remain active for not less than 64 clock cycles.
The trailing (positive-going). edge must occur while CLK1 is high, and no later than
10 ns before the CLK1 trailing edge. See Figures 11 and 12.

rYi

4.5 V g 7
Vee
CLK1 : I_L

< 264 CLOCK —»

CYCLES r—————

RST/ABT 4 }-—/

[¢———=250 psec ————P|

Figure 11. Power-On Reset Requirements

Iq___z 64 CLOCK _,|
_ CYCLES
RST/ABT ,
ry

17

Figure 12. General Reset Timing

The TI32201 Timing Control Unit (TCU) provides circuitry to meet the reset
requirements of the TI32016T CPU. Figure 13 shows the recommended connections
for a nonmemory-mananaged system. Figure 14 shows the connections for a memory-
managed system.

Vee
TCU CPU
T132201 TI320167
pe——————
i
| RESET i RSTI RSTO RST/ABT
' i
EXTERNAL RESET i |
(OPTIONAL) | | 250 usec
1= SYSTEM RESET
| F——" ;
RESET SWITCH
(OPTIONAL)

Figu;é 13. Recommended’Reset Connections, Non-Memory-Managed System



TCU MMU cPU
T132201 TI132082W T132016T

r-=—=-—=—=717

RSTI RSTO O~ RST ABT D—COf RST.ABT

L J1 0!
-————— — |
EXTERNAL RESET ] i ] :._[.:

(OPTIONAL) | 250 usec

RESET SWITCH
(OPTIONAL)

Figure 14. Recommended Reset Connections, Memory-Managed System

3.2.3.4 Bus Cycles

The TI32016T CPU has a strap option that defines the Bus Timing Mode as either
with or without Address Translation. For details covering the use of the strap, refer
to section 3.2.3.5.

The CPU will perform a bus cycle for one of the following reasons:

1. To write or read data, to or from memory or a peripheral interface device.
Peripheral input and output are memory-mapped in the TI32000 family.

2. To fetch instructions into the 8-byte instruction queue. This happens whenever
the bus would otherwise be idle and the queue is not already full.

3. To acknowledge an interrupt and allow external circuitry to provide a vector
number, or to acknowledge completion of an interrupt service routine.

4. To transfer information to or from a Coprocessor.

In terms of bus timing, cases 1 through 3 above are identical. The only external
difference between cases 1 through case 3 is the 4-bit code placed on the Bus Status
pins (STO-ST3). Coprocessor cycles differ in that separate control signals are applied.
Refer to section 3.2.3.4.6.

The sequence of events in a noncoprocessor bus cycle is shown in Figure 16 for a
Read cycle and Figure 17 for a Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating with the CPU at full speed.
If it is not, then cycle extension may be requested through the RDY line. Refer to
section 3.2.3.4.1.

A full-speed bus cycle is performed in four cycles of CLK1, labeled T1 through T4.
Clock cycles not associated with a bus cycle are designated Ti (for “'idle’’).

During T1, the CPU applies an address on pins ADO-AD15 and A16-A23. It also
provides a low-going pulse on the ADS pin, which serves the dual purpose of informing
external circuitry that a-bus cycle is starting and of providing control to an external
latch for demultiplexing Address bits 0-15 from the ADO-AD 15 pins. See Figure 15.
Also during this time the status signals DDIN, indicating the direction of the transfer,
and HBE, indicating whether the high byte (AD8-AD15) is to be referenced, become
valid.
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DDIN —T—b—— D0-D15
{16) (16)
ADO-AD15 |l BUFFER fmmemflfpen
Y ——
TiBE ¥ HBE
ADS @ —-
TI32016T I
o » AO(LBE)
s LATCH
® [23
A16-A23 - A1-A23
CLK1 CLK2 DS/FLT|
—vYY L
CLK1 CLK2 ADS DDIN DBE —
= —» RD
T132201 WR > WR
TS0 ’ » TSO

Figure 15. Bus Connections

During T2, the CPU switches the Data Bus ADO-AD15 to either accept or present data.
Note that the signals A16-A23 remain valid, and need not be latched . It also starts
the Data Strobe (DS), signaling the beginning of the data transfer. Associated signals
from the T132201 Timing Control Unit are also activated at this time: RD (Read Strobe)
or WR (Write Strobe), TSO (Timing State Output, indicating that T2 has been reached),
and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it occurs at least once in
a bus cycle. At the beginning of T3, on the rising edge of the CLK1 clock, the RDY
line is sampled to determine whether the bus cycle will be extended (section 3.2.3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-AD15) is sampled at the
falling edge of CLK2 in the last T3 state. Data must, however, be held at least until
the beginning of T4. DS and RD are guaranteed not to go inactive before this point,
so the rising edge of either of them may safely be used to disable the device providing
the input data.

The T4 state finishes the bus cycle. At the beginning of T4, the DS, RD or WR, and
TSO signals go inactive, and on the rising edge of CLK2, DBE goes inactive, having

~ provided for necessary data hold times. Data during Write cycles remains valid from

the CPU throughout T4. Note that the Bus Status lines (STO—ST3) change at the
beginning of T4, anticipating the following bus cycle {(if any).



3.2.3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any speed of memory or
peripheral device, the TI32016T provides for extension of a bus cycle. Any type of
bus cycle except a coprocessor cycle can be extended.

In Figures 16 and 17, note that during T3 all bus control signals from the CPU and
TCU are flat. Therefore, a bus cycle can be cleanly extended by causing the T3 state
to be repeated. This is the purpose of the Ready (RDY) pin.

At the end of T2, on the falling edge of CLK2, the RDY line is sampled by the CPU.
If RDY is high, the next T-states will be T3 and T4, ending the bus cycle. If RDY is
low, An additional T3 state will be inserted after the initial T3 state and the RDY line
will again be sampled on the falling edge of CLK2. Each additional T3 state after the
first is referred to as a ‘’Wait State’’. See Figure 18.

The RDY pin is driven by the TI32201 Timing Control Unit, which applies wait-states
to the CPU as requested on three sets of pins:

1. CWAIT (Continuous Wait) holds the CPU in wait-states until removed.

2. WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITNn) may be given a four-
bit value requesting a specific number of wait-states from 0—15.

3. PER (Peripheral) inserts five additional wait-states and causes the TCU to
reshape the RD and WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various Wait requests are both legal and useful. For details on
their use, see section 3.6.

Figure 19 illustrates a typical Read cycle, with two wait-states requested through the
TCU WAITnh pins.

3.2.3.4.2 Bus Status

The TI32016T CPU presents 4 bits of Bus Status information on pins STO-ST3. The
various combinations on these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

Referring to Figures 16 and 17, note that Bus Status leads the corresponding Bus Cycle,
going valid one clock cycle before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if desired, latch the decoded
signals before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a 4-bit value, with STO the least significant
bit. Their values decode as follows:

0000 The bus is idle because the CPU does not yet need access to the bus.

0001 The bus is idle because the CPU is executing the WAIT instruction.

0010 (Reserved for future use.)

0011 The bus is idle because the CPU is waiting for a coprocessor to complete
an instruction.
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Figure 18. RDY Pin Timing

Master Interrupt Acknowledge. The CPU is performing a read cycle. To
acknowledge receipt of a Nonmaskable Interrupt (on NMI) it will read from
address FFFFOO1g but will ignore any data provided. To acknowledge
receipt of a Maskable Interrupt (on INT) it will read from address
FFFFOO1g, expecting a vector number to be provided from the Master
T132202 Interrupt Control Unit (ICU). If the vectoring mode selected by
the last SETCFG instruction was nonvectored, then the CPU will ignore
the value it has read and will use a default vector instead, having assumed
that no T132202 is present (section 3.2.3.4.5).

Cascaded Interrupt Acknowledge. The CPU is reading a vector number
from a Cascaded TI132202 Interrupt Control Unit. The address provided
is the address of the TI32202 Hardware Vector register
(section 3.2.3.4.5).

Master End of Interrupt. The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI) instruction
(section 3.2.3.4.5).

Cascaded End of Interrupt. The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through RETI) from an interrupt
service routine requested by that unit (section 3.2.3.4.5).

Sequential Instruction Fetch. The CPU is reading the next sequential word
from the instruction stream into the Instruction Queue. It will do so
whenever the bus would otherwise be idle and the queue is not already
full.

Nonsequential Instruction Fetch. The CPU is performing the first fetch
of instruction code after the Instruction Queue is purged. This will occur
as a result of any jump or branch, or any interrupt or trap, or execution
of certain instructions.

Data Transfer. The CPU is reading or writing an operand of an instruction
Read RMW Operand. The CPU is reading an operand which will
subsequently be modified and rewritten. If memory protection circuitry
would not allow the following write cycle, it must abort this cycle.
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1100 Read for Effective Address Calculation. The CPU is reading information
from memory in order to determine the Effective Address of an operand.
This will occur whenever an instruction uses the Memory Relative or
External addressing mode.

1101 Transfer Coprocessor Operand. The CPU is either transferring an
instruction operand to or from a coprocessor, or it is issuing the Operation
Word of a coprocessor instruction (section 3.2.3.9.1) )

1110 Read Coprocessor Status. The CPU is reading a Status Word from a
coprocessor. This occurs after the coprocessor has signaled completion
of an instruction. The transferred word tells the CPU whether a trap should
be taken, and in some instructions it presents new values for the CPU
Processor Status Register bits N, Z, L, or F (section 3.2.3.9.1).

1111 Broadcast Coprocessor ID. The CPU is initiating the execution of a
coprocessor instruction. The ID Byte (first byte of the instruction) is sent
to all coprocessors, one of which will recognize it. From this point the
CPU is communicating with only one coprocessor (section 3.2.3.9.1).

3.2.3.4.3 Data Access Seqguences

3-88

The 24-bit address provided by the TI32016T is a byte address; that is,it uniquely
identifies one of up to 16,777,216 eight-bit memory locations. An important feature
of the TI32016T is that the presence of a 16-bit data bus imposes no restrictions on
the data alignment; any data item, regardless of size, may be placed starting at any
memory address. TheTI32016T provides a special control signal, High Byte Enable
(HBE) which facilitates individual byte addressing on a 16-bit bus. Memory is organized
as two 8-bit banks, each bank receiving the word address (A1-A23)) in parallel. One
bank, connected to Data Bus pins ADO-AD7 is enabled to respond to even byte
addresses; i.e., when the least significant address bit (AO) is low. The second bank,
connected to data bus pins AD8-AD 15, is enabled when HBE is low. See Figure 20.

Any bus cycle falls into one of three categories: Even Byte Access, Odd Byte Access,
and Even Word Access. All accesses to any data type are made up of sequences of
these cycles. Table 3 lists the state of AO and HBE for each category.

Accesses of operands requiring more than one bus cycle are performed sequentially,
with no idle T-States separating them. The number of bus cycles required to transfer
an operand depends on its size and its alignment. Table 4 lists the bus cycles performed
for each situation.

Bit Accesses. The Bit Instructions perform byte accesses to the byte containing the
designated bit. The Test and Set Bit instruction (SBIT), for example, reads a byte, alters
it, and rewrites it, having changed the contents of the one bit.

Bit Field Accesses. An access to a Bit Field in memory always generates a double word
transfer at the address containing the least significant bit of the field. The double word
is read by an Extract Instruction; an Insert instruction reads a double word, modifies
it, and rewrites it.

Extending Multiply Accesses. The Extending Multiply Instruction (MEI) will return a
result which is twice the size in bytes of the operands it reads. If the multiplicand is



HBE AO(LBE)

8 BITS 8 BITS

A1-A23

AQ ¥

A )
[ -
3\
S\

MS BYTE LS BYTE
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Figure 20. Memory Interface

in memory, the most significant half of the result is written first (at the higher address),
then the least significant half. This is done in order to support retry if this instruction
is aborted.

3.2.3.4.4 Instruction Fetches.

Instructions for the TI32016T CPU are ‘‘prefetched’’; that is, they are input before
being needed into the next available entry of the 8-byte Instruction Queue. The CPU
performs two types of Instruction Fetch cycles: Sequential and Nonsequential. These
can be distinguished from each other by their differing status combinations on pins
STO-ST3 (section 3.2.3.4.2)

Table 3. Bus Cycle Categories

CATEGORY HBE AO

Even Byte 1 6]
0Odd Byte 0 1
Even Word ] o]
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Table 4. Access Sequences

CYCLE TYPE ADDRESS HBE A0 HIGH BUS

A. Odd Word Access Sequence

LOW BUS

[BYTE1|BYTEO]| <A

1 0Odd Byte A 0 1 Byte O Don’t Care
2 Even Byte A+1 1 0 Don’t Care Byte 1
B. Even Double-Word Access Sequence
[ BYTE 3] BYTE 2| BYTE1 [BYTEO| <A
1 Even Word A 0 0 Byte 1 Byte O
2 Even Word A+2 0 0 Byte 3 Byte 2
C. Odd Double-Word Access Sequence
[BYTE 3 [BYTE 2 [BYTE 1|BYTEO| <A
1 0dd Byte A 0 1 Byte O Don’t Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 1 0 Don’t Care Byte 3
D. Even Quad-Word Access Sequence
[BYTE 7 | BYTE 6 | BYTE 5| BYTE 4 | BYTE 3 [BYTE 2 [BYTE 1| BYTEO| < A
1 Even Word A 0 0 Byte 1 Byte O
2 Even Word A+2 0 [¢] Byte 3 Byte 2
Other bus cycles (instruction prefetch or coprocessor) can occur here.
3 Even Word A+4 0 0 Byte 5 Byte 4
4 Even Word A+6 0 0 Byte 7 Byte 6
E. Odd Quad-Word Access Sequence
[BYTE 7 |BYTE 6 |BYTE 5| BYTE 4 | BYTE 3 |[BYTE 2 [BYTE 1[BYTEO| < A
1 0Odd Byte A 0 1 Byte O Don’t Care
2 Even Word A+1 (0] [¢] Byte 2 Byte 1
3 Even Byte A+3 1 0 Don’t Care Byte 3
Other bus cycles (instruction prefetch or coprocessor) can occur here.
4 Odd Byte A+4 0 1 Byte 4 Don’t Care
5 Even Word A+5 0 (0] Byte 6 Byte 5
6 Even Byte A+7 1 o] Don’t Care Byte 7
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A Sequential Fetch will be performed by the CPU whenever the Data Bus would
otherwise be idle and the Instruction Queue is not currently full. Sequential Fetches
are always Even Word Read cycles (Table 3).

A Nonsequential Fetch occurs as a result of any break in the normally sequential flow
of a program. Any jump or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Nonsequential. In addition, certain instructions flush
the instruction queue, causing the next instruction fetch to display Nonsequential
status. Only the first bus cycle after a break displays Nonsequential status, and that
cycle is either an Even Word Read or an Odd Byte Read, depending on whether the
destination address is even or odd.

3.2.3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or more bus cycles whose
purpose is interrupt control rather than the transfer of instructions or data. Execution
of the Return from Interrupt instruction (RETI) will also cause Interrupt Control bus
cycles. These differ from instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-byte read cycles.

This section describes only the Interrupt Control sequences associated with each
interrupt and with the return from its service routine. For full details of the TI32016T
interrupt structure, see section 3.2.3.8.

3.2.3.4.6 Coprocessor Communication

In addition to its use as the Address Translation strap (section 3.2.3.5.1), the AT/SPC
pin is used as the Data Strobe for coprocessor transfers. In this role, it is referred to
as Coprocessor Control (SPC). In a coprocessor bus cycle, data is transferred on the
Data Bus (ADO-AD15), and the least significant two bits of CPU cycle status (STO-ST1)
are monitored by each coprocessor in order to determine the type of transfer being
performed. SPC is bidirectional, but is driven by the CPU during all coprocessor bus
cycles (section 3.2.3.9) (Figure 21).

(16)

AD(0-15) % D(0-15)

TI32016T AT/SPC <«—> SPC
cPU
COPROCESSOR

STO-ST3

STO-ST3

\ 4

Figure 21. Coprocessor Connections

Coprocessor Bus Cycles. A coprocessor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 22 and 23). During a Read cycle, SPC is
activated at T1, data is sampled at T4, and SPC is removed. The Cycle Status pins
lead the cycle by one clock period, and are sampled at the leading edge of SPC. During
a Write cycle, the CPU applies data and activates SPC at T1, removing SPC at T4.
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Table 5. Interrupt Sequences
CYCLE STATUS ADDRESS DDIN HBE A0 HIGH BUS LOW BUS

A. Non-Maskable Interrupt Control Sequences.
Interrupt Acknowledge
1 0100 FFFF0O1¢ 0 1 0  Don’t Care Don't Care

Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences.

Interrupt Acknowledge :
1 0100 FFFEOO1g 0 1 O Don’t Care Don’t Care

Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge

1 0100 FFFEOO16 0 1 0 Don’t Care Vector:
Range: 0—127
Interrupt Return
1 0110 FFFEOO16 0 1 0 Don’t Care Vector: Same as in
Previous Int. Ack.
Cycle

D. Vectored Interrupt Sequences: Cascaded.

Interrupt Acknowledge
1 0100 FFFEOO1¢ o 1 0 Don‘t Care Cascade Index:
range —16 to —1

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade (o] 1ot 0ort Vector, range 0—255; on
Address 0 1 appropriate half of Data Bus for
even/odd address

Interrupt Return

1 0110 FFFEOO1g 0 1 0 Don’t Care Cascade Index:
same as in
previous Int. Ack.
Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade ] 1or O or Don’'t Care Don’t Care
Address of 17

T If the Cascaded ICU Address is Even (AQ is low), then the CPU applies HBE high and reads the vector number
from bits 0— 7 of the Data Bus. If the address is Odd (AOQ is high), then the CPU applies HBE low and reads
the vector number from bits 8 — 15 of the Data Bus. The vector number may be in the range 0—255.
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Figure 23. CPU Write to Coprocessor
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The coprocessor latches status on the leading edge of SPC and_l_q_t_ches data on the
trailing edge. Since the CPU does not pulse the Address Strobe (ADS), no bus signals
are generated by the Ti132201 Timing Control Unit. The direction of a transfer is
determined by the sequence ('‘protocol’’) established by the instruction under
execution; but the CPU indicates the direction on the DDIN pin for hardware debugging
purposes.

Operand Transfer Sequences. A coprocessor operand is transferred in one or more
coprocessor bus cycles. A Byte operand is transferred on the least significant byte
of the Data Bus (ADO-AD7), and a Word operand is transferred on bits ADO-AD15.
A double word is transferred in a consecutive pair of bus cycles, least significant word
first. A quad word is transferred in two pairs of coprocessor cycles, with other bus
cycles possibly occurring between them. The word order is from least signficant word
to most significant word.

3.2.3.5 Memory-Management Option

The TI32016T CPU, in conjunction with the TI32082W Memory Management Unit
(MMU), provides full support for address translation, memory protection, and memory
allocation techniques up to and including Demand-Paged Virtual Memory.

3.2.3.5.1 Address-Translation Strap

The Bus Interface Control section of the TI32016T CPU has two bus timing modes;
with or without address-translation. The mode of operation is selected by the CPU
by sampling the AT/SPC (Address Translation/Coprocessor Control) pin on the rising
edge of the Reset (RST) pulse. If AT/SPC is sampled as high, the bus timing is as
previously described in section 3.2.3.4. If it is sampled as low, two changes occur:

1. An extra clock cycle, Tmmu, is inserted into all bus cycles except coprocessor
transfers.

2. The DS/FLT pin changes in function from a Data Strobe output (DS) to a Float
Command input (FLT). The TI32082 MMU will itself pull the CPU AT/SPC
pin low when it is reset. In Nonmemory Managed systems, this pin should
be pulled up to V¢ through a 10 kQ resistor.

TI32016T Microprocessor H

Note that the Address Translation strap does not specifically declare the presence of
a TiI32082W MMU, but only the presence of external address translation circuitry.
MMU instructions will still trap as being undefined unless the SETCFG (Set
Configuration) instruction is executed to declare the MMU instruction set valid.

3.2.3.5.2 Translated Bus Timing

Figures 24 and 25 illustrate the CPU activity during a read cycle and a write cycle
in Address Translation mode. The additional T-State, Tmmu, is inserted between T1
and T2. During this time the CPU places ADO-AD15 and A16-A23 into the 3-state
(high-impedance state) mode, allowing the MMU to assert the translated address and
issue the physical address strobe PAV. T2 through T4 of the cycle are identical to
their counterparts without Address Translation, with the exception that the CPU
address lines A16-A23 remain in the 3-state condition. This allows the MMU to continue
asserting the translated address on those pins.
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Figure 24. Read Cycle with Address Translation (CPU Action)

Figures 26 and 27 show a read cycle and a write cycle as generated by the
TI32016T/TI32082W/TI32201 group. Note that with the CPU ADS signal going to
the MMU, and with the MMU PAV signal substituting for ADS every where else, Tmmu
through T4 look exactly like T1 through T4 in a nonmemory managed system. For

the connection diagram (Figure 28).
3.2.3.5.3 The FLT (Float) Pin

In Address Translation mode, the DS/FLT pin is treated as the input command FLT
(Float). Activating FLT during Tmmu causes the CPU to wait longer than Tmmu for
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address translation and validation. This feature is used occasionally by the TI32082
MMU in order to update its internal translation cache from page tables in memory,
or to update certain status bits within them.

