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First Edition 

In the Pin Assignment tables on pages 1-34, 1-35, 2-16, and 2-17 the 05 
data line, which is used to configure the Logic Cell Array in Master Mode, is 
shown on the wrong pin. An excerpt from the original tables and a corrected 
version are shown below. Please affix this note to the inside front cover of 
your Design Handbook. 

XC2064 Pin Assignment (Pages 1-34 and 2-16) 

34 48 H10 
<> 49/HH 

35 50 G10 
36 51 G11 

-+ 34 48 H'lb 
49 H11 

35 50 G10 
36 51 G11 

F > 1)$ (I) < , ._ 05 CORRECTED 

XC2018 Pin Assignment (Pages 1-35 and 2-17) 

48 H10 58 H10 
59 H11 

49 Htt oOFtO 
61 G10 

50 G10 62 G11 

-+ 48 H1d 58 f-Ho 
59 H11 

49 H11 60 F10 
61 G10 

50 G10 62 G11 
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FEATURES 

• One-Time Programmable (OTP) 36,288 bit serial 
memory designed to store configuration programs for 
Programmable Gate Arrays 

• Simple interface to a Logic Cell™ Array (LCA) requires 
only two 1/0 pins 

• Daisy chain configuration support for three XC2064's 
or two XC2018's 

• Cascadable to provide more memory for additional 
configurations or future higher-density arrays 

• Storage for multiple configurations for a single Logic 
Cell Array 

• Low power CMOS EPROM process 
• Space-efficient, low-cost 8-pin plastic DIP package 
• PC-based programmer for development. Productio 

programming support from leading program 
manufacturers 

DESCRIPTION 

The XC1736 Serial Co. 
easy-to-use, cost-efle 
Xilinx family of pr 

rovides an 
emory for the 

ays. Packaged in 
-inline package, the 

rial access procedure to 
e o ic Cell Arrays (LCAs). The 
tion of the configuration PROM 

an economica · 
XC1736 us·· 

mory to configure three XC2064's 
or two XC2018's. Multiple Serial Configuration PROMs 
can be cascaded to provide a larger memory for more 
configurations or future higher density arrays. Multiple 
configurations for a single LCA can also be loaded from 
the XC1736. 

MASTER SERIAL MODE 

The 1/0 and logic functions of the Xilinx Programmable 
Gate Array, and their associated interconnections, are 
established by a configuration program. The program is 
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XC1736 SERIAL 
CONFIGURATION PROM 

Product Brief 

loaded either automatically upon power up, or on 
command, depending on the state of the three LCA 
mode pins. In Master Mode, the Logic Cell Array 
automatically loads the configuration program from an 
external memory. The Serial Configuration PROM has 
been designed for compat with the Master Serial 
Mode. 

Upon power-up 
enter Master 
LCA's mod 
Data 

uration, an LCA will 
ever all three of the 

LOW (MO=O, M1=0, M2=0). 
e Serial Configuration PROM 

e data line. Synchronization is 
sing edge of the temporary signal 

generated during configuration. Figure 
ematic diagram of an LCA in Master Serial 

ster Serial Mode provides a simple configuration 
interface. Only a serial data line is required to configure 
an LCA. Data from the Serial Configuration PROM is 
read sequentially, accessed via the internal address and 
bit counters which are incremented on every valid rising 
edge of RCLK. 

DATAa8 VCC 
CLK 2 7 VPP 

RESET/OE 3 6 CEO 
CE 4 5 GND 

XC1736 Pin Assignments 
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XC1736 Serial Configuration PROM 

Pin Name 1/0 Description 

DATA 0 Three-state DAT A output for reading. 

2 CLK Clock input. Used to increment the 
internal address and bit counters for 
reading. 

3 RESET/ Output Enable. A LOW level on both 
OE the CE and OE inputs enables the 

data output driver. A HIGH level on OE 
resets both the address and bit 
counters. 

4 CE Chip Enable input. A LOW level on 
both CE and OE enables the data 
output driver. A HIGH level on CE dis-
ables both the address and bit coun-
ters and forces the device into a low 
power mode. 

5 GND Ground pin. 

6 CEO 0 Chip Enable Out output. This signal is 
asserted LOW on the clock cycle 
following the last bit read from 
the memory. It will stay LOW as long as 
CE and OE are both LOW. It will follow 
CE, but if OE goes HIGH, CEO will 
stay HIGH until the entire PROM is 
read again. 

7 Vpp Must be connected directly to Vee for 
normal read operation. 

8 Vee +5 volt power supply input, 5% 
tolerance. 

Table 1. XC1736 Pin Assignments (Read Mode) 
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Xilinx was founded in February 1984 to devel­
op a family of CMOS user-programmable 
gate arrays and associated development 
systems. The development of a general­
purpose user-programmable logic device with 
an array architecture was the result of a 
number of technical breakthroughs, many of 
which have resulted in patent applications. 
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About the Company ... 

Due to its density and to the convenience of 
user programmability, the Logic Cell™ Array 
represents an important new alternative in the 
ASIC market. The company continues to 
concentrate its resources exclusively on 
expanding its growing family of Logic 
Processors™ and associated development 
systems. 
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Requirements for improved product features, including 
lower cost, higher performance, reduced power con­
sumption, smaller size and increased reliability are 
motivating manufacturers of electronic systems to use 
high-density VLSI circuits. 

The standard product .cs that have best exploited ad­
vances in VLSI have been microprocessors and mem­
ories. Density improvements in these product families 
have outpaced other digital integrated circuits, widening 
the technology gap between them and other logic 
devices. To achieve comparable densities for their pro­
prietary functions, designers of digital equipment have 
been forced to consider factory-programmed custom 
and semicustom application specific integrated circuits 
(ASICs). The advent of user-programmable gate arrays 
combines the production cost effectiveness of VLSI 
with all the benefits of a standard product. Figure 1 
illustrates the tradeoffs of density and development time 
for several digital logic alternatives. 

Standard SSl/MSI logic devices provide a great deal of 
flexibility, are well understood by most logic designers, 
and are readily available. However, they offer less den­
sity than other alternatives, and consume more power. 
These parts typically are manufactured in maturing 
technologies, with limited opportunity for further cost 
reductions. 

The Programmable Logic Device (PLO) category in­
cludes a number of competing alternatives, all based on 
a programmable AND-OR plane architecture. The PLDs 
AND-OR plane architecture is most efficient for appli­
cations up to a few hundred usable gates. Bipolar PLDs 
are programmed by opening fuse links. CMOS PLDs 
can be one-time programmable, electrically programm­
abale (EPLDs), or electrically erasable (EEPLDs). These 
Programmable Logic Devices are often used in place of 
five to ten SSl/MSI devices. Since PLDs are user 
programmable, this gain in density can be achieved with 
only a small increase in design time and little schedule 
risk. Designs can be developed and devices program­
med for a particular application in a matter of days. PLDs 
are best suited for state machines and decoders. Their 
architecture provides efficient multiple variable decod­
ing and high performance for functions that are readily 
expressed as a sum-of-products. Architectural restric­
tions limit their application for general logic replacement, 
consolidation of miscellaneous "glue" and control fun­
ctions, or complex processing tasks. 
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Introduction to 
Programmable Gate Arrays 

• Factory programmable ASIC devices, including gate • 
arrays, standard cells, and compiled silicon, provide logic 
densities up to 100,000 equivalent logic gates and are 
sufficiently flexible for most digital logic functions. After 
design completion and verification, factory programmed 
ASICs typically require two to four months for prototype 
fabrication and a similar period for the first production 
quantities. Because of their high design costs and 
limited production flexibility, factory-programmed ASICs 
are most economical in very high volume applications. 
The logistics of verifying a workable design, testing ICs 
and coordinating production demand require substantial 
attention and resources from the equipment 
manufacturer. 

In the diagram, the upper left corner represents the best 
solution. The traditional tradeoffs between density and 
development time are illustrated by the dotted diagonal 
line in the diagram. As indicated, a new digital logic 
technology, the Logic Cell™ Array (LCA), offers im­
provements in both dimensions. This user-program­
mable gate array provides the system designer the us­
able density of gate arrays and the short development 
times and low risk of standard logic circuits. It combines 
the design and production benefits of a standard 
product with the system benefits of reliability, power 
savings, space savings, and lower production costs of 
ASIC devices. 

ARCHITECTURE 

The user benefits of the Logic Cell Array are derived 
from its general-purpose array architecture. This archi­
tecture is based on a number of technical break­
throughs, many of which have resulted in patent 
disclosures. 

The Logic Cell Array architecture is similar to that of a 
gate array, with an interior matrix of logic blocks and a 
surrounding ring of 1/0 interface blocks. User­
programmable interconnection resources are used to 
create logic networks from these elements. In the Logic 
Cell Array, the functions of the logic and 1/0 blocks and 
the routing of interconnect networks are defined by a 
configuration program stored in an internal memory. 
Unlike conventional gate arrays, the Logic Cell Array 
requires no custom factory fabrication. Each device is 
identical until programmed by the user. The config­
uration program is loaded automatically from an EPROM 
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or programmed by a processor whenever the device is 
powered up, or upon command while the system is 
operating. Since the configuration program can be 
copyrighted, designs that employ Logic Cell Arrays can 
be protected from unauthorized copying under the 
same legal precedents that have been used effectively 
to protect microprocessor-based systems. 

PROGRAMMABLE LOGIC DEVICES 

In PLO architectures, inputs to the AND/OR planes are 
driven directly by dedicated input pins of the device and 
some user-selectable input/output pins or feedback 
paths. Outputs are driven directly from sum-of-products 
logic outputs or from flip-flops. The primary limitations of 
this architecture are the rigidity of the AND/OR plane 
logic and its dedicated interconnections. Flip-flops are 
typically driven by a common clock and are closely 
associated with specific output pins. As a result, gate 
utilization seldom exceeds 15%. Consequently, the 
practical upper limit of usable gates appears to be a few 
hundred and the extension of this basic architecture to 
higher densities is limited. Performance of PLDs is fixed 
for each level of logic. Each path through the AND/OR 
plane exhibits the same delay, typically 25-45 ns. 

GATE ARRAYS 

Array architectures provide flexible resources, both for 
1/0 functions and logic structures. With a gate array, user 
logic is typically implemented by interconnecting two­
input NAND gates into more complex functions using 
mask-programmed metal segments. Factory processing 
implements the metal interconnections required for 
each user configuration. Generation of larger arrays can 
be accomplished through straightforward extensions of 
the 1/0, logic building blocks, and interconnect 
resources, much like extending the capacity of a 
memory device. Gate arrays offer usable densities of 
25,000 gates or more. Utilization factors of 80-90% are 
possible because of the flexibility and regularity of the 
architecture. Gate array performance is dependent on 
the placement and interconnection of the elements that 
make up a logic network. In a gate array characterized by 
2 ns gate delays, frequently used functions may have a 
total delay of 15 ns or more because of the levels of 
gating and the interconnection required to implement 
them. 

LOGIC CELL ARRAY 

Logic Cell Arrays share the gate array architecture's 
flexibility and ease of extension to higher densities. The 
function of the LCA's configurable logic blocks and 1/0 
blocks and their interconnection are controlled by a 
configuration program stored in an on-chip memory. 
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Distributed memory cells are adjacent to the logic, 1/0, or 
interconnect element they control. Interconnect re­
sources exist in the channels between the rows and col­
umns of logic blocks and between the logic blocks and 
the 1/0 blocks. Through straightforward extensions of 
the array architecture, the initial 1200 gate LCA has 
been extended to an 1800 gate version. Further exten­
sions of the LCA architecture will increase the number of 
usable gates to over 8000. 

Like other standard IC components, Logic Cell Arrays 
permit the selection of higher speed parts from the 
natural distribution that results from the semiconductor 
manufacturing process. This permits the choice of the 
most cost-effective speed grade for a particular appli­
cation. Logic Cell Array performance is determined by 
the fixed delays for logic and storage elements plus 
interconnect delays. During design, the timing calcu­
lation software in the development system can quickly 
display worst case timing. In general, Logic Cell Array 
performance is specified by the maximum toggle rate for 
a logic block storage element configured as a toggle flip­
flop. For typical configurations, a 70 MHz toggle rate 
translates to a system clock rate of up to 35 Mhz. 

PROCESS 

Over the last five years, the most pronounced trend in 
semiconductor manufacturing processes has been the 
shift toward CMOS. This has been especially true for 
ASICs. The advantages of advanced CMOS processes 
include both high speed and low power consumption. 

Logic Cell Arrays are fabricated through a partnership 
with Seiko-Epson, by means of an advanced twin-well, 
double-layer metal CMOS process. Two metal layers are 
essential for array architectures because of the need to 
propagate logic signals in both horizontal and vertical 
directions with minimum delays. The LCA manufact­
uring process is very similar to that used for high-speed 
memories. As a result it can exploit the photolitho­
graphy and wafer diameter advances in memory process 
technology which result in ever higher density and 
performance at ever decreasing costs. 

QUALITY 

As quality consciousness has grown among semi­
conductor users, awareness of the importance of 
testing has increased. Microprocessors, memories, and 
other standard products are designed for testability and 
are tested exhaustively with carefully developed test 
programs. The testing of most application specific ICs is 
less comprehensive, due to limitations of design and 
test program development. With respect to testing, the 
Logic Cell Array is like other standard products. It has 
been designed with 100% testability as a requirement 
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and each device is comprehensively tested during the 
manufacturing process. This is accomplished without 
any participation by the user in the definition of test 
programs or the generation of test vectors. 

RELIABILITY 

The manufacturing process used for the Logic Cell Array 
is based on a process developed for high performance 
CMOS static memories. Extensive work on this process 
to insure the highest quality memory devices has 
provided the same benefits to the Logic Cell Array. Data 
collected over millions of Logic Cell Array device hours 
confirm the reliability of the design and the process. 
Compared with other logic devices, the Logic Cell Array 
exhibits extremely low power dissipation. This translates 
to lower operating temperatures and, correspondingly 
higher reliability. Packaging materials for the Logic Cell 
Array have been selected to match closely the thermal 
coefficient of expansion of the silicon. This minimizes 
thermal stresses and further improves reliability. 

The memory cell used to store the LCA configuration 
program has been designed to be particularly robust. 
This memory is written only during device configuration 
and its static output controls logic elements in the array. 
Since the two circularly linked inverters that make up the 
static latch are adjacent, transients cause only minor 
differences in voltages. Each inverter is a true com­
plementary transistor pair, so that a low impedance path 
to the supply rail always exists, regardless of state. In 
addition tests involving bombardment with high levels of 
alpha radiation verify that the storage cell is not 
disturbed by alpha particles. 

DEVELOPMENT SYSTEMS 

The development system for the Logic Cell Array is sim­
ilar in capabilities and usage to development systems for 
microprocessors. 

After the initial design information is entered into the 
XACT™ development system, it is checked for consis­
tency and obvious errors. The design is then translated 
into a program for the LCA, which can be stored in 
EPROM devices or in some other media as needed by 
the final system. For debugging, the configuration is 
loaded into the LCA memory and in-circuit emulation is 
used to verify correct operation. Development system 
support for the Logic Cell Array includes complete 
facilities for design entry and design verification. The 
XACT development system includes a basic configura­
tion and several options to enhance designer produc­
tivity. Features of the system include: 

• A consistent user-friendly environment under which 
all the development software and options are available 
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• Graphic driven design entry 

• Schematic entry 

• Interactive timing calculations 

• Macro library support, both for standard Xilinx supplied 
functions and user-defined functions 

• Design entry checking for consistency and 
completeness 

• Automatic design documentation generation 

• Automatic placement and routing 

• Simulation interface support including netlist 
extraction 

• Logic and timing simulation (P-SILOS™) 

• In-circuit emulation for multiple devices 

The XACT system operates on an IBM® PC/XT™, 
PC/AT™ or compatible system. Color graphics is requir­
ed as well as 640 K bytes of internal RAM and a mouse. 
A full system also requires a single parallel port and two 
serial ports. Support for additional schematic editors 
and other design workstation platforms are being 
developed. 

Design Entry 

The first step in designing with the Logic Cell Array is to 
partition a design into logic blocks and 1/0 blocks, based 
on the capabilities of each of these resources. After part­
itioning, two alternatives are available for design entry. 
In the first, the XACT editor is used to enter the design 
directly. Design elements can be configured logic 
blocks and 1/0 blocks or system macros. The XACT 
editor allows the individual elements of either 1/0 or logic 
blocks to be configured directly, either through 
equations or Karnaugh maps. A macro can be selected 
to automatically configure a block or group of blocks for a 
specified function. Alternatively, the design can be 
entered in schematic form using the XACT design library 
with a supported schematic entry system. 

Placement and routing of the individual logic and 1/0 
blocks may be performed interactively using the inter­
connect portion of the XACT editor. Alternatively, the 
optional Automatic Place and Route package can be 
used to place logic elements from a file created either by 
XACT or a schematic package and automatically route 
the logic networks. The output files produced by the 
schematic editor and by the auto place/route program 
are compatible with XACT, so that it can be used 
interactively for design optimization. 

Timing 

Timing for critical logic paths can be determined to check 
design performance. Delays associated with the routing 
of a particular signal path are displayed automatically. 
This represents the total worst-case delay from the 



source block for that signal to the destination currently 
indicated by the mouse. In addition to displaying timing 
for individual networks, XACT can produce a listing show­
ing timing for all logic networks in a design. 

Simulation 

After a design has been entered into XACT, a logic 
network can be extracted to create a netlist and timing 
model file for use with the optional P-SILOS logic and 
timing simulator. Because the XACT system automati­
cally generates the logic description for the simulator, 
the user need only supply the input stimuli. Simulator 
output can be printed in a tabular format that shows the 
state of each selected node whenever any of the nodes 
changes. These data can be used to determine the 
relative timing of signals under worst-case conditions. 
The timing models from which the relative timing data are 
extracted are based on the implementation of the 
design and worst-case temperature, voltage and 
process conditions. Timing waveforms also can be 
generated automatically. 

In-Circuit Emulation 

The ultimate verification of a design is its correct oper-

ation in the final system in which it will be used. This is 
the function of the optional XACTOR™ in-circuit 
emulator. Completed designs that have been 
converted into configuration programs are loaded 
directly into operating devices connected to the user's 
system. The system consists of software and hardware 
which is attached to the host PC system. 

The XACTOR in-circuit emulator allows the user to emu­
late up to four devices simultaneously, with several 
design variations for each device. Emulation is 
accomplished by selectively isolating and controlling the 
pins of the Logic Cell Array which are associated with 
programming and overall device control. Isolation from 
the user's target system is accomplished with electronic 
switches controlled from the host system. 

1-5 

The emulator control software allows the user to pro­
gram devices on command from either the development 
system or the target system. The system can also read 
and display the states of the internal logic block storage 
elements and 1/0 block inputs. Additional capabilities 
include reporting asynchronous events which occur in 
the target system and support for daisy chain 
programming of Logic Cell Arrays. 
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FEATURES 

• Fully user-programmable: 
• 1/0 functions 
• Digital logic functions 
• Interconnections 

• General-purpose array architecture 

• Complete user control of design cycle 

• Compatible arrays with logic cell complexity equivalent 
to 1200 and 1800 usable gates 

• Standard product availability 

• 1 00% factory-tested 

• Selectable configuration modes 

• Low-power, CMOS, static memory technology 

• Performance equivalent to TTL SSl/MSI 

• TTL or CMOS input thresholds 

• Complete development system support 
XACT Design Editor 
Schematic Entry 
XACTOR In Circuit Emulator 
Macro Library 
Timing Calculator 
Logic and Timing Simulator 
Auto Place I Route 

DESCRIPTION 

The Logic Cell™ Array (LCA) is a high density CMOS 
integrated circuit. Its user-programmable array architec­
ture is made up of three types of configurable elements: 
Input/Output Blocks, Logic Blocks and Interconnect. 
The designer can define individual 1/0 blocks for 
interface to external circuitry, define logic blocks to 
implement logic functions and define interconnection 
networks to compose larger scale logic functions. The 
XACT™ Development System provides interactive 
graphic design capture and automatic routing. Both 
logic simulation and in-circuit emulation are available for 
design verification. 

The Logic Cell Array is available in a variety of logic 
capacities, package styles, temperature ranges and 
speed grades. 

1-9 

XC2064 
XC2018 
Logic Cell™ Array 

Product Specification 

Part Logic Conflg· User Config· 
Number Capacity urable I/Os uration 

(usable) Logic Program 
gates Blocks (bits) 

XC2064 1200 64 58 12038 
XC2018 1800 100 74 17878 

The Logic Cell Array's logic functions and inter­
connections are determined by data stored in internal 
static memory cells. On-chip logic provides for automatic 
loading of configuration data at power-up. The program 
data can reside in an EEPROM, EPROM or ROM on the 
circuit board or on a floppy disk or hard disk. The 
program can be loaded in a number of modes to 
accommodate various system requirements. 

ARCHITECTURE 

The general structure of a Logic Cell Array is shown in 
Figure 1 . The elements of the array include three 
categories of user programmable elements: 1/0 Blocks, 
Configurable Logic Blocks and Programmable 
Interconnections. The 1/0 Blocks provide an interface 
between the logic array and the device package pins. 
The Configurable Logic Blocks perform user-specified 
logic functions, and the interconnect resources are 
programmed to form networks that carry logic signals 
among blocks. 

Configuration of the Logic Cell Array is established 
through a distributed array of memory cells.The XACT 
development system generates the program used to 
configure the Logic Cell Array. The Logic Cell Array 
includes logic to implement automatic configuration. 

Configuration Memory 

The configuration of the Xilinx Logic Cell Array is 
established by programming memory cells which 
determine the logic functions and interconnections. 
The memory loading process is independent of the user 
logic functions. 

The static memory cell used for the configuration 
memory in the Logic Cell Array has been designed 
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specifically for high reliability and noise immunity. Based 
on this design, which is covered by a pending patent 
application, integrity of the LCA configuration memory is 
assured even under adverse conditions. Compared 
with other programming alternatives, static memory 
provides the best combination of high density, high 
performance, high reliability and comprehensive 
testability. As shown in Figure 2, the basic memory cell 
consists of two CMOS inverters plus a pass transistor 
used for writing data to the cell. The cell is only written 
during configuration and only read during readback. 
During normal operation the pass transistor is "off" and 
does not affect the stability of the cell. This is quite 
different from the normal operation of conventional 
memory devices, in which the cells are continuously 
read and rewritten. 

The outputs Q and Q control pass-transistor gates 
directly. The absence of sense amplifiers and the 
output capacitive load provide additional stability to the 
cell. Due to the structure of the configuration memory 

D 
CONFIGURABLE 

cells, they are not affected by extreme power supply 
excursions or very high levels of alpha particle radiation. 
In reliability testing no soft errors have been observed, 
even in the presence of very high doses of alpha 
radiation. 

Input/Output Block 

Each user-configurable 1/0 block (IOB) provides an 
interface between the external package pin of the 
device and the internal logic. Each 1/0 block includes a 
programmable input path and a programmable output 
buffer. It also provides input clamping diodes to provide 
protection from electro-static damage, and circuits to 
protect the LCA from latch-up due to input currents. 
Figure 3 shows the general structure of the 1/0 block. 

The input buffer portion of each 1/0 block provides 
threshold detection to translate external signals applied 
to the package pin to internal logic levels. The input 
buffer threshold of the 1/0 blocks can be programmed to 

l/OBLOCK 

Q qg 
LOGIC BLOCK~ 

0 0 0 0 -f} 
-f} 0 or 0 0 -f} 

INTERCONNECT AREA 

-f} 0 OJ 0 0 -f} 
-f} 0 0 0 0 -f} 

0010003 1 
Figure 1. Logic Cell Array Structure 
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be compatible with either TTL (1.4 V) or CMOS (2.2 V) 
levels. The buffered input signal drives both the data 
input of an edge triggered D flip-flop and one input of a 
two-input multiplexer. The output of the flip-flop 
provides the other input to the multiplexer. The user 
can select either the direct input path or the registered 
input, based on the content of the memory cell 
controlling the multiplexer. The 1/0 Blocks along each 
edge of the die share common clocks. The flip-flops are 
reset during configuration as well as by the active-low 
chip RESET input. 

Output buffers in the 1/0 blocks provide 4 mA drive for 
high fan-out CMOS or TTL compatible signal levels. The 
output data (driving 1/0 block pin 0) is the data source 

READ or WRITE 

DATA 

0010003 2 

l:XIUNX 

for the 1/0 block output buffer. Each 1/0 block output 
buffer is controlled by the contents of two configuration 
memory cells which turn the buffer ON or OFF or select 
logical three-state buffer control. The user may also 
select the output buffer three-state control (110 block pin 
TS). When this 1/0 block output control signal is HIGH (a 
logic "1") the buffer is disabled and the package pin is 
high-impedance . 

Configurable Logic Block 

An array of Configurable Logic Blocks (CLBs) provides 
the functional elements from which the user's logic is 
constructed. The Logic Blocks are arranged in a matrix 
in the center of the device. The XC2064 has 64 such 

Figure 2. Configuration Memory Cell 

0010003 3 

D QI----' 

-fl__ PROGRAM·CONTROLLED 
~ = MULTIPLEXER 

Figure 3. 110 Block 
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INPUTS 

A ------1 
B ------1 
c ------1 
o-

x 

OUTPUTS 

y 

CLOCK 

0010003 4 

Figure 4. Configurable Logic Block 

blocks arranged in an 8-row by 8-column matrix. The XC-
2018 has 100 logic blocks arranged in a 10 by 10 matrix. 

Each logic block has a combinatorial logic section, a 
storage element, and an internal routing and control 
section. Each CLB has four general-purpose inputs: A, 
B, C and D; and a special clock input (K), which may be 
driven from the interconnect adjacent to the block. 
Each CLB also has two outputs, X and Y, which may 
drive interconnect networks. Figure 4 shows the resour­
ces of a Configurable Logic Block. 

The logic block combinatorial logic uses a table look-up 
memory to implement Boolean functions. This tech­
nique can generate any logic function of up to four 
variables with a high speed sixteen-bit memory. The 
propagation delay through the combinatorial network is 
independent of the function generated. Each block can 
perform any function of four variables or any two 
functions of three variables each. The variables may be 
selected from among the four inputs and the block's stor­
age element output "Q". Figure 5 shows various op­
tions which may be specified for the combinatorial logic. 

