‘Q'f TEXAS

INSTRUMENTS

TSP50C4X Family

Speech Synthesizers

Design Manual

=)
o
g,
Q
3
N
g
o
—

Apweyq Xr20SdSL

1990 Linear Products

0661

Linear Products Data Book Guide

Data Book

Linear Circuits Vol 1
Amplifiers, Comparators,
and Special Functions

Linear Circuits Vol 2
Data Acquisition
and Conversion

Linear Circuits Vol 3
Voltage Regulators and
Supervisors

Telecommunications
Circuits

Optoelectronics and

Image Sensors

Interface Circuits

Speech System Manuals

Contents

Operational Amplifiers

Voltage Comparators

Video Amplifiers

Hall-Effect Devices

Timers and Current Mirrors
Magnetic-Memory Interface
Frequency-to-Voltage Converters
Sonar Ranging Circuits/Modules
Sound Generators

A/D and D/A Converters

DSP Analog Interface

Analog Switches and Multiplexers
Switched-Capacitor Filters

Supervisor Functions
Series-Pass Voltage Regulators
Shunt Regulators

Voltage References

DC-to-DC Converters

PWM Controllers

Equipment Line Interfaces
Subscriber Line Interfaces

Modems and Receivers/Transmitters

Ringers, Detectors, Tone Encoders
PCM interface
Transient Suppressors

Optocouplers

CCD Image Sensors and Support
Phototransistors

IR-Emitting Diodes

Hybrid Displays

High-Voltage (Display) Drivers

High-Power (Peripheral/Motor) Drivers
Line Drivers, Receivers, Transceivers
EIA RS-232, RS-422, RS-423, RS-485

IBM 360/370, IEEE 802.3, CCITT
Military Memory Interface

TSP50C4X Family

Document No.

SLYDOO3
1989

SLYDOO4
1989

SLYDOO5
1989

SCTDOO1A
1988/89

SOYDOO2A
1990

SLYDOO02
1987

SPSS010
1990

November 1989

TSP50C4X Family
Speech Synthesizers
Design Manual

+ip
Texas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. Tl advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current
specifications in accordance with Tl’s standard warranty. Testing and
other quality control techniques are utilized to the extent Tl deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1984, 1990 by Texas Instruments Incorporated
Revised 1990

Contents

Section Title Page
1 Introduction 1-1
1.1 Applications e e 1-1
1.2 Description e 1-2
1.3 FEAUIES . ..\ttt ettt et 1-3
1.4 Device Comparison 1-3
1.5 Masked Options 1-3
1.6 Pin Assignment and Description. 1-5
1.7 Introduction to LPC 1-11
1.7.1 The Vocal Tract., 1-11
1.7.2 The LPCModel 1-11
1.7.3 LPC Data Compression 1-12
2 TSP50C4X Architecture 2-1
2.1 ROM . . e e 2-2
2.2 Program Counter, 2-3
2.3 Program Counter Stack 2-3
2.4 RAM . . e 2-3
2.5 ALU e 2-4
2.6 A Register. e 2-4
2.7 X Register. 2-4
2.8 B Register 2-5
2.9 Status Flag 2-5
2.10 Timer Register.t 2-5
2.11 Timer Prescale Register 2-6
2.12 PitchRegister i, 2-6
2.13 Speech Address Register e 2-6
2.14 Parallel-to-Serial Register 2-7
2.15 Interface Logic 2-7
2.16 Port A (Master Option), 2-7
2.17 Port A (Slave Option) 2-8
218 Port B 2-8
2.19 Port C ..o e e 2-8
2.20 PortD......... ... 2-8
2.21 IRT PN ... e 2-9

Contents (Continued)

Section Title Page
2.22 Speech Synthesizer 2-9
2.22.1 Use of RAM by the Synthesizer 2-10
2.22.2 Context Switch 2-12
2.22.3 Interpolation 2-12
2.22.4 Timing Requirements 2-12
2.22.5 Voicing Control 2-15
2.22.6 Frame Length Control 2-15
2.22.7 Digital-to-Analog Converter and Output Buffer 2-15
3 Electrical Specifications 3-1
3.1 Absolute Maximum Ratings Over Free-Air

Temperature Range, 3-1
3.2 Recommended Operating Characteristics—DC 3-1
3.3 Recommended Operating Characteristics—AC 3-1
34 Electrical Characteristics 3-2
3.5 Oscillator e e 3-2
3.6 Direct Speaker Driver 3-3
4 TSP50C4X Assembler 4-1
4.1 Source Statement Format 4-1
4.1.1 Label Field. 4-2
4.1.2 Command Field 4-2
4.1.3 Operand Field 4-2
4.1.4 Comment Field 4-2
4.2 Constants e e e 4-2
4.2.1 Decimal Integer Constants 4-3
4.2.2 Binary Integer Constants 4-3
4.2.3 Hexadecimal Integer Constants 4-3
4.2.4 Character Constantscuuuuuuunn. 4-3
4.2.5 Assembly-Time Constants 4-4
4.3 Symbols e e 4-4
4.3.1 Predefined Symbol /8" 0 ... 4-4
4.3.2 Character String 4-5
4.4 EXpressions e e 4-5
441 Arithmetic Operators in Expressions 4-5
4.4.2 Parentheses in Expressions 4-5
4.5 Invoking the Assembler 4-6
4.5.1 Assembler Input and Output Files. 4-6
452 Assembly Source File 4-6

iv

Contents (Continued)

Section Title

4.5.3 Assembly Binary ObjectFile.....................
4.5.4 Assembly Tagged Object File
4.5.5 Assembly Listing File ..o
4.6 Options and Switches
4.6.1 Command Line Options
4.6.1.1 BYTE Unlist Option
4.6.1.2 DATA Unlist Option.
4.6.1.3 XREF Unlist Option
4.6.1.4 TEXT Unlist Option
4.6.1.5 WARNING Unlist Option
4.6.1.6 8K Assembly Mode Option
4.6.2 Complete XREF Switch
4.6.3 Object Module Switch
4.6.4 Listing File Switch,
4.6.5 Page Eject Disable Switch
4.6.6 Error to Screen Switch
4.6.7 Binary Code File Disable Switch
4.7 Assembler Directives
4.7.1 AORG Directiveo i it i
4.7.2 BYTE Directive,
4.7.3 BES Directive
4.7.4 BSS Directive
4.7.5 COPY Directive i i
4.7.6 DATA Directive
4.7.7 EQU Directive e
4.7.8 EVEN Directive
4.7.9 END Directive
4.7.10 IDT Directive e
4.7.11 LIST Directive
4.7.12 OPTION Directive
4.7.12.1 BUNLST e
4.7.12.2 DUNLST
4.7.12.3 FUNLST i
4.7.12.4 LSTUNL e
4.7.12.5 OBJUNL e
4.7.12.6 PAGEOF
4.7.12.7 RXREF
4.7.12.8 SCRNOF e

Contents (Continued)

Section Title Page
4.7.12.9 TUNLST ... e e e 4-17
4.7.12.10 WARNOF e i 4-17
4.7.12.11 XREF S 4-18
4.7.12.12 BKASM e 4-18
4.7.12.13 990 ... e 4-18
4.7.13 PAGE Directive, 4-18
4.7.14 RBYTE Directive0, 4-18
4.7.15 RDATA Directive ittt ittt 4-19
4.7.16 RTEXT Directive, 4-19
4.7.17 TEXT Directivettt 4-20
4.7.18 TITL Directiveottt i i e 4-20
4.7.19 UNL Directive 4-21
5 Instruction Set 0., 5-1

5.1 Instruction Format 5-3

5.2 ACAA . e e 5-4

5.3 AMAAC .. . e e 5-5

5.4 ANEC . .. e e 5-6

5.5 BR . e 5-7

5.6 CALL .. e e e 5-8

5.7 CLA e e e 5-9

5.8 CLB . e 5-10
5.9 [1 5-11
B.10 DECMC e e 5-12
5.11 EXTRM . .. e e e 5-13
B.12 EXTSG ... e e 5-14
B.13 GET ..t e e e e 5-15
B.14 IBC . .. e 5-17
B.16 INCMC e 5-18
B.16 INTD e e e 5-19
B.17 INTE . . e e e e 5-20
B.18 INTGR. ... e e e e e 5-21
B.19 INTRM ... e e e 5-22
B5.20 IXC .. . e e e 5-23
B.21 LUAA e e 5-24
B.22 LUSPS .. . e e e e 5-25
B.23 POP .. e e e 5-26

vi

Contents (Continued)

Section Title Page
5.24 RBITM e 5-27
5.25 RETl .. .o e e e 5-28
5.26 RETN i e e e e 5-29
5.27 RSECT ... e e 5-30
5.28 RSRDY e e 5-31

B5.29 SALA .. e e 5-32
5.30 SARA e e e 5-33
5.31 SBITM e 5-34
B.32 SBR ... e 5-35
5.33 SETOF e e 5-36
5.34 SMAAN e 5-37
5,35 START et e e e eeeeaeaea 5-38
B.36 STOP i e e 5-39
B5.37 TAPA .. e 5-40
5.38 TAPB e 5-41

5.39 TAPD ... e 5-42
5.40 TAM e e e 5-43
5.41 TAPRF e e 5-44
B.42 TAPSC e 5-45
5.43 TASH e e 5-46
B.44 TASL ... i e e e e 5-47
B4 TAV e e e 5-48
B.46 TAX .. e e 5-49
B.47 TBA .. e e e 5-50
B.48 TBITA ... e e e e 5-51

5.49 TBITM e e 5-52
B B0 TCX .t 5-53
B.BT TMA e e e 5-54
5.52 TMAIX .. e 5-55
5.63 TMEDA e 5-56
5,64 TPAA .. e e e 5-57
5,65 TPAM e 5-58
B.66 TPCA ... e 5-59
B.57 TTMA L e e 5-60
5. B8 TXA . e e e 5-61

5.569 TXPA ... e 5-62
5.0 TXTM ... e 5-63
B.B6T XBX . e e 5-64
B.62 XGEC 5-65

%)
)
]
2
)
3

viii

Contents (Concluded)

Applications
Synthesizer Control
Speech Coding and Decoding.
RAMUsaget i
ROMUsage. ittt iiienn
Program Overview
Calling the Synthesis Program
Synthesis Program Walkthrough
Arithmetic Modes,
Standby Mode. e
Slave Option i e
TSP6OCXX Interface,
Initialization
Using Internal and External Data Alternately
TSP6OCXX Power Down
Use of the TMEDA Instruction
Use of Timer, Prescaler, Interrupt and IRT Pin
UseoftheStack

Customer Information
Production Flow
Summary of Speech Development/Production Sequence . . .
Mechanical Data
IC Sockets it e
Ordering Information
New Product Release Forms