Figure 29 shows the effects of FLT. Upon sampling FLT low late in Tmmu, the CPU
enters idle T-States (Tf) during which it:

1. Sets ADO-AD15, A16-A23, and DDIN to the 3-state (high-impedance)
condition (Floating).
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2. Sets HBE low.
3. Suspends further internal processing of the current instruction. This ensures

that the current instruction remains abortable with retry. (See RST/AB
description, section 3.2.3.5.4)

Note that the ADO—AD 15 pins may be briefly asserted during the first idle T-State.
The above conditions remain in effect until FLT again goes high.

3.2.3.5.4 Aborting Bus Cycles

3-102

The RST/ABT pin, apart from its reset function (section 3.2.3.3), also serves as the
means to ‘‘abort’’, or cancel, a bus cycle and the instruction,if any, which initiated
it. An Abort request is distinguished from a Reset in that the RST/ABT pin is held active
for only one clock cycle. If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2 and then Ti, thereby
terminating the cycle. Since it is the MMU PAYV signal which triggers a physical cycle,
the rest of the system remains unaware that a cycle was even started.

The TI32082W MMU will abort a bus cycle for either of two reasons:

1. The CPU is attempting to access a logical address which is not currently
resident in physical memory. The referenced page must be brought into
physical memory from mass storage to make it accessible to the CPU.

2. The CPU is attempting to perform an access which is not allowed due to the
protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction which caused it to occur
is also aborted in such a manner that it is guaranteed to be reexecutable later. The
information that is changed irrecoverably by such a partly executed instruction does
not affect its reexecution.

The Abort Interrupt. Ubon aborting an instruction, the CPU immediately performs an
interrupt through the ABT vector in the Interrupt Table. The Return Address pushed
on the Interrupt Stack is the address of the aborted instruction, such that a Return
from Trap (RETT) instruction will automatically retry it.

The one exception to this sequence occurs if the aborted bus cycle was an instruction
prefetch. If so, it is not yet certain that the aborted prefetch code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus cycle, and stops
prefetching. If the information in the instruction Queue runs out, meaning that the
instruction will actually be executed, the ABT interrupt will occur, in effect aborting
the instruction that was being fetched.

Hardware Considerations. In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules are followed by the TI32082W
MMU.

1. If FLT has not been applied to the CPU, the Abort pulse must occur during
or before Tmmu.

2. If FLT has been applied to the CPU, the Abort pulse must be applied before
the T-State in which FLT goes inactive. The CPU will not actually respond
to the Abort command until ELT is removed.
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3. The Write half of a Read-Modify-Write operand access may not be aborted.
The CPU guarantees that this will never be necessary for Memory Management
functions by applying a special RMW status (Status Code 1011) during the
Read half of the access. When the CPU presents RMW status, that cycle must
be aborted if it would be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated above, it will abort either

the instruction currently under execution or the next instruction and will act as a very
high-priority interrupt. However, the program which was running at the time is not
guaranteed recoverable.

3.2.3.6 Bus Access Control

The TI32016T CPU has the capability of relinquishing its access to the bus upon request
from a DMA device or another CPU. This capability is implemented on the HOLD (Hold
Request) and HLDA (Hold Acknowledge) pins. By asserting HOLD low, an external
device requests access to the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set ADO-AD15, A16-A23, ADS,
DDIN,and HBE pins to the 3-state condition. To return control of the bus to the CPU,
the device sets HOLD inactive, and the CPU acknowledges return of the bus by setting
HLDA inactive.

How quickly the CPU releases the bus depends on whether it is idle on the bus at
the time the HOLD request is made, as the CPU must always complete the current
bus cycle. Figure 30 shows the timing sequence when the CPU is idle. In this case,
the CPU grants the bus during the immediately following clock cycle. Figure 31 shows
the sequence if the CPU is using the bus at the time that the HOLD request is made.
If the request is made during or before the clock cycle shown (two clock cycles before
T4), the CPU will release the bus during the clock cycle following T4. If the request
occurs closer to T4, the CPU may already have decided to initiate another bus cycle.
In that case it will not grant the bus until the next T4 state. Note that this situation
will also occur if the CPU is idle on the bus but has initiated a bus cycle internally.

In Memory Managed systems, the HLDA signal is connected in a daisy chain through
the T132082W, such that the MMU can release the bus if it is using it.

3.2.3.7 Instruction Status
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In addition to the four bits of Bus Cycle Status (STO-ST3), the TI32016T CPU also
presents Instruction Status information on three separate pins. These pins differ from
STO-ST3 in that they are synchronous to the CPU’s internal instruction execution
section rather than to its bus interface section.

PFS (Program Flow Status) is pulsed low as each instruction begins execution. It is
intended for debugging purposes, and is used that way by the TI32082W MMU.

U/§originates from the U bit of the Processor Status Register, and indicates whether

the CPU is currently running in User or Operating System mode. It is sampled by the
MMU for mapping, protection, and debugging purposes. Although it is not synchronous
to bus cycles, there are guarantees on its validity during any given bus cycle.
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Figure 31. HOLD Timing, Bus Initially Not Idie

ILO (Interlocked Operation) is activated during a Set Bit Interlocked (SBITI) or Clear
Bit Interlocked (CBITI) instruction. It is made available to external bus arbitration circuitry
in order to allow these instructions to implement the semaphore primitive operations
for multiprocessor communication and resource sharing. As with the U/S pin, there
are guarantees on it is validity during the operand accesses performed by the
instructions.

3-105



w
/

CASCADE TABLE “

INTERRUPT BASE
REGISTER

10s59901doIdIN 191 0ZEIL m

4

MEMORY ‘ ]
0
CASCADE ADDR 0
- 1
" . ~
v . ” 2
CASCADE ADDR 14 3
CASCADE ADDR 15 4
L FIXED INTERRUPTS L 5
T ANDTRAPS  TpispatcH
4 VECTORED TABLE 6
e INTERRUPTS 4
- k ’
8
9
10
11-15

3.2.3.8 TI32016T Interrupt Structure

1. INT, on which maskable interrupts may be requested.

2. NMI, on which nonmaskable interrupts may be requested, and

3. RST/ABT, which may be used to abort a bus cycle and any associated
instruction. It generates an interrupt request if an instruction was aborted
(section 3.2.3.5.4).

16

VECTORED
INTERRUPTS

” 31 W

NONVECTORED

NVI INTERRUPT

NV NONMASKABLE
INTERRUPT

ABT ABORT

FPU FPU TRAP

m ILLEGAL OPERATION
TRAP
SUPERVISOR CALL

svc TRAP
DIVIDE BY ZERO

bvz TRAP

FLG FLAG TRAP

BPT BREAKPOINT TRAP

TRC TRACE TRAP
UNDEFINED

ND
v INSTRUCTION TRAP
 RESERVED “40

Figure 32. Interrupt Dispatch and Cascade Tables

In addition, there is a set of internally generated ‘“traps’’ which cause interrupt service
to be performed as a result of exceptional conditions (e.g., attempted division by zero)
or of specific instructions whose purpose is to cause a trap to occur (e.g., the Supervisor

Call instruction).

3.2.3.8.1

General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes through four major steps:

1. Adjustment of Registers. Depending on the source of the interrupt or trap,
the CPU may restore and/or adjust the contents of the Program Counter (PC),
the Processor Status Register (PSR), and the currently selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set to reflect Operating
System Mode and selection of the Interrupt Stack.

2. Saving Processor Status. The PSR copy is pushed onto the Interrupt Stack
as a 16-bit quantity.
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3. Vector Acquisition. A vector is either obtained from the Data Bus or is supplied
by default.

4. Service Call. The Vector is used as an index into the Interrupt Dispatch Table,
whose base address is taken from the CPU Interrupt Base (INTBASE) Register.
See Figure 32. A 32-bit External Procedure Call is read from the table entry,
and an External Procedure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed on the Interrupt Stack.

(PUSH)
RETURN ADDRESS > 32 BITS
(PUSH)
STATUS MODULE > 32BITS
PSR MoD INTERRUPT
STACK

o= m———————

] ]

: CASCADE TABLE :
INTBASE REGISTER 1 ! -
o
I INTERRUPT BASE DISPATCH @
TABLE ®
VECTOR <4 0 o
DESCRIPTOR (32 BITS) o
1)
1 )
)
T L2
DESCRIPTOR -
<4 16 »i¢- 16 —P ‘_cg
OFFSET MODULE 8
~ 0 ™
-

MOD REGISTER
|  ~ew moouLe

L— 3 ] MODULE TABLE ENTRY
< ]

MODULE TABLE

I
MODULE TABLE ENTRY
" 32 »

STATIC BASE POINTER m

LINK BASE POINTER

O—e— PROGRAM BASE POINTER

(RESERVED)

PROGRAM COUNTER SB REGISTER

y
——I ENTRY POINT ADDRESS | —I NEW STATIC BASE J

Figure 33. Interrupt/Trap Service Routine Calling Sequence
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This process is illustrated in Figure 33, from the viewpoint of the programmer.

Full sequences of events in processing interrupts and traps may be found in
section 3.2.3.8.7. )

PROGRAM COUNTER

(POP)
RETURN ADDRESS —————— } 32 BITS
(POP)
STATUS MODULE e ————— 32 BITS
PSR MOD INTERRUPT
. STACK
L] L]
L] L]
0
MODULE
TABLE
> MODULE TABLE ENTRY
4 —J

MODULE TABLE ENTRY

STATIC BASE POINTER |

LINK BASE POINTER
PROGRAM BASE POINTER T

(RESERVED)
PARAMETERS
n
SB REGISTER BYTES ]
r STATIC BASE ]— STACK SELECTED
IN NEWLY-
POPPED PSR.
POP AND s :
DISCARD . :

Figure 34. Return from Trap (RETTn) Instruction Flow

3.2.3.8.2 Interrupt/Trap Return

To return to an interrupted program, one of two instructions is used. The RETT (Return
from Trap) instruction (Figure 34) restores the PSR, MOD, PC, and SB registers to
their previous contents and, since traps are often used deliberately as a call mechanism
for Operating System Mode procedures, it also discards a specified number of bytes
from the original stack as surplus parameter space. RETT is used to return from any
trap or interrupt except the Maskable Interrupt. For this, the RETI (Return from interrupt)
instruction is used, which also informs any external Interrupt Control Units that interrupt
service has completed. Since interrupts are generally asynchronous external events,
RETI does not pop parameters. See Figure 35.
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Figure 35. Return from Interrupt (RETI) Instruction Flow

3.2.3.8.3 Maskable Interrupts (INT pin)

The I—I\-JTpin is a level-sensitive input. A continuous low level is allowed for generating
multiple interrupt requests. The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register | bit is set. The | bit is
automatically cleared during service of an INT, NMI, or Abort request, and is restored
to its original setting upon return from the interrupt service routine via the RETT or
RETI instruction.

The INT pin may be configured via the SETCFG instruction as either Nonvectored (CFG
Register bit | = 0) or Vectored (CFG Register bit | = 1).

Nonvectored Mode. In the nonvectored mode, an interrupt request on the INT pin will
cause an Interrupt Acknowledge bus cycle, but the CPU will ignore any value read
from the bus and use instead a default vector of zero. This mode is useful for small
systems in which hardware interrupt prioritization is unnecessary.

3-109

TI32016T Microprocessor m



10ss3201doOIN 191L0ZEIL H

3-110

DATA
- €— R1 )
. 8 —<4— IR3
—4— IR5
CONTROL . HARDWARE
>- __@¢— IR7 INTERRUPTS
S OR
- —<4— |Rg CASCADED
CONTROLLERS
GROUP ADDRESS BITS —¢ IR11
TI32016T L
” > TI3202W | o . |R13
—4— IR15
STATUS 1 ¢ >— GO/IRO‘
-4-P»— G1/IR2
s < iNT -4»— G2/IR4
INTERRUPTS,
-4-»— G3/IR6 L, CASCADED,
~4-P— G4/IR8 BIT 10
- 4»— G5/IR10
FROM = g9 — G6/IR12
ADDRESS —P—{ CS
DECODER L€-P— G7/IR14]

Figure 36. Interrupt Control Unit Connections (16 Levels)

Vectored Mode: Noncascaded Case. In the Vectored mode, the CPU uses a TI32202W
Interrupt Control Unit(ICU) to prioritize up to 16 interrupt requests. See Figure 36.
Upon receipt of an interrupt request on the INT pin, the CPU performs an “’Interrupt
Acknowledge, Master’’ bus cycle (section 3.2.3.4.2) reading a vector value from the
low-order byte of the Data Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for the proper interrupt service
procedure. The service procedure eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle, informing the ICU that it
may reprioritize any interrupt requests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it also needs to inform a Cascaded
ICU.

In a system with only one ICU (16 levels of interrupt), the vectors provided must be
in the range of O through 127; that is, they must be positive numbers in eight bits.
By providing a negative vector number, an ICU flags the interrupt source as being a
Cascaded ICU.

Vectored Mode: Cascaded Case. In order to allow up to 256 levels of interrupt, provision
is made both in the CPU and in the TI32202W ICU to transparently support cascading.
Figure 37 shows a typical cascaded configuration. Note that the Interrupt output from
the Cascaded ICU goes to an Interrupt Request input of the Master ICU, which is the
only ICU which drives the CPU INT pin.
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Figure 37. Cascaded Interrupt Control Unit Connections
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In a system which uses cascading, two tasks must be performed upon initialization:

1. For each Cascaded ICU in the system, the Master ICU must be informed of
the line number (0-15) on which it receives the cascaded requests.

2. A Cascade Table must be established in memory. The Cascade Table is located
in a Negative direction from the location indicated by the CPU Interrupt Base
(INTBASE) Register. Its entries are 32-bit addresses, pointing to the Vector
Registers of each of up to 16 Cascaded ICUs.

Figure 32 illustrates the position of the Cascade Table. To find the Cascade Table entry
for a Cascaded ICU, take its Master ICU line number (0-15) and subtract 16 from it,
giving an index in the range — 16 to — 1. Multiply this value by 4 and add the resulting
negative number to the contents of the INTBASE Register. The 32-bit entry at this
address must be set to the address of the Hardware Vector Register of the Cascaded
ICU. This is referred to as the ““Cascade Address’’.

Upon receipt of an interrupt request from a Cascaded ICU, the Master ICU interrupts
the CPU and provides the negative Cascade Table index instead of of a (positive) vector
number. The CPU, seeing the negative value, uses it as an index into the Cascade
Table and reads the Cascade Address from the referenced entry. Applying this address,
the CPU performs an ‘‘Interrupt Acknowledge, Cascaded’’ bus cycle
(section 3.2.3.4.2), reading the final vector value. This vector is interpreted by the
CPU as an unsigned byte, and can therefore be in the range of O through 255.

In returning from a Cascaded Interrupt, the service procedure executes the Return from
Interrupt (RETI) instruction, as it would for any Maskable Interrupt. The CPU performs
an ""End of Interrupt, Master’’ bus cycle,(section 3.2.3.4.2) whereupon the Master
ICU again provides the negative Cascade Table index. The CPU, seeing a negative
value, uses it to find the corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "'End of Interrupt, Cascaded’’ bus cycle, informing
the Cascaded ICU of the completion of the service routine. The byte read from the
Cascaded ICU is discarded.

4 Nonmaskable Interrupt (NMI pin)

The Nonmaskable Interrupt is triggered whenever a falling edge is detected on the
NMI pin. The CPU performs an “‘Interrupt Acknowledge’’ bus cycle when processing
of this interrupt actually begins. The Interrupt Acknowledge cycle differs from that
provided for Maskable Interrupts in that the address presented is FFFFOO1g. The vector
value used for the Nonmaskable Interrupt is taken as 1, regardless of the value read
from the bus.

The service procedure returns from the Nonmaskable Interrupt using the Return from
Trap (RETT) instruction. No special bus cycles occur on return.

For the full sequence of events in processing the Nonmaskable Interrupt, see
section 3.2.3.8.7.



3.2.3.8.5 Traps
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A trap is an internally generated interrupt request caused as a direct and immediate
result of the execution of an instruction. The Return Address pushed by any trap except
Trace (TRC) is the address of the first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are not associated with external
events.Traps recognized by the CPU are:

Trap (FPU): An exceptional condition was detected by the TI32081 Floating
Point Unit (FPU) or another coprocessor during the execution of
a coprocessor instruction. This trap is requested via the Status Word
returned as part of the coprocessor protocol (section 3.2.3.9.1).

Trap (ILL): lllegal operation. A privileged operation was attempted while the
CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was executed.

Trap (DVZ): An attempt was made to divide an integer by zero. (The FPU trap
is used for floating-point division by zero.)

Trap (FLG): The FLAG instruction detected a ‘“1’' in the CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was executed.

Trap (TRC): The instruction just completed is being traced.

Trap (UND): An undefined opcode was encountered by the CPU.

A special case is the Trace Trap (TRC), which is enabled by setting the T bit in the
Processor Status Register (PSR). At the beginning of each instruction, the T bit is copied
into the PSR P ("“Trace Pending’’) bit. If the P bit is set at the end of an instruction,
then the trace Trap is activated. If any other trap or interrupt request is made during
a traced instruction, its entire service procedure is allowed to complete before the Trace
Trap occurs. Each interrupt and trap sequence handles the P bit for proper tracing,
guaranteeing one and only one Trace Trap per instruction, and guaranteeing that the
Return Address pushed during a Trace Trap is always the address of the next instruction
to be traced.

6 Prioritization

The TI32016T CPU internally prioritizes simultaneous interrupt and trap requests as
follows:

. Traps other than Trace (Highest priority)
. Abort

. Non-Maskable Interrupt

. Maskable interrupts

. Trace Trap (Lowest priority)

O P WN =

7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of interrupt and trap service
seguences, a single sequence called ‘‘service’’ is defined in Table 6. Upon detecting
any interrupt request or trap condition, the CPU first performs a sequence dependent
upon the type of interrupt or trap. This sequence will include pushing the Processor
Status Register and establishing a Vector and a Return Address. The CPU then performs
the Service sequence.
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Maskab

le/Nonmaskable Interrupt Sequence. This sequence is performed by the CPU

when the NMI pin receives a falling edge, or the INT pin becomes active with the PSR
| bit set. The interrupt sequence begins either at the next instruction boundary or, in
the case of String instructions, at the next interruptable point during its execution

1.

8
9

If a String instruction was interrupted and not yet completed:
a. Clear the Processor Status Register P Bit.
b. Set “’Return Address’’ to the address of the first byte of the interrupted
instruction. Otherwise, set ‘‘Return Address’’ to the address of the next
instruction.

. Copy the Processor Status Register (PSR) into a temporary register, then clear

PSR bits S, U, T, P, and .

. If interrupt is Nonmaskable:

a. Read a byte from FFFFOO, applying Status Code 0100 (Interrupt
Acknowledge, Master). Discard the byte read.

b. Set ““Vector’’ to 1.

c. Go to Step 8.

. If the interrupt is Nonvectored:

a. Read a byte from address FFFFOO4g, applying Status Code 0100
(Interrupt Acknowledge, Master (section 3.2.3.4.2). Discard the byte
read. '

b. Set “Vector’’ to O.

c. Go to Step 8.

. Here the interrupt is Vectored. Read ‘‘Byte’’ from address FFFEOQO+g, applying

Status Code 0100 (Interrupt Acknowledge, Master (section 3.2.3.4.2).

. If “'Byte’’ greater than or equal to O, then set ‘*Vector’’' to ‘‘Byte’’ and go

to Step 8.

. If “’Byte’’ is in the range — 16 through —1, then the interrupt source is

Cascaded. (More negative values are reserved for future use). Perform the
following:
a. Read the 32-bit Cascade Address from memory. The address is
calculated as INTBASE + 4 x Byte.
b. Read "Vector'’ applying the Cascade Address just read and Status Code
0101 (Interrupt Acknowledge) (section 3.2.3.4.2).
. Push the PSR copy (from Step 2) onto the Interrupt Stack as a 16-bit value.
. Perform Service (Vector, Return Address), Table 6.

Trap Sequence: Traps other than Trace.

1

2

3114

. Restore the currently selected Stack Pointer and the Processor Status Register

to their original values at the start of the trapped instruction.
. Set ""Vector’’ to the value corresponding to the trap type:

FPU: Vector =

ILL: Vector =

SVC: Vector

DVZ: Vector =

FLG: Vector =

BPT: Vector =

UND: Vector =

Il

20N~ W



6.

. Copy the Processor Status Register (PSR) into a temporary register, then clear

PSR bits S, U, P, and T.

. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
. Set ""Return Address’’ to the address of the first byte of the trapped

instruction.
Perform Service (Vector, Return Address), Table 6.

Trace Trap Sequence

. In the Processor Status Register (PSR), clear the P bit.

. Copy the PSR into a temporary register, then clear PSR bits S, U, and T.
. Push the PSR copy onto the Interrupt Stack as a 16-bit value.

. Set ""Vector'’ to 9.

Set ‘‘Return Address’’ to the address of the next instruction.

. Perform Service (Vector, Return Address), Table 6.

