
M
x -r--z x

1:XILINX

The Programmable GateArray
Design Handbook

First Edition

ERRATA
Programmable Gate Array Design Handbook

First Edition

In the Pin Assignment tables on pages 1-34, 1-35, 2-16, and 2-17 the 05
data line, which is used to configure the Logic Cell Array in Master Mode, is
shown on the wrong pin. An excerpt from the original tables and a corrected
version are shown below. Please affix this note to the inside front cover of
your Design Handbook.

XC2064 Pin Assignment (Pages 1-34 and 2-16)

34 48 H10
<> 49/HH

35 50 G10
36 51 G11

-+ 34 48 H'lb
49 H11

35 50 G10
36 51 G11

F > 1)$ (I) < , ._ 05 CORRECTED

XC2018 Pin Assignment (Pages 1-35 and 2-17)

48 H10 58 H10
59 H11

49 Htt oOFtO
61 G10

50 G10 62 G11

-+ 48 H1d 58 f-Ho
59 H11

49 H11 60 F10
61 G10

50 G10 62 G11

PN 0400088 01

). 05(1} <J+- 05/NCORRECT

cso (I) I 04 (I)

I> ?05(1} >I+- D5CORRECTED

~(I) I 04 (I)

f::XILINX

FEATURES

• One-Time Programmable (OTP) 36,288 bit serial
memory designed to store configuration programs for
Programmable Gate Arrays

• Simple interface to a Logic Cell™ Array (LCA) requires
only two 1/0 pins

• Daisy chain configuration support for three XC2064's
or two XC2018's

• Cascadable to provide more memory for additional
configurations or future higher-density arrays

• Storage for multiple configurations for a single Logic
Cell Array

• Low power CMOS EPROM process
• Space-efficient, low-cost 8-pin plastic DIP package
• PC-based programmer for development. Productio

programming support from leading program
manufacturers

DESCRIPTION

The XC1736 Serial Co.
easy-to-use, cost-efle
Xilinx family of pr

rovides an
emory for the

ays. Packaged in
-inline package, the

rial access procedure to
e o ic Cell Arrays (LCAs). The
tion of the configuration PROM

an economica ·
XC1736 us··

mory to configure three XC2064's
or two XC2018's. Multiple Serial Configuration PROMs
can be cascaded to provide a larger memory for more
configurations or future higher density arrays. Multiple
configurations for a single LCA can also be loaded from
the XC1736.

MASTER SERIAL MODE

The 1/0 and logic functions of the Xilinx Programmable
Gate Array, and their associated interconnections, are
established by a configuration program. The program is

4

XC1736 SERIAL
CONFIGURATION PROM

Product Brief

loaded either automatically upon power up, or on
command, depending on the state of the three LCA
mode pins. In Master Mode, the Logic Cell Array
automatically loads the configuration program from an
external memory. The Serial Configuration PROM has
been designed for compat with the Master Serial
Mode.

Upon power-up
enter Master
LCA's mod
Data

uration, an LCA will
ever all three of the

LOW (MO=O, M1=0, M2=0).
e Serial Configuration PROM

e data line. Synchronization is
sing edge of the temporary signal

generated during configuration. Figure
ematic diagram of an LCA in Master Serial

ster Serial Mode provides a simple configuration
interface. Only a serial data line is required to configure
an LCA. Data from the Serial Configuration PROM is
read sequentially, accessed via the internal address and
bit counters which are incremented on every valid rising
edge of RCLK.

DATAa8 VCC
CLK 2 7 VPP

RESET/OE 3 6 CEO
CE 4 5 GND

XC1736 Pin Assignments

261 1

XC1736 Serial Configuration PROM

Pin Name 1/0 Description

DATA 0 Three-state DAT A output for reading.

2 CLK Clock input. Used to increment the
internal address and bit counters for
reading.

3 RESET/ Output Enable. A LOW level on both
OE the CE and OE inputs enables the

data output driver. A HIGH level on OE
resets both the address and bit
counters.

4 CE Chip Enable input. A LOW level on
both CE and OE enables the data
output driver. A HIGH level on CE dis-
ables both the address and bit coun-
ters and forces the device into a low
power mode.

5 GND Ground pin.

6 CEO 0 Chip Enable Out output. This signal is
asserted LOW on the clock cycle
following the last bit read from
the memory. It will stay LOW as long as
CE and OE are both LOW. It will follow
CE, but if OE goes HIGH, CEO will
stay HIGH until the entire PROM is
read again.

7 Vpp Must be connected directly to Vee for
normal read operation.

8 Vee +5 volt power supply input, 5%
tolerance.

Table 1. XC1736 Pin Assignments (Read Mode)

5

GENERAL­
PURPOSE
USER VO

PNS

+5V

MO M1 PWRDWN

DOUT

M2 CCLK

HDC

LDC

)'" OTHER
PINS

RESET

LOGIC
CELL

ARRAY

DIN

RCLK

DIP

}
ADDITIONAL
SLAVE MODE
LCAs (OPTIONAL)

DATA XC1736

CLK SERIAL

CE CON FIG-
URATION

OE PROM

RCLK~ (OUTPUl)

DINJX'X

DOUT
(OUTPUl)

CCLK
(OUTPUl)

Figure 1. Master Serial Mode Configuration
261 2

Table of Contents

The Programmable Gate Array
Introduction to Programmable Gate Arrays
Logic Cell Array Data Sheet XC2064 I XC2018
Logic Cell Array Data Sheet XC2064-1 I XC2064-2
Testing and Data Integrity
Non Hermetic Package Reliability

Using Programmable Gate Arrays
Methods of Configuring the Logic Cell Array
Ins and Outs of Logic Cell Array 1/0 Blocks
Placement and Routing Optimization
A Design Methodology for the Logic Cell Array
Counter Examples
Metastability Analysis of Logic Cell Array Flip-flops
Reading Back Logic Cell Array Configuration Programs

Programmable Gate Array Design Examples
A UART Design Example
A Printer Buffer Controller
A Seven Segment Display Driver
Cost Effective Hardware/Software Updates
A T1 Communications Interface

Programmable Gate Array Development Systems ,
PC System Configurations
In-Circuit Emulation and Simulation
Product Brief XC-DS21 XACT Design Editor
Product Brief XC-DS22 P-SILOS Simulator
Product Brief XC-DS23 Automated Placement and Routing
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods
Product Brief XC-DS31 FutureNet Schematic Library
Product Brief XC-EK01 Logic Cell Array Evaluation Kit

Appendices
Technical References
Glossary
Sales Offices List
Information Request Cards

1-1 -
1-8 -
1-50 -
1-61 -
1-67 -

2-1 -
2-20 -

. 2-42 -

. 2-76 -

. 2-98 -

. 2-125 -

. 2-129 -

. 3-1
3-11
3-29
3-41
3-45

. 4-1
4-5

. 4-19

. 4-23

. 4-25

. 4-27

. 4-29

. 4-31

. A-1

. A-3

. A-5

Contributors

Chuck Erickson
Steve Eliscu
Rick Farabaugh
Dave Galli
Steve Knapp
Steve Landry

Dave Lautzenheiser
Richard Ravel
Rob Stransky
Craig Wooster
Pardner Wynn

©Copyright 1986 by Xilinx, Inc. All Rights Reserved.

Patents Pending

Xilinx, Logic Cell, XACT, XACTOR and Logic Processor are
trademarks of Xilinx, Inc. The Programmable Gate Array Company, is
a Service Mark of Xilinx, Inc.

IBM is a registered trademark and PC, PC/AT, PC/XT are trademarks
of International Business Machines Corporation. PAL is a registered
trademark of Monolithic Memories, Inc. FutureNet is a registered
trademark and DASH is a trademark of FutureNet Corporation, a Data
1/0 Company. SlmuCad and Silos are registered trademarks and P­
Silos is a trademark of SimuCad Corporation. MS-DOS is a trademark
of Microsoft Corporation. LOGIMOUSE is a registered trademark of
LOGITECH Inc. Lotus is a registered trademark of Lotus Development
Corporation. AboveBoard and AboveBoard/PS are trademarks of Intel
Corporation. RAMpage!, SixPakPlus and SixPakPremuim are
registered trademarks of AST Research, Inc. Mouse Systems is a
trademark of Mouse Systems Corporation. Microsoft is a registered
trademark of Microsoft Corporation. Centronics is a registered
trademark of Centronics Data Computer Corporation.

ii

Xilinx, Inc. does not assume any liability arising out of the application
or use of any product described herein; nor does it convey any license
under its patent, copyright or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to
improve reliability, function or design and to supply the best product
possible. Xilinx, Inc. cannot assume responsibility for the use of any
circuitry described other than circuitry entirely embodied in their
product. No other circuit patent licenses are Implied.

Xilinx, Inc. cannot assume responsibility for any circuits shown or
represent that they are free from patent infringement or of any other
third party right.

Xilinx, Inc. assumes no obligation to correct any errors contained
herein or lo advise any user of this text of any correction if such be
made.

Printed in U.S.A.

Xilinx was founded in February 1984 to devel­
op a family of CMOS user-programmable
gate arrays and associated development
systems. The development of a general­
purpose user-programmable logic device with
an array architecture was the result of a
number of technical breakthroughs, many of
which have resulted in patent applications.

iii

About the Company ...

Due to its density and to the convenience of
user programmability, the Logic Cell™ Array
represents an important new alternative in the
ASIC market. The company continues to
concentrate its resources exclusively on
expanding its growing family of Logic
Processors™ and associated development
systems.

The Programmable Gate Array Company

EXTENSIVE
SIMULATION

GATE ARRAYS HIGH
DENSITY

FLEXIBLE
ARCHITECTURE

STANDARD

'~/

LOW
DENSITY

PROGRAMMABLE LOGIC
DEVICES

USER
PROGRAMMABLE

THE PROGRAMMABLE GATE ARRAY
(LOGIC CELL™ ARRAY)

iv

Table of Contents

The Programmable Gate Array
Introduction to Programmable Gate Arrays
Logic Cell Array Data Sheet XC2064 I XC2018
Logic Cell Array Data Sheet XC2064-1 I XC2064-2
Testing and Data Integrity
Non Hermetic Package Reliability

Methods of Configuring the Logic Cell Array
Ins and Outs of Logic Cell Array 1/0 Blocks
Placement and Routing Optimization
A Design Methodology for the Logic Cell Array
Counter Examples
Metastability Analysis of Logic Cell Array Flip-flops
Reading Back Logic Cell Array Configuration Programs

A UART Design Example
A Printer Buffer Controller
A Seven Segment Display Driver
Cost Effective Hardware/Software Updates
A T1 Communications Interface

PC System Configurations
In-Circuit Emulation and Simulation
Product Brief XC-DS21 XACT Design Editor
Product Brief XC-DS22 P-SILOS Simulator
Product Brief XC-DS23 Automated Placement and Routing
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods
Product Brief XC-DS31 FutureNet Schematic Library
Product Brief XC-EK01 Logic Cell Array Evaluation Kit

Technical References
Glossary
Sales Offices List
Information Request Cards

v

1-1 -1-8 -1-50 -1-61 -1-67 -
.. 2-1 -.. 2-20 -. 2-42 -.. 2-76 -2-98 -2-125-

2-129-

. 3-1 -. 3-11 -. 3-29 -. 3-41 -. 3-45 -
4-1 -4-5 -4-19 -.. 4-23 -.. 4-25 -. 4-27 -. 4-29 -. 4-31 -

. A-1 -. A-3 -. A-5 -

vi

Requirements for improved product features, including
lower cost, higher performance, reduced power con­
sumption, smaller size and increased reliability are
motivating manufacturers of electronic systems to use
high-density VLSI circuits.

The standard product .cs that have best exploited ad­
vances in VLSI have been microprocessors and mem­
ories. Density improvements in these product families
have outpaced other digital integrated circuits, widening
the technology gap between them and other logic
devices. To achieve comparable densities for their pro­
prietary functions, designers of digital equipment have
been forced to consider factory-programmed custom
and semicustom application specific integrated circuits
(ASICs). The advent of user-programmable gate arrays
combines the production cost effectiveness of VLSI
with all the benefits of a standard product. Figure 1
illustrates the tradeoffs of density and development time
for several digital logic alternatives.

Standard SSl/MSI logic devices provide a great deal of
flexibility, are well understood by most logic designers,
and are readily available. However, they offer less den­
sity than other alternatives, and consume more power.
These parts typically are manufactured in maturing
technologies, with limited opportunity for further cost
reductions.

The Programmable Logic Device (PLO) category in­
cludes a number of competing alternatives, all based on
a programmable AND-OR plane architecture. The PLDs
AND-OR plane architecture is most efficient for appli­
cations up to a few hundred usable gates. Bipolar PLDs
are programmed by opening fuse links. CMOS PLDs
can be one-time programmable, electrically programm­
abale (EPLDs), or electrically erasable (EEPLDs). These
Programmable Logic Devices are often used in place of
five to ten SSl/MSI devices. Since PLDs are user
programmable, this gain in density can be achieved with
only a small increase in design time and little schedule
risk. Designs can be developed and devices program­
med for a particular application in a matter of days. PLDs
are best suited for state machines and decoders. Their
architecture provides efficient multiple variable decod­
ing and high performance for functions that are readily
expressed as a sum-of-products. Architectural restric­
tions limit their application for general logic replacement,
consolidation of miscellaneous "glue" and control fun­
ctions, or complex processing tasks.

1-1

Introduction to
Programmable Gate Arrays

• Factory programmable ASIC devices, including gate •
arrays, standard cells, and compiled silicon, provide logic
densities up to 100,000 equivalent logic gates and are
sufficiently flexible for most digital logic functions. After
design completion and verification, factory programmed
ASICs typically require two to four months for prototype
fabrication and a similar period for the first production
quantities. Because of their high design costs and
limited production flexibility, factory-programmed ASICs
are most economical in very high volume applications.
The logistics of verifying a workable design, testing ICs
and coordinating production demand require substantial
attention and resources from the equipment
manufacturer.

In the diagram, the upper left corner represents the best
solution. The traditional tradeoffs between density and
development time are illustrated by the dotted diagonal
line in the diagram. As indicated, a new digital logic
technology, the Logic Cell™ Array (LCA), offers im­
provements in both dimensions. This user-program­
mable gate array provides the system designer the us­
able density of gate arrays and the short development
times and low risk of standard logic circuits. It combines
the design and production benefits of a standard
product with the system benefits of reliability, power
savings, space savings, and lower production costs of
ASIC devices.

ARCHITECTURE

The user benefits of the Logic Cell Array are derived
from its general-purpose array architecture. This archi­
tecture is based on a number of technical break­
throughs, many of which have resulted in patent
disclosures.

The Logic Cell Array architecture is similar to that of a
gate array, with an interior matrix of logic blocks and a
surrounding ring of 1/0 interface blocks. User­
programmable interconnection resources are used to
create logic networks from these elements. In the Logic
Cell Array, the functions of the logic and 1/0 blocks and
the routing of interconnect networks are defined by a
configuration program stored in an internal memory.
Unlike conventional gate arrays, the Logic Cell Array
requires no custom factory fabrication. Each device is
identical until programmed by the user. The config­
uration program is loaded automatically from an EPROM

Introduction to Programmable Gate Arrays

I
I

I
I

/STAND-
/ ARD

10,000 1--------+---------lf--__,'/ CELL

NUMBER
OF GATES

10

I

SSl/MSI

10 100 1,000

DESIGN TIME IN DAYS

Figure 1- Logic Technology Tradeoffs

1-2

0010027 1

or programmed by a processor whenever the device is
powered up, or upon command while the system is
operating. Since the configuration program can be
copyrighted, designs that employ Logic Cell Arrays can
be protected from unauthorized copying under the
same legal precedents that have been used effectively
to protect microprocessor-based systems.

PROGRAMMABLE LOGIC DEVICES

In PLO architectures, inputs to the AND/OR planes are
driven directly by dedicated input pins of the device and
some user-selectable input/output pins or feedback
paths. Outputs are driven directly from sum-of-products
logic outputs or from flip-flops. The primary limitations of
this architecture are the rigidity of the AND/OR plane
logic and its dedicated interconnections. Flip-flops are
typically driven by a common clock and are closely
associated with specific output pins. As a result, gate
utilization seldom exceeds 15%. Consequently, the
practical upper limit of usable gates appears to be a few
hundred and the extension of this basic architecture to
higher densities is limited. Performance of PLDs is fixed
for each level of logic. Each path through the AND/OR
plane exhibits the same delay, typically 25-45 ns.

GATE ARRAYS

Array architectures provide flexible resources, both for
1/0 functions and logic structures. With a gate array, user
logic is typically implemented by interconnecting two­
input NAND gates into more complex functions using
mask-programmed metal segments. Factory processing
implements the metal interconnections required for
each user configuration. Generation of larger arrays can
be accomplished through straightforward extensions of
the 1/0, logic building blocks, and interconnect
resources, much like extending the capacity of a
memory device. Gate arrays offer usable densities of
25,000 gates or more. Utilization factors of 80-90% are
possible because of the flexibility and regularity of the
architecture. Gate array performance is dependent on
the placement and interconnection of the elements that
make up a logic network. In a gate array characterized by
2 ns gate delays, frequently used functions may have a
total delay of 15 ns or more because of the levels of
gating and the interconnection required to implement
them.

LOGIC CELL ARRAY

Logic Cell Arrays share the gate array architecture's
flexibility and ease of extension to higher densities. The
function of the LCA's configurable logic blocks and 1/0
blocks and their interconnection are controlled by a
configuration program stored in an on-chip memory.

1-3

l:XIUNX

Distributed memory cells are adjacent to the logic, 1/0, or
interconnect element they control. Interconnect re­
sources exist in the channels between the rows and col­
umns of logic blocks and between the logic blocks and
the 1/0 blocks. Through straightforward extensions of
the array architecture, the initial 1200 gate LCA has
been extended to an 1800 gate version. Further exten­
sions of the LCA architecture will increase the number of
usable gates to over 8000.

Like other standard IC components, Logic Cell Arrays
permit the selection of higher speed parts from the
natural distribution that results from the semiconductor
manufacturing process. This permits the choice of the
most cost-effective speed grade for a particular appli­
cation. Logic Cell Array performance is determined by
the fixed delays for logic and storage elements plus
interconnect delays. During design, the timing calcu­
lation software in the development system can quickly
display worst case timing. In general, Logic Cell Array
performance is specified by the maximum toggle rate for
a logic block storage element configured as a toggle flip­
flop. For typical configurations, a 70 MHz toggle rate
translates to a system clock rate of up to 35 Mhz.

PROCESS

Over the last five years, the most pronounced trend in
semiconductor manufacturing processes has been the
shift toward CMOS. This has been especially true for
ASICs. The advantages of advanced CMOS processes
include both high speed and low power consumption.

Logic Cell Arrays are fabricated through a partnership
with Seiko-Epson, by means of an advanced twin-well,
double-layer metal CMOS process. Two metal layers are
essential for array architectures because of the need to
propagate logic signals in both horizontal and vertical
directions with minimum delays. The LCA manufact­
uring process is very similar to that used for high-speed
memories. As a result it can exploit the photolitho­
graphy and wafer diameter advances in memory process
technology which result in ever higher density and
performance at ever decreasing costs.

QUALITY

As quality consciousness has grown among semi­
conductor users, awareness of the importance of
testing has increased. Microprocessors, memories, and
other standard products are designed for testability and
are tested exhaustively with carefully developed test
programs. The testing of most application specific ICs is
less comprehensive, due to limitations of design and
test program development. With respect to testing, the
Logic Cell Array is like other standard products. It has
been designed with 100% testability as a requirement

I
•

Introduction to Programmable Gate Arrays

and each device is comprehensively tested during the
manufacturing process. This is accomplished without
any participation by the user in the definition of test
programs or the generation of test vectors.

RELIABILITY

The manufacturing process used for the Logic Cell Array
is based on a process developed for high performance
CMOS static memories. Extensive work on this process
to insure the highest quality memory devices has
provided the same benefits to the Logic Cell Array. Data
collected over millions of Logic Cell Array device hours
confirm the reliability of the design and the process.
Compared with other logic devices, the Logic Cell Array
exhibits extremely low power dissipation. This translates
to lower operating temperatures and, correspondingly
higher reliability. Packaging materials for the Logic Cell
Array have been selected to match closely the thermal
coefficient of expansion of the silicon. This minimizes
thermal stresses and further improves reliability.

The memory cell used to store the LCA configuration
program has been designed to be particularly robust.
This memory is written only during device configuration
and its static output controls logic elements in the array.
Since the two circularly linked inverters that make up the
static latch are adjacent, transients cause only minor
differences in voltages. Each inverter is a true com­
plementary transistor pair, so that a low impedance path
to the supply rail always exists, regardless of state. In
addition tests involving bombardment with high levels of
alpha radiation verify that the storage cell is not
disturbed by alpha particles.

DEVELOPMENT SYSTEMS

The development system for the Logic Cell Array is sim­
ilar in capabilities and usage to development systems for
microprocessors.

After the initial design information is entered into the
XACT™ development system, it is checked for consis­
tency and obvious errors. The design is then translated
into a program for the LCA, which can be stored in
EPROM devices or in some other media as needed by
the final system. For debugging, the configuration is
loaded into the LCA memory and in-circuit emulation is
used to verify correct operation. Development system
support for the Logic Cell Array includes complete
facilities for design entry and design verification. The
XACT development system includes a basic configura­
tion and several options to enhance designer produc­
tivity. Features of the system include:

• A consistent user-friendly environment under which
all the development software and options are available

1-4

• Graphic driven design entry

• Schematic entry

• Interactive timing calculations

• Macro library support, both for standard Xilinx supplied
functions and user-defined functions

• Design entry checking for consistency and
completeness

• Automatic design documentation generation

• Automatic placement and routing

• Simulation interface support including netlist
extraction

• Logic and timing simulation (P-SILOS™)

• In-circuit emulation for multiple devices

The XACT system operates on an IBM® PC/XT™,
PC/AT™ or compatible system. Color graphics is requir­
ed as well as 640 K bytes of internal RAM and a mouse.
A full system also requires a single parallel port and two
serial ports. Support for additional schematic editors
and other design workstation platforms are being
developed.

Design Entry

The first step in designing with the Logic Cell Array is to
partition a design into logic blocks and 1/0 blocks, based
on the capabilities of each of these resources. After part­
itioning, two alternatives are available for design entry.
In the first, the XACT editor is used to enter the design
directly. Design elements can be configured logic
blocks and 1/0 blocks or system macros. The XACT
editor allows the individual elements of either 1/0 or logic
blocks to be configured directly, either through
equations or Karnaugh maps. A macro can be selected
to automatically configure a block or group of blocks for a
specified function. Alternatively, the design can be
entered in schematic form using the XACT design library
with a supported schematic entry system.

Placement and routing of the individual logic and 1/0
blocks may be performed interactively using the inter­
connect portion of the XACT editor. Alternatively, the
optional Automatic Place and Route package can be
used to place logic elements from a file created either by
XACT or a schematic package and automatically route
the logic networks. The output files produced by the
schematic editor and by the auto place/route program
are compatible with XACT, so that it can be used
interactively for design optimization.

Timing

Timing for critical logic paths can be determined to check
design performance. Delays associated with the routing
of a particular signal path are displayed automatically.
This represents the total worst-case delay from the

source block for that signal to the destination currently
indicated by the mouse. In addition to displaying timing
for individual networks, XACT can produce a listing show­
ing timing for all logic networks in a design.

Simulation

After a design has been entered into XACT, a logic
network can be extracted to create a netlist and timing
model file for use with the optional P-SILOS logic and
timing simulator. Because the XACT system automati­
cally generates the logic description for the simulator,
the user need only supply the input stimuli. Simulator
output can be printed in a tabular format that shows the
state of each selected node whenever any of the nodes
changes. These data can be used to determine the
relative timing of signals under worst-case conditions.
The timing models from which the relative timing data are
extracted are based on the implementation of the
design and worst-case temperature, voltage and
process conditions. Timing waveforms also can be
generated automatically.

In-Circuit Emulation

The ultimate verification of a design is its correct oper-

ation in the final system in which it will be used. This is
the function of the optional XACTOR™ in-circuit
emulator. Completed designs that have been
converted into configuration programs are loaded
directly into operating devices connected to the user's
system. The system consists of software and hardware
which is attached to the host PC system.

The XACTOR in-circuit emulator allows the user to emu­
late up to four devices simultaneously, with several
design variations for each device. Emulation is
accomplished by selectively isolating and controlling the
pins of the Logic Cell Array which are associated with
programming and overall device control. Isolation from
the user's target system is accomplished with electronic
switches controlled from the host system.

1-5

The emulator control software allows the user to pro­
gram devices on command from either the development
system or the target system. The system can also read
and display the states of the internal logic block storage
elements and 1/0 block inputs. Additional capabilities
include reporting asynchronous events which occur in
the target system and support for daisy chain
programming of Logic Cell Arrays.

• -

Introduction to Programmable Gate Arrays

PIN 0010027 01

1-6

E:XIUNX

• -

1-7

DESCRIPTION

ARCHITECTURE

Configuration Memory

Input/Output Blocks.

Configurable Logic Blocks

Interconnect

Crystal Oscillator

POWER

PROGRAMMING

Initialization

Programming

Master Mode

Peripheral Mode

Slave mode

Daisy Chain

Operation

Special Configuration Function

Battery Backup

PERFORMANCE

Logic Block

Interconnect

DEVELOPMENT SYSTEM

XACT General Features

Designing with XACT

MISCELLANEOUS

Package Pin Descriptions

Switching Characteristics

Ordering Information .

Packages and Sockets

1-8

XC2064
XC2018
Logic Cell™ Array

Table of Contents

1·9

1·9

1-9

1-10

1-11

1-13

1-16

1-18

1·20

1-20

1-22

1-22

1-23

1·24

1·24

1-25

1-25

1-26

1-26

1-28

1-28

1-30

1-30

1-30

1-30

1-30

1-38

1-45

1-46

FEATURES

• Fully user-programmable:
• 1/0 functions
• Digital logic functions
• Interconnections

• General-purpose array architecture

• Complete user control of design cycle

• Compatible arrays with logic cell complexity equivalent
to 1200 and 1800 usable gates

• Standard product availability

• 1 00% factory-tested

• Selectable configuration modes

• Low-power, CMOS, static memory technology

• Performance equivalent to TTL SSl/MSI

• TTL or CMOS input thresholds

• Complete development system support
XACT Design Editor
Schematic Entry
XACTOR In Circuit Emulator
Macro Library
Timing Calculator
Logic and Timing Simulator
Auto Place I Route

DESCRIPTION

The Logic Cell™ Array (LCA) is a high density CMOS
integrated circuit. Its user-programmable array architec­
ture is made up of three types of configurable elements:
Input/Output Blocks, Logic Blocks and Interconnect.
The designer can define individual 1/0 blocks for
interface to external circuitry, define logic blocks to
implement logic functions and define interconnection
networks to compose larger scale logic functions. The
XACT™ Development System provides interactive
graphic design capture and automatic routing. Both
logic simulation and in-circuit emulation are available for
design verification.

The Logic Cell Array is available in a variety of logic
capacities, package styles, temperature ranges and
speed grades.

1-9

XC2064
XC2018
Logic Cell™ Array

Product Specification

Part Logic Conflg· User Config·
Number Capacity urable I/Os uration

(usable) Logic Program
gates Blocks (bits)

XC2064 1200 64 58 12038
XC2018 1800 100 74 17878

The Logic Cell Array's logic functions and inter­
connections are determined by data stored in internal
static memory cells. On-chip logic provides for automatic
loading of configuration data at power-up. The program
data can reside in an EEPROM, EPROM or ROM on the
circuit board or on a floppy disk or hard disk. The
program can be loaded in a number of modes to
accommodate various system requirements.

ARCHITECTURE

The general structure of a Logic Cell Array is shown in
Figure 1 . The elements of the array include three
categories of user programmable elements: 1/0 Blocks,
Configurable Logic Blocks and Programmable
Interconnections. The 1/0 Blocks provide an interface
between the logic array and the device package pins.
The Configurable Logic Blocks perform user-specified
logic functions, and the interconnect resources are
programmed to form networks that carry logic signals
among blocks.

Configuration of the Logic Cell Array is established
through a distributed array of memory cells.The XACT
development system generates the program used to
configure the Logic Cell Array. The Logic Cell Array
includes logic to implement automatic configuration.

Configuration Memory

The configuration of the Xilinx Logic Cell Array is
established by programming memory cells which
determine the logic functions and interconnections.
The memory loading process is independent of the user
logic functions.

The static memory cell used for the configuration
memory in the Logic Cell Array has been designed

• -

XC2064 / 2018 Logic Cell Array

specifically for high reliability and noise immunity. Based
on this design, which is covered by a pending patent
application, integrity of the LCA configuration memory is
assured even under adverse conditions. Compared
with other programming alternatives, static memory
provides the best combination of high density, high
performance, high reliability and comprehensive
testability. As shown in Figure 2, the basic memory cell
consists of two CMOS inverters plus a pass transistor
used for writing data to the cell. The cell is only written
during configuration and only read during readback.
During normal operation the pass transistor is "off" and
does not affect the stability of the cell. This is quite
different from the normal operation of conventional
memory devices, in which the cells are continuously
read and rewritten.

The outputs Q and Q control pass-transistor gates
directly. The absence of sense amplifiers and the
output capacitive load provide additional stability to the
cell. Due to the structure of the configuration memory

D
CONFIGURABLE

cells, they are not affected by extreme power supply
excursions or very high levels of alpha particle radiation.
In reliability testing no soft errors have been observed,
even in the presence of very high doses of alpha
radiation.

Input/Output Block

Each user-configurable 1/0 block (IOB) provides an
interface between the external package pin of the
device and the internal logic. Each 1/0 block includes a
programmable input path and a programmable output
buffer. It also provides input clamping diodes to provide
protection from electro-static damage, and circuits to
protect the LCA from latch-up due to input currents.
Figure 3 shows the general structure of the 1/0 block.

The input buffer portion of each 1/0 block provides
threshold detection to translate external signals applied
to the package pin to internal logic levels. The input
buffer threshold of the 1/0 blocks can be programmed to

l/OBLOCK

Q qg
LOGIC BLOCK~

0 0 0 0 -f}
-f} 0 or 0 0 -f}

INTERCONNECT AREA

-f} 0 OJ 0 0 -f}
-f} 0 0 0 0 -f}

0010003 1
Figure 1. Logic Cell Array Structure

1-10

be compatible with either TTL (1.4 V) or CMOS (2.2 V)
levels. The buffered input signal drives both the data
input of an edge triggered D flip-flop and one input of a
two-input multiplexer. The output of the flip-flop
provides the other input to the multiplexer. The user
can select either the direct input path or the registered
input, based on the content of the memory cell
controlling the multiplexer. The 1/0 Blocks along each
edge of the die share common clocks. The flip-flops are
reset during configuration as well as by the active-low
chip RESET input.

Output buffers in the 1/0 blocks provide 4 mA drive for
high fan-out CMOS or TTL compatible signal levels. The
output data (driving 1/0 block pin 0) is the data source

READ or WRITE

DATA

0010003 2

l:XIUNX

for the 1/0 block output buffer. Each 1/0 block output
buffer is controlled by the contents of two configuration
memory cells which turn the buffer ON or OFF or select
logical three-state buffer control. The user may also
select the output buffer three-state control (110 block pin
TS). When this 1/0 block output control signal is HIGH (a
logic "1") the buffer is disabled and the package pin is
high-impedance .

Configurable Logic Block

An array of Configurable Logic Blocks (CLBs) provides
the functional elements from which the user's logic is
constructed. The Logic Blocks are arranged in a matrix
in the center of the device. The XC2064 has 64 such

Figure 2. Configuration Memory Cell

0010003 3

D QI----'

-fl__ PROGRAM·CONTROLLED
~ = MULTIPLEXER

Figure 3. 110 Block

1-11

TS (OUTPUT ENABLE)

OUT

IN

VO CLOCK

• -

XC2064 I 2018 Logic Cell Array

INPUTS

A ------1
B ------1
c ------1
o-

x

OUTPUTS

y

CLOCK

0010003 4

Figure 4. Configurable Logic Block

blocks arranged in an 8-row by 8-column matrix. The XC-
2018 has 100 logic blocks arranged in a 10 by 10 matrix.

Each logic block has a combinatorial logic section, a
storage element, and an internal routing and control
section. Each CLB has four general-purpose inputs: A,
B, C and D; and a special clock input (K), which may be
driven from the interconnect adjacent to the block.
Each CLB also has two outputs, X and Y, which may
drive interconnect networks. Figure 4 shows the resour­
ces of a Configurable Logic Block.

The logic block combinatorial logic uses a table look-up
memory to implement Boolean functions. This tech­
nique can generate any logic function of up to four
variables with a high speed sixteen-bit memory. The
propagation delay through the combinatorial network is
independent of the function generated. Each block can
perform any function of four variables or any two
functions of three variables each. The variables may be
selected from among the four inputs and the block's stor­
age element output "Q". Figure 5 shows various op­
tions which may be specified for the combinatorial logic.

If the single four-variable configuration is selected
(Option 1), the F and G outputs are identical. If the two­
function alternative is selected (Option 2), logic
functions F and G may be independent functions of
three variables each. The three variables can be
selected from among the four logic block inputs and its
storage element output "O". A third form of the combi-

natorial logic (Option 3) is a special case of the two­
function form in which the B input dynamically selects
between the two function tables providing a single
merged logic function output. This dynamic selection

A

B

c
D

1-12

ANY
FUNCTION

OF4
VARIABLES

OPTION1

1 FUNCTION OF 4
VARIABLES

F

G

allows some five-variable functions to be generated from
the four block inputs and storage element Q. Combi­
natorial functions are restricted in that one may not use
both its storage element output Q and the input variable
of the logic block pin "D" in the same function.

If used, the storage elem~nt in each Configurable Logic
Block (Figure 6) can be programmed to be either an
edge-sensitive "D" type flip-flop or a level-sensitive "D"
latch. The clock or enable for each storage element can
be selected from:

• The special-purpose clock input K

• The general-purpose input C

• The combinatorial function G

The user may also select the clock active sense within
each logic block. This programmable inversion elimi­
nates the need to route both phases of a clock signal
throughout the device.

The storage element data input is supplied from the
function F output of the combinatorial logic. Asynchro­
nous SET and RESET controls are provided for each
storage element. The user may enable these controls
independently and select their source. They are active

A

B

c

D

A

B

c

D

0010003 5

At>N
FUNCTION

OF3
VARIABLES

At>N
FUNCTION

OF3
VARIABLES

OPTION2

2 FUNCTIONS OF 3
VARIABLES

F

G

Figure 5. CLB Combinatorial Logic Options

A

c

D

A

c

D

l:XILINX

high inputs and the asynchronous reset is dominant.
The storage elements are reset by the active-low chip
RESET pin as well as by the initialization phase pre­
ceding configuration. If the storage element is not
used, it is disabled.

The two block outputs, X and Y, can be driven by either
the combinatorial functions, F or G, or the storage
element output Q (Figure 4). Selection of the outputs is I
completely interchangeable and may be made to
optimize routing efficiencies of the networks intercon-

1-13

necting the logic blocks and 1/0 blocks. •

Programmable Interconnect

Programmable interconnection resources in the Logic
Cell Array provide routing paths to connect inputs and
outputs of the 1/0 and logic blocks into desired net­
works. All interconnections are composed of metal seg­
ments, with programmable switching points provided to
implement the necessary routing. Three types of
resources accommodate different types of networks:

• General purpose interconnect

• Long :ines

• Direct connection

ANY
FUNCTION

OF3
VARIABLES

ANY
FUNCTION

OF3
VARIABLES

OPTION3

DYNAMIC SELECTION OF
2 FUNCTIONS OF 3

VARIABLES

B

F

G

XC2064 / 2018 Logic Cell Array

General-Purpose Interconnect

General-purpose interconnect, as shown in Figure 7a, is
composed of four horizontal metal segments between
the rows and five vertical metal segments between the
columns of logic and 1/0 blocks. Each segment is only
the "height" or ''width" of a logic block. Where these
segments would cross at the intersections of rows and
columns, switching matrices are provided to allow
interconnections of metal segments from the adjoining
rows and columns. Switches in the switch matrices and
on block outputs are specially designed transistors,
each controlled by a configuration bit.

Logic block output switches provide contacts to adja­
cent general interconnect segments and therefore to
the switching matrix at each end of those segments. A
switch matrix can connect an interconnect segment to
other segments to form a network. Figure 7a shows the

, general interconnect used to route a signal from one
logic block to three other logic blocks. As shown,
combinations of closed switches in a switch matrix allow
multiple branches for each network. The inputs of the
logic or 1/0 blocks are multiplexers that can be program­
med with configuration bits to select an input network
from the adjacent interconnect segments. Since the
switch connections to block inputs are unidirectional (as
are block outputs) they are usable only for input connec­
tion. The development system software provides
automatic routing of these interconnections. Interactive
routing is also available for design optimization. This is
accomplished by selecting a network and then toggling

0010003 6

RES

Figure 6. CLB Storage Elememt

the states of the interconnect points by selecting them
with the "mouse". In this mode, the connections
through the switch matrix may be established by
selecting pairs of matrix pins. The switching matrix com­
binations are indicated in Figure 7b.

Special buffers within the interconnect area provide
periodic signal isolation and restoration for higher
general interconnect fan-out and better performance.
The repowering buffers are bidirectional, since signals
must be able to propagate in either direction on a
general interconnect segment. Direction controls are
automatically established by the Logic Cell Array
development system software. Repowering buffers are
provided only for the general-purpose interconnect
since the direct and long line resources do not exhibit
the same R-C delay accumulation. The Logic Cell Array
is divided into nine sections with buffers automatically
provided for general interconnect at the boundaries of
these sections. These boundaries can be viewed with
the development system. For routing within a section,
no buffers are used. The delay calculator of the XACT
development system automatically calculates and
displays the block, interconnect and buffer delays for
any selected paths.

0010003 7A

Figure 7a. General-Purpose Interconnect

1-14

Long Lines

Long-lines, shown in Figure Ba, run both vertically and
horizontally the height or width of the interconnect area.
Each vertical interconnection column has two long lines;
each horizontal row has one, with an additional long line
adjacent to each set of 1/0 blocks. The long lines
bypass the switch matrices and are intended primarily for
signals that must travel a long distance or must have
minimum skew among multiple destinations.

A global buffer in the Logic Cell Array is available to drive
a single signal to all B and K inputs of logic blocks. Using

l:XIUNX

the global buffer for a clock provides a very low skew,
high fan-out synchronized clock for use at any or all of
the logic blocks. At each block, a configuration bit for
the K input to the block can select this global line as the
storage element clock signal. Alternatively, other clock
sources can be used.

A second buffer below the bottom row of the array
drives a horizontal long line which, in turn, can drive a I
vertical long line in each interconnection column. This
alternate buffer also has low skew and high fan-out capa-
bility. The network formed by this alternate buffer's long •
lines can be selected to drive the B, C or K inputs of the

5-VERTICAL GENERAL INTERCONNECT

2

8 3

7 4 3 3

2 4-HORIZONTAL
GENERAL

6 5 INTERCONNECT
8 3 4 4

7 4 2

1 =VALID CONNECTION
O = INVALID CONNECTION

0010003 78

Figure 7b. Interconnection Switching Matrix

1-15

XC2064 / 2018 Logic Cell Array

logic blocks. Alternatively, these long lines can be driv­
en by a logic or 1/0 block on a column by column basis.
This capability provides a common, low-skew clock or
control line within each column of logic blocks. Intercon­
nections of these long lines are shown in Figure Sb.

Direct Interconnect

Direct interconnect, shown in Figure 9, provides the
most efficient implementation of networks between adja­
cent logic or 1/0 blocks. Signals routed from block to
block by means of direct interconnect exhibit minimum
interconnect propagation and use minimum intercon­
nect resources. For each Configurable Logic Block, the
X output may be connected directly to the C or D inputs
of the CLB above and to the A or B inputs of the CLB
below it. The Y output can use direct interconnect to
drive the B input of the block immediately to its right.
Where logic blocks are adjacent to 1/0 blocks, direct
connect is provided to the 1/0 block input (I) on the left
edge of the die, the output (0) on the right edge, or

B
J

SWITCH
MATRIX

L

~e

l

J

J SWITCH L
1 MATRIX I

B
TWO VERTICAL

LONG LINES

both on 1/0 blocks at the top and bottom of the die.
Direct interconnections of 1/0 blocks with CLBs are
shown in Figure Sb.

Crystal Oscillator

An internal high speed inverting amplifier is available to
implement an on-chip crystal oscillator. It is associated
with the auxiliary clock buffer in the lower right corner of
the die. When configured to drive the auxiliary clock
buffer, two special adjacent user 1/0 blocks are also con­
figured to connect the oscillator amplifier with external
crystal oscillator components, as shown in Figure 10.
This circuit becomes active before configuration is
complete in order to allow the oscillator to stabilize.
Actual internal connection is delayed until completion of
configuration. The feedback resistor R1 between out­
put and input, biases the amplifier at threshold. It should
be as large a value as practical to minimize loading of the
crystal. The inversion of the amplifier, together with the
R-C networks and crystal, produce the 360-degree

B
B
B

GLOBAL
LONG LINE

HORIZONTAL
LONG LINE

0010003 BA

Figure Ba. Long Line Interconnect

1-16

GLOBAL
BUFFER

0010003 SB

VERTICAL LONG LINES
(2 PER COLUMN)

u
u
u
u
u
u

l/OCLOCKS
(1PER EDGE)

u
u
0
u
0
u

u
u
u
u
Li
Li

HORIZONTAL LONG LINES
(1 PERROW)

u
u u
u u
u 0

u 0

u u

u
u
u
u
u
0

ALTERNATE
BUFFER

Figure Sb. XC2064 Long Lines, 1/0 Clocks, 1/0 Direct Interconnect

1-17

l:XIUNX

l/OCLOCKS
(1 PER EDGE)

OSCILLATOR
AMPLIFIER

t;
w z z
8 a: w
I-
~
t;
w a:
15
:.::
§
CD

~

• -

XC2064 / 2018 Logic Cell Array

phase shift of the Pierce oscillator. A series resistor R2
may be included to add to the amplifier output impe­
dance when needed for phase-shift control or crystal
resistance matching or to limit the amplifier input swing
to control clipping at large amplitudes. Excess feedback
voltage may be adjusted by the ratio of C2/C1. The
amplifier is designed to be used over the range from 1
MHz up to one-half the specified CLB toggle frequency.
Use at frequencies below 1 MHz may require individual
characterization with respect to a series resistance.
Operation at frequencies above 20 MHz generally re­
quires a crystal to operate in a third overtone mode, in
which the fundamental frequency must be suppressed
by the R-C networks. When the amplifier does not drive
the auxiliary buffer, these 1/0 blocks and their package
pins are available for general user 1/0.

POWER

Power Distribution

Power for the LCA is distributed through a grid to
achieve high noise immunity and isolation between logic
and 1/0. For packages having more than 48 pins, two

0010003 9

Figure 9. Direct Interconnect

Vee pins and two ground pins are provided (see Figure
11). Inside the LCA, a dedicated Vee and ground ring
surrounding the logic array provides power to the 1/0
drivers. An independent matrix of Vee and ground lines
supplies the interior logic of the device. This power
distribution grid provides a stable supply and ground for
all internal logic, providing the external package power
pins are appropriately decoupled. Typically a 0.1 µF
capacitor connected between the Vee and ground pins
near the package will provide adequate decoupling.

Output buffers capable of driving the specified 4 mA
loads under worst-case conditions may be capable of
driving 25 to 30 times that current in a best case. Noise
can be reduced by minimizing external load capacitance
and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the ground pads. Multiple
Vee and ground pin connections are required for pack­
age types which provide them.

1-18

Power Dissipation

The Logic Cell Array exhibits the low power consump­
tion characteristic of CMOS ICs. Only quiescent power
is required for the LCA configured for CMOS input
levels. The TTL input level configuration option requi­
res additional power for level shifting. The power
required by the static memory cells which hold the
configuration data is very low and may be maintained in a
power-down mode.

Typically most of power dissipation is produced by
capacitive loads on the output buffers, since the power
per output is 25 µWI pF I MHz . Another component of
1/0 power is the DC loading on each output pin. For any
given system, the user can calculate the power require­
ment based on the resistive loading of the devices
driven by the Logic Cell Array.

Internal power supply dissipation is a function of clock
frequency and the number of nodes changing on each
clock. In an LCA the fraction of nodes changing on a
given clock is typically low (10-20%). For example, in a
16-bit binary counter, the average clock produces a
change in slightly less than 2 of the 16 bits. In a 4-input
AND gate there will be 2 transitions in 16 states. Typical
global clock buffer power is about 3 mW I MHz for the
XC2064 and 4mW I MHz for the XC2018. With a
'1ypical" load of three general interconnect segments,
each Configurable Logic Block output requires about
0.4 mW I MHz of its output frequency. Graphs of power
versus operating frequency are shown in Table 1.

0010003 10

0010003 11

ON-CHIP EXTERNAL

SUGGESTED COMPONENT VALUES
R1 1-4 Mn
R2 0-1 Kn

(may be required for low frequency, phase
shift and/or compensation level for crystal O) ~ C1

C1,C2 5-20pf
Y1 1-10MHzATcut

XTAL1 XTAL2

48 DIP 33 30

68 PLCC 46 43

68PGA J10 L10

84 PLCC 56 53

84PGA K11 l11

Figure 10. Crystal Oscillator

GND

+- -+- -+--+--+--+--+--+
I I I I I
I I I I I

+- -+--+--+--+--+--+--+
I I t I
I I I I

+- -+- -+--+--+--+--+--+
I I I I

I I I I I

+--+--+--+--+--+--+--+
Vee

I I I I
I I I I

+--+--+--+--+--+--+--+
I I I I I

' ' ' ' ---H""r-"' +--+--+--+--+-- --+--+
I I I I I I I
I I I I I I

+- -+--+--+--+--+- -+- -+
I I I I I I I I
I I I I I I I I

+- -+- -+--+--+- -+--+--+

GND

Figure 11. LCA Power Distribution

1-19

D
D -

GROUND AND
Vee RING FOR
l/ODRIVERS

LOGIC POWER GRID

XC2064 / 2018 Logic Cell Array

PROGRAMMING

Configuration data to define the function and intercon­
nection within a Logic Cell Array are loaded automatically
at power-up or upon command. Several methods of
automatically loading the required data are designed
into the Logic Cell Array and are determined by logic
levels applied to mode selection pins at configuration
time. The form of the data may be either serial or parallel,
depending on the configuration mode. The program­
ming data are independent of the configuration mode
selected. The state diagram of Figure 12 illustrates the
configuration process.

Input thresholds for user 1/0 pins can be selected to be
either TIL-compatible or CMOS-compatible. At power­
up, all inputs are TIL-compatible and remain in that state
until the LCA begins operation. If the user has selected
CMOS compatibility, the input thresholds are changed
to CMOS levels during configuration.

Figure 13 shows the specific data arrangement for the
XC2064 device. Future products will use the same data
format to maintain compatibility between different de­
vices of the Xilinx product line, but they will have differ­
ent sizes and numbers of data frames. For the XC2064,
configuration requires 12,038 bits for each device. For
the XC2018, the configuration of each device requires
17,878 bits. The XC2064 uses 160 configuration data
frames and the XC2018 uses 197. ·

The configuration bit stream begins with preamble bits, a
preamble code and a length count. The length count is
loaded into the control logic of the Logic Cell Array and
is used to determine the completion of the configuration
process. When configuration is initiated, a 24-bit length
counter is set to 0 and begins to count the total number
of configuration clock cycles applied to the device.
When the current length count equals the loaded
length count, the configuration process is complete.
Two clocks before completion, the internal logic
becomes active and is reset. On the next clock, the
inputs and outputs become active as configured and
consideration should be given to avoid configuration
signal contention. (Attention must be paid to avoid
contention on pins which are used as inputs during
configuration and become outputs in operation.) On the
last configuration clock, the completion of configuration
is signalled by the release of the DONE I PROG pin of
the device as the device begins operation. This open­
drain output can be AND-tied with multiple Logic Cell
Arrays and used as an active-high READY or active-low,
RESET, to other portions of the system. High during
configuration (HDC) and low during configuration (LDC),
are released one CCLK cycle before DONE is asserted.
In master mode configurations, it is convenient to use
LDC as an active-low EPROM chip enable.

As each data bit is supplied to the LCA, it is internally
assembled into a data word. As each data word is
completely assembled, it is loaded in parallel into one
word of the internal configuration memory array. The last
word must be loaded before the current length count
compare is true. If the configuration data are in error, eg.
PROM address lines swapped, the LCA will not be ready
at the length count and the counter wjll cycle through an
additional complete count prior to configuration being
"done".

Figure 14 shows the selection of the configuration
mode based on the state of the mode pins MO and M1.
These package pins are sampled prior to the start of the
configuration process to determine the mode to be
used. Once configuration is DONE and subsequent
operation has begun, the mode pins may be used to
perform data readback, as discussed later. An additional
mode pin, M2, must be defined at the start of config­
uration. This package pin is a user-configurable 1/0 after
configuration is complete.

Initialization Phase

When power is applied, an internal power-on-reset
circuit is triggered. When Vee reaches the voltage at
which the LCA begins to operate (2.5 to 3 Volts), the
chip is initialized, outputs are made high-impedance and
a time-out is initiated to allow time for power to stabilize.
This time-out (15 to 35 ms) is determined by a counter
driven by a self-generated, internal sampling clock that
drives the configuration clock (CCLK) in master config­
uration mode. This internal sampling clock will vary with
process, temperature and power supply over the range
of 0.5 to 1.5 MHz. LCAs with mode lines set for master
mode will time-out of their initialization using a longer
counter (60 to 140 ms) to assure that all devices, which it
may be driving in a daisy chain, will be ready. Con-

1-20

0010003 14
MODE PIN

MODE SELECTED
MO M1 M2

0 0 0 MASTER SERIAL

0 0 1 MASTER LOW MODE

0 1 1 MASTER HIGH MODE

1 0 1 PERIPHERAL MODE

1 1 1 SLAVE MODE

MASTER LOW ADDRESSES BEGIN AT 0000 AND INCREMENT
MASTER HIGH ADDRESSES BEGIN AT FFFF AND DECREMENT

Figure 14. Configuration Mode Selection

figuration using peripheral or slave modes must be de­
layed long enough for this initialization to be completed.

tional cycles of the internal sampling clock (197 for
the XC2018) to clear the internal memory before
another configuration may begin. The same is true of a
configured part in which the reconfigurable control bit is
set. When a HIGH-to-LOW transition on the DONE I
PROG package pin is detected, thereby initiating a
reprogram, the configuration memory is cleared. This in-

The initialization phase may be extended by asserting
the active-low external RESET. If a configuration has
begun, an assertion of RESET will initiate an abort,
including an orderly clearing of partially loaded
configuration memory bits. After about 3 clock cycles for
synchronization, initialization will require about 160 addi-

sures an orderly configuration in which no internal signal •
conflicts are generated during the loading process.

0010003 12

0010003 13

POWER APPLIED

RESET
ASSERTED

RESET

DONE/PROG LOW TRANSITION
(RE PROGRAMMABILITY OPTION ENABLED)

1111
0010
< 24-BIT LENGTH COUNT>
1111

0 <DATAFRAME#001>111
0 <DATAFRAME#002> 111
0 <DATA FRAME #003 > 111

0 <DATAFRAME#159> 111
0 <DATAFRAME#160> 111

1111

Figure 12. Configuration State Diagram

)

DUMMY BITS (4 BITS MINIMUM)
PREAMBLE CODE
CONFIGURATION PROGRAM LENGTH
DUMMY BITS (4 BITS MINIMUM)

160 CONFIGURATION DATA FRAMES

(EACH FRAME CONSISTS OF:
A STARTBIT (0)
A 71-BIT DAT AFIELD
2 OR MORE DUMMY BITS

POST AMBLE CODE (4 BITS MINIMUM)

Figure 13. XC2064 Configuration Data Arrangement

1-21

DONE/PROG LOW
TRANSITION
(RE PROGRAMMABILITY
OPTION DISABLED)

REPEATED FOR EACH LOGIC
CELL ARRAY IN A DAISY CHAIN

-

XC2064 / 2018 Logic Cell Array

Master Mode

In master mode, the Logic Cell Array automatically loads
the configuration program from an external memory
device. Figure 15a shows an example of the master
mode connections required. The Logic Cell Array pro­
vides sixteen address outputs and the control signals
RCLK (read clock), HOC (high during configuration) and
LDC (low during configuration) to execute read cycles
from the external memory. Parallel eight-bit data words
are read and internally serialized. As each data word is

-;;;-

read, the least significant bit of each byte, normally DO, is
the next bit in the serial stream.

Addresses supplied by the Logic Cell Array can be
selected by the mode lines to begin at address 0 and
incremented to read the memory (master low mode), or
they can begin at address FFFF Hex and be
decremented (master high mode). This capability is
provided to allow the Logic Cell Array to share external
memory with another device, such as a microprocessor.
For example, if the processor begins its execution from

+5V

Vee MO M1 PWAOWN

l OOUT

M2 CCLI<

HOC

GENERAL·
LDC A15

PURPOSE RCiJ(A14
USERl/O

PNS A13 EPROM
~8 .)~ A12 OR GER)

: OTHER
: PINS A11

LCA A10 A10

RESET A9 A9

AB AS

A7 A7

AB AS

AS AS

M M

A3 A3

01 A2 A2

DO A1 A1

AO AO

DIP

OATABUS

(O~~t\:1 ==1'-----------c=f=
00-07 ______ _.....XXX)@...._.......,

11
BYTE N ~

RCLK
(OUTPUT)

CCLK
(OUTPUT)

OOUT
(OUTPUT)

-·---:-, _ \._ _____ __,.,.

Figure 1 Sa. Master Low Address Configuration

1-22

0010003 15A

low memory, the Logic Cell Array can load itself from
high memory and enable the processor to begin
execution once configuration is completed. The DONE
I PROG output pin can be used to hold the processor in
a Reset state until the Logic Cell Array has completed
the configuration process.

The master serial mode uses serial configuration data,
synchronized by the rising edge of RCLK, as in
Figure 15b.

Peripheral Mode

Peripheral mode provides a simplified interface through
which the device may be loaded as a processor

+5V

peripheral. Figure 16 shows the peripheral mode
connections. Processor write cycles are decoded from
the common assertion of the active-low write strobe
(WRT), and two active-low and one active-high chip
selects (CSO cs1 CS2). If all these signals are not
available, the unused inputs should be driven to their
respective active levels. The Logic Cell Array will accept
one bit of the configuration program on the data input •
(DIN) pin for each processor write cycle. Data is supplied
in the serial sequence described earlier.

Since only a single bit from the processor data bus is •
loaded per cycle, the loading process involves the
processor reading a byte or word of data, writing a bit of
the data to the Logic Cell Array, shifting the word and

MO Ml PWRDWN

0010003 15A1

GENERAL­
PURPOSE

USERl/O

DOUT
(OUTPUT)

CCLK
(OUTPUT)

PNS

DOUT

M2 CCLK

HOC

LDC

)

ALL
OTHER
PINS

LCA

RESET

DIN DATA

RCLK -+--->! CLK

CE

DIP OE

SERIAL
MEMORY

Figure 15b. Master Serial Mode Configuration

1-23

XC2064 / 2018 Logic Cell Array

writing a bit until all bits of the word are written, then
continuing in the same fashion with the next word, etc.
After the configuration program has been loaded, an
additional three clocks (a total of three more than the
length count) must be supplied in order to complete the
configuration process. When more than one device is
being used in the system, each device can be assigned
a different bit in the processor data bus, and multiple
devices can be loaded on each processor write cycle.
This "broadside" loading method provides a very easy
and time-efficient method of loading several devices.

Slave Mode

Slave mode, Figure 17, provides the simplest interface
for loading the Logic Cell Array configuration. Data is
supplied in conjunction with a synchronizing clock. For
each LOW-to-HIGH input transition of configuration
clock (CCLK), the data present on the data input (DIN)
pin is loaded into the internal shift register. Data may be
supplied by a processor or by other special circuits.
Slave mode is used for downstream devices in a daisy­
chain configuration. The data for each slave LCA are
supplied by the preceding LCA in the chain, and the

ADDRESS
BUS

DATA
BUS

+5V

clock is supplied by the lead device, which is configured
in master of peripheral mode. After the configuration
program has been loaded, an additional three clocks (a
total of three more than the length count) must be sup­
plied in order to complete the configuration process.

Daisy Chain

The daisy-chain programming mode is supported by
Logic Cell Arrays in all programming modes. In master
mode and peripheral mode, the LCA can act as a source
of data and control for slave devices. For example,
Figure 18 shows a single device in master mode, with 2
devices in slave mode. The master mode device reads
the external memory and begins the configuration load­
ing process for all of the devices.

The data begin with a preamble and a length count
which is supplied to all devices at the beginning of the
configuration. The length count represents the total
number of cycles required to load all of the devices in
the daisy chain. After loading the length count, the lead
device will load its configuration data while providing a
HIGH DOUT to downstream devices. When the lead

+5V +5V

MO M1PWR

ADDRESS
DECODE
LOGIC

cso

'--------<11cs1
-------1cs2

DIP
RESET

CS2

CCLK
(OUTPUT)

OWN

CCLK

LCA DOUT

M2

HOC

LDC

ALL! OTHER
PINS

GENERAL·
PURPOSE
USERl/O

oouT-----""<::"--"\r--------_..,--...r­
(OUTPUT)------~'------------''---

Figure 16. Peripheral Mode Configuration

1-24

0010003 15B

device has been loaded and the current length count
has not reached the full value, memory access
continues. Data bytes are read and serialized by the
lead device. The data are passed through the lead
device and appear on the data out (DOUT) pin in serial
form. The lead device also generates the configuration
clock (CCLK) to synchronize the serial output data. A
master mode device generates an internal CCLK of 8
times the EPROM address rate, while a peripheral mode
device produces CCLK from the chip select and write
strobe timing.

Operation

When all of the devices have been loaded and the
length count is complete, a synchronous start-up of
operation is performed. On the clock cycle following the
end of loading, the internal logic begins functioning in
the reset state. On the next CCLK, the configured
output buffers become active to allow signals to
stabilize. The next CCLK cycle produces the DONE
condition. The length count control of operation allows
a system of multiple Logic Cell Arrays to begin operation
in a synchronized fashion. If the crystal oscillator is
used, it will begin operation before config-uration is
complete to allow time for stabilization before it

MICRO
COMPUTER

STRB

DO

01

110 D2 POAT
03

D4

DS

D6

07

RESET

DIN=x BITN

~ I· ~ CCLK

is connected to the internal circuitry.

Special Configuration Functions

In addition to the normal user logic functions and inter­
connect, the configuration data include control for sev­
eral special functions:

• Input thresholds •

• Readback enable

• Reprogram enable -
• DONE pull-up resistor

Each of these functions is controlled by a portion of the
configuration program generated by the XACT Develop­
ment System.

Input Thresholds

During configuration, all input thresholds are TIL level.
During configuration input thresholds are established as
specified, either TIL or CMOS. The PWRDWN input
threshold is an exception; it is always a CMOS level
input. The TIL threshold option requires additional pow­
er for threshold shifting.

+5V

MO M1 PWRDWN

LCA

CCLK DOUT

DIN M2

HOC

LDc GENERAL-
PURPOSE
USER 110

'"l OTHER
PINS

DIP

RESET

BITN +1

~ I m DOUT BITN-1 BITN
(OUTPUT)

0010003 15C

Figure 17. Slave Mode Configuration

1-25

XC2064 / 2018 Logic Cell Array

Read back

After a Logic Cell Array has been programmed, the
configuration program may be read back from the
device. Readback may be used for verification of config­
uration and as a method of determining the state of
internal logic nodes during debugging. In applications
in which the verification is not used, it may be desirable
to limit access to the configuration data. Three readback
options are provided: on command, only once and
never. If on-command readback is selected, the device
will respond to all readback requests. If readback once is
selected, the device will respond only to the first
readback request after programming is complete.
Subsequent readback requests will be ignored. If read­
back never is selected, the device will not respond to a
readback command.

Readback is accomplished without the use of any of the
user 1/0 pins; only MO, M1 and CCLK pins are used. An
initiation of readback is produced by a LOW-to-HIGH
transition of the MO I RTRIG (read trigger) pin. Once the
readback command has been given, CCLK is cycled to
read back each data bit in a format similar to loading.
After two dummy bits, the first data frame is shifted out,
in inverted sense, on the M1 I RDATA (read data) pin. All
data frames must be read back to complete the process
and return the mode select and CCLK pins to their
normal functions.

In addition to the configuration program, the readback
includes the current state of each of the internal logic
block storage elements, and the state of the input (I)
connection pin on each 1/0 block. This state information
is used by the Logic Cell Array development system In­
Circuit Emulator to provide visibility into the internal
operation of the logic while the system is operating. To
readback a uniform time sample of all storage elements it
may be necessary to inhibit the system clock.

Re-program

The configuration memory of the Logic Cell Array may
be rewritten while the device is in the user's system, if
that option is selected when the LCA is configured. If
another programming cycle is to be initiated, the dual
function package pin DONE I PROG must be given a
HIGH-to-LOW transition. Sensitivity to noise is reduced,
by confirming the HIGH-to-LOW transition over 2-3
cycles using the LCA's internal sampling oscillator.
When a reprogram command is recognized, all internal
logic and connectivity definitions are erased and the 110
package pins are forced to a high .impedance condition.
The device returns to the initialization state. Reprogram
control is often implemented with an external open
collector driver which pulls DONE I PROG LOW. Once it

recognizes a stable request, the Logic Cell Array will
hold a LOW until the new configuration has been
completed. Whether or not the reprogram request is
maintained, the Logic Cell Array will begin ·operation
upon completion of configuration.

DONE Pull-up

The DONE I PROG pin is an open drain 1/0 that indicates
programming status. As an input, it initiates a reprogram
operation. An optional internal pull-up resistor may be
enabled.

Battery Backup

Because the control store of the Logic Cell Array is a
CMOS static memory, its cells require only a very low
standby current for data retention. In some systems,
this low data retention current characteristic facilitates
preserving configurations in the event of a primary
power loss. The Logic Cell Array has built in power­
down logic which, when activated, will disable normal
operation of the device and retain only the configuration
data. All internal operation is suspended and output
buffers are placed in their high impedance state.

1-26

Power-down data retention is possible with a simple
battery-backup circuit because the power requirement is
extremely low. For retention at 2.0 volts, the required
current is typically on the order of 50 nanoamps. Screen­
ing of this parameter is available. To force the Logic Cell
Array into the power-down state, the user must pull the
PWRDWN pin low and continue to supply a retention
voltage to the Vee pins of the package. When normal
power is restored, Vee is elevated to its normal operating
voltage and PWRDWN is returned to a HIGH. The Logic
Cell Array resumes operation with the same internal
sequence that occurs at the conclusion of config­
uration. Internal 1/0 and logic block storage elements will
be reset, the outputs will become enabled and then the
DONE/PROG pin will be released. No configuration
programming is involved.

PERFORMANCE

The high performance of the Logic Cell Array results
from its patented architectural features and from the use
of an advanced high-speed CMOS manufacturing
process. Performance may be measured in terms of
minimum propagation times for logic elements.

Flip-flop loop delays for the 1/0 block and logic block flip­
flops are about 3 nanoseconds. This short delay
provides very good performance under asynchronous
clock and data conditions. Short loop delays minimize

r\:i
......

REPROGRAM

SYSTEM RESET

0010003 15D

+SV +SV l J~~~
OOUT

(M2

HOC

GENERAL- ~ =]LDC
PURPOSE RCLK
USER VO

PNS

ALL
OTHER
PINS

LCA

MASTER

07

D6

D5

D4

D3

A15

A14

A13

A12

A11

A10

A9

AS>-------<

A71----I

A6t----t

AS>-----1

A4t----t

A3t----t

A21-----I

A11-----1

AQl----1

RESET LDC 1--+--+-d

+SV

MO M1PWRDWN

CCLK

DIN DOUT

LCA
SLAVE#!

M2

MS HOC

M4 LDC

M3
EPROM

M2

M1

MO

~'(OTHER
PINS

M DIP

M RESET

~ ITT

M 00

M ~

M ~

M 00

~ m
M ~

~ 00

OE

~

Figure 18. Master Mode with Daisy Chain

+SV

MO M1 PWADWN

CCLK

DIN DOUT

LCA -·· SLAVE#n
M2

HOC

GENERAL- LDC t f GENERAL-
PURPOSE

(::l~"l5' USER VO

ALL
: OTHER

PINS

DIP

RESET

M

I •

XC2064 / 2018 Logic Cell Array

the probability of a metastable condition which can result
from assertion of the clock during data transitions.
Because of the short loop delay characteristic in the
Logic Cell Array, the VO block flip-flops can be used very
effectively to synchronize external signals applied to the
device. Once synchronized in the 1/0 block, the signals
can be used internally without further consideration of
their clock relative timing, except as it applies to the
internal logic and routing path delays.

Device Performance

The single parameter which most accurately describes
the overall performance of the Logic Cell Array is the
maximum toggle rate for a logic block storage element
configured as a toggle flip-flop. The configuration for
determining the toggle performance of the Logic Cell
Array is shown in Figure 19. The clock for the storage
element is provided by the global clock buffer and the
flip-flop output Q is fed back through the combinatorial
logic to form the data input for the next clock edge.
Using this arrangement, flip-flops in the Logic Cell Array
can be toggled at clock rates from 33-70 MHz,
depending on the speed grade used.

Actual Logic Cell Array performance is determined by
the critical path speed, including both the speed of the
logic and storage elements in that path, and the speed
of the particular network routing. Figure 20 shows a
typical system logic configuration of two flip-flops with an
extra combinatorial level between them. Depending on
speed grade, system clock rates to 35 MHz are practical
for this logic. To allow the user to make the best use of
the capabilities of the device, the delay calculator in the
XACT Development System determines worst-case
path delays using actual impedance . and loading
inf9rmation. ·

D 0 --~,~- X,Y

0010003 16A

Figure 19. Logic Block Configuration for
Toggle Rate Measurement

Logic Block Performance

Logic block propagation times are measured from the
interconnect point at the input of the combinatorial logic
to the output of the block in the interconnect area. Com­
binatorial performance is independent of logic function
because of the table look-up based implementation.
Timing is different when the combinatorial logic is used
in conjunction with the storage element. For the
combinatorial logic function driving the data input of the
storage element, the critical timing is data set-up relative
to the clock edge provided to the storage element. The
delay from the clock source to the output of the logic
block is critical in the timing of signals produced by
storage elements. The loading on a logic block output is
limited only by the additional propagation delay of the
interconnect network. Performance of the logic block is
a function of supply voltage and temperature, as shown
in Figures 22 and 23.

1-28

Interconnect Performance

Interconnect performance depends on the routing
resource used to implement the signal path. As discus­
sed earlier, direct interconnect from block to block pro­
vides a minimum delay path for a signal.

The single metal segment used for long lines exhibits
low resistance from end to end, but relatively high capa­
citance. Signals driven through a programmable switch
will have the additional impedance of the switch added
to their normal drive impedance.

General-purpose interconnect performance depends
on the number of switches and segments used, the pre­
sence of the bidirectional repowering buffers and the
overall loading on the signal path at all points along the
path. In calculating the worst-case delay for a general
interconnect path, the delay calculator portion of the
XACT development system accounts for all of these
elements. As an approximation, interconnect delay is
proportional to the summation of totals of local metal
segments beyond each programmable switch. In effect,
the delay is a sum of R-C delays each approximated by
an R times the total C it drives. The R of the switch and
the C of the interconnect are functions of the particular
device performance grade. For a string of three local
Interconnects, the approximate delay at the first
segment, after the first switch resistance, would be
three units; an additional two delay units after the next
switch plus an additional delay after the last switch in the
chain. The interconnect R-C chain terminates at each
repowering buffer. Nearly all of the capacitance is in the
interconnect metal and switches; the capacitance of the
block inputs is not significant. Figure 21 shows an esti­
mation of this delay.

0010003 168

INPUTS

GLOBAL
CLOCK

INCREMENTAL

IF R1-R2·Ra ·R ANO c,.c2-C3-C
THEN CUMULATIVE DELAY

0010003 17

f:XlllNX

COMBINATORIAL CLB

• DESTINATION CLB -
Figure 20. Typical Logic Path

3RC SAC 6RC 6RC+BUFFEA

Figure 21. Interconnection Delay Example

1-29

XC2064 / 2018 Logic Cell Array

DEVELOPMENT SYSTEM

To support designers using the Logic Cell Array, Xilinx
provides a basic development system with several
options for additional productivity. The XACT system
provides the following:

• Graphic-driven design entry
• Schematic entry
• Interactive timing delay calculations
• Macro library support, both for standard Xilinx supplied

functions and user-defined functions
• Design entry checking for consistency and

completeness
• Automatic design documentation generation
• Automatic placement and routing
• Simulation interface support, including automatic

netlist (circuit description) and timing extraction
• In-circuit emulation for multiple devices

The host system on which the XACT system operates is
an IBM® PC/XT™ or PC/AT™ or compatible system with
DOS 2.1 or higher. Color graphics is required as well as
640K bytes of internal RAM (an Expanded Memory
Specification (EMS) card with 256K bytes of memory is
required for the XC2018). A complete system requires
one parallel 1/0 port and two serial ports and a mouse.

Designing with XACT

Designing with the Logic Cell Array is similar to using
conventional MSI elements or gate array macros. The
first step is to partition the desired logic design into
Logic Blocks and 1/0 blocks, usually based on shared
input variables or efficient use of flip-flop and combi­
natorial logic. Following a plan for placement of the
blocks, the design information may be entered using
the interactive Graphic Design Editor. The design
information includes both the functional specifications
for each block and a definition of the interconnection
networks. A macro library provides a simplified entry of
commonly used logic functions. As an alternative to
interactive block placement and configuration, a sche­
matic may be created using elements from the macro
library. Automatic placement and routing is available for
either method of design entry. After routing the
interconnections, various checking stages and proces­
sing of that data are performed to ensure that the design
is correct. Design changes may be implemented in
minutes. The design file is used to generate the pro­
gramming data which can be down loaded directly into

an LCA in the target system and operated. The program
information may be used to program PROM, EPROM or
ROM devices, or stored in some other media as needed
by the final system.

Design verification may be accomplished by using the
Xilinx XACTOR In-Circuit Emulation System directly in
the target system and/or the P-Silos™ logic simulator.

PACKAGE PIN DESCRIPTIONS

1-30

PWRDWN An active low power-down input stops all
internal activity to minimize Vee power and
puts all output buffers in a high-impedance
state. Configuration is retained, however,
internal storage elements are Reset. When
the PWRDWN pin returns HIGH, the device
returns to operation with the same
sequence of reset, buffer enable and
DONE I PROGRAM as at the completion of
configuration.

MO
RTRIG

M1
RDATA

M2

HOC

As Mode O, this input and M1, M2 are
sampled before the start of configuration to
establish the configuration mode to be
used.
As a read trigger, an input transition to a
HIGH, after configuration is complete, will
initiate a readback of configuration and
storage element data. This operation may
be limited to a single request, or be
inhibited altogether, by selecting the
appropriate readback option when
generating the bit stream.

As Mode 1, this input and MO, M2 are
sampled before the start of configuration to
establish the configuration mode to be
used.
As an active-low read data; after config­
uration is complete, this pin is the output of
the readback data.

As Mode 2, this input and MO, M1 are
sampled before the start of configuration to
establish the configuration, mode to be
used. After configuration, this pin becomes
a user-programmable 1/0.

High during configuration is held at a HIGH
level by the LCA until after configuration. It
is intended to be available as a control indi­
cation that configuration is not complete.

LDC

DONE
PROG

XTL1

XTL2

After configuration, this pin is a user 110.

Low during configuration is held at a LOW
level by the LCA until after configuration. It
is intended to be available as a control
indication that configuration is not comple­
ted. It is particularly useful in master mode
as a LOW enable for an EPROM. After
configuration, this pin is a user 1/0. If used
as a LOW EPROM enable, it should be
programmed as a HIGH after configuration.

This is an active-low input which has three
functions. Prior to the start of configuration,
a LOW input will delay the start of the
configuration process. An internal circuit
senses the application of power and begins
a minimal time-out cycle on the order of 100
ms. When the time-out and RESET are
complete, the levels of the "M" mode lines
are sampled and configuration begins. If
RESET is asserted during a configuration,
the LCA is reinitialized and will restart the
configuration at the termination of RESET.
If RESET is asserted after configuration is
complete, it will provide an asynchronous
reset of all 108 and CLB storage elements
of the LCA.

The DONE open drain output is config­
urable with or without a pull-up resistor of
about 3KO. At the completion of config­
uration, the circuitry of the LCA becomes ac­
tive in a synchronous order and one config­
uration clock cycle later DONE is asserted.
Once configuration is done, a HIGH-to-LOW
transition of this program pin will cause an
initialization of the LCA and start a
reconfiguration if that mode is selected in
the current configuration.

This user 1/0 pin may be configured to
operate as the output of an amplifier usable
with an external crystal and bias circuity to
form an oscillator.

This user 1/0 pin may be configured to
operate as the input of an amplifier usable
with an external crystal and bias circuity to
form an oscillator.

CCLK During configuration, configuration clock is
an output of an LCA in either master or
peripheral mode. LCAs in slave mode use it
as a clock input. During a readback opera­
tion, it is an input clock for the configuration
data being output.

1-31

DOUT This user 1/0 pin is used during config­
uration to output serial configuration data •
out for daisy-chained slaves' data in.

DIN This user 1/0 pin is used as serial data in •
during slave or peripheral configuration.
This pin is DO in master configuration mode.

CSO, CS1 These 4 inputs represent a set of signals, 3
CS2, WRT active low and one active high, which are

used in the peripheral mode to control
configuration data entry. The assertion of
all four generates a LOW CCLK and shifts
DOUT data. The removal of any assertion
clocks in the DIN data present and causes a
HIGH CCLK. In master mode, these pins
become part of the parallel configuration
byte (D4,D3,D2,D1). After configuration is
complete, they are user-programmed 1/0.

RCLK During master mode configuration, this pin
represents a read clock of an external
memory device. After configuration is
complete, this pin becomes a user­
programmed 1/0.

DO-D7 This set of 8 pins represent the parallel
configuration data byte for the master
mode. After configuration is complete, they
are user-programmed 1/0.

AO-A 15 This set of 16 pins present an address
output for an external configuration memory
during master mode. After configuration is
complete, they are user-programmed 110.
A 12 through A 15 are not available in
packages with less than 68 pins.

