STANDARD LOGIC SERIES

TC4000 4500 5000 FAMILY

C²**MOS** STANDARD SERIES

FOREWORD

Toshiba C² MOS IC Family

The Toshiba C²MOS family is a group of all-purpose CMOS digital ICs which are composed of materials having various logic functions. They not only can be used for industrial electronics equipment and home electronics equipment but also have applications in a variety of fields.

CMOS devices have such features as low power consumption, a single power supply, a wide operating voltage range and a high noise margin. In addition, they have epoch-making characteristics which conventional ICs do not have. They have recently established a firm position as all-purpose logic elements in conjunction with TTL and LSTTL.

Since the introduction of the C² MOS IC in 1972, Toshiba has made every effort to develop products which are more reliable and less expensive.

Meanwhile, with respect to product standardization, Toshiba marketed B series products (conform to EIA/JEDEC international standards) domestically for the first time in April 1978. Then in January 1982, Toshiba became the first in Japan to develop and mass produce a compact, thin type, mini flat C² MOS and has continued to be a world leader in the field of CMOS IC development.

Currently, in the Toshiba C² MOS family, in addition to 149 types of standard dual inline devices, 58 types of mini flat devices are available.

In addition to this publication, there is a separate edition available which contains High Speed C^2 MOS data book. Please use it along with this publication.

IMPORTANT NOTICES

The circuit examples illustrated herein are presented only as a guide for the performances or the applications of our products.

Keep in mind that no responsibility is assumed by TOSHIBA for its use, nor for any infringements of patents or other rights of the third parties which may result from its use, and that no license is granted by implication or otherwise under any patent or patent rights of TOSHIBA.

Toshiba reserves the right to make changes to any product for improving reliability, function or other characteristics.

CONTENTS

FOREWORD	
NUMERICAL INDEX TC4000 Series TC4500 Series TC5000 Series TC7400 Series TC5000 Series/TC35000 Series (A/D CONVERTER Series) TC5000 Series	9 10 11
FUNCTION SELECTION TABLE	12
EXPLANATION OUTLINE	15 19 29
4. Maximum Ratings and Recommended Operating Conditions 5. Static Electrical Characteristics and Dynamic Electrical Characteristics 6. Cautions on Handling 7. Cautions on Handling C ² MOS IC 8. Mini Flat Package (MFP) C ² MOS 9. Cautions on Designing Circuits	40 46 48 52
DATA SHEETS TC4000 Series TC4500 Series TC5000 Series TC7400 Series TC5000/TC35000 Series	326 449 568
DIMENSIONAL OUTLINES DIP 8PIN (3D8A-P) 6 DIP 14PIN (3D14A-P) 6 DIP 16PIN (3D16A-P) 6 DIP 18PIN (3D18A-P) 6 DIP 24PIN (6D24A-P) 6 DIP 28PIN (6D28A-P) 6 DIP 42PIN (6D42A-P) 6 MFP 14PIN (F14GB-P) 6 MFP 16PIN (F16GC-P) 6	651 652 653 653 654 654
RELIABILITY REPORT	657
CROSS REFERENCE TABLE	669
MAINTENANCE DISCONTINUED TYPE NUMBERS	055

NUMERICAL INDEX

TC4000 Series

PRODUCT NAME	FUNCTION	PAGE
TC4000BP	DUAL 3 INPUT NOR GATE PLUS INVERTER	7 5
TC4001BP/BF	QUAD 2 INPUT NOR GATE	8 0
TC4001UBP	QUAD 2 INPUT NOR GATE	8 3
TC4002BP/BF	DUAL 4 INPUT NOR GATE	8.0
TC4006BP	18-STAGE STATIC SHIFT REGISTER	8 6
TC4007UBP/UBF	DUAL COMPLEMENTARY PAIR+INVERTER	9 0
TC4008BP	4-BIT FULL ADDER	9 4
TC4009UBP	HEX BUFFER/CONVERTER (Inverting Type)	9 7
TC4010BP	HEX BUFFER/CONVERTER (Non-Inverting Type)	9 7
TC4011BP/BF	QUAD 2 INPUT NAND GATE	1 0 7
TC4011UBP	QUAD 2 INPUT NAND GATE	8 3
TC4012BP/BF	DUAL 4 INPUT NAND GATE	107
TC4013BP/BF	DUAL D-TYPE FLIP FLOP	1 0 4
TC4014BP	8-STAGE STATIC SHIFT REGISTER	108
TC4015BP/BF	DUAL 4-STAGE SHIFT REGISTER	112
TC4016BP/BF	QUAD BILATERAL SWITCH	116
TC4017BP/BF	DECADE COUNTER/DIVIDER	1 2 1
TC4018BP	PRESETTABLE DIVIDE-BY-"N" COUNTER	1 2 6
TC4019BP/BF	QUAD AND/OR SELECT GATE	1 3 1
TC4020BP/BF	14 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS	1 3 4
TC4021BP	8-STAGE STATIC SHIFT REGISTER	138
TC4022BP	OCTAL COUNTER/DIVIDER	1 4 2
TC4023BP/BF	TRIPLE 3 INPUT NAND GATE	1 0 7
TC4024BP/BF	7 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS	1 4 7
TC4025BP/BF	TRIPLE 3 INPUT NOR GATE	8 0
TC4027BP/BF	DUAL J-K MASTER-SLAVE FLIP-FLOP	151
TC4028BP/BF	BCD-TO-DECOMAL DECODER	1 5 5
TC4029BP/BF	PRESETTABLE UP/DOWN COUNTER	158
TC4030BP/BF	QUAD EXCLUSIVE-OR GATE	164
TC4032BP	TRIPLE SERIAL ADDER (Positive Adder)	167
TC4034BP	8-STAGE STATIC BIDIRECTIONAL PARALLEL?SERIAL IN/OUT BUS REGISTER	172
TC4035BP	4-STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER	177
TC4036BP	4 WORD × 8 BIT STATIC RAM	182
TC4038BP	TRIPLE SERIAL ADDER (Negative Adder)	167
TC4039BP	4 WORD × 8 BIT STATIC RAM	182

TC4000 Series (Continued)

PRODUCT NAME	FUNCTION	PAGE		
TC4040BP/BF	12 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS	188		
TC4042BP/BF	QUAD CLOCKED "D" LATCH	192		
TC4043BP	QUAD 3-STAGE NOR R/S LATCH	196		
TC4044BP/BF	QUAD 3-STATE NAND R/S LATCH	200		
TC4047BP	LOW-POWER MONOSTABLE/ASTABLE MULTIVIBRATOR	2 0 4		
TC4049BP/BF	HEX BUFFER/CONVERTER (Inverting Type)	2 1 1		
TC4050BP/BF	HEX BUFFER/CONVERTER (Non-Inverting Type)	2 1 1		
TC4051BP/BF	SINGLE 8-CHANNEL MULTIPLEXER/DEMULTIPLEXER	2 1 4		
TC4052BP/BF	DIFFERENTIAL 4-CHANNEL MULTIPLEXER/DEMULTIPLEXER	2 1 4		
TC4053BP/BF	TRIPLE 2- CHANNEL MULTIPLEXER/DEMULTIPLEXER	2 1 4		
TC4054BP/BF	LIQUID-CRYSTAL DISPLAY DRIVER (4-Segment)	218		
TC4055BP	LIQUID-CRYSTAL DISPLAY DRIVER (BCD TO 7-Segment)	2 2 2		
TC4056BP/BF	LIQUID-CRYSTAL DISPLAY DRIVER (BCD TO 7-Segment)	2 2 2		
TC4063BP/BF	4-BIT MAGNITUDE COMPARATOR	227		
TC4066BP/BF	QUAD BILATERAL SWITCH	2 3 1		
TC4068BP/BF	8 INPUT NAND/AND GATE	236		
TC4069UBP/UBF	HEX INVERTER	2 3 9		
TC4071BP/BF	QUAD 2 INPUT OR GATE	2 4 2		
TC4072BP/BF	DUAL 4 INPUT OR GATE	2 4 2		
TC4073BP/BF	TRIPLE 3 INPUT AND GATE	2 4 5		
TC4075BP/BF	TRIPLE 3 INPUT OR GATE	2 4 2		
тс4076вР	4-BIT D-TYPE REGISTER	2 4 8		
TC4077BP/BF	QUAD EXCLUSIVE-NOR GATE	253		
TC4078BP/BF	8 INPUT NOR/OR GATE	256		
TC4081BP/BF	QUAD 2 INPUT AND GATE	2 4 5		
TC4082BP	DUAL 4 INPUT AND GATE	2 4 5		
TC4085BP	DUAL 2-WIDE 2 INPUT AND-OR-INVERT GATE	2 5 9		
тс4086вР	4-WIDE 2 INPUT AND-OR-INVERT GATE	262		
TC4093BP/BF	QUAD 2 INPUT NAND SCHMITT TRIGGER	266		
TC4094BP/BF	8-BIT SHIFT-AND-STORE BUS REGISTER	269		
тс4099вр/вғ	8-BIT ADDRESSABLE LATCH	275		
TC40102BP	8-STAGE PRESETTABLE DOWN COUNTER (2-Decode BCD Type)	280		
TC40103BP	8-STAGE PRESETTABLE DOWN COUNTER (8-Bit Bynary Type)	280		
TC40104BP	4-BIT BIDIRECTIONAL SHIFT REGISTER WITH 3-STATE OUTPUTS			
ТС40107ВР	DUAL 2 INPUT NAND BUFFER/DRIVER	295		

TC4000 Series (Continued)

PRODUCT NAME	FUNCTION			
TC40117BP	PROGRAMMABLE DUAL 4-BIT TERMINATOR	298		
TC40160BP	PROGRAMMABLE DECADE COUNTER WITH ASYNCHRONOUS CLEAR	303		
TC40161BP	PROGRAMMABLE BINARY COUNTER WITH ASYNCHRONOUS CLEAR	303		
TC40162BP	PROGRAMMABLE DECADE COUNTER WITH SYNCHRONOUS CLEAR	303		
TC40163BP	PROGRAMMABLE BINARY COUNTER WITH SYNCHRONOUS CLEAR	303		
TC40174BP/BF	HEX "D"-TYPE FLIP-FLOP	3 1 1		
TC40175BP/BF	QUAD "D"-TYPE FLIP-FLOP	3 1 5		
TC40192BP	PRESETTABLE BCD UP/DOWN COUNTER	319		
TC40193BP	PRESETTABLE BINARY UP/DOWN COUNTER	319		
TC40194BP	4-BIT BIDIRECTIONAL SHIFT REGISTER WITH RESET	289		

TC4500 Series

PRODUCT NAME	FUNCTION	PAGE
TC4501BP	TRIPLE GATE (Dual 4 Input NAND+2 Input NOR/OR)	3 2 6
TC4502BP	STROBED HEX INVERTER/BUFFER	330
TC4503BP/BF	HEX NON-INVERTING 3-STATE BUFFER	3 3 4
TC4508BP	DUAL 4-BIT LATCH	3 3 7
TC4510BP/BF	PRESETTABLE BCD UP/DOWN COUNTER	3 4 2
TC4511BP/BF	BCD TO 7-SEGMENT LATCH/DECODER/DRIVER	3 4 8
TC4512BP/BF	8-CHANNEL DATA SELECTOR	353
TC4514BP	4-BIT LATCH/4-TO-16 LINE DECODER (High)	356
TC4515BP	4-BIT LATCH/4-TO-16 LINE DECODER (Low)	356
TC4516BP/BF	PRESETTABLE BINARY UP/DOWN COUNTER	361
TC4518BP/BF	DUAL BCD UP COUNTER	367
TC4519BP	4-BIT AND/OR SELECTOR	373
TC4520BP/BF	DUAL BINARY UP COUNTER	367
TC4521BP	24-STAGE FREQUENCY DIVIDER	376
TC4522BP	PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER (BCD)	3 8 1
TC4526BP/BF	PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER (Binary)	3 8 1
TC4527BP	BCD RATE MULTIPLIER	389
TC4528BP/BF	DUAL MONOSTABLE MULTIVIBRATOR	395
TC4530BP	DUAL 5 - INPUT MAJORITY LOGIC GATE	3 9 9
TC4531BP	12-BIT PARITY TREE	402
TC4532BP	8-BIT PRIORITY ENCODER	405
TC4538BP/BF	DUAL PRECISION MONOSTABLE MULTIVIBRATOR	409
TC4539BP/BF	DUAL 4-CHANNEL DATA SELECTOR/MULTIPLEXER	4 1 4

TC4500 Series (Continued)

PRODUCT NAME	FUNCTION	PAGE
TC4543BP/BF	BCD TO 7-SEGMENT LATCH/DECODER/DRIVER	417
TC4555BP	DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER (Hihg)	4 2 2
TC4556BP/BF	DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER (Low)	4 2 2
TC4560BP	NBCD ADDER	4 2 6
TC4561BP	9's COMPLEMENTER	4 3 1
TC4572BP/BF	HEX GATE (4 INVERTER+2 Input NOR+2 Input NAND)	4 3 5
TC4583BP	DUAL SCHMITT TRIGGER.	4 3 8
TC4584BP/BF	HEX SCHMITT TRIGGER	4 4 2
TC4585BP	4-BIT MAGNITUTE COMPARATOR	4 4 5

TC5000 Series

PRODUCT NAME	FUNCTION	PAGE
TC5001P	4-DIGIT DEGADE COUNTER	4 4 9
TC5002BP	BCD TO 7-SEGMENT DECODER/LED DRIVER	4 5 9
TC5012BP/BF	HEX NON-INVERTING 3-STATE BUFFER	464
TC5018P	4-BIT BINARY COUNTER/CLOCK GENERATOR	467
TC5020BP	HÈX LOW-TO-HIGH VOLTAGE TRANSLATOR	471
TC5022BP	BCD TO 7-SEGMENT DECODER/LED DRIVER	459
TC5023BP	16-CHANNEL MULTIPLEXER	474
TC5024BP	QUAD 3-STATE NON-INVERTING BUFFER	477
TC5025BP	QUAD 3-STATE NON-INVERTING BUFFER	477
TC5026BP	DECADE COUNTER	481
TC5027BP	BINARY COUNTER	485
TC5029BP .	QUAD 2-INPUT NAND OPEN DRAIN GATE (N-CHANNEL)	489
TC5032P	6-DIGIT DECADE COUNTER	492
TC5036P	17-STAGE HIGH SPEED FREQUENCY DIVIDER (DYNAMIC)	5 0 1
TC5036AP	17-STAGE HIGH SPEED FREQUENCY DIVIDER	5 0 5
TC5037P. 3	4-DIGIT DECADE COUNTER	5 1 0
TC5043P	CR TIMER	5 1 7
TC5048P	17-STAGE HIGH SPEED FREQUENCY DIVIDER (DYNAMIC)	5 0 1
TC5048AP	17-STAGE HIGH SPEED FREQUENCY DIVIDER	505
TC5050P	DUAL 50/64-STAGE STATIC SHIFT REGISTER	5 2 4
TC5051P	4-DIGIT DECADE COUNTER	5 2 6
TC5052P	4-DIGIT DECADE COUNTER	5 2 6
TC5053P	4-DIGIT UP/DOWN DECADE COUNTER	5 3 3
TC5054P	4-DIGIT UP/DOWN DECADE COUNTER	5 3 3
ТС5064ВР	HEX HIGH VOLTAGE BUFFER WITH INHIBIT	5 4 0

TC5000 Series (Continued)

PRODUCT NAME	FUNCTION	PAGE
TC5065BP	HEX HIGH VOLTAGE BUFFER WITH INHIBIT	5 4 0
TC5066BP	7-LINE HIGH VOLTAGE BUFFER	5 4 4
TC5067BP	7-LINE HIGH VOLTAGE BUFFER	5 4 4
TC5068BP	BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER	5 4 8
тс5069ВР	BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER	5 4 8
TC5070P	6 DIGIT UNIVERSAL COUNTER "999999"	5 5 4
TC5071P	6 DIGIT UNIVERSAL TIMER "995959"	5 5 4
TC5072P	6 DIGIT UNIVERSAL TIMER "595999"	5 5 4

TC7400 Series

PRODUCT NAME	FUNCTION	PAGE
тс7400ВР	QUAD 2-INPUT POSITIVE NAND GATE	5 6 8
TC7404UBP	HEX INVERTING BUFFER	5 7 1
TC7476BP	DUAL J-K MASTER SLAVE FLIP FLOP	574

TC5000 Series/TC35000 Series (A/D CONVERTER Series)

PRODUCT NAME	FUNCTION	PAGE
TC5090AP	8 BIT A/D CONVERTER	577
TC5091AP	8 BIT A/D CONVERTER (WITH 6ch ANALOG MPX.)	5 9 0
TC5092AP	13 BIT A/D CONVERTER (WITH 8ch ANALOG MPX.)	603
TC5093AP	8 BIT A/D CONVERTER (WITH 8ch ANALOG MPX.)	614
TC35094P	8 BIT A/D CONVERTER	620
TC35095P	8 BIT 8ch SERIAL I/O A/D CONVERTER	625
TC35096P	8 BIT 4ch SERIAL I/O A/D CONVERTER	6 3 1
TC35097P	8 BIT 2ch SERIAL I/O A/D CONVERTER	6 3 7
TC35098P	8 BIT SERIAL I/O A/D CONVERTER	6 4 2

FUNCTION SELECTION TABLE

FUNCTION		N	DEVICES		
	NAND		TC4011BP/BF,TC4011UBP,TC4012BP/BF,TC4023BP/BF,TC4068BP/BF TC7400BP		
	NOR		TC4000BP,TC4001BP/BF,TC4001UBP,TC4002BP/BF,TC4025BP/BF TC4078BP/BF		
	AND		TC4068BP/BF,TC4073BP/BF,TC4081BP/BF,TC4082BP		
	OR		TC4071BP/BF,TC4072BP/BF,TC4075BP/BF,TC4078BP/BF		
GATES	INVE	RTER	TC4007UBP/UBF, TC4009UBP, TC4049BP/BF, TC4069UBP/UBF, TC7404UBP		
BUFFERS	BUFF	ERS	TC4009UBP,TC4010BP,TC4049BP/BF,TC4050BP/BF		
		3-STATE	TC4502BP,TC5012BP/BF,TC5024BP,TC5025BP,TC4503BP		
		OPEN DRAIN	TC40107BP, TC5029BP, TC5064BP, TC5065BP, TC5066BP, TC5067BP		
	MULT	IFUNCTION	TC4019BP/BF,TC4030BP/BF,TC4077BP/BF,TC4085BP,TC4086BP,TC4501BP TC4519BP,TC4530BP,TC4572BP/BF		
	SCHM	ITT TRIGGER	TC4093BP/BF,TC4583BP,TC4584BP/BF		
	LEVE	L SHIFTER	TC4009UBP,TC4010BP,TC4049BP/BF,TC4050BP/BF,TC5020BP		
FLIP-FLOP			TC4013BP/BF,TC4027BP/BF,TC40174BP/BF,TC40175BP/BF,TC7476BP		
LATCHES			TC4042BP/BF,TC4043BP,TC4044BP/BF,TC4099BP/BF,TC4508BP		
MULTIVIBRAT	ORS		TC4047BP, TC4528BP/BF, TC4538BP/BF		
DECODERS			TC4028BP/BF,TC4514BP.TC4515BP.TC4555BP,TC4556BP/BF		
,	LED		TC4511BP/BF,TC5002BP,TC5022BP		
DISPLAY	LCD		TC4054BP/BF,TC4055BP,TC4056BP/BF,TC4543BP/BF		
DRIVER	DIGITRON		ТС5068ВР.ТС5069ВР		
ENCODER			TC4532BP		
REGISTERS	SHIFT		TC4006BP,TC4014BP,TC4015BP/BF,TC4021BP,TC4034BP,TC4035BP TC4094BP/BF,TC40104BP,TC40194BP,TC5050P		
	STORAGE		TC4076BP		
	BINARY		TC4029BP/BF,TC40161BP,TC40163BP,TC40193BP,TC4516BP/BF TC4520BP/BF,TC5018BP,TC5027BP		
CONTRACTOR	DECADE		TC4029BP/BF,TC40160BP,TC40162BP,TC40192BP,TC4510BP/BF TC4518BP/BF,TC5026BP		
COUNTERS	DIVIDER		TC4020BP/BF,TC4024BP/BF,TC4040BP/BF,TC4521BP,TC5036P,TC5036AP,TC5048P,TC5048AP		
	DIVI	DE-BY-"N"	TC4018BP, TC40102BP, TC40103BP, TC4522BP, TC4526BP/BF		
	N-DI	GIT DECADE	TC5001P, TC5032P, TC5037P, TC5051P, TC5052P, TC5053P, TC5054P, TC5070		
	OTHE	R	TC4017BP/BF,TC4022BP		
TIMERS			TC5043P,TC5071P,TC5072P		
MULTI-	ANAL	OG	TC4051BP/BF,TC4052BP/BF,TC4053BP/BF		
PLEXERS	DIGI	TAL	TC4512BP/BF,TC4539BP/BF,TC5023BP		
	ADDE	R	TC4008BP, TC4032BP, TC4038BP, TC4560BP		
	COMP	ARATOR	TC4063BP/BF,TC4585BP		
ARITHMETIC CIRCUITS	PARI	TY TREE	TC4531BP		
CIMOUITO	RATE	MULTIPLIER	TC4527BP		
	9's	COMPLEMENTER	TC4561BP		
MEMORIES (R	AM)		TC4036BP,TC4039BP		
ANALOG SWIT	СН		TC4016BP/BF,TC4066BP/BF		
OTHER			TC40117BP		
A/D CONVERT	ERS		TC5090AP,TC5091AP,TC5092AP,TC5093AP,TC35094P,TC35095P,TC35096P		

EXPLANATION

OUTLINE

1. C²MOS IC Family

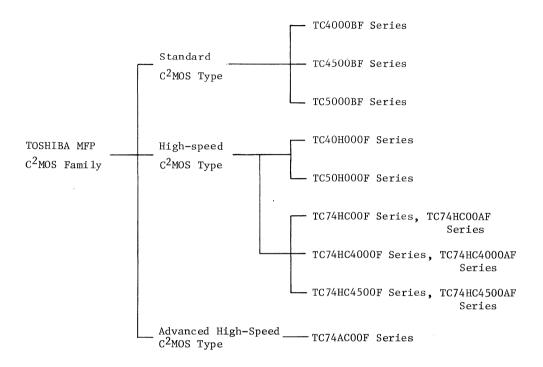
1.1 CMOS and C2MOS

"CMOS" is an abbreviation of "Complementary Metal Oxide Semi-conductor", and "Complementary" means to combine P-channel type MOS FET and N-channel type MOS FET complementarily. The CMOS circuit configuration, since its announcement at ISSCC in 1963, attracted a large expectation for its performance with super-low power consumption and operation at low voltage, and after such process as settlement of production problems through the ion implantation process, reduction in pattern size through circuit research, etc., has now been established as one field of integrated circuits.

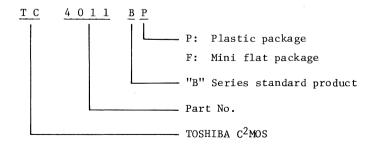
At present, use of CMOS LSI in electronic calculators, clocks, etc. is remarkable. In addition to these LSI, the features of CMOS are also very attractive in the field of so-called industrial electronic equipment including measuring and control equipment, business machines, etc., and it may be said to be a matter of course that CMOS logic family is demanded.

To respond these need promptly, TOSHIBA has put CMOS logic element on sale as $C^2 MOS$ IC Family.

C²MOS is an abbreviation of "Clocked CMOS", which is one of the CMOS circuit configurations. This type of circuit was made public by Toshiba at ISSCC in 1973 and since then, it has been applied to mainly sequential circuits of TOSHIBA's MSI and LSI as it becomes an extremely powerful circuit means.


Therefore, C^2MOS is used as the general name of TOSHIBA CMOS ICs including combined circuits without clocked gate used.

1.2 TOSHIBA C²MOS Family


 C^2MOS Family products shown below are made available from TOSHIBA for use in all sorts of equipment.

Further, the Mini-Flat Package (MFP) C^2MOS Family products are also available from TOSHIBA to satisfy demands of equipment for compact size and light weight.

1.3 Standard Construction of Model No. of C^2MOS Family Products

1.4 TOSHIBA B Series C²MOS

TOSHIBA B Series C²MOS have ratings and characterisitcs satisfying EIA/JEDEC standards; definitely speaking, they have basic characteristics shown below:

- o A wider operating supply voltage range of 3 $^{\circ}$ 18V.
- o Guaranteed electrical characteristics under 3 supply voltage conditions of 5V, 10V and 15V.
- o Buffer structure adopted for all outputs
- o 2 inputs of LTTL (Low Power TTL) and 1 input of LSTTL (Low Power Shottkey TTL) can be directly driven.

*1 "UB" Series products and some products including analog switch, level shifter, etc. have different noise margines.

2. Operational Principle and Features of CMOS

2.1 Basic circuit and structure of CMOS

Inverter circuit is taken as an example of CMOS basic circuit. CMOS inverter, as shown in Fig. 2-1, consists of the common input terminal shared by P-channel enhancement (normally off) type MOS FET and N-channel enhancement type MOS FET and the common output terminal shared by each drain.

As shown in the same figure, CMOS inverter uses P-channel and N-channel MOS FETs complementarily.

Usually, the source of P-channel MOS FET is connected to $V_{\rm DD}$ (+supply) and the source of N-channel MOS FET is connected to $V_{\rm SS}$ (usually GND).

Fig. 2-2 illustrates the cross section using the basic process. N-type silicon is used as substrate for CMOS basic process.

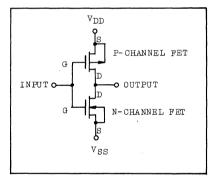


Fig. 2-1 Circuit Diagram of CMOS Inverter

For normal P-channel MOS FETs, P-type impure material is selectively diffused in the domain of N-type substrate to form the source and the drain. For CMOS, however, since N-channel MOS FET is also required to be formed in same substrate, after forming P-type island domain (P-well) in N-type substrate by means of ion implanation, N-channel MOS FET is formed in this P-well. And P-channel MOS FET is formed in the substrate outside of this island domain.

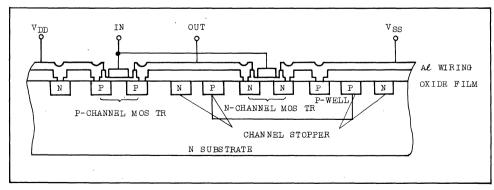


Fig. 2-2 Structural Cross Section of Al Gate CMOS

N-type substrate and P-well are separated (reverse biased) by $\rm V_{DD}$ and $\rm V_{SS}$. Therefore, P-channel and N-channel FETs operate independently each other with no mutual interferences.

Fig. 2-2 is the basic cross section of CMOS inverter. The static protection circuit is inserted in the input gate as shown in Fig. 2-3 for the actual products.

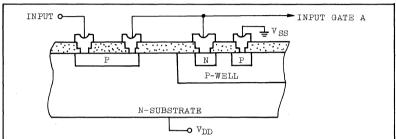


Fig. 2-3 CMOS Input Protection Circuit

Fig. 2-4 shows the equivalent circuit of CMOS inverter including the input protection circuit and the parasitic circuits. Fig. 2-4 actually represents the circuits of TC4069 UBP and TC7404 UBP.

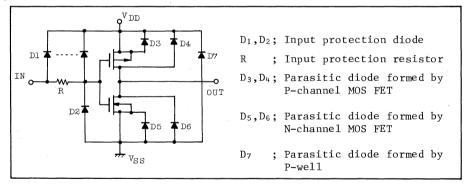


Fig. 2-4 CMOS Inverter taking Parasitic Circuits into Consideration

Although the diodes inserted in the equivalent circuit are all reverse bias during operation without causing any interferences for normal circuit operation, caution should be observed since degradation and damage of the elements may be resulted by making those diodes forward biased when the power supply is connected with reverse polarity or the interface is driven roughly.

2.2 Basic characteristics of CMOS

CMOS is a classification based on the circuit configuration and the characteristics of each MOS FET actually used are equal to common enhancement type FETs.

Therefore, in the case of CMOS also, the characteristics of P-channel and N-channel MOS FETs can be basically approximated by Shockley's equation.

$$I_{DS} = K [2V_{DS}(V_{GS} - V_T) - V_{DS}2], V_{DS} < V_{GS} - VT$$
 (2.1)

$$I_{DS}$$
 = K $(V_{GS} - V_T)^2$, $V_{DS} \ge V_{GS} - V_T$ (2.2)

$$I_{DS}$$
 = 0 , $V_{GS} \leq V_{T}$ (2.3)

Where the constant K is

$$K = \frac{W}{2L} \cdot \frac{Eox}{t_{OX}} \cdot \mu$$

L ; Channel length

W ; Channel width

 $E_{\rm O\,X}$; Dielectric constant of gate oxide film

 t_{OX} ; Thickness of gate oxide film

μ ; Mobility of electron or positive hole

 V_{DS} ; Potential difference between drain and source

 $V_{\mbox{GS}}$; Potential difference between gate and source

 V_{T} ; Threshold voltage

Using the above approximation equations (2.1) \sim (2.3), the basic characteristics are explained below taking inverter as an example.

(1) Transfer characteristic of inverter

The input voltage, the output voltage and the power supply voltages are assumed to be $V_{\rm IN},~V_{\rm OUT}$ and $+V_{\rm O}$ volts respectively. The threshold voltages are assumed to be $V_{\rm TP}$ for P-channel FET and $V_{\rm TN}$ for N-channel FET respectively.

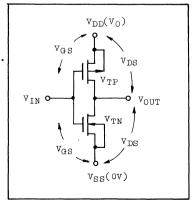


Fig. 2-5 Relationships of Various Bias

Here, V_{TP} is considered to have negative value and V_{TN} to have positive value. As it is clear from Fig. 2-5, V_{DS} and V_{GS} which appeared in equations (2.1) $^{\circ}$ (2.3) are

$$v_{DS} = v_{OUT}$$
 , $v_{GS} = v_{IN}$

for N-channel FET.

So, equations (2.1) \circ (2.3) can be rewritten as shown below.

$$I_{DSN} = K_N [2V_{OUT}(V_{IN}-V_{TN})-V_{OUT}^2], V_{OUT} < V_{IN} - V_{TN} ... (2.4)$$

$$I_{DSN} = K_N (V_{IN} - V_{TN})^2$$
, $V_{OUT} \ge V_{IN} - V_{TN} \dots (2.5)$

$$I_{DSN} = 0$$
 , $V_{IN} \leq V_{TN}$... (2.6)

On the other hand, since

$$v_{DS} = v_0 - v_{OUT}$$
 AND $v_{CS} = v_0 - v_{TN}$

for P-channel, equations (2.1) \sim (2.3) can be rewritten as follows.

$$I_{DSP} = K_P[2(V_O - V_{OUT})(V_O - V_{IN} - |V_{TP}|) - (V_O - V_{OUT})^2],$$

$$v_{OUT} > v_{IN} + |v_{TP}|$$
 (2.7)

$$I_{DSP} = K_P(V_0 - V_{IN} - |V_{TP}|)^2, V_{OUT} \le V_{IN} + |V_{TP}|$$
 (2.8)

$$I_{DSP} = 0$$
 , $v_{IN} + |v_{TP}| \ge v_0$ (2.9)

When the input voltage of inverter varies from 0 volts to V_0 volts, the operating range of each MOS FET can be classified into the following five regions.

- \bigcirc $v_{TN} < v_{IN} < v_{OUT} |v_{TP}|$
- $(3) \quad V_{OUT} |V_{TP}| \le V_{IN} \le V_{OUT} + V_{TN}$
- (4) $v_{OUT} + v_{TN} < v_{IN} < v_{O} |v_{TP}|$

The currents in the above five regions for each FET forming the inverter can be represented by equations $(2.4) \sim (2.9)$ respectively.

When the input/output transfer characteristic is to be obtained, since the current carried by P-channel, I_{DSP} is equal to the current carried by N-channel, I_{DSN} , the transfer characteristic in each region is obtained by making I_{DSN} = I_{DSP} .

Especially, by making $I_{DSN} = I_{DSP}$ in the equations (2.5) and (2.8) of current in the region of 2, the following equation is obtained.

$$v_{\rm IN} = \frac{v_{\rm TN}(\sqrt{\frac{K_{\rm N}}{K_{\rm P}}}\)\ +\ v_{\rm O}\ -\ \left|v_{\rm TP}\right|}{1\ +\ (\sqrt{\frac{K_{\rm N}}{K_{\rm P}}}\)}$$

Fig. 2-6 shows the comparison between the theoretical values obtained by those equations and the measuring values.

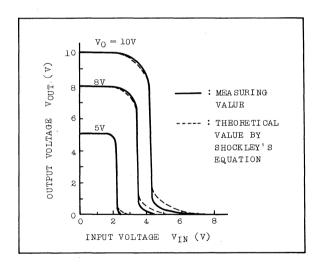


Fig. 2-6 Input/Output Transfer Characteristics

(2) Step response of inverter

When step input which varies from 0 volts to $\pm V_0$ volts is applied to the inverter input, P-channel FET is turned off and N-channel FET is turned on. As a result, electrical charge stored in the load capacitor C_{OUT} is discharged through N-channel FET and the output voltage V_{OUT} varies from $\pm V_0$ volts to 0 volts as the discharge proceeds.

a) When $V_{OUT} \ge V_O - V_{TN}$

The equation for current is given by (2.5) and since $C_{\mbox{OUT}}$ is discharged by this current,

-
$$I_{\rm DSN}$$
 = $C_{\rm OUT}$ $\frac{d~V_{\rm OUT}}{dt}$, $V_{\rm OUT}$ = $V_{\rm O}$ at 5 = 0

When this is integrated,

$$\int_{0}^{t} dt = - \int_{V_{O}}^{V_{OUT}} \frac{c_{OUT}}{\kappa_{N}(v_{O} - v_{TN})^{2}} \cdot dv_{OUT}$$

Namely,

$$t = \frac{C_{OUT}}{K_{N}(V_{O} - V_{TN})^{2}} (V_{O} - V_{OUT}) \dots (2.10)$$

If t_0 is defined at $V_{OUT} = V_0 - V_{TN}$,

$$t_0 = \frac{c_{OUT} \cdot v_{TN}}{k_N (v_O - v_{TN})^2}$$

b) When $V_{OUT} \leq V_{O} - V_{TN}$

If integrated similarly as a) using equation (2.4),

$$\int_{0}^{t} dt = \frac{-C_{\rm ONT}}{2K_{\rm N}(V_{\rm O} - V_{\rm TN})} \times \int_{V_{\rm O} - V_{\rm TN}}^{V_{\rm OUT}} \left\{ \frac{1}{V_{\rm OUT}} + \frac{1}{2(V_{\rm O} - V_{\rm OUT}) - V_{\rm OUT}} \right\} dV_{\rm OUT}$$

Then,

$$t = \frac{c_{OUT} \ v_{TN}}{\kappa_{N}(v_{O} - v_{TN})} + \frac{c_{OUT}}{2\kappa_{N}(v_{O} - v_{TN})} \ \ell_{n} \ [\frac{2(v_{O} - v_{TN}) - v_{OUT}}{v_{OUT}}] \ \dots \ (2.11)$$

As the fall time t_f is the time required for the output voltage to vary from 90% to 10%, if t_1 is assumed to be the time for the output voltage to reach 90% of V_0 and t_2 is assumed to be the time to reach 10% of V_0 , t_1 and t_2 are given from equations (2.10) and (2.11) as follows.

$$t_1 = \frac{c_{OUT}}{K_N(V_0 - V_{TN})^2} \times 0.1V_0$$

$$\mathtt{t_2} = \frac{\mathtt{c_{OUT}} \ \mathtt{V_{TN}}}{\mathtt{K_N} (\mathtt{V_O} - \mathtt{V_{TN}})^2} + \frac{\mathtt{c_{OUT}}}{2\mathtt{K_N} (\mathtt{V_O} - \mathtt{V_{TN}})} \ \mathtt{\ell_n} \ [\frac{2(\mathtt{V_O} - \mathtt{V_{TN}}) - 0.1 \mathtt{V_O}}{0.1 \mathtt{V_O}}]$$

Therefore,
$$\begin{aligned} \mathbf{t_f} &= \mathbf{t_2} - \mathbf{t_1} = \left\{ \frac{\mathbf{v_{TN}} - \mathbf{0.1} \mathbf{v_0}}{\mathbf{v_0} - \mathbf{v_{TN}}} + 1/2 \, \ln \, \left[20 \left(1 - \frac{\mathbf{v_{TN}}}{\mathbf{v_0}} \right) - 1 \right] \right\} \times \, ^{\gamma_N} \quad \dots \quad (2.12) \end{aligned}$$
 where
$$\begin{cases} \tau_N &= \frac{c_{OUT}}{\mathbf{k_N} (\mathbf{v_0} - \mathbf{v_{TN}})} \\ \mathbf{k_N} &= 1/2 \cdot \frac{\epsilon_{OX} \, \mu_N}{\mathbf{t_{OX}}} \cdot \frac{\mathbf{w_N}}{\mathbf{L_N}} \end{cases}$$

The rise time t_r can be obtained similarly and the result will be the same as equation (2.12) except that N is replaced by P.

2.3 Features of CMOS

Table 2-1 compares the characteristics of logic families including CMOS. From this table it is clear that although the speed is slower than others, the power dissipation in quiescent state and the noise immunity are far superior to others.

And since CMOS has wider operating supply voltage range, the supply voltage can be flexibly set according to the applications and where to be used.

Parameter (typical values)	Standard TTL	Low power TTL	Low power Schottky TTL	CMOS (5V)	CMO S (10V)
Propagation Delay Time(ns)	10	33	5 ∿ 10	70	35
F/F Toggle Frequency (MHz)	35	3	40 ∿ 80	3	6
Quiescent Power Dissipation (mW)	10	1	8.5	5x10-6	2x10 ⁻⁵
Noise Immunity (V)	1	1	0.8	2	4
Fanout	10	10	20	50	50

Table 2-1 Comparison of Various Logic Families

(1) Propagation delay time and F/F toggle frequency

As shown by equation (2.12) in 2.2, the propagation delay time of CMOS is proportional to $C_{\rm OUT}$ (load capacitance) and inversely proportional to the constant $K_{\rm N}$ which is determined by design and process.

Therefore, in order to make the propagation delay time shorter, it is necessary to make $C_{\rm OUT}$ smaller and W/L in design considerations. However, since the internal diffusion cpapelitance in CMOS is included in $C_{\rm OUT}$, the internal capacitance increases proportionally to W/L and actually the propagation delay time tends to have a limitation.

In the standard C^2MOS ICs the propagation delay time is determined by balancing other electrical parameters since there are other limitations such as the output current and the breakdown voltage causing to have larger value than other logic elements as shown in Table 2-1.

However, the products for specific applications and CMOS ICs having the capabilities of high speed operations for the high speed frequency divider are currently being developed, and the speed of around 10ns delay per internal stage of CMOS at 5 volts has been obtained providing the expectation that the product range of such CMOS will be expanded for the systems requiring the high frequency operations in the feature.

(2) Quiescent (Static) power dissipation and operating power dissipation

In the standard CMOS, when the input holds "L" (V_{SS}) level or "H" (V_{DD}) level, N-channel FET or P-channel FET is kept turned off. So, the current from V_{DD} to V_{SS} is limited to the reverse direction saturation current of PN junction and the surface leakage current caused mainly by contamination on the chip surface; consequently, the value is only $1nA \sim 2nA$ at the normal temperature for gate ICs.

In the case of other logic circuits except CMOS, when the output driving transistor is turned on, direct current flows down from $V_{\rm CC}$ to GND through the load causing the power dissipation in the quiescent state to be approximately equal to the operating power dissipation.

The operating power dissipation of CMOS can be considered to be only the switching power loss which is generated to charge/discharge the load capacitance while inverting the logical levels, so that the operating power dissipation is proportional to the switching frequency.



Fig. 2-7 Operating frequency VS Power Dissipation of CMOS/TTL

Fig. 2-7 shows the relationship between the operating frequency and the power dissipation of TTL and CMOS, As shown in the figure, the advantages of CMOS will be fully utilized at the operating frequency lower than $10^6 \rm Hz$.

(3) Noise immunity

For CMOS circuits as shown in Fig.2-6, since the device threshold voltage is ideally set to the mid-point of supply voltage, the maximum noise immunity can be obtained among the various logic devices. It can be seen from the same figure that the standard value of noise immunity for CMOS is 2 volts (at $V_{\rm DD}$ = 5V) or 4 volts (at $V_{\rm DD}$ = 10V), which are considerably larger than the value of 1 volt for TTL.

The device threshold voltage of CMOS, however, is determined by On-resistance ratio of B-channel and N-channel MOS FETs and directly affected by the variations of those values. Therefore, the noise immunity guaranteed in the catalog of "B Series" products is 1 volt (at V_{DD} = 5V) or 2 volts (at V_{DD} = 10V), and attention should be paid to this point.

(4) Fanout

Since the protection diodes are reversely biased as long as rating voltages (VSS $^{\sim}$ VDD) are applied, CMOS input has extremely high DC impedance (RIN \div $10^{11}\Omega)$.

Furthermore, since the gate of MOS FET equivalently functions as one of electrodes of parallel plate capacitor, AC characteristic indicates the capacitive value of approximately 5pF.

This situation can be illustrated as shown in Fig. 2-8. These resistive component and capacitive component are insertes in parallel to $V_{\rm DD}$ side and $V_{\rm SS}$ side.

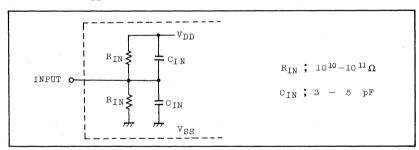


Fig. 2-8 Equivalent Circuit of CMOS Input

Therefore, in order to drive CMOS input, only very little current is required electrically to supply or to drain. This fact means that the output impedance of normal CMOS is around 200 - 1K Ω which makes it possible to drive the almost unlimited number of CMOS in DC operation.

However, as the number of fanout increases (n, for example), all of input capacitance $c_{\rm IN}$ are connected in parallel, increasing the load capacitance of output. So, the load capacitance viewed from the driving side is,

$$C_L = n \cdot C_{TN} + C_S$$
 (2.13)

Cs: Stray capacitance generated by wiring, etc.

and this CL causes the propagation delay time to increase.

Considering these situations, the practical number of fanout for C^2MOS has been determined to be 50. The fact that 50 fanouts can be actually provided eliminates almost all restrictions in the wiring arrangements of wired logic circuits.

3. Basic Circuit of CMOS

3.1 Positive logic and negative logic

The difference between positive logic and negative logic is only conceptual difference and it can not be said that the positive logic should be sued for CMOS.

The netative logic is easier to consider about P-channel MOS device due to the fact that negative supply voltages are used and that FET is turned on when negative potential is applied. However in CMOS both P channel and N-channel are the driving MOS and also the load MOS, so the conditions are same for the positive logic and the negative logic.

It has been decided that C^2MOS family is described in the positive logic in the catalog because of the facts that the positive logic is easier to handle for the design engineers who are familiar with the design works of wired logic circuits especially with TTL and that recently N-channel LSI become more and more popular and the positive logic is more convenient for the interfaces.

In order to avoid any confusion on the positive logic and the negative logic of the truth table, the potentially high logic level is described to be "H" level and the low logic level to be "L" level. Therefore, "H" in the truth table corresponds to "1" of the positive logic and "L" corresponds to "0" of the same posotive logic.

Table 3-1 Basic Logical Circuits

Circuit Function	Logical Symbol	Logical Equation or Truth Table
Circuit Function	rogical symbol	rogical Equation of Iruth Table
Inverter	A — X A — X	$X = \overline{A}$
NAND Gate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$X = \overline{A \cdot B} = \overline{A} + \overline{B}$
NOR Gate	A	$X = \overline{A + B} = \overline{A} \cdot \overline{B}$
AND Gate	A D X A D X	$X = A \cdot B = \overline{A} + \overline{B}$
OR Gate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$X = A + B = \overline{\overline{A} \cdot \overline{B}}$
Clocked Inverter	$A \longrightarrow \stackrel{\overline{\phi}}{\phi} X \qquad A \longrightarrow \stackrel{\overline{\phi}}{\phi} X$	φ A X H H L H L H L H L H HZ; HIGH IM PEDANCA
Transmission	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ A X H H H H H L L L ** HZ; HIGH IMPEDANCE
EXCLUSIVE-OR Gate	А —— х	$X = (A + B) \cdot (\overline{A} + \overline{B})$
EXCLUSIVE-NOR Gate	А ДО X	$X = (A \cdot B) + (\overline{A} \cdot \overline{B})$
D - Type Flip - Flop	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S R D CL Q H L * * H L H * * L L L H J H L L L J L L L T Q M
J/K Type Flip - Flop	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S R J K CL Q H L * * * * H L H * * * * L L L L L Q L L L H L H L L H L H L L H H Q L L H H Q C Q C C C C C C C C C C C C C C C C C

3.2 Basic logic circuits

The basic logic blocks used in C^2MOS are shown in Table 3-1. The logic diagrams illustrated in the technical bulletin of each product and the logic diagrams in this manual are configured by the basic blocks shown in Table 3-1. With partial exceptions, these logic diagrams are based on MIL-STD806(C). (Special symbols are used for the clocked inverter, the transmission gate, etc.)

3.3 Configuration of basic circuit

(1) NAND/NOR

CMOS NAND gate, as illustrated in Fig. 3-1 i), is formed by connecting P-channel FETs in parallel between $V_{\rm DD}$ and the output and by connecting N-channel FETs in series between $V_{\rm SS}$ and the output.

B are "H", both of N-channel FETs in series are turned on, causing the impedance between X and $V_{\rm SS}$ to be low. At this time, both of P-channel FETs are turned off cutting off X from $V_{\rm DD}$.

When both inputs A and

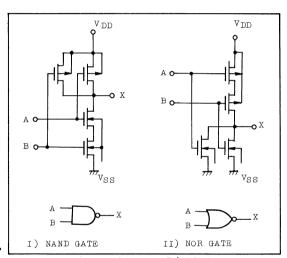


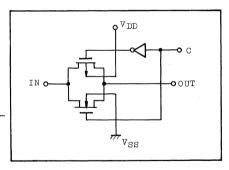
Fig. 3-1 NAND/NOR Cate

Therefore, the output becomes nearly equal to VSS generating "L" level. In the case of other input modes, at last one of P-channels FETs is turned on and one N-channel FETs are turned off causing the output to be "H" level.

NOR gate of ii) in Fig. 3-1 is fabricated in the reversed way of NAND gate i) to generate "H" output only when both of inputs A and B are "L".

The gates with 3 inputs or more can be realized with the same configuration simply by increasing the number of stages of P-channel or N-channel FETs in series or in parallel. In the case of C^2MOS up to around four inputs the device can be configured with one stage, but the gates with more inputs are realized by combining the basic circuits.

(2) AND/OR


Since the output is always inverted by one stage of CMOS gate, AND gate and OR gate are realized by adding an inverter to the output of NAND/ OR of (1).

Therefore, it is important for CMOS MSI/LSI to effectively combine NAND/NOR rather than to fabricate the gates with AND/OR, in order to reduce the number of elements.

(3) Transmission gate

Fig. 3-2 illustrates the basic circuit of transmission gate. This circuit provides the function of reed switch which transmits the data when both of P-channel and N-channel are "ON" (c="H") and separates the output from the input when those are "OFF" (C="L").

Since both of P-channel and N-channel are used, the capability of cancelling the back gate bias effect is one of advantages and the capability of keeping the low impedance over the wide signal range of $V_{\rm SS} \, ^{\searrow} \, V_{\rm DD}$ is another advantage.

The applications would be as follows.

Fig. 3-2 Transmission Gate

- i) Switching functions of sequencial circuits, such as shift registers, counters, etc.
- ii) Analog switches
- iii) 3-stage gates*

*3-state gates: 3-state is named for the capability of providing three states of output which are normal "H", normal "L" and high impedance condition not being connected to $V_{\rm DD}$ or $V_{\rm SS}$, namely not "H" nor "L". This characteristic can be applied for the intervace with bus line of process control systems and multiplexers.

(4) Clocked gate

When a delay circuit or a switching circuit is required, the transmission gate is usually used. However, this circuit has a disadvantage that the pattern becomes more complicated with increased area when the circuit is to be integrated in LSI. The one which overcomes this disadvantage keeping the characteristics of conventional transmission gate is the clocked gate (clocked inverter) shown in Fig. 3-3.

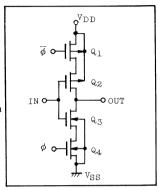
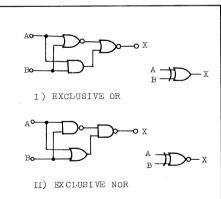


Fig. 3-3 Clocked Gate

Q2 and Q3 are normal configuration of inverter, however by serially inserting Q1 and Q4 in the circuit, the function of normal inverter can be obtained when Q1 and Q4 are "ON" (ϕ ="H") and the output has high impedance when Q1 and Q4 are "OFF" (ϕ ="L").

Although this circuit does not have the functions of analog switch, all the other functions of transmission gate are provided.

If the concept of this clocked inverter is expanded, clocked NAND and clocked NOR can be realized.


(5) Exclusive OR/Exclusive NOR

Exclusive OR is also called

coincidence circuit which gives the

output of "L" when all the inputs are at "H" or "L" level and gives the

output of "H" when at least one of inputs differs from others.

Exclusive NOR is the one with the inverted output of the above exclusive OR and gives the output of "H" when all the inputs coincide at "H" or "L" level.

Fig. 3-4 illustrates the configurations of these circuits.

(6) D-type flip-flop/ J-K type flip-flop

These will be explained in the chapter of Flip-Flops.

4. Maximum Ratings and Recommended Operating Conditions

4.1 Maximum ratings

The maximum ratings are specified for each C^2MOS product. Nor only for C^2MOS , the maximum ratings are the values which should not be exceeded in order to guarantee the life and the reliability of integrated circuits, and usually considered to be the absolute maximum ratings.

The absolute maximum ratings are the values which may not be exceeded even for a short instance and none of any rating values may not be exceeded When the circuits are used exceeding the maximum ratings, their characteristics may not be recovered and in extreme cases permanent damage may be resulted.

Therefore, when a circuit is designed, extreme attention should be paid to variations of supply voltages, characteristics of connected components, surges of input/output signal lines, environment temperature, etc. Table 4-1 lists the common maximum ratings of B series C^2MOS .

When the maximum ratings of each product differ from the common ratings, the former takes precedence.

Table 4-1 Common Maximum Ratings of B Series C2MOS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	v_{SS} - 0.5 \sim v_{SS} + 20	V
Input Voltage	v_{IN}	$v_{SS} - 0.5 \sim v_{DD} + 0.5$	V
Output Voltage	$v_{ m OUT}$	$v_{SS} - 0.5 \sim v_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temp. Range	Tstg.	-65 ∿ 150	°C
Lead Temp./Time	Tsol.	260°C·10 sec	

(1) DC Supply voltage

This is DC supply volt age applied between V_{DD} terminal and V_{SS} terminal. Usually biased to satisfy $V_{DD} > V_{SS}$ and the reverse bias due to the undershoot of DC power supply, etc. should be limited to -0.5 volts. If higher voltage than this vlaue is given in the condition of $V_{SS} > V_{DD}$, the parasitic diode D7 shown in Fig. 2-4 is forward biased causing excessive current to flow from V_{SS} to V_{DD} and in extreme cases, the element may be damaged.

The upper limit of 20 volts is established based on the breakdown voltages of parasitic diodes and transistors of various circuits, and the value should never be exceeded. If voltage applied exceeding the rating, CMOS device may reach to the secondary breakdown region of latch-up, etc. from the primary breakdown region. Since VSS is set to GND (0 volts) in most cases, the voltage of VDD terminal should be considered to be in the range of -0.5 \sim 20 volts.

(2) Input voltage and output voltage

The electrostatic protection diodes are inserted in the input as shown in Fig. 2-3 and Fig. 2-4. These diodes are not installed to absorb the current fed from outside but installed to protect the input oxide film from

the destruction caused by electrostatic charge. Therefore, the input voltage is limited to the range that input protection diodes are not forward biased. The lower limit is ^{V}SS -0.5 volts and the upper limit is ^{V}DD +0.5 volts.

The output terminal is used usually to drive CMOS and other electronic components and although any voltage is not applied from outside, situations where the voltage transiently varies due to the external surge or driving of a capacitive load or an inductive load may possibly exist. If the output voltage exceeds the range of ${}^{V}SS^{-V}DD$ in this case, ${}^{D}4$ and ${}^{D}6$ of Fig. 2-4 are forward biased causing excessive current to flow from the output to ${}^{V}DD$ or from ${}^{V}SS$ to the output.

As this current possibly causes primary damage of opening the output line and secondary damage of latch-up, the output voltage is similarly as the input specified as a rating to be in the range of $^{\rm V}{\rm SS}$ - 0.5 volts ~ $^{\rm V}{\rm DD}$ + 0.5 volts to prevent the parasitic diode to be forward biased.

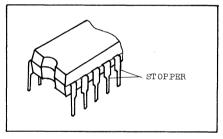
(3) DC Input current

This item may seem to be contradictory with the rating of input voltage (2), but this indicates the critical value at which the input protection diodes and other elements will not be destroyed or degraded when voltages exceeding the ratings are applied due to surges caused by interfaces. Therefore it is not recommended to design circuits which flow DC current through the input protection diodes. Even when it can not be avoided to apply voltage causing current to flow to the input, the current should be limited to 1 mA or less.

(4) Power dissipation

As far as CMOS is used in a normal manner, the power dissipation is extremely small not causing any problems concerning the allowable loss. However, When LED is driven or big current is driven by the buffer, power is consumed in CMOS. For C^2MOS , the power dissipation is specified to be 300 mW* per package. (*; Except Mini Flat Package.)

Since the power dissipation in the internal circuit can be neglected for C^2MOS in most cases comparing with that of the output stage, the power dissipation can be calculated only considering the output stage.


(5) Storage temperature range

This indicates the ambient temperature at which degradation of characteristics or reliability is not resulted even if the products are exposed in the environment for long time without applying the supply voltage. In the case of C^2MOS , the storage temperature range of $-65\,^{\circ}C$ ~ $150\,^{\circ}C$ is specified as the rating.

(6) Lead temperature and time

These are conditions which should be limited when soldered after mounting C^2MOS on the printed circuit board. Regardless whether a solder pot is used or a soldering iron is used, the lead temperature should be

limited up to 260°C and soldering should be completed within 10 sec. When a solder pot is used, the area which is allowed to dip into solder is up to the stopper of IC lead frame.

4.2 Recommended operating conditions

Fig.4-1 External appearance

These are the ranges where the operations of C^2MOS IC are guaranteed and when the ranges are exceeded the operations are not guaranteed even if such ranges are inside of the maximum ratings. Therefore, it is important to use the products inside of these ranges.

Table 4-2 Common Recommended Operating Conditions of C²MOS(VSS=OV)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	
DC Supply Voltage	$v_{ m DD}$	3	-	18	V	
Input Voltage	VIN	0	-	$v_{ m DD}$	v	
Operating Temp. Range	Topr	-40	-	85	°C	

Table 4-2 lists the common recommended operating conditions of B series C^2MOS . When the recommended operating conditions of each product differ from the common recommended operating conditions, the former takes precedence.

(1) DC supply voltage

Wide range of operating DC supply voltage, 3 volts \sim 18 volts from ^{V}SS is guaranteed for B series $C^{2}MOS$. The lower limit of 3 volts is determined by ^{V}T of P-channel and N-channel FETs and when the voltage becomes lower than this value, ^{V}GS gets so small that the normal operations of CMOS can not be expected. The upper limit of 18 volts is determined by the breakdown voltage.

(2) Operating temperature range

This is the temperature range where the normal operations and characteristics of IC are guaranteed. The operations of B series C^2MOS are guaranteed in the wide range of $-40\,^{\circ}C$ ~ $80\,^{\circ}C$.

Table 5-1 Static Electrical Characteristics of TC4001BP (VSS=0V)

					100-		0.5.9.0			0.50.5		
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD}	-40°C		25°C			85°C		UNITS	
				MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
High-Level Output Voltage	VOH		5	4.95	-	4.95	5.00	-	4.95	-		
		V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-		
			IN SO, PP	15	14.95	-	14.95	15.00	-	14.95	_	1 1
Low-Level Output Voltage		VOL	I _{OUT} <1µA V _{IN} =V _{SS} , V _{DD}	5	-	0.05	-	0.00	0.05	-	0.05	
	ge			10	-	0.05	-	0.00	0.05	-	0.05	
1				15	-	0.05	_	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	_	mA
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	_	
Output High Current		I_{OH}	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	_	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_	
			$v_{IN} = v_{SS}$									
		$I_{ m OL}$	V _{OL} =0.4V	5	0,61	_	0.51	1.2	_	0.42	_	
Output Low Current			V _{OL} =0.5V	10	1.5	-	1.3	3.2	-	1.1	_	
			V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	-	
		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$										
		v_{IH}	V _{OUT} =0.5V	5	3.5	_	3.5	2.75	_	3.5	-	
Input High			V _{OUT} =1.0V	10	7.0	-	7.0	5.5	_	7.0	_	
Voltage			V _{OUT} =1.5V, 13.5V	15	11.0	_	11.0	8.25	_	11.0	_	
		l _{1OUT} <1μΑ									v	
Input Low Voltage	$\mathtt{v}_\mathtt{IL}$	V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	-	1.5		
		V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0		
		V _{OUT} =1.0V, 13.5V	15	-	4.0	_	6.75	4.0	_	4.0		
		lI _{OUT} l <1μA										
Input Level Current "L" Level	eve1	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	
		IIL	V _{IL} =0V	18	-	-0.1	1	-10-5	-0.1	-	-1.0	
Quiescent Device Current	I _{DD}		5	_	0.25	-	0.001	0.25	-	7.5	μΑ	
		$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	0.5	-	0.001	0.5	-	15		
Device Ourrent			*	15	-	1.0	-	0.002	1.0	_	30	
				L						L	L	

5. Static Electrical Characteristics and Dynamic Electrical Characteristics

5.1 Static Electrical characteristics

Table 5-1 lists the static electrical characteristics of TC4001BP.

Excluding the products with special specifications, the guaranty of static electrical characteristics and the specifications are standardized, so that each characteristic of TC4001BP (QUAD 2-INPUT NOR GATE) will be explained here.

(1) High-level output voltage/low-level output voltage (V_{OH}/V_{OI})

Fig. 5-1 illustrates the test circuits of V_{OH}/V_{OL} . Each input terminal is connected to V_{SS} or V_{DD} to get the specified logic level at the output. When the output level can not be determined in the cases of counters, etc. the output logic is determined by applying pulses in advance. Since the load conditions are $I_{OH}=-1\mu A$ and $I_{OL}=1\mu A$, and the measurement is taken in the region where I_{DS} of FET is extremely small, usually $V_{OH} \doteqdot V_{SS}$, and $V_{OL} \doteqdot V_{SS}$.

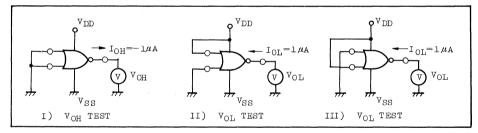


Fig. 5-1 Test Circuits of VOH/VOL

In the cases of interfacing CMOSs each other, the input/output conditions will be approximately equal to the above values. This fact indicated that the switching operation gives the ideal swing from $V_{\rm SS}$ for "L" level of logic signal to $V_{\rm DD}$ for "H" level in CMOS circuits.

(2) Output high current / Output low current (IOH, I_{OL})

Fig. 5-2 illustrates the test circuits of I_{OH}/I_{OL} . The input conditions are set in the same manner as for measuring V_{OH}/V_{OL} . In this case, connecting a constant supply voltage to the output to be measured, the current flowing out (IOH) through P-channel FET is measured for high level

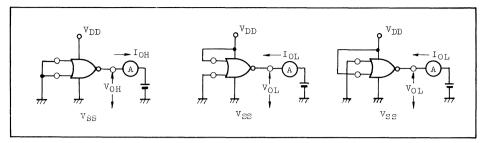


Fig. 5-2 Test Circuits of I_{OH}/I_{OL}

output and the current flowing in through N-channel FET is measured for low level output. These currents are guaranteed at one point in the nonsaturation region (also called triode region) of each FET, and the minimum values are guaranteed in the specification table for both $I_{\rm OH}$ and $I_{\rm OL}$. These can be a guidance to achieve current driving by CMOS output.

(3) Input high voltage / Input low voltage (V_{IH}/V_{IL})

Fig. 5-3 illustrates the test circuits of $V_{\rm IH}/V_{\rm IL}$. $V_{\rm IH}$ and $V_{\rm IL}$ are the voltages which can be recognized as "H" level and "L" level at the input of IC being measured, and the minimum value is guaranteed for $V_{\rm IH}$

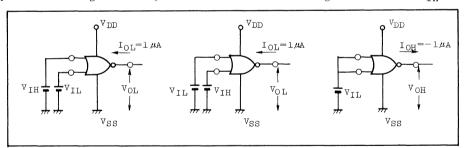


Fig. 5-3 Test Circuits of $V_{\mathrm{IH}}/V_{\mathrm{IL}}$

and the maximum value is guaranteed for $V_{\rm IL}$. Whether or not IC being measured has correctly recognizes the input level is confirmed by the fact that the output level is at the specified level (higher than $V_{\rm OH}$ or lower than $V_{\rm OL}$ listed in the measurement conditions).

(4) Hihg-level input current/low-level input current (I_{IH}/I_{IL})

The input current in the range of the ratings of CMOS is considered to be the sum of the reverse current of input protection diode and the sutface leakage current. Since both of these leakage currents are extremely small at the normal tem-

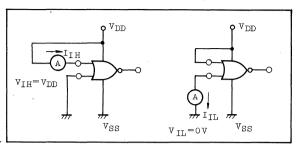


Fig. 5-4 Test Circuit of I_{TH}/I_{TL}

perature $\{10^{-5} \sim 10^{-4} (uA)\}$, the operating maximum voltage is applied for the tests. However, the specified value of $\pm 0.3uA$ (maximum) is guaranteed considering stability of automatic testing. Other inputs except one being measured are usually connected to V_{SS} for testing V_{IH} and to V_{DD} for testing V_{IL} .

(5) Quiescent device current (IDD)

When CMOS input holds V_{DD} level or V_{SS} level, as described in the paragraph of Features of CMOS, P-channel FET or N-channel FEI is always turned off. So, the quiescent device current is total of the reverse leakage currents at PN junctions in the chip. This value is also extremely small at room temperature reaching only 1 nA (10^{-9} A) (standard value at Ta=25°C, V_{DD} =5V) for gate IC. Since this quiescent device current is guaranteed over all possible combinations of logic conditions of input pins, the combinations will be of very large number and usually such quiescent

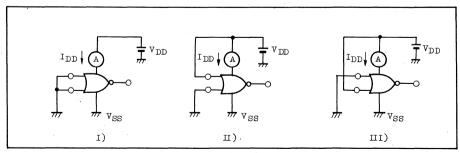


Fig. 5-5 Test Circuit of IDD

device current is guaranteed at the point where the distribution is higher than the actual situations taking a certain degree of margins for test precision and test method.

Fig. 5-5 illustrates examples of test circuits of IDD. Since IDD with both of two inputs holding "H" can be estimated by measuring at the conditions ii) and iii), the test is omitted in many cases.

(6) 3-State output leakage current (I_{DH}/I_{DL})

This characteristic is not required for TC4001BP but it is required for the products having 3-state output and the products with open drain to specify the leakage current when the output is placed in the high impedance state.

 $\rm I_{DH}$ is the leakage current when the signal of "H" level is applied to the OFF output and $\rm I_{DL}$ is the leakage current when the signal of "L" level is applied.

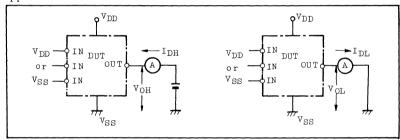
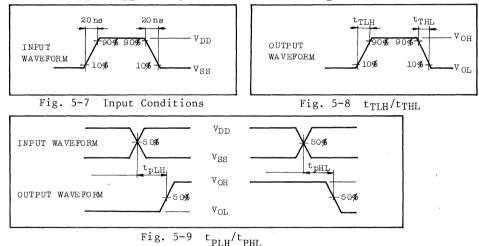


Fig. 5-6 Test Circuit of $I_{\mathrm{DH}}/I_{\mathrm{DL}}$

Fig. 5-6 illustrates the test circuits of 3-state output leakage. Naturally, the inputs are connected to generate the high impedance state at the output to be measured.

5.2 Dynamic electircal characteristics

The dynamic electrical characteristics are to guarantee the transient characteristics of ${\rm C^2MOS}$ and specified with the load capacitance of 50pF at the ambient temperature of 25°C.


As the test circuits and the test waveforms are described in the technical material for each product, only the basic characteristics are explained here comitting the detail explanations.

(1) Conditions of applying input pulse

Unless otherwise specified, pulse swinging completely from $V_{\rm SS}$ to $V_{\rm DD}$ shall be applied as the input waveform. The rise time and the fall time are the time required for the waveform to vary from 10% to 90%, and both of tr and tf are adjusted to 20ns. (Fig. 5-7)

(2) Output transition time (t_{TIH}/t_{THI})

The output transition time are the time required for the waveform swining from $V_{\rm OH}$ to $V_{\rm OL}$ to vary from 10% to 90%. (Fig. 5-8)

(3) Propagation delay time (t_{PLH}/t_{PHL})

These are the propagation delays from the time when signal is given to the input of IC being measured until the output responds. The time delay from varying the input level to the output to respond varying from "L" to "H" is called $t_{\rm PLH}$ and on the contrary the time delay required for the output to vary from "H" to "L" is called $t_{\rm PHL}$. In practice, however, since the circuit threshold voltage of CMOS is 1/2. $V_{\rm DD}$ (theoretical value), the time delay is specified to be the time period between

50% point of the input waveform to 50% point of the output waveform . (Fig. 5-9)

It may be easy to understand concerning the gate ICs since the measurement conditions are less complicated, but MSI has higher number of input/output terminals and the delay time is specified designating the input pins and the output pins.

(4) Minimum pulse width (tw)

The counters and the registers have the reset and the preset inputs to determine the initial state in many cases.

The minimum pulse width is the critical value of pulse width with which these terminals recognize it as the normal signal, and since the maximum value of distribution is specified, it is required to apply pulse with the width wider than the value. The pulse width is specified by the time period between 50% point of the leading edge and 50% point of the trailing edge.

(5) Maximum clock frequency (f_{CL})

This is the maximum clock frequency at which the flip-flops and the counters perform normal operations, and the minimum value of distribution is specified. It is required to design applications with the condition of the minimum value or lower of the value specified.

Unless otherwise specified, the duty cycle of clock input is 50%.

(6) Maximum clock input rise time/fall time (t_{rcl}/t_{fcl})

When the clock input waveform of a sequencial circuit, such as flip-flop or counter becomes dull, the possibility of racing or mis-counting (abnormal counting operations) arises. The critical values of \mathbf{t}_{rcL} and \mathbf{t}_{fcL} are specified in the catalog and the clock inputs having rise time and fall time shorter than the minimum value are required.

(7) Minimum data set-up time (t_{SU})

The outputs of flip-flops and shift registers are determined by the conditions of data inputs at the time of clock input transition. Therefore, if the transitions of clock and data input occur at the same time, the output may not be definite, so that the data inputs require to be settled before the transition of clock input, and this required settling time is called minimum data set-up time.

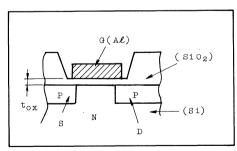
The maximum value of distribution is specified in the catalog and it is required to keep the set-up time longer than this value for applications.

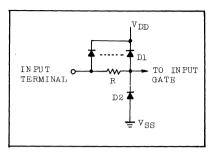
6. Cautions on Handling

By reason of its configuration, C^2MOS IC behaves itself in the manner different from Bipolar Logic centering around the conventional TTL. Although C^2MOS IC has many advantages over TTL, unsuitable method of use may result in the failure of full use of these advantages. In this chapter explanation is made on the cautions in handling C^2MOS IC and the cautions in designing circuits by using C^2MOS IC.

6.1 Configuration of C^2MOS necessary to know before handling and designing

 ${
m C}^2{
m MOS}$ IC input is connected to the gate electrode of MOS configuration having extremely thin oxide. As shown in Fig. 6-1, MOS configuration is de-



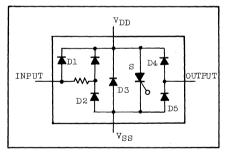

Fig. 6-1 MOS Configuration (Example of P-Channel MOS)

fined in general as the sandwich configuration consisting of metal, oxide and semiconductor.

The thickness (tox) of oxide insulator located directly under the gate electrode is usually as thin as 0.1~0.2µ; therefore, even when the voltage of 100V~200V is applied between gate and N-sub-

strate the electric field strength of oxide insulator just under the gate reaches as large as 10^{7} V/cm, causing dielectric breakdown by discharge.

For protecting the gate from the above-mentioned dielectric breakdown.



TOSHIBA C²MOS IC is provided at each input terminal with the protective circuit consisting of diode and resistor as shown in Fig. 6-2. According to the same figure, the voltage applied to the input terminal is clamped by $\rm D_1$ and $\rm D_2$ at $\rm V_{DD}$ and $\rm V_{SS}$, whereby the input gate is protected. However, the input protective circuit has its limit.

Fig. 6-2 Input Protection Circuit

As an example, the static electricity remaining in the fibers by the friction of fibers and needle of injustrical sewing machine for synthetic fibers or that generated by men and women walking on a carpet may reach several kV~~ some dozen kV, though the voltage differs depending on relative humidity and surface condition.

The above-mentioned static electricity is stored in the storing case of fibers or in human body, which is equivalent to the fact that the above-mentioned voltage is charged to the electrostatic capacity or human body

capacity (200 ~ 300PF). When this electric charge discharges to C^2MOS input, it is transformed into the energy sufficient to break down C^2MOS input.

In addition to the input protective diode, parasitic diodes are formed between each terminal in C²MOS IC, and all these diodes are of inverse bias at the

Fig.6-3 Parasitic circuit of C^2MOS $IC_{voltage}$ within the max. rating.

However, when the voltage exceeding the max. rating is applied between each terminal, excessively large current flows to these diodes.

Fig. 6-3 shows the parasistic circuit formed between each terminal of C^2MOS IC. In same figure, D_1 and D_2 are the input protective diodes, D_3 is the diode formed by P-well diffusion, D_4 is the diode by the drain formation

of P-channel MOS FET, and D_5 is the diode by the drain formation of N-channel MOS FET. S is the parasistic thyristor formed between each diffusion area.

For example, when the voltage exceeding the range of $V_{\rm SS} \sim V_{\rm DD}$ is applied to C²MOS input or output and the excessively large current flows to these diodes, firstly the fusing of input and output wiring or power supply wire will occur and secondly, short-circuit phenomenon between $V_{\rm DD} \sim V_{\rm SS}$ (this is generally called the Latch-up, resulting in fusing of power supply wire as the destruction mode) will be induced by the "ON" working of parasistic thyristor.

Therefore, it is necessary to use the voltage on input and output terminals within the rating without fail.

7. Cautions on Handling C^2MOS IC

7.1 Transportation and storing

The input and output of C^2MOS IC which is not actually installed are in the state of high impedance. It is, therefore, necessary to protect the C^2MOS IC from the external electric stress, such as the discharge from ambient charged body, the induction from space electric field, etc.

Therefore, in transporting and storing C^2MOS IC, it is necessary to use the conductive mat, metallec box, the box lined with aluminum foil, etc. so that each terminal of IC may become the same electric potential.

TOSHIBA C^2 MOS IC is inserted in a magazine given no-charging treatment at the time of shipment, do not take it out from the magazine unnecessarity. Especially, avoid to use plastic or vinyl container which is apt to charge static electricity.

Store the IC at the location where it is not exposed ro the direct sunlight. Pay careful attention to store at the location of the relative humidity which should be neither extremely high not extremely low.

7.2 Acceptance inspection

In case of conducting acceptance test on C²MOS IC, first of all it TEST SYSTEM lΜΩ

Fig. 7-1 Grounding

is necessary to ascertain that there is no transient phenomenon as overshoot or undershoot etc. between each terminal of test system by using synchroscope. Next, conduct test by using the calibration IC for ascertaining that there is no error in the test program. In the case of giving test pulses, it is necessary to give input signal after turning on the power supply.

It is necessary to take out the IC on the grounded work table. In conducting the test, ground the test system and inspector. For preventing the electric shock accident by the electricity leak from electric equipment, ground the inspector through approx. 1Mn resistor without fail.

Be sure to turn off the power supply when IC is inserted in IC socket or IC is drawn out of the socket. The accedent of test system may give fatal damage to IC. It is, therefore, advisable to carry out the selfdiagnosic program in advance before test.

7.3 Assembling

As mentioned in 2.2, in case of installing C^2MOS IC on the printed base board, it is necessary to make protection from the static electricity by grounding electric equipment, work tables (desks), and work men. It is advisable to ground a work table by putting metal plate or aluminum foil on the surface. Refrain as practicable as possible from wearing chemical fiber work cloth. Electricity leak from electric equipment shall be prevented by reason of safety. So, it is necessary to periodically check to see that there is no leak in the electric equipment.

In case of shaping the lead frame for installing IC, it is recommended that pincette and other jigs be used for preventing the stress from being imposed on the root.

It is ideal that the jigs are grounded.

7.4 Soldering and cleaning.

In case of carrying out soldering by using soldering iron and soldering tank, perform the soldering work within 10 seconds at the temperature 260°C below. It is confirmed that TOSHIBA C²MOS IC has no problem on reliability even in case the temperature stress is given to the stopper or lead at 260°C for 10 seconds.

Use the soldering iron with no leak on its tip. It is advisable to use A class soldering iron, the dielectric resistance of which is over 10 M Ω .

In using the soldering tank, it is necessary to ground the tank for preventing the unstable electric potential. After soldering IC to a printed base board, for removing flux and others, accelerating cleaning method is adopted in many cases by using detergent and ultrasonic wave.

In this case, full attention should be given to the selection of solvent so that the cleaning may have no influence on the outer case and mark of C^2MOS IC. In general, it is advisable to use FUREON series.

In the ultrasonic cleaning, consideration should be given to the cleaning method so that the main body may form a shadow to the oscillator. This is for preventing IC and base board from the stress by resonance. At the same time, concideration should be given to the cleaning time which shall be within 30 seconds

7.5 Adjustment and test

In conducting adjustment and test of set on completion of printed base board, before turning on the power supply it is advisable to ascertain that there are no errors in polarity and others of power supply, etc. As to the printed base board, ascertain that there are no solder bridge, cracks, etc. Usually, the C²MOS system requires only a small supply current, so that the abnormality of system can be checked, from the excessive supply current. In case of conducting test by using the commercially available constant-voltage power supply, it is recommended that the current limit be imposed on the power supply.

For the system consisting of several sheets of printed base boards, the printed base boards should be drawn out of and insert in the mother board for checking the system. In this case, the work shall be made after turning off the power supply.

In observing each part of printed base board with an oscilloscope at the time of test, it is necessary to be careful so that the tip of probe may not contact other signal wires and supply wire. In case the location to be observed is decided in advance, it is one of the methods to stand the test pin for exclusive use. Do not lead out this test pin directly from the signal wire. It is advisable to protect C^2MOS circuit from static electricity and erroneous connection by inserting over $10K\Omega$ resistance in series.

In case of conducting test at high temperature and low temperature, it is necessary to ground the thermostatic oven. The set in the oven should be installed on the conductors.

8. Mini Flat Package (MFP) C2MOS

8.1 Features and Applications

When compared with existing DIP, Toshiba MFP C^2MOS IC has the following features:

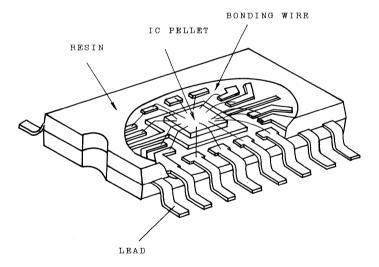
- o Small in size and a space factor at time of installation can be made small.
- o Installation to thin type equipment is possible
- o It is possible to assemble to both sides of a printed base board.

In addition, when compared with use of IC chip, MFP C^2MOS IC has the following features:

- o Easy to handle and reliability is improved.
- o It becomes easy to automate the assembly process.
- o Easy to replace defective parts.
- o Electrical characteristics guaranteed at the same level as DIP assure safe use.
- o Dimensions are in accordance with EIAJ General Provisions.

TOSHIBA MFP C^2MOS IC Family can be used for not only hybrid IC but also various equipment having limited printed base board area, set weight, thickness, etc. In addition, it will become possible to use MFP C^2MOS IC Family on equipment in the fields to which the application was not feasible so far.

- o Hybrid ICs
- o Portable measuring instruments
- o Portable VTRs
- o Electric/electronic instruments for motor cars
- o Video cameras
- o Small-sized business machines


- o Hand-held computers
- o Cameras
- o Remote & radio control equipment
- o Telephones
- o Various equipment
- o Others

3.2 Structure

Shown in Fig. 8-1 is the internal structural diagram of MFP ${\rm C^2MOS}$ IC. IC chip is attached to the central section which is called the bed, and is connected to the load frame from the electrode on the chip by Au wires. The enclosure is transfer molded by epoxy resin.

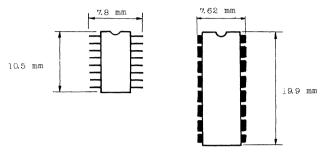
The lead frame is tinned, allowing the easy soldering in installing a substrate.

8.3 Product Name

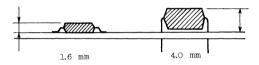
MFP C^2 MOS IC product is named in accordance with general plastic type DIP product name, but the last character (alphabet) of product name is changed from "P" of plastic to "F" of Flat.

Example: TC4011BP -- TC4011BF

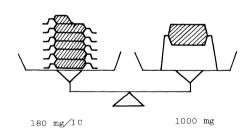
However, "TC" is omitted for the marking on actual ICs for the limited space. Therefore, please order ICs under formal product names as exampled in the above.


SIMPLIFIED PRODUCT NAME

8.4 Comparison with Standard DIP (miniaturized effect)


Miniaturized effect of the mini flat package (MFP) when compared with the standard dual in-line package (DIP) is shown in Fig. 8-2.

When MFP C^2MOS IC is used, it is possible to make a printed base board small in size and light in weight to 1/2 in occupied space, 1/2.5 in height and 1/5.5 in weight.


Fig. 8-2 Comparison of DIP and MFP $\ensuremath{\text{C}}^2\text{MOS}$ IC Occupied space (typ.) of printed base board

Height (typ.)

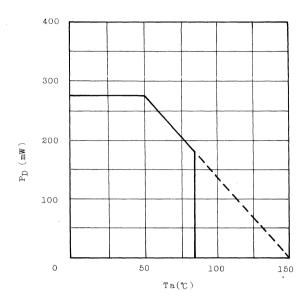
Weight (typ.)

8.5 Maximum Ratings and Electrical Characteristics

(1) Maximum ratings

The maximum ratings of MFP C^2MOS IC are the same as those of ordinary DIP products except power dissipation (PD).

(2) Electrical characteristics


The electrical characteristics of MFP C^2MOS IC are the same as those of ordinary DIP products.

(3) Power dissipation (PD)

The enclosure of MFP C^2MOS IC is small, and the power dissipation during the natural radiation is as less as 180 mW (at 85°C). Shown in Fig. 8-3 is the power dissipation characteristic of MFP C^2MOS IC. Since heat radiation from leads to a substrated becomes large when actually mounted, the power dissipation may be larger than that of a single unit. It is, however, necessary to examine the actual heat radiation of MFP C^2MOS IC thoroughly with it actually mounted.

However, power consumption of MFP C^2MOS IC when not in operation is minimum for its structure and even when in operation, it is possible to suppress power consumption below several tens mW unless an extermely severe method of use is employed, for instance, to drive large current by its output. Therefore, except special cases, it is considered not necessary to take much care of power dissipation.

Fig. 8-3 Power Dissipation of MFP C^2MOS IC (14/16 pins)

8.5 Mounting Method

To mount MFP C^2 MOS IC, the conventional mini-mold transistor/super mini-mold transistor mounting methods can be applied. Various mounting methods are available for selective use according to purpose.

(1) Reflow soldering method

The reflow soldering method is the most general method for mouting chip components (resistor, capacitor, transistor, etc.) on a substrate and needless to say, can be applied to MFP $C^2MOS\ IC$.

In the reflow soldering, a preliminary soldering and flux are applied to a printed base board in advance. Further, a printed base board may be applied with solder paste selectively in the screen printing. In the preliminary slodering, flux may be applied to the terminal side of IC instead of a printed base with a brush or sponge.

ICs are temporarity fixed at fixed locations by flux or solder paste. If it is desirable to temporarily fix ICs more quickly, fix ICs by applying a small amount of bonding agent on their back sides.

Then, when a substrate with component parts fixed temporarily is passed over a hot plate or through a tunnel kiln, or conveyor type heater, the solder preliminary applied is melted (reflow) and the soldering is made. Maximum allowable on risin and lead part is 260°C, and allowable time period is 10 second.

(2) Wave soldering method

Wave soldering is the most popular method to assemble dual inline devices.

In order to apply this method to MFP, following procedure is usually taken.

A package is fixed on the printed circuit board using an adhesive. After handling the board upside down, that board is putted on the flowing solder, Maximum allowable temperature of solder is 260°C, and allowable time period of dipping is 10 second.

During this soldering, the circumference of the molded package is completely filled with solder.

As the thermal shock of a package is worth than the other method, shorter soldering time and lower solder temperature is recommended. Pre-heating is also effective befor wave soldering process in order to reduce the thermal shock.

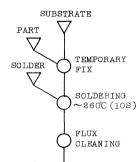
(3) Method by soldering iron

A package is fixed by flux, bonding agent, etc. using a soldering iron with the thin finished tip and a thin solder of 0.5mmø or below. The soldering work with a soldering iron shall be performed within 10 seconds at 260°C or 3 seconds at 350°C or below. This method is not suited to mass production but is used for experiment and repair.

(4) Conductive paste method

This method uses conductive paste instead of solder for installing component parts.

This paste is epoxy resin with gold or silver mixed. First, apply paste to the contact section, arrange component parts and leave them for 1 to 3 hours at 100 to 150° C for curing.


However, when compared with the method using solder, this method has the weakness in reliability of adhesion and therefore, it is necessary to take the utmost care.

Shown in Fig. 8-4 are examples of flowcahrts in various mounting methoes.

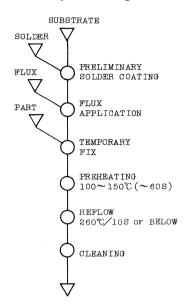
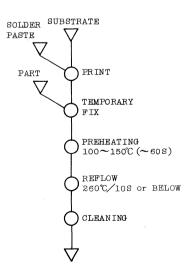

Fig. 8-5 shows the Maximum temperature profile at soldering process.

Fig. 8-4 Various Mounting Flowcharts


Soldering Iron Method

Reflow Method (Preliminary Soldering)

Reflow Method (Solder Paste)

Wave Soldering (Flow Soldering)

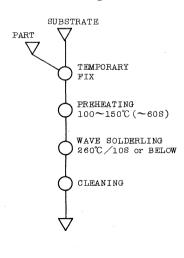
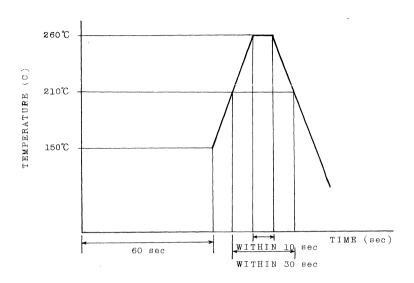
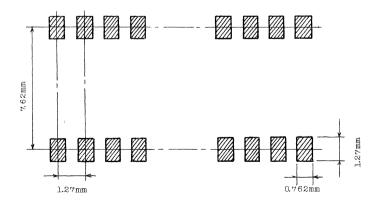



Fig. 8-5 Maximum Temperature Profile at Soldering



8.7 Mount Pad Dimensions (for 300 mil type)

An example of size of mount pads for MFP C^2MOS IC is shown in Fig. 8-6 for reference in designing printed base board.

This size is in accordance with EIAJ General Provisions.

Fig. 8-6 Diagram of Mount Pad Size

8.8 Cautions for Use

For effective use of MFP C^2MOS IC it is necessary not only to strictly observe instructions (handling, static electricity, etc.) for use of ordinary DIP package C^2MOS IC but also to pay attention to the following points.

(1) Tmeperature at time of soldering

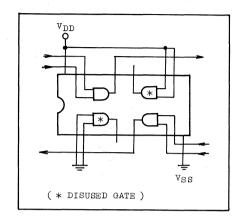
IC is exposed to high temperature at time of soldering. Basically, however, the soldering can be carried out at lead temperature 350°C for 3 sec or less in case of the soldering iron method, and at atmospheric temperatures on the resin surface 260°C for 10 sec or less and lead temperature 260°C for 10 sec or less in case of the reflow method, and flow soldering method.

However, except an unavoidable case it is desirable to use a method to complete soldering in a short time as could as possible. In case of infrared reflow method, the mold body temperature may be higher than the lead temperature. Therefore temperature control should be done observing mold body temperature.

(2) Type of flux and cleaning

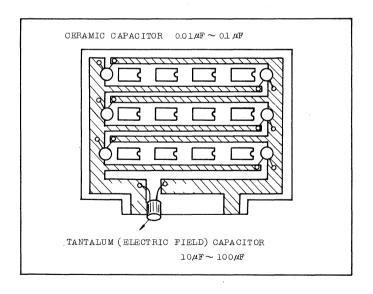
Flux in activated resin composition is most extensively used for soldering. It is recommended to avoid use of chloric flux as reliability may be adversely affected by residual chlorine, etc. If sholdering flux is left, leads may be corroded, marks on IC may become hard to be read and other troubles may be cause, and it is therefore necessary to wash and remove flux completely. It is advisable to use FUREON Series solvents for cleaning.

(3) Formation of leads


Leads of MFP $C^2\text{MOS}$ IC are formed in the L-shape to facilitate mounting to a flat substrate. If they are straightened, their strength can be reduced.

Further, if stress is applied to leads and they are deformed during they are handled, it is more difficult to reshape them to the original shape than ordinary DIP type IC.

9. Cautions on Designing Circuits


9.1 Input processing

As the input of CMOS IC is very high impedance ($R_{\rm IN} = 10^{12} \Omega$), the logic level is not constant in the open state. In this case, if the input is in the medium level, both P-channel and N-channel transistors are in the state of connection, whereby the unnecessary supply current flows.

Therefore, be sure to connect the unnecessary input line to $V_{\mbox{\scriptsize DD}}$,

VSS or other input/output wires, for which logic level is decided, as shown in Fig. 9-1. Unstable contact of soldered parts causes erroneous working of CMOS system or increase in supply current. Therefore, care should be taken to wiring.

9.2 Designing power supply

In general, CMOS is small in current dissipation as compared with other bipolar digital IC; therefore, it can be used by the small capacity power supply. By reason of its operation, however, CMOS consumes electric power in the form of spike. This makes it necessary to make the high-frequency impedance of power supply lower. Concretely speaking, it is necessary to make supply (VDD) wire and GND (VSS) wire thick and short and insert $0.01\mu\text{F} \sim 0.1\mu\text{F}$ capacitor as the high-frequency filters in the inportant areas between power supply and GND on the printed base board. As to the low-frequency filter. $10\mu\text{F} \sim 100\mu\text{F}/\text{printed}$ base board will do for the purpose. Fig. 9-2 shows an example of printed base boards.

And average supply current varies considerably depending on such factors as the working frequency, load on capacitor, supply voltage, rise and fall of input signals, etc. Therefore, particular attention is required in the case of driving by simple power supply of Zenor diode of battery driving. In case there are overshoot and undershoot at the transient time of power supply, arrangement shall be made by using filters, etc. so as to avoid exceeding the max. rating.

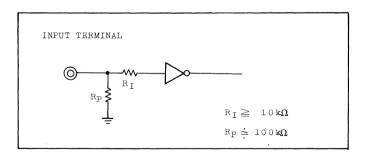


Fig.9-3 Input Processing of Printed Base Board

9.3 Input processing of printed base board

Fig. 9-4 Protection of Input/Output Wires

When the input terminal of printed base board consists of C^2MOS input only, like the individual CMOS device, the input terminal is in electrically floating condition, whereby there is a possibility of receiving damage by static electricity, etc. Therefore, as shown in Fig. 9-3, by inserting

over $10\,\mathrm{k}\Omega$ resistance in series in advance, it is possible to protect C²MOS from the overcurrent.

And, it is more effective if the input terminal can be pulled up or down by approx $100k\Omega$ resistance.

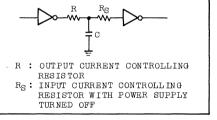


Fig. 9-5 Method of Inserting Capacitor

9.4 Measures for noise and surg of signal input/output wire

In many cases the signal input wire coming in the printed base board and the control output wires coming out the printed base board are connected with other electronic parts. In general, it can be said that the signal wire is long in many cases. In case the surge is applied to these input/output wires by induction, there is a possibility of deterioration or breakdown of CMOS IC being caused by overcurrent (overvoltage). Therefore, in case the input/output signal wires are long and when the

high voltage wire exists in the outside printed base board, it is necessary to insert the protective circuit as shown in Fig.9-4. The method of separating the base board through photocoupler and lead relay contact is also effective.

In case of making test pin, it is advisable to make protection in advance as shown in Fig. 9-1 to Fig. 9-4.

9.5 Signal wire and capacitor to be connected to VDD or VSS

In case the capacitor is connected directly to signal wire for removing the delay and noise in signal, the capacitor up to 500pF in capacity can be connected directly, but capacitors larger in capacity shall be connected through such resistors as shown in Fig. 9-5. These resistors are used for restricting the flow of current to the parasitic circuit of CMOS input/output at the time of "ON" and "OFF" of power supply and for preventing CMOS output from short-circuiting for a long time. It can be said that $10 \mathrm{k}\Omega$ or over will be suitable as the resistance value for both R and Rg.

9.6 Output short-circuiting

In C^2MOS IC, buffer is added to the output, whereby it is possible to carry out the current driving of both source (IoH) and sink (IoL). Therefore, in case "H" level output wire is short-circuited with GND (VSS) wire or "L" level output wire is short-circuited with VDD wire, overcurrent flows to C^2MOS output. In particular, if supply voltage is high, this current may cause the package to exceed the permissible power disipation; therefore, attention shall be given to prevention of the output short-circuit.

Of course, it is impossible to connect normal outputs together, but concerning the C^2MOS which has three-state output, wired OR is permitted under the condition that more than two-wire outputs do not come to enable simultaneously.

9.7 Influence of input slow in rise or fall time

In case the waveform slow in rise time or fall time is applied to CMOS input, the output of gate IC, etc. may tend to oscillate in the neighborhood of $V_{\rm TH}$ (device threshold voltage) of input waveform. This is because, in the neighborhood of $V_{\rm TH}$, CMOS gate becomes equivalently linear amplification, whereby the minute

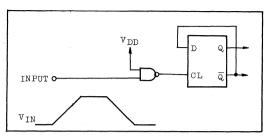


Fig.9-6 Example of Clock Input Shaped by Waveform

supply ripples and noise appear on the output after amplification.

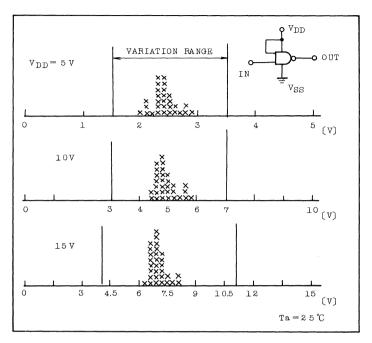
For suppressing the above phenomenon, consideration should be taken to insert the high-frequency filter capacitor between V_{DD} and V_{SS} of oscillating IC or to use Schmitt trigger IC. In particular, attention should be given to the clock input of sequence circuit.

Fig. 9-6 shows an example of clock shaping.

9.8 Variation of various characteristics

(1) Circuit threshold voltage

The circuit threshold voltage of $\rm C^2MOS$ is designed for $1/2~\rm V_{DD}$ ideally, but in reality the voltage is influenced directly by the variations of both P/N FETs because the voltage is decided by the voltage dividing effect of both P/N MOS FETs. As compared with the bipolar IC, therefore, the variation is considerably large. For example, differentiation circuit/integration circuit by CR and timer circuit are greatly influenced in terms of time by this variation, and in reality compensation effect is required by the use of variable resistors.



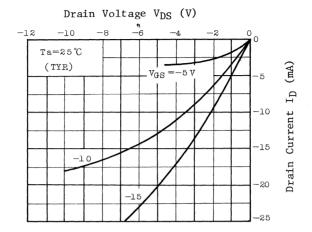

Fig. 9-7 Variation Data of TC4011BP V_{TH}

Fig. 9-7 shows the variation data for TC4011BP circuit threshold voltage. As to other types, variations can be considered to be similar to TC4011BP.

(2) Output current

The variation of output current can be considered to be Max. $\pm 30\%$ to the standard value. Fig. 9-8 shows the output current characteristics (standard value) of TC4007UBP. So far as this figure is concened, it follows that considerable drain current flow at the domain where V_{DD} is high. However, if output current is large, internal loss of FET becomes large at the same time, resulting in lowering the thermal reliability. In reality, therefore, it is suitable to use at the non-saturation domain up to $|V_{DS}|<1.5V.$

P-Channel Drain Current Characteristics

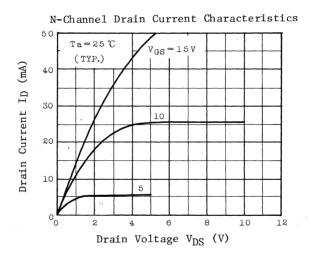


Fig. 9-8 Output Current Characteristics of TC4007UBP

(3) Switching time

Propagation delay times such as $t_{\rm PLH}$, $t_{\rm PHL}$, etc., toggle frequency of counter, etc. have max. $\pm 30\%$ variation to the standard value. However, these parameters vary depending on the interface conditions of load capacitance, etc., therefore, it is necessary to consider fanout at the portion where operating speed is high.

9.9 Temperature parameters of various characteristics

(1) Device threshold voltage

The device threshold voltage is considerably stable to the temperature because the temperature coefficients of ON resistance of P-channel and N-channel FETs become the puls values. The temperature coefficients are approx. $-2 \sim -3$ mV/°C at $V_{DD}=5$ V and approx. $-4 \sim -5$ mV/°C at $V_{DD}=10$ V.

(2) Output current

The output current has the minus temperature coefficients for both P/N FETs, which are approx. -0.4% °C. Namely, under the temperature condition of approx. 85 °C the current value becomes small by about 25% as compared with the normal temperature (about 25 °C). This is an important point in deciding the overdrive coefficient in case of driving transistor, etc. by current.

(3) Input current, Quiescent device current and 3-state output leakage current

These leak currents are theoretically the leak currents in the opposite direction of PN junction, and are extremely small in value at normal temperature. With the rise in temperature, however, the values increase at exponential function.

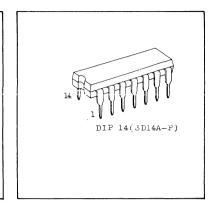
In reality, it is convenient to remember that with the rise in ambient temperature by $25\,^{\circ}\text{C}$ the leak current increases by about 1 digit.

Howeve, in reality the input current is approx. $10^{-10} \sim 10^{-11}$ [A] at normal temperature and the quiescent device current is approx. 10^{-9} [A] at gate IC. These are the levels which have no problems on the practical use at high temperature.

(4) Propagation delay time and max. clock frequency

As the propagation delay time may be regarded as the time for charging and discharging the internal capacitance and load capacitance of ON resistance of FET, the propagation dealy time is considered to be equivalent to the temperature coefficient of ON resistance. Therefore, the temperature coefficient becomes approx. 0.4%°C, while, in the neighborhood of 85°C, $t_{\rm PLH}$ and $t_{\rm PHL}$ increase by approx. 25% to the normal temperature value. on the contrary, the max. clock frequency decreases by approx. 25%.

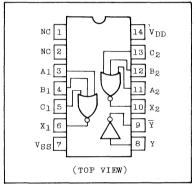
DATA SHEETS

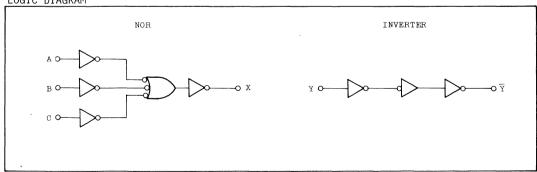


TC4000BP

TC4000BP DUAL 3-INPUT NOR GATE PLUS INVERTER

The TC4000BP is a combined gate which contains dual 3-input positive NOR gate plus inverter in one package.


Since all the outputs of this gate are provided with the buffers of inverters, the input/output transmission characteristics have been improved and the noise immunity has been elevated, Thus, an increase inpropagation delay time caused by an increase in load capacity is kept to a minimum.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	TA	- 40∼85	°C
Storage Temperature Range	T _{stg}	- 65 ~ 150	°C
Lead Temp./Time	Tsol	260°C · 10sec	

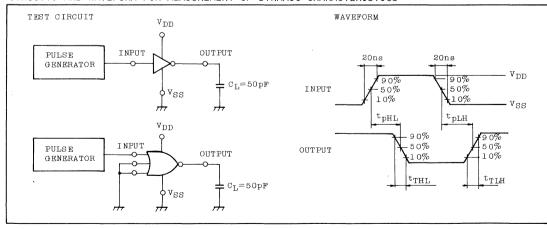
PIN ASSIGNMENT

LOGIC DIAGRAM

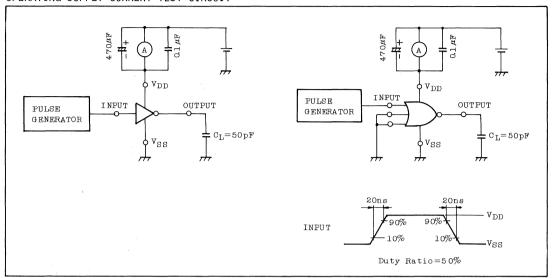
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

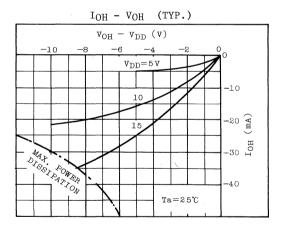
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0		$v_{ m DD}$	V

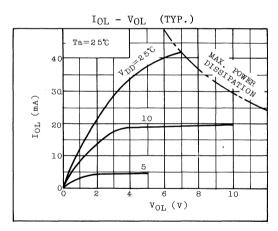
STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

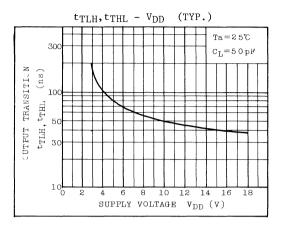

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		. 85	5°C	UNIT
	BOL	•	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
		 I _{OUT} < 1.4A	5	4.95	-	4.95	5.00	_	4.95	_	
High-Level Output Voltage	V _{OH}	V _{IN} =V _{SS}	10	9.95	_	9.95	10.00	-	9.95	-	
output voitage		VIN-422	15	14.95	_	14.95	15.00	_	14.95	-	v
		$ I_{OUT} < 1\mu A$	5	-	0.05	_	0.00	0.05	_	0.05	
Low-Level Output Voltage	V _{OL}		10	-	0.05	-	0.00	0.05	-	0.05	
output voitage		, IN , 22, ADD	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-	
ourrene		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	·	
		V _{IN} =V _{SS}									mA
		V _{OL} =0.4V	: 5	0.61	_	0.51	1.5	-	0.42	-	
Output Low	IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	-	1.1		
Current	TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
		V _{IN} =V _{SS} ,V _{DD}									
		V _{OUT} =0.5V,4.5V	5	3.5	_	3.5	2.75	_	3.5	_	
Input High	$ v_{IH} $	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	_	7.0	_	
Voltage	1 . 111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0		
		I _{OUT} < 1 <i>µ</i> A				,		·			· v
		V _{OUT} =0.5V,4.5V	5	-	1.5	-	2.25	1.5	_	1.5	·
Input Low	VIL	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	,11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		$ I_{OUT} < 1\mu A$	OUT < 1 \mu A								
Input "H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	μA
Current"L" Level	IIL	VIL=OV	18	-	-0.1	_	-10-5	-0.1	_	-1.0	μΑ
-			5	_	0.25	_	0.001	0.25	_	7.5	
Quiescent Device Current	IDD	DD V _{IN} =V _{SS} ,V _{DD}	10	-	0.5	_	0.001	0.5	_	15	μA
Current		* * * * * * * * * * * * * * * * * * *		_	1.0	_	0.002	1.0	_	30	

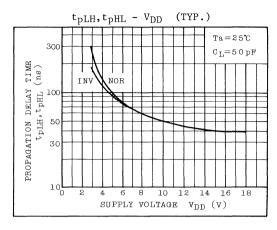
^{*} All valid input combinations.

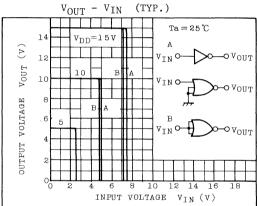

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_{L} =50pF)

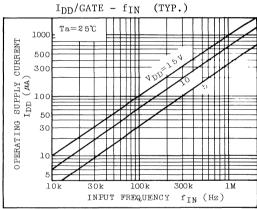

	CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
		0111502	IBST CONSTITUTE	V _{DD} (V)	*******			01121
				5	+	80	200	
	put Transition Time w to High)	t_{TLH}		10	-	50	100	
				15	_	40	80	ns
				5	_	80	200	110
	put Transition Time gh to Low)	t _{THL}		10	-	50	100	
\	gir to now)			15	-	40	80	
				5	-	90	180	
M	Propagation Delay Time (Low to High)	t _{pLH}		10	-	50	100	
INVERTER				15	_	40	80	ns
NVE				5	-	90	180	113
I	Propagation Delay Time (High to Low)	t_{pHL}		10	-	50	100	
	Time (might to hour)			15	-	40	80	
				5	-	100	200	
	Propagation Delay Time (Low to High)	t _{pLH}		10	_	50	100	
24	Time (now to migh)	-		15	-	40	80	ns
NOR				5	_	100	200	113
Propagation Delay Time (High to Low)		tpHL		10	_	50	100	
	Time (High to Low)	-		15	-	40	80	
Inp	ut Capacitance	c_{IN}			_	5	7.5	pF


CIRCUITS AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS



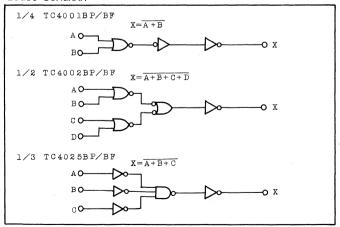

OPERATING SUPPLY CURRENT TEST CIRCUIT

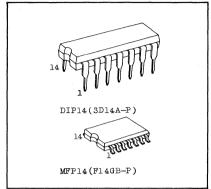


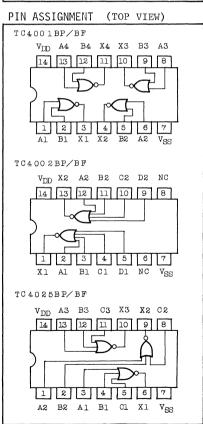


TC4001BP/BF, TC4002BP/BF, TC4025BP/BF

TC4001BP/TC4001BF QUAD 2 INPUT NOR GATE TC4002BP/TC4002BF DUAL 4 INPUT NOR GATE TC4025BP/TC4025BF TRIPLE 3 INPUT NOR GATE


The TC4001BP/BF, the TC4025BP/BF and TC4002BP/BF are 2-input, 3-input, 4-input positive NOR gate, respectively.


Since the outputs of these gates are equipped with the buffers, the input/output transmission characteristics have been improved and the variation of transmission time due to an increase in the load capacity is kept minimum.


ABSOLUTE MAXIMUM RATINGS

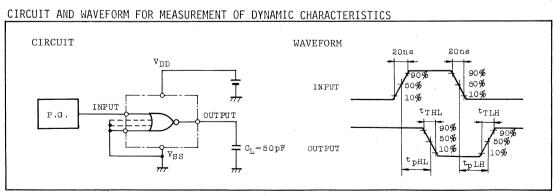
	11100		
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V,
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿85	°C
Storage Temperature Range	Tstg	-65 ∿150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	VIN	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

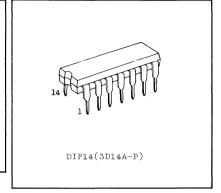

				$v_{ m DD}$	-4	0°C		25°C		85	°C	TIME
CHARACTER	RISTIC	SYMBOL	TEST CONDITIONS		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Leve	.1		I _{OUT} <1μA	5	4.95	-	4.95	5.00	_	4.95	-	
Output Vo		V _{OH}	001	10	9.95	-		10.00		9.95	i	
			$v_{IN}=v_{SS}, v_{DD}$	ļ	14.95	-		15.00		14.95		V
Low-Level		W	I _{OUT} <1μA	5 10	_	0.05	_		0.05	_	0.05	
Output Vo	ltage	VOL	$v_{\rm IN}^{=v}$ ss, $v_{\rm DD}$	15	_	0.05	_		0.05	_	0.05	
		†	V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	-	
Output Hi	igh		$V_{OH}=2.5V$	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
-		IOH	V _{OH} =9.5V	10	-1.5	-	-1. 3	-2.2	-	-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS}									mA
			V _{OL} =0.4V	5	0.61	-	0.51		-	0.42	-	
Output Lo)W	I _{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.2	-	1.1	-	
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	-	
			V _{IN} =V _{SS} , V _{DD}									
_			V _{OUT} =0.5V V _{OUT} =1.0V	5 10	3.5 7.0	-	3.5 7.0	2.75	-	3.5	-	
Input Hig	gh	VIH	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	5.5 8.25	_	7.0 11.0	_	
Voltage		111	I _{OUT} <1 _µ A	13	11.0		1.1.0	0.25	_	11.0	_	
				5	-	1.5		2.25	1.5	_	1.5	V
Input Low	v.		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	10	_	3.0	_	4.5	3.0	_	3.0	
-		VIL	V _{OUT} =1.5V,13.5V	15		4.0	_	6.75	4.0	_	4.0	
Voltage			I _{OUT} <1μA			,,,,		0.,5	,,,,			
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10-5	-0.1	_	-1.0	
Quiescent				5	-	0.25	_	0.001	0.25	_	7.5	μА
·		I_{DD}	V _{IN} =V _{SS} , V _{DD}	10	-	0.5	_	0.001	0.5	-	15	
Device Cu	ırrent		*	15		1.0		0.002	1.0	-	30	

^{*} All valid input combinations.

TC4001BP/BF, TC4002BP/BF, TC4025BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50)	DYNAMIC	ELECTRICAL	CHARACTERISTICS	(Ta=25°C,	Vss=ov.	$C_{L=50pF}$
---	---------	------------	-----------------	-----------	---------	--------------

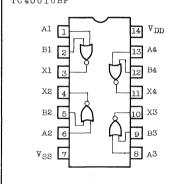
CHARACTERISTIC	SYMBOL	TEST CONDITION	VDD(V)	MIN.	TYP.	MAX.	UNITS
	STRIBOL	TEST CONDITION		riliv.			UNIIS
Output Transition Time	_		5 10	-	80 50	200 100	
(TC4002BP/BF)	t _{TLH}		15	_	40	80	
Output Transition Time			5	_	80	200	
	trHI.		10	_	50	100	
(TC4002BP/BF)			15	-	40	80	
Output Transition Time			5	-	70	200	
(TC4001BP/BF),	tTLH		10	-	35	100	
(TC4025BP/BF)			15	_	30	80	
Output Transition Time	_		5	-	70	200	
(TC4001BP/BF),	t _{THL}		10	-	35	100	
(TC4025BP/BF)			15	_	30	80	
Propagation Delay Time	+		5	-	65	200	
(TC4001BP/BF)	t _{pLH}		10	-	30	100	
(104001117117)			15	_	25	80	ns
Propagation Delay Time	tpHL		5 10	_	65 30	200 100	
(TC4001BP/BF)	PHL		15	_	25	80	
		,	5		100	250	
Propagation Delay Time.	t _{pLH}		10	_	40	120	
(TC4002BP/BF)	pru	•	15	_	30	90	
D D 1			5	_	100	250	
Propagation Delay Time	t _{pHL}		10	-	40	120	
(TC4002BP/BF)	1		15	_	30	90	
Description of the second			5	_	70	200	
Propagation Delay Time	t_{pLH}		10	-	35	100	
(TC4025BP/BF)			15		30	80	
Propagation Delay Time	_		5	-	70	200	
(TC4025BP/BF)	t _{pHL}		10	-	35	100	
(10402381/81)			15	-	30	80	
Input Capacitance	c_{IN}			-	5	7.5	pF

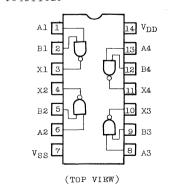


TC4001UBP, TC4011UBP

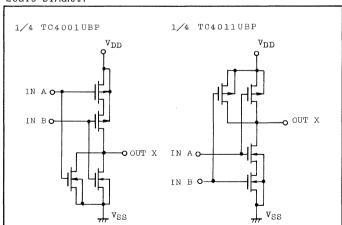
TC4001UBP QUAD 2 INPUT NOR GATE TC4011UBP QUAD 2 INPUT NAND GATE

TC4001UBP and TC4011UBP are 2 input NOR gate and 2 input NAND gate respectively. The pin connections are same as TC4001BP and TC4011BP but the internal circuits consist of only basic NAND (NOR) circuit without the waveform shaping inverters.


Therefore, these are suitable for the applications in linear circuits such as oscillator circuits and amplifier circuits, and these have advantage in the applications of logical processing systems with faster operating speed.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS} - 0.5 \wedge V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150·	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	,



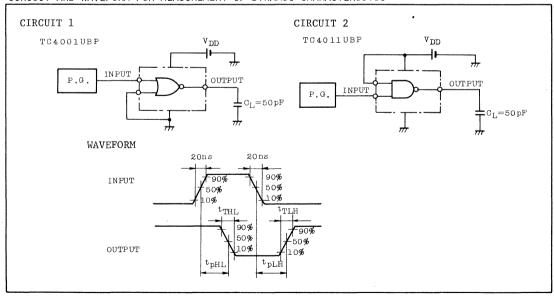
TC4011UBP

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v_{IN}	0	-	v_{DD}	V

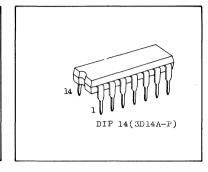
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


CHARACTI	ERISTIC	SYMBOT	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		8.5	5°C	UNITS
CHARACT	LKISIIC	STREET	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIO
High-Leve	01		IOUT < 1 µA	5	4.95	-	4.95	5.00	-	4.95	_	
Output Vo		VOH	1	10	9.95	-	9.95	10.00	-	9.95	-	
output ve	Jilage		$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	15	14.95	_	14.95	15.00	_	14.95	_	v
Low-Level	1 .		IOUT <1µA	5	-	0.05	-	0.00	0.05	-	0.05	V
Output Vo		VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
				15	-	0.05	-		0.05		0.05	
			V _{OH} =4.6V	5 5	-0.61	-	1	-1.0	_	-0.42	-	
Output H:	igh	_	V _{OH} =2.5V V _{OH} =9.5V	10	-2.5 -1.5	1 1	I	-4.0	-	-1.7	-	
Current		IOH	V _{OH} =13.5V			-	ļ	-2.2	_	-1.1	-	
	•			15	-4.0	-	-3.4	-9.0	-	-2.8		
			V _{IN} =V _{SS} , V _{DD}									mA
_			V _{OL} =0.4V V _{OL} =0.5V	5 10	0.61	-	0.51	1.2 3.2	-	0.42	-	
Output Lo	ow	IOL	V _{OL} =1.5V	15	4.0	_	3.4	12.0	_	2.8	-	
Current			V _{IN} =V _{SS} , V _{DD}	13	4.0	-	3.4	12.0	_	2.8	_	
			V _{OUT} =0.5V, 4.5V	5	4.0		4.0	3.0	_	4.0		
T			V _{OUT} =1.0V, 9.0V	10	8.0	_	8.0	6.5	_	8.0	_	
Input Hi	gn	v_{IH}	V _{OUT} =1.5V,13.5V	15	12.0	_	12.0	9.5		12.0	_	
Voltage			I _{OUT} <1μΑ	13	12.0	_	12.0	9.3		12.0	_	
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.0	1.0		1.0	v
Input Lo	r.T		V _{OUT} =1.0V, 9.0V	10	_	2.0	_	3.5	2,0	_	2.0	
-	w	v_{IL}	V _{OUT} =1.5V,13.5V	15	_	3.0	_	5.5	3.0	_	3.0	
Voltage			I _{OUT} <1μA	13		3.0		3.3	3.0		3.0	
	"H"	T		10				10-5				
Input	Level	I _{IH}	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	
Current	"L" Level	I_{IL}	V _{IL} =0V	18	-	-0.1	_	-10-5	-0.1	_	-1.0	μA
				5	-	0.25		0.001	0.25	_	7.5	μα.
	Quiescent		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10	-	0.5	_	0.001	0.5	-	15	
Device C	urrent		*	15	_	1.0	_	0.002	1.0	_	30	

^{*} All valid input combinations.

DYNAMIC EL	LECTRICAL	CHARACTERISTICS	(Ta=25°C,	$V_{SS}=0V$.	$C_{I}=50pF$)
------------	-----------	-----------------	-----------	---------------	----------------

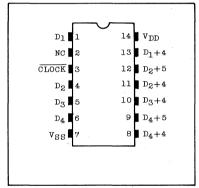
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	VDD(V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	-	70	200	
l ⁻	tTLH		10	-	35	100	
(TC4001UBP)			15	-	30	80	
Output Transition Time			5	-	70	200	
(TC4001UBP)	t _{THL}		10	-	35	100	
(104001011)			15	-	30	80	
Output Transition Time (TC4011UBP)			5	-	70	200	
	t _{TLH}		10	-	35	100	
			15	-	30	80	ns
Output Transition Time			5	-	60	200	115
-	t _{THL}		10	-	25	100	
(TC4011UBP)	1112		15	-	20	80	
Propagation Delay Time	t _{pLH}		5	-	50	120	
	· ·		10	-	25	60	
(TC4001UBP)	t _{pHL}		15	_	20	50	
Propagation Delay Time	t _{pLH}		5	_	50	110	
(TC4011UBP)	tpHL		10	-	28	60	
(IC4UIIUBP)	PILL		15	-	22	50	
Input Capacitance	c_{IN}			_	5	7.5	pF


CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTIC

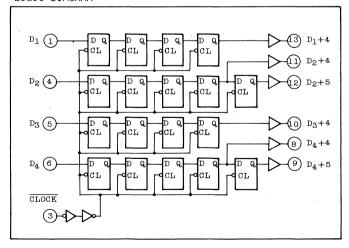
TC4006BP 18-STAGE STATIC SHIFT REGISTER

TC4006BP is static shift register of 18 bits maximum which consists of two 4 bit shift registers and two 5 bit shift registers, and the clock is supplied from the common CLOCK input for all the shift registers, Since 5 bit shift register is provided with 4 bit output Dn+4 in addition to serial data output Dn+5, the shift register with arbitrary number of stages of 4,5,8,9,10,12,13,14,16,17 and 18 can be obtained by the combination of inputs and outputs of 4 bit and 5 bit shift registers.

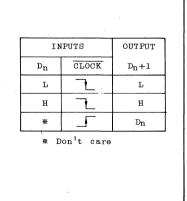
Each register is shifted by the falling edge of



MAXIMUM RATINGS


CLOCK.

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	V_{SS} -0.5 ~ V_{DD} +0.5	V
Output Voltage	Vout	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Ambient Temperature Range	TA	-40 ∼85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tsol	260°C • 10sec	


PIN ASSIGMENT

LOGIC DIAGRAM

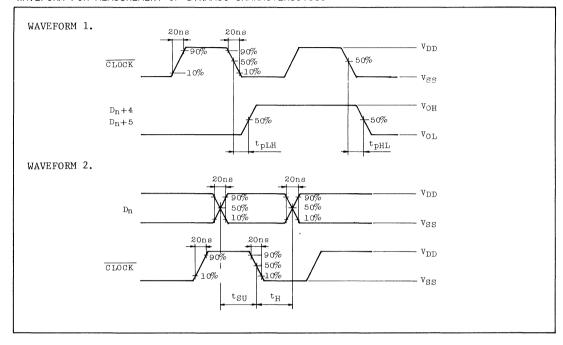
TRUTH TABLE (SINGLE STAGE)

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

LECTRICAL	CITAL	RACTERISTICS (VSS	5-UV)								
TERISTIC	SYM-	TEST CONDITION	VDD	-40)°C		25°C		85°	C.	UNIT
LUNIDIIO	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	Juli
1		l Tour l < 1#A	5	4.95	-	4.95	5.00	-	4.95	-	
	VOH		10	9.95	-	9.95	10.00	_	9.95	-	
		VIN-VSS, VDD	15	14.95	_	14.95	15.00	-	14.95	-	V
		l Loven 1 < 14 A	5	-	0.05	-	0.00	0.05	-	0.05	1
	$v_{\rm OL}$		10	-	0.05	_	0.00	0.05	-	0.05	
oreage		VIN=VSS,VDD	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0		-0.42	-	
		V _{OH} =2.5V	5	-2.5		-2.1	-4.0	-	-1.7	-	
High	ІОН	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	_	
Current		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	_	
		V _{IN} =V _{SS} ,V _{DD}									mA
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	-	1
Low	Тот	V _{OL} =0.5V	10	1.5	· -	1.3	3.8	_	1.1	-	
	TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	_	2.8	_	
		VIN=VSS, VDD									
		V _{OUT} =0.5V,4.5V	5	3.5	_	3.5	2.75	_	3.5	_	
igh	V	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	_	7.0	_	
	VIH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	_	11.0	_	
		$ I_{ m OUT} < 1 \mu A$									v
		V _{OUT} =0.5V,4.5V	5	-	1.5	_	2.25	1.5	_	1.5	'
)W	VII	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
	, IT	V _{OUT} =1.5V,13.5V	15	-	4.0	` -	6.75	4.0	_	4.0	
		Ι _{ΟUT} < 1μΑ									
Input "H" Level	IIH	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	_
"L" Level	IIL	VIT=0A	18	-	-0.1	_	-10-5	-0.1	-	-1.0	μA
			5	_	5	_	0.005	5	_	150	
Quiescent Device	I_{DD}	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
Current		*	15		20	_	0.015	20	_	600	1
	rel voltage el voltage High w "H" Level	TERISTIC SYMBOL Vel Voltage VOH High IOH LOW IOL I'H" Level IIH "L" Level IIL	TERISTIC SYM- BOL TEST CONDITION Toltage VoH VIN=VSS, VDD Toltage VoL VIN=VSS, VDD Toltage VoL VIN=VSS, VDD Toltage VoH=4.6V VOH=2.5V VOH=2.5V VOH=3.5V VIN=VSS, VDD Toltage VOL=0.4V VOL=0.5V VOL=1.5V VIN=VSS, VDD Toltage VOUT=1.5V, 13.5V I TOUT < 1 \(\alpha \) Toltage VOH=4.6V VOH=2.5V VOH=13.5V VIN=VSS, VDD Toltage VOH=1.5V VOH=1.5V VOH=1.5V VOH=1.5V, 13.5V VOH=1.5V VOH=1.	TERISTIC SYM- TEST CONDITION VDD (V) Voltage VOH	TERISTIC BYM-BOL TEST CONDITION VDD (V) MIN. 7c1 7c1 7c1 7c1 7c1 7c1 7c1 7c1 7c1 7c	TERISTIC SYM- TEST CONDITION Voncolor Voncolor	TERISTIC SYM- BOL TEST CONDITION VDD (V) MIN. MAX. MIN.	TERISTIC BOL TEST CONDITION VDD (V) MIN. MAX. MIN. TYP.	TERISTIC SYM- TEST CONDITION VDD MIN. MAX. MIN. TYP. MAX. TO MAX. MIN. TYP. MAX. TO MAX. To	TERISTIC BOL TEST CONDITION VDD (V) MIN. MAX. MIN. TYP. MAX. MIN. V1P. V1P. V1P. V1P. V1P. V1P. V2P. V2P. V2P. V2P. V2P. V2P. V2P. V2	THERISTIC BYMBOL TEST CONDITION TO (V) MIN. MAX. MIN. TYP. MAX. MIN. MAX. MI


^{*} All valid input combinations.

TC4006BP

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $v_{SS}\text{=}0v\text{, }c_L\text{=}50pF\text{)}$

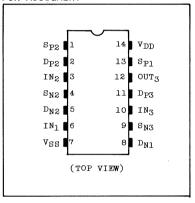
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time (Low to High)	tTLH		10	_	- 50	100	
(LOW TO HIGH)			15	_	40	80	ns
			5	_	80	200	115
Output Transition Time (High to Low)	tTHL		10	_	50.	100	
(HIgh to Low)			15	_	40	80	
Propagation Delay Time	tpLH		5	_	170	400	
	1 *		10	_	75	200	ns
	t _{pHL}		15	_	65	160	
Max. Clock Frequency			5	2.5	8	_	
	fcL		10	5	17	-	MHz
			15	7	20		
			- 5	-	60	180	
Min. Clock Pulse Width	tw		10	_	30	80	ns
			15	-	25	50	
	t 01		5	20	-	-	
Max. Clock Rise Time Max. Clock Fall Time	trCL		10	2.5	-	-	μS
nax. Glock fall fime	tfCL	·	15	1.0	-	_	
Min Cotaun Timo			5	-	20	100	
Min. Set-up Time (DATA - CLOCK)	tsu		10	-	8	50	ns
			15	-	,5	40	
			5	-	2	60	
fin. Hold Time (DATA - CLOCK)	t _H		10	-	. 4	40	ns
			15	- .	5	30	
Input Capacitance	CIN			-	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

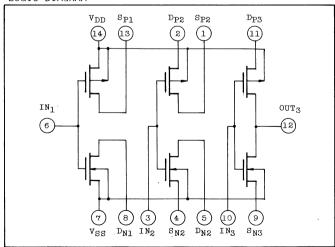
TC4007UBP/UBF

TC4007UBP/TC4007UBF DUAL COMPLEMENTARY PAIR PLUS INVERTER

TC4007UBP/UBF contains three elements of P-channel enhancement type MOS FET and three elements of N-channel enhancement type MOS FET. One pair of P-channel and N-channel functions as inverter and remaining two pairs provide the respective outputs of source and drain separately. Depending on how connections are made, the versatile applications such as inverter, waveform shaping circuits, NAND(NOR) gatys, linear amplifiers, clocked gates, transmission gates and high fan-out buffers are easily obtainable.


DIP14(3D14A-P) 14 MFP14(F14GB-P)

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	Vss-0.5~VDD+0.5	V
Output Voltage*	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Ambient Temperature Range	T_{A}	-40 ~85	°C
Storage Temperature Range	T _{stg}	- 65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10 sec	

^{*} Applicable for Dp, Dn, Sp, Sn and OUT terminals.

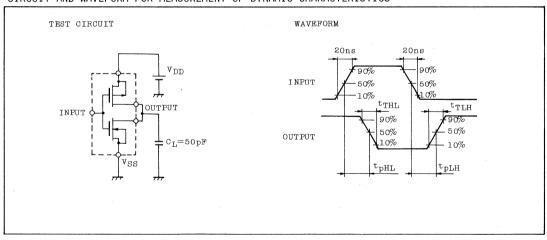
PIN ASSIGMENT

LOGIC DIAGRAM

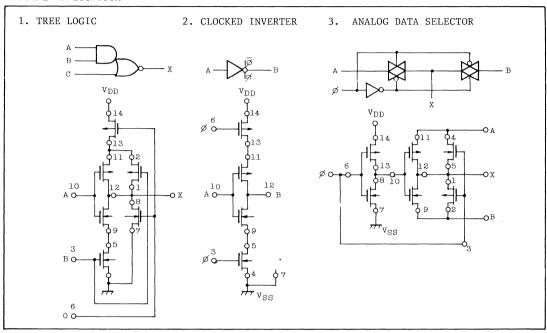
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

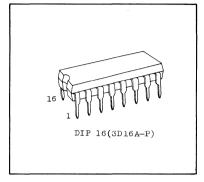

CHARACT	TERISTIC	SYM-	TEST CONDITION	Vnn	-40)°C		25°C		8	35°C	UNIT
		BOL	1251 001.211101.	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
				5	4.95	_	4.95	5.00	-	4.95	_	
High-Lev Output V		v _{OH}	I _{OUT} < 1 \(A	10	9.95	_	9.95	10.00	-	9.95	_	
очерие .			V _{IN} =V _{SS}	15	14.95	_	14.95	15.00	_	14.95		v
			17 1 × 1 A	5	-	0.05	_	0.00	0.05	_	0.05	
Low-Leve Output V		VOL	IOUT < 1 \(A \)	10	-	0.05	-	0.00	0.05	-	0.05	
очерче ,			$v_{IN}=v_{DD}$	15	_	0.05	_	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_	
Output High Current	ІОН	$V_{OH}=2.5V$	5	-2.5	_	-2.1	-4.0	-	-1.7	_		
		V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	-		
		V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	_	-2.8	-		
			$v_{\rm IN} = v_{\rm SS}$									mΛ
		$V_{\rm OL}=0.4V$	5	0.61	_	0.51	1.5	-	0.42	-		
Output I	Low	IOL	$V_{\rm OL}=0.5V$	10	1.5	-	1.3	3.8	-	1.1	_	
Current		-01	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-	
			$v_{\rm IN} = v_{\rm DD}$									
			$V_{\rm OUT}=0.5V$	5	4.0	_	4.0	3.0	-	4.0	-	
Input Hi	gh	VIH	$V_{\mathrm{OUT}}=1.0V$	10	8.0	-	8.0	6.5	-	8.0	-	
Voltage		111	V _{OUT} =1.5V	15	12.0	-	12.0	9.5	-	12.0	-	
			$ I_{OUT} < 1\mu A$									v
			V _{OUT} =4.5V	5	-	1.0	-	3.0	1.0	-	1.0	
Input Lo	νw	$v_{ m IL}$	$V_{\rm OUT} = 9.0V$	10	-	2.0	-	3.5	2.0	-	2.0	
Voltage		. 1.1.	V _{OUT} =13.5V	15	-	3.0	-	5.5	3.0	-	3.0	
			$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	μA
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	-	-1.0	
	uiescent Device			5	-	0.25	_	0.001	0.25	_	7.5	
Quiescer Current		1 DD	$v_{\text{IN}}=v_{\text{SS}}, v_{\text{DD}}$	10	-	0.5	-	0.001	0.5	-	15	μA
Jarrent			*	15	_	1.0	_	0.002	1.0	_	30	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, Vss=0v, CL=50pF, INVERTER)

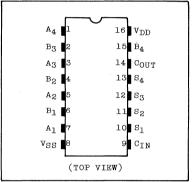
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)			5	-	80	180	
	t_{TLH}		10	. –	50	90	
			15	-	40	. 70	ns
Output Transition Time			5	· -	80	150	0
(High to Low)	t_{THL}		10	-	50	80	
			15	- ,	40	60	
			5	-	55	110	
Propagation Delay Time (Low to High)	tpLH		10	-	25	60	
Time (How to high)			15	-	20	50	ns
	-		5	-	40	110	5
Propagation Delay Time (High to Low)	tpHL		10	_	20	60	
	_		15	· -	15	50	
Input Capacitance	c_{IN}			-	5	7.5	pF

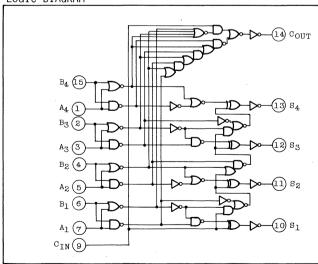
CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS


TYPICAL APPLICATION

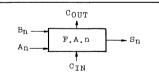
TC4008BP

TC4008BP 4-BIT FULL ADDER


TC4008BP is full adder of 4 bit parallel processing type equipped with high speed parallel carry circuit. The sum of binary inputs applied to four augend data input lines (A1-A4), four addend data input lines (B1-B4) and carry input (C $_{
m IN}$) from the lower order is obtained in binary code from added data output (S1-S4) and carry output (COUT) to the higher order. Adders of 4×n bits with cascade connections and add/substract circuits with simple external circuits can be easily obtained.


MAA	IMTY	1M1	D٨	TT	MAC

MAXIMUM NATINGS			
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply, Voltage	$v_{ m DD}$	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	AIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	


PIN ASSIGNMENT

LOGIC DIAGRAM

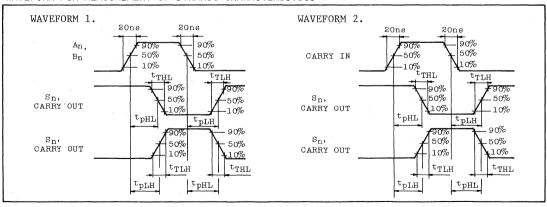
TRUTH TABLE

I	NPUTS	OUTPUTS			
$B_{\mathbf{n}}$	An	CIN	$s_{\rm n}$	COUT	
L	L	L	L	L	
L	L	Н	H	L	
L	Н	L	Н	L	
L	Н	H	L	Н	
Н	L	L	Н	L	
Н	L	Н	L	Н	
Н	Н	L	L	Н	
Н	Н	H	H	Н	

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$		3	-	18	V
Input Voltage	VIN		0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


CHARACTERISTIC	SYM-	TEST CONDITION	V_{DD}	-40	°C		25°C		85	s°C	UNIT	
	BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
TT 1 T . 1	Ì	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	5	4.95	-	4.95	5.00	-	4.95	-		
High-Level Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	_		
		VIW- 422, ADD	15	14.95	_	14.95	15.00	_	14.95	_	v	
T . T . 1	ŀ	 I _{OUT} < 1.4A	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05		
		111 55. 55	15	_	0.05	_	0.00	0.05	_	0.05		
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-		
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	_		
Output High Current	IOH	V _{OH} =9.5V	10	-1. 5	-	-1.3	-2.2	_	-1.1	-	l	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-		
		VIN=VSS, VDD				}					mA	
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	-		
Output Low	IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	_	1.1	-		
Current		V _{OL} =1.5V	15	4.0	-	3.4	15.0	_	2.8	-		
		V _{IN} =V _{SS} ,V _{DD}										
		V _{OUT} =0.5V,4.5V	5	3.5	-	3.5	2.75	-	3.5	-		
Input High	VIH	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-	i	
Voltage	, 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-		
ı		$ I_{OUT} < 1\mu_A$									v	
-		V _{OUT} =0.5V,4.5V	5	-	1.5	-	2.25	1.5	-	1.5		
Input Low	VIL	V _{OUT} =1.0V,9.0V	10	-	3.0	_	4.5	3.0	-	3.0		
Voltage	1.11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0		
		I _{OUT} < 1.4A										
Input "H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μА	
Current "L" Level	IIL	VIT=OA	18	-	-0.1	_	-10-5	-0.1	-	-1.0	,	
			5	-	5	٠ _	0.005	5	-	150		
Quiescent Device Current	IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA	
		*	15	_	20	_	0.015	20	_	600		

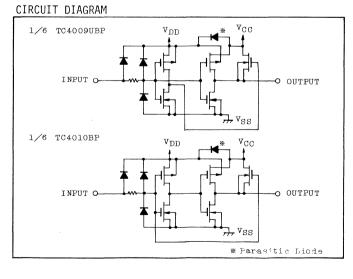
^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)

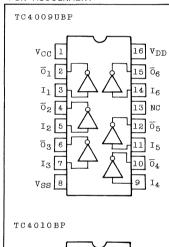
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			- 5	-	80	200	
Output Transition Time	tTLH		10	· -	50	100	
(Low to High)			15	-	40	80	ns
Output Transition Time			5	-	80	200	110
	tTHL		10	-	50	100	
(High to Low)			15	_	40	80	
D. 1 mi			5	_	300	800	
Propagation Dealy Time $(A_n, B_n - S_n)$	t _{pLH}		10	_	120	320	ns
	t _{pHL}		15	_	80	230	
D D 1	t _{pLH}		5	-	270	400	
Propagation Delay Time			10	_	110	180	ns
(A _n , B _n - CARRY OUT)	t _{pHL}		15	-	75	130	
D 1 m			5	_	260	740	
Propagation Delay Time	t _{pLH}		10	-	100	310	ns
(CARRY IN - S _n)	t _{pHL}		15	-	70	230	
D D. 1 III .			5	_	120	200	
Propagation Delay Time	t _{pLH}		10	_	50	100	ns
(CARRY IN - CARRY OUT)	tpHL		15	_	40	80	
Input Capacitance	c_{IN}			_	5	7.5	рF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4009UBP, TC4010BP


TC4009UBP HEX BUFFER/CONVERTER (INVERTING TYPE)
TC4010BP HEX BUFFER/CONVERTER (NON-INVERTING TYPE)

TC4009UBP and TC4010BP contain six circuits of buffers with the level shift function. TC4009UBP provides inverted outputs and TC4010BP provides non-inverted outputs. Large output current enables to directly drive one TTL/MDTL input. Furthermore, since the logical amplitude of VDD-VSS can be converted to the logical amplitude of VCC-VSS by supplying two separate power supplies with the condition of (VDD-VCC), these are suitable for the interface from C2MOS system operating with the power supply voltage of 5 volts or higher to TTL/MDTL system.