If the single four-variable configuration is selected 
(Option 1 ), the F and G outputs are identical. If the two­
function alternative is selected (Option 2), logic 
functions F and G may be independent functions of 
three variables each. The three variables can be 
selected from among the four logic block inputs and its 
storage element output "O". A third form of the combi-

natorial logic (Option 3) is a special case of the two­
function form in which the B input dynamically selects 
between the two function tables providing a single 
merged logic function output. This dynamic selection 

A 

B 

c 
D 
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allows some five-variable functions to be generated from 
the four block inputs and storage element Q. Combi­
natorial functions are restricted in that one may not use 
both its storage element output Q and the input variable 
of the logic block pin "D" in the same function. 

If used, the storage elem~nt in each Configurable Logic 
Block (Figure 6) can be programmed to be either an 
edge-sensitive "D" type flip-flop or a level-sensitive "D" 
latch. The clock or enable for each storage element can 
be selected from: 

• The special-purpose clock input K 

• The general-purpose input C 

• The combinatorial function G 

The user may also select the clock active sense within 
each logic block. This programmable inversion elimi­
nates the need to route both phases of a clock signal 
throughout the device. 

The storage element data input is supplied from the 
function F output of the combinatorial logic. Asynchro­
nous SET and RESET controls are provided for each 
storage element. The user may enable these controls 
independently and select their source. They are active 

A 

B 

c 

D 

A 

B 

c 

D 
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Figure 5. CLB Combinatorial Logic Options 
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high inputs and the asynchronous reset is dominant. 
The storage elements are reset by the active-low chip 
RESET pin as well as by the initialization phase pre­
ceding configuration. If the storage element is not 
used, it is disabled. 

The two block outputs, X and Y, can be driven by either 
the combinatorial functions, F or G, or the storage 
element output Q (Figure 4). Selection of the outputs is I 
completely interchangeable and may be made to 
optimize routing efficiencies of the networks intercon-
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necting the logic blocks and 1/0 blocks. • 

Programmable Interconnect 

Programmable interconnection resources in the Logic 
Cell Array provide routing paths to connect inputs and 
outputs of the 1/0 and logic blocks into desired net­
works. All interconnections are composed of metal seg­
ments, with programmable switching points provided to 
implement the necessary routing. Three types of 
resources accommodate different types of networks: 

• General purpose interconnect 

• Long :ines 

• Direct connection 

ANY 
FUNCTION 

OF3 
VARIABLES 

ANY 
FUNCTION 

OF3 
VARIABLES 

OPTION3 

DYNAMIC SELECTION OF 
2 FUNCTIONS OF 3 

VARIABLES 
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General-Purpose Interconnect 

General-purpose interconnect, as shown in Figure 7a, is 
composed of four horizontal metal segments between 
the rows and five vertical metal segments between the 
columns of logic and 1/0 blocks. Each segment is only 
the "height" or ''width" of a logic block. Where these 
segments would cross at the intersections of rows and 
columns, switching matrices are provided to allow 
interconnections of metal segments from the adjoining 
rows and columns. Switches in the switch matrices and 
on block outputs are specially designed transistors, 
each controlled by a configuration bit. 

Logic block output switches provide contacts to adja­
cent general interconnect segments and therefore to 
the switching matrix at each end of those segments. A 
switch matrix can connect an interconnect segment to 
other segments to form a network. Figure 7a shows the 

, general interconnect used to route a signal from one 
logic block to three other logic blocks. As shown, 
combinations of closed switches in a switch matrix allow 
multiple branches for each network. The inputs of the 
logic or 1/0 blocks are multiplexers that can be program­
med with configuration bits to select an input network 
from the adjacent interconnect segments. Since the 
switch connections to block inputs are unidirectional (as 
are block outputs) they are usable only for input connec­
tion. The development system software provides 
automatic routing of these interconnections. Interactive 
routing is also available for design optimization. This is 
accomplished by selecting a network and then toggling 

0010003 6 

RES 

Figure 6. CLB Storage Elememt 

the states of the interconnect points by selecting them 
with the "mouse". In this mode, the connections 
through the switch matrix may be established by 
selecting pairs of matrix pins. The switching matrix com­
binations are indicated in Figure 7b. 

Special buffers within the interconnect area provide 
periodic signal isolation and restoration for higher 
general interconnect fan-out and better performance. 
The repowering buffers are bidirectional, since signals 
must be able to propagate in either direction on a 
general interconnect segment. Direction controls are 
automatically established by the Logic Cell Array 
development system software. Repowering buffers are 
provided only for the general-purpose interconnect 
since the direct and long line resources do not exhibit 
the same R-C delay accumulation. The Logic Cell Array 
is divided into nine sections with buffers automatically 
provided for general interconnect at the boundaries of 
these sections. These boundaries can be viewed with 
the development system. For routing within a section, 
no buffers are used. The delay calculator of the XACT 
development system automatically calculates and 
displays the block, interconnect and buffer delays for 
any selected paths. 

0010003 7A 

Figure 7a. General-Purpose Interconnect 
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Long Lines 

Long-lines, shown in Figure Ba, run both vertically and 
horizontally the height or width of the interconnect area. 
Each vertical interconnection column has two long lines; 
each horizontal row has one, with an additional long line 
adjacent to each set of 1/0 blocks. The long lines 
bypass the switch matrices and are intended primarily for 
signals that must travel a long distance or must have 
minimum skew among multiple destinations. 

A global buffer in the Logic Cell Array is available to drive 
a single signal to all B and K inputs of logic blocks. Using 

l:XIUNX 

the global buffer for a clock provides a very low skew, 
high fan-out synchronized clock for use at any or all of 
the logic blocks. At each block, a configuration bit for 
the K input to the block can select this global line as the 
storage element clock signal. Alternatively, other clock 
sources can be used. 

A second buffer below the bottom row of the array 
drives a horizontal long line which, in turn, can drive a I 
vertical long line in each interconnection column. This 
alternate buffer also has low skew and high fan-out capa-
bility. The network formed by this alternate buffer's long • 
lines can be selected to drive the B, C or K inputs of the 

5-VERTICAL GENERAL INTERCONNECT 

2 

8 3 

7 4 3 3 

2 4-HORIZONTAL 
GENERAL 

6 5 INTERCONNECT 
8 3 4 4 

7 4 2 

1 =VALID CONNECTION 
O = INVALID CONNECTION 

0010003 78 

Figure 7b. Interconnection Switching Matrix 
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logic blocks. Alternatively, these long lines can be driv­
en by a logic or 1/0 block on a column by column basis. 
This capability provides a common, low-skew clock or 
control line within each column of logic blocks. Intercon­
nections of these long lines are shown in Figure Sb. 

Direct Interconnect 

Direct interconnect, shown in Figure 9, provides the 
most efficient implementation of networks between adja­
cent logic or 1/0 blocks. Signals routed from block to 
block by means of direct interconnect exhibit minimum 
interconnect propagation and use minimum intercon­
nect resources. For each Configurable Logic Block, the 
X output may be connected directly to the C or D inputs 
of the CLB above and to the A or B inputs of the CLB 
below it. The Y output can use direct interconnect to 
drive the B input of the block immediately to its right. 
Where logic blocks are adjacent to 1/0 blocks, direct 
connect is provided to the 1/0 block input (I) on the left 
edge of the die, the output (0) on the right edge, or 

B 
J 

SWITCH 
MATRIX 

L 

~e 

l 

J 

J SWITCH L 
1 MATRIX I 

B 
TWO VERTICAL 

LONG LINES 

both on 1/0 blocks at the top and bottom of the die. 
Direct interconnections of 1/0 blocks with CLBs are 
shown in Figure Sb. 

Crystal Oscillator 

An internal high speed inverting amplifier is available to 
implement an on-chip crystal oscillator. It is associated 
with the auxiliary clock buffer in the lower right corner of 
the die. When configured to drive the auxiliary clock 
buffer, two special adjacent user 1/0 blocks are also con­
figured to connect the oscillator amplifier with external 
crystal oscillator components, as shown in Figure 10. 
This circuit becomes active before configuration is 
complete in order to allow the oscillator to stabilize. 
Actual internal connection is delayed until completion of 
configuration. The feedback resistor R1 between out­
put and input, biases the amplifier at threshold. It should 
be as large a value as practical to minimize loading of the 
crystal. The inversion of the amplifier, together with the 
R-C networks and crystal, produce the 360-degree 

B 
B 
B 

GLOBAL 
LONG LINE 

HORIZONTAL 
LONG LINE 

0010003 BA 

Figure Ba. Long Line Interconnect 
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Figure Sb. XC2064 Long Lines, 1/0 Clocks, 1/0 Direct Interconnect 
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phase shift of the Pierce oscillator. A series resistor R2 
may be included to add to the amplifier output impe­
dance when needed for phase-shift control or crystal 
resistance matching or to limit the amplifier input swing 
to control clipping at large amplitudes. Excess feedback 
voltage may be adjusted by the ratio of C2/C1. The 
amplifier is designed to be used over the range from 1 
MHz up to one-half the specified CLB toggle frequency. 
Use at frequencies below 1 MHz may require individual 
characterization with respect to a series resistance. 
Operation at frequencies above 20 MHz generally re­
quires a crystal to operate in a third overtone mode, in 
which the fundamental frequency must be suppressed 
by the R-C networks. When the amplifier does not drive 
the auxiliary buffer, these 1/0 blocks and their package 
pins are available for general user 1/0. 

POWER 

Power Distribution 

Power for the LCA is distributed through a grid to 
achieve high noise immunity and isolation between logic 
and 1/0. For packages having more than 48 pins, two 

0010003 9 

Figure 9. Direct Interconnect 

Vee pins and two ground pins are provided (see Figure 
11). Inside the LCA, a dedicated Vee and ground ring 
surrounding the logic array provides power to the 1/0 
drivers. An independent matrix of Vee and ground lines 
supplies the interior logic of the device. This power 
distribution grid provides a stable supply and ground for 
all internal logic, providing the external package power 
pins are appropriately decoupled. Typically a 0.1 µF 
capacitor connected between the Vee and ground pins 
near the package will provide adequate decoupling. 

Output buffers capable of driving the specified 4 mA 
loads under worst-case conditions may be capable of 
driving 25 to 30 times that current in a best case. Noise 
can be reduced by minimizing external load capacitance 
and reducing simultaneous output transitions in the 
same direction. It may also be beneficial to locate heavily 
loaded output buffers near the ground pads. Multiple 
Vee and ground pin connections are required for pack­
age types which provide them. 
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Power Dissipation 

The Logic Cell Array exhibits the low power consump­
tion characteristic of CMOS ICs. Only quiescent power 
is required for the LCA configured for CMOS input 
levels. The TTL input level configuration option requi­
res additional power for level shifting. The power 
required by the static memory cells which hold the 
configuration data is very low and may be maintained in a 
power-down mode. 

Typically most of power dissipation is produced by 
capacitive loads on the output buffers, since the power 
per output is 25 µWI pF I MHz . Another component of 
1/0 power is the DC loading on each output pin. For any 
given system, the user can calculate the power require­
ment based on the resistive loading of the devices 
driven by the Logic Cell Array. 

Internal power supply dissipation is a function of clock 
frequency and the number of nodes changing on each 
clock. In an LCA the fraction of nodes changing on a 
given clock is typically low (10-20%). For example, in a 
16-bit binary counter, the average clock produces a 
change in slightly less than 2 of the 16 bits. In a 4-input 
AND gate there will be 2 transitions in 16 states. Typical 
global clock buffer power is about 3 mW I MHz for the 
XC2064 and 4mW I MHz for the XC2018. With a 
'1ypical" load of three general interconnect segments, 
each Configurable Logic Block output requires about 
0.4 mW I MHz of its output frequency. Graphs of power 
versus operating frequency are shown in Table 1. 
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ON-CHIP EXTERNAL 

SUGGESTED COMPONENT VALUES 
R1 1-4 Mn 
R2 0-1 Kn 

(may be required for low frequency, phase 
shift and/or compensation level for crystal O) ~ C1 

C1,C2 5-20pf 
Y1 1-10MHzATcut 

XTAL1 XTAL2 

48 DIP 33 30 

68 PLCC 46 43 

68PGA J10 L10 

84 PLCC 56 53 

84PGA K11 l11 

Figure 10. Crystal Oscillator 
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Figure 11. LCA Power Distribution 
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PROGRAMMING 

Configuration data to define the function and intercon­
nection within a Logic Cell Array are loaded automatically 
at power-up or upon command. Several methods of 
automatically loading the required data are designed 
into the Logic Cell Array and are determined by logic 
levels applied to mode selection pins at configuration 
time. The form of the data may be either serial or parallel, 
depending on the configuration mode. The program­
ming data are independent of the configuration mode 
selected. The state diagram of Figure 12 illustrates the 
configuration process. 

Input thresholds for user 1/0 pins can be selected to be 
either TIL-compatible or CMOS-compatible. At power­
up, all inputs are TIL-compatible and remain in that state 
until the LCA begins operation. If the user has selected 
CMOS compatibility, the input thresholds are changed 
to CMOS levels during configuration. 

Figure 13 shows the specific data arrangement for the 
XC2064 device. Future products will use the same data 
format to maintain compatibility between different de­
vices of the Xilinx product line, but they will have differ­
ent sizes and numbers of data frames. For the XC2064, 
configuration requires 12,038 bits for each device. For 
the XC2018, the configuration of each device requires 
17,878 bits. The XC2064 uses 160 configuration data 
frames and the XC2018 uses 197. · 

The configuration bit stream begins with preamble bits, a 
preamble code and a length count. The length count is 
loaded into the control logic of the Logic Cell Array and 
is used to determine the completion of the configuration 
process. When configuration is initiated, a 24-bit length 
counter is set to 0 and begins to count the total number 
of configuration clock cycles applied to the device. 
When the current length count equals the loaded 
length count, the configuration process is complete. 
Two clocks before completion, the internal logic 
becomes active and is reset. On the next clock, the 
inputs and outputs become active as configured and 
consideration should be given to avoid configuration 
signal contention. (Attention must be paid to avoid 
contention on pins which are used as inputs during 
configuration and become outputs in operation.) On the 
last configuration clock, the completion of configuration 
is signalled by the release of the DONE I PROG pin of 
the device as the device begins operation. This open­
drain output can be AND-tied with multiple Logic Cell 
Arrays and used as an active-high READY or active-low, 
RESET, to other portions of the system. High during 
configuration (HDC) and low during configuration (LDC), 
are released one CCLK cycle before DONE is asserted. 
In master mode configurations, it is convenient to use 
LDC as an active-low EPROM chip enable. 

As each data bit is supplied to the LCA, it is internally 
assembled into a data word. As each data word is 
completely assembled, it is loaded in parallel into one 
word of the internal configuration memory array. The last 
word must be loaded before the current length count 
compare is true. If the configuration data are in error, eg. 
PROM address lines swapped, the LCA will not be ready 
at the length count and the counter wjll cycle through an 
additional complete count prior to configuration being 
"done". 

Figure 14 shows the selection of the configuration 
mode based on the state of the mode pins MO and M1. 
These package pins are sampled prior to the start of the 
configuration process to determine the mode to be 
used. Once configuration is DONE and subsequent 
operation has begun, the mode pins may be used to 
perform data readback, as discussed later. An additional 
mode pin, M2, must be defined at the start of config­
uration. This package pin is a user-configurable 1/0 after 
configuration is complete. 

Initialization Phase 

When power is applied, an internal power-on-reset 
circuit is triggered. When Vee reaches the voltage at 
which the LCA begins to operate (2.5 to 3 Volts), the 
chip is initialized, outputs are made high-impedance and 
a time-out is initiated to allow time for power to stabilize. 
This time-out (15 to 35 ms) is determined by a counter 
driven by a self-generated, internal sampling clock that 
drives the configuration clock (CCLK) in master config­
uration mode. This internal sampling clock will vary with 
process, temperature and power supply over the range 
of 0.5 to 1.5 MHz. LCAs with mode lines set for master 
mode will time-out of their initialization using a longer 
counter (60 to 140 ms) to assure that all devices, which it 
may be driving in a daisy chain, will be ready. Con-
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MODE PIN 

MODE SELECTED 
MO M1 M2 

0 0 0 MASTER SERIAL 

0 0 1 MASTER LOW MODE 

0 1 1 MASTER HIGH MODE 

1 0 1 PERIPHERAL MODE 

1 1 1 SLAVE MODE 

MASTER LOW ADDRESSES BEGIN AT 0000 AND INCREMENT 
MASTER HIGH ADDRESSES BEGIN AT FFFF AND DECREMENT 

Figure 14. Configuration Mode Selection 



figuration using peripheral or slave modes must be de­
layed long enough for this initialization to be completed. 

tional cycles of the internal sampling clock (197 for 
the XC2018) to clear the internal memory before 
another configuration may begin. The same is true of a 
configured part in which the reconfigurable control bit is 
set. When a HIGH-to-LOW transition on the DONE I 
PROG package pin is detected, thereby initiating a 
reprogram, the configuration memory is cleared. This in-

The initialization phase may be extended by asserting 
the active-low external RESET. If a configuration has 
begun, an assertion of RESET will initiate an abort, 
including an orderly clearing of partially loaded 
configuration memory bits. After about 3 clock cycles for 
synchronization, initialization will require about 160 addi-

sures an orderly configuration in which no internal signal • 
conflicts are generated during the loading process. 
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RESET 

DONE/PROG LOW TRANSITION 
(RE PROGRAMMABILITY OPTION ENABLED) 
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0010 
< 24-BIT LENGTH COUNT> 
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0 <DATAFRAME#001>111 
0 <DATAFRAME#002> 111 
0 <DATA FRAME #003 > 111 

0 <DATAFRAME#159> 111 
0 <DATAFRAME#160> 111 
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Figure 12. Configuration State Diagram 

) 

DUMMY BITS (4 BITS MINIMUM) 
PREAMBLE CODE 
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Master Mode 

In master mode, the Logic Cell Array automatically loads 
the configuration program from an external memory 
device. Figure 15a shows an example of the master 
mode connections required. The Logic Cell Array pro­
vides sixteen address outputs and the control signals 
RCLK (read clock), HOC (high during configuration) and 
LDC (low during configuration) to execute read cycles 
from the external memory. Parallel eight-bit data words 
are read and internally serialized. As each data word is 

-;;;-

read, the least significant bit of each byte, normally DO, is 
the next bit in the serial stream. 

Addresses supplied by the Logic Cell Array can be 
selected by the mode lines to begin at address 0 and 
incremented to read the memory (master low mode), or 
they can begin at address FFFF Hex and be 
decremented (master high mode). This capability is 
provided to allow the Logic Cell Array to share external 
memory with another device, such as a microprocessor. 
For example, if the processor begins its execution from 
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Figure 1 Sa. Master Low Address Configuration 

1-22 

0010003 15A 



low memory, the Logic Cell Array can load itself from 
high memory and enable the processor to begin 
execution once configuration is completed. The DONE 
I PROG output pin can be used to hold the processor in 
a Reset state until the Logic Cell Array has completed 
the configuration process. 

The master serial mode uses serial configuration data, 
synchronized by the rising edge of RCLK, as in 
Figure 15b. 

Peripheral Mode 

Peripheral mode provides a simplified interface through 
which the device may be loaded as a processor 

+5V 

peripheral. Figure 16 shows the peripheral mode 
connections. Processor write cycles are decoded from 
the common assertion of the active-low write strobe 
(WRT), and two active-low and one active-high chip 
selects (CSO cs1 CS2). If all these signals are not 
available, the unused inputs should be driven to their 
respective active levels. The Logic Cell Array will accept 
one bit of the configuration program on the data input • 
(DIN) pin for each processor write cycle. Data is supplied 
in the serial sequence described earlier. 

Since only a single bit from the processor data bus is • 
loaded per cycle, the loading process involves the 
processor reading a byte or word of data, writing a bit of 
the data to the Logic Cell Array, shifting the word and 
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writing a bit until all bits of the word are written, then 
continuing in the same fashion with the next word, etc. 
After the configuration program has been loaded, an 
additional three clocks (a total of three more than the 
length count) must be supplied in order to complete the 
configuration process. When more than one device is 
being used in the system, each device can be assigned 
a different bit in the processor data bus, and multiple 
devices can be loaded on each processor write cycle. 
This "broadside" loading method provides a very easy 
and time-efficient method of loading several devices. 

Slave Mode 

Slave mode, Figure 17, provides the simplest interface 
for loading the Logic Cell Array configuration. Data is 
supplied in conjunction with a synchronizing clock. For 
each LOW-to-HIGH input transition of configuration 
clock (CCLK), the data present on the data input (DIN) 
pin is loaded into the internal shift register. Data may be 
supplied by a processor or by other special circuits. 
Slave mode is used for downstream devices in a daisy­
chain configuration. The data for each slave LCA are 
supplied by the preceding LCA in the chain, and the 

ADDRESS 
BUS 

DATA 
BUS 

+5V 

clock is supplied by the lead device, which is configured 
in master of peripheral mode. After the configuration 
program has been loaded, an additional three clocks (a 
total of three more than the length count) must be sup­
plied in order to complete the configuration process. 

Daisy Chain 

The daisy-chain programming mode is supported by 
Logic Cell Arrays in all programming modes. In master 
mode and peripheral mode, the LCA can act as a source 
of data and control for slave devices. For example, 
Figure 18 shows a single device in master mode, with 2 
devices in slave mode. The master mode device reads 
the external memory and begins the configuration load­
ing process for all of the devices. 

The data begin with a preamble and a length count 
which is supplied to all devices at the beginning of the 
configuration. The length count represents the total 
number of cycles required to load all of the devices in 
the daisy chain. After loading the length count, the lead 
device will load its configuration data while providing a 
HIGH DOUT to downstream devices. When the lead 
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Figure 16. Peripheral Mode Configuration 
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device has been loaded and the current length count 
has not reached the full value, memory access 
continues. Data bytes are read and serialized by the 
lead device. The data are passed through the lead 
device and appear on the data out (DOUT) pin in serial 
form. The lead device also generates the configuration 
clock (CCLK) to synchronize the serial output data. A 
master mode device generates an internal CCLK of 8 
times the EPROM address rate, while a peripheral mode 
device produces CCLK from the chip select and write 
strobe timing. 

Operation 

When all of the devices have been loaded and the 
length count is complete, a synchronous start-up of 
operation is performed. On the clock cycle following the 
end of loading, the internal logic begins functioning in 
the reset state. On the next CCLK, the configured 
output buffers become active to allow signals to 
stabilize. The next CCLK cycle produces the DONE 
condition. The length count control of operation allows 
a system of multiple Logic Cell Arrays to begin operation 
in a synchronized fashion. If the crystal oscillator is 
used, it will begin operation before config-uration is 
complete to allow time for stabilization before it 

MICRO 
COMPUTER 

STRB 

DO 

01 

110 D2 POAT 
03 

D4 

DS 

D6 

07 

RESET 

DIN=x BITN 

~ I· ~ CCLK 

is connected to the internal circuitry. 

Special Configuration Functions 

In addition to the normal user logic functions and inter­
connect, the configuration data include control for sev­
eral special functions: 

• Input thresholds • 

• Readback enable 

• Reprogram enable -
• DONE pull-up resistor 

Each of these functions is controlled by a portion of the 
configuration program generated by the XACT Develop­
ment System. 

Input Thresholds 

During configuration, all input thresholds are TIL level. 
During configuration input thresholds are established as 
specified, either TIL or CMOS. The PWRDWN input 
threshold is an exception; it is always a CMOS level 
input. The TIL threshold option requires additional pow­
er for threshold shifting. 
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Figure 17. Slave Mode Configuration 
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Read back 

After a Logic Cell Array has been programmed, the 
configuration program may be read back from the 
device. Readback may be used for verification of config­
uration and as a method of determining the state of 
internal logic nodes during debugging. In applications 
in which the verification is not used, it may be desirable 
to limit access to the configuration data. Three readback 
options are provided: on command, only once and 
never. If on-command readback is selected, the device 
will respond to all readback requests. If readback once is 
selected, the device will respond only to the first 
readback request after programming is complete. 
Subsequent readback requests will be ignored. If read­
back never is selected, the device will not respond to a 
readback command. 

Readback is accomplished without the use of any of the 
user 1/0 pins; only MO, M1 and CCLK pins are used. An 
initiation of readback is produced by a LOW-to-HIGH 
transition of the MO I RTRIG (read trigger) pin. Once the 
readback command has been given, CCLK is cycled to 
read back each data bit in a format similar to loading. 
After two dummy bits, the first data frame is shifted out, 
in inverted sense, on the M1 I RDATA (read data) pin. All 
data frames must be read back to complete the process 
and return the mode select and CCLK pins to their 
normal functions. 

In addition to the configuration program, the readback 
includes the current state of each of the internal logic 
block storage elements, and the state of the input (I) 
connection pin on each 1/0 block. This state information 
is used by the Logic Cell Array development system In­
Circuit Emulator to provide visibility into the internal 
operation of the logic while the system is operating. To 
readback a uniform time sample of all storage elements it 
may be necessary to inhibit the system clock. 

Re-program 

The configuration memory of the Logic Cell Array may 
be rewritten while the device is in the user's system, if 
that option is selected when the LCA is configured. If 
another programming cycle is to be initiated, the dual 
function package pin DONE I PROG must be given a 
HIGH-to-LOW transition. Sensitivity to noise is reduced, 
by confirming the HIGH-to-LOW transition over 2-3 
cycles using the LCA's internal sampling oscillator. 
When a reprogram command is recognized, all internal 
logic and connectivity definitions are erased and the 110 
package pins are forced to a high .impedance condition. 
The device returns to the initialization state. Reprogram 
control is often implemented with an external open 
collector driver which pulls DONE I PROG LOW. Once it 

recognizes a stable request, the Logic Cell Array will 
hold a LOW until the new configuration has been 
completed. Whether or not the reprogram request is 
maintained, the Logic Cell Array will begin ·operation 
upon completion of configuration. 

DONE Pull-up 

The DONE I PROG pin is an open drain 1/0 that indicates 
programming status. As an input, it initiates a reprogram 
operation. An optional internal pull-up resistor may be 
enabled. 

Battery Backup 

Because the control store of the Logic Cell Array is a 
CMOS static memory, its cells require only a very low 
standby current for data retention. In some systems, 
this low data retention current characteristic facilitates 
preserving configurations in the event of a primary 
power loss. The Logic Cell Array has built in power­
down logic which, when activated, will disable normal 
operation of the device and retain only the configuration 
data. All internal operation is suspended and output 
buffers are placed in their high impedance state. 
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Power-down data retention is possible with a simple 
battery-backup circuit because the power requirement is 
extremely low. For retention at 2.0 volts, the required 
current is typically on the order of 50 nanoamps. Screen­
ing of this parameter is available. To force the Logic Cell 
Array into the power-down state, the user must pull the 
PWRDWN pin low and continue to supply a retention 
voltage to the Vee pins of the package. When normal 
power is restored, Vee is elevated to its normal operating 
voltage and PWRDWN is returned to a HIGH. The Logic 
Cell Array resumes operation with the same internal 
sequence that occurs at the conclusion of config­
uration. Internal 1/0 and logic block storage elements will 
be reset, the outputs will become enabled and then the 
DONE/PROG pin will be released. No configuration 
programming is involved. 