Abort Sequence

—_

o oA WN

. Restore the currently selected Stack Pointer to its original contents at the

beginning of the aborted instruction.
. Clear the PSR P bit.
. Copy the PSR into a temporary register, then clear PSR bits S, U, T, and |.

. Push the PSR copy onto the Interrupt Stack as a 16-bit value.

Set “Vector’' to 2.
Set 'Return Address’’ to the address of the first byte of the aborted
instruction.

. Perform Service (Vector, Return Address), Table 6.

Table 6. Service Sequence
Invoked during all interrupt/trap sequences

Service {Vector, Return Address):

1

2)
3)

4)

5)
6)

7)

Read the 32-bit External Procedure Descriptor from the Interrupt Dispatch Table:
address is Vector*4 + INTBASE Register contents.

Move the Module field of the Descriptor into the MOD Register.

Read the new Static Base pointer from the memory address contained in MOD, placing
it into the SB Register.

Read the Program Base pointer from memory address MOD + 8, and add to it the Offset
field from the Descriptor, placing the result in the Program Counter.

Flush Queue: Non-sequentially fetch first instructin of Interrupt Routine.

Push MOD Register onto the Interrupt Stack as a 16-bit value. (The PSR has already
been pushed as a 16-bit value.)

Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

3.2.3.9 Coprocessor Instructions

The TI32016T CPU recognizes three groups of instructions as being executable by
external coprocessors:

Floating-Point Instruction Set
Memory Management Instruction Set
Application-Specific Coprocessor Instruction Set
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Each Coprocessor Instruction Set is validated by a bit in the Configuration Register
(section 3.2.1.3). Any coprocessor instruction which does not have its corresponding
Configuration Register bit will trap as undefined, without any coprocessor
communication attempted by the CPU. This allows software simulation of a nonexisting
coprocessor.

1 Coprocessor Protocol

Coprocessor instructions have 3-byte Basic Instruction field, consisting of an ID Byte
followed by an Operation Word. The ID Byte has three functions:

1. It identifies the instruction as being a coprocessor instruction.
2. It specifies which coprocessor will execute it.
3. It determines the format of the following Operation Word of the instruction.

Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in
Table 7. While applying Status Code 1111 (Broadcast ID) (section 3.2.3.4.2) the CPU
transfers the ID Byte on the least significant byte of the Data Bus (ADO-D7). All
coprocessors input this byte and decode it. The coprocessor selected by the ID Byte
is activated, and from this point the CPU is communicating only with it. If any other
coprocessor protocol was in progress (e.g., an aborted coprocessor instruction), this
transfer cancels it.

Table 7. Coprocessor Protocol

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

STEP STATUS ACTION
1 ID CPU Send ID Byte.
2 oP CPU Sends Operation Word.
3 OP CPU Sends Required Operands.
4 - Coprocessor Starts Execution. CPU Pre-Fetches.
5 - Coprocessor Pulses SPC low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Results (If Any).

The CPU next sends the Operation Word while applying Status Code 1101 (Transfer
Coprocessor Operand) (section 3.2.3.4.2). Upon receiving it, the coprocessor decodes
it, and at this point the CPU and the coprocessor are aware of the number of operands
to be transferred and their sizes. The Operation Word is swapped on the Data Bus;
that is, bits O-7 appear on pins AD8-AD15 and bits 8-15 appear on pins ADO-AD7.

Using the Addressing Mode fields within the Operation Word, the CPU starts fetching
operands and issuing them to the coprocessor. To do so, it references any Addressing
Mode extensions which may be appended to the coprocessor instruction. Since the
CPU is solely responsible for memory accesses, these extensions are not sent to the
coprocessor.The Status Code applied is 1101 (Transfer Coprocessor Operand)
(section 3.2.3.4.2).
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After the CPU has issued the last operand, the coprocessor starts the actual execution
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To
allow for this and for the address strap translation function, AT/SPC is normally held
high only by a pull-up device of approximately 5 kQ inside the CPU.

While the coprecessor is executing the instruction, the CPU is free to prefetch
instructions into its queue. If it fills the queue before the coprocessor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for Coprocessor)
(section 3.2.3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to read a Status Word from the
coprocessor, applying Status Code 1110 (Read Coprocessor Status)
(section 3.2.3.4.2). This word has the format shown in Figure 38. If the Q bit (*’Quit"’,
Bit 0) is set, this indicates that an error has been detected by the coprocessor. The
CPU will not continue the protocol, but will immediately trap through the FPU vector
in the Interrupt Table. If the instruction being performed is CMPf and the Q bit is not
set, the CPU loads Processor Status Register (PSR) bits N, Z, and L from the
corresponding bits in the Status Word. The TI32081 FPU always sets the L bit to zero.

The last step in the protocol is for the CPU to read a result, if any, and transfer it to
the destination. The Read cycles from the coprocessor Processor are performed by
the CPU while applying Status Code 1101 (Transfer Coprocessor Operand)
(section 3.2.3.4.2).

An exception to the protocol above is the LMR (Load Memory Management Register)
instruction, and a corresponding Application-Specific Coprocessor instruction (LCR:
Load ACU Register). In executing these instructions, the protocol ends after the CPU
has issued the last operand. The CPU does not wait for an acknowledgment from the
coprocessor, and it does not read status.

2 Floating Point Instructions

Table 8 gives the protocols followed for each Floating Point instruction. The instructions
are referenced by their mnemonics. For the bit encodings of each instruction, see the
Appendix.

The Operand Class Columns give the Access Class for each general operand, defining
how the addressing modes are interpreted (see 7/32000 Programmer’s Reference
Manual).

The Operand Issued Columns show the sizes of the operands issued to the Floating
Point Unit by the CPU:
“D"" indicates a 32-bit double word.
"I’ indicates that the instruction specifies an integer size for the operand
(B = Byte, W = Word, D = Double Word).
"t indicates that the instruction specifies a floating-point size for the operand

(F = 32-bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the size of any returned value
and where the CPU places it. The PSR Bits Affected column indicates which PSR bits,
if any, are updated from the Coprocessor Status Word (Figure 38).
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Table 8. Floating-Point Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC ¢y ass CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.
ADDf read.f rmw.f f f f to Op. 2 none
SuBf read.f rmw.f f f f to Op. 2 none
MULf read.f rmw.f f f f to Op. 2 none
DIvf read.f rmw.f f f f to Op. 2 none
MOVf read.f write.f f N/A f to Op. 2 none
ABSf read.f write.f f N/A f to Op. 2 none
NEGf read.f write. f f N/A f to Op. 2 none
CMPf read.f read.f f f N/A N,Z,L
FLOORfi read.f write.i f N/A itoOp. 2 none
TRUNCHi read.f write.i f N/A ito Op. 2 none
ROUNDfi read.f write.i f N/A i to Op. 2 none
MOVFL read.F write.L F N/A L to Op. 2 none
MOVLF read.L write.F L N/A F to Op. 2 none
MOVif read.i write.f i N/A fto Op. 2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A D to Op. 2 none
Note:

D = Double Word
i = Integer size (B, W, D) specified in mnemonic.
N‘A = Not Applicable to this instruction.

15 8 7 0

000000OOINZFOOLOQ

NEW PSR BIT VALUE(S) ,
“QUIT’": TERMINATE PROTOCOL, TRAP(FPU).

Figure 38. Coprocessor Status Word Format

Any operand indicated as being of type ‘'’ will not cause a transfer if the Register
Addressing Mode is specified. This is because the Floating-Point Registers are physically
on the Floating Point Unit and are therefore available without CPU assistance.

3.2.3.9.3 Memory Management Instructions
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Table 9 gives the protocols for memory management instructions. Encodings for these
instructions may be found in the Appendix.

In executing the RDVAL and WRVAL instructions, the CPU calculates and issues the
32-bit Effective Address of the single operand. The CPU then performs a single-byte
read cycle from that address, allowing the MMU to safely abort the instruction if the



Table 9. Memory Management Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC ¢ asS CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.
RDVALT addr N/A D N/A N/A F
WRVALT add N/A D N/A N/A F
LMRT read.D N/A D N/A N/A none
SMRT write.D N/A N/A N/A D to Op. 1 none

Note:
in the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-
byte Read cycle from that memory address. For details, see the TI32000 Programmer’s Reference Manual
and the TI132081W Memory Management Unit Data Sheet.
D = Double Word

= Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

necessary information is not currently in physical memory. Upon seeing the memory
cycle complete, the MMU continues the protocol, and returns the validation result in
the F bit of the Coprocessor Status Word.

The size of the Memory Management operand is always a 32-bit double word. For
further details of the Memory Management Instruction set, see the 7/32000
Programmer’s Reference Manual and the Appendix.

3.2.3.9.4 Application Specific Coprocessor Instructions

Provided in the TI32016T is the capability of communicating with a user-defined,
* Application-Specific’’ Coprocessor. The instruction set provided for an Application-
Specific Coprocessor defines the instruction formats, the operand classes, and the
communication protocol. Left to the user are the interpretations of the op code fields,
the programming model of the Application-Specific Coprocessor, and the actual types
of data transferred. The protocol specifies only the size of an operand, not its data type.

TI32016T Microprocessor m

Table 10 lists the relevant information for the Application-Specific Coprocessor
instruction set. The designation ‘‘c’’ is used to represent an operand which can be
a 32-bit ("'D"’) or 64'bit (*'Q’’) quantity in any format: the size is determined by the
suffix on the mnemonic. Similarly, an “'i’" indicates an integer size (Byte, Word, Double
Word) selected by the corresponding mnemonic suffix.

Any operand indicated as being of type ‘‘c’’ will not cause a transfer if the register
addressing mode is specified. It is assumed in this case that the coprocessor is already
holding the operand internally.

For the instruction encodings, see the Appendix.
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Table 10. Application-Specific Coprocessor Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS
MNEMONIC ¢ ass CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.

CCALOc read.c rmw.c c c cto Op. 2 none
CCAL1c read.c rmw.c c [ cto Op. 2 none
CCAL2c read.c rmw.c c c cto Op. 2 none
CCAL3c read.c rmw.c c c cto Op. 2 none
CMOVOc read.c write.c c N/A cto Op. 2 none
CMOVic read.c write.c c N/A cto Op. 2 none
CMOV2c read.c write.c c N/A ctoOp. 2 none
CCMPc read.c read.c c c N/A N,Z,L
CCVOci read.c write.i c N/A ito Op. 2 none
CCVici read.c write.i c N/A ito Op. 2 none
CCV2ci read.c write.i c N/A ito Op. 2 none
CCV3ci read.i write.c i N/A cto Op. 2 none
ccv4aba read.D write.Q D N/A Q to Op. 2 none
CCcvs5QDb read.Q write.D Q N/A D to Op. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A D to Op. 2 none
CATSTOT addr N/A D N/A N/A F
CATST1 addr N/A D N/A N/A F
LCRT read.D N/A D N/A N/A none
SCRT write.D N/A N/A N/A D to Op. 1 none

NOTE:

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

¢ = ACU size (D:32 bits or Q:64 bits) specified in mnemonic.

t = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.
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3.3 TI32081W Floating Point Unit (FPU)
3.3.1 Operand Formats

The T132081W FPU operates on two floating-point data types: single precision (32 bits)
and double precision (64 bits). Floating-point instruction mnemonics use the suffix F
(floating) to select the single-precision data type, and the suffix L (long floating) to
select the double-precision data type.

A floating-point number is divided into three fields, as shown in Figure 1.

Single Precision

31 30 23 22 0
sl ¢ | ; ]
1 8 23
Double Precision
63 62 52 51 0
Ll e | ; J
1 11 52

Figure 1. Floating-Point Operand Formats

The F field is the fractional portion of the represented number. In normalized numbers,
the binary point is assumed to be immediately to the left of the most significant bit
of the F field, with an implied 1 bit to the left of the binary point. Thus, the F field
represents values from 1.0 (inclusive) to 2.0 (exclusive) as shown in Table 1.

Table 1. Sample F Fields

F FIELD BINARY VALUE DECIMAL VALUE

000...0 1.000...0 1.000...0
010...0 1.010...0 1.250...0
100...0 1.100...0 1.500...0
110...0 1.110...0 1.750...0
1
Implied Bit

The E field is an unsigned number that gives the binary exponent of the represented
number. The value in the E field is biased; that is, a constant bias value must be
subtracted from the E field value in order to obtain the true exponent. The bias value
is 011. . .112, which is either the value 127 (single precision) or 1023 (double
precision). Thus, the true exponent can be either positive or negative, as shown in
Table 2.
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Two forms of the E field represent special values, and are not available for use as
exponents. The value 11...112 represents a value that is a reserved operand. The
value 00. . .00 represents the number zero if the F field is also all zeros, otherwise
the represented value is a reserved operand.

The S bit indicates the sign of the operand: O for positive and 1 for negative. Floating-
point numbers are in sign-magnitude form, such that only the S bit is complemented
in order to change the sign of the represented number.

Table 2. Sample E Fields

E FIELD FFIELD REPRESENTED VALUE
011..110  100...0 1.5 x 21 =0.75
011...111  100...0 1.5 x 20 = 1.50
100...000  100...0 1.5 x 21 = 3.00

3.3.1.1 Normalized Numbers

Normalized numbers are numbers that can be expressed as floating-point operands,
as previously described, where the E field is neither all zeros nor all ones.

The value of a normalized number can be derived by the formula:
(=1)S x 2(E-Bias) x 1.F

The range of normalized numbers is given in Table 3.

Table 3. Normalized Number Ranges

SINGLE PRECISION DOUBLE PRECISION
Most Positive 2127 x (2 - 2-23) 21023 » (2 - 2-52)

= 3.40282346 x 1038 = 1.7976931348623157 x 10308
Least Positive 2~ 126 2-1022

= 1.17549436 x 10—38 = 2.2250738585072014 x 10308
Least Negative —-(2-126) —(2-1022

= —1.17549436 x 10-38 = -2.2250738585072014 x 10— 308
Most Negative -2127 x (2 - 2-23) -21023 x (2 - 2-52

= —-3.40282346 x 1038 = -1.7976931348623157 x 10308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating
rounding and conversion algorithms.

3.3.1.2 Zero

There are two representations for zeros: positive and negative. Positive zero has all-
zero F and E fields, and the S bit is zero. Negative zero also has all-zero F and E fields,
but its S bit is one.
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3.3.1.3 Reserved Operands

3.3.1.4

The proposed IEEE Standard for Binary Floating-Point Arithmetic (Task P754) provides
for certain exceptional forms of floating-point operands. The FPU treats these forms
as reserved operands. The reserved operands are:

Positive and negative infinity
Not-a-Number (NaN) values
Denormalized numbers

Both infinity and NaN values have all ones in their E fields. Denormalized numbers have
all zeros in their E fields and nonzero values in their F fields.

The FPU causes an invalid operation trap if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU does not generate reserved
operands as results.

Integers

In addition to performing floating-point arithmetic, the FPU performs conversions
between integer and floating-point data types. Integers are accepted and generated
by the FPU as two’s complement values of byte (8 bits), word (16 bits), or double
word (32 bits) length.

3.3.1.5 Memory Representations

3.3.2

The FPU does not directly access memory. However, it is cooperatively involved in
the execution of a set of two-address instructions with its TI32000 CPU. The CPU
determines the representation of operands in memory.

In the TI32000 microprocesor family, operands are stored in memory with the least
significant byte at the lowest byte address. The only exception to this rule is the
immediate addressing mode, where the operand is held (within the instruction format)
with the most significant byte at the lowest address.

Programming Model

The TI32000 architecture includes nine registers that are implemented on the
TI32081W FPU (Figure 2).

DEDICATED DATA
*—32—p -——32—p

1 FSR ] ro}

F1]

F2 ]
F3 |
Fa

F5 |
F6 |
F7]

Figure 2. Register Set

-d-d—_—J-J—J
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3.3.2.1

3.3.2.2.
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Floating-

Point Registers

There are eight registers (FO-F7) on the FPU for providing high-speed access to floating-
point operands. Each is 32 bits long. A floating-point register is referenced whenever
a floating-point instruction uses the Register Addressing mode for a floating-point
operand. All other register mode usages (i.e., integer operands) refer to the address-
data registers (RO-R7) on the CPU. When the Register Addressing mode is specified
for a double-precision (64-bit) operand, a pair of registers holds the operand. The
programmer must specify the even register of the pair. The even register contains the
least significant half of the operand and the next consecutive register contains the
most significant half.

3.3.2.2 Floating-Point Status Register (FSR)

The Floating-point Status Register (FSR) selects operating modes and records any
exceptinal conditions encountered during execution of a floating-point operation.
Figure 3 shows the format of the FSR.

31

16 15 9 8 7 6 5 4 3 2 1 0

RESERVED

SWF RM IF JIEN § UF JUEN TT
| i | - | | | 1 L

LN

Figure 3. The Floating-Point Status Register

1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes. The definitions of the FSR
mode control bits are as follows:

Rounding Mode (RM). Bits 7 and 8. This field selects the rounding method.
Floating-point results are rounded whenever they cannot be exactly represented.
The rounding modes are:

00

01

10

11

Round to the nearest value. The value that is nearest to the exact result
is returned. If the value is exactly halfway between the two nearest
values the even value (LSB = 0) is returned.

Round towards zero. The nearest value that is closer to zero or equal
to the exact result is returned.

Round toward positive infinity. The nearest value that is greater than
or equal to the exact result is returned.

Round toward negative infinity. The nearest value that is less than or
equal to the exact result is returned.

Underflow Trap Enable (UEN). Bit 3. If this bit is set, the FPU requests a trap
whenever a result is too small in absolute value to be represented as a normalized
number. If it is not set, any underflow condition returns a result of exactly zero.

Inexact Result Trap Enable (IEN). Bit 5. If this bit is set, the FPU requests a trap
whenever the result of an operation cannot be represented exactly in the operand
format of the destination. If it is not set, the result is rounded according to the
selected rounding mode.




3.3.2.2.2 FSR Status Fields

The FSR status fields record exceptional conditions encountered during floating-point
data processing. The definitions of the FSR status bits are as follows:

Trap Type (TT). Bits 0-2. This 3-bit field records any exceptional condition
detected by a floating-point instruction. The TT field is loaded with zero whenever
any floating-point instruction except LFSR or SFSR completes without
encountering an exceptinal condition. It is also set to zero by a hardware reset
or by writing zero into it with the Load FSR (LFSR) instuction. Underflow and
Inexact Result are always reported in the TT field, regardless of the settings of
the UEN and IEN bits.

000
001

010

011

100

101

110

11

No exceptional condition occurred.

Underflow. A nonzero floating-point result is too small in magnitude to
be represented as a normalized floating-point number in the format of
the destination operand. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set. If the UEN bit
is not set, a result of Positive Zero is produced, and no trap occurs.

Overflow. A result (either floating-point or integer) of a floating-point
instruction is too great in magnitude to be held in the format of the
destination operand. Note that rounding, as well as calculations, can
cause this condition.

Divide by zero. An attempt was made to divide a nonzero floating-point
number by zero. Dividing zero by zero is considered an Invalid Operation
instead (below).

Illegal Instruction. Two undefined floating-point instruction forms are
detected by the FPU as being illegal. The binary formats causing this
trap are:
xxxXXxxxxx0011xx10111110
xxxxxxxxxx1001xx10111110

Invalid Operation. One of the floating-point operands of a floating-point
instruction is a Reserved operand, or an attempt has been made to divide
zero by zero using the DIVf instruction.

Inexact Result. The result (either floating-point or integer) of a floating-
point instruction cannot be represented exactly in the format of the
destination operand, and a rounding step must alter it to fit. This
condition is always reported in the TT field and IF bit unless any other
exceptional condition has occurred in the same instruction. In this case,
the TT field always contains the code for the other exception and the
IF bit is not altered. A trap is caused by this condition only if the IEN
bit is set; otherwise the result is rounded and delivered, and no trap
occurs.

(Reserved for future use.)
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Underflow Flag (UF). Bit 4. This bit is set by the FPU whenever a result is too
small in absolute value to be represented as a normalized number. Its function
is not affected by the state of the UEN bit. The UF bit is cleared only by writing
a zero into it with the LFSR instruction or by a hardware reset.

Inexact-Result Flag (IF). Bit 6. This bit is set by the FPU whenever the result
of an operation must be rounded to fit within the destination format. This situation
applies to both floating-point and integer destinations. The IF bit is set only if
no other error has occurred. It is cleared only by writing a zero into it with the
LFSR instruction or by a hardware reset.

3.3.2.2.3 FSR Software Field (SWF)

3.3.3

. 3.3.3.1
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Bits 9-15 of the FSR hold and display any information written to them (using the LFSR
and SFSR instruction), but are not otherwise used by the FPU hardware. They are
reserved for use with TI32000 floating-point software.

Instruction Set
General Instruction Format

Figure 4 shows the general format of a TI32000 instruction. The basic instruction is
one to three bytes long and contains the opcode and up to two 5-bit general addressing
mode gen fields. Following the basic instruction field is a set of optional extensions,
which may appear depending on the instruction and the addressing modes selected.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A A
4 \/ —
| |
DISP2 | DISP 1 GEN GEN
IMPLIED | 1 ‘g?f: 'g'eTE"E‘ aoor | aoor ! OPCODE
OPERAND(S) A . mooe | mope
IMM2 IMM1 1 b2
| |
7 Y Y

Figure 4. General Instruction Format

The only form of extension issued to the TI32081W FPU is an immediate operand.
Other extensions are used only by the CPU to reference memory operands needed
by the FPU.