Script Preparation and Speech Development Tools
TSP50C4X Synthesis Program
Program to Initialize the TSP60C20 Speech ROM

List of lllustrations

Title Page
TSP50C4X Applications 1-1
Block Diagram e 1-2
Pin Assignments, 1-5
LPC-10 Vocal Tract Model 1-12
System Block Diagram. 2-1
ROM Map e e e e 2-2
1/0 Data Bus (PAO-PA7) 2-9
RAM Map During Speech Generation 2-11
Initialization Timing 2-12
Write Timing Diagram 2-13
Read Timing Diagram 2-14
Typical Phase Shift Oscillator Connections 3-2
Typical Direct Speaker Drive Connection 3-3
TSP5220 Frame Decoding 6-2
Speech Parameter Unpacking and Decoding 6-3
ALUModes e 6-19
Read Operation 6-21
Write Operation. i 6-22
TSP50C4X/TSP60C19 Interface 6-23
TSP50C4X/TSP60C20 Interface 6-24
Speech Development Cycle 7-1
28-Pin N2 Plastic Package 7-3
40-Pin N2 Plastic Package 7-4
28-Pin FN PLCC i i 7-5
Shrink Package 7-6

Table

1-1
1-2

1-3

1-4

List of Tables

Title

TSP50C4X Device Comparison
Pin Function Description of Port A for

Three Mask Options,
Pin Function Description of Port B for External or

Internal ROM Modes
Pin Function Description of Port C for

Two Mask Optionsot iiiinininnnnun.
Pin Function Descriptionof Port D
Pin Function Description of IRT (Several Options),

OSCand DA e e
Initialization Timing
Timing Requirements
Write Timing Requirements
Read Timing Requirements
Switchesand Options,
Summary of Assembler Directives
TSP50C4X Instruction Set.
Synthesizer RAM Addresses
Buffer and Control RAM Usage
ROMUsage.c.ciiiinnnenn. e

Page
1-3

1-6

1-7

1-10
2-12
2-12
2-13
2-14
4-10
4-11
5-1
6-5
6-6
6-7

xi

xii

Introduction

The TSP50C4X family of speech synthesizers consists of the following four
devices: TSP50C41, TSP50C42, TSP50C43, and TSP50C44. In each of
these, an 8-bit microprocessor, a programmable speech synthesizer, and ROM
are combined to provide a one-chip solution for many applications. The devices
use Linear Predictive Coding (LPC) to generate speech at a low data rate. Mask
options are also available to provide design flexibility.

This section consists of a brief overview of the TSP50C4X family. It begins
with a summary of applications, key features, and a comparison of the devices,
followed by a discussion on mask options and pin descriptions. Also included
is an introduction to Linear Predictive Coding.

1.1 Applications
As illustrated in Figure 1-1, the TSP50C4X devices are versatile and can be
used in many applications.
S
MICROPROCESSOR TSP50C41 :
SWITCHES 110 TSP50C42 A
ANIMATION, TSP50C43 K
ETC. TSP50C44 £
AMPLIFIER/
FILTER R
(OPTIONAL)

Figure 1-1. TSP50C4X Applications

11

Typical applications include:

Telecom
PABX
Telephone Management
Security
Home Monitors
Navigation Aids
Computer
Analyzers
Office Computers
Personal Computers
Industrial
Inspection Controls
Inventory Controls
Machine Controls
Warehouse Systems

1.2 Description

Automotive
Clock Systems
Warning Systems
Consumer
Appliances
Mailboxes
Toys
Medical
Equipment for
the Handicapped
Educational
Learning Aids
Computer Aided
Instructions

The TSP50C4X device can be divided into several functional blocks
(Figure 1-2). The two main blocks are the microcomputer and the speech
synthesizer, which share RAM and timing circuits.

MICROCOMPUTER L__J RAM
PORT
A ¢ —-OI
B <
e BN Vo
D¢
e—] TIMING
MICRO-
PROCESSOR
ROM

SPEECH
SYNTHESIZER
——
ANALOG —» DA1
OUTPUT » DA2

Figure 1-2. Block Diagram

1-2

1.3

1.4

1.5

These devices implement an LPC-10 speech synthesis algorithm using a
10-pole lattice filter. The internal microprocessor accesses speech data from
the internal or external ROM (TSP60CXX), decodes the speech data and sends
the decoded data to the synthesizer. The output of the synthesizer can be
used to drive a small speaker directly or, with an external filter and amplifier,
to drive a large speaker.

Features

® Programmable LPC-10 Speech Synthesizer

8-Bit Microprocessor with 61 Instructions

128 Bytes plus 16 Nibbles of RAM

4-V to 6-V CMOS Technology for Low Power Dissipation
High-Efficiency Push-Pull Pulse-Width-Modulated Digital-to-Analog Output
that can Drive a Speaker Directly

10-kHz or 8-kHz Speech Sample Rate

8K Byte or 16K Byte ROM, 21- or 33-pin I/O

Mask Options

External Event Counter/Internal Timer

Device Comparison
Table 1-1. TSP50C4X Device Comparison

TSP50C41 TSP50C42 TSP50C43 TSP50C44
ROM (Bytes) 8K 8K 16K 16K
1/0 pins* 21 33 21 33
8-bit ports 21/2 4 21/2 4
No. of pins 28 40 28 40

*1/0 pins include the IRT pin.

Mask Options

The designer may choose from five basic mask options depending on the
application. For instance, the master option is designed for single-chip
applications in which the host is the internal microprocessor. The slave option
is intended for use in multichip systems in which the host microprocessor
is external as shown in Section 7. The mask options are as follows:

1. MASTER or SLAVE option
a. MASTER option
Port A (PA1-PA8) is a general purpose input/output port.
b. SLAVE option
Port A can be controlled by an external processor.
Port C (PCO-PC3) pins are programmed to be interface control pins
RDY, ENA1, ENA2 and R/W.

1-3

2.1RT INPUT or OUTPUT option
a. IRT INPUT option
IRT is an input that can be software selected by a TTMA command
to be a clock signal for the timer prescale register. The IRT pin is
unused if the internal clock is selected by a RSECT software
command.
b.IRT OUTPUT option
IRT is an output that indicates that the data output on port A is
stable.
3. KEYBOARD or NORMAL option
a. KEYBOARD option
Port A is split so that PAO-PA3 will be output pins and PA4-PA7 will
be input pins. PCO is not used and PC1-PC3 are tied low. This is
referred to as the keyboard scan option since it is optimally configured
for scanning a 4 X 4 keyboard.
b. NORMAL option
Port A is configured as an 8-bit I/O port.
4. ROM 8K or ROM 4K option
a. ROM 8K option
Allows the microprocessor software program to use 8K bytes of
internal ROM for program instructions. Remaining ROM is available
for other uses. Branches and calls must have even destination
addresses (LSB=0).
b. ROM 4K option
Limits the microprocessor program to the first 4K bytes of internal
ROM for program instructions. Remaining ROM is available.
5. SETOFF DISABLED or ENABLED option
a. SETOFF DISABLED
Disables the software ‘'Setoff’”” command and causes it to act as
a “"NOP"".
b. SETOFF ENABLED
Enables the ‘’Setoff’” command. The microprocessor puts the
TSP50C4X device in the low-power standby by executing the
‘’Setoff’’ command. The external circuitry takes the chip out of the
standby option by driving the INIT pin to a low state and then back
to a high state.

When the master option is selected, the NORMAL and TRT input options are
pre-selected. When the slave option is selected, all of the remaining options
are available.

The TSP50C4X devices have additional 1/0 mask options to minimize the
system parts count. Each pin on Ports A and C can be individually programmed
to have a pull-up resistor. Ports B and D can be programmed in blocks of 4
to have open-drain outputs, that is, the pull-up device can be disabled. The
blocks are BO-3, B4-7, DO-3, and D4-7.

1.6

Pin Assignment and Description

Figure 1-3 shows the pin assignments for the TSP50C41/43 and the

TSP50C42/44. Tables 1-1 and 1-2 provide pin function descriptions.

TSP50C42/44

(TOP VIEW)
vop (1 Uso[dpa2
osc1]z 390pa1
osc2(]3 38[drc7
init (J4 37 pa7
moe sofire
pB1 (J6 35[]PA6
vpp []1 28] pA2 pe2[]7 32[dpas
osc1]2 27[Jpa1 pe3[]s 33[dras
osc2[s 26[]raz pa [(Jo 32[]rcs
Nt]+ 2s[]pae pes (J10 31[Jra3
peo (|5 24[]pas PB6 [J11 30[] PA2
pe1(l6 23 % PA4 PB7 []12 20[]PCa
pe2 {7 22[]ras PDO (J13 28[J PA1
pea[|s 21[Jra2 PD1 14 27[JPAO
PB4]9 20[]Par PD2 [J15 26[]PC3
pes (J10 19[]ra0 pp3 [J16 25[] PC2
pBe [J11 18[]Pc2 PD4 (17 24[JPcC1
pB7 [J12 17[]Pc1 pD5 [J18 23[]Pco
RT[]'3 16[]Pco RT 19 22[QPo7
vss [J14 15[]PC3 vgs [J20 21[]PD6

(a) (b)

Figure 1-3. Pin Assignments

1-5

Table 1-2. Pin Function Description of Port A for Three Mask Options

PIN NO.
PIN NAME ‘560C41| ‘'50C42 | I/0 DESCRIPTION
‘560C43 | '50C44
[MASTER option] Port A is a general purpose bi-
PAO (LSB) 19 27 1/0 | directional port that is controlled by
PA1 20 28 1/0 | the internal microprocessor.
PA2 21 30 1/0
PA3 22 31 110
PA4 23 33 110
PAS 24 34 1/0
PAB 25 35 110
PA7 (MSB) 26 37 1/0
[SLAVE/NORMAL option] Port A is an interface between the
PAO (LSB) 19 27 1/0 | internal and external microprocessor.
PA1 20 28 1/0 | PCO-PC3 are configured as Ready.
PA2 21 30 1/0 | Enable and Read/Write control pins for
PA3 22 31 1/0 | interface.
PA4 23 33 1/0 '
PAS 24 34 1/0
PA6 25 35 110
PA7 (MSB) 26 37 1/10
[SLAVE/KEYBOARD opt] Port A is configured so that PAO-PA3
PAO (LSB) 19 27 O | are outputs and pins PA4-PA7 are
PA1 20 28 O | inputs. This configuration is optimal
PA2 21 30 O | for scanning a 4 x4 keyboard. The
PA3 22 31 O | RDY signal is not used. The ENA1,
PA4 23 33 | | ENA2 and R/W should be tied low.
PAS 24 34 |
PAB 25 35 1
PA7 (MSB) 26 37 |