PERFORMANCE 

The high performance of the Logic Cell Array results 
from its patented architectural features and from the use 
of an advanced high-speed CMOS manufacturing 
process. Performance may be measured in terms of 
minimum propagation times for logic elements. 

Flip-flop loop delays for the 1/0 block and logic block flip­
flops are about 3 nanoseconds. This short delay 
provides very good performance under asynchronous 
clock and data conditions. Short loop delays minimize 
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the probability of a metastable condition which can result 
from assertion of the clock during data transitions. 
Because of the short loop delay characteristic in the 
Logic Cell Array, the VO block flip-flops can be used very 
effectively to synchronize external signals applied to the 
device. Once synchronized in the 1/0 block, the signals 
can be used internally without further consideration of 
their clock relative timing, except as it applies to the 
internal logic and routing path delays. 

Device Performance 

The single parameter which most accurately describes 
the overall performance of the Logic Cell Array is the 
maximum toggle rate for a logic block storage element 
configured as a toggle flip-flop. The configuration for 
determining the toggle performance of the Logic Cell 
Array is shown in Figure 19. The clock for the storage 
element is provided by the global clock buffer and the 
flip-flop output Q is fed back through the combinatorial 
logic to form the data input for the next clock edge. 
Using this arrangement, flip-flops in the Logic Cell Array 
can be toggled at clock rates from 33-70 MHz, 
depending on the speed grade used. 

Actual Logic Cell Array performance is determined by 
the critical path speed, including both the speed of the 
logic and storage elements in that path, and the speed 
of the particular network routing. Figure 20 shows a 
typical system logic configuration of two flip-flops with an 
extra combinatorial level between them. Depending on 
speed grade, system clock rates to 35 MHz are practical 
for this logic. To allow the user to make the best use of 
the capabilities of the device, the delay calculator in the 
XACT Development System determines worst-case 
path delays using actual impedance . and loading 
inf9rmation. · 

D 0 --~,~- X,Y 

0010003 16A 

Figure 19. Logic Block Configuration for 
Toggle Rate Measurement 

Logic Block Performance 

Logic block propagation times are measured from the 
interconnect point at the input of the combinatorial logic 
to the output of the block in the interconnect area. Com­
binatorial performance is independent of logic function 
because of the table look-up based implementation. 
Timing is different when the combinatorial logic is used 
in conjunction with the storage element. For the 
combinatorial logic function driving the data input of the 
storage element, the critical timing is data set-up relative 
to the clock edge provided to the storage element. The 
delay from the clock source to the output of the logic 
block is critical in the timing of signals produced by 
storage elements. The loading on a logic block output is 
limited only by the additional propagation delay of the 
interconnect network. Performance of the logic block is 
a function of supply voltage and temperature, as shown 
in Figures 22 and 23. 
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Interconnect Performance 

Interconnect performance depends on the routing 
resource used to implement the signal path. As discus­
sed earlier, direct interconnect from block to block pro­
vides a minimum delay path for a signal. 

The single metal segment used for long lines exhibits 
low resistance from end to end, but relatively high capa­
citance. Signals driven through a programmable switch 
will have the additional impedance of the switch added 
to their normal drive impedance. 

General-purpose interconnect performance depends 
on the number of switches and segments used, the pre­
sence of the bidirectional repowering buffers and the 
overall loading on the signal path at all points along the 
path. In calculating the worst-case delay for a general 
interconnect path, the delay calculator portion of the 
XACT development system accounts for all of these 
elements. As an approximation, interconnect delay is 
proportional to the summation of totals of local metal 
segments beyond each programmable switch. In effect, 
the delay is a sum of R-C delays each approximated by 
an R times the total C it drives. The R of the switch and 
the C of the interconnect are functions of the particular 
device performance grade. For a string of three local 
Interconnects, the approximate delay at the first 
segment, after the first switch resistance, would be 
three units; an additional two delay units after the next 
switch plus an additional delay after the last switch in the 
chain. The interconnect R-C chain terminates at each 
repowering buffer. Nearly all of the capacitance is in the 
interconnect metal and switches; the capacitance of the 
block inputs is not significant. Figure 21 shows an esti­
mation of this delay. 
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DEVELOPMENT SYSTEM 

To support designers using the Logic Cell Array, Xilinx 
provides a basic development system with several 
options for additional productivity. The XACT system 
provides the following: 

• Graphic-driven design entry 
• Schematic entry 
• Interactive timing delay calculations 
• Macro library support, both for standard Xilinx supplied 

functions and user-defined functions 
• Design entry checking for consistency and 

completeness 
• Automatic design documentation generation 
• Automatic placement and routing 
• Simulation interface support, including automatic 

netlist (circuit description) and timing extraction 
• In-circuit emulation for multiple devices 

The host system on which the XACT system operates is 
an IBM® PC/XT™ or PC/AT™ or compatible system with 
DOS 2.1 or higher. Color graphics is required as well as 
640K bytes of internal RAM (an Expanded Memory 
Specification (EMS) card with 256K bytes of memory is 
required for the XC2018). A complete system requires 
one parallel 1/0 port and two serial ports and a mouse. 

Designing with XACT 

Designing with the Logic Cell Array is similar to using 
conventional MSI elements or gate array macros. The 
first step is to partition the desired logic design into 
Logic Blocks and 1/0 blocks, usually based on shared 
input variables or efficient use of flip-flop and combi­
natorial logic. Following a plan for placement of the 
blocks, the design information may be entered using 
the interactive Graphic Design Editor. The design 
information includes both the functional specifications 
for each block and a definition of the interconnection 
networks. A macro library provides a simplified entry of 
commonly used logic functions. As an alternative to 
interactive block placement and configuration, a sche­
matic may be created using elements from the macro 
library. Automatic placement and routing is available for 
either method of design entry. After routing the 
interconnections, various checking stages and proces­
sing of that data are performed to ensure that the design 
is correct. Design changes may be implemented in 
minutes. The design file is used to generate the pro­
gramming data which can be down loaded directly into 

an LCA in the target system and operated. The program 
information may be used to program PROM, EPROM or 
ROM devices, or stored in some other media as needed 
by the final system. 

Design verification may be accomplished by using the 
Xilinx XACTOR In-Circuit Emulation System directly in 
the target system and/or the P-Silos™ logic simulator. 

PACKAGE PIN DESCRIPTIONS 
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PWRDWN An active low power-down input stops all 
internal activity to minimize Vee power and 
puts all output buffers in a high-impedance 
state. Configuration is retained, however, 
internal storage elements are Reset. When 
the PWRDWN pin returns HIGH, the device 
returns to operation with the same 
sequence of reset, buffer enable and 
DONE I PROGRAM as at the completion of 
configuration. 

MO 
RTRIG 

M1 
RDATA 

M2 

HOC 

As Mode O, this input and M1, M2 are 
sampled before the start of configuration to 
establish the configuration mode to be 
used. 
As a read trigger, an input transition to a 
HIGH, after configuration is complete, will 
initiate a readback of configuration and 
storage element data. This operation may 
be limited to a single request, or be 
inhibited altogether, by selecting the 
appropriate readback option when 
generating the bit stream. 

As Mode 1, this input and MO, M2 are 
sampled before the start of configuration to 
establish the configuration mode to be 
used. 
As an active-low read data; after config­
uration is complete, this pin is the output of 
the readback data. 

As Mode 2, this input and MO, M1 are 
sampled before the start of configuration to 
establish the configuration, mode to be 
used. After configuration, this pin becomes 
a user-programmable 1/0. 

High during configuration is held at a HIGH 
level by the LCA until after configuration. It 
is intended to be available as a control indi­
cation that configuration is not complete. 



LDC 

DONE 
PROG 

XTL1 

XTL2 

After configuration, this pin is a user 110. 

Low during configuration is held at a LOW 
level by the LCA until after configuration. It 
is intended to be available as a control 
indication that configuration is not comple­
ted. It is particularly useful in master mode 
as a LOW enable for an EPROM. After 
configuration, this pin is a user 1/0. If used 
as a LOW EPROM enable, it should be 
programmed as a HIGH after configuration. 

This is an active-low input which has three 
functions. Prior to the start of configuration, 
a LOW input will delay the start of the 
configuration process. An internal circuit 
senses the application of power and begins 
a minimal time-out cycle on the order of 100 
ms. When the time-out and RESET are 
complete, the levels of the "M" mode lines 
are sampled and configuration begins. If 
RESET is asserted during a configuration, 
the LCA is reinitialized and will restart the 
configuration at the termination of RESET. 
If RESET is asserted after configuration is 
complete, it will provide an asynchronous 
reset of all 108 and CLB storage elements 
of the LCA. 

The DONE open drain output is config­
urable with or without a pull-up resistor of 
about 3KO. At the completion of config­
uration, the circuitry of the LCA becomes ac­
tive in a synchronous order and one config­
uration clock cycle later DONE is asserted. 
Once configuration is done, a HIGH-to-LOW 
transition of this program pin will cause an 
initialization of the LCA and start a 
reconfiguration if that mode is selected in 
the current configuration. 

This user 1/0 pin may be configured to 
operate as the output of an amplifier usable 
with an external crystal and bias circuity to 
form an oscillator. 

This user 1/0 pin may be configured to 
operate as the input of an amplifier usable 
with an external crystal and bias circuity to 
form an oscillator. 

CCLK During configuration, configuration clock is 
an output of an LCA in either master or 
peripheral mode. LCAs in slave mode use it 
as a clock input. During a readback opera­
tion, it is an input clock for the configuration 
data being output. 
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DOUT This user 1/0 pin is used during config­
uration to output serial configuration data • 
out for daisy-chained slaves' data in. 

DIN This user 1/0 pin is used as serial data in • 
during slave or peripheral configuration. 
This pin is DO in master configuration mode. 

CSO, CS1 These 4 inputs represent a set of signals, 3 
CS2, WRT active low and one active high, which are 

used in the peripheral mode to control 
configuration data entry. The assertion of 
all four generates a LOW CCLK and shifts 
DOUT data. The removal of any assertion 
clocks in the DIN data present and causes a 
HIGH CCLK. In master mode, these pins 
become part of the parallel configuration 
byte (D4,D3,D2,D1 ). After configuration is 
complete, they are user-programmed 1/0. 

RCLK During master mode configuration, this pin 
represents a read clock of an external 
memory device. After configuration is 
complete, this pin becomes a user­
programmed 1/0. 

DO-D7 This set of 8 pins represent the parallel 
configuration data byte for the master 
mode. After configuration is complete, they 
are user-programmed 1/0. 

AO-A 15 This set of 16 pins present an address 
output for an external configuration memory 
during master mode. After configuration is 
complete, they are user-programmed 110. 
A 12 through A 15 are not available in 
packages with less than 68 pins. 

1/0 A pin which may be programmed by the 
user to be input and/or output following 
configuration. Some of these pins present 
a high-impedance pull-up or perform other 
functions before configuration is complete. 
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Figure 22. Delay vs. Temperature 
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·~/ ,J ~ . 
20CLBOUTPUTS 41-¥----+7~'----+--7~+---l-+---L...,,.£11------1--1----l--I- ·8 

3LOCALSEGMENTS [7 .7 

EACH3 T 7 -r .6 

2 +-17_..,,,.7'----+--7-+7--+-i---+v--A-v---+----+----+--i--I-:: 
(3mW/MHz) /¥----+17?---+---4[7~A----+-----1-----1----l---1---1- .3 

GLOBAL CLOCK /i _,.1 
BUFFER 1 ~ r 

(1.25mW/MHz) / LJ 
11/00UTPUT 

(50pF)o.s T7 
0.5 1 

(0.4mW/MHz) / 

1 CLBOUTPUT 
3LOCAL 

lfil'ERCONNECT 

2 4 5 10 20 

FREQUENCY MHz 

Table 1. Typlcal LCA Power Consumption By Element 
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.1 
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XC2064 / 2018 Logic Cell Array 

CONFIGURATION MODE: <M2:M1 :MD> 
48 68 68 t----,,S,-LA"°V""'E--,--,P"'E""'R""'1P"'HE"'RA,..,-L -,-.,-M.,-AS'°'T"'E-R--H"°'IG-H-.-.,-M-AS'°'T"'E-R--LO-W--1 
DIP PLCC PGA <1:1:1> <1:0:1> <1:1:Cb <1:0:0> 

4 
5 
6 
7 
8 

10 

11 
12 
13 

14 

15 
16 
17 
16 
19 
20 

21 

26 
27 
28 
29 
30 
31 
32 
33 

34 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
26 
29 
30 

86 GND 

g~ I f 
~~ :::::•::: 

F2 
F1 
G2 
G1 

H2 I 
H1 
J2 

:/:•: 

K1 MO LOW) MO HIGlj)__ 
K2 M2 (HIGH) 
L2 HDC (HIGH) 
K3 ··::· ... ·.;:·::·.··>·«HIGH>>~ 

MO.LOW) 

35 }[ G1o coo][ I 04 (ll 
36 51 G11 2! l:S1 I 03(1) 

37 

38 
39 
40 
41 
42 
43 
44 
45 
46 

47 

48 

52 F10 VCC 
53 F11 .}(: [IT~ ~ 
54 E10 <~Hi(lfi>~> cs2J!I ~ 
55 E11 } : :o::~ 

59 C11 OOUT (0) 
60 811 CCLK (I) _! CCLK (0) 
61 

~ M M R 

~ -f, ~· ± ~~· :g: 

USER 
OPERATION 

VO 

1/0 

RTRIGfil: 

VO 

VO 

XTL20Al!O 

l'RCX'iJ!l. 
XTL 1OR1/0 

VO 

VO 

CCL'U!)_ 

VO 

«HIGH>> IS HIGH IMPEDANCE WITH A 20-50 KO INTERNAL PULL-UP DURING CONFIGURATION 

Table 2a. XC2064 Pin Assignments 

0010003 20 
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CONFIGURATION MODE: <M2:Mt :MO. 

p~~C :A p~ :,:A1--S-LA_V_E--.-P-ER-l-PH_E_RA_L~-MAS--TE-R-.H-IG-H-.-M-AS_T_E_R--L-O-W-l 
c1:1:1> c1:0:1> c1:1:0> c1:0;0> 

B& 
2 AB 

BS 
4 [!S 
5 [!• 
6 A4 
7 B3 
8~ 
9 A2 
to [!!! 
11 81 
12 C2 
t3 LQ1 
t4 02 
ts Dt 

ts~ 

t7 ~ 
tB 2 
19 Ft 

20 G2 

2t Gt 
22 H2 
23 Ht 
24 J2 
2S Jt 
26 Kt 
27 K2 

20 K3 
30 L3 
3t K4 
32 L4 

33 KS 
34 LS 

35 K& 

36 L6 
37 K7 
3B L7 

cs 
A6 
AS 

[!S 
cs 
A4 
B4 
A3 
A2 

tO ~ 
11 At 
t2 [:!!!: 
13 C2 
14 81 
tS lQ1 
tB 02 
t7 Dt 
18 E3 
t9 ~ 
20 Et 
2t 2 
22 3 
23 G3 
24 Gt 

25 ~ 
26 Ft 

27 !.!!! 
28 H2 
29 Jt 
30 Kt 
3t J2 
32 Lt 
33 K2 
34 K3 
3S L2 
36 L3 
37 K4 
3B L4 
39 JS 
40 ~ 
4t LS 
42 K6 
43 J6 
44 J7 
4S L7 
46 K7 
47 L6 
48 L8 

39~ 49 K8 
40 L8 SO L9 
4t K9 St [!:!O 
42 L9 52 KO 
43 L10 53 L11 
44 ~o 54 ]!!o 
4S ~t 55 JtO 
46 J10 56 K11 
47 J11 57 J11 
48 H10 58 H10 

59 H11 
49 H11 60 F10 

St GtO 
SO GtO 62 
51 G11 63 
52 F10 64 
53 F11 65 

G11 
GO 
FO 
F11 

54 E10 66 E11 
67 E10 

S5 E11 6B E9 
69 011 

56 010 70 010 
57 011 71 C11 
58 1.£10 72 I!)t 
59 C11 73 C10 
60 B11 74 A11 
61 810 75 810 
62 A10 76 89 
63 89 77 AtO 
64 A9 
65 BB 
66 AB 
67 87 

68 A7 

78 A9 
70 B8 
BO AB 
8t BB 
82 B7 
83 A7 
84 C7 I'?: 

:::t:: 

.•.<HIGH.». 

GND 

vcc 

A6 :Tu 
At(]Q[ 
A7 .J9 
A11 0 
AB .J9 
A10 0 

:.H JQ[ 

.. 
t HIGH M!:@W) Mt (HIGH) Mt(L 

MO(L MO HIGH MO (LOW) MO (HIGH) 

CCLK(I) 
SC 

M2 (HIGH) 
HOC (HIGH) 

~(LOW) 

OOlJT(O) 
CCLK(O) 

~I 
Ac:rR 
00(1 

AO (0) 

At .J2l. 
A2 (0) 
A3 (0) 

~s ]!!I 
A4 (0) 
At4 (0) 

~ ,: / :::{// 

~ 1Z:t:tJ AS (0) 

USER 
OPERATION 

II() 

LlQJ.. 
RTRIG I 

II() 

llO 

XTL20RllO 

[][ 
XTLt ORllO 

II() 

II() 

CCLKQ) 

II() 

«HIGH>> IS HIGH IMPEDANCE WITH A 20-S0 KO INTERNAL PULL-UP DURING CONFIGURATION 

Table 2b. XC201 B Pin Assignments 

1-35 
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XC2064 / 2018 Logic Cell Array 

PARAMETRICS 

Absolute Maximum Ratings 

Vee Supply voltage relative to GND -0.5 to 7.0 

V1N Input voltage with respect to GND -0.5 to Vee+ o.5 

VTs Voltage applied to three-state output -0.5 to Vee+ o.5 

T STG Storage temperature (ambient) -65 to+ 150 

T SOL Maximum soldering temperature (1 O sec@ 1 /16 in.) + 260 

*Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to 
the device. These are stress ratings only, and functional operation of the device at these or any other 
conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure 
to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. 

Recommended Operating Conditions Min Max 

Vee Supply voltage relative to GND Commercial 0° C to 70° C 4.75 5.25 

Supply voltage relative to GND Industrial -40° C to 85° C 4.5 5.5 

Supply voltage relative to GND Military -55° C to 125° C 4.5 5.5 

V1HT High-level input voltage - TIL configuration 2.0 Vee 

VILT Low-level input voltage - TIL configuration 0 0.8 

V1Hc High-level input voltage - CMOS configuration .?Vee Vee 

V1LC Low-level input voltage - CMOS configuration 0 .2Vcc 

1-36 

Units 

v 
v 

v 
oc 
oc 

Units 

v 
v 
v 
v 
v 
v 

v 



f:XILINX 

Electrical Characteristics Over Operating Conditions Min Max Units • VoH High-level output voltage (@ loH -= -4.0 ma V cc min) Commercial 3.86 v 

Vol Low-level output voltage(@ lol-= 4.0 ma Vee min) 0.32 v -
VoH High-level output voltage (@ loH -= -4.0 ma V cc) Industrial 3.76 v 

Vol Low-level output voltage(@ lol-= 4.0 ma Vee) 0.37 v 

VoH High-level output voltage (@loH-= -4.0 ma Vee) Military 3.7 v 

Vol Low-level output voltage(@ loH-= 4.0 ma Vee) 0.4 v 

lcco Quiescent operating power supply current 

CMOS thresholds(@ Vee-= 5.0 V) 5 mA 

TTL thresholds(@ Vee-= 5.0 V) 10 mA 

lccPD Power-down supply current(@ Vee-= 5.0 V) 0.5 mA 

l1l Leakage current -10 +10 µA 

C1N Input capacitance (sample tested) 10 pF 

1-37 



XC2064 I 2018 Logic Cell Array 

CLB SWITCHING CHARACTERISTICS 

INPUT (A,B,C,D) 

OUTPUT (X,Y) 
(COMBINATORIAL) 

OUTPUT (X,Y) 
(TRANSPARENTLATCH) 

CLOCK(K) 

CLOCK(C) 

CLOCK(G) 

OUTPUT (VIA FF) 

SET/RESET DIRECT (A,D) 

SET/RESET DIRECT (F,G) 

CLOCK (ANY SOURCE) 

x ) x 
CD T1LO~ 

®Tiro 

© T1cK 

©Tice © Tcc1 

0T1c1 

---@Tcco 

-----@Tc10 

-------'14>-------@ TRLo-----

______.f= ® TcH t @ TcL=1-

1-38 
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CLB SWITCHING CHARACTERISTICS (Continued) 

Speed Grade -33 -50 -70 

Description Symbol Min Max Min Max Min Max 

Logic input to Output Combinatorial 1 T1LO 20 15 10 
Transparent latch 2 Tiro 25 20 14 
Additional for Q 
through F or G to out Tow 13 8 6 

K Clock To output 9 TeKO 20 15 10 
Logic-input setup 3 T1eK 12 8 7 
Logic-input hold 4 TeKI 0 0 0 

C Clock To output 10 Teeo 25 19 13 
Logic-input setup 5 Tice 12 9 6 
Logic-input hold 6 Tce1 6 0 0 

Logic input to G Clock To output 11 Tc10 37 27 20 
Logic-input setup 7 T1c1 6 4 3 
Logic-input hold 8 Ten 9 5 4 

Set/Reset direct Input A or D to out 12 TRIO 25 22 16 
Through F or G to out 13 TRLO 37 28 21 
Master Reset pin to out TMRQ 35 25 20 
Separation of set/reset TRs 17 9 7 
Set/Reset pulse-width TRPW 12 9 7 

Flip-flop Toggle rate Q through F to flip-flop FcLK 33 50 70 

Clock Clock high 14 TeH 12 8 7 
Clock low 15 Tel 12 8 7 

Notes: 1. All switching characteristics apply to all valid combinations of process, temperature and supply. 
2. Units are ns unless otherwise specified. 
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XC2064/ 2018 Logic Cell Array 

108 SWITCHING CHARACTERISTICS 

PAD (IN) '~~ (PACKAGE PIN) 

OUTPUT SIGNAL '~l@ ® TTHz i.-
INPUT 

THREE-STATE (DIRECl) 

@TPL @TLP 

L 
(VO CLOCK) 

@TLW 

INPUT 
(REGISTERED) 

@TRI 0 TRc 

REsET 

0010003 27 

-33 -50 -70 Units 

Description Symbol Min Max Min Max Min Max ns 

Pad (package pin) To input (direct) 1 Tp10 12 8 6 

110 Clock To input (storage) 5 Tu 20 15 11 
To pad-input setup 2 Tpl 12 8 6 
To pad-input hold 3 TLP 0 0 0 
Pulse width 4 hw 12 9 7 
Frequency 33 50 70 MHz 

Output To pad (output enabled) 8 Top 15 12 9 

Three-state To pad begin hi-Z 9 TTHz 25 20 15 
To pad end hi-Z 10 TroN 25 20 15 

RESET To input (storage) 6 TRI 40 30 25 
To input clock 7 TRc 35 25 20 

Note: Timing is measured at 0.5 Vee levels with SOpF output load. 

1-40 
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GENERAL LCA SWITCHING CHARACTERISTICS 

Vcc(VALID) 

MO/M1/M2 

DONE/PROO 
(OUTPUT) 

USERl/O 

CLOCK 
@TcLL=-1--------

0010003 260 

-33 

Description Symbol Min Max 

RESET(2) V cc setup (2.0 V) 1 TvMR 150 
M2, M1' MO setup 2 TMR 60 
M2, M1, MO hold 3 TRM 60 
Width(low) 4 TMRW 150 

DONE/PROG Progam width (low) 5 TPGW 6 
Initialization 6 TPGI 7 

CLOCK Clock (high) 7 TcLH 12 
Clock (low) 8 TcLL 12 

PWRDWN Setup to Vee 9 Tps 0 
Hold from V cc 10 TpH 0 
Power Down Vpo 2.0 

Notes: 1. Vee must rise from 2.0 Volts to Vee minimum in less than 10 ms for master mode. 
2. RESET timing relative to power-on and valid mode lines (MO, M1, M2) is relevant 

only when RESET is used to delay configuration. 
3. Minimum CLOCK widths for the auxiliary buffer are 1.25 times the T CLH· T CLL· 

1-41 

-50 

Min Max 

150 
60 
60 

150 

6 
7 

8 
8 

0 
0 

2.0 

l::XILINX 

-70 Units 

Min Max ns 

150 
60 
60 

150 

6 µs 
7 µs 

7 
7 

0 
0 

2.0 v 

I 
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MASTER MODE PROGRAMMING SWITCHING CHARACTERISTICS 

'RCLK 
(OUTPUl) 

----- © TRcL------.14--0 TRCH 

CCLI< 
(OUTPUl) 

OOUT 
(OUTPUl) 

RCLK 

Description 

From address invalid 
To address valid 
To data setup 
To data hold 
RCLK high 
RCLK low 

Symbol 

1 TARC 
2 TRAC 
3 ToRc 
4 TRco 
5 TRCH 
6 TRCL 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 
2. At power-up, Vee must rise from 2.0 V to Vee min. in less than 10 ms. 

1-42 

06 

BYTE n-1 

-33 -50 

Min Max Min Max 

0 0 
200 200 

60 60 
0 0 

600 600 
4.0 4.0 

07 

0010003 26A 

-70 Units 

Min Max ns 

0 
200 

60 
0 

600 
4.0 µs 



f:XILINX 

PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS 

cso 

CS1 

WFiT 

CS2 

CCLK(2) 
(OUTPUT) 

DIN 

DOUT(2) 
(OUTPUT) 

0010003 288 

-33 -50 -70 

Description Symbol Min Max Min Max Min 

Controls(1) Active (last active input 1 TcA 0.25 5.0 0.25 5.0 0.25 
(CSO, CS1, CS2, WAT) to first inactive) 

Inactive (first inactivate 2 Tc1 0.25 0.25 0.25 
input to last active) 

CCLK(2l 3 Tccc 75 75 
DIN setup 4 Toe 35 35 35 
DIN kold 5 Teo 5 5 5 

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WAT) 
to transition to active or inactive state. 