Index bytes appear when either or both gen fields specify scaled index. In this case,
the gen field specifies only the scale factor (1, 2, 4, or 8) and the index byte specifies
which address-data register to use as the index, and which addressing mode calculation
to perform before indexing. See Figure 5.



GEN. ADDR. MODE REG. NO.

Figure 5. Index Byte Format

Index bytes are followed by any displacements (addressing constants) or immediate
values associated with the selected addressing modes. Each Displacement/Immediate
(Disp/Imm) field may contain one or two displacements, or one immediate value. The
size of a disp field is encoded within the top bits of that field, as shown in Figure 6,
with the remaining bits interpreted as a signed (two’s complement) value. The size
of an immediate value is determined from the opcode field. Both Disp and /mm fields
are stored most significant byte first.

Some non-FPU instructions require additional, ‘‘implied’” immediates and/or
displacements, apart from those associated with addressing modes. Any such
extensions appear at the end of the instruction, in the order that they appear within
the list of operands in the instruction definition.

7 0

0 SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE -64 TO +63

7 0

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)
Figure 6. Displacement Encodings

3.3.3.2 Addressing Modes

T132000 CPUs generally access an operand by calculating its effective address based
on information available when the operand is to be accessed. The method to be used
in performing this calculation is specified by the programmer as an ‘’addressing mode’’.

TI132000 addressing modes are designed to optimally support high-level language
accesses to variables. In nearly all cases, a variable access requires only one addressing
mode within the instruction which acts upon that variable. Extraneous data movement
is therefore minimized.
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TI32000 Addressing modes fall into nine basic types.

1. Register: In floating-point instructions, these addressing modes refer to a
floating-point register (FO-F7) if the operand is of a floating-point type.
Otherwise, a CPU address-data register (RO-R7) is referenced.

2. Register Relative: A CPU address-data register contains an address to which
is added a displacement value from the instruction, yielding the effective
address of the operand in memory.

3. Memory Space: Identical to Register Relative, except that the register used
is one of the dedicated CPU registers PC, SP, SB, or FP. These registers point
to data areas generally needed by high-level languages.

4. Memory Relative: A pointer variable is found within the memory space pointed
to by the CPU’s SP, SB, or FP register. A displacement is added to that pointer
to generate the effective address of the operand.

5. Immediate: The operand is encoded within the instruction. This addressing
mode is not allowed if the operand is to be written. Floating-point operands
as well as integer operands may be specified using immediate mode.

6. Absolute: The address of the operand is specified by a Disp field in the
instruction.

7. External: A pointer value is read from a specified entry of the current link table.
To this pointer value is added a displacement, yielding the effective address
of the operand.

8. Top-of-Stack: The currently selected CPU stack pointer (SPO or SP1) specifies
the location of the operand. The operand is pushed or popped, depending on
whether it is written or read.

9. Scaled Index: Although encoded as an addressing mode, scaled indexing is
an option on any addressing mode except immediate or another scaled index.
It has the effect of calculating an effective address, then multiplying any
address-data register by 1, 2, 4, or 8 and adding it into the total, yielding
the final effective address of the operand.

Table 4 provides a brief summary of the addressing modes. For a complete description
of their actions refer to the 7/32000 Programmer’s Reference Manual.

3.3.3.3 Floating-Point Instruction Set
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The TI32081W FPU instructions occupy formats 9 and 11 of the TI32000 instruction
set (Figure 7). A list of all TI32000 instruction formats is found in the Appendix of
this data manual.

Certain notations in the following instruction description tables serve to relate the
assembly language form of each instruction to its binary format in Figure 7.

The Format column indicates which of the two formats in Figure 7 represents each
instruction.

The Op column indicates the binary pattern for the field called ““op’’ in the applicable
format.

The Instruction column gives the form of each instruction as it apears in assembly
language. The form consists of an instruction mnemonic in upper case, with one or
more suffixes (i or f) indicating data types, followed by a list of operands (gen1, gen2).



ENCODING
Register
00000

00001
00010
00011
00100
00101
00110
00111
Register

Relative
01000

01001
01010
01011
01100
01101
01110
01111
Memory

Space
11000

11001

11010
11011
Memory

Relative
10000

10001
10010

Immediate
10100

Absolute
10101

Table 4. TI3

MODE

Register O

Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register O relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory
Stack memory

Static memory
Program memory

Frame memory
relative

Stack memory relative
Static memory
relative

Immediate

Absolute

2000 Family Addressing Modes

ASSEMBLER SYNTAX EFFECTIVE ADDRESS

RO or FO None: Operand is in the
specified register.

R1 or F1

R2 or F2

R3 or F3

R4 or F4

R5 or F5

R6 or F6

R7 or F7

disp(RO) Disp + Register.

disp(R1)

disp(R2)

disp(R3)

disp(R4)

disp(R5)

disp(R6)

disp(R7)

disp(FP) Disp + Register; ‘'SP’ is either

disp(SP) SPO or SP1, as selected in
PSR.

disp(SB)

* +disp

disp2(disp1(FP)) Disp2 + Pointer; Pointer found

disp2(disp1(SP)) at address Disp1 -+ Register.

disp2(disp1(SB)) ""SP’" is either SPO or SP1, as
selected in PSR.

value None: Operand is issued from
CPU instruction queue.

@disp Disp.
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ENCODING

External
10110

Table 4. TI32000 Family Addressing Modes

MODE ASSEMBLER SYNTAX

External

Top of Stack

10111

Scaled Index

11100
11101
11110
IRRRR

10011

EXT (disp1) + disp2

EFFECTIVE ADDRESS

Disp2 + Pointer; Pointer is
found at Link Table Entry
number Disp1.

Top of Stack TOS Top of current stack, using
either User or Interrupt Stack
Pointer, as selected in PSR.
Automatic Push/Pop included.
Index, bytes mode|Rn:B| Mode + Rn.
Index, words mode(Rn:W| Mode + 2 x Rn.
Index, double words mode|Rn:D| Mode + 4 x Rn.
Index, quad words mode[Rn:Q] Mode + 8 x Rn.
“Mode’’ and ‘‘n’’ are contained
within the Index Byte.
(Reserved for Future
Use)
Format 9
23 16[15 817 V]
UL LB LR L L
genl gen2 op f i 001 11110
\ / \ /]
\/ \/
OPERATION WORD ID BYTE
Format 11
23 16|15 8|7 0
trTrryrprrurrypuriri rFrrrery
genl gen2 op offjr o1 1 1110

/]

\ 4
OPERATION WORD

Ve
ID BYTE

Figure 7. Floating-Point Instruction Formats

An i suffix on an instruction mnemonic indictes a choice of integer data types. This
choice affects the binary pattern in the / field of the corresponding instruction format
as follows:

Suffix i
B
w
D

Data Type
Byte

Word

Double Word

/ Field
00
01
11



3.3.3.1.

3.3.3.1.

An f suffix on an instruction mnemonic indicates a choice of floating-point data types.
This choice affects the setting of the f bit of the corresponding instruction format as
follows:

Suffix f
F
L

Data Type f Bit
Single Precision 1
Double Precision (Long) 0

An operand designation (genl1, gen2) indicates a choice of addressing mode
expressions. This choice affects the binary pattern in the corresponding gen1 or gen2
field of the instruction format. For the options available and their patterns, refer to

Table 4.

Further details of the exact operations performed by each instruction are found in the

TI32000 Programmer’s Reference Manual.

1 Movement and Conversion

The following instructions move the gen1 operand to the gen2 operand, leaving the

gen1 operand intact:

Format

11
9

9

Op Instruction
0001 MOVf genl, gen2
010 MOVLFT gen1, gen2
011 MOVFLY gen1, gen2
000 MOVif genl, gen2
100 ROUNDfi gen1, gen2
101 TRUNCfi gen1, gen2
111 FLOORfi gen1, gen2

Description
Move without conversion
Move, converting from double
precision to single precision.
Move, converting from single
precision to double precision.
Move, converting from any integer to
any floating-point type.
Move, converting from floating-point
to the nearest integer.
Move, converting from floating-point
to the nearest integer closer to zero.
Move, converting from floating-point
to the largest integer less than or
equal to its value.

TThe MOVLF instruction f bit must be 1 and the / field must be 10.
*The MOVFL instruction f bit must be O and the / field must be 11.

2 Arithmetic Operations

The following instructions perform floating-point arithmetic operations on the gen1
and gen2 operands, leaving the result in the gen2 operand:

Format

11
11
M
11
11
11

Op
0000
0100
1100
1000
0101
1101

Instruction

ADDf
SuBf
MULf
DIvf

NEGf
ABSf

genl, gen2
genl, gen2
genl, gen2
gen1, gen2
genl, gen2
gen?l, gen2

Description
Add gen1 to gen2.
Subtract gen1 from gen2.
Multiply gen1 by gen2.
Divide gen2 by gen1.
Move negative of gen1 to gen2.
Move absolute value of genl to gen2.
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3.3.3.1.3 Comparison

The compare instruction compares two floating-point values, sending the result to the
CPU Processor Status Register (PSR) Z and N bits for use as condition codes. The
Z bit is set if the gen1 and gen2 operands are equal; it is cleared otherwise. The N
bit is set if the gen1 operand is greater than the gen2 operand; it is cleared otherwise.
The CPU PSR L bitis unconditionally cleared. Positive and negative zero are considered
equal.

Format Op Instruction Description
11 0010 CMPf genl, gen2 Compare genl to gen2.

3.3.3.1.4 Floating-Point Status Register Access

w
w
»

3.3.5

3.3.5.1

The following instructions load and store the FSR as a 32-bit integer.

Format Op Instruction Description

9 001 LFSR gen1 Load FSR

9 110 SFSR gen2 Store FSR
Traps

Upon detecting an exceptional condition in executing a floating-point instruction, the
TI32081W FPU requests a trap by setting the Q bit of the status word transferred
during the coprocesor protocol. The CPU responds by performing a trap using a default
vector value of 3. Refer to the 7/32000 Programmer’s Reference Manual and the
applicable CPU section in this data manual for trap service details.

A trapped floating-point instruction returns no result, and does not affect the CPU
PSR. The FPU displays the reason for the trap in the Trap Type (77) field of the FSR.

Functional Operation
Power and Grounding

The TI32081W requires a single 5-V power supply on pin 24 (Vcc). Ground
connections are made on two terminal pins GNDL and GNDB. The GNDL (Logic Ground)
terminal pin 12 is the common for on-chip logic. The GNDB (Buffer Ground) terminal
pin 13 is the common for the output drivers. For optimum noise immunity, it is
recommended that GNDL be attached through a singie conductor directly to GNDB,
and that all other ground connections also be made only to GNDB, as shown in Figure 8.

3.3.5.2 Clocking

The TI32081W FPU requires a single-phase TTL clock input on its CLK pin (pin 14).
When the FPU is connected to a TI32000 CPU, the CLK signal is provided from the
CTTL pin of the TI32201 Timing Control Unit.

3.3.5.3 Resetting
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The RST pin serves as a reset for on-chip logic. The FPU may be reset at any time
by pulling the RST pin low for at least 64 clock cycles. Upon detecting a reset, the
FPU terminates instruction processing, resets its internal logic, and clears the FSR to
all zeros.



24
Vee Y

TI32081W
FPU

13) OTHER
GNDL GNDB GROUND

CONNECTIONS

(12)

Figure 8. Recommended Supply Connections

On application of power, RST must be held low for at least 50 us after V¢ is stable.
This insures that all on-chip voltages are completely stable before operation. See

Figures 9 and 10.

P |
2 |
¢—— =50 us—————————.‘

<G
4.5V i
Vee |
|
|
[ ‘
|
CLK |
! |
| 264 CLOCK
| e CYCLES »
RST |
|
|

Figure 9. Power-On Reset Requirements
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Figure 10. General Reset Timing
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3.3.5.4 Bus Operation

Instructions and operands are passed to the TI32081W FPU with coprocessor bus
cycles. Each bus cycle transfers either one byte (8 bits) or one word (16 bits) to or
from the FPU. During all bus cycles, the SPC line is driven by the CPU as an active-
low data strobe, and the FPU monitors pins STO and ST1 to keep track of the sequence
(protocol) established for the instruction being executed. This is especially necessary
in a virtual memory environment, allowing the FPU to retry an aborted instruction.

3.3.5.4.1 Bus Cycles
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A bus cycle is initiated by the CPU, which asserts the proper status on STO and ST1
and pulses SPC low. STO and ST1 are sampled by the FPU on the leading (falling)
edge of the SPC pulse. If the transfer is from the FPU (a coprocessor read cycle), the
FPU asserts data on the data bus for the duration of the SPC pulse. If the transfer
is to the FPU (a coprocessor write cycle), the FPU latches data from the data bus on
the trailing (rising) edge of the SPC pulse. Figures 11 and 12 illustrate these sequences.

The direction of the transfer and role of the bidirectional SPC line are determined by
the instruction protocol being performed. SPC is always driven by the CPU during
coprocessor bus cycles. Protocol sequences for each instruction are given in
section 3.3.5.5.

T(NOTE 1)
s°C 3k /

DO0-D15 —————————.—-—( VALID FROM FPU )—.——

NOTE 1: FPU samples CPU status here.

Figure 11. Coprocessor Read Cycle

T(NOTE 1
c X X
l(NOTE 2)

DO0-D15 o= o= eum cme cmm —-( VALID FROM CPU )- —

NOTE 1: FPU samples CPU status here.
NOTE 2: FPU samples data bus here.

Figure 12. Coprocessor Write Cycle



3.3.5.4.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. A 1-byte operand is transferred
on the least significant byte of the data bus (DO-D7). A 2-byte operand is transferred
on the entire bus. A 4-byte or 8-byte operand is transferred in consecutive bus cycles,
least significant word first.

3.3.5.5 Instruction Protocols
3.3.5.5.1 General Protocol Sequence

Coprocessor instructions have a three-byte basic instruction field, consisting of an
ID byte followed by an operation word. See Figure 7 for FPU instruction encodings.
The ID byte has three functions:

1. It identifies the instruction to the CPU as being a coprocessor-instruction.
2. It specifies which coprocessor will execute it.
3. It determines the format of the following operation word of the instruction.

Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in
Table 6. While applying status code 11 (broadcast ID, Table 5), the CPU transfers the
ID byte on the least significant half of the data bus (DO-D7). All coprocessors input
this byte and decode it. The coprocessor selected by the ID byte is activated, and
from this point the CPU is communicating only with it. If any other coprocessor protocol
is in progress (e.g., an aborted coprocessor instruction), this transfer cancels it.

Table 5. Bus Status Combinations

ST1 STO CPU FUNCTION
0 0 (Reserved)
0] 1 Transferring Operation
Word or Operand
1 0 Reading Status Word
1 1 Broadcasting ID Byte

Table 6. General Instruction Protocol

STEP STATUS ACTION
1 11 CPU sends ID Byte.
2 01 CPU sends Operation Word.
3 01 CPU sends required operands.
4 XX FPU starts execution.
5 XX FPU pulses SPC low.
6 10 CPU reads Status Word.
7 01 CPU reads result (if any).

The CPU next sends the operation word while applying code 01 (transfer coprocessor
operand, Table 5). Upon receiving it, the coprocessor decodes it, and at this point
both the CPU and the coprocessor are aware of the number of operands to be
transferred and their sizes. The operation word is swapped on the data bus; that is,
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bits 0-7 appear on pins D8-D15 respectively, and bits 8-15 appear on pins DO-D7,
respectively.

Using the addressing mode fields within the operation word, the CPU starts fetching
operands and issuing them to the coprocessor. To do so, it references any addressing
mode extensions which may be appended to the coprocessor instruction. Since the
CPU is solely responsible for memory accesses, these extensions are not sent to the
coprocessor. The status code applied is O1 (transfer coprocessor operand, Table b).

After the CPU has issued the last operand, the coprocessor starts the actual execution
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To
allow for this, the CPU releases the SPC signal, causing it to float. SPC must be held
high by an external pull-up resistor.

Upon receiving the pulse on SPC, the CPU uses SPC to read a status word from the
coprocessor, applying status code 10 (read coprocessor status, Table 5). This word
has the format shown in Figure 13. If the Q bit ("quit’’, bit O) is set, this indicates
that an error has been detected by the coprocessor. The CPU will not continue the
protocol, but will immediately trap through the CPU vector in the Interrupt Dispatch
Table. If the instruction being performed is CMPf and the Q bit is not set, the CPU
loads the PSR bits N, Z, and L from the corresponding bits in the status word. The
TI32081W FPU always sets the L bit to zero.

15 8 7 0

0 00O0OOOOINZOOOLOOQ

NEW PSR BIT VALUE(S)-V

“QUIT"": TERMINATE PROTOCOL, TRAP (FPU).

Figure 13. FPU Protocol Status Word Format

The last step in the protocol is for the CPU to read a result, if any, and transfer it to
the destination. The read cycles from the coprocessor are performed by the CPU while
applying status code 01 (transfer coprocessor operand, Table 5).

3.3.5.5.2 Floating-Point Protocols
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Table 7 gives the protocols followed by each floating-point instruction. The instructions
are referenced by their mnemonics. For the bit encodings of each instruction, refer
to section 3.3.3.3.

The operand class columns give the access classes for each general operand, defining
how the addressing modes are interpreted by the CPU. The operand issued columns
show the sizes of the operands issued to the FPU by the CPU. A “'D"’ indicates a 32-bit
double word. An "*i’" indicates that the instruction specifies an integer size for the
operand (B = Byte, W = Word, D = Double Word). An “‘f"' indicates that the
instruction specifies a floating-point size for the operand (F = 32-bit standard floating,
L = 64-bit long floating).



MNEMONIC

The returned value type and destination column gives the size of any value and where
the CPU places it. The PSR bits affected column indicates which PSR bits, if any, are

updated from the coprocessor status word (Figure 13).

Any operand indicated as being of type ““f'" will not cause a transfer if the register
addressing mode is specified. This is because the floating-point registers are physically
on the FPU and are therefore available without CPU assistance.

ADDf
SUBf
MULf
DIVf
MOVf
ABSf
NEGf
CMPf
FLOORfi
TRUNCHi
ROUNDfi
MOVFL
MOVLF
MOVif
LFSR
SFSR

Table 7. Floating-Point Instruction Protocols

OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2

CLASS

read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.F
read.L
read.
read.D
N/A

D = Double Word

i
f
N

= Integer size (B, W, D) specified in mnemonic.

CLASS

rmw.f
rmw . f
rmw.f
rmw.f
write.f
write.f
write.f
read.f
write.i
write.i
write.i
write.L
write.F
write.f
N/A
write.D

ISSUED

M~ T =~ —h —h —h —h —h —h —h —h ok

N/A

Floating-Point type (F,L) specified in mnemonic.
/A = Not Applicable to this instruction.

ISSUED

- = =k —n

N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

RETURNED
VALUE
TYPE AND
DEST.

f to Op.
f to Op.
f to Op.
f to Op.
f to Op.
f to Op.
f to Op.

N/A
i to Op.
i to Op.
i to Op.
L to Op.
F to Op.
f to Op.

N/A
D to Op. 2

N NN DNDNDNDN

N O NN NDNN

PSR BITS
AFFECTED

none
none
none
none
none
none
none
N,Z,L
none
none
none
none
none
none
none
none
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3.4 TI32082W Memory Management Unit (MMU)

3.4.1

3.4.1.1

For purposes of address translation, memory is divided into 512-byte pages. A logical
address for the MMU is composed of two fields: a logical page frame number and a
9-bit offset. The offset is unchanged by the translation algorithm. The MMU translates
the logical page number to a physical page number via tables stored in memory. In
the established hierarchy, a level 1 table is referred to as a "’Page’’ table, and all level 2
tables are referred to as ''Pointer’’ tables.

The operating system and MMU use the translation tables to exchange information
on the status of the memory pages. The table entries track both the presence of a
page in the physical memory and the protection level of that page.

By manipulating the page and pointer tables, an operating system dynamically controls
the mapping of logical-to-physical addresses. In particular, the operating system may
specify that references to certain pages should generate translation error aborts. This
mechanism implements virtual memory management and protection.

The logical address output from the TI132032T CPU is 24 bits wide, while the physical
address output from the MMU is 25 bits wide. This extra bit (bit 25) can be used to
partition memory, but does not increase a task’s logical address space.

The MMU has an internal cache memory which contains direct logical-to-physical
address mappings of the 32 most recently used pages. Thus, most address translations
take only one additional clock cycle. The “*hit rate’’ of the cache memory is usually
better than 98%, so that the overhead time involved in dynamic translation is minimal.

The MMU is also capable of breakpoint debugging support. Up to two breakpoint
addresses, logical or physical, may be activated in the MMU. A counter may be attached
to one of these, enabling ‘‘break-on-n occurrences’’ capability.

Internal Organization

Internal organization of the TI32082W MMU consists of five functional blocks and
their respective addressable registers. These are shown in Figure 1. Both internal and
external MMU connections are shown in the block diagram. Detailed block and register
operation is described in the following paragraphs.