1-6

Table 1-3. Pin Function Description of Port B for External and Internal ROM Modes

PIN NO.
PIN NAME ‘50C41| ‘'50C42 | 1/0 DESCRIPTION
‘560C43 | ‘50C44
[INTERNAL ROM mode] The INTERNAL ROM mode is
PBO (LSB) 5 5 O | initiated by the INTRM software
PB1 6 6 O | command. Port B is an output port
PB2 7 7 O | controlled by the internal micro-
PB3 8 8 O | processor. This port is put into the
PB4 9 9 O | INTERNAL ROM mode on power-up
PB5 10 10 O | and when the INIT pin is low.
PB6 11 1 O | These two events also cause the
PB7 (MSB) 12 12 O | port’s outputs to latch low.
[EXTERNAL ROM mode] The EXTERNAL ROM mode is initiated
by a EXTRM software command.
Port B is configured as an interface to
a TSP60CXX vocabulary ROM.
MO 5 5 O | Vocabulary ROM mode control
M1 6 6 O | Vocabulary ROM mode control
ADD1 7 7 O | Vocabulary ROM address weight 1
ADD2 8 8 O | Vocabulary ROM address weight 2
ADD4 9 9 O | Vocabulary ROM address weight 4
ADDS8 10 10 O | Vocabulary ROM address weight 8
ROMCLK 11 11 O | Clock output to the vocabulary ROM.
Oscillator divided by 16.
RDIN 12 12 | Vocabulary ROM data input

1-7

Table 1-4. Pin Function Description of Port C for Two Mask Options

PIN NO.
PIN NAME ‘60C41 | '50C42 | 1/0 DESCRIPTION
‘60C43 | '50C44
[SLAVE option] When active (low), Port A is ready to receive
RDY 15 23 O | data fron an external microprocessor. RDY is
set high when the ENA2 pin is pulled low. If
the external processor is not holding ENA2 low,
then an RSRDY software command will reset
RDY low. Status of the pin can be evaluated
by the TPCA™* instruction.
ENA1 16 24 I | Enables the reading or writing of Port A data
PAO-PA7
ENA2 17 25 | | Read mode (R/W high)
ENA1: Most significant nibble of Port A latch
is put on the bus PA4-PA7 while
ENA1 is low. When ENA1 goes low,
IRT goes high.
ENA2: Least significant nibble of Port A latch
is put on the bus PAO-PA3 while
ENA2 is low.
Write mode (R/W low)
ENA1: Most significant nibble on the data
bus PA4-PA7 is strobed in the Port A
latch when ENA1 goes from low to
high.
ENA2: Least significant nibble on the data
bus PAO-PAS3 is strobed in the Port A
latch when ENA2 goes from low to
high.
RIW 18 26 | | Determines the direction of the Port A data bus:
R/W = high; data in the Port A latch is
available to the external bus.
R/W = low; data on the external bus is
written into the Port A latch.
[MASTER option] General-purpose input
PCO (LSB) 16 23 |
PC1 17 24 |
PC2 18 25 |
PC3 15 26 1
[MASTER or SLAVE] General-purpose input
PC4 29 I
PC5 32 |
PC6 36 |
PC7 (MSB) 38 |

Note: If an external driving circuit is used, it should not be allowed to go into high impedance.
*Refer to Table 5-1 for more information.

1-8

Table 1-5. Pin Function Description for Port D

PIN NO.
PIN NAME ‘50C41 | '50C42 | I/O0 DESCRIPTION
'‘560C43 | '50C44

PDO (LSB) 13 O | General-purpose output port
PD1 14 (o}

PD2 15 (0]

PD3 16 (0]

PD4 17 (0}

PD5 18 0

PD6 21 o

PD7 (MSB) 22 0

1-9

Table 1-6. Pin Function Description of IRT (several options), INIT, OSC, and DA

PIN NO.

PIN NAME ‘60C41] '50C42 | 1/0 DESCRIPTION
'50C43 | '50C44

[MASTER/IRT IN OPTION] 13 19 | Interrupt input when programmed by
RT a TTMA software command to be an
input to the timer prescale register.

[SLAVE/IRT IN OPTION] 13 19 I | Interruptinput when programmed by
IRT a TTMA software command to be an
input to the timer prescale register.

[SLAVE/IRT OUT OPTION]| 13 19 O | Ready for data output. IRT goes high
RT when ENA1 is pulled low by external
processor while pin R/W is high. TRT
goes low when data are put into
Port A with the TAPA* instruction.
Software command TPCA can be
used to read the data on the IRT pin.

DA1 27 39 O | Positive digital-to-analog converter
output (PWM) :

DA2 28 40 (o} Negative digital-to-analog converter
output (PWM)

5
IS
IS

Initialize input; when low, device is
initialized and goes into the low-power
mode, Port B and Port D outputs are
latched low. Port A is put into input
mode. When INIT goes from low to
high, the program counter is loaded
with zeroes.

0SC1 2 2 | Clock input. Crystal or ceramic

resonator between OSC1 and OSC2:

3.07-MHz crystal/ceramic resonator
for 8-kHz sampling rate

3.84-MHz crystal/ceramic resonator
for 10-kHz sampling rate

0SC2 3 3 (e] Clock return

VpD 1 1 1 5-V nominal supply voltage

Vsgs 14 20 | Ground

*Refer to Table 5-1 for more information.

1.7

1.7.1

1.7.2

Introduction to LPC

The LPC-10 system uses a mathematical model of the human vocal tract to
enable efficient digital storage and the recreation of realistic speech. To
understand LPC (Linear Predictive Coding), it is essential to understand how
the vocal tract works . This introduction, therefore, begins with a short
description of the vocal tract. The LPC model and data compression techniques
are then addressed. A short discussion of the techniques and pitfalls of
collecting, analyzing, and editing speech for LPC synthesis is included in
Appendix A. For more information, contact your Tl field sales representative
or regional technology center.

The Vocal Tract

Speech is the result of the interaction between three elements in the vocal
tract: air from the lungs, a restriction which converts the air flow to sound,
and the vocal cavities that are positioned to resonate properly.

The air from the lungs is expelled through the vocal tract when the muscles
of the chest and diaphragm are compressed. Pressure is used as a volume
control, higher pressure for louder speech.

As air flows through the vocal tract, it makes very little sound if there is no
restriction. The vocal cords are one type of restriction. They can be tightened
across the vocal tract to stop the flow of air. Pressure builds up behind them
and forces them open. This happens over and over, generating a series of
pulses. The tension on the vocal cords can be varied to change the frequency
of the pulses. Many speech sounds are produced by this type of restriction,
for example, the ‘A’ sound. This is called ‘‘voiced’’ speech.

A different type of restriction takes place in the mouth and causes a hissing
sound called white noise. The ‘S’ sound is a good example. This occurs when
the tongue and some part of the mouth are in close contact or when the lips
are pursed. This restriction causes high flow velocities which cause turbulence
that produces white noise. This is called ‘‘unvoiced’’ speech.

The pulses from the vocal cords and the noise from the turbulence have fairly
broad, flat spectral characteristics. In other words, they are really noise, not
speech. The shape of the oral cavity changes noise into recognizable speech.
The position of the tongue, the lips and the jaws change the resonance of
the vocal tract, shaping the raw noise of restricted air flow into understandable
sounds.

The LPC Model

The LPC model incorporates elements analogous to each of the elements of
the vocal tract described above. It has an excitation function generator that
models both types of restriction, a gain multiplication stage to model the
possible levels of pressure from the lungs, and a digital filter to model the
resonance in the oral and nasal cavities.

1-11

Figure 1-4 shows the LPC model in schematic form. The excitation function
generator accepts coded pitch information as an input and can generate a
series of pulses similar to vocal cord pulses. It can also generate white noise.
The waveform is then multiplied by an energy factor that corresponds to the
pressure from the lungs. Finally, the signal is passed through a digital filter
that models the shape of the oral cavity. In the TSP50C4X family, this filter
has ten poles, so the synthesis is referred to as LPC-10.

PITCH

PERIODIC

AN

LPC-10

DIGITAL }— DA }—»
FILTER

WHITE NOISE

WWM/W ENERGY K1-K10

FILTER
COEFFICIENTS

Figure 1-4. LPC-10 Vocal Tract Model

1.7.3 LPC Data Compression

The data compression for LPC-10 takes advantage of other characteristics
of speech. Speech changes fairly slowly, and the oral and nasal cavities tend
to fall into certain areas of resonance more than others. The speech is analyzed
in frames that are generally from 10 to 25 ms long. The inputs to the model
are calculated as an average for the entire frame. The synthesizer smooths
or interpolates the data during the frame, so there isn’t an abrupt transition
at the end of each frame. Often speech changes even more slowly than the
frame. Tl's LPC model allows for a repeat frame, where the only values
changed are the pitch and the energy. The filter coefficients are kept constant
from the previous frame. To take advantage of the recurrent nature of
resonance in the oral cavity, all the coefficients are encoded, with anywhere
from seven to three bits for each coefficient. The coding table is designed
so that more coverage is given to the coefficient values that occur frequently.

TSP50C4X Family Architecture

The major components of the TSP50C4X devices are a speech synthesizer,
an 8-bit microprocessor, an internal 8K-byte (TSP50C41/42) or 16K-byte
(TSP50C43/44) ROM and interface logic (I/0) as shown in Figure 2-1.
Instructions are fetched by the microprocessor from the ROM approximately
every 9 us (oscillator frequency divided by 32) and are used to control the
algorithm sequences. To generate speech, the processor accesses speech
data from either the internal 8K-byte ROM or an external speech ROM. Once
the data has been read, the processor must unpack and decode the individual
speech parameters and store the results in a dedicated section of the RAM.

The 1/O consists of one 8-bit bidirectional port (Port A), two 8-bit output ports
(Port B and Port D), one 8-bit input port (Port C) and an IRT pin. These ports
are under the control of the microprocessor and are configured by mask
options.

The synthesizer shares access to the RAM and addresses the individual
parameter locations as needed when generating speech. The speech
synthesizer performs parameter smoothing and pitch period control as well
as lattice filter computations.

SPEECH PROCESSOR

INTERFACE LoGIC | PATA AND SPEECH SYNTHESIZER
BUS | INTERNAL MEMORY

» EK...K
PAO-PA3 —¢b—2] 8 10 8
4 [PORT A ¥ Ram X
PA4-PA7 —4->—A]
8-BIT
8 ADDRESS
PAO-PA7 —4—] PORT B Eos s | | excrramion
ROM
PCO-PC3 ——— 1
PORT C
PC4-PC7 TSP50C42/44 il _]
| ONLY | ALU
PDO-PD7 —4—24 PORT D | D 8, |l pronres| | treo
| | LATTICE
" _ ADDRESS FILTER
—_——— BUS
TIJ REGISTERS | ‘E’
RT c
144 c
oset OSCILLATOR D ANALOG PWM
0sC2 —e¢— ROM £ OUTPUT DAC
R
(723
VDD1+5 VI ———p 2 T
LR
VBB1GND1 —— s DA1 DA2
<
SYS RESET/ o
INIT —»— POWER DOWN @
CIRCUIT)

Figure 2-1. System Block Diagram

21

2.1 ROM

The ROM holds the control program, the speech data, and any other data
required by the application. Certain locations in the ROM are reserved for
specific purposes (Figure 2-2).