DIP 16(3D16A-P)

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ~ V _{SS} +20	V
be supply voltage	V _{CC}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{CC}+0.5$	V.
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	

PIN ASSIGNMENT

TC4009UBP, TC4010BP

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

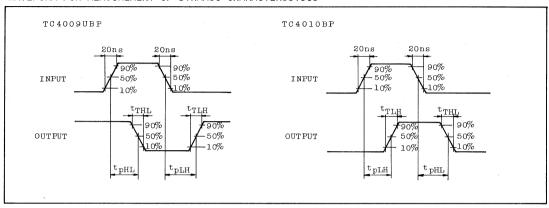
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3	_	18	V
	VCC		3	_	$v_{ m DD}$	V
Input Voltage	VIN	•	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS ((Vss=0V,	$V_{DD}=V_{CC}$)
-------------------------------------	----------	-------------------

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40	°C		25°C		85	s°C	UNIT
CHARACTERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
		I _{OUT} < 1 \(A \)	5	4.95	-	4.95	5.00	-	4.95	_	
High-Level Output Voltage	v _{OH}	VIN=VSS, VDD	10	9.95	-	9.95	10.00	_	9.95	-	
output vortage		VIN- 122, VDD	15	14.95	_	14.95	15.00	-	14.95	-	v
] T] < 1 A	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	VOL	IOUT <1 µA	10	_	0.05	_	0.00	0.05	_	0.05	
odepat vortage		V _{IN} =V _{SS} ,V _{DD}	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.73	_	-0.65	-1.2	_	-0.58	_	
		V _{OH} =2.5V	5	-2.4	_	-2.1	-4.5	-	-1.9	_	
Output High Current	IOH	V _{OH} =9.5V	10	-1.8	_	-1.65	-2.8	_	-1.35	-	
		VOH=13.5V	1:5	-4.8	_	-4.3	-11	-	-3.5	_	
		V _{IN} =V _{SS} ,V _{DD}									mA
		VOL=0.4V	5	3.8	-	3.2	7	-	2.9	-	
Output Low	IOL	V _{OL} =0.5V	10	9.6	-	8.0	13	-	6.6	-	
Current		V _{OL} =1.5V	15	25.0	-	24.0	47	-	20.0	-	
		V _{IN} =V _{SS} ,V _{DD}									
		V _{OUT} =0.5V	5	4.0	-	4.0	2.5		4.0	-	
Input High Voltage	VIH	V _{OUT} =1.0V	10	8.0	-	8.0	5.0	-	8.0	-	
(TC4009UBP)	1111	V _{OUT} =1.5V	15	12.0	-	12.0	7.5	-	12.0	-	
		$ I_{OUT} < 1\mu A$									
Input Low		V _{OUT} =4.5V	5	-	1.0	-	1.7	1.0	-	1.0	
Voltage	AIT	V _{OUT} =9.0V	10	· -	1.5	_	2.3	1.5	-	1.5	v
(TC4009UBP)		V _{OUT} =13.5V	15	-	1.5	_	2.5	1.5	_	1.5	·
		$ 1_{\mathrm{OUT}} < 1\mu\mathrm{A}$									
Input High		V _{OUT} =4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Voltage	VIH	V _{OUT} =9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
(TC4010BP)	""	V _{OUT} =13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
		$ I_{ m OUT} < 1 \mu_{ m A}$									

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V, VDD=VCC)

CHARACT	CHARACTERISTIC SYMBOL		TEST CONDITION	v_{DD}	-40)°C		25°C		85	5°C	UNIT
CHARAC			TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Input Lo)W		V _{OUT} =0.5V	5	-	1.5	_	2.25	1.5	_	1.5	
Voltage		VTT.	V _{OUT} =1.0V	10	-	3.0	_	4.5	3.0	-	3.0	l v
(TC40101	3P)	VIL	VouT=1.5V	15	-	4.0	_	6.75	4.0	-	4.0	İ
			I _{OUT} < 1 <i>µ</i> A									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μA
Current	"L" Level	IIL	VIT=OA	18	_	-0.1	_	-10-5	-0.1	_	-1.0	
			**	5	-	1.0	-	0.002	1.0	-	30	
Quiescent Device Current		I_{DD}	V _{IN} =V _{SS} ,V _{DD}	10	-	2.0	-	0.004	2.0	-	60	μA
Guirene			*	15	-	4.0		0.008	4.0	_	120	

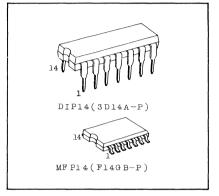

^{*} All valid input combination. ** Include ICC.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_pF, V_{DD}=V_{CC})

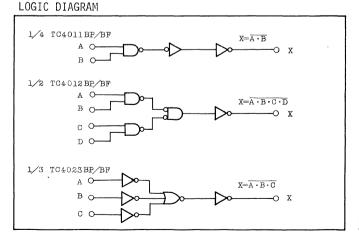
CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
				V _{DD} (V)				
		1		5	-	75	350	
	put Transition Time w to High)	t_{TLH}		10	-	30	150	
	w co mign,			15	-	20	110	ns
				5	_	25	70	
	put Transition Time gh to Low)	t_{THL}		10	-	15	40	
(112	gir co bowy			15	-	12	30	
				5	-	40	140	
	Propagation Delay Time (Low to High)	t_{pLH}		10	-	25	80	
9UB	High) Time (Low to High) Propagation Delay			15	-	15	60	ns
400				. 5	-	25	60	
TC	Propagation Delay Time (High to Low)	t _{pHL}		10	-	15	40	
	Time (High to Low)			15	-	15	30	
				5	+	45	200	
	Propagation Delay Time (Low to High)	t_{pLH}		10	-	25	100	
OBP	Time (now to high)	-		15	-	15	70	ns
rc4010BP				5	-	50	130	
TC	Propagation Delay Time (High to Low)	t_{pHL}		10	-	25	70	
		-		15	-	15	50	
Inn	ut Capacitance	CIN	TC4009UBP		_	15	22.5	pF
Linp	at Sapacitance	OIM	TC4010BP		_	5	7.5	r-

TC4009UBP, TC4010BP

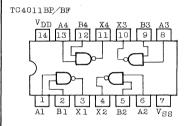
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS


TC4011BP/BF, TC4012BP/BF, TC4023BP/BF

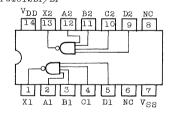
TC4011BP/TC4011BF QUAD 2 INPUT NAND GATE TC4012BP/TC4012BF DUAL 4 INPUT NAND GATE TC4023BP/TC4023BF TRIPLE 3 INPUT NAND GATE

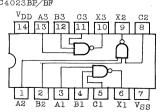

The TC4011BP/BF, TC4023BP/BF, and TC4012BP/BF are 2-input, 3-input, and 4-input positive logic NAND gates respectively.


Since all the outputs of these gates are provided with the inverters as buffers, the input/output characteristics have been improved and the variation of propagation delay time due to the increase in load capacity is kept down to the minimum.



ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	AIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	V_{SS} -0.5 \wedge V_{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ∿85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	Tsol	260°C • 10 sec	



TC4012BP/BF

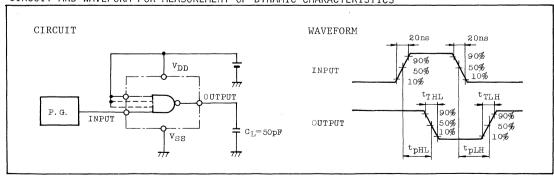
TC4023BP/BF

TC4011BP/BF, TC4012BP/BF, TC4023BP/BF

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=OV$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	VIN	0	-	$v_{ m DD}$	V

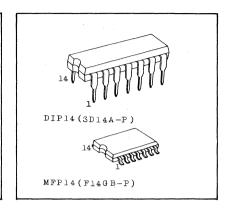
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


CHARACTERISTIC		SYMBOL	TEST CONDITION	v_{DD}	-40)°C		25°C		85	UNITS	
CHARACTE	KISIIC	SYMBUL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	CIVETO
High-Level			I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-	
Output Vol	I Vott			10	9.95	-	9.95	10.00	-	9.95	-	
output vo			V _{IN} =V _{SS} , V _{DD}	15	14.95	-	14.95	15.00	_	14.95		V
Low-Level		77	I _{OUT} <1 _µ A	5	-	0.05	1	0.00	0.05	Į	0.05	ľ
Output Vol	ltago	VOL		10	-	0.05		0.00	0.05		0.05	
output vo.			$v_{IN}=v_{DD}$	15	_	0.05		0.00	0.05		0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51		-	-0.42	-	
Output His	rh		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	-	
`	511	IOH	V _{OH} =9.5V	10	-1. 5	-	-1. 3	-2.2°	-	-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$									mA
	,		V _{OL} =0.4V	5	0.61	-	0.51	1.2	-	0.42	-	I
Output Lo	W	I _{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.2	-	1.1	-	ŀ
Current			V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	_	
			$v_{IN}=v_{DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Input High	h	***	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	_	
Voltage		AIH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	_	11.0	-	
			I _{OUT} <1μA									V
			V _{OUT} =4.5V	5	_	1.5	_	2.25	1.5	_	1.5]
Input Low			V _{OUT} =9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		AIL	V _{OUT} =13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
3460			I _{OUT} <1µA									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10 ⁻⁵	0.1	_	1.0	
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiescent			V _{IN} =V _{SS} , V _{DD}	5	-	0.25	_	0.001	0.25	_	7.5]
,		I_{DD}		10	-	0.5	-	0.001	0.5	-	15	
Device Current			*	15	-	1.0	-	0.002	1.0	-	30	

^{*} All valid input combinations.

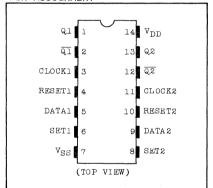
DYNAMIC ELECTRICAL CHARACTERISTICS	$(Ta=25^{\circ}C, VSS=0V, CL=50pF)$
------------------------------------	-------------------------------------

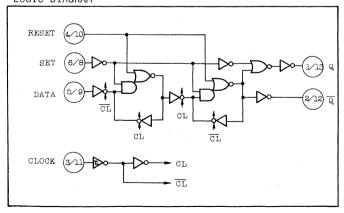
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD(V)}	MIN.	TYP.	MAX.	UNITS
Output Transition Time (TC4012BP/BF)	t _{TLH}		5 10 15	- - -	80 50 40	200 100 · 80	
Output Transition Time (TC4012BP/BF)	t _{THL}		5 10 15	- - -	80 50 40	200 100 80	
Output Transition Time (TC4011BP/BF) (TC4023BP/BF)	t _{TLH}		5 10 15	-	70 35 30	200 100 80	
Output Transition Time (TC4011BP/BF) (TC4023BP/BF)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (TC4011BP/BF)	t _{pLH}		5 10 15	-	65 30 25	200 100 80	
Propagation Delay Time (TC4011BP/BF)	t _{pHL}		5 10 15	- - -	65 30 25	200 100 80	ns
Propagation Delay Time (TC4012BP/BF)	t _{pLH}		5 10 15	- - -	95 45 30	250 120 90	
Propagation Delay Time (TC4012BP/BF)	t _{pHL}		5 10 15	-	95 45 30	250 120 90	
Propagation Delay Time (TC4023BP/BF)	t _{pLH}		5 10 15	- - -	90 45 35	250 100 80	
Propagation Delay Time (TC4023BP/BF)	t _{pHL}		5 10 15	-	90 45 35	250 100 80	,
Input Capacitance	c _{IN}				5	7.5	pF


CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

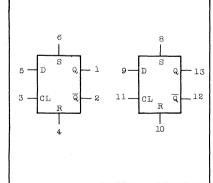
TC4013BP/BF

TC4013BP/TC4013BF DUAL D-TYPE FLIP FLOP


TC4013BP/BF contains two independent circuits of D type flip-flop. The input level applied to DATA input are transferred to Q and \overline{Q} output by rising edge of the clock pulse. When SET input is placed at "H", and RESET input is placed at "L", outputs become Q="H", and \overline{Q} ="L". When RESET input is placed at "H", and SET input is placed at "L", outputs become Q="L", and \overline{Q} ="H". When both of RESET input and SET input are at "H", outputs become Q="H" and \overline{Q} ="H".


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	AIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Cutput Voltage	VOUT	V _{SS} -0.5 ∿ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	Topr	- 40 ~ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	Tsol	260°C • 10 sec	


PIN ASSIGNMENT

LOGIC DIAGRAM

BLOCK DIAGRAM

TRUTH TABLE

[IN	OUTPUTS			
RESET	SET	DATA	CLOCK∆	Q _{n+1}	$\overline{\mathbb{Q}}_{n+1}$
L	H	*	*	Н	L
Н	L	*	*	L	Н
Н	Н	*	*	Н	H
L	L	L		L	Н
L	L	Н,		Н	L
L	L	*	7_	Qn•	Ōn•

- *: Don't care
- Δ: Level Change
- ·: No change

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

		, 55 - /	·		r	
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	_	$v_{ m DD}$	V

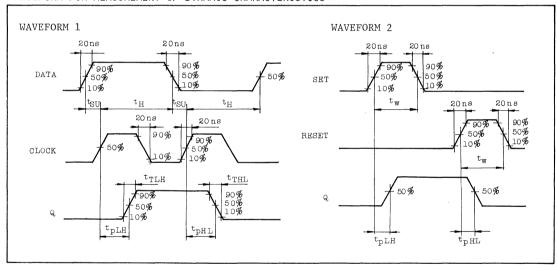
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	$v_{ m DD}$	-40	0°C		25°C		8.5	5°C	UNITS	
CHARACTERISTIC	SIMOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS	
High-Level	17	I _{OUT} <1μA	5	4.95		4.95	5.00	1	4.95	-		
Output Voltage	VOH	V _{IN} =V _{SS} , V _{DD}	10	9.95			10.00		9.95	-		
			5	14.95	0.05	14.95	15.00	0.05	14.95	0.05	V	
Low-Level	VOL	$ I_{OUT} < 1_{\mu}A$	10	_	0.05	_		0.05	_	0.05		
Output Voltage		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	15	-	0.05	-	0.00	0.05	_	0.05		
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_		
Output High	Torr	V _{OH} =2.5V V _{OH} =9.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	_		
Current	I _{OH}	V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	_		
		V _{IN} =V _{SS} , V _{DD}	15	-4.0	-	-3.4	-9.0	-	-2.8	-	4	
	I _{OL}	V _{OL} =0.4V	5	0.61	-	0.51	1.2	_	0.42	-	mA	
Output Low Current		V _{OL} =0.5V V _{OL} =1.5V	10	1.5	-	1.3	3.2	-	1.1	-		
		V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	12.0	-	2.8	-		
		V _{OUT} =0.5V, 4.5V		3.5	-	3.5	2.75	_	3.5	-		
Input High Voltage	VIH	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	1 10	7.0	-	7.0	5.5	_	7.0	_		
rozzago		I _{OUT} <1μA	15	11.0	-	11.0	8.25	_	11.0	-	V	
Input Low		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	1 2	-	1.5	-	2.25	1.5	-	1.5	V	
Voltage	VIL	VIL	V _{OUT} =1.5V, 13.5V	1 10	-	3.0	_	4.5	3.0	-	3.0	
		I _{OUT} <1μA	15	_	4.0	_	6.75	4.0	_	4.0		

STATIC ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERISTIC		GTT TO OT	SYMBOL TEST CONDITION		ſ	V_{DD}	-4	0°C		25°C		85	°C	IINITMO
		SYMBOL			MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS		
Input "H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	ν.Δ			
Current	"L" Level	IIL	AIT=OA	18	-	-0.1	-	-10 ⁻⁵	-0.1	_	-1.0	μA		
Quiescent Device Current				5	-	1	_	0.002	1	-	30			
		I_{DD}	$v_{IN}=v_{SS}$, v_{DD}	10	-	2		0.004	2	-	60	μΑ		
			*	15	-	4	-	0.008	4	_	120			

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	_	70	200	
(Low to High)	t _{TLH}		10	-	35	100	
(Low to High)			15	_	30	80	
Output Transition Time ·			5	-	70	200	
-	t _{THL}		10	_	35	100	
(High to Low)			15		30	80]
Propagation Delay Time	tpLH		5	-	130	300	
	t ***		10	-	65	130	ns
$(CLOCK - Q, \overline{Q})$	t _{pHL}		15	_	50	90	
Propagation Delay Time			5	-	110	300	
	tpLH		10	-	50	130	
(SET, RESET - Q, \overline{Q})			15	-	40	90	
Propagation Delay Time			5	-	110	300	
	tpHL		10	-	50	130	
(SET, RESET - Q, $\overline{\mathbb{Q}}$)			15	-	40	90	
			5	3.5	- 8	-	
Max. Clock Frequency	f _{CL}		10	8	16	-	MHz
			15	12	20	_	
Max. Clock Input Rise	trCL		5				
Time Max. Clock Input Fall			10	N	o Limit		μs
Time	tfCL		15				
Min. Pulse Width			5	-	60	180	
(GET DEGETT)	t _W		10	-	30	80	
(SET, RESET)			15	-	25	50	
			5	_	60	140]
Min. Clock Pulse Width	t _w		10	-	30	60	ns
			15	-	25	40	

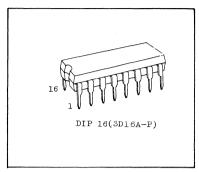
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Set-up Time (DATA - CLOCK)	t _{su}		5 10 15	<u>-</u> -	<u>-</u> -	40 20 15	
Min. Hold Time (DATA - CLOCK)	t _H		5 10 15	- - -	20 10 6	40 20 15	ns
Min. Removal Time (SET, RESET - CLOCK)	t _{rem}		5 10 15	-	- -	40 20 15	
Input Capacitance	c_{IN}			-	5	7.5	рF

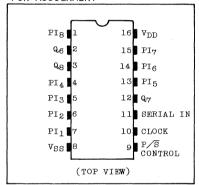
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4014BP

TC4014BP 8-STAGE STATIC SHIFT REGISTER (SYNCHRONOUS PARALLEL OR SERIAL INPUT/SERIAL OUTPUT)


TC4014BP is 8 stage shift register having PARALLEL IN/SERIAL OUT operation, which can also perform SERIAL IN/SERIAL OUT operation. In both parallel operation and serial operation, the input data is obtained on the output of each F/F by rising edge of CLOCK input. (SYNCHRONOUS PARALLEL OR SYNCHRONOUS SERIAL INPUT)

Switching of parallel operation and serial operation is achieved by P/\overline{S} CONTROL input. PARALLEL operation is performed when P/\overline{S} CONTROL is "H" and SERIAL operation is performed when it is "L".


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5∼V _{SS} +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P _D	300	mW
Operating Ambient Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	-65 ~ 150	°C
Lead Temp./Time	T _{so1}	260°C · 10sec	

PIN ASSIGNMENT

TRUTH TARLE

INOTH TABLE										
	IN	PUTS			OUTPUTS △					
CLOCK	P/S	PI ₁	PIn	sı	Q_1	Qn				
1	L	*	*	L	L	Q_n-1				
	L	*	*	Н	Н	q_{n-1}				
	н	L	L	*	L	L				
	н	Н	L	*	н	L				
	Н	L	Н	*	L	Н				
4	Н	Н	H	*	Н	Н				
	*	*	*	*	No	Change				

n; 2∼8

 \triangle ; $Q_1 \sim Q_5 = Internal$ $\triangle \triangle$; Level Change

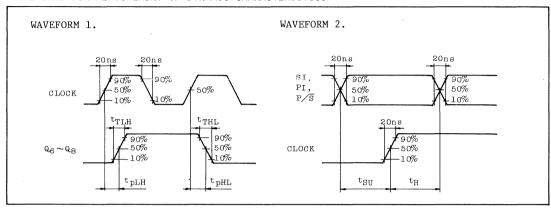
*; Don't Care

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD} .		3	_	18	V
Input Voltage	VIN		0	_	VDD	V

STATIC ELECTRICAL CHARACTERISTICS (Vss=0)

		SYM-	ARACTERISTICS (V _{SS}		-40)°C	1	25°C		0.0	5°C	T
CHARACT	ERISTIC	BOL	TEST CONDITION	VDD		Γ	MIN	T	MAY		r	UNIT
		<u> </u>		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ļ
High-Leve	e1		$ 1_{\mathrm{OUT}} < 1 \mu \mathrm{A}$	5	4.95	-	4.95	5.00	-	4.95	-	
Output V		VOH	VIN=VSS, VDD	10	9.95	_	İ	10.00	-	9.95	_	
				15	14.95	_		15.00	_	14.95	-	V
Low-Leve	1		$ I_{OUT} < 1\mu A$	5	-	0.05	-	0.00	0.05	_	0.05	
Output Vo		VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
				15	_	0.05	_	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
Output High		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-		
Current	*611	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	_	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									mA
		V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	_		
Output Lo Current	WC	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current			V _{OL} =1.5	15	4.0	-	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V,4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input Hig	gh	v_{IH}	VOUT=1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		1	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			$ I_{ m OUT} < 1\mu$ A									v
			V _{OUT} =0.5V,4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Lov	J	ΔIΓ	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		115	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} < 1μ _A									
	'H" Level	IIH	V _{ІН} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μA
Current,	'L" Level	IIL	VIT=OA	18	-	-0.1	-	-10-5	-0.1	-	-1.0	μι.
				5	-	5	_	0.005	5	_	150	
	Quiescent Device Current		V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μА
DEVICE OF	CIIC		*	15	-	20	-	0.015	20	-	600	

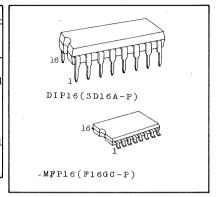

^{*} All valid input combinations.

TC4014BP

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time	tTLH		10	_	50	100	
(Low to High)			15	_	40	80	
			5		80	200	ns
Output Transition Time	t _{THL}		10	-	50	100	
(High to Low)		•	15	-	40	80	
D D-1 mt			5 .	-	160	320	
Propagation Delay Time	t _{pLH}		10	_	70	160	ns
(CLOCK - Q)	t _{pHL}		15	-	50	120	
			5	3	7.5	_	
Max. Clock Frequency	fCL		10	6	20	_	MHz
			15	8.5	26	-	
			5	-	65	180	
Min. Clock Pulse Width	t _w		10	-	25	80	ns
			15	-	20	50	
Max. Clock Rise Time	tCT		5	20	-	-	
Max. Clock Fall Time	trCL		10	2.5	-	-	μs
max. Clock rail lime	tfCL	•	.15	1.0	-	-	
Min. Set-Up Time			5	-	40	120	
(SI - CLOCK)	tSU		10	-	15	80	
(SI - CLOCK)			15	-	10	60	
Min. Set-Up Time			5	_	35	80	
(PI - CLOCK)	tsu		10	-	15.	50	ns
(II - CLOCK)			15	-	10	40	
Min. Set-Up Time			5	, -·	80	180	
(P/S - CLOCK)	t _{SU}		10	. –	30	80	
(1/5 OLOOK)			15	- '	20	60	
Min. Hold Time			5	,	-10	60	
(SI, PI,- CLOCK)	t _H		10	-	-2	30	ns
P/S			15	-	0	20	
Input Capacitance	CIN			<u> </u>	5	7.5	pF

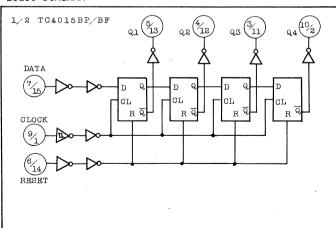
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

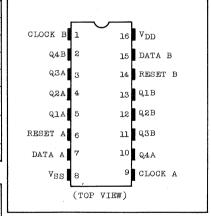


TC4015BP/BF

TC4015BP/TC4015BF DUAL 4-STAGE STATIC SHIFT REGISTER (With Serial Input/Parallel Output)

TC4015BP/BF contains two circuits of 4 stage shift registers and the independent output is derived from each stage. As all the D type flip-flops of every stage have common RESET input, asynchronous clear operation can be achieved by an external signal at arbitrary timing. The flip-flop of each stage is triggered by rising edge of CLOCK input.


RESET input of "H" level resets the contents of all the stages to "L" regardless of CLOCK and DATA inputs and all of data outputs Q1 through Q4 become "L". This can be used for converting serial data to parallel one and for ring counters of any numbering systems.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \wedge V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C · 10 sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

1	INPUTS				OUTPUTS				
CLOCK $^{\triangle}$	DATA	RESET	Q.1	QZ	Q.3	Q4			
	L	·L	L	Q1	ର୍ଥ	Q3			
F	Н	L	Н	Q1	Q2	Q.3			
	*	L	NO CHANGE						
*	*	Н	L	L	L	L			

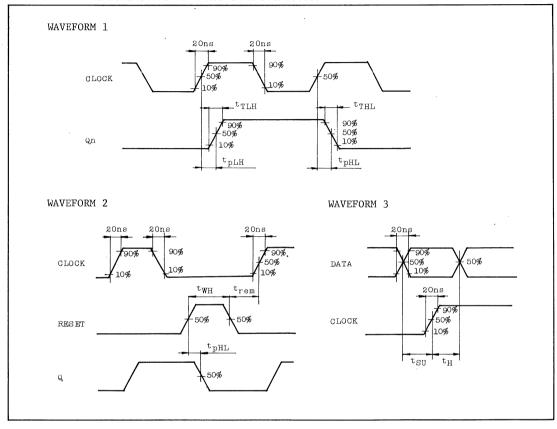
∴ LEVEL CHANGE
 ★ : DON'T CARE

RECOMMENDED OPERATING CONDITIONS $(V_{SS}=0V)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	-	18	٧ .
Input Voltage	v_{IN}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	VDD	-40)°C		25°C		8	5°C	UNITS
GIMICIOTEREDITO	BIIIBOL	IBSI GONDIIIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTT
High-Level	77	I _{OUT} <1μΑ	5	4.95	-	4.95	5.00	_	4.95	_	
Output Voltage	V _{OH}	$v_{IN}=v_{SS}$, v_{DD}	10 15	9.95 14.95	l	1	10.00 15.00	_	9.95 14.95	1	v
Low-Level		I _{OUT} <1 μΑ	5	_	0.05	_	0.00	0.05	_	0.05	·
Output Voltage	V _{OL}	$v_{\mathrm{IN}}=v_{\mathrm{SS}}, \ v_{\mathrm{DD}}$	10 15	_	0.05 0.05			0.05 0.05	-	0.05 0.05	
771111		V _{OH} =4.6V	5	-0.61	-	-0. 51	-1.0	-	-0.42	-	
Output High		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Current	I _{OH}	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	-	
0 02 2		V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0		-2.8	_	
		V _{IN} =V _{SS} , V _{DD}									mA
		V _{OL} =0.4V	5	0.61	_	0.51	1.2	_	0.42		
Output Low	Tor	$V_{OL} = 0.5V$	10	1.5	-	1.3	3.2	-	1.1	-	
Current	I _{OL}	V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	_	
		V _{IN} =V _{SS} , V _{DD}									
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High		V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage	VIH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} <1μA						,			
		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V
Input Low	VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	, IL	V _{OUT} =1,5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
		I _{OUT} <1μA		i							
"H" Input Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10 ⁻⁵	0.1	-	1.0	μА
Current"L" Level	I _{IL}	VIL=OV	18.	_	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μА
Quiescent Device Current	I _{DD}	$v_{\mathrm{IN}=v_{\mathrm{SS}}}, v_{\mathrm{DD}}$	5 10 15	- - -	5 10 20	_	0.005 0.010 0.015	5 10 20		150 300 600	μА


^{*} All valid input combinations.

TC4015BP/BF

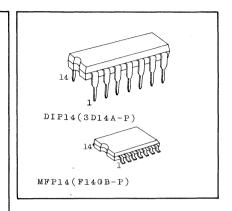
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD}	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}	·	5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	ns
Propagation Delay Time (CLOCK - Q)	t _{pLH}		5 10 15	- -	130 60 50	320 160 120	
Propagation Delay Time (RESET - Q)	t _{pHL}		5 10 15	- - -	90 45 40	400 200 160	
Max. Clock Frequency	f _{CL}		5 10 15	3 6 8.5	8 17 20	-	MHz
Min. Clock Pulse Width	t _W		5 10 15	- - -	35 25 20	180 80 50	
Min. Pulse Width (RESET)	t _{WH}		5 10 15	<u>-</u> - -	50 25 20	200 80 60	
Min. Set-up Time (DATA - CLOCK)	t _{SU}		5 10 15	- - -	8 4 0	70 40 30	ns
Min. Hold Time (DATA - CLOCK)	t _H		5 10 15	- - -	6 5 4	60 30 20	
Min. Removal Time (RESET - CLOCK)	t _{rem}		5 10 15	- - -	0 0 0	80 30 20	
Max. Clock Input Rise Time Max. Clock Input Fall Time	t _{rCL}		5 10 15	No Limit		μs	
Input Capacitance	CIN			-	5	7.5	рF

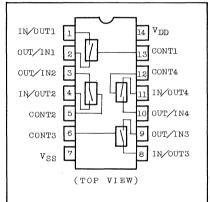
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4016BP/TC4016BF QUAD BILATERAL SWITCH

TC4016BP/BF contains for circuits of independent bidirectional switches. When control input CONT is placed at "H" level, the impedance between the input and output of switch becomes low and when CONT is placed at "L" level, it becomes high. This can be used for switching analog and digital signals.

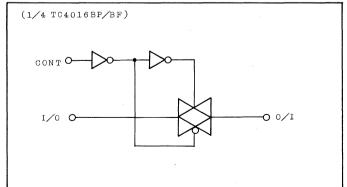

Resistance during ON, RON

 $2.5 \times 10^{2} \Omega \text{ (TYP.)} \dots V_{DD} - V_{SS} = 10 \text{ V}$


 $1.5 \times 10^{2} \Omega \text{(TYP.)} \dots V_{DD} - V_{SS} = 15 \text{V}$

Resistance during OFF, $\ensuremath{R_{\mathrm{OFF}}}$

 $R_{OFF}(TYP.) > 10^9 \Omega$


PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	$v_{ m DD}$	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Control Input Voltage	VCIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Switch I/O Voltage	VI/O	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Control Input Current	IC	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	- 65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

LOGIC DIAGRAM

TRUTH TABLE

CONTROL	IMPEDANCE BETWEEN IN/OUT - OUT/IN **
Н	1~2 0×10 ² Ω
L	>10 ⁹ Ω

* SEE STATIC ELECTRICAL CHARACTERISTICS

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	_	18	77
Input/Output Voltage	$v_{\rm IN}/v_{\rm OUT}$	0	_	v_{DD}	v

STATIC ELECTRICAL CHARACTERISTICS (In case not specifically appointed, VSS=0V)

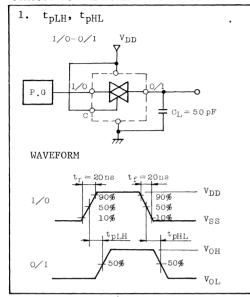
STATIC ELECTRICA	il Omnin	OTENTOTIOS	(+11 (110 € 5	CCILI	carry	арроті	icca,	VSS-01	· ·				
CHARACTERISTIC	SYMBOL	TEST	V _{SS}	V_{DD}	-40	O°C		25°C		85	5°C	UNITS			
CHARACTERISTIC	SIMBOL	CONDITIONS	(V)	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS			
Control Input High Voltage	V _{IH}	Iis =10µA		5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.4 4.8 7.2	-	3.5 7.0 11.0	-				
Control Input Low Voltage	VIL	Iis =10µA		5 10	-	1.0	-	1.7 1.7	1.0	-	1.0	V			
		V _{IN} =5V V _{IN} =2.5V V _{IN} =0.25V		15 5 5 5	- - - -	1.0	- - - -	300 2000 300	- - -	- - -	1.0				
		V _{IN} =10V V _{IN} =5V V _{IN} =0.25V		10 10 10	- - -	600 600 600	- - -	180 300 130	660 660 660	- - -	840 840 840				
On-State Resistance	R _{ON}	V _{IN} =15V V _{IN} =7.5V V _{IN} =0.25V		15 15 15	- - -	370 370 370	- - -	140 160 100	400 400 400	- - -	520 520 520				
		V _{IN} =5V V _{IN} =±0.25V V _{IN} =-5V	- 5 - 5 - 5	5 5 5	- - -	600 600 600	- - -	180 300 130	660 660	- - -	840 840 840	Ω			
					V _{IN} =7.5V V _{IN} =±0.25V V _{IN} =-7.5V	-7.5 -7.5 -7.5	7.5	-	370 370 370	- - -	140 160 100	400 400 400	- - -	520 520 520	
ΔOn-State Resistance (Between Any 2 Switches)	R _{ON} ∆		-5 -7.5	5	-	-	-	7	-	-	-				
Input/Output Leakage Current	I _{OFF}	V _{IN} =18V,V _{OU} V _{IN} =0V,V _{OU}		18 18	-	±100 ±100	_	±0.1	±100 ±100	-	±1000 ±1000	nA			
Quiescent Device Current	I _{DD}	ν _{1N} =ν _{DD} , ν _S	SS	5 10 15	- - -	0.25 0.5 1.0	- -	0.001 0.001 0.002	0.25 0.5 1.0	- - -	7.5 15 30				
Input Current	I _{IH}	V _{IH} =18V		18	-	0.1	-	10 ⁻⁵		-	1.0	1 1			
	IIL	A ^{IT} =0A		18	_	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0				

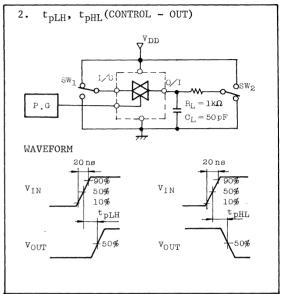
^{*} All valid input combinations.

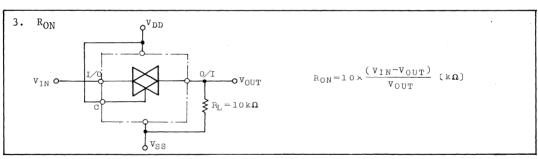
TC4016BP/BF

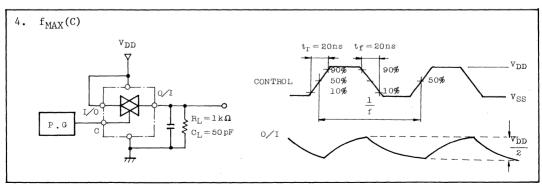
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITI	ons	Vcc(V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Propagation Delay Time	t _{pLH}			0	5		24	45	
	-	C_L =50pF		0	10	_	11	15	
(IN - OUT)	t _{pHL}			0	15	-	8	12	
Propagation Delay Time	t _{pLH}	R _L =1kΩ		0	5	-	35	70	ns
(CONTROL - OUT)	tpHL	C _L =50pF		0	10	-	20	40	
	PILE			0	15	_	17	30	
Max. Control Input	f _{MAX}	$R_L=1k\Omega$		0	5	_	10	-	
Repetition Rate	(CONT)	$C_{L}=50pF$		0	10	-	12	-	į
	(CONT)			0	15	-	12		
		$R_L=1k\Omega$				-	24	_	MHz
•	f_{MAX}	$R_L=2k\Omega$				-	23	-	
-3dB Cutoff Frequency		$R_L=10k\Omega$		- 5	5	-	22	-	
	(I - O)	$R_L=100k\Omega$				_	22		
		R_L =1M Ω C_I =15pF (_	22	_	
		`	*1)						
Total Harmonic		$R_L=10k\Omega$		- 5	5	-	0.16	-	%
Distortion		f=1MHz ((*2)						
-50dB Feedthrough		$R_{L}=1k\Omega$ (*3)	- 5	5	_	600	_	kHz
Frequency		LL TIME							
-50dB Crosstalk		$R_L=1k\Omega$ (*4)	- 5	5		1		MHz
Frequency		(. 7)	_5	ر	_	Τ.	_	rınz
Crosstalk		R _{IN} =1kΩ		0	5	-	50	-	
(CONTROL - OUT)	-	R _{OUT} =10kΩ		0	10	-	100		mV
(CONTROL - UUI)		C _L =15 _P F		0	15	-	150	-	
Input Capacitance		Control Inpu	ıt			-	5	7.5	
input dapacitance	c_{IN}	Switch I/O				-	5	-	pF
Feed through Capacitance	C _{IN-OUT}					-	0.5	-	1
							7	00	

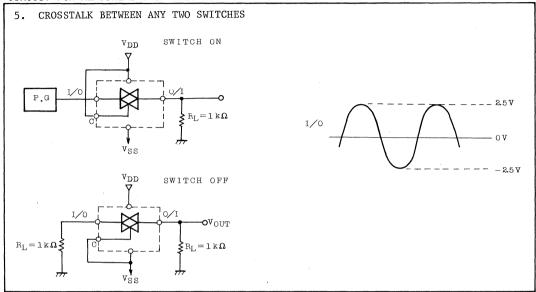

^{*1} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 $\log_{10} \frac{\text{V}_{\text{os}}}{\text{V}_{\text{is}}} = -3 \text{dB}$ shall be f_{MAX} .

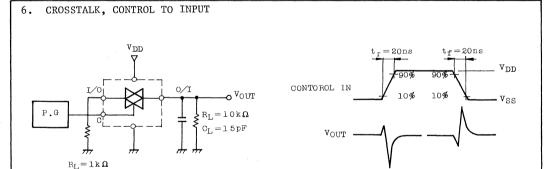

^{*2} V_{is} shall be sine wave of $\pm 2.5 Vp-p$.

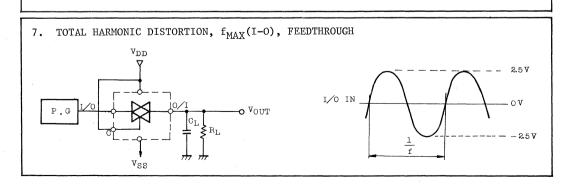

^{*3} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 $\log_{10} \frac{\text{V}_{\text{os}}}{\text{V}_{\text{is}}} = -50 \text{dB}$ shall be feed-through.


^{*4} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 $\log_{10} \frac{\text{V}_{\text{os}}}{\text{V}_{\text{is}}} = -50 \text{dB}$ shall be crosstalk.

CIRCUIT FOR MEASUREMENT OF ELECTRICAL CHARACTERISTICS





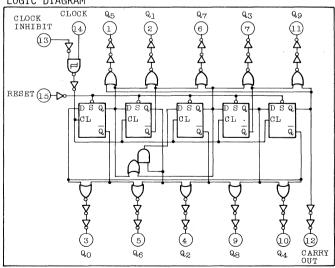


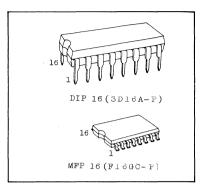
CIRCUIT FOR MEASUREMENT OF ELECTRICAL CHARACTERISTICS

TC4017BP/BF

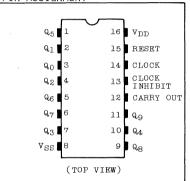
TC4017BP/TC4017BF DECADE COUNTER/DIVIDER

TC4017BP/BF is decimal Johnson counter consisting of 5 stage D-type flip-flop equipped with the decoder to convert the output to decimal.


Depending on the number of count pulses fed to CLOCK or CLOCK INHIBIT one output among 10 output lines "QO" through "QO" becomes "H" level.


The counter advances its state at rising edge of CLOCK (CLOCK INHIBIT="L") or falling edge of CLOCK INHIBIT (CLOCK="H"). RESET input to "H" level resets the counter to Q0="H" and Q1 through Q9="L" regardless of CLOCK and CLOCK INHIBIT.

MAXIMUM RATINGS

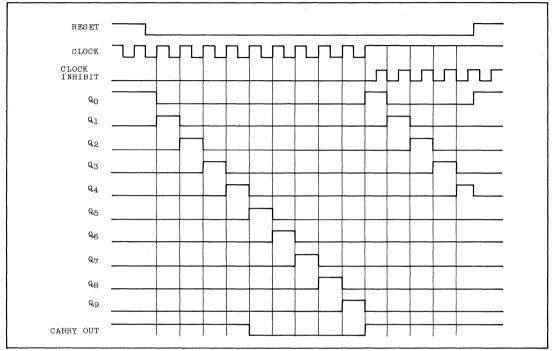

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Ambient Temperature Range	TA	- 40 ∼85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

	INPUTS		SELECTED
CLOCK 🛆	CLOCK INHIBIT△	RESET	OUTPUT
*	*	Н	Q ₀
*	H	L	Qn(NC)
L	*	L	Qn(NC)
5	L	L	Qn+ 1
T_	L	L	Qn(NC)
Н		L	Qn(NC)
Н		L	Qn+ 1


△; Level Change

* ; Don't Care

NC ; No Change

CARRY OUT { "H" \cdots Q0 \sim Q4 = "H" L" \cdots Q5 \sim Q9 = "H"

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	v_{IN}		0	-	V_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

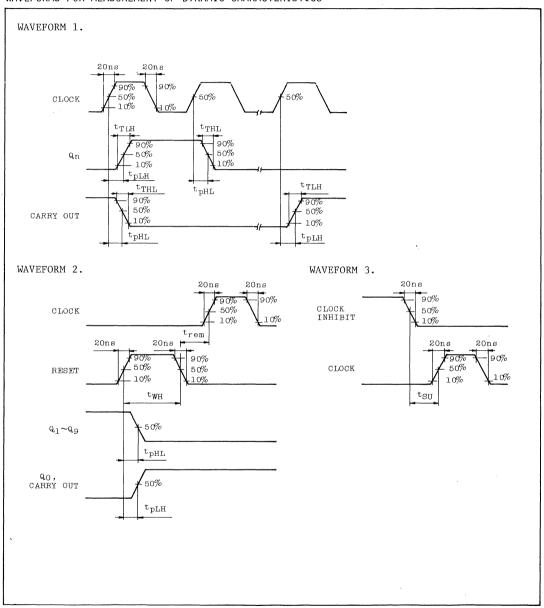
CHARACTERISTIC SYM-		TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT
Olimicio I Diction 10	BOL	TEST COMBITTON	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
			5	4.95	-	4.95	5.00	-	4.95		
High-Level Output Voltage	v_{OH}	IOUT <1 MA	10	9.95	-	9.95	10.00	-	9.95	-	
l saspas , saspage	$v_{IN}=v_{SS}, v_{DD}$	VIN-VSS, VDD	15	14.95	-	14.95	15.00	_	14.95	-	v
]τ]<1μΛ	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	I VOLI	I I _{OUT} < LµA	10	-	0.05	-	0.00	0.05	-	0.05	
		V _{IN} =V _{SS} , V _{DD}	15	-	0.05	-	0.00	0.05	-	0.05	

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACT	TERISTIC	SYM-	TEST CONDITION	V_{DD}	-40)°C		25°C		85	°C	UNIT
	BRIDITO	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	0.11.1
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	-	-0.42	_	
			$V_{OH}=2.5V$	5	-2.5	-	-2.1	-4.0	_	-1.7	_	
Output I Current	High	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	_	
			$V_{OH}=13.5V$	15	-4.0	-	-3.4	-9.0	_	-2.8	_	
			V _{IN} =V _{SS} ,V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-	
Output I	.OW		V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	-	
Current	30 W	IOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	·, -	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	-	
Input Hi	igh	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage		. 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	_	
	•		Ι _{ΟυΤ} <1μΑ									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	
Input Lo	ow.	VIL.	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage		.15	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	_	4.0	
			I _{OUT} <1μΑ									
Input	"H"Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	μΑ
Current	"L"Leve1	IIL	VIL=OV	18	-	-0.1	-	-10-5	-0.1	_	-1.0	
				5	-	5	_	0.005	5	_	150	
Quiescer Device ($ $ I_{DD}	$v_{IN}=v_{SS}, v_{DD}$	10	-	10	_	0.010	10	-	300	μА
Device (Jurrent		*	15	-	20	-	0.015	20	-	600	

^{*} All valid input combination.

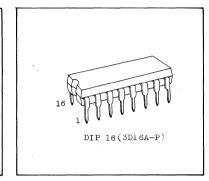
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)


		, , ,					
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	80	200	
(Low to High)	tTLH		10		50	100	
(Low to High)			15	-	40	80	ns
Output Transition Time			5	_	80	200	113
(High to Low)	tTHL		10	_	50	100	
(High to Low)			15	-	40	80	

TC4017BP/BF

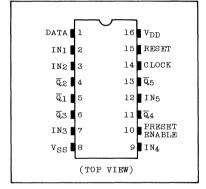
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

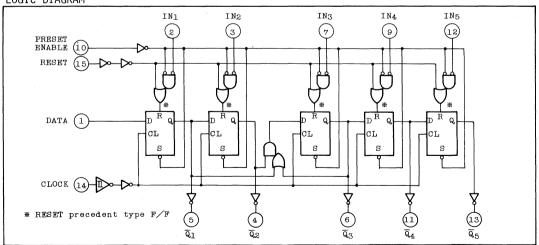
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
December Deles Wins			5	_	325	650	
Propagation Delay Time	t _{pLH}		10	_	135	270	
(CLOCK - Q _n)	t _{pHL}		15	_	85	170	
December 10 1 minus			5	_	280	600	
Propagation Delay Time	t _{pLH}		10	·_	110	250	ns
(CLOCK - CARRY OUT)	t _{pHL}		15	_	75	160	
Propagation Delay Time			5	_	265	530	
/RESET - Qn	t _{pLH}		10	-	115	230	
RESET - CARRY OUT	t _{pHL}		15	_	85	170	
			5	2.5	6	_	
Max. Clock Frequency	f _{CL}		10	5	12	-	MHz
			15	6.7	13.5	-	
			5	-	85	200	
Min. Clock Pulse Width	t _w		10	-	40	90	
			15	_	35	60	
			5	-	50	260	ns
Min. Pulse Width	t _{WH}		10	_	20	110.	
(RESET)			15	_	15	60	
			5		1		
Max. Clock Rise Time	trCL		10	N	lo Lomit		μs
Max. Clock Fall Time	tfCL		15				
W. G			5	_	30	230	
Min. Set-up Time	t _{SU}		10	_	15	100	ns
(CLOCK INHIBIT - CLCOK)			15	_	10	70	
			5	-	- 55	400	
Min. Removal Time	trem		10	_	-20	275	ns
(RESET - CLOCK)			15	_	-15	150	
Input Capacitance	CIN			-	5	7.5	pF


WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

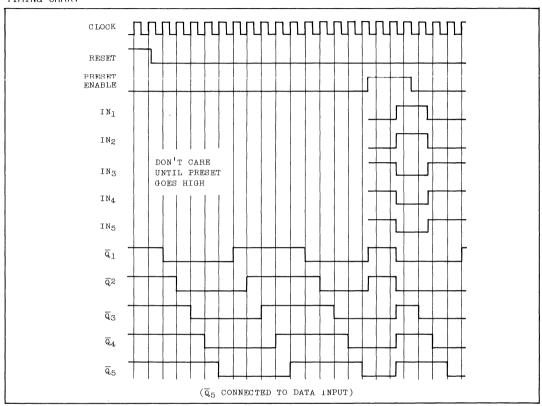
TC4018BP PRESETTABLE DIVIDE-BY-"N" COUNTER

TC4018BP is frequency division counter consisting of 5 bit Johnson counter having capability of frequency division by the factors of 1/2, 1/4, 1/6, 1/8 and 1/10 by connecting outputs \overline{Q}_1 through \overline{Q}_5 to DATA input. Similarly by connecting the outputs of \overline{Q}_1 through \overline{Q}_5 to DATA input through gates, frequency division by the factors of 1/3, 1/5, 1/7 and 1/9 can be achieved.


RESET and PRESET are asynchronous type and when RESET="H", all of \overline{Q}_1 through \overline{Q}_5 are "H". When PRESET ENABLE="H", \overline{Q}_n is complement of IN_n . The counter advances its state by rising edge of clock input.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	Vout	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	Tso1	260°C · 10sec.	


PIN ASSIGNMENT

LOGIC DIAGRAM

TIMING CHART

FUNCTION SELECTION, TRUTH TABLE

	FUNCTI	ON SELEC	rion	
		UNTER ODE	CONNECT DATA INPUT (Pin 1) to:	COMMENTE
	10 (I	Division)	Q ₅	
	8	"	$\overline{\mathtt{Q}}_4$	
	6	"	$\overline{Q}_{\mathfrak{Z}}$	-
	4	"	$\overline{\mathtt{Q}}_{\mathcal{Z}}$	
1	2	"	$\overline{\mathtt{Q}}_{\mathtt{1}}$	
	9	"	$\overline{\mathtt{Q}}_5$, $\overline{\mathtt{Q}}_4$	USE AND GATE
	7	"	$\overline{\mathtt{Q}}_4$, $\overline{\mathtt{Q}}_3$	
	5	"	$\overline{\mathtt{Q}}_3$, $\overline{\mathtt{Q}}_2$	
	3	"	ୟି _ଥ , ୟି1	

TRUTH TABLE										
RESET	PE	INn	$\overline{\mathtt{Q}}_{\mathrm{n}}$							
L	L	*	$\overline{\mathtt{Q}}_n riangle$							
L	L	*	$\overline{\mathtt{D}}_{n}$							
L	Н	L	Н							
L	Н	Н	L							
Н	*	*	Н							
	RESET L L L	RESET PE L L L L L H L H	RESET PE INn L L * L L * L H L L H H							

* Don't care

△ No Change

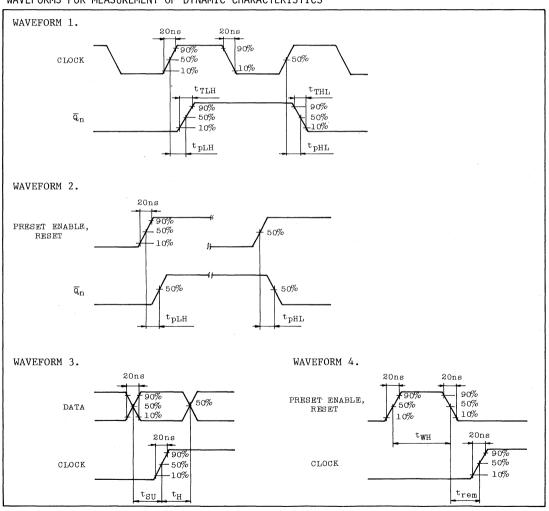
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	_	18	V
Input Voltage	AIN		0	_	V _{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARAC	TERISTIC	SYM-	TEST CONDITION	v_{DD}	-40	°C		25°C		85	5°C	UNIT
CIMICIO	TERIBITO	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
) Torred of 1 A	5	4.95	-	4.95	5.00	-	4.95	-	
High-Le		VOH	IOUT < 1 µA	10	9.95	-	9.95	10.00	_	9.95	-	
output	, oreage		V _{IN} =V _{SS} ,V _{DD}	15	14.95	_	14.95	15.00	-	14.95	-	V
			 I _{OUT} < 1µA	5	-	0.05	_	0.00	0.05	-	0.05	
Low-Lev		VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
			VIN-VSS, VDD	15	_	0.05	_	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	-	-0.42	-	
_			V _{OH} =2.5V	5	-2. 5	_	-2.1	-4.0	-	-1.7	_	
Output Current	0	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1		
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		İ	v _{IN} =v _{SS} ,v _{DD}									mA
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	_		
Output :	Low	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		-01	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			VIN=VSS, VDD									
			V _{OUT} =0.5V,4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input H	-	v_{IH}	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		1	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	· -	11.0	-	
			$ I_{ m OUT} < 1 \mu A$									v
			V _{OUT} =0.5V,4.5V	. 5	-	1.5	-	2.25	1.5	-	1.5	
Input L		VIL	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		1.2	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			\mid I $_{ m OUT}$ \mid $<$ 1 μ A									
Input	"H" Leve	IIH	$v_{IH}=18v$	18	-	0.1	-	10-5	0.1	1	1.0	μА
Current	"L" Leve	IIL	AIT=0A	18	-	-0.1		-10-5	-0.1	-	-1.0	
				5	-	5	_	0.005	5	-	150	
Quiesce Device		IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
			*	15	-	20	_	0.015	20	-	600	

^{*} All valied input combinations.

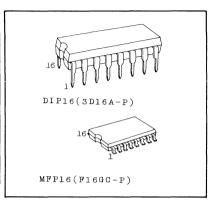

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $v_{SS}\text{=}0v\text{, }c_{L}\text{=}50pF)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	tTLH		10	-	50	100	
(Bow to High)			15	_	40	80	ns
			5	-	80	200	****
Output Transition Time (High to Low)	t _{THL}		10	_	50	100	
(might co how)			15	- :	40	80	
Propagation Delay Time	t _{pLH}		5	-	280	560	
$(CLOCK - \overline{Q})$	tpHL		10	-	110	220	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PILE		15	-	80	160	
Propagation Dealy Time	t _{pLH}		5	-	300	600	
(PRESET -Q)	tpHL		10	-	110	250	ns
\ENABLE \/	Pila		15	-	80	180	
			5	-	300	600	
Propagation Delay Time (RESET - \overline{Q})	t _{pLH}		10	-	110	250	,
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			15	-	80	180	
			5	2	4	_	
Max. Clock Frequency	f _{CL}		10	5.5	11	-	MHz
			15	8	16	_	
			5	-	125	250	
Min. Clock Pulse Width	tw		10	-	45	90	ns
			15	-	30	60	
Max. Clock Rise Time	trCL		5				
Max. Clock Fall Time	tfCL		10	N	o Limit		μS
	-105		15				1
Min. Set-up Time			5	-	35	70	
(DATA - CLOCK)	tsu		10	-	15	30	ns
(Dilli obotiv)			15	-	10	20	
Min. Hold Time			5	-	-20	140	
(DATA - CLOCK)	t _H		10	-	- 5	80	ns
020011,			15	_	~ 5	60	L
Min. Removal Time			5	_	35	80	
(PE, CLOCK)	trem		10	_	15	30	ns
\RESET SECOND			15	_	10	20	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

, CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Pulse Width			5	-	110	220	
(PRESET ENABLE,)	t _{WH}		10	-	40	80	ns
\RESET /			15	-	30	60	
Input Capacitance	CIN			_	5	7.5	pF

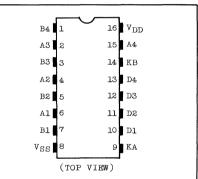
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

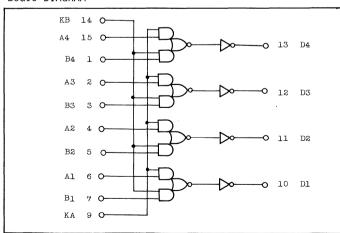


TC4019BP/BF

TC4019BP/TC4019BF QUAD AND/OR SELECT GATE

TC4019BP/BF is four circuit AND-OR SELECT GATE. The basic circuit consists of two 2 input AND gates and an OR gate receiving two outputs from the AND gates. The input signals applied to An and Bn (n= $1 \sim 4$) are selected by the common selection input to all the four circuits, KA and KB and the outputs are obtained at Dn.


This is suitable for data selectors and multiplexers of 4 bits 2 channels.


ABSOLUTE MAXIMUM RATINGS

715002012 11/0/11/0/1 10										
CHARACTERISTIC	SYMBOL	RATING	UNIT							
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V							
Input Voltage	VIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V							
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V							
DC Input Current	IIN	±10 •	` mA							
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW							
Operating Temperature Range	TA	-40 ∿85	°C							
Storage Temperature Range	T _{stg}	-65 ∿150	°C							
Lead Temp./Time	Tsol	260°C •10 sec								

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

	INP	UTS		OUTPUT
KA	KВ	An	Bn	Dn
Н	L	Н	*	Н
Н	L	L	*	L
L	H	*	Н	Н
L	Н	*	L	L
L	L	*	*	L
Н	Н	L	L	L
Н	Н	L	Н	H .
Н	Н	Н	L	Н
Н	Н	Н	Н	Н

L : LOW LEVEL
H : HIGH LEVEL

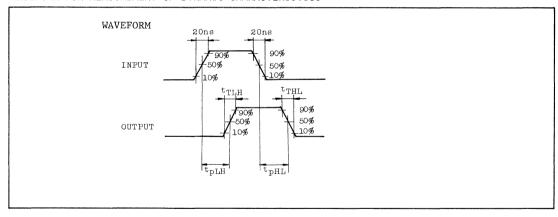
*: DON'T CARE

TC4019BP/BF

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-4	0°C		25°C		85°C		UNITS
OHMETOTERISTIC	Dinbon	THOI CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Level	v _{OH}	I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-	
Output Voltage	TOH	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	10	9.95	-		10.00		9.95	1	
		VIN-VSS, VDD	15	14.95	_		15.00		14.95		V
Low-Level	v _{OL}	Ι _{ΟυΤ} <1μΑ	5	-	0.05	l l	0.00	0.05		0.05	
Output Voltage		$v_{IN} = v_{SS}, v_{DD}$	10 15	_ _	0.05	i	0.00	0.05	ĺ	0.05	
		V _{OH} =4.6V	5	-0.61	0.05	-0.51		-	-0.42	0.03	
Outnot Ital		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	_	-1.7	_	
Output High	I _{OH}	V _{OH} =9.5V	10	-1.5	_	-1. 3	-2.2	_	-1.1	_	
Current		V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	_	-2.8	_	
		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$									mA
		V _{OL} =0.4V	5	0.61	-	0.51	1.2	_	0.42	_	
Output Low	_	V _{OL} =0.5V	10	1.5	_	1.3	3.2		1.1	-	
Current	I _{OL}	VOL=1.5V	15	4.0	_	3.4	12.0	-	2.8	-	
		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$									
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75		3.5	_	
Input High	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage	111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} <1μA			,			,			V
		VOUT=0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low	VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} <1μA									
Input "H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10 ⁻⁵	0.1	_	1.0	uА
Current "L" Level	IIL	V _{IL} =0V	18	-	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	
Quiescent	I _{DD}	v _{IN} =v _{SS} , v _{DD}	5	-	0.25	-	0.001	0.25	-	7.5	
Device Current	עע ד	* '22, 'DD	10	-	0.5	-	0.001	1	-	15	μА
Device Current		,	15		1.0	_	0.002	1.0		30	

^{*} All valid input combinations

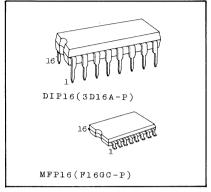
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

		, 33 ,	L -				•
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5	_	70	200	
Output Transition Time (High to Low)	t _{THL}	·	10 15	-	35 30	100 80	
Propagation Delay Time	t _{pLH}		5	-	75	300	
(A, B - D)	t _{pHL}		10 15	- -	40 30	120 100	ns
Propagation Delay Time	t _{pLH}		5	-	75	300	
(KA, KB - D)	t _{pHL}		10	-	40	120	
(KA, KB - D)	рпг		15	_	30	100	
Input Capacitance	c_{IN}	An, Bn Input		-	5	7.5	pF
input Gapacitance	OIN	KA, KB Input		-	12	20	Pr

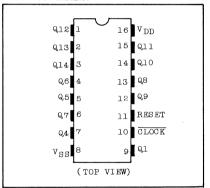
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4020BP/BF

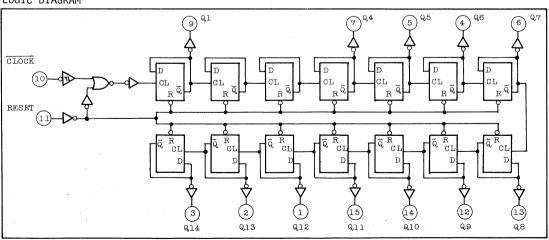
TC4020BP/TC4020BF 14 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS


TC4020BP/BF is 14 stage ripple carry binary counter having asynchronous clear function. The counter advances its counting stage by falling edge of $\overline{\text{CLOCK}}$ input. When RESET input is placed "H", all the circuits are reset regardless of $\overline{\text{CLOCK}}$ input making all the outputs (Q1, Q4 \sim Q14) to be "L". This is most suitable for frequency dividers, control circuits and timing circuits.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	$V_{ m DD}$	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	Vout	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

TRUTH TABLE


CLOCK A	RESET	OUTPUT STATE
*	H	ALL OUTPUTS="L"
	L	NO CHANGE
1	L	ADVANCE TO NEXT STATE
Δ: LEVEL	CHANGE, *: D	OON'T CARE

PIN ASSIGNMENT

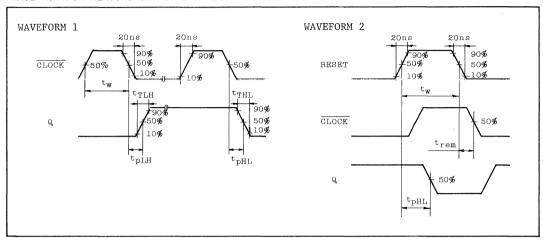
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	_	18	V
Input Voltage	VIN	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

	T		v_{DD}	-40	°C		25°C		8	5°C	UNITS
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Level		I _{OUT} <1μA	5	4.95	-	4.95	5.00	_	4.95	-	
Output Voltage	VOH	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	10	9.95		1	10.00	l .	9.95	-	
			15	14.95			15.00		14.95	-	V
Low-Level	VOL	I _{OUT} <1μA	5 10	_	0.05	-	1	0.05	-	0.05	
Output Voltage	· OL	$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$	15	-	0.05	-	l .	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.52	-1.0	-	-0.42	_	
Output High		V _{OH} =2.5V	5	-2.5		-2.1	-4.0	1	-1.7	-	
Current	IOH	V _{OH} =9.5V	10	-1.5		-1.3	-2.2	-	-1.1	-	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-	
		V _{IN} =V _{SS} , V _{DD}									mA
		V _{OL} =0.4V	5	0.61		0.51	1.2		0.42	-	8
Output Low	I _{OL}	V _{OL} =0.5V	10 15	1.5		1.3	3.2 12.0	-	1.1	-	
Current		V _{OL} =1.5V	13	4.0	-	3.4	12.0	-	2.0	-	
		$V_{\text{IN}}=V_{\text{SS}}, V_{\text{DD}}$ $V_{\text{OUT}}=0.5V, 4.5V$	5	3.5	_	3.5	2.75	_	3.5		
Input High		V _{OUT} =0.3V, 4.3V V _{OUT} =1.0V, 9.0V	_	7.0		7.0	5.5		7.0	_	
Voltage	VIH	V _{OUT} =1.5V, 13.5V		11.0	_	11.0	8.25	_	11.0	_	
		I _{OUT} <1µA									.,
		V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	_	1.5	V
Input Low		V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	AIT	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} < 1μA									
Input "H" Level	IIH	V _{IH} =18V	18	-	0.1	<u> </u>	10-5	0.1	-	1.0	μA
Current "L" Level	IIL	VIT=0A	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μΑ
Quiescent			5	_	5	-	0.005	5	-	150	
Device Current	I _{DD}	V _{IN} =V _{SS} , V _{DD}	10	-	10	-	0.010		-	300	μA
		*	15	-	20	_	0.015	20	-	600	


^{*} All valid input combinations.

TC4020BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t_{TLH}		5 10 15	_ · - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	tTHL		5 10 15	-	70 35 30	200 100 80	
Propagation Delay Time (CLOCK - Q1)	t _{pLH}		5 10 15	-	160 80 65	360 160 130	
Propagation Delay Time (CLOCK - Q1)	t _{pHL}		5 10 15	- - -	160 80 65	360 160 130	
Propagation Delay Time (CLOCK - Q14)	t _{pLH}		5 10 15	- - -	1000 500 400	2000 1000 800	ns
Propagation Delay Time (CLOCK - Q14)	t_{pHL}		5 10 15	- - -	1000 500 400	2000 1000 800	
Propagation Delay Time (RESET -Q)	t _{pHL}		5 10 15	- -	150 70 50	280 120 100	
Max. Clock Frequency	${ t f_{ m CL}}$	V.	5 10 15	3.5 8 12	10 20 25	- - -	MHz
Min. Clock Pulse Width	tw		5 10 15	- - -	50 20 15	140 60 40	
Min. Pulse Width (RESET)	t _w	. 4	5 10 15	- - -	100 40 30	200 80 60	ns
Min. Removal Time (RESET - CLOCK)	t _{rem}		5 10 15	-	' - - -	350 150 100	
Max. Clock Input Rise Time Max. Clock Input Fall Time	t _{rCL}		5 10 15	No Limit		μs	
Input Capacitance	c_{IN}			-	5	7.5	pF

WAVEFROM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4021BP 8-STAGE STATIC SHIFT REGISTER (ASYNCHRONOUS PARALLEL INPUT OR SYNCHRONOUS SERIAL INPUT/SERIAL OUTPUT)

TC4021BP is 8 stage parallel in/serial out shift register, which can be used also for serial in/serial out operations.

In the case of parallel operation, the data of PARALLEL IN is input to each F/F asynchronously with CLOCK and the output is obtained. In the case of serial operation, each F/F is triggered by rising edge of CLOCK. (ASYNCHRONOUS PARALLEL OR SYNCHRONOUS SERIAL INPUT)

Switching of PARALLEL operation and SERIAL operation is achieved by P/S CONTROL input. When P/S CONTROL input is "H", PARALLEL operation is designated and when it is "L", SERIAL operation is designated.

16 1 DIP 16(3D16A-P)

PIN ASSIGNMENT

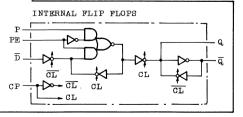
PI8 1 1	16 v _{DD}
ୟ6 ∎ଥ	15 PI7
Q ,8 ¶ 3	14 3 PI6
PI4 4	13 PI5
PI3 1 5	12 1 Q7
PI2∎6	11 SERIAL IN
PI1 7	10 CLOCK
V _{SS} ∎8	9 1 P∕8
(TOP	VIEW)

TRUTH TABLE

	IN		OUTPUTS 🛆			
CTOCK	P/S	PI ₁	PIn	SI	Q_1	Qn
	L	*	*	L	L	Q _{n-1}
	L	*	*	Н	Н	Q _n -1
J.	L	*	*	*	No	Change
*	н	L	L	*	L	L
*	Н	L	Н	*	L	H
*	Н	Н	L	*	Н	L
*	Н	Н	Н	*	Н	Н
n ·	2~.8					

n; 2~8

 \triangle ; $Q_1 \sim Q_5$ Internal


△△; Level Change

*; Don't Care

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5 ~ Vss+20	V
Input Voltage	VIN	Vss-0.5~VDD+0.5	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	TA	-40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	•

RECOMMENDED OPERATING CONDITIONS (VSS=OV)

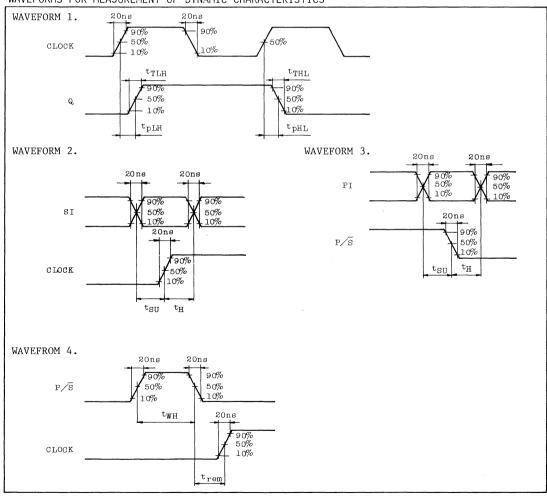
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$		3	-	18	V
Input Voltage	v_{IN}		0	-	v_{DD}	v

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARAC'	TERISTIC	SYM-	TEST CONDITION		-40)°C		25°C		85	s°C	UNIT
CHARAC	TERTOTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
				5	4.95	-	4.95	5.00	_	4.95	_	
High-Level Output Voltage	VOH	VIN=VSS, VDD	10	9.95	_	9.95	10.00	_	9.95	-		
оперис	output voitage		VIN-VSS, VDD	15	14.95	-	14.95	15.00	_	14.95	_	v
			171 -1 -4	5	-	0.05	_	0.00	0.05	-	0.05	
Low-Leve Output		VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05	
оперис	VOILUGE		VIN-VSS,VDD	15	-	0.05	_	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	_	
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	_		
Output 1 Current	High	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	-	
ourrene			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-	
		V _{IN} =V _{SS} ,V _{DD}									mA	
		VOL=0.4V	5	0.61	-	0.51	1.5	-	0.42	-		
Output 3	Low	I_{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	- ,	
Current		TOL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	_ '	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V,4.5V	5	3.5		3.5	2.75	_	3.5	-	
Input H	igh	VIH	V _{OUT} =1.0V,9.0V	10	7.0	_	7.0	5.5		7.0	-	
Voltage		V 111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
			I _{OUT} < 1μΑ									v
			V _{OUT} =0.5V,4.5V	5	-	1.5	_	2.25	1.5	-	1.5	
Input L	ow	VIL	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		, 11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} < 1µA									
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	μА
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	_	-1.0	,
				5	-	5	-	0.005	5	-	150	
Quiesce Device		IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
			*	15	-	20	-	0.015	20	_	600	

^{*} All valid input combinations.

TC4021BP


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	80	200	
(Low to High)	tTLH		10	-	50	100	
			15		40	80	ns
			5	-	80	200	113
Output Transition Time (High to Low)	tTHL		10	-	50	100	
(High to how)	-	,	15	_	40	80	
Propagation Delay Time	+		5	-	150	320	•
(CLOCK - Q)	t _{pLH}		10	-	65	160	ns
(CLOCK - Q)	t _{pHL}		15	_	45	120	
Propagation Delay Time	L		5	_	230	460	
$(P/\overline{S} - Q)$	t _{pLH}		10	,-	90	180	ns
(P/S - Q)	t _{pHL}		15	_	60	120	
Max. Clock Frequency			5	3	6.5	-	
	f _{CL}		10	6	18	-	MHz
			15	8.5	24	-	
			5	-	80	180	
Min. Clock Pulse Width	tw		10	-	30	80	ns
			15	-	20	50	
Max. Clock Rise Time	t or	,	5	20	-	-	
Max. Clock Fall Time	trCL		10	2.5		-	μS
Max. Clock Fall lime	tfCL		15	1.0	_	-	
Min. Set-up Time			5	-	40	120	
(SI - CLOCK)	t _{SU}		10		20	80	ns
(SI - CLOCK)			15	. =	15	60	
Min. Set-up Time			5	_	25	50	
(PI - P/\overline{S})	tsu	:	10	-	15	30	ns
(11 - 1/3)			15	-,	10	20	
Min. Hold Time			5	-	35	70	
$\begin{pmatrix} SI - CLOCK \\ PI - P/\overline{S} \end{pmatrix}$	tH		10	_	20	40	ns
/II - I/3 /			15		15	30	
Min. Pulse Width			5	. -	90	180	
Min. Pulse width $(P/\overline{S} - CONTROL)$	t _{WH}		10	_	30	80	ns
(r/o - CONIKUL)		* *	15	_	10	50	

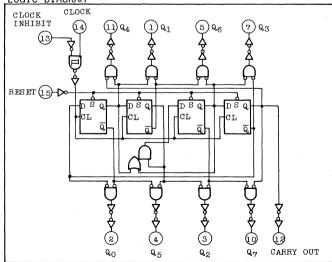
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

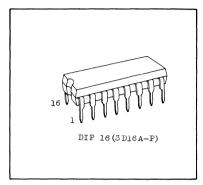
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Removal Time			5	-	45	280	
(P/S - CLOCK)	trem		10	-	20	140	ns
(P/S = CLOCK)			15	-	15	100	
Input Capacitance	c_{IN}			_	5	7.5	рF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

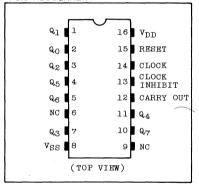
TC4022BP OCTAL COUNTER/DIVIDER

TC4022BP is octal Johnson counter consisting of 4 stage D-type flip-flops and equipped with decoder which convert the output to octal.


Depending on the number of count pulses applied to CLOCK or CLOCK INHIBIT input, one of eight outputs Q_0 through Q7 becomes "H". The counter advances its counting state by rising edge of CLOCK when CLOCK INHIBIT="L" and by falling edge of CLOCK INHIBIT when CLOCK="H".


RESET input with "H" level resets the counter to Q0="H" and Q1 \sim Q7="L" regardless of CLOCK and CLOCK INHIBIT.

MAXIMUM RATINGS

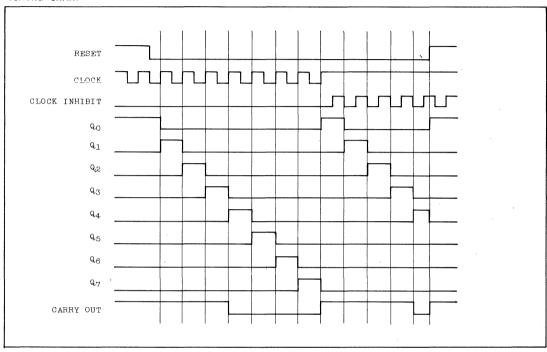

101111111111111111111111111111111111111			
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Ambient Temperature Range	T_A	-40 ~85	°C
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	Tsol	260°C ·10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

INPUTS			SELECTED
CLOCK △	CLOCK INHIBITA	RESET	OUTPUT
*	*	Н	Q _O
*	Н	L	Qn(NC)
L	*	L	Qn(NC)
	L	ь	Qn + 1
7_	L	L	Qn(NC)
Н	F	L	Qn(NC)
Н	7_	L	$Q_n + 1$


△; Level Change

* ; Don't Care

NC ; No Change

CARRY OUT { "H" $\cdots Q_0 \sim Q_3 =$ "H" $\cdots Q_4 \sim Q_7 =$ "H"

TIMING CHART

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	-	$v_{ m DD}$	V

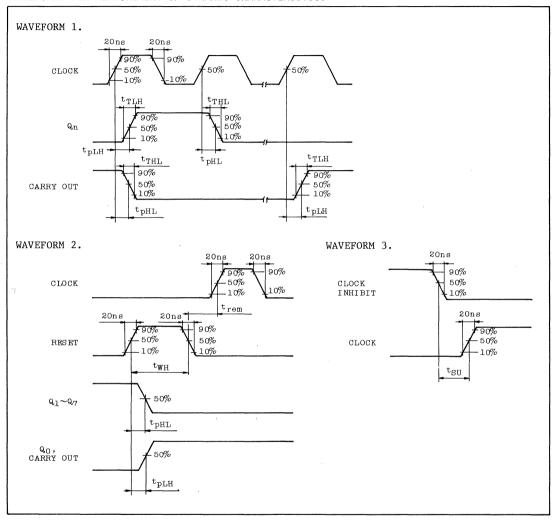
STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

CHARACTERISTIC	SYM- BOL	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C	1	85°	C.	UNIT
	BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
·		I _{OUT} < 1µA	5	4.95	-	4.95	5.00	-	4.95	-	
High-Level Output Voltage	v _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
output voitage		*IN *22,*DD	15	14.95	-	14.95	15.00	-	14.95	-	v
		I _{OUT} < 1µA	5	_	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	V _{OL}	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
odepat vortage		* TIV * 299 * ADD	15	-	0.05	_	0.00	0.05	-	0.05	

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACT	rerist:	11'	SYM-	TEST CONDITION	VDD	-40)°C		25°C		85°	,c	UNIT
			BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
				V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	-	-0.42	-	
				V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Output H Current	High		I_{OH}	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	_	
				V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	_	
		Ì		$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$									mA
				V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	_]
Output I	JOW		I_{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	- ,	1.1		
Current			TOL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-	
				V _{IN} =V _{SS} ,V _{DD}									
				V _{OUT} =0.5V,4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Input Hi	igh		۷тн	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage			. 111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
				$ I_{ m OUT} < 1\mu A$									v
				V _{OUT} =0.5V,4.5V	5	-	1.5	_	2.25	1.5	_	1.5	
Input Lo	w		AIF	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage			. 11	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
				I _{OUT} < 1 <i>µ</i> A									
	''H'' Le		IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	μА
Current	''L'' Le	eve1	I_{IL}	AIT=OA	18	-	-0.1	_	-10-5	-0.1	_	-1.0	
				,	5	-	5	_	0.005	5	_	150	
Quiescer Device (.	I_{DD}	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
				*	15	_	20	-	0.015	20	_	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_pF)

				·			
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	. 80	200	
Output Transition Time (Low to High)	tTLH		10	_	50	100	
(Eow to might)			15	_	40	80	ns
			5	_	80	200	0
Output Transition Time (High to Low)	t _{THL}		10	_	50	100	
(might be zew)			15	-	40	80	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARAGEERICETC	CVMDOI	THE CONDITION		MIN	myn	MAN	IINITO
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time	t _{pLH}		5	-	325	650	
(CLOCK - Qn)	tpHL		10	- '	135	270	
(II)	-pms		1.5	-	85	170	
Propagation Delay Time	t _{pLH}		5	_	280	600	
(CLOCK - CARRY OUT)	tpHL		10	_	110	250	
	-piid		15	_	75	160	ns
Propagation Delay Time	t _{pLH}		5		265	530	
(RESET - Q	t _{pHL}		10	-	115	230	
RESET - CARRY OUT/	chur		15	_	85	170	,
			5	2.5	6	-	
Max. Clock Frquency	fCL		10	5	12	_	MHz
	-		15	6.7	13.5	-	
	,		5		85	200	
Min. Clock Pulse Width	t _w		10	_	40	90	
			15	_	35	60	ns
Min. Pulse Width			5	_	50	200	
(RESET)	tWH	,	10		20	110	
(KESEI)			15	-	15	60	
Max. Clock Rise Time	trCL		5				
Max. Clock Fall Time	tfCL		10	1	No Limit		μS
max. Clock Pail Time	LICE		15				
Min. Set-up Time			5	-	30	230	
(CLOCK INHIBIT - CLOCK)	tsu		10		15	100	ns
(CLOCK INDIBIT - CLOCK)			15	-	10	70	
Min. Removal Time			5	-	- 55	400	
(RESET - CLOCK)	trem		10	-	-20	275	ns
(KESEI - CLOCK)			15	-	- 15	150	
Input Capacitance	c_{IN}			-	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4024BP/BF

TC4024BP/TC4024BF 7 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS

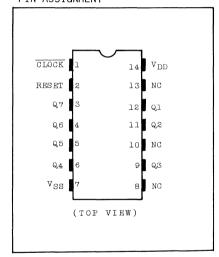
TC4024BP/BF is 7 stage ripple carry type binary counter having asynchronous clear function.

The counter advances its counting state by falling edge of CLOCK input.

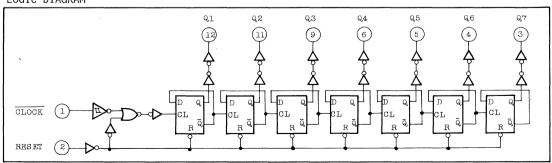
When RESET input is placed at "H", all the internal flip-flops are reset making all the outputs Ql through Q7 to be "L" regardless of CLOCK input. This is suitable for frequency divider circuits and

control circuits.

MFP14(F14GB-P)


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	$v_{\rm IN}$	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10sec	


TRUTH TARLE

TROTTI TADEL		
CLOCK A	RESET	OUTPUT STAGE
*	Н	All Outputs = "L"
	L	No Change
7_	L	Advance to Next State

PIN ASSIGNMENT

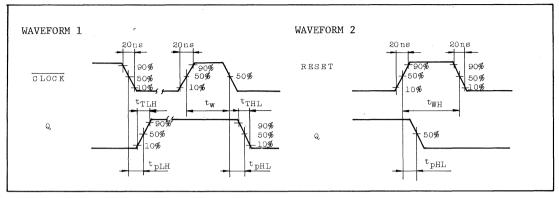
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (Vss=0V)

CHARACTI	TRISTIC	SYMBOL	TEST CONDITIONS	v_{DD}	-4	O°C		25°C		.8	5°C	UNITS
Oimidioii	INIBIIO	STRIBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	011110
High-Lev	7e1		I _{OUT} <1μA	5	4.95	-		5.00	-	4.95	_	
Output V	/oltage	V _{OH}	v _{IN} =v _{SS} , v _{DD}	10	9.95	-	1	10.00	-	9.95	-	
			VIN-VSS, VDD		14.95			15.00		14.95		V
Low-Leve	21	77	$ I_{OUT} < 1\mu A$	5	-	0.05		0.00	0.05		0.05	
Output V	7oltage	V _{OL}	$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$	10 15	-	0.05	_	0.00	0.05		0.05	
			V _{OH} =4.6V	5	-0.61	-		-1.0	-	-0.42	0.05	
			V _{OH} =2.5V	5	-2.5		-2.1	-4.0	_	-1.7	_	
Output H	High	IOH	V _{OH} =9.5V	10	-1.5		-1.3	-2.2		-1.1		
Current			V _{OH} =13.5V	15	-4.0]	1 1		ł i	_	
			V _{IN} =V _{SS} , V _{DD}	13	-4.0	_	-3.4	-9.0	-	-2.8	-	
			V _{OL} =0.4V	5	0.61		0.51	1.2		0.42		mA
Output I	OM		V _{OL} =0.5V	10	1.5	_	1.3	3.2	_	1.1		
	low	IOL	V _{OL} =1.5V			_		l i	_		_	
Current				15	4.0	-	3.4	12.0	-	2.8	-	
			V _{IN} =V _{SS} , V _{DD}		2 5		2 5	0.75	***************************************			
Input Hi	iah		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	5	3.5	-	3.5	2.75	-	3.5	-	
_	Lgii	v_{IH}		10	7.0	-	7.0	5.5	-	7.0	-	
Voltage			V _{OUT} =1.5V, 13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} <1μA									V
Input Lo) Tu		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
input in	w	v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		1.2	V _{OUT} =1.5V, 13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1μA									
Input	"H" Leve1	IIH	V _{IH} =18V	18	_	0.1	-	10-5	0.1		1.0	μA
Current	"L" Leve1	IIL	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	_	-1.0	μΑ
Quiescer	nt			5	-	5	-	0.005	5	-	150	
Device (I_{DD}	$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$	10	-	10	-	0.010	10	-	300	μA
nevice (Jurrent		*	15	-	15	-	0.015	20	-	600	

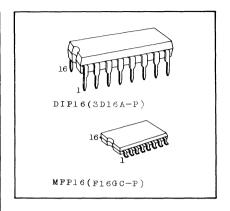

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (CLOCK - Q1)	t _{pLH}		5 10 15	-	140 70 50	360 160 130	
Propagation Delay Time . (CLOCK - Q1)	t _{pHL}		5 10 15	- - -	140 70 50	360 160 130	
Propagation Delay Time	t _{pLH}		5 10 15	- - -	400 160 115	1200 520 430	ns
Propagation Delay Time (CLOCK -Q7)	t _{pHL}		5 10 15	- - -	400 160 115	1200 520 430	
Propagation Delay Time (RESET - Q)	t _{pHL}		5 10 15	- - -	140 70 50	280 120 100	
Max. Clock Frequency	f _{CL}		5 10 15	3.5 8 12	14 30 40	- - -	MHz
Max. Clock Input Rise Time Max. Clock Input Fall Time	t _{rCL}		5 10 15		No Lim	it	μs
Min. Clock Pulse Width	t _w		5 10 15		40 20 15	140 60 40	
Min. Pulse Width (RESET)	t _{WH}		5 10 15		40 20 15	200 80 60	ns
Minimum Removal Time	t _{rem}		5 10 15	1 1 1	0 0 0	350 150 100	
Input Capacitance	c_{IN}			_	5	7.5	pF

TC4024BP/BF

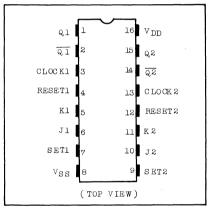
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

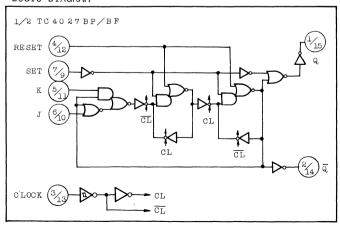

TC4027BP/BF

TC4027BP/TC4027BF DUAL J-K MASTER-SLAVE FLIP-FLOP

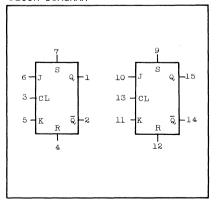
 ${\tt TC4027BP/BF}$ is J-K master-slave flip-flop having RESET and SET functions.

In the case of J-K made, when the clock input is given with both RESET and SET at "L", the output changes at rising edge of the clock according to the states of J and K.


When SET input is placed at "H", and RESET input is placed at "L", outputs become Q="H", and \overline{Q} ="L". When RESET input is placed at "H", and SET input is placed at "L", outputs become Q="L", and \overline{Q} ="H". When both of RESET input and SET input are at "H", outputs become Q="H" and \overline{Q} ="H".


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 \wedge V_{SS} +20	V
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	Topr	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	-


PIN ASSIGNMENT

LOGIC DIAGRAM

BLOCK DIAGRAM

TRUTH TABLE

		INPUTS			OUT	PUTS
RESET	SET	J	K	CLOCK ∆	Q_{n+1}	$\bar{\mathbb{Q}}_{n+1}$
L	Н	*	*	*	Н	L
Н	L	*	*	*	L	Н
Н	Н	*	*	*	Н	Н
L	L	L	L	7	Qn•	Qn ∙
L	L	L	Н		L	H
L	L	Н	L		Н	L
L	L	H	Н		Qn • •	Qn • •
L	L	*	*		Qn•	<u>Qn</u> ∙

* : DON'T CARE

∆ : LEVEL CHANGE• : NO CHANGE

••: CHANGE

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

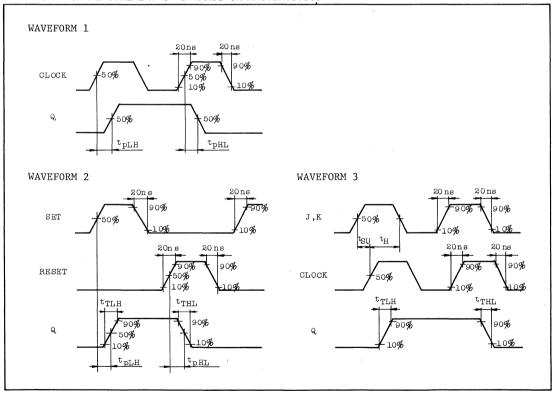
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC	CVMPOI	TEST CONDITION	$V_{ m DD}$	-40)°C		25°C		85	UNITS	
CHARACTERISTIC	STREET	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Level		I _{OUT} <1 μA	5	4.95	-	4.95	5.00	-	4.95	-	
Output Voltage	VOH	77 —77 77	10	9.95	-	9.95	10.00	-	9.95	-	
1		V _{IN} =V _{SS} , V _{DD}	15	14.95		14.95	15.00	-	14.95	_	v
Low-Level	77	I _{OUT} <1μΑ	5	-	0.05	-		0.05	-	0.05	,
Output Voltage	VOL		10	-	0.05	-	0.00	0.05	-	0.05	
		V _{IN} =V _{SS} , V _{DD}	15	_	0.05	-	<u> </u>	0.05		0.05	
		V _{OH} =4.6V V _{OH} =2.5V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
Output High	Torr	V _{OH} =9.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Current	ТОН	V _{OH} =13.5V	10	-1. 5	-	-1.3	-2.2	-	-1.1	-	
		V _{IN} =V _{SS} , V _{DD}	15	-4.0	_	-3.4	-9.0	_	-2.8	-	mA
		V _{OL} =0.4V	5	0.61	-	0.51	1.2	-	0.42	_	
Output Low Current	IOL	V _{OL} =0.5V V _{OL} =1.5V	10	1.5	-	1.3	3.2	-	1.1	-	
		V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	12.0	-	2.8	-	
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	_	
Input High Voltage	VIH	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10	7.0	-	7.0	5.5	_	7.0	_	V
		I _{OUT} <1μA	15	11.0	-	11.0	8.25	_	11.0	-	

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHADACTI	CHARACTERISTIC SYMBOL		TEST CONDITION	V_{DD}	-4	0°C		25°C		859	, C	UNIT
CHARACT			TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
			V _{OUT} =0.5V, 4.5V	5	_	1.5	_	2.25	1.5	-	1.5	
Input Lo Voltage	νW	VIL	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10	_	3.0	_	4.5	3.0	-	3.0	v
			I _{OUT} <1 μA	15	-	4.0	-	6.75	4.0	-	4.0	
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	μА
Current	"L" Level	I_{IL}	V _{IL} =OV	18	_	0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μει
Quiescen		${ m I}_{ m DD}$	V _{IN} =V _{SS} , V _{DD}	5 10	-	1 2	_	0.002 0.004	-	-	30 60	μA
Device C	Device Current		*	15	-	4	-	0.008	4	-	120	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{SS=0V}$, $C_{L=50pF}$)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	- '	70	200	
l ·	tTLH		10	-	35	100	
(Low to High)			15	-	30	80	
Output Transition Time			5	-	70	200	
•	t _{THL}		10	-	35	100	
(High to Low)			15	-	30	80	ns
Propagation Delay Time	t _{pLH}		5	-	150	300	115
	1		10	-	75	130	
(CLOCK - Q, Q)	t _{pHL}		15	_	60	90	
Propagation Delay Time	t _{pLH}		5	-	120	300	
(SET, RESET - Q, \overline{Q})	-		10	_	60	130	
(SEI, RESEI - Q, Q)	t _{pHL}		15	-	45	90	
			5	3.5	8	-	
Max. Clock Frequency	f _{CL}		10	8	16	_	MHz
			15	12	20	-	
Max. Clock Input Rise	trCL		5				
Time Max. Clock Input Fall			10	No	Limit		με
Time	tfCL		15				
Min. Pulse Width			5	-	60	180	
	t _w		10	-	35	80	
(SET, RESET)			15	-	25	50	na
			5	_	60	140	ns
Min. Clock Pulse Width	t _w		10	-	35	60	
,			15	-	25	40	

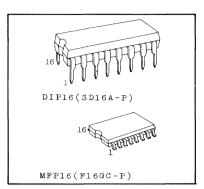
DYNAMIC ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Set-up Time (J, K - CLOCK)	t _{su}		5 10 15	- - -	30 10 5	140 50 35	
Min. Hold Time (J, K - CLOCK)	t _H		5 10 15	-		140 50 35	ns
Min. Removal Time (SET, RESET - CLOCK)	t _{rem}		5 10 15	-	-	. 40 20 15	
Input Capacitance	c_{IN}			_	5	7.5	pF

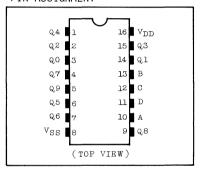
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4028BP/BF

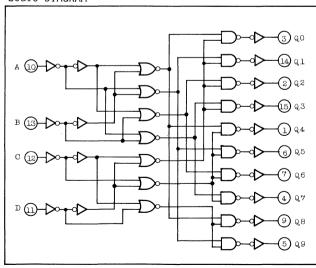
TC4028BP/TC4028BF BCD-TO-DECIMAL DECODER


The TC4028BP/BF is a BCD-to-DECIMAL decoder which converts BCD signal into DECIMAL signal.

Of ten outputs from QO to Q9, one output corresponding to input BCD code goes to the "H" level and all the others remain at the "L" level.


When D is used as inhibit input by use of three input lines from A to C, this decoder can be served as a BINARY-to-OCTAL decoder.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	V _{SS} -0.5 ∿ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300 (DIP)/180 (MFP)	mW
Operating Temperature Range	T_{A}	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

	INP	UTS	3				0	UTI	PUT	S			
D	С	В	Α	୍ଦ୍ର	Q1	Q2	QЗ	Q4	Q5	ର୍ 6	ଦ୍ୟ	ର୍8	ର୍9
L	L	L	L	Н	L	L	L	L	L	L	L	L	L
L	L	L	Н	L	Н	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	ь	L	L	L	Ъ	L
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L
L	Н	L	L	L	L	1º	L	Н	L	L	L	L	L
L	Н	L	Н	L	L	L	L	L	Н	L	L	L	L
L	Н	Н	L	Г	L	L	L	L	L	Н	L	L	L
L	Н	Н	Н	L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	L	L	L	L	L	L	L	L	Н	L
Н	L	L	Н	L	L	L	Ъ	L	L	L	L	Ь	Н
Н	L	Н	ь	L	L	L	L	L	L	L	L	L	L
Н	L	Н	Н	L	L	L	L	L	L	L	L	L	L
Н	Н	L	L	L	L	L	L	L	L	L	L	L	L
Н	' _H	L	Н	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L

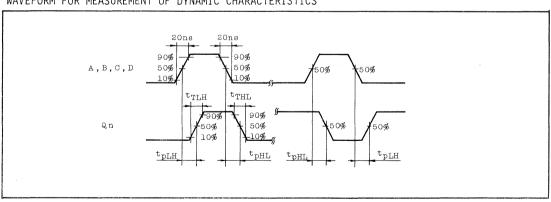
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	, V

STATIC ELECTRICAL CHARACTERISTICS

CHARACTI	EDICTIC		TEST CONDITION	$v_{ m DD}$	-4	0°C		25°C		8	5°C	UNIT
CHARACII	EKISIIC		TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
High-Leve Output Vo		v _{OH}	I _{OUT} < 1 _µ A V _{IN} =V _{SS} ,V _{DD}	5 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95	10.00	-	4.95 9.95 14.95	-	V
Low-Level		$v_{ m OL}$	I _{OUT} < 1µA V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	0.05 0.05 0.05			0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
Output H Current	igh	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , DD	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - -	-0.51 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0	- - -	-0.42 -1.7 -1.1 -2.8	- - -	mA
Output Lo	ow .	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} ,V _{SS}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	- - -	0.42 1.1 2.8	- - -	
Input Hig Voltage	gh	V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1μA		3.5 7.0 11.0	, - - -	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	V
Input Lov Voltage	w	$ m v_{IL}$	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1μA	10	- - -	1.5 3.0 4.0	- -	2.25 4.5 6.75	3.0	- - -	1.5 3.0 4.0	V
Input Current	"H" Level "L" Level	IIH	$V_{IH}=18V$ $V_{IL}=0V$	18	-	0.1	-	10 ⁻⁵	0.1	-	1.0	μA

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

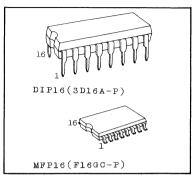

I CHADACTEDICTIC I	SYM- TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85	UNIT	
	BOL	IDDI GONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
Quiescent			5	-	5	ł	0.005	5	. –	150	
Device Current	I ^{DD}	VIN=VSS, VDD	20	-	10 20		0.010	10 20	- -	300 600	μА

^{*}All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

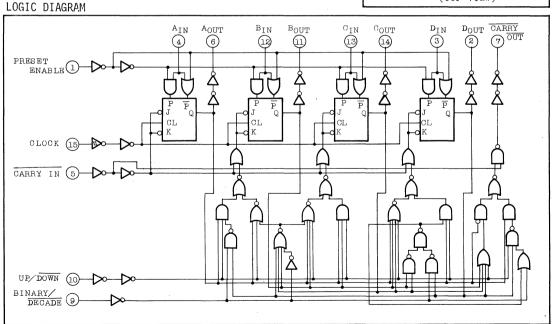
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)	t _{TLH}		5 10 15	, - - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	ns
Propagation Delay Time	t _{pLH}		5 10 15	- - -	110 55 40	350 160 120	ns
Input Capacitance	c_{IN}			-	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

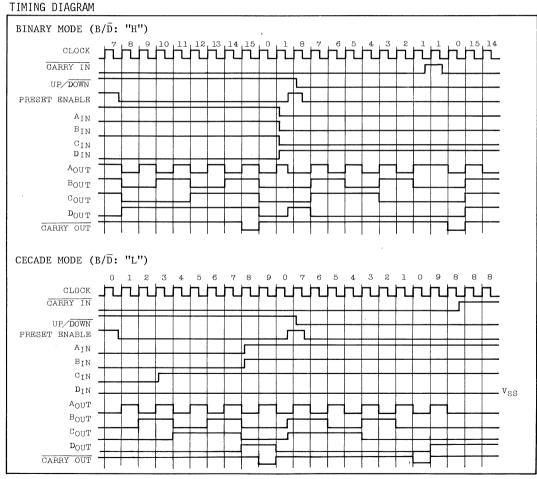

TC4029BP/BF

TC4029BP/TC4029BF PRESETTABLE UP/DOWN COUNTER

TC4029BP/BF is up/down counter having the capabilities of preset operation, parallel carry connection and decimal/binary switching. Switching of decimal counter and binary counter is controlled by BINARY/ $\overline{\text{DECADE}}$ input("H"-Binary and "L"-Decimal), and switching of UP/ $\overline{\text{DOWN}}$ is controlled by UP/ $\overline{\text{DOWN}}$ input ("H"-Count up and "L"-Count down). As PRESET ENABLE input at "H" level causes input information at A_{IN} through D_{IN} to be directly input to the flip-flops, any arbitrary count can be set. The counter advances its counting state by rising edge of CLOCK input.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	I _{IN}	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10sec	


PIN ASSIGNMENT

PRESET			L
ENABLE	1	16	$v_{ m DD}$
D_{OUT}	2	15	CLOCK
D_{IN}	3	14	$c_{ ext{OUT}}$
AIN	4	13	c_{IN}
CARRY IN	5	12	B_{IN}
$_{ m TUO^A}$	6	11	Bour
CARRY OUT	7	10	UP/DOWN
v_{SS}	8	19	BINARY/
	(TOP	VIEW)	DECADE

TRUTH TABLE

CARRY IN	PRESET ENABLE	UP/DOWN	BINARY/DECADE	OPERATION	
L	L	Н	*	UP CONUT	
L	L	L	*	DOWN COUNT	
*	Н	*	*	PRESET	* Don't care
Н	L	*	*	NO COUNT	" Doll t care
L	L	*	Н	BINARY COUNT	
L	L	*	L	DECADE COUNT	

RECOMMENDED OPERATING CONDITIONS (\dot{v}_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

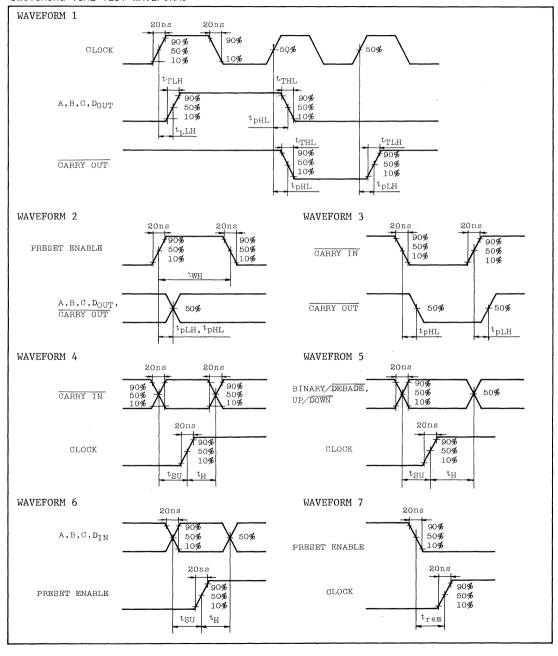
CHARACTE	DICTIC	CVMPOT	TEST CONDITION	v_{DD}		40°C		25°C		85	°C	UNIT
CHARACTE	KISTIC	9 THIOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High-Lev	7 0 1		Ι _{ΟυΤ} < 1μΑ	5	4.95		4.95	1	-	4.95	-	
Output V		VOН	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
output,	oreage		VIN-VSS, VDD	15	14.95	_	14.95	15.00	-	14.95	-	v
Low-Leve	<u> </u>		$ I_{OUT} < 1_{\mu}A$	5	-	0.05	-	0.00	0.05	-	0.05	'
Output V	/oltage	$v_{ m OL}$	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10	-	0.05	-	0.00	0.05	-	0.05	
•	Ü		.IN .SS, .DD	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
0	T. 2 - 1-		$V_{OH}=2.5V$	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output E	iign	I_{OH}	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	_	
			$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$									
			V _{OL} =0.4V	5	0.61	-	0.51	1.2	-	0.42	-	mA
Output I	Low	Т	$V_{\rm OL}$ =0.5V	10	1.5	-	1.3	3.2	-	1.1	-	
Current		$^{\mathrm{I}}\mathrm{OL}$	$V_{OL}=1.5V$	15	4.0	-	3.4	12.0	_	2.8	-	
			$v_{\mathrm{IN}}=v_{\mathrm{SS}}$, v_{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	-	
Input Hi	igh	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	. –	7.0	-	
Voltage		V TH	V _{OUT} =1.5V, 13.5V	15	11.0	_	11.0	8.25	_	11.0	-	
J			$ I_{OUT} < 1_{\mu}A$,			
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	-	1.5	V
Input Lo	ow		V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage		$\Lambda^{\mathrm{I}\Gamma}$	V _{OUT} =1.5V, 13.5V	15		4.0	_	6.75	4.0	-	4.0	
		$ I_{OUT} < 1\mu A$										
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μА
Current	"L" Level	I_{IL}	V _{IL} =0V	18	_	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μА

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC SYM	SYMBOL	MBOL TEST CONDITION		-40°C		25°C			85°C		UNIT
CHARACTERISTIC	STRIBUL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Quiescent			5	-	5	_	0.005	5	_	150	
Device Current	I_{DD}	$v_{\mathrm{ID}} = v_{\mathrm{SS}}$, v_{DD}	10	_	10	-	0.010	10	-	300	μА
pevice Current		*	15	-	20	-	0.015	20	-	600	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $\rm V_{SS}=0V,\ C_L=50pF)$

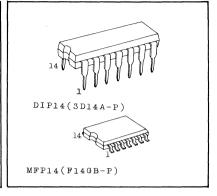

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	70	200	
	t_{TLH}		10	-	35	100	
(Low to High)			15	_	30	80	
Output Transition Time			5	_	70	200	
1	t_{THL}		10	_	35	100	
(High to Low)			15	_	30	80	
Propagation Delay Time	t _{pLH}		5	-	180	470	
	t_{pHL}		10	_	85	200	
(CLOCK - A, B, C, D _{OUT})	орнь		15	-	65	160	
Propagation Delay Time	t _{pLH}		5	_	220	500	
			10	-	100	260	
(CLOCK - CARRY OUT)	t_{pHL}		15	-	75	190	
Propagation Delay Time	t _{pLH}		5	-	180	470	ns
(PRESET ENABLE	•		10	-	85	200	
- A, B, C, D _{OUT})	t_{pHL}		15	-	65	160	
Propagation Delay Time	t _{pLH}		. 5	-	240	640	
(PRESET ENABLE	-		10	-	110	290	
- CARRY OUT)	t _{pHL}		15	-	80	210	
Propagation Delay Time	t _{pLH}		5	_	85	340	
	-		10	-	45	100	
(CARRY IN - CARRY OUT)	t_{pHL}		15	-	35	80	
			5	_	40	130	
Min. Clock Pulse Width	t _w		10	-	20	70	
			15	_	15	50	

TC4029BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Pulse Width	t _{WH}		5 10	-	55 25	130 70	ns
(PRESET ENABLE)			15	-	20	50	·
		· ·	5	2	5	_	
Max. Clock Frequency	f _{CL}		10	4	10	_	MHz
			15	5.5	14	-	
Max. Clock Input Rise Time	trCL		5				
-			10	ı	No Limit	:	μs
Max. Clock Input Fall Time	tfCL		15				
Min. Set-up Time			5	-	75	140	
(CARRY IN - CLOCK)	t _{SU}		10	-	35	60	
(CARRI IN - CLOCK)			15	-	25	30	
Min. Set-up Time			5	-	120	320	
•	t _{SU}		10	-	55	130	
(B/D̄, U/D̄ - CLOCK)			15	-	40	90	
Min. Set-up Time			5	-	35	70	
	t _{SU}		10	-	15	30	
(A,B,C,D - PRESET ENABLE)			15	-	10	20	
Min. Hold Time			5	-	_	50	
	t _H		10	-		30	ns
(CARRY IN - CLOCK)			15	_	-	25	
Min. Hold Time			5	-	_	30	
	t _H		10	-	-	30	
$(B/\overline{D}, U/\overline{D} - CLOCK)$			15	-	<u>'</u> _	30	
Min. Hold Time			5	_	15	70	
	t _H		10	-	10	40	
(A,B,C,D - PRESET ENABLE)		٠	15	-	5	40	
Min. Removal Time			5	-	40	150	
	trem		10	-	20	80	
(PRESET ENABLE - CLOCK)	İ		15	-	15	60	
Input Capacitance	c_{IN}			_	5	7.5	pF

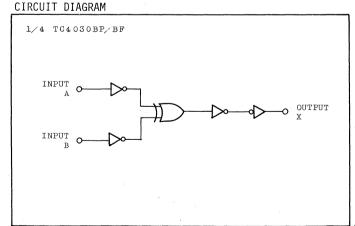
SWITCHING TIME TEST WAVEFORMS

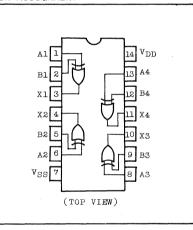


TC4030BP/BF

TC4030BP/TC4030BF QUAD EXCLUSIVE-OR GATE

TC4030BP/BF contains four circuits of exclusive OR gates. Since the buffers of two stage inverters are provided for all the outputs, the input/output voltage characteristic has been improved and the noise immunity has been also improved. And increase of transmission time due to load capacity increase is kept minimum.


Wide variety of applications are offerred, such as digital comparators and parity circuits.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} - 0.5 \ v_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	-40 ∿85	°C
Storage Temperature Range	T _{stg}	-65 ∿150	°C
Lead Temp./Time	Tso1	260°C · 10 sec	

Jour Lomp 1, Limit

PIN ASSIGNMENT

TRUTH TABLE

INP	UTS	OUTPUT
A	В	Х
L	L	Ľ
L	Н	Н
Н	L	Н
Н	Н	L

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	AIN	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=OV)

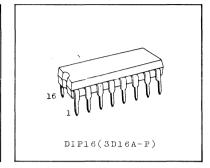
QUADA CEED I CEILC	GYMBOI	TEGE CONDITIONS	$v_{ m DD}$	-4	0°C		25°C		85	°C	UNITS
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Level Output Voltage	V _{OH}	$ I_{OUT} < 1_{\mu}A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95	-		5.00 10.00 15.00		4.95 4.95 14.95		v
Low-Level Output Voltage	V _{OL}	$ I_{OUT} < 1_{\mu}A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	-	0.05 0.05 0.05	- - -	0.00 0.00 0.00	0.05	- - -	0.05 0.05 0.05	
Output High Current	I _{OH}	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - -	-0.51 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0	- -	-0.42 -1.7 -1.1 -2.8	- - -	mA
Output Low Current	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	-	0.42 1.1 2.8	- - -	
Intput High Voltage	v _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 µA	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	v
Input Low Voltage	VIL	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V, 13.5V I _{Out} <1 µA	5 10 15	-	1.5 3.0 4.0	-	2.25 4.5 6.75	1.5 3.0 4.0	-	1.5 3.0 4.0	
Input Level Current "L"	IIH	V _{1H} =18V	18		0.1	_	10-5	0.1	_	1.0	μA
Level	IIL	AIT=0A	18	_	-0.1	_	-10-5	-0.1	_	-1.0	
Quiescent Device Current	I _{DD}	v _{IN} =v _{SS} , v _{DD}	5 10 15	- - -	1 2 4	- - -	0.001 0.001 0.002	2	-	7.5 15 30	μА

^{*} All valid input combinations.

TC4030BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

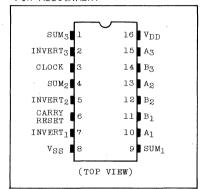
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	_	70	200	
(Low to High)	t _{TLH}		10	-	35	100	
			15	_	30	80	ns
Output Transition Time			5	-	70	200	0
· ·	t _{THL}		10	-	. 35	100	
(High to Low)			15	-	30	80	
	tpLH		5	-	90	280	
Propagation Delay Time			10	-	45	130	ns
	t _{pHL}		15	_	35	100	
Input Capacitance	c_{IN}			_	5	7.5	pF

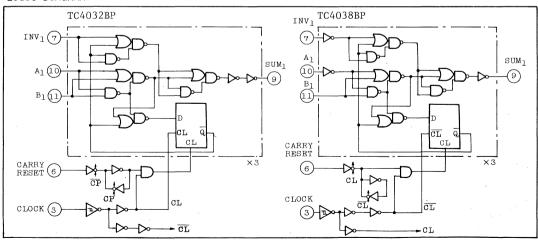

TC4032BP, TC4038BP

TC4032BP TRIPLE SERIAL ADDER (POSITIVE LOGIC ADDER)
TC4038BP TRIPLE SERIAL ADDER (NEGATIVE LOGIC ADDER)

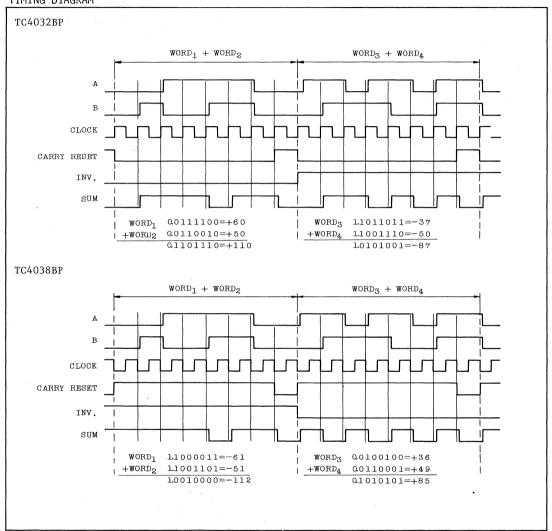
TC4032BP and TC4038BP are tripple serial adders having common CLOCK input and CARRY RESET input to all the adders.

Each adder has two SERIAL DATA inputs (An and Bn; n=1 - 3), INVERT input and SUM output. When INVERT input is "L", both TC4032BP and TC4038BP perform positive addition and when it is "H", negative addition is performed.


CARRY of TC4032BP is triggered by rising edge of CLOCK and CARRY of TC4038BP is triggered by falling edge of CLOCK.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	$V_{\rm IN}$ $V_{\rm SS}$ -0.5 ~ $V_{\rm DD}$ +0.5		V
Output Voltage	V_{OUT} $V_{SS}-0.5 \sim V_{DD}+0.5$		V
DC Input Current	at I _{IN} ±10		mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~85	°C
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	Tso1	260°C . 10 s	ec

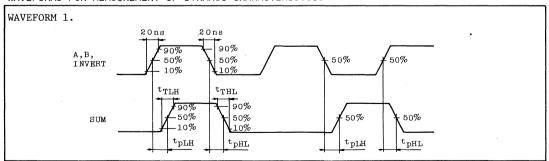

PIN ASSIGNMENT

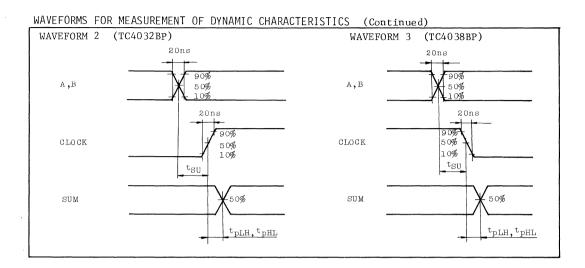
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}	3	_	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

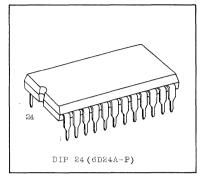

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85°	,C	UNIT
CIERCAGIERIBITE	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
		$ I_{ m OUT} < 1 \mu { m A}$	5	4.95	_	4.95	5.00	7	4.95	_	
High-Level Output Voltage	VOH		10	9.95		9.95	10.00	_	9.95	_	
Caspat Tollage		· IN · 33, · DD	15	14.95	_	14.95	15.00	-	14.95	_	v
		 I _{OUT} <1 <i>µ</i> A	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	VOL		10	-	0.05	-	0.00	0.05	-	0.05	
		· 1W · 303 · DD	15	-	0.05	_	0.00	0.05	_	0.05	
,		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	_	-1.7	_	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		V _{IN} =V _{SS} ,V _{DD}									mA
		VOL=0.4V	5	0.61	-	0.51	1.5	_	0.42	_	
Output Low	IOL	VOL=0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current	-OL	VOL=1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_	
Input High	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		VouT=1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		$ I_{ m OUT} < 1 \mu A$									v
		V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	
Input Low	$v_{\rm IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage	12	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
		$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$					**				
Input "H" Level	L	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μA
Current "L" Level	IIL	VIT=0A	18	-	-0.1	-	-10-5	-0.1	-	-1.0	
Outogoomt Dorde			5	-	5	-	0.005	5	-	150	
Quiescent Device Current	IDD	V _{IN} =V _{SS} ,V _{DD}	10	_	10	-	0.010	. 10	-	300	μA
			15	_	20	_	0.015	20	-	600	


^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	80	200	
(Low to High)	tTLH		10	_	50	100	
(Low to High)			15	-	40	80	ns
Output Transition Time			5	-	80	200	no
(High to Low)	tTHL		10	-	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	tpLH		5	-	240	650	
(CLOCK - SUM)	tpHL		10	-	95	350	
(OLOGIC SOII)	- cpiil		15	-	70	300	ns
Propagation Delay Time	t		5	_	330	660	5
(A,B,INV - SUM)	t _{pLH} t _{pHL}		10	-	130	260	
(11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	-рнг		15	-	95	190	
			5	2.5	5	-	
Max. Clock Frequency	f _{CL}		10	. 5	10	-	MHz
		·	15	6	12		
Max. Clock Input Rise	trCL		5				
Time Max. Clock Input Fall	tfCL		10	N	o Limit		μs
Time	FICE		15				
Min. Set-up Time			5	-	80	200	
(A,B - CLOCK)	tsu	·	10	-	30	80	ns
(,5 02001/)			15	_	20	60	
Input Capacitance	CIN			_	5	7.5	pF

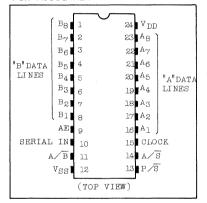
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

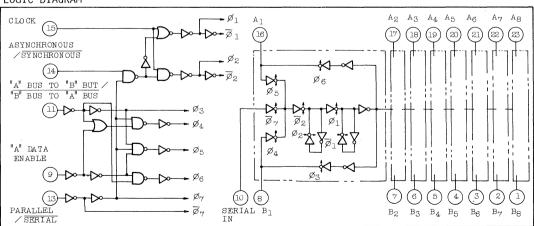


TC4034BP 8-STAGE STATIC BIDIRECTIONAL PARALLEL/SERIAL INPUT/OUTPUT BUS REGISTER

TC4034BP is bidirectional 8 bit bus register having eight data input/output lines A_1 through A8 and another set of eight data input/output lines B1 through B8. Switching of input/output for A data lines and B data lines is controlled by A/\overline{B} input terminal and selection of serial operation/parallel operation is controlled by P/ \overline{S} input terminal. (PARALLEL OPERATION)

When P/S input is placed at "H", synchronous or asynchronous parallel data can be input. (SERIAL OPERATION)


When P/\overline{S} input is placed at "L", serial data can be read synchronously.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	V_{SS} -0.5 ~ V_{DD} +0.5	V
Output Voltage	V _{OUT} V _{SS} -0.5~V _{DD} +0.5		V
DC Input Current	I_{IN}	N ±10	
Power Dissipation	$P_{\mathbf{D}}$	300	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	T _{stg}	- 65∼150	°C
Lead Temp./Time	Tso1	260°C · 10 sec	:

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

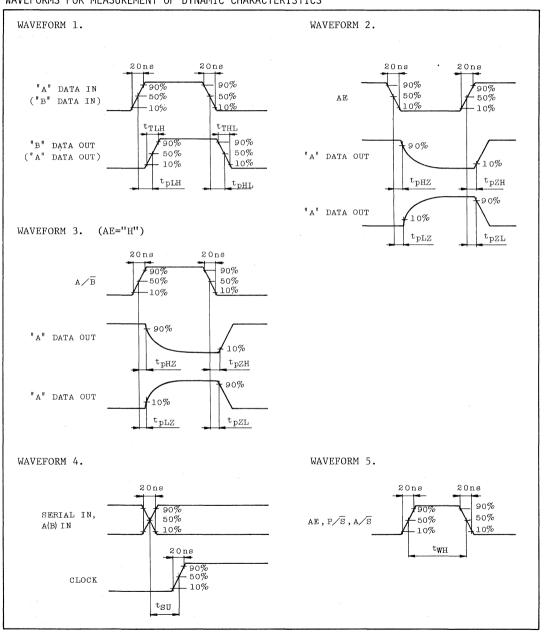
AE	P/S	A/\overline{B}	A/S	MODE	OPERATION
L	L	L	*	Serial	Synchronous Serial data input, "A" Parallel data outputs disabled
L	L	Н	*	Serial	Synchronous Serial data input, "B" Parallel data output
L	Н	L	L	Parallel	"B" Synchronous Parallel data inputs, "A" Parallel data outputs disabled
L	Н	L	Н	Parallel	"B" Asynchronous Parallel data inputs, "A" Parallel data outputs disabled
L	Н	Н	L	Parallel	"A" Parallel data inputs disabled, "B" Parallel data outputs, Synchronous data recirculation
L	Н	Н	Н	Parallel	"A" Parallel data inputs disabled, "B" Parallel data outputs, Asynchronous data recirculation
Н	L	L	*	Serial	Synchronous Serial data input, "A" Parallel data outputs
Н	L	Н	*	Serial	Synchronous Serial data input, "B" Parallel data outputs
Н	Н	L	L	Parallel	"B" Synchronous Parallel data inputs, "A" Parallel data outputs
Н	Н	L	Н	Parallel	"B" Asynchronous Parallel data inputs, "A" Parallel data outputs
Н	Н	Н	L	Parallel	"A" Synchronous Parallel data inputs, "B" Parallel data outputs
Н	Н	Н	Н	Parallel	"A" Asynchronous Parallel data inputs, "B" Parallel data outputs

* Don't care

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3		18	, V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V.

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)


CHARACT	TED TOTTO	SYM-	TEST CONDITION	V _{CC}	-40)°C		25°C		85°	,C	UNIT	
CHARACI	TERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
			I _{OUT} <1μΑ	5	4.95	-	4.95	5.00	_	4.95	-		
High-Lev Output V		VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	_	9.95	10.00	_	9.95	-		
оперие (ortage		*IN *25,*DD	15	14.95	_	14.95	15.00	-	14.95	_	v	
			$ I_{OUT} < 1\mu$ A	5	_	0.05		0.00	0.05	-	0.05	1	
Low-Leve Output V		VOL	V _{IN} =V _{SS} , V _{DD}	10	_	0.05	-	0.00	0.05	-	0.05		
очерие .			· IN '55, DD	15	-	0.05	-	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	_		
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-		
Output H Current	ligh	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	-		
Carrene			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	_		
			$v_{\text{IN}}=v_{\text{SS}}, v_{\text{DD}}$									mA	
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	_		
Output I	JOW	IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	-	1.1	_		
Current		1.00	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	_		
			V _{IN} =V _{SS} ,V _{DD}										
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	_		
Input Hi	igh	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	· -	7.0	5.5	-	7.0	-		
Voltage		,,,,,	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	_	11.0	-		
			I _{OUT} < 1μΑ										
			VOUT=0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	V	
Input Lo	ow .	\v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0		
Voltage		1.11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0		
			$ I_{OUT} < 1\mu A$								*		
Input	"H" Lev	el I _{IH}	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μA	
Current	"L" Lev	el I _{IL}	V _{IL} =0V	18	_	-0.1	_	-10-5	-0.1	-	-1.0	,	
3-State Output			V _{OUT} =18V	18	_	0.4	_	10-5	0.4	-	12		
Leakage Current	"L" Lev	el I _{DL}	v _{OUT} =0v	18	_	-0.4	_	-10-4	-0.4	-	-12	μА	
Quiesce	at Dovice		34	5	-	5	_	0.010	5	-	150		
Current	ir bevic	IDD	V _{IN} =V _{SS} ,V _{DD}	10 15	- -	10 20	- -	0.020	10 20	-	300 600	μA	

^{*} All valid input combinations.

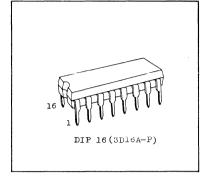
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	80	200	
(Low to High)	tTLH		10	-	50	100	
(Low to High)			15	-	40	80	ns
Output Transition Time			5	_	80	200	no no
(High to Low)	tTHL		10	_	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	t _{pLH}		5	-	260	700	
$(A(B)_{IN} - B(A)_{OUT})$	t _{pHL}		10	-	100	240	ns
(11(2) IN 2 (11) 00 I)	-pnL		15	-	65	170	
Propagation Delay Time	t _{pLZ}		5	-	130	400	
	t _{pZL} t _{pHZ}	$R_L=1k\Omega$	10	-	55	160	ns
(AE - A _{OUT})	tpZH		15	-	30	120	
			5	1.4	2.9	, -	
Max. Clock Frequency	f _{CL}		10	3.5	7.1	-	MHz
			15	5.1	10.2	_	
Max. Clock Input Rise	trCL		5	20	-	-	
Time Max. Clock Input Fall	tfCL		10	2.5	-	-	μs
Time	LICE		15	1.0	_	-	
			5	-	175	350	
Min. Clcok Pulse Width	tw		10	-	70	140	ns
			15	_	50	100	
Min. Pulse Width			5	-	145	290	
$(AE, P/\overline{S}, A/\overline{S})$	tWH		10	-	55	110	ns
(111,170, 1170)			15	-	40	80	
Min. Set-up Time		- AMERICAN SET AND AMERICAN	5	_	80	160	
(SERIAL IN - CLOCK)	tsu		10	_	30	60	ns
(SERVINE IN OBOOK)			15	-	20	40	
Min. Set-up Time			5	_	60	150	
(A(B) _{IN} - CLOCK)	t _{SU}		10	-	20	50	ns
(= (z) IM			15	_	10	25	
Input Capacitance	CIN			_	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4035BP

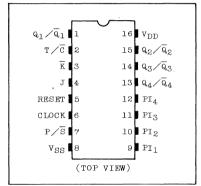
TC4035BP 4-STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER

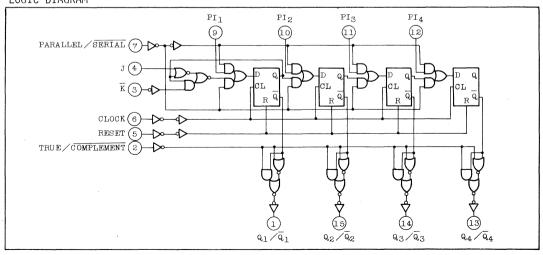

 ${\tt TC4035BP}$ is 4 bit shift register having SERIAL mode and PARALLEL mode.

When PARALLEL/SERIAL CONTROL input is placed at "h", the parallel mode operation is designated and when it is placed at "L", the serial mode operation having J,K logical inputs is designated.

The outputs are changed by rising edge of CLOCK input for both modes. When TRUE/COMPLEMENT Terminal is placed at "H", non-inverted signal is output and when

it is placed at "L", inverted signal is output. When RESET input is placed at "H", the content of register is reset regardless of other inputs. In the case of SERIAL input, J and \overline{K} are connected for the data inputs.


for the data inputs.


ABSOLUTE MAXIMUM RATINGS

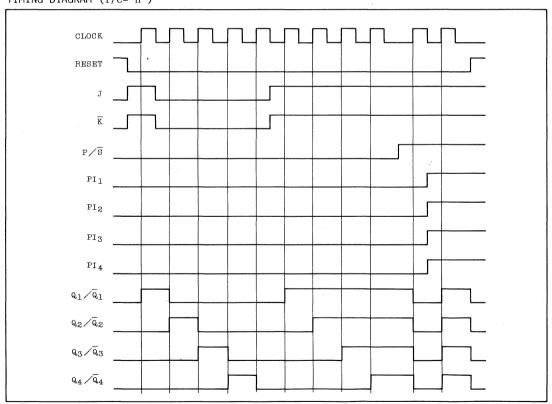
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD} V_{SS} -0.5 \sim V_{SS} +20		V
Input Voltage	v_{IN} v_{SS} -0.5 $\sim v_{DD}$ +0.5		V
Output Voltage	V _{OUT} V _{SS} -0.5 ~ V _{DD} +0.5		V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	- 40 ∼ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

	T/C="L")	INPUTS OUTPUTS (T/C="H") OUTPUTS (T/C="L")							INP		
* Don't	Q_n/\overline{Q}_n	Q_1/\overline{Q}_1	Q_n/\overline{Q}_n	Q_1/\overline{Q}_1	PIn	PI ₁	K	J	P/S	CLOCK∆	RESET
∆ Level	Η.	Н	L	L	٠	*	*	*	*	*	Н
. No ch	Н	Н	L	L	L	L	*	*	Н		L
Chang	L	L	Н	Н	Н	Н	*	*	Н		L
		Н .		L	*	*	L	L	L		L
n:2~4	${Q_{n-1}}$	$\overline{\mathtt{Q}}_{1}.$	Q_{n-1}	Q_1 .	*	*	Н	· L	L		L
	411-1	Q1	≈n-1	$\overline{\mathtt{Q}}_1\cdots$	*	*	L	Н	L		L ·
		L		Н	*	*	Н	Н	L		L
	\overline{Q}_{n} .	\overline{Q}_1 .	Qn.	Q_1 .	*	*	*	*	*	7_	L


Don't care

Level change

No change

Change

TIMING DIAGRAM (T/C="H")

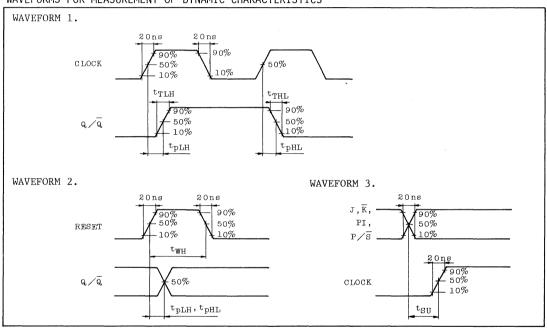
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	VIN	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

. CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85	5°C	UNIT	
	BOL	The Compliant	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
		I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-		
High-Level Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	_		
		TIN GO, DD	15	14.95	_	14.95	15.00		14.95		v	
		I _{OUT} <1#A	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05		
		IN CO. DD	15	_	0.05		0.00	0.05	_	0.05		
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_		
0	I _{OH}	V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-		
Output High Current		V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	· -		
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-		
		$v_{\rm IN}=v_{\rm SS},v_{\rm DD}$									mA	
		V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	_	mA	
Output Low	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	.	
Current	02	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-		
		V _{IN} =V _{SS} ,V _{DD}										
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75		3.5	_		
Input High	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-		
Voltage		V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-		
		I _{OUT} <1μΑ									v	
		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V	
Input Low Voltage	v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0		
voicage		V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0		
		I _{OUT} <1μA										
Input "H" Leve	1	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	μA	
Current "L" Leve	IIL	VIT=OA	18	-	-0.1	_	-10-5	-0.1	-	-1.0	<i>μ</i> 21	
Quiescent Device			5	-	5	_	0.005	5	-	150		
Current	IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA	
		^	15		20	-	0.015	20	-	600		

^{*} All valid input combinations.

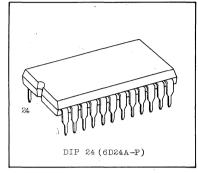

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Trnasition Time			5	_	80	200	
· ·	tTLH		10	_	50	100	
(Low to High)			15	_	40	80	ns
Output Transition Time			. 5	-	80	200	115
(High to Low)	tTHL		10	_	50	100	
(High to how)			15	-	40	80	
Propagation Delay Time	t _{pLH}		5	-	190	500	
(CLOCK - Q/\overline{Q})	t _{pHL}		10	-	75	200	ns
(OBOOK Q/Q)	Phil		15		55	150	
Propagation Delay Time	t _{pLH}		5	-	160	460	
(RESET - Q/\overline{Q})	tpHL		10	_	65	200	ns
(NEOET Q/Q)	opin		15	-	45	160	
			5	2	4	-	
Max. Clock Frequency	f _{CL}		10	6	12	-	MHz
			15	8	16	-	
Max. Clock Input Rise	trCL		5	20	_	_	
Time. Max. Clock Input Fall	tfCL		10	2.5	-	-	μS
Time	LICE		15	1.0	-	-	
:		4	5	-	125	250	
Min. Clock Pulse Width	t _w	*	10	-	45	90	ns
			15	-	30	60	
Min. Pulse Width			. 5	-	110	250	
(RESET)	tWH		10	-,	45	110	ns
(KLOLI)			15	_	30	80	
Min. Set-up Time			5	-	55	220	
/- - >	t _{SU}		10	· <u> </u>	20	80	ns
(J,K - CLOCK)			15	-	15	60	
Min. Set-up Time			5	-	40	140	
(PI - CLCOK)	tsu		10	_	15	50	ns
(II - GLOOK)			15	_	10	40	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Set-up Time			5	_	40	500	
$(P/\overline{S} - CLOCK)$	tsü		10	-	15	. 200	ns
(170 OHOOK)			15	-	10	150	
Input Capacitance	CIN			_	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

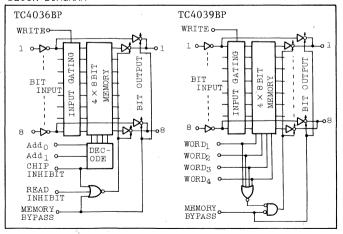


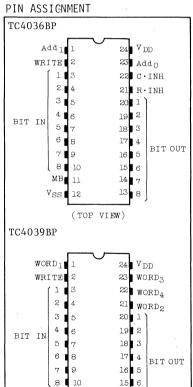
TC4036BP 4 WORD × 8 BIT STATIC RAM (BINARY ADDRESSING) TC4039BP 4 WORD × 8 BIT STATIC RAM (DIRECT WORD-LINE ADDRESSING)

TC4036BP/TC4039BP are static RAM of 4×8 bits and since eight data input/output lines are mutually independently provided for one word, wide variety of applications are expected for scratch pad memories. channel preset memories of digital frequency synthesizer systems, etc.

TC4036BP Each word is binarily selected by two lines of address inputs An and A1.

TC4039BP Each word is directly selected by mutually independent four lines of address inputs WORD 1 through WORD 4.




ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10 sec	:

DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300	mW
Operating Temperature Range	TA	-40 ~ 85	°C
Storage Temperature	Teta	-65 ~ 150	°C

BLOCK DIAGRAM

11

(TOP VIEW)

MB

 v_{ss}

14 7

13

FUNCTION TABLE

TC4036	BP							
WRITE	READ INHIBIT	MEMORY BYPASS	CHIP INHIBIT	OPERATIONAL MODEL				
*	*	L	Н	Each bit output has high impedance generating floating condition. Writing into the memory is not performed.				
*	*	Н	H L	Bit input data is directly output to the corresponding bit output. The memory retains the content of bit				
L H	*	Н	L	input data written in previous write mode. Bit input data is directly output to the corresponding bit output. But input data is written into the word memory designated by address inputs AO and A1.				
L	L	L	L	Memory data is read from the word designated by address inputs ${\rm A}_0$ and ${\rm A}_1$. Writing into the memory is not performed.				
L	Н	L	L	Each bit output has high impedance generating floating condition. Writing into the memory is not performed.				
Н	L	L	L	As well as each bit input data is written into the word memory designated by address inputs AO and Al, thinput data is read out.				
Н	Н	L	L	Each bit output has high impedance generating floating condition. Each bit input data is written into the word memory designated by address inputs A_0 and A_1 .				
TC4039	ВР							
WRITE	MEMORY BYPASS	WORD1 ~ WORD4		OPERATIONAL MODE				
*	L	all L	conditio	output has high impedance generating floating on. The memory retains the content of bit input data in previous write mode.				
*	Н	all L	Bit inpu	t data is directly output to the corresponding bit The memory retains the content of bit input data				
L	Н	∞	written	in previous write mode.				
Н	Н	<u> </u>	output.	t data is directly output to the corresponding bit Each bit input data is written into the memory ed by the word input.				
L	L	ΔΔ		ata designated by the word input is read out. Writing memory is not performed.				
Н	L	$\triangle \triangle$		as each bit input data is written into the memory ed by the word input, the input data is read out.				
* Don	't care	ΔΔ I	Only one	WORD input has "H" level.				

ADDRESS TRUTH TABLE

Н

TC4036BP		
Add1	Add0	ADDRESSED WORD
L	L	WORD 1
L	Н	WORD 2
Н	L	WORD 3

Н

TC4		

WORD 1	WORD 2	WORD 3	WORD 4	ADDRESSED WORD
Н	L	L	L	WORD 1
L	Н	L	L	WORD 2
L	L	Н	L	WORD 3
L	L	L	Н	WORD 4
L	L	L	L	NONE
	OTHER	*		

* Inhibit mode

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

WORD 4

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$V_{ m DD}$	3	_	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

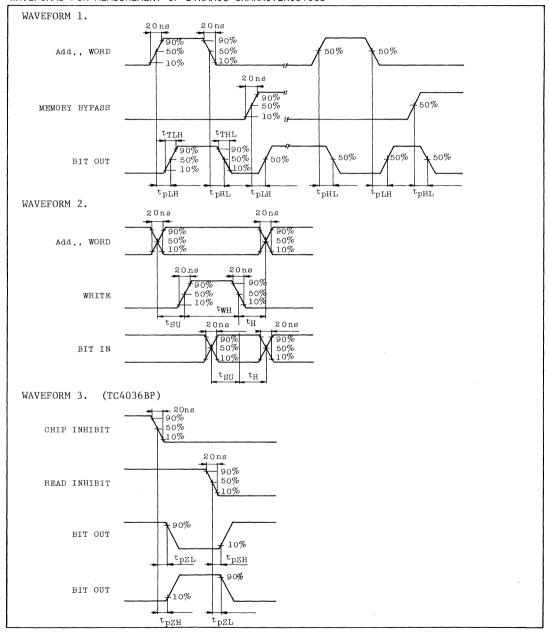
CHARACTERISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85°	,C	UNIT
CHARACTERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High-Level Output Voltage		I _{OUT} <1μΑ	5	4.95	-	4.95	5.00	_	4.95	-	
	VOH	V _{IN} =V _{SS} ,V _{DD}	10 15	9.95	_	9.95 14.95	10.00 15.00	_	9.95 14.95	_	
		I _{OUT} < 1 <i>µ</i> A	5	_	0.05	_	0.00	0.05		0.05	V
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
output vortage		· IN · 33, · DD	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_	
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									
		V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	_	mA
Output Low	I_{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current	OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	_	
		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTER	ISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85°	,c	UNIT
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High		v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} < 1μΑ									.,
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	_	1.5	V
Input Low	Input Low Voltage		V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage			V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu{ m A}$									
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	
Current	"L" Level	I_{IL}	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	-	-1.0	μА
3-State Output	"H" Level	I _{DH}	V _{OUT} =18V	18	-	0.4		10-4	0.4	_	12	
Leakage Current	"L" Level	$I_{ m DL}$	V _{OUT} =0V	18	-	-0.4	_	-10-4	-0.4	-	-12	μA
Quiescent Device Current				5	-	5	_	0.005	5	-	150	
		IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μΑ
			*	15	-	20	_	0.015	20	-	600	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	80	200 .	
(Low to High)	t_{TLH}		10	-	50	100	
(Low to high)			15	-	40	80	
Output Transition Time			5	_	80	200	ns
(High to Low)	t_{THL}		10	-	50	100	
(High to how)			15	-	40	80	

TC4036BP, TC4039BP

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

DINAMIC ELECTRICAL CHARA		165 (1a-25 6, VS)	, or, or	Jopr,			
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time	tpZL		5	-	200	750	
(R·INH - BIT OUT)	t _{pZH}	$R_L=1k\Omega$	10	-	90	350	ns
(TC4036BP)	Срин		15	-	70	300	
Propagation Delay Time	t 27		5	-	250	750	
(C·INH - BIT OUT)	t _{pZL}	$R_L=1k\Omega$	10	-	120	350	ns
(TC4036BP)	t _{pZH}	·	15	_	90	300	
Propagation Delay Time	t		5	-	210	750	
(M·B - BIT OUT)	t _{pLH}		10	-	100	350	ns
(II-D = DII OOI)	t _{pHL}		15	-	80	300	
Propagation Delay Time	+		5	_	260	750	
(Add.WORD - BIT OUT)	t _{pLH}		10	-	110	350	ns
(Add: WORD BIT OUT)	t _{pHL}		15	-	80	300	
Min. Set-up Time			5	-	45	200	
(Add. WORD - WRITE)	tsu		10	_	25	110	ns
(Add. WORD - WRITE)			15	-	20	60	
Min. Hold Time			5	-	-60	100	
	t _H		10	_	-35	70	ns
(Add. WORD - WRITE)			15	_	-25	40	
Min. Pulse Width			5	_	60	150	
(WRITE)	t_{WH}		10	-	20	60	ns
(WILLE)		,	15	-	15	50	
Min Cot mi			5	_	-20	100	
Min. Set-up Time	tsu		10	_	-15	50	ns
(BIT IN - WRITE)	50		15	_	-10	40	
W. T. 1.1 m.			5		40	200	
Min. Hold Time	t _H		10	_	25	90	ns
(BIT IN - WRITE)	11		15	, -	20	60	
Input Capacitance	CIN			_	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4040BP/BF

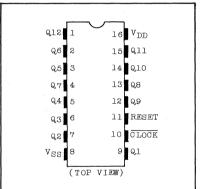
TC4040BP/TC4040BF 12 STAGE RIPPLE-CARRY BINARY COUNTER/DIVIDERS

TC4040BP/BF is 12 stage ripple-carry binary counter with the asynchronous clear function.

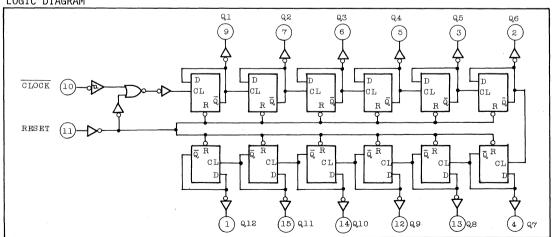
The counter advances its counting state by falling edge of CLOCK input. When RESET input is placed at "H", all the circuits are reset making all the outputs (Ql through Ql2) to be "L" regardless of CLOCK Input.

This is most suitable for frequency dividers, control circuits and timing circuits.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

TRUTH TABLE


CLCOK ∆	RESET	OUTPUT STAGE					
*	Н	ALL OUTPUTS="L"					
	L	NO CHANGE					
7_	L	ADVANCE TO NEXT STAGE					
Δ: LEVEL CI	HANGE, *: DO	N'T CARE					

DIP16(3D16A-P) 16 16 MFP16(F16GC-P)

PIN ASSIGNMENT

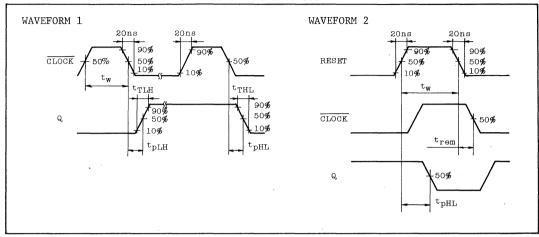
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS $(v_{SS}=0v)$

CHARACTE	DISTIC	SYMBOL	TEST CONDITIONS	V_{DD}	-41	O°C		25°C		85	°C	UNITS
CHARACTE	KISTIC	STRIBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Lev Output V		v _{OH}	I _{OUT} <1µA V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95	_	4.95 9.95 14.95	10.00	-	4.95 9.95 14.95	i	V
	Low-Level Output Voltage VOL		$ I_{OUT} < l\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15		0.05 0.05 0.05	- -	0.00 0.00 0.00		- - -	0.05 0.05 0.05	V
Output H Current	igh	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - -	-0.52 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0	- - -	-0.42 -1.7 -1.1 -2.8	- - -	mA
Output L Current	ow	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} ,V _{DD}	5 10 15	0.61 1.5 4.0	<u>-</u> -	0.51 1.3 3.4	1.2 3.2 12.0	-	0.42 1.1 2.8	-	
Input Hi Voltage	gh	v _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1μA	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	-	v
Input Lo Voltage		$v_{ m IL}$	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15		1.5 3.0 4.0	-	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input Current	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	
Quiescen Device C	Level t	IDD	V _{IL} =0V V _{IN} =V _{SS} , V _{DD}	18 5 10 15	- - -	-0.1 5 10 20	_ _ _ _	0.005 0.010 0.015	10	- - -	-1.0 150 300 600	μА

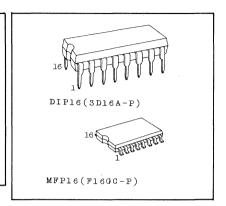

^{*} All valid input combinations.

TC4040BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- -	70 35 30	200 100 80	
Propagation Delay Time (CLOCK - Q1)	t _{pLH}		5 10 15	- - -	160 80 65	360 160 130	
Propagation Delay Time (CLOCK - Q1)	t _{pHL}		5 10 15	- - -	160 80 65	360 160 130	ns
Propagation Delay Time (CLOCK - Q12)	t _{pLH}		5 10 15	<u>-</u> -	900 450 360	1800 900 720	
Propagation Delay Time (CLOCK - Q12)	t _{pHL}		5 10 15	- - -	900 450 360	1800 900 720	
Propagation Delay Time (RESET - Q)	t _{pHL}		5 10 15	- - -	150 70 50	280 120 100	
Max. Clock Frequency	$f_{ extsf{CL}}$		5 10 15	3.5 8 12	10 20 25	- - -	MHz
Min. Clock Pulse Width	t _w		5 . 10 15	- - -	50 20 15	140 60 40	
Min. Pulse Width (RESET)	t _w		5 10 15	- - -	100 40 30	200 80 60	ns
Min. Removal Time (RESET - CLOCK)	t _{rem}		5 10 15	- - -	- -	350 150 100	
Max. Clock Input Rise Time Max. Clock Input Fall Time	t _{rCL}		5 10 15	N	o Limit		μs
Input Capacitance	c_{IN}			-	5	7.5	pF

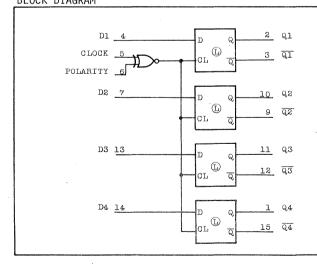
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

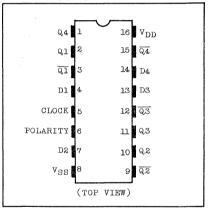

TC4042BP/BF

TC4042BP/TC4042BF OUAD CLOCKED "D" LATCH

TC4042BP/BF contains four circuits of "D" type latches having common CLOCK input and POLARITY input.

When POLARITY input is placed at "H" level, D input appears as it is at Q output during CLOCK input stays high and D input at the time of falling edge of CLOCK input is retained at Q output. As long as CLOCK input stays low, Q output is not changed even when D input varies.

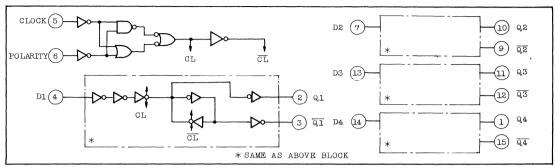

When POLARITY input is placed "L", D input appears as it is at Q output during CLOCK input stays at "L" level and the latch operation is seen as long as CLOCK input is "H".


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	$v_{ m DD}$	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
Output Voltage	v_{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	- 40 ∿85	°C
Storage Temperature Range	Tstg	-65 ∿150	°C
Lead Temp./Time	T _{sol}	260°C · 10 sec	

BLOCK DIAGRAM

PIN ASSIGNMENT


TRUTH TABLE

INP	UTS	OUTPUTS			
Crock △	POLARITY	Qn*			
Н	Н	Dn			
L	Г	Dn			
	L	LATCH			
-	Н	LATCH			

△: Level Change

·:1~4

LOGIC DIAGRAM

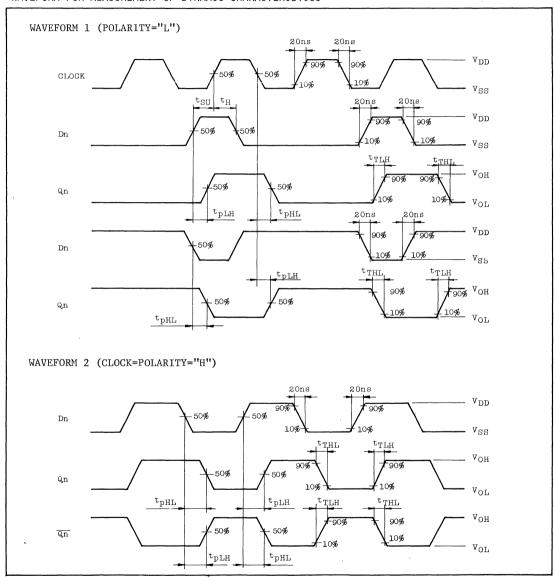
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

GHADA GEED TOETG	GYD (DO)	TRATE GONDITHIONS	$V_{ m DD}$	-40	°C		25°C		8.	5°C	UNITS
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Level Output Voltage	v _{OH}	$ I_{OUT} _{<1\mu A}$ $v_{IN}=v_{SS}$, v_{DD}	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95	10.00	-	4.95 9.95 14.95	_	V
Low-Level Output Voltage	V _{OL}	$ I_{OUT} ^{<1\mu A}$ $v_{IN}^{=v_{SS}}$, v_{DD}	5 10 15	- - -	0.05 0.05 0.05	-	0.00 0.00 0.00	}	- - -	0.05 0.05 0.05	·
Output High Current	I _{OH}	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - -	-0.51 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0	- - -	-0.42 -1.7 -1.1 -2.8	- - -	
		$v_{\rm IN}=v_{\rm SS}, \ v_{\rm DD}$. !				mA
Output Low Current	I _{OL}	V _{OL} -0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	- - -	0.42 1.1 2.8	-	
Input High Voltage	v _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 \(\text{I} \) A	5 10 15	3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	-	V
Input Low Voltage	$v_{ m IL}$	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- · -	1.5 3.0 4.0	

STATIC ELECTRICAL CHARACTERISTICS (Continued)


CHARACTERISTIC		SYMBOT.	TEST CONDITIONS	$v_{ m DD}$	-40	°C		25°C		8.	5°C	UNITS
		BIIIBOL	TEST COMPTITIONS		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	CIVIII
Input	'H'' Level	IIH	V _{IH} =18V	18	-	0.1	-	10 - 5	0.1	-	1.0	
Current	'L'' Level	I_{IL}	AIT=0A	18	-	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiesce	nt			5	-	1	-	0.002	1	_	30	1
Device Current		${ m I}_{ m DD}$	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	2		0.004	2	-	60	
				15	-	4	-	0.008	4	-	120	1

^{*} All valid input combinations.

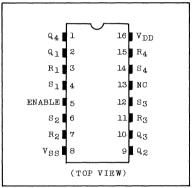
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTICS	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transisition Time (Low to High)	t _{TLH}		5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (CLOCK - Q, $\overline{\mathbb{Q}}$)	t _{pLH}	,	, 5 10 15		150 70 50	440 180 120	
Propagation Delay Time (DATA - Q, (7))	t _{pLH}		5 10 15	<u>-</u> - -	110 55 40	220 110 80	ns
Min. Clock Pulse Width	t _w		5 10 15	-	55 25 20	200 100 60	
Min. Hold Time (DATA - CLOCK)	t _H		5 10 15	<u>-</u> -	5 3 2	50 20 20	
Min. Set-up Time (DATA - CLOCK)	t _{SU}		5 10 15	- - -	20 10 5	50 30 • 25	
Input Capacitance	c_{IN}			-	5	7.5	pF

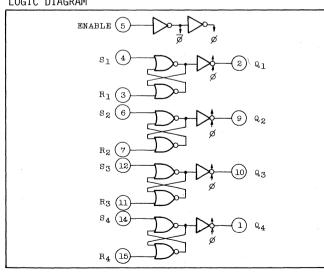
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4043BP

TC4043BP QUAD 3-STATE R/S LATCH (Quad NOR R/S Latch)


TC4043BP is the latches composed by four independent R/S flip-flop circuits. TC4043BP fabricated with NOR gates is suitable for data processing of four bits configuration. Four output lines can have high impedance regardless of the contents of latches by means of common ENABLE input to make connection to the bus lines easy.

DIP16 (3D16A-P)


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 ~ V_{SS} +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65∼150	°C
Lead Temp./Time	Tso1	260°C · 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

S	R	E	Q
*	*	L	нz
L	L	Н	No Change
L	Н	Н	L
. н	L	Н	Н
Н	Н	Н	н

* : Don't Care

HZ: High Impedance

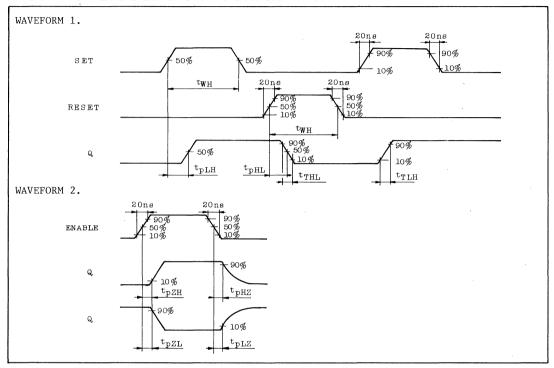
RECOMMENDED OPERATING CONDITIONS (VSS=OV)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3		18	V
Input Voltage	VIN	0	_	v_{DD}	v

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTE	RISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT
Olandiold	RIBIIO	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
			Ι _{ΟUT} < 1μΑ	5	4.95	-	4.95	5.00	-	4.95	_	
High-Leve Output Vo		VOH		10	9.95	_	9.95	10.00	-	9.95	-	
- Carpar . c			· IN • 35,• UU	15	14.95	_	14.95			14.95	_	v
Low-Level			$ I_{ m OUT} < 1 \mu A$	5	-	0.05	-	0.00	0.05	ļ	0.05	
Output Voltage		AOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	Ì	0.05	1
				15	-	0.05	-	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hi	utput High urrent		V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
ourrent			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	
Output Lo	W	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	Į.
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	-	
Input Hig	h	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		, 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			$ I_{ m OUT} < 1 \mu A$									v
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	-	1.5	
Input Low		$v_{\rm IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage		V _{OUT} =1.5V,13.5V 15 -	4.0	-	6.75	4.0	-	4.0				
			$ I_{OUT} < 1\mu A$									
Input	"H" Level	IIH	v _{IH} =18v	18	-	0.1	-	10-5	0.1	-	1.0	μA
Current	"L" Level	IIL	VIT=OA	18	_	-0.1	_	-10-5	-0.1	-	-1.0	

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


L CHARACTERISTIC		SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
		BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTI
3-State Output	"H" Level	IDH	V _{OH} =18V	18	-	0.4	-	10-4	0.4	-	12	4
Leakage Current	"L" Level	I_{DL}	V _{OL} =0V	18	_	-0.4	_	-10-4	-0.4	_	-12	μA
Quiescent Device Current				5	-	1	-	0.002	1	-	30	
		I _{DD}	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	2	· -	0.004	2	-	60	μA
			*	15	-	4	-	0.008	4	-	120	

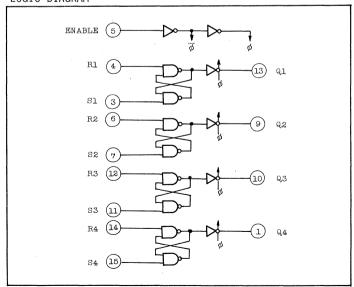
^{*} All valid input combinations.

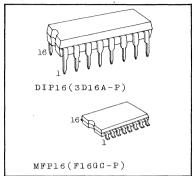
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time	tTLH		10	_	50	100	
(Low to High)			15	_	40	80	
0			5	_	80	200	ns
Output Transition Time	tTHL		10	-	50	100	
(High to Low)			15	-	40	80	
D			- 5	_	150	300	
Propagation Delay Time (SET, RESET - Q)	tpLH		10	-	60	140	ns
	t _{pHL}		15	-	40	100	
2 (4.4)			5	_	60	230	
3-State Propagation Delay Time	t _{pHZ}	$R_L=1k\Omega$	10	-	25	110	
(ENABLE - Q)	t _{pZH}	,	15	-	20	80	
3-State			5	-	80	180	ns
Propagation Delay Time	t _{pLZ}	$R_L=1k\Omega$	10	-	35	100	
(ENABLE - Q)	t _{pZL}		15	-	25	70	
Min Dulos Nidth			5	-	30	160	
Min. Pulse Width	tWH		10	_	15	80	ns
(SET, RESET)			15		10	40	
Input Capacitance	CIN			-	5	7.5	pF

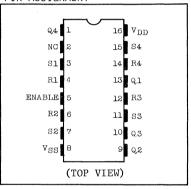
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4044BP/BF


TC4044BP/TC4044BF QUAD 3-STATE R/S LATCH (Quad NAND R/S Latch)


TC4044BP/BF the latches composed by four independent R/S flip-flop circuits. TC4044BP/BF fabricated with NAND gates is suitable for data processing of four bits configuration. Four output lines can have high impedance regardless of the contents of latches by means of common ENABLE input to make connection to the bus lines easy.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	mW
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{A}}$	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C ·10 sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

R	ន	E	Q
*	*	L	$_{\mathrm{H}Z}$
L	L	Н	L
L	Н	Н	L
Н	L	Н	Н
Н	Н	н	No Change

*: Don't Care
HZ: High Impedance

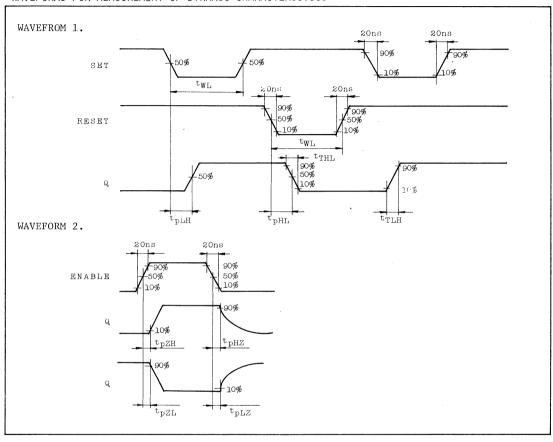
RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	V _{IN}	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHADACT	EDICTIO	GYMDOL	TEGE CONDITION	VDD	-40)°C		25°C		8	5°C	IIII
CHARACT	ERISTIC	SYMBOL	TEST CONDITION	(V)	Į.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Le Output		v _{OH}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95			5.00 10.00 15.00	- - -	4.95 9.95 14.95	-	V
Low-Lev Output		V _{OL}	I _{OUT} <1µA V _{IN} =V _{SS} , V _{DD}	5 10 15	-	0.05 0.05 0.05	-	0.00 0.00 0.00	0.05 0.05 0.05	- .	0.05 0.05 0.05	
Output Current	•	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} ,V _{DD}	5 10	-0.61 -2.5 -1.5 -4.0	- - -	-2.1	-1.0 -4.0 -2.2 -9.0	_	-0.42 -1.7 -1.1 -2.8	- - -	
Output Current		${ m I}_{ m OL}$	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	- - -	0.42 1.1 2.8	- - -	mΑ
Input H Voltage	Ü	V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 \(\text{1} \) \(\text{A} \)	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	1 1 1	3.5 7.0 11.0	-	V
Input L Voltage		VIL	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	5 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	-	10-5	0.1	_	1.0	μΑ
Current	"L" Level	IIL	V _{IL} =0V	18	_	-0.1	_	-10-5	-0.1	_	-1.0	μА

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

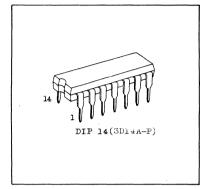

CHARACT	CHARACTERISTIC		YMBOL TEST		-40°C		25°C			85	UNIT	
			CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
	"H" Level	${ m I}_{ m DH}$	V _{OH} =18V	18	-	0.4	-	10-4	0.4	-	12	3. A
Leakage Current	"L" Level	$I_{ m DL}$	V _{OL} =0V	18	-	-0.4	_	-10-4	-0.4	_	-12	μA
Quiescer Device (I _{DD}	V _{IN} =V _{SS} ,V _{DD}	5 10 15	- - -	1 2 4	-	0.002 0.004 0.008	1 2 4	-	30 60 120	μА

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50 p_F)

CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)	tTLH		5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (High to Low)	tTHL		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (SET, RESET - Q)	t _{pLH}		5 10 15	- - -	90 45 35	300 140 100	
3-State Propagation Delay Time (ENABLE - Q)	t _{pHZ}	R _L =1kΩ	5 10 15	- - -	55 35 30	180 100 70	ns
3-State Propagation Delay Time (ENABLE - Q)	t _{pZH} t _{pZL}	R _L =1kΩ	5 10 15	- - -	55 30 25	180 100 70	
Min. Pulse Width (SET, RESET)	t _{WL}		5 10 15	- - -	25 20 20	160 80 40	
Input Capacitance	CIN			_	5	7.5	pF

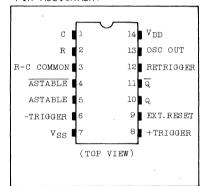
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

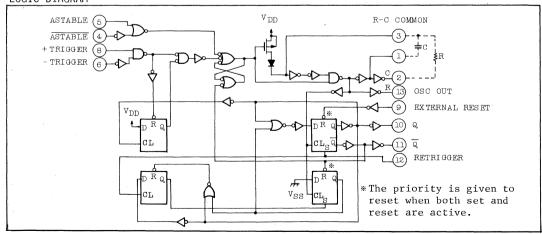

TC4047BP LOW-POWER MONOSTABLE/ASTABLE MULTIVIBRATOR

TC4047BP is the multivibrator equipped with both astable function and mono-stable function, and retrigger operation and reset operation are also achievable.

For both operational modes, the pulse width can be varied by externally connected capacitor (C) and resistor (R).

Establish RETRIG="L". +TRIG="L", -TRIG="H" for astable operation and AST="L", AST="H" for mono-stable operation. (Refer to FUNCTION TABLE and OPERATING CONSIDERATIONS).


When EXTERNAL RESET input is set at "H", both operational modes of a stable and mono-stable operations are reset to Q="L" and \overline{Q} ="H".


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	Tso1	260°C · 10 se	:c

PIN ASSIGNMENT

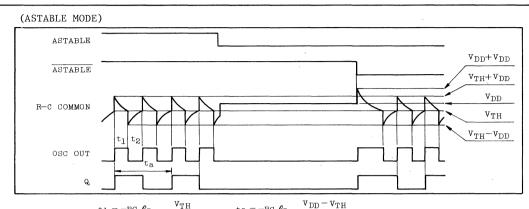
LOGIC DIAGRAM

FUNCTION TABLE

FUNCTION								OUTPUT PERIOD
2 02.02 2011	AST.	AST.	-TRIG.	+TRIG.	RETRIG.	EXT.	RESET	OR PULSE WIDTH
ASTABLE MULTIVIBRATOR								Q, \overline{Q}
Free Running	*	Н	Н	L	L		L .	T=4.40RC
	L	*	Н	L	L		L	OSC OUT
Inhibit	Н	L	Н	L	L		L	T=2.20RC
MONOSTABLE MULTIVIBRATOR								
Positive-Edge Trigger	Н	L	L		L		L	Q, \overline{Q}
Negative-Edge Trigger	Н	L	Ī_	Н	L		L	$t_W=2.48RC$
Retrigger	Н	L	L				L	

Note: External registor and capacitance as LOGIC DIAGRAM

OPERATING CONSIDERATION

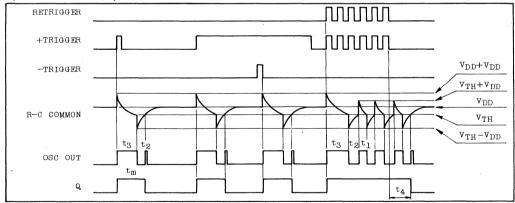

- 1. Astable Operation
 - By connecting inputs of -TRIGGER, +TRIGGER, RETRIGGER AND EXTERNAL RESET as shown in FUNCTION TABLE, stable operation of astable multivibrator can be obtained.
 - . When ASTABLE input is placed at "H", oscillation is continued regardless of ASTABLE input. When ASTABLE input is placed at "L", oscillation is continued regardless of ASTABLE input. (Free Running).
 - . Having ASTABLE input at "H", if ASTABLE input is set at "L", oscillation stops as long as it is at "L". (True Gating)
 - . Having ASTABLE input at "L". if ASTABLE input is set at "H", oscillation stops as long as it is at "H". (Complement Gating) The oscillating period is determined by the external resistor and capacitor to be approximately T=2.2RC. This oscillation waveform is obtained as it is at OSC OUT and the oscillation waveform with double period and 50% duty cycle is obtained at outputs Q and $\overline{\rm Q}$.
- 2. Mono-Stable Operation
 - By connecting ASTABLE and ASTABLE inputs to "L" level and "H" level respectively, mono-stable multivibrator with the capabilities of retrigger operation and external asynchronous reset operation is obtained. This is normally used with RETRIGGER input and EXTERNAL RESET input connected to "L" level.
 - . When -TRIGGER input is set to "L", mono-stable pulse is obtained at the rising edge of +TRIGGER input at Q and \overline{Q} outputs. (Positive-edge Trigger)
 - . When +TRIGGER input is set to "H", mono-stable pulse is obtained at the falling edge of -TRIGGER input at Q and \overline{Q} outputs. (Negative-edge Trigger)
 - . Keeping-TRIGGER input at "L", if the same pulse input (T<2.48RC) is applied to both +TRIGGER input and RETRIGGER input, retrigger operation is achieved. However, the last transition of this pulse input must be negative going. (Retrigger) The width of mono-stable pulse is determined by the external resistor and capacitor to be approximately $t_{\rm W}$ =2.48RC.

Note: The external resistor and capacitor should be connected as shown by broken lines in the logical diagram for both mono-stable and astable operations.

The capacitor used should be non-directional.

^{*} Don't care

TIMING DIAGRAM



$$\text{tl} = -\text{RC}~ \boldsymbol{\ell} \text{n} ~ \frac{v_{TH}}{-v_{DD} + v_{TH}} \quad \text{,} \qquad \text{tl} = -\text{RC}~ \boldsymbol{\ell} \text{n} ~ \frac{v_{DD} - v_{TH}}{-2v_{DD} - v_{TH}}$$

$${\tt t_a = 2 \, (\,\, t_{1} + t_{2} \,) = -2\, RC \, \ell n \,\, \frac{v_{TH} (v_{DD} - v_{TH})}{(v_{DD} + v_{TH}) \, (2v_{DD} - v_{TH})}}$$

TYPICAL : $v_{TH} = 1/2 v_{DD}$ $t_a = 4.4 \, \text{ORC}$

(MONO STABLE MODE)

$$\mathtt{t_1} = - \mathtt{RC} \; \boldsymbol{\ell}_\mathrm{n} \; \frac{\mathtt{v}_\mathrm{TH}}{\mathtt{v}_\mathrm{DD} + \mathtt{v}_\mathrm{TH}} \quad \text{,} \quad \mathtt{t_2} = - \mathtt{RC} \; \boldsymbol{\ell}_\mathrm{n} \; \frac{\mathtt{v}_\mathrm{DD} - \mathtt{v}_\mathrm{TH}}{\mathtt{z} \mathtt{v}_\mathrm{DD} - \mathtt{v}_\mathrm{TH}}$$

$${\rm t}_3 = - {\rm RC} \; \ell {\rm n} \; \frac{{\rm v}_{\rm TH}}{2 {\rm v}_{\rm DD}} \ , \qquad {\rm t}_1 + {\rm t}_2 < {\rm t}_4 < {\rm 2} \; (\; {\rm t}_1 + {\rm t}_2) \label{eq:t3}$$

$$\mathbf{t_m} = \mathbf{t_3} + \mathbf{t_2} = -\text{RC}~\boldsymbol{\ell} \mathbf{n}~\frac{\mathbf{v_{TH}}(\mathbf{v_{DD}} - \mathbf{v_{TH}})}{2\mathbf{v_{DD}}(2\mathbf{v_{DD}} - \mathbf{v_{TH}})}$$

TYPICAL : $v_{TH} = 1/2v_{DD}$ $t_m = 2.48$ RC

Note: V_{TH}: Threshold Level

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

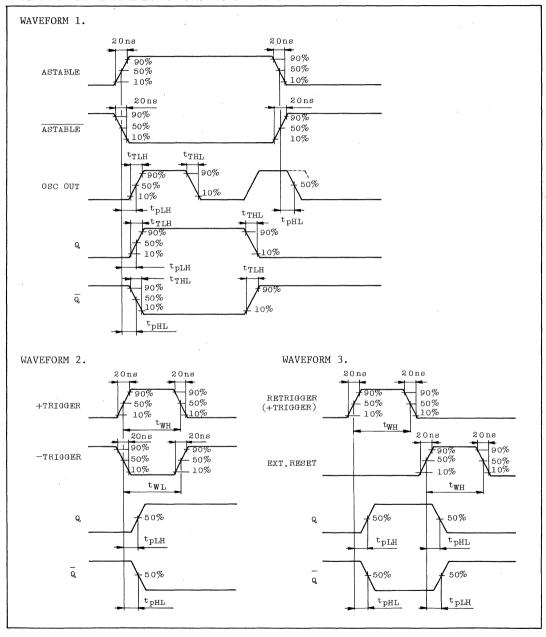
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	·UNIT
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v _{IN}	0	_	v_{DD}	v
External Resistance	RX	5	_	1000	kΩ
External Condenser	c_X		No Limi	t	μF

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT
	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01121
		I _{OUT} <1 <i>µ</i> A	5	4.95	_	4.95	5.00	-	4.95	-	
High-Level Output Voltage	V _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
Cacpat Voltage		· IN · 33, · DD	15	14.95	_	14.95	15.00	-	14.95	-	v
,		Ι _{ΟυΤ} <1μΑ	5	-	0.05	-	0.00	0.05	, -	0.05	·
Low-Level Output Voltage	V _{OL}	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	0.05	-	0.00	0.05	-	0.05	
output Voltage		· IN · 22, · DD	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	_	
Output High		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-	
		V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	-	
		V _{IN} =V _{SS} ,V _{DD}									
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	-	mA
Output Low	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current	-OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8		
		$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$									
		V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Input High	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	. 5.5	-	7.0	-	
Voltage	111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} < 1 <i>u</i> A									
		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V
Input Low Voltage	v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
	ILL	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} < 1 µA									

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	RISTIC	SYM-	LUEST CONDUCTION LVDD1			8.	5°C	UNIT				
011111101111		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μA
Current	"L" Level	I_{IL}	VIL=OV	18	_	-0.1	-	-10-5	-0.1	_	-1.0	
				5	_	1	_	0.005	1	-	30	
Quiescent Device Current		I _{DD}	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	2	-	0.010	2	-	60	μA
			*	15	-	4	-	0.015	4	-	120	

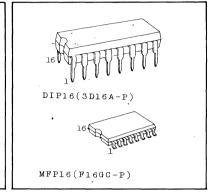

* All valid input combinations. DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\mathrm{DD}}(\mathrm{V})$	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)	t _{TLH}		5 10	<u> </u>	80 50	200 100	ns
			15	-	40	80	
Output Transition Time	tTHL		5 10	, - -	80 50	200 100	ns
(High to Low)	l		15	_	40	80	
Propagation Delay Time	t_111	,	5	_	290	580	
(ASTABLE, ASTABLE	t _{pLH} t _{pHL}		10	-	110	220	ns
- OSC OUT)	-pill		15	-	70	160	
Propagation Delay Time	t _{pLH}		5	-	480	960	
(ASTABLE, ASTABLE	tpHL		10	-	170'	350	ns
$-Q, \overline{Q}$	Pill		15	-	110	250	
Propagation Delay Time	t _{pLH}		5	· -	550	1100	
(+TRIGGER, -TRIGGER	tpHL		10	·	200	450	ns
- Q, ₹)	F		15	-	130	300	
Propagation Delay Time	t _{pLH}		5	-	250	600	
$(RETRIGGER - Q, \overline{Q})$	t _{pHL}		10	-	100	300	ns
	Pill		15	-	65	200	
Propagation Delay Time	t _{pLH}		5	_	270	540	
(EXTERNAL RESET	t _{pHL}		10	-	100	200	ns
- Q, ₹)	P		15	-	65	140	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
CHARACTERTSTIC	STIDOL	TEST CONDITION	V _{DD} (V)	riin.			UNII
Min. Pulse Width	t _{WH}		5	-	370	740	
(+TRIGGER, -TRIGGER)	t _{WI}		10	-	130	260	ns
(TRIGOZN, TRIGOZN)	-WL		15	-	70	140	
Min. Pulse Width			5	_	100	200	
(EXT. RESET)	t _{WH}		10	-	35	100	ns
(3337 - 32-22)			15	-	25	60	
Min. Pulse Width			5	-	95	600	
(RETRIGGER)	tWH		10	-	40	2 30	ns
(112211-00211)		•	15	-	25	150	
Max. Clock Input Rise	tr		5	20	_	-	
Time	tf		10	2.5	-	-	μS
Max. Clock Input Fall Time			15	1.0	-	-	
Deviation from 50%			5	_	±0.2	_	
Duty Facter		$\frac{t_{W}(H)-t_{W}(L)}{t_{W}(L)}$	10	-	±0.2	-	%
(Q, \overline{Q})		× 100 (%)	15	-	±0.1		
Input Capacitance	c_{IN}			-	5	7.5	pF

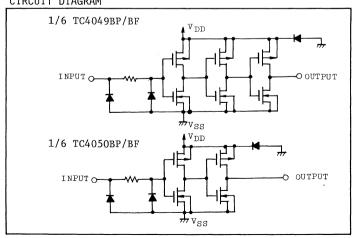
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

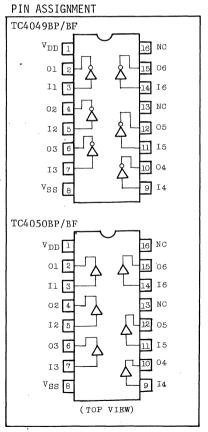

TC4049BP/BF, TC4050BP/BF

TC4049BP/TC4049BF HEX BUFFER/CONVERTER (Inverting Type) TC4050BP/TC4050BF HEX BUFFER/CONVERTER (Non-Inverting Type)

TC4049BP/BF, TC4050BP/BF contain six circuits of buffers. TC4049BP/BF is inverter type and TC4050BP/BF is non-inverter type.

Since one TTL or DTL can be directly driven having large output current, these are useful for interfacing from CMOS to TTL or DTL. As voltage up to $V_{\rm SS}$ +18 volts can be applied to the input regardless of VDD, these can be also used as the level converter IC's which converts CMOS logical circuits of 15 volts or 10 volts system to CMOS/TTL logical circuits of 5 volts


Ideal switching characteristic has been obtained by the circuit diagram of three stage inverters for TC4049BP/ BF and two stage inverters for TC4050BP/BF.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	$V_{ m DD}$	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	· V
DC Input Voltage	IIN	10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∿ 85	· °C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

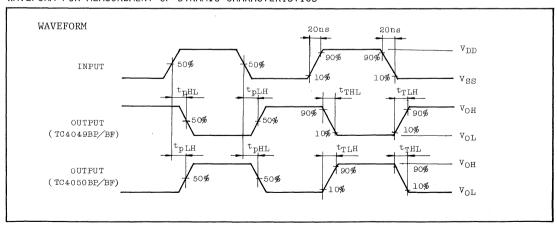
CIRCUIT DIAGRAM

TC4049BP/BF, TC4050BP/BF

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	VIN	0	_	18	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-40)°C		25°C		85	°C	UNITS
OIMINIOTERIBITO	BILLDOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIID
High-Level		Ι _{ΟυΤ} < 1 _μ Α	5	4.95	-		5.00	- '	4.95	l .	
Output Voltage	v_{OH}	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	9.95	-		10.00	-	9.95	l .	
		. עמי , פפי אודי		14.95	_		15.00		14.95		·V
Low-Level		I _{OUT} <1μΑ	5	-	0.05	l	0.00	0.05	l .	0.05	
Output Voltage	$v_{ m OL}$	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	0.05	l	0.00	0.05		0.05	
			15	-	0.05		0.00	0.05		0.05	
		V _{OH} =4.6V	5	-0.73	-	l	-1.2 -3.9	_	-0.58	-	
Output High	IOH	V _{OH} =2.5V	5	-2.4	-	-2.1			-1.9	-	
Current	TOH	V _{OH} =9.5V	l	-1.8	-		-2.5	-	-1.35	-	
		V _{OH} =13.5V	15	-4.8	-	-4.3	-8.0	-	-3.5	-	
		V _{IN} =V _{SS} , V _{DD}									mA
Output Low		V _{OL} =0.4V	5	3.8	-	3.2	6.4	-	2.9	-	
Current	$I_{ m OL}$	V _{OL} =0.5V	10	9.6	-	8.0	16	-	6.6	-	
ourrene		V _{OL} =1.5V	15	25.0	-	24.0	48	-	20.0	-	
		V _{IN} =V _{SS} , V _{DD}					0.75		0.5		
Input High		V _{OUT} =0.5V,4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Voltage	v_{IH}	V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,135V	10	7.0 11.0	-	7.0 11.0	5.5 8.25	-	7.0	_	
Voltage			13	11.0	_	11.0	0.23	_	11.0	_	
		I _{OUT} < 1μ A	-		1.5		0.05	1 5		1 5	v
_		V _{OUT} =0.5V,4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low	VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	-1	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
"H"		I _{OUT} <1μA					10-5				
Input Level	IIH	V _{IH} =18V	18	_	0.1	_	10 ⁻⁵	0.1	_	1.0	μA
Corrent "L" Level	I_{IL}	VIT=0A	18		-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μ11
			5	_	1	_	0.002	1	-	30	
Quiescent	I _{DD}	$v_{IN}=v_{SS}, v_{DD}$	10	-	2	-	0.004	2	-	60	μA
Device Current		*	15	_	4	_	0.008	4	_	120	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50 p_F)

	CHARACTERISTIC		TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX	UNITS
Output Transition Time (Low to High)				5	-	60	160	
		t _{TLH}	10	_	30	80		
						25	60	
Out	Output Transition Time (High to Low)			5	-	20	60	
			t _{THL}	10	-	10	40	
				15	_	8	30	
3P/BF	Propagation Delay Time (Low to High)			5	-	60	120	
		tpLH	10	-	35	65	ns	
				15	_	30	50	
TC4049BP	Propagation Delay Time (High to Low)			5	-	40	60	
C4(t _{pHL}	10	-	20	30		
H				15	-	15	20	
<u>F4</u>	Propagation Delay Time (Low to High)			5	-	50	130	
TC4050BP/BF		t _{pLH}		10	_	30	70	
				15	_	25	55	
	Propagation Delay Time (High to Low)	t _{PHL}	5	-	30	70		
				10	-	17	35	
				15	-	14	25	
Inj	Input Capacitance				_	5	7.5	рF

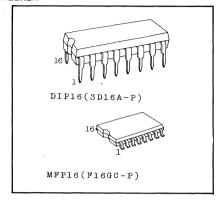
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4051BP/BF, TC4052BP/BF, TC4053BP/BF

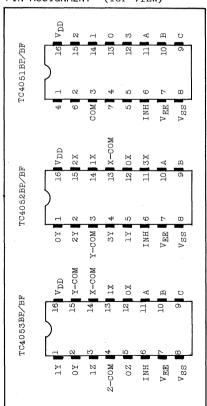
TC4051BP/TC4051BF SINGLE 8-CHANNEL MULTIPLEXER/DEMULTIPLEXER TC4052BP/TC4052BF DIFFERENTIAL 4-CHANNEL MULTIPLEXER/DEMULTIPLEXER TC4053BP/TC4053BF TRIPLE 2-CHANNEL MULTIPLEXER/DEMULTIPLEXER

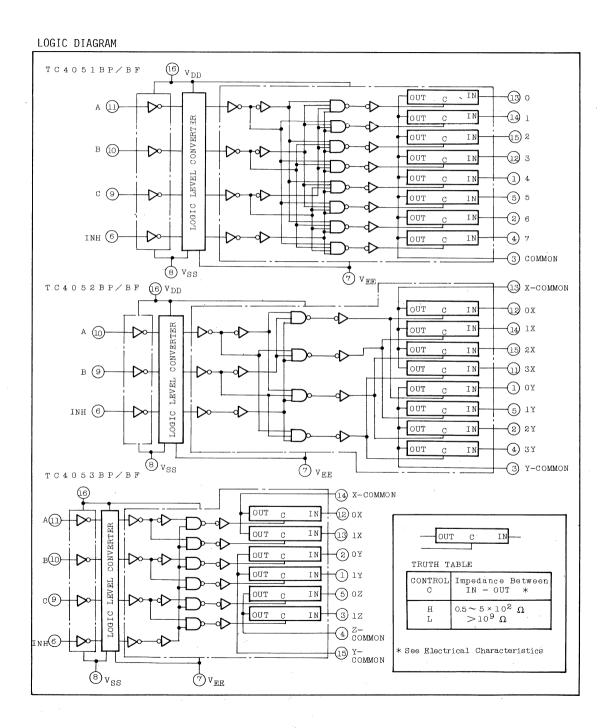
TC4051BP/BF, TC4052BP/BF and TC4053BP/BF are multiplexers with capabilities of selection and mixture of analog signal and digital signal. TC4051BP/BF has 8 channels configuration. TC4052BP/BF has 4 channel \times 2 configuration and TC4053BP/BF has 2 channel \times 3 configuration.

The digital signal to the control terminal turns "ON" the corresponding switch of each channel, with large amplitude (VDD-VEE) can be switched by the control signal with small logical amplitude (VDD-VSS). For example, in the case of VDD=5V, VSS=0V and VEE= -5V, signals between -5V and +5V can be switched form the logical circuit with single power supply of 5 volts. As the ON-resistance of each switch is low, these can be connected to the circuits with low input impedance.


ABSOLUTE MAXIMUM RATINGS

THE TELEVISION TO THE TOTAL TO THE TELEVISION THE TELEVISION TO THE TELEVISION TO THE TELEVISION TO THE TELEVISION TO THE TELEVISION THE TELEVISION TO THE TELEVISION THE TELEVISION TO THE TELEVISION THE T						
CHARACTERISTIC	SYMBOL	RATING	UNIT			
DC Supply Voltage	v_{DD} - v_{SS}	-0.5 √ 20	V			
DC Supply Voltage	v_{DD} - v_{EE}	-0.5 √ 20	V			
Control Input Voltage	VCIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V			
Switch I/O Voltage	v _I /v _O	V_{EE} -0.5 $\sim V_{\text{DD}}$ +0.5	V			
Control Input Current	ICIN	±10	mA			
Potential difference across I/O during ON	л ^{I-О} .	-0.5 ~ 0.5	V			
Power Dissipation	PD	300(DIP)/180(MFP)	mW			
Operating Temperature Range	$T_{\mathbf{A}}$	-40 ∿ 85	°C			
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C			
Lead Temp./Time	${ m T}_{ m sol}$	260°C • 10 sec				


TRUTH TABLE


CONTROL INPUTS				"ON" CHANNEL					
INHIBIT	С∇	В	A	TC4051BP	TC4052BP	TC4053BP			
INUIDII				TC4051BF	TC4052BF	TC4053BF			
L	L	L	L	0	OX, OY	0X,0Y,0Z			
L	L	L	H	1	1X, 1Y	1X,0Y,0Z			
L	L	Н	L	2	2X, 2Y	0X,1Y,0Z			
L	L	H	Н	3	3X, 3Y	1X,1Y,0Z			
L	Н	L	L	4	- .	0X,0Y,1Z			
L	Н	L	H	5	-	1X,0Y,1Z			
L	Н	H	L	6	-	0X,1Y,1Z			
L	H	H	H	7 .	_	1X,1Y,1Z			
Н	*	*	*	NOTE	NOTE	NOTE			

^{*} DON'T CARE Δ EXCEPT TC4052

PIN ASSIGNMENT (TOP VIEW)

TC4051BP/BF, TC4052BP/BF, TC4053BP/BF

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD} - v_{SS}	3	-	18	V
be supply voltage	v_{DD} - v_{EE}	3	_	18	V
Control Input Voltage	VIN	V _{SS}	-	v_{DD}	V
Input/Output Voltage	V _{IN} /V _{OUT}	$v_{\rm EE}$	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS

GUADA GERRA A GERRA G		TEST CONDI		17	177	-4	0°C		25°C		8	UNITS	
CHARACTERISTIC	SYMBOL		V _{SS} (V)	V _{EE}	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIS
Control Input High Voltage	v _{IH}	$v_{\rm IS} = v_{\rm DD}$	V _{EE} =V _S R _L =1kΩ V _S S		5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	5.50	- - -	3.5 7.0 11.0	- -	V
Control Input Low Voltage	Λ ^{IT}	thru $1 \mathrm{k}^\Omega$	I _{IS} <2 _l on all channe	OFF	5 10 15	-	1.5 3.0 4.0	-	2.25 4.5 5.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	·
On-State Resistance	R _{ON}	$0 \le V_{IS} \le V_{DD}$ $R_{L} = 10 k\Omega$	0 0 0	0 0 0	5 10 15	-	850 210 140	-	240 110 80	950 250 160	- -	1200 300 200	
∆On-State Resistance Between Any 2 Switches	R _{ON} ∆	· ·	0 0 0	0 0 0	5 10 15	- - -	-	-	10 6 4	_	-	-	36
Input/Output Leakage Current	I _{OFF}	v_{IN} =18 v , v_{IN} =0 v , v_{O}			18 18	-	±100 ±100	l	±0.01 ±0.01	±100 ±100	i i	±1000 ±1000	nA
Quiescent Device Current	I _{DD}	V _{IN} =V _{SS} , V	DD		5 10 15	- -	5.0 10 20	-	0.005 0.010 0.015	5.0 10 20	- -	150 300 600	
Input Current	ıın	V _{IH} =18V V _{IL} =0V			18 18	-	0.1	-	10-5 -10-5	0.1	-	1.0 -1.0	
Input Capacitance	CIN					-	-	-	5	7.5	-	_	
Switch Input Capacitance	CIN					_	_	-	10	_	-	-	
Output Capacitance						-	-	_	58	_	-	_	рF
TC4051B TC4052B TC4053B	C _{OUT}				10	- ,	-	-	30 17	-	-	-	
Feedthrough Capacitance	C				1.0	-	-	-	0.2	-	-	_	
TC4051B TC4052B TC4053B	C _{IN} -OUT				10	-	-	-	0.2	-	-	_	

^{*} All valid input combinations.

JALIC EL	ECTRICAL	CHARACTERISTICS	(Ta=25°C.	$C_T = 50 pF$
----------	----------	-----------------	-----------	---------------

Propagation Delay Time	t _{pLH}			(V)	V _{EE}	(V)	MIN.	TYP.	MAX.	UNITS
. ropugation being fime				0	0	5	-	15	45	
(Switch IN-OUT)	tpHL			0	0	10 15	-	8	20 15	
(0,1201, 11, 001)	t 77			0	0	5	-	170		
Propagation Delay Time	tpZL			0	0	10	_	170 90	550 240	
Tropagacion belay Time	t _{pZH}	$R_L=1k\Omega$		0	0	15	_	70	160	
(A, B, C - OUT)	t _{pLZ}			0	- 5	5	_	100	240	
	t _{pHZ}			0	-7.5	7.5	_	80	160	
				0	0	5	_	120	380	
Propagation Delay Time	tpZL	$R_L=1k\Omega$		0	0	10	-	60	200	ns
				0	0	15	-	50	160	
(INH - OUT)	t _{pZH}			0	- 5	5	-	80	200	
	-			0	-7. 5	7.5		60	160	
				0	0	5	-	170	450	
Propagation Delay Time	t _{pLZ}	$R_L=1k\Omega$		0	0	10 15	-	90 70	210 160	
(INH - OUT)	1			0	- 5	5	_	100	210	
(IIII 001)	t _{pHZ}			0	-7 . 5	7.5	_	80	160	
-3dB Cutoff Frequency	f _{MAX}	$R_{L}=1k\Omega$								
TC4051B	MAX	ь		-5	- 5	5	_	20	_	MHz
TC4052B TC4053B	(1 - 0)		(*1)	-5 -5	-5 -5	5 5	-	30 40	_	
Total Harmonic		$R_{I}=10k\Omega$		-2.5	-2.5	2.5	_	0.15	-	
Distortion	_	f=1kHz	(*2)	- 5	- 5	5	-	0.03	-	%
Distortion		1-1KHZ	(^2)	-7.5	-7.5	7.5	_	0.02	_	
-50dB Feedthrough (Switch OFF)	_	R _L =1kΩ	(*3)	- 5	- 5	5	-	500	_	kHz
Crosstalk	-	$R_L=1k\Omega$	(*4)	- 5	- 5	5	-	1.5	_	MHz
Crosstalk		R _{IN} =1kΩ					-	200	-	
	-	R _{OUT} =10kΩ		0	0	10	-	400	-	mV
(CONTROL - OUT)		C_L =15pF					-	600	-	

^{*1} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 log $10 \frac{\text{V}_{\text{os}}}{\text{V}_{\text{is}}} = -3 \text{dB}$ shall be fMAX.

^{*2} V_{is} shall be sine wave of $\pm (\frac{V_{DD}-V_{EE}}{4}) p-p$.

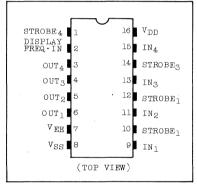
^{*3} Sine wave of ±2.5Vp-p shall be used for V_{is} and the frequency of 20 log $10\frac{V_{os}}{V_{is}}$ =-50dB shal be feed-through.

^{*4} Sine wave of ±2.5Vp-p shall be used for V_{is} and the frequency of 20 log $10\frac{V_{os}}{V_{is}}$ =-50dB sha be Crosstalk.

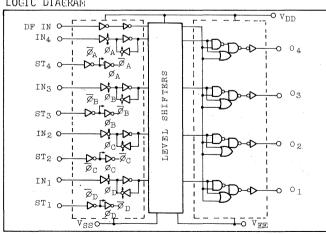
TC4054BP/TC4054BF LIQUID-CRYSTAL DISPLAY DRIVER (4-SEGMENT DISPLAY DRIVER)

TC4054BP/BF contains four circuits of liquid crystal (field effect type) drivers.

When pulse is applied to DF input, the output with 180° out of phase from DF pulse is obtained at OUT if input IN is "H". If input IN is "L", OUT and DF pulse become in-phase.


By applying DF input pulse to the common terminal (back plane) of liquid crystal, the liquid crystal element can be directly driven by the input signal with "H" level. This is suitable for illuminating the segments of decimal point and positive or negative sign. If $V_{\rm EE}{<}V_{\rm SS}$, the level conversion operation which lowers only "L" side of logical signal can be achieved.

DIP16(3D16A-P) MFP16(F160C-P)


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD} - v_{SS}	-0.5~20	V.
	$v_{ m DD}$ – $v_{ m EE}$	-0.5 ~ 20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{EE}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	·IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ 150	°C
Lead Temp./Time	Tsol	260°C · 10 se	c

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

DF IN	INn	STROBEn	OUTn
L	L	Н	L
Н	L	Н	Н
L	Н	Н	Н
Н	Н	Н	L
*	* .	L.	

*: Don't care

△: Depends upon the INPUT mode previously applied when STROBE "H".

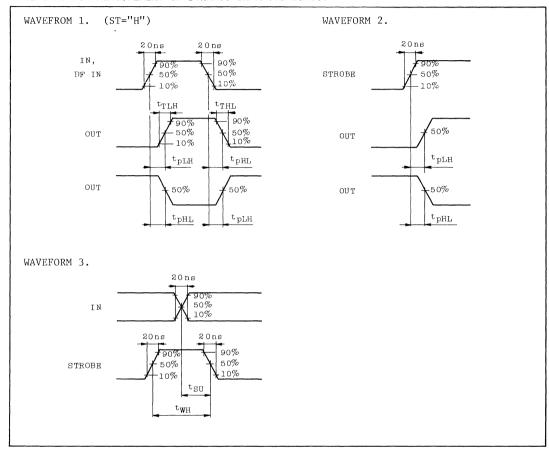
RECOMMENDE OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD} -V _{SS}	3	-	18	V
l a seppendicular de la constantia del constantia de la constantia de la constantia della constantia della c	v_{DD} - v_{EE}	3	-	18	V
Input Voltage	VIN	V _{SS}	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTER	ISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	UNIT	
	.10110	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
			IOUT $< 1\mu$ A	5	4.95	_	4.95	5.00	_	4.95	-	
High-Level Output Vol		VOH	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
	euge.		· IN · 33, · DD	15	14.95	-	14.95	15.00	-	14.95	-	
			I _{OUT} < 1µA	5	-	0.05	-	0.00	0.05	-	0.05	V
	Low-Level Output Voltage		V _{IN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
	8-		· IN · 33, · DD	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	_	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	;h	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} , V _{DD}									
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	-	mA
Output Low	,	$1_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	-	
Current		OL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-	
			$v_{\rm IN}=v_{\rm SS},v_{\rm DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	-	
Input High	ı	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage		1111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} <1 <i>µ</i> A									
			V _{OUT} =0.5V-, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		1.15	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} < 1 µ A										
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10-5	-0.1	_	-1.0	μA

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

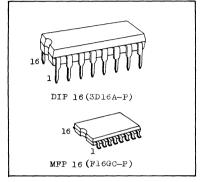

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	VDD -40°C			25°C		85	UNIT		
BOL		TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII	
			5	-	5	_	0.005	5	-	150		
Quiescent Device Current	IDD	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	10	-	0.010	10	-	300	μА	
		*	15	_	20	-	0.015	20	-	600		

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{SS}=0V$, $C_L=50pF$)

DINAMIC ELECTRICAL CHAR	TOTENTO TO	(14	25 C, VS	5 07, OL	Jopi /			
CHARACTERISTIC	SYMBOL	TEST	CONDITIO		MIN.	TYP.	MAX.	UNIT
CHMMICIENTOTIC	BILLDOL		$V_{DD}(V)$	V _{EE} (V)	11114.	111.		ONII
			5	0	-	80	200	
Output Transition Time	t _{TLH}		5	- 5	_	50	100	ns
	t _{THL}		10	0	-	50	100	
			15	0	-	40	80	
			5	0	-	660	1800	
Propagation Delay Time	t _{pLH}		5	· - 5	-	250	800	ns
(NI - OUT)	t _{pHL}		10	0	-	210	680	
			15	0	-	140	500	
			5	0	1	720	1800	
Propagation Delay Time	t _{pLH}		5	- 5	-	260	800	ns
(DF IN - OUT)	t _{pHL}		10	0	_	240	680	113
			15	0	-	150	500	
			5	0	_	660	1800	
Propagation Delay Time	t _{pLH}		5	- 5	-	250	800	ns
(STROBE - OUT)	t _{pHL}		10	0	-	210'	680	115
			15	0	_	140	500	
			5	0	-	60	220	
Min. Clcok Pulse Width			5	- 5	_	70	220	ns
(STROBE)	t _{WH}		10	0	_	20	100	115
			15	0	_	15	70	
			5	0	_	50	220	
Min. Set-up Time			5	-5		60	220	
(IN - STROBE)	t _{SU}		10	0	-	15	100	ns
			15	0	_	10	70	
Input Capacitance	CIN				_	5	7.5	pF

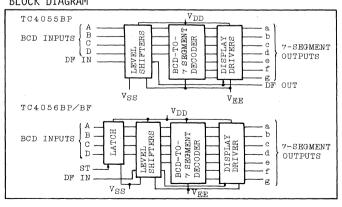
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

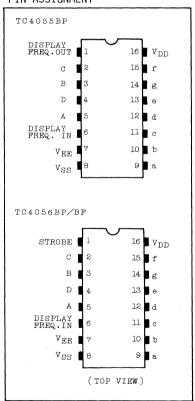


TC4055BP LIQUID-CRYSTAL DISPLAY DRIVER
(BCD TO 7-Segment Decoder/Driver with "Display-Frequency" Output)
TC4056BP/TC4056BF LIQUID-CRYSTAL DISPLAY DRIVER
(BCD TO 7-Segment Decoder/Driver with Strobed-Latch Function)

TC4055BP, TC4056BP/BF are LC drivers which drive the field effect type liquid crystal with seven segments by BCD input.

If DF input="L", a selected output among segment outputs of a through g becomes "H" level and if DF input="H", a selected output becomes "L" level.


Seven segment liquid crystal element can be directly driven by applying the pulse in-phase with DF input to the common terminal (back plane) of liquid crystal. TC4055BP is equipped with DF output for the common terminal and TC4056BP/BF is equipped with the latch. If VEE <Vss, the level conversion operation which lowers only "L" side of logical signal can be achieved.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{\mathrm{DD}} - v_{\mathrm{SS}}$	-0.5 ~ 20	V
11 3	v_{DD} – v_{EE}	-0.5 ~ 20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	V_{EE} -0.5 ~ V_{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	m₩
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	T _{so1}	260°C · 10sec	

BLOCK DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE:

I	BCD 1	NPUT	rs.		7-9		ENT (IN='		JTS			7-5	SEGMI (DF	ENT (JTS		DISPLAY
D	С	В	Α	а	b	с	d	е	f	g	а	Ъ	С	d	e	f	g	CHARACTER
L	L	L	L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	Н	_ _
L	L	L	Н	L	Н	Н	L	L	L	L	Н	L	Ŀ	H	H	H	Н	
L	L	Н	L	Н	Н	L	Н	Н	L	Н	L	L	Н	L	L	Н	L	Ū
L	L	Н	Н	Н	Н	Н	Н	L	L	Н	L	L	L	L	Н	Н	L	ווווויו
L	Н	L	L	Γ,	Н	Н	L	L	Н	Н	Н	L	L	Н	Н	L	L	!_
L	Н	L	Н	Н	L	Н	Н	L	Н	Н	L	Н	L	L	Н	L	L	Ē
L	Н	Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	L	L	L	L	L	E
L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	Н	Н	Н	Н	71
Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	E E
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	L	L	L	L	Н	L	L	<u></u>
Н	L	Н	L	L	L	L	Н	Н	Н	L	Н	Н	Н	L	L	L	Н	<u> </u>
Н	L	Н	Н	L	Н	Н	L	Н	Н	Н	Н	L	L	Н	L	L	L	1-1
Н	Н	L	L	Н	Н	L	L	Н	Н	Н	L	L	Н	Н	L	L	L	F'
Н	Н	L	Н	Н	Н	Н	L	Н	Н	Н	L	L	L	Н	L	L	L	H
Н	Н	Н	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	
Н	Н	Н	Н	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	BLANK

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD} -V _{SS}	3	-	18	V
	ADD-AEE	3	-	18	
Input Voltage	VIN	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS} \!\!=\!\! v_{EE} \!\!=\!\! ov)$

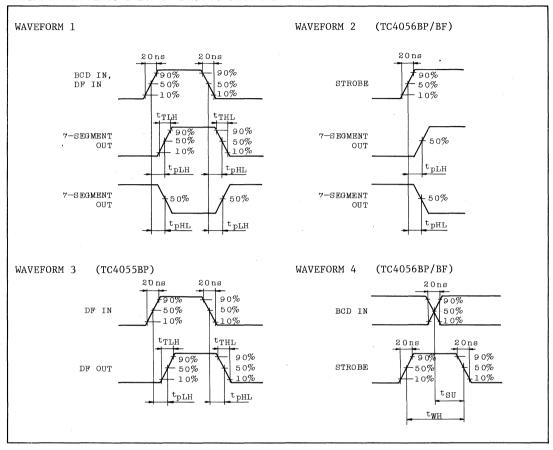
CHARACTERISTIC	CHARACTERISTIC SYM-BOL TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85	UNIT	
GIERRIGIERISTIC			(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
		I _{OUT} < 1 \(A	5	4.95	-	4.95	5.00	_	4.95	-	
High-Level Output Voltage	v_{OH}	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	10	9.95	-	9.95	10.00	-	9.95	-	
l asper in a second		· IN · 33, · DD	15	14.95	-	14.95	15.00	-	14.95	-	.,
		$ I_{OUT} < 1\mu A$	5	-	0.05	_	0.00	0.05	-	0.05	V
Low-Level Output Voltage	$v_{ m OL}$	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05	
		· IN . 223, ADD	15	_	0.05	_	0.00	0.05	_	0.05	

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=v_{EE}=0v$)

CHARACTER	RISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85°	°C	UNIT	
Oldinatorial	(10110	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTI	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42			
	_ :		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	-		
Output Hig Current	0 1101		V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	-		
			V _{OH} =13.5V	15	-4.0	-	-3,4	-9.0		-2.8	-		
			V _{IN} =V _{SS} ,V _{DD}					,				mA	
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	_		
Output Low	ī	$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-		
Current		LOT.	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-		
			$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$										
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	_		
Input High	1	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	-	7.0	-		
Voltage		. 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	_	11.0	-		
			I _{OUT} <1μA										
	***************************************		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V	
Input Low		$v_{ m IL}$	V _{OUT} =1.0V ₀ , 9.0V	10	-	3.0	-	4.5	3.0	-	3.0		
Voltage		LIL	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0		
,			I _{OUT} < 1 <i>µ</i> A										
Input	TEACT	I_{IH}	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0		
Current	"L" Level	IIL	VIL=OV	18	_	-0.1	-	-10-5	-0.1	-	-1.0	μА	
				5	_	5	_	0.005	, 5	-	150		
Quiescent Current	Device	I_{DD}	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	10	-	0.010	10	-	300	μA	
			*	15	-	20		0.015	20	_	600		

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

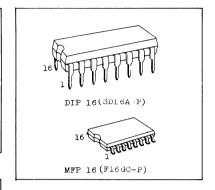

CHARACTERISTIC	SYMBOL	TEST CONDITION			MIN.	TYP.	MAX.	UNIT	
CHARACTERIBITE	БПВОД		$V_{\mathrm{DD}}(V)$	$v_{\rm EE}(v)$		111.	111111	JNII	
			.5	0 -	-	80	200		
Output Transition Time	t _{TLH}		5	- 5	-	50	100	ns	
			10	0	-	50	100	0	
			15	0	-	40	80		

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

	· · · · · · · · · · · · · · · · · · ·						Γ	T
CHARACTERISTIC	SYMBOL	TEST	CONDITIO		MIN.	TYP.	MAX.	UNIT
			$V_{\mathrm{DD}}(V)$	V _{EE} (V)				
Drangation Dalay Time			5	0	-	980	2000	
Propagation Delay Time (BCD IN -	t _{pLH}		5	- 5	-	380	900	ns
7-SEGMENT OUT)	t _{pHL}		10	0		320	750	
			15	0	_	210	500	
			5	0	-	620	1800	
Propagation Delay Time (DF IN -	t _{pLH}		5	- 5	_	240	900	ns
7-SEGMENT OUT)	t_{pHL}		10	0	-	200	750	
			15	0	_	130	500	
*			5	0	-	570	1500	
Propagation Delay Time	t _{pLH}		5	- 5	_	220	800	ns
(DF IN - DF OUT)	t _{pHL}		10	0	_	180	700	l iii
			15	0	-	110	550	
**			5	0	_	1000	3100	
Propagation Delay Time (STROBE -	t_{pLH}		5	- 5	-	400	1300	ns
7-SEGMENT OUT)	t_{pHL}		10	0	_	340	1150	li s
			15	0	-	210	750	
**	٠		5	0	-	55	220	
Min. Pulse Width	t		5	- 5	-	60	220	ns
(STROBE)	t _{WH}		10	0	_	25	100	, no
			15	0	-	20	70	
**			5	0		50	220	
Min. Set-up Time	tan		5	- 5	_	50	220	ns
(BCD IN - STROBE)	tsu		10	0	-	25	100	1113
			15	0	-	20	70	
Input Capacitance	CIN				-	5	7.5	pF

^{*} TC4055BP, ** TC4056BP/BF

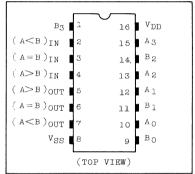
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

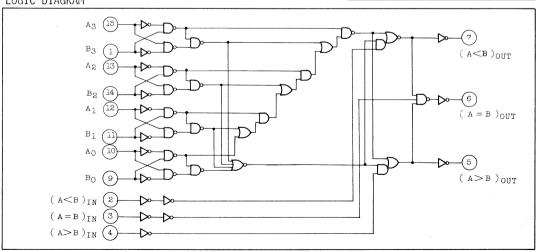


TC4063BP/BF

TC4063BP/TC4063BF 4-BIT MAGNITUDE COMPARATOR

TC4063BP/BF is weighted comparator which compares magnitude of 4 bits input data B0 through B3. When TC4063BP/BF is used, the signals of larger, smaller and equal can be obtained at three output lines by the cascade input mode of three lines of (A>B)IN, (A=B)IN and (A<B)IN.


Cascade connection of n number of TC4063BP/BF's easily realizes magnitude comparator of $4\times n$ bits.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~ V _{SS} +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ∼85	°C
Storage Temperature Range	Tstg	-65∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10 se	С

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

			INPUTS	en en en en en en en en en en en en en e				OUTPUTS	3	
	COMPA	RING		C	CASCADING					
A3,B3	A2,B2	A_1, B_1	A_0, B_0	A < B	A=B	A >B	A < B	A=B	A > B	
A3>B3	*	*	*	*	*	*	L	L	Н	
A3=B3	A2>B2	*	* *	*	*	*	L	L	Н	
A3=B3	A2=B2	A ₁ >B ₁	*	*	*	*	L	L	H	
A3=B3	A2=B2	A1=B1	A0>B0	*	*	*	L	L.	Н	
A3=B3	A2=B2	A ₁ =B ₁	A0=B0	L	L	Н	L	L	Н	
A3=B3	A2=B2	A1=B1	A0=B0	L	Н	L	L	Н	L	
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	Н	L	L	Н	L	L	
A3=B3	A2=B2	A1=B1	A ₀ <3B ₀	*	*	*	Н	L	L	
A3=B3	A2=B2	A1 <b1< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>Н</td><td>L</td><td>L</td><td></td></b1<>	*	*	*	*	Н	L	L	
A3=B3	A2≪B2	*	*	*	*	*	Н	L	L	
A3 <b3< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>Н</td><td>L</td><td>L</td><td>* Don't care</td></b3<>	*	*	*	*	*	*	Н	L	L	* Don't care

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}	3	_	18	V
Input Voltage	VIN	0	_	v_{DD}	V

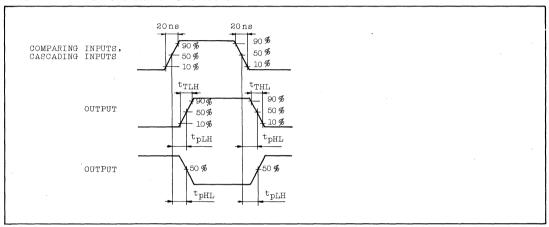
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.	5°C	UNIT
	BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
		$ \mathrm{I}_{\mathrm{OUT}} < 1\mu\mathrm{A}$	5	4.95	-	4.95	5.00	-,	4.95	-	
High-Level Output Voltage	v_{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
		· 11/ · 33, • DD		14.95	_	14.95	15.00	-	14.95	-	v
		$ \mathrm{I}_{\mathrm{OUT}} < 1 \mu\mathrm{A}$	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	$v_{\rm OL}$	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
		VIN V33, VDD	15	· -	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_	
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	_	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	· '-	-1.1	-	mA
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_	
		V _{IN} =V _{SS} ,V _{DD}									

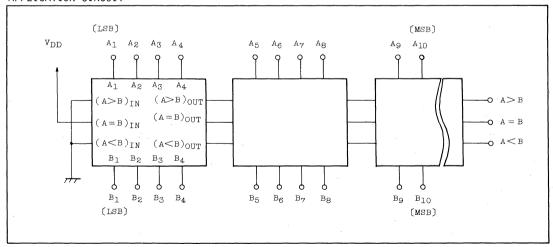
STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	RISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
Old Marot Ele		BOL	1201 001,011101.	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	
Output Lov	J	IOL	V _{OL} =0.5V	10	, 1.5		1.3	3.8	-	1.1	-	mA
Current	rent		V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	า	$ _{V_{\mathrm{IH}}}$	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage			V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	_	
			$ I_{OUT} < 1\mu A$									
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	V
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		ILL	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu A$									
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μΑ
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	
				5	_	5	***	0.005	5	-	150	
Quiescent Current	Quiescent Device Current		V _{IN} =V _{SS} ,V _{DD}	10	-	10	_	0.010	10	-	300	μΑ
			泰	15	_	20	-	0.015	20		600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time	_		5 10	_	80 50	200 100	
(Low to High)	tTLH		15	_ _	40	80	na
O to the man of the material		ı	5	-	80	200	ns
Output Transition Time (High to Low)	t _{THL}		10	-	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	+		5	-	340	1250	
(COMPARING INPUTS - OUTPUTS)	t _{pLH}		10	-	140	500	ns
	t _{pHL}		15	-	100	350	

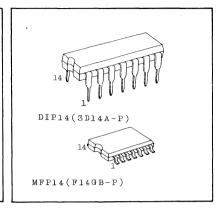

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time	t _{pLH}		5		280	1000	
(CASCADING INPUTS	t _{pHL}		10	_	110	400.	ns
- OUTPUTS)	орпь		15	-	90	280	
Input Capacitance	CIN			_	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

APPLICATION CIRCUIT

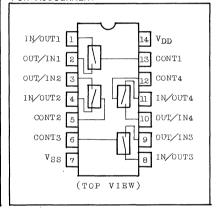
TC4066BP/BF

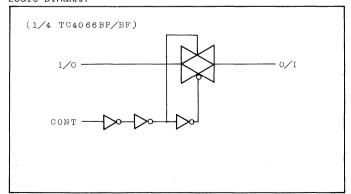

TC4066BP/TC4066BF QUAD BILATERAL SWITCH

TC4066BP/BF contains four independent circuits of bidirectional switches. When control input CONT is set to "H" level, the impedance between input and output of the switch becomes low and when it is set to "L" level, the impedance becomes high. This can be applied for switching of analog signals and digital signals.

• ON-resistance, RON

· OFF-resistance, ROFF


 R_{OFF} (TYP.) > $10^9 \Omega$


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	v_{DD}	V_{SS} -0.5 \wedge V_{SS} +20	V
Control Input Voltage	V _C IN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Switch I/O Voltage	V ₁ /0	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Potential difference across I/O during ON	v _I -v _O	±0.5	V
Control Input Current	I _C IN	±10	mA
Operating Temperature Range	T_A	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

CONTROL	Impedance Between IN/OUT-OUT/IN *
Н	$0.5 \sim 5 \times 10^2 \Omega$
L	> 1 0 ⁹ Ω

* See Static Electrical
Characteristics

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	77
Input/Output Voltage	$v_{\rm DD}/v_{\rm OUT}$	0	_	v_{DD}	٧

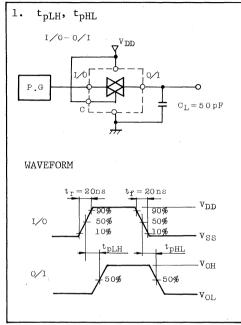
STATIC ELECTRICAL CHARACTERISTICS (In case not specifically appointed, $v_{\rm SS}$ =0v)

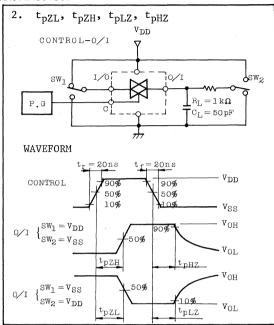
			OTENISTIOS (III					apport	,	.00 .	<i>'</i>	
CHARACTE	PICTIC	SYMBOL	TEST V _{SS}	v_{DD}		40°C		25°C		85	°C	UNITS
CHARACT	INIBITO	STRIBOL	CONDITIONS (V)	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
Control I	nnut			5	3.5	-	3.5	2.75	-	3.5	-	
High Volt	-	A ^{IH}	Iis =10µA	10	7.0	-	7.0	5.50	-	7.0	-	
-0				15	11.0	-	11.0	8.25		11.0		v
Control I	nout	77		5	-	1.5	-	2.25	1.5	-	1.5	'
Low Volta		ΔIΓ	lis =10µA	10	-	3.0	-	4.5	3.0	-	3.0	
				15	-	4.0		6.75	4.0		4.0	
On-State			$0 \le V_{is} \le V_{DD}$	5	-	800	-	290	950	-	1200	
Resistanc	ce	RON	$R_{L}=10k\Omega$	10	-	210	-	120	250	-	300	
			KL-10K	15		140	_	85	1.60	_	200	Ω
∆On-State Resistano				5	-	-	-	10	-	-	-	
Between A	$\ln y_1$	R _{ON} ∆		10	-	-	-	6	-	-	-	
2 Switche	es /			15	-		_	4		-	-	
Input/Out	-	I _{OFF}	V _{IN} =18V,V _{OUT} =0V	18	- 1	±100	_	±0.1	±100	_	±1000	nA
Leakage (Current		v _{IN} =0v,v _{OUT} =18v	18	-	±100	_	±0.1	±100	-	±1000	IIA
Quiescent	+			5	-	0.25	_	0.001	0.25	-	7.5	
Device Cu		I_{DD}	$v_{\rm IN} = v_{\rm DD}$, $v_{\rm SS}$	10	-	0.5	-	0.001	0.5	-	15	μA
Device of			*	15	-	1.0	_	0.002	1.0	_	30	
Input	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μА
Current	"L" Level	I_{IL}	V _{IL} =0V	18	_	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	PA.

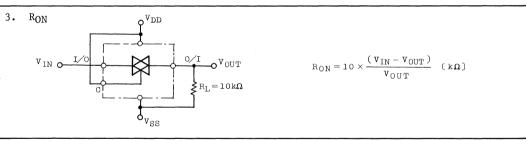
^{*} All valid input combinations.

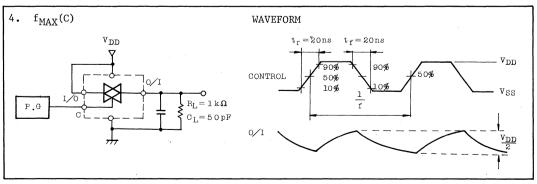
DYNAMIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDIT	CIONS	V _{SS} (V)	$V_{\mathrm{DD}}(V)$	MIN.	TYP.	MAX.	UNITS
Propagation Delay Time	t _{pLH}			0	5	-	15	40	
(IN - CUT)	tpHL	$C_L=50pF$		0	10	-	8	20	
(11, 001)	PILE			0	15		5	15	
Propagation Delay Time	tpZL	R_L =1 $k\Omega$		0	5	-	55	120	
(CONTROL - OUT)	tpZH	$C_{L} = 50 pF$		0	10	-	25	40	ns
(66111162 661)	Pan	or 2051		0	15	_	20	30	
Propagation Delay Time	t _{pLZ}	$R_{L}=1k\Omega$		0	5	-	45	80	
(CONTROL - OUT)	t _{pHZ}	C _L =50pF		0	10	-	30	70	
(CONTROL - OUI)	орпд	or 2051		0	15		25	60	
Max. Control Input	f _{MAX}	$R_L=1k\Omega$		0	5	-	10	-	
Repetition Rate		_		0	10	-	12	· -	
Repetition Rate	(C)	$C_L = 50 pF$		0	15	_	12	_	MHz
	f _{MAX}	$R_{L}=1k\Omega$							IIII
-3dB Cutoff Frequency	1	C _L =15pF	(*1)	- 5	5	-	30	-	
	(I-O)	or 1241	(-/						
Total Harmonic		R_L =10 $k\Omega$	(*2)	_	_				-
Distortion	_	f=1kHz	("2)	- 5	5	-	0.03	-	%
-50dB Feed through		R _L =1kΩ	(*3)	_	_				
Frequency	-	KL-1Kit	()	- 5	5	_	600	-	kHz
-50dB Crosstalk									
Frequency	-	R_L =1 $k\Omega$	(*4)	- 5	5	-	1	_	MHz
Crosstalk		R _{IN} =1kΩ		0	5	_	200	_	
	_	R _{OUT} =10kΩ		0	10	_	400	_	mV
(CONTROL - OUT)		$C_L=15pF$		0	15	-	600	-	
,		Control Inp	_	5	7.5				
Input Capacitance	CIN	Switch I/O				-	10	_	pF
Feed through Capacitance	C _{IN-OUT}					-	0.5	_	1

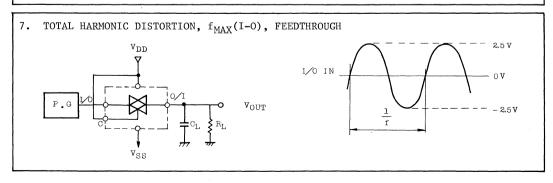

^{*1} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{1s} and the frequency of 20 $\log_{10} \frac{V_{\text{os}}}{V_{\text{1s}}} = -3 \, \text{dB}$ shall be f_{MAX} .


^{*2} V_{is} shall be sine wave of $\pm 2.5 Vp-p$.


^{*3} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of $20 \log_{10} \frac{V_{\text{out}}}{V_{\text{is}}} = -50 \text{dB}$ shall be feed-through.


^{*4} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 $\log_{10} \frac{V_{\text{out}}}{V_{\text{is}}} = -50 \text{dB}$ shall be crosstalk.

CIRCUIT FOR MEASUREMENT OF ELECTRICAL CHARACTERISTICS



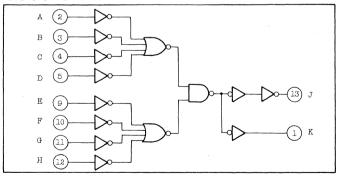
CIRCUIT FOR MEASUREMENT OF ELECTRICAL CHARACTERISTICS

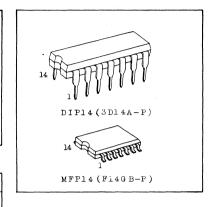
 $R_L = 1 k\Omega$

SWITCH ON VDD SWITCH ON VDD SWITCH OFF VDD SWITCH OFF

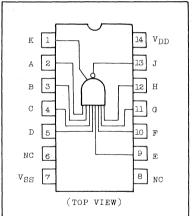
TC4068BP/BF

TC4068BP/TC4068BF 8-INPUT NAND/AND GATE


The TC4068BP/BF is 8-input positive logic NAND/AND gate.


Since each output of this gate is provided with a buffer, the input/output voltage characteristics have been improved, allowing noise immunity to be elevated; thus, the variation of propagation delay time due to the increase in load capacity is kept down to the minimum.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	٧ .
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

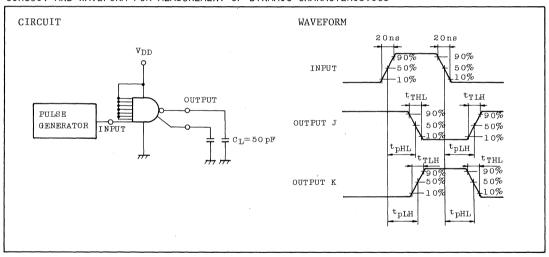
LOGIC DIAGRAM

PIN ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3		18	V
Input Voltage	VIN .	,	0 ,	-	V _{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

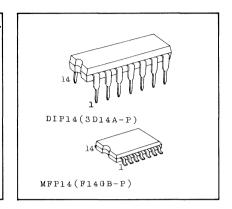

CHARACTER	ISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40	o°c		25°C		85	°C	UNIT
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	011
			$ I_{ m OUT} < 1 \mu A$	5	4.95	-	4.95	5.00	_	4.95	-	
High-Level	ingli-rever		V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00		9.95	-	
			· IN · 559 · DD	15	14.95	-	14.95	15.00	-	14.95	-	
			I _{OUT} < 1 <i>µ</i> A	5	-	0.05	_	0.00	0.05	-	0.05	V
Low-Level Output Vol	tage	$v_{ m OL}$	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	0.05	_	0.00	0.05	_	0.05	
			· IN · 339 · DD	15	-	0.05	_	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	_	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	_	
			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	-	mA
Output Low	J	$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	_	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									•
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	-	3.5	-	
Input High	ı	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} < 1µA									
			V _{OUT} =0.5V, 4.5V	5	_	1.5	_	2.25	1.5	_	1.5	V
Input Low		v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		, TP	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1μA									
Input	"H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μΑ
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	-	-1.0	$\mu_{\rm H}$
				5	-	0.25	_	0.001	0.25	_	7.5	
Quiescent Current	Device	I_{DD}	V _{IN} -v _{SS} ,V _{DD}	10	-	0.5	-	0.001	0.5	-	15	μA
			*	15	-	1.0	-	0.002	1.0	-	30	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

		, , , , , , , , , , , , , , , , , , , ,			····		
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time (Low to High)	t _{TLH}		10	-	50	100	
			15	· <u>-</u>	40	80	
			5	_	80	200	ns
Output Transition Time	tTHL		10	-	50	100	
(High to Low)			15	-	40	80	
			5	_	160	300	
Propagation Delay Time	t _{pLH}		10	-	70	150	ns
	t _{pHL}		15	-	45	110	
Input Capacitance	CIN			_	5	7.5	pF

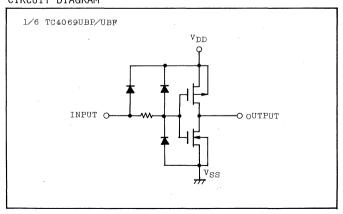
CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

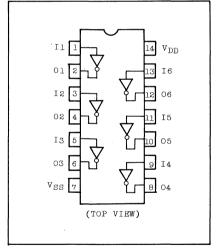


TC4069UBP/UBF

TC4069UBP/TC4069UBF HEX INVERTER

TC4069UBP/UBF contains six circuits of inverters. The pin allocation is same as TC7404UB and since the operating current consumption is smaller, this is suitable for the applications of CR oscillator circuits, crystal oscillator circuits and linear amplifiers in addition to its application as inverters.


Because of one stage gate configuration, the propagation time has been reduced.


ABSOLUTE MAXIMUM RATINGS

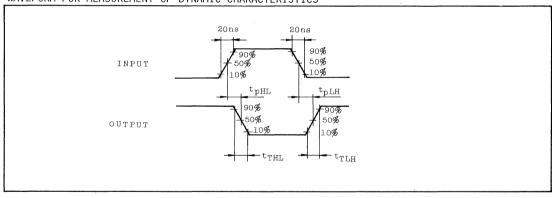
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	VIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∼85	°C
Storage Temperature Range	T _{stg}	-65 ~ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

CIRCUIT DIAGRAM

PIN ASSIGNMENT

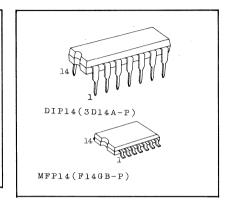
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	, in the second	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$		3	-	18	V
Input Voltage	v_{IN}		0	-	$v_{ m DD}$	V


STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

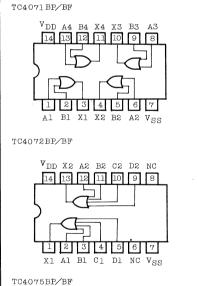
CHARACTE	DICTIC	SYMBOL	TEST CONDITIONS	V_{DD}	-4()°C		25°C		8.5	5°C	UNITS
CHARACTE	KISIIC	SIMOL	1E21 CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Leve	1		I _{OUT} <1 μΑ	5	4.95	_	4.95	5.00	-	4.95	_	
Output Vo		V _{OH}		10	9.95	-	1	10.00		9.95	-	
			V _{IN} =V _{SS}		14.95		14.95	15.00		14.95	_	v
Low-Level			I _{OUT} <1μΑ	5	-	0.05	-	l	0.05	-	0.05	,
Output Vo		V _{OL}		10	-	0.05	-	1	0.05	-	0.05	
			$\Lambda^{\text{IN}=\Lambda^{\text{DD}}}$	15		0.05	-		0.05	-	0.05	
			V _{OH} =4.6V	5		-	-0.51	-1.0		-0.42	-	
Output Hi	αh		V _{OH} =2.5V	1	-2.5	-	-2.1	-4.0		-1.7	-	
Current	.B11	I _{OH}	$V_{OH} = 9.5V$	l	-1.5	-	-1.3	-2.2		-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_	
			$v_{IN}=v_{SS}$									mA
			V _{OL} =0.4V	5		-	0.51	1.2		0.42	_	
Output Lo	W	_	V _{OL} =0.5V	10	1.5	-	1.3	3.2		1.1	-	
Current		IOL	V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	-	
			$v_{IN} = v_{DD}$									
			V _{OUT} =0.5V	5	4.0	-	4.0	_	-	4.0	_	
Input Hig	h		V _{OUT} =1.0V	10	8.0	-	8.0	-	-	8.0	-	
Voltage		v_{IH}	V _{OUT} =1.5V	15	12.0		12.0	-	-	12.0	-	
			I _{OUT} <1μA									.,
			V _{OUT} =4.5V	5	-	1.0	_	_	1,0	_	1.0	V
Input Low		77	V _{OUT} =9.0V	10	-	2.0	-	-	2.0	-	2.0	
Voltage		AIL	V _{OUT} =13.5V	15	-	3.0	-	_	3.0	_	3.0	
			I _{OUT} <1μA									
Input	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	_	10-5	0.1	- •	1.0	
Current	"L" Level	IIL	V _{IL} =OV	18	-	-0.1	-	-10-5	-0.1	-	-1.0	
Quiescent			77 77 77	5	-	0.25	-	0.001	0.25	-	7.5	μA
Device Cu		I _{DD}	$v_{IN}=v_{SS}, v_{DD}$	10	-	0.5	-	0.001	0.5	-	15	
DEVICE OU	116116		*	15	-	1.0	-	0.002	1.0	-	30	

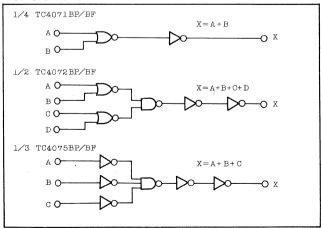
^{*} All valid input combinations.

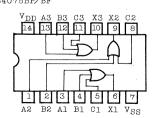

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	- - -	70 35 30	200 100 80	·
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (Low to High)	t _{pLH}		5 10 15	-	55 30 25	110 60 50	ns
Propagation Delay Time (High to Low)	t _{pHL}		5 10 15	-	55 30 25	110 60 50	
Input Capacitance	c_{IN}			-	7.5	15	рF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4071BP/TC4071BF QUAD 2 INPUT OR GATE TC4072BP/TC4072BF DUAL 4 INPUT OR GATE TC4075BP/TC4075BF TRIPLE 3 INPUT OR GATE


TC4071BP/BF, TC4075BP/BF and TC4072BP/BF are positive logic OR gates with two inputs, three inputs and four inputs respectively. As all the outputs of gates are equipped with the buffer circuits of inverters, the input/output propagation characteristic has been improved and the variation of propagation time caused by increase of load capacity is kept minimum.


ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5 ~ Vss+20	V
Input Voltage	v_{IN}	V_{SS} -0.5 $_{\sim}$ V_{DD} +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $_{\sim}$ V_{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	- 40 √ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

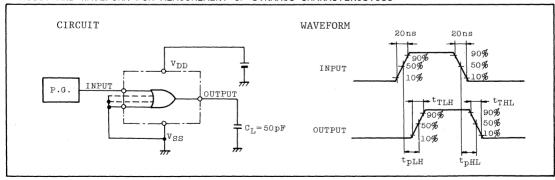
PIN ASSIGNMENT (TOP VIEW)

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (V_{SS}=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V_{DD}	-4	0°C		25°C		8.5	5°C	UNITS
CHARACTERISTIC	DIFIDOL .	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTID
High-Level		I _{OUT} <1μA	5	4.95	_	4.95	1 1	_	4.95	-	
Output Voltage	VOH	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	ì	10.00		9.95	-	
		"IN "SS, "DD	15	14.95	-		15.00		14.95		V
Low-Level	VOL	I _{OUT} <1μA	5 10	-	0.05	_		0.05	-	0.05	
Output Voltage	VOL	$v_{\mathrm{IN}}=v_{\mathrm{SS}}$	15	_	0.05	_	1	0.05	_	0.05	
		V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0		-0.42	_	
		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output High	IOH	V _{OH} =9.5V	10	-1.5	-	-1. 3	-2.2	-	-1.1	-	
Current		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		v _{IN} =v _{SS} , v _{DD}									mA
		V _{OL} =0.4V	5	0.61	-	0.51	1 1		0.42	-	1112-1
Output Low	$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8		1.1	-	
Current		V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
		$v_{IN}=v_{SS}$							۰		
		V _{OUT} =4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	VIH	V _{OUT} =9.0V	10	7.0	-	7.0	5.5	-	7.0	-	1
Voltage	V TH	V _{OUT} =13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		$ I_{OUT} < 1\mu A$									
		V _{OUT} =0.5V, 4.5V		-	1.5	-	2.25	1.5	-	1.5	V
Input Low		V _{OUT} =1.0V, 9.0V	1	-	3.0	-	4.5	3.0	-	3.0	
Voltage	AIT	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} <1μA									
Input "H" Level	I_{IH}	V _{IH} =18V	18	-	0.1	-	10 ⁻⁵	0.1	_	1.0	
Current "L" Level	I_{IL}	AIT=OA	18	_	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	
Quiescent			5	-	0.25	-	0.001	0.25	_	7.5	μA
Device Current	I _{DD}	$v_{\rm IN}^{=v}_{\rm SS}, v_{\rm DD}$	10	-	0.5	-	0.001	0.5	-	15	
Device Garrell		*	15	-	1.0	-	0.002	1.0		30	

^{*} All valid input combinations.

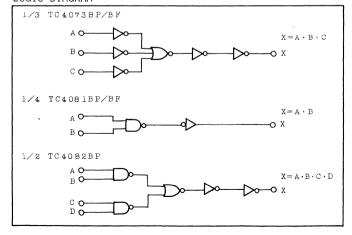
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{SS}=0V$, $C_L=50pF$)

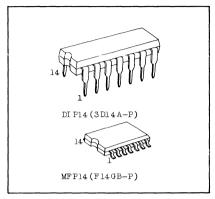
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (TC4072BP/BF) (TC4075BP/BF)	t _{TLH}		5 10 15	- - -	80 50 40	200 100 80	
Output Transition Time (TC4072BP/BF) (TC4075BP/BF)	t _{THL}		5 10 15	- - -	80 50 40	200 100 80	
Output Transition Time (TC4071BP/BF)	t _{TLH}		5 10 15	- - -	70 35 30	200 100 80	
Output Transition Time (TC4071BP/BF)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (TC4071BP/BF)	t _{pLH}		5 10 15	- - -	65 30 25	200 100 80	
Propagation Delay Time (TC4071BP/BF)	t _{pHL}		5 10 15	- - -	65 30 25	200 100 80	ns
Propagation Delay Time (TC4072BP/BF)	t _{pLH}		5 10 15	- - -	115 45 30	250 120 90	
Propagation Delay Time (TC4072BP/BF)	t _{pHL}		5 10 15	- - -	115 45 30	250 120 90	
Propagation Delay Time (TC4075BP/BF)	t _{pLH}		5 10 15	-\	95 40 30	250 120 90	
Propagation Delay Time (TC4075BP/BF)	t _{pHL}		5 10 15	- - -	95 40 30	250 120 90	
Input Capacitance	c_{IN}			-	5	7.5	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

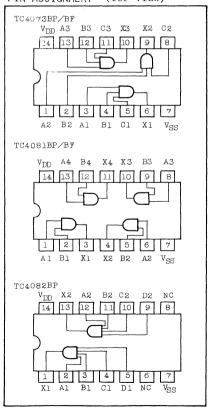
TC4073BP/BF, TC4081BP/BF, TC4082BP

TC4073BP/TC4073BF TRIPLE 3 INPUT AND GATE TC4081BP/TC4081BF QUAD 2 INPUT AND GATE TC4082P DUAL 4 INPUT AND GATE


 ${
m TC4081BP/BF}$, ${
m TC4073BP/BF}$ and ${
m TC4082BP}$ are positive logic AND gates with two inputs, three inputs and four inputs respectively.


Since all the outputs of these gates are equipped with the buffer circuits of inverters, the input/output propagation characteristic has been improved and variation of propagation time caused by increase of load capacity is kept minimum.

ABSOLUTE MAXIMUM RATINGS

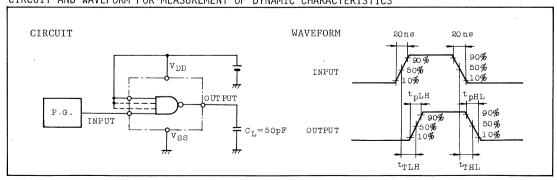

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ∿ V _{SS} +20	V
Input Voltage	AIN	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ~85	°C
Storage Temperature Range	Tstg	- 65 [∿] 150	°C
Laed Temp./Time	T _{sol}	260°C • 10 sec	

LOGIC DIAGRAM

TC4073BP/BF, TC4081BP/BF, TC4082BP

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

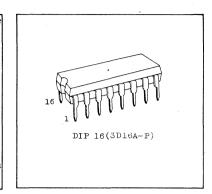
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	·	3	_	18	V
Input Voltage	VIN		0	_	$v_{ m DD}$	V


STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

STATIC ELECTRICA			v_{DD}	-40	O°C		25°C		85°	,C	
CHARACTERISTIC	SYMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Level		I _{OUT} <1μΑ	5	4.95		4.95			4.95	-	
Output Voltage	V _{OH}	$v_{IN} = v_{DD}$	10 15	9.95			10.00 15.00		9.95 14.95	-	
A			5	14.95	0.05			0.05	-	0.05	V
Low-Level	v_{OL}	I _{OUT} <1μA	10	_	0.05	_		0.05	_	0.05	l
Output Voltage	OL	$v_{\text{IN}}=v_{\text{SS}}$, v_{DD}	15	-	0.05	-	0.00	0.05	_	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51		-	-0.42	-	
Output High	-	$V_{OH}=2.5V$	5 10	-2.5 -1.5	_	-2.1 -1.3	-4.0 -2.2	_	-1.7 -1.1	_	
Current	IOH	V _{OH} =9.5V V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0		-2.8	_	
odriche		AIN=ADD	13	1.0		3.4					
		V _{OL} =0.4V	5	0.61		0.51	1.2		0.42		mA
Output Low	_	V _{OL} =0.5V	10	1.5	-	1.3	3.2	_	1.1	_	
Current	I _{OL}	$V_{\mathrm{OL}}=1.5V$	15	4.0	-	3.4	12.0	-	2 8	-	
		$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$									
		V _{OUT} =0.5V, 4.5V		3.5	-	3.5	2.75	1	3.5	-	
Input High	v_{IH}	V _{OUT} =1.0V, 9.0V		7.0 11.0	_	7.0 11.0	5.5 8.25	_	7.0 11.0	_	
Voltage	, TH	V _{OUT} =1.5V,13.5V	13	11.0	_	11.0	0.23	_	11.0	_	
		I _{OUT} <1μA V _{OUT} =0.5V	5	_	1.5	_	2.25	1.5	_	1.5	V
Input Low		V _{OUT} =1.0V	10	-	3.0	_	4.5	3.0'	4	3.0	
Current	, V _{IL}	V _{OUT} =1.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} <1μA									
Input "H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	
Current "L" Level	IIL	V _{IL} =OV	18	-	-0.1	-	-10-5	-0.1	-	-1.0	
Quiescent		V _{IN} =V _{SS} , V _{DD}	5	-	0.25	! -	í	0.25	-	7.5	μA
Device Current	I_{DD}		10		0.5	-	0.001	1	-	15	
		*	15		1.0	<u> </u>	0.002	1.0		30	

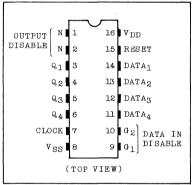
^{*} All valid input combinations.

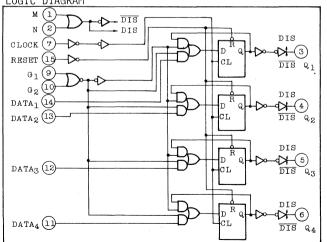
DINAMIC ELLCINICAL CHARAC	ILIVIDITOS	(1a 25 0, 155 0V,	-H JOPI	·			
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (TC4073BP/BF) (TC4082BP/BF)	t _{TLH}		5 10 15	- - -	80 50 40	200 100 80	
Output Transition Time (TC4073BP/BF) (TC4082BP/BF)	t _{THL}		5 10 15	1 1 1	80 50 40	200 100 80	
Output Transition Time (TC4081BP/BF)	t _{TLH}		5 10 15	- -	70 35 30	200 100 80	
Output Transition Time (TC4081BP/BF)	t _{THL}		5 10 15	-	70 35 30	200 100 80	
Propagation Delay Time (TC4073BP/BF)	t _{pLH}		5 10 15		115 50 35	250 120 90	
Propagation Delay Time (TC4073BP/BF)	t _{pHL}		5 10 15		115 50 35	250 120 90	ns
Propagation Delay Time (TC4081BP/BF)	t _{pLH}		5 10 15		65 30 25	200 100 80	
Propagation Delay Time (TC4081BP/BF)	t _{pHL}		5 10 15	-	65 30 25	200 100 80	
Propagation Delay Time (TC4082BP)	t _{pLH}		5 10 15	- - -	110 50 35	250 120 90	
Propagation Delay Time (TC4082BP)	t _{pHL}		5 10 15	-	110 50 35	250 120 90	
Input Capacitance	CIN			-	5	7.5	pF


CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4076BP 4-BIT D-TYPE REGISTER

TC4076BP is the register which consists of four D type flip-flops having 3-stage outputs, and these four flip-flops are controlled by common CLOCK input and RESET input.


When both of INPUT DISABLE inputs G1 and G2 are at "L", data inputs D1 through D4 are stored in F/F's at the rising edge of CLOCK input, and with other combination of G1 and G2, the previous conditions of F/F's are retained even if the rising edge of CLOCK occurs, When both of OUTPUT DISABLE inputs M and N are at "L", the outputs of flip-flops appear at Q1 through Q4 outputs, and with any other combinations of M and N, the outputs have high impedance. RESET is active with "H" level.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	. V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	Vout	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	T _{so1}	260°C · 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

RESET	GT-OGK	DISA	A IN ABLE	DATA	OUT	0	
ICEO E1	CHOOK	ø ₁	Φ ₂	DAIA	M	N	Q_{n+1}
*	*	*	*	*	Н	*	HZ
*	*	*	*	*	*	Н	HZ
Н	*	*	*	*	L	L	L
L	L	*	*	*	L	L	Q_n
L		H	*	*	L	L	Q_n
L	J	*	Н	*	L	L	Q_n
L	5	L	L	H	L	L	Н
L	5	L	L	L	L	L	L
L	Н	*	*	*	L	L	Q_n
L	7_	*	*	*	L	ь	Q_n

 \mathbb{Q}_{n+1} : NEXT STATE of \mathbb{Q}_n HZ : HIGH IMPEDANCE

* : Don't care

RECOMMENDED OPERATING CONDITIONS (VSS=OV)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	VIN	0	-	v_{DD}	V

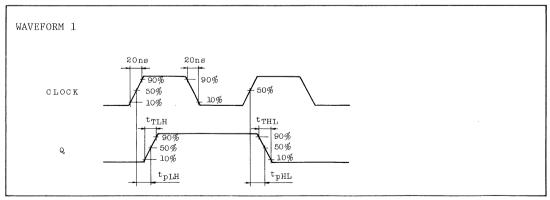
STATIC ELECTRICAL CHARACTERISTICS ($v_{\rm SS}$ =0v)

CHARACTERISTIC		SYM-	TEST CONDITION	$v_{\rm CC}$	-40°C			25°C		85°C		UNIT	
CHRICIE	XIDIIO	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
			I _{OUT} < 1 µA	5	4.95	-	4.95	5.00	_	4.95	-		
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-		
r			1N 30, DD	15	14.95		14.95	15.00	_	14.95	_	v	
			$ I_{ m OUT} < 1\mu{ m A}$	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Vol	Ltage	VOL		10	-	0.05	_	0.00	0.05	-	0.05		
			1N 55, D5	15	_	0.05	-	0.00	0.05	_	IN. MAX. 195 - 195 - 195 - 195 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1005 - 1006 -		
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-		
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	mA	
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	-		
			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	_		
			$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$										
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-		
Output Lov	√.	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-		
Current			V _{OL} =1.5V	15	4.0	_	3.4	15.0	_	2.8	-		
			V _{IN} =V _{SS} ,V _{DD}										
			$V_{OUT} = 0.5V, 4.5V$	5	3.5	-	3.5	2.75	-	3.5	_		
Input High	า	v_{IH}	$V_{OUT}=1.0V$, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-		
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-		
			$ I_{ m OUT} < 1\mu{ m A}$									v	
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5		
Input Low Voltage		$ _{v_{\mathrm{IL}}}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0		
		111	OUT=1.5V, 13.5V 15 - 4.0 - 6.75 4		4.0	-	4.0						
			I _{OUT} <1 <i>µ</i> A										
Input	"H" Level	1_{IH}	V _{IH} =18V	18	-	0.1	-	19-5	0.1	-	1.0	μA	
Current	"L" Level	IIL	V _{IL} =0V	18	•••	-0.1	-	-10-5	-0.1	-	-1.0	,~~.	

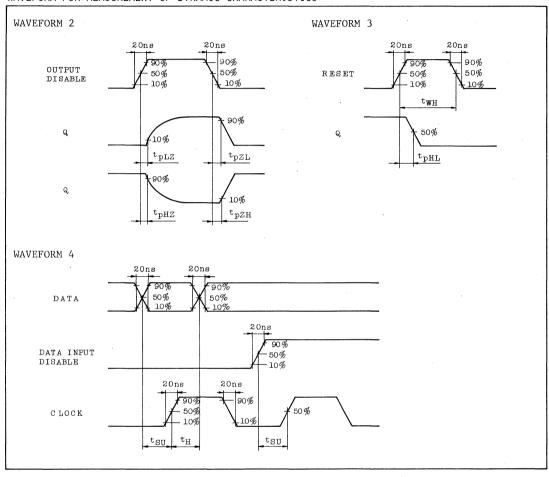
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC		SYM-	TEST CONDITION	$v_{ m DD}$	-40°C		25°C			85°C		UNIT
0.11.11.01.01		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	X. MIN. MAX.		l
3-State Output	"H" Level	I_{DH}	V _{OUT} =18V	18	_	0.4	-	10-4	0.4		12	μΑ
Leakage Current	"L" Level	$I_{ m DL}$	V _{OUT} =0V	18	- .	-0.4	-	-10-4	-0.4	-	-12	μ _A
				5	-	5	-	0.005	5	-	150	
Quiescent Devi Current	Device	Device I _{DD}	VIN=VSS, VDD	10	-	10	-	0.010	10	-	300	μА
				15	-	20	_	0.015	20	-	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{SS}=0V$, $C_L=50pF$)

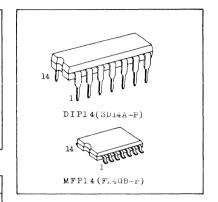
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			. 5	_	80	200	
Output Transition Time (Low to High)	tTLH		10	-	50	100	
(now to might)			15	_	40	80	ns
			5	_	80	200	
Output Transition Time (High to Low)	t_{THL}		10	-	50	100	
(High to Low)			15	_	40	80	
	.		5	_	250	600	
Propagation Delay Time (CLOCK - 0)	t _{pLH}		10	_	95	250	ns
(CLOCK - Q)	t _{pHL}		15	_	65	180	
	t _{pHL}		5	-	230	460	
Propagation Delay Time (RESET - Q)		1	10	-	90'	200	ns
(KESEI - Q)			15	_	60	150	٠
Three State Disable			5	_	100	300	
Time	t _{pHZ}	$R_{L}=1k\Omega$	10	-	45	120	
(OUTPUT DISABLE - Q)	t _{pLZ}		15	_	35	90	
Three State Disable			5	-	110	300	ns
Time	t _{pZH}	$R_{L}=1k\Omega$	10	_	40	150	
(OUTPUT DISABLE - Q)	t _{pZL}		15	_	30	120	
			5	3	7	_	
Max. Clock Frequency	fCL		10	6	21	_	MHz
			15	8	24	-	


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	70	200	
Min. Clock Pulse Width	t _w		10	-	25 .	100	ns
			15	_	20	80	
			5	-	100	200	
Min. Pulse Width (RESET)	t _{WH}		10	-	40	80	ns
			15	_	30	60	
Max. Clock Input Rise			5	20	-	_	
Time. Max. Clock Input Fall	trCL		10	2.5	_	_	μS
Time.	tfCL		15	1.0	_	-	
			5 .	-	75	150	
Min. Set-up Time (DATA - CLOCK)	tsu		10		30	60	ns
(211111 020011)			15	-	20	40	
Min. Set-up Time			5	_	100	200	
(DATA INPUT DISABLE	t _{SU}		10	-	40	80	ns
- CLOCK)			15	_	25	50	
			5	-	_	135	
Min. Hold Time (DATA - CLOCK)	tH		10	-	_	60	ns
(MIN OLOOK)			15	_	-	50	
Input Capacitance	CIN			_	5	7.5	pF

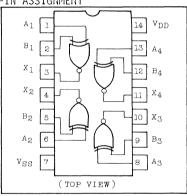
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

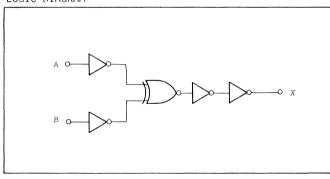
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS


TC4077BP/BF

TC4077BP/TC4077BF OUAD EXCLUSIVE-NOR GATE

The TC4077BP/BF is quad exclusive-NOR gate. Since all the outputs are provided with the buffers of two stage inverters, the input/output voltage characteristics have been improved. Thus an increase in propagation delay time caused by an increas in load capacity is kept to a minimum.


Therefore, this gate can be widely applied to digital comparators, parity circuits, etc.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5 ~ Vss+20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

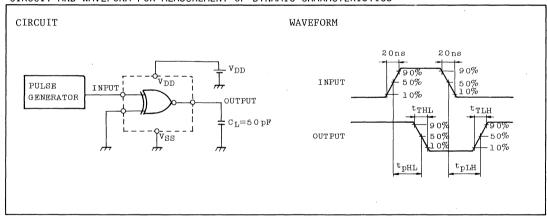
INP	UTS	OUTPUT
A	В	X
L	L	Н
L	Н	L
Н	L	L
Н	Н	Н

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

		, ,,				
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	_	$v_{ m DD}$	V

TC4077BP/BF

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


CHARACTER	RISTIC	SYM-	TEST CONDITION	V_{DD}	-40)°C		25°C		85	°C	UNIT	
01211110121		BOL	THE COMPTION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	02112	
			$ I_{ m OUT} < 1 \mu A$	5	4.95	-	4.95	5.00	_	4.95	-		
High-Level Output Vol		VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95		9.95	10.00	-	9.95	-		
	and the second of		· IN · 55, · DD	15	14.95	-	14.95	15.00	-	14.95	-		
			$ I_{ m OUT} < 1 \mu A$	5	-	0.05	-	0.00	0.05	-	0.05	V	
Low-Level Output Vol	tage	VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05		
	8-		· IN · 333, · DD	15	-	0.05	. –	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_		
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7			
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-		
odrzene			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	-	
			$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$										
			V _{OL} =0.4V	5	0.61	_	0.51	1.5		0.42	-	mA	
Output Low	Į.	IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	-	1.1	_ '		
Current		TOL	V _{OL} =1.5V	15	4.0		3.4	15.0	_	2.8	-		
			V _{IN} =V _{SS} ,V _{DD}										
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_		
Input High	n	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	_		
Voltage		VIH	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	_		
			$ I_{ m OUT} < 1 \mu A$,				
			V _{OUT} =0.5V, 4.5V	5	_	1.5	_	2.25	1.5	-	1.5	V	
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	_	3.0		
Voltage		VIL.	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	_	4.0		
,			I _{OUT} < 1μΑ										
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μA	
Current	"L" Level	IIL	AIT=0A	18	-	-0.1	-	-10-5	-0.1	-	-1.0	,,,,,	
			,	5	-	1	-	0.001	1	-	7.5		
Quiescent Current	Device	IDD	V _{IN} =V _{SS} ,V _{DD}	10	_	2		0.001	2	-	15	μA	
GULLEILL			*	15	_	4	_	0.002	4	-	30		

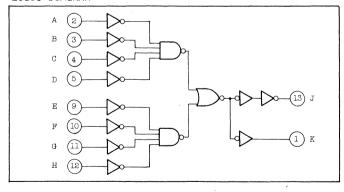
^{*} All valid input combinations.

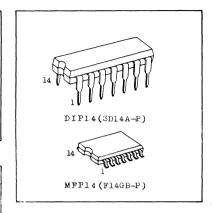
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)			5	-	80	200	
	t _{TLH}		10	_	50	100	
			15	-	40	80	ns
Output Transition Time			5	-	80	200	113
(High to Low)	t_{THL}		10	-	50	100	
(High to Low)			15	-	40	80	
	+		5	_	130	280	
Propagation Delay Time	t _{pLH}		10	-	60	130	ns
	t _{pHL}		15	-	50	100	
Input Capacitance	CIN			_	5	7.5	pF

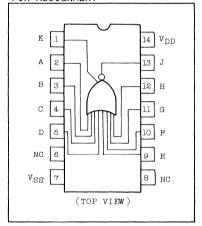
CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4078BP/BF


TC4078BP/TC4078BF 8-INPUT NOR/OR GATE


The TC4078BP/BF is 8-bit positive logic NOR/OR gate. Since each output of this gate is provided with a buffer, the input/output voltage characteristics have been improved, allowing noise immunity to be elevated; thus, the variation of propagation delay time due to the increase in load capacity is kept to the minimum.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5 ~ Vss+20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mΑ
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mU
Operating Temperature Range	$T_{\mathbf{A}}$	- 40 ~ 85	°C
Storage Temperature Range	Tstg	-65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sce	

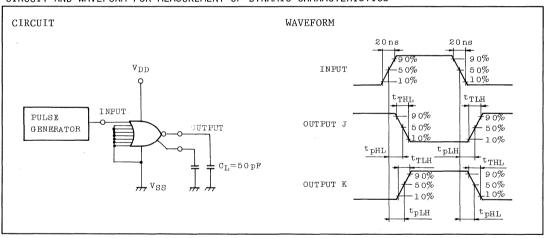
LOGIC DIAGRAM

PIN ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

		(00 - /				
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	v_{IN}		0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

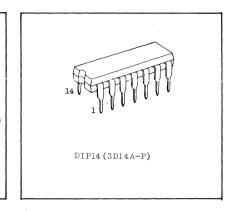

CHARACTER	EISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
Cilitatoria		BOL	THE CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
			$ I_{ m OUT} < 1 \mu { m A}$	5	4.95	-	4.95	5.00	-	4.95	_	
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
			VIN-422, ADD	15	14.95	-	14.95	15.00		14.95	-	v
T T 1			 I _{OUT} < 1µA	5	-	0.05	-	0.00	0.05	-	0.05	·
Low-Level Output Vol	tage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
			'IN '33, 'DD	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	_	
Output Hig Current	;h	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
Carrent			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0		-2.8	-	
			$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	_	mA
Output Low	,	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	_	
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	_	
			$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	_	
Input High	L	V _{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0		
Voltage		.11	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0		
			$ I_{ m OUT} < 1\mu A$									
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	V
Input Low		$v_{\rm IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		, 11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1μΑ									
Input	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μА
Current	"L" Level	I_{IL}	VIT=0A	18	_	-0.1	_	- 10 - 5	-0.1	-	-1.0	μН
	ъ.			5	-	0.25	-	0.001	0.25	_	7.5	
Quiescent Current	nevice	I_{DD}	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	0.5	-	0.001	0.5		15	μA
			*	15		1.0	_	0.002	1.0		30	

^{*}All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)			.5	-	80	200	
	tTLH		10	· _	50	100	
		,	15	-	40	80	ns
O. I. Marantita Mila			5	-	80	200	115
Output Transition Time	tTHL		10	-	50	100	
(High to Low)			15	-	40	80	
	_		5	_	170	300	
Propagation Delay Time	t _{pLH}		10	-	70	140	ns
	t _{pHL}		15	-	50	110	-
Input Capacitance	CIN			_	5	7.5	pF

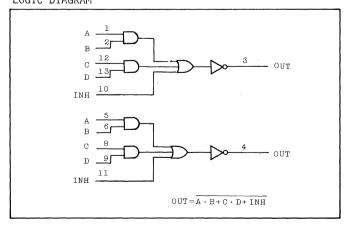
CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

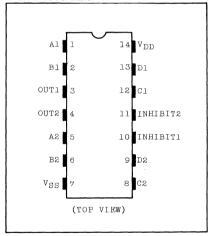

TC4085BP

TC4085BP DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE

TC4085BP contains two circuits of AND-OR select gates and the outputs are inverted. The circuit consists of two 2 input AND gates and one NOR gate, and the logical equation of the output is as follows.

$$OUT = \overline{A \cdot B + C \cdot D + INH}$$


If INH input is set at "H", the select operation is inhibited having OUT="L", so that this input can be used as an expander terminal for connecting TC4081B, etc.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ~ V _{SS} +20	V
Input Voltage	VIN	V _{SS} -0.5 ∿ V _{DD} +0.5	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

LOGIC DIAGRAM

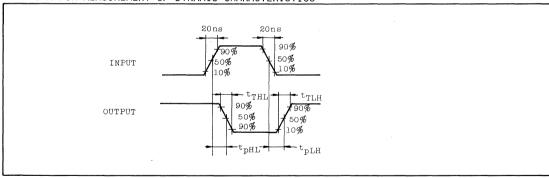
PIN ASSIGNMENT

TC4085BP

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


GUADA GERTAGETA			$v_{ m DD}$	-40)°C		25°C		85	°C	UNITS
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIID
High-Level		I _{OUT} <1μA	5	4.95	-	4.95	5.00		4.95	-	
Output Voltage	v _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
		VIN-VSS, VDD		15.95		14.95	15.00		14.95		v
Low-Level		I _{OUT} <1μΑ	5	-	0.05	-	1	0.05	-	0.05	
Output Voltage	VOL		10	-	0.05	-		0.05	0	0.05	l i
		V _{IN} =V _{SS} , V _{DD}	15	_	0.05			0.05	0	0.05	
,		V _{OH} =4.6V	5		-	-0.51	-1.0)	-0.42	-	
Output High		$V_{OH}=2.5V$	5 10	-2.5 -1.5		-2.1	-4.0		-1.7	-	
Current	I _{OH}	V _{OH} =9.5V	15	i	-	-1.3	-2.2		-1.1	-	
		V _{OH} =13.5V	13	-4.0	-	-3.4	-9.0	-	-2.8	-	
		V _{IN} =V _{SS} , V _{DD}		0 (1							mA
		V _{OL} =0.4V	5	0.61	-	0.51	1.2	-	0.42	-	
Output Low	I _{OL}	V _{OL} =0.5V	10	1.5	-	1.5	3.2	-	1.1	_	
Current	02	V _{OL} =1.5V	15	4.0	-	3.4	12.0	-	2.8	-	
		V _{IN} =V _{SS} , V _{DD}									
		V _{OUT} =0.5V, 4.5V	5 10	3.5	-	3.5	2.75	-	3.5	-	
Input High	v _{IH}	V _{OUT} =1.0V, 9.0V	1	7.0	-	7.0	5.5	_	7.0	_	
Voltage	, TH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} <1μA									v
Input Low		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Voltage	VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	11.	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} <1μA				<u> </u>					
Input "H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	
Current "L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	
Quiescent		77 - 77 - 77	5	-	0.25	_	0.001	0.25	-	7.5	μА
Device Current	I_{DD}	$v_{\rm IN}^{=v}_{\rm SS}$, $v_{\rm DD}$	10	-	0.5	-	0.001	0.5	_	15	
pevice current		*	15	-	1.0	-	0.002	1.0	-	30	

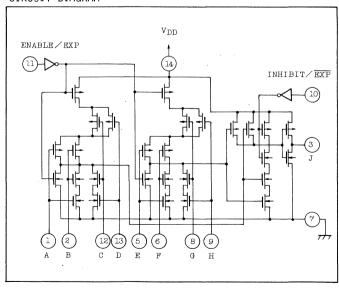
^{*} All valid input combinations.

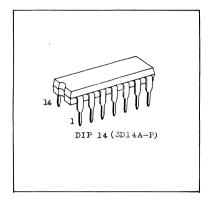
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25	5°C, VSS=0V, CL=50pF	')
---	----------------------	----

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD(V)}	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10	-	70 35	200 100	
(Low to High)			15	-	30	80	
Output Transition Time	t _{THL}		5 10	-	70 35	200 100	
(High to Low)			15	_	30	80	
Propagation Delay Time			5	_	70	200	
•	t _{pLH}		10	-	35	100	
(A, B, C, D - OUT)			15	-	30	80	na
Propagation Delay Time			5	-	70	200	ns
•	t _{pHL}		10	-	35	100	
(A, B, C, D - OUT)			15	-	30	80	
Propagation Delay Time			5	-	70	200	
•	t _{pLH}		10	-	35	100	
(INH - OUT)			15	-	30	80	
Propagation Delay Time			5	-	70	200	
	t _{pHL}		10	-	35	100	
(INH - OUT)			15		30	80	
Input Capacitance	C _{IN}			-	5	7.5	pF

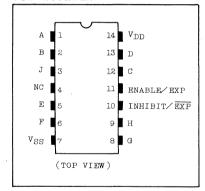
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4086BP EXPANDABLE 4-WIDE 2-INPUT AND-OR-INVERT GATE

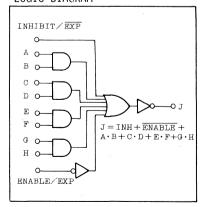

TC4086BP contains four 2 input AND gates and one OR gate which logically adds (OR) all the AND gates having an expander input to form AND-OR-select gate, and the output is inverted.


 INH/\overline{EXP} input and ENABLE/EXP input are the expander inputs to connect other AND gates and select gate and these can be used as INHIBIT input to inhibit the select operation besides of the expander function.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	ТА	- 40 ∼ 85	°C
Storage Temperature Range	$T_{ t stg}$	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

CIRCUIT DIAGRAM



PIN ASSIGNMENT

LOGIC DIAGRAM

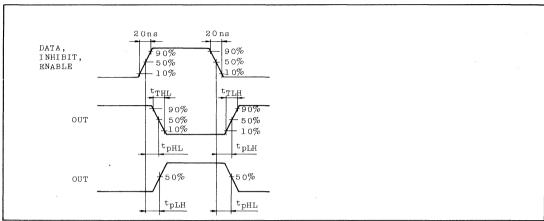
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	VIN	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	ISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85	°C	UNIT
OlmidioThi		BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
			lT 1 < 1	5	4.95	-	4.95	5.00	_	4.95	_	
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	_	9.95	10.00	_	9.95	-	
odepae voi	- Cage		VIN-VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	-	v
			$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	5	-	0.05	_	0.00	0.05	-	0.05	
Low-Level Output Vol	tage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
ı			VIN- V22, VDD	15	-	0.05	_	0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	h	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42		IIIA
Output Low	r	, I _{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		l or	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			$v_{IN}=v_{SS}, v_{DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	- ,	3.5	-	
Input High	ı	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5		7.0	-	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			$ I_{ m OUT} < 1\mu A$							·		.,
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	V
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	· -	3.0	
Voltage		11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} < 1μΑ									
	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	۸
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1		-1.0	μA

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


I CHARACTERISTIC	SYM-	TEST CONDITION	VDD	-40)°C		25°C		85°	,C	UNIT
	BOL	1201 001.011	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	012
			5	-	1	_	0.001	1	-	7.5	
Quiescent Device Current	IDD	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	2	-	0.002	2	-	15	μА
		*	15	-	4	_	0.004	4	-	30	

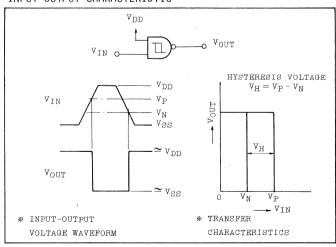
^{*} All valid input combinations.

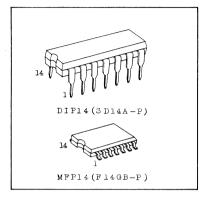
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

DINAMIC ELECTRICAL CHARA			OV, OL 3				
CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\mathrm{DD}}(V)$	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	80	200	
(Low to High)	t _{TLH}		10	-	50	100	
(Low to High)			15	-	40	80	ns
Output Transition Time			5	-	80	200	113
(High to Low)	t _{THL}		10	-	50	100	
(might be ben)			15		40	80	
Propagation Delay Time			5	-	110	450	
(DATA - OUT)	t _{pLH}		10	-	45	180	
			15	-	30	120	ns
Propagation Delay Time			5	-	110	450	
(DATA - OUT)	t _{pHL}		10	-	45	180	
(BMIM OUT)			15	-	35	120	
Propagation Delay Time			5	_	75	300	
(INHIBIT - OUT)	tpLH		10	-	35	120	
(IMILDII - OUI)			15	-	25	80	ns
Propagation Delay Time			5	_	70	300	113
(INHIBIT - OUT)	t _{pHL}		10	-	30	120	
(IMILDII OUI)			15	-	25	80	
Propagation Delay Time			5	_	95	300	
(ENABLE - OUT)	t _{pLH}		10	_	40	120	
(ENABLE - 001)			15	-	30	80	ns
Propagation Delay Time			5	-	90	300	
(ENABLE - OUT)	t _{pHL}		10	_	40	120	
(LIMIDLE OUI)			15		30	80	
Input Capacitance	CIN			_	5	7.5	. pF

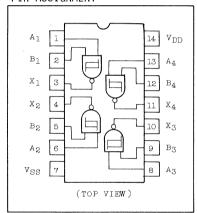
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4093BP/BF

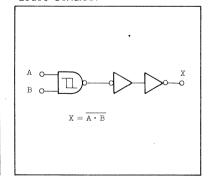

TC4093BP/TC4093BF QUAD 2-INPUT NAND SCHMITT TRIGGERS


The TC4093BP/BF is a quad 2-input NAND gate having Schmitt trigger function for all the input terminals. Since the circuit threshold voltage varies with rising time and falling time of the input waveform (Vp and V_N), this gate can be used for a wide variety of applications to line receivers, waveform shaping. astable multivibrators, monosatable multivibrators, etc. in addition to requalar NAND gates. As the TC4093BP/BF and the TC4011B are identical in pin assignment, they are compatible each other.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING '	UNIT
DC Supply Voltage	$v_{ m DD}$	Vss-0.5 ~Vss+20	V
Input Voltage	VIN	Vss-0.5~VDD+0.5	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

INPUT-OUTPUT CHARACTERISTIC



PIN ASSIGNMENT

LOGIC DIAGRAM

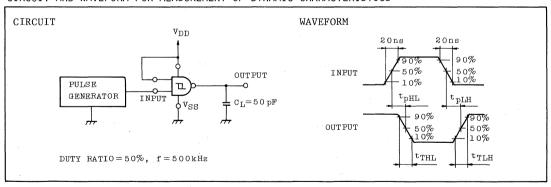
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

CHARACTEF	RISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT
GIMMAGIEF	KIDIIO	BOL	ILDI CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTI
			$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$	5	4.95	. –	4.95	5.00	_	4.95	-	
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	_	9.95	10.00	-	9.95	-	
L			VIN-VSS, VDD	15	14.95	-	14.95	15.00	-	14.95	-	v
T . T . 1			$ I_{OUT} < 1\mu A$	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Vol	Ltage	VOL	$V_{\rm IN} = V_{\rm DD}$	10	-	0.05	-	0.00	0.05	-	0.05	
,	.,		IN DD	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	_	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} , V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	
Output Low	7	LOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			$v_{\rm IN}=v_{\rm DD}$									
			V _{OUT} =0.5V, 4.5V	5	-	-	2.05	2.8	3.55	-	-	
High Thres	shold	$V_{\rm P}$	V _{OUT} =1.0V, 9.0V	10	-	-	4.1	5.3	7.0	-	-	
			V _{OUT} =1.5V,13.5V	15	-	-	6.2	7.8	10.4	-	_	
T	- 1 1		V _{OUT} =0.5V, 4.5V	5	-	-	1.5	2.3	3.15	-	-	
Low Thresh Voltage	1010	v_{N}	V _{OUT} =1.0V, 9.0V	10	-	-	3.2	4.5	6.3	-	-	V
			V _{OUT} =1.5V,13.5V	15	-	-	4.8	6.6	9.3	-	_	
				5	-		0.2	0.5	0.85	-	-	
Hysteresis Voltage	5	ν _H		10	-	-	0.3	0.8	1.4	-	-	
				15	-	-	0.45	1.2	1.9	-	-	
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μΑ
Current	"L" Level	IIL	VIT=0A	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	,

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


I CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85	°C .	UNIT
SIMINITERED TE	BOL	TEST CONSTITUTE	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
			5	_	1	_	0.001	1	-	7.5	
Quiescent Device Current	I_{DD}	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	2	-	0.002	2	- '	15	μА
Current		*	15	-	4		0.004	4	-	30	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

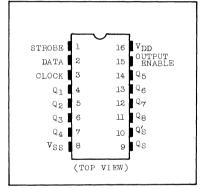
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time	tTLH		10	-	50	100	
(Low to High)			15	-	40	80	
Output Transition Time			5	-	80	200	ns
(High to Low)	tTHL		10	-	50	100	
(High to Low)		·	15	-	40	80	
	t		5	-	130	260	
Propagation Delay Time	t _{pLH}		10	-	60	120	ns
	t _{pHL}	e .	15	-	40	80	
Input Capacitance	CIN			-	5	7.5	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

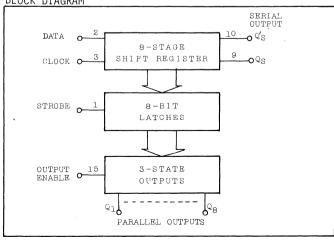
TC4094BP/BF

TC4094BP/TC4094BF 8-STAGE SHIFT-AND-STORE BUSREGISTER

TC4094BP/BF is a SHIFT and STORE REGISTER that consists of an 8-bit shift register and an 8-bit latch. The read data in the shift register can be taken in the latch through the asynchronous STROBE input; therefore, the data transfer mode can hold output. And, since the parallel output is of 3-state construction, it can be directly connected to the 8-bit busline.


This register can be applied to Serial-to-parallel conversion, data receivers, etc.

