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INTRODUCTION 

In this manual, Texas Instruments presents technical information on the TI 
SN74ACT8800 family of 32-bit processor "building block" circuits. The 
SN74ACT8800 family is composed of single-chip VLSI processor functions, all of which 
are designed for high-complexity processing applications. 

This manual includes specifications and operational information on the following high­
performance advanced-CMOS devices: 

• SN 7 4ACT881 8 16-bit microsequencer 
• SN74ACT8832 32-bit registered ALU 
• SN74ACT8836 32- x 32-bit parallel multiplier 
• SN74ACT8837 64-bit floating point processor 
• SN74ACT8841 Digital crossbar switch 
• SN74ACT8847 64-bit floating point/integer processor 

These high-speed devices operate at or above 20 MHz, while providing the low power 
consumption of TI's advanced one-micron EPIC'· CMOS technology. The EPIC'· CMOS 
process combines twin-well structures for increased density with one-micron gate 
lengths for increased speed. 

The SN74ACT8800 Family Data Manual contains design and specification data for 
all five devices previously listed and includes additional programming and operational 
information for the '8818, '8832, and '8837/'8847. Two application notes, 
"Chebyshev Routines for the SN74ACT8847" and "High-speed Vector Math and 3D 
Graphics Using the SN74ACT8837/8847 Floating Point Unit" are also included. 

Introductory sections of the manual include an overview of the '8800 family and a 
summary of the software tools and design support TI offers for the chip-set. The general 
information section includes an explanation of the function tables, parameter 
measurement information, and typical characteristics related to the products listed 
in this volume. 

Package dimensions are given in the Mechanical Data section of the book in metric 
measurement (and parenthetically in inches). 

Complete technical data for any Texas Instruments semicondutor product is available 
from your nearest TI field sales office, local authorized TI distributor, or by calling Texas 
Instruments at 1-800-232-3200. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 

Texas Instruments SN74ACT8800 family of 32-bit processor building blocks has been ~ 
developed to allow the easy, custom design of functionally sophisticated, high- oS; 
performance processor systems. The '8800 family is composed of single-chip, VLSI Cii 
devices, each of which represents an element of a CPU. > o 
Geared for computationally intensive applications, SN74ACT8800 devices include high-
performance ALUs, multipliers, microsequencers, and floating point processors. 

The '8800 chip set provides the performance, functionality, and flexibility to fill the 
most demanding processing needs and is structured to reduce system design cost 
and effort. Most of these high-speed processor functions operate at 20 MHz and above, 
and, at the same time, provide the power savings of TI's advanced, 1 I!m EPICTM CMOS 
technology. 

The family's building block approach allows the easy, "pick-and-choose" creation of 
customized processor systems, while the devices' high level of integration provides 
cost-effectiveness. 

Designed especially for high-complexity processing, the devices in the '8800 family 
offer a range of functional options. Device features include three-port architecture, 
double-precision accuracy, optional pipelined operation, and built-in fault tolerance. 

Array, digital signal, image, and graphics processing can be optimized with '8800 
devices. Other applications are found in supermini and fault-tolerant computers, and 
I/O and network controllers. 

In addition to the high-performance, CMOS processor functions featured in this data 
manual, the family includes several high-speed, low-power bipolar support chips. To 
reduce power dissipation and ensure reliabilty, these bipolar devices use Tl's proprietary 
Schottky Transistor Logic (STL) internal circuitry. 

EPIC is a trademark of Texas Instruments Incorporated. 

1-5 



o 
< 
(1) ... 
< 
CD' 
:e 

At present, TI's '8800 32-bit processor building block family comprises the following 
functions: 

• SN74ACT8818 16-bit micro sequencer 
• SN74ACT8832 32-bit registered ALU 
• SN74ACT8836 32· x 32-bit parallel multiplier 
• SN74ACT8837 64-bit floating point processor 
• SN74ACT8841 digital crossbar switch 
• SN74ACT8847 64-bit floating point and integer processor 
• Bipolar Support Chips 

• SN74AS8838 32-bit barrel shifter 
• SN74AS8839 32-bit shuffle/exchange network 
• SN74AS8840 16 x 4 crossbar switch 

20 MIPS and Low CMOS Power Consumption 

With instruction cycle times of 50 ns or less and the low power consumption of EPIC'· 
CMOS, the '8800 chip set offers an unrivaled speed/power combination. Unlike 
traditional microprocessors, which require multiple cycles to perform an operation, 
the' ACT8800 processors typically can complete instructions in a single cycle. 

The ' ACT8832 registered ALU and ' ACT8818 microsequencer together create a 
powerful 20-MHz CPU. Because instructions can be performed in a single cycle, the 
8832/8818 combination is capable of executing over 20 million instructions per second 
(MIPS). 

For math-intensive applications, the ' ACT8836 fixed-point multiplier/accumulator 
(MAC), , ACT8837 64-bit floating point processor, and' ACT884 7 64-bit floating point 
and integer processor offer unprecedented computational power. 

The exceptional performance of the' ACT8800 family is made possible by TI's EPICTlO 
CMOS technology. The EPIC™ CMOS process combines twin-well structures for 
increased density with one-micron gate lengths for increased speed. 

Customized Solution 

The '8800 family is designed with a variety of architectural and functional options 
to provide maximum design flexibility. These device features allow the creation of 
"customized" solutions with the '8800 chipset. 

A building block approach to processing allows designers to match specialized hardware 
to their specific design needs. The '8818/8832 combination forms the basis of the 
system, a high-speed CPU. For applications requiring high-speed integer multiplication, 
the' ACT8836 can be added. To provide the high precision and large dynamic range 
of floating point numbers, the 'ACT8837 or 'ACT8847 can be employed. 

EPIC is a trademark of Texas Instruments Incorporated. 
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To ensure speed and flexibility, each component of the '8800 family has three data 
ports. Each data port accommodates 32 bits of data, plus four parity bits. This 
architecture eliminates many of the I/O bottlenecks associated with traditional single­
I/O microprocessors. 

The three-port architecture and functional partitioning of the '8800 chip-set opens 3: 
the door to a variety of parallel processing applications. Placing the math and shifting Q) 

functions in parallel with the ALU permits concurrent processing of data. Additional .~ 
processors can be added when performance needs dictate'. ~ 

The 'ACT8800 building block processors are microprogrammable, so that their 
instruction sets can be tailored to a specific application. This high degree of 
programmability offers greater speed and flexibility than a typical microprocessor and 
ensures the most efficient use of hardware. 

A separate control bus eliminates the need for multiplexing instructions and data, further 
reducing processing bottlenecks. The microcode bus width is determined by the 
designer and the application. 

Another source of design flexibility is provided by the pipelined/flowthrough operation 
option. Pipelining can dramatically reduce the time required to perform iterative, or 
sequential, calculations. On the other hand, random or nonsequential algorithms require 
fast flowthrough operations. The '8800 chip set allows the designer to select the mode 
(fully pipelined, partially pipelined, or nonpipelined) most suited to each design. 

Scientific Accuracy 

The '8800 family is designed to support applications which require double-precision 
accuracy. Many scientific applications, such as those in the areas of high-end graphics, 
digital signal processing, and array processing, require such accuracy to maintain data 
integrity. In general-purpose computing applications, floating point processors must 
often support double-precision data formats to maintain compatibility with existing 
software. 

To ensure data integrity, '8800 devices (excluding the barrel shifter and 
microsequencer) support parity checking and generation, as well as master/slave error 
detection. Byte parity checking is performed on the input ports, and a parity generator 
and a master/slave comparator are provided at the output. Fault tolerance is built into 
the processors, ensuring correct device operation without extra logic or costly software. 

1-7 
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The SN74ACT8800 Building Block Processor System 

Some of the high-performance '8800 devices are described in the following paragraphs. 

SN74ACT8818 16-Bit Microsequencer 

~ In a high-performance microcoded system, a fast microcode controller is required to 
~ control the flow of instructions. The SN74ACT8818 is a high-speed, versatile l6-bit 
< microsequencer capable of addressing 64K words of microcode memory. The 
ai' :e ' ACT881 8 can address the next instruction fast enough to support a 50-ns system 

cycle time. 

The' ACT8818 65-word-deep by l6-bit-wide stack is useful for storing subroutine 
return addresses, top of loop addresses, and loop counts. Addresses can be sourced 
from eight different sources: the three I/O ports, the two register counters, the 
microprogram counter, the stack, and the l6-way branch. 

SN74ACT8832 Registered ALU 

The SN74ACT8832 is a 32-bit registered ALU that operates at approximately 20 MHz. 
Because instructions can be performed in a single cycle, the' ACT8832 is capable of 
executing 20 million microinstructions per second. An on-board 64-word register file 
is 36-bits-wide to permit the storage of parity bits. The 3-operand register file increases 
performance by enabling the creation of an instruction and the storage of the previous 
result in a single cycle. To facilitate data transfer, operands stored in the register file 
can be accessed externally, while the ALU is executing. To support the parallel 
processing of data, the' ACT8832 can be configured to operate as four 8-bit ALUs, 
two l6-bit ALUs, or a single 32-bit ALU. The' ACT8832 incorporates 32-bit shifters 
for double-precision shift operations. 

SN74ACT8836 32- x 32-Bit Integer MAC 

The SN74ACT8836 is a 32-bit integer multiplier/accumulator (MAC) that accepts two 
32-bit inputs and computes a 64-bit product. The device can also operate as a 64-bit 
by 64-bit multiplier. An onboard adder is provided to add or subtract the product or 
the complement of the product from the accumulator. 

When pipelined internally, the l.",m CMOS parallel MAC performs a full 32- x 32-bit 
multiply/accumulate in a single 36-ns clock cycle. In flowthrough mode (without any 
pipelining), the' ACT8836 takes 60 ns to multiply two 32-bit numbers. The' ACT8836 
performs a 64- x 64-bit multiply/accumulate, outputting a 64-bit result, in 225 ns. 

The' ACT8836 can handle a wide variety of data types, including two's complement, 
signed, and mixed. Division is supported via the Newton-Raphson algorithm. 

SN74ACT8837 64-Bit Floating Point Unit 

The SN74ACT8837 is a high-speed floating point processor. This single-chip device 
performs 32- or 64-bit floating point operations. 

1-8 



More than just a coprocessor, the' ACT8837 integrates on one chip a double-precision 
floating point ALU and multiplier. Integrating these functions on a single chip reduces 
data routing problems and processing overhead. In addition, three data ports and a 
64-bit internal bus architecture allow for single-cycle operations. 

The' ACT8837 can be pipelined for iterative calculations or can operate with input 
registers disabled for low latency. 

~ 
Q) 

'S; .. 
Q) SN74ACT8841 Digital Crossbar Switch 
> 

The SN74ACT8841 is a single-chip digital crossbar switch. The high-performance 0 
device, cost-effectively eliminates bottlenecks to speed data through complex bus 
architecture. 

The' ACT8841 is ideal for multiprocessor applications, where memory bottlenecks 
tend to occur. The device has 64 bidirectional I/O ports that can be configured as 16 
4-bit ports, 8 8-bit ports, or 4 16-bit ports. Each bidirectional port can be connected 
in any conceivable combination. Any single input port can be broadcast to any 
combination of output ports. The total time for data transfer is 20 ns. 

The control sources for ten separate switching configurations are on-chip, including 
eight banks of programmable control flip-flops and two hard-wired control circuits. 

The EPIC'" CMOS SN74ACT8841 and its predecessor, SN74AS8840, are based on 
the same architecture, differing in power consumption, number of control registers, 
and pin-out. Microcode written for the ' AS8840 can be run on the ' ACT8841 . 

SN74ACT8847 64-Bit Floating Point Unit 

The SN74ACT8847 is a high-speed 64-bit floating point processor. The device is fully 
compatible with IEEE standard 754-1985 for addition, subtraction, multiplication, 
division, square root, and comparison. Division and square root operations are 
implemented via hardwired control. 

The SN74ACT8847 FPU also performs integer arithmetic, logical operations, and logical 
shifts. Registers are provided at the inputs, outputs, and inside the ALU and multiplier 
to support multilevel pipelining. These registers can be bypassed for nonpipelined 
operations. 

When fully pipelined, the' ACT884 7 can perform a double-precision floating point or 
32-bit integer operation in under 40 ns. When in flowthrough mode, the' ACT884 7 
takes less than 100 ns to perform an operation. 

1-9 



Bipolar Support Chips 

The SN74AS8838 high-speed, 32-bit barrel shifter can shift up to 32 bits in a single 
instruction cycle of Linder 25 ns. Five basic shifts can be programmed: circular left, 
circular right, logical left, logical right, and arithmetic right. The' AS8838 offloads the 

~ responsibility for shifting operations from the ALU, which increases shifter functionality 
~ and system throughput. 
< 
(ii' The SN74AS8839 is a 32-bit shuffle/exchange network. The high-speed device can 
:e perform data permutations on one 32-bit, two 16-bit, four 8-bit, or eight 4-bit data 

words in a single instruction cycle of under 25 ns. The shuffle/exchange network is 
designed primarily for use in digital signal processing applications. 

1-10 
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SN74ACT8818 
16·8it Microsequencer 

• Addresses Up to 64K Locations of Microprogram Memory 

• CLK-to-Y = 30 ns (tpd) 

• Low-Power EPIC'· CMOS 

• Addresses Selected from Eight Different Sources 

• Performs Multiway Branching, Conditional Subroutine Calls, and Nested 
Loops 

• Large 65-Word by 16-bit Stack 

• Cascadable 

Because they're microprogrammable, the ACT8800 building block processors provide 
greater speed and flexibility than does a typical microprocessor. In such a high­
performance microcoded system, a fast microsequencer is required to control the flow 
of microinstructions. 

The SN74ACT8818 is a high-speed, versatile 16-bit microsequencer capable of 
addressing 64K words of microcode memory. The' ACT8818 can address the next 
instruction fast enough to support a 50-ns system cycle time. 

The 'ACT8818 65-ward-deep by 16-bit-wide stack is useful for storing subroutine 
return addresses, top-of-Ioop addresses, and loop counts. For added flexibility, 
addresses can be selected from eight different sources: the three I/O ports, the two 
register/counters, the microprogram counter, the stack, and the 16-way branch input. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 

The SN 7 4ACT8818 microsequencer is a low-power, high-performance microsequencer 
implemented in TI's EPICT. Advanced CMOS technology. The 16-bit device addresses 
up to 64K locations of microprogram memory and is compatible with the SN74AS890 
microsequencer. 

The 'ACT8818 performs a range of sequencing operations in support of TI's family 00 
of building block devices and special-purpose processors such as the SN74ACT8847 ~ 
Floating Point Unit (FPU). ~ 

I-
Understanding the ' ACT8818 Microsequencer U 

« 
The' ACT8818 microsequencer is designed to control execution of microcode in a 'I:t 

I' microprogrammed system. Basic architecture of such a system usually incorporates Z 
at least the microsequencer, one or more processing elements such as the' ACT8847 (J) 

FPU or the SN74ACT8832 Registered ALU, microprogram memory, microinstruction 
register, and status logic to monitor system states and provide status inputs to the 
microsequencer. 

The' ACT8818 combines flexibility and high speed in a microsequencer that performs 
multiway branching, conditional subroutine calls, nested loops, and a variety of other 
microprogrammable operations. The' ACT8818 can also be cascaded for providing 
additional register/counters or addressing capability for more complex microcoded 
control functions. 

In this microsequencer, several sources are available for microprogram address 
selection. The primary source is the 16-bit microprogram counter (MPCl, although 
branch addresses may be input on the two 1 6-bit address buses, ORA and ORB. An 
address input on the ORA bus can be pushed on the stack for later selection. 
Register/counters RCA and RCB can store either branch addresses or loop counts as 
needed, either for branch operations or for looping on the stack. 

The selection of address source can be based on external status from the device being 
controlled, so that three-way or multiway branching is supported. Once selected, the 
address which is output on the Y bus passes to the microprogram memory, and the 
microinstruction from the selected location is clocked into the pipeline register at the 
beginning of the next cycle. 

It is also possible to interrupt the' ACT881 8 by placing the Y output bus in a high­
impedance state and forcing an interrupt vector on the Y bus. External logic is required 
to place the bus in high impedance and load the interrupt vector. The first 

EPIC is a trademark of Texas Instruments Incorporated. 
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microinstruction of the interrupt handler subroutine can push the address from the 
Interrupt Return register on the stack so that proper linkage is preserved for the return 
from subroutine. 

Microprogramming the 'ACT8818 

Microinstructions for the' ACT8818 select the specific operations performed by the 
Y output multiplexer, the register/counters RCA and RCB, the stack, and the 
bidirectional DRA and DRB buses. Each set of inputs is represented as a separate field 
in the microinstructions, which control not only the microsequencer but also the ALU 

~ or other devices in the system. 

-...J 
~ » 
C") 

The 3-port architecture of the 'ACT8818 facilitates both branch addressing and 
register/counter operations. Both register/counters can be used to hold either loop 
counts or branch addresses loaded from the DRA and DRB buses. Register/counter 
operations are selected by control inputs RC2-RCO. -t 

CX) 
CX) 
-' Similarly, the 65-word by 16-bit stack can save addresses from the DRA bus, the 
CX) microprogram counter (MPC)' or the Interrupt Return register, depending on the settings 

of stack controls S2-S0 and related control inputs. Flexible instructions such as Branch 
DRA else Branch to Stack else Continue can be coded· to take advantage of the 
conditional branching capability of the 'ACT8818. 

Multiway branching (16- or 32-way) uses the B3-.80 inputs to set up a 16-way branch 
address on DRA or DRB by concatenating B3-BO with the upper 12 bits of the DRA 
or DRB bus. The resulting branch addresses DRA' (DRA 15-DRA4::B3-BO) and DRB' 
(DRB15-DRB4::B3-BO) are selected by the Y output multiplexer controls MUX2-MUXO. 
A Branch DRB' else Branch DRA' instruction can select up to 32 branch addresses, 
as determined by the settings of B3-BO. 

Design Support 

TI's '8818 16-bit microsequencer is supported by a variety of tools developed to aid 
in design evaluation and verification. These tools will streamline all stages of the design 
process, from assessing the operation and performance of the '8818 to evaluating 
a total system application. The tools include a functional model, behavioral model, 
and microcode development software and hardware. Section 8 of this manual provides 
specific information on the design tools supporting Tl's SN74ACT8800 Family. 
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Systems Expertise 

Texas Instruments VLSI Logic applications group is available to help designers analyze 
TI's high-performance VLSI products, such as the '8818 16-bit microsequencer. The 
group works directly with designers to provide ready answers to device-related 
questions and also prepares a variety of applications documentation. 

The group may be reached in Dallas, at (214) 997-3970. 
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'ACT8818 Pin Grid Allocation 
(TOP VIEW) 
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Figure 1. 'ACT8818. . GC Package 
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PIN 
NO. NAME 
A2 RC2 
A3 Y1 
A4 Y3 
A5 Y5 
A6 Y6 
A7 Y8 
A8 Y11 
A9 Y13 
A10 NC 
B1 DRB15 
B2 RC1 
B3 YO 
B4 Y2 
B5 Y4 
B6 YOE 
B7 Y9 
B8 Y12 
B9 Y14 
B10 Y15 
B11 ZEROIN 
C1 DRB14 

Table 1. 'ACT8818 Pin Grid Allocation 

PIN PIN 
NO. NAME NO. NAME NO. 
C2 RCO F3 RBOE J10 
C3 GND F9 BO J11 
C5 GND F10 B1 K1 
C6 Y7 F11 MUX2 K2 
C7 Y10 G1 DRB6 K3 
C9 GND G2 DRB5 K4 
C10 VCC G3 GND K5 
C11 RE G9 CLK K6 
D1 DRB12 G10 MUXO K7 
D2 DRB13 G11 MUX1 K8 
D9 GND H1 DRB4 K9 
D10 COUT H2 DRB3 K10 
D11 INC H10 CC K11 
E1 DRB9 H11 ZEROUT L2 
E2 DRB10 J1 DRB2 L3 
E3 DRB11 J2 DRB1 L4 
E9 INT J3 VCC L5 
E10 B3 J5 GND L6 
E11 B2 J6 RAOE L7 
F1 DRB7 J8 DRA1 L8 
F2 DRB8 J9 GND L9 

L10 

PIN 
NAME 

51 
5TKWRN/RER 
DRBO 
5ELDR 
DRA14 
DRA12 
DRA10 
DRA7 
DRA5 
DRA3 
DRAO 
50 
52 
DRA15 
DRA13 
DRA11 
DRA9 
DRA8 
DRA6 
DRA4 
DRA2 
05EL 
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50 
51 

C/) 
:2 5TKWRN/RER 
-....I ZEROUT .J:Io » ClK 
(") MUXO 
~ MUX1 00 
00 MUX2 .... 

BO 00 
B1 
B2 
B3 

INC 

GNO 

VCC 
ZEROIN 
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(TOP VIEW) 

11109 8 7 6 5 4 3 2 184838281807978777675 
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Figure 2. 'ACT8818 ... FN Package 

74 VCC 
73 ORBO 
72 ORB1 
71 ORB2 
70 ORB3 
69 ORB4 

68 GNO 
67 ORB5 
66 ORB6 
65 ORB7 
64 RBOE 
63 ORBB 
62 ORB9 
61 DRB10 
60 DRB11 
59 DRB12 
58 DRB13 
57 DRB14 
56 DRB15 

55 RCO 
54 RC1 
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16-BIT MICROSEQUENCER 
'ACTBS1S 

CLK MASTER CLOCK 

i I STACK CONTROL 

STACK 

• WARNING FLAG 

• ZERO DETECT 

SO 

S2 

STKWRN/RER 

ZEROUT 

SELDR ORA/ORB INPUT Y -BUS OUTPUT 
....., 

YOE 
MUX SELECT ORA OUTPUT 

....., 
ORA OUTPUT EN ORB OUTPUT 

....., 
MUX SELECT ....., 

INT RT REG 
OSEL 

RAOE ex) 
RBOE or-
RE ex) 

• ~ I REGISTER/COUNTERS INCREMENTER 
• 2 A AND B CONTROLS CARRY-OUT 

INCREMENTER 

r-.... CONDITION CODE CONTROL 

INT RT ..., 

i I BRANCH ADDRESS 

MUX CONTROL 

• • 

RCO 

RC2 

BO 

B3 

ex) 

COUT I-
(.) 

INC <t 
o::t 
I' 

INT :2 
VJ 

~ I V-OUTPUT ZERO SET • • 2 MUX CONTROLS 

MUXO 

MUX2 

ZEROIN 

:i 1: 

DRA15 

. 0 

~ • • ~ • • • • • .... 15 • .. - " • I CURRENT 
ADDRESS .... 

DRAO 

YO 

Y15 

0 

~ 
" • • • • • • 

~r 15 

DRBO 

DRB15 

Figure 3_ 'ACT8818 ... Logic Symbol 
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PIN 

NAME 

BO 

Bl 

B2 

B3 

ClK 

COUT 

CC 

DRAO 

DRAl 

DRA2 

DRA3 

DRA4 

DRA5 

DRA6 

DRA7 

DRA8 

DRA9 

DRA10 

DRAll 

DRA12 

DRA13 

DRA14 

DRA15 

DRBO 

DRBl 

DRB2 

DRB3 

DRB4 

DRB5 

DRB6 

DRB7 

DRB8 

DRB10 
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GC 

NO. 

F9 

FlO 

Ell 

El0 

G9 

Dl0 

Hl0 

K9 

J8 

19 

K8 

l8 

K7 

l7 

K6 

l6 

l5 

K5 

l4 

K4 

l3 

K3 

l2 

Kl 

J2 

Jl 

1i2 

Hl 

G2 

Gl 

Fl 

F2 

E2 

Table 2. 'ACT8818 Pin Functional Description 

FN 

NO. 
I/O DESCRIPTION 

22 

23 I Input bits for branch addressing (see Table 3) 

24 

25 

18 System clock 

Incremerit~r 'carry-out. Goes high when an attempt is 

28 0 made to il")crement microprogram counter beyond 

addressable micromemory. 

15 I Condition code 

9 

8 

7 

6 

5 

4 

3 

2 I/O Bidirectional DRA data port. Outputs data from 

84 stack or register/counter A (RAOE = 0) or inputs 

83 external data (RAOE = 1). 

82 

80 

79 

78 

77 

76 

73 

72 

71 

70 Bidirectional DRB data port. Outputs data from 

69 register/counter B 

67 
I/O 

(RaOE = 0) or inputs external data 

66 

65 

63 

61 



PIN 

NAME 

ORB11 

ORB12 

ORB13 

ORB14 

ORB15 

GNO 

GND 

GND 

GND 

GNO 

GND 

GNO 

INC 

INT 

MUXO 

MUX1 

MUX2 

OSEL 

RAOE 

RBOE 

RCO 

RC1 

RC2 

RE 

SO 

S1 

S2 

SELDR 

STKWRN/ 

RER 

VCC 

VCC 

Table 2. 'ACT8818 Pin Functional Description (Continued) 

GC FN 

NO. NO. 
I/O DESCRIPTION 

E3 60 

01 59 Bidirectional ORB data port. Outputs data from 

02 58 I/O register/counter B (RBOE = 0) or inputs external data 

C1 57 (RBOE = 1). 

B1 56 

C3 10 

C5 30 

C9 33 

09 46 Ground pins. All pins must be used. 

G3 52 

J5 68 

J9 81 

011 27 I Incrementer control pin 

E9 26 I 
Selects INT RT register to stack, active low (see 

Table 3) 

G10 19 

G11 20 I MUX control for Y output bus (see Table 4) 

F11 21 

L10 11 I 
ORA output MUX select. Low selects RCA, high 

selects stack. 

J6 1 I ORA output enable, active low 

F3 64 I ORB output enable, active low 

C2 55 

B2 54 I Controls for register/counters A and B 

A2 53 

INT RT register enable, active low. A high input holds 

C11 29 I INT RT register while a low input passes Y to INT RT 

register (see Table 3). 

K10 12 

J10 13 I Stack controls 

K11 14 

K2 75 I 
Selects data source to ORA bus and ORB bus (See 

Table 3) 

J11 16 0 Stack warning signal flag 

C10 31 

J3 74 
Supply voltage (5 V) 
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PIN 

NAME 

YO 

Y1 

Y2 

Y3 

Y4 

Y5 

Y6 

Y7 

Y8 

Y9 

Y10 

Y11 

Y12 

Y13 

Y14 

Y15 

YOE 

ZEROIN 

ZEROUT 
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Table 2. 'ACT8818 Pin Functional Description (Concluded) 

GC FN 

NO. NO. 
I/O DESCRIPTION 

B3 51 

A3 50 

B4 49 

A4 48 

B5 47 

A5 45 

A6 44 

C6 43 I/O Bidirectional Y data port 

A7 41 

B7 40 

C7 39 

A8 38 

B8 37 

A9 36 

B9 35 

B10 34 

B6 42 I Y output enable, active low 

B11 32 I Forces internal zero detect high 

H11 17 0 Outputs register/counter zero detect signal 



'ACT8818 Specification Tables 

absolute maximum ratings over operating free air temperature range (unless 
otherwise noted) t 

Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, ',K (V,<O or V,>VCC) ................ ±20 mA 

Output clamp current, 10K (VO < 0 or Vo > V CC . . . . . . ± 50 mA 
Continuous output current, 10 (VO = 0 to VCC) . . . . . . ± 50 mA 
Continuous current through VCC or GND pins. . . . . . . . ± 100 mA 

CO 
Operating free-air temperature range. . . . . . . . . . .. 0 DC to 70°C .... 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . .. 65 DC to 1 50 DC 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. 
These are stress ratings only and functional operation of the device at these or any other conditions beyond 
those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum 
rated conditions for extended periods may affect device reliability. . 

recommended operating conditions 

PARAMETER MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5 5.5 V 

V,H High-level input voltage 2 Vee V 

V,L Low-level input voltage 0 0.8 V 

IOH High-level output current -8 mA 

IOL Low-level output current 8 mA 

V, Input voltage 0 Vee V 

Va Output voltage 0 Vee V 

dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 °e 
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electrical characteristjcs over recommended operating free-air temperature 
range (unless otherwise noted) 

TA - 25°C 
PARAMETER TEST CONDITIONS VCC MIN TYP MAX 

MIN TYP MAX UNIT 

4.5 V 4.48 
IOH = -201lA 

5.5 V 5.46 
VOH 4.5 V 4.15 3.76 

V 

IOH = -8 rnA 
5.5 V 4.97 4.76 

4.5 V 0.014 
IOl = 20llA 

5.5 V 0.014 
VOL 4.5 V 0.15 0.45 

V 

IOl = 8 rnA 
5.5 V 0.13 0.45 

II VI = Vee or 0 5.5 V ±1 IlA 

lee VI = Vee or 0 5.5 V 98 200 IlA 

ei VI = Vee or 0 5V 3 pF 

~Ieet 
One input at 3.4 V, other 

5.5 V 1 rnA 
inputs at 0 or Vee 

tThis is the increase in supply current for each input that is at one of thE! specified TTL voltage levels rather 
• than 0 V or Vee. 
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maximum switching characteristics 

TO 
FROM 

PARAMETER (OUTPUT) UNIT 
(INPUT) 

ZEROUT COUT V ORA ORB STKWRN 

CC 23 

27 24 16 25 
CLK 

30 t 23 t 

ORA15-0RAO 23 

ORB15-0RBO 22 

MUX2-MUXO 22 

tpd RC2-RCO 26 18 

S2-S0 25 19 

B3-BO 19 ns 

OSEL 25 20 

ZEROIN 25 

SELOR 23 

INC 20 

Y 16 

YOE 16 

ten RAOE 18 ns 

RBOE 17 

YOE 14 

tdis RAOE 13 ns 

RBOE 14 

tOecrementing register/counter A or B and sensing a zero. 
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setup and hold times 

PARAMETER FROM (INPUT) TO (OUTPUT) MIN MAX UNIT 

CC Stack 15 

Stack 9 

DRA15-DRAO RCA 6 

INT RT 9 

RCB 7 
DRB15-DRBO 

INT RT 11 

INC MPC 7 

INT Stack 7 

Stack 15 

RC2-RCO RCA, RCB 6 

INT RT 16 

Stack 13 
tsu S2-S0 ns 

INT RT 13 

Stack 12 
OSEl 

INT RT 13 

Stack 8 
B3-BO 

INT RT 14 

Stack 10 
SElDR 

INT RT 10 

Stack 14 
ZEROIN 

INT RT 13 

Y MPC 6 

RE INT RT (ClK) 7 

MUX2-MUXO INT RT 12 

th 
Any Any 

0 ns 
Input Destination 

clock requirements 

PARAMETER MIN MAX UNIT 

tw1 Pulse duration, clock low 7 ns 

tw2 Pulse duration, clock high 9 ns 

tc Clock cycle time 33 ns 
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Architecture 

The' ACT8818 microsequencer is designed with a 3-port architecture similar to the 
bipolar SN74AS890 microsequencer. Figure 4 shows the architecture of the 
'ACT8818. The device consists of the following principal functional groups: 

1. A 16-bit microprogram counter (MPC) consisting of a register and 
incrementer which generates the next sequential microprogram address 

2. Two register/counters (RCA and RCB) for counting loops and iterations, 
storing branch addresses, or driving external devices 

3. A 65-word by 16-bit LIFO stack which allows subroutine calls and interrupts CO 
<r­

at the microprogram level and is expandable and readable by external CO 
hardware CO 

4. An interrupt return register and Y output enable for interrupt processing at 
the microinstruction level 

5. A Y output multiplexer by which the next address can be selected from MPC, 
RCA, RCB, external buses ORA and ORB, or the stack. 

'ACT8818 control signals are summarized in Table 3. Those signals, which typically 
originate from the instruction register, are Y output multiplexer controls, MUX2-MUXO. 
These select the source of the next address; stack operation controls, S2-S0; 
register/counter operation controls, RC2-RCO; OSEL, which allows the stack to be 
read for diagnostics; input MUX select, SELDR; ORA and ORB output enables, RAOE 
and RBOE; and INT, used during the first cycle of interrupt service routines to push 
the address in the interrupt return register address onto the stack. 

Control and data signals that commonly originate from the microinstruction and from 
other hardware sources include INC, which determines whether to increment the MPC; 
ORA and ORB, used to load or read loop counters and/or next addresses; and CC, 
the condition code input. The address being loaded into the MPC is not incremented 
if INC is low, allowing wait states and repeat until flag instructions to be implemented. 
If INC originates from status, repeat until flag instructions are possible. 

The condition code input CC typically originates from ALU status to permit test and 
branch instructions. However, it must also be asserted under microprogram control 
to implement other instructions such as continue or loop. Therefore, CC will generally 
be controlled by the output of a status multiplexer. In this case, whether CC is to 
be forced high, forced low or taken from ALU status will be determined by a status 
MUX select field in the microinstruction. 
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Table 3. Response to Control Inputs 

SIGNAL LOGIC LEVEL 

NAME HIGH LOW 

Bot Load stack pointer from 7 least No effect 

significant bits of ORA 

B1t Selects ORA contents as stack No effect 

input (takes priority over INT) 

CC Condition code input. May be Condition code input. For branch 

microcoded or selected from operations, low active. 

external status results. 

INC Increment address from Y bus and Pass address from Y bus to MPC 

load into MPC unincremented. 

INT:!: Selects MPC as input to stack Selects interrupt return register as 

input to stack 

OSEL Selects stack as output from ORA Selects RCA as output from ORA 

output MUX output MUX 

MUX2-MUXO See Table 4 See Table 4 

RAOE ORA output disabled (high-Z) ORA output enabled 

RBOE ORB output disabled (high-Z) ORB output enabled 

RC2-RCO See Table 6 See Table 6 

RE Hold interrupt return register Load address on Y bus to interrupt 

contents return register 

52-SO See Table 5 See Table 5 

SELOR Selects ORA/ORB external data as Selects RCA (OSEL low) or stack 

inputs to ORA/ORB buses (OSEL high) to ORA bus, RCB to 

ORB bus 

YOE Y output disabled (high-Z) Y output enabled 

ZEROIN Sets ZEROUT to a high externally No effect 

to set up conditional branch 

tNo control effect when DRA' or DR8' selected (MUX2-MUXO) = HLH) because 83-80 are address inputs. 

*When 81 is low or 81 is not in control mode. 

Control signals which may also originate from hardware are 83-80, which can be used 
as a 4-bit status input to support 16- and 32-way branches, and YOE, which allows 
interrupt hardware to force an interrupt vector on the microaddress bus. 
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DRA15·DRAO SELDR DRB15·0RBO 

16 16 

RAOE _----<Y ~-------~~ 

OSEl 

STACK POINTER 

STKWRN/RER READ POINTER 
ZERO 

52-SO 

STACK ~CC:::..-_--+-++ _____ ----, 

HE -+---+---' 

INC 

COUT Y15·YO YOE 

Figure 4. 'ACT8818 Functional Block Diagram 

----..... f-CLK 

REGISTER 
CONTROL 

RC2-RCO 

lEROIN 

ZEROUT 

Status from the' ACT8818 is provided by ZEROUT, which is set at the beginning of 
a cycle in which either of the register/counters will decrement to zero, and 
STKWRN/RER, set at the beginning of the cycle in which the bottom of stack is read 
or in which the next to last location is written. In the latter case, STKWRN/RER remains 
high until the stack pointer is decremented from 64 to 63. 
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Y Output.Multiplexer 

Address selection is controlled by the Y output multiplexer and the RAOE and RBOE 
enables. Addresses can be selected from eight sources: 

1. The microprogram counter register, used for repeat (INC off) and continue 
(INC on) instructions 

2. The stack, which supports subroutine calls and returns as well as iterative 
loops and returns from interrupts 

3. The ORA and ORB ports, which provide two additional paths from external 
hardware by which microprogram addresses can be generated 

4. Register counters RCA and RCB, which can be used for additional address 
storage 

5. B3-BO, whose contents can replace the four least significant bits of the 
ORA and ORB buses to support 16-way and 32-way branches 

6. An external input onto the bidirectional Y port to support external 
interrupts. 

Use of controls MUX2-MUXO is explained further in the later section on 
microprogramming the' ACT8818. 

Microprogram Counter. 

Based on system status and the current instruction, the microsequencer outputs the 
next execution address in the microprogram. Usually the incrementer adds one to the 
address on the Y bus to compute next address plus one. Next address plus one is 
stored in the microprogram register at the beginning of the subsequent instruction cycle. 
During the next instruction, this 'continue' address will be ready at the Y output MUX 
for possible selection as the source of the subsequent instruction. The incrementer 
thus looks two addresses ahead of the address in the instruction register to set up 
a continue /increment by one) or repeat (no increment) address. 

Selecting INC from status is a convenient means of implementing instructions that 
must repeat until some condition is satisfied; for example, Shift ALU Until MSB = 1, 
or Decrement ALU Until Zero. The MPC is also the standard path to the stack. The 
next address is pushed onto the stack during a subroutine call, so that the subroutine 
will return to the instruction following that from which it was called. 

Register/Counters 

Addresses or loop counts may be loaded directly into register/counters RCA and RCB 
through the direct data ports ORA 1 5-DRAO and ORB 1 5-DRBO. The values stored in 
these registers may either be held, decremented, or read. Independent control of both 
the registers during a single cycle is supported with the exception of a simultaneous 
decrement of both registers. 
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Stack 

The positive edge clocked 16-bit address stack allows multiple levels of nested calls 
or interrupts and can be used to support branching and looping. Seven stack operations 
are possible: 

1. Reset, which pulls all Y outputs low and clears the stack pointer and read 
pointer 

2. Clear, which sets the stack pointer and read pointer to zero 

3. Pop, which causes the stack pointer to be decremented 

4. Push, which puts the contents of the MPC, interrupt return register, or 
DRA bus onto the stack and increments the stack pointer 

5. Read, which makes the address indicated by the read pointer available 
at the DRA port 

6. Hold, which causes the address of the stack and read pointers to remain 
unchanged 

7. Load stack pointer, which inputs the seven least significant bits of DRA 
to the stack pointer. 

Stack Pointer 

The stack pointer (SP) operates as an up/down counter; it increments whenever a push 
occurs and decrements whenever a pop occurs. Although push and pop are two event 
operations (store then increment SP, or decrement SP then read), the' ACT8818 
performs both events within a single cycle. 

Read Pointer 

The read pointer (RP) is provided as a tool for debugging microcoded systems. It permits 
a nondestructive, sequential read of the stack contents from the DRA port. This 
capability provides the user with a method of backtracking through the address 
sequence to determine the cause of overflow without affecting program flow, the status 
of the stack pointer, or the internal data of the stack. 

Stack Warning/Read Error Pin 

A high signal on the STKWRN/RER pin indicates a potential stack overflow or underflow 
condition. STKWRN/RER becomes active under two conditions. If 62 of the 65 stack 
locations (0-64) are full (the stack pointer is at 62) and a push occurs, the STKWRN/RER 
pin outputs a high signal to warn that the stack is approaching its capacity and will 
be full after two more pushes. 

The STKWRN/RER signal will remain high if hold, push or pop instructions occur, until 
the stack pointer is decremented to 62. If a push instruction is attempted when the 
stack is full, the new address will be ignored and the old address in stack location 
64 will be retained. 
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The 5TKWRN/RER pin will go high when the stack pointer is less than ;or equal to one 
and a pop or read from stack is coded on the 52-50 pins. The pin will go high after 
reading the next to the bottom stack address (1). When the 52-50 pins are set to pop 
or read the last address (0) or to pop or read an empty stack, the 5TKWRN/RER pin 

. will go high. The pin depends only on the setting of the 52-50 pins and the stack pointer, 
not on the clock. 

Interrupt Return Register 

Unlike the MPC register, which normally gets next address plus one, the interrupt return 
en register simply gets next address. This permits interrupts to be serviced with zero :s latency, since the interrupt vector replaces the pending address. 

:t The interrupting hardware disables the Y output and forces the vector onto the 
C') microaddress bus. This event must be synchronized with the system clock. The first 
---t address of the service routine must program INT low and perform a push to put the 
00 
00 contents of the intetrupt return register on the stack. 
~ 

00 
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Microprogramming the ' ACT8818 

Microprogramming is unlike programming monolithic processors for several reasons. 
First, the width of the microinstuction word is only partially constrained by the basic 
signals required to control the sequencer. Since the main advantage of a 
microprogrammed processor is speed, many operations are often supported by or 
carried out in special purpose hardware. Lookup tables, extra registers, address 
generators, elastic memories, and data acquisition circuits may also be controlled by 
the microinstruction. 

The number of slices in a bit-slice ALU is user-defined, which makes the microinstruction 
width even more application dependent. Types of instructions resulting from 
manipulation of the sequencer controls are discussed below. Examples of some 
commonly used instructions can be found in the later section of microinstructions and 
flow diagrams. The following abbreviations are used in the tables in this section: 

BR A 
BR A' 
BR B 
BR B' 
BR S 
CALL A 
CALL B 
CALL A' 
CALL B' 
CALL S 
CLR SP, RP 
CONT/RPT 
ORA 
ORA' 
ORB 
ORB' 
MPC 
POP 
PUSH 
RCA 
RCB 
REAO 
RESET 
RP 
SP 
STK 

Y - ORA 
Y - ORA' 
Y ORB 
Y - ORB' 
Y - STK 
Y ~ ORA; STK - MPC; SP - SP + 1; RP - RP + 1 
Y ORB; STK - MPC; SP - SP + 1; RP - RP + 1 
Y - ORA'; STK - MPC; SP - SP + 1; RP - RP + 1 
Y - ORB'; STK - MPC; SP - SP + 1; RP - RP + 1 
Y - STK; STK - MPC; SP - SP + 1; RP - RP + 1 
SP - 0; RP - points to TOS register 
Y - MPC + 1 if INC = H; Y - MPC if INC = L 
Bidirectional data port (can be loaded externally or from RCA) 
ORA 15-0RA4::B3-BO 
Bidirectional data port (can be loaded externally or from RCB) 
ORB15-0RB4::B3-BO 
Microprogram counter 
SP - SP - 1; RP - RP - 1 
STK - operand; SP - SP + 1; RP - RP + 1 
Register/counter A 
Register/counter B 
ORA - STK; RP - RP - 1; SP - SP - 1 
Y - 0; SP - 0; RP - points to TOS register 
Read pointer 
Stack pointer 
Stack 
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Address Selection 

V-output multiplexer controls MUX2-MUXO select one of eight 3-source branches as 
shown in Table 4. The states of CC and ZERO determine which of the three sources 
is selected as the next address. ZERO is set at the beginning of any cycle in which 
a register/counter will decrement to zero. This applies to both internal ZERO and external 
ZEROUT signals. 

Table 4. Output Controls (MUX2-MUXO) 

MUX2-
Y OUTPUT SOURCE 

RESET CC - L MUXO 
ZERO - L ZERO - H CC - H 

XXX Yes 
LLL No 
LLH No 
LHL No 
LHH No 
HLL No 
HLH No 
HHL No 
HHH No 

tORA 15-0RA4::B3-BO 
*ORB15-0RB4::B3-BO 

All Low 
STK 
STK 
STK 
STK 
ORA 

ORA't 
ORA 
ORB 

All Low All Low 
MPC ORA 
MPC ORB 
ORA MPC 

ORB MPC 
MPC ORB 
MPC ORB,:j: 

STK MPC 

STK MPC 

By programming CC high or low without decrementing registers, only one outcome 
is possible; thus, unconditional branches or continues can be implemented by forcing 
the condition code. Alternatively, CC can be selected from status, in which case Branch 
A on Condition Code Else Branch B instructions are possible, where A and B are the 
address sources determined by MUX2-MUXO. 

Decrement and Branch on Nonzero instructions, creating loops that repeat until a 
terminal count is reached, can be implemented by programming CC low and 
decrementing a register/counter. If CC is selected from status and registers are 
decremented, more complex iflstructions such as Exit on Condition Code or End or 
Loop are possible. 

When MUX2-MUXO = HLH, the B3-BO inputs can replace the four least significant 
bits of ORA or ORB to create 16-Way branches or, when CC is based on status, to 
create 32-way branches. 

Stack Controls 

As in the case of the MUX controls, each stack-control coding is a three-way choice 
based on CC and ZERO (see Table 5). This allows push, pop, or hold stack operations 
to occur in parallel with the aforementioned branches. A subroutine call is accomplished 
by combining a branch and push, while returns result from coding a branch to stack 
with a pop. 
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S2-S0 

LLL 

LLH 

LHL 

LHH 

HLL 

HLH 

HHL 

HHH 

HHH 

Table 5. Stack Controls (S2-S0) 

STACK OPERATION 

OSEL CC - L 
CC .. H 

ZERO = L ZERO - H 

X Reset/Clear Reset/Clear Reset/Clear 

X Clear SP/RP Hold Hold 

X Hold Pop Pop 

X Pop Hold Hold 

X Hold Push Push 

X Push Hold Hold 

X Push Hold Push 

H Read Read Read 

L Hold Hold Hold 

ex) .... 
ex) 
ex) .... 
() 
<t .q-

" Combining stack and MUX controls with status results and register decrements permits Z 
even greater complexity. For example: Return on Condition Code or End of Loop; Call A en 
on Condition Code Else Branch to B; Decrement and Return on Nonzero; Call 16-Way. 

Diagnostic stack dumps are possible using Read (S2-S0 = HHH) when OSEL is set high. 

Register Controls 

Unlike stack and MUX controls, register control is not dependent upon CC and ZERO. 
Registers can be "independently loaded, decremented, or held using register control 
inputs RC2-RCO (see Table 6). All combinations are supported with the exception of 
simultaneous register decrements. The register control inputs can be set to store branch 
addresses and loop counts or to decrement loop counts, facilitating the complex 
branching instructions described above. 

Table 6. Register Controls (RC2-RCO) 

RC2-RCO 
REGISTER OPERA nONS 

REG A REG B 

LLL Hold Hold 

LLH Decrement Hold 

LHL Load Hold 

LHH Decrement Load 

HLL Load Load 

HLH Hold Decrement 

HHL Hold Load 

HHH Load Decrement 

The contents of RCA are accessible to the DRA port when OSEL is low and the output 
bus is enabled by RAOE being low. Data from RCB is available when DRB is enabled 
by RBOE being low. 
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Continue/Repeat Instructions 

The most commonly used instruction is a continue, implemented by selecting MPC 
at the Y output MUX and setting INC high. If MPC is selected and INC is off, the current 
instruction will simply be repeated . 

. A tepeat instruction can be implemented in two ways. A programmed repeat (INC 
forced low) may be useful in generating wait states, for example, wait for interrupt. 
A conditional repeat (INC originates from status) may be useful in implementing Do 
Whileoperations. Several bit patterns in the MUX control field of the microinstruction 

en will place MPC on the microaddress bus. 
Z 
...... 
.po Branch Instructions 

l> A branch or jump to a given microaddress can also be coded several ways. RCA, ORA, 
~ RCB, ORB, and STK are possible sources for branch addresses (see Table 4). Branches 
00 to register or stack are useful whenever the branch address could be stored to reduce 
~ overhead. 
00 

The simplest branches are to ORA and ORB, since they require only one cycle and 
the branch address is supplied in the microinstruction. Use of registers or stack requires 
an initial load cycle (which may be combined with a preceding instruction). but may 
be more practical when an entry point is referenced over and over throughout the 
microprogram, for example, in error-handling routines. Branches to stack or register 
also enhance sequencing techniques in which a branch address is dynamically 
computed or multiple branches to a common entry point are used, but the entry point 
varies according to the system state. In this case, the state change might require 
reloading the stack or register. 

In order to force a branch to ORA or ORB, CC must be programmed high or low. A 
branch to stack is only possible when CC is forced low (see Table 4). 

When CC is low, the ZERO flag is tested, and if a register decrements to zero the 
branch will be transformed into a Decrement and Branch on Nonzero instruction. 
Therefore, registers should not be decremented during branch instructions using 
CC = 0 unless it is certain the register will not reach terminal count. Call (Branch and 
Push MPC) instructions and Return (Branch to Stack and Pop) instructions are discussed 
in later sections. 
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Conditional Branch Instructions 

Perhaps the most useful of all branches is the conditional branch. The' ACT8818 
permits three modes of conditional branching: Branch on Condition Code; Branch 
16-Way from DRA or DRB; and Branch on Condition Code 16-Way from DRA Else 
Branch 16-Way from DRB. This increases the versatility of the system and the speed 
of processing status tests because both single-bit and 4-bit status are allowed. 

Testing single bit status is preferred when the status can be set up and selected through 
a status MUX prior to the conditional branch. Four-bit status allows the' ACT8818 
to process instructions based on Boolean status expressions, such as Branch if Overflow 00 

r­
and Not Carry if Zero or if Negative. It also permits true n-way branches, such as If 00 
Negative then Branch to X, Else if Overflow, and Not Carry then Branch to Y. The 00 
tradeoff is speed versus program size. Since multiway branching occurs relatively t; 
infrequently in most programs, users will enjoy increased speed at a negligible cost. <C 
Call (Branch and Push MPC) instructions and Return (Branch to Stack and Pop) ~ ..... instructions are discussed in later sections. 

Loop Instructions 

Up to two levels of nested loops are possible when both counters are used 
simultaneously. Loop count and levels of nesting can be increased by adding external 
counters if desired. The simplest and most widely used of the loop instructions is 
Decrement and Branch on Nonzero, in which CC is forced low while a register is 
decremented. As before, many forms are possible, since the top-of-Ioop address can 
originate from RCA, DRA, RCB, DRB, or the stack (see Table 4). Upon terminal count, 
instruction flow can either drop out of the bottom of the loop or branch elsewhere. 

When loops are used in conjunction with CC as status, B3-BO as status and/or stack 
manipulation, many useful instructions are possible, including Decrement and Branch 
on Nonzero else Return, Decrement and Call on Nonzero, and Decrement and Branch 
16-Way on Nonzero. Possible variations are summarized in Table 7. Call (Branch and 
Push MPC) instructions and Return (Branch to Stack and Pop) instructions are discussed 
in later sections. 

Another level of complexity is possible if CC is selected from status while looping. 
This type of loop will exit either because CC is true or because a terminal count has 
been reached. This makes it possible, for example, to search the ALU for a bit string. 
If the string is found, the match forces CC high. However, if no match is found, it 
is necessary to terminate the process when the entire word has been scanned. This 
complex process can then be implemented in a simple compact loop using Conditional 
Decrement and Branch on Nonzero. 
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en 
2 
-.oJ 
~ 
~ o 
-t 
00 
00 ..... 
00 

MUX2-

MUXO 

LLL 

LLL 

LLL 

LLL 

LLL 

LLH 

LLH 

LLH 

LLH 

LLH 

LHL 

LHL 

LHL 

LHL 

LHL 

LHH 

LHH 

LHH 

LHH 

LHH 

HLL 

HLL 

HLL 

HLL 

HLL 

HLL 

HLH 

HLH 

HLH 

HLH 

HLH 

HLH 

HHL 

HHL 

HHL 

HHL 

HHL 

HHL 
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LLH 

LHL 

HLL 

HHH 

HHH 

LLH 

LHL 

HLL 

HHH 

HHH 

LLH 

LHL 

HLL 

HHH 

HHH 

LLH 

LHL 

HLL 

HHH 

HHH 

LLH 

LHL 

LHH 

HLL 

HHH 

HHH 

LLH 

LHL 

LHH 

HLL 

HHH 

HHH 

LLH 

LHL 

LHH 

HLL 

HHH 

HHH 

Table 7. Decrement and Branch on Nonzero Encodings 

CC a l 
CC = H OSEl 

ZERO - l ZERO - H 

X SR S: CLR SP/RP CONT/RPT BR A 

X BR S CONT/RPT: POP BR A: POP 

X BR S CONT/RPT: PUSH CALL A 

0 BR S CONT/RPT BR A 

1 BR S: READ CONT/RPT: READ BR A: READ 

X BR S: CLR SP/RP CONT/RPT BR B 

X BR S CONT/RPT: POP BR B: POP 

X BR S CONi/RPT: PUSH CALL B 

0 BR S CONT/RPT BR B 

1 BR S: READ CONT/RPT: READ BR B: READ 

X BR S: CLR SP/RP BR A CONT/RPT 

X BR S BR A: POP CONT/RPT: POP 

X BR S CALL A CONT/RPT: PUSH 

0 BR S BR A CONT/RPT 

1 BR S: READ BR A: READ CONT/RPT: READ 

X BR S: CLR SP/RP BR B CONT/RPT 

X BR S BR B: POP CONT/RPT: POP 

X BR S CALL B CONT/RPT: PUSH 

0 BR S BR B CONT/RPT 

1 BR S: READ BR B: READ CONT/RPT: READ 

X BR A: CLR SP/RP CONT/RPT BR B 

X BR A CONT/RPT: POP BR B: POP 

X BR A: POP CONT/RPT BR B 

X BR A CONT/RPT: PUSH CALL B 

0 BR A CONT/RPT BR B 

1 BR A: READ CONT/RPT: READ BR B: READ 

X BR A' (16-way): CLR SP/RP CONT/RPT BR B' (16-way) 

X BR A' (16-way) CONT/RPT: POP BR B' (16-way): POP 

X BR A' (16-way): POP CONT/RPT BR B' (16-way) 

X BR A' (16-way) CONT/RPT: PUSH CALL B'(16-way) 

0 BR A' (16-way) CONT/RPT BR B' (16-way) 

1 BR A' (16-way): READ CONT/RPT: READ BR B' (16-way): READ 

X BR A: CLR SP/RP SR S CONT/RPT 

X BR A RET (BRS: POP) CONT/RPT: POP 

X BR A: POP BR S CONT/RPT 

X BR A CALL S CONT/RPT: PUSH 

0 BR A BR S CONT/RPT 

1 BR A: READ BR S: READ CONT/RPT: READ 



Table 7. Decrement and Branch on Nonzero Encodings (Continued) 

MUX2· CC - L 
SE·SO OSEL CC = H 

MUXO ZERO - L ZERO - H 

HHH LLH X BR B: CLR SP/RP BR S CONT/RPT 

HHH LHL X BR B RET CONT/RPT: POP 

HHH LHH X BR B: POP BR S CONT/RPT 

HHH HLL X BR B CALL S CONT/RPT: PUSH 

HHH HHH 0 BR B BR S CONT/RPT 

HHH HHH 1 BR B: READ BR S: READ CONT/RPT: READ co 
'l""" 

CO 
CO 
~ 

Subroutine Calls U 
c:t 

The various branch instructions described above can be merged with a push instruction ~ 
to implement subroutine calls in a single cycle. Calls, conditional calls, and Decrement !Z 
and Call on Nonzero are the most obvious. en 

Since a push is conditional on CC and ZERO, many hybrid instructions are also possible, 
such as Call X on Condition Code Else Branch, or Decrement and Return on Nonzero 
Else Branch. Codes that cause subroutine calls are summarized in Tables 8 and 9. 

Table 8. Call Encodings without Register Decrements 

MUX2-MUXO 52-SO OSEL CC - L (ZERO - L) CC = H 

LLL HLH X CALL S BR A 

LLL HHL X CALL S CALL A 

LLH HLH X CALL S BR B 

LLH HHL X CALL S CALL B 

LHL HLH X CALL S CaNT/RPT 

LHL HHL X CALL S CaNT/RPT: PUSH 

LHH HLH X CALL S CaNT/RPT 

LHH HHL X CALL S CaNT/RPT: PUSH 

HLL HLH X CALL A BR B 

HLL HHL X CALL A CALL B 

HLH HLH X CALL A' (16-way) BR B' (16-way) 

HLH HHL X CALL A' (16-way) CALL B' (16-way) 

HHL HLH X CALL A CaNT/RPT 

HHL HHL X CALL A CaNT/RPT: PUSH 

HHH HLH X CALL B CaNT/RPT 

HHH HHL X CALL B CaNT/RPT: PUSH 
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Table 9. Call Encodings with Register Decrements 

MUX2-
S2-S0 

CC - l 
CC - H OSEl 

MUXO ZERO - L ZERO - H 
LLL HLH X CALL S CONT/RPT BR A 

LLL HHL X CALL S CONT/RPT CALL A 

LLH HLH X CALL S CONT/RPT BR B 

LLH HHL X CALL S CONT/RPT CALL B 

LHL liLH X CALL S BR A CONT/RPT 
t/) LHL HHL X CA!-L S BR A CONT/RPT: PUSH 
2 LHH HLH X CALL S BR B CONT/RPT -..I 
.po LHH HHL X CALL S BR B CONT/RPT: PUSH 
l> HLL HLH X CALL A CONT/RPT BR B (') 
~ HLL HHL X CALL A CONT/RPT CALL B 
CO 

HLH HLH X CALL A' (16-way) CONT/RPT BR B' (16-way) CO 
~ HLH HHL X CALL A' (16-way) CONT/RPT CALL B' (16-way) 
CO 

HHL HLH X CALL A BR S CONT/RPT 

HHL HHL X CALL A BR S CONT/RPT: PUSH 

HHH HLH X CALL B BR S CONT/RPT 

HHH HHL X CALL B BR S CONT/RPT: PUSH 

Subroutine Returns 

A return from subroutine can be implemented by coding a branch to stack with a pop. 
Since pop is also conditional on CC and ZERO, the complex forms discussed previously 
also apply to return instructions: Decrement and Return on Nonzero; Return on 
Condition Code; Branch on Condition Code Else Return. Return encodings are 
summarized in Tables 10 and 11. 

Table 10. Return Encodings without Register 
Decrements 

MUX2-MUXO S2-S0 OSEl cc - L CC - H 
LLL LHH X RET BR A 

LLH LHH X RET BR B 

LHL LHH X RET CONT/RPT 

LHH LHH X RET CONT/RPT 
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Table 11. Return Encodings with Register Decrements 

MUX2-MUXO S2-S0 OSEl 
cc - l CC = H 

ZERO - l ZERO = H 

LLL LHH X RET CONT/RPT BR A 

LLH LHH X RET CONT/RPT BR B 

LHL LHH X RET BR A CONT/RPT 

LHH LHH X RET BR B CONT/RPT 

HHL LHL X BR A RET CONT/RPT: POP 

HHH LHL X BR B RET CONT/RPT: POP co 
~ 

CO 
Reset ~ 

(.) 
Pulling the S2-S0 pins low clears the stack and read pointers, and zeroes the Y output « 
multiplexer (See Table 5). ~ 

" Clear Pointers 2: 

The stack and read pointers may be cleared without affecting the Y output multiplexer 
by setting S2-S0 to LLH and forcing CC low (see Table 5). 

Read Stack 

Placing a high value on all of the stack inputs (S2-S0) and OSEL places the' ACT8818 
into the read mode. At each low-to-high clock transition, the address pointed to by 
the read pointer is available at the ORA port and the read pointer is decremented. The 
bottom of the stack is detected by monitoring the stack warning/read error pin 
(STKWRN/RER). A high appears on the STKWRN/RER output when the stack contains 
one word and a read instruction is applied to the S2-S0 pins. This signifies that the 
last address has been read. 

The stack pointer and stack contents are unaffected by the read operation. Under 
normal push and pop operations, the read pointer is updated with the stack pointer 
and contains identical information. 

Interrupts 

Real-time vectored ihtern,ipt routines are supported for those applications where polling 
would impede system throughput. Any instruction, including pushes and pops, may 
be interrupted. To process an interrupt, the following procedure should be followed: 

1. Place the bidirectional Y bus into a high-impedance state by forcing YOE high. 
2. Force the interrupt entry point vector onto the Y bus. INC should be high. 
3. Push the current value in the Interrupt Return register on the stack as the 

execution address to return to when interrupt handling is complete. 

The first instruction of the interrupt routine must push the address stored in the interrupt 
return register onto the stack so that proper return linkage is maintained. This is 
accomplished by setting INT and B1 low and coding a push on the stack. 
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Sample Microinstructions for the ' ACT8818 

Representative examples of instructions using the' ACT8818 are given below. The 
examples assume a one-level pipeline system, in which the address and contents of 
the next instruction are being fetched while the current instruction is being executed, 
and an ALU status register contains the status results of the previous instruction. 

Since the incrementer looks two addresses ahead of the address in the instruction 
register to set up some instructions such as continue or repeat, a set-up instruction 
has been included with each example. This shows the required state of both INC and 

en CC. CC must be set up early because the status register on which V-output selection 
~ is typically based contains the results of the previous instruction. 

-'=" » 
(') 
-I 
00 
00 
...a 
00 

Flow diagrams and suggested code for the sample microinstructions are also given 
below. Numbers inside the circles are microword address locations expressed as 
hexadecimal numbers. Fields in microinstructions are binary numbers except for inputs 
on ORA or ORB, which are also in hexadecimal. For a discussion of sequencing 
instructions, see the preceding section on microprogramming. 

Continue 

To Continue (Instruction 10)' INC and CC must be programmed high one cycle ahead 
of instruction 10 for pipelining. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 1 XXXX XXXX 
10 Continue 110 111 XXX 0 X X XXXX XXXX 

Continue and Pop 

To Continue and decrement the stack pointer (Pop), INC and CC are forced high in 
the previous instruction. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 1 XXXX XXXX 
10 Continue/Pop 110 010 XXX X X X XXXX XXXX 

Continue and Push 

To Continue and push the microprogram counter onto the stack (Push), INC and CC 
are forced high one cycle ahead of Instruction 10 for pipelining. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 1 XXXX XXXX 
10 Continue/Push 110 100 XXX 0 X X XXXX XXXX 
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Figure 5. Continue Figure 6. Continue and Pop 

Figure 7. Continue and Push 
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en 

Branch (Example 1) 

To Branch from address 10 to address 20, CC must be programmed high one cycle 
ahead of Instruction 10 for pipelining. 

Address Instruction MUX2-MUXO 52-SO R2-RO 05EL CC INC ORA ORB 

(Set-up) 

10 BR A 

Branch (Example 2) 

xxx 
000 

xxx XXX 

111 XXX 

x 
o 

1 X XXXX XXXX 

X X 0020 XXXX 

::i To Branch from address 10 to address 20, CC is programmed low in the previous 
~ instruction; as a result, a ZERO test follows the condition code test in Instruction 10. 
~ To ensure that a ZERO = H condition will not occur, registers should not be 
-t decremented during this instruction. 
CO 
CO Address Instruction MUX2-MUXO 52-SO R2-RO 05EL CC INC ORA ORB 

(Set-up) 

10 BR A 

Sixteen-Way Branch 

XXX 

110 

XXX XXX 

111 000 

X 
o 

o X XXXX XXX X 

X X 0020 XXXX 

To Branch l6-Way, CC is programmed high in the previous instruction. The branch 
address is derived from the concatenation DRB15-DRB4::B3-BO. 

Address Instruction MUX2-MUXO 52-SO R2-RO 05EL CC INC DRA ORB 

(Set-up) 

10 
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"no register decrement 

........ _- IMPOSSIBLE 

ex> 
~ 

ex> 
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Figure 8. Branch Example 1 Figure 9. Branch Example 2 

Figure 10. Sixteen-Way Branch 
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Conditional Branch 

To Branch to address 20 Else Continue to address 11, INC is set high in the preceding 
instruction to set up the Continue. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC' INC ORA ORB 

(Set-up) BR A else 
10 Continue 

Three-Way Branch 

XXX 
110 

xxx XXX 
111 000 

X 

o 
x XXXX XXXX 
X X 0020 XXXX 

To Branch 3-Way, this example uses an instruction from Table 7 with BR A in the 
ZERO = L column, CONT/RPT in the ZERO = H column and BR B in the CC = H 
column. To enable the ZERO = H path, register A must decrement to zero during this 
instruction (see Table 6 for possible register operations). INC is programmed high in 
Instruction 10 to set up the Continue. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue and 

Load Reg A 110 111 010 0 t XXXX XXXX 
11 Decrement Reg A; 

Branch 3-Way 100 111 001 0 X X 0020 0030 

tSelected from external status 

Thirty-Two-Way Branch 

To Branch 32-Way, the four least significant bits of the ORA' and ORB' addresses 
must be input at the B3-BO port; these are concatenated with the 12 most significant 
bits of ORA and ORB to. provide new addresses ORA' (ORA 15-0RA4::B3-BO) and ORB' 
(ORB15-0RB4::B3-BO). 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X X XXXX XXXX 
10 32-way Branch 101 111 000 0 X X 0040 0030 
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H IMPOSSIBLE" 

• no register decrement 

Figure 11. Conditional Branch 

*no register decrement 

Figure 13. Thirty-Two-Way Branch 

Figure 12. Three-Way Branch 
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Repeat 

To Repeat (Instruction 10), INC must be programmed low and CC high one cycle ahead 
of Instruction 10 for pipelining. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X a XXXX XXXX 
10 Continue 110 111 XXX a X X XXX X XXXX 

Repeat on Stack 

To Continue and push the microprogram counter onto the stack (Push), INC and CC 
must be forced high one cycle ahead for pipelining . 

To Repeat (Instruction 12), an BR S instruction with ZERO = L is used. To avoid a 
ZERO = H condition, registers are not decremented during this instruction (see Table 6 
for possible register operations. CC and INC are programmed high in Instruction 12 
to set up the Continue in Instruction 11. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue/Push 110 100 XXX X 1 1 XXXX XXXX 
11 Continue 110 111 XXX a a X XXXX XXXX 
12 BR Stack 010 111 000 a XXXX XXXX 

INC-O ~-MIIIf---t CC-1 

>-...;;L'---_ IMPOSSIBLE 

Y-MPC 

Figure 14. Repeat 
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Figure 15. Repeat on Stack 
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Repeat Until CC = H 

To Continue and push the microprogram counter onto the stack (Push), INC and CC 
must be forced high one cycle ahead for pipelining. 

To Repeat Until CC = H (Instruction 12), use a BR S instruction with CC = Land 
CONT/RPT: POP instruction with CC = H. To avoid a ZERO = H condition, registers 
are not decremented (See Table 6 for possible register operations). CC and INC are 
programmed high iii Instruction 12 to set up the Continue in Instruction 11. A 
consequence of this is that the instruction following 1 3 cannot be conditional. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX xxx X XXXX XXXX 
10 Continue/Push 110 100 XXX X 1 XXXX XXXX 
11 Continue 110 111 XXX 0 t XXXX XXXX 
12 BR Stack else 

Continue 010 010 000 X XXXX XXXX 

t Selected from external status 

Loop Until Zero 

To Continue and push the microprogram counter onto the stack (Push), INC and CC 
are forced high one cycle ahead for pipelining. Register A is loaded with the loop counter 
using a Load A instruction from Table 6. 

To decrement the loop count, a decrement register A and hold register B instruction 
from Table 6 is used. To Repeat Else Continue and Pop (decrement the stack pointer), 
an instruction from Table 7 with BR S in the ZERO = L column and CONT/RPT: POP 
in the ZERO = H column is used. CC is programmed low in Instruction 11 to 
force the ZERO test in Instruction 12; it is programmed high in Instruction 12 to set 
up the Continue in Instruction 11. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 

10 Continue/Push 110 100 XXX 0 XXXX XXXX 

11 Continue/Load 
Reg A 110 111 010 0 0 XXXX XXXX 

12 Decrement Reg A; 
BR 5 else 

Continue: Pop 000 010 001 XXXX XXXX 
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* no register decrement 

Figure 16. Repeat Until CC - H 

Figure 17. Loop Until Zero 
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Conditional Loop Until Zero 

Two examples of a Conditional Loop on Stack with Exit are presented below. Both 
use the microcode shown below to branch to the stack on nonzero, continue and pop 
on zero, and branch to DRA with a pop if CC = H. In the first example, the value 
on the DRA bus is the same as the value in the· microprogram counter, making the 
exit destinations on the CC and ZERO tests the same. In the second, the values are 
different, generating a two-way exit. 

To Continue and push the microprogram counter onto the stack (Push), INC must be 
high. CC is forced high in the preceding instruction for pipelining. 

To Continue (Instruction 11). INC must be high. CC must be programmed high in the 
previous instruction. INC is programmed high to set up the Continue in Instruction 12. 

To Decrement and Branch else Exit (Instruction 12). an instruction from Table 7 with 
BR S in the ZERO = L column, CONT/RPT: POP in the ZERO = H column and BR A: POP 
in the CC = H column is used. 

Example 1: 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue/Push 110 100 010 X XXXX XXXX 

Load Reg A 
11 Continue 110 111 XXX 0 t XXXX XXXX 
12 Decrement Reg A; 

BR S else 
Continue: Pop 
else BR A: Pop 000 010 001 X 0013 XXXX 

t Selected from external status 

Example 2: 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue/Push 110 100 010 X XXXX XXXX 

Load Reg A 
11 Continue 110 111 XXX 0 t XXX X XXX X 
12 Decrement Reg A; 

BR S else 
Continue: Pop 
else BR A: Pop 000 010 001 X 0025 XXXX 

t Selected from external status 

2-50 



POP 
SP-SP-1 

Figure 18. Conditional Loop Until Zero (Example 2) 
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en z .... 

Jump to Subroutine 

To Call a Subroutine at address 30, this example uses the instruction from Table 8 
with CALL A in the CC = H column. CC is programmed high in the previous 
instruction. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX xxx X 1 XXX X XXXX 
10 Call A 000 110 XXX X X X 0030 XXXX 

Conditional Jump to Subroutine 

~ To conditionally Call a Subroutine at address 20, this example uses an instruction from 
l> Table 8 with CALL A in the CC = L column and CONT/RPT in the CC = H 
~ column. CC is generated by external status during the preceding instruction. INC is 
CO programmed high in the preceding instruction to set up the Continue. To avoid a 
~ ZERO = H condition, registers should not be decremented during Instruction 10. 
CO 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC' INC ORA ORB 

(Set-up) XXX XXX XXX X t XXXX XXXX 
10 Call A else 

Continue 110 101 000 X X X 0020 XXXX 

t Selacted from external status 

Two-Way Jump to Subroutine 

To perform a Two-Way Call to Subroutine at address 20 or address 30, this example 
uses an instruction from Table 8 with CALL A in the CC = L column and CALL B 
in the CC = H column. In this example, CC is generated by external status during 
the preceding (set-up) instruction. INC is programmed high in the preceding instruction 
to set up the Push. To avoid a ZERO = H condition, registers should not be decremented 
during Instruction 10. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X t XXXX XXXX 
23 Call A else 

Call B 100 110 000 X X X 0020 0030 

t Selected from external status 
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Figure 19. Jump to Subroutine 

*no register decrement 

Figure 20. Conditional Jump to Subroutine 

• no register decrement 

Figure 21. Two-Way Jump to Subroutine 
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Return from Subroutine 

To Return from a subroutine, this example uses an instruction from Table 10 with RET 
in the CC = L column. CC is programmed low in the previous instruction. To 
avoid a ZERO = H condition, registers are not decremented during Instruction 23. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) 

23 Return 

XXX 

010 

xxx XXX 

011 000 

x 
X 

o X XXXX XXXX 

X X XXXX XXXX 

en Conditional Return from Subroutine 
2 
~ To conditionally Return from a Subroutine, this example uses an instruction from 
:; Table 10 with RET in the CC = L column and CONT/RPT in the CC = H column. 
n CC is selected from external status in the previous instruction. To avoid a ZERO = H 
~ condition, registers are not decremented during Instruction 23. 

CO 
~ 

CO 
Address Instruction MUX2-MUXO S2-S0 R2-RO QSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X t XXX X XXX X 
23 Return else 

Continue 010 011 000 X X X XXXX XXXX 

t Selected from external status 

Clear Pointers 

To Continue (Instruction 10), INC must be high; CC must be programmed high in the 
previous instruction. To Clear the Stack and Read Pointers and Branch to address 20 
(instruction 11), CC is programmed low in instruction 10 to set up the Branch. To avoid 
a ZERO = H condition, registers are not decremented during Instruction 11. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 
(Set-up) XXX XXX XXX X XXXX XXXX 

10 Continue 110 111 XXX 0 0 X 0020 XXXX 
11 BR A and Clear 

SP/RP 110 001 000 X X X XXXX XXXX 

Reset 

To Reset the' ACT8818, pull the S2-S0 pins low. This clears the stack and read pointers 
and places the Y bus into a low state. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

10 Reset XXX 000 XXX X X X XXXX XXXX 
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• no register decrement 

Figure 22. Return from Subroutine 

• no register decrement 

Figure 23. Conditional 
Return from Subroutine 
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SN74ACT8832 
CMOS 32·8it Registered ALU 

• 50-ns Cycle Time 

• low-Power EPICTM CMOS 

• Three-Port 1/0 Architecture 

• 64-Word by 36-Bit Register File 

• Simultaneous ALU and Register Operations 

• Configurable as Quad 8-Bit or Dual 16-Bit Single 
Instruction, Multiple Data Machine 

• Parity Generation/Checking 

The SN74ACT8832 is a 32-bit registered ALU that can operate at 20 MHz and 
20 MIPS (million instructions per second), Most instructions can be performed 
in a single cycle. The' ACT8832 was designed for applications that require high­
speed logical, arithmetic, and shift operations and bit/byte manipulations. 

The' ACT8832 can act as host CPU or can accelerate a host microprocessor. 
In high-performance graphics systems, the 'ACT8832 generates display-list 
memory addresses and controls the display buffer. In I/O controller applications, 
the 'ACT8832 performs high-speed comparisons to initialize and end data 
transfers. 

A three-operand, 64-word by 36-bit register file allows the' ACT8832 to create 
an instruction and store the previous result in a single cycle. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 
The SN74ACT8832 Registered Arithmetic/Logic Unit (ALU) holds a primary position 
in the Texas Instruments family of innovative 32-bit LSI devices. Compatible with the 
SN74AS888 architecture and instruction set, the 'ACT8832 performs as a high-speed 
microprogrammable 32-bit registered ALU which can also be configured to operate 
as two 16-bit ALUs or four 8-bit ALUs in single-instruction, multiple-data (SIMD) mode. 

Besides introducing the 'ACT8832. this section discusses basic concepts of 
microprogrammed architecture and the support tools available for system development. 
Details of the' ACT8832 architecture and instruction set are presented. Pin descriptions 
and assignments for the' ACT8832 are also presented. 

Understanding Microprogrammed Architecture 

Figure 1 shows a simple microprogrammed system. The three basic components are 
an arithmetic/logic unit, a microsequencer, and a memory. The program that resides 
in this memory is commonly called the microprogram, while the memory itself is referred 
to as a micromemory or control store. The ALU performs all the required operations 
on data brought in from the external environment (main memory or peripherals, for 
example). The sequencer is dedicated to generating the next micromemory address 
from which a microinstruction is to be fetched. The sequencer and the ALU operate 
in parallel so that data processing and next-address generation are carried out 
concurrently. 

The microprogram instruction, or microinstruction, consists of control information to 
the ALU and the sequencer. The microinstruction consists of a number of fields of 
code that directly access and control the ALU, registers, bus transceivers, multiplexers, 
and other system components. This high degree of programmability in a parallel 
architecture offers greater speed and flexibility than a typical microprocessor, although 
the microinstruction serves the same purpose as a microprocessor opcode: it specifies 
control information by which the user is able to implement desired data processing 
operations in a specified sequence. The microinstruction cycle is synchronized to a 
system clock by latching the instruction in the microinstruction, or pipeline, register 
once for each clock cycle. Status results are collected in a status register which the 
sequencer samples to produce conditional branches within the microprogram. 

, ACT8832 Registered ALU 

This device comprises a 32-bit ALU, a 64-word by 36-bit register file, two shifters 
to support double-precision arithmetic, and three independent bidirectional data ports. 

The' ACT8832 is engineered to support high-speed, high-level operations. The ALU's 
13 basic arithmetic and logic instructions can be combined with a single- or double­
precision shift operation in one instruction cycle. Other instructions support data 
conversions, bit and byte operations, and other specialized functions. 
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The configuration of this processor enchances processing throughput in arithmetic 
and radix conversion. Internal generation and testing of status results in fast processing 
of division and multiplication algorithms. This decision logic is transparent to the user; 
the reduced overhead assures shorter microprograms, reduced hardware complexity, 
and shorter software development time. 

Support Tools 

Texas Instruments has designed a family of low-cost, real-time evaluation modules 
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self­
contained system which provides a convenient means to test and debug simple 
microcode, allowing software and hardware evaluation of components and their 
operation. 

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module has been completed, and 
16- and 32-bit EVMs are in advanced stages of development. EVMs and support tools 
for other devices in the' ACT8800 family are also planned for future development. 
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Design Support 

Tl's '8832 32-bit registered ALU is supported by a variety of tools developed to aid 
in design evaluation and verification. These tools will streamline all stages of the design 
process, from assessing the operation and performance of the '8832 to evaluating 
a total system application. The tools include a functional model, behavioral model, 
and microcode development software and hardware. Section 8 of this manual provides 
specific information on the design tools supporting TI's SN74ACT8800 Family. 

Systems Expertise 

Texas Instruments VLSI Logic applications group is available to help designers analyze 
Tl's high-performance VLSI products, such as the '8832 32-bit registered ALU. The 
group works directly with designers to provide ready answers to device-related 
questions and also prepares a variety of applications documentation. 

The group may be reached in Dallas, at (214) 997-3970. 
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, ACT8832 Pin Descriptions 
Pin descriptions and grid allocations for the' ACT8832 are given on the following pages. 

GB . .. PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A • • • • • • • • • • • • • • • • • • B • • • • • • • • • • • • • • • • • 
C • • • • • • • • • • • • • • • • • 
D • • • • • • • • • • • • • • • • • 

en E • • • • • • • • 2 
...... 

F • • • • • • • • .a:=a. » 
G n • • • • • • • • -t 

00 
00 

H • • • • • • • • 
W J • • • • • • • • N 

K • • • • • • • • 
L • • • • • • • • 

M • • • • • • • • 
N • • • • • • • • 
P • • • • • • • • • • • • • • • • • 
R • • • • • • • • • • • • • • • • • 
S • • • • • • • • • • • • • • • • • 
T • • • • • • • • • • • • • • • • • 

Figure 2. SN74ACT8832 . .. GB Package 
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PIN 

NAME NO. 

Y7 C2 
Y13 C3 
Y15 C4 
BYOF1 C5 
5103 C6 
5102 C7 
IE5101 C8 
IE5100 C9 
5100 C10 
N C11 
OE5 C12 
55F C13 
Y18 C14 
Y20 C15 
Y23 C16 
Y24 C17 
Y25 01 
Y6 02 
BYOFO 03 
Y10 04 
Y12 05 
PY1 06 
IE5103 07 
IE5102 08 
5101 09 
Z 010 
OVR 011 
M5ERR 012 
Y16 013 
Y19 014 
Y21 015 
PY2 016 
Y26 017 
Y29 E1 
Y2 E2 

Table 1. SN74ACT8832 Pin Grid Allocation 

PIN PIN PIN PIN PIN 
NAME NO. NAME NO. NAME NO. NAME NO. NAME 

Y5 E3 YO J15 OA28 P1 OA5 51 OB10 
OEYO E4 Y4 J16 OA27 P2 OB8 52 OB15 
Y9 E14 Y30 J17 OA29 P3 OB12 53 OA10 
Y11 E15 TPO K1 OB6 P4 OA9 54 OA13 
Y14 E16 12 K2 OB7 P5 OA15 55 PERRA 
OEY1 E17 13 K3 OAO P6 A5 56 A3 
GNO F1 EB1 K4 GNO P7 A1 57 WEO 
VCC F2 Cn K14 GNO P8 VCC 58 WE3 
C F3 CLK K15 OA24 P9 GNO 59 RFCLK 
PERRY F4 CF2 K16 OA25 P10 C4 510 B4 
Y17 F14 OEY3 K17 OA26 P11 PERRB 511 B2 
Y22 F15 11 L1 PBO P12 GNO 512 C3 
OEY2 F16 14 L2 OA2 P13 OB22 513 CO 
Y28 F17 16 L3 VCC P14 OA16 514 OB17 
PY3 G1 OBO L4 GNO P15 OA18 515 OB20 
BYOF3 G2 EA L14 GNO P16 OA22 516 OB23 
CF1 G3 EBO L 15 VCC P17 OB27 517 PA21 
Y1 G4 GNO L16 OB30 R1 PAO T1 OB14 
Y3 G14 GNO L17 PB3 R2 OB11 T2 OA8 
PYO G15 15 M1 OA1 R3 PB1 T3 OA12 
Y8 G16 17 M2 OA4 R4 OA11 T4 OA14 
GNO G17 PA3 M3 OA7 R5 PA1 T5 OEA 
GNO H1 OB2 M4 GNO R6 A4 T6 A2 
GNO H2 OB1 M14 PA2 R7 AO T7 WE1 
VCC H3 VCC M15 OB26 R8 WE2 T8 5ELRF1 
GNO H4 GNO M16 OB28 R9 VCC T9 5ELRFO 
GNO H14 GNO M17 OB31 R10 B1 T10 B5 
GNO H15 VCC N1 OA3 R11 C2 T11 B3 
BYOF2 H16 OA31 N2 OA6 R12 OEB T12 BO 
Y27 H17 OA30 N3 OB9 R13 OB18 T13 C5 
Y31 J1 OB3 N4 OB13 R14 OB21 T14 C1 
TP1 J2 OB4 N14 OA19 R15 PB2 T15 OB16 
10 J3 OB5 N15 OA23 R16 OA20 T16 OB19 
5ELMa J4 VCC N16 OB25 R17 OB24 T17 OA17 
CFO J14 VCC N17 OB29 



PIN 

NAME 

AO 

A1 

A2 

A3 

A4 

A5 

BO 

B1 

B2 

B3 

B4 

B5 

BYOFO 

BYOF1 

BYOF2 

BYOF3 

C 

CO 

C1 

C2 

C3 

C4 

C5 

CFO 

CF1 

CF2 

Cn 

ClK 

DAO 

DA1 

DA2 

DA3 

DA4 

DA5 

DA6 

DA7 

DA8 

DA9 

Table 2. SN74ACT8832 Pin Description 

NO. 
1/0 DESCRIPTION 

R7 

P7 

T6 
I Register file A port read address select 

56 

R6 

P6 

T12 

R10 

511 
I Register file B port read address select 

T11 

510 

T10 

B2 

A4 5tatus signals indicate overflow conditions 
0 

D13 in certain data bytes 

C17 

C10 0 5tatus signal representing carry out condition 

513 

T14 

R11 

512 
I Register file write address select 

P10 

T13 

E2 

D1 I 
Configuration mode select. single 32-bit. two 

F4 
16-bit. or four 8-bit AlU's 

F2 I AlU carry input 

F3 I Clocks synchronous registers on positive edge 

K3 

M1 

l2 

N1 

M2 A port data bus. Outputs register data (OEA = 0) 

P1 
I/O 

or inputs external data (OEA = 1). 

N2 

M3 

T2 

P4 
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NAME 

DA10 

DA11 

DA12 

DA13 

DA14 

DA15 

DA16 

DA17 

DA18 

DA19 

DA20 

DA21 

DA22 

DA23 

DA24 

DA25 

DA26 

DA27 

DA28 

DA29 

DA30 

DA31 

DBa 

DB1 

DB2 

DB3 

DB4 

DB5 

DB6 

DB7 

DB8 

DB9 

DB10 

DB11 

DB12 

DB13 

DB14 

DB15 

Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NO. 
1/0 DESCRIPTION 

53 

R4 

T3 

54 

T4 

P5 

P14 

T17 

P15 

N14 

R16 A port data bus. Outputs register data (OEA = 0) 

517 
1/0 

or inputs external data (OEA = 1). 

P16 

N15 

K15 

K16 

K17 

J16 

J15 

J17 

H17 

H16 

G1 

H2 

H1 

J1 

J2 

J3 

K1 

K2 B port data bus. Outputs register data (OEB = 0) 

P2 
1/0 

or used to input external data (OEB = 1 ) 

N3 

51 

R2 

P3 

N4 

T1 

52 



NAME 

OB16 

OB17 

OB18 

OB19 

OB20 

OB21 
OB22 

OB23 
OB24 

OB25 

OB26 

OB27 

OB28 
OB29 

OB30 
OB31 

EA 

EBO 

EB1 

GNO 

GNO 
GNO 

GNO 

GNO 

GNO 
GNO 
GNO 

GNO 

GNO 

GNO 

GNO 
GNO 
GNO 

GNO 

GNO 

GNO 
GNO 

Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NO. 
I/O DESCRIPTION 

T15 

S14 

R13 
T16 

515 

R14 
P13 

S16 B port data bus. Outputs register data (DEB = 0) 

R17 
110 

or used to input external data (DEB = 1) 

N16 

M15 

P17 

M16 
N17 

L16 

M17 
ALU input operand select. High state selects 

G2 I external OA bus and low state selects 

register file 

G3 ALU input operand select. Selects between 

F1 
I 

register file, external OB port and MQ register 

C8 

06 
07 

08 

010 

011 
012 

G4 
G14 

Ground pins. All ground pins must be used. 
H4 

H14 

K4 
K14 

L4 

L14 

M4 

P9 
P12 
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NAME 

10 

11 

12 

13 

14 

15 

16 

17 

IESIOO 

IESI01 

IESI02 

IESI03 

MSERR 

N 

OEA 

OEB 

OES 

OEYO 

OEY1 

OEY2 

OEY3 

OVR 

PAO 

PA1 

PA2 

PA3 

PBO 

PB1 

PB2 

PB3 

PERRA 

PERRB 

PERRY 

Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NO. 
1/0 DESCRIPTION 

D17 

F15 

E16 

E17 
I Instruction input 

F16 

G15 

F17 

G16 

AS 

A7 Shift pin enables, increases system speed and 
I 

B7 reduces bus conflict, active low 

B6 

B11 0 
Master Slave Error pin, indicates error between 

data at Y output MUX and external Y port 

A10 0 Output status signal representing sign condition 

T5 I DA bus enable, active low 

R12 I DB bus enable, active low 

A 11 I Status enable, active low 

C3 

C7 
I Y bus output enable, active low 

C14 

F14 

B10 0 Output status signal represents overflow condition 

R1 

R5 
I/O Parity bits port for DA data 

M14 

G17 

L1 

R3 

R15 
I/O Parity bits port for DB data 

L17 

S5 0 
DA data parity error, signals error if an even parity 

check fails for any byte 

P11 0 
DB data parity error, signals error if an even parity 

check fails for any byte 

C11 0 
Y data parity error, signals error if an even parity 

check fails for any byte 



Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NAME NO. 
1/0 DESCRIPTION 

PYO 04 

PY1 B5 

PY2 
I/O Y port parity data, input and output 

B15 

PY3 C16 

RFCLK 59 I 
Register File Clock, allows multiple writes to be 

performed in one master clock cycle 

SELMO E1 I 
MO register select, selects output of ALU shifter or 

MO register to be placed on Y bus 

SELRFO T9 Register File select. Controls selection of the 
I 

SELRF1 T8 Register File(RF) inputs by the RF MUX 

5100 A9 

5101 B8 

5102 A6 
110 Bidirectional shift pin, active low 

5103 A5 

SSF A12 I 
Special Shift Function, implements conditional 

shift algorithms 

TPO E15 
I 

TP1 016 
Test pins, supports system testing 

Vee e9 

Vee 09 

Vee H3 

Vee H15 

Vee J4 
Supply voltrage (5 V) 

Vee J14 

Vee L3 

Vee L15 

Vee P8 

Vee R9 

WEO 57 Register File WRITE ENABLE. Oata is written into RF 

WE1 T7 I when write enables are low and a low to high 

WE2 R8 Register File Clock (RFeLK) transition occurs. 

WE3 58 Active low. 
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NAME 

YO 
Y1 
Y2 
Y3 
Y4 
Y5 
Y6 
Y7 
Y8 
Y9 
Y10 
Y11 
Y12 
Y13 
Y14 
Y15 
Y16 
Y17 
Y18 
Y19 
Y20 
Y21 
Y22 
Y23 
Y24 
Y25 
Y26 
Y27 
Y28 
Y29 
Y30 
Y31 
Z 

Tabl~ 2. SN74ACT8832 Pin Description (Concluded) 

PIN 

NO. 
110 DESCRIPTION 

E3 
02 
C1 
03 
E4 
C2 
B1 
A1 
05 
C4 
B3 
C5 
B4 
A2 
C6 
A3 1/0 Y port data bus 
B12 
C12 
A13 
B13 
A14 
B14 
C13 
A15 
A16 
A17 
B16 
014 
C15 
B17 
E14 
015 
B9 0 Output status signal represents zero condition 



, ACT8832 Specification Tables 
absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, vee. . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (VI < 0 or VI > Vee) . . . . . . . . . . . . .. ± 20 mA 
Output clamp current, 10K (VO < 0 or Vo > Vee) .......... ± 50 mA 
Continuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . .. ± 50 mA 
Continuous current through Vee or GND pins. . . . . . . . . . . . .. ± 100 mA 
Operating free-air temperature range. . . . . . . . . . . . . . . . . .. ooe to 70 0 e 
Storage temperature range ............... . . . . . .. - 65 °e to 150 0 e 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. 
These are stress ratings only and functional operation of the device at these or any other conditions beyond 
those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maxi mum­
rated conditions for extended periods may affect device reliability. 

Table 3. Recommended Operating Conditions 

PARAMETER MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5.0 5.5 V 

VIH High-level input voltage 2 Vee V 

VIL Low-level input voltage 0 0.8 V 

IOH High-level output current -8 mA 

IOL Low-level output current 8 mA 

VI Input voltage 0 Vee V 

Vo Output voltage 0 Vee V 

dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 °e 
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Table 4. Electrical Characteristics 

TA = 25°C SN74ACT8832 
PARAMETER TEST CONDITIONS VCC UNIT 

MIN TYP MAX MIN MAX 

4.5 V 4.49 4.3 
10H = -20 p.A 

5.5 V 5.49 5.3 
VOH V 

4.5 V 3.76 
10H = -8 mA 

5.5 V 4.76 

4.5 V 0.01 0.10 
10L = 20 p.A 

5.5 V 0.01 0.10 
VOL V 

4.5 V 0.45 

"II 

10L = 8 mA 
5.5 V 0.45 

VI = Vee or 0 5.5 V ±1 p.A 

en 
2 
~ 
~ » 
(') 
-I 
0) 
0) 
W 
N 

leeQ VI = Vee or 0,10 5.5 V 200 p.A 

ei VI = Vee or 0 5V 15 pF 

One input at 3.4 V, 

~Ieet other inputs at 5.5 V 1 mA 

o or Vee 

Table 5. Register File Write Setup 

PARAMETER MIN MAX UNIT 

C5-CO 4 

DA/B32-DA/BO, PA/B3-PA/BO 7 

17-14 13 

OEY3-0EYO 7 

Y31-YO 4 

tsu WE3-WEO 4 ns 

SELRF(DA,DB,PA,PB) 5 

SELRF(Y) 9 

SIO 10 

SELMQ 9 

IESI03-IESI00 10 

th ALL 0 

tThis is the increase in supply current for each input that is at one of the specified TTL voltge levels rather 

then 0 V to Vee. 
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Table 6. Maximum Switching Characteristics 

TO 10UTPUT) 

PARAMETER FROM !INPUT) PA/B UNIT 

Y C Z 510 PERRA/B N OVR OA/B PY PERRY MSERR 

A5-AO,B5-BO 36 30 37 28 30 37 16 37 

DA31-DAO,PA3-PAO 
36 25 37 25 20 28 37 37 

DB31-DBO,PB3-PBO 

Cn 30 22 31 24 28 28 32 

EA 37 28 37 25 31 37 37 

EB1-EBO 37 28 37 25 31 37 37 

17-10 37 30 37 28 32 37 37 

1 Ell CF2-CFO 37 30 37 28 32 37 37 

OEB,OEA 15 
tpd ns 

OEY3-0EYO 20 20 N 
SElMQ 15 20 

(¥) 
CO 

S103-S100 15 25 25 27 CO 
ClK 21 28 

I-
U 

ClKMQ 37 37 « 
RClK 37 32 37 24 32 37 37 ~ ,.... 
IESI03-IESI00 15 25 25 27 Z 
SSF 25 30 22 30 22 30 en 
y 15 15 
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I ACT8832 Registered ALU 
The SN74ACT8832 is a 32-bit registered ALU that can be configured to operate as 
four 8-bit ALUs, two 16-bit ALUs, or a single 32-bit ALU. The processor instruction 
set is 100 percent upwardly compatible with the' AS888 and includes 1 3 arithmetic 
and logical functions with 8 conditional shifts, multiplication, division, normalization, 
add and subtract immediate, bit and byte operations, and data conversions such as 
8CD, excess-3, arid sign magnitude. New instructions permit internal flip-flops 
controlling BCD and divide operations to be loaded or read. 

Additional functions added to the 'ACT8832 include byte parity and master/slave 
operation. Parity is checked at the three data input ports and generated at the Youtput 
port. The 64-word register file is 36 bits wide to permit storage of the parity bits. 
Master/slave comparator circuitry is provided at the Y port. 

The DA and DB ports can simultaneously input data to the ALU and the 64-word by 
en 36-bit register file. Data and parity from the register file can be output on the DA and 
~ DB ports. Results of ALU and shift operations are output at the bidirectional Y port. 
~ The Y port can also be used in an input mode to furnish external data to the register 
» file or during mastl'lr/slave operation as an input to the master/slave comparator. (') 
-t 
CO 
CO 
W 
N 

Three 6-bit address ports allow a two-operand fetch and an operand write to be 
performed at the register file simultaneously. An MQ shifter and MQ register can also 
be configured to function independently to implement double-precision 8-bit, 1 6-bit, 
and 32-bit shift operations. An internal ALU bypass path increases the speeds of 
multiply, divide and normalize instructions. The path is also used by 'ACT8832 
instructions that permit bits and bytes to be manipulated. 

Architecture 

Figure 4 is a functional block diagram of the' ACT8832. Control input signals are 
summarized in Table 7. Data flow and details of the functional elements are presented 
in the following paragraphs. 
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Table 7. • ACT8832 Response to Control Inputs 

SIGNAL HIGH LOW 

CF2-CFO See Table 11 See Table 11 

EA Selects external DA bus Selects register file 

EB1 -EBO See Table 9 See Table 9 

IESI03-IESI00 Normal operation Force corresponding SIO 

inputs to high impedance 

17-10 See Table 15 See Table 15 

MOSEL Selects MO register Selects ALU 

OEA Inhibits DA and PA output Enables DA and PA output 

OEB Inhibits DB and PB output Enables DB and PB output 

OEY3-0EYO Inhibits Y and PY outputs Enables Y and PY outputs 

SELRF1 -SELRFO See Table 8 See Table 8 

SSF Selects shifted ALU output Selects ALU (unshifted) output 

TP1-TPO See Table 14 See Table 14 

WE3-WEO Inhibits register file write Byte enables for register file 

write (0 = LSB) 

Data Flow 

As shown in Figure 5. data enters the' ACT8832 from three primary sources: the 
bidirectional Y port. which is used in an input mode to pass data to the register file; 
and the bidirectional DA and DB ports. used to input data to the register file or the 
Rand S buses serving the ALU. Three associated I/O ports (PY. PA. and PB) are provided 
for associated parity data input and output. 

Data is input to the ALU through two multiplexers: R MUX. which selects the R bus 
operand from the DA port or the register file addressed by A5-AO; and S MUX. which 
selects data from the DB port. the register file addressed by B5-BO. or the multiplier­
quotient (MQI register. 

The result of the ALU operation is passed to the ALU shifter. where it is shifted or 
passed without shift to the Y bus for possible output from the' ACT8832 and to the 
feedback MUX for possible storage in the internal register file. The MQ shifter. which 
operates in parallel with the ALU Shifter. can be loaded from the ALU or the MQ register. 
The MQ shift result is passed to the MQ register. where it can be routed through the 
S MUX to the ALU or to the Y MUX for output from the chip. 

An internal bypass path allows data from the S MUX to be loaded directly into the 
ALU shifter or the divide/BCD flip-flops. Data from the divide/BCD flip-flops can be 
output via the MQ register. 
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Figure 4. 'ACT8832 32-Bit Registered ALU 
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SELRF1-
SELRFO 2 

A5-AO 

PA3-PAO 
4 

EA 

DA31-DAO 

Cn 

4 

PY3-PYO 

36 

4 

REGISTER 
FILE 

64 X 36 

32 

Y31-YO 

Figure 5. Data 1/0 

36 

32 

WE3-WEO 

C5-CO 

BS-BO 

RFCLK 

PB3-PBO 
4 

EB1-EBO 
2 

DB31-DBO 

Data can be output from the three bidirectional ports, Y, DA, and DB, and their 
associated parity ports, PY, PA, and PB. DA and DB can also be used to read ALU 
input data on the Rand S buses for debug or other special purposes. 

Architectural Elements 

Three-Port Register File 

The register file is 36 bits wide, permitting storage of a 32-bit data word with its 
associated parity bits. The 64 registers are accessed by three address ports. C5-CO 
address the destination register during write operations; A5-AO and B5-BO address 
any two registers during read operations. The address buses are also used to furnish 
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immediate data to the ALU: A3-AO to provide constant data for the add and subtract 
immediate instructions; C3-CO and A3-AO to provide masks for set, reset, and test 
bit operations. 

Data is written into the register file when the write enable is low and a low-to-high 
register file clock (RFCLK) transition occurs. The separate register file clock allows 
multiple writes to be performed in one master clock cycle, allowing processors in multi­
processor environments to update one another's internal register files during a single 
cycle. 

Four write enable inputs are provided to allow separate control of data inputs in a byte­
oriented system. WE3 is the write enable for the most significant byte. 

Register file inputs are selected by the RF MUX under the control of two register file 
select signals, SELRF1 and SELRFO, shown in Table 8 (see also Table 10). 

Table 8. RF MUX Select Inputs 

SELRF1 SELRFO SOURCE 

0 0 External DA input 

0 1 External DB input 

1 0 V-output MUX 

1 1 External Y port 

Rand S Multiplexers 

ALU inputs are selected by the Rand S multiplexers. Controls which affect operand 
selection for instructions other than those using constants or masks are shown in 
Table 9. 

Table 9. ALU Source Operand Selects 

R-BUS S-BUS 

OPERAND OPERAND RESULT 

SELECT SELECT DESTINATION 
-SOURCE OPERAND 

EA EB1-EBO 

0 R bus -Register file addressed by A5-AO 

1 R bus -DA port 

00 S bus -Register file addressed by B5-BO 

1 0 S bus -DB port 

X 1 5 bus -MO register 
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Table 10. Destination Operand Select/Enables 

REGISTER DA DB 
Y BUS REGISTER 

PORT FILE YMUS PORT 
OUTPUT FILE RESULT 

- SOURCE WRITE SELECT OUTPUT OUTPUT 
DESTINATION ENABLE SELECT 

ENABLE 
OEY 

MOSEL ENABLE ENABLE 

WE 
RFSEL 1-RFSELO 

OEA OEB 

1 0 0 X X Y/PY ALU shifter/parity generate 

0 X X y/py MQ register/parity generate 

0 0 0 0 Y/PY, RF ALU shifter/parity generate 

0 0 0 Y/PY, RF MQ register/parity generate 

0 1 X 1 RF External Y/PY 

0 X X 0 0 X RF External DA/PA 

0 X X 0 X RF External DB/PB 

0 DA/PA R bus register file output 

DA/PA Hi-Z 

0 DB/PB S bus register file output 

DB/PB Hi-Z 
-- ---- ~- ---------

Co) 

w 
Co) 

SN74ACT8832 



Data Input and Output Ports 

The DA and DB ports can be used to load the Sand/or R multiplexers from an external 
source or to read S or R bus outputs from the register file. The Y port can be used 
to load the register file and to output the next address selected by the Y output 
multiplexer. Tables 9 and 10 describe the MUX and output controls which affect DA, 
DB, and Y. 

ALU 

The ALU can perform seven arithmetic and six logical instruction's on the two 32-bit 
operands selected by the Rand S multiplexers. It also supports multiplication, division, 
normalization, bit and byte operations and data conversion, including excess-3 BCD 
arithmetic. The' ACT8832 instruction set is summarized in Table 15. 

(J) The' ACT8832 can be configured to operate as a single 32-bit ALU, two 16-bit ALUs, 
~ or four 8-bit ALUs (see Figures 6 and 7). It can also be configured to operate on a 
~ 32-bit word formed by adding leading zeros to the 12 least significant bits of R bus 
l> data. This is useful in certain IBM relative addressing schemes. 
(") 
-I 
CO 
CO 
W 
N 

SKrn~------~--------+---------~~---+----~ 

16 16 

V31-V16 BVOF3 V15-VO 

Figure 6. 16-Bit Configuration 
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Configuration modes are controlled by three CF inputs as shown in Table 11. These 
signals also select the data from which status signals other than byte overflow will 
be generated. 

Table 11. Configuration Mode Selects 

CONTROL INPUTS 
MODE SELECTED 

DATA FROM WHICH STATUS OTHER 

CF2 CF1 CFO THAN BYOF WILL BE GENERATED 

0 0 0 Four a-bit Byte 0 

0 0 1 Four a-bit Byte 1 

0 1 0 Four a-bit Byte 2 

0 1 1 Four a-bit Byte 3 

1 0 0 Two 16-bit Least significant 16-bit word 

1 0 1 Two 16-bit Most significant 1 6-bit word 

1 1 0 One 32-bit 32-bit word 

1 1 1 Masked 32-bit 32-bit word 

-I ALU and MQ Shifters 
CO 
~ The ALU and MQ shifters are used in all of the shift, multiply, divide and normalize 
N functions. They can be used independently for single precision or concurrently for 

double precision shifts. Shifts can be made conditional, using the Special Shift Function 
(SSF) pin. 

Bidirectional Serial lID Pins 

Four bidirectional SID pins are provided to supply an end fill bit for certain shift 
instructions. These pins may also be used to read bits that are shifted out of the ALU 
or MQ shifters during certain instructions. Use of the SID pins as inputs or outputs 
is summarized in Table 17. 

The four pins allow separate control of end fill inputs in configurations other than 32-bit 
mode (see Table 12 and Figure 4). 

Table 12. Data Determining SID Input 

SIGNAL 
CORRESPONDING WORD, PARTIAL WORD OR BYTE 

32-BIT MODE 16-BIT MODE a-BIT MODE 

SI03 - - Byte 3 

SI02 - most significant word Byte 2 

SI01 - - Byte 1 

SIOO 32-bit word least significant word Byte 0 
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To increase system speed and reduce bus conflict, four SIO input enables 
(lESI03-IESIOO) are provided. A low on these enables will override internal pull-up 
resistor logic and force the corresponding SIO pins to the high impedance state 
required before an input signal can appear on the signal line. If the SIO enables are not 
used, this condition is generated internally in the chip. Use of the enables allow internal 
decoding to be bypassed, resulting in faster speeds. 

The IESIOs are defaulted to a high because of internal pull-up resistors. When an 
SIO pin is used as an output, a low on its corresponding IESIO pin would force 
SIO to a high impedance state. The output would then be lost, but the internal 
operation of the chip would not be affected. 

MQ Register 

Data from the MQ shifter is written into the MQ register when a low-to-high transition 
occurs on clock ClK. The register has specific functions in double precision shifts, 
multiplication, division and data conversion algorithms and can also be used as a 
temporary storage register. Data from the register file and the DA and DB buses can 
be passed to the MQ register through the AlU. 

The Y bus contains the output of the AlU shifter if SElMQ is low and the output of 
the MQ register if SElMQ is high. If OEY is low, AlU or MQ shifter output will 
be passed to the Y port; if OEY is high, the Y port becomes an input to the 
feedback MUX. 

Conditional Shift Pin 

Conditional shifting algorithms may be implemented using the SSF pin under hardware 
or firmware control. If the SSF pin is high or floating, the shifted AlU output will be 
sent to the output buffers. If the SSF pin is pulled low externally, the AlU result will 
be passed directly to the output buffers, and MQ shifts will be inhibited. Conditional 
shifting is useful for scaling inputs in data arrays or in signal processing algorithms. 

Master/Slave Comparator 

A master/slave comparator is provided to compare data bytes from the Y output MUX 
with data bytes on the external Y port when OEY is high. If the data are 
not equal, a high signal is generated on the master slave error output pin (MSERR). 
A similar comparator is provided for the Y parity bits. 

Divide/BCD Flip-Flops 

Internal multiply/divide flip-flops are used by certain multiply and divide instructions 
to maintain status between instructions. Internal excess-3 BCD flip-flops preserve the 
carry from each nibble in excess-3 BCD operations. The BCD flip-flops are affected 
by all instructions except NOP and are cleared when a ClR instruction is executed. 
The flip-flops can be loaded and read externally using instructions lOADFF and DUMPFF 
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(see Table 15). This feature permits an iterative arithmetic operation such as 
multiplication or division to be interrupted immediately so that an external interrupt 
can be processed. 

Status 

Eight status output signals are generated by the ' ACT8832. Four signals 
(BYOF3-BYOFO) indicate overflow conditions in certain data bytes (see Table 13). The 
others represent sign (N), zero (ZERO), carry-out (Cout) and overflow (OVR). N, ZERO, 
Cout, and OVR are generated from data selected by the mode configuration controls 
(CF2-CFO) as shown in Table 11. 

Carry-out is evaluated after each ALU operation. Sign and zero status are evaluated 
after ALU shift operation. Overflow (OVR) is determined by ORing the overflow result 
from the ALU with the overflow result from the ALU shifter. 

Table 13. Data Determining BYOF Outputs 

SIGNAL 
CORRESPONDING WORD, PARTIAL WORD OR BYTE 

32-BIT MODE 16-BIT MODE 8-BIT MQDE 

BYOF3 32-bit word most significant word Byte 3 

BYOF2 - - Byte 2 

BYOF1 - least significant word Byte 1 

BYOFO - - Byte 0 

Input Data Parity Check 

An even parity check is performed on each byte of input data at the DA, DB and Y 
ports. The check is performed by counting the number of ones in each byte and its 
corresponding parity bit. Parity bits are input on PA for DA data, PB for DB data and 
PYF or Y data. PAO, PBO and PYO are the parity bits for the least significant bytes 
of DA, DB and Y, respectively. If the result of the parity count is odd for any byte, 
a high appears at the parity error output pin (PERRA for DA data, PERRB for DB data, 
PERRY for Y data). 

Test Pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place 
all outputs in a high-impedance state, isolating the chip from the rest of the system 
(see Table 14). 
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Table 14. Test Pin Inputs 

TP1 TPO RESULT 

0 0 All outputs and I/Os forced low 

0 1 All outputs and lIDs forced high 

1 0 All outputs and lIDs placed in a high impedance state 

1 1 Normal operation (default state) 

Instruction Set Overview 

Bits 17-10 are used as instruction inputs to the' ACT8832. Table 15 lists all 
instructions, divided into five groups, with their opcodes and mnemonics. 

Table 15. 'ACT8832 Instruction Set 

GROUP 1 INSTRUCTIONS 

INSTRUCTION BITS 

13-10 MNEMONIC FUNCTION 

(HEX) 

0 Used to access Group 4 instructions 

1 ADD R + S + en 

2 SUBR R + S + Cn 

3 SUBS R + S + Cn 

4 INCS S + Cn 

5 INCNS S + Cn 

6 INCR R + Cn 

7 INCNR R + Cn 

8 Used to access Group 3 instructions 

9 XOR R XOR S 

A AND RAND S 

B OR R OR S 

C NAND R NAND S 

D NOR R NOR S 

E ANDNR RAND S 

F Used to access Group 5 instructions 
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Table 15 .• ACT8832 Instruction Set (Continued) 

GROUP 2 INSTRUCTIONS 

INSTRUCTION BITS 

17-14 MNEMONIC FUNCTION 

(HEX) 

0 SRA Arithmetic right single precision shift 

1 SRAD Arithmetic right double precision shift 

2 SRL Logical right single precision shift 

3 SRLD Logical right double precision shift 

4 SLA Arithmetic left single precision shift 

5 SLAD Arithmetic left double precision shift 

6 SLC Circular left single precision shift 

7 SLCD Circular left double precision shift 

8 SRC Circular right single precision shift 

9 SRCD Circular right double precision shift 

A MQSRA Arithmetic right shift MQ register 

B MQSRL Logical right shift MQ register 

C MQSLL Logical left shift MQ register 

D MQSLC Circular left shift MQ register 

E LOADMQ Load MQ register 

F PASS Pass ALU to Y 



Table 15 .• ACT8832 Instruction Set (Continued) 

GROUP 3 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

08 SET1 Set bit 1 

18 SETO Set bit 0 

28 TB1 Test bit (one) 

38 TBO Test bit (zero) 

48 ABS Absolute value 

58 SMTC Sign magnitude/two's complement 

68 ADD I Add immediate 

78 SUBI Subtract immediate 

88 BADD Byte add R to S 

98 BSUBS Byte subtract S from R 

A8 BSUBR Byte subtract R from S 

B8 BINCS Byte increment S 

C8 BINCNS Byte increment negative S 

08 BXOR Byte XOR Rand S 

E8 BAND Byte AND Rand S 

F8 BOR Byte OR Rand S 
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Table 15. 'ACT8832 Instruction Set (Continued) 

GROUP 4 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

00 CRC Cyclic redundancy character accumulation 

10 SEL Select S or R 

20 SNORM Single length normalize 

30 DNORM Double length normalize 

40 DIVRF Divide remainder fix 

50 SDIVQF Signed divide quotient fix 

60 SMUll Signed multiply iterate 

70 SMULT Signed multiply terminate 

80 SDIVIN Signed divide initialize 

90 SDIVIS Signed divide start 

AO SDIVI Signed divide iterate 

80 UDIVIS Unsigned divide start 

CO UDIVI Unsigned divide iterate 

DO UMULI Unsigned multiply iterate 

EO SDIVIT Signed divide terminate 

FO UDIVIT Unsigned divide terminate 



Table 15. 'ACT8832 Instruction Set (Continued) 

GROUP 5 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

OF LOADFF Load divide/BCD flip-flops 

1F CLR Clear 

2F CLR Clear 

3F CLR Clear 

4F CLR Clear 

5F DUMPFF Output divide/BCD flip-flops 

6F CLR Clear 

7F BCDBIN BCD to binary 

8F EX3BC Excess-3 byte correction 

9F EX3C Excess-3 word correction 

AF SDIVO Signed divide overflow test 

BF CLR Clear 

CF CLR Clear 

DF BINEX3 Binary to excess-3 

EF CLR Clear 

FF NOP No operation 

Group 1, a set of ALU arithmetic and logic operations, can be combined with the user­
selected shift operations in Group 2 in one instruction cycle. The other groups contain 
instructions for bit and byte operations, division and multiplication, data conversion, 
and other functions such as sorting, normalization and polynomial code accumulation. 

Arithmetic/Logic Instructions with Shifts 

The seven Group 1 arithmetic instructions operate on data from the Rand/or S 
multiplexers and the carry-in. Carry-out is evaluated after ALU operation; other status 
pins are evaluated after the accompanying shift operation, when applicable. Group 1 
logic instructions do not use carry-in; carry-out is forced to zero. 

Possible shift instructions are listed in Group 2. Fourteen single and double precision 
shifts can be specified, or the ALU result can be passed unshifted to the MO register 
or to the specified output destination by using the LOADMO or PASS instructions. 
Table 16 lists shift definitions. 

When using the shift registers for double precision operations, the least significant 
half should be placed in the MO register and the most significant half in the ALU for 
passage to the ALU shifter. An example of a double-precision shift using the ALU and 
MO shifters is given in Figure 8. 
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SERIAL DATA 
INPUT SIGNALS 

SIOO_----, 

Single Precision Logical Right Single Shift. 32·8it Configuration 

SERIAL DATA 
INPUT SIGNALS 

SIOO..----. 

Double Precision Logical Right Single Shift. 32·8it Configuration 

Figure 8. Shift Examples, 32·Bit Configuration 

All Group 2 shifts can be made conditional using the conditional shift pin (SSF). If the 
SSF pin is high or floating, the shifted ALU output will be sent to the output buffers, 
MO register, or both. If the SSF pin is pulled low, the ALU result will be passed directly 
to the output buffers and any MO shifts will be inhibited. 

Table 16. Shift Definitions 

SHIFT TYPE NOTES 

Left Moves a bit one position towards the most significant bit 

Right Moves a bit one position towards the least significant bit 

Arithmetic right Retains the sign unless an overflow occurs, in which case, the 

sign would be inverted 

Arithmetic left May lose the sign bit if an overflow occurs. Zero is filled into 

the least significant bit unless the bit is set externally 

Circular right Fills the least significant bit in the most significant bit position 

Circular left Fills the most significant bit in the least significant bit position 

Logical right Fills a zero in the most significant bit position unless the bit 

is forced to one by placing a zero on an SID pin 

Logical left Fills a zero in the least significant bit position unless the bit 

is forced to one by placing a zero on an SID pin 
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The bidirectional SIO pins can be used to supply external end fill bits for certain Group 2 
shift instructions. When SIO is high or floating, a zero is filled, otherwise a 1 is filled 
Table 17 lists instructions that make use of the SIO inputs and identifies input and 

output functions. 

Table 17. Bidirectional SIO Pin Functions 

INSTRUCTION 510 

BITS 17-10 

(HEX) 
MNEMONIC 1/0 DATA 

0* SRA 0 Shift out 

1 * SRAD 0 Shift out 

2* SRL I Most significant bit 

3* SRLD I Most significant bit 

4* SLA I Least significant bit 

5* SLAD I Least significant bit 

6* SLC 0 Shifted input to MO shifter 

7* SLCD 0 Shifted input to MO shifter 

8* SRC 0 Shifted input to ALU shifter 

9* SRCD 0 Shifted input to ALU shifter 

A* MOSRA 0 Shift out 

B* MOSRL I Most significant bit 

C* MOSLL I Least significant bit 

D* MOSLC 0 Shifted input to MO shifter 

00 CRC 0 Internally generated end fill bit 

20 SNORM I Least significant bit 

30 DNORM I Least significant bit 

60 SMUll 0 ALUO 

70 SMULT 0 ALUO 

80 SDIVIN 0 Internally generated end fill bit 

90 SDIVIS 0 Internally generated end fill bit 

AO SDIVI 0 Internally generated end fill bit 

BO UDIVIS 0 Internally generated end fill bit 

CO UDIVI 0 Internally generated end fill bit 

DO UMULI 0 Internal input 

EO SDIVT 0 Internally generated end fill bit 

FO UDIVIT 0 Internally generated end fill bit 

7F BCDBIN I Least significant bit 

DF BINEX3 0 Shifted input to MO register 
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Other Arithmetic Instructions 

The 'ACT8832 supports two immediate arithmetic operations. ADDI and SUBI 
(Group 3) add or subtract a constimt between the values of 0 and 15 from an operand 
on the S bus. The constant value is specified in bits A3-AO. 

Twelve Group 4 instructions support serial division and multiplication. Signed, unsigned 
and mixed multiplication are implemented using three instructions: SMUll, which 
performs a signed times unsigned iteration; SMUL T, which provides negative weighting 
of the sign bit of a negative multiplier in signed multiplication; and UMULI, which 
performs an unsigned multiplication iteration. Algorithms using these instructions are 
given in Tables 18., 19, and 20. These include: signed multiplication, which performs 
a two's complement multiplication; unsigned multiplication, which produces an 
unsigned times unsigned product; and mixed multiplication which multiplies a signed 
multiplicand by an unsigned multiplier to produce a signed result. 
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Table 18. Signed Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

SPORT YPORT CYCLES R PORT 

E4 LOADMQ 1 Multiplier - Multiplier 

60 SMUll N-1 t Accumulator Multiplicand Partial product 

70 SMULT 1 Accumulator Multiplicand Product (MSH) i 

Table 19. Unsigned Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 
MNEMONIC 

Y PORT CODE CYCLES SPORT R PORT 

E4 LOADMQ 1 Multiplier - Multiplier 

DO UMULI N-1 t Accumulator Multiplicand Partial product 

DO UMULI 1 Accumulator Multiplicand Product (MSH) i 

Table 20. Mixed Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 
MNEMONIC 

YPORT CODE CYCLES SPORT R PORT 

E4 LOADMQ 1 Multiplier - Multiplier 

60 SMUll N-1 t Accumulator Multiplicand Partial product 

60 SMUll 1 Accumulator Multiplicand Product (MSH) i 

t N = 8 for quad 8-bit mode, 16 for dual 16-bit mode, 32 for 32-bit mode. 
tThe least significant half of the product is in the MQ register. 



Instructions that support division include start, iterate and terminate instructions for 
unsigned division routines (UDIVIS, UDIVI and UDIVITI; initialize, start, iterate and 
terminate instructions for signed division routines (SDIVIN, SDIVIS, SDIVI and SDIVITI; 
and correction instructions for these routines (DIVRF and SDIVOFI. A Group 5 
instruction, SDIVO, is available for optional overflow testing. Algorithms for signed 
and unsigned division are given in Tables 21 and 22. These use a nonrestoring 
technique to divide a 16 N-bit integer dividend by an 8 N-bit integer divisor to produce 
an 8 N-bit integer quotient and remainder,. where N = 1 for quad 8-bit mode, N = 2 
for dual 16-bit mode, and N = 4 for 32-bit mode. 

Table 21. Signed Division Algorithm 

OP CLOCK INPUT INPUT OUTPUT 
MNEMONIC 

CODE CYCLES SPORT R PORT Y PORT 

E4 LOADMQ 1 Dividend (LSH) - Dividend (LSH) 

80 SDIVIN 1 Dividend (MSH) Divisor Remainder (N) 

AF SDIVO 1 Remainder (N) Divisor Overflow Test 

Result 

90 SDIVIS 1 Remainder (N) Divisor Remainder (N) 

AO SDIVI N-2t Remainder (N) Divisor Remainder (N) 

EO SDIVIT 1 Remainder (N) Divisor Remainder§ 

40 DIVRF 1 Remainder+ Divisor Remainder' 

50 SDIVQF 1 MQ register Divisor Quotient # 

tN = 8 for quad 8-bit mode, 16 for dual 16-bit mode, 32 for 32-bit mode. 
tThe least significant half of the product is in the MO register. 
§Unfixed 
, Fixed (corrected) 
#The quotient is stored in the MO register. Remainder can be output at the Y port or stored in 

the register file accumulator. 

Table 22. Unsigned Division Algorithm 

OP CLOCK INPUT INPUT OUTPUT 
MNEMONIC 

CYCLES Y PORT CODE SPORT R PORT 

E4 LOADMQ 1 Dividend (LSH) - Dividend (LSH) 

BO UDIVIS 1 Dividend (MSH) Divisor Remainder (N) 

CO UDIVI N-l t Remainder (N) Divisor Remainder (N) 

FO UDIVIT 1 Remainder (N) Divisor Remainder+ 

40 DIVRF 1 Remainder§ Divisor Remainder§ 

tN = 8 in quad 8-bit mode, 16 in dual 16-bit mode, 32 in 32-bit mode 
tUnfixed . 
§ Fixed Icorrected) 
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Data Conversion Instructions 

Conversion of binary data to one's and two's complement can be implemented using 
the INCNR instruction (Group 1). SMTC (Group 3) permits conversion from two's 
complement representation to sign magnitude representation, or vice versa. Two's 
complement numbers can be converted to their positive value, using ABS (Group 3). 