2. CCLK and DOUT timing are the same as for slave mode. 
3. Configuration must be delayed at least 40 ms after Vee min. 
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Units 

Max ns 

5.0 µs 

µs 
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XC 206412018 Logic Cell Array 

SLAVE MODE PROGRAMMING SWITCHING CHARACTERISTICS 

DIN ~ BITN ro.._......_. ___ s_1T_N_+1 _________ _ 

~(!)Toce @Tcco~ 
eeLK 

DOUT 
(OUTPUT} 

----@ TccL __ _.. 

BITN-1 XXX._ ___ s_1T_N __ _ 

0010003 28A 

-33 -50 

Description Symbol Min Max Min Max 

CCLK To DOUT 3 Tcco 65 65 
DIN setup 1 Toce 0 0 
DIN hold 2 Tcco 40 40 
High time 4 TccH 0.25 0.25 
Low time 5 TccL 0.25 5.0 0.25 5.0 
Frequency Fee 2 2 

Note: Configuration must be delayed at least 40 ms after Vee min. 

PROGRAM READBACK SWITCHING CHARACTERISTICS 

DONE/PROO 
(OUTPun ---'"1------------------------------------

RTRIG 

CCLK 

RTRIG 

eCLK(1) 

RDATA 
(OUTPun 

CD ToRT ,.__...---@ TRTH 
Ir------.+........-.,.----------~ 

0 TccRD 
+ 

_____ .'l:l:i:i......_...,, ,__vA_L_io __________ __ 

-33 -50 

Description Symbol Min Max Min Max 

PROG setup 1 ToRT 300 300 
RTRIG high 2 TRTH 250 250 

RTRIG setup 3 TRTCC 100 100 
RDATA delay 4 TccRD 100 100 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

-70 Units 

Min Max ns 

65 
0 

40 
0.25 µs 
0.25 5.0 µs 

2 MHz 

0010003 269 

-70 Units 

Min Max ns 

300 
250 

100 
100 

2. DONE/PROG output/input must be HIGH (device programmed) prior to a positive transition of RTRIG (MO). 
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0010003 30 

48PIN 68PIN 84PIN 

PLASTIC CERAMIC PLASTIC CERAMIC PLASTIC CERAMIC 
DIP DIP PLCC PGA PLCC PGA 

-PD48 -CD48 -PC68 -PG68 -PC84 -PG 84 

-33 c IM Cl M 
XC-2064 

-50 c c 

-70 c c 

-33 Cl Cl 

XC-2018 -50 c c 

-70 c c 

C = COMMERCIAL o• C TO 70° C 

I = INDUSTIAL -40°CT085°C 

M =MILITARY -55°CT0125°C 

B • MILITARY MIL883C LEVEL B 

Table 5. LCA Package and Temperature Options 

Ordering Information 

Further information is available from Xilinx franchised 
distributors or from the nearest Xilinx sales repre­
sentative. Part numbers are composed as follows: 

1-45 
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XC 206412018 Logic Cell Array 

f 
.100±.010 
46 PL 

DIMENSIONS IN INCHES 
NOT DRAWN TO SCALE 

2.440 

. 01848 PL 

48-Pin Plastic DIP Package 

PIN~ 

.040±.020! r•f------------2.400±.02•-----------_J 

.l 
.100+.025 

t 

,J,,, '.~~-r 
.045± .010 .018± .002 

DIMENSIONS IN INCHES 
NOT DRAWN TO SCALE 

48-Pin Ceramic DIP Package 

1-46 

~~.010REF . 

0010003 24 

t.610±.010j 

R.010±.002 

0010003 33 



0010003 31 

le----------uooS0±.012------~ 

PIN NO 1 INDEX __,/§) 

DIMENSIONS ARE IN INCHES 

0010003 25 

68-Pln PLCC Package 

j_ 
T 
.018 
±.00201A 

NOTE: 1NOEX PIN MAY OR MAY NOT BE 
ELECTRICALLY CONNECTED TO PIN C2. 

68-Pfn PGA Package 

1-47 

l:XIUNX 

PIN SPACING 
.OSOTVPICAL 

11 

1.000 
±.012 

I 

• 



XC 2064 / 2018 Log le Cell Array 

.045x45° 

----------1.10080±.012-------

PIN NO 1 INDEX __..@ 

DIMENSIONS ARE IN INCHES 

84-Pin PLCC Package 

j_ 
T 
.018 
±.00201A 

.045 

1.000 1.120 

.018 
_j_ 
t 

NOTE- INDEX PIN MAYOR MAY NOT BE 
ELECTAICALL Y CONNECTED TO PIN C2. 

84-Pin PGA Package 

1-48 

PIN SPACING 
.050 TYPICAL 

0010003 32 

10 ,, 

1.000 
t.012 

0010003 34 
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SOCKET INFORMATION • The following sockets, with matching hole patterns, are available for PLCC devices. 

Description Vendor Part Number -68PIN 

PCB solder tail, tin plate AMP 821574-1 
Surface mount, tin plate AMP 821542-1 
PCB solder tail, tin plate Burndy* QILE68P-41 OT 
PCB solder tail, tin plate Midland-Ross* 709-2000-068-4-1-1 
PCB solder tail, tin plate Methode* 213-068-001 
Surface mount, tin plate Methode 213-068-002 

84PIN 

PCB solder tail, tin plate AMP 821573-1 
Surface mount, tin plate AMP 821546-1 
PCB solder tail, tin plate Burndy* QILE84P-410T 
PCB solder tail, tin plate Midland-Ross* 709-2000-084-4-1-1 
PCB solder tail, tin plate Methode* 213-084-001 
Surface mount, tin plate Methode 213-084-002 

• Sockets will plug into pin-grid array (PGA) wire-wrap sockets for breadboard use. 

1-49 



XC2064-1 I XC2064-2 
Logic Cell™Array 

Product Specification 

PARAMETRICS Vee= 5.0 V ± 10% 

Absolute Maximum Ratings 

Vee Supply voltage relative to GND -0.5 to 7.0 

V1N Input voltage with respect to GND -0.5 to Vee+ 0.5 

VTs Voltage applied to three-state output -0.5 to Vee+ 0.5 

T STG Storage temperature (ambient) -65 to+ 150 

TsoL Maximum soldering temperature (10 sec@ 1/16 in.) +260 

*Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to 
the device. These are stress ratings only and functional operation of the device at these or any other 
conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure 
to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. 

Recommended Operating Conditions Min Max 

Vee Supply voltage relative to GND 0° C to 70° C 4.5 5.5 

V1HT High-level input voltage - TTL configuration 2.0 Vee 

VILT Low-level input voltage - TIL configuration 0 0.8 

V1He High-level input voltage - CMOS configuration .7Vcc Vee 

V1Le Low-level input voltage - CMOS configuration 0 .2Vce 

1-50 

Units 

v 
v 
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oc 

Units 

v 

v 

v 
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PARAMETRICS (Continued) 

Electrical Characteristics Over Operating Conditions Min Max Units 

VoH High-level output voltage(@ loH = -4.0 ma Vee min) 3.86 v 

VoL Low-level output voltage(@ loL = 4.0 ma Vee min) 0.32 v 

leeo Quiescent operating power supply current • 
CMOS thresholds (@Vee= 5.0 V) 5 mA 

TTL thresholds(@ Vee= 5.0 V) 10 -mA 

leePo Power-down supply current(@ Vee= 5.0 V) 0.5 mA 

l1L Leakage current -10 +10 µA 

C1N Input capacitance (sample tested) 10 pF 
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XC2064-1 / XC2064-2 Logic Cell Array 

CLB SWITCHING CHARACTERISTICS 

INPUT (A,B,C,D) x ) x 
OUTPUT (X,Y) 

(COMBINATORIAL) 

G)T1LO~ 

@Tiro 

OUTPUT (X,Y) 
(TRANSPARENT LATCH) 

© T1cK 

CLOCK(K) 

0 Tice 

CLOCK(C) 

0 T1c1 

CLOCK(G) 

@Tcco 

@Tc10 

OUTPUT (VIA FF) 

SET/RESET DIRECT (A,D) 

@ Tmo 

SET/RESET DIRECT (F,G) 

@ TRLO 

CLOCK (ANY SOURCE) 

f=®TcH ~ @Tel=* 

0010003 29 
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CLB SWITCHING CHARACTERISTICS (Continued) 

Speed Grade -1 -2 

Description Symbol Min Max Min Max 

Logic input to Output Combinatorial 1 T1LO 35 20 
Transparent latch 2 T1ro 45 25 
Additional for Q 

through F or G to out TaLO 30 13 

K Clock To output 9 TcKO 35 20 
Logic-input setup 3 T1cK 22 12 
Logic-input hold 4 TcKI 0 0 

C Clock To output 10 Tcco 45 25 
Logic-input Setup 5 Tice 18 12 
Logic-input hold 6 Tcc1 10 6 

Logic input to G Clock To output 11 Tc10 65 37 
Logic-input Setup 7 T1c1 10 6 
Logic-input Hold 8 Ten 15 9 

Set/Reset direct Input A or D to Out 12 TRIO 45 25 
Through F or G to Out 13 TRLO 65 37 
Master Reset pin to Out TMRQ 60 35 
Separation of Set/Reset TRs 30 17 
Set/Reset pulse-width TRPW 20 12 

Flip-flop Toggle rate Q through F to flip-flop FcLK 20 33 

Clock Clock high 14 TcH 20 12 
Clock low 15 Tel 20 12 

Notes: 1. All switching characteristics apply to all valid combinations of process, temperature and supply. 
2. Units are ns unless otherwise specified. 
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XC2064-1 I XC2064-2 Logic Cell Array 

108 SWITCHING CHARACTERISTICS 

PAD 
(PACKAGE PIN) x---..... (IN) 

OUTPUT SIGNAL 

INPUT 
(DIRECT) __ __,,__-~-...---1----

L 
(l/OCLOCK) 

INPUT 
(REGISTERED) 

0010003 v 

Pad (package pin) 

l/OClock 

Output 

Three-state 

RESET 

Description 

To input (direct) 

To input (storage) 
To pad-input setup 
To pad-input hold 
Pulse width 
Frequency 

To pad (output enabled) 

To pad begin hi-Z 
To pad end hi-Z 

To input (storage) 
To input clock 

Symbol 

1 Tp10 

5 Tu 
2 TpL 
3 TLP 
4 hw 

8 Top 

9 TTHZ 
10 TroN 

6 TRI 
7 TRc 

Note: Timing is measured at 0.5 Vee levels with SOpF output load. 
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-1 -2 Units 

Min Max Min Max ns 
t----1 

20 12 

30 20 
20 12 
0 0 

20 12 
20 33 MHz 

25 15 

35 25 
40 25 

50 30 
25 35 



GENERAL LCA SWITCHING CHARACTERISTICS 

Vcc(VALID) 

MO/M1/M2 

DONE/PROG 
(OUTPun 

USERl/O 

CLOCK 

INITIALIZATION STATE 

0010003 26c 

-1 

Description Symbol Min Max 

---
RESET (2) V cc setup (2.0 V) 1 TvMR 250 

M2, M1, MO setup 2 TMR 100 
M2, M1, MO hold 3 TRM 100 
Width (low) 4 TMRW 250 

.--
DONE/PROG Progam width (low) 5 TPGW 6 

Initialization 6 TpGI 7 

CLOCK Clock (high) 7 TcLH 20 
Clock (low) 8 TcLL 20 

PWRDWN Setup to Vee 9 Tps 0 
Hold from V cc 10 TpH 0 
Power Down Vpo 2.0 

Note: 1. V must rise from 2.0 Volts to Vee minimum in less than 10 ns for Master Mode. 
2. Rffil timing relative to power-on and valid mode lines (MO, M1, M2) is relevant 

only when RESET is used to delay configuration. 
3. Minimum CLOCK widths for the Auxiliary buffer are 1.25 the T CLH• T CLL· 
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\. •••• J~ VpD • -

-2 Units 

Min Max ns 
!------' 

150 
60 
60 

150 

6 µs 
7 µs 

12 
12 

0 
0 

2.0 v 



XC2064-1 I XC2064-2 Logic Cell Array 

MASTER MODE SWITCHING CHARACTERISTICS 

0010003 28A 

00-07 

RcrK 
(OUTPUT) 

CCLK 
(OUTPUT) 

DOUT 
(OUTPUT) 

RCLK 

Description 

From address invalid 
To address valid 
To data setup 
To data hold 
RCLKHigh 
RCLK low 

Symbol 

1 TARC 
2 TRAC 
3 ToRC 
4 TRCD 
5 TRCH 
6 TRCL 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

BYTE n-1 

-1 

Min 

100 
0 

600 
4.0 

2. At power-up, Vee must rise from 2.0 V to Vee min. in less than 1 O ms. 
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07 

-2 Units 

Max Min Max ns 
f----1 

0 0 
300 200 

60 
0 

600 
4.0 µs 



PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS 

--- G) TcA------
~-~~~~~ r~~~::;:....,~~~~ 

cso 

CS1 

CS2 

CCLK (2) 
(OUTPU1) 

DIN 

DOUT(2) 
(OUTPU1) 

0010003 289 

Controls(1) 
(CSO, CS1, CS2, WRT) 

Description 

Active (last active input 
to first inactive) 

Inactive (first inactivate 
input to last active) 

CCLK(2) 
DIN setup 
DIN hold 

-1 

Symbol Min Max 

1 TcA 0.3 10.0 

2 Tc1 500 

3 Tccc 100 
4 Toe 50 
5 Teo 10 

-2 Units 

Min Max ns 
f---

0.2 5.0 µs 

300 

75 
35 

5 

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WRT) 
to transition to active or inactive state. 

2. CCLK and DOUT timing are the same as for slave mode. 
3. Configuration must be delayed at least 40 ms after Vee min. 
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SLAVE MODE PROGRAMMING SWITCHING CHARACTERISTICS 

DIN ·~ BITN W...._....._. ___ e_1T_N_+1 __________ _ 

~Q)Tocc @Tcco~ ----@ TccL---

CCLK 

OOUT 
(OUTPUT) 

CCLK 

--- @TccH--~1114-
BITN-1 

Description Symbol 

To DOUT 3 Tcco 
DIN Setup 1 Toce 
DIN Hold 2 Tcco 
High time 4 TccH 
Low time 5 Teet 
Frequency Fee 

Note: Configuration must be delayed at least 40 ms after Vee min. 

PROGRAM READBACK SWITCHING CHARACTERISTICS 

BITN 

-1 

Min Max Min 

100 
50 25 
75 40 

500 300 
0.3 10.0 0.25 

1 

-2 

Max 

65 

5.0 
2 

DONE/PROG 
(OUTPUT) 

---~------------------------------------

RTRIG 

CCLK(1) 

RDATA 
(OUTPUT) 

0 TccRD 

VALID 

-1 -2 

0010003 28A 

Units 

ns 
t--

µs 
MHz 

0010003 26B 

Units 

Description Symbol Min Max Min Max ns 
t--

RTRIG PROG setup 1 ToRT 300 300 
RTRIG high 2 TRTH 250 250 

CCLK RTRIG setup 3 TRTCC 100 100 
RDATAdelay 4 TccRD 100 100 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 
2. DONE/PROG outpuVinput must be HIGH (device programmed) prior to a positive transition of RTRIG (MO). 
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48PIN 68PIN 

PLASTIC PLASTIC 
DIP PLCC 

-PD48 -PC68 

-1 c Cl 
XC2064 

-2 c c 

C = COMMERCIAL 0° C TO 70° C 

I = INDUSTRIAL -40° C TO 85° C 

LCA Package and Temperature Options 

Ordering Information 

Further information is available from Xilinx franchised 
distributors of from the nearest Xilinx sales representa­
tive. Part numbers are composed as follows: 

1 (20 MHz TOGGLE) 
2 (33 MHz TOGGLE) 

XC2064 - 1 PC68C _J I I c (COMMERCIAL) 
I (INDUSTRIAL) 

PD 48 (48 PIN PLASTIC DIP) 
PC 68 (68 PIN PLASTIC PLCC) 
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0.130 

f 

0010003 24 

0010003 31 

.100±.010 
46PL 

DIMENSIONS IN INCHES 
NOT DRAWN TO SCALE 

2.440 

.01848PL 

48-Pin Plastic DIP Package 

PINN0.1 

68-Pin Plastic PLCC Package 
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.550 

PIN SPACING 
.OSOTYPICAL 
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PIN 0010003 01 



Xilinx is committed to providing the highest level of 
quality and reliability for the Logic Cell™ (LCA) Array. 
Quality is best assured by taking the necessary steps to 
achieve zero defects. Comprehensive testing confirms 
that every Logic Cell Array is free from defects and con­
forms to the data sheet specifications. The memory cell 
design assures integrity of the configuration program. 
Careful memory cell design has also minimized the 
effects of alpha particle emission and electromagnetic 
radiation on the operation of the Logic Cell Array. 

TESTING 

As quality consciousness has grown among semicon­
ductor users, awareness of the importance of testability 
has also increased. Testing for standard components, 
including memories and microprocessors, is accom­
plished with carefully developed programs which 
exhaustively test the function and performance of each 
part. For reasons explained below, most application 
specific ICs cannot be comprehensively tested. Without 
complete testing, defective devices might escape detec­
tion and be installed into a system. In the best case, the 
failure will be detected during system testing at a higher 
cost. In the worst case, the failure will be detected only 
after shipment of the system to a customer. 

Testing advantages of the Logic Cell Array can be 
illustrated through comparison with two other application 
specific ICs: Erasable Programmable Logic Devices 
(EPLDs) and gate arrays. 

EPLDs: In order to test all memory cells and logic paths 
of programmable logic devices controlled by EPROM 
memory cells, the part must be programmed with many 
different patterns. This in turn requires expensive 
quartz lid packages and many lengthy 
program/test/erase cycles. To save time and reduce 
costs, this process is typically abbreviated. 

Gate Arrays: Since each part is programmed with metal 
masks, the part can only be tested with a program 
tailored to the specific design. This in turn requires that 
the designer provide sufficient controllability and 
observability for comprehensive testability. The design 
schedule must also include time for the development of 
test vectors and a test program specification. If the gate 
array user requires a comprehensive test program, then 
he must perform exhaustive and extensive fault 

Testing and Data Integrity 

simulation and test grading. This requires substantial 
amounts of expensive computer time. Additionally, it 
typically requires a series of time-consuming and 
expensive iterations in order to reach even 80% fault 
coverage. The cost of greater coverage is often 
prohibitive. In production, many gate array vendors 
either limit the number of vectors allowed or charge 
for using additional vectors. 

The replacement of all storage elements with testable 
storage elements, known as scan cells, improves 
testability. Although this technique can reduce the 
production testing costs, it can add about 30% more 
circuitry, decrease performance by up to 20%, and 
increase design time. 

Logic Cell Arrays: The testability of the Logic Cell Array is 
similar to other standard products, including micro­
processors and memories. This is the result of the 
design and the test strategies: 

Design strategy: 

• Incorporates testablility features because each 
functional node can be configured and routed to 
outside pads 

• Permits repeated exercise of the part without 
removing it from the tester because of the short time 
to load a new configuration program 

• Produces a standard product which guarantees that 
every valid configuration will work. 
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Test strategy: 

• Performs reads and writes of all bits in the 
configuration memory, as in memory testing 

• Uses an efficient parallel testing scheme in which 
multiple configurable logic blocks are fully tested 
simultaneously 

• Is exhaustive since the circuits in every block are 
identical 

The Logic Cell Array user can better appreciate the 
Logic Cell Array test procedure by examining each of 
the testing requirements: 

• All of the configuration memory bits must be 
exercised and then verified. This is performed using 
readback mode. 

• 
• 
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• All possible process-related faults, such as short 
circuits, must be detected. The Logic Cell Array is 
configured such that every metal line can be driven 
and observed directly from the input/output pads. 

• All testing configurations must provide good 
controllability and observability. This is possible since 
all configurable logic blocks can be connected to 
input/output pads. This makes them easy to control 
by testing different combinations of inputs and easy 
to observe by comparing the actual outputs with 
expected values. 

These points bring out an important issue: the Logic 
Cell Array was carefully designed to achieve 100% fault 
coverage. With the Xilinx testing strategy, the number 
of design configurations needed to fully test the Logic 
Cell Array is minimized and the test fault coverage of the 
test patterns is maximized. In addition, the user's 
design time is reduced because the designer does not 
have to be concerned about testability requirements 
during the design cycle. The Logic Cell Array concept 
not only removes the burden of the test program and 
test vector generation from the user, but also removes 
the question of fault coverage and eliminates the need 
for fault grading. The Logic Cell Array is a standard part 
that guarantees any valid design will work. These issues 
are critically important in quality-sensitive applications. 
The designer who uses the Logic Cell Array can build 
significant added value into his design by providing 
higher quality levels. 

DATA INTEGRITY 

Memory Cell Design 

An important aspect of the Logic Cell Array's reliability is 
the robustness of the static memory cells used to store 
the configuration program. 

The basic cell is a single-ended five-transistor memory 
element (Figure 1). By eliminating a sixth transistor, 
which would have been used as a pass transistor for the 
complementary bit line, a higher circuit density is 
achieved. During normal operation, the outputs of 
these cells are fixed, since these determine the user 
configuration. Write and readback times, which have no 
relation to the device performance during normal 
operation, will be slower without the extra transistor. In 
return, the user receives more functionality per unit 
area. 

This explains the basic cell, but how is the Logic Cell 
Array user assured of high data integrity in a noisy 
environment? We must consider three different 
situations: normal operatiqn, a write operation and a 
read operation. In the normal operation, the data in the 
basic memory element is not changed. Since the two 
circularly linked inverters that hold the data are physically 

adjacent, supply transients result in only small relative 
differences in voltages. Each inverter is truly a 
complementary pair of transistors. Therefore, whether 
the output is high or low, a low impedance path exists to 
the supply rail, resulting in extremely high noise 
immunity. Power supply or ground transients of several 
volts have no effect on stored data. 

The transistor driving the bit line has been carefully 
designed so that whenever the data to be written is 
opposite the data stored, it can easily override the 
output of the feedback inverter. The reliability of the 
write operation is guaranteed within the tolerances of 
the manufacturing process. 

In the read mode, the bit line, which has a significant 
amount of parasitic capacitance, is precharged to a logic 
one. The pass transistor is then enabled by driving the 
word line high. If the stored value is a zero, the line is 
then discharged to ground. Reliable reading of the 
memory cell is achieved by reducing the word line high 
level during reading to a level that insures that the cell 
will not be disturbed. 
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Alpha Particle (Soft Error) Sensitivity: 

The CMOS static memory cell was designed to be 
insensitive to alpha particle emissions. To verify that this 
design goal was achieved, the following tests were 
performed. 

A one microcurie alpha particle source (Americum 241) 
was placed in direct contact with the top surface of an 
XC2064 die. This allows the die to capture at least 40% 
of the emissions from the radiation source. The 
following sequence of tests was performed: 

1. A complex pattern containing roughly 50% logic 
ones was loaded into the XC2064. The operating 
conditions were 25°C and 5.0 volts. 

2. A pause of variable duration was allowed. 

3. The entire contents of the XC2064 were read back 
and compared with the original data. 

Validation tests to ensure that the test setup would 
detect errors were performed before and after the alpha 
particle tests. The results are as follows: 

Time Readback Total Time Number 
Test Duration, sec Time, sec Exposed, sec of Errors 

1 10 70 80 0 
2 120 70 190 0 
3 300 70 370 0 
4 1500 70 1570 0 

Total 2210 
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Analysis 

A one microcurie source emits 3.7x1Q4 alpha particles 
per second. Assuming that 40% of these are captured 
by the XC2064 during this experiment; this corresponds 
to 5.3x1 Q7 alpha particles per hour. 

The alpha particle emission rate of the molding 
compound used by Xilinx is specified to emit fewer than 
0.003 alpha particles per square centimeter per hour 
(alpha particles/cm2/hr). The surface area of the XC-
2064 die is less than 0.5 cm2, so less than 0.0015 alpha 
particles per hour will be captured by the XC2064 in 
normal operation. The error rate acceleration in this test 
is therefore equal to: 

5.3 x 107 particles/hour 
= 3.6 x 1010 

0.0015 particles/hour 

The 0.61 hours of test time without error then 
corresponds to 2.2x1010 hours or 2.5 million years of 
error-free operation. 

Most ceramic packages are specified to emit less than 
0.01 alpha particles/cm2/hr which is about three times 
more than the plastic compound. For an XC2064 in a 
ceramic package, this still results in error-free operation 
for almost a million years. 

The highest rate of alpha particle emission comes from 
the sealing glass used in cerdip packages and some 
ceramic packages (frit lids). For instance, KCIM glass 
emits about 24 alpha particles/cm2/hr. Low alpha 
glasses are specified at 0.8 alpha particles/cm2/hr. 

Because these glasses are used only for the package 
seal, they present a relatively small emitting cross 
section to the die (less than 0.1 cm2 square). A low 
alpha glass would therefore cause fewer than 0.8 alpha 
particle hits per hour. The acceleration factor is then 
6.6x1 as. which translates to about 46,000 years without 
an error. 

The memory cell of the Xilinx Logic Cell Array has been 
designed so that soft errors caused by alpha particles 
can safely be ignored. 

Electrostatic Discharge 

Electrostatic discharge (ESD) protection for each pad is 
provided by a circuit that uses forward and reverse 
biased distributed resistor-diodes (Figure 2). In 
addition, inherent capacitance integrates any current 
spikes. This gives sufficient time for the diode and 
breakdown protections to provide a low impedance path 
to the power-supply rail. Geometries and doping levels 
are optimized to provide sufficient ESD protection for 
both positive and negative discharge pulses. 

Latchup 

Latchup is a condition in which parasitic bipolar 
transistors form a positive feedback loop (Figure 3), 
which quickly reaches current levels that permanently 
damage the device. Xilinx uses techniques based on 
doping levels and circuit placement to avoid this 
phenomenon. The cross section of a typical transistor 
(Figure 4) shows several features. The beta of each 
parasitic transistor is minimized by increasing the base 
width. This is achieved with large physical spacings. 
The butting contacts effectively short the n+ and p+ 
regions for both wells, which makes the VsE of each 
parasitic very close to zero. This also makes the parasitic 
transistors very hard to forward bias. Finally, each well is 
surrounded by a dummy collector, which forces the VcE 
of each parasitic almost to zero and creates a structure in 
which the base width of each parasitic is large, thus 
making latchup extremely difficult to induce. 