DIP16(3D16A-P) 16 16 MFP16(F16GC-P)


MAXIMUM RATINGS

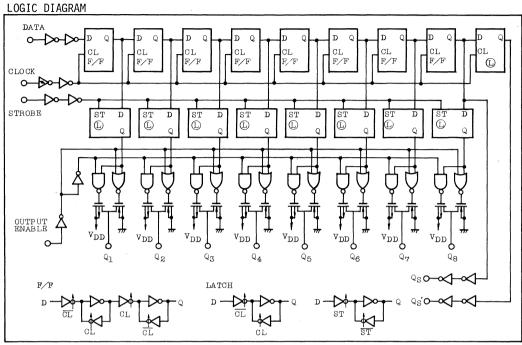
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	V _{SS} -0.5 ∿ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿85	°C
Storage Temperature Range	T _{stg}	-65 √150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

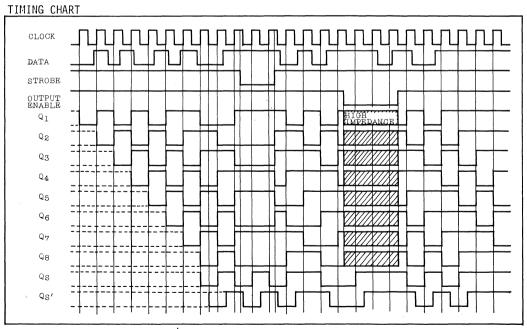
PIN ASSIGNMENT

BLOCK DIAGRAM

TRUTH TABLE

INU	111	IADL	- L					
CL	OE	ST	D	P	0	S	0 /	
	0.22	01		Q_1	Q_{n}	$Q_{\mathbf{S}}$	QS	
1	Н	Н	L		Q_{n-1}	Qy	NC	
5	Н	Н	Н	Н	$Q_{11}-1$	Qn	NC	
5	Н	L	Х	NC	NC	Qn	NC	
_5	L	Х	Х	HZ.	ΗZ	Q7	NC	
1	Н	Х	Х	NC	NC	NC	$Q_{\mathbf{S}}$	
7	L	Х	Х	ΗZ	HZ	NC	QS	
CL = Clock $X = Don't$ care								


OE= Output Enable NC= No Change
ST= Strobe HZ= High


D = Data

Impedance

PO = Parallel Outputs

SO = Serial Output

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISITC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V_{DD}	3	-	18	77
Input Voltage	AIN	0	_	v_{DD}	l v

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0v)

			LIERISTICS (VSS=C	v_{DD}	-4	0°C		25°C		85	°C	
CHARACTE	ERISTIC	SYMBOL	TEST CONDITION		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
			I _{OUT} < 1μΑ	5	4.95	_	4.95	5.00	-	4.95	-	
High-Leve		v _{oH}		10	9.95	_	9.95	10.00	-	9.95	_	
Output Vo	oltage		$v_{IN}^{=V}_{SS}$, v_{DD}	15	14.95	_	14.95	15.00	- '	14.95	_	v
Low-Level	1		I _{OUT} <1μΑ	5	-	0.05	-	0.00	0.05	_	0.05	
Output Vo		VOL	_	10	-	0.05	_	0.00	0.05	-	0.05	
output vo	ortage		$v_{IN}=v_{SS}$, v_{DD}	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	-	
Output Hi	igh		$V_{OH}=2.5V$	5	-2.5	_	-2.1	-4.0	-	-1.7	_	
Current	Ü	I _{OH}	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	_	
Current			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_	
			V _{IN} =V _{SS} , V _{DD}									
			V _{OL} =0.4V	5	0.61	_	0.51	1.2	-	0.42	-	mA
Output Lo	w		$V_{OL} = 0.5V$	10	1.5	-	1.3	3.2	-	1.1	-	
Current		IOL	$V_{OL}=1.5V$	15	4.0	-	3.4	12.0	-	2.8	-	
			V _{IN} =V _{SS} , V _{DD}									
	- Control of the Cont	1	$V_{OUT} = 0.5V, 4.5V$	5	3.5	_	3.5	2.75	-	3.5	-	
Input Hig	gh		v _{OUT} =1.0v, 9.0v	10	7.0	_	7.0	5.5	-	7.0	_	
Voltage		v_{IH}	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
			I _{OUT} < 1µA									
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5		1.5	V
Input Lov	v	.,,	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		AIT	V _{OUT} =1.5V, 13.5V	15	_	4.0	-	6.75	4.0	-	4.0	
			$ I_{OUT} < 1_{\mu}A$									
Input	"H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10-5	0.1	_	1.0	
Current	"L" Level	IIL	v _{IL} =0v	18	_	-0.1	-	-10 ⁻⁵	-0.1	_	-1.0	μA

STATIC ELECTRICAL CHARACTERISTICS (VSS=OV)

		. 011717171	CILITIOS COS									
CHARACTE	DICTIO	CVAROI	TEST CONDITION	v_{cc}	-4	0°C		25°C		8	5°C	UNIT
CHARACTE	KISIIC	SYMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
3-State Output	"H" Level	IDH	v _{OUT} =18v	18	_	0.4	-	10-4	0.4.	-	12	
Leakage Current	"L" Level	I _{DL}	V _{OUT} =0V	18	_	-0.4	-	-10 ⁻⁴	-0.4	_	-12	
Quiescent	Device	IDD	$v_{\mathrm{IN}}^{=\mathrm{V}}$ SS, v_{DD}	5 10	- -	5 10		0.005 0.010		- -	150 300	μА
Current	•		*	15	-	20	-	0.015	20	-	600	

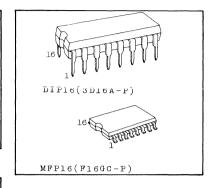
^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (D)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	70	200	
(Low to High)	t_{TLH}	•	10	-	35	100	
(Low to High)			15	_	30	80	
Out of Wassitates Wine			5	-	70	200	
Output Transition Time	t _{THL}		10	-	35	100	
(High to Low)			15	- .	30	80	
	t _{pLH}		5	-	150	600	
Propagation Delay Time	_		10	-	75	250	
(CLOCK - Qs)	t _{pHL}		15	_	55	190	
D D 1	t _{pLH}		5	-	155	460	
Propagation Delay Time			10	-	75	220	ns
(CLOCK - Qs')	t _{pHL}		15	-	55'	150	
	tpLH		5	-	190	840	
Propagation Delay Time			10	-	90	390	
(CLOCK - Qn)	t _{pHL}		15	-	65	270	
	+		5	_	150	580	
Propagation Delay Time	t _{pLH}		10	. –	70	.290	
(STROBE - Qn)	t _{pHL}		15	<u>-</u>	50	200	
Three State Disable Time	t _{pHZ}		5	-	60	200	
	•	$R_L=1k\Omega$	10	-	35	100	
(OUTPUT ENABLE - Qn)	t _{pZH}		15	_	30	80	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50pF)

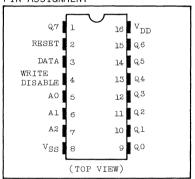
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (D)	MIN.	TYP.	MAX.	UNIT
Three State Disable Time	t _{pLZ}		5	-	70	200	
	,		10	-	40	100	
(OUTPUT ENABLE -Qn)	t _{pZL}		. 15	-	35	80	
			5	_	45	200	
Min. Clock Pulse Width	t _w		10	-	20	100	ns
			15	-	15	80	
Min. PUlse Width			5	_	40	200	
	t _{WH}		10	-	20	80	
(STROBE)			15	-	15	70	
,			5	1.25	6	· -	
Max. Clock Frequency	f _{CL}		10	2.5	12	-	MHz
	OL		15	3	16	-	
Min. Set-up Time			5	_	. 0	125	
•	t _{SU}		10	-	0	55	
(DATA - CLOCK)			15	-	0	35	
Min. Hold Time			5	_	10	40	
	t _H		10	-	10	20	
(DATA - CLOCK)			15	<u> -</u>	5	15	ns
Min. Set-up Time			5	_	90	200	
•	t _{SU}		10	-	40	100	
(CLOCK - STROBE)			15	-	30	80	
Min. Hold Time			5	_	-	0	
	t _H		10	_	-	0	
(CLOCK - STROBE)			15	-	-	0	
Max. Clock Input Rise	trCL		5				
Time Max. Clock Input Fall	1 1		10	No	Limit		μs
Time	tfCL		15				
Input Capacitance	c_{IN}			_	5	7.5	рF

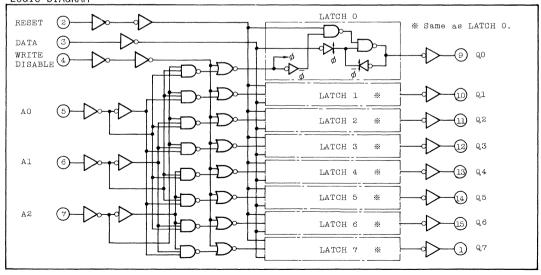

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS WAVEFORM 1 20ns 20ns 90% CLOCK 50% 50% 50% 50% 10% $^{\rm t}_{\rm TLH}$ t_{THL} 90% 90% Qs' 50% 50% Qn 10% t_{pHL} t_{TLH} t_{THL} t_{pLH} 90% 50% 50% Qs' 10% tpHL WAVEFORM 2 WAVEFORM 3 20 ns 20 ns 20ns 20ns OUTPUT 90% 90% 90% STROBE ENABLE 50% 50% 50% 50% 10% t_{WH} 10% 10% 10% 90% \mathtt{Q}_n 50% \mathtt{Q}_{n} 10% tpZH $t_{ m pHZ}$ 90% 50% Q_n \mathtt{Q}_{n} 10% $t_{\,\mathrm{pHL}}$ tpZL $^{\mathrm{t}}_{\mathrm{pLZ}}$ WAVEFORM 4 WAVEFORM 5 20 ns 20ns 20ns 90% 50% 10% DATA 50% 50% 50% 10% CLOCK 20ns 20ns 90 % 90% STROBE CLOCK 50% 10% 10% tsu tH tsu

TC4099BP/BF

TC4099BP/TC4099BF 8-BIT ADDRESSABLE LATCH

TC4099BP/BF is eight bit latch having one common data input line and eight independent output lines and the latches are controlled by three bit binary address inputs (AO, A1 and A2).


When WRITE DISABLE input and RESET input is "L", the data is written into the bit selected by the binary address input and other bits retain their previous conditions. When W. DISABLE input becomes "H", write into any bits is inhibited. When W. DISABLE input and RESET input are "H", all the bits are reset to "L".


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	V_{SS} -0.5 $\sim V_{SS}$ +20	٧.
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Voltage	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	Tsol	260°C • 10 sec	2

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

CONTRO	L INPUTS	ADDR	ESS IN	PUTS				OUT	PUTS			
RESET	WRITE DISABLE	A ₂	A ₁	A ₀	Q ₀	Q_1	Q ₂	Q3	Q4	Q ₅	Q6	(
Н	Н	*	*	*	L	· L	Ļ	L	L	L	L	
L	H	*	*	*		-	_	-	-	-	-	
Н	L	L	L	L	D	L.	L	L	L	L	L	
Н	L	L	L	Н	L	D	L	L	L	L	L	
Н	L	L	Н	L	L	L	D	L	L	L	L	
Н	L	L	Н	Н	L	L	L	D	L	L	L	
Н	L	Н	L	L	L	L	L	L	D	L	L	
Н	L	H	L	Н	L	L	L	L	L	D	L	
Н	L	Н	Н	L	L	L	L	L	L	L	D	
H	L	Н	Н	Н	L	L	· L	L	L	L	Ļ	
L	L	L	L	L	D	-	-	-	-	-	-	
L	L	L	L	H	_	D	-	-	_	-	-	
L .	L	L	Н	L	-	-	D	-	-	-	-	
L	L	L	Н	H	-	_	-	D	_		_	
L	L	Н	L	L	_	-	-	-	D	_	_	
L	L	Н	L	Н	_	_	_	-	_	D	_	
L .	L	Н	Н	L	_	_	-	-	_	-	D	
L	L	Н	H	H	_	-	-	-	-	,_	-	

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	<u>+</u>	18	V
Input Voltage	v_{IN}	0	-	v_{DD}	v

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

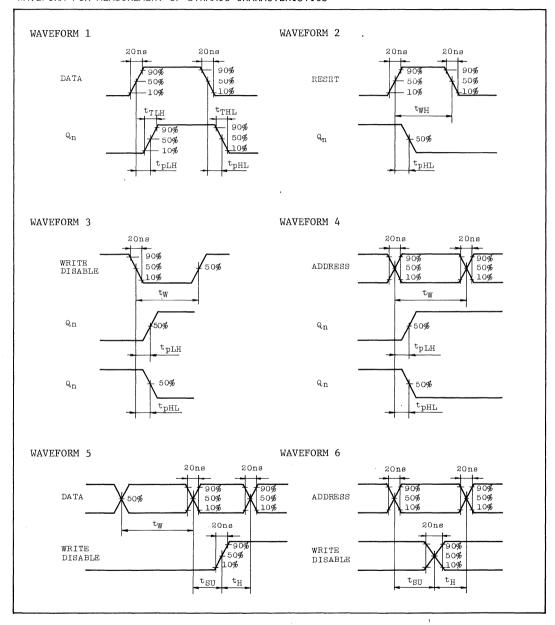
CHARACTERISTIC	SYM-	TEST CONDITION VDD (V)		-40	O°C		25°C		85°C		UNIT
	BOL III			MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
TT 1 T 1		I _{OUT} < 1μΑ	- 5	4.95	-	4.95	5.00	-	4.95	_	
High-Level Output Voltage	v _{oh}	V _{IN} =V _{SS} ,V _{DD}	10	9.95		9.95	10.00	-	9.95	-	V
		VIN- 488, ADD	15	14.95	-	14.95	15.00	-	14.95	-	

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTER	тетте	SYM-	TEST CONDITION	v_{DD}	-40	°C		25°C		85	°C	UNIT
CHARACTER.	15110	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Low-Level		$v_{ m OL}$	I _{OUT} <1μA	5		0.05	-		0,05	_	0.05	
Output Vol	tage	оп	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10 15	-	0.05	- -	1	0.05	-	0.05	V
			V _{OH} =4.6V		-0.61		-0.51	-1.0	-	-0.42	_	
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	_	
Output Hig	h	I_{OH}	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	-	-1.1	-	
Current		011	V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	_	-2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.2	_	0.42	-	
Output Low		I_{OL}	V _{OL} =0.5V	10	1.5	_	1.3	3.2	-	1.1	_	
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	12.0		2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	ı	V	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage		v_{IH}	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} < 1μA								,	V
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	°
Input Low		v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		V I L	V _{OUT} =1.5V,13.5V	15		4.0	-	6.75	4.0	-	4.0	
			I _{OUT} < 1μA									
1	"H" Level	I _{TH}	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	uA
1	"L" Level	I_{IL}	VIT=OA	18	_	-0.1	_	-10-5	-0.1	_	-1.0	μΑ
Quiescent				5	-	5	-	0.005	5	-	150	
Device	Device I _{DD}		V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
Current			*	15	-	20	-	0.015	20	-	600	

^{*}All valid input combinations.

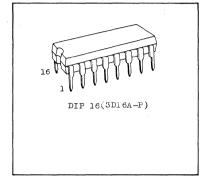
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time	tTLH		5 10	-	70 35	200 100	ns
(Low to High)	1211		15	-	30	80	

TC4099BP/BF

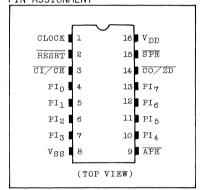
DYNAMIC ELECTRICAL CHARACTERIATICS (Ta=25°C, VSS=0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (High to Low)	t _{THL}		5 10 . 15	- - -	70 35 30	200 100 80	ns
Propagation Delay Time (DATA - Q)	t _{pLH} t _{pHL}		5 10 15	- - -	110 50 40	400 150 100	
Propagation Delay Time (WRITE DISABLE - Q)	t _{pLH} t _{pHL}		5 10 15	-	130 60 45	400 160 120	
Propagation Delay Time (ADDRESS - Q)	t _{pLH} t _{pHL}		5 10 15	- - -	150 70 50	450 200 150	
Propagation Delay Time (RESET - Q)	$t_{\mathtt{pHL}}$		5 10 15	- - -	100 50 35	350 160 130	
Min. Pulse Width (DATA)	t _w		5 10 15	1 1 1	90 45 35	200 100 80	
Min. Pulse Width (WIRTE DISABLE ADDRESS)	.t _w		5 10 15	<u>-</u>	35 20 15	320 160 120	ns
Min. Pulse Width (RESET)	t _{WH}		5 10 15	- - -	50 25 20	150 75 50	
Min. Set-up Time (DATA - WRITE DISABLE)	t _{SU}		5 10 15	- - -	15 10 8	100 50 35	
Min. Hold Time (DATA - WRITE DISABLE)	t _H		5 10 15	- - -		150 75 50	
Min. Set-up Time (ADDRESS-WRITE DISABLE)	^t su		5 10 15	- - -	20 10 5	100 50 35	·
Min. Hold Time (ADDRESS-WRITE DISABLE)	t _H		5 10 15	- - -	- - -	0 0 0	
Input Capacitance	$c_{ ext{IN}}$			-	5	7.5	pF


WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC40102BP 8-STAGE PRESETTABLE SYNCHRONOUS DOWN COUNTER (2-Decade BCD Type)
TC40103BP 8-STAGE PRESETTABLE SYNCHRONOUS DOWN COUNTER (8-Bit Bynary Type)

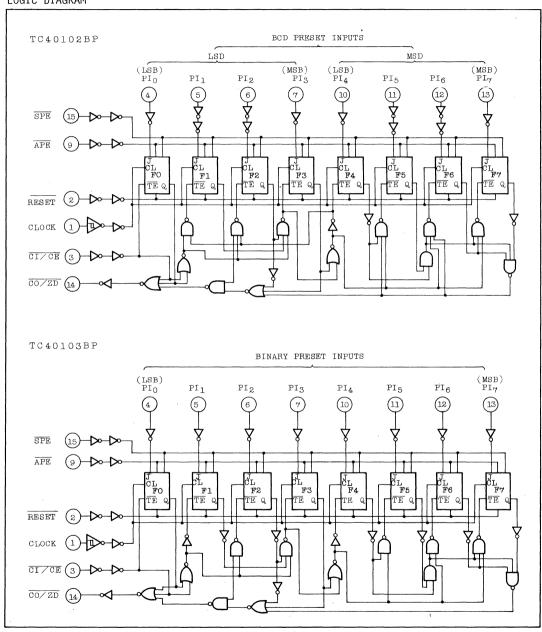
The TC40102BP and TC40103BP are 8-stage presettable synchronous down counters. Output terminal $\overline{\text{CO/ZD}}$ is placed in active mode at "L" level when the contents of count become zero.


As the TC40102BP adopts BCD binary coded decimal notation, setting up to 99 counts is possible. The TC40103BP, with 8-bit binary construction, can set up to 255 counts. Each type has $\overline{\text{CI/CE}}$ inhibiting clock, $\overline{\text{APE}}$ asynchronous preset control input, $\overline{\text{SPE}}$ synchronous preset control input and $\overline{\text{RESET}}$ control input setting counter to maximum counting mode. Clock input, with Schmitt function, can accept clock waveform with slow rise and fall edge.

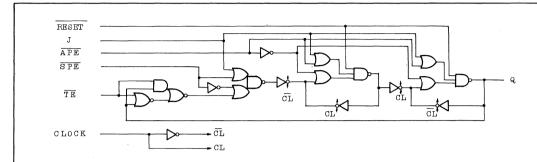
MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~V _{SS} +20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	T _{sol}	260°C · 10 sec	

PIN ASSIGNMENT


TRUTH TABLE

	CONTROI	LINPUT		MODE	FUNCTIONAL DESCRIPTION
RESET	$\overline{\text{APE}}$	SPE	CI/CE	110011	TONOTIONIE BEGGNITIEN
Н	Н	Н	Н	Count inhibit	Even if clock is given, no count is made.
Н	Н	Н	L	Regular count	Down count at rising edge of clock.
Н	Н	L	*	Synchronous preset	Data of PI terminal is preset at rising edge of clock.
Н	L	*	******	Asynchronous preset	Data of PI terminal is asynchronously preset to clock.
L	*	. *	*	Clear	Counter is set to maximum count.


Note 1. * : Don't care

2. Maximum count: "99" for TC40102BP and "255" for TC40103BP.

LOGIC DIAGRAM

INTERNAL FLIP-FLOP (FO~F7) CIRCUIT DIAGRAM AND TRUTH TABLE OF COUNTER

INTERNAL FLIP-FLOP TRUTH TABLE

		I	NPUT			OUTPUT
RESET	APE	SPE	J	TE	CLOCK	Qn+1
L	*	*	*	*	*	Н
Н	L	*	L	*	*	Н
Н	L	*	Н	*	*	L
Н	H	L	L	*		Н
Н	Н	L	Н	*		L
Н	Н	L	*	*	7_	Qn
Н	Н	Н	*	L		$\overline{\mathbb{Q}_{\mathrm{n}}}$
Н	Н	Н	*	Н	*	Qn

FUNCTIONAL DESCRIPTION

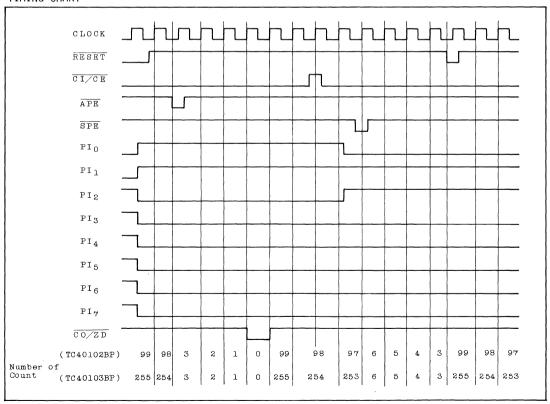
The TC40102BP and TC40103BP are 8-stage presettable synchronous down counters. Carry Out/Zero Deffect $(\overline{\text{CO/ZD}})$ is output at the "L" level for the period of 1 bit when the readout becomes "O". The TC40102BP adopts binary coded decimal notation, making setting up to 99 counts possible. While the TC40103BP adopts 8-bit binary counter and can set up to 255 counts.

COUNT OPERATION

At the "H" level of control input of $\overline{\text{RESET}}$, $\overline{\text{SPE}}$ and $\overline{\text{APE}}$, the counter carries out down count operation one by one at the rise of pulse given to CLOCK input. Count operation can be inhibited by setting Carry Input/Clock Enable $\overline{\text{CI/CE}}$ to the "H" level. $\overline{\text{CO/ZD}}$ is output at the "L" level when the readout becomes "O", but is not output even if the readout becomes "O" when $\overline{\text{CI/CE}}$ is at the "H" level, thus maintaining the "H" level.

Synchronous cascade operation can be carried out by using $\overline{\text{CI/CE}}$ input and $\overline{\text{CO/ZD}}$ output.

FUNCTION DESCRIPTION (Cont'd)


The contents of count jump to maximum count (99 for the TC40102BP and 255 for the TC40103BP) if clock is given when the readout is "0". Therefore, operation of 100-frequency division and that of 256-frequency division are carried out for the TC40102BP and TC40103BP, respectively, when clock input alone is given without various kinds of preset operations. To clock input is attached Schmitt gate.

PRESET OPERATION AND RESET OPERATION

When Reset ($\overline{\text{RESET}}$) input is set to the "L" level, the readout is set to the maximum count independently of other inputs. When Asynchronous Preset Enable ($\overline{\text{APE}}$) input is set to the "L" level, readouts given on P.10 to P.17 can be preset asynchronously to counter independently of inputs other than $\overline{\text{RESET}}$ input. When Synchronous Preset Enable ($\overline{\text{SPE}}$) is set to the "L" level, the readouts given on P.10 to P.17 can be preset to counter synchronously with the rise of clock.

As to these operation modes, refer to the truth table.

TC40102BP, TC40103BP

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	,	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	·	3	-	18	V
Input Voltage	v_{IN}		0	_	$v_{ m DD}$	V

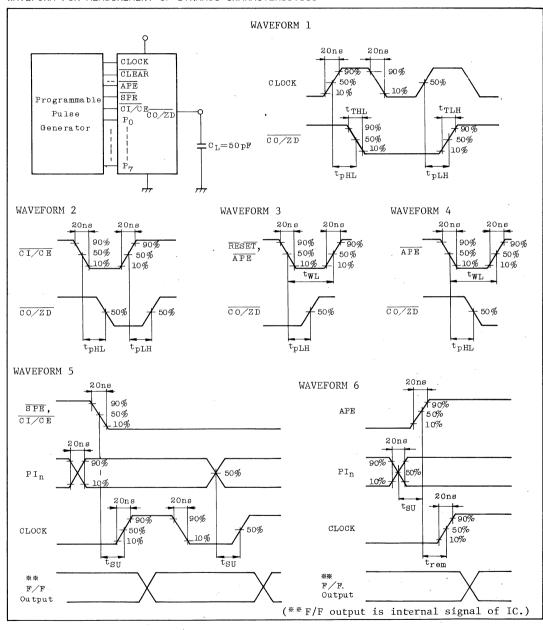
STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

CHARACTER	ISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
OILINGT EN	10110	BOL	THE COMPTITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01.11
			$ I_{ m OUT} < 1 \mu A$	5	4.95	_	4.95	5.00	-	4.95	-	
High-Level Output Vol		VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
odepat ,-1			VIN-VSS, VDD	15	14.95	-	14.95	15.00	_	14.95	_	v
T - T - 1]I _{OUT}] <1 <i>µ</i> A	5	-	0.05	-	0.00	0.05	-	0.05	V
Low-Level Output Vol	tage	VOL	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	0.05	-	0.00	0.05	-	0.05	
•	Ü			15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	-	
		İ	$V_{OH}=2.5V$	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	h	IOH	V _{OH} =9.5V	10	-1.5		-1.3	-2.2	-	-1.1	-	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	_	-2.8	-	
,			$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	-	mA
Output Low		IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	-	1.1	-	
Current		TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	· -	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	ı	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		1111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	· -	
			I _{OUT} < 1 µA									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	- 1	3.0	
Voltage	Voltage		V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
			I _{OUT} <1 \(\mu \)									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μA
Current	"L" Level	IIL	VIT=0A	18	_	-0.1	_	-10-5	-0.1	-	-1.0	

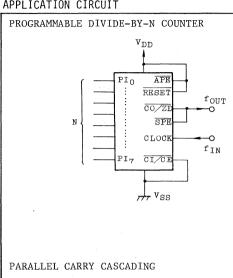
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

			00								
I CHARACTERISTIC	SYM- TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85°C		UNIT
OMMAGIERIBITO	BOL	TEST COMPTTION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
Quiescent Device			5	-	5	_	0.005	5	-	150	
	I _{DD}	V _{IN} =V _{SS} ,V _{DD}	10	-	10	-	0.010	10	-	300	μA
our rome		*	15	-	20	_	0.015	20	-	600	

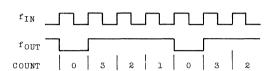
^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	t _{TLH}		10	-	50	100	
(20 W Co Might)			15	-	40	80	ns
			5	-	80	200	
Output Transition Time (High to Low)	t _{THL} .		10	-	50	100	
			15	_	40	80	
Propagation Delay Time	_		5	-	400	600	
(CLOCK - CO/ZD)	t _{pLH}		10	-	150	260	ns
(CLOCK - CO/ZD)	t _{pHL}		15	-	110	190	
Drangastian Dalay Time	+		5	-	200	400	Ī
Propagation Delay Time $\overline{(CI/CE - CO/ZD)}$	t _{pLH}		10		90	180	ns
(CI/CE - CO/ZD)	t _{pHL}		15	-	65	130	
Day and the Day of the Miles		Manager and the second of the	5	_	350	1300	
Propagation Delay Time $\overline{\text{(APE - CO/ZD)}}$	t _{pLH}		10	-	130	600	ns
(APE - CO/ZD)	t _{pHL}		15	_	100	400	:
D D 1			5	-	300	750	
Propagation Delay Time	tpLH		10	_	120	360	ns
(RESET - CO/ZD)	-		15	-	90	200	
			5	_	100	300	
Min. Clock Pulse Width	tw		10	-	40	180	ns
			15	-	30	80	
W. 5.1 W. 1.1			5	-	140	320	
Min. Pulse Width	tWL		10	-	60	160	ns
(RESET)		·	15	-	45	100	

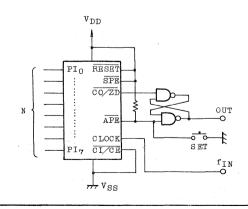

TC40102BP, TC40103BP

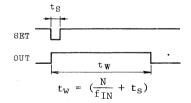
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	120	360	
Min. Pulse Width	tWL		10	-	45	160	ns
(APE)			15	-	35	120	
			5	0.7	2	_	
Max. Clock Frequency	fCL		10	1.8	5	-	MHz
			15	2.4	8	-	
Max. Clock Input Rise			5				
Time. Max. Clock Input Fall	trCL		10		No Limit		μS
Time.	tfCL		15				
Min Coh Time			5	_	120	280	
Min. Set-up Time	tsu		10	_	75	140	ns
(SPE - CLOCK)			15	-	70	100	
Min Con Time			5	_	30	100	
Min. Set-up Time	t _{SU}		10	-	10	50	ns
(PI - CLOCK)			15	-	5	40	
W. C. T.			5	_	300	500	
Min. Set-up Time	tsu		10	-	100	250	ns
(CI/CE - CLOCK)			15	-	70	150	
Min Sot un Timo			5 .	_	150	300	
Min. Set-up Time (PI - APE)	t _{SU}		10	_	60	120	ns
(FI - AFE)			15	_	40	80	
			5	-	15	220	
Min. Removal Time	trem		10	_	10	100	ns
(APE-CLOCK)			15	_	5	70	
Input Capacitance	CIN		-	-	5	7.5	pF

APPLICATION CIRCUIT

- $f_{OUT} = \frac{f_{IN}}{N+1}$
- · Timing chart when N="3" (PIO, PI1= V_{DD} , PI2 ~ PI7= V_{SS})




- TC40102BP...1/2 to 1/100 are dividable.
- TC40103BP...1/2 to 1/256 are dividable.

*At synchronous cascade connection, buzzard occurs at CO output after its second stage when digit place changes, due to delay arrival. Therefore, take gate from TC4071BP or the like, not from CO output at the rear stage directly.

PROGRAMMABLE TIMER

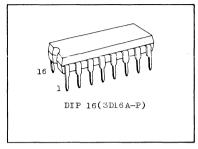
Note: The above formula does not take into account the phase of clock input. Therefore, the real pulse width is the distance between the above formula-1/fin~ the above formula.

TC40104BP, TC40194BP

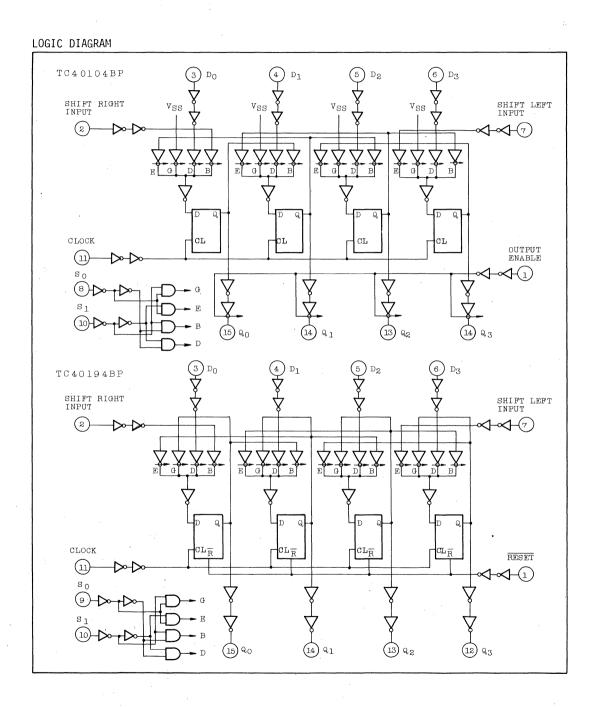
TC40104BP 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER WITH 3-STATE OUTPUTS TC40194BP 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER WITH ASYNCHRONOUS MASTER RESET

The TC40104BP and TC40194BP are 4-bit shift registers with parallel output, parallel input, shift right and shift left inputs.

To the TC40104BP is attached OUTPUT ENABLE input which can place output terminal into high impedance. Also, to the TC40194BP is attached RESET input which can clear the contents of registers asynchronously. In parallel data preset mode, data of $D_0 \sim D_3$ are not only preset in the internal register, but output to each Q output, at the rise of clock, Shift right and shift left inputs are inhibited during the time. In shift right and shift left modes, data from shift right and shift left inputs are shifted to the right and to the left by 1 bit, respectively, synchronously with the rise of clock.


The TC40194BP is function and pin compatible with the 74194 of TTL.

TRUTH TABLE	Ξ
-------------	---


TC40104BP									
C LOCK	MODE 8	SELECT	OUTPUT	ODERA MILON MODE					
CLOCK	80	s ₁	ENABLE	OPERATION MODE					
	L	L	Н	RESET					
7	Н	L	Н	SHIFT RIGHT($Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$)					
	L	Н	Н	SHIFT LEFT $(Q_3 \rightarrow Q_2 \rightarrow Q_1 \rightarrow Q_0)$					
_	Н	Н	Н	PARALLEL DATA PRESET					
*	*	*	L	OUTPUT HIGH IMPEDANCE					
		,		* : Don't care					

TC40194BP

104017401								
OT OOK	MODE	SELECT	DMCTM	OPERATION MODE				
CLOCK	K S ₀ S ₁ RESET		VEO ET	OPERATION MODE				
*	L	L	Н	HOLD				
4	H	L	Н	SHIFT RIGHT($Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$)				
	L	Н	Н	SHIFT LEFT $(Q_3 \rightarrow Q_2 \rightarrow Q_1 \rightarrow Q_0)$				
5	Н	Н	H	PARALLEL DATA PRESET				
*	*	*	L	RESET				
				* : Don't care				

PIN ASSIGNMENT	(TOP VIEW)
TC40104BP	
OUTPUT	16 V _{DD}
ENABLE	15 Q ₀
1 IN 7	T *
D ₀ 3	14 Q ₁
D ₁ 4	13 Q ₂
D ₂ 5	12 Q3
D3 ■ 6	11 CLOCK
SLIN 7	10 S1 MODE
v _{ss} ∎8	9 SO SELECT
TC40194BP	
RESET 1	16 V _{DD}
SR _{IN} 2	15 Q ₀
D _O 3	14 3 Q ₁
D ₁ 4	13 . Q2
D ₂ 5	12 Q3
D ₃ 6	11 CLOCK
SLIN 7	10 s ₁ MODE
V _{SS} 8	9 SO SELECT
""	
	: .
,	·*

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

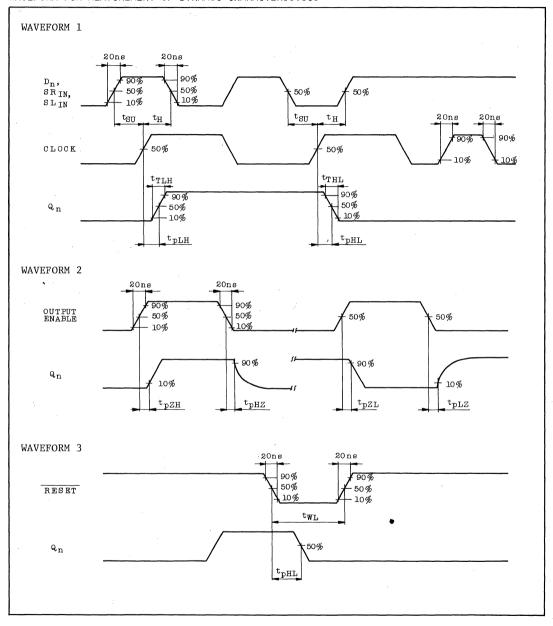
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC	CHARACTERISTIC SYM- T		v_{DD}	-40)°C		25°C		8.5	5°C	UNIT	
	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
		lTorrel < 14A	5	4.95	_	4.95	5.00	_	4.95	-		
High-Level Output Voltage	V _{OH}	$ I_{OUT} < 1\mu A$	10	9.95	-	9.95	10.00	_	9.95	-		
output vortage		V _{IN} =V _{SS} ,V _{DD}	15	14.95	1	14.95	15.00	_	14.95		v	
		I _{OUT} <1 µA	5	-	0.05	-	0.00	0.05	-	0.05	v	
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	, -	0.00	0,05	-	0.05		
		VIN-VSS, VDD	15	-	0.05	-	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-		
ourrene		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-		
		V _{IN} =V _{SS} , V _{DD}									mA	
`		V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-		
Output Low Current	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	· _	1.1	-		
	LOL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	_	2.8	-		
		$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$						•				

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTE	RISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C ·		25°C		85	5°C	UNIT
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	011
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_	
Input High	n	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} < 1 µA									v
		1	V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low		$v_{\rm IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	Voltage		V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu_{ m A}$									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	–	1.0	μA
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	-	-10-5	-0.1	-	-1.0	1
3-State ◎ Output	"H" Level	IDH	V _{DH} =18V	18	-	0.4	. -	10-4	0.4	-	12	μA
Leakage Current	"L" Level	I_{DL}	V _{DL} =0V	18	-	-0.4	-	-10-4	-0.4	-	-12	1 1
				5	-	5	_	0.005	5	-	150	
Quiescent Current	Device	IDD	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	10	-	0.010	10	- ,	300	μA
			*	15	_	20	-	0.015	20	-	600	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

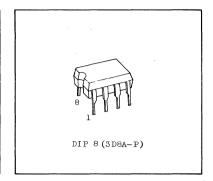

51 William 2 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\mathrm{DD}}(\mathrm{V})$	MIN.	TYP.	MAX.	UNIT
			5	-	- 80	200	
Output Transition Time (Low to High)	tTLH		10	-	50	100	
(now to might)			15	-	40	80	ns
			5	_	80	200	
Output Transition Time (High to Low)	t _{THL}		10	-	50	100	
(IIIgh to Low)			15	-	40	80	
Dunganting Dalay Time			5	-	220	440	
Propagation Delay Time	t _{pLH}		10	-	90	200	ns
(CLOCK - Q)	t _{pHL}		15	-	60	140	
Three State Disable Time (OUTPUT ENABLE - 0)	t		5		80	160	
	t _{pZH}	$R_L=1k\Omega$. 10		35 -	70	ns
(OUTLOT, MADELL Q)	t _{pZL}		15	-	25	50	

[◎] Only TC40104BP * All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Three State Disable			5	_	55	110	
Time	t _{pLZ}	$R_L=1k\Omega$	10	_	30	60	ns
(OUTPUT ENABLE - Q)⊚	t _{pHZ}		15	_	2.5	50	
Propagation Delay Time			5	-	160	460	
(RESET - Q) *	t _{pHL}		10	-	65	180	ns
(RESE1 - Q) **			15	-	50	130	
			5	-	70	180	
Min. Clock Pulse Width	t _w		10	-	40	80	
			15	-	25	50	ns
Min Dulas III lel			5	_	100	200	
Min. Pulse Width (RESET) *	t _{WL}		10	_	40	80	
(KESEI) *			15	_	25	50	
			5	1.5	3	_	
Max. Clock Frequency	f _{CL}		10	4	8	-	MHz
			15	6	11	_	
Max. Clock Input Rise	t or		5	20	_	_	
Time. Max. Clock Input Fall	trCL		10	2.5	_	_	μS
Time.	tfCL		15	1.0	-	_	
Min. Setup Time		,	5	-	160	320	
$(D_0 \sim D_3, SR_{IN}, SL_{IN}-$	t _{SU}		10	_	65	170	!
CLOCK)			15	-	40	80	
			5	-	200	400	ns
Min. Set-up Time (S ₀ , S ₁ - CLOCK)	tsu		10	-	80	160	
(50, 51 OLOGIC)			15	_	60	120	
Min. Hold Time			5 -	-	-145	0	
$(D_0 \sim D_3, SR_{IN},$	t _H		10	-	- 55	0	
SL _{IN} - CLCOK)			15	-	-35	0	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			5	-	-185	0	ns
Min. Hold Time (So, S ₁ - CLOCK)	t _H		10	-	-70	0	
(-0, -1 02002)			15	-	- 55	0	
Input Capacitance	c_{IN}			-	.5	7.5	pF

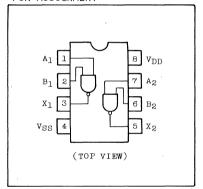
[◎] Only TC40104BP * Only TC40194BP

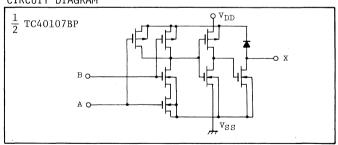

TC40107BP

TC40107BP DUAL 2-INPUT NAND BUFFER/DRIVER

TC40107BP is a dual 2-input NAND gate, of which output is of open-drain structure by use of N-channel MOS FET. Being capable of driving a large current, it can be directly connected to a relay, a lamp, a light-emitting diode (LED), etc. Wired OR can be also made.

(IOL=74mA(Typ.) at $\rm V_{DD}=10V$ and $\rm V_{OL}=0.5V)$ The package is a compact DIP 8-pin unit, which is easily mounted.


Since its output current is large, if the capacitor of an output line exceeds 500pF, a resistor of $25\,\Omega$ or more should be used in series with the capacitor.


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	V _{SS} -0.5 ~V _{SS} +20	V
Input Voltage	v_{IN}	Vss-0.5 ~ VDD+0.5	V
Output Voltage	VOUT	Vss-0.5 ~ VDD+0.5	V
DC Input Current	IIN	±10	mA
Max. GND Current	ISS	125	mA
Power Dissipation	$P_{\mathbf{D}}$	300	mW
Operating Temperature Range	T_{A}	- 40 ∼85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	T _{so1}	260°C · 10 sec	

PIN ASSIGNMENT

CIRCUIT DIAGRAM

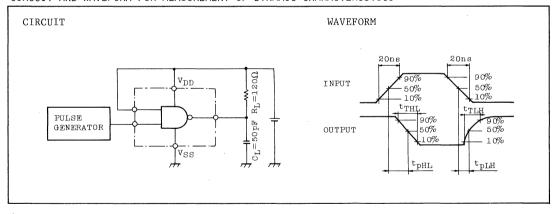
TRUTH TABLE

INF	OUTPUT						
A	A B						
L	L	HZ					
L	Н	HZ					
Н	L	HZ					
Н	Н	L					
HZ : High impedance							

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	VIN	0	-	$v_{ m DD}$	V
Load Capacitance	CL	_	_	500	pF

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

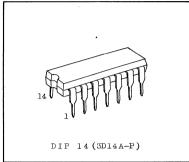

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.	5°C	UNIT
	BOL	TEST CONSTITUTE	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
		IOUT < 1 µA	5	-	0.05	_	0.00	0.05	-	0.05	
Low-Level Output Voltage	VOL	V _{IH} =V _{DD}	10	-	0.05	_	0.00	0.05	· -	0.05	V-
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15	-	0.05	-	0.00	0.05	-	0.05	
·		V _{OL} =0.4V	5	20	-	16	32	-	14	-	
		V _{OL} =1.0V	5	42	-	34	68	-	30	-	
		VOL=0.5V	10	46	-	37	74	-	32	-	
Output Low ' Current	IOL	VOL=1.0V	10	85	-	68	136	-	60	-	mA
		V _{OL} =0.5V	15	63	-	50	100	-	44	_	
		V _{IH} =V _{DD}						:			
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	- (3.5	-	
Input High	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	- `	7.0	-	
Voltage	*	VOUT=1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		1 _{OUT} <1μA									v
		V _{OUT} =4.5V	5	_	1.5	-	2.25	1.5	-	1.5	·
Input Low	VIL	V _{OUT} =9.0V	10	-	3.0	_	4.5	3.0	-	3.0	
Voltage	*	V _{OUT} =13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
• .		I _{OUT} < 1 \(\mu_A \)									
Input Leve	1 IIH	V _{1H} =18V	18	-	0.1	_	10-5	0.1	_	1.0	
Current "L"	$_1$ $_{\rm IIL}$	v _{IL} =0v	18	-	-0.1	_	-10-5	-0.1	-	-1.0	
3-State Output Leakage Current	I _{DH}	V _{OH} =18V	18	-	2	_	10-4	2	-	20	μA
0	_	V _{IN} =V _{DD} ,V _{SS}	5	-	1	_	0.001	1	-	7.5	
Quiescent Devic Current	ממד	Outputs Open	10	-	2	-	0.001	2		15	
	**	outputs open	15	_	4	-	0.002	4	-	30	

^{*} Required external pull-up register R (=20k Ω) ** All valid input combinations.

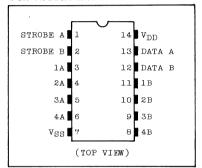
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	35	100	
Output Transition Time (Low to High)	tTLH	R _L =120 Ω	10	_	25	70	ns
(how to high)			15	· -	20	50	
			5	-	35	100	
Output Transition Time (High to Low)	tTHL	R _L =120 Ω	10	_	10	40	ns
(High to how)			15	-	7	20	
			5	_	60	200	
Propagation Delay Time (Low to High)	t _{pLH}	R _L =120 Ω	10	-	35	120	ns
(Low to High)			15	-	30	100	
			5	_	70	200	
Propagation Delay Time (High to Low)	t_{pHL}	$R_L=120\Omega$	10	-	30	90	ns
(might to how)	-		15	_	20	60	
Input Capacitance	c_{IN}			_	5	7.5	pF
Output Capacitance	C _{OUT}			-	. 30	-	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

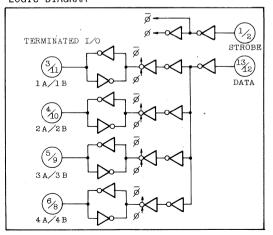


TC40117BP


TC40117RP PROGRAMMARIE DUAL 4-RIT TERMINATOR

TC40117BP contains independent two 4-bit Pragrammable Terminators that are capable of terminating a data bus to a high or low state. They can also terminate any open or unused CMOS logic input to the last driven logic state when used with 3-state logic or during a power down condition. The terminator reduces power consumption by eliminating pull up or pull down resisters. When the STROBE input is held low, the terminated input/output latches the last DATA input until the terminated input/output changes state. When STROBE input is held high and DATA input is kept high or low, the terminated input/output stay in a high or low logic state respectively.

It also has a wide operating voltage range of $2 \sim 18$ Volt that allows designers to use it in the battery driving system.


PIN ASSIGNMENT

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10	sec

LOGIC DIAGRAM

TRUTH TABLE

INPUT	S	Т	TERMINATED I/O							
STROBE	DATA	1A(B)	2A(B)	3A(B)	4A(B)					
Н	L	Г.	r.	r.	r.					
Н	Н	н	н	н	н					
L	X	*	*	*	*					

H=High Level

L=Low Level

X=Don't Care

*Terminator retains the last data state during strobo if its inputs are high impedance state.

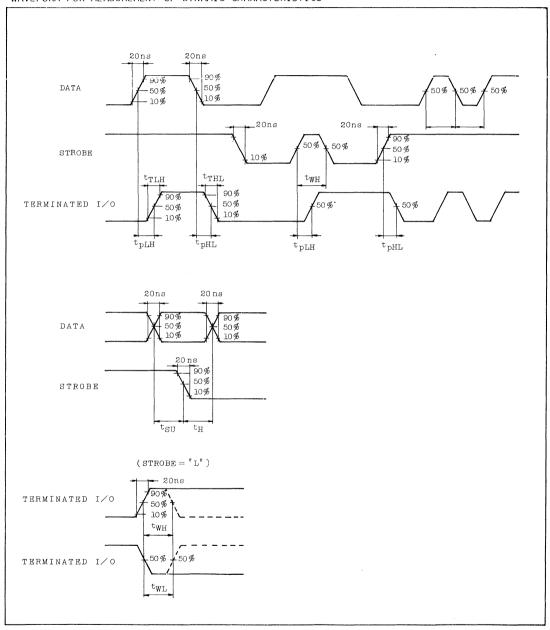
If inputs are not in high impedance state. Then Terminator follows the last driven state ("H" or "L" on its input/output)

Equivalent to pull-down resistor Equivalent to pull-up resistor

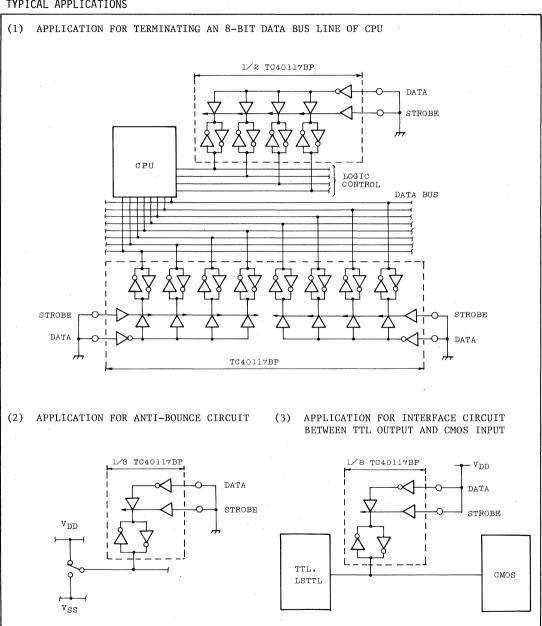
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		2	-	18	V
Input Voltage	$v_{\rm IN}$		0	_	v_{DD}	V
Operating Temperature	T_{A}		-40	_	85	°C

STATIC ELECTRICAL CHARACTERISTICS $(V_{SS}=0V)$


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	Vnn	-40	°C		25°C		85	5°C	UNIT
CIERRICIERISTIC	BILIBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
		I _{OUT} < 1µA	5	4.95	-	4.95	5.00	-	4.95	-	
High-Level Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
		VIN- 422, ADD	15	14.95	_	14.95	15.00	-	14.95	-	v
		I _{OUT} <1µA	5	-	0.05	-	0.00	0.05	_	0.05	
Low-Level Output Voltage	v_{OL}	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	`-	0.00	0.05	-	0.05	
		VIN-VSS, VDD	15	-	0.05	-	0.00	0.05	_	0.05	
		V _{OH} =4.6V	5	-12	-	-12	-35	-	_9	-	
Output High	IOH	V _{OH} =9.5V	10	-30		-30	- 70	-	- 25		
Current	-011	V _{OH} =13.5V	15	-125	_	-125	-260	-	-102		
		V _{IN} =V _{SS} ,V _{DD}									μΑ
		V _{OL} =0.4V	5	12	-	12	35	-	9	-	<i>~</i> 11
Output Low	IOL	V _{OL} =0.5V	10	30	-	30	85	-	25	-	
Current	-OL	V _{OL} =1.5V	15	125	-	125	320	_	102	-	
		V _{IN} =V _{SS} ,V _{DD}									
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	ΔIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage	.111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	7	11.0	-	
	ĺ	$ I_{ m OUT} < 1 \mu A$									v
_		V _{OUT} =0.5V, 4.5V	5	-	1.5		2.25	1.5	-	1.5	·
Input Low Voltage	v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voicage	·IL	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		$ I_{ m OUT} < 1\mu A$									
Input "H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	μΑ
Input Level Current "L" Level	IIL	AIT=OA	18	-	-0.1	-	-10-5	-0.1	-	-1.0	μ11
Quiescent			5	-	0.25	-	0.001	0.25	-	7.5	
Device Current	I_{DD}	V _{IN} =V _{SS} ,V _{DD}	10	-	0.5	-	0.001	0.5	-	15	μA
		*	15	-	1.0	-	0.002	1.0	-	30	

^{*} All valid input combinations

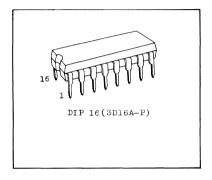

TC40117BP

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_{L} =50 p_{F})

DINAPITO LLECTRICAL CHAR			33 - · y -1				
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
		-	5	_	2.1	6.6	
Output Transition Time (Low to High)	tTLH		10	-	1.0	3.2	
(Low to High)			15	-	0.8	2.2	μS
Output Transition Time			5	_	2.1	6.6	μ3
(High to Low)	t_{THL}		10	-	1.0	3.2	
			15	-	0.8	2.2	
			5	_	0.9	3.0	
Propagation Delay Time (STROBE, DATA-A,B)	t _{pLH}		10	-	0.45	1.25	
(OINOBE, BRIEF R,B)			15	-	0.35	1.0	μS
			5	<u>-</u> ·	1.25	3.4	و ۳۵
Propagation Delay Time (STROBE, DATA-A,B)	t_{pHL}		10	-	0.55	1.7	
(OIRODE, DAIN N,D)			15	· –	0.35	1.15	
			. 5	-	0.9	3.0	
Minimum Pulse Width (STROBE)	t_{WH}		10	-	0.35	1.2	
,			15	-	0.25	0.95	
	_		5	-	3.6	7.2	μS
Minimum Pulse Width (DATA)	t _{WH} t _{WL}		10	-	1.8	3.6	
,	- WL		15	-	1.35	2.7	
	_		5	_	30	_	
Minimum Pulse Width (TERMINATED I/O)	t _{WH} t _{WL}		10	-	45	-	ns
, ,	WE		15	-	55	-	
W			5	-	930	1860	
Minimum Set-Up Time (DATA-STROBE)	t _{SU}		10	-	380	760	ns
			15	· –	230	460	
			5	-	-6	-	
Minimum Hold Time (DATA-STROBE)	t _H		10	· -	-4	-	ns
(MIIII BIRODE)			15	_	-3	_	
Input Capacitance	CIN				5	7.5	pF

TYPICAL APPLICATIONS

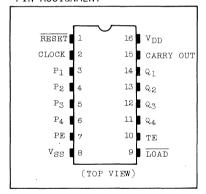
TC40160BP, TC40161BP, TC40162BP, TC40163BP



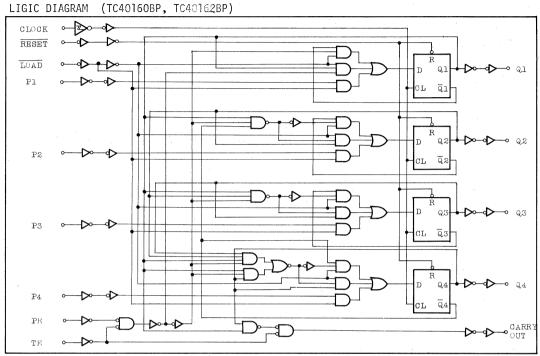
TC40160BP DECADE WITH ASYNCHRONOUS CLEAR

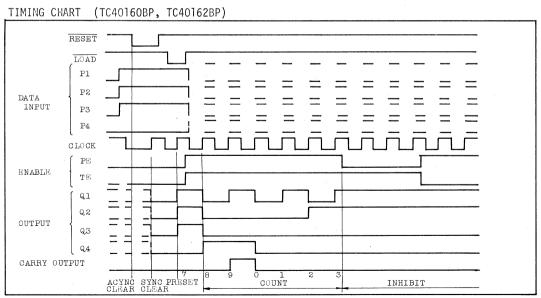
TC40161BP BINARY WITH ASYNCHRONOUS CLEAR

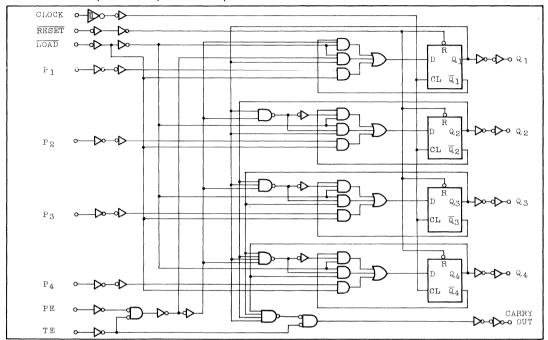
TC40162BP DECADE WITH SYNCHRONOUS CLEAR


TC40163BP BINARY WITH SYNCHRONOUS CLEAR
The TC40160BP, TC40161BP, TC40162BP, and TC40163BP are synchronously programmable 4-bit counters.
The TC40160BP and TC40161BP are decimal counter and 4-bit binary counter respectively having asynchronous clear function which directly clears all the flip-flop outputs. The TC40162BP and TC40163BP are decimal counter and 4-bit binary counter respectively which are synchronous at the rising edges of clocks.
CLEAR and LOAD of these counters are active at the "L" level. Further, these counters are functionally compatible with the 74160, 74161, 74162, and 74163 of TTL.

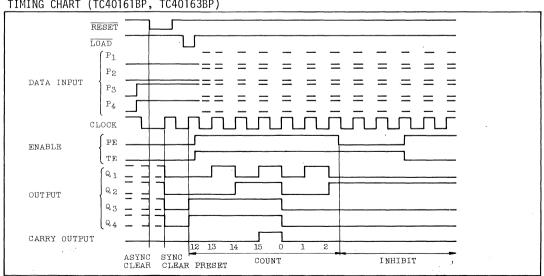
MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5 ~Vss+20	V
Input Voltage	$v_{\rm IN}$	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tsol	260°C · 10 sec	2


PIN ASSIGNMENT


TRUTH TABLE

			INPU	T						OUT	'PUT		
CLOCK	RESET	LOAD	PE	TE	Р1	P2	Р3	P4	Q_1	Q2	Q3	Q4	*: Don't care
☆	L	*	*	38:	*	*	*	*	L	L	L	L	△: Level change
△ J	Н	L	*	*	D_1	D ₂	D3	D4	D ₁	D2	D3	D4	·: No change
\triangle Γ	Н	Н	L	L	*	*	*	*		•			D : Data "H" or "L"
△ ∫	Н	Н	L	Н	*	*	*	ž:	•	•	•		Don't care (TC40160, TC40161)
△ ∫	Н	Н	Н	L	*	*	*	*	•	•			Rise edge
△ ∫	Н	Н	Н	Н	*	*	*	*		COU	NT		(TC40162, TC40163)
	Н	*	*	*	*	*	*	*	•	•			; '



LOGIC DIAGRAM (TC40161BP, TC40163BP)

TC40160BP, TC40161BP, TC40162BP, TC40163BP

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	_	18	V
Input Voltage	$v_{\rm IN}$	 0	-	v_{DD}	V

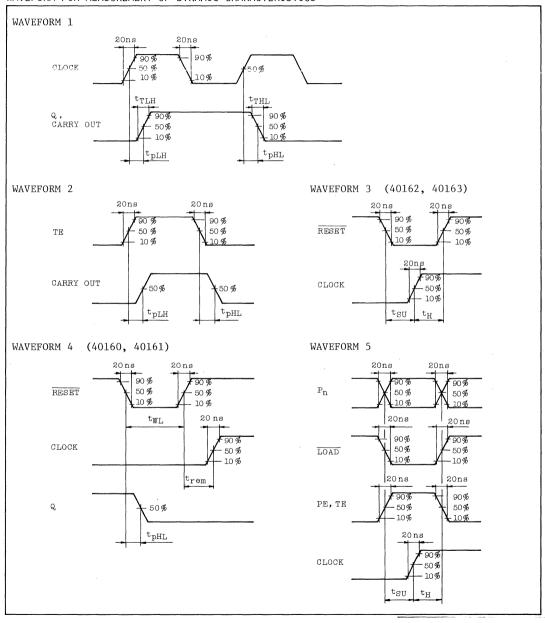
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERI	ISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT
Oilliuio I Livi	LOTTO	BOL	THE COMBILION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
] I _{OUT}] <1µA	5	4.95	1	4.95	5.00	-	4.95	-	
High-Level Output Volt	tage	V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
odepde vere			VIN-VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	_	v
			Ι _{ΟUT} < 1μΑ	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Volt	tage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
1			*IN *85,*DD	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61		-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	- '	-2.1	-4.0	-	-1.7	-	
Output High Current	n	IOH	V _{OH} =9.5V	10	-1.5	. –	-1.3	-2.2	-	-1.1	_	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	. –	
			V _{IN} =V _{SS} ,V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	
Output Low		IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		-OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	+	3.5	_	
Input High		$ _{v_{\mathrm{IH}}}$	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		1 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			$ I_{OUT} < 1\mu A$									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		1,11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1 \(\mu \)									
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μА
Current	"L" Level	IIL	VIT=0A	18	-	-0.1	_	-10-5	-0.1	_	-1.0	1 1

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

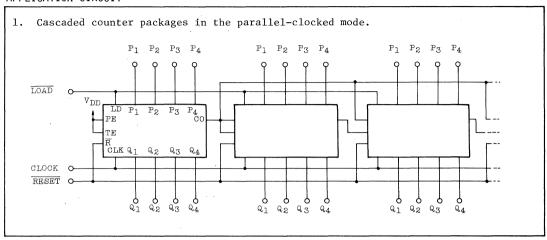
. 55											
CHARACTERISTIC	SYM- TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85°C		UNIT
	BOL	TEST COMPTITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
			5	-	5	_	0.005	5	-	150	
Quiescent Device Current	I_{DD}	VIN=VSS, VDD	10	-	10	-	0.010	10	-	300	μA
		*	15	-	20	-	0.015	20	-	600	

^{*} All Valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time (Low to High)	t _{TLH}		10	-	50	100	
(LOW CO HIGH)			15	-	40	80	ns
			5	-	80	200	
Output Transition Time (High to Low)	tTHL		10	-	50	100	
		-	15	-	40	80	
Propagation Delay Time	t _{pLH}		5	-	250	500	
(CLOCK - Q)	t _{pHL}		10	-	100	200	
(OLOGIC Q)	срнг		15	-	70	140	
D D 1 m.			5	-	300	600	
Propagation Delay Time	t _{pLH}		10	-	120	240	
(CLOCK-CARRY OUT)	tpHL		15	-	80	160	7.0
n n 1 . m.			5	-	170	340	ns
Propagation Delay Time	t _{pLH}		10	_	65	130	
(TE-CARRY OUT)	t _{pHL}		15	-	45	90	
Propagation Delay Time			5	-	180	500	
$(\overline{\text{RESET}} - 0)$	tpHL		10	_	· 75	220	
40160, 40161 Only			15	-	55	160	
			5	-	130	250	
Min. Clock Pulse Width	tw		10	_	45	90	
			15	_	30	60	ns
Min. Pulse Width			5	-	140	280	110
(RESET)	tWL		10	-	55	110	
40160, 40161 Only	*		15	_	35	70	

TC40160BP, TC40161BP, TC40162BP, TC40163BP


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)

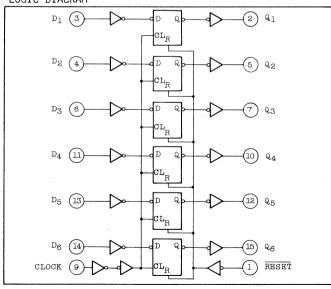
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	2	4	-	
Max. Clock Frequency	fCL		10	5.5	11	-	MHz
			15	8	16	_	
Max. Clock Input Rise	trCL		5				
Time. Max. Clock Input Fall	tfCL		10	1	No Limit		μS
Time.	CICE		15				
			5	_	55	240	
Min. Set-up Time (P _n - CLOCK)	t _{SU}		10	_	20	90	
(-11			15	-	15	60	
Min. Set-up Time			5	-	75	240	
(LOAD - CLOCK)	t _{SU}		10	-	30	90	
(LOAD - CLOCK)			15	-	20	60	na
Mi C-L mi			5		190	380	ns
Min. Set-up Time	tsu		10	-	70	140	
(PE, TE - CLOCK)			15	_	50	100	
Min. Set-up Time			5	_	50	310	
(RESET - CLOCK)	t _{SU}		10	_	20	110	
40162, 40163 Only			15	_	15	70	
Min. Hold Time			5	-	-	0	
(Pn, LOAD , PE, TE-	t _H		10	-	-	0	
CLOCK)			15	-	-,	5	ns
Min. Hold Time			5	-	-30	. 0	115
(RESET - CLOCK)	t _H		10	_	-10	0	
40162, 40163 Only			15	-	- 5	0	
Min. Removal Time			5	_	80	200	
(RESET - COLCK)	trem		10	_	25	100	ns
40160, 40161 Only	Lem		15	· -	15	70	
Input Capacitance	CIN			_	5	7.5	pF

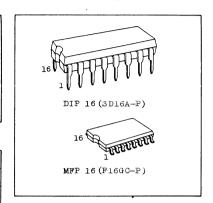
TC40160BP, TC40161BP, TC40162BP, TC40163BP

APPLICATION CIRCUIT

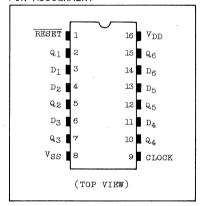
TC40174BP/BF

TC40174BP/TC40174BF HEX D-TYPE FLIP-FLOP


TC40174BP/TC40174BF contains six circuits of D type flip-flops having common clock terminal and clear terminal. The logical input applied to Dn input is transferred to $\rm Qn$ output by the rising edge of CLOCK input.


RESET input is active with "L" level. This has the same functions as TTL 54174/74174 and the pin assignment is also same.

MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	$v_{\rm IN}$	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40∼85	°C
Storage Temperature Range	Tstg	- 65∼150	°C
Lead Temp./Time	Tsol	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

	INPUTS		OUTPUT
CLOCK△	Dn	RESET	Qn+1
·	Н	Н	Н
	L	Н	L
7_	*	Н	$Q_{\mathbf{n}}$.
*	*	L	L

△ : Level change

: No change

* : Don't care

TC40174BP/BF

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

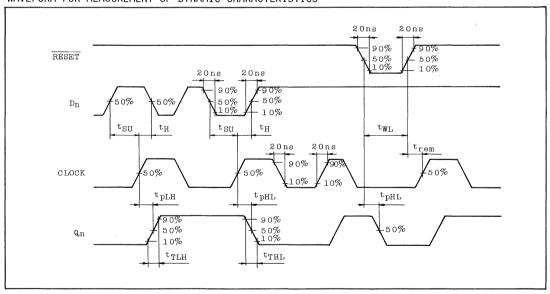
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	·	3	-	18	V
Input Voltage	VIN		0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	ISTIC	SYM-	TEST CONDITION	VDD	-40	°C		25°C			5°C	UNIT
		BOL	1201 001,011	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01.
			$ I_{ m OUT} < 1\mu A$	5	4.95	-	4.95	5.00	-	4.95	-	
High-Level Output Voltage		VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95		9.95	10.00	-	9.95	-	
			VIN-VSS, VDD	15	14.95	_	14.95		_	14.95		V
Low-Level			$ I_{OUT} < 1\mu A$	5	-	0.05	-	0.00	0.05		0.05	
Output Vol	tage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
		·	11N 133,100	15	-	0.05		0.00	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	
Output Hig Current	h	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
odriene			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
	A		V _{OL} =0.4V	5	0.61		0.51	1.5	-	0.42	-	mA
Output Low		IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		TOL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	- '	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75		3.5	_	
Input High		VIH	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	-	7.0	_	
Voltage		1.14	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} < 1 <i>µ</i> A									
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	_	1.5	V
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		'11	V _{OUT} =1.5V,13.5V	15		4.0	_	6.75	4.0	-	4.0	
			$ I_{OUT} < 1\mu A^{\epsilon}$						•			
Input	"H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	ł
Current	"L" Level	IIL	V _{IL} =0V	18	_	-0.1	-	-10 ⁻⁵	-0.1	_	-1.0	μA

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS}=0V$)

I CHARACTERISTIC	SYM- TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85°C		UNIT
BOL	BOL	TEST COMPTION	(A)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
			5	-	1	_	0.005	1	- .	30	
Quiescent Device Current	I _{DD} V	V _{IN} =V _{SS} ,V _{DD}	10	-	2	_	0.010	2	-	60	μA
		*	15	_	4	-	0.015	4	-	120	


^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

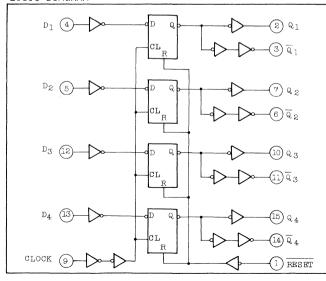
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5		80	200	
(Low to High)	tTLH		10	_	50	100	
(LOW LO HIGH)			15		40	80	ns
Output Transition Time			5	_	80	200	
(High to Low)	t _{THL}		10	-	50	100	
(might to zew)		-	15	-	40	80	
Propagation Delay Time	t		5	-	150	300	
(CLOCK - Q)	t _{pLH}		10	-	65	140	
(CLOCK - Q)	t _{pHL}		15	-	45	100	ns
Propagation Delay Time			5	-	170	340	
(RESET - Q)	tpHL	,	10	-	70	140	
(KESET Q)			15	-	50	100	
			5	_	55	130	
Min. Clock Pulse Width	tw		10	-	20	60 .	
			15	-	15	40	
Min. Pulse Width			5	-	45	100	ns
(RESET)	tWL		10	-	20	50	
(KESEI)		·	15	-	10	40	
			5	3.5	9	_	
Max. Clock Frequency	f_{CL}		10	6	25	-	MHz
			15	8	34	_	
Max. Clock Input Rise	trCL		5	20	-	_	
Time. Max. Clock Input Fall	tfCL		10	15	-	-	μs
Time.	LICL		15	15			

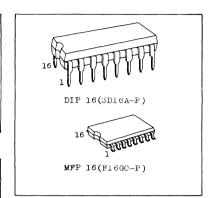
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Set-up Time			5	-	25	50	
(DATA - CLOCK)	tsu		10	-	12	25	ns
(DATA - CLOCK)			15	-	7	15	
Min. Hold Time			.5	-	-8	80	
(DATA - CLOCK)	t _H		10	-	0	. 40	ns
(DATA - GLOCK)			15	-	3	30	
Min. Removal Time			5	-	7	40	
(RESET - CLOCK)	trem		10	-	4	20	ns
(RESEI - CLOCK)			15	_	3	15	
Input Capacitance	c_{IN}			-	5	7.5	pF

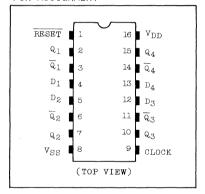
TC40175BP/BF

TC40175BP/TC40175BF QUAD D-TYPE FLIP-FLOP


TC40175BP/TC40175BF contains four circuits of D type flip-flop having common clock terminal and clear terminal. The logical input applied to $D_{\rm n}$ input is transferred to $Q_{\rm n}$ output by the rising edge of CLOCK input.


 $\overline{\text{RESET}}$ input is active with "L" level. This has the same functions as TTL 54175/74175 and the pin assignment is also same.

MAXIMUM LATINGS


CHARACTER ISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	$v_{ m OUT}$	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	1 _{1N}	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	Mra
Operating Temperature Range	T_{A}	- 40 ∼ 85	°C
Storage Temperature Range	T _{stg}	-65 ~ 150	°C
Lead Temp./Time	Tsol	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

. I	NPUTS		OUTPUTS			
CLOCK△	Dn	RESET	Qn+1	$\overline{\mathbb{Q}_{n+1}}$		
	Н	Н	Н	L		
	L	Н	L	Н		
	*	Н	Qn.	$\overline{\mathbb{Q}}_{n}$.		
*	*	L	L	Н		

△ : Level change

· : No change

* : Don't care

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

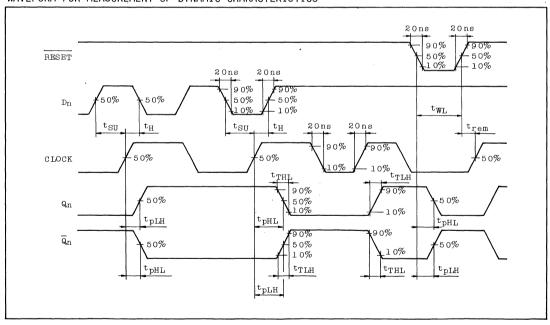
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	_	18	·V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTE	RISTIC	SYM-	TEST CONDITION	VDD	-40)°C		25°C		85	,C	UNIT
0		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
	_		I _{OUT} < 1 µA	5	4.95	_	4.95	5.00	-	4.95	_	
High-Leve Output Vo		VOH	V _{IN} =V _{SS} , V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
			VIN-VSS, VDD	15	14.95	-	14.95	15.00	_	14.95	_	v
T T 1			$ \mathrm{I}_{\mathrm{OUT}} < 1 \mu \mathrm{A}$	5	-	0.05	-	0.00	0.05	-	0.05	ľ
Low-Level Output Vo		VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
-			'IN '33,'UU	15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	-	
Output Hi Current	IOI	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-	
·		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_		
			V _{IN} =V _{SS} ,V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-	
Output Lo	W	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	-	
Current			V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}									
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Input Hig	h	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
			$ I_{ m OUT} < 1\mu{ m A}$									
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	V
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	1	V _{OUT} =1.5V,13.5V	15		4.0	-	6.75	4.0	-	4.0		
			$ I_{ m OUT} < 1 \mu A$									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	μA
Current	"L" Level	IIL	VIT=0A	18	_	-0.1	_	-10-5	-0.1	_	-1.0	

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

A CHARACTERISTIC I	SYM- TEST CONDITIO		VDD	-40°C .		25°C			85°C		UNIT
	BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
Quiescent Device Current			5	_	1	_	0.005	1	-	30	
	I_{DD}	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	2	_	0.010	2	-	60	A
		*		-	4	-	0.015	4	-	120	


^{*} All valid input combinations.

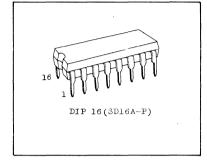
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $\rm V_{SS}\text{=}0V,~C_L\text{=}50pF)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	80	200	
(Low to High)	t_{TLH}		10	-	50	100	
(Low to High)			15	-	40	80	ns
O. b. T. T. T.			5	_	80	200	115
Output Transition Time	t_{THL}		10	_	50	100	
(High to Low)			15	_	40	80	
Propagation Delay Time	t _{pLH}		5	-	170	340	
(CLOCK - Q, \overline{Q})			10	-	70	140	
(obook - q, q)	t _{pHL}		15	-	50	100	
Propagation Delay Time $(\overline{\text{RESET}} - Q, \overline{Q})$	+		5	_	190	380	ns
	t _{pLH}		10	-	80	160	
(KESEI - Q, Q)	t _{pHL}		15	-	55	110	`
			5	_	55	130	
Min. Clock Pulse Width	t _w		10	-	20	60	
			15	-	15	40	ns
Min. Pulse Width		·	5	-	40	100	
(RESET)	tWL	•	10	-	20	50	
(RESET)			15	-	15	40	
			5	3.5	9	_	
Max. Clock Frequency	f_{CL}		10	6	25	_	MHz
			15	8	34	_	
Max. Clock Input Rise	t or		5	20	_	-	
Time. Max. Clock Input Fall	trCL		10	15	-	-	μs
Time.	^t fCL		15	15	_	_	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Min. Set-up Time			5	-	30	60	
(DATA - CLOCK)	t _{SU}		10	-	15	30	ns
			15	-	10	20	
Min. Hold Time			5	, –	- 5	80	
(DATA - CLOCK)	t _H		10	-	0	40	ns
(DATA - CLOCK)			15	-	3	30	
Min. Removal Time			5	-	7	40	
(RESET - CLOCK)	t _{rem}		. 10	-	4	20	ns
			15	-	3	15	
Input Capacitance	c_{IN}			_	5	7.5	pF

TC40192BP, TC40193BP



TC40193BP PRESETTABLE BINARY UP/DOWN COUNTER (Dual Clock with Reset)

 ${\tt TC40192BP/TC40193BP}$ is a synchronous 4-bit up/down counter.

The RESET input is active at "H" level, and the PRESET ENABLE input is active at "L" level; both of them perform asynchronous operation.

In the clock, the up-count input and the down-count input are independent each other, and each input performs count operation at the rising edge of the pulse. And the clock in the counter takes the logic sum of counting up and counting down; therefore, one clock input can be used as a clock inhibit input. The functions and pin assignment of TC40192BP and TC40193BP are compatible with those of 74192 and 74193 of TTL.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$V_{ m DD}$	Vss-0.5~Vss+20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	TA	- 40 ∼85	°C
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10 sec	-

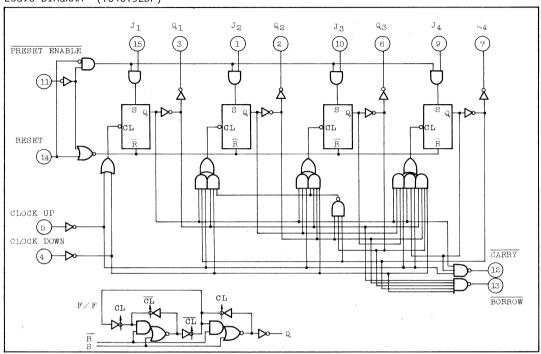
PIN ASSIGNMENT

		_
J ₂	1 10	s v _{DD}
Q2	2 1	5 J ₁
Q ₁	3 14	RESET
CLOCK DOWN	4 1	BORROW
CLOCK UP	5 13	CARRY
Q3	6 1.	PRESET ENABLE
Q ₄	7 10) J 3
v _{ss}	8 9	J 4
	(TOP VIEW)

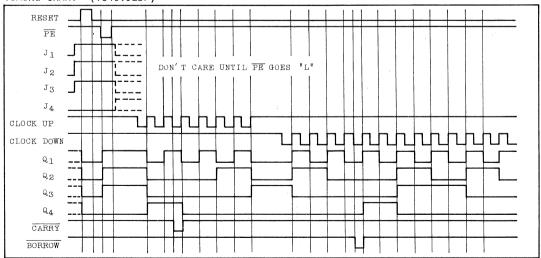
TRUTH TABLE

(TC40192BP, TC40193BP)

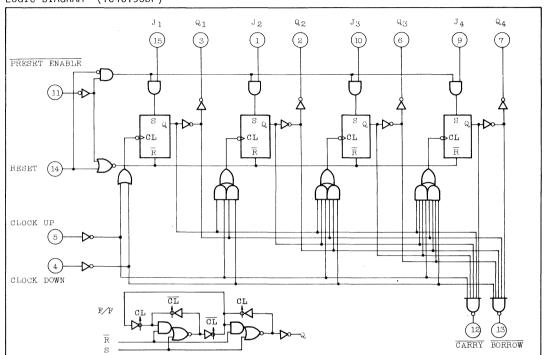
CLOCK	CLOCK DOWN	PRESET ENABLE	RESET	ACTION
<u>_</u>	H	Н	L	COUNT UP
J.	H	Н	L	NO COUNT
Н	5	Н	L	COUNT DOWN
Н	٦.	Н	L	NO COUNT
*	*	L	L	PRESET
*	*	*	Н	RESET

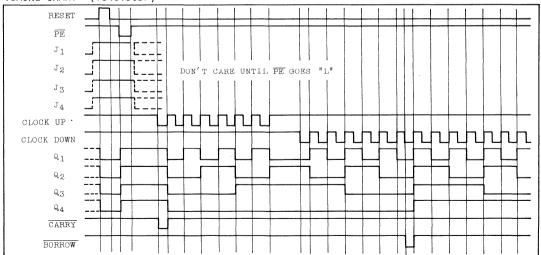

* : Don't care

(TC40192BP)


COUNT	Q ₁	Q2	Q,3	Q ₄
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	H	L
5	Н	L	H	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	Н	L	L	Н

(TC401	93BP)		
COUNT	Q 1	Q 2	Qз	Q 4
0	L	L	L	L
1	H	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	H	н	Н	L
8	L	L	L	Н
9	H	L	L	H
A	L	H	$_{ m L}$	Н
В	Н	Н	L	Н
С	L	L	Н	H
D	Н	L	Н	H
E	L	Н	Н	Н
F	Н	Н	Н	Н


LOGIC DIAGRAM (TC40192BP)



LOGIC DIAGRAM (TC40193BP)

TC40192BP, TC40193BP

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3 .	_	18	V
Input Voltage	v_{IN}	0		v_{DD}	V.

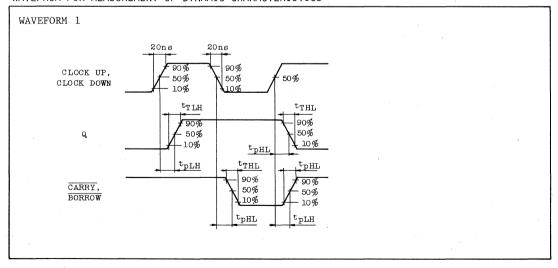
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERI	5117	SYM-	TEST CONDITION	v_{DD}	-40	°C		25°C		8.5	UNIT		
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
			J.Torrm 1 < 1 #A	5	4.95	_	4.95	5.00	-	4.95	-		
High-Level Output Volt	age	v _{OH}	I _{OUT} <1µA V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	_	9.95	_		
			VIN-VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	_	v	
			 1 _{IOUT} <1μΑ	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Volt	age	v_{OL}	V _{IN} =V _{SS} ,V _{DD}	10	- .	0.05	-	0.00	0.05	-	0.05		
			VIN-VSS, VDD	15	-	0.05	-	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61		-0.51	-1.0	_	-0.42	-		
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-		
Output High Current	1	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-		
		V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	_	mA		
			$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$										
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	-		
Output Low		I_{OL}	V _{OL} =0.5V	10	1.5	_	1.3	3.8	-	1.1	_		
Current		-01	V _{OL} =1.5V	15	4.0	-	3.4	15.0	_	2.8	-		
			V _{IN} =V _{SS} ,V _{DD}										
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-		
Input High		VIH	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	_	7.0	_		
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-		
			$ I_{OUT} < 1\mu$ A									v	
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5		
Input Low		v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	- '	3.0		
Voltage	111	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0			
			I _{OUT} < 1 µA										
Input	'H" Level	IIH	V _{IH} =18V	18	-	-0.1	_	10-5	0.1	-	1.0	μΑ	
Current	'L" Level	IIL	V _{IL} =0V	18	-	0.1	-	-10-5	-0.1	-	-1.0	μη.	

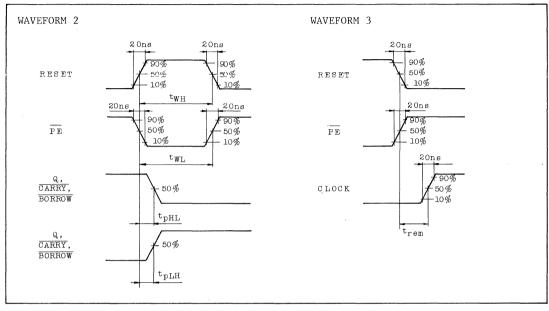
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

I CHARACTERISTIC I	SYM- TEST CONDITION		$v_{ m DD}$	-40°C		25°C			85°C		UNIT
	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	CIVII
			5	-	5	_	0.005	5	-	150	
Quiescent Device Current	IDD	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	10	_	0.010	10	-	300	μА
Current		*	15	-	20	-	0.015	20	_	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

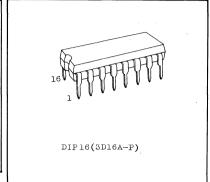
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5		80	200	
Output Transition Time	_		10	_	50	100	
(Low to High)	t _{TLH}			_	40	80	
			15	_			ns
Output Transition Time			5	-	80	200	
(High to Low)	t _{THL}		10	-	50	100	
			15	_	40	80	
Propagation Delay Time	t _{pLH}		5	-	450	900	
(CLOCK UP, CLOCK DOWN - Q)	tpHL		10	-	180 .	360	
CLOCK DOWN '/	-рпп		15	_	130	260	
			5	-	400	800	
Propagation Delay Time (RESET - Q)	t_{pHL}		10	_	160	320	
(112222 47)			15	-	120	240	
Propagation Delay Time	+		5	-	420	840	
(PE - Q)	t _{pLH}		10	_	170,	340	ns
(PE - Q)	t _{pHL}		15	_	120	240	
Propagation Delay Time			5	_	- 220	440	
CLCOK UP - CARRY,	t _{pLH}		10	-	95	190	
CLOCK DOWN - BORROW	t _{pHL}		15	_	70	140	
Propagation Delay Time			5	_	490	980	
	t _{pLH}		10	_	190	380	
(RESET, PE - BORROW, CARRY)	t _{pHL}		15	-	130	260	
			5	-	250	500	
Min. Clock Pulse Width	t _w		10	-	100	200	ns
			15	_	70	140	


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	100	480	
Min. Pulse Width (RESET)	t _{WH}		10	-	40	300	
(KESEI)			15	_	-35	260	ns
			5		80	240	110
Min. Pulse Width	tWL		10	-	30	170	
(PE)			15	-	25	140	
			5	1	2	-	
Max. Clcok Frequency	f _{CL}		10	2.5	5	- ·	MHz
			15	3.5	7	-	
Max. Clock Input Rise	+		5	20	-	-	
Time. Max. Clock Input Fall	trCL		10	2.5	-	-	μS
Time.	t _{fCL}		15	1	-	-	
Min. Removal Time			5	_	-40	80	
(RESET, PE - CLOCK)	trem		10	-	-16	40	ns
(REDEL, 11 CHOOK)			15	-	-14	30	
Input Capacitance	c_{IN}			-	5	7.5	pF

WAVEFROM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

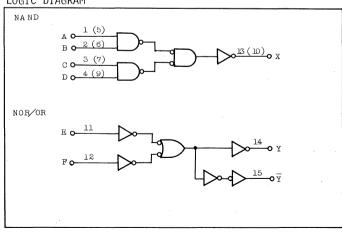
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

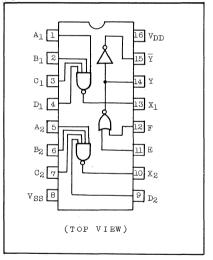


TC4501BP TRIPLE GATE (Dual 4-Input NAND Gate and 2-Input NOR/OR Gate or 8-Input AND/NAND Gate)

The TC4501BP is a combined gate which contains dual 4-input NAND gate and 2-input NOR/OR gate in one package.

Since all the outputs of these gates are provided with the buffers of inverters, the input/output transmission characteristics have been improved and the noise immunity has been elevated. Further, an increase in propagation delay time caused by an increase in load capacity is kept to a minimum.


The TC4501BP can be used as 8-input positive AND/ NAND gate by externally connecting the output of NAND gate to the input of NOR/OR gate.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} = 0.5 ^{\circ} V_{SS} + 20$	V
Input Voltage	VIN	$v_{SS - 0.5} \sim v_{DD + 0.5}$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	. Λ

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHADACS	TERISTIC	SYMBOL	TEST CONDITIONS	v_{DD}	-40	Ú, C		25°C		82	5°C	UNITS
CHARAC.	TEKISIIC	SIMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTID
High-Le	eve1		I _{OUT} <1μA	5	4.95	-		5.00	-	4.95		
, –	Voltage	V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-		10.00	_	9.95	ì	
			'IN 'SS, 'DD	15	14.95		 	15.00	-	14.95		V
Low-Lev	vel	$v_{ m OL}$	$ I_{OUT} < 1_{\mu}A$	5	-	0.05	-	0.00	0.05	-	0.05	
Output	Voltage	VOL	$v_{IN} = v_{SS}$, v_{DD}	10 15	_	0.05	-	0.00	0.05	-	0.05	
`			V _{OH} =4.6V	5	-0.61		-0.51		_	-0.42		
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0		-1.7	_	
Output	High	I _{OH}	V _{OH} =9.5V	_			ł	1		l	ļ	
Current	t		V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
			$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$	15	-4.0	-	-3.4	-9.0	-	-2.8	-	mA
			V _{OL} =0.4V									
Output	Low		$V_{OL}=0.5V$	5	0.61	-	0.51	1.5	-	0.42	-	
Current	Tot	IOL	V _{OL} =1.5V	10	1.5	-	1.3	3.8	-	1.1	-	
			V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	15.0	·-	2.8	_	
			V _{OUT} =0.5V, 4.5V									
Input I	High		V _{OUT} =1.0V, 9.0V	,	3.5	-	3.5	2.75	-	3.5	-	
Voltage	2	v_{IH}	V _{OUT} =1.5V,13.5V	10	7.0	-	7.0	5.5	-	7.0	-	
			I _{OUT} <1 μA	15	11.0	-	11.0	8.25	-	11.0	-	
			V _{OUT} =0.5V, 4.5V			, ,		0.05	1 5		1 5	
Input 1	Low.		V _{OUT} =1.0V, 9.0V		-	1.5	-	2.25	1.5	-	1.5	
-		$v_{ m IL}$	VOUT=1.5V,13.5V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	2		I _{OUT} <1μA	15		4.0	-	6.75	4.0	-	4.0	
	"H"	_						5			- 0	
Input	Level	IIH	$V_{\mathrm{IH}}=18V$	18	-	0.1	_	10 ⁻⁵	0.1	_	1.0	
Current	"L" Level	I_{IL}	AIT=0A	18	_	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiesce	ent			5	-	0.25	-	0.001	0.25	_	3.8	
,	Current	I _{DD}	$v_{IN}=v_{SS}, v_{DD}$	10 15	-	0.5 1.0	-	0.001 0.002		_	7.5 15	μA

^{*} All valid input combinations.

TC4501BP

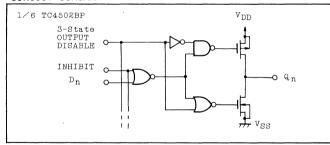
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $\rm V_{SS}=0V,\ C_L=50pF)$

	CHARACTERISTIC	SYMBOL	TEST	CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
l	put Transition Time Low to High)	tTLH	,		5 10 15	- - -	80 50 40	200 100 80	
i	Output Transition Time (High to Low)				5 10 15	- - -	80 50 40	200 100 80	
NAND	Propagation Delay Time (Low to High)	t _{pLh}			5 10 15	- - -	80 50 40	260 140 100	
NA	Propagation Delay Time (High to Low)	t _{pHL}			5 10 15	-	80 50 40	260 140 100	
R	Propagation Delay Time (Low to High)	t _{pLH}			5 10 15	-	100 50 40	230 130 90	ns
NOR	Propagation Delay Time (High to Low)	t _{pHL}			5 10 15	_ _ _	100 50 40	230 130 90	
NOR-Inverter	Propagation Delay Time (Low to High)	t _{pLH}	-		5 10 15	- - -	130 70 50	260 140 100	
NOR-In	Propagation Delay Time (High to Low)	t _{pHL}			5 10 15	- - -	130 70 50	260 140 100	
Inp	ut Capacitance	c_{IN}				_	5	7.5	рF

CIRCUIT WAVEFORM 20 ns 20 ns v_{DD} 190% 90% 50% 50% INPUT 10% A DD OUTPUT t_{pHL} $t_{ m pLH}$ **-**0 X 90% 50% 50% OUTPUT X PULSE c_L =50 pF 10% GENERATOR t_{THL} $t_{\mathrm{T\,LH}}$ INPUT **-**0 Y t_{pHL} tpLH _C_=50 pF 90% 50% 50% OUTPUT Y 10% 10% ${\rm t_{\rm TLH}}$ -o ₹ ${\rm t_{THL}}$ $^{ m t}_{ m pHL}$ $t_{\rm pLH}$ L CL=50pF v_{SS} OUTPUT Y 50% 50% 10% 10% $\mathtt{t}_{\mathrm{TLH}}$ $\mathtt{t}_{\mathtt{THL}}$

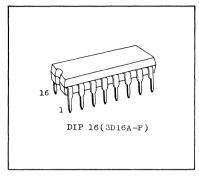
CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4502BP STROBED HEX INVERTER/BUFFER

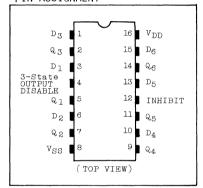

The TC4502BP is a strobed hex inverter/buffer with 3-state output. When DISABLE input is set to "H" level, six outputs become high impedance independently of the other inputs/when DISABLE input is set to "L" level and INHIBIT input "H" level, all the outputs go to "L" level.

Further, since each output is capable of directly driving one standard TTL, the TC4502BP is suited for a bus interface, a data transmission circuit, a multiplexer, etc.

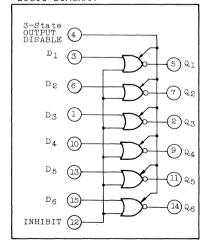
MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	V_{SS} -0.5 ~ V_{SS} +20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	v_{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10 se	ec.

CIRCUIT DIAGRAM



TRUTH TABLE


1110111 171	<i></i>			
	INPUTS		OUTPUT	
DISABLE	INHIBIT	Dn	Qn	
Н	*	*	HZ	HZ: High impedance
L	Н	*	L	* : Don't care
L	L	L	Н	
L	L	Н	L	

PIN ASSIGNMENT

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	_	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

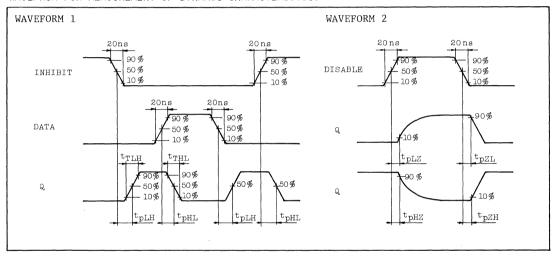
STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	RISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT	
		BOL	Their demograph	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
			lTorm <1 "A	5	4.95	-	4.95	5.00	-	4.95	-		
High-Level Output Vol		VOH	$ 1_{ m OUT} < 1 \mu { m A} $ $ V_{ m IN} = V_{ m SS}, V_{ m DD} $	10	9.95	_	9.95	10.00	_	9.95	_		
			VIN-VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	_	v	
		ļ	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Vol	tage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05		
			VIN-VSS, VDD	15	-	0.05	_	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.73	_	-0.65	-1.4	-	-0.58	-		
	_		V _{OH} =2.5V	5	-2.4	-	-2.1	-1.3	-	-1.9	-		
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.8	-	-1.65	-3.2	-	-1.35	-		
			V _{OH} =13.5V	15	-4.8	_	-4.3	-1.1	_	-3.5	-		
			V _{IN} =V _{SS} ,V _{DD}									mA	
			V _{OL} =0.4V	5	3.8	_	3.2	7.3		2.9	-		
Output Low	ī	IOL	V _{OL} =0.5V	10	9.6	_	8.0	1.7	-	6.6	-		
Current		l or	V _{OL} =1.5V	15	25.0	-	24.0	5.7	_	20.0	-		
		į	$v_{\mathrm{IN}} = v_{\mathrm{SS}}, v_{\mathrm{DD}}$										
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-		
Input High	ı ,	VIH	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-		
Voltage		1111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-		
			$ I_{OUT} < 1\mu_A$									v	
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5		
Input Low		v_{IL}	V _{OUT} =1.0V, 9.0V	10	-	3.0	_	4.5	3.0	-	3.0		
Voltage		. 11	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0		
			$ I_{\mathrm{OUT}} < 1\mu_{\mathrm{A}}$										
Input	"H" Level	IIH	v _{IH} =0v	18	1	0.1	_	10-5	0.1	-	1.0	μA	
Current	"L" Level	IIL	V _{IL} =0V	18	-	-0.1	_	-10-5	-0.1	-	-1.0		

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=ov$)

CHARACTERISTIC		SYM-	SYM- BOL TEST CONDITION		-40)°C		25°C		28	5°C	UNIT
				(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
3-State Output	"H" Level	I _{DH}	v _{OUT} =18V	18	-	0.4	-	10-4	0.4	-	12	μA
Leakage Current	''L'' Level	$I_{ m DL}$	V _{OUT} =0V	18	-	-0.4	-	-10-4	-0.4	_	-12	μΑ
				5	-	1	-	0.002	1	-	30	
Quiescent Current	Device	IDD	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	2	-	0.004	2	-	60	μA
			*	15	-	4	-	0.008	4	-	120	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
			5	_	80	200		
Output Transition Time (Low to High)	tTLH		10	_	40	100		
(Low to High)	1		15	_	30	80	ns	
		·	- 5	-	35	80	115	
Output Transition Time (High to Low)	t _{THL}		10	-	15	40		
(High to Low)			15	-	10	30		
			. 5	-	200	400		
Propagation Delay Time (DATA, INHIBIT - Q)	t _{pLH}		10	-	80	180		
			15	-	60	130	ns	
			5	-	135	270		
Propagation Delay Time (DATA, INHIBIT - 0)	t_{pHL}		10	-	55 [']	110		
(DATA, IMILDII - Q)			15	-	40	80		
Three State Disable	· ·		5	-	65	120		
Time	t _{pHZ}	R _L =1kΩ	10	-	30	60		
(DISABLE - Q)			15	-	25	50		
Three State Disable			5	-	80	220	i,	
Time	t _{pZH}	$R_L=1k\Omega$	10	-	30	100	ns	
(DISABLE - Q)			15	-	20	80		
Three State Disable			5		100	250		
lime	t _{pLZ}	$R_L=1k\Omega$	10	-	50	130		
(DISABLE - Q)			15	_	40	110		

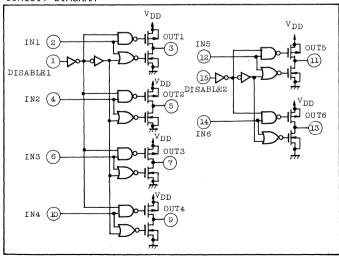
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

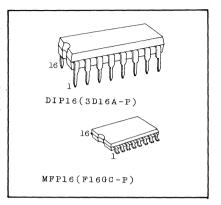
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Three State Disable Time (DISABLE - Q)			5	_	80	250	
	tpZL	$R_L=1k\Omega$	10	-	30	110	ns
			15	-	20	80	
Input Capacitance	CIN			_	5	7.5	рF

WAVEFROM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

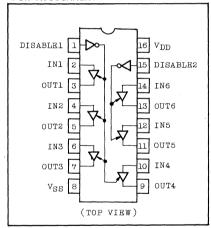
TC4503BP/BF

TC4503BP/TC4503BF HEX NON-INVERTING 3-STATE BUFFER


TC4503BP/BF contains six circuits of noninverting buffers having three state output.
Since DISABLE inputs to disable the outputs are
provided separately, one common for four circuits and
another common for other two circuits, this is suitable for controlling four bit data lines.
Large output current enables to directly control one


TTL input.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	v_{IN}	V _{SS} -0.5 ∿ V _{DD} +0.5	V
Output Voltage	VOUT	V _{SS} -0.5 ∿ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

CIRCUIT DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

•		
DISABLE INPUT	INPUT	OUTPUT
L	L	L
L	Н	H
Н	*	HZ

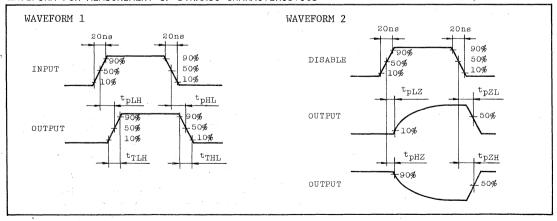
* : Don't care

HZ: High Impedance

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	77
Input Voltage	v_{IN}	0	_	$V_{ m DD}$, V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

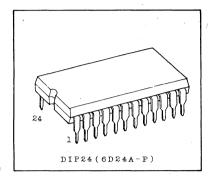

CILADA CIETA	DICETO	CYMBOI	TEST CONDITION	V_{DD}	-40	O°C		25°C		85	5°C	UNITS
CHARACTE	RISTIC	SYMBOL	TEST CONDITION.	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
	High-Level Output Voltage		V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95	-		5.00 10.00 15.00	-	4.95 9.95 14.95	I	v
Low-Level Output Voltage		V _{OL}	I _{OUT} <1μA V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05). V
Output High I _{OH}		ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 5 10 15	-1.16 -5.7 -3 -8	- - -	-1.02 -4.8 -2.6 -6.8	-2.4 -10.0 -5.5 -20.0	-	-0.7 -3.4 -1.9 -4.9	- - -	
Output Lo	ow	$I_{ m OL}$	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	2.5 6.4 18.9	- -	2.1 5.5 16.1	3.8 9.8 37.8	- - -	1.4 3.9 11.4	- - -	mA
Input Hig Voltage	gh	V _{IH} .	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	5 10 15	3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	- - -	
Input Low	Input Low V _I		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15	-	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input	"H" Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	
Current	"L" Level	IIL	V _{IL} =0V	18	_	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	
3-State Output	"H" Level	I _{DH}	v _{OUT} =18v	18	-	0.4	-	10-4	0.4	-	12	μA
Leakage Current	"L" Level	IDL	V _{OUT} =0V	18	_	-0.4	-	-10 ⁻⁴	-0.4	_	-12	μΑ.
Quiescent Device Cu		I _{DD}	V _{IN} =V _{DD} , V _{SS}	5 10 15	- - -	1.0 2.0 4.0	- - -	0.002 0.004 0.008	1.0 2.0 4.0	-	30 60 120	Z.

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	tTLH		5 10 15	- - -	30 20 15	90 45 35	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	25 13 10	70 40 25	
Propagation Delay Time (IN - OUT)	t _{pLH}		5 10 15	- - -	45 25 20	150 70 50	
Propagation Delay Time	t _{pHL}		5 10 15	_ _ _	43 23 18	110 50 35	
Three State Disable Time (DISABLE - OUT)	t _{pHZ}	R_L =1 $k\Omega$	5 10 15	- - -	50 30 25	140 60 50	ns
Three State Disable Time (DISABLE - OUT)	t _{pLZ}	R _L =1k Ω	5 10 15	-	60 35 30	140 60 50	
Three State Disable Time (DISABLE - OUT)	t _{pZH}	R_L =1 $k\Omega$	5 10 15	-	65 35 30	130 50 40	
Three State Disable Time (DISABLE - OUT)	t _{pZL}	R _L =1k Ω	5 10 15	-	70 35 30	130 50 40	
Input Capacitance	c_{IN}			_	7.5	15	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

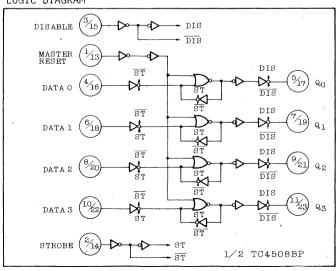


TC4508BP

TC4508BP DUAL 4-BIT LATCH

TC4508BP contains two independent circuits of latches having output disable function and clear function. When STROBE input is "H", the data input appears at the output as it is and if STROBE input is changed from "H" to "L", the output retains the data input existed at the time of falling edge of STROBE. When STROBE is "L", the outputs are not affected by DATA inputs.

If RESET input is set to "H", Q outputs are cleared to "L" level regardless of STROBE. If DISABLE input is set to "H", Q outputs have high impedance regardless of other inputs.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	-40~85	°C
Storage Temperature Range	T _{stg}	-60~150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	

PIN ASSIGNMENT

MASTER RESET	1	24	$v_{ m DD}$
STROBE	2	23	Q3
DISABLE	3	22	D ₃
D _O	4	21	Q2
Q _O I	5	20	D2
D ₁	6	19	Q ₁
Q ₁	7	18	Dl
D2	8	17	ର ୍
Q2	9	16	DO
$_{\mathrm{D_{3}}}$	10	15	DISABLE
Q.3 I	11	14	STROBE
v _{ss} l	12	13	MASTER RESET
	(TOP VI	EW)	

LOGIC DIAGRAM

TRUTH TABLE

SET	RESET	DISABLE	DA'	TA]	I N PU	JTS	(OUTI	PUTS	!	
R	S	DI	Do	D_1	D2	D_3	Q _O	Q ₁	Q2	Q3	
*	*	H	*	*	*	*	HZ				
Н	*	L	*	*	*	*	L L L				
L	L	L	*	*	*	*		LÁT	HEI)	
L	н	L	Α	В	С	D	Α	В	С	D	
	* : Don't Care										

HZ: High Impedance

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$		3	-	18	V
Input Voltage	v_{IN}	i	0	1	v_{DD}	V

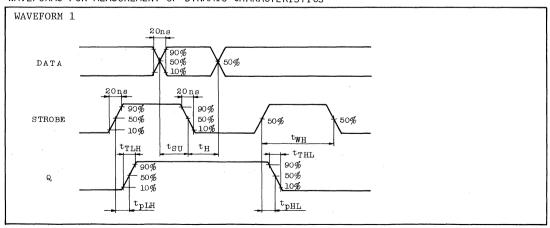
STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTER	ISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		8.5	5°C	UNIT	
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
			$ I_{ m OUT} < 1 \mu A$	5	4.95	_	4.95	5.00	-	4.95	-		
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-		
			IN SS, BB	15	14.95	-	14.95	15.00	1	14.95	-	v	
] I _{OUT}] < 1 <i>µ</i> A	5	-	0.05	-	0.00	0.05	-	0.05		
Low-Level Output Vol	tage	VOL	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05		
1	O		IN GO, DD	15	-	0.05	_	0.00	0.05	-	0.05		
			V _{OH} =4.6V	5	-0.61		-0.51	-1.0	-	-0.42	-		
			V _{OH} =2.5V	5	-2.5		-2.1	-4.0	-	-1.7	_		
Output Hig Current	h	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-		
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-		
			V _{IN} =V _{SS} ,V _{DD}									mA	
			V _{OL} =0.4V	5	0.61		0.51	1.5	_	0.42	-		
Output Low		IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	-		
Current			V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-		
			V _{IN} =V _{SS} ,V _{DD}										
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	-	3.5	-		
Input High		v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-,	7.0	-		
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-		
			$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$									v	
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	·	
Input Low		VIL	V _{OUT} =1.0V, 9.0V	10	_	3.0	-	4.5	3.0	_	3.0		
Voltage		1,11	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0		
			I _{OUT} < 1 \(\mu \)										
l l	"H" Level	1 _{IH}	V _{IH} =18V	18	-	0.1	. –	10-5	0.1	-	1.0	μA	
Current	"L" Level	IIL	VIL=OV	18	-	-0.1	-	-10-5	-0.1	-	-1.0	μA	

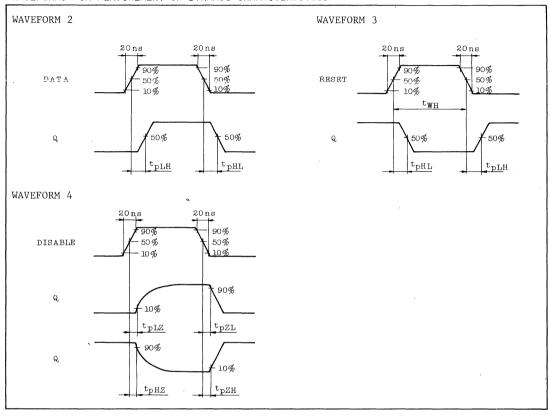
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTER	RISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		8.5	5°C	UNIT
Oldmaioldi		BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	OIVII
3-State Output	"H" Level	I _{DH}	V _{OUT} =18V	18	_	0.4	-	10-4	0.4	-	12	μΑ.
Leakage Current "L" Leve		I _{DL}	V _{OUT} =0V	18	_	-0.4	-	-10-4	-0.4	-	-12	[[
				5	_	5	_	0.005	5	_	150	
Quiescent Current	Device	IDD	$v_{\mathrm{IN}} = v_{\mathrm{SS}}, v_{\mathrm{DD}}$	10	-	10	-	0.010	10	-	300	μA
			*	15	-	20	-	0.015	20	-	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	t _{TLH}		10	-	50	100	
(22 028)			15	-	40	80	ns
			5	_	80	200	
Output Transition Time (High to Low)	tTHL		10	-	50	100	
(High to Eow)			15	. –	40	80	
	tpLH		5	_	180	360	
Propagation Delay Time (STROBE - Q)	t _{pHL}		10	-	75	150	
(BINODE Q)	chur		15	-	55	110	
	talli		5	-	160	320	
Propagation Delay Time (DATA - Q)	t _{pLH} t _{pHL}		10	_	65	130	ns
(DATA - Q)	chur		15	-	45	90	
	tpLH		5	-	160	320	
Propagation Delay Time (RESET - Q)	t _{pHL}		10	-	65	130	
(KEBET - Q)	српь		15	-	45	90	,
Three State Disable			5	_	45	170	
Time	t _{pHZ}	$R_L=1k\Omega$	10	-	25	100	
(DISABLE - Q)	•		15	_	20	70	ns
Three State Disable			5	-	55	170	113
Time	t _{pZH}	R _L =1kΩ	10	_	25	100	
(DISABLE - Q)	I I		15	_	15	70	

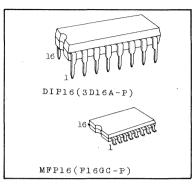

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Three State Disable			5	-	50	130	
Time	t_{pLZ}	R _L =1kΩ	10	_	30	80	
(DISABLE - Q)	•		15	_	25	60	20
Three State Disable			5	_	70	170	ns
Time	tpZL	$R_L=1k\Omega$	10	_	30	100	
(DISABLE - Q)	-		15	_	20	70	
			5	_	50	200	
Min. Pulse Width (RESET)	t _{WH}		10	-	20	100	
(RESELT)			15	-	15	70	ns
			5	_	40	140	no
Min. Pulse Width (STROBE)	t _{WH}		10	- 1	20	70	
(BIRODE)			15	_	15	40	
			5	-	30	60	
Min. Set-up Time (DATA - STROBE)	t _{SU}		10	-	15	30	ns
(BMIN BIRODE)		-	15	-	10	20	
			5	_	-10	10	
Min. Hold Time (DATA - STROBE)	tH		10	- .	- 5	10	ns
(Milli Bikobb)			15	-	0	10	
Input Capacitance	CIN			-	5	7.5	pF

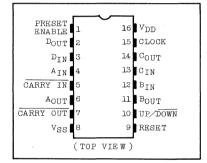
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

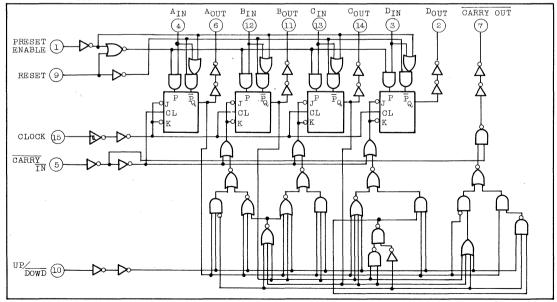
TC4510BP/BF


TC4510BP/TC4510BF PRESETTABLE BCD UP/DOWN COUNTER

TC4510BP/BF is UP/DOWN decade counter having asynchronous RESET and PRESET functions. When RESET input is set to "H" level, the content of counter is reset to "O" and when RESET is set to "L" and P.E. to "H", inputs $\rm A_{IN}$ through $\rm D_{IN}$ are preset to the counter.

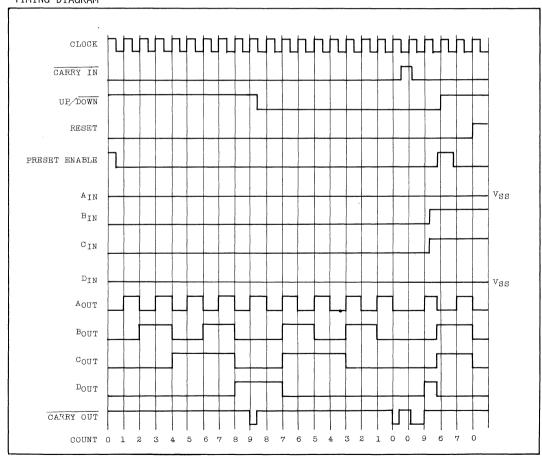

If TC4510BP/BF's are connected in cascade using $\overline{\text{CARRY}}$ $\overline{\text{INPUT}}$ and $\overline{\text{CARRY}}$ $\overline{\text{OUTPUT}}$, decimal counter of N digits with the parallel carry capability can be composed. Switching of counting up or down is achieved by UP/ $\overline{\text{DOWN}}$ INPUT. The counter advances its counting condition at the rising edge of CLOCK.

ABSOLUTE MAXIMUM RATINGS


			
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	- 65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260 • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM



TRUTH TABLE

CARRY IN	UP/DOWN	PRESET ENABLE	RESET	FUNCTION
Н	*	L	L	NO COUNT
L	Н	L	L	UP COUNT
L	L	L	L	DOWN COUNT
*	*	Н	L	PRESET
*	*	*	H	RESET

^{*} Don't care

TIMING DIAGRAM

TC4510BP/BF

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

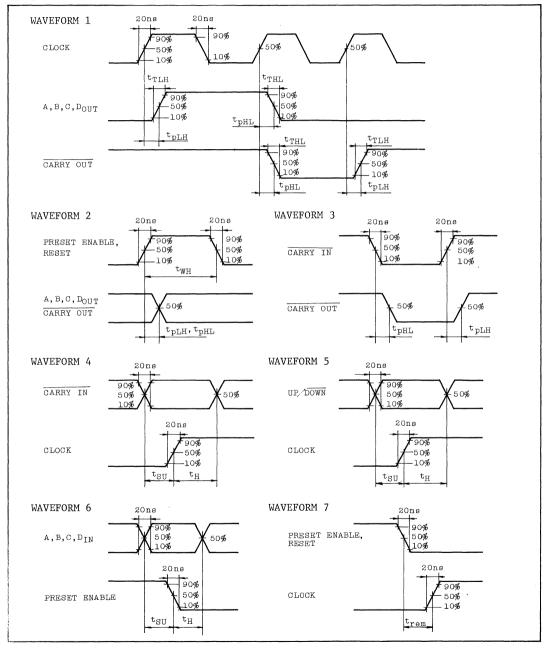
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	77
Input Voltage	v_{1N}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CIIAD A CIDIT	DICTIO	CYMDOT	THE CONDITION	Van	-4	0°C		25°C		85	°C	UNIT
CHARACTE	KISIIC	SYMBOL	TEST CONDITION	V _{DD}	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
High-Leve		v _{OH}	I _{OUT} < 1μA	5 10	4.95 9.95	i	4.95 9.95	5.00 10.00		4.95 9.95	- "	
Output Vo.	ıtage		$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$	15	14.95	-	14.95	15.00	_	14.95	_	v
Low-Level Output Vo		v _{OL}	I _{OUT} <1μA	5 10	-	0.05 0.05	-		0.05 0.05	-	0.05 0.05	
			$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	_	0.05	_	0.00	0.05	_	0.05	
Output Hi	gh		V _{OH} =4.6V V _{OH} =2.5V	5 5	-0.61 -2.5	-	-0.51 -2.1	-1.0 -4.0	-	-0.42 -1.7	- -	
Current	0	I _{OH}	V _{OH} =9.5V V _{OH} =13.5V	10 15	-1.5 -4.0	-	-1.3 -3.4	-2.2 -9.0	-	-1.1 -2.8	_ _	
			$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$									mA
Output Lo	Output Low I _{OL}		V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V	5 10 15	0.61 1.5 4.0	-	0.51 1.3 3.4	1.2 3.2 12.0	-	0.42 1.1 2.8	- - -	
			V _{IN} =V _{SS} , V _{DD}									
Input Hig Voltage	h	VIH	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	5 10 15	3.5 7.0 11.0	- -	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- -	
Input Low		v_{IL}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	5 10	-	1.5 3.0	-	2.25 4.5	3.0	-	1.5 3.0	V
Voltage		T.D.	V _{OUT} =1.5V,13.5V I _{OUT} <1 _µ A	15	-	4.0	-	6.75	4.0	_	4.0	
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	
Current	"L" Level	I _{IL}	V _{IL} =0V	18	_	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μA
Quiescent Device Cu		I _{DD}	V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	5 10 20	- - -	0.005 0.010 0.015	5 10 20	_ _ _	150 300 600	

^{*} All valid input combinations.

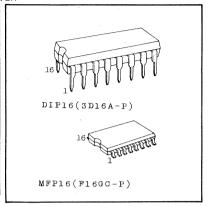
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25 $^{\circ}\text{C}$, $\text{V}_{\text{SS}}\text{=}\text{OV}$, $\text{C}_{\text{L}}\text{=}50\text{pF})$


CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	70	200	
(Low to High)	tTLH		10	-	35	100	
			15	-	30	80	
			5	_	70	200	
Output Transition Time (High to Low)	t _{THL}		10	-	35	100	
(might co bow)			15	- '	30	80	
December 1 mi			5	_	180	400	
Propagation Delay Time (CLOCK-A,B,C,D _{OUT})	t _{pLH} t _{pHL}		10	-	85	200	
	PHL		15	-	60	150	
Propagation Delay Time	_		5	_	220	480	ns
(CLOCK-CARRY OUT)	t _{pLH} tpHL		10	-	100	240	
,	-		15	_	75	180	
Propagation Delay Time	_		5		180	420	
(PRESET ENABLE,	t _{pLH} t _{pHL}		10	-	85	210	
RESET-A,B,C,D _{OUT})	Chur		15	-	65	160	
Propagation Delay Time	tpLH		5	-	240	640	
(PRESET ENABLE,	tpHL		10	-	110	320	
RESET-CARRY OUT)			15	-	80	250	
Propagation Delay Time	t 7.77		5	_	85	250	
(CARRY IN - CARRY OUT)	t _{pLH} t _{pHL}		10	-	45	120	
	PHL		15	-	. 35	100	
The state of the s			5	2	. 5	_	
Max. Clock Frequency	f _{CL}		10	4	10	-	MHz
			15	5.5	14	-	
Max. Clock Input Rise			5				
Time Max. Clock Input Fall	trCL		10	NO L	imit		μs
Time	tfCL		15				
			5	-	40	150	
Min. Clock Pulse Width	t _W		10	-	20	75	ns
			15	-	15	60	

TC4510BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C $\rm V_{SS}=0V,\ C_L=50pF)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\rm DD}(V)$	MIN.	TYP.	MAX.	UNIT
Min. Pulse Width (PRESET ENABLE, RESET)	t _{WH}		5 10 15	- · -	55 25 20	200 100 75	
Min. Set-up Time (UP/DOWN-CLOCK)	t _{SU}		5 10 15	- - -	95 45 30	360 160 110	·
Min. Hold Time (UP/DOWN-CLOCK)	t _H		5 10 15	- -	- - -	30 30 30	
Min. Set-up Time (CARRY IN-CLOCK)	t _{SU}		5 10 15	. – . – –	75 35 25	150 60 45	
Min. Hold Time (CARRY IN-CLOCK)	t _H		5 10 15	- - -	- - -	60 30 30	ns
Min. Set-up Time (A,B,C,D-PRESET ENABLE)	t _{SU}		5 10 15	- - -	35 15 10	70 30 20	
Min. Hold Time (A,B,C,D-PRESET ENABLE)	tH		5 10 15	- - -	15 10 5	70 40 40	
Min. Removal Time (PRESET ENABLE, RESET-CLOCK)	t _{rem}		5 10 15	- - -	40 20 15	150 80 60	
Input Capacitance	CIN				5	7.5	pF

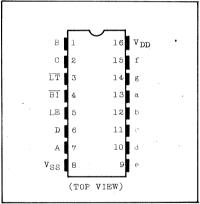

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4511BP/TC4511BF BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

TC4511BP/BF is decoder which converts the input of BCD code into the 7 segment display element driving signal and the output has complementary connection of NPN bipolar transistor and N-channel MOS FET. Therefore, not only capability of directly driving cathode common type LED, this has capability of driving harious display elements with simple interface circuits.

LT input and BI input are to force all the outputs to be "H" (illuminated) and "L" (not illuminated) respectively regardless of BCD input. As the latch controlled by common LE input is inserted in each of four input lines, static display of dynamic information can be achieved. When an invalid BCD input, "10" or higher is applied, all the outputs become "L" (not illuminated).

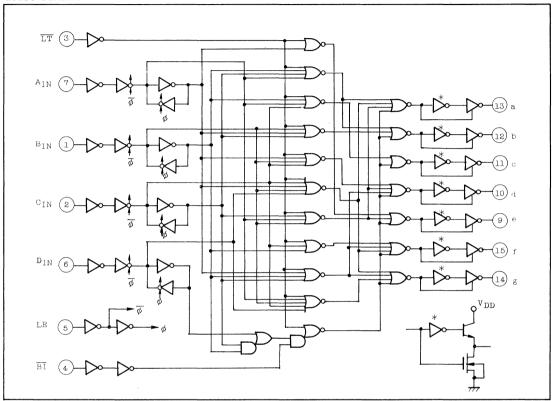
ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V .
Input Voltage	v_{IN}	V _{SS} -0.5 % V _{DD} +0.5	v
Output Voltage	V _{OUT}	V _{SS} -0.5 ∿ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Output High Current	ІОН	50	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	T _{so1}	260°C • 10 sec	

TRUTH TABLE

		J	INPU	Т					0	UTPU	T			DISPLAY
LE	BI	LT	D	С	В	Α	а	ъ	С	d	е	f	g	MODE
*	*	L	*	*	*	*	Н	H	Н	H	Н	Н	Н	8
*	L	H.	*	*	*	*	L	Ŀ	L	L	L	L	L	BLANK
L	Н	H	L	L	L	Ĺ	Н	Н	Н	Н	Н	Н	L	. 0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	H	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	H	L	L	Н	3
L	Н	Н	Ŀ	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	Ŀ	Н	L	Н	Н	L	Н	Н	L	Н	Н	5.
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	H-	L	L	L	L	.7
L	Н	Н	Н	L	L	L	Н	H	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9 -
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	BLANK
L	Н	H	H	L	H	Н	L	L	L	L	L	L	L	BLANK
L	Н	Н	Н	Н	*	*	L	L	L	L	L	L	L	BLANK
H	Н	Н	*	*	*	*				$\triangle\!\!\!\triangle$				\triangle
*:	*: DON'T CARE A: DEPONDS UPON THE BCD CODE													

PREVIOUSLY APPLIED WHEN IE "L"


PIN ASSIGNMENT

DISPLAY

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS $(V_{SS}=0V)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS}=0V$)

CHARACTERISTIC SYMBOL		TEST CONDITION	V_{DD}	-4	0°C		25°C		85	°C	UNIT
CHARACTERISTIC	SKACTERISTIC STABOL TEST CONDITION	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	CNII
High-Level	77	I _{OUT} <1µA	5	4.1	-	4.1	4.41	_	4.2	-	
Output Voltage	V _{OH}		10	9.1	_	9.1	9.41	-	9.2	-	
i and an instance		V _{IN} =V _{SS} , V _{DD}	15	14.1	_	14.1	14.41	-	14.2	_	V
Low-Level		I _{OUT} <1μA	5	_	0.05	_	0.00	0.05	-	0.05]
	VOL	Į.	10	-	0.05	-	0.00	0.05	-	0.05	
Output Voltage		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	-	0.05	-	0.00	0.05	_	0.05	

STATIC ELECTRICAL CHARACTERISTICS (Continued)


CHARACTERIS	STIC	SYMBOL	TEST CONDITION	v_{DD}	-4	0°C		25°C		85	°C	UNITS
		511.502			MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01(110
·			I _{OH} =0mA I _{OH} =10mA I _{OH} =20mA V _{IN} =V _{DD} , V _{SS}	5	4.10 3.90 3.55	- - -	3.90	4.41 4.25 4.19	- - -	4.20 3.90 3.30		
Output High Voltage	h	V _{OH}	I _{OH} =0mA I _{OH} =10mA I _{OH} =20mA V _{IN} =V _{DD} , V _{SS}	10	9.10 9.00 8.70	- - -	9.00	9.41 9.25 9.20	- - -	9.20 9.00 8.40	- - -	v
			I _{OH} =0mA I _{OH} =10mA I _{OH} =20mA		14.10 14.00 13.75	-	ł	14.41 14.26 14.21	- - -	14.20 14.00 13.50		
Output Low Voltage		I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{DD} , V _{SS}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	- - -	0.42 1.1 2.8	- - -	mA
Input High Voltage		V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V, 13.5V I _{OUT} < 1µA	5 10 15	3.5 7.0 11.0	- -	3.5 7.0 11.0	2.75 5.50 8.25	<u>-</u> -	3.5 7.0 11.0	- - -	V
Input Low Voltage		$v_{ m IL}$	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V		- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
	ve1	IIH	V _{IH} =18V	18	-	0.3	-	10-5	0.3	-	1.0	μA
Current ''L Le	vel	I _{IL}	AIT=0A	18	-	-0.3	-	-10 ⁻⁵	-0.3	-	-1.0	μΩ
Quiescent Device Curr	rent	I _{DD}	I _{DD} V _{IN} =V _{DD} , V _{SS}		- -	5 10 20	l	0.005 0.010 0.015	5 10 20	-	150 300 600	μА

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF, R_L =10k Ω)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5		25	80	
-	t _{TLH}		10	_	15	60	
(Low to High)			1.5	_	15	50	
Output Transition Time			5	-	70	200	
·	t _{THL}		10	-	35	100	
(High to Low)			15	_	30	80	
Propagation Delay Time			5	-	200	1040	
(DATA - OUT)	t _{pLH}		10	-	90	420	
(5)1111 (6)1)			15	-	65	300	
Propagation Delay Time			5	-	230	1040	
(DATA - OUT)	t _{pHL}		10	-	110	420	
(DATA = 001)			15	-	80	300	
Propagation Delay Time			5	-	75	640	
(BI - OUT)	t _{pLH}		10	-	45	260	
(81 - 001)			15	-	35	200	
Propagation Delay Time			5	-	90	300	
(BI - OUT)	t _{pHL}		10	-	50	260	-
(51 = 001)			15	-	45	200	
Propagation Delay Time			5	- 1	60	300	
(LT - OUT)	t _{pLH}		10	-	40	150	ns
(000)			15	-	35	100	
Propagation Delay Time			5	-	75	300	
(TT - OUT)	t _{pHL}		10	-	45	150	
(11 001)		ATTACA TO THE STATE OF THE STAT	15	-	35	100	
Propagation Delay Time			5	-	180	600	
(LE - OUT)	t _{pLH}		10	-	90	300	
(II OCT)			15		65	250	
Propagation Delay Time			5	-	230	600	
(LE - OUT)	t _{pHL}		10	-	110	300	
			15	-	85	250	
Min. Pulse Width			5	-	40	300	
(LE)	t _{WL}		10	-	20	150	
(BB)			15		15	120	
Min. Set-up Time	_		5	-	35	150	
(DATA - LE)	t _{SU}		10	-	15	- 70	
			15	_	10	40	
Min Wold Time			5	-	-	0	
Min. Hold Time	t _H		10	-	-	0	
(DATA - LE)		r	15			0	
Input Capacitance	c_{IN}				5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TRUTH TABLE

INHIBIT	DATA ₁	DATA	INPUT DATA3	DATA4	SELECTED OUTPUT TC4514BP - "H" TC4515BP - "L"	o STROBE="H"; See Truth
L	L	L	L	L	s ₀	table
T.	Н	L	L	L	S ₁	o STROBE="L" ; Outputs hold the
L	L	Н	L	L	S2	data when STROBE goes "LOW"
L	Н	Н	L	L	\$3	goes Low
L	L	L	Н	L	S ₄	t _{n-1} -t _n
L	Н	L	Н	L	S ₅	STROBE
L	L	Н	Н	L	S ₆	L
L	Н	Н	Н	L	S ₇	LATCH POINT
L	L	L	L	Н	S8	
L .	Н	L	L	Н	S9	o * Don't care
L	L	Н	L	Н	S ₁₀	
L	Н	Н	L	Н	s ₁₁	
L	L	L	Н	Н	S ₁₂	
L	Н	L	Н	Н	S ₁₃	
L	L	Н .	Н	Н	S ₁₄	
L	Н	Н	Н	Н	S ₁₅	
Н .	*	*	*	*	TC4514BP-ALL OUTPUTS "L" TC4515BP-ALL OUTPUTS "H"	

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

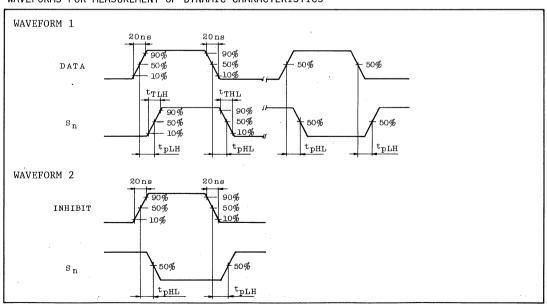
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

	T			10	100		25°C		85°		
CHARACTERISTIC	SYM- BOL	TEST CONDITION	V _{DD}	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level Output Voltage	V _{OH}	$ I_{ m OUT} < 1\mu A$ $V_{ m IN} = V_{ m SS}$, $V_{ m DD}$	5 10 15	}	-		5.00 10.00 15.00	-	4.95 9.95 14.95	-	
Low-Level Output Voltage	V _{OL}	I _{OUT} <1µA V _{IN} =V _{SS} ,V _{DD}	5 10 15	-	0.05 0.05 0.05	-	0.00 0.00 0.00	0.05 0.05 0.05	-	0.05 0.05 0.05	

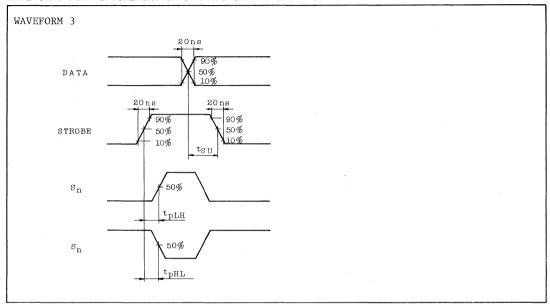
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTER	TCTTC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85°C		UNIT
CHARACTER	CISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
			V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	-	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	gh	IOH	V _{OH} =9.5V	1,0	-1.5	-	1.13	-2.2	-	-1.1	-	
00110110			V _{OH} =13.5V	15	-4.0		-3.4	-9.0	-	-2.8	-	
			$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	_	
Output Low	J	$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		-OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			$v_{IN}=v_{SS}, v_{DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	
Input High	า	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0		
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			I _{OUT} <1 <i>µ</i> A									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low		$v_{ m IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage			V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1 \mu_{ m A}$									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	. –	10-5	0.1	_	1.0	LμA
Current	"L" Level	IIL	VIT=0A	18	-	-0.1	-	-10-5	-0.1	-	-1.0	
	L			5	-	5	_	0.005	, 5	-	150	
Quiescent	Device	IDD	V _{IN} =V _{SS} ,V _{DD}	10	_	10	_	0.010	10		300	μA
Current		"	*	15	_	20	_	0.015	20	_	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	t_{TLH}		10	_	50	100	ns
(Hew to high)			15	-	40	80	


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_{L} =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	80	200	
Output Transition Time (High to Low)	t _{THL}		. 10	-	50	100	ns
(8/			15	-	40	80	
Propagation Delay	t _{pLH}		5	-	260	970	
Time	t _{pHL}		10	-	110	370	
(STROBE, DATA - Sn)	орнь		15	-	80	270	ns
Propagation Delay	t _{pLH}		5	-	150	500	
Time	t _{pHL}		10	-	65	220	
(INHIBIT - Sn)	срнг		15	-	50	170	
			5	-	40	250	
Min. Pulse Width (STROBE)	t _{WH}		10	-	20	100	ns
(SINODE)			15	-	15	75	
			5	-	20	150	
Min. Hold Time (DATA - STROBE)	t _{SU}		10	-	· 10	70	ns
(Billi SINODE)		•	15	-	. 5	40	
Input Capacitance	c_{IN}	•		-	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

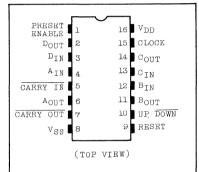
TC4516BP/BF

TC4516BP/TC4516BF PRESETTABLE BINARY UP/DOWN COUNTER

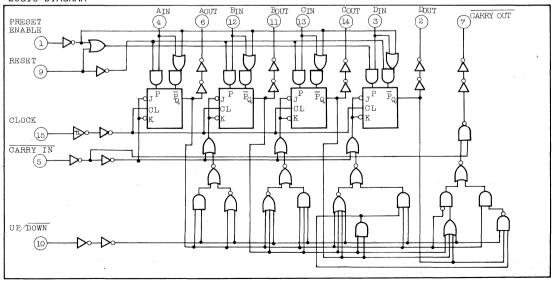
 ${\tt TC4516BP/BF}$ is ${\tt UP/DOWN}$ 4 bit binary counter having asynchronous and PRESET functions.

When RESET input is set to "H" level, the content of counter is reset to "O" and when RESET is set to "L" and P.E. to "H", inputs $A_{\rm IN}$ through $D_{\rm IN}$ are preset into the counter.

If TC4516BP/BF's are connected in cascade using $\overline{\text{CARRY}}$ $\overline{\text{INPUT}}$ and $\overline{\text{CARRY}}$ $\overline{\text{OUTPUT}}$, $4 \times \text{N}$ bits binary counter with parallel counter can be composed.


Switching of counting up or down is acheved by UP/\overline{DOWN} input. The counter advances its counting condition at the rising edge of CLOCK.