SNORM and DNORM (Group 4) provide for normalization of signed, single- and double­
precision data. The operand is placed in the MQ register and shifted toward the most 
significant bit until the two most significant bits are of opposite value. Zeroes are shifted 
into the least significant bit, provided 510 is high or floating. (A low on 510 will shift 
a one into the least significant bit.) SNORM allows the number of shifts to be counted 
and stored in one of the register files to provide the exponent. 

Data stored in binary-coded decimal form can be converted to binary using BCD BIN 
(J) (Group 5). A routine for this conversion, given in Table 23, allows the user to convert 
2 an N-digit BCD number to a 4N-bit binary number in 4N + 8 clock cycles . 
...... 
~ :r> Table 23. BCD to Binary Algorithm 
C") 
-4 
CO 
CO 
W 
N 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

CYCLES SPORT R PORT DESTINATION 

E4 LOADMQ 1 BCD operand - MQ reg. 

02 SUBR/MQSLC 1 Accumulator Accumulator Accumulator/MQ reg. 

02 SUBR/MQSLC 1 Mask reg. Mask reg. Mask reg/MQ reg. 

01 MQSLC 2 Don't care Don't care MQ reg. 

68 ADDI (15) 1 Accumulator Decimal 15 Mask reg. 

REPEAT N-1 TIMES t 

DA AND/MQSLC 1 MQ reg. Mask reg. Interim reg/MQ reg. 

D1 ADD/MQSLC 1 Accumulator Interim reg. Interim reg/MQ reg. 

7F BCDBIN 1 Interim reg. Interim res. Accumulator/MQ reg. 

7F BCDBIN 1 Accumulator Interim reg. Accumulator/MQ reg. 

END REPEAT 

FA I AND 1 MQ reg. Mask reg. Interim reg. 

D1 ADD MQSLC 1 Accumulator Interim reg. Accumulator 

tN = Number of BCD digits 

BINEX3, EX3BC, and EX3C assist binary to excess-3 conversion. Using BINEX3, an 
N-bit binary number can be converted to an N/4- digit excess-3 number. For an 
algorithm, see Table 24. 
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Table 24. BCD to Binary Algorithm 

OP 
MNEMONIC 

CLOCK INPUT INPUT OUTPUT 

CODE CYCLES SPORT R PORT DESTINATION 

E4 LOADMQ 1 Binary number - MQ reg. 

02 SUBR 1 Accumulator Accumulator Accumulator 

02 SET1 (33116 1 Accumulator Mask (33116 Accumulator 

REPEAT N TIMES t 

OF BINEX3 1 Accumulator Accumulator Accumulator/MQ reg 

9F EX3C 1 Accumulator Internal data Accumulator 

ENO REPEAT 

tN = Number of bits in binary number 

N 
Bit and Byte Instructions ~ 

Four Group 3 instructions allow the user to test or set selected bits within a byte. ~ 
SET1 and SETO force selected bits of a selected byte (or bytes) to one and zero, (,) 
respectively. TB1 and TBO test selected bits of a selected byte (or bytes) for ones ~ 
and zeros. The bits to be set or tested are specified by an 8-bit mask formed by the ~ 
concatentation of register file address inputs C3-CO and A3-AO. The register file Z 
addressed by B5-BO is used as the destination operand for the set bit instructions. en 
Register writes are inhibited for test bit instructions. Bytes to be operated on are 
selected by forcing SIOn low, where n represents the byte position and 0 represents 
the least significant byte. A high on the zero output pin signifies that the test data 
matches the mask; a low on the zero output indicates that the test has failed. 

Individual bytes of data can also be manipulated using eight Group 3 byte 
arithmetic/logic instructions. Bytes can be added, subtracted, incremented, ORed, 
ANDed and exclusive ORed. Like the bit instructions, bytes are selected by forcing 
SIOn low, but multiple bytes can be operated on only if they are adjacent to one another; 
at least one byte must be nonselected. 

Other Instructions 

SEL (Group 4) selects one of the ALU's two operands, S or R, depending on the state 
of the SSF pin. This instruction could be used in sort routines to select the larger or 
smaller of two operands by performing a subtraction and sending the status result 
to SSF. CRC (Group 4) is designed to verify serial binary data that has been transmitted 
over a channel using a cyclic redundancy check code. An algorithm using this instruction 
is given in Table 25. 
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Table 25. CRC Algorithm 

OP CLOCK 
MNEMONIC 

CODE CYCLES 

E4 LOADMQ 1 

F6 ·INCR 1 

F2 SUBR 1 

REPEAT n/BN TIMESt 

00 CRC 1 

E4 LOADMQ 1 

END REPEAT 

tN = Number of bits in binary number 
n = Length of the code vector 

INPUT INPUT 

SPORT R PORT 

Vector c'(x)t -
- Polynomial g(x) 

Accumulator Accumulator 

Accumulator Poly reg. 

Vector c'(x) t -

OUTPUT 

DESTINATION 

MQ reg. 

Poly reg. 

Accumulator 

Accumulator 

MQ reg. 

-..J CLR forces the ALU output to zero and clears the internal BCD flip-flops used in excess-3 t BCD operations. NOP forces the ALU output to zero, but does not affect the flip-flops. 

n .... 
00 
00 
eN 
N 

Configuration Options 

The' ACT8832 can be configured to operate in 8-bit, 16-bit, or 32-bit modes, depending 
on the setting of the configuration mode selects (CF2-CFO). Table 11 shows the control 
inputs for the four operating modes. Selecting an operating configuration other than 
32-bit mode affects ALU operation and status generation in several ways, depending 
on the mode selected. 

Masked 32-Bit Operation 

Masked 32-bit operation is selected to reset to zero the 20 most significant bits of 
the R Mux input. The 12 least significant bits are unaffected by the mask. Only Group 
1 and Group 2 instructions can be used in this operating configuration. Status 
generation is similar to unmasked 32-bit operating mode. 

Shift Instructions 

Shift instructions operate similarly in 8-bit, 16-bit, and 32-bit modes. The serial I/O 
(SI03'-SI00') pins are used to select end-fill bits or to shift bits in or out, depending 
on the operation being performed. Table 12 shows the SIO signals associated with 
each byte or word in the different modes, and Table 17 indicates the specific function 
performed by the SIO pins during shift, multiply, and divide operations. 

Figures 9 and 10 present examples of logical right shifts in 16-bit and 8-bit 
configurations. 
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SERIAL DATA 
INPUT SIGNALS 

SIOO-'~---------------------------------~ 

SI02-+--~L 

SERIAL DATA 
INPUT SIGNALS 

Single Precision Logical Right Single Shift. 16-Bit Configuration 

SIOO -------------------------------, 

Double Precision Logical Right Single Shift. 16-Bit Configuration 

Figure 9. Shift Examples, 16-Bit Configuration 

Bit and Byte Instructions 

The' ACT8832 performs bit operations similarly in 8-bit, 16-bit, and 32-bit modes. 
Masks are loaded into the R MUX on the A3-AO and C3-CO address inputs, and the 
bytes to be masked are selected by pulling their 510' inputs low. Instructions which 
set, reset, or test bits are explained later 

Byte operations should be performed in 32-bit mode to get the necessary status 
outputs. While byte overflow signals are provided for all four bytes (BYOF3-BYOFOI. 
the other status signals (C, N, Z) are output only for the word selected with the 
configuration control signals (CF2-CFO). 

Status Selection 

Status results (C, N, Z, and overflow) are internally generated for all words in all modes, 
but only the overflow results (BYOF3-BYOFO) are available for all four bytes in 8-bit 
mode or for both words in 16-bit mode. If a specific application requires that the four 
status results are read for two or four words, it is possible to toggle the configuration 
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SERIAL DATA 
INPUT SIGNALS 

SIOO-.~-------------------------------------------------~ 

SI01~---------------------------------. 

SI02~----------------~ 

,.-----.".,;----, 

Single-Precision Logical Right Shift. 8-8it Configuration 

SERIAL DATA 
INPUT SIGNALS 

SIOIo~--------------------------------------------------~ 
SI01~---------------------------------. 

SI02~-----------------. 

,.----rn;----, 

en SI03 
Z 
...,J 
~ » 
(") 
-t 
00 
00 
eN 
N Double-Precision Logical Right Shift. 8-8it Configuration 

Figure 10. Shift Examples, 8-Bit Configuration 

control signals (CF2-CFO) within the same clock cycle and read the additional status 
results. This assumes that the necessary external hardware is provided to toggle 
CF2-CFO and collect the status for the individual words before the next clock signal 
is input. 

Instruction Set 

The' ACT8832 instruction set is presented in alphabetical order on the following pages. 
The discussion of each instruction includes a functional description, list of possible 
operands, data flow diagram, and notes on status and control bits affected by the 
instruction. Microcoded examples are also shown. 

Mnemonics and opcodes for instructions are given at the top of each page. Opcodes 
for instructions in Groups 1 and 2 are four bits long and are combined into eight-bit 
instructions which select combinations of arithmetic, logical, and shift operations. 
Opcodes for the other instruction groups are all eight bits long. 

An asterisk in the left side of the opcode box for a Group 1 instruction indicates that 
a Group 2 opcode is needed to complete the instruction. An asterisk in the right side 
of a box indicates that aGroup 1 opcode is required to combine with the Group 2 
opcode in the left side of the box. 
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ABS Absolute Value I 4 I 8 I 

FUNCTION 

Computes the absolute value of two's complement data on the S bus. 

DESCRIPTION 

Two's complement data on the S bus is converted to its absolute value. The carry 
must be set to one by the user for proper conversion. ABS causes S' + Cn to be 
computed; the state of the sign bit determines whether S or S' + Cn will be selected 
as the result. SSF is used to transmit the sign of S. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
D8-Port 

(85-80) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) 
Y-Port 

(85-80) 
ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SiO'O No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Should be programmed high for proper conversion. 
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1418 Absolute Value 

Status Signals 

1 if result = 0 

1 if MSB (input) = 1 

ZERO 

N 

OVR 1 if input of most significant byte is 80 (Hex) and inputs (if any) in all 

other bytes are 00 (Hex). 

C=1ifS=0 

EXAMPLES (assumes a 32-bit configuration) 

ABS 

Convert the two's complement number in register 1 to its positive value and store 
the result in register 4. 

en 
2: 
-...I 
~ » 
n 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1-

17-10 EA EBO C5-CO SELMQ -
SELRFO 0eA DEB A5-AO B5-BO WEO 

01001000 XX XXXX 000001 X 00 000100 0 0000 10 X X 

~ Example 1: Assume register file 1 holds F6D81340 (Hex): 

CO 
~ Source 11110110110110000001001101000000 Is+- RF(1) 

Destination 00001001 00100111 1110 1100 11000000 I RF(4) +- S + Cn 

Example 2: Assume register file 1 holds 09D527CO (Hex): 

Source 00001001110101010010011111000000 Is+- RF(1) 

Destination 00001001 1101 0101 00100111 1100 0000 I RF(4) +- S 
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ADD Add with Carry (R + S + Cn) 1 

FUNCTION 

Adds data on the Rand S buses to the carry-in. 

DESCRIPTION 

Data on the Rand S buses is added with carry. The sum appears at the ALU and MQ 
shifters. 

·The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes Yes Yes 

3-55 

N 
M 
CX) 
CX) 
~ 
() 

« 
c:t 
I"'­
Z 
CJ) 



1 Add with Carry (R + S + Cn) ADD 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

SIOO No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Increments sum if set to one. 

(f) Status Signals t 

2 
-.J 
~ 
l> 
(") 
-t 
CO 
CO 
eN 
N 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

tc is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLES (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with. carry-in and pass the result to the 
MQ register. 

Instr Oprd Oprd Ioprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- OEY3· CF2· 

17-10 A5-AO B5·BO Eli" EBO C5·CO SELMO WEO SELRFO OEA OEB OEYO OES Cn CFO 

1110 0001 00 0001 XX XXXX a 10 XX XXXX a 1111 10 X X XXXX a a 110 

Assume register file 1 holds 0802C618 (Hex and DB bus holds 1 E007530 (Hex): 

Source 0000 1000 0000 0010 1100 0110 0001 1000 I R +- RF( 1 ) 

Source 0001 1110 0000 0000 0111 0101 0011 0000 Is+- DB bus 

Destination 0010 0110 0000 0011 0011 1011 0100 1000 MQ register +- R + S + Cn 
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ADDI ADD Immediate I 6 I 8 I 

FUNCTION 

Adds four-bit immediate data on A3-AO with carry to S-bus data. 

DESCRIPTION 

Immediate data in the range 0 to 15, supplied by the user at A3-AO, is added with 
carry to S. 

Available R Bus Source Operands (Constant) 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed 

Mask 

No Yes No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
V-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn Yes Increments sum if set to one. 
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I 6 I 8 ADD Immediate 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

EXAMPLES (assumes a 32-bit configuration) 

ADDI 

Add the valule 12 to data on the DB bus with carry-in and store the result in register 
file 1. 

en 
2 

" ~ 

Instr 

Code 
17·10 

01101000 

Op,d 

Add, 

A5-AO 

001100 

Op,d Op,d Sel 

Add, EB1· 

B5-8O EA EBO 

XX XXX) X 10 

Dest Destination Selects 

Add, WE3· SELRF1· 'OEY3 
C5-CO SELMO wro SELRFO OEA (ffij 0EY0 

000001 0 0000 10 X X XXXX 

» Assume bits A5-AO hold OC (Hex) and DB bus holds 24000100 (Hex): 
(') 
""'4 
00 
00 
Co\) 
N 

Source 00000000000000000000 0000 0000 1100 I R +- A5-AO 

Source 001001000000000000000001 0000 0000 Is+- DB bus 

Destination 00100100000000000000000100001100 I RF(1) +- R +S + en 
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AND Logical AND (R AND S) 

FUNCTION 

Evaluates the logical expression RAND S. 

DESCRIPTION 

Data on the R bus is ANDed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Ves Ves Ves 

Available Destination Operands Shift Operations 

RF RF 
V-Port ALU MQ 

(C5-CO) (B5-BO) 

Ves No Ves Ves Ves 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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I * I A I 

Status Signals t 

ZERO = 1 if result = 0 

N =' 1 if MSB = 1 

OVR 0 

C = 0 

Logical AND (R AND S) 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLES (assumes a 32-bit configuration) 

Logically AND the contents of register 3 and register 5 and store the result 
in register 5. . 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1· Add, WEj. SELRF1- OEY3 

17-10 AS-AO Bq-BO EA EBO CS-CO SELMQ WED SELRFO OEA 0eB 0eY0 DeS 
11111010 000011 000101 0 00 000101 0 0000 10 X X XXX X 0 

AND 

CF2-

Cn CFO 

X 110 

~ Assume register file 3 holds F617D840 (Hex) and register file 5 holds 15F6D842 (Hex): 
Co\) 

N Source 111101100001 0111 1101 100001000000 I R - RF(3) 

Source 0001 0101 1111 01101101 100001000010 I S - RF(5) 

Destination 0001 01000001 01101101 1000 0100 0000 I RF(5) - RAND S 
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ANDNR Logic AND Negative R (R' AND S) * I E 

FUNCTION 

Computes the logical expression S AND NOT R. 

DESCRIPTION 

The logical expression S AND NOT R is computed. The result appears at the ALU and 
MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble 07-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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Logic AND Negative H (H' AND S) ANONH 

Status Signals t 

I 

ZERO = 1 if result = 0 

N = 0 

OVR = 0 

C = 0 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Iflvert the contents of register 3, logically AND the result with data in register 5 
and store the result in register 10. 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Addr wea- SELRF1- om-
17-10 A5-AO B5-BO EAEBO C5-CO SELMQ WEb SELRFO CiEA OEB OEYO DES 

11111110 000011 000101 0 00 001010 0 0000 10 X X XXXX 0 

CF2-

Cn CFO 

X 110 

CO Assume register file 3 holds 1 5F6D840 (Hex) and register file 5 hold F61 7D842 (Hex): 
Co\) 
N 

0001010111110110 110110oo010Qoooo I R - FlF(3) Source 

Source 1111 01100001 0111 1101 100001000010 I S - RF(5) 

Destination 11100010000000010000000000000010 I RF(10) - RAND S 
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BADD Byte Add R to S with Carry 8 8 

FUNCTION 

Adds 8 with carry-in to a selected byte or selected adjacent bytes of R. 

DESCRIPTION 

8103-8100 are used to select bytes of R to be added to the corresponding bytes of 
8. A byte of R with 810 programmed low is selected for the computation of 
R + 8 + en. If the 810 signal for a byte of R is left high, the corresponding byte 
of 8 is passed unaltered. Multiple bytes can be selected only if they are adjacent to 
one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; increments 

selected byte(s) if programmed high. 
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18 18 Byte Add R to S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) = 1 

EXAMPLE (assumes a 32-bit configuration) 

BADD 

Add bytes 1 and 2 of register 3 with carry to the contents of register 1 and store the 
result in register 11. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- om- CF2- Si03- iESi03'-
17-10 AS-AO BS-BO Eii EBO CS-CO SELMa WEo SELRFO 0Eii Oeii OEYO 5Es Cn CFO SiOo IESiOO 

0100 1000 000011 000001 0 00 001011 0 0000 10 X X XXXX 0 1 110 1001 0000 

l> Assume register file 3 holds 2C018181 (Hex) and registerfile 1 holds 7A8FBE3E (Hex): 
n 
-I 
CO 
CO 
eN 
N 

Source 0010110000000001 10000001 10000001 I Rn'" RF(3)n 

Source 011110101000 11111011111000111110 I Sn'" RF(l)n 

ALU 101001101001 0001 0100 000011000000 I Fn'" Rn + Sn + Cn 

Destination 01111010100100010100 1111 00111110 I RF(11)n'" Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 11 gets F if byte selected. S if byte not selected. 
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BAND Byte AND RAND S (Byte Logical AND RAND S) I E I 8 I 

FUNCTION 

Evaluates the logical AND of selected bytes of R-bus and S-bus data. 

DESCRIPTION 

Bytes with their corresponding SIO signals programmed low compute RAND S. Bytes 
with SIO signals programmed high, pass S unaltered. Multiple bytes can be selected 
only if they are adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Forced low 

SIOO Yes Byte select 

SIOl Yes Byte select 

SI02 Yes Byte select 

SI03 Yes Byte select 

Cn No Inactive 
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I E I 8 Byte AND RAND S (Byte Logical AND RAND S) BAND 

Status Signals 

ZERO 1 if result (selected bytes) =0 

N 0 

OVR 0 

C 0 

EXAMPLE (assumes a 32-bit configuration) 

Logically AND bytes 1 and 2 of register 3 with input on the DB bus; store the result 
in register 3. 

, 
Instr Oprd Oprd Oprd Sel best Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF 1- 0m- CF2- Si03- iESiOO-
17-10 AS-AD BS-BO t\ EBO C5-CO SELMa WEo SELRFO i5EA 0Eii 6EYo DEs Cn CFO SiOo IEsiOo 

11101000 000011 XX XXXX 0 10 000011 0 0000 10 X X xxxx 0 X 110 1001 0000 

» Assume register file 3 holds 398FBEBE (Hex) and input on the DB port is 4290BFBF 
~ (Hex): 
00 
00 
W 
N 

Source 001110011000 11111011111010111110 I 

Source 01000010 1001 0000 1011 1111 1011 1111 

Destination 01000010 10000000 1011 1110 1011 1111 

tF = ALU result 
n = nth byte 
Register file 3 gets F if byte selected, S if byte not selected. 

3-66 

Rn - RF(3)n 

Sn - DBn 

RF(3)n - Fn or Sn t 



BCDBIN BCD to Binary 1 F 

FUNCTION 

Converts a BCD number to binary. 

DESCRIPTION 

This instruction allows the user to convert an N-digit BCD number to a 4N-bit binary 
number in 4(N-1) plus 8 clocks. The instruction sums the Rand S buses with carry. 

A one-bit arithmetic left shift is performed on the ALU output. A zero is filled into bit 0 
of the least significant byte unless SIOO is set low, which would force bit 0 to one. 
Bit 7 of the most significant byte is dropped. 

Simultaneously, the contents of the MQ register are rotated one bit to the left. Bit 
7 of the most significant byte is rotated to bit 0 of the least significant byte. 

Recommended R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

Recommended S Bus Source Operands 

RF MQ 
D8-Port 

(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-80) 
Y-Port ALU MQ 

Yes No No Left Left 
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I 7 I F BCD to Binary BCD BIN 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

srno Yes If high or floating, fills a.zero in LSB of ALU shifter; 

if low, fills a one in LSB of ALU shifter. 

SiOf No Inactive in 32-bit configuration. Used in other 

SI02 No configurations to select endfill in LSBs. 

SI03 No 

Cn Yes Should be programmed low for proper conversion. 

en Status Signals 

2: 
-...J 
~ 
l> 
(") 
-t 
00 
00 
Co\) 
N 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

1 if carry-out = 1 

ALGORITHM 

The following code converts an N-digit BCD number to a 4N-bit binary number in 4(N-1 ) 
plus 8 clocks. This is one possible user generated algorithm. It employs the standard 
conversion formula for a BCD number (shown here for 32 bits): 

ABCD = [(A x 10 + B) x 10 + C] x 10 + D. 

The conversion begins with the most significant BCD digit. Addition is performed in 
radix 2. 
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BCDBIN BCD to Binary I 7 I F I 

PSEUDOCODE 

LOADMO 

SUB 

SUB 

SLCMO 

SLCMO 

ADD I 

Repeat N-1 times: 

NUM 

ACC, ACC, SLCMO 

MSK, MSK, SLCMO 

ACC, MSK, 15 

(N '" number of BCD digits) 

AND MO, MSK, R1, 
SLCMO 

ADD ACC, R1, R1, SLCMO 

BCDBIN 

BCDBIN 

(END REPEAT) 

AND 

ADD 

R1, R1, ACC 

ACC, R1, ACC 

MO MSK, R1 

ACC, R1,ACC 

Load MO with BCD number. 

Clear accumulator; 
Circular left shift MO. 

Clear mask register; 
Circular left shift MO. 

Circular left shift MO. 

Circular left shift MO. 

Store 1 5 in mask register. 

Extract one digit; 
Circular left shift MO. 

Add extracted digit to 
accumulator, and store result in 
R1; Circular left shift MO. 

Perform BCDBIN instruction, and 
store result in accumulator 
[4 x (ACC + 4 x digit)]; 
Circular left shift MO. 

Perform BCDBIN instruction, and 
store result in accumulator 
[10 x (ACC + 10 x,digit)]; 
Circular left shift MO. 

Fetch last digit. 

Add in last digit and store result 
in accumulator. 
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I C I 8 Byte Increment Negative S with Carry BINCNS 

FUNCTION 

5' + Cn for selected bytes of 5. 

DESCRIPTION 

Bytes with SIOO programmed low compute 5' + Cn. Bytes with 5100 programmed 
high pass 5 unaltered. Multiple bytes can be selected only if they are adjacent to one 
another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

No No No No 

-t Available S Bus Source Operands 
CO 
CO 
Co\) 
N 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; increments 

selected byte(s) if programmed high. 
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BINCNS Byte Increment Negative S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I C I 8 

Invert bytes 0 and 1 of register 3 and add them to the carry (bytes 2 and 3 are not 
changed). Store the result in register 3. 

Instr Op,d Op,d Op,d 5.1 Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF 1- 0m- CF2-

17-10 A5-AO 85-80 EA E80 C5-CO SELMQ WED SELRFO OEA 0Eii 0EY0 0Es Cn CFO 

11001000 XX XXXX 00 0001 X 00 000011 0 0000 10 X X XXXX 0 1 110 

Assume register file 3 holds A3018181 (Hex): 

Source 1010 0011 0000 0001 1000 0001 1000 0001 Sn +- RF(3)n 

ALU 0101 1100 1111 11100111 11100111 1111 Fn +- S'n + Cn 

Destination 10100011 00000001 0111 11100111 1111 RF(3)n +- Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 3 gets F if byte selected, S if byte not selected. 

SiQ3: iESi03-
SiOo iESiOo 
1100 0000 
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IBla Byte Increment S with Carry BINCS 

FUNCTION 

Increments selected bytes of 8 if the carry is set. 

DESCRIPTION 

Bytes with 810' inputs programmed low compute 8 + en. Bytes with 810 inputs 
programmed high, pass 8 unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonsselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

-I Available S Bus Source Operands 
(X) 
(X) 
W 
I\) 

RF MO 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MO 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; increments 

selected byte(s) if programmed high. 
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BINCS Byte Increment S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selecteg bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I B I 8 I 

Add bytes 1 and 2 of register 7 to the carry (bytes 0 and 3 are not changed), Store 
the result in register 2. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF 1- 0m- CF2- S103- iESi03-
17-10 AS-AO B5-BO EAEBO C5-CO SELMQ WEo SELRFO OEA We 5EvO DEs Cn CFO SiOo iESiOo 

1011 1000 XX XXXX 00 0111 X 00 000010 0 0000 10 X X XXXX 0 1 110 1100 0000 

Assume register file 7 holds 408FBEBE (Hex): 

Source 01000000100011111011111010111110 I Sn +-- RF(7)n 

ALU 01000000 1000 11111011111110111110 I Fn +-- Sn + Cn 

Destination 0100 00001000 1111 1011 1111 1011 1110 I RF(2)n +-- Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 11 gets F if byte selected, S if byte not selected. 

3-73 

N 
M 
CO 
CO 
l­
e.> 
<C 
~ ,.... 
:2 
en 



10 I F Binary to Excess·3 BINEX3 

FUNCTION 

Converts a binary number to excess-3 representation. 

DESCRIPTION 

This instruction converts an N-digit binary number to a N/4 digit excess-3 number 
representation in 2N + 3 clocks. The data on the Rand S buses are added to the carry­
in, which contains the most significant bit of the MQ register. The contents of the 
MQ register are rotated one bit to the left. The most significant bit is shifted out and 
passed to the least significant bit position. Depending on the configuration selected, 
this shift may be within the same byte or from the most significant byte to the least 
significant byte. 

en Recommended R Bus Source Operands 
2 
...;J 

t 
n 
-t 
CO 
CO 
Co\) 
N 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No No No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-80) 
Y-Port ALU MQ 

Yes No Yes None Left 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

SIOO No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn No Holds MSB of MQ register. 
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BINEX] Binary to Excess-] I 0 I F 

Status Signals 

ZERO 1 if result = 0 

N 1 if MSB = 1 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out = 1 

ALGORITHM 

The following code converts an N-digit binary number to a N/4 digit excess-3 number 
in 2N + 3 clocks. It employs the standard conversion formula for a binary number: 

N 
([(2an + an-1) x 2 + an-11 x 2 + ... + aol x 2 + aO• (V) 

00 
00 

The conversion begins with the most significant bit. Addition during the BINEX3 to-
instruction is performed in radix 10 (excess-3). ~ 

q-
LOADMO NUM Load MO with binary number. ,... 

Z 
SUB ACC, ACC, ACC Clear accumulator; en 

SET1 ACC, 33 (Hex) 

Repeat N times: 

Store 33 (Hex) in all bytes of 
accumulator. 

(N = number of bits in binary number) 

BINEX3 ACC, ACC, ACC 

EX3C ACC 

(END REPEAT) 

Double accumulator and add in most 
significant bit of MO register. Circular left 
shift MO. 

Perform excess-3 correction. 
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FUNCTION 

Byte OR Rand S 
(Byte Inclusive OR Rand S) 

Evaluates R OR S of selected bytes. 

DESCRIPTION 

BOR 

Bytes with SID inputs programmed low evaluate R OR S. Bytes with SID inputs 
programmed high. pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

Yes No Yes No 

~ Available S Bus Source Operands 

CO 
W 
N 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Inactive 

5100 Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn No Inactive 
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BOR 
Byte OR Rand S 

(Byte Inclusive OR Rand S) 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

F I 8 I 

Logically OR bytes 1 and 2 of register 12 with bytes 1 and 2 on the DB bus. Concatenate 
with DB bytes 0 and 3, storing the result in register 12. 

Instr 

Code 

17-10 

Oprd 

Addr 

A5-AO 

Oprd 

Addr 

B5-8O 

Oprd Sel 

EB1-

EA EBO 

Dest 

Addr 

C5-CO 

Destination Selects 

We3- SELRF 1- CF2- 5iii3'- IEsi03'- N 
SELMa WEo SELRFO OEA DeB OEYO 0Es Cn CFO SiOo IESrOO ('W) 

11111000 00 1100 XX XXX X o 10 001100 o 0000 10 X X XXXX 0 X 110 1001 0000 

Assume register file 12 holds 578FBEBE (Hex) and the DB bus holds 1 C90BEBE (Hex): 

Source 010101111000 11111011111010111110 I Rn - RF(12)n 

Source 0001 1100 1001 0000 1011 1110 1011 1100 I Sn - DBn 

Destination 00011100100111111011111010111110 I RF(12)n - Fn or Sn t 

tF = ALU result 
n = nth package 
Register file 12 gets F if byte selected. S if byte not selected. 
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I A I 8. Byte Subtract R from S with Carry BSUBR 

FUNCTION 

Subtracts R from S in selected bytes. 

DESCRIPTION 

Bytes with SID inputs programmed low compute R' + S + en. Bytes with SID inputs 
programmed high, pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

-t Available S Bus Source Operands 
00 
00 
Co\) 
N 

RF MO 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MO 

Yes ·No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 Yes Byte select 

SiOi' Yes Byte select 

Si02 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; should be 

set high for two's complement subtraction. 
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BSUBR Byte Subtract R from S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I A I 8 I 

Subtract bytes 1 and 2 of register 1 with carry from bytes 1 and 2 of register 3. 
Concatenate with bytes 0 and 3 of register 3, storing the result in register 11. 

Instr Oprd Oprd Oprd 5.1 Oest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- om- CF2- Si'53- i'Esi03-
17-10 A5-AO B5-SO EAESO C5-CO SELMa WEo SELRFO OEA 0Eii OEYO DES Cn CFO Si50 iEsiOO 

10101000 00 0001 000011 0 00 00 1011 0 0000 10 X X XXXX 0 1 110 1001 0000 

N 
M 
CO 
CO 

Assume register file 1 holds 09185858 (Hex) and register file 3 holds 703A9898 (Hex): ~ 
U 

Source 0000 1001000110110101100001011000 I Rn +- RF(1)n ~ 
I' 
Z 

Source 0111 00000011 1010 1001 10001001 1000 I Sn +- RF(3)n rJ) 

ALU 01100111 0001 1111 0100000001000000 I Fn +- R'n + Sn + Cn 

Destination 0111 00000001 1111 01000000 1001 1000 I RF( 11)n +- Fn or Sn t 

t F = ALU result 
n = nth package 
Register file 11 gets F if byte selected. S if byte not selected. 
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I 9 I 8 Byte Subtract S from R with Carry BSUBS 

FUNCTION 

Subtracts S from R in selected bytes. 

DESCRIPTION 

Bytes with SIO inputs programmed low compute R + S' + Cn. Bytes with SIO inputs 
programmed high. pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AOI Immed A3-AO 

Mask 

Yes No Yes No 

l> Available S Bus Source Operands 
n 
-f 
CO 
CO 
Co\) 
N 

RF MQ 
DB-Port 

(B5-BOI Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-COI (B5-BOI 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte select 

SiOT Yes Byte select 

Si02 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; should be 

set high for two's complement subtraction. 
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BSUBS Byte Subtract S from R with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I 9 I 8 I 

Subtract bytes 1 and 2 of register 3 with carry from bytes 1 and 2 of register 1. 
Concatenate with bytes 0 and 3 of register 3, storing the result in register 11. 

Instr Op,d Op,d Op,d S.I Dest Destination Selects 

Code Add, Add, EB1- Add, We3- SELRF1- om- CF2- Si03- iESiOa-
17-10 A5-AO B5-BO EAEBO C5-CO SELMa WEo SELRFO 0eA QEij 0Ev0 (ill; Cn CFO SiOO iEsiOo 

1001 1000 00 0001 000011 0 00 001011 0 0000 10 X X XXXX 0 1 110 1001 0000 C'II 
(¥) 

Assume register file 1 holds 52888888 (Hex) and register file 3 holds 143A9898 (Hex): CO 
CO 

Source 0101 0010100010001011 1000 1011 1000 I Rn - RF(1)n 

Source 0001 01000011 10101001 1000 1001 1000 I Sn - RF(3)n 

ALU 0011 11100100 111000100000 0010 0000 I Fn - Rn + S'n + Cn 

Destination 0101 00100100111000100000 1011 1000 I RF(11)n - Fn or Sn t 

t F = AlU result 
n = nth byte 
Register file 11 gets F if byte selected. S if byte not selected. 
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FUNCTION 

Byte XOR Rand S 
(Byte Exclusive OR Rand S) 

Evaluates R exclusive OR S in selected bytes. 

DESCRIPTION 

BXOR 

Bytes with SIO inputs programmed low evaluate R exclusive OR S. Bytes with SIO 
inputs programmed high, pass S unaltered. Multiple bytes can be selected only ifthey 
are adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

» Available S Bus Source Operands 
(") 
-t 
CO 
CO 
W 
N 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Inactive 

5100 Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn No Inactive 
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BXOR 
Byte XOR Rand S 

(Byte Exclusive OR Rand S) 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

I 0 I 8 I 

Exclusive OR bytes 1 and 2 of register 6 with bytes 1 and 2 on the DB bus; concatenate 
the result with DB bytes 0 and 3, storing the result in register 10. 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- om- CF2- Si53"- iEsi'03-
17-10 A5-AO B5-BO EAEBO C5-CO SELMO WEO SELRFO 0eA Oeii 0Ev0 OES Cn CFO SiOO iEsiOo 

1101 1000 000110 XX XXXX 0 10 001010 0 0000 10 X X XXXX 0 1 110 1001 0000 

Assume register file 6 holds 938FBEBE (Hex) and the DB bus holds 4190BEBE (Hex): 

Source 100100111000 11111011111010111110 I Rn - RF(6)n 

Source 0100 0001 1001 0000 1011 1110 1011 1110 I Sn - DBn 

Destination 0100 0001 0001 1111 0000 0000 1011 1110 I RF( 1 O)n - Fn or Sn t 

t F = ALU result 
n = nth pac~age 
Register file 10 gets F if byte selected, S if byte not selected. 
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1 I F It CLEAR 

FUNCTION 

Forces ALU output to zero and clears the BCD flip-flops. 

DESCRIPTION 

ALU output is forced to zero and the BCD flip-flops are cleared. 

tThis instruction may also be coded with the following opcodes: 
[2] [F]. [3] [F], [4] [F], [6] [F], [B] [F], [e] [F], [E] [F] 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

No No No No 

~ Available S Bus Source Operands 

-I 
(X) 
(X) 
eN 
N 

RF MQ 

(BS-BO) 
DB-Port 

Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 
(CS-CO) (85-80) 

Yes No 

Status Signals 

IZER~ 
OVR 

Cn 
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Y-Port ALU MQ 

Yes None None 
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CRC Cyclic Redundancy Character Accumulation I 0 I 0 I 

FUNCTION 

Evaluates R exclusive OR S for use with cyclic redundancy check codes. 

DESCRIPTION 

Data on the R bus is exclusive ORed with data on the S bus. If MOO XNORed with 
SO is zero (MOO is the LSB of the MO register and SO is the LSB of S-bus data), the 
result is sent to the ALU shifter. Otherwise, data on the S bus is sent to the ALU shifter. 

A right shift is performed; the MSB is filled with RO (MOO XOR SO), where RO is the 
LSB of R-bus data. A circular right shift is performed on MO data. 

Recommended R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

N 
M 
00 
00 
~ 
u « 
~ 

" Recommended S Bus ,Source Operands Z 
en 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No No Right Right 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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10 10 Cyclic Redundancy Character Accumulation 

Status Signals 

I 

ZERO = 1 if result = 0 

N = 0 

OVR = 0 

en = 0 

CYCLIC REDUNDANCY CHARACTER CHECK 

DESCRIPTION 

CRC 

Serial binary data transmitted over a channel is susceptible to error bursts. These bursts 
may be detected and corrected by standard encoding methods such as cyclic 
redundancy check codes, fire codes, or computer generated codes. These codes all 

en divide the message vector by a generator polynomial to produce a remainder that 
~ contains parity information about the message vector. 
~ 
l> 
n 
-f 
CO 
CO 
W 
N 

If a message vector of m bits, a(x), is divided bya generator polynomial, g(x), of order 
k-1, a k bit remainder, r(x), is formed. The code vector, c(x), consisting of mIx) and 
r(x) of length n = m + k is transmitted down the channel. The receiver divides the 
received vector by g(x). 

After m divide iterations, r(x) will be regenerated only if there is no error in the message 
bits. After k more iterations, the result will be zero if and only if no error has occurred 
in either the message or the remainder. 

ALGORITHM 

An algorithm for a cyclic redundancy character check, using the 'ACT8832 as a 
receiver, is given below: 

LOADMQ VEC(X) Load MQ with first 32 message bits of 
received vector c' (x). 

LOAD POLY 

CLEAR SUM 

REPEAT (n/32) TIMES: 

SUM = SUM CRC POLY 

LOADMQ VEC(X) 

(END REPEAT) 

3-86 

Load register with polynomial g(x). 

Clear register acting as accumulator. 

Perform CRC instruction where 
R Bus = POLY 
S Bus = SUM 

Store result in SUM. 

Load MQ with next 32 message bits of 
received vector c'(x). 



CRC Cyclic Redundancy Character Accumulation I 0 I 0 I 

SUM now contains the remainder [r'(x)) of c'(xl. A syndrome generation routine may 
be called next, if required. 

Note that the most significant bit of 

g(x) = (gk-1 )(xk-1) + (9k_2)(xk-2) + .. (go)(xO ) 

is implied and that POL Y(O) is set to zero if the length of g(x) requires fewer bits than 
are in the machine word width. 
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1410 Divide Remainder Fix DlVRF 

FUNCTION 

Corrects the remainder of nonrestoring division routine if correction is required. 

DESCRIPTION 

DIVRF tests the result of the final step in nonrestoring division iteration: SDIVIT (for 
signed division) or UDIVIT (for unsigned division). An error in the remainder results 
when it is nonzero and the signs of the remainder and the dividend are different. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the previous result. The least significant half is in the MO register. The Y bus 
result must be stored in the register file for use during the subsequent SDIVOF 
instruction. 

CJ) DIVRF tests to determine whether a fix is required and evaluates: 
~ Y +- S + R' + 1 if a fix is necessary 
~ Y +- S + R + 0 if a fix is unnecessary 
l> 
(") Overflow is reported to OVR at the end of the division routine (after SDIVOF). 
-t 
00 
~ Recommended R Bus Source Operands 

N C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No None None 
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DIVRF 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

SiC5T No 

5102 No 

5103 No 

Cn Yes 

Status Signals 

ZERO 

N 

OVR 

Cn 

1 if remainder = 0 

o 
o 
1 if carry-out = 

Divide Remainder Fix 

Use 

Inactive 

Inactive 

Inactive 

Inactive 

Inactive 

Should be programmed high 

I 4 I 0 I 
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1310 Double-Length Normalize DNORM 

FUNCTION 

Tests the two most significant bits of a double precision number. If they are the same, 
shifts the number to the left. 

DESCRIPTION 

This instruction is used to normalize a two's complement, double precision number 
by shifting the number one bit to the left and filling a zero into the LSB unless SIOO 
is low. The S bus holds the most significant half; the MQ register holds the least 
significant half. 

Normalization is complete when overflow occurs. The shift is inhibited whenever 
normalization is attempted on a numl:ler already normalized. 

~ Available R Bus Source Operands 
..... 
~ 
:t> 
n 
"""4 
00 
00 
W 
N 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

No No No 

Recommended S Bus Source 
Operands (MSH) 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes No No 

Recommended Destination 
Operands 

RF RF 

(C5-CO) 
Y-Port 

(B5-BO) 

Yes No No 
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No 

Shift Operations 
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ALU MQ 

Left Left 



DNORM Double-Length Normalize 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

5100 Yes When low, selects a one end-fill bit in LSB 

5101 No Passes internally generated end-fill bits 

5102 No 

5103 No 

Cn No 

Status Signals 

ZERO 

N 

OVR 

Cn 

1 if result = 0 

1 if MSB = 1 

1 if MSB XOR 2nd MSB 

o 

EXAMPLE (assumes a 32-bit configuration) 

Normalize a double-precision number. 

3 o 

(This example assumes that the MSH of the number to be normalized is in register 3 
and the lSH is in the MQ register. The zero on the OVR pin at the end of the instruction 
cycle indicates that normalization is not complete and the instruction should be 
repeated). 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- Offi"- CF2-

17-10 A5-AO B5-BO Eli: EBO C5-CO SELMO WeO SELRFO 0eA We OEYO OES Cn CFO 

00110000 XX XXXX 000011 X 00 000011 0 0000 10 X X XXXX 0 X 110 

Assume register file 3 holds FA75D84E (Hex) and MQ register holds 37F6D843 (Hex): 

Source 11111010011101011101100001001110 I ALU shifter +- RF(3) 

Source 0011 0111 1111 01101101 100001000011 MQ shifter +- MQ register 

Destination 1111 010011101011 1011 0000 1001 1101 8RF(3) +- Result (MSH) 

Destination 01101111 11101101 1011 000010000110 I MQ register +- Result (LSH) 

GJ OVR +- ot 

tNormalization not complete at the end of this instruction cycle. 
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I 5 I F Output Divide/BCD Flip-Flops DUMPFF 

FUNCTION 

Output contents of the divide/BCD flip-flops. 

DESCR,PTION 

The contents of the divide/BCD flip-flops are passed through the MQ register to the 
Y output Imultiplexer. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

(") Available S Bus Source Operands 
-f 
CO 
CO 
W 
N 

RF MQ 

(B5-BO) 
DB-Port 

Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 

No No 

Status Signals 

IZER~ 
OVR 

Cn 
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DUMPFF Output DividelBCD Flip-Flops 

EXAMPLES (assumes a 32-bit configuration) 

Dump divide/BCD flip-flops to Y output. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects --
Code Addr Addr EB1- Addr WE3- SELRF1-

17-10 A5-AO B5-BO EAEBO C5-CO SELMa WEO SELRFO '15EA 15Es 
0101 1111 XX xxxx xx xxxx x xx xx XXXX 1 XXXX XX x x 

Assume divide/BCD flip-flops contain 2A055470 (Hex): 

I 5 I F I 

0EY3- CF2-

0Ev0 DES en CFO 

0000 x X 110 

Source 0010101000000101 0101 01000111 0000 I MQ register +- Divide/BCD flip-flops 

Destination 0010101000000101 0101 01000111 0000 I Y output +- MQ register 
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I 8 I F Excess·3 Byte Correction EX3BC 

FUNCTION 

Corrects the result of excess-3 addition or subtraction in selected bytes. 

DESCRIPTION 

This instruction corrects excess-3 additions or subtractions in the byte mode. For 
correct excess-3 arithmetic, this instruction must follow each add or subtract. The 
operand must be on the 5 bus. 

Data on the 5 bus is added to a constant on the R bus determined by the state of 
the BCQ flip flops and previous overflow condition reported on the 55F pin. Bytes with 
510 inputs programmed low evaluate the correct excess-3 representation. Bytes with 
510 inputs programmed high or floating, pass 5 unaltered. 

2 Available R Bus Source Operands 
-.oJ 
~ » 
n 
......j 
CO 
CO 
W 
N 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Ml!sk 

No No No No 

Available S Bus Source O,perands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No No No 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Inactive 

SIOO Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte selElct 

5103 Yes Byte select 

Cn No Inactive 
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EX3BC Excess-3 Byte Correction 

Status Signals 

ZERO 

N 

OVR 

Cn 

o 
o 

if arithmetic signed overflow 

if carry-out = 1 

EXAMPLE (assumes a 32-bit configuration) 

8 F 

Add two BCD numbers and store the sum in register 3. Assume data comes in on 
DB bus. 

1. Clear accumulator (SUB ACC, ACC) 
2. Store 33 (Hex) in all bytes of register (SET1 R2, H/33/1 
3. Add 33 (Hex) to selected bytes of first BCD number (BADD DB, R2, R1) 
4. Add 33 (Hex) to selected bytes of second BCD number (BADD DB, R2, R3) 
5. Add selected bytes of registers 1 and 3 (BADD, R1, R3, R3) 
6. Correct the result (EX3BC, R3, R3) 

Instr Op.d Op.d Op.d Sol Dest Destination Selects 

Code - 0eYa- - --Add. Add. EB1- Add. WE3- SELRF1- CF2- 5103- IESI03-

17-10 AS-AD BS-8O, Eli EBO CS-CO SELMQ WEO SELRFO 0eA 0Eii iiEYO 0eS Cn CFO SiOo iEsiOo 
11110010 00 0010 XX XXXX 0 XX 000010 0 0000 10 X X XXXX 0 1 110 XXXX XXXX 
00001000 00 0010 XX XXXX 0 XX 00 0010 0 0000 10 X X XXXX 0 X 110 XXXX XXXX 
10001000 00 0010 XX XXXX 0 10 00 0001 0 0000 10 X X XXX X 0 0 110 1100 0000 

1000 1000 00 0010 XX XXXX 0 10 000011 0 0000 10 X X XXX X 0 0 110 1100 0000 

1000 1000 000001 000011 0 00 000011 0 0000 10 X X XXXX 0 0 110 1100 0000 

1000 1111 XX XXXX 000011 X 00 000011 0 0000 10 X X XXXX 0 0 110 1100 0000 

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth 
instruction. 

000000000000 0000 0000 0000 0000 0000 I RF(2) +- 0 

2 0000 0000 0000 0000 0011 0011 0011 0011 RF(2) +- 00003333 (Hex) 

3 01010001001100111001110001000101 RF(1) +- RF(2) +DB 

4 0011 0100 1000 0110 1010 0100 1001 0101 RF(3) +- RF(2) + DB 

5 0011 010010000110010000001101 1010 I RF(3)n +- RF(1)n + RF(3)n 

6 0011 0100 1000 0110 0100 0000 0111 0100 I RF(3)n +- Corrected RF(3)n result 
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I 9 I F Excess·3 Word Correction EX3C 

FUNCTION 

Corrects the result of excess-3 addition or subtraction. 

DESCRIPTION 

This instruction corrects excess-3 additions or subtractions in the word mode. For 
correct excess-3 arithmetic, this instruction must follow each add or subtract. The 
operand must be on the 5 bus. 

Data on the 5 bus is added to a constant on the R bus deteqnined by the state of 
the BCD flip-flops and previous overflow condition reported on the SSF pin. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

N Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-80) 
Y-Port ALU MQ 

Yes No Yes No No 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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EX3C Excess-3 Word Correction 

Status Signals 

ZERO 

N 

OVR 

en 

o 
1 if MSB = 

if arithmetic signed overflow 

if carry-out = 1 

EXAMPLE (assumes a 32-bit configuration) 

I 9 I F 

Add two BCD numbers and store the sum in register 3. Assume data comes in on 
DA bus. 

1. Clear accumulator (SUB ACC, ACC) 
2. Store 33 (Hex) in all bytes of register (SET1 R2, H/33/1 
3. Add 33 (Hex) to all bytes of first BCD number (ADD DB, R2, R1) 
4. Add 33 (Hex) to all bytes of second BCD number (ADD DB, R2, R3) 
5. Add the excess-3 data (ADD, R1, R3, R3) 
6. Correct the excess-3 result (EX3C, R3, R3) 
7. Subtract the excess-3 bias to go to BCD result. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- om- CF2-

17-10 A5-AO B5-80 EA EBO C5-CO SELMa WEO SELRFO OEA Oeii 0EY0 DES Cn CFO 

11110010 00 0010 XX XXXX 0 xx 000010 0 0000 10 X X xxx x 0 1 110 

00001000 000010 XX XXXX 0 xx 000010 0 0000 10 X X xxx x 0 X 110 

11110001 000010 XX XXXX 0 10 000001 0 0000 10 X X XXXX 0 0 110 

11110001 000010 XX XXXX 0 10 000011 0 0000 10 X X xxxx 0 0 110 

111.10001 000001 000011 0 00 000011 0 0000 10 X X xxx x 0 0 110 

1001 1111 XX xxx x 000011 X 00 000011 0 0000 10 X X XXXX 0 0 110 

11110010 000010 000011 0 00 000011 0 0000 10 X X xxx x 0 0 110 
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I 9 I F Excess-3 Word Correction EX3C 

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth 
instruction. 

Results of Instruction Cycles: 

1 00000000000000000000000000000000 1 RF(2) +- 0 

2 1 0011 0011 0011 0011 0011 0011 0011 0011 RF(2) +- 33333333 (Hex) 

3 11000010001100110 ;001110001000101 RF(1) +- RF(2) +DB 

4 1 01100111 1011 1001 1010 01001001 0101 RF(3) +- RF(2) + DB 

5 111011000010000001000000110110101 RF(3) +- RF(1) + RF(3) 

6 1011 ;001 0101 0011 0111 0011 10100111 1 RF(3) +- Corrected RF(3) result 

7 100001100010000001000000011101001 RF(3) +- RF(3)-RF(2) 
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INCNH Increment Negative H using Carry (H' + Cn) 

FUNCTION 

Evaluates R' + Cn. 

DESCRIPTION 

Data 'on the R bus is inverted and added with carry. The result appears at the ALU 
and MQ shifters . 

• The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

No No No 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) (B5-BO) 
Y-Port 

Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Yes Increments if programmed high. 
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Increment "egative R using Carry (R' + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operatidn. 

EXAMPLE (assumes a 32-bit configuration) 

INCNR 

Convert the data on the DA bus to two's complement and store the result in register 4. 

en z ...., 
~ » 
(") 

Inst. 

Code 

17-10 

11110111 

Op.d 

Add. 

A5-AO 

XX XXXX 

Op.d Op.d Sel 

Add. EB1-

B5-80 EAEBO 

xx XXXX 1 XX 

Dest Destination Selects 

Add. We3'- SELRF1-

C5-CO SELMa WEO SELRFO 0eA OEB 
000100 0 0000 10 X X 

~ Assume register file 1 holds 3791 FEF6 (Hex): . 
CO 
W 
N Source 00110111 100100011111111011110110 I R - DA 

Destination 1100 1000011011100000000100001010 I RF(4) - R' + Cn 
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INCN8 Increment Negative 8 using Carry (8' + Cn) * I 5 

FUNCTION 

Evaluates S' + en. 

DESCRIPTION 

Data on the S bus is inverted and added to the carry. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble 117-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Yes Increments if programmed high. 
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I * I 5 Increment Negative S using Carry (S' + Cn) 

S~atus Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

INCNS 

Convert the data on the MQ register to one's complement and store the result in 
register 4. 

en 
2 

~ » 
(') 
..... 

Instr 

Code 

17-10 

11110101 

Op,d 

Add, 

A5-AO 

XX XXXX 

Dp,d Dp,d Sel 

Add, EB1-

B5-BO EA EBO 

xx XXXX X 11 

Dest Destination Selects 

Add, We3- SELRF1-

C5-CO SELMa WeO SELRFO 0eA 0eB 
000100 0 0000 10 X X 

CO Assume MQ register file 1 holds 3791 FEF6 (Hex): 
CO 

~ Source 00110111100100011111111011110110 Is+- MQ register 

Destination 110010000110111000000001 0000 1001 RF(4) +- S' + Cn 
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INCR Increment R using Carry (R + Cn) * I 6 I 

FUNCTION 

Increments R if the carry is set. 

DESCRIPTION 

Data on the R bus is added to the carry. The sum appears at the ALU and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

Yes No Yes 

Available S Bus Source 
Operands (MSH) 

RF MQ 
D8-Port 

(85-80) Register 

No No No 

C3-CO 

.. 
A3-AO 

Mask 

No 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (85-80) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Yes Increments R if programmed high. 
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I * I 6 I Increment R using Carry (R + Cn) 

Status Signals t 

ZERO 

N 

OVR 

Cn 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

1 if carry-out = 1 

INCR 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negativel are evaluated after shift 
operation. OVR (overflow I is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Increment the data on the DA bus and store the result in register 4. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr E81· Addr WEa· SELRF1· OEY3· CF2· 

17·10 AS-AO 86-80 EAE80 C5-CO SELMa WEO SELRFO OEA 0e8 0eY0 OES Cn CFO 

11110110 XX XXXX xx XXXX 1 XX 000100 0 0000 10 X X XXXX 0 1 110 

Assume register file 1 holds 3791 FEF6 (Hex). 

Source 00010111100100011111111011110110 I R +- DA 

Destination 0001 0111 1001 0001 1111 11101111 0111 RF(4) +- R + Cn 
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INCS Increment S using Carry (S + Cn) 

FUNCTION 

Increments S if the carry is set. 

DESCRIPTION 

Data on the S bus is added to the carry. The sum appears at the ALU and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) 
Y-Port 

(B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SI01 No 

SI02 No 

SI03 No 

Cn Yes Increments S if programmed high. 
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I * 14 I Increment 8 using Carry (8 + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Increment the data in the MO register and store the result in register 4. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr W'E3- SELRF1- l5EY3-
17-10 AS-AO 6S-80 EAEBO CS-CO SELMO WEo SELRFO OEA OE6 CWo 0eS 

11110100 XX XXX X XX XXXX X 11 000100 0 0000 10 X X XXXX 0 

~ Assume MO register holds 54FFOOFF (Hex): 
CX) 
CO 
CAl 
N 

Source 01010100111111110000000011111111 S +- MQ register 

Destination 0101 0100 1111 1111 0000 0001 0000 0000 I RF(4) +- S + Cn 
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LOADFF Load Divide/BCD Flip-Flops I 0 I F I 

FUNCTION 

Load divide/BCD flip-flops from external data input. 

DESCRIPTION 

Uses an internal bypass path to load data from the S MUX directly into the divide/BCD 
flip-flops. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) 
V-Port 

Shifter (B5-BO) Shifter 

No No No No No 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

5100 No Inactive 

SI01 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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I 0 I F 

Status Signals 

IZERO ~ 0 
N = 0 

OVR = 0 

C = 0 

Load Divide/BCD Flip-Flops 

EXAMPLE (assumes a 32-bit configuration) 

Load the divide/BCD flip-flops with data from the DB input bus. 

en z 

Instr 

Code 

17-10 

00001111 

Oprd Oprd 

Addr Addr 

A5-AO B5-BO 

XX XXXX XX XXXX 

Oprd Sel Dest 

EB1- Addr 

EA EBO C5-CO SELMQ 

X 10 XX XXXX X 

..... Assume DB input holds 2A08C618 (Hex): 

Destination Selects 

W'5- SELRF1-

WEO SELRFO 0eA 0eB 
XXXX XX X X 

~ 
(') Source 0010101000001000110001100001 1000 I S - DB bus 
-t 
CO 

LOADFF 

om- CF2-

0EY0 OES Cn CFO 

XXXX X X 110 

~ Destination 001010100000100011<;001100001 1000 I Divide/BCD flip-flops - S 
N 
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LOADMQ Pass (V - F) and Load MQ with F I E I * 

FUNCTION 

Passes the result of the ALU instruction specified in the lower nibble of the instruction 
field to Y and the MQ register. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y and the MQ register . 

• A list of ALU operations that can be used with this instruction is given in Table 1 5. 

Shift Operetions 

Available Destination Operands 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Outputs MOO (LSB) 

SIOO' No Inactive 

SI01 No Inactive 

SI02 No Inactive 

Si03 No Inactive 

Cn No Inactive 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 
1 if signed arithmetic overflow 

1 if carry-out = 1 

Use 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 
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I E I * .. Pass (Y - F) and Load MQ with F LOADMQ 

EXAMPLE (assumes a 32-bit c~nfiguration) 

Load the MQ register with data from register 1, and pass the data to the Y port. 

(In this example, data is passed to the ALU by and INCR instruction without carry-in.) 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- 0Ev3-
17-10 AS-AD B5-BO EAeBO C5-CO SELMa WEO SELRFO 0eA 0eB 0eY0 

11110110 00 0001 XX XXX X 0 xx xx XXI<X 0 XXXX xx x x XXXX 

Assume register file 1 holds 2A08C618 (Hex): 

Source I 001010100000 1000 1100 0110 0001 1000 I R - RF(1) 

(I) 

:2 Destination I 001010100000 1000 1100 0110 0001 1000 I MQ register - R + en ..., 
,J::. 
l> 
(") 
-I 
00 
CO 
Co\) 
N 
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MQSLC Pass (V - F) with Circular Left MQ Shift I 0 I * I 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs a circular left shift on MQ. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MQ register are rotated one bit to the left. The MSB is rotated 
out and passed to the LSB of the same word, which may be 1, 2, or 4 bytes long. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MQ register. If SSF is low, the MQ register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

Available Destination Operands IALU Shifter) 

RF RF 

(C5-CO) 185-80) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

SiOO No Inactive 

SiOT No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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10 I * Pass (Y - F) with Circular Left MQ Shih 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 

o if MSB of result = 0 

1 if signed arithmetic overflow 

1 if carry-out = 1 

MQSLC 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and store the unshifted 
CJ) result in register 1. Circular shift the contents of the MQ register one bit to the left. 
:2 
-.,J 
~ 
l> 
n 
-4 
00 
00 
W 
N 

Inst' Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1· Add, WE3. SELRF1· Offi· CF2· 

17·10 A5·AO B5·BO EAEBO C5·CO SELMa WEO SELRFO i5EA 0Ee 0EY0 OES Cn CFO 

11010001 00 0001 XX xxxx a 10 00 0001 0 0000 10 X X xxxx a I 110 

Assume register file 1 holds 2508C618 (Hex), DB bus holds 11007530 (Hex), and 
MQ register holds 4DA99AOE (Hex). 

Source 0010 0101 0000 1000 1 lOa 01100001 1000 I R - RF(1) 

Source 0001 0001 0000 0000 0111 0101 0011 0000 I S - DB bus 

Destination 001101100000 1001 00111011 0100 1001 I RF( 1) - R + S + Cn 

Source I 0100 1101 lOla 1001 1001 lOla 0000 1 I 10 I MQ shifter - MQ register 

Destination 1001 1011 0101 001 I 001 I 0100 0001 1100 I MQ register - MQ shifter 
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MOSLL Pass (Y - F) with Logical Left MO Shift 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs a left shift on MO. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MO register are shifted one bit to the left. A zero is filled into 
the least significant bit of each word unless the SIO input for that word is programmed 
low; this will force the least significant bit to one. The MSB is dropped from each word, 
which may be 1, 2, or 4 bytes long, depending on the configuration selected. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result N 
will be sent to the MQ register. If SSF is low, the MQ register will not be altered. M 

CO 
• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

Available Destination Operands IALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

5100 Yes Fills a zero in LSB of MQ shifter if high or floating; 

sets LSB to one if low. 

5101 No Inactive in 32-bit configuration; used in 

SI02 No configurations to select end-fill in LSBs. 

SI03 No 

en No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 

3-113 

CO 
I­
(.) 
<t 
~ 

" z 
en 



I c I It Pass (Y - F) with Logical Left MO Shift MOSLL 

Status Signals t 

ZERO 1 if result = 0 

N 1 if IIIISB of result = 1 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out = 1 

tc is AlU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after AlU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 7 to data on the DB bus with carry-in and store the unshifted 
(I) result in register 7. Shift the contents of the MO register one bit to the left, filling 
Z a zero into the least significant bit . .... 
~ Instr Oprd Oprd Oprd Sel Dest Destination Selects 
(') Code Addr Addr EB1· Addr WE3· SELRF1- 0Ev3. CF2· S103- IESI03-

~ EAEBO SELMQ WEO SELRFO 0eA Oeii -
17-10 A5-AO B5-BO C5-CO OEYO OES Cn CFO SIOO IESIOO 

11000001 000111 XX XXX X a 10 00 0111 a 0000 10 X X XXXX 0 1 110 1111 0000 CO 
W 
N Assume register file 7 holds 7308C618 (Hex), DB bus holds 54007530 (Hex), and 

MO register holds 61A99AOE (Hex). 

Source 011100110000 1000 11000110 00011000 I R - RF(7) 

Source 0101 0100 0000 OQOO Qlll 0101 0011 0000 I S - DB bus 

Destination 1100 0111 0000 1001 0011 1011 0100 1001 I RF(7) - R + S + Cn 

Source 0110 0001 10101001 1001 10100000 1100 I MQ shifter - MQ register 

Destination 1100 0011 0101 0011 0011 0100 0001 1000 I MQ register - MQ shifter 
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MQSRA Pass (Y - F) with Arithmetic Right MQ Shift 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs an arithmetic right shift on MO. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MO register are rotated one bit to the right. The sign bit of the 
most significant byte is retained. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating. the shift result 
will be sent to the MO register. If SSF is low. the MO register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

MQ Shifter 

Arithmetic Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

SIOO No Outputs LSB of MQ shifter (inverted). 

SiOf No Inactive in 32-bit configurations; used in other 

"Si02 No configurations to output LSBs from MQ shifter 

SI03 No (inverted). 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruc~ion field. 
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Pass IV - F) with Arithmetic Right MQ Shift 

Status Signals f 

ZERO 

N 

OVR 

C 

1 if re'sult = 0 

1 if MSB of result = 

o if MSB of result = 0 

1 if signed arithmetic overflow 

1 if carry-out = 1 

MQSRA 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data in register 10 with carry-in and store the unshifted result 
en in register 1. Shift the contents of the' Mq register one bit to the right, retaining the 
:2 sign bit . ..... 
~ » 
(") 
-t 
CO 
CO 
W 
N 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Addr WE3-SELRF1- 0EY3- CF2-

17-10 A5-AO 85-BO "EAEBO C5-CO SELMQ WEO SELRFO 0eA DEB 0EY0 DEs Cn CFO 

10100001 000001 001010 0 00 000001 0 0000 10 X X XXXX 0 1 110 

Assume register file 1 holds 5608C618 (Hex), register file 10 holds 14007530 (Hex), 
and MQ register holds 98A99AOE (Hex). 

Source 0101 011000001000110001100001 1000 I R +- RF(1) 

Source 0001 01000000 0000 0111 0101 0011 0000 I S +- RF(10) 

Destination 011010100000 1001 0011 1011 01001001 I RF(1) +- R + S + Cn 

Source 1001 10001010' 1001 1001 1~10 00001110 I MQ shifter +- MQ register 

Destination llqO 11000101 010011001101 00000111 MQ register +- MQ shifter 

3-116 



MOSRL Pass (Y - F) with Logical Right MO Shift I B I * I 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs a right shift on MQ. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MQ register are shifted one bit to the right. A zero is placed in 
the sign bit of the most significant byte unless the SID input for that byte is set to 
zero; this will force the sign bit to 1. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MQ register. If SSF is low, the MQ register will not be altered. N 

M 
• A list of ALU operations that can be used with this instruction is given in Table 15. CO 

CO 
I-

Shift Operations 0 

Available Destination Operands (ALU Shifterl 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shift result if high or floating; retains MO 

without shift if low. 

SIOO Yes Fills a zero in LSB of MO shifter if high or floating; 

sets LSB to one if low. 

SI01 No Inactive in 32-bit configuration; used in other 

SI02 No configurations to select end-fill in LSBs. 

SI03 No 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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I B I * Pass (Y - F) with Logical Right MQ Shift 

Status Signals t 

ZERO 

N 

1 if result = 0 

1 if MSB of result = 

o if MSB of result = 0 

OVR 1 if l\lig~ed arithmetic overflow 

C 1 if carry-out = 1 

MQSRL 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift oper,ation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and store the unshifted 
tJ) result in register 1. Shift the contents of theMO register one bit to the left. 
2: ..... 
~ 
l> 
("') 
-t 
00 
00 
tAl 
N 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- Offi- CF2-

17-10 A5-AO B5-BO EA EBO C5-CO SELMa WEo SELRFO 0eA 0Eii 0EY0 OES Cn CFO 

10110001 000001 XX XXXX 0 10 00 .. 0001 0 0000 10 X X XXXX 0 1 110 

Assl-lme register file 1 holds 5608C61~ (Hex), DB bus holds 14007530 (Hex), and 
MO register holds 98A99AOE (Hex). 

Source 0101 01100000 1000 110001100001 1000 I R +- RF( 1) 

Source 0001 0100000000000111 0101 0011 0000 Is+- DB bus 

Destination 011010100000 1001 0011 1011 0100 1001 I RF(1) +- R + S + Cn 

Source 1001100010101001 1001 10100000 1110 I MO shifter +- MO register 

Destination 01001100 0101 0100 1100 1101 00000111 MO register +- MO shifter 
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NAND Logical NAND (R NAND S) * I c I 

FUNCTION 

Evaluates the logical expression R NAND S. 

DESCRIPTION 

Data on the R bus is NANDed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same micro cycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(85-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Inactive 
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I * Ie I Logical NAND (R NAND S) 

Status Signals t 

ZERO 1 if result = 0 

N 1 if MSB = 1 

OVR 0 

C 0 

tc is AlU carry out "and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after AlU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Logically NAND the contents of register 3 and register 5, and store the result 
in register 5. 

Inst' Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1· Add, WE3. SELRF1- OEY3-

17-10 A5-AO B5-BO EA EBO C5-CO SELMQ 'Weii SELRFO OEA OEB 0eY0 OES 

1111 1100 000011 000101 0 00 000101 0 0000 10 X X XXXX 0 

NAND 

CF2-

Cn CFO 

X 110 

CO Assume register file 1 holds 60F6D840 (Hex) and register file 5 holds 13F6D377 (Hex). 
CO 

~ Source 01100000111101101101100001000000 I R - RF(3) 

Source 00010011111101101101001101110111 S - RF(5) 

Destination 111111110000 100100101111 lOll 1111 RF(5) - R NAND S 
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NOP No Operation F F 

FUNCTION 

Forces AlU output to zero. 

DESCRIPTION 

This instruction forces the AlU output to zero. The BCD flip-flops retain their old value. 
Note that the clear instruction (ClR) forces the AlU output to zero and clears the BCD 
flip-flops. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MO 
DB-Port 

(B5-BO) Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 

Yes No 

Status Signals 

IZER~ 
OVR 

C 

o 
o 
o 

Y-Port ALU MO 

Yes None None 
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I F I F No Operation 

EXAMPLE (assumes a 32-bit configuration) 

Clear register 12. 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Md, EB1- Add, WE3- SELRF1-

17-10 AS-AO B5-6O EA EBO C5-CO SELMa WeB' SELRFO OEA DEe 
11"11111 XX XXXX xx XXXX x xx 001100 0 0000 10 X X 

Dl:Istination I 0000 0000 0000 0000 0000 0000 0000 0000 I RF(12) - 0 
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NOR Logical NOR (R NOR S) * I 0 

FUNCTION 

Evaluates the logical expression R NOR S. 

DESCRIPTION 

Data on the R bus is NORed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-141 of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MO 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MO 

(C5-CO) 
Y-Port 

(85-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn No Inactive 
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I * 10 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
o 

Logical NOR (R NOR S) 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift op~ration. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Logically NOR the contents of register 3 and register 5, and store the result 
in' register 5. 

Ins~r Oprd Oprd Oprd Sel Dest Destination Se!!3cts 

Code Addr Addr EB1- Addr We3- SELRF1- 0eYa-
17-10 A5-AO B5-BO EAEBO C5-CO SELMO WEci SELRFO 0eA OEB OEYO OES 

11111011 000011 000101 0 00 000101 0 0000 10 X X XXXX 0 

NOR 

CF2-

Cn CFO 

X 110 

CO Assume register file 3 holds 60F6D840 (Hex) and register file 5 holds 13F6D377 (Hex). 
CO 

~ Source 011000001111 01101101 100001000000 I R +- RF(3) 

Source 00010011111101101101001101110111 Is+- RF(5) 

Destination 1000 11000000 10010010010010001000 I RF(5) - R NOR S 
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OR Logical OR IR 0" S) * I B I 

FUNCTION 

Evaluates the logical expression R OR S. 

DESCRIPTION 

Data on the R bus is ORed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(BS-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(CS-CO! (BS-BO) 
Y-Port 

Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn No Inactive 
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Logical OR (R OR S) 

Status Signals t 

ZERO 1 if result = 0 
N 1 if MSB = 1 

OVR 0 
C 0 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluat/ld after ALU operation and after shift operation. 

EXAMPLE (assu!11es a 32-bit configuration) 

Logically OR the contents of register 5 and register 3, and store the result in 
register 3. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 
Code Addr Addr EB1· Addr "We3. SELRF1· om· 
17-10 A5-AO B5-BO EA EBO C6-CO SELMO WeD SELRFO 0eA OEB 0eY0 DES 

1111 1011 000101 000011 0 00 000011 0 0000 10 X X XXXX 0 

OR 

CF2· 

Cn CFO 

X 110 

~ Assume register file 5 holds 60F6D840 (Hex) and register file 3 holds 13F6D377 (Hex). 

~ Source 011000001111 01101101 100001000000 I R +- RF(5) 

Source 00010011111101101101001101110111 S +- RF(3) 

Destination 0111 0011 1111 0110 1101 1011 0111 0111 RF(3) +- R OR S 
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PASS Pass (Y - F) F 

FUNCTION 

Passes the result of the ALU instruction specified in the lower nibble of the instruction 
field to Y MUX. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (/3-10) is passed unshifted to Y MUX. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (85-80) Shifter Shifter 

Yes No Yes None None 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

SIOO No Inactive 

~101 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

tc is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 
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I F I * Pass (Y - F) PASS 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and store the unshifted 
result in register 10. 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WEJ- SELRF1- 0Ev3- CF2-

17-10 A5-AO B5-BO Eli: EBO C5-CO SELMQ WeD SELRFO 0eA QEij OEYO 0eS Cn CFO 

11110001 000001 XX XXXX 0 10 00 1010 0 0000 10 X X xxxx 0 1 110 

Assume register file 3 holds 9308C618 (Hex) and DB bus holds 24007530 (Hex). 

Source 1001 0011 00001000 110001100001 1000 I R - RF(1) 

Source 00100100 0000 0000 0111 0101 0011 0000 I S - DB bus 

Destination 10110111000010010011101101001001 RF(10) - R + S + en 
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SDIVI Signed Divide Iterate I A I 0 I 

FUNCTION 

Performs one of N-2 iterations of nonrestoring signed division by a test subtraction 
of the N-bit divisor from the 2N-bit dividend. An algorithm using this instruction is 
given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SOIVI performs a test subtraction of the divisor from the dividend to generate a quotient 
bit. The test subtraction passes if the remainder is positive and fails if negative. If 
it fails, the remainder will be corrected during the next instruction. 

SOIVI checks the pass/fail result of the test subtraction from the previous instruction, 
and evaluates 

F ..... R + S if the test fails N 
F ..... R' + S + Cn if the test passes M 

00 
A double precision left shift is performed; bit 7 of the most significant byte of the MO ~ 
shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 of U 
the most significant byte of the ALU shifter is lost. The unfixed quotient bit is circulated <C 
into the least significant bit of the MO shifter. ~ 

The R bus must be loaded with the divisor, the S bus with the most significant half ~ 
of the result of the previous instruction (SOIVI during iteration or SOIVIS at the beginning 
of iteration). The least significant half of the previous result is in the MO register. Carry-
in should be programmed high. Overflow occurring during SOIVI is reported to OVR 
at the end of the signed divide routine (after SOIVOF). 

Available R Bus Source Operands 

C3-CO 
RF A3-AO .. 

(A5-AO) Immed 
DA-Port 

A3-AO 

Mask 
Yes No Yes No 

Recommended S Bus Source Operands 

RF 
D8-Port 

MQ 
(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (85-80) 
ALU MQ 

Yes No Yes Left Left 
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I A 10 Signed Divide Iterate 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF 'No Inactive 

SIOO No Pass internally generated end-fill bits. 

SI01 No 

$102 No 

SI03 No 

Cn Yes Should be programmed high 

Status Signals 

ZERO 

N 

OVR 

C 
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SDiVIN Signed Divide Initialize I 8 I 0 I 

FUNCTION 

Initializes' ACT8832 for nonrestoring signed division by shifting the dividend left and 
internally preserving the sign bit. An algorithm using this instruction is given in the 
"Other Arithmetic Instructions section. 

DESCRIPTION 

This instruction prepares for signed divide iteration operations by shifting the dividend 
and storing the sign for future use. 

The preceding instruction should load the MQ reqister with the least significant half 
of the dividend. During SDIVIN, the S bus should be loaded with the most significant 
half of the dividend, and the R bus with the divisor. Y -output should be written back 
to the register file for use in the next instruction. 

N 
A double precision logical left shift is performed; bit 7 of the most significant byte M 
of the MQ shifter is transferred to bit 0 of the least significant byte of the ALU shifter. ~ 
Bit 7 of the most significant byte of the ALU shifter is lost. The unfixed quotient sign I­
bit is shifted into the least significant bit of the MQ shifter. ~ 

~ 
Available.R Bus Source Operands ,.... 

Z 
en C3-CO 

RF A3-AO " 

(AS-AD) Immed 
DA-Port 

A3-AO 

Mask 
Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 
(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes Left Left 
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I 8 I d L 

Control/bata Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

5101. No 

5102 No 

5103 No 

Cn No 

Status Signals 

~ IZER~ 
,J:I. OVR 

» Cn 
("') 
-4 
CO 
CO 
W 
N 
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SDiVIS Signed Divide Start I 9 I 0 I 

FUNCTION 

Computes the first quotient bit of nonrestoring signed division. An algorithm using 
this instruction is given in the "Other Arithmetic Instructions" section .. 

DESCRIPTION 

SDIVIS computes the first quotient bit during nonrestoring signed division by subtracting 
the divisor from the dividend, which was left-shifted during the prior SDIVIN instruction. 
The resulting remainder due to subtraction may be negative. If so, the subsequent 
SDIVI instruction will restore the remainder during the next subtraction. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the remainder. The result on the Y bus should be loaded back into the register 
file for use in the next instruction. The least significant half of the remainder is in the 
MO register. Carry-in should be programmed high. 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MO shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is 
circulated into the least significant bit of the MO shifter. 

Overflow occurring during SDIVIS is reported to OVR at the end of the signed division 
routine (after SDIVOF). 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) lB5-BO) 
Y-Port ALU MQ 

Yes No Yes Left Left 
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I 9 I 0 I Signed Divide Start 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Pass internally generated end-fill bits. 

5101 No 

5102 No 

5103 No 

Cn Yes Should be programmed high. 

Status Signals 

ZERO 

N 

1 if intermediate result = 0 

o 
OVR o 

C 1 if carry-out 
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SDiVIT Signed Divide Terminate I E I 0 I 

FUNCTION 

Solves the final quotient bit during nonrestoring signed division. An 
algorithm using this instruction is given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SDIVIT performs the final subtraction of the divisor from the remainder during 
nonrestoring signed division. SDIVIT is preceded by N-2 iterations of SDIVI, where 
N is the number of bits in the dividend. 

The R bus must be loaded with the divisor, and the S bus must be loaded with the 
most significant half of the result of the last SDIVI instruction. The least significant 
half lies in the MQ register. The Y bus result must be ioaded back into the register 
file for use in the subsequent DIVRF instruction. Carry-in should be programmed high. 

SDIVIT checks the pass/fail result of the previous instruction's test subtraction and 
evaluates; 

Y+-R+S if the test fails 
Y +- R' + S + Cn if the test passes 

N 
M 
CO 
CO 
I­
CJ « 
~ 

The contents of the MQ register are shifted one bit to the left; the unfixed quotient ~ 
bit is circulated into the least significant bit. en 
Overflow during this instruction is reported to OVR at the end of the signed division 
routine (after SDIVQF). 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes Left Left 
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I E I 0 Signed Divide Terminate 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Pass internally generated end-fill bits. 

5101 No 

5102 No 

5103 No 

Cn Yes Should be programmed high 

Status Signals 

ZERO 

N 

OVR 

C 
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SOIVO Signed Divide Overflow Test I A I F 

FUNCTION 

Tests for overflow during nonrestoring signed division. An algorithm using this 
instruction is given in the "Other Arithmetic Instructions section. 

DESCRIPTION 

This instruction performs an initial test subtraction of the divisor from the dividend. 
If overflow is detected, it is preserved internally and reported at the end of the divide 
routine (after SOIVOF). If overflow status is ignored, the SOIVO instruction may be 
omitted. 

The divisor must be loaded onto the R bus; the most significant half of the previous 
SOIVIN result must be loaded onto the S bus. The least significant half is in the MO 
register. 

The result on the Y bus should not be stored back into the register file; WE' should 
be programmed high. 

Carry-in should also be programmed high. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port ALU MQ 

(C5-CO) (B5-BO) 

Yes No Yes None None 
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IAIF 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

SIOO No 

SiOT No 

ST02 No 

SI03 No 

Cn Yes 

Status Signals 

en ZERO 

Z N 

" ~ OVR 

l> C 
n 
-I 
CO 
CO 
Co\) 
to..) 
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SDlVQF Signed Divide Quotient Fix I 5 I 0 I 

FUNCTION 

Tests the quotient result after nonrestoring signed division and corrects it if necessary. 
An algorithm using this instruction is given in the "Other Arithmetic Instructions" 
section. 

DESCRIPTION 

SDIVQF is the final instruction required to compute the quotient of a 2N-bit dividend 
by an N-bit divisor. It corrects the quotient if the signs of the divisor and dividend are 
different and the remainder is nonzero. 

The fix is implemented by incrementing S: 

Y-S+ 
Y-S+O 

if a fix is required 
if no fix is required 

The R bus must be loaded with the divisor, and the S bus with the most significant 
half of the result of the preceding DIVRF instruction. The least significant half is in 
the MQ register. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 
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I 5 I 0 Signed Divide Quotient Fix 

Control/Data Signals 

Sighal 
User 

Use 
Programmable 

SSF No Inactive 

5100 No Inactive 

SI01 No Inactive 

5102 No Inactive 

SI03 No Inactive 

Cn Yes Should be programmed high 

Status Signals 

ZERO 

N 

OVR 

C 
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SEL Select SIR 1 I 0 I 

FUNCTION 

Selects S if SSF is high; otherwise selects R. 

DESCRIPTION 

Data on the S bus is passed to Y if SSF is programmed high or floating; data on the 
R bus is passed without carry to Y if SSF is programmed low. 

Available R Bus Source Operands 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

Yes No Yes 

Available S Bus Source 
Operands (MSH) 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

No 

Available Destination Operands 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 

Shift Operations 

ALU MQ 

None None 

Use 

SSF Yes Selects S if high. R if low. 

SIOO No Inactive 

SiOf No Inactive 

'S"i02 No Inactive 

SI03 No Inactive 

Cn No Inactive 
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1110.1 
Status Signals 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 

d 
o 

Select SIR. 

EXAMPLE (assumes a 32"bit cohfiguration) 

SEL 

Compare the two's complement numbers in registers 1 and 3 and store the larger in 
register 5. 

1. Subtract (SUBS) data in register 3 from data in register 1 and pass the result 
to the Y bus. 

2. Perform Select SIR instruction and pass result to register 5. 

en [This example assumes the SSF is set by the negative status (N) from the previous 
~ instruction}. 
,J::a. » n .... 
CO 
CO 
Co\) 
N 

Inst. Op.d Op.d Op.d Sel Dest Destination Selects 

Code Add. Add. EEI1- Add. WEa- SELRF1- om- CF2-

17-10 A5-AO 85-80 EAEao C5-CO SELMa WEO SELRFO OEA 0Ei'i 6EYo 0Es Cn CFO 

11110011 00 0001 000011 0 00 xx XXXX 0 XXXX xx x x 0000 0 1 110 

00010900 00 0001 000011 0 00 000101 0 0000 10 X X XXXX 0 0 110 

Assume register file 1 holds 00849700 (Hex) and register file 3 holds 01 C35250 (Hex). 

Instruction Cycle 1 

Source I 00000000 1000 0100 1001 0111 1101 0000 I R +- RF( 1) 

Source 00000001110000110101001001010000 Is+- RF(3) 

Destination 1111 11101100 0001 01000101 10000000 I Y bus +- R + S' + Cn 

Instruction Cycle 2 

Source 00000000 looQ 01001001 0111 1101 0000 I R +- RF(1) 

GJ SSF +- 1 

Source 00000001110000110101001001010000 Is+- RF(3) 

Destination 00000001 1100 0011 0101 00100101 0000 I RF(5) +- S 
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SETO Reset Bit I 1 I 8 I 

FUNCTION 

Resets bits in selected bytes of S-bus data using mask in C3-CO::A3-AO. 

DESCRIPTION 

The register addressed by B5-BO is both the source and destination for this instruction. 
The source word is passed on the S bus to the ALU, where it is compared to an a-bit 
mask, consisting of a concatenation of the C3-CO and A3-AO address ports 
(C3-CO::A3-AO). The mask is input via the R bus. All bits in the source word that are 
in the same bit position as ones in the mask are reset. Bytes with their SIO inputs 
programmed low perform the Reset Bit instruction. Bytes with their SiD inputs 
programmed high or floating pass S unaltered. 

Available R Bus Source Operands 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

No No No 

Available S Bus Source 
Operands (MSH) 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) 
Y-Port 

(B5-BO) 
ALU MQ 

No Yes Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Byte-select 

5101 No Byte-select 

5102 No Byte-select 

5103 No Byte-select 

Cn No Inactive 
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I 1 I 8 Reset Bit 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

SETO 

Set bits 3-0 of bytes 1 and 2 of register file 8 to zero and store the result back in 
register 8. 

Instr Mask Oprd Oprd Sal Mask Destination Selects 

Code ILSHI Addr EB1- IMSHI WE3- SELRF 1- 0m- CF2- Si'03- iESiOO-
17-10 A3-AO B5-BO EAEBO C3-CO SELMO WeO SELRFO OEA 0Ee OEYO OES Cn CFO SIOO iESiOo 

0001 1000 1111 00 1000 X 00 0000 0 0000 10 X X XXX X 0 X 110 1001 0000 
en z 
-...I 
~ Assume register file 8 holds A083BEBE (Hex). 
~ o 
-t 
CO 
CO 
W 
N 

Source 000011110000 11110000111100001111 Rn -- C3-CO::A3-AO 

Source 101000001000 0011 1011 11101011 1110 I Sn -- RF(3)n 

ALU 10100000 10000000 1011000010111110 I Fn -- Sn AND Rn 

Destination 10100000100000001011 0000 1011 1110 I RF(8)n -- Fn or Sn t 

tF = ALU resu 
n = nth byte 
Register file 8 gets F if byte selected, S if byte not selected. 
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SET1 Set Bit I 0 I 8 I 

FUNCTION 

Sets bits in selected bytes of S-bus data using mask in C3-CO::A3-AO. 

DESCRIPTION 

The register addressed by B5-BO is both the source and destination for this instruction. 
The sotlrce word is passed on the S bus to the ALU, where it is compared to an 8-bit 
mask, consisting of a concatenation of the C3-CO and A3-AO address ports 
(C3-CO::A3-AO). The mask is input via the R bus. All bits in the source word that are 
in the same bit position as ones in the mask are forced to a logical one. Bytes with 
their SIO inputs programmed low perform the Set Bit instruction. Bytes with their 
SIO inputs programmed high or floating pass S unaltered. 

Available R Bus Source Operands 

RF A3-AO 
DA-Port 

(AS-AO) Immed 

No No No 

Available S Bus Source 
Operands IMSH) 

RF MQ 
DB-Port 

185-BO) Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
V-Port ALU MQ 

No Yes Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte-select 

SiOT No Byte-select 

SI02 No Byte-select 

SI03 No Byte-select 

Cn No Inactive 
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10 I 8 Set Bit 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

SET1 

Set bits 3-0 of byte 1 of register file 1 to zero and store the result back in register 1. 

Instr Mask Op,d Op,d Sol Mask Destination Selects 

Coda (LSHI Add, EB1- (MSHI iiVe'3- SELRF1- orn- CF2-

17-10 A3-AO 85-80 EAEBO C3-CO SELMa WEo SELRFO 0eA Oeii OEYO DeS Cn CFO 

t/) 
00001000 1111 000001 X 00 0000 0 0000 

:5 Assume register file 8 holds A083BEBE (Hex). 

~ 

10 X X XXXX 0 x 

l> Source 000011110000 1111 0000 111100001111 Rn - C3-CO::A3-AO o 
-I 
CO Source 10100000100000111011111010111110 I Sn - RF(1)n 

ffi 
N ALU 1010oo()0 1000001110111111101111;0 I Fn - Sn OR Rn 

Destination 10100000100000111011111110111110 I RF(1)n - Fn or Snt 

tF = ALU result 
n = nth byte 
Register file 1 gets F if byte selected. S if byte not selected_ 
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SLA Arithmetic Left Single Precision Shift 

FUNCTION 

Performs arithmetic left shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the left. A zero is filled into bit 0 of the least significant byte of each word unless 
the SID input is programmed low; this will force bit 0 to one. Bit 7 is dropped frqm 
the most significant byte in each word, which may be 1, 2, or 4 bytes long, depending 
on the configuration selected. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MQ register. If SSF is low, the MQ register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter 

Arithmetic Left 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (85-80) 
V-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO Yes Fills a zero in LS8 of each word if high; fills a 

SI01 Yes one in L58 if low. 

5102 Yes 

5103 Yes 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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Arithmetic Left Single Precision Shift SlA 

Status Signals t 

ZERO 

N 

1 if result = 0 

1 if MSB of result = 1 

cOif MSB of result = 0 

OVR 1 if signed arithmetic overflow or if MSB XOR MSB-1 

C 1 if carry-out condition 

1 before shift 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative I are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after s~ift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform the computation A = 2(A + B), where A and B are single-precision, two's 
en complement numbers. Let A be stored in r~g!ster 1 and B be input via the DB bus. 
2 

" ~ 
(") 
-I 
00 

Instr 

Code 

17-10 

01000001 

Oprd Oprd 

Addr Addr 

AS-AO BS-BO 

00 0001 XX XXXX 

Oprd 5el Dest 

EB1- Addr 

EA EBO CS-CO SELMa 

0 10 000001 0 

Destination Selects 

WE3- SELRF1- OEV3- CF2- S103- IESI03-

WEO SELRFO OEA OEB OEVO OES Cn CFO SiOo iESiOo 
0000 10 X X XXXX 0 0 110 1110 0000 

~ Assume register file 1 holds 1308C618 (Hex), DB bus holds 44007530 (Hex). 
N 

Source 00010011000010001100011000911000 I R-RF(1) 

Source 010001000000 0000 01 I I 0101 0011 0000 I S - DB bus 

Intermediate 
Result 0101 01 I 1 0000 1001 001 I 101 I 01001000 I ALU Shifter +- R + S + Cn 

Destination 10101 I 100001 001001 I I 0110 1001 0001 RF( 1) +- ALU shift result 
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SLAD Arithmetic Left Double Precision Shift 15 I * I 

FUNCTION 

Performs arithmetic left shift on MO register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double-precision word, the contents of the MO register as the lower half. 

The contents of the MO register are shifted one bit to the left. A zero is filled into 
bit 0 of the least significant byte of each word unless the SID input for the word is 
set to zero; this will force bit 0 to one. Bit 7 of the most significant byte in the MO 
shifter is passed to bit 0 of the least significant byte of the ALU shifter. Bit 7 of the 
most significant byte in the ALU shifter is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX and MO register. If SSF is low, the ALU output and MO 
register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Arithmetic Left Arithmetic Left 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

ContrOl/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO Yes Fills a zero in LSB of each word if high; fills a 

SI01 Yes one in LSB if low. 

SI02 Yes 

SI03 Yes 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 5 I * Arithmetic Left Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result. = 1 

o if MSB of result = 0 
1 if signed arithmetic overflow or if MSB XOR MSB-1 

if carry-but condition 

1 before shift 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SLAD 

Perform the computation A = 2(A + B), where A and B are two's complement numbers. 
(/) Let A be a double Ilrecision number residing in register 1 (MSH) and the MQ register 
~ (LSH). Let B be a single precision number which is input through the DB bus. 

~ » 
(") 
-f 
00 
00 
Co\) 

Instr 

Code 

17-10 

0101 0001 

Oprd Oprd 

Addr Addr 

A5-AO B5-BO 

00 0001 XX XXXX 

Oprd Sel Dest 

EB1- Addr -
EA EBO C5·CO SELMa 

0 10 000001 0 

Destination Selects 

WE3- SELRF1- OEY3- CF2- Si03- iESiOO-- 0EYci DES WEO SELRFO OEA OEB en CFO SIOO IESIOO SSF 

0000 10 X X XXXX 0 0 110 1110 0000 1 

N Assume register file 1 holds 2408C618 (Hex), DB bus holds 26007530 (Hex), and 
MQ register holds 50A99AOE (Hex). 

MSH 

Source 0010010000001000110001100001 1000 I R +- RF( 1) 

Source 00100110000000000111 0101 0011 0000 Is+- DB bus 

Intermediate 
Result 

Destination 

LSH 

0100 10100000 1001 0011 1011 0100 1000 I ALU Shifter +- R + S + en 

1001 0100 OOP1 00100111 0110 1001 0000 I RF( 1) +- ALU shift register 

Source 0101 0000 1010 1001 1001 101000001110 I MO shifter +- MO register 

Destination 10100001 0101 0011 0011 01000001 1101 MO register +- MO shift result 
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SLC Circular Left Single Precision Shift 

FUNCTION 

Performs circular left shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is rotated one bit 
to the left. Bit 7 of the most significant byte in each word is passed to bit 0 of the 
least significant byte in the word. which may be 1. 2. or 4 bytes long. 

The shift may be made conditional on SSF. If SSF is high or floating. the shift result 
will be sent to Y MUX. If SSF is low. F is passed unaltered. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Circular Left None 

Available Destination Operands (ALU Shifter) 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO No Bit 7 of ALU result 

SI01 No Bit 1 5 of ALU result 

SI02 No Bit 23 of ALU result 

SI03 No Bit 31 of ALU result 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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Circular Left Single Precision Shift 

Status Signals t 

ZERO 1 if result = 0 

N 1 if MSB of result = 1 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform a circular left shift of register 6 and store the result in register 1. 

Oprd Oprd Destination Selects 

SLC 

Instr 

Code Addr 

AS-AD 

Addr 

B5-BO 

Oprd Sel 

EB1-

EA EBO 

Dest 
Addr 

C5-CO 

WE3- SELRF 1- "Ci"EY3- CF2-

17-10 SELMQ WEO SELRFO OEA OEB 5EYo OES Cn CFO SSF 

01100110 000110 XXXXXX 0 00 000001 o 0000 10 X X XXX X 0 0 110 1 

CO Assume register file 6 holds 3788C618 (Hex). 
CO 
Co\) 
N Source 

Intermediate 
Result 

0011 0111 1000 1000 110001100001 1000 I R +- RF(6) 

0011 0111 1000 1000 1100 0110 0001 1000 I ALU Shifter +- R + Cn 

Destination 0110 1111 0001 0001 1000 1100 0011 0000 I RF( 1) +- ALU shifter result 
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SLCD Circular Left Double Precision Shift 7 

FUNCTION 

Performs circular left shift on MQ register (LSH) and result of ALU operation specified 
in lower nibble of instruction field (MSH). 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double-precision word. the contents of the MQ register as the lower half. 

The contents of the MQ and ALU registers are rotated one bit to the left. Bit 7 of the 
most significant byte in the MQ shifter is passed to bit 0 of the least significant byte 
of the ALU shifter. Bit 7 of the most significant byte is passed to bit 0 of the least 
significant byte in the MQ shifter. 

The shift may be made conditional on SSF. If SSF is high or floating. the shift result N 
will be sent to Y MUX. If SSF is low. F is passed unaltered and the MQ register is ~ 
not changed. CO 

t-
* A list of ALU operations that can be used with this instruction is given in Table 15. U 

<t 
'I:t 

Shift Operations ...... 
Z 

ALU Shifter MQ Shifter en 
Circular Left Circular Left 

Available Destination Operands IALU Shifter) 

RF RF 

(C5-CO) IB5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO No Bit 7 of ALU result 

SI01 No Bit 1 5 of ALU result 

SI02 No Bit 23 of ALU result 

SI03 No Bit 31 of ALU result 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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Circular Left Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SLCD 

Perform a circular left double precision shift of data in register 6 (MSH) and MQ (LSH), 
en and store the result back in register 6 and the MQ register. 
:2 

" ~ l> 
(') 
-t 
CO 
CO 
W 
N 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1· Add, iNE3. SELRF1· 0Ev3. CF2· 

17·10 A5·AO B5·BO EA EBO C5·CO SELMO WED SELRFO OEA We 0EY0 OES Cn CFO SSF 

01110110 000110 XX XXXX 0 00 000110 0 0000 10 X X XXXX 0 0 110 l 

Assume register file 6 holds 3708C618 (Hex) and MQ register holds 50A99AOE (Hex). 

MSH 

Source 0011 0111 00001000 110001100001 1000 R +- RF(6) 

Intermediate 
Result 0011 0111 00001000110001100001 1000 I ALU Shifter +- R + Cn 

Destination 01101111 0001 0001 100011000011 0000 I RF(6) +- ALU shifter result 

LSH 

Source 0101 0000 1010 1001 1001 10100000 1110 I MQ register +- MQ register 

Destination 10100001 0101 0011 0011 01000001 1100 I MQ register +- MQ shift result 
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SMTC Sign Magnitude/Two's Complement I 5 I 8 I 

FUNCTION 

Converts data on the S bus from sign magnitude to two's complement or vice versa. 

DESCRIPTION 

The S bus provides the source word for this instruction. The number is converted by 
inverting S and adding the result to the carry-in, which should be programmed high 
for proper conversion; the sign bit of the result is then inverted. An error condition 
will occur if the source word is a negative zero (negative sign and zero magnitude). 
In this case, SMTC generates a positive zero, and the OVR pin is set high to reflect 
an illegal conversion. 

The sign bit of the selected operand in the most significant byte is tested; if it is high, 
the converted number is passed to the destination. Otherwise the operand is passed 
unaltered. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes None None 
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15 18 Sigm Magnitude/Two's Complement 

Control/Data Signals 

Sign!:!1 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SiOf No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Should be programmed high for proper conversion 

Status Signals en 
2 ...., 
t 
(") 
-4 
CO 
CO 
tAl 
N 

ZERO 

N 

OVR 

1 if result = 0 

1 if MSB = 1 

1 if input of most significant byte is 80 (Hex) and results in all other 

bytes are 00 (Hex). 

C = 1 if S = 0 

EXAMPLES (assumes a 32-bit configuration) 

SMTC 

Convert the two's complement number in register 1 to sign magnitude representation 

and stor~ the result in register 4. 

Instr Oprd Oprd Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- OEY3· CF2-

17,10 A5-AO B5-BO EA EBO C5-CO SELMO WEo SELRFO OEA (ffij 0EY0 DEs Cn CFO 

0101 1000 XX XXXX 000001 X 00 000100 0 0000 10 X X XXXX 0 1 110 

Example 1: Assume register file 1 holds C3F6D840 (Hex). 

Source 11000011111101101101100001000000 I S - RF(1) 

Destination 1011 11000000 1001 00100111 11000000 I RF(4) - S' + Cn 

Example 2: Assume register file 1 holds 550927CO (Hex). 

Source 0101 0101 0000 1001 00100111 11000000 I S - RF(1) 

Destination 01010101 0000 1001 00100111 11000000 I RF(4) - S 
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SMUll Signed Multiply Iterate I 6 I 0 I 

FUNCTION 

Computes one of N-1 signed or N mixed multiplication iterations for computing an 
N-bit by N-bit product. Algorithms for signed and mixed multiplication using this 
instruction are given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SMUll checks to determine whether the multiplicand should be added with the present 
partial product. The instruction evaluates: 

F +- R + S + Cn 
F-S 

if the addition is required 
if no addition is required 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MO shifter; carry-out N 
is passed to the most significant bit of the ALU shifter. ('I) en 
The S bus should be loaded with the contents of an accumulator and the R bus with 
the multiplicand. The Y bus result should be written back to the accumulator after 
each iteration of UMULI. The accumulator should be cleared and the MO register loaded 
with the multiplier before the first iteration. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No No Right Right 
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1610 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

5101 No 

SI02 No 

Si03 No 

Cn Yes 

Status Signals 

en ZERO 

Z N ..... 
~ OVR 

~ C 
-f 
CO 
CO 
W 
N 

3-158 

1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Signed Multiply Iterate SMUll 

Use 

Inactive 

Passes LSB from ALU shifter to MSB of MQ shifter. 

Should be programmed low 



SMULT Signed Multiply Terminate I 7 I 0 I 

FUNCTION 

Performs the final iteration for computing an N-bit by N-bit signed product. An algorithm 
for signed multiplication using this instruction is given in the "other Arithmetic 
Instructions" section. 

DESCRIPTION 

SMUll checks the present multiplier bit (the least significant bit of the MO register) 
to determine whether the multiplicand should be added with the present partial product. 
The instruction evaluates: 

F +- R' + S + en 
F-S 

if the addition is required 
if no addition is required 

with the correct sign in the product. 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MO shifter. 

The S bus should be loaded with the contents of an register file holding the previous 
iteration result; the R bus must be loaded with the multiplicand. After executing SMUL T, 
the Y bus contains the most significant half of the product, and MO contains the least 
significant half. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Available Destination Qperands Shifl Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No Right Right 
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17 10 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

5101 No 

5102 No 

5103 No 

en Yes 

Status Signals 

en ZERO 

:2 N 
-...I 
~ OVR 

l> c 
(") 
-t 
CO 
CO 
Co\) 
N 
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1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Signed ,Multiply Terminate SMULT 

Use 

Inactive 

Passes LSB from ALU shifter to MSB of MQ shifter. 

Should be programmed low 



SNORM Single-Length Normalize I 2 I 0 I 

FUNCTION 

Tests the two most significant bits of the MO register. If they are the same, shifts 
the number to the left. 

DESCRIPTION 

This instruction is used to normalize a two's complement number in the MO register 
by shifting the number one bit position to the left and filling a zero into the LSB (unless 
the SIO input for that word is low). Data on the S bus is added to the carry, permitting 
the number of shifts performed to be counted and stored in one of the register files. 

The shift and the S bus increment are inhibited whenever normalization is attempted 
on a number already normalized. Normalization is complete when overflow occurs. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands (Count) 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes No No 

Available Destination Operands 

(Count I 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Shift Operations 

(Conditional) 

ALU MQ 

No Left 
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I 2 I 0 Single·Length Normalize 

Control/Data Signals 

User 

Signal Programmable Use 

SSF No Inactive 

SIOO No Passes internally generated end-fill bit. 

SI01 No 

SI02 No 

ID03 No 

Cn Yes Increments S bus (shift count) if set to one. 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result = 0 

if MSB of MQ register = 

1 if MSB of MQ register XOR 2nd MSB 

1 if carry-out = 1 

SNORM 

ex) EXAMPLE (assumes a 32-bit configuration) 
ex) 
CAl 
N Normalize the number in the MO register, storing the number of shifts in register 3. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr W§. SELRF1- Offi- CF2-

17-10 A5-AO B5-BO EA EBO C5-CO SELMQ WeD SELRFO OEA OEB 0EY0 DEs Cn CFO 

00100000 XX xXXX 000011 X 00 000011 0 0000 10 X X XXXX 0 1 110 

Assume register file 3 holds 00000003 (Hex) and MO register holds 3699D84E (Hex). 

Operand 

Source 0011 0110 1001 1001 1101 10000100 1110 I MQ shifter - MQ register 

Destination 0110 1101 0011 0011 1011 0000 1001 1100 I MQ register - MQ shifter 

Count 

Source 00000000000000000000000000000011 S - RF(3) 

Destination 00000000000000000000000000000100 I RF(3) - S + Cn 
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SRA Arithmetic Right Single Precision Shift I 0 I * I 

FUNCTION 

Performs arithmetic right shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. The sign bit of the most significant byte is retained unless it is inverted 
as a result of overflow. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX . 

• A list of ALU operations that can be used with this instruction is given in Table 1 5. 

Shift Operations 

ALU Shifter MQ Shifter 

Arithmetic Right None 

Available Destination Operands IALU Shifter) 

RF RF 

(C5-CO) (85-80) 
V-Port 

Ves No Ves 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shifted output if high; passes ALU result 

if low. 

SiOO No LS8 is shifted out from each word, which may be 

SI01 No 1, 2, or 4 bytes long depending on selected 

SI02 No configuration 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 0 I * Arithmetic Right Single Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result 

o if MSB of result 0 

o 
1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated afterALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SRA 

Perform the computation A = (A + B)/2, where A and B are single-precision numbers. 
en Let A reside in register 1 and B be input via the DB bus. 
2 

" ~ l> o 
~ 
CO 
CO 
W 
N 

Instr Oprd Oprd Oprd Sel 

Code Addr Addr EB1· 

17·10 A5-AO B5-BO EA EBO 

00000001 000001 XX XXXX 0 10 

Dest 

Addr 

C5-CO 

000001 

Destination Selects 

WE3- SELRF1- 0eY3. CF2-

SELMQ WED SELRFO OEA Oeii 0eY0 DEs Cn CFO SSF 

o 0000 10 X X XXXX 0 Ci 110 1 

Assume register file 1 holds 6Ab8C618 (Hex) and DB bus holds 51007530 (Hex). 

Source 

Source 

Intermediate t 
Result 

Destination 

0110 10100000 1000 110001100001 1000 I R +- RF( 1) 

0101 0001 00000000 0111 0101 0011 0000 Is+- DB bus 

10111011000010010011101101001000 I ALU Shifter +- R + S + en 

0101110110000100 1001110110100100 I RF(1) +- ALU shift result 

tAfter the intermediate operation (ADD), overflow has occurred and OVR status signal is set high. When the 
arithmetic right shift is executed, the sign bit is corrected (see Table 16 for shift definition notes). 
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SRAD Arithmetic Right Double Precision Shift 1 I * 

FUNCTION 

Performs arithmetic right shift on MQ register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALLi operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, the contents of the MQ register as the lower half. 

The contents of the ALU are shifted one bit to the right. The sign bit of the most 
significant byte is retained unless the sign bit is inverted as a result of overflow. Bit 0 
of the least significant byte in the ALU shifter is passed to bit 7 of the most significant 
byte of the MQ register. Bit 0 of the MQ register's least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Arithmetic Right Arithmetic Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shifted output if high; passes ALU result 

if low. 

5100 No LSB of ALU shifter is passed to MSB of MQ shifter, 

SI01 No and LSB of MQ shifter is dropped. 

SI02 No 

5103 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 1 I * Arithmetic Hight Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 
C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

o 
1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SHAD 

Perform the computation A = (A + B)/2, where A and B are two's complement numbers. 
en Let A be a double precision number residing in register 1 (MSH) and MQ (LSH). Let 
~ B be a single precision number which is input through the DB bus. 

Instr Oprd Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3. SELRF1· 0EY3- CF2-

17-10 A5-AO B5-BO EAEBO C5-CO SELMQ WEo SELRFO OEA 0EEi 0EY0 5Es Cn CFO SSF 

0001 0001 000001 XX XXXX 0 10 000001 0 0000 10 X X XXXX 0 0 110 1 

~ » o 
-I 
CO 
CO 
W 
N Assume register file 1 holds 4A08C618 (Hex). and DB bus holds 51007530 (Hex). 

and MQ register holds 17299AOF (Hex). 

MSH 

Source 01001010000010001100011000011000 I R +- RF(1) 

Source 0101 0001 000000000111 0101 0011 0000 IS+- DB bus 

Intermediate:!: 
1001 1011 00001001 0011 1011 01001000 I ALU Shifter +- R + S + Cn 

Result 

Destination 01001101100001001001110110100100 I RF(1) +- ALU shift result 

LSH 

Source 0001 on 1 00101001 1001 101000001111 MO shifter +- MO register 

Destination 0000 1011 1001 0100 1100 1101 00000111 MO register +- MQ shift result 

:tAfter the intermediate operation (ADD), overflow has occurred and OVR status signal is set high. When the 
arithmetic right shift is executed, the sign bit is corrected (see Table 16 for shift definition notes). 
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SHC Circular Hight Single Precision Shift I 8 I * 

FUNCTION 

Performs circular right shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. Bit 0 of the least significant byte is passed to bit 7 of the most significant 
byte in the same word, which may be 1,2, or 4 bytes long depending on the selected 
configuration. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Circular Right None 

Available Destination Operands IALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result 

if low. 

SIOO No Rotates LSB to MSB of the same word, which may 

SIOl No be 1, 2, or 4 bytes long depending on configuration 

SI02 No 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 8 I * Circular Right Single Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform a circular right shift of register 6 and store the result in register 1. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr E81· Addr iiVE3. SELRF1- OEY3-

17-10 A5-AO 85-80 EA E80 C5-CO SELMa WEO SELRFO OEA 0Eii OEYO OES Cn 

1000 0110 000110 XX xxxx a xx 00 0001 a 0000 10 X X xxxx a a 

00 Assume register file 6 holds 3788C618 (Hex). 
00 

~ Source 0011 0111 1000 1000 1100 0110 0001 1000 I R +- RF(6) 

Intermediate 
Result 

Destination 

3-168 

0011 0111 1000 1000 1100 0110 0001 1000 I ALU Shifter +- R + Cn 

0001 1011 1100 0100 0110 0011 0000 1100 I RF( 1) +- ALU shift result 

SRC 

CF2-

CFO SSF 
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SHCD Circular Hight Double Precision Shift I 9 I * 

FUNCTION 

Performs circular right shift on MO register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, the contents of the MO register as the lower half. 

The contents of the ALU and MO shifters are rotated one bit to the right. Bit 0 of the 
least significant byte in the ALU shifter is passed to bit 7 of the most significant byte 
of the MO shifter. Bit 0 of the least significant byte is passed to bit 7 of the most 
significant byte of the ALU shifter. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result N 
will be sent to the Y MXU and MO register. If SSF is low, the Y MUX and MO register M 
will not be altered. ~ 

~ 
* A list of ALU operations that can be used with this instruction is given in Table 15. U 

« 
~ 

Shift Operations " 
Z 

ALU Shifter MQ Shifter en 
Circular Right Circular Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shift result if high; passes ALU result and 

retains MQ register if low. 

SIOO No Rotates LSB of ALU shifter to MSB of MQ shifter, 

SIOl No and LSB of MQ shifter to MSB of ALU shifter 

SI02 No 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 9 I * Circular Hight Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SHCD 

Perform a circular right double precision shift of the data in register 6 (MSH) and MQ 
en (LSH), and store the result back in register 6 and the MQ register. 
2 ..... 
~ 
l> 
n 
-t 
CO 
CO 
W 
N 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1· 0EY3- CF2· 

17·10 AS-AO BS;eO EA EBO CS-CO SELMQ WEci SELRFO 0eA DeB 0eYli 0Es Cn CFO 

10010110 000110 XX XXXX 0 XX 000110 0 0000 10 X X XXXX 0 0 110 

Assume register file 6 holds 3788C618 (Hex) and MQ register holds 50A99AOF (Hex). 

MSH 

Source 0011 0111 00001000110001100001 1000 R +- RF(6) 

Intermediate 
Result 0011 0111 0000 1000 110001100001 1000 I ALU shifter +- R + Cn 

Destination 1001 1011 1000010001100011 00001100 I RF(6) - ALU shift result 

LSH 

Source 0101 000010101001 1001 101000001111 MQ shifter - MQ register 

Destination 001010000101 0100 1100 1101 0000 0111 MQ register - MQ shift result 
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SRL Logical Right Single Precision Shift 

FUNCTION 

Performs logical right shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. A zero is placed in the bit 7 of the most significant byte of each word 
unless the SIO input for the word is programmed low; this will force the sign bit to 
one. The LSB is dropped from the word, which may be 1,2, or 4 bytes long depending 
on selected configuration. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX. 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Logical Right None 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) 
V-Port 

(B5-BO) 

Ves No Ves 

Control/Data Signals* 

User 
Signal Use 

Programmable 

SSF Passes shift result if high or floating; passes ALU 

result if low. 

SIOO Ves Fills a zero in MSB of the word if high or floating; 

SI01 Ves fills a one in MSB if low. 

SI02 Ves 

SI03 Ves 

Cn Inactive 

len is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 
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21 * Logical Right Single Precision Shift SRL 

EXAMPLE (assumes a 32-bit configuration) 

Perform a logical right single precision shift on data on the DA bus, and store the result 
in register 1. 

Insir Oprd Oprd Oprd 5el Dest Destination Selects 

Code Addr Addr EB1- --Addr WE3- SELRF 1--17-10 AS-AO B5-BO EA EBO C5-CO SELMa WEO SELRFO 

00100110 XX XXXX xx xxxx 1 xx 000001 0 0000 10 

Assume DA bus holds 2DASC615. 

Source 00101101 101010001100011000010101 

Intermediate 
Result 001011011010 1000 1100011000010101 

- -OEY3- CF2- S103-

OEA OEB OEYO OES Cn CFO SIOO 

X X XXXX 0 0 110 XXXl 

R +- DA bus 

ALU Shifter +- R + en 

Destination 0001 0110 1101 0100 0110 0011 0000 1010 I RF( 1) +- ALU shift result 
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SRLD Logical Right Double Precision Shift 

FUNCTION 

Performs logical right shift on MQ register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, the contents of the MQ register as the lower half. 

The ALU result is shifted one bit to the right. A zero is placed in the sign bit of the 
most significant byte unless the SIO input for that word is programmed low; this will 
force the sign bit to one. Bit 0 of the least significant byte is passed to bit 7 of the 
most significant byte of the MQ shifter. Bit 0 of the least significant byte of the MQ 
shifter is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX and MQ register. If SSF is low, the ALU result and MQ 
register will not be altered. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Logical Right Logical Right 

Available Destination Operands (ALU Shifter) 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result and 

retains MQ 

5100 Yes Fills a zero in M5B if high or floating; 

SiOT Yes fills a one M5B if low. 

5102 Yes 

5103 Yes 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 3 I * Logical Right Double Precision Shift 

Status Signals t 

ZERO 1 if result = 0 

N == 1 if MSB of result = 1 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C if carry-out conditioh 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation .. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SRLD 

Perform a logical right double precision shift of the data in register 1 (MSH) and MO 
t/) (LSH), filling a one into the most significant bit, and store the result back in register 1 
2 and the MO register. 

~ 
l> 
C') 

Instr 

Code 

17·10 

00110110 

Op,d Op,d 

Add, Add, 

A5·AO B5·BO 

XX XXXX 00 0001 

Op,d S.I Dest 

EB1· Add, 

EAEBO C5·CO SELMO 

X 00 000001 0 

Destination Selects 

iiVe3. SELRF1· om· CF2· Si03. iESi03. 
WEo SELRFO i5'EA 0Eii 0EY0 0Es Cn CFO SIOO iESiOo 
0000 10 X X XXXX 0 0 110 1110 0000 

-4 
00 
00 
W 
N Assume register file 1 holds 2DA8C615 (Hex) and MO register holds 50A99AOE (Hex). 

MSH 

Source 

Intermediate 
Result 

Destination 

LSH 

0010 1101 10101000 1100 0110 0001 0101 R +- RF(1) 

0010 1101 10101000 110001100001 0101 ALU Shifter +- S + Cn 

10010110 1101 0100 0110 00110000 1010 I RF(1) +- ALU shift result 

Source 0101 0000 1010 1001 1001 1010 0000 1110 I MQ shifter +- MQ register 

Destination 1010 1000 0101 0100 1100 1101 0000 0111 MQ register +- MQ shift result 
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SUBI Subtract Immediate I 7 I 8 I 

FUNCTION 

Subtracts four-bit immediate data on A3-AO with carry from S-bus data. 

DESCRIPTION 

Immediate data in the range 0 to 15, supplied by the user at A3-AO, is inverted and 
added with carry to S. 

Available R Bus Source Operands (Constant) 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

No Yes No No 

Available S Bus Source Operands 

RF MO 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MO 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SiOT No Inactive 

Si02 No Inactive 

5103 No Inactive 

Cn Yes Two's complement subtraction if programmed high. 
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en z 

1718 1 Subtract Immediate SUBI 

Status Signals 

ZEAO 

N 

OVA 

C 

1 if result = 0 

1 if MSB = 1 

1 if arithmetic Signed overflow 

if carry-out 

EXAMPLE (assumes a 32-bit configuration) 

Subtract the value 12 from data on the DB bus, and store the result into register file 1. 

Inst, Op,d Op,d 

Code Add, Add, 

17-10 A5-AO B5-BO 

01111000 001100 XX XXXX 

Op,d Sel 
EB1-

Eli EBO 
X 10 

Dest 
Add, 

C5-CO 

00 0001 

Destination Selects 

WE3- SELRF1- 0EY3- CF2-
SELMa WEo SELRFO 15EA Qeij 0eY0 0eS Cn CFO 

o 0000 10 X X XXXX 0 1 110 

'" Assume bits A3-AO hold C (Hex) and DB bus holds 24000100 (Hex). 
~ 
l> 
o 
-t 
CO 
CO 
W 
N 

Source 00000000 0000 0000 0000 0000 00001100 I A +- A3-AO 

Source 0010010000000000 0000 0001 00000000 Is+- DB bus 

Destination 001001000000000000000000 1111 0100 I AF( 1) +- A' + S + Cn 
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SUBR Subtract R with Carry (R' + S + Cn) 

FUNCTION 

Subtracts data on the R bus from S with carry. 

DESCRIPTION 

Data on the R bus is subtracted with carry from data on the S bus. The result appears 
at the ALU and MQ shifters. 

* The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The rellult may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) 
Y-Port 

Shifter Shifter (B5-BO) 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SI01 No 

SI02 No 

SI03 No 

Cn Yes Two's complement subtraction if programmed high. 
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1 * 12 Subtract q with Carry (R' + S + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

if signed arithmetic overflow 

if carry-out 

SUBR 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated after shift 
operation. OVR (overflow) is evaluated after ALU operl;ltion and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Subtract data in register 1 from data on the DB bus, and store the result in the MQ 
register. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WEa- SELRF1- 0eV3- CF2-

17-10 A5-AO 85-80 EAE80 C5-CO SELMQ WEO SELRFO OEA OEB 6EYli OES Cn CFO 

11100010' 000001 XX XX'XX 0 10 XX XXXX 1 XXXX XX X X XXX X 0 1 110 n 
-4 
00 Assume register file 1 holds 15008400 (Hex) and DB bus holds 4900C350 (Hex). 

ffi 
N Source 0001 0101 0000 0000 1000 0100 1101 0000 I R - RF( 1 ) 

Source 01001001 0000000011000011 0101 0000 I S - DB bus 

Destination 0011 0100000000000011 111010000000 I MQ register - R' + S + Cn 
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SUBS Subtract S with Carry (R + S' + Cn) 

FUNCTION 

Subtracts data on the S bus from R with carry. 

DESCRIPTION 

Data on the S bus is subtracted with carry from data on the R bus. The result appears 
at the ALU and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Yes Two's complement subtraction if programmed high. 
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I * I 3 Subtract S with Carry (R + Sf + Cn) 

StatUI> Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out 

t C is ALU carry-out and is evaluated before ~hift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SUBS 

Subtract data on the DB bus from data in register 1, and store the result in the MQ 
register. 

Instr Op,d Op,d Op,d Sel Oest Destination Selects 

Code Add, Add, EB1- Add, We3- SELRF1· OEY3- CF2· 
17-10 A5·AO B5·BQ EAEBO C5-CO SELMQ WEO SELRFO 00i DEB 1iEYo 0Es Cn CFO 

11100011 000001 XX XXXX 0 10 XX XXXX 1 XXXX XX X' X XXXX 0 1 110 

Assume register file 1 holds 15008400 (Hex) and DB bus holds 4900C350 (Hex). 

Source 000101010000 000010000100110) 0000 I .R .... RF(1) 

Source 01001001 0000000011000011 0101 0000 Is+- DB bus 

Destination 1100 1011 i 111 1111 11000001 10000000 I MQ register .... R + S' + en 
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TBO Test Bit (Zero) 3 8 

FUNCTION 

Tests bits in selected bytes of S-bus data for zeros using mask in C3-CO::A3-AO. 

DESCRIPTION 

The S bus is the source word for this instruction. The source word is passed to the 
ALU, where it is compared to an a-bit mask, consisting of a concatenation of the C3-CO 
and A3-AO address ports (C3-CO::A3-AO). The mask is input via the R bus. The test 
will pass if the selected byte has zeros at all bit locations specified by the ones of 
the mask. Bytes are selected by programming the SIO inputs low. Test results are 
indicated on the ZERO output, which goes to one if the test passes. Register write 
is internally disabled during this instruction. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No Yes 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

SIOO Yes Byte Select 

SI01 Yes Byte Select 

SI02 Yes Byte Select 

SI03 Yes Byte Select 

Cn No Inactive 
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131a 

.Status Signals 

ZERO 

N 

1 if result (selected bytes) 

o 
OVR 0 

C 0 

Test Bit (Zero) 

Pass 

EXAMPLE (assumes a 32-bit configuration) 

Test bits 7, 6 and 5 of bytes 0 and 2 of data in register 3 for zeroes. 

en 
2 

Instr 

Code 

17-10 

0011 1000 

Mask 

(LSH) 

A3-AO 

0000 

Oprd Oprd Sol 

Addr EB1· 

B5-BO EA EBO 

000011 X 00 

Mask Destination Selects 

(MSH) WEi· SELRF1-

C3-CO SELMa WeO SELRFO 0eA i5EB 
1110 X XXXX xx x x 

" Assume register file 3 holds 881 CD003 (Hex). 
~ 

OEV3- CF2-

OEYO 0Es Cn CFO 

XXXX Q X 110 

SiO"3-
5100 

1010 

l> 
(") Source 11100000111000001110000011100000 I R +- Mask (C3-CO::A3-AO) 
-I 
CO 
CO 
W 
N 

Source 

tn nth byte 

3-182 

100010000001 11001101 000000000011 I SN +- RF(3)n t 

Output GJ ZERO +- 1 
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TB1 Test Bit (One) 2 8 

FUNCTION 

Tests bits in selected bytes of S-bus data for ones using mask in C3-CO::A3-AO. 

DESCRIPTION 

The S bus is the source word for this instruction. The source word is passed to the 
ALU, where it is compared to an 8-bit mask, consisting of a concatenation of the C3-CO 
and A3-AO address ports (C3-CO::A3-AO). The mask is input via the R bus. The test 
will pass if the selected byte has ones at all bit locations specified by the ones of the 
mask. Bytes are selected by programming the SIO inputs low. Test results are indicated 
on the ZERO output, which goes to one if the test passes. Register write is internally 
disabled for this instruction. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

No No No Yes 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte Select 

SIOl Yes Byte Select 

SI02 Yes Byte Select 

Si03 Yes Byte Select 

Cn No Inactive 
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CJ) 
2 

12 18 

Status Signals 

ZERO 

N 

1 if result (selected bytes) 

o 
OVR 0 

C 0 

Test Bit (One) TB1 

Pass 

EXAMPLE (assumes a 32-bit configuration) 

Test bits 7, 6 and 5 of bytes 1 and 2 of data in register 3 for ones. 