Radiation Hardness 

A preliminary estimate of the hardness of the circuit to 
withstand ionizing radiation ranges from 10,000 to 
100,000 rads Si. This estimate was reached from a 
discussion with Sandia National Labs and is based upon 
the design and layout parameters of the Logic Cell 
Array. 
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High Temperature Performance 

Although Xilinx guarantees parts to perform only within 
the specifications of the data sheet, extensive high 
temperature life testing has been been done at 145°C 
with excellent results. 

P/N 0010019 01 
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INTRODUCTION 

From its inception, Xilinx has been committed to deliver­
ing the highest quality, most reliable programmable gate 
arrays available. A strong Quality Assurance and 
Reliability program begins at the initial design stages and 
is carried through to final shipment. The final proof of 
our success is in the performance of the Logic Cell™ 
Array (LCA) in our customers' systems applications. An 
extensive, on-going reliability-testing program is used to 
predict the field performance of our devices. 

These tests provide an accelerated means of emulating 
long-term system operation in severe field environ­
ments. From the performance of the devices during 
these tests, predictions of actual field performance 
under a variety of conditions can be calculated. 

This report describes the nature and purpose of the 
various reliability tests performed on finished devices. 
Table 2 is the initial summary of the Quality Control 
reliability testing performed. Updated summaries are 
available upon request from the Quality Assurance and 
Reliability Department at Xilinx. 

OUTLINE OF TESTING 

Qualification testing of nonhermetic devices is 
performed to demonstrate the reliability of the die used 
in the device, and the materials and methods used in 
the assembly of the device. Testing methods are 
derived from and patterned after the methods specified 
in MIL-STD-883. 

A summary of the reliability demonstration tests used at 
Xilinx is contained in Table 1. 

Referral to the test methods of MIL-STD-883 is not 
intended to imply that nonhermetic products comply 
with the requirements of MIL-STD-883. These test 
methods are recognized industry-wide as stringent tests 
of reliability and are commonly used for nonmilitary­
grade semiconductor devices, as well as for fully 
compliant military-grade products. 

Nonhermetic Package 
Reliability 

DESCRIPTION OF TESTS 

Die Qualification 

1. High Temperature Life This test is performed to 
evaluate the long-term reliability and life 

I 

characteristics of the die. It is defined by the Military • 
Standard from which it is derived as a "Die-Related 
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Test" and is contained in the Group C Quality 
Conformance Tests. Because of the acceleration 
factor induced by higher temperatures, data 
representing a large number of equivalent hours at a 
normal temperature of 70°C, can be accumulated in a 
reasonable period of time. Xilinx performs its High 
Temperature Life test at a higher temperature, i.e., 
145°C, than the more common industry practice of 
125°C. For comparison, the Reliability Testing Data 
Summary in Table 2, gives the equivalent testing 
hours at 125°C. 

2. Biased Moisture Life This test is performed to 
evaluate the reliability of the die under conditions of 
long-term exposure to severe, high-moisture 
environments which could cause corrosion. 
Although it clearly stresses the package as well, this 
test is typically grouped under the die-related tests. 
The device is operated at maximum-rated voltage, 
5.5 voe, and is exposed to a temperature of 85°C 
and a relative humidity of 85% throughout the test. 

Package Integrity and Assembly Qualification 

3. Unbiased Pressure Pot This test is performed at a 
temperature of 121°C and a pressure of 2 atm. of 
saturated steam to evaluate the ability of the plastic 
encapsulating material to resist water vapor. 
Moisture penetrating the package could induce 
corrosion of the bonding wires and nonglassivated 
metal areas of the die [bonding pads only for Xilinx 
LCAs], and could possibly cause, under extreme 
conditions, moisture drive-in and corrosion under 
the glassivation. Although it is difficult to correlate 
this test to actual field conditions, it provides a well­
established method for relative comparison of plastic 
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packaging materials and assembly and molding 
techniques. 

4. Thermal Shock This test is performed to evaluate 
the resistance of the package to cracking and resist­
ance of the bonding wires and lead frame to separa­
tion or damage. It involves nearly instantaneous 
change in temperature from -65°C. to+ 150°C. 

5. Temperature Cycling This test is performed to 
evaluate the long-term resistance of the package to 
damage from alternate exposure to extremes of 
temperature or to intermittent operation at very low 
temperatures. The range of temperatures is -65°C 
to + 150°C. The transition time is longer than that in 
the Thermal Shock test but the test is conducted for 
many more cycles. 

6. Salt Atmosphere This test was originally designed 
by the US Navy to evauate resistance of military­
grade ship board electronics to corrosion from 
seawater. It is used more generally for nonhermetic 
industrial and commercial products as a test of 
corrosion resistance of the package marking and 
finish. 

7. Resistance to Solvents This test is performed to 
evaluate the integrity of the package marking during 
exposure to a variety of solvents. This is an 
especially important test, as an increasing number of 
board-level assemblies are subjected to severe 
conditions of automated cleaning before system 
assembly operations occur. This test is performed 
acording to the methods specified by MIL-STD-883. 

8. Solderability This test is performed to evaluate the 
solderability of the leads under conditions of low 
soldering temperature following exposure to the 
aging effects of water vapor. 

9. Vibration, Variable-Frequency This test is performed 
to evaluate the resistance of the completed 
assembly to vibrations during storage, shipping, and 
operation. 

TESTING FACILITIES 

Xilinx has a growing investment in reliability testing 
equipment. The company has the complete capability 
to perform High Temperature Life Tests, Biased 
Moisture Life Tests, and Unbiased Pressure Pot Tests 
in its own Reliability Testing Laboratory. Additional 
equipment is being purchased as requirEld by testing 
volume. Other tests are being performed by outside 
testing laboratories with DESC laboratory suitability for 
each of the test methods they perform. 

SUMMARY 

The attached testing data shows the actual performance 
of the Logic Cell Arrays during the initial qualification 
tests to which they have been subjected. These test 
results demonstrate the reliability and expected long life 
inherent in our nonhermetic product line. This series of 
tests is ongoing as a part of our Quality Conformance 
Program on nonhermetic devices. 
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Name of Test 

1. High Temperature Ltte 

2. Biased Moisture Life 

Name of Test 

3. Unbiased Pressure Pot 

4. Thermal Shock 

5. Temperature Cycling 

6. Salt Atmosphere 

7. Resistance to Solvents 

8. Solderability 

9. Vibration, 
Variable-Frequency 

DIE QUALIFICATION 

Test Conditions Lot Tolerance Percent Defective 
Minlmun Sample Size/ 
Maximum Acceptable Failures 

1000 hr min. equivalent at temperature = 125°C L TPD = 5, s = 105, c = 2 
Actual test temperature= 145°C 
Max. rated operating voltage. 
Life test circuit equivalent to MIL-STD-883 

1000 hr min. exposure LTPD = 5, s = 105, c = 2 
T = 85°C, RH = 85% 
Max. rated operating voltage. 
Biased moisture life circuit equivalent to MIL-STD-883 

PACKAGE INTEGRITY and ASSEMBLY QUALIFICATION 

Test Conditions 

96 hr min. exposure 
T = 121°C, P = 2 atm H20 sat. 

MIL-STD-883, Method 1011, Cond. C 
-65°C to + 150°C 
100 cycles 

MIL-STD-883, Method 1010, Cond. C 
-65°C to + 150°C 
200 cycles 

MIL-STD-883, Method 1009, Cond. A 
24 hrs 

MIL-STD-883, Method 2015 

MIL-STD-883, Method 2003 

MIL-STD-883, Method 2007 

Lot Tolerance Percent Defective 
Minimun Sample Size/ 
Maximum Acceptable Failures 

LTPD=5, S=105,C=2 

LTPD=7, S= 75, C=2 

LTPD=5, S=105,C=2 

S = 25, C= 0 

S = 8, C= 0 

S= 15, C=0 

S= 11, C=0 

Table 1. Reliability Testing Sequence for Nonhermetic Logic Ceil Arrays 
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XILINX XC-2064 Reliability Testing Summary, Initial Lots 

Device Type: XC-2064 
Die Attach Method: Silver Epoxy 
Molding Compound: Nitto MP 150 SG 

1. High Temperature Life Test Combined 
T = 145°C Sample 

210 

2. Biased Moisture Life Test Combined 
T = 85°C; RH = 85% Sample 

210 

3. Unbiased Pressure Pot Test Combined 
+ 121 °C, 2 atm sat. steam Sample 

263 

4. Thermal Shock Test Combined 
-65°C/+ 150°C Sample 

154 

5. Temperature Cycling Test Combined 
-65°C/+ 150°C Sample 

210 

6. Salt Atmosphere Test Combined 
MIL-STD-883, Method 1009, Sample 
Cond.A 

50 

7. Resistance to Solvents Test Combined 
MIL-STD-883, Method 2105 Sample 

16 

8. Solderability Test Combined 
MIL-STD-883, Method 2003 Sample 

30 

9. Vibration, Variable Freq. Test Combined 
MIL-STD-883, Method 2007 Sample 

22 

Failures 

1 

Failures 

0 

Failures 

1 

Failures 

0 

Failures 

0 

Failures 

0 

Failures 

0 

Failures 

0 

Failures 

0 

Process/Technology: 2.0 Micron Double Layer Metal CMOS 
Package Type: 68 lead PLCC 
Date: July 21, 1986 

Equivalent Equivalent Equivalent 
Mean Equivalent Failure Rate Failure Rate 
Hrs/Device Device/Hrs in %/1000 hrs in %/1000 hrs 
at T = 125°C at T = 125°C at T = 125°C at T = 70°C 

5545 1164349 0.0859 0.0012 

Mean Hrs Total 
per Device Device Hrs 
atT = 85°C at T = 85°C 

1250 262500 

Mean Hrs Total 
per Device Device Hrs 

96 25248 

Mean Cycles Total 
per Device Device Cycles 

1100 169400 

Mean Cycles Total 
per Device Device Cycles 

1000 210000 

Mean Hrs Total 
per Device Device Hrs 

24 1200 

Table 2. Reliability Testing Summary 

PIN 0010015 01 
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INTRODUCTION: A PROGRAMMABLE GATE ARRAY 

This application note addresses some of the device and 
system-related considerations involved in loading Logic 
Cell Arrays (LCAs) with configuration programs. The 
configuration techniques covered here apply to the 
XC2064 in both the 48-pin and the 68-pin packages, 
and to the XC2018 in the 48 pin, 68 pin and 84 pin 
packages. Topics covered include: 

• Descriptions of each of the device's configuration 
modes 

• Device pin definitions before, during, and after 
configuration 

• Selection of a configuration mode for a given 
application 

• Configuration of multiple LCA devices. 

An Overview 

In a typical LCA design the systems designer first 
identifies those areas of the logic schematics which are 
suitable for implementation in an LCA (or LCAs). Those 
logic sections are then partitioned into clusters of basic 
logic elements representing Configurable Logic Blocks 
(CLBs) and 1/0 Blocks (IOBs). Using a Personal 
Computer with the Xilinx XACT™ development system 
software, the designer creates a design file for each 
LCA. The design file is then compiled into a 
configuration program which determines the function 
that LCA is to perform. Using the XACT development 
system, the configuration program can also be 
translated into formatted files compatible with standard 
EPROM programming equipment. An EPROM may then 
be programmed to store the LCA configuration program. 

LCA Configuration Sequence 

The behavior of the LCA is best described in terms of 
three distinct states: the initialization state, the 
configuration state, and the user-operation state. After 
an initial power-up delay, the LCA awakens in the 
initialization state in which its internal configuration 
memory is cleared, and all internal user-definable logic is 
held in a quiescent or idle state. Once this initialization is 
complete, the LCA checks the input logic level present 
at the RESET pin. When it detects a valid logic "1" level, 
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the device enters the configuration state during which 
the configuration program is loaded. The precise 
method used for loading the program into the LCA (i.e., 
the configuration mode) depends on the logic levels of 
the Mode Select pins (MO, M1, and M2). The config­
uration program is formatted as a serial bitstream, and is 
loaded into the LCA as though it were a shift register. 
Although several methods may be used to enter the I 
data (e.g., the configuration modes), the content and 
format of this bitstream are fixed for a given logic appli- • 
cation. The configuration program contains a bit field 
which indicates its length. When the correct number of 
bits have be~n entered, as indicated by this length 
count, the D/P open drain output pin goes HIGH indi­
cating that configuration is complete. Once the config­
uration process has begun, it must either be completed 
or aborted and restarted. Partial configurations are not 
possible. Further details on the configuration program 
format are presented in a later section. 

Once configuration is complete, the LCA enters the 
user-operation state and performs the user specified 
logic functions. During user-operation, the device can 
be instructed to return to the initialization state and 
repeat the configuration process. A state diagram 
illustrating this sequence is shown in Figure 1. This 
ability to be re-programmed can be disabled by setting 
the appropriate bit in the bitstream. In this event, the 
LCA's configuration can be changed only through 
removing and re-applying power to the device. 

During the initialization and configuration states, all user-
1/0 pins (except those used for configuration purposes) 
have passive internal pull-up resistors which will cause 
those pins to go to a HIGH state if not externally 
overdriven. Upon entering the user-operation state, all 
user 1/0-pins become functional simultaneously 
according to their user-specified definition. 

Configuration Modes 

The LCA supports five methods for loading program 
information. Selection of a configuration mode is 
accomplished by connecting the two Mode Select Pins, 
MO and M 1, to either a logic "1" or a logic "O" signal as 
indicated in Table 1. A third mode select pin, M2, 
provides for future expansion of configuration options. 
Unlike pins MO and M 1, the M2 pin becomes available as 
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general purpose user-1/0 after configuration is 
completed. During configuration, pins MO and M2 have 
internal pull-up resistors, pin M1 does not. Except for 
Master Serial mode, pin M2 should not be driven LOW 
during configuration. If left unconnected it will be pulled 
HIGH. 

Mode Sele.ct Pins MO M1 M2 

Master serial mode 0 0 0 
Master low mode 0 0 1 
Master high mode 0 1 1 
Peripheral mode 1 0 1 
Slave mode 1 1 1 

Table 1. Configuration Mode Selection 

In many applications where the LCA's readback 
capability will not be used, the mode select pins may be 
tied directly to ground or to Vee. Since the MO and M2 
pins are supplied with internal pull-up resistors at the 
conclusion of configuration, they may also be left 
unconnected. Since the mode pins are sampled at the 
conclusion of the initialization state or with the rising 
edge of RESET if used to delay configuration, their 
levels need not be maintained once configuration has 
begun. 

Cho9sing a Configuration Mode 

Each configuration mode involves a different set of 

POWER APPLIED 

RESET 
ASSERTED 

FIRSTCCLK 

DONE/PROO LOW TRANSITION 
(RE PROGRAMMABILITY OPTION ENABLED) 

application design considerations and variations in 
device pin usage during the configuration process. The 
choice of a configuration mode depends on the specific 
system application. Some considerations in choosing a 
configuration mode include: 

• Whether control of the configuration process will be 
automatic or externally controlled. 
• If externally-controlled (slave or peripheral mode), 

then 
Via software control 
Via OMA hardware 

• If automatic (master mode), then 
Configuration program shared with 

microprocessor program code 
Configuration program stored in separate 

byte wide PROM 
Configuration program stored in a serial 

memory device. 
• The length of time available for configuration, 

• If a multiple LCA application, whether to configure 
them 
• Serially as a "daisy chain," 
• In parallel 

• 110 pin requirements-Le., will 1/0 pins used by the 
target application also be involved in configuration? If 
so, can pins be assigned to minimize or eliminate 
external isolation? 

The first consideration above should be viewed from a 
system-design standpoint, since it affects the rest of the 

CONFIGURATION 
DONE 

DONE/PROG LOW 
TRANSITION 
(RE PROGRAMMABILITY 
OPTION DISABLED) 

0010003 12 
Figure 1. LCA Configuration Diagram 
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design. In the processor-controlled case, either slave 
mode or peripheral mode is used to load the 
configuration program into the LCA one bit at a time. 
This can be accomplished as part of the system's 
"bootup" process, or can be done "on-the-fly." This 
method is the most flexible since the LCA program may 
be read from PROM or disk or any other source 
accessible by a processor, but may take longer to 
complete than the automatic method. The alternative 
method is to let the LCA program itself automatically 
using one of the "master" modes of configuration. Here 
the LCA automatically accesses an external PROM for 
the configuration program and configures itself in 12 to 
24 milliseconds for the XC2064, 17 to 35 milliseconds 
for the XC2018. Table 2 compares characteristics of the 
configuration modes. Although master mode uses more 
1/0 pins for configuration than the other modes, those 
pins become general purpose user-1/0 pins again once 
configuration is complete. These pins can usually be 
assigned application uses such that no external isolation 
is required. Figure 2 shows the LCA's pin usage during 
configuration for each of the configuration modes. The 
pins used in each mode are also summarized in Table 3. 

For some applications the time required to configure the 
LCA may be a consideration. Although the minimum 
time required to load the LCA program (approximately 
12 ms for the XC2064 and 17 ms for the XC2018) is the 
same for all configuration modes, processor-driven 
configuration techniques controlled by software may 

Slave Peripheral 
Configuration Mode Mode Mode 

Mode Selection code 1 :1 :1 1 :0:1 
(MO:M1:M2) 

Configuration data Bit-serial Bit-serial 

Automatic loading? No No 

Programming source User Logic CPU Data 
or Another Bus 
LCA (Note 2) Memory 

Number of user 1/0 2 6 
pins required 

Configuration time Source Source 
dependent Dependent 
(Note 1) (Note 1) 

take longer to complete. The program loading time for 
master mode, unlike that of the user-driven slave and 
peripheral modes, is controlled by an internal oscillator. 
Since the frequency of this internal oscillator is process­
dependent, program loading time may extend to twice 
the minimum. 

In applications employing multiple LCAs, special daisy 
chaining capabilities permit all the LCA programs to be 
loaded from a single data source. This is described in 
further detail in the section on "Cascading Multiple 
LC As". 

In all configuration modes, some of the user's 1/0 pins 
are temporarily assigned configuration-related 
functions. The number of such pins ranges from 5 in the 
Slave mode to 29 in the Master mode. Once 
configuration is complete these pins are returned to the I 
user as general-purpose 1/0 pins. It is up to the 
designer, however, to guarantee that no signal conflicts • 
occur between the pin's use while in the configuration 
state and its use while in the user operation state. Signal 
conflicts on these pins can create undesired side 
effects, such as disturbing the configuration process or 
other external logic. With a little care, however, the 
designer should have no problems in using these dual­
function 1/0 pins. Although signal conflicts are 
resolvable with external buffers for isolation, careful 
selection of the pinout assignment can usually eliminate 
the need for isolation. 

Master-High Mode Master Serial 
Master-Low Mode Mode 

0:0:1 (Master-Low) O:O:O 
0:1 :1 (Master-High) 

Byte-parallel Bit-serial 

Yes Yes 

External External 
Byte-wide Serial 
Memory 

25 3 

12-24 ms (XC2064) 12-24 ms (XC2064) 
17-34 ms (XC2018) 17-34 ms (XC2018) 
(Note 3) (Note 3) 

Notes: 1. The minimum time in any case is approximately 12 ms for the XC 2064 and 17 ms for the XC 2018. 
2. Also used by Xilinx's XACTOR for In-Circuit Emulation. f2\I 
3. This parameter depends on internal timing circuits and is manufacturing process-dependent. Tlrefore 

it may vary from device to device with in the limits shown. 

Table 2. Comparison of Configuration Modes 
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Pin Functions During Configuration 

The LCA pins used for configuration are of two types: 
non-programmable pins dedicated to control functions, 
and user-programmable pins which are available as 
general purpose 1/0 pins once configuration is 
completed. The six non-programmable pins dedicated 
to control functions are: 

M2 
DIN 
DOUT 
HOC 
LDC 

CSO,CS1 ,CS2 
WAT 
RCLK 
AO-A15 
D0-07 

Mode select 
Configuration data In 
Configuration data out 
HIGH during configuration 
LOW during configuration 

(Present in all 
Configuration 

Modes) 

Chip Selects 
Write strobe 
Read strobe 
Address bus 
Input data bus 

(Peripheral mode only) 
(Master modes only) 
(Master parallel only) 

MO,M1 
CCLK 
RESET 
DIP 
PWRDWN 

Mode select pins 
Configuration clock 
Master reset 
Done/Program 
Power-down 

The user-programmable 1/0 pins that may be used 
during configuration are: 

In addition to the dedicated control pins, several user­
programmable 1/0 pins have configuration functions 
assigned to them regardless of which configuration 
mode is selected. These pins, as well as the dedicated 

Applicable 
Pin Conlig. Mode(s) Function During Function During 
Name s p MH ML MS Configuration User Operation 

MO Mode select O (I) Readback trigger (I) 
M1 Mode select 1 (I) Readback data out (0) 
M2 Mode select 2 (I) <User 1/0> 

DIP Indicates when config. Initiates/Inhibits 
(Note 1) process is done (0) Re-configuration (I) 

RESET Abort/Restart config. Master clear of all 
(Note 1) (I) internal FF's (I) 

CCLK Configuration clock Readback clock (I) 
(See Notes 1 & 2) 

DIN Config data in (I) <User 110> (Note 3) 
DOUT Config data out (0) <User 110> 
HOC Logic HIGH (0) <User 110> 
LDC Logic LOW (0) <User 110> 

AO-A15 Address bus (0) <User 110> 
D0-07 Data bus (I) <User 110> (Note 3) 
RCLK Read clock (0) <User 110> 

WRT Write strobe (I) <User 1/0> 
cso Chip select O (I) <User 110> 
CS1 Chip select 1 (I) <User 110> 
CS2 Chip select 2 (I) <User 110> 

Abbreviations: S =Slave I= Input 
P = Peripheral O =Output 
MH = Master high 
ML = Master low 
MS = Master serial 

Notes: 1. The RESET, CCLK, and DIP pins have multiple functions. See text for further details. 
2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output. 
3. DIN and DO are the same physical pins but are associated with different configuration modes. 

Table 3. Summary of Pins Used For Configuration 
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+5V 

MICRO LCA 
COMPUTER 

STRB CCLK OOUT 

DO DIN M2 

01 HOC 
1/0 02 LDC GENERAL PORT PURPOSE 

03 USER l/O 

04 ~'! OTHER 
05 PINS 

08 

07 DIP 

ADDRESS 
BUS 

DATA 
BUS 

ADDRESS 
DECODE 

LOGIC 

+5V +5V 

MO M1PWR 
OWN 

DIN CCLK 

WRT 

cso 

LCA DOUT 

M2 

HOC 

LDC 

ALL! OTHER 
PINS 

l:XIUNX 

+5V 

GENERAL 
PURPOSE 
USERl/O 

RESET RESET 

1 '--------<1cs1 
----------1cs2 

DIP 

RESET 

0010003 15C 

Vee 

L 
GENERAL· 
PURPOSE 

USER VO 
PNS 

0010003 15A 

2a. Slave Mode 2b. Peripheral Mode 

0010003 15B 

1. PINS DIN, OOUT, WR'T, ~. C§l!. M2, HOC ANO LDC ALL BECOME GENERAL-PURPOSE USER l/OAFTER THE CONFIGURATION PROCESS IS COMPLETED. 
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---~· +SV 
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DOUT 

M2 CCLK 

HOC 

LDC A15 
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l ~:mER A11 
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RESET 
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D2 
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DO 
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2c. Master Parallel Mode 

Figure 2. Typical Configuration Circuits 
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control pins, are described below. Other 1/0 pins are 
used in only in one specific configuration mode and are 
described in the corresponding section. 

MO, M1, and M2 are Mode Select input pins used to 
select which configuration mode the LCA is to use. 
These pins were described n the previous section on 
configuration modes. DIN and DOUT are used for the 
serial data path of a Slave mode daisy chain as well as 
Master Serial mode. 

HDC and LDC are user-1/0 pins which are driven by the 
LCA to constant HIGH and LOW levels respectively 
during configuration. These two pins are useful in 
controlling external logic during the initialization and 
configuration states. They may be used to enable or 
disable external logic circuits depending on whether 
that logic is required during or after configuration. All 
other user-1/0 pins not involved in configuration have 
passive internal pull-ups to Vee during configuration. 
The passive internal pull-ups on all user-programmable 
1/0 pins are removed after configuration is complete. 

CCLK is a dedicated control pin which serves as a clock 
input during slave mode configuration, but a clock 
output in all other configuration modes. As an input 
CCLK is used during the serial loading of a configuration 
program. As an output, CCLK serves as a clock source 
for configuring any slave mode LCAs that may be daisy 
chained to it. During user operation, CCLK serves as a 
clock input for reading configuration data from the 
device in conjunction with the MO/RT and M1/RD pins. 
The CCLK input is subject to a minimum time it can be 
held LOW and should remain in the HIGH state when not 
in use. However, it may be driven from a clock source 
which violates this limit, as long as de-assertion of 
RESET is used to enable configuration once the clock is 
normal. The CCLK pin has an internal pull-up resistor 
which allows an external clock source to be three-stated 
once configuration is completed. 

RCLK performs the function of a read strobe for dynamic 
memories for master parallel modes. For the master 
serial mode it is an output used to synchronize the 
supply of serial data. 

The RESET pin is an active LOW master reset input that 
has different functions depending on the LCA's state. 
During the initialization state (i.e., after power-up and 
prior to beginning the configuration process), this pin 
serves to delay the start of configuration. Once the 
configuration process has commenced and until it is 
complete, assertion of RESET will abort the 
configuration process and return the LCA to the 
initialization state. Configuration is restarted once 
initialization is complete and RESET is HIGH. When 
configuration is completed, the RESET pin changes 
function and instead becomes a "master reset" control 

pin that clears all internal flip-flops and latches to the 
zero state. 

The D/P (DONE/PROGRAM) pin is both an input 
and an open-drain type output with a programmable pull­
up resistor option. As an output, it is used to indicate the 
current configuration status of the LCA. Prior to initial 
configuration, and during subsequent re­
configurations, the LCA holds the D/P pin LOW to 
indicate !bat the LCA is not ready for user operation. 
When D/P goes HIGH, it indicates that configuration has 
been completed (i.e., "done") and the LCA has entered 
the user/operation state. Consequently D/P can be 
used in the system reset logic to ensure that the LCA is 
configured before reset of the rest of the system is 
terminated. 