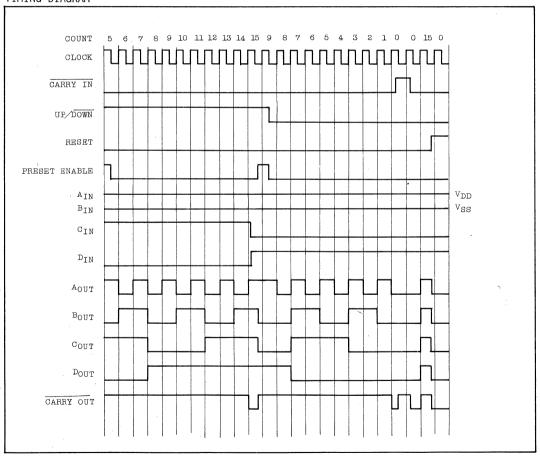
DIP16(3D16A-P) 16 16 MFP16(F16GC-P)


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	v
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	I_{IN}	±10	mA
Power Dissipaation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_A	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM



TRUTH TABLE

CARRY IN	UP/DOWN	PRESET ENABLE	RESET	FUNCTION
Н	*	Ĺ	L	NO COUNT
L	Н	L	L	UP COUNT
L	L L	L	L	DOWN COUNT
*	· *	Н	L	PRESET
*	*	*	Н	RESET

^{*} Don't care

TIMING DIAGRAM

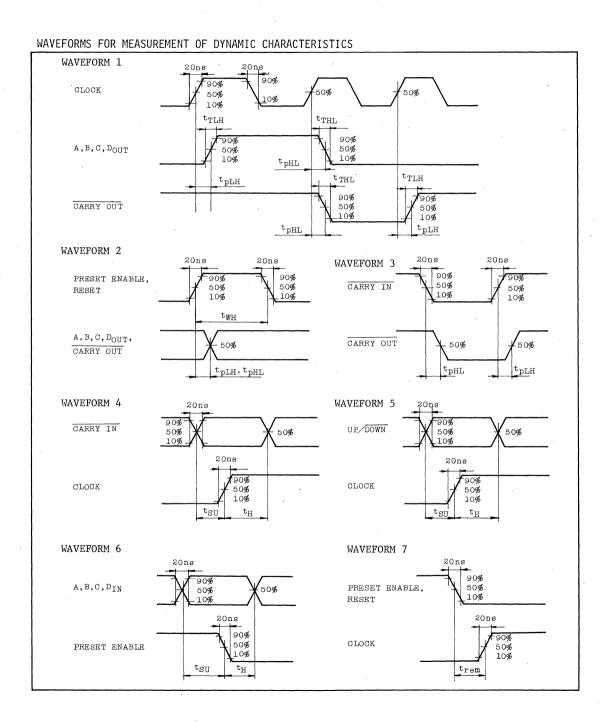
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	AIN	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTE	RISTIC	SYMBOL	TEST CONDITION	VDD	-40)°C		25°C		85	°C	UNIT
CHARACT	.KISIIC	SIMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High-Lev Output		V _{OH}	$ I_{OUT} < 1_{\mu}A$ $V_{IN}=V_{SS}$, V_{DD}	5 10 15	4.95 9.95 14.95	1 1	4.95 9.95 14.95			4.95 9.95 14.95	- - -	
Low-Leve Output		V _{OL}	$ I_{OUT} < 1_{\mu}A$ $V_{IN}=V_{SS}$, V_{DD}	5 10 15	- - -	0.05 0.05 0.05		0.00 0.00 0.00	0.05 0.05 0.05	_	0.05 0.05 0.05	
Output I	High	Ι _{ΟΗ}	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V VIN=VSS,VDD	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - -	-0.51 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0		-0.42 -1.7 -1.1 -2.8	- - - -	
Output l Current	Low	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} ,V _{DD}	5 10 15	0.61 1.5 4.0	- - -	0.51 1.3 3.4	1.2 3.2 12.0	- - -	0.42 1.1 2.8	- - -	mA.
Input H: Voltage	igh	V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V, 13.5V I _{OUT} < 1μA	10	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25	- -	3.5 7.0 11.0	- - -	V
Input Lo Voltage	ow	v _{IL}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1μA	10	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- -	1.5 3.0 4.0	·
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	0.1		1.0	
Current	"L" Level	I_{IL}	AIT=0A	18	-	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μA
Quiescer Device Current	nt	I _{DD}	V _{IN} =V _{SS} ,V _{DD}	5 10 15	- - -	5 10 20	- - -	0.005 0.010 0.015	5 10 20	- - -	150 300 600	

^{*} All valid input combinations.


TC4516BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	-	70	200	
(Low to High)	tTLH		10	-	35	100	
			15	_	30	80	
Output Transition Time		·	5	- '	70	200	·
(High to Low)	t _{THL}		10	-	35	100	
(Magni de lasti)	-		15	_	30	80	
D D.1			5	-	180	400	
Propagation Delay Time	t _{pLH}		10	-	85	200	
(CLOCK-A,B,C,D _{OUT})	t _{pHL}		15	-	60	150	
Propagation Delay Time	+	1	5	_	220	480	
(CLOCK-CARRY OUT)	t _{pLH}	•	10	_	100	240	ns
(CLOCK-CARRY OUI)	tpHL		15	_	75	180	
Propagation Delay Time			5	-	180	420	
(PRESET ENABLE,	t _{pLH}		10	-	85	210	
RESET-A, B, C, D _{OUT})	t _{PHL}		15	-	65	160	
Propagation Delay Time	+	·	5	_	240	640	
(PRESET ENABLE	t _{pLH}		10	_	110	320	
RESET-CARRY OUT)	t _{pHL}		15		80	.250	
			5	_	85	250	
Propagation Delay Time	t _{pLH}		10	_	45	120	
(CARRY IN - CARRY OUT)	tpHL		15	_	35	100	
			5	2	5	-	
Max. Clock Frequency	f _{CL}		10	4	10	_	MHz
		•	15	5.5	14	-	
Max. Clock Input Rise			5				
Time	trCL		10	NO Li	nit		μs
Max. Clock Input Fall Time	tfCL		15				
TIME		,	5	_	40	150	
Min. Clock Pulse Width	t _W		10	_	20	75	
			15	-	15	60	
		•	5	_	55	200	ns
Min. Pulse Width	t _{WH}	·	10		25	100	
(PRESET ENABLE, RESET)			15	_	20	75	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50pF)

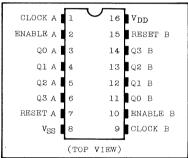
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	_	95	360	
Min. Set-up Time	tsu		10	-	45	160	
(UP/DOWN-CLOCK)	00		15	_	30	110	
			5	-	-	30	
Min. Hold Time	t _H		10	_	-	30	
(UP/DOWN-CLOCK)	11		15	_	_	30	
			5	· -	75	150	
Min. Set-up Time (CARRY IN - CLOCK)	t _{SU}		10	_	35	60	
(CARRI IN - CLUCK)			15	-	25	45	
			5	_	_	60	
Min. Hold Time	t _H		10	-	-	30	ns
(CARRY IN - CLOCK)			15	-	_	30	
Min. Set-Up Time			5	-	35	70	
(A,B,C,D-PRESET ENABLE)	t _{SU}		10	-	15	30	
(A,D,C,D-IRESEI ENABLE)			15	-	10	20	
Min. Hold Time			5		15	70	
(A,B,C,D-PRESET ENABLE)	t _H		10	_	10	40	
,			15	-	5	40	
Min. Removal Time			5	-	40	150	
(PRESET ENABLE,	trem		10	-	20	80	
RESET-CLOCK)			15	-	15	60	
Input Capacitance	$c_{\rm IN}$				5	7.5	рF

TC4518BP/BF, TC4520BP/BF

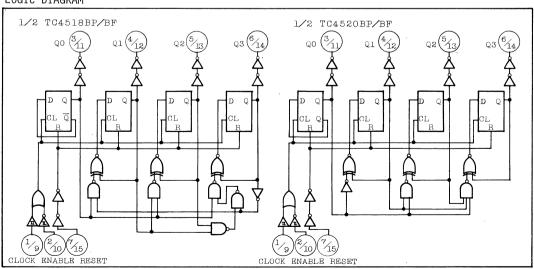
TC4518BP/TC4518BF DUAL BCD UP COUNTER TC4520B0/TC4520BF DUAL BINARY UP COUNTER

TC4518BP/BF and TC4520BP/BF are up counters of BCD or 4 bit binary.

Since both of TC4518BP/BF and TC4520BP/BF contain two independent circuits of counters with the same functions in one package, counting or frequency division of two BCD digits or eight binary bits can be achieved with one IC. The counters can be reset to "0" (Q0 \sim Q3="L") by giving "H" level signal to RESET input regardless of other inputs. The counting condition is changed by the rising edge

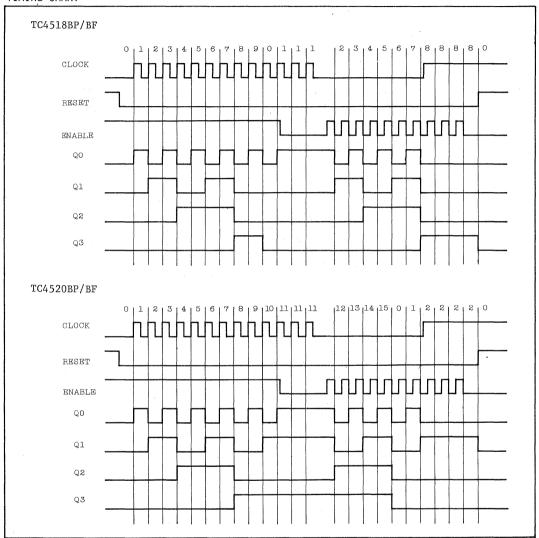

The counting condition is changed by the rising edge of CLOCK input if ENABLE="H" or by the falling edge of ENABLE if CLOCK="L".

DIP16(3D16A-P) 16 MFP16(F16GC-P)


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	· V
Input Voltage	v_{IN}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Output Voltage	V _{OUT}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	- 65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10sec	

PIN ASSIGNMENT



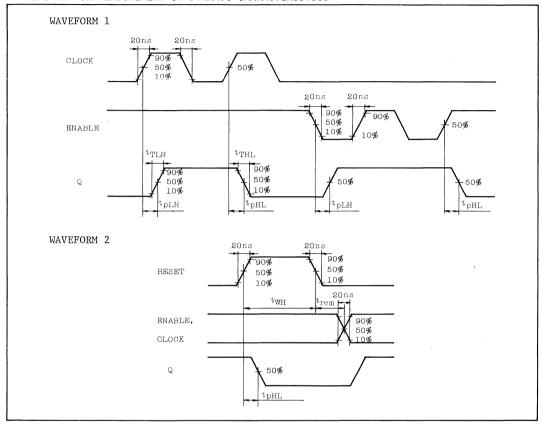
LOGIC DIAGRAM

TC4518BP/BF, TC4520BP/BF

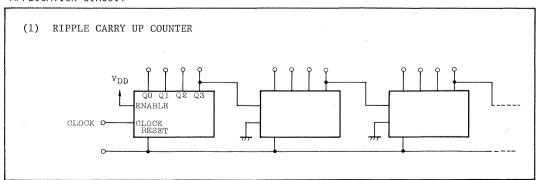
RECOMMENDED OPERATING CONDITIONS (V_{SS}=0V)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3	-	18	77
Input Voltage	$v_{\rm IN}$	- 1	0	-	v_{DD}	V

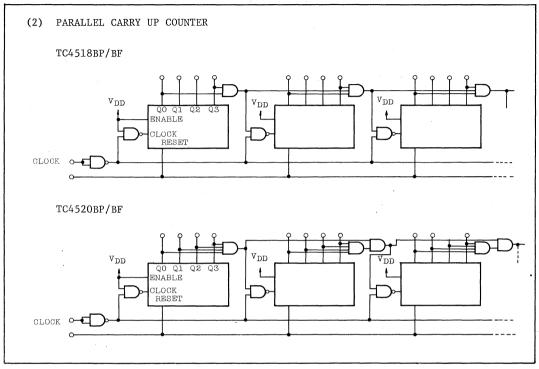
STATIC ELECTRICAL CHARACTERISTICS ($v_{\rm SS}$ =0v)


CHARACTE	RISTIC	SYMBOL	TEST CONDITION	v_{DD}	-4	0°C		25°C		85	°C	UNIT
diffici El		o in both	TEGT COMBITTON	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High-Leve	-1		 Ι _{ΟUT} < 1μ Α	5	4.95	-	4.95	5.00	-	4.95	-	
Output Vo		V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	_	9.95	10.00	-	9.95	-	
oacpac v	11160		(IN '88' 'DD	15	14.95	-	14.95	15.00	_	14.95	_	v
Low-Level	L		 Ι _{ΟυΤ} <1μΑ	5	_	0.05	-	0.00	0.05	-	0.05	
Output Vo		v_{OL}	V _{IN} =V _{SS} , V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05	
output vo	reage		IN SS, DD	- 15	-	0.05	-	0.00	0.05	-	0.05	
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
			$V_{OH}=2.5V$	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hi	igh	. I _{OH}	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	- ·	-3.4	-9.0	-	-2.8	-	
			$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$									mA
			V _{OL} =0.4V	5	0.61	_	0.51	1.2	-	0.42	-	III.ZX
Output Lo	ow	т	V _{OL} =0.5V	10	1.5	-	1.3	3.2	-	1.1	-	
Current		I _{OL}	V _{OL} =1.5V	15	4.0	_	3.4	12.0	-	2.8	-	
			$v_{\rm IN}=v_{\rm SS}$, $v_{\rm DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	-	İİ
Input Hig	gh	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	-	7.0	_	
Voltage		111	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	-	11.0	-	
			I _{OUT} <1μA									l _v l
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	-	1.5	
Input Lo	W	$v_{ m IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.0	3.0	-	3.0	
Voltage		117	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
{			$ I_{OUT} < 1_{\mu}A$,			
Input	"H" Level	I _{IH}	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	
Current	"L" Level	IIL	A ^{IT} =0A	18	_	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μА
	L			5	_	5	-	0.005	5	-	150	
Quiescent	t	$I_{ m DD}$	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10		10	_	0.010	10	-	300	
Device Cu	urrent		*	15	-	20	-	0.015	20	-	600	

^{*} All valid input combinations.

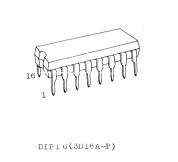

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

							
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
	t _{TLH}		. 5	-	70	200	
Output Transition Time	t _{THL}	,	10	-	35	100	
	LIUL		15	-	30	80	
Propagation Delay Time	t _{pLH}		5	_	160	560	
	_		10	-	75	230	ns
(CLOCK, ENABLE - Q)	t _{pHL}		15	-	60	160	
Propagation Delay Time			5	-	110	560	
(RESET - Q)	tpHL		10	_	55	230	
(KDODI = Q)			15	_	40	160	
			5	1.5	6	-	·
Max. Clock Frequency	f _{CL}		10	. 3	14	-	MHz
			15	4	18	_	
Max. Clock Input Rise/	trCL		5	İ			
Fall Time	tfCL		10	N	lo Limit		
	-101		15				
Max. Input Rise/Fall	tr		5				μs
Time			10	N	lo Limit		
(ENABLE)	t _f		15				····
			.5	-	30	200	
Min. Clock Pulse Width	t _W		10	_	15	100	
			15	_	10	70	
Min. Pulse Width			5	_	35	250	
(ENABLE)	t _W		10	_	20	110	
(ERRIDBE)			15	-	15	80	ns
Min. Pulse Width			5	-	45	250	
(RESET)	t _{WH}		10	-	20	110	
(RESEI)			15	_	15	80	
		,	5	-	-	0	
Min. Removal Time	trem		10	-	-	0	
			15	_	-	0	
Input Capacitance	c_{IN}	· ·		_	5	7.5	pF
	l	I		L			


WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

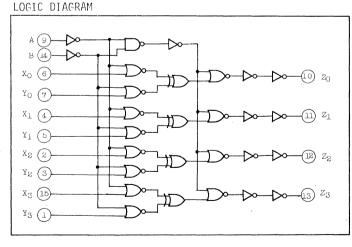
APPLICATION CIRCUIT

APPLICATION CIRCUIT (Continued)

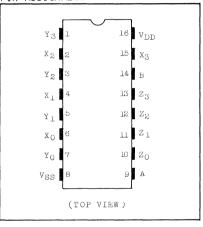


TC4519BP

TC4519BP 4-BIT AND/OR SELECTOR


The TC4519BP is a combined gate available as 4-bit AND/OR select gate, quad 2-channel data selector or quad exclusive-NOR gate according to the conditions of two control inputs A and B.

Since all the outputs are provided with the buffers of two-stage inverters, the input/output transmission characteristics have been improved and the noise immunity has been elevated. Thus, as increase in propagation delay time caused by an increase in load capacity is kept to a minimum.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} = 0.5 ^{\circ} V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS - 0.5} \sim V_{DD + 0.5}$	V
Output Voltage	VOUT	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

TRUTH TABLE

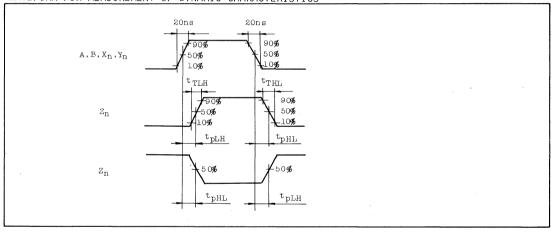
CONTROL	INPUTS	OUTPUT
A	В	Zn
L	L	L
L	Н	Yn
Н	L	Xn
Н	Н	X _n OY _n

$$\begin{split} \mathbf{X}_{n} & \hspace{-0.05in} \mathbf{O} \mathbf{Y}_{n} \equiv \mathbf{X}_{n} \hspace{0.05in} (\hspace{0.1cm} \texttt{Exclusive-NOR}) \hspace{0.1cm} \mathbf{Y}_{n} \\ & \hspace{0.1cm} = \mathbf{X}_{n} \cdot \mathbf{Y}_{n} + \overline{\mathbf{X}_{n}} \cdot \overline{\mathbf{Y}_{n}} \end{split}$$

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	- 18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V

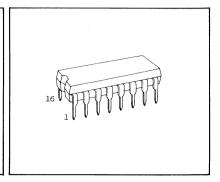
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)


CHADACS	TEDICTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-40	O°C		25°C		85	s°C	UNITS
CHARAC	TERISTIC	SIMBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Le	eve1		I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-	
	Voltage	V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-		10.00	-	9.95	-	
			'IN-'SS, 'DD		14.95			15.00	-	14.95		V
Low-Lev	æ1	17	$ I_{OUT} < 1_{\mu}A$	5	-	0.05		0.00		-	0.05	
Output	Voltage	V _{OL}	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10 15	_	0.05 0.05	1	0.00		_	0.05 0.05	
			V _{OH} =4.6V		-0.61	-	-0.51	 	-	-0.42		
			V _{OH} =2.5V									
Output	High	I _{OH}	V _{OH} =9.5V		-2.5	-	-2.1	-4.0	-	-1.7	-	
Current	5	-	· · ·	10	-1. 5	-	-1.3	-2.2	-	-1.1	-	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS} , V _{DD}							0.70		mA
Outout	Lorr		V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-	
Output		$I_{ m OL}$	$V_{OL}=0.5V$	10	1.5	- '	1.3	3.8	-	1.1	-	,
Current	Ē.	<u> </u>	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
L			$v_{\text{IN}}=v_{\text{SS}}, v_{\text{DD}}$									
Input I	li ah		$V_{OUT}=0.5V, 4.5V$	5	3.5	_	3.5	2.75	-	3.5	_	
•	J	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	`	7.0	5.5	_	7.0	_	
Voltage	2	VIH	$V_{OUT} = 1.5V, 13.5V$. 15	11.0	_	11.0	8.25	 	11.0		
			$ I_{OUT} < 1\mu A$		11.0				′			v
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	_	1.5	· ·
Input 1	Low		$V_{OUT}=1.0V$, 9.0V	10	_	3.0	_	4.5	3.0	_	3.0	
Voltage	2	AIT	VOUT=1.5V,13.5V		_	4.0		6.75	4.0	_	4.0	
		7	I _{OUT} <1μA	13		***		0.75	1			,
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	-	10-5	0.1	-	1.0	
Current		IIL	VIL=OV	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiesc	ent			5	_	5		0.005	5	-	150	
,	Current	IDD	$v_{IN}=v_{SS}, v_{DD}$	10 15	- -	10 20	-	0.010 0.015		-	300 600	μ A

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)

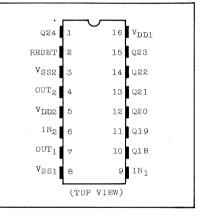
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	 - -	80 50 40	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	80 50 40	200 100 80	ns
Propagation Delay Time (A, B, Xn, Yn - Zn)	t _{pLH}		5 10 15	- - -	190 80 60	500 225 165	
Input Capacitance	C _{IN}			-	5	7.5	pF

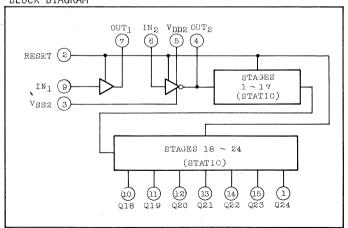


TC4521BP 24-STAGE FREQUENCY DIVIDER

TC4521BP is frequency divider consisting of 24 stages of flip-flops. The input section is equipped with an inverter to enable to use either RC oscillator circuit or crystal oscillator circuit and to accept pulse from external clock source.

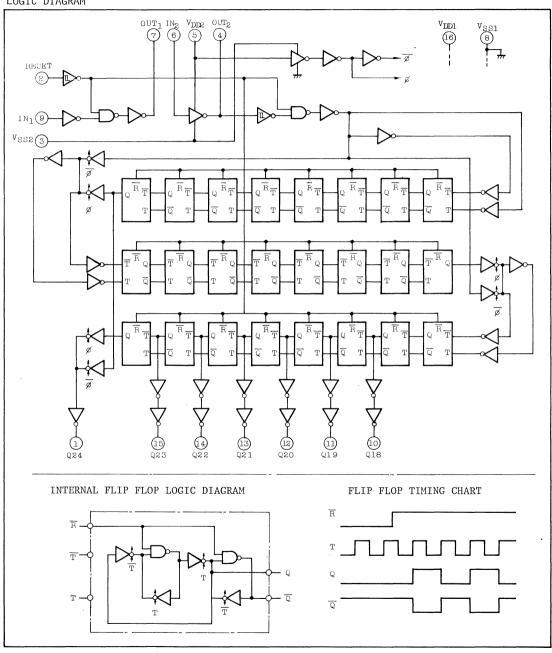
Each flip-flop is inverted by the falling edge of the output of previous stage flip-flop and this can count up to the maximum of 2^{24} =16,777,216.


Since six outputs, 2^{18} , 2^{19} , 2^{20} , 2^{21} , 2^{22} and 2^{23} are available besides of 2^{24} , adjustment of frequency divided output can be achieved.


ABSOLUTE MAXIMUM RATINGS

TOSOLOTE THAT TOTAL	MITIMOS			
CHARACTERISTIC	SYMBOL	RATING	UNITS	
DC C1 V-1+	v_{DD1}	V_{SS1} -0.5 $\sim V_{SS1}$ +20		
DC Supply Voltage	V _{DD2}	V_{SS1} -0.5 \wedge V_{DD1} +0.5	V	
Input Voltage	AIN	V_{SS1} -0.5 $\sim V_{DD1}$ +0.5	77	
Output Voltage	VOUT	V_{SS1} -0.5 $\sim V_{DD1}$ +0.5	V	
DC Input Voltage	IIN	±10	mA	
Power Dissipation	P_{D}	300	mW	
Operating Temperature Range	T_{A}	- 40 ∿ 85	°C	
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C	
Lead Temp./Time	Tsol	260°C • 10 sec		

PIN ASSIGNMENT


BLOCK DIAGRAM

COUNT CAPACITY

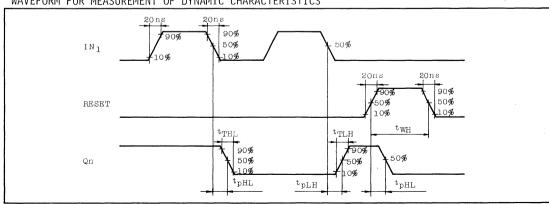
OUTPUT	COUNT CAPACITY
Q18	$2^{18} = 262,144$
Q19	2 ¹⁹ = 524,288
Q20	2 ²⁰ = 1,048,576
Q21	2^{21} = 2,097,152
Q22	2 ²² = 4.194,304
Q23	$2^{23} = 8,388,608$
Q24	2 ²⁴ =16,777,216

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($v_{SS1} = v_{SS2} = ov$)

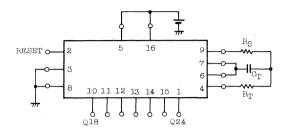
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{\mathrm{DD1}}, v_{\mathrm{DD2}}$	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD1}	V

STATIC ELECTRICAL CHARACTERISTICS ($v_{SS1} = v_{SS2} = 0v$, $v_{DD1} = v_{DD2}$)


CILA DA CIMED I CILI	GYNEDGY	MUGH GOVERNOVA	$v_{ m DD}$	-4	0°C		25°C		85	°C	·n·-mo
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
High-Level		I _{OUT} <1μA	5	4.95	-	4.95	1		4.95	-	
Output Voltage	V _{OH}		10	9.95	-	9.95	10.00	-	9.95	-	
		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	14.95	_	14.95	15.00		14.95		v
Low-Level		I _{OUT} <1μA	5	-	0.05	-		0.05	-	0.05	•
Output Voltage	VOL	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	10 15	-	0.05	_	1	0.05	_	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	0.05	
		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	_	-1.7	_	
Output High	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	_	
Current	-OH	V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	_	-2.8	_	
	4	V _{IN} =V _{SS} , V _{DD}									
		V _{OL} =0.4V	5	0.61	-	0.51	1.2	-	0.42	-	mA
Output Low		$V_{\rm OL} = 0.5V$	10	1.5	-	1.3	3.2	-	1.1	-	
Current	IOL	V _{OL} =1.5V	15	4.0		3.4	12.0	-	2.8	-	
		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	_	3.5	-	
Input High		V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage	AIH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
		I _{OUT} <1μA									v
		V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5]
Input Low		V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	VIL	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
		I _{OUT} <1 _µ A									
Input "H"	1 I _{IH}	V _{IH} =18V	18	_	0.1	-	10 ⁻⁵	0.1	_	1.0	μA
Current "L"	1 IIL	V _{IL} =0V	18	-	-0.1		-10 ⁻⁵	-0.1	-	-1.0	μA
0.4			5	-	5	_	0.005	5	_	150	
Quiescent	I_{DD}	V _{IN} =V _{SS} , V _{DD}	10	-	10	_	0.010	10	. 	300	μ A
Device Current	-	*	15	_	20	_	0.015	20		600	

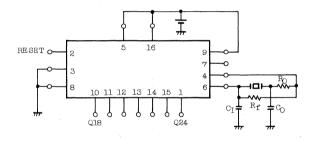
^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS1}=V_{SS2}=0V, V_{DD1}=V_{DD2}, C_L=50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time	tTLH		5 10	-	70 35	200 100	
(Low to High)	11111		15	_	30	80	
Output Transition Time			5	-	70	200	ns
(High to Low)	t _{THL}		10 15	_	35 30	100 80	
Propagation Delay Time	t _{pLH}		5	-	1.1	9.0	
(IN2 - Q18)	t _{pHL}		10 15	_	0.5 0.3	3.5 2.7	
Propagation Delay Time	t _{pLH}		5	-	1.4	12	μS
(IN2 - Q24)	t _{pHL}		10 15	_	0.6	4.5 3.5	
Propagation Delay Time	_		5	_	220	2600	
(RESET - Qn)	t _{pHL}		10 15	<u>-</u>	100 70	1000 750	ns
W 01 1 B			5 10	3	9.5 17.5	_	MHz
Max. Clock Frequency	fCL		15	8	23.5	_	MHZ
Max. Clock Input Rise Time	trCL		5 10		No Limi	it	μs
Max. Clock Input Fall Time	tfCL		15				
			5	-	55	385	
Min. Clock Pulse Width	tW		10 15	- -	25 16	150 120	
Min. Pulse Width	t _{WH}		5 10	_	60 26	385 150	ns
(RESET)	, ,,,,		15	_	20	120	
Input Capacitance	c_{IN}			-	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

APPLICATION CIRCUIT

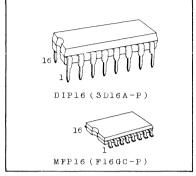

* When CR oscillation is used as time reference

 $R_{\rm S} \ge 2~R_{\rm T}$

 $f_{OSC} = \frac{1}{2.2 R_T C_T}$

* When crystal oscillation circuit is used as the time reference

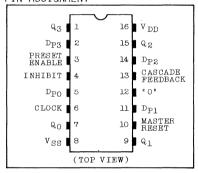
Typical data


X'tal (Hz)	C_{I} , $C_{O}(pF)$	$R_{O}(\Omega)$
32.768k	23	500k
100k	60	100k
1M	45 ∿ 50	100
4.194304M	12 ∿ 15	0

 $R_f = 10 MC$

TC4522BP, TC4526BP/BF

TC4522BP PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER (BCD) TC4526BP/TC4526BF PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER (Binary)


TC4522BP, TC4526BP/BF is a 4-bit, synchronus, dwon counter having clear, preset and inhibit function. The counting operation of each counter is made at the rising edge of CLOCK. The counter can advance its counting operation at the falling edge of INHIBIT input by setting the CLOCK input to "H" level. The programmable frequency division circuit can be formed by using the PRESET ENABLE input. Also the circuit can be expanded by means of cascade connection by use of the CASCADE FEEDBACK input and "O" output. (Refer to application circuit). This counter is suitable to programmable frequency-dividers. synthesizers, etc.

ABSOLUTE MAXIMUM RATINGS

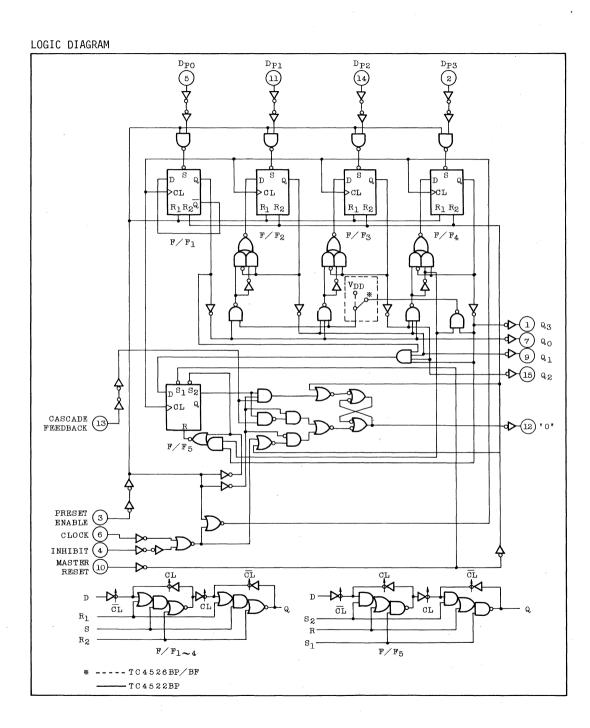
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	Vss-0.5~ Vss+20	V
Input Voltage	ΛIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	-65∼150	°C
Lead Temp./Time	T _{so1}	260°C • 10sec	

PIN ASSIGNMENT

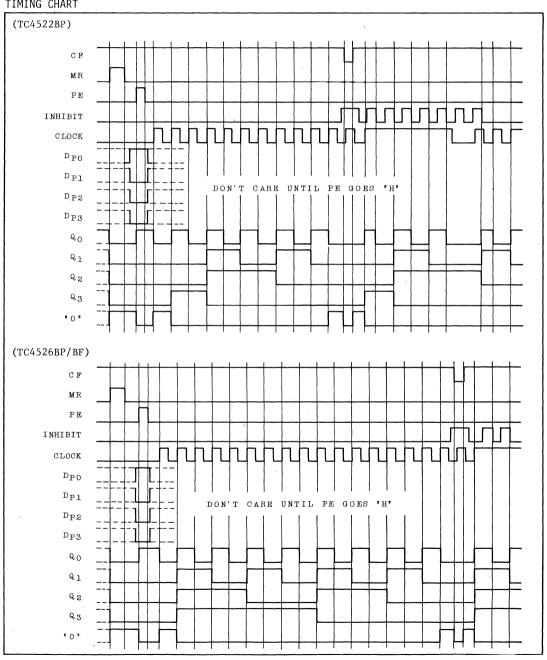
TRUTH TABLE

(TC4522	ORP	TCA	52	6RP	/BT	`

(= 0 = 0 = 0				
CLOCK	INHIBIT	PRESET ENABLE	MASTER RESET	ACTION
L	*	L	L	NO COUNT
7	L	L	L	COUNT
*	Н	L	L	NO COUNT
H	Ŀ	. L	L	COUNT
*	*	Н	L	PRESET
*	*	*	Н	RESET


* Don't Care

(TC4522BP)


Count	ୟପ	Q1	Q.2	Q,3
9	Н	L	L	Н
8	L	L	L	Н
7	Н	H	Н	L
6	L	H	Н	L
5	Н	L	Н	L
4	L	L	Н	L
3	Н	Н	L	L
2	L	H	L	L
1	Н	L	L	L
0	L	L	L	L

(TC4	506	DD/	ו שם
1104	こんり.	BP/	BF /

(TC4526	BP/B	F)		
Count	Q _O	Q1	Q2	QЗ
15	Н	Н	Н	Н
14	L	H	Н	Н
13	H	L	Н	Н
12	L	L	Н	Н
11	Н	H	L	Н
10	L	Н	L	Н
9	Н	L	L	Н
8	L	L	L	Н
7	Н	Н	Н	L
6	L	Н	Н	ь
5	Н	L	Н	L
4	L	L	Н	L
3	Н	Н	L	L
2	L	Н	L	L
1	Н	L	L	L
0	L	L	L	L

TIMING CHART

TC4522BP, TC4526BP/BF

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3		18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTER	RISTIC	SYM-	TEST CONDITION	v_{DD}	-40)°C		25°C		85	5°C	UNIT
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
			I _{OUT} < 1µA	5	4.95	_	4.95	5.00	-	4.95	-	
High-Level Output Vol		V _{OH}	V _{IN} =V _{SS} ,V _{DD}	10	9.95	_	9.95	0.00	-	9.95	-	
1			IN DO. DD	15	14.95	-	14.95	15.00	_	14.95	-	v
			$ 1_{\mathrm{OUT}} < 1\mu\mathrm{A}$	5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Vol	Ltage	VOL	$v_{\text{IN}} = v_{\text{SS}}, v_{\text{DD}}$	10	-	0.05		0.00	0.05	-	0.05	
1			IN BB, DD	15	-	0.05	_	0.00	0.05	-	0.05	
	-		V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	_	-0.42	-	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	-	
Output Hig Current	gh	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	_	
			V _{IN} =V _{SS} , V _{DD}									mA
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	_	0.42	-	
Output Lov	V	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	
Current		l OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			V _{IN} =V _{SS} ,V _{DD}					7,				
	The state of the s		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_	
Input High	n	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0		7.0	5.5	+	7.0	-	
Voltage		1111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25		11.0	-	
		-	I _{OUT} <1 µA									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5	-	1.5	
Input Low		$v_{\rm IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		. 11	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu A$									
Input	"H" Level	IIH	V _{IH} =18V	18		0.1	_	10-5	0.1		1.0	μΑ
Current	"L" Level	IIL	AIT=OA	18	-	-0.1	_	-10-5	-0.1	-	-1.0	,

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYM- TEST CONDITION		v_{DD}	-40	-40°C		25°C			85°C		
BO		TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
			5	-	5	-	0.005	5	-	150		
Quiescent Device Current	I _{DD}	V _{IN} =V _{SS} ,V _{DD}	10	_	10	-	0.010	10	_	300	μA	
odriene	Ì	*	15	_	20	_	0.015	20	_	600		

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

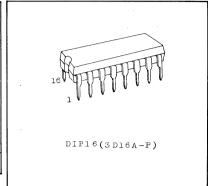
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	tTLH		10	_	50	100	
(now to might)			15	_	40	80	ns
			5	_	80	200	113
Output Transition Time (High to Low)	t _{THL}		10	-	50	100	
(High to bow)			15	-	40	80	
	t _{pLH}	· · · · · · · · · · · · · · · · · · ·	5	_	450	1100	
Propagation Delay Time (CLOCK, INHIBIT - Qn)	t _{pHL}		10	-	170	450	
(obson, imibit qii)	Cpitt		15	-	120	320	
	tpLH		5	-	500	1100	
Propagation Delay Time (CLOCK - "0")	t _{pHL}		10	· _	190	450	
(OLOGIC O)	српь		15	-	130	320	
	tpLH		5	-	47.0	1100	
Propagation Delay Time (PE - Qn)	t _{pHL}		10	-	190	450	
(12 (11)	-piil		15	-	130	320	ns
	t _{pLH}		5	_	280	1100	, no
Propagation Delay Time (Dpn - Qn)			10	-	120	450	
(opii (ii)	t _{pHL}		15	-	80	320	
			5,	_	430	1100	·
Propagation Delay Time (RESET - Qn)	tpHL		10	-	170	450	
(WEORI - AU)	-		15	-	125	320	
	t-111		5	-	160	480	
Propagation Delay Time	t _{pLH}		10	-	100	260	
(01 - 0)	t _{pHL}		15	_	70	200	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	1.0	2	_	
Max. Clock Frequency	f _{CL}		10	3.0	6	-	MHz
			15	4.0	9	-	
	trCL		5	20	-	-	
Max. Clock Input Rise/ Fall Time	tfCL		10	2.5	-	-	
	FICE		15	1.0	-	-	
Max. Input Rise/	tr		5	20	-	-	μs
Fall Time	tf		10 .	2.5	_	_	
(INHIBIT)	-1		15	1.0	-		
			5	_	250	500	
Min. Clock Pulse Width	tW		10	-	85	170	
			15	-	55	110	
			5	-	330	660	
Min. Pulse Width (PRESET ENABLE)	t _{WH}		10	-	140	280	ns
(IRBOLI BRADBE)			15	-	100	200	
			5		270	540	
Min. Pulse Width (RESET)	t _{WH}		10	-	110	250	
(NEODI)			15	-	80	200	ı
			5	. –	30	150	
Min. Hold Time $(D_{pn} - P_E)$	t _H		10	-	20	50	ns
(Dpn -FE)			15	-	15	.40	
Input Capacitance	CIN		<u> </u>	-	5	7.5	pF

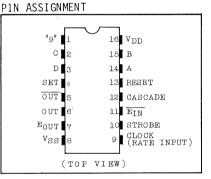
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

388

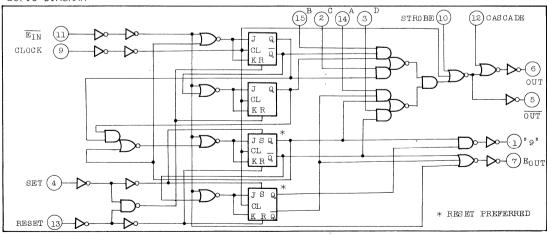

TC4527BP

TC4527BP BCD RATE MULTIPLIER

TC4527BP is BCD rate multiplier from which arbitrary number of output pulses determined by BCD inputs (A $_{
m IN}$) through D $_{
m IN}$) can be obtained by supplying ten clock inputs.

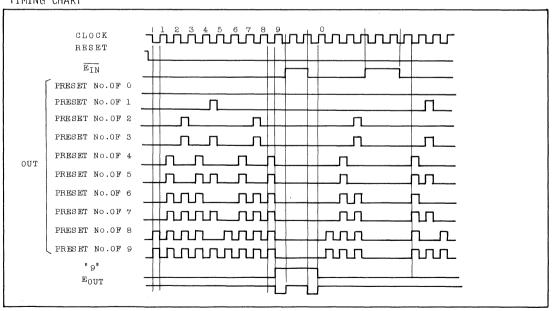

For example, setting BCD input to "7" (A = B = C = "H" and D = "L"), if ten counting pulses are applied to CLOCK input, seven pulses are output to OUT (\overline{OUT}) terminals. Usually, when used alone, \overline{ENABLE} , STROBE AND CASCADE inputs are kept at "L" level but when used in the cascade connection, refer to the example of applications.

Besides of its original purpose of arithmetic circuits, this TC4527BP can be utilized for digital filters, frequency synthesizers and programmable pulse generators.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$v_{SS-0.5} \sim v_{SS+20}$	V
Input Voltage	VIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
Output Voltage	VOUT	$v_{SS-0.5} \sim v_{DD+0.5}$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	T_{sol}	260°C • 10 sec	


LOGIC DIAGRAM

TRUTH TABLE

				INP	UTS						OUTI	PUTS	
D	.c	В	A	NO. OF CLOCK PULSES	EIN	STROBE	CASCADE	RESET	SET	OUT	OUT	"9"	E _{OUT}
L	L	L	L	10	L	L	L	L	L	L	Н	1	1
L	L	L	Н	10	L	L	L	L	L	1	1	1	1
L	L	H	L	10	L	L	L	L	L	2	2	1	1
L	L	Н	H	10	L	L	L	L	L	3	3	1	1
L	Н	L	L	10	L	L	. T	L	L	4	4	1	1
L	Н	L	Н	10	L	L	. T	L	L	5	5	1	1
L	Н	Н	L	10	L	L	L	L	L	6	6	1	1
L	Н	Н	Н	10	L	L .	Γ.	L	L	7	7	1	1
Н	L	L	L	10	L	L	L	L	L	8	8	1	1
Н	L	L	Н	10	L	L	L	L .	L	9	9	1	1
Н	L	Н	L	10	L	L	L	L	L	8	8	1	1
Н	L	Н	Н	10	L	L .	L	L	L	9	9	1	1
Н	Н	L	L	10	L	L	L	L	L	8	8	1	1
H	Н	L	Н	10	L	L	L	L	L	9	9	1	1
H	H	Н	L	10	L	L	L	L	L	8	8	1	1
Н	Н	Н	Н	10	L	L	L	L	L	9	9	1	1
*	*	*	*	10	Н	L	L	L	L	_	•	_	Н
*	*	*	*	. 10	L	H	L	L	L	L	Н	1	1
*	*	*	*	10	L	L	H	L	L	H	A	- 1	1
H	*	*	*	10	L	L	L	Н	L	10	10	L	H
L	*	*	*	10	L	L	L	H	L	L	Н	L	Н
*	*	*	*	10	L	L	L	L	Н	L	Н	Н	L
* I	ON'T	CARE	_	UNDETERMINED	1~10:1	NO OF PU	LSES						

TIMING CHART

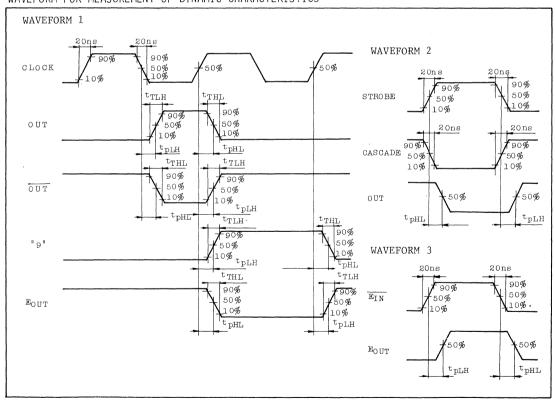
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V

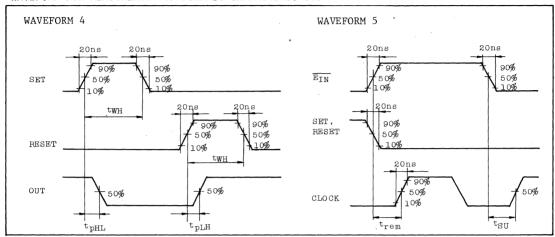
STATIC ELECTRICAL CHARACTERISTICS (VSS=0v)

CHADAC	TERISTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-40	0°C		25°C		85	5°C	UNITS	
CHARAC.	TEKISTIC	STRIBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS	
High-Le	evel Voltage	v _{OH}	I _{OUT} <1μA	5 10	4.95 9.95		4.95 9.95	5.00 10.00	_ _	4.95 9.95	-		
Output	Voltage		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	14.95	-	14.95	15.00	-	14.95	-	v	
Low-Lev	vel Voltage	. V _{OL}	$ I_{OUT} < 1_{\mu}A$ $V_{IN} = V_{SS}$, V_{DD}	5 10	- -	0.05 0.05	-	0.00	0.05	_ _	0.05 0.05	,	
•			V _{OH} =4.6V	15 5	-0.61	0.05	-0.51	0.00	0.05	-0.42	0.05		
Output	High	IOH	V _{OH} =2.5V V _{OH} =9.5V	5		-	-2.1	-4.0	_	-1.7	_		
Current	t		V _{OH} =9.3V V _{OH} =13.5V	10 15	-1.5 -4.0	-	-1.3 -3.4	-2.2 -9.0	-	-1.1 -2.8	-		
			$v_{IN}=v_{SS}$, v_{DD}	13	1.0		J. 4					mA	
	_		$V_{OL}=0.4V$	5	0.61	-	0.51	1.5	_	0.42	-	IIIA	
Output		IOL	$V_{\rm OL}=0.5V$	10	1.5	-	1.3	3.8	-	1.1	-		
Curren	t		$V_{\rm OL}$ =1.5V $V_{\rm IN}$ = $V_{\rm SS}$, $V_{\rm DD}$	15	4.0	-	3.4	15.0	_	2.8	-		
Input 1	High		V _{OUT} =0.5V, 4.5V)	3.5	-	3.5	2.75	_	3.5	-		
Voltage	е	V _{IH}	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10 15	7.0 11.0	_	7.0 11.0	5.5 8.25	_	7.0	-		
			$ I_{OUT} < 1 \mu A$	1)	11.0		11.0	0.25		11.0		V	
Input 1	Low		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V		-	1.5	_	2.25	1.5	-	1.5	V	
Voltage		VIL	VOUT=1.5V,13.5V	10 15	_	3.0 4.0	-	4.5 6.75	3.0	_	3.0		
			$ I_{OUT} < 1_{\mu}A$,.,		0.,5					
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	_	1.0	uА	
Current	"L" Level	IIL	VIL=OV	18	-	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μА	
Quiesco Device	ent Current	I _{DD}	V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	5 10 20	-	0.005 0.010 0.015	5 10 20	- - -	150 300 600	μА	

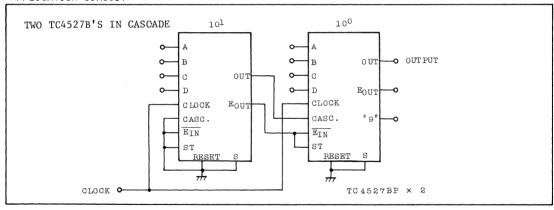
^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50 $_P$ F)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD}	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	-	80 50 40	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	-	80 50 40	200 100 80	
Propagation Delay Time (CLOCK - OUT)	t _{pLH}		5 10	-	230 95	460 190	
Propagation Delay Time	t _{pLH}		15 5 10	-	70 190 80	380 160	
(CLOCK - OUT) Propagation Delay Time	t _{pHL}		15 5	-	60 340	120 680	
(CLOCK - E _{OUT})	tyHL		10 15 5	-	140 100 260	280 200 600	ns
Propagation Delay Time (CLOCK - "9")	t _{pLH}		10 15	_	150 100	300 200	
Propagation Delay Time (STROBE - OUT)	t _{pLH} t _{pHL}		5 10 15	-	150 65 55	300 150 120	
Propagation Delay Time (CASCADE - OUT)	t _{pLH}		5 10	-	95 45	190 90	
Propagation Delay Time (SET, RESET - OUT)	t _{pLH}		15 5 10	- - -	30 320 130	70 660 300	
Propagation Delay Time	t _{pLH}		15 5 10	- - -	100 140 60	220 280 120	
(E _{TN} - E _{OUT}) Max. Clock Frequency	f _{CL}		5 10	1.0	50 2 6	100	MHz
Max. Clock Input Rise Time Max. Clock Input Fall Time	t _{rCL}		15 5 10	3.5 20 15	8 -	_ _ _	μs
Min. Clock Pulse Width	t _w		15 5 10	15 - -	250 85	500 170	
Min. Pulse Width (SET, RESET)	t _{WH}		15 5 10	- - -	60 110 45 35	100 220 90 70	ns

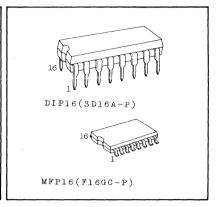

DYNAMIC ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERISTIC ·	SYMBOL	TEST CONDITION	V _{CC(V)}	MIN.	TYP.	MAX.	UNITS
Min. Set-up Time			5	_	160	320	
·	t _{SU}		10	_	60	120	
(E _{IN} - CLOCK)			15	-	50	100	
Min. Removal Time			5	_	120	240	
	t _{rem}		10	_	45	130	
$(\overline{E_{IN}} - CLOCK)$			15	-	25	110	ns
Min. Removal Time			5	-	- 50	0	115
(GPE OLOGY)	t _{rem}		10	-	-20	0	
(SET CLOCK)			15	-	-10	0	
Min. Removal Time			5	_	-35	60	
	t _{rem}		10	-	-15	40	1
(RESET - CLOCK)			15	-	-10	30	
Input Capacitance	c_{IN}			_	5	7.5	рF


WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

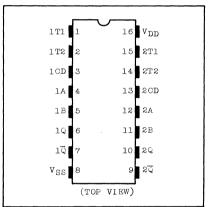
APPLICATION CIRCUIT

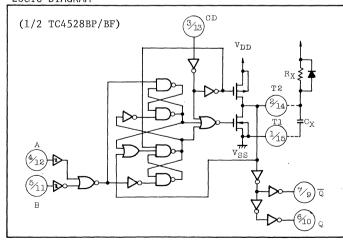


TC4528BP/BF

TC4528BP/TC4528BF DUAL MONOSTABLE MULTIVIBRATOR

TC4528BP/BF contains two circuits of monostable multivibrators with the capabilities of retrigger operation and reset operation in one chip.

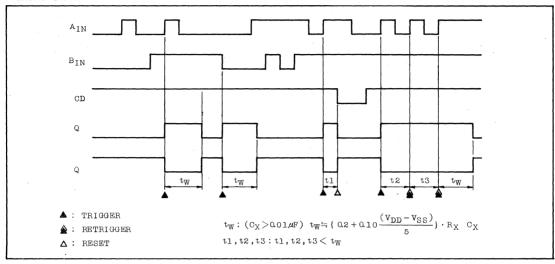

The trigger operation can be achieved either by rising edge or falling edge if one of two inputs A and B are selected. As the pulse width of mono-stable multivibrator output is determined by the time constant of external resistor (Rx) and external capacitor (Cx), wide range of output pulse width can be obtained. The asynchronous reset operation from outside can be achieved by setting CD input to "L" level, and this CD input can be also applied for inhibiting the trigger operation and for shortening the time period from turning the power on the time when TC4528B becomes able to perform the mono-stable operation.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	$V_{ m DD}$	$V_{SS} - 0.5 \wedge V_{SS} + 20$	V
Input Voltage	$v_{\rm IN}$	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	- 40 ∿ 85	°C
Storage Temperature Range	$T_{ extsf{stg}}$	- 65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM



TRUTH TABLE

	I NP UT		OUT	PUT	NOTE		
Α	В	CD	Q	Q			
	Н	Н	Л	U	OUTPUT PULSE		
5	L	Н	L	Н	INHIBIT		
Н	7L	Н	L	Н	INHIBIT		
L	J.	Н	ļ	IJ	OUTPUT PULSE		
*	*	L	L	Н	· INHIBIT		

* Don't Care

RECOMMENDED OPERATING CONDITIONS (VSS=OV)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}		3	_	18	V
Input Voltage	$v_{\rm IN}$	·	0	_	v_{DD}	V
External Resistance	RX		5	_	1000	kΩ
External Capacitance	c_X			μF		

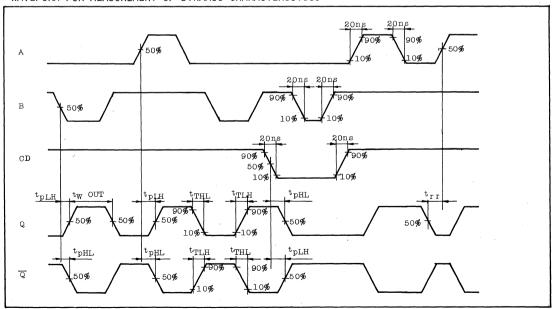
STATIC ELECTRICAL CHARACTERISTICS (VSS=OV)

CHARACTERISTIC	SYMBOL	L TEST CONDITIONS		-4	0°C		25°C		85	°C	UNITS
	0111502		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	011110
High-Level		I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-	
Output Voltage	v_{OH}		10	9.95	-	9.95	10.00	-	9.95	-	1
		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	14.95	-	14.95	15.00	-	14.95		v
Low-Level		I _{OUT} <1μA	5	-	0.05	-	0.00	0.05	-	0.05	1
Output Voltage	VOL		10	-	0.05	-	0.00	0.05	-	0.05	
output vortage		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	-	0.05		0.00	0.05	- ,	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51		-	-0.42	-	
Output High		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	,	-1.7	-	'
Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	_	
Current		VOH=13.5V	15	-4.0		-3.4	-9.0		-2.8	-	
		$v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$					١. ٠				mA
		V _{OL} =0.4V	5	0.61	_	0.51	1.2	-	0.42	-	11125
Output Low	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.2	-	1.1	-	
Current) OL	V _{OL} =1.5V	15	4.0	- ,	3.4	12.0	-	2.8	_	
		V _{IN} =V _{SS} , V _{DD}	<u> </u>								

STATIC ELECTRICAL CHARACTERISTICS (Continued)

CILA DA CITI	CHARACTERISTIC		TEST CONDITIONS	IDITIONS VDD		O°C		25°C		85	°C	UNITS
CHARACI	EKISIIC	SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIS
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	_	
Input Hi	gh	17	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0		
Voltage		VIH	$V_{OUT}=1.5V,13.5V$	15	11.0	-	11.0	8.25	_	11.0	_	
1			I _{OUT} <1μA									v
			V _{OUT} =0.5V, 4.5V	5		1.5	-	2.25	1.5	-	1.5	1 V
Input Lo	W		V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		Λ^{IL}	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1μA	1								
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10 ⁻⁵	0.1	-	1.0	μA
Current	"L" Level	IIL	V _{IL} =OV	18	-	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μΑ
Quiescen	t Dowies			5	-	5	-	0.005	-	-	150	
1	L DEVICE	${ m I}_{ m DD}$	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$	10	-	10	-	0.010	10	-	300	μA
Current			*	15	-	20	-	0.015	20		600	

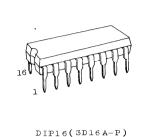
^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15		70 35 30	200- 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	-	70 35 30	200 100 80	ne
		R _X =5kΩ C _X =15pF	5 10 15	- - -	230 110 80	650 240 180	115
Propagation Delay Time (A, B - Q, \overline{Q})	t _{pLH}	R _X =10kΩ C _X =1000pF	5 10 15	-	440 220 160	-	
		$R_{\rm X}$ =10k Ω $C_{\rm X}$ =10000pF	5 10 15	- - -	2.2 1.1 0.9	35 100 30 80 70 200 35 100 30 80 230 650 110 240 80 180 440 - 220 - 160 - 2.2 5 1.1 3 μs	
Propagation Delay Time (CD - Q, $\overline{\mathbb{Q}}$)	t _{pLH}	R _X =5kΩ C _X =15pF	5 10 15	-	70	225	
Propagation Delay Time	t _{pLH}	R _X =10kΩ C _X =1000pF	5 10 15		130		ns
(CD − Q, Q̄)	t _{pHL}	R _X =10kΩ C _X =10000pF	5 10 15	-	400		

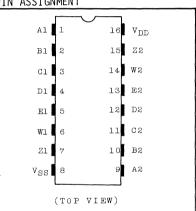
DYNAMIC ELECTRICAL CHARACTERISTICS (Continued)

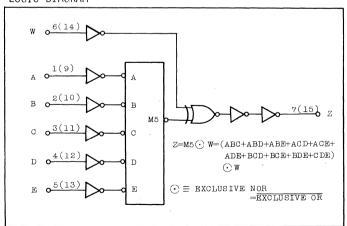
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Min. Input Pulse Width	t _{WH}	$R_{X}=5k\Omega$	5	-	40	150	
(A, B)	t _{WL}	C _X =15pF	10 15	-	20 15	75 55	
		R _X =5kΩ	5	0	-	-	
			10	0	-	-	
		C _X =15pF	15	0	-	-	
	j	$R_{V}=10k\Omega$	5	0	-	-	
Min. Retrigger Time	t _{rr}	R _X =10kΩ C _X =1000pF	10	0	-	-	ns
			15	0	-	-	
		$R_X=10$ k Ω	5	0	-	-	
			10	0	-		
		C _X =10000pF	15	- 0		-	150 75 55 - - -
,		$R_{rr}=5k\Omega$	5	-	190	-	
		R_{X} =5k Ω C_{X} =15pF	10	-	140	-	
O 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t _w OUT	CX=12bh	15	-	140	-	
Output Pulse Width	LM OOI	R _X =10kΩ	5	20	35	45	
		==	10	35	45	55	μs
		C _X =10000pF	15	40	50	60	•
Input Capacitance	CIN			_	5	7.5	pF


WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TC4530BP

TC4530BP DUAL 5-INPUT MAJORITY LOGIC GATE


The TC4530BP is dual 5-input majority logic gate. Each majority logic gate decides whether or not the input at "H" level is more than that at "L" level. The polarity of decision output Z can be selected by using control input W.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$v_{SS} - 0.5 \sim v_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	v
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	- 40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	Tsol	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

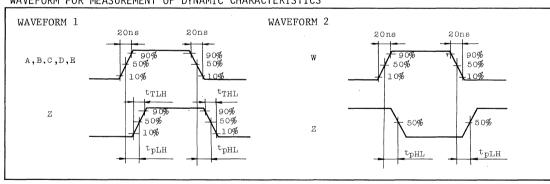
TRUTH TABLE

	I	NPU'	rs			OUTPUT
A	В	С	D	E	W	Z
		HREE ,D A		MORE	L	Н
		RE AT			Н	L
		HREE ,D A		MORE E	L	L ·
		RE AT			Н	Н

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	٧
Input Voltage	v_{IN}	0	-	v_{DD}	. V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

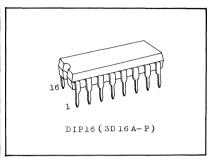

CILADACI	TERISTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNITS
CHARACI	EKISIIC	SIMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Le	ve1		I _{OUT} <1μA	5	4.95	-	4.95	5.00	-	4.95	-	
0	Voltage	V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95	-		10.00	l .	9.95	-	
			'IN 'SS, 'DD		14.95			15.00		14.95		v
Low-Lev	re1	v_{OL}	$ I_{OUT} < 1\mu A$	5	-	0.05	J .	0.00	0.05	- -	0.05 0.05	
Output	Voltage	VOL	$v_{IN}=v_{SS}$, v_{DD}	10 15	- -	0.05 0.05		0.00		_	0.05	
			V _{OH} =4.6V		0 (1					-0.42		
	*** 1		$V_{OH}=2.5V$. 5	-0.61	-	-0.51				_	
Output	High	IOH	V _{OH} =9.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	_	
Current			V _{OH} =13.5V	10	-1.5	-	-1.3	ĺ	-	-1.1	-	
			$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	_	mA
Output	Low	.	$V_{\rm OL}$ =0.5 V	10	1.5	_	1.3	1	ļ	1.1	_	
Current		IOL	V _{OL} =1.5V		ĺ		3.4	15.0	l	2.8		
			V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	15.0	_	2.0	-	
T	T . T.		V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	_	
Input 1	iign	77	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	ļ	7.0	_	
Voltage	9	V _{IH}	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	1	11.0		
			I _{OUT} <1μA	1.5	11.0		11.0	0.23		11.0		v
		,	$V_{OUT} = 0.5V, 4.5V$	5	_	1.5	-	2.25	1.5	-	1.5	l v
Input I	COM		$V_{OUT}=1.0V, 9.0V$	10		3.0		4.5	3.0	-	3.0	
Voltage	2	VIL	VOUT=1.5V,13.5V	15	_	4.0	_	6.75	4.0	_	4.0	
			$ I_{OUT} < 1_{\mu}A$									
Input "H" IIH		IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	
0		I_{IL}	V _{IL} =0V	18	_	-0.1	- ,	-10-5	-0.1	-	-1.0	μА
Quiescent				5	_	1	_	0.001	1	_	7.5	
	Current	I_{DD}	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10	-	2		0.001		-	15	μA
DEVICE	Jarrent		*	15		4	<u> </u>	0.002	4		30	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	v _{DD} (v)	MIN.	TYP.	MAX.	UNITS
Output Transition Time	t _{TLH}		5 10	· -	80 50	200 100	
(Low to High)			15	_	40	80	
Output Transition Time			5	-	80	200	
(High to Low)	t _{THL}		10	-	50	100	
(High to Low)			15	_	40	80	
Propagation Delay Time	t _{pLH}		5	-	240	960	
(D - Z)	t _{pHL}		15	-	100	400	ns
(D - Z)	орнг		15	-	70	300	
Propagation Dealy Time	t _{pLH}		5 .	-	150	640	
(A, B, C, D, E - Z)	1		10	-	60	300	
(A, B, C, D, E - Z)	t _{pHL}		15	_	40	210	
Propagation Dealy Time	t _{pLH}		5	_	100	5 7 5	
(W - Z)			10	_	50	265	
(W - Z).	t _{pHL}		15	_	40	190	
Input Capacitance	c_{IN}			-	5	7.5	pF

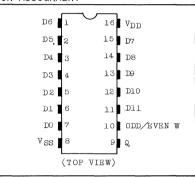
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

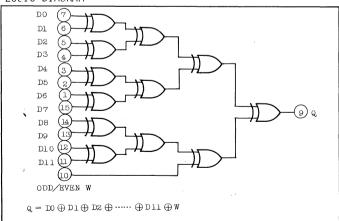

TC4531BP

TC4531BP 12-BIT PARITY TREE

 $\tt TC4531BP$ is 12 bit parity tree consisting of 12 exclusive OR gates.

When ODD/EVEN input is set to "L", "H" level is output if the parity of data inputs (DO through Dll) is odd and when ODD/EVEN input is set to "H", "H" level is output if the parity of data inputs is even.


This has wide range of applications such as generating the parity code of n bits data and detecting parity errors.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIŅ	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_A	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	Teol	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

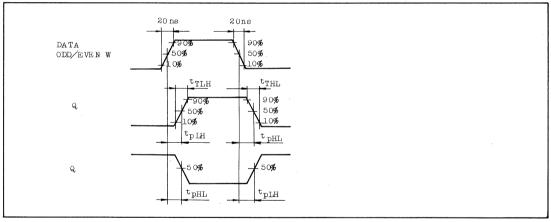
TRUTH TABLE

1 KC		*	OUT					
W	D11	D1 0		DS	D1	DO	$D \cdot E$	Q
T.	L	L	•••	L	L	L	0	L
Γ.	L	L	•••	L	L	Н	1	H
L	L	L	•••	Ь	Н	ь	2	Н
Ь	L	L		L	Н	H	3	L
L	L	L	•••	H	L	L	4	Н
L	L	L		Н	L	Н	5	L
ь	L	L		Н	Н	L	6	L
L	Ь	L		Н	Н	Н	7	H
:	:	:	•	i	1	:	:	i
Н	Н	Н		L	L	L	8184	L
Н	Н	Н		L	L	Н	8185	H
Н	Н	Н		L	Н	L	8186	H
H	Н	Н		L	Н	Н	8187	L
Н	Н	Н		Н	L	L	8188	Н
Н	Н	Н		Н	L	Н	8189	L
Н	Н	Н		Н	·H	L	8190	L
Н	Н	Н		Н	Н	Н	8191	Н
*	D. E	E = D	ECIM	AL E	EQUI	VALE	NT	

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

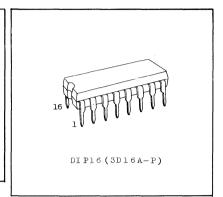

CHADACT	TERISTIC	SYMBOL	TEST CONDITIONS	v_{DD}	-40)°C		25°C		85	5°C	UNITS
CHARACI	EKISIIC	STRIBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Le	eve1		I _{OUT} <1μA	5	4.95		4.95	l .	1	4.95		
	Voltage	v _{OH}		10	9.95	-	9.95	10.00	-	9.95	-	
			V _{IN} =V _{SS} , V _{DD}	15	14.95		14.95	15.00		14.95		v
Low-Lev	re1	77	$ I_{OUT} < 1_{\mu}A$	5	-	0.05	-	0.00	ľ.	-	0.05	*
Output	Voltage	v_{OL}	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10	-	0.05	-		0.05	_	0.05	
			V _{OH} =4.6V	15	-	0.05			0.05		0.05	
			$V_{OH}=2.5V$	5	-0.61	-	-0.51	-1.0	_	-0.42	-	
Output	High	I _{OH}		5	-2. 5	-	-2.1	-4.0	-	-1.7	-	
Current	:		V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	_	
			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	_	-2.8	_	
			$v_{IN}=v_{SS}, v_{DD}$									mA.
	_		$V_{OL}=0.4V$	5	0.61	-	0.51	1.5	-	0.42	-	}
Output		IOL	$V_{OL}=0.5V$	10	1.5	_	1.3	3.8	_	1.1	_	
Current	-	-01.	V _{OL} =1.5V	15	4.0	_	3.4	15.0	_	2.8	_	
			V _{IN} =V _{SS} , V _{DD}	13	1.0		3. 1	13.0				
Input H	li ah		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_	
Impac I	iigii	V	V _{OUT} =1.0V, 9.0V	10	7.0	_	7.0	5.5	_	7.0	_	Ì
Voltage	9	ν _{IH}	V _{OUT} =1.5V,13.5V	15	11.0	_	11.0	8.25	_	11.0	_	
			I _{OUT} <1μA									V
			V _{OUT} =0.5V, 4.5V	. ,	_	1.5	_	2.25	1.5	_	1.5	Ī v
Input I	Low		V _{OUT} =1.0V, 9.0V	10	_	3.0	_	4.5	3.0	_	3.0	
Voltage	9	AIT	VOUT=1.5V,13.5V	15	_	4.0	_	6.75		_	4.0	
			$ I_{OUT} < 1_{\mu}A$	10	_	4.0		0.75	4.0		4.0	
Input	out "H" IIH		V _{IH} =18V	18	-	0.1	-	10-5	0.1	_	1.0	
Current "L" I _{IL}		I _{IL}	VIL=OV	18	-	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiesce	ent			5	_	5	_	0.005	5	_	150	
•		I_{DD}	$v_{\text{IN}} = v_{\text{SS}}$, v_{DD}	10	-	10	-	0.010		-	300	μA
Device	Current		*	15	-	20	-	0.015	20	-	600	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50_PF)

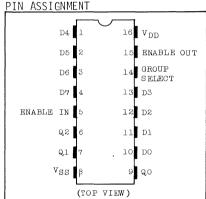
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10	- -	80 50	200 100	
(Low to High)			15	_	40	80	
Output Transition Time			5	_	80	200	
(High to Low)	t THL		10	-	50	100	
(HIGH CO LOW)			15	-	40	80	ns
Propagation Delay Time	t _{pLH}		5	-	320	1320	113
(DATA - O)	t _{pHL}	,	10	-	120	525	
(Billii Q)	pnc		15	_	80	360	
Propagation Delay Time	tpLH	· ·	5	-	210	750	
	1 '		10	-	80	300	
(ODD/EVEN W - Q)	t _{pHL}		15	-	60	210	
Input Capacitance	C _{IN}			-	5	7.5	рF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

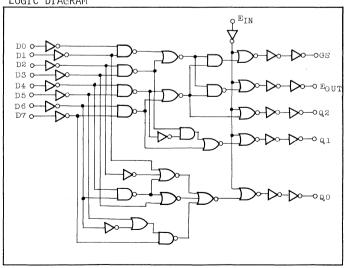

TC4532BP

TC4532BP 8-BIT PRIORITY ENCODER

TC4532BP is eight bit encoder which detects "H" level of the highest order among eight input signals and outputs the corresponding signal position in binary code.


The inputs are eight input signals of DO through D7 and EIN, and when EIN is set to "L" level, the encode operation is inhibited making all the outputs at "L" level.

The encoded output appears on three signal lines Q0 through Q2 in binary. EQUT and Gs are the outputs to indicate the operational mode of encoder and used when the number of bits is to be increased by cascade connection.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	$v_{\rm IN}$	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_{A}	- 40 ∿ 85	°C
Storaģe Temperature Range	T _{stg}	- 65 ∿ 150	°C
Lead Temp./Time	Tsol	260°C • 10 sec	

LOGIC DIAGRAM

TRUTH TABLE

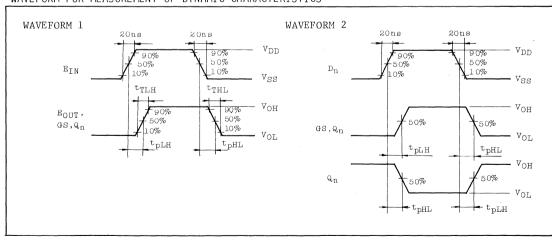
ı	INOTH TABLE													
l			I		OUTPUT									
	EIN	D7	D6	D5	D4	DЗ	DZ	Dl	DO	as	Q2	Q,1	Q ,0	E _{OUT}
١	L	*	*	*	*	*	*	*	*	L	L	L	L	L
	Н	L	L	L	L	L	L	L	L	L	L	L	L	Н
١	Н	Н	*	*	*	*	*	*	*	Н	Н	Н	Н	L
	Н	L	Н	*	*	*	*	*	*	Н	Н	Н	L	L
l	Н	L	ь	Н	*	*	*	*	*	Н	Н	L	Н	L
	Н	L	L	L	Н	*	*	*	*	Н	Н	L	L	L
l	Н	L	L	L	L	Н	*	*	*	Н	L	Н	Н	L
l	Н	L	L	L	L	L	Н	*	*	Н	L	Н	L	L
	Н	L	L	L	L	L	L	Н	*	Н	L	L	Н	L
	Н	L	L	L	L	L	L	L	Н	Н	L	L	L	L
	* Don't Care													

TC4532BP

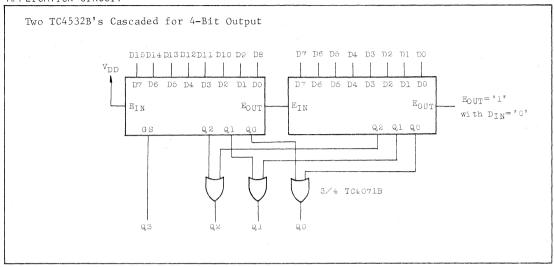
RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	- `	18	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


OTLA DA OTT	EDICETO	SYMBOL	TEST CONDITIONS	v_{DD}	-40)°C		25°C		85	5°C	UNITS
CHARACI	ERISTIC	SIMBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Le	ve1		I _{OUT} <1μA	5	4.95	i .	4.95	1		4.95		
Output		V _{OH}	V _{IN} =V _{SS} , V _{DD}	10	9.95		9.95	i		9.95	-	
			IN 22, DD	15	14.95		14.95			14.95	0.05	V
Low-Lev		V _{OL}	$ I_{OUT} < 1_{\mu}A$	5 10	_	0.05	_	l	0.05	_	0.05	
Output	Voltage	-OL	$v_{IN}=v_{SS}$, v_{DD}	15	_	0.05	_	ŀ	0.05	_	0.05	
			V _{OH} =4.6V	5	-0.61	_	-0.51			-0.42	_	
Output	Hi oh		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	_	-1.7	_	
	Ü	IOH	V _{OH} =9.5V	10	-1.5	_	-1.3	-2.2	_	-1.1	_	
Current			V _{OH} =13,5V	15	-4.0	_	-3.4	-9.0	_	-2.8	_	
			$v_{\text{IN}}=v_{\text{SS}}$, v_{DD}									
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	-	mA
Output	Low	I _{OL}	V _{OL} =0.5V	10	1.5		1.3	3.8	-	1.1	_	
Current	:	TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			$v_{\text{IN}}=v_{\text{SS}}$, v_{DD}									
Input H	li ah		$V_{OUT}=0.5V, 4.5V$	5	3.5	-	3.5	2.75	-	3.5	-	
•	Ü	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		, TH	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25		11.0	-	
			I _{OUT} <1μA						,			v
			$V_{OUT} = 0.5V, 4.5V$		-	1.5	-	2.25		-	1.5	'
Input L	WO.	17	V _{OUT} =1.0V, 9.0V		_	3.0	-	4.5	3.0	-	3.0	
Voltage	!	AIT	VOUT=1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} <1 _μ A									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	
Current	"L" Level	I _{IL}	V _{IL} =0V	18	_	-0.1	-	-10 ⁻⁵		-	-1.0	μA
Quiesce	nt			5	-	5	-	0.005	5	-	150	
•	Current	IDD	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	10	-	10	-	0.010	10	-	300	μA
			*	15		20		0.015	20	<u> </u>	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15	1 1 - 1	80 50 40	200 100 · 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	80 50 40	200 100 80	
Propagation Delay Time	t _{pLH}		5 10	. 1	140 60	280 120	
(E _{IN} - E _{OUT})	tpHL		15	_	45	90	
Propagation Delay Time	t _{pLH}		5	•	150	300	
(E _{IN} - GS)	tpHL		10 15	-	65 50	130 100	ns
Propagation Delay Time (E _{IN} - Qn)	t _{pLH}		5 10 15		150 60 45	340 170 125	-
Propagation Delay Time (Dn - Qn)	t _{pLH}		5 10 15	-	270 90 65	540 220 160	
Propagation Delay Time	t _{pLH}		5 10	-	200 90	400 180	
(Dn - GS)	t _{pHL}		15	_	70	140	
Input Capacitance	c_{IN}			_	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

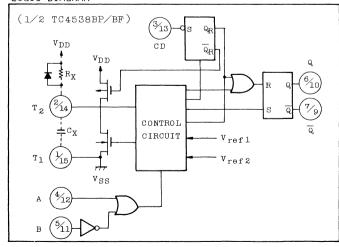
APPLICATION CIRCUIT

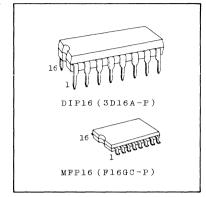
TC4538BP/BF

TC4538BP/TC4538BF DUAL PRECISION RETRIGGERABLE/RESETTABLE MONOSTABLE MULTIVIBRATOR

The TC4538BP/BF is the retriggerable/resettable monostable multivibrator and the trigger operation can be made at either the leading or trailing edge by 2 inputs of A and B. Since the output monostable pulse width is decided by time constant of the external resistor (RX) and the external capacitor (CX), it becomes possible to set a broad range of output pulse widths.

Further, since the pin connection and function are compatible with the TC4528B, the substitution is possible.

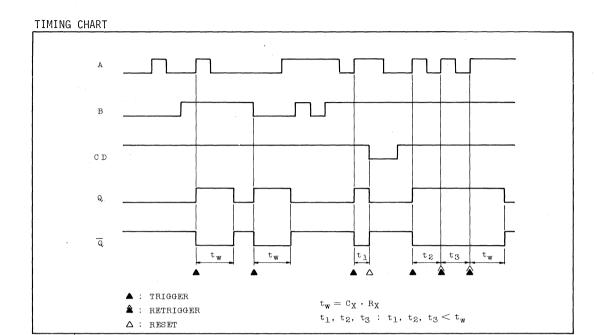

FEATURE:


. $t_{WOUT}=10ms\pm5\%$ (at Rx=100k Ω , Cx=0.1 μ F, VDD=10V)

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~ Vss+20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	$T_{\mathbf{A}}$	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	

LOGIC DIAGRAM



PIN ASSIGNMENT

1T ₁	1	16 V _{DD}
1T2	2	15 2T ₁
1CD	3	14 2T2
1 A	4	13 2CD
1 B	5	12 3 2 A
12	6	11 🛮 2 В
1 Q	7	10 2 2Q
v _{ss}	8	9 🛮 ଥହି
,	(TOP VI	EW)

TRUTH TABLE

I NO I	п	ADL			
]	NPU	Т	OUT	PUT	NOTE
Α	В	CD	વ	_Q	NOIE
F	Н	Н	Л	U	OUTPUT ENABLE
Ţ	L	Н	L	Н	INHIBIT
Н	Ł	Н	L	Н	INHIBIT
L	7_	Н	Д	Ъ	OUTPUT ENABLE
*	*	L	L	Н	INHIBIT
3	₩ Do	on' t	Car	е	

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	 MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	$v_{\rm IN}$	0	-	v_{DD}	V
External Resistance	RX	5	-	1000	kΩ
External Capacitance	CX	No	Limits		μF

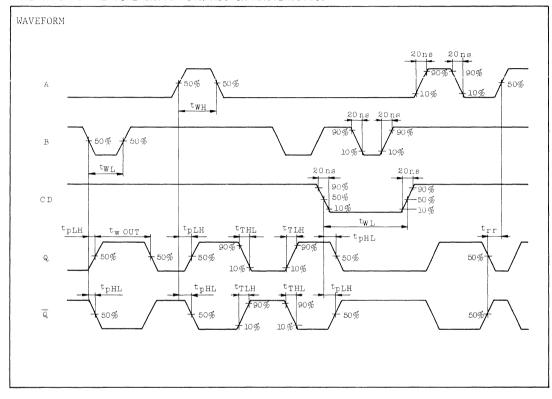
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC	SYM-	TEST CONDITION	v_{DD}	-40°C		25°C			85°C		UNIT
CHARACTERISTIC EOL		TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
		IOUT < 1µA	5	4.95	-	4.95	5.00	-	4.95		
High-Level Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
		IN SUPERIOR	15	14.95	-	14.95	15.00	-	14.95	-	v
		I _{OUT} < 1 \(A	5	-	0.05	_	0.00	0.05	-	0.05	
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	
		- IN - 55, DD	15	_	0.05	-	0.00	0.05	-	0.05	

STATIC ELECTRICAL CHARACTERISTICS (V_{SS} =0V)

CHARACTE	RISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
		BOL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	0211-1
			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	_	-0.42	_	
			V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	_	
Output Hig Current	<u>ş</u> h	I_{OH}	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	_	
			V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
			$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$									mA
			V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	_	
Output Lov	J.	$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8		1.1	_	
Current		-OL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	-	2.8	-	
			$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	_	
Input High	1	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	´-	7.0	5.5	_	7.0	-	
Voltage		. 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
			$ I_{ m OUT} < 1 \mu A$									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	_	2.25	1.5	-	1.5	ľ
Input Low		$v_{ m IL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		·IL	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			$ I_{OUT} < 1\mu A$									
Input	"H" Level	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	-	1.0	μA
Current	"L" Level	I_{IL}	VIL=OV	18	-	-0.1	-	-10-5	-0.1	-	-1.0	μΑ
				5	_	5	-	0.005	5	-	150	
Quiescent Current	Device	I _{DD}	$v_{\mathrm{IN}}=v_{\mathrm{SS}},v_{\mathrm{DD}}$	10	-	10	-	0.010	10	-	300	μA
Carrent			*	15	-	20	_	0.015	20	-	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $v_{\rm SS}\text{=}0v\text{, }c_{\rm L}\text{=}50pF\text{)}$

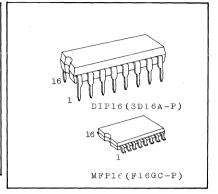
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	tTLH		10	-	50	100	ns
(now co night)			15	-	40	80	

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_{L} =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
7		*	5	·	80	200	i
Output Transition Time (High to Low)	tTHL		10	- ,	50	100	ns
(High to Low)		,	15		40	80	
December 1 - Education	tpLH		5	-	380	760	
Propagation_Delay Time $(A,B-Q,\overline{Q})$	t _{pHL}		10	-	150	300	
.,,,,,,	PIL.		15	-	100	220	ns
	tpLH		5	_	280	560	
Propagation Delay Time (CD - Q, \overline{Q})	t _{pHL}		10	_	110	250	
(0) (3,4)	PHL		15	. -	75	190	
	t.,,,		5	_	60	120	
Min. Input Pulse Width (A, B)	twH		10	_	30	60	
(A, D)	t _{WL}		15	<u>-</u>	25	50	ns
			5	_	95	190	110
Min. Pulse Width (CD)	tWL		10	-	45	90	
(CD)			15	_	35	70	
			5	_	0	-	
Min. Retrigger Time	trr		10	_	0	_	ns
			15	-	0	-	
		$R_X=100k\Omega$	5	-	206	-	
		CX=0.002µF	10	_	204	-	μS
		CX-0.002,#F	15	_	205	-	
		R _X =100kΩ	5	9.3	9.95	10.4	
Output Pulse Width	tw OUT	C _X =0.1 <i>µ</i> F	10	9.5	10	10.5	ms
		CX-0.1#F	15	9.55	10.05	10.65	
	:	R _X =100kΩ	5	_	0.98	_	
		$C_{X}=10\mu F$	10		1.00	_	s
		CX-10μτ	15	. -	1.01	-	
Pulse Width Match			5	_	±1	_	
between circuits in	1twOUT	$\frac{t_{\mathbf{W}}(Q_{2})-t_{\mathbf{W}}(Q_{1})}{x_{1}00}$	10	_	±1	_	%
the same package		t _{w(Q1)}	15	-	±1	_	
Input Capacitance	CIN			-	5	7.5	pF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

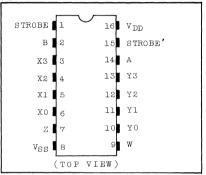
TC4539BP/BF

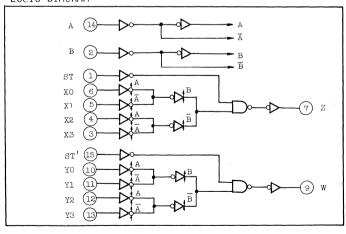

TC4539BP/TC4539BF DUAL 4-CHANNEL DATA SELECTOR/MULTIPLEXER

TC4539BP/BF contains two circuits of data selectors which select data according to common address inputs A and B.

Four channel data XO through X3 are selected to be output Z according to inputs A and B and four channel data YO through Y3 are selected by the same A and B to generate output W.

When input St (ST') is set at "H", the output becomes "L" regardless other inputs.


This can be widely applied in composition of signals, parallel to serial conversion and selection of signals.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} = 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∼ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TARLE

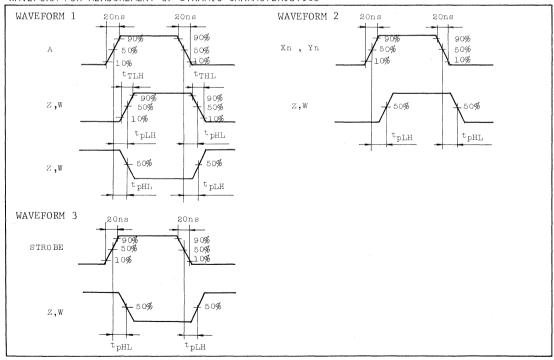
IKU	111 1	ADLL					
А	В	ST ST'	XO YO	Xl Yl	X2 Y2	X3 Y3	Z W
*	*	Н	*	*	*	*	L
L	L	L.	L	*	*	*	L
L	L	L	Н	*	*	*	Н
Н	L	L	*	L	*	*	L
Н	L	L	*	Н	*	*	Н
L	Н	L	*.	*	L	*	L
L	H	L	*	*	Н	*	H
Н	Н	L	*	*	*	L	L
Н	Н	L	*	*	*	Н	Н

* : DON'T CARE

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)


CHADAC	TERISTIC	SYMBOL	TEST CONDITIONS	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNITS
CHARAC.	TEKISTIC	SIRBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
High-Le Output	evel Voltage	v _{OH}	$ I_{\mathrm{OUT}} < 1 \mu A$ $v_{\mathrm{IN}} = v_{\mathrm{SS}}, v_{\mathrm{DD}}$	5 10	4.95 9.95	-		5.00 10.00	_	4.95 9.95	-	
Low-Lev Output	vel Voltage	V _{OL}	I _{OUT} <1 _μ A V _{IN} =V _{SS} , V _{DD}	5 10 15	14.95 - - -	0.05 0.05 0.05	14.95 - - -		- 0.05 0.05 0.05	14.95 - - -	0.05 0.05 0.05	V
Output Current	Ü	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 10	-0.61 -2.5 -1.5 -4.0		-0.51 -2.1 -1.3 -3.4	-4.0 -2.2	- - -	-0.42 -1.7 -1.1 -2.8	- - -	
Output Curren		IOL	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	0.61 1.5 4.0	_ _ _	0.51 1.3 3.4		- - -	0.42 1.1 2.8	 -	mA
Input l	Ü	V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1µA	5 10 15	3.5 7.0 11.0	-	7.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	-	
Input		ν _{IL}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 _µ A	5 10 15	_ _ _	1.5 3.0 4.0	- - -	2.25 5.5 8.25	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input Current	"H" Level "L"	IIH	V _{IH} =18V	18	_	0.1	-	10 ⁻⁵		-	1.0	μA
Quiesco Device	Level ent Current	I _{DD}	V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	5 10 20	- - -	0.001 0.002 0.004	5 10 20	- - -	150 300 600	μА

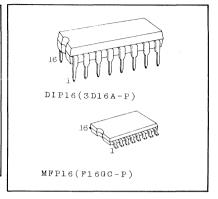
^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	ADD(A)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}		5 10 15		80 50 40	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15		80 50 40	200 100 80	
Propagation Delay Time (A - Z, W)	t _{pLH}		5 10 15	1 1	150 60 40	450 220 170	ns
Propagation Delay Time (Xn, Yn - Z, W)	t _{pLH}		5 10 15	-	130 60 40	420 180 140	
Propagation Delay Time (STROBE - Z, W)	t _{pLH}		5 10 15	- - -	85 40 30	290 150 120	
Input Capacitance	c_{IN}			_	5	7.5	рF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

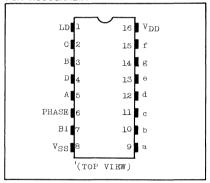
TC4543BP/BF

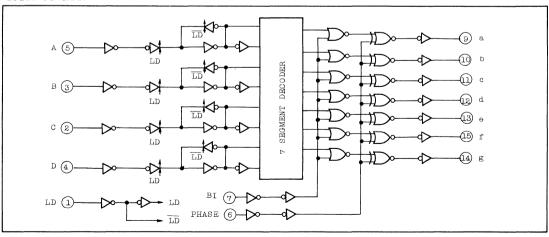

TC4543BP/TC4543BF BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER (For liquid Crystals)

TC4543BP/BF is 7 segment latch/decoder/driver which can directly drive field effect type liquid crystal display element (FEM type) and equipped with BLANKING input, PHASE input and LATCH DISABLE input.

If erroneous BCD code is input, and when BI is "H", all the outputs are blanked.

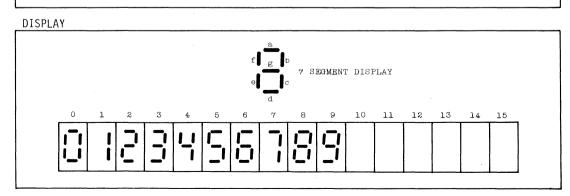
When FEM type liquid crystal is driven, common pulse should be applied to the back plane of display element and the PHASE input of TC4543BP/BF.


When LED display element is to be driven, drivers should be added to the outputs.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	vIN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	- 40 ∿85	°C
Storage Temperature Range	^T stg	- 65 ∿150	°C
Lead Temp./Time	T _{so1}	260°C · 10 sec	

PIN ASSIGNMENT



LOGIC DIAGRAM

TRUTH TABLE

		INP	UTS				Γ			UTP	UTS				
LD	ві	PHASE	A	В	С	D	a	b	С	d	е	f	g	DISPLAY	NOTE
*	Н	H	*	*	*	*	Н	Н	Н	Н	Н	Н	Н	BLANK	
*	Н	L	*	*	*	*	L	L	L	L	L	L	L	BLANK	
L	L ·	Н	*	*	*	*		LATCH							
L	L	L	*	*	*	*				LAT	CH				
Н	L	H	L	L	L	L	L	L	L	L	L	L	Н	0	
H	L	Н	Н	L	L	L	Н	L	L	Н	Н	Н	Н	1	
Н	L	Н	L	H	L	L	L	L	Н	L	L	H .	L	2	
H	L	Н	Н	H	L	L	L	L	L	L	Н	Н	L	3	
Н	L	H	L.	L	Н	L	Н	L	L	H	Н	L	L	4	
Н	L	H	H	L	Н	L	L	Н	L	L	Н	L	L	5	
H	Ъ	Н	L	H	Н	L	L	H	L	L	L	L	L	6	
Н	L	H	Н	Н	H	L	L	L	L	Н	Н	H	Н	7	
Н	L	H	Ŀ	L	L	H	L	L	Ь	L	L	L	Д	8	
Н	L_	H	H	L	L	Н	L	L	L	L	Н	L	L	9	
Н	L	Н	L	Н	L	H	Н	H	H	H	H	Н	H	BLANK	
H	L	H	H	Н	L	Н	Н	H	H	H	Н	Н	Н	BLANK	
H	L	H	L	L	Н	H	Н	Н	H	H	Н	Н	Н	BLANK	
H	L	H	H	L	H	Н	Н	Н	H	Н	H	Н	Н	BLANK	
Н	L	H	L	Н	Н	Н	Н	H	Н	H	Н	Н	Н	BLANK	
Н	L	H	H	Н	Н	Н	Н	H	Н	H	Н	Н	Н	BLANK	
Н	L	L	L	L	L	L	Н	H	Н	Н	Н	Н	L	0	
H	L	L	н.	L	L	L	L	H	Н	L	L	L	L	1	
H	L	L	L	H	L	Ь	Н	H	L	Н	Н	L	Н	2	
H	L	L	Н	Н	L	L.	Н	H	H	H	L	L	H	3	
H	L	L	L	L	Н	L	L	Н	Н	L	L	Н	H	4	
Н	L	L	Н	L	Н	L	Н	L	H	Н	L	Н	Н	5	
Н	L	L	L	Н	Н	L	Н	L	Н	Н	Н	Н	Н	6	
Н	L	L	Н	Н	Н	Ĺ	Н	Н	Н	L	L	L	L	7	
Н	L	L	L	L	L	Н	Н	Н	Н	H	H	Н	Н	8	
Н	L	L	Н	L	L	Н	Н	Н	H	H	L	Н	Н	9	
Н	L	L	L	H	L	H	L	L	L	L	L	L	L	BLANK	
Н	L	L	Н	Н	L	Н	L	Li	L	L	L	L	L	BLANK	
Н	L	L	L	L	Н	Н	L	L	L	L	L	L	L	BLANK	
Н	L	L	Н	L	Н	Н	L	L	L	L	L	L	L	BLANK	
H	L	L	L	Н	Н	Н	L	L	L	L	L	L	L	BLANK	
Н	L	L	H	Н	Н	Н	L	L	L	L	L	L	L	BLANK	
*	: DON'T	CARE													

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	VIN	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V_{DD}	-40)°C		25°C		85°	,c	UNITS
	DIMBOL	TEST CONSTITUTE	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIS
High-Level Output Voltage	v _{OH}	I _{OUT} <1μΑ V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95	- - -	I.	5.00 10.00 15.00	-	4.95 9.95 14.95	<u>-</u>	v
Low-Level Output Voltage	$v_{ m OL}$	I _{OUT} <1µA V _{IN} =V _{SS} , V _{DD}	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00 0.00 0.00	0.05	-	0.05 0.05 0.05	
Output High Current	^I OH	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 5 10 15	-0.61 -2.5 -1.5 -4.0	- - - -	-0.51 -2.1 -1.3 -3.4	-1.0 -4.0 -2.2 -9.0	- - - -	-0.42 -1.7 -1.1 -2.8	_ _ _ _	mA
Output Low Current	$^{ m I}$ OL	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	0.61 1.5 4.0	<u>-</u> -	0.51 1.3 3.4	1.2 3.2 12.0	-	0.42 1.1 2.8	<u>-</u> -	IIIA
Input High Voltage	V _{IH}	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1µA		3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	_	3.5 7.0 11.0	- - -	v
Input Low Voltage	$v_{ m IL}$	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V, 13.5V		-	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3'.0 4.0	- - -	1.5 3.0 4.0	V
Input Level	I _{IH}	V _{IH} =18V	18	-	0.1	-	10-5	0.1	-	1.0	μА
Current "H" • Level	I_{IL}	AIT=0A	18	-	-0.1	_	-10-5	-0.1	_	-1.0	μА
Quiescent Device Current	${ m I}_{ m DD}$	V _{IN} =V _{SS} , V _{DD}	5 10 15	-	5 10 20	- - -	0.005 0.010 0.015	10	- - -	150 300 600	μА

^{*} All valid input combinations.

TC4543BP/BF

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTICS	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time (Low to High)	t _{TLH}	2	5 10 15	-	70 35 30	200 100 80	
Output Transition Time (High to Low)	t _{THL}		5 10 15	- - -	70 35 30	200 100 80	
Propagation Delay Time (A ∿D - OUT)	t _{pLH}		5 10 15	- - -	280 140 100	1000 400 300	
Propagation Delay Time (BI - OUT)	t _{pLH}		5 10 15	-	140 70 55	500 200 150	
Propagation Delay Time (LD - OUT)	t _{pLH}		5 10 15	- - -	300 140 100	1000 400 300	ns
Propagation Delay Time (PHASE - OUT)	t _{pLH}		5 10 15	- - · . -	170 85 65	550 220 180	
Min. Pulse Width (LD)	t _{WH}		5 10 15	- - -	30 25 20	250 100 80	
Min. Set-up Time (LD - A ∿ D)	t _{SU}		5 10 15	- - -	20 10 5	60 20 10	
Min. Hold Time (LD - A ∿ D)	t _H		5 10 15	- - -	0 0 0	25 20 20	
Input Capacitance	CIN		.	-	5	7.5	рF

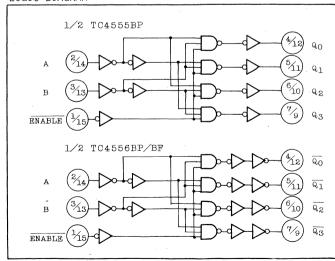
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS WAVEFORM 1 20ns 20nc $A \sim D$, BI, 10% PHACE tpHh ^tpl_H 190% 90% 50% 50% OUT 10% 10% $\tau_{\rm THL}$ tTLH WAVEFORM 2 20ns 20ns -90% 50% 10% 90% $A \sim D$ 50% tgu t_{H} 20n.; | 20ns 90% 50% \Box 10% 10% ${\rm t}_{\rm WH}$ OUT WAVEFORM 3 20ns 20ns 90% LD50% 10% tpHi $^{\rm t}_{\rm PLH}$ 90% 90% 50% OUT 50% 10% $\mathsf{t}_{\mathrm{TLH}}$ ${\rm ^tTHL}$

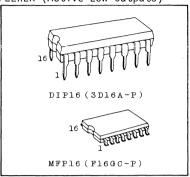
TC4555BP, TC4556BP/BF

TC4555BP DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER (Active High Outputs) TC4556BP/TC4556BF DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER (Active Low Outputs)

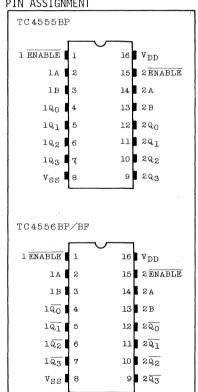
TC4555BP and TC4556BP/BF contain two circuits of decoders/multiplexers.

When ENABLE="L", arbitrary one of four outputs is


selected by two binary inputs A and B. The selected output is "H" for TC4555BP and "L" for TC4556BP/BF.


When ENABLE is set to "H", the selection is inhibited making all the output at "L" for TC4555BP and "H" for TC4556BP/BF.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~ V _{SS} +20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	V _{SS} -0.5~V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	- 40 ∼ 85	°C
Storage Temperature Range	T _{stg}	-65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

(TOP VIEW)

TRUTH TABLE

	INPUTS OUTPUTS TC4555BP						OUTF TC4556			·	
Ē	В	A	Q3	Q2	Q1	Q ₀	\overline{Q}_3	$\overline{\mathbb{Q}}_2$	$\overline{\overline{Q}}_1$	\overline{Q}_0	
L	L	L	L	L	L	Н	Н	Н	Н	L	
L	L	Н	L	L	Ħ	Ī	H	Н	L	Н	
L	Н	L	L	Н	L	L	Н	L	Н	Н	*: Don't Care
L	Н	Н	Н	L	L	L	L	Н	Н	Н	* · Bon c ourc
Н	* .	*	L	L	L	L	Н	Н	Н	Н	

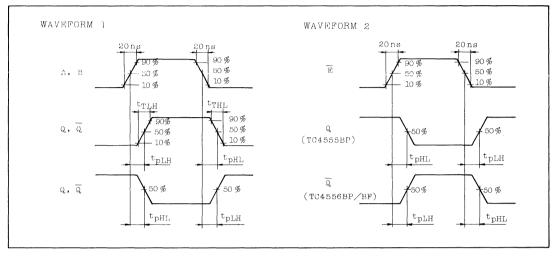
RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	$v_{\rm IN}$	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYM-	TEST CONDITION \(\)		-40)°C		25°C		8.5	5°C	UNIT	
	BOL	THE CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01.21	
		$ \mathrm{I}_{\mathrm{OUT}} < 1\mu\mathrm{A}$	5	4.95	-	4.95	5.00	-	4.95	-		
High-Level Output Voltage	VOH	V _{IN} =V _{SS} , V _{DD}	10	9.95	_	9.95	10.00	-	9.95	_		
		· 110 · 30 9 · DD	15	14.95	-	14.95	15.00	_	14.95	-	v	
		Ι _{ΟUT} <1μΑ	5	-	0.05	_	0.00	0.05	-	0.05	·	
Low-Level Output Voltage	VOL	V _{IN} =V _{SS} ,V _{DD}	10	-	0.05	_	0.00	0.05	-	0.05		
		21, 30, 55	15	-	0.05	_	0.00	0.05	-	0.05		
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-		
	I _{OH}	V _{OH} =2.5V	5	-2. 5	_	-2.1	-4.0	-	-1.7	-		
Output High Current		V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-,	-1.1	-		
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-		
		V _{IN} =V _{SS} ,V _{DD}									mA	
		V _{OL} =0.4V	5	0.61	-	0.51	1.5		0.42	-		
Output Low	IOL	V _{OL} =0.5V	10	1.5	-	1.3	3.8	_	1.1	-		
Current	LOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	_	2.8	-		
	ĺ	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$										
		V _{OUT} =0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5	-		
Input High	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	v	
Voltage	1 .11	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	_	11.0	-		
		I _{OUT} < 1µA										

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

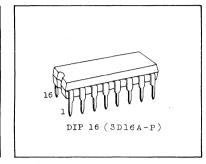

CHARACTER	CHARACTERISTIC I		TEST CONDITION		-40°C		25°C			85°C		UNIT
		BOL	0011212011	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
			V _{OUT} =0.5V, 4.5V	5	_	1.5		2.25	1.5	_	1.5	
Input Low		$ _{VIL}$	V _{OUT} =1.0V, 9.0V	10	-	3.0		4.5	3.0	-	3.0	V
Voltage			V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			I _{OUT} < 1 \(\mu \) A								`	
Input	"H" Level	IIH	V _{1H} =18V	18	_	0.1	-	10-5	0.1	-	1.0	μA
Current	"L" Level	IIL	VIT=OA	18		-0.1	_	-10-5	-0.1	_	-1.0	
				5	_	4.0	-	0.002	4.0	-	30	
Quiescent Current	Device	I _{DD}	V _{IN} =V _{SS} ,V _{DD}	10	_	8.0	_	0.004	8.0	-	60	μA
	Jurrenc		*	15	_	16.0	_	0.008	16.0	-	120	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
		· · · · · · · · · · · · · · · · · · ·	5	-	. 80	200	
Output Transition Time (Low to High)	tTLH		10	-	50	100	
			15	-	40	80	ns
		1000	5	-	80	200	****
Output Transition Time (High to Low)	tTHL		10	-	50	100	
(High co low)			15	-	40	80	
	tpLH		5	-	140	440	
Propagation_Delay Time (A,B - Q,Q)	tpHL		10	-	65	190	
(11,5 4,4)	phi		15	-	50	140	ns
	t _{pLH}		5	_	110	400	
Propagation Delay Time $(E - 0.0)$	t _{pHL}		10	-	45	170	
4,47	phur		15	. –	40	130	
Input Capacitance	$c_{\rm IN}$			_	5	7.5	pF

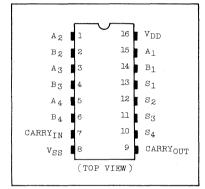
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

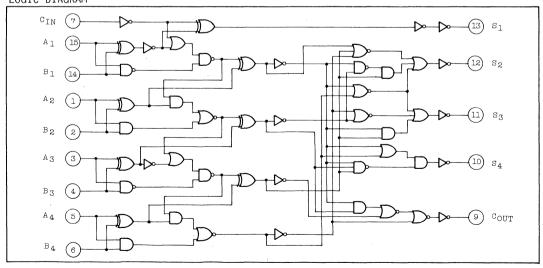

TC4560BP

TC4560BP NBCD ADDER

TC4560BP is NBCD (natural BCD) adder which adds two binary coded decimal numbers (BCD code).

The sum of BCD inputs applied to four data input lines (A1 through A4) and another set of four data input lines (B1 through B4) and carry input CIN from the lower order digit is output to S1 through S4 in the same BCD code.


When the sum is 10 or larger, "H" level is output to carry output COUT. When the sum is smaller than 10, COUT is kept at "L" level. By connecting with TC4561BP (9's complementer), the add/subtract circuit can be easily obtained.


ABSOLUTE MAXIMUM RATINGS

			Γ
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~ V _{SS} +20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	$v_{ m OUT}$	V_{SS} -0.5 ~ V_{DD} +0.5	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	Tstg	-65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

				INPUTS					OUTPUTS					
A ₄	A3	A ₂	A ₁	В4	В3	В2	В1	c_{IN}	s ₄	s_3	s ₂	·s ₁	COUT	
L	L	L	L	L	L	L	L	L	L	L	L	L	L	
L	L	L	L	L	L	L	L	Н	L	L	L	Н	L	
L	Н	L	Н	L	L	Н	L	L	L	Н	Н	Н	Ĺ	
L	Н	L	L	L	L	Н	Н	Н	Н	L	L	L	L	
L	Н	Н	L	L	Н	L	Н	L	L	L	L	Н	Н	
L	L	Н	Н	Н	L	L	L	Н	L	L	Н	L	Н	
Н	L	L	Н	L	Н	L	L	L	L	L	Н	Н	Н	
L	Н	L	Н	Н	L	L	L	Н	L	Н	L	L	Н	
Н	L	L	Н	Н	L	L	Н	Н	Н	L	L	Н	Н	

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	VIN	0	_	v_{DD}	V

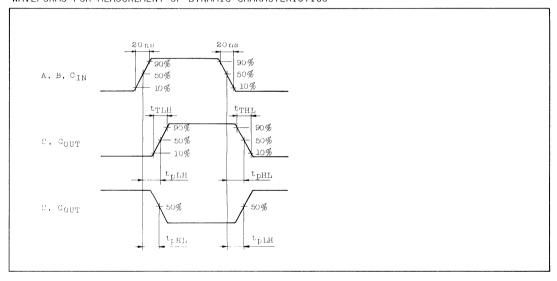
STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

CHARACTERISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C	25°C			8.5	UNIT	
GIRMMOTERIOTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
T. 1 T 1		I _{OUT}	5	4.95	-	4.95	5.00	-	4.95	-	
High-Level Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95	-	9.95	10.00	-	9.95	-	
odepac voreage		(IN (22, OD)	15	14.95	-	14.95	15.00	-	14.95	_	**
		I _{OUT} < 1.4A	5	-	0.05	-	0.00	0.05	-	0.05	V
Low-Level Output Voltage	VOL	V _{TN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0,05	_	0.05	
)		(IN ,22, ADD	15	-	0.05	_	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
ĺ		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	_	-1.7	-	
Output High Current	IOH	V _{OH} =9.5V	10	-1.5		-1.3	-2.2	-	-1.1	-	
		V _{OH} =13.5V	15	-4.0	-	-3.4	-9.0	-	-2.8	-	
		V _{IN} =V _{SS} , V _{DD}									mA
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	-	0.42	-	
Output Low	I_{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1		
Current	TOL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
		$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$									

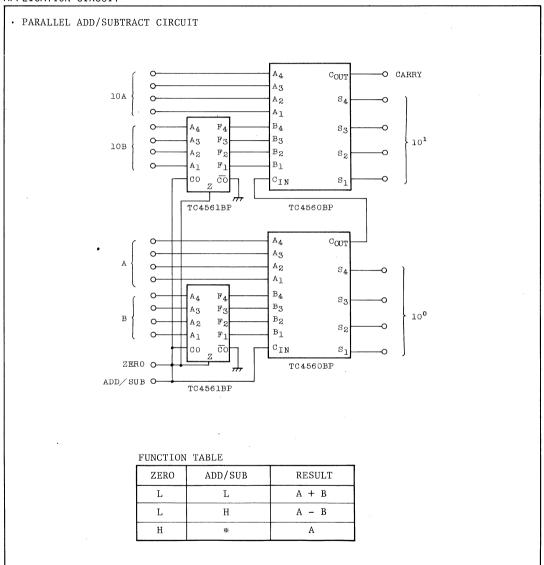
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTER	RISTIC	SYM-	TEST CONDITION	$V_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
		BOL	THE COMPTTON	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01111
			V _{OUT} =0.5V, 4.5V	5	3.5		3.5	2.75	-	3.5	-	
Input High	ı .	$ _{V_{\mathrm{IH}}}$	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		1 111	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	_	
			$ 1_{\mathrm{OUT}} < 1 \mu_{\mathrm{A}}$									v
			V _{OUT} =0.5V, 4.5V	5	_	1.5	-	2.25	1.5	-	1.5	
Input Low		$ _{v_{\mathrm{IL}}}$	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		, IL	V _{OUT} =1.5V,13.5V	15	-	4.0	_	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu A$									
Input	"H" Level	IIH	V _{1H} =18V	18	_	0.1	_	10-5	0.1	_	1.0	μA
Current	"L" Level	IIL	VIT=OA	18	-	-0.1	_	-10-5	-0.1	-	-1.0	
			-	5	_	5	-	0.005	5	-	150	
Quiescent Current	Device	IDD	$v_{\rm IN}=v_{\rm SS},v_{\rm DD}$	10	-	10	_	0.010	10	_	300	μA
			*	15	_	20	_	0.015	20	_	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, $\rm C_L$ =50pF)

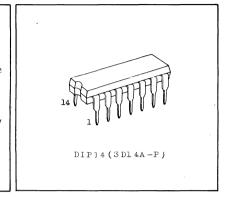
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
			5	-	80	200	
Output Transition Time (Low to High)	t_{TLH}		10	-	50	100	
			15	-	40	80	ns
			5	-	80	200	113
Output Transition Time (High to Low)	tTHL		10	-	50	100	
(High to Low)			15	_	40	80	
	t		5	-	660	2100	
Propagation Delay Time (A,B - S)	t _{pLH}		10	-	250	900	
(A, B = B)	t _{pHL}		15		170	675	ns
	t		5	-	500	1800	
Propagation Delay Time (A,B - COUT)	t _{pLH} t _{pHL}		10	_	190	600	
	грнг		15	_	130	450	


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
	toru		5	_	430	1500	
Propagation Delay Time (C _{IN} - C _{OUT})	t _{pLH} t _{pHL}		10	-	160	600	
	chur.		15		110	450	ns
	tթՆH		5	-	550	1800	110
Propagation Delay Time (C _{IN} - S)			10	_	230	600	
(OIM O)	t _{pHI} ,		15	-	160	450	
Input Capacitance	CIN			-	5	7.5	рF

WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

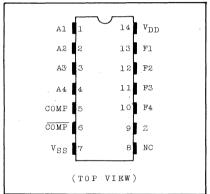
APPLICATION CIRCUIT

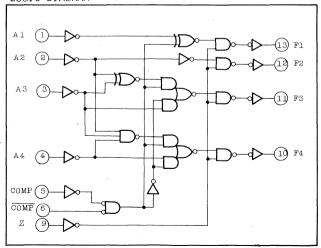

TC4561BP

TC4561BP 9's COMPLEMENTER

TC4561BP is 9's complementer which generates 9's complement of BCD signal.

Keeping Z input at "L", if COMP="H" and COMP="L", 9's complement of input BCD code (Al through A4) is obtained at outputs Fl through F4. (When the input code is 2, the output will be /.) If COMP input="L" or COMP input="H", the output becomes equal to the input.


If Z="H", outputs F1 through F4 become "L" regardless of other inputs. By connecting with TC4560B, the add/subtract circuit can be easily obtained.


ABSOLUTE MAXIMUM RATINGS

ADJULUTE THATTOIT WIT	11140		
CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	v_{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T_A	-40 ∿ 85	°C
Storage Temperature Range	Tstg	- 65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

Z	COM	COM	Fl	F2	F3	F4	MODE
L	L	*					-
L	*	Н	Al	A2	A3	A4	Fn=An
L	Н	L	Āl	AZ	A2⊕A3	A2 · A3 · A4	COMP
Н	*	*	L	L	L	L	ZERO

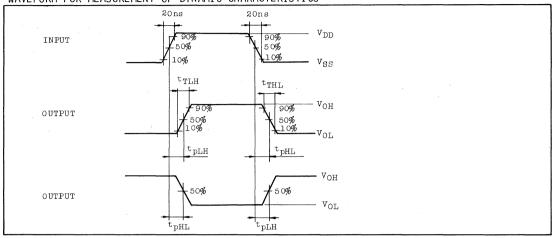
A2 \oplus A3 \equiv A2 (EXCLUSIVE - OR) A3 \equiv A2 \cdot A3 + A2 \cdot A3

TRUTH TABLE	(COMPLEMENT MO	DE: Z	COMP:	=''L'',	COM="H	").				
DECIMAL	ILLEGAL BCD	INPUTS			DECIMAL	OUTPUTS				
INPUT CODE	INPUT CODE	A 4	АЗ	A 2	Al	OUTPUT CODE	F4	F3	F2	F1
,0		L	L	L	L	9	Н	L	L	Н
1		L·	L	L	Н	8	Н	L	L	L
2		L	L	Н	L	7	L	Н	Н	Н
3		L	L	Н	Н	-6	L	Н	Н	L
4		L	Н	L	L	5	L	Н	L	Н
5		L	Н	L	Н	4	L	Н	L	. L
6		L	Н	H	L	3	L	L	Н	Н
7		L ·	Н	Н	H	2	L	L	Н	L
8		Н	L	L	L	1	L	L	L	Н
9		Н	L	L	Н	0	L	L	L	L
	10	Н	L	H	L	7	L	Н	H	Н
	11	Н	L	Н	Н	6	L	Н	Н	L
	12	· H	Н	L	L	5	L	Н	L	Н
	13	Н	Н	L	Н	4	· L	Н	L ·	L
	.1.4	Н	Н	Н	L	3	L	L	Н	Н
	15	Н	Н	Н	Н	2	L	L	Н	L
MOD 🔆	'T CARE									

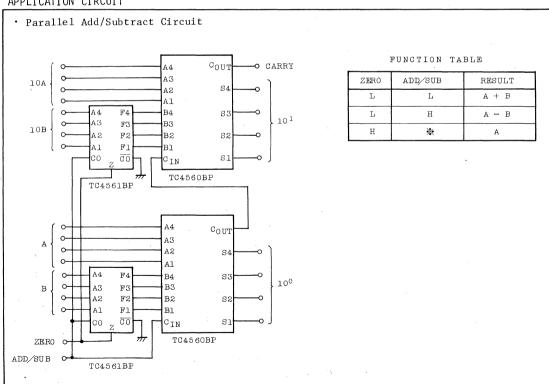
RECOMMENDED OPERATING CONDITIONS (VSS=0V)										
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS				
DC Supply Voltage	VDD		3	-	18	V				
Input Voltage	$v_{\rm IN}$		0	COPA	$v_{ m DD}$	V				

STATIC ELECTRICA	AL CHARA	ACTERISTICS (Vss	=0V)								
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} -40°C		25°C			85°C		UNITS	
CHARACIERISTIC	STRIBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTID
High-Level		I _{OUT} <1μA	5	4.95		4.95			4.95	-	
Output Voltage	AOH	1	10	9.95	-	9.95	1		9.95	-	
Output vortage		VIN=VSS, VDD	15	14.95		14.95	15.00	-	14.95		
Low-Level	v _{Ol} ,	I _{OUT} <1 µA	5	-	0.05		0.00	0.05	-	0.05	V
			10	-	0.05	-	0.00	0.05	-	0.05	
Output Voltage		V _{IN} =V _{SS} , V _{DD}	15		0.05	-	0.00	0.05	-	0.05	
	I OH	V _{OH} =4.6V	5	-0.61		-0.51	-1.0	-	-0.42	-	
Output High		V _{OH} =2.5V V _{OH} =9.5V	5	-2.5	-	-2.1			-1.7	-	
Current	OH	V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	-	
		V _{IN} =V _{SS} , V _{DD}	15	-4.0		-3.4	-9.0	-	-2.8	_	mA
		V _{OL} =0.4V	5	0.61		0.51	1.5	-	0.42	-	IIIA
Output Low Current	LOL	V _{OL} =0.5V V _{OL} =1.5V	10	1.5	-	1.3	3,8	-	1.1	-	
		V _{IN} =V _{SS} , V _{DD}	15	4.0		3.4	15.0		2.8		

STATIC ELECTRICAL CHARACTERISTICS (Continued)


CHARACTERISTIC		CVAMPOI			25°C		85°C					
		SYMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNITS
			V _{OUT} =0.5V, 4.5V		3.5	-	3.5	2.75	-	3,5	-	
Input Hi Voltage	Input High		V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10	7.0	_	7.0	5.5	-	7.0	-	
			$ I_{OUT} < 1\mu A$	15	11.0	-	11.0	8.25	-	11.0	-	V
Input Low Voltage			V _{OUT} =0.5V, 4.5V		-	1.5	-	2.25	1.5	-	1.5	
		VIL	V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V	10	_	3.0	_	4.5	3.0	-	3.0	
			$ I_{OUT} < 1 \mu A$	15	-	4.0	-	6.75	4.0	-	4.0	
Input	"H" Level	I_{IH}	V _{IH} =18V	18	-	0.1	_	10-5	0.1	-	1.0	
Current	"L" Level	I_{IL}	$v_{\rm IL}$ =0 v	18	-	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μА
Quiescent		т_		5	-	4.0		0.002	4.0	-	MAX. 5 - 0 - 0 - 1.5 3.0 4.0	
Device C	urrent	${ m I}_{ m DD}$	V _{IN} =V _{SS} , V _{DD}	10 15	_	8.0 16.0	ľ	0.004 0.008		_	l	μ Α

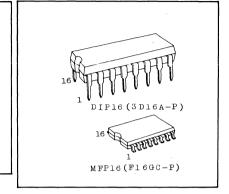
^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	$V_{\mathrm{DD}}(V)$	MIN.	TYP.	MAX.	UNITS
O. t. of Toursities Time			5	-	80	200	
Output Transition Time	t _{TLH}		10	-	50	100	
(Low to High)			15	-	40	80	
Output Transition Time			5	-	80	200	
*	tTHL		10	-	50·	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	tpLH		5	-	220	1000	
	1 1		10	-	80	400	ns
(A - F)	t _{pHL}		15	_	55	300	
Description Dolor Time	t _{pLH}		5	-	230	1000	
Propagation Delay Time	1 '		10	-	85	400	
(COMP, COMP - F)	t _{pHL}		15	-	60	300	
D 1 mt	tpLH		5	_	140	1000	
Propagation Delay Time	1 1		10	-	50	400	
(Z - F)	tpHL		15	-	40	300	•
Input Capacitance	CIN			-	5	7.5	рF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

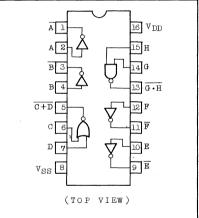
APPLICATION CIRCUIT

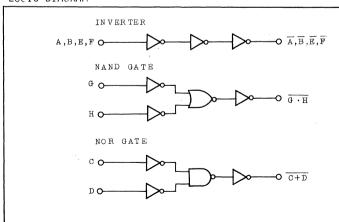

TC4572BP/BF

TC4572BP/TC4572BF HEX GATE

(4 INVERTERS Plus 2-Input NOR Gate Plus 2-Input NAND Gate)

TC4572BP/BF is a multiple gate that contains 4-circuit inverters, 1 circuit 2-input NOR GATE, and 1 circuit 2-input NAND GATE in one package.


Since each gate is of "B" type equipped with a buffer consisting of 2-stage inverters, it has high noise immunity.


ABSOLUTE MAXIMUM RATINGS

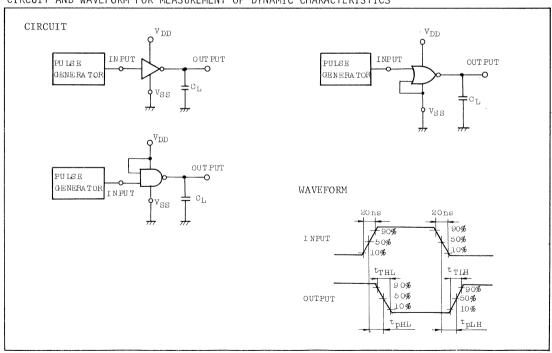
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$v_{SS} - 0.5 \sim v_{SS} + 20$	V
Input Voltage	VIN	$v_{SS - 0.5} \sim v_{DD + 0.5}$	v
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	÷	3	_	18	V
Input Voltage	v_{IN}		0	-	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

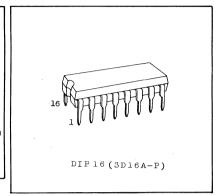

CILADACT	ERISTIC	SYMBOL	TEST CONDITIONS	v_{DD}	-40)°C		25°C		8.5	5°C	UNITS
CHARACI	EKISIIC	SIMBOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIS
High-Le Output	vel Voltage	v _{OH}	I _{OUT} <1μΑ V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95	1 1 1	4.95 9.95 14.95	5.00 10.00 15.00	- -	4.95 9.95 14.95	l .	77
Low-Lev Output	el Voltage	$v_{\rm OL}$	$ I_{OUT} < 1_{\mu}A$ $v_{IN} = v_{SS}$, v_{DD}	5 10 15	- - -	0.05 0.05 0.05	_	0.00 0.00 0.00	0.05	- -	0.05 0.05 0.05	V
Output	High	Іон	V _{OH} =4.6V V _{OH} =2.5V	5	-0.61 -2.5	. 1	-0.51 -2.1	-1.0 -4.0	_	-0.42 -1.7		
Current	-	TOH	V _{OH} =9.5V V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	_	-1.1		
			$v_{IN}=v_{SS}$, v_{DD}	15	-4.0	-	-3.4	-9.0	_	-2.8		mA
Output	Low		V _{OL} =0.4V V _{OL} =0.5V	5	0.61	-	0.51	1.5	-	0.42	-	
Current		IOL	$V_{OL}=1.5V$	10	1.5	-	1.3	3.8	-	1.1.	}	
			V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	15.0	-	2.8	-	
Input H	ligh		V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	. –	3.5	-	
Voltage	J	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	_	7.0	-	
VOILAGE			$V_{OUT}=1.5V,13.5V$ $ I_{OUT} <1\mu A$	15	11.0	-	11.0	8.25		11.0	_	v
			V _{OUT} =0.5V, 4.5V		-	1.5	-	2.25	1.5	-	1.5	'
Input I	ToM	VIL	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage	Voltage		VOUT=1.5V,13.5V	15	_	4.0	-	6.75	4.0	-	4.0	
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	·-	10-5	0.1	-	1.0	
Current	"L" Level	I_{IL}	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiesce Device	ent Current	I _{DD}	V _{IN} =V _{SS} , V _{DD}	5 10 15	-	0.25 0.5 1.0	- - -	0.001 0.001 0.002	0.5	- - -	3.8 7.5 15	μА

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

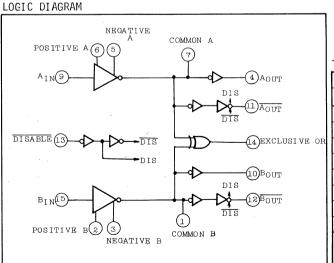
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	-	80	200	
·	t_{TLH}		10	-	50	100	
(Low to High)			15	-	40	- 80	
Output Transition Time			5		80	200	
· ·	t _{THL}		10	-	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	t _{pLH}		5	-	90	200	
1 ' 0	-		10	-	40	110	ns
(INVERTER)	tpHL		15	-	30	85	
Propagation Delay Time	tpLH		5	-	95	200	
1	1		10	-	45	110	
(NAND)	t _{pHL}		15	-	35	85	
Propagation Delay Time	tpLH		5	_	95	200]
1 2	1 *		10		45	110	
(NOR)	tpHL		15	-	35	85	
Input Capacitance	$c_{\rm IN}$			_	5	7.5	рF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

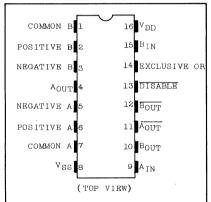


TC4583BP DUAL SCHMITT TRIGGER

TC4583BP consists of two independent Schmitt trigger circuits.


By externally connecting resistors between POSITIVE terminal and COMMON terminal and between NECATIVE terminal and COMMON terminal, hysteresis can be given to two inputs $A_{\rm IN}$ and $B_{\rm IN}$. Furthermore, the width of hysteresis and the threshold voltage between high level and low level can be varied by varying the resisters. The outputs are available in the forms of positive outputs and inverted three-state outputs from both circuits. Exclusive-OR of both inputs is also output.

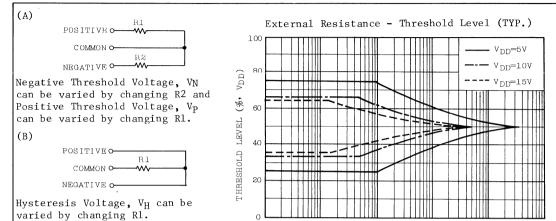
This is most suitable for line receivers.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNITS
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	$v_{\rm IN}$	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10 ·	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	T _A	- 40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ∿ 150	°C
Lead Temp./Time	T_{sol}	260°C • 10 sec	

PIN ASSIGNMENT


TRUTH TABLE

	ΙN	PUTS		OUTPUTS					
Α	В	DISABLE	$A_{ m OUT}$	A _{OUT}	B _{OUT}	$\overline{{}^{\mathrm{B}}_{\mathrm{OUT}}}$	EX.OR		
L	L	L	L	HZ	L	HZ	L		
L	L	Н	L	Н	L	Н	L		
L	Н	L	L	ΗZ	Н	HZ	• н		
L	Н	Н	L	Н	Н	L	Н		
Н	L	L	Н	ΗZ	L	HZ	Н		
Н	L	Н	Н	L	L	Н	Н		
Н	Н	L	H	ΗZ	Н	HZ	L		
Н	Н	Н	Н	L	Н	L	L		
1									

HZ: HIGH IMPEDANCE

1M

EXTERNAL RESISTER CONNECTION

10

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

Hysteresis Voltage $V_H = V_P - V_N$

TIE COTTILETTEE OF ETHICS		- (.00)				
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN	TOTAL THE SEASON STATE OF	0	-	$v_{ m DD}$	V
External Resistance	R1, R2			No Limits		Ω

100

lk

EXTERNAL RESISTANCE R1, R2 (Ω)

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYMBOI	TEST CONDITION	v_{DD}	-40	, C		25°C		85	°C	UNITS
CHARACTERISTIC	STEBUL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High-Level	37	I _{OUT} <1μΑ	5	4.95 9.95	-	4.95	5.00 10.00		4.95 9.95	-	
Output Voltage	V _{OH}	$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	10 15	14.95	-		15.00		14.95	-	
		T = -1 - Λ	5	-	0.05	-	0.00	0.05	-	0.05	V
Low-Level	VOL	$ I_{OUT} < 1_{\mu}A$	10	_	0.05	-	0.00	0.05	-	0.05	
Output Voltage		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
Output High		V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	_	-1.7	-	
Current	IOH	V _{OH} =9.5V V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	_	-1.1	-	
		V _{IN} =V _{SS} , V _{DD}	15	-4.0	-	-3.4	-9. 0	-	-2.8	-	
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	_	mA
Output Low Current	I _{OL}	V _{OL} =0.5V	10	1.5	-	1.3	3.8		1.1	-	
ourrent	+OL	V _{OL} =1.5V V _{IN} =V _{SS} , V _{DD}	15	4.0	-	3.4	15.0	-	2.8	-	

STATIC ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERI	CTTC	SYMBOL	TEST CONDITIONS	v_{DD}	-40)°C		25°C		85	°C	UNITS
CHARACIERI	.5110	SIMBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
Input Hig	Input High		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	5	3.5	-	3.5	2.75	-	3.5	-	
Voltage		Λ^{IH}	V _{OUT} =1.5V,13.5V	10	7.0	-	7.0	5.5		7.0	-	
			I _{OUT} <1 μA	15	11.0	-	11.0	8.25	-	11.0	-	v
Input Low	,		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V	5	-	1.5	-	2.25	1.5	_	1.5	ľ
Voltage		v_{IL}	V _{OUT} =1.5V,13.5V	10	-	3.0		5.5	3.0	-	3.0	
			I _{OUT} <1μA	15	-	4.0	-	6.75	4.0	-	4.0	
Input	"H" Level	I_{IH}	V _{IH} =18V	18	-	0.1		10-5	0.1	-	1.0	
Current	"L" Leve1	I_{IL}	V _{IL} =0V	18	-	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μA
3-State Output	"H" Level	I_{DH}	V _{OUT} =18V	18	-	0.4	-	10-4	0.4	_	7.5	υA
Leakage Current	"L" Level	$I_{ m DL}$	V _{OUT} =0V	18	-	-0.4	_	-10-4	-0.4	_	-7.5	μA
Quiescent		Tnn	VV V	5 10	-	1 2	_	0.002	l	-	3.8 9.5	
Device Cu	rrent	$I_{ m DD}$	V _{IN} =V _{SS} , V _{DD}	15	-	4	-	0.004 0.008		_	15	μA

^{*} All valid input combinations.

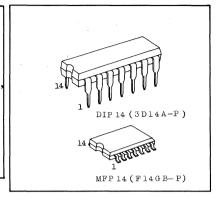
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0v, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	-	80	200	
(Low to High)	tTLH		10		50	100	
(Low to High)			15		40	80	
Output Transition Time			5		80	200	
· ·	t_{THL}		10	-	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	t _{pLH}		5	-	200	1300	
	_		10		80	460	
(A _{IN} , B _{IN} - A _{OUT} , B _{OUT})	t _{pHL}		15	-	60	300	
Propagation Delay Time	tpLH		5	-	200	2200	ns
			10	-	80	760	
$(A_{IN}, B_{IN} - \overline{A_{OUT}}, \overline{B_{OUT}})$	t _{pHL}		15	_	60	520	
Propagation Delay Time	t _{pLH}		5	-	210	1500	
			10	-	80	560	
$(A_{IN}, B_{IN} - EX, OR)$	t _{pHL}		15	_	60	340	
3-State Disable Time	t _{nLZ} , t _{nHZ}		5	-	110	450	
(=====================================	t _{pZL} ,t _{pHZ}	$R_L=1k\Omega$	10		50	180	
$(\overline{\text{DISABLE}} - \overline{A}_{\text{OUT}}, \overline{B}_{\text{OUT}})$	^L pZL, ^L pZH	_	15	-	35	110	

DYNAMIC ELECTRICAL CHARACTERISTICS (Continued)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Positive Threshold	77	D1 D0 51 0	5	_	3.2	-	
Voltage	$V_{\rm P}$	R1, R2= $5k\Omega$	10	-	5.55	_	
C			15	_	8.0	_	
Negative Threshold		i	5		1.8	_	
	v_N	R1, R2=5kΩ	10	-	4.45	-	
Voltage			15	_	7.0		
			5	0.5	1.4	3.0	V
Hysteresis Voltage	$v_{\rm H}$	R1, R2= $5k\Omega$	10	0.3	1.1	1.9	
			15	0.2	1.0	1.8	
Threshold Voltage			5	-	0.1	-	
Variation	ΔV_{T}	R1, R2=5k Ω	10	-	0.15	-	
(A - B)			15	-	0.2		
Input Capacitance	c_{IN}			-	5	7.5	pF

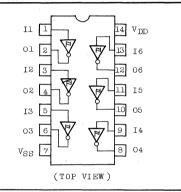
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS WAVEFORM 1 WAVEFORM 2 20 ns 20ns 20ns 20ns - v_{DD} $\nu_{\rm DD}$ 90% 90% 190% 190% AIN, BIN 50% A_{IN} , B_{IN} 50% 0% 50% 10% V_{SS} 10% 10% 10% Vss ${\rm t_{\rm THL}}$ ${\rm t_{TLH}}$ $^{\rm t}_{\rm THL}$ 90% V_{OH} - v_{oh} 90% 90% 90% A_{OUT}, B_{OUT} EXCLUSIVE OR 150% 50% 50% 50% 10% - V_{OL} 10% 10% - VOL 10% t_{pLH} ${\rm t}_{\rm pLH}$ t_{pHL} tTHL ${\rm t_{TLH}}$ = v_{OH} 90% - v_{oh} 90 % Aour. Bour 50% EXCLUSIVE OR 50% 50% 10% 10% - v_{ol} - VOL $t_{\rm pHL}$ ^tpLH $t_{\rm pLH}$ tpHL WAVEFORM 3 20ns 20 ns 90%-→ V_{DD} F90% DISABLE 50% 10% -v_{ss} 90 % - v_{oh} A_{OUT}, B_{OUT} 10% - VOL $t_{p\,ZH}$ ^tpHZ v_{OH} 90% AOUT, BOUT - V_{OL} t pzL t_{pLZ}

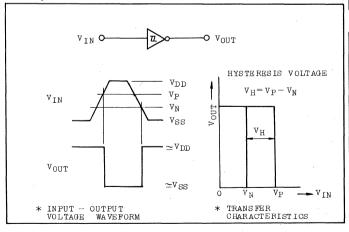

TC4584BP/BF

TC4584BP/TC4584BF HEX SCHMITT TRIGGER

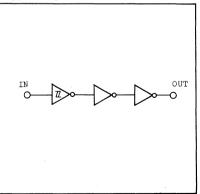
The TC4584BP/BF is the 6-circuit inverter having the Schmitt trigger function at the input terminal.

That is, since the circuit threshold level voltages at the leading and trailing edges of input waveform are different (V_P , V_N), the TC4584BP/BF can be used in the broad range application including line receiver waveform shaping circuit, astable multivibrator, monostable multivibrator, etc. in addition to ordinary inverter.