Instr 

Code 

17-10 

Mask 

(LSH) 

A3-AO 

0010 1000 0000 

Oprd 

Addr 

B5-BO 

000011 

Oprd Sel 

EB1-

Eli EBO 

x 00 

Mask 

(MSH) 

C3-CO 

1110 

Destination Selects 

WE3- SELRF1- 0EY3- CF2- SiOO- iESi03-
SELMa WEo SELRFO OEA DEe 0W0 0eS Cn CFO SiOO iESiOii 

x xxxx xx x x XXX X 0 X 110 1001 0000 

""'" Assume register file 3 holds 881 CFOO;3 (Hex). 
~ 
l> 
(") 
~ 
00 
00 
W 
N 

Mask 

Source 

tn nth byte 
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UDIVI Unsigned Divide Iterate I c I 0 I 

FUNCTION 

Performs one of N-2 iterations of nonrestoring unsigned division by a test subtraction 
of the N-bit divisor from the 2N-bit dividend. An algorithm using this instruction can 
be found in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

UDIVI performs a test subtraction of the divisor from the dividend to generate a quotient 
bit. The test subtraction may pass or fail and is corrected in the subsequent instruction 
if it fails. Similarly a failed test from the previous instruction is corrected during 
evaluation of the current UDIVI instruction (see the "Other Arithmetic 
Instructions"section for more details). 

The R bus must be loaded with the divisor, the S bus with the most significant half 
of the result of the previous instruction (UDIVI during iteration or UDIVIS at the N 

M 
beginning of iteration). The least significant half of the previous result is in the MQ CO 
register. CO 

~ 
UDIVI checks the result of the previous pass/fail test and then evaluates: 

F+-R+S if the test is failed 
F +- R' + S + en if the test is passed 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MQ shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is 
circulated into the least significant bit of the MQ shifter. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 
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Ie 10 Unsigned Divide Iterate 

Recommended Destination Operands Shift Operations 

en 
2 
-...I 
~ » 

RF RF 

(C5-CO) 
Y-Port 

(85-80) 

Yes No Yes 

Control/Data Signals 

User 

Signal Programmable 

SSF No 

5100 No 

5101 No 

5102 No 

5103 No 

Cn Yes 

(") Status Signals 
-i 
00 
00 
W 
N 

ZERO 

N 

OVR 

C 

3-186 

1 if result = 0 

o 
o 
1 if carry-out 

ALU MQ 

Left Left 

Use 

Inactive 

Passes internally generated end-fill bit. 

Should be programmed high. 
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UDIVIS Unsigned Divide Start I B I 0 I 

FUNCTION 

Computes the first quotient bit of nonrestoring unsigned division. An 
algorithm using this instruction is given in the "Other Arithmetic Instructjions" section. 

DESCRIPTION 

UDIVIS computes the first quotient bit during nonrestoring unsigned division by 
subtracting the divisor from the dividend. The resulting remainder due to subtraction 
may be negative; the subsequent UDIVI instruction may have to restore the remainder 
during the next operation. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the remainder. The result on the Y bus should be loaded back into the register 
file for use in the next instruction. The least significant half of the remainder is in the 
MQ register. ~ 

UDIVIS computes: 

F +- R' + S + Cn 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MQ shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is 
circulated into the least significant bit of the MQ shifter. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes Left Left 
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en 
Z 
-...J 
~ » 
(") 
-I 
00 
00 
W 
N 

IBID Unsigned Divide Start 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

SIOO No Passes internally generated end-fill bit. 

SI01 No 

5102 No 

SI03 No 

Cn Yes Should be programmed high. 

Status Signals 

ZERO 

N 

OVR 

C 

3-188 

1 if intermediate result = 0 

o 
if divide overflow 

1 if carry-out 
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UDiVIT Unsigned Divide Terminate F o 

FUNCTION 

Solves the final quotient bit during nonrestoring unsigned division. An algorithm using 
this instruction is given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

UDIVIT performs the final subtraction of the divisor from the remainder during 
nonrestoring signed division. UDIVIT is preceded by N-1 iterations of UDIVI, where 
N is the number of bits in the dividend. 

The R bus must be loaded with the divisor, the S bus must be loaded with the most 
significant half of the result of the last UDIVI instruction. The least significant half 
lies in the MQ register. The Y bus result must be loaded back into the register file for 
use in the subsequent DIVRF instruction. 

UDIVIT checks the results of the previous pass/fail test and evaluates: 

Y-R+S if the test is failed 
Y - R' + S + en if the test is passed 

N 
('I) 
CO 
CO 
~ 
(.) 

The contents of the MQ register are shifted one bit to the left; the unfixed quotient :J 
bit is circulated into the least significant bit. " 

2 
en 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes None Left 
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I F I 0 Unsigned Divide Terminate 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Passes internally generated end-fill bit. 

5101 No 

5102 No 

5103 No 

Cn Yes Should be programmed high. 

Status Signals 

CJ) ZERO 

2 N 

" ~ OVR 

J> C 
(1 
-4 
CO 
CO 
W 
N 
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UMULI Unsigned Multiply Iterate o o 

FUNCTION 

Performs one of N unsigned multiplication iterations for computing an N-bit by N-bit 
product. An algorithm for unsigned multiplication using this instruction is given in the 
"Other Arithmetic Instructions" section. 

DESCRIPTION 

UMULI checks to determine whether the multiplicand should be added with the present 
partial product. The instruction evaluates: 

F +- R + S + en 
F+-S 

if the addition is required 
if no addition is required 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MQ shifter; carry-out N 
is passed to the most significant bit of the ALU shifter. ~ 

The S bus should be loaded with the contents of an accumulator and the R bus with 
the multiplicand. The Y bus result should be written back to the accumulator after 
each iteration of UMULI. The accumulator should be cleared and the MQ register loaded 
with the multiplier before the first iteration. 

R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 
(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (85-80) 
ALU MQ 

Yes No Yes Right Right 
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en 
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~ » 
(") 

10 10 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

SIOO No 

SI01 No 

SI02 No 

SI03 No 

Cn Yes 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Unsigned Multiply Iterate 

Use 

Holds LSB of MQ. 

Passes internal input (shifted bit). 

Should be programmed low. 

-I tValid only on final execution of multiply iteration 
CO 
CO 
eN 
N 
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XOR Exclusive OR (R XOR S) 

FUNCTION 

Evaluates the logical expression R XOR S. 

DESCRIPTION 

Data on th& R bus is exclusive ORed with data on the S bus. The result appears at 
the ALU and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn No Inactive 
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I * I 9 Exclusive OR (R XOR S) 

Status Signals t 

ZERO 1 if result = 0 

N 1 if MSB = 1 

OVR 0 
C 0 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

XOR 

Exclusive OR the contents of register 3 and register 5, and store the result in register 5. 

CJ) 
:z 
-..J 
,J:. 
» 

Instr 

Code 
17-10 

1111 1001 

Op,d Op,d 

Add, Add, 

A5-AO B5-BO 

000011 000101 

Op,d Sel Oest 

EB1- Add, 

EA EBO C5-CO 

0 00 000101 

Destination Selects 

WE3- SELRF1- Offi CF2· 
SELMQ WEci SELRFO OEA OEB OEYO OES Cn CFO 

0 0000 10 X X XXXX 0 X 110 

(") Assume register file 3 holds 33F6D840 (Hex) and register file 5 holds 90F6D842 (Hex) .. 
-4 
00 
00 Source 0011 0011 1111 0110 1101 100001000000 I R +- RF(3) 
W 
N 

Source 1001 00001111 01101101 10000100 0010 Is+- RF(5) 

Destination 10100011 000000000000000000000010 I RF(5) +- R XOR S 
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SN74ACT8836 32·Bit by 32·Bit 
Multiplier/Accumulator 

The SN74ACT8836 is a 32-bit integer multiplier/accumulator (MAC) that accepts 
two 32-bit inputs and computes a 64-bit product. An on-board adder is provided 
to add or subtract the product or the complement of the product from the 
accumulator. 

To speed-up calculations, many modern systems off-load frequently-performed 
multiply/accumulate operations to a dedicated single-cycle MAC. In such an 
arrangement, the 'ACT8836 MAC can accelerate 32-bit microprocessors, 
building block processors, or custom CPUs. The' ACT8836 is well-suited for 
digital signal processing applications, including fast fourier transforms, digital 
filtering, power series expansion, and correlation. 
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• Performs Full 32-Bit by 32-Bit 
Multiply/Accumulate in Flow-Through Mode 
in 60 ns (Max) 

• Can be Pipelined for 36 ns (Max) Operation 

• Performs 64-Bit by 64-Bit Multiplication in 
Five Cycles 

• Supports Division Using Newton-Raphson 
Approximation 

• Signed, Unsigned, or Mixed-Mode Multiply 
Operations 

• EPIC'· (Enhanced-Performance Implanted 
CMOS) l-J.'m Process 

description 

SN74ACTB836 
32·BIT BY 32·81T MULTIPLIER/ACCUMULATOR 

03046. JANUARY 1988 

• Multiplier, Multiplicand, and Product Can be 
Complemented 

• Accumulator Bypass Option 

• TTL I/O Voltage Compatibility 

• Three Independent 32-Bit Buses for 
Multiplicand, Multiplier, and Product 

• Parity Generation/Checking 

• Master/Slave Fault Detection 

• Single 5-V Power Supply 

• Integer or Fractional Rounding 

The' ACT8836 is a 32-bit by 32-bit parallel multiplier/accumulator suitable for low-power, high-speed 
operations in applications such as digital signal processing, array processing, and numeric data processing. 
High speed is achieved through the use of a Booth and Wallace Tree architecture. 

Data is input to the chip through two registered 32-bit DA and DB input ports and output through a registered 
32-bit Y output port. These registers have independent clock enable signals and can be made transparent 
for flowthrough operations. 

The device can perform two's complement, unsigned, and mixed-data arithmetic. It can also operate as 
a 64-bit by 64-bit multiplier. Five clock cycles are required to perform a 64-bit by 64-bit multiplication 
and multiplex the 128-bit result. Division is supported using Newton-Raphson approximation. 

A multiply/accumulate mode is provided to add or subtract the accumulator from the product or the 
complement of the product. The accumulator is 67 bits wide to accommodate possible overflow. A warning 
flag (ETPERR) indicates whether overflow has occurred. 

A rounding feature in the' ACT8836 allows the result to be truncated or rounded to the nearest 32-bits. 
To ensure data integrity, byte parity checking is provided at the input ports, and a parity generator and 
master/slave error detection comparator are provided at the output port. 

The SN74ACT8836 is characterized for operation from OOC to 70°C. 

EPIC is a trademark of Texas Instruments Incorporated 

ADVANCE INFORMATION doc.mants contain 

~~~;:d::~nO:h::: or~::f~::.!~a c~::=,.:~ 
uta and other specifications are subject to change 
without notice. 

TEXAS ~ 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

Copyright © '988, Texas Instruments Incorporated 
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SN74ACT8836 
32-BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

logic symbol 

32 x 32 MULTIPLIER/ 
ACCUMULATOR 

4> 
74ACT8836 

ClK 
(H1) 

ClK OA PORT 

08 PORT 

CKEA 

CKEB 

CKEi 
CKEY 

(H151 ..... 
OA REG PAR Y PORT 

(H2) ...... STAT 
MASTER/SLAVE DB REG ClK 

(G141 ...... 
I REG EN EOUAl CHK 

(C12) ,.... 
Y REG 

0 

OASGN 

OBSGN 

COMPl 

RNOO 

RN01 
ACCO 

• ACC1 

SFTO 

SFT1 
(J) 

2 FTO '-I 
~ FT1 

l> 
n SELY 

-I SElO 

CO EA 
CO EB 
W 

(F15) Y PORT 
(G13) PARITY 

(H12) 110 
3 

(G12) INSTR 
(E15) INPUTS 

(C14) 
0 

(013) OA 
PORT 

PARITY 3 
(F1) INPUTS 0 
(G4) o ISHIFTER 

1 CONTROL 08 
PORT 

(H13) 
3 o I FEEOTHROUGH (G15) 

1 CONTROL 

I 0 
(B3) EXTENDED 

(G1) 
YMUX PRECISION 2 

(H14) ...... 
OMUX INPUT 
RMUX SELECT 

(C3) ...... Y OUT/EN SMUX 

en 
SElREG 

WEMS 

WElS » 
C 

(E7) 
TESTI 0 RAorR81 (01) _l'.. MS 32-BITS WRITE PINS 1 

(G3) ...... ENA8lE 
lS 32-BITS .., r 

< OAO » 
2 
0 OA31 

m - OBO 

2 
'T1 
0 OB31 

0 

• • I OAT~ • • • • 
~ 0 31 • • 

0 I RESULTS; • 
I OAT~ 31 • • • • • • 

31 

::D 
s: » 
:::! 
0 
2 
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(881 

(081 

(C15) 

(E141 

(0151 

(014) 

(A15) 

(E14) 

(B15) 

(M8) 

(09) 

(P9) 

(010) 

(05) 

(M7) 

(06) 

(07) 

(813) 

(B12) 

(814) 

..., (C13) 

(03) 

(02) 

• • • 

PERRA 

PERRB 

PERRY 

MSERR 

ETPERR 

PYO 

PY1 

PY2 

PY3 

PAO 

PA1 

PA2 

PA3 

PBO 

PB1 

PB2 

PB3 

YETPO 

YETP1 

YETP2 

TPO 
TP1 

YO 

Y31 



functional block diagram (positive logic) 

PA3-PAO +-_--/-..;4'--_+-___ -1 

PB3-PBO +-_--1-:..4'--_+-___ -1 

PERRA + ____ -+ ____ ....J 

PERRB +-----+-------' 

32 

DA31-DAO+--+3::.:2=-e_~ ___ ....., 

CKEA~----~----~---;--I 

CKEI 

EA 

DASGN 

DBSGN 

SN74ACT8836 
32·81T 8Y 32·81T MULTIPLIER/ACCUMULATOR 

SGNEXT 
SELD 

2 
SFT1-SFTO 

2 
SELREG 

WEMS 
WELS 

32 

32 
DB31-DBO 

CKEB 

~-----H-~EB 

'----' 

L-_______ -I MULTIPLIER/ADDER STAGE 1 
RND1-RNDO 

COMPL 

ACC1-ACCO 
2 

FT1-FTO~ 
TP1-TPO~ 

CLK+-­

VCC~ 
GND~ 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 

~----------1-CKEY 

J'----------~~SELY 

PERRY 

OEY~----------+~~~--~~~---~ 

ETPERR YETP2-YETPO Y31-YO MSERR PY3-PYO 

TEXAS ." 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

2 3 

A • • • • B • @ • 
C • • • 
D • • • 
E • • • 
F • • • 
G • • • 
H • • • 
J • • • 
K • • • 
L • • • 

M • • • 
N • • • 
p • @ • 

R • • • 

PIN PIN 
NO. NAME NO. NAME 

Al Y8 B12 YETPl 
A2 Yl0 B13 YETPO 
A3 Yll B14 YETP2 
A4 Y13 815 PY3 
A5 Y14 Cl YO 
A6 Y16 C2 Y4 
A7 Y18 C3 EB 
A8 Y19 C4 Y5 
A9 Y21 C5 VCC 
Al0 Y23 C6 GND 
All Y25 C7 Y15 
A12 Y27 C8 GND 
A13 Y28 C9 Y22 
A14 Y30 Cl0 GND 
A15 PYl Cl1 VCC 
Bl Y2 C12 CKEY 
B2 Y6 C13 OEY 
83 SELY C14 ACCO 
B4 Y7 C15 PERRY 
B5 Y9 Dl WEMS 
B6 Y12 D2 TPl 
B7 Y17 D3 TPO 
B8 Y20 D7 GND 
B9 Y26 D8 VCC 
Bl0 Y29 09 Y24 
Bll Y31 D13 ACCl 

4·8 

GB PIN·GRID·ARRAY PACKAGE 

(TOP VIEWI 

4 5 6 7 8 9 10 11 

• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

• • • 

• 
• 
• 

• • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

GB PACKAGE PIN ASSIGNMENTS 

PIN PIN 
NO. NAME NO. NAME 

D14 PYO H12 COMPL 
D15 ETPERR H13 FTO 
El SELREG H14 EA 
E2 Y3 H15 CKEA 
E3 GND Jl DB2 
E13 GND J2 DB3 
E14 PY2 J3 DB5 
E15 RNDl J4 DB7 
Fl SFTO J12 DA26 
F2 Yl J13 DA24 
F3 GND J14 DA30 
F13 GND J15 DA31 
F14 MSERR Kl D84 
F15 DASGN K2 DB9 
Gl SELD K3 D811 
G2 SGNEXT K13 DA22 
G3 WELS K14 DA28 
G4 SFT1 K15 DA29 
G12 RNDO L 1 DB6 
G13 DBSGN L2 DB15 
G14 CKEI L3 DB13 
G15 FTl L13 DA18 
Hl CLK L14 DA20 
H2 CKEB L15 OA27 
H3 DBO Ml DB8 
H4 DBl M2 DB17 
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• • 
• • 
• • 

• 
• 
• 

• • 
• • 
• • 

• 
• 
• 

• • 
• • 
• • 

NO. 
M3 
M7 
M8 
Ml0 
M13 
M14 
M15 
Nl 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 
Nl0 
Nll 
N12 
N13 
N14 
N15 
Pl 
P2 
P3 
P4 
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14 15 

• • 
@. 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

@ • 

• • 

PIN PIN 
NAME NO. NAME 

DB18 P5 DB25 
PBl P6 D829 
PAO P7 DB31 
DA6 P8 PERRA 
DA16 P9 PA2 
DA17 Pl0 DA2 
DA25 Pll DA8 
DB10 P12 DA12 
DB19 P13 DA14 
DB20 P14 DA11 
DB21 P15 DA21 
DB23 Rl DB14 
DB27 R2 DB26 
VCC R3 DB28 
GND R4 D830 
DAO R5 PBO 
DA4 R6 PB2 
DA10 R7 PB3 
DA13 R8 PERRB 
DA15 R9 PAl 
DA19 Rl0 PA3 
DA23 Rll DAl 
DB12 R12 DA3 
DB16 R13 DA5 
DB24 R14 DA7 
D822 R15 DA9 



PIN 

NAME NO. 
ACCO C14 
ACCI 013 
ClK HI 

CKEA H15 

CKES H2 

CKEI G14 

CKEY C12 

COMPl H12 

DAO N9 
DAI Rll 
DA2 Pl0 
DA3 R12 
DA4 Nl0 
DA5 R13 
DA6 Ml0 
DA7 R14 
DAB Pll 
DA9 R15 
DA10 NIl 
DAll P14 
DA12 P12 
DA13 N12 
DA14 P13 
DA15 N13 
DA16 M13 
DA17 M14 
DA18 l13 
DA19 N14 
DA20 l14 
DA21 P15 
DA22 K13 
DA23 N15 
DA24 J13 
DA25 M15 
DA26 J12 
DA27 l15 
DA28 K14 
DA29 K15 
DA30 J14 
DA31 J15 

DASGN F15 

110 

I 

I 

I 

I 

I 

I 

I 

I 

I 

SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

DESCRIPTION 

Accumulate mode ope ode (see Table 2) 

System clock 

Clock enable for A register, active low 

Clock enable for 8 register, active low 

Clock enable for I register. active low 

Clock enable for Y register, active low 

Product complement control; high complements multiplier result, low passes multiplier unaltered 

to accumulator. 

DA port input data bits 0 through 31 

Sign magnitude control; high identifies DA input data as two's complement, low identifies DA input 

data as unsigned 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PIN 

NAME NO. 
110 DESCRIPTION 

OBO H3 

OBl H4 

OB2 Jl 

OB3 J2 

OB4 Kl 

OB5 J3 

OB6 L 1 

OB7 J4 

OB8 Ml 

OB9 K2 

OB10 Nl 

OBll K3 

OB12 Pl 

OB13 L3 

OB14 Rl 

OB15 L2 
I DB port input data bits 0 through 31 

OB16 P2 

OB17 M2 

OB18 M3 

OB19 N2 

OB20 N3 

OB21 N4 

OB22 P4 

OB23 N5 

OB24 P3 

OB25 P5 

OB26 R2 

OB27 N6 

OB28 R3 

OB29 P6 

OB30 R4 

OB31 P7 

OBSGN G13 I 
Sign magnitude control; high identifies DB input data as two's complement, low identifies DB input 

data as unsigned. 

EA H14 I 
Core multiplier operand select. A high on this signal selects DA register for input on the R bus; a 

low selects the swap MUX. 

EB C3 I 
Core multiplier operand select. A high on this signal selects DB register for input on the 5 bus; a 

low selects the swap MUX. 

ETPERR 015 0 
Equality check result. A Iowan this signal indicates that bits 67 through 64 of the core multiplier 

results are equal to bit 63. 

FTO H13 
I Feedthrough control signals for A. B, I, Pipeline and Y registers (see Table 4). 

FT1 G15 
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PIN 

NAME NO. 

GND C6 

GND CB 

GND C10 

GND D7 

GND E3 

GND E13 

GND F3 

GND F13 

GND NB 

MSERR F14 

OEY C13 

PAO MB 

PAl R9 

PA2 P9 

PA3 R10 

PBO R5 

PBl M7 

PB2 R6 

PB3 R7 

PYO D14 

PYl A15 

PY2 E14 

PY3 B15 

PERRA PB 

PERRB RB 

PERRY C15 

RNDO G12 

RNDl E15 

SELD Gl 

SELREG E1 

SELY B3 

SGNEXT G2 

SFTO Fl 

SFTl G4 

TPO D3 

TPl D2 

VCC C5 

VCC Cll 

VCC DB 

VCC N7 

WEMS Dl 

WELS G3 

1/0 

D 

I 

I 

I 

110 

0 
0 

0 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

DESCRIPTION 

Ground pins. All ground pins should be used and connected. 

Master/slave error flag. This signal goes high when the contents of the Y output multiplexer and 

the value at the external port are not equal. 

Y, YETP2·YETPO, and PY3·PYO output enable, active low. 

Parity input data bus for DA input data 

Parity input data bus for DB input data 

Y output parity data bus. Outputs data from parity generator (OEY = l) or inputs external parity 

data (DEY ~ HI. 

DA port parity status pin. Goes high if even-parity test on any byte fails. 

DB port parity status pin. Goes high if even-parity test on any byte fails. 

Y port parity status pin. Goes high if even-parity test on any byte fails. 

Multiplier/accumulator rounding control; high rounds integer result; low leaves result unaltered. 

Multiplier/accumulator rounding control; high rounds fractional result; low leaves result unaltered. 

o multiplexer select. High selects DA and DB ports; low selects multiplier core output. 

Write enable for temporary register and accumulator. High enables the temporary register; low enables 

the accumulator. 

Y multiplexer select. High selects most significant 32 bits of Y register output; low selects least 

significant 32 bits. 

Sign extend control for multiplexer. A low fills shift matrix bits 66-64 with zeros; a high fills DA31 

in bits 66-64. 

Shift multiplexer control (see Table 4). 

Test pins (see Table 5) 

Supply voltage 15 VI 

Write enable for most significant 32 bits of temporary register and accumulator active low. 

Write enable for least significant 32 bits of temporary register and accumulator active low. 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PIN 

NAME NO. 
110 DESCRIPTION 

YO Cl 
Yl F2 
Y2 Bl 
Y3 E2 
Y4 C2 
Y5 C4 
Y6 82 
Y7 84 
Y8 Al 
Y9 B5 
Yl0 A2 
Yll A3 
Y12 B6 
Y13 A4 

Y14 A5 
Y15 C7 Y port data bus. Outputs data from Y register (OEY ::::; L); inputs data to master/slave comparator 

Y16 A6 
110 

(DEY = HI. 
Y17 B7 
Y18 A7 
Y19 A8 
Y20 B8 
Y21 A9 
Y22 C9 
Y23 Al0 
Y24 09 
Y25 All 
Y26 B9 
Y27 A12 
Y28 A13 
Y29 Bl0 
Y30 A14 
Y31 Bl1 
YETPO B13 
YETPl B12 110 

Data bus for extended precision product. Outputs three most significant bits of the 67-bit multiplier 

YETP2 B14 
core result; inputs external data to master/slave comparator. 

TABLE 1. INSTRUCTION INPUTS 

Signal High Low 

OASGN Identifies DA Input data as two's complement Identifies DA input data as unsigned 

OBSGN Identifies DB input data as two's complement Identifies DB input data as unsigned 

RNOO Rounds integer result Leaves integer result unaltered 

RNOl Rounds fractional result Leaves fractional result unaltered 

COMPL Complements the product from the multiplier Passes the product from the multiplier to the 

before passing it to the accumulator accumulator unaltered 

ACCO See Table 2 See Table 2 
ACCl 
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SFTl 
l 

l 

H 

H 

data flow 

SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

TABLE 2. MULTIPLIER/ADDER CONTROL INPUTS 

ACCl ACCO EA EB Operation 

0 0 X X ± IR x S) + 0 

0 1 X X ± IR x S) + ACC 

1 0 X X ±IR x S) - ACC 

1 1 0 0 ± 1 x 1 + 0 

1 1 0 1 ±1 x DB + 0 

1 1 1 0 ±DA x 1 + 0 

1 1 1 1 ±DA x DB + 0 

Ace is the data stored in the accumulator 

TABLE 3. SHIFTER CONTROL INPUTS 

SFTO Shifter Operation 

l Pass data without shift 

H Shift one bit left; fill with zero 

l Swap upper and lower halves of temporary register 

H Shift 32 bits right; fill with sign bit 

TABLE 4. FLOWTHROUGH CONTROL INPUTS 

Control Inputs Registers Bypassed 

FTl FTO Pipeline Y I A B 

l l Yes Yes Yes Yes Yes 

l H Yes No No No No 

H l Yes Yes No No No 

H H No No No No No 

TABLE 5. TEST PIN CONTROL INPUTS 

TPl TPO Operation 

l l All outputs and liDs forced low 

l H All outputs and liDs forced high 

H l All outputs placed in a high impedance state 

H H Normal operation (default state) 

Two 32·bit input data ports, DA and DB, are provided for input of the multiplicand and multiplier to registers 
A and B and the multiplier/adder. Input data can be clocked to the A and B registers before being passed 
to the multiplier/adder if desired. Two multiplexers, Rand S, in conjunction with a flowthrough decoder 
select the multiplier operands from DA and DB ihPuts, A and B registers, or the temporary register. Data 
is supplied to the temporary register from a shifter that operates on external OAf DB data or a previous 
multiplier/adder result. The 67·bit multiplier/adder result can be output through the Y port or passed through 
the shifter to the accumulator. 

External DA and DB data is also available to the accumulator via the shifter. This 64-bit data can be extended 
with zeros or the sign bit. The 64 least significant bits from the shifter may also be latched in the 64-bit 
temporary register and input to the multiplier through the Rand S multiplexers. A swap option allows the 
most significant and least significant 32-bit halves of temporary register data to be swapped before being 
made available to the Rand S multiplexers. This allows either 32-bit half of the temporary register to be 
used as a multiplier. 
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SN14ACTB836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

architectual elements 

Included in the functional block diagram of the' ACT8836 are the following blocks. 

1. Two 32-bit registered input data ports DA and DB 
2. A parity checker at the DA and DB inputs 
3. An instruction decoder (I register) 
4. A flowthrough decoder that permits selected registers to be bypassed to support up to three 

levels of pipelining 
5. Rand S multiplexers to select operands for the multiplier/ adder from DA and DB inputs. registers 

A and B. or temporary register 
6. A D multiplexer that selects the operand for the shifter from the 67-bit sign-extended DA and 

DB inputs or the multiplier/adder output 
7. A shifter block that operates on DA/DB input data or on multiplier/adder outputs for scaling or 

Newton-Raphson division 
8. A Y output multiplexer that selects the most significant half or the least significant half of the 

multiplier/ adder result for output at the registered Y port 
9. An extended precision error check that tests for overflow 

10. A master/slave comparator and parity generator/comparator at the Y output port for master/slave 
and parity checking 

11. Registers at the external data and instruction input ports and the shifter and multiplier/adder 
output port to support pipe-lining 

input data parity checker 

An even-parity check is performed on each byte of input data at the DA. DB and Y ports. If the parity 
test fails for any byte. a high appears at the parity error output pin (PERRA for DA data. PERRB for DB 
data. PERRY for Y data). 

A and B registers 

Register A can be loaded with data from the DA bus. which normally holds a 32-bit multiplicand. Register 
B is loaded from the DB bus which holds a 32-bit multiplier. Separate clock enables. CKEA and CKEB. allow 
the registers to be loaded separately. This is useful when performing double precision multiplication or 
using the temporary register as an input to the multiplier/adder. The registers can be made transparent 
using the FT inputs (see Table 4). 

instruction register 

Instruction inputs to the device are shown in Table 1. These signals control signed. unsigned. and mixed 
multiplication modes. fractional and integer rounding. accumulator operations and complementing of 
products. They can be latched into instruction register I when clock enable CKEI is low. 

Sign control inputs DASGN and DBSGN identify DA and DB input data as signed (high) or unsigned (low). 

Rounding inputs RNDO and RND1 control rounding operations in the multiplier/adder. A low on these inputs 
passes the results unaltered. If a high appears on RND 1. the result will be rounded by adding a one to 
bit 30. RND1 should be set high if the multiplier/adder result is to be shifted in order to maintain preciSion 
of the least significant bit following the shift operation. If a high appears on RNDO. the result will be rounded 
by adding a one to bit 31. This code should be used when the adder result will not be shifted. 

A complement control. COM PL. is used to complement the product from the muliplier before passing it 
to the accumulator. The complement will occur if COMPL is high; the product will be passed unaltered 
if COMPL is low. 

ACC1-ACCO control the operation of the multiplier/adder. Possible operations are shown in Table 2. 
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PA3-PAO 
4 

PB3-PBO 
4 

PERRA 
PERRB 

DA31-DAO 

CKEA 

CKEI~--+~ 

32 

SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

32 

.-----~~1_f.:;32+DB31_DBO 

I-++---+CKEB 

EA~--+------1------------~ /--------1---+EB 

DASGN 

DBSGN 

RND1-RNDO 

COMPL 

ACC1-ACCO 

'----------------1 MULTIPLIER/ADDER STAGE 1 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 

INPUT REGISTERS AND PARITY CHECK 

R. S. and swap multiplexers 

67 

The Rand S multiplexers select the multiplier/adder operands from external data or from the temporary 
register. 

When EA is low, the R multiplexer selects data from the swap multiplexer. When EA is high, the R multiplexer 
selects data from DA or the A register, depending on the state of the flowthrough control inputs (see 
Table 4). When EB is low, the S multiplexer selects data from the swap multiplexer. When EB is high, the S 
multiplexer switches data from DB or the B register, depending on the state of the flowthrough control inputs. 

EA and EB are also used in conjunction with the multiplier/adder control inputs to force a numeric one 
on the R or 5 inputs (see Table 2). 

The swap multiplexers are controlled by the shifter control inputs. When SFT1 is high and SFTO is low, 
the most significant half of the temporary register is available to the 5 multiplexer, and the least significant 
half is available to the R multiplexer. When SFT1-SFTO are set to other values, the most significant half 
of the temporary register is available to the R multiplexer, and the least significant half is available to the 
5 multiplexer. 

multiplier/adder 

The multiplier performs 32-bit multiplication and generates a 67-bit product. The product can be latched 
in the pipeline to increase cycle speed. The product is complemented when COMPL is set high as shown 
in Table 1. The adder computes the sum or the difference of the accumulator and the product and gives 
a 67-bit sum. Bits 66-64 are used for overflow and sign extension. 
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SN74ACT8836 
32-BIT BY 32-BI1 MULTIPLIER/ACCUMULATOR 

D multiplexer 

The D multiplexer selects input data for the shifter. Two sources are available to the multiplexer: a 64-bit 
word formed by concatenating DA and DS bus data. and the 67-bit sum from the multiplier/adder. If SELD 
is high. external DA/DS data is selected; if SELD is low. the sum is selected. 

If the 64-bit word is selected for input to the shifter. three bits are added to the word based on the state 
of the sign extend signal (SGNEXT). If SGNEXT is low. bits 66-64 are zero-filled; if SGNEXT is high. bits 
66-64 are filled with the value on DA31. 

temporary register and accumulator (Figure 11 

Output from the shifter will be stored in the temporary register if SELREG is high and in the accumulator 
register if SELREG is low. The 64-bit temporary register can be used to store temporary data. constants 
and scaled binary fractions. 

Separate clock controls. WELS and WEMS. allow the most significant and least significant halves of the 
shifter output to be loaded separately. The 32 least significant bits of the selected register are loaded when 
WELS is low; the most significant bits when WEMS is low. When WELS and WEMS are both low. the 
entire word from the shifter is loaded into the selected register. 

DA31-DAO 
32 

CKEA 

EA 

4-16 

y 
\ 0 MUX , 

1'67 

1 SHIFTER 
2 

fe7 

j 61 -1"67 

I TEMPORARY I I ACCUMULATOR I 
32 

.£32 li32 I 32 

~ifl \;AP' MUX M~ 1 
1 REG~TER I I B L 
1 REGISTER J 

I I~ 

\. A MUX / '\BMUX J 
~. ~ .r? 

\ RMUX / \ SMUX / 

T 
MULTIPLIER/ADDER STAGE 1 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 
67 

T 

FIGURE 1. TEMPORARY REGISTER AND ACCUMULATOR 

TEXAS • 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 

/2 

2 

,32 

SGNEXT 
SELD 

SFT1-SFTO 

SELREG 
WEMS 
WELS 

DB31-DBO 



shifter 

SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

The shifter can be used to multiply by two for Newton·Raphson operations or perform a 32-bit shift for 
double precision multiplication. The shifter is controlled by two SFT inputs, as shown in Table 3. 

Y register 

Final or intermediate multiplier/adder results will be clocked into Y register when CKEY is low. 

Results can be passed directly to the Y output multiplexer using flowthrough decoder signals to bypass 
the register (see Table 4). 

Y multiplexer and Y output multiplexer 

The Y multiplexer allows the 64-bit result or the contents of the Y register to be switched to the Y bus, 
depending upon the state of the flowthrough control outputs. The upper 32 bits are selected for output 
when the Y output multiplexer control SEL Y is high; the lower 32 bits are selected for output when SEL Y 
is low. Note that the Y output multiplexer can be switched at twice the clock rate so that the 64-bit result 
can be output in one clock cycle. 

flowthrough decoder 

To enable the device to operate in pipelined or flowthrough modes, on-chip registers can be bypassed using 
flowthrough control signals FT1 and FTO. Up to three levels of pipeline can be supported, as shown in 
Table 4. 

FT1·FTO 

MULTIPLIER/ADDER STAGE 1 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 

Y31-YO 

FIGURE 2. Y OUTPUT 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

Y 
REGISTER ~-------------------4-CKEY 

~------------------~~SELY 

PERRY 

OEY~------------------~~~4------4~~------~ 

ETPERR YETP2· YETPO Y31·YO MSERR PY3·PYO 

FIGURE 3. OUTPUT ERROR CONTROL 

extended precision check 

Three extended product outputs, YETP2-YETPO, are provided to recover three bits of precision during 
overflow. An extended precision check error signal (ETPERR) goes high whenever overflow occurs. If sign 
controls DASGN and DBSGN are both low, indicating an unsigned operation, the extended precision bits 
66-64 are compared for equality. Under all other sign control conditions, bits 66-63 are compared for 
equality. 

CO master slave comparator 
CO 
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A master/slave comparator is provided to compare data bytes from the Y output multiplexer with data 
bytes on the external Y port when OEY is high. A comparison of the three extended precision bits of the 
multiplier/adder result or Y register output with external data in the YETP1-YETPO port is performed 
simultaneously. If the data is not equal, a high signal is generated on the master slave error output pin 
(MSERR). A similar comparison is performed for parity using the PY3-PYO inputs. This feature is useful 
in fault-tolerant design where several devices vote to ensure hardware integrity. 

test pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place all outputs in a 
high-impedance state, isolating the chip from the rest of the system (see Table 5). 

data formats 

The 'ACT8836 performs single-precision and double-precision multiplication in two's complement, unsigned 
magnitude, and mixed formats for both integer and fractional numbers. 

Input formats for the multiplicand (R) and multiplier (5) are given below, followed by output formats for 
the fully extended product. The fully extended product (PRDT) is 67 bits wide. It includes the extended 
product (XTP) bits YETP1-YETPO, the most significant product (MSP) bits Y63-Y32, and the least significant 
product (LSP) bits Y31-YO. 
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This can be represented in notational form as follows: 

PRDT XTP : : MSP : : LSP 
or 

PRDT YETP2 - YETPO : : Y63 - YO 

Table 6 shows the output formats generated by two's complement, unsigned and mixed-mode 
multiplications. 

TABLE 6. GENERATED OUTPUT FORMATS 

Two's Complement Unsigned Magnitude 

Two's Complement Two's Complement Two's Complement 

Unsigned Magnitude Two's Complement Unsigned Magnitude 

examples 

Representative examples of single-precision multiplication, double-precision multiplication, and division using 
Newton-Raphson binary division algorithm are given below. 

single-precision multiplication 

31 

_231 

(Sign 1 

31 

2 31 

31 

_20 

(Sign) 

Microcode for the multiplication of two signed numbers is shown in Figure 1. In this example, the result 
is rounded and the 32 most significant bits are output on the Y bus. A second instruction (SEL Y = 0) 
would be required to output the least significant half if rounding were not used. 

Unsigned and mixed mode single-precision multiplication are executed using the same code. (The sign 
controls must be modified accordingly.) Following are the input and output formats for signed, unsigned, 
and mixed mode operations. 

Input Operand A 

30 29 

2 30 229 

Input Operand A 

30 29 ......... 

2 30 229 

Input Operand A 

30 29 

2- 1 2-2 

Two's Complement Integer Inputs 

2 0 I 31 30 29 

22 21 20 _231 230 229 
(Signl 

Unsigned Integer Inputs 

2 0 31 30 29 

22 21 20 231 230 2 29 

Two's Complement Fractional Inputs 

2 

2-29 

0 I I 31 30 

2-30 2-31 -20 2- 1 
(Sign) 
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Input Operand B 

2 0 

22 21 20 

Input Operand B 

2 0 I 
22 21 20 

Input Operand B 

2 0 

............ 2-29 2-30 2-31 
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Unsigned Fractional Inputs 
Input Operand A Input Operand B 

31 30 29.................. 2 o I 31 30 29. . . . . . . . . . . . . . . . .. 2 o I 
2-1 2-2 2-3 .................. 2-30 2-31 2-32 2-1 2-2 2-3 .................. 2-30 2-31 2-32 

Extended 
Product 

(YETP2-YETPO) 

Two's Complement Integer Outputs 

Most Significant Product 
(Y63-Y32) 

Least Significant Product 
(Y3l-YO) 

I 66 65 64 I I 63 62 61 ........... 30 31 32 I 1L..::.31~-=3:.:0_=29=--.:..:...;...:~=--.:...:..:...--=-2_-=-_..:.0---l 
_266 265 264 263 
'-...-' 

(Sign) 

Extended 
Product 

(YETP2-YETPO) 

66 65 64 I I 63 

266 265 264 263 

Extended 
Product 

(YETP2-YETPO) 

I 66 65 64 I I 63 

-24 23 22 21 
'-...-' 

(Sign) 

Extended 
Product 

(YETP2-YETPO) 

66 65 64 I I 63 

22 21 20 2- 1 

4-20 

262 261 234 233 232 231 230 2 29 21 

62 

262 

62 

20 

62 

2-2 

Unsigned Integer Outputs 

Most Significant Product 
(Y63-Y32) 

Least Significant Product 
(Y3l-YO) 

61 ........... 30 31 32 I I 31 30 29 .......... . 2 

2 61 234 233 232 231 230 2 29 

Two's Complement Fractional Outputs 

Most Significant Product Least Significant Product 
(Y63-Y32) (Y3l-YO) 

61 30 31 32 I I 31 30 29 .. '" , ..... 2 

21 

2- 1 2-28 2-29 2-30 2-31 2-32 2-33 r 60 2-61 

Unsigned Fractional Outputs 

Most Significant Product 

61 

2-3 

(Y63-Y32) 

. ..... ..... 30 31 32 I I 31 

2-30 2-31 2-32 2-33 
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INSTRUMENTS 

Least Significant Product 
(Y3l-YO) 

30 29 ........... 2 

2-34 2-35 2-62 2-63 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

20 

o I 
20 

0 

2-62 

0 

2- 64 



SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

double-precision multiplication 

To simplify discussion of double-precision multiplication, the following example implements an algorithm 
using one' ACT8836 device. It should be noted that even higher speeds can be achieved through the use 
of two' ACT8836s to implement a parallel multiplier. 

The example is based on the following algorithm where A and Bare 64-bit signed numbers. 

Let 
Am = as,a62, a61,· .. , a32 

and 

AI = a31, a30, a29, ... , ao (ao LSB) 
Therefore: 

A = (Am x 232 ) + AI 
Likewise: 

B = (Bm x 232 ) + BI 
Thus: 

A x B = [(Am x 232 ) + AI] x [(Bm x 232 ) + BI] 
= (Am x Bm) 264 + (Am x BI + AI] x Bm )232 + AI x BI 

Therefore, four products and three summations with rank adjustments are required. 

Basic implementation of this algorithm uses a single 'ACT8836. The result is a two's complement 128-bit 
product. Microcode signals to implement the algorithm are shown in Figure 4. 

The first instruction cycle computes the first product, AI x BI. The least significant half of the result is 
output through the Y port for storage in an external RAM or some other 32-bit register; this will be the 
least significant 32-bit portion of the final result. 

The instruction also uses the shifter to shift the AI x BI product 32 bits to the right in order to adjust 
for ranking in the next multiplication-addition sequence. The least significant half of the shift result is stored 
in the lower 32-bit portion of the accumulator; the upper 32 bits contain the zero and fill. 

The second instruction produces the second product, AI x Bm, adds it to the contents of the accumulator, 
and stores the result in the accumulator for use in the third instruction. 

Instruction 3 computes Am x BI, adds the result to the accumulator, and outputs the least significant 
32 bits of the addition for use as bits 63-32 of the final product. 

This instruction also shifts the result 32 bits to the right to provide the necessary rank adjustment and 
stores the shift result (the most significant half of the addition result) in the lower 32 bits of the accumulator. 
Bits ACC63-ACC32 are filled with zeros; the sign is extended into the three upper bits (ACC66-ACC64). 

Instruction 4 computes the fourth product (Am x Bm), adds it to the accumulator, and outputs the least 
significant half at the Y port for use as bits 95-64 of the final product. 

This example assumes that the chip is operating in feed-through mode. A fifth instruction is therefore required 
to perform the fourth iteration again so that bits 127-96 of the final product can be output. 
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Example 1. Single Precision Multiply, 32-Bit Result 

Operand 
Instruction Inputs 

Select Product Multiplier/ 
R bus Rounding Cample- Adder D·MUX Sign 
S bus Sign Control ment Mode Select Extend 

EAEB DASGN DSSGN RND1 RNDO CDMPL ACC1 ACCO SELD SGNEXT 

1 1 1 1 0 1 0 0 0 0 X 
-- -- - --

Example 2. Double-Precision Multiply, 64-Bit Result 

Instruction Inputs 
Operand 

Select Product Multiplierl 
Instruction R bus Rounding Cample- Adder D-MUX 

Number S bus Sign Control ment Mode Select 

EAEB DASGN DSSGN RND1 RNDO CDMPL ACC1 ACCO SELD 

III 1 1 0 0 0 0 0 0 0 0 

121 1 1 0 1 0 0 0 0 1 0 

131 1 1 1 0 0 0 0 0 1 0 

141 1 1 1 1 0 0 0 0 1 X 

--!~------- 1 1 1 1 0 0 0 0 1 X 

Example 3. Newton-Raphson Division 

Instruction Inputs 
Operand 

Select Product Multiplier/ 
Instruction R bus Rounding Comple- Adder D-MUX 

Number S bus Sign Control ment Mode Select 

EAEB DASGN DSSGN RND1 RNDO CDMPL ACC1 ACCO SELD 

Repeat N Times * 

III 0 1 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 1 0 0 0 0 

End Repeat 

131 I ~ 1 0 0 0 0 0 0 0 0 

141 0 0 0 0 0 0 0 0 0 

"'N =-~ Where m = number of bits in the seed (assuming 32-bits of precision) 
2m+ 1 

Register 
Shift-MUX Load 

Control Select 

SFT1 SFTO SELREG 

0 0 0 
-_.- -

Sign Shift-MUX 
Extend Control 

SGNEXT SFT1 SFTO 

0 1 1 

0 0 0 

0 1 1 

0 0 0 

0 0 0 

Sign Shift-MUX 
Extend Control 

SGNEXT SFT1 SFTO 

0 1 1 

0 0 1 

0 1 1 

0 0 1 

Register Feed-
Write through 
Enable Control 

WEH WEL FT1 FTO 

0 0 0 0 

Register Register 
load Write 

Select Enable 

SELREG iwEH WEL 

0 0 0 

0 0 0 

0 0 0 

X X X 

X X X 

Register Register 
load Write 

Select Enable 

SELREG WEll WEL 

1 1 0 

1 0 1 

1 1 0 

1 0 1 

FIGURE 4. MICROCODED EXAMPLES 

Clock Enables Y/PY 
Y·MUX Output 

I A S Y Select Enable 

CKEI CKEA CKES eREY SELY DEY 

0 0 0 0 1 0 

Feed- Clock Enables 
through Y-MUX 
Control I A S Y Select 

FT1 FTO CKEI CKEA CKES CKEY SELY 

0 0 1 1 1 1 0 

0 0 1 1 1 1 X 

0 0 1 1 1 1 0 

0 0 1 1 1 1 0 

0 0 1 1 1 1 1 

Feed- Clock Enables 
through Y-MUX 
Control I A B Y Select 

FT1 FTO CKEI CKEA CKES CKEY SELY 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

y/py 
Output 
Enable 

DEY 

0 

X 

0 

0 

0 

Y/PY 
Output 
Enable 

OEY 

0 

0 

0 

0 

wen 
":"2 
CCII ...... - ... 
-1):0 

CCII n 
<-I 

CO 
W CO .....,w 
a-,cn 
:::::j 

:s: 
c .... 
:::! 
"1:J .... 
iTi 
:1:1 

"> n 
n 
c 
:s: 
c 
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Newton-Raphson binary division algorithm 

The following explanation illustrates how to implement the Newton-Raphson binary division algorithm using 
the 'ACT8836 multiplier/accumulator. The Newton-Raphson algorithm is an iterative procedure that 
generates the reciprocal of the divisor through a convergence method. 

Consider the equation Q = A/B. This equation can be rewritten as Q = A x (1/B). Therefore, the quotient 
Q can be computed by simply multiplying the dividend A by the reciprocal of the divisor (B). Finding the 
divisor reciprocal 1/B is the objective of the Newton-Raphson algorithm. 

To calculate 1/B the Newton-Raphson equation, Xi + 1 = Xi(2'BXi) is calculated in an iterative process. 
In the equation, B represents the divisor and X represents successively closer approximations to the 
reciprocaI1/B. The following sequence of computation illustrates the iterative nature of the Newton-Raphson 
algorithm. 

Step 1 
Step 2 
Step 3 

Step n 

X 1 = XO(2-BXO) 
X2 = X 1(2-BX 1) 

X3 = X2(2-BX2) 

Xn = Xn-1 (2-BXn-1 ) 

The successive approximation of Xi, for all i, approaches the reciprocal 1/B as the number of iterations 
increases; that is 

1im Xi = 1/B 
i -+ n 

The iterative operation is executed until the desired tolerance or error is reached. The required accuracy 
for 1/B can be determined by subtracting each xi from its corresponding xi + 1. If the difference I Xi + 1 
- Xi I is less than or equal to a predetermined round off error, then the process is terminated. The desired 
tolerance can also be achieved by executing a fixed number of iterations based on the accuracy of the 
initial guess of 1/B stored in RAM of PROM. 

The initial guess, XO, is called the seed approximation. The seed must be supplied to the Newton-Raphson 
process externally and must fall within the range of 0 < XO < 2/B if B is greater than 0 or 2/B < XO < 0 
if B is less than O. 

To perform the Newton-Raphson binary division algorithm using the' ACT8836, the divisor, B, must be 
a positive fraction. As a positive fraction, B is limited within the range of 1/2 ,;; B < 1. 

Since Xi from Newton-Raphson must lie between 0 < Xi < 2/B and since the range of the positive fraction 
B is 1/2 ,;; B < 1, then the limits of Xi become 1 ,;; Xi <2. 

The range of - BXi will therefore be - 2 ,;; - BXi ,;; - 1/2. 

The limits of - BXi are shown in Table 7 as they would appear in the' ACT8836 extended bit, binary fraction 
format. 

TABLE 7. LIMITS OF -BXi IN 'ACT8836 EXTENDED BIT FORMAT 

Extended Bits 

66 65 64 
63 62 61 ...... 2 

-2 1 1 1 0 0 0 ...... 0 

-% 1 1 1 1 1 0 ...... 0 

The diagram indicates that - BXi is always of the form: 

1 1 1 dO. d1 d2 ............ dn-2 dn-1 
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The next step in Newton-Raphson is to complete the 2 - BXi equation. The fractional representation of 2 is: 

001 0.00 ........... 00 

Completion of the 2 - BXi equation is shown in Table 8. 

TABLE 8. COMPLETION OF 2-BXj EQUATION 

Extended Bits 

66 65 64 
63 62 61 ...... 1 0 

1 1 1 dO dl d2 ,' .... dn -2 dn -l 

+ 0 0 1 0 0 0 ...... 0 0 

= 0 0 0 dO dl d2 ...... dn -2 dn -l 

Since this step only affects the extended bits (66-64) on the' ACT8836, this step can be skipped. The 
following algorithm can therefore be used to perform Newton-Raphson binary division with the' ACT8836. 

Assuming B is on the DB bus (or stored in the B register) and Xi is stored in the temporary register: 

Step 1 

Step 2 

Step 3 

Accumulator <- - (DB x temporary register) 
= 2-BXi 

Temporary Register <- Left shift one bit of 
(accumulator times temporary register) 

Xi+1 

= Xi (2-BXi) 

Repeat Steps 1 and 2 until I Xi + 1 - Xi I :s; a predetermined round-off error 

Two cycles are required for each iteration. The left shift that is performed in Step 2 is required to realign 
Xi after the signed fraction multiply. Microcode for this example is shown in Figure 4. 
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absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t 

Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (VI<O or VI>Vee) ................................... ±20 mA 
Output clamp current, 10K (VO<O or Vo>Vee) ................................ ±50 mA 
Continuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 50 mA 
eontinous current through Vee or GND pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 100 mA 
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70°C 
Storage temperature range ......................................... - 65°C to 150°C 

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings 
only and functional ope~ation of the device at these or any other conditions beyond those indicated under "recommended operating 
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

recommended operating conditions 

MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5 5.5 V 

VIH High-level input voltage 2 Vee V 

Vil Low-level input voltage 0 0.8 V 

10H High-level output current ~8 rnA 

10l Low-level output current 8 rnA 

VI Input voltage 0 Vee V 

Vo Output voltage 0 Vee V 

dt/dv Input transition rise or fall rate 0 15 nslV 

TA Operating free-air temperature 0 70 °e c.c 
M 

electrical characteristics over recommended operating free-air temperature range (unless otherwise 00 
noted) 00 

PARAMETER TEST CONDITIONS Vee 
TA - 25°C 

MIN TYP MAX 

4.5 V 4.4 
10H .- ~20 ~A 

5.5 V 5.4 
VOH 

4.5 V 3.8 
IOH ~ ~8 rnA 

5.5 V 4.8 

4.5 V 0.1 
10l ~ 20 ~A 

5.5 V 0.1 
VOL 

4.5 V 0.32 
10l ~ 8 rnA 

5.5 V 0.32 

II VI ~ Vee or 0 5.5 V 0.1 

lee VI ~ Vee or 0.10 5.5 V 50 

ei VI ~ Vee or 0 5V 5 10 

Alee t 
One input at 3.4 V. 

other inputs at 0 or Vee 
5.5 V 1 

10ZH VI ~ Vee or 0 5V 0.5 

10Zl VI ~ Vee or 0 5V ~0.5 

TA - oDe to 70DC 

MIN MAX 

4.4 

5.4 

3.7 

4.7 

0.1 

0.1 

0.4 

0.4 

± 1.0 

100 

10 

1 

5 

~5 

UNIT 

V 

V 

V 

V 

~A 

~A 

pF 

rnA 

~A 

~A 

I­o 
<t 
~ 

" z 
en 

z 
o 
i= 
c:r: 
~ 
a: 
o 
u.. 

:t This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 or Vee. Z 
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setup and hold times 

tsul Instruction before ClKi 

tsu2 Data before ClKi 

tsu3 CKEA before ClKi 

tsu4 CKEB before ClKi 

tsu5 CiITi before ClKi 

tsu6 CKEY before ClK i 

tsu 7 SElREG before ClK i 

tsu8 WEMS before ClKi 

tsu9 WElS before ClKi 

th1 Instruction after CLKf 

th2 Data after ClK i 

th3 CKEA after ClK i 

tM CKEB after ClKi 

th5 CiITi after ClKi 

th6 CKEY after ClKi 

th7 SElREG after ClKi 

th8 WEMS after ClK i 

th9 WElS after ClKi 
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MIN MAX UNIT 

14 

12 

14 

14 

10 

19 

12 

11 

11 ns 

0 
0 

0 

0 

0 

0 

0 

0 

0 
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switching characteristics over recommended ranges of supply voltage and free-air temperature (see 
Figure 2) for load circuit and voltage waveforms) 

FROM TO 
PARAMETER 

(INPUT) (OUTPUT) 
FT MODE (FT1-FTO) MIN TYP MAX 

tpdl t ClK PIPE 11 36 

tpd2 t PIPE Y REG 11 36 

tpd3 t PIPE ACCUM 11 36 

tpd4t Y REG Y All modes 18 

tpd5 SElY Y All modes 18 

tpd6 t ClK Y REG 01 54 

tpd7t ClK ACCUM 10 or 01 67 

tpd8 ClK Y 10 67 

tpd9 DATA Y 00 60 

tpdl0 t DATA ACCUM 00 56 

tpdl1 ClK YETP 11 or 10 18 

tpd12 ClK ETPERR 11 or 10 18 

tpd13 ClK YETP 00 67 

tpd14 ClK ETPERR 01 67 

tpd15 DATA YETP 00 60 

tpd16 DATA ETPERR 00 60 

tpd17 PA PERRA All modes 20 

tpd18 DA PERRA All modes 20 

tpd19 PB PERRB All modes 20 

tpd20 DB PERRB All modes 20 

tpd21 PY PERRY All modes 20 

tpd22 Y MSERR All modes 22 

tpd23 YETP MSERR All modes 22 

ten2 DEY YETP All modes 20 

tenl DEY Y All modes 20 

tdisl DEY YETP All modes 15 

tdis2 OEY Y All modes 15 

clock requirements 

PARAMETER 
SN74ACT8836 

MIN MAX 

twl ClK high 5 

tw2 ClK low 20 

tThese parameters cannot be measured but can be inferred from device operation and other measurable parameters. 
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PARAMETER MEASUREMENT INFORMATION 

eLK IZI?Z????ZZZ?ZZ?ZZZ???????????????????????????????????2222ZZZ2ZZZZZZZ 
CKEA.CKEB~n-__________________________________________________________________ _ 

CKEI. CKEY ZZ1' I 
INSTR~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::X:::: 

I 

I 
1 

DATAZZX==================================================:::X=== I 
I 
I 
I 
I SELY __ +: __________________________________________________ ~ 

I 1 
I : 

OEY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS "> 1 
1 I I 
I ~ten2 I 
I. tpd9 _I ~ tpdS 

Y31-YO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSX LSP X 

FIGURE 5. FULL FLOWTHROUGH MODE (FT - 001 

..pzzz 
tdi.2~ 

1 
MSP XS 

CLK __________________________________________ ~~~------------------

1 
CKEA.CKEB~~----------------------------------------I~----------------------_ 
CKEI. CKEY 24' I 

I:::::::::::::::::::::::::::::::::::::::::~I::::::::::::::::::== INSTR ~ I x:::: 
I 1 
1 I 
I I 

DATA~~~==================================jl=================X=== 1 I 
I I 
1 I 
1 1 

SELREG ___ slsssssssssssssssssssssssssssssssssss~ II 
WEMS. WELS --,-

t.u7-t.u9~ 

42277727222 
1 
I 

SUM-OF- i :---th7-th9 -----*' 
PRODUCT * ACCUM. 

I 1 
I. tpdl0 _I 
1 1 

SELY I 1 
1 1 
I 1 

DEY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 1> I 
I . 1 I 
I. tpd9 . 1 ~I 

I ,I 

Y31-YO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSlSSSX 
ten2--k-------.1 

{ , 
I 
1 
1 

tpdS--*-+I 
I 
1 

LSP X 

FIGURE 6. FULL FLOWTHROUGH MODE. ACCUMULATOR MODE (FT - 001 
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PARAMETER MEASUREMENT INFORMATION 

CLK __________ ~r----1~ __________________ ~~~----------------------
I 1 
1 1 

CKEA. CKEB ~: : QZZZZZZZZZZZZZZZzzzzz; 
CKEI. CKEY '-t t .... 1_ 1 t t 

;-- su3- su6- -===~ .• ==~.~h~3~-~h6~======== INSTR~: ~ 
_tsu1--+! 1 
: 1 .. ;~-----th1---~.1 

DATA:::::X I A. B X:::================= I 1 1 
*--tsu2--+! 1 

I 1 
1 ... ~----th2----...-I.1 
1 

PRDDUCT=====:ti============~f:::======~YR~EG[:====::: 
1 I 
... 1~------tpd6------+l~ 

1 
SELY I ...r 

1 I 
I : 

OEY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS~ : 1 ~ 
: I+--+t-tpd4: tdis2-+-+t 
: : tpd5-+--+: : 

Y31-YO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS X LSP X:::=JM~S[P ==XS 
1 I ten2 I. .1 

FIGURE 7. FLOWTHROUGH PIPE ONLY VOLTAGE WAVEFORMS (FT = 01) 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 
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CKEI. CKEY _"S)-~~' ~:;;:;;;;~--!------!-------j-----th3::t.;;i::t;::=::::f -., :+-tsu3-tsu6 

INSTR ~ I *:±=====J 
-.: :.-tsu 1 : 
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I I 
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I tsu7-tsu9 I. .1 I I I I I I I I I 
: I+-- th7-th9---+i I I I 

SUM-OF- I I '--:======~'=======::±' ==== PRODUCT SSSSSSSSSSSSSSSSS,* ACCUM. x.. 
I I I 
i+---tpd7------.., I I 
I I I I 

PRODUCT SSSSSSSSSSSSSSSSSK I VREG xq:=======:I~======:::t==== 
I I I : 
Io--tpdS-----oI : : : I 

SElY ----------t:----~.-( I ....... SfSSSSSSSSSSSSS1SSSSSSS 
I I 'I I I 
I I I I 

OEY SSSSSSSSSSSSSSSS)..1 : : 1/ ZZZZVZZZZZZZZZZZZZZZZZ 
I I I I I I I 
l~tpd4 II I I I 

I I I I : I : 
Y31-YO SSSSSSSSSSSSSSSSSSSS SX=:Jl!!SP~1 =:*==:J!:MS~P=+' :::::)j(~2Z:LZ~7~Z~Z2:ZZZZ2Z2/2Z22:LZ:L2~2~Z~/~Z~Z2:Z2:ZZ/Z 

I I I I I I 
ten2 I. 01 Io----<+-tpd5 ~tdis2 

FIGURE 8. FLOWTHROUGH PIPE ONLY. ACCUMULATOR MODE (FT = 01) 
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Y31-YO-)~S"'S""'S""''''''''''''''S'''''''''S'''''S'''''S'''''S..,." ... S""'",....S""" ...... S..,.S ... S""'S,....S,....S""""'S ... " ... S ... S,....S,....S ...... S..,." ... S""'S,....S,....S""'S..,.S ... ,,""'S,....*~--...,.,LS"'P---X-------:M"'S::-P ---~ 
FIGURE 9. FLOWTHROUGH PIPE AND Y ONLY 1FT - 10) 

ClK 
, I 

---*I ~tsu3-tsu5 th3-th5*---1 
CKEA. CKEB I I I }:-
CKEI -~~~I---------------7-----------+---------------r-----------L----~~~ 

INSTR ~ * x x xc~::== 
-.I ~tsul : I 

I+------thl__ I 
, I 

DATA::li< i A.S * X X xCtl ::::::= 
'I I 
~tsu2 I I 

I I I 
!---th2_ I I 

SElREG I I 1_ I 
WEMS. WElS s\\\\\\sSSSSSSS)... I ..aZZVZZZZZVVZZZZZZZZZZZOZZOaZOZ 

I ~tsu7-t5u9 I I I I 
, I I I : I 
I I4---t h7-th9---+i I I I 

SUM-OF- I I , : : 
PRODUCT 227ZZZZZZZZZZZZZZZX ACCUM. * 

I I I 
1+----tpd7--+f , : 
: I ___ Ir------------~I~-----------L------

SElY I I < I 
I I: I 

OEY SSSSSSSSSSSSSSS)-. : : 42ZV)zzzzzzzzzzzzz)vzzm 
I ~ten2 I I I i I 
I. tpdB I .1 tpd5~1 tdi52~ I I 
I I I " I I I 

Y31-YO zzzzzzzzzzzzzzzzzZ/X LSP * MSP * ZZZVZZZZVZZZZZZZZZZ/l 

FIGURE 10. FLOWTHROUGH PIPE AND Y ONLY, ACCUMULATOR MODE 1FT = 10) 
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32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 
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CKEI.CKEY ~---~~:----------~--------~-----------+----------~~--------~--------~i~----~" 
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/ ~~~ / / : 
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I I I ~r~I------~~ __ -4 _____ ~(----t---~\~SS"~S~SS'~~'~,~§~S~S 
/ : / // / / i SElY 
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SN74ACTB836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 
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PRODUCT SS\SSSSSSSSSSSS\\SS* YREG : XC=Yil!RliEGC:*==)XC===::t=====~:=====::~=: 
I I I I 
I tpd2--" I I I 
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FIGURE 12. ALL REGISTERS ENABLED. ACCUMULATOR MODE (FT - 11) 

TEST 

Tvce 
S1 

FROM OUTPUT __ P_O.IN .... T __ "'R"'loy.. __ • 

UNDER TEST 

LOAD CIRCUIT 

PARAMETER Rl clt S1' 

tpZH OPEN 
ten 1 kll 50 pF 

CLOSED tpZL 

tpHZ OPEN 
tdis 1 kll 50 pF 

tpLZ CLOSED 

tDd - 50 pF OPEN 

t CL includes probe and test fixture capacitance 

S2 
CLOSED 

OPEN 

CLOSED 

OPEN 

OPEN 

All input pulses are supplied by generators having the following characteristics: PRR :s; 1 MHz, Zout = 50 0, tr = 50 0, tf = 6 ns. 

FIGURE 13. LOAD CIRCUIT 
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SN74ACT8837 
64·8it Floating Point Unit 

• Multiplier and ALU in One Chip 

• 65-ns Pipelined Performance 

• Low-Power EPIC'· CMOS 

• Meets IEEE Standard for 32- and 64-Bit Multiply, 
Add, and Subtract 

• Three-Port Architecture, 64-Bit Internal Bus 

• Pipelined or Flowthrough Operation 

• Floating Point-to-Integer and Integer-to-Floating 
Point Conversions 

• Supports Division Using Newton-Raphson 
Algorithm 

• Parity Generation/Checking 

The SN74ACT8837 single-chip floating point processor performs high-speed 32-
and 64-bit floating point operations. More than just a coprocessor, the' ACT8837 
integrates on one chip, two double-precision floating point functions, an ALU 
and multiplier. 

The wide dynamic range and high precision of floating point format minimize 
the need for scaling and overflow detection. Computationally-intense 
applications, such as high-end graphics and digital signal processing, need double­
precision floating point accuracy to maintain data integrity. Floating point 
processors in general-purpose computing must often support double-precision 
formats to match existing software. 

By integrating its two functions on one chip, the' ACT8837 reduces data routing 
problems and processing overhead. Its three data ports and 64-bit internal bus 
structure let the user load two operands and take a result in a single clock cycle. 

EPIC is a trademark of Texas Instruments Incorporated. 

5-3 



(J) 

Z 
"-oJ 
~ » 
("') 
-f 
00 
00 
eN 
"-oJ 

5-4 



Contents 

Page 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 

Understanding the' ACT8837 Floating Point Unit ......... . 5-13 
Microprogramming the' ACT8837 .................... . 5-13 
Support Tools ................................... . 5-14 
Design Support .................................. . 5-14 
Systems Expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 
, ACT8837 Logic Symbol ........................... . 5-16 
, ACT8837 Pin Descriptions ......................... . 5-17 
, ACT8837 Specification Tables ...................... . 5-24 

SN74ACT8837 Floating Point Unit . ..................... . 5-27 

Data Flow ...................................... . 5-27 
Input Data Parity Check .......................... . 5-27 
Temporary Input Register ......................... . 5-29 
RA and RB Input Registers ........................ . 5-29 
Multiplier/ALU Multiplexers ........................ . 
Pipelined ALU ................................. . 

5-30 
5-31 '" ('t) 

Pipelined Multiplier .............................. . 
Product, Sum, and C Registers ..................... . 
Parity Generators ............................... . 
Master/Slave Comparator ......................... . 

5-31 ex) 
ex) 

5-31 I-
5-31 U « 
5-34 -.:t 

Status and Exception Generator/Register ............ . 
Flowthrough Mode ............................ . 

5-34 '" Z 
5-37 U) 

Fast and IEEE Modes .......................... . 5-37 
Rounding Mode .............................. . 5-38 
Test Pins ................................... . 5-38 
Summary of Control Inputs ...................... . 5-38 

5-5 



Contents (Continued) 

Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Loading External Data Operands ..................... . 
Configuration Controls (CONFIG 1-CONFIGO) ............ . 
CLKMODE Settings .............................. . 
Internal Register Operations ........................ . 
Data Register Controls (PIPES2-PIPESO) ............... . 
C Register Controls (SRCC, CLKC) ................... . 
Operand Selection (SELOP7-SELOPO) ................. . 
Rounding Controls (RND1-RNDO) .................... . 
Status Exceptions ............................... . 

Handling of Denormalized Numbers (FAST) ........... . 
Data Output Controls (SELMS/LS, OEY) ............... . 
Status Output Controls (SELST1-SELSTO, OES, OEC) ..... ~ 

Stalling the Device (HALT) ......................... . 
Instruction Inputs (19-10) ........................... . 

Independent ALU Operations ..................... . 
Independent Multiplier Operations .................. . 
Chained Multiplier/ALU Operations ................. . 

en :2 Microprogramming the ' ACT8837 ..................... . 
--.I 
~ » 
(") 
----t 
CO 
CO 
Co\) 
--.I 

Single-Precision Operations ........................ . 
Single-Precision ALU Operations ................... . 
Single-Precision Multiplier Operations ............... . 
Sample Single-Precision Microinstructions ............ . 

Double-Precision Operations ........................ . 
Double-Precision ALU Operations .................. . 

Double-Precision ALU Operations with CLKMODE = 0 .. 
Double-Precision ALU Operations with CLKMODE = 1 .. 

Double-Precision Multiplier Operations ............... . 
Double-Precision Multiplication with CLKMODE = 0 ... . 
Double-Precision Multiplication with CLKMODE = 1 ... . 

Chained Multiplierl ALU Operations ................... . 
Fully Pipelined Double-Precision Operations ............. . 
Mixed Operations and Operands ..................... . 
Matrix Operations ............................... . 

Representation of Variables ...................... . 
Sample Matrix Transformation .................... . 
Microinstructions for Sample Matrix Manipulation ....... . 

5-6 

Page 

5-40 

5-40 
5-40 
5-40 
5-41 
5-41 
5-42 
5-42 
5-43 
5-43 
5-45 
5-47 
5-47 
5-47 
5-48 
5-48 
5-48 
5-51 

5-52 

5-52 
5-52 
5-52 
5-53 
5-58 
5-58 
5-60 
5-66 
5-73 
5-73 
5-79 
5-86 
5-87 
5-90 
5-92 
5-92 
5-93 
5-100 



Contents (Concluded) 

Sample Microprograms for Binary Division and Square Root . . . 

Binary Division Using the Newton-Raphson Algorithm ..... . 
Single-Precision Newton-Raphson Binary Division ...... . 
Double-Precision Newton-Raphson Binary Division ...... . 

Binary Square Root Using the Newton-Raphson Algorithm .. . 
Single-Precision Square Root Using a Double-Precision 

Seed ROM ................................. . 
Double-Precision Square Root ..................... . 

Glossary . ....................................... . 

Implementing a Double-Precision Seed ROM . . . . . . . . . . . . . . . 

Page 

5-105 

5-105 
5-108 
5-111 
5-114 

5-114 
5-117 

5-123 

5-124 

5-7 

" M 
CO 
CO 
I­
(.) 
« 
o::t 

" z 
en 



5-8 



List of Illustrations 

Figure Page 

1 'ACT8837 Floating Point Unit. .................... 5-28 
2 Single-Precision Operation, All Registers Disabled 

(PIPES = 111, CLKMODE = 0) · ................. 5-53 
3 Single-Precision Operation, Input Registers Enabled 

(PIPES = 110, CLKMODE = 0) · ................. 5-54 
4 Single-Precision Operation, Input and Output Registers 

Enabled (PIPES = 010, CLKMODE = 0) ............ 5-55 
5 Single-Precision Operation, All Registers Enabled 

(PIPES = 000, CLKMODE = 0) · ................. 5-57 
6 Double-Precision ALU Operation, All Registers Disabled 

(PIPES = 111, CLKMODE = 0) · ................. 5-59 
7 Double-Precision ALU Operation, Input Registers Enabled 

(PIPES = 110, CLKMODE = 0) · ................. 5-61 
8 Double-Precision ALU Operation, Input and Output 

Registers Enabled (PIPES = 010, CLKMODE = 0) ..... 5-63 
9 Double-Precision ALU Operation, All Registers Enabled I"'-

(PIPES = 000, CLKMODE = 0) · ................. 5-65 ('I) 

10 Double-Precision ALU Operation, All Registers Disabled 00 
00 

(PIPES = 111, CLKMODE = 1) · .................. 5-67 ~ 
11 Double-Precision ALU Operation, Input Registers Enabled 

U « 
(PIPES = 110, CLKMODE = 1) · ................. 5-68 od' 

12 Double-Precision ALU Operation, Input and Output 
I"'-
:2 

Registers Enabled (PIPES = 010, CLKMODE = 1) ..... 5-70 U) 

13 Double-Precision ALU Operation, All Registers Enabled 
(PIPES = 000, CLKMODE = 1) · ................. 5-72 

14 Double-Precision Multiplier Operation, All Registers 
Disabled (PIPES = 111, CLKMODE = 0) ........... 5-74 

15 Double-Precision Multiplier Operation, Input Registers 
Enabled (PIPES = 110, CLKMODE = 0) ............ 5-75 

16 Double-Precision Multiplier Operation, Input and Output 
Registers Enabled (PIPES = 010, CLKMODE = 0) ..... 5-76 

17 Double-Precision Multiplier Operation, All Registers 
Enabled (PIPES = 000, CLKMODE = 0) ............ 5-78 

18 Double-Precision Multiplier Operation, All Registers 
Disabled (PIPES = 111, CLKMODE = 1) ............ 5-80 

5-9 



List of Illustrations (Concluded) 

Figure 

19 Double-Precision Multiplier Operation, Input Registers 
Enabled (PIPES = 110, CLKMODE = 1) .......... . 

20 Double-Precision Multiplier Operation, Input and Output 
Registers Enabled (PIPES = 010, CLKMODE = 1) .... 

21 Double-Precision Multiplier Operation, All Registers 
Enabled (PIPES = 000, CLKMODE = 1) .......... . 

22 Mixed Operations and Operands 
(PIPES2-PIPESO = 110, CLKMODE = 0) .......... . 

23 Mixed Operations and Operands 
(PIPES2-PIPESO = 000, CLKMODE = 1) .......... . 

24 Sequence of Matrix Operations .................. . 
25 Resultant Matrix Transformation ................. . 
26 IEEE Double-Precision Seed ROM for Newton-Raphson 

Division and Square Root ..................... . 

5-10 

Page 

5-81 

5-83 

5-85 

5-91 

5-92 
5-96 
5-103 

5-125 



List of Tables 

Table 

1 ' ACT8837 Pin Grid Allocations .................. . 
2 ' ACT8837 Pin Functional Description .............. . 
3 Double-Precision Input Data Configuration Modes ..... . 
4 Single-Precision Input Data Configuration Mode ...... . 
5 Double-Precision Input Data Register Sources ........ . 
6 Multiplier Input Selection ....................... . 
7 ALU Input Selection .......................... . 
8 Independent ALU Operations, Single Operand 

(19 = 0, 16 = 0) ........................... . 
9 Independent ALU Operations, Two Operands 

(19 = 0, 15 = 0) ........................... . 
10 Independent Multiplier Operations 

(19 = 0, 16 = 1) ........................... . 
11 Independent Multiplier Operations Selected by 14-12 

(19 = 0, 16 = 1) ........................... . 
12 Operations Selected by 18-17 (19 = 0, 16 = 1) ....... . 
13 Chained Multiplier/ALU Operations (19 = 1) ......... . 
14 Comparison Status Outputs ..................... . 
1 5 Status Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16 Status Output Selection (Chain Mode) ............. . 
17 Pipeline Controls (PIPES2-PIPESO) ................ . 
1 8 Rounding Modes ............................. . 
19 Test Pin Control Inputs ........................ . 
20 Control Inputs ............................... . 
21 IEEE Floating-Point Representations ............... . 
22 Handling Wrapped Multiplier Outputs .............. . 
23 Independent ALU Operations with One Operand ...... . 
24 Independent ALU Operations with Two Operands .... . 
25 Independent Multiplier Operations ................ . 
26 Chained Multiplier/ALU Operations ................ . 
27 Single-Precision Sum of Products 

(PIPES2-PIPESO = 010) ...................... . 
28 Sample Microinstructions for Single-Precision 

Sum of Products ........................... . 

Page 

5-17 
5-18 
5-29 
5-30 
5-30 
5-30 
5-30 

5-32 

5-33 

5-33 

5-34 ,.... 
5-34 M 
5-35 CO CO 
5-36 I-
5-36 () « 
5-37 ~ 
5-37 ,.... 

Z 
5-38 en 
5-38 
5-39 
5-44 
5-46 
5-49 
5-50 
5-50 
5-51 

5-86 

5-87 

5-11 



Table 

29 

30 

31 
32 

33 

34 
35 
36 
37 
38 
39 

en 
2: 
-.oJ 
~ 
~ 
(') .... 
00 
00 
W 
-.oJ 

5-12 

List of Tables (Concluded) 

Pseudocode for Fully Pipelined Double-Precision Sum of 
Products (CLKM = 0, CONFIG = 10, PIPES = 000, 
CLKC-SYSCLK) ........................... . 
Pseudocode for Fully Pipe lined Double-Precision Product of 
Sums (CLKM = 0, CON FIG = 10, PIPES = 000, 
CLKC-SYSCLK) ........................... . 
Microinstructions for Sample Matrix Manipulation .... . 
Single-Precision Matrix Multiplication 

(PIPES2-PIPESO = 010) ..................... . 
Fully Pipelined Sum of Products 

(PIPES2-PIPESO = 000) ..................... . 
Sample Data Values and Representations .......... . 
8inary Division Using the Newton-Raphson Algorithm .. 
Single-Precision Newton-Raphson Binary Division .... . 
Double-Precision Newton-Raphson Binary Division .... . 
Single-Precision Binary Square Root .............. . 
Double-Precision Binary Square Root ............. . 

Page 

5-88 

5-89 
5-101 

5-102 

5-104 
5-106 
5-107 
5-109 
5-111 
5-115 
5-118 



Introduction 

Each of these floating point units (FPU), the SN74ACT8837 combines a multiplier and 
an arithmetic-logic unit in a single microprogrammable VLSI device. The' ACT8837 
is implemented in Texas Instruments one-micron CMOS technology to offer high speed 
and low power consumption in an FPU with exceptional flexibility and functional 
integration. The FPU can be microprogrammed to operate in multiple modes to support 
a variety of floating point applications. 

The' ACT8837 is fully compatible with the IEEE standard for binary floating point 
arithmetic, STD 754-1985. This FPU performs both single- and double-precision 
operations, including division and square-root using the Newton-Raphson algorithm. 

Understanding the ' ACT8837 Floating Point Unit 
To support floating point processing in IEEE format, the' ACT8837 may be configured 
for either single- or double-precision operation. Instruction inputs can be used to select 
three modes of operation, including independent ALU operations, independent multiplier 
operations, or simultaneous ALU and multiplier operations. 

Three levels of internal data registers are available. The device can be used in 
flowthrough mode (all registers disabled), pipelined mode (all registers enabled), or 
in other available register configurations. An instruction register, a 64-bit constant 
register, and a status register are also provided. ..... 

M 
The FPU can handle three types of data input formats. The ALU accepts data operands CO 
in integer format or IEEE floating point format. In the' ACT8837, integers are converted ~ 
to normalized floating point numbers with biased exponents prior to further processing. U 
A third type of operand, denormalized numbers, can also be processed after the ALU ct 
has converted them to "wrapped" numbers, which are explained in detail in a later ~ 
section. The' ACT8837 multiplier operates only on normalized floating-point numbers Z 
or wrapped numbers. en 

Microprogramming the' ACT8837 

The' ACT8837 is a fully microprogrammable device. Each FPU operation is specified 
by a microinstruction or sequence of microinstructions which set up the control inputs 
of the FPU so that the desired operation is performed. 
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The microprogram which controls operation of the FPU is stored in the microprogram 
memory (or control store). Execution of the. microprogram is controlled by a 
microsequencer such as the TI SN74ACT8818 16-bit microsequencer. A discussion 
of microprogrammljld architecture and the operation of the' ACT8818 is presented 
in this Data Manual. 

Support Tools 

Texas Instruments has developed a functional evaluation model of the' ACT8837 in 
software which permit designers to simulate operation of the FPU. To evaluate the 
functions of an FPU, a designer can create a microprogram with sample data inputs, 
and the simulator will emulate FPU operation to produce sample data output files, as 
well as several diagnostic displays to show specific aspects of device operation. Sample 
microprogram sequences are included in this section. 

Texas Instruments has also designed a family of low-cost real-time evaluation modules 
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self­
contained system which provides a convenient means to test and debug simple 
microcode, allowing software and hardware evaluation of components and their 
operation. 

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module has been completed, and 
a 16-bit EVM is in an advanced stage of development. EVMs and support tools for 
devices in the VLSI family are planned for future development. 

Design Support 
(J) 
:2 TI's '8837 64-bit floating point unit is supported by a variety of tools developed to 
..... aid in design evaluation and verification. These tools will streamline all stages of the i: design process, from assessing the operation and performance of the '8837 to 
(") evaluating a total system application. The tools include a functional model, behavioral 
-I model, and microcode development software and hardware. Section 8 of this manual 
~ provides specific information on the design tools supporting TI's SN74ACT8800 Family. 
W ..... 
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Systems Expertise 

Texas Instruments VLSI Logic applications group is available to help designers analyze 
Tl's high-performance VLSI products, such as the '8837 64-bit floating point unit. 
The group works directly with designers to provide ready answers to device-related 
questions and also prepares a variety of applications documentation. 

The group may be reached in Dallas, at (214) 997-3970. 
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, ACT8837 Logic Symbol 

• 
-ACT8B37 

64~Bit Floating Point Unit 

CLEARS STATES 
CLK MASTER CLOCK IEXCEPT C REGISTER I & STATUS 

CLKC C REGISTER CLOCK STALLS OPERATION 

CLKMOOE 

BYTEP 

CLOCK EDGE INSTRUCTION_ RA_ & RB I FLOWTHROUGH 

PARITY GENERATION REGISTERS EN 

CONFIG1-0 

FAST 

RN01-0 

SRCC 

SELOP7-0 

SELST1-0 

DATA SOURCE 

SUDDEN IUNDER-
ALU AND MULTIPLIER I FLOWTHROUGH 

Lb, GRADUAL FLOW PIPELINE REGISTERS EN 

ROUNDING MODE SELECT STATUS, p, AND S I FLOWtHROUGH 

MULTIPLIER Ic REG 
REGISTERS EN 

Lb, ALU DA DATA 
PARITY I 

OPERAND SOURCE I/O 
DB DATA 

STATUS SOURCE Y BUS 

SELMS/LS 

TP1-0 

MSH I Lb, LSH Y BUS I OA DATA 
STATUS OB OATA 
PARITY 

MASTER/SLAVE 
TEST PINS COMPARATOR 

10 

11 

12 

0 
COMPARISON I 

STATUS 

13 

14 

15 
INSTRUCTIONS 

en 16 

2 17 EXCEPTION 
~ 18 AND 
~ 19 » 9 OTHER 

STATUS 

n ENRA LOAD RA REGISTER 

~ ENRB LOAD RB REGISTER 

co OES 
CO OEC 
eN 

OEY ~ 

" EXCEPTION & OTHER STATUS EN 
.f'.. COMPARISON STATUS 

" Y31-YO, PY3-PYO 

-, r 
OAO 0 0 · · ~ ~ · • • · · · · OA31 31 31 

DBO 0 · · ~ • · • • 
OB31 31 
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....-1 

LLl 

~ 
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· · · 

PIPESO 

PIPES1 

PIPES2 

PA3-0 

PB3-0 

PY3-0 

PERRA 

PERRB 

MSERR 

UNORD 

AGTB 

AEQB 

IVAL 

INEX 

OVER 

UNOER 

DENORM 

DENIN 

RNDCO 

SRCEX 

CHEX 

STEX1-
STEXO 

YO 

Y31 



, ACT8837 Pin Descriptions 
Pin descriptions and grid allocations for the' ACT8837 are given on the following pages. 

PIN 

NO. NAME 

Al NC 
A2 NC 
A3 Y5 
A4 Y8 
A5 Yl1 
A6 Y14 
A7 Y17 
AB Y20 
A9 Y21 
AlO Y24 
All Y27 
A12 Y29 
A13 PYO 
A14 PY3 
A15 IVAL 
A16 NC 
A17 NC 
Bl NC 
B2 Y2 
B3 Y4 
B4 Y7 
B5 Yl0 
B6 Y13 
B7 Y16 
B8 Y19 
B9 Y22 
Bl0 Y25 
Bll Y28 
B12 Y31 
B13 PY2 
B14 OVER 
B15 RNOCO 
B16 OENORM 
B17 NC 
Cl PERRB 

208 PIN ... GB PACKAGE 

(TOP VIEW) 

12345678910'1'21314151617 

B ••• 

C 

o 

F 

G 

H •• 

J •••• 

K •• 

L •• 

M 

N •• 

p ••• 

T ••••••••• •• 

Table 1 .• ACT8837 Pin Grid Allocations 

PIN PIN PIN 

NO. NAME NO. NAME NO. NAME NO. 

C2 YO E3 FA5T J15 NC Pl 

C3 Y3 E4 GNO J16 5RCC P2 
C4 Y6 E14 GNO J17 BYTEP P3 
C5 Y9 E15 AGTB Kl 5ELOP3 P4 
C6 Y12 E16 AEQB K2 5ELOP4 P5 
C7 Y15 E17 M5ERR K3 5ELOP5 P6 
C8 Y18 Fl 15 K4 GNO P7 

C9 Y23 F2 13 K14 GNO P8 
Cl0 Y26 F3 RNOO K15 PAl P9 
Cll Y30 F4 GNO K16 PA2 Pl0 

C12 PYl F14 GNO K17 PA3 Pl1 

C13 UNOER F15 PERRA L 1 5ELOP6 P12 
C14 INEX F16 OEY L2 5ELOP7 P13 
C15 OENIN F17 NS L3 CLK P14 
C16 SRCEX Gl 17 L4 VCC P15 
C17 CHEX G2 16 L14 GNO P16 
01 11 G3 14 L15 OA30 P17 

02 RNOl G4 VCC L16 OA31 Rl 
03 Yl G14 VCC L17 PAO R2 
04 GNO G15 5EC Ml ENRB R3 
05 VCC G16 5ELMS/LS M2 ENRA R4 

06 GNO G17 TPl M3 CLKC R5 
07 GNO Hl 19 M4 GNO R6 
08 VCC H2 NC M14 VCC R7 
09 GNO H3 18 M15 OA27 R8 
010 GNO H4 GNO M16 OA28 R9 
011 VCC H14 GNO M17 OA29 Rl0 

012 GNO H15 TPO Nl CONFIGO Rll 

013 GNO H16 5EL5T1 N2 CONFIGl R12 
014 VCC H17 SELSTO N3 CLKMOOE R13 
015 5TEXl Jl SELOP2 N4 PIPES2 R14 
016 STEXO J2 5ELOPl N14 OAle R15 

017 UNORO J3 5ELOPO N15 OA24 R16 
El 12 J4 VCC N16 OA25 R17 
E2 10 J14 VCC N17 OA26 

PIN 

NAME 

NC 
PIPE50 
RE5ET 
PBl 
OBl 
OB5 
OB9 
OB16 
OB21 
OB28 
OAO 
OA4 
OA8 
OA12 
OA19 
OAn 
OA23 
PIPESl 
HALT 
PB2 
OB2 
OB6 
OB10 
OB14 
OB18 
OB22 
OB27 
OB31 
OA3 
OA7 
OAll 
OA16 
OA20 
OA21 

PIN 

NO. NAME 

51 NC 
52 PBO 
53 OBO 
54 OB4 
55 OBll 
56 OB12 
57 OB15 
58 OB19 
59 OB23 
510 OB26 
511 OB30 
512 DA2 
513 OA6 
514 DA10 
S15 OA14 
516 DA15 
517 DA17 
T1 NC 
T2 PB3 
T3 OB3 
T4 DB7 
T5 DB8 
T6 OB13 
T7 OB17 
T8 OB20 
T9 OB24 
Tl0 OB25 
Tll OB29 
T12 OAl 
T13 OA5 
T14 OA9 
T15 OA13 
T16 NC 
T17 NC 
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PIN 

NAME 

AEQB 

AGTB 

BYTEP 

CHEX 

ClK 
ClKC 

ClKMODE 

CONFIGO 
CONFIG1 
DAO 
DA1 
DA2 
DA3 
DA4 
DA5 
DA6 
DA7 
DA8 
DA9 
DA10 
DA11 
DA12 
DA13 
DA14 
DA15 
DA16 
DA17 
DA18 
DA19 
DA20 
DA21 
DA22 
DA23 

Table 2. 'ACT8837 Pin Functional Description 

NO. 
I/O DESCRIPTION 

Comparison status 1 zero detect pin. When high, 

E16 I/O 
indicates that A and B operands are equal during a 
compare operation in the AlU. If not a compare, a 
high signal indicates a zero result. 

E15 I/O 
Comparison status pin. When high, indicates that A 
operand is greater than B operand. 
When high, selects parity generation for each byte 

J17 I 
of input (four parity bits for each bus). 
When low, selects parity generation for whole 
32-bit input (one parity bit for each bus). 
Status pin indicating an exception during a chained 

C17 I/O 
function. If 16 is low, indicates the multiplier 
is the source of the exception. If 16 is high, 
indicates the AlU is the source of the exception. 

l3 I Master clock for all registers except C register 
M3 I C register clock 

Selects whether temporary register loads only on 
N3 I rising clock edge (ClKMODE = l) or on falling 

edge (ClKMODE = H). 
N1 I Select data sources for RA and RB registers from 
N2 DA bus, DB bus and temporary register. 
P11 
T12 
S12 
R12 
P12 
T13 
S13 
R13 
P13 
T14 
S14 

DA 32-bit input data bus. Data can be latched in a 
R14 I 
P14 

64-bit temporary register or loaded directly into an 

T15 
input register. 

S15 
S16 
R15 
S17 
N14 
P15 
R16 
R17 
P16 
P17 



Table 2. 'ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

DA24 N15 
DA25 N16 
DA26 N17 

DA 32-bit input data bus. Data can be latched in a 
DA27 M15 
DA28 M16 

64-bit temporary register or loaded directly into an 

DA29 M17 
input register 

DA30 L 15 
DA31 L16 
DBO 53 
DB1 P5 
DB2 R4 
DB3 T3 
DB4 54 
DB5 P6 
DB6 R5 
DB7 T4 
DB8 T5 
DB9 P7 
DB10 R6 
DB11 55 
DB12 56 
DB13 T6 
DB14 R7 

DB 32-bit input data bus. Data can be latched in a 
DB15 57 
DB16 P8 

I 64-bit temporary register or loaded directly into an 

DB17 T7 
input register 

DB18 R8 
DB19 58 
DB20 T8 
DB21 P9 
DB22 R9 
DB23 59 
DB24 T9 
DB25 no 
DB26 510 
DB27 R10 
DB28 P10 
DB29 T11 
DB30 511 
DB31 R11 

5tatus pin indicating a denormal input to the 
DENIN C15 I/O multiplier. When DENIN goes high. the 5TEX pins 

indicate which port had the denormal input. 
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Table 2. 'ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

Status pin indicating a denormal output from the 

OENORM B16 I/O 
ALU or a wrapped output from the multiplier. In 
FAST mode, causes the result to go to zero when 
OENORM is high. 
When high, enables loading of RA register on a 

ENRA M2 I rising clock edge if the RA register is not disabled 
(see PIPESO below). 

When high. enables loading of RB register on a 
ENRB M1 I rising clock edge if the RB register is not disabled 

(see PIPESO below). 
When low. selects gradual underflow (IEEE mode). 

FAST E3 I When high. selects sudden underflow. forcing all 
denormalized inputs and outputs to zero. 

GNO 04 
GNO 06 
GNO 07 
GND 09 
GND 010 
GND 012 
GND 013 
GNO E4 Ground pins. NOTE: All ground pins should be 
GND E14 used and connected. 
GND F4 
GND F14 
GND H4 
GND H14 
GNO K4 
GND K14 
GNO L14 
GNO M4 

HALT R2 I 
Stalls operation without altering contents of 
instruction or data registers. Active low. 

10 E2 
11 01 
12 E1 
13 F2 
14 G3 I Instruction inputs 
15 F1 
16 G2 
17 G1 
18 H3 
19 H1 
INEX C14 I/O Status pin indicating an inexact output 



Table 2 .• ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

Status pin indicating that an invalid operation or a 
IVAL A15 I/O nonnumber (NaN) has been input to the multiplier 

or ALU. 
MSERR E17 0 Master/Slave error output pin 

A1 
A2 
A16 
A17 
B1 
B17 

NC H2 No internal connection. Pins should be left floating. 
J15 
P1 
S1 
T1 
T16 
T17 

OEC G15 I Comparison status output enable. Active low. 

OES F17 I 
Exception status and other status output enable. 
Active low. 

OEY F16 I Y bus output enable. Active low. 
Status pin indicating that the result is greater the 

OVER B14 I/O largest allowable value for specified format 
(exponent overflow). 

PAO L17 
PA1 K15 

I Parity inputs for DA data 
PA2 K16 
PA3 K17 
PBO S2 
PB1 P4 

I Parity inputs for DB data 
PB2 R3 
PB3 T2 

PERRA F15 0 
DA data parity error output. When high, signals a 
byte or word has failed an even parity check. 

PERRB C1 0 
DB data parity error output. When high, signals a 
byte or word has failed an even parity check. 
When low, enables instruction register, RA and RB 

PIPESO P2 I input registers. When high, puts instruction 
register, RA and RB registers in flowthrough mode. 
When low, enables pipeline registers in ALU and 

PIPES1 R1 I multiplier. When high, puts pipeline registers in 
flowthrough mode. 
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Table 2. 'ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

When low, enables status register, product (P) and 
PIPES2 N4 I sum (S) registers. When high, puts status register, 

P and S registers in flowthrough mode. 
PYO A13 
PY1 C12 

I/O Y port parity data 
PY2 B13 
PY3 A14 

RESET P3 I 
Clears internal states and status with no effect to 
data registers. Active low. 

RNDO F3 
I 

Rounding mode control pins. Select four IEEE 
RND1 D2 rounding modes (see Table 18). 

RNDCO B15 I 
When high, indicates the mantissa of a wrapped 
number has been increased in magnitude by 
rounding. 
When low, selects LSH of 64-bit result to be 

SELMS/LS G16 I output on the Y bus. When high, selects MSH of 
64-bit result. 

SELOPO J3 
SELOP1 J2 
SELOP2 J1 
SELOP3 K1 

I 
Select operand sources for multiplier and ALU 

SELOP4 K2 (See Tables 6 and 7) 
SELOP5 K3 
SELOP6 L1 
SELOP7 L2 
SELSTO H17 

I 
Select status source during chained operation 

SELST1 H16 (see Table 16) 
When low, selects ALU as data source for C 

SRCC J16 I register. When high, selects multiplier as data 
source for C register. 

SRCEX C16 I/O Status pin indicating source of status, either 
ALU (SRCEX = L) or multiplier (SRCEX = H) 

STEXO D16 
Status pins indicating that a nonnumber (NaN) or 

STEX1 D15 
I/O denormal number has been input on A port 

(STEX1) or B port (STEXO). 
TPO H15 

I Test pins (see Table 19) 
TP1 G17 

Status pin indicating that a result is inexact and 
UNDER C13 I/O less than minimum allowable value for format 

(exponent underflow). 
Comparison status pin indicating that the two 

UNORD D17 I/O inputs are unordered because at least one of them 
is a nonnumber (NaN). 



Table 2 .• ACT8837 Pin Functional Description (Concluded) 

PIN 

NAME NO. 
1/0 DESCRIPTION 

VCC 05 
VCC 08 
VCC 011 
VCC 014 
VCC G4 5-V power supply 
VCC G14 
VCC J4 
VCC J14 
VCC L4 
VCC M14 
YO C2 
Y1 03 
Y2 82 
Y3 C3 
Y4 83 
Y5 A3 
Y6 C4 
Y7 84 
Y8 A4 
Y9 C5 
Y10 85 
Y11 A5 
Y12 C6 
Y13 86 
Y14 A6 
Y15 C7 1/0 32-bit Y output data bus 
Y16 87 
Y17 A7 
Y18 C8 
Y19 88 
Y20 A8 
Y21 A9 
Y22 89 
Y23 C9 
Y24 A10 
Y25 810 
Y26 C10 
Y27 A11 
Y28 811 
Y29 A12 
Y30 C11 
Y31 812 
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, ACT8837 Specification Tables 

absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, Vee ....................... - 0.5 V to 6 V 
Input clamp current, 11K (VI < 0 or VI > Vee) ........ ± 20 mA 
Output clamp current, 10K (VO <0 or Vo > Vee) . . . .. ± 50 mA 
eontinuous output current, 10 (VO = 0 to Vee) . . . . . .. ± 50 mA 
eontinuous current through Vee or GND pins . . . . . . .. ± 100 mA 
Operating free-air temperature range . . . . . . . . . . . .. ooe to 70 0 e 
Storage temperature range. . . . . . . . . . . . . . . .. - 65 °e to1 50 0 e 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage 
to the device. These are stress ratings only and functional operation of the device at these or 
any other conditions beyond those indicated under "recommended operating conditions" is 
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

recommended operating conditions 

PARAMETER 
SN74ACT8837 

MIN NOM MAX 
UNIT 

Vee Supply voltage 4.75 5.0 5.25 V 

VIH High-level input voltage 2 y£t' V 

VIL Low-level input voltage 0 _v,:10.8 V 

IOH High-level output current A 'x' -8 mA 

IOL Low-level output current _':''j(> 8 mA 

VI Input voltage ~lPv Vee V 

Vo Output voltage "<0 Vee V 

dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 °e 
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electrical characteristics over recommended operating free-air 
temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS VCC 
TA - 25°C SN74ACT8837 

MIN TYP MAX MIN TYP MAX 

-20 p.A 
4.5 V 

10H = 
5.5 V 

VOH 
4.5 V 3.76 

10H = -8 mA 
5.5 V 4.76 .< 
4.5 V ...• '0',\'\;>. 

10L = 20 p.A 
5.5 V J' \ ';:" 

VOL .O(\i)~i 4.5 V 0.45 
10L = 8 mA 

5.5 V ' . 0.45 

II VI = VCC or 0 5.5 V ±1 

ICC VI = VCC or 0, 10 5.5 V 200 

Ci Vi = VCC or 0 5V 

switching characteristics (see Note) 

PARAMETER 
SN74ACT8837-65 

MIN MAX 

tpd1 
Propagation delay from DAIDB/I inputs 

125 
to Y output 

tpd2 
Propagation delay from input register to 

118 
output buffer ,\ 

tpd3 
Propagation delay from pipeline register to ~.~ .. \\'l.(.,.'~ 

. .'<-\;. 70 output buffer , .. 

tpd4 
Propagatipn delay from output register to 

<$.,F;,:§i' 30 
output buff~r 

tpd5 Propagation delay from SELMS/LS to Y output 
':; . 

32 

td1 
Propagation delay from input register to 

95 
output register 

td2 
Delay time', input register to pipeline register or 

65 
pipeline register to output register 

UNIT 

V 

V 

p.A 

p.A 

pF 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Note: Switching data must be used with timing diagrams for different operating modes. 
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setup and hold times 

PARAMETER 
SN74ACT8837-65 

UNIT 
MIN MAX 

tsu1 Setup time. Instruction before ClK! 18 .,~' ~. ns 

tsu2 Setup time. data operand before ClK! 18 £>1).,,,,"Vi ,. ns 

Setup time. data operand before second ClK I f'\ 
;O'\) .J 

tsu3 for double-precision operation (input register ~O ns 

not enabled) 

th1 Hold time. Instruction input after ClK I 0 ns 

clock requirements 

PARAMETER 
SN74ACT8837-65 

~J.lNIT MIN ~t. 
I ClK high 15 ~,tc1 1(T" 

tw Pulse duration I ClK low ~Jv 
ns 

Clock period ns 
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SN74ACT8837 FLOATING POINT UNIT 
The SN74ACT8837 is a high-speed floating point unit implemented in TI's 
advanced 1-p.m CMOS technology. The device is fully compatible with IEEE 
Standard 754-1985 for addition, subtraction and multiplication operations. 

The' ACT8837 input buses can be configured to operate as two 32-bit data buses 
or a single 64-bit bus, providing a number of system interface options. Registers are 
provided at the inputs, outputs, and inside the ALU and multiplier to support multilevel 
pipelining. These registers can be bypassed for nonpipelined operation. 

A clock mode control allows the temporary register to be clocked on the rising edge 
or the falling edge of the clock to support double precision operations (except 
multiplication) at the same rate as single precision operations. A feedback register with 
a separate clock is provided for temporary storage of a multiplier result, ALU result 
or constant. 

To ensure data integrity, parity checking is performed on input data, and parity is 
generated for output data. A master/slave comparator supports fault-tolerant system 
design. Two test pin control inputs allow alii/Os and outputs to be forced high, low, 
or placed in a high-impedance state to facilitate system testing. 

Floating point division using a Newton-Raphson algorithm can be performed in a sum­
of-products operating mode, one of two modes in which the multiplier and ALU operate 
in parallel. Absolute value conversions, floating point to integer and integer to floating 
point conversions, and a compare instruction are also available. 

Data Flow I' 
('I') 
CO 

Data enters the' ACT8837 through two 32-bit input data buses, DA and DB. The buses 00 
can be configured to operate as a single 64-bit data bus for double precision operations ~ 

U 
(see Table 7). Data can be latched in a 64-bit temporary register or loaded directly <c 
into the RA and RB registers for input to the multiplier and ALU. ~ 

I' 
Four multiplexers select the multiplier and ALU operands from the input register, C 
register or previous multiplier or ALU result. Results are output on the 32-bit Y bus; 
a Y output multiplexer selects the most significant or least significant half of the result 
for output. The 64-bit C register is provided for temporary storage of a result from 
the ALU or multiplier. 

Input Data Parity Check 

When BYTEP is high, internal odd parity is generated for each byte of input data at 
the DA and DB ports and compared to the PA and PB parity inputs. If an odd number 
of bits is set high in a data byte, the parity bit for that byte is also set high. Parity 
bits are input on PA for DA data and PB for DB data. PAO and PBO are the parity bits 
for the least significant bytes of DA and DB, respectively. If the parity comparison 
fails for any byte, a high appears on the parity error output pin (PERRA for DA data 
and PERRB for DB data). 
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Figure 1. • ACT8837 Floating Point Unit 



A parity check can also be performed on the entire input data word by setting BYTEP 
low. In this mode, PAO is the parity input for DA data and PBO is the parity input for 
DB data. 

Temporary Input Register 

A temporary input register is provided to enable double precision numbers on a single 
32-bit input bus to be loaded in one clock cycle. The contents of the DA bus are loaded 
into the upper 32 bits of the temporary register; the contents of DB are loaded into 
the lower 32 bits. A clock mode signal (ClKMODE) determines the clock edge on which 
the data will be stored in the temporary register. When ClKMODE is low, data is loaded 
on the rising edge of the clock; when ClKMODE is high, data is loaded on the falling 
edge. 

RA and RB Input Registers 

Two 64-bit registers, RA and RB, are provided to hold input data for the multiplier 
and AlU. Data is taken from the DA bus, DB bus and the temporary input register, 
according to configuration mode controls CON FIG l-CONFIGO (see Tables 3 and 5). 
The registers are loaded on the rising edge of clock ClK. For single-precision operations, 
CONFIG1-CONFIGO should ordinarily be set to 0 1 (see Table 4). 

Table 3. Double-Precision Input Data Configuration Modes 

LOADING SEQUENCE 

DATA LOADED INTO 

TEMP REGISTER ON FIRST DATA LOADED INTO 

CLOCK AND RA/RB RA/RB REGISTERS ON 

REGISTERS ON SECOND SECOND CLOCK 

CLOCKt 

CONFIG1 CONFIGO DA DB DA DB 

0 0 B operand B operand A operand A operand 
(MSH) (LSH) (MSH) (LSH) 

0 A operand B operand A operand B operand 
(LSH) (LSH) (MSH) (MSH) 

0 A operand B operand A operand B operand 
(MSH) (MSH) (LSH) (LSH) 

A operand A operand B operand B operand 
(MSH) (LSH) (MSH) (LSH) 

t On the first active clock edge (see CLKMODE, Table 17), data in this column is loaded into the temporary 
register. On the next rising edge, operands in the temporary register and the DAtDB buses are loaded into 
the RA and RB registers. 
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Table 4. Single-Precision Input Data Configuration Mode 

DATA LOADED INTO 

RA/RB REGISTERS ON 

FIRST CLOCK. 

CONFIG1 CONFIGO DA DB NOTE 

This mode is ordinarily 
0 1 A operand B operand used for single· precision 

operations. 

Table 5. Double-Precision Input Data Register Sources 

RA SOURCE RB SOURCE 

CONFIG1 CONFIGO MSH LSH MSH LSH 

0 0 DA DB TEMP REG TEMP REG 
(MSH) (LSH) 

0 1 DA TEMP REG DB TEMP REG 
(MSH) (LSH) 

1 0 TEMP REG DA TEMP REG DB 
(MSH) (LSH) 

1 1 TEMP REG TEMP REG DA DB 
(MSH) (LSH) 

Multiplier/ALU Multiplexers 

Four multiplexers select the multiplier and ALU operands from the RA and RB registers, 
the previous multiplier or ALU result, or the C register. The multiplexers are controlled 
by input signals SELOP7-SELOPO as shown in Tables 6 and 7. 

Table 6. Multiplier Input Selection 

A1 (MUX1) INPUT B1 (MUX2) INPUT 

SELOP7 SELOP6 OPERAND SOURCE SELOP5 SELOP4 OPERAND SOURCE 

0 0 Reserved 0 0 Reserved 

0 1 C register 0 1 C register 

1 0 ALU feedback 1 0 Multiplier feedback 

1 1 RA input register 1 1 RB input register 

Table 7. ALU Input Selection 

A2 (MUX3) INPUT B2 (MUX4) INPUT 

SELOP3 SELOP2 OPERAND SOURCE SELOP1 SELOPO OPERAND SOURCE 

0 0 Reserved 0 0 Reserved 

0 1 C register 0 1 C register 

1 0 Multiplier feedback 1 0 ALU feedback 

1 1 RA input register 1 1 RB input register 
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Pipelined ALU 

The pipelined ALU contains a Circuit for addition and/or subtraction of aligned operands, 
a pipeline register, an exponent adjuster and a normalizer/rounder. An exception circuit 
is provided to detect denormal inputs; these can be flushed to zero if the fast input 
is set high. A denorm exception flag (DENORM) goes high when the ALU output is 
a denormal. 

The ALU may be operated independently or in parallel with the multiplier. Possible ALU 
functions during independent operation are given in Tables 8 and 9. Parallel 
ALU/multiplier functions are listed in Table 11. 

Pipelined Multiplier 

The pipelined multiplier performs a basic multiply function, A * B. The operands can 
be single-precision or double-precision numbers and can be converted to absolute values 
before multiplication takes place. Multiplier operations are summarized in Table 10. 

An exception circuit is provided to detect denormalized inputs; these are indicated 
by a high on the DENIN signal. 

The multiplier and ALU can be operated simultaneously by setting the 19 instruction 
input high. Possible operations in this chained mode are listed in Table 13. 

Product, Sum, and CRegisters 

The results of the ALU and multiplier operations may optionally be latched into two 
output registers on the rising edge of the system clock (CLK). The P (product) register " 
holds the result of the multiplier operation; the S (sum) register holds the ALU result. M 

An additional 64-bit register is provided for temporary storage of the result of an ALU 
. or multiplier operation before feedback to the multiplier or ALU. The data source for 
this C register is selected by SRCC; a high on this pin selects ,the multiplier result; 
a low selects the ALU. A separate clock, CLKC, has been provided for this register. 

Parity Generators 

Even parity is generated for the Y multiplexer output, either for each byte or for each 
word of output, depending on the setting of BYTEP. When BYTEP is high, the parity 
generator computes four parity bits, one for each byte of Y multiplexer output. Parity 
bits are output on the PY3-PYO pins; PYO represents parity for the least significant 
byte. A single parity bit can also be generated for the entire output data word by setting 
BYTEP low. In this mode, PYO is the parity output. 
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Table 8. Independent ALU Operations, Single Operand (19 ... 0, 16 - 0) 

CHAINED PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ALU OPERATION 
OPERATION RA RB SOURCE TYPE VALUE A 

19 18 17 16 15 14 13-10 RESULT 

0= Not 0= A(SP) 0= B(SP) o = ALU 1 = Single O=A 0000 Pass A operand 
Chained 1 = A(OP) 1 = B(OP) result Operand 1 = IAI 0001 Negate A operand 

0010 Integer to floating point 
conversion t 

0011 Floating point to integer 
conversion 

0100 Undefined 
0101 Undefined 
0110 Floating point to floating 

point conversion:J: 
0111 Undefined 
1000 Wrap (denormal) input 

operand 
1001 Undefined 
1010 Undefined 
1011 Undefined 
1100 Unwrap exact number 
1101 Unwrap inexact number 
1110 Unwrap rounded input 
1111 Undefined 

----_ .. -

tThe precision of the integer to floating point conversion is set by 18. 
*This converts single precision floating point to double precision floating point and vice versa. If the 18 pin is low to indicate a single-precision input, the result 
of the conversion will be double precision. If the 18 pin is high, indicating a double-precision input, the result of the conversion will be single precision. 



Table 9. Independent ALU Operations, Two Operands (19 ... 0, 15 ... 0) 

CHAINED PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ABSOLUTE ABSOLUTE I 
OPERATION RA RB SOURCE TYPE VALUE A VALUE B VALUE Y 

ALU OPERATION· I 

19 18 17 16 15 14 13 12 11-10 RESULT 

0= Not 0= A(SP) o = B(SP) 0= ALU 0= Two O=A 0= B 0= V 00 A+B 
chained 1 = A(DP) 1 = B(OP) result operands 1 = IAI 1 = IBI 1 = IVI 01 A-B 

10 Compare A, B 
11 B - A -- .- '-

Table 10. Independent Multiplier Operations (19 ... 0, 16 ... 1) 

CHAINED PRECISION PRECISION OUTPUT ABSOLUTE ABSOLUTE NEGATE 
OPERATION RA RB SOURCE· VALUE A VALUEB RESULT' WRAP A WRAPB 

19 18 17 16 15 14t 13t 12t 11 10 

o = Not 0= A(SP) o = B(SP) 1 = Multi- 0 O=A 0= B 0= V o = Normal o = Normal 
chained 1 = A(DP) 1 = S(OP) plier 1 = IAI 1 = IBI 1 = IVI format format 

result 1 = A is a 1 = B is a 
wrapped wrapped 

number number 

tSee Table 15. 
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Table 11. Independent Multiplier Operations Selected by 14-12 (19 = 0, 16 = 1) 

ABSOLUTE ABSOLUTE NEGATE OPERATION SELECTED 
VALUE A VALUE B RESULT 

14 13 12 14-12 RESULTS 

O=A 0= B O=Y 000 A*B 
1 = IAI 1 = IBI 1 = -y 001 -(A * B) 

010 A * IBI 
011 -(A * IBI) 
100 IAI * B 
101 -(IAI * B) 
110 IAI * IBI 
111 -(IAI * IBI) 

Table 12. Operations Selected by 18-17 (19 - 0, 16 - 1) 

PRECISION 
PRECISION 

PRECISION 
PRECISION PRECISION 

SELECT RA SELECT RB 
18 

RAINPUT 
17 

RBINPUT OF RESULT 

0 Single 0 Single Single 

Single 
0 Converted 1 Double Double 

to Double 

Single 
1 Double 0 Converted Double 

to Double 

1 Double 1 Double Double 

~ Master/Slave Comparator » 
(") 
-4 
00 
00 
W 

" 

A master/slave comparator is provided to compare data bytes from the Y output 
multiplexer and the status outputs with data bytes on the external Y and status ports 
when OEY, OES and OEC are high. If the data bytes are not equal, a high signal is 
generated on the master/slave error output pin (MSERR). 

Status and Exception Generator/Register 

A status and exception generator produces several output signals to indicate invalid 
operations as well as overflow, underflow, non numerical and inexact results, in 
conformance with IEEE Standard 754" 1985. If output registers are enabled 
(PIPES2 = 0), status and exception results are latched in a status register on the rising 
edge of the clock. Status results are valid at the same time that associated data results 
are valid. Status outputs are enabled by two signals, O'EC for comparison status and 
OES for other status and exception outputs. Status outputs are summarized in 
Tables 14 and 15. 

During a compare operation in the ALU, the AEQ8 output goes high when the A and 
8 operands are equal. When any operation other than a compare is performed, either 
by the ALU or the multiplier, the AEQ8 signal is used as a zero detect. 
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Table 13. Chained Multiplier/ALU Operations (19 = 1) 

CHAINED PRECISION PRECISION OUTPUT MULTIPLY NEGATE NEGATE MUL TI- ALU 
OPERATION RA RB SOURCE ADD ZERO BY ONE ALU RESULT PlIER RESULT OPERATIONS 

19 18 17 16 15 14 13 12 11-10 RESULT 

1 = Chained 0= A(SP) o = B(SP) O=ALU o = Normal o = Normal o = Normal o = Normal 00 A+B 
1 = A(DP) 1 = B(DP) result operation operation operation operation 01 A-B 

1 = Multi- 1 = Forces 1 = Forces 1 = Negate 1 = Negate 10 2 - A 
plier B2 input B1 input ALU multiplier 11 B - A 

result of ALU of multi- result result 
to zero plier to 

one 

CJ1 
W 
CJ1 
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Table 14. Comparison Status Outputs 

RESULT OF COMPARISON (ACTIVE HIGH) 
The A and B operands are equal. (A high signal on the AEQB output indicates a 
zero result from the selected source except during a compare operation in the 
ALU.) 

The A operand is greater than the B operand. (Only during a compare operation 
in the ALU) 

The two inputs of a comparison operation are unordered, i.e., one or both of 
the inputs is a NaN. 

Table 15. Status Outputs 

STATUS RESULT 
If 16 is low, indicates the multiplier is the source of an exception during a 
chained function. If 16 is high, indicates the ALU is the source of an exception 
during a chained function. 

Input to the multiplier is a denorm. When DENIN goes high, the STEX pins 
indicate which port had a denormal input. 

The multiplier output is a wrapped number or the ALU output is a denorm. In 
the FAST mode, this condition causes the result to go to zero. 

The result of an operation is not exact. 

A NaN has been input to the multiplier or the ALU, or an invalid operation 
(0 * 00 or ± oo:j: (0) has been requested. When IVAL goes high, the STEX 
pins indicate which port had a NaN. 

The result is greater than the largest allowable value for the specified format. 

The mantissa of a wrapped number has been increased in magnitude by 
rounding and the unwrap round instruction can be used to unwrap properly 
the wrapped number (see Table 8). 

The status was generated by the multiplier. (When SRCEX is low, the status 
was generated by the ALU.) 

A NaN or a denorm has been input on the B port. 

A NaN or a denorm has been input on the A port. 

The result is inexact and less than the minimum allowable value for the 
specified format. In the FAST mode, this condition causes the result to go to 
zero. 



In chained mode, status results to be output are selected based on the state of the 
16 (source output) pin (if 16 is low, ALU status will be selected; if 16 is high, multiplier 
status will be selected). If the nonselected output source generates an exception, CHEX 
is set high. Status of the nonselected output source can be forced using the SELST 
pins, as shown in Table 16. 

Table 16. Status Output Selection (Chain Model 

SELST1-
STATUS SELECTED 

SELSTO 

00 Invalid 
01 Selects multiplier status 
10 Selects ALU status 
11 Normal operation (selection based on result source specified by 16 input) 

Flowthrough Mode 

To enable the device to operate in pipelined or flowthrough modes, registers can be 
bypassed using pipeline control signals PIPES2-PIPESO (see Table 17). 

Table 17. Pipeline Controls (PIPES2-PIPESOI 

PIPES2-
REGISTER OPERATION SELECTED 

PIPESO 

X X 0 Enables input registers (RA, RB) 

X X 1 Disables input registers (RA, RB) 

X 0 X Enables pipeline registers 

X 1 X Disables pipeline registers 

0 X X Enables output registers (P, S, Status) 

1 X X Disables output registers (P, S, Status) 

FAST and IEEE Modes 

The device can be programmed to operate in FAST mode by asserting the FAST pin. 
In the FAST mode, all denormalized inputs and outputs are forced to zero. 

Placing a zero on the FAST pin causes the chip to operate in IEEE mode. In this mode, 
the ALU can operate on denormalized inputs and return denormals. If a de norm is input 
to the multiplier, the DENIN flag will be asserted, and the result will be invalid. If the 
multiplier result underflows, a wrapped number will be output. 
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Rounding Mode 

The' ACT8837 supports the four IEEE standard rounding modes: round to nearest, 
round towards zero (truncate), round towards infinity (round up), and round towards 
minus infinity (round down). The rounding function is selected by control pins RND1 
and RNDO, as shown in Table 18. 

Table 18. Rounding Modes 

RND1-
ROUNDING MODE SELECTED 

RNDO 

o 0 Round towards nearest 

o 1 Round towards zero (truncate) 

1 0 Round towards infinity (round up) 

1 1 Round towards negative infinity (round down) 

Test Pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place 
all outputs in a high-impedance state, isolating the chip from the rest of the system 
(see Table 19). 

Table 19. Test Pin Control Inputs 

TP1-
OPERATION 

TPO 

0 0 All outputs and 1I0s are forced low 

0 1 All outputs and I/0s are forced high 

1 0 All outputs are placed in a high impedance state 

1 1 Normal operation 

~ Summary of Control Inputs .... 
Control input signals for the' ACT8837 are summarized in Table 20. 
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Table 20. Control Inputs 

SIGNAL HIGH LOW 
SYTEP Selects byte parity generation Selects single bit parity generation 

and test and test 

CLK Clocks all registers except C No effect 

CLKC Clocks C register No effect 

CLKMODE Enables temporary input register Enables temporary input register load 
load on f.alling clock edge on rising clock edge 

CONFIG1- See Table 3 (RA and RS register See Table 3 (RA and RS register data 
CONFIGO data source selects) source selects) 

ENRA If register is not in flow through, If register is not in flow through, holds 
enables clocking RA register contents of RA register 

ENRS If register is not in flow through, If register is not in flow through, holds 
enables clocking of RS register contents of RS register 

FAST Places device in FAST mode Places device in IEEE mode 

HALT No effect Stalls device operation but does not 
affect registers, internal states, or 
status 

OEC Disables compare pins Enables compare pins 

OES Disables status outputs Enables status outputs 

OEY Disables Y bus Enables Y bus 

PIPES2- See Table 17 (pipeline mode See Table 17 (pipeline mode control) 
PIPESO control) 

RESET No effect Clears internal states and status but 
does not affect data registers 

RND1- See Table 18 (rounding mode See Table 18 (rounding mode control) 
RNDO control) 

SELOP7- See Tables 6 and 7 See Tables 6 and 7 (multiplier/ALU 
SELOPO (multiplier/ALU operand selection) operand selection) 

SELMS/LS Selects MSH of 64-bit result for Selects LSH of 64-bit result for output 
output on the Y bus on the Y bus (no effect during single 

precision operation) 

SELST1 - See Table 15 (status output See Table 15 (status output selection) 
SELSTO selection) 

SRCC Selects multiplier result for input Selects ALU result for input to C 
to C register register 

TP1-TPO See Table 19 (test pin control See Table 19 (test pin control inputs) 
inputs) 
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INSTRUCTION SET 
Configuration and operation of the ~ACT8837 can be.selected to perform single- or 
double-precision floating-point . calculations in operating modes ranging from 
flowthrough to fully pipeliried. Timing and sequences of operations are affected by 
settings of clock mode, data and status registers, input data configurations, and 
rounding mode, as well as the instruction inputs controlling the ALU and the multiplier. 
The ALU and the multiplier of the 'ACT8837 can operate either independently or 
simultaneously, depending on the setting of instruction inputs 19-10 and related controls. 

Controls ·for data flow and status results are discussed separately, prior to the 
discussions of ALU and multiplier operations. Then, in Tables 22 through 25, the 
instruction inputs to the ALU and the multiplier are summarized according to operating 
mode, whether independent or chained (ALU and multiplier in simultaneous operation). 

Loading External Data Operands 

Patterns of data input to the' ACT8837 vary depending on the precision of the operands 
and whether they are being input as A or B operands. Loading of external data operands 
is controlled by the settings of CLKMODE and CONFIG 1-CONFIGO, which determine 
the clock timing and register destinations for data inputs. 

Configuration Controls (CONFIG 1-CONFIGO) 

Three input registers are provided to handle input of data operands, either single 
precision or double precision. The RA, RB, and temporary registers are each 64 bits 
wide. The temporary register is only used during input of double-precision operands. 

~ When single-precision or integer operands are loaded, the ordinary setting of CON FIG 1-
~ CONFIGO is LH, as shown in Table 4. This setting loads each 32-bit operand in the 
» most significant half (MSH) of its respective register. The operands are loaded into 
~ the MSHs and adjusted to double precision because the data paths internal to the device 
00 are all double precision. It is also possible to load single-precision operands with 
~ CONFIG 1-CONFIGO set to HH but two clock edges are required to load both the A 
~ and B operands on the DA bus. 

Double-precision operands are loaded by using the temporary register to store half 
of the operands prior to inputting the other half of the operands on the DA and DB 
buses. As shown in Tables 3 and 5, four configuration modes for selecting input sources 
are available for loading data operands into the RA and RB registers. 

CLKMODE Settings 

Timing of double-precision data inputs is determined by the clock mode setting, which 
allows the temporary register to be loaded on either the rising edge (CLKMODE = L) 
or the falling edge of the clock (CLKMODE = H). Since the temporary register is not 
used when single-precision operands are input, clock modes 0 and 1 are functionally 
equivalent for single-precision operations. 
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The setting of CLKMODE can be used to speed up the loading of double-precision 
operands. When the CLKMODE input is set high, data on the DA and DB buses are 
loaded on the falling edge of the clock into the MSH and LSH, respectively, of the 
temporary register. On the next rising edge, contents of the DA bus, DB bus, and 
temporary register are loaded into the RA and RB registers, and execution of the current 
instruction begins. The setting of CONFIG1-CONFIGO determines the exact pattern 
in which operands are loaded, whether as MSH or LSH in RA or RB. 

Double-precision operation in clock mode 0 is similar except that the temporary register 
loads only on a rising edge. For this reason the RA and RB registers do not load until 
the next rising edge, when all operands are available and execution can begin. 

A considerable advantage in speed can be realized by performing double-precision ALU 
operations with CLKMODE set high. In this clock mode both double-precision operands 
can be loaded on successive clock edges, one falling and one rising, and the ALU 
operation can be executed in the time from one rising edge of the clock to the next 
rising edge. Both halves of a double-precision ALU result must be read out on the Y 
bus within one clock cycle when the' ACT8837 is operated in clock mode 1. 

Internal Register Operations 

Six data registers in the' ACT8837 are arranged in three levels along the data paths 
through the m,ultiplier and the ALU. Each level of registers can be enabled or disabled 
independently of the other two levels by setting the appropriate PIPES2-PIPESO inputs. 

The RA and RB registers receive data inputs from the temporary register and the DA 
and DB buses. Data operands are then multiplexed into the multiplier, ALU, or both. ,.... 
To support simultaneous pipelined operations, the data paths through the multiplier M 
and the ALU are both provided with pipeline registers and output registers. The control ~ 
settings for the pipeline and output registers (PIPES2-PIPES 1) are registered with the I­
instruction inputs 19-10. U ct 
A seventh register, the constant (C) register is available for storing a 64-bit constant 
or an intermediate result from the multiplier or the ALU. The C register has a separate 
clock input (CLKC) and input source select (SRCC). The SRCC input is not registered 
with the instruction inputs. Depending on the operation selected and the settings of 
PIPES2-PIPESO, an offset of one or more cycles may be necessary to load the desired 
result into the C register. 

Status results are also registered whenever the output registers are enabled. Duration 
and availability of status results are affected by the same timing constraints that apply 
to data results on the Y output bus. 

Data Register Controls (PIPES2-PIPESO) 

Table 1 7 shows the settings of the registers controlled by PIPES2-PIPESO. Operating 
modes range from fully pipelined (PIPES2-PIPESO = LLL) to flowthrough 
(PIPES2-PIPESO = HHH). 
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Ih flowthrough mode all three levels of registers are disabled, a circumstance which 
may affect some double-precision operations. Since double-precision operands require 
two steps to input, at least half of the data must be clocked into the temporary register 
before the remaining data is placed on the DA and DB buses. 

When all registers (except the C register) are enabled, timing constraints can become 
critical for many double-precision operations. In clock mode 1, the ALU can perform 
a double-precision operation and output a result during every clock cycle, and both 
halves of the result must be read out before the end of the next cycle. Status outputs 
are valid only for the period during which the Y output data is valid. 

Similarly, double-precision multiplication is affected by pipelining, clock mode, and 
sequence of operations. A double-precise multiply requires two cycles to execute, 
depending on the settings of PIPES2-PIPESO. The output may be valid for one or two 
cycles, depending on the precision of the next operation. 

Duration of valid outputs at the Y multiplexer depends on settings of PIPES2-PIPESO 
and CLKMODE, as well as whether all operations and operands are of the same type. 
For example, when a double-precision multiply is followed by a single-precision 
operation, one open clock cycle must intervene between the dissimilar operations. 

C Register Controls (SRCC, CLKC) 

The C register loads from the P or the S register output, depending on the setting of 
SRCC, the load source select. SRCC = H selects the multiplier as input source. 
Otherwise the ALU is selected when SRCC = L. In either case the C register only loads 

en the selected input on a rising edge of the CLKC signal. 
:2 
...... 
~ 
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The C register does not Imid directly from an external data bus. One method for loading 
a constant without wasting a cycle is to input the value as an A operand during an 
operation which uses only the ALU or multiplier and requires no external data inputs. 
Since the B operand can be forced to zero in the ALU or to one,in the multiplier, the 
A operand can be passed to the C register either by adding zero or multiplying by one, 
then selecting the input source with SRCC and causing the CLKC signal to go high . 
Otherwise, the C register can be loaded through the ALU with the Pass A Operand 
instruction, which requires a separate cycle. 

Operand Selection (SELOP7-SELOPO) 

As shown in Tables 6 and 7, data operands can be selected as five possible sources, 
including external inputs from the RA and RB registers, feedback from the P and S 
registers, and a stored value in the C register. Contents of the C register may be selected 
as either the A or the B operand in the ALU, the multiplier, or both. When an external 
input is selected, the RA input always becomes the A operand, and the RB input is 
the B operand. 
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Feedback from the ALU can be selected as the A operand to the multiplier or as the 
B operand to the ALU. Similarly, multiplier feedback may be used as the A operand 
to the ALU or the B operand to the multiplier. 

Selection of operands also interacts with the selected operations in the ALU or the 
multiplier. ALU operations with one operand are performed only on the A operand. 
Also, depending on the instruction selected, the B operand may optionally be forced 
to zero in the ALU or to one in the multiplier. 

Rounding Controls (RND1-RNDO) 

Because floating point operations may involve both inherent and procedural errors, 
it is important to select appropriate modes for handling rounding errors. To support 
the IEEE standard for binary floating-point arithmetic, the' ACT8837 provides four 
rounding modes selected by RND1-RNDO. 

Table 18 shows the four selectable rounding modes. The usual default rounding mode 
is round to nearest (RND1-RNDO = LL). In round-to-nearest mode, the 'ACT8837 
supports the IEEE standard by rounding to even (LSB = 0) when two nearest 
representable values are equa"ynear. Directed rounding toward zero, infinity, or minus 
infinity are also available. 

Rounding mode should be selected to minimize procedural errors which may otherwise 
accumulate and affect the accuracy of results. Rounding to nearest introduces a 
procedural error not exceeding half of the least significant bit for each rounding 
operation. Since rounding to nearest may involve rounding either upward or downward 
in successive steps, rounding errors tend to cancel each other. " ('t) 

In contrast, directed rounding modes may introduce errors approaching one bit for CO 
CO each rounding operation. Since successive rounding operations in a procedure may .... 

a" be similarly directed, each introducing up to a one-bit error, rounding errors may (.) 
accumulate rapidly, especially in single-precision operations. <t 

'It 
Status Exceptions 

Status exceptions can result from one or more error conditions such as overflow, 
underflow, operands in illegal formats, invalid operations, or rounding. Exceptions may 
be grouped into two classes: input exceptions resulting from invalid operations or 
denormal inputs to the multiplier, and output exceptions resulting from i"egal formats, 
rounding errors, or both. 

To simplify the discussion of exception handling, it is useful to summarize the data 
formats for representing IEEE floating-point numbers which can be input to or output 
from the FPU (see Table 21). Since procedures for handling exceptions vary according 
to the requirements of specific applications, this discussion focuses on the conditions 
which cause particular status exceptions to be signalled by the FPU. 
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TYPE OF 
OPERAND 

Normalized 
Number (max) 
Normalized 
Number (min) 
Denormalized 
Number (max) 
Denormalized 
Number (min) 
Wrapped 
Number (max) 
Wrapped 
Number (min) 
Zero 

Infinity 
NAN (Not a 
Number 

t s = sign bit 
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Table 21. IEEE Floating-Point Representations 

EXPONENT (e) FRACTION (f) HIDDEN VALUE OF NUMBER REPRESENTED 
SP (HEX) DP (HEX) (BINARY) BIT SP (DECIMAl) t DP (DECIMAl) t 

FE 7FE All 1'5 1 (-1)5 (2127) (2-2-23) (-1)5 (21023) (2-2- 52) 

01 001 All 0'5 1 (-1)5 (2- 126) (1) (-1)5 (2- 1022) (1) 

00 000 All 1'5 0 (1-)5 (2- 126) (1-2- 23) (-1)5 (2- 1022) (1-2- 52) 

00 000 000 ... 001 0 ( - 1)5 (2 - 1 26) (2 - 23) (-1)5 (2-1022) (2- 52) 

00 000 All 1'5 1 ( -1)5 (2 - 127) (2 - 2 - 23) (-1)5 (2- 1023) (2-2- 52) 

EA 7eD All 0'5 1 (-1)5 (2-22+127) (1) (-1)5 (2- 51 +1023) (1) 

00 000 Zero 0 (-1)5 (0.0) (-1)5 (0.0) 

FF 7FF Zero 1 ( - 1) 5 (infinity) ( - 1)5 (infinity) 

FF 7FF Nonzero N/A None None 



IEEE formats for floating-point operands, both single and double precision, consist of 
three fields: sign, exponent, and fraction, in that order. The leftmost (most significant) 
bit is the sign bit. The exponent field is eight bits long in single-precision operands 
and 11 bits long in double-precision operands. The fraction field is 23 bits in single 
precision and 52 bits in double precision. Further details of IEEE formats and exceptions 
are provided in the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 
Std 754-1985. 

Several status exceptions are generated by illegal data or instruction inputs to the FPU. 
Input exceptions may cause the following signals to be set high: IVAL, DENIN, and 
STEX 1-STEXO. If the IVAL flag is set, either an invalid operation has been requested 
or a NaN (Not a Numberl has been input. When DENIN is set, a denormalized number 
has been input to the multiplier. STEX 1-STEXO indicate which port (RA, RB, or both) 
is the source of the exception when either a denormal is input to the multiplier 
(DENIN = HI or a NaN (lVAL = H) is input to the multiplier or the ALU. 

NaN inputs are all treated as IEEE signaling NaNs, causing the IVAL flag to be set. 
When output from the FPU, the fraction field from a NaN is set high (all 1 'sl, regardless 
of the original fraction field of the input NaN. 

Output exception signals are provided to indicate both the source and type of the 
exception. DENORM, INEX, OVER, UNDER, and RNDCO indicate the exception type, 
and CHEX and SRCEX indicate the source of an exception. SRCEX indicates the source 
of a result as selected by instruction bit 16, and SRCEX is active whenever a result 
is output, not only when an exception is being signaled. The chained-mode exception 
signal CHEX indicates that an exception has be generated by the source not selected r... 
for output by 16. The exception type signaled by CHEX cannot be read unless status M 
select controls SELST1-SELSTO are be used to force status output from the deselected ~ 
source. I-

(.) 
Output exceptions may be due either to a result in an illegal format or to a procedural == 
error. Results too large or too small to be represented in the selected precision are r... 
signalled by OVER and UNDER. Any ALU output which has been increased in magnitude Z 
by rounding causes INEX to be set high. DENORM is set when the multiplier output fJ) 

is wrapped or the ALU output is denormalized. Wrapped outputs from the multiplier 
may be inexact or increased in magnitude by rounding, which may cause the INEX 
and RNDCO status signals to be set high. A denormal output from the ALU 
(DENORM = H) may also cause INEX to be set, in which case UNDER is also signalled. 

Handling of Denormalized Numbers (FAST) 

The FAST input selects the mode for handling denormalized inputs and outputs. When 
the FAST input is set low, the ALU accepts denormalized inputs but the multiplier 
generates an exception when a denormal is input. When FAST is set high, the DEN IN 
status exception is disabled and all denormalized numbers, both inputs and results, 
are forced to zero. 
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A denormalized input has the form of a floating-point number with a zero exponent, 
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit 
bit). A denormalized number results from decrementing the biased exponent field to 
zero before normalization is complete. Since a denormalized number cannot be input 
to the multiplier, it must first be converted to a wrapped number by the ALU. When 
the mantissa of the denormal is normalized by shifting it left, the exponent field 
decrements from all zeros (wraps past zero) to a negative two's complement number 
(except in the case of .IXXX ... ,where the exponent is not decremented). 

Exponent underflow is possible during multiplication of small operands even when the 
operands are not wrapped numbers. Setting FAST = L selects gradual underflow so 
that denormal inputs can be wrapped and wrapped results are not automatically 
discarded. When FAST is set high, denormal inputs and wrapped results are forced 
to zero immediately. 

When the multiplier is in IEEE mode and produces a wrapped number as its result, 
the result may be passed to the ALU and unwrapped. If the wrapped number can be 
unwrapped to an exact denormal, it can be output without causing the underflow status 
flag (UNDER) to be set. UNDER goes high when a result is an inexact denormal, and 
a zero is output from the FPU if the wrapped result is too small to represent as a 
denormal (smaller than the minimum denorm). Table 22 describes the handling of 
wrapped multiplier results and the status flags that are set when wrapped numbers 
are output from the multiplier. 

Table 22. Handling Wrapped Multiplier Outputs 

TYPE STATUS FLAGS SET 
NOTES 

OF RESI.JLT DENORM INEX RNDCO UNDER 
Wrapped, 

1 0 0 0 
Unwrap with 'Wrapped 

exact exact' ALU instruction 

Wrapped, 
1 1 0 1 

Unwrap with 'Wrapped 
inexact inexact' ALU instruction 

Wrapped, 
increased in 

1 1 1 1 
Unwrap with 'Wrapped 

magnitude by rounded' ALU instruction 
rounding 

When operating in chained mode, the multiplier may output a wrapped result to the 
ALU during the same clock cycle that the multiplier status is output. In such a case 
the ALU cannot unwrap the operand prior to using it, for example, when accumulating 
the results of previous multiplications. To avoid this situation, the FPU can be operated 
in FAST mode to simplify exception handling during chained operations. Otherwise, 
wrapped outputs from the multiplier may adversely affect the accuracy of the chained 
operation, because a wrapped number may appear to be a large normalized number 
instead of a very small denormalized number. 

5-46 



Because of the latency associated with interpreting the FPU status outputs and 
determining how to process the wrapped output, it is necessary that a wrapped operand 
be stored external to the FPU (for example, in an external register file) and reloaded 
to the A port of the ALU for unwrapping and further processing. 

Data Output Controls (SELMS/LS, OEY) 

Selection and duration of results from the Y output multiplexer may be affected by 
several factors, including the operation selected, precision of the operands, registers 
enabled, and the next operation to be performed. The data output controls are not 
registered with the data and instruction inputs. When the device is microprogrammed, 
the effects of pipelining and sequencing of operations should be taken into account. 

Two particular conditions need to be considered. Depending on which registers are 
enabled, an offset of one or more cycles must be allowed before a valid result is available 
at the Y output multiplexer. Also, certain sequences of operations may require both 
halves of a double-precision result to be read out within a single clock cycle. This is 
done by toggling the SELMS/LS signal in the middle of the clock period. 

When a single-precision result is output, the SELMS/LS signal has no effect. The 
SELMS/LS signal is set low only to read out the LSH of a double-precision result. 
Whenever this signal is selecting a valid result for output on the Y bus, the OEY enable 
must be pulled low at the beginning of that clock cycle. 

Status Output Controls (SELST1-SELSTO, OES, OEC) 

Ordinarily, SELST1-SELSTO are set high so that status selection defaults to the output '" 
source selected by instruction input 16. 'The ALU is selected as the output source when ('t) 

16 is low, and the multiplier when 16 is high. CO 
CO 

When the device operates in chained mode, it may be necessary to read the status 
results not associated with the output source. As shown in Table 16, SELST1-SELSTO 
can be used to read the status of either the ALU or the multiplier regardless of the 
16 setting. 

Status results are registered only when the output (P and S) registers are enabled 
(PIPES2 = L). Otherwise, the status register is transparent. In either case, status 
outputs can be read by pulling the output enables low (OES, QEC, or both). 

Stalling the Device (HALT) 

Operation of the' ACT8837 can be stalled nondestructively by means of the HALT 
signal. Pulling the HALT input low causes the device to stall on the next low level 
of the clock. Register contents are unaltered when the device is stalled, and normal 
operation resumes at the next low clock period after the HALT signal is set high. Using 
HALT in microprograms can save power, especially using high clock frequencies and 
pipelined stages'. 
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For some operations, such as a double-precision multiply with CLKMODE = 1, setting 
the HALT input low may interrupt loading of the RA, RB, and instruction registers, 
as well as stalling operation. In clock mode 1, the temporary register loads on the falling 
edge of the clock, but the HALT signal going low would prevent the RA, RB, and 
instruction registers from loading on the next rising clock edge. It is therefore necessary 
to have the instruction and data inputs on the pins when the HALT signal is set high 
again and normal operation resumes. 

Instruction Inputs (19-10) 

Three modes of operation can be selected with inputs IS-10, including independent 
ALU operation, independent multiplier operation, or simultaneous (chained) operation 
of ALU and multiplier. Each operating mode is treated separately in the following 
sections. 

Independent ALU Operations 

The ALU executes single- and double-precision operations which can be divided 
according to the number of operands involved, one or two. The ALU accepts integer, 
normalized, and denormalized numbers as operands. Table 22 shows independent ALU 
operations with one operand, along with the inputs IS-10 which select each operation. 
Conversions from one format to another are handled in this mode, with the exception 
of adjustments to precision during two-operand ALU operations. Wrapping and 
unwrapping of operands is also done in this mode. 

Table 24 presents independent ALU operations with two operands. When the operands 
en are different in precision, one single and the other double, the settings of the precision­
:2 selects 18-17 will identify the single-precision operand so that it can automatically be 
...... reformatted to double precision before the selected operation is executed, and the 
~ result of the operation will be double precision. 
('") 
-I 
00 
00 
W 
...... 

Independent Multiplier Operations 

In this mode the multiplier operates on the RA and RB inputs which can be either single 
precision, double precision, or mixed. Operands may be normalized or wrapped 
numbers, as indicated by the settings for instruction inputs 11-10. As shown in Table 25, 
the multiplier can be set to operate on the absolute value of either or both operands, 
and the result of any operation can be negated when it is output from the multiplier. 
Converting a single-precision denormal number to double precision does not normalize 
or wrap the denormal, so it is still an invalid input to the multiplier. 
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Table 23. Independent ALU Operations with One Operand 

ALU OPERATION INSTRUCTION 
NOTES 

ON A OPERAND INPUTS 19-10 

Pass A operand Ox 001x 0000 

Negate A operand Ox 001 x 0001 
Convert from integer to 
floating point t Ox 0010 0010 

Convert from floating 
point to integer Ox 001x 0011 

x = Don't care 
Undefined Ox 001x 0100 

Undefined Ox001x0101 
18 selects precision of A operand: 

Convert from floating Ox 001 x 0110 
o = A (SP) 

point to floating point 1 = A (DP) 

(adjusts precision of 14 selects absolute value of A operand: 

input: SP .... DP, Dp .... SP) O=A 

Undefined Ox 001 x 0111 1 = IAI 
Wrap denormal operand Ox 001x 1000 During integer to floating point conversion, 

Undefined Ox 001x 1001 I A I is not allowed as a result. 

Undefined Ox 001x 1010 

Undefined Ox 001x 1011 

Unwrap exact number Ox 001x 1100 

Unwrap inexact number Ox 001 x 1101 

Unwrap rounded input Ox001x1110 

Undefined Ox 001 x 1111 

t During this operation, 18 selects precision of the result. 
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Table 24. Independent ALU Operations with Two Operands 

ALU OPERATIONS INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 19-10 

Add A + B Ox xOOO OxOO 

Add IAI + B Ox x001 OxOO 

Add A + IBI OX xOOO 1xOO 

Add IAI + IBI OX x001 1xOO x = Don't Care 

Subtract A - B Ox xOOO Ox01 18 selects precision of A operand: 

Subtract I A I - B Ox x001 Ox01 o = A (SP) 

Subtract A - I B I Ox xOOO 1x01 1 = A (OP) 

Subtract I A I - I B Ox x001 1 x01 17 selects precision of B operand: 

Compare A, B Ox xOOO Ox10 o = B (SP) 

Compare IAI, B Ox x001 Ox10 1 = B (OP) 

Compare A, I B I Ox xOOO 1x10 12 selects either V or its absolute value: 

Compare IAI, IBI OX x001 1x10 O=V 

Subtract B - A Ox xOOO Ox11 1 = IVI 

Subtract B-1 A I Ox x001 Ox11 

Subtract I B I - A Ox xOOO 1x11 

Subtract IBI - IAI OX x001 1x11 

Table 25. Independent Multiplier Operations 

MULTIPLIER OPRATION INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 19-10 

Multiply A * B Ox x100 OOxx x = Don't Care 

Multiply - (A * B) Ox x100 01xx 18 selects A operand 

Multiply A * I B I Ox x100 10xx 
precision (0 = SP, 1 = OP) 

Multiply -(A * IBI) OX x100 11xx 
17 selects B operand 
precision (0 = SP, 1 = OP) 

Multiply I A I * B Ox x101 OOxx 
11 selects A operand format 

Multiply -(IAI * B) Ox x101 01 xx ro = Normal, 1 = Wrapped) 
Multiply IAI * IBI OX x101 10xx 10 selects B operand format 
Multiply -(IAI *IBI) Oxx10111xx (0 = Normal, 1 = Wrapped) 
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Chained Multiplier/ALU Operations 

In chained mode, the' ACT8837 performs simultaneous operations in the multiplier 
and the ALU. Operations include addition, subtraction, and multiplication, except 
multiplication of wrapped operands. Several optional operations also increase the 
flexibility of the device. 

The B operand to the ALU can be set to zero so that the ALU passes the A operand 
unaltered. The B operand to the multiplier can be forced to the value 1 so that the 
A operand to the multiplier is passed unaltered (see Table 26). 

Table 26. Chained Multiplier/ALU Operations 

CHAINED OPERATIONS OUTPUT INSTRUCTION 
NOTES 

MULTIPLIER ALU SOURCE INPUTS 19-10 

A * B A + B ALU lx xOOO xxOO 

A * B A+B Multiplier 1 x xl00 xxOO 

A * B A - B ALU lx xOOO xxOl 

A*B A - B Multiplier lx xl00 xxOl 

A*B 2 - A ALU lx xOOO xxl0 x = Don't Care 
A*B 2 - A Multiplier 1 x xl00 xxl0 18 selects precision of 

A*B B - A ALU 1 x xOOO xxll RA inputs: 

A*B B - A Multiplier 1 x xl 00 xxll o = RA (SP) 

A * B A+O ALU lx xOl0 xxOO 1 = RA (OP 

A * B A+O Multiplier lx xl10 xxOO 17 selects precision of 

A * B O-A ALU lx xOl0 xxll RB inputs: 

A*B O-A Multiplier 1 x xl1 0 xxll o = RB (SP) 

A * 1 A + B ALU lx xOOl xxOO 1 = RB (OP) 

A * 1 A + B Multiplier 1 x xl0l xxOO 13 negates ALU result: 

A* 1 A-B ALU lx xOOl xxOl o = Normal 

A* 1 A - B Multiplier lx xl0l xxOl 1 = Negated 

A* 1 2 - A ALU lx xOOl xxl0 12 negates multiplier 

A* 1 2 - A Multiplier lx xl0l xxl0 result: 

A* 1 B - A ALU 1 x xOOl xxll o = Normal 

A* 1 B - A Multiplier 1 x xl 01 xxll 1 = Negated 

A* 1 A+O ALU lx xOll xxOO 

A* 1 A+O Multiplier 1 x xl1l xxOO 

A * 1 O-A ALU 1 x xOll xxll 

A * 1 O-A Multiplier 1 x xlll xxll 
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MICROPROGRAMMING THE' ACT8837 
Because the' ACTSS37 is microprogrammable, it can be configured to operate on either 
single- or double-precision data operands, and the operations of the registers, ALU, 
and multiplier can be programmed to support a variety of applications. The following 
examples present not only control settings but the timings of the specific operations 
required to execute the sample instructions. 

Timing of the sample operations varies with the precision of the data operands and 
the settings of CLKMODE and PIPES. Microinstructions and timing waveforms are given 
for all combinations of data precision, clock mode, and register settings. Following 
the presentation of ALU and multiplier operations is a brief sum-of-products operation 
using instructions for chained operating mode. 

Single-Precision Operations 

Two single-precision operands can be loaded on the 32-bit input buses without use 
of the temporary register so CLKMODE has no effect on single-precision operation. 
Both the ALU and the multiplier execute all single-precision instructions in one clock 
cycle, assuming that the device is not operating in flowthrough mode (all registers 
disabled). Settings of the register controls PIPES2-PIPESO determine minimum cycle 
time and the rate of data throughput, as evident from the examples below. 

Single-Precision ALU Operations 

Precision of each data operand is indicated by the setting of instruction input IS for 
single-operand ALU instructions, or the settings of IS-17 for two-operand instructions. 

~ When the ALU receives mixed-precision operands (one operand in single precision and 
-..J the other in double precision). the single-precision data input is converted to double 
~ and the operation is executed in double precision. » 
C") 
-I 
00 
00 
eN 
-..J 

If both operands are single precision, a single-precision result is output by the ALU. 
Operations on mixed-precision data inputs produce double-precision results. 

It is unnecessary to use the 'convert float-to-float' instruction to convert the single­
precision operand prior to performing the desired operation on the mixed-precision 
operands. Setting IS and 17 properly achieves the same effect without wasting an 
instruction cycle. 

Single-Precision Multiplier Operations 

Operand precision is selected by IS and 17, as for ALU operations. The multiplier can 
multiply the A and B operands, either operand with the absolute value of the other, 
or the absolute values of both operands. The result can also be negated when it is 
output. If both operands are single precision, a single-precision result is output. 
Operations on mixed-precision data inputs produce double-precision results. 
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Sample Single-Precision Microinstructions 

The following four single-precision microinstruction coding examples show the four 
register settings, ranging from flowthrough to fully pipelined. Timing diagrams 
accompany the sample microinstructions. 

In the first example PIPES2-PIPESO are all set high so the internal registers are all 
disabled. This microinstruction sets up a wrapped result from the multiplier to be 
unwrapped by the ALU as an exact denormalized number. In flowthrough mode the 
'unwrap exact' operation is performed without a clock as soon as the instruction is 
input. Single-precision timing in flowthrough mode is shown in Figure 2. 

CLKMODE = 0 PIPES = 111 

C C C 

Operation: Unwrap A operand exact 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 

L 00 PP 
K N N I I 
M F F P P 
o " EE 
DGGSS 
E 1-02-0 

SS 
E E 
LL 
00 
PP 
7-0 

NN ANNR OOOTSSSATT 
I I 

9-0 
DD SRRCLEEEETT ELPP 
1-0 TAB C S Y C S P 1 -0 T T 1-0 

00 001 0 11 00 0 01 111 xxxx 11 xx 00 0 1 1 0 1 0 0 0 x 11 1 1 11 

FIRST INSTRUCTION SECOND INSTRUCTION 

INSTRUCTION: FUNC(9.01. RND(1.01. FAST 

--v FIRST OPERANDS X SECOND OPERANDS X ---"-------' \..-_---~ '-------
DATA(31.01 A AND B INPUTS 

~ tpd1~ 

OUTPUT(31.01. STATUS(13.0) 

FIRST ~ SECOND ~ 
RESULT N'/'{'I'f'I>t'N RESULT ~ 

/4--- tpd1----+f 

Figure 2. Single-Precision Operation, All Registers Disabled 
(PIPES - 111, CLKMODE - 0) 
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The second example shows a microinstruction causing the ALU to compare absolute 
values of A and B. Only the input registers are enabled (PIPES2-PIPESO = 110) so 
the result is output in one clock cycle. 

CLKMODE = 0 PIPES = 110 Operation: Compare I A I ' I B I 

S 
E 

CCC L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

000001 1010 o 01 110 xxxx 1111 00 01101000x11 1 1 11 

Load First Operands Load Second Operands 
Begin First Operation Begin Second Operation 

~ ~ 

I I 
en CLK i : 
~ r---~I--~ rr~~~~~~~~~~r----~I--~ r~~nr~TV~nr~~~ ....., 
~ » 
C') 
~ 
00 
00 
CAl ....., 

14-tsu 1-':" th 1 +I 

INSTRUCTION: FUNC(9.0). RND(1.0). FAST 

( Op~I~:~DS ~ o~i~~~~s ~ 
...... tsu2'" th 1.+1 It--tsu2-.~~t--~.'l-th1 
DATA(31.0) A AND B INPUTS 

,4 tpd1-----..~ 14,4-. ---tpd2-----..~1 
OUT(31.0) STATUS(13.0) 

Figure 3. Single-Precision Operation, Input Registers Enabled 
(PIPES - 110, CLKMODE ... 0) 
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Input and output registers are enabled in the third example, which shows the subtraction 
B - A. Two clock cycles are required to load the operands, execute the subtraction, 
and output the result (see Figure 4). 

CLKMODE = 0 PIPES = 010 Operation: Subtract B - A 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

0000000011 o 01 01 0 xxxx 1111 00 0000 1 000 x 11 1 1 11 

Load First Operands Load Second Operands 
Begin First Operation Begin Second Operation 

~ ~ 

I I 
I I 
ltill-------td1---------+l., 
I I 

eLK 
I I 

J4-tsu2 -M-th 1 +I 

DATA(31.01 A AND B INPUTS 

__________________ >@<FIRSTRESULT 

OUT(31.01 STATUS(13.01 

Figure 4. Single-Precision Operation, Input and Output Registers Enabled 
(PIPES .. 010, CLKMODE = 0) 
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The fourth example shows a multiplication A * B with all registers enabled. Three 
clock cycles are required to generate and output the product. Once the internal registers 
are all loaded with data or results, a result is available from the output register on every 
rising edge of the clock. The floating point unit produces its highest throughput when 
operated fully pipelined with single-precision operands. 

CLKMODE = 0 PIPES = 000 Operation: Multiply A * B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 TT1-0 

0001000000 o 01 000 1111 xxxx 00 01111000xll 1 1 11 
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Load Third Load Fourth Load Fifth 
Operands Operands Operands 

Load Second 
Operands Begin Third Begin Fourth Begin Fifth 

Load First Operation Operation Operation 
Operands Begin Second 

Operation Load Pipeline Load Pipeline Load Pipeline 
Begin First 

Operation Load Pipeline Load Output Load Output Load Output 

~ ~ . . + 
I 1 1 1 '---1 ----, L 

I 1 
CLK ~ td2 ~ td2 ----.t 

I I 
I I 

FIRST 
INSTRUCTION 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

FOURTH 
INSTRUCTION 

FIFTH 
INSTRUCTION 

I th1 i th1 
14- tsu 1 ~4 .114-- tsu 1 ~.. ~ 14--tsu 1 

th1 
~~tsu1 

th1 
~ I4--t su1 ~ 

I 
INSTRUCTION: FUNC(9,OJ. RND(1,O),FAST 

FIRST 
OPERANDS 

I 
I 

SECOND 
OPERANDS 

THIRD 
OPERANDS 

FOURTH 
OPERANDS 

FIFTH 
OPERANDS 

th1 1 th1 
I4- t su2 .'" ~ I4- tsu2 .... .ll4-tsu2 

th1 th1 th1 
~ ~tsu2 .... ~ ~tsu2 .'" .1 

DATA(31 ,0) A AND B INPUTS 

OUT(31 ,0) STATUS(13,O) I4-tpd4~ ~tpd4+1 I4-t~d4~ 

Figure 5. Single-Precision Operation, All Registers Enabled 
(PIPES ... 000, CLKMODE = 0) 

SN74ACT8837 

... tpd4~ ... t pd4 -+i 



Double-Precision Operations 

Double-precision operations may be executed separately in the ALU or the multiplier, 
or simultaneously in both. Rates of execution and data throughput are affected by 
the settings of the register controls (PIPES2-PIPESO) and the clock mode (CLKMODE). 

The temporary register can be loaded on either the rising edge (CLKMODE = L) or 
the falling edge of the clock (CLKMODE = H). Double-precision operands are always 
loaded by using the 64-bit temporary register to store half of the operands prior to 
inputting the other half of the operands on the DA and DB buses. 

Input configuration is selected by CONFIG1-CONFIGO, allowing several options for 
the sequence in which data operands are set up in the temporary register and the RA 
and RB registers. Operands are then sent to either the ALU or multiplier, or both, 
depending on the settings for SELOP 7-0. 

The ALU executes all double-precision operations in a single clock cycle. The multiplier 
requires two clock cycles to execute a double-precision operation. When tl:le device 
operates in chained mode (simultaneous ALU and multiplier operations), the chained 
double-precision operation is executed in two clock cycles. The settings of 
PIPES2-PIPESO determine whether the result is output without a clock (flowthrough) 
or after up to five clocks for a double-precision multiplication (all registers enabled 
and CLKMODE = L). . 

Double-Precision ALU Operations 

Eight examples are provided to illustrate microinstructions and timing for double­
~ precision ALU operations. The settings of CLKMODE and PIPES2-PIPESO determine 
...... how the temporary register loads and which registers are enabled. Four examples are 
~ provided in each clock mode. 
l> 
n 
~ 
CO 
CO 
eN 
...... 

Double-Precision ALU Operations with CLKMODE = 0 

The first example shows that, even in flowthrough mode, a clock signal is needed 
to load the temporary register with half the data operands (see Figure 6). The selected 
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operation is executed without a clock after the remaining half of the data operands 
are input on the RA and RB buses: 

CLKMODE = 0 PIPES = 111 

C C C 

Operation: Add A + I B I 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 

L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-02-0 

SS 
E E 
L L 
00 
PP 
7-0 

!''IN ANNR OOOTSSSATT 
I I 

9-0 
DD SRRCLEEEETT ELPP 
1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1000 1 000 0 11 111 xxxx 1111 00 0 1 1 0 x 0 0 0 x 11 1 1 11 

load Half of Data 

~ 

ClK 

(FIRST INS~RUCTION 
I 

I4- tsu1-+! 

INSTRUCTION: FUNC(9.01. RND(1.01,FAST 
I 
I 

( HA~F OF X REST OF 
~ ____ ~D~_T_A ____ ~, ~ _____ D_AT_A ______________________________________ __ 

I 
14- tsu2 ____ th1 ~ 

DATA(31.01 A AND B INPUTS 

SElMS/LS 

~REST 
__________ ~....;.F.,;,;.IR,;,;.S ... T ______________________ __ 

I4-tpd1-+1 

OUT(31.01 STATUS(13.01 

Figure 6. Double-Precision ALU Operation, All Registers Disabled 
(PIPES - 111, CLKMODE - 0) 
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In the second example the input register is enabled (PIPES2-PIPESO = 110). Operands 
A and B for the instruction, I B I - I A I, are loaded using CON FIG = 00 so that B is 
loaded first into the temporary register with MSH through the DA port and LSH through 
the DB port. On the second clock rising edge, the A operand is loaded in the same 
order directly to RA register while B is loaded from the temporary register to the RB 
register (see Figure 7). 

CLKMODE = 0 PIPES = 110 Operation: I B I - IAI 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRC[EEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

01 1001 1011 o 00 11 0 xxxx 1111 00 011 OxOOOx 11 1 1 11 
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(J1 

OJ 

load Rest load Rest 
of First of Second 
Operands Operands 

load Half load Half 
of First Begin First of Second Begin Second 
Operands Operation Operands Operation 

+ • + + 
I 1 I 1 ""----1 ---, L 
ClK 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

, I 

14-- tsu1--+1 th1~ I4-- t su1 ~ 14- th1 ~ 14--tsu1~ 

INSTRUCTION: FUNC(9,0), RND(1,0),FAST 

HALF 
1ST OPS 

I 
I 

REST 
1ST OPS 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD DPS 

REST 
3RD OPS 

I4-- t su2 .'4 .ll4--tsu2 __ th1~ I4--tsu2--+14th1~ I4--tsu2--+14-th1~ I4--tsu2---+1f-th1~ I4-- t su2--+t 
th1 

DATA(31,0) A AND B INPUTS 

L---~I-I,--------, 
SElMS/lS 

OUT(31 ,0) STATUS( 13,0) )4--tpd2~ I4---*tpd5 )4--tpd2~ )4----+f-tpd5 )4--tpd2 ~ 

Figure 7. Double-Precision ALU Operation. Input Registers Enabled 
(PIPES = 110. CLKMODE = 0) 
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~tpd5 



80th the input and output registers are enabled (PIPES2-PIPESO = 010) in the third 
example. The instruction sets up the ALU to wrap a denormalized number on the OA 
input bus. The wrapped output can be fed back from the S register to the multiplier 
input multiplexer by a later microinstruction. Timing for this operation is shown in 
Figure 8. 

CLKMOOE = 0 

I I 
9-0 

PIPES = 010 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
o G G S S 
E 1-02-0 

Operation: Wrap Oenormal Input 

SS 
EE 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S 8 E E R 

RR F,EESI YLLEH 
NN ANNR 555TSSSATT 
DO SR~C[EEEETTELPP 
1 -0 T A 8 C S Y C S P 1-0 T T 1-0 

01 1 01 0 1 000 0 01 01 0 xxxx 11 xx 00 0 1 1 0 x 0 0 0 x 11 1 1 11 
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0'1 
a, 
W 

Load Half 

Load Rest 
of First 
Operands 

Load Half 
of Second 
Operands 

Load Rest 
of Second 
Operands 

of First Begin First Begin Second 

Load Half 
of Third 
Operands 

Operands Operation Load Output Operation Load Output 

~ ~ + + ~ 
l I I I I r--I ---, U L 

, I 

: 14-- td1 ---+! 
I I 

CLK 

I I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

I 
I4-tsu1~ 

I 
.th1~ I4-tsu1 ~ I4th1~ 14- tsu1---+1 I4-th1~ , 

INSTRUCTION: FUNC(9.0}. RND(1.0}. FAST 
I 

HALF 
1ST OPS 

I 

REST 
1ST OPS 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

I4- t su2 
th1 I 
~ I4-tsu2~th1~ I4-tsu2-+1f-th1~ I4-tsu2---+14th1~ I4-tsu2~th1~ 14- tsu2---+14-th'l~ 

DATA(31.0} A AND B INPUTS 

SELMS/LS 

OUT(31.0) STATUS(13.0) I4-tpd4-+1 I4-tpdS+I I4-tpd4-+1 I4-tpdS-+I 

Figure 8. Double-Precision ALU Operation. Input and Output Registers Enabled 
(PIPES = 010. CLKMODE = 0) 
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In the fourth example with CLKMODE = L, all three levels of internal registers are 
enabled. The instruction converts a double-precision integer operand to a double­
precision floating-point operand. Figure 9 shows the timing for this operating mode. 

CLKMODE = 0 PIPES = 000 Operation: Convert Integer to Floating Point 

S 
E 

C C C L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 TT1-0 

01 10100010 o 11 000 xxxx 1100 00 0110xOOOxll 1 1 11 
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(Jl 

OJ 
(Jl 

load Half 
of First 
Operands 

load Rest 
of First 
Operands 

Begin First 

load Half 
of Second 
Operands 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

Operation load Pipeline load Output 

~ ~ ~ ~ 

I I I I I L 
I 
~ td2 .'4 td2 ---+i ClK 
I 
I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

I I 
14-- tsu1-+1 th1-i4--+114- tsu1--+1 th 1 --J4---t.I 14-tsu 1 ----+I th 1 *----+I 

I 

INSTRUCTION: FUNC(9,O). RND(1,O), FAST 

REST 
1ST OPS 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

I4--tsu2~ I+-- tsu2 
th1 

~ I+-tsu2.'" .'l+-tsu2 ~l+-tsu2 
th1 

*--+II+--tsu2 ~.. ., th1 

DATA(31,O) A AND B INPUTS 

SElMS/ls 

OUT(31,O) STATUS{13,O) 

th1 th1 

i+-+I 
tpd4 

i4-+! 
tpd5 

th1 

i4-+! 
tpd4 

Figure 9. Double-Precision ALU Operation. All Registers Enabled 
(PIPES ... 000. CLKMODE ... 0) -SN74ACT8837 
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Double-Precision ALU Operations with CLKMODE = 1 

The next fo~r examples are similar to the first four except that CLKMODE = H so that 
the temporary register loads on the falling edge of the clock. When the ALU is operating 
independently, setting CLKMODE high enables loading of both double-precision 
operands on successive falling and rising clock edges. 

In this clock mode a double-precision ALU operation requires one clock cycle to load 
data inputs and execute, and both halves of the 64-bit result must be read out on 
the 32-bit Y bus within one clock cycle. The settings of PIPES2-PIPESO determine 
the number of clock cycles which elapse between data input and result output. 

In the first example all registers are disabled (PIPES2-PIPESO = 111), and the addition 
is performed in flOwthrough mode. As shown in Figure 10, a falling clock edge is needed 
to load half of the operands into the temporary register prior to loading the RA and 
RB registers on the next rising clock. 

CLKMODE = 1 PIPES = 111 Operation: Add A + IBI 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I YLLEH 
0 II EE 00 NN ANNR OOOTSSSATT 
DGGSS PP DD SRRCLEEEETTELPP ~ II 

-...I 9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 
~ 

~ 01 1000 1000 1 11 111 xxxx 1111 00 0 1 1 0 x 0 0 0 x xx 1 1 11 
-t 
CO 
CO 
eN 
-...I 
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(11 

0, 
-..J 

-----------""f LOAD HAC' D' O"RANOS 

ClK ~--------------------------------------------------------------------

~ FIRST INSTRUCTION 

~ tsu1 ~ 
INSTRUCTION: FUNC(9.01. RND(1.0}. FAST 

I 

REST 1ST OPS ( HALF1STOPS ==>C~ ______________________________ ___ 
~ tsu2 .~ th1~ 
DATA(31.0) A ANDB INPUTS 

SElMS/lS 

__________________________________________ ~_J ~ ~~:~~ ~ ~~~~ 

QUT(31.0} STATUS (13.0) ~ tpd1 ~ I+--tpd5~ 

Figure 10. Double-Precision ALU Operation, All Registers Disabled 
(PIPES = 111, CLKMODE = 1) 
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The second example executes subtraction of absolute values for both operands. Only 
the RA and RB registers are enabled (PIPES2-PIPESO = 110). Timing is shown in 
Figure 11. 

CLKMODE = 1 PIPES = 110 Operation: Subtract I B I - I A I 

S 
E 

C C C L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1001 1011 1 1 11 0 xxxx 1111 00 o 1 1 0 x 000 x xx 1 1 11 

load half load Rest load Half load Rest load Half load Rest 
of First of First of Second of Second of Third of Third 
Operands Operends Operands Operands Operands Operands 

+ + + + + + 
I I I I I I 

elK 
I 
I 

I 
I 

I I 
I I 

FiRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

en 
:2 ..... 
~ 
~ 14-tsu1~ I.- th1-+114---+1- tsu1 

(') INSTRUCTION: FUNC(9.01. ~ND(1.01. FAST -4 I 
00 I 
00 
CAl ..... 

I 
I4--tsu2~ I4--tsu2~ I4- t su2 ~101 ~ll4-tsu2"'th1-+1 ~th1-+1l4-tsu2+14-*th1 

th1 th1 th1 tsu2 

DATA(31.01 A AND B INPUTS 

SElMS/lS 

OUT(31.01 STATUS(13.01 1+---+1 
tpd2 

5-68 

Figure 11. Double-Precision ALU Operation, Input Registers Enabled 
(PIPES - 110, CLKMODE - 1) 



The third example shows a single denormalized operand being wrapped so that it can 
be input to the multiplier. Both input and output registers are enabled 
(PIPES2-PIPESO = 010). Timing is shown in Figure 12. 

CLKMODE = 1 PIPES = 010 Operation: Wrap Denormal Input 

S 
E 

C C C L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR 555TSSSATT 

I I D G G S S PP DD S R R C lEE E E T TEL PP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

01 1010 1000 1 11 010 xxxx 11xx 00 o 1 0 0 x 0 0 0 x xx 1 1 11 
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01 

.!.J 
o 

load Half 
of First 
Operands 

L£88.1::HfvLNS 

load Rest 
of First 
Operands 

Begin First 
Operation 

load Half 
of Second 
Operands 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

load Output 

~ ~ ~ ~ 
-.J I , I .....-, -----. I 
ClK 

I • 
I 
I 
I 

1---- td3 14 --- ., 
I 

FIRST INSTRUCTION SECOND INSTRUCTION 

I I 

THIRD INSTRUCTION 

If--- tsu 1 --.I th 1 ~ 14- tsu 1 ~ 14- th1 +I 14- tsu1-+1 I4- t h1-+i 
I 

INSTRUCTION: FUNC(9.0). RND{1.0). FAST 
I 

HALF 
1ST OPS 

I 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

tsu2 101 .101 .'l4- t su2+14---+1l4- tsu2-+1+th1-+1 ~ th1--+1 ~ 
tsu2 

th1 --+114+14-- th1 ~ 
tsu2 th1 th1 tsu2 

DATA{31.0) A AND B INPUTS 

~---,I- .. --1 
SElMS/lS 

OUT{31.0) STATUS{13.0) 14--+1 
tpd4 

I4--+i 
tpd5 

I4--+i 
tpd4 

Figure 12. Double-Precision ALU Operation. Input and Output Registers Enabled 
(PIPES = 010. CLKMODE = 1) 

I4--+i 
tpd5 



The fourth example shows a conversion from integer to floating point format. All three 
levels of data registers are enabled (PIPES2-PIPESO) so that the FPU is fully pipelined 
in this mode (see Figure 13). 

CLKMODE = 1 

I I 
9-0 

PIPES = 000 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-02-0 

Operation: Convert Integer to Floating Point 

SS 
EE 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES! YLLEH 
NN ANNR OOOTSSSATT 
DD SRRCLEEEETTELPP 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

01 1 01 0 001 0 1 1 1 000 xxxx 1 1 00 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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01 

~ 
N 

Load Half 

Load Rest 
of First 
Operands 

L£88.1::>~VLNS 

Load Rest 
of Third 
Operands 

Load Rest Load Half Begin Third 

Load Half of Second of Third Operation 

of First Begin First of Second Operands Operands Load Pipeline 

~perands 1peration ~perands 1ad Pipeline 1 load Output 

J I I I I r 
CLK 

I I 
1 14 td2 ~ td2 .1 

I 

FIRST 
INSTRUCTION 

I 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

FOURTH 
INSTRUCTION 

tsu1~ th1-t4---+1 I4---* t su1 th1~ ~tsu1 th1~ ~tsu'l th1-l4----+1 

INSTRUCTION: FUNC(9.01. RND(1.0). FAST 
I 
I 

I 
i'I .,01 ., ,01 .'01 ~ i'I .14 ~ 'OIl .'4 ., ,4 .'4 ., ,4 .'4 ., i'I .,4 ., ,4 .,4 ., 
tsu2 th 1 tsu2 th 1 tsu2 th 1 tsu2 th 1 tsu2 th 1 tsu2 th 1 tsu2 th 1 tsu2 th 1 

DATA(31.0) A AND B INPUTS 

SElMS/LS 

OUT(31.0) STATUS(13.0) tpd4~ tpd5-14--+1 tpd4~ tpd5-14--+1 tpd4~ tpd5~ 

Figure 13. Double-Precision ALU Operation, All Registers Enabled 
(PIPES = 000, CLKMODE = 1) 
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Double-Precision Multiplier Operations 

Independent multiplier operations may also be performed in either clock mode and with 
various registers enabled. As before, examples for the two clock modes are treated 
separately. A double-precision multiply operation requires two clock cycles to execute 
(except in flowthrough mode) and from one to three other clock cycles to load the 
temporary register and to output the results, depending on the setting of 
PIPES2-PIPESO. 

Even in flowthrough mode (PIPES2-PIPESO = 111) two clock edges are required, the 
first to load half of the operands in the temporary register and the second to load the 
intermediate product in the multiplier pipeline register. Depending on the setting of 
CLKMODE, loading the temporary register may be done on either a rising or a falling 
edge. 

Double-Precision Multiplication with CLKMODE = 0 

In this first example, the A operand is multiplied by the absolute value of B operand. 
Timing for the operation is shown in Figure 14: 

CLKMODE = 0 PIPES = 111 Operation: Multiply A * IBI 

S 
E 

C C C L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L EH 
0 II EE 00 NN ANNR OOOTSS SA TT 

I I o G G S S PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

01 1100 1000 o 11 111 1111 xxxx 00 o x x x x 0 0 0 x xx 1 1 11 
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01 

~ 

"'" 

L£88.L::>V17LNS 

load Half of _______ --'r~d. r " .. ;~ 
ClK 

( FIRST INSTRUCTION 

I I 

~tsu1~ 
INSTRUCTION: FUNC(9,0~, RND(1,0), FAST 

HALF REST ( ----- -------x 
I lSTOPS 1~ ______ ~l~S~T~O~P~S ____ ~I __________________________________________________________ __ 

~tsu2 ~ th1 ~ tsu3 ~ 
DATA(31 ,0) A AND B INPUTS 

SELMS/LS 

~ HALF ~ REST 
_____________________ ~ FIRST ~ FIRST 

OUT(31,0) STATUS(13,0) ~ tpd2 ~ ~tpd5---+1 

Figure 14. Double-Precision Multiplier Operation. All Registers Disabled 
(PIPES = 111. CLKMODE = 0) 



The second example assumes that the RA and RB input registers are enabled. With 
CLKMODE = 0 one clock cycle is required to input both the double-precision operands. 
The multiplier is set up to calculate the negative product of I A I and B operands: 

CLKMODE = 0 PIPES = 110 Operation: Multiply - ( I A I * B) 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1101 0100 0 11 110 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 

Load Rast Load Rest 
of First Load Half of Second 
Operands of Second Operands 

Load half Operands 
of First Begin First Begin Second 
Operands Operation Load Pipeline Operation 

+ + + + 
l I I I I 

I I 
CLK I :+-- td2 --+I I 

I I 
I I 

FIRST INSTRUCTION SECOND INSTRUCTION 

\+-tsu1-.l !+- th1 ~ \4-tsu1-+J 

INSTRUCTION: FUNC(9.01. RND(1.01. FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

HALF 
2ND OPS 

REST 
2ND OPS 

I+---tsu2~ th1--+114-- tsu24-- th1-.1 j4- tsu2+14- th1-.1 14 .14 th1--+1 

DATA(31.01 A AND B INPUTS tsu2 

SELMS/LS 

~HALF REST HALF REST 
1ST 1ST 2ND 2ND --------------------------------

OUT(31.01 STATUS(13.01 14-+1 14-+1 H H 
tpd2 tpd5 tpd2 tpd5 

Figure 15. Double-Precision Multiplier Operation. Input Registers Enabled 
(PIPES - 110. CLKMODE = 0) 
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en 

Enabling both input and output registers in the third example adds an additional delay 
of one clock cycle, as can be seen from Figure 16. The sample instruction sets up 
calculation of the product of 1 A 1 and 1 8 1 : 
CLKMODE = 0 PIPES = 010 Operation: Multiply IAI * 181 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S 8 E E R 
M F F P P LL RR FEE S / YLLE'H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 .1-0 T A 8 C S Y C S P 1 -0 T T 1-0 

01 11 01 1000 <> 10 010 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 

Load Rest 
of First 

Load Half Operands 

of First Begin First 
Operands Operation 

+ + 

Load Half 
of Second 
Operands 

Load Rest 
of Second 
Operands 

Begin Second 
Operation 

Z eLK ..... 
.s::a. 
l> 
(") 
-I 
CO 
CO 
Co\) 
..... 

FIRST INSTRUCTION 

14 _I tsu1 I+- th1-t-1 I+ tsu1"i 
I 

INSTRUCTION: FUNC(9.0). RND(1.0). FAST 
r 
I 

SECOND INSTRUCTION 

.. tsu2 +14- th1 +I ... t su2" th1 -.t ... tsu2+14- th 1 -.t ... tsu2" th1 -.t 
DATA(31.0) A AND B INPUTS 

SELMS/Ls 

THIRD INSTRUCTION 

REST 
3RD OPS 

L 
~ 

--------------------~ 
OUT(31.0) STATUS(13.0) tpd4-11~.-~.1 

Figure 16. Double-Precision Multiplier Operation, Input and Output Registers Enabled 
(PIPES - 010, CLKMODE - 0) 
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With all registers enabled, the fourth example shows a microinstruction to calculate 
the negated product of operands A and B: 

CLKMOOE = 0 PIPES = 000 Operation: Multiply - (A * B) 

S 
E 

C C C L 
L 00 P P SS M SS 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I o G G S S PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 11000100 o 01 000 1111 xxxx 00 o 1 1 x x 0 0 0 x xx 1 1 11 
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(11 

.!.J 
(Xl 

CLK 

Load Half 
of First 
Operands 

+ 

FIRST 
INSTRUCTION 

LE88J.:l"vLNS 
Load Rest 
of Second Load Half 

Load Rest Operands of Third 
of First Load Half Operands 
Operands of Second Begin Second 

Operands Operation Load Pipeline 
Begin First 
Operation Load Pipeline Load Pipeline Load Output 

+ + ~ ~ 

I 
~ td2 .14 td2 .14 td2 ~ 
I 
I 
I 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

I 
I+-t su1-+1 th1~ ~tsu1 th1--M--------.t 1+---+1- tsu1 

I 
INSTRUCTION: FUNC(9.0). RND(1.0). FAST 

I 

I 

I+-th1-+1 

I 
I4-tsu2~ I.. .I"~ I.. .14 .1 I.. ~4 th1-+1 

th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th 1 tsu2 

DATA(31.0) A AND B INPUTS 

--I,---~ 

SELMS/LS 

------------------------------------------------------------~ 
OUT(31.0) STATUS(13.0) .~ 

tpd4 
~ 

tpd5 
~ 

tpd4 

Figure 17. Double-Precision Multiplier. Operation, All Registers Enabled 
(PIPES = 000, CLKMODE - 0) 

I+---+i 
tpd5 



Double-Precision Multiplication with CLKMODE = 1 

Setting the CLKMODE control high causes the temporary register to load on the falling 
edge of the clock. This permits loading both double-precision operands within the same 
clock cycle. The time available to output the result is also affected by the settings 
of CLKMODE and PIPES2-PIPESO, as shown in the individual timing waveforms. 

The first multiplication example with CLKMODE set high shows a multiplication in 
flowthrough mode (PIPES2-PIPESO = 111). Figure 18 shows the timing for this 
operating mode: 

CLKMODE = 1 

I I 
9-0 

01 1100 1000 

PIPES = 111 

C C C 
L 00 P P SS 
K N N I I EE 
M F F P P LL 
0 II EE 00 
D G G S S PP 
E 1-02-0 7-0 

Operation: Multiply A * I B I 

RR 
NN 
DD 
1-0 

S 
E 
L 
M 
S 

FEE S / 
ANNR 

S S 
BEE R 
Y L L E H 

OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1 -0 T T 1-0 

11 111 1111 xxxx 00 0 x x x x 0 0 0 x xx 1 1 11 
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en 
2: 
'-I 

load Half 
of Operands 

~ 

r 
ClK : 

( FIRST I~STRUCTION 
I+- t su1-.1 

INSTRUCTION: FUNC(9.01. RND(1.01. FAST 

load Pipeline 

~ 

I 
I 
I 
I 
I 

L 

( 1~:~S )(~_1~~~E~~~~s ________________ ~: ____________________________ __ 
I+-tsu2~ 101 tsu3------.t~i 

th1 

DATA(31.01 A AND B INPUTS 

SElMS/LS 

~ 

--------------------------'~ 
OUT(31.01 STATUS(13.01 

Figure 18. Double-Precision Multiplier Operation. All Registers Disabled 
(PIPES - 111. CLKMODE - 1) 

i: In the second example. the input registers are enabled and the instruction is otherwise 
n similar to the corresponding example for CLKMODE = O. Timing is shown in Figure 19. 
-t 
00 
00 
W 
'-I 

CLKMODE = 1 

I I 
9-0 

01 1101 0100 

5-80 

PIPES = 110 Operation: 

C C C 
L 00 PP SS 
K N N I I EE 
M F F P P LL RR 
0 II EE 00 NN 
D G G S S PP DD 
E 1-02-0 7-0 1-0 

1 11 11 0 1111 xxxx 00 

Multiply - ( I A I * B) 

s 
E 
L 
M SS 
S BEE R 

FEE S I Y L L E H 
ANNR OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1 -0 T T 1-0 

o 1 1 x x 0 0 0 x xx 1 1 11 



load Half 
of First 
Operands 

~ 

load Rest 
of First 
Operands 

Begin First 
Operation 

~ 

load Pipeline 

load Rest 
of Second 
Operands 

of Second Begin Second 
Operands Operation 1 load Half 

~ ~ 
~~~~I ~I --~ __ _ 