Pins configured as !::_CA outputs become active one 
clock cycle before D/P goes HIGH. This allows time for 
any user-1/0 signals between LCAs to propagate 
through and become established prior to use by the 
target application. Subsequent re-configurations of the 
LCA can be initiated by applying a logic "O" to the D/P 
pin with an open-collector type signal source. Once 
recognized as LOW, the LCA then forces DIP LOW until 
configuration is complete. Note that by using its internal 
pull-up resistor option, the DIP pin may be left 
unconnected, thereby eliminating that pin's need or 
any external passive components. Since the D/P pin 
must be held LOW for several microseconds in order to 
be recognized, it is unlikely to be triggered by noise. 
The D/P pin must be allowed to go HIGH before it can be 
us~d to again initiate reconfiguration. Preventing the 
DIP pin from going HIGH after configuration may be 
used as an alternative technique for disabling the LCA 
from being re-programmed. 
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The PWRDWN pin is an active LOW input which forces 
the LCA into a low power state. Vee may be reduced to 
2.0 Volts after PWRDWN is active. Entering the power­
down state does not change or modify the configuration 
information stored in the LCA; it merely causes the 
device to reduce its overall power requirements by 
disabling its 1/0 pins_and certain internal logic. Power­
down causes the D/P pin to be forced LOW, clears all 
internal storage elements, and forces all 1/0 pins to 
become high impedance. Internally, logic nodes which 
were driven by inputs to the LCA prior to power-down, 
are electrically isolated from their pins and forced HIGH. 
The PWRDWN pin should be left in the inactive (HIGH) 
state during the initialization a!l_d configuration states, 
and only be asserted while D/P is HIGH. Applications 
that do not use the power-down feature should tie the 
PWRDWN pin to Vee. 

Slave Mode M2:M1 :MO = 1 :0:0 

Configuring the LCA in the Slave mode is the simplest 



and most efficient method since it involves the fewest 
number of pins. In this mode, the configuration program 
is written into the device in a bit-serial fashion. During 
configuration, each bit in the program is sequentially 
shifted into the LCA's DIN input with the rising edge of 
the clock signal applied to the CCLK pin. See Figure 3. 
Note that in Slave mode, the CCLK pin is an input, not 
an output as it is in other modes. After the configuration 
program has been loaded, an additional three clocks (a 
total of three more than the length count) must be 
supplied in order to complete the configuration process. 
The Slave mode configuration is especially appropriate 
in applications where a host processor configures the 
LCA through an 1/0 port, since the CCLK and DIN pins 
can then be driven via 1/0 instructions and the minimum 
data setup and hold times easily met. Another use of 
Slave mode configuration is in multiple LCA applications 
where the DIN and DOUT pins of several devices can be 
strung together in a daisy chain arrangement. This 
arrangement permits several LCAs to share a common 
source of configuration data. 

In addition to the six non-programmable control pins, 
five programmable pins are used in this configuration 
mode: M2, DIN, DOUT, HOC, and LDC. These five pins 
are available as general purpose user 1/0 pins once 
configuration is completed. The 53 remaining 
programmable 1/0 pins are not used during 
configuration. See Figure 2a and Table 4. 

In daisy chained LCA applications where the first LCA is 
configured in slave mode with a free-running CCLK 
source, care should be taken to insure synchronization 
with other devices in the chain. To accomplish this the 
designer must insure that RESET is released with the 
proper setup and hold times relative to CCLK. This 

Pin Pin Number 
Name PLCC DIP 

Fixed, Non-programmable Pins 

MO 26 18 
M1 25 17 
CCLK 60 42 
RESET 44 31 
DIP 45 32 
PWRDWN 10 7 

User Programmable Pins 

M2 
DIN 
DOUT 
HOC 
LDC 

27 
58 
59 
28 
30 

19 
40 
41 
20 
21 

Pin 
Type 

Input 
Input 
Input 
Input 
Output 
Input 

Input 
Input 
Output 
Output 
Output 

guarantees that all LCAs in the daisy chain become 
operational simultaneously by insuring that they all 
begin configuration on the same clock cycle. This is 
easily done by de-asserting RESET with the falling edge 
of CCLK. 

Peripheral Mode M2:M1 :MO = 1 :0:1 

The peripheral mode allows the configuration program 
to be written into the LCA by a host processor via the 
data bus as though it were an ordinary peripheral device. 
In this configuration mode the LCA may be thought of as 
a one-bit wide peripheral device, since the configuration 
program must be written into it one bit at a time. 
Typically, data bus bit 0 is tied to the DIN pin of the LCA 
and the data byte shifted between successive write 
instructions to the LCA. Next to the Slave mode, this 
mode involves the fewest number of LCA device pins 
for configuration. See Figure 2b. 

As in the Slave mode, the configuration program is 
written into the device in bit-serial fashion. When the 
correct number of bits have been written into the LCA, 
the D/P pin goes HIGH indicating that configuration is 
complete. After the configuration program has been 
loaded, an additional three clocks (a total of three more 
than the length count) must be supplied in order to 
complete the configuration process. During peripheral 
mode configuration, seven of the LCA's programmable 
1/0 pins function as configuration control pins in addition 
to the six fixed, non-programmable control pins. Table 5 
shows the configuration pins used in this mode. Figure 
4 illustrates the timing relationship between the signals 
on these control pins. 

While the DIN and DOUT pins function the same as in 

Value During 
Configuration 

HIGH 
HIGH 
<Clock> 
HIGH 
LOW 
HIGH 

HIGH 
<Data> 
<Data> 
HIGH 
LOW 

Description 

Mode Select 
Mode Select 
Configuration Clock 
Master Reset 
Done/Program 
Power-down 

Mode Select 
Config Data In 
Config Data Out 
Constant "1" Level 
Constant "O" Level 

Table 4. Slave Mode Pin Summary 
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Slave mode, four other pins serve as bus interface 
controls. Three of these pins-CSO, CS1, and CS2 
become chip selects, while the fourth pin becomes the 
Write Strobe (WAT) input. The WAT pin serves the same 
function in this mode as CCLK does in Slave mode: a 
pulse applied to it while the three Chip Selects are 
asserted causes one bit of the program to be shifted 
into the DIN input of the LCA. Each write strobe to a 
peripheral mode LCA also produces a CCLK output 
pulse for purposes of driving the CCLK inputs of 
cascaded LCAs as shown in Figure 7. The three chip 
selects (two active LOW, one active HIGH) allow the LCA 
to be mapped to a specific 1/0 or memory address for 
configuration purposes. All nine pins are available as 
general purpose user-programmable 1/0 pins once 
configuration is completed. The 49 other programmable 
1/0 pins are not used for peripheral mode configuration. 

Master M2:M1 :MO= 1 :O:O (Master Low Mode) 
Modes 1 :1 :0 (Master High Mode) 

0:0:0 (Master Serial Mode) 

In the Master configuration modes, the LCA itself 
controls the loading of the configuration program 
automatically. In this mode, the LCA uses on-chip 
control logic to automatically address an external 
bytewide memory device (e.g., an EPAOM) or uses 
ACLK to synchronize serial input data providing the 
configuration program. For the bytewide modes, 
sixteen of the LCA's 1/0 pins are used to generate an 
address bus, and eight other 1/0 pins to form a 
unidirectional data bus. Two options for the bytewide 

Pin Pin Number Pin 
Name PLCC DIP Type 

Fixed, Non-programmable Pins 

MO 26 18 Input 
M1 25 17 Input 
CCLK 60 42 Output 
RESET 44 31 Input 
DIP 45 32 Output 
PWRDWN 10 7 Input 

User Programmable Pins 

M2 27 19 Input 
DIN 58 40 Input 
DOUT 59 41 Output 
cso 50 35 Input 
CS1 51 36 Input 
CS2 54 37 Input 
WRT 56 38 Input 
HOC 28 20 Output 
LDC 30 21 Output 

master mode exist: the Master Low mode, in which the 
memory is addressed in ascending sequence 
beginning at zero, or the Master High mode which uses 
a descending address sequence starting at hex address 
FFFF. With this addressing flexibility, the configuration 
data may share space in a ROM or EPROM used by the 
system, typically a microprocessor program. Once 
configuration begins, memory read cycles continue until 
the correct number of bits have been read, at which 
point the DIP pin goes HIGH indicating that program 
loading is completed. Bytes of data read from the 
external bytewide memory are serialized on-chip, and 
are independent of physical byte boundaries. 

In addition to the sixteen address outputs and eight data 
bus input pins, several other signals are employed in 
this configuration mode. One is the ACLK output signal 
which is active LOW and goes HIGH while the address 
bus is changing states, allowing the use of "clocked" 
EPAOMs for storing configurations. Other signals are 
the CCLK and DOUT outputs which are both used to 
drive cascaded (daisy chained) LCAs as shown in Figure 
8. The pins used are summarized in Table 6 and the 
waveforms are shown in Figure 5. 

Although sixteen bits of address are generated in the 
bytewide Master mode, not all are required to address 
the bytes needed to configure a single LCA. The extra 
addressing capacity of the LCA provides for storage of 
multiple configuration programs in a single EPROM 
device so that several daisy chained LCAs may be 
configured from a single source. Figure 8 presents an 

Value During 
Configuration Description 

HIGH Mode select 
HIGH Mode select 
<Clock> Configuration clock 
HIGH Master reset 
LOW Done/Program 
HIGH Power-down 

HIGH Mode select 
<Data> Config data in 
<Data> Config data out 
LOW Chip select (Active LOW) 
LOW Chip select (Active LOW) 
HIGH Chip select 
<Strobed> Write enable (Active LOW) 
HIGH Constant "1" Level 
LOW Constant "O" Level 

Table 5. Peripheral Mode Pin Summary 
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example of a master mode LCA tied to a daisy chain of 
slave mode LCAs. Figure 5 shows the timing for the 
Master configuration mode. 

In order to insure the successful configuration of daisy 
chained LCAs from a master mode device, the master 
mode device pauses briefly upon power-up before 
commencing with the configuration process. This power­
up delay, which is substantially longer than the 
initialization delay for either slave or peripheral mode, 
allows for variations in LCA response to Vee rise times 
and insures that all slave mode LCAs have time to 
become fully initialized and are ready for configuration 
data from the Master mode LCA. If longer delays are 
required to guarantee that all slave devices have been 
powered, then RESET may be used to hold off the start 
of configuration. 

CONFIGURING MULTIPLE LCAs 

Designs using multiple LCAs can reduce configuration 
overhead by logically concatenating the configuration 

Bytewlde Master Mode Pin Summary 

Pin Value During 

programs. Using this option, LCAs can be connected 
together in daisy chains with one data source supplying 
the configuration program for all devices in the chain. 
The first LCA in the daisy chain may be configured in any 
of the configuration modes. Programs for all remaining 
devices in the chain are loaded using the pin-efficient 
Slave mode. When cascaded in this way, the LCA 
devices are programmed one at a time in sequence, 
starting with the first in the chain. Daisy chains of virtually 
any length can be configured in this manner. 

LCAs are daisy chained together by connecting the 
DOUT pin of one device to the DIN pin of the next 
device in the chain. Each slave mode device is supplied 
with CCLK and program data from the device 
immediately proceeding it in the chain. Once a given 
LCA in the daisy chain has received its share of the 
configuration program, the balance of the program data 
are passed through to the remaining LCAs in the chain. 
Data passing through the LCA, from the DIN pin to the 
DOUT pin, is subject to a one clock cycle re­
synchronization delay. Once configuration is complete, 
both DIN and DOUT are available to the designer as 

Pin 
Name 

Pin Number 
PLCC DIP Type Configuration Description 

Fixed, Non-programmable Pins 

MO 
M1 

CCLK 
RESET 
DIP 
PWRDWN 

26 
25 

60 
44 
45 
10 

18 
17 

42 
31 
32 

7 

User Programmable Pins 

M2 
DOUT 
HOC 
LDC 
RCLK 

AO-Axx 

68 PLCC 

D0-07 

68 PLCC 

27 
59 
28 
30 
57 

o 

o 

19 
41 
20 
21 
39 

o 

48 DIP 

o 

48 DIP 

Input 
Input 

Output 
Input 
Output 
Input 

Input 
Output 
Output 
Output 
Output 

Outputs 

Inputs 

LOW 
LOW 
or HIGH 
<Clock> 
HIGH 
LOW 
HIGH 

HIGH 
<Data> 
HIGH 
LOW 
<Strobed> 

<Address> 

Mode select 
(Master-low mode) 
(Master-high mode) 
Configuration Ccock 
Master reset 
Done/Program 
Power-down 

Mode select 
Configuration data out 
Constant "1" level 
Constant "O" level 
Chip enable output 

Memory address bus 

A15 A10 AO 
5 6 4 2 1 48 47 46 45 44 43 

65 67 2 4 6 8 9 7 5 3 68 66 64 63 62 61 

Memory data bus 
07 DO 

28 29 34 35 36 37 38 40 
41 42 48 50 51 54 56 58 

Table 6. Master Mode Pin Summary 

2-9 

• -



~ 
0 

CCLK 

DIN 

OOUT BIT(N-2) 

0010028 3 
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Figure 4. Peripheral Mode Configuration Timing 
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general purpose 1/0. Figures i and 8 illustrate how 
multiple LCAs can be connected together into daisy 
chains. Figure 6 shows the configuration timing for daisy 
chained LCAs. 

CONFIGURING LCAs IN PARALLEL 

In multiple LCA applications, there is a great deal of 
latitude in designing the configuration logic. The serial 
daisy chain technique described above is only one 
method by which multiple LCAs may be programmed. 
Another possibility which takes advantage of the bit-at-a­
time nature of the slave and peripheral configuration 
modes is the simultaneous configuration of the LCAs in 
parallel. Multiple LCA devices, as shown in the 
peripheral mode example in Figure 9, can be 
simultaneously configured with each write cycle loading 
one bit into each of the LCAs. The total time required to 
configure the entire array of LCAs is now reduced to the 
time required for configuring a single device. 
Performance can be improved further through the 
addition of hardware to configure the group of LCAs via 
OMA transfers. If a processor is available for example, up 
to eight LCAs in parallel could be configured 
simultaneously from one program file stored on disk. 

DESIGN CONSIDERATION FOR USE OF MULTIPLE­
FUNCTION 1/0 PINS 

Once a suitable configuration mode is selected, the 
designer may turn his attention to assignment of 
inpuVoutput functions to specific 1/0 pins. Usually this is 
based on logic block placement within the LCA, 
common 1/0 clock constraints, and 1/0 pin usage during 
configuration. User-definable 1/0 pins employed in 
configuring the LCA may be used by the end 
application, but require more careful design attention 
than the other 1/0 pins. For applications that require 
most of the programmable 1/0 pins, it is worthwhile to 
consider techniques for making efficient use of these 
dual-function pins. 

Good design practice dictates that no logic signal 
conflicts should occur during either the configuration 
phase or the user-operation phase. These conflicts may 
not be obvious, since the directional nature of some of 
the 1/0 pins used for configuration change when the 
LCA completes its configuration and enters the user 
operation state. The design should guarantee that pins 
used as outputs during configuration (even though 
possibly not utilized in a given application) must not 
conflict with other logic sources also tied to those pins. 

An example of an output pin that is easily overlooked is 
the DOUT pin: during configuration it becomes an 
output, regardless of whether or not it is used to drive 
the DIN pin of another LCA. Other examples include the 

HOC and LDC pins, which are driven HIGH and LOW 
respectively during configuration. An application design 
should be able to tolerate activity on these and the other 
1/0 pins used during configuration without presenting a 
problem to external circuits that may also be tied to 
these pins. This can usually be accomplished either 
through careful pinout assignment, or through isolation 
buffers. The possibilities may be analyzed as three 
cases: 

Case 1. 1/0 pins used for configuration are dedicated to 
that function only and are not used during user 
operation. In this case, no signal conflicts occur, but the 
number of /0 pins available for use by the application is 
reduced. 

Case 2. 1/0 pins used for configuration are also used 
during user operation. However, since the signals are • 
similar in inpuVoutput sense and the system suffers no 
adverse effect from transitions occurring on those pins • 
during configuration, isolation buffers are not required. 

Case 3. 1/0 pins used for configuration are also used 
during user operation. However, they either conflict in 
inpuVoutput sense, or have signal transitions during 
configuration which will adversely effect other system 
logic. Three-state buffers can be employed for this 
purpose, with perhaps the D/P, LDC, or HOC pin serving 
as the enable control for the buffers. 

Recognition of the above scenarios in an LCA 
application, along with careful assignment of 1/0 
functions to actual pins, can significantly reduce or 
eliminate external logic components in most cases. 
When faced with conflicts as in Case 3 above, the best 
approach is to try another pinout assignment which may 
eliminate the conflict. Isolation buffers should not be 
necessary in most designs since a typical design will 
have a number of inputs and outputs which can be 
assigned to 110 pins used during configuration without 
any conflicts. For example assigning output functions to 
pins that are already outputs during configuration (e.g., 
address outputs in master mode) may obviate the need 
for buffering those signals. In general, any sharing of 
similar pin functions during and after configuration may 
eliminate the need for external buffer logic. 
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The following are a few examples of how careful pinout 
assignment can reduce external component count: 

• Applications involving an address or data bus: If the 
application calls for such a bus and will use the LCA's 
master mode for configuration, these buses can 
effectively share pins with the master mode's address 
and/or data buses. 

• Applications in which the LCA interfaces to a CPU bus 
and is configured in the periphera_I _mode: 
Configuration pins such as WRT, DIN, and CSO, CS1 
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Figure 6. Timing for Daisy-Chained LCAs (Example Using Four LCAs) 
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Methods of eof.gurlng the Logic Cell Array 

07 -------------< DIN LCA#8 

06 

05 

04 

FROM 03 

SYSTEM 
BUS 

02 

•' 
01 

DO -------1 DIN LCA#1 

'"om { COMMANDS 
TO ALL 

DEVICES 

WRT 

cso 
CS1 

CS2 
0010028 9a 

Figure 9a. Parallel LCA Configuration Using Peripheral Mode 

and CS2 can be assigned similar functions in the final 
application since these pins will be driven from the 
host system's CPU bus both during and after 
configuration. 

• Applications involving multiple LCAs where at least 
one signal passes from one device to another: it is 
most natural to assign that signal to the DIN-to-DOUT 
connection between those devices. 

Unused 1/0 Pins 

An LCA pin programmed as in input and not connected 
to any external logic is a '11oating" input. As with any 
CMOS device, floating inputs can result in a low 
impedance current path from Vee to ground and 
permanent device damage. Thus, unused LCA pins 
should be either: 
1. Defined as an output and driven with an internal 

signal, preferably a constant "O" or "1" level. 
2. Defined as an input and: 

a. Driven externally with logic, or 
b. Tied to an external pull-up or pull-down resistor, or 
c. Tied to Vee or Ground 

The relative advantages and/or disadvantages in 
defining unused pins as inputs or outputs will vary from 
application to application. Some of the considerations 
include: minimizing power dissipation (both static and 
dynamic), minimizing component count, risk of electrical 
damage to the device, and future circuit board 
modifications, etc. The preferred method of treating 
unused pins is to: 

07 r DIN LCA#8 

06 JOIN LCA#7 

FROM 
l/OPORT 

05 

04 

03 

02 

01 

DO 

VO STROBE 

(COMMON TO 
ALL DEVICES) 

f DIN LCA#8 

-f DIN LCA#5 
I-

f 01N LCA#4 
I-' 

f DIN LCA#3 
I-

fo1N LCA#2 
I-

DIN LCA#1 
1-1 

I-
CCLK 

1-1 

0010028 9b 

Figure 9b. Parallel LCA Configuration Using Slave Mode 

• Externally leave the pin open or unconnected, 
• Internally configure the pin as an output, and 

• Drive it with some constant level signal. 

This is usually accomplished by selecting a nearby 
unused CLB output, defining it as either a constant "1" 
or "O'', and tying that signal to all nearby unused IOBs. If 
internal routing congestion in the area precludes routing 
this de signal to the 108, the next best option is driving 
the IOB's output pin with one of the nets which is 
accessible. In this case, a net with the lowest toggle 
frequency is best since it will result in less power 
dissipation. 

Test points 

Another practical use for unused LCA pins is as 
diagnostic test point outputs. These test points can be 
very valuable for later monitoring of internal logic nodes 
which would otherwise be inaccessible. 

THE CONFIGURATION PROGRAM 

The information required to program the LCA can be 
viewed as a serial string of bits (i.e., 1 's and O's) that is 
shifted into the LCA one bit at a time until all the 
necessary configuration information has been loaded. 
This is appropriately referred to as the configuration 
program. The number of bits required to supply all the 
configuration information for a single LCA depends on 
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depends on the device type and is outlined in Table 7. 
For applications using multiple LCAs connected as a 
daisy chain, the program grows for each additional LCA 
device. 

these additional clocks is ignored. Configuration 
bitstreams for several LCAs connected in a daisy chain 
have only a single preamble and length count. 

The configuration program begins with several logic "1" 
bits (termed "dummy bits") followed by a 001 O preamble 
bit pattern (leftmost bit first). Following the preamble are 
24 bits which represent the length count. The 
magnitude of this length count must equal or exceed a 
value two less than the total number of clock cycles 
required to shift in all the bits (including the dummy bits) 
in the bitstream. Length counts greater than this 
number up to (2~4-1 are permissible and merely serve 
to delay the D/P pin from going HIGH indicating the 
completion of configuration; all data associated with 

Within the LCA, this count value is held in the length 
count register and compared to a CCLK cycle counter to 
determine when the configuration process is complete. 
When the value of the CCLK cycle counter compares to 
the value in the length count register, and all required 
data frames have_ been entered, configuration is 
complete and the DIP pin released. Since all devices in 
the daisy chain start their clock cycle counters 
simultaneously with the first CCLK cycle to occur after 
RESET is released, all LCAs in a daisy chain complete 
configuration and become operational simultaneously. 

0010028 11 

1111 
0010 
< 24 Bit length count > 
1111 

O < Data frame # 001 > 111 
O < Data frame # 002 > 111 
0 < Data frame # 003 > 111 

O < Data frame # 159 > 111 
O <Data frame# 160 > 111 

1111 

1111 
0010 
< 24 Bit Length Count > 
1111 

0 < Data frame # 001 > 111 
O <Dataframe#002> 111 
O <Dataframe#003> 111 

O <Data frame# 196 > 111 
O < Data frame# 197 > 111 

1111 

Notes: 

Configuration Bitstream Format: (Shown In Binary) 

XC2064 LCA 

Dummy bits (4 Bits Minimum) 
Preamble code 
Configuration program listing 
Dummy bits (4 Bits Minimum) 

160 Configuration data frames 

(Each frame consists of: 
a 0 start bit, a 71 -bit data field, 
and 2 or more dummy bits) 

Postamble code (4 bits minimum) 

XC2018LCA 

Dummy bits (4 bits minimum) 
preamble code 
total number of bitstream bits 
dummy bits (4 bits minimum) 

197 Configuration data frames 

(Each frame consists of: 
a O start bit, a 87 -bit data field, 
and 2 or more dummy bits) 

Postamble code (4 bits minimum) 

Repeated once 
for each LCA in 
the daisy chain 

Repeated once 
for each LCA in 
the daisy chain 

1. Data bits (as shown in the table) are shifted into the LCA with the leftmost btt of each line in the table above 
being entered first. The bit field containing the length count is shifted in most signdicant bit first. For master 
mode applications, bytes of data read from the EPROM are internally serialized so that DO is sensed first, 07 
last. Therefore, the first byte of the EPROM would read "0100 1111" in binary, or "4P' in hexadecimal notation. 

2. In multiple LCA applications where a daisy chain is used for configuration, the length count reflects the total 
number of clock cycles for all LCAs being configured from this one bitstream. 

Table 7. Configuration Bitstream Format 
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Methods of LCA Configuration (XC2064/2018) 

CONFIGURATION MODE: <M2:M1 :MO> USER 
46 68 SB 

SLAVE PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION 
DIP PLCC PGA <1:1:1> <1:0:1> <1:1:0> <1:0:0> 

1 BS GND 
2 AS A13 (ci} 

1 3 BS AS 0 
4 AS A"i2 0 

2 s B4 <~HIGH;~ A7 JQi Kl 
3 6 A4 A11Jiii: 
4 7 83 AB 0 
s B A3 A10 0 
6 9 A2 A9 0 
7 10 82 WRi ii\iNI 
8 11 81 

12 C2 
9 13 C1 

14 02 
~~HI' H>~. liO 

10 15 01 
16 E2 

11 17 E1 
12 18 F2 vcc 
13 19 F1 

20 G2 
14 21 G1 

..•. ~~~ 3H>> 
22 H2 

15 23 H1 

········•·;·•1 16 24 J2 
17 25 J1 ~(HIGI M1 M1 (LOW) RDA AA 
18 2S K1 Ji[IHIGH MO o\ii[ MO !HIGH MO(LO\ii[ RTRIG::fil: 
19 27 K2 M2 

20 28 L2 HOC 

29 K3 •'«HI• GH»·:•::::;:;:•:•:•:::·.•<• Kl 
21 30 L3 LDC (LOW) 

31 K4 ::•::•:••:::.:: ~ 
22 32 L4 

33 KS ~~HIGH;;· 
23 34 LS 
24 3S KS GND 

36 LS = 25 37 K7 
38 L7 ·········: 

26 39 KB ;.; .. :;.: Kl 

27 40 L8 
28 41 K9 
29 42 L9 06 ~) 
30 43 L10 XTL20Rl/O 
31 44 K10 n: 
32 45 K11 ]Qi" ~ 
33 46 J10 .~~.~.ii1H;~- XTL1 ORllO 

47 J11 
34 4B H10 

49 H11 "][ liO 

35 so G10 I 04 
36 51 G11 ::mm:: ::@ 

52 F10 vcc 
53 F11 

37 54 E10 !(I) D2llf 
S5 E11 liO 

36 56 010 U!L 01 [i[ 
39 S7 011 ~ 
40 SB C10 !!]![ oo]i) 
41 S9 C11 DOVT(O) 
42 60 811 CCLK(I) LK(O) CCLK(if 
43 61 810 

•:•·•·•·••·•·•·•Ji·=·. 