1/0 A pin which may be programmed by the
user to be input and/or output following
configuration. Some of these pins present
a high-impedance pull-up or perform other
functions before configuration is complete.

XC2064 / 2018 Logic Cell Array

1.3

1.2

6
1.1

w
!:::! 1.0
a!
::::E

0.9 a:

~
?(0.8

al
0.7 0

0.6

0.5
-55 -40 0 30 70 85 125

TEMPERATURE ('C)

NOTE: NORMALIZED FOR FOUR TEMPERATURES

0010003 17A

Figure 22. Delay vs. Temperature

12

6
1.1 w

N
::J
c(
:;
a:
0

1.0 ?:.

~ w
c

0.9

4 4.5 5.0 5.5 6.0

Vee

0010003 179

Figure 23. Delay vs. Power Supply

1-32

150+----+----t---+---l-+------11-----l.l~/l'-_Ll-l--+-..,l-
100 +----!----+---+----l-------l------l-_..,,c_L_---+--1...L--L.J____.l._v

100
90
80
70
60

50

~

30

20

L Y1 v 50-l-----+----t---+---l-+-~----11----+-4--1--..4---1-10
t--~~+-~~-+-~+--1-~IZ~.L.~~-1----;z_-~~----1-~-v~~L.......1.----1-s

~+-~~-+-~~--+~--+~~_L_-JL~~--1-~---,,1.:.__~-1--2'~~-1---1-a

7 T /IL :

r7 iz2 ~ IZ:
30

(mW)
20

/ 7 L y 3

0 -t--t---:I7,.c-----+--V--tr---1-Vi-----,.c...-1-~v --1----1--1- 2

·~/ ,J ~ .
20CLBOUTPUTS 41-¥----+7~'----+--7~+---l-+---L...,,.£11------1--1----l--I- ·8

3LOCALSEGMENTS [7 .7

EACH3 T 7 -r .6

2 +-17_..,,,.7'----+--7-+7--+-i---+v--A-v---+----+----+--i--I-::
(3mW/MHz) /¥----+17?---+---4[7~A----+-----1-----1----l---1---1- .3

GLOBAL CLOCK /i _,.1
BUFFER 1 ~ r

(1.25mW/MHz) / LJ
11/00UTPUT

(50pF)o.s T7
0.5 1

(0.4mW/MHz) /

1 CLBOUTPUT
3LOCAL

lfil'ERCONNECT

2 4 5 10 20

FREQUENCY MHz

Table 1. Typlcal LCA Power Consumption By Element

1-33

.2

.1
30 40 50

l:XILINX

I

•

(mA)

0010003 19

XC2064 / 2018 Logic Cell Array

CONFIGURATION MODE: <M2:M1 :MD>
48 68 68 t----,,S,-LA"°V""'E--,--,P"'E""'R""'1P"'HE"'RA,..,-L -,-.,-M.,-AS'°'T"'E-R--H"°'IG-H-.-.,-M-AS'°'T"'E-R--LO-W--1
DIP PLCC PGA <1:1:1> <1:0:1> <1:1:Cb <1:0:0>

4
5
6
7
8

10

11
12
13

14

15
16
17
16
19
20

21

26
27
28
29
30
31
32
33

34

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
30

86 GND

g~ I f
~~ :::::•:::

F2
F1
G2
G1

H2 I
H1
J2

:/:•:

K1 MO LOW) MO HIGlj)__
K2 M2 (HIGH)
L2 HDC (HIGH)
K3 ··::· ... ·.;:·::·.··>·«HIGH>>~

MO.LOW)

35 }[G1o coo][I 04 (ll
36 51 G11 2! l:S1 I 03(1)

37

38
39
40
41
42
43
44
45
46

47

48

52 F10 VCC
53 F11 .}(: [IT~ ~
54 E10 <~Hi(lfi>~> cs2J!I ~
55 E11 } : :o::~

59 C11 OOUT (0)
60 811 CCLK (I) _! CCLK (0)
61

~ M M R

~ -f, ~· ± ~~· :g:

USER
OPERATION

VO

1/0

RTRIGfil:

VO

VO

XTL20Al!O

l'RCX'iJ!l.
XTL 1OR1/0

VO

VO

CCL'U!)_

VO

«HIGH>> IS HIGH IMPEDANCE WITH A 20-50 KO INTERNAL PULL-UP DURING CONFIGURATION

Table 2a. XC2064 Pin Assignments

0010003 20

1-34

0010003 21

CONFIGURATION MODE: <M2:Mt :MO.

p~~C :A p~ :,:A1--S-LA_V_E--.-P-ER-l-PH_E_RA_L~-MAS--TE-R-.H-IG-H-.-M-AS_T_E_R--L-O-W-l
c1:1:1> c1:0:1> c1:1:0> c1:0;0>

B&
2 AB

BS
4 [!S
5 [!•
6 A4
7 B3
8~
9 A2
to [!!!
11 81
12 C2
t3 LQ1
t4 02
ts Dt

ts~

t7 ~
tB 2
19 Ft

20 G2

2t Gt
22 H2
23 Ht
24 J2
2S Jt
26 Kt
27 K2

20 K3
30 L3
3t K4
32 L4

33 KS
34 LS

35 K&

36 L6
37 K7
3B L7

cs
A6
AS

[!S
cs
A4
B4
A3
A2

tO ~
11 At
t2 [:!!!:
13 C2
14 81
tS lQ1
tB 02
t7 Dt
18 E3
t9 ~
20 Et
2t 2
22 3
23 G3
24 Gt

25 ~
26 Ft

27 !.!!!
28 H2
29 Jt
30 Kt
3t J2
32 Lt
33 K2
34 K3
3S L2
36 L3
37 K4
3B L4
39 JS
40 ~
4t LS
42 K6
43 J6
44 J7
4S L7
46 K7
47 L6
48 L8

39~ 49 K8
40 L8 SO L9
4t K9 St [!:!O
42 L9 52 KO
43 L10 53 L11
44 ~o 54]!!o
4S ~t 55 JtO
46 J10 56 K11
47 J11 57 J11
48 H10 58 H10

59 H11
49 H11 60 F10

St GtO
SO GtO 62
51 G11 63
52 F10 64
53 F11 65

G11
GO
FO
F11

54 E10 66 E11
67 E10

S5 E11 6B E9
69 011

56 010 70 010
57 011 71 C11
58 1.£10 72 I!)t
59 C11 73 C10
60 B11 74 A11
61 810 75 810
62 A10 76 89
63 89 77 AtO
64 A9
65 BB
66 AB
67 87

68 A7

78 A9
70 B8
BO AB
8t BB
82 B7
83 A7
84 C7 I'?:

:::t::

.•.<HIGH.».

GND

vcc

A6 :Tu
At(]Q[
A7 .J9
A11 0
AB .J9
A10 0

:.H JQ[

..
t HIGH M!:@W) Mt (HIGH) Mt(L

MO(L MO HIGH MO (LOW) MO (HIGH)

CCLK(I)
SC

M2 (HIGH)
HOC (HIGH)

~(LOW)

OOlJT(O)
CCLK(O)

~I
Ac:rR
00(1

AO (0)

At .J2l.
A2 (0)
A3 (0)

~s]!!I
A4 (0)
At4 (0)

~ ,: / :::{//

~ 1Z:t:tJ AS (0)

USER
OPERATION

II()

LlQJ..
RTRIG I

II()

llO

XTL20RllO

[][
XTLt ORllO

II()

II()

CCLKQ)

II()

«HIGH>> IS HIGH IMPEDANCE WITH A 20-S0 KO INTERNAL PULL-UP DURING CONFIGURATION

Table 2b. XC201 B Pin Assignments

1-35

f:XILINX

•
•

XC2064 / 2018 Logic Cell Array

PARAMETRICS

Absolute Maximum Ratings

Vee Supply voltage relative to GND -0.5 to 7.0

V1N Input voltage with respect to GND -0.5 to Vee+ o.5

VTs Voltage applied to three-state output -0.5 to Vee+ o.5

T STG Storage temperature (ambient) -65 to+ 150

T SOL Maximum soldering temperature (1 O sec@ 1 /16 in.) + 260

*Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to
the device. These are stress ratings only, and functional operation of the device at these or any other
conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure
to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operating Conditions Min Max

Vee Supply voltage relative to GND Commercial 0° C to 70° C 4.75 5.25

Supply voltage relative to GND Industrial -40° C to 85° C 4.5 5.5

Supply voltage relative to GND Military -55° C to 125° C 4.5 5.5

V1HT High-level input voltage - TIL configuration 2.0 Vee

VILT Low-level input voltage - TIL configuration 0 0.8

V1Hc High-level input voltage - CMOS configuration .?Vee Vee

V1LC Low-level input voltage - CMOS configuration 0 .2Vcc

1-36

Units

v
v

v
oc
oc

Units

v
v
v
v
v
v

v

f:XILINX

Electrical Characteristics Over Operating Conditions Min Max Units • VoH High-level output voltage (@ loH -= -4.0 ma V cc min) Commercial 3.86 v

Vol Low-level output voltage(@ lol-= 4.0 ma Vee min) 0.32 v -
VoH High-level output voltage (@ loH -= -4.0 ma V cc) Industrial 3.76 v

Vol Low-level output voltage(@ lol-= 4.0 ma Vee) 0.37 v

VoH High-level output voltage (@loH-= -4.0 ma Vee) Military 3.7 v

Vol Low-level output voltage(@ loH-= 4.0 ma Vee) 0.4 v

lcco Quiescent operating power supply current

CMOS thresholds(@ Vee-= 5.0 V) 5 mA

TTL thresholds(@ Vee-= 5.0 V) 10 mA

lccPD Power-down supply current(@ Vee-= 5.0 V) 0.5 mA

l1l Leakage current -10 +10 µA

C1N Input capacitance (sample tested) 10 pF

1-37

XC2064 I 2018 Logic Cell Array

CLB SWITCHING CHARACTERISTICS

INPUT (A,B,C,D)

OUTPUT (X,Y)
(COMBINATORIAL)

OUTPUT (X,Y)
(TRANSPARENTLATCH)

CLOCK(K)

CLOCK(C)

CLOCK(G)

OUTPUT (VIA FF)

SET/RESET DIRECT (A,D)

SET/RESET DIRECT (F,G)

CLOCK (ANY SOURCE)

x) x
CD T1LO~

®Tiro

© T1cK

©Tice © Tcc1

0T1c1

---@Tcco

-----@Tc10

-------'14>-------@ TRLo-----

______.f= ® TcH t @ TcL=1-

1-38

0010003 29

l:X!UNX

CLB SWITCHING CHARACTERISTICS (Continued)

Speed Grade -33 -50 -70

Description Symbol Min Max Min Max Min Max

Logic input to Output Combinatorial 1 T1LO 20 15 10
Transparent latch 2 Tiro 25 20 14
Additional for Q
through F or G to out Tow 13 8 6

K Clock To output 9 TeKO 20 15 10
Logic-input setup 3 T1eK 12 8 7
Logic-input hold 4 TeKI 0 0 0

C Clock To output 10 Teeo 25 19 13
Logic-input setup 5 Tice 12 9 6
Logic-input hold 6 Tce1 6 0 0

Logic input to G Clock To output 11 Tc10 37 27 20
Logic-input setup 7 T1c1 6 4 3
Logic-input hold 8 Ten 9 5 4

Set/Reset direct Input A or D to out 12 TRIO 25 22 16
Through F or G to out 13 TRLO 37 28 21
Master Reset pin to out TMRQ 35 25 20
Separation of set/reset TRs 17 9 7
Set/Reset pulse-width TRPW 12 9 7

Flip-flop Toggle rate Q through F to flip-flop FcLK 33 50 70

Clock Clock high 14 TeH 12 8 7
Clock low 15 Tel 12 8 7

Notes: 1. All switching characteristics apply to all valid combinations of process, temperature and supply.
2. Units are ns unless otherwise specified.

1-39

Units

ns

MHz

• -

XC2064/ 2018 Logic Cell Array

108 SWITCHING CHARACTERISTICS

PAD (IN) '~~ (PACKAGE PIN)

OUTPUT SIGNAL '~l@ ® TTHz i.-
INPUT

THREE-STATE (DIRECl)

@TPL @TLP

L
(VO CLOCK)

@TLW

INPUT
(REGISTERED)

@TRI 0 TRc

REsET

0010003 27

-33 -50 -70 Units

Description Symbol Min Max Min Max Min Max ns

Pad (package pin) To input (direct) 1 Tp10 12 8 6

110 Clock To input (storage) 5 Tu 20 15 11
To pad-input setup 2 Tpl 12 8 6
To pad-input hold 3 TLP 0 0 0
Pulse width 4 hw 12 9 7
Frequency 33 50 70 MHz

Output To pad (output enabled) 8 Top 15 12 9

Three-state To pad begin hi-Z 9 TTHz 25 20 15
To pad end hi-Z 10 TroN 25 20 15

RESET To input (storage) 6 TRI 40 30 25
To input clock 7 TRc 35 25 20

Note: Timing is measured at 0.5 Vee levels with SOpF output load.

1-40

--- ----------~-- -----

GENERAL LCA SWITCHING CHARACTERISTICS

Vcc(VALID)

MO/M1/M2

DONE/PROO
(OUTPUT)

USERl/O

CLOCK
@TcLL=-1--------

0010003 260

-33

Description Symbol Min Max

RESET(2) V cc setup (2.0 V) 1 TvMR 150
M2, M1' MO setup 2 TMR 60
M2, M1, MO hold 3 TRM 60
Width(low) 4 TMRW 150

DONE/PROG Progam width (low) 5 TPGW 6
Initialization 6 TPGI 7

CLOCK Clock (high) 7 TcLH 12
Clock (low) 8 TcLL 12

PWRDWN Setup to Vee 9 Tps 0
Hold from V cc 10 TpH 0
Power Down Vpo 2.0

Notes: 1. Vee must rise from 2.0 Volts to Vee minimum in less than 10 ms for master mode.
2. RESET timing relative to power-on and valid mode lines (MO, M1, M2) is relevant

only when RESET is used to delay configuration.
3. Minimum CLOCK widths for the auxiliary buffer are 1.25 times the T CLH· T CLL·

1-41

-50

Min Max

150
60
60

150

6
7

8
8

0
0

2.0

l::XILINX

-70 Units

Min Max ns

150
60
60

150

6 µs
7 µs

7
7

0
0

2.0 v

I

•

XC2064 / 2018 Logic Cell Array

MASTER MODE PROGRAMMING SWITCHING CHARACTERISTICS

'RCLK
(OUTPUl)

----- © TRcL------.14--0 TRCH

CCLI<
(OUTPUl)

OOUT
(OUTPUl)

RCLK

Description

From address invalid
To address valid
To data setup
To data hold
RCLK high
RCLK low

Symbol

1 TARC
2 TRAC
3 ToRc
4 TRco
5 TRCH
6 TRCL

Notes: 1. CCLK and DOUT timing are the same as for slave mode.
2. At power-up, Vee must rise from 2.0 V to Vee min. in less than 10 ms.

1-42

06

BYTE n-1

-33 -50

Min Max Min Max

0 0
200 200

60 60
0 0

600 600
4.0 4.0

07

0010003 26A

-70 Units

Min Max ns

0
200

60
0

600
4.0 µs

f:XILINX

PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS

cso

CS1

WFiT

CS2

CCLK(2)
(OUTPUT)

DIN

DOUT(2)
(OUTPUT)

0010003 288

-33 -50 -70

Description Symbol Min Max Min Max Min

Controls(1) Active (last active input 1 TcA 0.25 5.0 0.25 5.0 0.25
(CSO, CS1, CS2, WAT) to first inactive)

Inactive (first inactivate 2 Tc1 0.25 0.25 0.25
input to last active)

CCLK(2l 3 Tccc 75 75
DIN setup 4 Toe 35 35 35
DIN kold 5 Teo 5 5 5

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WAT)
to transition to active or inactive state.

2. CCLK and DOUT timing are the same as for slave mode.
3. Configuration must be delayed at least 40 ms after Vee min.

1-43

Units

Max ns

5.0 µs

µs

75

• -

XC 206412018 Logic Cell Array

SLAVE MODE PROGRAMMING SWITCHING CHARACTERISTICS

DIN ~ BITN ro.._......_. ___ s_1T_N_+1 _________ _

~(!)Toce @Tcco~
eeLK

DOUT
(OUTPUT}

----@ TccL __ _..

BITN-1 XXX._ ___ s_1T_N __ _

0010003 28A

-33 -50

Description Symbol Min Max Min Max

CCLK To DOUT 3 Tcco 65 65
DIN setup 1 Toce 0 0
DIN hold 2 Tcco 40 40
High time 4 TccH 0.25 0.25
Low time 5 TccL 0.25 5.0 0.25 5.0
Frequency Fee 2 2

Note: Configuration must be delayed at least 40 ms after Vee min.

PROGRAM READBACK SWITCHING CHARACTERISTICS

DONE/PROO
(OUTPun ---'"1------------------------------------

RTRIG

CCLK

RTRIG

eCLK(1)

RDATA
(OUTPun

CD ToRT ,.__...---@ TRTH
Ir------.+........-.,.----------~

0 TccRD
+

_____ .'l:l:i:i......_...,, ,__vA_L_io __________ __

-33 -50

Description Symbol Min Max Min Max

PROG setup 1 ToRT 300 300
RTRIG high 2 TRTH 250 250

RTRIG setup 3 TRTCC 100 100
RDATA delay 4 TccRD 100 100

Notes: 1. CCLK and DOUT timing are the same as for slave mode.

-70 Units

Min Max ns

65
0

40
0.25 µs
0.25 5.0 µs

2 MHz

0010003 269

-70 Units

Min Max ns

300
250

100
100

2. DONE/PROG output/input must be HIGH (device programmed) prior to a positive transition of RTRIG (MO).

1-44

0010003 22

0010003 30

48PIN 68PIN 84PIN

PLASTIC CERAMIC PLASTIC CERAMIC PLASTIC CERAMIC
DIP DIP PLCC PGA PLCC PGA

-PD48 -CD48 -PC68 -PG68 -PC84 -PG 84

-33 c IM Cl M
XC-2064

-50 c c

-70 c c

-33 Cl Cl

XC-2018 -50 c c

-70 c c

C = COMMERCIAL o• C TO 70° C

I = INDUSTIAL -40°CT085°C

M =MILITARY -55°CT0125°C

B • MILITARY MIL883C LEVEL B

Table 5. LCA Package and Temperature Options

Ordering Information

Further information is available from Xilinx franchised
distributors or from the nearest Xilinx sales repre­
sentative. Part numbers are composed as follows:

1-45

I

•

XC 206412018 Logic Cell Array

f
.100±.010
46 PL

DIMENSIONS IN INCHES
NOT DRAWN TO SCALE

2.440

. 01848 PL

48-Pin Plastic DIP Package

PIN~

.040±.020! r•f------------2.400±.02•-----------_J

.l
.100+.025

t

,J,,, '.~~-r
.045± .010 .018± .002

DIMENSIONS IN INCHES
NOT DRAWN TO SCALE

48-Pin Ceramic DIP Package

1-46

~~.010REF .

0010003 24

t.610±.010j

R.010±.002

0010003 33

0010003 31

le----------uooS0±.012------~

PIN NO 1 INDEX __,/§)

DIMENSIONS ARE IN INCHES

0010003 25

68-Pln PLCC Package

j_
T
.018
±.00201A

NOTE: 1NOEX PIN MAY OR MAY NOT BE
ELECTRICALLY CONNECTED TO PIN C2.

68-Pfn PGA Package

1-47

l:XIUNX

PIN SPACING
.OSOTVPICAL

11

1.000
±.012

I

•

XC 2064 / 2018 Log le Cell Array

.045x45°

----------1.10080±.012-------

PIN NO 1 INDEX __..@

DIMENSIONS ARE IN INCHES

84-Pin PLCC Package

j_
T
.018
±.00201A

.045

1.000 1.120

.018
j
t

NOTE- INDEX PIN MAYOR MAY NOT BE
ELECTAICALL Y CONNECTED TO PIN C2.

84-Pin PGA Package

1-48

PIN SPACING
.050 TYPICAL

0010003 32

10 ,,

1.000
t.012

0010003 34

l:XiLINX

SOCKET INFORMATION • The following sockets, with matching hole patterns, are available for PLCC devices.

Description Vendor Part Number -68PIN

PCB solder tail, tin plate AMP 821574-1
Surface mount, tin plate AMP 821542-1
PCB solder tail, tin plate Burndy* QILE68P-41 OT
PCB solder tail, tin plate Midland-Ross* 709-2000-068-4-1-1
PCB solder tail, tin plate Methode* 213-068-001
Surface mount, tin plate Methode 213-068-002

84PIN

PCB solder tail, tin plate AMP 821573-1
Surface mount, tin plate AMP 821546-1
PCB solder tail, tin plate Burndy* QILE84P-410T
PCB solder tail, tin plate Midland-Ross* 709-2000-084-4-1-1
PCB solder tail, tin plate Methode* 213-084-001
Surface mount, tin plate Methode 213-084-002

• Sockets will plug into pin-grid array (PGA) wire-wrap sockets for breadboard use.

1-49

XC2064-1 I XC2064-2
Logic Cell™Array

Product Specification

PARAMETRICS Vee= 5.0 V ± 10%

Absolute Maximum Ratings

Vee Supply voltage relative to GND -0.5 to 7.0

V1N Input voltage with respect to GND -0.5 to Vee+ 0.5

VTs Voltage applied to three-state output -0.5 to Vee+ 0.5

T STG Storage temperature (ambient) -65 to+ 150

TsoL Maximum soldering temperature (10 sec@ 1/16 in.) +260

*Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to
the device. These are stress ratings only and functional operation of the device at these or any other
conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure
to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operating Conditions Min Max

Vee Supply voltage relative to GND 0° C to 70° C 4.5 5.5

V1HT High-level input voltage - TTL configuration 2.0 Vee

VILT Low-level input voltage - TIL configuration 0 0.8

V1He High-level input voltage - CMOS configuration .7Vcc Vee

V1Le Low-level input voltage - CMOS configuration 0 .2Vce

1-50

Units

v
v
v

oc
oc

Units

v

v

v

v

v

£XILINX

PARAMETRICS (Continued)

Electrical Characteristics Over Operating Conditions Min Max Units

VoH High-level output voltage(@ loH = -4.0 ma Vee min) 3.86 v

VoL Low-level output voltage(@ loL = 4.0 ma Vee min) 0.32 v

leeo Quiescent operating power supply current •
CMOS thresholds (@Vee= 5.0 V) 5 mA

TTL thresholds(@ Vee= 5.0 V) 10 -mA

leePo Power-down supply current(@ Vee= 5.0 V) 0.5 mA

l1L Leakage current -10 +10 µA

C1N Input capacitance (sample tested) 10 pF

1-51

XC2064-1 / XC2064-2 Logic Cell Array

CLB SWITCHING CHARACTERISTICS

INPUT (A,B,C,D) x) x
OUTPUT (X,Y)

(COMBINATORIAL)

G)T1LO~

@Tiro

OUTPUT (X,Y)
(TRANSPARENT LATCH)

© T1cK

CLOCK(K)

0 Tice

CLOCK(C)

0 T1c1

CLOCK(G)

@Tcco

@Tc10

OUTPUT (VIA FF)

SET/RESET DIRECT (A,D)

@ Tmo

SET/RESET DIRECT (F,G)

@ TRLO

CLOCK (ANY SOURCE)

f=®TcH ~ @Tel=*

0010003 29

1-52

CLB SWITCHING CHARACTERISTICS (Continued)

Speed Grade -1 -2

Description Symbol Min Max Min Max

Logic input to Output Combinatorial 1 T1LO 35 20
Transparent latch 2 T1ro 45 25
Additional for Q

through F or G to out TaLO 30 13

K Clock To output 9 TcKO 35 20
Logic-input setup 3 T1cK 22 12
Logic-input hold 4 TcKI 0 0

C Clock To output 10 Tcco 45 25
Logic-input Setup 5 Tice 18 12
Logic-input hold 6 Tcc1 10 6

Logic input to G Clock To output 11 Tc10 65 37
Logic-input Setup 7 T1c1 10 6
Logic-input Hold 8 Ten 15 9

Set/Reset direct Input A or D to Out 12 TRIO 45 25
Through F or G to Out 13 TRLO 65 37
Master Reset pin to Out TMRQ 60 35
Separation of Set/Reset TRs 30 17
Set/Reset pulse-width TRPW 20 12

Flip-flop Toggle rate Q through F to flip-flop FcLK 20 33

Clock Clock high 14 TcH 20 12
Clock low 15 Tel 20 12

Notes: 1. All switching characteristics apply to all valid combinations of process, temperature and supply.
2. Units are ns unless otherwise specified.

1-53

Units

ns

• -

MHz

XC2064-1 I XC2064-2 Logic Cell Array

108 SWITCHING CHARACTERISTICS

PAD
(PACKAGE PIN) x---..... (IN)

OUTPUT SIGNAL

INPUT
(DIRECT) __ __,,__-~-...---1----

L
(l/OCLOCK)

INPUT
(REGISTERED)

0010003 v

Pad (package pin)

l/OClock

Output

Three-state

RESET

Description

To input (direct)

To input (storage)
To pad-input setup
To pad-input hold
Pulse width
Frequency

To pad (output enabled)

To pad begin hi-Z
To pad end hi-Z

To input (storage)
To input clock

Symbol

1 Tp10

5 Tu
2 TpL
3 TLP
4 hw

8 Top

9 TTHZ
10 TroN

6 TRI
7 TRc

Note: Timing is measured at 0.5 Vee levels with SOpF output load.

1-54

-1 -2 Units

Min Max Min Max ns
t----1

20 12

30 20
20 12
0 0

20 12
20 33 MHz

25 15

35 25
40 25

50 30
25 35

GENERAL LCA SWITCHING CHARACTERISTICS

Vcc(VALID)

MO/M1/M2

DONE/PROG
(OUTPun

USERl/O

CLOCK

INITIALIZATION STATE

0010003 26c

-1

Description Symbol Min Max

RESET (2) V cc setup (2.0 V) 1 TvMR 250

M2, M1, MO setup 2 TMR 100
M2, M1, MO hold 3 TRM 100
Width (low) 4 TMRW 250

.--
DONE/PROG Progam width (low) 5 TPGW 6

Initialization 6 TpGI 7

CLOCK Clock (high) 7 TcLH 20
Clock (low) 8 TcLL 20

PWRDWN Setup to Vee 9 Tps 0
Hold from V cc 10 TpH 0
Power Down Vpo 2.0

Note: 1. V must rise from 2.0 Volts to Vee minimum in less than 10 ns for Master Mode.
2. Rffil timing relative to power-on and valid mode lines (MO, M1, M2) is relevant

only when RESET is used to delay configuration.
3. Minimum CLOCK widths for the Auxiliary buffer are 1.25 the T CLH• T CLL·

1-55

\. •••• J~ VpD • -

-2 Units

Min Max ns
!------'

150
60
60

150

6 µs
7 µs

12
12

0
0

2.0 v

XC2064-1 I XC2064-2 Logic Cell Array

MASTER MODE SWITCHING CHARACTERISTICS

0010003 28A

00-07

RcrK
(OUTPUT)

CCLK
(OUTPUT)

DOUT
(OUTPUT)

RCLK

Description

From address invalid
To address valid
To data setup
To data hold
RCLKHigh
RCLK low

Symbol

1 TARC
2 TRAC
3 ToRC
4 TRCD
5 TRCH
6 TRCL

Notes: 1. CCLK and DOUT timing are the same as for slave mode.

BYTE n-1

-1

Min

100
0

600
4.0

2. At power-up, Vee must rise from 2.0 V to Vee min. in less than 1 O ms.

1-56

07

-2 Units

Max Min Max ns
f----1

0 0
300 200

60
0

600
4.0 µs

PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS

--- G) TcA------
~-~~~~~ r~~~::;:....,~~~~

cso

CS1

CS2

CCLK (2)
(OUTPU1)

DIN

DOUT(2)
(OUTPU1)

0010003 289

Controls(1)
(CSO, CS1, CS2, WRT)

Description

Active (last active input
to first inactive)

Inactive (first inactivate
input to last active)

CCLK(2)
DIN setup
DIN hold

-1

Symbol Min Max

1 TcA 0.3 10.0

2 Tc1 500

3 Tccc 100
4 Toe 50
5 Teo 10

-2 Units

Min Max ns
f---

0.2 5.0 µs

300

75
35

5

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WRT)
to transition to active or inactive state.

2. CCLK and DOUT timing are the same as for slave mode.
3. Configuration must be delayed at least 40 ms after Vee min.

1-57

• -

XC2064-1 / XC2064-2 Logic Cell Array

SLAVE MODE PROGRAMMING SWITCHING CHARACTERISTICS

DIN ·~ BITN W...._....._. ___ e_1T_N_+1 __________ _

~Q)Tocc @Tcco~ ----@ TccL---

CCLK

OOUT
(OUTPUT)

CCLK

--- @TccH--~1114-
BITN-1

Description Symbol

To DOUT 3 Tcco
DIN Setup 1 Toce
DIN Hold 2 Tcco
High time 4 TccH
Low time 5 Teet
Frequency Fee

Note: Configuration must be delayed at least 40 ms after Vee min.

PROGRAM READBACK SWITCHING CHARACTERISTICS

BITN

-1

Min Max Min

100
50 25
75 40

500 300
0.3 10.0 0.25

1

-2

Max

65

5.0
2

DONE/PROG
(OUTPUT)

---~------------------------------------

RTRIG

CCLK(1)

RDATA
(OUTPUT)

0 TccRD

VALID

-1 -2

0010003 28A

Units

ns
t--

µs
MHz

0010003 26B

Units

Description Symbol Min Max Min Max ns
t--

RTRIG PROG setup 1 ToRT 300 300
RTRIG high 2 TRTH 250 250

CCLK RTRIG setup 3 TRTCC 100 100
RDATAdelay 4 TccRD 100 100

Notes: 1. CCLK and DOUT timing are the same as for slave mode.
2. DONE/PROG outpuVinput must be HIGH (device programmed) prior to a positive transition of RTRIG (MO).

1-58

E:XIUNX

48PIN 68PIN

PLASTIC PLASTIC
DIP PLCC

-PD48 -PC68

-1 c Cl
XC2064

-2 c c

C = COMMERCIAL 0° C TO 70° C

I = INDUSTRIAL -40° C TO 85° C

LCA Package and Temperature Options

Ordering Information

Further information is available from Xilinx franchised
distributors of from the nearest Xilinx sales representa­
tive. Part numbers are composed as follows:

1 (20 MHz TOGGLE)
2 (33 MHz TOGGLE)

XC2064 - 1 PC68C _J I I c (COMMERCIAL)
I (INDUSTRIAL)

PD 48 (48 PIN PLASTIC DIP)
PC 68 (68 PIN PLASTIC PLCC)

1-59

0010003 35

0010003 36

• -

XC2064-1 / XC2064-2 Logic Cell Array

0.130

f

0010003 24

0010003 31

.100±.010
46PL

DIMENSIONS IN INCHES
NOT DRAWN TO SCALE

2.440

.01848PL

48-Pin Plastic DIP Package

PINN0.1

68-Pin Plastic PLCC Package

1-60

o•-10·~

.eoo

.550

PIN SPACING
.OSOTYPICAL

~~.010REF.

PIN 0010003 01

Xilinx is committed to providing the highest level of
quality and reliability for the Logic Cell™ (LCA) Array.
Quality is best assured by taking the necessary steps to
achieve zero defects. Comprehensive testing confirms
that every Logic Cell Array is free from defects and con­
forms to the data sheet specifications. The memory cell
design assures integrity of the configuration program.
Careful memory cell design has also minimized the
effects of alpha particle emission and electromagnetic
radiation on the operation of the Logic Cell Array.

TESTING

As quality consciousness has grown among semicon­
ductor users, awareness of the importance of testability
has also increased. Testing for standard components,
including memories and microprocessors, is accom­
plished with carefully developed programs which
exhaustively test the function and performance of each
part. For reasons explained below, most application
specific ICs cannot be comprehensively tested. Without
complete testing, defective devices might escape detec­
tion and be installed into a system. In the best case, the
failure will be detected during system testing at a higher
cost. In the worst case, the failure will be detected only
after shipment of the system to a customer.

Testing advantages of the Logic Cell Array can be
illustrated through comparison with two other application
specific ICs: Erasable Programmable Logic Devices
(EPLDs) and gate arrays.

EPLDs: In order to test all memory cells and logic paths
of programmable logic devices controlled by EPROM
memory cells, the part must be programmed with many
different patterns. This in turn requires expensive
quartz lid packages and many lengthy
program/test/erase cycles. To save time and reduce
costs, this process is typically abbreviated.

Gate Arrays: Since each part is programmed with metal
masks, the part can only be tested with a program
tailored to the specific design. This in turn requires that
the designer provide sufficient controllability and
observability for comprehensive testability. The design
schedule must also include time for the development of
test vectors and a test program specification. If the gate
array user requires a comprehensive test program, then
he must perform exhaustive and extensive fault

Testing and Data Integrity

simulation and test grading. This requires substantial
amounts of expensive computer time. Additionally, it
typically requires a series of time-consuming and
expensive iterations in order to reach even 80% fault
coverage. The cost of greater coverage is often
prohibitive. In production, many gate array vendors
either limit the number of vectors allowed or charge
for using additional vectors.

The replacement of all storage elements with testable
storage elements, known as scan cells, improves
testability. Although this technique can reduce the
production testing costs, it can add about 30% more
circuitry, decrease performance by up to 20%, and
increase design time.

Logic Cell Arrays: The testability of the Logic Cell Array is
similar to other standard products, including micro­
processors and memories. This is the result of the
design and the test strategies:

Design strategy:

• Incorporates testablility features because each
functional node can be configured and routed to
outside pads

• Permits repeated exercise of the part without
removing it from the tester because of the short time
to load a new configuration program

• Produces a standard product which guarantees that
every valid configuration will work.

1-61

Test strategy:

• Performs reads and writes of all bits in the
configuration memory, as in memory testing

• Uses an efficient parallel testing scheme in which
multiple configurable logic blocks are fully tested
simultaneously

• Is exhaustive since the circuits in every block are
identical

The Logic Cell Array user can better appreciate the
Logic Cell Array test procedure by examining each of
the testing requirements:

• All of the configuration memory bits must be
exercised and then verified. This is performed using
readback mode.

•
•

Testing and Data Integrity

• All possible process-related faults, such as short
circuits, must be detected. The Logic Cell Array is
configured such that every metal line can be driven
and observed directly from the input/output pads.

• All testing configurations must provide good
controllability and observability. This is possible since
all configurable logic blocks can be connected to
input/output pads. This makes them easy to control
by testing different combinations of inputs and easy
to observe by comparing the actual outputs with
expected values.

These points bring out an important issue: the Logic
Cell Array was carefully designed to achieve 100% fault
coverage. With the Xilinx testing strategy, the number
of design configurations needed to fully test the Logic
Cell Array is minimized and the test fault coverage of the
test patterns is maximized. In addition, the user's
design time is reduced because the designer does not
have to be concerned about testability requirements
during the design cycle. The Logic Cell Array concept
not only removes the burden of the test program and
test vector generation from the user, but also removes
the question of fault coverage and eliminates the need
for fault grading. The Logic Cell Array is a standard part
that guarantees any valid design will work. These issues
are critically important in quality-sensitive applications.
The designer who uses the Logic Cell Array can build
significant added value into his design by providing
higher quality levels.

DATA INTEGRITY

Memory Cell Design

An important aspect of the Logic Cell Array's reliability is
the robustness of the static memory cells used to store
the configuration program.

The basic cell is a single-ended five-transistor memory
element (Figure 1). By eliminating a sixth transistor,
which would have been used as a pass transistor for the
complementary bit line, a higher circuit density is
achieved. During normal operation, the outputs of
these cells are fixed, since these determine the user
configuration. Write and readback times, which have no
relation to the device performance during normal
operation, will be slower without the extra transistor. In
return, the user receives more functionality per unit
area.

This explains the basic cell, but how is the Logic Cell
Array user assured of high data integrity in a noisy
environment? We must consider three different
situations: normal operatiqn, a write operation and a
read operation. In the normal operation, the data in the
basic memory element is not changed. Since the two
circularly linked inverters that hold the data are physically

adjacent, supply transients result in only small relative
differences in voltages. Each inverter is truly a
complementary pair of transistors. Therefore, whether
the output is high or low, a low impedance path exists to
the supply rail, resulting in extremely high noise
immunity. Power supply or ground transients of several
volts have no effect on stored data.

The transistor driving the bit line has been carefully
designed so that whenever the data to be written is
opposite the data stored, it can easily override the
output of the feedback inverter. The reliability of the
write operation is guaranteed within the tolerances of
the manufacturing process.

In the read mode, the bit line, which has a significant
amount of parasitic capacitance, is precharged to a logic
one. The pass transistor is then enabled by driving the
word line high. If the stored value is a zero, the line is
then discharged to ground. Reliable reading of the
memory cell is achieved by reducing the word line high
level during reading to a level that insures that the cell
will not be disturbed.

1-62

Alpha Particle (Soft Error) Sensitivity:

The CMOS static memory cell was designed to be
insensitive to alpha particle emissions. To verify that this
design goal was achieved, the following tests were
performed.

A one microcurie alpha particle source (Americum 241)
was placed in direct contact with the top surface of an
XC2064 die. This allows the die to capture at least 40%
of the emissions from the radiation source. The
following sequence of tests was performed:

1. A complex pattern containing roughly 50% logic
ones was loaded into the XC2064. The operating
conditions were 25°C and 5.0 volts.

2. A pause of variable duration was allowed.

3. The entire contents of the XC2064 were read back
and compared with the original data.

Validation tests to ensure that the test setup would
detect errors were performed before and after the alpha
particle tests. The results are as follows:

Time Readback Total Time Number
Test Duration, sec Time, sec Exposed, sec of Errors

1 10 70 80 0
2 120 70 190 0
3 300 70 370 0
4 1500 70 1570 0

Total 2210

~

CONFIGURATION DATA SHIFT REGISTER

oN-1-- Ds o~Ds o

DA DA

CK CK

SEL SEL

DATA CLOCK - - -------+-.__--+---+-f--4---if---t----

WR/Ro - - -------+----+--;1-+-t-----;1--+-t----

PRECHARGE - - --------.__-----+---------+----
WORDN - - ------------,.---+----1r------r---

MEMORY CELL
CIRCUIT

WOADN+f - -

MEMORY
CELL

BITM

MEMORY
CELL

MEMORY
CELL

BITM+1

V«l

0010019 1 Figure 1. Configuration Memory Cell

Vee

READ

ADDRESS
ON-1

I
CLOCK I

WORD LINE
DRIVER

D 0

CK

D a

CK

I

CONFIGURATION
ADDRESS
SHIFT REGISTER

•
M
~
c: z
x

Testing and Data Integrity

Analysis

A one microcurie source emits 3.7x1Q4 alpha particles
per second. Assuming that 40% of these are captured
by the XC2064 during this experiment; this corresponds
to 5.3x1 Q7 alpha particles per hour.

The alpha particle emission rate of the molding
compound used by Xilinx is specified to emit fewer than
0.003 alpha particles per square centimeter per hour
(alpha particles/cm2/hr). The surface area of the XC-
2064 die is less than 0.5 cm2, so less than 0.0015 alpha
particles per hour will be captured by the XC2064 in
normal operation. The error rate acceleration in this test
is therefore equal to:

5.3 x 107 particles/hour
= 3.6 x 1010

0.0015 particles/hour

The 0.61 hours of test time without error then
corresponds to 2.2x1010 hours or 2.5 million years of
error-free operation.

Most ceramic packages are specified to emit less than
0.01 alpha particles/cm2/hr which is about three times
more than the plastic compound. For an XC2064 in a
ceramic package, this still results in error-free operation
for almost a million years.

The highest rate of alpha particle emission comes from
the sealing glass used in cerdip packages and some
ceramic packages (frit lids). For instance, KCIM glass
emits about 24 alpha particles/cm2/hr. Low alpha
glasses are specified at 0.8 alpha particles/cm2/hr.

Because these glasses are used only for the package
seal, they present a relatively small emitting cross
section to the die (less than 0.1 cm2 square). A low
alpha glass would therefore cause fewer than 0.8 alpha
particle hits per hour. The acceleration factor is then
6.6x1 as. which translates to about 46,000 years without
an error.

The memory cell of the Xilinx Logic Cell Array has been
designed so that soft errors caused by alpha particles
can safely be ignored.

Electrostatic Discharge

Electrostatic discharge (ESD) protection for each pad is
provided by a circuit that uses forward and reverse
biased distributed resistor-diodes (Figure 2). In
addition, inherent capacitance integrates any current
spikes. This gives sufficient time for the diode and
breakdown protections to provide a low impedance path
to the power-supply rail. Geometries and doping levels
are optimized to provide sufficient ESD protection for
both positive and negative discharge pulses.

Latchup

Latchup is a condition in which parasitic bipolar
transistors form a positive feedback loop (Figure 3),
which quickly reaches current levels that permanently
damage the device. Xilinx uses techniques based on
doping levels and circuit placement to avoid this
phenomenon. The cross section of a typical transistor
(Figure 4) shows several features. The beta of each
parasitic transistor is minimized by increasing the base
width. This is achieved with large physical spacings.
The butting contacts effectively short the n+ and p+
regions for both wells, which makes the VsE of each
parasitic very close to zero. This also makes the parasitic
transistors very hard to forward bias. Finally, each well is
surrounded by a dummy collector, which forces the VcE
of each parasitic almost to zero and creates a structure in
which the base width of each parasitic is large, thus
making latchup extremely difficult to induce.

Radiation Hardness

A preliminary estimate of the hardness of the circuit to
withstand ionizing radiation ranges from 10,000 to
100,000 rads Si. This estimate was reached from a
discussion with Sandia National Labs and is based upon
the design and layout parameters of the Logic Cell
Array.

1-64

High Temperature Performance

Although Xilinx guarantees parts to perform only within
the specifications of the data sheet, extensive high
temperature life testing has been been done at 145°C
with excellent results.

P/N 0010019 01

f:X!LINX

Vee
PAD

I
PAD

•
0010019 2 Figure 2. Input Protection Circuity 0010019 3 Figure 3. SCR Model

PAD

NsuBSTRATE DUMMY COLLECTORS

0010019 4

Figure 4. CMOS Input Circuit Layout

1-65

Testing and Data Integrity

PIN 0010019 01

1-66

INTRODUCTION

From its inception, Xilinx has been committed to deliver­
ing the highest quality, most reliable programmable gate
arrays available. A strong Quality Assurance and
Reliability program begins at the initial design stages and
is carried through to final shipment. The final proof of
our success is in the performance of the Logic Cell™
Array (LCA) in our customers' systems applications. An
extensive, on-going reliability-testing program is used to
predict the field performance of our devices.

These tests provide an accelerated means of emulating
long-term system operation in severe field environ­
ments. From the performance of the devices during
these tests, predictions of actual field performance
under a variety of conditions can be calculated.

This report describes the nature and purpose of the
various reliability tests performed on finished devices.
Table 2 is the initial summary of the Quality Control
reliability testing performed. Updated summaries are
available upon request from the Quality Assurance and
Reliability Department at Xilinx.

OUTLINE OF TESTING

Qualification testing of nonhermetic devices is
performed to demonstrate the reliability of the die used
in the device, and the materials and methods used in
the assembly of the device. Testing methods are
derived from and patterned after the methods specified
in MIL-STD-883.

A summary of the reliability demonstration tests used at
Xilinx is contained in Table 1.

Referral to the test methods of MIL-STD-883 is not
intended to imply that nonhermetic products comply
with the requirements of MIL-STD-883. These test
methods are recognized industry-wide as stringent tests
of reliability and are commonly used for nonmilitary­
grade semiconductor devices, as well as for fully
compliant military-grade products.

Nonhermetic Package
Reliability

DESCRIPTION OF TESTS

Die Qualification

1. High Temperature Life This test is performed to
evaluate the long-term reliability and life

I

characteristics of the die. It is defined by the Military •
Standard from which it is derived as a "Die-Related

1-67

Test" and is contained in the Group C Quality
Conformance Tests. Because of the acceleration
factor induced by higher temperatures, data
representing a large number of equivalent hours at a
normal temperature of 70°C, can be accumulated in a
reasonable period of time. Xilinx performs its High
Temperature Life test at a higher temperature, i.e.,
145°C, than the more common industry practice of
125°C. For comparison, the Reliability Testing Data
Summary in Table 2, gives the equivalent testing
hours at 125°C.

2. Biased Moisture Life This test is performed to
evaluate the reliability of the die under conditions of
long-term exposure to severe, high-moisture
environments which could cause corrosion.
Although it clearly stresses the package as well, this
test is typically grouped under the die-related tests.
The device is operated at maximum-rated voltage,
5.5 voe, and is exposed to a temperature of 85°C
and a relative humidity of 85% throughout the test.

Package Integrity and Assembly Qualification

3. Unbiased Pressure Pot This test is performed at a
temperature of 121°C and a pressure of 2 atm. of
saturated steam to evaluate the ability of the plastic
encapsulating material to resist water vapor.
Moisture penetrating the package could induce
corrosion of the bonding wires and nonglassivated
metal areas of the die [bonding pads only for Xilinx
LCAs], and could possibly cause, under extreme
conditions, moisture drive-in and corrosion under
the glassivation. Although it is difficult to correlate
this test to actual field conditions, it provides a well­
established method for relative comparison of plastic

Nonhermetic Package Reliability

packaging materials and assembly and molding
techniques.

4. Thermal Shock This test is performed to evaluate
the resistance of the package to cracking and resist­
ance of the bonding wires and lead frame to separa­
tion or damage. It involves nearly instantaneous
change in temperature from -65°C. to+ 150°C.

5. Temperature Cycling This test is performed to
evaluate the long-term resistance of the package to
damage from alternate exposure to extremes of
temperature or to intermittent operation at very low
temperatures. The range of temperatures is -65°C
to + 150°C. The transition time is longer than that in
the Thermal Shock test but the test is conducted for
many more cycles.

6. Salt Atmosphere This test was originally designed
by the US Navy to evauate resistance of military­
grade ship board electronics to corrosion from
seawater. It is used more generally for nonhermetic
industrial and commercial products as a test of
corrosion resistance of the package marking and
finish.

7. Resistance to Solvents This test is performed to
evaluate the integrity of the package marking during
exposure to a variety of solvents. This is an
especially important test, as an increasing number of
board-level assemblies are subjected to severe
conditions of automated cleaning before system
assembly operations occur. This test is performed
acording to the methods specified by MIL-STD-883.

8. Solderability This test is performed to evaluate the
solderability of the leads under conditions of low
soldering temperature following exposure to the
aging effects of water vapor.

9. Vibration, Variable-Frequency This test is performed
to evaluate the resistance of the completed
assembly to vibrations during storage, shipping, and
operation.

TESTING FACILITIES

Xilinx has a growing investment in reliability testing
equipment. The company has the complete capability
to perform High Temperature Life Tests, Biased
Moisture Life Tests, and Unbiased Pressure Pot Tests
in its own Reliability Testing Laboratory. Additional
equipment is being purchased as requirEld by testing
volume. Other tests are being performed by outside
testing laboratories with DESC laboratory suitability for
each of the test methods they perform.

SUMMARY

The attached testing data shows the actual performance
of the Logic Cell Arrays during the initial qualification
tests to which they have been subjected. These test
results demonstrate the reliability and expected long life
inherent in our nonhermetic product line. This series of
tests is ongoing as a part of our Quality Conformance
Program on nonhermetic devices.

1-68

Name of Test

1. High Temperature Ltte

2. Biased Moisture Life

Name of Test

3. Unbiased Pressure Pot

4. Thermal Shock

5. Temperature Cycling

6. Salt Atmosphere

7. Resistance to Solvents

8. Solderability

9. Vibration,
Variable-Frequency

DIE QUALIFICATION

Test Conditions Lot Tolerance Percent Defective
Minlmun Sample Size/
Maximum Acceptable Failures

1000 hr min. equivalent at temperature = 125°C L TPD = 5, s = 105, c = 2
Actual test temperature= 145°C
Max. rated operating voltage.
Life test circuit equivalent to MIL-STD-883

1000 hr min. exposure LTPD = 5, s = 105, c = 2
T = 85°C, RH = 85%
Max. rated operating voltage.
Biased moisture life circuit equivalent to MIL-STD-883

PACKAGE INTEGRITY and ASSEMBLY QUALIFICATION

Test Conditions

96 hr min. exposure
T = 121°C, P = 2 atm H20 sat.

MIL-STD-883, Method 1011, Cond. C
-65°C to + 150°C
100 cycles

MIL-STD-883, Method 1010, Cond. C
-65°C to + 150°C
200 cycles

MIL-STD-883, Method 1009, Cond. A
24 hrs

MIL-STD-883, Method 2015

MIL-STD-883, Method 2003

MIL-STD-883, Method 2007

Lot Tolerance Percent Defective
Minimun Sample Size/
Maximum Acceptable Failures

LTPD=5, S=105,C=2

LTPD=7, S= 75, C=2

LTPD=5, S=105,C=2

S = 25, C= 0

S = 8, C= 0

S= 15, C=0

S= 11, C=0

Table 1. Reliability Testing Sequence for Nonhermetic Logic Ceil Arrays

1-69

•
-

Nonhermetic Package Reliability

XILINX XC-2064 Reliability Testing Summary, Initial Lots

Device Type: XC-2064
Die Attach Method: Silver Epoxy
Molding Compound: Nitto MP 150 SG

1. High Temperature Life Test Combined
T = 145°C Sample

210

2. Biased Moisture Life Test Combined
T = 85°C; RH = 85% Sample

210

3. Unbiased Pressure Pot Test Combined
+ 121 °C, 2 atm sat. steam Sample

263

4. Thermal Shock Test Combined
-65°C/+ 150°C Sample

154

5. Temperature Cycling Test Combined
-65°C/+ 150°C Sample

210

6. Salt Atmosphere Test Combined
MIL-STD-883, Method 1009, Sample
Cond.A

50

7. Resistance to Solvents Test Combined
MIL-STD-883, Method 2105 Sample

16

8. Solderability Test Combined
MIL-STD-883, Method 2003 Sample

30

9. Vibration, Variable Freq. Test Combined
MIL-STD-883, Method 2007 Sample

22

Failures

1

Failures

0

Failures

1

Failures

0

Failures

0

Failures

0

Failures

0

Failures

0

Failures

0

Process/Technology: 2.0 Micron Double Layer Metal CMOS
Package Type: 68 lead PLCC
Date: July 21, 1986

Equivalent Equivalent Equivalent
Mean Equivalent Failure Rate Failure Rate
Hrs/Device Device/Hrs in %/1000 hrs in %/1000 hrs
at T = 125°C at T = 125°C at T = 125°C at T = 70°C

5545 1164349 0.0859 0.0012

Mean Hrs Total
per Device Device Hrs
atT = 85°C at T = 85°C

1250 262500

Mean Hrs Total
per Device Device Hrs

96 25248

Mean Cycles Total
per Device Device Cycles

1100 169400

Mean Cycles Total
per Device Device Cycles

1000 210000

Mean Hrs Total
per Device Device Hrs

24 1200

Table 2. Reliability Testing Summary

PIN 0010015 01

1-70

I

•

1-71

The Programmable Gate Array Company

Table of Contents

Introduction to Programmable Gate Arrays 1-1 1111111
Logic Cell Array Data Sheet XC2064 I XC2018
Logic Cell Array Data Sheet XC2064-1 I XC2064-2
Testing and Data Integrity
Non Hermetic Package Reliability

Using Programmable Gate Arrays
Methods of Configuring the Logic Cell Array
Ins and Outs of Logic Cell Array 1/0 Blocks
Placement and Routing Optimization
A Design Methodology for the Logic Cell Array
Counter Examples
Metastability Analysis of Logic Cell Array Flip-flops
Reading Back Logic Cell Array Configuration Programs

A UART Design Example
A Printer Buffer Controller
A Seven Segment Display Driver .
Cost Effective Hardware/Software Updates
A T1 Communications Interface

PC System Configurations
In-Circuit Emulation and Simulation
Product Brief XC-DS21 XACT Design Editor
Product Brief XC-DS22 P-SILOS Simulator
Product Brief XC-DS23 Automated Placement and Routing
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods
Product Brief XC-DS31 FutureNet Schematic Library
Product Brief XC-EK01 Logic Cell Array Evaluation Kit

Technical References
Glossary
Sales Offices List
Information Request Cards :,:.w;?;::8,,,,.,,,y.,,,,.,,,".,.,.,,, ..

1-8 1111111
1-50 1111111
1-61 1111111
1-67 1111111

2-1 -. 2-20 -2-42 -.. 2-76 -. 2-98 -2-125-
2-129-

3-1 1111111
3-11 -3-29 -3-41 -3-45 -
4-1 -4-5 -4-19 -4-23 -4-25 -4-27 -4-29 -4-31 -

. A-1 -. A-3 -A-5 -

Introduction

LCA Configuration

Configuration Modes & Trade-offs

Pin Functions .

Slave Mode

Peripheral Mode

Master Mode

Cascading Multiple LCAs: Daisy Chains .

Multiple Use of 1/0 Pins

The Configuration Program

Methods of LCNM
Configuration

Table of Contents

2·1

2-1

2·1

2-4

2-6

2-7

2-8

2-9

2-11

2-14

INTRODUCTION: A PROGRAMMABLE GATE ARRAY

This application note addresses some of the device and
system-related considerations involved in loading Logic
Cell Arrays (LCAs) with configuration programs. The
configuration techniques covered here apply to the
XC2064 in both the 48-pin and the 68-pin packages,
and to the XC2018 in the 48 pin, 68 pin and 84 pin
packages. Topics covered include:

• Descriptions of each of the device's configuration
modes

• Device pin definitions before, during, and after
configuration

• Selection of a configuration mode for a given
application

• Configuration of multiple LCA devices.

An Overview

In a typical LCA design the systems designer first
identifies those areas of the logic schematics which are
suitable for implementation in an LCA (or LCAs). Those
logic sections are then partitioned into clusters of basic
logic elements representing Configurable Logic Blocks
(CLBs) and 1/0 Blocks (IOBs). Using a Personal
Computer with the Xilinx XACT™ development system
software, the designer creates a design file for each
LCA. The design file is then compiled into a
configuration program which determines the function
that LCA is to perform. Using the XACT development
system, the configuration program can also be
translated into formatted files compatible with standard
EPROM programming equipment. An EPROM may then
be programmed to store the LCA configuration program.

LCA Configuration Sequence

The behavior of the LCA is best described in terms of
three distinct states: the initialization state, the
configuration state, and the user-operation state. After
an initial power-up delay, the LCA awakens in the
initialization state in which its internal configuration
memory is cleared, and all internal user-definable logic is
held in a quiescent or idle state. Once this initialization is
complete, the LCA checks the input logic level present
at the RESET pin. When it detects a valid logic "1" level,

2-1

Methods of Configuring
the Logic Cell™ Array

the device enters the configuration state during which
the configuration program is loaded. The precise
method used for loading the program into the LCA (i.e.,
the configuration mode) depends on the logic levels of
the Mode Select pins (MO, M1, and M2). The config­
uration program is formatted as a serial bitstream, and is
loaded into the LCA as though it were a shift register.
Although several methods may be used to enter the I
data (e.g., the configuration modes), the content and
format of this bitstream are fixed for a given logic appli- •
cation. The configuration program contains a bit field
which indicates its length. When the correct number of
bits have be~n entered, as indicated by this length
count, the D/P open drain output pin goes HIGH indi­
cating that configuration is complete. Once the config­
uration process has begun, it must either be completed
or aborted and restarted. Partial configurations are not
possible. Further details on the configuration program
format are presented in a later section.

Once configuration is complete, the LCA enters the
user-operation state and performs the user specified
logic functions. During user-operation, the device can
be instructed to return to the initialization state and
repeat the configuration process. A state diagram
illustrating this sequence is shown in Figure 1. This
ability to be re-programmed can be disabled by setting
the appropriate bit in the bitstream. In this event, the
LCA's configuration can be changed only through
removing and re-applying power to the device.

During the initialization and configuration states, all user-
1/0 pins (except those used for configuration purposes)
have passive internal pull-up resistors which will cause
those pins to go to a HIGH state if not externally
overdriven. Upon entering the user-operation state, all
user 1/0-pins become functional simultaneously
according to their user-specified definition.

Configuration Modes

The LCA supports five methods for loading program
information. Selection of a configuration mode is
accomplished by connecting the two Mode Select Pins,
MO and M 1, to either a logic "1" or a logic "O" signal as
indicated in Table 1. A third mode select pin, M2,
provides for future expansion of configuration options.
Unlike pins MO and M 1, the M2 pin becomes available as

Methods of Configuring the Logic Cell Array

general purpose user-1/0 after configuration is
completed. During configuration, pins MO and M2 have
internal pull-up resistors, pin M1 does not. Except for
Master Serial mode, pin M2 should not be driven LOW
during configuration. If left unconnected it will be pulled
HIGH.

Mode Sele.ct Pins MO M1 M2

Master serial mode 0 0 0
Master low mode 0 0 1
Master high mode 0 1 1
Peripheral mode 1 0 1
Slave mode 1 1 1

Table 1. Configuration Mode Selection

In many applications where the LCA's readback
capability will not be used, the mode select pins may be
tied directly to ground or to Vee. Since the MO and M2
pins are supplied with internal pull-up resistors at the
conclusion of configuration, they may also be left
unconnected. Since the mode pins are sampled at the
conclusion of the initialization state or with the rising
edge of RESET if used to delay configuration, their
levels need not be maintained once configuration has
begun.

Cho9sing a Configuration Mode

Each configuration mode involves a different set of

POWER APPLIED

RESET
ASSERTED

FIRSTCCLK

DONE/PROO LOW TRANSITION
(RE PROGRAMMABILITY OPTION ENABLED)

application design considerations and variations in
device pin usage during the configuration process. The
choice of a configuration mode depends on the specific
system application. Some considerations in choosing a
configuration mode include:

• Whether control of the configuration process will be
automatic or externally controlled.
• If externally-controlled (slave or peripheral mode),

then
Via software control
Via OMA hardware

• If automatic (master mode), then
Configuration program shared with

microprocessor program code
Configuration program stored in separate

byte wide PROM
Configuration program stored in a serial

memory device.
• The length of time available for configuration,

• If a multiple LCA application, whether to configure
them
• Serially as a "daisy chain,"
• In parallel

• 110 pin requirements-Le., will 1/0 pins used by the
target application also be involved in configuration? If
so, can pins be assigned to minimize or eliminate
external isolation?

The first consideration above should be viewed from a
system-design standpoint, since it affects the rest of the

CONFIGURATION
DONE

DONE/PROG LOW
TRANSITION
(RE PROGRAMMABILITY
OPTION DISABLED)

0010003 12
Figure 1. LCA Configuration Diagram

2-2

design. In the processor-controlled case, either slave
mode or peripheral mode is used to load the
configuration program into the LCA one bit at a time.
This can be accomplished as part of the system's
"bootup" process, or can be done "on-the-fly." This
method is the most flexible since the LCA program may
be read from PROM or disk or any other source
accessible by a processor, but may take longer to
complete than the automatic method. The alternative
method is to let the LCA program itself automatically
using one of the "master" modes of configuration. Here
the LCA automatically accesses an external PROM for
the configuration program and configures itself in 12 to
24 milliseconds for the XC2064, 17 to 35 milliseconds
for the XC2018. Table 2 compares characteristics of the
configuration modes. Although master mode uses more
1/0 pins for configuration than the other modes, those
pins become general purpose user-1/0 pins again once
configuration is complete. These pins can usually be
assigned application uses such that no external isolation
is required. Figure 2 shows the LCA's pin usage during
configuration for each of the configuration modes. The
pins used in each mode are also summarized in Table 3.

For some applications the time required to configure the
LCA may be a consideration. Although the minimum
time required to load the LCA program (approximately
12 ms for the XC2064 and 17 ms for the XC2018) is the
same for all configuration modes, processor-driven
configuration techniques controlled by software may

Slave Peripheral
Configuration Mode Mode Mode

Mode Selection code 1 :1 :1 1 :0:1
(MO:M1:M2)

Configuration data Bit-serial Bit-serial

Automatic loading? No No

Programming source User Logic CPU Data
or Another Bus
LCA (Note 2) Memory

Number of user 1/0 2 6
pins required

Configuration time Source Source
dependent Dependent
(Note 1) (Note 1)

take longer to complete. The program loading time for
master mode, unlike that of the user-driven slave and
peripheral modes, is controlled by an internal oscillator.
Since the frequency of this internal oscillator is process­
dependent, program loading time may extend to twice
the minimum.

In applications employing multiple LCAs, special daisy
chaining capabilities permit all the LCA programs to be
loaded from a single data source. This is described in
further detail in the section on "Cascading Multiple
LC As".

In all configuration modes, some of the user's 1/0 pins
are temporarily assigned configuration-related
functions. The number of such pins ranges from 5 in the
Slave mode to 29 in the Master mode. Once
configuration is complete these pins are returned to the I
user as general-purpose 1/0 pins. It is up to the
designer, however, to guarantee that no signal conflicts •
occur between the pin's use while in the configuration
state and its use while in the user operation state. Signal
conflicts on these pins can create undesired side
effects, such as disturbing the configuration process or
other external logic. With a little care, however, the
designer should have no problems in using these dual­
function 1/0 pins. Although signal conflicts are
resolvable with external buffers for isolation, careful
selection of the pinout assignment can usually eliminate
the need for isolation.

Master-High Mode Master Serial
Master-Low Mode Mode

0:0:1 (Master-Low) O:O:O
0:1 :1 (Master-High)

Byte-parallel Bit-serial

Yes Yes

External External
Byte-wide Serial
Memory

25 3

12-24 ms (XC2064) 12-24 ms (XC2064)
17-34 ms (XC2018) 17-34 ms (XC2018)
(Note 3) (Note 3)

Notes: 1. The minimum time in any case is approximately 12 ms for the XC 2064 and 17 ms for the XC 2018.
2. Also used by Xilinx's XACTOR for In-Circuit Emulation. f2\I
3. This parameter depends on internal timing circuits and is manufacturing process-dependent. Tlrefore

it may vary from device to device with in the limits shown.

Table 2. Comparison of Configuration Modes

2-3

Methods of Configuring the Logic Cell Array

Pin Functions During Configuration

The LCA pins used for configuration are of two types:
non-programmable pins dedicated to control functions,
and user-programmable pins which are available as
general purpose 1/0 pins once configuration is
completed. The six non-programmable pins dedicated
to control functions are:

M2
DIN
DOUT
HOC
LDC

CSO,CS1 ,CS2
WAT
RCLK
AO-A15
D0-07

Mode select
Configuration data In
Configuration data out
HIGH during configuration
LOW during configuration

(Present in all
Configuration

Modes)

Chip Selects
Write strobe
Read strobe
Address bus
Input data bus

(Peripheral mode only)
(Master modes only)
(Master parallel only)

MO,M1
CCLK
RESET
DIP
PWRDWN

Mode select pins
Configuration clock
Master reset
Done/Program
Power-down

The user-programmable 1/0 pins that may be used
during configuration are:

In addition to the dedicated control pins, several user­
programmable 1/0 pins have configuration functions
assigned to them regardless of which configuration
mode is selected. These pins, as well as the dedicated

Applicable
Pin Conlig. Mode(s) Function During Function During
Name s p MH ML MS Configuration User Operation

MO Mode select O (I) Readback trigger (I)
M1 Mode select 1 (I) Readback data out (0)
M2 Mode select 2 (I) <User 1/0>

DIP Indicates when config. Initiates/Inhibits
(Note 1) process is done (0) Re-configuration (I)

RESET Abort/Restart config. Master clear of all
(Note 1) (I) internal FF's (I)

CCLK Configuration clock Readback clock (I)
(See Notes 1 & 2)

DIN Config data in (I) <User 110> (Note 3)
DOUT Config data out (0) <User 110>
HOC Logic HIGH (0) <User 110>
LDC Logic LOW (0) <User 110>

AO-A15 Address bus (0) <User 110>
D0-07 Data bus (I) <User 110> (Note 3)
RCLK Read clock (0) <User 110>

WRT Write strobe (I) <User 1/0>
cso Chip select O (I) <User 110>
CS1 Chip select 1 (I) <User 110>
CS2 Chip select 2 (I) <User 110>

Abbreviations: S =Slave I= Input
P = Peripheral O =Output
MH = Master high
ML = Master low
MS = Master serial

Notes: 1. The RESET, CCLK, and DIP pins have multiple functions. See text for further details.
2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output.
3. DIN and DO are the same physical pins but are associated with different configuration modes.

Table 3. Summary of Pins Used For Configuration

2-4

+5V

MICRO LCA
COMPUTER

STRB CCLK OOUT

DO DIN M2

01 HOC
1/0 02 LDC GENERAL PORT PURPOSE

03 USER l/O

04 ~'! OTHER
05 PINS

08

07 DIP

ADDRESS
BUS

DATA
BUS

ADDRESS
DECODE

LOGIC

+5V +5V

MO M1PWR
OWN

DIN CCLK

WRT

cso

LCA DOUT

M2

HOC

LDC

ALL! OTHER
PINS

l:XIUNX

+5V

GENERAL
PURPOSE
USERl/O

RESET RESET

1 '--------<1cs1
----------1cs2

DIP

RESET

0010003 15C

Vee

L
GENERAL·
PURPOSE

USER VO
PNS

0010003 15A

2a. Slave Mode 2b. Peripheral Mode

0010003 15B

1. PINS DIN, OOUT, WR'T, ~. C§l!. M2, HOC ANO LDC ALL BECOME GENERAL-PURPOSE USER l/OAFTER THE CONFIGURATION PROCESS IS COMPLETED.

2. THE Oil' ~O ~PINS OF DAISY-CHAINED DEVICES MAY, BUT ARE NOT REQUIRED TO BE, BUSED DEPENDING ON THE USER'S APPLICATION.
IFTHE DIP PINS ARE TIED IN COMMON, THEN ONLY ONE DEVICE SHOULD HAVE ITS INTERNAL PULLUP OPTION ON THE DIP PIN ENABLED.

---~· +SV

MO M1 PWRDWN

DOUT

M2 CCLK

HOC

LDC A15

RCLK

l ~:mER A11

LCA
RESET

07

06

05

04

03

D2

01

DO

DATA BUS

EPROM

OR~R'JER)

07

GENERAL·
PURPOSE

USERl/O
PNS

0010003 15A1

2c. Master Parallel Mode

Figure 2. Typical Configuration Circuits

2-5

+SV

MO M1 PWROWN

OOUT

M2 CCLK

HOC

LiiC

OTHER
PINS)
ALL

LCA
RESET

DIN

RCLK

o,P

2d. Maser Serial Mode

SERIAL
MEMORY

I
•

Methods of Configuring the Logic Cell Array

control pins, are described below. Other 1/0 pins are
used in only in one specific configuration mode and are
described in the corresponding section.

MO, M1, and M2 are Mode Select input pins used to
select which configuration mode the LCA is to use.
These pins were described n the previous section on
configuration modes. DIN and DOUT are used for the
serial data path of a Slave mode daisy chain as well as
Master Serial mode.

HDC and LDC are user-1/0 pins which are driven by the
LCA to constant HIGH and LOW levels respectively
during configuration. These two pins are useful in
controlling external logic during the initialization and
configuration states. They may be used to enable or
disable external logic circuits depending on whether
that logic is required during or after configuration. All
other user-1/0 pins not involved in configuration have
passive internal pull-ups to Vee during configuration.
The passive internal pull-ups on all user-programmable
1/0 pins are removed after configuration is complete.

CCLK is a dedicated control pin which serves as a clock
input during slave mode configuration, but a clock
output in all other configuration modes. As an input
CCLK is used during the serial loading of a configuration
program. As an output, CCLK serves as a clock source
for configuring any slave mode LCAs that may be daisy
chained to it. During user operation, CCLK serves as a
clock input for reading configuration data from the
device in conjunction with the MO/RT and M1/RD pins.
The CCLK input is subject to a minimum time it can be
held LOW and should remain in the HIGH state when not
in use. However, it may be driven from a clock source
which violates this limit, as long as de-assertion of
RESET is used to enable configuration once the clock is
normal. The CCLK pin has an internal pull-up resistor
which allows an external clock source to be three-stated
once configuration is completed.

RCLK performs the function of a read strobe for dynamic
memories for master parallel modes. For the master
serial mode it is an output used to synchronize the
supply of serial data.

The RESET pin is an active LOW master reset input that
has different functions depending on the LCA's state.
During the initialization state (i.e., after power-up and
prior to beginning the configuration process), this pin
serves to delay the start of configuration. Once the
configuration process has commenced and until it is
complete, assertion of RESET will abort the
configuration process and return the LCA to the
initialization state. Configuration is restarted once
initialization is complete and RESET is HIGH. When
configuration is completed, the RESET pin changes
function and instead becomes a "master reset" control

pin that clears all internal flip-flops and latches to the
zero state.

The D/P (DONE/PROGRAM) pin is both an input
and an open-drain type output with a programmable pull­
up resistor option. As an output, it is used to indicate the
current configuration status of the LCA. Prior to initial
configuration, and during subsequent re­
configurations, the LCA holds the D/P pin LOW to
indicate !bat the LCA is not ready for user operation.
When D/P goes HIGH, it indicates that configuration has
been completed (i.e., "done") and the LCA has entered
the user/operation state. Consequently D/P can be
used in the system reset logic to ensure that the LCA is
configured before reset of the rest of the system is
terminated.

Pins configured as !::_CA outputs become active one
clock cycle before D/P goes HIGH. This allows time for
any user-1/0 signals between LCAs to propagate
through and become established prior to use by the
target application. Subsequent re-configurations of the
LCA can be initiated by applying a logic "O" to the D/P
pin with an open-collector type signal source. Once
recognized as LOW, the LCA then forces DIP LOW until
configuration is complete. Note that by using its internal
pull-up resistor option, the DIP pin may be left
unconnected, thereby eliminating that pin's need or
any external passive components. Since the D/P pin
must be held LOW for several microseconds in order to
be recognized, it is unlikely to be triggered by noise.
The D/P pin must be allowed to go HIGH before it can be
us~d to again initiate reconfiguration. Preventing the
DIP pin from going HIGH after configuration may be
used as an alternative technique for disabling the LCA
from being re-programmed.

2-6

The PWRDWN pin is an active LOW input which forces
the LCA into a low power state. Vee may be reduced to
2.0 Volts after PWRDWN is active. Entering the power­
down state does not change or modify the configuration
information stored in the LCA; it merely causes the
device to reduce its overall power requirements by
disabling its 1/0 pins_and certain internal logic. Power­
down causes the D/P pin to be forced LOW, clears all
internal storage elements, and forces all 1/0 pins to
become high impedance. Internally, logic nodes which
were driven by inputs to the LCA prior to power-down,
are electrically isolated from their pins and forced HIGH.
The PWRDWN pin should be left in the inactive (HIGH)
state during the initialization a!l_d configuration states,
and only be asserted while D/P is HIGH. Applications
that do not use the power-down feature should tie the
PWRDWN pin to Vee.

Slave Mode M2:M1 :MO = 1 :0:0

Configuring the LCA in the Slave mode is the simplest

and most efficient method since it involves the fewest
number of pins. In this mode, the configuration program
is written into the device in a bit-serial fashion. During
configuration, each bit in the program is sequentially
shifted into the LCA's DIN input with the rising edge of
the clock signal applied to the CCLK pin. See Figure 3.
Note that in Slave mode, the CCLK pin is an input, not
an output as it is in other modes. After the configuration
program has been loaded, an additional three clocks (a
total of three more than the length count) must be
supplied in order to complete the configuration process.
The Slave mode configuration is especially appropriate
in applications where a host processor configures the
LCA through an 1/0 port, since the CCLK and DIN pins
can then be driven via 1/0 instructions and the minimum
data setup and hold times easily met. Another use of
Slave mode configuration is in multiple LCA applications
where the DIN and DOUT pins of several devices can be
strung together in a daisy chain arrangement. This
arrangement permits several LCAs to share a common
source of configuration data.

In addition to the six non-programmable control pins,
five programmable pins are used in this configuration
mode: M2, DIN, DOUT, HOC, and LDC. These five pins
are available as general purpose user 1/0 pins once
configuration is completed. The 53 remaining
programmable 1/0 pins are not used during
configuration. See Figure 2a and Table 4.

In daisy chained LCA applications where the first LCA is
configured in slave mode with a free-running CCLK
source, care should be taken to insure synchronization
with other devices in the chain. To accomplish this the
designer must insure that RESET is released with the
proper setup and hold times relative to CCLK. This

Pin Pin Number
Name PLCC DIP

Fixed, Non-programmable Pins

MO 26 18
M1 25 17
CCLK 60 42
RESET 44 31
DIP 45 32
PWRDWN 10 7

User Programmable Pins

M2
DIN
DOUT
HOC
LDC

27
58
59
28
30

19
40
41
20
21

Pin
Type

Input
Input
Input
Input
Output
Input

Input
Input
Output
Output
Output

guarantees that all LCAs in the daisy chain become
operational simultaneously by insuring that they all
begin configuration on the same clock cycle. This is
easily done by de-asserting RESET with the falling edge
of CCLK.

Peripheral Mode M2:M1 :MO = 1 :0:1

The peripheral mode allows the configuration program
to be written into the LCA by a host processor via the
data bus as though it were an ordinary peripheral device.
In this configuration mode the LCA may be thought of as
a one-bit wide peripheral device, since the configuration
program must be written into it one bit at a time.
Typically, data bus bit 0 is tied to the DIN pin of the LCA
and the data byte shifted between successive write
instructions to the LCA. Next to the Slave mode, this
mode involves the fewest number of LCA device pins
for configuration. See Figure 2b.

As in the Slave mode, the configuration program is
written into the device in bit-serial fashion. When the
correct number of bits have been written into the LCA,
the D/P pin goes HIGH indicating that configuration is
complete. After the configuration program has been
loaded, an additional three clocks (a total of three more
than the length count) must be supplied in order to
complete the configuration process. During peripheral
mode configuration, seven of the LCA's programmable
1/0 pins function as configuration control pins in addition
to the six fixed, non-programmable control pins. Table 5
shows the configuration pins used in this mode. Figure
4 illustrates the timing relationship between the signals
on these control pins.