Since the pins are compatible with the $\ensuremath{\text{TC4069UB}},$ the substitution is also possible.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	v
Input Voltage	VIŃ	$v_{SS} - 0.5 \sim v_{DD} + 0.5$	V
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	I _{IN}	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∿ 85	°C
Storage Temperature Range	T _{stg}	-65 ~ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	


PIN ASSIGNMENT

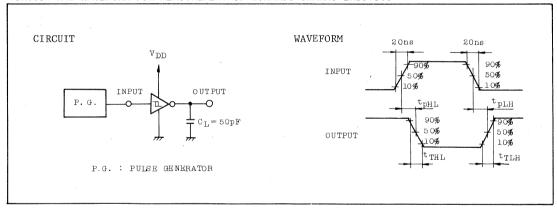
INPUT/OUTPUT VOLTAGE CHARACTERISTIC

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	VIN	0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

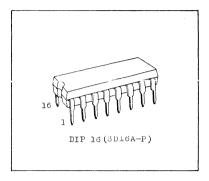

CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{ m DD}$	-40	°C		25°C		85	°C	UNITS
CHARACTERISTIC	SIMBUL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIIS
		I _{OUT} <1μA	5	4.95	_	4.95	5.00	-	4.95	-	
High-Level	V _{OH}		10	9.95	-	9.95	10.00	-	9.95	_	
Output Voltage		V _{IN} =V _{SS} , V _{DD}	15	14.95	_	14.95	15.00	_	14.95	_	v
Low-Level		I _{OUT} <1 μA	5	-	0.05	-	0.00	0.05	-	0.05	l v
Output Voltage	VOL		10	-	0.05	-	0.00	0.05	-	0.05	
odepae torrage		$v_{\rm IN} = v_{\rm SS}$, $v_{\rm DD}$	15	_	0.05	_	0.00	0.05		0.05	
		V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	_	
Output High	_	VOH=2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7	_	Ì
Current	IOH	V _{OH} =9.5V V _{OH} =13.5V	10	-1.5	-	-1.3	-2.2	-	-1.1	_	
		V _{IN} =V _{SS} , V _{DD}	15	-4.0	-	-3.4	-9.0	-	-2.8	· –	
		V _{OL} =0.4V	5	0.61	_	0.51	1.5	_	0.42	-	mA
Output Low	IOL	V _{OL} =0.5V	10	1.5	_	1.3	3.8	_	1.1	_	
Current	TOL	V _{OL} =1.5V	15	4.0	_	3.4	15.0	_	2.8	_	
		VIN=VSS, VDD	15								
Positive Trigger		V _{OUT} =0.5V	5	2.05	3.75	2.15	3.0	3.75°	2.15		
Threshold	$V_{\rm P}$	V _{OUT} =1.0V	10	4.8	7.6	4.9	6.4	7.6	4.9	7.7	
Voltage		VOUT=1.5V	15	7.8	11.6	7.9	9.9	11.6	7.9	11.7	
Negative Trigger	v_{N}	V _{OUT} =4.5V	5	1.25	2.95	1.25	2.3	2.85	1.15	I	v
Threshold	l VN	V _{OUT} =9.0V	10	2.4	5.2	2.4	3.8	5.1	2.3	5.1	\ \
Voltage	-	V _{OUT} =13.5V	15	3.4	7.2	3.4	5.2	7.1	3.3	7.1	
Hysteresis	$v_{\rm H}$		5	0.10	1.25	0.25	1	1.25	0.25	l	
Voltage	П		10 15	1.8	3.5 5.6	1.9 3.8	2.6 4.7	3.5 5.6	1.9	3.6 5.7	
Input "H"	I _{IH}	V _{IH} =18V	18	-	0.1	_	10-5	0.1	_	1.0	
Current Level	1 1	AIT=0A	18	_	-0.1	-	-10 ⁻⁵	-0.1	-	-1.0	μA
Quiescent			5	-	1	1	0.001	1	-	7.5	
Device Current	IDD	V _{IN} =V _{SS} , V _{DD}	10	-	2	1	0.002	2	-	15	μA
Device ourrent		*	15		4		0.004	4		30	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL	CHARACTERISTICS	(Ta=25°C,	$V_{SS}=0V$,	$C_L=50pF$)

CHARACTERITIC	SYMBOL	TEST CONDITION	V _{DD(V)}	MIN.	TYP.	MAX.	UNITS
Output Transition Time	t _{TLH}		5 . 10	-	80 [,] 50	200 100	
(Low to High)	LIPH		15	-	40	80	
Output Transition Time	t _{THL}		5 10	_	80 50	200 100	ns
(High to Low)	11111		15	_	40	80	lis
	t _{pLH}	·	5	-	170	340	
Propagation Delay Time	t _{pHL}		10 15	-	80 60	160 120	
Input Capacitance	c_{IN}			-	5	7.5	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

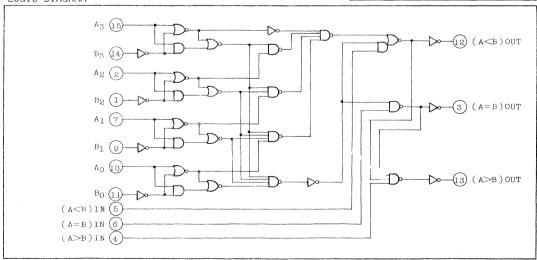


TC4585BP

TC4585BP 4-BIT MAGNITUDE COMPARATOR

TC4585BP is weighted comparator which compares the magnitudes of input data of four bits A0 through A3 and another input data of four bits B0 through B3. If TC4585BP is used, signal of larger, smaller or equal is obtained at one of three output lines depending on the cascade inputs (A>B)IN, (A=B)IN and (A<B)IN.

It is easy to fabricate the magnitude comparators of $4\times n$ bits with cascade connection of n number of TC4585BP.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD	V_{SS} -0.5 ~ V_{SS} +20	V
Input Voltage	VIN	V _{SS} -0.5 ~ V _{DD} +0.5	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$. V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	$P_{\mathbf{D}}$	300	m₩
Operating Temperature Range	T_{A}	- 40 ∼ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∼150	°C
Lead Temp./Time	$T_{ m SO1}$	260°C · 10 sec	2

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

			INPUTS					OUTPUTS		
	COMP	ARING		C	ASCADIN	G				
A3,B3	A2,B2	A1,B1	A0,B0	A < B	A=B	A > B	A < B	A=B	A > B	
A3>B3	*	*	*	*	*	Н	L	L	Н	
A3=B3	A2>B2	*	*	*	*	Н	L	L	Н	
A3=B3	A2=B2	A1>B1	*	*	*	Н	L	L	Н	
A3=B3	A2=B2	A1=B1	A0>B0	*	*	Н	L	L	Н	
A3=B3	A2=B2	A1=B1	A ₀ =B ₀	L	L	Н	L	L	Н	
A3=B3	A2=B2	A1=B1	A0=B0	L	Н	*	L	Н	L	
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	H	L	*	Н	Ł	L	
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>*</td><td>*</td><td>*</td><td>. Н</td><td>L</td><td>. L</td><td></td></b0<>	*	*	*	. Н	L	. L	
A3=B3	A2=B2	A1 <b1< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>Н</td><td>L</td><td>L</td><td></td></b1<>	*	*	*	*	Н	L	L	
A3=B3	A2 <b2< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>Н</td><td>, L</td><td>L</td><td></td></b2<>	*	*	*	*	*	Н	, L	L	
A3 <b3< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>Н</td><td>L</td><td>L</td><td>* Don't care</td></b3<>	*	*	*	*	*	*	Н	L	L	* Don't care

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	· V _{DD}	3		18	V
Input Voltage	AIN	0	-	v_{DD}	V

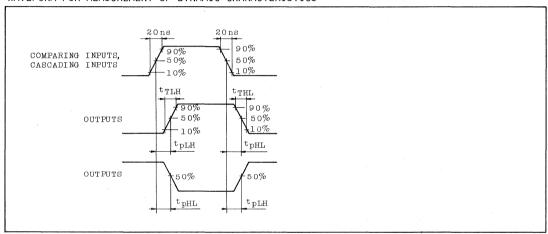
STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

CHARACTERISTIC	SYM-	TEST CONDITION	$v_{ m DD}$	-40)°C		25°C		85°	c'C	UNIT
CHARACTERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
High-Level		I _{OUT} <1μΑ	5	4.95	-	4.95	5.00	-	4.95	-	
Output Voltage	VOH	V _{IN} =V _{SS} ,V _{DD}	10	9.95 14.95	_		10.00	_	9.95 14.95	_	
			5	14.93	0.05	14.95	0.00	0.05	14.90	0.05	v
Low-Level Output Voltage	VOL	I _{OUT} <1μA V _{IN} =V _{SS} , V _{DD}	10	-	0.05	-	0.00	0.05	-	0.05	1 1
		VIN- VSS, VDD	15	-	0.05	-	0.00	0.05	-	0.05	
		V _{OH} =4.6V	5	-0.61	_	-0.51	-1.0	-	-0.42	-	
·		V _{OH} =2.5V	5	-2.5	-	-2.1	-4.0	-	-1.7		
Output High Current	IOH	V _{OH} =9.5V	10	-1.5	-	-1.3	-2.2	-	-1.1		mA
		V _{OH} =13.5V	15	-4.0	-	÷3.4	-9.0	-	-2.8	, -	
		$v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$									

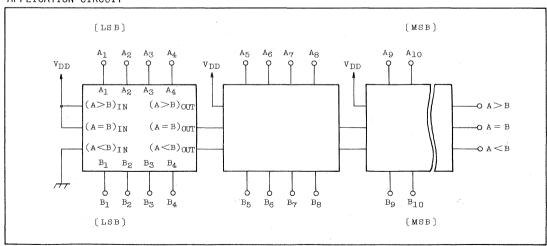
STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTER	RISTIC	SYM-	TEST CONDITION	Vnn	-40)°C		25°C		85	5°C	UNIT
	(10110	BOL	TEST COMBITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONT
			V _{OL} =0.4V	5	0.61	-	0.51	1.5	-	0.42	_	
Output Low		$I_{ m OL}$	V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	-	mA
Current		-OL	V _{OL} =1.5V	15	4.0	-	3.4	15.0	-	2.8	_	
			$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$									
			V _{OUT} =0.5V, 4.5V	5	3.5	-	3.5	2.75	-	3.5	_	
Input High	ı	v_{IH}	V _{OUT} =1.0V, 9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
Voltage		·In	V _{OUT} =1.5V,13.5V	15	11.0	-	11.0	8.25	-	11.0	-	
!] I _{OUT}] < 1 <i>µ</i> A									v
			V _{OUT} =0.5V, 4.5V	5	-	1.5	-	2.25	1.5		1.5	
Input Low		V _{II}	V _{OUT} =1.0V, 9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Voltage		, 117	V _{OUT} =1.5V,13.5V	15	-	4.0	-	6.75	4.0	-	4.0	
			$ I_{ m OUT} < 1\mu$ A									
Input	"H" Level	IIH	V _{IH} =18V	18	-	0.1	_	10-5	-0.1	_	1.0	l 1
Carramont III II		IIL	V1T=0A	18	-	-0.1	-	-10-5	-0.1	-	-1.0	. μΑ
				5	-	5	-	0.005	5	-	150	
Quiescent Current	Device	Device $ _{I_{DD}} $	$v_{\mathrm{IN}} = v_{\mathrm{SS}}$, v_{DD}	10	-	10	-	0.010	10	-	300	μA
			*	15		20	_	0.015	20	_	600	

^{*} All valid input combinations.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)			, _. 5	-	80	200	
	tTLH		10	÷	50	100	
	.		15	-	40	80	ns
Out Tribundti Tim-			. 5	_	80	200	,
Output Transition Time	tTHL	·	10	-	50	100	
(High to Low)			15	-	40	80	
Propagation Delay Time	+		5	_	340	680	
(COMPARING INPUTS - OUTPUTS)	t _{pLH}	•	10	· –	140	280	ns
	t _{pHL}		15	-	100	200	


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time	+		5	-	280	560	
(CASCADING INPUTS	t _{pLH}		10	-	110	220	ns
- OUTPUTS)	t _{pHL}		15	-	90	180	
Input Capacitance	c_{IN}			_	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

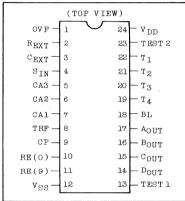
APPLICATION CIRCUIT

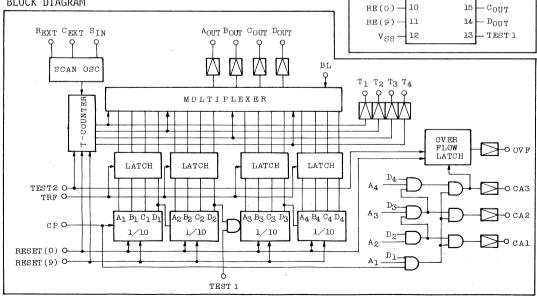
TC5001P

TC5001P 4-DIGIT DECADE COUNTER

TC5001P is four digit decimal counter containing latches and multiplexer circuits and equipped with the terminals of digit signal outputs for dynamic display, blanking input (for zero suppress operation) and transfer input (latch operation).

The maximum count of this counter is 9999 and three CARRY terminals are provided for carry operations required in some applications.

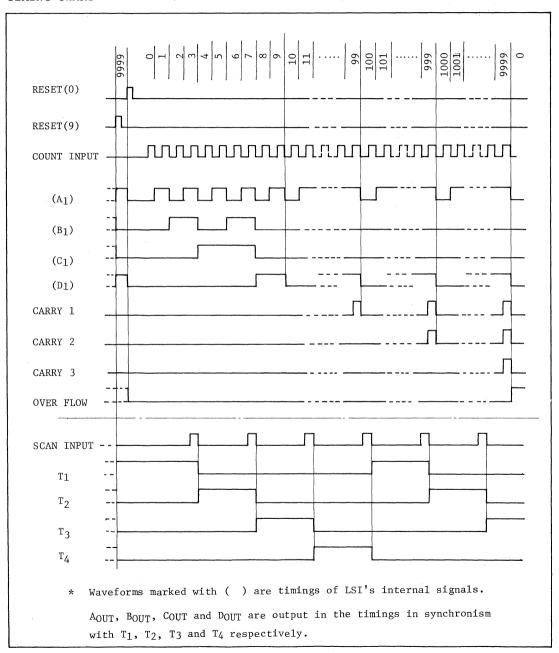

Refer to TRUTH TABLE, TIMING CHART and OPERATING CONSIDERATION for the operations.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+10	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-55~125	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

BLOCK DIAGRAM


DESCRIPTION OF PIN FUNCTION

PIN No.	SYMBOL	NAME	FUNCTION							
1	OVF	OVER FLOW	Terminal to detect OVER FLOW condition of the counter which generates "H" level when COUNT is incremented from "9999". Once set to "H", only RESET (0) can cleat to "L".							
2	R _{EXT}	RESISTER EXTERNAL	This is opened when external CLOCK is supplied from S_{IN} . If external CLOCK is not available, CLOCK can be generated by externally connecting a resistor across S_{IN} and R_{EXT} and a capacitor across S_{IN} and C_{EXT} .							
3	C _{EXT}	CAPACITANCE EXTERNAL								
4	S _{IN}	SCAN INPUT	T-COUNTER CLOCK input and T-COUNTER is changed its condition at the falling edge of $\ensuremath{\text{S}_{\text{IN}}}.$							
5	CA3	CARRY-3	CARRY COUNTER "H" during CP= output "9999" "H" in COUNT							
6	CA2	CARRY-2	from n- "X999" shown at the left,"L" other-							
7	CA1	CARRY-1	th digit "xx99" wise.							
8	TRF	TRANSFER	"H" Decimal COUNTER output is transferred to MULTIPLEXER as it is. "L" COUNTER output at the time of falling edge of TRF is latched.							
9	СР	COUNT INPUT	Lowest order decimal COUNTER CLOCK input and COUNTER is counted by the falling edge of CP.							
10	RE (0)	RESET (0)	"H" Decimal COUNTER output is reset to "0000". This takes precedence over RE (9). "L" If RE (9) = "L", normally counted.							
11	RE (9)	RESET (9)	"H" If RE (0) = "L", COUNTER output is set to "9999".							
			"L" If RE (0) = "L", normally counted.							
12	V _{SS}	V _{SS}	(GND)							

DESCRIPTION OF PIN FUNCTION

PIN No.	SYMBOL	NAME		FUNCTION						
			"H"	If TEST (2) = "H", normally counted.						
13	TEST1	TEST ₁		If TEST (2) = "H", only lower order two digits are counted.						
14	D _{OUT}	D-OUTPUT	Decima	1 COUNTER BCD outputs.When T1="H", the lowest						
15	$c_{ m OUT}$	C-OUTPUT		order digit (first digit) is output, when T_2 = "H", the second digit is output, and when T_4 = "H", the fourth digit is output. During BLANKING all the						
16	BOUT	B-OUTPUT								
17	A _{OUT}	A-OUTPUT	outputs become "H".							
18	BL	BLANKING	If BL = "H", only all AOUT through DOUT (BCD OUT) become "H".							
19	Т4	Т4	Output	to indicate the digit position of output						
20	Т3	Т3	signals	s $A_{ m OUT}$ through $D_{ m OUT}$ (BCD OUT) and corresponds						
21	T ₂	T ₂	in desc	cending order from T ₁ .						
22	т1	T ₁								
23	TEST2	TECTO	"H" Normally counted.							
23	15312	TEST ₂	"L" Causes T_1 = "L", $T_2 \sim T_4$ = "H", OVF = "H".							
24	v_{DD}	v_{DD}	V _{DD} Pow	wer Supply (3~8 volt)						

TIMING CHART

TRUTH TABLE

RESET (0)	RESET (9)	TRAN- SFER	BLAN- KING	TEST ₁	TEST ₂	A _{OUT}	B _{OUT}	C _{OUT}	D _{OUT}	т1	т2	Т3	Т4	OVER FLOW	
Н	*	Н	L	*	Н	L	L	L	L	Н	L	L	L	L	Note-1
L	H	H	Ī.	*	Ħ	Н	L	L	Н	н	L	L	L	Х	Note-1
L	L	Н	L	Н	Н	С	С	С	С	S	S	S	S	Х	-
L	L	Н	L	L	Н	С'	C'	C'	С'	S	S	S	S	Х	
*	*	L	L	*	*	LA	LA	LA	LA	Х	Х	Х	Х	Х	
*	*	*	Н	*	*	Н	Н	Н	Н	Х	Х	Х	Х	Х	
*	*	*	*	*	L	X	Х	Х	Х	L	Н	Н	Н	Н	

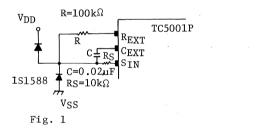
- → Don't Care
- X Not defined
- C Count operation (all digits)
- C' Count operation (only lower order two digits)
- LA Latch operation
- S Scan operation

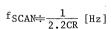
Note 1. SCAN INPUT = "L"

- o All the inputs/outputs (except COUNT INPUT and SCAN INPUT) are activated by "H" level.
- o COUNT INPUT $t_n t_{n+1}$ SCAN INPUT $t_n t_{n+1}$
- o When used, TEST₁ = "H" and TEST₂ = "H" should be satisfied.

OPERATING CONSIDERATION

1. RESET Operation


- (1) When the level of RESET (0) terminal is set to "H", BCD output of COUNTER is set to "O". The four digit display becomes 0000.
- (2) When the level of RESET (9) terminal is set to "H", BCD output of COUNTER is set to "9". The four digit display becomes 9999.
- (3) When both of RESET (0) terminal and RESET (9) terminal are "H", RESET (0) terminal takes precedence.


2. SCAN Operation

(1) SCAN signal for dynamic display applied to SCAN INPUT terminal controls the multiplexer circuit and transfers four digit information in the latches to BCD outputs one digit at a time in sequence.

OPERATING CONSIDERATION

- (2) Arbitrary digit can be made real time output (completely static) by making SCAN signal DC.
- (3) The digit pulses in synchronism with SCAN signal for dynamic display appear at the digit output terminals (T_1 , T_2 , T_3 and T_4). The digit output terminals (T_1 , T_2 , T_3 and T_4) are used for the digit selection circuit and for arbitrary digit zero suppress.
- (4) The digit pulse is activated by the falling edge of SCAN INPUT signal.
- (5) SCAN signal is supplied from the internal oscillator as shown in Fig. 1 or from the external one as shown in Fig. 2.

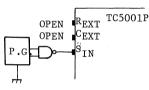


Fig. 2

3. Latch Operation

- (1) When the level of TRANSFER terminal is "H", COUNTER information is transferred to the latches.
- (2) When the level of TRANSFER terminal is charged from "H" to "L", the information transferred from COUNTER is latched.

4. Count Operation

- (1) Set input terminals TEST $_1$, TEST $_2$ and TRANSFER to "H" and BLANKING terminal to "L".
- (2) COUNTER is set by applying "H" level to RESET (0) or RESET (9) terminal and two RESET terminals are returned to "L".

OPERATING CONSIDERATION

- (3) When the count pulse is applied to COUNT INPUT terminal, COUNTER performs its COUNT operation at the falling edge of count pulse.
- (4) The maximum count is 9999 and if 9999 is exceeded, "H" level appears at OVER FLOW terminal. Removal of OVER FLOW signal can be achieved by applying"H" to RESET (0) terminal.
- (5) The carry signals from 100's and 1000's digits appear at output terminals CARRY1, CARRY2 and CARRY3.
- (6) When $TEST_1$ terminal is "L", only lower order two digits of COUNTER are counted.

5. BLANKING Operation

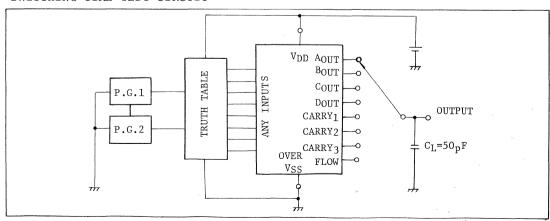
When BLANKING terminal is set to "H", all the BCD outputs of COUNTER become "H" and this signal is used to achieve the zero suppress operation.

TC5001P

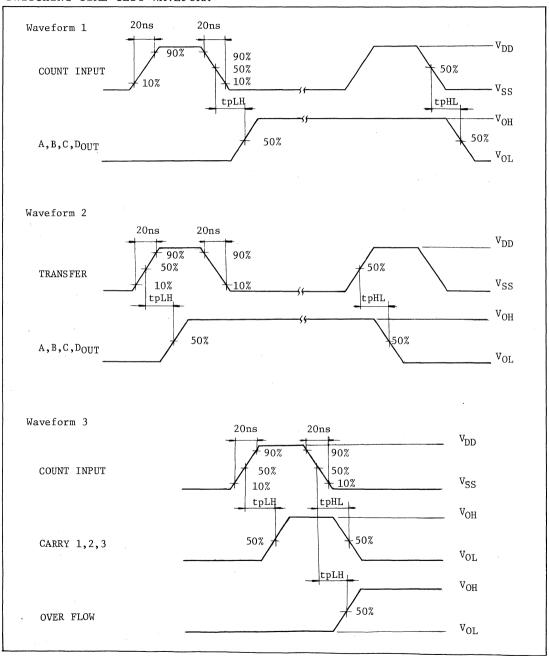
RECOMMENDED OPERATING CONDITIONS (Vss=0v)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3		8	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V
Operating Temp.	Topr	-30	-	85	°C
External Registance	R _{EXT}	10	100	1000	kΩ
External Capacitance	c_{EXT}	10-4	0.02	1.0	μF

ELECTRICAL CHARACTERISTICS (VSS=0V)


CHARACT	ERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	-30 MIN.		MIN.	25°C	MAX.		°C MAX.	UNIT
High Lev Output V		V _{OH}	I _{OUT} < luA V _{IN} =V _{DD} , V _{SS}	5	4.95		4.95		-	4.95	_	v
Low Leve Output V		VOL	I _{OUT} <1,nA V _{IN} =V _{DD} ,V _{SS}	5	_	0.05	-	_	0.05	-	0.05	
	AOUT,BOUT COUT,DOUT	I _{OH}		5	-1.2	-	-1.0		_	-0.75	-	
High Level Output Current	CARRY1,2,3 OVER FLOW T1,T2,T3, T4	I _{OH}	$V_{OH} = 2.5V$ $V_{IN} = V_{DD}, V_{SS}$	5	-1.2	_	-1.0		_	-0.75		mA
	REXT CEXT	IOH		5	-0.3	-	-0.25		_	-0.2	-	
	AOUT,BOUT COUT,DOUT	IOL	, e	5	2.4	-	2.0		_	1.6	_	
Low Level Output Current	CARRY1,2,3 OVER FLOW T1,T2,T3, T4	IOL	$V_{OL} = 0.4V$ $V_{IN} = V_{DD}, V_{SS}$	5	0.52	-	0.44		_	0.36	_	mA
	R _{EXT} CEXT	I _{OL}		5	0.28	-	0.24		_	0.2	-	
Input	"H" Level	v_{IH}	V _{OUT} =0.1V,4.9V	5	3.8	-	3.8	2.75	_	3.8	-	V
Voltage	"L" Level	$v_{ m IL}$	$II_{OUT} < 1$, uA	5	_	1.2	-	2.25	1.2	-	1.2	
Input	"H" Level	I_{IH}	$v_{IH} = 8v$	8	-	0.2	-		0.2		1.0	μA
Current	"L" Level	IIL	V _{IL} = OV	8	-	-0.2			-0.2		-1.0	۸۰۰
Quiescent Current Consumption		I _{DD}	V _{IN} =V _{DD} ,V _{SS}	8	_	50	-	-	50	_	500	μA

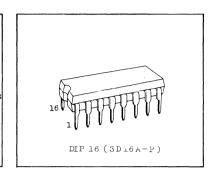
^{*} All valid input combinations


SWITCHING	CHARACTERISTICS	(Ta=25°C,	VSS=0V	$C_L = 50 pF$
-----------	-----------------	-----------	--------	---------------

CHADAC	CHARACTERISTIC		TEST		MIN.	TYP.	MAX.	UNIT
. CHARAC	TERISTIC	SYMBOL	CONDITIONS	V _{DD} (V)	TILIN.	111.	na.	ONII
(LOW-HIGH) Propagation	n Delay Time	tpLH	COUNT INPUT -	5	_	600	1000	
(HIGH-LOW) Propagation	n Delay Time	tpHL	(Waveform 1)	5	_	600	1000	
(LOW-HIGH) Propagation	n Delay Time	tpLH	TRANSFER — A,B,C,D _{OUT}	5	_	490	1000	ns
(HIGH-LOW) Propagation	n Delay Time	tpHL	(Waveform 2)	5	-	400	1000	
(LOW-HIGH) Propagation	n Delay Time	tpLH	COUNT INPUT — CARRY1,2,3 —	5	_	400	1000	
(HIGH-LOW) Propagation	n Delay Time	tpHL	OVER FĹOŴ (Waveform 3)	5	_	400	1000	
Max. Clock	Rise Time	t _{rCL} ,tfCL	,	5	20	-	-	μs
Min. Clear	Pulse Width	tw(RE)	RESET(0),(9)	5	_		1000	ns
Min. Trans Width	fer Pulse	t _w (TR)	TRANSFER	5	_		1000	113
	9, 10, 11, 18 PIN	CIN			_	5	7.5	
Input Capacity	4, 13, 23 PIN	CIN			_	7	10	pF
,	8 PIN	C _{IN}			_	9	15	
Max.Clock	Frequency	f _{CL}		5	0.5	2.0	-	MHz

SWITCHING TIME TEST CIRCUIT

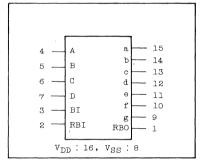
SWITCHING TIME TEST WAVEFORMS

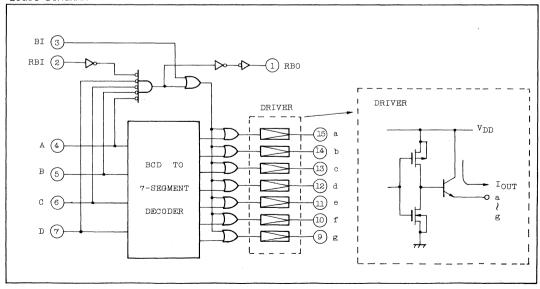

TC5002BP, TC5022BP

TC5002BP, TC5022BP BCD TO 7-SEGMENT DECODER/DRIVER

TC5002BP and TC5022BP are decoders to convert BCD code input to the driving signal for 7-segment display element and equipped with NPN transistors as the output buffers enabling direct driving of common cathode type LED.

When BI input is set at "H" level, all the segment outputs are turned "OFF" (not illumination) regardless of other inputs.


RBI input is to turn the output "OFF" and RBO input is to generate "H" level output only for "O" code input and these are used for leading zero suppress when connected in cascade.


ABSOLUTE MAXIMUM RATINGS

ADSOLUTE TRANSITION TANTI	1140		
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	T _{stg}	- 65∼150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	

PIN ASSIGNMENT

LOGIC DIAGRAM

TC5002BP, TC5022BP

TRUTH TABLE

(TC	5002BF	')												
		INP	UT			OUTPUT								
BI	RBI	A	В	С	D	а	Ъ	С	d	е	f	g	RBO	NOTE
H	*	*	*	*	*	L	L	T	L	L	L	L	☆	
L	Н	L	L	L	L	L	L	L	L	L	L	L	Н	
L	L	L	L	L	L	Н	Н	Н	H	Н	H	L	L	
L	*	H	L	L	L	L	Н	H	L	L	L	L	L	
L	*	L	Н	L	L	Н	Н	L	Н	Н	L	Н	L	
L	*	H	Н	L	L	H	Н	Н	H	L	L	Н	L	
L	*	L	L	Н	L	L	H	Н	L	L	H	Н	L	
L	*	Н	L	Н	L	Н	L	Н	H	L	H	Н	L	
L	*	L	Н	Н	L	L	L	Н	Н	Н	H	Н	L	1
L	*	Н	Н	Н	L	Н	H	Н	L	L	L	L	L	2
L	*	L	·L	L	H	Н	Н	Н	Н	Н	H	Н	L	
L	*	Н	L	L	Н	Н	Н	Н	L	L	H	Н	L	3
L	*	L	H	L	Н	H	H	Н	Н	Н	Н	L	L	
L	*	Н	H	L	H	L	Н	Н	L	L	L	L	L	
L	*	L	L	Н	Н	Н	Н	L	Н	Н	L	H	L	
L	*	Н	L	Н	Н	Н	H	Н	Н	L	L	Н	L	
L	*	L	Н	Н	H	L	H	H	L	L	Н	H	L	
L	*	H	Н	Н	Н	Η.	L	Н	Н	L	H	Н	L	

NOTE 1 : TC5022BP, \longrightarrow a = "H"

☆: Undetermined

2 : TC5022BP, f = "H"

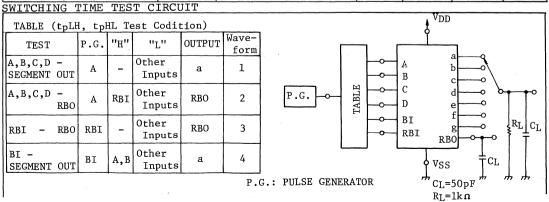
* : Don't Care

3 : TC5022BP, ____ d = "H"

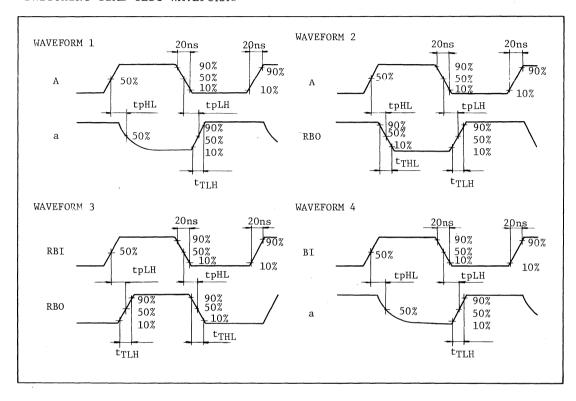
DISPLAY INDICATE MODE TC5002BP TC5022BP

RECOMMENDED OPERATING CONDITIONS (VSS= 0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3		18	V
Input Voltage	v_{IN}	0	-	$v_{ m DD}$	V
Operating Temp.	Topr	-40	_	85	°C


ELECTRICAL CHARACTERISTICS (VSS=0V)

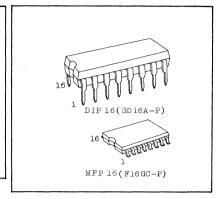
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	-40 MIN.	O°C MAX.	MIN.	25°C	MAX.	8 MIN.	5°C MAX.	UNIT
High Level Output Voltage (RBO)	V _{OH}	I _{OUT} <1µA V _{IN} =V _{SS} , V _{DD}	5 10 15	4.95 9.95 14.95		,	5.00 10.00 15.00	-	4.95 9.95 14.95		V
Low Level Output Voltage (RBO)	VOL	I _{OUT} < luA V _{IN} =V _{SS} , V _{DD}	5 10 15		0.05 0.05 0.05	- - -	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	
High Level Output Voltage (a - g)	V _{OH}	ابرا۔ I _{OUT} ا V _{IN} =V _{SS} , V _{DD}	5 10 15	4.0 9.0 14.0	- -	4.0 9.0 14.0	4.5 9.5 14.5	- - -	4.0 9.0 14.0	1 1 1	V
High Level Output Current (RBO)	IOH	V _{OH} =4.6V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	-0.2 -0.5 -1.4	- - -	-0.16 -0.4 -1.2		- - -	-0.12 -0.3 -1.0	-	mA
Low Level Output Current (RBO)	$I_{ m OL}$	VOL=0.4V VOL=0.5V VOL=1.5V VIN=VSS, VDD	5 10 15	0.52 1.3 3.6	- - -	0.44 1.1 3.0		-	0.36 0.9 2.4	1 1 1	
High Level Output Current (a - g)	I _{OH}	V _{OH} =3.5V V _{OH} =8.5V V _{OH} =13.5V V _{IN} =V _{SS} , V _{DD}	5 10 15	-20 -25 -30	- - -	-20 -25 -30		- - -	-15 -20 -25	; - -	mA
High Level Input Voltage	V _{1H}	V _{OUT} =0.5V,4.0V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1µA	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	- -	V
Low Level Input Voltage	V _{IL}	VOUT=0.5V,4.0V VOUT=1.0V,9.0V VOUT=1.5V,13.5V TOUT < 1,11A	5 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	-	1.5 3.0 4.0	
Disable Current (a - g)	I _{DL}	v _{OL} =0v	18	-	-3.0	-	-10-4	-3.0	-	-30	μА
Input "H" Level Current "L" Level	IIL	V _{IH} =18V V _{IL} =0V	18 18	-	0.3 -0.3	-	10-5 - 10-5		-	1.0 -1.0	μА
Quiescent Current Consumption	I _{DD}	V _{IN} ≔V _{SS} ,V _{DD}	5 10 15	-	20 40 80	- - -	0.005 0.010 0.015	20 40 80	- - -	150 300 600	μА


^{*} All valid input combinations. Outputs open.

^{**} Required pull down register R_L = 20 k α (a \sim g outputs).

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Output Rise Time (SEGMENT OUT)	t _{TLH}	R _L =1 kΩ	5 10 15	<u>-</u>	100 50 40	200 100 80		
Output Rise Time (RBO)	t _{TLH}		5 10 15	- - -	130 65 50	400 200 160	ns	
Output Fall Time (RBO)	t _{THL}		5 10 15	- - -	100 50 40	200 100 80		
(LOW-HIGH) Propagation Delay Time (A,B,C,D-SEGMENT OUT)	t _p LH	R _L =1 kΩ	5 10 15	- - -	500 150 120	1000 400 300	ns	
(HIGH-LOW) Propagation Delay Time (A,B,C,D-SEGMENT OUT)	tpHL	RL=1 kΩ	5 10 15	- - -	1000 450 320	2000 1000 700		
(LOW-HIGH) Propagation Delay Time (A,B,C,D - RBO)	tpLH		5 10 15	- - -	1000 370 250	2000 1000 750	ns	
(HIGH-LOW) Propagation Delay Time (A,B,C,D - RBO)	tpHL		5 10 15	- - -	500 200 140	1000 500 300		
(LOW-HIGH) Propagation Delay Time (RBI - RBO)	tpLH		5 10 15	- - -	800 270 190	1600 700 500		
(HIGH-LOW) Propagation Delay Time (RBI - RBO)	tpHL		5 10 15	- - -	180 70 50	700 350 250	ns	
Propagation Delay Time (BI - SEGMENT OUT)	t _p LH t _p HL	R _L =1 kΩ	5 10 15	- - -	500 200 150	1500 600 500	ns	
Input Capacity	CIN			-	5	7.5	pF	

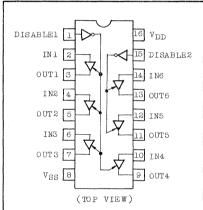
SWITCHING TIME TEST WAVEFORMS

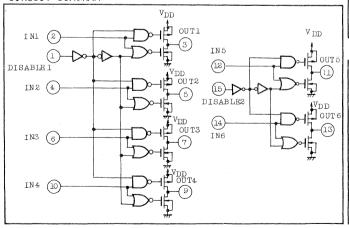

TC5012BP/BF

TC5012BP/TC5012BF HEX NON-INVERTING 3-STATE BUFFER

TC5012BP/BF contains six circuits of non-inverting buffers having three state output.

Since DISABLE inputs to disable the outputs are provided separately, one common for four circuits and another common for other two circuits, this is suitable for controlling four bit data lines.


Large output current enables to directly control one $\ensuremath{\mathsf{TTL}}$ input.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	VOUT	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	T_{A}	-40 ∿ 85	°C
Storage Temperature Range	Tstg	-65 ∿ 150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	•

PIN ASSIGNMENT

CIRCUIT DIAGRAM

TRUTH TABLE

DISABLE INPUT	INPUT	OUTPUT
L	L	L
L	Н	Н
Н	*	HZ

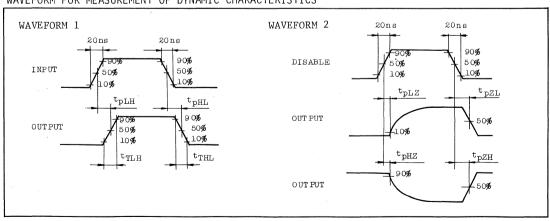
* : DON'T CARE

HZ: HIGH IMPEDANCE

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	$v_{ m DD}$	3	_	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

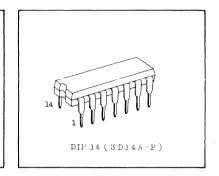

CHARACTER	RISTIC	SYMBOL	TEST CONDITION	v_{DD}	-40	°C		25°C		85	°C	UNITS
Ommunorisi	KIDIIO	BILLDOLL		(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONTIE
High-Leve Output Vo		v _{OH}	$ I_{OUT} < 1 \mu A$ $v_{IN} = v_{SS}$, v_{DD}	5 10 15	4.95 9.95 14.95	- - -	1	5.00 10.00 15.00	_ _ _	4.95 9.95 14.95	_	
Low-Level Output Vo		V _{OL}	$ I_{OUT} < 1_{\mu}A$ $v_{IN} = v_{SS}$, v_{DD}	5 10 15	_ _ _	0.05 0.05 0.05	- - -	0.00 0.00 0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
Output Hi Current	_	ІОН	V _{OH} =4.6V V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V	5 5 10	- -1.4 -1.4	-	- -1.25 -1.25		-	- -1.0 -3.0	-	
Output Lo		I _{OL}	VIN=VSS, VDD V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V VIN=VSS, VDD	15 5 10 15	3.5 6.0 26.0	- - -	3.2 5.0 24.0		- - -	-3.0 2.5 3.6 18.0	- - - -	mA
Input Hig Voltage		VIH	V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 _µ A		3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.5 8.25		3.5 7.0 11.0	-	
	Input Low Voltage VIL		V _{OUT} =0.5V, 4.5V V _{OUT} =1.0V, 9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1 _µ A	10	- - -	1.5 3.0 4.0	- -	2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V
Input	"H" Level	I_{IH}	V _{IH} =18V	18	-	0.3	_	10-5	0.3	_	1.0	
Current	"L" Level	$I_{ m IL}$	AIT=OA	18	-	-0.3	_	-10 ⁻⁵	-0.3	-	-1.0	
3-State Output	"H" Level	${ m I}_{ m DH}$	v _{OUT} =18v	18	_	0.5	_	10-4	0.5	_	30	
Leakage Current	"L" Level	$^{\mathrm{I}}\mathrm{_{DL}}$	$V_{\mathrm{OUT}} = 0 V$	18	_	-0.5	_	-10-4	-0.5	_	-30	μA
Quiescent Device Cu		$I_{ m DD}$	V _{IN} =V _{SS} ,V _{DD}	5 10 15	-	4.0 8.0 16.0	-	0.002 0.004 0.008	4.0 8.0 16.0	- - -	30 60 120	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS	(Ta=25°C, $V_{SS}=0V$, C	$C_{L}=50pF$)
------------------------------------	---------------------------	----------------

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNITS
Output Transition Time			5	-	130	400	
.*	tTLH		10	-	65	200	
(Low to High)			15	_	50	100	
Output Transition Time			5	-	70	200	
(High to Low)	$^{t}_{\mathrm{THL}}$		10	-	40	100	
(High to Low)			15	-	35	80	
Propagation Delay Time (IN - OUT)			5	-	320	4 30	
	t _{pLH}		10	_	150	220	
			15	-	110	200	
Propagation Delay Time			5	-	280	380	
(IN - OUT)	t_{pHL}		10	-	130	220	
			15	-	100	200	ns
There can be also the			5	_	320	500	115
Three State Disable Time	t_{pHZ}	$R_L=1k\Omega$	10	-	280	450	
(DISABLE - OUT)			15	-	250	400	
Three State Disable Time			5	_	420	600	
	t_{pLZ}	$R_L=1k\Omega$	10	_	320	500	
(DISABLE - OUT)			15	_	270	450	
Three State Disable Time			5	_	280	400	
	t _{pZH}	$R_{L=1k\Omega}$	10	-	140	200	
(DISABLE - OUT)	•		15	-	120	180	
Three State Disable Time			5	_	300	450] .
· ·	t_{pZL}	$R_L=1k\Omega$	10	-	150	225	
(DISABLE - OUT)	r		15	-	130	200	
Input Capacitance	c_{IN}			-	7.5	15	pF

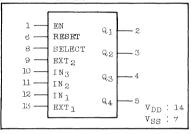
WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

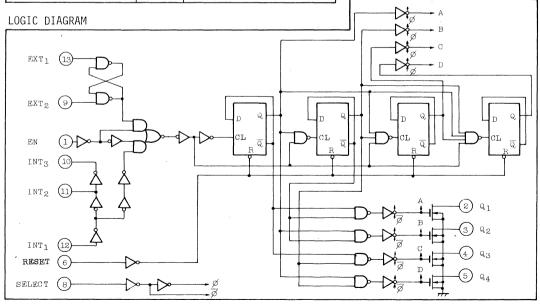

TC5018P

TC5018P 4 BIT BINARY COUNTER WITH CLOCK GENERATOR

TC5018P is four digit binary counter equipped with CR oscillator circuit to automatically generate the clock pulse and RS flip-flop to provide the clock input by mechanical contact points.

The outputs are buffered by N-channel open-drain structure which enables to directly drive two TTL IC's or LED components.


Usually, binary codes are obtained at four output with SELECT input being "H", but if SELECT input is set to "L", scan output which shifts "L" level on Q_1 - Q_4 in sequence is obtained. This is suitable for applications such as channel scanner.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~V _{SS} +14	V
Input Voltage	vIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

TRUTH TABLE

		IN	PUTS				OU'	TPUTS	
IN ₁	EXT_1	EXT ₂	EN	SELECT	RESET	Q_1	Q2	Q3	Q4
*	CL	CL	L	L	L	S	S	S	S
CL	*	*	Н	L	L	S	S	S	S
*	CL	CL	L	Н	L	С	С	С	С
CL	*	*	Н	Н	L	С	С	С	C
*	*	*	*	L	Н	L	Н	Н	Н
*	*	*	*	Н	· H	L	L	L	L

 $\ensuremath{\text{\textbf{C}}}$; Count operation

S ; Scan Operation

CL; Clock Pulse *; Don't care

(Note) Outputs change the state at the rising edge of CLOCK.

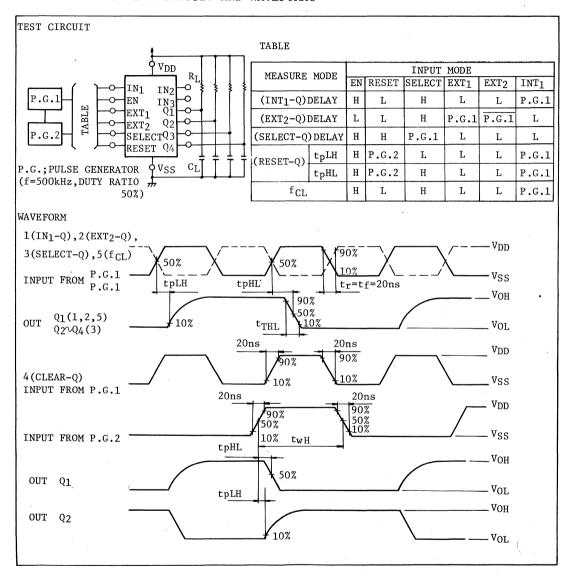
CL CL

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	·	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$		3	-	12	V
Input Voltage	v_{IN}		0	-	v_{DD}	V
Operating Temp.	Topr		-40	-	85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST	$v_{ m DD}$	-4	0°C		25°C		85	°C	UNIT
	DIIIDOL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Low Level	V _{OL}	$ I_{\mathrm{OUT}} < 1$ nA	5	-	0.05	-	0.00	0.05	-	0.05	V.
Output Voltage	. 01	$v_{\text{IN}}=v_{\text{SS}}$, v_{DD}	10	-	0.05	-	0.00	0.05	-	0.05	1 1
Low Level		VOL = 0.4V	5	4.5	-	4.5	9.0	- ,	3.2	-	
Output Current	IOL	$V_{OL} = 0.5V$	10	9.0	-	9.0	20.0	-	6.0	-	mA
		V _{IN} =V _{SS} , V _{DD}									
High Level		V _{OUT} =0.5V,4.5V	5	3.5	_	3.5	2.75	-	3.5	_	
Input Voltage	v_{IH}	V _{OUT} =1.0V,9.0V	10	7.0	-	7.0	5.5	-	7.0	-	
	Δ	$ I_{OUT} < 1 \mu A$									v
Low Level		V _{OUT} =0.5V,4.5V	5	_	1.5	-	2.25	1.5	-	1.5	
Input Voltage	$\Lambda^{\mathrm{I}\Gamma}$	V _{OUT} =1.0V,9.0V	10	-	3.0	-	4.5	3.0	-	3.0	
Imput voicage	Δ	ا 1 _{OUT} ا									
Output Off Leakage Current	IDH	V _{DH} = 12V	12	_	0.5	-	10-4	0.5	-	30	IJА
Input H Level	IIH	$V_{IH} = 12V$	12	-	0.3	_	10-5	0.3	_	1.0	
Current L Level	IIL	$\Lambda^{I\Gamma} = 0\Lambda$	12	-	-0.3	. –	-10-5	-0.3	-	-1.0	μA
Quiescent Current Consumption UN=VSS, VDD *		5 10	<u>-</u>	20 40	 -	0.005 0.010	20 40	- -	150 300	·ΔιΑ	


 $[\]star$ All valid input combinations

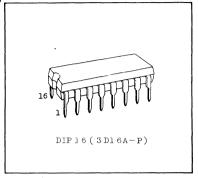
 $[\]triangle$ R_L = 10 k Ω

SWITCHING CHARACTERISTICS (Ta=25°C, Vss=0v)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Fall Time	t_{THL}	$R_{L} = 5k\Omega$ $C_{L} = 50pF$	5 10	-	-	200 100	ns
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{L} = 5k\Omega$	5	-	750	1800	
(INT ₁ - Q)		$C_{L} = 50 \text{ pF}$	10		380	900	ns
(HIGH-LOW) Propagation Delay Time (INT1 - Q)	tpHL	$R_{L} = 5k\Omega$ $C_{L} = 50pF$	5 10	_	500 200	1500 600	
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{\rm L} = 5k\Omega$	5	-	750	1800	
(EXT ₂ - Q)		$C_L = 50pF$	10	_	380	900	ns
(HIGH-LOW) Propagation Delay Time	tpHL	$R_{L} = 5k\Omega$	5	-	500	1500	
(EXT ₂ - Q)	Pins	$C_{L} = 50pF$	10	-	200	600	
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{L} = 5k \Omega$	5	-	380	1000	
(SELECT - Q)	_	$C_L = 50pF$	10	_	140	500	ns
(HIGH-LOW) Propagation Delay Time	tpHL	$R_L = 5k \Omega$	5	-	200	600	
(SELECT - Q)		$C_{\rm L} = 50 \rm pF$	10	-	90	300	
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{L} = 5k\Omega$	5	-	550	1500	
(RESET - Q)		$C_L = 50pF$	10	_	300	900	ns
(HIGH-LOW) Propagation Delay Time	tpHL	$R_{L} = 5k\Omega$	5	-	400	1500	
(RESET - Q)	CPILL	$C_L = 50pF$	10	-	150	900	
Max. Clock Rise Time	trCL	SEXT1 LINES	5	1000	-,	_	μs
Max. Clock Fall Time	tfCL	$\left\{_{\text{EXT}_2}\right\}$, INT1	10	1000		-) 13
Min. Pulse Width (RESET)	t _{WH}		5 10	-		400 200	ns
Max. Clock Frequency	f _{CL}	$R_{L} = 5k\Omega$ $C_{L} = 50pF$	5 10	1.0 1.0	2.0 2.0	_	MHz
Max. Clock Frequency	f _{CL}	$R_{L} = 1k\Omega$ $C_{L} = 15pF$	5 10	1.0 2.0	2.0 5.0		MHz
Output Off Capacity	C _{OUT}			_		-	pF
Input Capacity	CIN			-	5	75	рF

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

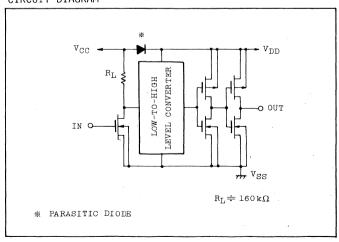
TC5020BP

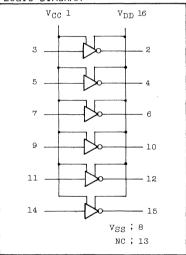

TC5020BP HEX LOW-TO-HIGH VOLTAGE TRANSLATOR (INVERTING)

TC5020BP contains six circuits of level converters which convert the signals from low power supply voltage logical systems to the logical signals for high power supply voltage C^2MOS systems.

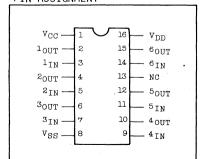
This is most suitable for interfacing between TTL, MDTL systems and C2MOS systems, and between two power supply voltage C2MOS systems.

Normally, V_{CC} is connected to low voltage power supply and V_{DD} is connected to high voltage power supply, however this can also operate having V_{CC} and V_{DD} common.


When the input is "H", some amount of ICC flows because of circuit structure.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
	$v_{\rm CC}$	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{CC}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	•


CIRCUIT DIAGRAM

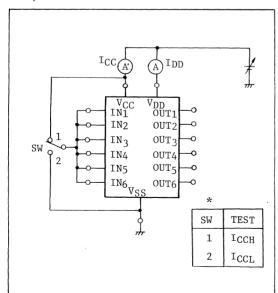
LOGIC DIAGRAM

PIN ASSIGNMENT

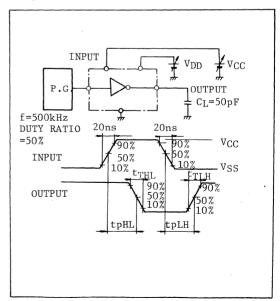
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Supply Voltage (1)	$v_{ m CC}$	$v_{CC} = v_{DD}$	3	-	18	· V	
Supply Voltage (2)	VCC	$v_{CC} < v_{DD}$	5	_	$v_{ m DD}$	77	
Supply voicage (2)	$v_{ m DD}$		5	_	18	V	
Input Voltage	VIN		0	_	$v_{\rm CC}$. V	
Operataing Temp.	Topr		-40	_	85	°C	

ELECTRICAL CHARACTERISTICS (VSS=0V, VCC=VDD)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	-40 MIN.	O°C MAX.	MIN.	25°C	MAX.	8. MIN.	5°C MAX.	UNIT
High Level Output Voltage	V _{OH}	IOUT < 1µA VIN = VSS	5 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.00	- - -	4.95 9.95 14.95	_	V
Low Level Output Voltage	v_{OL}	$ I_{OUT} < 1$ AuA $ V_{IN} = V_{DD} $	5 10 15	1 1 1	0.05 0.05 0.05	- - -		0.05 0.05 0.05	- - -	0.05 0.05 0.05	
High Level Output Current	I _{OH}	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS}	5 10 15	-0.2 -0.5 -1.4	-	-0.16 -0.4 -1.2		- - -	-0.12 -0.3 -1.0	- -	mA
Low Level Output Current	$I_{ m OL}$	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{DD}	5 10 15	0.52 1.3 3.6	- - -	0.44 1.1 3.0		- - -	0.36 0.9 2.4	- - -	
High Level Input Voltage	v_{IH}	V _{OUT} = 0.5V V _{OUT} = 1.0V V _{OUT} = 1.5V I _{OUT} < 1.1A	5 10 15	4.0 7.0 10.0	- - -	4.0 7.0 10.0		- - -	4.0 7.0 10.0	- - -	V
Low Level Input Voltage	v_{IL}	V _{OUT} = 4.5V V _{OUT} = 9.0V V _{OUT} = 13.5V I _{OUT} < 1,µA	5 10 15	I I I	1.0 1.2 1.5	- -		1.0 1.2 1.5	·	1.0 1.2 1.5	•
Input H Level	IIH	V _{IH} = 18V	18	_	0.3	-	10-5		_	1.0	Aدر
Current L Level	IIL	$V_{IL} = 0V$	18	_	-0.3	-	-10 ⁻ 5	-0.3	-	-1.0	
Quiescent Current Consumption	I _{DD}	$v_{IN} = v_{SS}, v_{DD}$	5 10 15	- - -	1.0 2.0 4.0	- - -	0.001 0.001 0.002	1.0 2.0 4.0		7.5 15.0 30.0	Aιι
Quiescent Current Consumption	ICCH	$V_{IN} = V_{DD}$	5 10 . 15	- - -	0.9 1.6 2.1	- - -	0.2 0.4 0.6	0.48 0.96 1.5	- - -	0.9 1.6 2.1	mA
Quiescent Current Consumption	ICCL	V _{IN} = V _{SS}	5 10 15	- - -	1.0 2.0 4.0	- - -	0.001 0.001 0.002	1.0 2.0 4.0	- - -	7.5 15.0 30.0	Auر

^{*} All valid input combinations


SWITCHING	CHARACTERISTICS	(Ta=25°C,	Vss=0v,	CL=50pF)

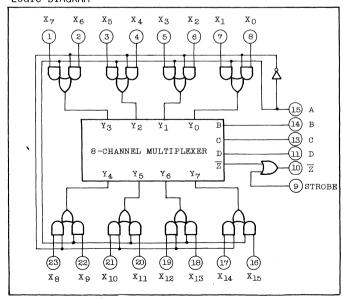
CHARACTERISTIC	SYMBOL	CONDITIONS	VCC(V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TT.H}		-	5 10 15	- - -	130 65 50	400 200 160	ns
Output Fall Time	${ t t}_{ ext{THL}}$		- -	5 10 15	- - -	100 50 40	200 100 80	
(LOW-HIGH). Propagation Delay Time	t _p LH		5 10 15	5 10 15	- - -	780 - 330 230	1600 800 600	
			5 5 10	10 15 15	- - -	750 850 330	1600 1800 800	ns
(HIGH-LOW) Propagation Delay Time	tрHL		5 10 15	5 10 15	- - -	220 75 50	600 300 200	0
		_	5 5 10	10 15 15	- - -	130 150 60	300 400 200	
Input Capacity	CIN				-	5	7.5	pF

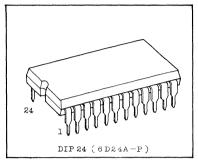
IDD, ICC TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

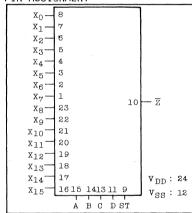
TC5023BP 16-LINE DATA SELECTOR/MULTIPLEXER

TC5023BP is data selector which selects one of 16 input signals $X_0 \sim X_{15}$ according to binary address inputs A, B, C and D.


The data input (Xn) which corresponds to the binary address appears inverted on output \overline{Z} .


If STROBE input is set to "H", output \overline{Z} becomes "H" regardless of other inputs.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	· PD	300	mW
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

	I	NPUT	S		OUTPUT
D	C	В	Α	ST	\overline{Z}
*	*	*	*	Н	Н
L	L	L	L	L	<u>x</u> 0
L	ь	L	H	L	Xı
L	L	Н	L	L	XZ
L	L	H	H	L	X3
L	H	L	L	L	X4
L	Н	L	Н	L	X5
L	H	Н	L	L	X6
L	H	H	Н	L	X7
H	L	L	L	L	X8
H	L	L	Н	L	X9
H	L	H	L	L	X ₁₀
H	L	Н	Н	· L	X11
H	Н	L	L	L	X12
H	Н	L	H	L	X13
H	Н	H	L	L	X14
H	Н	Н	H	L	X15
	* : D	on' t	Care		

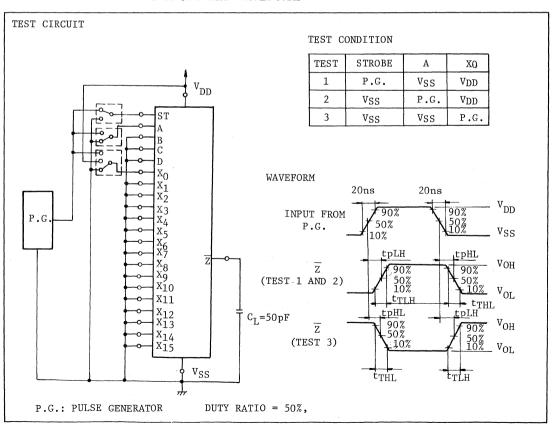
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN	1.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3	3	-	18	V
Input Voltage	VIN	0)	_	v_{DD}	V
Operating Temp.	Topr	-40)	_	85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	CVMPOI	TEST CONDITIONS	v_{DD}	-40	O°C		25°C		85	°C	UNIT
CHARACTERISTIC	STRIBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	V _{OH}	I I _{OUT} I< 1µA V _{IN} = V _{SS} ,V _{DD}	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.00 10.00 15.00	- - -	4.95 9.95 14.95	- - -	v
Low Level Output Voltage	v _{OL}	IOUT < LuA VIN = VSS, VDD	5 10 15	- - -	0.05 0.05 0.05	-	0.00 0.00 0.00	0.05 0.05 0.05	_	0.05 0.05 0.05	
High Level Output Current	ІОН	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V	5 10 15	-0.2 -0.5 -1.4		-0.16 -0.4 -1.2		- - -	-0.12 -0.3 -1.0	- - -	
		$V_{IN} = V_{SS}, V_{DD}$							0.06		mA
Low Level Output Current	IOL	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0		_ _ _	0.36 0.9 2.4	- - -	
High Level Input Voltage	VIΗ	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1µA	10	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	
Low Level Input Voltage	VIL	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1µA	10	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input High Level	IIH	$V_{IH} = 18V$	18	-	0.3	-	10-5	0.3	-	1.0	μА
Current Low Level	IIL	VIL = OV	18	-	-0.3	-	-10-5	-0.3	-	-1.0	۸۰۰
Quiescent Supply Current	$I_{ m DD}$	v _{IN} = v _{SS} ,v _{DD} *	5 10 15	- - -	20 40 80	- - -	0.005 0.010 0.015	20 40 80	- - -	150 300 600	ЩA

* All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, $V_{SS=0V}$, $C_{L=50pF}$)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t_{TLH}		5 10 15	- - -	130 65 50	400 200 160	
Output Fall Time	t_{THL}		5 10 15	-· - -	100 50 40	200 100 80	ns

SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

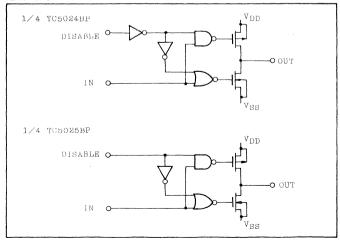
ĆHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
(LOW-HIGH) Propagation Delay Time $(X_n,A,B,C,D - Z)$	tpLH		5 10 15	- - -	900 370 250	1800 800 550	
$\begin{array}{c} \text{(HIGH-LOW)} \\ \text{Propagation Del}_{\underline{a}y} \text{ Time} \\ \text{($X_{\rm D}$,$A,B,C,D} - Z) \end{array}$	tpHL		5 10 15	- - -	650 260 190	1400 600 400	ns
(LOW-HIGH) Propagation Delay Time (STROBE - Z)	tpLH		5 10 15	- - -	280 130 100	600 300 250	ne
(HIGH-LOW) Propagation Delay Time (STROBE - Z)	tpHL	:	5 10 15	- - -	800 340 230	1600 700 500	ns
Input Capacity	CIN	All Inputs		_	5	7.5	pF

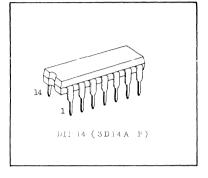
SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

TC5024BP, TC5025BP

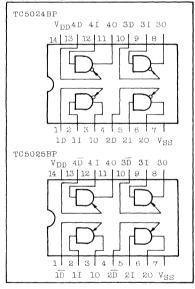
TC5024BP QUAD BUS BUFFER WITH 3-STATE OUTPUT ("H"-DISABLE)
TC5025BP QUAD BUS BUFFER WITH 3-STATE OUTPUT ("L"-DISABLE)

TC5024BP/TC5025BP contain four circuits of buffers having tri-state outputs. As all the buffers are controlled by four independent DISABLE inputs, any buffer outputs can be placed in the high impedance state.


The output becomes high impedance with DIS="H" for $\overline{\text{TC5024BP}}$ and $\overline{\text{DIS}}$ ="L" for $\overline{\text{TC5025BP}}$.


Large output current enables to directly drive one TTL. These can be utilized as interfaces with system bus lines, multiplexers, etc.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ~ V _{SS} +20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

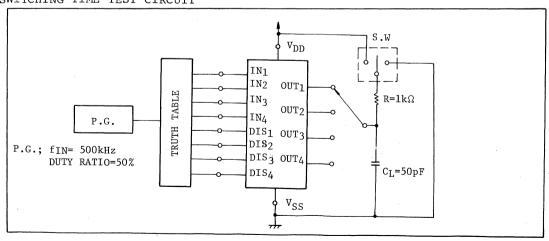
TRUTH TABLE

IKUIN TADLE											
	TC50	24 B P	TC5025BE								
INF	rurs	OUTPUT	IN	PUTS	OUTPUT						
1 N	DIS	OUT	IN	DIS	OUT						
L	L	L	L	L	HΖ						
Н	L	Н	Н	L	HZ						
L	Н	$_{\rm HZ}$	L	Н	L						
н н нд н н											
	HZ; HIGH IMPEDANCE										

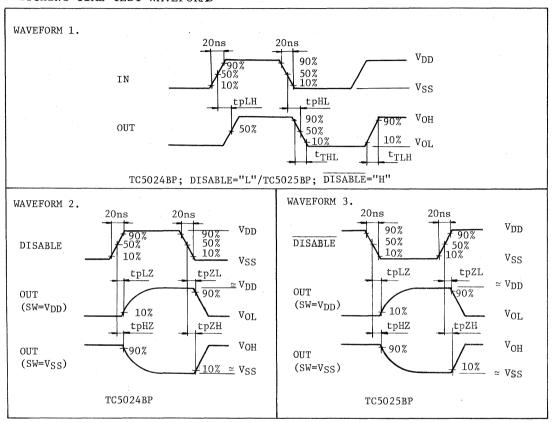
RECOMMENDED OPERATING CONDITIONS (\overline{V} SS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V
Operating Temp.	Topr	-40	_	85	°C

ELECTRICAL CHARACTERISCS (VSS=0V)


CHARACTERISTIC	SYMBOL	TEST	VDD	-4	O°C		25°C		8.	ō°C	UNIT
CHARACTERISTIC	STEBOL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	v _{OH}	IOUT < 1µA VIN = VSS, VDD	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.00 10.00 15.00		4.95 9.95 14.95		
Low Level Output Voltage	V _{OL}	$ I_{OUT} < 1\mu$ A $V_{IN} = V_{SS}, V_{DD}$.5 10 15	1 1 1	0.05 0.05 0.05	- - -		0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
High Level Output Current	Іон	V _{OH} = 2.5V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	-1.40 -1.40 -4.00	1 1 1	-1.25 -1.25 -3.75		- - -	-1.0 -1.0 -3.0	-	mA
Low Level Output Current	IoL	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	3.5 6.0 26.0	-	3.2 5.0 24.0		- - -	2.5 3.6 18.0	- - -	
High Level Input Voltage (IN, TC5024BP DISABLE)	VIH	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1,11A	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	- - -	V
Low Level Input Voltage (IN, TC5024BP DISABLE)	VIL	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < luA	5 10 15	1 1 1	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	-	1.5 3.0 4.0	
High Level Input Voltage (TC5025BP DISABLE)	v _{IH}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I I _{OUT} ΙμΑ	5 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5		- - -	4.0 8.0 12.5	<u>-</u> -	V
Low Level Input Voltage (TC5025BP DISABLE)	VIL	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1µA	5 10 15		1.0 2.0 2.5	- - -		1.0 2.0 2.5	- - -	1.0 2.0 2.5	
Input H Level Current L Level	IIL	V _{IH} = 18V V _{IL} = 0V	18 18	-	0.3	-	10 ⁻⁵		-	1.0 -1.0	μA
Disable H Level Current L Level	IDL	V _{OH} = 18V V _{OL} = 0V	18 18	-	0.5	-	10^{-4} -10^{-4}	0.5 -0.5	-	30 -30	ıμΑ
Quiescent Current Consumption	IDD	V _{IN} = V _{SS} ,V _{DD}	5 10 15	- - -	4.0 8.0 16.0	- - -	0.002 0.004 0.008	4.0 8.0 16.0	- - -	30 60 120	ıΑ

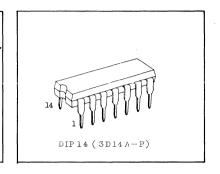
^{*} All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERIS	TIC	SYMBOL.	TEST	V_{DD}	ТС	C5024E	3P	TC:	5025U	BP	
	_	DILLOG	CONDITIONS	(V)	MIN.	TYP.	MAX.	MIN	TYP	MAX.	UNIT
Output Rise Tim	ne	t_{TLH}		5 10 15	- - -	130 65 50	400 200 160	1 1 1	130 65 50	400 200 160	ns
Output Fall Tim	e	t _{THL}		5 10 15	- - -	100 50 40	200 100 80	-	100 50 40	200 100 80	
(LOW-HIGH) Propagation Del (IN - OUT)	ay Time	t _P LH	·	5 10 15	- - -	150 75 60	300 150 100	-	150 75 60	300 150 100	ns
(HIGH-LOW) Propagation Delay Time (IN - OUT)		tpHL	·	5 10 15	- - -	180 75 60	300 150 100	-	180 75 60	300 150 100	113
	H-HZ	tpHZ		5 10 15	- - -	95 50 40	200 120 100	- - -	70 50 40	150 100 80	ns
Three State Propagation	L-HZ	tpLZ		5 10 15	1 1 1	300 200 190	600 400 300		130 70 60	200 150 120	no.
Delay Time	HZ-H	tpZII		5 10 15		100 40 30	200 120 100	- - -	70 40 30	150 80 70	ns
	HZ-L	tpZL		5 10 15	-	210 90 60	600 300 200	-	130 60 40	200 150 120	5
Input Capacity		CIN			-	5	7.5	_	5	7.5	рF
Output Disable (Capacity	COUT			_	30	-	_	30		pF

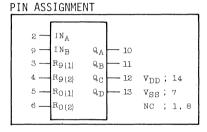
SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

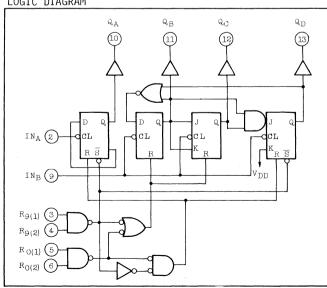


TC5026BP

TC5026BP DECADE COUNTER


TC5026BP is DECADE UP COUNTER with two reset functions, RESET (9) and RESET (0) and can be used as binary counter, quinary counter or decimal counter. When two inputs of RESET (0) are set to "H", the content of counter is reset to 0 regardless of the clock and when two inputs of RESET (9) are set to "H", it is set to 9.

RESET (9) takes precedance over RESET (0). The outputs change their states at the falling edge of count inputs (INA and INB).



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~V _{SS} +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-65 ~ 150	°C
Lead Temp./Time	Tsol	260°C • 10sec	

LOGIC DIAGRAM

TRUTH TABLE

RESET/	COU	NT M	ODE							
	I	PUT	S		C	UTF	UTS	3		
${\tt IN_A,IN_B}$	R _{O(1)} R _{O(2)} R ₉₍₁₎ R ₉₍₂₎ Q _D Q _C Q _B									
*	Н	Н	L	*	L	L	L	L		
*	Н	Н	*	L	L	L	L	L		
*	*	*	Н	Н	Н	L	L	Н		
7_	*	L	*	L		COU	NT			
J_	L	*	L	*		COU	INT			
الم	L * * L COUNT									
J.	*	L	L	*		COL	NT			

* Don't care

COUNT	MOD	ΕA		COUNT	МО	DE :	В	
COUNT	COUNT OUTPUT		TS	COUNT		OUT	PUT	S
NO.	Q_{D}	٩c	$Q_{\mathbf{B}}$	NO.	Q_{D}	Q _C	Q_{B}	$Q_{\mathbf{A}}$
0	L	L	L	0	L	L	L	L
1	L	L	Н	1	Ь	L	L	Н
2	L	Н	L	2	L	L	Н	L
3	L	Н	Н	3	Ь	L	Н	Η.
4	Н	L	L	4	L	Н	L	L
A; Set		± 0		5	L	Н	L	Н
mod				6	L	Н	Н	L
B; IN _B should				7	L	Н	Н	Ή
be connected				8	, H	L	L	L
to	\mathtt{Q}_{A}			9	Н	L	L	Н

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

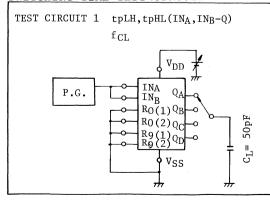
ELECTRICAL CHARACTERISTICS (VSS=0V)

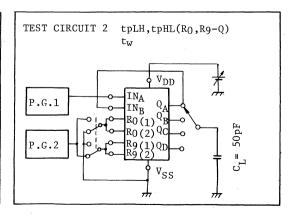
CHARACTERISTIC	SYMBOL	MI	N.	TYP.	MAX.	UNIT
Supply Voltage	$V_{ m DD}$		3	_	18	V
Input Voltage	VIN		0	-	v_{DD}	V
Operating Temp.	Topr	-4	0	-	85	°C

25°C

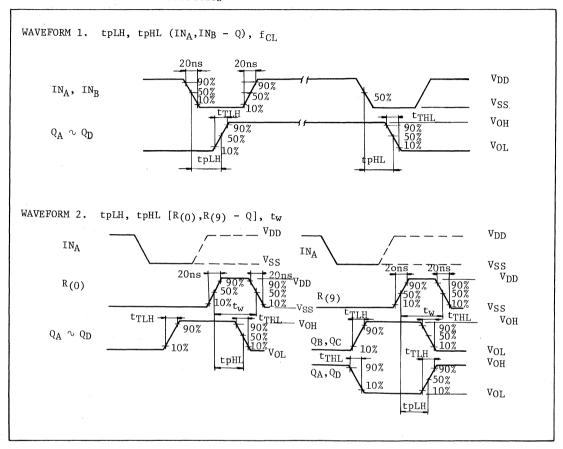
CHARACTERISTIC (V) MIN. MAX. MIN. TYP. MAX. MIN. MAX.

						1					
High Level Output Voltage	v_{OH}	$V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95		_	4.95 9.95 14.95	- - -	v
Low Level Output Voltage	$v_{\rm OL}$	$V_{IN} = V_{SS}, V_{DD}$	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00 0.00 0.00	0.05	- - -	0.05 0.05 0.05	V
High Level Output Current	I _{OH}	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	-0.2 -0.5 -1.4	1 1 1	-0.16 -0.4 -1.2		- - -	-0.12 -0.3 -1.0	- - -	mA
Low Level Output Current	$I_{ m OL}$	VOL = 0.4V VOL = 0.5V VOL = 1.5V VIN = VSS, VDD	5 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0		- - -	0.36 0.9 2.4	- - -	nu i
High Level Input Voltage	v_{IH}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{TOUT} < 1,µA	10	3.5 7.0 11.0	- -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	- - -	V
Low Level Input Voltage	$\mathtt{v}_{\mathtt{IL}}$	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1µA	10	- - -	1.5 3.0 4.0	_ _ _	2.25 4.5 6.75	1.5 3.0 4.0	- - 	1.5 3.0 4.0	V
Input "H" Level	IIH	$V_{IH} = 18V$	18	-	0.3	-	10-5	0.3	-	1.0	
Current "L" Level	IIL	$V_{IL} = 0V$	18	_	-0.3	_	-10-5	-0.3	_	-1.0	Aιζ
Quiescent Cur- rent Consumption	I_{DD}	V _{IN} = V _{SS} ,V _{DD}	5 10 15	- - -	20 40 80	_ _ _	0.005 0.010 0.015	20 40 80	- -	150 300 600	ıΑ


^{*} All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}		5 1 0 15	- - -	130 65 50	400 200 160	_
Output Fall Time	t _{THL}		5 10 15	- - -	100 50 40	200 100 80	ns

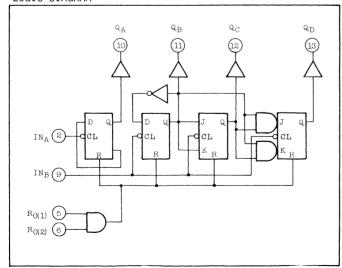

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
(LOW-HIGH)			5	_	340	750	
Propagation Delay Time	tpLH		16	-	160	350 .	
(INA, INB - Q)			15	-	130	280	_
(HIGH-LOW)			5	-	310	650	ns
Propagation Delay Time	tpHL		10	-	150	330	
(INA, INB - Q)			15	-	120	250	
(LOW-HIGH)			5	-	350	700	
Propagation Delay Time	tpLH		10	-	150	300	
(R(0), R(9) - Q)			15	_	120	250	ns
(HIGH-LOW)			5	-	350	700	
Propagation Delay Time	tpHL		10	-	150	300	
$(R_{(0)}, R_{(9)} - Q)$	СРПП		15	-	120	250	
Max. Clock Rise Time	+		5	20	-		
Max. Clock Fall Time	t _{rCL}		10	2.5	-		μs
riax. Clock rail lime	^t fCL		15	1.0	-		
Max. Clock Frequency			5	0.8	1.2	_	
- ,	t _{CL}		10	1.5	2.5	-	MHz
(INA, INB)			15	2.0	3.2		
			5	_	250	500	
Min. Reset Pulse Width	t _w (RESET)		10	-	100	200	ns
	(KESEI)		15	_	75	150	
Input Capacity	$c_{ ext{IN}}$			_	5	7.5	pF

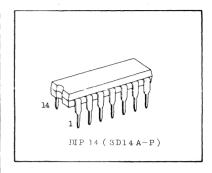
SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

TC5027BP

TC5027BP BINARY COUNTER


TC5027BP is four bit binary up counter with the reset function and since the clock for the first stage is independent from the clock for the second through the fourth stages, this can be used as binary, octal or hexadecimal counter/divider.


When two inputs of RESET(0) are set to "H", the content of counter is reset to 0 regardless of the clock. The outputs change their states at the falling edge of count inputs (INA, INB).

ABSOLUTE MAXIMUM RATINGS


	1,00		
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature Range	Tstg	- 65 ∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

TRUTH TABLE

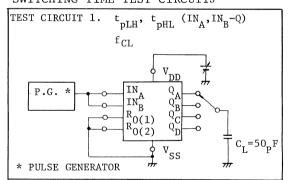
RESET / COUNT MODE

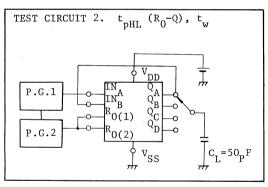
INPUTS							OUT	PUT	
INA, INB	T	30(1			R ₀₍₂₎	QD	Q _C	q_B	Q_{A}
*	T	H		Г	H	L	L	L	L
7	T	L			*		COU	NT	
1		*			L		COL	INT	
	n't MOD		re		COUNT	Moi	E I	3	
COUNT	OU'	TPU	TS	7	COUNT		OUT:	PUT	3
NO.	Q_{D}	QС	$Q_{\rm E}$	3	NO.	q_{D}	Q _C	QВ	Q_A
0	L	L	L]	0	L	L	L	L
1	L	L	Н		1	L	L	L	Н
2	L	Н	L	1	2	L	L	Н	L
3	L	Н	Н		3	L	L	Н	Н
4	Н	L	L]	4	L	Н	L	L
5	Н	L	Н		5	L	Н	L	Н
6	Н	Н	L]	6	L	Н	Н	L
7	Н	Н	Н]	7	l,	Н	Н	Н
۸ . ۵					8	Н	L	L	L
A; Sep		te			9	Н	L	L	Н
			,		10	Н	L	Н	L
B; IN _B					11	Н	L	Н	Н
be connected to $Q_{ m A}$.				12	Н	Н	L	L	
· A.					13	Н	Н	L	Н
				14	Н	Н	Н	L	
					15	Н	Н	Н	Н

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

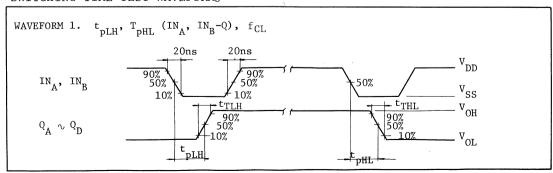
	0011011011	~ (100 0 17				
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}		3	-	18	V
Input Voltage	VIN	,	0	-	VDD	V
Operating Temp.	Topr		-40	_	85	°C

ELECTRICAL CHALACTERISTICS (VSS=0V) -40°C 25°C 85°C SYMBOL TEST CONDITIONS VDD UNIT CHARACTERISTIC TYP. MAX. MIN. MAX. MIN. MAX. MTN. (V) 4.95 4.95 5.0d 4.95 5 High Level Aup Tioul 10 9.95 9.95 10.00 9.95 v_{OH} $V_{TN} = V_{SS}, V_{DD}$ Output Voltage 14.95 15.00 14.95 15 14.95 V 0.00 0.05 5 0.05 0.05 Low Level I I OUT I < LuA VOT. 0.00 0.05 10 0.05 0.05 Output Voltage $V_{TN} = V_{SS}, V_{DD}$ 0.00 0.05 15 0.05 0.05 -0.2 -0.16 -0.12 $V_{OH} = 4.6V$ 5 High Level $V_{OH} = 9.5V$ -0.3 10 -0.5-0.4 I_{OH} Output Current -1.0 $V_{OH} = 13.5V$ 15 -1.4-1.2 $V_{IN} = V_{SS}, V_{DD}$ mΑ $V_{OL} = 0.4V$ 5 0.52 0.44 0.36 VOL = 0.5V10 1.3 1.1 0.9 Low Level IOI. $V_{OL} = 1.5V$ 15 3.6 3.0 2.4 Output Current $V_{\rm IN} = V_{\rm SS}, V_{\rm DD}$ $V_{OUT} = 0.5V, 4.5V$ 3.5 3.5 2.75 3.5 5 Vour=1.0V,9.0V 10 7.0 7.0 5.5 7.0 v_{IH} High Level Input Voltage Vour=1.5V,13.5V 15 11.0 11.0 8.25 11.0 | IOUT | < LuA v VOUT=0.5V,4.5V 5 1.5 2.25 1.5 1.5 3.0 3.0 3.0 Vour=1.0V,9.0V 10 Low Level V_{TL} 4.5 4.0 4.0 VOUT=1.5V,13.5V 15 4.0 Input Voltage 6.75 $|I_{OUT}| < 1\mu A$ "H" Level I_{IH} 10-5 0.3 $V_{IH} = 18V$ 18 0.3 1.0 Input μA Current "L" Level 18 -0.3 -10-5 40.3 -1.0AIT = 0AIIL 5 20 0.005 20 150 Ouiescent I_{DD} $V_{IN} = V_{SS}, V_{DD}$ 300 10 40 0.010 40 μA Supply Current 15 80 0.015 80 600

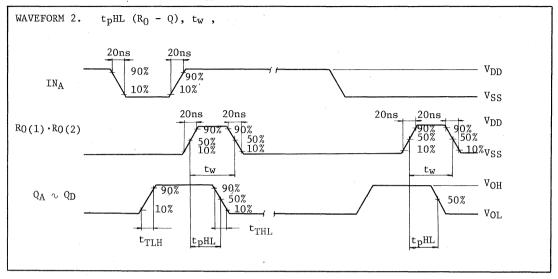

*All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, VSS=OV, CL=50pF) SYMBOL V_{DD} TEST CONDITIONS MIN. UNIT CHARACTERISTIC TYP. MAX. (V) 5 130 400 Output Rise Time 10 65 200 t_{TLH} 15 50 160 ņs 5 100 200 Output Fall Time 10 50 100 t_{THL} 15 40 80

SWITCHING	CHARACTERISTICS	(Ta=25°C,	$V_{SS} = OV$,	$C_{T} = 50_{p}F$)
-----------	-----------------	-----------	-----------------	---------------------

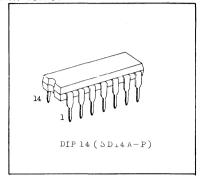

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	MIN.	TYP.	MAX.	UNIT
(Low-High) Propagation Delay Time (INA, INB - Q)	t pLH		5 10 15	- - -	340 160 130	750 350 280	
(High-Low) Propagation Delay Time (INA,INB - Q)	t pHL		5 10 15	- - -	310 150 120	650 330 250	ns
(High-Low) Propagation Delay Time (RO - Q)	t pHL		5 10 15	- - -	250 120 100	700 300 250	ns
Max. Clock Rise Time Max. Clock Fall Time	t _{rCL}		5 10 15	20 2.5 1.0	- -	- - -	μs
Max. Clock Frequency (IN $_{ m A}$, IN $_{ m B}$)	f _{CL}		5 10 15	0.8 1.5 2.0	1.2 2.5 3.2	- - -	MHz
Min. Reset Pulse Width	t W (RESET)		5 10 15	- - -	250 110 80	500 200 150	ns
Input Capacitance	C _{TN}		-		5	-	P^{F}

SWITCHING TIME TEST CIRCUITS



SWITCHING TIME TEST WAVEFORMS

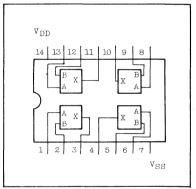
SWITCHING TIME TEST WAVEFORMS

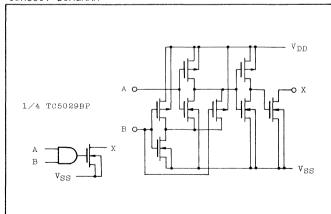


TC5029BP

TC5029BP QUAD 2-INPUT NAND GATE WITH N-CHANNEL OPEN DRAIN OUTPUT

TC5029BP contains four circuits of 2 input NAND gates having its respective outputs of N-channel open drain structure.


Since the drain voltage of output transistors are guaranteed up to 26 volts, these can be used for wide range of applications such as level shifters and drivers, and the wired OR arrangement is also easily obtained. Please utilize these for level shifters for P-channel MOS, controlling analog switches of positive/negative power supplies, etc.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	$v_{\rm IN}$	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	V _{SS} -0.5~V _{SS} +26	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature Range	T _{stg}	-65 ~ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

CIRCUIT DIAGRAM

TRUTH TABLE

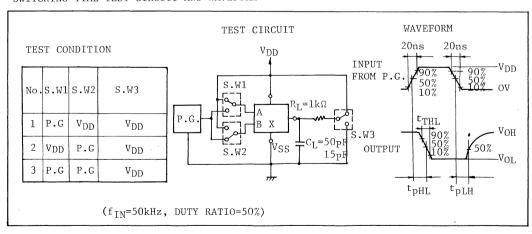
INPU	JTS	OUTPUT
В	А	Х
L	L	$_{ m HZ}$
L	Н	ΗZ
Н	L	ΗZ
Н	Н	L

HZ; HIGH IMPEDANCE

RECOMMENDED OPERATION CONDITIONS (V_{SS} -OV)

` CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	3 .	-	18	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V
Output Voltage	V _{OUT}	0	· , =	24	v
Operating Temperature	T _{opr}	-40	_	85	°C

ELECTRICAL CHARACTERISTICS ($V_{SS}=OV$)


			TEST	V _{DD}	-40	O°C	:	25°C		8.	5°C	
CHARAC	TERISTIC	SYMBOL	CONDITIONS		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Low Le Output	evel Voltage	VOL	I _{OUT} <1 _µ A V _{IN} =V _{SS} ,V _{DD}	5 10 15	- - -	0.05 0.05 0.05		0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
Low Le Output	evel Current	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} ,V _{DD}	5 10 15	3.2 5.0 24.0	-	3.2 5.0 24.0		-	2.5 3.6 18.0		mA
High I Input	.evel Voltage **	V _{IH}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} <1μA	10	3.5 7.0 11.0	1	7.0	2.75 5.5 8.25	_ _ _	3.5 7.0 11.0		
Low Le Input	evel Voltage **	v.IL.	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V	10	-	1.5 3.0 4.0		2.25 4.5 6.75	3.0	-	1.5 3.0 4.0	V
			I _{OUT} <1μA					l				
Output Leakag	off ge Current	I _{DH}	V _{OH} =24V	-	-	0.5		10-3	0.5	_	50	μА
Input	High Level	I _{IH}	v _{IH} =18V	18	_	0.3	_	10-5	ł	_	1.0	μA
Current	Low Level	IIL	V _{IL} =OV	18	-	-0.3	-	-10-5	-0.3		-1.0	
Quiesce Consump	ent Current otion	I _{DD}	v _{IN} =v _{SS} ,v _{DD}	5 10 15	- - -	1.0 2.0 4.0	- - -	0.001 0.001 0.002	2.0	- - -	7.5 15 30	μА

^{*} All valid input combinations. Outputs open. ** $R_L \! = \! 20 K \Omega$

SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS}=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Fall Time	t_{THL}	$C_{\rm L}$ =50 $_{ m P}$ F	5 10 15	- - -	85 30 20	200 80 60	ns
(Low-High) Propagation Delay Time	t _{pLH}	R_{L} =1 $K\Omega$ C_{L} =1 $5_{P}F$	5 10 15	- - -	230 120 100	500 200 150	ns
(High-Low) Propagation Delay Time	t _{PHL}	R_L =1 $K\Omega$ C_L =1 5_PF	5 10 15	- - -	260 90 60	500 200 150	ns
(Low-High) Propagation Delay Time	t _{pLH}	R_L =10K Ω C_L =15 $_P$ F	5 10 15	-	830 680 610	1200 1000 850	ns
(High-Low) Propagation Delay Time	tpHL	R_L =10K Ω C_L =50 $_P$ F	5 10 15	-	270 95 63	500 200 150	
Input Capacitance	c_{IN}			_	5	7.5	pF
Output Off Capacitance	$c_{ m OUT}$			-	25	_	pF

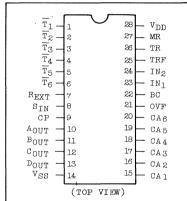
SWITCHING TIME TEST CIRCUIT AND WAVEFORM

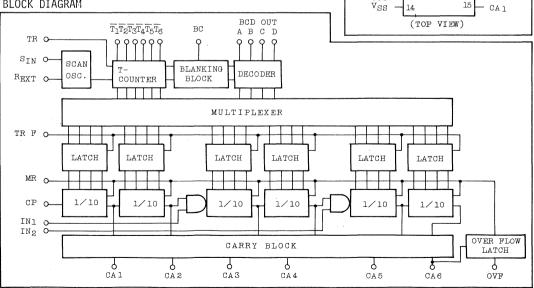


TC5032P 6-DIGIT DECADE COUNTER

TC5032P is six digit decimal counter whose BCD output of each digit is dynamically output in sequence from the higher order digit on BCD OUTPUT in synchronism with SCAN input. As the carry outputs are available from all the digits, other counters and control circuits can be easily driven.

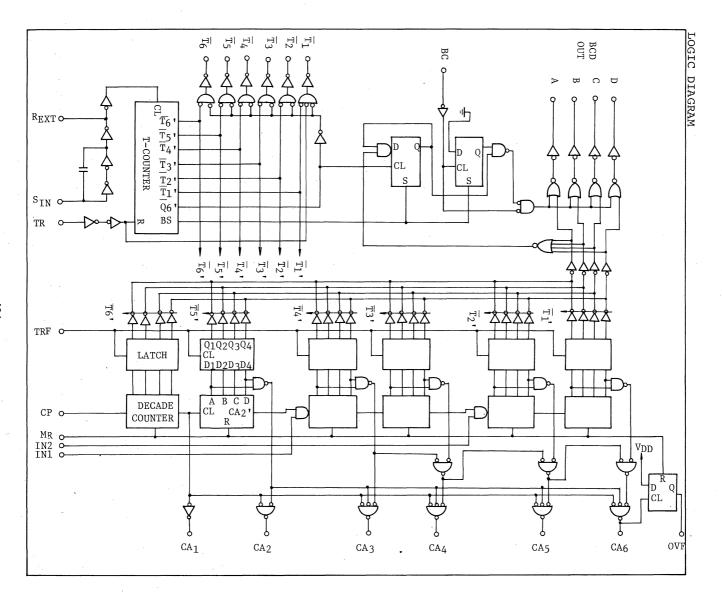
By using BC (Blanking Control) input, leading zero suppress from arbitrary digit can be achieved without external circuits.

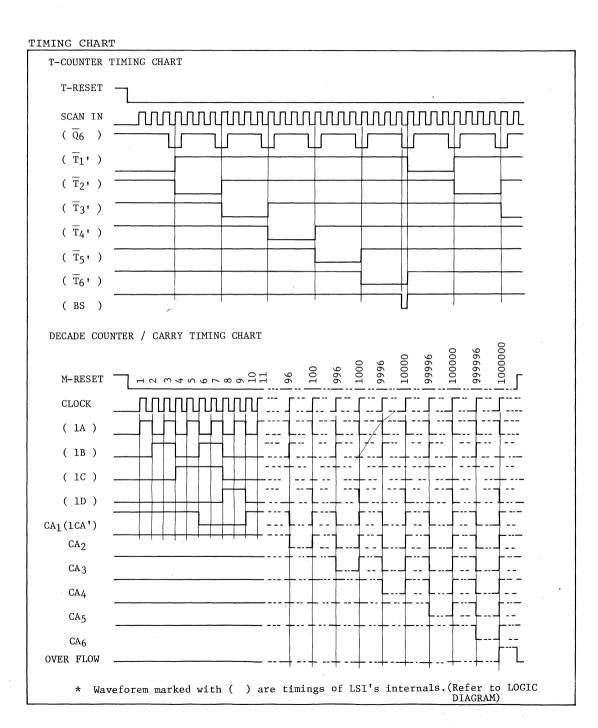

Since the first stage counter can respond up to 10MHz (Vpp=5 volts), this is also suitable for counting and frequency dividing of high frequency pulses.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+10	· V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±1.0	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 55∼125	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT




BLOCK DIAGRAM

PIN FUNCTION & NAME

IN NO.	SYMBOL	NAME	FUNCTION
1	$\overline{\overline{_{ ext{T1}}}}$	T1	Outputs to indicate the digit of output signals A
2	T2	T2	through D_{OUT} , the Sequence is descending order from $\frac{OUI}{T1}$.
3	T3	T3	With $TR="H"$, all of $\overline{T1}$ through $\overline{T6}$ become "H", and when
4	T4	T4	TR falls, Tl becomes "L". Then, "L" is shifted in sequence
5	T5	T5	$\overline{T2}$, $\overline{T3}$ by each 4 clocks of $S_{\overline{IN}}$.
6	T6	T6	
7	R _{EXT}	RESISTOR EXTERNAL	Leave open when an external clock is applied from $S_{\mbox{IN}}$. When no external clock is available, clock can be generate by externally connecting a resistor between $S_{\mbox{IN}}$ and $R_{\mbox{EXT}}$.
8	SIN	SCAN INPUT	T-COUNTER CLOCK input. T-COUNTER changes its state at the rising edge of $\mathbf{S}_{\mbox{\scriptsize IN}}$.
9	CP	CLOCK INPUT	Decimal counter clock input for the lowest order digit.
10 11 12 13	AOUT BOUT COUT DOUT	A-OUTPUT B-OUTPUT C-OUTPUT D-OUTPUT	Decimal counter BCD output. When T1="L", the highest order digit (6th digit) is output. Then, 5th digit is out put with T2="L", 4th digit with T3="L",, 1st digit wit T6="L". During BLANKING, all the outputs become "H".
14	V _{SS}	V	(GND)
15		V _{SS}	Uru 1
	CA1 CA2	CARRY 1 CARRY 2	Garry
16		CARRI Z	
17	CA3	CARRY 3	from "L" when count is "xxx996"\"xxx999", otherwise "H"
18	CA4	CARRY 4	t when could is xxyyyo ~ xxyyyy , otherwise in
19	CA5	CARRY 5	L when count is x333330 x333333, otherwise in
20	CA6	CARRY 6	'L" when count is "999996"~"999999", otherwise "H'
21	OVF	OVER FLOW	Detection terminal of OVER FLOW condition of counter. When the counter advances by one from "999999", it becomes "H". Once it has become "H", only MR can restore it to "L
22	ВС	BLANKING CONTROL	"H" Zero suppress for all the digits. "L" No zero suppress. "L" No zero suppress. "If Tn is connected to BC, zero suppress is activated for the higher order digits than (n-1)th digit.
23	IN1	INPUT 1	"H" All the digits are counted. "L" Only the lower order two digits are counted.
24	IN2	INPUT 2	"H" All the digits are counted. "L" Only the lower order four digits are counted.
25	TRF	TRANSFER	"H" Decimal counter output is transferred to the multiplexer as it is. "L" Counter output at the falling edge of TRF is latched.
26	TR	T-COUNTER RESET	${\text{Tl}}$ T-counter is initialized to Tl by "H" level input and Tl retains "H" level only for the period of TR="H".
27	MR	MASTER RESET	"H" level input resets the counter to count "000000" and 0VER FLOW to "L".
28	$v_{ m DD}$	VDD	V _{DD} power supply (3~8 volts)

OPERATING CONSIDERATION

* Count Operation

Set input terminals IN1, IN2 and TRANSFER to "H" and apply "H" level to M-RESET terminal, then return it to "L" level. If pulse is fed to CLOCK terminal in this condition, the counter advances its count at the rising edge of CLOCK up to 999999.

Since CARRY outputs from all the digits are output in negative logic, the control of other CMOS logics can be easily achieved.

 $\overline{\text{CA1}}$ - $\overline{\text{CA6}}$ are output with "L" level for four clock periods. (Refer to the timing chart.)

If one more clock is given in the count of 999999, OVER FLOW terminal becomes "H" indicating the overflow condition of COUNTER. Once OVER FLOW terminal has become "H", it will never return to "L" unless M-RESET is applied.

* Latch Operation

When the level of TRANSFER terminal is "H", the counter output is transferred to the multiplexer as it is with the output always indicating the counter output, but if TRANSFER terminal changes the level from "H" to "L", the count output which has been being output immediately prior to the falling edge of TRANSFER is stored in the latch and even if the counter output varies, $A_{\rm OUT}$ - $D_{\rm OUT}$ will not vary.

If TRANSFER terminal is returned to "H" again, the correct counter output appears on $A_{\rm OUT}$ - $D_{\rm OUT}.$

* Scan Operation

BCD outputs of all digits are output to common $A_{\rm OUT}$ - $D_{\rm OUT}$ on the time sharing basis and the basic clock for this operation is fed from outside to SCAN IN (leaving $R_{\rm EXT}$ open in this case) or obtained by connecting a resistor between $R_{\rm EXT}$ and SCAN IN.

BCD output for each digit appears on AOUT - DOUT corresponding to each digit of 6 digit scan signals (digit signals) which are in synchronism with the rising edge of SCAN IN. The digit output for digit selection is output with "L" level on $\overline{T_1}$ - $\overline{T_6}$. As BCD outputs are output starting from the highest order digit $(\overline{T_1}-6$ th digit, $\overline{T_6}$ - 1st digit), data transfer can be easily achieved.

* The relationship between external resistor between REXT and SCAN IN and oscillating frequency is given below

$$f \ \ \stackrel{\cdot}{\div} \ \ \frac{1}{44 \times R} \times 10^{12} \ \ [\text{Hz}]$$

* Blanking

By controlling BLANKING CONTROL terminal, leading zero suppress to an arbitrary digit can be easily achieved. When zero suppress is activated, all of $A_{\rm OUT}$ - $D_{\rm OUT}$ become "H".

BC Terminal and Zero Suppress

BRANKING CONTROL	Leading Zero Suppress	
L	No zero suppress	
Н	Zero suppress for all digits	*
Connected to $\overline{T_6}$	Zero suppress for five higher order digits and no zero suppress for the lowest order digit.	*
Connected to T5	Zero suppress for four higher order digits and no zero suppress for two lower order digits.	*
Connected to $\overline{\mathrm{T_4}}$	Zero suppress for three higher order digits and no zero suppress for three lower order digits.	*
Connected to T3	Zero suppress for two higher order digits and no zero suppress for four lower order digits.	*
Connected to $\overline{ ext{T}_2}$	Zero suppress for the highest order digit and no zero suppress for five lower order digits.	*

^{*} When carry is generated from lower order digit, the normal output may not be obtained only one cycle of T-COUNTER.

RECOMMENDED OPERATING CONDITIONS (V_{SS} =OV)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	3	_	8	v
Input Voltage	V _{IN}	0	-	v_{DD}	V
Operating Temperature	Topr	-30	-	85	°C ·
R _{EXT} External Registanc	e R EXT	20K	-	10M	Ω

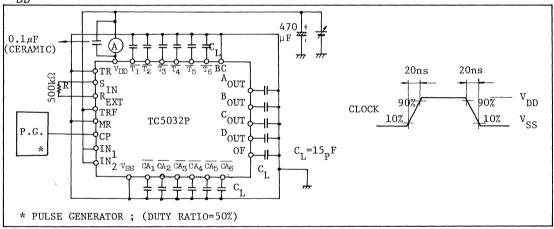
ELECTRICAL CHARACTERISTICS $(v_{SS}^{=oV})$

00												
CHARACTERISTIC		GYD D OY	TEST	v_{DD}	-30°C			25°C		85°C		UNIT
		SYMBOL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
	High Level	V _{OH}	I _{OH} =-1μΑ	5	4.95	-	4.95	_	-	4.95	-	V
Voltage	Low Level	v_{OL}	I _{OL} =1μΑ	5	_	0.05	_	_	0.05	-	0.05	
1 -	High Level	IOH	$V_{OH} = 2.5V$	5	-0.7	-	-0.6	- 2	_	-0.5	_	mA
Current Low Level	Low Level	IOI	$V_{OL} = 0.4V$	5	0.52	-	0.44	1.3	_	0.36	_	IIIA
1 ·	High Level	V _{TH}	$v_{OUT}^{=0.5V,4.5V}$	5	3.5	1	3.5	2.75	_	3.5	_	v
Voltage	Low Level	VIL	$V_{OUT}^{=0.5V,4.5V}$	5	_	1.5	-	2.25	1.5		1.5	V
r	High Level	I	V _{IH} =8V	8	-	0.15	-	-	0.15	-	1.0	μA
Current Low Lev	Low Level		$v_{IL=0V}$	8	_	-0.15		-	-0.15	_	-1.0	
Quiescent		I_{DD}	At all	5	_	0.4	-	10-5	0.4	_	0.8	mA
Consumption		עע	conditions	8	_	0.5	_	10 ⁻⁵	0.5		1.0	

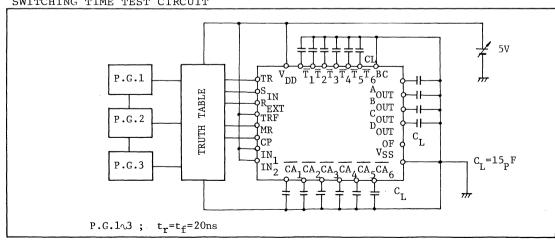
SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS} =OV, C_L =15 $_p$ F)

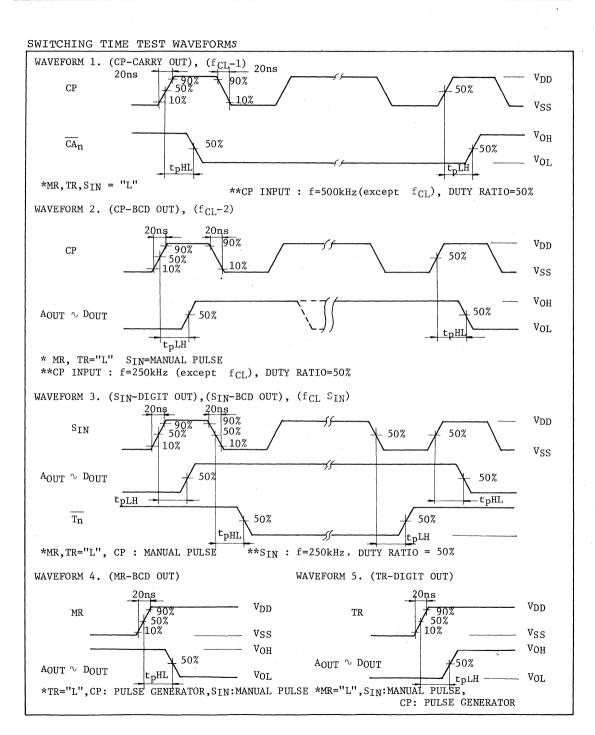
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Duran B. 1	+	$(\overline{\text{T6}} = \text{L})$	5	_	800	2000	
Propagation Delay	pLH,	$\overline{(T5} = L)$	5	-	1000	2200	
	t	$(\overline{T4} = L)$	5	_	1250	2500	
(CP - BCD OUT)	pHL	$\overline{(T3} = L)$	5	-	1500	3000	ns
		$\overline{(T2} = L)$	5	_	1750	3500	*
		$(\overline{\text{T1}} = \text{L})$	5	-	2000	4000	
D D.1		CA1	5	_	(200)	500	
Propagation Delay Time	t	CA2	5	_	(200)	500	
	pLH,	CA3	5	_	(250)	750	ns
(CP - CARRY OUT)	t pHL	CA4	5	_	(250)	750	
		CA5	5	-	(300)	1000	
		CA6	5	_	(300)	1000	
Max. Clock Rise Time	trø	CD IN IN	5	20	_	_	μs
Max. Clock Fall Time	^t fø	CP, IN ₁ , IN ₂				-	, p.0
Min. Clear Pulse	tw(MR)	MASTER RESET	5		-	500	
Width	tw(TR)	T-COUNTER RESET		_	-	400	ns

SWITCHING	CHARACTERISTICS	(Ta=25°C,	$V_{SS} = OV$,	$C_{T} = 15_{p}F$)
-----------	-----------------	-----------	-----------------	---------------------


CHARACTERISTIC		SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Propaga- (High-Low		t pHL	MR-BCD OUT	5	_	-	2000		
tion Delay Time(Low-H	(Low-High) t	TR-DIGIT OUT	5	_	_	1500		
Propagation		t pLH, pHL	SIN-BCD OUT	5	_	1000	2500	ns	
Delay Ti		t pLH, t pHL	SIN-DIGIT OUT	5		500	1000		
		f _{CL} -1	CLOCK IN *	5	10.0	14.0	_		
Max. Fre	Max. Frequency	f _{CL} -2	one on	5	1.0	2.0	_	MHz	
		$f_{CL}S_{IN}$	SCAN IN	5	0.5	_	-		

^{*} f_{CL}-1;


Clock burst mode.


 $f_{\rm CL}$ -2; BCD outputs enable.

I_{DD} TEST CIRCUIT

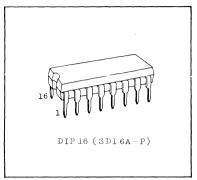
SWITCHING TIME TEST CIRCUIT

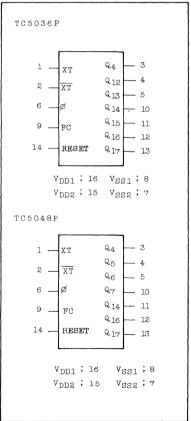
TC5036P, TC5048P

TC5036P and TC5048P are 17-stage ripple carry binary counters equipped with inverters for crystal oscillators.

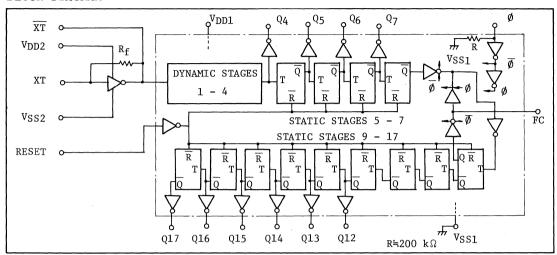
As the first stage through the fourth stage are dynamic type counter, the high speed operation can be obtained but the operation starting from DC is not possible, so that these should be used in the range of $f_{MIN} \sim f_{MAX}$.

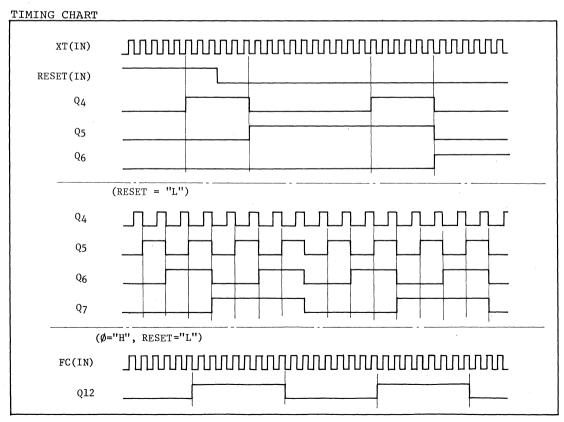
If ϕ input is opened (ϕ ="L"), the inverted output of 9th stage appears on FC terminal. If ϕ input is set to "H", 9 stages from 9th stage through 17th stage can be also independently used having FC terminal as the clock input.


Outputs can be derived arbitrarily from stages 4, 12, 13, 14, 15, 16 and 17 of TC5036P and stages 4, 5, 6, 7, 14, 16 and 17 of TC5048P.


CHARACTERIST	IC	SYMBOL	RATING	UNIT
DC Supply Volta	ge	v_{DD1}	V _{SS1} -0.5~V _{SS1} +10	V
20 - 3,7 - 3		v_{DD2}	v_{SS1} -0.5 ~ v_{DD1} +0.5	
Input Voltage	XT	. AIN	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	V
	ø,FC	v_{IN}	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	
Output Voltage		VOUT	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	V
DC Input Curren	t	IIN	±10	mA
Power Dissipati	on	P_{D}	300	mW
Storage Tempera Range	ture	T _{stg}	- 65 ∼150	°C
Lead Temp./Time		$T_{ m sol}$	260°C · 10sec	

TRUTH TABLE


1110111	171000			
	INPU	TS		FUNCTION
RESET	XΤ	Ø	FC	(See Timing Chart)
Н	J.	OPEN H	H **	$\begin{aligned} \mathbf{f}_{\mathbb{Q}4} &= \mathbf{f}_{\mathrm{XT}} \diagup 2^4 \\ \mathbf{Q}_{5} &\sim \mathbf{Q}_{17} = \text{"L" LEVEL} \end{aligned}$
L	Л	OPEN	Q 9	$f_{Qn} = f_{XT} / 2^{n}$ n; 5 ~ 17
L	П	Н		$f_{Qn} = f_{XT} / 2^n$ n; 5~7 $f_{Qm} = f_{FC} / 2^{(m-8)}$ m; 12~17
* Do	on't Ca	re		



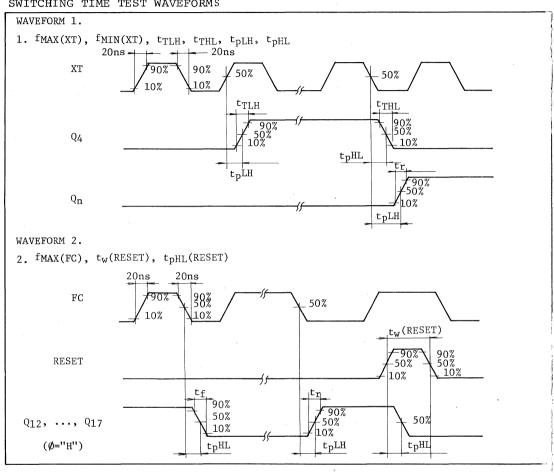
PIN ASSIGNMENT

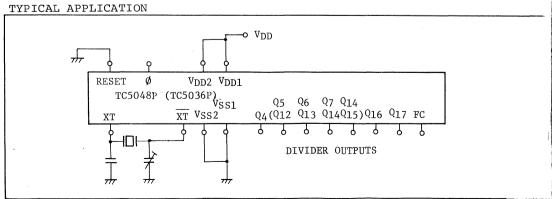
BLOCK DIAGRAM

RECOMMENDED	OPERATING	CONDITIONS	$(v_{SS1}=v_{SS2}=ov)$
TUCCILITIE	OI DIGITION	001.00	י אההי וההיי

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT.
Supply Voltage	V _{DD} 1 V _{DD} 2	3 3	-	8 V _{DD1}	V
Input Voltage	v_{IN}	0		$v_{\rm DD2}$	V
Operating Temp.	Topr	-40		85	\mathbb{C}

ELECTRICAL CHARACTERISTICS $(v_{SS1}=v_{SS2}=ov, v_{DD1}=v_{DD2})$


				002			202					
CHARACTERIS'	TIC	SYMBOL	TEST	V_{DD}	-40°	°C	2	5°C		85°	С	UNIT
CHARACTERIS	110		CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High Level Output Volt	age	V _{OH}	IOUT <1µA VIN=VDD,VSS	5	4.95	-	4.95	5.00	-	4.95	-	
Low Level Output Volta	age	V	lI _{OUT} l<1μA VIN=V _{DD} ,VSS	5	_	0.05	-	0.00	0.05	-	0.05	V
High Level Output	Q Output	I _{OH}	V _{OH} =4.6V V _{IN} =V _{SS} ,V _{DD}	5	-0.2	_	-0.16		-	-0.12	-	
Current	$\frac{FC}{XT}$	OH	V _{OH} =4.6V VIN=VSS,VDD	5	0.025	_	-0.02	-0.06	-	-0.015	_	mA
· —	Q Output	т	V _{OL=0.4V} V _{IN=V_{DD},V_{SS}}	5	0.52	_	0.44	1.5	_	0.36	_	
Output Current	FC XT	OL	V _{OL} =0.4V V _{IN} =V _{DD} ,V _{SS} V _{OUT} =0.5V,4.5V	5	0.10	-	0.08	0.25	_	0.06		
High Level Input Volta	.ge	VIH	Ι _{ΟUT} <1μΑ	5	3.5	_	3.5	2.75		3.5	_	v
Low Level Input Volta		$v_{_{\mathrm{IL}}}$	V _{OUT} =0.5V,4.5V I _{OUT} <1μA	- 5	-	1.5	-	2.25	1.5	-	1.5	
High Level In Current(excrpt		$^{\mathrm{I}}{}_{\mathrm{IH}}$	v _{IH} = 8v	8		0.2	_	10 ⁻⁵	0.2	-	1.0	μA
Low Level Inprent (except,			VIL=OV	8	_	-0.2	_	-10 ⁻⁵	-0.2	_	-1.0	μП
Operating Curr Consumption(TC		\mathbf{I}_{T}	f _{XT} =1MHz	5	-	_	-	100	500	_	-	μА

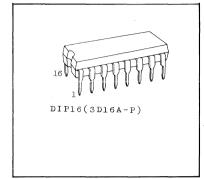

SWITCHING CHARACTERISTICS ($^{V}_{DD1}^{=V}_{DD2}$, $^{V}_{SS1}^{=V}_{SS2=OV}$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	$V_{\rm DD}(V)$	MIN.	TYP.	MAX.	UNIT.
Output Rise Time(Q OUTPUT)	t _{TLH}		5		1.30	250	ns
Output Fall Time(Q OUTPUT)	t _{THL}				130	250	113
Input Amp Vias Resistance	Rf		8	0.6		3.0	MΩ
Propagation Delay Time(XT-Q4)	tpLH, tpHL		5	-	250	600	ns
Propagation Delay Time(XT-Q17)	tpLH, tpHL		5	-	-	8.0	μs
Prop. Delay Time(RESET-Q)	tpHL(RESET)		5	-	-	2000	ns
Min. Clear Pulse Width	tw (RESET)		5	-	_	1000	ns
Max. Clock Frequency	fMAX (XT)		5	8	14	-	MHz
Min. Clock Frequency	fMIN (XT)		S	_		20	kHz
Max. Clock Frequency	fmax (FC)		5	1.0		_	MHz
Max. Clock Rise Time	trCL	(7777	_	20			110
Max. Clock Fall Time	t_{fCL}	(XT, FC)	5	20	_		μs
Input Capacitance	СІЙ	except FC		_	5 .	/.5	pF
T TECT CIDCUIT							

470 μF (Δ) 10.01 μF (Δ) 20ns 20ns 20ns 20ns (Ω) VDD1 VDD2 FC φ (Ω) (Ω) Ω13 Ω14 Ω15 Ω15 Ω17 WAVEFORM (DUTY CYCLCE=50%)

SWITCHING TIME TEST WAVEFORMS

TC5036AP, TC5048AP



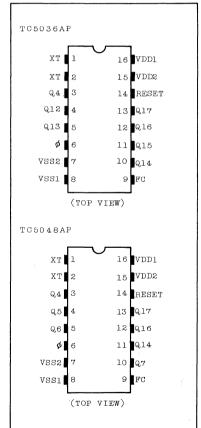
 ${\tt TC5036AP}$ and ${\tt TC5048AP}$ are 17-stage ripple carry binary counters equipped with inverters for crystal oscillators.

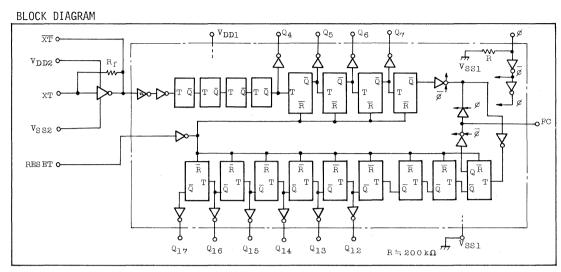
If ϕ input is opened ($\phi\text{="L"})$, the inverted output of 9th stage appears on FC terminal. If ϕ input is set to "H", 9 stages from 9th stage through 17th stage can be also independently used having FC terminal as the clock input.

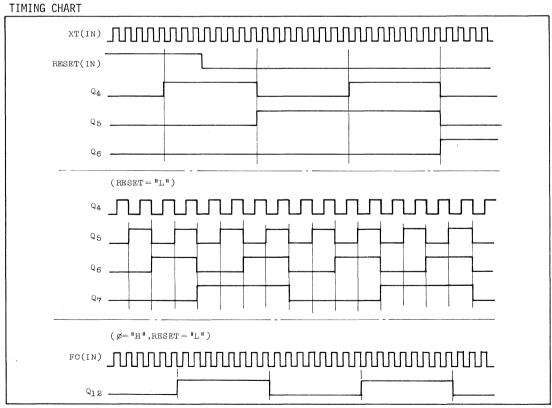
Outputs can be derived arbitrarily from stages 4, 12, 13, 14, 15, 16 and 17 of TC5036AP and stages 4, 5, 6, 7, 14, 16 and 17 of TC5048AP.

Both devicies are improved to have 50% duty Q4 output as same as others by changing the divider stage of TC5036P and TC5048P to static type counter.

ABSOLUTE MAXIMUM RATINGS


TID COLOTE THURST		0.0			
CHRACTERISTIC		SYMBOL	RATING	UNIT	
DC Supply Voltage		v_{DD1}	V _{SS1} -0.5 ∿ V _{SS1} +10		
		v_{DD2}	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	V	
Input Voltage	XT	v_{IN}	v_{SS1} -0.5 $\sim v_{DD2}$ +0.5		
	φ, FC.	v_{IN}	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	V	
Output Voltage		V _{OUT}	V _{SS1} -0.5 ∿ V _{DD1} +0.5	V	
DC Input Current		IIN	±10	mA	
Power Dissipation		PD	300	mW	
Storage Temper Range	ature	T _{stg}	-65 ∿ 150	°C	
Lead Temp./Tim	ie	T _{sol}	260°C • 10 sec		


TRUTH TABLE


INPUTS				FUNCTION	
RESET	XT	ф	FC	(See Timing Chart)	
Н	几	OPEN H	H *	$f_{Q4}=f_{XT}/2^{l_{1}}$ Q5 \sim Q17="L" LEVEL	
L	Л	OPEN	Q 9	$f_{Qn}=f_{XT}/2^n$ n; $5 \sim 17$	
L	几	Н	J₽	$f_{Qn} = f_{XT}/2n$ n; $5 \sim 7$ $f_{Qm} = f_{FC}/2$ (m-8) n; $12 \sim 17$	

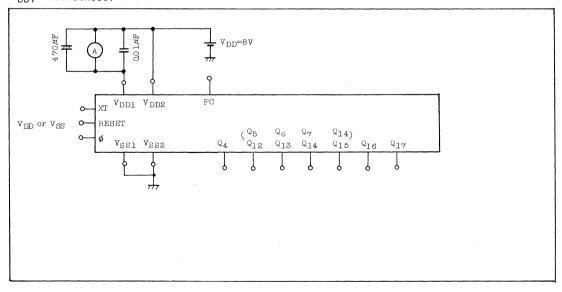
* Don't Care

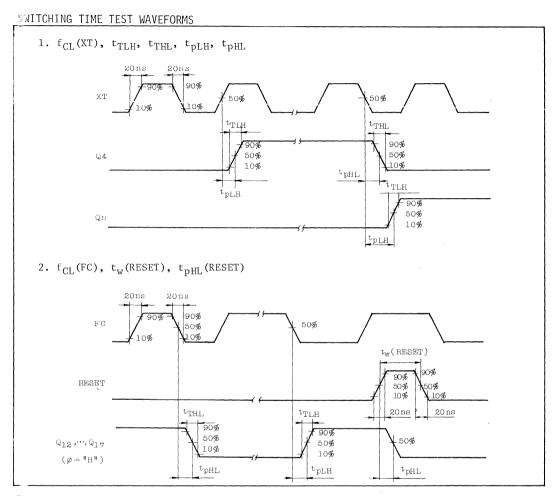
PIN ASSIGNMENT

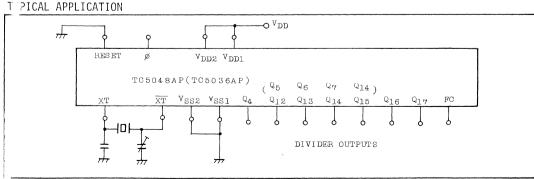
RECOMMENDED OPERATING CONDITIONS ($v_{SS1} = v_{SS2} = 0v$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD1}		3	-	8	
	v_{DD2}		3	_	v_{DD1}	V
Input Voltage	V _{IN}	Except XT	0	_	v_{DD1}	
Operating Temp.	Topr		-40	-	85	°C

ELECTRICAL CHARACTERISTICS ($v_{SS1}=v_{SS2}=0v$, $v_{DD1}=v_{DD2}$)


CHADACTERT	CTT C	GVMDOI	TECE CONDITION	V _{DD}	-40)°C		25°C		85	°C	IINIE
CHARACTERI	5110	SYMBOL	TEST CONDITION	(ע)		MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High Level $V_{ m OH}$ Output Voltage		V _{OH}	I _{OUT} <1μΑ V _{IN} =V _{DD} , V _{SS}	5	4.95	-	4.95	5.00	_	4.95	-	v
Low Level V _{OL}		V _{OL}	$ I_{OUT} < 1\mu A$ $v_{IN} = v_{DD}, v_{SS}$	5	-	0.05	-	0.00	0.05	_	0.05	V
High Level	Q Output	I _{OH}	$V_{OH}=4.6V$ $V_{IN}=V_{DD}$, V_{SS}	5	-0.61	-	-0.51	-1.0	_	-0.42	_	
Current	FC,	TOH	$V_{OH}=4.6V$ $V_{IN}=V_{DD}$, V_{SS}	5	0.025	_	-0.02	-0.06	-	-0.015	-	
$ \begin{array}{c c} Low \ Level \\ Output \\ Current \\ \end{array} \begin{array}{c c} Q \\ OUTPUT \\ \hline FC, \\ \hline XT \\ \end{array} $	т	V _{OL} =0.4V V _{IN} =V _{DD} , V _{SS}	5	0.61	-	0.51	1.5	-	0.42	_	mA	
	OL	$V_{\rm OL}$ =0.4V $V_{\rm IN}$ = $V_{\rm DD}$, $V_{\rm SS}$	5	0.10	-	0.08	0.25	-	0.06	-		
High Level Input Voltage		v_{IH}	V _{OUT} =0.5V, 4.5V I _{OUT} < 1μA	5	3.5	-	3.5	2.75	-	3.5	-	v
Low Level Input Volta	ge	VIL	V_{OUT} =0.5V, 4.5V $ I_{OUT} $ <1 μ A	5	_	1.5	-	2.25	1.5	_	1.5	V
High Level Current (except XT,	•	I _{IH}	V _{IH} =8V	8	-	0.2	-	10-5	0.2	_	1.0	
Low Level Input Current (except XT, ϕ)		I _{IL}	V _{IL} =0V	8	_	-0.2	-	-10 ⁻⁵	-0.2	-	-1.0	μА
Quiescent Device Curr	ent	I _{DD1}	v _{IN} =v _{DD} , v _{SS} *	8	_	5	-	0.005	5	_	150	

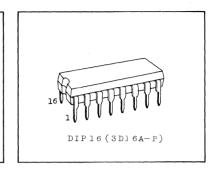

^{*} All valid input combinations.


SWITCHING CHARACTERISTICS (VDD1=VDD2, VSS1=VSS2=OV, Ta=25°C, CL=50pF)

	5527 551						
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time (Q OUTPUT)	t _{TLH}		5	_	70	200	
Output Fall Time (Q OUTPUT)	t_{THL}			_	/0	200	ns
Input Amp Vias Resistance	Rf		8	0.6	1.6	3.0	MΩ
Propagation Delay Time (XT-Q4)	t _{pLH} ,t _{pHL}		5	-	200	400	ns
Propagation Delay Time (XT-Q17)	t _{pLH} ,t _{pHL}	,	5	_	0.78	1.6	μs
Propagation Delay Time (FC-Q12)	t _{pLH} ,t _{pHL}		5	-	240	480	ns
Propagation Delay Time (FC-Q17)	t _{pLH} ,t _{pHL}		- 5	-	420	900	ns
Propagation Delay Time (RESET-Q)	t _{pHL} (RESET)		5	_	100	200	ns
Min. Pulse Width	t _w (RESET)		5	-	35	70	ns
Max. Clock Frequency	f _{CL} (XT)		5	10	20	-	MHz
Max. Clock Frequency	f _{CL} (FC)		5	8	16	_	rinz
Max. Clock Rise Time	trCL	(vm)	5	N	lo Limi	+	
Max. Clock Fall Time	tfCL	(XT)		1	io mini		
Max. Clock Rise Time	trCL	(ng)	5	20	_	_	μS
Max. Clock Fall Time	tfCL	(FC)					
Input Capacitance	$c_{\rm IN}$	except FC		-	5	7.5	pF

I_{DD1} TEST CIRCUIT

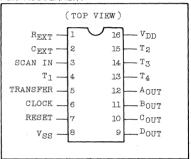
TC5037P

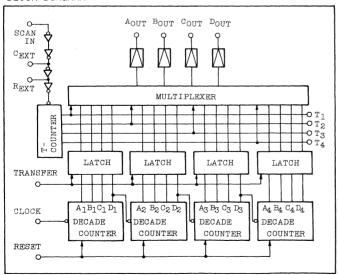

TC5037P 4-DIGIT DECADE COUNTER

TC5037P is four digit decimal counter including the latch multipliexer circuit and has the digit signal outputs for dynamic display and the clock generator for dynamic display.

When TRANSFER input is set to "L", the latches hold the counts immediately prior to the falling edge of TRANSFER, so that even if the contents of counters vary, the outputs will not be changed.

RESET is activated by "H" level and sets the counter outputs of all digits to "L".


The outside is 16 pin plastic packages.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~ Vss+10	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 55∼125	°C
Lead Temp./Time	Tso1	260°C · 10sec	

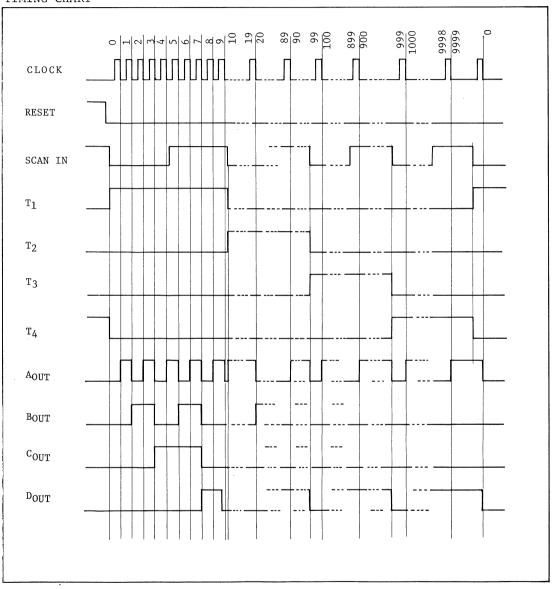
PIN ASSIGNMENT

BLOCK DIAGRAM

TRUTH TABLE

RE	ET	TRANS -FER	A _{O,UT}	B _{OUT}	COUT	D _{OUT}
	Н	Н	L	L	L	L
,	¥.	L	LA	LA	LA	LA
	Ľ.	Н	С	С	С	С

- *; Don't care
- C; Count operation.


(Counter outputs are dynamically output to $A_{\mbox{\scriptsize IN}}-D_{\mbox{\scriptsize IN}}$ as they are.)

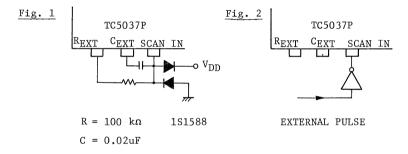
LA; Latch operation. (Counting is performed but the outputs are not changed.)

Note 1. The outputs vary at the falling edge of CLOCK.

2. $T_1 \sim T_4$ vary at the falling edge of SCAN IN.

TIMING CHART

Note) TRANSFER = "H"


OPERATING CONSIDERATION

1. SCAN Operation

The scan signal for dynamic display applied to SCAN INPUT terminal is converted to four digit scan signal by T-COUNTER (4 digit ring counter) and controls the multiplexer circuit. The four digit information stored in the latches is transferred to the output in synchronism with T_1 - T_4 outputs.

By applying DC for SCAN signal, arbitrary digit can be statically output. T_1 - T_4 are used for the digit selection circuit.

There are two methods of supplying SCAN signal. One is AUTO SCAN method (Fig. 1) which consists of the multivibrator fabricated with a resistor and a capacitor externally connected to $R_{\rm EXT}$ and $C_{\rm EXT}$ terminals respectively and the internal inverter, and another is to supply external signal to SCAN IN terminal

(Fig. 2). (Note: REXT and CEXT are left open in Fig. 2.)

2. Latch Operation

Flickering of output caused by the count pulse with high frequency can be eliminated by controlling TRANSFER terminal.

TRANSFER = "H" : The counter information is transferred to the multiplexer as it is.

TRANSFER = "L" : The content of counter immediately prior to the falling edge of TRANSFER is latched and the multiplexer input is not changed.

(Note) The counter, in this case, still continues counting.

3. Count Operation

For normal count operation, this chip should be used with TRANSFER = "H" and RESET = "L". The output changes its state at the falling edge of CLOCK.

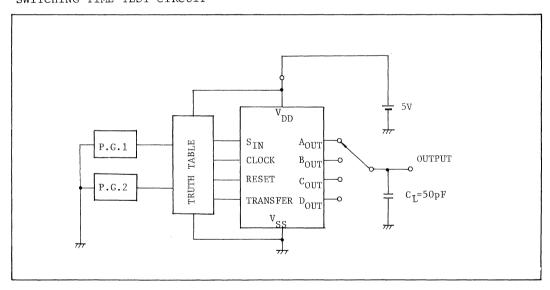
The content of counter can be reset to "0000" by setting RESET terminal to "H". It should be noticed that CLOCK is not active unless RESET is returned to "L".

This LSI can count up to "9999", and if five or more digits are required, TC4510P or TC4518P should be connected in the preceding stage of this LSI.

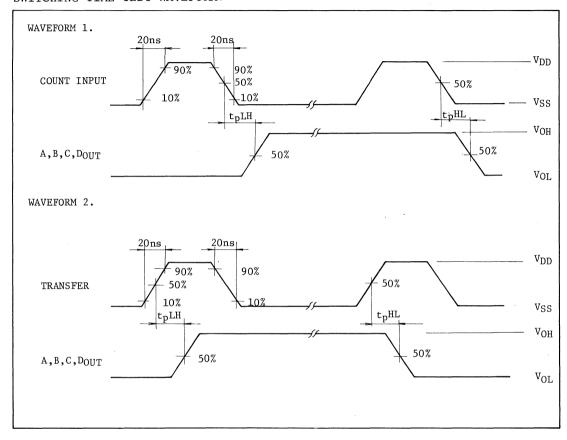
RECOMMENDED OPERATING CONDITIONS(V_{SS} =OV)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3	_	8	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	v
Operating Temperature	Topr	-30	_	85	°C
R External EXT Resistance	R	5	100	1000	kΩ
External C _{EXT} Capacitance	С	10-4	0.02	1.0	μF

ELECTRICAL CHARACTERISTICS (V_{SS} =OV)


		arn mor	TEST	V _{DD}	-30)°C	2	5°C		85°	С	UNIT
CHARACTE	RISTIC	SYMBOL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX	
1 -	High Level Output Voltage OH		$v_{\mathrm{IN}}^{\mathrm{II}_{\mathrm{OUT}}}$ $v_{\mathrm{DD}}^{\mathrm{I}}$, $v_{\mathrm{SS}}^{\mathrm{IUA}}$	5	4.95	-	4.95	_	_	4.95	_	
Low Leve Output V		V _{OL}	$v_{\mathrm{IN}}^{\mathrm{II}_{\mathrm{OUT}}}$	5	_	0.05	-	-	0.05	-	0.05	V
High	A_{OUT} , B_{OUT}		V _{OH} =2.5V	5	-1.2	-	-1.0		-	-0.75	-	
Leve1	${f T}_1$, ${f T}_2$ ${f T}_3$, ${f T}_4$	^I он	$v_{\rm IN} = v_{\rm SS}, v_{\rm DD}$	5	-1.2	_	-1.0		-	-0.75	_	m.A.
Current	$R_{\mathrm{EXT}}, C_{\mathrm{EXT}}$	^I он		5	-0.35	-	-0.3		_	-0.2	_	
Low Level	A _{OUT} , B _{OUT} C _{OUT} , D _{OUT}		V _{OL} =0.4V	5	2.4	<u>-</u>	2.0		_	1.6	-	l.
Output	T_1 , T_2 T_3 , T_4	I _{OL}	V _{IN} =V _{SS} ,V _{DD}	5	0.52	-	0.44		_	0.36	-	mA
	R _{EXT} , C _{EXT}	I _{OL}		5	0.28	-	0.24		_	0.2	-	
Input	H. Level	v_{IH}	V _{OUT} =0.1V,4.9V	5	3.8	_	3.8	2.75	-	3.8	_	v
Voltage	L. Level	$v_{ m IL}$	1 _{OUT} <1μΑ	5	-	1.2	_	2.25	1.2	-	1.2	V
Input	H. Level	I_{IH}	V _{IH} =8V	8	_	0.2	_	10 ⁻⁵	0.2	-	1.0	μА
Current	L. Level	$I_{ m IL}$	V _{IL} =0V	8	-	-0.2	_	-10-5	-0.2	-	-1.0	μA
Quiescer Consumpt	t Current ion	IDD	VIN=VSS,VDD *	8	-	50	_	-	50	_	500	μА

^{*} All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, $\rm V_{SS}$ =0V, $\rm C_L$ =50pF)

CHARACTERISTIC		SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
(Low-High)Propagation Delay Time		t _{pLH}	COUNT INPUT →	5	_	600	1000	
(High-Low)Propagation Delay Time		tpHL	A,B,C, D _{OUT} (WAVEFORM 1)	5	_	600	1000	
(Low-High)Prop Dela	agation y Time	t pLH	TRANSFER >	5	-	400	1000	ns
(High-Low)Prop Dela	agation y Time	tpHL	A,B,C, D _{OUT} (WAVEFORM 2)	5	-	400	1000	
Max.Clock Rise	Max.Clock Rise/Fall Time			5	20	-	-	μs
Min. Clear Pul	se Width	t _w (RE)	RESET(0), (9)	5	_	-	1000	no
Min.TransferP	ulse Width	t _w (TR)	TRANSFER	5	-	_	1000	ns
Input	6, 7 PIN	CIN			_	5	7.5	
Capacitance	3 PIN	c_{IN}			-	7	10	pF
5 PIN		c_{IN}			_	9	15	
Max. Frequenc	у	f _{CL}		5	0.5	2.0	-	MHz

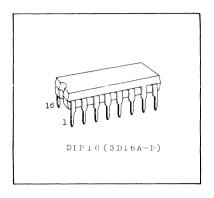
SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

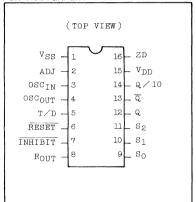
TC5043P

TC5043P is an timer consisting of CR oscillation circuit and frequency division circuit. The oscillation circuit is made up by externally installing one resistor and one capacitor, being able to be set in a wide range of cycle. The frequency division circuit consists of fixed stage of 1/1000 and variable stage of $1/1\sim1/600$, being capable of performing frequency division of 6 \times 10 max. Therefore, TC5043P can cover all the regions ranging from conventional CR timers to motor timers. This device is so designed that the external parts required may be reduced to the minimum by means of the built-in zener diode, auto reset circuit, and pull-up/pull-down resistance.