AO lOi 
44 62 A10 A1 @: 
45 63 89 A2 (0) 

46 64 A9 · .. :: .. :::.: .. ::,.: A3 (0) liO 

65 88 A1S (0) 

47 6S A8 A4 (0) 

67 87 A14 (0) 

48 68 A7 AS (0) 

<<HIGH>> IS HIGH IMPEDANCE WITH A 2~ KO INTERNAL PULL·UP DURING CONFIGURATION 

0010003 20 

XC2064 Pin Assignments 
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SB SB B4 
PLCC PGA PLCC 

BS 
AS 

BS 
AS 

B4 
A4 
B3 
A3 10 
A2 11 

10 B2 12 

11 B1 13 
12 C2 14 
13 C1 1S 
14 D2 1S 
1S D1 17 

1B 
1S E2 19 

20 
17 E1 21 
1B F2 22 
19 F1 23 

24 
20 G2 2S 

2S 
21 G1 27 

22 H2 2B 
23 H1 29 
24 J2 30 
2S J1 31 
2S K1 32 
27 K2 33 
2B L2 34 

29 K3 3S 
30 L3 3S 
31 K4 37 
32 L4 3B 

39 
33 KS 40 
34 LS 41 

42 
3S Ks 43 

44 
3S LS 4S 
37 K7 4S 
3B L7 47 

4B 
39 KB 49 
40 LB so 
41 K9 S1 

42 L9 S2 
43 L10 S3 
44 K10 S4 
4S K11 SS 
4S J10 SS 
47 J11 S7 
4B H10 58 

S9 
49 H11 so 

S1 
so G10 S2 
S1 G11 S3 
S2 F10 S4 
S3 F11 SS 
S4 E10 66 

S7 
SS E11 SB 

S9 
SS D10 70 
57 011 71 
SB C10 72 

S9 C11 73 
so B11 74 

B4 
PGA 

cs 
AS 

AS 
BS 
cs 
A4 

B4 
A3 
A2 

B3 
A1 
B2 
C2 

B1 
C1 
D2 
01 

E3 
E2 

E1 
F2 

F3 
G3 
G1 
G2 
F1 
H1 
H2 

J1 
K1 
J2 

L1 
K2 
K3 

L2 
L3 

K4 
L4 

JS 

~ 
LS 

Ks 
JS 

J7 
L7 
K7 
LS 

LB 
KB 
L9 
L10 

K9 
L 11 
K10 
J10 
K11 
J11 
H10 

H11 
F10 

G10 
G11 
G9 
F9 

F11 
E11 

E10 
E9 

011 
010 
C11 
B11 
c10 

A11 

SLAVE 
<1:1:1> 

CONFIGURATION MODE: <M2:M1 ·MO> 

PERIPHERAL MASTER-HIGH l MASTER-LOW 
<1:0:1> <1:1:0> c1:0:0> 

GND 

A11 .JQl. 
AB A 
A10 0 
A9 0 

MO (HIGH) MO (LOW) MO (HIGH) MO (LOW) 
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Methods of Configuring the Logic Cell Array 

The value used for the length count is a function of how 
many LCAs will be configured by this one program. For 
example, if there are three XC2064 LCAs connected in 
a daisy chain, then the configuration program would be 
approximately 36,000 bits in length. This value is 
approximate since the length count is included only 
once at the beginning, and since several additional 
cycles are required to compensate for the rec 
synchronization delay of the data at each DOUT pin. The 
precise value of the length count is computed by the 
XACT development software and automatically entered 
into the program data file. The preamble and length 
count bits are sensed by each LCA at its DIN pin and 
immediately passed on to the next LCA in the daisy 
chain via the DOUT pin. Afterwards, however, each LCA 
in turn accepts its portion of the configuration program 
before passing any subsequent data on to the next 
device. See Figure 6. 

Within the configuration program data are presented in 
frames which begin with a "start" bit and end with two or 
more dummy or "stop" bits. Between the start and stop 
bits of each frame there is a data field which defines the 
user's logic functions. The last frame is followed by a 
field of postamble bits. 

Notes: 

1. Xilinx reserves the right to change the format, 
organization, and/or length of the program used to 
configure the LCA. 

2. The documentation presented here applies only to 
the bitstream data generated by the XACT 
development system for use in EPROMs; the 
XACTOR In-Circuit emulation uses a somewhat 
longer version of the configuration program. 

PIN 0010028 01 
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INTRODUCTION 

This Application Note describes various uses for Input/ 
Output Blocks within the XC2064 and XC2018 Logic 
Cell Arrays. 

The architecture of the XILINX Logic Cell Array (LCA) 
provides great design flexibility in using inputs and 
outputs. Since the Input/Output Blocks (IOBs) in an 
LCA are not dedicated to any fixed logic, they may also 
be used for many things beyond simple inputs or 
outputs. Many designs will not use all of the IOBs 
available within the LCA. In such cases, the design 
engineer can build logic structures such as shift 
registers or Johnson counters in unused IOBs. 

The Input/Output Block 

All of the lnpuVOutput Blocks (IOBs) of the Xilinx 
XC2064 and XC2018 Logic Cell Arrays (LCAs) are 

Ins and Outs of 
Logic Cell™ Array 
1/0 Blocks 

identical. However, each IOB can be individually 
configured by the designer to perform a variety of logic 
functions. Each has the capability to drive an output, 
receive an input, clock the input into a flip-flop, or do 
both input and output under three-state control. A 
schematic of the IOB is shown in Figure 1. The 
trapezoidal structures are data path selectors or 
multiplexers. The programming of these data path I 
selectors determines the function performed by the 
IOB. 

Along each edge of the LCA die, the IOBs share a • 
common 1/0 clock signal which drives the input register. 
All of the internal registers are reset to a "O" state after 
configuration or after the RESET pin is asserted low. 
Data is clocked into the input register on the positive 
edge of the 1/0 Clock signal. 

Logic signals external to the LCA come in through an 1/0 
pad and a non-inverting buffer. The signal is then either 

''''""''""'"'""''"'"""'''''''''""'""'''"'''"'"''"''""'""''"''''"'''''"''''''"'"'''"''"'''''°''''''"'"""''''"'"'"'"""'"''"'''''""'"""'""i 

~ 

0010022 1 

D Qt-----' 

-ii__ _ PROGRAM CONTROLLED 
~ - MULTIPLEXER 

~ 

l/OCLOCK 

TS (OUTPUT ENABLE) 

OUT 

IN 

Figure 1. Input/Output Block (108). An Input/Output Block (IOB) can be configured as either a 
direct or registered input, a direct or three-state output, or as a bidirectional data line. 
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Ins and Outs of Logic Cell Array 1/0 Blocks 

directly propagated or fed into the input register, 
depending of the configuration of the data path 
selector. Similarly, output data is driven by a non­
inverting buffer. The output buffer is forced into a high­
impedance state whenever the three-state control line is 
HIGH (TS = 1). Conversely, the output buffer 
propagates the output signal when the three-state 
control line is LOW (TS= 0). All outputs can source and 
sink 4 mA under specified worst-case conditions. 

All IOBs can be globally configured to recognize either 
TTL-level (Vth = 1.4 Volts) or CMOS-level (Vth = 2.2 
Volts) input thresholds. This option affects overall 
device power consumption. Power consumption is 
lower when CMOS input levels are selected. 

Scope and Purpose 

The purpose of this application note is to describe some 
functions available by configuring IOBs in various 
ways-some obvious, some not so obvious. These 
structures include: 

• Standard Inputs and Outputs 
• Open-Collector 1/0 

• Schmitt-Triggered 1/0 

• Oscillators 
• IOB-based Registers (data, shift, etc.) 

• Counters (Johnson, Linear Feedback) 

1/0 STRUCTURE DESCRIPTIONS 

Conventions Used in the 1/0 Descriptions 

For each 1/0 structure, the following conventions will be 
maintained. Each structure will be shown in schematic 
form and the IOB configuration will be described. 
Configurations available for the input path include: 

• (l:PAD)-Direct input from the device pad. 

• (I :Q)-Registered input. 

• (I :)-No input. 

The output buffer may be configured as follows: 

• (BUF:ON)-Direct output. 

• (BUF:TRl)-Three-state output. 

• (BUF:)-No output. 

If a macro definition (MACRO) exists for the structure 
described, it will also be listed. Any special configuration 
information will be described under "COMMENTS." 

STANDARD 1/0 STRUCTURES 

1/0 TYPE: Pad Input 
MACRO NAME: PIN 
SCHEMATIC: 

CONFIGURATION: 
l:PAD 
BUF: 

Figure 2. Pad Input 

001022 2 

Registered Inputs and Metastability Characteristics 
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Figure 3 is a schematic of a registered input within the 
LCA. Logic Cell Arrays are manufactured with a high­
speed CMOS process. This allows the 1/0 Block input 
registers to achieve flip-flop loop delays of three to five 
nanoseconds. Short loop delay provides very good 
performance under asynchronous clock and data 
transitions. Short loop delays minimize the probability of 
a metastable condition which can result when the input 
into the flip-flop is still in transition when the clock is 
asserted. The short loop delay characteristics of the 1/0 
Blocks allow the device to be effective in synchronizing 
external signals. Once synchronized in the IOB, the 
signals can be used internally without further 
consideration of their relative timing, except as it applies 
to internal logic and routing path delays. Further 
information regarding the metastable behavior of 
registers within an LCA is contained in the XILINX 
application note, Metastability Analysis of LCA Flip­
Flops. 



110 TYPE: Pad Input with Storage (registered input) 
MACRO NAME: PINO 
SCHEMATIC: 

r.:,:,.,·,..-,.,•,v,v,:,'.•,:,-,~·.:""•'"0:N•!>.'.'0:•:0:•!0:•'.'+.V,".:0:•~•'0:•!•"'0:"•"'•"'•!0:""•'>:•"'•:>'0:"•'0:•'<l"•'•'O:•:•'•:•'O:•:>":.:•:•:>!·":O:·:O:•:•!•'O:·'~ 

~ ~ 

i PAD ! 
~ ~ 
~ ~ 

I I 
j D 0 j-INPUT 

l 1 
~ ~ 
~ ~ 
~ ~ 
~ ~ 

~«>X->X-»»XM''"'"""'"'"'»"'''"'''"''"'''»»'""'"'"'''"'"''''"'''"""''·'''"''"M'"""'''"'»"J- VO CLOCK 

0010028 3 

CONFIGURATION: 
l:Q 
BUF: 

Figure 3. Pad Input With Storage Register 

1/0 TYPE: Pad Output 
MACRO NAME: POUT 
SCHEMATIC: 

r-;v;.;.;.;.;v.-.:-:-:-:-:-:-:v:v: .... -:«-:-: .... :v;.;-:.,,:.;.:·:-:·~:v.-.:-:-:-:·:-:•:-:•:-:-:·:-:-:v:-:«1 

j t-. - OUTPUT 
§ ~ 

~ ~ 
~ ~D ~ 
~ ~ 
~ ~ 
~., • ....,.,...,.,.,.......,.,.,., .. .,...,.. ...... .,.,., ......... ,.,.,.,.,...,.u ..... w_.,., ..... ,...,.,.,.,.,.,.,.,...,.,~ 

0010022 4 

CONFIGURATION: 
I: 
BUF:ON 

Figure 4. Pad Output 
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1/0 TYPE: Pad Output with Three-State Control 
MACRO NAME: POLITZ 
SCHEMATIC: 

THREE-STATE 

OUTPUT 

0010022 5 

CONFIGURATION: 
I: 
BUF:TRI 

Figure 5. Pad Output With Three-State Control 

110 TYPE: Pad Input/Output (bidirectional data line) 
MACRO NAME: PIO 
SCHEMATIC: 

r•'""''•""•''•''•''-"•'•''•''MV.W.V,WoWo'•'""'""'"".W•'"V•''•''•'~ 

PAD 

0010022 6 

CONFIGURATION: 
l:PAD 
BUF:TRI 

~ 
THREE-STATE 

OUTPUT 

INPUT 

Figure 6. Pad Input/Output (Bidirectional) 
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Ins and Outs of Logic Cell Array 110 Blocks 

110 TYPE: Pad Input/Output with Input Storage 
MACRO NAME: PIOQ 
SCHEMATIC: 

CONFIGURATION: 
l:Q 
BUF:TRI 

0010022 7 

Figure 7. Pad Input/Output With Input Storage 

"OPEN-COLLECTOR" 1/0 STRUCTURES 

Overview 

"Open-collector" outputs can be used for a variety of 
functions including ''wired" AND and OR structures. For 
MOS devices like the Logic Cell Array, a more accurate 
terminology is open-drain outputs, since an MOS 
transistor has no collector. 

To build an open-drain output structure in an LCA, both 
the output and the three-state control lines are tied 
together. For an active HIGH signal, the three-state 
control engages (high impedance) and the output signal 
is disabled through the output buffer. The signal at the 
output pad will also be high impedance, allowing that 
particular signal line to ''float." Connecting this signal line 
to Vee through a resistor will pull this line up for an active 
HIGH output. However, for active LOW signals, the 
three-state control line is driven LOW. This turns on the 
output buffer and allows the LOW signal to propagate 
directly to the 1/0 pad. 

Open-Drain Structures and Routing 

When designing with open-drain structures, the 
designer should be aware of an LCA-specific 
phenomenon caused by the different routing delays 
between the signal source and the output and three­
state control loads. 

Since a routed signal may take longer to reach an IOB's 
three-state control line than its output line, the pad may 
be driven for a short period of time during a LOW to 
HIGH transition. This situation could occur if the output 
line (0) starts to go HIGH before the three-state control 
line (T). Depending on how much routing delay there is 
between the output (0) and three-state (T) lines, the 
PAD output could start to go HIGH and then be driven 
into high-impedance. Excessive routing delay differ­
ences between the output (0) and the three-state 
control line (TS) may cause ~ brief output glitch as 
shown in Figure 8. Careful design will prevent this. 

This situation is not a problem in most designs. The 
actual routing delay difference between the (T) and (0) 
terminals of an IOB can be checked using the timing 
calculator included in the XACT™ Development System. 

1 SIGNAL 

PAD 

.... '•'•'•'•'•'•'•'•'•'•' ·.·.····················':.:.~ l:[.,,,•,',•.',•,',•,•,•""•'""•'•'.'•'•'•'•'"•'•'•'•'N.'o'•'•'•'"•'" , < • 

OUTPUT 7 
DELAY --1 14-

THREE-STATE 

llOPAD HIGHIMPEDANCY----
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Figure 8. Brief Output Glitch Caused by 
Three-State Routing Delay 
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110 TYPE: Pad Output with "Open-Collector" 
MACRO NAME: POUTC 
SCHEMATIC: 

0010022 9 

CONFIGURATION: 
I: 
BUF:TRI 

OUTPUT 

Figure 9. Pad Output With "Open-Collector" 

110 TYPE: Pad Input/Output with "Open Collector" 
MACRO NAME: PIOC 
SCHEMATIC: 

PAD 

:~ 

t,.,.,.,.,.,.,.""'"'~''"''''"'°""m'"""'"'"'""""'""'"'"'""''""'''"'"'""'""'"""'"'""""'''""'"m"''; 
0010022 10 

CONFIGURATION: 
l:PAD 
BUF:TRI 

OUTPUT 

INPUT 

Figure 10. Pad Input/Output With "Open-Collector" 
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110 TYPE: Pad Input/Output with Storage, 
"Open Collector" 

MACRO NAME: PIOQC 
SCHEMATIC: 

0010022 11 

CONFIGURATION: 
l:Q 
BUF:TRI 

l:XILINX 

Figure 11. "Open-Collector" Pad Output With Storage 

"Wired" AND and "Wired" OR Structures 

The open-drain capability of Input/Output Blocks allows 
a designer to build ''wired" AND and ''wired" OR 
structures. The AND and OR implementations are 
essentially the same. The only difference between the 
forms is the type of logic used. "Wired" AND structures 
are used in positive-logic implementations, while ''wired" 
OR structures are used in negative-logic 
implementations. 

Figure 12 shows a typical ''wired" AND or ''wired" OR 
structure. All of the output PADs from the IOBs are 
externally wired together as a common signal. In a 
positive logic system, when all of the logic outputs to the 

I 
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Ins and Outs of Logic Cell Array 110 Blocks 

IOBs are true, the three-state control is enabled and the 
IOB output PADs are forced to high-impedance. 
However, since all of the IOBs are tied to Vee through a 
pull-up resistor, the line is pulled-up to Vee. If the logic 
signal to any of the IOBs is false, the corresponding 
output buffer would be turned on and that LOW signal 
would propagate to the common line. This, in turn, 
would pull the entire line LOW. The entire structure 
then acts as an AND function-when all outputs are 
high, the common line is high. If any output is low, then 
the common line is also low. The ''wired" AND logic is 

PULL UP 
RESISTOR 

PAD 

PAD 

'WIRED' AND ----· 11 G OUTPUT 3 
'WIRED' OR ~ 

EXTERNAL TO LCA 
~m 

INTERNAL TOLCA 
0010022 12 

Figure 12. "Wired" AND or "Wired" OR Function 

PULLUP 
RESISTOR 

+5V 

EXTERNAL TO LCA 

PAD 

INTERNAL TO LCA 

shown in Equation 1. 

1081 • 1082 • 1083 • ... • IOBn =TRUE [1] 

A ''wired" OR structure is similar except that it is 
implemented in negative logic. It ORs together a 
number of active LOW signals to generate a logic 
function. The logic equation for a ''wired" OR shown in 
Equation 2 structure is merely a "DeMorganized" 
inversion of Equation 1. 

1081 + 1082 + 1083 + ... + IOBn = FALSE [2] 

A typical application of a ''wired" OR structure is an active 
low common interrupt line. If any peripheral requests an 
interrupt, the common interrupt line is pulled low, 
signalling the processor of the request. A ''wired"-AND 
or ''wired"-OR function can be built from any number of 
open-collector outputs. 

Multiplexers from "Open Collector" outputs 

Another structure which. can be built using open drain 
IOBs is an n-bit multiplexer, as shown in Figure 13. All of 
the PAD outputs are tied together outside of the 
package on a common line which becomes the 
multiplexer output. Each 108 in the example is 
configured as an output with three-state control (Macro 
= POUTZ). The output line (0) of each IOB becomes an 
input for the multiplexer. A signal is selected by driving 
the corresponding three-state control line low (T = 0). 
The selected signal then propagates to the common 
output line. The three-state control lines can be driven 
with a Configurable Logic Block. 

CAUTION: The designer must avoid output contentions 
on the common output line. 

..--------.--- MUX.CNTRL 

OUTPUTO 

0010022 13 

Figure 13. "Open Collector" Multiplexer Function. A multiplexer can be built from open-collector outputs. 
A specific output signal is selected by enabling the output buffer for that signal (TS = 0). 
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SCHMITT-TRIGGERED 1/0 STRUCTURES1 

Overview 

The Schmitt trigger has numerous applications in digital 
designs. Two of the most common are shown in Figure 
14. Schmitt-triggered inputs can filter signal noise due 
to hysteresis built into the switching characteristics. 
Schmitt triggers are also useful to generate fast 
transitions when a slowly changing input function 
reaches a predetermined level. Again, this effect is due 
to hysteresis. 

Schmitt-triggered inputs can be built in a number of 
ways within an LCA. Using three 108s, a CL8, and three 
resistors, a designer can build Schmitt triggers with 
selectable voltage hysteresis. If the amount of 
hysteresis is not critical, then the resource requirements 
are reduced to only two resistors and two 108s. 

The threshold voltage and the amount of hysteresis for 
a complete Schmitt trigger are selected using three 
resistors. The three resistors are separated into two 
resistor network pairs (R1 :R2 and R1 :R3) as shown in 
Figure 15. Each pair forms a voltage divider to set the 
input voltage level-one to set the HIGH going transition 
level (Vh) and one to set the LOW going transition level 
(VI). The input value at the input to 1081 is inverted 
through a CL8 and then routed to the three-state 
control line 1083. The CL8 logic adds a small amount of 
time hysteresis to the signal since both the CL8 logic 

I I 
I I 
I I 

J 
a. NOISE REDUCTION b. FAST TRANSITIONS OF 

SLOWLY CHANGING 
SIGNAL 

0010022 14 

Figura 14. Application of a Schmitt trigger. Example applica­
tions of a Schmitt trigger include a.) A noisy input 
signal cleaned up through a Schmitt trigger. b.) 
Fast transitions generated from a slowing changing 
input signal through a Schmitt trigger input. 

and the routing cause delay. The logic delay can be 
balanced by buffering the input before sending it to the 
three-state control of 1082. 

An inverting Schmitt trigger is similar except that the 
sense of the logic is inverted inside the LCA. 

Theory of operation 

Assume that the input voltage is near ground. The 
output voltage of 1082 is at Vol, which pulls resistor R2 
toward ground. There is then no potential difference 
across R2. The output buffer of 1083 is high­
impedance, since its three-state control pin is HIGH. 
Resistor R3 is effectively removed from the circuit. The 
input voltage is divided by the resistor network formed 
by resistors R1 and R2. As the input voltage continues 
to increase, the 1081 pad voltage will eventually reach I 
its switching threshold. 

Once the threshold is crossed, 1081 goes HIGH, driving • 
the output of 1082 into high-impedance (1082 TS=1) 
and enabling the output buffer of 1083 (1083 TS=O). 
Now at Voh, 1083 pulls the input of 1081 high through 
resistor R3. In this state, resistor R2 is effectively 
removed from the circuit, since 1082 is high-impedance. 

This structure will remain in its present state even if the 
input voltage fluctuates. If the input voltage fluctuates 
to the opposite hysteresis limit, the Schmitt trigger will 
go to the opposite state. In other words, the Schmitt 
trigger will stay HIGH until the input to 1081 drops below 
the LOW going hysteresis limit and vice versa. 

If the values of the hysteresis are not critical, the Schmitt 
trigger can be reduced to only two 108s and two 
resistors as shown in Figure 16. However, the range of 
Vh and VI are very limited. The 108 configured as an 
output pulls the input HIGH or LOW, depending on the 
transition direction. 

If a selectable Schmitt trigger is required only for a single 
transition direction (HIGH going LOW, or LOW going 
HIGH), then the circuit shown in Figure 15 can be further 
simplified to those shown in Figure 17a and 17b. Note, 
however, that a single CL8 is required to invert the 
sense of input signal to enable or disable the output 
buffer for 1082 (the 108 configured as a three-state 
output). 
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110 TYPE: Schmitt-Triggered Input with Selectable 
Hysteresis 

MACRO NAME: None 
SCHEMATIC: 

EXTERNAL :: iNTERN'AtToLCA 

u PAD 

......... ·.···············"·'•'•'•'•'•'•'•'•'·"'·'.'.:.j~ 

1 ......... •••••••••••••••••••••••• 1
::.: .••.•• wJ 

·•···•··· ···························································:·:·:·:·:·:·:·:·;·;·;·:·:·;·: 

R1 r 
-"./''-/'----<~_;:~--:~~ 

R2 
1081 

PAD 

R3 

t :·:·:·:·:·:·:·=·~:-:·:·:·"········ . 

,,, ,, 1083 .; 
::::::_ :: 

----• DIRECT INPUT 

It INVERTEDINPUT 

0010022 15 

CONFIGURATION: 
108 1 - Input 

l:PAD 

going input hysteresis. Resistors R1 and R2 set the 
HIGH-going hysteresis (Vh) according to Equation 3. 

8UF: 
108 2 - Output 

I: 
8UF:TRI 

108 3 - Output (inverted through CLB) 
I: 
BUF:TRI 

COMMENTS: Resistors pairs R1 :R2 and R1 :R3 form two 
voltage dividers which set the HIGH-going and LOW-

Vh = Vth [(R1+R2)/R2]- Vol (R1/R2) [3] 

Resistors R1 and R3 set the LOW-going hysteresis (VI) 
according to Equation 4. 

VI= Vth [(R1 +R3)/R3] - Voh (R1/R3) 

Notes: Vth = input threshold voltage 
for CMOS inputs, Vth = 2.2 V 
for TTL inputs, Vth = 1.4 V ±supply tolerance 

[4) 

Figure 15. Schmitt-Triggered Input With Selectable Hysteresis. 
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110 TYPE: Schmitt-Triggered Input with Limited 
Hysteresis 

MACRO NAME: None 
SCHEMATIC: 

CONFIGURATION: 
IOB 1 - Output 

I: 
BUF:ON 

IOB 2 - Input 
l:PAD 
BUF: 

COMMENTS: Hysteresis values are limited 

VI= [(R1+R2) I R2] Vth Voh(R1/R2) 
Vh = [(R1+R2) I R2] Vth 

0010022 16 

[5) 
[6) 

l:XIUNX 

Figure 16. Schmitt-Triggered Input With Limited Hysteresis. 

OSCILLATORS USING IOBs 

Overview 

General purpose oscillators can be built using two 
Input/Output Blocks (IOBs) and a Configurable Logic 
Block (CLB). The general theory of operation is similar 
to that described for Schmitt triggers. For the oscillator 
described below, an oscillating signal is generated by 
the charging and discharging of two capacitors. The 
circuit is shown in Figure 18. Capacitor C2 charges to a 
voltage threshold (on Set) to set a latch. Once the 
voltage across C2 exceeds the threshold, the SET line 
causes the "O" line to go high and starts discharging C2 
by driving the IOB called COL. After crossing the 
threshold, the RESET line, which has been held low, is 
allowed to rise as capacitor C1 charges. Once capacitor 
C1 charges to its threshold, the "Q" output is reset and 
forced low. Capacitor C1 is now discharged by the IOB 
named CO, and capacitor C2 begins charging again. 
This process repeats, creating a low-frequency resistor­
capacitor oscillator. 

The designer should consider the routing delay of the 
three-state control lines within IOBs marked as CO and 
COL in Figure 18. The time period of the oscillator 
depends on each capacitor being completely 
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discharged during the opposite timing phase. In 
addition, the timing depends on both capacitors 
beginning their charge near ground. A routing delay 
difference between the output (0) of an IOB and the 
three-state control (T) may prevent the capacitors from 
completely discharging. 

Any number of these low-frequency oscillators can be 
used in a design. In most designs, however, only one or 
two are required. If the oscillator output is used 
throughout the design to clock the registers within the 
CLBs, place the oscillator near one of the clock buffers 
and use the clock buffer. Figure 18 shows a low­
frequency oscillator built near the main clock buffer in 
the upper left-hand corner of the die. A similar low­
frequency oscillator may drive the auxiliary clock buffer 
located in the lower right-hand corner of the die. 

The designer should be aware that the low-frequency 
oscillator circuit will cause an error when using the timing 
calculator to examine the oscillator. The timing calculator 
in the XACT Development System detects combinatorial 
loop conditions and flags them as errors. The oscillator 
circuit depends on combinatorial loopback for operation 
and will cause an error message. Such errors messages 
can be safely ignored if they are detected only in the 
oscillator circuit. 