While the DIN and DOUT pins function the same as in

Value During
Configuration

HIGH
HIGH
<Clock>
HIGH
LOW
HIGH

HIGH
<Data>
<Data>
HIGH
LOW

Description

Mode Select
Mode Select
Configuration Clock
Master Reset
Done/Program
Power-down

Mode Select
Config Data In
Config Data Out
Constant "1" Level
Constant "O" Level

Table 4. Slave Mode Pin Summary

2-7

• •

Methods of Configuring the Logic Cell Array

Slave mode, four other pins serve as bus interface
controls. Three of these pins-CSO, CS1, and CS2
become chip selects, while the fourth pin becomes the
Write Strobe (WAT) input. The WAT pin serves the same
function in this mode as CCLK does in Slave mode: a
pulse applied to it while the three Chip Selects are
asserted causes one bit of the program to be shifted
into the DIN input of the LCA. Each write strobe to a
peripheral mode LCA also produces a CCLK output
pulse for purposes of driving the CCLK inputs of
cascaded LCAs as shown in Figure 7. The three chip
selects (two active LOW, one active HIGH) allow the LCA
to be mapped to a specific 1/0 or memory address for
configuration purposes. All nine pins are available as
general purpose user-programmable 1/0 pins once
configuration is completed. The 49 other programmable
1/0 pins are not used for peripheral mode configuration.

Master M2:M1 :MO= 1 :O:O (Master Low Mode)
Modes 1 :1 :0 (Master High Mode)

0:0:0 (Master Serial Mode)

In the Master configuration modes, the LCA itself
controls the loading of the configuration program
automatically. In this mode, the LCA uses on-chip
control logic to automatically address an external
bytewide memory device (e.g., an EPAOM) or uses
ACLK to synchronize serial input data providing the
configuration program. For the bytewide modes,
sixteen of the LCA's 1/0 pins are used to generate an
address bus, and eight other 1/0 pins to form a
unidirectional data bus. Two options for the bytewide

Pin Pin Number Pin
Name PLCC DIP Type

Fixed, Non-programmable Pins

MO 26 18 Input
M1 25 17 Input
CCLK 60 42 Output
RESET 44 31 Input
DIP 45 32 Output
PWRDWN 10 7 Input

User Programmable Pins

M2 27 19 Input
DIN 58 40 Input
DOUT 59 41 Output
cso 50 35 Input
CS1 51 36 Input
CS2 54 37 Input
WRT 56 38 Input
HOC 28 20 Output
LDC 30 21 Output

master mode exist: the Master Low mode, in which the
memory is addressed in ascending sequence
beginning at zero, or the Master High mode which uses
a descending address sequence starting at hex address
FFFF. With this addressing flexibility, the configuration
data may share space in a ROM or EPROM used by the
system, typically a microprocessor program. Once
configuration begins, memory read cycles continue until
the correct number of bits have been read, at which
point the DIP pin goes HIGH indicating that program
loading is completed. Bytes of data read from the
external bytewide memory are serialized on-chip, and
are independent of physical byte boundaries.

In addition to the sixteen address outputs and eight data
bus input pins, several other signals are employed in
this configuration mode. One is the ACLK output signal
which is active LOW and goes HIGH while the address
bus is changing states, allowing the use of "clocked"
EPAOMs for storing configurations. Other signals are
the CCLK and DOUT outputs which are both used to
drive cascaded (daisy chained) LCAs as shown in Figure
8. The pins used are summarized in Table 6 and the
waveforms are shown in Figure 5.

Although sixteen bits of address are generated in the
bytewide Master mode, not all are required to address
the bytes needed to configure a single LCA. The extra
addressing capacity of the LCA provides for storage of
multiple configuration programs in a single EPROM
device so that several daisy chained LCAs may be
configured from a single source. Figure 8 presents an

Value During
Configuration Description

HIGH Mode select
HIGH Mode select
<Clock> Configuration clock
HIGH Master reset
LOW Done/Program
HIGH Power-down

HIGH Mode select
<Data> Config data in
<Data> Config data out
LOW Chip select (Active LOW)
LOW Chip select (Active LOW)
HIGH Chip select
<Strobed> Write enable (Active LOW)
HIGH Constant "1" Level
LOW Constant "O" Level

Table 5. Peripheral Mode Pin Summary

2-8

example of a master mode LCA tied to a daisy chain of
slave mode LCAs. Figure 5 shows the timing for the
Master configuration mode.

In order to insure the successful configuration of daisy
chained LCAs from a master mode device, the master
mode device pauses briefly upon power-up before
commencing with the configuration process. This power­
up delay, which is substantially longer than the
initialization delay for either slave or peripheral mode,
allows for variations in LCA response to Vee rise times
and insures that all slave mode LCAs have time to
become fully initialized and are ready for configuration
data from the Master mode LCA. If longer delays are
required to guarantee that all slave devices have been
powered, then RESET may be used to hold off the start
of configuration.

CONFIGURING MULTIPLE LCAs

Designs using multiple LCAs can reduce configuration
overhead by logically concatenating the configuration

Bytewlde Master Mode Pin Summary

Pin Value During

programs. Using this option, LCAs can be connected
together in daisy chains with one data source supplying
the configuration program for all devices in the chain.
The first LCA in the daisy chain may be configured in any
of the configuration modes. Programs for all remaining
devices in the chain are loaded using the pin-efficient
Slave mode. When cascaded in this way, the LCA
devices are programmed one at a time in sequence,
starting with the first in the chain. Daisy chains of virtually
any length can be configured in this manner.

LCAs are daisy chained together by connecting the
DOUT pin of one device to the DIN pin of the next
device in the chain. Each slave mode device is supplied
with CCLK and program data from the device
immediately proceeding it in the chain. Once a given
LCA in the daisy chain has received its share of the
configuration program, the balance of the program data
are passed through to the remaining LCAs in the chain.
Data passing through the LCA, from the DIN pin to the
DOUT pin, is subject to a one clock cycle re­
synchronization delay. Once configuration is complete,
both DIN and DOUT are available to the designer as

Pin
Name

Pin Number
PLCC DIP Type Configuration Description

Fixed, Non-programmable Pins

MO
M1

CCLK
RESET
DIP
PWRDWN

26
25

60
44
45
10

18
17

42
31
32

7

User Programmable Pins

M2
DOUT
HOC
LDC
RCLK

AO-Axx

68 PLCC

D0-07

68 PLCC

27
59
28
30
57

o

o

19
41
20
21
39

o

48 DIP

o

48 DIP

Input
Input

Output
Input
Output
Input

Input
Output
Output
Output
Output

Outputs

Inputs

LOW
LOW
or HIGH
<Clock>
HIGH
LOW
HIGH

HIGH
<Data>
HIGH
LOW
<Strobed>

<Address>

Mode select
(Master-low mode)
(Master-high mode)
Configuration Ccock
Master reset
Done/Program
Power-down

Mode select
Configuration data out
Constant "1" level
Constant "O" level
Chip enable output

Memory address bus

A15 A10 AO
5 6 4 2 1 48 47 46 45 44 43

65 67 2 4 6 8 9 7 5 3 68 66 64 63 62 61

Memory data bus
07 DO

28 29 34 35 36 37 38 40
41 42 48 50 51 54 56 58

Table 6. Master Mode Pin Summary

2-9

• -

~
0

CCLK

DIN

OOUT BIT(N-2)

0010028 3

Figure 3. Slave Mode Configuration Timing

cso.cs1 XZXA, /XtlX>... tllA
CS2 w YXIXXf u~

WRT

DIN

CCLK
(OUTPUT)

BIT(f-0) DOUT x BIT(N-1) A,_ ____ _
0010028 4

Figure 4. Peripheral Mode Configuration Timing

ADDRESSBUS ADDRESS(N) " ADDRESS(N+1) " ADDRESS(N+2) (OUTPUTS)

RCLK
(OUTPUTS)

~fJ~Jli's~ BYTE(N= BYTE(N+1) ~ BYTE(N+1)

CCLK
(OUTPUTS)

DOUT BYTE (N-1) x BYTE (N-1) x BYTE (N-1)
(OUTPUTS) BIT 5 BIT 6 BIT?

0010028 5

BYTE(N)
BITO

LSB

BYTE(N)
BIT1

BYTE(N)
BIT2

BYTE(N)
BIT3

Figure 5. Master Mode Configuration Timing

BYTE(N)
BIT 4

BYTE(N)
BITS

BYTE(N)
BITG

BYTE(N)
BIT7

MSB

BYTE(N+1)
BITO

I
UI

a
j
~
~
l
c8 c;·

~
)>

~

general purpose 1/0. Figures i and 8 illustrate how
multiple LCAs can be connected together into daisy
chains. Figure 6 shows the configuration timing for daisy
chained LCAs.

CONFIGURING LCAs IN PARALLEL

In multiple LCA applications, there is a great deal of
latitude in designing the configuration logic. The serial
daisy chain technique described above is only one
method by which multiple LCAs may be programmed.
Another possibility which takes advantage of the bit-at-a­
time nature of the slave and peripheral configuration
modes is the simultaneous configuration of the LCAs in
parallel. Multiple LCA devices, as shown in the
peripheral mode example in Figure 9, can be
simultaneously configured with each write cycle loading
one bit into each of the LCAs. The total time required to
configure the entire array of LCAs is now reduced to the
time required for configuring a single device.
Performance can be improved further through the
addition of hardware to configure the group of LCAs via
OMA transfers. If a processor is available for example, up
to eight LCAs in parallel could be configured
simultaneously from one program file stored on disk.

DESIGN CONSIDERATION FOR USE OF MULTIPLE­
FUNCTION 1/0 PINS

Once a suitable configuration mode is selected, the
designer may turn his attention to assignment of
inpuVoutput functions to specific 1/0 pins. Usually this is
based on logic block placement within the LCA,
common 1/0 clock constraints, and 1/0 pin usage during
configuration. User-definable 1/0 pins employed in
configuring the LCA may be used by the end
application, but require more careful design attention
than the other 1/0 pins. For applications that require
most of the programmable 1/0 pins, it is worthwhile to
consider techniques for making efficient use of these
dual-function pins.

Good design practice dictates that no logic signal
conflicts should occur during either the configuration
phase or the user-operation phase. These conflicts may
not be obvious, since the directional nature of some of
the 1/0 pins used for configuration change when the
LCA completes its configuration and enters the user
operation state. The design should guarantee that pins
used as outputs during configuration (even though
possibly not utilized in a given application) must not
conflict with other logic sources also tied to those pins.

An example of an output pin that is easily overlooked is
the DOUT pin: during configuration it becomes an
output, regardless of whether or not it is used to drive
the DIN pin of another LCA. Other examples include the

HOC and LDC pins, which are driven HIGH and LOW
respectively during configuration. An application design
should be able to tolerate activity on these and the other
1/0 pins used during configuration without presenting a
problem to external circuits that may also be tied to
these pins. This can usually be accomplished either
through careful pinout assignment, or through isolation
buffers. The possibilities may be analyzed as three
cases:

Case 1. 1/0 pins used for configuration are dedicated to
that function only and are not used during user
operation. In this case, no signal conflicts occur, but the
number of /0 pins available for use by the application is
reduced.

Case 2. 1/0 pins used for configuration are also used
during user operation. However, since the signals are •
similar in inpuVoutput sense and the system suffers no
adverse effect from transitions occurring on those pins •
during configuration, isolation buffers are not required.

Case 3. 1/0 pins used for configuration are also used
during user operation. However, they either conflict in
inpuVoutput sense, or have signal transitions during
configuration which will adversely effect other system
logic. Three-state buffers can be employed for this
purpose, with perhaps the D/P, LDC, or HOC pin serving
as the enable control for the buffers.

Recognition of the above scenarios in an LCA
application, along with careful assignment of 1/0
functions to actual pins, can significantly reduce or
eliminate external logic components in most cases.
When faced with conflicts as in Case 3 above, the best
approach is to try another pinout assignment which may
eliminate the conflict. Isolation buffers should not be
necessary in most designs since a typical design will
have a number of inputs and outputs which can be
assigned to 110 pins used during configuration without
any conflicts. For example assigning output functions to
pins that are already outputs during configuration (e.g.,
address outputs in master mode) may obviate the need
for buffering those signals. In general, any sharing of
similar pin functions during and after configuration may
eliminate the need for external buffer logic.

2-11

The following are a few examples of how careful pinout
assignment can reduce external component count:

• Applications involving an address or data bus: If the
application calls for such a bus and will use the LCA's
master mode for configuration, these buses can
effectively share pins with the master mode's address
and/or data buses.

• Applications in which the LCA interfaces to a CPU bus
and is configured in the periphera_I _mode:
Configuration pins such as WRT, DIN, and CSO, CS1

~
I\)

REPROGRAM

SYSTEM RESET

BITSTREAM~~·-------r-=::-=-::-::-:-:-:--','<--1-"°"'~::7.7-'1,";:--i-;o;;:;;:;;:;-;;-;-;:;-\~T-;;<:;r;;;c ... """"'
SEENBYLCA#1 I PREAMBLE& I PROGRAM I

LENGTH COUNT FOR LCA#1

BITSTREAM , • , • • rr-
SEENBYLCA#2 I PRl=AlARI i=~ I \\ I PROGRAM\\ I PROGRAM \~ I PROGRAM?

FORLCA#4 ...
BITSTREAM • .,_ ____ -",~~----'I., _____ .,_

SEENBYLCA#3 I PREAMBLE& I)) PROGRAM ~
_LENGTHCOUNT. \\ FORLCA#4 ~\.J

BITSTREAM~ '((Q PROGRAM ~
SEENBYLCA#4 1 PREAMBLE& I ((FORLCA#4 ~w

LENGTH COUNT

NOTE: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE.

Figure 6. Timing for Daisy-Chained LCAs (Example Using Four LCAs)

ADDRESS DATA +5V +5V

I
+5V

I
BUS BUS

I~ 1 rn I I
I MO M1PWR I I MO M1 PWRDN I

OWN

~DIN CCLK CCLK

WAT
DOUT DIN DOUT

LCA ...
LCA SLAVE#1

M2 M2

ADDRESS H cso HOC HOC
DECODE
LOGIC LDC GENERAL LDC GENERAL

PURPOSE
PURPOSE

USER VO
USER VO

~'j =j OTHER OTHER
CS1 PINS PINS

CS2

DIP DIP

RESET RESET

I I L__

-~--

Figure 7. Peripheral Mode LCA With Daisy-Chain

0010028 7

+5V

.P., PWRDN

CCLK

DIN DOUT

LCA
SLAVE#n

M2

HOC

LDC t ~ GENERAL-l ::!::'.ii'
ALL

OTHER
PINS

DIP

RESET

0010028 8

~
[
UI

9.

[
~­
~-

:r
CD

~
5"

~
~
~

+SV +SV

+SV +SV l J ~-·~::
DOUT

(M2

MO M1 PWRDWN MO M1 PWRDWN

CCLK CCLK

DIN DOUT DIN DOUT

LCA ... LCA
SLAVE#1 SLAVE#n

HDC M2 M2

GENERAL-1 =]LDC
A15 t--····--1 A15

PURPOSE RCLK A14 t---···--1 A14
USER VO

PNS A13 A13
EPROM

ALL A12 A12
OTHER
PINS A11 A11

LCA A10 A10

HDC HDC

LDc GENERAL- LDC t f GENERAL-
PURPOSE l :;:i:;o,\' USER VO

'"\
ALL

OTHER OTHER
PINS PINS

MASTER
A9 A9 DIP DIP

D7 AS AS
~

RESET RESET

..... D6 A7 A7 D7 w
DS A6 A6 D6

D4 AS AS DS

D3 A4 A4 D4

D2 A3 A3 D3

D1 A2 A2 D2

DO A1 A1 D1

AO AO DO

OE

RESET LDC I I I Cl CE

I I .
REPROGRAM

SYSTEM RESET

0010003 15D

M
Figure 8. Master Mode LCA With Daisy-Chain ~

••

Methods of eof.gurlng the Logic Cell Array

07 -------------< DIN LCA#8

06

05

04

FROM 03

SYSTEM
BUS

02

•'
01

DO -------1 DIN LCA#1

'"om { COMMANDS
TO ALL

DEVICES

WRT

cso
CS1

CS2
0010028 9a

Figure 9a. Parallel LCA Configuration Using Peripheral Mode

and CS2 can be assigned similar functions in the final
application since these pins will be driven from the
host system's CPU bus both during and after
configuration.

• Applications involving multiple LCAs where at least
one signal passes from one device to another: it is
most natural to assign that signal to the DIN-to-DOUT
connection between those devices.

Unused 1/0 Pins

An LCA pin programmed as in input and not connected
to any external logic is a '11oating" input. As with any
CMOS device, floating inputs can result in a low
impedance current path from Vee to ground and
permanent device damage. Thus, unused LCA pins
should be either:
1. Defined as an output and driven with an internal

signal, preferably a constant "O" or "1" level.
2. Defined as an input and:

a. Driven externally with logic, or
b. Tied to an external pull-up or pull-down resistor, or
c. Tied to Vee or Ground

The relative advantages and/or disadvantages in
defining unused pins as inputs or outputs will vary from
application to application. Some of the considerations
include: minimizing power dissipation (both static and
dynamic), minimizing component count, risk of electrical
damage to the device, and future circuit board
modifications, etc. The preferred method of treating
unused pins is to:

07 r DIN LCA#8

06 JOIN LCA#7

FROM
l/OPORT

05

04

03

02

01

DO

VO STROBE

(COMMON TO
ALL DEVICES)

f DIN LCA#8

-f DIN LCA#5
I-

f 01N LCA#4
I-'

f DIN LCA#3
I-

fo1N LCA#2
I-

DIN LCA#1
1-1

I-
CCLK

1-1

0010028 9b

Figure 9b. Parallel LCA Configuration Using Slave Mode

• Externally leave the pin open or unconnected,
• Internally configure the pin as an output, and

• Drive it with some constant level signal.

This is usually accomplished by selecting a nearby
unused CLB output, defining it as either a constant "1"
or "O'', and tying that signal to all nearby unused IOBs. If
internal routing congestion in the area precludes routing
this de signal to the 108, the next best option is driving
the IOB's output pin with one of the nets which is
accessible. In this case, a net with the lowest toggle
frequency is best since it will result in less power
dissipation.

Test points

Another practical use for unused LCA pins is as
diagnostic test point outputs. These test points can be
very valuable for later monitoring of internal logic nodes
which would otherwise be inaccessible.

THE CONFIGURATION PROGRAM

The information required to program the LCA can be
viewed as a serial string of bits (i.e., 1 's and O's) that is
shifted into the LCA one bit at a time until all the
necessary configuration information has been loaded.
This is appropriately referred to as the configuration
program. The number of bits required to supply all the
configuration information for a single LCA depends on

2-14

depends on the device type and is outlined in Table 7.
For applications using multiple LCAs connected as a
daisy chain, the program grows for each additional LCA
device.

these additional clocks is ignored. Configuration
bitstreams for several LCAs connected in a daisy chain
have only a single preamble and length count.

The configuration program begins with several logic "1"
bits (termed "dummy bits") followed by a 001 O preamble
bit pattern (leftmost bit first). Following the preamble are
24 bits which represent the length count. The
magnitude of this length count must equal or exceed a
value two less than the total number of clock cycles
required to shift in all the bits (including the dummy bits)
in the bitstream. Length counts greater than this
number up to (2~4-1 are permissible and merely serve
to delay the D/P pin from going HIGH indicating the
completion of configuration; all data associated with

Within the LCA, this count value is held in the length
count register and compared to a CCLK cycle counter to
determine when the configuration process is complete.
When the value of the CCLK cycle counter compares to
the value in the length count register, and all required
data frames have_ been entered, configuration is
complete and the DIP pin released. Since all devices in
the daisy chain start their clock cycle counters
simultaneously with the first CCLK cycle to occur after
RESET is released, all LCAs in a daisy chain complete
configuration and become operational simultaneously.

0010028 11

1111
0010
< 24 Bit length count >
1111

O < Data frame # 001 > 111
O < Data frame # 002 > 111
0 < Data frame # 003 > 111

O < Data frame # 159 > 111
O <Data frame# 160 > 111

1111

1111
0010
< 24 Bit Length Count >
1111

0 < Data frame # 001 > 111
O <Dataframe#002> 111
O <Dataframe#003> 111

O <Data frame# 196 > 111
O < Data frame# 197 > 111

1111

Notes:

Configuration Bitstream Format: (Shown In Binary)

XC2064 LCA

Dummy bits (4 Bits Minimum)
Preamble code
Configuration program listing
Dummy bits (4 Bits Minimum)

160 Configuration data frames

(Each frame consists of:
a 0 start bit, a 71 -bit data field,
and 2 or more dummy bits)

Postamble code (4 bits minimum)

XC2018LCA

Dummy bits (4 bits minimum)
preamble code
total number of bitstream bits
dummy bits (4 bits minimum)

197 Configuration data frames

(Each frame consists of:
a O start bit, a 87 -bit data field,
and 2 or more dummy bits)

Postamble code (4 bits minimum)

Repeated once
for each LCA in
the daisy chain

Repeated once
for each LCA in
the daisy chain

1. Data bits (as shown in the table) are shifted into the LCA with the leftmost btt of each line in the table above
being entered first. The bit field containing the length count is shifted in most signdicant bit first. For master
mode applications, bytes of data read from the EPROM are internally serialized so that DO is sensed first, 07
last. Therefore, the first byte of the EPROM would read "0100 1111" in binary, or "4P' in hexadecimal notation.

2. In multiple LCA applications where a daisy chain is used for configuration, the length count reflects the total
number of clock cycles for all LCAs being configured from this one bitstream.

Table 7. Configuration Bitstream Format

2-15

• -

Methods of LCA Configuration (XC2064/2018)

CONFIGURATION MODE: <M2:M1 :MO> USER
46 68 SB

SLAVE PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION
DIP PLCC PGA <1:1:1> <1:0:1> <1:1:0> <1:0:0>

1 BS GND
2 AS A13 (ci}

1 3 BS AS 0
4 AS A"i2 0

2 s B4 <~HIGH;~ A7 JQi Kl
3 6 A4 A11Jiii:
4 7 83 AB 0
s B A3 A10 0
6 9 A2 A9 0
7 10 82 WRi ii\iNI
8 11 81

12 C2
9 13 C1

14 02
~~HI' H>~. liO

10 15 01
16 E2

11 17 E1
12 18 F2 vcc
13 19 F1

20 G2
14 21 G1

..•. ~~~ 3H>>
22 H2

15 23 H1

········•·;·•1 16 24 J2
17 25 J1 ~(HIGI M1 M1 (LOW) RDA AA
18 2S K1 Ji[IHIGH MO o\ii[MO !HIGH MO(LO\ii[RTRIG::fil:
19 27 K2 M2

20 28 L2 HOC

29 K3 •'«HI• GH»·:•::::;:;:•:•:•:::·.•<• Kl
21 30 L3 LDC (LOW)

31 K4 ::•::•:••:::.:: ~
22 32 L4

33 KS ~~HIGH;;·
23 34 LS
24 3S KS GND

36 LS = 25 37 K7
38 L7 ·········:

26 39 KB ;.; .. :;.: Kl

27 40 L8
28 41 K9
29 42 L9 06 ~)
30 43 L10 XTL20Rl/O
31 44 K10 n:
32 45 K11]Qi" ~
33 46 J10 .~~.~.ii1H;~- XTL1 ORllO

47 J11
34 4B H10

49 H11 "][liO

35 so G10 I 04
36 51 G11 ::mm:: ::@

52 F10 vcc
53 F11

37 54 E10 !(I) D2llf
S5 E11 liO

36 56 010 U!L 01 [i[
39 S7 011 ~
40 SB C10 !!]![oo]i)
41 S9 C11 DOVT(O)
42 60 811 CCLK(I) LK(O) CCLK(if
43 61 810

•:•·•·•·••·•·•·•Ji·=·.

AO lOi
44 62 A10 A1 @:
45 63 89 A2 (0)

46 64 A9 · .. :: .. :::.: .. ::,.: A3 (0) liO

65 88 A1S (0)

47 6S A8 A4 (0)

67 87 A14 (0)

48 68 A7 AS (0)

<<HIGH>> IS HIGH IMPEDANCE WITH A 2~ KO INTERNAL PULL·UP DURING CONFIGURATION

0010003 20

XC2064 Pin Assignments

2-16

0010003 21

SB SB B4
PLCC PGA PLCC

BS
AS

BS
AS

B4
A4
B3
A3 10
A2 11

10 B2 12

11 B1 13
12 C2 14
13 C1 1S
14 D2 1S
1S D1 17

1B
1S E2 19

20
17 E1 21
1B F2 22
19 F1 23

24
20 G2 2S

2S
21 G1 27

22 H2 2B
23 H1 29
24 J2 30
2S J1 31
2S K1 32
27 K2 33
2B L2 34

29 K3 3S
30 L3 3S
31 K4 37
32 L4 3B

39
33 KS 40
34 LS 41

42
3S Ks 43

44
3S LS 4S
37 K7 4S
3B L7 47

4B
39 KB 49
40 LB so
41 K9 S1

42 L9 S2
43 L10 S3
44 K10 S4
4S K11 SS
4S J10 SS
47 J11 S7
4B H10 58

S9
49 H11 so

S1
so G10 S2
S1 G11 S3
S2 F10 S4
S3 F11 SS
S4 E10 66

S7
SS E11 SB

S9
SS D10 70
57 011 71
SB C10 72

S9 C11 73
so B11 74

B4
PGA

cs
AS

AS
BS
cs
A4

B4
A3
A2

B3
A1
B2
C2

B1
C1
D2
01

E3
E2

E1
F2

F3
G3
G1
G2
F1
H1
H2

J1
K1
J2

L1
K2
K3

L2
L3

K4
L4

JS

~
LS

Ks
JS

J7
L7
K7
LS

LB
KB
L9
L10

K9
L 11
K10
J10
K11
J11
H10

H11
F10

G10
G11
G9
F9

F11
E11

E10
E9

011
010
C11
B11
c10

A11

SLAVE
<1:1:1>

CONFIGURATION MODE: <M2:M1 ·MO>

PERIPHERAL MASTER-HIGH l MASTER-LOW
<1:0:1> <1:1:0> c1:0:0>

GND

A11 .JQl.
AB A
A10 0
A9 0

MO (HIGH) MO (LOW) MO (HIGH) MO (LOW)
M2 (HIGH)
HOC (HIGH)

LDC (LOW)

{.·
GND ···.wyDC

.)

:.;.:<:::<;; ..

DONE 0

= D7 (I)
DSJ!.)

E .. ·

\\•: \::: ... , ,
.::11'~'

{L DS Q)

= ·=· fil: 04 (I)
!J!L D3 (I)

vcc

·.···lee:·· •···•'.:F····.···
CS2 Q) 02 (I)

77

WR I

OOUT(O)
CCLK (I) CCLK (0)

01 (I)

RCLK
DO (I)

····cg

USER
OPERATION

1/0

RDATll
RTR!G I

XTl20AllO

PRQg_ I
Xll1 ORl/O

CCLKfil:
S1 B10 7S B10
S2 A10 7S B9

S3 89 77 A10
S4 A9 7B A9

SS BB 79 BB
SS AB BO AB
S7 B7 B1 B6

'-"::.-1~+~-i-:;~n•: . ..:.:•:·>•"·······'••• .i•••• <·-·~·£"0.i~~:/•:·!!lj: ~'. i
:··········~·

B2 B7

B3 A7
SB A7 B4 C7 AS (0)

«HIGH» IS HIGH IMPEDANCE WITH A 20-50 KO INTERNAL PULL-UP DURING CONFIGURATION

XC2018 Pin Assignments

2-17

l:X!UNX

• -

Methods of Configuring the Logic Cell Array

The value used for the length count is a function of how
many LCAs will be configured by this one program. For
example, if there are three XC2064 LCAs connected in
a daisy chain, then the configuration program would be
approximately 36,000 bits in length. This value is
approximate since the length count is included only
once at the beginning, and since several additional
cycles are required to compensate for the rec
synchronization delay of the data at each DOUT pin. The
precise value of the length count is computed by the
XACT development software and automatically entered
into the program data file. The preamble and length
count bits are sensed by each LCA at its DIN pin and
immediately passed on to the next LCA in the daisy
chain via the DOUT pin. Afterwards, however, each LCA
in turn accepts its portion of the configuration program
before passing any subsequent data on to the next
device. See Figure 6.

Within the configuration program data are presented in
frames which begin with a "start" bit and end with two or
more dummy or "stop" bits. Between the start and stop
bits of each frame there is a data field which defines the
user's logic functions. The last frame is followed by a
field of postamble bits.

Notes:

1. Xilinx reserves the right to change the format,
organization, and/or length of the program used to
configure the LCA.

2. The documentation presented here applies only to
the bitstream data generated by the XACT
development system for use in EPROMs; the
XACTOR In-Circuit emulation uses a somewhat
longer version of the configuration program.

PIN 0010028 01

2-18

l:XIUNX

• -

2-19

l::XIUNX

Introduction

1/0 Structures

Schmitt· Triggers

Oscillators

Registers and Shift Counters .

Output Current

Ins and Outs of
Logic Cell™ Array
1/0 Blocks

Table of Contents

2-20

2·21

2·22

2·27

2·29

2·32

2·38

I

I

INTRODUCTION

This Application Note describes various uses for Input/
Output Blocks within the XC2064 and XC2018 Logic
Cell Arrays.

The architecture of the XILINX Logic Cell Array (LCA)
provides great design flexibility in using inputs and
outputs. Since the Input/Output Blocks (IOBs) in an
LCA are not dedicated to any fixed logic, they may also
be used for many things beyond simple inputs or
outputs. Many designs will not use all of the IOBs
available within the LCA. In such cases, the design
engineer can build logic structures such as shift
registers or Johnson counters in unused IOBs.

The Input/Output Block

All of the lnpuVOutput Blocks (IOBs) of the Xilinx
XC2064 and XC2018 Logic Cell Arrays (LCAs) are

Ins and Outs of
Logic Cell™ Array
1/0 Blocks

identical. However, each IOB can be individually
configured by the designer to perform a variety of logic
functions. Each has the capability to drive an output,
receive an input, clock the input into a flip-flop, or do
both input and output under three-state control. A
schematic of the IOB is shown in Figure 1. The
trapezoidal structures are data path selectors or
multiplexers. The programming of these data path I
selectors determines the function performed by the
IOB.

Along each edge of the LCA die, the IOBs share a •
common 1/0 clock signal which drives the input register.
All of the internal registers are reset to a "O" state after
configuration or after the RESET pin is asserted low.
Data is clocked into the input register on the positive
edge of the 1/0 Clock signal.

Logic signals external to the LCA come in through an 1/0
pad and a non-inverting buffer. The signal is then either

''''""''""'"'""''"'"""'''''''''""'""'''"'''"'"''"''""'""''"''''"'''''"''''''"'"'''"''"'''''°''''''"'"""''''"'"'"'"""'"''"'''''""'"""'""i

~

0010022 1

D Qt-----'

-ii__ _ PROGRAM CONTROLLED
~ - MULTIPLEXER

~

l/OCLOCK

TS (OUTPUT ENABLE)

OUT

IN

Figure 1. Input/Output Block (108). An Input/Output Block (IOB) can be configured as either a
direct or registered input, a direct or three-state output, or as a bidirectional data line.

2-21

Ins and Outs of Logic Cell Array 1/0 Blocks

directly propagated or fed into the input register,
depending of the configuration of the data path
selector. Similarly, output data is driven by a non­
inverting buffer. The output buffer is forced into a high­
impedance state whenever the three-state control line is
HIGH (TS = 1). Conversely, the output buffer
propagates the output signal when the three-state
control line is LOW (TS= 0). All outputs can source and
sink 4 mA under specified worst-case conditions.

All IOBs can be globally configured to recognize either
TTL-level (Vth = 1.4 Volts) or CMOS-level (Vth = 2.2
Volts) input thresholds. This option affects overall
device power consumption. Power consumption is
lower when CMOS input levels are selected.

Scope and Purpose

The purpose of this application note is to describe some
functions available by configuring IOBs in various
ways-some obvious, some not so obvious. These
structures include:

• Standard Inputs and Outputs
• Open-Collector 1/0

• Schmitt-Triggered 1/0

• Oscillators
• IOB-based Registers (data, shift, etc.)

• Counters (Johnson, Linear Feedback)

1/0 STRUCTURE DESCRIPTIONS

Conventions Used in the 1/0 Descriptions

For each 1/0 structure, the following conventions will be
maintained. Each structure will be shown in schematic
form and the IOB configuration will be described.
Configurations available for the input path include:

• (l:PAD)-Direct input from the device pad.

• (I :Q)-Registered input.

• (I :)-No input.

The output buffer may be configured as follows:

• (BUF:ON)-Direct output.

• (BUF:TRl)-Three-state output.

• (BUF:)-No output.

If a macro definition (MACRO) exists for the structure
described, it will also be listed. Any special configuration
information will be described under "COMMENTS."

STANDARD 1/0 STRUCTURES

1/0 TYPE: Pad Input
MACRO NAME: PIN
SCHEMATIC:

CONFIGURATION:
l:PAD
BUF:

Figure 2. Pad Input

001022 2

Registered Inputs and Metastability Characteristics

2-22

Figure 3 is a schematic of a registered input within the
LCA. Logic Cell Arrays are manufactured with a high­
speed CMOS process. This allows the 1/0 Block input
registers to achieve flip-flop loop delays of three to five
nanoseconds. Short loop delay provides very good
performance under asynchronous clock and data
transitions. Short loop delays minimize the probability of
a metastable condition which can result when the input
into the flip-flop is still in transition when the clock is
asserted. The short loop delay characteristics of the 1/0
Blocks allow the device to be effective in synchronizing
external signals. Once synchronized in the IOB, the
signals can be used internally without further
consideration of their relative timing, except as it applies
to internal logic and routing path delays. Further
information regarding the metastable behavior of
registers within an LCA is contained in the XILINX
application note, Metastability Analysis of LCA Flip­
Flops.

110 TYPE: Pad Input with Storage (registered input)
MACRO NAME: PINO
SCHEMATIC:

r.:,:,.,·,..-,.,•,v,v,:,'.•,:,-,~·.:""•'"0:N•!>.'.'0:•:0:•!0:•'.'+.V,".:0:•~•'0:•!•"'0:"•"'•"'•!0:""•'>:•"'•:>'0:"•'0:•'<l"•'•'O:•:•'•:•'O:•:>":.:•:•:>!·":O:·:O:•:•!•'O:·'~

~ ~

i PAD !
~ ~
~ ~

I I
j D 0 j-INPUT

l 1
~ ~
~ ~
~ ~
~ ~

~«>X->X-»»XM''"'"""'"'"'»"'''"'''"''"'''»»'""'"'"'''"'"''''"'''"""''·'''"''"M'"""'''"'»"J- VO CLOCK

0010028 3

CONFIGURATION:
l:Q
BUF:

Figure 3. Pad Input With Storage Register

1/0 TYPE: Pad Output
MACRO NAME: POUT
SCHEMATIC:

r-;v;.;.;.;.;v.-.:-:-:-:-:-:-:v:v: -:«-:-: :v;.;-:.,,:.;.:·:-:·~:v.-.:-:-:-:·:-:•:-:•:-:-:·:-:-:v:-:«1

j t-. - OUTPUT
§ ~

~ ~
~ ~D ~
~ ~
~ ~
~., •,.,...,.,.,.......,.,.,., .. .,...,..,.,., ,.,.,.,.,...,.u w_.,., ,...,.,.,.,.,.,.,.,...,.,~

0010022 4

CONFIGURATION:
I:
BUF:ON

Figure 4. Pad Output

2-23

l:XIUNX

1/0 TYPE: Pad Output with Three-State Control
MACRO NAME: POLITZ
SCHEMATIC:

THREE-STATE

OUTPUT

0010022 5

CONFIGURATION:
I:
BUF:TRI

Figure 5. Pad Output With Three-State Control

110 TYPE: Pad Input/Output (bidirectional data line)
MACRO NAME: PIO
SCHEMATIC:

r•'""''•""•''•''•''-"•'•''•''MV.W.V,WoWo'•'""'""'"".W•'"V•''•''•'~

PAD

0010022 6

CONFIGURATION:
l:PAD
BUF:TRI

~
THREE-STATE

OUTPUT

INPUT

Figure 6. Pad Input/Output (Bidirectional)

I

•

Ins and Outs of Logic Cell Array 110 Blocks

110 TYPE: Pad Input/Output with Input Storage
MACRO NAME: PIOQ
SCHEMATIC:

CONFIGURATION:
l:Q
BUF:TRI

0010022 7

Figure 7. Pad Input/Output With Input Storage

"OPEN-COLLECTOR" 1/0 STRUCTURES

Overview

"Open-collector" outputs can be used for a variety of
functions including ''wired" AND and OR structures. For
MOS devices like the Logic Cell Array, a more accurate
terminology is open-drain outputs, since an MOS
transistor has no collector.

To build an open-drain output structure in an LCA, both
the output and the three-state control lines are tied
together. For an active HIGH signal, the three-state
control engages (high impedance) and the output signal
is disabled through the output buffer. The signal at the
output pad will also be high impedance, allowing that
particular signal line to ''float." Connecting this signal line
to Vee through a resistor will pull this line up for an active
HIGH output. However, for active LOW signals, the
three-state control line is driven LOW. This turns on the
output buffer and allows the LOW signal to propagate
directly to the 1/0 pad.

Open-Drain Structures and Routing

When designing with open-drain structures, the
designer should be aware of an LCA-specific
phenomenon caused by the different routing delays
between the signal source and the output and three­
state control loads.

Since a routed signal may take longer to reach an IOB's
three-state control line than its output line, the pad may
be driven for a short period of time during a LOW to
HIGH transition. This situation could occur if the output
line (0) starts to go HIGH before the three-state control
line (T). Depending on how much routing delay there is
between the output (0) and three-state (T) lines, the
PAD output could start to go HIGH and then be driven
into high-impedance. Excessive routing delay differ­
ences between the output (0) and the three-state
control line (TS) may cause ~ brief output glitch as
shown in Figure 8. Careful design will prevent this.

This situation is not a problem in most designs. The
actual routing delay difference between the (T) and (0)
terminals of an IOB can be checked using the timing
calculator included in the XACT™ Development System.

1 SIGNAL

PAD

.... '•'•'•'•'•'•'•'•'•'•' ·.·.····················':.:.~ l:[.,,,•,',•.',•,',•,•,•""•'""•'•'.'•'•'•'•'"•'•'•'•'N.'o'•'•'•'"•'" , < •

OUTPUT 7
DELAY --1 14-

THREE-STATE

llOPAD HIGHIMPEDANCY----

2-24

Figure 8. Brief Output Glitch Caused by
Three-State Routing Delay

0010022 8

110 TYPE: Pad Output with "Open-Collector"
MACRO NAME: POUTC
SCHEMATIC:

0010022 9

CONFIGURATION:
I:
BUF:TRI

OUTPUT

Figure 9. Pad Output With "Open-Collector"

110 TYPE: Pad Input/Output with "Open Collector"
MACRO NAME: PIOC
SCHEMATIC:

PAD

:~

t,.,.,.,.,.,.,.""'"'~''"''''"'°""m'"""'"'"'""""'""'"'"'""''""'''"'"'""'""'"""'"'""""'''""'"m"'';
0010022 10

CONFIGURATION:
l:PAD
BUF:TRI

OUTPUT

INPUT

Figure 10. Pad Input/Output With "Open-Collector"

2-25

110 TYPE: Pad Input/Output with Storage,
"Open Collector"

MACRO NAME: PIOQC
SCHEMATIC:

0010022 11

CONFIGURATION:
l:Q
BUF:TRI

l:XILINX

Figure 11. "Open-Collector" Pad Output With Storage

"Wired" AND and "Wired" OR Structures

The open-drain capability of Input/Output Blocks allows
a designer to build ''wired" AND and ''wired" OR
structures. The AND and OR implementations are
essentially the same. The only difference between the
forms is the type of logic used. "Wired" AND structures
are used in positive-logic implementations, while ''wired"
OR structures are used in negative-logic
implementations.

Figure 12 shows a typical ''wired" AND or ''wired" OR
structure. All of the output PADs from the IOBs are
externally wired together as a common signal. In a
positive logic system, when all of the logic outputs to the

I

•

Ins and Outs of Logic Cell Array 110 Blocks

IOBs are true, the three-state control is enabled and the
IOB output PADs are forced to high-impedance.
However, since all of the IOBs are tied to Vee through a
pull-up resistor, the line is pulled-up to Vee. If the logic
signal to any of the IOBs is false, the corresponding
output buffer would be turned on and that LOW signal
would propagate to the common line. This, in turn,
would pull the entire line LOW. The entire structure
then acts as an AND function-when all outputs are
high, the common line is high. If any output is low, then
the common line is also low. The ''wired" AND logic is

PULL UP
RESISTOR

PAD

PAD

'WIRED' AND ----· 11 G OUTPUT 3
'WIRED' OR ~

EXTERNAL TO LCA
~m

INTERNAL TOLCA
0010022 12

Figure 12. "Wired" AND or "Wired" OR Function

PULLUP
RESISTOR

+5V

EXTERNAL TO LCA

PAD

INTERNAL TO LCA

shown in Equation 1.

1081 • 1082 • 1083 • ... • IOBn =TRUE [1]

A ''wired" OR structure is similar except that it is
implemented in negative logic. It ORs together a
number of active LOW signals to generate a logic
function. The logic equation for a ''wired" OR shown in
Equation 2 structure is merely a "DeMorganized"
inversion of Equation 1.

1081 + 1082 + 1083 + ... + IOBn = FALSE [2]

A typical application of a ''wired" OR structure is an active
low common interrupt line. If any peripheral requests an
interrupt, the common interrupt line is pulled low,
signalling the processor of the request. A ''wired"-AND
or ''wired"-OR function can be built from any number of
open-collector outputs.

Multiplexers from "Open Collector" outputs

Another structure which. can be built using open drain
IOBs is an n-bit multiplexer, as shown in Figure 13. All of
the PAD outputs are tied together outside of the
package on a common line which becomes the
multiplexer output. Each 108 in the example is
configured as an output with three-state control (Macro
= POUTZ). The output line (0) of each IOB becomes an
input for the multiplexer. A signal is selected by driving
the corresponding three-state control line low (T = 0).
The selected signal then propagates to the common
output line. The three-state control lines can be driven
with a Configurable Logic Block.

CAUTION: The designer must avoid output contentions
on the common output line.

..--------.--- MUX.CNTRL

OUTPUTO

0010022 13

Figure 13. "Open Collector" Multiplexer Function. A multiplexer can be built from open-collector outputs.
A specific output signal is selected by enabling the output buffer for that signal (TS = 0).

2-26

SCHMITT-TRIGGERED 1/0 STRUCTURES1

Overview

The Schmitt trigger has numerous applications in digital
designs. Two of the most common are shown in Figure
14. Schmitt-triggered inputs can filter signal noise due
to hysteresis built into the switching characteristics.
Schmitt triggers are also useful to generate fast
transitions when a slowly changing input function
reaches a predetermined level. Again, this effect is due
to hysteresis.

Schmitt-triggered inputs can be built in a number of
ways within an LCA. Using three 108s, a CL8, and three
resistors, a designer can build Schmitt triggers with
selectable voltage hysteresis. If the amount of
hysteresis is not critical, then the resource requirements
are reduced to only two resistors and two 108s.

The threshold voltage and the amount of hysteresis for
a complete Schmitt trigger are selected using three
resistors. The three resistors are separated into two
resistor network pairs (R1 :R2 and R1 :R3) as shown in
Figure 15. Each pair forms a voltage divider to set the
input voltage level-one to set the HIGH going transition
level (Vh) and one to set the LOW going transition level
(VI). The input value at the input to 1081 is inverted
through a CL8 and then routed to the three-state
control line 1083. The CL8 logic adds a small amount of
time hysteresis to the signal since both the CL8 logic

I I
I I
I I

J
a. NOISE REDUCTION b. FAST TRANSITIONS OF

SLOWLY CHANGING
SIGNAL

0010022 14

Figura 14. Application of a Schmitt trigger. Example applica­
tions of a Schmitt trigger include a.) A noisy input
signal cleaned up through a Schmitt trigger. b.)
Fast transitions generated from a slowing changing
input signal through a Schmitt trigger input.

and the routing cause delay. The logic delay can be
balanced by buffering the input before sending it to the
three-state control of 1082.

An inverting Schmitt trigger is similar except that the
sense of the logic is inverted inside the LCA.

Theory of operation

Assume that the input voltage is near ground. The
output voltage of 1082 is at Vol, which pulls resistor R2
toward ground. There is then no potential difference
across R2. The output buffer of 1083 is high­
impedance, since its three-state control pin is HIGH.
Resistor R3 is effectively removed from the circuit. The
input voltage is divided by the resistor network formed
by resistors R1 and R2. As the input voltage continues
to increase, the 1081 pad voltage will eventually reach I
its switching threshold.

Once the threshold is crossed, 1081 goes HIGH, driving •
the output of 1082 into high-impedance (1082 TS=1)
and enabling the output buffer of 1083 (1083 TS=O).
Now at Voh, 1083 pulls the input of 1081 high through
resistor R3. In this state, resistor R2 is effectively
removed from the circuit, since 1082 is high-impedance.

This structure will remain in its present state even if the
input voltage fluctuates. If the input voltage fluctuates
to the opposite hysteresis limit, the Schmitt trigger will
go to the opposite state. In other words, the Schmitt
trigger will stay HIGH until the input to 1081 drops below
the LOW going hysteresis limit and vice versa.

If the values of the hysteresis are not critical, the Schmitt
trigger can be reduced to only two 108s and two
resistors as shown in Figure 16. However, the range of
Vh and VI are very limited. The 108 configured as an
output pulls the input HIGH or LOW, depending on the
transition direction.

If a selectable Schmitt trigger is required only for a single
transition direction (HIGH going LOW, or LOW going
HIGH), then the circuit shown in Figure 15 can be further
simplified to those shown in Figure 17a and 17b. Note,
however, that a single CL8 is required to invert the
sense of input signal to enable or disable the output
buffer for 1082 (the 108 configured as a three-state
output).

2-27

Ins and Outs of Logic Cell Array 110 Blocks

110 TYPE: Schmitt-Triggered Input with Selectable
Hysteresis

MACRO NAME: None
SCHEMATIC:

EXTERNAL :: iNTERN'AtToLCA

u PAD

......... ·.···············"·'•'•'•'•'•'•'•'•'·"'·'.'.:.j~

1 •••••••••••••••••••••••• 1
::.: .••.•• wJ

·•···•··· ···:·:·:·:·:·:·:·:·;·;·;·:·:·;·:

R1 r
-"./''-/'----<~_;:~--:~~

R2
1081

PAD

R3

t :·:·:·:·:·:·:·=·~:-:·:·:·"········ .

,,, ,, 1083 .;
::::::_ ::

----• DIRECT INPUT

It INVERTEDINPUT

0010022 15

CONFIGURATION:
108 1 - Input

l:PAD

going input hysteresis. Resistors R1 and R2 set the
HIGH-going hysteresis (Vh) according to Equation 3.

8UF:
108 2 - Output

I:
8UF:TRI

108 3 - Output (inverted through CLB)
I:
BUF:TRI

COMMENTS: Resistors pairs R1 :R2 and R1 :R3 form two
voltage dividers which set the HIGH-going and LOW-

Vh = Vth [(R1+R2)/R2]- Vol (R1/R2) [3]

Resistors R1 and R3 set the LOW-going hysteresis (VI)
according to Equation 4.

VI= Vth [(R1 +R3)/R3] - Voh (R1/R3)

Notes: Vth = input threshold voltage
for CMOS inputs, Vth = 2.2 V
for TTL inputs, Vth = 1.4 V ±supply tolerance

[4)

Figure 15. Schmitt-Triggered Input With Selectable Hysteresis.

2-28

110 TYPE: Schmitt-Triggered Input with Limited
Hysteresis

MACRO NAME: None
SCHEMATIC:

CONFIGURATION:
IOB 1 - Output

I:
BUF:ON

IOB 2 - Input
l:PAD
BUF:

COMMENTS: Hysteresis values are limited

VI= [(R1+R2) I R2] Vth Voh(R1/R2)
Vh = [(R1+R2) I R2] Vth

0010022 16

[5)
[6)

l:XIUNX

Figure 16. Schmitt-Triggered Input With Limited Hysteresis.

OSCILLATORS USING IOBs

Overview

General purpose oscillators can be built using two
Input/Output Blocks (IOBs) and a Configurable Logic
Block (CLB). The general theory of operation is similar
to that described for Schmitt triggers. For the oscillator
described below, an oscillating signal is generated by
the charging and discharging of two capacitors. The
circuit is shown in Figure 18. Capacitor C2 charges to a
voltage threshold (on Set) to set a latch. Once the
voltage across C2 exceeds the threshold, the SET line
causes the "O" line to go high and starts discharging C2
by driving the IOB called COL. After crossing the
threshold, the RESET line, which has been held low, is
allowed to rise as capacitor C1 charges. Once capacitor
C1 charges to its threshold, the "Q" output is reset and
forced low. Capacitor C1 is now discharged by the IOB
named CO, and capacitor C2 begins charging again.
This process repeats, creating a low-frequency resistor­
capacitor oscillator.

The designer should consider the routing delay of the
three-state control lines within IOBs marked as CO and
COL in Figure 18. The time period of the oscillator
depends on each capacitor being completely

2-29

discharged during the opposite timing phase. In
addition, the timing depends on both capacitors
beginning their charge near ground. A routing delay
difference between the output (0) of an IOB and the
three-state control (T) may prevent the capacitors from
completely discharging.

Any number of these low-frequency oscillators can be
used in a design. In most designs, however, only one or
two are required. If the oscillator output is used
throughout the design to clock the registers within the
CLBs, place the oscillator near one of the clock buffers
and use the clock buffer. Figure 18 shows a low­
frequency oscillator built near the main clock buffer in
the upper left-hand corner of the die. A similar low­
frequency oscillator may drive the auxiliary clock buffer
located in the lower right-hand corner of the die.

The designer should be aware that the low-frequency
oscillator circuit will cause an error when using the timing
calculator to examine the oscillator. The timing calculator
in the XACT Development System detects combinatorial
loop conditions and flags them as errors. The oscillator
circuit depends on combinatorial loopback for operation
and will cause an error message. Such errors messages
can be safely ignored if they are detected only in the
oscillator circuit.

•
•

Ins and Outs of Logic Cell Array 110 Blocks

110 TYPE: Unidirectional Schmitt-Triggered Input
MACRO NAME: None
SCHEMATIC:

EXTERNAL TO LCA ill INTERNAL TO LCA

-"'V'R'-1 ,..___..___._!
PAD

'.1 .. 1~
I "" ""ff,i,i • ~ ~.:.: ~ I "'~C"'~'
I f 0~,.,

R2

SCHEMATIC:

!!

Vh = Vth
VI= Vth [(R1 +R2)/R2]- Voh(R1/R2)

[7]
[8]

Figure 17a. Unidirectional Schmitt-Triggered Input HIGH Going LOW

EXTERNAL TO LCA \! INTERNAL TO LCA

R1

R2

I
••••

PAD

Vh = Vth [(R1 +R2)/R2] - Vol(R1/R2)
VI= Vth

[9]
[10]

Figure 17b. Unidirectional Schmitt-Triggered Input LOW Going HIGH

2-30

0010022 17a

0010022 17b

110 TYPE: Low-Frequency Resistor-Capacitor Oscillator
MACRO NAME: GOSC
SCHEMATIC:

l:XIUNX

--EXTERNAL TO LCA INTERNAL TO LCA

CONFIGURATION:
1081

l:ON
8UF:TRI

1082
l:ON
8UF:TRI

0010022 18

R1
Vee ------...rv~--~·

Cl

R2

~
CLOCK

BUFFER

rn

111082
:::

CLB

SAMPLE
ARRANGEMENT

w ••• J ... Q

··~··
RESET

Figure 18. Low-Frequency Resistor-Capacitor Oscillator

Q

C2

C1 RESET

0010022 19

Figure 19. Low-Frequency Resistor-Capacitor
Oscillator Timing Diagram

2-31

T (time period)= T1+T2 = N ((R1 X C1)+(R2 X C2)) [11]
where N = approximately 0.35 for TTL

threshold
=approximately 0.75 for CMOS

threshold

Assumptions: Each capacitor is discharged during
opposite timing phase. Capacitors begin charging from
GROUND. Effect of three-state routing delay is
assumed minimal.

I

•

Ins and Outs of Logic Cell Array 1/0 Blocks

ON-CHIP CRYSTAL OSCILLATOR

Basic Description

Two special user-defined 1/0 Blocks can be configured
to interface directly to the on-chip crystal oscillator
located in the lower right-hand corner of the die. The
crystal oscillator is associated with the auxiliary clock
buffer located near the oscillator. When the
interconnect is selected to drive the auxiliary clock
buffer two special pins interface directly to the internal
high-speed inverting amplifier to form the oscillator.
Externally, these pins should be attached to crystal
oscillator components as shown in Figure 20. The best
way to configure the crystal oscillator is through the
MACRO named GXTL.

Even before device configuration is complete, the on­
chip oscillator begins operation so that the circuitry can
stabilize. The actual internal connection of the oscillator
to other circuitry on the chip is delayed until completion
of device configuration.

Theory of Operation

The feedback resistor (R1) from output to input biases
the amplifier at threshold and should be as large a value

110 TYPE: On-Chip Crystal Oscillator Circuit
MACRO NAME: GXTL
SCHEMATIC:

ALTERNATE
CLOCK BUFFER

SUGGESTEDCOMPONENTVALUES
R1 1-4 MO
R2 0-1 KO

as practical up to 4 Mn. The inversion and delay of the
amplifier, together with the R-C networks and crystal,
produce a 360 degree phase shift, forming a Pierce
oscillator. The series resistor (R2) may be included to
add to the amplifier output impedance when needed for
phase shift control, crystal resistance matching, and to
limit the amplifier input swing to control clipping at large
amplitudes.

Excess feedback voltage may be adjusted by the ratio of
capacitors C2/C1. The amplifier is designed for use in
the range from 1 MHz up to one-half the specified CLB
toggle frequency. Using the oscillator at frequencies
below 1 MHz requires individual characterization with
respect to a series resistance. Operation at frequencies
above 20 MHz is more involved since it generally
requires that the crystal operate in a third overtone
mode in which the fundamental frequency must be
suppressed by the R-C networks.

REGISTERS IN IOBs

Overview

The previous examples describe the use of IOBs for
conventional applications. All involved using either the

O~HIP

D
D

EXTERNAL

(may be required for low frequency, phase
shift and/or compensation level for crystal 0) iC1

C1,C2 5-20pf
Y1 1-10MHzATcut

XTAL1 XTAL2

48DIP 33 30

68 PLCC 46 43

68PGA J10 L10

84 PLCC 56 53

84PGA K11 L 11
0010003 10

Figure 20. On-Chip Oscillator Circuit

2-32

input, or the output, or both. If an 108 is not required for
input or output, the storage element within each 108
can be used to create registers and various types of
counters. All of the following designs involve using the
output buffer (8UF:ON) fed back into the input register
(l:Q). This configuration, which is used with slight
modifications in each of the following examples, is
shown in Figure 21. The pads of the 108s involved are
not typically connected to anything externally, although
they may be if desired.

108-based Register Delays

The delays incurred through an 108-based register
depend on the sum of two parameters-the delay
through the output buffer and the delay back through
the input buffer to the register. While these values are
defined in the data sheet for an output load of 50 pF,
their values change only slightly for no output
capacitance. The delay into an 108-based register is:

T(I08-reg)
where:

Top
Tpl

Top+ Tpl [12)

Output to Pad output
Pad input set up to 1/0 clock
(min)

110 TYPE: Pad with Input Storage (108-based register)
MACRO NAME: PREG
SCHEMATIC:

PAD

0010022 21

CONFIGURATION:
l:Q
8UF:ON

OUTPUT

D a INPUT

VO CLOCK

Figure 21. Pad With Input Storage (108-8ased Register)

l:XIUNX

Wide Storage Registers

Wide storage registers can be built from the basic
structure described in Figure 21. For example, Figure
22 shows the construction of a n-bit storage register
built from 108s. Wide storage registers are ideal for
108s, since the 1/0 clock feeding an 108 is common to all
108s along each edge of the die.

Read/Write Registers

Another variation of the basic 108-based register is a
simple read/write register. This structure allows data to
be written into registers within the LCA from an external
device and also read back. Figure 23 shows the
structure of a read/write register. In this example, the

110 TYPE: N-bit Storage Register (108-based register)
MACRO NAME: None
SCHEMATIC:

2-33

PAD

PAD

0010022 22

CONFIGURATION:
Alll08s

l:Q
8UF:ON

I------;,___... BITO IN

D Q 1-<;,-- REG 0 OUT

I-----~;-.+- BIT 1 IN

D Q ,.._.,,-+-_ REG 1 OUT

~------ CLOCK

EXPANDABLE TON BITS

COMMENTS: The 1/0 clock into each 108 is common to all
108s along each edge of the die. For best resource
utilization, group the storage elements along one edge
of the die.

Figure 22. N-81t Storage Register (108-8ased Register)

•
•

Ins and Outs of Logic Cell Array 1/0 Blocks

input (I) and output (0) stubs of the 108 are connected
together. The three-state control line (T) controls the
direction of data flow (T = LOW for a read operation by
the external device, T =HIGH for a write operation to the
LCA). Typically, the read/write control line (three-state
control) also originates external to the LCA, and would
come in through an additional 1/0 block.

The designer should be aware that the input register
data can be read from the LCA from the read/write

110 TYPE: N-bit Read/Write Storage Register
MACRO NAME: None
SCHEMATIC:

PAD

PAD

CONFIGURATION:
All 108s

l:Q
8UF:TRI

COMMENTS:

~---------DIRECTION

CONTROL

D Q ,_.,,~----- REGO OUT

~---------CLOCK

EXPANDABLE TON BITS 0010022 23

The 1/0 clock into each 108 is common to all 108s along
each edge of the die. For best resource utilization,
group the storage elements along one edge of the die.

The three-state control line controls the direction of data
flow (T =LOW for read, T =HIGH for write). This control
line will typically originate off chip and come in through
an additional 108.

Figure 23. N-Bit Read/Write Storage Register

register but data cannot be written to the LCA. Writing
the register from inside the LCA would require that two
network sources be active, which is not allowed.

Shift Registers

Shift registers are also easily constructed with 108s by
feeding the input (I) of one 108 to the output (0) of the
next 108. The figures below describe two shift
registers-one that shifts to the left as shown in Figure
24, and one that shifts to the right as shown in Figure
25. The shift direction of the register depends on how
the inputs and outputs of the 108s are connected.

Since the 1/0 clock line of an 108 is common to all 108s
along each edge of the die, the register is implemented
with 108s along one edge of the die.

110 TYPE: Shift Left Register (108-based register)
MACRO NAME: None
SCHEMATIC:

2-34

PAD

PAD

CONFIGURATION:
Alll08s

l:Q
8UF:ON

1-------'o'--- SHIFT IN

D Q

D Q 1--:-- SHIFT OUT

~-----._...... CLOCK

0010022 24

COMMENTS: Notice that the routing of the input (I) of a
given 108 goes to the output (0) of the 108 on the left
(shift left).

Figure 24. Shift Left Register (108-Based Register)

Johnson Counters

An n-bit Johnson counter will count to 2n states as
opposed to standard binary counters which count to 2n
possible states. Johnson counters have a variety of
possible uses in a digital design, including low modulo
counters and glitch-free decoders.

In IOB implementations, Johnson counters can be
thought of as special shift registers. Only one bit
changes during a state transition, as shown in Table 1
for a three-bit Johnson counter.

000
100
110
111
011
001
000

Table 1. Transitions of a Three-Bit Johnson Counter

110 TYPE: Shift Right Register (!OB-based register)
MACRO NAME: None
SCHEMATIC:

PAD

I-
J:
~
a:
I-u..
:i: en

PAD

0010022 25

CONFIGURATION:
All IOBs

1:0
BUF:ON

D a SHIFT OUT

SHIFT IN

D a

.___ ____ __.._ CLOCK

COMMENTS: Notice that the routing of the input (I) of a
given IOB goes to the output (0) of the IOB on the right
(shift right).

Figure 25. Shift Right Register (108-Based Register)

A Johnson counter built from unused IOBs requires at
least one Configurable Logic Block (CLB) to perform an
inversion. The Johnson counter is automatically reset to
an all zeroes state upon configuration or on a RESET
pulse.

The application note Counter Examples contains more
information on using Johnson counters.

Glitchless Johnson Decoder

A glitch-free decoder can be built using IOBs and CLBs.
The decoder will be glitch-free since only one bit
changes during a state transition. An n-bit Johnson
counter decoder can decode any one of the 2n
possible states or any number of contiguous states by
ANDing just two of the appropriate counter bits.
Counters of various modulo and duty-cycle can be •
extracted as well. For example, Figure 27 shows the
schematic implementation of a Johnson counter
decoder with various two-input decode states. •

Linear Feedback Shift Registers

2-35

Linear . .Feedback Shift Registers (LFSRs) are yet
another modification of a simple shift register. An LFSR
consists of a shift register with feedback of appropriate
bits back to the first bit. An LFSR requires some logic
function in the feedback path, usually a XOR (exclusive­
OR) function.

LFSRs have numerous applications. One example is
described in the application note A UART Design
Example. In the UART example, LFSRs are used to
implement the encryption and decryption functions.
The application note Counter Examples contains more
information on using Linear Feedback Shift Registers in
general applications. This application note addresses
using LFSRs in IOBs.

Figure 28 shows the schematic for a three-bit LFSR
which implements a modulo 5 (divide by five) counter.
An n-bit LFSR counter can produce a pseudorandom
sequence of up to 2n-1 unique states. By adding logic
to the feedback path, the LFSR counter can be forced
to skip any number of states (from one to 2n-1). By
forcing the counter to skip m states, a LFSR counter can
implement any modulo as described in Equation 13.

MODULO= (2n-1)- m

where n = number of shift-register bits
m = number of "skipped" states

[13]

Figure 29 shows the counting sequence for a three-bit
LFSR counter with exclusive-NOR (XNOR). All of the
possible "skip" paths are indicated. The "stuck" state is
also shown.

Ins and Outs of Logic Cell Array 1/0 Blocks

110 TYPE: N-bit Johnson Counter
MACRO NAME: None
SCHEMATIC:

PAD
r---<1

1----<

Y> D Q

c
r---<1

PAD f--<

Y> D Q
CLB

I1
r---<1

PAD 1----1

Y> D Q

~

CLOCK

EXPANDABLE TON BITS

CONFIGURATION:
All IOBs

l:Q
BUF:ON

0010022 26

Figure 26. N-Bit Johnson Counter (108-Based)

In the counting sequence, note that there are two
counter states where only the first bits differ (for
example, locate the states 101 and 001). By forcing the
feedback logic to invert the sense of the feedback into
the first bit, the counter can be forced to "skip" all of the
states between the two indicated values. This can be
accomplished by decoding (ANDing) the state just
previous to the state to be skipped. Again using the
modulo 5 counter as an example, locate the initial value
that will allow the counter to skip two states (i.e. 101). By
decoding the state 011 (the state just prior to the initial

2-36

skip state, 101), the sense of the feedback into the first
is inverted. The counter skips from state 101 to state
001 implementing a modulo 5 counter. Using this
method and the proper feedback into the register, a
counter of any modulo from one to 2n_1 can be built.

Upon configuration or upon an externally driven RESET
signal, all of the storage elements used in the LFSR
counter will be reset to zero.

The designer should be careful to avoid the "stuck"

state. The "stuck" state is the state missing from the
2"-1 counting sequence (if the "stuck" state were
included, the LFSR counter could have 2n possible
states). This state occurs when the feedback path
forces the counter into an ever-repeating single state.
As a simple example, assume that a LFSR counter were
built with a two-input exclusive-OR feedback path as
shown in Figure 30. Upon configuration or external
RESET, the counter would begin operation in the all
zeroes state (000) and would be "stuck" in that state
due to the type of feedback used.

PAD

D

PAD

D

PAD

An interesting thing occurs when all but the last bit of
the "stuck" state are decoded (ANDed together) and
included in the feedback path. Instead of counting over
a possible range of 2"-1 states, the extra decoding
causes the LFSR counter to count to all 2n states as
shown in Figure 31.

Longer LFSR counters with higher ,possible modules
and more complex feedback mechanisms can be built
but their discussion is well beyond the scope of this
application note. However, Table 2 presents some of

0 0 0 DECODEO
1 0 0 DECODE1
1 1 0 DECODE2
1 1 1 DECODE3
0 1 1 DECODE4
0 0 1 DECODES

DECODER
OUTPUTS

'----------CLOCK

0010022 27

EXPANDABLE TON BITS

Figure 27. Johnson Counter Decoder. Any state of a Johnson counter can be decoded,
glitch-free, with only a two-input logic function.

2-37

• -

Ins and Outs of Logic Cell Array 1/0 Blocks

the possible feedback combinations for LFSR counters
of three bits to ten bits.

I
(2n -1) 7 15 31 63 127 255 511 1023
Modulo

Feed- 1,3 1,4 2,5 1,6 1,7 1,2,7,8 4,9 3,10
back 2,3 3,4 3,5 5,6 3,7 5,9 7,10
Options 4,7
into Bit 1 6,7

Table 2. 1/0 Block

Current Drive

4mA 6mA 8mA

Voh 3.86 v 3.54 v 3.22 v
Vol 0.32 v 0.48 v 0.64 v

Table 3. Output Current and Output Voltage Levels
for an IOB

FEEDBACK r· .. wA.

l~Il
CLOCK

a>---+------+~

Qi-------~

00100252 28

Figure 28. Modulo 5 LFSR Counter

Enhanced Output Source/Sink Current

Logic Cell Arrays are specified to have 4 mA worse case
source and sink capabilities at Vol= 0.32 Volts and Voh
= 3.68 Volts. Increased drive current can be obtained at
the cost of decreased voltage margins. For example,
Table 3 illustrates the effect on Vol and Voh by
increasing the drive current through a single 108.

An alternative method of increasing the drive current is
to parallel the output drivers of two IOBs. Paralleling two
outputs will enable the IOBs to source and sink double
the current (worst-case) at no reduction in voltage
margins. This method is schematically diagrammed in
Figure 32.

One caution to the designer, however. The designer
should minimize the difference in routing delay between
the two IOBs connected in parallel. Excessive delays
may cause output contentions.

SUMMARY

The input and output resources of a Logic Cell Array
(LCA) can be used for a variety of logic structures
because of the flexibility of the LCA architecture. This
application note described how to implement various 1/0
structures including bidirectional lines, open-drain
outputs, and Schmitt-triggered inputs.

Other structures such as oscillators, multiplexers, shift

'STUCK' STATE

0010022 29

Figure 29. Three-bit LFSR Counting Sequence

2-38

CLOCK FEEDBACK

PAD

a

PAD

ai---~

PAD

QI------'

0010022 30

Figure 30. Simple LFSR With "Stuck" State. A simple LFSR
counter will be "stuck" in state 000 after config­
uration since all registers were originally reset.

EXTERN~ Ii

I -{

ii

~

:I
~

0010022 32

-INTERNAL TO LCA

PAD

0010022 31

l:XILINX

~
~
~

I
~

~•XO:•~:-:·:~':'...-.'X·~;,,;•~:·:·:•:·:«•:-.':• •;•;..';J

D Q !---+--------'

~-------- CLOCK

Figure 31. By ANDing all but the last bit of the "stuck" state
and using this value in the. feedback path, an LFSR can be
forced to count to 2n possible states Instead of the 2"-1

states usually associated with an LFSR counter.

registers, Johnson counters, decoders, and linear
feedback shift registers were also described. These
resources can only be effectively implemented in
flexible, array-type architectures such as found in gate
arrays and the Xilinx Logic Cell Array.

TECHNICAL SOURCES

Figure 32. Parallel Outputs Have Increased Drive Capability

1Schmitt Trigger Using PLS153 and PLS159, Signetics
Programmable Logic Data Manual, 1986. pp. 9-11Oto9-
119.

2-39

• -

Ins and Outs of Logic Cell Array 110 Blocks

PIN 0010022 01

2-40

• -

2-41

E:XILINX

Introduction

Placement

Resources

Long Lines

Clock Buffers

Direct Connects

Data Flow

Logic Block Placement.

UO Block Placement

Modifying Placement

Routing

Delay Calculator

Placement and Routing
Optimization

Table of Contents

2-43

2-43

2-43

2-43

2-45

2-49

2-51

2-53

2-54

2-57

2-57

2-66

2-42

INTRODUCTION

As with any high density ASIC device, the Logic Cell™
Array offers alternatives in placement and routing which
can affect the utilization and performance of the final
design. In gate arrays and other factory programmed
solutions, these alternatives must be investigated
through simulation. The Logic Cell Array allows them to
be seen and modified at design time through the
capabilities of the XACT™ Development System.
Additionally, system performance and function can be
easily verified with in-circuit emulation.

Within XACT, several powerful capabilities are included
to allow easy "tuning" of the design for performance or
resource utilization control. The purpose of this
application note is to investigate the methods and XACT­
related operations which can be employed by the
designer. In addition, this should serve as a primer to
help new users to learn skills for effectively using Logic
Cell Arrays. The topics addressed include:

• Placement-Physical assignment of logic elements.

• Routing-Utilization of the available resources.

• Delay Calculator-Delay calculation and interpretation.
• Macros- Macro usage and placement and

performance considerations.
• Multi-block techniques-Placement and routing

consideration when designing with larger collections
of blocks.

HOW TO USE THIS APPLICATION NOTE

Users who are not familiar with placement and routing in
the Logic Cell Array are advised to read all of this
application note. Users who have some level of
knowledge about the Logic Cell Array, and in particular
have completed some design work, may wish to study
only the sections of interest.

PLACEMENT

As with any SSl/MSI circuit board or gate array device,
the placement of logic within the Logic Cell Array can be
modified to affect resource utilization and performance.

Placement and Routing
Optimization

Placements and associated routing are interrelated, in
that changes in placement can change the routability
and consequently performance. The choice of routing
to be used will affect the placement choices available.
The configurability of the Logic Cell Array provides a
great deal of design flexibility. To utilize this flexibility
effectively, users need to understand the trade-offs and
capabilities of these resources. Several of these
resources are discussed here.

Long Lines

Long lines are continuous metal segments which span
the width or height of the device to provide minimum­
delay long distance signal paths. Although long lines
will be used by the automatic router for a general signal
when other resources are not available, it is best to
direct the use of long lines for specific functions. This in­
sures that they are most efficiently used, based on con­
sideration of their capabilities and interconnection poten­
tial. Refer to Figure 1 for the locations of the long lines.

2-43

Signals which can most effectively use long lines are
generally classified as data distribution or low-skew
control. Whether originating at an 1/0 block or a
Configurable Logic Block (CLB), data signals typically
have several destinations, each of which uses the data
in a different fashion. Following the natural data flow of
the device, these signals can be best routed on long
lines with one bit per row or column. One consideration
In data routing is the direction of the data flow. In the
2064/2018 series of Logic Cell Arrays, internal signals
must be unidirectional. For systems which have
bidirectional data paths, a pair of long lines in each
column can be used to carry input data and output data
respectively. This requires that the data input/output
pins be located at the top or bottom of the device.
Figure 2 shows an eight-bit bidirectional data bus with
vertical routing on pairs of long lines.

Control signals such as clocks, reset/set controls, count
or shift direction controls, etc. may have critical timing
requirements between their source and their multiple
destinations. Skew must be controlled to insure that
each receiving block performs the desired function at
the same time or on the same clock edge. Destination
blocks should be arranged in a single column or row if

•
-

Placement and Routing Optimization

VERTICAL LONG LINES
(TYPICAL PER COLUMN)

u
u
u
u
CJ

u

u
u
[)

u
u
u

u u u
u u 0
u u u
u u u
u u 0
u u u

Figure 1. XC2064 LCA Overview

2-44

1/0 CLOCK
(1 PER EDGE)

I
u
u
u
u
0

u

DIRECT
CONNECT
(CLB TO 1/0)

CLOCK
OSCILLATOR

ALTERNATE
CLOCK BUFFER

possible and the control function routed onto the
appropriate long line. Figure 3 shows two alternative
implementations of a reset function generated in a logic
block and routed to four destination blocks. The skew
reduction associated with the use of the long line can be
seen from the accompanying table.

Clock Buffers

The Logic Cell Array has on-chip, special purpose
buffers to provide high-fanout, low-skew signal distri­
bution. These buffers are normally used for clock
signals, but can be used for any general purpose signal
which requires high-fanout or low-skew routing to

multiple blocks. Clock buffers are associated with speci­
fic long line resources for routing on a column basis.
The global buffer (upper left corner) directly drives a
long line in each column. The alternate buffer (lower
right corner) drives a horizontal line which can be
selectively connected to a long line in each column.

In systems which have a single common clock for all the
state elements, that clock can be best distributed using
the global buffer. More difficult cases involve systems
with multiple clocks and other critical control signals. If a
system has two separate clocks, one can use the global
buffer and the other may use the alternate buffer,
particularly if one clock is derived from the other. When
the crystal oscillator is being used, its output drives the

Figure 2. Bidirectional Data Bus Using Long Lines

2-45

•
-

Placement and Routing Optimization

Delay: bidibus8.lca, XACT 1.21

From: BLK BC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to HD.B 24ns 24ns)

To: BLK HD (HD.B) Ons '::::\ From: BLK BC (BC.X) Ons
Thru: NET RESET (BC.X to ED.C) 14ns 14ns)

To: BLK ED (ED.C) Ons 14ns)

From: BLK BC (BC.X) Ons ,g~::;"°'SKEW Thru: NET RESET (BC.X to DD.C) 12ns
To: BLK DD (DD.C) Ons 12ns)

From: BLK BC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to AD.C) 3ns 3ns)

To: BLK AD (AD.C) Ons 3ns)

DELAYS FOR GENERAL INTERCONNECT ROUTING

Figure 3a. Signal Routed Via General Interconnect

2-46

i:XIUNX

Delay: bidibusB.lca, XACT 1. 21

From: BLK BC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to HD.B) 5ns 5ns)

To: BLK HD (HD.) Ons '""'\ From: BLK BC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to ED.C) 5ns 5ns)

To: BLK ED (ED.C) Ons 5ns)

From: BLK BC (BC.X) Ons :~::!'"SKEW Thru: NET RESET (BC.X to DD.C) 5ns
To: BLK DD (DD.C) Ons 5ns)

From: BLK BC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to AD.C) 5ns 5ns)

To: BLK AD (AD.C) Ons 5ns) •
DELA VS FOR ROUTING VIA LONG LINE -

Figure 3b. Signal Routing Via Long Line

2-47

Placement and Routing Optimization

alternate buffer directly, and may therefore be the
primary clock for the system. In any case, the
predominantly used clock should be driven with the
global buffer.