Hardware Debug Block

The debug block contains the registers, counters, and logic which allow the execution
of program breakpoints. The debug block includes the following registers:

MMU Status Register (MSR)

Breakpoint Registers (BPRO and BPR1)

Breakpoint Counter Register (BCNT)
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CLKl —

TWO-PHASE
CLK2 ——gp— [ CLOCKING
INT —¢—
PFS >
16 INTERNAL 1/0
ADO-AD15 gt ] " BUS CONTROL
8
SYSTEM A16-A23 —@<P] I *
BUS
A24 —@— DEBUG REGISTER
4
ST0-5T3 —ip] BLOCK FILE BLOCK
32-BIT WORKING
DDIN ~€@—P MSR REGISTERS
AT/SPC —4—p
—_—— 1/0 BUFFERS
RST/ABT —g¢— AND 32-BIT 32-BIT
—— LATCHES ST BPRO EIA REG
FLT —— -
J—
PAV —¢—
JE— 32-BIT 25-BIT
ADS ——Pp BPR1 PTBO REG
U/S ———p
RDY e——pp 24-BIT 25-BIT
BCNT PTB1 RE
HOLD ——P S
HLDA| ~——p
HLDAO —& f 44 STATE BUS
TRANSLATION
conToL BUFFER BLOCK
(CACHE)
REGISTER DESCRIPTION
MSR = Memory Management Status Register
BPRO = Breakpoint Register O
BRP1 = Breakpoint Register 1
BCNT = Breakpoint Court Register
EIA = Error/Invalidate Address Register
PTBO = Page-Table Base Register O
PTB1 = Page-Table Base Register 1
Figure 1. MMU Block Diagram
3.4.1.1.1 Memory Management Status Register

The Memory Management Status Register (MSR) specifies the operational mode and
current processing status of the MMU. The register permits user control of address
translation and breakpoints. The MSR is 32 bits in length. The MSR format is shown

in Table 1.

Bits O to 25 are the various control bits and flags of the MMU. Bits 26 to 31 are not
used. The following describes the control bits and flags:

ERC Error Class flag. This 3-bit flag specifies the cause of the current MMU

exception.
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Table 1. MMU Bit Maps

1 1 1 T 1 1 i 1 1 I T I i
(Reserved) NT|UT|FT{AHUBIBENIAOIDS| 18| TU BST EST BDIED| x {BN TET ERC
1 1 Ll ! L1 | 1 1 | Ll
31 24123 16115 817 0
Memory Management Status Register (MSR)
| LA LI 1 I L L T L L UL i ¥
M (Reserved) Address Bits 10 23 0o 00 090 00 0 00
! 1 1 ), 1 1 11 1 1 | | 1 1 1 1 i 1 1 l 1 ] ] L L 1
31 24123 1049 0
Page Table Base Registers (PTBO, PTB1)
T | I I 1 T T 1 L 1 1 LI T 1 1 1 | L T [ ! I LI
AS (Reserved) Logical Address
1 1 1 1 1 A L. 1 1 i - 1 1 1 1 L | L 1 Il 1 1 1 Il 1 ! 1
31 24123 0
Error/invalidate Address Register (EIA)
T 1 4 1 I T T T T T T 1 U 1 Ll ! T l T I U
AS|VPIBEIBRIBW|CE| » | ~ Address
| i  — 1 i Il L ] L Ll el ) Ll Il 1 Il Lol
31 24123 0
Breakpoint Registers (BPRO, BPR1)
I { 1 I I 1 1 1 T 1 1 1 H 1 ) ! T i 1 LR LI I L U T T
0O 0 00 O 0 0 C Count
I T (RN (NN SO N | D AN DU WU (SR SN UORSN SRS UUNUN NSNS SOV NN (NN (NN SN NN SN NN NN S 11
31 23
24 Breakpoint Count Register (BPRO, BPR1) 0
I T T T T L LA L [ LI !
BS (Reserved) Page Frame Number (Reserved) |M|R| PL |V
1 L 1 1 L L 1 1 I | I} 1 ] 1 1 1 1 1 | 1 L L 1 A
31 24123 9i8 514 0
Page Table Entry (PTE) in Memory
U T U ! 1 4 ! 1 i L} T 1 T T T T
gen short 0 opcode d 0 0 [0] 1 1 1 1 [0]
1 A 1 Il 1 ] i i 1 1 1 1 1 1 i 1
23 Operation Word 817 ID Code 0
Coprocessor Instruction Format
1 1 1 1 i L T 1 i 1 I ¥ 1 i L 1 T T
Index 1 Index 2 Offset
l | 1 I 1 i 1 L 1 i 1 | 1 L L | 1
23 16115 918 0

Logical Address Format

Bit O is set to 1 on an address translation error.

Bit 1 is not used.
Bit 2 is set to 1 on a break.

TET Transiation Error Trace flag. The 3-bit flag specifies the cause of the current

BN

ED

address translation error.

Bit 3 is set to 1 on a protection level error.
Bit 4 is set to 1 on an invalid Page Table entry.
Bit 5 is set to 1 on an invalid Pointer Table entry.

Breakpoint Number bit. BN is set to indicate the breakpoint address of the
current break. If BN is 1, the breakpoint address is contained in BPR1. If

BN i

s O, the breakpoint address is in BPRO.

Error Data Direction bit. If ED is 1, a read operation or the first part of a
read-modify-write operation caused an address translation error. If ED is
0, a write or the last part of a read-modify-write operation caused the error.
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BD Breakpoint Direction bit. If BD is 1, a read operation or the first part of
aread-modify-write operation caused the current break. If BD is O, a write
operation on the last part of a read-modify-write operation caused the break.

EST Error Status flag. On an address translation error, the 3-bit flag is set to
the low order three bits of the system status bus.

BST Breakpoint Status flag. On a break, the 3-bit flag is set to the low order
three-bits of the system status bus.

TU Translate User bit. If TU is 1, the MMU translates all logical addresses
specified in the User mode. If TU is O, the MMU interprets logical addresses
specified in the User mode as physical addresses.

TS Translate Operating System bit. If TS is 1, the MMU translates all addresses
specified in the Operating System mode. If TS is O, the MMU interprets
addresses specified in the Operating System mode as physical addresses.

DS Dual Space bit. If DS is 1, the PTB1 register contains the Level 1 Page
Table Base address of all addresses specified in the User mode. If DS is
0, the PTBO register contains the Level 1 Page Table Base address of all
addresses specified in both User and Operating System modes.

AO Access Override bit. If AO is 1, the MMU overrides the protection level
of all addresses. This permits a program to access memory which is
normally accessible only to the operating system while the system is in
the User mode. If AO is O, the MMU does not override the protection level.

BEN Breakpoint Enable bit. If BEN is 1, the MMU enables the BPRO and BPR1
registers and breaks program execution whenever a breakpoint is
encountered. If BEN is O, the MMU disables the BPRO and BPR1 registers.

UB User Break bit. If UBis 1, the MMU enables the BPRO and BPR1 registers
for User mode operation only. If UB is O, the MMU enables the registers
for both User and Operating System mode. The UB bit is ignored if
breakpoints are disabied (Breakpoint Enable = 0).

Al Abort or Interrupt bit.

FT Flow Trace bit. Not presently used. (Reserved).

UT User Trace bit. Not presently used. (Reserved)

NT Nonseqguential Trace bit. Not presently used. (Reserved)

The MSR control bits and flags may be read or modified by executing the SMR and
LMR instructions. The NT, FT, TS, TU bits and the ERC flag are set to O whenever
the system is reset. The BEN bit is set to O whenever the MMU generates a breakpoint
or an instruction abort on an address translation error.

After writing to the MSR, the MMU automatically suppresses the generation of
breakpoints until a branch, jump, call, or return instruction has been executed. This
permits a routine to set the MSR and then pass execution to the program being
debugged without generating a premature break. The Error Memory Cycle Type (EMCT)
is the combination of the BST, EST, BD, and ED fields.



3.4.1.1.2 Breakpoint Registers

The Breakpoint Registers BPRO and BPR1 provide the breakpoint addresses and
breakpoint conditions for system breaks. The registers are each 32 bits in length and
have the format shown in Table 1.

Bits O to 23 specify the breakpoint address. The MMU compares the breakpoint address
with addresses referred to by the program. If a match is found and breakpoint conditions
are met, the MMU sends a Nonmaskable Interrupt (NMI) to the system CPU and breaks
program execution.

Bits 26 to 31 specify the breakpoint conditions (bits 24 and 25 are not used). Breakpoint
conditions define how the MMU compares the breakpoint address and which conditions
permit the MMU to generate breaks.

AS Address Space bit. If AS is 0, the MMU compares the breakpoint address
.with logical addresses whose Level 1 Page Table is specified by the PTBO
register. If ASis 1, the MMU compares the breakpoint address with logical
addresses whose Level 1 Page Table is specified by the PTB1 register. If
the VP bitis 1, the MMU takes the AS bit as bit 24 of the physical address.

VP Logical/Physical bit. If VP is O, the MMU compares the breakpoint address
with logical addresses only. If VP is 1, the MMU compares the breakpoint
address with translated logical addresses (i.e., final physical addresses)
or physical addresses only.

BE Breakpoint Execution bit. If BE is 1, the MMU breaks program execution
when the instruction at the breakpoint address is executed. The instruction
must start at the breakpoint address for the break to occur. If BE is O, no
break occurs.

BR Breakpoint Read bit. If BR is 1, the MMU breaks execution when data is
read from the breakpoint address. If BR is O, no break occurs.

BW Breakpoint Write bit. If BW is 1, the MMU breaks execution when data
is written to the breakpoint address or when data is read from the
breakpoint address in the first part of a read-modify-write operation. If BW
is 0, no break occurs.

CE  Counter Enable bit (BPRO only). If CE is 1, the Breakpoint Count register
is enabled. If CE is O, the register is disabled. The Breakpoint Count register
is described in the next section.

3.4.1.1.3 Breakpoint Count Register

The Breakpoint Count (BCNT) register controls the generation of the MMU interrupt
signal to the CPU. It permits the user to specify the number of breakpoints the MMU
should ignore before generating a break. The BCNT register is 24 bits in length.

The BCNT register affects system breaks only when it is enabled. The CE bit in the
BPRO register enables/disables the register. When the MMU encounters a breakpoint,
it checks the CE bit in the register containing the breakpoint address. If CE is 1, the
MMU decrements the contents of BCNT by 1, and compares the new contents to zero.
If the new contents are not equal to zero, the MMU ignores the breakpoint, i.e., it

3-143

TI32082W Memory Management Unit m



Hun luswabeuely AlowdN AMZ80ZEIL E

permits program execution to continue. If the contents are zero, the MMU breaks
execution. If CE is 0, the MMU ignores the BCNT register and breaks program execution.

The user may set the register to any value within the range O to 224 —1 by executing
an LMR instruction. If the register is not given a new value after a break, the next
breakpoint decrements the register contents by 1.

3.4.1.2 Register File Block

3.4.1.2.

This block contains a number of working registers, with no external access, used to
execute the address translation algorithm. In addition, it has three addressable registers
(PTBO, PTB1, and EIA) used in performing dynamic address translations.

1 Page Table Base Registers

The Page Table Base registers PTBO and PTB1 specify the base addresses of the Level
1 Page Tables used in address translation. The PTBO and PTB1 registers are each
32 bits in length and have the format shown in Table 1.

Bits O to 23 specify the Page Table Base address. When a logical address is translated,
the MMU reads the base address from the register and accesses the specified Page
Table. Bits O to 9 must be zeros. Bits 24 to 30 are not used. Bit 31 is the Memory
Space bit, which may be used to partition physical memory.

The MMU accesses only one Page Table Base register for any given address transiation.
The current mode of system operation (User or Operating System) and the Dual Space
bit (DS) in the MSR specify which register is read. If the DS bit is O, the MMU reads
the base address from the PTBO register when in either the User or the Operating
System mode. If the DS bit is 1, the MMU reads the base address from PTB1 when
in User mode and PTBO when in Operating System mode.

The contents of the registers may be read or modified at any time by executing an
SMR and LMR instruction.

3.4.1.2.2 Error/invalidate Address Register
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The Error/invalidate Address (EIA) register is a dual-purpose register that (1) holds a
logical address that has generated an MMU exception; and, (2) when written to,
removes Pointer Table entries from the MMU's Translation Buffer. The EIA is 32 bits
in length.

The EIA permits examination of the logical address that caused the current MMU
exception. On an exception (such as a protection-level error), the MMU copies the
logical address that generated the error to the EIA. The MMU sets bit 31 in the EIA
to 1 if the address’s Level 1 Page Table is specified by PTB1, and to O if the Level 1
Page Table is specified by PTBO. The error address may be read by executing an SMR
instruction. The cause of the error is specified by the ERC and TET flags in the MSR.

The EIA also permits removal of invalid Pointer Table entries from the MMU's
Translation Buffer. The Translation Buffer contains a copy of the Pointer Table entries
of recently accessed logical addresses. A logical address written to the EIA causes
the MMU to remove the table entry of that logical address from the Translation Buffer.
Bit 31 of the EIA must be set to 1 if the Page Table is specified by PTB1 and to O



if it is specified by PTBO. Entries in the Translation Buffer must be removed whenever
the user modifies the corresponding entries in the tables themselves. The user may
write to the EIA register using an LMR instruction.

3.4.1.3 Translation Buffer Block

The Translation Buffer is the cache memory of the chip. It provides direct logical-to-
physical address mapping for the most recently used pages in memory. Entries in the
Translation Buffer are allocated and replaced by the MMU; the programmer is not
involved in the process.

The Translation Buffer is a content-addressable memory. The logical page frame number
(the 15 high order bits of the logical address) and the address space bit are compared
to the entries in the buffer. If the logical page frame number is present in the buffer,
the mapped physical address is output immediately. If not, a control line is set, indicating
to the Control Block that the memory translation tables should be referenced. When
this occurs, the MMU gets the corresponding mapping from memory and replaces the
least recently used entry in the Translation Buffer with the new mapping.

Each entry in the Translation Buffer has, besides the logical and physical page frame .
numbers and the address space bit, a copy of the protection level field (PL) and the
modified bit (M) of the corresponding Pointer table entry. These bits are used by the
MMU to implement the translation and error handling algorithms described in the
Functional Operation section. The protection level field contains the most restrictive
combination of the Page and Pointer table entries.

3.4.1.4 Control Block

The Control Block is made up of state machines and combinatorial logic. Each machine
controls the sequence of operations taking place during the different MMU operations.
A state bus carries the operation code; the different blocks decode appropriate signals
from the state bus.

3.4.1.5 Input/Output Block

The Input/Output block consists of 1/O buffers and internal buffers.

w

The 1/0 buffers provide the communication between the MMU and the outside system
bus. The internal buffers between the I/0 buses which transfer the address offset and
the complete address in no-translation mode are also part of this block.

3.4.2 Memory Management Instructions

T132082W Memory Management Unit

Format Instruction Description
14 LMR mreg,gen Load Memory Management Register. (Privileged)
14 SMR mreg,gen Store Memory Management Register. (Privileged)
14 RDVAL gen Validate address for reading. (Privileged)
14 WRVAL gen Validate address for writing. (Privileged)

8 MOVSUi gen,gen  Move a value from operating system Space to
User Space. (Privileged)

8 MOVUSi gen,gen Move a value from User Space to operating
system Space. (Privileged)

The MOVSUi and MOVUSI instructions are intended for memory management.
Instruction format detail can be found in the Appendix to this data manual.
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3.4.3 Functional Operation

3.4.3.1

Power and Grounding

The TI32082W requires a single 5-V power supply applied to pin 48 (Vcc). See
recommended operating conditions of the TI32082W data sheet.

Grounding connections are made on pins 24 and 25, Logic Ground (GNDL) pin and
Buffer Ground (GNDB) pin, respectively. GNDL is the common pin for on-chip logic,
and GNDB is the common pin for the output drivers. As shown in Figure 2, GNDL is
directly connected to GNDB with a single conductor.

All other grounding connections should be made only to GNDB (pin 25) to ensure
optimum noise immunity.

Ti32082wW
MMU

2 25
GNDL 24) @) GNDB

OTHER GROUND
CONNECTIONS

Figure 2. Grounding Connections

3.4.3.2 MMU Operation

The MMU operation incorporates the following:

1. Bus Operation as related to address translation, Direct Memory Access (DMA)
transfers, Breakpoints-on-Physical Address, and Coprocessor Operation

. Coprocessor Instruction Execution

. Address Translation

. Hardware Debugging

. Error Handling

AP WN

3.4.3.2.1 Bus Operation

3-146

Address Translation (see Figures 3 through 6). The MMU time-shares the address/data
bus with the CPU. During a memory access cycle, the MMU reads the logical address,
performs the logical-to-physical translation, and places the physical address on the
bus. A typical memory cycle has five clock periods: T1, TMMU (time of physical address
on the bus), T2, T3, and T4. The 16 A/D bus drivers of the MMU are in high impedance
state at all times except during TMMU or when the ELT signal is active. The bus drivers
of lines A16 to A24 drive the bus from TMMU through T4.

During period T1, the CPU places on the bus the logical address to be translated; this
address is strobed into the MMU with the ADS pulse. During period TMMU, the CPU
places the bus in high impedance and the MMU does one of two things. If the address
to be translated is in the translation buffer, the MMU sends the physical address on
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Figure 3. CPU, MMU Interconnections

»— DDIN

the bus with a rA\ftiming pulse; if not, it takes the bus from the CPU with the FLT
signal and executes four memory read cycles, to get the two double words needed
to perform the translation algorithm. When necessary, the MMU executes two memory
write cycles to update the referenced and modified bits in the Page and Pointer table
entries. It then releases contro!l of the bus and sends the physical address on the bus.
The memory cycle initiated by the CPU is resumed from the point it was stopped.

Between periods T2 and T4, there is data on the ADO-AD15 bus lines, output either
by the CPU or memory. Bus lines A16 to A24 continue to hold the physical address.

DMA Transfers. The Hold (HOLD) and Hold Acknowledge (HLDA) lines are connected
as shown in Figure 7.
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T1 TMMU T2 T3 T4

A/D -—LL ADD. x P. ADD. X DATA )...

3

\ /S

Figure 4. Bus Operation Timing: Logical Address in Translation Buffer

The DMA device pulls the HOLD line to request the bus; this line is input to both the
CPU and the MMU. If the MMU is not floating the CPU (through the FLT line), the
MMU transfers the CPU HLDA output directly to the MMU HLDAO output. If the MMU
(when accessing the address translation tables) is floating the CPU, the CPU cannot
respond to a Hold Request, HLDAI remains high, and the MMU grants the bus by pulling
low HLDAO at the end of the present memory cycle. When the DMA device releases
HOLD, the MMU releases HLDAO and regains control of the bus.

Breakpoints-on-Physical Address. During debug, if a breakpoint is specified to occur
on a physical address (VP is set in any BPR), an additional clock period is needed in
the bus cycle. The additional clock period is required to make the address comparison
after getting the physical address from the cache or Pointer Table. In this case, the
MMU floats the CPU for one clock period. This gives the memory cycles six periods:
T1, TMMU, Tf, T2, T3 and T4. The corresponding waveforms are illustrated in Figure 8.
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Figure 5. Bus Operation: Read Cycle When Logical Address is not in Translation Buffer
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Figure 6. Bus Translation Write Cycle When Logical Address is not in Translation Buffer
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Figure 8. Bus Operation in Breakpoints on Physical Address
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Coprocessor Instruction Bus Operation. For coprocessor instructions, the bus operation
follows a different protocol. The bus cycle has only two periods (T1 and T4) and the
timing is done by a one-clock-wide pulse on the Coprocessor Control (SPC) bidirectional
line. All bus transfers are illustrated in Figures 9 and 10.

T1 T4

A/D —( DATA )—

=\ /

DBE (HIGH)
STATUS STATUS VALID X INVALID

Figure 9. Coprocessor Instruction Timing: Get ID/Opcode/Data from CPU

T1 T4

A/D ___< DATA FROM MMU )

=\ /

DBE (HIGH)

STATUS STATUS VALID X INVALID

Figure 10. Coprocessor Instruction Timing: MMU Sends Status/Data to CPU

3.4.3.2.2 Coprocessor Instructions

Introduction to Coprocessor Instructions. The MMU coprocessor instructions serve
two purposes. (1) Coprocessor instructions set up the different registers and check
their contents (LMR and SMR instructions) in order to control the MMU mode of
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operation. (2) A coprocessor instruction can request the MMU to return a flag indicating
whether a specified access to a given address would generate a protection fault in
User mode.

The general format for coprocessor instructions appears in the Appendix to this data
manual. The formats for the MMU coprocessor instructions are described in the
following paragraphs.

Note:
All MMU instructions are privileged. While in the User Mode, the CPU will trap on any
MMU instruction.

MMU Coprocessor Instruction Format. The 3-byte format of the MMU coprocessor
instruction is shown in Table 1.

The format corresponds to the instructions as they are stored in memory; the CPU
sends the operation word to the MMU with its bytes swapped, i.e., high byte in the
low bus byte and vice versa.

The short code assignments for the registers are shown below:

Code Value Register

0000 BPRO
0001 BPR1

1010 MSR

1011 BCNT
1100 PTBO
1101 PTB1

1111 EIA

Note:
All other short codes are illegal.