ClK 

FIRST INSTRUCTION 

14----- tsu1 ---~~: ~th1 
I 

INSTRUCTION: FUNCI9.0). RNDI1.0). FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

14- tsu2 --...+II. ~:. th1 ~ 
th1 tsu2 

DATAI31.0) A AND B INPUTS 

SElMS/LS 

SECOND INSTRUCTION 

HALF 
2ND OPS 

REST 
2ND OPS 

tsu2 I. ~I. ~II. ~I. th1--.t 
th1 tsu2 

~ 
---------------------~'---------
OUTI31.0) STATUSI13.0) 

Figure 19. Double-Precision Multiplier Operation. Input Registers Enabled 
(PIPES = 110. CLKMODE = 11 
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With both input and output registers pipelined, the third example calculates the product 
of 1 A 1 and 1 B I. Enabling the output register introduces a one-cycle delay in outputting 
the result (see Figure 20): 

CLKMODE = 1 PIPES = Q10 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 

II DGGSS 
9-0 E 1-02-0 

Operation: Multiply 1 A 1 * 1 B 1 

SS 
EE 
LL RR 
00 NN 
PP DD 
7-0 1-0 

S 
E 
L 
M 
S 

F E E S / 
ANNR 

S S 
BEE R 
YLLEH 

OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1-0 T T 1-0 

01 1101 1000 11 01 0 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 



Load Rest 
of First 
Operands Load Half 

Load Half of Second 

of First Begin First Operands 

Operands Operation Load Pipeline 1 ~ ~ ~ 

FIRST INSTRUCTION SECOND INSTRUCTION 

14---tsu1--.t i.--- th1 14-tsu1~ 
I 

INSTRUCTION: FUNC(9,0), RND (1,0), FAST 
I 

HALF 
1ST OPS 

I 

HALF 
2ND OPS 

Load Rest 
of Second 
Operands 

Begin Second 
Operation 

Load Output 

~ 

I+-tsu2~ 14 ~i. ~I 
th1 tsu2 th1 

DATA(31,0) A AND B INPUTS 

I+-tsu2--~I4I.-~~II. ~I. ~I th1 
th1 tsu2 

SELMS/LS 

~M 
~CX) 

------------------------------------ CX) 
OUT(31,0) STATUS(13,0) 141.---~1-1 tpd4 141.--~~If-tpd5 l-

Figure 20. Double-Precision Multiplier Operation, Input and Output Registers Enabled 
(PIPES .. 010, CLKMODE .. 1) 

5-83 

t) 
« 
~ 
r--
Z 
CJ) 



The fourth example shows the instruction and timing (Figure 21) to generate the 
negated product of the A and B operands. This operating mode with CLKMOOE set 
high and all registers enabled permits use of the shortest clock period and produces 
the most data throughput, assuming that this is the primary operating mode in which 
the device is to function. 

Additional considerations affecting timing and throughput are discussed in the section 
on mixed operations and operands. 

CLKMOOE = 1 

I I 
9-0 

PIPES = 000 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
o G G S S 
E 1-02-0 

Operation: Multiply - (A * B) 

SS 
EE 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 
NN ANNR OOOTSSSATT 
DO SRRCLEEEETTELPP 
1-0 TAB C S Y C S P 1 -0 T T 1-0 

01 11000100 1 11 000 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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Co 
(11 

Load Rest 
of Second 

Load Pipeline 
Load Rest Operands 
of First Load Pipeline Load Output 
Operands 

1 
Begin Second 

1 
Load Half Load Half Operation Load Half 
of First Begin First of Second of Third 
Operands Operation Operands Load Pipeline Operands 

+ + .. • + 
LfLSL 

I , 
CLK 1 I+-- td2 -1'1 td2 -14 td2 ---+t 

1 
I 
I 

FIRST INSTRUCTION X SECOND INSTRUCTION X THIRD INSTRUCTION 

1 , 
14--- tsu 1-----.t i+---+I 14---- tsu 1-----.t 

1 th1 
I 

INSTRUCTION: FUNCI9.01.RNDI1.01. FAST 

HALF 
1ST OPS 

1 

HALF 
2ND OPS 

1+---+1 i+-- t su1-----'; 
th1 

HALF 
3RD OPS 

Load Rest 
of Third 
Operands 

Begin Third 
Operation 

Load Pipeline 

• 

~ 
th1 

I+--tsu2 ----+I 
I 

1'4 _14 _, 
I tsu2 th1 

I4---- tsu2 _1 .. _, , .. _'4 .1 
th1 th1 

\4-- t su2 ~,~ 
th1 I I th1 

---.I I.- th1 --.I *-tus2 
DATA131.01 A AND B INPUTS 

SELMS/LS 

-------------------------~ tpd4 tpd5 tpd4 tpd5 
OUTl31.01 STATUSI13.0) ~ ~ t+-'-----+I ~ 

Figure 21. Double-Precision Multiplier Operation. All Registers Enabled 
(PIPES = 000. CLKMODE = 1) 
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Chained Multiplier/ALU Operations 

Simultaneous multiplier and AlU functions can be selected in chained mode to support 
calculation of sums of products or products of sums. Operations selectable in chained 
mode (see Table 25) overlap partially with those selectable in independent multiplier 
or AlU operatin~ mode. Format conversions. absolute values. and wrapping or 
unwrapping of denormal numbers are not available in chained mode. 

To calculate sums of prQducts. the FPU can operate on external data inputs in the 
multiplier while the AlU operates on feedback from the previous calculation. The 
operand selects SElOPS7-SElOPSO can be set to select multiplier inputs from the 
RA and RB registers and AlU inputs from the P and S registers. 

This mode of chained multiplier and ALU operation is used repeatedly in the division 
and square root calculations presented later. The sample microinstruction sequence 
shown in Tables 27 and 28 performs the operations for multiplying sets of data 
operands and accumulating the results. the basic operations involved in computing 
a sum of products. 

Table 27 represents the operations. clock cycles. and register contents for a single­
precision sum of four products. Registers used include the RA and RB input registers 
and the product (P) and sum (S) registers. 

Table 27. Single-Precision Sum of Products (PIPES2-PIPESO '" 010) 

CLOCK MUL TIPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 

1 Load A. B A - RA. B - RB 
A * B 

2 Pass P(AB) to S 
C - RA. P - RB Load C. D 

C * D 
A * a - P(AB) 

3 S(AB) + P(CD) P(AB) + 0 - S(AB) 
Load E. F E - RA. F - RB 
E * F C * D- P(CD) 

4 S(AB + CD) + P(EF) S(AB) + P(CD) - S(AB + CD) 
Load G. H G - RA. H - RB 
G*H E * F - P(EF) 

5 S(AB + CD) +EF) + P(GH) S(AB + CD) + P(EF) - S(AB + CD + EF) 
G * H - P(GH) 

6 New Instruction S(AB + CD + EF) + P(GH) - S(AB + CD + EF + GH) 

A microcode sequence to generate this sum of product is shown in Table 28. Only 
three instructions in chained mode are required. since the multiplier begins the 
calculation independently and the ALU completes it lndependently. 
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Table 28. Sample Microinstructions for Single-Precision Sum of Products 

S 
E 

C CC L 
L 00 pp SS M S S 
K N N I I EE S BEE R 
M FF pp L L RR FEE S I Y L L E H 
0 II EE 00 NN ANN R OOOTSS SA TT 

I I D GG SS pp DD S R R C LEE E E TT E L P P 
9-0 E 1-0 2-0 7-0 1-0 TABCSYCS P 1-0 T T 1-0 

0001000000 0 01 010 1111 xxxx 00 0 x x x x x x xx 1 1 11 
1001100000 0 01 010 1111 xxxx 00 0 x x x x x x xx 1 1 11 
1000000000 0 01 010 11111010 00 0 x x x x x x xx 11 
1000000000 0 01 010 xxxx 1010 00 0 x x x x x x xx 11 
0000000000 0 01 010 xxxx 1010 00 o x x x x x x x x xx 11 
xx xxxx xxxx x xx xxx xxxx xxxx xx x x x x x 0 o 0 x xx 11 

Fully Pipelined Double-Precision Operations 

Performing fully pipelined double-precision operations requires a detailed understanding 
of timing constraints imposed by the lTlultiplier. In particular, sum of products and 
product of sums operations can be executed very quickly, mostly in chained mode, 
assuming that timing relationships between the ALU and the multiplier are coded 
properly. 

'" Pseudocode tables for these sequences are provided, (Table 29 and Table 30) showing M 
how data and instructions are input in relation to the system clock. The overall patterns ~ 
of calculations for an extended sum of products and an extended product of sums t­
are presented. These examples assume FPU operation in CLKMODEO, with the CONFIG (.) 
setting HL to load operands by MSH and LSH, all registers enabled :;J 
(PIPES2 - PIPESO = LLL), and the C register clock tied to the system clock. '" 

Z 
In the sum of products timing table, the two initial products are generated in (/) 
independent multiplier mode. Several timing relationships should be noted in the table. 
The first chained instruction loads and begins to execute following the sixth rising 
edge of the clock, after the first product P1 has already been held in the P register 
for one clock. For this reason, P1 is loaded into the C register so that P1 will be stable 
for two clocks. ' 

On the seventh clock, the ALU pipeline register loads with an unwanted sum, P1 + P1. 
However, because the ALU timing is constrained by the multiplier, the S register will 
not load until the rising edge of CLK9, when the ALU pipe contains the desired sum, 
P1 + P2. The remaining sequence of chained operations then execute in the desired 
manner. 
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en 
cD 
(Xl 

DA 
ClK 

BUS 

I1 A1 MSH 

I2 A1 LSH 

I3 A2 MSH 

I4 A2 LSH 

I5 A3 MSH 

I6 A3 LSH 

I7 A4 MSH 

IS A4 LSH 

I9 A5 MSH 

IlO A5 LSH 

I11 A6 MSH 

S12 

L£88.l~nfvLNS 

Table 29. Pseudocode for Fully Pipelined Double-Precision Sum of Products 
(CLKM = 0, CONFIG = 10, PIPES = 000, CLKC-SYSCLK) 

DB TEMP INS INS RA RB MUl P C 
BUS REG BUS REG REG REG PIPE REG REG 

B1 MSH A1.B1MSH A1 *B1 

B1 LSH A1.B1MSH A1 *B1 A1 *B1 A1 B1 

B2 MSH A2.B2MSH A2*B2 A1 *B1 A1 B1 A1 *B1 

B2 LSH A2.B2MSH A2*B2 A2*B2 A2 B2 A1 *B1 

PR+CR 
B3 MSH A3.B3MSH 

A3*B3 
A2*B2 A2 B2 A2*B2 P1 

PR+CR PR+CR. 
B3 LSH A3.B3MSH A3 B3 A2*B2 P1 P1 

A3*B3 A3*B3 

PR+SR PR+SR. 
B4 MSH A4.B4MSH A3 B3 A3*B3 P2 P1 

A4*B4 A3*B3 

PR+SR PR+SR. 
B4 LSH A4.B4MSH 

A4*B4 A4*B4 
A4 B4 A3*B3 P2 P1 

PR+SR PR+SR. 
B5 MSH A5.B5MSH 

A5*B5 A4*B4 
A4 B4 A4*B4 P3 P2 

PR+SR PR+SR. 
B5.LSH A5.B5MSH A5 B5 A4*B4 P3 P3 

A5*B5 A5*B5 

PR+SR PR+SR. 
B6 MSH A6.B6(M) 

A6*B6 A5*B5 
A5 B5 A5*B5 P4 P3 

---------- ... ---- - -_ .. _- --- - ~ --

ALU S y 

PIPE REG BUS 

P1 +P1 

P1 +P1 

S1 +P2 S1 

S1 +P3 S1 

XXXXX S2 



DA 
CLK 

BUS 

Sl Al(M) 

S2 Al(L) 

S3 A2(M) 

S4 A2(L) 

S5 A3(M) 

Sa A3(L) 

S7 XXX 

sa A4(M) 

S9 A4(L) 

SlO XXX 

S11 A5(M) 

S12 A5(L) 

U1 

Table 30. Pseudocode for Fully Pipelined Double-Precision Product of Sums 
(CLKM ... 0, CON FIG = 10, PIPES = 000, CLKC-SYSCLK) 

DB TEMP INS INS RA RB MUL P C 

BUS REG BUS REG REG REG PIPE REG REG 

Bl(M) Al,Bl(M) Al +Bl 

Bl (L) Al,Bl(M) Al +Bl Al +Bl Al Bl 

B2(M) A2,B2(M) A2+B2 Al +Bl Al Bl 

B2(L) A2,B2(M) A2+B2 A2+B2 A2 B2 

B3(M) A3,B3(M) 
CR*SR 

A3+B3 
A2+B2 A2 B2 51 

A3,B3(M) 
CR*SR CR*SR 

B3 51 B3(L) A3 
A3+B3 A3+B3 

XXX XXX SP Add 
CR*SR 

A3+B3 
A3 B3 51 *52 51 

B4(M) A4,B4(M) 
PR*SR 

A4+B4 

CR*SR 

A3+B3 

ENRA=L ENRB=L 
51 *52 51 

A3 B3 

PR*SR PR*SR 
B4(L) A4,B4(M) A4 B4 XXX Pl 51 

A4+B4 A4+B4 

XXX XXX SPAdd 
PR*SR 

A4+B4 
A4 B4 Pl *53 Pl 51 

PR*SR PR*SR ENRA=L ENRB=L 
B5(M) A5,B5(M) Pl *53 XXX 51 

A5+B5 A4+B4 A4 B4 

PR*SR PR*SR 
P2 51 B5(L) A5,B5(M) A5 85 XXX 

A5+B5 A5+B5 

eX! NOTE: On CLK 7 and CLK10, put 0000000000 (Single-Precision Add) on the instruction bus. 
co 
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ALU S V 

PIPE REG BUS 

Al +Bl 

Al +Bl 51 

A2+B2 51 

A2+B2 52 

A3+B3 52 

A3+B3 XXX 

XXX 53 

A4+B4 53 

A4+B4 XXX 

XXX 54 



In the product of sums timing table, the two initial sums are generated in independent 
ALU mode. The remaining operations are shown as alternating chained operations 
followed by single-precision adds. The SP adds are necessary to provide an extra cycle 
during which the multiplier outputs the current intermediate product. The current sum 
and the latest intermediate product are then fed back to the multiplier inputs for the 
next chained operations. In this manner, a double-precision product of sums is 
generated in three system clocks, as opposed to two clocks for a double-precision 
sum of products. 

Mixed Operations and Operands 

Using mixed-precision data operands or performing sequences of mixed operations 
may require adjustments in timing, operand precision, and control settings. To simplify 
microcoding sequences involving mixed operations, mixed-precision operands, or both, 
it is useful to understand several specific requirements for mixed-mode or mixed­
precision processing. 

Calculations involving mixed-precision operands must be performed as double-precision 
operations (see Table 12). The instruction settings (18-17) should be set to indicate 
the precision of each operand from the RA and RB input registers. (Feedback operands 
from internal registers are also double-precision.) Mixed-precision operations should 
not be performed in chained mode. 

Timing for operations with mixed-precision operands is the same as for a corresponding 
double-precision operation. In a mixed-precision operation, the single-precision operand 

en must be loaded into the upper half of its input register. 

:2 

"""" ~ » 
(") 
-I 
CO 
CO 
W 

""" 

Most format conversions also involve double-precision timing. Conversions between 
single- and double-precision floating point format are treated as mixed-precision 
operations. During integer to floating point conversions, the integer input should be 
loaded into the upper half of the RA register. 

In applications where mixed-precision operations is not required, it is possible to tie 
the 18-17 instruction inputs together so that both controls always select the same 
precision. 
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Sequences of mixed operations may require changes in multiple control settings to 
deal with changes in timing of input, execution, and output of results. Figure 22 shows 
a simplified timing waveform for a series of mixed operations: 

CLOCK CYCLE 

FUNCTION 
AND DATA 

RESULTS 
AND STATUS 

A,B 

2 3 

A,B C,D 

XXXX 

4 5 6 

C,D E,F 

A,B XXXX C,D 

7 8 9 10 11 12 13 

G,H G,H I.J I,J K,L M,N 

E,F E,F G,H G,H I.J K,L M,N 

A,B,C,D - double precIsion multiply; E,F - single precIsion operation; G,H,I,J - double 
precision add; K,L - single precision opration. A double precision number is not required to 
be held on the outputs for two cycles unless it is followed by a like double precision function. 
If a double precision multiply is followed by single precision operation, there must be one open 
clock cycle. 

Figure 22. Mixed Operations and Operands 
(PIPES2-PIPESO '"' 110, CLKMODE = 0) 

In this sequence, the fifth cycle is left open because a single-precision multiply follows 
a double-precision mUltiply. If the SP multiply were input during the period following 
the fourth rising clock edge, the result of the preceding operation would be overwritten, 
since an SP multiply executes in one clock cycle. To avoid such a condition, the FPU 
will not load during the required open cycle. ,.... 

M 
Because the sequence of mixed operations places constraints on output timing, only ~ 
one cycle is available to output the double-precision (e * 0) result. By contrast, the I­
SP multiply (E * F) is available for two cycles because the operation which follows U 
it does not output a result in the period following the seventh rising clock edge. In :i 
general, the precision and timing of each operation affects the timing of adjacent ,.... 
operations. Z en 
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Control settings for CLKMOOE and registers must also be considered in relation to 
precision and speed of execution. In Figure 23, a similar sequence of mixed operations 
is set up for execution in fully pipelined mode: 

CLOCK CYCLE 

FUNCTION 
AND DATA 

RESULTS 
AND STATUS 

A.B 

2 3 

C.D 

4 5 6 

E,F G.H 

A.B A.B 

7 8 9 10 11 12 13 

I.J K.L M.N O.P Q.R 

C.D E.F G.H I.J K.L M.N M.N 

A.B.C,D - double precision multiply; E,F - single precision operation; G,H, - double precision 
add; I,J,K,L,M,N - single precision operation; D,P,Q,R - double precision multiply. In clock 
mode 1, a double precision result is two cycles long only when a double precision multiply is 
followed by a double precision multiply. 

Figure 23. Mixed Operations and Operands 
(PIPES2-PIPESO = 000, CLKMOOE ... 1) 

Although the data operands can be loaded in one clock cycle with CLKMODE set high, 
enabling two additional internal registers delays the (A * B) result one cycle beyond 
the previous example. Again, an open cycle is required after the (C * 0) operation 
because the next operation is single precision. The result of the (C * 0) multiply is 
available for one cycle instead of two, also because the following operation is single 
precision. With this setting of CLKMOOE and PIPES2-PIPESO, a double-precision result 
is only available for two clock cycles when one OP multiply follows another DP multiply. 

(') Matrix Operations 
-4 co co 
eN 
-.J 

The' ACT8837 floating point unit can also be used to perform matrix manipulations 
involved in graphics processing or digital signal processing. The FPU multiplies and 
adds data elements, executing sequences of microprogrammed calculations to form 
new matrices. 

Representation of Variables 

In state representations of control systems, an n-th order linear differential equation 
with constant coefficients can be represented as a sequence of n first-order linear 
differential equations expressed in terms of state variables: 
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dx1 
dt 

= x 2, ... , 
dx(n-1) 

dt 
= xn 



For example, in vector-matrix form the equations of an nth-order system can be 
represented as follows: 

x1 a11 a12 a1n 

~ 
b11 b1n 

~ d 
x2 x2 u2 

dt 
: + 

xn an1 an2 ann xn bn1 bnn un 

or, X = ax + bu 

Expanding the matrix equation for one state variable, dx 1 /dt, results in the following 
expression: 

X1 = (a11 * x1 + ... + a1 n * xn) + (b11 * u1 + ... + b1 n * un) 

where X 1 = dx 1 /dt. 

Sequences of multiplications and additions are required when such state space 
transformations are performed, and the' ACT8837 has been designed to support such 
sum-of-products operations. An n X n matrix A multiplied by an n x n matrix X yields 
an n x n matrix C whose elements cij are given by this equation: 

n " M 

cij = E aik * xkj for i = 1, ... ,n j = 1, ... ,n (1) ~ 
k=1 

For the cij elements to be calculated by the' ACT8837, the corresponding elements 
aik and xkj must be stored outside the' ACT8837 and fed to the' ACT8837 in the 
proper order required to effect a matrix multiplication such as the state space system 
representation just discussed. 

Sample Matrix Transformation 

The matrix manipulations commonly performed in graphics systems can be regarded 
as geometrical transformations of graphic objects. A matrix operation on another matrix 
representing a graphic object may result in scaling, rotating, transforming, distorting, 
or generating a perspective view of the image. By performing a matrix operation on 
the position vectors which define the vertices of an image surface, the shape and 
position of the surface can be manipulated. 
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The generalized 4 x 4 matrix for transforming a three-dimensional object with 
homogeneous coordinates is shown below: 

a b c d 
e f g h 

T k I 
..... ... 

m n 0 : p 

The matrix T can be partitioned into four component matrices, each of which produces 
a specific effect on the resultant image: 

3 
3 x 3 x 

1 x 3 1 x 1 

The 3 x 3 matrix produces linear transformation in the form of scaling, shearing and 
rotation. The 1 x 3 row matrix produces translation, while the 3 x 1 coiumn matrix 
produces perspective transformation with multiple vanishing points. The final single 

en element 1 x 1 produces overall scaling. Overall operation of the transformation matrix 
:2 T on the position vectors of a graphic object produces a combination of shearing, 
..., rotation, reflection, translation, perspective, and overall scaling. 
~ 

~ The rotation of an object about an arbitrary axis in a three-dimensional space can be 
-4 carried out by first translating the object such that the desired axis of rotation passes 
CO through the origin of the coordinate system, then rotating the object about the axis 
~ through the origin, and finally translating the rotated object such that the axis of rotation 
..., resumes its initial position. If the axis of rotation passes through the point P = [a b c 1], 

then the transformation matrix is representable in this form: 

[x y z h] = [x y z 1] 1 
0 
0 

-a 
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0 0 
1 0 
0 1 

-b -c 

~ 
translation 
to origin 

0 
0 
0 
1 

R 

rotation 
about 
origin 

1 0 0 0 
0 1 0 0 
0 0 1 0 
a b c 1 

~ 
translation 

back to initial 
position 

(2) 



where R may be expressed as: 

R = 

and 

n12 + (1-n)2 cosc/J n 1 n2( 1-cosc/J) + n3sinc/J n 1 n3( 1-cosc/J) - n2sinc/J 0 

n 1 n2( 1-cosc/J) - n3sinc/J n22 + (1-n2)2 cosc/J n2n3( 1-cosc/J) + n 1 sinc/J 0 

n 1 n3( 1-cosc/J) + n2sinc/J n2n3(1-cosc/J) - n1 sinc/J n32 + (1-n3)2 cosc/J 0 

0 0 0 

n1 = q1/(q12 + q22 + q32)1/2 direction cosine for x-axis of 
rotation 

n2 = q2/(q 12 + q22 + q32) 1/2 = direction cosine for y-axis of rotation 

n3 = q3/(q 12 + q22 + q32) 1/2 = direction cosine for z-axis of rotation 

n = (n1 n2 n3) = unit vector for Q 

Q = vector defining axis of rotation = [q1 q2 q3] 

c/J = the rotation angle about Q 

..... 
M 

A general rotation using equation (2) is effected by determining the [x y z] coordinates CO 
of a point A to be rotated on the object, the direction cosines of the axis of rotation CO 
[n1, n2, n31. and the angle c/J of rotation about the axis, all of which are needed to t; 
define matrix [R]. Suppose, for example, that a tetrahedron ABCD, represented by « 
the coordinate matrix below is to be rotated about an axis of rotation RX which passes ~ ..... 
through a point P = [5 - 6 3 1] and whose direction cosines are given by unit vector Z 
[n1 = 0.866, n2 = 0.5, n3 = 0.707]. The angle of rotation 0 is 90 degrees (see en 
Figure 24). The rotation matrix [R] becomes 

2 -3 3 A 
1 -2 2 B 
2 -1 2 C 
2 -2 2 D 

0.750 1.140 0.112 0 

R 
-0.274 0.250 1.220 0 

1.112 -0.513 0.500 0 
0 0 0 1 
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(1) THIS ARROW DEPICTS THE FIRST TRANSLATION 
(2) THIS ARROW DEPICTS THE 90 0 ROTATION 
(3) THIS ARROW DEPICTS THE BACK TRANSLATION 

rJ) Figure 24. Sequence of Matrix Operations 
Z ..... 
~ The point transformation equation (2) can be expanded to include all the vertices of 
l> the tetrahedron as follows: 
n 
-4 
(XI 
(XI 
W ..... 

xa 
xb 
xc 
xd 

2 -3 
1 -2 
2 -1 
2 -2 

5-96 

ya za 
yb zb 
yc zc 
yd zd 

3 1 
2 1 
2 1 
2 1 

h1 
h2 
h3 
h4 

1 0 00 0.750 1.140 0.112 0 
01 00 -0.274 0.250 1.22 0 
00 1 0 1.112 -0.513 0.5000 

-56-31 0 0 0 1 

~ ~ 
translation rotation about origin 
to origin 

1 000 
0 1 0 0 
o 0 1 0 
5-6 3 1 

~ 
translation 

back to 
initial 

position 

(3) 



The 'ACT8837 floating-point unit can perform matrix manipulation involving 
multiplications and additions such as those represented by equation (1). The matrix 
equation (3) can be solved by using the' ACT8837 to compute, as a first step, the 
product matrix of the coordinate matrix and the first translation matrix of the right­
hand side of equation (3) in that order. The second step involves postmultiplying the 
rotation matrix by the product matrix. The third step implements the back-translation 
by premultiplying the matrix result from the second step by the second translation 
matrix of equation (3). Details of the procedure to produce a three-dimensional rotation 
about an arbitrary axis are explained in the following steps: 

Step 1 

Translate the tetrahedron so that the axis of rotation passes through the origin. This 
process can be accomplished by multiplying the coordinate matrix by the translation 
matrix as follows: 

2 
1 
2 
2 

-3 
-2 
-1 
-2 

3 
2 
2 
2 

1 
0 
0 

-5 

0 0 
1 0 
0 1 
6 -3 

~ 
translation 
to origin 

-3 
-4 
-3 
-3 

0 
0 
0 
1 

+3 0 
+4 -1 

+5 -1 
+4 -1 

(2-5) (-3+6) (3-3) 
(1 - 5) (-2+6) (2-3) 
(2-5) (-1 +6) (2-3) 
(2-5) (-2+6) (2-3) 

~ 
vertices of translated 

tetrahedron 

AT 
BT 
CT 
DT 

1 
1 
1 
1 

The' ACT8837 could compute the translated coordinates AT, BT, CT, DT as indicated 
above. However, an alternative method resulting in a more compact solution is 
presented below. 
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Step 2 

Rotate the tetrahedron about the axis of rotation which passes through the origin after 
the translation of Step 1. To implement the rotation of the tetrahedron, postmultiply 
the rotation matrix [Rl by the translated coordinate matrix from Step 1. The resultant 
matrix represents the rotated coordinates of the tetrahedron about the origin as follows: 

-3 3 0 1 0.750 1.140 0.112 0 -3.072 -2.670 3.324 1 
-4 4 -1 1 -0.274 0.250 1.22 0 -5.208 -3.047 3.932 1 
-3 5 -1 1 1.112 -0.513 0.500 0 -4.732 -1.657 5.264 1 
-3 4 -1 1 0 0 0 1 -4.458 -1.907 4.044 1 

~ ~ 
rotation about origin rotated coordinates 

Step 3 

Translate the rotated tetrahedron back to the original coordinate space. This is done 
by premultiplying the resultant matrix of Step 2 by the translation matrix. The following 
calculations produces the final coordinate matrix of the transformed object: 

- 3.072 - 2.670 3.324 1 1 0 0 0 1.928 - 8.670 6.324 1 
-5.208 -3.047 3.932 1 0 1 0 0 -0.208 -9.047 6.932 1 
-4.732 -1.657 5.264 1 0 0 1 0 0.268 -7.657 8.264 1 
-4.458 -1.907 4.044 1 5 -6 3 1 0.542 -7.907 7.044 1 

~ ~ 
translate back final rotated coordinates 
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A more compact solution to these transformation matrices is a product matrix that 
combines the two translation matrices and the rotation matrix in the order shown in 
equation (3). Equation (3) will then take the following form: 

xa ya za h1 
xb yb zb h2 
xc yc zc h3 
xd yd zd h4 

2 -3 3 0.750 1.140 0.112 0 
1 -2 2 -0.274 0.250 1.220 0 
2 -1 2 1.112 -0.513 0.500 0 
2 -2 2 -3.730 -B.661 B.260 1 

~ 
transformation matrix 

The newly transformed coordinates resulting from the postmultiplication of the 
transformation matrix by the coordinate matrix of the tetrahedron can be computed 
using equation (1) which was cited previously: 

n 
" M 
CO 
CO 

cij = E aik * xkj for i = 1, ... ,n j = 1, ... ,n 

k=1 

(1) t; 
<t 
~ 
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For example, the coordinates may be computed as follows: 

xa = c11 

ya = c12 

a11 * x11 + a12 * x21 + a13 * x31 + a14 * x41 
2 * 0.750 + (- 3) * (- 0.274) + 3 * 1.112 + 1 * (- 3.73) 
1.5 + 0.822 + 3.336 - 3.73 
1.928 

a11 * x12 + a12 * x22 + a13 * x32 + a14 * x42 
2 * 1.140 + (-3) * 0.250 + 3 * (-0.513) + h(-8.661) 
2.28 -0.75 - 1.539 - 8.661 
-8.67 

za = c13 a11 * x13 + a12 * x23 + a13 * x33 + a14 * x43 
2 * 0.112 + (-3) * 1.220 + 3 * 0.500 + 1 * 8.260 
0.224 - 3.66 + 1.5 + 8.260 
6.324 

h 1 = c 14 = a 11 * x 14 + a 12 * x24 + a 13 * x34 + a 14 * x44 
2 * 0 + (- 3) * 0 + 3 * 0 + 1 * 1 
0+0 + 0 + 1 
1 
A' = [1.928 - 8.676.32411 

C/) The other rotated vertices are computed in a similar manner: 

:2 
'-I 
~ » 
n 
-I 
CO 
CO 
W 
'-I 

B' 
C' 
D' 

[-5.208 -3.0473.93211 
[-4.732 -1.657 5.264 1) 
[ - 4.458 - 1.907 4.044 11 

Microinstructions for Sample Matrix Manipulation 

The' ACT8837 FPU can compute the coordinates for graphic objects over a broad 
dynamic range. Also, the homogeneous scalar factors h 1, h2, h3 and h4 may be made 
unity due to the availability of large dynamic range. In the example presented below, 
some of the calculations pertaining to vertex A' are shown but the same approach 
can be applied to any number of points and any vector space. 

The calculations below show the sequence of operations for generating two 
coordinates, xa and ya, of the vertex A' after rotation. The same sequence could be 
continued to generate the remaining two coordinates for A' (za and h1). The other 
vertices of the tetrahedron, B', C', and D', can be calculated in a similar way. 
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A microcode sequence to generate this matrix multiplication is shown in Table 31. 
Table 32 presents a pseudocode description of the operations, clock cycles, and register 
contents for a single-precision matrix multiplication using the sum-of-products sequence 
presented in an earlier section. Registers used include the RA and RB input registers 
and the product IP) and sum IS) registers. 

Table 31. Microinstructions for Sample Matrix Multiplication 

C C C 
L 00 P P 
K N N I I 
M F F P P 

S 
E 
L 
M SS 
S BEE R 

RR FEES! YLLEH 

o " EE 
D G G S S 

SS 
EE 
LL 
00 
PP 
7-0 

NN ANNR OOOTSSSATT 
I I 

9-0 E 1-02-0 
DD SRRCLEEEETTELPP 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

00 01 00 0000 0 01 01 0 1111 xxxx 00 0 1 
1 0 011 0 0000 0 01 01 0 1111 xxxx 00 0 1 
1 0 0000 0000 0 01 01 0 11 11 1 01 0 00 0 1 
1 0 0000 0000 0 01 01 0 1111 1 01 0 00 0 1 
10 0000 0000 0 01 010 1111 1010 00 0 1 

x x x x x x xx 
x x x x x x xx 
xxxxxxxx 
x x x x x x xx 
x x x x x x xx 

11 
11 
11 
11 
11 

1001100000 
1000000000 
1000000000 
1000000000 
1001100000 

o 01 01 0 1111 xxxx 00 
010 1111 1010 00 
010 1111 1010 00 
010 1111 1010 00 

o 1 x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 

11 " (¥) 
o 01 o 1 11 CO 
o 01 o 1 11 CO 

11 t; 
11 « 

o 01 o 1 
o 01 010 1111 xxxx 00 o 1 

Six cycles are required to complete calculation of xa, the first coordinate, and after 
four more cycles the second coordinate ya is output. Each subsequent coordinate can 
be calculated in four cycles so the 4-tuple for vertex A' requires a total of 18 cycles 
to complete. 

Calculations for vertices B', C', and D', can be executed in 48 cycles, 16 cycles for 
each vertex. Processing time improves when the transformation matrix is reduced, 
i.e., when the last column has the form shown below: 
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en 
2 
...... 
~ 
l> 
n 
-I 
00 
00 
W 
...... 

Table 32. Single-Precision Matrix Multiplication (PIPES2-PIPESO = 010) 

CLOCK MUL TIPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 
1 Load a11, x11 a11 - RA, x11 -RB 

SP Multiply p1=a11*x11 

2 Load a12, x21 a12 -RA, x21 -RB 
SP Multiply p2 = a12 * x21 
Pass P to S p1 - P(p1) 

3 Load a13, x31 a13 - RA, x31 -RB 
SP Multiply p3 = a13 * x31. p2 -P(p2) 
Add P to S PIp 1) + 0 - SIp 1 ) 

4 Load a14, x41 a14 - RA, x41 - RB 
SP Multiply p4 = a14 * x41, p3 - P(p3) 
Add P to S P(p2) + S(p1) - S(p1 + p2) 

5 Load a11. x12 a11 - RA, x12 - RB 
SP Multiply p5 = a11 * x12, p4 - P(p4) 
Add P to S P(p3) + S(p1 + p2) - S(p1 + p2 + p3) 

6 Load a12, x22 a12 - RA, x22 - RB 
SP Multiply p6 = a12 * x22, p5 - P(p5) 
Pass P to S P(p4) + S(p1 + p2 + p3) -
Output S S(p1 + p2 + p3 + p4) 

7 Load a13, x32 a13 -RA, x32- RB 
SP Multiply p7 = a13 * x32, p6-P(p6) 
Add P to S P(p5) + 0 - S(p5) 

8 Load a14, x42 a 14-RA, x42 -RB 
SP Multiply p8 = a14 * x42, p7 -+ P(p7) 
Add P to S P(p6) + S(p5)- S(p5 + p6) 

9 Next operands A- RA, B - RB 
Next instruction pi = A * B, p8 - P(p8) 
Add P to S P(p7) + S(p5 + p6) - S(p5 + p6 + p7) 

10 Next operands C - RA, D - RB 
Next instruction pj = C * D, pi --- P(pi) 
Output S P(p8) + S(p5 + p6 + p7) -

S(p5 + p6 + p7 + p8) 

The h-scalars h1, h2, h3, and h4 are equal to 1. The number of clock cycles to generate 
each 4-tuple can then be decreased from 16 to 13 cycles. Total number of clock cycles 
to calculate all four vertices is reduced from 66 to 54 clocks. Figure 25 summarizes 
the overall matrix transformation. 

5-102 



v 

Z' 

x'----------------------~~----------------~--------------------_7X 

1° 
I 
I 
I S 0 
I C' 
I 

Z 
S' 0' 0 

90° 

:A' P (5, -6,3) 
I 
I 
I 
I 

V' 

Figure 25. Resultant Matrix Transformation 

This microprogram can also be written to calculate sums of products with all pipeline ,... 
registers enabled so that the FPU can operate in its fastest mode. Because of timing M 
relationships, the C register is used in some steps to hold the intermediate sum of CO 

CO 
products. Latency due to pipelining and chained data manipulation is 11 cycles for .... 
calculation of the first coordinate, and four cycles each for the other three coordinates. U « 

~ ,... After calculation of the first vertex, 16 cycles are required to calculate the four 
coordinates of each subsequent vertex. Table 33 presents the sequence of calculations 
for the first two coordinates, xa and ya. 

5-103 

z 
en 



en z ...., 
~ » 
C') 
-t 
00 
00 
W ...., 

Table 33. FuliV Pipelined Sum of Products (PIPES2-PIPESO .. 000) 
(Bus or Register Contents Following Each Rising Clock Edge) 

CLOCK I DA DB I RA RB MUL ALU P S C 
CYCLE BUS BUS BUS REG REG REG PIPE PIPE REG REG REG 

0 Mul x11 a11 
1 Mul x21 a12 Mul x11 a11 
2 Chn x31 a13 Mul x21 a12 p1 
3 Mul x41 a14 Chn x31 a13 p2 p1 
4 Chn x12 a11 Mul x41 a14 p3 s1 p2 
5 Chn x22 a12 Chn x12 a11 p4 t p3 s1 p2 
6 Chn x32 a13 Chn x22 a12 p5 s2 p4 t p2 
7 Chn x42 a14 Chn x32 a13 p6 s3 p5 s2 p2 
8 Chn x13 a 11 Chn x42 a14 p7 s4 p6 s3 s2 
9 Chn x23 a12 Chn x13 a11 p8 xa p7 s4 p6 
10 Chn x33 a13 Chn x23 a12 p9 s5 p8 xa p6 
11 Chn x43 a14 Chn x33 a13 p10 s6 p9 s5 p6 
12 Chn x14 a 11 Chn x43 a14 p11 s7 p10 s6 s5 
13 Chn x24 a12 Chn x14 a11 p12 ya p11 s7 p10 
14 Chn x34 a13 Chn x24 a12 p13 s8 p12 ya p10 
15 Chn x44 a14 Chn x34 a13 p14 s9 p13 s8 p10 

tContents of this register are not valid during this cycle. 

Y 
BUS 

xa 

ya 

Products in Table 33 are numbered according to the clock cycle in which the operands 
and instruction were loaded into the RA, RB, and I register, and execution of the 
instruction began. Sums indicated in Table 33 are listed below: 
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s1 = p1 + 0 
s2 = p1 + p3 
s3 = p2 + p4 
s4 = p5 + 0 

s5 = p5 + p7 
s6 = p6 + p8 
s7 = p9 + 0 
s8 = p9 + p11 

s9 = p10 + p12 
xa = p1 + p2 + p3 + p4 
ya = p5 + p6 + p7 + p8 



SAMPLE MICROPROGRAMS FOR BINARY DIVISION AND 
SQUARE ROOT 
The SN74ACT8837 Floating Point Unit supports binary division and square root 
calculations using the Newton-Raphson algorithm. The' ACT8837 performs these 
calculations by executing sequences of floating-point operations according to the 
control settings contained in specific microprogrammed routines. This implementation 
of the Newton-Raphson algorithm requires that a seed ROM provide values for the 
first approximations of the reciprocals of the divisors. 

This application note presents several microprograms for floating-point division and 
square root using the Newton-Raphson algorithm. Each sample program is analyzed 
briefly to show details of the floating-point procedures being performed. 

Binary Division Using the Newton-Raphson Algorithm 

Binary division can be performed as an iterative procedure using the Newton-Raphson 
algorithm. For a dividend A, divisor B, and quotient Q, this procedure calculates a value 
for 1 /B which is then used to evaluate the expression Q = A * 1/B. The calculation 
can be performed with either single- or double-precision operands, and examples of 
each precision are shown. 

The basic algorithm calculates the value of a quotient Q by approximating the reciprocal 
of the divisor B to adequate precision and then multiplying the dividend A by the 
approximation of the reciprocal: 

Q = A/B = A * Xn, where Xn = the value of X after the nth iteration 
n = the number of iterations to achieve the 

desired precision 

Intermediate values of X are calculated using the following expression: 

,... 
M 
00 
00 
t­
O « 
~ ,... Xi + 1 = Xi * (2 - B * Xi), where XO = approximates 1/B for 

the range 0 < XO < 2/B 
Z 

To illustrate a program using the Newton-Raphson algorithm, the sequence of en 
calculations is presented in detail. For double-precision operations, three iterations are 
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needed to achieve adequate precision in the value of 1 lB. A value for the seed XO 
(approximately equal to lIB) is assumed to be given, and the following operations are 
performed to evaluate Q from double-precision inputs: 

Xl = XO(2 - B * XO) 

X2 = Xl (2 - B * Xl) = XO(2 - B * XO) * (2 - B * XO(2 - B * XO)) 

X3 = X2(2 - B * X2) 

X3 = XO(2-B * XO) * (2-B * XO(2-B * XO)) * (2-B * XO * (2-B 
* XO) * (2-B * XO * (2-B * XO))) 

Q = A * lIB = A * X3 

AlB = A * XO(2-B * XO) * (2-B * XO(2-B * XO)) * (2-B * XO 
* (2-B * XO) * (2-B * XO * (2-B * XO))) 

Xl Xl X1 X1 

X2 X2 

X3 

en Table 36 presents decimal and hexadecimal values for A, B,and XO, which are used 
~ in the sample calculation. The computed value of the quotient Q is also included, 
~ showing the representations of the results of this sample division. 
l> 
~ Table 34. Sample Data Values and Representations 

CO 
CO 
W 
-..J 

DECIMAL REPRESENTATION IEEE HEXADECIMAL 
TERM 

VALUE MANTISSA • 2 EXPONENT REPRESENTATION 
A 22 1.375 * 2 4 40360000 00000000 
B 7 1.75*22 401 COOOO 00000000 

XO 1/7 1.140625 * 2 (-3) 3FC24000 00000000 
Q 22/7 1.5714285714285713 * 2 1 40092492 49249249 

In Table 35, the sequence and timing of this procedure is shown exactly as performed 
by the' ACT8837. This example shows the steps in a double-precision division requiring 
three iterations to achieve the desired accuracy. In this table each operation is 
sequenced according to the clock cycles during which the instruction inputs for that 
operation are presented at the pins of the' ACT8837. Operations are accompanied 
by a pseudocode summary of tHe operations performed by the' ACT8837 and the clock 
cycle when an operand is available or a result is valid. 

Each line of pseudocode indicates the operands being used, the operations being 
performed, the registers involved, and the clock cycles when the results appear. Each 
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register is represented by its usual abbreviation (RA, RB, P, S, or C) followed by the 
number of the clock cycle when an operand will be valid or available at the register. 
For example, "P.4" refers to the contents of the Product Register after the fourth 
clock cycle. 

Table 35. Binary Division Using the Newton-Raphson Algorithm 

CLOCK 
OPERATIONS PSEUDOCODE 

CYCLES 

1, 2 B * XO B - RA.2, XO - RB.2 
RA.2 * RB.2 - P.4 

3, 4 2 - B * XO 2 - P.4 - S.6 

5, 6 X1 = XO(2 - B * XO) RB.2 * S.6 - P.8 
7, 8 B * X1 RA.2 * P.8 - P.10 

9, 10 2 - B * X1 P.8 - C.9, 2 - P.1O - S.12 

11, 12 X2 = X1(2 - B * X1) C.9 * S.12 P.14 

13, 14 B * X2 RA.2 * P.14-P.16 
15, 16 2 - B * X2 P.14-C.15,2 - P.16-S.18 

17, 18 X3 = X2(2 - B * X2) A - RA.18, C.15 * S.18 -+ P.20 

19,20 A * X3 RA.18 * P.20 -+ P.22 

21,22 Output MSH P.22.MSH - Y 

The sequence of operations can be microcoded for execution exactly as listed in the 
table above. Sample microprograms (with data and parity fields provided) are given 
below. To make the programs easier to follow, comment lines have been included to 
indicate clock timing, calculation performed by the instructions being loaded, and M 
operations being represented, in the same pseudocode as in the preceding table. The CO 
fields in the microinstruction sequences presented below are arranged in the following ~ 
order: U 

S 
I E 
N CC L 
S L C M 

L T KOP S S BSR T 
I C R MNI E FEE S / YEEHE D D 
N C L U OFPLRANNR OOOTLSAS A DB D 
ELK C DIE 0 N S R R C [ E E E ESE L T 3 A3 i3 P P 
#KC T EGSPDTABCSYCSPTTTP 1-----01-----0 A B 

d h h hhh h h h hh h h h h h h h h h h h h h h hhhhhhhh hhhhhhhh h h 

All fields in the sample microcode sequences (except for line numbers) are represented 
as hexadecimal numbers. Line numbers are the only decimal numbers in the samples. 
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Single-Precision Newton-Raphson Binary Division 

Use of the Newton-Raphson algorithm is similar for both single- and double-precision 
operands. However, for implementations which handle both single- and double­
precision division, it may be preferable to use a double-precision seed ROM, converting 
the double-precision seeds to single precision when necessary. 

The following sample program involves conversion of a double-precision seed XO for 
use in single-precision division. Since 8 is given as a single-precision number, it must 
be converted to double precision in order to address a double-precision seed ROM. 
Then the seed XO; which is double precision, must be converted to single precision 
for the actual calculation. 

Two iterations are used in the single-precision example. Thus, the formula 
Q = A * 1/8 may be rewritten with n = 2: 

Q = A * 1/8 = A * X2 

where X2 = X1 * (2 - 8 * X1) and X1 = XO * (2 - 8 * XO) 

A * 1/8 = A * XO * (2 - 8 * XO) * [2 - 8 * XO * (2 - 8 * XO)] 

Table 36 presents a single-precision division using a double-precision seed ROM. This 
example divides 22/7. 
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Table 36. Single-Precision Newton-Raphson Binary Division 

;Lines 1-2 Calculation: B s.p. -+ d.p. 
Operations: B -+ RA.1, (s.p. to d.p.)(RA.1) -+ S.2 

01 0 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40EOOOOO 00000000 0 0 
02 1 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40EOOOOO 00000000 0 0 

;Lines 3-4 Calculation: Load XO 
Operations: XO -+ RA.4 

03 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FC24000 00000000 0 0 
04 1 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FC24000 00000000 0 0 

;Lines 5-6 
Calculation: XO d.p. -+ s.p. 
Operations: (d.p. to s.p.)(RA.4) -+ S.6 

05 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FC24000 00000000 0 0 
06 1 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FC24000 00000000 0 0 

;Lines 7-B Calculation: Load B, B * XO 
Operations: S.6 -+ C.7, B -+ RA.B RA.B * C.7 -+ P.10 

" M 
00 
00 
~ 

07 0 1 040 1 0 2 OF 0 0 1 0 0 1 0 0 0 0 3 1 
OB 1 0 040 1 0 2 DF 0 0 1 0 0 1 0 0 0 0 3 1 

3 40EOOOOO 00000000 0 0 ~ 
3 40EOOOOO 00000000 0 0 ~ 

;Lines 9-10 Calculation: 2 - (B * XO) 
Operations: 2 - P.10 -+ S.12 

09 0 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
10 1 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines11-12 Calculation: X1 = XO(2-B * XO) 
Operation: C.7 * S.12 -+ P.14 

11 0 0 040 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
1 2 1 0 040 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
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Table 36. Single-Precision Newton-Raphson Binary Division (Concluded) 

;Lines 13-14 Calculation: B * X1 
Operation: RA.8 * P.14 .... P.16 

1 3 0 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
14 1 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 15-16 Calculation: 2 - (B * X 1 ) 
Operations: P. 14 .... C. 15, 2 - P. 16 .... S.18 

1 5 0 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
16 1 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 17-18 Calculation: X2 = X1 (2 - B * X1) 
Operations: A .... RA. 18, C.15 * S.18 --+ P.20 

1 7 0 0 040 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 41 BOOOOO 00000000 0 0 
1 8 1 0 040 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 41 BOOOOO 00000000 0 0 

en ;Lines .19-20 
Z 

Calculation: A * X2 
Operations: RA.18 * p.20 .... P.22 ...., 

~ 
l> 
(') 
-t 
00 
00 
Co\) ...., 

19 0 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
20 1 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 

;Lines 21-22 Operation: P.22 .... Y 

21 0 0 020 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
22 1 0 020 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
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Double-Precision Newton-Raphson Binary Division 

If the value of B is given as a double-precision number and XO is looked up in a double­
precision seed ROM, no conversions are required prior to performing a double-precision 
division using the Newton-Raphson algorithm. Three iterations are used in the double­
precision example (n = 3). The following formula represents the sequence of 
calculations to be performed: 

AlB = A * XO * (2 - B * XO) * [2 - B * XO * (2 - B * XO)] 
* (2 - B * XO .(2 - B * XO) * [2 - B * XO .(2 - B * XO)]) 

Table 37 shows a double-precision division using a double-precision seed ROM. The 
example divides 22/7. 

Table 37. Double-Precision Newton-Raphson Binary Division 

;Lines 1-4 Calculation: B * XO 
Operations: B -+ RA.4, XO -+ RB.4, RA.4 * RB.4 -+ P.8 

01 0 0 1 CO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 3FC24000 00000000 0 0 
02 1 0 1 CO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 3FC24000 00000000 0 0 
03 0 0 1 CO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 1 3 401 COOOO 00000000 0 0 
04 1 0 1 CO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 1 3 401 COOOO 00000000 0 0 

;Lines 5-8 Calculation: 2 - (B * XO) 
Operation: 2 - P.8 -+ S.12 

" (II) 

00 
00 
I­
U 
<C 

05 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
06 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
07 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
08 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 

3 00000000 00000000 0 0 o;t 

3 00000000 00000000 0 0 ~ 
3 00000000 00000000 0 0 CJ) 

3 00000000 00000000 0 0 

;Lines 9-12 Calculation: X1 = XO(2-B * XO) 
Operation: RB.4 * S. 12 - P.16 

09 0 0 1 CO 0 0 2 BF 0 0 0 0 1 1 0 0 0 0 3 1 
10 1 0 1 CO 0 0 2 BF 0 0 0 0 1 1 0 0 0 0 3 1 
11 0 0 1 CO 0 0 2 BF 0 0 0 0 1 1 0 0 0 0 3 1 
1 2 1 0 1 CO 0 0 2 BF 0 0 0 0 1 1 0 0 0 0 3 1 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
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Table 37. Double-Precision Newton-Raphson Binary Division (Continued) 

;Lines 13-16 Calculation: B * X1 
Operations: RA.4 * P.16 -+ P.20 

13 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
14 1 0 1 CO 0 0 2 EF 0 0 0 0 1 
1 5 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
16 1 0 1 CO 0 0 2 EF 0 0 0 0 1 

000031 
000031 
000031 
000031 

;Lines 17-20 Calculation: 2 - (B * X1) 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

Operations: P.16 -+ C.18, 2 - P.20 -+ 8.24 

1700 382 002 FB 0 0 0 0 1 
18 1 1 382 0 0 2 FB 0 0 0 0 1 
19 0 0 382 0 0 2 FB 0 0 0 0 1 
20 1 0 382 0 0 2 FB 0 0 0 0 1 

000031 
o 0 0 0 3 1 
000031 
o 0 0 0 3 1 

;Lines 21-24 Calculation: X2 = X1 (2-B * X1) 
Operations: C.18 * 8.24 -+ P.28 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

en 21 0 0 1 CO 0 0 2 9F 0 0 0 0 1 
2 22 1 0 1 CO 0 0 2 9F 0 0 0 0 1 
..... 23 0 0 1 CO 0 0 2 9F 0 0 0 0 1 
~ 24 1 0 1 CO 0 0 2 9F 0 0 0 0 1 
~ 

1000031 
1000031 
1000031 
1000031 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

("') 
-t 
00 
00 
W 
..... 

;Lines 25-28 Calculation: B * X2 
Operations: RA.4 * P.28 -+ P.32 

25 0 0 1 CO 0 0 2 EF 00 0 0 1 
26 1 0 1 CO 0 0 2 EF 0 0 0 0 1 
27 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
28 1 0 1CO 0 0 2 EF 0 0 0 0 1 

1 0 0 0 0 3 1 
1 0 0 0 0 3 1 

000031 
000031 

;Lines 29-32 Calculation: 2 - (B * X2) 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

Operations: P.28 -+ C.30, 2 - P.32 -+ 8.36 

29 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
30 1 1 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
31 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
32 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
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Table 37. Double-Precision Newton-Raphson Binary Division (Concluded) 

;Lines 33-36 Calculation: X3 = X2(2-8 * X2) 
Operations: A -+ RA.36, C.30 * S.36 -+ P.40 

33 0 0 1 CO 0 3 2 9F 0 0 1 
34 1 0 1 CO 0 3 2 9F 0 0 1 
35 0 0 1 CO 0 3 2 9F 0 0 1 
36 1 0 1 CO 0 3 2 9F 0 0 1 

1000031 
1000031 
1 0 000 3 1 
1 0 000 3 1 

;Lines 37-40 Calculation: A * X3 

1 3 40360000 00000000 0 0 
3 40360000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

Operations: RA.36 * P.40 -+ P.44 

37 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
38 1 0 1 CO 0 0 2 EF 0 0 0 0 1 
39 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
40 1 0 1 CO 0 0 2 EF 0 0 0 0 1 

1000031 
1000031 
1000031 
1 0 000 3 1 

; Lines 41-44 Operation: P.44.MSH -+ Y 

41 00 12000 2 FF 000 0 1 
42 1 0 1 20 0 0 2 FF 0 0 0 0 1 
4300 120 002 FF 0 0 0 0 1 
44 1 0 120 002 FF 0 0 0 0 1 

1 0 0 003 1 
000031 
000031 
000031 

;Line 45 Operation: P.44.LSH -+ Y 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

..... 
3 00000000 00000000 0 0 ('I) 

3 00000000 00000000 0 0 ~ 
1 3 00000000 00000000 0 0 I-
1 3 00000000 00000000 0 0 U 

~ 
~ ..... 
z 
en 

45 0 0 120 0 0 2 FF 0 0 0 0 1 0 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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Binary Square Root Using the Newton-Raphson Algorithm 

Square roots may be calculated iteratively using the Newton-Raphson algorithm. The 
procedure is similar to Newton-Raphson division and involves evaluating the following 
expression: 

A = B * Xn 

where Xn = the value of X after the nth iteration given 

Xi + 1 = 0.5 * Xi * [3 - B * (Xi ZZ 2)] 

XO = a guess at l/sqrt(B) where 0 < XO < sqrt(3/B) 

and n = number of iterations to achieve the desired precision 

Single-Precision Square Root Using a Double-Precision Seed ROM 

When the value of B is given in single precision, it must be converted to a double­
precision number before it can be used to address a double-precision seed ROM. Since 
the seed XO is stored as a double-precision number, it must first be converted to single 
precision before it is used in the calculation. 

Two iterations (n = 2) are used in a single-precision calculation so the following 
expression for sqrt(B) is to be evaluated: 

A = B * X2 

where X2 = 0.5 * Xl * [3 - B * (Xl 2)] 

and Xl = 0.5 * XO * [3 B * (XO 2)] 

A B * 0.5 * 0.5 * XO * [3 - B * (XO 2)] 
* [3 - B * (0.5 * XO * [3 - B * (XO 2)]) 2] 
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Table 38. Single-Precision Binary Square Root 

;Lines 1-2 Calculation: B s.p .... d.p. 
Operations: B'" RA.1, (s.p. to d.p.l(RA.11 ... S.2 

01 0 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40000000 00000000 0 0 
02 1 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40000000 00000000 0 0 

;Lines 3-4 Calculation: Load XO 
Operation: XO'" RA.4 

03 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 
04 1 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 

;Lines 5-6 Calculation: XO d.p .... s.p. 
Operations: (d.p. to s.p.l(RA.41 ... S.6 

05 0 0 126 1 0 2 FF 0 0 1 0 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 
06 1 0 126 1 0 2 FF 0 0 1 0 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 

;Lines 7-8 Calculation: Load B, B * XO 
Operations: S.6'" C.7, B'" RB.8, RB.8 * C.7'" P.10 " M 

00 
00 

07 0 1 040 1 0 2 7F 0 0 0 1 0 1 0 0 0 0 3 1 
08 1 0 040 1 0 2 7F 0 0 0 1 0 1 0 0 0 0 3 1 

3 40000000 00000000 0 0 .... 
3 40000000 00000000 0 0 (,) « 

;Lines 9-10 Calculation: B * XO 2 
Operations: P.10 * C.7'" P.12, 3'" RA.10'" S.12 

09 0 0 260 0 0 2 6F 0 0 1 0 1 0 0 0 0 3 1 1 3 40400000 00000000 0 0 
10 1 0 260 0 0 2 6F 0 0 1 0 1 0 0 0 0 3 1 1 3 40400000 00000000 0 0 

;Lines 11-12 Calculation: 3 - (B * XO 2) 
Operation: S.12 - P. 12 ... S. 14 

11 0 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
12 1 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
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Table 38. Single-Precision Binary Square Root (Continued) 

;Lines 13-14 Calculation: XO * (3 - (B * XO 2)) 
Operations: C.7 * 8.14 ...... P.16, 1/2 ...... RA.14 ...... 8.16 

13 0 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 
14 1 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 

;Lines 15-16 Calculation: 1/2 * XO * (3-(B * XO 2)) ...... X 1 
Operations: 8.16 * P.16 ...... P.18, 0 ...... RA.16, 

RA.16 + RB.8 8.18 

1 5 0 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
16 1 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 17-18 Calculation: B * X1 
Operations: 8.18 * P. 18 ...... P.20 

1 7 0 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
1 8 1 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

-..J ;Lines 19-20 

~ 
Calculation: B * X1 2 

(") 
-I 
CO 
CO 
W 
-..J 

Operations: P.18 ...... C.19, P.20 * C.19 ...... P.22, 
3 ...... RA.20 ...... 8.22 

19 0 1 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 
20 1 0 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 

3 40400000 00000000 0 0 
3 40400000 00000000 0 0 

;Lines 21-22 Calculation: 3 - (B * X1 2) 
Operations: 8.22 - P.22 ..... 8.24 

21 0 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
22 1 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 23-24 Calculation: X1 * (3 - (B * X1 2)) 
Operations: C.19 * 8.24 ...... P.26, 1/2 ..... RA.24 ..... 8.26 

23 0 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 
24 1 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 
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Table 38. Single-Precision Binary Square Root (Concluded) 

;Lines 25-26 Calculation: 1/2 * Xl * (3 - (B * Xl 2))'" X2 
Operations: 5.26 * P.26 ... P.28, 0'" RA.26, 

RA.26 + RB.8 5.28 

25 0 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
26 1 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 27-28 Calculation: B * X2 ... A 
Operations: 5.28 * P.28 ... P.30 

27 0 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
28 1 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 29-30 Calculation: NOP 
Operation: Y ... Output 

29 0 1 OOA 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
30 1 0 OOA 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

Double-Precision Square Root 

..... 
M 
00 
00 

The value of B is given as a double-precision number so XO can be looked up from to-
a double-precision seed ROM without conversion from one precision to the other. Three ~ 
iterations (n = 3) are required in the double-precision calculation, and the following ~ 
formula for sqrt(B) is to be evaluated: ..... 

A = B * 0.5 * 0.5 * 0.5 * XO * [3 - B * (XO 
* [3 - B * (0.5 * XO * [3 - B * (XO 2)]) 2] 
* [3 - B * (0.5 * 0.5 * XO * [3 - B * (XO 2)] 
* [3 - B * (0.5 * XO * [3 - B * (XO 2)]) 2]) 2] 

2)] 
Z 
en 
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Table 39. Double-Precision Binary Square Root 

;Lines 1-4 Calculations: Load B, Load XO, B * XO 
Operations: B -+ RB.4~ XO -+ RA.4, RA.4 * RB.4 -+ P.8 

RA.4 -+ 5.8 -+ C.1 0 

01 0 0 3EO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
02 1 03EO 0 0 2 FF 00001 1 00003 1 
03 0 0 3EO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 
04 1 0 3EO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 

;Lines 5-8 Calculations: B * XO 2 

3 40000000 00000000 0 0 
3 40000000 00000000 0 0 
3 3FE6AOOO 00000000 0 0 
3 3FE6AOOO 00000000 0 0 

Operations: P.8 * 5.8 -+ P.12, 3 -+ RA.8 -+ 5.12 

05 0 0 3EO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
06 1 0 3EO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
07 0 0 3EO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 
08 1 0 3EO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 

;Lines 9-12 Calculations: 3 - (B * XO 2) 
Operations: 5.12 - p.12 -+ 5.16 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 40080000 00000000 0 0 
3 40080000 00000000 0 0 

Z 09 0 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

-..J 10 1 1 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 t 11 0 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 
(") 12 1 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 
~ 
CO 
CO 
CAl 
-..J 

;Lines 13-16 Calculations: XO * (3 - (B * XO 2)) 
Operations: C.10 * 5.16 -+ P.20, 1/2 -+ RA.16 -+ 5.20 

13 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
14 1 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
1 5 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
16 1 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 17-20 Calculations: 1/2 * XO * (3-(B * XO 2)) -+ X 1 
Operations: 5.20 * P.20 -+ P.24 -+ C.25, 0 -+ RA.20, 

RA.20 + RB.4 -+ 5.24 

1 7 0 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
18 1 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
19 0 0 3CO 0 0 2 AF 0 0 1 0 1 .1 0 0 0 0 3 1 
20 1 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 

;Lines 21-24 Calculations: B * Xl 
Operations: 5.24 * P.24 -+ P.28 

21 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
22 1 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
23 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
24 1 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 

;Lines 25-28 Calculations: B * Xl 2 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

Operations: P.28 * C.25 -+ P.32, 3 -+ RA.28 -+ 5.32 

" (\') 
25 0 1 3EO 0 0 2 6F 0 0 0 0 1 
26 1 0 3EO 0 0 2 6F 0 0 0 0 1 
27 0 0 3EO 0 0 2 6F 0 0 1 0 1 
28 1 0 3EO 0 0 2 6F 0 0 1 0 1 

1 0 0 0 0 3 1 
1 000 0 3 1 
1 0 0 0 0 3 1 
1000031 

1 3 00000000 00000000 0 0 CO 
1 3 00000000 00000000 0 0 ~ 
1 3 40080000 00000000 0 0 () 
1 3 40080000 00000000 0 0 <t 

~ 
".. 
Z 
tJ) ;Lines 29-32 Calculations: 3 - (B * Xl 2) 

Operations: 5.32 - P.32 -+ 5.36 

29 0 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 
30 1 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 
31 00 183 0 0 2 FA 0 0 0 0 1 1 000 0 3 1 
32 1 0 183 0 0 2 FA 0 000 1 1 0 000 3 1 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 33-36 Calculations: X1 * (3 - (B * X1 2)) 
Operations: C.25 * S.36 .... P.40, 1/2 .... RA.36 S.40 

33 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
34 1 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
35 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
36 1 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 

;Lines 37-40 Calculations: 1/2 * X1 * (3 - (B * X1 2)) .... X2 
Operations: S.40 * P.40 .... P.44 .... C.45, 0 .... RA.40, 

RA.40 + RB.4 S.44 

37 0 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
38 1 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
39 0 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 
40 1 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 

;Lines 41-44 Calculations: B * X2 
Operations: S.44 * P.44 .... P.48 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

""-l 41 0 0 1 CO 0 0 2 AF 0 0 0 0 1 t 42 1 0 1 CO 0 0 2 AF 0 0 0 0 1 
n 43 0 0 1 CO 0 0 2 AF 0 0 0 0 1 
-4 44 1 0 1 CO 0 0 2 AF 0 0 0 0 1 CO 

1 0 0 0 0 3 1 
1 0 0 0 0 3 1 
1000031 
1 0 0 0 0 3 1 

1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

CO 
eN 
""-l 

;Lines 45-48 Calculations: B * X2 2 
Operations: P.48 * C.45 .... P.52, 3 .... RA.48 .... S.52 

45 0 1 3EO 0 0 2 6F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
46 1 0 3EO 0 0 2 6F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
47 0 0 3EO 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 40080000 00000000 0 0 
48 1 0 3EO 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 40080000 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 49-52 Calculations: 3 - (8 * X2 2) 
Operations: S.52 - P.52 -+ S.56 

49 0 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
50 1 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
51 0 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
52 1 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 53-56 Calculations: X2 * (3 - (8 * X2 2)) 
Operations: C.45 * S.56 -+ P.60, 1/2 -+ RA.56 -+ S.60 

53 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
54 1 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
55 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
56 1 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 

;Lines 57-60 Calculations: 1/2 * X2 * (3 - (8 * X2 )) -+ X3 
Operations: S.60 * P.60 -+ P.64, 0 -+ RA.60, 

RA.60 + RB.4 -+ S.64 ,... 
57 0 0 3CO 0 0 2 AF 0 0 0 0 1 
58 1 0 3CO 0 0 2 AF 0 0 0 0 1 
59 0 0 3CO 0 0 2 AF 0 0 1 0 1 
60 1 0 3CO 0 0 2 AF 0 0 1 0 1 

1 0 0 003 1 
1 0 0 0 0 3 1 
1000031 
1 0 0 0 0 3 1 

M 
1 3 00000000 00000000 0 0 CO 
1 3 00000000 00000000 0 0 ~ 
1 3 00000000 00000000 0 0 U 
1 3 00000000 00000000 0 0 <t 'I:t ,... 