For systems which require more than two clocks, the
primary clock should be driven with the global buffer.
Other clocks are best routed onto vertical long lines, and
their respective CLBs arranged in columns adjacent to
the long line carrying the appropriate clock signal.
These column-oriented clocks can be driven either from
an adjacent (to the left) CLB or an 1/0 block on the edge
at either end of the column, using direct connect
capability. When selecting the long line to be used,
note that one of the nondedicated vertical long lines can
be connected to the CLB "K" inputs while the other
cannot. Since most clock signals are best routed into

the "K" input, the former long line should be chosen.

Another use of the buffers is for routing a control signal
to many CLBs. By placing the source of the signal near
the alternate buffer, a low-delay path can be provided
from the source to the buffer, and then out to all of the
receiving CLBs or 110 blocks. Figure 4 shows a shift
register which has been placed and routed using both
buffers. The global buffer is used for the overall shift
register clock, while the alternate buffer is used to
provide a low-skew control for shift/hold control. If the
hold control logic timing is not well controlled, skews
between the control signal, as seen by the blocks, could
cause a partial shift. Some blocks could get the signal
but others may not get it in time to hold relative to the
next clock edge. This becomes less of a factor in
choosing routing for control signals as the timing

constraints are relaxed.

Direct Connects

Each CLB and 108 has capabilities to connect directly to
other adjacent blocks as shown in Figure 5. A direct
connect provides a signal path which has virtually zero
delay and does not use any of the general interconnect
or long line resources. For maximum performance and
minimum routing resource impact, use of direct
connects is a primary objective. Because direct
connects exist primarily in vertical or left to right
directions, blocks which represent stages in a process
should be arranged sequentially: either vertically or from
left to right. Left edge 1/0 blocks naturally become data
inputs while right edge 1/0 blocks become data outputs.
Top or bottom edge 1/0 blocks can be either direct
inputs or outputs, with alternate blocks having direct-in
or direct-out paths.

As an example, consider the circuit of Figure 6. The

data byte is to be loaded into the shift register in a
parallel fashion and then shifted out with each clock
cycle. Figure 7 shows two alternative implementations
of this circuit. In implementation A, the eight CLBs used
for the stages of the shift register are arranged in a
rectangular area in the upper left corner of the device,
with general interconnect providing many of the signal
paths. Implementation B uses direct connects
exclusively, providing zero-delay paths from block to
block and allowing higher performance. In this design,
the worst case delays (shown in Figure 7c) show that the
maximum load and shift clock rate is 17.5, 31.3, and
43.5 for the 20, 33 and 50 MHz devices respectively.
Note also that the general interconnect in this
implementation is available for other uses. The LOAD
signal has been routed on a long line driven from a
directly-connected 110 block.

In non-synchronous intensive designs, such as
commonly found in glue logic replacement, direct
connects normally cannot be exploited to the degree
shown in this example. However, whenever possible, a

Figure 5. Direct Connect Resources

2-49

• -

Placement and Routing Optimization

SERIALIN

8
DATA BUS-~ ..

SHIFT/LOAD

SHIFT CLOCK

- 8-BIT PARALLEL
LOAD, SERIAL IN
SERIAL OUT, SHIFT
REGISTER
(SIMILAR TO 74HC165)

SERIAL OUT

SHIFT!lc5Ai5 c~~~------
8 BIT REGISTER

IFN-o THEN aN_, ISSERIALIN.
IF N ~ 7 THEN Q N IS SERIAL OUT.

Figure 6. 8-Bit Parallel Load Shift Register

ONE BIT OF SHIFT REGISTER

ROUTING CONGESTION CAUSED BY PLACEMENT CHOICE

Figure 7a. 8-Bit Parallel Load Shift Register

2-50

0010029 6

signal should use direct connect from one block to
another in the Logic Cell Array. Direct connect
considerations should be a primary factor in block
placement. For each connection done with direct
connect, a general interconnect resource is released for
use in implementing some other function. Experience
indicates that extensive use of direct connect can boost
the logic utilization of the Logic Cell Array by as much as
30%.

Data Flow

Data flow describes the process of evaluating the
sequential nature of logic to be implemented in making
placement and routing decisions. An examination of the
data flow should provide some insight into which signals
are most effectively placed on long lines and direct
connects, as well as guidelines in the placement of
required logic blocks. In general, data processing in the

DATA
INPUT

Logic Cell Array flows most naturally either from left to
right or vertically. Flow up and flow down are virtually
identical.

To illustrate data flow analysis, consider the block
diagram of Figure 8. This example is a dual-ported
memory interface used as a high speed serializer, as
might be found in a video pixel processing or serial
communications application. Both the serial data output
device and the microprocessor must have access to the
memory. In looking at the data flow, there must be an
eight bit path to and from the memory to the
microprocessor, as well as an eight bit path from the
memory to the serializer. The serializer requires an eight-
bit parallel-to-serial data flow. The addresses to the
memory are generated internally for the serialization
process, and are supplied externally by the
microprocessor. They are always outputs to the external •
memory. In summary, the data flow paths consist of

-

ALL DIRECT CONNECT USED

Figure 7a. 8-Bit Parallel Load Shift Register

2-51

Placement and Routing Optimization

Delays for 8 bit shift register with parallel load

For -1 (20 MHZ) speed device

From:
Thru:

To:

From:
Thru:

To:

From:
Thru:

To:

8-BITDATABUS
TO PROCESSOR

BLK GA (CLOCK to GA.X) 35ns
NET S6 (GA.X to HA.A) Ons
BLK HA (HA.A to SETUP) 22ns

:
For -2 (33 MHz) speed device

BLK GA (CLOCK to GA.X) 20ns
NET S6 (GA.X to HA.A) Ons
BLK HA (HA.A to SETUP) 12ns

For -50 (50 MHz) speed device

BLK GA (CLOCK to GA.X) 15ns
NET S6 (GA.X to HA.A) Ons
BLK HA (HA.A to SETUP) Sns

*TOTAL CLOCK TO CLOCK DELAY-WORST CASE

Figure 7c. Delay Report For Direct Connect Placement

8-BIT OATA BUS
TO RAM

DATA PATH
SELECT

8-BIT
SHIFT REGISTER

MANCHESTER

35ns)
35ns)
57ns)*

20ns)
20ns)
32ns) •

15ns)
15ns)
23ns)*

PROCESSOR
CONTROL BUS ADDRESS/DATA 12-BITADDRESS

CONTROL ARBITERAND t---- GENERATOR
DECODE 1----~ CONTROL LOGIC '---...----'

12-BIT ADDRESS BUS
TO RAM

Figure 8. Seriallzer Block Diagram

2-52

12x2:1 MUXFOR
ADDRESS TO RAM

0010029 8

• 8 bits from microprocessor to memory
• 8 bits from memory to microprocessor
• 8 bits from memory to serializer
• 12 bits from address generator to memory
• 12 bits from microprocessor address to memory

In examining these, there is a requirement for a
bidirectional data path between the memory and the
microprocessor. This same path needs to supply data to
the serializer. The serializer may be viewed as a process
"perpendicular" to the data flow because it takes parallel
data and serializes it. The memory address path is wider,
but is unidirectional, with a common "connection" only at
the output point. Figure 9 shows a flow analysis of this
design example.

Based on the flow analysis of Figure 9, the eight-bit data
path should be run vertically to take advantage of direct
connect in both up and down directions. The serializer,
which could use direct connect in either left to right or
vertical orientation, can be placed perpendicular to the
vertical data path orientation, and can use the direct left­
to-right capabilities. Since it is unidirectional, the
address path will be routed with direct connect where
possible between CLBs near the edge of the device
and adjacent 1/0 blocks driving the address lines. These
general guidelines can be used for selection of routing
alternatives, as well as placement of the blocks within
the device.

LOGIC BLOCK PLACEMENT

One of the most critical elements in achieving an
efficient design with the Logic Cell Array is the proper
placement of the logic blocks and 1/0 blocks. Logic

PR~~~~~~~-----------.~~TtAM
PROCESSOR DATA

DATA OUT FROM RAM

CONTROL FROM __ _

PROCESSOR

ADDRESS FROM
PROCESSOR --- ADDRESS

GE~~~fg~ ----1,__s_E_L_Ec_T_J

0010029 9

SERIAL
DATA OUT

ADDRESS
TO RAM

Figura 9. Data Flow Analysis of Sarlallzar

block placement is more critical than 1/0 block placement
because it offers more degrees of freedom and the final
CLB placement can dictate most IOB placement. Both
performance and routability of the design can be
improved by proper placement. Good placement will
relieve the designer from solving routing related
problems, and will generally result in good initial
performance. Fine tuning of a design for ultimate
performance may affect final placement, while a good
initial placement will serve as a sound basis for achieving
design completion with a minimum number of placement
and routing iterations. Maximizing the use of the direct
connections between blocks is an important goal.

Guidelines for placement of logic blocks can be
summarized as:

1. First consider the various functional elements in the
design and the shapes that each may take, and their
relative interconnection. Try the placement of these
functional blocks on a printout of a blank LCA to see
how they might fit together. The layout in Figure 10
was obtained using this basic analysis.

2. Inputs and outputs, both internal and external, for
each block of logic should be examined. Blocks with
a high number of common interconnections should
be placed near each other.

3. When considering the relative placements of
individual logic blocks and 1/0 blocks, a key
consideration is to utilize the direct connect
resources wherever possible.

4. Arrange related groups of logic blocks in rectangular
shapes if possible.

2-53

5. Place blocks with the greatest number of
interconnects to other blocks, both logic and 1/0, at
the perimeter of rectangular shapes.

6. Use "long" and '1hin" shapes only where data is
going to flow through the shape to some other logic
perpendicular to its long axis.

7. Blocks of control logic or miscellaneous functions
which have minimal external 1/0 are often best placed
near the center of the device.

8. Where possible, minimize the number of different
clocks in the design, particularly those generated
internally. A completely synchronous design with a
single clock, using the global clock buffer is ideal.

Many of these recommendations are similar to those
applied to layout of printed circuit boards using SSl/MSI
devices. The examples in the following section should
help illustrate how effective placements can be made.

•
-

Placement and Routing Optimization

1/0 BLOCK PLACEMENT

110 block placement is normally dictated by the final
placement of the logic blocks which must receive or
originate the signals connected to the 1/0 blocks.
However, consideration of placement constraints must
be examined, as they can have a significant impact on
overall placement and routing. General guidelines for
110 block placement fall into several categories:

1. Locate 1/0 adjacent to the logic blocks which use the
most associated signals.

2. If 1/0 blocks are being used as busses, special
considerations should be made:

a. Data busses which are to be latched should be

located on a single device edge to allow use
of the flip-flop in the 1/0 block, and share the
single 1/0 clock on the edge of the device.

b. Address busses may be limited to the top of the
device if the pins are to be used during
configuration as the external EPROM I ROM
address lines.

3. Unused 1/0 blocks can be used as registers for data
or shift registers. They must have the 1/0 clock on
that edge of the device available.

4. Care must be exercised in selecting 1/0 block usage
where pins have special functions during
configuration. Generally, pins which are inputs
during configuration should be used as user inputs,

INTERLEAVED PROCESSOR/MEMORY DATA SUSSES

MO PO M1 P1 M2 P2 M3 P3 M4 P4 MS PS M6 P6 M7 P7

00 00 00 00000 00 00 00
8 BIT PARALLEL LOAD SHIFT REGISTER

MANCHESTER
ENCODER

1a a a a a a a al
ffi q WRITE SECONDARY DATA REGISTER

~ ~ a B a ei fj [/STROBE

RAM TO PROCESSOR DATA HOLD REGISTER CHIP

rn 5 a a a a El a lfil/SELECT2

fil ADDRESS/DATA /ID PROCESSOR CONTROL

ill e5 El El El ARgER el a El % BUS INTERFACE LOGIC

ffi AND CONTROL ffi} CHIP

121 El el a a LOaC El e El 12J/SELECT1 w m ~~
! e ri B n ri ei n n ~/SELECT 0

W jfil 12 BIT BINARY ! a El el El a El ~ADDRESS COUNTER

: ~XTL1
~ a a ~ a a a ~~
IMl ' -~===============================~--, 151 12 x 2:1
W _ IEI ADDRESS MUX

IE] o o oo oo 00000 oo oo oi;j o lfil

\INTERLEAVED PROCESSOR/RAM ADDRESSES \
XTL2

Figure 10. Serlalizer Placement Plan

2-54

while pins which are outputs during configuration
should be used only as user outputs during
operation. This generally eliminates contention
between configuration use and operation use.

5. If spare 1/0 blocks are available, multiple 1/0
connections for a single external signal may greatly
improve the routability for that signal. This is
particularly true of control inputs which have high
internal fanout. Care must be exercised to avoid race
conditions or metastability problems when separate
inputs are used.

EXAMPLES

The following examples illustrate many of the placement
guidelines previously discussed. The sample design
used here is the data serializer used for the data flow
analysis. Individual elements of the design are used for
each topic. Figure 8 shows the overall block diagram,
and Figure 10, the LCA layout of the serializer.

l:XILINX

1. One method of implementing individual functional
blocks is to use macros. The address generator
portion of the serializer is shown in Figure 11. This
function is a 12-bit binary counter which addresses
the external RAM holding the data to be serialized.
In generating the counter, macros representing
three bits each were used. The placement of the
logic blocks in the macro illustrates the desirability of
rectangular placements. Figure 12 shows the three-
bit macro C8BCR (Counter, modulo 8, Binary
sequence, Clock enable and Reset synchronous
controls) placed in two ways. Placement A is a linear
placement. Placement B uses the recommended
placement from the Macro Library reference manual.
Notice that in the linear placement, all of the signals
must travel the height of the macro to get to the
terminal count (CTCname) block. This congests the I
routing in the columns to the left and right of the
column where the macro is located. The rectangular
placement shown in B makes the routing more
compact and allows additional space for routing •

Figure 11. 12-Bit Address Counter

2-55

Placement and Routing Optimization

around the module. In addition, the square structure
allows easier placement in a clense design.

2. An example of the "long and thin" approach is the
data shift register at the top of the device in Figure 8.
Notice how the data comes in from the pins at the top
and naturally flows into the blocks of the shift
register. If these blocks were placed in a traditional
rectangular shape some bits would travel long
distances to get to the appropriate shift register
block. With this arrangement, the secondary data
register in the B row of logic blocks can get the data
as it flows through the shift register from the pins.

The address multiplexer also uses long, thin shapes,
with emphasis on the direction of information flow .
Figure 13 shows how two different bits of the
multiplexer use the direct interconnect paths. Use of

direct connect can reduce the congestion in general
interconnect and results in an improved placement.
The initial placement had each alternate 1/0 block
connected to the memory or processor address bus.
After examining the direct interconnect, the position
of the processor bus interface 1/0 relative to the
multiplexer block was modified to use direct connect,
since it provided a11 input to each block. Along the
bottom, the processor blocks were placed to the left
of the memory block for the same bit to take
advantage of direct connect for botti input and
output paths.

3. In some cases, placements may be made which trade
off resource utilization for performance. In this
design, the primary performance-limiting element will
be the speed of the address generator section: the
12 bit counter. In the initial design shown in Figure

Figure 12. 3-Blt Counter Macro (SBCR) Placement Alternatives

2-56

10, macros were used to build the counter. These
allow rapid implementation of the function, but may
not provide optimum performance. Each three-bit
section can operate at high speed because there is
only a single logic function required between clock
edges. Additional logic block delays are inserted
between each three-bit stage, which reduces the
overall performance. To obtain higher performance,
the toggle condition of each bit in the counter would
be generated in the minimum number of logic levels.
This would require approximately 18 blocks and
much more care in placement and routing. See the
application note Counter Examples for more
information on counter implementations.

MODIFYING PLACEMENT

If initial placement of logic blocks and 1/0 blocks fails to
produce a design which can be readily routed,
placement modifications can be made. Some
guidelines for modifying the placement include:

1. If congestion exists in the middle of a placement,
move the blocks interior to the area to the outside
and move the outside blocks inside. This ''turn it
inside out" concept will normally alleviate congestion
except for those cases where the original exterior
blocks have a large number of connections to
resources outside of the area being examined.
Figure 14 shows a block of logic which has interior
congestion, and an alternative placement which
relieves the congestion.

2. Spreading 1/0 connections out, rather than cluster­
ing them together, will often relieve congestion near
the edge of the device. Some 1/0 intensive applica­
tions can benefit from interleaving related 1/0 blocks

ADDRESS
BITIN

as was done in the address bus area in Figure 13.

3. Groups of logic which exhibit routing congestion
problems in horizontal directions may be better
placed so that the majority of signals are vertically
oriented. Remember, there are effectively 10
vertical connections in each column (5 general
purpose, 3 long lines and one direct connect to
block above and below) and only 6 horizontal
connections in each row.

4. Move data register functions out of the logic block
area and utilize unused. 1/0 blocks to perform that
function. This is particularly effective for function
control registers written with an external data bus.
Pins adjacent to the data bus input pins can be used
for direct data input connections.

ROUTING

Routing resources are comprised of the general
purpose interconnects, the long lines and the direct
connections from a block to the adjacent blocks. The
use of routing resources must balance the partitioning
of the logic and the block placement in generating an
effective completed design.

Manual Editing

In some designs it will be necessary for the user to
interact in the routing process. This may be necessary
to; a) relieve congestion to allow a signal to route, b)
force use of selected resources for performance or utili­
zation, or c) modify existing routes to ''tune" delays for a
particular requirement. EDITNET is the XACT command
used to perform manual routing of signals or nets.

BIT OUT

Figure 13. Use of Direct Connect in Address MUX.

2-57

I

•

Placement and Routing Optimization

EDITNET allows the user to selectively enable or disable
any of the programmable interconnect points (PIPs) on
the device. This is done with the following sequence:

1. Select the EDITN ET command either with the mouse
or enter it from the keyboard.

2. Specify the Net which you wish to manually
manipulate. The net must have the source and
destination connections on block pins defined.

3. Move the mouse to position the cursor over a
programmable interconnect point (PIP) for the
desired path.

4. Pushing the select button on the mouse will toggle
the selected connection. If it was connected,
pushing select will disconnect it, and if it was not
connected, pushing select will connect it.

CONGESTION

A.) BEFORE BLOCK SWAPPING

CONGESTION

B.) AFTER BLOCK SWAPPING

Figure 14. Block Swapping to Relieve Congestion

5. For the switching matrices located where the general
interconnect segments meet, a pair of "magic" pins
must be selected. Table 1 shows the allowed
connections for the various switching matrices.
Connections are made or broken by selecting the
desired pair of pins. When the second pin is
selected, current connections will be broken and
unconnected pins will be connected. Figure 15
shows the sequence of operations for editing
connections in switch matrices.

6. When all connections have been made, select the
DONE option. The XACT system will automatically
calculate the delays associated with the
interconnections, and make them available for
display. The delay from the source of a net to its
destination will be shown whenever the cursor is
positioned at a destination pin.

When using EDITNET, an error message of "connection
shorts pin zz.v" may be displayed. This indicates that a
connection would provide a signal to a block pin which
has not been assigned to the net being routed. If that
pin is to be connected to the net, it must first be
assigned to the net using the ADDPIN command.

Although some connections between pairs of switch
matrix pins cannot be made directly, it is possible to use
a combination of the valid connections to accomplish
the desired routing. For example, connection from pin 1
to pin 4 is not valid but can be accomplished by
connecting pin 1 to pin 5 and pin 5 to pin 4. This
involves an additional switch delay, but may be essential
in routing in a congested area.

2-58

Some additional routing techniques include:

• Do not route through inputs and outputs

• Seed the routing for a net before using auto-routing

• Pre-route selected nets onto long lines
• Route high fanout items first / last

DO NOT ROUTE THROUGH INPUTS AND OUTPUTS

Although the inputs and outputs of the various blocks
are shown as lines with multiple connections on them, it
is not possible to use them as connections between
parallel interconnect segments. Each input or output
connection to a pin of a block is uni-directional and only
one connection per pin is allowed.

The EDITNET command will allow the user to turn on
multiple programmable connections on an input, but
only the connection from the driving interconnect
segment to the input pin is valid. Any additional
connection points which are turned on will not be
connected to the driving segment, although they

appear to be connected. If the design rule check, DRC,
command is executed, nets which have been routed in
this way will be flagged as unrouted and their attendant
delays will not be calculated. Figure 16 shows an
improperly connected net routed through an input
switch path.

£XILINX

Outputs of blocks may drive multiple interconnect
segments, although it is not generally necessary, but a
net not driven by that block may not be interconnected
using the output path switches. Figure 16 shows a net
improperly connected using the output path switches.
In both input and output cases, these connections can

5-VERTICAL GENERAL INTERCONNECT

2

8 3

7 4 3 3

2 4-HORIZONTAL
GENERAL

6 5 INTERCONNECT
8 3 4 4

7 4 2

FROM
1 2 3 4

1 =VALID CONNECTION
0 = INVALID CONNECTION

00100003 7b

Table 1. Allowed Connections Through Switching Matrices

2-59

•
•

Placement and Routing Optimization

only be made with the EDITNET command. Caution is
advised when using this command to avoid these
improper connections.

SEEDING ROUTING

An effective technique for improving the resource
utilization of the router is to manually "seed" the routing
prior to allowing the router to operate. This seeding may

A.) POINT TO FIRST PIN [MAGIC 5] AND SELECT

take two forms, depending on the desired effect.

1. If the user chooses to utilize a particular long line
resource for a signal path based on delays or general
placement, the router typically will not route onto that
long line if an alternate path is available. One
technique to force a signal onto a long line is to pre­
route it onto the long line before actually routing the
signal. This is done as follows:

B.) POINT TO SECOND PIN [MAGIC 4] AND SELECT

C.) RESULT - DISCONNECT BY POINT TO FIRST PIN
[MAGIC 4] AND SELECT

D.) POINT TO SECOND PIN [MAGIC 7] AND SELECT E.) RESULT

Figure 15. Sequence of Operation for Connecting through Switch Matrices

2-60

a. If the net is already entered, use UNROUTE or
CLEARPIN to deconfigure the routing for each
pin on the net. If the net has not been entered,
disable the automatic router using the
AUTOROUTE OFF command, found in the MISC
menu, and define the net using the ADDNET
command. This avoids the delays involved in
routing each pin and the necessity to unroute
them after they are entered.

b. Using EDITNET, choose the net to be routed on
the long line and turn on/off the appropriate
switches to get the signal from its source block
onto the long line.

c. End the EDITNET command by selecting DONE.
A warning message will be issued indicating that
the net has not been routed.

d. Select the ROUTE command from the NET
menu. When prompted, select the net which was
manually routed onto the long line. The router
will then complete routing of that net.

Figure 17 shows an example of this technique. In some
cases where the destination pins are not directly
accessible from the long line, the router will still not
utilize the selected long line. In these cases it may be
necessary to use both techniques 1 and 2 to force use
of a long line.

2. In some cases, pins are added to a net throughout
the course of the design. With the automatic router
enabled throughout this process, each pin will be
routed as it is added. The resultant net routing may
become contorted and interwoven because the

ILLEGAL CONNECTION
THROUGH INPUT LINE.
DESTINATION GD.A IS
NOT CONNECTED TO

SOURCEHB.X

l:XUJNX

router will route each pin independently. Extreme
cases may have loops in the interconnect, or very
long delays as the source block becomes more
heavily loaded and the routing more degenerate.
This may also cause severe congestion in some
areas as the routing resources are unnecessarily
consumed by the multiple routes. To help relieve
this problem, and other similar multi-destination
problems, enter the destinations in a sequence
which progresses naturally from the source location
to the farthest destination. Remember, the router
will route to the first specified destination first, then
the second, third and so forth.

To avoid the necessity of entering destinations in
location-specific sequence for large nets, the
following may be done.

a. Enter the nets into the design with the router
disabled or unroute the net (See 1.a above).

b. When all of the destinations for the high fanout
net have been entered, use EDITNET to man­
ually route to the destination which is physically
the most distant from the source. If the routing to
this pin does not use a long line, ROUTEPIN may
be used to accomplish the initial routing.

c. Use the ROUTE command to allow the router to
complete routing of the other destinations in the
net.

Figure 18 shows the use of this technique for a net with
many destinations. Another alternative method is to use
a text editor to modify the sequence of destination pin

ILLEGAL OUTPUT
CONNECTION DESTINATION GC.A

IS NOT CONNECTED TO
SOURCEHC.X

Figure 16. Illegal Connection

2-61

I

•

Placement and Routing Optimization

Figure 17a. Output DB.X Routed Via General Interconnect

Figure 17b. After UNROUTE Command; EDITNET has Forced Output onto Long Line

2-62

specifications in the design file (.LCA) for the design.

ROUTING HIGH FANOUT NETS

When placing and routing designs involving high fanout
nets, congestion problems will often occur if the design
is routed as it is entered with the auto router enabled. In
these instances, alternate placements will probably be
needed to complete a good design. The following
sequence of steps is suggested.

a. Plan an initial placement on a blank LCA printout with
the previous placement tips. Pay particular attention
to the use of direct interconnect.

b. Begin entry of the design with the automatic router
enabled. When entering the high fanout net(s),
enter only the destination pins. Leave the source
undefined, even though you know what it is. This
allows the system to route faster and leaves a less

cluttered design.

c. When all of the regular nets have been entered, look
at the congested areas. These can be easily
identified by counting the used vertical and
horizontal general interconnect segments in each
column/row. A printout of the complete design with
the options SHOW USED enabled may be helpful.

d. Save the design as a backup in case subsequent
modifications fail to produce anything useful.

e. Generate a new placement based on the congested
areas identified above. MOVEBLK and SWAPBLK
should be used to move the blocks to new locations.
The criteria for the new placement should be to
eliminate the congestion as much as possible.

f. Implement the new placement with the automatic
router disabled.

Figure 17c. Result After Route of Signal-Long Line Used

2-63

•
•

Placement and Routing Optimization

g. Route the high fanout net(s) using techniques 1 and
2 from above. The high fanout net(s) should be
optimally routed with this technique. Viewing the
design in either large or medium scale allows more of
the blocks to be seen at one time to get a good
sense of where routes should be placed. Also
HILIGHT of the high fanout net will show stubs at
each of the required connections, allowing better
visualization of their physical relationships.

h. Save the intermediate results as a backup.

i. Route the remaining nets either with a ROUTE *
command or by selecting each Net with a ROUTE
command.

This iterative technique of manually routing selected
nets should minimize routing problems and improve
performance. This technique may be applied equally
well to nets with performance constraints as to those
with fanout constraints.

OTHER USEFUL ROUTING FUNCTIONS

There are several other useful routing related functions
which should be explored in optimizing designs. These
are SWAPSIG, CLEARPIN, and ROUTEPIN.

SWAPSIG

The SWAPSIG command, located in the PIN menu is
quite useful when optimizing the routing of a signal to a
specific block. In many cases, signals will be better
routed to a specific block pin, in spite of the general
interchangeability of the pins. Figure 19 shows some
typical signal routes where the choice of block pins can
be modified to relieve routing congestion. The
SWAPSIG command logically interchanges the net
connections of the block pins and simultaneously
changes the block function to match the new pin
assignment of the signals. SWAPSIG should always be
used as opposed to SWAPPIN when working with pins
on a single block since it modifies the internal function to

Figure 1Ba. Routing Without Seeding

2-64

match the pin swapping. SWAPPIN is valuable for
moving a net connection from one block to another.

Figure 19a shows a net which is routed with the general
interconnect. Using SWAPSIG allows the pin
assignment of the destination block to be easily
"interchanged" to make use of the direct connect. The
general segment is then freed for use by other routing.
The SWAPSIG command can also be used on block
outputs to swap them for use of direct connect, or to
allow driving a particular adjacent general interconnect
segment. In the case of outputs, X and Y are completely
interchangeable internally, so their selection should be
based entirely on their external connection usage.

Figure 19b shows two pins which have been swapped
using SWAPSIG because it allowed more efficient use
of the general interconnect. The initial connection to
pin C came from a signal running in the adjacent
horizontal channel. Pin D came from an adjacent vertical
channel. Swapping the signals allows the vertically
oriented signal to route directly to C and the horizontal
signal to route to D. The internal constraints on the

input pins to logic blocks may limit some uses of
SWAPSIG. These will be flagged when the command is
executed.

CLEARPIN

This command allows the user to de-configure the
interconnect for a particular pin on a net. In the process
it also removes any spurious interconnect segments
from the net. CLEARPIN, located in the PIN menu, is
particularly useful when attempting to relieve
congestion in an area. It allows interconnect from a
single pin on a net to be returned to the available pool of
resources. When routing critical or high fanout nets, the
freed interconnect can be used for a particular route.
The unrouted pin can then be routed either manually or
with the ROUTEPIN command.

ROUTEPIN

When manipulating the routing for a portion of a design,
pins are often left unrouted. It is possible to route these
pins with the ROUTEPIN command for the pin, but

...... .: .. ,~
t;:J(:j ~'ml

Figure 18b. Routing After Seeding

2-65

•
-

Placement and Routing Optimization

ROUTEPIN forces the user to select all pins to be
routed. ROUTE, on the other hand, routes all of the
pins assigned to the net that is selected. Figure 20
shows how this can be more efficient if a large number of
unrouted pins are to be handled. ROUTEPIN will,
operate faster than ROUTE for a single pin because it is
only concerned with a single pin on any net. ROUTE
will check each pin on the net, and operates on a single
net at a time.

THE TIMING DELAY CALCULATOR

The XACT Development System includes a unique
interactive timing delay calculator which allows the
designer to see the worst case delays associated with a
design, without the need for simulating the design. This
is particularly useful in selecting placement and routing
alternatives in the process of tuning a design for
maximum performance. Delay information is available for
the logic blocks, 1/0 blocks and the interconnect paths .

• , , ••• ··'I•••••• ·•'I•••••• •• •I•••••• •• •t ••,. •• •·'I••"'''' . ·:-:-. :- . -:-:·· :· . -:-:·· :- . -:<·· :- . -:-: .. :- ·:-a .. ·.· a, ::·.-a::·.-a::·.-a::·.-a::·.-a: ······· :· ... :· ... :· ... :· ... :· ... :· .
. . . . 1"I.. . . .

. ii ~;,: ii~;,:: ii~;,: ii ~;,:: :: ~;,:: :; ~;,: ;: I'.;

a ... tlE .. ·m·. a ... a ... fl ... a. '
.. . :· ... :· ... :· ... :· ... :· ... :· .

: :: ~,: ~; ~;,: i; . ;,.: :; ~;,:: ii~;,: ii~;,: :: I'.;

a···e··· c ·· c ···a···a···a·
... :· :· ... :· ... :· ... :· .

· l ~;,: J, ~;,: Ji~/ Ji~;,:: Jl ~;,:: Jl ~< J, I'.;
A.) CONNECTION FROM CC TO CD SHOULD

USE DIRECT CONNECT

C.) CONNECTION CB.XTO BD.C SHOULD BE IN
HORIZONTAL CHANNEL AND CC.X
TO BD.D IN VERTICAL CHANNEL.

Logic and 1/0 block delays are fixed worst case values
based on the particular configuration of the block.
These delays are characterized from operating devices
at worst case conditions and are typically constant for a
particular speed grade.

Interconnect delays are more complicated. Each
interconnect segment which is used in a signal path
represents a distributed R/C delay. Inputs to each logic
or 1/0 block have a small capacitance which can be
ignored in comparison to the capacitance associated
with the interconnect segments. To correctly calculate
the worst case delay for interconnect, the accumulation
of these delays must be accounted for. In addition,
each transistor switch represents a non-linear
impedance which modifies the drive characteristics as
viewed by downstream segments. Figure 21
summarizes these delays and the elements included in
the model for interconnect delay calculations.

As signals pass through several of these segments and

B.) RESULT AFTER SWAPSIG OF CD.A AND CD.B

D.) RESULT AFTER SWAPSIG OF BD.D AND BD.C

Figure 19. SWAPSIG Candidates

2-66

Querynet: PNRFG25B.LCA, XACT 1. 21

netl. DD.X ·*** DE.A
*** CF.D
*** CG.D

net2. DE.X ·*** CE.D
*** CF.B
*** EF.A

net3. ED.X ·*** EE.B
*** EF.B
*** DG.C

This report of unrouted nets indicates 9 unrouted pins.

With ROUTEPIN this requires 1 command selection and 9 location selections.

With ROUTE this requires 1 command selection and 3 location selections.

CLB

DELAY:

INCREMENTAL

IF R1=R2=R3=R AND C1=C2=C3=C

THEN CUMULATIVE DELAY

00100003 17

Figure 20. ROUTE and ROUTEPIN Comparison

3RC 5RC

r--,
L_.J

REPOWERING
BUFFER

6RC

Figure 21. Interconnection Delay Example

2-67

6RC+BUFFER

I

•

Placement and Routing Optimization

switches, their signal quality is degraded. In the general
purpose interconnect area, bi-directional buffers are
used to re-power the signals after they pass through
several segments. Each buffer also represents a delay,
but after the buffer, the initial signal quality is restored.
These buffer delays are accounted for in the overall
delay calculation.

The delay calculator includes all of these elements when
calculating interconnect delays. Whenever the cursor in
the overall LCA screen is positioned on a destination pin
for a net, the worst case delay from the net's source to
that destination is displayed on the information line of
the display (See Figure 22). As the cursor is positioned
on each destination, the appropriate delay is shown.

Calculations for delays are performed on a net by net
basis, as the complete net configuration must be
considered to determine the delay. When nets are
being defined, the delay to each point is not available
until the source and all of the destinations have been
specified. When the DONE option in the net
specification process is selected, interconnect delays
will be calculated if the Net has been routed; this is
typical if the automatic router is enabled. For pins which
have not been routed, a delay of ? is displayed.

When manual routing is being performed with EDITNET
or any of the other techniques, interconnect delay
calculations will not be performed until a) the DONE
option has been selected and b) a destination pin has
actually been connected to the source pin. If a net is
subsequently modified by addition of other pins or
interconnect, a new net delay calculation will be
performed and the new timing information will be
available.

Interconnect delay information is available interactively
(on the information line of the display). It may also be
obtained in text reports, either to the screen or in
printed form. Figure 23 shows a sample delay report
printed by selecting REPORT DELAY and specifying
the desired FROM and TO options. Delay information is
also included in printed or screen information obtained
with the QUERYNET command.

In a clocked system, delay calculations are made from
clock-edge to clock-edge. Since it has no knowledge of
the dynamic operation of the system, the delay
calculator can only consider the elements which logically
are connected from one clocked device to the next
clocked device; latch or flip-flop. Simulation is required
to investigate the operational constraints of the clocked
system. However, the delay calculator does calculate
the complete clock-edge to clock-edge path, including
the clock to output delay and the required setup time.
With these complete delay paths, the worst case clock
frequency can be easily obtained: worst case frequency
= 1 I (clock-to-clock delay). In Figure 23, the worst case
clock-to-clock delay for Net17 and Net18 is calculated as
98 ns. This circuit could be clocked at 10 MHz worst
case.

In the Logic Cell Array family multiple speed grades are
available. The delay calculator has information which
allows it to calculate all of the delays for a design,
assuming different speed grades. The speed grade
selection is made by selecting the SPEED command
from the MISC menu. The currently available speed
grades for the selected device will be displayed and the
user selects the desired one. The delay calculator then
re-computes all of the delays in the device and makes
them available, either for display on the screen or in the

DELAY FROM SOURCE TO DESTINATION
POINTED TO BY CURSOR

Figure 22. Delay Calculator Result On-screen

2-68

reports available for the design.

WHAT DOES TILDE MEAN?

Because of the nature of the pass transistors used to
perform the interconnection of the various signal path
elements, the rise and fall times and general signal
quality are degraded by each switch element. When
taken together over a long signal path, these two factors
can significantly degrade the predictability of the delay
for a particular path. The bidirectional buffers used to re­
power the signals in the general interconnect will nor­
mally alleviate most of these conditions, H they are in the
signal path. Because of the presence of manual editing

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X to
Thru: BLK BD (BD.D to
Thru: NET netl5 (BD.X to

To: BLK CD (CD.A to

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X to

To: BLK CD (CD.B to

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X to

To: BLK CE (CE.A)

From: BLK BC (BC.X)

l:X!UNX

capabilities and the router's ability to route signals with
remaining resources, some paths with significant signal
degradation may be created in a design.

Signal paths which have degraded signals will be
flagged by the delay calculator with a tilde (-) preceding
the calculated delay. These "degenerate" nets may be
the result of one or more factors:

a. A general interconnect segment and its associated
signal are driving a long line. Because of their "long"
nature, long lines represent a high capacitance. This
high capacitance affects the signal quality,
particularly when driven by a general interconnect
segment and not the direct source of a signal.

Ons Ons)
BD.D) 20ns 20ns)
BD.X) 35ns 55ns)
CD.A) Ons 55ns)
SETUP) 22ns 77ns)

Ons Ons)
CD.B) 18ns 18ns)
SETUP) 22ns 40ns)

Ons Ons)
CE.A) 22ns 22ns)

Ons 22ns)

Ons Ons)
Thru: NET netl4 (BC.X to CE.B) 15ns 15ns)

To: BLK CE (CE.B) Ons 15ns)

From: BLK CB (CB.X) Ons Ons)
Thru: NET netl2 (CB.X to BD.D 20ns 20ns)
Thru: BLK BD (BD.D to BD.X 35ns 55ns)
Thru: NET netl5 (BD.X to CE.C ens 63ns)

To: BLK CE (CE.C) Ons 63ns)

From: BLK AE (AE.Y) Ons Ons)
Thru: NET netl6 (AE.Y to CE.D) 33ns 33ns)

To: BLK CE (CE.D) Ons 33ns)

From: BLK AE (AE.Y) Ons Ons)
Thru: NET netl6 (AE.Y to CF.B 23ns 23ns)

To: BLK CF (CF.B) Ons 23ns)

From: BLK CD (CLOCK to CD.X) 35ns 35ns)
Thru: NET netl7 (CD.X to BE.D) 6ns 4lns)
Thru: BLK BE (BE.D to BE.Y) 35ns 76ns)
Thru: NET netl8 (BE.Y to BF.B) Ons 76ns)

To: BLK BF (BF.B to SETUP) 22ns 98ns)

From: BLK CB (CB.X) Ons Onsi'\
Thru: NET netl2 (CB.X to BD.D 20ns 2ons) WORST CASE
Thru: BLK BD (BD.D to BD.X 35ns 55ns)
Thru: NET netl5 (BD.X to BF.C llns 66ns) CLOCK TO CLOCK

To: BLK BF (BF.C) Ons 66ns) PA1H-10mHzCLOCK

From: BLK CC (CC.X) Ons Ons)
Thru: NET netl3 (CC.X to AD.C) 9ns 9ns)

To: BLK AD (AD.C) Ons 9ns)

Figure 23. Printed Output From Delay Calculator

2-69

I

•

Placement and Routing Optimization

b. A long line is driving a general interconnect segment
or group of segments. In general, the long lines will
greatly decrease the effective drive capability of the
source of the signal. When driving general
interconnect segments, the interconnect switch
impedance and long line combine to create a
problem.

Degradation of signal quality as indicated by the tilde
preceding the calculated delay affects the signal
primarily in differences between rise and fall times. As
the delay number increases, the difference between
rising signal delay and falling signal delay increases. As
an example, consider a delay indicated as -50. This
indicates:

a. Falling signals (1 to 0 transitions) will occur more
rapidly than indicated. For this case, the falling
transition may propagate in 35 to 40 ns, worst-case.

b. Rising signals (0 to 1 transitions) will occur in more
time than indicated. For this case, the rising
transitions may require 70 ns or more, worst-case.

The percent variation between rising and falling
transitions in the degenerate cases is difficult to predict,
but generally will be in the range of 20 to 40% below or
above the indicated value.

When delays are displayed with the tilde, caution must
be exercised by the designer. If these signals are timing
critical, it is highly recommended that they be re-routed
to eliminate the tilde indication. In some cases such as
static control, the actual delays are not critical and the
tilde may be safely ignored.

In other cases, the difference between rising and falling
delays may be compensated for by appropriate logic
sense selection. For example, a relatively common high
fanout signal used in counter applications is a
synchronous reset generated by a terminal count
detection. If the signal sense is defined as high true,
reset when "1", then the critical timing edge is the rising
edge. Analysis indicates that the rising edge will be
slower than the falling edge, so a re-definition of the
signal to be low true, reset on "O", will take advantage of
the quicker propagation time for falling signal transitions.
This may improve the overall capability of the system by
eliminating potential metastability or partial counter reset
problems that might otherwise occur.

Paralleling Block Outputs

A technique which can be employed for high fanout
signals which cannot use either of the clock buffers is to

use multiple block outputs to drive a paralleled network.
This provides higher initial drive capability and lower path
impedence to the various destinations. Figure 24
shows a circuit where a block output drives many other
block inputs. Both the global and alternate clock buffers
are being used to supply clock signals to many different
blocks.

To provide additional drive capability, the signal inside
the block drives both the X and Y ouputs. Each output
is routed directly onto a long line, and those lines are
then connected into a grid to provide low impedence to
the many different destinations. This arrangement of
multiple outputs and paths provides significant
improvement over a single output and path, but at the
expense of using more interconnect resources.

Analysis of Intermediate Timing

In a circuit which has a long path, it may be valuable to
measure or predict the intermediate delays as part of
making decisions about placement and routing
alternatives. One method of either seeing the delay
calculator results or measuring delay differences along a
path is through temporary 1/0 block connections. Figure
24 shows two 1/0 blocks which are temporarily defined
along the path. The delay calculator can be used to see
the total delay to each block. The differences can then
be used either to analyze the results of routing
changes, or to determine timing skew related issues. If
the In-Circuit Emulator is being used, these .1/0 blocks
may be temporarily defined as outputs and the timing
differences measured directly.

EXAMPLES

Figure 25 shows an example where a tilde indicates a
potential problem because the net has been routed
through several general interconnect segments prior to
driving a long line. The timing delay calculator number
shown in the lower right corner of the screen shows
-35ns. After modifying the routing, as shown in Figure
25 B, the delay has been decreased to 28 ns and the
tilde is no longer indicated.

2-70

Figure 26 shows an example where the tilde indication
can be safely ignored. The net shown is a static input
used for function selection by several blocks. In this
case, the delay and signal quality is not of concern
because the signal is not changing. This might be the
case for switch-type inputs or other human interface
signals. The only concern with long delay signals of this
type is that any blocks which use that signal will latch it
correctly after it has made a transition.

CONCLUSION

Appropriate use of the XACT system capabilities gives
the user powerful control over all of the aspects of the
system design. Simple designs can quite often be
entered directly without significant attention to the
details of placement and routing. Only when complex
designs or ones with stringent performance constraints
are to be implemented do the issues of placement and
routing need special attention. The techniques
discussed here should guide a user in implementing a

l::XIUNX

complex design with minimum effort.

Future products for designing with Logic Cell Arrays will
offer improved methods of design entry and will provide
greater isolation of the user from the details of the
device. Regardless of the sophistication of these
development systems enhancements, there will always
be a requirement for interactive design optimization,
either for performance or resource utilization. The XACT
Development System combines simplicity of operation
with capabilities to quickly optimize a design.

PARALLELED
,,..,_...-_~ LONG LINES

Figure 24. Paralleled Drivers and Long Line to Provide Higher Fanout Slgnal Source

2-71

•
-

Placement and Routing Optimization

Figura 25. Routing With Tiida on Delay Value

2-72

LONG DELAY CAN BE IGNORED BECAUSE DYNAMIC
PERFORMANCE OF SIGNAL IS NOT OF INTEREST

Figure 26. Signal With Long Delay to Final Destination

2-73

E:XIUNX

• -

Placement and Routing Optimization

PIN 0010029 01

2-74

• -

2-75

Introduction

Configurable Logic Block .

110 Blocks

Combinatorial Functions

Basic Gates

Decoders and Muxes

Timing

Latches and Flip-flops

Counters

Synchronous Architecture

Macros

A Design Methodology
for the
Logic Cell™Array

Table of Contents

2-76

2-77

2-77

2-78

2-80

2-80

2-81

2-83

2-86

2-86

2-87

2-91

INTRODUCTION

Each new technology used for digital design offers the
designer a new set of characteristics. These include
speed, power, integration level, reliability and selection
of logic functions. These factors can affect the desig­
ner's methodology and logic architecture. The following
examples show that digital design and architecture for
Logic Cell™ Arrays (LCA) is similar to that of
conventional TTL SSl/MSI or Gate Arrays. The designer
using the Logic Cell Array has additional design
flexibility, since he is not constrained by limitations such
as four-bit or eight-bit increments, a specific set of inputs
and outputs, or a specific combination of logic functions.
The core of the CMOS Logic Cell Array integrated circuit
is an array of user-programmable logic elements called
Configurable Logic Blocks (CLBs). User-programmable
interconnections implement the required logic
networks. Input/Output interfaces are implemented with
individually programmable Input/Output Blocks (IOBs).
With these facilities, the designer is free to tailor the
logic as required and is not confined to standard product
devices or gate array library elements. The Xilinx
XACT™ Development System provides a macro library
of common logic elements to help the designer
implement a design. Unique functions and user­
defined macros are also available. The IBM PC™-based
development system provides the user with graphic
design entry and design verification capabilities. Trans­
lation of schematic capture to a design file and automatic
placement and routing of the design are also available.
The development system is also used to generate the
configuration program for the device. The LCA can
automatically load its program from an external EPROM
or be initialized as a peripheral by a microprocessor at
power-up.

Compared with other standard product alternatives, the
Xilinx Logic Cell Array provides the designer a higher
level of integration. Benefits include increased perfor­
mance and reliability, reduced printed circuit board
space, lower power requirements, shorter design times,
and smaller component inventories. The logic capacity
in one LCA which would typically require from 40-100
SSl/MSI packages to implement. Using the gate array
convention of "gate" as a 2-input NANO function, the
Logic Cell Array family presently provides logic capacity
up to 1800 gates. A single LCA solution can reduce the
total package pin count from hundreds of SSl/MSI pins

A Design Methodology
for the
Logic Cell™ Array

to 48 to 84 Logic Cell Array pins. The devices are
available in 48, 68 or 84 pin packages, providing up to
74 pins which the designer may program as logic input,
output, or bi-directional package pins. The user­
programmable nature of the LCA affords the user a
single fully-tested inventory item which may be used in
multiple products.

The Configurable Logic Block

2-77

A description of the Configurable Logic Block structure
will help in understanding its logic capabilities. Each
Configurable Logic Block has four logic inputs and two
logic outputs. It includes a combinatorial function
portion and a "storage element" portion, which may be
configured as a transparent latch or an edge triggered
flip-flop. The development system provides the method
of design entry and verification. The development
system translates designs into a configuration program
which defines logic look-up tables and multiplexer paths
within the Configurable Logic Block. Interconnection
between blocks is accomplished by a two-layer grid of
metal segments, joined at intersections by switching
matrices of program-controlled pass transistors.
Additional pass transistors provide connection of the
metal interconnections to the block inputs and outputs.

Figure 1 shows a single memory cell controlling a simple
two-to-one multiplexer made of two pass transistors.
Combining eight readable memory cells and a controlled
eight-to-one multiplexer tree, as shown in Figure 2,
creates a circuit which is capable of generating any logic
function of the three input variables: A, B and C. The
C,B,A input code 101 reads the contents of memory cell
five. The data pattern of the readable memory cells
defines the logic function. Doubling the look-up table
and multiplexer creates a circuit which can implement
any function of four variables. This is the basis of the
combinatorial portion of the Configurable Logic Block.
The Configurable Logic Block includes programmable
multiplexers for the input variables A, B, C, D and a and
a selection of outputs to form a single function of four of
the variables or two functions of three variables each.
The combinatorial portion of the configurable logic block
is shown in Figure 3. When a four-variable function is
implemented, the same selection of either input variable
Dor the a of the storage element is made in both halves
of the look-up table, and the single result produces both
F and G outputs. For implementing two functions of

•
-

A Design Methodology for the Logic Cell Array

three variables, each of the D vs. Q choice is selected
independently for the functions F and G. Each function
may then use any three of the five available variables: A,
B, C, D or Q of the CLB storage element. A third type of
function may be implemented by using the input
variable B to select between the two three-variable
combinatorial functions. This results in a compound
function which may involve some combinations of all five
variables.

The programmable features of the Configurable Logic
Block storage element are shown in Figure 4. The
storage element may be left unused, or programmed as
a level-transparent latch or as an edge-triggered flip-flop.

Its data input is supplied from the combinatorial function
F. The invertible flip-flop clock, or latch enable, may be
selected from one of three sources, on a block-by-block
basis. Each CLB storage element has an active high
asynchronous set and reset available. Reset is domi­
nant over set and the active low chip input, RESET,
clears all storage elements.

The Input/Output Block

As shown in Figure 5, the Input/Output Blocks have the
capability of providing a direct or registered input to the
chip. The positive edge clock for the register function is
common along each die edge. The chip configuration

WRrrE I l-----------..a

PROGRAM \

PROGRAM
MEMORY
CELL

DATA L,~'-''»''»~»,,•»»~,.,.,,,,,,,,,,~»,,.,.,,,,.k•»>,'»"<•»>,•»,•»>t•~·'·''~''•»~'~''''"•~v.~w

CBA=101

READS BIT 5

DATA1 -----1-----~

DATAO-----------'

Figure 1. Memory Cell Multiplexer (Mux) Control

A (LSB) B

MULTIPLEXER
DATA

C (MSB)

~'-----.---...J'-----.,---...J'---.....---'

EIGHT FOUR 2 TO 1
READABLE MUXs
MEMORY

CELLS

TWO 2T01
MUXs

Figure 2. Look-Up Function Generator

2-78

2T01
MUX

0010024 1

0010024 2

A

F

E

D

c

B

A

9
0.
:::>

"' 8
§
>-a:
0
::;;
w
::;;

7
x

"' 6

5

4

3

2

0

0010024 3

B

4 2 MUX MUXs MUXs

INDEPENDENT
FUNCTIONS

4 2 MUX MUXs MUXs

MIRROR COPY OF A,B,C,D,Q
AND MEMORY CELLS FROM ABOVE

c D

B

MUX

Figure 3. Combinatorial Function Generation

2-79

f:XIUNX

•
-LOGIC

FUNCTION

MUX F

COMBINED
SINGLE
FUNCTION

LOGIC
FUNCTIONS

MUX G

A Design Methodology for the Logic Cell Array

process, as well as the active-low chip, RESET, clears
the storage elements. Each Input/Output Block
includes an input/output buffer which may be enabled
continuously to implement an output pin, disabled
continuously to implement an input or unused pin, or
enabled by logic signals to implement an 1/0 or bus pin.

0010003 6

SET

Q

RES

Figure 4. CLB Storage Element

COMBINATORIAL FUNCTIONS

Basic Gate Functions

Logic implemented in TTL devices often uses NANO
gates to implement a OeMorganized NANO, an OR of
low-level inputs. The function is schematically
represented as a NANO due to the package type. The
resulting schematic is often confusing when the
symbols used do not represent the function performed.
The mix of inverters may complicate interpretation of the
logic. Oescrepancies between the logic symbol and the
logic function are particularly confusing to users who
were not the original designers. With the availability of
complex logic functions in the configurable logic block,
there are often several ways to visualize a function. The
CLB allows the user to choose between equivalent
ways of representing it, both schematically and in
equation terms. Karnaugh maps, truth tables and
Boolean equations are all supported by the XACT
Editor. The ability of the CLB to accommodate either
sense of input variables and to generate either sense of
an output allows the elimination of extraneous inverters.
In most cases, it is practical to route only active high
signals avoiding the duplication of routing both true and
complement signals.

A typical four-variable combinatorial function is shown in
Figure Sa as a logic diagram, a Boolean equation and a

TS (OUTPUT ENABLE)

OUT

IN

D Qt---~

--fl__ _ PROGRAM-CONTROLLED
~ - MULTIPLEXER

Figure 5. 110 Block

2-80

ltOCLOCK

0010003 3

Karnaugh map. An equivalent form of the function is
shown in Figures 6b and 6c. The active-low inputs have
replaced the inverters of the conventional represen­
tation, and the output symbol is an OR. Xilinx software
supporting schematic capture can perform this logic
conversion and combinatorial gate grouping as a part of
its translation to an LCA design file.

The ADDER of Figure 7 is an example of using two
combinatorial functions of three variables. The SUM and
CARRY functions would usually be grouped in the same
CLB by virtue of their common input variables. The four­
input exclusive-OR gates of Figure Sa and Sb are an
example of a common logic function which is not an
obvious four-variable unit. It is a modulo 2 add without
carry. COMPARE is a similar function which is typically
thought of as a two input function. Figure 9 shows a
CLB implementation of a "dual compare" function which
compares two bits from each of two sources.

The design element of four input variables may be
expanded by using multiple CLB levels. One CLB
driven by four others can make the sixteen-variable
function of Figure 10. Selection of decodes to use
common terms in several functions can allow those
CLBs to be shared. A related technique can be used to

A-----~ ~r>---r"°'n---~
B---f"°""\ c I>---

a.

A-------d""°""\
B---T­
C----1..--'

b.

A--------d""°""\
B----T----Q......./

encode the results of a pair of three-input two-output
Configurable Logic Blocks. One of three output codes
can be used to indicate which of three selected input
conditions exists. The combinations of the two outputs
of the CLB may represent four conditions: One, Two,
Three, or "Other." Each CLB encodes a three-input
subset of the variables. When two of these first-level
codes are input to another CLB, its result can be a
complex function of six inputs. Figure 11 shows two
encoded results, each a function of three inputs. Each
CLB responds with the selected code when its inputs
match its portion of the desired minterm. A high output
indicates that both codes match the same selected
value. This yields a sum of three six-variable products.

Decoders and Multiplexers

Decoders illustrate several points of practical design with •
CLBs. If a design does not require some portion of a
conventional logic function, that portion need not be
implemented. Since in this case the design does not
use all of the decodes of a set of input variables, the
unused decodes can be omitted. In an output intensive
function, using each CLB to implement two functions of •
three shared variables can be more efficient than
implementing one function per CLB. An example is

>--- Z1=Z2=Z3

Z,=A• (B+C)+B•C•D

0010024 8

Figura 6. Alternate Representations of Same Function

2-S1

A Design Methodology for the Logic Cell Array

SUM A

A B----------1-_,[::::>.__-----

"~
~}c

C SUM= A •B•C+A·B·C
+A. B•C+A•B•C

Figure 7. One Bit Adder With Carry In

Za=AE9BE9CE9D

~~h.,..____
-==J(--/ (a)

D

AO---'!
B0---1.

Figure 8. Four-Input Exclusive-Or

AO __ __,.____,....._

BO --+---1--1_-A--

A1 __ ___,.._._,,

~
BO

B1 -....--+--L.."-..... Z·(AO•BO+Ao•BO) •(A1 •B1 +Ai ·iii')

Figure 9. Dual Compare CLB

2-82

0010024 7

0010024 8

0010024 9

shown in Figure 12. The "preselect" enabling gates
implemented in this figure are an example of a common
term of a wider input function. In order to improve
system speed the variables which are stable earlier may
be used as inputs to the first level of logic. They may
propagate while the more time-critical inputs of the
design drive the shorter propagation path in order to
improve system speed.

Wide multiplexer functions can be built from a tree of 2-
to-1 multiplexers. This leaves the storage element and
one input variable of the CLB available for an
independent register function, as in Figure 13. In other
cases the multiplexer may be the data input to the
storage element or may share input variables or may use
the output of the storage element. These examples
provide a natural grouping of shared functions in a CLB.

A commonly used element in digital systems is a group
of registers with sets of enabled output buffers bussed
together. The structure shown in Figure 14 is not,
always recognized as a multiplexer. The multiple
sources provide the inputs and the enables represent
the select lines. All inputs driven by the bus are driven
by the multiplexer output.

TIMING

Any Boolean function generated by a Configurable
Logic Block requires the same time delay as any other
function. The concept of "levels" of logic or gate delay
loses its significance with a technology which uses
higher-level primitives to perform logic. The primary
timing factors involved in design with a Logic Cell Array
are the propagation time of a combinatorial Configurable
Logic Block, the clock to block output via Q, the input
setup time for block input variables of a flip-flop, the
delays of input and output pad buffers and the timing of
the interconnections. Some of these are represented
in Figure 15. Although other switching characteristics
are specified in the LCA data sheet, these are the most
important factors determining performance.

MSI devices typically have matched internal delay paths •
and low impedance outputs which are independent of
loading. As with CMOS gate arrays, variations in internal
signal delays are more significant in the Xilinx Logic Cell
Array. In programmable CMOS array architectures, logic
delays are more sensitive to output loading than are
bipolar devices. With such devices synchronous design •

A7 D ~---A

~---.. B

..-----.. c
..----.. o

t---_.Z=f(AO-A15)

A12 A

A13 B

A14 C

A15 D

0010024 10

Figure 10. A Function of 16 Variables

2-83

A Design Methodology for the Logic Cell Array

F F1

.--
"v

'---i
G1

A1 G

CLB1

F

CLB2

F ~

.--

'---I

G
G2

CLB2 CLB1

INPUT OUTPUT INPUT OUTPUT CODE RESULT
CODE CODE

AsA4A3 F2G2 A2A1 Ao F1G1 F2 G2 F1 G, z
0 0 1 0 1 0

Z1
0 1 0 1 0 1 0 1 1

1 0 0 0 1 1
Z2

1 0 1 0 1 0 1 0 1

1 0 1 1 1 0
Z3

1 1 1 1 1 1 1 1 1

z OTHER OTHER F2G2,. F1 G1

0 0 0 0 0

0010024 , ,

Figure 11. Encoding Partial Results of Six Variables

2-84

ENA A3 A2. A1 AO

A1 -------------------+--+----<'-----<1--+--<1 ;:-- X = 0 0 0 0 1

A2---"i!"-------...--a.~

A3---..,._---+--+---a

CLB ~ ,_, 0 0 1 0

ENA---+--

0010024 12

0010024 13

0010024 14

X=01000

PRESELECT

Y=O 1 0 0 1

-----+--! A !:-' - X = 0 1 0 1 0

Figure 12. Decoder with Common Term and Only Required Outputs

G-SEL· DO+SEL• 01

Figure 13. CLB Sharing MUX and Register Element

SELECT

2:1MUX
OUT

SELECT

Figure 14. Three-State Function Implements a MUX

2-85

1 0 1 1

•
-

A Design Methodology for the Logic Cell Array

minimizes the complexities of signal timing produced by
various combinations of delay accumulations.'t An addi­
tional advantage of synchronous design is better control
of output timing. The clock distribution resources of the
LCA simplify synchronous design. Since any function
of the input variables is obtainable, it is simple to include
such controls as reset, clock enable and parallel enable
in the logic function for the data input of flip-flops. All flip­
flops can then use a common clock. With the flexibility
of the LCA, it is possible to generate and use individual
CLB clocks, as well as asynchronous set and reset if
required by the application.

Latches and Flip-flops

The level transparent form of the storage element is the
D-latch. The edge-clocked form is the D flip-flop. For
both cases the data input is supplied by the function F
and the clock (load enable) is supplied by the .K or .C
pin or the function G. This choice and the active sense
of the signal is made on a block-by-block basis. The
configurability of the Logic Cell Array allows the designer
to tailor the storage elements of the CLBs to fit the
application. Together with complex combinatorial data
functions this allows a wider variety of latches and flip­
flops than is found in standard products or gate array cell
libraries. Including a RESET variable in the combinatorial
input of a flip-flop produces a synchronous reset, as
shown in Figure 16a. Use of a combinatorial function of
"Q" together with input variables implements a clock
enable as shown in Figure 16b. Implementation of a
multiplexer as the input of a flip-flop provides a parallel
enable as shown in Figure 16c. A flip-flop implemen­
tation can have parallel data or reset inputs which do or
do not depend on clock enable. Like the J-K flip-flop,
an interesting derivative of the set-reset flip-flop is one
which will not change for the case of simultaneous set
and reset conditions. The set dominant or reset

CLOCK TO

dominant are the other alternatives. The availability of
this variety of synchronous set-reset flip-flops provides
alternatives for logic implementation that may minimize
next-state control conditions.

Registers

Related flip-flops with similar functions form registers.
Registers may be grouped into two categories: data
registers and shift registers. Data registers are sets of
flip-flops with independent parallel input paths and
common control. Shift registers are sets of flip-flops with
serial data relationships. Both are composed of
combinatorial variations of signals supplying the data
input of the basic edge-triggered D flip-flop.

Counters

Counters are a simple example of a state machine with a
regular sequence. The most familiar counters are the
binary weighted sequence, the Johnson (Mobius) coun­
ter and the Liner Feedback Shift Register. Johnson
counters often offer advantages for counter designs
with a modulo of less than 1 O or 12. They also lend
themselves to simple placement and routing, and the
simple combinatorial functions shown in Figure 17 are
compatible with maximum clock frequency. Decodes of
single or consecutive states are simple and "glitch" free.
The initialization of the Logic Cell Array clears all storage
elements. However due to the presence of unused
states, the Johnson counter might enter an alternate
state sequence if there are asynchronous control
inputs. As shown in Figure 17, additional input variables
from QB and OD in the feedback function can return the
count to the proper sequence.

The implementation of a large-modulo CMOS binary­
weighted counter presents the designer with a number

OUTPUT COMBINATORIAL SETUP

14----rcKo •I• T1Lo------T1cK---~

CLB ·•·11

LOGIC

.............. . . ' . ~! t
CLB ··::

11-H>::
IOB

[.
(K) OUTPUT BUFFER

0010024 10

Figure 15. Examples of Speed Factors

2-86

l:XlUNX

delay. A compromise can be made by use of block level
carries. The 3-bit segment size shown in the lower half
of the figure accommodates the three stages and a carry­
in within the CMOS 4-input gate limit. The only
combinatorial delays involved are those of T3' and T6'.
Without a clock enable, input the first section could be 4-
bits followed by 3-bit sections. The designer should be
observant for design trade-offs and not try to fit a
standard solution into all applications. Figure 21 shows
another synchronous 8-bit counter with a single level of
combinatorial propagation. It illustrates the merging of
sequential elements and combinatorial elements of the
CLB. Periodic look-ahead carry terms are implemented
to make efficient use of variables within the block.

Synchronous Architecture

of trade-offs. The most effective in terms of resources is
a simple ripple counter, but the accumulation of multiple
clock-to-a flip-flop delays can be prohibitive as the
outputs ripple for varying times. Figure 18a illustrates a
synchronous toggle flip-flop. It changes state synchro­
nously if "T' is HIGH. It is shown with its simplified
symbol in Figure 18b. The AND of two inputs to
produce the "T" is shown symbolically in Figure 18c.
Figure 19 shows a fully synchronous counter solution
composed of T flip-flops. Its toggle ripple carry is
implemented for each bit by adding a carry gate which
tests the previous toggle carry and the state of its flip­
flop in a 'daisy chain' fashion. The clock rate is
determined by the total propagation time for the carry
path from CLKENA to data setup of the last bit. The fully
parallel counter of Figure 20a implements each toggle
function directly. It will require an n-wide gate for toggle
control of each bit of the counter. This design may be
extended to 12 bits of counter with a single combi­
natorial propagation delay between register CLBs, plus
one clock-to-a, one set-up time, and interconnection

Efficient LCA-based designs may depart from MSI •
implementations. MSI elements were designed using
another technology and with a goal of creating general­
purpose building blocks. Most were designed to fit a set

0010024 16

DATA -----fi°"'). D Q
RESET "' .,, 1----

CLOCK ______ _.rt

CLKENA
DATA

CLOCK

DPARALLEL

Figure 16a. Synchronous Reset

Figure 16b. Synchronous Clock Enable

F=PARENA•Dp

+ PAfiENA • D s

F D 01----

Figure 16c. Synchronous Parallel Enable

2-87

DATA
,...-"----.,

a=ffi}o
..____,,__...

CLKENA

SERIAL

c82IJ ITEG} PARENA
..____,,__...
PARALLEL

-

A Design Methodology for the Logic Cell Array

F=(OA+0e•'1J)

=OAOO+OA·Oo

D 0 !------...... ---<

OD QC

CLOCK ________ __._1 ____ 1,____· _ __.I

DCBA
0 0 0 0
1 0 0 0

1 0 0 1 1 1 0 0
0 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1
1 1 0 1 0 1 1 1
o 1 1 o-+ o o 1 1

~
B

Figure 17. Divide by 8 Johnson Counter

-~·~ .. ··4?fjl. 0 TOGGLE 1 ---, ••• • T

CLOCK

Figure 18a. Diagram of Toggle Flip-Flop

TOGGLE=frO

CLOCK

TOGGLEO=fro
TOGGLE1 T1 Q

CLOCK

0010024 17

Figure 18b. Symbol of Single-Input Toggle Flip-Flop Figure 1 Bc. Symbol of Two-Input Toggle Flip-Flop

0010024 18

2-88

of standard package sizes and remaining pin functions
were chosen to provide a useful standard product. In an
LCA design it is advantageous to implement the specific
logic function needed in a way that uses a minimal
number of blocks and routing. It is often possible to
adapt the logic to minimize the effects of constraints
such as availability and function of logic elements and
routing resources. This will allow optimization of logic
capacity and performance.

Implementation of many designs in LCAs and gate
arrays has indicated that the three- and four-variable
capability of the Configurable Logic Block is a good
balance. Using a conventional logic diagram and group­
ing combinatorial functions will give an approximate CLB
count. In register-intensive designs the number of flip­
flops needed determine the logic capacity and related
combinatorial functions are merged with the sequential
portions.

Figure 22 shows a design example. It incorporates a
counter which sets and resets output control bits at
specific times in the sequence. Decodes of the desired
states with NANO gates drive the asynchronous set and
reset inputs of flip-flops. When the counter increments
to state D it should asynchronously reset to 0. Since the
counter bits in an MSI device are matched, this might
operate if it were an MSI device. For implementation of
this counter in a gate array or LCA the decodes of the
counter states will involve mismatched loading and
layout, of various bits of the counter. As a result the
decode gates will be likely to produce output spikes
which causes erratic operation of the output control flip­
flops which use these signals as asynchronous inputs.
Although the decode spikes may be too narrow to be
noticed during design verification, they might produce
erratic output control changes in operation. The
decode of the terminal count has the potential for spur­
ious outputs. Even with a valid terminal count decode, a
mismatch in counter bit speeds could result in some bits
being reset and terminating the reset state decode
signal before all bits of the counter are reset. This could
leave the counter in an undefined or incorrect state.

The Linear Feedback Shift Register in Figure 23 is an
alternative to an asynchronous-reset binary counter.
This class of counter follows a less familiar sequence,
but its decodes of specific counts are predictable. Use
of OR/AND feedback for inputs on the output flip-flops
results in a synchronous set/reset function for the
output control bits, making them immune to decoding
spikes. Notice that the resulting X and Y sequences are
identical, although the counter sequences differ and
the control decodes of the synchronous version
represent the state before X or Y transition. This design
revision also provides timing control of the output by the
clock rather than by the accumulation of delay from clock
to the counter output, to the state decode, and through
the flip-flop to the output as in the 'ripple' imple-

2-89

0

I-

8

0

I-

8

0

I-

l:XILINX

•
•

oi ...
I!!

~

CLKENA

CLOCK

I\)

cb
0

0010024 20

l~I
~T aH

I I L::i2!.~ I
~T aH

~ ~
DIRECT TOGGLE GATING

LOOK AHEAD TOGGLE GATING

Figure 20. Synchronous Binary Counter

11~1
~T aH

~

11 ~r--,
~T al-

~

~ ~
....______.

)>

5i1
en
cC
::I
;;::
!.
::I"
0
Q.
0
0
cc
'<
0 ... -::I"
CD

.8
c;·

~
~
II>
'<

A Design Methodology for the Logic Cell Array

x y 03 0201 Oo
Sx 1 0 0 0 0 0 0

0 1 0 0 0 1
0 2 0 0 1 0

CLK CLK 1 Sy3 0 0 1 1 (/)

1 1 4 0 1 0 0 ::::>
0

CLR Rx 0 5 0 1 0 1 ~f-
00 01 02 03 0 6 0 1 1 0 c:W

0 1 7 0 1 1 1 5~
0 1 8 1 0 0 0

zc:
>-

0 0 Ry9 1 0 0 1 (/)
<(

0 0 A 0 1 0
0 0 8 0 1 1
0 0 c 1 0 0

1 0 1

s
Q

x

R

s
y

Q

R

CLOCK

QA (COUNTER)

0 8 (COUNTER)

QX/Y __A_

ACCUMULATED ERRATIC
DELAY OPERATION

0010024 22

Figure 22. Simple "Ripple' State Machines

2-92

I c(](

QA QB QC OD - -PojD Ohr°jD O~D OHr°:iD QI--<

l

I
CLK

REk-Q
I

I\)

cb

I

w

I

0010024 23 Figure 23. Synchronous State Machine

I •

x y
1 0 0
1 0 1
1 o Sy 2

Rx 1 1 3
0 1 4
0 1 5
0 1 6
0 1 7
0 1 Ry 8
0 0 9
0 0 A
O 0 B

Sx 0 O C

QAQB OcOo
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 1

0 1 1
1 0 1

0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 0
1 0 1 0
0 1 0 1-
0 0 1 0
0 0 0 1 -
1 1 1 1±:>

Q

D Q

...
w
Cf)
w
a:

M

A Design Methodology for the Logic Cell Array

documentation, the parameter order is indicated in the
syntax statement. Users may create customized macros
in their own directories by using the cutmacro command.

Execution of a macro involves providing a set of parame­
ters for the executing file. The parameters must be
entered in the order required by the macro, and must
include such information as an instance name, names of
networks providing inputs and block locations. The
instance name is used by the macro to compose unique
block and net names to distinguish each use of the
macro.

An LCA design may be created with edit commands and
macro executions, which may in turn be modified with
the editor commands. Portions of that design may then
be incorporated into a new user macro. For example, it
may be desirable to create a one-bit slice of logic which
may include several Configurable Logic Blocks. Multiple
installations of that macro may be used to implement a
logic unit such as a data path. A user-defined macro
describing a section of counter may be used to
generate a unit of control logic.

IN
CLOCK~

I

I

INJ:
I
I A_µ-
I

BJ:
I

IN D a

In creating macros the designer uses the keyboard or
mouse to specify blocks of a design, that are to be
included in the macro. The software will assign a
parameter for each network needed as an input and
each CLB and 108 used. All block names and netnames
sourced by the macro blocks will be included in a .MAC
file in the current directory. When the macro is invoked
the system will prompt for parameters in the order they
are needed. The first is always the instance name. This
name is used to differentiate one instance of a macro
from another instance of the same macro in the same
design. The instance name is added as a prefix to the
macro's original netnames for all nets driven by blocks
included in the macro. This groups net names for Query­
Block. The instance name will be added as a suffix to
the original block names of all blocks of the macro to
allow the first characters of the block names to show in
the editor display. All block and net names must be
unique. The names A, B, C, D, K, I, 0, X and Y are
already used for block pin names. AA through last
row/column and P1 through highest pin number are
used as block names. Some additional names are
assigned to configuration and power pins.

D a

D a

CLOCK

D a

'-------+---! D 0

CLOCK ----------------<...._-t>

0010024 24

Figure 24. Synchronization of an Asynchronous Input

2-94

l:XIUNX

The following is a copy of the macro for the FDR, a
simple D-type flip-flop which provides a synchronous

reset. The first two lines are comment lines indicating
the syntax and parameter order.

0010024 25

;MACRO FDR Name Clock

%1 %2

Parameter NAME ? Enter instance name:
Parameter NET Clock Select Clock net:
Parameter NET Data Select Data net:
Parameter NET Reset Select Reset net:

Parameter CLB ? Select %1 block:

Nameblk %5 %1

Editblk %5
Base 3var

Data

%3

Reset

%4

Location nameblock

%5 NAME

Parameter statements specify
parameter type, the default
names for nets, followed Parameter
by the Select prompts
for the editor screen.

Editor commands to name the
block %5 (fifth parameter)

Config X:Q Y:Q F:B:C G: Q:FF SET: RES: CLK:K
Equate F = B*-C

with the instance name (%1)
Edit the block (%5) and define
its configuration and equation.

Endblk

Addpin %2 %5.K
Addpin %3 %5.B
Addpin %4 %5.C
Addpin %1Q %5.X

CLOCK

IN

QA

OB

START

m1

Addpin commands define the nets. The first
parameter variable is the name (or default)
supplied by that parameter in the installation
statement. The %1Q is a Q concatenation on
the instance name %1.

\\\\\\

TRANSITION I
--~

\,____ ____ / _

Figure 25. Data Synchronizer and Fiiter

2-95

I

•

A Design Methodology for the Logic Cell Array

The following is a copy of the macro for the GOSC, a
simple oscillator which uses two external R-C networks,

two input output blocks and one configurable logic
block functioning as a set-reset latch.

;macro GOSC Name LocQ LocCQ LocCQL

%1 %2 %3

Parameter NAME ? Enter instance name:
Parameter CLB ? Select %1 CLB block:
Parameter IOB ? Select CQ%1 I/O block:
Parameter IOB ? Select CQL%1 I/0 block:

Nameblk %2 %1
Editblk %2
Base 3var

%4

Parameter statements
defining parameter type
and screen prompt.

Config X:F Y:G F:A:C:B G:A Q: SET: RES: CLK:

Assigns the first
parameter (%1) as
block name to block
specified by (%2)
and configures it. Equate F -B*(C+A)

Equate G = -A
Endblk

Nameblk %3 CQ%1
Editblk %3
Base IO
Config I:PAD BUF:TRI
Endblk

Nameblk %4 CQL%1
Editblk %4
Base IO
Config I:PAD BUF:TRI
Endblk

Addpin %1Q %2.X %2.A %3.0 %3.T
Addpin %1Reset %3.I %2.B
Addpin %1Set %4.I %2.C
Addpin %1QL %2.Y %4.0 %4.T

The order and concatenation of Xilinx library macros has
been chosen for consistency. When a user macro is
created the net parameters are chosen in the order that
they are encountered by the cutmacro process. The
block order is the same as the order selected when

Assigns the CQ prefix
to instance name for
the block selected as
the third parameter
and configures it.

Assigns the CQL prefix
to block name for the
fourth parameter and
configures it.

Creates nets of names
with concatenation to
the pins .x, .a, .o, .t
etc. of the blocks
identified by the %2, %3,
%4 parameters.

created. The user may use a text editor to rearrange
parameter order or redefine the concatenation strings.
Care should be exercised to maintain a match between
all uses of any parameter (o/on)

P/N 0010024 01

2-96

f:XIUNX

•
•

2-97

----- ·----·---·~------·---~~~~

Introduction

Binary Counters

Johnson Counters

Linear feedback Shift Register Counters

Up/Down Counters . .