Address Translation Validation Instructions. The two instructions used to validate an
address are: The RDVAL address and the WRVAL address. Both instructions consists
of mnemonics and address type operands. (Table 2)

Upon receipt of a RDVAL or WRVAL instruction, the MMU checks to see if the address
operand can be translated without protection violations in User mode (user space).
If the address can be translated without violations, the MMU sends status word zero.
If not, the MMU sends status word 32.

If the first translation table entry is invalid, a trap is generated with error class 1 and
error translation type 2. No trap is generated if the second PTE is invalid or if protection
violation errors occur.

A validate instruction generates a status word which sets or resets the flag (F) bit
in the CPU PSR register. The remaining bits are all zero.
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Table 2. RDVAL/WRVAL Instruction (Validate Read/Write Address)

CcPU MMU
EXECUTION UNIT BUS INTERFACE UNIT S:II&J:S ACTION

Sends ID Code in low byte Sends ID Code with SPC timing pulse 1111 Recognizes |ID Code
Sends Opcode in two bytes Sends Opcode with %timing pulse 1101 Latches Opcode
Sends Address to be Sends Address in two Coprocessor Write 1101
validated in two words cycles with ‘STC'timing pulse
(bits 24-31 set to zero)
Generates Dummy Read Starts a Read cycle with address 1010 Performs validation
with address to be validated to be validated

Detects MMU completion 0011 Signals completion SPC pulse
Reads MMU status Reads MMU status word with SPC strobe 1110 Sends status word

LMR INSTRUCTION (LOAD MMU REGISTER)
LMR short, read.d (See 7/32000 Programmer’s Reference Manual)
The MMU register specified by first operand is loaded with the contents of the second operand. The instruction executes as follows:

CPU MMU
EXECUTION UNIT BUS INTERFACE UNIT S';I;\J:S ACTION

Sends ID Code in low byte Sends ID Code with Wtiming pulse 1111 Recognizes ID Code

Sends Opcode in two bytes Sends Opcode with SPC timing pulse 1101 Latches Opcode

Sends low word of operand Sends low word of operand with SPC 1101 Stores operand in low word of
timing pulse addressed register

Sends high word of operand Sends high word of operand with SPC 1101 Stores operand in high word of
timing pulse addressed register
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Table 2. RDVAL/WRVAL Instruction (Validate Read/Write Address) (Concluded)

SMR INSTRUCTION (STORE MMU REGISTER)

SMR short, write.d

The MMU register specified by first operand is stored in the second operand. The instruction executes as follows:

CPU MMU
STATUS
EXECUTION UNIT BUS INTERFACE UNIT PINS ACTION
Sends ID Code in low byte Sends ID Code with SPC timing pulse 1111 Recognizes ID Code
Sends Opcode in two bytes Sends Opcode with SPC timing pulse 1101 Latches Opcode
(See Note 1)

Detects MMU completion 0011 Signals completion with SPC pulse
Reads status with SPC strobe 1110 Sends zero status
Strobes operand with the SPC pulse 1101 Sends low word of addressed register
Strobes operand with SPC pulse 1101 Sends high word of addressed register

Notes: 1. The CPU may prefetch more code before this step.
2. After CPU reads the operand, the contents are stored in second operand according to the second
operand addressing mode.

3. If addressed register is less than 32 bits, then the high order bits are reset to zero.

T132082W Memory Management Unit
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3.4.3.2.3 Address Translations
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Page and Pointer Table Entry (PTE) Format. Address translation is controlled by Page
and Pointer tables contained in memory. A table is a linear array of 32-bit entries. Each
PTE defines the access characteristics of one page (512 bytes) of virtual storage. The
PTE bit format is shown in Table 1.

BS Bank select: Most significant bit of PFN field.

PFN Page Frame Number: When the V bit is set, the PFN low field, together
with the BS bit, contains the high order 16 bits of a physical page address
which is used by the address translation algorithm.

M Modified: Used only in Pointer table entries (bits 9 to 15 of logical address)
and set when mapped page is modified.

R Referenced: Set when page mapped by PTE is referenced.

PL  Protection Level: Page and Pointer table entries control access to pages
mapped by the PTE. The following shows the relationship between user,
operating system and protection level bits:

PSR Protection Level Bits
Mode Bit 8 00 01 10 11
User 1 no no read full
access  access only access
Operating 0 read full full full
System only access access  access

\ Valid bit: When set, indicates that the corresponding page is resident in
physical memory. When cleared, any attempted reference to the page will
cause the MMU to abort the reference. If the V-bit is cleared, the PTE may
be used by the operating system for any desired function.

Note:
Bits 7 and 8 are reserved for the user and are not affected by the MMU.

Address Translation Algorithm. The MMU translates the 24-bit logical address
generated by the CPU to either a 25-bit physical address or a translation error. This
process is described in the following paragraphs. See Figure 11.

The logical address is divided into three components as shown in Table 1. The access
level of a reference is a 2-bit number whose logical expressions are:

bit 1= U AND AO
where
AO = Access Override bit in MSR
bit 0= 1 for write, Read/Modify/Write (RMW)
bit 0= O for read

The detailed description of the translation algorithm follows. (Also refer to the 7/32000
Programmer’s Reference Manual.)
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Figure 11. Logical to Physical Address Translation
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IfTU =0andU = 10or TS = 0 and U = O, then PA = logical address, else

1. Select first PTE:

If DS (in MSR) = 1 and U (in PSR) = 1, then PTEP = PTB1 or
Index 1 » 4.

else

PTEP = PTBO or Index 1+4
end.
Validate PTE:

If access level is greater than (PTEP).PL or if
(PTEP).V = O, then abort CPU

else
Set (PTEP).R = 1
2. Select second PTE:
PTEP = (PTEP).PFN * 512 or Index 2 * 4

Validate PTE:
If access level is greater than (PTEP).PL or if (PTEP).V = O, then abort
CPU

else

Set (PTEP).R = 1
If writing, then set (PTEP).M = 1
3. Generéte physical address:
PA = (PTEP).PFN * 512 or Offset
Legend:
PA Physical Address
TU, DS, TS MSR bits
U PSR bit (sent to MMU via the U/S pin)
PTEP PTE pointer
(PTEP).PL represents protection level in Page or Pointer Table Entry
(PTEP).V represents valid bit in Page or Pointer Table Entry

(PTEP).M represents modified bit in Page or Pointer table entry
PFN Page Frame Number
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The MMU marks bits R and M of the PTE for subsequent use by the operating system.
If a physical page is written upon, it is assumed that the user intends for this
modification to be permanent in his storage system. The M bit indicates whether a
page needs to be written to mass storage when it is deallocated from physical memory.
The R bit is tested and cleared periodically by the operating system in order to compile
statistics of the frequency of references to each page currently in memory. It will use
this information to deallocate the least frequently used pages when new pages must
be called in.

Pointer tables that refer to physical pages are referenced by page tables, 1K bytes
in length. Selection of the PTBO or PTB1 register depends on the Dual Space (DS)
and User/Operating System (U/S) modes as shown in the following:

l uis
0 1
0| PTBO  PTBO
DS 4 PTBO  PTB1

Page Table Base (PTB) Registers. PTBO and PTB1 registers are specified as double
words. The BS bit in the PTE is used by the MMU to produce the 25th bit of the physical
addresses pointing to the entries in the Page table. Their format is given in Table 1.

3.4.3.2.4 Hardware Debugging

The T132082W MMU incorporates a special debugging facility: address breakpointing.
A breakpoint generates an abort or interrupt pulse when a software specified address
is referenced under software controlled conditions. It also updates the ERC and BN
fields in MSR. Breakpoints are controlled by the BEN and UB bits (in MSR) and the
BPR registers which have the format shown earlier in Table 1.

Breakpoint-on-Execution Fetch Mechanism. When a sequential instruction is fetched
by the CPU, the instruction is placed in the queue. Unless the queue is empty, aborts
on queue fetches are not received and a breakpoint could be missed. The proper
operation of breakpoint execution requires flushing the queue, as described in the
following paragraphs.

When the BE bit is set and the location see_cified in the BPR is accessed in a
nonsequential fetch, an Abort (RST/ABT) or INT pulse is generated.

When the BE bit is set and the location specified in the breakpoint register is accessed
in a sequential fetch (or in a nonsequential fetch from an even-numbered address (2n)
and the location specified in BPRis (2n + 1), the MMU returns a DIA instruction instead
of the memory byte at the breakpoint location. This is preceded by a read cycle in
order to return the other original byte from memory. This causes the CPU to flush the
queue and to fetch the instruction a second time, this time with a nonsequential fetch
status.
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The BPR bit functions are tabulated below:

AS Address Space: Logical address when VP = 0, bank select bit of physrcal
address when VP = 1,

VP  Logical or Physical address: If VP is set, the address field is matched against
physical address. If VP is reset, the address field is matched against the
logical address.

BE Breakpoint-on-Execution: If BE is set, a breakpoint occurs when the location
specified in the address field is referenced in an instruction fetch cycle
(instruction execution detailed below).

BR Breakpoint-on-Read operand: If BR is set, a breakpoint occurs when the
location specified in the address field is referenced in a read operand cycle.

BW Breakpoint-on-Write operands: |f BW is set, a breakpoint occurs when the
location specified in the address field is referenced in a write or RMW
operand cycle.

CE Counter Enable (BPRO only): The 24-bit BCNT counter decrements when
Counter Enable bit (CE) is set and the conditions for a breakpoint in register
BPRO are obtained. When this counter reaches zero, an '‘Abort’’ or INT
pulse is generated by the MMU.

Note:
An erroneous count will result if both the CE and BW bits are set.

3.4.3.2.5 Error Handling
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Traps are serviced according to class and type (c, t). In the MSR register, the appropriate
bit in the ERC field is set due to the fact that RMW accesses are counted twice.

For Address Translation Error, the following bits are set in the TET field:

If access level is greater than (PTEP).PL bit O set
If (PTEP).V = 0 in Page Table PTE bit 1 set
If (PTEP).V = O in Pointer Table PTE bit 2 set

In the EMCT field, set the CPU status and DDIN bits.

In the EAIl register, set AS bit to designate the address space PTBO/PTB1 of logical
address being translated and set the address field to the value of the logical address
being translated, as shown in the register format in Table 1.

For Breakpoint Error, the following bits are set in the MSR register:

BN field — the number of the appropriate breakpoint register
EMCT field — CPU status and DDIN bits



3.5 TI32202W Interrupt Control Unit (ICU)
3.5.1 General Description

The T132202W ICU functions as an overall manager in an interrupt-oriented system
environment. its many features and options permit the design of sophisticated interrupt
systems.

Figure 1 shows the internal organization of the TI32202W which is divided into five
functional blocks.

CLK

COUNTERS 49— COUT/SCIN

[ 'y

iNT —€—O -¢»— G7/IR14
ST1 ———t <4 49— G6/IR12
IR —f —€¢—»— G5/IR10
IR3 ——] —4¢—— G4/IR8
L | 49— G3/IR6
IR7 e ggﬁ:&g{ -¢—»— G2/IR4
IR9 ——— < TmﬁG ——| 1/0 BUFFERS - G1/IR2
IR11 ———my CONTROL AND 49— GO/IRO
121 Q— LATCHES  |-¢—9— D7
IR15 e L ¢»— D6
—4—9»— D5
4> D4
RST —4—»— D3
—4—p— D2
RD ——Q —<¢—p— D1
WR ——O —¢»— DO
gs —o READ/ ? S
% —q  loac
A0 ———f AND
A1 ———] DECODERS
A2 — |
A3 ———
as — 4

Figure 1. TI32202W ICU Block Diagram
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3.5.1.1

1/0 Buffers and Latches

The I/0 buffers and latches block is the interface with the system data bus. It contains
bidirectional buffers for the data I/O pins. It also contains registers and logic circuits
that control the operation of pins GO/IRO,...,G7/IR14 when the ICU is in the 8-bit bus
mode.

3.5.1.2 Read/Write Logic and Decoders

The read/write logic and decoders manage all internal and external data transfers for
the ICU. These include data, control, and status transfers. This circuit accepts inputs
from the CPU address and control buses. In turn, it issues commands to access the
internal registers of the ICU.

3.5.1.3 Timing and Control

The timing and control block contains status elements that select the ICU operating
mode. It also contains state machines that generate all the necessary sequencing and
control signals.

3.5.1.4 Priority Control

The priority control block contains 16 units, one for each interrupt position. These
units provide the following functions: ‘
1. Sensing the various forms of hardware interrupt signals, e.g., level (high/low)

or edge (rising/falling)

. Resolving priorities and generating an interrupt request to the CPU

. Handling cascaded arrangements

. Enabling software interrupts

. Providing for an automatic return from interrupt

. Enabling the assignment of any interrupt position to the internal counters

. Providing for rearrangement of priorities by assigning the first priority to any
interrupt position

8. Enabling automatic rotation of priorities

NoOooapwWN

3.56.1.5 Counters

3-162

This block contains two 16-bit counters, called the H-counter and the L-counter. These
are down counters that count from an initial value to zero. Both counters have a 16-bit
register (designated HCSV and LCSV) for loading their restarting values. They also
have registers containing the current count values (HCCV and LCCV). Both sets of
registers are fully described in section 3.5.2.6.

The counters are under program control and can be used to generate interrupts. When
the count reaches zero, either counter can generate an interrupt request to any of the
16 interrupt positions. The counter then reloads the start value from the appropriate
registers and resumes counting. Figure 2 shows typical counter output signals available
from the T132202W.

The maximum input clock frequency is 2.5 MHz.

A divide-by-four prescaler is also provided. When the prescaler is used, the input clock
frequency can be up to 10 MHz.
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OUTPUT IN
SQUARE WAVEFORM

Figure 2. Counter Output Signals in Pulsed Form and
Square Waveform for Three Different Initial Values

When intervals longer than those provided by a 16-bit counter are needed, the L- and
H-counters can be concatenated to form a 32-bit counter. In this case, both counters
are controlled by the H-counter control bits. Figure 3 illustrates counter read/write
operations. For additional information, refer to the discussion of the Counter Control
register in section 3.5.2.6.16.

3.5.2 Functional Description
3.5.2.1 Reset

The ICU is reset when a logic low signal is present on the RST pin. At reset, most
internal ICU registers are affected, and the ICU becomes inactive.

3.56.2.2 Initialization

After reset, the CPU must initialize the TI32202W to establish its configuration. Proper
initialization requires knowledge of the ICU register’'s formats (refer to Figure 14).

The operation sequence shown in Figure 14 ensures that all counter output pins remain
inactive until the counters are completely initialized.
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BASIC OPERATIONS:
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Figure 3. Counter Configuration and Basic Operations

3.5.2.3 Vectored Interrupt Handling
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For details on the operation of the vectored interrupt mode for a particular TI32000
microprocessor family CPU, refer to the applicable section for that CPU. In this
discussion, it is assumed that the TI32202W is working with a CPU in the vectored
interrupt mode. Several ICU applications are discussed, including noncascaded and
cascaded operation. Figures 4, 5, and 6 show typical configurations of the ICU used
with the TI132016T CPU.

A peripheral device issues an interrupt request by sending the proper signal to one
of the TI32202W interrupt inputs. If the interrupt input is not masked, the ICU activates
its Interrupt (INT) output pin and generates an interrupt vector byte. The interrupt vector
byte identifies the interrupt source in its four least significant bits. When the CPU
detects a low level on its Interrupt input pin, it performs one or two interrupt-
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Figure 4. Interrupt Contro! Unit Connections in 16-Bit Bus Mode

acknowledge cycles depending on whether the interrupt request is from the master
ICU or a cascaded ICU. Figure 7 shows a flowchart of a typical CPU Interrupt-
Acknowledge sequence.

In general, vectored interrupts are serviced by interrupt routines stored in system
memory. The Dispatch Table stores up to 256 external procedure descriptors for the
various service procedures. The CPU INTBASE register points to the top of the Dispatch
Table. Figure 8 shows the layout of the Dispatch Table. This figure also shows the
layout of the Cascade Table, which is discussed with ICU cascaded operation.

1 Noncascaded Operation

Whenever an interrupt request from a peripheral device is issued directly to the master
ICU, a noncascaded interrupt request to the CPU results. In a system using a single
TI132202W, up to 16 interrupt requests can be prioritized. Upon receipt of an interrupt
request on the mfpin, the CPU performs a Master Interrupt-Acknowledge bus cycle,
reading a vector byte from address FFFEOOg. This vector is then used as an index
into the dispatch table in order to find the External Procedure Descriptor for the proper
interrupt service procedure. The service procedure eventually returns via the Return-
from-Interrupt (RET) instruction, which performs a Return-from-Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt requests still pending. Figure 9
shows a typical CPU RETI sequence. In a system with only one ICU, the vectors
provided must be in the range of O through 127; this can be ensured by writing
OXXXXXXX into the SVCT register. By providing a negative vector value, the master
ICU flags the interrupt source as a cascaded ICU.

3-165

T132202W Interrupt Control Uni m



nun jonuo) wdnudul MZ0ozZzELL M

AO-A15

ADO-AD15 A0-A23
g LATCH " o
w} 4
A16-A23

TI32016T AO-A4 G7/IR14 j-4->—
cPU HBE G6/IR12 |¢—

—_ ‘ — G5/IR10
ADS ADDRESS s 44—
DECODER G4/IR8 |-¢—
ST1 >—| st G3/IR6 |-¢p—
m? H T'N—f G2/IR4 —‘-’—
G1/IR2 f4-P—

- TI32202W, ) oo
DDIN i Icu / 4>
BUFFER D0-D7 IR15 ~¢——
ADO-AD15 jumpte | DO-D7 IR13 ——
cik1 cikz] '8 16 16 8 IR11 f¢—
16 IR9 e
‘ IR7 }¢—
CLK1 CLK2 ADS DDIN IRS j——
Ti32201 RD $»—{ RD IR3 }-¢—
TCU WR »—{ WR R p—

DO0-D15

NOTE: In the 8-Bit Bus Mode the Master ICU Registers appear at even addresses (AO = 0) since the ICU
communicates with the least significant byte of the CPU data bus.

Figure 5. Interrupt Control Unit Connections in 8-Bit Bus Mode

3.5.2.3.2 Cascaded Operation
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In cascaded operation, one or more of the interrupt inputs of the master ICU are
connected to the Interrupt output (INT) pin of one or more cascaded ICUs. Up to 16
cascaded ICUs can be used, giving a system total of 256 interrupts.

Note:

The number of cascaded ICUs is practically limited to 15 because the Dispatch Table
for the TI32016T CPU is constructed with entries 1 through 15 either used for NMI
and Trap descriptors, or reserved for future use. Interrupt position O of the master
ICU should not be cascaded, so it can be vectored through Dispatch Table entry O,
reserved for nonvectored interrupts. In this case, the nonvectored interrupt entry (entry
0) is also available for vectored interrupt operation, since the CPU is operating in the
vectored interrupt mode.

The address of the master ICU should be FFFEOO1g. Cascaded ICUs can be located
at any system address. A list of cascaded ICU addresses is maintained in the Cascade
Table as a series of sixteen 32-bit entries.

Note:

The CPU status corresponding to both master interrupt acknowledge and return from
interrupt bus cycles, as well as address bit A8, could be used to generate the chip
select (CS) signal for accessing the master ICU during one of the above cycles. In this
case, the master ICU can reside at any system address. The only limitation is that
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Figure 6. Cascaded Interrupt Control Unit Connections in 8-Bit Bus Mode

the least significant 5 or 6 address bits (6 in the 8-bit bus mode) must be zero. Address
bit A8 must be decoded to prevent an NMI bus cycle from reading the hardware vector
register of the ICU. This could happen, since the TI32016T CPU performs a dummy
read cycle from address FFFFO01g, with the same status as a master INTA cycle,
when a nonmaskable-interrupt is acknowledged.

The master ICU maintains a list (in the CSRC register pair) of its interrupt positions
that are cascaded. When a cascaded interrupt input is active, the master ICU activates
its interrupt output and the CPU responds with a Master Interrupt-Acknowledge cycle.
However, instead of generating a positive interrupt vector, the master ICU generates
a negative Cascade Table index.

The CPU interprets the negative number returned from the master ICU as an index
into the Cascade Table. The Cascade Table is located in a negative direction from the
Dispatch Table, and it contains the logical addresses of the hardware vector registers
for any cascaded T132202Ws in the system. Thus, the Cascade Table index supplied
by the master ICU identifies the cascaded ICU that requested the interrupt.
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TCond. A is true if current instruction is terminated or an interruptible
point in a string instruction is reached.

Figure 7. CPU Interrupt-Acknowledge Sequence

Once the cascaded ICU is identified, the CPU performs a Cascaded Interrupt-
Acknowledge cycle. During this cycle, the CPU reads the final vector value directly
from the cascaded ICU, and uses it to access the Dispatch Table. Each cascaded ICU
has its own set of 16 unique interrupt vectors, one vector for each of its 16 interrupt
positions.

The CPU interprets the vector value read during a Cascaded Interrupt-Acknowledge
cycle as an unsigned number. Thus, this vector can be in the range O through 255.