;Lines 61-64 Calculations: 8 * X3 -+ A 
Operations: S.64 * P.64 -+ P.68 -+ Y.MSH 

61 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
62 1 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
63 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
64 1 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Concluded) 

;Lines 65-68 Calculation: NOP 
Operation: Y.MSH .... Output 

65 0 1 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
66 1 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
67 0 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
68 1 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Line 69 Calculation: NOP 
Operation: Y.LSH .... Output 

69 0 0 18A 0 0 2 FF 0 0 0 0 1 0 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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GLOSSARY 
Biased exponent - The true exponent of a floating point number plus a constant called 
the exponent field's excess. In IEEE data format, the excess or bias is 127 for single­
precision numbers and 1023 for double-precision numbers. 

Denormalized number (denorm) - A number with an exponent equal to zero and a 
nonzero fraction field, with the implicit leading (leftmost) bit of the fraction field being O. 

NaN (not a number) - Data that has no mathematical value. The' ACT8837 /' ACT884 7 
produces a NaN whenever an invalid operation such as 0 * 00 is executed. The output 
format for an NaN is an exponent field of all ones, a fraction field of all ones, and a 
zero sign bit. Any number with an exponent of all ones and a nonzero fraction is treated 
as a NaN on input. 

Normalized number - A number in which the exponent field is between 1 and 254 
(single precision) or 1 and 2046 (double precision). The implicit leading bit is 1. 

Wrapped number - A number created by normalizing a denormalized number's fraction 
field and subtracting from the exponent the number of shift positions required to do 
so. The exponent is encoded as a two's complement negative number. 
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Implementing a Double-Precision Seed ROM 
The seed ROM assumed in the previous microcode examples is a double-precision seed 
ROM containing both division and square root seeds. Six chips are necessary to build 
this seed ROM: five 4 x 4096 registered PROMs and one latch (ordinarily implemented 
in a PAL). Figure 26 shows a sample implementation for a double-precision seed ROM. 

Three of the PROMs are for generating the exponent part of the seed. All 11 exponent 
lines are necessary to accurately determine the exponent of the seed. There are 
12 address lines in a 4 x 1024 PROM, so the last address line can be used for a 
microcode bit that tells whether a divide or square root seed is being read. Since there 
are only 11 bits in the exponent and three PROMs are used, there are 12 output bits 
but one bit is not used. The equations giving the contents of the PROMs is given in 
a later section. 

The other two PROMs generate the mantissa part of the seed. One address line of 
the PROMs is used for the microcode bit telling whether a divide or square root seed 
is to be used. For a square root seed, the least significant bit of the exponent is needed 
in generating the mantissa seed. Therefore, another address line of the PROMs is used 
by the least significant exponent bit. This leaves 10 address lines to be used to look 
up the mantissa seed. Since there are eight output bits from the two PROMs, an eight­
bit seed is generated. 

The sign bit of B needs to be preserved for use when the seed is read. In the case 
of binary division, this requirement is obvious. In the square root calculation, the sign 
bit of B should always be zero. This condition should be tested by the microprogram. 

Since every real square root has two answers, normally the positive answer is assumed. 
However, since the sign of B is meaningless to Newton-Raphson unless it is positive, 
the example microprograms assume that a negative B simply means that the negative 
of the square root of B is the desired answer instead of the positive root. This is 
accomplished by using the absolute value of B in all computations except for looking 
up the seed. If the seed is negative, then the answer generated will be the negative root. 

PROM Contents 

Because one address line of the PROMs selects divide or square root, the PROMs can 
be considered to be divided functionally into two halves: the divide half and the square 
root half. Each functional half is discussed separately in the sections below. 

Divide PROMs 

The exponent part of the seed is defined in the following manner. Assuming that 
B = m * (2e) and XO = m' * (2e'), e' is computed as e' = - e. Using the definition 
of an IEEE number, the value of m can be represented as a number within the following 
interval: 1 :$ m < 2. 
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DATA BUS 
63-0 

t.. 

32 , ACT8837 FLOATING 
POINT PROCESSOR 

32" , 
Y OUTPUT 

32L J 
63-32 

, 

63 SIGN BIT 
OE 

LOGIC 

63 

11 OE A10-AO 
6{52 4K X 4 

4 REGISTERED PROM 
03-00 

62-59 
A11 

11 " OE ... -
A10-AO -

62-52 4K X 4 

4" REGISTERED PROM 

58-55 
03-00 A11 

11 " --. A10-AO 
OE 

62~52 4K X 4 

4 REGISTERED PROM , 03-00 A11 .... 
54-52 

11 OE A10-AO 
52~42 4K X 4 

4" REGISTERED PROM 

51~48 
03-00 A11 

11 OE A10-AO 
5{42 4K X 4 

4 REGISTERED PROM 

4{44 
03-AO 

A11 

Figure 26. IEEE Double-Precision Seed ROM for 
Newton-Raphson Division and Square Root 
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This range of values of m can be subdivided into two cases: 
m = 1, or 1 < m < 2 

Since m' is computed as m' = 1 I m, the range of m' will be 

m' = 1, or 112 < in' < 1 

To be represented as a normalized IEEE number, m" would be 

m" = m' * (21) = 21m 

This would make the range of m" 

m" = 2, or 1 < m" < 2 

(1 ) 

This is still not quite in the range of a valid IEEE number; however, m" = 2 only when 
m = 1. Therefore, m" can be forced to be just less than 2 in this case. 

Silice XO = m' * (2e'), to use in" in the PROMs, we must have an e" in the exponent 
such that XO = m" * (2e"). This is true for e" = e' - 1 . Since, XO = m" * (2e''), 
the following substitution can be made: 

XO = (m' * (2 1)) * (2(e' - 1)) 
m' * (2 1) * (2e') * (2( - 1)) 
m' * (2e') * (2(1 -1)) 
in' * (2e ') * (20) 
m' * (2e') 

en Therefore, if e" is used in the exponent PROMs and m" is used in the mantissa PROMs, 
:2 
-....I a normalized IEEE seed can be generated. The only exception to the formula is that 
~ for m = 1, 
l> 
C") 
-4 
(X) 
(X) 
Co\) 
-....I 

m" = 2 I m - delta 

Where delta = 2(-8) 

So m" = 2 I m, and e" = (- e) - 1. 

Since IEEE exponents are represented in excess 1023 notation, a formula for X" must 
be determined, given that X is the IEEE exponent. As an IEEE exponent, 
X = e + 1023 -+ e = X - 1023 and X" = e" + 1023. So, for X" in terms of X, 

X" = e" + 1023 
( - e) - 1 + 1 023 

= (- (X - 1023)) + 1 022 
= 1023 - X + 1022 
= 2045 - X 

So given the 11 bits of X as address of the seed exponent, the value stored at address 
X is 

X" = 2045 - X (2) 
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Given that the mantissa seed ROM uses 10 bits of the mantissa to determine the seed, 
each seed Xm will be used for some range of mantissas, 8m to (8m + 2 * delta). 
The formula for Xm is from formula (1). 

218m -Xm 
2/(8m + 2 * delta) -Xm 

Where delta = 2( -11) 

This value is used since the actual Xm should be generated by the mantissa in the 
center of the given range: 

Xm = 2/(8m + delta) 

This would result in a more accurate seed on the average. Therefore, the formula used 
to generate the mantissa part of the seed is 

Xm = 2/(8m + (2(-11))) 

Square Root PROMs 

(3) 

The seed for the square root, XO, is actually the reciprocal of the square root of the 
data, 8: 

XO = 1 1(8(112)) 

Given 8 = m * (2e) and XO = m' * (2e'), the expression for XO can be evaluated 
by substitution and reduction: 

XO = 1 I ((m * (2e ))(1/2)) 

= 1 I (m(1/2) * (2(e/2))) 
= m( - 1/2) * (2( - e/2)) 

Then m' and e' may be written as m' = m( - 1/2) and e' = - e/2. 

Next, it is necessary to verify that the above m' and e' form a valid normalized IEEE 
number. When e is an odd number, e' is not an integer and, therefore, it is not valid 
IEEE exponent. If the above expression is separated into two cases, e' can be 
represented in terms of a valid IEEE exponent, e": 

e' = -e/2 
e' = e" + 112 

for e even 
for e odd 

Rewriting e" in terms of e produces this expression: 

e" = e' - 1/2 = (-e/2) - 1/2 for e odd 

Then a valid IEEE exponent, e", can be written for all e as 

e" - e/2 
e" = (-e/2) - 112 

for e even 
for e odd 
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This is equivalent to e" = intI - e/2) for all e. However, the 1/2 affects the mantissa: 

XO = m' * (2e') 
XO = m' * (2(e" + 1 12)) 
XO = m' * (21/2) * (2e") 

for odd e 
for odd e 

Since XO = m" * (2e") m" can be rewritten as 

mil = m' 
m" = m' * (21/2) 

In terms of m, m" = m - 1/2 

for even e 
for odd e 

m" = (m-1/2) * (2112) 

Simplifying m" for odd e, 

m" (1/m1/2) * (21/2) 
m" = (21m 1 12) 

for even e 
for odd e 

for odd e 
for odd e 

Just as the divide exponent needed to be converted to excess 1023 notation, so the 
same must be done for the square root: 

X" = e" + 1023 
X = e + 1023 
X" = intI - e/2) + 1023 
X" = int((1023-X) I 2) + 1023 

en The IEEE bits for the exponent seed, X", can be expressed in terms of the IEEE bits 
Z for the exponent of B, X: 
..... 
~ X" = intI (1023-X) 12) + 1023 

~ Because the formula for m" depends on the least significant bit of e, that bit must 
CO be used as an address line to the mantissa. 
CO 
eN Since X = e + 1023, an odd value of e will result in an even value of X, and an even 
..... value of e will result in an odd value of X. Therefore, 
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SN74ACT8841 
Digital Crossbar Switch 

The SN74ACT8841 is a single-chip digital crossbar switch that cost-effectively 
eliminates bottlenecks to speed data through complex bus architectures. 

The' ACT8841 has 16 four-bit bidirectional ports which can be connected in 
any conceivable combination. Total time fot data transfer is 14-ns flowthrough. 

The' ACT8841 is ideal for multiprocessor application, where memory bottlenecks 
tend to occur. For example, four 32-bit buses can be easily connected by two 
'ACT8841 devices. System architectures based on the 16-port 'ACT884 1 can 
include up to 16 switching nodes (i.e., processors, memories, or bus interfaces). 
Larger processor arrays can be built with multistage interconnect schemes. 
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• High-Speed Programmable Switch for 
Parallel Processing Applications 

• Dynamically Reconfigurable for Fault­
Tolerant Routing 

• 64 Bidirectional Data I/Os in 16 Nibble 
(Four-Bitl Groups 

• Data 110 Selection Programmable by Nibble 

• Eight Banks of Control Flip-Flops for Storing 
Configuration Programs 

• Two Selectable Hard-Wired Switching 
Configurations 

• Selectable Stored-Data or Real-Time Inputs 

• 156-Pin Grid-Array Package 

• CMOS 1 I'm EPIC"' Process 

• Single 5-V Power Supply 

description 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Ga PACKAGE 

(TOPVIEWI 

JUNE 1988 

2 3 4 5 6 7 8 9 10'1 12131415 

A ••••••••••••••• 

B ••••••••••••••• · ............. . · . . ... · .. · · • • •• · • · · .. 
G • • • • · ... 
H • · • · • • • • 
J • • • • • ••• 
K · • · • • • 
L · · • • •• 

M · • · • • • • • • · ............. . 
p ••••••••••••• · ............. . 

The SN74ACT8841 is a flexible, high-speed digital crossbar switch. It is easily microprogrammable to 
support user-definable interconnection patterns. This crossbar switch is especially suited to multiprocessor 
interconnects that are dynamically reconfigurable or even reprogram mabie after each system clock. The 
'ACT8841 is built in Texas Instruments advanced 1 I'm EPIC"' CMOS process to enhance performance 
and reduce power consumption. The switch requires only a 5-V power supply. 

Because the' ACT8841 is a 16-port device, system architectures based on the' ACT8841 can include 
up to 16 switching nodes, which may be processors, data memories, or bus interfaces. Larger processor 
arrays can be built with multistage interconnection schemes. Most applications will use the crossbar switch 
as a broadband bus interface controller, for example, between closely coupled processors which must 
exchange data with very low propagation delays. 

The' ACT8841 has ten selectable control sources, including eight banks of programmable control flip-flops 
and two hard-wired control circuits. The device can switch from 1 to 16 nibbles (4 to 64 bits) of data 
in a single cycle. 

The 64 110 pins of the' ACT8841 are arranged in 16 switch able nibbles (see Figure 1). A single input nibble 
can be broadcast to any combination of 15 output nibbles, or even to 16 nibbles (including itself) if operating 
off registered data. Multiple input nibbles can be switched to multiple outputs, depending on the programmed 
configurations available in the control flip-flops. 

The digital crossbar switch is intended primarily for multiprocessor interconnection and parallel processing 
applications. The device can be used to select and transfer data from multiple sources to multiple 
destinations. Since it can be dynamically reprogrammed, it is suitable for use in reconfigurable networks 
for fault-tolerant routing. 

EPIC is a trademark of Texas Instruments Incorporated 

PRODUCT PREVIEW documents contain information 
on products in the formative or design phase of 
development. Charact.ristic dati anil other 

~:::~::t:=:s l:ht dt~iXa=;:IS';r T3i~::~~:~~~h::: 
products without notica. 

TEXAS ", 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

Copyright © , 988. Texas Instruments Incorporated 
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SN74JCT8841 
DIGITAL CROSSBAR SWITCH 

description (continued) 

NO. 
Al 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

AlO 

All 

A12 

A13 

A14 

A15 

81 

82 

83 

84 

85 

86 

87 

88 

89 

810 

811 

812 

813 

814 

815 

Cl 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 
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The' ACT8841 and the bipolar SN74AS8840 share the same architecture. Microcode for the' AS8840 
can be tun on the' ACT8841 if the additional control inputs to the' ACT8841 are properly terminated. 
However, because the' ACT8841 is a CMOS device with six additional control inputs, the' AS8840 and 
the' ACT884 1 are not socket-compatible and cannot be used interchangably. A summary of the differences 
between the SN74AS8840 and the SN74ACT8841 is provided in the 'AS8840 and 'ACT8841 
FUNCTIONAL COMPARISON at the end of the data sheet. 

The SN74ACT8841 is characterized for opertion from OOC to 70°C. 

Table 1. 'ACT8841 Pin Grid Allocation 

PIN PIN PIN PIN 
NAME NO. NAME NO. NAME NO. NAME 

GND Cl0 D31 H12 VCC N7 CNTA13 

GNO Cll 0ED6 H13 LSCLK N8 CAEAOO 

037 C12 VCC H14 SELOLS N9 VCC 
D35 C13 GNO H15 CNTA3 Nl0 DO 

033 C14 D23 Jl OEC NIl 03 

WE C15 D21 J2 CAWAITEO N12 06 

CAAOAI Dl 043 J3 CAWAITEI N13 GNO 

CNTR7 02 D42 J4 GND N14 D8 

CNTA4 03 VCC J12 GNO N15 D9 

0El57 D7 GND J13 CNTA2 PI GNO 

D29 D8 VCC J14 CNTAI P2 GND 

027 D9 GNO J15 CNTAO P3 056 

D25 013 D22 Kl CAWAITE2 P4 D58 

GND D14 D20 K2 OE012 P5 D60 

GND D15 D19 K3 D48 P6 062 

GND El D45 K13 D15 P7 CNTA12 

GND E2 044 K14 D14 P8 CNTA15 

039 E3 5EiITO K15 lIDJ3 P9 TPO 

D36 E13 0Ei55 L1 D49 Pl0 OEDO 

034 E14 018 L2 050 Pll D2 

0Ei58 E15 D17 L3 OED13 P12 D4 --
CAADAO Fl OEDll L13 OE02 P13 D7 

CASACE F2 046 L14 012 P14 GND 

CNTA5 F3 D47 L15 D13 P15 GND 

D30 F13 D16 Ml D51 Al GNO 

D28 F14 OED4 M2 052 A2 GNO 

D26 F15 CASEL3 M3 054 A3 D57 

D24 Gl CNTR8 M7 GND A4 D59 

GNO G2 CNTA9 M8 VCC A5 D61 

GND G3 CNTA10 MID GND A6 0EliT5 
D41 G4 GND M13 VCC A7 CNTA14 

D40 G12 GND M14 010 R8 CAEAOI 

GNO G13 CASEL2 M15 Dl1 A9 CAEAD2 

D38 G14 CASELI Nl D53 AID TPI 

0ED9 G15 CASELO N2 D55 All Dl 

032 HI CNTAll N3 GND A12 OEDT 
VCC H2 SELOMS N4 VCC A13 D5 

CACLK H3 MSCLK N5 OED14 R14 GNO 

CNTR6 H4 VCC N6 D63 R15 GNO 

TEXAS ." 
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PIN 

NAME NO. 

CNTRO J15 

CNTRl J14 

CNTR2 J13 

CNTR3 H15 

CNTR4 A9 

CNTR5 69 

CNTR6 C9 

CNTR7 A8 

CNTR8 Gl 

CNTR9 G2 

CNTR10 G3 

CNTRll Hl 

CNTR12 P7 

CNTR13 N7 

CNTR14 R7 

CNTR15 P8 

CRADRO 87 

CRADRl A7 

CRCLK C8 

CREADO N8 

CREADl R8 

CREAD2 R9 

CRSELO G15 

CRSEL 1 G14 

CRSEL2 G13 

CRSEL3 F15 

CRSRCE 88 

110 

110 

I 

I 

I 

I 

I 

SN74ACTB841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description 

DESCRIPTION 

Control 1/0. Inputs four control words to the control flip-flops on each CRCLK cycle. As outputs, the 

same addresses can be used to read the flip-flop settmgs. 

Control register address. Selects 1 6-blts of control flip-flops as a source/destination for outputs/inputs 

on CNTRO-CNTR15. (see Table 7) 

Control register clock. Clocks CNTRO·CNTR15 into the control flip-flops on low-te-high transition. 

Selects one of eight banks of control flip-flops to read out on eNTRD-eNTRl 5 in 16-blt words 

addressed by CRADR1-CRADRO. 

Selects one of ten control configurations. 

Load source select. When low selects CNTR inputs, when high selects DATA Inputs. 

TEXAS ." 
INSTRUMENTS 

POST OFFICE BOX 655012. OALLAS. TEXAS 75265 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

PIN 

NAME NO. 

CRWRITEO J2 

CRWRITEl J3 
CRWRITE2 Kl 

00 Nl0 
01 Rll 

02 Pll 

03 Nll 

04 P12 

05 R13 

06 N12 

07 P13 

08 N14 

09 N15 

010 M14 

011 M15 
012 L14 

013 L 15 
014 K14 

015 K13 
016 F13 
017 E15 
018 E14 

019 015 

020 014 
021 C15 

022 013 
023 C14 

024 813 

025 A13 

026 812 
027 A12 
028 811 

029 All 

030 810 

031 Cl0 
032 C6 

033 A5 
034 85 

035 A4 

6-8 

110 

I 

1/0 

110 

Table 2. 'ACT8841 Pin Functional Description (continued) 

DESCRIPTION 

Destination select. Selects one of eight control banks. (see Table 4) 

1/0 data bits 0 through 31 (data bits 0 through 31 are the least significant half I. 

1/0 data bits 32 through 35 (data bits 32 through 63 are the most significant half). 

TEXAS • 
INSTRUMENTS 
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PIN 

NAME NO. 
036 84 
037 A3 
038 C4 
039 83 
040 C2 
041 Cl 
042 02 
043 01 
044 E2 
045 El 
046 F2 
047 F3 
048 K3 
049 L1 

050 L2 
051 M1 
052 M2 
053 Nl 
054 M3 
055 N2 
056 P3 
057 R3 
058 P4 
059 R4 
060 P5 
061 R5 
062 P6 
063 N6 
GNO A1 
GNO A2 
GNO A14 
GNO A15 
GNO 81 
GNO 82 
GNO 814 
GNO 815 
GNO C3 
GNO C13 
GNO 07 
GNO 09 
GNO G4 
GNO G12 

110 

110 

SN74ACTBB41 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description (continued) 

DESCRIPTION 

1/0 data bits 36 through 63 (data bits 32 through 63 are the most significant half). 

Ground /all pins must be used). 

TEXAS ." 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functionel Description (continued) 

PIN 

NAME NO. 
110 DESCRIPTION 

GND J4 
GND J12 
GND M7 
GND Ml0 
GND N3 
GND N13 
GND Pl 
GND P2 

Ground lall pins must be used). 

GND P14 
GND P15 
GND Al 
GND A2 
GND A14 
GND A15 
LSCLCK H13 I Clocks the least significant half of data inputs into the input registers on a low-ta-high transition. 

MSCLK H3 I Clocks the most significant half of data inputs into the input registers on a low-ta-high transition. 

OEC Jl I Output enable for control flip-flops, active low 

OEDO Pl0 
OEDl A12 
OED2 L13 
OED3 K15 
OED4 F14 
OED5 E13 
OED6 Cll 
OED7 Al0 
orns 

I Output enables for data nibbles. active low 
86 

OED9 C5 
OED 10 E3 
OEDll Fl 
OED12 K2 
orn13 L3 
OED14 N5 
OED15 A6 

TEXAS ." 
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PIN 
110 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description (concluded) 

DESCRIPTION 
NAME NO. 

SELOLS H14 I 
When low, selects the stored. least significant data input to the main internal bus. When high, real· 

time data is selected. 

SELDMS H2 I 
When low, selects the stored, most significant data input to the main internal bus. When high, real-

time data is selected. 
TPO P9 

I Test pins. High during normal operation. (see Table 9) 
TPl Rl0 

Vee e7 

Vee e12 

Vee 03 

Vee DB 

Vee H4 

Vee H12 
5-V supply 

Vee M8 

Vee M13 

Vee N4 

Vee N9 

WE A6 I Write enable for control flip-flops, active low 

overview 

The 64 110 pins of the' ACT8841 are arranged in 16 nibble (four-bitl groups where each set of four pins 
serves as bidirectional input!; to and outputs from a nibble multiplexer. During a switching operation, each 
nibble passes four bits of either stored or real-time data to the main internal 64-bit data bus. Each output 
multiplexer will independently select one of the 16 nibbles from this 64-bit data bus. 

Data nibbles are organized into two groups: the least significant half (031-00) and the most significant 
half (063-0321. Stored versus real-time data inputs can be selected separately for the LSH and the MSH. 
Two clock inputs, LSCLK and MSCLK, are available to latch LSH and MSH data inputs, respectively, into 
the data register. 

The pattern of output nibbles resulting from the switching operation is determined by a selectable control 
source, either one of eight banks of programmable control flip-flops or one of two hard-wired switching 
configurations. Inputs to the control flip-flops can be loaded either from the data bus or from control liDs. 
A separate clock (CRCLKI is provided for loading the banks of control flip-flops. 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

"tJ logic symbol 
::xl 
0 DIGITAL CROSSBAR SWITCH 

C .. 
C 'ACT8841 WE 

(") CREAOO 

-t CREAOI 

CAEA02 
"0 CRClK 

SELECT 

DESTINATION I CRWRITEO 
::xl 
m CRWRITEI 

:S CRWRITEZ 

CRSRCE 

m 
SELECTi 

CASElO 

:E OEC 
CRSEll 

REAO 
CRSELZ 
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architecture 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The' ACT884 1 digital crossbar switch has its 64 data II0s arranged in 16 multiplexer logic blocks, as shown 
in Figure 2. Each nibble multiplexer logic block handles four bits of real-time input and four bits of stored­
data input, and either input can be passed to the common data bus. 

Two input multiplexer controls are provided to select between stored and real-time inputs. SELOLS controls 
input data selection for the LSH (031 -00) of the 64-bit data input, and SELOMS for the MSH (063-032). 
The input register clocks, LSCLK and MSCLK, are grouped in the same way and are used to clock data 
into the registers in the multiplexer logic blocks. The 16 data input nibbles make up the 64 data bits on 
the internal main bus. 

This common bus supplies 16 data nibbles to a 1 6-to-1 output multiplexer in each multiplexer logic block 
(see Figure 3), As determined by one of ten selectable control sources, the 1 6-to-1 output multiplexer 
selects a data nibble to send to the outputs via the three-state output driver. 

Control of the input and output multiplexers determines the input-to-output pattern for the entire crossbar 
switch. Many different switching combinations can be set up by programming the control flip-flop 
configurations to determine the outputs from the 1 6-to-1 multiplexers. 

For example, the switch can be programmed to broadcast one data input nibble through the other 15 nibbles 
(60 outputs). Conversely, a 1 5-to-1 nibble multiplexer can be configured by programming the switch to 
select and output a single data nibble from the 64-bit bus. Several examples are described in more detail 
in a later section. 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

functional block diagram 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

multiplexer logic group 

There are 16 multiplexer logic blocks, one for each nibble. External data flows from four data 110 pins 
into a logic block. A block diagram of the multiplexer logic is shown in Figure 3. The data inputs are either 
clocked into the data register or passed directly to the main internal bus. The 64 bits of data from the 
main bus are presented to a 16-to-l multiplexer, which selects the data nibble output. 

Each of the 16 nibble multiplexer logic blocks contains eight control flip-flop (CF) groups, one for each 
of the control banks. A control bank stores one complete switching configuration. Each CF group consists 
of four D-type edge-triggered flip-flops. In Figure 3, the CF groups are shown as CFXXO to CFXX7, where 
XX indicates the number of the nibble multiplexer logic group (0 < = XX < = 15). CFXXO represents the 
16 CF groups (one from each logic block) which make up flip-flop control bank 0, CFXX 1 the 16 CF groups 
in bank 1, etc. 

In addition to the eight banks of programmable flip-flops, two hard-wired switching configurations can 
be selected. The MSH/LSH exchange directs the input nibbles from each half of the switch to the data 
outputs directly opposite. Thi~ switching pattern is shown in Table 3 below. For example, data input on 
D ll-D8 is output on D43-D40, and data input on D43-D40 is output on Dll-D8. 

6-16 

Table 3. MSH/LSH Exchange 

LSH MSH 

03·00 035·032 

07·04 039·036 

011·08 043·040 

015·012 047·044 

019·016 051·048 

023·020 055·052 

027·024 059·056 

031·028 063·060 

The second hard-wired configuration, a read-back function, causes all 64 bit to be output on the same 
I/0s on which they were input. Neither of the hard-wired control configurations affects the contents of 
the control banks. 

The control source select, CRSEL3·CRSELO, determines which switching pattern is selected, as shown 
in Table 4. 

Table 4. 16-to-l Output Multiplexer Control Source Selects 

CRSEL3 CRSEL2 CRSELl CRSELO CONTROL SOURCE SELECTED 

L L L L Control bank 0 (programmable) 

L L L H Control bank 1 (programmable) 

L L H L Control bank 2 (programmable) 

L L H H Control bank 3 (programmable) 

L H L L Control bank 4 (programmable) 

L H L H Control bank 5 (programmable) 

L H H L Control bank 6 (programmable) 

L H H H Control bank 7 (programmable) 

H X X L MSH/LSH exchange * 

H X X H Read-back (output echoes input) * 

*Hard-wired switching configuration 
X "" don't care 
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control words 

SN74ACTBB41 
DIGITAL CROSSBAR SWITCH 

A CF group can store a four-bit control word (CFN3-CFNO) to select the output of the 16-to-1 multiplexer 
for that nibble port. One control word is loaded in each CF group. A total of 16 words, one per multiplexer 
logic block, are loaded in a bank to configure one complete switching pattern. Table 5 lists the control 
words and the input data each selects. 

Each control word can be stored in a CF group and sent as an internal control signal to select the output 
of a 16-to-1 multiplexer in a nibble logic block. For example, any CF group loaded with the word "LHHH" 
will select the data input on 031-028 as the outputs of the associated nibble. If all 16 CF groups in a 
bank were loaded with "LHHH," the same output (031-028) would be selected by the entire switch. 

Table 5. 16-to-1 Output Multiplexer Control Words 

INTERNAL SIGNALS INPUT DATA SELECTED AS 

CFN3 CFN2 CFNI CFNO MULTIPLEXER OUTPUT 

L L L L 03·00 

L L L H 07·04 

L L H L 011·08 

L L H H 015·012 

L H L L 019·016 

L H L H 023·020 

L H H L 027-024 

L H H H 031·028 

H L L L 035·032 

H L L H 039·036 

H L H L 043·040 

H L H H 047·044 

H H L L D51·D48 

H H L H 055·052 

H H H L 059·056 

H H H H 063·060 

loading control configurations 

CRWRITE2-CRWRITEO select which control bank is being loaded, as shown in Table 6. 

Table 6. Control Flip-Flops Load Destination Select 

CRWRITE2 

L 

L 

L 

L 

H 

H 

H 

H 

CRWRITEI CRWRITEO DESTINATION 

L L Control bank 0 

L H Control bank 1 

H L Control bank 2 

H H Control bank 3 

L L Control bank 4 

L H Control bank 5 

H L Control bank 6 

H H Control bank 7 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The control words for a bank can be loaded either 16 bits at a time on the control 110 pins (CNTR1 5-CNTRO) 
or all 64 bits at once on the data inputs (063-00). If the control load source select, CRSRCE, is high, the 
words are loaded from the data inputs. When CRSRCE = L, the CNTR inputs are used. 

When a control bank is loaded from the data inputs, WE, CRSRCE, CRWRITE2-CRWRITEO, and the control 
register clock CRCLK are used in combination to load all 16 control words (64 bits) in a single cycle. A 
MSH/LSH exchange like that shown in Table 3 is used to load the flip flops on a rising CRCLK clock edge. 
For example, data inputs 03-00 go to the data bus and then to the CF group that selects the data outputs 
for 035-032. CRWRITE2-CRWRITEO select the control bank that is loaded (see Table 6). 

The CNTR 15-CNTRO inputs can also be used to load the control banks. The bank is selected by 
CRWRITE2-CRWRITEO (see Table 6). Four control words per CRCLK cycle can be input to the CF groups 
(CFXX) that make up the bank. The CF groups loaded are selected by CRAOR1-CRAORO, as shown in 
Table 7. Four CRCLK cycles are needed to load an entire control bank. 

Table 7. Loading Control Flip-Flops from CNTR liDs 

CF GROUPS LOADED BY 

CRAD1 CRADO WE CRCLK CONTROL ICNTRI I/O NUMBERS 

.15·12 11-8 7-4 3-0 
L L L S CF12 CF8 CF4 CFO 

L H L S CF13 CF9 CF5 CFl 

H L L S CF14 CF10 CF6 CF2 

H H L S CF15 CFll CF7 CF3 

x x H X Inhibit write to flip-flops 

To read out the control settings, the same address signals can be used, except that no CRCLK signal is 
needed and DEC is pulled low. CREA02-CREADO select the bank to be read; the format is the same as 
for CRWRITE2-CRWRITEO, shown in Table 6. 

Using the control II.0s to read the control bank settings can be valuable during debugging or diagnostics. 
Control settings are volatile and will be lost if the' ACT8841 is powered off. An external program controlling 
switch operation may need to read the control bank settings so that it can save and restore the current 
switching configurations. 

test pins 

TP1-TPO test pins are provided for system testing. As Table 8 shows, these pins should be maintained 
high during normal operation. To force all outputs and liDs low, low signals are placed on TP1-TPO and 

en all output enables (OE015-0EOO and DEC). To force all outputs and liDs high, TP1 and all output enables :z are pulled low, and TPO is driven high. When TPO is left low and a high signal is placed on TP1 , all outputs 
""-I on the' ACT8841 are placed in a high-impedance state, isolating the chip from the rest of the system. 

~ l> Table 8. Test Pin Inputs 

C') 
-I 
CO 
CO 
~ .-. 
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TP1 

L 

L 

H 

H 

TPO 

L 

H 

L 

H 

OED15-

lffilo 
OEC RESULT 

L L All outputs and II0s forced low 

L L All outputs and II0s forced high 

X X All outputs placed in a high-impedance state 

X X Normal operation (default state) 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Most' ACT8841 switch configurations are straightforward to program, involving few control signals and 
procedures to set up the control words in the banks of flip-flops. Control signals and procedures for loading 
and using control words are shown in the following examples. 

broadcasting a nibble 

Any of the 16 data input nibbles can be broadcast to the other 15 data nibbles for output. For ease of 
presentation, input nibble 063-060 is used in this example. Example 1 presents the microcode sequence 
for loading flip-flop bank 0 and executing the nibble broadcast. 

The low signal on CRSRCE selects CNTR 1 5-CNTRO as the input source, and the low signals on 
CRWRITE2-CRWRITEO select flip-flop bank 0 as the destination. Table 5 shows that to select data on 
063-060 as the output nibble, the four bits in the control word CFN3-CFNO must be high; therefore the 
CNTR15-CNTRO inputs are coded high. The four microcode instructions shown in Example 1 load the same 
control word from CNTR 15-CNTRO into all 16 CF groups of bank O. 

Once the control flip-flops have been loaded, the switch can be used to broadcast nibble 063-060 as 
programmed. The microcode instruction to execute the broadcast is shown as the last instruction in 
Example 1. WE is held high and the data to be broadcast is input on 063-060. The high signal on SELOMS 
selects a real-time data input for the broadcast. MSCLK and LSCLK (not shown) can be used to load the 
input registers if the input nibble is to be retained. No register clock signals are needed if the input data 
is not being stored. 

The banks of control flip-flops not selected as a control source can be loaded with new control words 
or read out on CNTR15-CNTRO while the switch is operating. For example, the MSH data inputs can be 
used to load flip-flop bank 1 of the LSH while bank 0 of the LSH is controlling data 1/0. 
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Example 1. Programming a Nibble Broadcast 

lNSTi 1 ± ,I CNTR I/O NUMBERS CRSRCE CRWRITE2 CRWlUTEl CRWRITEO CRADR' CRADRO 
NO. 15-12 11-8 7-4 3-0 

CRSEL3 CRSEL2 eRSEL 1 CRSELO WE SElDMS SELDLS OEOl6-0ED0 OEC CRCLK 

1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx· XXXX 1 I 
1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx XXXX 1 S 
1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx XXXX 1 ..r 
1111 ',11 1111 1111 X X X X 0 X X xxxx xxxx xxxx xxxx 1 ..r 
xxxx xxxx xxxx xxxx 0 0 0 0 1 1 X 1000 0000 0000 0000 1 None 

Com ....... 

·INST. NO. COMMENT 

Loads CF12. CFe. CF4, CFO of bank a 

Loads CF13, CF9, CFS, CFl of bank 0 

Loads CF14. CF10. CF6. CF2 of bank 0 

Loads CF16, CF11. CF7., CF3 of bank 0 

Selects bank 0 for switching control 
• Selects real-time data inputs 

Example 2. Programming an MSH/LSH Exchange on CNTR Inputs 

lNST. 
CRSRCE CRWfUTE2 CRWRlTE' CRWRITEO CRAORl CRAORO 

NO. 

tNTH 110 NUMBERS 
CRSEL3 CRSEl2 C"SEL 1 CRSELO 

15-12 11-8 7·' 3·0 

0100 0000 1100 1000 

0101 0001 1101 1001 

0111 0011 1111 1011 

0111 0011 1111 lOll 

xxxx xxxx xxxx xxxx 

INST. NO. 

Comments 

COMMENT 

Loads CF12. CFa. CF4. Cfa 01 bank 7 

Loads CF13. CF9. CF5. Cfl of bank 7 

Loads Cf14. CflO. Cf6. Cf2 of bank 7 

Loads eF15. CF11. CF7. CF3 of bank 7 

Selects bank 7 tor SWltchmg control 
Selects registered data Inputs 

WE SElDMS SELDLS OE015-0£00 0eC CRCUt 

XXXX xxxx xxxx xxxx I 
xxxx xxxx xxxx xxxx .r 
xxxx xxxx xxxx xxxx .r-
xxxx xxxx xxxx xxxx .r 
0000 0000 0000 0000 None 

CI en 
-2 5! ..... 
-t "'" » r-n 
n-t 
::Ill = 
e= 
en:!:: 
en = > 
::Ill 

en =e 
=t 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

programming an MSH/LSH exchange 3: 
A second, more complicated example involves programming the switch to swap corresponding nibbles W 
between the MSH and the LSH (first nibble in the LSH for first nibble in the MSH, and so on). This swap > 
can be implemented using the hard-wired logic circuit selected when CRSEL3 is high and CRSELO is low. W 
Programming this swap without using the MSH/LSH exchange logic requires loading a different control a: 
word into each mux logic block. This is described below for purposes of illustration. Q. 

Each nibble in one half, either LSH or MSH, selects as output the registered data from the corresponding ~ 
nibble in the other half. The registered data from 035-032 is to be output on 03-00, the registered data (,) 
from 03-00 is output on 035-032, and so on for the remaining nibbles. As shown in Table 4, the flip-flops ~ 
for 03-00 have to be set to 1000 and the 035-032 inputs must be low. The CF groups and control words C 
involved in this switching pattern are listed in Table 9. 0 

a: 
Table 9. Control Words for an MSH/LSH Exchange Q. 

CF 
CNTRINPUTS CONTROL 

GROUP 
TO LOAD WORD RESULTS 

FLIP-FLOPS LOADED 

CF15 0111 031-028 - 063-060 

CF14 CNTR15- 0110 027-024 - 059-056 

CF13 CNTR12 0101 023-020 - 055-052 
CF12 0100 019-016 - 051-048 
CF11 0011 015-012 - 047-044 
CF10 CNTR11- 0010 011-08 - 043-040 

CF9 CNTR8 0001 07-04 - 039-036 

CF8 0000 03-00 - 035-032 
CF7 1111 063-060 - 031-028 
CF6 CNTR7· 1110 059-056 - 027-024 
CF5 CNTR4 1101 055-052 - 023-020 
CF4 1100 051-048 - 019-016 

CF3 1011 047-044 - 015-012 

CF2 CNTR3- 1010 043-040 -011-08 

CF1 CNTRO 1001 039-036 - 07-04 

CFO 1000 035-032 - 03-00 

With this list of control words and the signals in Table 7, the 16-bit control inputs on CNTR15-CNTRO 
can be arranged to load the control flip-flops in four cycles. Example 2 shows the microcode instructions 
for loading the control words and executing the exchange. 

In Example 2, bank 7 of flip-flops is being programmed. Bank 7 is selected by taking CRWRITE2-CRWRITEO 
high and leaving CRSRCE low (slle Table 4) when the control words are loaded on CNTR15-CNTRO. With 
WE held low, the CRCLK is used to load the four sets of control words. Once the flip-flops are loaded, 
data can be input on 063-00 and the programmed pattern of output selection can be executed. A 
microinstruction to select registered data inputs and bank 7 as the control source is shown as the last 
instruction in Example 2. The data must be clocked into the input registers, using LSCLK and MSCLK, 
before the last instruction is executed. 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The control flip-flops could also have been loaded from the data input nibbles in one CRCLK cycle. Input 
nibbles from one half are mapped onto the control flip-flops of the other half. All control words to set up 
a switching pattern should be loaded before the bank of flip-flops is selected as control source. The 
microcode instructions to load bank 1 with the 16 control words in one cycle are presented in Example 3. 

Example 3. Loading the MSH/LSH Exchange from Data Inputs 

CRWRITE2 CRWRITE1 CRWRITEO \III( SElDMS SElDlS ~15-~ 

o 0 o 1 1111 1111 1111 1111 

These control nibbles may be loaded from the input as a 64-bit real-time input word or as two 32-bit words 
stored previously. To use stored control words, MSCLK and LSCLK are used to load the LSH and MSH 
input registers with the correct sequence of control nibbles. Whenever the flip-flops are loadecj from the 
data inputs, all 64 bits of control data must be present when the CRCLK is used so that all control nibbles 
in a program are loaded simultaneously. Example 4 presents the three microcode instructions to load the 
MSH and LSH input registers and then to pass the registered data to flip-flop bank 2. 

Example 4. Loading Control Flip-Flops from Input Registers 

INST. 

NO. 
CRSRCE CRWRITE2 CRWRITE1 CRWRITEO ;,w SELDMS SELDLS 

lIED15· 

~ 
CRCLK MSCLK LSCLK COMMENTS 

1 X X X x 1 X X 1 None S None 
load inputs 

063·032 

2 X X 
S 

Load inputs 
X X 1. X X 1 None None 

031-00 

3 1 0 1 0 0 0 0 1 S None None 
Load control 

bank 2 

The control words in a program can also be read bflCk from the flip-flops using the CNTR outputs. Four 
instructions are necessary to read the 64 bits in a bank of flip-flops out on CNTR15-CNTRO. WE is held 
high and DEC is taken low. No CRCLK signal is required. CREAD2-CREADO select bank 2 of flip-flops, 
and CRADR1-CRADRO select in sequence the four addresses of the 16-bit words to be read out on the 
CNTR outputs. Example 5 shows the four microcode instructions. 

INST. 

NO. 
CREA02 

1 0 

2 0 

3 0 

4 0 

6-22 

Example 5. Reading Control Settings on CNTR Outputs 

CREA01 CREADO 

1 0 

1 0 

1 0 

1 0 

l:IE CRADR1 CRADRO lift 
CNTR liD NUMBERS 

0 

0 

0 

0 

15·12 11-8 

0 0 1 0100 0000 

0 1 1 0101 0001 

1 0 1 0110 0010 

1 1 1 0111 0011 
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7·4 3-0 
1100 100e 

1101 1001 

1110 1010 

1111 1011 

COMMENT 

Read CF12. CF8. CF4. CFO 

Read CF13. CF9. CF5. CFl 

Read CF14. CF10. CF6. CF2 

Read CF15. CFll. CF7. CF3 



SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t 

Supply voltage, VCC .... 
Input clamp current, 11K (VI < 0 or VI > Vcc) 
Output clamp current, 10K (Vo < 0 or Vo > VCC) 
Continuous output current, 10 (VO = 0 to VCC) 
Continuous current through VCC or GND pins ....... . 
Operating free-air temperature range. 
Storage temperature range 

-0.5 V to 6 V 
±20 mA 

....... ±50 mA 
..... ±50 mA 

±100 mA 
. ... ooC to 70°C 

- 65°C to 150°C 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings 
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating 
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

recommended operating conditions 

PARAMETER MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5.0 5.5 V 

VIH High-level input voltage 2 Vee V 

VIL Low-Jevel input voltage 0 0.8 V 

IOH High-level output current -8 mA 

10L Low-level output current 8 mA 

VI Input voltage 0 Vee V 

Vo Output voltage 0 Vec V 

dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 ·e 

electrical characteristics over recommended operating free-air temperature range (unless otherwise 
noted) 

PARAMETER TEST CONDITIONS vee 
TA - 25·C 

MIN TYP MAX UNIT 
MIN TYP MAX 

4.5 V 4.4 
10H ~ - 20 ,A 

5.4 5.5 V 
VOH V 

4.5 V 3.8 3.7 
10H ~ -8 mA 

4.8 4.7 5.5 V 

4.5 V 0.1 
IOL ~ 20 ,A 

5.5 V 0.1 
VOL V 

4.5 V 0.32 0.4 
10L ~ 8 mA 

5.5 V 0.32 0.4 

10Z Vo ~ Vee or 0 5V ±O.5 ±O.S ,A 

II VI = Vee or 0 5.5 V 0.1 ±1 ,A 

lee VI - Vee or 0, 10 5.5 V 100 "A 
el VI ~ Vee or 0 5V pF 

tThis is the increase In supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or Vee. 

TEXAS ." 
INSTRUMENlS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

6-23 

3: 
w 
:> 
w 
a: 
D.. 
t­
U 
~ 
C o 
a: 
D.. 



SN74ACTBB41 
DIGITAL CROSSBAR SWITCH 

:2 switching characteristics over recommended ranges of supply voltage and operating free-air temperature 
- (unless otherwise noted) 
O· 
C 
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PARAMETER FROM TO MIN TVP! MAX UNIT 

Data in 7 14 

MSCLK. LSCLK 10 18 

SELDMS. SELOLS Data out 9 15 

CRCLK 12 19 

'pd CRSEL3-CRSELO 12 19 ns 

CREA02-CREAOO 10 18 

CRCLK CNTRn 10 18 

CRA01. CRAOO 8 16 

TP1. TPO All outputs 10 19 

TP1. TPO All outputs 10 15 

'en OEO Data out 7 12 ns 

DEC CNTRn 8 14 

TP1. TPO All outputs 10 15 

tdis OED Data out 5 8 ns 

DEC CNTRn 6 10 

tAli typical values are at vee = 5 V. TA = 25°C. 

timing requirements over recommended ranges of supply voltage and operating free-air temperature 
(unless otherwise noted) 

PARAMETER MIN MAX UNIT 

'w Pulse duration LSCLK. MSCLK. CRCLK h;gh or low 7 ns 

Data 7 

CNTRn 7 

SELDMS. SELDLS 9 

'su Setup time before CRClK CRADR1.CRADRO 8 ns 

CRSRCE. CRWRITE2-CRWRITEO 8 

LSCLK. MSCLK 10 

WE B 

'su Setup time, data before LSCLK or MSCLK 7 ns 

Data 0 

CNTRn 0 

SELDMS. SELDLS 0 
'h Hold time after CRCLK 

CRADR1. CRADRO 0 
ns 

CRSRCE. CRWRITE 0 

WE 0 

'h Hold time, data after LSCLK or MSCLK 0 ns 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

'AS8840 AND 'ACT8841 FUNCTIONAL COMPARISON 

differences between the SN74AS8840 and the SN74ACT8841 

The SN74AS8840 and the SN74ACT8841 digital crossbar switches essentially perform the same function. 
The SN74AS8840 and the SN74ACT8841 are based on the same 16-port architecture, differing in the 
number of control registers, power consumption, and pin-out. 

One difference is in the number of programmable control flip-flop banks available to configure the switch. 
The 'AS8840 has two programmable control banks, while the 'ACT8841 has eight. Both have two 
selectable hard-wired switching configurations. 

The increased number of control banks in the 'ACT884 1 require six additional pins not found on the 
'AS8840. These are: CRWRITE2, CRWRITE1, CREAD2, CREAD1, CRSEL3, and CRSEl2. CREAD and 
CRWRITE on the '8840 become CREADO and CRWRITEO on the '8841. On the '8840, CRSEl1 selects 
the hardwired control functions when high. This function is performed by the CRSEl3 signal on the '8841. 
Therefore, CRSEl2 and CRSEl1 are actually the added signals. 

The' ACT8841 is a low-power CMOS device requiring only 5-V power. Because of its STl internal logic 
and TTL 1I0s, the 'AS8840 requires both 2-V and 5-V power. 

Both the' AS8840 and the' ACT8841 are in 156 pin grid-array packages, however, the two devices are 
not pin-for-pin compatible. Control signals were added to the' ACT8841 and the 2-V VCC pins (' AS8840 
onlyl were assigned other functions in the' ACT8841 . 

changing 'AS8840 microcode to 'ACT8841 microcode 

Since only six signals have been added to the 'ACT8841, changing existing 'AS8840 microcode to 
'ACT8841 microcode is straight forward. CRSEl3 on the' ACT8841 is functionally equivalent to CRSEl1 
on the' AS8840. CREAD2, CREAD1, CRWRITE2, CRWRITE1, CRSEl2, and CRSEl1 bits must be added. 
These can always be 0 if no additional control banks are needed. Additional control configurations can 
be stored by programming these bits. 

All other signals in the' AS8840 microcode remain the same when converting to 'ACT8841 microcode. 
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SN74ACT8847 64-Bit Floating Point/Integer Processor 
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SN74ACT8847 
64·8it Floating Point Unit 

• Meets IEEE Standard for Single- and Double­
Precision Formats 

• Performs Floating Point and Integer Add, 
Subtract, Multiply, Divide, Square Root, and 
Compare 

• 64-Bit IEEE Divide in 11 Cycles, 64-Bit Square 
Root in 14 Cycles 

• Performs Logical Operations and Logical Shifts 

• Superset of TI's SN74ACT8837 

• 30-ns, 40-ns and 50-ns Pipelined Performance 

• Low-Power EPIC" CMOS 

The SN74ACT8847 is a high-speed, double-precision floating point and integer 
processor. It performs high-accuracy, scientific computations as part of a 
customized host processor or as a powerful stand-alone device. Its advanced 
math processing capabilities allow the chip to accelerate the performance of both 
CISC- and RISC- based systems. 

High-end computer systems, such as graphics workstations, mini-computers and 
32-bit personal computers, can utilize the single-chip' ACT884 7 for both floating 
point and integer functions. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Overview 

Using a top-down approach, this user guide contains the following major sections: 

Introduction (to Microprogrammed Architectures and the' ACT884 7) 
SN74ACT8847 Architecture 
Microprogramming the 'ACT884 7 
Easy-to-Access Reference Guide 
Application Notes 

The SN74ACT8847 combines a multiplier and an arithmetic-logic unit in a single 
microprogrammable VLSI device. The' ACT8847 is implemented in Texas Instruments 
one-micron CMOS technology to offer high speed and low power consumption with 
exceptional flexibility and functional integration. The FPUs can be microprogrammed 
to operate in multiple modes to support a variety of floating point applications. 

The 'ACT884 7 is fully compatible with the IEEE standard for binary floating point 
arithmetic, STD 754-1985. This FPU performs both single- and double-precision 
operations, integer operations, logical operations, and division and square root 
operations (as single microinstructions). 

Understanding the' ACT8847 Floating Point Unit 

To support floating point processing in IEEE format, the' ACT884 7 may be configured 
for either single- or double-precision operation. Instruction inputs can be used to select 
three modes of operation, including independent ALU operations, independent multiplier 
operations, or simultaneous AlU and multiplier operations. 

Three levels of internal data registers are available. The device can be used in 
flowthrough mode (all registers disabled), pipelined mode (all registers enabled), or 
in other available register configurations. An instruction register, a 64-bit constant 
register, and a status register are also provided. 

Each FPU can handle three types of data input formats. The ALU accepts data operands 
in integer format or IEEE floating point format. A third type of operand, denormalized 
numbers, can also be processed after the ALU has converted them to "wrapped" 
numbers, which are explained in detail in a later section. The' ACT884 7 multipli!~r 
operates on normalized floating point numbers, wrapped numbers, and integer I' 
operands. ~ 

00 

Microprogramming the' ACT8847 

The' ACT884 7 is a fully microprogrammable device. Each FPU operation is specified 
by a microinstruction or sequence of microinstructions which set up the control inputs 
of the FPU so that the desired operation is performed. 
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Support Tools 

Texas Instruments has developed functional evaluation models of the' ACT884 7 in 
software which permit designers to simulate operation of the FPU. To evaluate the 
functions of an FPU, a designer can create a microprogram with sample data inputs, 
and the simulator will emulate FPU operation to produce sample data output files, as 
well as several diagnostic displays to show specific aspects of device operation. Sample 
microprogram sequences are included in this section. 

Design Support 

Texas Instruments Regional Technology Centers, staffed with systems-oriented 
engineers, offer a training course to assist users of TI LSI products and their application 
to digital processor systems. Specific attention is given to the understanding and 
generation of design techniques which implement efficient algorithms designed to 
match high-performance hardware capabilities with desired performance levels. 

Information on VLSI devices and product support can be obtained from the following 
Regional Technology Centers: 

Atlanta 
Texas Instruments Incorporated 
3300 N.E. Expressway, Building 8 
Atlanta, GA 30341 
404/662-7945 

Boston 
Texas Instruments Incorporated 
950 Winter Street, Suite 2800 
Waltham, MA 021 54 
617/895-9100 

Northern California 
Texas Instruments Incorporated 
5353 Betsy Ross Drive 
Santa Clara, CA 95054 
4081748-2220 

Chicago 
Texas Instruments Incorporated 
51 5 Algonquin 
Arlington Heights, IL 60005 
312/640-2909 

Dallas 
Texas Instruments Incorporated 
10001 E. Campbell Road 
Richardson, TX 75081 
214/680-5066 

Southern California 
Texas Instruments Incorporated 
17891 Cartwright Driv.e 
Irvine, CA 92714 
714/660-8140 

:2 Design Expertise 
...... 
,J::a. Texas Instruments can provide in-depth technical design assistance through 
~ consultations with contract design services. Contact your local Field Sales Engineer 
~ for current information or contact VLSI Systems Engineering at 214/997-3970. 
00 
00 
,J::a. 
...... 
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, ACT884 7 Logic Symbol 

CLK 

CLKC 

CLKMOOE 

BYTEP 

CONFIG1-0 

FAST 

RND1-0 

SRCC 

ENRC 
FLOWC 

SELOP7-0 
SELST1-0 
SELMS/LS 

TP1-0 
10 
11 
12 
13 

14 
15 
16 
17 
18 
19 

110 

ENRA 
ENRB 

OES 
OEC 
OEY 

DAO 

DA31 

DBO 

DB31 

~ 

~ 
8 
8 

LJ::". 
2 

--;::::: 
-,.;.. 

...... 

· • · 
· · · 

• 
'ACT8847 

64-Bit Floating Point Unit 

CLEARS STATES 
MASTER CLOCK (EXCEPT C REGISTER) & STATUS 

C REGISTER CLOCK STALLS OPERATION 

CLOCK EDGE INSTRUCTION, RA, & RB I FLOWTHROUGH 
PARITY GENERATION REGISTERS EN 

DATA SOURCE 
ALU, MULTIPLlER'I OWTHROUGH 

SUDDEN AND INSTRUCTION FL 
IUNDER-

GRADUAL FLOW PIPELINE REGISTERS EN 

STATUS, p, S'I FLOWTHROUGH 
ROUNDING MODE SELECT AND INST PIPELINE 

MULTIPLIER I REGISTERS EN 

ALU C REG DA DATA 
WRITE 

PARITY I 
8YPASS 110 

DB DATA 

OPERAND SOURCE Y BUS 
STATUS SOURCE 

MSHi I DA DATA 
LSH Y BUS STATUS 

PARITY DB DATA 
MASTER/SLAVE 

COMPARATOR 

0 
COMPARISON I 

STATUS 

INSTRUCTION 

EXCEPTION 

10 ANO 

OTHER 

LOAD RA REGISTER 
STATUS 

LOAD RB REGISTER 
EXCEPTION & OTHER STATUS EN 
COMPARISON STATUS 
Y31-YO, PY3-PYO 

~ r 
0 0 · ~ ~ · · · · · 31 31 

0 · ~ · · 31 

/1 RESET 
/1 HALT 

~ 
PIPESO 

~ 
PIPESI 

~ 
PIPES2 

4 
PA3-0 

4 
PB3-0 

4 
PY3-0 

PERRA 

PERRB 

MSERR 

UNORD 

AGTB 

AEQB 

ED 
D1VBYO 
IVAL 
IN EX 
OVER 
UNDER 
OENORM 
DENIN 

RNDCO 
SRCEX 

CHEX 
STEX1-0 
NEG 
INF 

YO ..... · · · 
'I:t 
00 

Y31 00 
~ 
(,) 

<t 
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, ACT8847 Pin Descriptions 

Pin descriptions and grid allocation for the' ACT884 7 are given on the following pages. 
The pin at location. A 1 has been omitted for indexing purposes. 

208 PIN ... GB PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A • • • • • • • • • • • • • • • • 
B • • • • • • • • • • • • • • • • • 
C • • • • • • • • • • • • • • • • • 
D • • • • • • • • • • • • • • • • • 
E • • • • • • • • 
F • • • • • • • • 
G • • • • • • • • 
H • • • • • • • • 
J • • • • • • • • 
K • • • • • • • • 
L • • • • • • • • 

M • • • • • • • • 
N • • • • • • • • 
P • • • • • • • • • • • • • • • • • 
R • • • • • • • • • • • • • • • • • 

fJ) S • • • • • • • • • • • • • • • • • 
:2 T • • • • • • • • • • • • • • • • • -..J 
~ 
~ 
(') 
-4 
CO 
CO 
~ 
-..J 
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Table 1. 'ACT884 7 Pin Grid Allocation 

PIN PIN PIN PIN PIN PIN 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 

Al missing C2 YO E3 FAST J15 FLOWC Pl ENRC Sl NC 
A2 INF C3 Y3 E4 GNO J16 SRCC P2 PIPESO S2 PBO 
A3 Y5 C4 Y6 E14 GNO J17 BYTEP P3 RESE'f S3 OBO 
A4 Y8 C5 Y9 E15 AGTB Kl SELOP3 P4 PBl S4 OB4 
A5 Yll C6 Y12 E16 AEQB K2 SELOP4 P5 OBl S5 OBll 
A6 Y14 C7 Y15 E17 MSERR K3 SELOP5 P6 OB5 S6 OB12 
A7 Y17 C8 Y18 Fl 15 K4 GNO P7 OB9 S7 OB15 
A8 Y20 C9 Y23 F2 13 K14 GNO P8 OB16 S8 OB19 
A9 Y21 Cl0 Y26 F3 RNOO K15 PAl P9 OB21 S9 OB23 
Al0 Y24 Cll Y30 F4 GNO K16 PA2 Pl0 OB28 S10 OB26 
All Y27 C12 PYl F14 GNO K17 PA3 Pl1 OAO S11 OB30 
A12 Y29 C13 UNDER F15 PERRA L1 SELOP6 P12 OA4 S12 OA2 
A13 PYO C14 INEX F16 OEY L2 SELOP7 P13 OA8 S13 OA6 
A14 PY3 C15 OENIN F17 DES L3 CLK P14 OA12 S14 OA10 
A15 IVAL C16 SRCEX Gl 17 L4 VCC P15 OA19 S15 OA14 
A16 NEG C17 CHEX G2 16 L14 GNO P16 OA22 S16 OA15 
A17 NC 01 11 G3 14 L15 OA30 P17 OA23 S17 OA17 
Bl ED 02 RNOl G4 VCC L16 OA31 Rl PIPESl Tl NC 
B2 Y2 03 Yl G14 VCC L17 PAO R2 HALT T2 PB3 
B3 Y4 04 GNO G15 OEC M1 ENRB R3 PB2 T3 OB3 
B4 Y7 05 VCC G 1 6 SELMS/LS M2 ENRA R4 OB2 T4 OB7 
B5 Yl0 06 GNO G17 TESTl M3 CLKC R5 OB6 T5 0~8 

B6 Y13 07 GNO Hl 110 M4 GNO R6 OB10 T6 OB13 
B7 Y16 08 VCC H2 19 M14 VCC R7 OB14 T7 OB17 
B8 Y19 09 GNO H3 18 M15 OA27 R8 OB18 T8 OB20 
B9 Y22 010 GNO H4 GNO M16 OA28 R9 OB22 T9 OB24 
Bl0 Y25 011 VCC H14 GNO M17 OA29 Rl0 OB27 TlO OB25 
Bll Y28 012 GNO H15 TESTO Nl CONFIGO Rll OB31 Tll OB29 
B12 Y31 013 GNO H16 SELSTl N2 CONFIGl R12 OA3 T12 OAl 
B13 PY2 014 VCC H17 SELSTO N3 CLKMOOE R13 OA7 Tl3 OA5 
B14 OVER 015 STEXl Jl SELOP2 N4 PIPES2 R14 OAll Tl4 OA9 
B15 RNOCO 016 STEXO J2 SELOPl N14 OA18 R15 OA16 Tl5 OA13 
B16 OENORM 017 UNORO J3 SELOPO N15 OA24 R16 OA20 Tl6 NC 
B17 OIVBYO El 12 J4 VCC N16 OA25 R17 OA21 Tl7 NC 
Cl PERRB E2 10 J14 VCC N17 OA26 
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Table 2. 'ACT8847 Pin Functional Description 

PIN 
I/O/Zt DESCRIPTION 

NAME NO. 
DATA BUS SIGNALS (96 PINS) 

DAO P11 
DA1 T12 
DA2 512 
DA3 R12 
DA4 P12 
DA5 T13 
DA6 513 
DA7 R13 
DA8 P13 
DA9 T14 
DA10 514 
DA11 R14 
DA12 P14 
DA13 T15 
DA14 515 

DA 32-bit input data bus. Data can be latched in a 
DA15 516 
DA16 R15 

I 64-bit temporary register or loaded directly into an 

DA17 517 
input register 

DA18 N14 
DA19 P15 
DA20 R16 
DA21 R17 
DA22 P16 
DA23 P17 
DA24 N15 
DA25 N16 
DA26 N17 
DA27 M15 
DA28 M16 
DA29 M17 
DA30 L15 
DA31 L16 
DBO 53 
DBl P5 
DB2 R4 
DB3 T3 
DB4 54 DB 32-bit input data bus. Data can be latched in a 
DB5 P6 I 64-bit temporary register or loaded directly into an 
DB6 R5 input register. 
DB7 T4 
DB8 T5 
DB9 P7 
DB10 R6 

tlnput, output, and high-impedance state. 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 
1I0/Zt DESCRIPTION 

NAME NO. 
DATA BUS SIGNALS (96 PINS) 

OB11 55 
0812 S6 
0813 T6 
0814 R7 
0815 57 
0816 P8 
0817 T7 
0818 R8 
0819 58 
0820 T8 0832-bit input data bus. Oata can be latched in a 
0821 P9 I 64-bit temporary register or loaded directly into an 
0822 R9 input register. 
0823 59 
0824 T9 
OB25 T10 
OB26 510 
OB27 R10 
0828 P10 
0829 T11 
OB30 511 
OB31 R11 
YO C2 
Y1 03 
Y2 82 
Y3 C3 
Y4 B3 
Y5 A3 
Y6 C4 
Y7 B4 
ya A4 
Y9 C5 
Y10 B5 I/O/Z 32-bit Y output data bus 
Y11 A5 
Y12 C6 
Y13 B6 
Y14 A6 
Y15 C7 
Y16 B7 
Y17 A7 
Y18 ca 
Y19 B8 
Y20 A8 

tlnput, output, and high-impedance state. 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 
II0/Zt DESCRIPTION 

NAME NO. 
DATA BUS SIGNALS (96 PINS) 

Y21 A9 
Y22 B9 
Y23 C9 
Y24 A10 
Y25 B10 
Y26 C10 I/O 32-bit Y output data bus 
Y27 A 11 
Y28 B11 
Y29 A12 
Y30 C11 
Y31 B12 

PARITY AND MASTER/SLAVE SIGNALS (16 PINS) 

When high, selects parity generation for each byte 

BYTEP J17 I 
of input (four parity bits for each bus). When low, 

selects parity generation for whole 32-bit input 
(one parity bit for each bus). Even parity is used. 

MSERR E17 0 Master/Slave error output pin 

PAO L17 
PA1 K15 

PA2 K16 
I Parity inputs for DA data 

PA3 K17 

PBO S2 
PB1 P4 

PB2 R3 
I Parity inputs for DB data 

PB3 T2 

PERRA F15 0 
DA data parity error output. When high, signals a 

byte or word has failed an even parity check. 

PERRB C1 0 
DB data parity error output. When high, signals a 

byte or word has failed an even parity check. 

PYO A13 
PY1 C12 

PY2 B13 
I/O/Z Y port parity data 

PY3 A14 

CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS) 

CLK L3 I Master clock for all registers except C register 

CLKC M3 I C register clock 

Selects whether temporary register loads only on 
CLKMODE N3 I rising clock edge (CLKMODE = L) or on falling 

edge (CLKMODE = H). 

tlnput, output, and high-impedance state. 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 
I/O/Zt 

NO. 
DESCRIPTION 

NAME 

CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS) 

CONFIGO N1 
I 

Select data sources for AA and AB registers from 
CONFIG1 N2 DA bus, DB bus and temporary register 

When high, enables loading of RA register on a 
ENRA M2 I rising clock edge if the AA register is not disabled 

(see PIPESO below!. 
When high, enables loading of AB register on a 

ENRB M1 I rising clock edge if the RB register is not disabled 
(see PIPESO below). 

ENRC P1 I When low, enables write to C register when CLKC 
goes high. 
When low, selects gradual underflow (IEEE modell. 

FAST E3 I When high, selects sudden underflow, forcing all 
denormalized inputs and outputs to zero. 
When high, causes product or sum to bypass 
C register, so that product or sum appears on the 
C register output bus. Timing is similar to P register 

FLOWC J15 I or S register feedback operands. C register remains 
unchanged. Product or sum may also be 
simultaneously fed back in usual manner (not 
through C register). 
Stalls operation without altering contents of 

HALT A2 I instruction or data registers (except the CREG, 
which has a separate write enable). Active low. 

10 E2 
11 D1 
12 E1 
13 F2 
14 G3 
15 Fl I Instruction inputs 
16 G2 
17 G1 
18 H3 
19 H2 
110 H1 
DEC G15 I Comparison status output enable. Active low. 

OES F17 I 
Exception status and other status output enable. 
Active low. 

OEY F16 I Y bus output enable. Active low. 
When low, enables instruction register and, 

PIPESO P2 I 
depending on setting of ENRA and ENRB, the RA 
and RB input registers. When high, puts instruction, 
AA and AB registers in flowthrough mode. 

tlnput, output, and high-impedance state. 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O/Zt DESCRIPTION 

CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS) 

When low, enables pipeline registers in ALU and 
PIPES1 R1 I multiplier. When high, puts pipeline registers in 

flowthrough mode. 
When low, enables status register, product (P) and 

PIPES2 N4 I sum (S) registers. When high, puts status register, 
P and S registers in flowthrough mode. 
Clears internal states. status, and exception disable 

RESET P3 I 
register. Contents of internal pipeline registers are 
lost. Does not affect other data registers. Active 
low. 

RNDO F3 I Rounding mode control pins. Select four IEEE 
RND1 D2 rounding modes. 

RNDCO 815 I/O/Z 
When high, indicates the mantissa of a number 
has been increased in magnitude by rounding. 

SELOPO J3 
SELOP1 J2 
SELOP2 J1 
SELOP3 K1 I Select operand sources for multiplier and ALU 
SELOP4 K2 
SELOP5 K3 
SELOP6 L1 
SELOP7 L2 
SELSTO H17 

I Select status source during chained operation 
SELST1 H16 

When low, selects LSH of 64-bit result to be 

SELMS/LS G16 I 
output on the Y bus. When high, selects MSH of 
64-bit result. (No effect on single-precision 
operations.) 
When low, selects ALU as data source for C 

SRCC J16 I register. When high, selects multiplier as data 
source for C register. 

TESTO H15 
I Test pins 

TEST1 G17 
STATUS SIGNALS (17 PINS) 

Comparison status or zero detect pin. When high, 

AEQ8 E16 I/O/Z 
indicates that A and 8 operands are equal during a 
compare operation in the ALU. If not a compare, a 
high signal indicates a zerO result on the Y bus. 

t,nput, output, and high-impedance state. 
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Table 2 .• ACT8847 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O/Zt DESCRIPTION 

STATUS SIGNALS 117 PINS) 

AGT8 E15 I/O/Z 
Comparison status pin. When high. indicates that A 
operand is greater than 8 op~ra!1d. 
Status pin indicating an exception during a chained 

CHEX C17 I/O/Z 
function. If 16 is low. indicates the multiplier is the 
source of an exception. If 16 is high. indicates the 
ALU is the source of an exception. 
Status pin indicating a denormal input to the 

DENIN C15 I/O/Z multiplier. When DENIN goes high. the STEX pins 
indicate which port had the denormal input. 

Status pin indicating a denormal output from the 

DENORM 816 I/O/Z 
ALU or a wrapped output from the multiplier. In 
FAST mode. causes the result to go to zero when 
DENORM is high. 

DIV8YO 817 I/O/Z 
Status pin indicating an attempted operation 
involved dividing by zero 
Exception detect status signal representing logical 

ED 81 I/O/Z OR of all enabled exceptions in the exception 
disable register 

INEX C14 I/O/Z Status pin indicating an inexact output 

INF A2 I/O/Z 
Status pin. When high. indicates output value is 
infinity. 
Status pin indicating that an invalid operation or a 

IVAL A15 I/O/Z nonnumber (NaN) has been input to the multiplier 
or ALU. 

NEG A16 I/O/Z 
Status pin. When high. indicates result has 
negative sign. 
Status pin indicating that the result is greater the 

OVER 814 I/O/Z largest allowable value for specified format 
(exponent overflow). 

SRCEX C16 I/O/Z 
Status pin indicating source of exception. either 
ALU (SRCEX = L) or multiplier (SRCEX = H). 

STEXO D16 
Status pins indicating that a nonnumber (NaN) or 

STEX1 D15 
I/O/Z denormal number has been input on A 

port (STEX 1) or 8 port (STEXO). 
Status pin indicating that a result is inexact and 

UNDER C13 I/O/Z less than minimum allowable value for format 
(exponent underflow). 

Comparison status pin indicating that the two 
UNORD D17 I/O/Z inputs are unordered because at least one of them 

is a nonnumber (NaN). 

tlnput, output, and high-impedance state. 
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Table 2. 'ACT8847 Pin Functional Description (Concluded) 

PIN 

NAME NO. 
I/O/zt DESCRIPTION 

SUPPLY AND N/C SIGNALS (33 PINS) 

Vee 05 
Vee 08 
Vee 011 
Vee 014 
Vee G4 

I 5-V supply voltage pins 
Vee G14 
Vee J4 
Vee J14 
Vee L4 
Vee M14 
GNO 04 
GNO 06 
GNO 07 
GNO 09 
GNO 010 
GNO 012 
GNO 013 
GNO E4 Ground pins. NOTE: All ground pins GNO E14 I 
GNO F4 should be used and connected. 

GNO F14 
GNO H4 
GNO H14 
GNO K4 
GNO K14 
GNO L14 
GNO M4 
Ne A17 
Ne S1 
Ne T1 No internal connection. Pins should be left floating. 
Ne T16 
Ne T17 

(Jj 
2 tlnput, output, and high-impedance state. 

" ~ 
l> 
(") 
-I 
(X) 
(X) 
~ 

" 
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, ACT884 7 Specifications 

absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, VCC ....................... -0.5 V to 6 V 
Input clamp current, 11K (V, < 0 or V, > VCC) ...... ± 20 mA 
Output clamp current, 10K (Va < 0 or Va > VCC). . . ± 50 mA 
Continuous output current, 10 (Va = VCC) . . . . . . . . . ± 50 mA 
Continuous current through VCC or GND pins . . . . . .. ± 100 mA 
Operating free-air temperature range . . . . . . . . . . . .. OoC to 70°C 
Storage temperature range. . . . . . . . . . . . . . . .. - 65°C to 150°C 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage 
to the device. These are stress ratings only and functional operation of the device at these or 
any other conditions beyond those indicated under "recommended operating conditions" is 
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

recommended operating conditions 

PARAMETER 
SN74ACT8847 

MIN NOM M~!, 
UNIT 

Vee Supply voltage 4.75 5.0 ~~5 V 

VIH High-level input voltage 2 (;01ee V 

VIL Low-level input voltage 0 ,:,;~~t~" 0.8 V 

IOH High-level output current 1"" , -8 mA 

IOL Low-level output current ,,~,) 8 mA 

VI Input voltage o~<) Vee V 

Vo Output voltage ~J Vee V 

dt/dv Input transition rise or fall rate '''0 15 ns/V 

TA Operating free-air temperature 0 70 °e 
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electrical characteristics over recommended operating free-air 
temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS 
TA - 25°C SN74ACT8847 

VCC MIN 
UNIT 

MIN TYP MAX TYP MAX 

4.75 V 4.74 4.55 
10H = -20 pA 

5.25 V 5.24 5.05 
VOH V 

4.75 V 3.7 , 
10H = -8 rnA 

4.7 ,,;;;::s:" 5.25 V 

4.75 V 0.01 ?~" 0.10 
10L = 20 p.A 

5.25 V 0.01 d(t:Y 0.10 
VOL V 

4.75 V 0.45 
10L = 8 rnA 

, 
5.25 V .... ')" 0.45 

II VI = VCC or 0 5.25 V {~J ±5 p.A 

10Z VI = VCC or 0, 10 5.25 V ,;;;+(' ±10 p.A 

ICCQ VI = VCC or 0, 10 5.25 V 200 p.A 

Ci Vi = VCC or 0 5V 10 pF 
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switching characteristics 

PIPELINE 
FROM TO SN74ACT8847-30 

NO. PARAMETER 
(OUTPUT) 

CONTROLS UNIT 
(INPUT) 

PIPES2-PIPESO MIN MAX 

1 tpd1 DA/DB/lnst Y OUTPUT 111 t ns 

INPUT REG Y OUTPUT 110 70 
2 tpd2 ns 

INPUT REG STATUS 110 70 

PIPElN REG Y OUTPUT lOX 48 
3 tpd3 ns 

PIPElN REG STATUS lOX 48 

OUTPUT REG Y OUTPUT OXX 20 
4 tpd4 ns 

OUTPUT REG STATUS OXX 20 

5 tpd5 SELMS/lS Y OUTPUT XXX 18 ns 

6 tpd6 ClKi 
Y OUTPUT 

INVALID 
all but 111 3.0 ns 

7 tpd7 ClKi 
STATUS 

INVALID 
all but 111 3.0 ns 

8 tpd8 SElMS/lS 
Y OUTPUT 

INVALID 
XXX 1.5 ns 

9 tdl :I: ClKi ClKi 010 56 

10 td2:1: ClKi ClKi 000 30 

Delay time, ClKC after ClK to insure 
ns 

11 td3 
data captured in C register is data 

12 td-O§ 
clocked into sum or product register by 

that clock. (PIPES2-PIPESO = OXX) 

12 tenl OEY Y OUTPUT XXX 12 

13 ten2 OEC,OES STATUS XXX 12 
ns 

14 tdis1 OEY Y OUTPUT XXX 12 

15 tdis2 OEC,OES STATUS XXX 12 

tThis parameter no longer tested and will be deleted on next Data Manual revision. 
:I: Minimum clock cycle period not guaranteed when operands are fed back using FlOWC to bypass 
the C register and operands are used on the same clock cycle. 

§td is the clock cycle period. 
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setup and hold times 

NO. PARAMETER 

16 tsu1 Inst/control before ClKi 

17 tsu2 DA/DB before ClKi 

18 tsu3 DA/DB before 2nd ClKi (DP) 

19 tsu4 CONFIG1-0 before ClKi 

20 tsu5 SRCC before ClKCi 

21 tsu6 RESET before ClKi 

22 th1 Inst/control after ClK! 

23 th2 DA/DB after ClK! 

24 th3 SRCC after ClKC! 

25 th4 RESET after ClK! 

elK/RESET requirements 

PARAMETER 

tw Pulse duration 
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PIPELINE 

CONTROLS 
SN74ACT8847-30 

UNIT 

PIPES2-PIPESO MIN MAX 

XXO 12 

XXO 11 

XX1 40 

XXO 12 
ns 

XXX 10 

XXO 12 

XXX 1 

XXX 1 
ns 

XXX 1 

XXO 6 

SN74ACT8847-30 

MIN MAX 
UNIT 

ClK high 10 

ClK low 10 ns 

RESET 10 



switching characteristics 

PIPELINE 
FROM TO SN74ACT8847-40 

NO. PARAMETER 
(OUTPUT) 

CONTROLS UNIT 
(INPUT) 

PIPES2-PIPESO MIN MAX 

1 tpd1 DA/DBllnst Y OUTPUT 111 t ns 

INPUT REG Y OUTPUT 110 90 
2 tpd2 ns 

INPUT REG STATUS 110 90 

PIPELN REG Y OUTPUT 10X 60 
3 tpd3 ns 

PIPELN REG STATUS 10X 60 

OUTPUT REG Y OUTPUT OXX 24 
4 tpd4 ns 

OUTPUT REG STATUS OXX 24 

5 tpd5 SELMS/LS Y OUTPUT XXX 20 ns 

Y OUTPUT 
6 tpd6 CLKi all but 111 3.0 ns 

INVALID 

7 tpd7 CLKi 
STATUS 

INVALID 
all but 111 3.0 ns 

8 tpd8 SELMS/lS 
Y OUTPUT 

INVALID 
XXX 1.5 ns 

9 td1 + ClKi ClKi 010 72 

10 td2+ ClKi ClKi 000 40 

Delay time, ClKC after ClK to insure 
ns 

11 td3 
data captured in C register is data 

16 td-O§ 
clocked into sum or product register by 

that clock. (PIPES2-PIPESO = OXX) 
12 ten1 OEY Y OUTPUT XXX 16 

13 ten2 OEC, OES STATUS XXX 16 
ns 

14 tdis1 OEY Y OUTPUT XXX 16 

15 tdis2 OEC, OES STATUS XXX 16 

tThis parameter no longer tested and will be deleted on next Data Manual revision. 
+Minimum clock cycle period not guaranteed when operands are fed back using FlOWC to bypass 
the C register and operands are used on the same cycle. 

§td is the clock cycle period. 
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setup and hold times 

PIPELINE 

NO. PARAMEtER CONTROLS 
SN74ACT8847-40 

UNIT 

PIPES2-PIPESO MIN MAX 

16 tsu1 Inst/control before CLKt XXO 14 

17 tsu2 DA/DB before CLKt XXO 13 

18 tsu3 DA/DB before 2nd CLKt (DP) XX1 52 

CONFIG 1-0 before CLKt 
ns 

19 tsu4 XXO 14 

20 tsu5 SRCC before CLKCt XXX 14 

21 tsu6 RESET before CLKt XXO 14 

22 th1 Inst/control after CLKt XXX 3 

23 th2 DA/DB after CLKt XXX 3 

SRCC after CLKCt 
ns 

24 th3 XXX 3 

25 th4 RESET after CLKt XXO 6 

elK/RESET requirements 

PARAMETER 
SN74ACT8847-40 

UNIT 
MIN MAX 

CLK high 15 

tw Pulse duration eLK low 15 ns 

REm 12 
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switching characteristics 

TO 
PIPELINE 

NO. PARAMETER 
FROM 

CONTROLS 
SN74ACT8847-50 

(OUTPUT) 
UNIT 

(INPUT) 
PIPES2-PIPESO MIN MAX 

1 tpd1 DA/DB/lnst Y OUTPUT 111 t ns 

INPUT REG Y OUTPUT 110 120 
2 tpd2 ns 

INPUT REG STATUS 110 120 

3 
PIPELN REG Y OUTPUT 10X 75 

tpd3 ns 
PIPELN REG STATUS 10X 75 

OUTPUT REG Y OUTPUT OXX 36 
4 tpd4 

36 
ns 

OUTPUT REG STATUS OXX 

5 tpd5 SELMS/CS Y OUTPUT XXX 24 ns 

6 tpd6 CLKt 
Y OUTPUT 

INVALID 
all but 111 3.0 ns 

STATUS 
7 tpd7 CLKt 

INVALID 
all but 111 3.0 ns 

8 SELMS/lS 
Y OUTPUT 

tpd8 
INVALID 

XXX 1.5 ns 

9 td1 :j: ClKt CLKt 010 100 

10 td2:j: ClKt ClKt 000 50 

Delay time, ClKC after ClK to insure 
ns 

11 td3 
data captured in C register is data 

16 td-O§ 
clocked into sum or product register by 

that clock. (PIPES2-PIPESO = OXX) 
12 ten 1 OEY Y OUTPUT XXX 20 

13 ten2 QE<:, O'ES STATUS XXX 20 
ns 

14 tdis1 OEY Y OUTPUT XXX 20 

15 tdis2 OEC,OES STATUS XXX 20 

tThis parameter no longer tested and will be deleted on next Data Manual revision, 
:j: Minimum clock cycle period not guaranteed when operands are fed back using FlOWC to bypass 
the C register and operands are used on the same cycle. 
ttd is the clock cycle period. 
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setup and hold times 

PIPELINE 
SN74ACT8847-50 

NO. PARAMETER CONTROLS UNIT 

PIPES2-PIPESO MIN MAX 

16 tsu1 Inst/control before CLKt XXO 16 

17 tsu2 DA/DB before CLKt XXO 16 

18 tsu3 DA/DB before 2nd CLKt (DP) XX1 75 

19 CONFIG1-0 before CLKt XXO 18 
ns 

tsu4 
20 tsu5 SRCC before CLKCt xxx 16 

21 tsu6 RESET before CLKt XXO 16 

22 th1 Inst/control after CLKt XXX 3 

23 th2 DA/DB after CLKt XXX 3 
ns 

24 th3 SRCC after CLKCt XXX 3 

25 th4 REm after CLKt XXO 6 

elK/RESET requirements 

PARAMETER 
SN74ACT8847-50 

MIN MAX 
UNIT 

CLK high 15 

tw Pulse duration CLK low 15 ns 

RESET 15 
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, ACT884 7 load Circuit 

The load circuit for the 'ACT884 7 is shown in Figure 1. 

TEST S1 

FROM OUTPUT~ 
UNDER TEST 1 ,,_ C> 

TCl 

TIMING 

PARAMETER 
Cl t IOl 

ten 
tpZH 

50 pF 1 rnA 
tplH 

tdis 
tpHZ 

50 pF 16 rnA 
tplZ 

tpd 50 pF -

TESTER PIN 
ELECTRONICS 

IOH 

IOH Vl 

-1 rnA 1.5 V 

-16 rnA 1.5 V 

- -

tCl includes probe and test fixture capacitance. 

S1 

CLOSED 

CLOSED 

OPEN 

NOTE: All input pulses are supplied by generators having the following characteristics: 
PRR :s 1 MHz, Zo = 50 n, tr :S 6 ns, tf :S 6 ns. 

Figure 1. Load Circuit 
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.;,. 
-1>0 

Lfl881~nfflLNS 
2 3 4 5 8 9 10 11 

CLOCKS CLK.CLKC ~I ~I ~I ~I ~I ~I ~I ~: ~: ~: ~: 

{

III II I, I I f I I I I I 

DATA INPUT DA31-0 ( OPO ~ OP2 MSH X OP3 ~~~--r------'----__r----""T"-----'-----_r_----,......----,....-
BUSES 1---17-----01 f<-23 I -174 ;'-23 

DB31 OK OP1 X OP2LSH xr------~~~--~------~--------~------~------~--------~------~------~ 

, IV : : ',--_---". __ --''--__ ~i ___ '--__ ..l--__ --L-__ ---1.. __ --!. 

CONFIG1.0 KCONFlG1.0_01~ CONFIG1.0 - 00 X~----,r----__,----__r----_,_----...,...----_r_----,......----,....-
i ':: 4~22 i 

PIPES2-0 ~ PIPES2-0. 000 
I i i 

l iii I (0' ----'------'------'--

DATA INPUT.J CLKMODE!\ I I I '.{ 
CONTROLS .. : 1 : : , I , -.l ~ 22 

ENRA V 11\ I --\ 1 
- 16 --fi 1<"22 : jo--16:::::::;1 10-22 I 

ENRB 7 1\ ) I, : 
II i I If I 
i I I , 

{ 

RA ------i'i. OPO 'i. OP3 
INPUT REGISTER (' (,"----__,--:..:...:=--__r----_,_-----,-----_r_----,......----t_------r 

CONTENTS I I r----~----~----~---=--=-----~----~----~-----" 
RB ~ OP1 ~"----~--O~P-2-"""T----_;-----_r----_r_----,......----t_---__r 

{ 

SELOP7-0 ~ XXXX 1001" SELOP7-0 I. XXXX 01X~' 
INSTRUCTION/ 

CONTROLS t"11~\ltut" + \,;tu:.u\:)rl ,--,,::,"V~N.:v=.n:;.;.' .::u::.._.:.:v~.,::.._r'':'----_r----_r_----,......-

CONTROLS ~ V M.LILI \;-VI'II I nUL ""..,..."VIVlr IIVI .. WI \a.CC .,",UlCI 

NOTES: Assume the following mixed precision operation. 
Single precision OPO+OP1 =RA+RB - SUM1 - CREG, where OPO is SP and OP1 is SP. 
Mixed precision OP2.0P2 = RA.RB - PRODUCT1, where OP3 is SP and OP2 is DP. 
NOP (must be inserted). 
Mixed precision (OP3.0P2) + (OPO + OP1) = PREG + CREG - SUM2 (DP), and then convert to SP. 

Assume valid control signals for FAST, HALT = 1, PIPES2-0 =000 (fully pipelined mode), RESET = 1, RND1-0, SELST1-0 = 11, TP1-0 = 11. 

Figure 2a. Timing Diagram for: SP ALU -+ DP MUL T -+ DP ALU -+ Convert DP to SP 



-...J 

./:.. 
m 

2 3 4 5 6 8 9 10 11 

I I i 1: :: I 
I I I I I I I I 

{ 

SRCC---'------'-' -----'-,' i : J' " , \ i l~----'-:---'--
': _20:::0: 1"-24 i -20~ "-24 I 

CREG CONTROLS ENRC-----'-----'------L..'i, : )' : :: : : 

1 "--164 10-22 I I I I I 

FLOWC i , 1 : t 
: : _ 16 --=>l ..- 22 1--16 -I ~-:2c:2--r-------r--

-'-----'-----'------'-----""""'XPRODUCTl IOPlX 
I i I I ~----~,~-------r,---------,r_------~,---------r---
1 1 1 1 1 1 : 1 

_ __ ---. ___ --,.X SUM1 ISPI X X SUM2 IDPIXX SUM2 (SPI X 
j iii I '----,.--

NOTES: Assume the following mixed precision operation. 

I . 
~13 

Single precision OPO + OP1 = RA + RB - SUM 1 - CREG, where OPO is SP and OP1 is SP. 
Mixed precision OP2.0P2 = RA.RB - PRODUCT1, where OP3 is SP and OP2 is DP. 
NOP (must be insertedl. 
Mixed precision (OP3.0P21 + (OPO+OPlI = PREG+CREG - SUM2 (DPI. and then convert to SP. 

Assume valid control signals for FAST, HALT = 1, PIPES2-0 =000 (fully pipelined model, RESET = 1, RND1-0, SELST1-0 = 11, TP1-0 = 11. 

Figure 2b. Timing Diagram for: SP AlU ... DP MUl T ... DP AlU -+ Convert DP to SP 
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--.J 
~ 
Ol CLOCKS 

L1788.1~~17LNS 

CLK,CLKC I 
I 
to 

2 3 4 5 6 7 8 9 10 11 

{ OA31-0~ OPO ~~ OP~ MSH 

OA:~~~:UT 10-17 I ~23 I ~ " J ~ ,~ 
OB31-0 k OP1 LSH t OP1 MSH t OP2 LSH j(i-~_--I:I.-___ 1--___ L-___ ..L: ___ --l ___ --II.-___ 1--___ L-_ 

DATA INPUT 
CONTROLS 

I II II II I I 

CONFIG1,0 ~ CONfl3.,0-01 ;x CONFIG1;0-00;X ; ;Xr ---.J;----J....---..J..-----1------J 

PIPES2-0 r 16
: : I : : PIPES2-0;-000 : 

I I I I I I I 1'r-__ ....L. ___ -1. ___ --1 ___ --l_ 

CLKMOOE r Iii i i K' 
:
-b I I I I I -OJ t- 22 

ENRA ----'I"Ii :~ I : : : : 

! 1,1.. : I I I I 
ENRB : I :~? :\ : : I ----rl~ 16 _ J- 22 ,---16 ----0/ \.-'-2~2::----+1----+1 ----II-----!-----+---~I------! 

INPUT REGISTER { RA : ~ fPo : ; ; : 

CONTENTS RB ; ~ ~P1 ~(======~:~O:P2~====~::=======~: =======~=======~=======~=======~ 
_--...L--------1. J I I [ I I 

{ 

SELOP7-0 

..,. ............... u ,II\. tr- I I INSTRUCTIONI 110-0 , l' I ,1' , I I' J_ ~ 
CONTROLS : L J. _ j 

CONTROLS C VALID CONTROL ASSUMPTIONS Isee Notel 
I I I I 
I I I I 

NOTES: Assume the following double precision operation, 
OPO + OP1 = RA + RB - SUM1 - CREG 
(OPO + OP11 • OP2 = SREG • RB - PRODUCT1 
[(OPO + OP11 • OP21] + (OPO + OP11 = PREG + CREG - SUM2 

Assume valid control signals for FAST, HALT = 1, PIPES2-0 = 000 (fully pipelined model. RESET = 1, RND1-0, SELST1-0 = 11, TP1-0 = 11. 

Figure 3a. Timing Diagram for: DP ALU -- DP MUL T -- DP ALU 



2 3 4 5 6 8 9 10 11 

I I i I I I I 
I I I I I I I I 

___ ......L ___ -JL-. ___ .J.: ___ --L,: I I I I I I I I 

{ 

SRCC~ 1/ I I I I I 
-----r------,r----"T----r-~_--20--....j..1 !.- 24 I I::: 

: : ,~ -, ,'- I I I ' I 
CREG CONTROLS ENRC '1 : ,( I : I I i 

: _ 16 ---II Jo- 22 I I I : : I 

INTERNAL {.:.: ~ ~ I I~~x ~{,,: : I 

REGISTER CONTENTS _.l---~---I,: : ! ! ! : : : : 
ALU PIPE X SUM1XX SUM2X 

{ 

CREG :: Ix I I S~Ml : : : 

REGIST~~T;~~TENTS PREG :::;;x PR~DUCT1:X : : 

SREG ::x : SUM1: :x : :x ~UM2 :>e 
I II I I I I I I ~ 

{ 

OEY I I), I I I I I I II 
I -!« _ 12 I I I I I I I 

____ ......L ___ -JL-. ___ .J.I ___ -J:~~'---_HI. I I I, I I I 

OUTPUT CONTROL SELMSILS 71 : ~ I Y :): : r 
_ : -lot 10-5: : JJ 10-: 14 t- .. 
OEC.OES : I I I : I I I I 5 I I I: 

{ 

Y31-0 : i ~SUMI M+: 

OUTPUT BUSES : I , I 

STATUS I VALID STATUS VALID STATUS VALID STATUS 

-l.I 10-13 

NOTES: Assume the following double precision operation. 
OPO + OP1 = RA + RB .... SUM1 .... CREG 
(OPO + OP1) • OP2 = SREG • RB .... PRODUCT1 
[(OPO + OP1) • OP2)) + (OPO + OP1) = PREG + CREG .... SUM2 __ 

Assume valid control signals for FAST, HALT = 1, PIPES2-0 =000 (fully pipelined mode), RESET = 1, RND1-0, SELST1-0 = 11, TP1-0 = 11. 

Figure 3b. Timing Diagram for: DP ALU .... DP MUL T .... DP ALU 
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..... 

.i>. 
(Xl 

Lv88.l:::>~vLNS 

2 3 4 5 6 7 8 

ClK.ClKC 

DA31-0 ~n,n'--"--"'i!' "!~1-;3'--23 "!~1;':0"23 
.1 ~ \J _~r----";"--."r----L-------'-------

ClKMODE 

ENRA 

ENRB i ~ 

RA 
-----r' 

RB /' t" l' !" /'1..---...::::.:..::.....-,-----,------

SElOP7-0 SElOP7-0 - 1101 1011 

110-0 RA • CREG. PREG + RB 

CONTROL ~ VALID CONTROL ASSUMPTIONS Isee Notel 
I I 
I I 
I I 

NOTES: Assume the following single precision operations, 
(K * OPO) + OP1 = PRODUCT1 + OP1 .... SUM1 
(K * OP2) + OP3 = PRODUCT2 + OP3 .... SUM2 
(K * OP4) + OP5 = PRODUCT3 + OP5 .... SUM3 
(K * OP6) + OP7 = PRODUCT4 + OP7 .... SUM4 

i 
i 

I , 

Assume valid control signals for FAST , HALT = 1, PIPES2-0 = 010, RESET = 1, RND 1-0, SELST1-0 = 11 , 
TP1-0 = 11. 

Figure 4a. Timing Diagram for: SP [(Scalar * Vector) + Vector) 



2 3 4 5 6 7 8 
I I I I I I 
I I I I I I 

SRCC ...l..----...L,:L:I :::: 
I "'F 20 --=-I *- 24 I: : : 

ENRC ----+----....J.,I). I) I I I I 

: _16-----.: 1.-22 I : : : : 
FlOWC----------T----------+I----~--~:~ : I ~ : : 

I I (+--16---01 , ~22 I I 

CREG ; ~ > ICONSTANT< : : : 

PREG : ~ PROOUCT1 ;x PRODUCT2:X PRODUCT3:X PROOUCT4 ~r---------:'---------

SREG :x K ICONSTANTI:X :x SUM1 :x SUM2 :x SUM3 :x SUM4 :x'--------
______ ~--------~I I I I I I I 

OEY ).I!::::: " 

~r-12 !! I ! ! '4- 14 

SElM/LS ( ~ -- -- -1 
__________ +-______ ~: i I I .-41-------

OEC,OES ': I, IA' I 
II I I I 

Y31-0 I ~ K ICONSTANTIX SUM1 SUM2 SUM3 SUM4: ~)l------
I I 15 

STATUS I VALID STATUS VALID STATUS 

-t*-13 ~ 10-4 ~ 14- 4 ~ 14-4 ;-4 ~ 10-4 

NOTES: Assume the following single precision operations. 
(K * OPO) + OP1 = PRODUCT1 + OP1 -+ SUM1 
(K * OP2) + OP3 = PRODUCT2 + OP3 -+ SUM2 
(K * OP4) + OP5 = PRODUCT3 + OP5 -+ SUM3 
(K * OP6) + OP7 = PRODUCT4 + OP7 -+ SUM4 

Assume valid control signals for FAST , HALT = 1. PIPES2-0 = ° 10, RESET = 1, RND 1-0, SELST1-0 = 11 , 
TP1-0 = 11, 

-;J Figure 4b. Timing Diagram for: SP [(Scalar * Vector) + Vector) 
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SN74ACT8847 64-Bit Floating Point Unit 

Introduction 

Designing with the SN74ACT8847 floating point unit (FPU) requires a thorough 
understanding of computer architectures, microprogramming, and IEEE floating point 
arithmetic, as well as a detailed knowledge of the 'ACT8847 itself. This introduction 
presents a brief overview of the 'ACT884 7 and discusses a number of issues when 
designing and programming with this FPU. 

Major Architectural Features 

The overall architecture for a floating point system is determined by a combination 
of design factors. The principal consideration is the set of performance targets that 
the floating point processor has to achieve, usually exprE1ssed in terms of clock cycle 
period, operating mode (vector or scalar), and operand precision (32 bit, 64 bit, or 
other). Of almost equal importance are design constraints of cost, complexity, chip 
count, power consumption, and requirements for interfacing to other processors. 

The architecture of the 'ACT884 7 is optimized to satisfy several processing and 
interface requirements. The FPU has two 32-bit input buses, the DA and DB data buses, 
and one 32-bit output bus, the Y bus. This three-port design provides much greater 
I/O bus bandwidth than can be achieved by a single-port device (one 32-bit I/O bus). 
Two single-precision inputs can be simultaneously loaded on the input buses while 
a result is being output on the Y bus. 

Internally, the 'ACT8847 FPU consists of two main functional blocks: the multiplier 
and the ALU (see Figure 5). Either the multiplier or the ALU can operate independently, 
or the two functional units can be used simultaneously in "chained" mode. When 
operating independently, each block of the FPU performs a separate set of arithmetic 
or logical functions. The multiplier supports multiplication, division and square roots. 
The ALU supports addition, subtraction, format conversions, logical operations, and 
shifts. Integer division and integer square root require both the multiplier and the ALU; 
the final result comes from the ALU. 

In chained mode, a multiplier operation executes in parallel with an ALU operation. 
en Possible examples include calculations of a sum of products (multiply and accumulate) 
2 or a product of sums (add and then multiply). The sum of products computation requires 
-....I a total of four operands: two new inputs to be multiplied, the sum of previous products, 
,J:I. and the current product to be added to the sum, as shown in Table 3. l> 
('") 
-4 
IX) 
IX) 
,J:I. 
-....I 
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Figure 5_ High Level Block Diagram 

Table 3_ Sum of Products Calculation 

MULTIPLIER OPERATION ALU OPERATION 

A*B -
C*O (A * B) + 0 

E * F (C * 0) + (A * B) 

· · · · · · 
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Because the' ACT8847 has multiple internal data paths and data registers, this sum 
of products can be generated by simultaneous operations on new bus data and internal 
feedback, without the necessity of storing either the previous accumulation or the 
current product off chip. Data flow for the sum of products calculation is shown in 
Figure 6. 

A * B 
PREG + SREG 

Figure 6. Multiply/Accumulate Operation 

Data Flow in Pipelined Architectures 

Several levels of internal data registers are available to segment the internal data paths 
of the' ACT884 7. The most basic choice is whether to use the device in flowthrough 
mode (with no internal registers enabled) or whether to enable one or more registers. 
When none of the internal registers are enabled, the paths through the multiplier and 
the ALU are not segmented. In this case, the delay from data input to result output 
is the longest. 

Enabling one or more registers divides the data paths so that data can be clocked into 
internal registers, instead of from an external source to an external destination. Enabling 
the input registers permits data and instruction inputs to be registered on chip. Also, 
the hardware division and square root operations which the' ACT884 7 performs require 
that the input registers be enabled. 

In the main data paths, three sets of internal registers are available in the ACT8847: 
input registers, pipeline registers in the multiplier and ALU logic blocks, and output 
registers to capture results from the multiplier and the ALU. When all three levels of 
data registers are enabled, the register-to-register delay inside the device is minimized. 
This is the fastest operating mode, and in this configuration the' ACT8847 is said 
to be "fully pipelined." While one instruction is executing, the next instruction along 
with its associated operands may be input to device so that overlapped operations 
occur (see Figure 7). 

The selection of operating mode, from flowthrough to fully pipelined, determines the 
latency from input to output, the number of clock cycles required for inputs to be 
processed and results to appear. For each register level enabled in the data path, one 
clock cycle is added to the latency from input to output. 
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Control Architectures for High-Speed Microprogrammed Architectures 

A separate control circuit is required to sequence the operation of the' ACT884 7. A 
sequencer function within the control circuit controls both the sequencer and FPU as 
determined by FPU status outputs. Either a standard microsequencer such as the 
SN 7 4ACT881 8, or a custom controller such as a PLA or gate array can be used to 
control the FPU. Figure 8 shows an example block diagram for a PLA control circuit. 

If a standard microsequencer is used, execution addresses for routines stored in the 
microprogram memory are generated by the microsequencer. As its name implies, 
microprogram memory stores the sequences of microinstructions which control FPU 
execution. The' ACT884 7 can be programmed by generating all control bits in a given 
microinstruction to select an FPU operation. 

One possible control circuit for the ' ACT884 7 consists of a microsequencer, 
microprogram memory, and one or more microinstruction registers, together with status 
logic as required to support a specific floating point implementation. A control circuit 
without an instruction register is typically too slow for use with the' ACT884 7. At 
least one microinstruction register is used to hold the current instruction being executed 
by the FPU and sequencer (see Figure 9). 

Inclusion of the microinstruction register divides the critical path from the sequencer 
through the program memory to the FPU control inputs, permitting much faster 
execution times. However, when all the internal registers of the FPU are enabled, FPU 
operation may be fast enough to require a second register in the control circuit. In 
this case, a register on the output bus of the sequencer captures each microprogram 
address, and the microinstruction register captures each microinstruction (see 
Figure 10). 

EXTERNAL 
CONTROL/STATUS 
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(PLAI 

STATUS 

Figure 8. PLA Control Circuit Example 
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Introducing registers in the FPU data paths and the control circuit complicates I/O 
timing, status output timing, the status logic and the microprogram for the FPU and 
the sequencer. These timing relationships affect branches, jumps to subroutine, and 
other operations depending on FPU status. Some of these programming issues are 
discussed below. 

Microprogram Control of an 'ACT884 7 FPU Subsystem 

A microprogram to control the' ACT884 7 must take into account not only the FPU 
operation but also the sequencer operation, especially when the system is performing 
a branch on status or handling an exception. 

Several options are available for dealing with such exceptions. The' ACT884 7 can 
be programmed to discard operands in invalid formats, and some exceptions caused 
by illegal operations. In general, though, the microprogram should be designed to handle 
a range of status results or exceptions. Hardware timing considerations such as pipeline 
delays in both control and data paths must be studied to minimize the difficulty of 
performing branches to status exception handlers. 

Later sections of the 'ACT884 7 user guide present detailed examples of 
microinstructions and timing waveforms, along with interpretations of status outputs 
and the choices involved in handling IEEE status exceptions. 

, ACT884 7 Data Formats 

The' ACT884 7 accepts either operands as normalized IEEE floating point numbers, 
(ANSI/IEEE standard 754-1985), unsigned 32-bit integers, or 2's complement integers. 
Floating point operands may be either single precision (32 bits) or double precision 
(64 bits). 

IEEE formats for floating point operands, both single and double precision, consist of 
three fields: sign, exponent, and fraction, in that order. The leftmost (most significant) 
bit is the sign bit. The exponent field is 8 bits long in single-precision operands and 
11 bits long in double-precision operands. The fraction field is 23 bits in single precision 
and 52 bits in double precision. The value of the fraction contains a hidden bit, an 
implicit leading" 1 ", as shown below: 

1. fraction 

The representation of a normalized floating point number is: 

(-1)S * 1.f * 2(e-bias) 

where the bias is either 127 for single-precision operands or 1023 for double-precision 
operands. 

The formats for single-precision and double-precision numbers are shown in Figure 11 
and Figure 12, respectively. Further details of IEEE formats and exceptions are provided 
in the IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Std 754-1985. 
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31 30 23 22 

s: sign of fraction 
e: a-bit exponent biased by 127 
f: 23-bit fraction 

Figure 11. IEEE Single-Precision Format 

63 62 52 51 

s: sign of fraction 
e: 11-bit exponent biased by 1023 
f: 52-bit fraction 

Figure 12. IEEE Double-Precision Format 

o 

o 

The' ACT884 7 also handles two other operand formats which permit operations with 
very small floating point numbers. The ALU accepts denormalized floating point 
numbers, that is, floating point numbers so small that they could not be normalized. 
If these denormal operands are input to the multiplier, they will cause status exceptions. 
Denormals can be passed through the ALU to be "wrapped," and the wrapped 
operands can then be input to the multiplier. 

A denormalized input has the form of a floating point number with a zero exponent, 
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit 
bit). Using single precision, a denorm is equal to: 

(-1)S * (2) -126 * fraction 

For double precision, a denorm is equal to: 

(-1)S * (2) - 1022 * fraction 

A denormalized number results from decrementing the biased exponent field to zero 
~ before normalization is complete. Since a denormalized number cannot be input to 
...... the multiplier, it must first be converted to a wrapped number by the ALU. A wrapped 
~ number is a number created by normalizing a denormalized number's fraction field and 
f; subtracting from the exponent the number of shift positions (minus one) required to 
~ do so. The exponent is encoded as a two's complement negative number. When the 
~ mantissa of the denormal is normalized by shifting it left, the exponent field decrements 
~ from all zeros (wraps past zero) to a negative two's complement number (except in 
...... the case of 0.1 XXX ... , where the exponent is not decremented). 

Floating point formats handled by the 'ACT8847 are presented in Table 4. 
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Table 4. IEEE Floating Point Representations 

TYPE OF EXPONENT (e) FRACTION (f) HIDDEN VALUE OF NUMBER REPRESENTED 

OPERAND SP (HEX) DP (HEX) (BINARY) BIT SP (DECIMAL) t DP (DECIMAL) t 

Normalized 
FE 7FE All 1 's 1 ( - 1)S (2127) (2 - 2 - 23) ( - 1)S (2 1023) (2 - 2 - 52) 

Number (max) 

Normalized 
01 001 All O's 1 (-1)S (2- 126) (1) ( - 1)S (2 - 1022) (1) 

Number (min) 

Denormalized 
00 000 All 1 's 0 (1-)S (2-126) (1-2-23) ( - 1)S (2 - 1022) (1 - 2 - 52) 

Number (max) 

Denormalized 
00 000 000 ... 001 0 (_1)5 (2 -126) (2 - 23) (-1)S (2- 1022) (2- 52) 

Number (min) 

Wrapped 
00 000 All 1 's 1 ( - 1)5 (2 - 127) (2 - 2 - 23) ( - 1)5 (2 - 1023) (2 - 2 - 52) 

Number (max) 

Wrapped 
EA 7eD All O's 1 ( - 1)S (2 - (22 + 127)) (1) (_1)5 (2 - (51 + 1023)) (1) 

Number (min) 

Zero 00 000 Zero 0 (-l)S (0.0) (-1)S (0.0) 

Infinity FF 7FF Zero 1 ( - 1)5 (infinity) ( - 1)S (infinity) 

NaN (Not a 
FF 7FF Nonzero N/A None None 

Number) 

t s sign bit. 
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Status Outputs 

Status flags are provided to signal both floating point and integer results. Integer status 
is provided using AEQ8 for zero, NEG for sign, and OVER for overflow/carryout. 

Status exceptions can result from one or more error conditions such as overflow, 
underflow, operands in illegal formats, invalid operations, or rounding. Exceptions may 
be grouped into two classes: input exceptions resulting from invalid operations or 
denormal inputs to the multiplier, and output exceptions resulting from illegal formats, 
rounding errors, or both. 

SN74ACT8847 Architecture 

Overview 

The SN74ACT8847 is a high-speed floating point unit implemented in Tl's advanced 
1-ltm CMOS technology. The device is fully compatible with IEEE Standard 754-1985 
for addition, subtraction, multiplication, division, square root, and comparison. 

The' ACT884 7 FPU also performs integer arithmetic, logical operations, and logical 
shifts. Absolute value conversions, floating point to integer conversions, and integer 
to floating point conversions are also available. The ALU and multiplier are both included 
in the same device and can be operated in parallel to perform sums of products and 
products of sums (see Figure 13). 
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IEEE formatted denormal numbers are directly handled by the ALU. Denormal numbers 
must be wrapped by the ALU before being used in multiplication, division, or square 
root operations. A fast mode in which all denormals are forced to zero is provided 
for applications not requiring gradual underflow. 

The' ACT884 7 input buses can be configured to operate as two 32-bit data buses 
or as a single 64-bit bus, providing a number of system interface options. Registers 
are provided at the inputs, outputs, and inside the ALU and multiplier to support 
multilevel pipelining. These registers can be bypassed for nonpipelined operation. 

A clock mode control allows the temporary input register to be clocked on the rising 
edge or the falling edge of the clock to support double-precision ALU operations at 
the same rate as single-precision operations. A feedback register (C register) with a 
separate clock is provided for temporary internal storage of a multiplier result, ALU 
result or constant. 

Four multiplexers select the multiplier and ALU operands from the input registers, C 
register or previous multiplier or ALU result. Results are output on the 32-bit Y bus; 
a Y output multiplexer selects the most significant or least significant half of the result 
if a double-precision number is being output. 

To ensure data integrity, parity checking is performed on input data, and parity is 
generated for output data. A master/slave comparator supports fault-tolerant system 
design, Two test pin control inputs allow alii/Os and outputs to be forced high, low, 
or placed in a high-impedance state to facilitate system testing. 

Pipeline Controls 

Six data registers in the' ACT884 7 are arranged in three levels along the data paths 
through the multiplier and the ALU. Each level of registers can be enabled or disabled 
independently of the other two levels by setting the appropriate PIPES2-PIPESO inputs. 
When enabled, data is latched into the register on the rising edge of the system clock 
(CLK). A separate instruction pipeline register stores the instruction bits corresponding 
to the operation being executed at each stage. 

The levels of pipelining are shown in Figure 14. The first set of registers, the RA and 
RB input registers, are controlled by PIPESO. These registe'rs may be used as inputs 
to the ALU, multiplier, or both. 

The pipeline registers are the second register set. When enabled by PIPES1, these 
registers latch intermediate values in the multiplier or ALU. 

The results of the ALU and multiplier operations may optionally be latched into two 
output registers by setting PIPES2 low. The P (product) register holds the result of 
the multiplier operation; the S (sum) register holds the ALU result. 

Table 5 shows the settings of the registers controlled by PIPES2-PIPESO. Operating 
modes range from fully pipelined (PIPES2-PIPESO = 000) to flowthrough 
(PIPES2-PIPESO = 111). The instruction pipeline registers are also set accordingly. 
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Table 5. Pipeline Controls (PIPES2-PIPESO) 

PIPES2·PIPESO REGISTER OPERATION SELECTED 

X X 0 Enables input registers (RA. RBI 
X X 1 Makes input registers (RA. RBI transpar(!nt 
X 0 X Enables pipeline registers 
X 1 X Makes pipeline registers transparent 
0 X X Enables output registers (PREG. SREG. Status) 
1 X X Makes output registers (PREG. SREG. Status) transparent 

In flowthrough mode all three levels of registers are transparent. a circumstance which 
may affect some double-precision operation~. Since double-precision operands require 
two steps to input. at least half of the data must be clocked into the temporary register 
before the remaining data is placed on the DA and DB buses. 

When all registers (except the C register) are enabled. timing constraints can become 
critical for many double-precision operations. In clock mode 1. the ALU can perform 
a double-precision operation and output a result during every clock cycle. and both 
halves of the result must be read out before the end of the next cycle. Status outputs 
are valid only for the period during which the Y output data is valid. 

Similarly. double-precision multiplication is affected by pipelining. clock mode. and 
sequence of operations. A double-precise multiply may require two cycles to execute 
and two cycles to output the result. depending on the settings of PIPES2-PIPESO. 

Duration of valid outputs at the Y multiplexer depends on settings of PIPES2-PIPESO 
and CLKMODE. as well as whether all operations and operands are of the same type. 
For example, when a double-precision multiply is followed by a single-precision 
operation. one clock cycle must intervene between the dissimilar operations. The 
instruction inpl!ts are ignorC3d during this clock cycle. 

Temporary Input Register 

A temporary input register is provided to enable loading of two double-precision 
numbers on two 32-bit input buses in one clock cycle. The contents of the DA bus 
are loaded into the upper 32 bits of the temporary register; the contents of DB are 
loaded into the lower 32 bits. 

2 A clock mode signal (CLKMODE) determines the clock edge on which the data will 
~ bestored in the temporary register. When CLKMODE is low. data is loaded on the 
~ rising edge of the clock. With CLKMODE set high, the temporary register loads on 
(") a falling edge and the RA and RB registers can then be loaded on the next rising edge. 
~ The temporary register loads during every clock cycle. 
(X) 

~ 
-.oJ 
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RA and RB Input Registers 

Two 64-bit registers, RA and RB, are provided to hold input data for the multiplier 
and AlU. Data is taken from the DA bus, DB bus and the temporary input register. 
The registers are loaded on the rising edge of clock ClK if the enables ENRA and ENRB 
are set high. PIPESO must be low. 

Data input combinations to the 'ACT884 7 vary depending on the precision of the 
operands and whether they are being input as A or B operands. loading of external 
data operands is controlled by the settings of ClKMODE and CONFIG 1-CONFIGO, 
which determine the clock timing for loading and the registers that are used. (See Figure 
15). 

Configuration Controls 

Three input registers are provided to handle input of data operands, either single 
precision or double precision. The RA, RB, and temporary registers are each 64 bits 
wide. The temporary register is (ordinarily) used only during input of double-precision 
operands. 

Double-precision operands are loaded by using the temporary register to store half 
of the operands prior to inputting the other half of the operands on the DA and DB 
puses. As shown in Table 6, four configuration modes for selecting input sources are 
available for loading data operands into the RA and RB registers. 

DA DB 

TEMPORARY REGISTER 
MSH l LSH 

CONFIG 1 --4 ...... -\. 

CONFIGO -----t----.... ---+----.... ---+-----' 

ENRA 
MSH LSH II/ISH LSH 

RA INPUT REGISTER RB INPUT REGISTER 

ENRB-----------------' 

Figure 15. Input Register Control 
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Table 6. Double Precision Input Data Configuration Modes 

LOADING SEQUENCE 
DATA LOADED INTO TEMP 

DATA LOADED INTO RA/RB 
REGISTER ON FIRST CLOCK 

REGISTERS ON SECOND 
AND RA/RB REGISTERS ON 

SECOND CLOCK t 
CLOCK 

CONFIG1 CONFIGO DA DB DA. DB 

0 0 
B operand B operand A operand A operand 

(MSH) (LSH) (MSH) (LSH) 

0 1 
A operand B operand A operand B operand 

(LSH) (LSH) (MSH) (MSH) 

1 0 
A operand B operand A operand B operand 

(MSH) (MSH) (LSH) (LSH) 

1 1 
A operand A operand B operand B operand 

(MSH) (LSH) (MSH) (LSH)) 

tOn the first active clock edge (see Clock Mode Settings), data in this column is loaded into the temporary 
register. On the next rising edge, operands in the temporary register and the DAtOS buses are loaded into 
the RA and RS registers. 

When single-precision or integer operands are loaded, the ordinary setting of 
CONFIG1-CONFIGO is 01, as shown in Table 7. This setting loads each 32-bit operand 
in the most significant half (MSH) of its respective register. Single-precision operands 
are loaded into the MSHs and adjusted to double precision because the data paths 
internal to the device are all double precision. It is also possible to load single-precision 
operands with other CON FIG settings but two clock edges are required to load both 
the A and B operands on the DA bus. The operands are input as the MSHs of the A 
and B operands (see Table 6). For example, to load single-precision operands using 
CONFIG 1-CONFIGO = 10, the A and B operands are input one active clock edge before 
the instruction. 

Table 7. Single-Precision Input Data Configuration Mode 

DATA LOADED INTO 
RA/RB REGISTERS ON 

FIRST CLOCK 

CONFIG1 CONFIGO DA DB NOTE 

0 1 A operand B operand 
This mode is ordinarily used for single-
precision operations. 

Clock Mode Settings 

Timing of double-precision data inputs is determined by the clock mode setting, which 
allows the temporary register to be loaded on either the rising edge (CLKMODE = 0) 
or the falling edge of the clock (CLKMODE = 1). Since the temporary register is not 
used when single-precision operands are input, clock modes 0 and 1 are functionally 
equivalent for single-precision operations using CONFIG 1-CONFIGO = 01. 
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The setting of CLKMODE can be used to speed up the loading of double-precision 
operands. When the CLKMODE input is set high, data on the DA and DB buses are 
loaded on the falling edge of the clock into the MSH and LSH, respectively, of the 
temporary register. On the next rising edge, contents of the DA bus, DB bus, and 
temporary register are loaded into the RA and RB registers, and execution of the current 
instruction begins. The setting of CON FIG 1-CONFIGO determines the exact pattern 
in which operands are loaded, whether as MSH or LSH in RA or RB. 

Double-precision operation in clock mode 0 is similar except that the temporary register 
loads only on a rising edge. For this reason, the RA and RB registers do not load until 
the next rising edge, when all operands are available and execution can begin. 

A considerable advantage in speed can be realized by performing double-precision 
operations with CLKMODE set high. In this clock mode, both double-precision operands 
can be loaded on successive clock edges, one falling and one rising. If the instruction 
is an ALU operation, then the operation can be executed in the time from one rising 
edge of the clock to the next rising edge. Both halves of a double-precision ALU result 
must be read out on the Y bus within one clock cycle when the' ACT884 7 is operated 
in clock mode 1. 

The discussion above assumes that the system is able to furnish two sets of operands 
in one cycle (one set on the falling edge of the clock and the other set on the next 
rising edge). This assumption may not be valid, since the system is required to "double 
pump" the input data buses. 

Even for a system that is not able to double pump the input data buses, using clock 
mode 1 can reduce microcode size substantially resulting in increased system 
throughput. To illustrate, take the case of an operation where the operand(s) are 
furnished by one or more of the feedback registers (refer to Table 8). Since the input 
data buses are not being used to furnish the operands, the data on the buses at the 
time of the instruction is unimportant. By setting CLKMODE high, the instruction begins 
after the first cycle, resulting in a savings of one cycle. 

Table 8a. Double-Precision CREG + PREG Using CLKMODE ... 0, PIPES2-0 - 010 

CYCLE CLKMODE DA DB TEMP INSTR RA RB S 
BUS BUS REG BUS REG REG REG 

1 0 X X X C + P X X X 

2 0 X X X C + P X X X 

3 X X X X X X X C + P 

Table 8b. Double-Precision CREG + PREG Using CLKMODE - 0, PIPES2-0 - 010 

CYCLE CLKMODE DA DB TEMP INSTR RA RB S 
BUS BUS REG BUS REG REG REG 

1 1 X X X C + P X X X 

2 X X X X X X X C + P 
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Going one step further, take the case of an operation where only one operand needs 
to be furnished by the input data buses (refer to Table 9). To take advantage of clock 
mode 1, set the CONFIG lines so that the external operand comes directly from the 
DA and DB bus, as opposed to coming from the temporary register. Since the temporary 
register is not used to provide an operand, the data latched into it is inconsequential. 
It naturally follows then that the clock edge used to load the temporary register is 
unimportant. So by setting CLKMODE high, a double-precision instruction will begin 
after one cycle, instead of two cycles. 