Heterodyne Counters

Counter Examples

Table of Contents

2-98

2·99

2-100

2·107

2-114

2-117

2·119

INTRODUCTION

Historically, designers used multiple 74-series TTL
devices to implement various digital counters. However,
in application specific intergrated circuit (ASIC) designs
the overall performance and effective utilization of a
counter depends on the type of counter used and upon
the architecture of the ASIC device employed. The
flexible array architecture found in the Xilinx Logic Cell™
Array (LCA) provides the designer with numerous
options when implementing counters. Implementing a
design on "uncommitted" silicon is different from being
forced into an inflexible, fixed architecture. Accordingly,
a designer can optimize a counter to meet his specific
application needs. Tailoring a counter for an application
reduces the amount of wasted silicon resources
associated with fixed-architecture logic devices.

Within a Logic Cell Array, a designer can implement
various counter types, including

• Binary counters (2" possible states)
• Johnson counters (2n possible states)
• Linear Feedback Shift Registers

(2"--1 possible states)
• Up/Down counters (typically binary)

• Heterodyne (mixed modulo)

~ltllii£~~~~ii~:
By selecting the proper type of counter or even the right
mix of counters, a designer maximizes performance and
utilization within an LCA design. Choosing the right
counter for the application depends on whether the
counter application requires

• Binary or non-binary counting sequence, or
• High or low counter modulo, or

• Optimal performance, or
• Optimal register and routing resource efficiency.

Some counter applications require control signals which

Counter Examples

may include parallel load of data, clock enable,
synchronous or asynchronous SET or RESET,
UP/DOWN control, or others. Synchronous binary
counters are widely-used in digital design but their
complexity can degrade their overall speed and
effectiveness. The extra routing and logic required to
implement a wide toggle lookahead-carry function, for
example, quickly consumes the resources available in I
any logic device (a toggle lookahead-carry should not be
confused with the lookahead-carry used in arithmetic
logic). For speed, ease of routing, and glitch-free
decoding, Johnson counters are often the best solution
for applications of modulo ten or less. If a non-binary,
pseudorandom counting sequence is acceptable,
Linear Feedback Shift Register (LFSR) counters can
best implement counts above modulo 32. •

The purpose of this application note is to help the
designer choose which counter to use for specific
applications in the XC2064 and XC2018 Logic Cell
Arrays (LCAs). Another goal is to help the designer start
thinking about alternatives to 7400-series counters.
There are various means of attacking the same counter
application. A designer should use a specific type of
counter to fill a specific application-not because it is the
only counter type available but because it is the best
counter for the specific application. The LCA gives the
designer added flexibility, and this application note
suggest ways to take advantage of this flexibility in
counter designs. Descriptions of various counter
applications are provided with examples wherever
possible.

2-99

Resource Efficiency

Binary counters are more register efficient than other
counter types since their capability increases as the
exponent of the number of registers, as shown in Figure
1. Binary counters have up to 2" possible states.
Sometimes, however, the more complex routing of a
binary counter can make it less silicon efficient than a
comparable counter of a different type. With only one
less state than a binary counter of comparable size
(2"-1), Linear Feedback Shift Registers follow closely
behind in counting capability. The ease of routing within
an LFSR counter design sometimes outweighs their
non-binary, pseudorandom counting sequence.
Lowest on the list of register efficiency is the Johnson or
Mobius counter. With only 2n possible states, Johnson

Counter Examples

counters are less resource-efficient for modules much
higher than 12 (six registers). However, extremely high­
performance Johnson counters can operate at speeds
near the overall toggle frequency of the LCA since the
counter logic and routing is simple.

Since each Configurable Logic Block (CLB) within the
XC2064 and XC2018 Logic Cell Arrays has a single flip­
flop or storage element, there is a direct relation
between flip-flop efficiency and CLB efficiency. These
terms are practically synonymous when referring to the
counter bits required to implement a counter. Since
some designs require additional logic beyond the logic
associated with the flip-flop inside a CLB, some forms of
counters require more CLBs than flip-flops.

BINARY COUNTERS

Overview

This section addresses the design and associated
topics regarding binary ripple, ripple-carry, and
lookahead-carry counters. The performance of a binary
counter increases with the amount of lookahead-carry

220

218

216

214

212

COUNTER 210
MODULO

28

26

24

22

20

0 5

performed at each counter stage. Simple ripple
counters have no lookahead-carry and are the lowest­
perfomance binary counter. Higher-performance binary
counters require additional silicon resources to decode
and propagate the carry signals. The ripple-carry and
lookahead-carry counters require partial or full decoding
of all of the previous counter bits. This requires extra
logic and routing resources for the carry signals but buys
increased performance.

Binary counters operate differently depending on the
amount of lookahead carry. Simple ripple counters
operate asynchronously since they do not generate
carry signals, whereas ripple-carry and lookahead-carry
counters are synchronous. Typically synchronous
design is safer since it is more immune to glitches.

Ripple Counters

In simple binary ripple counters, as shown in Figure 2,
carry signals are not generated. The output of each
counter stage asynchronously clocks the next counter
stage. The resource requirements to implement a ripple
counter are low-only one CLB per counter bit
regardless of counter length. The routing for a binary

JOHNSONCOUNTERS
2N STATES (LINEAR)

20

10 15 20

COUNTER REGISTERS
0010023 1

Figure 1. Different types of counters require different amounts of registers and resources for the same task.
The capability of binary counters Increases exponentially with the number of bits while Johnson counters
increase only linearly.

2-100

f:XIUNX

ripple counter is also simple. The penalty for this
simplicity is lower performance. Each counter bit
degrades the overall performance by a CLB delay time.
The overall counter clock period must be greater than or
equal to the total delay of all the CLBs used to
implement the counter, as shown in Equation 1.

Binary ripple counters are primarily used only in
applications that require optimal device utilization
without regard to performance. The increased silicon
utilization is gained by eliminating carry signals.
However, the flip-flops within a binary ripple counter are
asynchronously toggled in operation. There are
synchronous forms of this counter that have better
performance and require the same resources. This is
true because of the flexible array-type architecture of
the LCA and because of the capability of a single CLB.
An example is shown in Figure 3. This synchronous
binary ripple-carry counter still requires only one CLB
per bit. Since the ripple-carry includes only the previous
counter stage, resource requirements are minimal. Its
synchronous design affords more reliable operation.

Ripple Counter = N • (Clock to Output Delay [1]
Clock Period

where

N
Clock toOutput

= number of ripple counter flip-flops
= Tcko for K-clock input

0010023 2

= Tcco for C-clock input
= Tcio for logic clock input

CLOCK(-)

RESETDIR

Figure 2. Binary ripple counters are simple to Implement and can be cascaded to nearly any desired length.
Their disadvantage stems from their asynchronous operation and their degraded performance with each
additional counter bit. They are not recommended for most designs because of their asynchronous operation.

--------------------------------T;r;;,:;:;:;:,,,;,:;,:;:;:;,;:;;,:;,;::,~,;:;;;;;;,;::,~;:lt~------------------------ --------------------------- gm~J~AL

:::1:::

------~~] !l[~

~; ! ~~ '----1''--"

~~ l ~l
~i : 1~~
:::1:::

!P~i RESETDIR 4----+---+--~H+----+-----+14----t------+.tr---t---'
CLOCK -[[,.,.,.,.,, ·:·>:·:·:·:·:·>:·>:·:·:<·:·:·:·:·:·:·:•:·:·:·:·:J4{.,.,.,.,.,,.,.,. :·:·:·:·:·:·:·:<·:·>:·:·:<·:·:·:·:·:·}:+\,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,,.,,.,.,.,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,,,.,.,.,.,.,.,.,;;ft· 1 [f;;;;;;;;;:;;;;;;:;;;;;:::,.,,,.,.,.m,,•:•:-':•:•:•:•:•:•:•:•:•:•>:•:<j[j

CLB : CLB : CLB 1 CLB ---------------------------------L-------------------------'--------------------------L---------------------------

0010023 3

C28CR C2BCR C2BCR C2BCR
MACRO MACRO MACRO MACRO

Figure 3. A single-bit ripple-carry counter requires as few resources as a standard ripple counter but has
synchronous operation. While highly CLB efficient, this design does have performance below counters with
greater amounts of ripple-carry and below all lookahead-carry counters.

2-101

I

•

Counter Examples

Although the single-bit ripple-carry counter requires few
resources, it still suffers from lower performance, much
like the standard ripple counter. It also exhibits lower
peformance with each additional CLB or flip-flop.

Ripple-Carry Counters

The design shown in Figure 3 is just one example of a
binary ripple-carry counter. Ripple-counters have been
used by designers for quite some time. In the past,
designers typically implemented large binary ripple-carry
counters with conventional 74-series logic devices.
Designers tended to cascade the ripple-carry output of
one 4-bit counter segment with the enable of the next 4-
bit counter segment to build larger counters. Counter
implementations within an LCA do not lend themselves
to the "one size fits all" approach of the 74-series
devices, since the architectures are different. However,
some of the general ideas still apply.

Table 1 shows the wide variety of possible binary ripple­
carry counters to eight bits in length. Larger ripple-carry
counters are possible but there are far too many
permutations to mention them all. The counters shown
in the table consist of smaller counter segments, each
with its own terminal count and clock enable. Larger
counters can be built by cascading these segments
together. The terminal count of one segment feeds the
clock enable of the next segment and so on. The
cascaded connection of the terminal count to clock
enable is called a ripple-carry.

By cascading various counter segment macros together
in the proper order, a designer can construct counters
with various performances and control inputs. The table
indicates the counter size in bits and in total modulo.
The table also indicates whether CLOCK ENABLE (CE)
or TERMINAL COUNT (TC) is available for that particular
counter. The number of CLB logic levels required to
implement the counter function. is displayed under
"Ripple Levels". The higher the number of ripple levels,
the slower the counter will run since each ripple level
corresponds to a single CLB block delay.

The actual number of CLBs needed to implement a
counter function depends on the number of control
signals required. Wheras a simple CLOCK ENABLE
(CE) and RESET take minimal resources, a PARALLEL
ENABLE (PARENA) typically requires an additional CLB
as shown in the table.

DESIGN EXAMPLE 1. Escaping from the TTL "one size
fits all'' approach. Building an eight-bit ripple-carry
counter with 7 4-series TTL and with an LCA.

Assume that a counter application requires an eight-bit
binary counter with reset. Figure 4a shows a common
implementation of an eight-bit counter using two 74-161

TTL devices. A designer unfamiliar with the capability of
the LCA might choose a similar implementation using
two of the 74-161 counter macros available within the
XACT™ Development System. However, a direct one­
for-one substitution is wasteful. It would require sixteen
CLBs to implement the two 74-161 equivalent circuits.

The Xilinx 74-161 macro contains the same functior;tality
as a 74-161 device. Typically however, not all of the
resources of a 7 4-161 are used in a design. This is the
case in Figure 4a. Some of the CLB capability has been
wasted on circuitry which will not be used for the design
(Note: The Xilinx FutureNet Schematic Capture Library
and Conversion Package reduces the macros to their
primitive gate levels and then frees any unused
resources).

A more rational approach uses only the required amount
of circuitry to implement the design. For example, it is
simpler and more resource efficient to build the eight-bit
counter with the generic counter macros available within
XACT. Table 1 shows some of the possible macro
combinations used to build an eight-bit counter.

An equivalent counter built with two C8BC-rd counter
macros and one C4BC-rd counter macro is shown in
Figure 4b. The eight-bit counter is built with two 3-bit
pieces and a single 2-bit piece. This implementation
was chosen over using two 4-bit pieces since the former
has superior performance. The 4-bit pieces each have
two ripple-carry levels each. Therefore the eight-bit
counter implemented with 4-bit pieces will have four
ripple-carry delay levels overall. A similar implementation
based on the two 3-bit pieces, and a 2-bit piece only has
three ripple-carry delay levels, and therefore has higher
performance.

Building the 8-bit counter by cascading smaller counter
macros reduces the number of required CLBs from
sixteen to ten while simultaneously increasing
performance.

Generally large ripple-carry counters should be built with
multiple 3-bit pieces instead of 4-bit pieces since there
are fewer ripple-carry delays through a 3-bit piece. The
various ripple-carry possibilities are described in Table
1. When given a schematic drawn with 74-series
devices, a designer should consider the function
required for the application, and not blindly implement a
one-for-one 74-series logic substitution.

DESIGN EXAMPLE 2.
asynchronous design!

Avoiding the pitfalls of

A common practice when designing with 74-series
devices is to use the terminal count of a counter as an
asynchronous signal to either RESET the counter or to
load the counter with a predetermined value. Figure Sa

2-102

(/)

0 a:
~ :::;
a:
~ z
::i
0
(.)

t
~
x z
:::;
x

COUNTER SIZE AVAILABLE RIPPLE
SELECTIONS LEVELS

20 21] 22 23 24 2s 2s 27 (Modulo) CE TC

s (4) x x 1

FT C4B x 1

C4B] FT
(8)

x 1

C8B x x 1

FT C4B FT 1

FT C8B x 1
(16)

C8B FT x 1

C4B 1 C4B x x 2

FT C8B FT - 1

FT C4B C4B x 2

C4B 1 (32)
C4B FT x - 2

C8B C4B x x 2

FT C4B C4B FT 2

FT C8B C4B - x 2

C8B C4B FT (64) x - 2

C8B C8B x x 2

C4B] C4B C4B x x 3

FT CBB C4B FT 2

FT CBB CBB x 2

FT C4B C4B C4B - x 3

CBB C8B FT
(128)

x - 2

C4B I C4B C4B FT x 3

C8B C4B C4B x x 3

FT CBB CBB FT 2

FT C4B C4B C4B FT 3

FT C8B C4B C4B x 3

CBB C4B C4B FT
(256)

x 3

CBB CBB C4B x x 4

C4B l C4B C4B C4B x x 4

NOTE: THE ABOVE COMBINATIONS MAY BE CASCADED FOR LARGER MODULO.
CE/CLKENA =CLOCK ENABLE
PARENA = PARALLEL ENABLE
FT= TOGGLE FLIP-FLOP
TC= TERMINAL COUNT

CLKENAOR
CE& RESET

CLBs

3

3

4

4

4

5

5

4

6

5

5

6

6

7

7

8

6

8

9

7

9

7

8

10

8

9

9

10

8

Table 1. Binary ripple-carry counters from two to eight bits.

2-103

CLKENA
&PARENA

CLBs

3

4

4

5

5

6

6

6 • 7

7

7

8 -8

9

9

10

9

10

11

10

11

10

11

12

11

12

12

13

12

'.!:
0

""'

0010023 4A

CLKENA

CLOCK

RESETDIR

0010023 40

+!N

D0-03

LO TC

16CLBs
CET

0 74-161

ENABLE

MR

CLOCK

CLEAR

00-03 04-07

Figure 4a. An eight-bit counter with reset built with two 74-161 TTL devices. Notice that not all of the device
connections are used to implement the function required. A direct 74-series substitution proves wasteful.
Use only the logic required to implement the required function.

r--,--,--1

L.--J--1---
MACROCBBC-RD MACROC8BC-RD MACRO C4BC-RD

Figure 4b. A better implementation of an eight-bit ripple-carry counter based on various macros from the XACT Development
System. When designing with an LCA, an engineer can tailor his logic so that the LCA performs the required function with the
minimum amount of logic.

b' c
::I

~
~
DI
3
'tJ
iii
II>

I}'
0
U'I

0010023 5A

CLOCK

0010023 58

CLOCK(-)
MR MR MR MR

RESETDIR -----+-------<i------+------+-----< RESET

Figure 5a. The asynchronous design practices of 74-series TTL devices are discouraged. An asynchronous design is less
reliable and riskier since it Is unforgiving to unknown design conditions.

Figure Sb. Synchronous design provides more relable operation.

I •

RESET

M
~
c: z
x

Counter Examples

demonstrates how a similar design might be
implemented within an LCA although the asynchronous
implementation is not recommended. The drawback to
this design is that it is potentially unreliable. The terminal
count (and RESET signal) is generated by ANDing all of
the register outputs. When the counter reaches state
1111, the asynchronous RESET signal is asserted. Not
all of the registers will be reset simultaneously because
of the delay along the RESET network. Since the
RESET signal is formed by the AND of the register
outputs, the RESET signal will no longer be asserted
and the remaining registers may fail to reset if any one of
the registers is reset before the others.

The asynchronous RESET signal will also experience
decoding glitches as the various counter bits propagate
through their nets to the AND gate. Any glitch on this
signal can partially reset the counter.

An improved design appears in Figure Sb. In this
example the RESET signal is asserted synchronously.
This gives the synchronous RESET signal until the next
clock edge to propagate to all of the CLBs and also
prevents any of the CLBs from being reset by glitches
on the RESET line. Since both asynchronous and
synchronous RESET require a single CLB input, no
more resources are required to build a completely
syn9hronous design than the more risky asynchronous
design. In general, synchronous design practices apply
not only to counter design, but to all digital designs.

Lookahead-Carry Counters

There are applications where binary ripple and ripple­
c:ury counters are too slow. In such cases, synchronous
binary counters with lookahead-carry are an answer.
Building high-performance synchronous binary
counters within an LCA is a simple process but, it
involves a few special techniques.

High-performance synchronous counters derive their
speed by decoding lookahead-carry signals from all of
the previous counter stages. There is not a ripple-carry
as described earlier-all of the previous counter outputs
are decoded to form a single lookahead-carry signal for
each counter stage. Combining all of the ripple-carry
into a single lookahead-carry reduces overall design
delays and increases performance.

Decoding lookahead-carry signals requires additional
Configurable Logic Blocks (CLBs) in addition to more
routing resources. The additional CLBs allow faster
counters to be built. Higher performance is obtained by
increasing the number of CLBs required to perform the
function (divide and conquer!).

The generalized equation for synchronous binary
lookahead-carry counters is given in Equation 2.

00 = ((CE• RESET• PARENA) e 00) [2]
+ PARENA• DO

01 = ((CE• RESET• P~A~R=EN-A • 00) E0 01)
+ PARENA * D1

On= ((CE• RESET• PARENA • 00 • 01 • ... • On-1)
e On) + PARENA * Dn

where

CE
RESET
PAR ENA
On
Dn

= Clock Enable
= Register Reset
= Parallel Enable
= Register Value
= Register Input Value

Th~ .complexity of the counter can be reduced by
om1tt1ng one or more of the control signals (i.e., CE,
RESET, etc.). For example, one way to remove RESET
is to realize that all of the registers in the LCA are reset
after configuration or any time the device RESET line
has been asserted LOW.

From the generalized equation shown above, the
overall complexity of the design grows with each
additional counter bit. Since the CLBs within the
XC2064 and XC2018 have up to four and sometimes
five inputs, the logic equations for the counter bits need
to be partitioned into smaller pieces. Design Example 3
describes the partitioning of a 10-bit counter.

DESIGN EXAMPLE 3. A 10-bit synchronous binary
counter with CLOCK ENABLE (CE) and
RESET_DIRECT (RESET)

The. 10-bit binary counter requires 14 Configurable
Logic Blocks (CLBs)-ten blocks to implement the ten
counter registers plus four additional blocks to generate
the lookahead-carry logic. The clock signal (CLOCK)
connects to the global clock buffer (upper left-hand
corner of the die) to minimize clocking skew to each of
the counter registers. The RESET_DIRECT signal
feeds into the reset-direct input to the flip-flop in each
CLB (the D-input to the CLB).

The set of logic equations for each CLB used in this
counter appears in Equation 3.

BitO = ClkEna E9 QO (3)
Bitl = (ClkEna * QO) ED Ql

Bit2 = (ClkEna * QO * Ql) ED Q2
q02_CE = QO * Ql * Q2 * ClkEna ;lookahead­

carry of bits
O thru 2

2-106

Bit3 q02_CE © Q3

Bit4 (q02_CE * Q3) © Q4

BitS (q02_CE * Q3 * Q4) © QS
q35 = Q3 * Q4 * QS ;lookahead-carry

Bit6 = (q02_CE * q35) © Q6
q36 = Q3 * Q4 * QS * Q6

Bit7 = (q02_CE * q36) © Q7

of bits 3 thru 5

;lookahead-carry
of bits 3 thru 6

Bit8 = (q02_CE * q36 * Q7) © Q8
q78 = Q7 * QB ;lookahead-carry

of bits 7 and 8

Bit9 = (q02_CE * q36 * q78) © Q9

There are two more vertical long lines than horizontal
long lines in each routing channel. The counter is
placed in a vertical orientation so that both of the high­
fan-out lookahead-carry signals (q02_CE and q36)
connect to long lines. By routing both the q02_CE and
q36 lookahead-carry signals on long lines, the routing­
dependent delays are greatly reduced and the counter
performance is increased accordingly. The layout for
this counter is shown in Figure 6 on an XC2064 die
picture. An eight-bit example of a lookahead-carry
counter is expressed in schematic form in Figure Sc.

DESIGN EXAMPLE 4. Loading a counter with an initial
value.

Preloading a counter with an initial value is desired in
some designs. Within an LCA design, this is
accomplished with the asynchronous SET and RESET

· inputs to a CLB or through synchronous SET and
RESET inputs. Figure 7 shows a four-bit binary counter
which can be set to an initial value of 0100 binary before
counting begins. This is accomplished by having three
of the CLB registers asynchronously RESET through
input-D and one CLB register asynchronously SET
through input-A.

Binary Counter Summary

An n-bit binary counter has 2n possible states. Even
within the general category of binary counters, there are
various ways to implement a counter function. Typically,
highly resource-efficient binary counters have degraded
performance, whereas high-performance binary
counters require additional resources.

Use of ripple counters is discouraged because of their
asynchronous operation. Ripple-carry counters are
easily constructed with the macros available within the
Xilinx XACT Development System. For high­
performance binary counter operation, lookahead-carry
counters are recommended.

As an illustrative example, Figure S shows three eight-bit

counters. The first (Figure Sa) is implemented as a ripple
counter, the second (Figure Sb) as a ripple-carry counter
and the third (Figure Sc) as a lookahead-carry counter.
Note the resource requirements and the relative
performance of each implementation.

JOHNSON COUNTERS

Overview

A Johnson (or Mobius) counter can be thought of as a
special type of shift register. In a Johnson counter, the
last bit of the shift register is inverted and then fed back
into the first bit, as shown in Figure 9. Only a single bit
changes during a clock transition, as shown in Figure 9.
Therefore each state, or contiguous states of a Johnson •
counter can be decoded, without glitches, using only a
two-input AND gate. This structure and counting
sequence allows an N-bit Johnson counter to count up
to 2n possible states as opposed to the 2n possible
states allowed in a binary counter.

Since the placement and routing of Johnson counters is •
simple, extremely fast Johnson counters are possible.
A well designed Johnson counter can approach the
toggle frequency of the LCA (minus any routing delays).
One drawback to Johnson counters is that their
capability increases only linearly with additional bits as
opposed to exponentially like binary counters. Johnson
counters become less efficient at modules greater than
ten or twelve. Another potential drawback stems from
the invalid counter states possible in a Johnson counter
sequence (there are 2°-2n possible invalid states).
Invalid states can be cleared eventually with a small
amount of additional logic (see Design Example 5).

Johnson counters can only be effectively implemented
in the flexible array architectures like those found in gate
arrays and in LCAs. In array architectures, the signals
from internal registers can be easily routed to other
registers within the device. A Johnson counter can
even be built with the storage elements located in the
Input/Output Blocks (IOBs) of the LCA (see The Ins and
Outs of Logic Cell Array lnpuVOutput Blocks). Similar
implementations in PLA-type (sum-of-products)
architectures are ineffcient since registers are typically
hard-wired to outputs.

DESIGN EXAMPLE 5. Building Johnson counters with
odd modules (2n-1).

Odd modulo Johnson counters (2n-1) require few more
resources than their even modulo (2n) counterparts. A
standard Johnson counter uses only an inverting
feedback from the last bit to the first bit. In a modulo
2n-1 Johnson counter, a NOR of the last two

2-107

Counter Examples

ReslttJ

_LJ

Figure 6. Wide, lookahead-carry counters should have a vertical orientation to make maximum use of the
vertical long lines to propagate lookahead-carry signals.

2-108

bits fed back into the first bit forces the counter to skip a
single state, as shown in Figure 1 O for a four-bit
Johnson counter. The designer should be aware
however, that not all of the counter states can be
decoded glitch-free in an odd-modulo Johnson
counter. A potential glitch may occur whenever two bits
change during one of the clock transitions, as indicated
in Figure 10.

The added NOR feedback gives the counter an
additional capability. If the Johnson counter ever gets
into an "unallowed" state, the NOR feedback eventually
forces the counter back into its normal counting
sequence, again shown in Figure 1 O.

DESIGN EXAMPLE 6. Building a fast clock divider using
a Johnson counter.

In many designs, counters are used to divide an
incoming clock signal to derive lower-frequency clock
signals for other portions of the logic. Sometimes this
proves difficult if the frequency of lthe incoming clock is
extremely high, or if only a binary counter is allowed
because of the fixed architecture of the logic device.

One method of building a clock divider is to use a
Johnson counter. The simple placement and routing of
Johnson counters makes them extremely high
performance, if designed correctly. A well-designed
Johnson counter can operate at nearly the maximum
toggle frequency of the LCA. Another benefit of a
Johnson counter is its ability to generate glitch-free
decoded outputs of the counter state by ANDing only
two of the register outputs. The circuit shown in Figure
11 demonstrates the use of a Johnson counter to
derive a variety of clock frequencies and phases from a
single incoming clock source. Typically a clock that is

CLKENA

CLOCK

INIT

nearly any integral divisor of the input frequency can be
derived. Since the counter in Figure 11 is modulo 6, the
frequency can be divided by 2, 3, or 6. Duty-cycles are
available in 100%/DIVIDER increments (or 16.67% for
the three-bit example). Phase shifting can be done in
increments of 360 degrees/MODULO or 60 degrees for
the three-bit Johnson counter (360/6 = 60).

Table 2 shows some of the various modules, duty­
cycles, and phase shifting that can be derived from the
three-bit Johnson counter shown in Figure 11.

DESIGN EXAMPLE 7. Building fast binary counters with
a Johnson counter prescaler.

Higher frequencies reduced with Johnson counters can
be fed into lower performance counters. For example,
instead of requiring a 10-bit synchronous binary counter •
to operate at near the toggle rate, the same counter can
be designed with a two-bit Johnson counter as a two-bit
prescaler, and a lower-frequency synchronous binary
counter as the most-significant eight-bits. The entire
counter can appear to operate at the toggle frequency
when, in actuality, only the Johnson counter operates
that quickly and the binary counter operates at a quarter -
of that speed. Figure 12 shows a counter built with both
a Johnson counter and a binary ripple-carry counter.

Since binary counters are capable of counting to higher
modulos than Johnson counters with the same number
of flip-flops, they are more resource efficient for higher
modulos. But since Johnson counters can be built with
minimal delays, they are higher performance than binary
counters. By mixing the two types into a single "hybrid"
counter, the designer can optimize both speed and
resource utilization.

TC

0010023 7

Figure 7. Use the asynchronous SET and RESET pins available within a CLB to preload a counter with an lnital value.

2-109

r:->
~

0

CLOCK(-)

RESETDIR

0010023 BA

CU<ENA

CLOCK

RESETDIR

0010023 SB

D a D Q D a

RD RD RD RD RD RD RD

Figure Sa, Ripple counters are discouraged because they are asychronous.

Figure Sb. Ripple-carry counters are synchronous and are resource efficient. However, the performance of a wide ripple-carry
counter will be degraded because of the number of ripple-carry delay levels.

D Q

RD

&> c

~ ..
~
Ill
3
"ti
a;
Ill

')->

CLKENA

CLOCK

RESETDIR

0010023 BC

.-------.... ------------+----------ifH:·:-:-:·:·:·:·:·:·:-:·:·:-:-:-:-:-:-: ~f:

RD 11
~

RD
1~

f::-~:::::::::::::::::·

RD

~1104
::::

I RD

:~:;

!!las
:;::
::;:
:;::

i~
~~~ j~~~ ~~ 

;;:; 

:::: 

fil;.;.:-;.;.;.;.;.;.:-:.;•:•:-:•:•X•!•X•:-:•X•!.;•:•:•:•:.;.:;.;.;.;.;.;.;.)~~ *-=-:-=·=-=-=-=·=·=-=-=-=-=-=-= .... =-=-= .. --=-=-=-=·=·:·=·=·=-:·=-:-=-=·m 

Figure Be. Lookahead-carry counters are the highest performance binary counters. However, their complexity can make them 
more dHficult to implement H they are exceedingly wide. 

I • 
M 



Counter Examples 

CLOCK 

RESET 

00 

STATE TABLE 

00 01 Q2 03 

0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
1 1 1 1 
0 1 1 1 
0 0 1 1 
0 0 0 1 

01 02 03 

® 
0010023 9 

Figure 9. Johnson (or Moblus) counters can be thought of as a special form of shift register. Only a sing le bit 
changes during a clock transition. Johnson counters have 2n possible states. 

01 02 03 

( xxxx) = INVALID ST A TE 

Figure 10. Johnson counters can have odd modulos (2n-1) by means of adding simple feedback logic. 
Feedback logic also converts Invalid counter states back Into valid counter states. 

2-112 

0010023 10 



CLOCK 
DIVIDER/DUTY CYCLE/PHASE-SHIFT 

+ 6116.67%/0° 

6--1--+--ID--- + 3166.67%/240° 

+ 2150.00%/60" 

+ 6150.00%/0° 

+ 6183.35%/0° 

Figure 11. Johnson counters can provide decoded signals of various modulos, 
duty-cycles, and phase shift from an Incoming clock signal. 

DIVIDER DUTY-CYCLE PHASE-SHIFT LOGIC EQUATION 

2 50-00 0 -(QO @ Ql @ Q2) 
2 50-00 60 QO @ Ql @ Ql 

3 66.67 0 -(Ql @ Q2) 
3 66.67 60 QO @ Q2 
3 66. 67 240 -(QO @ Q2) 
3 33.33 0 QO*Ql*Q2 + -QO*-Ql*-Q2 
3 33.33 120 QO*Ql*-Q2 + -QO*-Ql*Q2 

6 16.67 0 -QO • -Q2 
6 16. 67 60 QO * -Q2 
6 16. 67 120 QO * Ql 
6 16. 67 180 QO * Q2 
6 16. 67 240 -QO * Ql 
6 16. 67 300 -Ql • Q2 
6 33.33 0 Ql • Q2 
6 50.00 0 -Q2 
6 66.67 0 -(-QO • Q2) 

6 83.35 0 -(-Ql • Q2) 

Note: - =negation 
@ = exclusive OR 

Table 2. The clocks of various modulos, duty-cycles, and phase-shifts derived from a three-bit Johnson counter. 

2-113 

• 
• 



Counter Examples 

In some designs, only the terminal count of a counter is 
used. Binary counters will produce glitches if all of the 
counter bits are decoded with a large AND gate. 
Johnson counters, however, are inherently glitch-free 
for simple AND decoding. Again by mixing the two 
types, a glitch-free decoded terminal count is produced. 
This is accomplished by using the Johnson counter 
outputs as part of the terminal count decoding circuitry, 
as shown in Figure 12. 

LINEAR FEEDBACK SHIFT REGISTER 
(LFSR) COUNTERS 

Linear Feedback Shift Registers (LFSR) counters (also 
called polynomial, or pseudo-random, or full-cycle 
counters), are another special type of shift register. 
Although an LFSR counter is similar in some ways to a 
Johnson counter, there is one important difference. 
Johnson counters can count to a maximum of 2n 
possible states. An LFSR counter, however, has nearly 
the same capability of a binary counter since it can count 
to 2"-1 possible states (the difference between binary 
and LFSR counters becomes insignifigant at high 
modulos). 

The counting sequence is the major difference 
between a binary counter and an LFSR counter. The 
counting sequence of an LFSR counter is non-binary 
and essentially pseudorandom (the pseudo random 
behavior of LFSR counters can be used to build 
encryption and decryption circuits as done in the Xilinx 
application note, A UART Design Example). 

LFSRs also have simple placement and routing, much 
like Johnson counters. Fast LFSRs are also possible, 
since the primary delay derives from decoding the 
feedback from the various counter bits. Although not all 
LFSRs will operate at the same maximum frequency as a 
Johnson counter, they will have superior performance 
to binary counters of nearly the same modulo. If the 
LFSR counts to 2"-1 instead of some lower modulo, it 
can operate near the toggle frequency of the device. If 
the LFSR counts to some lower modulo, the extra 
required logic lowers the overall performance. 

Like shift registers and Johnson counters, an LFSR 
counter can be built using only the registers in the 
Input/Output Blocks (IOBs) of the LCA and a few CLBs. 
This is discussed in detail in the Xilinx application note, 
The Ins and Outs of Input/Output Blocks in Logic Cell 
Arrays. 

An n-bit LFSR counter can produce a pseudorandom 
sequence of up to 2"-1 unique states. By adding logic 

to the feedback path, the LFSR counter can be forced 
to skip any number of states (from one to 2"-1). By 
forcing the counter to skip M states, a LFSR counter can 
implement any modulo as described in Equation 4. 

MODULO= (2"-1 ) - M 

where n = number of shift-register bits 
M = number of "skipped" states 

[4] 

Figure 13 shows the counting sequence for a three-bit 
LFSR counter with exclusive-NOR (XNOR) feedback. 
There are two counter states for which only the first bit 
differs (for example, locate the states 101 and 001). 
Inverting the feedback with an XOR or XNOR gate 
causes the counter to "skip" all of the states between 
the two indicated values. This can be accomplished by 
decoding (ANDing) the state just previous to the state to 
be skipped. Using this method and the proper 
feedback into the leading bit, a counter of any modulo 
from one to 2n-1 can be built. 

The designer should be careful to avoid the "stuck" 
state. The "stuck" state is the state missing from the 
2"-1 counting sequence (if the "stuck" state were 
included, the LFSR counter could have 2n possible 
states). This state occurs when the feedback path 
forces the counter into an ever-repeating single state. 
As a simple example, assume that a LFSR counter were 
built with a two-input exclusive-OR feedback path as 
shown in Figure 14. Upon configuration or external 
RESET, the counter would begin operation in the all 
zeroes state (000) and would be "stuck" in that state 
due to the type of feedback used (0 XOR O = 0). Thus, 
exclusive-NOR (XNOR) feedback is suggested for LCA 
designs since all register are reset upon configuration (0 
XNOR 0=1). 

An interesting thing occurs when all but the first bit of 
the "stuck" state is decoded (ANDed together) and 
included in the feedback path. Instead of counting over 
a possible range of 2"-1 states, the extra decoding 
causes the LFSR counter to count to all 2n states. 

Wider LFSR counters with higher possible modulos and 
more complex feedback mechanisms can be built but 
their analysis is well beyond the scope of this application 
note. Unfortunately there are no simple rules of 
determining which bits to use as feedback or which bits 
to decode to derive a specific skipping pattern. The 
basic concepts come to digital design via discrete linear 
algebra. Table 3 presents some of the possible 
feedback combinations for LFSR counters of three bits 
to ten bits in length. 

2-114 



CLOCK 

~ ..... 
(11 

0010023 12 

2-BIT JOHNSON COUNTER 

l"';-;;.;.;;..;.;":';;;;;;.;;;;:;;i----------1 

• I 
I 
I 
I 
I 
I 
I 
I 

I ~! 
I 
I 

--------------- -- ----------- -· 

10 - ENABLE TERMINAL COUNT (FOR GLITCH-FREE OUTPUT) 

11 - CLOCK ENABLE FOR 8-BIT COUNTER (CLOCK+ 4) 

8-BIT BINARY COUNTER 

-t=D---1 CE 

=-··I I ' I ' I ' I ' I ' 1 · I ' [ 

I I b TERMINAL • • • t-· ___ ., COUNT 

~~·-7 ENABLE 

Figure 12. Johnson counters are useful for implementing clock dividers or counter pre-scalars within an LCA. 
Decoding their states with a two-Input AND function provides glitch-free outputs. Johnson counters can 
operate at nearly the toggle rate of the LCA. 

I • 
M 



Counter Examples 

'STUCK' STATE 

~ 

Figure 13. The counting sequence for a three-bit LFSR using XNOR (excluslve­
NOR) feedback. All of the possible "skip" paths are Indicated. Also shown Is the 
"stuck" state. 

n.·, .. ····';'· ..... =·,'··, .... :'! ... ····'=---o o-Q(', LJ :•:•:•:•:•:::::•:•:•:•:•:•:•:•w 

oo 

0 

01 

0 

"STUCK" STATE 

02 

0 

OXORo~o 

0010022 29 

0010023 14 

Figure 14. A simple XOR LFSR counter which will be "stuck" In state 000 after configuration since all registers are reset. 

2-116 



DESIGN EXAMPLE 8. A modulo five Linear Feedback 
Shift Register (LFSR) counter. 

Figure 15 shows the schematic for a three-bit LFSR 
counter which implements a modulo-five (divide by five) 
counter. To generate a modulo five output from a three­
bit LFSR counter, two states must be skipped as 
indicated by Equation 4. The initial state from which the 
counter can jump two states is 101. By decoding the 
state (011) just prior the initial skip state (101), the sense 
of the feedback into the first bit can be inverted when 
fed into the XNOR feedback path. In operation, the 
counter will skip from state 011 to state 001, thus 
implementing a modulo five counter. 

The registers within the counter will initialize to state 000 
after configuration or after RESET is asserted. The 
counter sequence never enters the "stuck" state (111) 
because of the XNOR feedback. 

DESIGN EXAMPLE 9. Adding another state to a Linear 
Feedback Shift Register. 

Linear Feedback Shift Registers can normally only count 
to 2n-1 possible states. However, with the addition of a 
small amount of additional logic, an LFSR counter will 
instead count to the full 2n states. This gives the LFSR 
counter the same capability as a full binary counter. To 
give the LFSR an additional counter state, all but the last 
bit of the "stuck" state is decoded and included in the 
feedback path. Again, a three-bit LFSR counter will be 
used as an example. 

The "stuck" state for an XNOR feedback LFSR counter 
is the all ones state or 111. To make a three-bit LFSR 
counter count to eight instead of seven, all but the last 
bit of the "stuck" state must be decoded (ANDed 
together) and included as part of the XNOR feedback. 

(2n -1) 7 15 31 63 127 255 511 1023 

Modulo 

Feed- 1,3 1,4 2,5 1,6 1,7 1,2,7,8 4,9 3,10 

back 2,3 3,4 3,5 5,6 3,7 5,9 7,10 

Options 4,7 
into Bit 1 6,7 

Table 3. Possible feedback combinations for LFSR counters 
of three to ten bits In length. 

This circuit is shown in Figure 17. The LFSR counter 
begins operation as it normally would if it did not have 
the extra logic. The additional state is inserted just after 
state 110. The extra decoding inverts the sense of the 
feedback to produce the additional state 111. In the 
previous example, state 111 was the "stuck" state. 
However, the additional logic again inverts the normal 
sense of the feedback to produce state 011. From 
there, the LFSR counts as it normally would except that 
it now is a modulo eight counter instead of a modulo 
seven counter as it would be without the extra logic. 
Notice the new counting sequence which is also shown 
in Figure 16. 

The macro library included with the Xilinx XACT 
Development System includes another LFSR counter 
which is a modulo 256 counter with clock enable and 
reset-direct. This macro can be found in the macro • 
library under C256FC-rd. 

UP/DOWN COUNTERS 

Another form of digital counter is the UP/DOWN 
counter. In operation, a counter bit will toggle either if all • 
of the previous counter bits are HIGH and the direction is 
UP, or if all of the previous counter bits are LOW and the 
direction is DOWN. Therefore each CLB or counter bit 
of an UP/DOWN counter must: 

• Toggle On if all 00 to On-1 are HIGH 
and direction is UP, or 

• Toggle On if all 00 to On-1 are LOW 
and direction is DOWN 

Adding clock enable, reset, parallel enable and various 
other control inputs can make the algorithm for the 
counter fairly complex. Since an UP/DOWN counter is 
complex to begin with, every effort should be made to 
minimize the number of control signals required for the 
design. For example, if the counter only need be reset 
at initialization, use the fact that all registers within the 
LCA are reset upon configuration. Whenever possible, 
build ripple-carry UP/DOWN counters, as opposed to 
lookahead-carry types. 

DESIGN EXAMPLE 10. A 13-bit binary UP/DOWN 
counter with synchronous RESET. 

This design example describes two possible imple­
mentations of the same counter function. One 
implementation is performance-driven and therefore 
requires a lookahead-carry UP/DOWN counter. In the 
second, the amount of resources required for the 
counter function are minimized by using a ripple-carry 
UP/DOWN counter. 

2-117 



Counter Examples 

SCHEMATIC 

r:4_____..,1, 
::~: 

l ·=· 

CLOCK Jl,_ -+---+---+ltl 
RESET ,.,.} :~~;_J ,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,_.,.,.,.,.,.,., ,.,.,.,.,., .. 

00 01 02 

STATE TABLE 

00 01 02 

0 0 0 
1 0 0 
1 1 0 
0 1 1 
0 0 1 

Figure 15. A modulo-five Linear Feedback Shift Register (LFSR). The counting sequence 
for an LFSR counter Is a non-binary, pseudo-random pattern. 

SCHEMATIC 

QOCJ.1~ _ _.__-+--!-' -<.....,;--+-_...,~__. 
RESET .J.~~ ------'"' ~-t;;;;:::;:it;;:::::H--:;;;;:::::.,.,.,.,.,.,.,./ 

STATE TABLE 

QO 01 02 

0 0 0 
1 0 0 
1 1 0 
1 1 1 
0 1 1 
1 0 1 
0 1 0 
0 0 1 

00 01 02 

14- "STUCK" STATE APPEARS IN AN LFSR COUNTING 
SEQUENCE IF ALL BUT THE FIRST BIT (02) OF THE 
"STUCK" STATE IS DECODED AND INCLUDED IN 
THE FEEDBACK PATH 

Figure 16. By ANDing all but the last bit of the "stuck" state and using this value In the 
feedback path, an LFSR can be forced to count to 2n possible states Instead of the 

2n-1 states usually associated with an LFSR counter. 

2-118 

0010023 15 

0010023 16 



For maximum performance with a binary counter, a 
lookahead-carry implementation should be used. The 
general algorithm for binary lookahead-carry UP/DOWN 
counters is described in Equation 5. 

Assumptions: 

• RESET is active HIGH 
• Direction is UP/DOWN 

Equation: 

00 = RESET • 00 
01 = RESET• [01 @ {(UP • 00) +(UP· 00))) 
02 =RESET ~02@ {(UP. 00. 01) 

+(UP• 00 • 01))) 

On= RESET• [On@ {(UP• 00 • ... • On-1) 

+(UP· oo • ... • on-1))) 

[5] 

As shown by the general equation, an UP/DOWN 
counter quickly becomes more complex with each 
additional bit. This example does not include the other 
possible control signals such as clock enable or parallel 
enable. If a 13-bit binary UP/DOWN counter with 
lookahead carry and RESET were built in either the 
XC2064 or XC2018, it would require an estimated 42 
Configurable Logic Blocks! However, using the -70 (70 
MHz) speed grade device, the 13-bit UP/DOWN counter 
can operate at 15 MHz. 

If minimizing LCA resources is the goal, a ripple-carry 
implementation should be used. In a ripple-carry 
UP/DOWN counter, all of the required logic can fit into a 
single CLB. The general equation for a single-bit ripple­
carry UP/DOWN counter is indicated in Equation 6. 

On= RESET• [On@ {(UP• On-1) 
+(UP• On-1))) 

COUNTER A 

MODULO 2 3 4 5 

co 3 
a: 
w 4 .... z 
:::> 5 
0 
CJ 

6 

7 

[6]. 

6 7 8 9 

Table 4. Heterodyne Counter can be built from two 
counters (counter A and counter B) with different modulos 

By cascading multiple single-bit counter segments, the 
13-bit UP/DOWN counter can be built with only 13 
CLBs. However, it will have lower performance than the 
lookahead-carry version. 

Generally it is best to limit lookahead-carry UP/DOWN 
counters to a reasonable number of counter bits. With 
more than ten counter bits, a lookahead-carry 
UP/DOWN counter starts to consume a great deal of 
resources. If possible, UP/DOWN counters should be 
built with cascaded counter segments. The counter 
segments can be larger than the single-bit 
implementation shown in Design Example 11 in order to 
increase performance. 

HETERODYNE COUNTERS 

Another class of counter is the heterodyne counter. In 
this category, the terminal counts of two or more 
counters with different modulos combine to produce a 
counter of yet another modulo. The AND decoded 
terminal counts from the first set of counters combine in 
such a way as to produce an additional counter with a 
modulo equal to the least common multiple of the 
counters as described in Equation 7. 

MODULO X =LC.M. (MODULO Y, [7] 
MODULO Z, ... MODULO n) 

For example, the terminal counts from a modulo-three 
counter and a modulo-four counter can be combined to 
form a modulo-twelve counter (the least common 
multiple of three and four). This kind of counter can be 
useful in designs where two other counter modulos 
already exist or in designs where a counter of one 
modulo exists and a second counter can be built with 
few additional resources. To make use of an existing 
counter, the added counter must have the same clock 
input as the existing counter. 

None of the first set of counters should have a modulo 
which is a multiple of the other. For example, a modulo­
two counter combined with a modulo-four counter only 
produces a modulo-four counter instead of a modulo­
eight as might be thought. This occurs because four is a 
multiple of two and the least common multiple of both 
numbers is still four. 

The counters used to implement a heterodyne counter 
may be of different types. For example, a binary 
lookahead-carry counter can be combined with a 
Johnson counter or a Johnson counter with a LFSR 
counter. 

Table 4 indicates just a few of the various modulos 
available by building heterodyne counters using two 
counters with the indicated modulos. The blank areas 

2-119 

I 

• 



Counter Examples 

indicate counter combinations which are not applicable 
such as cases in which one modulo is a multiple of the 
other. 

DESIGN EXAMPLE 11. A modulo-15 heterodyne 
counter. 

Assume a design requires a modulo-15 counter. Also 
assume that a modulo-5 LFSR counter is already 
required for another portion of logic. Luckily the modulo-
5 counter uses the same clock input that the modulo-15 
counter requires. Instead of building an entire modulo-
15 counter which will require at least four CLBs just for 
registers, a modulo-15 heterodyne counter can be built 
with only two additional CLBs. 

From Table 4, a modulo-15 counter can be built with a 
modulo-5 counter and a modulo-3 counter. In the case 
of the hypothetical design, the modulo-5 counter al­
ready exists. Only a modulo-3 counter need be added. 

The best method to implement a modulo three counter 
is with a Johnson counter. The placement and routing is 
simple, and it can operate at high frequencies. Figure 
17a shows the schematic for the modulo-15 heterodyne 
counter built from one existing counter and one new 
counter. Figure 17b shows the timing diagram 
generated by this combination of counters. Notice that 
both counters coincidently generate a terminal count 
after fifteen clock cycles and do so only every fifteen 
clock cycles. 

SUMMARY 

The flexible array architecture of a Xilinx Logic Cell Array 
(LCA) allows various implementations of digital counters. 
This flexibility frees the designer from the limitations 
imposed by both 74-series devices and the sum-of­
products architectures found in Programmable Logic 
Arrays (PLAs). 

This application note described several counters 
applicable to Logic Cell Array designs. These counter 
types included common binary, Johnson, Linear 
Feedback Shift Register, and heterodyne counters. 

By choosing the appropriate counter for a given appli­
cation, a designer can optimize both resource efficiency 
(the routing and logic required for a function) and overall 
performance. Resource efficiency is increased when 
implementing only the required function and not 
substituting a one-for-one logic replacement for another 
logic technology. 

Table 5 lists the various counter types and associated 
comments. It should prove helpful when determining 
which counter to use for an application. In some 
applications, overall performance may be the critical 
need. With others, absolute resource efficiency may by 
required. With more than one possible implementation 
available, the designer can tailor the logic to custom-fit 
his application instead of wasting resources on circuitry 
that is not used for his application. 

TECHNICAL SOURCES: 

1. Messina, A. Considerations for Non-Binary Counter 
Applications. Computer Design, November 1972. pp. 
99-101. 

2-120 



RESET 

CLOCK 

0010023 17• 

Figure 17a. A modulo-15 heterodyne counter built from a 
modulo-5 LFSR Counter and a modulo-3 Johnson counter 

2-121 

I 

• 



~ 
I\) 
I\) 

0010023178 

RESET 

MODUL0-3 
TERMINAL COUNT 

MODUL0-5 
TERMINAL COUNT 

HETERODYNE 
TERMINAL COUNT 

MODUL0-15 

CLOCK 

I I a ) 1 I 2 I 3 I 4 I 5 I s I 1 I a I 9 I 10 I 11 I 12 I 13 I 14 I 15 ! 1 r-2-1 

~~__.n n n n n~· ~ 

~~~~~/\ I\ /\_• ~ 

Figure 17b. Timing diagram for the modulo-15 heterodyne counter. Notice that the terminal colllilts from the first two.couqters
combine to produce a third terminal count e:very fifteen clock cycles.

0
0
c:
:::J

~

~
3

"'Cl
ii)
Ill

~
l\J
c.J

COUNTING
STYLE

Counter Type

Modulo

CLB Efficiency

Routing Efficiency

Performance

Best-Use

Advantage(s)

Disadvantage(s)

BINARY NON-BINARY

Ripple Ripple-Carry Lookahead-Carry Johnson Linear Feedback
Shift Register

2N 2N 2N 2N 2N-1

Excellent Good Good-Fair Good below modulo 6 Good
Decreases slowly
with increasing modulo Poor above modulo 12

Excellent Good Good-Fair Excellent Good
Decreases with

increasing modulo

Very poor Fair Good Excellent Good
1 CLB delay per Decreases with Gradually decreases One CLB delay Gradually decreasin~
counter bit increasing modulo with increasing modulo with increasing mo ulo

Not suggested General binary Higher-performance Very high- Higher-performance
Use only where Counters with binary counters performance counters counters with
silicon efficiency fair to good with low modulo large modules
demands performance

Low resource Easy to use with Hi9hest performing Very high-performance Good performance
requirements macro library binary counter Easy routing at high modules

Easy routing Good, all-around Glitch-free decoding
counters

Asynchronous Decreasing Requires additional Low register Non-binary,
Slow performance with logic and routing efficiency above pseudo-random

increasing modulo resources modulo 12 counting sequence

Table 4. A summary of the various counter types and their applications in LCA designs. M
;;t,S

I •

Counter Examples

P/N 0010025 01

2-124

INTRODUCTION

Metastability is a condition of unstable flip-flop output
caused by changes in the input data at or near the
critical clock edge. A metastable condition may be
induced during attempts to clock flip-flops with data
which is not synchronized with the clocking signal.
Flip-flop outputs may oscillate or exhibit an intermediate
output level during a period of metastability. The proba­
bility of a metastable condition existing and its duration
depend on many factors, only some of which the user
can control. In implementing systems with any tech­
nology, an understanding of metastability is necessary
to insure proper operation in clocking asynchronous
signals.

One critical element in examining metastability is the
loop delay of the flip-flop in question. Loop delay is the
time required for a signal at any point in the flip-flop to
propagate through the flip-flop circuit and cause a
reinforcement of the signal at its starting point. Figure
1 shows one type of flip-flop with the loop delay path
indicated. A change in the state of a node in the flip-flop,
the input for example, requires one loop delay to be
held by the flip-flop. In a metastable condition, an
internal node, typically in the input stage, attains an
intermediate level as a result of the data signal changing
while the clock· is changing. The intermediate level,
neither "1" nor "O", is propagated around the loop,
forcing the output into a metastable state. The flip-flop
will only achieve a "1" or "O" output when a node with
the intermediate level becomes "1" or "O" and the new
value is propagated through the loop forcing the
output out of the metastable condition. Movement of
internal nodes away from the intermediate level is a

DATA--~n

LOOP DELAY= (A TO B) + (B TOC) + (C TO A)

0010018 1

Figura 1. Flip-Flop Implementation

Metastability Analysis
Of Logic Cell™ Array
Flip-Flops

random activity and therefore cannot be guaranteed.

Another method to illustrate metastability is to plot the
worst-case-clock to flip-flop-output delay versus the
delay from stable data to the clock edge. Figure 2
shows this type of plot for a typical flip-flop. As the data
transition approaches the clock edge, the stable output
delay begins to increase. For any flip-flop type, there I
is a finite probability that the output delay at the critical­
data-to-clock relationship may be "infinitely" long.

ANALYSIS OF A LOGIC CELL ARRAY CIRCUIT

The critical issues in examining metastability
characteristics of flip-flops in any system are the pro­
bability of an error based on a metastable condition and •
the methods of minimizing the error probability. For
logic implemented with Logic Cell Arrays, some
additional control is possible. The probability of a flip-
flop passing through a metastable region can be
calculated as 1

Probability = 1 - e(-settling time / loop delay)

The probability of a flip-flop remaining in the metastable
region is then:

Probability of Error = e(-settling time /loop delay)

For the circuit shown in Figure 3, settling time is the
difference between the worst case delay from a clock
edge clocking the flip-flop in Configurable Logic Block
(CLB) 1, output propagating to the flip-flop in CLB 2
with setup time and the delay from one clock edge to

CLOCK-TO­
OUTPUT DELAY

NOMINAL DELAY

0010018 2

<CRITICAL CRITICAL >CRITICAL
TIME TIME TIME

CLOCK-TO-DATA TRANSITION TIMING

Figura 2. Flip-Flop Output Crltlcal Timing

2-125

Metastability Analysis of Logic Cell Array Flip-Flops

the next. The maximum delay path must be considered
because it would produce the lowest settling time with a
correspondingly higher probability of error.

Examining a specific case for which the XC2064 has a
worst case flip-flop loop delay of 2 ns, the critical timing
parameters required to estimate the error probability for
a metastable condition are:

Flip-flop clock to output delay
Interconnect delay
Flip-flop setup time
Flip-flop loop delay
Clock Period (10 MHz.)

20 ns
15
12
2

100

For this example, a value of error probability can be
calculated.

P (Error] eH100-(20+ 15+ 12JJ!2J
e(-53/2)
3.1 x 10-12

This represents the probability of a flip-flop remaining in
a metastable region beyond the given settling time for
a single event. For multiple events, which would be

CLB#1

DATA IN --' ;;----
F t---i

'-- D

COMMON 0 CLOCK

representative of a repetitive clock sampling an
asynchronous signal, the time between failures can be
calculated by the following relationship:

Failures Per Time Period = Probability per Event X
Events per Time

The time between failures is then the inverse of these
failures per time-period value. For our example,

Failures per Time Period = (3.1X10-12) X (1X107)
3.1 x 10-S

Time BetweenFailures 1 I (3.1 X 10-5) sec
3.3 X 104 sec
8.96 hrs

This number would indicate a very short time between
errors for sampling an event at 10 MHz. It must be
realized that this is a worst case calculation, because it is
based on an assumption that a potential error condition
exists for each clock edge. In a real system, this would
not be the case. Actual asynchronous events occur
only a small percent of the time of operation, not at each
clock edge as this calculation assumes.

CLB #3

.----

F r-,

'--1 D

~ 0

CLB#2

CRITICAL .~
INTERCONNECT~ '-+-I

F t--

'-- D

01---+--

·•·········•·•·•••·•·•·•·•·•·•· . ···································•·•·•·•·•·•·•·•·•·•·•}····

0010018 3

Figure 3. LCA Implementation

2-126

Based on this type of calculation, several methods to
improve this error performance are possible:

1 . Reduce interconnect delay
2. Use higher speed device
3. Decrease the clock rate

Reduce Interconnect Delay

If direct connect can be utilized in this critical path area,
the 15 nanosecond delay for interconnect could be
reduced to 0. The effect on the error probability can be
easily seen.

P [Error] e(-[100-(20+ 12)]/2)
e(-68/2)
1.71 x 10-15

For the same 10 MHz clock, this results in a failure
period;

Time Between Failures = 1 /(1.71 X 10-15) X
(1X107) sec
5.83 X 107 sec
675 days

Use a Faster Device

Use of a faster device will improve all of the device­
related performance parameters. Moving to the next
higher speed grade would result in the following critical
parameters:

Flip-flop clock to output delay
Interconnect delay
Flip-flop setup time
Flip-flop loop delay

15.0 ns
7.0
8.0
1.5

The clock period remains the same at 100 ns.

The new error probability becomes:

P [Error] eH100-(15+7+8)J!1.5)
e(-46.667)
5.4x10-21

For the 10 Mhz clock rate, this results in a new failure
period:

Failure Period= 1/(5.4X10-21)X(1X107) sec
1.85X1013 sec
2.14X108 days
(approx. 563 years)

Change Clock Rate

If the clock rate which is used to perform the sampling

l:XIUNX

can be reduced, a dramatic reduction of the failure rate
results. If the clock rate were reduced from 1 O MHz to 5
MHz, error performance can be examined with the
following parameters:

Clock to flip-flop output 20 ns
Interconnect delay to second block 15
Setup time for second flip-flop 12
Flip-flop loop delay 2
Clock period 200 (5 MHz)

P (Error] eH200-(20+ 15+ 12) 112)
e(-153/2)
5.98 x 10-34

For 5 MHz clocking, the failure period is calculated as:

Failure Period = 1/(5.98 X 10-34)(5 X 106) sec
3.35 X 1026 sec
3.87 X 1021 days
(approx. 1.1 X 1019 years!)

OTHER CONSIDERATIONS

Flip-flops in the Logic Cell Array family have been specifi­
cally designed to reduce the loop delay to a practical
minimum to reduce the probability of a metastability­
induced error. Another critical factor in determining the
metastability characteristics of flip-flops in a device is
the loading of the flip-flop. In virtually all other
technologies, particularly gate arrays, the output of the
flip-flop may be loaded differently depending on how
the user has connected the device. This difference in
loading can significantly complicate the analysis of the
flip-flop's metastability behavior. In the Logic Cell
Array, all of the flip-flops are immediately followed by a
buffer, prior to any user-programmable connections.
This buffer serves to isolate the flip-flop from any
variations in loading that could adversely affect its
metastability behavior. For the user, this significantly
simplifies analysis of metastability effects in the system.

CONCLUSION

As shown by these examples, the probability of a failure
based on a metastable condition and the subsequent
system failure period, can vary widely and are
dependent on several factors. When using the Logic
Cell Array to implement system level functions, the
user has significant control over some of the critical
parameters necessary to provide sufficient immunity
to metastable conditions.

1 G. A. Couranz and D. F. Wann, Theoretical and
Experimental Behavior of Synchronizers Operating in
the Metastable Region, IEEE Transactions on
Computers, vol c-24, no. 6, June 1975.

2-127

I

•

Metastability Analysis of Logic Cell Array Flip-Flops

PIN 0010018 01

2-128

Users of Logic Cell Arrays (LCAs) who wish to verify the
data loading and storage of the configuration program
for the Logic Cell Array can perform a data readback on
the device(s) after programming. Performing this
programming data readback verification requires a
knowlege of the format and manipulation of the
configuration program or bitstream. The purpose of this
application brief is to provide the information needed to
understand the bitstream format for loading and
readback verification. Information regarding the specific
contents of the bitstream is beyond the scope of this
application brief.

PROGRAM BITSTREAM

The first step in understanding the readback verification
process is to examine the composition of the bitstream
that is to be loaded into the device. In this discussion,
we are assuming that the device is being configured
from a processor, either in peripheral or slave mode.
The connections to the device and the timing needed
to perform the configuration are discussed in the
Applications Note Methods of Configuring the LCA.
Regardless of the configuration method, the bitstream
data is the same; our bitstream is assumed to be in a
PROM file created with the MAKEPROM command and
formatted for Intel MCS86 compatibility.

Figure 1 shows the data format of the PROM file. The
information preceeding the first data field is required to

Reading Back
Logic Cell™ Array
Configuration Programs

initialize the configuration logic on the LCA for the
proper bitstream length. Each subsequent data field
provides configuration information for a portion of the
device. The beginning of a PROM file for an XC2064 is
shown in Figure 2. Note that the first byte of the data
field (underlined in line 2) is hex 4F. The required
leading 1 s are in the low nibble, with the preamble in the
high nibble. The bits are arranged in this fashion to
simplify the connections from an external PROM or ROM
to the LCA in master mode.

Although the LCA's internal memory is always loaded
serially, master mode reads the configuration program in
parallel directly from an external memory device, such as
a PROM, and serializes the data internally for loading
into the memory cells. The PROM connections provide
the least significant bit of the byte (DO) as the bit which is
serialized first. The consequence of this is that the data
bits in the individual bytes in the PROM file are reversed
from the order in which they will be interpreted by the
device. During loading of the configuration data with a
processor, the PROM file data is read one byte at a time
and is supplied to the LCA one bit at a time, beginning
with the least significant bit (DO).

Consider the next three bytes of the PROM file, Figure
2; the hexadecimal OOF460 represents the 24-bit binary
length count of 000000000010111100000110 (12038
decimal), i.e., the total number clock cycles required to
load this bitstream. Three aditional clocks are required
to complete configuration and activate the device. The

1111
0010

DUMMY BITS (4 BITS MINIMUM)
PREAMBLE CODE

< 24 BIT LENGTH COUNT>
1111

0 < DATAFRAME#001>111
0 <DATAFRAME#002> 111
0 <DATAFRAME#003> 111

0 <DATAFRAME#159> 111
0 <DATAFRAME#160> 111

1111

TOTAL NUMBER OF BITSTREAM BITS
DUMMY BITS (4 BITS MINIMUM)

160 CONFIGURATION DATA FRAMES

(EACH FRAME CONSISTS OF:
A START BIT
A 71-BIT DATA FIELD
2 OR MORE DUMMY BITS

POST AMBLE CODE (4 BITS MINIMUM)

Figure 1. Configuration Data Arrangement for the XC 2064

2-129

REPEATED FOR EACH LOGIC
CELL ARRAY IN A DAISY CHAIN

0010003 13

I

•

Reading Back LCA Configuration Programs

fifth byte (hexadecimal EF) contains the four pad 1s, the
start bit, and the first 3 bitsof the 71-bit data field. All of
the data bits in the configuration data fields are the
complement of the bits needed to control the elements
associated with the memory cell. The LCA performs an
inversion of the incoming data, so actual data bits stored
in the memory cells will be the complement of the input
data.

Internal Data Storage

Data that is supplied to the Logic Cell Array during
configuration is shifted into a 71-bit shift register. When
the shift register is filled, it is written into the internal
memory cells as a single 71-bit word. In the XC2064
there are 160 words of 71 bits each, comprising a total of
11,360 bits of programming data. For the XC2018,
there are 196 words of 87 bits; a total of 17,052 bits.

Read back

Readback allows the user to extract the configuration
program from the Logic Cell Array, even while the device
is operating. This data may be used to verify that the
contents of the memory cells have not been changed
since the last programming cycle. In addition, the
readback data contains the state of all of the storage
elements in the logic blocks, as well as the state of the
input connection point on each 1/0 block.

The readback process is accomplished without using

any of the user 1/0 pins. CCLK, MO and M1 are used to
read the data in a serial fashion. The readback process
is triggered by a low-to-high transition on the MO/RT pin.
On subsequent cycles of CCLK, internal configuration
data are supplied on the M1/RD pin. Figure 3 shows this
data reading process.

Individual frames of data are read back in the same
sequence that they are supplied to the device. In the
readback serial data stream, the individual bits are the
true sense of the internally stored data bit; the bits in the
programming stream are inverted from those stored
internally. The initial data frame is preceeded by a
dummy clock cycle and two dummy bits whose state is
unknown. After the first data frame, there will be a stop
bit, 0, and a single start bit, 1, prior to the next frame.
After the last frame, there is a single O stop bit. Even if
additional CCLK cycles are applied after the last data
frame is read, the M1/RD output will be three-stated; the
pin is not driven after the final stop bit.

Readback Data Contents

After the configuration program has been read back, it
may be compared to the input data stream to determine
if the device is correctly configured. Input data dummy
bits and start bits and readback data start and stop bits
need to be removed, either as part of the
programming/readback process or after the readback is
complete.

In the programming and readback bitstreams, some of

:020000020000FC
:100000004FOOF460EFFAF3F3FFF7C5FFFF7FD39CD7
:10001000ASEBBB5975F7FFFB3F7FFEFEFEB5FCFF6E
:10002000DFBD59AFBDBE4FFFFBFEFEDFBFBFAF5F01
:100030007F7FF7F7FF7FFFFDFDFFFBFFBFFFFFFFA8
:10004000CBD7FFB7FFFFFDFFFFBF3EFFFF7FFFEFF7
:10005000FFFFBDFFFFFFB7FF7BFFFFFFFFFFDFEFEE
:10006000FFFDFBFFFFFFDFFFFFFFFF9D7F7FFFFE29
:10007000FCFAFD7DEFEEFFFFFFFFFFFFFFFFF7FF45
:10008000FFFFFFFFFFFF7F3FFFFFFFFFFFFFFFFFCO
:10009000FEF9EFEFDFFFD7BFBFFFCFDFFFFFFFBFEF
:1000AOOOFFFFFF77EFEFDFDFDFBFBFBFFFF3FF7FB4
:1000BOOOFFCFBFDFFFFF9DFBFAB7F7F7FFFF7FEF33
:1000COOOFAFEFEFDFD7D7B7BFBF7FFFFFFFFFFFBE5
:lOOODOOOFBFB3FF3F7EFE9EFFFFFFFDBB9BD5D3B54
:1000E0005BFB77F7F7CE7777EFEFAED5D7D77B9F70
:1000F0009F3F3F3E373E3EDE7B67FFFEFEFEEEFF4C

Figure 2. Beginning of Typical Hex PROM File

2-130

CCLK

MO/RT

~
(.) M1/RD

FRAME 1, BIT 1 FRAME2, BIT2

0010021 3

Figure 3. Readback Control Timing

M
•

• •

Reading Back LCA Configuration Programs

the memory locations do not correspond to actual
memory cells in the device. These locations may be
unused during both programming and readback. They
contain the storage element and input block values
during readback. The storage element and input block
values are extracted and displayed by the in-system
emulator during debugging. For readback to verify
configuration, the user must ignore these bit locations
since their contents may not be the same as the
corresponding positions in the programming bitstream.

stream that is to be ignored is represented by a "O" in
the mask PROM file. Figure 4 shows the beginning of a
mask bitstream file for an XC2064 that has been
converted into a PROM. Note that this file has the same
preamble, length count and pad bits as the regular
programmimg data file.

Bit positions that are to be ignored in the readback data
stream can be generated in a standard XACT bit file with
the MAKEMASK command. The .BIT file generated
with MAKEMASK can be converted into a PROM file
with the MAKE PROM command. The format for the final
mask PROM is exactly the same as for the configuration
program PROM. Each data bit in the readback data

To utilize the mask information, users should strip off the
preamble and length count information and extract the
appropriate data bits for each data field. Since the
PROM format has the data bits arranged with the least
signifigant bit in the DO position, the data bits must also
be reordered to put them in the correct sequence (See
Figure 5). A simple program could be written to create
the mask bit fields for each data field. Note that the end
of one data field and the beginning of the next field can
be verified by detecting the dummy bits and the start bit
between each field.

:020000020000FC
:100000004FOOF4608FEDEDDD8BDBBBB78770ECEF5D
:10001000DF1FDCBFBF3F9463FFFFFFE9FFFFFFB3BC
:100020001DFFFFFBD7FFF7FFAFED587FDFFEFEBEE2
:10003000FDFD2DC7FAFFFEFFFFFDFF7FB9E6FFF7CD
:10004000BFFFEFFF7FDB35FFBFFFF77FFFFFDFEE77
:10005000FlF3E7A7E7CFCFCF7EBFBC7C7979F9F288
:10006000F2FAFBF575EBEBEBD6D7D7DFA7A74B4F33
:100070004F979E9EFE3E3D5D7A7ABAF4F4F4D7ED3A
:10008000EDDADBDBB5B7B7BD7F7FF7FEFEEEFDFD3A
:10009000FDFDFFFFFFFFFFFFFFEFEFFBFBF5F7F7B6
:1000AOOOEBEF6F7FDEDFAFBFBF5F7F7FBB7B78F89B
:lOOOBOOOFOFOFOE1ElClDEEFEFDBDFDFB7BFBFFE65
:1000C0007E7FFFFEFEFEFDFDF5D7F9F9F2F3F3E5C5
:1000DOOOE7E7BDCECF979F9F2F3F3FEF757FBFFED6
:1000EOOOFE7EFDFD7DEFFBFBF5F7F7EBEFEF7FFFOE
:1000FOOOFFEFFFFFDFFFFFFFFBFFFFFFFFFFFFFF44

Figure 4. Mask PROM File

1STBYTE 2ND BYTE

FJi~~ D7 D6 DS D4 D3 D2 D1 DO D17 D16 D'S D14 D'3 D12 D11 D'o •••

REfgg~~ DO D1 D2 D3 D4 DS D6 D7 D'O D'1 D12 D'3 D'4 D'S D16 D17 •••

Figure 5. Data Bit Sequence

2-132

0010021 5

P/N 0010021 01

I

•

2-133

l:XILINX
The Programmable Gate Array Company

Table of Contents

Introduction to Programmable Gate Arrays
Logic Cell Array Data Sheet XC2064 I XC2018
Logic Cell Array Data Sheet XC2064-1 I XC2064-2
Testing and Data Integrity
Non Hermetic Package Reliability

Methods of Configuring the Logic Cell Array
Ins and Outs of Logic Cell Array 1/0 Blocks
Placement and Routing Optimization
A Design Methodology for the Logic Cell Array
Counter Examples
Metastability Analysis of Logic Cell Array Flip-flops
Reading Back Logic Cell Array Configuration Programs

Programmable Gate Array Design Examples
A UART Design Example
A Printer Buffer Controller
A Seven Segment Display Driver
Cost Effective Hardware/Software Updates
A T1 Communications Interface

PC System Configurations
In-Circuit Emulation and Simulation
Product Brief XC-DS21 XACT Design Editor
Product Brief XC-DS22 P-SILOS Simulator
Product Brief XC-DS23 Automated Placement and Routing
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods
Product Brief XC-DS31 FutureNet Schematic Library
Product Brief XC-EK01 Logic Cell Array Evaluation Kit

Technical References
Glossary
Sales Offices List
Information Request Cards

1-50

1-61 -
1-67 ~

. 2-20
2-42

. 2-76 ~

. 2-98 ~
2-125.-
2-129 ~

3-1 -3-11 -3-29 -3-41 -3-45 -
4-1 ~
4-5 ~
4-19 ~
4-23 ~
4-25 ~
4-27 ~
4-29 ~
4-31 ~

A-1 --A-3 -A-5 ~

OVERVIEW

This application note shows the design engineer how to
implement a sample complex digital logic function using
the Xilinx XC2064 Logic Cell™ Array (LCA). The design
implemented is a Universal Asynchronous Receiver
Transmitter (UART). The UART design adds a number
of complexities in order to illustrate various features and
flexibility of the XC2064 LCA including:

• The amount of logic that can be implemented in an
LCA.

• The versatility of the LCA's Configurable Logic Blocks
(CLBs) and Input/Output Blocks (IOBs) in implement­
ing any logic function.

• The extent of user control of the design process.

It is important to remember that any logic function having
up to four variables can be implemented in any one of
the 64 CLBs in an LCA. Therefore the implementation
process can be focused on function rather than being

FROM
DATA BUS

8

TRANSMIT
DATA

REGISTER

ENCRYPTION
PARITY AND

FRAMING

CLOCK SERIAL
DATA TO

RECEIVER

0010006 1 & 2

Figure 1. Block Diagram of UART Transmitter

3-1

A UART Design Example

constrained to an implementation based on a fixed set
of available logic functions.

This application note provides:

• A description of the design and operation of the
UART

• A suggested methodology for user implementation of
logic functions in LCAs

• Examples of how various portions of the UART are
implemented using the suggested methodology

The UART in this application has a fixed format and uses
eight-bit data words with even parity. It is designed to
operate as a typical peripheral device on a microproces-
sor data bus. Its operation is similar to that of an 8251
configured for asynchronous operation, except that this
application incorporates cipher feedback encryption and
decryption in the serial data path. •

The Transmitter portion of the UART prepares data for •

CLOCK

CLOCK
DIVIDER

PARITY AND
FRAME

CHECKING

SERIAL
DATA FROM

TRANSMITTER

DECRYPTION

TO DATA BUS

Figure 2. Block Diagram of UART Reclever

A UART Design Example

transmission by converting each parallel byte it receives
from the microprocessor data bus into a serial data
stream. The encryption circuitry encodes the serial data
for security and additional logic provides the start bit,
parity bit and stop bits (framing). As shown in the block
diagram in Figure 1, the transmitter consists of five logic
sections:

• Transmit data register

• Transmit shift register

• Encryption

• Parity and framing

• Clock divider

The receiver portion of the UART receives the
transmitted frame, decrypts the data, and converts it to a
parallel data byte. Additional logic detects parity, framing
and overrun errors. Figure 2 shows the five sections of
the receiver:

• Parity and framing check

• Decryption

• Receive shift register

• Receive data register

• Clock divider

TRANSMITIER DESIGN

Figure 3 shows the schematic of the transmitter portion
of the UART. When TXRDY is high, it indicates that the
transmit data register shown at the top of the diagram is
ready to be loaded with data. Data are loaded from the
processor when signals chip select (CS) and write
enable (WE) are activated. Subsequently TXRDY goes
low. The internal TLOAD signal then controls the
parallel transfer of data from the transmit data register to
the transmit shift register below it and resets TXRDY.
The ninth-bit at the left end of the transmit shift register
is a tag bit. Instead of using a bit counter, the position of
the tag pit (a logic zero) followed by logic ones, is used
internally by the parity and framing logic to determine
when to insert parity and stop bits into the serial data
stream.

Note that all of the flip-flops in the transmit data register
and transmit shift register operate synchronously with
the exception of the asynchronous reset of the data
register status flip-flop as indicated by RD on that flip­
flop. Also note that control functions have been
implemented within the flip-flop data logic. The control
function parallel enable js indicated on the logic diagram
by PE on the flip-flop· symbol; clock enable, by CE;
synchronous reset, by R; synchronous set, by S; and
the Data input, by D. When power is applied to the
UART, an external active-low CLEAR drives a flip-flop

which provides the synchronized signal, RESET, to
initialize the device.

3-2

Clock Divider

As an illustration of the flexibility of the design approach,
a cascaded pair of modulo-4 Johnson counters,
TCCO/TCC1 and TCC2/TCC3, shown at the bottom of
the diagram, is used to divide the clock input by 16 to
produce the transmit clock. This was chosen as an
alternative to the more common binary weighted
counter. When the transmit shift register is empty, the
IDLE signal maintains the counters in a (0000) state.
Thus, when the transmitter is idle, the clock operates at
full rate. When the UART is loaded and begins actively
transmitting serial data, the transmit clock operates at
one-sixteenth the input clock rate. This fine timing
resolution minimizes the time it takes to recognize and
load data when the transmitter is idle.