ADDRESS
76 543210
0000 ‘ SBRO4
0001 SBRO4
0002 SBR0O6
0003 SBR0O6
0004 Branch to initialization routine
0005
0006 Branch to interrupt routine
0007
3CO0-3FF l | | | I I | Reserved for Tl code
(8K Version) 1FFD-1FFF{ [| | [| | | |Device code
(16K Version) 3FFD-3FFF| | | | | | | | |Device code

NOTE: All addresses in this manual are in hexadecimal unless otherwise noted. All other numbers
are in decimal unless otherwise noted.

Figure 2-2. ROM Map

The ROM may be accessed in three ways:
1) The program counter is used to address processor instructions.

2) The GET* instruction can be used to transfer 1 to 8-bits from
anywhere in ROM to the A register. The GET counter is initialized
by the LUSPS instruction. The SAR (Speech Address Register) points
to the ROM location to be used.

3) The LUAA* instruction can be used to transfer a byte from ROM
locations O-3FF into the A register.
*Refer to Table 5-1 for more information.

2-2

2.2

2.3

2.4

Program Counter

The TSP50C4X devices are available with a 13-bit (TSP50C41/42) or 14-bit
(TSP50C43/44) program counter. The program counter points to the next
instruction to be executed. After the instruction is executed, it is normally
incremented to point to the next instruction. Several instructions are used
to change the value of the program counter. These are:

BR — branch

SBR — short branch

CALL — call subroutine

RETN — return from subroutine
RETI — return from interrupts

Program Counter Stack

The program counter stack has five levels. When a subroutine is called or
an interrupt occurs, the contents of the program counter are pushed onto
the stack. When a RETN (return from subroutine) or an RETI (return from
interrupt) is executed, the contents of the top stack location are popped into
the program counter. Certain instructions (LUSPS, GET, LUAA) push the
contents of the program counter onto the stack and then pop it back during
their execution. The POP* instruction may be used to pop the top stack
location.

Random Access Memory (RAM)

The RAM has 128 bytes plus 16 nibbles. Addresses O to 7F refer to bytes,
and addresses 80 to 8F refer to nibbles. RAM locations O to 18 and 80 to
8F are used for communication with the synthesizer when speech is being
generated. When not executing speech, the entire memory may be used for
algorithm data storage.

*Refer to Table 5-1 for more information.

RAM
76543210 3210

oof | [J [T]} sff]]

01

[TTTTTT]

-]
m

2.5

2.6

2.7

Arithmetic Logic Unit (ALU)

The ALU performs simple arithmetic, comparison, and logical functions for
the central processor. The ALU is 10 bits in length and provides extra range
for generating table look-up addresses. When transferring 8-bit data to the
ALU, data is right justified. The input to the upper two bits may be either
O (integer mode) or equal to the MSB of the 8-bit data (extended sign mode)
depending on the set or reset condition of the mode latch (EXTSG and INTGR).
All bit and comparison operations are performed on the lower 8 bits.

A Register

The A register or accumulator is the primary 10-bit register. Its contents can
be transferred to or from ROM, RAM, and most of the other registers. It is
used for arithmetic and logical operations. The contents are saved, in a
dedicated storage register, during interrupts and restored by the RETI*
instruction.

A Register
987 6543210

LITTPTTTIT]

X Register

The X register is an 8-bit register used as a RAM index register. All RAM access
instructions use the X register to point to a specific RAM location. The
X register can also be used as a general purpose counter. The contents of
the X register are saved during interrupts.

X Register
76543210

HENEEEEE

*Refer to Table 5-1 for more detail.

2.8

2.9

2.10

B Register

The 8-bit B register is used for temporary storage. It is especially helpful for
storing a RAM address, since it can be exchanged with the X register using
the XBX™* instruction. The contents of the B register are not saved during
interrupts.

B Register
7 6 543210

LITTTTT[]

The status flag is set or cleared by various instructions, depending on the
result of the instruction. The BR, SBR, and CALL instructions are conditional.
These instructions are executed only when the status flag is set. Refer to
the individual descriptions of these instructions in Section 3 to find the status
flag value.

Status Flag

Status Flag
0

[]

Timer Register

The 8-bit timer register is used for generating interrupts and for counting
events. It decrements once each time the timer prescale register goes from
#00 to #FF. It can be loaded using the TXTM instruction and examined with
the TTMA* instruction. When it decrements from #00 to #FF an interrupt
request will be generated. If interrupts are enabled, an immediate interrupt
will occur; if not, the interrupt request will remain pending until_interrupts
are enabled. The timer will not start counting down again until it is reloaded
by the TXTM instruction.

The timer register must be loaded with a fixed # 1F (hex) during synthesis.
It is used to generate interrupts for the synthesis software and as a time value
for parameter interpolation.

Timer Register
7 6 543210

HEEEEEEE

*Refer to Table 5-1 for more detail.

2-5

2.1

2.12

2.13

Timer Prescale Register

The 8-bit timer prescale register is used as a divider of the input to the timer
register. When it decrements from #00 to #FF, the timer register is also
decremented. The timer prescale register is then reloaded with the value in

. the preset latch, and the counting starts again.

The timer prescale register clock comes from an internal clock or from an
external source on the IRT pin. The internal clock runs at 1/48 the clock
frequency of the chip. The TTMA* instruction makes the clock source
external, and the RSECT selects the internal clock.

Timer Prescale Register
7 6543210

HEEEEEEN

Pitch Register

The 8-bit pitch register is really a synthesizer register, but it is mentioned here
because it is the only one loaded explicitly by the processor. When the START
instruction is executed, the pitch register is loaded with the current value in
the accumulator. After that, the pitch register is loaded from a RAM.location.
See Section 6 for a detailed explanation.

Speech Address Register

Speech Address Register
131211109 8 7 6 56 4 3 2 1 O

HEEEEEEEEEEEEE

The speech address register is a 13-(TSP50C41/42) or 14-(TSP50C43/44)
bit register that is used to point to data in the internal ROM. It is loaded with
the TASH (Transfer Accumulator to Speech register High) and TASL (L is for
Low) instructions. When a LUSPS or GET instruction is executed, the ROM
value pointed to by the speech address register will be loaded into the parallel-
to-serial register and the speech address register is incremented.

*Refer to Table 5-1 for more information.

2-6

2.14 Parallel-to-Serial Register

2.15

2.16

Parallel-to-Serial Register
7 6543210

HEEEEEEE

The 8-bit parallel-to-serial register is used to unpack speech. It can be loaded
with eight bits of data from an external TSP60CXX speech ROM or from the
internal ROM pointed to by the speech address register. The LUSPS instruction
is used to initialize the parallel-to-serial register and zero its bit counter. GET
instructions can then be used to transfer one to eight bits from the parallel-
to-serial register to the accumulator. When the parallel-to-serial register is
empty, it will automatically be reloaded. The INTRM instruction selects the
internal ROM as the source for the parallel-to-serial register, while EXTRM
selects external ROM.

Interface Logic

The TSP50C4X interface consists of four 8-bit ports. Port A (PA) is a
bidirectional port, Ports B and D (PB and PD) are output ports. Port B can also
be used as an interface to an external TSP60CXX serial ROM. Port C (PC)
is either a general 8-bit input port (master option) or is split into a 4-bit input
port and a 4-bit control port for Port A (slave option). In addition, an interrupt
(IRT) pin and a hardware reset (INIT) pin are provided. The remaining six pins
are used for power supply, oscillator, and analog outputs. The choice of master
or slave operation for Port A is a mask-generation option that depends on
the type of product to which the device will be applied. The master option
is designed for single-chip applications or for applications in which the host
is the internal microprocessor. The slave option is intended for use in multichip
systems in which the host microprocessor is external.

Port A (MASTER Option)

Port A is a bidirectional port. The direction (input or output) of the port is
determined by software control. If a TAPA* instruction is executed, the
contents of the lower eight bits of the accumulator are transfered to Port A,
and it is used as an output port. If a TPAA* instruction is executed, Port A
is used as an input port and its contents are transferred to the A register.
The TPAM* instruction transfers the Port A values to the current RAM
location.

If the port is switched from output to input mode with the TPAA or TPAM
instructions, the data from the first transfer will be invalid. The instruction
should be executed twice.

*Refer to Table 5-1 for more information.

2-7

2.17

2.18

2.19

2.20

2-8

Port A (SLAVE Option)

In the slave option, the transfer of data to and from the 8-bit Port A is
controlled by an external host through four pins of Port C. In the slave mode,
pins PC3-PCO have the function of read/write control, high nibble strobe, low
nibble strobe, and ready flag for handshake interfacing. The high and low nibble
strobe arrangement permits simple interfacing to 4-bit as well as 8-bit
microprocessors. The ready pin is set to a not ready by a low nibble write
and reset by the RSRDY instruction to acknowledge that the data written to
Port A has been read by the internal microprocessor.

Port B

Port B can be either a general 8-bit output port or a specialized external speech
ROM port. The configuration of this port is controlled by the EXTRM and
INTRM instructions. If the microprocessor executes the EXTRM command,
then the port is configured as a ROM port and the data source for GET
instructions will be Port B. If the microprocessor executes the INTRM
instruction, then Port B will be configured as a general 8-bit output port and
all speech data will source from the internal ROM memory.

If the TSP60CXX external ROM is enabled and the INTRM instruction is
executed, there will be a bus conflict. To avoid this, access a nonexistent
TSP60CXX device before going to the INTRM mode. This will turn off the
TSPB60CXX so that it will not conflict when Port B becomes all outputs.

At power-up, Port B is low.

Port C

Port C has two possible configurations. If the master option is selected, Port C
is a general input port. The data on the eight pins are transferred on command
TPCA to the A Register.

In the slave option, the port is conﬁguréd so that PC3-PCO are used to control
Port A through the functions ENA1, ENA2, R/W, and RDY. (See Applications,
Section 6 for more details.)

Port D

Port D is a general output port. Data is transferred to this port from the internal
microprocessor by executing the command TAPD. This is available only on
the TSP50C42 and TSP50C44 devices.

At power-up, Port D is low.