Table 9a. Double-Precision PREG + RB Using CLKMODE .. 0, PIPES2-0 .. 010 

CYCLE CLKMODE 
DA DB TEMP INSTR RA RB S 

BUS BUS REG BUS REG REG REG 
1 0 X X X P + RB X X X 

2 0 RB(M) RB(L) RB P + RB X RB X 

3 X X X X X X X P + RB 

Table 9b. Double-Precisioh PREG + RB Using CLKMODE 1, PIPES2-0 010 

CYCLE CLKMODE 
DA DB TEMP INSTR RA RB S 

BUS BUS REG BUS REG REG REG 
1 1 RB(M) RB(L) RB P + RB X RB X 

2 X X X X X X X P + RB 

Operand Selection 

Four multiplexers select the multiplier and ALU operands from the RA and RB registers, 
the previous multiplier or ALU result, or the C register (see Figure 16). The multiplexers 
are controlled by input signals SELOP7-SELOPO as shown in Tables 10 and 11. For 
division and square root operations, operands must be sourced from the input registers 
RA and RB. 

Table 10. Multiplier Input Selection 

A1 IMUX1) INPUT B1 IMUX2) INPUT 

SELOP7 SELOP6 OPERAND SOURCEt SELOP5 SELOP4 OPERAND SOURCE t 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 ALU feedback 1 0 Multiplier feedback 
1 1 RA input register 1 1 RB input register » 

('") 
-t t For division or square root operations, only RA and RB registers can be selected as sources. 
(X) 
(X) 
~ 

""" 
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Table 11. ALU Input Selection 

A2 (MUX3) INPUT 82 (MUX4) INPUT 

SELOP3 SELOP2 OPERAND SOURCEt SELOP1 SELOPO OPERAND SOURCEt 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 Multiplier feedback 1 0 ALU feedback 
1 1 RA input register 1 1 RB input register 

t For division or square root operations, only RA and RB registers can be selected as sources. 

As shown in Tables 10 and 11, data operands can be selected from five possible 
sources, including external inputs from the RA and RB registers. feedback from the 
P (Product) and S (Sum) registers, and a stored value in the C register. Contents of 
the C register may be selected as either the A or the B operand in the ALU, the multiplier, 
or both. When an external input is selected, the RA input always becomes the A 
operand, and the RB input is the B operand. 

Feedback from the ALU can be selected as the A operand to the multiplier or as the 
B operand to the ALU, Similarly, multiplier feedback may be used as the A operand 
to the ALU or the B operand to the multiplier. During division or square root operations, 
operands may not be selected except from the RA and RB input registers 
(SELOP7-SELOPO = 11111111). 

Selection of operands also interacts with the selected operation in the ALU or the 
multiplier. ALU operations with one operand are performed only on the A operand (with 
the exception of the Pass B operation). Also, depending on the instruction selected, 
the B operand may optionally be forced to zero in the ALU or to one in the multiplier. 

If an operation uses one or more feedback registers as operands, the unused busIes) 
can be used to preload operand(s) for a later operation. The data is loaded into the 
RA or RB input register(s); when the data is needed as an operand, the SELOPS pins 
are set to select the RA or RB register(s), but the register input enables (ENRA, ENRB) 
are not enabled. The one restriction on preloading data is that the operation being 
performed during the preload MUST use the same data type (single-precision, double­
precision, or integer) as the data being loaded. Operands cannot be preloaded within 
square root or divide instructions. 

C Register 

The 64-bit constant (C) register is available for storing the result of an ALU or multiplier 
operation before feedback to the multiplier or ALU. The C register has a separate clock 
input (CLKC), input source select (SRCCI. and write enable (ENRC, active low). 

The C register loads from the P or the S register output, depending on the setting of 
SRCC. SRCC = 1 selects the multiplier as the input source. Otherwise, the ALU is 
selected when SRCC = O. The SRCC input is not registered with the instruction inputs. 
Depending on the operation selected and the settings of PIPES2-PIPESO, an offset 
of one or more cycles may be necessary to load the desired result into the C register. 
The register only loads on a rising edge of CLCK when ENRC is low. (See Figure 17). 
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A separate control (FLOWC) is available to bypass the C register when feeding an 
operand back on theC register feedback bus. When FLOWC is high, the output of 
the P or S register (as selected by SRCC) bypasses the C register without affecting 
the C register's contents. Direct P or S feedback is unaffected by the FLOWC setting. 

Pipelined ALU 

The pipelined ALU contains a circuit for floating point addition and/or subtraction of 
aligned operands, a pipeline register, an exponent adjuster and a normalizer/rounder 
as shown in Figure 18. An exception circuit is provided to detect denormal inputs; 
these can be flushed to zero if the FAST input is set high. If the FAST input is low, 
the ALU accepts a denormal as input. A de norm exception flag (DENORM) goes high 
when the ALU output is a denormal. 

Integer processing in the ALU includes both arithmetic and logical operations on either 
two's complement numbers or unsigned integers. The ALU performs addition, 
subtraction, comparison, logical shifts, logical AND, logical OR, and logical XOR. 

The ALU may be operated independently or in parallel with the multiplier. Possible ALU 
functions during independent operation are given in Table 12. 

EXPONENT SUBTRACTER 

PREALIGNMENT 

INTEGER ALU 

NORMALIZER 

ROUNDER 

Figure 18. Functional Diagram for ALU 
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Table 12. Independent ALU Operations 

SINGLE OPERAND TWO OPERANDS 

Pass Add 
Move Subtract 
Format Conversions Compare 
Wrap Denormalized Number AND 
Unwrap OR 
Shift XOR 

Pipelined Multiplier 

The pipelined multiplier (see Figure 19) performs a basic multiply function, division 
and square root. The operands can be singie-precision or double-precision floating point 
numbers and can be converted to absolute values before multiplication takes place. 
Integer operands may also be used. Independent multiplier operations are summarized 
in Table 13. 

If the operands to the multiplier are double precision or mixed precision (ie. one single 
precision and one double precision), then one extra clock cycle is required to get the 
product through the multiplier pipeline. This means that for PIPES 1 = 1, one clock 
cycle is required for the multiplier pipeline; for PIPES 1 = 0, two clock cycles are required 
for the multiplier pipeline. 

RECODER 

MULTIPLIER/DIVIDER 

CONVERTER 

NORMALIZER 

Figure 19. Functional Diagram for Multiplier 
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Table 13. Independent Multiplier Operations 

SINGLE OPERAND 

Square Root 

TWO OPERANDS 

Multiply 
Divide 

An exception circuit is provided to detect denormalized inputs; these are indicated 
by a high on the DENIN signal. Denormalized inputs must be wrapped by the ALU before 
multiplication, division, or square root. If results are wrapped (signaled by a high on 
the DENORM status pin). they must be unwrapped by the ALU. 

The multiplier and ALU can be operated simultaneously by setting the 11 0 instruction 
input high. Division and square root are performed as independent multiplier operations, 
even though both multiplier and ALU are active during divide and SQRT operations. 

Data Output Controls 

Selection and duration of results from the Y output multiplexer may be affected by 
several factors, including the operation selected, precision of the operands, registers 
enabled, and the next operation to be performed. The data output controls are not 
registered with the data and instruction inputs. When the device is microprogrammed, 
the effects of pipelining and sequencing of operations should be taken into account. 

Two particular conditions need to be considered. Depending on which registers are 
enabled, an offset of one or more cycles must be allowed before a valid result is available 
at the Y output multiplexer. Also, certain sequences of operations may require both 
halves of a double-precision result to be read out within a single clock cycle. This is 
done by toggling the SELMS/LS signal in the middle of the clock period. 

When a single-precision result is output, the SELMS/LS signal has no effect. The 
SELMS/LS signal is set low only to read out the LSH of a double-precision result (see 
Figure 20). To read out a result on the Y bus, the output enable OEY must be low. 

, OEY is an asynchronous signal. 
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Figure 20. Y Output Control 

Parity Checker/Generator 

When BYTEP is high, internal even parity is generated for each byte of input data at 
the DA and DB ports and compared to the PA and PB parity inputs respectively. If 
an odd number of bits is set high in a data byte, a parity check can also be performed 
on the entire input data word by setting BYTEP low. In this mode, PAO is the parity 
input for DA data and PBO is the parity input for DB data. 

Even parity is generated for the Y multiplexer output, either for each byte or for each 
word of output, depending on the setting of BYTEP. When BYTEP is high, the parity 
generator computes four parity bits, one for each byte of the Y multiplexer output. 
Parity bits are output on the PY3-PYO pins; PYO represents parity for the least significant 
byte. A single parity bit can also be generated for the entire output data word by setting 
BYTEP low. In this mode, PYO is the parity output. 

Master/Slave Comparator 

,.... 
"d-
00 
00 
~ 

A master/slave comparator is provided to compare data bytes from the Y output U 
multiplexer and the status outputs with data bytes on the external Y and status ports « 
when OEY, OES and OEC are high. If the data bytes are not equal, a high signal is ~ 
generated on the master/slave error output pin (MSERR). 

Figure 21 shows an example master/slave circuit. Two' ACT884 7 slave devices verify 
the data/status integrity of the' ACT884 7 master. 
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Status and Exception Generation 

A status and exception generator produces several output signals to indicate invalid 
operations as well as overflow, underflow, non-numerical and inexact results, in 
conformance with IEEE Standard 754-1985. If output registers are enabled 
(PIPES2 = 0), status and exception results are latched in the status register on the rising 
edge of the clock. Status results are valid at the same time as associated data results 
are valid. 

Duration and availability of status results are affected by the same timing constraints 
that apply to data results on the Y bus. Status outputs are enabled by two signals, 
OEC for comparison status and OES for other status and exception outputs. Status 
outputs are summarized in Tables 14 and 15. 

Table 14. Comparison Status Outputs 

SIGNAL RESULT OF COMPARISON (ACTIVE HIGH) 

AEQB The A and B operands are equal. A high signal on the AEQB output indicates a 
zero result from the selected source except during a compare operation in the ALU. 
During integer operations, indicates zero status output. 

AGTB The A operand is greater than the B operand. 

UNORD The two inputs of a comparison operation are unordered, i.e., one or both of the 
inputs is a NaN. 

During a compare operation in the ALU, the AE08 output goes high when the A and 
8 operands are equal. When any operation other than a compare is performed, either 
by the ALU or the multiplier, the AE08 signal is used as a zero detect. 
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Table 15. Status Outputs 

SIGNAL STATUS RESULT 

CHEX If 16 is low, indicates the multiplier is the source of an exception during a chained 
function. If 16 is high, indicates the ALU is the source of an exception during a 
chained function. 

DENIN Input to the multiplier is a denorm. When DENIN goes high, the STEX pins indicate 
which port had the denormal input. 

DENORM The multiplier output is a wrapped number or the ALU output is a denorm. In the 
FAST mode, this condition causes the result to go to zero. It also indicates an 
invalid integer operaion, i.e., PASS (-A) with unsigned integer operand. 

DIVBYO An invalid operation involving a zero divisor has been detected by the multiplier. 

ED Exception detect status signal representing logical OR of all enabled exceptions 
in the exception disable register. 

INEX The result of an operation is not exact. 

INF The output is the IEEE representation of infinity. 

IVAL A NaN has been input to the multiplier or the ALU, or an invalid operation 
[(0 * (0) or (+ 00 - (0) or (- 00 + (0)) has been requested. This signal also goes 
high if an operation involves the square root of a negative number. When IVAL 
goes high, the STEX pins indicate which port had the NaN. 

NEG Output value has negative sign. 

OVER The result is greater than the largest allowable value for the specified format. 

RNDCO The mantissa of a number has been increased in magnitude by rounding. If the 
number generated was wrapped, then the unwrap round instruction must be used 
to properly unwrap the wrapped number (see Table 8). 

SRCEX The status was generated by the multiplier. (When SRCEX is low, the status was 
generated by the ALU.) 

STEXO A NaN or a denorm has been input on the B port. 

STEXl A NaN or a denorm has been input on the A port. 

UNDER The result is inexact and less than the minimum allowable value for the specified 
format. In the FAST mode, this condition causes the result to go to zero. 

In chained mode, results to be output are selected based on the state of the 16 (source 
output) pin (if 16 is low, ALU status will be selected; if 16 is high, multip[ier status 

(J) will be selected). If the nonse[ected output source generates an exception, CHEX is 
2 set high. Status of the nonse[ected output source can be forced using the SELST pins, 
~ as shown in Table 16. 

» 
(") 
~ 
(X) 
(X) 

~ 
'-I 
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Table 16. Status Output Selection (Chained Mode) 

SELST1-

SELSTO 
STATUS SELECTED 

00 Logical OR of ALU and multiplier exceptions (bit by bit) 
01 Selects multiplier status 
10 Selects ALU status 
11 Normal operation (selection based on result source specified by 16 input) 

An exception detect mask register is available to mask out selected exceptions from 
the multiplier, ALU, or both. Multiply status is disabled during an independent ALU 
instruction, and ALU status is disabled during multiplier instructions. During chained 
operation, both status outputs are enabled. 

When the exception mask register has been loaded with a mask, the mask is applied 
to the contents of the status register to disable unnecessary exceptions. Status results 
for enabled exceptions are then ORed together and, if true, the exception detect (ED) 
status output pin is set high (see Figure 23). Individual status outputs remain active 
and can be read independently from mask register operations. 
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Microprogramming the ' ACT884 7 

Because the' ACT884 7 is microprogrammable, it can be configured to operate on either 
integer or single- or double-precision data operands, and the operations of the registers, 
ALU, and multiplier can be programmed to support a variety of applications. The 
following sections present not only control settings but the timings of the specific 
operations required to execute the sample instructions. 

Control Inputs 

Control inputs to the 'ACT8847 are summarized in Table 17 below. Several of the 
inputs have already been discussed; refer to the page listed in the table for detailed 
information. 

The remaining inputs are discussed in the following sections. All control signals and 
their associated tables are also listed in the' ACT884 7 Reference Guide to provide 
a complete, easy-to-access reference for the programmer already familiar with 
, ACT884 7 operation. 
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Table 17. Control Inputs 

SIGNAL HIGH LOW 
PAGE 

NO. 

BYTEP Selects byte parity generation and Selects single bit parity 7-75 
test generation and test 

CLK Clocks all registers (except C) on No effect 7-62 
rising edge 

CLKC Clocks C register on rising edge No effect 7-70 
CLKMODE Enables temporary input register Enables temporary input 7-66 

load on falling clock edge register load on rising clock edge 
CONFIG1- See Table 6 (RA and RB register See Table 42 (RA and RB 7-65 
CONFIGO data source selects) register data source selects) 

ENRC No effect Enables C register load when 7-70 
CLKC goes high. 

ENRA If register is not in flowthrough, If register is not in flowthrough, 7-65 
enables clocking of RA register holds contents of RA 

register 
ENRB If register is not in flowthrough, If register is not in flowthrough, 7-65 

enables clocking of RB register holds contents of RB register 
FAST Places device in FAST mode Places device in IEEE mode 7-84 

FLOW_C Causes output value to bypass C No effect 7-72 
register and appear on C register 
output bus. 

HALT No effect Stalls device operation but 7-85 
does not affect registers, internal 
states, or status. C register 
loading is not disabled 

OEC Disables compare pins Enables compare pins 7-77 
DES Disables status outputs Enables status outputs 7-77 
OEY Disables Y bus Enables Y bus 7-74 

PIPES2- See Table 5 (Pipeline Mode See Table 5 (Pipeline Mode 7-62 
PIPESO Control) Control) 
RESET No effect Clears internal states, status, 7-86 

internal pipeline registers, and 
exception disable register. Does 
not affect other data registers. 

RND1- See Table 18 (Rounding Mode See Table 18 (Rounding Mode 7-84 
RNDO Control) Control) 

SELOP7- See Tables 10 and 11 (Multiplier! See Tables 10 and 11 7-68 
SELOPO ALU operand selection) (Multiplier!ALU operand selection 

SELMS/LS Selects MSH of 64-bit result for Selects LSH of 64-bit result for 7-74 
output on the Y bus (no effect on output on the Y bus (no effect 
single-precision operands) on single-precision operands) 

SELST1- See Table 16 (Status Output See Table 16 (Status Output 7-78 
SELSTO Selection) Selection) 
SRCC Selects multiplier result for input Selects ALU result for input to 7-70 

to C register C register 
TP1-TPO See Table 22 (Test Pin Control See Table 22 (Test Pin Control 7-86 

Inputs) Inputs) 
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Rounding Modes 

The' ACT884 7 supports the four IEEE standard rounding modes: round to nearest, 
round towards zero (truncate). round towards infinity (round up), and round towards 
minus infinity (round down). The rounding function is selected by control pins RND1 
and RNDO, as shown in Table 18. 

Table 18. Rounding Modes 

RND1-

RNDO 
ROUNDING MODE SELECTED 

o 0 Round towards nearest 
0 1 Round towards zero (truncate) 
1 0 Round towards infinity (round up) 

1 1 Round towards negative infinity (round down) 

Rounding mode should be selected to minimize procedural errors which may otherwise 
accumulate and affect the accuracy of results. Rounding to nearest introduces a 
procedural error not exceeding half of the least significant bit for each rounding 
operation. Since rounding to nearest may involve rounding either upward or downward 
in successive steps, rounding errors tend to cancel each other. 

In contrast, directed rounding modes may introduce errors approaching one bit for 
each rounding operation. Since successive rounding operations in a procedure may 
all be similarly directed, each introducing up to a one-bit error, rounding errors may 
accumulate rapidly, especially in single-precision operations. 

FAST and IEEE Modes 

The device can be programmed to operate in FAST mode by asserting the FAST pin. 
In the FAST mode, all denormalized inputs and outputs are forced to zero. 

Placing a zero on the FAST pin causes the chip to operate in IEEE mode. In this mode, 
the ALU can operate on denorrnalized inputs and return denormals. If a de norm is input 
to the multiplier, the DENIN flag will be asserted, and the result will be invalid. Denormal 
numbers must be wrapped before being input to the multiplier. If the multiplier result 

~ underflows, a wrapped number will be output. 

~ Handling of Denormalized Numbers (FAST) 

~ The FAST input selects the mode for handling denormalized inputs and outputs. When 
~ the FAST input is set low, the ALU accepts denormalized inputs but the multiplier 
(X) generates an exception when a denormal is input. When FAST is set high, the DENIN 
~ status exception is disabled and all denormalized numbers, both inputs and results, 
""'" are forced to zero. 

A denormalized input has the form of a floating point number with a zero exponent, 
a nonzero mantissa, and a ~ero in the leftmost bit of the mantissa (hidden or implicit 
bit). A denormalized number results from decrementing the biased exponent field to 
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zero before normalization is complete. Since a denormalized number cannot be input 
to the multiplier, it must first be converted to a wrapped number by the ALU. When 
the mantissa of the denormal is normalized by shifting it left, the exponent field 
decrements from all zeros (wraps past zero) to a negative two's complement number 
(except in the case of 0.1 XXX ... ). where the exponent is not decremented. 

Exponent underflow is possible during multiplication of small operands even when the 
operands are not wrapped numbers. Setting FAST = 0 selects gradual underflow so 
that denormal inputs can be wrapped and wrapped results are not automatically 
discarded. When FAST is set high, denormal inputs and wrapped results are forced 
to zero immediately. 

When the multiplier is in IEEE mode and produces a wrapped number as its result, 
the result may be passed to the ALU and unwrapped. If the wrapped number can be 
unwrapped to an exact denormal, it can be output without causing the underflow status 
flag (UNDER) to be set. UNDER goes high when a result is an inexact denormal, and 
a zero is output from the FPU if the wrapped result is too small to represent as a 
denormal (smaller than the minimum denorm). Table 10 describes the handling of 
wrapped multiplier results and the status flags that are set when wrapped numbers 
are output from the multiplier. 

Table 19. Handling Wrapped Multiplier Outputs 

TYPE STATUS FLAGS SET 

OF RESULT DENORM INEX RNDCO 
NOTES 

Wrapped, 
1 0 0 

Unwrap with 'Wrapped 
exact exact' ALU instruction 

Wrapped, 
1 1 0 

Unwrap with 'Wrapped 
inexact inexact' ALU instruction 

Wrapped, 
Unwrap with 'Wrapped 

increased in 1 1 1 
magnitude 

rounded' ALU instruction 

When operating in chained mode, the multiplier may output a wrapped result to the 
ALU during the same clock cycle that the multiplier status is output. In such a case 
the ALU cannot unwrap the operand prior to using it, for example, when accumulating 
the results of previous multiplications. To avoid this situation, the FPU can be operated 
in FAST mode to simplify exception handling during chained operations. Otherwise, 
wrapped outputs from the multiplier may adversely affect the accuracy of the chained 
operation, because a wrapped number may appear to be a large normalized number 
instead of a very small denormalized number. 

Because of the latency associated with interpreting the FPU status outputs and 
determining how to process the wrapped output, it is necessary that a wrapped operand 
be stored external to the FPU (for example, in an external register file) and reloaded 
to the A port of the ALU for unwrappjng and further processing. 
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Stalling the Device 

Operation of the 'ACT884 7 can be stalled nondestructively by means of the HALT 
signal. Bringing the HALT input low causes the device to inhibit the next rising clock 
edge. Register contents are unaltered when the device is stalled, and normal operation 
resumes at the next low clock period after the HALT signal is set high. 

Stalling the device does not stall the C register. If ENRC is low, CLKC will clock in 
data from the source selected by SRCC. 

For some operations, such as a double-precision multiply with CLKMODE = 1, setting 
the HALT input low may interrupt loading of the RA, RB, and instruction registers, 
as well as stalling operation. In clQck mode 1, the temporary register loads on the falling 
edge of the clock, but the HALT signal going low would prevent the RA, RB, and 
instruction registers from loading on the next rising clock edge. It is therefore necessary 
to have the instruction and data inputs on the pins when the HALT signal is set high 
again and normal operation resumes. 

RESET 

The RESET input is an active-low signal that asynchronously clears the internal states, 
status, and exception disable mask. Internal pipeline registers are cleared, but the RA, 
RB, and C registers are riot. Operation resumes when RESET goes high again. 

Test Pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place 
all outputs in a high-impedance state, isolating the chip from the rest of the system 
(see Table 20). 

Table 20. Test Pin Control Inputs 

TP1-

TPO 
OPERATION 

0 0 All outputs and I/Os are forced low 
0 1 All outputs and I/Os are forced high 
1 0 All outputs are placed in a high impedance state 
1 1 Normal operation 
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Independent ALU Operations 

Configuration and operation of the' ACT884 7 can be selected to perform single- or 
double-precision floating point and integer calculations in operating modes ranging from 
flowthrough to fully pipelined. Timing and sequences of operations are affected by 
settings of clock mode, data and status registers, input data configurations, and 
rounding mode, as well as the instruction inputs controlling the ALU and the multiplier. 

Three modes of operation can be selected with inputs 110-10, including independent 
ALU operation, independent multiplier operation, or simultaneous (chained) operation 
of ALU and multiplier. Each of these operating modes is treated separately in the 
following sections. 

The ALU executes single- and double-precision operations which can be divided 
according to the number of operands involved, one or two. Tables 21 and 22 show 
independent ALU operations with one operand, along with the inputs 110-10 which 
select each operation. Conversions from one format to another are handled in this mode, 
with the exception of adjustments to precision during two-operand ALU operations. 
The wrapping and unwrapping of operands is also done in this mode. 

Most format conversions involve double-precision timing. Conversions between single­
and double-precision floating point format are treated as mixed-precision operations 
requiring two cycles to load the operands. A single-precision number is loaded in the 
upper half (MSH) of its input register. During integer to floating point conversions, 
the integer input should be loaded into the upper half of the RA register. If converting 
from integer to double precision, then two cycles are required. 

Logical shifts can be performed on integer operands using the instructions shown in 
Table 22. The data operand to be shifted is input from any valid operand source and 
the number of bit positions the operand is to be shifted is input only from the DB bus. 
The shift number on the DB bus should be in positive 32-bit integer format, although 
only the lowest eight bits are used. The shift number cannot be selected from sources 
other than the RB register, and the shift number must be loaded on the same cycle 
as the instruction. 
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Table 21. Independent ALU Operations, Single Floating Point .Operand 
(110 - 0, 19 - 0,16 -0, 15 - 1) 

PRECISION PRECISON OUTPUT OPERAND ABSOLUTE 

RA RB SOURCE TYPE VALUE A 

18 17 16 15 14 13-10 

0= A(SP) o = B(SP) O=ALU 1 = Single O=A 0000 
1 = A(OP) 1 = B(OP) result Operand 1 = IAI 0001 

must equal 0010 
18 

0011 

0100 

0101 
0110 

0111 

1000 

1010 

1100 
1101 
1110 

. ALUOPERA TlON 

'RESULT 

Pass A operand 
Pass - A operand 
2's complement integer 
to floating point 
conversion t 
Floating point to 2's 
complement integer 
conversion t 
Move A operand (pass 
without NaN detect or 
exception flags active) 
Pass B operand 
Floating point to floating 
point conversion:j: 
Floating point to unsigned 
integer conversion t 
Wrap (denormal) input 
operand 
Unsigned integer to 
floating point conversion t 
Unwrap, exact number 
Unwrap inexact number 
Unwrap rounded input 

tThe precision of the integer to floating point conversion is set by 18. If 18 = 1, the operation is timed like a double-precision operation, requiring clock edges to load. 
tThis converts single-precision floating point to double-precision floating point and vice versa. If the 18 pin is low to indicate a single-precision input, the result 
of the conversion will be double precision, If the 18 pin is high, indicating a double-precision input, the result of the conversion will be single precision. This 
operation is timed like a double-precision operation, requiring 2 clock edges to load. 
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Table 22. Independent ALU Operations, Single Integer Operand 
(110 = 0,19 = 1, 16 = 015 - 1) 

OPERAND FORMAT/PRECISION OUTPUT OPERAND AlU OPERATION 
SOURCE TYPE 

19 18 17 16 15 14-10 RESULT 

1 = 0 o = SP 2's 0= AlU 1 = Single 00000 Pass A operand 
Integer complement result Operands 00001 Pass ( - A) operand 

1 1 = SP 00010 Negate A operand (1 's complement) 
unsigned 00101 Pass B operand 
integer 01000 Shift A operand left logical t 

01001 Shift A operand right logical t 
01101 Shift A operand right arithmetic t 

tB operand is number of bit positions A is to be shifted (See instruction description for "Independent ALU Operations".) The B operand must be input on 
the same cycle that shift is to be performed. 
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Tables 23 and 24 present independent ALU operations with two operands. When the 
operands are different in precision, one single and the other double, the settings of 
the precision selects 18-11 will identify the single-precision operand so that it can 
automatically be reformatted to double-precision before the selected operation is 
executed, and the result of the operation will be double precision. 

Precision of each data operand is indicated by the setting of instruction input 18 for 
single-operand ALU instructions, or the settings of 18-17 for two-operand instructions. 
For single-operand instructions, 17 must be set equal to 18. When the ALU receives 
mixed-precision operands (one operand in single precision and the other in double 
precision), the single-precision data input is converted to double and the operation 
is executed in double precision. It is unnecessary to use the 'convert float-to-float' 
instruction to convert the single-precision operand prior to performing the desired 
operation on the mixed-precision operands. Setting 18 and 17 properly achieves the 
same effect without wasting an instruction cycle. 

Timing for operations with mixed-precision operands is the same as for a corresponding 
double-precision operation. In a mixed-precision operation, the single-precision operand 
must be loaded into the upper half of its input register. If both operands are single 
precision, a single-precision result is output by the ALU. Operations on mixed-precision 
data inputs produce double-precision results. 
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Table 23. Independent ALU Operations, Two Floating-Point Operands 
(110 = 0, 19 == 0, 15 = 0) 

PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ABSOLUTE ABSOLUTE 

RA RB SOURCE TYPE VALUE A VALUE B VALUE Y 

18 17 16 15 14 13 12 

o = A(SP) o = B(SP) 0= ALU 0= Two O=A 0= B 0= v 
1 = A(DP) 1 = B(DP) result operands 1 = IAI 1 = IBI 1 = IVI 

Table 24. Independent ALU Operations, Two Integer Operands 
(11 0 = 0, 19 .. 1, 16 == 0, 15 == 0) 

ALU OPERA nON 

11-10 RESULT 

00 A + B 
01 A - B 
10 Compare A, B 
11 B-A 

OPERAND FORMAT IPRECISION OUTPUT OPERAND ALU OPERATION 
SOURCE TYPE 

19 18 17 16 15 14-10 RESULT 

1 = 0 o = SP 2's 0= ALU 0= Two 00000 A+B 
Integer complement result Operands 00001 A-B 

0 1 = SP 00010 Compare A, B 
unsigned 00011 B-A 
integer 01000 Logical AND (A, B) 

01001 Logical AND (A, NOT B) 
01010 Logical AND (NOT A, B) 
01011 Logical AND (NOT A, NOT B) 
01100 Logical OR (A, B) 
01101 Logical XOR (A, B) 
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Two additional independent ALU operations may also be coded. The first of these is 
for loading the exception detect mask register. 

The exception detect mask register can be loaded with a mask to enable or disable 
selected status exceptions. Status bits for enabled exceptions are logically ORed, and 
when the result is true, the ED pin goes high. During chained operations, both multiplier 
and ALU results are ORed. During independent operation, the nonselected status results 
are forced to zero. 

If the FPU is reset (RESET = 0), the exception detect mask register is cleared. Table 25 
describes the settings for the mask register load instruction and the status exceptions 
which can be enabled or disabled with the mask. 

Table 25. Loading the Exception Disable Mask Register 

INSTRUCTION 
RESULTS 

INPUTS 

110-17=0111 Exception mask load instruction 

16 
o = Load ALU exception disable register 
1 = Load multiplier exception disable register 

15 t a = IVAL exception enabled 
1 = IVAL exception disabled 

14 
o = OVER exception enabled 
1 = OVER exception disabled 

13 
o = UNDER exception enabled 
1 = UNDER exception disabled 

12 
o = INEX exception enabled 
1 = INEX exception disabled 

11 
o = DIVBYO exception enabled 
1 = DIVBYO exception disabled i 

10 
o = DENORM exception enabled 
1 = DENORM exception disabled 

t Disabling IVAL in multiplier exception mask register also disables DENIN exception 
tOnly significant when 16 = 1 

The second additional independent ALU operation is the NOP (no operation). The table 
below shows the coding for the NOP instruction. 

Table 26. NOP Instruction 

110-10 
01100000000 

Because NOP, in effect, just prevents loading of the P or S registers, these registers 
must be enabled (PIPES2 = 0) for the NOP to work correctly. 
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Timing of a Nap instruction is the same as any single-precision ALU operation, taking 
one clock cycle per pipeline stage that is enabled. For example, when the' ACT884 7 
is fully pipelined (PIPES2-PIPESO = 000). a NaP's effect (preventing the overwriting 
of the P and S registers) will be seen on the third cycle. To hold the results of an 
operation on the Y bus for an extra cycle, the Nap instruction is inserted directly after 
the instruction whose results are to be held. 

The Nap freezes the output register's contents until new results are to be loaded into 
these registers. 

Independent Multiplier Operations 

In this mode, the multiplier operates on two of five input sources which can be either 
single precision, double precision, or mixed. Multiplication, division and square root 
may be coded as independent multiplier operations. 

Operand precision is selected by 18 and 17, as for ALU operations. The multiplier can 
multiply the A and B operands, either operand with the absolute value of the other, 
or the absolute values of both operands. The result can also be negated when it is 
output. Operations involving absolute value or negated results are valid only when 
floating point format is selected. If both operands are single precision, a single-precision 
result is output. Operations on mixed-precision data inputs produce double-precision 
results. 

Floating point operands may be normalized or wrapped numbers, as indicated by the 
settings for instruction inputs 11-10. As shown in Table 27, the multiplier can be set 
to operate on the absolute value of either or both floating point operands, and the 
result of any operation can be negated when it is output from the multiplier. Converting 
a single-precision denormal number to double preciSion does not normalize or wrap 
the denormal, so it is still an invalid input to the multiplier. Independent multiplier 
operations are summarized in Tables 27 thru 29. 
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Table 27 . Independent Multiplier Operations 
(110 = 0, 16 = 1) 

ABSOLUTE 

CHAINED OPERAND FORMAT/PRECISION OUTPUT MULTIPLY/ ABSOLUTE VALUE B/ 

OPERATION SOURCE DIVIDE VALUE A DIV/SQRT 

110 19 18 17* 16 15 14t 13t 

o = Not 0= o = A(SP) o = B(SP) 1 = 0= O=A 0= B 
chained floating 1 = A(DP) 1 = B(DP) Multi- multiply 1 = IAI 1 = IBI 

point plier 
result 1 = O=A 0= Div 

1 = 0 o = SP 2's Div/SORT 1 = IAI 1 = SORT 
integer complement 

0 1 = SP 
unsigned 
integer 

----

NEGATE 

RESULT WRAP A WRAPB 
12t 11 t lot 

0= Y o = Normal o = Normal 
1 = -y format format 

1 = A is a 1 = B is a 
wrapped wrapped 
number number 

-

tSee also Tables 13 and 14. Operations involving absolute values, negated results or wrapped numbers are valid only when floating point format is selected 
(19 = 0). 

~For square root operations, 17 must be equal to 18. 



Table 28. Independent Multiply Operations Selected by 14-12 (110 - 0,16 - 1,15 - 0) 

ABSOLUTE ABSOLUTE NEGATE 

VALUE A VALUE B RESULT 
OPERATION SELECTED 

14 13 12 14-12 RESULTS * 
O=A 0= B 0= Y 000 A*B 

1 = IAI 1 = IBI 1 = -y 001 -(A * B) 
010 A * IBI 
011 -(A * IBI) 
100 IAI * B 
101 -(IAI * B) 
110 IAI * IBI 
111 -(IAI * IBI) 

~Operations involving absolute values or negated results are valid only when floating point format is selected 
(19 = 0). 

ABSOLUTE 

VALlJE A 

14 

O=A 

1 = A 

Table 29. Independent Divide/Square Root Operations 
Selected by 14-12 (110 ... 0,16 - 1,15 - 1) 

DIVIDEI NEGATE 

SQRT RESULT 
OPERATION SELECTED 

13 12 14-12 RESULTSt 

o = Divide 0= Y 000 AlB 

1 = SQRT 1 = -y 001 -(A I B) 

010 SQRT A 

011 -(SQRT A) 

100 IAII B 
101 -<lAII B) 

110 SQRT IAI 

111 -(SQRT IAI) 

t Operations involving absolute values or negated results are valid only when floating point format is selected 
(19 = 0). 
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Ctlained Multiplier/ALU Operations 

In chained mode, the 'ACT8847 performs simultaneous operations in the multiplier 
and the ALU. Operations not only include addition, subtraction, and multiplication, 
but also several optional operations which increase the flexibility of the device (see 
Table 30). Division and square root operations are not available in chained mode. Format 
conversions, absolute values, and wrapping or unwrapping of denormal numbers are 
also not available. ' 

The B operand to the ALU can be set to zero so that the ALU passes the A operand 
unaltered. The B operand to the multiplier can be forceq to the value 1 'so that the 
A operand to the multiplier is passed unaltered. 

Since in chained mode there are four operands but only two bits (18 and 17) to select 
the operand precision, care must be taken with mixed-precision operations. The A input 
to the ALU and to the multiplier must be of the same precision; just as the B input 
to the ALU and to the multiplier must be of the same precision. 
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Table 30. Chained Multiplier/ALU Operations (110 == 1) 

NEGATE NEGATE 
ALU 

CHAINED OPERAND FORMAT/PRECISION OUTPUT ADD MULTIPLY ALU MULTIPLIER 
OPERATIONS 

OPERATION 'SOURCE ZERO BY ONE RESULT RESULT 

110 19 18 17 16 15 14 13t 12t 11-10 RESULT 

1 = 0= o = A(SP) o = 8(SP) 0= 0= 0= 0= 0= 00 A + 8 
Chained floating 1 = A(DP) 1 = 8(OP) ALU Normal Normal Normal Normal 01 A-8 

point result operation operation operation operation 10 2-A 
1 = 1 = 1 = 1 = 11 8-A 

1 = 0 o = SP 2'8 1 = Forces Forces Negate Negate 
integer complement Multi- 82 input 81 input ALU multiplier 

0 1 = SP plier of ALU of multi- result result 
unsigned result to zero plier to 
integer one 

_._------

tOperations involving negated results are valid only when floating point format is selected (19 = 01. 

-.j 

cO 
-.j 
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Sample Independent ALU Microinstructions 

The following independent ALU timing diagram examples show four register settings, 
ranging from fully flowthrough to fully pipelined. X = don't care. 

FIRST INSTRUCTION 
:~ __________ ~I ______ J,~ ________ ~~ ___ J 

INSTRUCTION: FUNC(10.0). RND(1,0), FAST I 
I' I ==* FIRST OPERA~DS * SECOND OP~RANDS X'--____________ _ 

DATA(31 ,0) A AND B INPUTS: i 
I' II ____ -. II I r---' 

~ FIRST ~ SECONO~ 
~ RESULT ~ RESULT ~ 

I I I I 
It--- 1 ----+t I+--- 1 ----t 

OUT(31.0). STATUS(18.0) 

NOTE: Assum~PES2-0=111, CONFIG1-0=Ol, ENRA=X, ENRB=X, SELMS/LS=X, OEY=O, 
OEC =OES=O, RESET = HALT = 1. TP1-0= 11 

Figure 24. Single-Precision Independent ALU Operation, All Registers Disabled 
(PIPES2-PIPESO - 111, CLKMODE = XI 
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ClK 

load First Operands 
Begin First Operation 

! 

load Second Operands 
Begin Second Operation 

! 

, I 
14- 16 ...... 22"; .-- 16 -4 .... ,;-.--1t- 22 
INSTRUCTION: FUNC(10,OI. RND(1,O), FAST I 

I I 

( op~l~i~DS ~ o~~~~~~gs ~ 
I I ,I I 

14- 17 ....... 23... N- 17.... .. 23 
DATA(3~,O) A AND B INPUTS : 

I I 

~III'---R-~-I~u-S~-T----'~ 
I 1 I 

It 2 ~ 14 2 " 
OUT(31.0) STATUS(18.0) 

NOTE: Assum.§...f!PES2-0=110. CONFIG1-0=Ol, ENRA=l, ENRB=l, SELMS/LS=X, OEY=O, 
OEC =OES =0, RESET=HALT= 1, TP1-0= 11 

Figure 25. Single-Precision Independent ALU Operation. Input Registers Enabled 
(PIPES2-PIPESO = 110. CLKMODE = XI 
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load First Operands ; load Second Operands 
Begin FirstOlleration Begin Second Operation , . ~ . 

------II 1.0.--1 ______ ----!I 
I 1 

ClK II 9 .1 
I I 

r---~I~~ I 
FIRST 

INSTRUCTION 

. I. I I I I 
~ 16 ~22~ , ~ 16 . ~ .• 1 22 
INSTRUCTION: FUNC(10,O), RND(1,O), FAST I I 
I I . I 1 

~ Op~I~~~DS ~ o~~~~~~s 
1t-17 "23~ . ~ 17 . .1. .1 23 

1 
I 

DATA(31,O) A ANDB INPUTS 

------------~------.I ~ • FIRST RESULT 
-------~-----~----~ I 1 ----~---~---
OUT(31,OI STATUSI1S:0) ~4-+1 

NOTE: Assume PIPES2-0=010, CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS=X, OEY=O, 
OEC=OEs=O, RESET = HALT = 1, TP1-0= 11 

7-100 

Figure 26. Single-Precision Independent ALU Operation, Input and Output 
Registers Enabled (PIPES2-pjpESO "" 010. CLKMODE .;,;. XI 



':" 
~ 

o 

Load First 
Operands 

Begin First 
Operation 

... 

Load Second 
Operands 

Begin Second 
Operation 

Load Pipeline 

+ 

Load Third 
Operands 

Begin Third 
Operation 

Load Pipeline 

Load Output 

... 

Load Fourth Load Fifth 
Operands Operands 

Begin Fourth Begin Fifth 
Operation Operation 

Load Pipeline Load Pipeline 

Load Output Load Output 

... • 
---, I f L 

I I I 
It--- 10 M4 10 ~ CLK 
I I I 

r---!~, j !, j I, j , j , ,,------'------'-

FIRST 
INSTRUCTION 

I i 22 II 

SECOND 
INSTRUCTION 

..- 16 ~ .I~ 16 ~ ~14- 16 .\4 .1 
I I II I II 

INSTRUCTION: FUNC( 1 0,0)' RND( 1,0) FAST . ,I I 'I 
I I II ! II 
II \I oJ U IIr----'---u 

SECOND 
OPERANDS 

DATA(31,0] A AND B INPUTS 

OUT(31 ,0) STATUS(18,0) 

FOURTH 
OPERANDS 

123'1 
~14-
I 
I 
I 

r--~" 

FIFTH 
OPERANDS 

17 : 231 
~14 .1 

~I 
I I 
~4-+1 

NOTE: Assume PIPES2-0 =000, CONFIG1-0 =01, ENRA = 1, ENRB= 1, SELMS/LS =X, OEY =0, OEC =OES =0, RESET=HALT = 1 ,TP1-0 = 11 

Figure 27. Single-Precision Independent ALU Operation, All Registers Enabled 
(PIPES2-PIPESO ... 000, CLKMODE '"' Xl 
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load Hillf of Data 

~ 

ClK 

(FIRST INS~RUCTION 
I I 
14- 16 -+I 
I I 
INSTRUCTION: FUNC(10.01. RND(1.01. FAST 

: I 
{ H~~~F ~~ ____ R_~_~_~_~_F ________________________________________ __ 

I I I 
14- 17 ~ 23. --tI 

I 
DATA(31.01 A AND B INPUTS 

I 

I I 
SELMS/LS I I 
------______ ~I : 

----------------~ ~~~~ I I I I ~~~--------------------------
If- 1 -til 14- 5 .... 

OUT(31.01 STATUS(18.01 

NOTE: Assum~PES2.:Q.:;jJ 1. ClKMODE = O. CON FIG 1-0 = 11. ENRA = X. ENRB = X. OEY = O. 

7-102 

OEC=OES=O. RESET=HAlT=l. TP1-0=11 

Figure 28. Double-Precision Independent ALU Operation, All 
Registers Disabled (PIPES2-PIPESO - 111, CLKMODE - 0) 
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o 
eN 

Load Half 
of First 
Operands 

Load Rest 
of First 
Operands 

Begin First 
Operation 

Load Half 
of Second 
Operands 

Load Rest 
of Second 
Operands 

Begin Second 
Operation 

~ ~ ~ + 
I! ! I 1'------', L 
CLK 

I I 
14--16 -+I 
I I 

INSTRUCTION: 

SELMS/LS 

I 
I 

SECOND INSTRUCTION THIRD INSTRUCTION 

I II 
22 ~M-16---.t 

I II 
FUNC(10,O), RND(1,Ol. FAST 

I I, 

REST 
! J 1.,...-------,. 

HALF 
2ND OPS 

I I I 
1+ 22+114-16 4>1 
I Ii I 
I II I 

,-__ -1.1 ~.....,,! !I : 

OUT(31,O) STATUS(18,O) 

NOTE: Assume PIPES2-0=110, CLKMODE=O, CONFIG1-0=OO, ENRA=l, ENRB=l, OEY=O, OEC=OES=O, RESET=HALT=l, TP1-0=11 

Figure 29. Double-Precision Independent ALU Operation, Input Registers Enabled 
(PIPES2-PIPESO = 110, CLKMODE = 0) 
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L17881:>"17LNS - Load Rest 
Load Rest of Second 
of First Operands 

Load HaH Operands Load Half Begin Second 

of First Bagln First of Second Operation 

Operands Operation Operands Load Output 

~ l ~ ~ 

~ I I 
I 

ClK 14 11 .1 
I I I 

..i....-__ ---'-, -..." , I I, I~_....L... ___ "'" 

FIRST INSTRUCTION SECOND INSTRUCTION 

I i II I 
If- 16 ---+I 22 -M---+I I+- 16 ---.J 

INSTRUCTION: FUNC(10,0), RND(1,0), FAST : 
I I I 

r-------~--~, Ir--~!--~' • I 

I II I 
... 22 ....... 16 ..... 
I I 
I I 
I I 

I 
k-22~ 
I 
I 
I 

HALF 
1ST OPS 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

I i II i II 
17 ~ .Ie .1.... 17 ----..! I+- 17 

23 23 
DATA(31,0) A AND B INPUTS 

SElMS/lS 

OUT(31 ,0) STATUS(18,01 

II I 
tM---+I~ 

23 171 
I 
I 

II I 
23-+1~ 

171 
I 
I 

II i I 
23 -.... JMM-- 23 ~ 

17 

NOTE: Assume PIPES2-0=010, CLKMODE=1, CONFIG1-0=11, ENRA=1, ENRB=1, OEY=O, OEC=OES=O, RESET=HALT=1, TP1-0=11 

Figure 30. Double-Precision Independent ALU Operation, Input and Output Registers Enabled 
(PIPES2-PIPESO = 010, CLKMODE .. 1) 
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o 
01 

Load Rest 

Load Rest 
of Second 

of First Load Half Operands 

Load Half 
Operands of Second Begin Second 

of First Begin First 
Operands Operation 

Operands Operation load Pipeline Load Output 

1 1 ! ! 
I I I , I L 

I I I I 
ClK I 14 10 ~14 10---+\ 

I I I 

I I J I Ir--------------------~ 
FIRST INSTRUCTION 

I i I II I 

1+-16 --+I 22 *---+11+-16 --+I 
I I 

INSTRUCTION: FUNC(10.0l. RND(1.0L FAST 
i I 

r------..I..I -"'"', I ' 

II 
22~1+-16 -+I 

I 
I 
I 

I 
22-!+--+1 

I 
I 
I 

REST HALF HALF REST 
I' i 'I 1ST OPS I 2ND OPS 3RD OPS 3RD OPS ,,'-_______ _ 

I I I I I II I I I II I I I I I 
I+- 17 ~ I+- 17 ~4 ~I I+-- 17 ~14 ~I I+-- 17 --+1+---+114---- 17 ~I. ~ \4-- 17 ~I. ~ 23 

23 23 23 I 23 23 

DATA(31.0) A AND B INPUTS 

SElMS/lS 

OUT(31.0) STATUS(1.8.0) 
I I 
1+--+1 

4 

I I 
........ 

5 

I I 
1+-+1 

4 

I 
I I 

~ 
5 

L __ J 

I I 
14-+1 

4 

NOTE: Assume PIPES2-0~OOO, CLKMODE~O, CONFIG1-0~11, ENRA~l, ENRB~l, OEY~O, OEC~OES~O, RESET~HALT~1, TP1-0 11 

Figure 31. Double-Precision Independent ALU Operation, All Registers Enabled 
(PIPES2-PIPESO = 000, CLKMODE = 0) 
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Sample Independent Multiplier Microinstructions 

The following independent multiplier timing diagram exam pies show five register 
settings, ranging through fully pipelined. Examples for divide and square root are 
inqluded in this section. X = don't care. 

FIRST INSTRUCTION 
:~ __________ ~I ______ J,~ __________ ~ ____ -J ~--------------

INSTRUCTION: FUNC(10,O), RND(1,O), FAST I 

I I I : ==* FIRST OPERANDS ~ SECOND OPE,RANDS X .... ______________ _ 
DATA(31,O) A AND B INPUTS: ~ 

~I:: I~ FIRST ~ SECOND 
RESULT ~ RESULT 

I I I I 
It---- 1 ---. \4--- 1 ----t 

OUT(31,O), STATUS(18,O) 

NOTE: Assum~PES2~1, CONFIG1-0=Ol, ENRA=X, ENRB=X, SELMS/LSX, OEY=O, 
OEC=OES=O, RESET = HALT = 1 TP1-0=11 

Figure 32. Single-Precision Independent Multiplier Operation, AU Registers 
Disabled (PIPES2-PIPESO .. 111, CLKMODE .. Xl 
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load First Operands 
Begin First Operation 

l 

load Second Operands 
regin Second Operation 

~ __ -, __ -JI i~~~~~J ~~~~~~~~~~~ 

...- 16 ..;.. 22..1 I.-
INSTRUcrTION: FUNC(10,O), RND(1,OI. FAST 

( Op~l:j~DS ~ O~~~~~~S ~ 
~ I I I! 

...- 17 .... 23-tf ..-- 17 .... N ... ~~Mo ... 23 
DATA(31 ,0) A AND B INPUTS I 

I I 
I I 

~ R~~~~T ~ 
14 2.1 ~ 2 .,\ 

OUTl31.01 STATUS(18.01 

NOTE: Assume PIPES2-0 = 110. CONFIG 1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEC =OES=O, RESET=HALT= 1 TP1-0= 11 

Figure 33. Single-Precision Independent Multiplier Operation, Input 
Registers Enabled (PIPES2-PIPESO - 010, CLKMODE = Xl 
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load First Operands load Second Operands 
Begin First Operation Begin Second Operation 

l ~ 

I I 
ClK 

I I 
Ie 9------~~ 
I I 
I I 

I I I I I 
.... 16 ..... 22 ~ 14- 16 -1~~_.r.1~22 
I I I I I I 
INSTRUCTION: FUNC(10.01. RND(1.01. FAST I I 
; I i ,: I 

{ op~ld~DS ~ o~~~~~~S ~ 
I I I I I I 
It- 17 ... 23 ~ 14- 1 7 - .... IIIt--... f--1 23 

I 
I 

DATA(31.01 A AND B INPUTS 

FIRST RESULT ~ 
----~--------------------------~--- I I ~--------------------
OUT(31.01 STATUS(18.01 ~4-..1 

NOTE: AssumillPES2-0=010. CONFIG1-0=01. ENRA=1. ENRB=1. SELMS/LS=X. OEY=O. 
OEC=OES=O. RESET = HALT = 1 TP1-0= 11 

Figure 34. Single-Precision Independent Multiplier Operation, Input and Output 
Registers Enabled (PIPES2-PIPESO .. 010. CLKMODE ... XI 

,-7c108 



-;J ..... 
o 
c.o 

Load First 
Operands 

Begin First 

Load Second 
Operands 

Begin Second 
Operation 

Load Third 
Operands 

Begin Third 
Operation 

Load Pipeline 

Load Fourth 
Operands 

Begin Fourth 
Operation 

Load Pipeline 

Operation Load Pipeline Load Output Load Output .. .. .. .. 

Load Fifth 
Operands 

Begin Fifth 
Operation 

Load Pipeline 

Load Output 

+ 
I I I I -, -.. L 

I I I I 
CLK 14--- 1 0 M4 10 -----+I 

I I I 
,..---..... -~, j • 

FIRST 
INSTRUCTION 

I i 22 II 

SECOND 
INSTRUCTION 

14- 16 "Oil .,~ 16 ~ ~ 
I I II I 1 

INSTRUCTION: FUNC(10,0), RND(1,0) FAST 
, I I I If 
I I I, ! II . 
" \I Ii \I oJ \I 

SECOND 
OPERANDS 

DATA(31 ,0) A AND B INPUTS 

OUT(31,0) STATUS(18,0) 

FOURTH 
INSTRUCTION 

16 ~--.I 
1 , 

1 I 
1 I 
I t 

FOURTH FIFTH 
OPERANDS OPERANDS 

t 23" l231 
17 ~ ~ I+- 17 ~ ~. 

I 
I 
I 

,...-----..1 

~1'l.ALJ1' ,,----. j 

I I 
14-4~ 

NOTE: Assume PtPES2-0=OOO, CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS=X, OEY=O, OEC=OES=O, RESET=HALT=1, TP1-0=11 

Figure 35. Single-Precision Independent Multiplier Operation, All Registers Enabled 
(PIPES2-PIPESO =< 000, CLKMODE -= Xl 
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Load Half 

____ -'-!tJ-f-O-P.-'.-~d-S -.....,L-____ ~r·d Pipeline 

C~ I I 
I I 
I I < FIRST INSTRUCTION 

I I 

~ 16-_~1'----- 22 ------+~:: 
INSTRUCTION: FUNCI10,OI. RNDI1,OI. FAST I 

I I I 

~~ __ ~,~~t~~~~; ___ -I>}~ __ ~'~~~~~PS~_,-____________________ __ 

I'--1 7 --.tI~t--- 23-~.ttlt--- 1,8 --.I 
DATAI31.01 A AND B INPUTS I 

I I 
SELMS/LS I I 
------------------------~I Ir-----~I I~----
_______________ ....... ~ ~:~~ ~ ....... -F:::~~::.:~~~ 
OUTl31,Ol STATUSI1B,OI k---:-- 3 ----.I ~5---.t 

NOTE: Assume PIPES2-0 = 111, CLKMODE = 0, CONFIG 1-0 = 11, ENRA = X, ENRB = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 36. Double-Precision Independent Multiplier Operation, All Registers 
Disabled (PIPES2-PIPESO .. 111, CLKMODE .. 0) 



Load Rest 
of First 
Operands 

Load Half 
of First Begin First 
Operands Operation 

! ! 

Load Pipeline 

Load Rest 
of Second 
Operands 

of Second Begin Second 
Operands Operation 1 Load Half 

l ! 
l I 

I 
I 
I 

~~--~I ~I --~ __ _ 
I 
I 
I 
I 

CLK , 
I I , I 
I I 

:. 16 I .1 I----J- 22 
I I , 

INSTRUCTION,: FUNC(10,01. RND(1,0), FAST 
I I 

REST 
1ST OPS 

I II. I 
...... 17 ............. 17..- 23 --... 

23 

DATA(31 ,0) A AND B INPUTS 

SELMS/LS 

SECOND INSTRUCTION 

I I , 
14- 16 --./ , \4----tI- 22 

I 
I 
I I 
I 

HALF 
2ND OPS 

I I:: I I 
I. "u1l4 _'4 23-...1 

17 23 17 I 
I 
I , 
I 
I 
I 

I I __________________ ~, i' I ~~~~~~_ 

~ 
~ -------------------.. I I -------

OUTl31 ,0) STATUS(18,0) ~ ~ 

3 5 

NOTE: Assume PIPES2-0 = 110, CON FIG 1-0 = 11, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RESET= HALT = 1, TP1-0 = 11 

Figure 37. Double-Precision Independent Multiplier Operation, Input Registers 
Enabled (PIPES2-PIPESO - 110, CLKMODE = 1) 
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ClK 

load Half 
of First 
Operands 

• 

I I 

Load Rest 
of Second 
Operands load Rest 

of First 
Operands 

load Half 
of Second 
Operands 

Begin Second 
Operation 

Begin First 
Operation 

~ 
load Pipeline 

+ 
load Output 

+ 
I I 
14--9 -_1+-- 9 "'---+I 
I I 

SECOND INSTRUCTION 

I II 
!+" 22 -.t 14-16 -.t 

I I 
~22 ..... 

THIRD INSTRUCTION 

~16 
INSTRUCTION: FUNC(10,O), RND(1,O), FAST 

I I 
I I 

I 
I I I 

r---~----~!Ir-------~ r------
REST 

2ND DPS 
REST 

3RD OPS 

I I II I II I II I· I 
~17 ...... 23 ... M-17 ___ 23-.11<t-17 ....... 23-.!M-17~23~ 

DATA(31 ,0) A AND B INPUTS :: 
I I 

I ! I . ~ 
SElMS/lS : I I I 

I I I ________________________________________ ~~I I • I 

HALF REST 
_ _______________________________________ ..... FIRST I FIRST 

I : :. I 
OUT(31,O) STATUS(18,O) *-4--. .--5 ....... 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, ENRB = 1, OEY = O. OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

Figure 38. Double-Precision Independent Multiplier Operation, Input and Output 
Registers Enabled (PIPES2-PIPESO - 010, CLKMODE - 0) 
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';'I 

w 

Load Rest 
Load Half 

of Second 
Load Rest 

Operands 
of Third 

of First Load Half Operands 

Load Half 
Operands of Second Begin Second 

of First Begin First 
Operands Operation Load Pipeline 

Operands Operation Load Pipeline load Pipeline Load Output 

• • • ~ ~ 

I I I I 
CLK 14----10 -14 10 _14 10 ---+t , I I 

FIRST 
INSTRUCTION 

1 
I 1 

SECOND 
INSTRUCTION 

! 

I I 1 1 1 1 
.... 16~ 22 ~ 1+16* 22 ~ 

I I 1 
INSTRUCTION: FUNC(10.01. RND(1.0). FAST 

I ' 
r----'-, ---., j I 

I i Ii iii I Ii 1 1 
-17~ 14 _14 _114 _14 _114 _14" 

23 17 23 17 23 17 23 

DATA(31.0) A AND B INPUTS 

I 
1 

THIRD 
INSTRUCTION 

1 I 
~16 

I 
I 
I 
I 

17 

I I 
1+-22 ~ 

23 

--------------~~I- -
SELMS/LS 

OUT(31.0) STATUS(18,O) 

I~I 
I 1 
1+-4-+\ 

i'U..Lll 
1 I 
1+5~ 

NOTE: Assume PIPES2-0 ~ 000. CONFIG1-0 ~ 01, ENRA ~ 1, ENRB ~ 1. OEY ~ 0, OEC ~ 0, OES ~ 0, RESET ~ HALT ~ 1, TP1-0 ~ 11 

Figure 39. Double-Precision Independent Multiplier Operation, All Registers Enabled 
(PIPES2-PIPESO = 000, CLKMODE .. 0) 
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234567 8 

NOTE: Assume PIPES2-0= 110. CONFIG1-0=01, ENRA= 1, ENRB= 1, SELMS/LS=X, OEY=O, 
OEC=OES=O, RESET = HALT = 1, TP1-0=11 

Figure 40_ Single-Precision Floating Point Division 
(PIPES2-PIPESO .. 110, CLKMODE ... Xl 

2 3 4 5 6 7 8 

NOTE: AssumillPES2.:Q..::l90, CONFIG1-0=01, ENRA= 1, ENRB= 1, SELMS/LS=X, OEY =0, 
OEC=OES=O, RESET = HALT = 1 TP1-0= 11 
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Figure 41. Single-Precision Floating Point Division 
(PIPES2-PIPESO ... 100, CLKMODE ... Xl 



2 3 4 5 6 7 8 

NOTE: Assum~PES2-0=010. CONFIG1-0=01. ENRA=1. ENRB=1. SELMS/LS=X. OEY=O. 
OEC=OES=O. RESET=HALT= 1. TP1-0= 11 

elK 

Figure 42. Single-Precision Floating Point Division 
(PIPES2-PIPESO - 010, CLKMODE ... Xl 

2 3 4 5 6 7 8 

I I 
I I I 

INST ~;~:~fJt~~9~---+I-----
16~ I 16~_! I I..i-- 22 '"I- 22 I 

I I I 

y ~U~D~T~R~'~E~~UOTIEN~ ~Y¥¥v¥~\" __ .....Jf 
I I 

4 ..... M-

NOTE: ~m~PES2-0=OOO. CONFIG1-0=01. ENRA=1. ENRB=1. SELMS/LS=X. OEY=O. 
OEC=OES=O. RES!'T=HALT= 1. TP1-0= 11 

Figure 43. Single-Precision Floating Point Division 

(PIPES2-PIPESO - 000, CLKMODE - Xl 
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3 4 5 6 7 8 9 10 11 12 13 14 
,.,...- r-- ,.,...-

elK 

-I I I "'"'--

~_I_.....;I"" I I 

-( DIV· >&SX~g:E~iM~~~NEXT(DP) )~I~-
I ~22 16 ~ .... , .. --: 1oP22 
~16 I 

INST 

y ~~~~*~Eg~auoTIENT)""_-
--.I ~3 

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RESET = HAlT = 1, TP1-0 = 11 

Figure 44. Double-Precision Floating Point· Division 
(PIPES2-PIPESO - 11 0, CLK~ODE .. 0) 

2 3 4 5 6 7 8 9 10 11 12 13 14 

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RESn = HALT = 1, TP1-0 =·11 
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Figure 45. Double-Precision Floating Point Division 
(PIPES2-PIPESO .. 100, CLKMODE .. 0) 



2 3 4 5 6 7 8 9 10 11 12 13 14 
.....- .....- .....- -

elK 
- I I I 
~ __ ~I~I_ I I 

INST i OIV ~~~**~~ NEXT (OPI »)-,----
14-16 -.I k-M- 22 \4-16"': !.-.i- 22 

I 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 46. Double-Precision Floating Point Division 
(PIPES2-PIPES() - 010. CLKMODE = 1) 

2 3 4 5 6 7 8 9 10 11 12 13 14 

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RES'Ei' = HALT = 1, TP1-0 = 11 . 

Figure 47. Double-Precision Floating-Point Division. All Registers Enabled 
(PIPES2-PIPESO - 000. CLKMODE - 1) 
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123466789101112131416 - -
ClK 

16 
~ 

NOTE: ~me..f!f.ES2-0 = 110, CQtill91-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEC = OES ;., 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

ClK 

Figure 48. Integer Division, Input Registers Enabled 
(PIPES2-PIPESO - 110, CLKMODE - XI 

1 2 346 6 789 1011121314 16 16 
,......,..,.. .....- .....-

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEC = DES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

7-118 

Figure 49. Integer Division, Input and Pipeline Registers Enabled 
(PIPES2-PIPESO .. 100, CLKMODE - XI 



2 3 4 5 6 7 8 9 10 11 12 13 14 15 - 16 
r--

17 
r--

NOTE: Assume PIPES2-0 = 010, eONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEe = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

elK 

Figure 50_ Integer Division. Input and Output Registers 
Enabled (PIPES2-PIPESO - 010. CLKMODE = Xl . 

1 2 3 4 5 6 7 8 9 1011121314 15 
r--

16 
r--r--

17 
r--

-I -

I I 

INST~:V{P~T;;I~~!---I-I-----
16--.t ~I 16--.1!.-1 I 

---' ~22 22--t ~ I 
I I 

y ~~NgEIE~MIN~~~UOTlENT>-
--I t--4 

NOTE: Assume PIPES2-0 = 000, eONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
DEe = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

Figure 51. Integer Division. All Registers Enabled 
(PIPES2-PIPESO ... 000. CLKMODE - Xl 
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23456789 10 11 

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SElMS/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 52. Single-Precision Floating Point Square Root, Input 
Registers Enabled (PIPES2-PIPESO - 110, CLKMODE - XI 

23456789 10 

NOTE: ~me.E!f.ES2-0 -=--1.!Q, C~1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 53. Single-Precision Floating Point Square Root, Input and Pipeline 
Registers Enabled (PIPES2-PIPESO - 100, CLKMODE - Xl 
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23456789 10 11 
- -

CLK 

-I 

1 SQUARE 
1 ROOT 1 

INST~U~D!TrRXliE~I---
1641 ~I 16-.1 14-1 

-.I 14- 22 ....., ~ 22 
I 

y ~U~~1~~Eg~S~~~~E>-
4 ~ t---

NOTE: Assume PIPES2-0 = 010, eONFIG1-0 = 01, ENRA = 1, SELMS/LS = X, OEY = 0, 
OEe = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 54. Single-Precision Floating Point Square Root, Input and Output 
Registers Enabled (PIPES2-PIPESO ... 010, CLKMODE .. XI 

23456789 10 11 
r-- ~ ~ 

CLK 

-I 

1 SQUARE 
1 ROOT I 

INST --rnsx:U~D!T!RXI~E~I---+-----
16-.t ~I 16-.j 14-1 

-.I 14-22 ....., 14-22 
I 1 

y ~N1E!Eli~N!D~S~~~~E>-
4--1 t---

NOTE: Assume PIPES2-0 = 000, eONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, OEY = 0, 
OEe = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 55. Single-Precision Floating Point Square Root, All Registers Enabled 
(PIPES2-PIPESO ... 000, CLKMODE - XI 
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23456789101112131415 16 
~~ - -

CLK 

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 11, ENRA = 1, OEY = 0, OEC = OES = 0 
RESET = HALT = 1, TPt-O = 11 

CLK 

Figure 56. Double-Precision Floating Point Square Root, Input 
Registers Enabled (PIPES2-PIPESO = 110, CLKMODE = 1) 

II 
, II 

2 3 4 5 6 789101112131415 16 

I I 
I I 

17 
~ 

17 

INST NEXTIDP) )~I----------
j..16 I I 

~ ",22 
I 

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 01, ENRA = 1, OEY = 0, OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

en :2 Figure 57. Double-Precision Floating Point Square Root, Input and Pipeline 
~ Registers Enabled (PIPES2-PIPESO - 100, CLKMODE - 0) 
~ » 
(") 
~ 
CX) 
CX) 
,~ 
~ 
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2 3 4 5 6 7 8 9 101112131415 16 17 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, OEY = 0, OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

Figure 58. Double-Precision Floating Point Square Root, Input and Output 
Registers Enabled (PIPES2-PIPESO - 010, CLKMODE = 1) 

23456789101112131415 16 17 

elK 

I I 
I I 

I I I 

INST 
I I I 
NEXT (DP) )~I----~I ----------
k- 16 I I II --r ~ 22 

I 

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, OEY = 0, OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

Figure 59. Double-Precision Floating Point Square Root, All 
Registers Enabled (PIPES2-PIPESO - 000, CLKMODE - 0) 
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23456789101112131415161718 19 20 

NOTE: Assume PIPES2-0 = 110, CON FIG 1-0 = 01, ENRA = 1, SELM/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1 TP1-0 = 11. The result appears in the SREG. 

CLK. 

Figure 60. Integer Square Root, Input Registers Enabled 
(PIPES2-PIPESO - 110, CLKMODE .. Xl 

234 567 89101112131415161718 19 

I SQUARE I 
I ROOT I 

20 

INST~ioiT~R~liE~-----
16 ~ ~I 16 -.I !.-I 

~ It- 22 ~ I't- 22 

Y~U:~1R:*Eg~S~~~~Er-
-.j ~3 

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, OEY = 0, 
tJ) OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 
2 
" Figure 61. Integer Square Root, Input and fipeline Registers Enabled t (PIPES2-PIPESO - 100, CLKMQDE - Xl 
(") 
-t 
00 
00 
~ 

" 
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2 3 4 5 6 7 8 9101112131415161718 19 20 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, SELMS/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

Figure 62. Integer Square Root, Input and Output Registers Enabled 
(PIPES2-PIPESO - 010, CLKMODE Xl 

2 3 4 5 6 7 8 9 101112131415161718 19 20 

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG. 

Figure 63. Integer Square Root, All Registers Enabled 
(PIPES2-PIPESO - 000, CLKMODE - Xl 

7-125 



Sample Chained Mode Microinstructions 

The following chained mode timing diagram examples show four register settings, 
ranging from fully flowthrough to fully pipelined. 

FIRST INSTRUCTION 
:~ __________ ~I ______ J,~ __________ ~ ____ -J ~--------------

INSTRUCTION: FUNC(10,0), RND(1,0), FAST I 

I I i I 

~ FIRST OPERANDS ~ SECOND OP~RANDS X'-_________ _ 
DATA(31 ,0) A AND B INPUTS: I 

~ :~~~T ~ ~i;~~~~ 
I I I I 
It-- 1 ~ 14-- 1 -----.. 

OUT(31.0), STATUS(18,0) 

NOTE: Assume PIPES2-0 = 111, CONFIG1-0 = 01, ENRA = X, ENRB = X, SELMS/LS, DEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 64. Single-Precision Chained Mode Operation, All Registers Disabled 
(PIPES2-PIPESO - 111, CLKMODE ... Xl 
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load half load Rest load Helf load Rest load Half load Rest 
of First of First of Second of Second of Third of Third 
Operands Operands Operands Operands Operands Operands 

l l ~ ~ l l 

I I I I I 
I I I I 

ClK I I I I 
I I I I I I 

FIRST INSTRUCTION THIRD INSTRUCTION 

1-16-1 
I 

INSTRUCTION: 
I 

I II 
J+- 22 +114---+1- 1 6 
I I 

FUNC/l0,OI. RND/l,O), FAST 
I 

II 
I--+J If- 16 +I 
122 I 
I I 
I I 

r---~--~ r--~--~ 

II 
... .11f .. ---ti4--....... 
: 23 17 
I 

~ FIRST m SECOND 
--------- I I ------- I I 
OUT/3l,O) STATUS/la,O) ~ 2 ~ 2 

I 
f4---* 22 
I 
I 
I 
I 

x~_ 

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 11, ENRA = 1, ENRB = 1, SElMS/lS = X, OEY = 0, 
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11 

Figure 65. Single-Precision Chained Mode Operation, Input Registers Enabled 
(PIPES2-PIPESO = 110, CLKMODE ... 1) . 
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load First Operands load Second Operands 
Begin First Operation Begin Second Operation 

1 l· 
I I 

elK 
I I 
~ 9------~~ 
I I 

I I 
.17 "23~ 

I 
t.- 17 

I 
~III 23 

DATAI31.0) A AND B INPUTS I 
I 

~ ~ FIRST RESULT 

---------------------------------- I . I~-------------------
OUTI31.0) STATUSI18.0) 1f--4 ..... 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, SELMS/LS = X, OEY = 0, 
OEC = OES= 0, ReSeT = HALT = 1, TP1-0 = 11 

Figure 66. Single-Precision Chained Mode Qperation. Input and Output Registers 
Enabled (PIPES2-PIPESO - 010. CLKMODE - XI 
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-;-J 
~ 

r-.J 
(0 

Load Third Load Fourth Load Fifth 
Operands Operands Operands 

Load Second 
Operands Begin Third Begin Fourth Begin Fifth 

Load First Operation Operation Operation 
Operands Begin Second 

Operation Load Pipeline Load Pipeline Load Pipeline 
Begin First 
Operation Load Pipeline Load Output Load Output Load Output .. .. .. .. + 

I I , I ,r----... L 
I 
~10 
I 

I 
10 ----.! CLK 

I 

FIRST 
INSTRUCTION 

I i 22 II 

..... 
I 
I 

SECOND 
INSTRUCTION 

14- 16 "" .11f-- 16 ~ .. 
I I II I I 

INSTRUCTION: FUNC(10.0)' RND(1.0) FAST 
• I I 1 11 

I 

I I II ! Ii 
Ii " .J u II~----L--v 

SECOND 
OPERANDS 

DATA(31.0) A AND B INPUTS 

OUT(31.0) STATUS(18.0) 

FOURTH 
OPERANDS 

17 
t 23'1 

toI4---tI ~ 17 ~... ~I 
I I 

I t 

I : 
---"~Ij .1 

, II'-l......L.Yi ~I ~I ,'-__ -' 
I I I I 
14-4~ 14-4--.J 

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 01, ENRA 1, ENRB 1, SELMS/LS = X, OEY = 0, OEC = OES = 0, RESET = HALT 1, 
TP1-0=11 

Figure 67. Single-Precision Chained Mode Operation. All Registers Enabled 
(PIPES2-PIPESO = 000. CLKMODE = Xl 

SN74ACT8847 



Load Half 

____ -!tJ-f -
op
-
8
-'an-d-. _--, ....... ____ ---!r.d Pipeline 

I I ClK 
I I 

I < FIRST INSTRUCTION 
I I 

~ 16-_~~---- 22 ----_.;: 
INSTRUCTION: FUNCll0.01. RNDll.0J. FAST I 

I I I 

~~ ___ ~l;~:~~"~; ______ -I>}~ ___ ~l~;~~~PS~_~ ___________________________ __ 
It--17 --... 11_- 23 -91'111It---- 18 -----t 
DATA131.01 A AND B INPUTS I I 
SElMS/lS I I 
-------------~I . Ir----~I Ir----
------------------------------'~ ~:~~ ~'---"':.~;;.;~~'--
OUT131.01 STATUSI18.01 I--- 3 ---.t jI---5----.{ 

NOTE: Assume PIPES2-0 = 111, CONFIG 1-0 = 11, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

Figure 68. Double-Precision Chained Mode Operation, All Registers Disabled 
(PIPES2-PIPESO - 111, CLKMODE '" 0) 
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load Rest 
of First 
Operands load Pipeline 

load Rest 
of Second 
Operands 

of First Begin First of Second Begin Second 
load Half 1 load Half 

Operands Operation Operands Operation 

! t l! 
lL..._~---'1 ""--1 --:"_~-"""'I 1....----:.. __ 

; i 
I I 
I I 
I , 

ClK 

FIRST INSTRUCTION SECOND INSTRUCTION 

~'-------------~'------I~--"I ~-------r'------~'------~I--~ ~--------
.. ,,----- 16 ------.... , ~ 22 14- 16 -..t i4----J. 22 

I I I I 
INSTRUCTION: FUNC(10.01. RND(1.01. FAST i I 

I 

REST HALF 

'-____ ~~~----~;I'~~~'S~T~O~P~S--~ ,-__ ~2~N~D~O~PS~~~II~ __ ~~~ __ ~ 
I II I I I I J I, I 

.- 17 ........... 17....- 23 --.. 17 Ie ~e .1 Ie .Ie 17 -.I 
23 23 17 231 

I 
DATA(31.01 A AND B INPUTS , 

SElMS/lS 

I , 
I 
I 

I , 

~I " I~-----------HALF REST 

------------------------------------ I FIRST I I FIRST I ~-----------
OUT(31.01 STATUS(18.01 ...... ~ 

3 5 
NOTE: Assume PIPES2-0 = 110. CONFIG1-0 = 11. ENRA = 1. OEY = O. OEC = OES = O. 

RESET = HALT = 1. TP1-0 = 11 

Figure 69. Double-Precision Chained Mode Operation, Input Registers Enabled 
(PIPES2-PIPESO - 110, CLKMODE .. 1) 
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ClK 

load Half 
of First 
Operands 

+ 

load Rest 
of First 
Operands 

Begin First 
Operation 

~ 

load Half 
of Second 
Operands 

load Pipeline 

~ 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

I I 
I+---- 9 ----.! 

I 

SECOND INSTRUCTION THIRD INSTRUCTION 

I I 
~16 

INSTRUCTION: 

I II I I 
!4'""" 22 ~ ... 16 -.j I+- 22 .... 

FUNC(10,O), RND(1,O), FAST : : 
I : : 

r---~--~ r----~--~ r--------~ r----~--~!Ir-------~ r------
REST 

2ND OPS 

I I II , II I II I I 
1+-17 ...... 23-.1 '-17 .......... 23-.11+-17 ........ 23-.1 1+-17~23-+: 

DATA(31 ,0) A AND B INPUTS : I 

I 

REST 
lRD OPS 

-------------------------------------------!~----~:----~I ~ 
SElMS/lS l I I I 

: : I I l 
------------------------------------------~ 

----------------------------------------~ I l : I 
OUT(31 ,0) STATUS( 18,0) I+- 4 ..... ~ 5 -..I 

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0, 
RESET = HALT = 1, TP1-0 = 11 

Figure 70. Double-Precision Chained Mode Operation, Input and Output Registers 
Enabled (PIPES2-PIPESO - 010, CLKMODE .. 0) 
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! 
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I 

THIRD 
INSTRUCTION 

1.-16....1 
. I I I I 

22 ~ ... 16.... 22......-..J 
I I 
-----*" 16 

1 I I I 
INSTRUCTION: FUNC(10.0). RND(1.01. FAST 

I • 
~_-i..''''''''''\' j I 

I 
I 
I 

I I 
1+-22 .... 

17 23 

DATA(31.01 A AND B INPUTS 

17 23 17 23 17T23' ~ 1-7-:-23- ~ 

_______ --:--~I---lL______' 
SELMS/LS 

OUT(31.01 STATUS(18.01 

I 
I 

t.--4-.t 

NOTE: Assume PIPES2-0 = 000. CONFIG1-0 = 01. ENRA = 1. ENRB = 1. OEY = O. OEC = OES = O. RESET = HALT = 1, TP1-0 = 11 

Figure 71. Double-Precision Chained Mode Operation, All Registers Enabled 
(PIPES2-PIPESO ... 000, CLKMODE - 01 
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Instruction Timing 

The following table details the number of clock cycles required to compiete an operation 
in different pipelined modes. For more detail, see the sample microi!1structions shown 
in the previous section. 

Clock duration and output delay depend on the pipeline mode selected. See the note 
in the table and timing parameters listed at the beginning of this document. 

Table 31. Number of Clocks Required'to Complete an Operation 

PIPES2-0 PIPES2-0 PIPES2-0 PIPES2-0 

OPERATION - 000 - 100 - 110 - 111 

(tpd41 (tpd31 (tpd21 (tpdl1 
Single-Precision 
Floating Point 

ALU Operation 
3 2 1 0 

or Multiply:!: 

Divide 8 7 7 X 

Square Root 11 10 10 X 
Double-Precision 
Floating Point 

ALU Operation t 4 3 2 1 

Multiply:!: 5 4 3 2 

Divide 14 13 13 X 

Square Root 17 16 16 X 
Integer 

ALU Operation 
3 2 1 0 

or Multiply:!: 

Divide 16 15 15 X 

Sauare Root 20 19 19 X 

Y output and status valid following this tpd delay after the designated number of clocks 
t'nc'udes every conversion involving double-precision lOP +-+ SP or OP +-+ Integer) 
:t Includes all chained mode operations 
X = invalid 

PIPES2-0 

-010 

(tpd41 

2 

8 

11 

3 

4 

14 

17 

2 

16 

20 

When using fast cycle times and double-precision operations, two cycles may be 
required to output and capture both halves of a double-precision result. To insure the 
result remains valid for two cycles, a NOP instruction may need to be inserted between 
the operations. Table 32 shows the number ,of NOPs necessary to insert into the 
instruction !;tream for fully pipelined operation (PIPES2-PIPESO = 000). 
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Table 32. NOPs Inserted to Guarantee That Double-Precision Results Remain 
Valid for Two Clock Cycles (PIPES2-PIPESO 000) 

1 ST OPERATION 
FOLLOWED BY # NOPs INSERTED # CYCLES RESULT 

2ND OPERATION BETWEEN OPERATIONS IS VALID 

DP - 32 BIT DP - 32 BIT 0 2 
32 BIT - DP 0 2 
32 BIT OP 0 1 
DP ALU 0 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

32 BIT - DP DP - 32 BIT 0 2 
32 BIT -+ DP 0 2 
32 BIT OP 1 2 
DP ALU 0 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

32 BIT OP DP -+ 32 BIT 0 2 
32 BIT -+ DP 0 2 
32 BIT OP 0 
DP ALU 0 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

DP ALU DP -+ 32 BIT 0 2 
32 BIT -+ DP 0 2 
32 BIT OP 1 2 
DP ALU 0 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

DP Multiply DP -+ 32 BIT 1 2 
32 BIT -+ DP 1 2 
32 BIT OP 2t 2 
DP ALU 1 2 
DP Multiply 0 2 
DP Sqrt 2 
DP Divide 2 

NOTE: 32-bit operation refers to a single-precision floating point or integer ALU operation or multiply, except 
conversion to or from double-precision. This assumes the instruction following a double-precision divide 
may begin loading on the 12th clock cycle, following a double-precision square root on the 15th cycle. 

tThe device will not load a single-precision operation on the first clock edge following this operation, so any 
single-precision instruction may be used. A Nap is recommended. The second instruction must be a Nap. 

7-135 



Table 32. NOPs Inserted to Guarantee That Double-Precision Results Remain 
Valid for Two Clock Cycles (PIPES2-PIPESO ... 000) (Continued) 

1 ST OPERATION 
FOLLOWED BY # NOPs INSERTED # CYCLES RESULT 

2ND OPERATION BETWEEN OPERATIONS IS VALID 
DP SQRT DP - 32 BIT 1 2 

32 BIT - DP 1 2 
32 BIT OP 2t 2 
DPALU 1 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

DP Divide DP - 32 BIT 1 2 
32 BIT - DP 1 2 
32 BIT OP 2t 2 
bPALU 1 2 
DP Multiply 0 2 
DP Sqrt 0 2 
DP Divide 0 2 

NOTE: 3i-bit operation refers to a single-precision floating point or integer ALU operation or multiply, except 
conversion to or from double-precision. This assumes the instruction following a double-precision divide 
may begin loading on the 12th clock cycle, following a double-precision square root on the 15th cycle. 

tThe device will not load a single-precision operation on the first clock edge following this operation, so any 
single-precision instruction may be used. A Nap is recommended. The second instruction must be a Nap. 

\' 

Exception and Status Handling 
Exception and status flags for the' ACT8847 were listed previously in Tables 14 and 15. 

Output exception signals are provided to indicate both the source and type of the 
exception. DENORM, INEX, OVER, UNDER, and RNDCO indicate the exception type, 
and CHEX and SRCEX indicate the source of an exception. SRCEX indicates the source 
of a result as selected by instruction bit 16, and SRCEX is active whenever a result 
is output, not only when an exception is being signalled. The chained-mode exception 
signal CHEX indicates that an exception has be generated by the source not selected 
for output by 16. The exception type signalled by CHEX cannot be read unless status 
select controls SELSn-SELSTO are used to force status output from the deselected 

(J) source. 

Z 
~ 
~ 
l> 
(") 
""'4 
CO 
CO 
~ 
~ 

Output exceptions may be due either to a result in an illegal ,format or to a procedural 
error. Results too large or too small to be represented in the selected precision are 
signalled by OVER and UNDER. When INF is high, the output is the IEEE representation 
of infinity. Any ALU output which has been increased in magnitude by rounding causes 
INEX to be set high. DENORM is set when the multiplier output is wrapped or the ALU 
output is denormalized. DENORM is also set high when an illegal operation on an integer 
is performed. Wrapped outputs from the multiplier may be inexact or increased in 
magnitude by rounding, which may cause the INEX and RNDCO status signals to be 
set high. A denormal output from the ALU (DENORM = 1) may also cause INEX to 
be set, in which case UNDER is also signalled. 
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Ordinarily, SELST1-SELSTO are set high so that status selection defaults to the output 
source selected by instruction input 16. The ALU is selected as the output source when 
16 is low, and the multiplier when 16 is high. 

When the device operates in chained mode, it may be necessary to read the status 
results not associated with the output source. As shown in Table 16, SELST1-SELSTO 
can be used to read the status of either the ALU or the multiplier regardless of the 
16 setting. 

Status results are registered only when the output (P and S) registers are enabled 
(PIPES2 = 0). Otherwise, the status register is transparent. In either case, to read 
the status outputs, the output enables (OES, OEC, or both) must be low. 

Status flags are provided to signal both floating point and integer results. Integer status 
is provided using AEQB for zero, NEG for sign, and OVER for overflow/carryout. 

Several status exceptions are generated by illegal data or instruction inputs to the FPU. 
Input exceptions may cause the following signals to be set high: IVAL, DIVBYO, DEN IN, 
and STEX 1-STEXO. If the IVAL flag is set, either an invalid operation such as the square 
root of - I X I, has been requested or a NaN (Not a Number) has been input. When 
DEN IN is set, a denormalized number has been input to the multiplier. DIVBYO is set 
when the divisor is zero. STEX 1-STEXO indicate which port (RA, RB, or both) is the 
source of the exception when either a denormal is input to the multiplier (DENIN = 1) 
or a NaN (lVAL = 1) is input to the multiplier or the ALU. 

NaN inputs are all treated as IEEE signalling NaNs, causing the IVAL flag to be set. 
When output from the FPU, the fraction field from a NaN is set high (all 1 s) and the 
sign bit is 0, regardless of the original fraction and sign fields of the input NaN. 

When the' ACT884 7 outputs a NaN, it is always in the form of a signalling NaN along 
with the IVAL (Invalid) and appropriate STEX flag set high (except for the MOVE A 
instruction which passes any operand as is without setting exception flags). 

Certain operations involving floating point zeros and infinities are invalid, causing the 
, ACT884 7 to set the IV AL flag and output a NaN. Operations involving zero and infinity 
are detailed below. 

A floating point zero is represented by an all zero exponent and fraction field. The sign " 
bit may be 0 or 1, to represent +0 OR -0 respectively. ~ 

Zero divided by zero is an invalid operation. The result is a NaN with the IVAL and 
DIVBYO flags set. Any other number divided by zero results in the appropriately signed 
infinity with the DIVBYO flag set. 
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For operations with floating point zeros: ± 0 multiplied by any number is the 
appropriately signed O. 

+0 + (-0) +0 
+0 + (+0) +0 
-0 + (-0) -0 
-0 + (+0) +0 
+0 - (-0) +0 
+0 - (+0) +0 
-0 - (-0) +0 
-0 - (+0) -0 

Floating point infinity is represented by an all 1 exponent field with an all 0 fraction 
field. The sign bit determines positive or negative infinity (0 or 1 respectively). 

Infinity divided by infinity is an invalid operation, setting the IVAL flag and resulting 
in a NaN output. Division of infinity by any other number results in the appropriately 
signed infinity. Division of any number (except infinity or zero) by infinity results in 
an appropriately signed zero. Infinity divided by zero results in the appropriately signed 
infinity with the DIVBYO flag set. 

For invalid operations with infinity listed below, the output is a signalling NaN with 
the IV AL flag set. 

± infinity multiplied by ± 0 
± infinity divided by ± 0 
+ infinity + (- infinity) 
- infinity + (+ infinity) 
+ infinity - (+ infinity) 
- infinity - (- infinity) 

Any other number added to or multiplied by infinity results in the appropriately signed 
infinity as output. 
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, ACT884 7 Reference Guide 

Instruction Inputs 

Operations are summarized in Tables 33 thru 41. 

Table 33. Independent ALU Operations, Single Floating Point Operand 

ALU OPERATION INSTRUCTION 
NOTES 

ON A OPERAND INPUTS 11 0-10 

Pass A operand OOx x01 x 0000 

Pass - A operand OOx x01 x 0001 

Convert from 2' s OOx x01 00010 
complement integer 
to floating point t 

Convert from floating OOx x01x 0011 x = Don't care 

point to 2's complement 18 selects precision of A 
integer t operand 

Move A operand (pass OOx x01x 0100 0= A (SP) 
without NaN detect or 1 = A (DP) 
status flags active) 17 selects precision of B 
Pass B operand OOx x01x 0101 operand and must equal 18. 
Convert from floating OOx x01x 0110 14 selects absolute value of 
point to floating point a operand: 
(adjusts precision of O=A 
input: SP -+ DP, DP -+ SP):t; 

1 = IAI 
Floating point to 
unsigned integer During integer to floating 

conversion t OOx x01x 0111 point conversion, I A I is not 
allowed as a result. 

Wrap denormal operand OOx x01x 1000 
Unsigned integer to OOx x01x 1010 
floating point 
conversion t 

Unwrap exact number OOx x01x 1100 

Unwrap inexact number OOx x01x 1101 

Unwrap rounded input OOx xO 1 x 111 0 

tOuring this operation, 18 selects the precision of the result. If the conversion involves double-precision. the 
operation requires 2 cycles to load. 

tRequires 2 cycles to load the operation. even if input is SP. 
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Table 34. Independent ALU Operations, Two Floating Point Operands 

ALU OPERATIONS INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 110-10 

Add A + B OOx xOOO OxOO 

Add IAI + B OOx xOO 1 OxOO 

Add A + IBI OOx xOOO 1 xOO x = Don't Care 

Add IAI + IBI OOx x001 1 xOO 18 selects precision of A 

Subtract A - B OOx xOOO Ox01 
operand: 

Subtract I A I - B OOx x001 Ox01 
0= A ISP) 

Subtract A - I B I OOx xOOO 1 x01 
1 = A lOP) 

Subtract IAI - IBI OOx x001 1 x01 
17 selects precision of B 
operand: 

Compare A, B OOx xOOO Ox 1 0 o = B ISP) 
Compare IAI ' B OOx x001 Ox10 

1 = B lOP) 
Compare A, I B I OOx xOOO 1 x1 0 

12 selects either Y or its 
Compare I A I, I B I OOx x001 1x10 absolute value: 
Subtract B - A OOx xOOO Ox 11 o=y 
Subtract B-1 A I OOx x001 Ox11 1 = IYI 
Subtract I B I - A OOx xOOO 1 x11 

Subtract IBI - IAI OOx x001 1 x11 

Table 35. Independent ALU Operations, One Integer Operand 

ALU OPERATION INSTRUCTION 
NOTES 

ON A OPERAND INPUTS 110-10 

Pass A operand 010 xx10 0000 x = Don't Care 

Pass - A operand 12's complement):I: 010 xx10 0001 17 selects format of A or B 

Negate A operand 11' s complement) 010 xx10 0010 
integer operand: 

Pass B operand 010 xx10 0101 
o = Single-precision 2's 

Shift left logical t 010 xx10 1000 
complement 

1 = Single-precision unsigned 
Shift right logical t 010 xx10 1001 integer 
Shift right arithmetic t 010 xx10 1101 18 must equal 17 

CJ) tB operand is number of bit positions A is to be shifted and must be input on the same cycle as the instruction. 
:2 tPass (- AI of unsigned integer takes 1 's complement. 
-..J 
~ 
l> 
(") 
-4 
ex) 
ex) 
~ 
-..J 
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Table 36. Independent ALU Operations, Two Integer Operands 

ALU OPERATIONS INSTRUCTION 

AND OPERANDS 
NOTES 

INPUTS 110-10 

Add A + 8 010 xOOO 0000 

Subtract A - 8 010 xOOO 0001 x = Don't Care 
Compare A, 8 010 xOOO 0010 17 selects format of A and 8 
Subtract 8 - A 010 xOOO 0011 operands: 
Logical AND A, 8 010 xOOO 1000 o = Single-precision 2's 
Logical AND A, NOT 8 010 xOOO 1001 complement 

Logical AND NOT A, 8 010 xOOO 1010 1 = Single-precision unsigned 

Logical OR A, 8 010 xOOO 1100 integer 

Logical XOR A, 8 010 xOOO 1101 

Table 37. Independent Floating Point Multiply Operations 

MULTIPLIER OPERATION INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 110-10 

Multiply A * 8 OOx x 1 00 OOxx x = Don't Care 

Multiply - (A * 8) OOx x100 01xx 18 selects A operand 

Multiply A * I B I OOx x1 00 10xx 
precision (0 = SP, 1 = DP) 

Multiply -(A * 181) OOx x100 11xx 
17 selects 8 operand 
precision (0 = SP, 1 = DP) 

Multiply I A I * 8 OOx x101 OOxx 
11 selects A operand format 

Multiply -(IAI * 8) OOx x1 01 01 xx (0 = Normal, 1 = Wrapped) 
Multiply IAI * 181 OOx x101 10xx 10 selects 8 operand format 
Multiply -(IAI * 181) OOx x101 11xx (0 = Normal, 1 = Wrapped) 

Table 38. Independent Floating Point Divide/Square Root Operations 

MULTIPLIER OPERATION INSTRUCTION 

AND OPERANDS t 
NOTES 

INPUTS 110-10 

x = Don't Care 

18 selects A operand precision 
Divide A /8 OOx x11 0 Ox xx and 17 selects 8 operand 

SQRT A OOx x110 1xxx precision (0 = SP, 1 = DP) 

Divide IAI /8 OOx x111 Oxxx 
12 negates multiplier result 
(0 = Normal, 1 = Negated) 

SQRT IAI OOx x111 1 xxx 11 selects A operand format and 
10 selects 8 operand format 
(0 = Normal, 1 = Wrapped) 

tl7 should be equal to 18 for square root operations 
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Table 39. Independent Integer Multiply/Divide/Square Root Operations 

MULTIPLIER OPERATION INSTRUCTION 

AND OPERANDSt INPUTS 110-10 
NOTES 

Multiply A * B 010 x100 0000 
x = Don't care 
17 selects operand format: 

Divide A / B 010 x110 0000 o = SP 2's complement 
SQRT A 010 x110 1000 1 = SP unsigned integer 

t Operations involving absolute values, wrapped operands, or negated results are valid only when floating point 
format is selected (19 = 0). 

Table 40; Chained Multiplier/ALU Floating Point Operationst: 

CHAINED OPERATIONS OUTPUT INSTRUCTION 
NOTES 

MULTIPLIER ALU SOURCE INPUTS 110-10 

A*B A+B ALU 10x xOOO xxOO 

A * B A+B Multiplier 10x x100 xxOO 

A*B A - B ALU 10x xOOO xx01 

A*B A - B Multiplier 10x x100 xx01 

A*B 2-A ALU 10x xOOO xx10 x = Don't Care 

A*B 2 - A Multiplier 10x x100 xx10 18 selects precision of 

A * B B-A ALU 10x xOOO xx11 RA inputs: 

A*B B-A Multiplier 10x x100 xx11 o = RA (SP) 

A * B A+O ALU 10x x010 xxOO 1 = RA (DP) 

A*B A+O Multiplier 10x x110 xxOO 17 selects precision of 

A * B O-A ALU 10x x010 xx11 RB inputs: 

A * B O-A Multiplier 10x x110 xx11 o = RB (SP) 

A * 1 A+B ALU 10x x001 xxOO 
1 = RB (DP) 

A * 1 A+B Multiplier 10x x101 xxOO 13 negates ALU result: 

A* 1 A-B ALU 10x x001 xx01 o = Normal 

A * 1 A-B Multiplier 10x x101 xx01 1 = Negated 

A* 1 2 - A ALU 10x x001 xx10 12 negates multiplier 

10x x101 xx10 
result: 

A* 1 2 - A Multiplier o = Normal 
A* 1 B-A ALU 10x x001 xx11 

A * 1 B-A Multiplier 10x x101 xx11 
1 = Negated 

A* 1 A+O ALU 10x x011 xxOO 

A * 1 A+O Multipiier 10x x111 xxOO 

A* 1 O-A ALU 10x x011 xx11 

A * 1 O-A Multiplier 10x x 111 xx 11 

e; tThe 110-10 setting 1xx xx1x xx10 is invalid, since it attempts to force the B operand of the ALU to both 
o and 2 simultaneously. 
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Table 41. Chained Multiplier/ALU Integer Operations 

CHAINED OPERATIONS OUTPUT INSTRUCTION 

MULTIPLIER ALU SOURCE INPUTS 11 0-10 
NOTES 

A*B A+B ALU 11 0 xOOO 0000 

A*B A + B Multiplier 110 x100 0000 

A * B A - B ALU 110 xOOO 0001 

A*B A - B Multiplier 110 x100 0001 

A*B 2-A ALU 110 xOOO 0010 

A*B 2-A Multiplier 110 x100 0010 

A*B B-A ALU 110 xOOO 0011 

A*B B-A Multiplier 110 x100 0011 
x = Don't Care 

A * B A+O ALU 110 x010 0000 

A*B A+O 
17 selects format of A 

Multiplier 110 x110 0000 and B operands: 
A * B O-A ALU 110 x010 0011 o = SP 2's 
A*B O-A Multiplier 110 x11 00011 complement 
A * 1 A+B ALU 110 x001 0000 1 = SP unsigned 
A * 1 A + B Multiplier 110 x101 0000 integer 

A * 1 A-B ALU 110 x001 0001 

A * 1 A-B Multiplier 110 x101 0001 

A * 1 2 - A ALU 110 x001 0010 

A * 1 2 - A Multiplier 110 x101 0010 

A * 1 B-A ALU 110 x001 0011 

A * 1 B-A Multiplier 110 x101 0011 

A * 1 A+O ALU 110 x011 0000 

A * 1 A+O Multiplier 110 x111 0000 

A * 1 O-A ALU 110 x011 0011 

A * 1 O-A Multiplier 110x111 xx11 
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Input Configuration 

CONFIG 1-CONFIGO control the order in which double-precision operands are loaded, 
as shown in the Table 42. 

Table 42. Double-Precision Input Data Configuration Modes 

LOADING SEQUENCE 
DATA LOADED INTO TEMP 

DATA LOADED INTO RA/RB 
REGISTER ON FIRST CLOCK 
AND RA/RB REGISTERS ON 

REGISTERS ON SECOND 

SECOND CLOCK t CLOCK 

CONFIG1 CONFIGO DA DB DA DB 

0 0 
B operand B operand A operand A operand 

(MSH) (LSH) (MSH) (LSH) 

0 1 :j: A operand B operand A operand B operand 
(LSH) (LSH) (MSH) (MSH) 

1 0 
A operand B operand A operand B operand 

(MSH) (MSH) (LSH) (LSH) 

1 1 
A operand A operand B operand B operand 

(MSH) (LSH) (MSH) (LSH)) 

t On the first active clock edge (see CLKMOOE), data in this column is loaded into the temporary register. 
On the next rising edge, operands in the temporary register and the OAIOB buses are loaded into the RA 
and RB registers. 

tUse CONFIG1-0 = 01 as normal single-precision input configuration. 

Operand Source Select 

Multiplier and ALU operands are selected by SELOP7-SELOPO as shown in Tables 43 
and 44. 

Table 43. Multiplier Input Selectio~ 

A1 (MUX1) INPUT B1 (MUX2) INPUT 

SELOP7 SELOP6 OPERAND SOURCEt SELOP5 SELOP4 OPERAND SQUhCEt 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 ALU feedback 1 0 Multiplier feedback 
1 1 RA input register 1 1 RB input register 

1> t For division or square root operations, only RA and RB registers can be selected as sources. 
() 
-t 
00 
00 
~ 

"""" 
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Table 44. ALU Input Selection 

A2 IMUX3) INPUT B2 IMUX4) INPUT 

SELOP3 SELOP2 OPERAND SOURCEt SELOP1 SELOPO OPERAND SOURCEt 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 Multiplier feedback 1 0 ALU feedback 
1 1 RA input register 1 1 RB input register 

tFor division or square root operations, only RA and RB registers can be selected as sources. 

Pipeline Control 

Pipelining levels are turned on by PIPES2-PIPESO as shown below. 

Table 45. Pipeline Controls (PIPES2-PIPESO) 

PIPES2-
PIPESO 

REGISTER OPERATION SELECTED 

X X 0 Enables input registers IRA, RB) 
X X 1 Makes input registers IRA, RB) transparent 
X 0 X Enables pipeline registers 
X 1 X Makes pipeline registers transparent 
0 X X Enables output registers (PREG, SREG, Status) 
1 X X Makes output registers (PREG, SREG, Status) transparent 

Round Control 

RND1-RNDO select the rounding mode as shown in Table 46. 

Table 46. Rounding Modes 

RND1-

RNDO 
ROUNDING MODE SELECTED 

0 0 Round towards nearest 
0 1 Round towards zero (truncate) 
1 0 Round towards infinity (round up) 
1 1 Round towards negative infinity (round down) 
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Status Output Selection 

SELST1-SELSTO choose the status output as shown below. 

Table 47. Status Output Selection (Chained Mode) 

SELST1-

SELSTO 
STATUS SELECTED 

00 Logical OR of ALU and multiplier exceptions (bit by bit) 
01 Selects multiplier status 
10 Selects ALU status 
11 Normal operation (selection based on result source specified by 16 input) 

Test Pin Control 

Testing is controlled by TP1-TPO as shown below. 

Table 48. Test Pin Control Inputs 

TP1-
OPERATION 

TPO 

o 0 All outputs and I/Os are forced low 
0 1 All outputs and I/Os are forced high 
1 0 All outputs are placed in Ii high impedance state 
1 1 Normal operation 
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Miscellaneous Control Inputs 

The remaining control inputs are shown in the Table 49. 

Table 49. Miscellaneous Control Inputs 

SIGNAL HIGH LOW 

BYTEP Selects byte parity generation and test Selects single bit parity 
generation and test 

CLKMODE Enables temporary input register load on Enables temporary input register 
failing clock edge load on rising clock edge --

ENRC No effect Enables C register load when 
CLKC goes high. 

ENRA If register is not in flowthrough, enables If register is not in flowthrough, 
clocking of RA register through, holds contents of RA 

register 
ENRB If register is not in flowthrough, enables If register is not in flowthrough, 

enables clocking of RB register holds contents of RB register 
FAST Places device in FAST mode Places device in IEEE mode 

FLOW_C Causes output value to bypass C No effect 
register and appear on C register output 
bus. --

HALT No effect Stalls device operation but 
does not affect registers, internal 
states, or status 

OEC Disables compare pins Enables compare pins 
OES Disables status outputs Enables status outputs 
OEY Disables Y bus Enables Y bus 

RESET No effect Clears internal states, status, 
internal pipeline registers, and 
exception disable register. Does 
not affect other data registers. 

SELMS/LS Selects MSH of 64-bit result for output Selects LSH of 64-bit result for 
output on the Y bus (no effect on single- output on the Y bus (no effect on 
precision operands) single-precision operands) 

SRCC Selects multiplier result for input to C Selects ALU result for input to C 
register register 

Glossary 
Biased exponent - The true exponent of a floating point number plus a constant called 
the exponent field's excess. In IEEE data format, the excess or bias is 127 for single­
precision numbers and 1023 for double-precision numbers. 

Denormalized number (de norm) - A number with an exponent equal to zero and a 
nonzero fraction field, with the implicit leading (leftmost) bit of the fraction field being O. 
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NaN (not a number) - Data that has no mathematical value. The' ACT884 7 produces 
a NaN whenever an invalid operation such as 0 * (Xl is executed. The output format 
for an NaN is an exponent field of all ones, a fraction field of all ones, and a zero sign 
bit. Any number with an exponent of all ones and a nonzero fraction is treated as a 
NaN on the input. 

Normalized number - A number in which the exponent field is between 1 and 254 
(single precision) or 1 and 2046 (double precision). The implicit leading bit is 1. 

Wrapped number - A number created by normalizing a denormalized number's fraction 
field and subtracting from the exponent the number of shift positions required to do 
so. The exponent is encoded as a two's complement negative number. 

SN74ACT8847 Application Notes 

Sum of Products and Product of Sums 

Performing fully pipelined double-precision operations requires a detailed understanding 
of timing constraints imposed by the multiplier. In particular, sum of products and 
product of sums operations can be executed very quickly, mostly in chained mode, 
assuming that timing relationships between the AlU and the multiplier are coded 
properly. 

Pseudocode tables for these sequences are provided, (Table 38 and Table 39) showing 
how data and instructions are input in relation to the system clock. The overall patterns 
of calculations for an extended sum of products and an extended product of sums 
are presented. These examples assume FPU operation in ClKMODE 0, with the CONFIG 
setting 10 to load operands by MSH and lSH, all registers enabled 
(PIPES2 - PIPESO = 000), and the C register clock tied to the system clock. 

In the sum of products timing table, the two initial products are generated in 
independent multiplier mode. Several timing relationships should be noted in the table. 
The first chained instruction 10aQs and begins to execute following the sixth rising 
edge of the clock, after the first product P1 has already been held in the P register 
for one clock. For this reason, P1 is loaded into the C register so that P1 will be stable 
for two clocks. 

en 2 On the seventh clock, the AlU pipeline register loads with an unwanted sum, P1 + P1. 
" However, because the AlU timing is constrained by the multiplier, the S register will i: not load until the rising edge of ClK9, when the AlU pipe contains the desired sum, 
("') P1 + P2. The remaining sequence of chained operations then execute in the desired 
-I manner. 
00 
00 
~ 

" 
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Table 50. Pseudocode for Fully Pipelined Double-Precision Sum of Products t 
(CLKMODE-O, CONFIG1-CONFIGO-10, PIPES2-PIPESO ... 000) 

ClK 
DA 

BUS 

I 1 A1 M5H 

I 2 A1 l5H 

I 3 A2 M5H 

I 4 A2 l5H 

I 5 A3 M5H 

I 6 A3 L5H 

I 7 A4M5H 

I 8 A4 LSH 

I 9 A5 M5H 

I10 A5 L5H 

I11 A6 MSH 

I 12 
tpR = Product Register 

SR = Sum Register 

DB 

BUS 

B1 M5H 

B1 l5H 

B2 M5H 

B2 l5H 

B3 M5H 

B3 L5H 

B4 M5H 

B4 L5H 

B5 M5H 

B5 L5H 

B6 M5H 

CR = Constant (C) Register 

TEMP 

REG 

A1.B1M5H 

A1.B1l5H 

A2.B2M5H 

A2.B2L5H 

A3.B3M5H 

A3.B3L5H 

A4.B4M5H 

A4.B4L5H 

A5.B5M5H 

A5.B5L5H 

A6.B6M5H 

SN74ACT8847 

INS INS RA RB MUl P C 

BUS REG REG REG PIPE REG REG 

A1 *B1 

A1 *B1 A1 *B1 A1 B1 

A2*B2 A1 *B1 A1 B1 A1 *B1 

A2*B2 A2*B2 A2 B2 A1 *B1 

PR+CR 

A3*B3 
A2*B2 A2 B2 A2*B2 P1 

PR+CR PR+CR. 

A3*B3 A3*B3 
A3 B3 A2*B2 P1 P1 

PR+5R PR+5R. 

A4*B4 A3*B3 
A3 B3 A3*B3 P2 P1 

PR+5R PR+5R. 
A3*B3 

A4*B4 A4*B4 
A4 B4 P2 P1 

PR+5R PR+5R. 

A5*B5 A4*B4 
A4 B4 A4*B4 P3 P2 

PR+5R PR+5R. 
A4*B4 

A5*B5 A5*B5 
A5 B5 P3 P2 

PR+5R PR+5R, 
A5 

A6*B6 A5*B5 
B5 A5*B5 P4 P2 

P4 P2 

ALU S V 
PIPE REG BUS 

P1 +P1 

P1 +P2 

51 +P2 51 

51 +P3 51 

XXXXX 52 

52 
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Table 51. Pseudocode for Fully Pipelined Double-Precision Product of Sums t 
(CLKMODE ... O, CONFIG1-CONFIGO-10, PIPES2-PIPESO=OOO) 

DA DB TEMP 
CLK 

BUS BUS REG 

I 1 A1M5H B1M5H A1,B1M5H 

I 2 A1L5H B1L5H A 1 ,B1 L5H 

I 3 A2M5H B2M5H A2,B2M5H 

I 4 A2L5H B2L5H A2,B2L5H 

I 5 A3M5H B3M5H A3,B3M5H 

I 6 A3L5H B3L5H A3,B3L5H 

I 7 XXX XXX XXX 

I 8 A4M5H B4M5H A4,B4M5H 

I 9 A4L5H B4L5H A4,B4L5H 

I10 XXX XXX XXX 

I11 A5M5H B5M5H A5,B5M5H 

I12 A5L5H B5L5H A5,B5L5H 

NOTE: Nap instruction is 011 0000 0000. 
t PR = Product Register 

SR = Sum Register 
CR = Constant (C) Register 

INS 

BUS 

A1 +B1 

A1 +B1 

A2+B2 

A2+B2 

CR*5R 

A3+B3 

CR*5R 

A3+B3 

NOP 

PR*5R 

A4+B4 

PR*5R 

A4+B4 

NOP 

PR*5R 

A5+B5 

PR*5R 

A5+B5 

INS RA RB MUL P C 

REG REG REG PIPE REG REG 

A1 +B1 A1 B1 

A1 +B1 A1 B1 

A2+B2 A2 B2 

A2+B2 A2 B2 
ENRC=O 

51 

CR*5R 

A3+B3 
A3 B3 51 

CR*5R 

A3+B3 
A3 B3 51 *52 51 

NOP 
ENRA=O 

A3 

ENRB=O 

B3 
51 *52 51 

PR*5R 
A4 B4 

A4+B4 
XXX P1 51 

PR*5R 
A4 B4 P1 *53 P1 51 

A4+B4 

ENRA=O ENRB=O 
P1 *53 NOP XXX 51 

A4 B4 

PR*5R 
A5 B5 XXX P2 51 

A5+B5 
----- ------- --------- ---------

ALU S V 
PIPE REG BUS 

A1 +B1 

A1 +B1 51 

A2+B2 51 

A2+B2 52 

A3+B3 52 

XXX 

XXX 53 

A4+B4 53 

A4+B4 XXX 

X 54 



Matrix Operations 

The' ACT884 7 floating point unit can also be used to perform matrix manipulations 
involved in graphics processing or digital signal processing. The FPU multiplies and 
adds data elements, executing sequences of microprogrammed calculations to form 
new matrices. 

Representation of Variables 

In state representations of control systems, an n-th order linear differential equation 
with constant coefficients can be represented as a sequence of n first-order linear 
differential equations expressed in terms of state variables: 

dX1 _ 
-- - x2,···, 
dt 

dX(n-1 ) 
dt 

= xn 

For example, in vector-matrix form the equations of an nth-order system can be 
represented as follows: 

x1 a11 a12 a1n 

m 
b11 b1n 

Q d 
x2 x2 u2 

dt 
: + 

xn an1 an2 ann xn bn1 bnn un 

or, X = ax + bu 

Expanding the matrix equation for one state variable, dX1/dt, results in the following 
expression: 

X1 = (a11 * x1 + ... + a1 n * xn) + (b11 * u1 + ... + b1 n * un) 

where X1 = dX1/dt. 

Sequences of multiplications and additions are required when such state space 
transformations are performed, and the' ACT884 7 has been designed to support such 
sum-of-products operations. An n X n matrix A multiplied by an n x n matrix X yields 
an n X n matrix C whose elements cij are given by this equation: 

n 

Cij = E aik * Xkj for i = 1, ... ,n j = 1, ... ,n 

k=1 

(1 ) 
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'For the Cij elements to be calculated by the' ACT884 7, the corresponding elements 
aik and Xkj must be stored outside the' ACT884 7 and fed to the' ACT884 7 in the 
proper order required to effect a matrix multiplication such as the state space system 
representation just discussed. 

Sample Matrix Transformation 

The matrix manipulations commonly performed in graphics systems can be regarded 
as geometrical transformations of graphic objects, A matrix operation on another matrix 
representing a graphic object may result in scaling, rotating, transforming, distorting, 
or generating a perspective view of the image. By performing a matrix operation on 
the position vectors which define the vertices of an image surface, the shape' and 
position of the surface can be manipulated. 

The generalized 4 x 4 matrix for transforming a three-dimensional object with 
homogeneous coordinates is shown below: 

a b c d 
e f g h 

T k 
..... , .. 

m n 0 p 

The matrix T can be partitioned into four component matrices, each of which produces 
a specific effect oli the resultant image: 

3 
3 x 3 x 

1 x 3 1 x 1 

The 3 x 3 matrix produces linear transformation in the form of scaling, shearing and 
rotation, The 1 x 3 row matrix produces translation, while the 3 x 1 column matrix 
produces perspective transformation with multiple vanishing points. The final single 
element 1 x 1 produces overall scaling. Overall operation of the transformation matrix 
T on the position vectors of a graphic object produces a combination of shearing, 
rotation, reflection, translation, perspective, and overall scaling. 

The rotation of an object about an arbitrary axis in a three-dimensional space can be 
carried out by first translating the object such that the desired axis of rotation passes 
through the origin of the coordinate system, then rotating the object about the axis 
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through the origin, and finally translating the rotated object such that the axis of rotation 
resumes its initial position. If the axis of rotation passes through the point P = [a b c 11. 
then the transformation matrix is representable in this form: 

[x y z h) [x y z 1) 1 
0 
0 

-a 

0 0 
1 0 
0 1 

-b -c 

I 
translation 
to origin 

0 
0 
0 
1 

R 

rotation 
about 
origin 

1 0 0 0 
0 1 0 0 
0 0 1 0 
a b c 1 

I 
translation 

back to initial 
position 

(2) 

where R may be expressed as: 

n12 + (1-n)2 cosq, n 1 n2( 1-cosq,) + n3sinq, n 1 n3( 1-cosq,) - n2sinq, 0 

R = n 1 n2( 1-cosq,) - n3sinq, n22 + (1-n2)2 cosq, n2n3( 1-cosq,) + n 1 sinq, 0 

and 

n1n3(1-cosq,)+n2sinq, n2n3(1-cosq,)-n1sinq, n32 + (1-n3)2 cosq, 0 

o o 

n1 = q1/(q1 2 + q22 + q32)1/2 

o 

direction cosine for x-axis of 
rotation 

direction cosine for y-axis of rotation 

n3 = q3/(q 12 + q22 + q32) 1/2 = direction cosine for z-axis of rotation 

n = (n1 n2 n3) = unit vector for Q 

Q = vector defining axis of rotation = [q 1 q2 q3) 

q, = the rotation angle about Q 

A general rotation using equation (2) is effected by determining the [x y z) coordinates 
of a point A to be rotated on the object, the direction cosines of the axis of rotation 
[n1, n2, n3), and the angle q, of rotation about the axis, all of which are needed to 
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define matrix [R]. Suppose, for example, that a tetrahedron ABCD, represented by 
the coordinate matrix below is to be rotated.about an axis of rotation RX which passes 
through a point P = [5 - 6 3 1] and whose direction cosines are given by unit vector 
[n1 = 0.866, n2 = 0.5, n3 = 0.707]. The angle of rotation 0 is 90 degrees (see 
Figure 72). The rotation matrix [R] becomes 

2 -3 3 A 
1 -2 2 B 
2 -1 2 C 
2 -2 2 D 

0.750 1.140 0.112 

R 
-0.274 0.250 1.220 

1.112 -0.513 0.500 
0 0 0 

y 

+----- ----------, 

Z 

55 0 

I 
AR I 

I (3) L ____ -+ 
C' 

B' r-

I 
I 

y' 

Q 

D' 

(1) THIS ARROW DEPICTS THE FIRST TRANSLATION 
(2) THIS AROW DEPICTS THE 90 0 ROTATION 
(3) THIS ARROW DEPICTS THE BACK TRANSLATION 

90 0 

0 
0 
0 

Z' 

D 

P (5, -6.3) 

Figure 72. Sequence of Matrix Operations 
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The point transformation equation (2) can be expanded to include all the vertices of 
the tetrahedron as follows: 

xa ya za h1 
xb yb zb h2 
xc yc zc h3 
xd yd zd h4 

2-3 3 1 1 0 
1 - 2 2 1 01 
2 -1 2 1 00 

00 
00 
1 0 

2 -2 2 1 - 56-31 

I 
translation 
to origin 

0.750 1.140 0.112 0 
-0.274 0.250 1.22 0 

1.112 -0.513 0.5000 
0 0 0 1 

I 
rotation about origin 

1 000 
0 1 0 0 
o 0 1 0 
5-6 3 1 

I 
translation 

back to 
initial 

position 

(3) 

The 'ACT884 7 floating point unit can perform matrix manipulation involving 
multiplications and additions such as those represented by equation (1). The matrix 
equation (3) can be solved by using the' ACT884 7 to compute, as a first step, the 
product matrix of the coordinate matrix and the first translation matrix of the right­
hand side of equation (3) in that order. The second step involves postmultiplying the 
rotation matrix by the product matrix. The third step implements the back-translation 
by pre multiplying the matrix result from the second step by the second translation 
matrix of equation (3). Details of the procedure to produce a three-dimensional rotation 
about an arbitrary axis are explained in the following steps: 
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Step 1 

Translate the tetrahedron so that the axis of rotation passes through the origin. This 
process can be accomplished by multiplying the coordinate matrix by the translation 
matrix as follows: 

2 -3 3 
1 -2 2 
2 -1 2 
2 -2 2 

1 
0 
0 

-5 

0 0 
1 0 
0 1 
6 -3 

I 
translation 
to origin 

-3 
-4 
-3 
-3 

0 
0 
0 
1 

+3 0 
+4 -1 

+5 -1 
+4 -1 

(2-5) (-3+6) (3-3) 
(1 - 5) (-2+6) (2-3) 
(2-5) (-1 +6) (2-3) 
(2-5) (-2+6) (2-3) 

I 
vertices of translated 

tetrahedron 

AT 
BT 
CT 
DT 

1 
1 
1 
1 

The' ACT884 7 could compute the translated coordinates AT, BT, CT, DT as indicated 
above. However, an alternative method resulting in a more compact solution is 
Presented below. 

Step 2 

Rotate the tetrahedron about the axis of rotation which passes through the origin after 
the translation of Step 1. To implement the rotation of the tetrahedron, postmultiply 
the rotation matrix [Rl by the translated coordinate matrix from Step 1 . The resultant 
matrix represents the rotated coordinates of the tetrahedron about the origin as follows: 

-3 3 0 1 0.750 1.140 0.112 0 - 3.072 - 2.670 3.324 
-4 4 -1 1 -0.274 0.250 1.22 0 - 5.208 -3.047 3.932 
-3 5 -1 1 1.112 -0.513 0.500 0 -4.732 -1.657 5.264 
-3 4 -1 1 0 0 0 1 - 4.458 -1.907 4.044 

I I 
rotation about origin rotated coordinates 
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Step 3 

Translate the rotated tetrahedron back to the original coordinate space. This is done 
by premultiplying the resultant matrix of Step 2 by the translation matrix. The following 
calculations produces the final coordinate matrix of the transformed object: 

- 3.072 - 2.670 3.324 1 1 0 0 0 1.928 - 8.670 6.324 1 
- 5.208 - 3.047 3.932 1 0 1 0 0 -0.208 -9.047 6.932 1 
-4.732 -1.657 5.264 1 0 0 1 0 0.268 -7.657 8.264 1 
-4.458 -1.907 4.044 1 5 -6 3 1 0.542 -7.907 7.044 1 

I I 
translate back final rotated coordinates 

A more compact solution to these transformation matrices is a product matrix that 
combines the two translation matrices and the rotation matrix in the order shown in 
equation (3). Equation (3) will then take the following form: 

xa ya za h1 
xb yb zb h2 
xc yc zc h3 
xd yd zd h4 

2 -3 3 0.750 1.140 0.112 0 
1 -2 2 -0.274 0.250 1.220 0 
2 -1 2 1.112 -0.513 0.500 0 
2 -2 2 -3.730 -8.661 8.260 1 

I 
transformation matrix 
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The newly transformed coordinates resulting from the postmultiplication of the 
transformation matrix by the coordinate matrix of the tetrahedron can be computed 
using equation (1) which was cited previously: 

n 

Cij = E aik * Xkj for i = 1, ... ,n j = 1, ... ,n 

k=1 

For example, the coordinates may be computed as follows: 

xa = c11 a11 * x11 + a12 * x21 + a13 * x31 + a14 * x41 
2 * 0.750 + (-3) * (-0.274) + 3 * 1.112 + 1 * (-3.73) 
1.5 + 0.822 + 3.336 - 3.73 
1.928 

ya=c12= a11 *x12+a12*x22+a13*x32+a14*X42 
2 * 1.140 + (-3) * 0.250 + 3 * (-0.513) + 1x(-8.661) 
2.28 -0.75 - 1.539 - 8.661 
-8.67 

za = c13 a11 * x13 + a12 * x23 + a13 * x33 + a14 * x43 
2 * 0.112 + (- 3) * 1.220 + 3 * 0.500 + 1 * 8.260 
0.224 - 3.66 + 1.5 + 8.260 
6.324 

h1 = c14 = a11 * x14 + a12 * x24 + a13 * x34 + a14 * x44 
2 * 0 + (- 3) * 0 + 3 * 0 + 1 * 1 
0+0 + 0 + 1 
1 
A' = [1.928 - 8.67 6.324 11 

The other rotated vertices are computed in a similar manner: 

B' = [- 5.208 - 3.047 3.932 11 
C' = [-4.732 -1.657 5.264 1) 
0' = [- 4.458 -1.907 4.044 11 

Microinstructions for Sample Matrix Manipulation 

(1 ) 

The' ACT884 7 FPU can compute the coordinates for graphic objects over a broad 
dynamic range. Also, the homogeneous scalar factors h1, h2, h3 and h4 may be made 
unity due to the availability of large dynamic range. In the example presented below, 
some of the calculations pertaining to vertex A' are shown but the same approach 
can be applied to any number of points and any vector space. 
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The calculations below show the sequence of operations for generating two 
coordinates, xa and ya, of the vertex A' after rotation. The same sequence could be 
continued to generate the remaining two coordinates for A' (za and h1 I. The other 
vertices of the tetrahedron, B', C', and D', can be calculated in a similar way. 