Encryption

Figure 4 shows the schematic for the encryption and
decryption registers used in the UART design. To
synchronize the encryption registers with the
decryption registers of the receiver, the clocks are
enabled only when data are being shifted. The
encryption circuit exclusive-ORS (XORs) the data with a
pseudorandom bit sequence. It is implemented in two
stages using an 8-bit Linear-Feedback Shift Register
(LFSR) cascaded with a 9-bit LFSR. The output of the
Transmit Shift Register is XORed with the feedback bits
(1, 3, 5, 8) of encryption register R1. The result is
XORed with the feedback bits (1, 5, 8, 9) of encryption
register R2.

Parity and Framing Generation

Located in the lower right of the diagram are TSC1 and
TSCO, a two-bit state controller that cycles through the
following sequence of states:

State Condition

TSC1 TSCO

0

0

O Data has been loaded into the transmit
shift register, signals TDATA DONE
and TPARITY DONE are not active.

O TPARITY DONE goes active when the tag
bit is detected in the proper position.

Follows the previous state (10). If TXRDY
indicates data is ready to be loaded,
TLOAD goes active.

Follows the previous state (11). Maintains
the clock at full rate until TLOAD goes
active.

~
E
CD .c
~
lii
E • ~ c

<'CS

~ -le
.:I:
:::>
M
I!!
:I
Cl

u:::

3-3

c.>
J:,..

SERIAL
TRANSMIT

DATA
(NO FRAMING(

~
SERIAL

RECEIVE
DATA

(NO FRAMING)

ENCRYPTION

- FRAMING ADDED AND DELETED -

DECRYPTION

TRANSMIT REGISTER Rl
P(x) =XO+ x 1 + x3 +XS+ xB

TRANSMIT REGISTER R2
P(x) = x0 + x 1 + x 5 + xB + x9

RECEIVE REGISTER R2
P(x) "' XO + x 1 +)(5 + XS + x9

RECEIVE REGISTER R1
P(x) "' XO + x 1 + x3 + XS + XS

~~~~~--~~~~-e-~~~~---~~~~--<,__~~~~4-~~~~-e-~~~~-.~~~~~~~~~~--RECEIVEDATACLOCK 

Figure 4. Encryption/Decryption Schematic 

)> 

c: 
l> 

~ 
lii' 
Ill 
cC 
::I 

~ 
"' 3 
"t1 
iii 



The output of flip-flop PARO, which is shown below the 
encryption function, generates parity as it toggles once 
for each data bit which is a 1. The position of the tag bit 
is detected by the extent to which the register has filled 
by all ones. After the data has shifted, PARO then 
provides the parity bit and produces the stop bits. 
TLOAD resets PARO, TAG and the start bit when the 
next data word is loaded. 

RECEIVER DESIGN 

Figure 5 shows the schematic of the receiver portion of 
the UART. The receiver uses the same 16X clock input 
as the transmitter. As with the transmitter clock, when 
the receiver is actively receiving a frame of data, a clock 
divider located at the bottom of the figure generates a 
receive clock signal that is one-sixteenth the input clock 
rate. When the receiver is idle, the clock operates at full 
rate searching for a start bit. 

Data Sampling 

The data-input portion at the lower left of the receiver 
schematic includes a synchronous data filter, the 
receive data filter (RDF). It provides noise filtering on the 
input data stream at the 16X clock rate. When a start bit 
is detected at the data filter output, the clock divider 
begins counting. After eight clock cycles (mid-bit), the 
clock divider generates a receive data clock to sample 
the value of the RDF output. The data is sampled every 
16 clock cycles thereafter until a complete frame is 
shifted in. 

Error Detection 

Each data bit is shifted into the RSRP flip-flop, where 
parity is accumulated for comparison with the transmitted 
value. The framing error logic checks for the correct 
stop bits when the start bit reaches the last bit of the 
receive shift register. The Overrun, framing and parity 
error flags can be read by the processor on data lines 
D3, D4 and D5, respectively, after RLOAD goes active. 

Decryption 

At the receiver, the encrypted data is input to a shift 
register that creates the same feedback data by using 
the same polynomials as the encryption registers. The 
feedback data is XORed with the encrypted data to 
regenerate the original data. With this encryption 
method, a transmission error causes a difference 
between the encryption and decryption register data. 
The decrypted data is incorrect for as long as its takes to 
flush the error the lngth of the decryption registers. 

3-5 

l:XILINX 

Receive Shift Register and Data Register 

During receiver idle time, the receive shift register 
located below the receive data register is loaded with all 
ones so that the start bit (a logic zero) of a frame can be 
detected when it shifts through to the right end of the 
register. When the receive shift register is loaded with a 
complete data byte, RLOAD enables the receive data 
register. On the next receive clock signal, the data are 
loaded in parallel into the receive data register and 
RXRDY output becomes active indicating that the data 
can be read by the processor. At the same time, the 
clock divider is reset in preparation for the next data byte 
and RDF begins monitoring the serial input signal for the 
next start bit. 

LOGIC CELL ARRAY IMPLEMENTATION 

Orderly and logical assignment of logic functions to the 
CLBs and their placement in the LCA contributes to 
simplified routing and performance optimization in the 
final implementation of a design. A good design metho­
dology will result in a more effective and efficient 
implementation. The methodology used in this example 
involves some preparation before using the Xilinx XACT 
LCA Development System to implement the design. 

This methodology includes three basic steps: 

Step 1. Group Logic For CLB and IOB Utilization 

The first step in implementing the UART design in an 
LCA is to examine the schematic diagram to identify CLB 
segments that will be able to share common inputs. 
Since the UART design is register-intensive, most CLB 
groupings consist of a flip-flop function and some 
associated logic. Figure 5 shows the receiver schematic 
with the logic functions grouped into CLBs. Shaded 
boxes indicate the logic to be implemented within single 
CLBs. 

When assigning functions to a CLB on the schematic, 
note that each CLB is composed of a 4-input combina­
tional logic module, a general-purpose storage element, 
and routing selection logic. The combinatorial function 
may be split into two functions, each using up to three of 
the available variables. Combinatorial functions which 
·share common variables with a flip-flop's function are 
more effective in the same CLB. 1/0 Blocks (IOBs) are 
composed of a three-state output buffer, an input 
buffer and an input flip-flop. An 108 flip-flop can be 
used internally if its corresponding pad/pin is not being 
used for external connections. This was the case for 
major portions of the encryption/decryption registers. 

• -



c.:i 
0, 

RECEIVE 
DATA 

REGISTER 

Ra:BVE 
SHIFT 

REGISTER 

WEc f 

Csc ---.--------; 

J~.Ji's:f~~~~-+~~~~~~__.>-~~~~~~~~~~~-e~~~~~~_._~~~~~~~~~~~+-~~~~---<I>-~~~~~~~~~~ 

Figura 5. UART Receiver Schematic Showing CLB and Ona Bit-Slice of Receiver Function 

OVER 
RUN 

'°" 

PARITY 

~6'3~0R 

FRAMING 
ERROR 
1051 

> 
;: 
~ 
i' 
~ 
::I 

gr 
3 
'!!. • 



Since the implementation process using XACT will likely 
reveal alternatives in design, partitioning, or placement 
for a particular application, it is not necessary that all logic 
elements be assigned at this point. 

Step 2. Assign CLBs and IOBs within the LCA 

After grouping logic, a placement plan is prepared. To 
optimize routing, look for the following when placing 
CLBs: 

• Functions that are repeated (e.g., by data word or bit­
slice) 

• Good utilization of LCA long lines for common control 
functions 

• Clustering to optimize direct interconnect resources 

• Orderly assignment of input and output pins 

• Pin requirements for the selected LCA configuration 
mode 

The upper left portion of the receiver diagram is a bit­
slice consisting of one bit each of the receive shift 
register, the receive data register, and the data output 
buffer. Figure 5 shows this bit-slice function as a 
outlined box that includes the CLB boxes labeled R7, 
D7, and the associated 1/0 buffer. This function is 
repeated for each of the eight bits and shares common 
control signals in the design. 

Assigning one bit-slice to the CLBs of the top right 
corner of the LCA, the IOB three-state buffer becomes 
the receive bit-slice output buffer that connects to the 
processor data bus. The CLBs in column H and G 
become the receive data and the receive shift bit-slice, 
respectively. This horizontal arrangement allows best 
use of the direct interconnect resources between the 
CLBs when connections are routed for this function. 
Repeating this bit-slice function down the right edge of 
the LCA and extending the function to the full register 
size allows the use of vertical long lines for the common 
control signals such as clock, load data and read data 
signals used by each bit-slice. 

Figure 6 shows a completed LCA implementation with 
CLBs and IOBs placed, configured and routed for the 
UART application. The receive bit-slice function is 
indicated by the outlined area at the top right of the 
LCA. To aid in recognition of the placement of CLBs 
within the LCA, each CLB is labeled (e.g., r7, dO, fra_er) 
and corresponds to the CLB groups with the same label 
in the schematics (e.g., R7, DO, FRA_ER). The UART 
example allows logical placement of CLBs into transmit 
and receive halves. 

The clock divider is clustered in the center in columns D 
and E to optimize the direct interconnect resources. It is 
common for groups of associated blocks to be placed in 

3-7 

such clusters. 

The transmit data register fits well into the storage 
elements of the IOBs at the left edge of the LCA. The 
transmit shift register, together with framing bits and 
associated logic functions, is placed in a snake-like 
pattern alternating between columns A and B. This 
placement allows adjacent CLBs to use direct 
interconnect resources for the data connections and 
vertical long lines for common clock and parallel enable 
signals. 

Step 3. Use XACT to Place, Configure and Route 
CLBs and IOBs 

The placement plan prepared in Step 2 facilitates the 
placement and configuration of CLBs and IOBs with the 
Xilinx XACT LCA Development System. XACT is an 
integrated, easy-to-use system that provides complete 
design automation tools for users to specify and 
implement designs in an LCA. Placement, 
configuration and routing of CLBs and IOBs are handled 
in a graphics-oriented editing environment using the 
XACT LCA Editor. 

Using the LCA Editor for CLB and IOB placement and 
configuration for an application is an iterative process 
that employs several facilities in XACT. To efficiently 
investigate placement alternatives, repetitive functions • 
such as the transmit and receive data and shift registers 
can be placed, configured, and routed by means of an -
execution file of edit commands. A file of executable 
commands can be created and edited using any 
available text editor. This file contains LCA Editor 
commands (such as macro calls, add pin and edit block 
commands) that would normally be used during an 
editing session. 

Standard logic libraries and user-generated macro 
capabilities can be utilized for faster design entry. User 
macros can be generated for repetitive functions or 
groups of CLBs to increase the efficiency of 
implementation. For example, a macro was generated 
for the receiver bit-slice function shown in Figure 5. A 
user macro can be created by choosing the appropriate 
elements from the Xilinx macro library and/or direct logic 
definition using XACT facilities and then combining 
them in a new user macro with the CUTMACRO 
command. 

Once the macro is generated, it is easily used in the LCA 
implementation. For each occurrence of the function, 
the macro provides simple and repeatable iteration of 
the function in CLBs and IOBs on the LCA. Editing of 
the resulting logic can allow minor variations to individual 
sections of multiple instances of a macro. For example, 
in the transmit shift register, signal pin assignments were 
swapped on some CLBs to optimize routing. 



A UART Design Example 

The use of consistent pin sets would have resulted in 
the use of more routing resources. Figure 6 shows one 
bit-slice of the transmit register at the left-center edge of 
the LCA for which a macro was created, repeated and 
edited to optimize pin assignments. 

Attention should be paid to the routing of clock nets. In 
a fully synchronous design the long line network driven 
by the global clock buffer (in the upper left corner of the 
LCA) provides a stable skew-free clock source. Gated 
clocks and other timing signals may incur routing delays. 
For example, the most direct routing for the receive 
clock, generated in CLB RXCLK (row B, column F), 
would connect the receive clock to a long line in column 
G for the receive shift register, and to a long line in 
column F to the error flags, and then from column G to a 
long line in column H for the receive data register. This 
route results in a series of small R-C delays due to the 
impedance of the programmable interconnect points 
(PIPs) and the high fanout capacitance of the long lines 
used in the route. The consequence is that the receive 
clock of column F, and particularly of column H, could 
incur enough additional delay to cause the next data 
from the direct routing of the shift register to arrive at the 
data register before the clock for the current data, This 
would result in a data hold time violation. The routing 
can be changed by using the edit net command to 
connect the receive clock to the long lines of columns F 
and H and then from H to G. This routing guarantees 
adeqw~te data hold time for the receive data register 
inputs.·· 

The method used for routing the transmit clock 
illustrates a more direct solution to clock routing. The 
source of transmit clock (tscp in row E, column C) drives 
a horizontal long line near the bottom of the LCA. The 
vertical long lines in column A, B and C connect to the 
horizontal long . line to bring transmit clock to the 
Transmit Registers, the transmit state controller and 
other logic with equal delays. Figure 6 indicates the 
routing for the receive and transmit clock by 
highlighted lines. 

The appropriate use of long lines during automatic 

3-8 

routing is encouraged, as several techniques are 
available for placement and configuration. One is to use 
the edit net command to connect a network source 
manually to the desired long lines before automatic 
routing is used to complete the net routing. 

DOCUMENTATION 

XACT provides complete documentation for the LCA 
implementation. The documentation is maintained in 
files that may be printed or viewed on the monitor. 
These files include the following information: 

• LCA File - Contains all configuration, routing and 
name information 

• NET File - List of selected signals, their sources and 
destinations and propagation delays. Obtained with 
the Report, QueryNet command. 

• BLOCK Files - List of selected CLB and IOB 
designations, inputs, outputs, clocks, and equations; 
via Report QueryBlock command. 

• LOG File - All Edit commands executed in the last 
editing session 

A .LOG file may be created which is a record of the edit 
commands of an aborted XACT edit session. The .LOG 
file can be used to recover an editing session in which a 
major error was executed. The .LOG file is edited to 
remove the unwanted commands. Then, with the last 
saved LCA File, the edited log file can be executed, to 
restore the last session up to the edited point. 

At any point during the design implementation process, 
XACT can generate the configuration program file that 
defines the current design. With the XACT 
development tools, design verification is done through 
the use of timing analysis and logic simulation. Any 
required modifications to the design are easily 
accomplished with the LCA Editor. Also, the design can 
be physically programmed in an LCA, then analyzed and 
debugged in the target system using the XACTOR In­
Circuit Emulation capabilities. 



l::X!UNX 

• -

Figure 6. Logic Cell Array Layout with CLB and 108 Placements 

3-9 



loo 

~ 
:a 
-4 

Ii ,. 
IE 

NET file Output I BLOCK File Output (Short Form) I BLOCK File Output (Long Form) I ; 
DI 

Querynet: UART1024.LCA. (20HPC68-50), XACT 1-22, 13:24:27 SEP 10, 1986 Queryblk; UART1024.LCA (2064PC68-50J, XACT 1.22, 13:25:52 SEP 10, 1986 D- I ~ 
c d • • • ••••• P24.I (c d ) • • • 2 GB.D (r.ad) dO RH te2:ic rsroqy xfer te2B rxcp rdrOq te2xor read GB X:G~ FzA:B:D G:AzB:D Q: SET; RES: CUI:; .. 
clearn. • • •• n.I (arf.-. • • • 2 BO.A (rest) dl GH te25 rsrlqy xfer te29 rxcp rdrlq te2x F • A•-a•-o 
clock. • • •• Pll.I (elk). • • o CLK.AA.I d2 PH (.a) rsr2qy xfer (.d) rxcp rdr2q (.y) G"' A*·B•D 
clrstat • GF.Y (rdad.O) • • 15 DF.D (ovr er) dJ EH (.a) rar3qy xfer (.d) rxcp rdrJq {.y) A-van X•raad status 

16 cF.D (fra-er) d4 DH <·•> rar4qy xfer (.d) rxcp rdr4q (.y) a-can Y•read-data 
13 EF.D (par-er) d5 CH (.a) rsr5qy xfer (.d) rxcp rdr5q (.y) e- -

cDUt2 • OA.Y {t2). • • • o DB.8 (tl)- d6 BH (.a) rsr6qy xter (.d) rxcp rdr6q (.y) ~-d 
cout4 • • • CB.Y (t4). • • • 9 DA.A {t2J d7 AH re28 rsr7qy xfer re29 rxcp rdr7q re2xora K-
cout6 , • • M.X (t6). • • 2 CB.B (t4) fra er CF (.a) rdf rload clrstat rxcp (.x) frame er reclka HD X: Y:P F:A;B:C G: Q: SET: RES; CI.It: 
cp. • • CLB:.ll.O • • • • o GP.K {rdadOJ ovr:er DF rrdy (.b) rload clrstat rxcp (.K) overriin_ F • -A*-B•C 

o PF.K (rdsdlJ par er EF (.a) pe rload clratat rxcp (.xJ parity e A•rload X• 
o m:.x (rxccl) parij EB tdatadcm ancrypti tload (.d) txcp tparityq (.yJ - a-cp Y•recpe 
o BP.B (rxclk) ro HG rsrlq (.b) xfer (.d) rxcp raroq rsroqy C-raroq 
o HD.B (reclka) rl GG rsr2q (.b) xfer (.d) rxcp rsrlq rsrlqy o-
0 BC.a (tscp) rll AC rsrpq :relxora recp (.d) (.Jc) rell rlxor It• 
o FC.Jt (trddy) r2 PG rsrJq (.b) xfer (.d) rxcp rsr2q rsr2qy rest BD X:Q Y:Q FzA:C:B:Q QtFP SET:F RES: eui::x 
o GE.J: (tccl) r21 AD re2xora rlxor recp ( .d) ( .k) rariq ra21 F "" -A+-B•C*Q 
o GD.JI: (tccl) rl EC rsr4q (.b) xfer (.d) rxcp rarlq rsrlqy A•clearn X•reaet 
o FE.lt (tcc2) r4 DG rsr5q (.b) xfer (.d) rxcp rsr4q rsr4qy a-run Y• 
o FD.JI: (tccO) r!I CG rar6q (.b) xfer (.d) rxcp rar5q rsr5qy C-rdf 
o DD.lt (rxccl) r6 BG r•r7q (.bJ xfer (.d) rxcp rar6q rar6qy 0-
o BD.K (rest) r7 AG rsriq (.bJ xfar (.d) rxcp rsr7q rsr7qy Jtzcp 
0 CD.I: (rxccO) rd AE rxd (.b) rdf •ic!bit cp rcphold rdq rpar EE X: Y:G F:A:B:Q G:B:Q Q:F!' SET: RES: CUl::C 
o AF.I: (rdf I rdf AF rxd rdq recpe mic!bit cp recp rdf F • A+(BIQJ 
o AE.K (rd)- rdsi":io GF :read_ata rdatat (.c) reset cp rdstato clrat.at G • QfB 
o CE.K (rxcc2) rdsdl FF (.a) (.b) rdstatO (.d) cp rdstat (.y) A-xfer x .. 

can • • • • • • 1'23.I (can ) • a GB.B (read) read GB wen csn (.c) c_d (.k) :read_sta raad_dat B-rsrpq Y-pa 
- 2 GA.C (tdrclkJ reclka HD rload cp rsroq (.d) (.k) (.x) recpe C-rxep 

eneryptionq • ec.x (t21) • . 1!5 EB.B (parq) rest BD elearn run rdf (.d) cp reset (.y) o-
14 PB.C (txryq) rpar EE xter nrpq rxcp ( .d) ( .k) ( .x) pe X-

frama error ••• C!'.Y (fra er). 8 P55.0 (out fe) rready HF no.at rload read_dat (.d) rxcp rrdy (.y) rready HF X:Q Y; P:B:Q G:C:A Q:FF SET: RES:G CUl::Jt 
midbit •••••• BP.x (rxcikJ • o AF.D (rdf r rarh HE reHt rsroq rxep (.d) (.k) rload xter F • B+Q 

6 u:.D (rd)- rsrp ED rdf (.b) rxep xf•r {.k) (.x) rsrpq G • C+A 
c..> I overrun error. DF.Y (ovr er). !5 P53.0 (out or) runn OC tsea tetc (.c) tload (.k) (.x) run A-re-t X•rrdy 

1 parity tirror. • EF.Y (p.ar-er). 4 P!IO.O (outJ>a) rxcco CD (.a) (.b) reel rcphold cp rcco reea B-rload Y• 
...a. pe •• : • • • • EE.Y (rpei). • o EF.8 (par er) rxc:c:l DD rcphold rceo (.e) (.d) cp rc:c:l rccb C-read data 

0 ~~~~~ · · ~~:~ :~~oj g ~g:: i~b11 ~~~~ ~ ~~old = ~~old ~::l ~ ~~~ l:~: :rxcp-

:!:' z 

~ 
~ 
~ 

reel. • • DD.X (rxeel) o co.c (rxceO) rxelk BF rete ep rload reset rxep •idt:it rxcp rsrh HE X:Q Y:G P:A:B:Q G:A:Q Q:FF SET: RES: cut:c 
rec2. • • CE.X (rxc:c2) o DE.A (rxcel) rxcte 8E (.a) reea rcc2 reel (.k) (.x) retc: F • -a•-(A+Q) 

o BE.C (rxctc) to EA tsrlq tdatadon tload tdrOq beep taroq tparityd G - A+Q 
DE.X (rxcc3) o CE.C (rxce2) tl DB tar2q eout2 tload tdrlq txep tsrlq tdatadon A-reset X"'rload 

7 BE.D (rxctcJ tll HB (.a) telxor teep tell (.k) tllq tlxor a-rsroq Y•xfar 
rcca. . . . CD.Y (rxceO) 2 BE.a (rxetc) tlexor HA taroq (.ti) tel!! tell (.k) (.x) telxor t>rxcp 
rec:ti. • • • DD.Y (rxec:l) 6 CE.a (rxec2) t2 DA C:OU.t4 tsrlq tload tdr2q txcp tsr2q cout2 0-

o DE.8 (rxcc:l) t21 BC (.a) tlxor tecp te2xor (.k) encrypti te2l IC• 
rcphold. • AE.X (rd). • 7 CE.A (rxee2) tl CA tsr4q (.b) tload tdrlq txcp tsrJq (.y) rsrp ED X: Y:Q F:A:D G: Q:FP SET: RES: CLK:C 

16 m:.c (rxcc3) t4 CB tsr!>q cout6 tload tdr4q txcp tsr4q cqut4 F.• A+D 
16 CD.D (rxccO) t!> BB (.a) tar6q tload tdr5q txcp tsr5q (.y) A•rdf X• 
16 DD.A (rxccl) t6 BA tsr7q ( .b) tload tdr6q tx:cp eout6 tar6q a- Y•rarpq 

rcte. BE.Y (rxcte) 2 BF.A (rxelk.) t7 ll tagq (.ti) tload tdr7q txcp tsr7q (.y) C-rxcp 
rdf • AF.Y (rdf ) • 22 ED.A (rsrp) tag AB rel8 :rell tload rel!! txcp tagq relxora 0-Xfer 

- 11 u:.c (rd) teco PD (.a) run tcclq ( .d) cp tccoq tc:OO Je-
ll CF.a (fra er) tcc:l GD teeoq (.b) (.CJ (.d) cp tcelq tc:Ol rurm DC X: Y:G F: G:A:B:D Q: SET: RES: CU::: 
17 BD.c (res[) tee2 PE tcOJ teoo teclq (.d) cp tcc2q tetc G • A*B•-D 

rdq • • AE.Y (rd). o AF.B {rdf ) :eel GE tec2q tc:Ol (.c) (.d) ep tcelq (.y) A-tsca x-

:~~3 : : : : ::~ :~~J: : : : ~ ::~:~ i=~~l ~24 Pl8 te2J (.t) tecp te24 ~etc Y•run 
rdr2q • m:.x (d2). • • • o P49.0 (out2) :25 P39 te24 (.t) tecp te25 o-tload 
rdrlq • • • 111.x (dJ). • • • o P!ll.O (outll :26 P40 te25 (.t) tecp te26 X-
rdr4q . DH.X (d4). 0 P54.0 (out4) :27 PU te26 (.t) tecp te27 rxeeo CD X:Q Y:G F:D:C G:C:Q Q:FF SET: RES: CLX:IC 
rdr5q. CH.X (d!I). • • O P!56.0 {out5) :.28 PU te27 (.t) tec:p te28 F"' -D*-C 
rdr6q. 8ff.X (d6). • • • • o P!IS.O (out6) :29 Hl te28 (.t) tecp te~9 G • c•-Q 
rdr7q. • • • AB.X (d7). • • • • 0 P!59.0 (out7) :rdy_ P27 trdy {.t) (.k) (.J.) A- X•rccO 

File Format Examples 



f:XHJNX 

INTRODUCTION 

This application note presents a practical application of 
XILINX's XC2064 Logic Cell™ Array (LCA) in a typical 
systems application. The objectives are to demonstrate 
the versatility of the LCA by designing it into a practical 
and useful application and, in so doing, to present to the 
reader some useful concepts and techniques for design­
ing with LCAs. The application example presented here 
is a printer buffer subsystem for driving printers with a 
parallel, Centronics-type interface, in which the LCA is 
programmed to act as the printer interface and Fl FO (first­
in-first-out) buffer controller. As shown in the block 
diagram in Figure 1, the LCA, together with external 
byte-wide static RAM, constitutes a complete printer 
buffer subsystem. This circuit permits a host system's 
processor to write characters into the FIFO buffer as if it 
were a high speed printer port. The LCA stores the print 
data in the external buffer memory until the printer is 
ready to accept it. Data stored in memory is then read 
back and delivered to the printer at its maximum rate until 
the buffer is empty. Once print data is loaded into the 
buffer, the actual printing operation is independent of 
and transparent to the processor. The result, from the 
processor's point of view, is an appreciable speedup of 
print operations, thereby freeing the processor earlier to 
perform its next task. For instances in which the entire 
print file fits into the print buffer, the print operation 
becomes a separate, parallel task requiring no further 
attention from the processor. 

The print buffer controller can be thought of as being 
comprised of three major functional areas. They are: 

A microprocessor bus interface which includes: 

• A data bus (for receiving data and reading status flags) 

• A 2-level input FIFO 

A parallel printer interface with handshake controls 

A circular queue mechanism consisting of: 

• Read-address and store-address pointers 

• An address comparator for sensing FULL condition 

• An address comparator for sensing EMPTY condition 

• A static RAM interface 

• Associated timing and control logic 

A Printer Buffer Controller 

IMPLEMENTATION ISSUES 

In defining the controller's functions and how these 
funtions are to be implemented in a LCA, attention must 
be given to certain physical and electrical limitations 
which dictate whether the application will fit into a single 
LCA device shown in Figure 2. The following para­
meters serve as good indicators in "sizing" a logic circuit: 

• The number of input/output pins (IOBs) required 

• The number of logic blocks (CLBs) required 

• The number of storage elements required 
(e.g., flip-flops) 

• The clock frequency and signal propagation delays 

3-11 

One of the primary criteria in sizing the application is the 
number of 1/0 pins required by the circuit; if the number 
exceeds 58, then an XC2018 or multiple XC2064s may 
be required. The pin count analysis for the print buffer I 
controller example is outlined in Table 1. Initial interpreta-
tion of that summary indicates the number of 1/0 pins on 
the XC2064 should be adequate for this application. • 

Let us examine the circuit requirements for the print 
buffer controller. Two necessary elements are the host 
processor interface and the printer interface. The host 
system's processor should be able to read status 
information about the buffer's current state (e.g., FULL 
and BUSY status flags) prior to each write operation in 
order to prevent buffer overflow and to determine when 
the print job is complete. The parallel printer interface 
should be able to recognize and respond to the printer's 
ACK (Acknowledge) and BUSY control lines with the 
appropriate handshake. 

Another necessary element is the FIFO (first-in first-out) 
memory. Because the objective was to be able to buffer 
up to 64K bytes of print data, external RAM devices 
were used instead of classical FIFO devices because 
they are more economical and offer higher capacities. 
The RAM serves as the actual print storage buffer, 
whereas the LCA provides the control and timing for the 
RAM as well as controlling the data path. The LCA also 
controls the addressing of the RAM to make it behave as 
a FIFO-like circular queue. (For more information on 
circular queues, see the side box that appears later in 
this appnote.) Once print data is loaded into the queue, 
the actual printing operation is independent and 
transparent to the processor. 



~ 
I\) 

FROM 
CPU 
BUS 

PRINT 
DATA 

R/W-------
cs--------' 

RESET-------... 

CLOCK~--------1~ 

DATA IN 

XC2064LCA 

2 1 ADDR DATAi...i •• 

RAM 
(64K XS) 

~------'" WE 

cs 

Figure 1. Block Diagram of Print Buffer 

I .PRINT DATA OUT DATA 

I .. ~ASTROBE 
• ACK 

i-------- BUSY 

TO 
PRINTER 

J> 
"!J 
S" a; .. 
m c 

~ 
0 

~ 
2. 
~ 
c: 
"' S" 

Cll 
-I 
:r 
CD 

>< 
9 
~ 
en 
~ 

g 



Figure 2. Placement of 110 and Logic Blocks 

3-13 

ID 
ID 
{fl 

ID 
{fl 

ID 
{fl 
[8J 

UJ I 
UJ • 
{fl 

UJ 
{fl 

ID 
[] 

@]~ Q [] 



A Printer Buffer Controller Using The XC2064 LCA 

To better understand what is required by the circular 
queue's control logic, consider that in order to read and 
write to the RAM in different locations, two separate 16-
bit address counters must be kept: one representing 
the current read pointer, and the second one the 
current store pointer. The values of these two address 
counters must be compared in order to determine 
whether the queue is full or empty. These two 
addresses are multiplexed to form the 16-bit phys-ical 
memory address bus. Although this multiplexing is 
easily accomplished using CL8s (requiring one CLB for 
each multiplexed address bit), an alternative and more 
efficient method of multiplexing buses is to use the 3-
state output feature of the 108s. With this approach, the 
output pins of the two address buses are paired bit-for­
bit and tied together externally with only one set of IOBs 
enabled at any given time. This technique trades off 
LCA 1/0 pins for CL8s. For reasons that become 
apparent later, a combination of these multiplexing 
techniques was chosen for this design. 

Several constraints of the XC2064 LCA must be kept in 
mind when assigning pinout definitions. One issue con­
cerns assignment of 110 pins and the placement of 
registered input buses relative to each other. Since all 
108 flip-flops on any given "side" of the LCA (i.e., top, 
bottom, left or right) share a common clock, registered 
input buses requiring different clock signals must be 
positioned on different sides of the LCA. 

The Data Path 

A good starting point in many designs is the con­
sideration of the data path. In this particular application, 

Table 1: Pin Requirements For the 
Print Buffer Controller 

Processor bus interface requires: 
a Chip Select pin (CS), 
a Read/Write pin (R/W), and 
eight Data bus pins (DO-D7) 

Parallel (Centronics-type) printer interface requires: 
a Data Strobe output (DS), 
eight printer Data outputs (PDO-PD7), 
a printer Busy input (BUSY), and 
a printer Acknowledge input (ACK) 

Buffer memory interface requires: 
a memory Chip Select output (CSM), 
a memory Write Enable output (WEM), 
a memory Address bus 

(outputs MAO-MA15), 
a bidirectional memory Data bus (MDO-MD7) 

Miscellaneous: 
a 1 O MHz system clock input (CLOCK) 
a "master reset" control (RESET) 

1 pin 
1 pin 
8 pins 

1 pin 
8 pins 
1 pin 
1 pin 

1 pin 
1 pin 
16 pins 

8 pins 

1 pin 
1 pin 

the XC2064 must be able to accept print data from the 
processor, store the data into the RAM, retrieve the data 
from the RAM and then finally deliver that data to the 
printer interface. Input data from the processor passes 
through a two-stage FIFO within the controller to speed 
up the operation and absorb minor data rate variations in 
storing data into RAM. A one-bit wide "slice" of the data 
path through the XC2064 is shown in Figure 3 and 
illustrates how maximum use can be made of the 108 
resources. The complete, 8-bit wide data path is shown 
in Figure 4 along with the logic necessary to control data 
flow. A write strobe causes data on the processor's data 
bus to be captured in Register 1, which is comprised of 
the input flip-flops in the associated 108s. The data in 
Register 1 is then synchronously transferred (in FIFO­
like fashion) to Register 2 before being presented to the 
static RAM interface. 

Moving in the other direction, print data read from the 
RAM are captured in the input (108) flip-flops (Reg 3) 
used for the bidirectional memory data bus pins, 
MDO-MD7. These data are then presented to the 
printer interfaces's data lines, PDO-PD7. The bidirec­
tional memory data bus pins are controlled by a timing 
circuit (see Timing Generation and Figure 5) in such a 
way that half of the time they are inputs for reading data 
from RAM, and half of the time they are outputs for 
writing data to the RAM. The LCA also controls the 
read/write timing of the RAM by controlling both its CE 
(Chip Enable) and WE (Write Enable) pins. 

Two portions of the data path make use of input flip­
flops within the 1/0 blocks: namely the processor data 
bus and the RAM data bus. Each set of flip-flops is 
clocked at different times and under different 
conditions. Since the XC2064 constrains all IOBs along 
any one edge of the LCA to share a common clock, 
these input data bus registers must be grouped 
together and located on different edges of the LCA. In 
the final design, the memory data bus pins are split 
equally between the top and bottom sides of the LCA 
due to layout considerations. See Figure 11. 

3-14 

TIMING GENERATION 

Before discussing details of the data path control logic, it 
is useful to examine the basic timing employed in that 
logic. The timing control logic for the data path is shown 
in Figure 5 along with details of the memory timing. Let 
us assume we have available a 10 MHz system clock 
(100 ns clock periods). Since most static RAMs have 
read and write cycle times of less than 400 ns and a 
minimum write strobe width of 200 ns or less, these 
values should accommodate most SRAMs. Slightly 
faster or slower memory operation is easily attained by 
adjusting the system clock frequency. A four-stage 
Johnson counter is used to generate 8 clock states from 
which the necessary control signals can be decoded in a 



glitch-free manner. As shown in the timing diagrams, 
the memory interface continually alternates between 4 
states of write cycle followed by 4 states of read cycle. 
All actual read or write operations with the RAM fit into 
these time slots. Some static RAMs require nonzero 
data setup and hold times before and after the write 
strobe. Consequently, the active-low Write Enable (WE) 
strobe to the RAM starts one state after the write cycle 
begins and ends one state before the write cycle ends. 
Similarly, during read cycles, the data read from the RAM 
is actually sampled one state prior to the end of the read 
cycle. 

For higher performance systems, this arrangement can 
be easily modified for tighter timing of read and write 
cycles by adding more states to the timing sequence 
and increasing the externally supplied clock frequency. 

The CLB partitioning for the timing circuit is shown as 
shaded areas in Figure 5, with each shaded area 
representing one CLB. The circuit requires four full 
CLBs plus a partial CLB which is shared with another 
design function. 

DATA PATH CONTROL LOGIC 

Figure 4 shows not only the full data path through the 

DATA BIT 
FROM CPU 

IOB 

RAM 
WRITE ENABLE 

CLB 

~--~~D ai------1 

INPUT 
LATCH 

STROBE 

TRANSFER 
STROBE 

E:X!UNX 

LCA, but also the logic necessary to control the data 
flow. This logic performs several functions vital to con­
troller operation. They include: 

• Coordinating data flow from the host processor 
to the RAM 

• Coordinating data flow from the RAM to the printer 
interface 

• Making status information available at the processor 
interface 

• Sensing and generating the appropriate printer 
handshake control signals 

Note that some of the flip-flops used in Figure 4 are rep­
resented as synchronous Set-Reset flip-flops. Although 
not typically available in other types of logic, these flip­
flop types are especially useful in CLB logic since they 
simplify logic schematics and aid in understanding circuit 
operation. Their operation is similar to a JKFF, except for 
the case where both Set and Reset inputs are aserted 
simultaneously. This potential conflict is resolved by 
choosing either the Set or Reset to be the dominant 
condition (indicated on the symbol as a dot after either 
the Sor R label). Figure 6 illustrates how easily these flip­
flop types can be implemented using CLBs. 

With a clearer understanding of these circuit elements, 
let us take a closer look at the details of the control logic. I 

• 
DATA BIT TO MEMORY 

IOB 
IOB 

..----<11----t D a---

READ STROBE 

OUTPUT 
ENABLE 

DATA BIT 
TO PRINTER 

Figure 3. One-Bit Slice of Data Path 

3-15 



A Printer Buffer Controller Using The XC2064 LCA 

l ' ~'-t---++++----1· ; 

.--

~'---t-1-----t--~ 

~ 01 01 01 
I~ 

3-16 



PHASE TO T1 + T2 T6 T3 T7 

W5 

~ 
CLK..,.~~~~ ..... ~~~~~~~--~~~~~~~---4,_~~~~~~~~~j 

-..J 

OOOO=TO I 
(200 NS) MEMORY 11 OOO=T1 MEMORY WRITE CYCLE (400 NS) 

WRITE STROBE 11 OO=TZ 

111 O=TJ 

11 11 = T4 I 
0 1 1 1 = T5 

MEMORY READ CYCLE (400 ns) 
0 0 11 = T6 

0001 =T7 

ASSUME 10 MHz CLOCK FREQUENCY 

Figure 5. Timing Generation Logic 

M 

. -



A Printer Buffer Controller Using The XC2064 LCA 

DETAILED DESCRIPTION OF 
DATA PATH CONTROL LOGIC 

The data presented by the host CPU on the DO-D7 data 
bus pins is captured by the IOB's input flip-flops 
(collectively referred to here as Register 1) on the rising 
(trailing) edge of the active-LOW write pulse as shown in 
Figure 7. Flip-flop W1 (FF-W1) is set to indicate that new 
data has been loaded into. register Reg 1. This causes 
the READY status signal to be deasserted, and re­
synchronizing flip-flop FF-W2 to be set on the following 
clock edge. The data byte in Reg 1 will be copied into 
Reg 2 (the FIFO register) on the next clock edge, 
providing that Reg 2 doesn't currently contain valid data. 
If Reg 2 does contain valid data, then the new data byte 
is held in Reg 1 until Reg 2 becomes empty. Once the 
new data value is loaded into Reg 2, both FF-W1 and 
then FF-W2 are cleared, causing the READY status line 
to be asserted again. By sensing READY, the host CPU 
knows that the next data byte can be written into Reg 1 . 
This two-deep FIFO mechanism permits fast loading of 
the RAM with only a minimum amount of time during 
which the interface is not ready. 

Once new data is present in Reg 2, the next clock edge 
which occurs prior to the start of the next write PHASE 
causes the WRT REQuest flag (FF-W4) to be set 
provided however, that the RAM buffer is not full. This 
guarantees the integrity of the RAM write operation by 
insuring that the write cycle is not cut short by starting 
part way through a write time slot. The next write time 
slot (defined by the PHASE signal) is then used to 
present the byte to the memory data bus pins. During 
this time slot, the Chip Select for the memory (CSM) is 
asserted LOW, and the Write Enable (WEM) is pulsed 
LOW during the T1 + T2 time states. At the end of the 
write cycle, the WRT REQ bit (FF-W4) is reset and the 
Store address pointer incremented. 

Reading data from the memory and presenting it to the 
printer interface is accomplished in a similar fashion, as 
shown in Figure 8. Whenever the address comparators 
indicate that the RAM buffer is not EMPTY, the next 
available read time slot (as again determined by the 
PHASE signal) is used to read the next data byte from 
the RAM. In order to insure that an entire read time slot 
is used and not just a partial one, FF-Z1 is set at the end 
of T3 and cleared at the end of T7. The FF-Z1 output is 
used as the read cycle (signal RD CY) component of the 
RAM's chip select. One time state prior to the end of the 
read cycle (i.e., at the end of T6), FF-Z2 is set, which 
causes the data being read from the RAM to be clocked 
into Reg 3. Once FF-Z2 is set, FF-Z1 will clear on the 
next clock edge, ending the RAM read cycle and 
advancing the Read address counter. Flip-flops FF-Z3 
and FF-Z4 control the timing and handling of the print 
data. Since most parallel printers specify a data setup 
time, a data strobe pulse width and a data hold time of 
approximately 0.5 µs, these flip-flops are used to gen-

3-18 

Review of Circular Queue Concepts 

The familiar first-in-first-out (FIFO) memory is ideally 
suited to this print buffer application. Unfortunately, 
dedicated FIFO memory devices are generally expensive 
and very limited in size. However, an ordinary byte-wide 
static RAM, together with a moderate amount of control 
logic, can be made to function like a FIFO. An LCA 
device can be used effectively to implement this 
structure, commonly referred to as a circular queue. A 
circular queue can be thought of as a read-write memory 
with two address pointers: one pointer referred to as the 
store pointer, S, and the second one referred to as the 
read pointer, A. The read pointer indicates the address in 
the buffer memory where the next character to be read 
from the queue is located. The store pointer indicates 
the address where the next character to be placed into 
the queue will be stored. After a data word is entered or 
retrieved from the queue, the appropriate address pointer 
is incremented by one. Whenever one of the pointers 
reaches the last (highest) address in the read-write 
memory, it automatically wraps around to point to the first 
(lowest) memory address. If the memory size is a power 
of two, then these pointers can be implemented with 
simple 2n modulo counters. In order to detect the queue­
empty and-queue full conditions and prevent overruns 
and underruns, some simple rules are followed: 

1. Upon initialization, set A = S 
2. Whenever A = S, queue is empty; and 

whenever S + 1 = A, queue is full 
3. In writing to the queue: 

first verify that S+ 1 does not equal A; if it does, 
then queue is full, else write the new entry at 
address S and increment S by one. 

4. In reading from the queue: 
first verify that R does not equal S; if it does, 
then queue is empty, else read the entry at 
address A and increment A by one. 

erate that particular timing. Assuming a 1 O MHz clock is 
used, FF-Z3 is set at the end of the next T3 state, which 
is exactly five 1 OOns periods after data became valid at 
Reg 3. FF-Z4 is set at TO, exactly five 1 OOns periods 
after FF-Z3 went set. The condition in which FF-Z3 is 
set and FF-Z4 is not yet set is used to generate the data 
strobe pulse with the proper timing. This meets the data 
setup time and the data strobe pulse width require­
ments for most parallel printers. The printer responds 
some time later with an asynchronous ACK (Acknow­
ledge) handshake signal and possibly a BUSY status 
signal. When the ACKnowledge signal goes LOW 
(active), FF-Z3 is cleared. Later, when both ACK and 
BUSY become inactive, both FF-Z2 and FF-Z4 are also 
cleared. Until FF-Z2 is cleared, FF-Z1 cannot be set and 
new data cannot be read from the RAM. Consequently, 
data overruns cannot occur during the time required by 
the printer to complete its operation and release its 
BUSY signal. 



CIRCUIT DEFINITION 

TYPE A: SET-DOMINANTWHEN S=R=1 

RESET -----<...._J 

SET------~ 

TYPE B: RESET-DOMINANTWHEN S=R=1 

RESET-LD ~Q 0 I 
SET -

CLK 

TYPE C: HOLD PRESENT STATE WHENS= R=1 

TYPED: CHANGESTATEWHEN S=R=1 (JKFF) 

D QI-----

RESET ----<-1-_, 

CLK------------t) 

0010016 1 

LOGIC SYMBOL 

SET=CJ-• 0 
CLK 

RESET R 

SET=D-0 
CLK 

RESET R• 

SETUO 
CLK 

RESET R 

SETUO 
CLK 

RESET K 

Figure 6. Flip-flops Used in the Printer Buffer Controller 

3-19 

EQUATION AND 
KARNAUGH MAP 

NEXTO= 

:SET+RESET•O 

NEXTO SET "' ....-"--.. 

~}a 
"---v--' 

RESET 

NEXTO= 

= RESET• (SET+ Q) 

NEXTO SET "' ....-"--.. 

NEXTO: 

1~1:1~1~1}0 
"---v--' 

RESET 

=RESET• (SET+ 0) +SET• RESET• 0 

= RESET•(SET +O) +SET•O 

NEXTQ SET "' ....-"--.. 

NEXTO: 

~ 
~}a 

"---v--' 
RESET 

= RESET• (SET+ 0) +SET• RESET• 0 

= RESET•O +SET•O 

NEXTO SET "' ....-"--.. 

~}a 
"---v--' 

RESET 

I 

• 



)> 

41 
s· 
~ 
m c 

~ 
0 
0 
3. 
2. 
~ 
c: 
VJ s· 

CQ 

..... 
::r 
CD 

x 
0 
I\) 
0 

~ 
I'"" 

~ 



T3 T4 TS T6 T7 TO T1 T2 T3 T4 TS T6 T7 TO T1 T2 T3 T4 TS T6 

I READ I WRITE ,- READ -1 WRITE I READ 
PHASE------'· · 

FF·R1 I 
(=RDCY) 

MEMREADDATA ff77N--~~;;;;:-- - )--------------------------<>----•1-----11-------

FF·R2 ---------------' 

PRINTDATA OOlOllOOOllX PRINTDATAVALID : 

(..) 

~ FF-RJ--------------------------~ 

FF-R4--------------------------------r----t~>---------~ 

DATA STROBE-------------------------------, 

ACK t--, ,____r 
DONE------------------------------, 

READ DATA FROM RAM STROBE DATA TO PRINTER 

0010016 03 Figure 8. Buffer Read Timing 

M 
~ 

. -



A Printer Buffer Controller Using The XC2064 LCA 

The RAM's Chip Select (CSM) is generated by ORing, 
the WRT_CYCLE and READ_CYCLE signals together. 
In this way, the data bus between the LCA and the RAM 
is enabled only during memory cycles in which data is 
being transferred; at all other times the RAM is disabled, 
resulting in lower power dissipation from the RAM. 

ADDRESS COUNTERS 

The read and store address pointers required for a 
circular queue are nothing more than counters. 
Although almost any type of counter would suffice for 
this application, careful selection of the right type of 
counter can lead to some significant savings in terms of 
CLB usage. 

Although binary counters are the most familiar and the 
easiest to understand, synchronous versions are 
expensive to implement for larger modules. Johnson 
counters, which count through only 2n states rather 
than 2n, require an excessive amount of logic. The best 
counter in this case is a linear feedback shift register 
(LFSR) counter. The advantages in using LFSR 
counters in this application outweigh their main 
disadvantage-a nonconsecutive count sequence. 
They are very resource-efficient, since they consist 
merely of an n-bit shift register with bits from certain 
stages fed back to an exclusive-OR gate at the first 
stage. With proper selection of the feedback bits, 
these counters can be made to cycle through (2n)-1 
unique count states before repeating. 

A potential drawback of the LFSR counter is the 
possibility of "hanging up" in the excluded count state 
(usually the all 1s or the all Os state). Although this state 
cannot be entered in normal operation, it may possibly 
occur upon powerup. This situation can be prevented 
by guaranteeing that this excluded state is not one 
which occurs upon power-up. Through the use of the 
LCA's power-on reset which clears all the stages, and by 
inverting the sense of the feedback bit from the last 
counter stage, the count sequence commences with 
the all Os state and never enters the all 1s state. Since 
all the LCA's storage elements are cleared during 
configuration, this condition is assured. 

ADDRESS COMPARATORS 

Two address comparisons are required to implement a 
circular queue: one to detect the EMPTY condition (R = 
S) and one to detect the FULL condition (S+ 1 = R). 
(The values of the Read and Store address counters are 
referred to here as R and S, respectively. See the 
description of circular queues in the side box.) Whereas 
the comparison of the two address counter values for 
equality is straightforward, the comparison of two LFSR 
counter values for the FULL condition (S+ 1 = R) 

appears difficult because of the LFSR's nonconsecutive 
count sequence. However, it should be clear that the 
S+ 1 value of the store pointer is simply the next state 
value (S prime) of S and is available as the D input of 
each flip-flop stage of S. This next-state value of each 
stage is readily obtainable with LFSR counters and 
makes implementing the address comparators simply a 
matter of bit-wise exclusive NORing together the appro­
priate bits of the two address counters. 

Although address bus comparators are normally 
implemented as parallel exclusive-NOR structures, the 
architecture of the CLB with its dual outputs suggests 
an alternate, more efficient implementation. A serial 
implementation in which the result of each one-bit com­
pare was ANDed with the results of the previous stage 
and passed along to the next stage would afso serve the 
same function. Although this serial implementation is 
slower then a parallel one (yet still fast enough for our 
requirements), it has a major advantage over the parallel 
approach: such a circuit could be created from the same 
string of CLBs used to implement the two counters. 
Since each stage of the LFSRs consumes only the 
CLB's flip-flop and does not make use of the rest of the 
CLB's available combinational logic resourc-es, the serial 
address comparators could be implement-ad in those 
same CLBs. The combined implementation of both 16-
bit counters as well as the two 16-bit address 
comparators is shown in Figure 9. 

Note that with the 32 CLBs required to implement the 
two 16-bit counters, inclusion of the two 16-bit address 
comparators requires only one additional CLB, for a total 
of 33 CLBs. 

TRADE OFFS IN MULTIPLEXING THE ADDRESS 
OUTPUTS 

3-22 

The last portion of the print buffer controller to be 
designed is the address output multiplexing logic. After 
implementing all the other sections of the entire print 
buffer controller circuit, only 6 CLBs and 26 IOBs remain 
to implement the address multiplexing logic. If the 
address multiplexing were accomplished entirely with 3-
state outputs, then 32 IOBs would .be required, six more 
than the 26 available. The six unused CLBs could be 
used as six one-bit wide multiplexers, but this number is 
not sufficient either. However, this would reduce the 
IOB requirement by six, from 32 IOBs to 26, which is 
precisely the number available. With a combination of 
the two multiplexing techniques, it is possible to 
multiplex two 16-bit address buses and access a full 64K 
byte print buffer memory. Every CLB and JOB is utilized 
in this application. 

The XC2064's RESET pin acts as a master reset control 
for all flip-flops and latches during the LCA's user­
operating mode. Consequently, it can also be used to 



READ AND STORE ADDRESSES 

I -- -- - - - --

51 R1 S2 R2 53 R3 $4 SHi R16 

I I I . 
I 1 1 11 1 

I 

c..> 

"' c..> 

)----t---+~~EMPTY 

: ~ I I 1 .
1
. ~ l~ __ _L 

Ii i I ~1~--

r , H.

1 i5J ~DJ HIY 1 

I ' I I I I 

I I I :oJ i ~.I-+-----! 1 D Q~ D Q D 0 

I I R2 

AD_CY---__J~ ___ _j_-+------i-l---====1-~::±==~========J--;=t=:~========t-----

1---+---+----<~FU LL 

r -
L, 

RS 

! 

S1 S4 

WRT-CY----<1~------------.+---------+---------------------------------~ 

Figure 9. Address Counters and Comparator Logic M 

. -



A Printer Buffer Controller Using The XC2064 LCA 

reset the overall operation of the controller, and it can be 
thought of as a 59th 1/0 pin in this application. 

DETERMINING THE CLB AND 108 PLACEMENTS 

One of the important aspects of designing with LCAs is 
the placement of the IOBs and CLBs within the LCA. 
Defining which 1/0 pins serve which function is a matter 
of great interest to the system designer, since it directly 
affects printed circuit board layout and routing and, 
possibly, board space. Less obvious but just as 
important to the designer, however, is the judicious 
placement of CLBs within the LCA. Proper placement 
of CLBs is just as important as good logic design, since it 
directly affects how much logic can be packed into a 
single LCA device. This, in turn, affects the total 
number of ICs and ultimately the board size. Several 
IOB and CLB placements can be analyzed in order to 
determine the best solution for a particular application. 
The placement of CLBs and IOBs in this design example 
required several passes before selection of the final 
placement presented here. The factors affecting this 
particular layout are indicative of those affecting many 
designs. For example: 

• Wherever possible, an attempt was made to make 
maximal use of direct interconnect options. This was 
done to free general-purpose routing resources for 
other nets. 

• The two counters were positioned in vertical columns 
to use metal long lines for clock distribution and to 
minimize clock skew. 

• There is a high degree of connectivity between each 
CLB stage of one address counter and the 
corresponding CLB stage of the other counter due to 
the two address comparisons taking place. As a result, 
the pairs of corresponding CLB stages of the two 
counters are positioned adjacent to each other to 
minimize interconnect path lengths. See Figure 5. 
Since the pattern of interconnect between CLB pairs 
is repeated many times in the design, this pattern was 
carefully analyzed and optimized wherever possible. 

• The read and store address buses must be 
multiplexed to create a single physical address bus of 
Figure 10. Since only six CLBs were available for 
address multiplexing, only six pairs of address bits 
could be multiplexed in CLB logic. The remaining 
address bits are multiplexed at the 1/0 pins. 
Consequently, the CLBs comprising the address 
counters are positioned along the right side of the 
LCA with outputs on the top, bottom and right sides 
of the LCA. Bits of the innermost counter stages 
required longer path lengths to get to IOBs and, 
therefore, were chosen for logical multiplexing. This 
allowed routing one output signal to one IOB instead 

of routing two signals out to two IOBs. This resulted in 
considerably less routing congestion. 

• Since IOBs on each side of the LCA share a common 
input flip-flop clock, the IOBs (Reg1) for the processor 
data bus and the IOBs for the RAM data bus (Reg 3) 
must be located on separate sides of the LCA. The 
processor data bus IOBs were placed on the left side 
of the LCA. Because of CLB placement decisions 
and the large number of IOBs required by the memory 
address bus, the data bus to the RAM buffer was split 
with four IOBs on the top and four IOBs on the 
bottom. The eight CLBs associated with Reg 2 in the 
data path were likewise split four along the top and 
four along the bottom. See Figure 5. 

CONFIGURING THE LCA 

The LCA configuration program is 12,040 bits or 1,505 
bytes in length. This configuration program can be 
loaded either from a host CPU or automatically upon 
power-up from an external memory (e.g., an EPROM). 
The specific configuration mode employed by the LCA 
is determined by the strapping of two pins on the 
device, MO and M1, to either Vee or ground. 

In designs in which it is possible to let the host CPU 
handle the configuring, the LCA can be configured from 
the system bus as though it were a peripheral device. 
This is accomplished through use of three Chip Select 
pins, a serial DIN (Data In) pin, and a WRT (Write Strobe) 
pin. In this mode, the configuration program is written 
into the LCA serially, one bit at a time. If the CPU were 
not available to handle configuration, then the self­
programming (Master) mode could have been chosen. 

3-24 

In this application example, let us assume that 
configuration programming can be conveniently 
handled by the host CPU. In this case, the peripheral 
configuration mode is the most appropriate. With this 
mode, the configuration data can be stored anywhere in 
the system-possibly sharing space with program code 
in a "bootup" ROM or EPROM, or stored on a disk. This 
way, configuring the LCA can be made part of the 
bootup process. To use the peripheral mode, Mode 
Select pins MO and M1 must be tied HIGH and LOW, 
respectively. The device pins used for configuration 
then are: DIN, DOUT, CCLK, three Chip Selects and the 
WRT strobe. Since all of these pins are used as address 
outputs for the RAM in the final design, activity on these 
lines during the configuration process will not present a 
problem. However, since 5 of these 7 pins are inputs 
which are driven from the CPU's system bus during 
configuration, they must be isolated from the system 
bus once configuration is completed in order to prevent 
signal contentions. This is easily accomplished with a 
single three-state buffer package. 



'" 
WAT_CV -t>o-

" -C "' -J 
'' -t AR1 ...---1 ..____, 

" :t ., .---1 
'' VM> ----i 

" :t ",,---I 

'' YM, 
..____, 

" :t M ,---1 

'' VM• '---I 

" :t " .---1 ,, '-------1 M; 

'" :t AO ,,---I 

'' VM; '-------1 

" :t A7~ 

" '---I 
VM> 

'" -t ASll ..-----1 ..____, u '' -c AR8 ..-----1 
'---I 

" ~ AS9 .....---1 
'---I D '' -1' "' i.. ..____, 

"' ~ AS10....-----1 ..____, 
J 

'" -t ARlO ...----1 
'---I 

I 

• 
"' ~ ASll..-----1 

'---I D "' -c ARtt .....-----1 
'---I 

"' -"' AS12 --
i.. '---I u "' -c AR12 ,..-------1 

'---I 

"' -t ASB ..-----1 ..____, 

D "' -t AR13 ,.....-----1 
'---I 

"' ~ "' .---1 
'---I J 

"' -c AR14,,.....-

'---I 

m .1' AS15 .....-----1 
A 

i.. - u R15 -t AR15 ,,...----, ..____, 

"" t AS16 ..-----1 
A 

'---I D "" -t. AR16 ....--------1 
'-----! 

Figure 10. Read Address and Write Address Multiplexing 

3-25 



A Printer Buffer Controller Using The XC2064 LCA 

Figure 11. Placed and Routed Printer Buffer Controller LCA Design 

3-26 



DESIGN ALTERNATIVES 

A number of design alternatives are possible with the 
printer buffer controller example we have chosen. 
Modifications could have been made in a number of 
different areas, including the following: 

• Using a smaller address space (i.e., smaller counters 
and comparators) 

• Eliminating the input FIFO stage (Reg 2) 

• Implementing all the address multiplexing with CLBs 
rather than IOBs 

• Using a Johnson counter with more states for finer 
timing resolution 

• Using the on-chip oscillator rather than an 
external clock 

• Using a processor bus interface with separate read 
and write strobes 

• Supporting other printer signals (e.g., Out-of-paper, 
Off-line, Fault) 

• Supporting a different style printer interface 
altogether 

• Supporting an interrupt output to the host when the 
queue goes empty 

COMPARISION WITH ALTERNATIVE TECHNOLOGIES 

One method of evaluating the efficiency of the LCA in a 
given application is to consider the same logic design 
implemented with standard product SSl/MSI logic 
devices. The summary of SSl/MSI components in Table 
4 represents an equivalent 74LSxx logic family 
implementation of the print buffer controller design. 
Implementations in 4000 series CMOS or 74HCxx family 
CMOS would likely result in even higher package 
counts, since those logic families lack the breadth of the 
74LSxx product family. 

Another useful way of gauging the effectiveness of the 
LCA as a vehicle for implementing logic circuits is to 
consider the number of equivalent NANO gates 
required to implement the same design in a gate array. 
The usual procedure is to compute the number of 
equivalent 2-input NANO gates required to implement 
the same logic function. This type of calculation places a 
numerical measure on the amount of logic required to 
implement a specific circuit. An analysis of the printer 
buffer controller design, based on the macrocell library 
of a major gate array vendor, shows that the amount of 
logic necessary for a gate array implementation of this 
same circuit would be approximately 838 equivalent 
gates. 

Typically, gate array vendors reserve a margin of safety 

to guarantee routability. As a result, only about 80% of 
the total gates on a device are available for use by 
customer's logic. This number can vary slightly from 
design to design and from vendor to vendor, but usually 
it is near 80%. If we apply this factor to the actual 
computed gate count of 838, we see that this 
application design should require: 

gate count 

0.8 

838 
- = 1047 gates. 
0.8 

Accordingly, the printer buffer controller would require a 
gate array of at least 1,000 gates. 

The cost advantages of a gate array solution are often 
outweighed by the high costs and lengthy time delays 
required to produce a working prototype. The se­
quence of events which a designer must go through 
before working silicon can be delivered typically can take 
months, with the risk of future delays if errors are 
encountered. For many smaller gate array applications 
(such as this printer buffer controller}, the LCA 
combines high density with the advantages of user 
programmability. 

Table 4: An Equivalent Implementation Using SSl/MSI 
(74LSxx) 

Component Number of Device Pkgs 
Description Elements Number Req'd 

Counters and comparators section: 
octal shift reg. w/clear 74LS299 4 

and 3-state outputs 
quad exclusive NOR (oc) 32 74LS266 8 
quad exclusive OR 4 74LS86 1 
hex inverters 3 74LS04 1 
pull-up resistors 2 resistors 

Data Path section: 
octal DFF register w/clear 24 74LS273 3 
quad 3-state buffers 3 74LS125A 1 
octal 3-state buffers 8 74LS244 1 

Timing Generation section: 
quad DFF w/clear 4 74LS175 
quad 2-input ANDs 5 74LS08 

Control logic section: 
dual DFF w/ clear 8 74LS74 4 
quad 2-input ANDs 9 74LS08 3 
quad 2-input NANDs 6 74LSOO 2 
quad 2-input ORs 3 74LS32 1 
quad 2-input NORs 12 74LS02 3 
triple 3-input NORs 2 74LS27 1 
hex inverters 6 74LS04 1 

Total Packages Required: 36 

3-27 

I 

• 



A Printer Buffer Controller Using The XC2064 LCA 

SUMMARY 

This application note illustrates how an LCA could be 
designed into a printer buffer controller. Some of the 
many aspects of designing with LCAs have been presen-

ted and discussed. These same issues are applicable to 
a wide range of LCA applications. Some useful 
techniques for optimizing the efficiency of the LCA's 
logic and interconnect resources have also been 
described. 

PIN 0010016 01 

3-28 



INTRODUCTION 

The Xilinx XC2064 and XC2018 Logic Cell™ Arrays 
(LCA) easily accommodate a wide variety of different 
logic structures. This application note describes the 
design and entry of two such structures: A binary-to­
seven-segment display driver and a BCD- (binary coded 
decimal) to-seven-segment display driver. Although a 
designer would most likely use an off-the-shelf LED 
display driver, this application note describes the 
method of entering a display driver design (more as an 
example than an actual application). With the Xilinx 
XACTrM Development System, building the second 
driver design (BCD) is a simple matter of editing the first 
(binary). 

This application note also describes the Karnaugh map 
logic entry method available in the XACT Development 
System. For this design, the Karnaugh map entry saves 
time by simplifying the logic entry. The engineer can 
enter his logic directly through the Karnaugh map 
instead of deriving lengthy equations. 

Since the XACT Development System supports macros, 
a designer may build a logic design from higher level 
functions. Besides the extensive Xilinx macro library, a 
designer can choose from custom user-created macro 
functions. This application note demonstrates how to 
create two LED driver macros to add to the designer's 
personal macro library. These LED drivers could then 
be integrated with other logic structures. For example, a 
designer might decide to include the drivers with a 
custom front-panel controller or a custom clock-timer 
display to minimize overall system chip count. 

DESCRIPTION OF THE TWO DESIGNS 

Binary-to-Seven-Segment Display Driver. 

The first design, as graphically described in Figure 1, 
consists of logic to decode a four-bit binary input with 
binary values ranging from OOOOB to 1111 B (0 to 15 
decimal). The decoded values drive the seven 
segments of the LED display to display the 
corresponding hexadecimal character (0 through F). 
The "character set" for the binary-to-seven-segment 
display is shown in Figure 2. Alternate characters 

3-29 

A Seven-Segment 
Display Driver 

representations are acceptable-especially for the "9", 
"b" and "d" symbols. 

The LED segment drivers have registered outputs 
driven by the Strobe clock input. The logic drives 
common cathode LED displays. In other words, a logic 
"1" lights a particular segment. Conversely, in common 
anode displays, a logic "O" drives a segment. 

BCD-to-Seven-Segment Display Driver 

The binary-to-seven-segment display driver created in 
the first design can be easily edited with the XACT 
Development System to create a BCD-to-seven­
segment display driver. The only modification required 
involves displaying an error character (in this case, an 
"e") any time the four-bit value exceeds 1001 B (9 
decimal). The complete "character set" for the BCD 
display driver is shown in Figure 3. 

KARNAUGH MAPS WITHIN THE XACT 
DEVELOPMENT SYSTEM 

For ease-of-use, the XACT Development System 
supports two forms of logic entry while editing a 
Configurable Logic Block (CLB). The first is standard 
Boolean equation entry. The second involves editing 
values within a Karnaugh map. The two entry methods 
are tightly coupled, and changes entered under one 
method are reflected in the other. For example an equa­
tion entered in standard Boolean form will be processed 
by the development system so that the equation also 
appears in its Karnaugh map representation. 

The XACT Development System supports Karnaugh 
maps with one to four input variables. Editing entries 
within the Karnaugh map involves placing the mouse 
cursor in the appropriate entry box and then toggling 
that box making the entry true or false. Both the truth 
table and the Boolean equation line are updated to 
reflect any change entered through the Karnaugh map. 

Karnaugh Map Background 

Karnaugh maps were originally developed by M. 
Karnaugh in the early 1950s. Karnaugh maps aid in 
analyzing and minimizing Boolean logic expressions. 

I 

• 



A Seven-Segment Display Driver 

w 

"' @ 
1-0 T"""N M 
C/lC/)C/)C/)C/) 

;-----------------------------------------, 
o-1---1-..... 

r----+-----.:_--,,----i681 
L _________ J 

SEGA 

r--+-----.:----?----;001 
L __________ J 

SEGB 

:-----io0: r----t-----;,--i> : 
L-----------1 

SEGC 

r----+-----.:----?----i681 
L __________ J 

SEGO 

.---+-----.r_--..,,----io81 
L _________ J 

SEGE 

:------io81 
.---;-----.,___,, : 

L •••••••••• .J 

SEGF 

r--+-----.:_--..,,----;001 
L_ ________ J 

SEGG 

CLB j 
L---·-·-··--····--·-·-···--·•••-••••·••••·...J 

However because of the unique logic architecture of a 
Logic Cell Array, there is no need to minimize logic 
within a CLB. Logic within an LCA can be directly 
implemented as a Karnaugh map. Therfore logic 
minimization using Karnaugh maps will not be discussed 
here. 

For LCA designs, Karnaugh maps provide a quick and 
concise shorthand notation for defining combinatorial 
logic functions (although Boolean expressions are 
possible). This application note describes how to use 
the Karnaugh entry method to enter the design for the 
LED driver quickly. Using the Karnaugh map entry 
method saves a long and tedious step-converting the 
Karnaugh map into a reduced Boolean expression. 

Description of Karnaugh Maps 

3-30 

Within the XACT Development System, Karnaugh maps 
graphically describe the combinatorial logic inside a 
CLB. They may have from one to four input variables. 
The maps consist of a matrix of cells each corresponding 
to a single minterm of the four possible input variables. 

As a simple example, Figure 4 shows a two-input 
Karnaugh map along with its truth table. The bars on the 
edges of the Karnaugh map indicate the row or column 

S3 

S2 

S1 

so 

STROBE 

SEVEN-SEGMENT 
LED DRIVER 

COMMON 
CATHODE 

A 

D 

SEGA 

SEGB 

SEGC 

SEGO 

SEGE 

SEGF 

SEGG 

Figure 1. Basic Seven-Segment LED Driver 

0010017 , 



for which the specified input variable is true (logic "1"). 
Notice how the values from the truth table correspond to 
entries within the Karnaugh map. The first line of the 
truth table (A=O and B=O) maps into the upper left-hand 
entry of the Karnaugh map, where again A=O and B=O. 
The user can "direct map" this value into the Karnaugh 
map, or he can use the decimal value of the inputs (zero 
for A=O, B=O) and ''position map" the value into position 
zero of the Karnaugh map. 

To enter the simple equation in Figure 4, the user either 
enters the Boolean equation "A@B" or toggles the 
upper right-hand and lower left-hand entries in the 
Karnaugh map to the ON state using the mouse. 

1-1 
1:1 

~CJI 

0:1 
0000 0001 

ICJI 
0:1 

·-~ 
0:1 

0100 0101 

1-1 
1:1 

1-1 
0:1 

1000 1001 

·-~ 
1:~ 

~CJI 

1:1 
1100 1101 

0010017 2 

This technique becomes even more powerful with each 
additional input variable. For example Figure 5 shows 
this same technique applied to a four-input Karnaugh 
map. For some functions, the Karnaugh map represents 
a shorthand logic notation over standard Boolean 
equations. 

BINARY-TO-SEVEN-SEGMENT DISPLAY DRIVER 

Table 1 lists all of the possible inputs for the seven­
segment display driver, including which of the seven 
segments is driven by each stimulus. An asterisk 
indicates that the segment output is driven for the 
specified combination of inputs S3 through SO . 

~-1 
1:~ 

~-1 
0:1 

0010 0011 

·-~ 
1:1 

~-1 
0:1 

0110 0111 

1-1 
1:1 

·CJ~ 
1:1 

1010 1011 

·-~ 
·=~ 

·-~ 
1:~ 

1110 1111 

Figure 2. Binary-to-Seven-Segment Display Character Set 

3-31 

I 

• 



A Seven-Segment Display Driver 

Obviously, converting this table into a series of Boolean 
logic equations would be tedious. A much simpler 
method involves entering this information directly into 
the CLBs using the XACT Editor's Karnaugh map entry 
facility. 

Before delving too deeply into the design entry 
method, some conventions must first be established. 
For example if the XACT command sequence 
Screen(Show(World)) appears, then select the Screen 
command using the mouse, then the Show command, 
and lastly the World command. A Done command is 
implied after each sequence unless the development 
system prompts for more inputs. From the keyboard, 
the user merely types Show World (the first command, 

0000 0001 

0100 0101 

1000 1001 

ERROR ERROR 

1-1 
1:~ 

1-1 
1:~ 

1100 1101 

Screen, does not need to be entered if typing the 
command from the keyboard) to accomplish the same 
goal. 

Keyboard command abbreviations are often indicated 
by uppercase highlighted characters in the menus. 
Abreviations are documented in the Editor section of 
the XACT LCA Development System Manual. 

To generate a blank Karnaugh map within a 
Configurable Logic Block (CLB), first select Blk(EditBlk) 
with the mouse or simply type EB with the keyboard. 
Then select the CLB in position AH (upper right-hand 
corner) to work on. This CLB will drive the Segment A 
(SEGA) signal line of the LED driver. 

~-1 
1:~ 

~-1 
~=1 

0010 0011 

1-~ 1:1 ~-1 
~=1 

0110 0111 

ERROR ERROR 

1-1 
1:~ 

1-1 
1:~ 

1010 1011 

ERROR ERROR 

1-1 
1:~ 

1-1 
1:~ 

1110 1111 

0010017 2 

Figure 3. BCD·to-Seven-Segment Display Character Set 

3-32 



0010017 4 

0010017 5 

0010017 13 

DECIMAL 

0 
1 
2 
3 
4 
5 
6 
7 

TRUTH TABLE F 

DECIMAL B A F A 

,,,., .. ,·:::\:o' :':"':::'·:to:: to:':: ·ro:· . .,:·:·1------~ o 
1 0 1 1 . il---11---1 
2 1 0 1 
3 1 1 0 

0 

2 3 

POSITION 
MAP 

0 

KARNAUGH 
MAP 

BOOLEAN EQUATION =-A•B+A•-B 
=A@B 

Figure 4. Two-Variable Karnaugh Map 

TRUTH TABLE 
F 

D c B A F A 

0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 DIRECT 

c 
0 

D 
::n:v: 0 0 0 

l:XIUNX 

(1 
Pf::::~: ?tIA r::::o :tJiI t:o: 

9 1 0 0 1 0 KARNAUGH MAP 
10 1 0 1 0 0 0 3 2 
11 1 0 1 1 1 B 
12 1 1 0 0 0 

4 5 7 6 13 1 1 0 1 1 POSITION 
14 1 1 1 0 0 
15 1 1 1 1 1 12 13 15 14 

--------------.!~[ 8 9 11 10 

"-----
POSITION 

POSITION MAP 

Figure 5. Four-Variable Karnaugh Map 

DECIMAL S3 S2 S1 so A B c D E F G 

0 0 0 0 0 . . . . . . 
1 0 0 0 1 . . A 
2 0 0 1 0 . . . . . 
3 0 0 1 1 . . . . . 
4 0 1 0 0 . . . . 
5 0 1 0 1 . . . . . 
6 0 1 1 0 . . . . . . 
7 0 1 1 1 . . . 
8 1 0 0 0 . . . . . . . 
9 1 0 0 1 . . . . . 

10 1 0 1 0 . . . . . . 
11 1 0 1 1 . . . . . 
12 1 1 0 0 . . . . D 

13 1 1 0 1 . . . . . 
14 1 1 1 0 . . . . . 
15 1 1 1 1 . . . . 

Table 1. Input Table for Binary-To-Seven-Segment Display 

3-33 

• -



A Seven-Segment Display Driver 

Since each segment of the LED driver requires a 
function of four input variables, change the base 
configuration of the CLB from its default configuration 
(two functions, each using three of the five available 
input variables). Select Config(Base(F)) to do this. Now 
the CLB is configured to be a single function using four 
out of the five possible variables. 

To create a blank Karnaugh map, select 
Config(Order(F(A(B(C(D)))))) (remember to add the 
implied Done). The display should appear like Figure 6 
with a blank Karnaugh map appearing in the lower left 
hand corner. 

Configure the SEGA CLB by selecting "Q" to drive the X 
output. In addition, use the "K" clock input to clock the 
storage element. 

To save effort entering this design, copy the 
configuration in the SEGA CLB to six other CLBs (one 
each for the remaining six LED segments). First, select 
Screen(Switch) to switch to the physical interconnect 
editor. Then, select Blk(Copyblk) and click on block AH 
(which is the SEGA block). Copy this block to CLB 
blocks BH through GH (all along the right-hand edge of 
the die). Remember to select Done when complete. 
Again select Screen(Switch) to continue editing the 
SEGACLB. 

Using the information in Table 1, the user can enter the 
design directly into the Karnaugh map. For clarity and an 
as example, entering the data for Segment A (SEGA) of 
the seven-segment display is described. 

Table 2 contains the binary values of the input variables 
A, B, C, and D as well as the corresponding logic output 
F for SEGA. All of the possible values ranging from 
OOOOB to 1111 B are numbered with their 
corresponding decimal values. In addition, Figure 7a 
shows where each of the binary inputs is located within 
the Karnaugh map using the decimal values of the 4-bit 
binary input. Figure 7b details how the logic for SEGA 
maps into the Karnaugh map. 

Using the mouse, place the mouse cursor inside the 
upper left block of the Karnaugh map and toggle that 
block on (bright yellow) with the mouse select button. 
The logic for SEGA (when all of the inputs are logic "O") 
has just been set. The truth table to the left of the 
Karnaugh map and the Boolean equation line at the 
bottom of the screen should both reflect the change 
made in the Karnaugh map. 

Continue toggling on the indicated blocks for the 
remaining values, just as shown in Figure 7b. This is 
much simpler than typing the Boolean equation for 
SEGA: 

SEGA = -C*-A+C*B+D*-A+-D*B+-D*C*A*-C*-B 

Repeat this same process for the six remaining CLBs. 
The Karnaugh maps should appear like those shown in 
Figure 8. 

Now that each of the segment drivers has been 
configured, name each CLB with its corresponding 
segment identity. For Segment A, type 

NAMEB HA SEGA (Enter). 

The name SEGA should appear in block AH. To save 
the designer lime and effort, the development system 
keeps a running stack of the latest command line 
entries. This way, a user can pull up the last few 
commands and edit them to enter similar commands. 
For example to name Segment B, merely press the up 
cursor button. The line previously entered will appear 
on the command line. Edit the command line using the 

x 
y 

~CT---1J Q 
SET c Q 

BLK:AH RES D 
CLK 

DCBA F 

o{e}c 
A: 

XX XX L 
B: 
C: 
D: 
K: 

6 X: 
Y: 

F= 

0010017 6 

Figure 6. Blank Karnaugh Map in CLB Display 

DECIMAL D c B A F 

0 0 0 0 0 . 
1 0 0 0 1 
2 0 0 1 0 . 
3 0 0 1 1 . 
4 0 1 0 0 
5 0 1 0 1 . 
6 0 1 1 0 . 
7 0 1 1 1 . 
8 1 0 0 0 . 
9 1 0 0 1 . 

10 1 0 1 0 . 
11 1 0 1 1 
12 1 1 0 0 . 
13 1 1 0 1 
14 1 1 1 0 . 
15 1 1 1 1 . 

0010017 14 

Table 2. Truth Table Specifically for Segment A 

3-34 



left and right cursor keys and the insert (Ins) and delete 
(Del) keys to read 

NAMEB HB SEGB. 

Now press the ENTER key. Continue naming the 
remaining blocks in the same manner. 

Add the required networks using the Addnet command. 
Connect a network called SO to the A-input of each CLB 
in the design, one called S1 to the B-input, one called 
S2 to the C-input, and one called S3 to the D-input. 
Attach all of the K clock lines together on a net called 
Strobe. 

For the X-output from each CLB, add an output network 
using a name specific for each segment output. For 
example, attach a network called A_Out to the X-output 
from the SEGA CLB. 

VALIDATING THE DESIGN 

Before a section of logic is saved as a macro function, its 
function should be thoroughly verified. Without 
verification, logic bugs could potentially be passed from 
one design to another (a veritable digital design 
influenza). Using the macro library, a designer builds his 
logic in debugged modules. 

Modular logic design accomplishes many of the same 
goals as modular software design. Modularity helps 
speed development by isolating errors to specific 
modules, making the system easier to debug. By using 
validated modules throughout his design, the designer 
reduces the time and frustration of the hardware debug 
cycle. Obviously validating macros is important. 

The minimum validation that should be applied to a 
macro function is the Design Rule Checker (DRC). To 
invoke the DRC for the LED driver design just entered, 
select Misc(DRC) from the LCA Editor. Warnings about 
missing sources or loads may be ignored if the specified 
networks are known not to have them. For example, in 
this design, the DRC indicates that networks SO, S1, 
S2, S3, and Strobe have no sources while networks 
A_Out through G_Out have no loads. Warnings about 
PIPs (programmable interconnect points) may be 
ignored if some of the networks have not been routed 
(as is the case with this design example). 

A much better way to validate the design involves either 
the simulator (P-SILOS™), the in-circuit emulator 
(XACTOR™), or the download cable. To validate the 
design with the simulator, run the simulation generator 
program (SimGen in the Executive Program menu). 
Then, using any standard text editor, edit the data file 
(<filename>.DAT) to include valid stimuli to test the 

3-35 

l:X!UNX 

design. Figure 9 shows the stimuli used to verify the 
LED driver. Running a simulation based on these stimuli 
produces the graphical output shown in Figure 1 O. 

Emulation is even simpler. It involves downloading the 
design into a system and testing it there for functionality. 

After verifying the design, enter the LCA Editor by 
Selecting Editlca from the main Executive menu. Now, 
to save the binary-to-seven-segment display drive in the 
macro library, select Misc(Cutmacro). When the 
development system prompts for a file name, enter 
7SEG_BLC for a seven-segment display driver (7SEG_) 
using binary (B) input with latched output (L) to a 
common cathode (C) display. 

To save the desired portion of logic under this macro 
name, select the seven CLBs used in this design using 
the mouse. Select blocks AH through GH. Select Done 
when complete. The Cutmacro command automatically 
picks up the routing attached to the specified blocks (as 
well as any corresponding block and net names) and 
creates an ASCII text file containing all the macro 
information. A portion of the ASCII macro file called 
7SEG_BLC.MAC appears in Figure 11. The Cutmacro 
command also appends the file extension .MAC to a 
macro file. 

Once in ASCII form, the designer can use any standard 
text editor to edit the newly created macro file. For 
example, the designer may decide to change the 
default network or block names. 

0 1 3 2 

4 5 7 6 

12 13 15 14 

0010017 7a 
8 9 11 10 

Figure 7a. Position Map for a Four-Variable Karnaugh Map 

0010017 7b 

'--.----' 
B 

Figure 7b. Segment A Logic Mapped Into Karnaugh Map 

I 

-



A Seven-Segment Display Driver 

The newly created macro file can now be used just like 
any standard macro library entry merely by selecting 
Misc(Macro)) and choosing macro 7SEG_BLC. 

BCD-TO-SEVEN-SEGMENT DISPLAY DRIVER 

Table 3 indicates which of the seven-segments are 
lighted by each of the sixteen input combinations. 
Notice that combinations 10 thrpugh 15 are identical 
(the error symbol "e"). Modifying the binary display 
driver to make it a BCD display driver is quite simple. 
Positions 10 through 15 in each Karnaugh map for 
Segments A through G must be modified. To display 
the error symbol, all of the LED segments except for 
Segment C (SEGC) are lighted. The edited Karnaugh 
maps for the BCD driver appear in Figure 12. 

Edit the Karnaugh maps for all of the LED segments 
(SEGA through SEGG) to reflect the changes and then 
perform a Design Rule Check to verify the design. 

Once verified, save this new design as another macro, 
this time c.alled BCD_7LC for BCD to seven-segment 
display (BCD_?) with latched outputs (L) for a common 
cathode display (C). 

OTHER POSSIBLE MODIFICATIONS 

Common-Anode Displays 

The logic for both LED display drivers presented here 
specifies active-high outputs (positive logic). Positive 

0 
{ 

logic drives common-cathode displays by sending a 
logic "1" to the appropriate segment. To drive common-
anode displays, however, the logic sense must be 
inverted. In other words, the positive logic equations 
must be converted to negative logic equations. 

Simply inverting every entry within each Karnaugh map 
for each CLB accomplishes this. However, in this case, 
editing the Boolean equation is much easier. While 
editing the correct CLB, select Config(Editeq(F)) and 
use the left and right cursor keys and the insert (Ins) and 
delete (Del) keys to edit the equation. For example, to 
invert the equation for SEGA, change the equation from 

F = -C*-A+C*B+D*-A+-D*B+-D*C*A+D*-C*-B 

to 

F = -(-C*-A+C*B+D*-A+-D*B+-D*C* A+D*-C*-B) 

by adding a "-(" to the front of the equation and a ")"to 
the back of the equation. Do this for each segment. 

Thus, two new macros can be created-one for a binary­
to-seven-segment display driver for common-anode 

3-36 

SEGA 

A 
,-----A---, 

'--v---' 
B 

SEGC 

A 
,-----A---, 

'--v---' 
B 

SEGE 

A 
,-----A---, 

'--v---' 
B 

}c 

}c 

SEGB 

A 
,-----A---, 

'{.}' 
'-----.-----' 

B 

SEGO 

A 
,-----A---, 

,~}' {M 

SEGF 

A 
,-----A---, 

o{ 

SEGG 

A 
,-----A---, 

'-----.-----' 
B 

}c 
'-----.-----' 

B 

0010017 8 

Figure 8. Karnaugh Map Seven-Segment Display 
(Binary Inputs) 



l::XIUNX 

DECIMAL $3 $2 $1 so A B c D E F G 

0 0 0 0 0 . . . . . . 
1 0 0 0 1 . . A 
2 0 0 1 0 . . . . . 
3 0 0 1 1 . . . . . 
4 0 1 0 0 . . . . 
5 0 1 0 1 . . . . . 
6 0 1 1 0 . . . . . . 
7 0 1 1 1 . . . 
8 1 0 0 0 . . . . . . . 
9 1 0 0 1 . . . . . 

10 1 0 1 0 . . . . . . 
11 1 0 1 1 . . . . . . 
12 1 1 0 0 . . . . . . D 
13 1 1 0 1 . . . . . . 
14 1 1 1 0 . . . . . . 
15 1 1 1 1 . . . . . . 

0010017 15 

Table 3. Input Table for BCD-To-Seven-Segment Display 

$ 
$ Simulation file for design 'KARANAUGH.LCA' type '2064c68-l' 
$ Created by XACT Ver. 1.1 at 15:01:43 MAR 23, 1986 
$ 
!INPUT KARANAUGH.sim 

$ INPUTS: I 
Strobe .CLK 0 so 100 Sl 200 so .REP 0 
GLOBAL.RESET .CLK 0 Sl 1 so $ Initial pulse to reset latches 

.PATTERN S3 S2 Sl so • 0 0 0 0 0 $hex 0 
500 0 0 0 1 $hex 1 
1000 0 0 1 0 $hex 2 
1500 0 0 1 1 $hex 3 
2000 0 1 0 0 $hex 4 
2500 0 1 0 1 $hex 5 
3000 0 1 1 0 $hex 6 
3500 0 1 1 1 $hex 7 
4000 1 0 0 0 $hex 8 
4500 1 0 0 1 $hex 9 
5000 1 0 1 1 $hex A 
5500 1 0 1 1 $hex B 
6000 1 1 0 0 $hex c 
6500 1 1 0 1 $hex D 
7000 1 1 1 0 $hex E 
7500 1 1 1 1 $hex F 
.EOP 

.MONITOR Strobe SO Sl S2 S3 ; A_Out B_Out C_Out D_Out E_Out F_Out G_Out 

.GRAPH Strobe so Sl S2 S3 ; A_Out B_Out C_Out D_Out E_Out F_Out G_Out 

Figure 9. Simulator Stimulus File to Validate Binary-to-Seven-Segment Display Design 

3-37 



A Seven-Segment Display Driver 

ABCDEFG ABCDEFG 

0000000 000 0000 
SSS S uuuuuuu ssss uuuuuuu 

TIME 3 2 1 0 TTTTTTT TIME 3 2 1 0 TTTTTTT 

0 0 0 0 0 1 1 1 1 1 1 0 0 4035 1 0 0 0 1 1 1 1 1 1 1 8 
500 0 0 0 1 1 1 1 1 1 1 0 4500 1 0 0 0 1111111 
535 0 0 0 1 0110000 1 4535 1 0 0 1 1 1 1 0 0 1 1 9 

1000 0 0 1 0 0110000 5000 1 0 0 1 1 1 1 0 0 1 1 
1035 0 0 1 0 1 1 0 1 1 0 1 2 5035 1 0 1 0 1 1 1 0 1 1 1 A 
1500 0 0 1 1 1 1 0 1 1 0 1 5500 1 0 1 0 1110111 
1535 0 0 1 1 1111001 3 5535 1 0 1 1 0011111 c 
2000 0 1 0 0 1111001 6000 1 0 1 1 0011111 
2035 0 1 0 0 0110011 4 6035 1 1 0 0 1001110 c 
2500 0 1 0 1 0110011 6500 1 1 0 0 1001110 
2535 0 1 0 1 1 0 1 1 0 1 1 5 6535 1 1 0 1 0111101 D 
3000 0 1 1 0 1 0 1 1 0 1 1 7000 1 1 0 1 0 1 1 1 1 0 1 
3035 0 1 1 0 1011111 6 7035 1 1 1 0 1 0 0 1 1 1 1 E 
3500 0 1 1 1 1011111 7500 1 1 1 0 1 0 0 1 1 1 1 
3535 0 1 1 1 1110000 7 7535 1 1 1 1 1 0 0 0 1 1 1 F 
4000 1 0 0 0 1110000 

Figure 1 o. Timing Diagram Output from P-SILOS for Binary-to Seven-Segment Display Driver 
(Diagram is used to validate logic) 

3-38 

0010017 10 

0010017 10A 



; Cutmacro: KARANAUGH.LCA, XACT 1.1, 15:47:57 MAR 
Parameter NAME ? Enter instance name: 
Parameter NET S3 Select S3 net 
Parameter NET S2 Select S2 net: 
Parameter NET Sl Select Sl net: 
Parameter NET SO Select SO net: 
Parameter NET Strobe Select Strobe block: 
Parameter CLB ? Select SEGA block: 
Parameter CLB ? Select SEGB block: 
Parameter CLB ? Select SEGC block: 
Parameter CLB ? Select SEGD block: 
Parameter CLB ? Select SEGE block: 
Parameter CLB ? Select SEGF block: 
Parameter CLB ? Select SEGG block: 
Editblk %7 
C X:F Y: F:A:B:C:D Q:FF SET: RES: CLK:K 
Eq F = -C*-A+C*B+D*-A+-D*B+-D*C*A+D*-C*-B 
Endblk 
Editblk %8 

• 

• 
Editblk %13 
Base F 
Config X:F Y: F:A:B:C:D Q:FF SET: RES: CLK:K 
Equate F = -C*B+D*A+D*B+D*-C+-D*C*-A+-D*C*-B 
Endblk 
Addpin %2 %7.A %8.A %9.A %10.A %11.A %12.A %13.A 
Addpin %3 %13.B %12.B %11.B %10.B %9.B %8.B %7.B 
Addpin %4 %7.C %8.C %9.C %10.C %11.C %12.C %13.C 
Addpin %5 %13.D %12.D %11.D %10.D %9.D %8.D %7.D 
Addpin %6 %7.K %8.K %9.K %10.K %11.K %12.K %13.K 

23, 

} 

} 

1986 

Parameterized nets, 
default names and 
prompt messages 

l:XIUNX 

Parameterized blocks and 
prompt messages 

Logic 
Definition 

Parameterized net names 
and connections 

Figure 11. Portion of Newly Created LED Driver Macro (7SEG_BLC) 

3-39 

• -



A Seven-Segment Display Driver 

displays and one to display BCD data on a common­
anode display. 

Direct Combinatorial Outputs 

For both of the designs presented here, latched 
outputs drive each segment LED. For direct 
combinatorial outputs (i.e. nonlatched), edit each CLB 
as follows: For combinatorial output, the X output must 
originate from Function F and not from the storage 
element "Q". Select "F" in the select field for the X 
output instead of "Q". 

SUMMARY 

Karnaugh map entry saves time over standard Boolean 
equation entry especially for complex expressions of 
four variables. Two seven-segment display driver de­
signs demonstrated the Karnaugh map entry technique. 

The Cutmacro command allows a user to create and 
save user-defined logic macros. In this application, two 
seven-segment display drivers created using the XACT 
Development System were saved as macros. 

Macro functions allow a designer to build modular logic 
designs. Modular design helps speed development by 
reducing errors. A designer should thoroughly validate 
a user-defined macro before saving it. Both the 
simulator (P-SILOS), the download cable, and the in­
circuit emulator (XACTOR) are helpful in validating 
designs. 

3-40 

SEGA 

A 
,..---'--, 

'--r--' 
B 

SEGC 

A 
,..---'--, 

'--r--' 
B 

SEGE 

A 
,..---'--, 

'--r--' 
B 

SEGB 

A 
,..---'--, 

o{.}' 

SEGG 

A 
,..---'--, 

'--r--' 
B 

SEGD 

A 
,..---'--, 

'--r--' 
B 

SEGF 

A 
,..---'--, 

'--r--' 
B 

'--r--' 
B 

0010017 12 

Figura 12. Karnaugh Maps for Seven-Segment Display 
(BCD Inputs) 

PIN 0010017 01 



INTRODUCTION 

With the high cost of travel and labor, many companies 
are looking for alternatives to the conventional field ser­
vice person as the method of providing field updates for 
their products. A solution which is becoming more pop­
ular is the use of EEPROM (Electrically Erasable 
Programmable Read Only Memory) or Battery Backed­
up RAM as a method of storing control software. 
Remote loading of this memory allows changes to be 
made without the need to physically travel to a 
customer's site. This solution only addresses the need 
to provide software updates, but does not address the 
need for additional hardware to perform the update, or 
the potential requirement to update the hardware itself. 
Addition of extra hardware to perform software updating 
requires circuit board space and other specialized 
functions which may outweigh the potential benefit from 
a remote update capability. 

Logic Cell™ Arrays (LCAs) allow the hardware designer a 
degree of flexibility, similar to that of the software 
designer, for making rapid functional changes. With 
appropriate configurations, the Logic Cell Array may 
provide the additional hardware and control functions 
necessary to perform remote upgrading for both 
software and hardware. This logic may even be shared 
with the logic used for normal operation. 

DESCRIPTION 

Figure 1 shows a block diagram of a design for a remote 
EEPROM programmer The EEPROM could be loaded 
with either software modifications or hardware changes. 
If hardware changes are to be loaded into the EEPROM, 
a re-load of the Logic Cell Array would be performed 
after the EEPROM is programmed to insure that the 
Logic Cell Array has the correct configuration. The 
location of the address and data pins on the Logic Cell 
Array (see Figure 2) have been chosen to correspond to 
pins of the same function during configuration, insuring 
that proper loading can be performed without the need 
for any external circuitry. 

The incoming serial data stream is converted to eight-bit 
bytes by a shift register, while a three bit counter tracks 
the number of bits received. When eight data bits have 

Field Hardware/Software 
Updates Made Cost Effective 

been received they are loaded into an eight bit data 
buffer and the address generator is incremented. The 
address generator, a 16 bit counter, is held in a reset 
state until the first data byte has been received and load­
ed into the data buffer. This insures that the first byte of 
data will be programmed into hexadecimal location 0000 
of the EEPROM. One clock cycle after the data is 
loaded and the address counter incremented, the WE 
signal is asserted for one clock cycle. This allows an 
entire byte time for the write process of the EEPROM to 
be completed. (When writing to EEPROM, care should 
be taken in selecting a baud rate slow enough to allow 
ample time for the write cycle, approximately 1 O ms. 
Typically 800 baud or less would guarantee adequate 
time for the write cycle.) 

3-41 

This circuit requires less than two-thirds of an XC2064 
for implementation of the EEPROM programming func­
tion. The remaining logic could be used for additional 
features such as: • 

1. Parity and framing checking 
2. Detecting start and stop bits 
3. Logic to extract and load a starting address into the 

address generator 
4. Additional address bit generation capability to • 

extend the size of addressable memory beyond 64K 
bytes. 

5. Logic to detect a command to initiate a re­
configuration cycle of the Logic Cell Array 

6. Logic to perform a readback of the contents of the 
EE PROM for verification 

Additional information on the design of a complete 
UART device with the Logic Cell Array is available from 
Xilinx. 

CONCLUSION 

With the flexibility and capabilities of the Logic Cell Array, 
systems designers have new alternatives for remote 
operation, diagnostics, loading and control. The eco­
nomic benefits of precluding the requirement for field 
service visits to remote locations can easily justify the 
incremental design effort required to add the capabilities 
to the remote system using Logic Cell Arrays. 



Field Hardware/Software Updates Made Cost Effective 

DATA IN 

CLOCK 

DATA IN 

CLOCK 

DATA 
BUFFER 

ADDRESS 
GENERATOR 

WRITE 
ENABLE 

0010020 1A&B 

1J 

3-BIT 
COUNTER 

~ 

PIN 

8-BIT 
SHIFT 

REGISTER 

CLK 

CONTROL 
LOGIC 

CLK 

J 
[ 

~ 

RESET RESET 

CLK 
LOGIC 

CLK 

LJ 

Figure 1. E2 PROGRAMMER 

3-42 

8-BIT 
DATA 

BUFFER 

TD 

16-BIT 
COUNTER 
ADDRESS 

GENERATOR 

t--
t--
t--
t--
t--
t--
t--
i---

t--

i--
i--

i--

t--
t--
i---

i---

i---

i---

i---

i---

i---

i---

t--
t--

DO 

D1 

D2 

03 

04 

05 

D6 

07 

AO 

A1 

A2 

A3 

M 

AS 

A6 

A7 

AS 

A9 

A10 

A11 

A12 

A13 

A14 

A15 



(.) 

J:,. 
(.) 

lf.l 
IR.J 

{} 

1D 
~ " . 

1D 
{[} 

1D 
ID 
(} 
{ti 

~ 
!ITT 
IKJ 

u 
u 
u 
u 
u 
u 

© ffil 

u u 
LI u u 
u u u 
u 0 u 
LI u u 
u u u 
~~ imis m:1m~t®m t ~ffi 

Figure 2. LCA Placement and Routing 
DESERLIALIZER 

8-BIT SHIFT 
REGISTER 

I • 

[] 
16-BIT 
ADDRESS 
GENERATOR 

INITIALIZES 
ADDRESS 
GENERATOR 

BIT 
COUNTER 

8-BIT 
DATA BUFFER 

M 



Field Hardware/Software Updates Made Cost Effective 

PIN 0010020 01 

3-44 



INTRODUCTION 

Data communications is increasingly an integral part of 
successful businesses. Communication standards are 
being established, modified and reestablished to meet 
evermore demanding conditions. Among these is a 
requirement by the business community to curtail 
operating expenses. A natural way to govern the cost of 
new capabilities is to use existing facilities and expand 
their scope. The recent push to add digital data 
communications to equipment already used for voice 
transfer is an example of this expansion. The original T1 
transmission, repeating and reception standard has 
been extended by including data transmission 
interleaved with the previously defined voice 
transmission. This application note describes the 
implementaion of T1-compatible logic design in a Xilinx 
Logic Cell™ Array (LCA). 

....--
B 

F-BIT I 
LEAO T 
(1 BIT) 1 2 3 4 5 6 7 

A T1 Communicatons 
Interface 

THE T1 STANDARD 

The T1 transmission standard is based on a 1.544-MHz 
sampling frequency. The data is time-division multi­
plexed into "multiframes''. Each multiframe consists of 
12 frames of information. Each frame is divided into 24 
channels of 8-bit data bytes. The length of the frame is 
extended to a 193rd bit by adding a framing bit (F-bit) for 
synchronization. As discussed later, an extension to 
this basic standard has been defined and is referred to 
as the Extended Framing Format. This format consists 
of 24 frames, each organized as the same 24 8-bit 
channels (see Figure 1). This set of 24 frames is called a 
Superframe. 

The framing bit consists of two signals, Fs and Ft, 
transmitted alternately in the first bit position of each 
frame. Combining Fs and Ft forms an 8-KHz signal used 

NOTE1 
/ 

~ 
8BITS 

8 
~ =:;: -:;z:__ 

F 

c 
H 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 
F 
R 
A 
M 
E 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A B 

1. Bit 8 (LSB) of each channel of frames 6, 12, 18 and 24 is replaced 
by A, B, C and D signaling, respectively. 

16 17 18 

16 17 18 

c 

Figure 1. Extended Framing Format 

3-45 

19 20 21 22 

19 20 21 22 

23 24 

23 24 

D 

24CHANNELS 
(193 BITS) 

24FRAMES 

F BIT 
DATALINK4KHz 
CRC CHECK 2KHz 
FRAMING 
SIGNALING1 

0010026 1 

I 

• 



A T1 Communications Interface 

for "robbed-bit" signaling and mainframe synchroni­
zation. The eighth bit (Least Signifigant Bit or LSB) of 
each channel of frame 6 will be replaced by "A" signaling 
information and the LSBs of frame 12 will be replaced by 
"B" signaling information. This information is used to 
indicate off-hook status, busy, and other telephone 
related information. 

For voice transmission, the robbed-bit signaling does 
not dramatically effect the receiver's ability to recover the 
entire voice-quality signal. However in the use of the 
facilities for data transmission, this bit replacement would 
be unacceptable. Data transmission precludes the 
insertion of signaling information into the bit stream. 

In 1981, AT&T and other contributing corporations 
defined an extension of the basic T1 transmission for­
mat. In AT&T Technical Advisory 70, the Extended 
Framing Format was defined as (1) extending the 
multiframe from 12 to 24 frames, (2) adding C and D 
signaling information into frames 18 and 24, respec­
tively, and (3) redefining the 8-KHz framing pattern into 
three subsections, now referred to as the Fe bit. 

The Fe bit consists of 2-KHz framing, 2-KHz cyclic 
redundancy check, and 4-KHz data link patterns. The 
framing pattern consists of a 001011 pattern transmitted 
in frames 4, 8, 12, 16, 20 and 24. The CRC-6 signal is 
transmitted in frames 2, 6, 10, 14, 18 and 22. The data 
link information is transmitted as the leading bit in 
alternate frames starting with frame 1. The data link 
information is transmitted using the X.25 level 2 
protocol. 

The standard also includes a specific requirement of 
maintaining a certain "ones density" on the transmission 
line. The T1 repeaters used on the telephone lines 
require enough energy (ones data and low-to-high 
transitions) to regenerate the signal and send the signal 
on to a subsequent repeater. The T1 specification 
allows the transmission of all 0 data channels by 
transmitting a specific bipolar violation signal instead of 
the standard alternate mark insertion (AMI) signal. 
Known as the B8ZS signal, this specific bipolar violation 
pattern can be distinguished by the receiver as an all­
zero data channel rather than a transmission line 
problem. 

T1 TRANSMITTER OPERATION 

As shown in the block diagram in Figure 2, the T1 
Extended Framing Format transmitter consists of six 
major subsections: the data input registers, the framing 
bit register, the signaling bit and data shift register, the 
counter based modulo 193 and 24 timing generators, 
the bit select multiplexer, and the bipolar generation 
circuitry. These subsections work together to generate 
a T1 transmission frame. 

T1 TRANSMITTER BLOCK DIAGRAM 

At system reset, the timing generator counters 
(CQO-CQ7, FRO-FR4) are synchronized and reset. 
The latched synchronization input, SYNCIN, can be 
used to hold off operation. The counters are held in the 
reset state by using the asynchronous reset capability of 
the Configurable Logic Block. At any time, the SYNCIN 
can be used to issue this reset request. External 
circuitry should monitor SYNCOUT for acknowledgment. 

The initial end-of-frame (EOF) pulse from the EOF 
decoder causes the bit select multiplexer to transmit the 
first framing bit, a data link information signal. This 
circuitry is also used to load the Fe bit shift register with 
its framing pattern. A second pulse is then issued to the 
frame counter to bypass the second unused state. 

The bit counter then processes 24 bytes of channel 
data using the input latch, data request register, shift 
register, signaling bit registers and the associated 
circuitry. The bit-select multiplexer monitors the 3 LSBs 
of the bit counter to issue a request for a new channel 
byte, to present channel data being sent and to insert 
signaling information when required. 

The shift register decodes the position of a preset flag 
bit that is shifted through the register. The flag decode 
logic issues a data request (DREQ) signal and the data 
request register loads subsequent channel byte 
information. Whenever the zero detection logic detects 
an insufficient ones density in the data stream, it signals 
for an external B8ZS zero substitution in lieu of the 
bipolar generation circuitry output. 

Each time the EOF signal is asserted, it causes the data 
shift register to pause. This allows the subsequent 
framing bit to be inserted into the bit stream as defined 
by the content of the frame decoder. Subsequent 
frames of channel data are transmitted using the same 
sequence. 

AN LCA BASED T1 TRANSMITTER DESIGN 

The Data Input Register 

3-46 

The data input register section includes the 8-bit input 
register, the 9-bit data shift register (8 data bits plus a 
flag bit), the zero detect logic section and the data 
request register. By utilizing eight of the 58 input 
registers of the XC2064 Logic Cell Array (LCA), the 
Input Latch was implemented without using any of the 
64 Configurable Logic Blocks (CLBs). To minimize the 
use of LCA resources, the designer should place all 
data inputs on a common side of the die. This 
orientation requires only one of the lnpuVOutput Block 
clocks to latch data. The other three sides are available 
for the framing and signaling inputs. 



w 
~ 
.....i 

SYNC IN 

SYNC OUT 

CLK 

DOO-D7 

DACK 

DREQ 

ZERDET 

0010026 2 

SYNC 
CONTROL 

/8 
7 

L_. 

CHO-CH4 

15 
MODUL0193 
BIT COUNTER 

LR t 

D7 

DATA 
INPUT 8 
LATCH 7 

DO 

DATA 
REQUEST 1--

R 

J 

ZERO I---DETECT 

4 

[j 
-/-

FRO-FR4 CHCLK 1---i 

15 !>SIGNALING 
,-j BIT 

REGISTER 

I SIGNAL y4 

~ 
FRMCLK SIGRQ REQUEST 1 

EOF CE MODUL024 R 

DECODER ~ FRAME COUNTER I r R 1---i _r R l 

f J [ 
.L..3 00-02 

1-- rn' 0 REQUEST 
EOF I-- ~' 

[CE 

l+----1 
D7 DATA-BIT F EXTIN 

DATA 
f-----1 ~RE~~'iER I--. G ~ DO-D7 I- h 

FLAG 1--, BIT LINK RO LINK 

Q 
PE DO DECODE SELECT 

REQUEST 

MULTIPLEXER >----t> FLAG 1--' R 

TLINK IN t 
w h 

CRCRQ CRC 
REQUEST 

l [D 

~ R 
LOAD FE BIT CRCIN 1 ~ FRAMING 

~CE 
BITS 

FEREQ D BIPOLAR 
GENER-
ATOR 

Figure 2. T1 Transmitter Block Diagram 

I -

ASIG 
BSIG 
CSIG 
DSIG 

SIGREQ 

SACK 

CCIS 

F EXT 

FACK 

TLINK 

LNK ACK 

TCRC 

CRC ACK 

BIN OUT 

UNA 

UNB 

M 
>t~ 



A T1 Communications Interface 

By generating the DREQ output, the data request 
register requests a byte of channel information. Figure 
3 shows an XACT "editblock" screen of the 
Configurable Logic Block implementing this function. 
External circuitry should respond by placing the data 
byte on the DO-D7 inputs and loads it into the input 
latch by asserting the DACK input. DACK also resets 
the request register. If the zero detect logic does not 
indicate an all-zero data byte, the byte is transferred into 
the shift register after the previous byte has finished. 
The decode logic in the data request register uses the 
flag bit to indicate that the previous byte has been sent. 

A modified version of the RSSPR macro (eight bit shift 
register with parallel load and synchronous reset) from 
the XACT macro library was used to implement the Data 
shift register of this application. Figure 4 shows the 
eighth bit implementation where pin B functions as a 
clock enable, pin C as load enable. The eight data bits 
are loaded into the data shift register in parallel and then 

)( G 

shifted out, one bit at a time onto the bit-select 
multiplexer. Replacing the synchronous reset with a 
clock-enable function will allow the end-of-frame (EOF) 
signal to force a pause in the shift, allowing the framing 
bit to be inserted into the bit stream. 

The Framing Bit Registers 

The extended framing Fe bits are placed in a 6-bit shift 
register shown left of the bit select multiplexer of Figure 
2. The framing bit registers for data Ink and CRC 
information use a similar handshake to the 
requesVacknowledge scheme used in the data input 
register. The F ext register's framing information is 
controlled with the common channel interoffice 
signaling (CCIS) input. All three registers, shown on the 
right of Figure 2, request new information during the 
frame prior to the frame in which they are used. External 
circuitry must respond to these requests within the 
alotted time for the data link and CRC cases. 

'i Q 

·~· 
Q FF 
SET 
RES D 
CLJ< ]( B 'i 

AF CG Blk: GE 
H H 

A J< D SIGREQ 
ell A:SIGRQ 

B:d7_load 

CB G 
C: ze:r0_6 

B RES D:SIGACJ<_IN 
H L H 

~c CLJ< J<: clkl._5 
G X:ze:rdet 
Q 'i: SIGRQ_OUT 

F - A 
G = C*-B 

)( 
'i Q 
Q FF 
SET 
RES 
CLJ< J< 

Q F 
H H 

DCA G 
H H X H 
H XH H 
XL H H 

Figure ~- Input Register Slgnal Request Block 

Q 
ell 

A 
EliiliilD 

c 

A: ISHFT6_7 
B:eof 
C!flg_dec 
D: d7_load 

CLJ< J<: cl kl._5 
)(: 

Q 'i: da taJ:>i t 

Note: 
H=F if B=1. 
tt=G if B=0 

Blk: HC 
d7shft 

Figure 4. The Eighth Bit of the Input Shift Register 

3-48 



The Signaling Bit Registers 

The signaling bit register in the upper right of Figure 2 
provides a request line and is loaded with an 
acknowledge signal. The A, B, C and D signaling 
information respectively, is substituted for the LSB of 
every channel byte of the 6th, 12th, 18th and 24th 
frames of the superframe. Externally connecting the DO 
input to the signaling inputs would facilitate the removal 
of signaling information. Signaling information is used 
only in voice transmission. 

The Timing Generation Section 

The timing generation section (top of Figure 2) includes 
the modulo-193 bit counter and the modulo-24 frame 
counter. The modulo-193 counter is a conventional 8-
bit binary counter with a special synchronous reset 
capability. The modulo-24 counter uses a "hold bit" 
technique to reduce the 5-bit, 32-state counter to the 
desired 24 state count. The LCA flexibility allows the 
user to tailor circuitry to the exact configuration needed. 

G1 = Oo• 01 = AND01 
AND03 

The Modulo-193 Bit Counter 

Figure 5 shows the bit counter. The 8-bit counter is 
reset synchronously after it cycles through 193 states. 
The end-of-frame (EOF) decoder indicates that the 
193rd state has been reached. The EOF signal is used 
in many places throughout the design. EOF allows the 
frame counter to increment by performing a clock­
enable function. It is also used to allow the proper 
framing bit to be inserted by holding off the data shift 
register for one clock cycle. Figure 6 shows the 
configuration for one of the CLBs used in this counter. 

The Modu/o-24 Frame Counter 

Figure 7 shows the 5-bit binary counter sequence used 
for the frame counter. Whenever the three least 
significant bits (FRO, FR1, FR2) reach all-ones state, the 
FR1 bit will be held. After every six sequential frame­
counter clock cycles, the next two binary states are 
skipped. In this way, four cycles of six states are used to 
generate a 24-state counter. Figure 7 also indicates the 

G4= AND03 • 04• Os= ANDOS 

G2= AND01 • 02• 03 Gs= ANDOS • Os• 01= SYNRST 

0010026 5 

Figure 5. Modulo 193 Bit Counter 

)( Q 
'i Q 
Q FF ~r SET 
RES D Q 
CLJ< J< 'i 
QBCA F Bl l<: DB 

)( D CQ7 
LHHL H 
HLXL H A syn:rst 
HXLL H A B CQ06 

QeB 
c TC0_5 

RES D syn_in 

c CLJ< )( c 11<1._5 
Q )( CQ07 
Q 'i CQ_07 

F = -A*CCC*B)@Q) 

Figure 6. Eighth Bit of Modulo 193 Counter 

3-49 

I 

• 



A T1 Communications Interface 

relationship of each encoded value and its 
corresponding frame value. The CHCLK signal can be 
used to synchronize external decoder circuitry. Internal 
decoding could be included in this design, but is left up 
to the user to implement. Figure 8 shows an example 
CLB configuration for this counter. 

decoder (see Figure 10) with other logic and registers to 
determine whether data, signaling or framing information 
is to be sent. The presence of the EOF signal in the 
multiplexer determines which source of information 
should appear at the output signal. 

The Bit-Select Multiplexer 
The CCIS signal is used to insert an externally 
generated framing bit into the bit stream when the EOF 
signal is active. 

The bit-select multiplexer (see Figure 9) uses a frame 

PREVIOUS STATE NEXT STATE 
FRAME 

FR4 FR3 FR2 FR1 FRO FR4 FR3 FR2 FR1 FRO 

0 0 0 1 0 0 0 0 1 1 1 
0 0 0 1 1 0 0 1 0 0 2 
0 0 1 0 0 0 0 1 0 1 3 
0 0 1 0 1 0 0 1 1 0 4 

* 0 0 1 1 0 0 0 1 1 1 5 
0 0 1 1 1 0 1 0 1 0 6 
0 1 0 1 0 0 1 0 1 1 7 
0 1 0 1 1 0 1 1 0 0 8 
0 1 1 0 0 0 1 1 0 1 9 
0 1 1 0 1 0 1 1 1 0 10 
0 1 1 1 0 0 1 1 1 1 11 

* 0 1 1 1 1 1 0 0 1 0 12 
1 0 0 1 0 1 0 0 1 1 13 
1 0 0 1 1 1 0 1 0 0 14 
1 0 1 0 0 1 0 1 0 1 15 
1 0 1 0 1 1 0 1 1 0 16 
1 0 1 1 0 1 0 1 1 1 17 

* 1 0 1 1 1 1 1 0 1 0 18 
1 1 0 1 0 1 1 0 1 1 19 
1 1 0 1 1 1 1 1 0 0 20 
1 1 1 0 0 1 1 1 0 1 21 
1 1 1 0 1 1 1 1 1 0 22 
1 1 1 1 0 1 1 1 1 1 23 

* 1 1 1 1 1 0 0 0 1 0 24 

* Nex1 state holds FR1 high, therefore skipping two states four times during sequence. 
0010026 7 

Figure 7. Modulo-24 Frame Counter 

x 

~ 
'J Q 
Q FF 
SET 
RES D 
CLK }( 

Q 
y 

QBCA F Blk: ED 
LHHH 

}( D f:r4 
H 

HLXX H A:q3 
H XL X H A B:f:rMclk H XXL H QljB c:r:ran0_2 

RES D:syn_in 
c CLK K: clk1_5 x: 

Q v:r:r04 

F - C*A*-Q*B+-CC*A)i'EQ+-Bi'EQ 

Figure 8. The Fifth Bit of the Frame Counter 

3-50 



0010026 9 

TLINK 

CRCBIT ---f-------------1"'-..., 
FE BIT ---1-----------i==;----L..J 

FRO ----"---' 

FR1 

FR2 

FR3 ------' 

FR4 ------1 

FRAME 
DECODER 

CRCSEL 

FESEL 

CCIS ------f-f-+--+--_J 
FEXT --------1---11--1--+-------+--' 

SIGRQ 

00 
01 
02 

ASIG 

BSIG 

CSIG 

EOF ---------------------

CLK ------------------------____J 

Figure 9. Bit-Select Multiplexer 

x F 
y 
Q ~~)( SET 
RES c Q 
CLJ< D 
DCBA F Blk: BE 
H H H L H 

clecsigl.2 
A:C:r04 

A B:C:r01. 

Dgjc 
C:C:r02 
D:C:r03 
)(: B F X:decsig_l.2 
Y: 

F - -A*B~*D 

Figure 10. Frame-12 Decoder Example 

3-51 

BIN OUT 

CHCLK 

I 

• 



A T1 Communications Interface 

The framing decoder, CCIS, FeEXT, TLINK, TCRC and 
the associated logic will determine the proper bit to 
transmit. The frame decoder defines whether the Fe 
(frames 4, 8, 12, 16, 20 and 24) or CRC bit (frames 2, 6, 
10, 14, 18, and 22) is to be inserted into the framing bit 
position. When EOF is inactive, the least significant bit 
in the frame counter determines that the data link bit is to 
be inserted into the bit stream. CCIS and EOF are also 
used to gate transmissions of the framing bit. 

The framing decoder, the ASIG-DSIG, DATA BIT and the 
three least significant bits of the Modulo-193 counter 
determine the proper data bit to be transmitted. When 
the bit counter inputs are all in a zero state, the gating 
functions allow the previously__ sampled A, B, C or D 
signaling data to be inserted into the bit stream during 
the 6, 12, 18 and 24th frames, respectively. This 
signaling bit replaces the LSB from the data byte in the 
transmitted bit stream. 

Bipolar Generation 

The bipolar generation logic converts the binary output 
signal from the bit-select multiplexer into a pair of 
unipolar outputs. The bipolar generation logic utilizes 
an array of control logic along with a pair of registers to 
convert NRZ coded data into two unipolar alternate mark 
insertion (AMI) coded data. A third register indicates 
which unipolar output last received the mark pulse. 

These outputs can be externally tied to a T1 Line 
Interface Unit (LIU). The LIU will provide the paired 

unipolar output conversion to a bipolar signal. This LIU 
will also equalize the T1 transmitter circuitry to the 
transmission line. 

T1 TRANSMITTER DESIGN EXTENSIONS 

Many features of the T1 standard could be incorporated 
into designs similar to the one shown in this application 
note. One simple extension is the generation of the 
data format required for the CCITI (European version) 
version of the T1 standard. This version uses 256 bit 
frames (32 time slots of 8-bit bytes) for data transmission 
along with defined specific time slots sending signaling 
information. For flexibility, both designs could reside in 
configuration-program form, allowing the system to 
select which standard to use. 

Other possibilities could be insertion of a B8ZS zero­
suppression standard control section or alternate forms 
such as the HDB3 standard used in the CCITT format. 
Idle code transmission, digital milliwatt (the transmission 
of a repetitive data sequence in a individual channel), 
and internal CRC generation are all examples of further 
design extensions. 

With the advantages of LCA flexibility, a single EPROM 
could hold the configuration data for many different 
versions of the design. This would allow support of 
many transmission variations using the same common 
transmit hardware. 

3-52 



I 

• 

Placed and Routed T1 LCA Design 

3-53 



A T1 Communications Interface 

PIN 0010026 01 

3-54 



I 

• 

3-55 



The Programmable Gate Array Company 

SCHEMATIC 
CAPTURE FROM 
XILINX LIBRARY 

TIMING 
SIMULATION 

DS21 

DELAY 
CALCULATOR 

PRODUCTION 
RELEASE 

Logic Cell Array 

Development 
System Options 

LOGIC 
SIMULATION 

LEGEND 

COMPLETE 
SYSTEM 

The DS21 XACT Design Editor provides 
all capabilities required for Logic Cell Array 
design. Additional development system 
options provide enhanced designer productivity 
during design entry, placement and routing, 
and design verification. 



Table of Contents 

Introduction to Programmable Gate Arrays 
Logic Cell Array Data Sheet XC2064 I XC2018 
Logic Cell Array Data Sheet XC2064-1 I XC2064-2 
Testing and Data Integrity . . . . 
Non Hermetic Package Reliability . . . . . 

Methods of Configuring the Logic Cell Array 
Ins and Outs of Logic Cell Array 1/0 Blocks 
Placement and Routing Optimization 
A Design Methodology for the Logic Cell Array 
Counter Examples . . . . . . . . . . . . . . . 
Metastability Analysis of Logic Cell Array Flip-flops 
Reading Back Logic Cell Array Configuration Programs 

A UART Design Example 
A Printer Buffer Controller 
A Seven Segment Display Driver 
Cost Effective Hardware/Software Updates 
A T1 Communications Interface . . . . . 

Programmable Gate Array Development Systems 
PC System Configurations . . . . . . . . . . 
In-Circuit Emulation and Simulation . . . . . . 
Product Brief XC-DS21 XACT Design Editor 
Product Brief XC-DS22 P-SILOS Simulator 
Product Brief XC-DS23 Automated Placement and Routing 
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods 
Product Brief XC-DS31 FutureNet Schematic Library 
Product Brief XC-EK01 Logic Cell Array Evaluation Kit . . . . . . . . 

Technical References 
Glossary 
Sales Offices List 
Information Request Cards 

1-8 
1-50 
1-61 

2-42 
2-76 
2-98 

3-11 
3-29 
3-41 
3-45 

4-1 
4-5 
4-19 
4-23 
4-25 
4-27 
4-29 
4-31 

--------





INTRODUCTION 

Xilinx provides a Development System which facilitates 
the design of systems which incorporate the Xilinx Logic 
Cell™ Array (LCA). All of its software is designed to run 
on two widely available, low-cost workstations: the IBM® 
PC/XT™, and PC/AT™ computers. The purpose of this 
application note is to advise users of the software how 
they should configure their PC to make the best use of 
the software. For the most part, this consists of 
choosing among the myriad of options which may be 
used with a standard PC/XT or PC/AT. 

First, let's make sure what we mean by a PC/XT or 
PC/AT. There are many so-called clones of the IBM 
PCs. The difference in cost between one of these 
clones and the original can be significant. In addition, 
some clones offer features and/or performance greater 
than that of the original. For these reasons, purchase of 
a clone may be a cost-effective alternative. Every clone 
tested so far, which claims to be PC compatible, has run 
the current Xilinx software. 

MINIMUM CONFIGURATION 

The minimum configuration required to run the Xilinx 
XACT™ Design Editor for the XC2064 LCA is as follows: 

• 1 - PC/XT 

• 1 - Hard disk drive 

• 1 - Floppy disk drive 

• 640K Bytes of memory 

• 1 - RS-232C serial port 

• 1 - Centronics printer parallel port 

• 1 - Color Graphics Adapter (CGA) 

• 1 - Color Graphics Display (CGD) 

• 1 - Mouse 

This is a minimum configuration. For many applications, 
the performance of the software in this configuration is 
adequate. Additional equipment may be needed to use 
some Development Systems options, or to design with 
larger arrays. 

4-1 

PC System 
Configurations 

RECOMMENDED CONFIGURATION 

A more powerful configuration may result in significant 
improvements in productivity: 

• 1 - PC/AT 

• 1 - Hard disk drive 

• 1 - Floppy disk drive 

• 640K Bytes of memory 

• 2 - RS-232C serial ports 

• 1 - Centronics printer parallel port 

• 1 - EMS memory card with at least 256K 

• 1 - Enhanced Graphics Adapter (EGA) 

• 1 - Enhanced Graphics Display (EGO) 

• 1 - Mouse 

The first advantage of this configuration is performance. 
The performance of the software in this configuration is 
much improved over the minimum configuration. This is 
true both because of the improved performance of the 
80286 over the 8088 and the AT hard disk over the XT 
hard disk. 

The second advantage of this configuration concerns 
the display. Xilinx software only requires the CGA and 
CGD. However, the FutureNet™ schematic capture I 
package, which can be used in conjunction with the 
Xilinx software requires the EGA and EGO. In addition, • 
future versions of the Xilinx software will take advantage 
of the higher resolution of the EGA and EGO if available. 
The second serial 1/0 port provides a connection for the 
XACTOR™ In-Circuit Emulator. 

The final advantage of this configuration concerns 
future LCAs. Currently, we have squeezed both the 
XC2064 family and the XC2018 family of LCAs into the 
memory available on the PC/XT. Xilinx software to 
support larger LCAs will require the IBM PC/AT class of 
machines running a new version of MS-DOS™ which will 
use the protected mode of the 80286. The 
recommended configuration will provide support for the 
larger LCAs now in design. 



PC System Configurations 

SPECIFIC HARDWARE RECOMMENDATIONS 

Growth in the PC market has resulted in many options 
for each item in the configuration. The following is a 
description of the recommendations for each item: 

PC/XT 

There are many machines available in this category. 
Prices and quality vary greatly, but as noted previously, 
every compatible clone tested so far will run the current 
Xilinx software. The trade-off here is between quality 
and price. The IBM PC/XT has a proven record of 
reliability and the IBM keyboard has a better '1eel" than 
the keyboard found on most clones. On the other 
hand, a clone can be purchased for less than 1/3 the 
cost of the IBM. 

In addition to the system unit and keyboard, the PC/XT 
should include the following standard equipment: 

• 256K Bytes of memory on the motherboard 

• 1 - 360KB Floppy disk drive 

• 1 - 10MB Hard disk drive 

• 1 - Serial/parallel interface card 

The standard equipment helps to meet some of the 
other configuration requirements. If these are not 
included, they would have to be purchased separately. 

PC/AT 

There are many machines which fall into this category as 
well. However, there are a few more things to consider 
about clones of the PC/AT. Every clone of this type 
tested so far will run the current Xilinx software under 
versions of MS-DOS up to and including 3.2. However, 
since the protected mode version of MS-DOS is not yet 
available it is possible that a clone would not execute 
properly in that mode. One should try to get a 
guarantee from the manufacturer that their clone will 
work in the protected mode of MS-DOS, when that 
version arrives. Without such a guarantee, buying that 
clone will entail some risk-it will probably execute the 
current Xilinx software, but may not execute future 
versions of the software which require the protected 
mode MS-DOS . 

One of the most compelling reasons for selecting a 
PC/AT clone is that many of them are considerably faster 
than the the original. IBM has 2 PC/ATs: one runs at 6 
MHz and the other at 8 MHz. This speed improvement is 
quite noticeable when executing the Xilinx software. 
However, there are some potential pitfalls to selecting a 
faster machine. The biggest problem seems to be that 
not all add-on cards will behave properly in a faster 
PC/AT. Specifically, problems have been observed with 

4-2 

serial interface cards. The problem has been observed 
both in cards from IBM and in others. 

In addition to the system unit and keyboard, the PC/AT 
should include the following standard equipment: 

• 512K Bytes of memory on the motherboard 
• 1 - 1.2MB Floppy disk drive 

• 1 - 20MB Hard disk drive 
• 1 - Serial/parallel interface card 

As with the PC/XT, the standard equipment helps to 
meet some of the other configuration requirements. If 
these are not included, they must be purchased 
separately. 

640K of Memory 

The memory requirement is met differently depending 
on whether one is starting with a PC/XT or PC/AT. 

On a PC/XT, the 640K memory requirement is usually 
met with a multifunction card which has 384K of memory 
and a serial port. The most widely used such card is the 
AST Six-Pak™. Another way to meet this requirement is 
with a multifunction card which provides a serial port, 
384K of memory and 256K of EMS memory. An 
example of this kind of multifunction card is the Intel 
Above™Board/PS. 

On a PC/AT, this requirement is usually met with a 
multifunction card which has 128K of memory and a 
serial port. The most widely used such card is the AST 
Advantage™. Another way to meet this requirement is 
with a multifunction card which provides a serial port, 
128K of memory and 256K of EMS memory. An 
example of this kind of multifunction card is the Intel 
AboveBoard AT/PS. If you should decide to get 
separate cards for the additional memory and an extra 
serial port be careful when selecting serial port cards. 
Several serial cards, both from IBM and others, do not 
work in PC/AT's running at more than 6 MHz. 

EMS Memory Card 

An EMS memory card extends the PC memory beyond 
640K bytes. Sometime ago Lotus, Microsoft and Intel 
proposed a software standard for accessing a 64K page 
frame with a virtually unlimited number of pages. This 
standard is the "Expanded Memory Specification" or 
EMS. Because of the names of the companies 
involved, it is also sometimes referred to as the "LIM" 
standard. Hardware manufacturers have produced 
cards and related software device drivers which meet 
this standard. Software manufacturers like Xilinx have 
developed software which uses this standard to access 
memory in excess of the standard 640K. In the current 



Xilinx software, the EMS memory is used to expand the 
available memory so there is room for the extra data 
necessary to support larger LCAs, specifically the 
XC2018 family of LCAs. 

There are several different cards which meet the EMS 
standard: 

• Intel AboveBoard 

• Intel AboveBoard/PS 

• AST RamPage 

• Techmar Maestro 

This is not a complete list. There are several other cards 
on the market. Since there is a published standard for 
these cards, any card which claims to be an "EMS 
Standard" card should work with the Xilinx software. 
Usually, each card has 2 types: one type for the PC/XT 
and another for the PC/ AT. 

For the PC/AT, some extra features should be 
considered when purchasing an EMS card. These 
involve the protected mode MS-DOS which will be 
available in the future. The EMS card should be re­
configurable to be "extended memory" rather than 
"expanded memory" for use with protected mode MS­
DOS when it becomes available. The 8088 processor, 
which is found in the PC/XT (and its cousin the 8086) 
can directly address only 1 MB of memory. The 80286, 
which is found in the PC/AT, can address up to 16MB of 
memory when executing in its "protected" mode. IBM 
coined the term "extended memory" to refer to that 
memory in a PC/AT which is above the 1 MB limit and can 
only be accessed by the 80286 in protected mode. An 
EMS card which can be reconfigured as "extended 
memory" will be useful when the protected mode MS­
DOS is introduced. The Intel AboveBoard/AT is one 
EMS card which offers this feature. 

Color Graphics Adapter (CGA) 
and Color Graphics Display (CGD) 

As first defined by IBM, the PC included two different 
display options. The first was the Monochrome Display 
and the second was the Color Graphics Display (CGD). 
The interfacing of these displays to the PC was done 
with two different cards: the Monochrome Display 
Adapter (MDA) and the Color Graphics Adapter (CGA). 
The Monochrome Display and MDA can only be used to 
display text. The text is of very high quality because the 
font is 9X14 pixels, i.e. 126 dots (9 times 14) were used 
to represent each text character. The Monochrome 
Display and its adapter were not designed to display 
graphics. The CGD and CGA were designed to display 
text and graphics. The text however is of poorer quality 
than the Monochrome Display because the font used is 
8X8 pixels, i.e. 64 dots (8 times 8) were used to 

4-3 

represent each text character. The CGD can display 
graphics by allowing individual pixels, or dots, in a 
320X200 grid to be manipulated. Each dot can be one 
of four colors. These two displays and adapters became 
the established standards. Since then, many other 
displays and adapters have been designed. Most of 
them are compatible with one of the original displays and 
offer other additional features. IBM designed a new 
display called the Enhanced Graphics Display (EGO) and 
an adaptor called the Enhanced Graphics Adapter (EGA) 
which emulates the older CGD and CGA. The EGO and 
EGA display text in a 8X14 pixel font and can display 
graphics in a native mode by allowing a 640X350 grid of 
pixels to be manipulated. 

Which is the right display for a system to be used for 
designing with LCAs? The minimum requirement is a 
display and an adapter that are compatible with the CGO 
and CGA. However, there are several reasons to 
choose the EGO and EGA. The first relates to the 
FutureNet™ schematic capture package. FutureNet 
requires a display and adapter that are compatible to the 
EGO and EGA. The EGO and EGA's text display is much 
better than that of the CGO and CGA. With the EGO and 
EGA, you can use your machine for other applications 
which require only a text display. When the EGO and 
EGA are used by the current Xilinx software, graphics will 
be displayed in the CGO and CGA compatible mode and 
text will be displayed in the native EGO and EGA mode. 
In the future however, Xilinx software which will use the 
EGO and EGA in the higher resolution native graphics 
mode will be available. 

Mouse 

Prior to release 1.3 of the Xilinx software, the choice of a 
mouse was easy: only the PC Mouse from Mouse 
Systems was supported. Starting with release 1.3 of the I 
Xilinx software however, several different kinds of mice 
~~~~: . 
• PC Mouse from Mouse Systems
• Microsoft serial mouse