PORT A

REGISTER
PA4-PA7 4, N oST /\F
| l‘{ SIGNIFICANT
d! r NIBBLE
PAO-PA3 4, LEAST
. SIGNIFICANT =
NIBBLE 2
—_— m
ENA1 ®
"9 @
Fq e t— ft 2
-0 s
a
ENA2 I
I)) 2
) [-4
w
=
2
RW <)c & s "
—0 t—»R
t
RT
RDY 2Pz

TProcessor Controlled Functions

2.21

2.22

Figure 2-3. 1/0 Data Bus (PAO-PA7)

IRT Pin

The interrupt pin is hardware configurable by mask option to be an event-
counter input pin (IRT = input) or an interrupt output (slave option,
IRT = output) . When selected as an event-counter input pin, a signal is used
as the timer prescale register increment clock. The internal 80-kHz timing clock
can be selected by executing RSECT. The external clock on the interrupt pin
is selected by executing the command TTMA.

Speech Synthesizer

The task of generating synthetic speech is divided between the programmable
microprocessor and the dedicated speech synthesizer.

The microprocessor controls speech synthesis by unpacking and decoding
parameters as well as setting the update interval (frame rate). These aspects
of speech tend to vary from application to application and are well suited to
the microprocessor. The speech synthesizer, on the other hand, performs all
of the synthetic speech functions that require intensive computations but do
not change from application to application. These functions include the
implementation of a 10-pole digital lattice filter, a pitch-controlled excitation
generator, a parameter interpolator, and a digital-to-analog converter. Speech

2-9

2.22.1

2-10

parameter input is received from dedicated space in the microprocessor RAM,
and speech samples are generated at 8 kHz or 10 kHz. Communication
between the microprocessor and the speech synthesizer take place via a
shared memory space in the microprocessor RAM. (Refer to the Applications
section for more information.)

Use of RAM by the Synthesizer

The RAM consists of 1088 bits that are arranged as 128 8-bit words from
address 00 to 7F and 16 4-bit words from 80-8F. The microprocessor can
read or write to any word in the RAM. The synthesizer can only read from
locations 00 to 17 and 80 to 8F, where the microprocessor stores the
PRESENT and the NEW values for the frame parameters.

After the timer register generates an interrupt, the synthesizer will read only
the PRESENT or both the PRESENT and NEW frame parameters. If interpolation
is required, the INTE instruction is invoked for the current frame and the
synthesizer uses both frame parameters. Otherwise, only the PRESENT
parameter is used.

When interrupt occurs (see subsection 2.22.2), the context switch changes
addresses for the PRESENT and NEW values. This is done so that the
parameters put into NEW value RAM locations by the microprocessor become
the PRESENT values for the current speech frame. This is a hardware function
and it is transparent to the microprocessor.

If the INTE instruction is not invoked for the current frame, then interpolation
will not be performed. The synthesizer will read the frame parameters for the
PRESENT frame and put them into the LPC filter.

If the INTE instruction is invoked for the current frame, then the synthesizer
will perform interpolation and the following sequence of events applies:

1. The interrupt will cause a context switch.

2. The microprocessor loads the next frame of data into the NEW value
RAM location. The data for the current frame can be found in the
PRESENT value RAM location.

3. The microprocessor invokes the INTE instruction, which will put the
synthesizer into the interpolation mode.

4. Every pitch period the synthesizer will:

a. Read the PRESENT and NEW value parameters.

b . Read the timer register. This data defines the elapsed time from
the start of the current frame (PRESENT data values) to the start
of the next frame (NEW data values).

c. The synthesizer uses the data from (a) and (b) to perform a straight
line interpolation of the parameters for the current and next frame
parameters.

d. The computed parameters are put into the LPC filter.

ADDRESS

00
01
02
03
04
05
06
07
08
09
0A
14
15
16
17
18
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
20

FF

COMMENTS

NEW PITCH (11-4)
OLD PITCH (11-4)
NEW ENERGY (11-4)
OLD ENERGY (11-4}
NEW K1 (11-4)

OLD K1 (11-4)
NEW K2 (11-4)
OLD K2 (11-4)
NEW K3 (11-4)
OLD K3 (11-4)
NEW K4 (11-4)
NEW K9 (11-4)
OLD K9 (11-4)
NEW K10 (11-4)
OLD K10 (11-4)

NEW PITCH (3-0)
OLD PITCH (3-0)
NEW ENERGY (3-0)
OLD ENERGY (3-0)
NEW K1 (3-0)
OLD K1 (3-0)
NEW K2 (3-0)

OLD K2 (3-0)
NEW K3 (3-0)

OLD K3 (3-0)
NEW K4 (3-0)

OLD K4 (3-0)

NEW K5 (3-0)

OLD K5 (3-0)
NEW K6 (3-0)
OLD K6 (3-0)

NOT AVAILABLE

8 MSBs (11-4) of both
““new’’ and “‘old’’
speech parameters.
This area is reserved
only during speech
generation. Context
address switch is
operative only for
speech.

o

General memory. No

context addressing mode.

4 LSBs of speech
parameters. K7-K10

do not have memory
assigned since 8 bit
values are sufficient.
When not generating
speech the memory is
available. Context
addressing mode enabled
during speech.

.

Not available

Figure 2-4. RAM Map During Speech Generation

2.22.2 Context Switch

The Context Switch is used to point to the parameter set just loaded as the
NEW value and the previous set as the PRESENT value. Interpolation is then
enabled between the two sets of parameter values. The INTE (Enable Timer
Interrupt) instruction is used to control interpolation.

There are instances when interpolation should be disabled. The most common
example is for voicing transitions or when going from zero to a nonzero value
of energy. If no INTE instruction is executed, the Context Switch will change
and interpolation will be disabled.

The context addressing mode is enabled for the dedicated speech data address
space in RAM (addresses 00-17, 80-8F).

2.22.3 Interpolation

Interpolation takes place from the present values to the new values during
the frame. If interpolation is not enabled, the present values are used for the
entire frame. The programming task is made easier by the availability of the
Context Switch.

2.22.4 Timing Requirements
Table 2-1. Initialization Timing

CONDITION MIN MAX | UNIT

TSP50C4X in the standby mode due to a
tw | setoff command -

INIT pulsed low while the TSP50C4X is active *

*One oscillator clock period.

10 ns

INIT

le— tw —

Figure 2-5. Initialization Timing

Table 2-2. Timing Requirements

SAMPLE RATE

10 kHz | 8 kHz UNIT

NOM NOM
Sample period 100 125 us
ROM clock rate 240 192 kHz
ROM clock period 4.17 5.20 us
Oscillator rate 3.84 3.07 MHz
Oscillator period 260 3.25 ns

—1 5
R/W
\ y/ /4 \\
| I 77 I
he—tsu1 -] je—bl—th1 I I
| le tw2 l :Ii
| | £ L L 1
1 | 27 |
NA2 | | |
tf—ol le— —»| je—tr : |
le——twi—3] | | :
[e——th2
i je—tsuz—»| L | |
| I
PA t { DATA VALID N — f— -+ :
| e R I
| : | I |
le td2 > |
td1 Lo g]
e ™ 711; | | |
ADY f NI I
|
tdc —e—al
Figure 2-6. Write Timing Diagram
Table 2-3. Write Timing Requirements (see Figure 2-6)
PARAMETER MIN MAX | UNIT
tsy1 Setup time, R/W before ENA1l or ENA2! 80 ns
tsy2 Setup time, data valid before ENA1T or ENA21 100 ns
thq Hold time, R/W after ENA1{ or ENA2{ 40 ns
th2 Hold time, data valid after ENA11 or ENA21 40 ns
tw1 Pulse duration, ENA1 or ENA2 low 200 ns
. CLK
tdc Cycle delay time 32
cycles
tr Rise time, ENA1 or ENA2 50 ns
tf Fall time, ENA1 or ENA2 50 ns
Delay time from ENA1 low or ENA2 low to
t41 RDY high 250 ns
Delay time from ENA1 high or ENA2 high to
t42 DY low Program Dependent

NOTE: ENA1 applies to PA4 through PA7, and ENA2 applies to PAO through PA3.

2-13

PA

|

f f
i NN
le-tsur-»l je—th1—f r
| le tw2 >
tw1——oi I . I
"SI | ’
1y Jzi" ’__
ti—ol jo— — et
I‘"‘"" P-mz-.!
|
4 4 DATA VALID X 5 §—
I\ | /
le-td
2_.: le td3

'ﬁ
rz_ll

Figure 2-7. Read Timing Diagram

Table 2-4. Read Timing Requirements (see Figure 2-7)

PARAMETER _ MIN MAX | UNIT
tgyq Setup time, R/W before ENA1) or ENA2! 80 ns
th1 Hold time, R/W after ENA11 or ENA21 40 ns
th2 Hold time, data valid after ENA11 or ENA21 100 ns
tw1 Pulse duration, ENA1 or ENA2 low 200 ns
tw2 Pulse duration, ENA1 or ENA2 high 2 us
ty Rise time, ENA1 or ENA2 50 ns
ty Fall time, ENA1 or ENA2 50 ns
Delay time from ENA1 low or ENA2 low ‘

td1 . 250 ns
to data valid

ta2 an time from ENA1 low or ENA2 low to 250 ns
TRT high

t43 %aly; \:me from ENA1 high or ENA2 high to Program Dependent

NOTE: ENA1 applies to PA4 through PA7, and ENA2 applies to PAO through PA3.

2-14

2.22.5 Voicing Control

Voicing transitions refer to the change in the excitation source from voiced
to unvoiced or from unvoiced to voiced. (See section 1.7.1 for a definition
of voiced speech). The voicing status of a frame is encoded into the speech
data and must be decoded by the unpacking algorithm. The voicing status
is conveyed to the synthesizer by executing the TAV instruction (Transfer
A Register to Voicing Register). A *’1’’ on the LSB of the A Register will cause
voiced excitation to be used while a ‘*0O’’ will indicate unvoiced excitation.
A change in value of the voicing register will take effect on the next frame
boundary. The actual voicing change in the synthesizer is synchronized by
both timer overflow (next frame boundary) and parameter interpolation. This
synchronization is hardware-controlled and is transparent to software control.

2.22.6 Frame Length Control

All speech control algorithms must include some type of frame-length control.
In order to obtain the proper frame length and also to insure proper operation
of the parameter interpolation, the timer preset value is fixed to be 1F, and
the prescale register preset value is variable and determines the actual frame
length. The frame length in seconds is calculated by:

15636 (N+1)

TFL = 5SCILLATOR RATE

where N is the decimal value of the prescale preset value. The frame length
in terms of speech samples is

TFL = 4 + (N+1).

It is important that one of the first statements of the speech interrupt routine
is the timer register preset statement. For fixed-frame-length applications,
the prescale register must be set only once at the beginning of speech. For
variable-frame-length applications, the timer prescale register needs to be
updated each frame as soon after the timer interrupt as possible.