FEATURES:

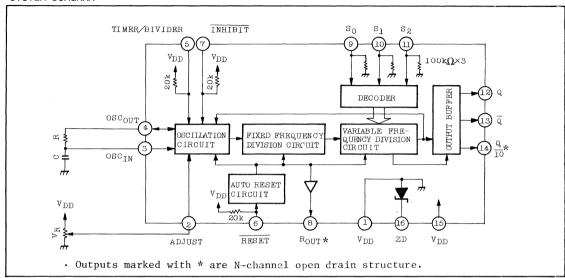

- . Wide time range of timer $(5ms \sim 1500Hr)$
- . Wide range of fine adjustment of oscillation frequency (±50% or over)
- . Low power consumption (2mW Typ.)
- . Little supply voltage regulation of oscillation cvcle (1%/V)
- . Narrow temperature variations of oscillation cycle $(0.02\%/^{\circ}C)$
- . Internal auto reset function
- . Precision CR oscillation circuit
- . Internal zener diode
- . Timer/Divider switchable
- . Simple display of time elapsed of oscillation
- . Programmable frequency division ratio able to be set in eight ways

APPLICATIONS:

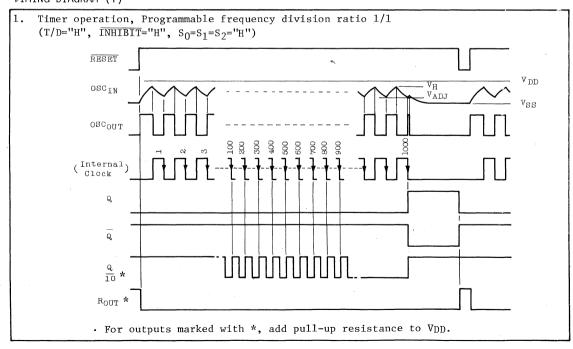

- . Industrial timers
- . Timers for various commercial equipment
- . Low-frequency oscillators

ABSOLUTE MAXIMUM RATINGS

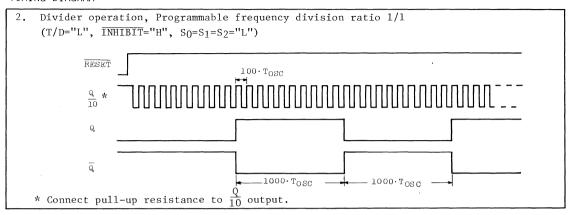
CHARAC	TERISTIC	SYMBOL	RATING	UNIT
DC Supply	Voltage	v_{DD}	V _{SS} -0.5 ~ V _{SS} +12	
Input Voltage		$v_{\rm IN}$	V _{SS} -0.5~V _{DD} +0.5	v
Output	ROUT, Q/10	V _{OUT}	Vss-0.5~Vss+12	'
Voltage	$Q, \overline{Q}, OSCOUT$	1001	$V_{SS}-0.5 \sim V_{DD}+0.5$	
DC Input	Current	IIN	±10	mA
Zener Cur	rent	I_{Z}	10	1
Power Dis	sipation	$P_{\mathbf{D}}$	300	mW
Operating Range	Temperature	Topr	- 40 ∼ 85	°c
Storage T Range	emperature	T _{stg}	-65∼150	



PIN ASSIGNMENT



TRUTI	H TABI	_E	
R	T/D	INH	OPERATION
L	*	*	RESET
Н	Н	Н	TIMER OPERATION
Н	L	Н	DIVIDER OPERATION
Н	*	L	TEMPORARY STOP OF OPERATION
*	Don't	Care	


SYSTEM DIAGRAM

TIMING DIAGRAM (1)

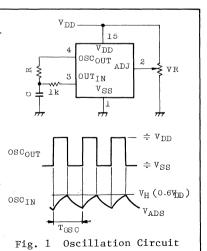
TIMING DIAGRAM

PIN FUNCTION

PIN NO.	SYMBOL	FUNCTION
1	V _{SS}	GND (OV) Pin
2	ADJUST	Pin for fine adjustment for oscillation frequency. Externally apply the voltage ranging from 0.2V _{DD} to 0.55V _{DD} .
3	osc _{IN}	Oscillation circuit configuration pins : These pins start oscillation when resistor R is connected between OSC $_{ m IN}$ and OSC $_{ m OUT}$ and capa-
4	osc _{out}	citor C between OSCIN and VSS, respectively. In case VADJ is 0.39VDD, oscillation cycle becomes almost $T_{\rm OSC}{}^{\rm =RC}$.
5	TIMER /DIVIER	Timer/divider switching input. At time of open (or "H" level), this device operates as a timer, and at time of "L" level it operates as a divider.
6	RESET	All the counters are reset at "L" level. At' the rising edge of this input, the device begins to count.
7	INHIBIT	When this pin is set at "L" level, the device keeps stopping oscillation during the period of "L" level state. The pin is used for temporary stop of oscillation. $^{\prime}$
8	RESET _{OUT}	Only at time of timer operation, reset signal is output. (At the time when $\overline{\text{RESET}}$ = "L" and during the period of auto reset at the rising time of power supply, output is off.) For the divider mode, this pin should be open.
9	s ₀	$S_0^{\circ}S_3$ are frequency division ratio switching inputs of the counter. Eight time intervals can be predetermined by combining pins, $S_0 \sim S_2$. ($T = 1000 \times \frac{1}{f_{OSC}}$)

PIN NO.	SYMBOL			FU	UNCTION					
		S ₂	-	I.	, F	ſ		L	Н	H
10	s_1	S ₀ Time inter-*	L	Н	L	Н	L	Н	L	Н
11	s ₂									
12	Q	Q and \overline{Q} are time-up outputs. After the end of time intervals, Q reaches "H" level and \overline{Q} reaches "L" level. While the divider is								
13	Q	operating, the of timer.								
14	$\frac{Q}{10}$	$\rm Q/10$ is a pin which outputs the elapsed time of timer, and outputs the pulse of $\rm 1/10$ cycle of timer time. This is N-channel open drain output.								
15	v _{DD}	Power supply p	Power supply pin							
16	ZD	The cathode to							-	1

OPERATIONAL DESCRIPTION


1. Oscillation Circuit

The oscillation circuit can be made up by connecting resistor R between ${\rm OSC_{IN}}$ and ${\rm OSC_{OUT}}$ and capacitor C between ${\rm OSC_{TN}}$ and ${\rm V_{SS}(GND)}$ as shown in Fig. 1.

This IC has two levels of built-in reference voltage $V_{\rm H}(0.62~V_{\rm DD})$ and reference voltage $V_{\rm L}(=V_{\rm ADJ})$ externally supplied to ADJ pin, and performs oscillation in such a form as the charge and discharge wave of CR runs between these two levels.

Therefore, oscillation cycle can be adjusted by varying the voltage of ADJ pin.

When $V_{ADJ} \stackrel{?}{=} 0.39~V_{DD}$, the oscillation cycle is decided from the equation of $T_{OSC}=RC$ (T : [S], $R[\Omega]$, C[F]). V_{ADJ} should be used within the range of $0.2V_{DD} \sim 0.55V_{DD}$.

2. Counting circuit (Frequency dividing circuit)

This circuit consists of the fixed frequency dividing stage of 1/1000 and the variable frequency dividing stage of $1/1 \sim 1/600$.

Time intervals of timer can be predetermined in eight ways by combining three inputs of 50 \circ 52.

Select	s_2		L			Н					
1	Input S1		,	F	I	I		Н			
Input	s ₀	L H		L	Н	L	Н	L	Н		
Time i vals of		Т	3Т	6T	10T	60T	30т	300T	600т		

Note 1.

T=1000·T_{OSC}

Note 2.

"L" level

may be open.

3. Reset operation

The internal counter is kept reset by the built-in auto reset circuit until the power supply level reaches reset release voltage (v_{RD}) at time of application of power. However, the power rising time of more than $500\mu s$ should be taken for abrupt rising edge of power supply because there may be no possibility of the internal counter being reset. In case of the rising time of $500\mu s$ or below, differentiation circuit is made up by adding the capacitor to $\overline{\rm RESET}$ terminal. (Refer to Fig. 2)

It is a matter of course that the internal circuit can be reset even by setting $\overline{\text{RESET}}$ input at "L" level. When the reset operation is released, oscillating and counting operations start. The reset signal is being output to this IC.

In case where this pin (R_{OUT}) is internally reset, it is off (at the rising time of power supply and during "L" level of \overline{RESET}); therefore, this pin can be used for making the external circuit synchronize by use of pullup resistance or equivalent. While R_{OUT} is not in use, it should be kept set open (or at "L" level).

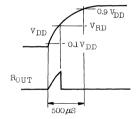


Fig. 2 Auto Reset Circuit

4. Inhibit operation

Oscillation can be stopped by setting $\overline{\text{INHIBIT}}$ input at "L" level. Normal operation can be performed by setting $\overline{\text{INHIBIT}}$ input open (or at "H" level).

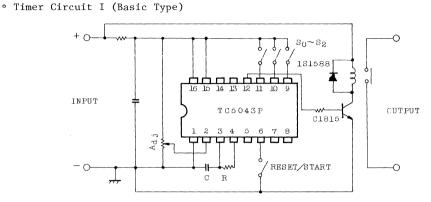
5. Divider function

When the T/D pin is set open (or at "H" level), this device operates as a timer. When this pin is set at "H" level, this divice can be used as a divider which continues operating oscillation/counting without creating time-up signal.

For the divider mode, however, ROUT cannot be used. (Open or "L").

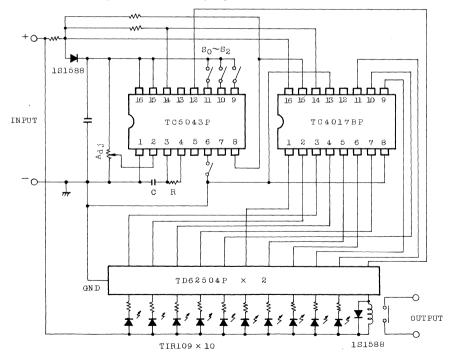
RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

ITEM	SYMBOL		MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		6.2	_	10	V
High Level Input Voltage	VIH		0.8V _{DD}	-	v_{DD}	V
Low Level Input Voltage	$v_{\rm IL}$	·	0	-	0.2V _{DD}	V
External Resistor	R		5K	-	2M	Ω
External Capacity	С		1000P	_	5μ	F
Output Voltage	V _{OUT}	* Applcable to R _{OUT} ' Q/10	0	-	10	V


ELECTRICAL CHARACTERISTICS (V_{SS}=0V)

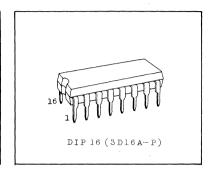
TENTA	arn m or	THE CONTINUE	$v_{ m DD}$	-40	°C		25°C		85'	°C	UNIT
ITEM	SYMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
7 W-1+	77	I _{Z=1mA}	_	6.2	8.1	6.5	7.2	8.2	6.6	8.5	v
Zener Voltage	$v_{\rm Z}$	I _{Z=10mA}		6.2	8.1	6.5	7.3	8.2	6.6	8.5	v l
High Level	т	V _{OH=6} V	7	-1.2	_	-1.2	-2.5	-	-1.0	-	
Output Current	IOH	V _{OH=3V}	, 	-5.2	-	-5.2	-9.0	-	-4.0	-	mΑ
Low Level Output Current	IOL	V _{OL=0.4V}	7	i.0	_	1.0	2.0	_	0.8	-	III.
High Level Input Current	I _{IH}	$V_{\rm IH}$ =10V,(Exclusive of S_0 ^S2)	10	_	5	_	10-3	5	-	5	
Low Level Input Current	$I_{ m IL}$	V _{IL} =OV,(Exclusive of R• INH •T/D)	10	-	- 5	-	-10-3	-5	-	- 5	μA
Pull-up Resistance	R _{PU}	R, INH, T/D Inputs	-	7	50	10	20	50	10	75	kΩ
Pull-down Resistance	R _{PD}	S ₀ ,S ₁ ,S ₂ Inputs	-	45	200	66	100	200	66	300	K36
Output OFF Current	I_{OFF}	V _{OH=10V} , R _{OUT} , Q/10 Outputs	10	_	1.0	-	10-3	1.0	1	10.0	μА
Auto Reset Release Voltage	$v_{ m RD}$		_	_	_	2.6	-	5.2	_	-	V
Supply Current	$I_{ m DD}$	C=0.1μF, R=1MΩ*	10	_	_	_	0.3	-	-	-	mA

^{*} All inputs and outputs are open.


EXAMPLES OF APPLIED CIRCUIT

(Time of timer can be varied to linear by using resistor R deciding time constant with variable resistance.)

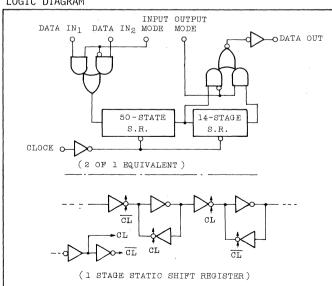
• Timer Circuit II (Elapsed Time Displaying Type)

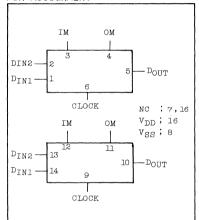


TC5050P DUAL 50/64 STAGE STATIC SHIFT REGISTER

TC5050P is static shift register consisting of D type flip-flops, and can be used as either 50 bit shift register or 64 bit shift register depending on OUTPUT MODE input.

Since one of two input data can be selected by INPUT MODE input, the applications for scratch pad memories, etc. can be realized by connecting one of data inputs to the output. And if two circuits are connected in series, this can be expanded to 100 bit, 114 bit or 128 bit shift register.


When used with 5 volts power supply, one of TTL or DTL can be directly driven.


ABSOLUTE MAXIMUM RATINGS

ADOUGHT THINKEHOLD TOTAL			
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+10	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature Range	Tstg	- 55 ~ 125	°C
Lead Temp./Time	T _{so1}	260°C · 10sec	

LOGIC DIAGRAM

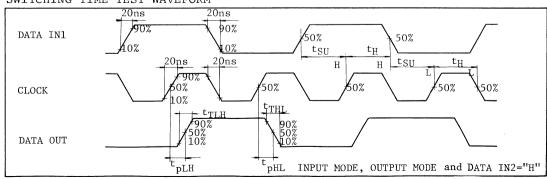
PIN ASSIGNMENT

TRUTH TABLE

tn	, t _n -	- 1	t _n 4	-50	t _n -	F 64
DINI	DINS	IM	ОМ	Dour	OM	DOUT
Н	*	Н	L	Н	Н	Н
L	*	Н	L	L	Н	L
*	Н	L	L	Н	Н	Н
*	L	L	L	L	Н	L
CLOC	on't			n+50		+64

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=OV$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	3	_	8	V
Input Voltage	v_{IN}	0	_	$v_{ m DD}$	V
Operating Temperature	Topr	-30	_	85	°C

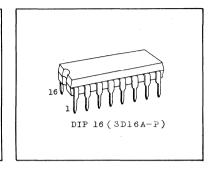

ELECTRICAL CHARACTERISTICS (V_{SS} =OV)

CHARACTERISTIC	SYM-	TEST	V_{DD}	-30	°C	2	25°C		85	°C	UNIT
OMINIOTERIBITE	BOL	CONDITIONS	(A)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High Level Output Voltage	V _{OH}	$v_{\mathrm{IN}}^{\mathrm{IOUT}} < 1 \mu \mathrm{A} \ v_{\mathrm{DD}}, v_{\mathrm{SS}}$	5	4.95	_	4.95	5.00	_	4.95	1	V
Low Level Output Voltage	V _{OL}	I _{OUT} <1μΑ V _{IN} =V _{DD} ,V _{SS}	5	-	0.05		0.00	0.05	-	0.05	
High Level Output Current	ІОН	V _{OH} =2.5V V _{IN} =V _{DD} ,V _{SS}	5	-1.25	_	1.25	-5.0	-	-1.0	-	mA
Low Level Output Current	I _{OL}	V _{OL=0,4V} V _{IN=V_{DD},V_{SS}}	5	3.2	ı	3.2	7.0	-	2.4	-	
High Level Input Voltage	v_{IH}	V _{OUT} =0.5V,4.5V 1 _{OUT} <1μΑ	5	3.5	-	3.5	2.75	-	3.5	-	V
Low Level Input Voltage	$v_{_{\mathrm{IL}}}$	V _{OUT} =0.5V,4.5V I _{OUT} <1μΑ		-	1.5	-	2.25		_	1.5	v
H.Level Input Current		$v_{IH}=8v$	8	-	0.2	_	10-5	0.2		1.0	μA
L.Level Input Current	IIL	VIT=OA	8		-0.2	_	-10-5		_	-1.0	μA
Quiescent Current C.	I_{DD}	*VIN=VSS,VDD	5		50	-		50	_	37,5	μA

* All valid input combination SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS}=OV, C_L=50pF)

						T	
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (y)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}		5	-	135	400	ns
Output Fall Time	t_{THL}		5	-	100	200	ns
(Low-High)P.Delay Time	t _{pLH}		5	_	500	1000	ns
(High-Low)P.Delay Time	toHL		5	-	400	1000	113
Max.Clock Rise Time Max.Clock Fall Time	t _{rCL}	_	5	20	_	_	μs
Max. Clock Frequency	fCL		5	1.0	2.5	_	MHz
Data Set Up Time	t _{SU}		5	_	100	250	ns
Data Hold Time	t _H		5	-	-100	50	ns
InputCapa- CLOCK INPUT OTHER INPUT	c_{IN}			-	10 5	15 7.5	рF

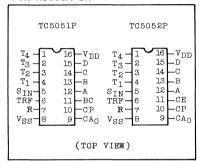
SWITCHING TIME TEST WAVEFORM

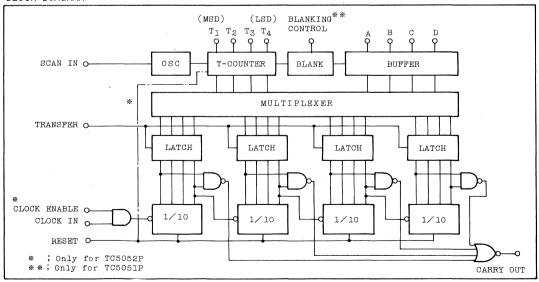


TC5051P, TC5052P

TC5051P 4 DIGIT DECADE COUNTER WITH BLANKING CONTROL TC5052P 4 DIGIT DECADE COUNTER WITH CLOCK ENABLE

TC5051P and TC5052P are four digit decimal up counters. The contents of counter are dynamically output digit by digit in sequence from the higher-order digit to BCD OUTPUT. When the content of counter reaches "9999", CARRY OUT is output with "H" level, and it holds "L" level for other counter contents.


TC5051P has BLANKING CONTROL input which facilitates the leading zero suppress operation for higher order digits than arbitrary digit position. And TC5052P is capable to inhibit CLOCK by means of CLOCK ENABLE input.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 ~ V_{SS} +14	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	T _{stg}	- 65 ∼ 150	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	•

PIN ASSIGNMENT

BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTION

IN No.	SYMBOL	NAME	FUNCTION
1	Т4	DIGIT SELECT 4	Outputs to select the digit of BCD OUT (Output signal and correspond in ascending order from T ₁ . "H" level
2	Т3	DIGIT SELECT 3	is shifted from T_1 , T_2 , T_3 then T_4 in sequence for
3	т2	DIGIT SELECT 2	every eight clocks of S_{1N} . In the case of TC5052P, where RESET is set to "H", all of $T_1{\sim}T_4$ become "L" and when
4	т1	DIGIT SELECT 1	RESET falls the scan is always started from T1. T1~T2 are not affected by RESET for TC5051P.
5	SIN	SCAN INPUT	T-COUNTER CLOCK input. The clock can be generated by connecting a capacitor between this terminal and GND.
6	TRF	TRANSFER	$_{\rm H}$ Decimal counter outputs are transferred to the multiplexer as they are.
			${\color{blue} {\rm L}}$ The counter outputs at the falling edge of TRF are latched.
. 7	R	RESET	The counter is reset to "0000" by "H" level input. TC5052P establishes the synchronism of T-counter by means of CLEAR input.
8	v _{ss}	v_{SS}	(GND)
9	CAO	CARRY OUT	"H" level is output as long as the counter holds "9999". This becomes "L" level for all other counts.
10	СР	CLOCK INPUT	First stage decimal counter clock, which triggers at the falling edge.
11	CE	CLOCK ENABLE (TC5052P)	Clock input is inhibited by "L" level
	ВС	BLANK CONTROL (TC5051P)	All digits are displayed by "H" level, leading zero suppress can be achieved by "L" level and zero suppres for higher order digits than a specific digit position and be achieved by connecting T output to BC.
12	A	BCD OUT A	BCD outputs of decimal counter.
13	В	BCD OUT B	When T ₁ ="H", the highest order digit (4th digit) is output. When T ₂ ="H", 3rd digit is output, when T ₃ ="H
14	С	BCD OUT C	2nd digit is output and when T4="H", 1st digit is
15	D	BCD OUT D	output. If zero suppress is activated, all the outputs become "H" level.
16	$v_{ m DD}$	$v_{ m DD}$	V _{DD} Power Supply (3 - 12 volts)

OPERATING CONSIDERATION

* Count and Reset Operations

When RESET input is set at "H" level, the counter is reset to "0000". If pulse is applied to CLOCK input after returning RESET input to "L", the counter advances its count up to "9999" at the falling edge of clock providing CLOCK ENABLE to be "H". If CLOCK ENABLE is "L", CLOCK is inhibited. CARRY OUT is output with "H" level only when the count is "9999".

^{*} Latch Operation - When TRANSFER input is set to "H", the counter output is transferred to the multiplexer as it is and output dynamically to BCD OUT in synchronism with S_{IN}. When TRANSFER input is changed from "H" to "L", the counter content at the falling edge of TRANSFER is stored in the latch and BCD OUT is not varied even if the count changes. *Scan Operation - BCD output of each digit is output on common Δ_{OUT} - D_{OUT} on time sharing basis and switching of digit is achieved by connecting a capacitor between SCAN IN input and $V_{SS}(GND)$ (internal oscillation) or by supplying external clock from SCAN IN.

OPERATING CONSIDERATION

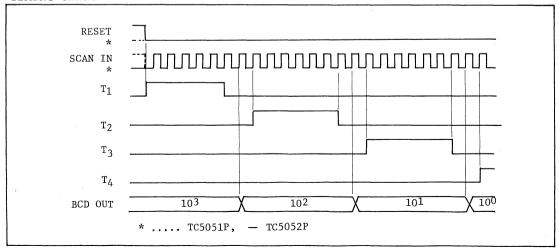
Capacitance of approximately 1000pF is recommended for the internal oscillation.

Switching of digit is in synchronism with the timing outputs of T_1 - T_4 . When T_1 is "H" thousand's digit is output to BCD OUT, when T_2 is "H" hundred's digit is output, when T_3 is "H" ten's digit is output, and when T_4 is "H" unit's digit is output.

* Blanking Operation (TC5051P)

By controlling BLANKING CONTROL, leading zero suppress of higher order digit positions than a specific digit position can be achieved by the function of internal circuit.

```
BLANKING CONTROL = VSS .... Zero Suppress for all digits *


" " = VDD .... No Zero Suppress
" " = T2 .... Zero Suppress for only thousand's digit *

" " = T3 .... Zero Suppress for thousand's and hundred's digits
" " = T4 .... Zero Suppress for all except unit's digit *
```

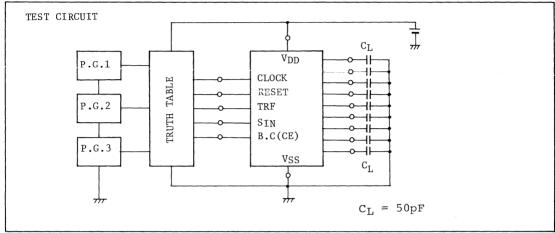
When blanking is activated, all of AOUT - DOUT become "H".

* (Note) When a carry occurs from the counter and during one cycle of T counter, normal output may not be seen.

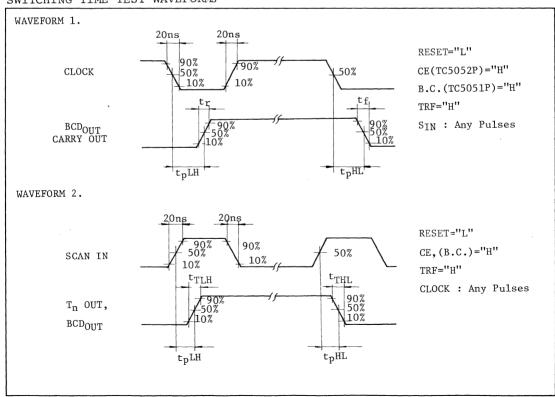
TIMING CHART

RECOMMENDED OPERATING CONDITIONS (VSS=OV)

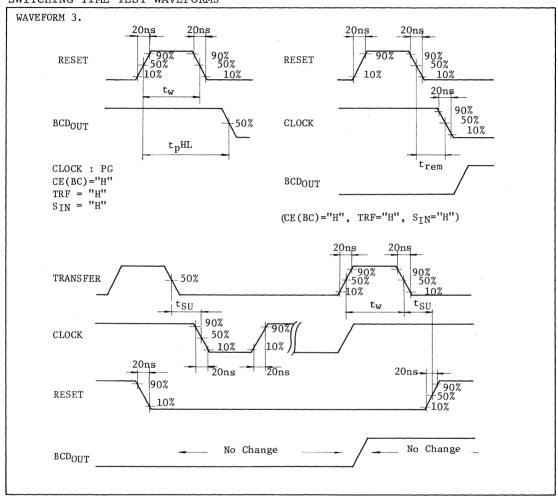
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}	3	_	12	V
Input Voltage	V _{IN}	0	-	$v_{ m DD}$	v
S _{TN} Connecting Capa.	CEXT	50	-	30000	pF
Operating Temp.	Topr	-40	-	85	°C


ELECTRICAL CHARACTERISTICS (v_{SS} =ov)

CHARACTERISTIC	SYMBOL	TEST	$v_{\rm DD}$	-4	0°C	2	25°C		85°	°C	UNIT
CHARACTERISTIC	STREEL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High Level Output Voltage	V _{ОН}	$v_{\mathrm{IN}} = v_{\mathrm{SS}}$, v_{DD}	5 10	4.95 9.95	!	4.95 9.95	5.00 10.00		4.95 9.95	_	
Low Level Output Voltage	v _{OL}	^l I _{OUT} l<1μA V _{IN} =V _{SS} , V _{DD}	5 10	-	0.05	-	0.00		ľ	0.05	V
High Level Output Current	ІОН	V _{OH} =4.6V V _{OH} =9.5V V _{IN} =V _{SS} ,V _{DD}	5 10	-0.2 -0.5	-	-0.16 -0.4		-	-0.12 -0.3	-	
Low Level Output Current	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{IN} =V _{SS} ,V _{DD}	5 10	0.52 1.3	-	0.44		-	0.36	-	mA
High Level Input Voltage	v _{IH}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V I _{OUT} <1μA	5 10	3.5 7.0	<u>-</u>	3.5 7.0	2.75 5.5	-	3.5 7.0	_	
Low Level Input Voltage	V _{IL}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V II _{OUT} <1μΑ	5 10	-	1.5 3.0	_	2.25 4.5	1.5 3.0	-	1.5 3.0	v
High Level Input Current (other than SIN)	IH	V _{IH} =12V	12	-	0.3	_	10 ⁻⁵	0.3	_	1.0	
Low Level Input Current (other than S _{IN})	$^{ m I}_{ m IL}$	v _{IL} =0v	1 2	-	-0.3	-	-10 ⁻⁵	-0.3	_	-1.0	μA
High Level Input Current (S _{IN})	$^{ m I}_{ m IH}$	V _{IH} =12V	12	-	-	50	-	200	_	_	μA
Low Level Input Current (S _{IN})	$^{ m I}_{ m IL}$	V _{IL} =0V	1 2	_	_	1.5	-	6	-	-	mA
Quiescent Current Consumption	I DD	$v_{\mathrm{IN}} = v_{\mathrm{SS}}, v_{\mathrm{DD}}$	5 10	=	-	200 500	-	200 500	-	500 1000	μA


SWITCHING CHARACTERISTICS (Ta=25°C, V _{SS} =0V, C _L =	$C_T = 50 pF$)
---	---------------	---

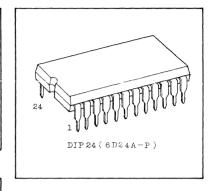
SWITCHING CHARACTE	TUTDITCD	(Ta=25°C, V _{SS} =0	JV, CL			,	
CHARACTERISTICS	SYMBOL	TEST CONDITIONS	v _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}		5 10	-	130 65	400 200	
Output Fall Time	t _{THL}		5 10	-	100 50	200 100	ns
Propagation Delay Time (CLOCK-BCD _{OUT})	t pLH pHL	т ₄ ="н"	5 10	-	1200 450	2500 1000	ns
Propagation Delay Time (CLOCK-CARRY)	t pLH t pHL		5 10	-	900 400	2000 800	ns
Propagation Delay Time (S _{IN} - T _n)	tpLH tpHL		5 10	-	1200 450	2500 1000	ns
Propagation Delay Time (S _{IN} -BCD _{OUT})	t _{pLH} t _{pHL}		5 10	_	1600 700	2500 1400	ns
Propagation Delay Time (CLEAR-BCD _{OUT})	t pHL		5 10	-	900 350	2000 800	ns
Min. RESET Pulse Width	t w (RESET)		5 10		700 350	1500 750	ns
Min. Transfer Pulse Width	t w (TRANSFER)		5 10	-	140 50	500 250	ns
Max. Clock Frequency	f _{CL}		5 10	1.0	1.5 3.5	-	MHz
Max. Scan Frequency	f _{CL} (SCAN)		5 10	0.5 1.0	1.0	-	
Min. Removal Time (RESET - COLOCK)	t rem		5 10				ns
Min. Set Up Time (TRANSFER-CLOCK)	t _{SU}		5 10				ns
Min. Set Up Time (TRANSFER-CLEAR)	t _{SU}		5 10				115
Max. Clock Rise Time	trCL		5	20	-	_	
Max. Clock Fall Time	t_{fCL}		10	2.5	_	-	μs
Input Capacitance	c_{IN}						pF


SWITCHING TIME TEST CIRUIT

SWITCHING TIME TEST WAVEFORMS

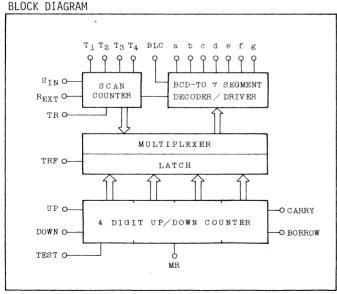
SWITCHING TIME TEST WAVEFORMS

TC5053P, TC5054P

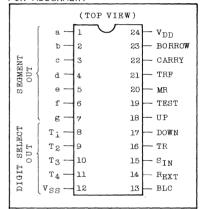

TC5053P 4-DIGIT UP/DOWN DECADE COUNTER TC5054P 4-DIGIT UP/DOWN DECADE COUNTER

TC5053P/TC5054P is a 4-digit decimal up/down counter containing 7-segment decoder/driver.

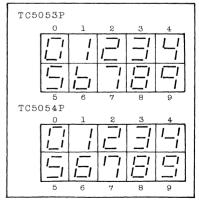
The counter consists internally of a 4-digit latch, multiplexer, scan oscillating circuit, and decoder/ driver capable of directly driving LED.

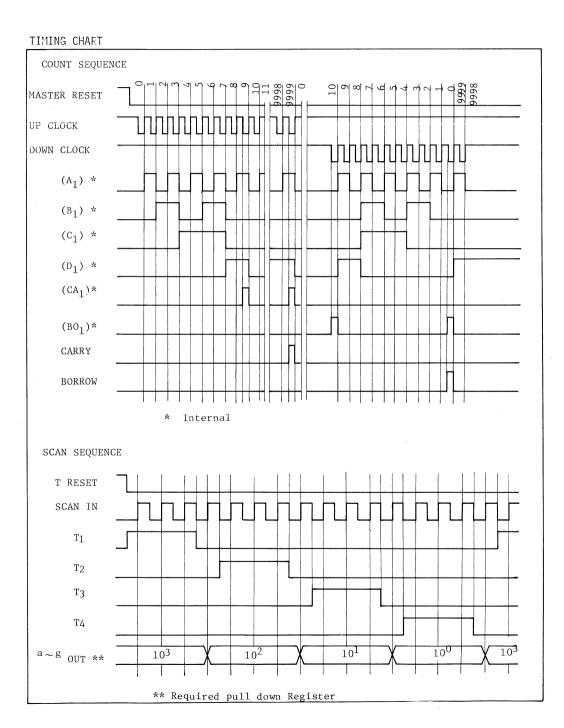

The clock input is independently equipped with an up-clock and a down-clock. Each input has the function of a Schmitt trigger.

This type of up/down counter can be widely applied to counters, panelmeters, etc.



ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$V_{ m DD}$	V _{SS} -0.5~V _{SS} +10	V
Input Voltage	VIN	Vss-0.5∼VDD+0.5	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-55 ~ 125	°C
Lead Temp./Time	T _{sol}	260°C · 10sec	



PIN ASSGNMENT

SEGMENT OUTPUTS MODE

DESCRIPTION OF PIN FUNCTION

PIN NO.	SYMBOL	NAME	FUNCTION
1	· a	SEGMENT a	The segments a \circ g are the outputs that have convereted
2	Ъ	" Ъ	the decimal up/down counter BCD outputs into 7-segment
3	С	ii c	display element driving codes.
4	d	'' d	These segment signals are synchronous with SCAN inputs and are dynamically output from the higher order digit.
5	e	'' e	Since they are designed so that I _{OH} is large, they can
6	f	· · · · · · · · · · · · · · · · · · ·	directly drive a cathod common type LED.
7	g	'' g	
8	Т1	DIGIT SELECT 1	These are the outputs indicating the digits of the outputs
9	Т2	" 2	a $^{\circ}$ g and correspond to the higher-order positions from
10	Тз	" 3	T ₁ upward.
11	T4	" 4	These outputs are automatically switched in order of T_1 - T_2 - T_3 - T_4 - T_1 by giving clock to SCAN input.
12	V _{SS}	V _{SS}	(GND)
	. 22	. 33	
13	BLC	BLANKING CONTROL	Leading zero its of more than the higher-order(N-1) suppression of All digits nal to Tn.
14	R _{EXT}	REGISTER EXTERNAL	SCAN clock is produced by connecting a resistor between $R_{\rm EXT}$ and $S_{\rm IN}$. In case $S_{\rm IN}$ is externally provided, $R_{\rm EXT}$ should be opened.
15	s _{IN}	SCAN IN	This is a clock input of digit selection counter. If a resistor is connected between S _{IN} and R _{EXT} , SCAN Counter can make self-osillation.(Pulse may be externally applied)
16	TR	T-COUNTER RESET	Operation of SCAN counter can be stopped by "H" level. Whenever TR is fallen, SCAN counter starts scanning from T $_1$.
17	DOWN	DOWN COUNT	The internal counter makes document at the rising edge of a pulse if the pulse is provided to the in a state where UP input is kept at "H" level.
18	UP	UP COUNT	The internal counter makes up count at the rising edge of a pulse if the pulse is provided to the in a state where DOWN input is kept at "H" level.
19	TEST	TEST	This set to "L" level. (When it is set to "H" level, counting varies with the rising or falling edge.)
20	MR	MASTER RESET	A state of count is cleared to "0000" at the 'H" level.
21	TRF	TRANSFER	In case of "H" level input, the counter contents are always being output through a multiplexer. In case of "L" level input, however, the counter contents before the change to "L" level are not changed by the change in counter contents because the previous contents remain kept in the latch circuit.
22	CARRY	CARRY	In UP COUNT, when the COUNTER contents reaches "9999", "H" level is output as long as UP COUNTER input holds "L" level.
23	BORROW	BORROW	In DOWN COUNT, when the COUNTER contents reaches "0000", "H" level is output as long as DOWN COUNTER input holds "L" level.
24	V_{DD}	v_{DD}	(VDD)

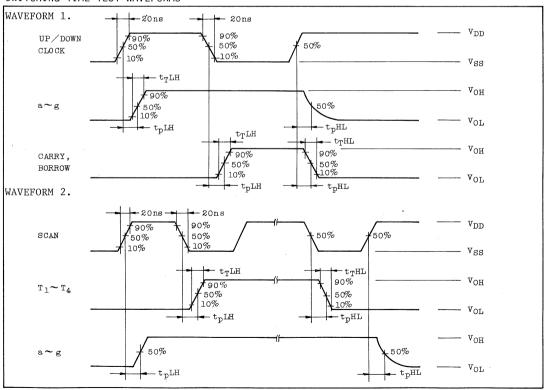
RECOMMENDED OPERATING CONDITION (VSS=OV)

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3	-	8	V
Input Voltage	VIN	0	-	v_{DD}	V
Operating Temperature	Topr	-30	-	85	°C
REXT EXTERNAL REGISTANCE	REXT	5K	_	1M	Ω

ELECTRICAL CHARACTERISTICS (V3S=0V)

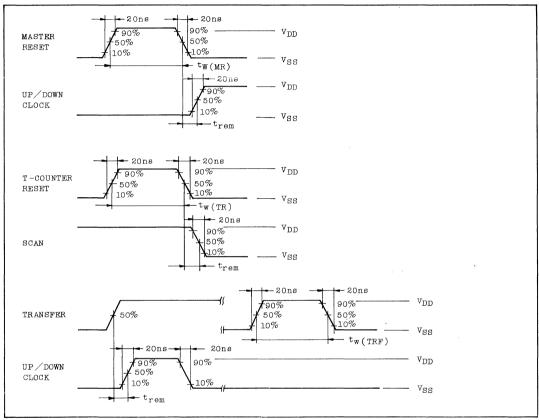
ELECTRICAL CHARACTERISTICS (V3S=UV)												
ITE	М	SYMBOL	TEST	VDD	-30			°C			5°C	UNIT
			CONDITION	(V)	MIN			TYP	МАУ.		MAX	
High Level	T ₁ ∿T4,Carry,Borrow		I _{OUT} <1µA		4,95		495		_	495		
Output Voltage	a ∿ g	v_{OH}	WIN=VSS, VDD	5	4.0			4.5		4.0		V
output vortage	R _{EXT}		· 11(· 00, · DD		4,95	-	495	-	_	495	_	
Low Level	Level T1~T4,Carry,Borrow		I _{OUT} <1µA	- 5	-	Q05	-	-	0.05	-	005	V
Output Voltage	R _{EXT}	VOL	$v_{\rm IN}=v_{\rm SS}, v_{\rm DD}$		-	0,05	_	_	0.05		Q05	·
	T1∿T4,Carry,Borrow	_	V _{OH} =4.6V		-0,2	-	-016	-	-	012	-	
High Level Output Current	a ∿ g	ІОН	V _{OH} =3.5V	5	-20	_	-20	-	-	-15	-	mA
	REXT		V _{OH} =4.6V		-0.02	-	-002	-	-	001	-	
Low Level	T ₁ ∿T4,CarryBorrow	I_{OL}	OL V _{OL} =0.4V	5	0,52	-	0,44	-	-	0,36	-	mA
Output Current	REXT	"-		,	0,02	_	002	-	-	001	-	
Disable Current	(a∿g)	I_{DL}	VOT=0A	8		-3.0	-	- 10 ⁴	-	_	-3,0	μΑ
High Level	UP/DOWN CLOCK	,,		5	3.5	-	3.5	-	-	3.5	-	v
Input Voltage	OTHER	VIH		ر	3.5	-	3.5	2,75	-	3.5	_	V
Low Level	UP/DOWN CLOCK	VIL		5	_	1.5	-	_	1.5	_	1.5	v
Input Voltage	OTHER	, IT			-	1.5	-	2,25	1.5	-	1.5	
High Level Input Current		IIH	V _{IH=8} V	8	-	015	-	105			1.0	
Low Level Input Current		IIL	AIT=0A	8	_	-015	-	-10 ⁵	-0.15	-	1.0	μA
Quiescent Curre	nt Consumption	I_{DD}	V _{IN} =V _{SS} ,V _{DD} OUTPUT OPEN	8	-		_	_		-		μА

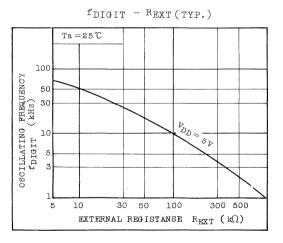
SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS} =0V, C_L =50pF)

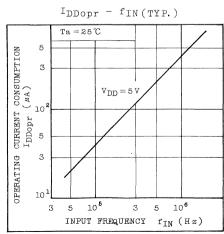

				,	·	
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	tTLH	T1~T4, Carry, Borrow	-	70	180	
odeput Rise Time	CILH	a~g (R _L =1kΩ)	-	40	100	ns
Output Fall Time	t _{THL}	T ₁ ~T ₄ , Carry, Borrow	-	50	130	•
		CLOCK-a~g (R _L =1kΩ, T ₁ =H)	-	5000	12000	
		CLOCK-Carry, Borrow	-	700	1500	ns
Propagation Delay Time		SCAN-T1~T4	_	450	1000	115
		SCAN-a~g (R _L =1kΩ)	-	750	1700	
	f _{CL} -1* f _{CL} -2*	CLOCK	2.0	4.0	-	
Max. Frequency	f _{CL} -2*	CLOCK	0.7	1.4	-	MHz
Max. Frequency	f _{CL} -1**	* SCAN		4.0	_	
	f _{CL} -1** f _{CL} -2**	SCAN	0.7	1.1	_	

SWITCHING CHARACTERISTICS (Ta=25°C, $V_{\rm SS}$ =0V, $C_{\rm L}$ =50pF) (Continued)

.CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	t _w (MR)	MASTER RESET		150	450	
Min. Pulse Width	t _w (TR)	T-COUNTER RESET	_	100	300	ns
	t _w (TRF)	TRANSFER	-	50	200	
		MR-CLOCK	_	-100	250	
Minimum Removal Time	t_{rem}	TR-SCAN	_	250	750	ns
		TRF-CLOCK	_	100	400	
Max. Clock Rise Time	$t_{ ext{rCL}}$	UP/DOWN CLOCK	No	Limit	-	μs
Max. Clock Fall Time	$t_{ ext{fCL}}$	017 50 02001	.,,			
Input Capacitance	c_{IN}	except SCAN	-	5	7.5	рF


^{*} Counter operation : f_{CL-1} , CARRY, BORROW operation : f_{CL-2}

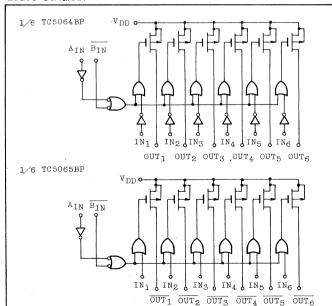

SWITCHING TIME TEST WAVEFORMS

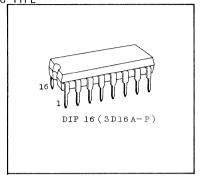


^{**} Leading zero suppression : $f_{\text{CL-2}}$, No zero suppression : $f_{\text{CL-1}}$

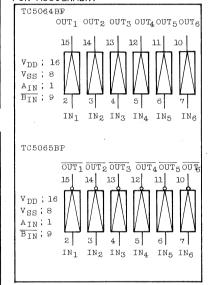
SWITCHING TIME TEST WAVEFORMS (Continued)

TC5064BP HEX HIGH VOLTAGE BUFFER WITH INHIBIT/NON INVERTING TYPE TC5065BP HEX HIGH VOLTAGE BUFFER WITH INHIBIT/INVERTING TYPE


TC5064BP and TC5065BP contain six circuits of buffers having two common INHIBIT inputs ($A_{\rm IN}$, $\overline{B_{\rm IN}}$). As both have the output of open drain structure with high bleakdown voltage P-channel MOS FET (-50 volts... Maximum Rating), these are suitable for driving fluorescent display tubes and for interfacing with high voltage MOS LSI's.


 ${\tt TC5064BP}$ is non-inverting type and ${\tt TC5065BP}$ is inverting type.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	$v_{ m OUT}$	V_{DD} -50 ~ V_{DD} +0.5	V
Power Dissipation	PD	300	mW
DC Input Current	IIN	±10	mA
Storage Temperature Range	T _{stg}	- 65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

PIN ASSIGNMENT

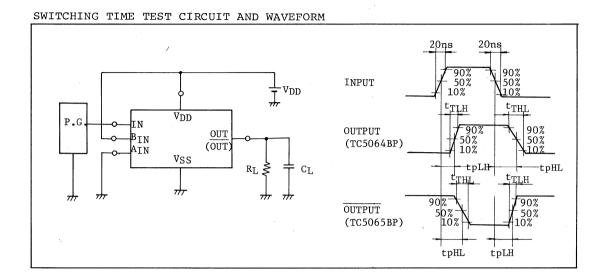
TRUTH TARLE

*; Don't care

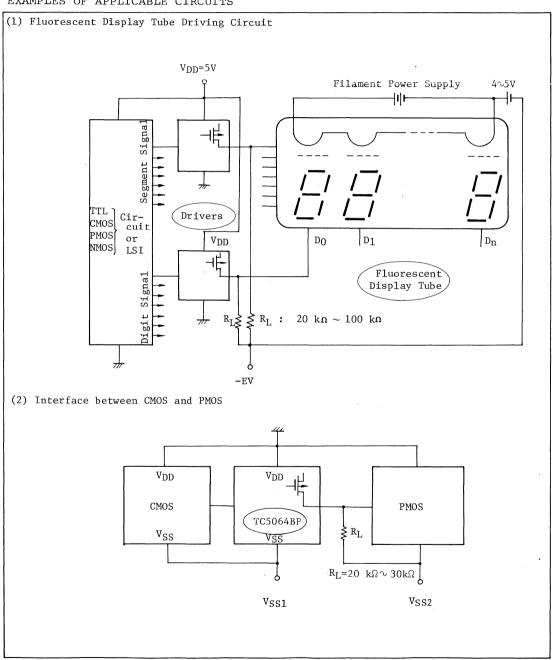
TROTT TABLE									
	INPU	Т	OUTPUT						
AIN	$\overline{B_{IN}}$	IN TC5064BP TC5065							
L	Н	L	HZ	Н					
L	Н	н н		$_{ m HZ}$					
*	L	*	$_{\mathrm{H}Z}$	HZ					
H	*	*	ΗZ	$_{ m HZ}$					
117	· Ui.c	h Imr	odanae						

RECOMMENDED OPRATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}	3		18	V
Input Voltage	VIN	0		v_{DD}	V
Operating Temp.	Topr	-40		85	°C


ELECTRICAL CHARACTERISTICS (VSS=0V)

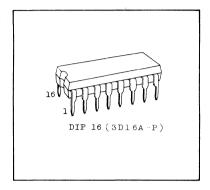
ELECTRICAL CHARA		трут	V _{DD}	-41	O°C	25	5°C		85	5°C	
CHARACTERISTIC	SYMBOI	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High Level Output Voltage	V _{OH}	$ I_{OUT} < 1$ LuA $ V_{IN} = V_{SS}$ or $ V_{DD} $	5 10 15	4.95 9.95 14.95			5.00 10.00 15.00		4.95 9.95 14.95	- - -	v
High Levle Output Current	ІОН	V _{OH} =3V (V _{DD} -2V) V _{OH} =2V (V _{DD} -3V) V _{OH} =7V (V _{DD} -3V) V _{OH} =12V (V _{DD} -3V)	5 5 10 15	- 6 - 9 -12 -17	- - -	- 5 - 8 -10 -15	-10 -13 -25 -35	- - -	- 4 - 6 - 8 -12	- - -	mA
High Level Input Voltage	* V _{IH}	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.5	- - -	
Low Level Input Voltage	* VIL	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V	5 10 15	_ _ _	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0	-	1.5 3.0 4.0	V
Output OFF Current	I _{OFF}	$V_{OUT} = 0V$ $V_{OUT} = V_{DD} - 45V$	15 15	_	- 3 - 10	_	-0.01 -1	-3 -10	_	-10 -20	ДЦ
Input Current	I _{IH}	$V_{IH} = 18V$ $V_{IL} = 0V$	18 18	-	0.3	-	10 ⁻⁵ -10 ⁻⁵		-	1.0 -1.0	μΑ
Quiescent Supply Current	I _{DD}	VIN=VSS, VDD, OUTPUTS OPEN	5 10 15	- - -	4.0 8.0 16.0	-	0.005 0.010 0.015	4.0 8.0 16.0	- - -	30 60 120	LΙ


* $R_L = 20 k_{\Omega}$

SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}	$R_{L} = 20 \text{ k}\Omega$	5	_	100	200	
			10	-	50	100	ns
			15	_	40	80	
Output Fall Time	t _{THL}	$R_L = 20 \text{ k}\Omega$	5	-	5.0	8.0	μs
			10	-	5.0	8.0	
			15	-	5.0	8.0	
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{\rm L}$ = 20 k Ω	5	-	200 -	500	ns
			10	-	100	250	
			15	_	80	200	
(HIGH-LOW)	tpHL	$R_L = 20 k \Omega$	5	_	2.0	4.0	
Propagation Delay Time			10	_	2.0	4.0	μs
			15	_	2.0	4.0	-
Input Capacity	CIN				5	7.5	pF

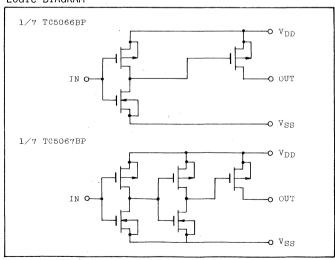
EXAMPLES OF APPLICABLE CIRCUITS

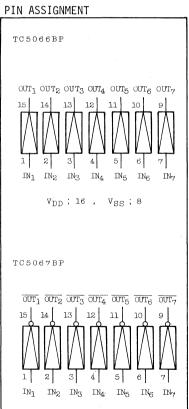


TC5066BP, TC5067BP

TC5066BP 7-HIGH VOLTAGE BUFFER/NON INVERTING TYPE TC5067BP 7-HIGH VOLTAGE BUFFER/INVERTING TYPE

TC5066BP and TC5067BP contain seven independent circuits of buffers. TC5066BP in non-inverting type and TC5067BP is inverting type.


As both have the output of open drain structure with high bleakdown voltage P-channel MOS FET (-50 volts.....Maximum Rating), these are suitable for driving fluorescent display tubes and for interfacing with high voltage MOS LSI's.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{DD}-50 \sim V_{DD}+0.5$	V
Power Dissipation	PD	300	mW
DC Input Current	IIN	±10	mA
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tsol	260°C · 10sec	

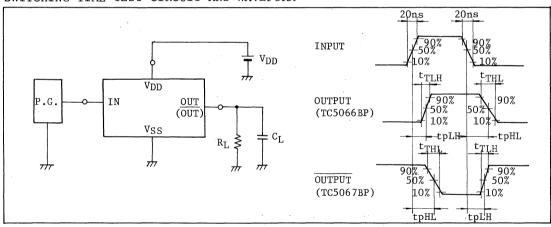
LOGIC DIAGRAM

 V_{DD} ; 16 , V_{SS} ; 8

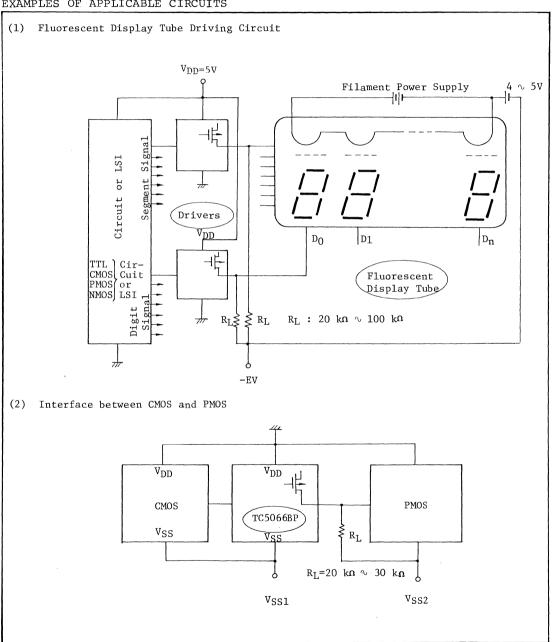
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	3		18	V
Input Voltage	VIN	0	•	v_{DD}	v
Operating Temp.	Topr	-40		85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

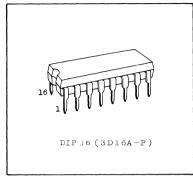

CHARACTERISTIC	SYMBOL	TEST	v_{DD}	-4	0°C	2.	5°C		8.5	5°C	UNIT
CHARACTERISTIC	3 IFBOL	CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	01311
High Level Output Voltage	VOH	I _{OUT} < lµA V _{IN} =V _{SS} or V _{DD}	5 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95	10.00		4.95 9.95 14.95	- - -	V
High Level Output Current	I _{OH}	V _{OH} =3V (V _{DD} -2V) V _{OH} =2V (V _{DD} -3V) V _{OH} =7V (V _{DD} -3V) V _{OH} =12V (V _{DD} -3V)	5 5 10 15	- 6 - 9 -12 -17	- - - -	- 5 - 8 -10 -15	-10 -13 -25 -35	- - -	- 4 - 6 - 8 -12	- - -	mA
		V _{IN} =V _{SS} or V _{DD}									
High Level Input Voltage (TC5066BP)	V _{IH}	V _{OUT} =4.5V V _{OUT} =9.0V V _{OUT} =13.5V	5 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5		- - -	4.0 8.0 12.5	- -	V
Low Level Input Voltage (TC5066BP)	Input Voltage VIL		5 10 15	- ' - -	1.0 2.0 2.5	-		1.0 2.0 2.5	-	1.0 2.0 2.5	V
High Level Input Voltage (TC5067BP)	v _{IH}	V _{OUT} =0.5V V _{OUT} =1.0V V _{OUT} =1.5V	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	- - -	3.5 7.0 11.0	- - -	v
Low Level Input Voltage (TC5067BP)	v_{IL}	V _{OUT} =4.5V V _{OUT} =9.0V V _{OUT} =13.5V	5 10 15	- - -	1.5 3.0 4.0	-	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	v
Output OFF Leak Current	I _{OFF}	$V_{OUT} = 0V$ $V_{OUT} = -30V$	15 15	- -	3 10	_ _	0.01	3 10	_ _	10 20	Aدر
Input H Level	I _{IH}	V _{IH} = 18V	18	-	0.3	_	105	0.3	-	1.0	Aنر
Current L Level	IIL	AIT = OA	18	-	-0.3	_	10-5	-0.3	_	-1.0	٠ر
Quiescent Supply Current	I _{DD}	V _{IN} = V _{DD} ,V _{SS} Outputs Open	5 10 15	- - -	4.0 8.0 16.0	- - -	0.005 0.010 0.015	8.0	- - -	30 60 120	μA

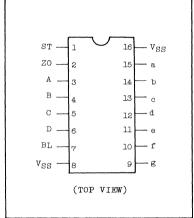
^{*} $R_L = 20 k\Omega$


SWITCHING CHARACTERISTICS (Ta=25°C, $V_{SS}=0V$, $C_{L}=50pF$)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}	$R_{L} = 20 \text{ k}\Omega$	5 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time	t _{THL}	R_L = 20 k Ω	5 10 15	- - ·	5.0 5.0 5.0	8.0 8.0 8.0	μs
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{\rm L}$ = 20 k Ω	5 10 15	-	200 100 80	500 250 200	ns
(HIGH-LOW) Propagation Delay Time	tpHL	$R_{\rm L}$ = 20 k Ω	5 10 15	- - -	2.0 2.0 2.0	4.0 4.0 4.0	μs
Input Capacity	CIN	,	1	_	5	7.5	pF

SWITCHING TIME TEST CIRCUIT AND WAVEFORM


EXAMPLES OF APPLICABLE CIRCUITS


TC5068BP, TC5069BP BCD TO 7-SEGMENT LATCH/DECODER/DRIVER

The TC5068BP and TC5069BP are decoders which convert the inputs of BCD codes into the 7-segment display element driving signals. Since the segment output is of an open drain structure with high breakdown voltage P-channel FET, these decoders can directly drive fluorescent display tubes.

Each of four input lines contains a latch controlled by common strobe input, to facilitate static drive. Each BL input is used for forcing all the segments to the OFF state; therefore, the decoders can be applied to the leading zero suppress by combining zero output (When input code is at "O", "H" level is output). The TC5068BP is of a hexadecimal display indicating type, and the TC5069BP is of a BCD display puls "L", "H", "A", "P", "-", and "blank" display indicating type.

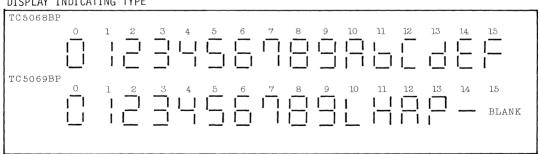

PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V_{SS} -0.5 $\sim V_{SS}$ +20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage *	V _{OUT1}	V_{DD} -50 ~ V_{DD} +0.5	V
output voitage	V _{OUT} 2	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	- 40 ∼ 85	°C
Storage Temperature Range	Tstg	- 65 ∼ 150	°C

* VOUT1 is applied to segment output, and VOUT2 to zero BLOCK DIAGRAM output.

TRUTH TABLE


	INPUTS						OUTPUTS													
1		INP	UTS				TC5068BP A			TC5069BP A				ZERO						
ST	BL	D	C	В	А	a	ъ	С	d	е	f	g	a	b	С	ä	е	f	g	OUT
*	Н	*	*	*	*	L	L	L	L	L	L	L	L	بلا	Ĺ	Ŀ	L	L	L	☆
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	L	L	Н	L	Н	Н	L	L	L	L	L	Н	Н	L	L	L	L	L
Н	L	L	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	Н	L	Н	Н	L	Н	L
Н	L	L	L	Н	Н	Н	Н	Η	Η	L	L	Н	Н	Н	Н	Η	L	L	Н	L
Н	L	L	Н	L	L	L	Н	Н	L	L	Н	Н	L	Н	Н	L	L	Н	Н	L
Н	L	L	Н	L	Н	Н	L	H	Н	L	Н	Н	Н	L	Н	Н	L	Н	Н	L
Н	L	L	Н	Н	L	Н	L	Н	Η	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	L
H	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	L	Н	Н	Н	L	L	Н	L	L
Н	L	Н	L	L	L	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	L
Н	L	Н	L	Н	L	Н	Н	Н	L	Η	Н	Н	L	L	L	Н	Н	Н	L	L
H	L	Н	L	Н	Н	L	L	Н	Н	Η	Η	Н	Ľ	Н	Η	L.	Η	Н	Н	L
Н	L	Н	Н	L	L	Н	L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	L
Н	L	Н	Н	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	L	L	Η	Н	Н	L
Н	L	H	Н	Н	L	Н	L	L	Н	Н	Н	Н	L	L	L	L	L	L	Н	L
Н	L	Η	Н	Н	Н	Н	L	L	L	Н	Н	Н	L	L	L	L	L	L	L	L
L	L	*	*	*	*							Δ	Δ							

※ ; Don't care
☆ ; Undetermined

· \triangle ; Depends Upon the BCD code previously applied when ST= "H"

Δ ; Required pull down resister "R_L"

DISPLAY INDICATING TYPE

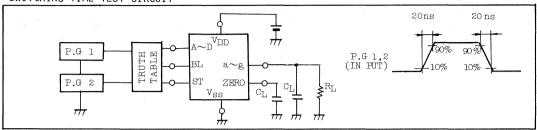
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

項目	記号	У	MIN	TYP	MAX	単 位
電源電圧	A DD		3		18	V
入力電圧	VIN		0	_	$V_{ m DD}$	V

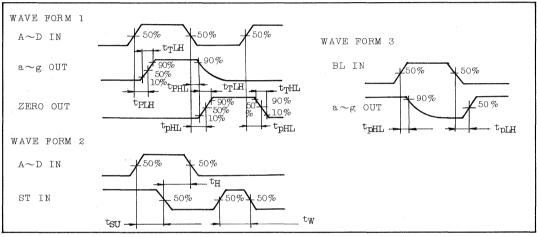
TC5068BP, TC5069BP

ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

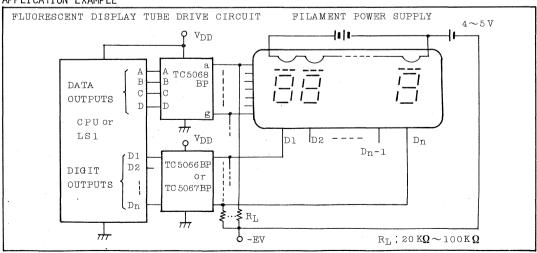
CHARACTERISTIC	CVMPOI	TEST CONDITION		-40°C			25°C		85	°C	UNIT
CHARACTERISTIC	SIMBOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
High Level Output Voltage	v _{OH}	$\left I_{OUT} \right < 1 \mu A$ $V_{IN} = V_{SS}$ or V_{DD}	5 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.00 10.00 15.00	- - -	4.95 9.95 14.95	- - -	V
Low Level Output Voltage (ZERO OUT)	v_{OL}	I _{OUT} < 1µA V _{IN} =V _{SS} or V _{DD}	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00 0.00 0.00		- - -	0.05 0.05 0.05	V
High Level Output Current (Segment OUT)	I _{OH}	V _{OH} = 3V(V _{DD} -2V) V _{OH} = 2V(V _{DD} -3V) V _{OH} = 7V(V _{DD} -3V) V _{OH} =12V(V _{DD} -3V) V _{IN} =V _{SS} or V _{DD}	10	-6 -9 -12 -17	- - -	-5 -8 -10 -15		- - -	-4 -6 -8 -12	- - -	mA
High Level Output Current (Zero OUT)	I _{OH}	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} =13.5V V _{IN} =V _{SS} or V _{DD}	5 10 15	-0.2 -0.5 -1.4		-0.16 -0.4 -1.2		- -, -	-0.12 -0.3 -1.0	- \ - -	mA
Low Level Output Current (Zero OUT)	I _{OL}	V _{IN} v _{SS} of v _{BB} V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V V _{IN} =V _{SS} or V _{DD}	5 10 15	0.52 1.3 3.6	- - -	0.44 1.1 3.0		- - -	0.36 0.9 2.4	- - -	mA
High Level Input Voltage	V _{IH}	V _{OUT} =0.5, 4.5V V _{OUT} =1.0, 9.0V V _{OUT} =1.5, 13.5V I _{OUT} < 1μA	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25		3.5 7.0 11.0	- - -	v
Low Level Input Voltage	v _{IL}	V _{OUT} =0.5, 4.5V V _{OUT} =1.0, 9.0V V _{OUT} =1.5,13.5V I _{OUT} < 1μA	5 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	1
Output Off-leak Current I _{OFF} (Segment OUT)		V _{OUT} =0V V _{OUT} =-30V	15 15	-	-3 -10	-	-0.01 -1	-3 -10	-	-10 -20	
Input "H" Level Current "L" Level	I _{IH}	V _{IH} =18V V _{IL} =0V	18 18	-	0.3	_	10 ⁻⁵		_	1.0 -1.0	η μΑ
Quiescent Supply Current	riescent Tpp		5 10 15	, -	20 40 80	-	0.005 0.010 0.015	20 40 80	-	150 300 600	μA

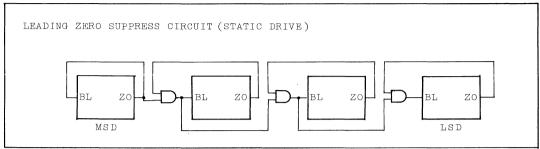

^{*} $R_L = 20 \text{ k}\Omega$

^{**} All valid input combinations.


SWITCHING CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD}	MIN.	TYP.	MAX.	UNIT
Output Rise Time (SEGMENT OUT)	t _{TLH}	$R_{L} = 1 k\Omega$	5 10 15	- - -	100 50 40	200 100 80	ns
Output Rise Time (ZERO OUT)	t _{TLH}	·	5 10 15	- - -	130 65 50	400 200 160	
Output Fall Time (ZERO OUT)	t _{THL}		5 10 15	- - -	100 50 40	200 100 80	ns
(Low-High) Propagation Delay Time (A,B,C,D-SEGMENT OUT)	t _{pLH}	$R_L = 1 k\Omega$	5 10 15	- - -	750 300 200	1800 600 400	ns
(High-Low) Propagation Delay Time (A,B,C,D-SEGMENT OUT)	tpHL	$R_{\rm L} = 1 \ k\Omega$	5 10 15	- - -	750 300 200	1800 600 400	
(Low-High) Propagation Delay Time (A,B,C,D-ZERO OUT)	t _{pLH}		5 10 15	- - -	250 125 100	500 250 200	ns
(High-Low) Propagation Delay Time (A,B,C,D-ZERO OUT)	tpHL		5 10 15	 - -	250 125 100	500 250 200	115
(Low-High) Propagation Delay Time (BL-SEGMENT OUT)	t _{p LH}	$R_L = 1 k\Omega$	5 10 15	- - -	200 100 80	400 200 160	ns
(High-Low) Propagation Delay Time (BL-SEGMENT OUT)	tpHL	$R_{L} = 1 k\Omega$	5 10 15	- - -	200 100 80	400 200 160	113
Minimum ST Pulse Width	t _w (ST)		5 10 15	- - -	60 30 25	200 100 80	ns
Minimum Setup Time (ST-A,B,C,D IN)	t _{SU}		5 10 15	- - -	35 20 10	200 100 80	nc
Minimum Hold Time (ST-A,B,C,D IN)	t _H		5 10 15	-	- - -	100 60 40	ns
Input Capacitance	CIN			-	5	7.5	pF

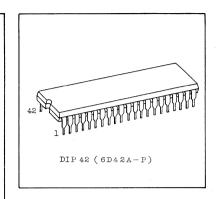

SWITCHING TIME TEST CIRCUIT


SWITCHING TIME TEST WAVEFORM

APPLICATION EXAMPLE

APPLICATION EXAMPLE

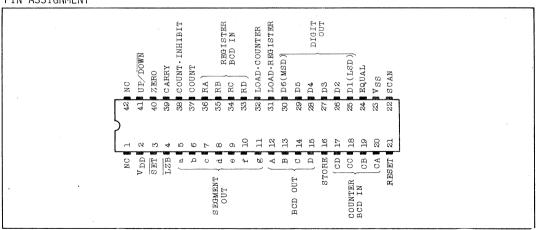
TC5070P/TC5071P/TC5072P 6 DIGIT UNIVERSAL COUNTER

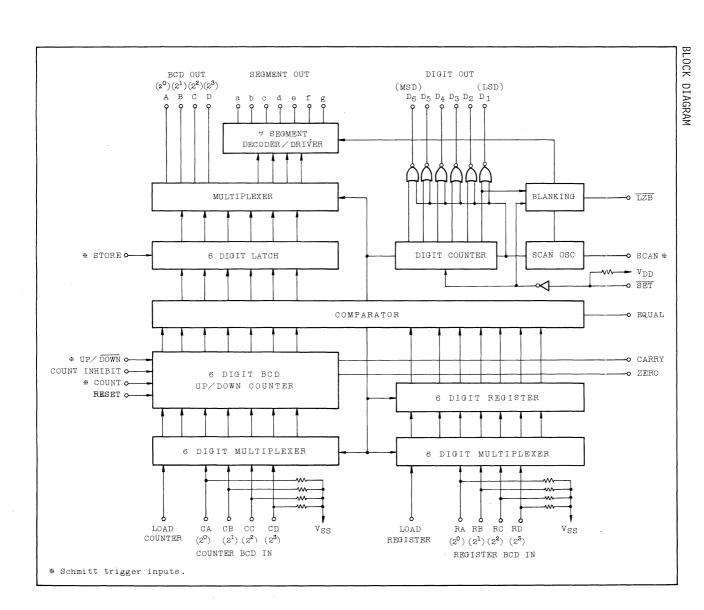

TC5070P/TC5071P/TC5072P are 6-digit universal counter containing 6-digit memory register in addition to functions of up/down counting, data presetting, zero suppress, and latch.

The counted contents are output in BCD and seven segment dynamically stepwise from most significant digit in synchronization with input of SCAN.

The seven-segment output can directly drive the common cathode type LED.

In addition to CARRY and ZERO outputs, these counter are provided with EQUAL output, permitting a wide range of applications such as for measuring instruments, timers, etc.


Maximum counting value TC5070P 999999 COUNTER TC5071P 995959 TIMER TC5072P 595999 TIMER

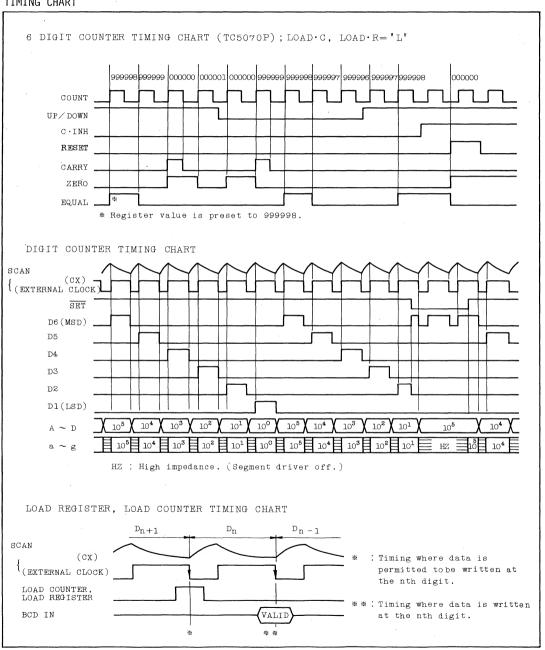


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5~V _{SS} +10	V
Input Voltage	v_{IN}	Vss-0.5~VDD+0.5	V
Output Voltage	VOUT	V _{SS} -0.5~ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-65∼ 150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

TC5070P, TC5071P, TC5072P


DESCRIPTION OF PIN FUNCTION

PIN No.	SYMBOL	FUNCTION	·
1	NC	No connection	
2	$v_{ m DD}$	DD power supply (3-8V)	
.3	SET	nt "L" level, the digit counter is reset, provide. The Segment-out changes to the blanking solution.	· · · · · · · · · · · · · · · · · · ·
4	LZB	'H" No zero blanking	
7	LZD	'L" Leading zero blanking in the highe	r order 5 digits.
5	a		
6	b		
7	c	Each pin is seven segment output of 6-dig	it counter. The output
8	d	s synchronized with the digit-out and is	-
9	е	rom the most significant digit.	
10	f		
11	g		
12	A	Each pin is BCD output of 6-digit counter	. The output is
13	В	synchronized with the digit-out and is proche most significant digit.	ovided stepwise from
14	С	When $\overline{\text{SET}}$ input is at "L" level, the most	significant digit data
15	D	s provided.	•
16	STORE	'H" At positive edge of the STORE inpu	t, the contents of the
	DIONE	The contents of the counter are st the miltiplexer.	raight transferred to
17	CD	•	
18	CC	BCD input at the time when data are prese	t to the 6-digit
19	СВ	counter. (With the LOAD COUNTER input at "H" level	· ·
20	CA	with the load country input at in level	• /
21	RESET	at "H" level, the 6-digit counter is rese The counter become ALL "O". ZERO output become at "H" level.	t, and the contents of
22	SCAN	outo scan oscillator is operated by conne (2000-20000pF) between No.22 (SCAN) and N External scan oscillator may also be used input.	o.23 (VSS) terminals.
23	V _{SS}	GND (OV)	

DESCRIPTION OF PIN FUNCTION (Cont'd)

PIN No.	SYMBOL		FUNCTION							
24	EQUAL	RA, RE counted the counted of LOA	When the contents of the 6-digit register set by the input of RA, RB, RC, and RD coincide with the contents of 6-digit counter, EQUAL output is provided at "H" level. Even if both the contents coincide each other during setting by the inputs of LOAD REGISTER and LOAD COUNTER, the output is inhibited and "L" level remains unchanged.							
25	D1(LSD)									
26	D2	1	These are the outputs to display the digits of segment out an BCD-out.							
27	D3		SET input reaches "L" level, the digit counter is reset							
28	D4		6 (MSD) only is provided. When SET input rises at "H" the output is provided in the order of D5, D4in							
29	D5	1 -	conization with the SCAN clock.							
30	D6 (MSD)									
31	LOAD • REGISTER	''H''	$RA \sim RD$ input is set to 6-digit register.							
31	(LOAD·R)	"L"	Write operation to the register is inhibited.							
32	LOAD · COUNTER	"H"	${\rm CA}\sim{\rm CD}$ input is preset to the 6-digit counter.							
	(LOAD·C)	"L"	Write operation to the counter is inhibited.							
33	RD									
34	RC	BCD ir	nput at the time when the data are set to the 6-digit							
35	RB	regist	ter. the LOAD REGISTER input at "H" level.)							
36	RA	WICH	the boar Register input at in level.)							
37	COUNT	Clock (Count	input of 6-digit counter ing at the positive edge of clock)							
38	COUNT · INHIBIT	''H''	No counting							
30	(C·INH)	"L"	Counting							
39	CARRY	up-cou time f When t "99595 down-c	the contents of counter have become "000000" at time of inting, CARRY output is provided at "H" level during this from rise to fall of COUNT input. The contents of counter have become "999999" (for TC5070P), and "595999" (for TC5072P) at time of counting, CARRY output is also provided at "H" level at this time from rise and fall of COUNT input.							
40	ZERO	provid During	the contents of counter have become "00000", ZERO is led at "H" level. 3 presetting by the LOAD COUNTER input, output operation wibited and "L" level remains unchanged.							
41	UP/DOWN	"H"	Up count.							
		"L"	Down count.							
42	NC	No cor	nnection.							

TIMING CHART

OPERATING CONSIDERATION

1. COUNTER OPERATION

Counting is stepped by the rise of clock when the clock is added to COUNT input at state of the inputs of LOAD·C, C·INH, and RESET at "L" level. At time of upcounting, CARRY and ZERO outputs are "H" level at "0000000", and at time of downcounting, CARRY output is at "H" level at "999999" (for TC5070P), "995959" (for TC5071P), and "5959999: (for TC5072P).

When CARRY output is at "H" level, CARRY output remain at "H" leve until COUNT input falls, even if RESET and LOAD·C inputs are changed to "H" level.

For COUNT and UP/DOWN inputs is shaped schmitt trigger, COUNT and UP/DOWN inputs rarely miscounts if waveform is not sharp.

2. COMPARATOR OPERATION

EQUAL output is provided at "H" level, when the contents of the counter coincide with the comparator value set by LOAD·R input. However, even if they concide each other during setting by LOAD·C and LOAD·R input, output operation is inhibited and "L" level remains unchanged.

3. LOAD COUNTER AND LOAD REGISTER OPERATIONS

When the data required to preset the counter or when the comprating value is required to set to the register, such operation is made by LOAD·C and LOAD·R input. The presetting of data to the counter is acquired by setting LOAD·C input to "H" level, synchronizing $CA \sim CD$ input with the digit counter, and setting the digits one after another. For the purpose, the external circuits are required for timing of $D6 \sim D1$ output with $CA \sim CD$ input. The comprator value can be set to the register in the same way. Load register operation is independently of counting operation; therfore, even during setting of the data to the register, counting can be performed. (See an example of input setting circuits.)

(Note) that normal operation is not acquired when the data exceeding the maximum counting value (for each digit) shown on page 1 for the individual items are set to the counter and register.

4. LATCH OPERATION

At STORE input is at "L" level, the contents of counter are straight transferred to the multiplexer, and the output indicates the contents of counter.

At STORE input is at "H" level, the indicating output remains unchanged although the count varies for the contents of counter are latched at the positive edge of

OPERATING CONSIDERATION (Cont'd)

STORE input. When STORE is turned to "L" level, the contents of counter at that time are provided. STORE input shape schmitt trigger.

5. DISPLAY OPERATION

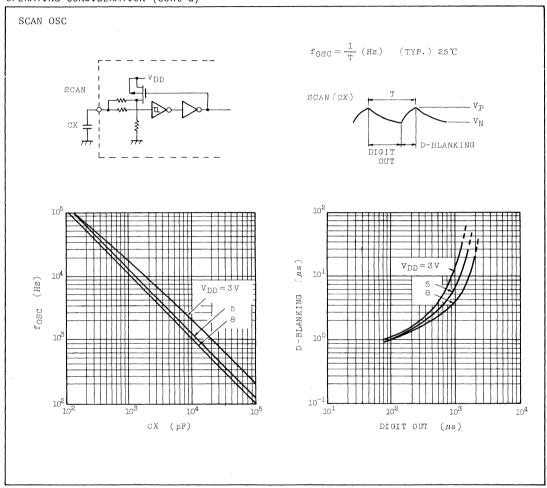
At $\overline{\text{LZB}}$ input is at "L" level, the higher order 5 digits of SEGMENT-OUT output are changed to the state of leading zero blanking.

At "H" level, the function of leading zero blanking is released.

At SET input is at "L" level, the SEGMENT-OUT output is changed to the state of blanking, and the digit counter is reset, and D6 (MSD) only is provided. At that time, the BCD-OUT output provided the data of the 6th digit. At "H" level, the DIGIT-OUT output provided in the order of D6, D5, D4, ... in synchronization with SCAN, and SEGMENT-OUT and CD-OUT output are also provided in synchronization.

Segment Display Format (Common Cathod type LED)

6. SCANNING OPERATION


AUTO SCAN operation can be performed by inserting a capacitor between the terminal SCAN and the terminal VSS. By adding an external clock to the terminal SCAN, MANUAL SCAN operation can be performed.

SCAN OSC actuates the digit counter, and at the AUTO SCAN operation, the digit blanking is applied to each DIGIT OUT for the T/150 period of one cycle (T) of SCAN OSC, therfore, can be prevented overlap of each DIGIT OUT. One cycle of DIGIT OUT is equal to 6 cycles of SCAN OSC.

SCAN signal synchronize with data signal setting by the LOAD REGISTER and/or LOAD COUNTER inputs. An external capacitor of 2000 to 20000pF is required for SCAN (CX).

(Note) BCD-OUT output may involve some hazards at the change of COUNT input and DIGIT-OUT output; However, such hazards do not hinder operation because they occur during the blanking hours for DIGIT-OUT and SEGMENT-OUT output.

OPERATING CONSIDERATION (Cont'd)

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=ov$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	$v_{ m DD}$		3	-	8	V
Input Voltage	v_{IN}		0	-	$v_{ m DD}$	V
Operating Temperature Range	Topr		-40	_	85	°C

TC5070P, TC5071P, TC5072P

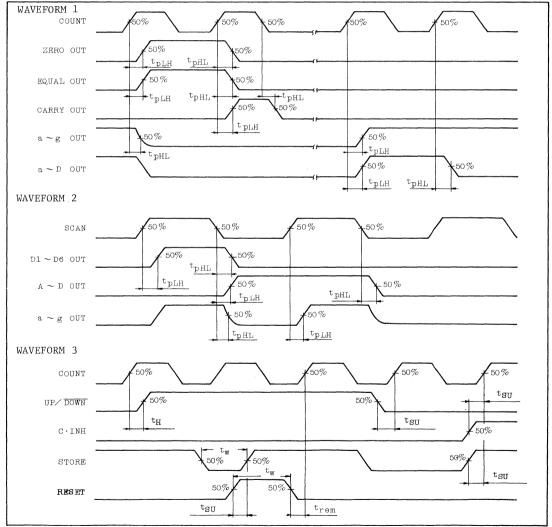
STATIC ELECTRICAL CHARACTERISTICS ($v_{SS}=0v$)

CHARACTERISTIC	SYM-	TEST	$v_{ m DD}$	-40)°C		25°C		85	5°C	UNIT
CHARACTERISTIC	BOL	CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
High-Level Output Voltage (Except SEGMENT OUTPUT)	V _{OH}	$ I_{ m OUT} < 1 \mu { m A}$ $ V_{ m IN}=V_{ m SS}, V_{ m DD} $	5	4.95	-	4.95	5.00	-	4.95	-	
Low-Level Output Voltage (Except SEGMENT OUTPUT)	V _{OL}	I _{OUT} < 1µA V _{IN} =V _{SS} , V _{DD}	5	-	0.05	-	0.00	0.05	-	0.05	V
High-Level Output Voltage (SEGMENT OUTPUT)	V _{OH}	I _{OUT} < 1µA V _{IN} =V _{SS} , V _{DD}	5	4.0	_	4.0	4.5	_	4.0	-	·
Output High Current (A~D, EQ, CA, ZE OUTPUT)		V _{OH} =4.6V V _{IN} =V _{SS} ,V _{DD}	5	-0.2	_	-0.16	-0.8	-	-0.12	_	
Output High Current (D1~D6 OUTPUT)	IOH	V _{OH} =4.2V V _{IN} =V _{SS} ,V _{DD}	5	-0.75	_	-0.7	-1.5	-	-0.6	_	^
Output Low Current (Except SEGMENT OUTPUT)	I _{OL}	V _{OL} =0.4V V _{IN} =V _{SS} ,V _{DD}	5	0.52	_	0.44	1.2		0.36	-	mA
Output High Current (SEGMENT OUTPUT)	I _{OH}	V _{OH} =3.5V V _{IN} =V _{SS} ,V _{DD}	5	-25	-	-25	- 50	-	-20	-	
Input Low Voltage (Except Schmitt Trigger Input)	V _{IH}	$V_{OH}=4.0V$ $V_{OL}=0.5V$ $ I_{OUT} < 1\mu A$	5	3.5	-	3.5	2 . 75	-	3.5	-	V
Input High Voltage (Except Schmitt Trigger Input)	VIL	$V_{OH}=4.0V$ $V_{OL}=0.5V$ $ I_{OUT} < 1\mu_A$	5	_	1.5	_	2.15	1.5	-	1.5	-
High-Level Input Current (Except Pull Up/ Down Resistance Input)	I _{IH}	V _{IH} =8V	8	_	0.3	-	10-5	0.3	_	1.0	μΑ

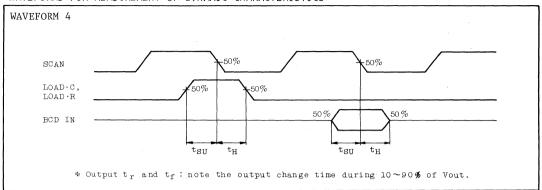
STATIC ELECTRICAL CHARACTERISTICS (v_{SS} =0v)

CHARACTERISTIC	SYM-	TEST	v_{DD}	-40)°C		25°C		8.	5°C	UNIT
0.11.11.012.11.01	BOL	CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	011111
Low-Level Input Current (Except Pull Up/ Down Resistance Input)	III,	V 1 T = OA	8	-	-0.3	_	10-5	-0.3	-	-1.0	
High-Level Input Current (SET IN)	I _{IH}	V _{IH} =8V	8		5.0	-	_	5.0	-	5.0	
Low-Level Input Current (SET IN)	IIL	VIT=OA	8	_	-180	_	-70	-160	_	-140	μΑ
High-Level Input Current (CA ~ CD, RA ~ RD, SCAN IN)	IIH	V _{IH} =8V	8	_	180	-	80	160	-	140	
Low-Level Input Current (CA~CD, RA~RD IN)	IIL	V _{IL} =0V	8	-	-5.0	_	-	-5.0	-	-5.0	
Low-Level Input Current (SCAN IN)	IIL	VIL=OV	5 8	-	-2.3 -3.6	-	-1.0 -1.6	-2.0 -3.2	-	-1.8 -2.8	mA
Output Leakage Current (SEGMENT OUT)	$I_{ m DL}$	V _{OL} =0V	8	_	-3.0		-10-4	-3.0	-	-1.5	μΑ
Quiescent Device Current	I _{DD}	SCAN=V _{DD} SET, CA~CD, RA~RD OPEN	5 8	-	750 1500	-	180 250	500 1000	-	1000 2000	μΑ

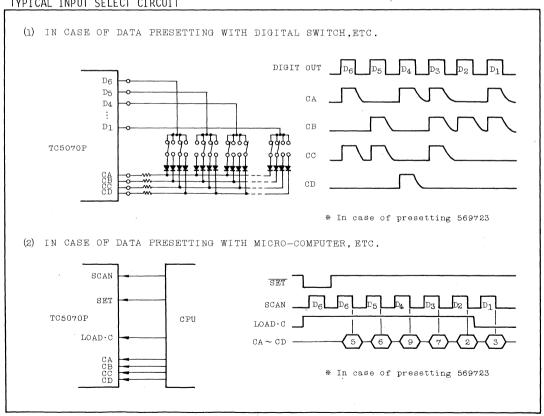
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25 $^{\circ}$ C, V_{DD}=5.0V, V_{SS}=0V, C_L=50_PF)


CHADA OMEDICALC	CYMPOT	TECH CONDITION	MIN	myz.D.	MAN	UNITE
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)	t _{TLH}	SEGMENT OUT (R _L =1kΩ)	-	70	200	
(now to night)	t _{TLH}	OTHER OUT	-	100	400	-
Output Transition Time (High to Low)	t _{THL}	Except SEGMENT OUT	-	70	200	
	t _{pLH} , t _{pHL}	COUNT-BCD, SEGMENT OUT (R _L =1kΩ)	_	750	1500	
	tpLH, tpHL	COUNT-CARRY OUT	-	150	400	
Propagation Delay Time	tpLH, tpHL	COUNT-ZERO OUT	-	200	400	ns
	tpLH, tpHL	COUNT-EQUAL OUT	_	270	500]
	tpLH, tpHL	SCAN-DIGIT OUT	_	250	500	1
	tpLH, tpHL	SCAN-BCD OUT	_	750	1500	1
Propagation Delay Time	t _{pLH}	SCAN-SEGMENT OUT (R _L =1kΩ)	-	500	1000	1
rropagacion belay rime	tpHL	SCAN-SEGMENT OUT (R _L =1kΩ)	-	300	700	1
	f _{CL} -1	COUNT IN *	2.0	4.0	-	
Max. Clock Frequency	f _{CL} -2	COOK! IN	1.0	1.6	-	MHz
	f _{CL}	SCAN IN	0.5	1.0	_	
Min. Pulse Width	t _w	RESET IN	-	250	500	
	t _w	STORE IN	-	80	160	
	tsu	COUNT-STORE	_	70	150	1
	t _{SU}	COUNT-UP/DOWN	-	230	500	
Min. Set-up Time	t _{SU}	STORE-CLEAR	-	130	300	
	tsu	COUNT-C · IN	-	0	100	
	t _{SU}	SCAN IN-LOAD.C, LOAD.R	-	-40	50	ns
	t _{SU}	SCAN IN-BCDIN	-	200	450	1
	t _H	COUNT-UP/DOWN	-	40	150	
Min. Hold Time	t _H	SCAN IN-LOAD·C, LOAD·R	-	70	200	
	t _H	SCAN IN-BCDIN	-	140	300	
Min. Removal Time	trem	COUNT-RESET	-	60	150	1
Max. Input Rise/Fall	trCL	Except Schmitt Trigger Input	20	_	-	μS
Time	trCL	Except Schmitt Trigger Input	20	-	-	$\int_{1}^{\mu_{S}}$
Positive Trigger Threshold Voltage	VP			3.0	4.0	
Negative Trigger Threshold Voltage	V _N		1.0	1.8	_	V
Hysteresis Voltage	v_{H}		0.5	1.2		

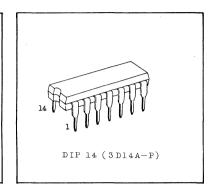
DYNAMIC ELECTRICAL CAHRACTERISTICS (Ta=25°C, VDD=5.0V, VSS=0V, CL=50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Ouisseent Device Current	Ipp	COUNT IN = H & L	-	250	-	μA
Quiescent Device Current (CX=2000 ~ 20000pF)	TDD	COUNT IN = 1 MHz	-	650	_	μΑ
Input Capacitance	c_{IN}	Except SCAN IN	-	5.0	7.5	pF

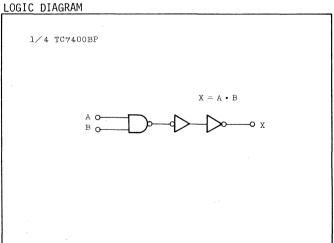
^{*} The count operation can respond as far as $\rm f_{CL}{}^{-1},$ and CARRY, EQUAL, and ZERO outputs can respond as far as $\rm f_{CL}{}^{-2}.$


WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

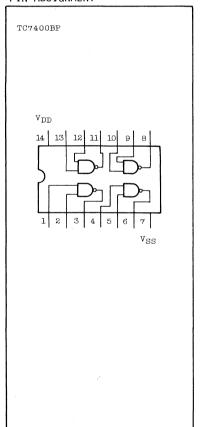
WAVEFORMS FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS


TYPICAL INPUT SELECT CIRCUIT

APPLICATION CIRCUIT TLR312 \times 6 \$ \$ \$ \$ \$ 350 Ω 5 V TC4050BP TC62003P abcdefg COUNT $C \cdot INH$ UP/DOWN D6 RESET STORE $\overline{\text{LZB}}$ Dı SET CD~CA RD~RA SCAN LOAD · C 5000pF (CERAMIC CAPACITOR) $\frac{1}{8}$ LOAD·R $v_{\mathrm{DD}} = 5 \ v$ 181588 DIGITAL-SW V_{SS} = 0 V (0~9) MSD


TC7400BP QUAD 2-INPUT POSITIVE NAND GATE

TC7400BP is two input positive logic NAND gate. Since all the outputs of this gate are equiped with buffers which consist of inverters, the input/output transmission characteristic has been improved and the variation of transmission time caused by increase of load capacity has been kept minimum.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

PIN ASSIGNMENT

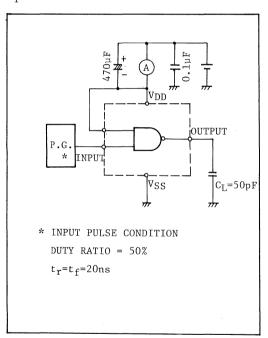
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	3	-	18	V
Input Voltage	v_{IN}	0	_	v_{DD}	V
Operating Temp.	Topr	-40	· -	85	°C

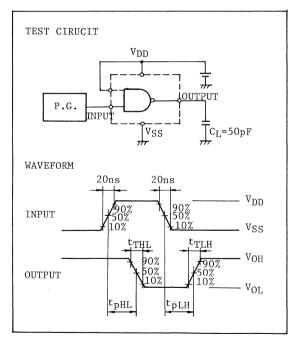
ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC	CVMPOT	TEST CONDITIONS	v_{DD}	-40)°C		25°C		85	°C	UNIT
CHARACIERISTIC	SIMOL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
"H" Level Output Voltage	V _{OH}	المرا I OUT حالا VIN = V _{SS} ,V _{DD}	5 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95		-	4.95 9.95 14.95		V
"L" Level Output Voltage	$v_{ m OL}$	ابرا I _{OUT} ا< اV _{IN} = V _{DD}	5 10 15	- - -	0.05 0.05 0.05	- - -	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	·
"H" Level Output Current	Тон	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	-0.2 -0.5 -1.4	- - -	-0.16 -0.4 -1.2	-0.5 -1.2 -6.0	- - -	-0.12 -0.3 -1.0		
"L" Level Output Current	$I_{ m OL}$	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{DD}	5 10 15	0.52 1.3 3.6	- - -	0.44 1.0 3.0	1.5 3.5 15	- - -	0.36 0.9 2.4	- - -	mA
"H" Level Input Voltage	VIH	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1 _{Ju} A	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	
"L" Level Input Voltage	$v_{ m IL}$	VOUT= 4.5V VOUT= 9.0V VOUT= 13.5V IOUT < 1µA	5 10 15	- - -	1.5 3.0 4.0	, – –	2.25 4.5 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
Input "H" Level		V _{IH} = 18V	18	-	0.3	-	10-5	0.3	-	1.0	
Current "L" Level	IIL	AIT = OA	18	-	-0.3	_	-10 ⁻⁵	-0.3	_	-1.0	μΑ
Quiescent Supply Current	I _{DD}	V _{IN} = V _{SS} ,V _{DD}	5 10 15	- - -	1.0 2.0 4.0	- - -	0.001 0.001 0.002	1.0 2.0 4.0		7.5 15 30	ДЦ

* All valid input combinations

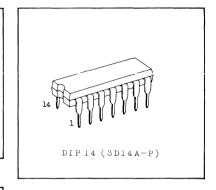

SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	MIN.	TYP.	MAX.	UNIT.
Output Rise Time	t _{TLH}		5 10 15	- - -	130 65 50	400 200 160	
Output Fall Time	t_{THL}		5 10 15	- - -	100 50 40	200 100 80	ns


SWITCHING CHARACTERISTICS (Ta=25°C, VSS-OV, CL=50pF)

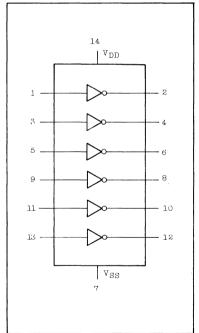
СНАБ	ACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
TC7400BP	(Low-High) Propagation Delay Time	t _{pLH}		5 10 15	- - -	140 60 50	300 150 125	ns
16/400BP	(High=Low) Propagation Delay Time	t _{pHL}		5 10 15	- - -	180 80 60	300 150 125	
Input	Capacitance	CIN			-	5	7.5	pF

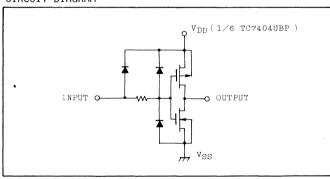
I_T TEST CIRCUIT


SWITCHING TIME TEST CIRCUIT AND WAVEFORM

TC7404UBP

TC7404UBP HEX INVERTING BUFFER


TC7404UBP contains six circuits of inverter type buffers. This has pin to pin compatibility with TC4069UBP and its large output current enables to directly drive one TTL with 5 volt power supply. In addition to its original application as inverters, this can be used as clock drivers and for TTL interface circuits.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V
Input Voltage	v_{IN}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C • 10sec	

PIN ASSIGNMENT

CIRCUIT DIAGRAM

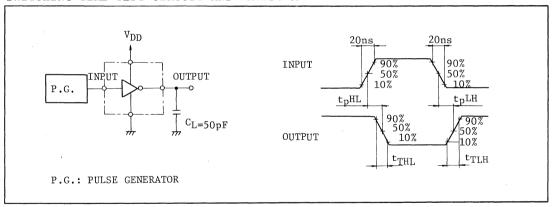
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}	3	-	18	V
Input Voltage	v_{IN}	. 0	-	v_{DD}	V
Operating Temperature Range	Topr	-40	_	85	°C

ELECTRICAL CHARACTERISTICS (V_{SS} =OV)

CHARACTERISTIC	SYMBO	BOL TEST		-4	0°C	2	25°C		85°C		UNIT
		CONDITIONS	V _{DD}	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX	
High Level Output Voltage	V _{OH}	$ I_{ m OUT} < 1 \mu A \ V_{ m IN} = V_{ m SS}$	5 10 15	4.95 9.95 14.95	_		5.00 10.00 15.00	- - -	4.95 9.95 14.95		
Low Level Output Voltage	v _{OL}	I _{OUT} <1μΑ V _{IN} =V _{DD}	5 10 15		0.05 0.05 0.05	-	0.00			0.05 0.05 0.05	V
High Level Output Current	ІОН	V _{OH} =2.5V V _{OH} =9.5V V _{OH} =13.5V V _{IN} =V _{SS}	. 5 10 15	-1.40 -1.40 -4.00		-1.25 -1.25 -3.75		- · -	-1.0 -1.0 -3.0	- 1 -	
Low Level Output Current	I _{OL}	V _{OL} =0.4V V _{OL} =0.5V V _{OL} =1.5V	5 10 15	3.5 6.0 26.0	- - -	3.2 5.0 24.0		- - -	2.5 3.6 18.0		mA ·
High Level Input Voltage	v _{IH}	$V_{\mathrm{IN}} = V_{\mathrm{DD}}$ $V_{\mathrm{OUT}} = 0.5 \mathrm{V}$ $V_{\mathrm{OUT}} = 1.0 \mathrm{V}$ $V_{\mathrm{OUT}} = 1.5 \mathrm{V}$ $V_{\mathrm{OUT}} = 1.5 \mathrm{V}$	5 10 15	4.0 8.0 12.0	- - -	4.0 8.0 12.0	3.0 6.5 9.5		4.0 8.0 12.0	- - - -	
Low Level Input Voltage	v _{IL}	V _{OUT} =4.5V V _{OUT} =9.0V V _{OUT} =13.5V	5 10 15	- - -	1.0 2.0 2.5	- - -	2.0 2.5 3.0	1.0 2.0 2.5	- -	1.0 2.0 2.5	v
		I _{OUT} <1μA									
H.Level Input Currer		10.11	18	_	0.3	-	10 ⁻⁵	0.3		1.0	μ A
L.Level Input Currer	t I _{IL}	VIT=0A	18		-0.3		10 ⁻⁵	-0.3		-1.0	
Quiescent Current Consumption	IDD	$v_{ m in}^{=v_{ m SS},v_{ m DD}}$	5 10 15	- - -	4.0 8.0 16.0	- - -	0.002 0.004 0.008		- - -	30 60 120	μ Α

^{*} All valid input combination


SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS} =OV, C_L =50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	$V_{\rm DD}(V)$	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}		5 10 15	- - -	130 65 50	400 200 160	:
Output Fall Time	t _{THL}		5 10 15	- - -	100 50 40	200 100 80	ns

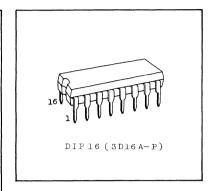
SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
(Low-High)			5	_	80	150	
Propagation Delay	tpLH		10	_	40	100	ns
Time			15	_	35	80	
(High-Low)			5	_	50	150	
Propagation Delay	tpHL		10	_	30	100	ns
Time			15	_	25	80	
			<u> </u>				
Input Capacity	c_{IN}			-	15	-	pF

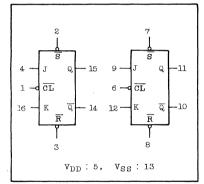
SWITCHING TIME TEST CIRCUIT AND WAVEFORM

TC7476BP DUAL J-K MASTER-SLAVE FLIP-FLOP

TC7476BP is J-K master-slave flip-flop having RESET and SET functions.

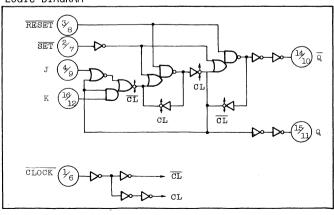

J-K Mode; When clock input is applied with $\overline{\text{RESET}}$ and $\overline{\text{SET}}$ kept at "H", the output varies depending on the conditions of J and L at the falling edge of $\overline{\text{CLOCK}}$ input.

R-S Mode; When RESET is set to "L", output Q becomes


"L" regardless of other inputs, and when

SET is set "L" and RESET is set "H", Q

becomes "H" regardless of other inputs.


PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+20	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V,
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	- 65 ∼150	°C
Lead Temp./Time	Tso1	260°C · 10sec	

LOGIC DIAGRAM

TRUTH TABLE

TROTTI TABLE									
	I	NPU'	TS		OUTPUT				
R	a	J	K	CL ∧	Q_{n+1}	$\overline{\mathbb{Q}}_{n+1}$			
Н	L	*	*	*	Н	L			
L	Н	*	*	*	L	Н			
L	L	*	*	*	L	Н			
Н	Н	L	L	1	Q _n	$\overline{\mathtt{Q}}_{\mathtt{n}}.$			
Н	Н	L	Н	L	L	Н			
Н	Н	Н	L	L	Н	L			
Н	Н	Н	Н	Ţ	$\overline{\mathtt{Q}}_{\mathtt{n}}$	$Q_n \cdot \cdot$			
Н	Н	*	*	J	Q _n	$\overline{\mathtt{Q}}_{\mathrm{n}}$ •			

- * Don't care
- ∧ Level change
- No change
- • Change

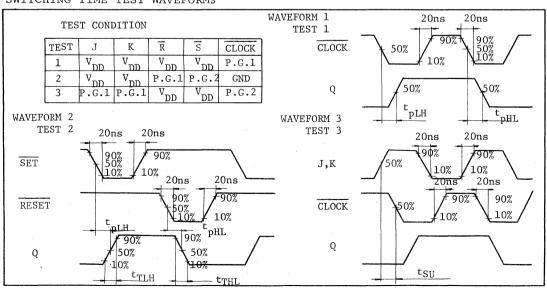
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VDD	3	_	18	V
Input Voltage	VIN	0	_	$v_{ m DD}$	V
Operating Temp.	Topr	-40	-	85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACT	TERISTIC	CVMPOT	TEST CONDITIONS	v_{DD}	-40)°C		25°C		85	5°C	UNIT
CHARACI	IEKISIIC	SIMBUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
"H" Lev Output		VOH	$ I_{OUT} < 1$ ى A $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95	10.00	-	4.95 9.95 14.95	- - -	
"L" Lev Output		$v_{ m OL}$	IOUT < 1µA VIN = VSS, VDD	5 10 15		0.05 0.05 0.05	_ _ _	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
"H" Lev Output		IOH	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	-0.2 -0.5 -1.4	- - -	-0.16 -0.4 -1.2		- - -	-0.12 -0.3 -1.0		
"L" Lev Output		I _{OL}	VOL = 0.4V VOL = 0.5V VOL = 1.5V VIN = VSS, VDD	5 10 15	0.52 1.3 3.6	- - -	0.44 1.1 3.0		- - -	0.36 0.9 2.4	- - -	mA
"H" Lev Voltage	el Input	v_{IH}	VOUT=0.5V,4.5V VOUT=1.0V,9.0V VOUT=1.5V,13.5V IOUT < 1µA	5 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	
"L" Lev	el Voltage	$v_{ m IL}$	V _{OUT} =0.5V,4.5V V _{OUT} =1.0V,9.0V V _{OUT} =1.5V,13.5V I _{OUT} < 1,11A	5 10 15	-	1.5 3.0 4.0		2.25 4.5 6.75	3.0 4.0	- - -	1.5 3.0 4.0	V
Input	"H" Level		V _{IH} = 18V	18	-	0.3	-	10-5	0.3	-	1.0	μA
Current	"L" Level	I_{IL}	AIT = OA	18	_	-0.3	_	-10-5	-0.3	-	-1.0	μА
Quiesce Supply		${ m I}_{ m DD}$	V _{IN} = V _{SS} ,V _{DD}	5 10 15	- - -	4.0 8.0 16.0	- - -	0.002 0.004 0.008		- - -	30 60 120	ДЦ

* All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

BATTOTING CHARACTEREDITED (14 25 C) DB OV, E SOPI,								
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Output Rise Time	t_{TLH}	•	5 10 15	- - -	130 65 50	400 200 160		
Output Fall Time	t_{THL}		5 10 15	- - -	100 50 40	200 100 80	ns	

SWITCHING CHARACTERISTICS (Ta=25°C, $\rm v_{SS}^{=}ov, \, c_L^{=50}_{\rm p}F)$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
(Low-High) Propaga- tion Delay T <u>i</u> me (CLOCK - Q, Q)	t pLH	Waveform 1	5 10 15	- - -		550 350 300	ns
(High-Low) Propaga- tion Delay Time (CLOCK - Q, Q)	t pHL	Waveform 1	5 10 15	- - -		500 300 260	115
(Low-High) Propaga- tion Delay Time (CL, PR - Q, Q)	t pLH	Waveform 2	5 10 15	- - -		600 300 260	ns
(High-Low) Propaga- tion Delay Time (CL, PR - Q, Q)	t pHL	Waveform 2	5 10 15	- -		600 300 260	ns
Max. Clock Frequency	f _{CL}	Waveform 1	5 10 15	1.0 3.0 3.5		- - -	MHz
Max. Clock Rise Time Max. Clock Fall Time	t _{rCL}	Waveform 1	5 10 15	20 2.5 1.0	- - -	- - -	μs
Min. Pulse Width (SET, RESET)	t _w	Waveform 2	5 10 15	- - -		500 250 200	ns
Min. Set-up Time	t _{SU}	Waveform 3	5 10 15	-		250 125 100	ns
Input Capacitance	C _{TN}				5	7.5	PF

SWITCHING TIME TEST WAVEFORMS

TC5090AP

TC5090AP PENTAPHASIC INTEGRATION 8-BIT A/D CONVERTER

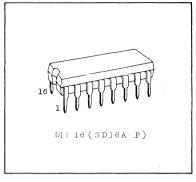
The TC5090AP is a pentaphase integration 8-bit A/D converter of high precision and low power consumption, which is mounted in a compact 16-pin standard package. The 8-bit output data can be taken out in the form of time-shared higher order 4 bits and lower order 4 bits on four 3-state data outputs.

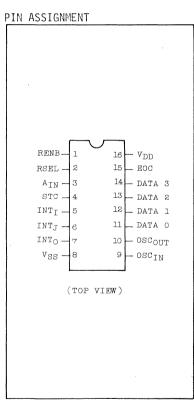
This output system is designed specifically considering interface to 4-bit CPU.

The features of low power consumption and compact outline are applicable to battery-driven small-sized instruments.

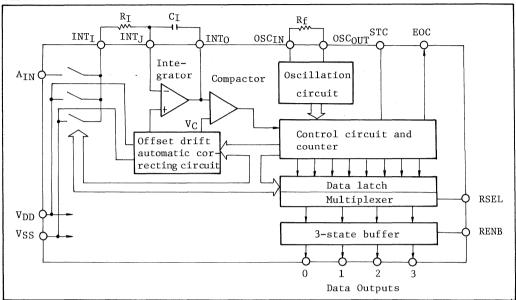
FEATURES:

- . High precision
- : ±1 LSB MAX.
- . High precision : II LSB MAX. VDD=5V

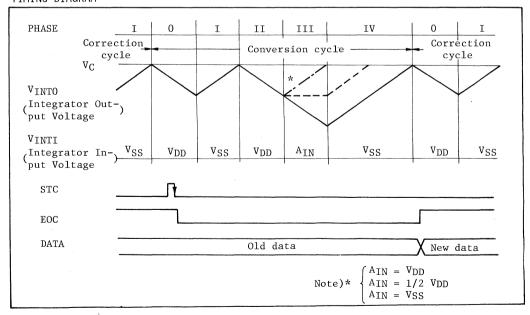

 . Low power consumption: 10mW(Typ.) @ fosc=1MHz
- . Single power supply : $V_{DD}=5\pm1.5V$
- . High-speed conversion: 2mS(Max.) @fosc=1.5MHz
- . Reference clock oscillation circuit contained (CR oscillation)
- . 3-state output with output latch
- . TTL/CMOS compatible digital Input/Output
- . Offset automatic correction


APPLICATIONS:

- . Various control instruments (for temperature, humidity, pressure, etc.)
- . Home electric appliances
- . Electric wiring apparatuses
- . Battery-driven instruments


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5 ~ V _{SS} +8	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	V _{OUT}	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	I_{IN}	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	Topr	− 40 ~ 85	°C
Storage Temperature Range	Tstg	- 65 ~ 150	°C



BLOCK DIAGRAM

TIMING DIAGRAM

FUNCTION OF EACH PIN

PIN NO.	SYMBOL	NAME & FUNCTION	PIN NO.	SYMBOL	NAME & FUNCTION
		(Read Enable) Data read signal.	9	osc in	I/O for reference clock oscillation. Clock oscillation can be made by means of external
1	RENB	"H": The data 0 ∿ 3 can be output. "L": The output above is at high impedance.	10	OSC OUT	registance. Clock can be sup- plied from outside through
		(Read Select)			
		Input to select the higher order 4 bits or the lower	11	DATA 0	(3-state Parallel Data Outputs)
2	RSEL	order 4 bits to 4-bit data	12	DATA 1	Conversion data output.
		output. "H": Output of the higher	13	DATA 2	The data 0 is LSB, and the data 3 is MSB.
		order 4 bits. "L": Output of the lower order 4 bits.	14	DATA 3	data 5 15 165.
3	AIN	(Analog Input) $ \label{eq:Analog Input terminals.} $ Input voltage range is $V_{\mbox{DD}} \sim V_{\mbox{SS}}. $	15	EOC	(End of Conversion) Conversion ending signal. EOC goes to "L" level at the fall of STC, and returns to "H" level at the end of
4	STC	(Start Conversion) Conversion starting signal. Conversion starts at the fall- ing edge.			conversion.
5	INT I	(Integrator Input, Integrator Junction, Integrator Output)			(D. (C. 1.)
6	INT J	Integrator consists of external resistor R_T and			(Power Supply) 5V±1.5V
7	INT O	external capacitor $C_{\mathbf{I}}$.	16	v _{DD}	
8	VSS	(Ground) Normally OV			

(1) System Description (Pentaphasic Integration)

The operation of the TC5090AP is composed of the correction cycle and the conversion cycle as shown in the timing chart. While the power is switched on, the repetition of correction cycle and conversion cycle enables the TC5090AP at make A/D conversion under the optimum conditions at all times. The operation flowchart is shown in Fig. 1.

(a) Initial correction period

The internal state of this LSI is reasonably unsettled at the time when the power is switched on;

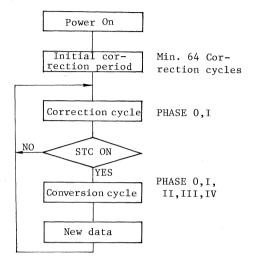


Fig. 1 Operation Flowchart

therefore, the initial correction cycle is requires before stable converting operation becomes possible.

The correction cycle automatically corrects conversion error caused by offset voltage of the integrator or the like, and is composed of the period (PHASE 0) for which VDD is integrated and the period (PHASE I) for which VSS is integrated.

Since system correction is performed in steps at the end of this PHASE I, 64 correction cycles (64 \times 1024 \cdot T $_{OSC}$) are required as the initial correction period. (ToSC denotes one clock cycle.)

(b) Conversion cycle

If the initial corection cycle period is completed, normal conversion becomes possible.

When STC input is given, (although the correction cycle in PHASE 0 or PHASE 1 is in operation at this time), the correction operation stops, and the conversion cycle starts.

In other words, even if STC input is given, this LSI performs the same operation as the correction cycle until PHASE I is completed; but it does not perform the correction at the time of completion of PHASE I, and shifts to PHASE II. Therefore, attention should be given to the fact that PHASE I prior to PHASE II does not act as correction cycle.

When STC input is given, the LSI integrates analog input in PHASE III through PHASE I and PHASE II, performing digital conversion in PHASE IV. When the LSI completes digital conversion in PHASE IV, the output is turned to the new data and the LSI returns to the correction cycle.

(c) Correction cycle

When the next STC input is given between completion of arbitrary conversion cycle (at the time of completion of PHASE IV) and completion of one correction cycle (1024·Tosc), no correction is substantially made. Therefore, in case the STC input is consecutively given, another STC should be given after the lapse of one correction cycle at the earliest from completion of PHASE IV. When the STC input is given during conversion (while EOC is at "L" level), the STC cannot be accepted.

(d) Constant of integration

The $R_{\rm I}$ and $C_{\rm I}$ composing the integrator should be selected to satisfy the following equation.

$$R_{\rm I}C_{\rm I} = (0.9 \sim 2.5) \cdot \frac{103}{\rm fosc}$$
 [S]

Attention should be paid to the fact that, when the external R oscillation is used, $f_{\rm OSC}$ has $\pm 30\%$ variations in regard to the typ. value in Fig. 5 due to variations in sample and temperature characteristic.

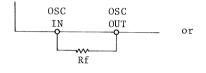
In other words, if the typ. value in Fig. 5 is denoted by f_{R} . TYP, the $R_{\rm I}$ and $C_{\rm I}$ should be selected according to the following equation.

$$R_{I}C_{I} = (1.2 \cdot 1.75) \cdot \frac{10^{3}}{f_{R \cdot TYP}}$$
 [S]

(2) Output Data Mode

TRUTH TABLE

		,		DIG	ITAL (OUTPUT	S		
RENB	ANALOG INPUT		RSEL				RSEL	= "H"	
		DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA
		0	11	2	3	0	1	2	3
L	Don't care				High :	Impeda	nce		
Н	$<\frac{1}{2}$ LSB	L	L	L	L	L	L	L	L
Н	$-\frac{1}{2}$ LSB $\sim \frac{1}{2}$ LSB	L	L	L	L	L	L	L	L
Н	$\frac{1}{2}$ LSB $^{\circ}$ $\frac{3}{2}$ LSB	Н	L	L	L	L	L	L	L
Н	•••••				Strai	ght Bi	nary		
Н	"FS"- $\frac{5}{2}$ LSB \sim "FS"- $\frac{3}{2}$ LSB	L	Н	Н	Н	Н	Н	Н	Н
Н	"FS"- $\frac{3}{2}$ LSB $^{\circ}$ "FS"- $\frac{1}{2}$ LSB	Н	Н	Н	Н	Н	Н	Н	Н
Н	"FS"- $\frac{1}{2}$ LSB <	Н	Н	Н	Н	Н	Н	Н	Н


Note :
$$V_{SS} = 0V$$

1 LSB =
$$V_{DD}/256$$

8-bit digital data is output on four data lines after having been divided into the higher order 4 bits and the lower order 4 bits. Either the higher order bits or the lower order bits can be selected by RSEL.

(3) System Clock Oscillation Circuit

For oscillating reference clock the oscillation circuit is composed of external resistors as shown in Fig. 2.

OSC OSC
IN OUT

External Clock

Fig. 2 Clock Supplying Methods

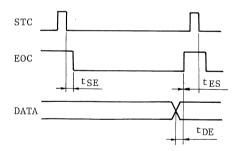
(4) Timings for STC-EOC and EOC-DATA

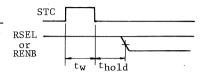
o Time (tSE) from the fall of STC to the fall of EOC.

$$t_{SE} = \frac{1}{2} T_{OSC} \sim \frac{3}{2} T_{OSC}$$

o Time (tDE) from the out of DATA output to the rise of EOC

$$t_{DE} = \frac{1}{2} T_{OSC}$$




Fig. 3 Timing chart of STC/EOC

o Min. time ($t_{\rm ES}$) from the rise of EOC to the acceptance of another STC.

$$t_{ES} = \frac{1}{2} T_{OSC} \sim \frac{3}{2} T_{OSC}$$

(5) Timings for STC Input and RSEL/RENB Input

STC signal is taken in synchronously with the internal clock; therefore, if T OSC denotes one clock cycle of OSC terminal, the pulse width of more than $(2 \cdot T_{OSC})$ is required.

Either RSEL input or RENB input is required to be set to "H" level at

Fig.4 Timing chart of Control Input

the falling time of STC by reason of internal structure.

Further, the hold time of ($T_{\rm OSC}$ + 50ns) or more after the falling time of STC at least for "H" level time of RSEL or REMB is required.

NOTE:
$$t_W > 2 \cdot T_{OSC}$$
, thold > $T_{OSC} + 50 \text{ns}$

RECOMMENDED OPERATING CONDITIONS (Vss = ov)

ITEM	SYMBOL		MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$		3.5	5	6.5	V
Input Voltage	VIN		0	-	VDD	V
Integral Resistor	RŢ		0.4	_	2	MΩ
Integral Capacitor	CI			Note		
Oscillatory Resistance	Rf	$V_{DD} = 5V$	10	-	<u>-</u>	kΩ

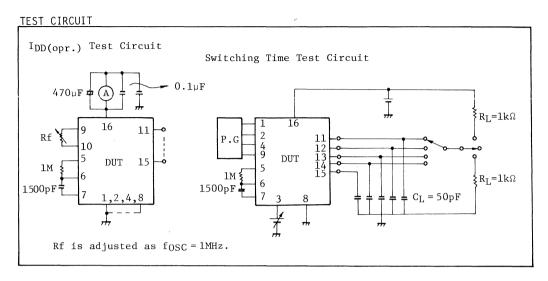
Note: Refer to Fuction Description (1) for determing the values of RI and CI, respectively.

ELECTRICAL CHARACTERISTICS $(V_{SS} = OV)$

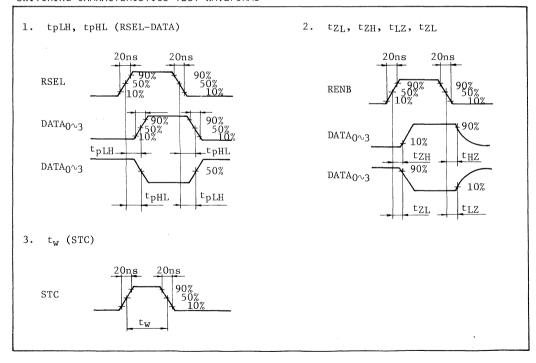
ITEM	SYM-	TEST	$v_{ m DD}$	-4	0°C		25°C		8.	5°C	UNIT
	BOL	CONDITIONS	[V]	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
Input High Voltage	v _{OH}	$ \text{IOUT} < 1 \mu \text{A} $ $V_{\text{IN}} = V_{\text{SS}}, V_{\text{DD}}$	5	4.95	-	4.95	5.00	_	4.95	_	V
Output Low Voltage	VOL	IOUT <1 µA VIN=VSS, VDD	5	_	0.05	_	0.00	0.05	_	0.05	v
Output High Current	ІОН	V _{OH} =4.0V * V _{IN} =V _{SS} ,V _{DD}	5	-1.2	-	-1.0	-2.0	_	-0.7	_	mA
Output Low Current	IOL	V _{OL} =0.4V * V _{IN} =V _{SS} ,V _{DD}	5	2.4	-	2.0	4.0	-	1.6	-	III
Input High Voltage	ν _{IH}	*	5	2.4	-	2.4	_	_	2.4	_	
Input Low Voltage	$v_{\rm IL}$	*	5	_	0.8	_	_	0.8	_	0.8	V
Output Disable Current	I _{DH}	VOH=6.5V *	6.5	-	±0.5	_	±10-4	±0.5	_	± 5	
Input Current	III	V _{IH} =6.5V *	6.5	-	±0.3	-	±10 ⁻⁵	±0.3	-	<u>±</u> 1	μА
Analog Switch Off- Leak Current	IOFF	I _{IH} =6.5V V _{IL} =0V	6.5	_	±0.3	_	±10 ⁻⁵	±0.3	_	±1	
Operating Con- sumption Current	IDD (opr)	fosc = 1 MHz	5	_	_	-	2.0	3	_	_	mA

^{*} Applicable to digital input/output. Not applicable to analog input/output and ${\tt OSCIN/OSCOUT.}$

TC5090AP


SWITCHING CHARACTERISTICS (VDD = 5V, Vss = 0V, Ta = 25°C, CL = 50 pF)

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}			50	100	
Output Fall Time	tTHL		_	40	100	
(Low-High) Propaga- tion Delay Time	t _{pLH}	RSEL("L"→"H")-DATA OUT	-	180	400	
(High-Low) Propaga- tion Delay Time	tpHL	KSEL(L 7 H)-DATA OUT	_	150	400	
(Low-High) Propaga- tion Delay Time	tpLH	RSEL("H"→"L")-DATA OUT	-	380	700	
(High-Low) Propaga- tion Delay Time	tpHL	KSEL(II / L)-DATA OUT	_	300	700	ns
Output Enable Time	tZL tZH	RENB-DATA OUT	_	80	250	
Output Disable Time	tLZ tHZ	KEND-DATA 001	-	280	500	
Max. Clock Frequency	fMAXø	OSC Input	1.5	3.0	_	MHz
Min. Clock Frequency	fMINø	OSC Input	-	-	100	kHz
Input Capacity	CIN	Digital Inputs	-	4	-	pF
Analog Input Capacity	CIN		-	7	_	рF
3-State Output Capacity	COUT		-	8	_	pF


SYSTEM CHARACTERISTICS $(Ta = -40 \sim 85 ^{\circ}C)$

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZP		_	± 1/4	$\pm \frac{1}{2}$	
Full Scale Error	EFS	V _{DD} =5V, V _{SS} =0V	-	± 1/4	±1	LSB
Nonlinearity		n¢.	_	± 1/4	± 1	
STC Min. Pulse Width	t _w .	*	_	_	2 fosc	S
Conversion Time	t _{conv} .	$A_{IN} = 0 \sim FS$ *	10 ³ f _{OSC}	_	3.1x10 ³ fosc	S

^{*} fosc : OSC terminal clock frequency [Hz], FS : Full Scale voltage, VDD level

SWITCHING CHARACTERISTICS TEST WAVEFORMS

STANDARD CHARACTERISTICS CHARTS

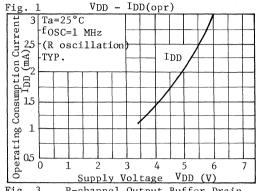
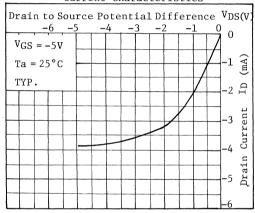
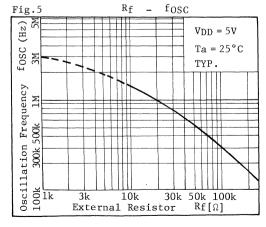




Fig. 3 P-channel Output Buffer Drain Current Characteristics

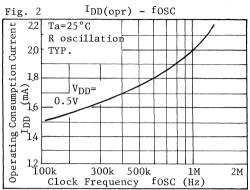
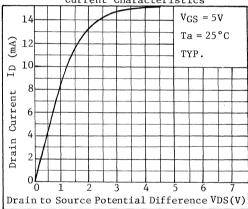



Fig. 4 N-channel Output Buffer Drain Current Characteristics

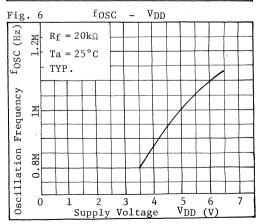


Fig. 7 tpd - VDD (PENB-DATA)

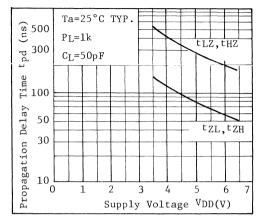


Fig. 8 tpd - VDD (RSEL (L→H)-DATA)

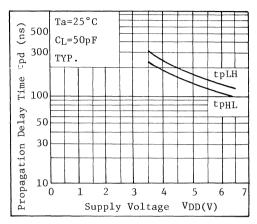


Fig. 9 $t_{pd} - V_{DD}(RSEL(H \rightarrow L) - DATA)$

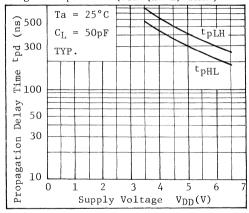
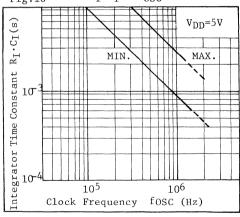



Fig.10 R_I.C_I = fosc

(Note) The characteristics at Fig. 10 have been prepared for reference at the time of determination of an integrator time constant, according to the equation of $(R_{\hbox{\scriptsize I}}\cdot C_{\hbox{\scriptsize I}}=(0.9 \cdot 2.5)\frac{103}{f_{\hbox{\scriptsize osc}}}\, \hbox{[Sec]})$

In case of the determination of $R_{\rm I}$ and $C_{\rm I}$, the product, or the value, of $R_{\rm I}$ and $C_{\rm I}$ is required to be within the range of MIN. to MAX. as shown in Fig. 10 after due consideration of dispersion.

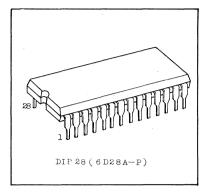
TC5091AP

TC5091AP PENTAPHASIC INTEGRATION 8-BIT A/D CONVERTER

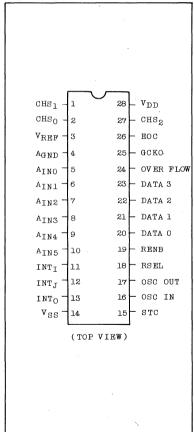
The TC5091AP is a pentaphasic integration 8-bit A/D converter of high precision and low power consumption. The 8-bit output data can be taken out in the form of time-shared higher order 4 bits and lower order 4 bits on four 3-state data output. Either the higher order bits or the lower order bits can be selected by RSEL input. This output system is designed specifically considering interface to 4-bit CPU.

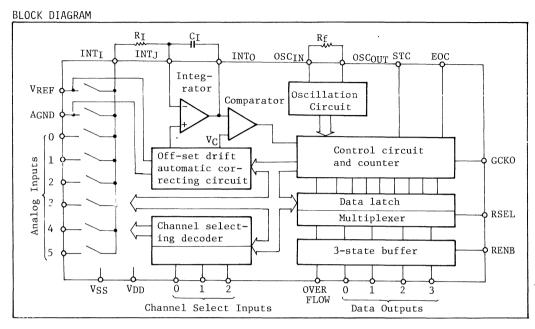
Further, since this converter has an analog multiplexer capable of selecting the input data up to six channels, an over-range flag, and a serial clock output function, it is used for a variety of applications.

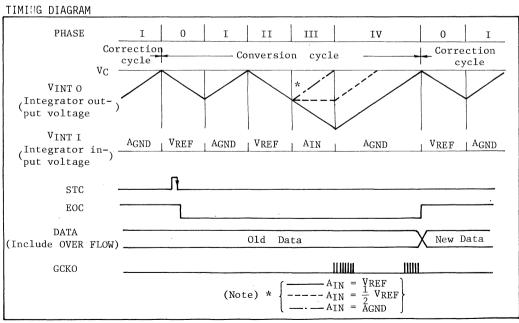
FEATURES:


- . High precision : ±LSB(Max.)
- Low power consumption: 10mW(Typ.) @(VDD=5V fosc=1MHz)
- . Single power supply : $VDD=5\pm1.5V$
- . High-speed conversion: 2ms(Max.) @fosc=1.5MHz
- . 6-channel analog multiplexer contained
- . Reference clock oscillation cirucit contained (CR oscillation)
- . 3-state output with output latch
- . TTL/CMOS compatible digital Input/Output
- . Offset automatic correction

APPLICATIONS:


- . Various control instruments
 - (for temperature, humidity, pressure, etc.)
- . Home electric appliances
- . Electrical wiring apparatuses
- . Battery-driven instruments


ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	V _{SS} -0.5∼V _{SS} +8	V
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
Reference Supply Voltage	V _{REF}	V _{AGND} ∼V _{DD} +0.5	V
Analog Ground Voltage	V _{AGND}	$V_{SS}-0.5 \sim V_{REF}$. V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	Topr	-40 ~ 85	°C
Storage Temperature Range	Tstg	-65∼150	°C

PIN ASSIGNMENT

FUNCTION OF EACH PIN

These select inputs are taken into the internal latch by the falling edge of STC inputs. Test mode should not be used. TRUTH TABLE OF MULTIPLEXER CHS 0 TRUTH TABLE OF MULTIPLEXER L L L WREF* L L L H AGND* L H H H AIN. H L L L AIN. H L L L AIN. H H H L AIN. H H H L AIN. H H H L AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H C AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H H AIN. H H H H H H H H H H H H H H H H H H H	PIN No.	SYMBOL	NAME & FUNCTION	PIN No.	SYMBOL	NAME & FUNCTION
These select inputs are taken into the internal latch by the falling edge of STC inputs. Test mode should not be used. TRUTH TABLE OF MULTIPLEXER CHS 0 TRUTH TABLE OF MULTIPLEXER L L L WREF* L L L H AGND* L H H H AIN. H L L L AIN. H L L L AIN. H H H L AIN. H H H L AIN. H H H L AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H AIN. H H H C AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H AIN. H H H H H H AIN. H H H H H H AIN. H H H H H H H H H H H H H H H H H H H			Address inputs to select analog inputs, which consist of	16	OSC IN	cillation. Clock oscillation
the falling edge of STC inputs. Test mode should not be used. TRUTH TABLE OF MULTIPLEXER CHS2 CHS1 CHS0 ON channel L L L WREF* L H H AIND L H H L AIND H L H H AIND H H L H AIND H H H H L AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H AIND H H H H H H AIND H H H H H H AIND H H H H H H AIND H H H H H H AIND H H H H H H H H H H H H H H H H H H H	1	CHS 1	These select inputs are taken	17	OSC OUT	be supplied from outside
CHS2 CHS1 CHS0 ON channel			the falling edge of STC inputs.			Input to select the higher order 4 bits or the lower
CHS 0				18	RSEL	output.
Read Enable Data read signal H		GYA O	L L H AGND* L H L AINo			order 4 bits. "L": Output of the lower
VREF Reference Voltage Reference Voltage Supplying terminal, which performs as full-scale voltage of AIN. 21 DATA 1 22 DATA 2 The data 0 is LSB, and the data 3 is MSB.	2	CHS 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	RENB	Data read signal. "H": The data 0 ∿ 3 and over- flow can be output. "L": The output above is at
VREF				20	DATA 0	
full-scale voltage of AIN. (Analog Ground) Electrical potential to determine "zero point" of AIN. (Analog Input) Analog input terminals, by which AIN selected by CHS inputs are integrated. Input voltage range is AGND~VREF. (Integrator Input, Integrator Junction, Integrator output) INT I Integrator consists of external resistor RI and external capacitor CI. (Canalog Ground) 24 OVER-FLOW OVER-FLOW OVER-FLOW (Gated Clock Output) Pulses of number equivalent to the conversion data are output during conversion (356 pulses at full scale) (End of Conversion) Conversion endig signal. EOC goes to "L" level at the fall of STC, and returns to "H" level at the end of conversion. (Channel Select Input) Refer to Pins 1 and 2. (Fower Supply) STC Conversion starting signal. Conversion starts at the fall-	3	$v_{\rm REF}$	Reference voltage supplying			
4 AGND Electrical potential to determine "zero point" of AIN. 5 AIN 0 (Analog Input) 6 AIN 1 Analog input terminals, by which AIN selected by CHS inputs are integrated. Input voltage range is AGND∿VREF. 10 AIN 5 (Integrator Input, Integrator Junction, Integrator output) 12 INT J Integrator consists of external resistor RI and external capacitor CI. 14 VSS (Digital Ground) Normally OV (Start Conversion) STC (Conversion starting signal. Conversion starts at the fall- Conversion starts			, .			
Canalog Input	4	AGND	Electrical potential to deter-	24		underranbe, "H" level is output and the output is 3-
7 A _{IN 2} which A _{IN} selected by CHS inputs are integrated. Input voltage range is A _{GND} ∨V _{REF} . 9 A _{IN 4} voltage range is A _{GND} ∨V _{REF} . 10 A _{IN 5} (Integrator Input, Integrator Junction, Integrator Output) 12 INT J Integrator consists of external resistor R _I and external capacitor C _I . 14 V _{SS} (Digital Ground) Normally OV (Start Conversion) (Start Conversion) (Conversion) (Channel Select Input) Refer to Pins 1 and 2. (Power Supply) 5V ± 1.5V (Power Supply) 5V ± 1.5V						
9 AIN 4 voltage range is AGND VREF. put during conversion (356 pulses at full scale) (Integrator Input, Integrator Junction, Integrator Output) 12 INT J Integrator consists of external resistor RI and external capacitor CI. 14 VSS (Digital Ground) Normally 0V (Start Conversion) 28 VDD (Power Supply) 5V ± 1.5V 1	7	AIN 2	which AIN selected by CHS	0.5	0.000	Pulses of number equivalent to
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9			25	GCKO	
11 INT I Junction, Integrator Output) 12 INT J Integrator consists of external resistor RI and external capacitor CI. 14 VSS (Digital Ground) (Start Conversion) 15 STC (Conversion endig signal. EOC goes to "L" level at the fall of STC, and returns to "H" level at the end of conversion. 26 EOC (Gonversion endig signal. EOC goes to "L" level at the fall of STC, and returns to "H" level at the end of conversion. 27 CHS 2 (Channel Select Input) Refer to Pins 1 and 2. (Power Supply) 50 \$\text{50}\$ \$\tex	10	AIN 5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	INT I		26	FOG	Conversion endig signal EOC
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ternal resistor RI and ex-		EOC	of STC, and returns to "H"
14 Vss (Digital Ground) 27 CHS 2 Refer to Pins 1 and 2. (Start Conversion) 28 VDD (Power Supply) 5V ± 1.5V	13	INT O				
15 STC Conversion starting signal. Conversion starts at the fall-	14	V _{SS}	Normally OV	27	CHS 2	Refer to Pins 1 and 2.
	15	STC		28	V _{DD}	

(1) System Description (Pentaphasic Integration)

The operation of the TC5091AP is composed of the correction cycle and the conversion cycle as shown in the timing chart. While the power is switched on, the repetition of correction cycle and conversion cycle enables the TC5091AP at make A/D conversion under the optimum conditions at all times. The operation flowcahrt is shown in Fig. 1.