• MicroSoft parallel mouse

• LogiTech mouse
• FutureNet mouse

In addition to these mice, the software will also support
any mouse which is either compatible to the PC Mouse
or has a device driver which makes it look like a Microsoft
Mouse. The choices here are driven by cost and by the
requirements of other software used with the Xilinx
software. With the FutureNet schematic capture system
one should use the FutureNet Mouse which comes with
that system.

t

'.!! z

§
8
Ill
~

Auto Place Schematic Entry
and Route P-SILOS

XACT XACTOR (APR) Simulator Futurenet

System Memory1 ,2 640K 640K 640K 640K 512K

Floppy Disk 360K 360K 360K 360K 360K

Hard Disk3 10MB 10MB 10MB 10MB 10MB

Mouse Systems,
Mouse Microsoft, None None FutureNet

FutureNet, or none

Display and Standard Color Monochrome or Enhanced
Adapter Card4 Display and Adapter Standard Color Color with 256K

Serial Port 1 (Mouse) 2 (Mouse, 0 0 0
XACTOR)

1 (Download 1 (Printer, 1 (Printer, 1 (Printer, 0
Parallel Ports Cable, Printer, Security Key) Security Key) Security Key)

Security Key)

Expanded With 256K With256K
Memory for xc201a None for XC2018 None None
Cards Designs Designs

1. The XACT, XACTOR and APR programs will utilize expanded memory, if available.
2. XACT, XACTOR and Auto Place and Route, require SOOK Bytes of available system memory to operate on a full design.
3. XACT, XACTOR and P-SILOS combined require 3 M Bytes of Hard disk. Auto Place and Route requires an additional 1 M Byte.
4. The XACT and XACTOR Program will utilize the enhanced color capability, if available.
5. The following printer types are supported: OK192, IBM Graphics, HP Laser, MXSO, MX100, FXSO and FX100.
6. EMS card not required for XC2064 designs.

Table 1. Minimum PC Configurations for IBM PC XT/ATor Compatibles with DOS 2.1 or Later

~
~.-... -,....-,

~

1
CD
3

f1
3.
ri
c a s·
i

This Application Note describes the operation of two
design verification tools for designers using Logic Cell™
Arrays: the XACTOR™ In-Circuit Emulator, and the P­
SILOS logic simulator.

The Logic Cell™ Array (LCA) combines a high-perfor­
mance, general-purpose gate array architecture with
user programmability. Since the Logic Cell Array is user­
programmed, designs can be verified in real-time in a
system during development.

Certain innovative provisions of the Logic Cell Array
extend this in-circuit verification capability to in-circuit
emulation. Emulation permits reading the state of inter­
nal logic and 1/0 latches during operation, as well as
temporarily configuring unused 1/0 pins to monitor
internal nodes during real-time operation.

While in-circuit emulation adds a unique and valuable
capability to an ASIC designer's repertoire, simulation
remains a useful complementary tool for verification of
critical paths and worst-case timing analysis. Simulation
may also be used to verify logic modules before a
prototype system is available for in-circuit emulation.
With the Logic Cell Array (LCA), however, ASIC design
success is no longer dependent on painstaking and
exhaustive simulation.

DESIGN METHODOLOGY

The Logic Cell Array design methodology is based on a
natural, iterative design approach in which successive
design implementations can be readily verified in-circuit,
as described in a design example below.

The implementation of a Logic Cell Array design has
three stages: design entry and partitioning, placement
and routing, and compilation of the configuration
program. First the design is entered, using either a PC­
based schematic capture package with a Xilinx library, or
with the Xilinx XACT™ LCA Design Editor. Schematic
entry permits entering the design with standard logic
symbols such as gates and latches. The XACT editor is
a graphical environment which permits direct design
entry using equations or Karnaugh maps for each LCA
Configurable Logic Block.

4-5

Fundamentals of In-circuit
Emulation and Simulation

The design is then partitioned into blocks of logic
corresponding to the LCA's Configurable Logic Blocks.
For schematic entry users this is done by automatic gate­
to-LCA partitioning software provided with the sche­
matic library. For XACT users, the partitioning is per­
formed by the designer during design entry as each
logic or 1/0 block is configured.

As with a conventional gate array, each partitioned logic
and 1/0 block is "placed" by assigning it to a specific
physical location within the Logic Cell Array. Then the
interconnect networks between blocks are routed.
When a design is entered or edited with XACT,
placement of each logic and 1/0 block is done implicitly
as the block is configured to have the desired function.
Routing software within XACT then automatically
allocates programmable routing resources for each net
in the design. Use of special interconnect resources
such as direct interconnect and long lines for time-critical
nets can also be specified by the designer.

As an alternative to interactive placement and routing
with XACT, designers may use a separate Xilinx software
package on their PC to place and route a design which
has been entered and partitioned with either the
schematic entry package or XACT. Placement and
routing constraints (such as forcing a net onto a long
line) may be specified schematically with special
attributes, or with a constraints text file. •

Once a design has been placed and routed, it is auto­
matically compiled by the XACT system into a config- •
uration program. For quick checks of performance
during design entry, the design editor's built-in delay
calculator provides a timing analysis using calculations
based on actual logic placement and routing.

Once a design has been implemented, it can be verified
using the in-circuit emulator. A design is emulated by
programming an emulation pod that is plugged into the
target system. The heart of the in-circuit emulator is a
Logic Cell Array within an emulation pod (Figure 1). The
emulation LCA, connected to the target system by a flex
cable, then performs the same function as an LCA
plugged directly into the target system.

This realtime operation of the LCA in the target system

Fundamentals of In-Circuit Emulation and Simulation

provides the ultimate verification of an LCA design's
interaction with the other elements in the system.

Another advantage of emulation is that the LCA is also
under control of the designer's PC. The basic functions
of the emulation system are to program the emulation
pod's LCA with the designer's configuration, to monitor
and control the LCA's programming and control signals,
and to readback and display the LCA's latch states. The
emulation controller can manage up to four emulation
pods concurrently.

Due to the speed with which a design can be quickly
modified in-circuit using XACTOR, it is frequently useful
to implement temporary debugging circuitry in a design
during development-such as temporarily connecting
unused 1/0 blocks to internal nodes for viewing with a
logic analyzer or an oscilloscope.

Once the design function has been verified in-circuit,
the designer may simulate critical paths to ensure
correct timing under worst-case conditions. Since the
design's functionality has been verified in-circuit at this
point, a complete functional simulation is not generally
necessary. By eliminating simulation for complete func­
tional design verification, the computer resources
required for simulation are significantly reduced. An IBM
PC provides adequate performance for timing simulation
of critical paths.

Simulation can also be performed on unrouted and
partially routed designs. An unrouted net will be simu­
lated with zero interconnect delay, permitting a check of
the design's logic. On extremely dense designs this
logical check is useful since it permits designers to verify

TO PC DEVELOP·
MENT SYSTEM

RS232
µP

CONFIGURATION
PROGRAM

BUFFER

POD/LCA
CONTROL
CIRCUITRY

EMULATION CONTROLLER

the design's logic before performing final placement and
routing. This is especially useful for designs entered
with a XILINX-supported schematic capture package
which have been partitioned but not placed and routed.
An unrouted design may also be created in XACT by
turning autoroute off before entering the design.

DESIGN EXAMPLE

The simple dual-speed, variable modulo counter of
Figure 2 was designed to illustrate the basic operation of
the XACTOR™ in-circuit emulator and the P-SILOS™
simulator. All input and output pins correspond to
switches and LEDs on the Xilinx DB01 Demo Board for
readers who wish to experiment further with the design.

The circuit counts until its four outputs reach 0000, at
which point it begins counting again at the number
specified by the four parallel data inputs, 03-DO. The
counter's up/down direction is selected by the switch
input UP _ON, and its speed is selected by SW_SPEED.
SW_SPEED = HIGH will cause the counter to run at the
crystal's 1 MHz speed; SW_SPEED =LOW will select a
divide-by-eight circuit to run the counter at 125 KHz.

For example, if 03-DO are set to 0011 (3),
UP _DN=LOW (down), and SW_SPEED=HIGH (fast),
then the counter will repeat the sequence

3-2-1-0-3-2 ...

at the crystal's 1 MHz frequency. Each time the count
equals zero a terminal count (TC_OUT) goes high for
one clock cycle.

DD
GENERAL DD LOGIC PURPOSE LOGIC

CELL 110 CELL
ARRAY DD ARRAY SOCKET

EMULATION DOD D CIRCUITRY

EMULATION POD(S) SYSTEM UNDER DEVELOPMENT

0010000 1

Figure 1. Emulation POD Interface

4-6

The up/down counter is constructed from the C16BUD­
RD macro supplied with XACT. The Hl_LO logic block
provides a HIGH signal which constantly enables the
counter's clock enable input (CLKENA), and a LOW
signal which constantly disables the counter's reset line.
In a design where space is critical, a more efficient solu­
tion would have been to modify the counter blocks to
eliminate the unused clock enable and reset functions.

The four counter outputs (CNT_Q3-CNT_QO) are
routed to the outputs Q3_0UT-QO_OUT, and to the
parallel enable decode block, PE_TC. Each time the
counter reaches zero, PE_ TC drives the counter's
PARENA input (and the TC_OUT output pin) HIGH,
loading the counter with the four D3-DO bits.

The crystal oscillator clock and divide-by-eight prescaler
are implemented with the GXTL macro and a 3-stage
binary ripple counter. A multiplexing circuit controlled by
SW_SPEED selects between the full-speed clock and
the output of the prescaler. SW_SPEED is synchro­
nized with the crystal clock at the 1/0 block to prevent
clock glitches during speed changes. While not
required for a design running at only 1 MHz, the output

PIN 111/0 BLOCK REGISTER

SPEED

l:XlLINX

of the dual-speed clock is routed to the CLK.AA clock
buffer to reduce skew at the counter's clock input.

IN-CIRCUIT EMULATION

Installation and operation of the XACTOR In-Circuit
Emulator is detailed in chapter 8 of the XACT LCA Devel­
opment System user manual. Hardware installation
consists of connecting the emulation controller to a
serial port of the PC-based XACT development system,
and connecting one or more emulation pods between
the controller and the target system under devel­
opment, as shown in Figure 3.

In addition, XACTOR users should ensure that the emu­
lation pod assembly contains an LCA of the same speed
grade specified for their design. The emulation Logic
Cell Array can be easily removed from its pod assembly
and replaced with an LCA of the appropriate speed.

After hardware installation, the XACTOR in-circuit
emulator is invoked from the XACT development system
Executive by selecting the XACTOR program from the

SW_SPEED 11 D 01-----------------------~

1MHz
XTAL

UP_DN

D3_1N

D1_1N

OO_IN

0010030 2

CLBCOODIV CLBCQ1DIV

·1· 'O'

CLKENA RESETDIR
4BITUPIDOWN

MACRO
COUNTER WITH

C16BUD-RD
PARALLEL LOAD

UP

D3 CNT_Q3

D2 CNT_Q2

D1 CNT_01

DO CNT_QO

PARENA

Figure 2. Dual Speed, Variable Modulo Counter

4-7

CLBCQ2DIV

CLK.AA
CLOCK
BUFFER

02_0UT

01_0UT

QO_OUT

• -

Fundamentals of In-Circuit Emulation and Simulation

PROGRAM menu. Once the XACTOR software is run­
ning (Figure 4), emulating a Logic Cell Array design
typically consists of:

1. Turning ON the system under development,
2. Loading LCA configuration program(s) into the

emulation controller, and
3. Programming the appropriate emulation pod(s) with

their configuri:ition program(s).

Once programmed, a pod provides the same function as
a Logic Cell Array plugged into the target system.

Loading the configuration program(s) into the XACTOR
emulation controller is initiated with the LOADBITS
command in the SETUP menu. A menu of all config­
uration bitstream files on the PC will be displayed. As
each file is selected it is loaded into the emulation
controller. The DONE command is used to indicate that
all required bitstreams are loaded into the controller.

Any of the loaded bitstreams can then be used to pro­
gram any pod connected to the controller. First the
POD command in the XACTOR menu is used to specify
a pod to program. Then the XACTOR menu's
PROGRAM command is selected. A menu of the
bitstreams in the controller is displayed, and the user is
asked for both a primary and alternate bitstream. The
same bitstream should be selected for a pod's primary
and alternate bitstream (unless XACTOR's dual bit­
stream capability is being utilized as described in the
XACTOR documentation).

D
MOUSE

If the AUTOLOAD setting is OFF, the pod will be pro­
grammed as soon as the PROGRAM command is
completed. The emulation pod's Logic Cell Array will
then operate as configured in the designer's circuit, in
real-time.

If programming is to be initiated by the target system,
using the configuration program stored in the emulation
controller, the AUTOLOAD setting must be ON. When
the target system's Done/Program line is pulsed LOW,
the emulation pod will be programmed with the specified
configuration program.

READ BACK

The Logic Cell Array has a built-in readback feature
which permits reading the configuration and logic latch
state of a configured LCA during operation. Since read­
back permits viewing the state of each latch in a design,
this feature is especially useful when debugging
counters and state machines.

For example, in the dual-speed counter it is possible to
read and display the state of each of the counter
latches. Although the readback process is performed
transparently while the Logic Cell Array is operating, it is
typically necessary to temporarily inhibit further state
changes during the readback period (typically 12 milli­
seconds or less). This is because readback is sequen­
tially performed on each column of LCA elements.

SYSTEM(S)
UNDER
DEVELOPMENl

PC-BASED DEVELOPMENT SYSTEM

•SCHEMATIC CAPTURE

XACTOR2 IN-CIRCUIT EMULATOR

• DESIGN PLACE & ROUTE
• COMPILATIONOFCONFIGURATION

PROGRAM
• CONTROL OF IN·CIRCUIT EMULATOR

• REAL· TIME EMULATION OF 4 LOGIC CELL ARRAYS
• READBACK OF INTERNAL DESIGN STATES
• ACCESS TO INTERNAL NODES DURING DEBUG

Figure 3. In-circuit Emulation Development System

4-8

0010030 3

During design debugging, therefore, it is useful to add
circuitry which permits single-stepping the design
clock(s). When a clock signal is generated externally,
single-step circuitry may be added either within the LCA
design, or externally. When a design uses the LCA's
built-in crystal oscillator, as in the dual-speed counter
example, the circuitry can be added internally, or the
crystal can be replaced with an external clock source
which can be single-stepped. In the DCOUNTER
design, the crystal oscillator was temporarily replaced
with a debounced switch to single step through several
count sequences.

Figures 5 and 6 show the result of performing a read­
back of the design example between two consecutive
clock pulses. The latches corresponding to each
design element can be identified by comparing the
readback figures with the ''world view" of the LCA
design in Figure 7. Note that in both cases the cursor
has been placed over the CQOCNT block, so the status
line (third line from the bottom of the screen) shows the
block's name, position, and current logic state.

Although not specifically used in this design example,
XACTOR has provisions for isolating and monitoring
several 1/0 and control lines. The operation of these
features is described in the XACTOR documentation.

SIMULATION

Once the function of a design has been verified in­
circuit, designers can simulate critical paths to ensure
that the design will function under worst-case process,
voltage, and temperature conditions. Simulation is also
a useful tool for determining the Logic Cell Array speed
grade required for a particular application. The following
discussion, while based upon a specific design
example, is intended to illustrate the general mechanics
of using P-SILOS.

Before simulating a design, the designer must create a
simulation network description of the design, and a simu­
lation setup file that defines the design's inputs and spe­
cifies which logic nodes to monitor and graph (Figure 8).

The SIMGEN program in the XACT Executive auto­
matically creates a simulation network description of the
design that is currently loaded into XACT. The network
includes delay parameters corresponding to routing and
logic delays, setup times, and hold times based upon
the selected speed grade operating under worst-case
temperature, voltage, and processing conditions.
Unrouted LCA nets will be simulated with zero inter­
connect delay, permitting logic verification of unrouted
logic paths.

l
.. D." :··· ... ~ ... (:;;"··:;;,"·:;· .. ······

JP o «l ., 1 U ,..(.... On
Au. t:o 1 o.c.11..41: Off

jt~~::~itr!!~~~~r~i~fi\I
i""JtESETICl osed 3-s t IH ~
iM0/""RT'ICl osed 3-s t I" 1
lM.1/"""RD Closed 3-s t Hi
1g~~~ ig} g~:i ~=~ t .~.QI
!DIN fc1 osedl3-s t '.Pi n55 1Cl osedl
!Pi n46 ICI osec\.ii,;;:,3;,· .. ;1;1''11;:· .. :,~, f"I , .. , c· 'I.If iu:Jt .• _ 1.. l, .i~.:11~ A 1P1n43 Closed1 ·
!Pi n40 1Cl osedlµ.n~~~.~ .. ~
!Pi n28 !Cl osed1·lfl::1i.:1~:r.: .. t .. I .. ~.:[!~_i·~~: .. 1

1!1'. .. ~ IJ.! .. !1.~J ... Q .. ~ .. ~ .. ~.1.?. .. @~ .. ~.~.~f~ .. ~I i
1 """"""""·'""" """''"'"'·'"''"""'"'•'"!"''·'

Figure 4. XACTOR2 Menu

4-9

I

.J I
... ...1

• -

Fundamentals of In-Circuit Emulation and Simulation

XACTOR2 Setup P~ofile Misc

... 1.j·o: .. ~1 : .. T o·c~:; .. :· .. 0·11 ,
Autoload:orr 1

Setu11:•: .. 1 ... ,

~tD~i~~il!tf i~~t~-u~1
iMe/'-RT Closed3-st Lo
M1/'-RDClosed3-st Lo
D/-p Closed3-st Hi CCLK Closed3-st
DIN Closed 3-s t Pin 5 5 Closed ... ,
P ~ n 46 c 1 o s e d ·p·o; .. :~r 5ft"aI
P 1n43 Closed .. .
Pin 49 Closed .Y .. Q. .. Y..~ .. ~ .. ~
Pin 2 8 C 1 o s e d .l..~.~ .. t I .. !l. .. P..~
l.l..ln .. ! .. ! ~.1 .. 9. .. ~ .. ~ .. ~ .. ?. .. ~.~··'-·~~.~ .. ~
:IH:]I. 11::11 11:::: :lk '1· 1C: 11:;1! 11;:~1111:::: 11 .. 11 t ·1' i(1n1 Ii:)1 :: .:11..

CMd:

1·t·a .. i"c .. ii ;v ... ~i~ r ~.i(~ ·5 · ,
........... Dtl' Dtf"r:ltl "'i!:l"ft:'i~r lltl. W "!lit:! .. "I

. D l'"'I l""I ~.. -0 D r..1 "" "" Cl

: D 0 0 0 D D D :

~ 0 D D D D D D 0 :

~ • D D D D D D D ~
c 0 D 0 D 0 D D D 0

~ a a a o o o o o ~
~ D D 0 a a D D D ~

:_:~~-~-:~-~-~J
Figure 5. LCA READBACK, Counter= 0001 Prescale Counter= 010

XACTOR2 Setup P~ofile hisc

Readback coMplete ...
CMd:

~ .. ·~
~ ... ~

c
!'"''"
lli ... i:

~ ... ,,
!;.,Ji

c
~ ••• 1:

:::;;

[} []

l!'''"t:
11 ... ~

,
" :

If""~

·: .. J
.-fl
·t:i

Ci

Figure 6. LCA READBACK, Counter= 0010 Prescale Counter= 011

4-10

[i ..
11. ... ll

[~ ~···1!

11 ... ;.

f.] f"' ...
.:i""".i [! ~ .. .J: ~:1!:

D ,""1;
: J~

' ~::: !

l:lii
·~·~ ; ';"'') .,"'1: '•oi•t

:k.,j, i. ... ~ ~::1:

Ci Ci
....

ru rm~ ~ro ~~ ~im~Sl9 s~ e~ mi~ ~

u u u ID

u u u [}

ID

u u u u [}
jfil

1D {} CQl u u u u u u u div

{} ID
~ u u u u u u u la]

ID
ID CJ u CJ u CJ 0 0 u ID
ID u u u u u u u u [}

u u u u u u u u ID
I

~ rJ
~ mm ~~ imim ~s IJ -

Figure 7. DCOUNTER.LCA Design Example

4-11

Fundamentals of In-Circuit Emulation and Simulation

When executed while the LCA design
DCOUNTER.LCA is loaded, SIMGEN writes a simulation
network description to DCOUNTER.SIM. The first time
the network file is created for a design, SIMGEN also
creates a default simulation setup file
(DCOUNTER.DAT). Since the setup file is typically cus­
tomized with a text editor by the designer, SIMGEN will
not overwrite the file on successive design iterations. It
is therefore necessary for the designer to ensure that
the .DAT file is kept up to date if subsequent design
changes add or remove logic nodes. This is especially
important to remember when using a hierarchical
schematic capture package since the hierarchy names
may change when new levels are added.