Table 52 presents a pseudocode description of the operations, clock cycles, and register 
contents for a single-precision matrix multiplication using the sum-of-products sequence 
presented in an earlier section. Registers used include the RA and RB input registers 
and the product (PI and sum (SI registers. 

Table 52. Single-Precision Matrix Multiplication (PIPES2-PIPESO .. 010) 

CLOCK MULTIPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 

1 Loada11,x11 a11 - RA, x11 -RB 
SP Multiply p1=a11*x11 

2 Load a12, x21 a12 -RA, x21 -RB 
SP Multiply p2 = a12 * x21 
Pass P to S p1 - Plp1) 

3 Load a13, x31 a13 - RA, x31 -RB 
SP Multiply p3 = a13 * x31, p2 -Plp2) 
Add P to S Plp1) + 0-Slp1) 

4 Load a14, x41 a14 - RA, x41 - RB 
SP Multiply p4 = a14 * x41, p3-Plp3) 
Add P to S Plp2) + Slp1) - SIp1 + p2) 

5 Load a 11, x 12 a11 - RA, x12 - RB 
SP Multiply p5 = a11 * x12, p4 - Plp4) 
Add P to S Plp3) + SIp1 + p2) - SIp1 + p2 + p3) 

6 Load a12, x22 a12 - RA, x22 - RB 
SP Multiply p6 = a12 * x22, p5 - Plp5) 
Pass P to S Plp4) + SIp1 + p2 + p3) -
Output S SIp1 + p2 + p3 + p4) 

7 Load a13, x32 a 13 -RA, x32- RB 
SP Multiply p7 = a13 * x32, p6-Plp6) 
Add P to S Plp5) + 0 - Slp5) 

8 Load a 14, x42 a 14-RA, x42 -RB 
SP Multiply p8 = a14 * x42, p7 - Plp7) 
Add P to S Plp6) + Slp5)- SIp5 + p6) 

9 Next operands A - RA, B - RB 
Next instruction pi = A * B, p8 - Plp8) 
Add P to S Plp7) + SIp5 + p6) - SIp5 + p6 + p7) 

10 Next operands C - RA, D - RB 
Next instruction pj = C * D, pi - Plpi) 
Output S Plp8) + SIp5 + p6 + p7) -

SIp5 + p6 + p7 + p8) 
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A microcode sequence to generate this matrix multiplication is shown in Table 53. 

Table 53. Microinstructions for Sample Matrix Multiplication 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DD SRRCLEEEETTELPP 
10-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

000 0100 0000 o 01 0101111 xxxx 00 o 1 x x x x x x xx 11 
10001100000 o 01 01 0 1111 xxxx 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 

100 0110 0000 o 01 01 0 1111 xxxx 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 
100 0000 0000 o 01 01011111010 00 o 1 x x x x x x xx 11 
10001100000 o 01 01 0 1111 xxxx 00 o 1 x x x x x x xx 11 

Six cycles are required to complete calculation of xa, the first coordinate, and after 
fQur more cycles the second coordinate ya is output. Each subsequent coordinate can 
be calculated in four cycles so the 4-tuple for vertex A' requires a total of 18 cycles 
to complete. 

Calculations for vertices S', C', and D', can be executed in 48 cycles, 16 cycles for 
each vertex. Processing time improves when the transformation matrix is reduced, 
i.e., when the last column has the form shown below: 

The h-scalars h1, h2, h3, and h4 are equal to 1. The number of clock cycles to generate 
each 4-tuple can then be decreased from 16 to 13 cycles. Total number of clock cycles 
to calculate all four vertices is reduced from 66 to 54 clocks. Figure 73 summarizes 
the overall matrix transformation. 
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v 

Z' 

x'--------------------~~~--------------~~------------------~x 

1° 
I 
I 
I B 
I C' 
I 

Z 
B' 0' .-0. 

90° 

:A' P (5, -6,3) 
I 
I 
I 
I 

V' 

Figure 73, Resultant Matrix Transformation 

This microprogram can also be written to calculate sums of products with all pipeline 
registers enabled so that the FPU can operate in its fastest mode. Because of timing 
relationships, the C register is used in some steps to hold the intermediate sum of 
products. Latency due to pipelining and chained data manipulation is 11 cycles for 
calculation of the first coordinate, and four cycles each for the other three coordinates. 

After calculation of the first vertex, 16 cycles are required to calculate the four 
coordinates of each subsequent vertex. Table 54 presents the sequence of calculations 
for the first two coordinates, xA and yA. 

Products in Table 54 are numbered according to the clock cycle in which the operands 
and instruction were loaded into the RA, RB, and I register, and execution of the ~ 
instruction began. Sums indicated in Table 54 are listed below: CO 

s1 = p1 + 0 
s2 = p1 + p3 
s3 = p2 + p4 
s4 = p5 + 0 

s5 = p5 + p7 
s6 = p6 + p8 
s7 = p9 + 0 
s8 = p9 + p11 

s9 = p10 + p12 
xA p1 + p2 + p3 + p4 
yA = p5 + p6 + p7 + p8 
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Table 54. Fully Pipelined Single-Precision Sum of Products (PIPES2-PIPESO = 000) 

CLOCK I DA DB I RA RB MUL ALU P 
CYCLE BUS BUS BUS REG REG REG PIPE PIPE REG 

0 Mul x11 a11 
1 Mul x21 a12 Mul x11 a11 
2 Chn x31 a13 Mul x21 a12 p1 
3 Mul x41 a14 Chn x31 a13 p2 p1 
4 Chn x12 a 11 Mul x41 a14 p3 51 p2 
5 Chn x22 a12 Chn x12 a11 p4 t p3 
6 Chn x32 a13 Chn x22 a12 p5 52 p4 
7 Chn x42 a14 Chn x32 a13 p6 53 p5 
8 Chn x13 a11 Chn x42 a14 p7 54 p6 
9 Chn x23 a12 Chn x13 a11 p8 xA p7 
10 Chn x33 a13 Chn x23 a12 p9 55 p8 
11 Chn x43 a14 Chn x33 a13 p10 56 p9 
12 Chn x14 a11 Chn x43 a14 p11 57 p10 
13 Chn x24 a12 Chn x14 a11 p12 VA p11 
14 Chn x34 a13 Chn x24 a12 p13 58 p12 
15 Chn x44 a14 Chn x34 a13 p14 59 p13 

tContents of this register are not valid during this cycle. 

Chebyshev Routines for the SN74ACT8847 FPU 

Introduction 

S C Y 
REG REG BUS 

51 p2 
t p2 

52 p2 
53 52 
54 p6 
xA p6 xA 
55 p6 
56 55 
57 p10 
VA p10 VA 
58 p10 

Using the SN74ACT8847, very efficient routines can be developed for the 
implementation of transcendental functions. A high degree of accuracy can be achieved 
by taking advantage of the' ACT884 7's ability to perform calculations using double­
precision floating point operands. 

This application note describes how to use the' ACT884 7 to implement seven different 
transcendental functions. TIM (Texas Instruments Meta-Macro Assembler) assembly 
files have been written for all seven functions and these files are available upon request 
from Texas Instruments. The algorithm chosen to implement these functions is the 
Chebyshev expansion method [11. Table 55 lists the functions that have been 
implemented, along with the number of cycles required, and time required to perform 
the calculations. Also listed in the table is the cycle count and time required to perform 
the same calculation using the Motorola MC68881 Floating Point Coprocessor and 
the Intel 80387 Numeric Processor Extension. 

The Chebyshev expansion method was chosen rather than some of the more well 
known methods, such as the Taylor series and Newton-Raphson approximation, for 
a variety of reasons. Tht:! primary advantage of Chebyshev's method is that it provides 
a uniform convergence rate in the number of terms required to achieve the desired 
accuracy. Thus the range of the input value will have little effect on the accuracy of 
the result. Another advantage is that the number of terms required to calculate the 
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approximation is relatively small. This provides for faster execution. Also, Chebyshev's 
method can be applied to any function which is continuous and of bounded variation. 
Lastly, tables are available which contain the constants necessary to implement 
Chebyshev's method. 

In order that this application note be useful to the largest audience, only those 
instructions and features common to all 'ACT884 7 versions have been used to 
implement the routines. 

Contact Texas Instruments VLSI Logic applications group at (214) 997-3970 for a 
copy of the seven TIM assembly files. 

Table 55. Cycle Count and Execution Speed for the Seven Chebyshev Functions 

CYCLE COUNTt 
EXECUTION SPEED:!: 

FUNCTION IN MICROSECONDS 
'ACT8847 MC68881 80387 'ACT8847 MC68881 80387 

Sine 51 416 
122 to 

1.53 25.0 
7.32 to 

771 46.3 

Cosine 51 416 
123 to 

1.53 25.0 
7.38 to 

772 46.3 

Tangent 84 498 
191 to 

2.52 29.9 
11.5 to 

497 29.8 

ArcSine 68 606 
Not 

2.04 36.4 
Not 

Avail. Avail. 

ArcCosine 68 650 
Not 

2.04 39.0 
Not 

Avail. Avail. 

ArcTangent 104 428 
314 to 

3.12 25.7 
1 B.8 to 

487 29.2 

Exponentiation 52 522 
Not 

1.56 31.3 
Not 

Avail. Avail. 

tFor MC68881 cycle count refer to 'MC68881 Floating Point Coprocessor User's Manual', Document No. 
MC68881UM/AD, Page 6-13. For 80387 cycle count refer to '80387 Programmer's Reference Manual', 
Document No. 231917-001, Page E-36. 

;, ACT8847 cycle speed is 30 ns, 33 MHz 
MC68881 cycle speed is 60 ns, 16.6 MHz 
80387 cycle speed is 40 ns, 25 MHz 

Overview of Chebyshev's Expansion Method 

If fIx) is continuous and of bounded variation over the interval - 1 :s X :s 1, then 
fIx) may be approximated by the following equation: 

00 E arTr(x) 
r=O 
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Note that the range for x is between - 1 and 1. For most functions, this restriction 
requires that the input, x, be range reduced before the calculation begins. Range 
reducing an argument means to scale the argument down to a certain range. In the 
case of Chebyshev approximations, the range is usually - 1 :s X :s 1, or 0 :s X :s 1. 

In the equation for fIx) above, the constants represented by an are known as Chebyshev 
coefficients. The variables represented by T r are known as Chebyshev polynomials 
and can be derived from the following relationship and values: 

Tr +1(x) - 2xTdx) + Tr -1(x) = 0, 
TO(x) = 1, 
T1 (x) = x 

To illustrate Chebyshev's expansion method, the procedure to approximate function 
fIx) using the first seven polynomials is now covered. Let 

fIx) = 1/2aO + 
a1T1 (x) + 
a2T2(x) + 
a3T3(x) + 
a4T4(x) + 
a5T5(x) + 
a6T6(x) 

Substituting in the expressions for the polynomials, 

fIx) = 1/2aO + 
a1(x) + 
a2(2x2 -1) + 
a3(4x3 - 3x) + 
a4(8x4 -8x2 + 1) + 
a5( 16x5 - 20x3 + 5x) + 
a6(32x6 - 48x4 + 18x2 - 1 ) 

Rearranging the expression, by grouping powers of x, 

fIx) = xO(1/2aO - a2 + a4 - a6) + 
en x1(a1 - 3a3 + 5a5) + :5 x2(2a2 - 8a4 + 18a6) + 
.&:lo x3(4a3 - 20a5) + 
l> x4(8a4 - 48a6) + 
~ x5(16a5) + 
ex> x6(32a6) 
ex> 
.&:lo 
.....J 
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Next make the following substitutions: 

Let cO = 1/2aO - a2 + a4 - a6 
cl = al - 3a3 + 5a5 
c2 = 2a2 - 8a4 + l8a6 
c3 = 4a3 - 20a5 
c4 = 8a4 - 48a6 
c5 = l6a5 
c6 = 32a6 

Substituting the c's into the last equation for fIx), 

fIx) = CoxO + cl xl + C2x2 + C3x3 + 
C4x4 + C5x5 + C6x6 

Applying Horner's Rule yields, 

fIx) = (((((C6X + C5)X + C4)X + 
C3)X + C2)X + Cl)X + cO 

In the remainder of the paper, the above equation will be referred to as Cseries' 
Therefore, 

Cseries_f(x) = (((((c6x + c5)x + C4)X + 
c3)x + C2)x + Cl)X + cO 

The last step prior to approximating fIx) is to calculate the c's by substituting the values 
for the Chebyshev coefficients into the equations for cO through C6. 

Format for the Remainder of the Application Note 

Each of the seven functions will be covered in a separate section. Each section will 
include the following information: 

1. General steps required to perform the calculation including a description of 
any preprocessing and/or postprocessing 

2. An algorithm for each of the above steps 
3. What system intervention, if any, is required; this intervention may take the 

form of branching based on comparision status generated by the' ACT884 7, ,.... 
or storing and then later retrieving intermediate results ~ 

4. The number of ' ACT884 7 cycles required to calculate fIx) ~ 
5. A listing of the c's I-
6. Pseudocode table showing how the calculation is accomplished. The U 

pseudocode tables list the contents of all the rei event ' ACT884 7 registers ~ 
and buses for each instruction. ,.... 

7. Microcode table listing the instructions 
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Cosine Routine Using Chebyshev's Method 

All floating point inputs and outputs are double precision. The input is in radians. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; range-reduce the input, X, to a range of [-1,1]. Next 
square this range-reduced value, multiply it by 2.0, and finally subtract 
1.0. X3 is the range-reduced input value, it must be stored externally. 
'TRUNC' means to truncate. 

X1 ~ X*(2.0/pi) 
X2 ~ (4(TRUNC(0.25(X1 + 2.0)))) - X1 + 1.0 
If X2 > 1.0 

Then X3 ~ 2.0 - X2 
Else X3 ~ X2 

X4 ~ 2.0*(X3*X3) - 1.0 

STEP 2 - Core Calculation; X4 in Step 1 will be referred to as 'x' in the core 
calculation. 

X5 ~ Cseries cos 
~ (((((((C8~X + C7)*X + cs)*x + C5)*x + 

C4)*X + c3)*x + C2)*X + C1)*X + cO 

STEP 3 - Postprocessing; multiply the output of the core calculation times X3. 

Cosine(X) ~ X5*X3 



Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

T1 +-X*(2.0/pi) 
T2 +-T1 + 2.0 
T3 +-0.25*T2 and 
T4 +-1.0 - CREG 
T5 +-INT(T3) 
T6 +-4*T5 
T7 +-DOUBLE(T6) 
T8 +-T7 + CREG 
CMP (1.0,T8) 
If (1.0 > T8) 

Then T9 +- 2.0 - CREG 
Else T9 +- CREG 

T10 +-CREG*CREG 
T11 +-T10 *2.0 
T12+-T11 - 1.0 

Step 2 perform the core calculation: 

T13 +-c8*CREG 
T14+-T13 + c7 
T15 +-T14*CREG 
T16 +-T15 + c6 
T17 +-T16*CREG 
T18+-T17 + c5 
T19 +-T18*CREG 
T20 +-T19 + c4 
T21 +-T20*CREG 
T22 +-T21 + c3 
T23 +-T22*CREG 
T24 -T23 + c2 
T25 +-T24*CREG 
T26 -T25 + c1 
T27 -T26*CREG 
T28 +-T27 + cO 

Step 3 perform the postprocessing: 

Cosine(X) +- T28*T9 

2.0/pi entered as a constant 

CREG - T1, T3 and T4 result 
from a chained instruction 
round controls set to truncate 
CREG - T4 
convert from integer to double 

CREG +- T8 
T9 is X3 in Step 1, must 
be stored externally 
CREG -+ T9 

T12 is X4 in Step 1, the 
input to the core routine 

CREG +- T12 
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Required System Intervention 

As seen in the algorithm for Step 1, the' ACT884 7 performs a compare. The results 
of this compare determine which one of two calculations is to be performed. The 
system, in which the' ACT884 7 is a part. must make the decision as to which of the 
two calculations is to be performed. In addition, the system must store X3 and then 
later furnish X3 as an input to the 'ACT884 7. 

Number of ' ACT884 7 Cycles Required to Calculate Cosine(x) 

Calculation of Cosine{x) requires 46 cycles. In addition, it is assumed that five additional 
cycles are required due to the compare instruction, and resulting system intervention. 
Therefore. the total number of cycles to perform the Cosine{x) calculation is 51. 

Listing of the Chebyshev Constants (c's) 

The constants are represented in IEEE double-precision floating point format. 

7-168 

c8 = 3D19D46B7D4C8F32 
c7 = BD962909C5C01 ED6 
c6 = 3EOD53517735F927 
c5 = BE7CC930FDOADA9D 
c4 = 3EE3EOAF61F7677F 
c3 = BF41E5FDEF25C403 
c2 = 3F92A9FB40C119ED 
c1 = BFD23B03366AAOC9 
cO = 3FF4464BCC8CBA 1 F 



';'I 
-' 
0) 
(0 

Pseudocode Table for the Cosine(x) Calculation 

Table 56. Pseudocode for Chebyshev Cosine Routine (PIPES2-0 = 010, RND1-0 =00) 

ClK DA DB RA RB ClK 
INSTR 

MUl ALU P C S V 
COMMENT 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 

1 X M5H X l5H 0 RA2.RB2 X is the input 

2DIVPI 2DIVPI 2DIVPI is a constant 
2 

M5H l5H 
X 2DIVPI 0 RA2.RB2 

representing 2.0/pi 

Preload RA with 1.0 for 
3 1.0 M5H 1.0 l5H X 2DIVPI 0 PR4+RB4 RA2.RB2 

use in cycles 5 and 11 

4 2.0 M5H 2.0 l5H 1.0 2.0 0 PR4+RB4 Pl 

5R5.RB5 
5 0.25 M5H 0.25 l5H 1.0 0.25 1 RA5-CR5 

Pl 51 

6 1.0 0.25 0 DP2I(PR7) 5R5.RB5 RA5-CR5 Double precision - integer 

7 1.0 0.25 0 DP2I(PR7) P2 52 Cycles 6,7 set RND1, 0 = 01 

8 4 1.0 4 0 5R8.RB8 52 53 

9 1.0 4 1 12DP(PR9) P3 Integer - double-precision 

10 1.0 4 1 CR10+5Rl0 54 

COMPARE If 5Rll > RAll then 13a 
11 1.0 4 1 

RA11,5Rll 
55 If 5Rll s RA 11 then 13b 

12 1.0 4 0 NOP 55 Wait for system response 

13a 2.0 M5H 2.0 l5H 1.0 2.0 1 RB13-CR13 Execute 1 3a or 13b 

13b 1.0 4 1 PA5(CR13) Pass contents of CREG 

56 is either RB13-CR13 or 

14 1.0 
2.0 

1 CR14.CR14 56 56 
CR13 from PA55 CR13, and 

or 4 must be stored externally 

for use in cycle 43 

2.0 Output 56 in cycles 14 and 
15 2.0 M5H 2.0 l5H 1.0 or 4 0 RA16.PR16 CR14.CR14 56 56 15 

2.0 
16 2.0 or 4 0 RA16.PR16 P4 
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26 

27 

28 
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31 

32 

33 

34 

35 

36 

L1788.l:l"17LNS 
Table 56. Pseudocode for Chebyshev Cosine Routine (PIPES2-0 .. 010. RND1-0 .. 00) (Continued) 

DA DB RA RB CLK INSTR MUL ALU P C S V COMMENT BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS ! 

2.0 
2.0 

or 4 0 PR18+RB18 RA16.PR16 

-1.0 MSH -1.0 LSH 2.0 -1.0 0 PR18+RB18 P5 

c8 MSH c8 LSH 2.0 c8 1 SR19.RB19 S7 Start core calculation 

2.0 c8 0 PR21 +RB21 SR19.RB19 S7 S7 is input to core calc. 

c7 MSH c7 LSH 2.0 c7 0 PR21 +RB21 P6 

2.0 c7 1 SR22.CR22 S8 

2.0 c7 0 PR24+RB24 SR22.CR22 

c6 MSH c6 LSH 2.0 c6 0 PR24+ RB24 P7 

2.0 c6 1 SR25.CR25 S9 

2.0 c6 0 PR27+RB27 SR25.CR25 

c5 MSH c5 LSH 2.0 c5 0 PR27+RB27 P8 

2.0 c5 1 SR28.CR28 S10 

2.0 c5 0 PR30+RB30 SR28.CR28 

c4 MSH c4 LSH 2.0 c4 0 PR30+ RB30 P9 
, 

2.0 c4 1 SR31.CR31 S11 

2.0 c4 0 PR33+RB33 SR31.CR31 

c3 MSH c3 LSH 2.0 c3 0 PR33+RB33 Pl0 

2.0 c3 1 SR34.CR34 S12 
I 

2.0 c3 0 PR36+RB36 SR34.CR34 I 

c2 MSH c2 LSH 2.0 c2 0 PR36+RB36 Pll ----~ _._-- - -----



Table 56. Pseudocode for Chebyshev Cosine Routine (PIPES2-0 .. 010. RND1-0 == 001 (Concluded I 

ClK DA DB RA RB ClK MUl ALU P C S Y 
BUS BUS REG REG MODE 

INSTR 
PIPE PIPE REG REG REG BUS 

COMMENT 

37 2.0 c2 1 5R37.CR37 513 

38 2.0 c2 0 PR39+RB39 5R37.CR37 

39 c1 M5H c1 l5H 2.0 c1 0 PR39+RB39 P12 

40 2.0 c1 1 5R40.CR40 514 

41 2.0 c1 0 PR42+RB42 5R40.CR40 

42 co M5H co l5H 2.0 co 0 PR42+RB42 P13 

43 56 M5H 56 l5H 2.0 56 1 5R43.RB43 515 Begin postprocessing 

Instruction is double· 

44 2.0 56 0 DUMMY 5R43.RB43 
precision RA + RB, allows 

time for answer to 

propagate to the Y bus 

45 2.0 56 0 NOP P14 P14 Output MSH of answer 

46 2.0 56 0 NOP P14 P14 Output L5H of answer 

~ 
-..I 
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LV88.L::l'VvLNS -';'I Microcode Table for the Cosine(x) Calculation .... 
-...J 
N All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 

table, the value of X has been chosen to be 1/2 pi. 

P D D PEE C P C C s R H E F R F S B S T S 555 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST V 

SOl P T C R P T 
D G 

F 3FF921FB 54442D18 F 00_ 2 o 3 FF o 1CO o 0 0 0 3 3 000 
F 3FE45F30 6DC9C883 F 1 1 _ 2 o 3 FF o 1CO o 0 0 0 3 3 000 
F 3FFOOOOO 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 40000000 00000000 F 1 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FDOOOOO 00000000 F 0 1 J 2 1 3 BD o 0 581 00103 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 1A3 00033 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 1A3 1 000 3 3 000 
F 00000000 00000004 F 0 1 S 2 o 1 BF o 0 240 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 3 FB o 1A2 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 1 3 F6 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FE 1 o 182 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 S 2 o 3 FF o 0 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 3 F7 1 o 1AO o 0 0 033 000 
F 00000000 00000000 F 00_ 2 1 3 5F 1 o 1CO o 0 0 0 3 3 000 
F 40000000 00000000 F 0 0 S 2 o 3 EF o 0 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 1 0 _ 2 o 3 EF 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F BFFOOOOO 00000000 F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3D19D46B 7D4C8F32 F 0 1 _ 2 1 3 BF 1 o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 S 2 o 3 FB 1 0 0 180 o 0 0 0 3 3 000 
F BD962909 C5C01 ED6 F 0 1 _ 2 o 3 FB 1 1 1 o 180 00003 3 000 



Microcode Table for the Cosine(x) Calculation (Continued) 

p D D PEE C P C C s R H E F I R F S B S T S a a a 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3EOD5351 7735F927 F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F BE7CC930 FDOADA9D F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3EE3EOAF 61F7677F F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F BF41E5FD EF25C403 F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3F92A9FB 40C119ED F 0 1 _ 2 0 3 FB o 180 00003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BFD23B03 366AAOC9 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 1 000 
F 3FF4464B CC8CBA 1 F F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 1 _ 2 1 3 BF o 1CO o 0 0 0 3 3 000 

';'I F 00000000 00000000 F 0 0 _ 2 0 -3 FF o 180 o 0 0 0 3 3 000 ~ 

-.J F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 1 000 w 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 0 0 0 0 
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Sine Routine Using Chebyshev's Method 

All floating point inputs and outputs are double precision. The input is in radians. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; range reduce the input, X, to a range of [ -1,1 J. Next 
square this range-reduced value, multiply it by 2.0, and finally subtract 
1.0. X3 is the range-reduced input value, it must be stored externally. 
'TRUNC' means to truncate. 

X1 - X*(2.0/pi) 
X2 - X1 - (4(TRUNC(0.25(X1 + 1.0)))) 
If X2 > 1.0 

Then X3 - 2.0 - X2 
Else X3 - X2 

X4 - 2.0*(X3*X3) - 1.0 

STEP 2 - Core calculation; X4 in Step 1 will be referred to as 'x' in the core 
calculation. 

X5 - Cseries_sin 

- (((((((C8**x + C7)*X + C6)*X + C5)*x + 
C4)*X + c3)*x + C2)*X + c1 )*x + cO 

STEP 3 - Postprocessing; multiply the output of the core calculation times X3. 

Sine(X) - X5*X3 

Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

7-174 

T1 -X*(2.0/pi) 
T2 -T1 + 1.0 
T3 -0.25*T2 
T4 -INT(T3) 
T5 -4*T4 
T6 -DOUBLE(T5) 
T7 -CREG - T6 
CMP (1.0,T7) 
If (1.0 > T7) 

Then T8 - 2.0 - CREG 
Else T8 - CREG 

T9 .... CREG*CREG 
T10 .... T9 *2.0 
T11 -T10 - 1.0 

2.0/pi entered as a constant 

CREG .... T1 
round controls set to truncate 

convert from integer to double 

compare 1.0 to T7 
CREG - T7 
T8 is X3 in Step 1, must 
be stored externally 
CREG .... T8 

T11 is X4 in Step 1 above, the input to 
the core routine 
T11 = 'x' from Step 2 above 



Step 2 perform the core calculation: 

T12 +-c8*CREG 
T13+-T12 + c7 
T14 +-T13*CREG 
T15+-T14 + c6 
T16 +-T15*CREG 
T17+-T16+C5 
T18 +-T17 *CREG 
T19 +-T18 + c4 
T20 +-T19*CREG 
T21 +-T20 + c3 
T22 +-T21 *CREG 
T23 +-T22 + c2 
T24 +-T23*CREG 
T25 +-T24 + c1 
T26 +-T25*CREG 
T27 +-T26 +- cO 

Step 3 perform the postprocessing: 

Sine(X) +- T27*T8 

Required System Intervention 

CREG +- T11 

As seen in the algorithm for Step 1, the' ACT884 7 performs a compare. The results 
of this compare determine which one of two calculations is to be performed. The 
system, in which the 'ACT884 7 is a part, must make the decision between which 
two calculations are to be performed. In addition, the system must store X3 and then 
later furnish X3 as an input to the' ACT884 7. 

Number of ' ACT8847 Cycles Required to Calculate Sine(x) 

Calculation of Sine(x) requires 46 cycles. In addition, it is assumed that five additional 
cycles are required due to the compare instruction and resulting system intervention. 
Therefore, the total number of cycles to perform the Sine(x) calculation is 51. 

Listing of the Chebyshev Constants (c's) 

The constants are represented in IEEE double-precision floating point format. 

c8 = 3D19D46B7D4C8F32 
C7 = BD962909C5C01 ED6 
c6 = 3EOD53517735F927 
c5 = BE7CC930FDOADA9D 
c4 = 3EE3EOAF61F7677F 
c3 = BF41E5FDEF25C403 
c2 = 3F92A9FB40Cl19ED 
c1 = BFD23B03366AAOC9 
cO = 3FF4464BCC8CBA 1 F 
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L1788.l:l'd17LNS -~ Pseudocode Table for the Sine(x) Calculation 
-.J 
(]) 

Table 57. Pseudocode for Chebyshev Sine Routine (PIPES2-0 ... 010, RND1-0 - 00) 

ClK DA DB RA RB ClK 
INSTR 

MUl ALU P C S Y 
COMMENT 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 

1 X MSH X lSH 0 RA2.RB2 X is the input i 

2DIVPI 2DIVPI X 2DIVPI 0 RA2.RB2 2DIVPI is a constant 
2 

MSH lSH representing 2.0/pi i 

3 X 2DIVPI 0 PR4+RB4 RA2.RB2 

4 1.0 MSH 1.0 lSH X 1.0 0 PR4+RB4 P1 

5 0.25 MSH 0.25 lSH X 0.25 1 SR5.RB5 P1 S1 ! 

6 1.0 MSH 1.0 lSH X 0.25 0 DP2I(PR7) SR5.RB5 Double precision -+ integer 

7 1.0 0.25 0 DP2I(PR7) P2 Cycles 6,7 set RND1,O = 01 I 

8 4 1.0 4 0 SR8.RB8 S2 

9 1.0 4 1 12DP(PR9) P3 Integer -+ double precision 
• 

10 1.0 4 1 CR10-SR10 S3 I 
I 

11 1.0 4 
COMPARE 

1 
RA11,SR11 

If SR11 -+ RA 11 then 13a 
S4 

If SR11 :s RA11 then 13b I 

12 1.0 4 0 NOP S4 Wait for system response 

13a 2.0 MSH 2.0 lSH 1.0 2.0 1 RB13-CR13 Execute 13a or 1 3b . 

13b - 1.0 4 1 PAS(CR13) Pass contents of CREG 

S5 is either RB13-CR13 or 

1.0 
2.0 

1 CR14.CR14 S5 S5 
CR13 from PASS CR13, and 

14 
or 4 must be stored externally 

for use in cycle 43 

2.0 lSH 1.0 
2.0 

0 RA16.PR16 CR14.CR14 S5 S5 
Output S5 in cycles 14 and 

15 2.0 MSH 
or 4 15 

16 2.0 
2.0 

or 4 
0 RA16.PR16 

P4 

17 2.0 
2.0 

or 4 
0 PR18+RB18 RA16.PR16 

18 -1.0 MSH -1.0 lSH 2.0 -1.0 0 PR18+RB18 P5 



Table 57. Pseudocode for Chebyshev Sine Routine (PIPES2-0 010, RND1-0 00) (Continued) 

CLK DA DB RA RB CLK 
INSTR 

MUL ALU P C S y 

BUS BUS REG REG MODE PIPE REG REG REG BUS 
COMMENT 

PIPE 
19 c8 MSH c8 LSH 2.0 c8 1 SR19.RB19 S6 Start core calculation 

20 2.0 c8 0 PR21 +RB21 SR19.RB19 S6 S7 is input to core calc. 

21 c7 MSH c7 LSH 2.0 c7 0 PR21 +RB21 P6 

22 2.0 C7 1 SR22.CR22 S7 

23 2.0 c7 0 PR24+RB24 SR22.CR22 

24 c6 MSH c6 L5H 2.0 c6 0 PR24+RB24 P7 

25 2.0 c6 1 5R25.CR25 S8 

26 2.0 c6 0 PR27+RB27 5R25.CR25 

27 c5 M5H c5 L5H 2.0 c5 0 PR27+RB27 P8 

28 2.0 c5 1 SR28.CR28 59 

29 2.0 c5 0 PR30+RB30 5R28.CR28 

30 c4 MSH c4 L5H 2.0 c4 0 PR30+RB30 P9 

31 2.0 c4 1 SR31.CR31 510 

32 2.0 c4 0 PR33+RB33 5R31.CR31 

33 c3 MSH c3 L5H 2.0 c3 0 PR33+RB33 P10 

34 2.0 c3 1 5R34.CR34 511 

35 2.0 c3 0 PR36+RB36 5R34·CR34 

36 c2 M5H c2 L5H 2.0 c2 0 PR36+RB36 P11 

37 2.0 c2 1 5R37.CR37 S12 

38 2.0 c2 0 PR39+RB39 SR37.CR37 

39 c1 M5H c1 L5H 2.0 c1 0 PR39+RB39 P12 

40 2.0 c, 1 5R40.CR40 513 

~ 
-.J 
-.J 

SN74ACT8847 



';'l 
-.J 
co ClK 

41 

42 

43 

44 

45 

46 

L t7BB.i::n1t7LNS 
Table 57. Pseudocode for Chebyshev Sine Routine (PIPES2-0 

DA DB RA RB ClK MUl AlU 
INSTR 

BUS BUS REG REG MODE PIPE PIPE 
2.0 c1 0 PR42+RB42 SR40.CR40 

Co MSH co LSH 2.0 cO 0 PR42+RB42 

S5 MSH S5 LSH 2.0 S5 1 SR43.RB43 

2.0 S5 0 DUMMY SR43.RB43 

2.0 S5 0 NOP 

2.0 S5 0 NOP 

010, RND1-0 00) (Concluded) 

P C S y 
COMMENT 

REG REG REG BUS 

P13 

S14 Begin postprocessing 

Instruction is double-

precision RA + RB, allows 

time for answer to 

propagate to the Y bus 

P14 P14 Output MSH of answer 

P14 P14 Output LSH of answer 



Microcode Table for the Sine(x) Calculation 

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 
table, the value of X has been chosen to be 1/2 pi. 

p 0 0 PEE C P C C s R H E F I R F S B S T S 555 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S o S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
o G 

F 3FF921FB 54442018 F 0 0 _ 2 0 3 FF o 1CO o 0 0 0 3 3 000 
F 3FE45F30 60C9C883 F 1 1 _ 2 0 3 FF o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FFOOOOO 00000000 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FOOOOOO 00000000 F01.r2 1 3 BF o 0 1CO 001 033 000 
F 3FFOOOOO 00000000 F 0 0 _ 2 0 3 FB o 1A3 1 000 3 3 000 
F 00000000 00000000 F 1 0 _ 2 0 3 FB o 1A3 1 000 3 3 000 
F 00000000 00000004 F01_201 BF 1 o 240 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FB 1 o 1A2 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 F6 1 o 181 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FE 1 o 182 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 o.r 2 0 3 FF o 0 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 F7 1 o 1AO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 5F 1 o 1CO o 0 0 0 3 3 000 
F 40000000 00000000 FOO.I2 o 3 EF o 0 1CO o 000 3 3 000 
F 00000000 00000000 F 1 0 _ 2 0 3 EF 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BFFOOOOO 00000000 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3D 19046B 704C8F32 F 0 1 _ 2 1 3 BF 1 o 1CO 000 0 3 3 000 

~ F 00000000 00000000 F 0 0 I 2 0 3 FB o 0 180 o 0 0 0 3 3 000 
~ 

F B0962909 C5C01 E06 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 -..J 
co 
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LV88.1:lVvLNS -
;J Microcode Table for the Sine(x) Calculation (Continued) 
~ 

00 
R H E R F S B S T S 555 0 p ,0 0 PEE C P C C S F I 

A A B B N N L I L 0 E E A N L N N A RYE E E E E E 
A B K P K N L S L C 0 S o S C T L SLY S C 

C EMF 0 E T W T T C EST Y 
SOl P T C R P T 

o G 

F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 3E005351 7735F927 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F BE7CC930 FDOADA90 F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3EE3EOAF 61F7677F F 0 1 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 000 
F BF41E5FO EF25C403 F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 3F92A9FB 40C119EO F 0 1 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 003 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 1 000 
F BF023B03 366AAOC9 F 0 1 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 1 o 180 o 0 0 0 3 3 1 000 
F 3FF4464B CC8CBA 1 F F 0 1 _ 2 0 3 FB 1 1 o 180 o 0 003 3 1 000 
F 3FFOOOOO 00000000 F 0 1 _ 2 1 3 BF 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 1 o 300 o 0 0 0 3 300 0 0 



Tangent Routine Using Chebyshev's Method 
All floating point inputs and outputs are double precision. The input is in radians. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; range reduce the input, X, to a range of [- 1,11. Next 
square this range-reduced value, multiply it by 2.0, and finally subtract 
1.0. X3 is the range-reduced input value, it must be stored externally. 
'TRUNC' means to truncate. If X2 > 1 .0, then in the postprocessing 
part of the routine, the answer is the reciprocal of X5*X3. 

X1 +- X*(4.0/pi) 
X2 +- X1 - (4(TRUNC(0.25(X1 + 1.0)))) 
If X2 > 1.0 

Then X3 +- 2.0 - X2 
Else X3 +- X2 

X4 +- 2.0*(X3*X3) - 1.0 

STEP 2 - Core Calculation; X4 in Step 1 will be referred to as 'x' in the core 
calculation. 

+- (((((((((((((C14)*X + C13)*X + C12)*X + C11)*X + ClO)*x + 
cS)*x + cS)*x + C7)*X + c6)*x + c5)*x + C4)*x + C3)*x + 
C2)*X + c1 )*x + cO 

STEP 3 - Postprocessing; multiply the output of the core calculation times 
X3. If X2 > 1.0, then the reciprocal of X5*X3 is the answer, if 
X2 :5 1.0 then X5*X3 is the answer. 

Tangent(X) +- X5*X3 (or reciprocal of X5*X3) 

Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

T1 +-X*(4.0/pi) 4.0/pi entered as a constant 
T2 +-T1 + 1.0 
T3 +-0.25*T2 CREG +- T1 
T4 +-INT(T3) round controls set to truncate 
T5 +-4*T4 
T6 +-DOUBLE(T5) convert from integer to double 
T7 +-CREG +- T6 
CMP (1.0,T7) 
If (1.0 > T7) CREG +- T7 

Then TS +- 2.0 - CREG TS is X3 in Step 1, must 
Else TS +- CREG be stored externally 
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T9 -CREG*CREG 
T10 -T9*2.0 
T11-T10 - 1.0 

Step 2 perform the core calculation: 

T12 -c14 *CREG 
T13-T12 + c13 
T14-T13*CREG 
T15-T14 + c12 
T16-T15*CREG 
T17-T16 + c11 
T18 -T17*CREG 
T19-T18 + c10 
T20 -T19*CREG 
T21 -T20 + c9 
T22 -T21 *CREG 
T23-T22 + c8 
T24 -T23*CREG 
T25-T24 + C7 
T26 -T25*CREG 
T27 -T26 + c6 
T28 -T27*CREG 
T29 -T28· + c5 
T30 -T29*CREG 
T31 -T30 + c4 
T32 -T31 *CREG 
T33-T32 + c3 
T34 -T33*CREG 
T35-T34 + c2 
T36 -T35*CREG 
T37 -T36 + c1 
T38 -T37*CREG 
T39-T38 + cO 

Step 3 perform the postprocessing: 

7-182 

T40-T39*T8 
If X2 (in Step 1) > 1.0 

Then Tangent(X) - 1.0/T40 
Else Tangent(X) - T40 

CREG - T8 

T11 is X4 in Step 1, the 
input to the core routine 

CREG - T11 



Required System Intervention 

As seen in the algorithm for Step 1, the' ACT884 7 performs a compare. The results 
of this compare determine which one of two calculations is to be performed. The 
system, in which the' ACT884 7 is a part, must make the decision as to which of the 
two calculations is to be performed. In addition, the system must store X3 and then 
later furnish X3 as an input to the' ACT884 7. Finally, the system will have to determine 
if it is necessary to take the reciprocal of the final product (T40 in the Algorithm for 
Step 3) to yield the answer. If it is necessary to take the reciprocal, then the system 
will be required to direct the variable T 40 from the' ACT884 7' s output bus to the input 
buses. This is because operands for division instructions must be provided by the RA 
and RB registers; feedback is not an option. 

Number of ' ACT8847 Cycles Required to Calculate Tangent(x) 

Calculation of Tangent(x) requires 79 cycles. In addition, it is assumed that five 
additional cycles are required for system intervention due to the compare instruction. 
Therefore, the total number of cycles required to perform the Tangent(x) calculation 
is 84. 

listing of the Chebyshev Constants (c's) 

The constants are represented in IEEE double-precision floating point format. 

c14 = 3D747D842210CC35 
c13 = 3DA 1 D66636043991 
c 12 = 3DCCD078F52B3A 73 
c11 = 3DF938F9CDDFF864 
c10 = 3E2620430E99B5B7 

c9 = 3E535C2C953CE515 
c8 = 3E80F07AFC099D7F 
C7 = 3EADA4D789EB45C4 
c6 = 3ED9F03D4C51A771 
c5 = 3F06B236DE4D014C 
c4 = 3F33DBFB01B3F415 
c3 = 3F6160DE701 F3A53 
c2 = 3F8E70A18736FC10 
c1 = 3FBAEA2653199611 
cO = 3FEC14B2675B10BA 
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Lv881~.HfvLNS -~ Psuedocode Table for the Tangent{x) Calculation 
00 

"'" Table 58. Pseudocode for Chebyshev Tangent Routine (PIPES2-0 

CLK DA DB RA RB CLK MUL ALU P C 

BUS REG REG MODE 
INSTR 

PIPE PIPE REG REG BUS 
1 X MSH X LSH 0 RA2.RB2 

4DIVPI 4DIVPI 4DIV 
2 

MSH LSH 
X PI 0 RA2.RB2 

3 X 4DIVPI 0 PR4+RB4 RA2.RB2 

4 1.0 MSH 1.0 LSH X 1.0 0 PR4+RB4 P1 

5 0.25 MSH 0.25 LSH X 0.25 1 SR5*RB5 P1 

6 1.0 MSH 1.0 LSH X 0.25 0 DP2I(PR7) SR5·RB5 

7 1.0 0.25 0 DP21(PR7) P2 

8 4 1.0 4 0 SR8.RB8 

9 1.0 4 1 12DP(PR9) P3 

10 1.0 4 1 CR10-SR10 

11 1.0 4 1 
COMPARE 

RA11,SR11 

12 1.0 4 0 NOP S4 

13a 2.0 MSH 2.0 LSH 1.0 2.0 1 RB13-CR13 

13b 1.0 4 1 PAS(CR13) 

2.0 
14 1.0 

or 4 
1 CR14.CR14 

15 2.0 MSH 2.0 LSH 1.0 
2.0 

or 4 
0 RA16·PR16 CR14·CR14 S5 

16 2.0 
2.0 

or 4 
0 RA16.PR16 P4 

17 2.0 
2.0 

or 4 
0 PR18 + RB18 RA16·PR16 

18 -1.0 MSH -1.0 LSH 2.0 -1.0 0 PR18 + RB18 P5 

010, RND1-0 = 0) 

S y 

REG BUS 
COMMENT 

X is the input 

4DIVPI is a constant 

representing 4.0/pi 

S1 

Double precision ~ integer 

Cycles 6,7 set RND1,0 = 01 

S2 

Integer ~ double precision 

S3 

S4 
If SR 11 > RA 11 then 1 3a 

If SR 11 ,,; RA 11 then 13b 

Wait for system response 

Execute 1 3a or 1 3b 

Pass contents of Creg 

S5 is either RB13-CR13 or 

S5 S5 
CR13 from PASS CR13, and 

must be stored externally 

for use in cycle 61 

S5 
Output S5 in cycles 14 and 

15 



";'l 
IX) 
U1 

CLK 

19 

20 

21 

22 

23 

24 

25 

26 

27 

2S 

29 

30 

31 

32 

33 

34 

35 

36 

37 

3S 

39 

40 

41 

42 

Table 58. Pseudocode for Chebyshev Tangent Routine (PIPES2-0 ... 010. RND1-0 0) (Continued) 

DA DB RA RB CLK 
INSTR 

MUL ALU P C S y 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 
COMMENT 

c14 MSH c14 LSH 2.0 c14 1 SR19.RB19 S6 Start core calculation 

2.0 c14 0 PR21 +RB21 SR19.RB19 S6 S7 is input to core calc. 

c13 MSH c13 LSH 2.0 c13 0 PR21 + RB21 P6 

2.0 c13 1 SR22.CR22 S7 

2.0 c13 0 PR24+RB24 SR22.CR22 

c12 MSH c12 LSH 2.0 c12 0 PR24+RB24 P7 

2.0 c12 1 SR25.CR25 SB 

2.0 c12 0 PR27+RB27 SR25.CR25 

cll MSH cl1 LSH 2.0 c" 0 PR27+RB27 PS 

2.0 cll 1 SR2S.CR2S S9 

2.0 cll 0 PR30+RB30 SR2S.CR2S 

clO MSH clO LSH 2.0 cl0 0 PR30+RB30 P9 

2.0 clO 1 SR31.CR31 S10 

2.0 clO 0 PR33+RB33 SR31.CR31 

c9 MSH c9 LSH 2.0 c9 0 PR33+RB33 Pl0 

2.0 c9 1 SR34.CR34 Sll 

2.0 c9 0 PR36+RB36 SR34.CR34 

cs MSH Cs LSH 2.0 Cs 0 PR36+RB36 Pll I 

2.0 cs 1 SR37.CR37 S12 

2.0 Cs 0 PR39+RB39 SR37·CR37 

c7 MSH c7 LSH 2.0 c7 0 PR39+RB39 P12 

2.0 c7 1 SR40.CR40 S13 

2.0 c7 0 PR42+RB42 SR40.CR40 

c6 MSH c6 LSH 2.0 c6 0 PR42+RB42 P13 , 
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00 
Ol CLK 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

Lv88.l:>"vLNS 
Table 58. Pseudocode for Chebyshev Tangent Routine (PIPES2-0 

DA DB RA RB CLK 
INSTR 

MUL ALU 
BUS BUS REG REG MODE PIPE PIPE 

2.0 c6 1 5R43.CR43 

2.0 c6 0 PR45+ RB45 5R43.CR43 

c5 M5H c5 L5H 2.0 c5 0 PR45+ RB45 

2.0 c5 1 5R46.CR46 

2.0 c5 0 PR48+RB48 5R46.CR46 

c4 M5H c4 L5H 2.0 c4 0 PR48+ RB48 

2.0 c4 1 5R49.CR49 

2.0 c4 0 PR51 +RB51 5R49.CR49 

c3 M5H c3 L5H 2.0 c3 0 PR51 +RB51 

2.0 c3 1 5R52.CR52 

2.0 c3 0 PR54+RB54 5R52.CR52 

c2 M5H c2 L5H 2.0 c2 0 PR54+RB54 

2.0 c2 1 5R55.CR55 

2.0 c2 0 PR57+RB57 5R55.CR55 

c1 M5H c1 L5H 2.0 c1 0 PR57+RB57 

2.0 c1 1 5R58.CR58 

2.0 c1 0 PR60+RB60 5R5B.CR5B 

co M5H Co L5H 2.0 co 0 PR60+RB60 

55 M5H 55 L5H 2.0 55 1 5R61>RB61 

2.0 55 0 DUMMY 5R61.RB61 

-

010. RND1-0 0) (Concluded) 

P C S V 
COMMENT 

REG REG REG BUS 
514 

P14 

515 

P15 

516 

P16 

517 

P17 

51B 

P18 

519 

P19 

520 Begin postprocessing 

Instruction is RA + RB, used 

to allow time for result 
to propagate to Y bus 



~ ... 
CO 
-.J 

ClK 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

Table 58. Pseudocode for Chebyshev Tangent Routine (PIPES2-0 .. 010. RND1-0 

DA DB RA RB ClK MUl AlU P C S Y 

BUS BUS REG REG MODE 
INSTR 

REG REG PIPE PIPE REG BUS 

2.0 S5 0 NOP P20 P20 

1.0 M5H 1.0 l5H 2.0 55 0 DIV P20 

P20 M5H P20 L5H 1.0 P20 0 DIV 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP 

1.0 P20 0 NOP P21 P21 

1.0 P20 0 NOP P21 P21 
-----------

SN74ACT8847 

0) (Continued) 

COMMENT 

Output MSH. if cycle 13b 

was executed then P20 is 

the answer; if cycle 13a 

was executed then the 

answer is 1.0/P20. which 

is calculated next 

Output l5H 

Operands for Division must 

come from RA and RB. 

feedback is not an option 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Wait for Division result 

Output M5H of answer 

Output L5H of answer 
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';'I Microcode Table for the Tangent(x) Calculation ..... 
(10 
(10 

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 
table, the value of X has been chosen to be 1/3 pi. 

P D D .p EE C P C C s R H E F I RF S B S T S 0 0 0 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C £ M F 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 3FFOC152 382D7365 F 0 0 _ 2 0 3 FF 1 o 1CO o 0 0 0 3 3 000 
F 3FF45F30 6DC9C883 F 1 1 _ 2 0 3 FF 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FFOOOOO 00000000 F 0 1 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FDOOOOO 00000000 F 0 1 S 2 1 3 BF o 0 1CO 00103 3 000 
F 3FFOOOOO 00000000 F 0 0 _ 2 0 3 FB 1 o 1A3 1 000 3 3 000 
F 00000000 00000000 F 1 0 _ 2 0 3 FB 1 o 1A3 1 000 3 3 000 
F 00000000 00000004 F01_201 BF 1 o 240 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FB 1 o 1A2 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 F6 1 o 181 .0 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FE 1 o 182 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 J 2 0 3 FF o 0 300 o 0 0 0 3 3 000 
F 40000000 00000000 F 0 1 2 1 3 F7 1 o 183 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 5F 1 o 1CO o 0 0 0 3 3 000 
F 40000000 00000000 F 0 0 I 2 0 3 EF 1 o 0 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 1 0 _ 2 o 3 EF 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB ·1 1 o 180 o 0 0 0 3 3 000 
F BFFOOOOO 00000000 F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 03 3 000 
F 3D747D84 2210CC35 F 0 1 2 1 3 BF 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 O..f" 2 0 3 FB 1 o 0 180 o 0 0 0 3 3 000 
F 3DA1D666 36043991 F 0 1 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 1 000 



Microcode Table for the Tangent(x) CalcuJation (Continued) 

p D D PEE C P C C s R H E F I R F S B S T S 000 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S o S C T L SLY S C 
C EMF 0 E T W T ·T C EST Y 

SOl P T C R P T 
o G 

F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3DCCD078 F52B3A73 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3DF938F9 CDDFF864 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3E262043 OE99B5B7 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3E535C2C 953CE515 F 0 1 _ 2 0 3 FB 1 o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 00003 3 000 
F 3E80F07A FC099D7F F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F3EADA4D7 89EB45C4 F 0 1 _ 2 0 3 FB o 180 00003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 0000331 000 
F 3ED9F03D 4C51 A 771 F 0 1 _ 2 0 3 FB o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 

~ F 00000000 00000000 F 0 0 _ 2 0 3 FB ..... o 180 o 0 0 0 3 3 000 
co F 3F06B236 DE4D014C F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 (l) 

SN74ACT8847 



Lv88.l:lVvLNS -~ Microcode Table for the Tangent(x} Calculation (Continued) .... 
<0 
0 P 0 0 PEE C P C C s R H E F I R F S B S T S 000 

A A B B N N L I L 0 E E A N L N N A RYE EE E E E 
A B K P K N L S L C 0 S o S C T L SLY S C 

C EMF 0 E T W T T C EST Y 
SOl P T C R P T 

o G 

F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO 000 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3F330BFB 01 B3F415 F 0 1 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO 000 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 331 000 
F 3F61600E 701F3A53 F 0 1 2 0 3 FB 1 1 1 o 180 0000331 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 3F8E70A1 8736FC10 F 0 1 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 3FBAEA26 53199611 F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 3FEC14B2 675B10BA F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 000 3 3 1 000 
F 3FE55555 55555555 F 0 1 2 1 3 BF 1 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 2 0 3 FF 1 o 300 o 0 0 0 3 3 1 000 
F 3FFOOOOO 00000000 F 0 0 _ 2 0 3 FF 1 o 1EO o 0 0 0 3 300 0 0 
F 3FE279A7 45903310 F 1 1 _ 2 0 3 FF 1 o 1EO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 0300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 1 000 



Microcode Table for the Tangent(x) Calculation (Concluded) 

p D D PEE C pee s R H E F I R F S B S T S 000 
A A B B N N l I l 0 E E A N l N N A RYE E E E E E 

A B K P K N l S leo S D seT l SLY S C 
C EMF 0 E T W T TeE STY 

SOl P T C R P T 
D G 

F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 000 
FOOOOOOOO 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 0 0 0 0 

~ 
~ 

CD 
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ArcSine & ArcCosine Routine Using Chebyshev's Method 

All floating point inputs and outputs are double precision. The output is in radians. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; range reduction is not needed, because an input, X, 
outside the range of [-1,11 indicates an error. This routine requires 
that the X2 be less than or equal to 1/2. The first operation to be 
performed is to square X, then multiply it by 4.0, and finally subtract 
1.0. 

STEP 2 - Core Calculation; X1 in Step 1 will be referred to as 'x' in the core 
calculation. 

X2 ~ Cseries_asin&acos 

~ ((((((((((((((((C1S*X +C17)*x + C16)*x + 
c15*x + C14)*X + C13)*x + C12)*X + C11)*X + C10)*X + 
cg)*x + cS)*x +C7)*X + C6)*x + 05)*x + C4)*X + C3)*x + 
C2)*X + c1 )*x + cO . 

STEP 3 - Postprocessing; ml!ltiply the output of the core calculation times 
SORT(2.0), then multiply this product by X, the original input. This 
yields ArcSine(X). To calculate ArcCosine(X), the fqllowing identity 
is used: 

ArcCosine(X) = pi/2 - ArcSine(X) 

X3 ~ X2*SORT(2.0) 
ArcSine(X) +- X3*X 
ArcCosine(X) +- pi/2 - ArcSine(X) 

Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

7-192 

T1 +-X*X 
T2 ~4.0*T1 
T3 +-T2 - 1 T3 is X 1 in Step 1, the input to the core 

routine 



Step Two perform the core calculation: 

T4 -c18*CREG 
T5 -T4 + c17 
T6 -T5*CREG 
T7 -T6 + c16 
T8 -T7*CREG 
T9 -T8 + c15 
Tl0 -T9*CREG 
Tll -Tl0 + c14 
T12 -Tll *CREG 
T13-T12 + c13 
T14-T13*CREG 
T15-T14 + c12 
T16 -T15*CREG 
T17 -T16 + c11 
T18-T17*CREG 
T19-T18 + clO 
T20 -T19*CREG 
T21 -T20 + c9 
T22 -T21 *CREG 
T23-T22 + c8 
T24 -T23*CREG 
T25-T24 + c7 
T26 -T25*CREG 
T27-T26 + c6 
T28 -T27*CREG 
T29-T28 + c5 
T30 -T29*CREG 
T31 -T30 + c4 
T32 -T31 *CREG 
T33-T32 + c3 
T34 -T33*CREG 
T35-T34 + c2 
T36 -T35*CREG 
T37 -T36 + cl 
T38 -T37*CREG 
T39-T38 + cO 

CREG - T3 

Step 3 perform the postprocessing: 

T40 - X*T39 
ArcSine(X) - T40*SORT(2.0) 
ArcCosine(X) - pi/2 - ArcSine(X) 

SORT(2.0) entered as a constant 

7-193 

" ~ 00 
00 
~ 
u « 
~ 

" Z 
tJ) 



Required System Intervention 

There is no system intervention required to calculate ArcSine(X) and ArcCosine(X). 

Number of 'ACT8847 Cycles Required to Calculate ArcSine(x) and 
ArcCosine(x) 

The total number of cycles required to perform the ArcSine(x) and ArcCosine(x) 
calculation is 68. 

Listing of the Chebyshev Constants (c's) 

The constants are represented in IEEE double-precision floating point format. 

7-194 

c18 = 3DA4A49F8CCD9E73 
c17 = 3DC05DFE52AAD200 
c16 = 3DCCF3l E26F94C8D 
c15 = 3DE86CDA3C8CAEBO 
c14 = 3E0768D9F4E950EA 
c13 = 3E2383A37598FC80 
c12 = 3E403E4B2F65FODE 
cll = 3E5BAFC8245ABDF8 
clO = 3E77E3333AFF1AB4 

c9 = 3E94E3A4D4220C9C 
c8 = 3EB296DD4C084ACB 
c7 = 3EDOE9l3F5F9D496 
c6 = 3EEFA74E896F8FA8 
c5 = 3FOEC76B7832DBB6 
c4 = 3F2F978698C8B2E4 
c3 = 3F5l9B1087542073 
c2 = 3F7696895FFC05AO 
cl = 3FA375CA6l D2988C 
cO = 3FE7B20423D1D930 



i" 
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Pseudocode Table for the ArcSine(x) and ArcCosine(x) Calculation 

Table 59. Pseudocode for Chebyshev ArcSine and ArcCosine Routine (PIPES2-0 '" 010, RND1-0 00) 

ClK DA DB RA RB ClK MUl ALU P C S y 

BUS BUS REG REG MODE 
INSTR 

PIPE PIPE REG REG REG BUS 
COMMENT 

1 X MSH X LSH 0 RA2.RB2 X is the input 

2 X MSH X LSH X X 0 RA2.RB2 

3 4.0 MSH 4.0 LSH X X 0 RA4.PR4 RA2.RB2 

4 4.0 X 0 RA4.PR4 P1 

5 4.0 X 0 PR6+RB6 RA4.PR4 

6 -1.0 MSH -1.0 LSH 4.0 -1.0 0 PR6+RB6 P2 

7 c18 MSH c18 LSH 4.0 c18 1 SR7.RB7 Sl Start core calculation 

8 4.0 c18 0 PR9+RB9 SR7.RB7 Sl S 1 is input to core calc. 

9 c17 MSH c17 LSH 4.0 c17 0 PR9+RB9 P3 

10 4.0 c17 1 SR10·CR10 S2 

11 4.0 c17 0 PR12+RB12 SR10.CR10 

12 c16 MSH c16 LSH 4.0 c16 0 PR12+RB12 P4 

13 4.0 c16 1 SR13·CR13 S3 

14 4.0 c16 0 PR15+RB15 SR13.CR13 

15 c15 MSH c15 LSH 4.0 c15 0 PR15+RB15 P5 

16 4.0 c15 1 SR16.CR16 S4 

17 4.0 c15 0 PR18+RB18 SR16·CR16 

18 c14 MSH c14 LSH 4.0 c14 0 PR18+RB18 P6 

19 4.0 c14 1 SR19.CR19 S5 

20 4.0 c14 0 PR21 +RB21 SR19.CR19 

21 c13 MSH c13 LSH 4.0 c13 0 PR21 +RB21 P7 

22 4.0 c13 1 SR22.CR22 S6 

23 4.0 c13 0 PR24+RB24 SR22.CR22 

SN74ACT8847 



Lv88.L~nfvLNS 

~ Table 59. Pseudocode for Chebyshev ArcSine and ArcCosine Routine (PIPES2-0 = 010. RND1-0 == 00) (Continued) .... 
co 
0) ClK 

24 

25 

26 

27 

2S 

29 

30 

31 

32 

33 

34 

35 

36 

37 

3S 

39 

40 

41 

42 

43 

44 

45 

46 

47 

4S 

DA DB 
BUS BUS 

c12 MSH c12 lSH 

c11 MSH cll LSH 

clO MSH clO LSH 

c9 MSH c9 LSH 

Cs MSH Cs LSH 

c7 MSH c7 LSH 

c6 MSH c6 LSH 

c5 MSH c5 LSH 

c4 MSH c4 LSH 

RA RB ClK 
REG REG MODE 
4.0 c12 0 

4.0 c12 1 

4.0 cl2 0 

4.0 c11 0 

4.0 cll 1 

4.0 cll 0 

4.0 ClO 0 

4.0 ClO 1 

4.0 ClO 0 

4.0 C9 0 

4.0 c9 1 

4.0 c9 0 

4.0 cs 0 

4.0 cs 1 

4.0 cs 0 

4.0 c7 0 

4.0 c7 1 

4.0 c7 0 

4.0 c6 0 

4.0 c6 1 

4.0 c6 0 

4.0 c5 0 

4.0 c5 1 

4.0 c5 0 

4.0 c4 0 

INSTR 
MUl ALU P C S y 

COMMENT 
PIPE PIPE REG REG REG BUS 

PR24+RB24 PS 

SR25.CR25 S7 

PR27+RB27 SR25.CR25 

PR27+RB27 P9 

SR2S.CR2S SS 

PR30+RS30 SR2S.CR2S 

PR30+RS30 P1Q 

SR31·CR3'1 S9 

PR33+RB33 SR31.CR31 

PR33+RB33 Pll 

SR34.CR34 SIO 

PR36+RB36 SR34.CR34 

PR36+RB36 P12 

SR37.CR37 S11 

PR39+RS39 SR37.CR37 

PR39+RB39 P13 

SR40·CR40 S12 

PR42+RS42 SR40.CR40 

PR42+RB42 P14 

SR43.CR43 S13 

PR45+RB45 SR43.CR43 

PR45+RB45 P15 

SR46.CR46 S14 

PR4S+RB4S SR46.CR46 

PR4S+RB4S P16 



':" 
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Table 59. Pseudocode for Chebyshev ArcSine and ArcCosine Routine (PIPES2-0 - 010, RND1-0 ... 00) (Concluded) 

ClK DA DB RA RB ClK 
. INSTR MUl AlU P C S Y 

BUS BUS REG REG . MODE PIPE PIPE REG REG REG BUS 
COMMENT 

49 4.0 c4 1 SR49*CR49 S15 

50 4.0 c4 0 PR51 +RB51 SR49.CR49 

51 c3 MSH c3 lSH 4.0 c3 0 PR51 +RB51 P17 

52 4.0 c3 1 SR52.CR52 S16 

53 4.0 c3 0 PR54+RB54 SR52.CR52 

54 c2 MSH c2 LSH 4.0 c2 0 PR54+RB54 P18 

55 4.0 c2 1 SR55.CR55 S17 

56 4.0 c2 0 PR57+RB57 SR55.CR55 

57 c1 MSH c1 LSH 4.0 c1 0 PR57+RB57 P19 

58 4.0 c1 1 SR58.CR58 S18 

59 4.0 c1 0 PR60+RB60. SR58"CR58 

60 Co MSH Co LSH 4.0 cO 0 PR60+RB60 P20 

61 X MSH X LSH 4.0 X 1 SR61.RB61 S19 Begin postprocessing 

62 
SORT(2) SORT(2) 

4.0 X 0 RA63.PR63 SR61.RB61 
SORT(2) is the real value 

MSH LSH of square root of 2.0 

63 
SORT 

X 0 RA63.PR63 P21 
2 

Instruction is double-

64 
SORT 

X 0 DUMMY RA63.PR63 
precision RA + RB, prevents 

2 ArcCosine from over-

writing ArcSine result 

66 pi/2 MSH pi/2 LSH 
SORT 

pi/2 1 RB66-PR66 P22 P22 Output LSH of ArcSine 
2 

67 
SORT 

pi/2 0 
2 

NOP S20 S20 Output MSH of ArcCosine 

68 
SORT 

pi/2 0 NOP S20 S20 Output LSH of ArcCosine 
2 



L v88.l::nfv L NS --;J Microcode Table for the ArcSine(x) and ArcCosine(x)· Calculation .... 
(I) 
00 All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 

table, the value of X has been chosen to be 1/(SQRT(2.0)). 

p D D PEE C P C C S R H E F I R F S B S T S 555 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S.C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 3FE6A09E 667F3BCD F 0 0 _ 2 o 3 FF o 1CO 000 0 3 3 000 
F 3FE6A09E 667F3BCD F 1 1 _ 2 o 3 FF o 1CO o 0 0 0 3 3 000 
F 40100000 00000000 F 00_ 2 o 3 EF o 1CO o 000 3 3 000 
F 00000000 00000000 F 1 0 _ 2 o 3 EF o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 000 0 3 3 000 
F BFFOOOoo 00000000 F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3DA4A49F 8CCD9E73 F 0 1 _ 2 1 3 BF 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 FOOI2 o 3 FB o 0 180 000 0 3 3 000 
F 3DC05DFE 52AAD200 F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 180 o 0 0 0 3 3 0' 0 0 
F 3DCCF31 E 26F94C8D F 0 1 _ 2 o 3 FB 1 o 180 o 0 0 0 3 3 o 0 0 . 

F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3DE86CDA 3C8CAEBO F 0 1 _ 2 o 3 FB 1 o 180 000 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1eO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 180 000 0 3 3 000 
F 3E0768D9 F4E950EA F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 



Microcode Table for the ArcSine(x) and ArcCosine(x) Calculation (Continued) 

p D D PEE C P C C s R H E F R F S B S T SO a a 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 3E2383A3 7598FC80 F 0 1 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3E403E4B 2F65FODE F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 180 o 0 0 0 3 3 1 000 
F 3E5BAFC8 245ABDF8 F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3E77E333 3AFF1AB4 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3E94E3A4 D4220C9C F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F.OOOOOOOO 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3EB296DD 4C084ACB F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3EDOE913 F5F9D496 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3EEFA74E 896F8FA8 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 

';'I F 00000000 00000000· F 0 0 _ 2 1 3 9F o 1CO o 0 0 0 3 3 000 ... 
(0 F 00000000 00000000 F 0 0 ~ 2 0 3 FB o 180 o 0 0 0 3 3 000 (0 

SN74ACT8847 



L1788.l:l"17LNS 
..... Microcode Table for the ArcSine(x} and ArCosine(x} Calculation (Concluded) ~ 
0 
0 p 0 0 PEE C P C C s R H E F I R F S B S T S 000 

A A B B N N L I L 0 E E A N L N N A RYE E E E E E 
A B K P K N L S L C 0 S D S C T L SLY S C 

C EMF 0 E T W T T C EST Y 
SOl P T C R P T 

o G 

F 3FOEC76B 78320BB6 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 000 0 3 3 000 
F 3F2F9786 98C8B2E4· F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 3F519B10 87542073 F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 3F769689 5FFC05AO F 0 1 _ 2 0 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 3FA375CA 6102988C F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 003 3 000 
F 3FE7B204 2301 0930 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3FE6A09E 667F3BCO F 0 1 _ 2 1 3 BF o 1CO o 0 003 3 000 
F 3FF6A09E 667F3BCO F 0 0 _ 2 0 3 EF o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 1 0 _ 2 0 3 EF o lCO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 --.:. 2 0 3 FF1 1 1 o 300 o 0 0 0 3 3 1 000 
F 3FF921FB 54442018 F 0 1 ~ 2 1 3 FB 1 1 1 o 183 o 0 0 0 3 3 000 0 
F 00000000 00000000· F 0 0 _ 2 0 3 FF 1 1 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 , 1 o 300 o 0 0 0 3 30 0 0 0 



ArcTangent Routine Using Chebyshev's Method 

All floating point inputs and outputs are double precision. The output is in radians. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; If the magnitude of the input, X, is greater than 1.0, 
then the reciprocal must be taken. If the magnitude of X is not greater 
than 1.0, then pass X. Let this number (either X or 1.0/X) be referred 
to as Xl. Next multiply Xl times 2.0, then multiply this resulting 
number by Xl. Finally, subtract 1.0 from this last product. 

If IXI > 1.0 
Then Xl +- 1.0/X 
Else Xl +- X 

X2 +- Xl *2.0*Xl - 1.0 

STEP 2 - Core Calculation; X2 in Step 1 will be referred to as 'x' in the core 
calculation. 

X3 ...... CSeries_atan 

+- ((((((((((((((((((C19*x +C1S)*X + C17)*x + C16)*x + C15)*x + 
C14)*X + C13)*x + C12)*X + Cll)*x + Cl0)*x + C9)*x 
+CS)*x + C7)*x + c6)*x + C5)*x + C4)*x + c3)*x + C2)*X 
+ Cl)*X + cO 

STEP 3 - Postprocessing; mUltiply the output of the core calculation times Xl. 
Let this number be referred to as X4. The next computation will yield 
the answer. If X was greater than 1.0, then subtract X4 from pi/2. 
If X was less than -1.0, then subtract X4 from - pi/2. If neither of 
the two conditions above are true, then X4 is the answer. 

X4 +- X3*Xl 
If X > 1.0 

Then ArcTangent(X) +- pi/2 - X4 
Else If X < - 1 .0 

Then ArcTangent(X) +- - pi/2 - X4 
Else ArcTangent(X) +- X4 
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Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

If IXI > 1.0 
Then Tl - 1.0/X 

T2 - T1 *2.0 
T3 - T2*CREG 
T4 <0- T3 - 1.0 

Else Tl <0- X 
T2 - Tl *2.0 
T3 - T2*Tl 
T4 - T3 - 1.0 

Step 2 perform the core calculation: 

T5 -C19*CREG 
T6 -T5 + c18 
T7 -T6*CREG 
T8 -T7 + c17 
T9 -T8*CREG 
Tl0-T9 + c16 
Tll -T10*CREG 
T12 -T11 + c15 
T13-T12*CREG 
T14-T13 + C14 
T15 -T14*CREG 
T16-T15 + c13 
T17-T16*CREG 
T18-T17 + c12 
T19 -T18*CREG 
T20-T19 + cll 
T21 -T20*CREG 
T22 -T21 + cl0 
T23 -T22*CREG 
T24-T23 + c9 
T25 -T24*CREG 
T26 -T25 + c8 
T27 -T26*CREG 
T28 -T27 + C7 
T29 -T28*CREG 
T30 -T29 + c6 

7-202 

T1 is Xl in Step 1, must be stored 
externally 
CREG - Tl 

CREG +- T4 



T31 -T30*CREG 
T32 -T31 + c5 
T33 -T32*CREG 
T34-T33 + c4 
T35 -T34*CREG 
T36-T35 + c3 
T37 -T36*CREG 
T38-T37 + c2 
T39 -T38*CREG 
T40 -T39 + cl 
T41 -T40*CREG 
T42-T41 + co 

Step 3 perform the postprocessing: 

T43 - T42*Tl 
If X > 1.0 CREG - T43 

Then ArcTangent(X) - pi/2 - CREG 
Return 

If X < -1.0 
Then ArcTangent(X) - - pil2 - CREG 

Return 
ArcTangent(X) - CREG 

Required System Intervention 

As seen in the algorithm for Step 1, the' ACT884 7 performs a compare. The results 
of this compare determine what kind of preproccessing is to be performed. In Step 3, 
there are two more compare operations. The system must therefore perform additional 
decision making. In addition, the system must store Tl , and later (in the postprocessing) 
provide this value to the 'ACT884 7. 

Number of 'ACT8847 Cycles Required to Calculate ArcTangent(x} 

Calculation of ArcTangent(x) requires at most 89 cycles (including the divide 
instruction). In addition, it is assumed that 15 additional cycles are required due to 
the compare instructions, and resulting system intervention. Therefore, the total number ,.... 
of cycles to perform the ArcTangent(x) calculation is 1 04. ~ 
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Listing of the Chebyshev Constants (e's) 

The constants are represented in IEEE double-precision floating point format. 

7-204 

c19 = BDC4D6CC6308553F 
c18 = 3DDFFD56FCFD2315 
c17 = BDE880782D99D07l 
c16 = 3E0409670CB7l2l8 
c15 = BE237C8239249B77 
c14 = 3E3F1358ECl D6ACO 
c13 = BE587CD25F4AFBED 
c12 = 3E73D2388BOB8A86 
cll = BE9028E921CA6A94 
c10 = 3EAA8l4997A38D4E 

c9 = BEC5EDAD9A2l FE5F 
c8 = 3EE256E57BA07FAE 
c7 = BEFF171F48FDF707 
c6 = 3Fl ACFA9F95CAODF 
c5 = BF37A8464221D994 
c4 = 3F558DF7A83283C9 
c3 = BF749B3E2E433683 
c2 = 3F955A300BFB8078 
c 1 = BFBA l494C 19FADD4 
cO = 3FEBDA7A85BD40CB 
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Pseudocode Table for the ArcTangent(x) Calculation 

Table 60. Pseudocode for Chebyshev ArcTangent Routine (PIPES2-0 == 010, RND1-0 == 00) 

ClK DA DB RA RB ClK MUl ALU P C S Y 
COMMENT 

BUS BUS REG REG MODE 
INSTR 

PIPE PIPE REG REG REG BUS 

1 1.0 MSH 1.0 LSH a COMPARE x is the input 

RA2, IRB21 Compare 1.0 and ABS(X) 

RA2*RB2 
If ABS(X) is greater than 

2 X MSH X LSH 1.0 X a 
RA2, IRB21 

1.0 perform 1.0/X, other-

wise go to cycle 16b 

3 1.0 X 0 NOP Wait for system response 

4 1.0 X 1 DIV Divide: 1.0/X 

5 1.0 X a NOP Wait for Division result 

6 1.0 X 0 NOP Wait for Division result 

7 1.0 X a NOP Wait for Division result 

8 1.0 X 0 NOP Wait for Division result 
I 

I 

9 1.0 X 0 NOP Wait for Division result 

10 1.0 X 0 NOP Wait for Division result 

11 1.0 X 0 NOP Wait for Division result 

12 1.0 X a NOP Wait for Division result 

13 1.0 X a NOP Wait for Division result 

14 1.0 X 0 NOP Wait for Division result 

15 1.0 X 0 NOP Wait for Division result i 

16a 2.0 MSH 2.0 LSH 1.0 X a RA17*PR17 Pl Pl If the reciprocal of X was 

17a 2.0 X a RA17*PR17 Pl performed, then execute 

18a 2.0 X a CR19*PR19 RA17*PR17 Pl cycles 16a through 19a 

In cycles 16a and 1 7 a out-

19a 2.0 X 0 CR19*PR19 P2a put Pl and store it for 

use in cycle 79 

16b 2.0 MSH 2.0 LSH 1.0 X 0 RA17*RB17 If the reciprocal of X was 

SN74ACT8847 
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Lv88J.:J"vLNS -Table 60. Pseudocode for Chebyshev ArcTangent Routine (PIPES2-0 =010, RND1-0 =00) (Continued) 

DA DB RA RB ClK 
iNSTR 

MUl ALU P C S y 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 
COMMENT 

2.0 X 0 RA17.RB17 not performed. then execute 

X MSH X LSH X X 0 RA19.PR19 RA17.RB17 cycle 16b through 19b 

X X 0 RA19·PR19 P2b 

2.0 CR19.PR19 The RA register is not 
or X 0 PR21 +RB21 or used again until cycle 81 
X RA19.PR19 so rather than indicating 

2.0 P3a the contents' 2.0 

-1.0 MSH -1.0 LSH or -1.0 0 PR21 +RB21 or of RA as: or 

X P3b X' 

c19 MSH c19 LSH 2 or X c19 1 SR22.RB22 Sl 
use the term' 2 or X' 

Start the core calculation 

2 or X c19 0 PR24+RB24 SR22.RB22 Sl 

c18 MSH c18 LSH 2 or X c18 0 PR24+RB24 P4 

2 or X c18 1 SR25.CR25 S2 

2 or X c18 0 PR27+RB27 SR25.CR25· 

c17 MSH c17 LSH 2 or X c17 0 PR27+RB27 P5 

2 or X c17 1 SR28.CR28 S3 

2 or X c17 0 PR30+RB30 SR28.CR28 

c16 MSH c16 LSH 2 or X c16 0 PR30+RB30 P6 

2 or X c16 1 SR31.CR31 S4 

2 or X c16 0 PR33+RB33 SR31.CR31 

c15 MSH C15 LSH 2 or X c15 0 PR33+RB33 P7 

2 or X c15 1 SR34.CR34 S5 

20rX c15 0 PR36+RB36 SR34.CR34 

c14 MSH c14 LSH 2 or X 
L C14 0 PR36+RB36 P8 

--
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44 
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60 

Table 60. Pseudocode for Chebyshev ArcTangent Routine (PIPES2-0 

DA DB RA RB CLK MUL ALU P 
INSTR BUS BUS REG REG MODE PIPE PIPE REG 

2 or X c14 1 SR37.CR37 

2 or X c14 0 PR39+R839 SR37.CR37 

c13 MSH c13 LSH 2 or X c13 0 PR39+RB39 P9 

2 or X c13 1 SR40.CR40 

2 or X c13 0 PR42+RB42 SR40.CR40 

c12 MSH c12 LSH 2 or X c12 0 PR42+RB42 Pl0 

2 or X c12 1 SR43.CR43 

2 or X c12 0 PR45+RB45 SR43.CR43 

cll MSH cll LSH 2 or X cll 0 PR45+RB45 Pll 

2 or X cll 1 SR46.CR46 

2 or X cll 0 PR48+ RB48 SR46.CR46 

c10 MSH . c10 LSH 2 or X c10 0 PR48+RB48 P12 

2 or X c10 1 SR49.CR49 

2 or X c10 0 PR51 +RB51 SR49.CR49 

c9 MSH c9 LSH 2 or X c9 0 PR51 +RB51 P13 

2 or X c9 1 SR52.CR52 

2 or X c9 0 PR54+RB54 SR52.CR52 

c8 MSH c8 LSH 2 or X c8 0 PR54+RB54 P14 

2 or X cB 1 SR55.CR55 

2 or X c8 0 PR57+RB57 SR55·CR55 

c7 MSH c7 LSH 2 or X c7 0 PR57+RB57 P15 

2 or X c7 1 SR58.CR58 

2 or X c7 0 PR60+RB60 SR58·CR58 

cs MSH Cs LSH 2 or X Cs 0 PR60+RB60 P16 

SN74ACT8847 

010. RND1-0 00) (Continued) 

C S y 
COMMENT 

REG REG BUS 
S6 

S7 

S8 

S9 

S10 

Sll 

S12 

513 

--
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Table 60. Pseudocode for Chebyshev ArcTangent Routine (PIPES2-0 

DA DB RA RB CLK MUL ALU P 

REG MODE 
INSTR 

BUS BUS REG PIPE PIPE REG 
2 or X c6 1 SR61.CR61 

2 or X c6 0 PR63+RB63 SR61.CR61 

c5 MSH c5 LSH 2 or X c5 0 PR63+RB63 P17 

2 or X c5 1 SR64.CR64 

2 or X c5 0 PR66+RB66 SR64.CR64 

c4 MSH c4 LSH 2 or X c4 0 PR66+RB66 P18 

2 or X c4 1 SR67.CR67 

2 or X c4 0 PR69+RB69 SR67.CR67 

c3 MSH c3 LSH 2 or X c3 0 PR69+RB69 P19 

2 or X c3 1 SR70.CR70 

2 or X c3 0 PR72+RB72 SR70.CR70 

c2 MSH c2 LSH 2 or X c2 0 PR72+ RB72 P20 

2 or X c2 1 SR73.CR73 

2 or X c2 0 PR75+RB75 SR73.CR73 

cl MSH cl LSH 2 or X cl 0 PR75+RB75 P21 

2 or X cl 1 SR76.CR76 

2 or X cl 0 PR78+RB78 SR76.CR76 

cO MSH Co LSH 2 or X cO 0 PR78+RB78 P22 

Tl MSH Tl LSH 2 or X Tl 1 SR79.RB79 

X MSH X LSH 20rX Tl 0 
COMPARE 

X,1.0 

-- --

010. RND1-0 = 00) (Continued) 

C S Y 
REG 

COMMENT 
REG BUS 

S14 

S15 

S16 

S17 

S18 

S19 

Tl is either Pl or is X 

S20 
depending on what action 

was called for at cycle 2 

Begin the post processing 

If X > 1.0 then execute 

83 through 86, otherwise 

skip to 83b. In either case 

----- --'--
,_execute 80_through 82 
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ClK 

81 

82 

83 

84 

85 

86 

83b 

84b 

85b 

86b 

87b 

88b 

89b 

86c 

87c 

88c 

Table 60. Pseudocode for Chebyshev ArcTangent Routine (PIPES2-0 ... 010. RND1-0 .. 00) (Concluded) 

DA DB RA RB ClK 
INSTR 

MUl AlU P C S y 
COMMENT 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 

1.0 MSH 1.0 LSH X 1.0 0 
COMPARE 

P23 
X,l.0 

X 1.0 0 NOP P23 Wait for system response 

X 1.0 0 RB84-CR84 Execute if X > 1.0 

pi/2 MSH pi/2 LSH X pi/2 0 RB84-CR84 

X pi/2 0 NOP S21a S21a Output MSH of answer 

X pi/2 0 NOP S21a S21a 
Output LSH of answer 

The calculation is done 

Execute if X s 1.0. 

If - 1.0 > X then execute 

-1.0 MSH -1.0 lSH X 1.0 0 
COMPARE 

86b through 89b, otherwise 
-1.0,X 

skip to 86c. In either case 

execute 83b thru 85b 

X MSH X LSH -1.0 X 0 
COMPARE 

-1.0,X 
P23 

-1.0 X 0 NOP P23 Wait for system response 

-1.0 X 0 RB87-CR87 Execute if - 1.0 > X 

-pi/2 -pi/2 

MSH LSH 
-1.0 -pi/2 0 RB87-CR87 

-1.0 -pi/2 0 NOP S21b S21b Output MSH of answer 

-1.0 pi/2 0 NOP S21b S21b 
Output LSIo-l of answer. 

The calculation is done. 

-1.0 X 1 PASS(CR86) Execute if X is within the 

range [- 1 ,11, Pass CREG 

-1.0 X 0 NOP S21c S21c Output MSH of answer 

-1.0 X 0 NOP S21c S21c Output LSH of answer 
_._-
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Lv88.l::l"vLNS 
..... Microcode Table for the ArcTangent(x) Calculation ~ 
~ 

0 All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 
table, the value of X has been chosen to be SQRT(3.0). 

p D D PEE C P C C S R H E F R F S B S T S 555 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 3FFOOOOO 00000000 F 0 0 _ 2 0 3 FF o 18A o 0 0 0 3 3 000 
F 3FFBB67 A E8584CAB F 1 1 _ 2 0 3 FF o 18A o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 FF OlEO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 00003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 000 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 00003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 00 0 3 3 1'0 0 0 
F 40000000 00000000 F 0 0 _ 2 0 3 EF 1 1 o lCO o 0 0 0 3 3 1 000 
F 00000000 00000000 FlO _ 2 0 3 EF 1 1 o lCO 00003 3 0 000 
F 00000000 00000000 F 0 O..r 2 0 3 6F 1 0 0 lCO 00103 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 6F 1 1 o lCO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F BFFOOOOO 00000000 F 0 1 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F BDC4D6CC 6308553F F 0 1 _ 2 1 3 BF 1 1 o lCO o 0 0 0 3 3 000 



Microcode Table for the ArcTangent(x) Calculation (Continued) 

p D D PEE C P C C s R H E F I R F S B S T S 555 
A A B B N N l I l 0 E E A N l N N A RYE E E E E E 

A B K P K N l S l C 0 S D S C T l SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 00000000 00000000 F 0 O.r 2 0 3 FB o 0 180 o 0 0 0 3 3 000 
F 3DDFFD56 FCFD2315 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F BDE88078 2D99D071 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 003 3 000 
F 3E040967 OCB71218 F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BE237C82 39249B77 F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO 000 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 3E3F1358 EC1D6ACO F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BE587CD2 5F4AFBED F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 003 3 000 
F 3E73D238 8BOB8A86 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 

-.J F BE9028E9 21 CA6A94 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 ,:., ... ... 
SN74ACT8847 



L1788.l:l'V17LNS -..... Microcode Table for the ArcTangent(x) Calculation (Continued) N .... 
N P D D PEE C P C C s R H E F I R F S B S T S a a a 

A A B B N N L I L 0 E E A N L N N A RYE E E E E E 
A B K P K N L S L C 0 S D S C T L SLY S C 

C EMF 0 E T W T T C EST Y 
SOl P T C R P T 

D G 

F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 1 000 
F 3EAA8149 97A38D4E F 0 1 _ 2 0 3 FB o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BEC5EDAD 9A21FE5F F 0 1 _ 2 0 3 FB o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 000 0 3 3 000 
F 3EE256E5 7BA07FAE F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F . 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 003 3 000 
F BEFF171F 48FDF707 F 0 1 _ 2 0 3 FB o 180 00003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3F1 ACFA9 F95CAODF F 0 1 _ 2 0 3 FB 1 o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F BF37A846 4221 D994 F 0 1 _ 2 0 3 FB 1 1 o 180 o 000 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 o 1CO o 0 003 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3F558DF7 . A83283C9 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F BF749B3E 2E433683 F 0 1 _ 2 o 3 FB 1 1 1 o 180 o 0 0 0 3 3 000 



Microcode Table for the ArcTangent(x) Calculation (Concluded) 

p D D PEE C P C C s R H E F I R F S B S T S 000 
A A B B N N L L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 00000000 00000000 F 0 0 _ 2 1 3 9F o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 3F955A30 OBFB8078 F 0 1 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 2 o 3 FB o 180 o 0 0 0 3 3 000 
F BFBA 1494 C19FADD4 F 0 1 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 3FEBDA 7 A 85BD40CB F 0 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 3FE279A7 4590331C F 0 1 _ 2 1 3 BF o 1CO o 0 0 0 3 3 000 
F 3FFBB67A E8584CAB F 0 0 _ 2 o 3 FF o 182 o 0 0 0 3 3 000 
F 3FFOOOOO 00000000 F 1 1 _ 2 o 3 FF 1 o 182 o 0 0 0 3 3 000 
F 00000000 00000000 FOO.I2 o 3 FF o 0 300 00103 3 000 
F 00000000 00000000 F 0 0 2 o 3 F7 o 183 o 0 003 3 000 
F 3FF921FB 54442D18 F 0 1 _ 2 o 3 F7 o 183 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 o 3 FF o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 o 3 FF o 300 o 0 0 0 3 300 0 0 

-..j 

N 
w 
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Exponential Routine Using Chebyshev's Method 

All floating point inputs and outputs are double precision. 

Steps Required to Perform the Calculation 

STEP 1 - Preprocessing; first multiply the input, X, by log2e (yielding X1). Next, 
convert this product to an integer, using truncate mode (yielding X2). 
Form the variable EX by adding 1024 to X2. EX is used in the 
postprocess!ng part of the routine. Subtract 1023 from EX to find 
the variable N (N is a~tually X2 incremented by 1). Convert N to a 
floating point number (yielding X3). Subtract X1 from X3, multiply 
this difference by 2.0, and then finally subtract 1.0. This last 
computation is. the input to the core routine. 

X1'" X*1092e 
X2'" TRUNC(X1) 
EX- 1024 + X2 

N - EX - 1023 
X3 - DOUBLE(N) 
X4- 2.0*(X3 - X1) - 1.0 

STEP 2 - Core Calculation; X4 in Step 1 will be referred to as 'x' in the core 
calculation. 

X5'" Cseries_exp 

- ((((((((((C11 *x + C10)*X + Cs)*x + c8)*x + C7)*X + c6)*x + 
C5)*X + C4)*X + c3)*x + C2)*x + C1)*x + cO 

STEP 3 - Postprocessing; multiply the output of the core calculation times 2N. 
To generate 2N, perform the following: shift left logical 20 positions 
(bits) the variable EX (which was calculated in Step 1). The resulting 
bit pattern will be the double precision floating point representation 
of 2N. However, the 'ACT.8847 will not at this point recognize the 
bit pattern as a floating point number. So this number must be output 
from the Y bus, and then input (declaring the input to be a double 
precision floating point number) on the input bus. Now the' ACT884 7 
wjll process 2N as a double float, and so the COre output, X5, can 
be multiplied by 2N to produce the final result. 'SLL' means to shift 
left logical. 

X6'" EX SLL by 20 bits 
Y bus- X6 

DA bus- Y bus 
Exp(X) ... XEi * X6 
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Algorithms for the Three Steps 

Step 1 perform the preprocessing: 

Tl +-X*lo92e 
T2 +-INT(Tl) 
T3 +-1024 + T2 

T4 +- T3 - 1023 
T5 +-1*T4 
T6 +-DOUBLE(T5) 
T7 +-T6 - CREG 
T8 +-2.0*T7 
T9 +-T8 - 1.0 

Step 2 perform the core calculation: 

Tl0 +-cll *CREG 
Tll ..... Tl0 + c1Q 
T12 +-Tll *CREG 
T13+-T12 + c9 
T14+-T13*CREG 
T15 +-T14 + c8 
T16 +-T15*CREG 
T17+-T16 + c7 
T18 +-T17*CREG 
T19 +-T18 + c6 
T20 +-T19*CREG 
T21 +-T20 + c5 
T22 +-T21 *CREG 
T23 +- T22 + c4 
T24 +-T23*CREG 
T25 +-T24 + c3 
T26 +-T25*CREG 
T27 +-T26 + c2 
T28 +- T27 *CREG 
T29 +-T28 + cl 
T30 +-T29*CREG 
T31 +-T30 + cO 

lo92e entered as a constant 
round controls set to truncate 
T3 is EX in Step 1, must be 
stored externally, CREG +- Tl 

makes T4 available to A2 MUX 
convert from integer to double 

T9 is X4 in Step 1, the 
input to the core routine 

CREG +- T9 
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Step 3 perform the postprocessing: 

T32 +- T3 SLL by 20 bits 
Y bus +- T32 

DA bus +- Y bus (= T32) 

Exp(X) +- T32*CREG 

Required Systf!m Intervention 

Shift T3 20 bits left 
Output and then Input T32 
CREG +- T31 
Two cycles required to 
input both halves of T32 

The system is required to store the variable EX, and then later provide this variable. 
In addition, the system is required to route the variable T32 (in Step 3) from the Y 
bus to the DA bus. 

Number of ' ACT884 7 Cycles Required to Calculate Exp(x) 

Calculation of Exp(x) requires 52 cycles. Since there are no decisions which the system 
is required to perform, the total number of cycle to perform the Exp(X) calculation is 52. 

Listing of the Chebyshev Constants (c's) 

The constants are represented in IEEE double-precision floating point format. 
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c11 = BD45A7FC05D3B501 
c10 =: 3D957BFD2DBF487C 

cg = BDE351B821AC16D5 
c8 = 3E2F5BOE17440879 
c7 = BE769E51EE631E87 
c6 = 3EBC8D7530548DD5 
c5 = BEFEE4FD234A4926 
c4 = 3F3BDB696E8987 AC 
c3 = BF741839EB88156E 
c2 = 3FA5BE298ADF0369 
c1 = BFCF5E46537AB906 
cO = 3FE6A09E667F3BCC 



Pseudocode Table for the Exp(x) Calculation 

Table 61. Pseudocode for Chebyshev Exponential Routine (PIPES2-0 010. RND1-01 

ClK DA DB RA RB ClK MUl AlU P C S y 

BUS BUS REG REG MODE 
INSTR 

PIPE PIPE REG REG REG BUS 
COMMENT 

1 X MSH X LSH 0 RA2.RB2 X is the input 

2 L092e Lo92e 
X Lo92e 0 RA2.RB2 

MSH LSH 

3 X Lo92e 0 DP2I(PR4) RA2.RB2 Double-precision - integer 

4 X Lo92e 0 DP2I(PR4) Pl 

5 1024 1024 Lo92e 0 RA5+SR5 Pl Sl 

Store S2. which is the 

6 -1023 -1023 Lo92e 0 RA6+SR6 S2 S2 variable EX. for use in 
cycle 46 

7 1 -1023 1 0 SR7.RB7 S3 

8 -1023 1 1 12DP(PR8) P2 Integer - double-precision 

9 -1023 1 1 SR9-CR9 S4 

10 2.0 MSH 2.0 LSH -1023 2.0 1 SR10.RB10 S5 

11 -1023 2.0 0 PR12+RB12 SR10.RB10 

12 -1.0 MSH -1.0 LSH -1023 -1.0 0 PR12+RB12 P3 

Start core calculation. 

13 cll MSH cll LSH -1023 cll 1 SR13.RB13 S6 S6 is the input to the 

core calculation 

14 -1023 cll 0 PR15 + RB15 SR13.RB13 S6 

15 cl0 MSH cl0 LSH -1023 cl0 0 PR15+RB15 P4 

16 -1023 cl0 1 SR16.CR16 S7 

17 -1023 cl0 0 PR18+RB18 SR16.CR16 

18 c9 MSH Cg LSH -1023 cg 0 PR18+RB18 P5 
'-I 
r:, 19 -1023 c9 1 SR19.CR19 S8 

'-I 20 -1023 c9 0 PR21 +RB21 SR19.CR19 
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~ Table 61. Pseudocode for Chebyshev Exponential Routine (PIPES2-0 ... 010. RND1-0) (Continued) 

(XI ClK DA DB RA RB ClK 
INSTR 

MUl ALU P C S y 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 
COMMENT 

21 Cs MSH cs LSH -1023 Cs 0 PR21 +RB21 P6 

22 -1023 cs 1 SR22.CR22 S9 

23 -1023 cs 0 PR24+RB24 SR22.CR22 

24 c7 MSH c7 LSH -1023 c7 0 PR24+RB24 P7 

25 -1023 c7 1 SR25.CR25 S10 

26 -1023 c7 0 PR27+RB27 SR25.CR25 

27 c6 MSH c6 LSH -1023 c6 0 PR27+RB27 PS 

2S -1023 C6 1 SR2S.CR2S Sll 

29 -1023 c6 0 PR30+RB30 SR2S.CR2S 

30 c5 MSH c5 LSH -1023 c5 0 PR30+RB30 P9 

31 -1023 c5 1 SR31.CR31 S12 

32 -1023 c5 0 PR33+RB33 SR31.CR31 

33 c4 MSH c4 LSH -1023 c4 0 PR33+RB33 Pl0 

34 -1023 c4 1 SR34.CR34 S13 

35 -1023 c4 0 PR36+RB36 SR34.CR34 

36 c3 MSH c3 LSH -1023 c3 0 PR36+RB36 Pll 

37 -1023 c3 1 SR37.CR37 S14 

3S -1023 c3 0 PR39+ RB39 SR37.CR37 

39 c2 MSH c2 LSH -1023 c2 0 PR39+RB39 P12 

40 -1023 c2 1 SR40·CR40 S15 

41 -1023 c2 0 PR42+RB42 SR40.CR40 

42 cl MSH cl LSH -1023 cl 0 PR42+RB42 P13 

43 -1023 cl 1 SR43.CR43 S16 



Table 61. Pseudocode for Chebyshev Exponential Routine (PIPES2-0 - 010, RND1-0) (Concluded) 

ClK DA DB RA RB ClK 
INSTR 

MUl AlU P C S y 
COMMENT 

BUS BUS REG REG MODE PIPE PIPE REG REG REG BUS 

44 -1023 c1 0 PR45+RB45 SR43*CR43 

45 co MSH Co lSH -1023 Co 0 PR45+ RB45 P14 

Begin post processing. 

SLL 
S2 is the variable EX, and 

46 S2 20 S2 20 0 was calculated in cycle 5. 
RA46,RB46 

Shift left logical S2 

20 bit positions 

Allows time for S18 to be 
47 S2 20 0 NOP S17 S18 S18 output from the Y bus and 

input to the DA bus 

48 S18 S2 20 0 RA48.CR48 

RA holds S18', which is 

the double precision 

49 0 S18' 20 0 RA48.CR48 floating point equivalent 

of 2N, where N was 

calculated in cycle 6 

Instruction is RA + RB, used 

50 S18' 20 0 DUMMY RA48.CR48 to allow time for result 

to propagate to Y bus 

51 S18' 20 0 NOP P15 P15 Output MSH of answer 

52 S18' 20 0 NOP P15 P14 Output LSH of answer 

-.I 
~ 
co 
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Microcode Table for the Exp(x} Calculation N 
!'.) 
0 

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode 
table, the value of X has been chosen to be 6.25. 

p D D PEE C P C C s R H E F R F S B S T S 000 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 40190000 00000000 F 0 0 _ 2 0 3 FF 1 o 1CO o 0 003 3 000 
F 3FF71547 652B82FE F 1 1 2 0 3 FF 1 o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 1A3 o 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 1 o 1A3 1 0 0 0 3 3 1 000 
F 00000400 00000000 F10...r201 FE 1 1 0 0 200 0010331 000 
F FFFFFC01 00000000 F10_201 FE 1 1 1 o 200 o 0 0 0 3 3 1 000 
F 00000000 00000001 F01_201 BF 1 1 1 o 240 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 FB 1 1 o 1A2 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 F6 1 o 183 o 0 0 0 3 3 1 000 
F 40000000 00000000 F 0 1 _ 2 1 3 BF o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BFFOOOOO 00000000 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F BD45A7FC 05D3B501 F 0 1 _ 2 1 3 BF 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 OS 2 0 3 FB o 0 180 o 0 0 0 3 3 000 
F 3D957BFD 2DBF487C F 0 1 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F BDE351B8 21AC16D5 F 0 1 _ 2 0 3 FB o 180 o 0 003 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 003 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 3E2F5BOE 17440879 F 0 1 _ 2 0 3 FB 1 1 o 180 00003 3 000 



Microcode Table for the Exp(x) Calculation (Continued) 

p D D PEE C P C C s R H E F R F S B S T S 000 
A A B B N N L I L 0 E E A N L N N A RYE E E E E E 

A B K P K N L S L C 0 S D S C T L SLY S C 
C EMF 0 E T W T T C EST Y 

SOl P T C R P T 
D G 

F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 000 0 3 3 000 
F BE769E51 EE631E87 F 0 1 2 0 3 FB o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3EBC8D75 30548DD5 F 0 1 _ 2 o 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F BEFEE4FD 234A4926 F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3F3BDB69 6E8987 AC F 0 1 _ 2 o 3 FB 1 1 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 
F BF741839 EB88156E F 0 1 2 o 3 FB 1 o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 000 
F 3FA5BE29 8ADF0369 F 0 1 _ 2 0 3 FB 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 00_ 2 1 3 9F 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1 1 o 180 o 0 0 0 3 3 000 
F BFCF5E46 537 AB906 F 0 1 _ 2 0 3 FB o 180 o 0 0 0 3 3 000 
F 00000000 00000000 F 00_ 2 1 3 9F o 1CO o 0 0 0 3 3 1 000 

-..J F 00000000 00000000 F 00_ 2 o 3 FB o 180 o 0 0 0 3 3 000 N 
N F 3FE6A09E 667F3BCC F 0 1 _ 2 o 3 FB o 180 o 0 0 0 3 3 000 
~ 
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-..J Microcode Table for the Exp(x) Calculation (Concluded) N 
N 
N P D D PEE C P C C s R H E F I R F S B S T S 000 

A A B B N N L I L 0 E E A N L N N A RYE E E E E E 
A B K P K N L S L C 0 S D S C T L SLY S C 

C EMF 0 E T W T T C EST Y 
SOl P T C R P T 

D G 

F 00000409 00000014 F 11_201 FF 1 o 228 o 0 0 0 3 3 000 
F 00000000 00000000 F 0 1 .J 2 0 3 FF o 0 300 o 0 0 0 3 3 000 
F 40900000 00000000 F 0 0 _ 2 ·0 2 DF 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 1 0 _ 2 0 2 DF 1 1 o 1CO o 0 0 0 3 3 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 o 180 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 o 300 o 0 0 0 3 3 1 000 
F 00000000 00000000 F 0 0 _ 2 0 3 FF 1 1 1 o 300 o 0 0 0 3 3 0 000 



High-Speed Vector Math and 3-D Graphics 
Introduction 

Texas Instruments SN74ACT8837 and SN74ACT8847 floating point units (FPU) are 
designed to execute high-speed, high-accuracy mathematical computations. The 
devices are especially suited for matrix manipulations such as those used in graphics or 
digital signal processing. These FPUs multiply and add data elements by executing 
sequences of microprogrammed calculations to form new matrices. Each device may be 
configured for either single- or double-precision operation. Single-precision operation is 
assumed throughout this report. 

The 'ACT8847 is a functional superset of the 'ACT8837 and operates at higher clock 
rates (up to 33 MHz) than the 16-MHz '8837. Unlike the 'ACT8837, the 'ACT8847 can 
perform integer and logical operations and has built-in, hardwired algorithms for division 
and square root operations. 

This application report outlines the timing, data flow, and programming for several 
common data vector calculations and matrix transformations. Further, it illustrates some 
of the programming "tricks" resulting in fastest operation. Throughout, this document 
compares the timing schemes for programs in which all registers, including the ALU and 
multiplier internal pipeline registers, are enabled ("pipelined" mode) with those for 
equivalent programs in which the internal pipeline registers are disabled ("unpiped" 
mode). Equations are provided to help the programmer select the more efficient mode, 
and performance figures are included for both devices, with times given for 15-MHz and 
3D-MHz operations. 

This report begins by covering simple vector arithmetic operations, which are 
categorized as "computational" or "compare" functions for convenience. This document 
then compares these operations as they are used in graphics applications to perform 
three-dimensional coordinate transformations, perspective viewing, and Clipping. 

SN74ACT8837 and SN74ACT8847 Floating Point Units ...... 
q-

Both the 'ACT8837 and 'ACT8847 floating point units (FPU) combine a multiplier and an 00 
00 

arithmetic-logic unit (ALU) in a single microprogram mabie VLSI device. These devices ~ 
are implemented in Tl's advanced one-micron CMOS technology and are fully (.) 
compatible with the IEEE standard for binary floating pOint arithmetic, STO 754-1985, for ~ 
either single- or double-precision operation. ...... 

Instruction inputs can select independent ALU operation, independent multiplier 
operation, or simultaneous ALU/multiplier operation. Each FPU can handle three types 
of data input formats. The ALU accepts data operands in integer format or IEEE floating 
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point format. In the 'ACT8837, integers are converted to normalized floating point 
numbers with biased exponents prior to further processing. A third type of operand, 
denormalized numbers, can also be processed after the ALU has converted them to 
"wrapped" numbers, which are explained in detail in the SN74ACT8800 Family Data 
Manual. The 'ACT8837 multiplier operates only on normalized floating pOint numbers or 
wrapped numbers. The 'ACT8847 multiplier also operates on integer operands. 

Data enters the 'ACT8837 or 'ACT8847 through two 32-bit data buses, DA and DB (see 
Figures 74 and 75), which can be configured to operate as a single 64-bit data bus for 
double-precision operations. Data can be latched in a 64-bit temporary register or 
loaded directly into the input registers, RA and RB, which pass data to the multiplier and 
ALU. 

A clock-mode control allows the temporary register to be clocked on the rising or falling 
edge of the clock to support double-precision ALU operations at the same rate as single­
precision operations. Using the temporary register, double-precision numbers on a 
single 32-bit input bus can be loaded in one clock cycle. 

The input registers RA and RB are the first of three levels of internal data registers. 
Additionally, the ALU and multiplier each have an internal pipeline register and an output 
register. The ALU's output register is denoted by"S" (sum), and the multiplier's output 
register is denoted by "P" (product). Any or all of these internal registers may be 
bypassed. 

A 64-bit constant register (C) with a separate clock is provided for temporary storage of a 
multiplier result, ALU result, or constant for feedback to the multiplier and ALU. An 
instruction register and a status register are also included. 

Four multiplexers select the multiplier and ALU operands from the input, C, S, or 
P registers. Results are output on the 32-bit Y bus; a Youtput multiplexer selects the 
most or least significant half of the result for output. 

In addition to add, subtract, and multiply functions, the 'ACT8837 can be programmed to 
perform floating pOint division using a Newton-Raphson algorithm. Absolute value 
conversions, floating point-to-integer and integer-to-floating pOint conversions, and a 
compare instruction are also available. 

2 The 'ACT8847 FPU is fully compatible with IEEE Standard 754-1985 for addition, 
~ subtraction, multiplication, division, square root, and comparison. The 'ACT8847 FPU 
» also performs integer arithmetic, logical operations, and logical shifts. Additionally, 
(") absolute value conversions and floating pOint-to-integer and integer-to-floating point 
~ conversions are available. 
(X) 
~ 
-...I 
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For both the 'ACT8837 and 'ACT8847, the ALU and multiplier can operate in parallel to 
perform sums of products and products of sums. Detailed information regarding the 
instruction inputs for the various 'ACT8837 and 'ACT8847 configurations and operations 
is given in the SN74ACT8800 Family Data Manual. 

Mathematical Processing Applications 

Tl's SN74ACT8837 and SN74ACT8847 high-speed floating point units (FPU) are 
designed to perform high-accuracy, computationally-intensive mathematical operations. 
In particular, these FPUs can meet the computational demands of high-end graphics 
workstations and advanced signal processing. Both applications involve repetitive 
computations on arrays of data typically expressed as vector arithmetic operations. 

For example, the calculation of the sum of products, or multiply-accumulate function, is 
frequently used in both signal and graphics processing. In general form, the sum of 
products equation is: 

n 
S = I kiXi, for coefficients ki and data xi. 

i=1 

This sum of products is the central function involved in multiplying matrices. Such 
matrices might represent a system of linear differential equations or the geometrical 
transformation of a graphic object. Specifically, an n x n matrix A multiplied by an n x m 
matrix B yields an n x m matrix C whose elements Cij are given by: 

n 
Cij = I aik x bkj for i = 1, ... ,n and j = 1, ... ,m. 

k=1 

The 'ACT8837 and 'ACT8847 are designed to handle efficiently this kind of parallel 
multiplication and addition. 

Graphics Applications 

The basic principle of graphics processing is that any object can be reduced to a 
combination of points, lines, and polygons and then defined as a collection of points in ..... 
three-dimensional space. Because pOints, planes, transformation matrices and other ~ 
common data structures are vectors, most of the computations involved in graphics CO 
processing are vector operations. t; 
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Computations for a 3-D graphics display are highly involved due to the complexity 
introduced by the z-axis. Viewing an object from a particular perspective involves 
transforming the object's world coordinates, or its coordinates in the model space, into 
viewing, or eyepoint, coordinates. A series of translations and rotations map the viewing 
system axes onto the world coordinate axes. Each individual pOint must be translated, 
rotated and, if necessary, scaled in a proper order. Once the coordinate transformation is 
complete, the coordinates are clipped to a viewing volume. Clipping algorithms employ 
arithmetic operations to determine whether an object, or part of an object, is inside or 
outside a pyramidal volume. Hidden surface routines may then be employed to delete 
surfaces that fall behind a "nearer" surface from the viewer's perspective. 

Matrix arithmetic is required for scaling, rotating, translating, or shearing an object, as 
well as for the final process of projecting its visible parts to a two-dimensional frame 
buffer. Any sequence of these transformations can be represented as a single matrix 
formed by concatenating the matrices for the individual operations. The generalized 
4 x 4 matrix for transforming a three-dimensional object is shown below, partitioned into 
four component matrices, each of which produces a specific effect on the image. The 
3 x 3 matrix produces linear transformation in the form of scaling, shearing, and rotation. 
The 1 x 3 row matrix produces translation, while the 3 x 1 column matrix produces 
perspective transformation with multiple vanishing points. The final single-element 1 x 1 
matrix produces overall scaling. 

Overall operation of the matrix T on the position vectors of a graphics object produces a 
combination of shearing, rotation, reflection, translation, perspective, and overall 
scaling. 

Vector Arithmetic 

Programs that require repetitive computations on multiple sets of operands lend 
themselves to vector-processing algorithms, in which the operands are viewed as 
succeeding elements of long "data vectors." The next two sections outline the 
programming for commonly-used vector operations. Most of these examples conclude 
with a comparison of program timing for pipelined (internal pipeline registers enabled) 
and unpiped (internal pipeline registers disabled) operation. For convenience, the 
operations are labeled "computational," which includes simple and compounded adds, 
multiplies, and divides, or "compare," which can be used to select maximum or minimum 
values from succeeding pairs of numbers or from a list. 
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Computational Operations on Data Vectors 

This section covers the following vector operations: vector add, vector multiply, vector 
divide, sum of products (also called inner, scalar, or dot product), and product of sums. 
Since matrix multiplication is composed of a sequence of sum of products operations, 
these two functions are discussed in the same section. In some cases, a whole class of 
operations is covered under one heading. For example, the vector add operation 
includes sums and differences of Ai, Bi, I Ai I ,and I Bi I in all combinations. 

Vector Add 

The vector add operation adds corresponding components of data vectors to obtain the 
components of the output vector. Hence, for input vectors A and B and output vector V, 
each with N components, 

Vi = Ai + Bi, 1 :$ i :$ N. 

The 'ACT8837 and 'ACT8847 perform this calculation in unchained, independent ALU 
mode. 

Table 62 shows the contents of the data registers at successive clock cycles for N = 6 
with the FPU operating in pipelined mode. Since the data travels by way of the internal 
pipeline register, two cycles pass before the first sum appears in the S register. The 
contents of the internal pipeline register are not given in the flow. 

Table 62. Data Flow for Pipelined Single-Precision Vector Add, N = 6 

RA A1 A2 A3 A4 A5 A6 
RB B1 B2 B3 B4 B5 B6 
S A1+B1 A2+B2 A3+B3 A4+B4 A5+B5 A6+B6 
p 
C 
Y Y1 Y2 Y3 Y4 Y5 Y6 

ClK 1 2 3 4 5 6 7 8 9 

Data transfers and operations for each clock cycle are summarized in the program listing 
in Table 63. Detailed information on the instruction inputs required to perform each ,.... 
operation is included in sections 5 and 7. Note that the selection of the output source (in q­
this case, the S register), which is determined by the 16 instruction bit, is programmed ~ 
along with the ALU or multiplier operation that generates the output. ~ 

U 
c:r q­,.... 
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Table 63. Program Listing for Pipelined Single-Precision Vector Add, N = 6 

REGISTER TRANSFERS ALU OPERATION MULTIPLIER 
OPERATION 

1. lOAD RA, RS; Y--s ADD(RA,RS) 
2. lOAD RA, RS; y--s ADD(RA,RS) 
3. lOAD RA, RS; y--s ADD(RA,RS) 

6. lOAD RA, RS; y--s ADD(RA,RS) 

Timing and programming are similar for other independent ALU operations involving two 
operands, such as (A - B), (B - A), and compare (A,B). However, when the compare 
function is used, two status bits must be generated before numeric values can be output 
(see "Compare Operations on Data Vectors"). 

Because the vector add program closely parallels that for vector multiplication, pipelined 
and unpiped modes for both vector add and multiply are compared in the next section. 

Vector Multiply 

The vector multiply operation multiplies corresponding elements of data vectors to 
obtain the components of the output vector. Hence, for input vectors A and B and output 
vector Y, each with N components, 

Yi = Ai x Bi, 1 s; i s; N. 

The 'ACT8837 and 'ACT8847 perform this calculation in unchained, independent 
multiplier mode. 

Pipelined Mode 

Table 64 shows the contents of the data registers at successive clock cycles for N = 6 
with the FPU operating in pipelined mode. The product may be replaced by a variety of 
other independent multiplier operations, such as - (A x B), A x I B I, - (A x I B I), I A I 
x I B I, and - ( I A I x I B I). Data transfers and operations for each clock cycle are 

CJ) summarized in the program listing in Table 65. 
Z 
--.J 
~ Table 64. Data Flow for Plpelined Single-Precision Vector Multiply, N = 6 
l> 
(') 
-i 
00 
00 
~ 
--.J 

RA 
RS 
S 
P 
C 
Y 

Y1 
elK 

7-230 

A1 A2 A3 
S1 S2 S3 

A1 xS1 
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Table 65. Program Listing for Pipelined Single-Precision Vector Multiply, N = 6 

REGISTER TRANSFERS ALU OPERATION MULTIPLIER 
OPERATION 

1. lOAD RA, RB; V-P MUlT(RA,RB) 
2. lOAD RA, RB; V-P MUlT(RA,RB) 
3. lOAD RA, RB; V-P MUlT(RA,RB) 

6. lOAD RA, RB; V-P MUlT(RA,RB) 

Unpiped Mode 

Table 66 shows the contents of the data registers at successive clock cycles during a 
vector multiply operation for N = 6 with the FPU operating in unpiped mode. The vector 
add operation progresses similarly. Since there is no "single-clocked storage" in the 
internal pipeline register, each product or sum is performed in one cycle. 

Table 66. Data Flow for Unpiped Single-Precision Vector Multiply, N = 6 

RA A1 A2 A3 A4 A5 A6 
RB B1 B2 B3 B4 B5 B6 
S 
p A1 xB1 A2xB2 A3xB3 A4xB4 A5xB5 A6xB6 
C 
V V1 V2 V3 V4 V5 V6 

ClK 1 2 3 4 5 6 7 8 9 

Comparison of Pipelined and Unpiped Modes 

For both vector add and vector multiply operations carried out in pipelined mode, results 
are output to the Y bus on clocks 3, ... , N + 2. In unpiped mode, results are output to the 
Y bus on clocks 2, ... , N + 1, thereby saving a cycle. Unfortunately, it is necessary to 
operate at a lower clock rate in unpiped mode than in pipelined mode. The following 
equation can be used to determine which of the two modes provides the faster 
performance in a particular application. Pipelined operation is faster if: 

(N + 2)/Fp < (N + 1)/Fu, 1'0 
¢ 

where Fp and Fu are the clock rates in pipelined and unpiped modes, respectively. As of ex) 

publication, pipelined mode provides faster performance for input vectors with N > 2. ~ 
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Sum of Products 

The sum of products operation multiplies corresponding elements of data vectors and 
adds the resulting products. The operation is also referred to as the inner product, scalar 
product, or dot product of two vectors, since these are the names for the function as it is 
used in vector algebra. For input vectors A and B, each with N components, the sum of 
products operation yields a single output Y defined as follows: 

N 
Y = }; (Ai x Bi) 

i=1 

The 'ACT8837 and 'ACTaa47 perform this calculation in chained mode so that 
concurrent operation of the AlU and multiplier is possible. 

Pipelined Mode 

Table 67 shows the contents of the data registers at successive clock cycles for N = a 
with the FPU operating in pipelined mode. 

Table 67. Data Flow for Pipelined Single-Precision Sum of Products, N = 8 

RA A1 A2 A3 A4 AS A6 A7 A8 
RB B1 B2 B3 B4 B5 B6 B7 B8 
S S1 S3 S4 S5 S6 S7 S8 S7+8 
P P1 P2 P3 P4 P5 P6 P7 P8 
C P2 P2 S7 
y y 

ClK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Here, Pi = Ai x Bi, S1 = P1 + 0, S3 = P3 + S1, S4 = P4 + P2, 86 = P6 + 84,87 = P7 
+ 85, and 8a = Pa + 86. The values of the sums could be more succinctly expressed as 
Si = Pi + Si-2 (with So = 8-1 = 0), except that S2 = P2 + 0 = P2 does not actually 
appear in the data flow as a sum in the 8 register. Instead, the C register holds P2 for two 
cycles. 

en This approach; although introducing a certain lack of symmetry into the programming, 
2 frees up the 8 register at a point allowing the efficient overlap of succeeding sum of 
~ products operations without any dead cycles. A new sum of products operation can 
» begin at ClK 9, and the 8 register remains free to hold the first operation's result in ClK 
("") 14. Similary, by storing 87 in the C register in ClK 12, rather than multiplying it by one, 
~ the P register remains free to hold "P2" for the next pair of data vectors. By ClK 12, 
CO S7 = P1 + P3 + P5 + P7 and 8a = P2 + P4 + P6 + Pa, so that Y = 87 + 88· 
~ 
....s 
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Data transfers and operations for each clock cycle are summarized in the program listing 
in Table 68. 

Table 68. Program Listing for Pipelined Single-Precision Sum of Products, 
N=8 

REGISTER TRANSFERS ALU OPERATION 
MULTIPLIER 
OPERATION 

1 . LOAD RA, RB MULT(RA,RB) 
2. LOAD RA, RB MULT(RA,RB) 
3. LOAD RA, RB ADD(P,O) MULT(RA,RB) 
4. LOAD RA, RB; C-- P MULT(RA,RB) 
5. LOAD RA, RB ADD(P,8) MULT(RA,RB) 
6. LOAD RA, RB ADD(P,C) MULT(RA,RB) 
7. LOAD RA, RB ADD(P,8) MULT(RA,RB) 
8. LOAD RA, RB ADD(P,8) MULT(RA,RB) 
9. ADD(P,8) 

10. ADD(P,8) 
11. C--8 
12. Y ..... 8 ADD(8,C) 

The above algorithm imposes no delay between input vectors. The time required to carry 
out the sum of products operation on M pairs of input vectors in succession, each of 
length N, is N x M + 6 cycles. 

Unpiped Mode 

In the unpiped version of the sum of products, the data flow is more straightforward. 
Again, chained mode is employed to allow the AlU and multiplier to operate 
concurrently. Table 69 shows the contents of the data registers at successive clock 
cycles for N = 8 with the FPU operating in unpiped mode. Here, Pi = Ai x Bi, and 
Si = S(i-1) + Pi, with So = o. 

Table 69. Data Flow for Unpiped Single-Precision Sum of Products, N = 8 

RA A1 A2 A3 A4 A5 A6 A7 A8 
RB B1 B2 B3 B4 B5 B6 B7 B8 
8 81 82 83 84 85 86 87 88 
P P1 P2 P3 P4 P5 P6 P7 P8 
C 
y y 

CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

,.... 
o:t 
CO 
CO .... 
(,) 

« 
o:t ,.... 

A new problem can be presented at elK 9 without any delay between the vectors. 2 
Therefore, the time required to compute the sums of products for M pairs of vectors, CI) 

each of length N, is N x M + 2 clock cycles. 
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Comparison of Pipelined and Unpiped Modes 

The following equation can be used to determine which of the two modes provides the 
faster performance in a particular application. Pipelined operation is faster if: 

(M x N + 6)/Fp < (M x N + 2)/Fu, 

where Fp and Fu are the clock rates in pipelined and unpiped modes, respectively. 
Because the unpiped mode's longer clock cycle usually outweighs its savings in cycles, 
pipelined mode provides faster performance for input vectors with N > 4. 

Product of Sums 

The product of sums operation adds corresponding elements of data vectors and 
multiplies the resulting sums. For input vectors A and B, each with N components, the 
product of sums operation yields a single output Y defined as follows: 

N 
Y = 'IT (Ai + Bi) 

i=1 

The product of differences can be computed by simply making the ALU operation 
(A - B) or (B - A). The 'ACT8837 and 'ACT8847 perform this calculation in chained 
mode so that concurrent operation of the ALU and multiplier is possible. The data flow 
and program listing for the product of sums are identical to those for the sum of products, 
except that the roles of add and multiply are reversed. The criteria used to decide 
between pipelined and unpiped modes are also identical to those previously given. 

Vector Divide 

The vector divide operation divides corresponding elements of data vectors to obtain the 
components of the output vector. Hence, for vectors A and B and output vector Y, each 
with N components, 

Yi = Ai / Bi, 1 :5 i :5 N. 

2 The 'ACT8837 and 'ACT8447 perform this calculation using the Newton-Raphson 
~ iterative method. This algorithm, which is described in detail in the SN74ACT8800 Family 
l> Data Manual, calculates the value of a quotient Y by approximating the reciprocal of the 
Q divisor B and then multiplying the dividend A by that approximation. 