When a cascaded interrupt service routine completes its task, it must return control
to the main program with the same RETI instruction used in noncascaded interrupt
service routines. However, when the CPU performs a Master Return-from-Interrupt
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Figure 8. Interrupt Dispatch and Cascade Tables

cycle, the CPU accesses the master ICU and reads the negative Cascade Table index
identifying the cascaded ICU that originally received the interrupt request. Using the
cascaded ICU address, the CPU now performs a Cascaded Return-from-Interrupt cycle,
informing the cascaded ICU that the service routine is over. The byte provided by the
cascaded ICU during this cycle is ignored.
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Figure 9. CPU Return from Interrupt Seqhence

Internal ICU Operating Sequence
The TiI32202W ICU accepts two interrupt types, software and hardware.

Software interrupts are initiated when the CPU sets the proper bit in the Interrupt
Pending (IPND) registers (R6, R7), located in the ICU. Bits are set and reset by writing
the proper byte to either R6 and R7. Software interrupts can be masked, by setting
the proper bit in the mask registers (R10, R11).

Hardware interrupts can be either internal or external to the ICU. Internal ICU hardware
interrupts are initiated by the on-chip counter outputs. External hardware interrupts
are initiated by devices external to the ICUs that are connected to any of the ICU
interrupt input pins.



Hardware interrupts can be masked by setting the proper bit in the mask registers
(R10, R11). If the Freeze bit (FRZ), located in the Mode Control (MCTL) Register, is
set, all incoming hardware interrupts are inhibited from setting their corresponding
bits in the IPND registers. This prevents the ICU from recognizing any hardware
interrupts.

When the ICU is initialized, it is enabled to accept interrupts. If an active interrupt is
not masked and has a higher priority than any interrupt currently being serviced, the
ICU activates its Interrupt (INT) output. Figure 10 is a flowchart showing the ICU
interrupt-acknowledge sequence.

The CPU responds to the active INT line by performing an Interrupt-Acknowledge bus
cycle. During this cycle, the ICU clears the IPND bit corresponding to the active interrupt
position and sets the corresponding bit in the Interrupt In-Service (ISRV) registers. The
ISRV bit remains set until the CPU performs a RETI bus cycle triggered by the completion
of the interrupt service routine for the active interrupt position. Figure 11 is a flowchart
showing ICU operation during a RETI bus cycle.

When the ISRV bit is set, the INT output is disabled. This output remains inactive until
a higher priority interrupt position becomes active, or the ISRV bit is cleared.

3.5.2.5 Interrupt Priority Modes

The TI32202W ICU can operate in one of four interrupt priority modes: fixed-priority,
auto-rotate, special mask, or polling. Each mode is described in the following
paragraphs.

3.5.2.5.1 Fixed-Priority Mode

In the fixed-priority mode (also called fully-nested mode), each interrupt position is
ranked in priority from O to 15, with O being the highest priority. In this mode, the
processing of lower priority interrupts is nested with higher priority interrupts. Thus,
while an interrupt is being serviced, any other interrupts of the same or lower priority
are inhibited. However, the ICU does recognize higher priority interrupt requests.

When the interrupt service routine executes its RET! instruction, the corresponding
ISRV bit is cleared. This allows any lower priority interrupt request to be serviced by
the CPU.

At reset, the default priority assignment gives interrupt IRO priority O (highest priority),
interrupt IR1 priority 1, and so forth. Interrupt IR15 is, of course, assigned priority
15, the lowest priority. The default priority assignment can be altered by writing an
appropriate value into register FPRT (L) as explained in section 3.5.2.6.9.

Note:

When the ICU generates an interrupt request to the CPU for a higher priority interrupt
while a lower priority interrupt is still being serviced by the CPU, the CPU responds
to the interrupt request only if its internal interrupt enable flag is set. Normally, this
flag is reset at the beginning of an Interrupt-Acknowledge cycle and set during the
RETI cycle. If the CPU is to respond to higher priority interrupts during any interrupt
service routine, the service routine must set the internal CPU interrupt enable flag,
as soon as desired during the service routine.
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Figure 10. ICU Interrupt-Acknowledge Sequence
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Figure 11. ICU Return from Interrupt Sequence

3.5.2.5.2 Auto-Rotate Mode

The auto-rotate mode is selected when the NTAR bit is set to O, and is automatically
entered after reset. In this mode, an interrupt source position is automatically assigned
lowest priority after a request at that position has been serviced. Highest priority then
passes to the next lower priority position. For example, when servicing of the interrupt
request at position 3 is completed (ISRV bit 3 is cleared), interrupt position 3 is assigned
the lowest priority and position 4 assumes the highest priority. The nesting of interrupts
is inhibited, since the interrupt being serviced always has the highest priority.

This mode is used when the interrupting devices have to be assigned equal priority.
A device requesting an interrupt will have to wait, in the worst case, until each of
the 15 other devices has been serviced at most once.
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3.5.2.5.3 Special Mask Mode

The special mask mode is used when it is necessary to dynamically alter the ICU priority
structure while an interrupt is being serviced. For example, it may be desired in a
particular interrupt service routine to enable lower priority interrupts during a part of
the routine. To do so, the ICU must be programmed in fixed-priority mode and the
interrupt service routine must control its own in-service bit in the ISRV registers.

The bits of the ISRV registers are changed with either the Set Bit Interlocked (SBI-
TIW) or Clear Bit Interlocked (CBITIW) instructions. The in-service bit is cleared to enable
lower priority interrupts and set to disable them.

Note:

For proper operation of the ICU, an interrupt service routine must set its ISRV bit before
executing the RETI instruction. This prevents the RETI cycle from clearing the wrong
ISRV bit.

3.5.2.5.4 Polling Mode

The polling mode gives complete control of interrupt priority to the system software.
Either some or all of the interrupt positions can be assigned to the polling mode. To
assign all interrupt positions to the polling mode, the CPU interrupt enable flag is reset.
To assign only some of the interrupt positions to the polling mode, the desired interrupt
positions are masked in the Interrupt Mask (IMSK) registers. In either case, the polling
operation consists of reading the Interrupt Pending (IPND) registers.

If necessary, the IPND read can be synchronized by setting the Freeze (FRZ) bit in
the Mode Control (MCTL) register. This prevents any change in the IPND registers
during the read. The FRZ bit must be reset after the polling operation so the IPND
contents can be updated. If an edge-triggered interrupt occurs while the IPND registers
are frozen, the interrupt request is latched, and transferred to the IPND registers as
soon as FRZ is reset.

The polling mode is useful when a single routine is used to service several interrupt
levels.

3.5.2.6 Register Functions
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The TI32202W has thirty-two 8-bit registers that can be accessed either individually
or in pairs. In 16-bit data bus mode, register pairs can be accessed with the CPU word
or double-word reference instructions. Figure 12 shows the ICU internal registers, and
lists the name, function, and offset address for each register.

Because some registers hold similar data, they are grouped into functional pairs and
assigned a single name. However, if a single register in a pair is referenced, either
an L or an H is appended to the register name. The letters are placed in parentheses
and stand for the low order 8 bits (L) and the high order 8 bits (H). For example, register
R6, part of the Interrupt Pending (IPND) register pair, is referred to individually as
IPND(L).

The following paragraphs give detailed descriptions of the registers shown in Figure 12.



REG. NUMBER AND
ADDRESS IN HEX.

[a3(0316) l R2 (024) l
Us (051) l R4 ‘°416’J
I R7 (071g) I R6 (0616) ]
I R9 (091¢) [R8 (081) I

R11 (0B1g) I mommsq

I R13 (0Dq¢) l R12(OC16)|

R15 (OFqg) [ R14 (0Eqg) l

R16 (104¢)
R17 (114¢)

R18 (124g)

R19 (134¢)

R20 (144¢)

AL

R23 (174¢)

—
L

[ R25 (1946) R24 (184¢)

r R27 (1B1g) [ R26 (1A16)—I

[ R29 (1D4) [ R28 (1Cqg) ]

R31 (1Fqg)

R30 (1E4¢g)

REG.
NAME

HVCT —

SVCT —

ELTG —

TPL —

IPND —

ISRV —

IMSK —

CSRC —

FPRT —

MCTL —

OCASN —

CIPTR —

PDAT —

IPS —

PDIR —

CCTL —

CICTL —

LCSV —

HCSV —

LCCV —

HCCV —

REG. FUNCTION

HARDWARE VECTOR

SOFTWARE VECTOR

EDGE/LEVEL TRIGGERING

TRIGGERING POLARITY

INTERRUPTS PENDING

INTERRUPTS IN-SERVICE

INTERRUPT MASK

CASCADED SOURCE

FIRST PRIORITY

MODE CONTROL

OUTPUT CLOCK ASSIGNMENT

COUNTER INTERRUPT POINTER

PORT DATA

INTERRUPT/PORT SELECT

PORT DIRECTION

COUNTER CONTROL

COUNTER INTERRUPT CONTROL

L-COUNTER STARTING VALUE

H-COUNTER STARTING VALUE

L-COUNTER CURRENT VALUE

H-COUNTER CURRENT VALUE

Figure 12. ICU Internal Registers
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3.5.2.6

.1 HVCT — Hardware Vector Register (RO)

The HVCT register is a single register that contains the interrupt vector byte supplied
to the CPU during an Interrupt-Acknowledge (INTA) or Return-from-Interrupt (RETI)
cycle. The HVCT bit map is shown below:

7 6 5 4 3 2 1 0

B B B B \ \ \ \

The BBBB field is the bias which is programmed by writing BBBBOO0O2 to the SVCT
register (R1). The VVVV field identifies one of the 16 interrupt positions. The HVCT
register provides various information to the CPU, as shown in Table 1.

Note:

The ICU always interprets a read of the HVCT register as either an INTA or RETI cycle.
Since these cycles cause internal changes to the ICU, normal programs must never
read the ICU HVCT register.

Table 1. HVCT Register Data Coding

INTA CYCLE (ST1=0) RET!I CYCLE (ST1=1)
Highest priority pending interrupt is from: Highest priority in-service interrupt was from:
BB cascaded ICU any other source cascaded ICU any other source
1M1 programmed bias* 1M1 programmed bias*
VWV encoded value of the highest encoded value of the highest
priority pending interrupt priority in-service interrupt
*The Programmed bias for the master ICU must range from 0000 to 01115 because the CPU interprets a one in the

most significant bit position as a Cascade Table Index indicator for a cascaded ICU.

3.56.2.6.2 SVCT — Software Vector Register (R1)
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The SVCT register contains a copy of the value stored in the HVCT register. This allows
the programmer to read the contents of the HVCT register without initiating an INTA
or RETI cycle in the ICU. It also allows a programmer to change the BBBB field of the
HVCT register. The bit map of the SVCT register is the same as for the HVCT register.

During a write to the SVCT register, the four least significant bits are unaffected and
the four most significant bits are written into both SVCT and HVCT (R1 and RO).

The SVCT register is continuously updated by the ICU. The four least significant bits
always contain the vector value that would be returned to the CPU if an INTA or RETI
cycle were executed. Therefore, when reading the SVCT register, the state of the CPU
ST1 pinis used to select either pending interrupt data or in-service interrupt data. For
example, if the SVCT register is read with ST1 = O (as for an INTA cycle), the VVVV
field contains the encoded value of the highest priority pending interrupt. On the other
hand, if the SVCT register is read with ST1 = 1, the VVVYV field contains the encoded
value of the highest priority in-service interrupt.



Note:

If the CPU ST1 output is connected directly to the ICU ST1 input, the vector read
from SVCT is always the RETI vector. If both the INTA and RETI vectors are desired,
additional logic must be added to drive the ICU ST1 input. A typical circuit is shown
in Figure 13. In this circuit, the state of the ICU ST1 input is controlled by both the
CPU ST1 output and the selected address bit.

ST1

—O) sT1
CPU ]| A5 OR A6 Icu

Figure 13. Typical Circuit to Show RETI and INTA Vector Capability

3.5.2.6.3 ELTG — Edge/Level Triggering Registers (R2, R3)

The ELTG registers determine the input trigger mode for each of the 16 interrupt inputs.
Each input is assigned a bit in this register pair. An interrupt input is level-triggered
if its bit in ELTG is set to 1. The input is edge-triggered if its bit is cleared. At reset,
all bits in ELTG are set to 1.

Software interrupt positions are not affected by the state of their ELTG bits.
3.5.2.6.4 TPL — Triggering Polarity Registers (R4, R5)

The TPL registers determine the polarity of either the active level or the active edge
for each of the 16 interrupt inputs. As with the ELTG registers, each input is assigned
a bit. Possible triggering modes for the various combinations of ELTG and TPL bits
are shown below.

ELTG BIT TPL BIT TRIGGERING MODE

0] 0 Falling Edge
0 1 Rising Edge
1 (¢} Low Level
1 1 High Level

Ti32202W Interrupt Control Uni H

Software interrupt positions are not affected by their TPL bits. At reset, all TPL bits
are set to O.

Note:
Hardware interrupt inputs connected to cascaded ICUs must have their TPL bits set
to O.

3.5.2.6.5 IPND — Interrupt Pending Registers (R6, R7)

The IPND registers track interrupt requests that are pending but not yet serviced. Each
interrupt position is assigned a bit in IPND. When an interrupt is pending, the
corresponding bit in IPND is set. The IPND data are used by the ICU to generate
interrupts to the CPU. These data are also used in polling operations.
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The IPND registers are also used for requesting software interrupts. This is done by
writing specially formatted data bytes to either IPND(L) or IPND(H). The formats differ
for registers R6 and R7. These formats are shown below:

IPND(L) (R6) —SOO00PPP
IPND(H) (R7)—S0001PPP

Where:

S = Set (S = 1) or Clear (S = 0)
PPP = is a binary number identifying one of eight bits

Note:

The data read from either R6 or R7 are different from that written to the register because
the ICU returns the register contents rather than the formatted byte used to set the
register bits.

The ICU automatically clears a set IPND bit when the pending interrupt request is
serviced. All pending interrupts in a register can be cleared by writing the pattern
XTXXXXXX' to it (X = don't care). To avoid conflicts with asynchronous hardware
interrupt requests, the IPND registers should be frozen before pending interrupts are
cleared. Refer to the Mode Control Register description for details on freezing the IPND
registers.

At reset, all IPND bits are set to O.

Note:

The edge sensing mechanism used for hardware interrupts in the TI32202W ICU is
a latching device that can be cleared only by acknowledging the interrupt or by changing
the trigger mode to level sensing. Therefore, before clearing pending interrupts in the
IPND registers, any edge-triggered interrupt inputs must first be switched to the level-
triggered mode. This clears the edge-triggered interrupts; the remaining interrupts can
then be cleared in the manner described above. This applies to clearing the interrupts
only. Edge-triggered interrupts can be set without changing the trigger mode.

13.5.2.6.6 ISRV — Interrupt In-Service Registers (R8, R9)

The ISRV registers track interrupt requests that are currently being serviced. Each
interrupt position is assigned a bit in ISRV. When an interrupt request is serviced by
the ICU, its corresponding bit is set in the ISRV registers. Before generating an interrupt
to the CPU, the ICU checks the ISRV registers to ensure that no higher priority interrupt
is currently being serviced.

Each time the CPU executes an RETI instruction, the ICU clears the ISRV bit
corresponding to the highest priority interrupt in service. The ISRV registers can also
be written into by the CPU. This is done to implement the special mask priority mode.

At reset, the ISRV registers are set to O.

3.5.2.6.7 IMSK — Interrupt Mask Registers (R10, R11)
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Each TI32202W interrupt position can be individually masked. A masked interrupt
source is not acknowledged by the ICU. The IMSK registers store a mask bit for each
of the ICU interrupt positions. If an interrupt position’s IMSK bit is set to 1, the position
is masked.



The IMSK registers are controlled by the system software. At reset, all IMSK bits are
set to 1, disabling all interrupts.

3.5.2.6.8 CSRC — Cascaded Source Registers (R12, R13)

The CSRC registers track any cascaded interrupt positions. Each interrupt position
is assigned a bit in the CSRC registers. If an interrupt position’s CSRC bit is set, that
position is connected to the INT output of another TI32202W ICU, i.e., it is a cascaded
interrupt.

At reset, the CSRC registers are set to O.

Note:
Only the Master ICU should have any CSRC bits set. If CSRC bits are set in a cascaded
ICU, incorrect operation results.

3.6.2.6.9 FPRT — First Priority Registers (R14, R15)

The FPRT registers track the ICU interrupt position that currently holds first priority.
Only one bit of the FPRT registers is set at one time. The set bit indicates the interrupt
position with first (highest) priority. .

w

The FPRT registers are automatically updated when the ICU is in the auto-rotate mode.
The first priority interrupt can be determined by reading the FPRT registers. This
operation returns a 16-bit word with only one bit set. An interrupt position can be
assigned first priority by writing a formatted data byte to the FPRT(L) register. The
format is shown below:

5 4 3 2 1 0
X X X X F F F

T132202W Interrupt Control Unit

Where:
XXXX = Don’t Care
FFFF = A binary number from O to 15 indicating the interrupt
position assigned first priority.
Note:
The byte above is written only to the FPRT(L) register. Any data written to FPRT(H)
is ignored.

At reset the FFFF field is set to O, thus giving interrupt position O first priority.
3.5.2.6.10 MCTL — Mode Control Register (R16)

The contents of the MCTL set the operating mode of the TI32202W ICU. The MCTL
bit map is shown below.

7 6 5 4 3 2 1 0
| CFRY | coum] COUTM ] CLKM [ FRZ lunused ]NTAR [T16N8|
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CFRZ

COuUTD

COUTM

CLKM

FRZ

NTAR

T16N8

Determines whether or not the TI32202W counter readings are frozen. When
frozen, the counters continue counting but the LCCV and HCCV registers
are not updated. Reading of the true value of LCCV and HCCV is possible
only while they are frozen.

CFRZ = 0, then LCCV and HCCV are not frozen
CFRZ = 1, then LCCV and HCCV are frozen

Determines whether the COUT/SCIN pin is an input or an output. COUT/SCIN
should be used as an input only for testing purposes. In this case an external
sampling clock must be provided otherwise hardware interrupts will not be
recognized.

COUTD = 0, then COUT/SCIN is Output
COUTD = 1, then COUT/SCIN is Input

When the COUT/SCIN pin is programmed as an output (COUTD = 0), this
bit determines whether the output signal is in pulsed form or in square wave
form.

COUTM
COUTM

Il

0, then Square Waveform
1, then Pulsed Form

It

Used only in the 8-bit bus mode. This bit controls the clock wave form on
any of the pins GO/IRO,...,G3/IR6 programmed as counter output.

CLKM = 0, then Square Waveform
CLKM = 1, then Pulsed Form

Freeze Bit. In order to allow a synchronous reading of the interrupt pending
registers (IPND), their status may be frozen, causing the ICU to ignore
incoming requests. This is of special importance if a polling method is used.

FRZ 0, then IPND not frozen

FRZ 1, then IPND frozen

Determines whether the ICU is in the auto-rotate or fixed-priority mode. In
auto-rotate mode, the interrupt source at the highest priority position, after
being serviced, is automatically assigned lowest priority. In this mode, the
interrupt in service always has highest priority and nesting of interrupts is
therefore inhibited.

NTAR = 0, then Auto-Rotate Mode
NTAR 1, then Fixed Mode

Il

Il

Controls the data bus mode of operation.

T16N8 0, then 8-Bit Bus Mode
T16N8 0, then 16-Bit Bus Mode

i

I

At reset, all MCTL bits except COUTD, are reset to 0. COUTD is set to 1.

3.5.2.6.11 OCASN — Output Clock Assignment Register (R17)

Used only in the 8-bit Bus Mode. The four least significant bits of this register control
the output clock assignments on pins GO/IRO,...,G3/IR6. If any of these bits is set
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to 1, the clock generated by either the H-Counter or the H + L-Counter will be output
to the corresponding pin. The four most significant bits of OCASN are not used. At
Reset, the four least significant bits are set to O.

Note: .
The interrupt sensing mechanism on pins GO/IRO,...,G3/IR6 is not disabled when any

. of these pins is programmed as clock output. Thus, to avoid spurious interrupts, the

3.5.2.6.

3.5.2.6.

3.5.2.6.

corresponding bits in register IPS should also be set to zero.

12 CIPTR — Counter Interrupt Pointer Register (R18)

The CIPTR register tracks the assignment of counter outputs to interrupt positions.
A bit map of this register is shown below.

7 6 5 4 3 2 1 0
EIEI N NN

Where:

HHHH = A 4-bit binary number identifying the interrupt position
assigned to the H-Counter (or the H + L-Counter if the
counters are concatenated).

LLLL = A 4-bit binary number identifying the interrupt position
assigned to the L-Counter.

Note:

Assignment of a counter output to an interrupt position also requires control bits
to be setin the CICTL register. If a counter output is assigned to an interrupt position,
external hardware interrupts at that position are ignored.

At reset, all bits in the CIPTR are set to 1. (This means both counters are assigned
to interrupt position 15.)

13 PDAT — Port Data Register (R19)

Used only in the 8-bit Bus Mode. This register is used to input or output data through
any of the pins GO/IRO,...,G7/IR14 programmed as 1/O ports by the IPS register. Any
pin programmed as an output delivers the data written into PDAT. The input pins ignore
it. Reading PDAT provides the logical value of all I/0 pins, INPUT and OUTPUT.