The default setup file created by SIMGEN for the
DCOUNTER design example is shown in Figure 9.
Lines must be less than 80 characters, and any text after
a comment character($) is ignored (such as the four line
header which records the device type used to
implement the design). The first command line is a
command to P-SILOS to read the simulation network file
DCOUNTER.SIM.

The following eight lines define each of the design's 1/0
block inputs as clocks with an initially unknown state. If a
crystal oscillator is used, the crystal oscillator clock line
(XCLKXTL in design example) is set to a default fre­
quency of 500 KHz. A global reset input, GLOBAL
RESET-, is always created and included which is
defined to pulse LOW for 1 ns, corresponding to the

.SIM FILE

Logic Cell Array's initial logic reset after configuration.
The signal corresponds to the LCA's RESET pin.

The .MONITOR instruction, which lists each 1/0 block
input and output, initially assumes P-SILOS should mon­
itor and display each input and output node during a
simulation run. As described below, additional (internal)
nodes can be added to the .MONITOR instruction so
designers can monitor the state of any desired nodes as
simulation progresses.

SIMULATION SETUP

Before beginning simulation, designers can use a text
editor to modify the default setup file to specify initial
input states.

In practice, the designer will need to assign to each
input an initial logic state. A node's logic state is defined
by its level and its strength, of which 12 combinations
are possible. A node can be driven to a LOW level (0), a
HIGH level (1), or can be unknown(*). A node's strength
indicates its effective resistance, or how easily charge
can be added to or removed from a node. Allowable
logic strengths are supply level (S), driving level (0),
resistive (R), or high-impedance (Z).

An 1/0 block configured as an input is typically specified
by the P-SILOS user to be driven by a supply strength
(S), since it is assumed that the output driving the LCA's

.DAT FILE

SIMULATION NETWORK SIMULATION SETUP FILE,
DESCRIPTION OF INITIALLY CREATED BY

DESIGN, CREATED BY SIMGEN; EDITED BY
SIMGEN FROM .LCA FILE DESIGNER

I I
INTERACTIVE
CONTROL OF

~ SILOS PROGRAM SIMULATION
SESSION BY

DESIGNER

I l t
OUTPUT SAVE

FILE FILE

OUTPUT RECORD OF PRINTER
GRAPHS ALL SIMULA·

AND TABLES TION RESULTS

0010030 8

Figure 8. Silos Inputs and Outputs

4-12

inputs can source or sink infinite charge. Internal logic
signals and LCA outputs default to driving strengths (D).

An external output driving a bidirectional 1/0 block may
be specified as resistive (R) strength so the LCA output,
when enabled, will override the external source. If
simulating output contention is desired, the external
output can be alternately modeled as a driving (D)
strength when active, and high impedance (Z) when
inactive. If contention occurs between the two driving
outputs, the output state will appear as D* during
simulation. This simulation technique places the burden
of establishing the strength of the external output upon
the P-SILOS user, but may result in a more accurate
simulation of the bidirectional signals.

The logic states P-SILOS can use are:

Supply Driving Resistive

High S1
Unknown S*
Low SO

D1
D*
DO

R1
R*
RO

High-Z

Z1
z·
zo

The example of Figure 10, which is an edited version of
the default setup file, illustrates several useful P-SILOS
instructions.

CLOCKS AND PATTERNS

For simulation purposes, a Logic Cell Array crystal
oscillator is not modeled. Instead the designer directly
defines the state of the crystal buffer's output
(XCLKXTL in the design example). The command

XCLKXTL .CLK 0 SO 500 S1 1000 SO .REP 0

is used to define the crystal oscillator output as a supply­
strength 1 MHz clock which is low for 500 nanoseconds,
high for 500 nanoseconds, and then repeats the
pattern indefinitely from time 0. For inputs which are not
regular, any number of transitions at arbitrary intervals
may be specified with .CLK.

The .PATTERN instruction permits specifying input
logic patterns as a group. This instruction is especially
useful in conjunction with the .HEX or .OCT instructions
which group nodes into a logic bus. For example the
. HEX instruction in DCOUNTER.DAT specifies that the
four parallel load inputs can be grouped together into a
group called DBUS, whose levels can be specified with
a hex digit. Setting DBUS to 5 within a .PATTERN
instruction is equivalent is setting to D3=0, D2=1, D1=0,

and D0=1. The .PATIERN instruction in
DCOUNTER.DAT (Figure 10) defines a series of input
transitions on DBUS, UP _DN (the count direction
control), and SW_SPEED (the count speed select)
which test the basic operation of the design.

MONITOR, TABLE, GRAPH

The setup file should generally include a .MONITOR
instruction so that key node transitions are displayed
during simulation runs.

While calculating simulation results, P-SILOS will display
the changes on the nodes specified in the .MONITOR
instruction. This is useful to monitor the results of sim­
ulation as they occur. For example, if a lengthy
simulation sequence is being performed it is helpful to
monitor the key outputs to ensure that the simulation is
progressing as intended.

4-13

Each node in the table is displayed in one column.
Semicolons can be inserted to create blank columns
that can make the output display more readable. When
the list of nodes is longer than 79 characters, additional
lines can be used as long as the first non-blank character
is a continuation character(+).

The .TABLE instruction defines the nodes that are recor­
ded for later display with OUTPUT instructions. The
syntax and display format for the .TABLE instruction is
the same as for .MONITOR. Typically designers include
all nodes of potential interest in the .TABLE instruction
since these transitions are generally the ones scruti­
nized after simulation to verify design performance.

The nodes which P-SILOS will display in its graphical
format are specified in the setup file's .GRAPH instruc­
tion. The syntax is the same as for .TABLE, and the
node list is frequently the same, since one typically
wants to view the same nodes in both tabular and
graphic format. Several .GRAPH instructions may be
used to produce separate graphs, although it is
generally simpler to maintain one longer graph when
graphs are to be printed and stored to disk.

STARTING SIMULATION

Once the setup file (.DAT) has been created, P-SILOS
can be invoked from within XACT using the PROGRAM
menu's SILOS command, or from DOS by typing SILOS .
The simulation setup file DCOUNTER.DAT is loaded
using the command INPUT DCOUNTER; the setup file
then loads the simulation network DCOUNTER.SIM as
specified in the file's INPUT command.

• -

Fundamentals of In-Circuit Emulatlon and Slmulatlon

$
$ Simulation file for design 'DCOUNTER.LCA' type '2064PC68-50 1

$ Created by XACT Ver. 1.23 at 20:52:26 SEP 1, 1986
$
!INPUT DCOUNTER.sim

$ INPUTS:
DO IN .CLK 0 S*
oCIN .CLK 0 S*
02 IN .CLK 0 S* -03 IN .CLK 0 S*
GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches
SW SPEED .c~ 0 S*
UP-DN .CLK 0 S*
XCLKXTL .CLK 0 so 1000 Sl 2000 so .REP 0 $ Osc output pin

.MONITOR DO IN Dl IN D2_IN 03 IN SW SPEED UP DN XCLKXTL ; QO_OUT TC OUT cnt TC
+ Ql_OUT Q2=0UT QJ_OUT

Figure 9. Default DCOUNTER.DAT File Created by Simgen

$
$ Simulation file for design 'DCOUNTER.LCA' type 1 2064c68-50'
$ created by XACT Ver. 1.23 at 22:01:31 SEP 1, 1986
$
!INPUT DCOUNTER.sim $ READ SIMULATION NETWORK FILE

.HEX DBUS=D3_IN,D2_IN,Dl_IN,DO_IN $ DEFINE PARALLEL LOAD DATA 'BUS'

$ INPUTS:

.PATTERN DBUS UP_DN SW_SPEED
0 5 1 1 $ LOAD-COUNT=5, UP, FAST
15200 5 1 0 $ SLOW DOWN
20200 5 0 0 $ REVERSE DIRECTION
35200 8 1 1 $ LOAD-COUNT=B, UP, FAST
.EOP

GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches

XCLKXTL .CLK 0 SO 500 Sl 1000 SO .REP 0 $ 1 MHZ CLOCK

$ OUTPUT NODE DEFINITIONS TO WATCH WHILE SIMULATION RUNNING
.MONITOR UP ON SPEED XCLKXTL XCLK CNTCLK DIV_Q2 DIV_Ql DIV_QO
+ TC OUT D3-D2 Dl DO ;
+ Q3=0UT Q2_0UT Ql_OUT QO_OUT cnt_TC

$ OUTPUT NODES TO SHOW WITH 'TYPE OUTPUT'
.TABLE UP DN SPEED XCLKXTL XCLK CNTCLK DIV_Q2 DIV_Ql DIV_QO
+ TC OUT D3-D2 01 DO ;
+ Q3=0UT Q2_0UT Ql_OUT QO_OUT cnt_TC

$ OUTPUT NODES TO GRAPH WITH 'TYPE GRAPH'
.GRAPH CNTCLK ; UP DN ; SPEED ; TC OUT ; D3 ; D2 ; Dl DO
+ TC_OUT; Q3_0UT ; Q2_0UT ; Ql_OUT : QO_OUT ; CNTCLK

$ ADDITIONAL SILOS OPTIONS
.FORMAT .GFORMAT=l $ ENABLE PRINTING GRAPHICS ON EPSON PRINTER
.FILE .SAVE=DSAVE $ 1 SAVE 1 COMMAND WILL SAVE SIMULATION IN DSAVE.SIM
.FILE .STORE=DCOUNTER.OUT $ 'STORE' WILL PUT OUTPUT IN DCOUNTER.OUT

Figure 10. DCOUNTER.DAT Edited by Designers to Initialize Simulation

4-14

If any errors or warnings are encountered while loading
the .DAT and .SIM files, the command TYPE ERROR or
TYPE WARNING will display a description of the pro­
blems P-SILOS encountered. If needed, the P-SILOS
help facility is activated by typing HELP for a list of help
topics, or HELP <keyword> for help on a specific topic.

A simulation session generally consists of running a
simulation for some period of time based upon the
inputs specified in the .DAT setup file, then proceeding
interactively by changing the state of one or more inputs
and continuing simulation.

The SIM command specifies how many nanoseconds of
operation should be simulated without interruption,
starting from the current logic state. In the DCOUNTER
design, the command

SIM 40000

simulates for 40000 nanoseconds (or 40 clock cycles for
a 1 MHz clock). P-SILOS also recognizes K (x1000) and
M (x1000000) suffixes, so

SIM 40K

is equivalent. All nodes specified in the setup file's
.MONITOR instruction will be output to the screen
during simulation each time one of the nodes changes
state (Figure 11).

If it is necessary to abort the simulation process, the
standard DOS Control-Break keyboard input will stop
the simulation and return to the P-SILOS prompt.
Control-C will terminate P-SILOS completely, returning
the user to DOS. Control-Break is generally the
preferred method of aborting a simulation.

Input nodes can also be manually set to a state with the
SET command. For example, to resume the above
counter simulation, but counting in the opposite
direction, the commands

SET UP_DN=O
SIM5K

will set the up/down control line to O (DOWN) and
resume simulation for another 5 microseconds.

TABLE OUTPUTS

The TYPE command is used to direct previously
calculated simulation results to the PC screen, such as
tables of simulation results specified by a .TABLE
command, or graphs specified by a .GRAPH instruction.

After a simulation run, the command TYPE OUTPUT can
be used to display the state sequences of the nodes
defined in the .TABLE instruction. Users can select the
time interval to display, and whether to display the
nodes at fixed regular intervals or only when one of the
nodes changes state.

4-15

TIME
0

500
504
522
555
608
614
638

1000
1004
1025
1037
1500
1504
1537
1592
1596
2000
2004
2025
2037
2044
2500
2504
2537
2596
3000
3004
3025
3037
3500
3504
3537
3571
3587
3590
3592
3594
3596
4000
4004
4025
4037
4044
4063
4500
4504
4537
4596
5000

USXXC DDD TDDDD
PPCCN III C3210

ELLT VVV
DEKKC 0
NDX L QQQ U

T K 210 T
L

10000
10100
10110
11110
11111
11111
11111
11111
11011
11001
11001
11000
11100
11110
11111
11111
11111
llOll
llOOl
11001
11000
11000
11100
11110
11111
11111
llOll
11001
11001
11000
11100
11110
lllll
11111
11111
11111
11111
11111
11111
11011
11001
11001
11000
11000
11000
11100
llllO
11111
11111
11011

000 10101
000 10101
000 10101
000 10101
000 10101
000 10101
000 10101
000 00101
000 00101
000 00101
001 00101
001 00101
001 00101
001 00101
001 00101
001 00101
001 00101
001 00101
001 00101
000 00101
000 00101
010 00101
010 00101
010 00101
010 00101
010 00101
010 00101
010 00101
Oll 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
011 00101
010 00101
010 00101
000 00101
100 00101
100 00101
100 00101
100 00101
100 00101
100 00101

QQQQC
3210N

T
0000
UUUUT
TTTTC

00000
00000
00000
00000
00000
01000
01010
01010
01010
01010
01010
01010
01010
01010
01010
01110
01100
01100
01100
01100
01100
01100
01100
01100
01100
01110
01110
01110
01110
01110
01110
01110
01110
01111
11111
10111
10011
10010
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10010
10010

Figure 11 .. MONITOR Outputs During Simulation

• -

Fundamentals of In-Circuit Emulation and Simulation

A review of the state changes from time 20K to 25K in
250 ns intervals is displayed with the command

TYPE OUTPUT 20K TO 25K STEP 250

while the command

TYPE OUTPUT 20K TO 30K ON CHANGE

will display a table showing each node transition
between time 20K and 30K.

Tabular results can also be printed or saved on disk as
132 column ASCII text with the PRINT OUTPUT or
STORE OUTPUT command. If only a narrow (80
column) printer is available, NPRINT and NSTORE are
used instead.

The STORE commands will append the output in the file
STORE.OUT unless the .FILE .STORE instruction is
used to specify a different disk file. For example, if the
instruction

.FILE .STORE=DCOUNTER.OUT

has been executed (perhaps in the setup file), then the
command

NSTORE OUTPUT 0 TO 6.5K ON CHANGE

will append to the file DCOUNTER.OUT a table listing
each node change between time O and 6.5 micro­
seconds for the nodes listed in the .TABLE instruction.

GRAPHICAL OUTPUTS

The TYPE GRAPH command will display the nodes
(specified with the .GRAPH instruction) for any prior time
interval. P-SILOS displays the graph using text char­
acters so graphing is possible with either a monochrome
or color graphics adapter card. The starting and ending
times to graph are specified as in the command

TYPE GRAPH 0 TO 40K

which produces the graph of Figure 12. Once displayed
the graph can be scrolled with the graph mode's UP,
DOWN, RIGHT, and LEFT commands. There are zoom
commands (IN and OUT) which permit displaying more
detail or wider time frames as well. The TIME command
is a command to specify a specific starting and ending
time to be displayed on the graph. For example, once in
the graph mode, typing

TIME 2750 4750

at the graph prompt will display the indicated 2 micro­
second simulation period on the display. This command

is especially useful for examining small delays while
checking critical paths ..

P-SILOS will also PRINT, NPRINT, STORE and
NSTORE graphs, provided that printing graphs has
been enabled with the instruction

.FORMAT .GFORMAT =1

which causes subsequent graphical output for each
node to be displayed (or printed, or stored) on a single
text line. This command is not required if an IBM
compatible printer is used to print screen dumps using
the PC's PRTSC (print screen) command.

As before, the STORE commands will append the
graphs to the current output file.

BREAKPOINTS

Simulation breakpoints allow users to automatically stop
a simulation run if specified conditions are met.
Simulation normally continues until the last specified
SIM time point (or until Control-Break is pressed). Users
can also select node conditions that will terminate a
simulation. For instance, the DCOUNTER design
simulation can be halted in the event that the parallel
load data is set to 0 and PARENA is enabled since this
state will loop indefinitely. The instruction to set this
breakpoint condition would be

.BREAK D3_!N=0 D2_1N=0 D1_1N=0 DO_IN·O PARENA=1

SAVE/EXIT

The EXIT command will not automatically save the
current simulation records before exiting to DOS. If it is
necessary to later return to P-SILOS to continue from
the current simulation point, the SAVE command can be
used to save all previous simulation results before
EXITing. When P-SILOS is executed again, the GET
command will restore all simulation results from disk, and
the user can continue the simulation session as well as
review previous simulation results.

By default, SAVE and GET use files with various exten­
sions appended to the default name SAVE (such as
SAVE.SIM and SAVE.ERR). However, the instruction

4-16

.FILE .SAVE=CNTSAVE

would set the default SAVE filename to CNTSAVE (or
any other specified filename). The next SAVE
command will save all simulation results up to the current
state in files named CNTSAVE. When P-SILOS is
invoked later, the same instruction should be entered to
set the default filename again before using the GET

command; otherwise GET will attempt to read the default
files (SAVE.SIM).

SUMMARY

A useful methodology for Logic Cell Array users is the
combination of in-circuit emulation for real-time fun­
ctional design verification, and simulation for critical path
verification. The combination of these two verification
tools can significantly improve design productivity.

The XACTOR in-circuit emulator simplifies initial devel-

* P·SILOS (C,A •

opment work by permitting direct control of up to four
LCAs connected to a system under development. The
readback facility is especially suitable to debugging com­
plex state sequences, as it gives a snapshot of the inter­
nal operation of the Logic Cell Array during operation.

Simulation, while no longer required for exhaustive
function verification, is recommended for examining
critical path performance under worst-case conditions. P­
SI LOS simulates performance based upon actual delays
derived from the placement and routing of designs: it
permits interactive or batch control of input patterns and
the simulation session.

0 4000 11000 1 ~000 11.QOO ~OOQQ ~~DQQ ~llOQO 32000 360UO 40000
+· ••..... ·+· ··+· ·+··· ·+· ·+· ··+· ··+· -....... ··+

CNTCLK • ··-·-··_·_··_·_··-·-··-·-··-·-··-·-·· •••·•••·•• ··········---··-·-··-·-·· 1

UP_DN ···------------············· 3

SPEED • ·" •• • •••• " 5

TC_OUT • • 7

D3 •• "" •• " ••• "" 9

D2 • "."."." ..•••••.•••••• " •.•••• " •••• " •.••••••• "." " •••••• " ••••.••.•••••••• ""."" """.......... 11

D1 13

DO • 15

TC_OUT •• 17

Q3_0UT ---····················---·· 19

Q2_0UT • • • • • • • • • • • • • • 2\

Q1_0UT 23

QQ_OUT _··-··-··-··_··-··- _
____ •••••••••••••••••.•• ______ ••••••• 25

CNTCLK _. _. • _. _. • _· _. • _ ·-• • _. _. ·-·-· • _. _. • _._. ·---· • • • • • • • • ·---· • • • • • • • • ·---· • _· _· • _· _ •• 27

Figura 12. Simulation Graph of DCOUNTER Design Example

4-17

• -

Fundamentals of In-Circuit Emulation and Slmulation

PIN 0010030 01

4-18

FEATURES

• Runs on an IBM® PC/XT™, PC/AT™ or compatible
computer

• Complete basic system for design using Logic Cell™
Arrays

• Interactive graphical design editor
• Simplified definition, placement and interconnection

capability for logic design and implementation
• Macro library of 113 standard logic family equivalents

• Utility for user-defined macros

• Boolean equation or Karnaugh map alternatives to
specify logic functions

• Point to point timing calculations for critical path
analysis

• Automatic design consistency checking for
connectivity and design violations

• Documentation support with hardcopy output of
logical and physical configuration information

• Download cable to transfer configuration programs
from PC to LCA in target system

• Compatible hardware and software options to
enhance design productivity

GENERAL

The XACT™ Design Editor provides users with a
complete design and development system for
specification and implementation of designs using Xilinx
Logic Cell Arrays. Functional definition of Configurable
Logic Blocks (CLBs), Input/Output Blocks (IOBs) and
interconnection is performed with a menu driven
interactive graphics editor. An automatic router greatly
reduces the effort to interconnect logic.

Designs are captured with a graphics based design
editor using either a mouse for menu driven entry, or a
keyboard for command driven entry. Functions are spec­
ified by CLB and IOB definitions plus their intercon­
nections. The macro library and user defined macros
enable the user to easily implement complex functions.

The check for logic connectivity and design rule viola­
tion is easily performed. All unused internal nodes are
automatically configured to minimize power dissipation.

XC-DS21
DESIGN EDITOR

Product Brief

Interactive point-to-point timing delay calculation is pro­
vided for timing analysis and critical path determination.
This ability enables the user to quickly identify and
correct timing problems while the design is in progress.

Automatic generation of simulator input netlist files with
timing parameters simplifies the use of P-SILOS™ for
logic and timing simulation.

The XACT Design Editor includes hardcopy generation
to document a design and automatically track design
changes. Logic Cell Array configuration programs can
be automatically translated into standard EPROM pro­
gramming bit pattern formats.

A download cable included with XACT is useful for trans­
ferring configuration programs serially from the PC work­
station to a Logic Cell Array installed in a system. During
product development and debug this capability can be
used to save the time required to write a modified con­
figuration program into an EPROM.

Xilinx provides ongoing support for XACT users. For the
first year, software updates are included. After that, the
user may purchase the XC-SC21 Annual Support
Agreement to continue to receive the latest software
releases. XACT users also receive a technical bulletin
which includes information about Logic Cell Arrays,
software updates and hints for designers. In addition, I
Xilinx operates an electronic bulletin board to provide
software enhancements and interactive factory support.

•

4-19

XC-DS21 Design Editor

XACT MACRO LIBRARY

GENERAL CLBs FDCR D Flip-Flop w/ClkEna, Reset (1)
FDCS D Flip-Flop w/ClkEna, Set (1)

GADD Adder (1) FDM D Flip-Flop 2-lnput Data Mux (1)
GCOMP Compare (1) FDMR D Flip-Flop 2-lnput Data Mux, Reset (1)
GEQGT Equal or Greater (1) FDMS D Flip-Flop 2-lnput Data Mux, Set (1)
GMAJ Majority (1) FDM-rd D Flip-Flop 2-lnput Data Mux, ResetDir (1)
GMUX 2-to-1 Mux (1) FDM-sd D Flip-Flop 2-lnput Data Mux, SetDir (1)
GPAR Parity (1) FSR Set-Reset Flip-Flop w/Set Dominate (1)
GXOR Exclusive-OR (1) FRS Set-Reset Flip-Flop w/Reset Dominate (1)
GXOR2 Dual Exclusive-OR (1) FJK J-K Flip-Flop (1)
GXTL Crystal Oscillator (0+2108) FJKS J-K Flip-Flop w/Synchronous Set (1)
GOSC Low Frequency (1+2108) FJK-rd J-K (Set-Reset) Flip/Flop w/ResetDir (1)

Resistor-Capacitor Oscillator FJK-sd J-K (Set-Reset) Flip/Flop w/SetDir (1)
FJK-srd J-K (Set-Reset) Flip/Flop w/SetDir, (1)

PADS IOBs ResetDir
FTO Self Toggle Flip-Flop (1)

PIN Input Pad (1) FTOR Self Toggle Flip-Flop w/Reset (1)
PINO Input Pad w/Storage (1) FT Toggle Flip-Flop (1)
PIO Input/Output Pad (1) FTP Toggle Flip-Flop w/ParEna (1)
PIOQ Input/Output Pad wllnput Storage (1) FTP-rd Toggle Flip-Flop w/ParEna, ResetDir (1)
PIOC Input/Output Pad w/'Open Collector' (1) FTR Toggle Flip-Flop w/Reset (1)
PIOQC Input/Output Pad w/lnput Storage, (1) FTS Toggle Flip-Flop w/Set (1)

'Open Collector' FT2 2-lnput Toggle Flip-Flop (1)
POUT Output Pad (1) FT2R 2-lnput Toggle Flip-Flop w/Reset (1)
POU TC Output Pad wtOpen Collector' (1)
PO UTZ Output Pad w/3-State Control (1) DECODERS CLBs
PREG Output Pad w/lnput Storage (1)

D2-4 1-of-4 Decoder (2)
LATCHES CLBs D2-4E 1-of-4 Decoder, w/Ena (2)

74-139 1-of-4 Single Decoder w/Low Output, Ena (4)
LD Data Latch (1) D3-8 1-of-8 Decoder (5)
LD-rd Data Latch w/ResetDir (1) D3-8E 1-of-8 Decoder w/Ena (6)
LD-sd Data Latch w/SetDir (1) 74-138 1-of-8 Decoder w/Enables, Low Output (7)
LD-srd Data Latch w/SetDir, ResetDir (1) 74-42 1-of-10 Decoder w/Low Output (8)
LDM Data Latch w/2-lnput Data Mux (1)
LDM-rd Data Latch w/2-lnput Data Mux, ResetDir (1) MULTIPLEXERS CLBs
LDM-sd Data Latch w/2-lnput Data Mux, SetDir (1)

M3-1 3-to-1 Mux (2)
FLIP-FLOPS CLBs M3-1E 3-to-1 Mux w/Ena (2)

M4-1 4-to-1 Mux (3)
FD D Flip-Flop (1) M4-1E 4-to-1 Mux w/Ena (3)
FDR D Flip-Flop w/Reset (1) 74-352 4-to-1 Mux w/Low Output, Ena (3)
FDS D Flip-Flop w/Set (1) M8-1 8-to-1 Mux (7)
FD-rd D Flip-Flop w/ResetDir (1) M8-1E 8-to-1 Mux w/Ena (7)
FD-sd D Flip-Flop w/SetDir (1) 74-151 8-to-1 Mux w/Ena, (7)
FD-srd D Flip-Flop w/SetDir, ResetDir (1) Complementary Outputs
FDC D Flip-Flop w/ClkEna (1) 74-152 8-to-1 Mux w/Low Output (7)

4-20

&X!UNX

REGISTERS CLBs ModuloB

Data Registers CBBCP 3-Bit Binary Counters w/ClkEna, ParEna (5)
CBBCR 3-Bit Binary Counters w/ClkEna, Reset (4)

RD4 4-Bit Data Register (4) CB BC-rd 3-Bit Binary Counters w/ClkEna, ResetDir (4)
RDS 8-Bit Data Register (8) CBJCR 3-Bit Johnson Counters w/ClkEna, Reset (4)
RDBCR 8-Bit Data Register w/ClkEna, Reset (8)

Modulo 10
Serial to Parallel

C10BC-rd 4-Bit BCD Counter w/ClkEna, ResetDir (4)
RS4 4-Bit Shift Register (4) C10BCP-rd 4-Bit BCD Counter w/ClkEna,
74-195 4-Bit Serial to Parallel ParEna, ResetDir (7)

Shift Register w/ParEna, Reset (5) 74-160 4-Bit BCD Counter
74-194 4-Bit Bi-Directional Shift (12) w/ClkEna, ParEna, ResetDir (8)

Register w/ClkEna,ParEna, ResetDir C10BP-rd 4-Bit BCD Counter w/ParEna, ResetDir (6)
RSB 8-Bit Shift Register (8) C10JCR 5-Bit Johnson Counter w/ClkEna, Reset (5)
RSBCR 8-Bit Shift Register w/ClkEna, Reset (8)
RSBPR 8-Bit Shift Register w/ParEna, Reset (8) Modulo 12
RSBR 8-Bit Shift Register w/Reset (8)
74-164 8-Bit Serial to Parallel Shift Register (8) C12JCR 6-Bit Johnson Counter w/ClkEna, Reset (6)

w/ResetDir
Modulo 16

COUNTERS CLBs
C16BA-rd 4-Bit Binary Ripple Counter w/ResetDir (4)

Modulo2 C16BC-rd 4-Bit Binary Counter w/ClkEna, ResetDir (4)
C16BCPR 4-Bit Binary Counter w/ClkEna,

C2BCR 1-Bit Binary Counters w/ClkEna, Reset (1) ParEna, Reset (10)
C2BC-rd 1-Bit Binary Counters w/ClkEna, ResetDir (1) C16BCP-rd 4-Bit Binary Counter
C2BP 1-Bit Binary Counters w/ParEna (1) w/ClkEna, ParEna, ResetDir (6)
C2BR 1-Bit Binary Counters w/Reset (1) 74-161 4-Bit Binary Counter w/ResetDir (8)
C2B-rd 1-Bit Binary Counters w/ResetDir (1) C16BP-rd 4-Bit Binary Counter w/ParEna, ResetDir (5)

C16BUD-rd 4-Bit Binary Up-Down Counter
Modulo4 w/ParEna, ResetDir (8)

C16JCR 8-Bit Johnson Counter w/ClkEna, Rese (8)
C4BCP 2-Bit Binary Counters w/ClkEna, ParEna (3)
C4BCR 2-Bit Binary Counters w/ClkEna, Reset (2) Modulo 256
C4BC-rd 2-Bit Binary Counters w/ClkEna, ResetDir (2)
C4JCR 2-Bit Johnson Counters w/ClkEna, Reset (2) C256FC-rd 8-Bit Modulo 256 Feedback Shift (9)

Register\ w/ClkEna, ResetDir
Modulo6

C6JCR 3-Bit Johnson Counter w/ClkEna, Reset (3)

XACT EXECUTIVE COMMAND SUMMARY

PROGRAM MENU

Quit
DRC
Make Bits
Simgen
Xprint

DESIGNS MENU

Directory
Part
Read
Save

EditLCA
CONVERT
Make Prom
Maegan
Dos

Design
Speed
File

4-21

PROFILE MENU

Settings
ReadProfile
Mouse
Printer

Save Profile
Cursor
Keydef
Execute

I

•

XC-DS21 Design Editor

XACT DESIGN EDITOR COMMAND SUMMARY

NET MENU

QueryNet Add Net
NameNet EditNet
Route UnRoute
Del Net Join Net
Hilight UnHilight
Flag Net

PIN MENU

Add Pin RoutePin
ClearPin SwapPin
Move Pin Del Pin
SwapSig

BLOCK MENU

QueryBlk NameBlk
MoveBlk CopyBlk
SwapBlk EditBlk
EndBlk DelBlk
ClearBlk

CONFIGMENU

Base Config
Equate Clear
EditEq Order
Cdata

SYSTEM REQUIREMENTS

Minimum System Configuration
IBM PC/XT, PC/AT or compatible computer with:

• MS-DOS™ 2.1 or higher
• 640K Bytes RAM
• 1 Diskette Drive
• 10MB Hard Disk

SCREEN MENU

Show Cursor
Print Redraw
Find QueryGrid
Switch

MISC MENU

Exit Speed
File Save
Report Dos
Execute Cut
Paste CutMacro
Macro DRC
Delay

PROFILE MENU

Settings Save Profile
Read Profile Show
Cursor Auto Time
Key def Mouse
Printer AutoRoute

ORDERING INFORMATION

Further information is available from your local Hamilton/
Avnet or other Xilinx distributor sales office or by con­
tacting the nearest Xilinx sales representative.

Part Number Description

• IBM or compatible Color Graphics Adapter and Display
XC-DS21
XC-SC21

XACT Design Editor System
XACT Annual Support Agreement

• 1 Serial Interface Port
• 1 Parallel Interface Port
• Mouse Systems™, Microsoft® or compatible mouse

PIN 0010031 01

4-22

FEATURES

• Event driven logic and timing simulator

• Logic network input automatically generated by
XACT™ Design Editor

• Control and observation of any physical circuit node

• Multiple file input for vectors and commands

• Interactive or batch mode operation

• Output available in printed or tabular formats

• Runs on an IBM® PC/XT™, PC/AT™ or compatible
personal computer

GENERAL

P-SILOS is a powerful PC based simulator that provides
event driven logic and timing simulation of Logic Cell™
Array designs. Simulation is particularly useful for test­
ing designs or design segments as well as for verifying
critical timing over worst case power supply, temperature
and process conditions.

Simulation is useful in several stages of the design
cycle. After design entry, simulation may be used to
debug logic in an unplaced and unrouted design. This
saves design time because logic errors can be detected
and corrected prior to final placement and routing. After
a circuit has been placed, routed and then fully debug­
ged using in-circuit emulation, worst case timing may be
verified. This enables the user to select the correct
Logic Cell Array speed grade for a particular application.

Network inputs for Logic Cell Array designs are automat­
ically created by the Simgen utility in the XACT system.
The network includes logic and routing delay para­
meters and setup and hold times based upon the
selected speed grade operating under worst case
conditions. Simulation stimuli are created with a set of
clock statements or with an input pattern for either pad
inputs or internal nodes. Simulation results are available
in tabular, plotted and graphic formats. This flexibility
makes the debugging easy for both the circuit function
and timing.

XC-DS22
P-SILOS™SIMULATOR

Product Brief

SYSTEM REQUIRMENTS

Minimum System Configuration
IBM PC/XT, PC/AT or compatible computer with:
• MS-DOS™ 2.1 or higher

• 640K Bytes RAM

• 1 Diskette Drive

• 10MB Hard Disk

• 1 Parallel Interface Port

4-23

Refer to the DS21 Design Editor Product Brief for additional
equipment required for systems which will also run the XACT
Design Editor

ORDERING INFORMATION

Further information is available from your local
Hamilton/Avnet or other Xilinx distributor sales office, or
by contacting the nearest Xilinx sales representative.

Part Number Description

XC-DS22 P-SILOS Simulator

I

•

XC-DS22 P-SILOS Simulator

PIN 0010032 01

4-24

FEATURES

• Automatic placement and routing of logic to minimize
design cycle time

• User control over placement of logic blocks
• User specification of critical paths
• Nellis! inputs from either schematic capture or XACT™
• May be used in conjunction with schematic capture or

with the XACT Design Editor
• Runs on IBM® PC/XT™, PC/A"fTM or compatible

personal computer

GENERAL

The Automatic Placement and Routing program enhan­
ces the productivity of designers using Logic ~ell Ar~ays
by reducing design placement and routing t1m~,
whether the design logic is entered from a schematic
capture package or from the XACT Design Editor.

Designs that are developed incrementally ca.n also ta~e
advantage of Automatic Placement and Routing. Partial
Logic Cell Array layouts can be locked in place while addi­
tions to the design are automatically placed and routed,
or the design can be completely rearranged to yield a
new placement.

The Automatic Placement and Routing program is
extremely flexible. Through placement directives the
user can control the placement process to achieve the
best placement for a particular design. Routing re~our­
ces can be specified to minimize clock skews and signal
delays for critical paths. The result is faster product
development.

Xilinx provides ongoing support for users of the
Automatic Placement and Routing program. For the first
year, software updates are included. After that, the user
may purchase the XC-SC23 Annual Support Agreement
to continue to receive the latest software releases.

XC-DS23
AUTOMATIC PLACEMENT
AND ROUTING PROGRAM

Product Brief

SYSTEM REQUIRMENTS

Minimum System Configuration
IBM PC/XT, PC/AT or compatible computer with:
• MS-DOS™ 2.1 or higher
• 640K Bytes RAM
• 1 Diskette Drive
• 10MB Hard Disk
• 1 Parallel Interface Port

4-25

Refer to the DS21 Design Editor Product Brief for additional
equipment required for systems which will also run the XACT
Design Editor

ORDERING INFORMATION

Further information is available from your local Hamilton/
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative.

Part Number

XC-DS23

XC-SC23

Description

Xilinx Automatic Placement
and Routing Program
Xilinx Automatic Placement
and Routing Program Annual
Support Agreement

I

•

XC-DS23 Automatic Placement and Routing Program

P/N 0010033 01

4-26

l::XILINX

FEATURES

• Real time in-circuit emulation in user's target system

• Concurrent emulation of up to four devices

• Readback and display of Logic Cell™ Array internal
storage element states

• Device status display with automatic update of
asynchronous events

• Control and 1/0 pin isolation from target system
• Support for daisy chain programming of up to seven

devices in a daisy chain
• On-chip crystal oscillator support during emulation
• Support for multiple device and package types

• Runs on an IBM® PC/XT™, PC/AT™ or compatible
personal computer

GENERAL

The XACTOR™ real-time in-circuit emulator provides
interactive target system emulation of up to four Logic
Cell Arrays from the host PC system. In-circuit emulation
provides a powerful productivity enhancement to simu­
lation, providing capabilities to verify functionality in the
target system at full speed with all other circuits and
system software.

The emulation system is composed of a microcomputer­
based controller, and from one to four universal emu­
lation pods each with an emulation header. One pod
and header is included with the system. The controller
is connected to the host PC through a serial port and
provides local storage of configuration programs, control
of individual device configurations, and control of the
isolation of the pod device(s) from the target system.
The user can set the state and isolation for each of the
control signals to provide debugging of target hardware.
Four general 1/0 pins are available to provide test points
which may also be isolated from the target system.

Target Logic Cell Arrays can be programmed individually
or in a daisy chain. Daisy chains of up to seven devices
may be supported from any of the four pods. Individual
device isolation and configuration is controlled with
mouse or keyboard commands and may be supple­
mented with user-defined setup files for easy system
debugging.

XC-0524, XC-0526, XC-0527
XACTOR™ IN-CIRCUIT
EMULATOR

Product Brief

Readback of device configuration may be performed on
command for verification of the configuration process
and interrogation of the internal states. The state of all
internal storage elements is displayed after readback
has been performed. Status displays showing the state
of all isolation switches and control signal states are pro­
vided. The status display includes automatic reporting
of asynchronous status changes in the target system.

UNIVERSAL IN-CIRCUIT EMULATOR PODS

Additional pods may be connected to the XACTOR in­
circuit emulator controller, up to a maximum of four pods
per controller. Pod headers are interchangeable for
different device and package types. Each pod provides
a direct in-socket connection for a minimum disruption of
the target system. Test points are provided to allow
connection of a logic analyzer or other test equipment to
aid in the system debugging.

4-27

I

•

XC-DS24, XC-DS-26, XC-27 XACTOR In-Circuit Emulator

SYSTEM REQUIREMENTS

Minimum System Configuration
IBM PC/XT, PC/AT or compatible computer with:
• MS-DOS™ 2.1 or higher
• 640K Bytes RAM
• 1 Diskette Drive
• 10MB Hard Disk
• IBM Color Graphics Adapter and Display
• 2 Serial Interface Ports
• 1 Parallel Interface Port
• Mouse Systems™, Microsoft or compatible mouse

ORDERING INFORMATION

Further information is available from your local Hamilton/
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative.

Part Number

XC-DS24

XC-DS26
XC-DS27-PD48
XC-DS27-PC68
XC-DS27-PG68
XC-DS27-PC84

4-28

Description

XACTOR In-Circuit Emulator
with 1 pod and PC68 header
Universal Emulation Pod
Emulation Header for 48 pin DIP
Emulation Header for 68 pin PLCC
Emulation Header for 68 pin PGA
Emulation Header for 84 pin PLCC

PIN 0010034 01

FEATURES

• Design entry via the FutureNet DASH™ Schematic
Designer

• Macro library of over 100 standard logic family
equivalents derived from the XACT™ Macro Library

• Library of logic symbols including all two-input, three­
input and four-input AND, OR and XOR gates plus
storage, input/output and clock elements

• User control for flagging critical paths for the XC-DS23
Automatic Placement and Routing Program

• Automatic partitioning and conversion of schematic
drawings to a Xilinx Logic Cell™ Array design file

• Output compatibility with XACT Design Editor and the
Automatic Placement and Routing Program

• Runs on an IBM® PC/XT™, PC/AT™ or compatible
personal computer

GENERAL

Schematic entry and automatic partitioning of Logic Cell
Array designs shortens product development times.
Complex designs can be specified schematically and
quickly implemented for in-circuit design verification.

Xilinx's Future Net DASH Schematic Designer Library pro­
vides the symbol library and conversion utility to permit
designers to enter Logic Cell Array designs with the
FutureNet DASH Schematic Designer. The Xilinx library
provides the logic, 1/0, and macro symbols to be used in
the schematic. A Xilinx conversion utility automatically
partitions the schematic into a Logic Cell Array design.

Once partitioned, the design may be placed and routed
with the XC-DS23 Automatic Placement and Routing
Program or with XACT. The Xilinx symbol library includes
symbols to flag critical data and clock signals which the
Automatic Placement and Routing Program uses to
prioritize those signals for minimum delay.

Xilinx provides ongoing support for users of the Future­
Net DASH Schematic Designer Library. For the first
year, software updates are included. After that, the user
may purchase the XC-SC31 Annual Support Agreement
to continue to receive the latest software releases.

XC-DS31 FUTURENET
DASH™SCHEMATIC
DESIGNER LIBRARY

Product Brief

SYSTEM REQUIREMENTS

Minimum System Configuration
IBM PC/AT, PC/XT or compatible computer with:
• FutureNet DASH-2 or later and associated hardware

including mouse, Enhanced Graphics Adapter and
Display

• MS-DOS™ 2.1 or higher

• 640K Bytes RAM

• 1 Diskette drive

• 1 OMB hard disk
Refer to the DS21 Design Editor Product Brief for additional
equipment required for systems which will also run the XACT
Design Editor.

ORDERING INFORMATION

Further information is available from your local Hamilton/
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative.

Part Number

XC-DS31

Description

FutureNet DASH Schematic Design
Library

XC-SC31 FutureNet DASH Schematic Design
Library Annual Support Agreement I

•

4-29

XC-DS31 FutureNet DASH Schematic Designer Library

PIN 0010036 01

4-30

The Xilinx Logic Cell Arrray is a high-performance CMOS
user-programmable gate array. The Xilinx Logic Cell
Array Evaluation Kit is a software package that provides
the capability to evaluate the Logic Cell Array for new
applications.

FEATURES

• Design software package for IBM PC/XT, PC/AT or
compatible computer

• Interactive graphics-oriented designer interface
• Simplified definition, placement and connection

capability for implementation of complex logic
• Boolean equation or Karnaugh map alternatives to

specify logic functions
• Macro library of 113 standard logic equivalents plus

support for user-defined macros
• Point-to-point timing calculations for critical path

analysis
• Automatic checking for connectivity and design

consistency
• Hardcopy output of logical and physical configuration

information

GENERAL

The Evaluation Kit can be used to enter complete
designs using a subset of the XACT design editor,
including the use of the Xilinx macro library. Critical
timing for the design can be evaluated with the timing
delay calculator to evaluate the applicability of the Logic
Cell Array technology to a particular design.

Functional defintion of Configurable Logic Blocks
(CLBs), and their internal routing, 1/0 Block (IOB) defini­
tions, and interconnection are all done within an inte­
grated graphics oriented system. Interactive placement
and automatic routing of logic and 1/0 elements are
accomplished quickly and easily via an easy-to-learn
user interface.

EK01 Logic Cell™ Array
Evaluation Kit

Product Brief

Designs are captured with a graphics-oriented design
editor, using either a mouse or keyboard entry or driven
from command files. User functions are specified in
terms of CLB definitions and interconnections.
Standard logic functlions from the macro library or user­
defined macro capabilities can be utilized to quickly
implement complex logic functions. Placement and rout­
ing can be edited easily to modify or optimize a design.

Checking of logical connectivity is performed auto­
matically. All unused internal nodes are automatically
configured to minimize power dissipation.

Interactive point-to-point timing delay calculation is
provided to simplify timing analysis and critical path
determination.

The Evaluation Kit includes hardcopy generation to
document a design and automatically track design
changes.

4-31

I

•

EK01 Logic Cell Array Evaluation Kit

SYSTEM REQUIRMENTS

Minimum System Configuration
IBM PC/XT, PC/AT or compatible
• MS-DOS™ 2.1 or higher
• 640K Bytes of RAM
• 1 Diskette drive
• 1 OMB Hard disk
• IBM or compatible Color Graphics Adapter and Display
• 1 Serial interface port
• Mouse Systems™, Microsoft® or compatible mouse

ORDERING INFORMATION

Further information is available from your local Hamilton/
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative.

Part Number Description

XC-EK01 Logic Cell Array Evaluation Kit

4-32

f:XIUNX

I

•

4-33

The Programmable Gate Array Company

Table of Contents

Introduction to Programmable Gate Arrays
Logic Cell Array Data Sheet XC2064 I XC2018
Logic Cell Array Data Sheet XC2064-1 I XC2064-2
Testing and Data Integrity
Non Hermetic Package Reliability

Methods of Configuring the Logic Cell Array
Ins and Outs of Logic Cell Array 1/0 Blocks
Placement and Routing Optimization
A Design Methodology for the Logic Cell Array
Counter Examples
Metastability Analysis of Logic Cell Array Flip-flops
Reading Back Logic Cell Array Configuration Programs

A UART Design Example
A Printer Buffer Controller
A Seven Segment Display Driver
Cost Effective Hardware/Software Updates
A T1 Communications Interface

PC System Configurations
In-Circuit Emulation and Simulation
Product Brief XC-DS21 XACT Design Editor
Product Brief XC-DS22 P-SILOS Simulator
Product Brief XC-DS23 Automated Placement and Routing
Product Brief XC-DS24, 26, 27 XACTOR In-Circuit Emulator and Pods
Product Brief XC-DS31 FutureNet Schematic Library
Product Brief XC-EK01 Logic Cell Array Evaluation Kit

Appendices
Technical References
Glossary
Sales Offices List
Information Request Cards

1-1 1111111
1-8 -1-50 -1-61 -1-67 -

.. 2-1 -. 2-20 -.. 2-42 -.. 2-76 -. 2-98 -. 2-125illllll
. 2-129 illllll

. 3-1 -3-11 -. 3-29 -. 3-41 -. 3-45 -

. 4-1 -. 4-5 -. 4-19 -. 4-23 -.. 4-25 -.. 4-27 -. 4-29 -. 4-31 -
.. A-1 -
.. A-3 -
.. A-5 -

Article Reprints

Application-Specific /Cs, Relying on RAM, Implement
Almost Any Logic Function, Electronic Design, Oct. 31,
1985.

Printer Buffer Proves RAM-based Logic's Strength and
Versatility, Electronic Design, Nov. 14, 1985.

Articles to Reference

Programmable Logic Devices-1986 Technology
Forcast, Electronic Design, Jan. 9, 1986.

Dynamically Configurable LCAs Become a Reality,
Electronics Weekly (England), Jan. 15, 1986.

Field-Programmable Logic: A New Market Force,
Electronics, Jan. 22, 1986.

PLDs Slow Advance of Gate Arrays in Low-End
Designs, Computer Design, Feb. 1, 1986.

Logic Cell Arrays: High Density, User-Programmable
AS/Cs, Electronic Component News, March 1986.

Conference Papers

Architecture Enhancements with Logic Cell™ Arrays,
Southcon '86.

Using Dynamic Reconfigurable Logic in the XC2064,
Electro '86.

A-1

Technical
References

Application-Specific /Cs, Electronic Component News,
April 1986.

Electro/86ASIC Issue, Electronic Design, May 1, 1986.

Logic Cell™ Arrays; Ram-Programmable Logic Devices,
Electronic Engineering Times, May 12, 1986.

Semicustom IC Offers New Possibilities for Software
Protection, EDN, June 12, 1986.

AS/Cs: Take your Pick, Digital Design, June 1986.

Programmable Logic Declares War on Gate Arrays,
Digital Design, July 1986.

The Logic Cell™ Array: Birth of a new Technology,
Nikkei Electronics, Sep. 1986.

New Architectures Mean New Applications for PLDs,
Electronic Engineering Times, Sep. 29, 1986.

In-Circuit Emulation for AS/Cs, VLSI Systems Design,
Oct. 1986.

A User Programmable Reconfigurable Logic Array,
Custom Integrated Circuits Conference

Logic Cell Arrays-A Better ASIC Approach, Midcon '86.

Complete ASIC: The Logic Cell™ Array, Wescon '86.

I
•

Technical References

A-2

Active High - A high-voltage active sense.

Active Low - A low-voltage active sense. Signals which are
active low have their names preceded by a tilde (-) or an
overbar.

Active Sense - The voltage level (high or low) associated with
the Active State (logical "1 ").

Active Edge - A signal transition upon which actions are
dependent; a low-to-high or high-to-low transition used to
initiate an action.

ASIC - Application Specific Integrated Circuit. An integrated
circuit tailored for a specific use by a single IC customer.

Assert - To cause a signal to change from its inactive to its
active state.

Asynchronous - Not synchronized to a clock signal. An
asynchronous input affects its circuit output directly.

Bidis-A set of bidirectional buffers located in the LCA general
interconnect and programmed automatically by the develop­
ment system to provide signal buffering.

Bitstream - The object form of an LCA configuration program,
organized serially and including length count and other control
information.

Buffer - (1) A structure for intermediate data storage. (2) A
device for isolating a signal in a circuit.

CLB - See Configurable Logic Block.

Clear - To force to a logical "O". See also Reset.

Combinatorial - A logic operation who's output is a direct
function of a set of input variables, i.e., not dependent on a
timing signal.

Configurable Logic Block (CLB) - A subunit of an LCA that
contains configurable combinational-logic and data-storage
circuitry.

Configuration Program - The data required by an LCA to
determine the user-specified functions of the CLBs, the IOBs
and the interconnection networks.

Configuration Logic - The circuitry of the LCA t~at
automatically recognizes, receives, and stores the config­
uration program and signals the completion of the con­
figuration process.

Configuration Mode- The mode used to load the configuration

A-3

Glossary

program into an lCA. The configuration mode is determined
by the states of inputs MO, M1 and M2 at the conclusion of
initialization. See also Peripheral Mode, Master Mode and
Slave Mode.

Daisy Chain - Several devices connected in such a way that
configuration program data move serially from one device to
the next.

DASH™ - A FutureNet® schematic software program.

De-assert - To cause a signal to change from its active to its
inactive state.

Direct Interconnect- Dedicated interconnect that can directly
connect adjacent ClBs, IOBs and outputs. This type of inter­
connect provides the shortest propagation delay between
such points and uses minimal interconnection networks.

Enable - To allow a circuit to respond to an input. For
example, a clock enable signal allows a circuit to respond to
its clock input.

Flip-Flop - A storage device whose output assumes a high or
low state according to the states of its inputs and is
synchronized to a clock transition.

FutureNet™ - A schematic capture program which may be
used for schematic definition of a logic design when used with
the Xilinx Auto Place and Route Program.

Gate Array - An integrated circuit which uses factory
programmed metal interconnections to define the logic
function.

General Interconnect - Horizontal and vertical metal
segments joining lCA switching matrices.

Input/Output Block (IOB) -A subunit of an lCA that can be
configured to connect the internal circuitry to an external
package pin. It contains elements for input-data capture and
for three-state output.

IOB- See Input/Output Block

Johnson Counter - A synchronous counter implemented as a
shift register whose input is the inverse of the shifted-out end •
bit.

latch - A logic device which transfers the data of its input to -
its output when load enable is active, and retains its value
when load enable is inactive.

lCA- See logic Cell Array

Glossary

Length Count - Part of the configuration program that
specifies the number of Configuration Clock (CCLK) cycles
from the start of configuration to the start of operation.

LFSR- See Linear Feedback Shift Register.

Linear Feedback Shift Register (LFSR) - A synchronous
counter that is a shift register whose input bit is computed by
XORing several bits of the current state.

Logic Cell™ Array - A user-programmable gate array which
can be configured (programmed) to perform a range of logic
functions.

Long Lines - Interconnect that routes a signal to several
destinations in an LCA. This type of interconnect runs the full
length or width of an LCA and is often used for clock signals.

Macro - A file containing XACT™ editor commands which may
be executed · by name and given a set of parameters for
netnames, locations etc. in order to generate a logic element
from a library.

Master Mode -A configuration mode in which the LCA receive
parallel (byte-wide} configuration data from an external
memory. · The LCA generates read-addresses and
automatically serializes (internally) the data for internal
storage.

PAL® - A Monolithic Memories fusible link integrated circuit
which implements logic using sums of programmable product
terms.

Peripheral Mode -A configuration mode in which the LCA acts
as a peripheral device. An external device, such as a
processor, loa<!s the configuration data bits serially into the
LCA.

PIP - Programmable interconnect point, a configuration
memory-controiled pass transistor used to control program­
mable interconnections in a Logic Cell Array.

PLCC - Plastic Leaded Chip C<1rrier. An integrated circuit
package w~h J-bend leads suitable for socket or surface
mounting.

Power-Down State - An idle current condition of the LCA in
which its power-supply requirement can be reduced to a
minimal level. Under this condition, circuit activity is
suspended.and all configuration data are preserved.

Preamble Nibble - A specific series of four data bits (0010)
that signals the start of the configuration program for LCAs.

Product- The result of a logical AND of two or more variables,
i.e., logic inputl;l.

Readback - To cause the LCA to output its configuration
information.

Re-configure - To program an LCA that already contains a
configuration program with a new configuration program while
power is continually supplied.

Register -A group of related latches or flip-flops used to store
and sometimes to manipulate data.

Reset- (1) To initialize all storage elements of a device to a
starting condition. (2) To force one or more storage elements
to logical "O". This may be a synchronous (clocked) or an
asynchronous (direct) operation.

Set - To force one or more storage elements to logical "1".
This may be a synchronous (clocked) or an asynchronous
(direct) operation.

Silos® - An optional logic and timing simulator developed by
Simucad Corp. and supported by XACT for use in design
verification of Logic Cell Array designs.

Slave Mode -A configuration mode in which the LCA receives
a serial configuration program and all control signals from
another device, frequently another LCA.

State - The condition of one or a set of flip-flops.

State Machine -A set of flip-flops whose next state and next
outputs are functions of its current state and a set of inputs.

Storage Element - An 108 or CLB portion that can store data.
The storage element of a CLB can be programmed to act as a
latch or a flip-flop.

A-4

Sum of products - The result of a logical OR of two or more
logical AND operations.

Synchronous - Restricting output changes to those initiated
by a transition of a timing signal.

Three-State - (1) Able to function as an output, bidirectional
connection or no connection (high impedance). (2) The high­
impedance state.

Toggle - To change to the opposite state (e.g. active to
inactive).

Toggle rate - The maximum clock frequency at which a flip­
flop storage element will toggle properly.

XACT™ - Xilinx Advanced CAD Technology. A set of
computer programs that lets a designer specify, develop, and
debug the configuration of an LCA using interactive computer
graphics.

XACTOR™ - An optional in-circuit emulator used for real-time
functional verification of LCA designs.

PIN 0010023 01

SALES OFFICES ARIZONA

XILINX, INC. Quatra Associates
2069 Hamilton Avenue 4645 S. Lakeshore Dr.,
San Jose, CA 95125 Suite 1
(408) 559-7778 Tempe, AZ 85282
TWX: 510-600-8750 (602) 820-7050
FAX: 408-559-7114 TWX: 910-950-1153

FAX: 602-820-7054
XILINX, INC.
20 Mall Road, Suite 469 ARKANSAS
Burlington, MA 01803
(617) 229-7799 Bonser-Philhower Sales
TWX: 510-601-2067 4614 S. Knoxville Avenue
FAX: 617-273-0228 Tulsa, OK 74135

(918) 744-9964
XILINX, INC. TWX: 510-600-5274
7 Great Valley Parkway
Suite 202 CALIFORNIA
Malvern, PA 19335
(215) 251-6863 Quad Rep Central

24007 Venture Blvd.,
XILINX, INC. Suite 134
300 N. Martingale Road Calabassas, CA 91302
Suite 500 (818) 887-3711
Schaumburg, IL 60173 TLX: 858201
(312) 490-1972 FAX: 818-887-4219
TWX: 910-997-0078
FAX: 312-490-1985 Quad Rep South

18004 Skypark Circle,
Suite 200

DOMESTIC SALES Irvine, CA 92714
(714) 261-8141

ALABAMA
TWX: 910-997-3655
FAX: 714-261-6706

Technology Marketing SR Electronics
Associates, Inc. 7585 Ronson Rd., Suite 100
3315 So. Memorial Pkwy. San Diego, CA 92111
Bldg. 100 (619) 560-8330
P.O. Box4112 FAX: 619-560-9156
Huntsville, AL 35801
(205) 883-7893 Norco mp
TWX: 510-101-1668 3350 Scott Blvd., Suite 24
FAX: 205-882-6162 Santa Clara, CA 95054

(408) 727-770'1
TWX: 510-600-1477
FAX: 408-986-1947

A-5

Sales
Offices

COLORADO

Front Range Marketing
3100 Arapahoe Rd.,
Suite404
Boulder, CO 80303
(303) 443-4780
TWX: 910-940-3442
FAX: 303-447-0371

CONNECTICUT

Lindco Associates, Inc.
10 Main St. South, Suite 20
Southbury, CT 06488
(203) 264-7200
TWX:4991204

DELAWARE

Micro Comp, Inc.
1421 S. Caton Avenue
Baltimore, MD 21227
(301) 644-5700
TWX: 510-600-9460
FAX: 301-644-5707

FLORIDA

Technology Marketing
Associates, Inc.
8000 Orange Ave.,
Suite 100
Orlando, FL 32809
(305) 857-3760
TWX: 510-600-4721
FAX: 305-857-6412

Technology Marketing
Associates, Inc.
1280 S.W. 36th Ave.,
Suite 201
Pompano Beach, FL 33069
(305) 977-9006
TWX: 510-601-0120
FAX: 305-977-9044

Technology Marketing
Associates, Inc.
1300 S. Harbor City Blvd.
Suite 8
Melbourne, FL 32901
(305) 676-3776
TWX: 510 600-3742
FAX: 305-676-4231

Technology Marketing
Associates, Inc.
12360 66th St. No., Suite M
Largo, FL 33543
(813) 536-3796
TWX: 510-600-4463
FAX: 813-539-7082

GEORGIA

Technology Marketing
Associates, Inc.
175 W. Wieuca Road N.E.
Suite 209
Atlanta, GA 30342
(404) 257-0374
TWX: 510-600-2444
FAX: 404-843-8705

DAHO (Southwest)

Thorson Company
Northwest
12301 N.E. 10th Place
Bellevue, WA 98005
(206) 455-9180

ILLINOIS

Beta Technology Sales,
Inc.
501 Mitchell Road
Glendale Heights, IL 60139
(312) 790-9868
TWX: 62885853

IOWA

Advanced Technical Sales • 375 Collins Road N.E.
Cedar Rapids, IA 52402
(319) 365-3150
FAX: 3{9-393-7258 -

Sales Offices

KANSAS MASSACHUSETTS NEW JERSEY (Northern) NORTH CAROLINA

Advanced Technical Sales Mill-Bern Associates, Inc. Parallax The Novus Group, Inc.
9550 E. Lincoln #609 120 Cambridge St, Suite 8 734 Walt Whitman Road 5337 Trestlewood Lane
Wichita, KS 67207 Burlington, MA 01803 Mellville, NY 11747 Raleigh, NC 27610
(316) 682-2769 (617) 273-1313 (516)351-1000 (919) 833-7771
FAX: 316-689-8971 TWX: 710-332-0077 TWX: 510-600-0558

FAX: 617-229-7797 NEW JERSEY (Southern)
Advanced Technical Sales NORTH DAKOTA
601 N. Mur-Len, Suite 8 MICHIGAN Delta Technical Sales, Inc.
Olathe, KS 66062 3901 Commerce Avenue Com-Tek
(913) 782-8702 A.P. Associates Suite 180 6525 City West Parkway
FAX: 913-782-8641 9903 Webber Willow Grove, PA 19090 Eden Prairie, MN 55344
TWX:9103506002 P.O. Box 777 (215) 657-7250 (612) 941-7181

Brighton, Ml 48116 TWX: 510-601-1856 TWX: 310-431-0122
KENTUCKY (313) 229-6550 FAX: 612-941-4322

TWX: 816-287-310 NEW MEXICO
Bear Marketing, Inc. OHIO
1563 East Dorothy Lane MINNESOTA Quatra Associates
Suite 104 9704 Admiral Dewey N.E. Bear Marketing, Inc.
Kettering, OH 45429 Com-Tek Albuquerque, NM 87111 P.O. Box427
(513) 299-5877 6525 City West Parkway (505) 821-1455 3623 Brecksville Road

Eden Prairie, MN 55344 Richfield, OH 44286
LOUISIANA (Northern) (612) 941-7181 NEW YORK (Metro) (216) 659-3131

TWX: 310-431-0122
Bonser-Philhower Sales FAX: 612-941-4322 Parallax Bear Marketing, Inc.
689 W. Renner Rd., Suite C 734 Walt Whitman Road 1563 East Dorothy Lane
Richardson, TX 75080 MISSOURI Mellville, NY 11747 Suite 104
(214) 234-8483 (516) 351-1000 Kettering, OH 45429
TWX: 910-867-4752 Advanced Technical Sales (513) 299-5877
FAX: 214-437-0897 1810 Craig Road, Suite 125 NEW YORK

St. Louis, MO 36146 OKLAHOMA
LOUISIANA (Southern) (314) 878-2921 Gen-Tech Electronics

FAX: 314-878-1994 4855 Executive Drive Bonser-Philhower Sales
Bonser-Philhower Sales Liverpool, NY 13088 4614 S. Knoxville Avenue
11321 Richmond, Suite 100A NEVADA (315) 451-3480 Tulsa, OK 74153
Houston, TX 77082 TWX: 710-545-0250 (918) 744-9964
(713) 531-4144 Norcomp FAX: 315-451-9088 TWX: 510-600-5274
TWX: 910-350-3451 (Excluding Clark County)

3350 Scott Blvd., Suite 24 Gen-Tech Electronics OREGON
MAINE Santa Clara, CA 95054 41 Burning Tree Lane

(408) 727-7707 Penfield, NY 14526 Thorson Company Northwest
Mill-Bern Associates, Inc. TWX: 510-600-1477 (716) 381-5159 6700 S.W. 105th Ave.,
120 Cambridge St, Suite 8 Suite 104
Burlington, MA 01803 Quatra Associates Gen-Tech Electronics Beaverton, OR 97005
(617) 273-1313 (Clark County) 70 Sandoris Circle (503) 644-5900
TWX: 710-332-0077 4645 S. Lakeshore Dr., Rochester, NY 14622
FAX: 617-229-7797 Suite 1 (716) 467-5016 PENNSYLVANIA (Eastern)

Tempe, AZ. 85282
MARYLAND (918) 820-7050 Gen-Tech Electronics Delta Technical Sales, Inc.

Drake Road 3901 Commerce Avenue
Micro Comp, Inc. NEW HAMPSHIRE Pleasant Valley, NY 12569 Suite 180
1421 S. Caton Avenue (914) 635-3233 Willow Grove, PA 19090
Baltimore, MD 21227 Mill-Bern Associates, Inc. (215) 657-7250
(301) 644-5700 120 Cambridge St., Suite 8 Gen-Tech Electronics TWX: 510-601-1856
TWX: 301-644- 570719 Burlington, MA 01803 5 Arbutus Lane
FAX: 301-644-5707 (617) 273-1313 Binghampton, NY 13901 PENNSYLVANIA (Western)

TWX: 710-332-0077 (607) 648-3686
FAX: 617-229-7797 Bear Marketing, Inc

829 Greenfield Avenue
Pittsburg, PA 15217
(412) 521-4469

A-6

t:
PUERTO RICO Bonser•Philhower Sales WASHINGTON D.C. QUEBEC

689 W. Renner Rd., Suite C
Mill-Bern Associates, Inc. Richardson, TX 75080 Micro Comp, Inc. Electro Source
120 Cambridge St, Suite 8 (214) 234-8483 1421 S. Caton Avenue 4045 Baul Ste. Gean, Suite
Burlington, MA 01803 TWX: 910-867-4752 Baltimore, MD 21227 315
(617) 273-1313 FAX: 214-437-0879 (301) 644-5700 Dollard, des Ormeaux
TWX: 710-332-0077 TWX: 510-600-9460 Quebec, HG9 1 X4
FAX: 617-229-7797 TEXAS (El Paso County) FAX: 301-644-5707

Technology Marketing Quatra Associates INTERNATIONAL
Associates, Inc. 9704 Admiral Dewey N.E. WEST VIRGINA
1280 S.W. 36th Ave., Albuquerque, NM 87111 SALES
Suite 201 (505) 821-1455 Bear Marketing, Inc.
Pompano Beach, FL 33069 1563 East Dorothy Lane SOUTHEAST ASIA
(305) 977-9006 UTAH Suite 104
TWX: 510-601-0120 Kettering, OH 45429 Excel Associates, Ltd.
FAX: 305-977-9044 Front Range Marketing (513) 299-5877 1502 Austin Tower

2520 South State St., 22-26A Austin Avenue
RHODE ISLAND Suite 117 WISCONSIN (Western) Tsimshatsui, Kowloon

Salt Lake City, UT 84115 Hong Kong
Mill-Bern Associates, Inc. (801) 364-6481 Com-Tek Tel: 852-3-7210900
120 Cambridge St, Suite 8 6525 City West Parkway FAX: 852-3-696826
Burlington, MA 01803 VERMONT Eden Prairie, MN 55344 TLX:30841
(617) 273-1313 (612) 941-7181
TWX: 710-332-0077 Mill-Bern Associates, Inc. TWX: 310-431-0122 UK
FAX: 617-229-7797 120 Cambridge St, Suite 8 FAX: 612-941-4322

Burlington, MA 01803 Ambar Cascom, Ltd.
SOUTH CAROLINA (617) 273-1313 WISCONSIN (Eastern) Rabans Close,

TWX: 710-332-0077 Aylesbury, Bucks HP193RS
The Nevus Group, Inc. FAX: 617-229-7797 Beta Technology Sales, Inc. England
5337 Trestlewood Lane 9401 Beloit, Suite 304C Tel: 029634141
Raleigh, NC 27610 VIRGINA Miiwaukee, WI 53227 TLX:837427
(919) 833-7771 (414) 543-6609 FAX: (02) 9629670
TWX: 510-600-0558 Micro Comp, Inc.

1421 S. Caton Avenue FRANCE
SOUTH DAKOTA Baltimore, MD 21227 CANADA

(301) 644-5700 Reptronic
Com-Tek TWX: 510-600-9460 11, Escalier des Ulis
6525 City West Parkway FAX: 301-644-5707 BRITISH COLUMBIA 91400 Orsay, France
Eden Prairie, MN 55344 Tel: 16-9288700
(612) 941-7181 Micro Comp, Inc. Thorson Company Northwest TLX:610969F
TWX: 310-431-0122 Rt. 2, Box 390 12301 N.E. 10th Place

FAX: 612-941-4322 Huddleston, VA24104 Bellevue, WA 98005 R.T.F. (Radio Television
(703) 297-6295 (206) 455-9180 Francaise S.A.)

TEXAS
ONTARIO

13, rue Lhote
WASHINGTON 33000 Bordeaux, France

Bonser-Philhower Sales Tel: 16-56-52-99-59
8200 MoPac Expwy., Thorson Company Northwest Electro Source, Inc. TLX:560627

Suite 120 12301 N.E. 10th Place The Bell Mews, Suite 233 FAX: 16-56-48-17-83

Austin, TX 78759 Bellevue, WA 98005 39 Robertson Road

(512) 346-9186 (206) 455-9180
Nepean, Ontario K2H 8R2 R.T.F. Quest

TWX: 910-997-8141 FAX: 206-455-9185 (613) 726-1452 3, rue de Paris
FAX: 613-726-8834 35510 Cesson Sevigne,

Bonser-Philhower Sales WASHINGTON (Vancouver) France

11321 Richmond, Suite 100A
Electro Source, Inc. Tel: 16-99-83-84-85 • Houston, TX 77082 Thorson Company Northwest
215 Carlingview Dr., TLX:741127

(713) 531-4144 6700 S.W. 105th Ave., Suite 303 FAX: 16-99-83-80-83

TWX: 910-350-3451 Suite 104
Rexdale, Ontario M9W 5XB

Beaverton, OR 97005 (416) 675-4490

(503) 644-5900
TWX: 06-989271 -FAX: 416-675-6871

A-7

Sales Offices

R.T.F. Sud Quest
Avenue de la Mairie
31320 Escalquens, France
Tel: 16-61-81-51-57
TLX:520927F
FAX: 16-61-81-22-36

R.T.F. Gentilly
9, rue d'Arcueil
94253 Gentilly Cedex,
France
Tel: 46-64-11-01
TLX:2010169F
FAX: 46-64-41-99

R.T.F. Rhone Alpes
St. Mury, Le Vaucanson
38240 Maylan, France
Tel: 16-76-90-11-88
TLX:980796
FAX: 16-76-41-04-09

GERMANY

Metronik
Semerteichstrasse 92
4600 Dortmund 30
Dortmund, Germany
Tel: (0231) 423037138
TLX:8227082

Metronik
Siemensstrasse 4-6
6805 Heddesheim
Mannheim, Germany
Tel: (06203) 4701-03
TLX:465053

i:XILINX
2069 Hamilton Avenue
San Jose, CA 95125
(408) 559-7778
TWX: 510-600-8750
FAX: 408-559-7114

Metronik
Leonhardsweg 2
Postfach 13 28
8025 Unterhaching
Munich, Germany
Tel: (089) 611080
TLX:897434
FAX: 89-611 6468

Metronik
Laufam holzstr. 118
8500 Nurnberg 30
Nurnberg, Germany
Tel: (P911) 590061/62
TLX: '626205

Metronik
Lowenstr. 37
7000 Stuttgart 70
Stuttgart, Germany
Tel: (0711) 764033135
TLX:7255228

IS RAEL

Hitek, Ltd.
19, Keren Hayesod St.
POB563
Herzlia B, 46105 Israel
Tel: 972-53-72538
FAX: 972-3-236926
TLX:361360

Distributed By

Hamilton/Avnet
Locations throughout the
U.S. and Canada.

ITALY

ACSIS S.R.L.
Via Alberto Mario. 26
20149 Milano, Italy
Tel: (02) 4390832
TLX:326566
FAX: (02) 4697607

Celdis ltaliana S.P.A.
Via F.ill Gracchi 36
20092 Cinisello Balsamo
Milano, Italy
Tel: (02) 61-839-1
TLX:334887
FAX: (02) 61-735-13

Celdis ltaliana S.P.A.
Via Massarenti 219/4
40138 Bologna, Italy
Tel: (051) 53-333-6

Celdis ltaliana S.P.A.
Via Savelli 15
35100 Padova, Italy
Tel: (049) 77-209-9

Celdis ltaliana S.P.A.
Via G. Pitre' 11
00162 Roma, Italy
Tel: (06) 42-897-1

Celdis ltaliana S.P.A.
Via Mombarcaro 96
10136 Torino, Italy
Tel: (011) 32-993-88

JAPAN

Okura & Co., Ltd.
6-12, Ginza Nichome
Chuo-Ku
Tokyo, 104 Japan
Tel: 03-566-6361
TWX:J22306
FAX: 03-563-5447

Additional Sales Offices
Opening Soon

A-8

NETHERLANDS

Rodelco Electronics
Takkebijsters 2
P.O. Box 6824
4802 HV Breda
Tel: 76-784911
TLX:54195
FAX: 76-710029

SWEDEN

Sattco AB
Dalvagen 10
S-171 36 Solno
Stockholm Sweden
Tel: 46 87 340040
TLX:11588
FAX: 46-8-7349155

SWITZERLAND

Data Comp AG
Silbernstrasse 1 O
CH-8953 Dietikon
Tel: 01-7405140
Telex: 827750
FAX: 01-7413423

Notes

•
-

A-9

Notes

A-10

For Further Information .. . Please check the appropriate box

D Please have a Field Applications Engineer call me.

D I would like to see a live demonstration of the Logic Cell™ Array

D I would like to borrow a copy of your Logic Cell Array
Technical Demonstration Video for two weeks.

My application(s)-------------------

1 have a new design starting in __ week(s)--month(s)

Name ___________ Title __________ _

Company _________ MIS ____ _

City __________ _

State------Zip----

Phone (___) ______ _
The Programmable Gate Array Company

For Further Information . . . Please check the appropriate box

D Please have a Field Applications Engineer call me.

D I would like to see a live demonstration of the Logic Cell™ Array

D I would like to borrow a copy of your Logic Cell Array
Technical Demonstration Video for two weeks.

My application(s) ------------------­

!have a new design starting in __ week(s) __ month(s)

Name ___________ Title __________ _

Company __________ MIS ____ _

City ___________ _

State ______ Zip----

Phone(___) ______ _ The Programmable Gate Array Company

BUSINESS REPIY MAIL
FIRST CLASS PERMIT NO. 805I SAN JOSE, CA

POSfAGE PAID BY ADDRESSEE

XILINX
2069 Hamilton Avenue
San Jose, CA 95125-9911

11.1 ••• 1.1 •••• 11 •• 1.1.1.1.1.1 •• 1.1 ••••• 11 ••• 111 •• 1.1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8051 SAN JOSE, CA

POSTAGE PAID BY ADDRESSEE

XILINX
2069 Hamilton Avenue
San Jose, CA 95125-9911

11.1 ••• 1.1 •••• 11 •• 1.1.1.1.1.1 •• 1.1 11 ... 111 .. 1.1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I'M RFADY TO TAKE THE NEXT STEP
0 I want to know if the Logic Cell Array is right for my design.

Send me your EK-01 Evaluation Kit.
0 Enclosed is my $250 check, payable to Hamilton/Avnet.
0 Bill me the $250.

D I think the Logic Cell Array is interesting, but my next design
is a few months away. Please keep me on your list, though.

Title/Position. ________________________ _

Company _________________________ _

Address _________________ Mail Stop ______ _

City _______________ State ____ Zip _____ _

Authorized Signature _____________________ _

I'M RFADY TO TAKE THE NEXT SfEP
0 I want to know if the Logic Cell Array is right for my design.

Send me your EK-01 Evaluation Kit.
0 Enclosed is my $250 check, payable to Hamilton/ Avnet.
0 Bill me the $250.

D I think the Logic Cell Array is interesting, but my next design
is a few months away. Please keep me on your list, though.

Name ___________________________ _

Title/Position ________________________ _

Company _________________________ _

Address ________________ Mai!Stop ______ _

City ______________ State ____ Zip _____ _

Authorized Signature _____________________ _

BUSINESS REPIY MAIL
FIRST CLASS PERMIT NO. 8051 SAN JOSE, CA

POSTAGE PAID BY ADDRESSEE

XILINX
2069 Hamilton Avenue
San Jose, CA 95125-9911

Attn: Dept. EK-01

11.1 ••• 1.1 •••• 11 •• 1.1.1.1.1.1 •• 1.1 ••••• 11 ••• 111 •• 1.1

BUSINESS REPIY MAIL
FIRST CLASS PERM1T NO. 8051 SAN JOSE, CA

POSTAGE PAID BY ADDRESSEE

XILINX
2069 Hamilton Avenue
San Jose, CA 95125-9911

Attn: Dept. EK-01

11.1 ... 1.1 11 •• 1.1.1.1.1.1 •• 1.1 11 ••• 111 •• 1.1

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

l

~XILINX
The Programmable Gate Array Company.
2069 Hamilton Avenue, San Jose, CA 95125. (408) 559-7778

EasyLink 62916309 TWX: 5106008750 FAX: (408) 559-7114 XILINX UQ
<Cl 1986 XILINX, Inc.
PI N 0010023 01