00 
00 The following sections review the vector divide programs for the 'ACT8837 and the 
~ 'ACT8847. In the 'ACT8847, the divide algorithm is built-in. 
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SN74ACT8837 Vector Divide 

For division using single-element inputs A and B, the value of the reciprocal of B, 
denoted by X, is determined iteratively using the following equation: 

Xi + 1 = Xi (2 - B x Xi) 

The seed approximation, XO, is assumed to be given. The iteration stops when X is 
determined to the desired level of precision. Assuming the presence of a seed ROM 
providing 4-bits accuracy, three iterations are necessary to correctly determine a single­
precision result X. Given the seed for 1/B = XO, Xi+1 = XI (2 - B x Xi). A is eventually 
multiplied by the value "s. 

An 8-bit seed ROM is commonly employed and gives single-precision accuracy in only 
two iterations and double-precision accuracy in three iterations. Instructions for 
implementing an 8-bit seed ROM are included in the SN74ACT8800 Family Data Manual. 
This example assumes that a 4-bit seed is used to develop the program. 

Pipelined Mode 

The 'ACT8837 performs the vector divide in chained mode. Table 70 shows the data flow 
for pipelined operation. The value of (2 - B x Xj) is denoted as Ti. Note that the value X3 
does not appear, per se, in the table, but is expressed in terms of X2 to save 
unnecessary calculations. The output Y is determined from the calculation of (A x X~ 
x T2 in cycle 17, which is equivalent to A x X3, since X3 = X2 x T2. 

In order to keep Xi available for the final calculation of Xi+ 1, a few programming "tricks" 
are employed to keep the original value of each Xi within the chip while it is being altered 
in the calculation of (2 - B x Xi). First, Xi is stored in the 5 register by adding 0 to it. Then, 
when the 5 register is needed, Xi Is moved to the P register by multiplying it by 1. 

Table 70. Data Flow for 'ACT8837 Pipellned Single.Precision 
Vector Divide, N = 1 

RA XO B 
RB B 
S XO TO X1 
P BxXO XO X1 BxX1 
C 
V 

ClK 1 2 3 4 5 6 7 8 9 10 

RA B 
RB A 
S T1 X2 T2 
P X1 X2 BxX2 AxX2 V 
C 
v V 

ClK 11 12 13 14 15 16 17 18 19 20 
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Data transfers and operationsa.resummari~ed, in the program; listing in Table 7,1._ 
Because no operations begin. on even~numbered cycles,only the odd-nuJTlbered .clock 
cycles are shown. . . . .. , ... 

Table 71. Program Listing for 'ACT8837 F'ipelineC\Single-Precision 
Vector Divide, .N=1 

REGISTER TRANSFERS ALUQPERA:rION " 
MuLTIPLIER '. 
OPERATION' 

1. LOAD RA, RB ADD(RA,O) MULT(RA,RB) 
3. ADD(2,':"P), MULT(S,1) 
5. MULT(S,P) 
7. LOAD RA AOD(P,O) , MULT(RA,P) 
9. ADD(2,-P) MULT(S,1) 

11. 
. , 

MULT(S;P) 
. , 

13. LOAD RA ADD(P,O) MULT(RA,P) 
15. LOAD RB ADD(2,-P) MULT(S,RB) .' . 
17. Y-P MULT(S,P) 

In steps 1, 7, and 13, 0 is added to Xi so that Xi appears two cycles later in the S register. 
In steps 3 and 9, the Xi value inthe S register is multlpliedby 1 s6 that it appears in the P 
register two cycles later. In step 15, Xi (from the S register) is multiplied by the dividend A 
just input to RB. 

Because no operations begin on ,even cycles; two vector divide operations may 
be interleaved, calculating two. quotients in .20 cycles. Table 72 shows the data flow 
for computing two quotients, Y1 and Y2, where Y1 = AlB and Y2 = C/D. The 
approximation for 1/B is denoted by Wi, an~ the approximation for 1/D is denoted by Xi. 
Ti = (2 - B x Wi), and Qi = (2 - D x Xi). 

Table 72. Data Flow for 'ACT8837 Pipelined Slngle.~Precisionlnterleaved 
Vector Divide, N == 2 

RA WO XO B 0 
RB B D 
S WO XO TO 00 . W1 X1 
P BxWO DxXO WO XO W1 X1 BxW1 DxX1 
C 
Y 

eLK 1 2 3 4 5 6 7 8 9 10 

RA B D 
RB A C 
S T1 01 W2 X2 T2 02 
P W1 X1 W2 X2 BxW2 DxX2 AxW2 CxX2 Y1 Y2 
C 
Y Y1 Y2 

CLK 11 12 13 14 15 16 17 18 19 20 
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The program listing for an interleaved vector divide is similar to that for a single divide 
operation, with functions listed in each odd line and duplicated in the next even line for 
the second operation. 

As previously stated, the time needed to compute two single-precision divide operations 
starting with a 4-bit seed ROM is 20 clock cycles. Since a new pair of divides can start at 
ClK = 19, the time required to perform the vector divide operation on two N-dimensional 
vectors is given by the following equation: 

TIME = [18 x CEllING(N/2) + 2] cycles, 

where the ceiling function rounds to the next highest integer for fractional values. With an 
8-bit seed ROM, the time reduces to [12 x CEllING(N/2) + 2] cycles, which equals 
2.5 million divides per second at 15 MHz. 

Unpiped Mode 

Table 73 shows the data flow for a vector divide in unpiped, chained mode. 

Table 73. Data Flow for 'ACT8837 Unpiped Single-Precision 
Vector Divide, N = 1 

RA XO B B 
R8 B A 
S XO TO X1 T1 X2 T2 
P BxXO XO X1 BxX1 X1 X2 8xX2 AxX2 Y 
C 
y y 

ClK 1 2 3 4 5 6 7 8 9 10 

This program uses the same methods as the pipelined version to keep Xi within the chip. 
The time needed to compute a vectOr divide of two N-element vectors is (9N + 1) cycles 
with a 4-bit seed ROM and (SN + 1) cycles with an 8-bit seed ROM. 

Comparison of Pipe lined and Unpiped Modes 

Using a 4-bit seed ROM, pipelined mode is faster if: ~ 
CO 

[18 x CEllING(N/2) + 2]/Fp < (9N + 1 )/Fu, ~ 

where Fp and Fu are the clock rates in pipelined and unpiped modes. As of publication, ~ 
pipelined mode provides faster performance for input vectors with N > 1. ~ 
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A General Principle 

The vector divide example illustrates a general programming principle that should be 
considered whenever a program begins a new instruction every other cycle. In cases 
where the C register is not used, it is simple to interleave another program, even one not 
performing the same function. 

Interleaving programs is not as easy if the C register is used because the C register is the 
only nonpiped register. However, even using the C register, programs may often be 
interleaved by staggering one against the other so that their use of the C register does 
not overlap in time. Many of the programs so far discussed can be thought of as two such 
interleaved programs, with the C register being used to delay the first result until it can be 
combined with the second. (See, for example, the sum of products operation.) 

SN74ACT8847 Vector Divide 

Since the 'ACT8847 has a built-in algorithm for divide, the microprogram is more simple 
than that for the 'ACT8837. Table 74 shows the data flow for pipelined operation. Data 
transfers and operations are summarized in the program listing in Table.75. 
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Table 74. Data Flow for 'ACT8847 Plpelined Single-Precision 
yector Divide 

RA A1 A2 
RB B1 B2 
S 
P A1/B1 
C 
V V1 

ClK 1 2 3 4 5 6 7 8 9 10 

Table 75. Program Listing for 'ACT8847 Plpelined Single-Precision 
Vector Divide 

REGISTER TRANSFERS ALU OPERATION 
MULTIPLIER 
OPERATION 

1. lOAD RA, RB; v-p DIVIDE 

7. lOAD RA, RB; v-p DIVIDE 

13. lOAD RA, RB; v-p DIVIDE 



Note that the microinstructions are presented on the steps indicated (1 , 7, 13, ... ), with a 
six-cycle lapse before the next operands can be input to RA and RB. Performing a vector 
divide of two N-element single-precision vectors takes (6N + 2) cycles in pipelined 
mode. M such pairs of vectors would require [6(N x M) + 2] cycles in pipelined mode. In 
unpiped mode, the equation is 7(N x M). 

Compare Operations on Data Vectors 

In 'inde'pendent ALU mode (unchained), two operands may be compared for equality 
(A= B) and order (A > 8). Additionally, the absolute Values of either or both operands 
may, be compared. The compare function' uses two status bits, the AGTB and AEQB 
output signals. (When any operation other than a compare is' perforrned, either 
by the ALU or the multiplier, the' AEQB signal is used as a zero detect. Hence, numerical 
results cannot be output in the same cycle in which comparison status is output.) 

For greatest efficiency, programs for compare operations should be written without 
requiring conditional branches in thssequencer. If branches can be avoided,the 
rnicrocoding is simplified and the programs are immediately scalable to SIMDsystems 
employing many 'ACT8837 or'ACT8847 chips. 

This section covers vector max/min and, ~st max/min operations. 

Vector MAX/MIN 

The vector max/min operations compare corresponding elements of data vectors and 
select the maximum or minimum value to obtain the components of the output vector. 
Hence, for input vectors A and B and output vector Y, each with N components, 

Yi = MAX/M IN (Ai , Bj), 1 sis N. 

Pipelined Mode 

Table 76 shows the suggested data flow for a pipelined vector MAX operation, where Yi 
is set to the max of (Ai, Bi) for all i. Included are rows to indicate the setting of the chain 
mode instruction bit (19 for the 'ACT8837, 110 for the 'ACT8847) and the status bit being 
sensed. ~ 

~ 
00 
00 
~ 
o 
~ v ,...,. 
z 
en 



en 
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CO 

Table 76. Data Flow for Pipelined Single-Precision Vector MAX 

CHAIN N Y Y Y N Y Y Y N Y 
RA A A1 B1 A2. A2. B2 A3 A3 
RB B1 B2 B3 
S A1 B1 A2. B2 
P A1 A2. 
C 
Y Y1 Y2 

STATUS A>B A>B 
ClK 1 2 3 4 5 6 7 8 9 10 

A comparison starts at ClK = 1, 5, etc., when the chain-mode instruction bit is low. The 
result appears at ClK = 3, 7, etc., indicated by the AGTB and AEQB signals. AGTB is 
saved off-chip for use as instruction bit 16 (output source) at ClK 4, 8, etc. This value for 
16 selects the output source, either the multiplier or the AlU result, at elK 6, 1 D, etc. For 
example, if a comparison result is A > B, the AGTB signal goes high and is used to set 16 
high. 16 then selects the multiplier result (Ai) to output. Similarly, if A :s B, AGTB and 16 
are low, and the AlU result (Bi) is output. The circuitous route taken by Ai on the way to 
the P register is necessary because it is not possible to pass RA or RB through the 
multiplier in parallel with passing the other through the AlU. 

The program is not particularly well-packed and produces the vector max of a pair of 
vectors of length N in (4N + 2) cycles. For M pairs of vectors of length N, the total time is 
(4MN + 2) cycles. The program can be improved by applying the interleaving principle 
previously discussed. The steps are rearranged so that a new operation begins every 
other cycle, thus allowing two compare programs to be interleaved. Table 77 shows the 
suggested data flow for a pipelined vector min/max operation, where Vi = MAX/MIN(Ai, 
Bi) and Zi = MAX/MIN (Ci, Di). 

Table 77. Data Flow for Pipelined Single-Precision Interleaved 
Vector MAX/MIN 

CHAIN N N Y Y Y Y N N Y Y Y Y N 
RA A1 C1 A1 C1 B1 01 A2. C2 A2. C2 B2 02 
RB B1 01 B2 02 
S A1 C1 B1 01 A2. C2 B2 
P A1 C1 A2. 
C 
Y Y1 Z1 Y2 

STATUS A>B A>B A>B A>B 
ClK 1 2 3 4 5 6 7 8 9 10 11 12 13 

N 

02 
C2 

Z2 

14 

~ Again, Ai (and Ci) reaches the P register by an indirect route. However, this tighter ..... 
program performs M vector comparisons, two vector comparisons at a time, in 
[6 x N x CEILlNG(M/2) + 2] cycles. (As previously defined, the ceiling function rounds 
to the next highest integer for fractional values.) In this example, two separate vector 
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comparisons on two-dimensional vectors are performed, giving 6 x 2 x 1 + 2 = 14 
cycles. For M = 2 pairs of vectors, all of length N, the second program is as good as the 
first. For M > 2, the interleaved program performs increasingly better as M gets larger. 

This second program requires more off-chip logic, since the status outputs at CLK 3 and 
4 must be saved separately off-chip for use at CLK 5 and 6, respectively. This problem 
can easily be avoided by starting the calculations on the second pair of vectors two 
cycles later than shown (Le., at CLK 4). The time necessary to perform the vector MAX 
operation on M pairs of N-dimensional vectors, two pairs concurrently, then increases to 
[6 x N x CEILlNG(M/2) + 4] cycles. 

Data transfers and operations for the odd lines only are summarized in the program 
listing in Table 78. The complete program is obtained by repeating the equivalent of 
each odd-numbered line in the next even line for the second pair of vectors. 

Table 78. Program Listing for Pipelined Single·Precision Interleaved 
Vector MAX/MIN 

REGISTER TRANSFERS ALU OPERATION 
MULTIPLIER 
OPERATION 

1. LOAD RA, RB COMPARE(RA,RB) 
3. LOAD RA ADD(RA,O) 
5. LOAD RA; V-PIS ADD(RA,O) MULT(S,1) 

Unpiped Mode 

Table 79 shows the data flow for an un piped vector MAX operation. 

Table 79. Data Flow for Unpiped Single·Precision Vector MAX 

CHAIN N V V N V V N V V 
RA A1 A1 B1 A2 A2 B2 A3 A3 B3 
RB 81 B2 B3 
S A1 B1 A2 B2 A3 
P A1 A2 
C 
V V1 V2 

STATUS A>B A>B A>B 
CLK 1 2 3 4 5 6 7 8 9 

f' 
.;:t­
OO 
00 
I­

The status bit is saved off-chip at CLK = 2, 5, etc., and used at CLK = 3, 6, etc., as U 
the 16 bit of the instruction. 16 selects either the multiplier or ALU result to output to the ~ 
Y bus at CLK = 4,7, etc. f' 

Z 
The program computes the vector comparison of M pairs of vectors of length N in fJ) 

[3 x M x (N + 1)] cycles. 
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Compa.rison of Pipe lined and Uripiped Operati6~ . 

Pipelined operation is faster if~ 

[6 x N x CEILlNG(M/2) + 2J/Fp < (3 x M x N + 1)/Fu, 

whereFp and, Fu are the clock rat~jn pipelined.andvnpiped mOdes, resp~cti~eIY. As of 
publication, pipelined. mode provides faster performance for,~ >,1. 

Ust MAX/MIN "'," ;, 

The list max(rhin operatiOr:1SSelectthEi maximum ormjnirn,un;l value,Z,of a list of N 
elements. Hence, for input vector A with N components and output Z, 

" , 

Z = MAX/MIN (Ai) , "1 ::;i::; N. 

List min/max is an essential operation in computer graphics because it is used to find the 
"extents" of a polygon or polyhedron. The extents are the maximum values of X, Y; and Z 
among the .list of vertices for the 'object in question. Many fotms of comparison are 
possible since the absolute value of either or both ALU operands may be employed. 
However, the example in this section assumes that the largest element of a list of 
N elements .is desired. ' 

Pipelined Mode 

Table 80 shows the data flow for a pipeli~ed list MAX op~ration, 
where M1 = MAX(A1, A2);Mi == MAX[M(i"::'1), A(i+1)],2 ::; I::; N - 2.;' 

Table 80. Data Flow for Pipelined .Single-Precision List MAX 

CHAIN Y N Y Y Y N Y Y Y N Y Y Y Y Y Y 
RA A1 A1 A2.. A3 A3 A4 A4 ' . • ,t,,' 

RB 'A2 ' , ... 

S A1 A2 M1 M2 M3 
p A1 A3 A4 
C M1 M1 M2 M2 M3 " 

y 
; , M3 

STATUS A>B A>B A>B 
CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

; 

As with vector comparison, the max/min of the absolute values isaVaiiable, since the 
chip operates in independent ALU mode on the comparison steps. The comparison is 
between the RA register and the RS register in step 2 and between RA and C in steps 6, 
10, etc. In these steps, the chip is switched into unchained, independent ALU mode. The 
status is saved off-chip and used to set the SRCC Signal, which selects whether the P or 
S data goes into the C register in steps 5, 9, etc. 
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When the list max is in the C register, at ClK == 4N - 2, the C register contents must 
then be passed through one of the functional units to the output. The MAX/MIN of an 
N-element Ust therefore takes 4N cycles. M such vectors can be processed in 
[M(4N - 1) + 1] cycles. 

Data transfers and operations for the list max operation are summarized in the program 
listing in Table 81. The program is carried but in pipelined mode, alternating between 
unchained and chained modes. The list max reaches the output in cycle 4N. 

Table 81. Program Listing for Pipellned Single-Precision List MAX 

REGISTER TRANSFERS ALU OPERATION MULTIPLIER 
OPERATION 

1. LOAD RA ADD(RA,O) 
2. LOAD RA, RB COMPARE(RA,RB) 
3. LOAD RA ADD(RA,O) MULT(S,1) 
4. 
5. C +- PIS 
6. LOAD RA COMPARE(RA,C) 
7. LOAD RA ADD(C,O) MULT(RA,1) 
8. 
9. C +- PIS 

REPEAT STEPS 6 THROUGH 9 UiJTIL STEP 4N-2 IS RjACHED, THEN: 
4N - 2 Y +- S ADD(C,a) 

Comparison of Pipelined and Unpiped Modes 

The equivalent unpiped program takes [M(3N -1) + 1] cycles. Pipelined mode is fastest 
if: 

[M(4N - 1) + 1J/Fp < [M(3N - 1) + 1]/Fu, 

where Fp and Fu are the clock rates in pipelined and unpiped modes, respectively. As of 
publication, pipelined mode provides faster performance for all M and N. 

Graphics Applications 
This section summarizes the concepts related to creating a three-dimensional image " 
and examines a few of the matrix operatiohs used in three-dimensional graphics :; 
processing. These operations include coordinate transformations and clipping 00 
operations. Additionally, this section illustrates some of the programming techniques t; 
used to perform these operations. « 
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Creating a 3·0 Image 

ConceptUlllly, translating 3-D images to 2~D display screens involves defining a view 
volume that limits the scope of the vista the viewer can see at one time. For simplicity, a 
standardized frame bf reference, in which the viewer's eye is located at the brigin of the 
coordinate system, is adopted in this example. . 

As illustrated in Figures 76a and 76b, the arbitrary world coordinates of the objects under 
scrutiny are transformed into normalized "viewing". or "eye" coordinates that reflect this 
frame of reference. Once the normalizing transformation is complete, the images within 
the view volume are projected onto a 2-D view plane, which is assumed to be located, 
like a projection screen, at a suitable relative distance from the viewer (see Figures 76c 
and 77). 

A basic model for creating a 3-D view, illustrated in Figure 78a, transforms arbitrary world 
coordinates to normalized viewing coordinates and then "clips" the image to remove 
lines that do not fall within the normalized view volume. Clipping is followed by projecting 
the image to the 2-D projection plane (or "window"). The image is then mapped onto a 
canonical 2·0 viewport display and from there onto the physical device. 

To incorporate image transformations, another model must be adapted (see Figure 78b). 
After clipping, instead of projecting to the view plane, a perspective transformation is 
performed on the Clipped viewing coordinates, transforming the view volume into a 3-D 
Viewport, the "screen system" in which image transforms are performed. Then the image 
is projected to the 2-D viewport display and onto the physical device. 

In .both models, the Clipping operation is performed on coordinates in the vi(3wing 
system. This approach is referred to as "clipping in the eye system." In practice, clipping 
is often performed after transformation to the screen system. A trivial accept/reject test is 
performed on viewing coordinates, the image is transformed to the screen system, and 
then Clipping is performed. 
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Y vup' 
c----vup 

x 

. Figure 76a. In a sequence of transformations, the world coordinate positions for the house are 
transformed into the normalized viewing coordinate system (also called the eye system). For clarity, 
the house is pictured outside the view column. Also shown are the direction vectors VUP (view up), 
VPN (view normal), and VUP' (the projection of VUP parallel to VUN onto the view plane. 

Yv 
vup' 

Figure 76b. After a series of translations, 
rotations, and shearing and scaling 
operations, the view volume becomes the 
canonical perspective projection view volume, 
which is a truncated pyramid with apex at the 
origin, and the house has been transformed 
from the world to the viewing coordinate 
system. 

Figure 76c. This figure illustrates the 
projection of the house from the perspective 
of the viewer, with eye located at the origin of 
the coordinate system. 

Figure 76. Creating a 3-D Image 

" "d' 
00 
00 
~ 
u « 
"d' 

" J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing Z 
Company, Reading, MA, 1982,291-293. Reprinted with permission. en 
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The following sections illustrate programming techniques used in both of these 
approaches to normalizing, clipping, and tra,nsforming a 3-D image. The operations are 
grouped as "3-D Coordinate Transforms," "Clipping in the Eye System," and "Clipping in 
the Screen System." 

Y 

VIEW VOLUME 

WORLD COORDINATE SYSTEM PROJECTION VIEWING (EYEI 
PLANE COORDINATE SYSTEM 

Figure 77. View Volume 

Adapted with permission from a paper by Stephen R. Black entitled "Digital Processing of 3-0 Data to Generate 
Interactive Real-Time Dynamic Pictures" from Volume 120 of the 1977 SPIE journal "Three Dimensional 
Imaging." 
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Figure 78a. Model of Procedure for Creating a 3·0 Graphic 
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DEVICE PHYSICAL 
COORD DEVICE 

Figure 78b. Model for Creating and Transforming a 3·0 Image 

Three-Dimensional Coordinate Transforms 

One of the computationally-intensive functions of a 3-D computer graphics system is that 
of transforming points within the object space, such as translating an object or rotating 
an object about an arbitrary axis. Equally complex is the transformation of pOints within 
the object space (or "world coordinate system") into pOints defined by a particular 
perspective and located within the viewing space (or "eye coordinate system"). This 
latter process, known as the viewing transformation, generates points in a left·handed " 
cartesian system with the eye at the origin and the z-axis pointing in the direction of view. "=t 
The arbitrary world-system view volume and the objects therein are translated, rotated, ~ 
sheared, and scaled to match the predefined, canonical view volume of the eye system. I-

(,) 

For a "realistic" image, the canonical view volume will be a truncated pyramid that mimics 
the cone of vision available to the human eye. Alternatively, the volume can be a unit 
cube. The series of operations that make up each transformation differ, but if 
homogeneous coordinates are used, either transformation can be expressed as a 
simple matrix multiply. 
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For each point (X, V, Z) in the world system, a projection inhomogeneous coordinates is 
denoted by (Xh, Vh, Zh, Wh) where, . .", 

(Xh, Vh, Zh, Wh)= (X x Wh, V x Wh, Z x Wh, Wh), 

and Wh is simply a scale factor, typically unity whenJloating point numbers areus.ed. 
(With fixed point values, non unity values of Wh are used to maximize use of the numeric 
range.) To transform a point in homogeneous coordinates, it is post-multiplied bya4x4 
transform matrix:;',')~",: 

[Xh', Vh', Zh', Wh'] = [Xh, Vh, Zh, Wh] x [A11 A12 A13 A14] 
A21 A22 A23 A24 

•. A31.A32A33,A34 
A41A42A43A44 

The transformed pOint can later be converted back to 3-space by dividing byWh: . 

The transform matrix is constructed by multiplying together a sequence of matrices, 
each of which performs a simpl!:! task. The product of 4 or 5 elementary matrices may be 
used to perform some complex overall operation on a set of points representing an 
object or an entire scene. Once constructed, the transform matrix is used on each point 
of the object to be transformed. 

This section describes two approaches to the viewing transformation--the gener'aJ c~se 
and the specific yet typical case in which a reduced version of the transform matrix m/iiY 
be used. Performance times are given for 15-MHz and 3D-MHz frequencies, which 
roughly correspond to the operating speeds of the '8837 and '8847, respectively. 

Operation with General Transform Matrix 

Table 82 shows part of the data flow for the pipelined and chained program for the 
product of the homogeneous point [X, V, Z, W] and the 4 x 4 transform matrix A~ 

RA 
RB 
5 
P 

·C 
Y 

ClK 
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Table 82. Partial Data Flow for Product of [X, V, Z, W] and 
General Transform Matrix 

X y Z W x y z w x 
A11 A21 A31 A41 A12 A22 A32 A42 A13 

51 (1) 53(1) 54(1) '51 (2) 
P1 (1) P2(1) P3(1) P4(1) P1(2) P2(2) P3(2) 

P2(1) P2(1) 53(1) P2(2) 

1 2 3 4 5 6 7 8 9. 

y 

A23 
T1 

P4(2) 
P2(2) 

X! 
10 



The technique is that already illustrated for the sum of products operation. The numbers 
in parentheses indicate which column ofthe transform matrix is involved in the operation. 
Here, P1 (i) = X x A1 j, P2(i) = V x A2i, etc. 51 (i) = P1 (i) + 0, 53(i) = 51 (i) + P3(i), 54(i) 
= P2(i) + P4(i), and Ti = 53 (i) + 54(i). T1 = X', T2 = V', T3 = Z', T4 = W'. As in the sum 
of products illustration, in order to make the most efficient use of the 5 register, P2 is 
used directly instead of summing by 0 to form 52. 

The time to transform N pOints in a system is 16N + 6 cycles. The system can transform 
approximately .94 million points per second at a clock rate of 15 MHz and 1.875 million 
pOints per second at a clock rate of 30 MHz. 

Operation with the Reduced Transform Matrix and Wh = 1 

Because viewing transformations are frequently carried out using a single-vanishing­
point perspective, the 3 x 1 column that performs perspective transformations with 
multiple vanishing pOints is often not used. Additionally, with Wh = 1, the 1 x 1 scale 
factor is often equal to one. In these cases, the transform matrix takes the following form: 

[".0] ... 0 
".0 
".1 : 

With multiple vanishing points, and in other graphics operations such as clipping, 4 x 4 
matrices are used with nonzero values in the fourth coiumn. The transform matrix is 
termed "reduced" when its fourth column is the same as that previously shown. In such 
cases, the transform of each point requires only 9 multiplications and 9 additions. 

Table 83 shOws part of the data flow for the reduced matrix program. 

Table 83. Partial Data Flow for Product of [X, V, Z, W] and Reduced 
Transform Matrix 

RA X Y Z x X Y Z x X 
RB A11 A21 A31 A41 A12 A22 A32 A42 A13 
5 51 (1) 52(1) T1 
P P1 (1) P2(1) P3(1) P1 (2) P2(2) P3(2) 

P1(1) P2(1) 51 (1) P1 (2) P2(21 
Y X' 

eLK 1 2 3 4 5 6 7 8 9 

~ 
'I::t co 
co 
~ 
u « 

Again, the numbers in parentheses refer to the column of the transform matrix involved in 'I::t 
~ 

the operation. In this case, however, only the first three columns are used. Hence, for Z 
1 :s i :s 3, P1(i) = X x A1i, P2(i) = V x A2i, etc. 51 (i) = P1(i) + A4i. 52 (i) = P2(i)+ P3(i), en 
and Ti = 51 (i) + 52(i). T1 = X', T2 = V', T3 = Z'. Note that W values are not calculated 
since they are all 1. 
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The time to tran~form N pOints in a system is (12N + 5) cycles; The system can transform 
1,25 million points per second 'at 15 MHz and 2.5 million points per second at 30 MHz. 

Three-Dimensional Clipping 

Once an image istransfotmed into viewing coordinates, it mustbe clipped so that lines 
extending outside the view volume are'removed. There are several approaches to 
Clipping, some moreefficientthan others. This section surveys the most commonly used 
techniques and estimates the throughput of several single- and multi-processor 
arrangements. ' 

First considered is the technique of fully clipping the line segments to fit within the 
viewing pyramid in the eye coordinate system. This technique is commonly referred to 
as "Clipping before division." 

Clipping in the screen system is considered second; This method eliminates lines that 
are obviously invisible in the eye system; the rest are clipped after projection to the 
screen. 

Clipping in the Eye System 

If an object is composed of straight line segments and a perspective view is to be taken, 
the viewing volume is a pyramid defined by the following plane equations: 

x = K x Z, X = -K x Z, Y = K x Z, Y = -K x Z, 

where K is a constant to be defined below. Thus, -KZ < (X,V) < KZ. Two other clipping 
planes are usually employed at Z = Nand Z = F, where Nand F are the near and far 
limits, respectively, of the view. This gives: ' 

N < Z < F. 

Looking in the direction of the z-axis (see Figure 79), the eye can imagine a screen 
located at a distance N from the eye. K is formed from the half-screen height divided 
by N. A specific line segment might intersect any or all of the six clipping planes. One 

rJ) common approach to this problem is to use six processors in a pipeline, each Clipping 
Z the line to one plane. 
--..I 
~ 
l> 
(") 
-t 
00 
00 
~ 
--..I 
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Figure 79. Viewing Pyramid Showing Six Clipping Planes 

Consider the case of clipping the line defined by the points P1 = (X1, Y1, Z1) and 
P2 == (X2, Y2, Z2) against the Z = N plane. First computed are (Z1 - N) and (Z2 - N). If 
both are negative, the line is invisible, and a notation meaning an empty line is passed 
on. If both are positive, both ends of the line are on the visible side of the Z = N plane, 
and the line is passed on unclipped. 

When one of these computed values is negative and the other positive, the line must be 
clipped and the new values for its endpoints passed down the rest of the pipeline. To do 
so, a parameter t that indicates what fraction of a segment Z1Z2, and therefore of P1 P2 
as a whole, lies on the P1 side of the Z = N plane, is computed as follows: 

t = (Z1 - N)/(Zl - Z2). 

In general, the value of the parameter is derived as described in Newman and Sproull,1 
using the following equations of the line: X = X1 + (X2 - X1)u; Y = Y1 + (Y2 - Y1)u; 
Z = Z1 + (Z2 - Z1)u. These equations are each inserted into the corresponding plane ~ 
equation. In the current example, N = Z1 + (Z2 - Z1)t. ex) 

Since N is between Z1 and Z2, t is always positive, and the signs of Z1 - Nand Z2 - N 
are used to determine which end to clip. If Z1 - N is negative, the P1 end is clipped, 
using the value of t to determine the delta in X1 and Y1. The coordinates for the new 
endpoint of the shortened line segment are given by: 

X1' = X1 + (X2 - X1) x t, Y1' = Y1 + (Y2 - Y1) x t, Z1' = N. 

1 Newman, w. M., and Sproull, R. F., Principles of Interactive Computer Graphics, McGraw-Hili, 1979. 
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Similarly for the case when the P2 end must be clipped: 

X2' = X1 + (X2 - X1) x t, Y2' = Y1 + (Y2 - Y1) x t, Z2' = N. 

An alternative to clipping to one plane at a time entails clipping to all six planes at once. 
Both approaches are examined in the following sections. 

Clipping to One Plane at a Time 

When a pipeline of six processors is used, each clipping the same line to one plane, 
each processor must wait for data from the previous processor and hold its solution until 
the next processor is ready to receive it. There is no' reason to seek shortcuts through the 
computations by including branches in the program because there is little point in one of 
the processors completing its task earlier than the rest. This statement is true whether 
the six processors are driven from the same or from separate sequencers. Similarly, 
operating the pipeline asynchronously buys little time. Synchronous operation in the 
case of a clipping pipeline is likely to be almost as fast aS,and much simpler and cheaper 
than, asynchronous operation. 

Because shortcuts are not benefiCial, the program can be written assuming the 
maximum amount of work will be required at each stage, whether the line requires 
clipping at that stage or not. If it is assumed that invisible lines are caught and eliminated 
as a separate, initial computation, branches from the clipping pipeline can be eliminated 
entirely. An alternative approach, in which branches would be benefiCial, involves using 
two, three, or more 'ACT8837 or 'ACT8847 chips in parallel, rather than as a pipeline, 
each performing all six stages of clipping for individual lines. The program lends itself to 
this approach because the computations in each stage of the clipping pipeline are 
identical. 

The method for clipping a line segment against the Z = N plane as one stage in a 
clipping pipeline, assuming invisible lines have been previously eliminated, will be 
illustrated. Two t values are computed - t1 for clipping the P1 end of the line segment 
and t2 for clipping the P2 end. If Z1 < N, t1 = (Z1 - N)/(Z1 - Z2); otherwise, t1 = O. If 
Z2 < N, t2 = (Z2 - N)/(Z1 - Z2); otherwise, t2 = O. The new endpoints for the line 
segment are computed as follows: 
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X1' = X1 + (X2 - X1) x t1, 
Y1' = Y1 + (Y2 - Y1) x t1, 
Z1' = Z1 + (Z2 - Z1) x t1 

X2' = X2 - (X2 - X1) x t2, 
Y2' = Y2 - (Y2 - Y1) x t2, 
Z2' = Z2 - (Z2 - Z1) x t2. 



Note that the denominator is the same in the equations for t1 and t2; it is this reciprocal 
computation that is expensive in time. However, in the 'ACT8837, it is also simple to 
interleave other computations with that of the reciprocal, and in the '8847, the built-in 
divide is very fast. 

A simple trick is used to compute the ti values in a streamlined fashion. Hi = (Zi - N) is 
first computed, followed by the sum Hi' = Hi - 1 Hi I. Note that if (Zi - N) is negative, 
Hi' = 2Hi = 2(Zi - N); otherwise, Hi' = O. Hence, in a straightforward manner, a suitable 
numerator for ti has been computed, regardless of the sign of (Zi - N). This approach 
avoids resorting to an "if/then" decision to compute ti. 

To scale the denominator to the numerator, 0 = 2(Z1 -Z2) is computed, and the 
Newton-Raphson algorithm in the '8837 or the built-in divide instruction in the '8847 is 
used to determine the values of 1/0, t1 = IHfl 01, and t2 = IHil 01. New values of 
(X1, Y1, Z2) and (X2, Y2, Z2) are then computed using t1 and t2. 

The data flow and program listing for the clipping against Z = N operation as per­
formed on the 'ACT8837 are given in Tables 84 and 85. Here, t1 = 1 (Hi - 1 Hi 1 )/0 I. Also, 
d = Z1 - Z2, H1 = Z1 - N, H1' = H1 - IH11, H2 = H2 - IH21, Ri = successive 
approximations for 1 I d, Ti = (2 - d x Ri), and R(i + 1) = Ti x Ri. 

Table 84. Data Flow for Clipping a Line Segment Against the Z = N Plane 
USing the SN74ACT8837 

CHAIN Y Y Y Y N Y N Y Y Y Y Y Y Y N N 
RA Z1 Z1 Z2 RO X2 Y2 d H1' H2' 
RS Z2 N N d X1 Y1 O-S 

S d H1 H2 RO H1' TO H2' X2- Y2- R1 T1 X1 Y1 

P dxRO RO R1 dxR1 0-8 1/0 R1 
C H1 H2 H2 1/0 

Y d H1' H2' X2- Y2-
X1 Y1 

STATUS 
ClK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

CHAIN Y Y Y Y Y Y Y Y 

RA (X2-
xi) 

(Y2-
Y1) 

(Z2-
Z1) 

(X2-
xi) 

(Y2-
Y1) 

(Z2-
Z1) 

RS X1 Y1 Z1 X1 Y1 Z1 
S t2 X1' Y1' Z1' X2' Z2' Z2' 

P t1 t2 (X2-
X1) 

(Y2-
Y11 

(Z2-
Z1) 

(X2-
X1) 

(Y2-
Y1) 

(Z2-
Z1) 

xt1 xt1 xt1 xt2 xt2 xt2 
C t1 t1 t2 t2 t2 
Y X1' Y1' Z1' X2' Y2' Z2' 

STATUS 
ClK 18 19 20 21 22 23 24 25 26 27 28 
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Table 85. Program Listing forClippir;l9 a Line Segment, Against tn" Z=, N PI~ne 
US,i"g the ,SN74ACT8837 

, 

MULTIPLIER 
REGISTER TRANSFERS AlU OPERATION 

OPERATION 
1. LOAD RA,RB y ... s ADD (RA,-RB) 
2. LOAD RA, RB ADD (RA, - Ra) 
3. LOAD RA, RB ADD (RA,-RB) 
4. LOAD RA, RB; C-S· ADD (RA,O) MULT(RA,RB), 

, , 
k' \ 

5. LOAD RA, RB y .... s C-s 'ADD (O,'-ICI) 
6. ADD (2,-P) , , MULT(S.I)' 
7. V-S ADD (C, -ICI) 
8. LOAD RA" RB V-S ADD (RA,-RB) MULT(S,P) . '," 

9. v-S ADD (RA, -RB) .. 

10. LOAD RA ADD (P,O) . MULT(RA,P) 
11. 
12. LOADRB ADD (2,-P) MULT(S,RB) 
13. 
14. MULT(S,P) 
15. 
16. LOAD RA C-P MULT(IRAI,IPI) 
17. LOAD RA MULT(IRAI,ICI) 
18. LOAD RA C-p . MULT(RA,P) 
19. LOAD RA ADD (P,O) . MUL T(RA,C) 
20. LOAD RA, RB V-S ,ADD (P,RB) MULT(RA,C) 
21. LOAD RA, RB V-S C ...... S ADD (P,RB) 
22. LOAD RA, RB v-S ADD (P,RB) MULT(RA,C) 
23. LOADRA, RB MULT(RA,C) 
24. LOAD RB V-S ADD (P,RB) MULT(RA,C) 
25. LOAD RB V-S ADD (P,RB) 
26. V-S ADD (P,R6) 
27. 
28. 

In pipelined mode, computing (Z1 -~) t~kes 2 cycles. This v~I,\Jeis passed off-chip~l'Jc;! 
used to get the first approximation to 0.5/(Z1 - Z2) from,an 8-bit seed ROM. Ite,ration to 
correctly determine the value begins in the 4th cycle, with subsequent operations 

en starting on even-numbered cycles. The computations of H1'and H2'are interleaved with 
2 the divide algorithm and are completed before it. ' ..... 
~ 
l> 
(') 
-I 
00 
00 
~ ..... 

(X2 - X1), (Y2 - Y1), and (Z2 - Z1) are also ~omputeqduring th~divide.The'vaiues of 
t1 and t2 are ready in steps 18 and 19. New values of X1, X2,Y1, Y2, Z1,andZ2 are all 
computed and output by step 28. Each chip, therefore, clips against one Clipping plane 
in 28 cycles. With a two-cycle overlap, the hextline segment can be presented in cycle 
26 . 
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For the two X and two Y clipping planes, the c.alculations are slightly more complicated. 
For the X = KZ plane, the two parameters ti are defined in terms of the values W1 = KZ1, 
W2 = KZ2 and H1 = W1 - X1, H2= W2 - X2 as follows: 

t1 = I H1'/;2(H1 - H2) I and t2 = I H2'/2(H1 - H2) I, 

where, as before, Hi' = Hi - I Hi I. The equations for the new endpoints, (X1', Y1', Z1') 
and (X2', Y2', Z2'), are the same as before. It is still possible to compute the new 
endpoints in under 30 cycles. At 15 MHz, a six-chip '8837 system would clip 577,000 line 
segments per second. 

In the '8847 a similar process is employed, but the built-in divide instruction is used 
beginning in step 7 and ending in step 15. t1 and t2 are calculated by step 18, and the 
entire operation completes in step 27, one cycle shorter than for the '8837. The data flow 
is shown in Table 86. A six-processor '8847 system operating at 30 MHz would clip 
1.2 million line segments per second with a new operation beginning every 25 cycles. 

Table 86. Data Flow for Clipping a Line Segment Against the Z = N Plane 
USing the SN74ACT8847 

RA Z1 Z1 Z2 X2 0.5 Y2 H1' H2' 
RB Z2 N N X1 d Y1 SAME AS FOR 

S d H2 X2- H1' Y2- '8837 
H1 X1 H2' Y1 

P 1/D t1 t2 
C H1 H2 1/D t1 STEPS 

·Y d X2- H1' H2' Y2- 20 
X1 Y1 THRU 

STATUS 28 

ClK 1 2 ~ 4 5 6 7 8 14 15 16 17 18 

Since the performance levels obtained from the six-chip systems described below are 
slower than the rate of endpoint transformation by a single-chip system, some further 
speed improvement is desirable. Hence, rather than going through the code for clipping 
to the X and Y planes, another approach is proposed. 

Clipping to All Six Planes at a Time ..... 
~ 

The "window edge Clipping method" derived in Newman and Sproull can be used to clip CO 
CO 

to all six planes at once. Recall that the viewing volume for a perspective view is a I-
pyramid defined by the following plane equations: U 

<t 
~ ..... X = K x Z, X = -K x Z, Y = K x Z, Y = -K x Z, Z = N, Z = F, 
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where K = SIN, as defined' in S' previous section. 'Given a segment . with endpoints 
P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2), to perform the entire clipping operation on all 
six planes at once, the following two six-tuples must be computed: 

0= (W1+X1, W1-X1,W1+Y1, W1-Y1, Z1-N, F..,.Z1) = (01,02, .. . ), 
R = (W2+X2, W2-X2, W2+Y2, W2-Y2, Z2-N, F-Z2) = (R1, R2, ... ), 

where W1 = KZ1 and W2 = KZ2. 

Consider the case where X1 < -W1. Then, W1 + X1 < 0; i.e., 01 < O. In general, a 
negative element of 0 indicates that P1 is on the invisible side of one of the clipping 
planes, while a negative element of R indicates the same for P2. To clip the line, the six 
parameters ti for clipping the P1 end and the six parameters Si for clipping the P2 end are 
computed. Here, ti20=200i/(Oi - Ri) and si = Ri/(Rj-Oi). (Again, the equations of the 
line as described in Newman and Sproull are used). 

For example, to find the value t1 for clipping P1 to the X = -W = -KZ plane, the 
following equation is used: 

X1 + (X2 - X1)t1 = "'"K[Z1 +(Z2 - Z1)t11. 

Solving for t1, 
\ 

t1 = (X1 + W1)/[(X1 + W1)-(X2+ W2)1 = 01 1(01 - R1). 

In general, ti = Qi/(Oi - Ri). Similarly, Si=Ri/(Ri-Oi). 

To actually carry out the computations of ti and si, the trick discussed above is 
performed, and each element of 0 and R is replaced with the difference of the element 
and its absolute value, to form 0' and R'. That is, . 

Oi' = 2 x Oi if Oi < 0, and Qi' =;: 0 otherwise. 
Ri' = 2 x Ri if Ri < 0, and Ri' = 0 otherwise. 

Next calculated is ti = 0j'/[2(Oi - Ri)] and si = Ri'/[2(Ri-Oi)], followed by T1 = MAX(ti) 
and T2 = 1 - MAX(Si). The P1 end is clipped using T1 and the P2 end is clipped using 
T2. 

:2 In an '8837 three-processor parallel system, in which each processor is given the task of 
~ computing two ti and two si values, computing the OJ' and Rj' values takes 14 cycles, 
» with the values of 0i - Ri computed by step 13. The six divides, 0.5/(Oi - Ri), are 
(") completed in step 30, assuming an 8-bit seed ROM is used. The maximin operations 
~ take place in parallel in two processors and complete at step 54 (24 + 30), andth~ new 
00 endpoints are ready by step 60 (6 + 54). The timing is the same using the '8847. 
~ 
N The data flow and program listing for computing t1, t2, s1, and s2 by one of the three 

'8837 processors is given in Tables 87 and 88. . 
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Table 87. Data Flow for Computing t1. t2. s1. and S2 Using an SN74ACT8837 

CHAIN y y y y y N N N y y 
RA K K W2 01 
RB Z1 Z2 X1 X1 X2 X2 R1 
S 01 02 R1 01' 02' R1' 
P W1 W2 
C W1 W2 01 02 R1 
Y 01' 02' R1' 

STATUS 
ClK 1 2 3 4 5 6 7 8 ·9 10 

CHAIN Y N Y y Y y y y y y 
RA 02 RO 
RB R2 d1 
S R2 01-R1 02-R2 R2' RO TO 
P dxRO RO R1 
C R2 
Y 01-R1 02-R2 R2' 

STATUS 
ClK 11 12 13 14 15 16 17 18 19 20 

CHAIN y y y y y y y y N N 
RA 01' 02' R1' 
RB 0-5 R2' 
S R1 T1 1/02 
P dxR1 0-SR1 1/01 1/02 t1 t2 S1 S2 
C 1/01 1/01 
Y t1 t2 S1 S2 

STATUS 
ClK 21 22 23 24 25 26 27 28 29 30 

NOTE: Cycles 13, 15, 17, 19, ... ,25 compute 1/01 = 0.5/d1; 
Cycles 14, 16, 18,20, ... ,26 compute 1/02 = 0.5/d2, di = Oi - Ri. 

.-.," 
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Table 88. Program Listing for Three-Processor Clip to Compute t1. t2. s1. 
and 82 Only 

REGISTER TRANSFERS ALU OPERATION MULTIPLIER 
OPERATION 

1. LOAD RA, RB MUL T (RA,RB) 
2. LOAD RA, RB MUL T (RA,RB) 
3. LOAD RB C-P ADD (P,RB) 
4. LOAD RB C-P ADD (C, -RB) 
5. LOAD RB C-S ADD (C,RB) 
6. Y-S C-S ADD (C,-ICI) 
7. y-S C-S ADD (C,-ICI) 
8. Y-S ADD (C,-ICI) 
9. LOAD RA, RB ADD (RA,-RB) 

10. LOAD RA, RB Y-S ADD (RA,-RB) 
11. LOAD RB, RB Y-S C-S ADD (RA,-RB) 
12. Y-S ADD (C,-ICI) 

CODE FOR TWO DIVISIONS 
25. LOAD RA Y-S C-P MULT (RA,P) 
26. LOAD RA Y-S ADD (P,O) MULT (RA,P) 
27. Y-S MULT (RA,C) 
28. Y-S MULT (S,RB) 

This approach facilitates the transform of 288,000 line segments per second in a 3-chip 
'8837 system running at 15 MHz and 576,000 line segments in an '8847 system running 
at 30 MHz. If branches are permitted in the sequencer, a considerable speedup is 
available for situations in which a large proportion of line segments are either invisible, 
and may be eliminated, or are completely visible, and may be passed without clipping. A 
single-processor system takes no more than 32 cycles, sometimes as few as 10 cycles, 
to reject an invisible line, whereas it takes 91 cycles to process lines that need both ends 
clipped. Hence, in a situation where 50% of the line segments are invisible, the speed is 
in excess of 360,000 line segments per second at 20 MHz and 540,000 segments/ 
second at 30 MHz. It is not uncommon for 80% of lines to be invisible, in which case the 
speed would increase to 584,000 line segments at 20 MHz and 877,000 line segments at 
30 MHz. 

(J) To take advantage of this speedup, the only change in the sequence given above js that 
2 while computing Q and R, the logjcal AND and OR is formed for the signs of the 
~ corresponding pairs of values, Qj and Ri. This is best performed off-chip if the '8837 is 
l> being used but may be done using independent ALU (unchained) mode in the '8837 or a 
n logical operation in the '8847. For the '8837, with two operands Qj and Ri, Table 89 
~ shows the A > Bstatus bit for an A > BcomparisononA=-Qjx IRil and B = IQil x Ri 
00 for all signs of Qj and Rj. 
~ ...... 
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Table 89. A > B Comparison Function Table 

Sign QI Sign RI Sign A = -QI x IRJi Sign B = IQII x RI A>B A=B 
- - + - T F 
- + + + F T 
+ - - - F T 
+ + - + F F 

The A > B status provides the needed AND function of the sign bits of Oi and Ri. In 
computing these A > B values, if A > B is TRUE, the sequencer branches to code that 
rejects the line as invisible. A comparison A > B of A = (Oi x I Ri I) and B = (I Oi I x Ri) 
gives the logical AND of the complement of the sign bits. It is TRUE when both Oi and Ri 
are positive. If all six values are TRUE, the sequencer can branch to code that passes the 
line segment unclipped. 

For a three-processor parallel system, lockstep operation with a single sequencer is still 
possible since aU three processors are working on the same line segment, and the 
branch options apply equally to them aU. The estimated time for a three-processor 
system is 56 cycles; not much interleaving is possible. 

Now that the operations have been reduced to a minimum, the remaining steps are 
necessarily sequential. Rejecting invisible or passing totally visible line segments without 
division, however, is still beneficial. 

Clipping in the Screen System 

In most graphics systems, full line clipping is not performed in the eye system. Instead, a 
trivial accept/reject test is performed, in which the line segments are simply tested 
against the six clipping planes. If a line has both ends on the invisible side of anyone of 
the Clipping planes, it is rejected. Lines surviving this test may still be outside the viewing 
pyramid. In any case, the lines are transformed to the screen coordinate system and 
then clipped against a cube defined by the simple plane equations -1 < (X, V, Z) < 1. 
The next three sections describe this process. 

Trivial Accept/Reject Test 

In the eye system, the clipping planes are: 

X = W, X = -W, V = W, V = -W, Z = N, and Z = F, 
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where W = K x Z. After -W1 and -W2 are computed, a sequence of comparison 
operations are performed, summarized as follows: 

with X1 in RB and -W1 in P, 
with X1 in RA and -W1 in e, 
with Y1 in RB and -W1 in e, 
with Y1 in RA, 
with Z1 in RB and N in RA, 
with Z1 in RA and F in RB, 

P > RB (Le., -W1 > X1) 
RA > lei (Le., X1 > W1) 
e> RB 
RA > I e I comparison 
RA > RB (Le. N > Z1) 
RA > RB (Le., Z1 > F). 

These six operations are carried out in successive cycles and then repeated for (X2, Y2, 
Z2). The two six-tuples are saved off-chip and a bit-wise AND is carried out. If anyone of 
the resulting six boolean values is TRUE, the line is rejected. This entire operation takes 
only 16 cycles, thereby providing a speed of 1,071,000 line segments per second at 
15 MHz and 2,143,000 line segments per second at 30 MHz. The data flow for an accept/ 
reject test is given in Table 90. Accept/reject testing of individual points takes only 
8 cycles. 

Table 90. Data Flow for Accept/Reject Testing 

CHAIN N N Y Y Y Y Y Y Y Y Y Y Y Y N N 

RA K K Xl Yl N Zl -W2 X2 -W2 Yl N Z2 

RB Zl Z2 Xl Yl Zl F X2 -W2 Yl -W2 Z2 F 
S 
p -W~ -W2 

C -Wl -Wl -Wl -Wl 

Y -W2 

STATUS -Wl Xl>Wl -Wl Yl>Wl N>Zl Zl>F -W2 X2>W2 -W2 Y2>W2 N>Z2 Z2>F >Xl >Yl >X2 >Y2 

ClK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Transformation to the Screen System 

After the line segments have passed the trivial accept/reject test, they are transformed to 
the screen coordinate system. The following transformation is first applied to the Z 
coordinate in order to scale its Clipping planes to Z' = -W, and Z' = W: 

Z' = [-W x (F + N)]/(F - N) + (2 x W x Z)/(F - N) . 

The value of 1/(F - N) is constant for all line segments and is therefore computed only 
once. In fact, two constants, a = 2K1(F - N) and b = - (F + N)/2, can be available so that 
Z' = Z x a x (b + Z). (Note that other transformations on Z can also be used.) 

After the trivial accept/reject test, the following transformation to the screen system 
occurs: 

Xs = X/W, Ys = Y/W, Zs = Z'/W. 
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The clipping planes then have these equations: 

Xs = -1, Xs = 1, Ys = -1, Ys = 1, Zs = -1, Zs = 1. 

Z1' and Z2' can be formed in 8 cycles. Only two reciprocals, 1/W1 and 1/ W2, need to be 
computed, and they can be interleaved and completed in 13 cycles in an '8837 if an 8-bit 
seed ROM is employed and in 12 cycles in an '8847. The line segment is transformed to 
the screen system in a further 6 cycles. The total is 26 cycles for the 'ACT8847 and 
27 cycles for the 'ACT8837. A single-processor system would transform 600,000 line 
segments per second with a 15 MHz clock and 1.2 million line segments per second at 
30 MHz. 

Note that the above projection does not preserve planarity. See Newman and Sproull for 
perspective projections that do preserve planes. 

The Clipping Operation 

The final operation on line segments is to clip them to the cube: 

Xs = 1, Xs = -1, Y s = 1, Y s = -1, Zs = 1 and Zs = -1. 

It is important to realize that the required resolution of Xs, Y sand Zs may only be 10 or 
11 bits. Any divisions needed in an '8837 implementation at this stage could feasibly be 
done entirely by table look-up. It would certainly not be necessary to perform more than 
one iteration if an 8-bit seed ROM is employed. Two divisions can therefore be 
interleaved and completed in 7 cycles. However, three iterations are assumed in this 
example to give full single-precision accuracy. 

Consider a three-processor pipeline, with each processor clipping against two parallel 
planes. The first will clip against the x planes -1 < X < 1. For clipping the P1 end of the 
line segment, 0 = (1 + X1, 1 - X1) is computed and 0' is formed, where OJ' = 0i -I Oi I. 
I.e., 

01' = 2(1 + X1), if (1 + X1) < 0; 01' = a otherwise. 
02' = 2(1 - X1), if (1 - X1) < 0; 02' = a otherwise. 

At least one of OJ' will be zero; the other will be negative. Hence, MIN(01', 02') = 01' I"'­

+ 02' = [(1 + X1) - 11 + X111 + [(1 - X1) - j1-X11l. Therefore, MIN(01', 02') = (1 ~ 
- IX1j) - 11 - IX111. SO, t = l(m1-jm11) / 2dl and s = l(m2-lm2j) / 2dl, where ~ 
mi = 1 - lXii, and d = X1 - X2. Note that only one reciprocal is required per processor. ~ 

U 
A three-processor parallel system would have each processor work on one dimension, 
supplying its pair of max parameters to a "second stage." The second stage would 
receive (tx, sx), (ty, Sy), (tz, sz) from the above system, compute max(t) = T and 
max(s) = 5, and then Clip the line as before: 

X1' = X1 + (X2 - X1)T, 
X2' = X2 - (X2 - X1)S. 
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The data flow and program listing for the program run by a processor working on the 
X dimension are given in Tables 91 and 92. 

Table 91. Data Flow for the X Processor 

CHAIN V N V V N V N V V V V V V V 
RA X1 I I RO d 
RB X2 X1 X2 d 0.5 
S d m1 m2 RO n1 TO n2 R1 T1 
P dxRO RO R1 dxR1 0.5R1 
C m1 m2 m2 
V d n1 n2 

STATUS 
CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

CHAIN V N N V V 
RA n1 n2 
RB 
S 
P 1/D t s 
C 1/D 
V t s 

STATUS 
CLK 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

NOTE: d = X1 - X2; ni = mi - Imil 

Table 92. Program Listing for the X Processor 

REGISTER TRANSFERS ALU OPERATION MULTIPLIER 
OPERATION 

1. LOAD RA, RB V-S ADD (RA,-RB) 
2. LOAD RA, RB ADD (RA, - RB) 
3. LOAD RA, RB ADD (RA,-RB) 
4. LOAD RA, RB ADD (RA,O) MUL T (RA,RB) 
5. V-S ADD (C, -ICI) 
6. ADD (2,-P) MULT (S,1) 
7. V-S ADD (C,-ICI) 
8. MULT (S,P) 
9. 

10. LOAD RA ADD (P,O) MULT (RA,P) 
11. 
12. LOAD RB ADD (2,-P) MULT (S,RB) 
13. 
14. MULT (S,P) 
15. 
16. LOAD RA V-P MULT (RA,P) 
17. LOAD RA V-P MULT (RA,P) 
18. 
19. 
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The three-processor parallel clipping system operates on a fixed loop of 17 instructions 
and can therefore clip 0.88 million line segments per second at 15 MHz and 1.76 million 
line segments per segment at 30 MHz. The second stage could not keep up with this 
rate without being implemented as several processors. A single processor can form 
the two max values in 23 cycles (a loop of 21 cycles) while two processors would take 
only 12 cycles (a loop of 10). The final clipping of the two endpoints takes about 
11 cycles (a loop of 9 cycles). 

To summarize, the fastest clipping system operates in the normalized screen coordinate 
system. It has six processors arranged in three stages - a three-processor parallel 
system with each processor working on each dimension; a two-processor system to 
form the two max values; and a single-processor third stage to clip the endpoints. The 
combineq speed would be equal to that of the first stage, as previously described. A 
Slightly slower four-processor system would use one processor for computing the two 
max values in the second stage. 

Summary of Graphics Systems Performance 

The previous section considered several approaches to the design of computer 
graphics systems based on the 'ACT8837 and the 'ACT8847. Table 93 summarizes the 
results. Table 94 shows the options available in combining the sub-systems listed in 
Table 93 into a design for a graphics system. . 

Table 93. Summary of Graphics Systems Performance 

SUB-SYSTEM SPEED AT 15 MHz SPEED AT 30 MHz 
a Transform, 4x4 matrix, 1 ACT88X7 cycle 0.94 M points/s 1 .875 M points/s 
b Transform, 3X3 matrix, 1 ACT88X7 cycle 1.25 M points/s 2.5 M points/s 
c Eye clipping pipe, 6 ACT88X7 cycles 0.577 M lines/s 1.2 M lines/s 
d Eye clipping 3 ACT88X7 cycles 0.288 M lines/s 0.576 M lines/s 
e Eye Accept/Reject test 1 ACT88X7 cycle 1.071 M lines/s 2.143 M lines/s 
f Screen clipping 5 ACT88X7 cycles 0.88 M lines/s 1.76 M lines/s 
g Screen clipping 4 ACT88X7 cycles 0.71 M lines/s 1.42 M lines/s 

Table 94. Available Options for Graphics System Designs 

SYSTEM SPEED AT 15 MHz SPEED AT 30 MHz 
I (a or b) + c, 7 ACT88X7 cycles 0.577 M lines/s 1.2 M lines/s 
II (a or b) + d, 2 ACT88X7 cycles 0.288 M lines/s 0.576 M lines/s 

11/ (a or b) + f, 6 ACT88X7 cycles 0.88 M lines/s 1.76 M lines/s 
IV 2x (a or b) + c + g, 7 ACT88X7 cycles 2.5 M lines/s 3.75 M lines/s 

In the fourth system, it is assumed that 2 processors are used for the transform of 
endpoints so as to balance the high clipping rate. It is also assumed that the accepV 
reject stage will eliminate more than 60% of the line segments so that the clipping system 
can keep up with the transform processors. 
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Design Support for TI's SN74ACT8800 Family 
TI's '8800 32-bit ptocessor family is supported by a variety of tools developed to aid 
in design evaluation and verification. These tools will streamline all stages of the design 
process, from assessing the operation and performance of an individual device to 
evaluating a total system application. The tools include functional models, behavioral 
models, microcode development software, as well as the expertise of TI's VLSI Logic 
applications group. 

Functional Evaluation Models Aid in Device Evaluation 

Many design decisions can easily be made and evaluated before hardware or board 
prototypes are needed, using functional evaluation software models. The result is 
shortened design cycles and lower design costs. 

Texas Instruments offers functional evaluation models for many of the devices in the 
'8800 family. These mOdels are written in Microsoft C@ and can be used in stand­
alone mode or as callable functions. 

These models are designed. to provide insight into the operation of the devices by 
allowing the designer to write microcode and tun it through the model. This allows 
the designer to select the device that best executes a specific application and provides 
a head start in evaluating programming performance. 

The models correctly represent device timing in clock cycles, measured from the input 
of control and data to the output of results and status. Hence, initial performance 
estimates for a particular design can be made by relating the number of clock cycles 
required for an operation to the typical ae timing data for the device. 

Behavioral Simulation Models Simplify System Debugging 

System simulation with behavioral models can further shorten design time and ease 
design effort. The behavioral simulation models that support Tl's '8800 chip set have 
the timing-control and error-handling capability to perform thorough PCB and system 
simulation. These models decrease the time spent in debugging and reduce the number 
of required prototype runs. 

Users of system simulation models report a reduction by more than half in the number 
of prototype runs typically required to produce the highest-quality system. This savings 
in time reduces costs and gets the product to market as much as several months earlier 
than could be done using traditional methods. 

Microsoft C is a registered trademark of Microsoft Corporation 
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Behavioral models for TI's '8800 family are written at the functional behavioral level 
and, therefore, are faster and easier to use and take up less disk space than some 
other types of simulation models. This higher efficiency means a simulation run can 
include more IC models and yet require less CPU time than an equivalent simulation 
using other types of models. 

These behavioral simulation models also provide explicit error messages that can help 
in the debugging process. For example, if a design violates a device set-up time, the 
model explains, via an error message, what type of violation occurred, at what point 
it occurred in the simulation run, and specifically which part's set-up time was violated. 
Then, the model continues on with the run as if no violation occurred, saving time 
rather than crashing the run at every error. 

In other words, an expert debugger is built right into the simulation. 

The models are available with commercial and military timing and interact with a variety 
of simulators. 

Behavioral Models for TI's '8800 Family are Easily Obtained 

Texas Instruments has been working closely with both Ouadtree Software Corporation 
and Logic Automation Incorporated to produce software behavioral simulation models 
of many of its VLSI devices. Since accuracy is key to solving design problems, we've 
provided Ouadtree and Logic Automation with test patterns for most of our devices 
to ensure each model passes the same set of test vectors as does the actual silicon 
device. 

Ouadtree offers a library of Designer's Choice'" fu"-functional behavioral models of 
Texas Instruments '8800 32-bit processor building block devices. 

Logic Automation Smartmodel'" library contains many Texas Instruments products, 
including devices from the '8800 chip set. 

These companies may be contacted directly at the addresses below. General 
information about behavioral model support for the '8800 family may be obtained by 
calling Texas Instruments at (214) 997-5402. . 

LOGIC AUTOMATION INCORPORATED OUADTREE SOFTWARE CORPORATION 
P.O. Box 310 1170 Route 22 East 
Beaverton, OR 97075 Bridgewater, NJ 08807 
(503) 690-6900 (201) 725-2272 

~ Ouadtree and Designer's Choice are trademarks of Ouadtree Software Corporation 
Logic Automation and Smartmodel are trademarks of Logic Automation Incorporated 
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'8800 SOB Design Kit 

TI offers an '8800 Software Development Board (SOB) Design Kit as an evaluation 
and training tool. The '8800 SOB kit uses a range of software development tools to 
allow users to evaluate performance and write microprograms for several of the '8800 
building blocks. Using the SOB, microcode can be developed earlier in a system's design 
cycle so that code development parallels, rather than follows, prototype design. 

The '8800 SOB Design Kit consists of a combination of specially developed hardware, 
software, and documentation including: 

• The '8800 Software Development Board Assembly 

• The '8800 SOB User's Guide 

• Floppy disk with MS-DOSTM software tools written in Microsoft C, several 
example microprograms, and demo programs. Source code is included. 

• Microcode definition files for use with HILEVEL, STEP Engineering, and Texas 
Instruments microcode development tools. 

Built on a PC/AT card occupying a single slot, the '8800 SOB contains an 'ACT8818 
microsequencer, 'ACT8832 registered ALU, and an 'ACT884 7 floating point/integer 
processor, along with 32 K by 128 bits of microcode memory, and 32 K by 32 bits 
of local data memory. A block diagram of the '8800 SOB is detailed in Figure 8-1. 
The board operates under an MS-DOS environment. 

The SOB Design Kit complements other '8800 family development tools such as 
functional evaluation and behavioral simulation models. It actually provides the next 
step beyond simulators. System code can be executed in a realtime environment that 
includes conditional branching, on-board data memory, and single-step/breakpoint 
facilities. 

For additional technical information, contact VLSI System Engineering at 
(214) 997-3970. For ordering information, please call your local field sales 
representative. 

MetaStep is a trademark of STEP Engineering, Inc. 
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Figure 8-1. '8800 SOB Block Diagram 



Program Code Generation Using the TI Meta Assembler 

The TI Meta Assembler (TIM) provides the means to create object microcode files and 
to support listings for programs that execute in architectures without standard 
instruction sets. The end-product of TIM is an absolute object code module in suitable 
format for downloading to PROM programmers or to the emulator memories of 
development systems. TIM is fully compatible with some other assemblers as well. 

Systems Expertise is a Phone Call Away 

Texas Instruments VLSI Logic applications group is available to help designers analyze 
TI's high-performance VLSI products, such as the '8800 32-bit processor family. The 
group works directly with designers to provide ready answers to device-related 
questions and also prepares a variety of applications documentation. 

The group may be reached in Dallas, at (214) 997-3970. 
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Mechanical Data 
SN74ACT8818 . . . . . . . . . . . . . . . . . . . . . . . . .. 11 x 11 GC PACKAGE 

SN74ACT8832 . . . . . . . . . . . . . . . . . . . . . . . . .. 17 x 17 GB PACKAGE 

SN74ACT8836 . . . . . . . . . . . . . . . . . . . . . . . . .. 15 x 15 GB PACKAGE 

SN74ACT8837 .......................... 17 x 17 GB PACKAGE 

SN74ACT8841 . . . . . . . . . . . . . . . . . . . . . . . . .. 15 x 15 GB PACKAGE 

SN74ACT8847 .......................... 17 x 17 GA PACKAGE 
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11 x 11 GB pin grid array ceramic package 

INDEX CORNER 
r 30.0 (1.180)-------, 

27.4 (1.080) I 

I D 30.0(1.180) 
27.4 (1.080) 

4.95 (0.195) 1.78 (0.0701 
2.54 (0.100)~i 11.02 (0.040) 

'.08 ro,ool=FU!ILt~ ~ ~J~':OO"'.OM 2.54 (0.100) 0.406 (0.016) DIA (4 PLACES) 
DIA TYP 

2.54 (0.100) T.P. 

i L®®®®®®®®®®® 
K®0®®®®®®®0® 
J®®®®®®®®®®® 
H®®®®®®®®®®® 
G®®®®®®®®®®® 

25.4 (1.000) REF F ® ® ® ® ® ® ® ® ® ® ® L E®®®®®®®®®®® 
D®®®®®®®®®®® 
c®®®®®®®®®®® 
8®0®®®®®®®0® 
A®®®®®®®®®®® 

. 1 2 3 4 5 6 7 8 9 10 11 

2.54 (0.100) T.P. 
(See Note A) 

ALL POSSIBLE PIN LOCA TlONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OAT A SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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11 x 11 GC pin grid array ceramic package 

INDEX CORNER 
MARK OR CHAMFER 

1.27 (0.051 x 45 0 

r 30.0 (1.1801-----, 

~ 27,4 (1.0801 I 

~~------------~ 

27.4 (1.0801 

;~ :::'.,;::~=====L-----, I ~:~~ :g:g~: 

"",,,,,=FUitLt~ ~ ~Jf~,:,,,, NOM 
2.54 (0.1001 0.406 (0.0161 DIA (4 PLACESI 

DIA TYP 

2.54 (0.1001 T.P. 2.54 (0.1001 T.P. 
(See Note AI 

ALL POSSIB.LE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OAT A SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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13 x 13 GB pin grid array ceramic package 

INDEX CORNER 
r--------.~3~5.~1T.('~.3~8~01-------~ I'" 32.5 (1.2801 ~I 

.... 

l 
35.1 (1.3801 
32.5 (1.2801 

1.78 (0.070) ~:~!:~:~~~:~ 
I ~ 1.02 (0.0401 

.... ,..>00, I n ~l.~!.~t ~ ~ ~f~,:""."OM 
2.54 (0.1001 0.406 (0.0161 OIA (4 PLACES) OIA TYP 

2.54 (0.100) T.P. 

00000000000@0 
0000000000000 
000@000000000 
0000000000000 I~: 
0000000000000 

30.5 (1.200) REF H 0000000000000 
G0000000000000 
F0000000000000 
E0000000000000 
00000000000000 
C 0000000000000 
80000000000000 

lL.---A0000000000000 
1 2 3 4 5 6 7 8 9 10 11 1213 

2.54 (0.100) T.P. 
(See Note AI 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OAT A SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

9-7 

ca ... ca 
C 
'ii 
(J 

°2 
ca 
.c 
(J 
CI) 

~ 



3: 
CD 
(') 
:::r 
I» ::s ,), 
e!. 
o 
I» 
r+ 
I» 

13 x 13 GC pin grid array ceramic package 

~ .. ____ 35.1 (,.3801 ____ .... 
1 r 32.5 (1.280) I 

INDEX CORNER 
MARK OR CHAMFER 

, .27 10.051.45· 

~ l 
35.1 (1.380) 
32.5 (1.280) 

::~: ::::::h ~ ::: ::g;g: 

, ... ",..~~ ~ !l,Hn~~ ~ ~~~,:" .. "oo. 
2.54 (0.100) 0.406 (0.016) DIA (4 PLACES) 

OIA TYP 
2.54 (0.100) T.P. 

I
N~:0000000000000 

0€>000®0000000 
0000000®00000 
00000®0000000 
000000000000® 

30.5 (1.200) REF H 000®000®0®®00 
G0000000000000 
F 0000000000000 
E0000000000000 
00000000000000 
c0®0®00000®00® 
80000000000000 

L---A00®®0000000®0 
1 2 3 4 5 6 7 8 9 10 11 1213 

2.54 (0.100) T.P. 
(See Note A) 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OATA SHEETS FOR ACTUAL PIN 
LOCATIONS USEO. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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15 )( 15 GB pin grid array ceramic package 

r 40.1 (1.580)-1 
37.6 (1.480) 

INDEX CORNER"",-" I 

.~~. ----il 
L..-.--. _______ _ 

40.1 (1.580) 
37.6 (1.480) 

L-_______________ ~ ________ ~ ___ _ 

j 
4.95 (0.195) 

1.78 (0.070) 

'''<O''''l~u ~ i ~ ~ ~ ~ ~ ~ ~ i 
5.08 (0.2001 ~ 0.508 (0.020)---.11.-

if5 .. " <0 .... , 

~J ~1: (0.0501 NOM 
2.54 (0.100) 0.406 (0.016) 

DIA TYP 
DIA (4 PLACES) 

~2.54 (0.1001 T.P. 2.54 (0.1001 T.P., r 
(See Note A) f .- R r-0f-0+0 -0-0-0 -'0"--0""'0 -'0"--0-0 ""'0-0-=-0 ""'0-0=-0 ""'0-0=-0 -:=-10 

I 
P 00000000000000°l 

I

N 000000000000000 
M000000000000000 
L 000000000000000 
K 000000000000000 

I J 000000000000000 
35.6 (1.4001 REFH 000000000000000 

G 000000000000000 
F 000000000000000 
E 000000000000000 
D 000000000000000 
C 000000000000000 
B 000000000000000 
A 000000000000000 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

CG ... 
CG 
C 
a; 
u 
'2 
CG 
.c 
u 

1 2 3 4 5 6 7 8 9 101112131415 G) 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at :!: 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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c 
Q) ... 
Q) 

15 x 15 GC pin grid array ceramic package 

37.ti 11.4801 

INDEX CORNER 
MARK OR CHAMFER 

1.27 (0.05) x 45· 

I" 40'1(1',680,1'1 

i 'r--------i--l 
40.1 11.5801 
37.611.4801 

~---- __ l 
1.78 (0.070) 

5.72 10.2251 

2'5410'1001~ 

:;'i ~~~~~~~i~~ ~M~ij I:{ '." "..., 
,&",,,,,J~U ~ -.!J.Il~Lij -J LU,,,,,.,,,, •• 
2.5410.1001 0.40610.0161 

DIA TYP DIA 14 PLACE!" 
2.5410.1001 T.P. 

ISee Note AI 
2.5410.1001 T'P'I ,-

r--- - R "0-0+-. -0-0-'---0 -'0-0-=-0 --e0' 0 0 0 0 0 0 0 0 

I 
P 0000000000000001 

I
N 000000000000000 
M000000000000000 
L 000000000000000 
K 000000000000000 

I J 000000000000000 
35.6 11.4001 REF H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 000000000000000 
F 000000000000000 
E 000000000000000 
D 000000000000000 
C 000000000000000 
8 000000000000000 
A 000000000000000 

1 2 3 4 5 6 7 8 9 101112131416 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACT\.IAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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17 x 17 GA pin grid array ceramic package 

45.5 (1.780) . r----- 42.7 (1.680)----~·1 
INDEX CORNER~ 

-....i----------

1 
45.5 (1.780) 
42.7 (1.680) 

4.95 (0.195) 1.78 (0.070) 

2.54 (0'100)~ J 1.02 (0.040) 

I~~~~~~~,,~~~~,,~I 
~-f~ ~mmm~ ~~-~~ 

5.08 (0.200) 0.508 (0.020)--11.- ..I L1.27 (0.050) NOM 
2.5410.100) 0.40610.016) OIA 14 PLACES) 

2.54 (0.100) T.P. (208 PLACES) 

i T 00000000000000000 
S 0@000000000000000 
R 00000000000000000 
p 100000000000000000 
N 0000 0000 
M 0000 0000 
L 0000 0000 

40.6 (1.600) REF K 0000 0000 
J 0000 0000 
H 0000 0000 
G 0000 0000 
F 0000 0000 
E 0000 0000 
000000000000000000 
c00000000000000000 
B 0@0000000000000@0 
A 00000000000000000 

1 2 3 4 567 8 91011121314151617 

2.54 (0.100) T.P. 
(See Note A) 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0.005) radius of true position relative to each other at 
meximum material condition and within 0.381 (0.051) radius relative to the center 
of the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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17 )( 17 GB pin grid array ceramic package 

INDEX CORNER 

.• _____ 45.5 {1.7801 _____ ~ 

r- 42.7 {1.6801 "I 

~ l 
45.5 {1.7801 
42.7 {1.6801 

4.95 {0.1951 1,78 {0.0701 

I ~_~ ~ ij ~ ~ ~ ~ ~ ~ ~ ~ ~ ij ~ ~_~~ 
2,54 {0'1001~ J 1,02 {0.0401 

5,08 {0.2001 0,508 {0.0201 --oil ~ ~ 1.27 {0.0501 NOM 
2,54 {0.1001 0,406 {O.0161 

2,54 {0.1001 T.P. {208 PLACESI 

T @@@@@@@@@@@@@@@@@ i s @@@@@@@@@@@@@@@@@ 
R @@@@@@@@@@@@@@@@@ 

P, I@@@@@@@@@@@@@@@@@ 
N @@@@@@@@@@@0@@@@@ 
M @@@@@@@@@@@@@@@@@ 
L @@@@@@@@@@@@@@@@@ 

40,6 {1.6001 REF K @@@@@@@@@@@@@@@@@ 
J @@@@@@@@@@@@@@@@@ 
H @@@@@@@@@@@@@@@@@ 
G @@@@@@@@@@@@@@@@@ 
F @@@@@@@@@@@@@@@@@ 
E @@@@@@@@@@@@@@@@@ 
D @@@@@@@@@@@@@@@@@ 
C@@@@@@@@@@@@@@@@@ 
8 @0@@@@@0@@@0@0@0@ 
A@@@@@@@@@@@@@@@@@ 

1234567891011121314151617 

DIA (4 PLACESI 

2,54 (0.1001 T.P. 
(See Note AI 

ALL POSSIBlE PIN LOCATIONS ARE 
SHOWN. SEE APPl.ICABLE PROOUCT 
OATA SHEETS FOR ACTUAL PIN 
LOCATIONS USEO. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0.381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837-7530. 

ARIZONA: Phoenix (602) 995-1007; 
Tucson (602) 292-2640. 

CALIFORNIA: Irvine (714) 660-1200; 
Roseville (916) 786-9208; 

::~,~'cr.~~~~~~f~:t~g~; 
Torrance (213) 217.7010; 
Woodland Hills (818) 704·7759. 

COLORADO: Aurora (303) 368-8000. 

CONNECTICUT: wallingford (203) 269-0074. 

FLORIDA: Altamont. Springs (305) 260-21 Hi; 
Ft. Lauderdale (305) 973-8502; 
Tampa (813) 885-7411. 

GEORGIA: Norcross (404) 662·7900. 

ILLINOIS: Arlington Heights (312) 640-2925. 

INDIANA: Carmer (317) 573·6400; 
Fl. Wayne (219) 424-5174. 

IOWA: Cedar RapidS (319) 395-9550. 

KANSAS: Overland Park (913) 451-4511. 

MARYLAND: Columbia (301) 964-2003. 

MASSACHUSETTS: Waltham (617) 895-9100. 

MICHIGAN: Farmington Hills (313) 553-1569; 
Grand Rapids (616) 957-4200. 

MINNESOTA: Ed.n Prairie (612) 828-9300. 

MISSOURI: St. Louis (314) 569-7600. 

NEW JERSEY: Iselin (201) 750-1050. 

NEW MEXICO: Albuquerque (505) 345-2555. 

NEW YORK: East Syracuse (315) 463-9291; 
M.I ... ",. (516) 454-6600; 
PIHsford (716) 385-6770: 
Poughk •• psle (914) 473-2900. 

NORTH CAROLINA: Charlon. (704) 527.0933; 
Ral.lgh (919) 876·2725. 

OHIO: Beachwood (216) 464-6100; 
B.a .... r Cr.ek (513) 427·6200. 

OREGON: B.averton (503) 643·6758. 

PENNSYLVANIA: Blu. Bell (215) 825-9500. 

PUERTO RICO: Hato R.y (809) 753-8700. 

TENNESSEE: Johnson City (815) 461·2192. 

TEXAS: Austin (512) 250·7655; 
Houston (713) 778-6592; 
Richardson (214) 680·5082; 
San Antonio (512) 496-1779. 

UTAH: Murray (801) 266·8972. 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Brookfield (414) 782·2899. 

~~~~~~ ~=r6~ia~Ir::(~~o6168'i.L~~:;~970; 
St. Laurent, Qu.bec (514) 336·1860. 

TlRegionai 
Technology Centers 
CALIFORNIA: Irvine (714)660-8105; 
Santa Clara (408) 748·2220; 

GEORGIA: Norcross (404) 662·7945. 

ILLINOIS Arlington Heights (312) 640-2909. 

MASSACHUSETrS: WaHham (617) 895-9196. 

TEXAS: RIchardson (214) 680-5066. 

CANADA: Napaan, Ontario (613) 726-1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Klerulff Electronics Group 
Arrow (Canada) 
Future l:lectronlcs (Canada) 
GRS Electronics Co., Inc. 
Hall·Mark Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 
- OBSOLETE PRODUCT ONLY­
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(508) 462·9332 

ALABAMA: Arrow/Klerulff (205) 837-6955; 
Hall·Mark (205) 837-8700; Marshall (205) 881·9235; 
Schweber (205) 895·0480. 

ARIZONA: Arrow/KlerulH (602) 437·0750; 
Hall·Mark (602) 437·1200; Marshall (602) 496·0290; 
Schwaber (602) 431·0030; Wyle (602) 866·2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow/Kierulff (818) 701·7500, (714) 838·5422; 
Hall-Mark (818) 773·4500, (714) 669-4100; 
Marshall (818) 407-0101, (818) 459·5500, 
(714) 458-5395; Schwaber (818) 880-9688: 
(714) 863·0200, ~213) 320-8090; Wyle 1818) 880·9000, 

~~:/a'::::~~:~3~a:.u,;a~'~,~~'6:~90i8:;'8) 889·3838; 
Marshall (916) 635·9700; Schweber (916) 364·0222; 
Wyle (916) 638·5282; 

~:~.~':rt(61A;{~:'~~~~~'~ J:~:~;ln~~f'~78.9600; 
Schweber (619) 450-0454; Wyle (619) 565-9171; 
San Francisco Bay A .... : ArTow/Klerulfl (408) 745-6600, 

~:~;'~~:r \~~W) ~~~~~~~;; ~a;,:h(~I~~)~BJ7~:::'~00; 
Zeus (408) 998-5121. 

COLORADO: Arrow/Kierutft (303) 790-4444; 
Hall·Mark (303) 790·1662; Marshall (303) 451·8383; 
Schweber (303) 799-0258; Wyle (303) 457·9953. 

CONNETICUT: Arrow/Klerulff (203) 265·7741; 
Hall·Mark (203) 271·2844: Marshall (203) 265·3822: 
Schweber (203) 264·4700. 

FLORIDA: Ft. Laud.rdale: 
Arrow/Klerulfl (305) 429-8200: Hall·Mark (305) 971·9280; 
Marshall (305) 977-4880; Schweber (305) 977·7511; 
Orlando: Arrow/Klerulff (407) 323·0252; 
Hall·Mark (407) 830·5855; Marshall (407) 767-8585; 
Schweber (407) 331·7556; Zeus (407) 365-3000; 
Tampa: Hall·Mark (813) 530-4543; 
Marshall (813) 576-1399; Schweber (813) 541·5100. 

GEORGIA: Arrow/KJerulfl (404) 449·8252: 
Hall-Mark (404) 447-8000; Marshall (404) 923-5750; 
Schwaber (404) 449·9170. 

ILLINOIS: Arrow/Kierulff (312) 25()'0500: 
Hall·Mark (312) 86()'38oo; MarShall (312) 490·0155: 
Newark (312) 784-5100; Schweber (312) 364-3750. 

INDIANA: Indianapolis: Anow/Klerulfl (317)243-9353; 
Hall·MarX (317) 872·8875; Marshall (317) 297·0483; 
Schweber (317) 843·1050. 

IOWA: Arrow/Kierulff (319) 395-7230; 
Schweber (319) 373-1417. 

KANSAS: Kansas City: Arrow/Kierulff (913)541·9542; 
Hall·Mark (913) 888-4747; MarShall (913) 492·3121: 
Schweber (913) 492·2922. 

TEXAS 
INSTRUMENTS 

MARYLAND: Arrow/KieNlff (301) 995-6002; 

~:~~"!~:, \~V) ~s:.~~:;; ~~~h(~M~~l~~1~~64; 
MASSACHUSETTS Arrow/Klerulff (508) 658·0900: 
Hall·Mark (508) 667·0902: Marshall (508) 658·0810: 
Schweber (617) 275-5100: Tima (617)532.6200; 
Wyle (617) 273-7300; Zeus (617) 863·8800. 

MICHIGAN: DetroH: Arrow/Klerulff (313) 462·2290: 
Hall·Mark (313) 462-1205; Marshall (313) 525·5850: 

~:~~kR(:~~J:6~'r~:~k~~i;"r:[ 6\3~:~.~~~.:.' 00: 

~~~·':.~~~~~~t;~~~~~u~~~:~:l, ~:~1~~.2211: 
Schweber (612) 941·5280. 

MISSOURI: St. Louis: Arrow/Kiarulff (314) 567·6888; 
Hall·Mark (314) 291-5350; Marshall (314) 291.4650; 
Schwaber (314) 739-0526. 

NEW HAMPSHIRE: Anow/Klerulff (603) 668·6968; 
Schweber (603) 625-2250. 

NEW JERSEY: Arrow/Klerulff (201) 538.Q900, 
(609)596.8000; GRS Electronics (609) 964·8560; 
Han-Mark (201) 575-4415, (201) 882-9773, 
(609) 235·1900; Marshall (201) 882-0320, 
(609) 234-911)0; Schweber (201) 227·7880. 

NEW MEXICO: Arrow/Klerulfl (505) 243-4566. 

~:wr~::," ~:~ ~~~~~; Hall·Mark (516) 737-0600; 
Marshall (516) 273·2424; Schweber (516) 334·7474; 
Zeus (914) 937-7400; 

~:~::::r&1~)~;~~;~~ J~::~:,n7~~~~3S-7620: 
Schwaber (716) 424-2222; 
Syracuse: Marshall (607) 798·1611. 

NORTH CAROLINA: Arrow/Klerulff (919) 876·3132, 
(919) 725.871,; Hall·Mark (919) 872·0712; 
Marshall (919) 878-9882; Schweber (919)876-0000. 

OHIO: Cleveland: Arrow/Klarulff (216) 248-3990; 
Ha"·Mark (216) 349-4632; Marsha" (216) 248·1788; 
Schweb., (216) 464-2970: 
Columbus: Hall-Mark (614) 888-3313; 

~~fs~:j, f;~;j~~~~:0~5~~::~:r5~~;3) 439·1800. 

OKLAHOMA: Arrow/Kierulff (918) 252·7537; 
Schweber (918) 622·8003. 

OREGON: Arrow/Klerulfl (503) 645-6456; 
Marshall (503) 644-5050; Wyla (503) 640-6000. 

~~~r::a~Y:O~I:AGR~r:;::~:~I'!~ ~:~~l :~~:~g~; 
Marshall (412) 963·0441; Schweber (215) 441·0600, 
(412) 963·6804. 

TEXAS: Austin: Arrow/KI.rulff (512) 835·4180; 
Hall·Mark (512) 258·8848; Marshall (512) 837·1991; 

5~~::~~r~:!:,k~:r~l~or:i4n~~:!~~34.9957; 
~~~~~:r \~~~) ~~~:~~~~; ~;I~h(~~1~1"J5~::S~~OO; 
Zeus (214) 783·7010; 
EI Paso: Marshall (915) 593·0706; 
Houston: Arrow/Klerulff (713) 530-4700; 
Hall·Mark (713) 781·6100; Marshall (713) 895-9200; 
Schweber (713) 784-3600; Wyle (713) 879·9953. 

~!:~a~r(:'~~~·;~~~0:'~:~;h:~'(ib1) 485·1551; 
Wyle (801) 974-9953. 

WASHINGTON: Arraw/Klerulff (206) 575·4420; 
Marshall (206) 486·5747; Wyle (206) 881·1150. 

WISCONSIN: Arrow/Klerulff (414)792-0150; 
Hall·Mark (414) 797-7844; Marshall (414)797.8400; 
Schw.ber (414) 784-9020. 

CANADA: Calgary: Future (403) 235·5325: 
Edmonton: Future (403) 438.2858; 
Montreal: Arrow Canada (514) 735·5511; 
Future (514) 1594--7710: 
onawa: Atrow Canada (613) 226·6903; 
Future (613) 820-8313: 
Quebec City: Arrow Canada (418) 871·7500; 
Toronto: Arrow Canada (416) 672·7769; 
Future (416) 638-4771; Marshall (416) 674·2161; 
Vancouver: Anow Canada (604) 291-2986; 
Future (604) 294·1166. 

Customer 
Response Center 
TOU FREE: (800) 232.03200 

OUTSIDE USA: (214) 995·6611 
(8:00 a.m. - 5:00 p.m. CSl) 
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TI Worldwide 
Sales Offices 
AlABAMA: Huntlvlla: 500 Wynn Orlve, Suite 514, 
Huntsville, AL 35805, (206) 837-7530. 

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix, 
AZ 86021, (602) 995-1007;TUCSON: 818 W. Miracle 
Mile. Suite 43, Tucson, AZ 85705, fS02) 292·2840. 

CAUFORNIA: Irv ..... : 17891 Cartwright Dr., Irvine. CA 
92714, (714) 66().1200; Ro •• vtIe: 1 Sierra Gate 
Plaza, Roseville, CA 96678, (9151 786-9208; 
San Diego: 4333 View Ridge Ave., Suite 100, 

=:~ltr.°n.~:a:~':'~s~6:~826~:9:~~~ Clara. CA 
950&4. (40B) 980-9000; Torr....".: 690 Knox St., 
Torrance. CA 90602. (213) 217-7010; 
WoodIInd HIIII: 21220 Erwin St., Woodland Hills. 
eA 913&7. (818) 704-7759. 

COLORADO: Aurora: 1400 S. Potomac Ave .. 
Suite 101, Aurora, CO 80012. (303) 368-8000. 

CONNECTICUT: We.nlford: 9 Barnes Industrial Park 

~'O::'92~ l;g3r~6~~OO~4~8Itingford, 
flORIDA: Altemom. Spring.: 370 S. North Lake Blvd, 
Altamonte Springs, FL 32701, (305) 260·2116; 
Ft. Laude .... : 2950 N.W. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973-8502; 
Tarnr-: 4803 George Rd., Suite 390, 
Tampa, FL 33634, (813) 885-7411. 

GEORGIA: Norcross: 5515 Spalding Drive, Norcross, 
GA 30092, (404) 662-7900 

~:::o~: ~I~=~, ~~~ 2V:6~~29~~~' 
~~~=y~~~~N ,,:w,~, ~g~g)I~2:?:1 ~t 
c.rmal: 550 Congressional Dr., Carmel, IN 46032, 
(317) 673-6400. 

IOWA: Car ~s: 373 Collins Rd. NE, Suite 201, 
Cedar Rapids, IA 62402, (319) 395-9550. 

~:s~'o~~:,a~ ~~~07~~~ =~~:4~;gron 
MARYLAND: Columbia: 8815 Centre Park Dr., 
Columbia MD 21046, (3011 964-2003. 

MASSACHUSETTS: Watthilm: 960 Winter St., 
Wattham, MA 02154, (617) 895-9100. 

~~~"!: ~lir~~~0~~:(~~~?~5~:11~~ile Rd., 
Grand "-PIeIs: 3076 Orchard Vista Dr. S.E., 
Grand Rapids, MI 49606, (6161 957-4200. 

MINNESOTA: Eden Prairie: 11000 W. 78th St., 
Eden Prairie, MN 56344 (612) 828-9300. . 

MISSOURI: St. LouIs: 11816 Borman Drive, 
St. Louis, MO 63146, (314) 569-7600. 

NEW JERSEY: 1HIn: 485E U.S. Roote 1 South. 
Parkway Towers, Iselin. NJ 08830 (2011 750-1050. 

NEW MEXICO: Albuquerque: 282()'D Broadbent Pkwy 
NE, Albuquerque, NM 87107, (505) 345·2555. 

NEW YORK: EIISt Syracuse: 8385 Collamer Dr., 
East SyracUse, NY 13057, (3151463-9291; 
Mah ... : lS95 Walt Whitman Rd., P.O. Box 2936, 
Melvine, NY 11747, (516)454-6600; 
Plnlford: 2851 Clover St., Pittsford, NY 14534, 
(7161385-6770; 
Poughk ...... : 385 South Rd., Poughkeepsie, 
NY 12601, (9141 473-29QC? 

NORTH CAROLINA: ChllrloM: 8 Woodlawn Green, 
Woodlawn Rd., Charlotte, NC 28210, (704) 
527-0933; RIIeIgh: 2809 Highwoods Blvd .. Suite 100, 
Raleigh, NC 27626, 1919) 876-2725. 

OHIO: BNchwood: 23775 Commerce Park Rd., 
Beachwood, OH 44122, (2161 484-6100; 
BeaverctMlr.: 4200 Colonel Glenn Hwy., 
BeavercreE!k, OH 45431, (513) 427-6200. 

OREGON: Buverton: 6100 SW 105th St., Suite 110, 
Beeverton, OR 97005, {5031 643-6758. 

PENNSYLVANIA: aue Bel: 670 Sentry Pt<wy. 
Blue Bell, PA 19422, (215) 825-9500. 

::i~:r~:I~~io H~ ,",:J:o~~\c8,n~~iz;5~1~9joo. 
TENNESSEE: John .. n City: Erwin Hwy, 
P.O. Drewer 1256, Johnson City, TN 37605 
(615) 461·2192. 

TEXAS: Austin: 12501 Research Blvd .• Austin. TX 
78759, (512)250-7855; Richardson: 1001 E. 
Campbell Rd., Richardson, TX 75081. 
(214) 680-5082; Houaton: 9100 Southwest Frwy., 
Suite 250, Houston, TX 77074, (713) 778-6592; 
San Antonio: 1000 Central Parkway South, 
San Antonio, TX 78232, (512) 496-1779. 

UTAH: Murrey: 5201 South Green St., Suite 200, 
Murrey. UT 84123, (601) 266-8972. 

WASHINGTON: Redmond: 5010 148th NE. Bldg B, 
Suite 107, Redmond, WA 98052. (206) 881-3080. 

WISCONSIN: Ikookfleld: 450 N. Sunny Slope. Suite 
150, Brookfield, WI 53005, 14141182-2899. 

CANADA: Nepun: 301 Moodie Drive. Mellorn Center, 
Nepean, Ontario, Canada, K2H9C4, 
(6131726-1970. Rk:hmond HII: 280 Centre St. E., 
Richmond Hill L4C1Bl, Ontario, Canada 
(416) 884-9181; St. Laurent: Ville St. Laurent 
Quebec, 9460 Trens Canada Hwy., St. Laurent. 
Quebec, Canada H4S1R7, (5141336-1860. 

ARGENTINA: Texas Instruments Argentina Vlamonte 
1 1 19, 1053 Capital Federal, Buenos Aires. Argentina, 
541/748·3699 

AUSTRAUA (a. NEW ZEALAND): Texas Instruments 
Austrelia Ltd.: 6-10 Talavera Rd., North Ryde 
(Sydney), New South Wales, Australia 2113. 
2 + 887-1122; 5th Floor, 418 St. Kilda Road. 
Melbourne, Victoria, Australia 3004, 3 + 267-4677; 
171 Philip Highway, Elizabeth, South Australia 5112. 
8 + 255-2066. 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
~3~~~:~2~~~ 8/16, A-2345 Brunn/Gebirge, 

BELGIUM: Texas Instruments N.V. Belgium S.A.: II, 
162~n2:2~~~;~ond8tlean 11. 1 140 Brussels. Belgium, 

BRAZIL: Texas Instruments Electronicos do Brasil 
Ltda.: Rua Paes Leme, 524· 7 Andar Pinheiros. 05424 
Sao Paulo, Ek'azil, 0815-6166. 

DENMARk: Texas Instruments AIS, Mairelundvej 46E, 
2730 Herlev, Denmerk, 2 - 91 7400. 

FINLAND: Texes Instruments Finland OY: 
Ahartajentie 3, P.O. Box 81, E;SPOO. Finland, (90) 
0-481·422. 

FRANCE: Texes Instruments France: Paris Office, BP 
678·10 Avenue Morene-Saulnier, 76141 Veiizy­
Villecoublay cedex (1) 30 70 1003. 

GERMANY (Fed. Republic of Germany): Texas 
Instruments Deutschland GmbH: Haggertystrasse 1. 

~~?1 :6e.is~(:)08~!1i: ~~:~5JI~ ~~2~!,u:65~e~a~~en 
43/Kibbelstrasse, .19,4300 Essen, 201-24250: 
Kirchhorsterstrasse 2, 3000 Hannover 51, 
511 + 648021; Maybachstrabe 11, 7302 Ostfildern 
2·Nelingen, 711 + 34030. 
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HONG KONG: Texas Instruments Hong Kong Ltd., 8th 
Floor, World Shipping Ctr., 7 Canton Rd., Kowloon, 
Hong Kong, (86213-7351223. 

IRELAND: Texas Instruments !Ireland) Limited: 
7/8 Harcourt Street, Stillorgen, County Dublin, Eire, 
1 781677. 

ITALY: Texas Instruments Italil S.p.A. Divlslone 
Semiconduttori: Viale Europa, 40, 20093 Cologne 
Monzese !Milanol, (02) 253001; Via Castello della 
MagUana. 36. 00148 Roma, (06) 5222651; 
Via Amendola. 17,40100 Bologna, (0511 554004. 

JAPAN: Tokyo Marketing/Sales !Headquartersl: 
Texas Instruments Japan Ltd., MS Shibaura Bldg., 9F, 
4-13-23 Shibaura, Minato-ku, Tokyo 108, Japan, 
03-769-6700. Texas Instruments Japan Ltd.: Nissho­
Iwai Bldg. 5F, 30 Imabashi 3-chome, Higashi-ku, 
Osaka 541, Japan, 06-294-1881: Daini Toyota West 
Bldg. 7F, 10·27 Melekl 4-chome, Nakamura-ku, 
Nagoya 450,052·583-8691; Daiichi Seimei Bldg. BF, 
3-10 Oyama·cho, Kanlzawa 920, Ishikawa-ken, 
0762-23-5471; Daiich] Olympic Tachikawa Bldg. SF, 
1-25-12 Akebono-cho, Tachikawa 190, Tokyo, 
0425-27-6426; Matsumoto Showa Bldg. 6F, 2-11 
Fukashi 1-chome, Matsumoto 390, Nagano-ken, 

~~~~-~~~~~:~ar_~~~a::hf!~~~~k~h~~:I:~o~F , 
045-322-6741; Nihon Seimei Kyoto Yasaka Bldg. 5F, 
843-2 Higashi Shiokohjidori, Nishinotoh-in Higashi·iru, 
Shiokouji, Shimogyo-ku, Kyoto 600, 075-341-7713; 
2597-1, Aza Herudei, OSl.8 Yasska, Kitsuki 873, Oits­
ken, 09786·3·3211; Miho Plant. 2350 Klhara Miho­
mura. Inashiki-gun 300-04. Ibaragi-ken, 
0298-65-2541. 

KOREA: Texas instruments Korea Ltd .. 28th Fl., Trade 
Tower, '159, Samsung-Dong, Kangnam-ku, Seoul, 
Korea 2 + 551-2810. 

MEXICO: Texas Instruments de Mexico S.A.: Alfonso 
Reyes-115, Col. Hipodromo Conelesa, Mexico, D.F .. 
Mexico 06120,625/525-3860. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335, 
Manama Behrain, Arabian Gulf. 973 + 274681. 

NETHERLANDS: Texas Instruments Holland 8.V., 
19 Hogehilweg, 1100 AZ Amsterdam-Zuidoost, 
Holland 20 + 5602911. 

NORWAY: Texas Instruments Norway A/S: PB106, 
Refstad 0685. Oslo 5, Norway, (2)155090. 

PEOPl,.ES REPUBUC OF CHINA: Texas Instruments 
China Inc., Beijing Representative Office, 7-05 Citic 
Bldg .• 19 Jianguomenwei Dajje. Beijing, China, (861) 
5002255, Ext. 3750. 

PHILIPPINES: Texas Instruments Asia Lid.: 14th Floor, 
Ba· Lepanto Bldg., Paseo de Roxas, Makati, Metro 
Manila, Philippines. 817-60-31. 

PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal), Lda.: Rue Eng. Frederico Ulrich. 
2650 Moreira Da Maia, 4470 Maie, Portugal, 
2-946-1003. 

SINGAPORE I + INDIA, INDONESIA, MALAYSIA, 
THAILAND): Texas instruments Singapore (PTE) Ltd., 
Asia Pacific Division, 101 Thompson Rd. '23-01, 
United Square, Singapore 1130, 350-8100. 

SPAIN: Texas Instruments Espana, S.A.: C/Jose 
Lazaro Galdiano No.6, Madrid 2803S, 1/458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialenl: 5-164-93, Stockholm, 
Sweden, 8 - 752-5800. 

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 
6, CH·8963 Dietlkon (Zuerich) Switzerland, 
1-740 2220. 

TAIWAN: Texas Instruments Supply Co., 9th Floor 
Bank Tower, 205 Tun Hwa N. Rd., Taipei, Taiwan, 
Republic of China. 2 + 713·9311. 

UNITED KINGDOM: Texas instruments Limited: 
Manton Lane, Bedford, MK41 7PA, England, 0234 
270111. 
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IMPORTANT NOTICE 

Texas Instruments (Til reserves the right to make changes to or 
to discontinue any semiconductor product or service identified 
in this publication without notice. TI advises its customers to 
obtain the latest version of the relevant information to verify, 
before placing orders, that the information being relied upon is 
current. 

TI warrants performance of its semiconductor products to current 
specifications in accordance with TI's standard warranty. Testing 
and other quality control techniques are utilized to the extent TI 
deems necessary to support this warranty. Unless mandated by 
government requirements, specific testing of all parameters of 
each device is not necessarily performed. 

TI assumes no liability for TI applications assistance, customer 
product design, software performance, or infringement of patents 
or services described herein. Nor does TI warrant or represent that 
any license, either express or implied, is granted under any patent 
right, copyright, mask work right, or other intellectual property 
right of TI covering or relating to any combination, machine, or 
process in which such semiconductor products or services might 
be or are used. 

Copyright © 1989, Texas Instruments Incorporated 

Printed in U.S.A. 



ERRATA 

TO THE SN74ACT8800 FAMILY DATA MANUAL (SCSS006B) 

JUNE 1989 REVISIONS 

These errata pages contain corrections to the following specifications: 

1. Switching Characteristics, pg. 7-37 

2. Setup and Hold Times, pg. 7-38 

3. CLK/RESET Requirements, pg 7-38 

4. Switching Characteristics, pg. 7-39 

5. Switching Characteristics, pg. 7-41. 

If you should have any further questions or concerns, contact your nearest 
TI field sales office, local authorized TI distributor, or the TI Customer Response 
Center at 1-800-232-3200. 
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• Page 7-37 - Replace the switching characteristics with the 
following: 

switching characteristics 

PIPELINE 
PARAM- FROM TO SN74ACT8847-30 

NO. CONTROLS 
ETER (INPUT) (OUTPUT) 

PIPES2-PIPESO MIN MAX 

1 tpd1 DA/DB/lnst Y OUTPUT 111 t 

INPUT REG Y OUTPUT 110 70 
2 tpd2 

INPUT REG STATUS 110 70 

PIPELN REG Y OUTPUT 10X 54 
3 tpd3 

PIPELN REG STATUS 10X 54 

OUTPUT REG Y OUTPUT OXX 20 
4 tpd4 

OUTPUT REG STATUS OXX 20 

5 tpd5 SELMS/LS Y OUTPUT XXX ;,. 18 

6 tpd6 CLKi 
Y OUTPUT 

INVALID 
all but 111 3.0 ttf'f:' 

7 tpd7 CLKi 
STATUS 

INVALID 
all but 111 3.0,f" 

Y OUTPUT ~ 
8 tpd8 SELMS/LS XXX 1~' 

INVALID <t 
CLKi CLKi 010 w/o feedback 56 

9 td1 CLKi CLKi 010 w/feedback~ 56 

CLKi CLKi 010 W/FLOWC§ 66 

CLKi CLKi 000 w/o feedback 30 

10 td2 CLKi CLKi 000 w/feedback:l: 30 

CLKi CLKi 000 W IFLOWC § 36 

Delay time, CLKC after CLK to insure data 

11 td3 
captured in C register is data clocked into 

12 td-01 
sum or product register by that clock. 

(PIPES2-PIPESO = OXX) 

12 ten1 OEY Y OUTPUT XXX 15 

13 ten2 OEC,OES STATUS XXX 15 

14 tdis1 OEY Y OUTPUT XXX 15 

15 tdis2 OEC,OES STATUS XXX 15 

tThis parameter no longer tested and will be deleted on next Data Manual revision. 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

:I: Applies to all feedback cases except where operands are fed back using FLOWC to bypass C 
register. (Please see Figure f3 for feedback paths). 

§Operands are fed back using FLOWC to bypass the C register. 
'td is the clock cycle period. 

2 



• Page 7-38 - Replace the setup and hold times with the following: 

setup and hold times 

NO. PARAMETER 

PIPELINE 

CONTROLS 
SN74ACT8847-30 

PIPES2-PIPESO MIN MAX 

16 tsu1 Instfcontrol before CLKt XXO 12 

17 tsu2 .DAfDB before CLKt XXO 11 ,.:f 
18 tsu3 DAfDB before 2nd CLKt (DP) XX1 40 .,--:'~' 

19 tsu4 CONFIG1-0 before CLKt XXO 12 i,fl 
20 tsu5 SRCC before CLKCt XXX 12 _./;'-" 
21 tsu6 RESET before CLKt XXO 12).::;r 
22 th1 Instfcontrol after ClKt XXX 31::' 

23 th2 DAfDB after ClKt XXX 4 

24 th3 SRCC after ClKCi XXX 1 

25 th4 RESET after ClKt XXO 6 

• Page 7-38 - Replace the elK/RESET requirements with the 
following: 

elK/RESET requirements 

SN74ACT8847-30 
PARAMETER 

.,:,:".MAX MIN 

ClK high 1°cf'-:~iY 
tw Pulse duration ClK low 1 a""I:;~-;' 

RESET 10 " 

UNIT 

ns 

ns 

UNIT 

ns 
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• Page 7-39 - Replace the switching characteristics with the 
following: 

switching characteristics 

PARAM- FROM 
PIPELINE 

SN74ACT8847-40 
NO. 

TO 
CONTROLS 

ETER liN PUT) (OUTPUT) 
PIPES2-PIPESO MIN MAX 

1 tpdl DA/DBllnst Y OUTPUT 111 t 

INPUT REG Y OUTPUT 110 90 
2 tpd2 

INPUT REG STATUS 110 90 

3 
PIPELN REG Y OUTPUT lOX 60 

tpd3 
PIPELN REG STATUS lOX 60 

OUTPUT REG Y OUTPUT OXX 24 
4 tpd4 

OUTPUT REG STATUS OXX 24 

5 tpd5 SELMS/LS Y OUTPUT XXX 20 

6 tpd6 CLKt 
Y OUTPUT 

INVALID 
all but 111 3.0 

7 tpd7 CLKt 
STATUS 

INVALID 
all but 111 3.0 

8 tpd8 SElMS/LS 
Y OUTPUT 

XXX 1.5 
INVALID 

CLKt ClK! 010 w/o feedback 72 

9 td1 CLKt ClK! 010 w/feedback* 72 

ClKt ClKt 010 W/FlOWC§ 84 

CLKt ClKt 000 w/o feedback 40 

10 td2 ClKt ClKt 000 w/feedback* 40 

ClKt CLKt 000 W IFlOWC § 47 

Delay time, ClKC after ClK to insure data 

11 td3 
captured in C register is data clocked into 

12 td-O' sum or product register by that clock. 

(PIPES2-PIPESO = OXX) 
12 tenl OEY Y OUTPUT XXX 16 

13 ten2 OEC,OES STATUS XXX 16 

14 tdisl bEY Y OUTPUT XXX 16 

15 tdis2 ~,OES STATUS XXX 16 

tThis parameter no longer tested and will be deleted on next Data Manual revision. 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

*Applies to all feedback cases except where operands are fed back using FLOWC to bypass C 
register. (Please see Figure 13 for feedback paths). 

§Operands are fed back using FLOWC to bypass the C register. 
1td is the clock cycle period. 
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• Page 7-41 - Replace the switching characteristics with the 
following: 

switching characteristics 

PIPELINE 
PARAM- FROM TO SN74ACT8847-50 

NO. CONTROLS 
ETER (INPUT) (OUTPUT) 

PIPES2-PIPESO MIN MAX 

1 tpdl DA/DB/lnst Y OUTPUT 111 t 

INPUT REG Y OUTPUT 110 120 
2 tpd2 INPUT REG STATUS 110 120 

PIPELN REG Y OUTPUT lOX 75 
3 tpd3 

PIPELN REG STATUS lOX 75 

OUTPUT REG Y OUTPUT OXX 36 
4 tpd4 

OUTPUT REG STATUS OXX 36 

5 tpd5 SELMS/[§ Y OUTPUT XXX 24 

6 tpd6 CLKi 
Y OUTPUT 

INVALID 
all but 111 3.0 

7 tpd7 CLKt 
STATUS 

INVALID 
all but 111 3.0 

8 tpd8 SELMS/[§ 
Y OUTPUT 

INVALID 
XXX 1.5 

CLKt CLKi 010 w/o feedback 100 

9 tdl CLKt CLKi 010 w/feedback:l: 100 

CLKt CLKt 010 W/FLOWC§ 117 

CLKt CLKt 000 w/o feedback 50 

10 td2 ClKt ClKi 000 w/feedback:l: 50 

ClKt ClKt 000 W/FlOWC§ 60 

Delay time, ClKC after ClK to insure data 

11 td3 
captured in C register is data clocked into 

sum or product register by that clock. 
12 td-O' 

(PIPES2-PIPESO = OXX) 

12 tenl OEY Y OUTPUT XXX 20 

13 ten2 OEC, OES STATUS XXX 20 

14 tdisl bEY Y OUTPUT XXX 20 

15 tdis2 OEC, OES STATUS XXX 20 

tThis parameter no longer tested and will be deleted on next Data Manual revision. 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

:I: Applies to all feedback cases except where operands are fed back using FlOWC to bypass C 
register. (Please see Figure 13 for feedback paths). 

§Operands are fed back using FlOWC to bypass the C register. 
'td is the clock cycle period. 
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TI Sales Offices TI Distributors 
ALABAMA: Huntsvllle (20S) 837·7530. 

ARIZONA: Phoenix (602) 995-1007; 
Tucson (602) 292-2640. 

CALIFORNIA: Irvine (714) 660-1200; 
Roseville (916) 786-9208; 
San Diego (619) 278-9601; 
Santa Clara (408) 980-9000; 
Torrance (213) 217.7010; 
Woodland Hills (818) 704-7759. 

COLORADO: Aurora (303) 368·8000. 

CONNECTICUT: Wallingford (203) 269-0074. 

FLORIDA: Altamonte Springs (305) 26()'2116; 
Ft. Lauderdale (305) 973-8502; 
Tampa (813) 885-7411. 

GEORGIA: Norcross (404) 662-7900. 

ILLINOIS: Arlington Heights (312) 640-2925. 

INDIANA: Carmel (317) 573-6400; 
Ft. Wayne (219) 424-5174. 

IOWA: Cedar Rapids (319) 395-9550. 

KANSAS: Overland Park (913) 451-4511. 

MARYLAND: Columbia (301) 964-2003. 

MASSACHUSETTS: Waltham (617) 895-9100. 

MICHIGAN: Farmington Hills (313) 553-1569; 
Grand Rapids (616) 957-4200. 

MINNESOTA: Eden Prairie (612) 828-9300. 

MISSOURI: SI. Louis (314) 569-7600. 

NEW JERSEY: Iselin (201) 750-1050. 

NEW MEXICO: Albuquerque (505) 345-2555. 

NEW YORK: East Syracuse (315) 463-9291; 
Melville (516) 454-6600; 
Pittsford (716) 385-6770; 
Poughkeepsie (914) 473-2900. 

NORTH CAROLINA: Charlotte (704) 527-0933; 
Raleigh (919) 876-2725. 

OHIO: Beachwood (216) 464-6100; 
Beaver Creek (513) 427-6200. 

OREGON; Beaverton (503) 643-6758. 

PENNSYLVANIA: Blue Bell (215) 825-9500. 

PUERTO RICO: Hato Rey (809) 753-8700. 

TENNESSEE: Johnson City (615) 461-2192. 

TEXAS: Austin (512) 250-7655; 
Houston (713) 778-6592; 
Richardson (214) 680-5082; 
San Antonio (512) 496-1779. 

UTAH: Murray (801) 266-8972. 

WASHINGTON: Redmond (206) 881-3060. 

WISCONSIN: Brookfield (414) 782-2899. 

CANADA: Nepean, Ontario (613) 726-1970; 
Richmond Hili, Ontario (416) 884-9181; 
St. Laurent, Quebec (514) 336-1860. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660-8105; 
Santa Clara (408) 748-2220; 

GEORGIA: Norcross (404) 662-7945. 

ILLINOIS Arlington Heights (312) 640-2909. 

MASSACHUSETTS: Waltham (617) 895-9196. 

TEXAS: Richardson (214) 680-5066. 

CANADA: Nepean, Ontario (613) 726-1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Klerulff Electronics Group 
Arrow (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Ha"·Mark Electronics 
Marsha" Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 

-OBSOLETE PRODUCT ONLY­
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(508) 462·9332 

ALABAMA: Arrow/Kierulff (205) 837-6955; 
Hall-Mark (205) 837-8700; Marshal! (205) 881-9235; 
Schweber (205) 895-0480. 

ARIZONA: Arrow/Kterultf (602) 437-0750; 
Hall-Mark (602) 437-1200; Marshall (602) 496-0290; 
Schweber (602) 431-0030; Wyle (602) 866-2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow/Kieruftf (818) 701-7500, (714) 838-5422; 
Hall-Mark (818) 773-4500, (714) 669-4100; 
Marshall (818) 407-0101, (818) 459-5500. 
(714) 458-5395; Schweber (818) 880-9686; 
(714) 863-0200, (213) 320-8090; Wyle (818) 880-9000, 

~~:ia~;~~~~3~!I~_~a~~1~1~j~:~~9~8{~;18) 889-3838; 
Marshall (916) 635-9700; Schweber (916) 364-0222; 
Wyle (916) 638-5282; 
San Diego: Arrow/Kierulff (619) 565-4800; 
Hall-Mark (619) 268-1201; Marshall (619) 578-9600; 
Schweber (619) 450-0454; Wyle (619) 565-9171; 
San Francisco Bay Area: Arrow/Kierulff (408) 745-6600, 
Hall-Mark (408) 432-0900; Marshall (408) 942-4600; 
Schweber (408) 432-7171; Wyle (408) 727-2500; 
Zeus (408) 998-5121. 

COLORADO: Arrow/Kierulff (303) 790-4444; 
Hall-Mark (303) 790-1662; Marshall (303) 451-8383; 
Schweber (303) 799-0258; Wyle (303) 457-9953. 

CONNETICUT: Arrow/Kierulff (203) 265-7741; 
Half-Mark (203) 271-2844; Marshall (203) 265-3822; 
Schweber (203) 264-4700. 

FLORIDA: Ft. Lauderdale: 
Arrow/Kierulff (305) 429-8200; Hall-Mark (305) 971-9280; 
Marshall (305) 977-4880; Schweber (305) 977-7511; 
Orlando: Arrow/Kierulff (407) 323-0252; 
Hall-Mark (407) 830-5855; Marshall (407) 767-8585; 
Schweber (407) 331-7555; Zeus (407) 365-3000; 
Tampa: Hall-Mark (813) 530-4543; 
Marshall (813) 576-1399; Schweber (813) 541-5100. 

GEORGIA: Arrow/Kierulff (404) 449-8252; 
Hall-Mark (404) 447-8000; Marshall (404) 923-5750; 
Schweber (404) 449-9170. 

ILLINOIS: Arrow/Kierulff (312) 250-0500; 
Hall-Mark (312) 860-3800; Marshall (312) 490-0155; 
Newark (312) 784-5100; Schweber (312) 364-3750. 

INDIANA: Indianapolis: Arrow/Kierutff (317) 243-9353; 
Hall-Mark (317) 872-8875; Marshall (317) 297-0483; 
Schweber (317) 843-1050. 

IOWA: Arrow/Kierulff (319) 395-7230; 
Schweber (319) 373-1417. 

KANSAS: KansasClty: Arrow/Kierulff (913) 541-9542; 
Hall-Mark (913) 886-4747; Marshall (913) 492-3121; 
Schweber (913) 492-2922. 

TEXAS 
INSTRUMENTS 

MARYLAND: ArrowfKierulff (301) 995-6002; 
Hall-Mark (301) 988-9800; Marshall (301) 235-9464; 
Schweber (301) 840-5900; Zeus (301) 997-1118. 

MASSACHUSETTS Arrow/Klerulff (508) 658-0900; 
Hall-Mark (506) 667-0902; Marshall (508) 658-0810; 
Schweber (617) 275-5100; Time (617) 532-6200; 
Wyle (617) 273-7300; Zeus (617) 863-8600. 

MICHIGAN: Detroit: Arrow/Kierulff (313) 462-2290; 
Hall·Mark (313) 462-1205; Marshall (313) 525-5850; 
Newark (313) 967-0600; Schweber (313) 525-8100; 
Grand Rapids: Arrow/Klerulff (616) 243-0912. 

MINNESOTA: Arrow/Kierulff (612) 830-1800; 
Hall-Mark (612) 941-2600; Marshall (612) 559-2211; 
Schweber (612) 941-5280. 

MISSOURI: St. louis: Arrow/Kierulff (314) 567-6888; 
Hall-Mark (314) 291-5350; Marshall (314) 291-4650; 
Schweber (314) 739-0526. 

NEW HAMPSHIRE: Arrow/Kierulff (603) 668-6968; 
Schweber (603) 625-2250. 

NEW JERSEY: Arrow/Kierultf (201) 536-0900, 
(609) 596-8000; GRS ElectronIcs (609) 964-8560; 
Hall-Mark (201) 575-4415, (201) 882-9773, 
(609) 235-1900; Marshall (201) 882-0320, 
(609) 234.91')0; Schweber (201) 227-7880. 

NEW MEXICO: Arrow/Kierulff (505) 243-4566. 

NEW YORK: Long Island: 
Arrow/Kierutff (516) 231-1009; Hall-Mark (516) 737-0600; 
Marshall (516) 273·2424; Schweber (516) 334-7474; 
Zeus (914) 937-7400; 
Rochester: ArrowfKierulff (716) 427-0300; 
Halt-Mark (716) 425-3300; Marshall (716) 235-7620; 
Schweber (716) 424-2222; 
Syracuse: Marshall (607) 798-1611. 

NORTH CAROLINA: ArrowfKierulff (919) 876-3132, 
(919) 725-8711; Hall-Mark (919) 872-0712; 
Marshall (919) 676-9882; Schweber (919) 876-0001;1. 

OHIO: Cleveland: Arrow/Kierulff (216) 248-3990; 
Hall-Mark (216) 349-4632; Marshall (216) 248-1788; 
Schweber (216) 464-2970; 
Columbus: Hall-Mark (614) 888-3313; 
Dayton: Arrow/Kierulff (513) 435-5563; 
Marshall (513) 898-4480; Schweber (513) 439-1800. 

OKLAHOMA: Arrow/Kierulff (918) 252·7537; 
Schweber (918) 622-8003. 

OREGON: Arrow/Kierulff (503) 645-6456; 
Marshall (503) 644-5050; Wyle (503) 640-6000. 

PENNSYLVANIA: Arrow/KlerulH (412) 656-7000, 
(215) 928-1800; GRS Electronics (215) 922-7037; 
Marshall (412) 963-0441; Schweber (215) 441-0600, 
(412) 963-6604. 

TEXAS: Austin: Arrow/Kierulff (512) 835-4180; 
Hall-Mark (512) 258-8848; Marshall (512) 837-1991; 
Schweber (512) 339-0088; WyJe (512) 834-9957; 
Dallas: Arrow/Kierulff (214) 380-6464; 
Hall-Mark (214) 553-4300; Marshall (214) 233-5200; 
Schweber (214) 661-5010; Wyle (214) 235-9953; 
Zeus (214) 783-7010; 
EI Paso: Marshall (915) 593-0706; 
Houston: Arrow/Kierulff (713) 530-4700; 
Hall-Mark (713) 781-6100; Marshall (713) 895-9200; 
Schweber (713) 784-3600; Wyle (713) 879-9953. 

UTAH: Arrow/KierulH (801) 973-6913; 
Hall-Mark (801) 972-1008; Marshall (801) 485-1551; 
Wyle (801) 974-9953. 

WASHINGTON: ArrowfKlerulff (206) 575-4420; 
Marshall (206) 486-5747; Wyle (206) 881-1150. 

WISCONSIN: Arrow/Kierultf (414) 792-0150; 
Hall-Mark (414) 797-7844; Marshall (414) 797-8400; 
Schweber (414) 784-9020. 

CANADA: Calgary: Future (403) 235-5325; 
Edmonton: Future (403) 438-2858; 
Montreal: Arrow Canada (514) 735-5511; 
Future (514) 694-7710; 
OHawa: Arrow Canada (613) 226-6903; 
Future (613) 820-8313; 
Quebec City: Arrow Canada (418) 871·7500; 
Toronto: Arrow Canada (416) 672-7769; 
Future (416) 638-4771; Marshall (416) 674-2161; 
Vancouver: Arrow Canada (604) 291-2986; 
Future (604) 294-1166. 

Customer 
Response Center 
TOLl. FREE: (800) 232-3200 

OUTSIDE USA: (214) 995-6611 
(8:00 a.m. - 5:00 p.m. CST) 
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