2.22.7 Digital to Analog Converter and Output Buffer

The TSP50C4X devices contain an internal digital-to-analog converter (DAC)
connected to the output of the synthesizer. The DAC has a pulse-width-
modulated, push-pull output that drives the output buffers DA1 and DA2,
which are capable of driving a low-power speaker directly (see Section 3).

3. Electrical Specifications

3.1 Absolute Maximum Ratings Over Operating Free-Air
Temperature Range

Supply voltage, VDD - - - - - -+ - e -0.3Vto7V
Input voltage, V| -0.3VtoVpp + 0.3V
Qutput voltage, VO oo i -0.3VtoVpp + 0.3V
Operating free-air temperaturerange. 0°C to 70°C
Storage temperaturerange. —-30 °C to 125°C

All voltages are with respect to Vgg.

3.2 Recommended Operating Conditions — DC

PARAMETER I CONDITIONS MIN TYPT MAX | UNIT
Vpp* 4 5 6 \Y
TA Operating free-air temperature 0 70 °C
Vpp =4V 3 4
VIH Vpp =5V 3.8 5 \
Vpp = 6V 4.5 6
Vpp =4V 1
ViL Vpp =5V 1.2 \%
Vpp = 6V 1.5
Vpp =5V, RL = 50 @ 1.9 2.8
Vpp =5V, RL = 100 @ 2.9 3.6
VL \%
Vpp = 4V, RL = 50 @ 1.3 2
Vpp =4V, R = 100 @ 2 2.7
Vpp =5V, RL = 500 72 157
Output power Vpp =5V, RL = 100 @ 84 130 mwW
D/A Vpp = 4V, RL = 50 @ 34 80
Vpp =4V, RL = 100 Q@ 40 73
Pullup Resistance | Vpp = 5 (when programmed) 25 50 100 kQ
*Unless otherwise noted, all voltages are with respect to Vgs.
3.3 Recommended Operating Conditions — AC
PARAMETER CONDITIONS MIN TYPT MAX UNIT
. Vpp =5V, PA,B,D into 100 pF 150 ns
10% to 90%
s Vpp = 5V, PA,B,D into 100 pF 100 ns
10% to 90%
Speech Sample Rate = 10 kHz 3.84
fosc MHz
Speech Sample Rate = 8 kHz 3.07

TAll typical values are at Vpp = 5Vand Ty = 25°C.

3-1

3.4 Electrical Characteristics Over Recommended Operating Free-
Air Temperature Range

PARAMETER CONDITIONS MIN TYPT MAX | UNIT
Vpp =6V
Standl.)y mode = SETOIFF executed or 10 50 JA
INIT high, no pullup resistor on INIT, all
Icc port pins are open.
Vpp =5V
Operating mode = INIT hlgh. and 15 3 mA
SETOFF not executed, DA pins are
open.
VoH Vpp =56V, IoH = 0.3 mA 4.7 4.85 v
loH = 1.2 mA 4 4.5
VoL Vpp =5V, loL = 1.7 mA i 0.3 0.4 \
I Input current 5.0 A
Vpp =4V, VoH = 3.5V 0.3 0.8
I0H Vpp =5V, VoH = 4.5V 0.6 1.2 mA
Vpp = 6V, VoH = 5.5V 0.8 1.5
Vpp = 4V, VoL = 04V 1.2 1.8
loL Vpp =5V, VoL =04V 1.7 2.4 mA
Vpp =6V, VoL = 0.4V 2 2.8
o Vpp = 5V, DA1 and DA2 pins 50 Q

TAll typical values are at Ta = 25°C.

For details on Timing, see Section 2.

3.5 Oscillator

The oscillator pins OSC1 and OSC2 are provided for either a crystal or ceramic
resonator connection in the typical phase-shift oscillator connection. The
recommended value for circuit components C1 and C2 are shown.

TSP50C4X
0SC1 0sC2

(2) (3)

c1 ok c2
30 pF 7T 7 30 pF

Figure 3-1. Typical Phase-Shift Oscillator Connection

3.6

Direct Speaker Driver

The analog buffers at DA1 and DA2 are designed to directly drive a 50- to
100-Q speaker with approximately 120 to 150 mW of peak power. Average
power is considerably below this figure. The reduction in power is caused
by the nature of speech. The effective analog output impedance at 5 V is
typically 50 for output currents less than 60 mA. For output currents more
than 60 mA, the DAC buffers act as current sources. The outputs can also
be used to drive transistors or operational amplifiers.

TSP50C4X

DA1 DA2

et

AAA
\A A

Rgpk = 50-100 0

Figure 3-2. Typical Direct Speaker Drive Connection

3-3

4.1

TSP50C4X Assembler

TSP50C4X Assembly Language instructions are mnemonics that correspond
directly to binary machine instruction codes. An assembly language program
(source program) must be converted to a machine language program (object
program) by a process called assembling before a computer can execute it.
Assembling converts the mnemonics to binary values and associates those
values with binary addresses, creating machine language instructions.
Assembler directives control this process, place data in the object program,
and assign values to the symbols used in the object program.

TSP50C4X directives are of four kinds:
Directives that affect the location counters
Directives that affect assembler output
Directives that initialize constants
Directives that copy source files and end programs.

The notation used in this document is as follows:
An optional field is indicated by brackets, for example [LABEL].
User supplied contents are indicated by braces; for example
{hum).
A reserved keyword is given in capital letters.
A required blank is indicated by a caret (A).

EXAMPLE

[{name)] A SBR A {number) [(comment)]

Source Statement Format

An assembly language source program consists of statements contained in
the assembly source file(s) that may contain assembler directives, machine
instructions, or comments. Source statements may have four ordered fields
separated by one or more blanks. These fields (label, command, operand, and
comment) are discussed in the following paragraphs.

The source statement may be as long as 80 characters, but the assembler
will truncate the source line at 60 characters without warning. The user should
ensure that nothing other than comments extend past column 60.

Any source line starting with an asterisk in the first character position is treated
as a comment. It is printed in the assembly listing but has no other effect
on the assembly process.

The syntax of the source statements is:

[{label) A COMMAND A {operand) A [{ comment)]

4.1.1

4.1.2

4.1.3

4.1.4

4.2

4-2

A source statement may have an optional label that is defined by the user.
One or more blanks separate the label from the COMMAND mnemonic. One
or more blanks separate the mnemonic from the operand (if required by the
command). One or more blanks separate the operand from the comment field.

Label Field

The label field begins in character position 1 of the source line. If position
1 is a character other than a blank or an asterisk, the assembler assumes that
the symbol is a label. If a label is omitted, then the first character position
must be a blank. The label may contain up to six alphabetic (a..z,A..Z), numeric
(0..9) and special (@, $,) characters. The first character should be alphabetic.
The remaining five characters may be any of the others mentioned above.

Command Field

The command field begins after the blank that terminates the label field, or
the first nonblank character after the first position (which is blank when the
label is omitted). The command field is terminated by one or more blanks and
may not extend past the character position 60. The command field may
contain either an assembler mnemonic (e.g., TAX) or an assembler directive
(e.g., OPTION). The assembler does not distinguish between capital and small
letters in the command name; for example, TAX, Tax, and tAX are identical
to the assembler.

Operand Field

The operand field begins following the blank that terminates the command
field and may not extend past character position 60. The operand may contain
one or more of the constants or expressions described below. Terms in the
operand field are separated by commas. The operand field is terminated by
the first blank encountered.

Comment Field

The comment field begins after the blank that terminates the operand field
or the blank that terminates the command field if no operand is required. The
comment field may extend to the end of the source record and may contain
any ASCII characters including blanks.

Constants

The assembler recognizes the following five types of constants:

Decimal integer
Binary integer
Hexadecimal integer
Character
Assembly-time

4.2.1

4.2.2

4.2.3

4.2.4

Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range
of values of decimal integers is —32,768 to +65,535. Negative numbers
are given their two’s complement representation.

The following are valid decimal constants:

1000 Constant equal to 1000 or #03ES8
— 32768 Constant equal to —32768 or #8000
25 Constant equal to 25 or #0019

Binary Integer Constants

A binary integer constant is written as a string of up to sixteen binary digits
preceded by a question mark (‘‘?'’). If less than sixteen digits are specified,
the assembler will right justify the given bits in the resulting constant.

The following are valid binary constants:

?70000000000010011 Constant equal to 19 or #0013
?70111111111111111 Constant equal to 32767 or #7FFF
211110 Constant equal to 30 or #001E

Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal
digits preceded by a pound sign ' #’ or a greater than sign '>’. If less than
four hexadecimal digits are specified, the assembler will right justify the bits
that are specified in the resulting constant. Hexadecimal digits include the
decimal values "0’ through 9’ and the letters ‘a’ (or 'A’) through 'f’ (or 'F’).

The following are valid hexadecimal constants:

#7F Constant equal to 127 (or #007F)
>7f Constant equal to 127 (or #007F)
#307a Constant equal to 12410 (or #307A)

Character Constants

A character constant is written as a string of one or two characters enclosed
in single quotes. A single quote can be represented within the character
constant by two successive quotes. If less than two characters are specified,
the assembler will right justify the given bits in the resulting constant. The
characters are represented internally as 8-bit ASCII characters. A character
constant consisting of only two single quotes (no character) is valid and is
assigned the value 0000 (Hex).

4-3

4.2.5

4.3

4.3.1

The following are valid character constants:
‘AB’ Constant equal to #4142
'C’ Constant equal to #0043
‘D’ Constant equal to #2744

Assembly-Time Constants

An assembly-time constant is a symbol given a value that appears in the label
field of a statement. The value of the symbol is determined at assembly time
and may be assigned by expressions using any of the above constant types.

Symbols

Symbols are used in the label and the operand fields. A symbol is a string
of alphanumeric characters: 'a’ through 'z’, ‘A’ through ‘Z’, 'O’ through '9’,
and special characters ‘@’, '—’, and '$'. Upper-case and lower-case
characters are not distinguished from one another. The first character in a
symbol must not be a number or a ’$’. No character may be blank. When
more than six characters are used in a symbol, the assembler prints all the
characters but issues a warning message that the symbol has been truncated
and uses only the first six characters for processing.

Symbols used in the label field become symbolic addresses. They are
associated with locations in the program and must not be used in the label
field of other statements. Mnemonic operation codes and assembler directives
may also be used as valid user-defined symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly source
by appearing in the label field of a statement.
The following are examples of valid symbols:

START
Start
strt—1

Predefined Symbol '$’

The dollar sign '$’ is a predefined symbol given the value of the current location
within the program. This can be used in the operand field to indicate relative
program offsets. For example:

BR $+6

would result in a branch to six locations beyond the current location.