(a) Initial correction period

The internal state of this LSI is reasonably unsettled at the time when the power is switched on;

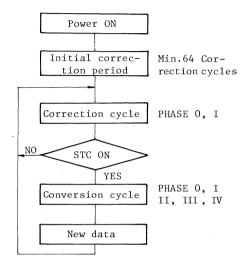


Fig. 1 Operation Flowchart

therefore, the initial correction cycle is requires before stable coverting operation becomes possible.

The correction cycle automatically corrects conversion error caused by offset voltage of the integrator or the like, and is composed of the period (PHASE 0) for which VREF is integrated and the period (PHASE I) for which AGND is integrated.

Since system correction is performed in steps at the end of this PHASE I, 64 correction cycles ($64 \times 1024 \cdot T_{OSC}$) are required as the initial correction period. (Tosc denotes one clock cycle.)

(b) Conversion cycle

If the initial correction cycle period is completed, normal conversion becomes possible.

When STC input is given, (although the correction cycle in PHASE O or PHASE I is in operation at this time), the correction operation stops, and the conversion cycle starts.

In other words, even if STC input is given, this LSI performs the same operation as the correction cycle until PHASE I is completed; but it does not perform the correction at the time of completion of PHASE I, and shifts to PHASE II. Therefore, attention should be given to the fact that PHASE I prior to PHASE II does not act as correction cycle.

When STC input is given, the LSI integrates analog input in PHASE III through PHASE I and PHASE II, performing digital conversion in PHASE IV. When the LSI completes digital conversion in PHASE IV, the output is turned to the new data and the LSI returns to the correction cycle.

(c) Correction cycle

When the next STC input is given between completion of arbitrary conversion cycle (at the time of completion of PHASE IV) and completion of one correction cycle (1024·TOSC), no correction is substantially made. Therefore, in case the STC input is consecutively given, another STC should be given after the lapse of one correction cycle at the earliest from completion of PHASE IV. When the STC input is given during conversion (While EOC is at "L" level), the STC cannot be accepted.

(d) Constant of integration

The $R_{\rm I}$ and $C_{\rm I}$ composing the integrator should be selected to satisfy the following equation.

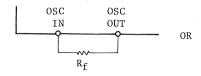
$$R_{\text{I}}C_{\text{I}}$$
 = (0.9 \land 2.5) $\cdot \frac{V_{\text{REF}}}{V_{\text{DD}}} \cdot \frac{103}{\text{fosc}}$ [S]

Attention should be paid to the fact that, when the external R oscillation is used, fosc has $\pm 30\%$ variations in regard to the typ. value in Fig. 5 due to variations in sample and temperature characteristic.

In other words, if the typ. value in Fig. 5 is denoted by f_R -TYP, the R_I and C_I should be selected according to the following equation.

$$R_{\rm I}C_{\rm I} = (1.2 \, 1.75) \cdot \frac{V_{\rm REF}}{V_{\rm DD}} \cdot \frac{103}{f_{\rm R} \cdot TYP} [S]$$

(2) Output Data Mode


TRUTH TABLE

				DIO	GITAL	OUTP	UTS			
RENB	ANALOG INPUT		RSEL	= "L"		RSEL = "H"				OVER
KEND	ANALOG INFOI	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	FLOW
		0	1	2	3	0	1	2	3	
L	Don't Care		High Impedance							
Н	$\sim \frac{1}{2} \text{LSB}$	L	L	L	L	L.	L	L	H.	н
Н	$\frac{1}{2}$ LSB $\sim \frac{1}{2}$ LSB	L	L	L	L	L	L	L	L	L
Н	$\frac{1}{2}$ LSB $\sim \frac{3}{2}$ LSB	Н	L	L	L	L	L	L	L	L
Н					Stra	ight B	inary			
Н	"FS"- $\frac{5}{2}$ LSB \sim "FS"- $\frac{3}{2}$ LSB	L	Н	Н	Н	Н	Н	Н	Н	L
Н	"FS"- $\frac{3}{2}$ LSB $^{\circ}$ "FS"- $\frac{1}{2}$ LSB	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	"FS"- $\frac{1}{2}$ LSB $^{\circ}$	Н	Н	Н	Н	Н	Н	Н	Н	Н

8-bit digital data is output on four data lines after having been divided into the higher order 4 bits and the lower order 4 bits. Either the higher order bits or the lower order bits can be selected by RSEL.

(3) System Clock Oscillation Circuit

For oscillating reference clock the oscillation circuit is composed of external resistors as shown in Fig. 2.

OSC OSC IN OUT

External Clock

Fig. 2 Clock Supplying Methods

- (4) Timings for STC-EOC and EOC-DATA
 - o Time (tSE) from the fall of STC to the fall of EOC.

$$t_{SE} = \frac{1}{2} T_{OSC} \sim \frac{3}{2} T_{OSC}$$

o Time (t_{DE}) from the out of DATA output to the rise of EOC

$$t_{DE} = \frac{1}{2} T_{OSC}$$

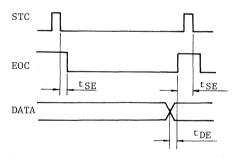


Fig. 3 Timing Chart of STC, EOC

0 Min. time ($t_{\rm ES}$) from the rise of EOC to the acceptance of another STC.

$$t_{ES} = \frac{1}{2} T_{OSC} \sim \frac{3}{2} T_{OSC}$$

(5) GCKO Output (Gated Clock Output)

During the conversion (PHASE IV), the pulses of number equivalent to the values of digital data can be obtained on GCKO output.

The output pluse has the frequency corresponding to four times of reference clock as shown in Fig. 4, and is synchronized with the rising edge of OSC OUT.

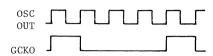


Fig. 4 Timing Chart of GCKO Output

(6) Timing for STC Input and CHS Input

STC signal is taken in synchronously with the internal clock. Therefore, if T_{OSC} denotes one clock cycle of OSC terminal, the pulse width of more than $(2.T_{OSC})$ is required.

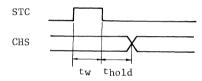


Fig.5 Timing Chart of Control Input

Since the data of $CHS_{0\sim2}$ are also latched in synchronously with the internal clock, the CHS signal at least requires the hold time of (T_{OSC} + 50ns) or more after the fall of STC.

NOTE:
$$t_w > 2 \cdot T_{OSC}$$
, $t_{hold} > T_{OSC} + 50 \text{ns}$

RECOMMENDED OPERATING CONDITIONS (Vss = ov)

ITEM	SYMBOL		MIN.	TYP.	MAX.	Unit
Supply Voltage	VDD		3.5	5	6.5	V
Input Voltage	VIN		0	-	VDD	V
Reference Voltage	VREF		3	-	$v_{ m DD}$	V
Analog Ground Voltage	VAGND		0	0	1	V
Integral Resistor	RI		0.4	_	2	MΩ
Integral Capacitor	CI	(Note)	- 1	-	_	-
Oscillatory Resistance	Rf	VDD = 5V	10	-	_	MΩ

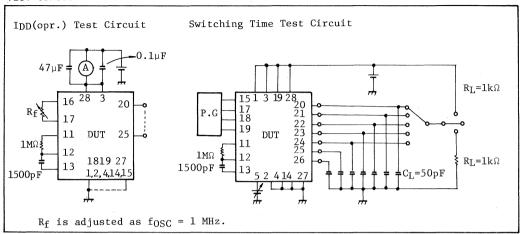
Note: Refer to the operating consideration (1) for determing the values of $R_{\rm I}$ and $C_{\rm I}$ respectively. The ripples of VDD and $V_{\rm REF}$ should be held down to less than 1/256 of the respective absolute values in view of precision.

ELECTRICAL CHARACTERISTICS (Vss = 0v)

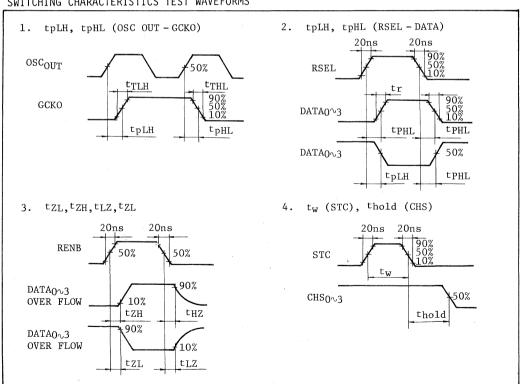
ITEM	SYM-	TEST	$v_{ m DD}$	-4	40°C		25°C		85	°C	UNIT
11111	BOL	CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Output High Voltage	v_{OH}	IOUT <1 µA VIN=VSS,VDD	5	4.95	_	4.95	5.00	-	4.95	-	V
Output Low Voltage	v_{OL}	I _{OUT} <1 μA V _{IN} =V _{SS} ,V _{DD}	5	_	0.05	-	0.00	0.05	_	0.05	V
Output High Current	I _{OH}	V _{OH=4} .0V V _{IN=} V _{SS} ,V _{DD} *	5	-1.2	_	-1.0	-2.0	_	-0.7	_	mA
Output Low Current	IOL	V _{OL} =0.4V V _{IN} =V _{SS} ,V _{DD} *	5	2.4	_	2.0	4.0	_	1.6	_	IIIZA
Input High Voltage	v_{IH}	*	5	2.4	_	2.4	_	_	2.4	_	v
Input Low Voltage	v_{IL}	*	5	_	0.8	_	_	0.8	_	0.8	
Output Disable Current	IDL IDL	V _{OH} =6.5V *	6.5	-	± 0.5	_	±10 ⁻⁴	±0. 5	_	± 5	
Input Current	IIH	V _{IH} =6.5V *	6.5	_	±0.3	-	±10 ⁻⁵	±0.3	-	±1	μA
Analog Switch Input Leak Current	$I_{ m OFF}$	V _{IH} =6.5V V _{IL} =0V	6.5	_	±0.3	_	±10 ⁻⁵	±0.3	_	±1	
Operating Con- sumption Current	IDD (opr.)	fosc=1 MHz	5	-	_	_	1.8	3	_	_	mA
Reference Supply Consumption Current	I _{REF}	VREF = 5V AGND = 0V	5	-	_	_	0.3	0.6	-	_	

^{*} Applicable to digital input/output. Not applicable to analog input/output and ${\rm OSC}_{\rm IN}/{\rm OSC}_{\rm OUT}.$

SWITCHING CHARACTERISTICS ($^{V}DD = 5V$, $^{V}SS = 0V$, $^{T}a = 25$ $^{\circ}C$, $^{C}L = 50$ ^{P}F)


ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t_{TLH}		-	' 50	100	
Output Fall Time	$t_{ m THL}$	4 9	-	40.	100	
(Low-High) Propaga- tion Delay Time	t _{pLH}	osc _{out} -gcko	_	200	400	
(High-Low) Propaga- tion Delay Time	t _{pHL}	oscoul devo	-	. 150	400	
(Low-High) Propaga- tion Delay Time	t _{pLH}	RSEL("L"→"H")-DATA OUT	-	180	400	
(High-Low) Propaga- tion Delay Time	t _{pHL}	ROEL(L / II)-DATA OUT		150	400	ns
(Low-High) Propaga- tion Delay Time	t _{pLH}	RSEL("H"→"L")-DATA OUT	-	380	700	
(High-Low) Propaga- tion Delay Time	t _{pHL}	RSEL(H → L)-DATA OUT	- '	300	700	
Output Enable Time	tZL tZH	,	-	80	250	1.
Output Disable Time	t _{LZ} t _{HZ}		_	280	500	
Max. Clock Frequency	fMAZØ	OSC Input	1.5	3.0	-	MHz
Min. Clock Frequency	fminø	OSC Input		-	100	kHz
Input Capacity	CIN	Digital Input	_	4	_	pF
Analog Input Capacity		$A_0 \sim A_5$	_	7	_	pF
3-State Output Capacity	COUT.		-	8	-	pF

SYSTEM CHARACTERISITCS ($Ta = -40 \sim 85$ °C)


ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZP	,	-	± 1/4	$\pm \frac{1}{2}$	
Full Scale Error	E _{FS}	$v_{REF} = v_{DD} = 5v$ $v_{AGND} = ov$	_	$\pm \frac{1}{4}$	± 1	LSB
Nonlinearity			_	$\pm \frac{1}{4}$	± 1	
STC Min. Pulse Width	tw		_	-	-2 fosc	s
CHS Min. Hold Time	thold	STC = CHS ₀ √2	_	· -	10 fosc+50	ns
Conversion Time	t _{conv} .	$A_{IN} = 0 \sim FS$	$\frac{10^3}{f_{OSC}}$	_	$\frac{3.1 \times 10^3}{f_{OSC}}$	s

 $[\]star$ fosc : OSC terminal clock frequency [Hz], FS : Full Scale voltage, $V_{\rm DD}$ level

TEST CIRCUIT

SWITCHING CHARACTERISTICS TEST WAVEFORMS

STANDARD CHARACTERISTICS CHARTS

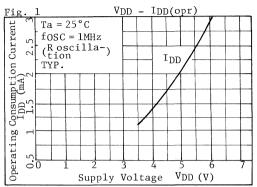
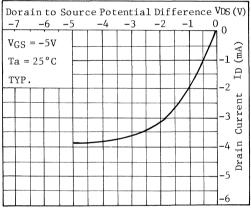
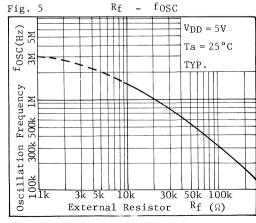
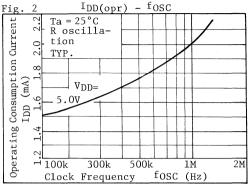
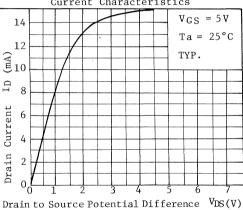
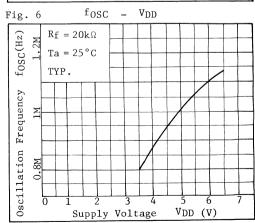
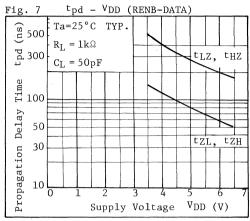
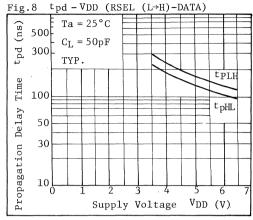
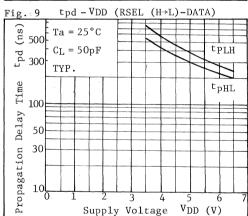
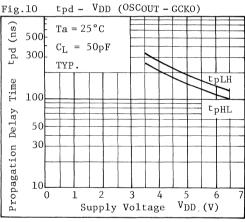
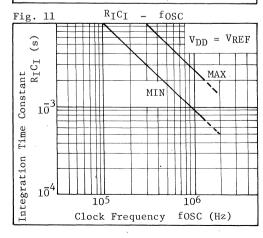




Fig. 3 P-channel Output Buffer Drain Current Characteristics


Fig. 4 N-channel Output Buffer Drain Current Characteristics





(Note)
The characterisitcs at left have been prepared for reference at the time of determination of an integrator time constant according to the equation of

$$(R_{\rm I}C_{\rm I} = (0.9 \sim 2.5) \cdot \frac{V_{\rm REF}}{V_{\rm DD}} \cdot \frac{103}{f_{\rm OSC}} (s))$$

for determing $R_{\mathrm{I}} \cdot C_{\mathrm{I}}$.

In case of the determination of $R_{\rm I}$ and $C_{\rm I}$, the product, or the value, of $R_{\rm I}$ and $C_{\rm I}$ is required to be within the range of MIN. to MAX. as shown in left figure after due consideration of dispersion.

TC5092AP

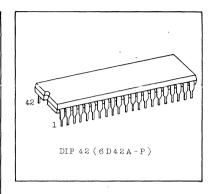
TC5092AP C2MOS 13-BIT A/D CONVERTER

GENERAL DESCRIPTION

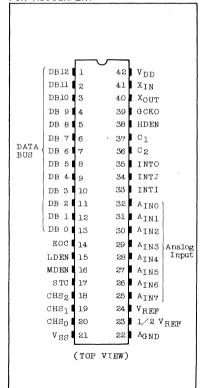
The TC5092AP is an integration 13-bit A/D converter of high precision and low power consumption. The 13-bit, 3-state data output is capable of independent enable in 4 bits so as to be connected directly to 4-bit/8-bit/12-bit data bus. (LSB is common to lower order 4 bits.)

Further, since this converter has an 8-channel analog multiplexer, and a serial clock output function, it is most suitable as data collection unit of various industrial control instruments.

FEATURES:

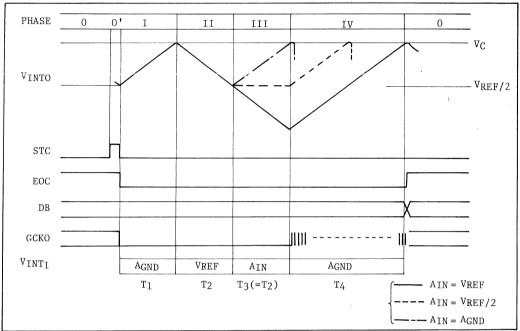

- . High precision.....±1 LSB(Typ.)
- . Low power consumption....10mW(Typ.)
- . Single power supply.....VDD=5V±0.5V
- . High-speed conversion....fcp Max.=5MHz
- . 8-channel analog multiplexer contained
- . TLL/CMOS compatible digital Input/Output
- . Capable of direct connection to 4-/8-/12-bit bus

APPLICATIONS.


- . Various industrial control instruments
- . Data collection modules

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss-0.5~Vss+7	V
Input Voltage	VIN	Vss-0.5~VDD+0.5	V
Reference Supply Voltage	v_{REF}	V _{AGND} ∼V _{DD} +0.5	V
Analog Ground Voltage	V _{AGND}	v_{SS} -0.5 \sim v_{REF}	V
Output Voltage	V _{OUT}	V _{SS} -0.5~ V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ 150	°C

PIN ASSIGNMENT


FUNCTION OF EACH PIN

PIN NO.	Symbo1	NAME & FUNCTION	PIN NO.	Symbol	· N	IAME &	FUNCTI	ON	
2 3	DB12 DB11 DB10		23	V _{REF} /2	termin	al wh	oltage nich su V _{REF} –	nnliee th	ne
4	DB 9		24	V _{REF}	Refere		oltage	supply	
5	DB 8 DB 7	3-State Parallel	25	AIN7	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	termi	nal	
7		Data Outputs	2.5	AIN/			ge rang	e:	
8	DB 6 DB 5	DB12 : MSB DB 0 : LSB	26	A _{IN6}				n be se-	
9	DB 4	22 0 1 202			1ected	by CF	IS inpu	t.	
10	DB 3	· ·	27	A _{IN} 5	CHS ₀	CHS ₁	CHS ₂	A _{IN}	
11	DB 2		28	AIN4	L	L	L	AINO	
12	DB 1				H	L	L	AIN1	
13	DB 0		29	A _{IN3}	L	Н	L	A _{IN2}	
		End of Conversion	0.0	1	Н	Н	L	A _{IN3}	
1/	TOG	EOC goes to "L" level at the fall of STC signal, and re-	30	A _{IN2}	L	L	Н	AIN4	
14	EOC	turns to "H" level at the end of conversion.	31	A _{IN1}	Н	L	Н	AIN5	
					L	Н	Н	AIN6	
15	LDEN	Low Data Enable DB₀∿DB₄ are read by "H" level input.	32	AINO	H	H ator I	H Input	AIN7	
16	MDEN	Medium Data Enable DB ₅ ∿ DB ₈ are read by "H" level input.	33	$ ext{INT}_{f I}$	Integrator Input Integrator Junction Integrator Output The integrator consists of				
17	STC	Start Conversion Conversion starts at the fall time, if pulse input at "H" level is provided. "L" level should be kept during con- version.	34	INTJ	these three terminals. $\begin{array}{cccccccccccccccccccccccccccccccccccc$				
18	CHS ₂	Channel Select Inputs These pins are address inputs			follow	ing fo	rmula	atisfy th and be se s possib	et
19	CHS ₁	for selecting eight analog inputs of AINO ~ AIN7, and	35	INTO		$> \frac{130}{f}$		s possib	
20	CHS ₀	are taken into the internal			However, R of 1 ~ 2M\Omega should be used.				ı1d
21	Vss	Digital Ground					onnectio	on termina	als
22	AGND	Analog Ground	36	C ₂			calibra		

FUNCTION OF EACH PIN

PIN NO.	Symbol	NAME & FUNCTION				
37	c ₁	$0.1\mu F$ is connected between C_2 and C_1 , and $0.01\mu F$ C_1 and VSS , respectively.				
38	HDEN	High Data Enable DB9∿DB ₁₂ are read by "H" level input.				
39	GCKO	Gated Clock Output Pulses of number equivalent to conversion data are out- put during conversion.				
40	X _{OUT}	Terminals for system clock oscillation. Crystal oscillators are con-				
41	x_{IN}	nected to both the ends of terminals.				
42	v_{DD}	Supply Voltage 5V±0.5V				

(1) Conversion cycle

In the state of PHASE 0', the operation of L3I is at a stop and the integrating amplifier performs as voltage follower. Under this condition the external capactor $(0.1\mu F \text{ across } C_1 \text{ and } C_2)$

When STC is given, the offset voltage charged into external capacitors is applied to non-inversion of the integrator, thus cancelling the offset volage equivalently. In PHASE I, the integrator continues to integrate AGND until its output reaches VC.

In PHASE III the integrator integrates the analog input for the same period of time as T_2 after it has integrated $V_{\rm REF}$ for a fixed period of time (T_2) in PHASE II.

Finally, in PHASE IV the integrator continues to integrate $^{\mbox{\scriptsize AGND}}$ until its output reaches $\mbox{\scriptsize VC.}$

Let the time in PHASE IV be T_4 . Then the following equation is made (formed) by omitting error factors such as offset drift.

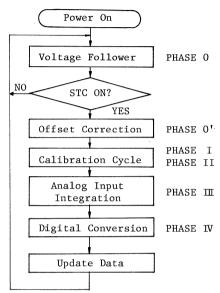
$$V_{AIN} = \frac{T_4}{2T_2} V_{REF}$$
 (AGND=0V) ... (1)

In case of this LSI, T_2 is designed by 4096 x 2.Tosc (Tosc denotes reference clock synchronization). Therefore, the above formula letting 2.Tosc be T is changed as follows:

$$\frac{V_{AIN}}{V_{REF}} = \frac{T_4}{8192T} \qquad (2)$$

That is, 13-bit resolution A/D conversion

of FS (full scale) = 8192 can be made by

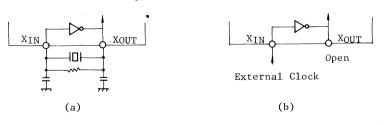

counting the period of T4 by use of a clock having T frequency.

However, it is recommended that $R_{\rm I}$ and $C_{\rm I}$ composing the integrator be set to the values close to 13000/fosc as possible after having satisfied the following formula.

$$R_{\rm I} C_{\rm I}$$
 > 13000 / f_{OSC}, $R_{\rm I}$ = 1 \sim 2M Ω is used. (3)

(2) Output data format

13-bit output data are output to 13 independent 3-state data buses DB $_0 \sim DB_{12}$. Since 13-bit outputs can be independently placed on 3-state every group of High, Medium and Low of 4 bits/4 bits/5 bits from the higher order, it is easy to connect the microcomputer to buses of 4, 8, 12 bits.


	TRUTH TABLE															
LDEN	MDEN	HDEN	A . T T				DAT	'A (UTI	PUTS	3	(DB)			
LDEN	MDEN	HDEN	Analog Input	0	1	2	3	4	5	6	7	8	9	10	11	12
L	L	L				Z			7							
Н	L	L		D	D	D	D	D	Z						Z	
L	Н	L				Z			D D D			D		_		
Н	Н	L	Don't Care	D	D	D	D	D	D	D	D	D				
·L	L	Н				Z			Z				D	D	D	D
Н	L	Н		D	D	D	D	D				D	D	D	D	
L	Н	Н			Z			D	D	D	D	D	D	D	D	
			<1/2LSB	L	L	L	L	L	L	L	L	L	L	L	L	L
			$1/2$ LSB $\sim 3/2$ LSB	Н	L	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	• • • • • • • • • • • • • • • • • • • •				S	tra	aight Binary							
			"FS"-5/2LSB ∿ "FS"-3/2LSB	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
			"FS"-3/2 LSB <	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

Note : FS \cdots Full Scale, 1 LSB = (VREF-AGND)/8192, Z \cdots High Impedance D \cdots "H" or "L" Level

(3) Basic clock

Since this LSI operates on the basis of the frequency given to $X_{\rm IN}$ input, a stable clock ($\Delta f < 0.005\%$) must be used for the clock to be given to $X_{\rm IN}$.

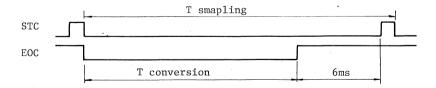
Therefore, it is proper that the oscillation circuit is configured as shown in the following figure (a) by the use of externally mounted crystal because the LSI has a built-in inverter for crystal oscillation.

(4) How to give STC input, Conversion time, and Sampling cycle

STC input is taken in with the reference clock of LSI, but the positive pulse having the pulse width for at least two cycles is required for internal starting.

The conversion time of from the fall of STC input to the rise of EOC output. Letting this time be Tc MAX(Maximum conversion time), then the following equation is obtained.

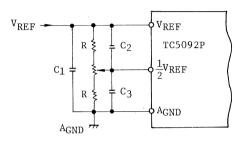
For example, when $f_{\text{CP}}=5\text{MHz}$, $T_{\text{CMAX}}=8.2\text{ms}$. For one-time sampling, an accurate output can be obtained from the falling edge of STC input after the lapse of T_{CMAX} .


For consecutive sampling, however, STC input must be given after the lapse of a given period of time (6ms) from the rise of EOC. This period (6ms) is the time required for the recovery of LSI to normal state.

Therefore, the minimum sampling cycle TsMIN is as follows:

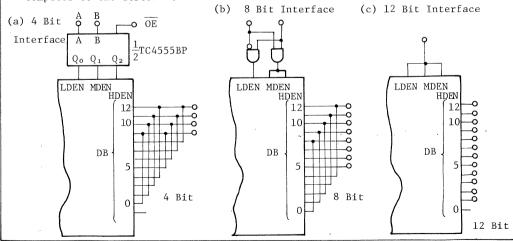
$$TsMIN = 41000 \times T_{OSC} + 0.006 + t_w(STC)$$
 [S](5)

Note: When power is set ON, following start-up procedure is required due to indefinite state of internal circuitry.


- 1. Applying clock, STC is to be set high over 10ms.
- 2. Complete at least one cycle as a dummy conversion cycle.

(5) Reference voltage

This LSI has three reference input voltage terminals of A_{GND} , $\frac{1}{2}$ V_{REF} , and V_{REF} . Since analog input signal is quantized to 1/8192 in the range of $A_{GND} \sim A_{REF}$ for digitization, stable voltages must be supplied to $\frac{1}{2}$ V_{REF} and V_{REF} .


Espacially the value of $\frac{1}{2}$ VREF voltage has direct effects upon conversion accuracy; therefore, it is recommonded that adjustment be made so as to agree output data with analog input by actually making A/D convert by use of input voltage at FS (full scale) or 1/2FS level.

The left figure shows an example of reference voltage supplying circuit. $C_1 \sim C_3$ are filter capacitors for preventing reference voltage variations to be caused by ripple or induction noise. Generally the value of capacitor is about $0.01 \sim 0.1 \mu F$, though it varies with the system.

(6) BUS Interface

For connecting a microcomputer to BUS line, three independent enable terminals are used. These three enable terminals permit the processing in the unit of 4 bits (5 bits for the low order digit only). The microcomputer can be directly connected to the BUS of $4 \sim 12$ bits easily by allocating proper address of microcomputer to the TC5092AP.

RECOMMENDED OPERATING CONDITION

ITEM	SYMBOL	·	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{DD}		4.5	5.0	5.5	V
Digital Input Voltage	VIN		0	-	v_{DD}	V
Analog Input Voltage	VAIN		AGND	-	VREF	-
Reference Supply Voltage	VREF		4.0	_	v_{DD}	V
Analog Ground Voltage	VAGND		0	0	0.5	V

ELECTRICAL CHARACTERISTICS (VDD = 5V \pm 10%, Vss = 0V, Ta = -40 \sim 85°C)

	·						
ITEM	SYMBOL	TEST CONDITION	V _{DD}	MIN.	TYP.	MAX.	UNIT
Output High Voltage	VOH	I _{OH} =-lμA,Digital output	5	4.9	5.0	_	V
Output Low Voltage	VOL	IOL=1μΑ, Digital output	5	-	0.0	0.1	
T		Digital Input except X _{IN}	5	2.4	_	_	
Input High Voltage	ΛIΗ	XIN	5	4.5	-	-	
T T	17	Digital Input except XIN	5	_	_	0.8	V
Input Low Voltage	ΛIΓ	XIN	5	_	_	0.5	
Output High Current	I _{OH}	VOH = 2.4V Digital output except XOUT	4.75	-1.0	_	_	mA
Output Low Current	IOL	VOL = 0.4V Digital output except XOUT	4.75	1.6	_	-	·mA
	IDH	$V_{OH} = 5.5V$, $DB_0 \sim DB_{12}$	5.5	_	10-3	5	
Output Disable Current	IDT	$V_{OL} = 0.0V$, $DB_0 \sim DB_{12}$	5.5	_	-10-3	- 5	
Input Current	IIH	V _{IN=5.5V} ,Digital input		-	10-5	1.0	μA
Input Cuffent	IIL	V _{IL} =0.0V,Digital input	5.5	_	-10-5	-1.0	
Analog Switch Off-Leak	I _{OFF}	Analog input/output	5.5	-	±10-4	_	μΑ
Analog Switch On Resistor	RON	$RL = 10k\Omega$	5	_		-	Ω
Operating Consump-	т	VREF = VDD fCP=5MHz.	5	-	2	-	mA
tion Current	I _{DD}	Digital open f _{CP} =1MHz	5	-	. 1	-	IIIA

SWITCHING CHARACTERISTICS ($VDD = 5V\pm10\%$, VSS = 0V, Ta = 25°C, CL = 50pF)

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	tTLH	Digital output	_	50	150	
Output Fall Time	t _{THL}	Digital output	_	40	150	ns
Output Enable Time	tZL tZH	LDEN	_	80	250	
Output Disable Time	t _{LZ}	MDEN -DB Output HDEN	_	280	500	ns
Max. Clock Frequency	fMAXø	X _{IN} Duty 40~60%	5.0	-	_	
Min. Clock Frequency	fMINø	X _{IN} Duty 40~60%	-	-	-	MHz
Tour to Constitution	CIN	Digital input	-	5	-	***************************************
Input Capacity	C _{IN} Analog input		_	-	-	pF
3-State Output Capacity	COUT	DB Output	-	8	_	

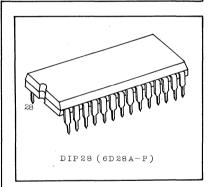
SYSTEM CHARACTERISTICS ($V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, Ta = 25°C)

ITEM	SYMBOL	TEST CO	NDITION	MIN.	TYP.	MAX.	UNIT
Resolution	n			_	13	_	Bit
		$f_{CP} = 5 \text{ MH}$	z	_	-	8.2	
Conversion Time	Тс	$f_{CP} = 1 MH$	Z	-	-	41	ms
C1: C1-	Ton	$f_{CP} = 5 \text{ MH}$	z	14.2	_	-	ms
Sampling Cycle	TSPL	$f_{CP} = 1$ MH:	z	47	-	-	IIIS
Nonlinearity				-	± 1		
Zero Scale Error	EZP			_	±2		LSB
Full Scale Error	EFS	$V_{\rm DD} = V_{\rm REF}$		-	±1		
STC Min. Pulse Width	tw			-	-	2/fosc	S

TC5093AP 8 BIT ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

The TC5093AP is a monolithic CMOS 8 bit successive approximation A/D converter with 8 channel multiplex inputs. After an analog input channel is selected with channel select input (CHO \sim 2) and channel latch input (CHL), when STC is set high EOC goes low at the leading edge of STC and the conversion starts.

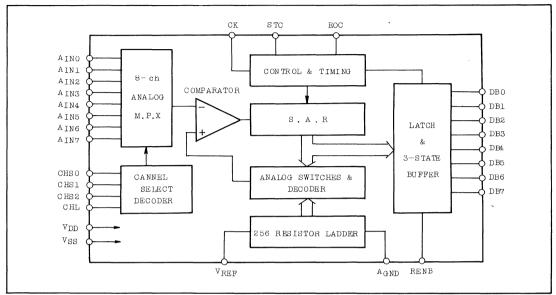

After the conversion is completed, EOC returns high and the new data replace the previous data at DBO \circ DB7.

The TC5093AP has features of high speed, high accuracy and very low power consumption which make the device well suited to a broad application field such as process and machine control and automotive equipment.

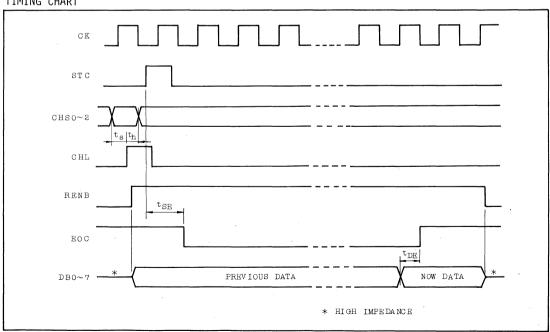
FEATURES

				- 1		
•	High	accuracy	•••••	$\pm \frac{1}{2}$	LSB	TYP

- High speed conversion 100 µsec TYP @f_cp=640 kHz
- Single power supply 5V $\pm \ 10\%$
- Low power consumption 9mW MAX $@T_a=25^{\circ}C$
- · 8 channel analog multiplex input
- Easy interface to all microprocessors
- · Zero or full scale adjustment free
- · Latched 3-state output


PIN ASSIGNMENT

		;
AIN3	1 28	AINS
AIN4	2 27	AINl
AIN5	3 26	AINO
AIN6	4 25	CHSO
AIN7	5 24	CHS1
STC	6 23	CHS2
EOC	7 22	CHL
DB3	8 21	DB7
RENB	9 20	DB6
CLOCK	10 19	DB5
v_{DD} (11 18	DB4
VREF	12 17	DB0
Vss	13 16	AGND
DB1	14 , 15	DB2
		ı
	(TOP VIEW)	


ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	v_{DD}	V _{SS} -0.5∿V _{SS} +7	V
DC Input Voltage	v_{IN}	v_{SS} -0.5 $\sim v_{DD}$ +0.5	V
DC Output Voltage	Vout	$V_{SS}-0.5 \sim V_{DD} + 0.5$	V
Reference Volage	v_{REF}	$V_{SS}-0.5 \sim V_{DD} + 0.5$	V
Analog Ground Voltage	AGND	$V_{SS}-0.5 \sim V_{DD} + 0.5$	· V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature	TSTG	-65 ∿150	°C
Lead Temperature 10 sec.	· TL	300	°C

BLOCK DIAGRAM

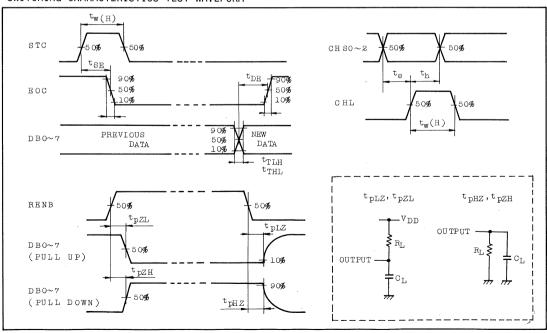
TIMING CHART

PIN & FUNCTION

PIN NO.	SYMBOL	PIN NAME & FUNCTION	PIN NO.	SYMBOL	PIN NAME & FUNCTION				
1	A _{IN3}	[ANALOG INPUT]	15	DB2	3-STATE PARALLEL DATA OUTPUT				
3	A _{IN4}	The analog input voltage applied to the selected channel is converted.	16	A _{GND}	[ANALOG GROUND] A _{GND} defines the zero level of A _{IN} . 3-STATE PARALLEL DATA OUTPUT				
4	A _{TN6}	Full range of input signal is to be from $A_{\mbox{\footnotesize CND}}$ to $V_{\mbox{\footnotesize REF}}.$	17	DB0					
5	A _{IN7}		18	DB4	DBO : LSB				
		[START CONVERSION]	19	DB5	DB7 : MSB				
6	STC	Conversion starts at the falling edge of STC.	20	DB6					
		[END OF CONVERSION]	21	DB7					
7	EOC	EOC becomes low level at the rising edge of STC. And when the conversion is completed EOC returns to high level.	22	CHL	[CHANNEL LATCH INPUT] The channel select signals CHSO ^2 are latched at the				
8	DB3	3-STATE PARALLEL DATA OUTPUT			rising edge of CHL.				
9	RENB	[READ ENABLE] Output enable signal "H" = DBO ∿7 enable	23	CHS2	[CHANNEL SELECT INPUT] One of $A_{INO} \sim A_{IN7}$ is selected according to the status of CHO \sim CH2.				
		"L" = DBO $^{\circ}$ 7 enable "L" = DBO $^{\circ}$ 7 high impedance			CHS2 CHS1 CHSO ON CHANNEL				
10	CLOCK	[CLOCK INPUT] Basic system clock	24	CHS2	L L L AINO L L H AIN1 L H L AIN2				
11	v_{DD}	[SYSTEM POWER SUPPLY] V _{DD} =5V ± 10%	25	CHSO	L H H AIN3 H L L AIN4 H L H AIN5				
12	V _{REF}	[REFERENCE VOLTAGE] $V_{\rm REF}$ defines the full scale of AIN.		CIISO	H H L AIN6 H H H AIN7				
13	V _{SS}	[SYSTEM GROUND]	26	A _{INO}	[ANALOG INPUT]				
		V _{SS} =0V	27	A _{IN1}					
14	DB1	3-STATE PARALLEL DATA OUTPUT	28	A _{IN2}					

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		4.5	5.0	5.5	V
Input Voltage	VIN		0	-	$v_{ m DD}$	V
Reference Voltage	V _{REF}	V _{DD} =5V, AGND=0V	3.5	$v_{ m DD}$	v_{DD}	V
Analog Ground Voltage	AGND	V _{DD} =5V, V _{REF} =5V	0.0	0.0	3.0	V
Voltage Between V _{REF} and AGND		V _{DD} =5V ± 10%	2.0	v_{DD}	v_{DD}	V
Clock Frequency	f _{cp}	V _{DD} =5V ± 10% Duty Cycle=50%	10	640	1280	kHz
Operating Temperature	Topr		-40	-	+85	°C


DC ELECTRICAL CHARACTERISTICS (VSS=0V)

PARAMETER	SYMBOL TEST CONDITION			-40°C			25°C			85°C	
FARATETER	SIMBOL	TEST CONDITION	v_{DD}	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High Level Output Voltage	V _{OH}	$ I_{OUT} < 1_{\mu A} \ V_{IN} = V_{SS}$, V_{DD}	5.0	4.95	-	4.95	5.00	_	4.95	-	V
Low Level Output Voltage	v_{OL}	$\begin{array}{c} \mid \mathtt{I}_{OUT} \mid < \mathtt{1}_{\mu}\mathtt{A} \\ \mathtt{v}_{IN} = \mathtt{v}_{SS}, \mathtt{v}_{DD} \end{array}$	5.0	-	0.05	-	0.00	0.05	-	0.05	V
High Level Output Current	I _{OH}	$v_{OH}^{=4.6V}$ $v_{IN}^{=4.6V}$	5.0	-1.2	_	-	_	_	-0.7	-	mA
Low Level Output Current	$I_{ m OL}$	V _{OL} =0.4V V _{IN} =V _{SS} ,V _{DD}	5.0	2.4	-	2.0	-	-	1.6	-	mA
High Level Input Voltage	v_{IH}	$\begin{array}{c} \text{I}_{OUT} < 1_{\mu}\text{A} \\ \text{V}_{OUT} = 0.5\text{V}, \text{ 4.5V} \end{array}$	5.0	3.5	_	3.5	-	-	3.5	-	V
Low Level Input Voltage	v_{IL}	I _{OUT} <1μΑ V _{OUT} =0.5V, 4.5V	5.0	-	1.5	-	1	1.5	-	1.5	V
3-State Output Disable Current	I _{DH} I _{DL}	V _{OH} =5.5V or V _{OL} =0.0V	5.5	-	±0.5	-	ı	±0.5	-	±1	μА
Digital Input Current	${ m I}_{ m IL}$	v_{IH} =5.5V or v_{IL} =0.0V	5.5	-	±0.3	-	ı	±0.3	ı	±1	μA
On Channel Input Current	I _{ON}	$V_{\rm IH}$ =5.5V or $V_{\rm IL}$ =0.0V $f_{\rm cp}$ = kHz	5.5	_	±2	-	_	±2	_	±5.	μА
OFF Channel Input Current	${ m I}_{ m OFF}$	$ m V_{IH}$ =5.5V or $ m V_{IL}$ =0.0V	5.5	-	±0.2	-	-	±0.2	-	±1	μА
Operating Current	I _{DD}	f _{cp} =1 MHz	5.0	-	2.0	-	_	1.8	_	2.0	mA
Reference Resistance	R _{REF}		_	4.0	1.7	4.3	7.5	17	4.3	19	kΩ

SWITCHING CHARACTERISTICS ($V_{DD}=5.0V$, $T_a=25$ °C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}	C _L =50 _p F	_	50	100	
Propagation Delay Time (STC - EOC)	t _{SE}	C _L =50 _p F	10	1/2 CLOCK + 200	1/2 CLOCK + 600	
Data-EOC Time	t _{DE}	CL=50pF	1 CLOCK -300	1 CLOCK -70	1 CLOCK	
3-State Output Enable Time	tpZH tpZL	C _{T.} =50pF	-	85	200	
3-State Output	tpHZ	R _L =1k	_	85	200	nS
Disable Time	tpLZ]	_	65	200	
Minimum Pulse Width (STC, CHL)	t _{w(H)}	C _L =50pF	-	40	100	
Minimum Set-up Time (CHSO ∿2)	ts	C _L =50 _p F	_	2	50	
Minimum Hold Time (CHSO ∿2)	t _h	C_L =50pF	-	0	50	
Input Capacitance	c_{IN1}	Digital Input	_	5	_	
Input Capacitance	c_{IN2}	Analog In(ON)	_		-] _n
Input Capacitance C _{IN3}		Analog In(OFF)	_		-	pF
Output Capacitance	c_{OUT}	3-State Out	_	10	- *	

SWITCHING CHARACTERISTICS TEST WAVEFORM

SYSTEM CHARACTERISTICS $(T_a=25$ °C)

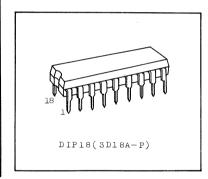
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZR	VDD=5.0V	_	± 1/4	± 1	
Full Scale Error	E _{FS}	V _{REF} =5.000V	_	$\pm \frac{1}{2}$	± 1	LSB
Nonlinearity Error	ELI	t _{cp} =1 MHz	_	± 1 2	± 1	
Conversion Time	To	f _{cp} =640 kHz	-	100		μs
Conversion Time	T _C	f _{cp} =1280 kHz	-	50		

TC35094P 8 BIT ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

The TC35094P is a monolithic CMOS 8 bit successive approximation A/D converter. The TC35094P consists of a high speed chopper stabilized comparator, a 256 resistor ladder with analog switches, 3 state latched buffers and a microprocessor compatible control logic.

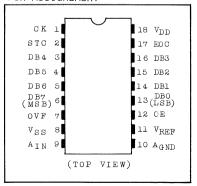
When STC is set high. EOC goes to low level and the conversion starts.

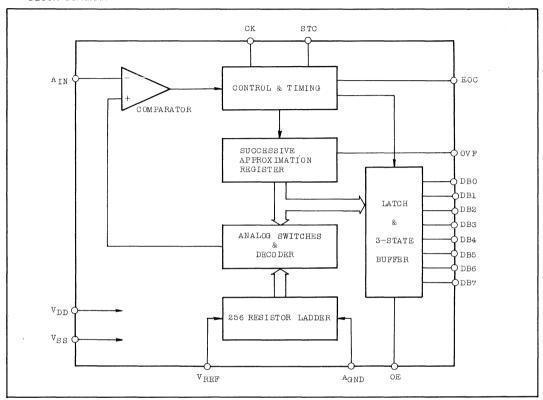

After the conversion is completed the new data replace the previous data at DBO D DB7 and EOC returns to high level.

The TC35094P has features of high speed, high accuracy and very low power consumption which make the device well suited to a broad application field such as data communication, process and machine control and automotive equipment.

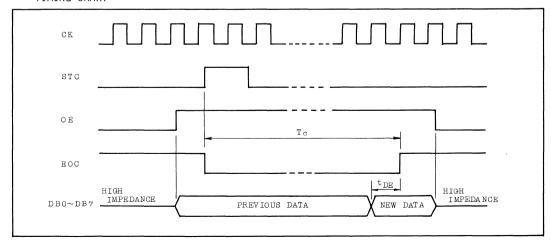
FEATURES

•	Figh accuracy $\pm \frac{3}{4}$ LSB MAX
•	High speed conversion 19 μ sec MAX $@f_{cp}$ =2MHz
•	Single power supply $5V\pm10\%$
o	Low power consumption 7.5mW MAX $@T_a = 25^{\circ}C$


- · Zero or full scale adjustment free
- · Easy interface to all microprocessors
- · Latched 3-state output
- · LSTTL and CMOS compatible output


ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage Range	v_{DD}	V _{SS} -0.5∿V _{SS} +7	V
DC Input Voltage	v_{IN}	V _{SS} -0.5∿V _{DD} +0.5	V
DC Output Voltage	V _{OUT}	V _{SS} -0.5∿V _{DD} +0.5	V
Reference Voltage	v_{REF}	V _{SS} -0.5∿V _{DD} +0.5	V
Analog Ground Voltage	A_{GND}	V _{SS} -0.5∿V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature	Tstg	-65 ∿ 150	°C
Lead Temperature 10sec.	$^{ ext{T}}_{ ext{L}}$	300	°C


PIN ASSIGNEMENT

BLOCK DIAGRAM

TIMING CHART

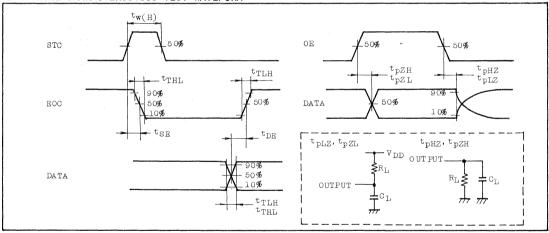
TC35094P

PIN & FUNCTION

PIN NO.	SYBOL	PIN NAME & FUNCTION	PIN NO.	SYMBOL	PIN NAME & FUNCTION
1	CK	[CLOCK INPUT] Basic system clock	10	A _{GND}	[ANALOG GROUND] $ ^{A_{\mbox{\footnotesize{GND}}}} \mbox{ defines the zero level of $A_{\mbox{\footnotesize{IN}}}$.} $
2	STC	[START CONVERSION] Command for starting conversion. Conversion starts at the rising edge of STC.	11	$v_{ m REF}$	[REFERENCE VOLTAGE] $V_{ m REF}$ defines the full scale of $A_{ m IN}$.
3	DB4	DB4 [3-STATE PARALLEL] DATA OUTPUT		OE	[OUTPUT ENABLE] Data DBO∿DB7 are enabled when OE is set high, and
4	DB5	The new data replaces the previons data one clock cycle before the rising edge of EOC.	12	OH	data output DBO^DB7 become high impedance when OE is set low level.
5	DB6	DBO : LSB	13	DBO	[3-STATE PARALLEL] DATA OUTPUT
6	DB7	DB7 : MSB	14	DB1	The new data replaces the previous data one clock
		[OVER FLOW] OVF goes to high level in case	15	DB2	before the rising edge of EOC. DBO : LSB
7	OVF	that the input analog signal exceeds the full scale.	16	DB3	DB7 : MSB
8	V _{SS}	[SYSTEM GROUND] $V_{SS} = OV$	17	EOC	[END OF CONVERSION] EOC becomes low level at the rising edge of STC. And when the conversion is
		[ANALOG INPUT]			completed EOC returns to high level.
9	A _{IN}	Full range of input signal is to be from $A_{ m GND}$ to $V_{ m REF}$.	18	v _{DD}	[SYSTEM POWER SUPPLY] $V_{\mathrm{DD}} = 5V \pm 10\%$

RECOMMENDED OPERTING CONDITIONS (v_{SS} =0v)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		4.5	5.0	5.5	V
Input Voltage	VIN		0	-	v_{DD}	V
Reference Voltage	V _{REF}	V _{DD} =5V, A _{GND} =OV	2.0	v_{DD}	v_{DD}	V
Analog Ground Voltage	A _{GND}	$V_{\rm DD}$ =5V, $V_{\rm REF}$ =5V	0.0	0.0	3.0	V
Voltage Between VREF and AGND		V _{DD} =5V±10%	2.0	v_{DD}	V _{DD}	V
Clock Frequency	f _{cp}	V _{DD} =5V±10%	10	1500	2000	kHz
Clock Pulse Width	t _W (H)	V _{DD} =5V±10%	250	333	_	пS
Operating Temperature	Topr		-40	_	+85	°C


DC ELECTRICAL CHARACTERISTICS (VDD=5V $^\pm$ 10% , VSS=0V)

PARAMETER	SYBOL	TEST CONDITION		25°C		-40 ^	UNIT	
TAKAFETEK	STBOL .	TEST COMPTITION	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	v _{OH}	I _{OUT} <1µA VIN=VSS,V _{DD}	V _{DD} - 0.05	, A ^{DD}	-	V _{DD} - 0.05	-	v
Low Level Output Voltage	V _{OL}	I _{OUT} < 1 μ A V _{IN} =V _{SS} , V _{DD}	-	0.00	0.05	_	0.05	ν
High Level Output Current	I _{OH}	V _{OH} =V _{DD} -0.4V V _{IN} =V _{SS} ,V _{DD}	-0.44	-	-	-0.36	-	mA
Low Level Output Current	I _{OL}	V _{OL} =0.4V V _{IN} =V _{SS} ,V _{DD}	2.0	_	_	1.6		mA
High Level Input Voltage	v _{IH}	I _{OUT} <1μA V _{OUT} =0.5V, V _{DD} -0.5V	0.7 ×V _{DD}	-	-	0.7 × V _{DD}	-	v
Low Level Input Voltage	v_{IL}	I _{OUT} <1μΑ V _{OUT} =0.5V, V _{DD} -0.5V		-	0.3 ×V _{DD}		0.3 ×V _{DD}	V
3-State Output Disable Current	${ m I}_{ m DL}$	V _{OH} =V _{DD} or V _{OL} =0.0V		-	±0.5	-	±1	μA
Digital Input Current	I _{IH} I _{IL}	V _{IH} =V _{DD} or V _{IL} =0.0V		_	±0.3	_	±1	μА
Analog Input Current	IAIN	Conversion Cycle =10KHz V _{IH} =V _{REF} or V _{IL} =0.0V	_	_	± 3	-	± 6	μА
Operating Current	i _{DD}	f _{cp} =2MHz	_	_	1.7	_	2.1	mA
Reference Resistance	R _{REF}		2.5	5.1	8.2	2.3	9.0	kΩ

SWITCHING CHARACTERISTICS ($v_{DD}=5v\pm10\%$, $v_{SS}=0v$, $t_a=25$ °C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	tTLH tTHL	C _L =50 _p F	_	_	100	
3-State Output Enable Time	tpZH tpZL	C _L =50pF	_	_	200	
3-State Output Disable Time	tpHZ tpLZ	R _L =1k	-	-	200	nS
Minimum Pulse Width (STC)	t _w (H)	C _L =50pF	-	_	150	
Propagation Delay Time (STC-EOC)	tsE	CL=50pF	_	_	150	
Data-EOC Time	t _{DE}	C _L =50 _p F	-	-1 clock	0	-
Input Capacitance	CIN1	Digital Input	-	5	_	
Input Capacitance	CIN2	Analog Input	-			pF
Output Capacitance	COUT	3-State Out	-	10	-	

SWITCHING CHARACTERISTICS TEST WAVEFORM

SYSTEM CHARACTERISTICS $(T_a=25$ °C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZR		_	±1/4	±1/2	
Full Scale Error	EFS	V _{DD} =5.0V	-	±1/4	±1/2	LSB
Nonlinearity Error	ELI	V _{REF} =5.000V	_	±1/4	-	
Total Error	ET	f _{cp} =2MHz	-	±1/4	±3/4	
Conversion Time	TC	f _{cp} =1MHz		38		
"" " " " " " " " " " " " " " " " " " "	1 20	f _{cp=2MHz}		19		μS

TC35095P

TC35095P 8 BIT 8-CH SERIAL I/O ANALOG TO DIGITAL CONVERTER

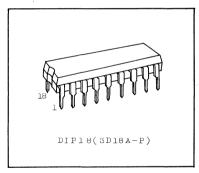
GENERAL DESCRIPTION

The TC35095P is a monolithic CMOS 8 bit successive approximation A/D coverter with serial I/O and 8 channel multiplex inputs.

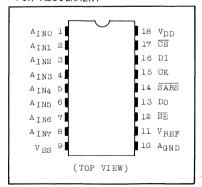
Conversion start when CS is set low and start bit ("L" level) and channel select bit (three bits) are given to serial input DI.

In case that $\overline{\text{SE}}$ is high, as soon as the conversion starts a start bit ("L" level) appears at serial output DO and 8 bit conversion data (MSB first) and a stop bit ("H" level) follow continuously.

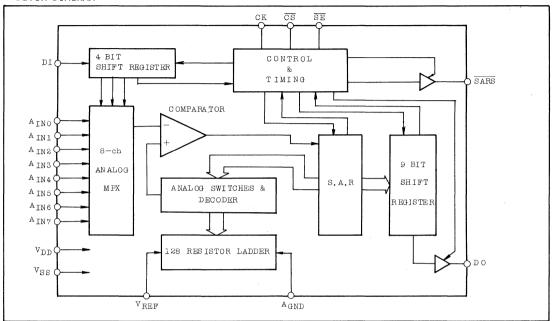
In case that $\overline{\text{SE}}$ is low, after the conversion is completed a start bit, 8 bit conversion data (LSB first) and a stop bit appear at DO.

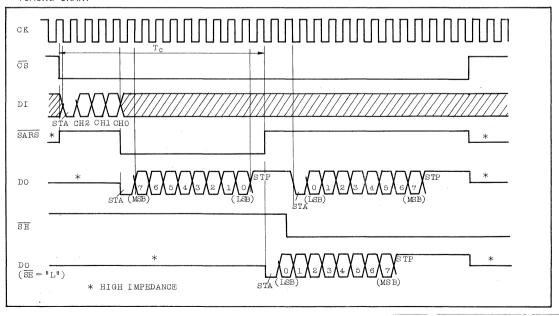

The TC35095P has features of high speed, high accuracy and microprocessor compatible I/O which make the device well suited to a broad application field such as process and machine control and automotive equipment.

FEATURES


- High accuracy $\pm \frac{3}{4}$ LSB MAX
- High speed conversion 35 μsec MAX @f_cp=400kHz
- Single Power supply 5V±10%
- Low Power consumption 5mW MAX @Ta=25°C
- · Serial I/O
- · 8 channel analog multiplex input
- · Easy interface to all microprocessors
- 3-state output
- · Zero or full scale adjustment free

ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	v_{DD}	V _{SS} -0.5∿V _{SS} +7	V
DC Input Voltage	VIN	V _{SS} -0.5∿V _{DD} +0.5	V
DC Output Voltage	V _{OUT}	V _{SS} -0.5∿V _{DD} +0.5	V
Reference Voltage	VREF	V _{SS} -0.5∿V _{DD} +0.5	V
Analog Ground Voltage	$^{ m A}_{ m GND}$	V _{SS} -0.5∿V _{DD} +0.5	V
DC Input Current	IIN	. ±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature	T _{stg}	-65 ∿ 150	°C
Lead Temperature 10sec.	${ t T}_{ t L}$	300	°C


PIN ASSIGNMENT

BLOCK DIAGRAM

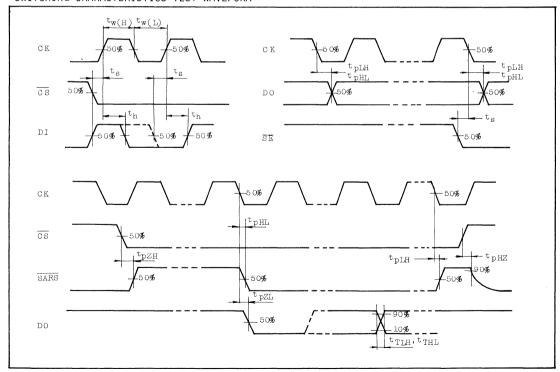
TIMING CHART

PIN & FUNCTION

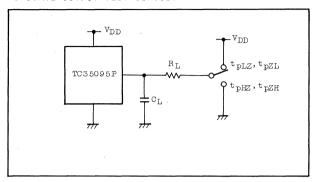
PIN NO.	SYMBOL		PIN NAM	E & F	UNCT	LON		PIN NO.	SYMBOL	PIN NAME & FUNCTION
1	A_{INO}	One acco	ALOG INPUT of $A_{ m INO}$ $^{\sim}$ ording to	A _{IN7} the s	eria.	l char	nel	10	$A_{ m GND}$	[ANALOG GROUND] $_{ m AGND}$ defines the zero level of $_{ m AIN}$.
2	A _{IN1}	select bit applied on DI input. Full range of input signal is to be from ${\rm A_{CND}}$ to ${\rm V_{REF}}$.		11	v_{REF}	[REFERENCE VOLTAGE] $V_{ m REF}$ defines the full scale of $A_{ m IN}$.				
3	A _{IN2}	ON DI Serial Data Channel CH2 CH1 CH0 AINO L L L						12	SE	[SELECT INPUT] SE determines the order of output data. SE="L" LSB first SE="H" MSB first
4	A _{IN3}		A _{IN1}	L	L H	H		13	DO	[DATA OUTPUT] Output data is sent out in series.
5	A _{IN4}		A _{IN3} A _{IN4} A _{IN5}	H H H	H L L	H L H		14	SARS	[SAR STATUS] When a start bit ("L" level) is detected at DI input, SARS is set "L" level and conversion starts. When conversion is completed
6	A _{IN5}		A _{IN7}	Н	Н	Н		15	CK	When conversion is completed SARS returns to "H" level. [CLOCK INPUT] Basic system clock. Duty cycle is to be 50%.
7	A _{IN6}							16	DI	[DATA INPUT] For starting the conversion a start bit ("L" level) and channel select bit (from CH2 to CH0 in order) are to be applied.
8	A _{IN7}			,				17	CS	[CHIP SELECT] At the falling edge of $\overline{\text{CS}}$, the device is set stand-by for conversion. When $\overline{\text{CS}}$ is "H" the
9	V _{SS}	[DIG	ITAL GROU	ND]						device is reset and all outputs become high impedance. [Power Supply]
								18	V _{DD}	5V ± 10%

RECOMMENDED OPERATING CONDITIONS (v_{SS} =ov)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		4.5	5.0	5.5	V
Input Voltage	VIN		0	-	v_{DD}	V
Reference Voltage	VREE	V _{DD} =5V, A _{GND} =0V	2.0	v_{DD}	v_{DD}	V
Analog Ground Voltage	AGND	V _{DD} =5V, V _{REF} =5V	0.0	0.0	3.0	V
Voltage Between VREF and AGND		V _{DD} =5V±10%	2.0	v_{DD}	V_{DD}	V
Clock Frequency	fcp	V _{DD} =5V±10%	_	_	400	kHz
Clock Pulse Width	t _{w(H)}	V _{DD} =5V±10%	0.63	1.25	_	μS
Operating Temperature	Topr		-40	_	+85	°C


DC ELECTRICAL CHARACTERISTICS (V_{DD} =5V \pm 10%, V_{SS} =0V)

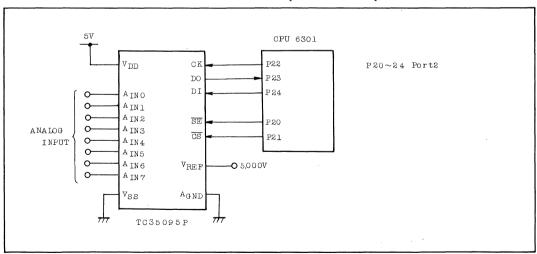
PARAMETER	SYMBOL	TEST CONDITION		25°C		-40 ∿	UNIT	
FARAPETER	SIMBOL	TEST CONDITION	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	V _{OH}	I _{OUT} <1μΑ V _{IN} =V _{SS} ,V _{DD}	V _{DD} - 0.05	v_{DD}	_	V _{DD} - 0.05	_	V
Low Level Output Voltage	v_{OL}	I _{OUT} <1μΑ V _{IN} =V _{SS} , V _{DD}	-	0.00	0.05	_	0.05	V
High Level Output Current	ІОН	V _{OH} =V _{DD} -0.4V V _{IN} =V _{SS} , V _{DD}	-0.44	_		-0.36	_	mA
Low Level Output Current	$I_{ m OL}$	V _{OL} =0.4V V _{IN} =V _{SS} ,V _{DD}	2.0	_	_	1.6	-	mA
High Level Input Voltage	v _{IH}	I _{OUT} <1μA V _{OUT} =0.5V, V _{DD} -0.5V	0.7 × V _{DD}	_	_	0.7 × V _{DD}	_	V
Low Level Input Voltage	$v_{ m IL}$	I _{OUT} <1μΑ V _{OUT} =0.5V, V _{DD} -0.5V		_	0.3 ×V _{DD}	-	0.3 ×V _{DD}	V
3-State Output Disable Current	${ m I}^{ m DL}$	V _{OH} =V _{DD} or V _{OL} =0.0V		_	±0.5	_	±1	μА
Digital Input Current	$I_{ m IL}$	V _{IH} =V _{DD} or V _{IL} =0.0V		_	±0.3	_	±1	μA
ON Channel Input Current	I _{ON}	V _{IH} =V _{REF} or V _{IL} =0.0V f _{Cp} =400kHz	_	-	±2		±5	μA
OFF Channel Input Current	I _{OFF}	V _{IH} =V _{DD} or V _{IL} =0.0V	_	_	±0.2	_	± 1	μ A
Operating Current	I_{DD}	f _{cp} =400kHz	-	_	1.1	-	1.4	mA
Reference Resistance	R _{REF}		1.4	2.6	3.8	1.2	4.2	kΩ


SWITCHING CHARACTERISTICS (V_{DD} =5 $V\pm10\%$, V_{SS} =0V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	tTLH tTHL	C _L =50pF	-		100	
Propagation Delay Time (CK-Data)	tpLH tpHL	C _L =50 _p F	_		250	
Propagation Delay Time (CK-SARS)	Chur	C _L =50pF	_		250	
3-State Output Enable Time (CS-SARS, SARS-Data)	tpZH tpZL	C _L =50pF	_		200	nS
3-State Output Disable Time (CS-SARS, Data)	tpHZ tpLZ	$R_{L}^{-}=1k$	_		200	
Minimum Pulse Width (CS)	t _{w(H)}	C_{L} =50 pF	_		100	
Minimum Set-up Time (CS, SE, DI)	t _s	$C_{\rm L}$ =50pF	-		150	
Minimum Hold Time (DI)	th	C _L =50pF	_		50	
Input Capacitance	C _{IN1}	Digital Input	-	5	_	
Input Capacitance	C _{IN2}	Analog In(ON)	_	5	_	_ F
Input Capacitance	C _{IN3}	Analog In(OFF)	-	5	-	pF
Output Capacitance	COUT	3-State Out	-	10	_	

SWITCHING CHARACTERISTICS TEST WAVEFORM

3-STATE OUTPUT TEST CIRCUIT



SYSTEM CHARACTERISTICS (Ta=-40 ~ 85°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZR		-	±1/4	±1/2	
Full Scale Error	E _{FS}	V _{DD} =5.0V V _{REF} =5.000V	-	±1/4	±1/2	T CD
Nonlinearity Error	ELI	f _{cp} =400kHz	_	±1/4	-	LSB
Total Error	ET	Duty=50%	_	±1/4	±3/4	
Conversion Time	TC	f _{cp} =400kHz	-	35	36.5	μS

APPLICATION CIRCUIT (EXAMPLE)

$$Tc = \frac{14}{fcp} \pm \alpha \qquad 0 < \alpha < \frac{1}{2fcp}$$

TC35096P

TC35096P 8 BIT 4-CH SERIAL I/O ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

The TC35096P is a monolithic CMOS 8 bit successive approximation A/D converter with serial I/O and 4 channel multiplex inputs.

Conversion start when $\overline{\text{CS}}$ is set low and start bit ("L" level) and channel select bit (two bits) are given to serial input DI.

In case that $\overline{\text{SE}}$ is high, as soon as the conversion starts a start bit ("L" level) appears at serial output DO and 8 bit conversion data (MSB first) and a stop bit ("H" level) follow continuously.

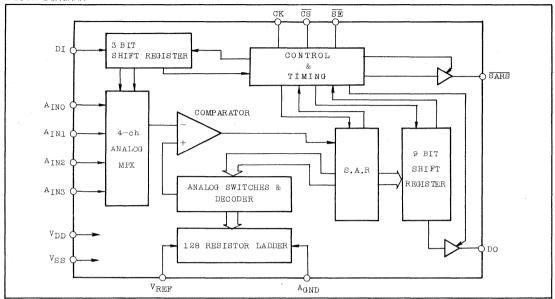
In case that $\overline{\text{SE}}$ is low, after the conversion is completed a start bit, 8 bit conversion data (LSB first) and a stop bit appear at DO.

The TC35096P has features of high speed, high accuracy and microprocessor compatible I/O which make the device well suited to a broad application field such as process and machine control and automotive equipment.

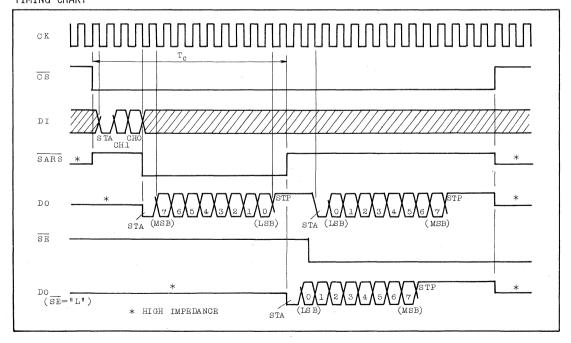
FEATURES


- High accuracy $\pm \frac{3}{4}$ LSB MAX
- + High speed conversion32.5 μs MAX @ $f_{\mbox{cp}}\!=\!\!400~\mbox{kHz}$
- + Single power supply 5V $\pm\,10\%$
- \circ Low power consumption 5 mW MAX @ $\rm T_a = 25\,^{\circ}C$
- Serial I/O
- · 4 channel analog multiplex input
- · Easy interface to all microprocessors
- 3-state output
- · Zero or full scale adjustment free

DIP 14(3D14A-P)


ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+7$	V
DC Input Voltage	VIN	V_{SS} -0.5 $\wedge V_{DD}$ +0.5	V
DC Output Voltage	$v_{ m OUT}$	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
Reference Voltage	v_{REF}	v_{SS} -0.5 $\sim v_{DD}$ +0.5	V
Analog Ground Voltage	A_{GND}	V_{SS} -0.5 $\sim V_{DD}$ +0.5	V
DC Input Current	IIN	±10	V
Power Dissipation	PD	300	mA
Storage Temperature	$T_{ t stg}$	-65 ∿ 150	°C
Lead Temperature 10 sec.	${ m T_L}$	300	°C


PIN ASSIGNMENT

BLOCK DIAGRAM

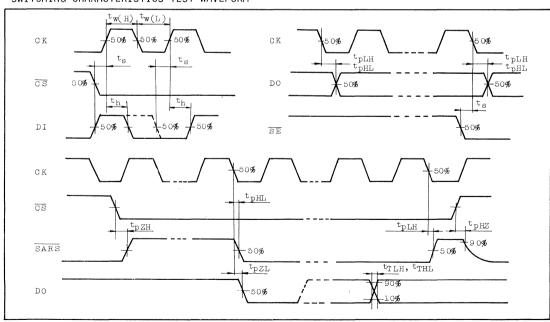
TIMING CHART

PIN & FUNCTION

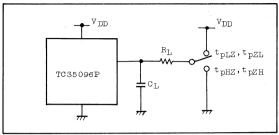
PIN NO.	SYMBOL	PIN NAME & FUNCTION	PIN NO.	SYMBOL	PIN NAME & FUNCTION
1	SE	[SELECT] \$\overline{SE}\$ determines the order of output data. \$\overline{SE}\$ = "L" \ldots LSB first \$\overline{SE}\$ = "H" \ldots MSB first	8	^A GND	[ANALOG GROUND] $A_{\mbox{\footnotesize GND}} \mbox{ defines the zero level}$ of $A_{\mbox{\footnotesize IN}}.$
2	CS	[CHIP SELECT] At the falling edge of $\overline{\text{CS}}$, the device is set stand-by for con-	9	$v_{ m REF}$	[REFERENCE VOLTAGE] $V_{ m REF}$ defines the full scale of $A_{ m IN}$.
		version. When $\overline{ ext{CS}}$ is "H" the device is reset and all outputs become high impedance.	10	DO	[DATA OUTPUT] Output data is sent out in series.
3	$A_{ m INO}$	[ANALOG INPUT] One of $\rm A_{IN0} ^{\sim} A_{IN3}$ is selected according to the serial channel select bit applied on DI input.	11	SARS	[SAR STATUS] When a start bit ("L" level) is detected at DI input, SARS is set "L" level and conversion
4	A _{IN1}	Full range of input signal is to be from $A_{\mbox{\footnotesize{GND}}}$ to $V_{\mbox{\footnotesize{REF}}}.$			When conversion is completed SARS returns to "H" level.
5	A _{IN2}	ON DI Serial Data Channel CH1 CH0 AINO L L	12	CK	[CLOCK INPUT] Basic system clock. Duty cycle is to be 50%.
		A _{TN1} L H			[DATA INPUT]
6	A _{IN3}	A _{IN2} L L		DI .	For starting conversion, a start bit ("L" level) and channel select bit (from CH1 to CH0 in order) are to be applied.
7	V _{SS}	[DIGITAL GROUND]	14	v _{DD}	[POWER SUPPLY] 5V ± 10%

RECOMMENDED OPERATING CONDITIONS (v_{SS} =0v)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		4.5	5.0	5.5	V
Input Voltage	VIN		0	-	v_{DD}	V ·
Reference Voltage	V _{REE}	VDD=5V, AGND=0V	2.0	v_{DD}	v_{DD}	V
Analog Ground Voltage	A _{GND}	V _{DD} =5V, V _{REE} =5V	0.0	0.0	3.0	V
Voltage Between $V_{ m REF}$ and $A_{ m GND}$		V _{DD} =5V ± 10%	2.0	v_{DD}	v_{DD}	v
Clock Frequency	fcp	V _{DD} =5V ± 10%	_	_	400	kHz
Clock Pulse Width	t _W (H)	V _{DD} =5V ± 10%	0.63	1.25	_	μS
Operating Temperature	topr		-40	_	+85	°C

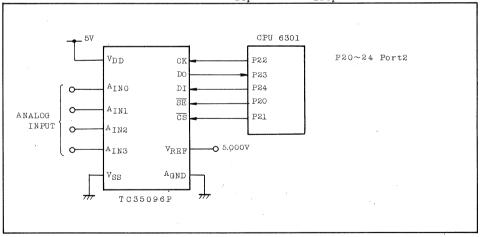

DC ELECTRICAL CHARACTERISTICS (v_{DD} =5v±10%, v_{SS} =0v)

PARAMETER	SYMBOL	TEST CONDITION		25°C		-40	85°C	
FARAPILIER	SIMBOL	TEST CONDITION						
High Level Output Voltage	. VOH	$ \mathrm{I}_{\mathrm{OUT}} < 1\mu\mathrm{A} \ \mathrm{V}_{\mathrm{IN}} = \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$	V _{DD} - 0.05	v_{DD}	_	V _{DD} - 0.05	-	V
Low Level Output Voltage	v_{OL}	$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$ $V_{\mathrm{IN}} = V_{\mathrm{SS}}, V_{\mathrm{DD}}$	_	0.00	0.05	_	0.05	V
High Level Output Current	I _{OH}	$v_{OH} = v_{DD} - 0.4v$ $v_{IN} = v_{SS}, v_{DD}$	-0.44	-	_	-0.36	-	mA
Low Level Output Current	$I_{ m OL}$	$v_{\rm OL}$ =0.4 $v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$	2.0	-	_	1.6	-	mA
High Level Input Voltage	VIH	$ I_{OUT} <1\mu A$ $V_{OUT}=0.5V$, $V_{DD}-0.5V$	0.7 × V _{DD}	_	_	0.7 ×V _{DD}	-	V
Low Level Input Voltage	VIL	I _{OUT} <1μΑ V _{OUT} =0.5V, V _{DD} -0.5V		-	0.3 × V _{DD}	_	0.3 ×V _{DD}	v
3-State Output Disable Current	${ m I}_{ m DL}$	V _{OH} =V _{DD} or V _{OL} =0.0V		_	±0.5	-	±1	μA
Digital Input Current	I_{IL}	V _{IH} =V _{DD} or V _{IL} =0.0V		_	±0.3	_	±1	μΑ
ON Channel Input Current	r _{ON}	VIH=VREF or VIL=0.0V f _{CP} =400kHz	-	_	±2	_	±5	μΑ
OFF Channel Input Current	I _{OFF}	V _{IH} =V _{DD} or V _{IL} =0.0V	-		±0.2	_	±1	μΑ
Operating Current	I_{DD}	f _{cp} =400kHz	_	_	1.1		1.4	mA
Reference Resistance	R _{REF}		1.4	2.6	3.8	1.2	4.2	kΩ


SWITCHING CHARACTERISTICS ($V_{DD}=5V\pm10\%$, $V_{SS}=0V$, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	tTLH tTHL	C _L =50 _p F	-		100	
Propagation Delay Time (CK-Data)	tpLH tpHL	$C_{\rm L}$ =50pF	-		250	
Propagation Delay Time (CK-SARS)	tpLH tpHL	C _L =50 _p F	-		250	
3-State Output Enable Time (CS-SARS, SARS-Data)	tpZH tpZL	C _L =50 _p F	_		200	nS
3-State Output Disable Time (CS-SARS, Data)	tpHZ tpLZ	RL=1kΩ	_		200	113
Minimum Pulse Width $\overline{(\mathrm{CS})}$	t _w (H)	C _L =50 _p F	_		100	
Minimum Set-up Time $(\overline{CS}, \overline{SE}, DI)$	ts	$C_{\rm L}$ =50pF	-		150	
Minimum Hold Time (DI)	th	C _L =50 _P F	_		50	
Input Capacitance	c_{IN1}	Digital Input	_	5	_	
Input Capacitance	CIN2	Analog In(ON)	_	5	-	-F
Input Capacitance	CIN3	Analog In(OFF)	-	5	-	pF
Oútput Capacitance	COUT	3-State Out	_	10	_	

SWITCHING CHARACTERISTICS TEST WAVEFORM


3-STATE OUTPUT TEST CIRCUIT

SYSTEM CHARACTERISTICS ($Ta=-40 \sim 85$ °C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZR		-	±1/4	±1/2	
Full Scale Error	E _{FS}	V _{DD} =5.0V V _{REF} =5.000V	ram.	±1/4	±1/2	LSB
Nonlinearity Error	ELI	f _{cp} =400kHz	-	±1/4	-	ЦЗБ
Total Error	$^{\mathrm{E}}\mathrm{_{T}}$	Duty=50%	-	±1/4	±3/4	
Conversion Time	TC	f _{cp} =400kHz	_	32.5	34	μS

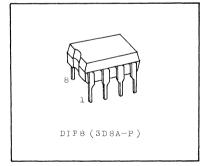
APPLICATION CIRCUIT (EXAMPLE) $Tc = \frac{13}{fcp} \pm \alpha$ $0 < \alpha < \frac{1}{2fcp}$

TC35097P

TC35097P 8 BIT 2-CH SERIAL I/O ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

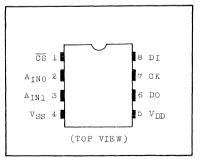
The TC35097P is a monolithic CMOS 8 bit successive approximation A/D converter with serial I/O and 2 channel multiplex inputs.

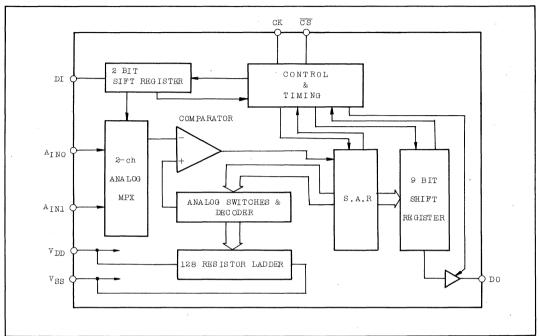

Conversion start when $\overline{\text{CS}}$ is set low and start bit ("L" level) and channel select bit are given to serial input DI.

As soon as conversion starts a start bit ("L" level) appears at serial output DO and 8 bit conversion data (MSB first) and a stop bit ("H" level) follow continuously. The device requires no external zero and full scale adjustments.

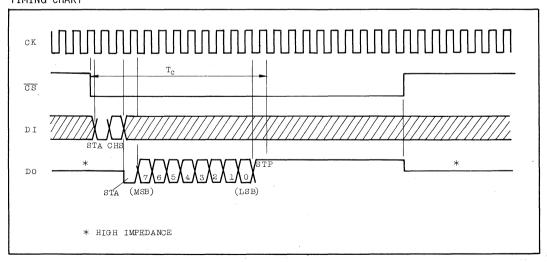
The TC35097P has features of high speed, high accuracy and microprocessor compatible I/O which make the device well suited to a broad application field such as process and machine control, automotive equipment and consumer apparatus.

FEATURES


- High accuracy $\pm \frac{3}{4}$ LSB MAX
- High speed conversion 30 μ sec MAX @f_cp=400KHz
- Single power supply 5V±10%
- Low power consumption 17.5mW MAX @T_a=25°C
- · Serial I/0
- · 2 channel analog multiplex input
- · Easy interface to all microprocessors
- · 3-state output
- · Zero or full scale adjustment free


ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Sunnly Voltage Range	v_{DD}	V _{SS} -0.5∿V _{SS} +7	V
DC Input Voltage	VIN	V _{SS} -0.5∿V _{DD} +0.5	V
DC Output Voltage	VOUT	V _{SS} -0.5∿V _{DD} +0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	mW
Storage Temperature	Tstg	-65 ∿150	°C
Lead Temperature 10sec.	$_{ m T_L}$	300	°C


PIN ASSIGNMENT

BLOCK DIAGRAM

TIMING CHART

PIN & FUNCTION

PIN NO.	SYMBOL	NAME & FUNCTION	PIN NO.	SYMBOL	. NAME & FUNCTION
1	CS	[CHIP SELECT] At the falling edge of $\overline{\text{CS}}$, the device is set stand-by for conversion. When $\overline{\text{CS}}$ is "H" the device is reset and all outputs become high impedance.	5	v _{DD}	[POWER SUPPLY] VDD is connected internally to 128 resistor ladder as a reference voltage 5V ± 10%
2	A _{INO}	[ANALOG INPUT] $A_{INO} \text{ or } A_{IN1} \text{ is selected according to the channel select bit applied on DI input. Full range of input signal is to be from } V_{SS} \text{ to } V_{DD}.$	6	DO	[DATA OUTPUT] A start bit ("L" level), 8 bit conversion data (MSB first) and a stop bit ("H" level) are sent out in series.
3	A _{IN1}	ON DI Data Channel CHS A _{INO} L A _{IN1} H	7	CK	[CLOCK INPUT] Basic system clock Duty cycle is to be 50%.
4	V _{SS}	[GROUND] $V_{SS} \ \ \text{is connected internally to} \\ 128 \ \ \text{resistor ladder as an} \\ \ \ \text{analog ground.}$	8	DI	For starting conversion, a start bit ("L" level) and channel select bit (CHS) are to be applied.

SYSTEM CHARACTERISTICS ($Ta=-40 \sim 85$ °C)

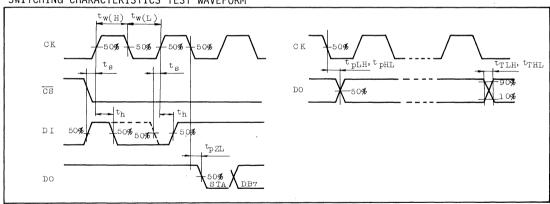
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero Point Error	EZR		_	±1/4	±1/2	
Full Scale Error	e Error $E_{\rm FS}$ $V_{ m DD}$ =5.000V -		±1/4	±1/2	LSB	
Nonlinearity Error	ELI	f _{cp} =400kHz	_	±1/4	-	Lob
Total Error	E_{T}	Duty=50%	_	±1/4	±3/4	
Conversion Time	TC	f _{cp} =400kHz		30	31.5	μS

$$Tc = \frac{12}{fcp} \pm \alpha \qquad 0 < \alpha < \frac{1}{2fcp}$$

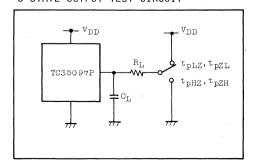
TC35097P

RECOMMENDED OPERATING CONDITIONS ($V_{SS}=0V$)

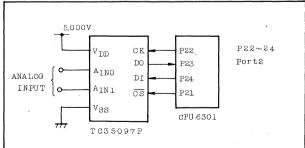
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$		4.5	5.0	5.5	V
Input Voltage	VIN		0	-	$v_{ m DD}$	V
Clock Frequency	f _{cp}	V _{DD} =5V±10%			400	kHz
Clock Pulse Width	t _{w(H)}	V _{DD} =5V±10%	0.63	1.25	_	μS
Operating Temperature	Topr		-40	-	+85	°C


DC ELECTRICAL CHARACTERISTICS (v_{DD} =5 $v \pm 10\%$, v_{ss} =0v)

DADAMEMED	SYMBOL	TEST CONDITION		25°C		-40 ∿85°C		UNIT
PARAMETER	STRIBUL TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	v _{OH}	$ I_{ m OUT} $ < 1 μ A $V_{ m IN}$ = $V_{ m SS}$, $V_{ m DD}$	v _{DD} - 0.05	V _{DD}	-	V _{DD} - 0.05	-	V
Low Level Output Voltage	v_{OL}	$ I_{\mathrm{OUT}} < 1\mu\mathrm{A}$ $V_{\mathrm{IN}} = V_{\mathrm{SS}}$, V_{DD}	-	0.00	0.05	_	0.05	V
High Level Output Current	I _{OH}	$V_{\mathrm{OH}} = V_{\mathrm{DD}} - 0.4 \mathrm{V}$ $V_{\mathrm{IN}} = V_{\mathrm{SS}}, V_{\mathrm{DD}}$	-0.44	-	_	-0.36	-	mA
Low Level Output Current	I_{OL}	$v_{\rm OL}$ =0.4 $v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$	2.0	-	_	1.6	-	mA
High Level Input Voltage	v_{IH}	$ I_{OUT} < 1\mu A$ $V_{OUT} = 0.5V$, $V_{DD} - 0.5V$	0.7 ×V _{DD}	_	- -	0.7 ×V _{DD}	-	V
Low Level Input Voltage	v_{IL}	I _{OUT} <1μΑ V _{OUT} =0.5V, V _{DD} -0.5V		-	0.3 ×V _{DD}	_	0.3 ×V _{DD}	V
3-State Output Disable Current	${ m I}_{ m DL}$	V _{OH} =V _{DD} or V _{OL} =0.0V		_	±0.5	_	±1	μA
Digital Input Current	${ m I}_{ m IH}$	V _{IH} =V _{DD} or V _{IL} =0.0V		_	±0.3	_	±1	μА
ON Channel Input Current	I _{ON}	V _{IH} =V _{REF} or V _{IL} =0.0V f _{cp} =400kHz	-	. -	±2	_	±5	μ A
OFF Channel Input Current	$I_{ m OFF}$	V _{IH} =V _{DD} or V _{IL} =0.0V	_	_	±0.2		±1	μA
Operating Current	IDD .	f _{cp} =400kHz	-	_	3.9	_	4.3	mA


SWITCHING CHARACTERISTICS (v_{DD} =5 $v\pm10\%$, v_{SS} =0v, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	${ t t_{ m TLH}} { t_{ m THL}}$	C _L =50 _p F	_		100	
Propagation Delay Time (CK-Data)	tpLH tpHL	C _L =50 _p F	_		250	
3-State Output Enable Time (CK-Data)	tpZL	C _{I.} =50pF	-		200	nS
3-State Output Disable Time (CS-Data)	tpHZ tpLZ	$R_L=1$ k Ω	-		200	115
Minimum Pulse Width (CS)	t _w (H)	$C_{L}=50pF$	_		100	
Minimum Set-up Time (CS, DI)	t _s	C _L =50 _p F	_		150	
Minimum Hold Time (DI)	th	$C_{\rm L}$ =50pF	_		50	
Input Capacitance	CINL	Digital Input	-	5	_	
Input Capacitance	$c_{ ext{IN2}}$	Analog In (ON)	_	5	.	pF
Input Capacitance	c _{IN3}	Analog In (OFF)	-	5	-	
Output Capacitance	$c_{ m OUT}$	3-State Out	-	10	-	


SWITCHING CHARACTERISTICS TEST WAVEFORM

3-STATE OUTPUT TEST CIRCUIT

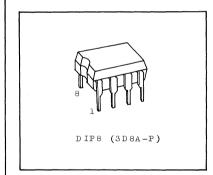
APPLICATION CIRCUIT (EXAMPLE)

TC35098P 8 BIT SERIAL I/O ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

The TC35098P is a monolithic CMOS 8 bit successive approximation A/D converter with serial I/O.

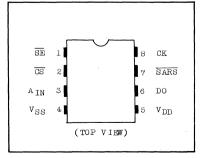
When $\overline{\text{CS}}$ is set low $\overline{\text{SARS}}$ goes to high level from high impedance state. And at the next falling edge of clock $\overline{\text{SARS}}$ goes to low level and conversion starts.

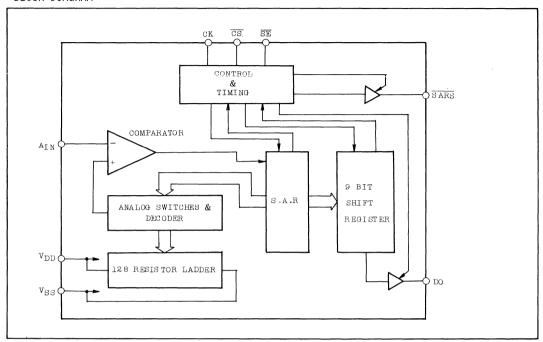

In case that $\overline{\texttt{SE}}$ is high, as soon as the conversion starts a start bit ("L" level) appears at serial output DO and 8 bit conversion data (MSB first) and a stop bit ("H" level) follow continuously.

In case that $\overline{\text{SE}}$ is low, after conversion is completed a start bit, 8 bit conversion data (LSB first) and a stop bit appear at DO.

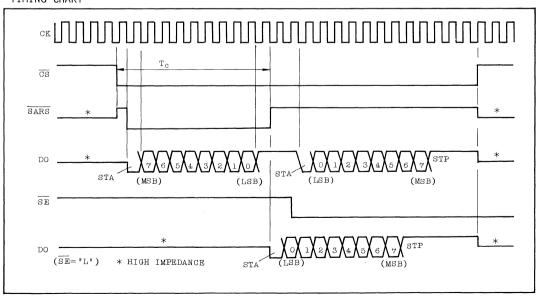
The TC35098P has features of high speed, high accuracy and microprocessor compatible I/O which make the device well suited to a broad application field such as process and machine control, automotive equipment and consumer apparatus.

FEATURES


- High accuracy $\pm \frac{3}{4}$ LSB MAX
- High speed conversion 27.5 μ sec MAX @f_{cp}=400kHz
- Single Power supply 5V±10%
- Low Power consumption 17.5mW MAX @Ta=25°C
- · Serial I/O
- · Easy interface to all microprocessors
- · 3-state output
- · Zero or full scale adjustment free


ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	v_{DD}	V _{SS} -0.5∿V _{SS} +7	V
DC Input Voltage	v_{IN}	Vss-0.5∿VDD+0.5	V
DC Output Voltage	VOUT	Vss-0.5∿VDD+0.5	V
DC Input Current	IIN	±10	mA
Power Dissipation	P_{D}	300	mW
Storage Temperature	T _{stg}	-65 ∿ 150	°C
Lead Temperature 10sec.	$ ext{T}_{ ext{L}}$	300	°C


PIN ASSIGNMENT

BLOCK DIAGRAM

TIMING CHART

TC35098P

PIN & FUNCTION

PIN NO.	SYMBOL	NAME & FUNCTION	PIN NO.	SYMBOL	NAME & FUNCTION
1	SE	[SELECT] SE determines the order of output data. SE="L" LSB first SE="H" MSB first	5	v _{DD}	[POWER SUPPLY] VDD is connected internally to 128 resistor ladder as a reference voltage. 5V ± 10%
2		[CHIP SELECT] When CS is set low conversion starts. When CS is set high the device	6	DO	[DATA OUTPUT] Output data is sent out in series.
2		is reset and all outputs become high impedance.			[SAR STATUS] When $\overline{\text{CS}}$ is set low $\overline{\text{SARS}}$ goes to
3	A _{IN}	[ANALOG INPUT]	7	SARS	high level from high impedance state. And at the next falling edge of clock SARS goes to low level and conversion start. When conversion is completed SARS goes to high level.
		[GROUND]			
4	v_{SS}	${ m V}_{ m SS}$ is connected internally to 128 resistor ladder as an analog ground.	8	CK	[CLOCK INPUT] Basic system clock. Duty cycle is to be 50%.

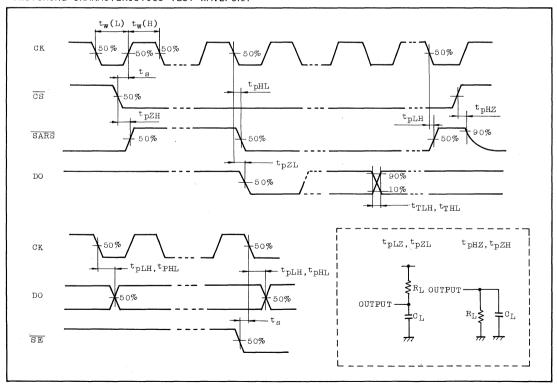
SYSTEM CHARACTERISTICS (Ta=-40 \sim 85°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Zero Point Error	EZR		-	±1/4	±1/2		
Full Scale Error	E _{FS}	V _{DD} =5.000V f _{cp} =400kHz Duty=50%	-	±1/4	±1/2	I CD	
Nonlinearity Error	ELI		_	±1/4	-	LSB	
Total Error	ET		_	±1/4	±3/4		
Conversion Time	$T_{\mathbf{C}}$	f _{cp} =400kHz		27.5	29	μS	

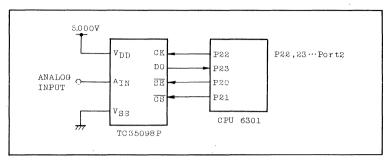
$$Tc = \frac{11}{fcp} \pm \alpha \qquad 0 < \alpha < \frac{1}{2fcp}$$

RECOMMENDED OPERATING CONDITIONS $(v_{SS}=ov)$

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{DD}		4.5	5.0	5.5	V
Input Voltage	VIN		0	_	v_{DD}	V
Clock Frequency	fcp	V _{DD} =5V±10%			400	kHz
Clock Pulse Width	t _W (H) t _W (L)	V _{DD} =5V±10%	0.63	1.25	÷	μS
Operating Temperature	Topr		-40	_	+85	°C

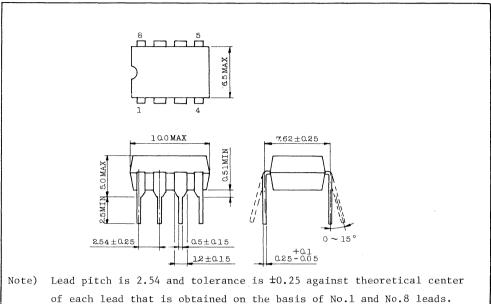

DC ELECTRICAL CHARACTERISTICS (V $_{DD} = 5 \text{V} \pm 10 \text{\%}$, V $_{SS} = 0 \text{V}$)

PARAMETER	SYMBOL	TEST CONDITION		25°C		-40 ∿	UNIT	
FARATETER	SIMBUL	TEST CONDITION	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
High Level Output Voltage	v _{OH}	I _{OUT} <1µA V _{IN} =V _{SS} ,V _{DD}	V _{DD} - 0.05	v_{DD}	_	V _{DD} - 0.05	-	V
Low Level Output Voltage	$v_{ m OL}$	I _{OUT} <1μΑ V _{IN} =V _{SS} ,V _{DD}	-	0.00	0.05	_	0.05	V
High Level Output Current	I _{OH}	$v_{OH}=v_{DD}-0.4v$ $v_{IN}=v_{SS},v_{DD}$	-0.44	_	_	-0.36	-	mA
Low Level Output Current	I _{OL}	$v_{\rm OL}$ =0.4 v $v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$	2.0	-	-	1.6	-	mA
High Level Input Voltage	v_{1H}	I _{OUT} <1 _µ A V _{OUT} =0.5V,V _{DD} -0.5V	0.7 ×V _{DD}	_	_	0.7 ×V _{DD}	_	V
Low Level Input Voltage	v_{IL}	I _{OUT} <1μΑ V _{OUT} =0.5V,V _{DD} -0.5V		_	0.3 ×V _{DD}	-	0.3 × V _{DD}	V
3-State Output Disable Current	${ m I}_{ m DL}$	$V_{ m OH} = V_{ m DD}$ or $V_{ m OL} = 0.0 { m V}$		_	±0.5	_	±1	μА
Digital Input Current	IIL	$ m V_{IH}=V_{DD}$ or $ m V_{IL}=0.0V$		_	±0.3	_	±1	μА
Analog Input Current	I _{AIN}	V _{IH} =V _{REF} or V _{IL} =0.0V f _{cp} =400kHz	_	_	±2	_	±5	μА
Operating Current	$I_{ m DD}$	f _{cp} =400kHz	_	_	3.9	_	4.3	mA

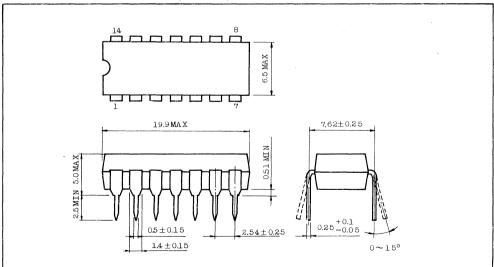

SWITCHING CHARACTERISTICS ($V_{DD}=5V\pm10\%$, $V_{SS}=0V$, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}	C _L =50pF	-		100	
Propagation Delay Time (CK-Data)	tpLH tpHL	$c_{ m L}$ =50 $_{ m pF}$	_		250	
Propagation Delay Time (CK-SARS)	tpLH tpHL	$c_{ m L}$ =50pF	-		250	nS
3-State Output Enable Time (CS-SARS, SARS-Data)	tpZH tpZL	C _{1.} =50pF	_		200	
3 <u>-State</u> Output Disable Time (CS-SARS, Data)	tpHZ tpLZ	$R_{L}^{2}=1k$	_		200	
Minimum Pulse Width (CS)	t _{w(H)}	C _L =50pF	-		100	
Minimum Set-up Time (CS, SE)	ts	C_{L} =50pF	-		150	
Input Capacitance	c_{IN1}	Digital Input	-	5	-	
Input Capacitance	C _{IN2}	Analog Input	_	5	_	pF
Output Capacitance	C _{OUT}	3-State Out	_	10	-	

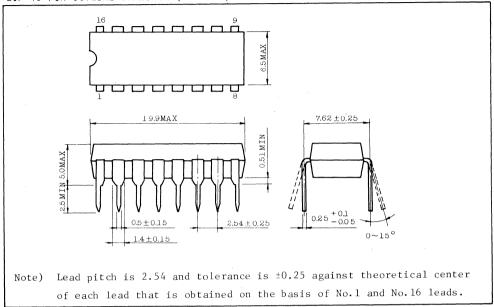
SWITCHING CHARACTERISTICS TEST WAVEFORM

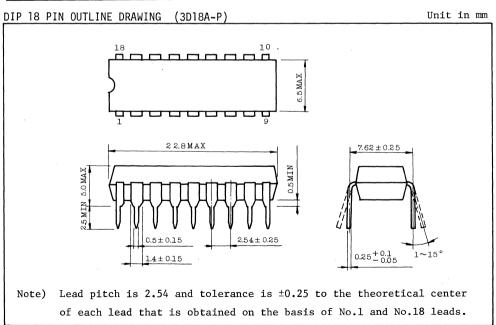


APPLICATION CIRCUIT

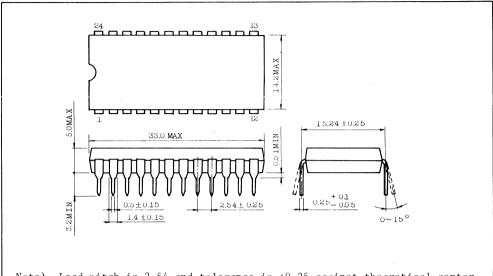


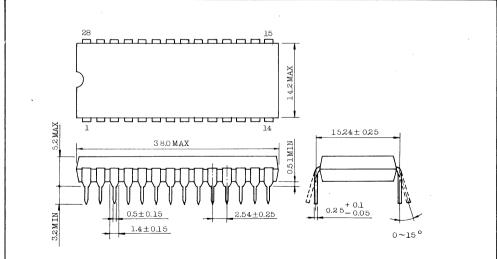
DIMENSIONAL OUTLINES

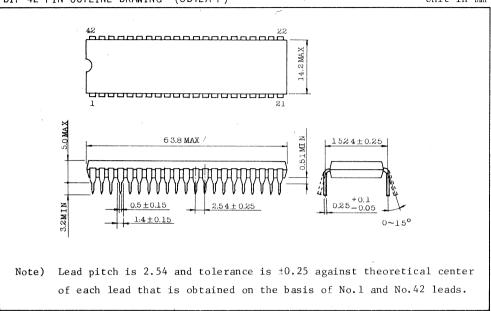


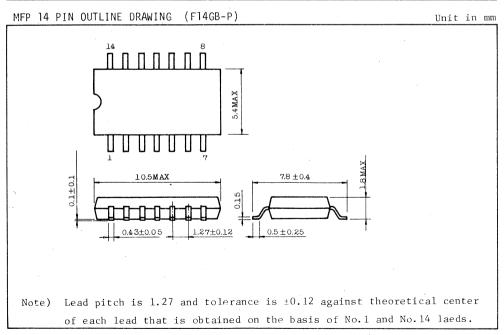

DIP-14 PIN OUTLINE DRAWING (3D14A-P)

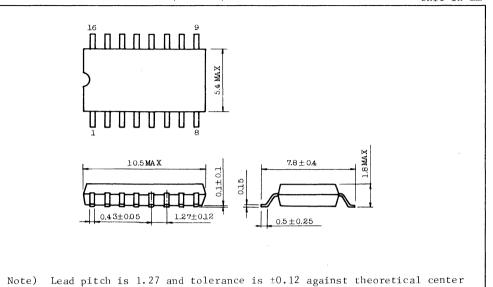
Unit in mm


Note) Lead pitch is 2.54 and tolerance is ± 0.25 against theoretical center of each lead that is obtained on the basis of No.1 and No.14 leads.




Note) Lead pitch is 2.54 and tolerance is *0.25 against theoretical center of each lead that is obtained on the basis of No.1 and No.24 leads.


DIP 28-PIN OUTLINE DRAWING (6D28A-P)


Unit in mm

Note) Lead pitch is 2.54 and tolerance is ± 0.25 against theoretical center of each lead that is obtained on the basis of No.1 and No.28 leads.

of each lead that is obtained on the basis of No.1 and No.16 leads.

RELIABILITY REPORT

1. Test Results

A. Life Test Results

Table 1 shows the life test results of B Series ${\rm C^2MOS}$ IC. B Series is classified into SSI Family (less than 100 transistors) and MSI Family (More than transistors).

Table 1 Life Test Results of C²MOS Family

·	Table Life lest hesuits of 6 Mos Family						
TYPE	TEST ITEMS	ST LIEMS ICONDITION I	SAMPLE SIZE	1	EQUIVALENT DEVICE HOURS	NUMBER OF FAILURES	
				(hrs)	@ 60°C Ea=0.6eV	DEGRADATION	CATASTROPHIC
	Steady State Operation	Ta=85°C V _{DD} =18V	4740	1000 to 5000	22.7 ×10 ⁶	2*	0
(SSI Family)	High Temp. DC Bias	Ta=125°C V _{DD} =18V	4140	1000	125.7 ×106	1*	0
C ² MOS	High Temp. Storage	Ta=150°C	2780	to 5000	_	2*	0
B Series	High Temp. High Humidity Storage	Ta=60°C RH=90%	1080	1000 to 2000	_	1*	0
	High Temp. High Humidity	Ta=85°C RH=85%	730	1000	_	0	0
	Bias	V _{DD} =18V	210	5000	_	1*	1**
	Steady State Operation	Ta=85°C V _{DD} =18V	3730	1000 to 5000	16.6 ×106	1*	0
I Family)	High Temp. DC Bias	Ta=125°C V _{DD} =18V	2580	1000	78.3 ×106	0	0
C ² NOS (MSI	High Temp. Storage	Ta=150°C	2090	1000 to 5000	_	2*	0
B Series	High Temp. High Hymidity Storage	Ta=60°C RH=90%	1080	1000 to 2000	_	0	0
	High Temp. High Humidity Bias	Ta=85°C RH=85% V _{DD} =18V	370	1000	_ 3	0	0

Note: * Leakage Failure ** Al Corrosion

B. Environmental Test Results

Table 2 to 4 shows the results of thermal environmental, mechanical and other tests, classfied based upon package types.

Table 2 Thermal Environmental Test Results

TEST ITEM	TEST CONDITION	DIP14	DIP16
Soldering Heat	Tsol=260°C 10 sec. once	0/870	0/745
Temperature Cycle	-65°C ~ 25°C ~ 150°C ~ 25°C (30') (5') (30') (5') ————————————————————————————————————	0/870	0/745
Thermal Shock	100°C - 0°C (5') (5') — 1 cycle — 30 cycles	0/870	0/745
Moisture Resistance	MIL - STD - 883B Method 1004 10 cycles	0/870	0/745

Tests performed on the same samples

Table 3 Mechanical Test Results

TEST ITEM	TEST CONDITION	DIP14	DIP16.
Vibration Fatigue	60±20Hz, 20G 3 orientations 32 hrs.	0/270	0/240
Variable Vibration Freq	100~2000~100Hz, 20G 4 min. 3 orientations, 4 times each	0/270	0/240
Mechanical Shock	1500G, 0.5ms 4 orientations, 3 times each	0/270	0/240
Constant Acceleration	20000G, 6 orientations 1 min. each	0/270	0/240

Table 4 Other Test Results

TEST ITEM	TEST CONDITION	DIP14	DIP16
Solderability	Tso1=230°C 5 sec. once	0/430	0/270
Lead Integrity	Weight=250g Bending 3 times 0°~90°~0°	0/320	0/200
Salt Mist	5% salt atmosphere 35°C, 24 hrs.	0/270	0/150
Pressure Cooker	2 atm, 121°C, 100% 100 hrs.	0/1660	0/1360

2. Failure Rates Estimation

It is well known from various data that life time of not only $C^2 MOS$ but also all semiconductor devices are greatly affected by temperature. In general, the relation between failure rates and temperature of semiconductor devices is expressed in ARRHENUS equation.

 $F=A \cdot \exp(-Ea/kT)$

Whereas

F : Failure rate (Fit)

T : Temperature (°K)

K : BOLTZMANN constant $8.62 \times 10^{-5} (eV/^{\circ}K)$

Ea : Activation energy (eV)

A : Constant

Failure rates increases as temperature rises.

For B Series C^2MOS , an activation energy(Ea) of 0.6eV has been obtained from the results of life test which are shown in table 1. Table 5 indicates the estimated failure rates at ambient temperature of 60°C calculated by the ARRHENUS equation based on this activation energy.

Table 5 Estimated Failure Rates of C²MOS Family

TYPE	SAMPLE SIZE	EQUIVALENT DEVICE HOURS @ 60°C, Ea=0.6eV	NUMBER OF FAILURES	FAILURI @ 60°0	
B-Series C ² MOS	15190	243.3 ×106	4	21.5 (18V)	3.2 (5V)

* 60% Confidence level

3. Voltage Acceleration of Failure Rate

One of the features of B Series ${\rm C^2MOS}$ IC is the wide operating voltage range of 3 to 18V.

For C²MOS IC, the correlation of the failure rate and supply voltage VDD, $\lambda \sim V_{\rm DD} 1.5$ has been obtained.

The failure rates at different supply voltages are estimated by applying the failure rates to the equation mentioned above. The rates are obtained from Table 5 at ambient temperature of 60° C and maximum supply voltage. Figure 1 shows the supply voltage dependence of the failure rates.

According to the above mentioned items, following failure rates can be estimated, when the ${\rm C^2MOS}$ IC operates at a supply voltage of 5V and the ambient temperature is 60°C.

B Series

3.2 Fit

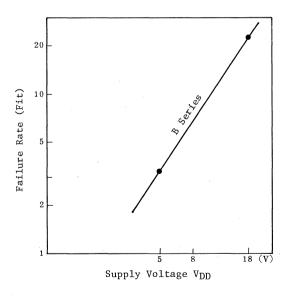


Fig. 1 Voltage Acceleration of Failure Rate

4. Moisture Resistance of Plastic Packaged IC

A. Performance In Moisture Resistance Test

The Moisture resistance has a great influence on the life time of plastic packaged IC. Alcorrosion, especially, induces an open failure mode in electrical characteristics which becomes a catastrophic failure mode. The life time of the plastic packaged IC has been extended by reducing contamination in sealed resin that may cause the moisture resistance failure, and by controlling phosphorous concentration in PSC used as passivation film.

The failure rates within a certain period obtained by plotting the C^2MOS data to WELBULL are shown in Figures 2 and 3. The data are derived from results of PCT (121°C, 2 atm) and THB (85°C/85%, 15V) which are typical moisture resistance tests.

As shown in the figure, the C^2MOS IC has a life time of more than 7000 hours at THB test, this became possible because of progress such as the improvement of resin being made.

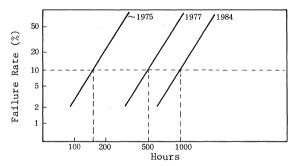


Fig. 2 Moisture Resistance (121°C, 2 atm)

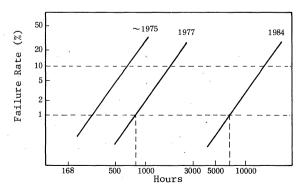


Fig. 3 Moisture Resistance (85°C/85% with Bias)

B. Moisture Resistance Acceleration Model

Several acceleration models, which are used in estimating the life time of the plastic packaged IC by applying the moisture resistance acceleration test data, have been reported. The followings are examples of the life time estimated by using the ARRHENUS model that is relatively close to the acceleration test data obtained by using Toshiba plastic packaged IC.

The ARRHENUS acceleration model is widely used in estimating the life time based upon the high temperature operating test data. It is assumed that the same type of moisture acceleration can be applied to moisture resistance where relative humidity is constant. Thus, the life time is expressed in the following equation.

 $\mu = A \cdot \exp(Ea/kT)$

Whereas

A : Constant

Ea: Activation energy

k : BOLTZMANN constant

T : Absolute temperature

Ea of 0.8eV has been obtained by Toshiba based upon data of the acceleration test performed at constant 85% RH. THB (85°C/85% RH) data of each year are applied to the acceleration curve which is shown in Figure 4. The life time of current C²MOS IC is at least 1,000,000 hours, or more than 100 years, even in the relatively high humidity environment of 25°C and 85% RH. Therefore, C²MOS is sufficient to be used for equipments which require high reliability.

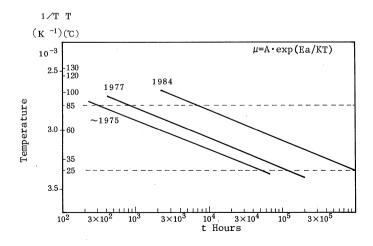


Fig. 4 Life Time Estimation of Humidity Test

5. Other Test Results

A. Electrostatic Discharge (ESD)

It is said that the insulation strength of silicon-diode films of IC and transistors is approximately 10V/cm. In case of gate oxide films of MOS IC, it will be destroyed by the even low voltage of about 100V since it is a very thin gate oxide film of about $0.1\mu m$.

To prevent the destruction caused by the exceeding voltage, a protective diode is inserted to all input terminals of C^2MOS IC. However, there is a limit the in the capacity of the protective diode, and the device will be destroyed when the voltage applied to the device exceeds the limit.

Table 6 shows the static electric sensitivity test data of TC4011BP that is one of our typical gates of $\mbox{C}^2\mbox{MOS}$ iC.

Table 6 Static Electric Sensitivity Test Results of TC4011BP

APPLIED CONDITION	(c=200pF, R=0 Ω)
Input Plus Voltage	350V
Input Minus Voltage	300V
Output Plus Voltage	>1kV
Output Minus Voltage	>1kV .

T C DUT

Fig. 5 Test Circuit of ESD

B. Latch-Up

In general, for the CMOS type IC, the phenomenon called latch-up may induce the degradation or destruction of a device, except for the types with SOS structure or oxide film isolating structure.

The latch-up does not occur in the normal operation within the maximum ratings. However when a voltage lower than VSS(GND) or higher than VDD is applied the input or output terminals, or when a device brak down with exceeding VDD, the latch-up can occur.

Therefore, in operating the device, it is essential to take care not to apply a higher voltage than pointed out in the maximum ratings. The latch-up trigger current of C^2MOS IC, TC4011BP, is shown in Table 7.

INJECTION CONDITION	LATCH-UP
Input Plus Direction	>150mA
Input Minus Direction	>-30mA
Output Plus Direction	>150mA
Output Minus Direction	>-150mA

Table 7 Latch-Up Test Results of TC4011BP

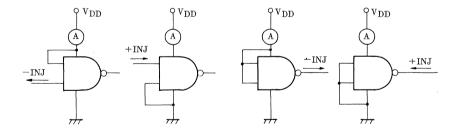


Fig. 6 Test Circuit of Latch-Up

- Note) 1. The measurement of a negative injection mode by applying more than-30mA is not preformed since the mode is limited by resistor of an input protective circuit.
 - 2. The measurement of positive side of input and negative pins by applying more than 150mA is not performed with same reason as Note 1.

8. Field Performance

 ${
m C^2MOS}$ IC has been used for various purposes since it has been put on the market. Table 8 shows the field data of major examples. As this data indicates, the actual field performance is expected in a range of a few and ten Fit.

Table 8 Field Performance Data of C²MOS IC

SYSTEM	APPLICATION CONDITION	Q'ty (pcs)	OPERATION TIME	NUMBER OF FAILURES (pcs)	FAILURE RATE FIT
Process I/O System	Room air	20,000	Since Feb. 1974 8 hrs/day	1	1.6(3.4*)
Industrial Meter System	15 to 40°C	21,000	Since Oct. 1974 10 hrs/day	0	0(1.6*)
Highway Tunnel ITV System	up to 30°C up to 85% RH	25,000	Since Aug. 1975 24 hrs/day	0	0(0.5*)
Computer Terminal Unit On-Line Data Terminal Printer Marked Card Reader	5 to 37°C (Tested at 0 to 40°C)	3,500 (LSI)	Since Feb. 1983 10 hrs/day	2	14.2 (22*)

^{*} Failure Rate Estimation 60% confidence level.

9. Test Results of B Series Mini-Flat Package C²MOS; TC4000B/TC4500B Series. (Surface mount devcice)

Mini-Flat devices have same dies as dual-inline devices. It is considerable that life test results of mini-flat devices are equivalent to that of dual-inline devices except humidity and mechanical items.

In this chapter, it is described only for the life test results related to humidity and mechanical items.

Please refer to the results of dual-inline devices for the other life test.

(1) Humidity Storage

TEST	TEST CONDITION	SAMPLE	DURATION	NUMBER OF FAILURETS	
1551	TEST CONDITION	SIZE	(H)	DEGRADATION CATASTROPHI	
Humidity Storage	Ta=60°C, RH=90%	2420	1000	0	0

(2) High Temp. Humidity Bias

(2) night tellip. n	dilitatey Dias				
TEST	TEST CONDITION	SAMPLE DURATION		NUMBER OF	FAILURETS
11101	TEST CONDITION SIZE ((H)	DEGRADATION	CATASTROPHIC
High Temp. Humidity Bias	Ta=85°C, RH=85% V _{DD} =18V	1890	1000	1*	0

^{*} Leakage failure

(3) Pressure Cooker

TEST	TEST CONDITION	FP-14pins TYPE	FP-16pins TYPE
Pressure Cooker	2 atm, Ta=121°C, RH=100%, 100hrs	0/840 ,	0/660

- (4) Complex Test (Pressure cooker test followed by solder dipping)
 - 1 Precondition
 - ↓ 85°C, 85%, 20Hrs storage
 - ② Solder dipping (Completely inserted to solder tab.)
 - Solder Temperature 260°C, Solder Dipping Time 10sec.
 - ③ Pressure Cooker Test

TEST CONDITION	FP-14pins TYPE	FP-16pins TYPE
2 atm, Ta=121°C, RH=100%, 100hrs	0/350	0/300

(5) Others

TEST	TEST CONDITION	FP-14pins TYPE	FP-15pins TYPE
Lead Bend	Weight=100g 0°~90°~0°, 3 times	0/80	0/50
Lead Stretch	Weight=250g Maintenance during 30 time	0/80	0/50
Temperature Cycling	-65°C ~ 25°C ~ 150°C ~ 25°C (30') (5') (30') (5') ————————————————————————————————————	0/140	0/100

CROSS REFERENCE TABLE

TOSHIBA 4000 SERIES LOGIC FAMILY CROSS REFERENCE

TOSHIBA	RCA	MOTOROLA	SIGNETICS	NATIONAL SEMICONDUCTOR	SGS
ТС400ВР	CD4000BE	MC14000UBCP	HEF4000BP	CD4000CN	HCF4000BE
TC4001BP	CD4001BE	MC14001BCP	HEF4001BP	CD4001BCN	HCF4001BE
TC4001UBP	CD4001UBE	MC14001UBCP	HEF4001UBP	CD4001CN	
TC4002BP	CD4002BE	MC14002BCP	HEF4002BP	CD4002BCN	HCF4002BE
тс4006вр	CD4006BE	MC14006BCP	HEF4006BP	CD4006BCN	HCF4006BE
TC4007UBP	CD4007UBE	MC14007UBCP	HEF4007UBP	CD4007CN	HCF4007UBE
тс4008вР	CD4008BE	MC14008BCP	HEF4008BP	CD4008BCN	HCF4008BE
TC4009UBP	CD4009BE			CD4009CN	
TC4010BP	CD4010BE				
TC4011BP	CD4011BE	MC14011BCP	HEF4011BP	CD4011BCN	HCF4011BE
TC4011UBP	CD4011UBE	MC14011UBCP	HEF4011UBP	CD4011CN	
TC4012BP	CD4012BE	MC14011BCP	HEF4012BP	CD4012BCN	HCF4012BE
TC4013BP	CD4013BE	MC14013BCP	HEF4013BP	CD4013BCN	HCF4013BE
TC4014BP	CD4014BE	MC14014BCP	HEF4014BP	CD4014BCN	HCF4014BE
TC4015BP	CD4015BE	MC14015BCP	HEF4015BP	CD4015BCN	HCF4015BE
TC4016BP	CD4016BE	MC14016BCP	HEF4016BP	CD4016BCN	HCF4016BE
TC4017BP	CD4017BE	MC14017BCP	HEF4017BP	CD4017BCN	HCF4017BE
TC4018BP	CD4018BE	MC14018BCP	HEF4018BP	CD4018BCN	NCF4018BE
TC4019BP	CD4019BE		не́ F 4019ВР	CD4019BCN	HCF4019BE
TC4020BP	CD4020BE	MC14020BCP	HEF4020BP	CD4020BCN	HCF4020BE
TC4021BP	CD4021BE	MC14021BCP	HEF4021BP	CD4021BCN	HCF4021BE
TC4022BP	CD4022BE	MC14022BCP	HEF4022BP	CD4022BCN	HCF4022BE
TC4023BP	CD4023BE	MC14023BCP	HEF4023BP	CD4023BCN	HCF4023BE
TC4024BP	CD4024BE	MC14024BCP	HEF4024BP	CD4024BCN	HCF4024BE
TC4025BP	CD4025BE	MC14025BCP	HEF4025BP	CD4205BCN	HCF4025BE
TC4027BP	CD4027BE	MC14027BCP	HEF4027BP	CDd027BCN	HCF4027BE
TC4028BP	CD4028BE	MC14028BCP	HEF4028BP	CD4028BCN	HCF4028BE
TC4029BP	CD4029BE	MC14029BCP	HEF4029BP	CD4029BCN	нсғ4029ве
TC4030BP	CD4030BE		HEF4030BP		нсғ4030ве
TC4032BP	CD4032BE	MC4032BCP			HCF4032BE
TC4034BP	CD4034BE	MC14034BCP		CD4034BCN	нсғ4034ве
TC4035BP	CD4035BE	MC14035BCP	HEF4035BP	CD4035BCN	нсғ4035ве
TC4036BP					
TC4038BP	CD4038BE	MC14038BCP			HCF4038BE
TC4039BP					
TC4040BP	CD4040BE	MC14040BCP	HEF4040BP	CD4040BCN	HCF4040BE

TOSHIBA 4000 SERIES LOGIC FAMILY CROSS REFERENCE (Continued)

TOSHIBA	RCA	MOTOROLA	SIGNETICS	NATIONAL SEMICONDUCTOR	SGS
TC4042BP	CD4042BE	MC14042BCP	HEF4042BP	CD4042BCN	HCF 4042BE
TC4043BP	CD4043BE	MC14043BCP	HEF4043BP	CD4043BCN	HCF4043BE
TC4044BP	CD4044BE	MC14044BCP	HEF4044BP	CD4044BCN	HCF4044BE
TC4047BP	CD4047BE		HEF4047BP	CD4047BCN	HCF4047BE
TC4049BP	CD4049UBE	MC14049UBCP	HEF4049UBP	CD4049CN	HCF4049BE
TC4050BP	CD4050BE	MC14050BCP	неғ4050вр	CD4050BCN	HCF4050BE
TC4051BP	CD4051BE	MC14051BCP	HEF4051BP	CD4051BCN	HCF4051BE
TC4052BP	CD4052BE	MC14052BCP	HEF4052BP	CD4052BCN	HCF4052BE
TC4053BP	CD4053BE	MC14053BCP	HEF4053BP	CD4053BCN	HCF4053BE
TC4054BP	CD4054BE				нсғ4054ве
TC4055BP	CD4055BE				HCF4055BE
TC4056BP	CD4056BE				нсғ4056ве
TC4063BP	CD4063BE				HCF4063BE
TC4066BP	CD4066BE	MC14066BCP	HEF4066BP	CD4066BCN	HCF4066BE
TC4068BP	CD4068BE	MC14068BCP	HEF4068BP		HCF4068BE
TC4069UBP	CD4069UBE	MC14069UBCP	HEF4069UBP	CD4069CN	HCF4069UBE
TC4071BP	CD4071BE	MC14071BCP	HEF4071BP	CD4071BCN	HCF4071BE
TC4072BP	CD4072BE	MC14072BCP	HEF4072BP	CD4072BCN	HCF4072BE
TC4073BP	CD4073BE	MC14073BCP	HEF4073BP	CD4073BCN	HCF4073BE
TC4075BP	CD4075BE	MC14075BCP	HEF4075BP	CD4075BCN	HCF4075BE
TC4076BP	CD4076BE	MC14076BCP	HEF4076BP	CD4076BCN	HCF4076BE
TC4077BP	CD4077BE	MC14077BCP	HEF4077BP		HCF4077BE
TC4078BP	CD4078BE	MC14078BCP	HEF4078BP		HCF4078BE
TC4081BP	CD4081BE	MC14081BCO	HEF4081BP	CD4081BCN	HCF4081BE
TC4082BP	CD4082BE	MC14082BCP	HEF4082BP	CD4082BCN	HCF4082BE
TC4085BP	CD4085BE		HEF4085BP		HCF4085BE
TC4086BP	CD4086BE		HEF4086BP		нсғ4086ве
TC4093BP	CD4093BE	MC14093BCP	HEF4093BP	CD4093BCN	HCF4093BE
TC4094BP	CD4094BE	MC14094BCP	HEF4094BP	CD4094BCN	нсғ4094ве
TC4099BP	CD4099BE	MC14099BCP		CD4099BCN	НСГ4099ВЕ
TC40102BP	CD40102BE				HCF40102BE
TC40103BP	CD40103BE				HCF40103BE
TC40104BP	CD40104BE				HCF40104BE
TC40107BP	CD40107BE				HCF40107BE
TC40117BP	CD40117BE				
TC40160BP	CD40160BE	MC14160BCP	HEF40160BP	CD40160BCN	HCF40160BE
TC40161BP	CD40161BE	MC14161BCP	HEF40161BP	CD40161BCN	HCF40161BE

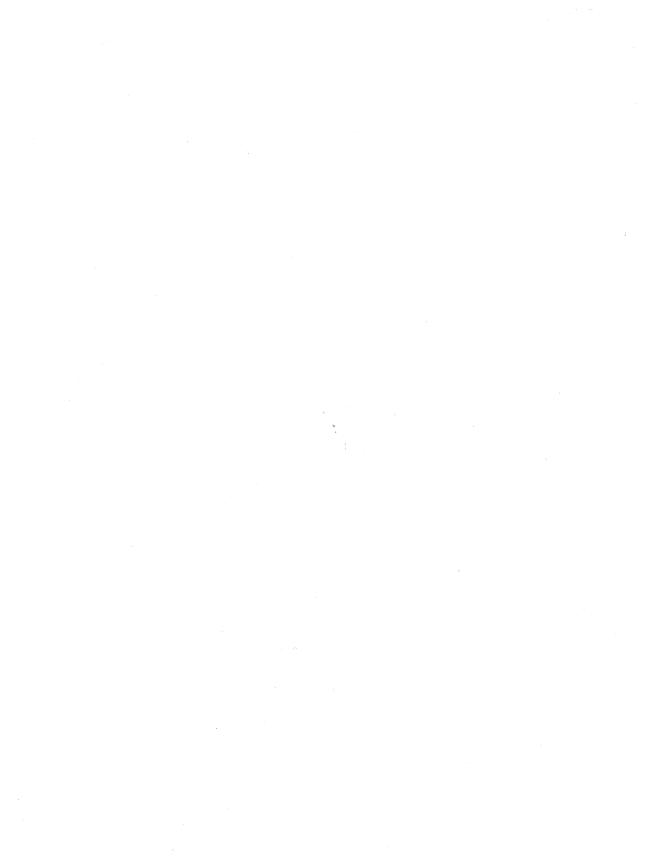
TOSHIBA 4000 SERIES LOGIC FAMILY CROSS REFERENCE (Continued)

TOSHIBA	RCA	MOTOROLA	SIGNETICS	NATIONAL SEMICONDUCTOR	SGS
TC40162BP	CD40162BE	MC14162BCP	HEF40162BP	CD40162BCN	HCF40162BE
TC40163BP	CD40163BE	MC14163BCP	HEF40163BP	CD40163BCN	HCF40163BE
TC40174BP	CD40174BE	MC14174BCP	HEF40174BP	CD40174BCN	HCF40174BE
TC40175BP	CD40175BE	MC14175BCP	HEF40175BP	CD40175BCN	
TC40192BP	CD40192BE		HEF40192BP	CD40192BCN	HCF40192BE
TC40193BP	CD40193BE		HEF40193BP	CD40193BCN	HCF40193BE
TC40194BP	CD40194BE	MC14194BCP	HEF40194BP		HCF40194BE
TC4502BP	CD4502BE	MC14502BCP	HEF4502BP		HCF4502BE
TC4503BP		MC14503BCP		CD4503BCN	
TC4508BP	CD4508BE	MC14508BCP	HEF4508BP		ECF4508BE
TC4510BP	CD4510BE	MC14510BCP	HEF4510BP	CD4510BCN	HCF4510BE
TC4511BP	CD4511BE	MC14511BCP	HEF4511BP	CD4511BCN	HCF4511BE
TC4512BP	CD4512BE	MC14512BCP	HEF4512BP	CD4512BCN	HCF4512BE
TC4514BP	CD4514BE	MC14514BCP	HEF4514BP	CD4514BCN	HCF4514BE
TC4515BP	CD4515BE	MC14515BCP	HEF4515BP	CD4515BCN	HCF4515BE
TC4516BP	CD4516BE	MC14516BCP	HEF4516BP	CD4516BCN	HCF4516BE
TC4518BP	CD4518BE	MC14518BCP	HEF4518BP	CD4518BCN	HCF4518BE
TC4519BP		MC14519BCP	HEF4519BP	CD4519BCN	
TC4520BP	CD4520BE	MC14520BCP	HEF4520BP	CD4520BCN	HCF4520BE
TC4521BP		MC14521BCP	HEF4521BP		
TC4522BP		MC14522BCP	HEF4522BP	CD4522BCN	
тс4526вР `		MC14526BCP	HEF4526BP	CD4526BCN	
TC4527BP	CD4527BE	MC14527BCP	HEF4527BP	CD4527BCN	HCF4527BE
TC4528BP	CD4528BE	MC14528BCP	HEF4528BP	CD4528BCN	
TC4530BP		MC14530BCP			
TC4531BP .		MC14531BCP	HEF4531BP		
TC4532BP	CD4532BE	MC14532BCP	HEF4532BP		HCF4532BE
TC4538BP .	CD4538BE	MC14538BCP	HEF4538BP	CD4538BCN	HCF4538BE
TC4539BP		MC14539BCP	HEF4539BP		
TC4543BP	CD4543BE	MC14543BCP	HEF4543BP	CD4543BCN	
TC4555BP	CD4555BE	MC14555BCP	HEF4555BP		HCF4555BE
TC4556BP	CD4556BE	MC14556BCP	неғ4556вР		HCF4556BE
TC4560BP		MC14560BCP			
TC4561BP		MC14561BCP			
TC4572BP		MC14572UBCP			
TC4583BP		MC14583BCP			
TC4584BP	CD40106BE	MC14584BCP		CD4584BCN	-
TC4585BP	CD4585BE	MC14585BCP	HEF4585BP		HCF4585BE

MAINTENANCE-DISCONTINUED TYPE NUMBERS

• MAINTENANCE-DISCONTINUED TYPE NUMBERS

TYPE NO.	FUNCTION	REPLACEMENT
TC4508C	DUAL 4-BIT LATCH	TC4508BP
TC5000C/P	DUAL 50/64 STAGE STATIC SHIFT REGISTER	TC5050P
TC5001C	4-DIGIT DECADE COUNTER	TC5001P
TC5004P	DUAL 500/512-BIT DYNAMIC SHIFT REGISTER	-
TC5010P	4-DIGIT UP/DOWN COUNTER WITH TIMER	(TC5053P), (TC5054P)
TC5030BP	QUAD 2-INPUT NAND GATE WITH P-CHANNEL OPEN DRAIN OUTPUT	-
TC5034P	4-BIT PRESETTABLE "N" COUNTER/DECODER/DRIVER	-
TC5042BP	BCD TO 7-SEGMENT DECODER/DRIVER	TC5002BP, TC5022BP
TC5055P	3 1/2 DIGIT DVM CIRCUIT	-
TC7410BP	TRIPLE 3-INPUT POSITIVE NAND GATE	TC4023BP
TC7420BP	DUAL 4-INPUT POSITIVE NAND GATE	TC4012BP


Note: The replacement types are approximately similar to the maintenance types in terms of the characteristics and functions, but not exact equivalent.

In case of doubt the original data sheets should be consulted before use.

TOSHIBA AMERICA, INC. U.S. OFFICES

CORPORATE OFFICE

9775 Toledo Way Irvine, California 92718 Telephone: (714) 455-2000

FAX: (714) 859-3963 Telex: 314-138

NORTH WESTERN REGION

1220 Midas Way Sunnyvale, CA 94086 (408) 737-9844 FAX: (408) 737-9905

SOUTHWEST REGION

15621 Redhill Ave. Suite 205 Tustin, CA 92680 (714) 259-0368 FAX: (714) 259-9439

CENTRAL REGION

1101A Lake Cook Rd. Deerfield, IL 60015 (312) 945-1500 TWX: 29-7131 FAX: (312) 945-1044

SOUTH CENTRAL REGION

777 E. Campbell Rd. Suite 650 Richardson, TX 75081 (214) 480-0470 FAX: (214) 235-4114

EASTERN AREA

25 Mall Road 5th Floor Burlington, MA 01803 (617) 272-4352 FAX: (617) 272-3089 TWX: 710-321-6730 Answerback Toshiba Burl

SOUTH EAST REGION

Waterford Centre 5555 Triangle Parkway Suite 300 Norcross, GA 30092 (404) 368-0203 FAX: (404) 368-0075

TOSHIBA AMERICA, INC.

9775 Toledo Way Irvine, California 92718 Telephone: (714) 455-2000 FAX: (714) 859-3963 Telex: 314-138