14 IPS — Interrupt/Port Select Register (R20)

Used only in the 8-bit Bus Mode. This register controls the function of the pins
GO/IRO,...,G7/IR14. Each of these pins is individually programmed as an /O port, if
the corresponding bit of IPS is O; as an interrupt source, if the corresponding bit is
1. The assignment of the H-Counter output to GO/IRO,...,G3/IR6 by means of reg.
OCASN overrides the assignment to these pins as 1/O ports or interrupt inputs.

At Reset, all the IPS bits are set to 1.

Note:

Whenever a bit in the IPS register is set to zero, to program the corresponding pin
as an 1/0 port, any pending interrupt on the corresponding interrupt position will be
cleared.
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15 PDIR — Port Direction Register (R21)

Used only in the 8-bit bus mode. This register determines the direction of any of the
pins GO/IRO,...,G7/IR14 programmed as /O ports by the IPS register. A logic 1 indicates
an input, while a logic O indicates an output.

At Reset, all the PDIR bits are set to 1.
16 CCTL — Counter Control Register (R22)

The CCTL register controls the operating modes of the counters. A bit map of CCTL
is shown below.

7 6 5 4 3 2 1 0
P:CON ] CFNPS | CouT1 | COUTO‘ICRUNH | CRUNL[CDCRH |cocR |

CCON Determines whether the counters are independent or concatenated to form
a single 32-bit counter (H + L-Counter). If a 32-bit counter is selected,
the bits corresponding to the H-Counter will control the H + L-Counter,
while the bits corresponding to the L-Counter are not used.

CCON
CCON

0, then Two 16-bit Counters
1, then One 32-bit Counter

I

CFNPS Determines whether the external clock is prescaled or not.

CFNPS = 0, then Clock Prescaled (divided by 4)
CFNPS = 1, then Clock Not Prescaled.

COUT1 & These bits are effective only when the COUT/SCIN pin is programmed
COUTO as an output (COUTD bit in reg. MCTL is 0). Their logic levels are decoded
to provide different outputs for COUT/SCIN, as detailed in the table below:

CouT1 COUTO | COUT/SCIN Output Signal
0 0 Internal Sampling Oscillator
0 1 Zero Detect Of L-Counter
1 0 Zero Detect Of H-Counter
1 1 Zero Detect Of H + L-Counter

If the H- and L-Counters are not concatenated and COUT1/COUTO are both 1, the
COUT/SCIN pin is active when either counter reaches zero.

CRUNH Determines the state of either the H-Counter or the H + L-Counter,
depending upon the status of CCON.

CRUNH
CRUNH

CRUNL  Effective only when CCON = 0. This bit determines whether the L-Counter
is running or halted.

CRUNL
CRUNL

0, then H-Counter or H + L-Counter Halted
1, then H-Counter or H + L-Counter Running

1]

0, then L-Counter Halted
1, then L-Counter Running

il

I
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CDCRH Effective only when CRUNH = O (Counter Halted). This bit is the single cycle
decrement signal for either the H-Counter or the H + L-Counter.

CDCRH = 0, then No Effect .
CDCRH 1, then Decrement H-Counter or H + L-Counter

CDCRL  Effective only when CRUNL = 0 and CCON = 0. This bit is the single cycle
decrement signal for the L-Counter.

CDCRL = 0, then No Effect
CDCRL 1, then Decrement L-Counter

Note:

The bits CDCRL and CDCRH are set when a logic 1 is written into them, but they are
automatically cleared after the end of the write operation. This is needed to accomplish
the decrement operation. Therefore, these bits always contain 0 when read.

Reset does not affect the CCTL bits.
17 CICTL — Counter Interrupt Control Register (R23)

The CICTL register controls the counter interrupts and records counter interrupt status.
Interrupts can be generated from either of the 16-bit counters. When the counters
are concatenated, the interrupt control is through the H-Counter control bits. In this
case the CIEL bit should be set to zero to avoid spurious interrupts from the L-Counter.
A bit map of the CICTL register is shown following.

7 6 5 4 3 2 1 0
CERH | CIRH | CIEH | WENH | CERL | CIRL | CIEL | WENL

CERH H-Counter Error Flag. This bit is set (1) when a second interrupt request from
the H-Counter (or H + L-Counter) occurs before the first request is
acknowledged.

CIRH H-Counter Interrupt Request. This bit is set (1) when an interrupt is pending

from the H-Counter (or H + L-Counter). It is automatically reset when the
interrupt is acknowledged.

CIEH H-Counter Interrupt Enable. When it is set, the H-Counter (or H + L-Counter)
interrupt is enabled.

WENH H-Counter Control Write Enable. When WENH is set to 1, bits CERH, CIRH,
and CIEH can be written.

CERL L-Counter Error Flag. This bit is set to 1 when a second interrupt request
from the L-Counter occurs before the first request is acknowledged.

CIRL L-Counter Interrupt Request. This bit is set to 1 when an interrupt is pending
from the L-Counter. It is automatically reset when the interrupt is
acknowledged. ‘

CIEL L-Counter Interrupt Enable. When this bit is set (1), the L-Counter interrupt
is enabled.
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WENL L-Counter Control Write Enable. When WENL is set to 1, bits CERL, CIRL,
and CIEL can be written.

Note:

Setting the write enable bits (WENH or WENL) and writing any of the other CICTL
bits are concurrent operations. That is, the ICU will ignore any attempt to alter CICTL
bits if the proper write enable bit is not set in the data byte.

At reset, all CICTL bits are set to 0. However, if the counters are running, the'bits
CIRL, CERL, CIRH, and CERH may be set again after the reset signal is removed.

3.5.2.6.18 LCSV/HCSV — L-Counter Starting Value/H-Counter Current Value Registers (R24,

R25, R26, and R27)

The LCSV and HCSV registers store the start values for the L-Counter and H-Counter,
respectively. Each time a counter reaches zero, the start value is automatically reloaded
from either LCSV or HCSV, one clock cycle after zero count is reached. Loading LCSV
or HCSV from the CPU must be synchronized to avoid writing the registers while the

- reloading of the counters is occurring. One method is to halt the counters while the

3.5.2.6.

3.5.2.6.
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registers are loaded.

When the 16-bit counters are co\kncatenated, the LCSV and HCSV registers hold the
32-bit start count, with the least significant byte in R24 and the most significant byte
in R27.

19 LCCV/HCCV = L-Counter Current Value/H-Counter Current Value Registers (R28,
R29, R30, and R31)

The LCCV and HCCV registers hold the current value of the counters. If the CFRZ
bit in the MCTL register is reset (0), these registers are updated on each clock cycle
with the current value of the counters. LCCV and HCCV can be read only when the
counter readings are frozen (CFRZ bit in the MCTL register is 1). They can be written
only when the counters are halted (CRUNL and/or CRUNH bits in the CCTL register
are 0). This last feature allows new initial count values to be loaded immediately into
the counters, and can be used during initialization to avoid long initial counts.

When the 16-bit counters are concatenated, the LCCV and HCCV registers hold the
32-bit current value, with the least significant byte in R28 and the most significant
byte in R31.

20 Register Initialization

Flgure 14 shows a recommended initialization procedure for the ICU that sets up all
the ICU registers for proper operation.



RESET

INITIALIZE MCTL
LEAVING COUTD
BIT AT LOGIC 1

v

HALT COUNTERS
BY CLEARING
BITS CRUNL AND
CRUNH IN
REG. CCTL

COUNTERS
USED?

INITIALIZE
LCSV, HCSV
AND CIPTR

L .

WRITE COUNTER'’S
STARTING VALUES
INTO LCCV AND
HCCV TO AVOID
LONG INITIAL
COUNTS

v

INITIALIZE
CICTL

8-BIT
BUS MODE
SELECTED?

INITIALIZE
IPS, PDIR, OCASN,
PDAT

NO

O

ANY
CASCADED
ICU
PRESENT?

l INITIALIZE CSRC J

INITIALIZE SVCT,
ELTG, TPL, FPRT

NO

YES

RESET COUTD BIT
IN MCTL TO
PROGRAM COUT/SCIN
PIN AS AN OUTPUT
AND ENABLE THE
INTERNAL INTERRUPT
SAMPLING CLOCK

COUNTERS
USED?

YES

START COUNTERS
BY SETTING BITS
CRUNL AND/OR
CRUNH IN REG. CCTL

l INITIALIZE IMSK

]

EXIT

Figure 14. Recommended ICU’s Initialization Sequénce
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3.6 TI32201 Timing Control Unit (TCU)

3.6.1

3.6.2

Power and Grounding

The T132201 requires a single +5-V power supply, applied to pin 24 (V). See the
recommended operating characteristics in the TI32201 data sheet. The logic Ground
(GND) pin 12 is the common terminal for the TCU.

A 0.1-uF ceramic decoupling capacitor must be connected across Vcc and GND as
close to the TCU as possible.

Crystal Oscillator Characteristics

The TI132201 has a '"Pierce’’-type oscillator. Connections of the crystal and bias
components to XIN and XOUT are shown in Figure 1. It is important that the crystal
and the RC components be mounted in close proximity to the XIN, XOUT, and Vcc
pins to keep printed circuit trace lengths to an absolute minimum.

Typical Crystal Specifications:

TYDE At-Cut
Tolerance . . . .. ... 0.005% at 25°C
Stability .. ... 0.01% from 0°C to 70°C
Resonance . . .. ... ... ... Fundamental (parallel)
Capacitance . . . . . ... ... 20 pF.
Maximum Series Resistance . . . .. ... ... ... ... ... 50
Vce
o 30 pF
14
Xout L’VWJ\ CRYSTAL
FREQUENCY R
(MHz) (OHM)
7132201 = 612 470
TCU F 12-18 220
18-24 100
24-30 47
XIN {13)

Figure 1. Crystal Connection
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3.6.3 Clocks

- 3.6.4

3.6.5

3-188

The T132201 TCU has four clock output pins. The CLK1 and CLK2 clocks are required
by. the T132000 family microprocessor CPUs. These clocks are nonoverlapping as
shown in Figure 2.

- Each rising edge of C'LK1«defines a transition in the timing state of the CPU.

ONE
l4— T-STATE—p)

U

Figure 2. CLK1 and CLK2 Clock Signals

NONOVERLAPPING

As the TCU generates the various clock signals with very short transition timings, it
is recommended that the conductors carrying CLK1 and CLK2 be kept as short as
possible. It is also recommended that only the TI32000 CPU and, if used, the MMU
(Memory Management Unit) be connected to the CLK1 and CLK2 clocks. In addition
to the CPU and MMU, 25-pF ceramic capacitors from these pins to ground are
recommended as they provide a better VgH on the outputs. These capacitors should
be mounted close to the TCU to minimize trace inductances.

CTTL is a TTL compatible clock signal which runs at the same frequency as CLK1
and is closely balanced with it. CTTL is intended for driving TTL loads.

FCLK is also a TTL compatible clock, running at the frequency of XIN input. This clock
is also intended for driving TTL loads and has a frequency that is twice the CTTL clock -
frequency. The exact phase relationship between CLK1, CLK2, CTTL, and FCLK can
be found in the TI32201 data sheet.

Resetting
The T132201 TCU provides circuitry to meet the reset requirements of the TI32000

- family CPUs. If the Reset Input line, RSTl is pulled low, the TCU asserts RSTO which

resets the TI32000 CPU. This Reset Output may also be used as a system reset signal.
Figure Jiillustrates the reset connections for a non-Memory-Managed system. Figure 4
illustrates the reset connections for a Memory-Managed system.

Synchronizing Two or More TCUs

During reset, (when RSTO is low), one or more TCUs can be synchronized with a
reference (Master) TCU. The RWEN/SYNC input to the slave TCU(s) is used for
synchronization. The Slave TCU samples the RWEN/SYNC input on the rising edge



3.6.6

Vece

TCU CPU
Ti32201 TI132016T
oo —————
|
| RESET RSTI RSTO RST/ABT
|

EXTERNAL RESET

(OPTIONAL) 250 ps

SYSTEM RESET

RESET SWITCH
(OPTIONAL)

Figure 3. Recommended Reset Connections
(Non-Memory Managed System)

TCU MMU CpPU
T132201 Ti32082w Ti32016T

r======—17
| |

) RESET RSTI RSTO p—O|RST  ABT o—O| RST/ABT
|
[T I _I
EXTERNAL RESET 250 us
(OPTIONAL) =30
RESET SWITCH
{OPTIONAL)

Figure 4. Recommended Reset Connections
(Memory-Managed System)

of FCLK when RSTO is low and CTTL is high (see Figure 7). If RWEN/SYNC is sampled
high, the phase of CTTL of the slave TCU is sh‘ifted by one XIN clock cycle.

Two possible circuits for TCU synchronization are illustrated in Figures 5 and 6. It should
be noted that when RWEN/SYNC is high, the RD and WR signals will be in the off-
state (high-impedance state) at the slave TCU.

In addition to synchronizing two or more TCUs, the RWEN/SYNC input can be used
to ‘’fix"’ the phase of one TCU to an external pulse. The pulse to be used must be
high for only one rising edge of FCLK. Independent of CTTL's state at the FCLK rising
edge, its state following the next FCLK rising edge should be low. Figure 8 shows
the timing of this sequence.

Bus Cycles

In addition to providing all the necessary clock signals, the TI32201 TCU provides
bus control signals to the system. The TCU senses the ADS signal from the CPU or
MMU to start a bus cycle. The DDIN input signal is also sampled to determine whether
a Read or Write cycle is to be generated. In addition to RD and WR, other signals are
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MASTER
“TCU
(13)
XIN CTTL (6
AsTo |2,
SLAVE
TCU
EXTERNAL (13) L XN RWE‘N/SYNC
CLOCK ) &

Figure 5. Slave TCU Does Not Use RWEN During Normal Operation

MASTER
TCU
13 :
a3 XIN CTTL (16)
— 8
RSTO
SLAVE
-TCU e
RWEN/SYNC
EXTERNAL (13)
__L.__ XIN <4
CLOCK > (2)

NOTE: When two or more TCUs are to be synchronized, the XIN of all the TCUs should be connected to an
external clock source. For details on the external clock, see the TI32201 TCU data sheet.

Figure 6. TCU Uses Both SYNC and RWEN

provided: DBE and TSO. DBE is used to enable data buffers. The leading edge of DBE
is delayed a half clock period during Read cycles to avoid bus conflicts between data
buffers and either the CPU or the MMU. This is shown in Figure 9.

The Timing State Output (TSO) is a general purpose signal that may be used by external
logic for synchronizing to a System cycle. TSO is activated at the beginning of state
T2 and returns to the high level at the beginning of state T4 of the CPU cycle. TSO
can be used to gate the CWAIT signal when continuous waits are required. Another
application of TSO is the control of interface circuitry for dynamic RAMs.



CTTL(s) \ / \ PHASE CHANGE / \ /

4 v

RWEN/SYNC / \ / \ / \
RSTI \

RSTO \

Figure 7. Synchronizing Two TCUs

RWEN/SYNC / \
e Y00\

Figure 8. Synchronizing One TCU to an External Pulse

3.6.7 Bus Cycle Extension

The T132201 TCU uses the WAITn input signals to extend normal bus cycles. A normal
bus cycle consists of four CLK1 clock cycles. Whenever one or more WAITn inputs
to the TCU are activated, a bus cycle is extended by at least one CLK1 clock cycle.
The purpose is to allow the CPU to access slow memories or peripherals. The TCU
responds to the Wait signals by pdﬂing the RDY signal low as long as Wait States
are to be inserted in the bus cycle.

There are three basic cycle extension modes provided by the TCU, as described in
the following.

3.6.7.1 Normal Wait-States

This is a normal Wait-State insertion mode. It is initiated by pulling CWAIT or any of
the WAITnh lines low in the middle of T2. Figure 10 shows the timing diagam of a bus
cycle whern CWAIT is sampled high at the end of T1 and low in the middle of T2.

The RDY signal goes low during T2 and remains low until CWAIT is sampled high by
the TCU. RDY is pulled high by the TCU during the same CLK1 cycle in which the
CWAIT line is sampled high.
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CPU STATES T1 T2 T3 T4
TCU STATES T T2 T3 T4

- NN N

gl
C

l

-
[72)
o

-I--ﬂ
DDIN ‘ '

] [}
RD \ [}
J W I
- A
DBE \
‘ .
RDY HIGH

NOTES: 1. The CPU and TCU view some timing states (T-states) differently. For clarity, references to
T-states will sometimes be followed by (TCU) or (CPU). (CPU) also implies (MMU).
2. Arrows indicate when the TCU samples the input.
3. RWEN is assumed low (RD and WR enabled) unless specified differently. -
4. For clarity, T-states for both the TCU and CPU are shown above the diagrams. (See Note 1).

Figure 9. Basic TCU Cycle (Fast Cycle)
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CPU STATES T T2 T3 ... T3 T3 T4
TCU STATES T T2 TCW ... TCW T3 T4

Jh AN AW AN AW AW

b 27

‘ ) e}
DDIN ‘
— L— — —— —Jf-——b ——————— po S — —t

-
e \\ | /
1 VA

CWAIT

T
N
\

U LT
] .

NN

%

N\

N\

=200 U077

B

RDY \-
el

Figure 10. Wait-State Insertion Using CWAIT (Fast Cycle)
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If any of the WAITn signals are sampled low during T2 and CWAIT is high during the
entire bus cycle, then the RDY Line goes low for 1 to 15 clock cycles, depending on
the binary weighted value of WAITn. If, for example, WAIT1 and WAIT4 are sampled
low, then five Wait-States will be inserted. This is shown'in Figure 11.

CPU STATES T T2 T3 T3 T3 T3 T4

TCU STATES T T2 TW1 TW2........ TWn T3 T4
JF\_AF\JF\_JF\JF\JF\JF\_JF
TSO

= P
DDIN ' ,
e L—————————-‘*————dn———n‘

_—-——F‘——-.——————-A-‘f—————
WR

\ h
| WP EpVE [P I S g |

- \ _ [
7 Yt ’ ¥ % ;L % 7
=771 G 00 VI O] O

‘
= 000, BT 7
\ |

Figure 11. Wait-State Insertion Using WAITn (Fast Cycle)

|
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3.6.7.2 Peripheral Cycle.

This cycle is entered when the PER signal line is sampled low at the beginning of T2.
The TCU adds five Wait-States identified as TDO-TD4 into a normal bus cycle. The
RD and WR signals are also reshaped so the setup and hold times for address and
data will be increased. The use of the PER signal may be necessary when interfacing
with slower peripherals. Figure 12 shows the timing diagram of a peripheral cycle.

3.6.7.3 Cycle Hold.

If the CWAIT input is sampled low at the end of state T1, the TCU will go into cycle
hold mode and stay in this mode for as long as CWAIT is kept low. During this mode
the control signals RD, WR, TSO, and DBE are kept inactive; RDY is pulled low, thus
causing Wait-States to be inserted into the bus cycle. The cycle hold feature can be
used in applications involving dynamic RAMs. A timing diagram showing the cycle

hold feature is shown in Figure 13.

CPU STATES T1 T2 T3 T3 T3 T3 T3 T3 T4

TCU STATES T1 T2 TDO TD1 TD2 D3 TD4 T3 T4

SN AR Al AW W AW AW AW :
=T\

TSO

--
DDIN ‘
— b ] — — - — | — = -] — — - - e | - - — - el —— = e ——

DBE

- T
R 207\ 7772772777720 772,

Lo o=

'—’

RDY \ . [

Figure 12. Peripheral Cycle
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3.6.8

3.6.9

Bus Cycle Extension Combinations

Any combination of the TCU input signals used for extending a bus cycle can be
activated at one time. The TCU will honor all of the requests according to a certain
priority scheme. A cycle hold request is assigned top priority. It follows a peripheral
cycle request, and then CWAIT and WAITn respectively. '

If, for example, all the input signals CWAIT, PER, and WAITnh are asserted at the
beginning of the cycle, the TCU will enter the cycle hold mode. As soon as CWAIT
goes high, the input signalFE—ﬁ is sampled to determine whether a peripheral cycle
i§ requested.

Next, the TCU samples CWAIT again and WAITn to check whether additional Wait-
States have to be inserted into the bus cycle. This sampling point depends on whether
PER was sampled high or low. If PER was sampled high, then the sampling point will
be in the middle of the TCU state T2, (Figure 16), otherwise it will occur three clock
cycles later (Figure 17). Figures 14 through 17 show the timing diagrams for different
combinations of cycle extensions.

Overriding WAITn Wait-States

The TCU handles the WAITn Wait-States by means of an internal counter that is
reloaded with the binary value corresponding to the state of the WAITn inputs each
time CWAIT is sampled low, and is decremented when CWAIT is high.

This allows one to either extend a bus cycle by a predefined number of clock cycles,
or prematurely terminate it. To terminate a bus cycle, for example, CWAIT must be
asserted for at least one clock cycle, and the WAITn inputs must be forced to their
inactive state.

At least one Wait-State is always inserted when using this procedure as a result of
CWAIT being sampled low. Figure 18 shows the timing diagram of a prematurely
terminated bus cycle where eleven Wait-States were inserted. ;
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