4.3.2

4.4

4.4.1

4.4.2

Character String

Several assembler directives require character strings in the operand field.
A character string is written as a string of characters enclosed in single quotes.
A quote may be represented in the string by two successive quotes. The
maximum length of the string is defined for each directive that requires a
character string. The characters are represented internally as 8-bit ASCII.

The following are valid character strings:

'SAMPLE PROGRAM'
IPlan IICIII

Expressions

Expressions are used in the operand field of assembler instructions and
directives. An expression is a constant or symbol, a series of constants or
symbols, or a series of constants and symbols separated by arithmetic
operators. Each constant or symbol may be preceded by a minus sign (unary
minus) or a plus sign (unary plus). Unary minus is the same as taking the two’s
complement of the value. An expression may not contain embedded blanks.
The valid range of values in an expression is —32.768 to +65,535. The value
of all terms of an expression must be known at assembly time.

Arithmetic Operators in Expressions
The arithmetic operators that can be used in an expression are as follows:

+ for addition

for subtraction

for multiplication

for division

for bitwise AND

+ + for bitwise OR

&& for bitwise EXCLUSIVE OR

0~ * |

In evaluating an expression, the assembler first negates any constant or
symbol preceded by a unary minus and then performs the arithmetic operations
from left to right. The assembler does not assign arithmetic operation
precedence to any other than unary plus or unary minus (so that the expression
4 4+ 5+2 would be evaluated as 18, not 14).

Parentheses in Expressions

The assembler supports the use of parentheses in expressions to alter the
order of evaluation of the expression. Nesting of pairs of parentheses within
expressions is also supported. When parentheses are used, first the expression
in the innermost pair is processed, then the expression within the next inner

4.5

4.5.1

4.5.2

4.5.3

pair is evaluated, and so on. After the evaluation of the expressions within
all the parentheses is finished, the rest is completed from left to right.
Evaluation of the expressions within parentheses at the same nesting level
is simultaneous. Parenthetical expressions may not be nested more than eight
deep.
Invoking the Assembler
The assembler is invoked by typing:

ASMSBC A [{options)] A {source[.ext])
where:

'Options’ represents a list of assembler optiohs (see Section 4.6). ‘Source’
stands for the name of the source file with the optional extension. If the
extension is not given, then the default extension of ".ASM’ is assumed.

For exafnple:
ASM5C —| PROGRAM
The assembler uses the source file PROGRAM.ASM and generates the output
object file PROGRAM.MPO. No list file is generated.
Assembler Input and Output Files

The assembler takes as input a file containing the assembly source and
produces as output a listing file and an object file in either binary format or
tagged object format.

Assembly Source File

The assembly source file is specified in the command line. If no extension
is given, then . ASM’ is assumed.

For example:
ASM5C PROGRAM.SRC

Uses the file PROGRAM.SRC as the Assembly source file.
ASM5C PROGRAM

Uses the file PROGRAM.ASM as the Assembly source file.

Assembly Binary Object File

The assembly process produces an object file in binary format by default. The
object output is placed in a file with the same file name as the assembly source
except that the extension will be .BIN . If the binary file is not desired, it can
be disabled either as a command line option or with an Option statement.

4.5.4

4.5.5

4.6
4.6.1

For example:
ASM5C PROGRAM.SRC

Uses file PROGRAM.SRC as the Assembly source file and the file
PROGRAM.BIN as the binary object output file.

ASM5C — 0O PROGRAM.SRC
Uses the file PROGRAM.SRC as the Assembly source file and produces no
object output.
Assembly Tagged Object File

If needed, the assembler can substitute an object file in 990 tagged object
format for the binary format file. If produced, the object output is placed in
a file with the same file name as the assembly source except that the extension
will be ".MPO’.

For example:
ASM5C —9 PROGRAM.SRC

Uses the file PROGRAM.SRC as the assembly source file and uses the file
PROGRAM.MPO as the tagged object output file. No binary formatted object
file is produced.

Assembly Listing File

The assembly process produces a listing file which contains the source
instructions, the assembled code, and a cross-reference table (optional). The
listing file will be placed in a file with the same file name as the assembly
source except that the extension will be .LST.

For example:
ASM5C PROGRAM.SRC
Uses the file PROGRAM.SRC as the assembly source file and the file
PROGRAM.LST as the assembly listing file.
Options and Switches
Command Line Options

Several options can be invoked from the command line. This is done by listing
the option abbreviation prefixed by a minus sign.

For example:
ASM5C —lo PROGRAM.ASM

4-7

Assembles the program in file PROGRAM.ASM without generating either a
listing file or an object file. Errors are written to the console. The following
command line options are available (see Table 4-1).

4.6.1.1 BYTE Unlist Option

Placing a “’b’’ or "’B’’ in the command field causes the assembler to list only
the first data byte in a BYTE or RBYTE statement. If a BYTE or RBYTE
statement has n arguments, then n lines are used to list the resulting data
in the object column. If the BYTE unlist switch is set, then only the first line
(which also contains the source line listing) is written to the listing file.

4.6.1.2 DATA Unlist Option

Placing a *‘d"’ or "’D"’ in the command field causes the assembler to list only
the first data byte in a DATA or RDATA statement. If a DATA or RDATA
statement has n arguments, then n lines are used to list the resulting bytes
in the object column. If the DATA unlist switch is set, then only the first line
(which also contains the source line listing) will be written to the listing file.

4.6.1.3 XREF Unlist Option

1 rr

Placing an “‘x’* or /X"’ in the command field causes the assembler to add
a cross-reference list at the end of the listing file.

4.6.1.4 TEXT Unlist Option

Placing a ‘'t or “’T"’ in the command field causes the assembler to list only
the first opcode in a TEXT or RTEXT statement in the listing file. If a TEXT
or RTEXT statement has as an argument a string containing n characters,
then the ASCII representations of these n characters are written in the opcode
column of the listing. If the TEXT unlist switch is set, then only the first line
(which also contains the source line listing) is written to the list file.

4.6.1.5 WARNING Unlist Option

Placing a ““w’’ or ‘W'’ in the command field causes the assembler to suppress
WARNING messages. However, warnings are counted and error messages
are generated.

4.6.1.6 8K Assembly Mode Option

Placing an ‘’8’' in the command field puts the assembler in 8K mode. This
has the effect of dividing the address generated by any branch by two and
performing a check that any label addressed by a branch is on an even address.

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

Complete XREF Switch

Placing an “’r’’ or *’R’’ in the option field causes the assembler to create a
reduced XREF listing if one is produced. All symbols (whether used or not)
are listed. The ‘r’ option causes the assembler to omit from the XREF listing
all symbols in the copy files that were never used.

Object Module Switch

1 e

Placing an “‘0’’ or “’O"’ in the option field causes the assembler not to generate
any object output modules.

Listing File Switch

Placing an ‘I’ or ’L"" in the option field causes the assembler not to generate
the listing file but to display error messages on the screen.

Page Eject Disable Switch

sa 11

Placing a “’p’’ or “’P’’ in the option field causes the assembler to print the
listing in a continual manner without division into separate pages. A form feed
can be forced where desired using the PAGE command.

Error to Screen Switch

1igrr

Placing an “’s’’ or *’S’’ in the option field causes the assembler not to write
errors to the screen unless no listing file is being generated.
Binary Code File Disable Switch

Placing a ‘*9"’ in the option field causes the assembler to generate the object
module in tagged object format in a file with a .MPO extension instead of
the normal binary object module in a file with a .BIN extension.

49

Table 4-1. Switches and Options

CHARACTER
OR OPTION DESCRIPTION
NUMBER
Borb Lists only the first data byte in BYTE or RBYTE
Dord Lists only the first data byte in DATA or RDATA
Lorl Displays error messages without generating a listing
Ooro Generates object output module disable
Porp Prints listing without page breaks
Rorr Produces a reduced XREF list
Sors Writes no errors on screen unless no listing file is generated
Tort Lists only the first data byte in a TEXT or RTEXT
W or w Suppresses the warning message
X or x Adds a cross-reference list at the end
8 Checks if any label addressed by a branch is on even
boundary. Adjusts branch addresses for the 8K mask option.
9 Generates object module in tagged object format

4.7 Assembler Directives

Assembler directives are instructions that modify the assembler operation.
They are invoked by placing the directive mnemonic in the command field
and any changing operands in the operand field. The valid directives are
described in the following paragraphs and are summarized in Table 4-2.

4-10

Table 4-2. Summary of Assembler Directives

DIRECTIVES THAT AFFECT THE LOCATION COUNTER

MNEMONIC DIRECTIVE SYNTAX
AORG Absolute origin [{label)] A AORG A {expression) A [{comment)]
BES Block ending with [{label)] A BES A {expression) A [{comment)]
symbol
BSS Block starting with [{abel)] A BSS A {expression) A [{comment)]
symbol
EVEN Even boundary [{label)] A EVEN A [{comment)]
DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT
MNEMONIC DIRECTIVE SYNTAX
IDT Program identifier [{abel)] A IDTR A (string) A [{comment)]
LIST Restart source listing [{label)] A LIST A {expression) A [{comment)]
OPTION Output options [{label)] A OPTION A {option list) A [{comment)]
PAGE Page eject [{label)] A PAGE A [{comment)]
TITL Page title [{label)] A TITL A {string) A [{comment)]
UNL Stop source listing [{label)] A UNL A [{comment)]
DIRECTIVES THAT INITIALIZE CONSTANTS
MNEMONIC DIRECTIVE SYNTAX
BYTE Initialize byte [{label)] A BYTE A {expr-1) A [,{expr-2,). . .,
{expr-n)] A [{comment)]
RBYTE Reverse bit initialization | [{label)] A BYTE A {expr-1)A [,{expr-2,). . .,
of byte {expr-n)] A [{comment)]
DATA Initialize word [{label)] A DATA A {expr-1) A [,{expr-2,). . .,
{expr-n)] A [{comment)]
RDATA Reverse bit initialization | [{label)] A RDATA A (expr-1) A[,{expr-2,). . .,
of word {expr-n)] A [{comment)]
EQU Define assembly-time [{label)] A EQU A [{comment)]
TEXT Initialize text [{abel)] A TEXT A [—]'¢string)’ A [{comment)]
RTEXT Reverse bit initialization | [{label)] A RTEXT A [—]'{string)’ A [{comment)]
of text
MISCELLANEOUS DIRECTIVES
MNEMONIC DIRECTIVE SYNTAX
COPY Copy source file [{label)] A COPY A (filename) A [{(comment)]
END Program end [{label)] A END A (symbol) A [{comment)]

4.7.1 AORG Directive

The AORG directive places the value in the operand field into the location
counter. Subsequent instructions will have addresses starting at this value.
The use of the label field is optional, but when a label is used, it is assigned
the value found in the operand field.

4-11

4.7.2

4.7.3

4-12

The syntax of the AORG directive is as follows:

[{label)] A AORG A {expression) A [{comment)]
EXAMPLE

AORG #1000+ OFSET
The symbol ‘OFSET’ must be predefined. If OFSET has a value of 8, the
location counter is set to # 1008 by this directive. Had a label been included,
the label would have been assigned the value of #1008.
BYTE Directive

The BYTE directive places the value of one or more expressions into successive
bytes of program memory. The range of each term is O to 255. The command
field contains BYTE. The operand field contains a series of terms separated
by commas and terminated by blanks that represent the values to be placed
in the successive bytes of program memory.

The syntax of the BYTE directive is as follows:

[{label)] A BYTE A {expr__1)[,{expr_2,...,{expr_n) A [{comment)]

EXAMPLE
BYTE #EO,5,data+5
The value of the symbol ‘“data’’ must be defined in the assembly process.

The example places the numbers 224, 5, and the result of the arithmetic
operation data+5 in the next three bytes of program memory.

BES Directive

The BES directive is used to reserve a block of memory. It advances the
location counter by the value in the expression field. The label field may be
used to assign the value of the memory location following the reserved block.
The command field contains BES. The operand field contains a well-defined
expression that represents a positive integer that gives the number of words
to be added to the location counter. A well-defined expression is one that
includes no symbols that are defined later in the source program.

The syntax of the BES directive is as follows:
[{label)] A BES A {expression) A [{comment)]
EXAMPLE
BES #20

The example increments the location counter by 32.

4.7.4

4.7.5

4.7.6

BSS Directive

The BSS directive is used to reserve a block of memory. It advances the
location counter by the value in the expression field. The use of the label field
is optional. When used, a label is assigned the value of the location of the
first word in the block. The command field contains BSS. The operand field
contains a well-defined expression that represents a positive integer that gives
the number of words to be added to the location counter.

The syntax of the BSS directive is as follows:
[{label)] A BSS A (expression) A [{comment)]
EXAMPLE
BSS 20

The example increments the location counter by 20.

COPY Directive

The COPY directive causes the assembler to read source statements from
a different file. The assembler will get subsequent statements from the copy
file until either the end of file marker or an END directive is found in the copy
file. A copy file cannot contain another COPY directive. The command field
contains COPY. The operand field contains the name of the file from which
the source files are read.

The syntax of the COPY directive is as follows:
[{label)] A COPY A (filename) A [{comment)]
EXAMPLE
COPY COPY.FIL

The directive in the example causes the assembler to take its source
statements from a file called COPY.FIL. Until the end of file marker or an END
directive is reached in COPY.FIL, the assembler continues processing source
statements from the original source file.

DATA Directive

The DATA directive places the value of one or more expressions into
successive words of program memory. The range of each termis O to 65535.
The command field contains DATA. The operand field contains a series of
one or more expressions separated by commas and terminated by a blank
that represents the values to be placed in the successive bytes of program
memory.

4-13

4.7.7

4.7.8

4-14

The syntax of the DATA directive is as follows:

[(abel)] A DATA A (expr_1),{expr—2,). . .,{expr—n)] A [{comment)]
EXAMPLE

DATA #EO0O0O,’AB’

The example places the following bytes into successive locations in program

memory: #EOQ,#00,#41,#42

EQU Directive

The EQU directive assigns a value to a symbol. The label field contains the
name of the symbol to which a value will be assigned. The command field
contains EQU. The operand field will contain the value to be assigned to the
symbol.

The syntax of the EQU directive is as follows:
[{label)] A EQU A {expression) A [{comment)]
EXAMPLE
OFSET EQU #100

The example assigns the numeric value of 256 (100 Hex) to the symbol
OFSET.

EVEN Directive

The EVEN directive forces the following instruction to start at an even address.
The directive tests whether the following instruction is even. If it is at an even
address, then nothing is done; otherwise, a short branch to the next location
is inserted in the code.

The syntax of the EVEN directive is as follows:
[{label)] A EVEN A [{comment)]
EXAMPLE

EVEN
BR1 CLA

The example forces the CLA instruction to an even address. In the process,
the value of the label is made even. The EVEN directive should be used with
the 8K mask option to ensure that all long branch destinations fall on even
addresses. '

NOTE: Since the EVEN directive produces an even alignment by using a short branch,

the status flag is affected. No command that depends on the condition of the status
flag for its function should immediately follow an EVEN directive.

4.7.9 END Directive

The END directive signals the end of the source or copy file. It is treated by
the program as an end-of-file marker. If it is found in a copy file, the copy
file is closed and subsequent statements are taken from the source file. If
it is found in the source file, the assembly process terminates at that point
in the file.

The syntax of the END directive is as follows:
[{label)] A END A [{comment)]
EXAMPLE

ACAA 1
END
CLA

In the example, the ACAA 1 instruction is assembled, but the CLA and any
subsequent instructions are ignored. The END directive is not required, the
end of the file serves the same purpose.

4.7.10 IDT Directive

The IDT directive assigns a name to the object module produced. If a label
is used, it assumes the current value of the location counter. The command
field contains IDT. The operand field contains the module name, which is a
character string of up to eight characters within single quotes. When a
character string of more than eight characters is entered, the assembler prints
a truncation warning message and retains the first eight characters as the
program name.

The syntax of the IDT directive is as follows:
[{label)] A IDT A “{string)’ A [{comment)]
EXAMPLE
AORG 20
L1 IDT 'Example’

The example assigns the value of 20 to the symbol L1 and assigns the name
Example to the module being assembled. The module name is then printed
in the source listing as the operand of the IDT directive and appears in the
page heading of the source listing. The module name is also placed in the
object code (if the tagged object format code is being produced).

4-15

4.7.11 LIST Directive

The LIST directive restores printing of the source listing. This directive is
required only when a no source listing (UNL) directive is in effect. This directive
is not printed in the source listing, but the line counter is increased.

The syntax of the LIST directive is as follows:

[{label) A LIST A [{comment)]

EXAMPLE
AORG 10
T1 LIST Turn on source listing

In the example, the label T1 is assigned the value 10, and listing is resumed.
The line is not printed out, so that although the label T1 is entered into the
symbol table and appears in the cross-reference listing, the line in which it
is assigned a value does not appear in the listing file.

4.7.12 OPTION Directive

The OPTION directive selects several options that affect the assembler
operation. The {option-list) operand is a list of keywords, separated by
commas. Each keyword selects an assembly feature. Only the first character
of the keyword is significant. Use of the label field is optional. When used,
the label assumes the current value of the location counter.

The syntax of the OPTION directive is as follows:
[{abel)] A OPTION A {option-list) A [{comment)]
EXAMPLE
OPTION 990,XREF,SCREEN
OPTION 9,X,S

The two examples above have an identical effect. The binary object file is
replaced by one in tagged object format. The cross-reference list is produced,
and the error messages are not sent to the screen (unless no source listing
file is being produced). The options that are available are listed in the
paragraphs below.

4.7.12.1 BUNLST — Byte Unlist Option

4-16

This option limits the listing of BYTE or RBYTE directives to one line. If a BYTE
or RBYTE directive has more than one operand, the resulting object code is
listed in a column in the object column of the source listing. If the directive
has ten operands, then ten lines are required in the source listing. BUNLST
is used to avoid this.

4.7.12.2 DUNLST — Data Unlist Option

This option limits the listing of DATA or RDATA directives to one line. If a
DATA or RDATA directive has more than one operand, the resulting object
code is listed in the object column of the source listing. If the directive has
ten operands, then ten lines are required in the source listing to list it. DUNLST
is used to avoid this.

4.7.12.3 FUNLST — Byte, Data, and Text Unlist Option

This option limits the listing of BYTE, RBYTE, DATA, RDATA, TEXT, or RTEXT
directives to one line. In effect, it is like calling the DUNLST, BUNLST, and
the TUNLST directives at the same time.

4.7.12.4 LSTUNL — Listing Unlist Option
This option inhibits the listing file from being produced. It takes precedence
over the LIST directive.

4.7.12.5 OBJUNL — Object File Unlist Option

This option inhibits either of the object output files from being produced.

4.7.12.6 PAGEOF — Page Break Inhibit Option
This option causes the listing file to be printed in a continous stream without
page breaks.

4.7.12.7 RXREF — Reduced XREF Option
This option causes symbols that were found in copy files but never used to
be omitted from the cross-reference list (if produced).

4.7.12.8 SCRNOF — Screen Error Message Unlist Option
This option causes the error messages not to be listed to the screen unless
the listing file is not being produced.

4.7.12.9 TUNLST — Text Unlist Option

This option limits the listing of TEXT or RTEXT directives to one line. A TEXT
or RTEXT directive takes as many lines to list as there are characters in the
operand. TUNLST causes only the first line of the directive listing to be
produced.

4.7.12.10 WARNOF — Warning Message Unlist Option

This option inhibits the listing of warning diagnostics. However, warnings are
counted and the total is printed out at the end of the source listing.

4-17

4.7.12.

4.7.12.

4.7.12.

4.7.13

11 XREF — Cross-Reference Listing Enable

This option causes a cross-reference list to be produced at the end of the
source listing.

12 8KASM — 8K Assembler Mode Switch

This option causes the assembler to operate in 8K mode. This has the effect
of dividing long branch destination values and checking if the long branch
is to an even address. If a long branch is to an odd address, an error message
is produced.

13 990 — Tagged Object Output Switch

This option causes the assembler to omit the binary coded object module
(normally produced in a.bin file) and to produce instead a tagged object module
in a.MPO file.

PAGE Directive

The PAGE directive forces the assembler to continue the source program listing
on a new page. The PAGE directive is not printed in the source listing, but
the line counter is increased. Use of the label field is optional. When used,
a label assumes the current value of the location counter. The command field
contains PAGE. The operand field is not used.

The syntax of the PAGE directive is as follows:
[{label)] A PAGE A [{comment)]

EXAMPLE
AORG 10 .
T1 PAGE Force Page Eject

In the example, the label T1 is assigned the value 10, and listing is resumed.

"The line is not printed out, although the label T1 is entered into the symbol

4.7.14

4-18

table and appears in the cross-reference list. The line in which it is assigned
a value does not appear in the listing file.

RBYTE Directive

The RBYTE directive places the value of one or more expressions into
successive bytes of program memory in a bit-reversed form. The range of
each term is O to 255. The command field contains RBYTE. The operand field
contains a series of one or more terms separated by commas and terminated
by a blank that represents the values to be placed in the successive bytes
of program memory.

The syntax of the BYTE directive is as follows:

[{label) A RBYTE A {expr__1)[,{expr_2), . . .,{expr—_n)] A
[{comment)]

EXAMPLE
RBYTE #EO,5,