• 
• 
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110 TYPE: Unidirectional Schmitt-Triggered Input 
MACRO NAME: None 
SCHEMATIC: 

EXTERNAL TO LCA ill INTERNAL TO LCA 

-"'V'R'-1 ,..___..___._! 
PAD 

'.1 .. 1~ 
I "" ""ff,i,i • ~ ~.:.: ~ I "'~C"'~' 
I f 0~,., 

R2 

SCHEMATIC: 

!! 

Vh = Vth 
VI= Vth [(R1 +R2)/R2]- Voh(R1/R2) 

[7] 
[8] 

Figure 17a. Unidirectional Schmitt-Triggered Input HIGH Going LOW 

EXTERNAL TO LCA \! INTERNAL TO LCA 

R1 

R2 

I 
•••• 

PAD 

Vh = Vth [(R1 +R2)/R2] - Vol(R1/R2) 
VI= Vth 

[9] 
[10] 

Figure 17b. Unidirectional Schmitt-Triggered Input LOW Going HIGH 
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110 TYPE: Low-Frequency Resistor-Capacitor Oscillator 
MACRO NAME: GOSC 
SCHEMATIC: 

l:XIUNX 

--EXTERNAL TO LCA INTERNAL TO LCA 

CONFIGURATION: 
1081 

l:ON 
8UF:TRI 

1082 
l:ON 
8UF:TRI 

0010022 18 

R1 
Vee ------...rv~--~· 

Cl 

R2 

~ 
CLOCK 

BUFFER 

rn 

111082 
::: ...... 

CLB 

SAMPLE 
ARRANGEMENT 

w ••• J ... Q 

··~·· 
RESET 

Figure 18. Low-Frequency Resistor-Capacitor Oscillator 

Q 

C2 

C1 RESET 

0010022 19 

Figure 19. Low-Frequency Resistor-Capacitor 
Oscillator Timing Diagram 
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T (time period)= T1+T2 = N ((R1 X C1)+(R2 X C2)) [11] 
where N = approximately 0.35 for TTL 

threshold 
=approximately 0.75 for CMOS 

threshold 

Assumptions: Each capacitor is discharged during 
opposite timing phase. Capacitors begin charging from 
GROUND. Effect of three-state routing delay is 
assumed minimal. 

I 

• 



Ins and Outs of Logic Cell Array 1/0 Blocks 

ON-CHIP CRYSTAL OSCILLATOR 

Basic Description 

Two special user-defined 1/0 Blocks can be configured 
to interface directly to the on-chip crystal oscillator 
located in the lower right-hand corner of the die. The 
crystal oscillator is associated with the auxiliary clock 
buffer located near the oscillator. When the 
interconnect is selected to drive the auxiliary clock 
buffer two special pins interface directly to the internal 
high-speed inverting amplifier to form the oscillator. 
Externally, these pins should be attached to crystal 
oscillator components as shown in Figure 20. The best 
way to configure the crystal oscillator is through the 
MACRO named GXTL. 

Even before device configuration is complete, the on­
chip oscillator begins operation so that the circuitry can 
stabilize. The actual internal connection of the oscillator 
to other circuitry on the chip is delayed until completion 
of device configuration. 

Theory of Operation 

The feedback resistor (R1) from output to input biases 
the amplifier at threshold and should be as large a value 

110 TYPE: On-Chip Crystal Oscillator Circuit 
MACRO NAME: GXTL 
SCHEMATIC: 

ALTERNATE 
CLOCK BUFFER 

SUGGESTEDCOMPONENTVALUES 
R1 1-4 MO 
R2 0-1 KO 

as practical up to 4 Mn. The inversion and delay of the 
amplifier, together with the R-C networks and crystal, 
produce a 360 degree phase shift, forming a Pierce 
oscillator. The series resistor (R2) may be included to 
add to the amplifier output impedance when needed for 
phase shift control, crystal resistance matching, and to 
limit the amplifier input swing to control clipping at large 
amplitudes. 

Excess feedback voltage may be adjusted by the ratio of 
capacitors C2/C1. The amplifier is designed for use in 
the range from 1 MHz up to one-half the specified CLB 
toggle frequency. Using the oscillator at frequencies 
below 1 MHz requires individual characterization with 
respect to a series resistance. Operation at frequencies 
above 20 MHz is more involved since it generally 
requires that the crystal operate in a third overtone 
mode in which the fundamental frequency must be 
suppressed by the R-C networks. 

REGISTERS IN IOBs 

Overview 

The previous examples describe the use of IOBs for 
conventional applications. All involved using either the 

O~HIP 

D 
D 

EXTERNAL 

(may be required for low frequency, phase 
shift and/or compensation level for crystal 0) iC1 

C1,C2 5-20pf 
Y1 1-10MHzATcut 

XTAL1 XTAL2 

48DIP 33 30 

68 PLCC 46 43 

68PGA J10 L10 

84 PLCC 56 53 

84PGA K11 L 11 
0010003 10 

Figure 20. On-Chip Oscillator Circuit 
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input, or the output, or both. If an 108 is not required for 
input or output, the storage element within each 108 
can be used to create registers and various types of 
counters. All of the following designs involve using the 
output buffer (8UF:ON) fed back into the input register 
(l:Q). This configuration, which is used with slight 
modifications in each of the following examples, is 
shown in Figure 21. The pads of the 108s involved are 
not typically connected to anything externally, although 
they may be if desired. 

108-based Register Delays 

The delays incurred through an 108-based register 
depend on the sum of two parameters-the delay 
through the output buffer and the delay back through 
the input buffer to the register. While these values are 
defined in the data sheet for an output load of 50 pF, 
their values change only slightly for no output 
capacitance. The delay into an 108-based register is: 

T(I08-reg) 
where: 

Top 
Tpl 

Top+ Tpl [12) 

Output to Pad output 
Pad input set up to 1/0 clock 
(min) 

110 TYPE: Pad with Input Storage (108-based register) 
MACRO NAME: PREG 
SCHEMATIC: 

PAD 

0010022 21 

CONFIGURATION: 
l:Q 
8UF:ON 

OUTPUT 

D a INPUT 

VO CLOCK 

Figure 21. Pad With Input Storage (108-8ased Register) 

l:XIUNX 

Wide Storage Registers 

Wide storage registers can be built from the basic 
structure described in Figure 21. For example, Figure 
22 shows the construction of a n-bit storage register 
built from 108s. Wide storage registers are ideal for 
108s, since the 1/0 clock feeding an 108 is common to all 
108s along each edge of the die. 

Read/Write Registers 

Another variation of the basic 108-based register is a 
simple read/write register. This structure allows data to 
be written into registers within the LCA from an external 
device and also read back. Figure 23 shows the 
structure of a read/write register. In this example, the 

110 TYPE: N-bit Storage Register (108-based register) 
MACRO NAME: None 
SCHEMATIC: 

2-33 

PAD 

PAD 

0010022 22 

CONFIGURATION: 
Alll08s 

l:Q 
8UF:ON 

I------;,___... BITO IN 

D Q 1-<;,-- REG 0 OUT 

I-----~;-.+- BIT 1 IN 

D Q ,.._.,,-+-_ REG 1 OUT 

~------ CLOCK 

EXPANDABLE TON BITS 

COMMENTS: The 1/0 clock into each 108 is common to all 
108s along each edge of the die. For best resource 
utilization, group the storage elements along one edge 
of the die. 

Figure 22. N-81t Storage Register (108-8ased Register) 
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Ins and Outs of Logic Cell Array 1/0 Blocks 

input (I) and output (0) stubs of the 108 are connected 
together. The three-state control line (T) controls the 
direction of data flow (T = LOW for a read operation by 
the external device, T =HIGH for a write operation to the 
LCA). Typically, the read/write control line (three-state 
control) also originates external to the LCA, and would 
come in through an additional 1/0 block. 

The designer should be aware that the input register 
data can be read from the LCA from the read/write 

110 TYPE: N-bit Read/Write Storage Register 
MACRO NAME: None 
SCHEMATIC: 

PAD 

PAD 

CONFIGURATION: 
All 108s 

l:Q 
8UF:TRI 

COMMENTS: 

~---------DIRECTION 

CONTROL 

D Q ,_.,,~----- REGO OUT 

~---------CLOCK 

EXPANDABLE TON BITS 0010022 23 

The 1/0 clock into each 108 is common to all 108s along 
each edge of the die. For best resource utilization, 
group the storage elements along one edge of the die. 

The three-state control line controls the direction of data 
flow (T =LOW for read, T =HIGH for write). This control 
line will typically originate off chip and come in through 
an additional 108. 

Figure 23. N-Bit Read/Write Storage Register 

register but data cannot be written to the LCA. Writing 
the register from inside the LCA would require that two 
network sources be active, which is not allowed. 

Shift Registers 

Shift registers are also easily constructed with 108s by 
feeding the input (I) of one 108 to the output (0) of the 
next 108. The figures below describe two shift 
registers-one that shifts to the left as shown in Figure 
24, and one that shifts to the right as shown in Figure 
25. The shift direction of the register depends on how 
the inputs and outputs of the 108s are connected. 

Since the 1/0 clock line of an 108 is common to all 108s 
along each edge of the die, the register is implemented 
with 108s along one edge of the die. 

110 TYPE: Shift Left Register (108-based register) 
MACRO NAME: None 
SCHEMATIC: 

2-34 

PAD 

PAD 

CONFIGURATION: 
Alll08s 

l:Q 
8UF:ON 

1-------'o'--- SHIFT IN 

D Q 

D Q 1--:-- SHIFT OUT 

~-----._...... CLOCK 

0010022 24 

COMMENTS: Notice that the routing of the input (I) of a 
given 108 goes to the output (0) of the 108 on the left 
(shift left). 

Figure 24. Shift Left Register (108-Based Register) 



Johnson Counters 

An n-bit Johnson counter will count to 2n states as 
opposed to standard binary counters which count to 2n 
possible states. Johnson counters have a variety of 
possible uses in a digital design, including low modulo 
counters and glitch-free decoders. 

In IOB implementations, Johnson counters can be 
thought of as special shift registers. Only one bit 
changes during a state transition, as shown in Table 1 
for a three-bit Johnson counter. 

000 
100 
110 
111 
011 
001 
000 

Table 1. Transitions of a Three-Bit Johnson Counter 

110 TYPE: Shift Right Register (!OB-based register) 
MACRO NAME: None 
SCHEMATIC: 

PAD 

I-
J: 
~ 
a: 
I-u.. 
:i: en 

PAD 

0010022 25 

CONFIGURATION: 
All IOBs 

1:0 
BUF:ON 

D a SHIFT OUT 

SHIFT IN 

D a 

.___ ____ __.._ CLOCK 

COMMENTS: Notice that the routing of the input (I) of a 
given IOB goes to the output (0) of the IOB on the right 
(shift right). 

Figure 25. Shift Right Register (108-Based Register) 

A Johnson counter built from unused IOBs requires at 
least one Configurable Logic Block (CLB) to perform an 
inversion. The Johnson counter is automatically reset to 
an all zeroes state upon configuration or on a RESET 
pulse. 

The application note Counter Examples contains more 
information on using Johnson counters. 

Glitchless Johnson Decoder 

A glitch-free decoder can be built using IOBs and CLBs. 
The decoder will be glitch-free since only one bit 
changes during a state transition. An n-bit Johnson 
counter decoder can decode any one of the 2n 
possible states or any number of contiguous states by 
ANDing just two of the appropriate counter bits. 
Counters of various modulo and duty-cycle can be • 
extracted as well. For example, Figure 27 shows the 
schematic implementation of a Johnson counter 
decoder with various two-input decode states. • 

Linear Feedback Shift Registers 
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Linear . .Feedback Shift Registers (LFSRs) are yet 
another modification of a simple shift register. An LFSR 
consists of a shift register with feedback of appropriate 
bits back to the first bit. An LFSR requires some logic 
function in the feedback path, usually a XOR (exclusive­
OR) function. 

LFSRs have numerous applications. One example is 
described in the application note A UART Design 
Example. In the UART example, LFSRs are used to 
implement the encryption and decryption functions. 
The application note Counter Examples contains more 
information on using Linear Feedback Shift Registers in 
general applications. This application note addresses 
using LFSRs in IOBs. 

Figure 28 shows the schematic for a three-bit LFSR 
which implements a modulo 5 (divide by five) counter. 
An n-bit LFSR counter can produce a pseudorandom 
sequence of up to 2n-1 unique states. By adding logic 
to the feedback path, the LFSR counter can be forced 
to skip any number of states (from one to 2n-1 ). By 
forcing the counter to skip m states, a LFSR counter can 
implement any modulo as described in Equation 13. 

MODULO= (2n-1)- m 

where n = number of shift-register bits 
m = number of "skipped" states 

[13] 

Figure 29 shows the counting sequence for a three-bit 
LFSR counter with exclusive-NOR (XNOR). All of the 
possible "skip" paths are indicated. The "stuck" state is 
also shown. 



Ins and Outs of Logic Cell Array 1/0 Blocks 

110 TYPE: N-bit Johnson Counter 
MACRO NAME: None 
SCHEMATIC: 

PAD 
r---<1 

1----< 

Y> D Q 

c 
r---<1 

PAD f--< 

Y> D Q 
CLB 

I1 
r---<1 

PAD 1----1 

Y> D Q 

~ 

CLOCK 

EXPANDABLE TON BITS 

CONFIGURATION: 
All IOBs 

l:Q 
BUF:ON 

0010022 26 

Figure 26. N-Bit Johnson Counter (108-Based) 

In the counting sequence, note that there are two 
counter states where only the first bits differ (for 
example, locate the states 101 and 001). By forcing the 
feedback logic to invert the sense of the feedback into 
the first bit, the counter can be forced to "skip" all of the 
states between the two indicated values. This can be 
accomplished by decoding (ANDing) the state just 
previous to the state to be skipped. Again using the 
modulo 5 counter as an example, locate the initial value 
that will allow the counter to skip two states (i.e. 101 ). By 
decoding the state 011 (the state just prior to the initial 
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skip state, 101), the sense of the feedback into the first 
is inverted. The counter skips from state 101 to state 
001 implementing a modulo 5 counter. Using this 
method and the proper feedback into the register, a 
counter of any modulo from one to 2n_1 can be built. 

Upon configuration or upon an externally driven RESET 
signal, all of the storage elements used in the LFSR 
counter will be reset to zero. 

The designer should be careful to avoid the "stuck" 



state. The "stuck" state is the state missing from the 
2"-1 counting sequence (if the "stuck" state were 
included, the LFSR counter could have 2n possible 
states). This state occurs when the feedback path 
forces the counter into an ever-repeating single state. 
As a simple example, assume that a LFSR counter were 
built with a two-input exclusive-OR feedback path as 
shown in Figure 30. Upon configuration or external 
RESET, the counter would begin operation in the all 
zeroes state (000) and would be "stuck" in that state 
due to the type of feedback used. 

PAD 

D 

PAD 

D 

PAD 

An interesting thing occurs when all but the last bit of 
the "stuck" state are decoded (ANDed together) and 
included in the feedback path. Instead of counting over 
a possible range of 2"-1 states, the extra decoding 
causes the LFSR counter to count to all 2n states as 
shown in Figure 31. 

Longer LFSR counters with higher ,possible modules 
and more complex feedback mechanisms can be built 
but their discussion is well beyond the scope of this 
application note. However, Table 2 presents some of 

0 0 0 DECODEO 
1 0 0 DECODE1 
1 1 0 DECODE2 
1 1 1 DECODE3 
0 1 1 DECODE4 
0 0 1 DECODES 

DECODER 
OUTPUTS 

'----------CLOCK 

0010022 27 

EXPANDABLE TON BITS 

Figure 27. Johnson Counter Decoder. Any state of a Johnson counter can be decoded, 
glitch-free, with only a two-input logic function. 
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Ins and Outs of Logic Cell Array 1/0 Blocks 

the possible feedback combinations for LFSR counters 
of three bits to ten bits. 

I 
(2n -1) 7 15 31 63 127 255 511 1023 
Modulo 

Feed- 1,3 1,4 2,5 1,6 1,7 1,2,7,8 4,9 3,10 
back 2,3 3,4 3,5 5,6 3,7 5,9 7,10 
Options 4,7 
into Bit 1 6,7 

Table 2. 1/0 Block 

Current Drive 

4mA 6mA 8mA 

Voh 3.86 v 3.54 v 3.22 v 
Vol 0.32 v 0.48 v 0.64 v 

Table 3. Output Current and Output Voltage Levels 
for an IOB 

FEEDBACK r· .. wA. 

l~Il 
CLOCK 

a>---+------+~ 

Qi-------~ 

00100252 28 

Figure 28. Modulo 5 LFSR Counter 

Enhanced Output Source/Sink Current 

Logic Cell Arrays are specified to have 4 mA worse case 
source and sink capabilities at Vol= 0.32 Volts and Voh 
= 3.68 Volts. Increased drive current can be obtained at 
the cost of decreased voltage margins. For example, 
Table 3 illustrates the effect on Vol and Voh by 
increasing the drive current through a single 108. 

An alternative method of increasing the drive current is 
to parallel the output drivers of two IOBs. Paralleling two 
outputs will enable the IOBs to source and sink double 
the current (worst-case) at no reduction in voltage 
margins. This method is schematically diagrammed in 
Figure 32. 

One caution to the designer, however. The designer 
should minimize the difference in routing delay between 
the two IOBs connected in parallel. Excessive delays 
may cause output contentions. 

SUMMARY 

The input and output resources of a Logic Cell Array 
(LCA) can be used for a variety of logic structures 
because of the flexibility of the LCA architecture. This 
application note described how to implement various 1/0 
structures including bidirectional lines, open-drain 
outputs, and Schmitt-triggered inputs. 

Other structures such as oscillators, multiplexers, shift 

'STUCK' STATE 

0010022 29 

Figure 29. Three-bit LFSR Counting Sequence 
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CLOCK FEEDBACK 

PAD 

a 

PAD 

ai---~ 

PAD 

QI------' 

0010022 30 

Figure 30. Simple LFSR With "Stuck" State. A simple LFSR 
counter will be "stuck" in state 000 after config­
uration since all registers were originally reset. 

EXTERN~ Ii 

I -{

ii 

~ 

:I 
~ 

0010022 32 

-INTERNAL TO LCA 

PAD 

0010022 31 

l:XILINX 

~ 
~ 
~ 

I 
~ 

~•XO:•~:-:·:~':'...-.'X·~;,,;•~:·:·:•:·:«•:-.':• •;•;..';J 

D Q !---+--------' 

~-------- CLOCK 

Figure 31. By ANDing all but the last bit of the "stuck" state 
and using this value in the. feedback path, an LFSR can be 
forced to count to 2n possible states Instead of the 2"-1 

states usually associated with an LFSR counter. 

registers, Johnson counters, decoders, and linear 
feedback shift registers were also described. These 
resources can only be effectively implemented in 
flexible, array-type architectures such as found in gate 
arrays and the Xilinx Logic Cell Array. 

TECHNICAL SOURCES 

Figure 32. Parallel Outputs Have Increased Drive Capability 

1Schmitt Trigger Using PLS153 and PLS159, Signetics 
Programmable Logic Data Manual, 1986. pp. 9-11Oto9-
119. 
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INTRODUCTION 

As with any high density ASIC device, the Logic Cell™ 
Array offers alternatives in placement and routing which 
can affect the utilization and performance of the final 
design. In gate arrays and other factory programmed 
solutions, these alternatives must be investigated 
through simulation. The Logic Cell Array allows them to 
be seen and modified at design time through the 
capabilities of the XACT™ Development System. 
Additionally, system performance and function can be 
easily verified with in-circuit emulation. 

Within XACT, several powerful capabilities are included 
to allow easy "tuning" of the design for performance or 
resource utilization control. The purpose of this 
application note is to investigate the methods and XACT­
related operations which can be employed by the 
designer. In addition, this should serve as a primer to 
help new users to learn skills for effectively using Logic 
Cell Arrays. The topics addressed include: 

• Placement-Physical assignment of logic elements. 

• Routing-Utilization of the available resources. 

• Delay Calculator-Delay calculation and interpretation. 
• Macros- Macro usage and placement and 

performance considerations. 
• Multi-block techniques-Placement and routing 

consideration when designing with larger collections 
of blocks. 

HOW TO USE THIS APPLICATION NOTE 

Users who are not familiar with placement and routing in 
the Logic Cell Array are advised to read all of this 
application note. Users who have some level of 
knowledge about the Logic Cell Array, and in particular 
have completed some design work, may wish to study 
only the sections of interest. 

PLACEMENT 

As with any SSl/MSI circuit board or gate array device, 
the placement of logic within the Logic Cell Array can be 
modified to affect resource utilization and performance. 

Placement and Routing 
Optimization 

Placements and associated routing are interrelated, in 
that changes in placement can change the routability 
and consequently performance. The choice of routing 
to be used will affect the placement choices available. 
The configurability of the Logic Cell Array provides a 
great deal of design flexibility. To utilize this flexibility 
effectively, users need to understand the trade-offs and 
capabilities of these resources. Several of these 
resources are discussed here. 

Long Lines 

Long lines are continuous metal segments which span 
the width or height of the device to provide minimum­
delay long distance signal paths. Although long lines 
will be used by the automatic router for a general signal 
when other resources are not available, it is best to 
direct the use of long lines for specific functions. This in­
sures that they are most efficiently used, based on con­
sideration of their capabilities and interconnection poten­
tial. Refer to Figure 1 for the locations of the long lines. 
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Signals which can most effectively use long lines are 
generally classified as data distribution or low-skew 
control. Whether originating at an 1/0 block or a 
Configurable Logic Block (CLB), data signals typically 
have several destinations, each of which uses the data 
in a different fashion. Following the natural data flow of 
the device, these signals can be best routed on long 
lines with one bit per row or column. One consideration 
In data routing is the direction of the data flow. In the 
2064/2018 series of Logic Cell Arrays, internal signals 
must be unidirectional. For systems which have 
bidirectional data paths, a pair of long lines in each 
column can be used to carry input data and output data 
respectively. This requires that the data input/output 
pins be located at the top or bottom of the device. 
Figure 2 shows an eight-bit bidirectional data bus with 
vertical routing on pairs of long lines. 

Control signals such as clocks, reset/set controls, count 
or shift direction controls, etc. may have critical timing 
requirements between their source and their multiple 
destinations. Skew must be controlled to insure that 
each receiving block performs the desired function at 
the same time or on the same clock edge. Destination 
blocks should be arranged in a single column or row if 

• 
-
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VERTICAL LONG LINES 
(TYPICAL PER COLUMN) 

u 
u 
u 
u 
CJ 

u 

u 
u 
[) 

u 
u 
u 

u u u 
u u 0 
u u u 
u u u 
u u 0 
u u u 

Figure 1. XC2064 LCA Overview 
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1/0 CLOCK 
(1 PER EDGE) 

I 
u 
u 
u 
u 
0 

u 

DIRECT 
CONNECT 
(CLB TO 1/0) 

CLOCK 
OSCILLATOR 

ALTERNATE 
CLOCK BUFFER 



possible and the control function routed onto the 
appropriate long line. Figure 3 shows two alternative 
implementations of a reset function generated in a logic 
block and routed to four destination blocks. The skew 
reduction associated with the use of the long line can be 
seen from the accompanying table. 

Clock Buffers 

The Logic Cell Array has on-chip, special purpose 
buffers to provide high-fanout, low-skew signal distri­
bution. These buffers are normally used for clock 
signals, but can be used for any general purpose signal 
which requires high-fanout or low-skew routing to 

multiple blocks. Clock buffers are associated with speci­
fic long line resources for routing on a column basis. 
The global buffer (upper left corner) directly drives a 
long line in each column. The alternate buffer (lower 
right corner) drives a horizontal line which can be 
selectively connected to a long line in each column. 

In systems which have a single common clock for all the 
state elements, that clock can be best distributed using 
the global buffer. More difficult cases involve systems 
with multiple clocks and other critical control signals. If a 
system has two separate clocks, one can use the global 
buffer and the other may use the alternate buffer, 
particularly if one clock is derived from the other. When 
the crystal oscillator is being used, its output drives the 

Figure 2. Bidirectional Data Bus Using Long Lines 
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Delay: bidibus8.lca, XACT 1.21 

From: BLK BC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to HD.B 24ns 24ns) 

To: BLK HD (HD.B) Ons '::::\ From: BLK BC (BC.X) Ons 
Thru: NET RESET (BC.X to ED.C ) 14ns 14ns) 

To: BLK ED (ED.C) Ons 14ns) 

From: BLK BC (BC.X) Ons ,g~::;"°'SKEW Thru: NET RESET (BC.X to DD.C ) 12ns 
To: BLK DD (DD.C) Ons 12ns) 

From: BLK BC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to AD.C ) 3ns 3ns) 

To: BLK AD (AD.C) Ons 3ns) 

DELAYS FOR GENERAL INTERCONNECT ROUTING 

Figure 3a. Signal Routed Via General Interconnect 

2-46 



i:XIUNX 

Delay: bidibusB.lca, XACT 1. 21 

From: BLK BC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to HD.B ) 5ns 5ns) 

To: BLK HD (HD. ) Ons '""'\ From: BLK BC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to ED.C ) 5ns 5ns) 

To: BLK ED (ED.C) Ons 5ns) 

From: BLK BC (BC.X) Ons :~::!'"SKEW Thru: NET RESET (BC.X to DD.C ) 5ns 
To: BLK DD (DD.C) Ons 5ns) 

From: BLK BC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to AD.C ) 5ns 5ns) 

To: BLK AD (AD.C) Ons 5ns) • 
DELA VS FOR ROUTING VIA LONG LINE -

Figure 3b. Signal Routing Via Long Line 
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Placement and Routing Optimization 

alternate buffer directly, and may therefore be the 
primary clock for the system. In any case, the 
predominantly used clock should be driven with the 
global buffer. 

For systems which require more than two clocks, the 
primary clock should be driven with the global buffer. 
Other clocks are best routed onto vertical long lines, and 
their respective CLBs arranged in columns adjacent to 
the long line carrying the appropriate clock signal. 
These column-oriented clocks can be driven either from 
an adjacent (to the left) CLB or an 1/0 block on the edge 
at either end of the column, using direct connect 
capability. When selecting the long line to be used, 
note that one of the nondedicated vertical long lines can 
be connected to the CLB "K" inputs while the other 
cannot. Since most clock signals are best routed into 

the "K" input, the former long line should be chosen. 

Another use of the buffers is for routing a control signal 
to many CLBs. By placing the source of the signal near 
the alternate buffer, a low-delay path can be provided 
from the source to the buffer, and then out to all of the 
receiving CLBs or 110 blocks. Figure 4 shows a shift 
register which has been placed and routed using both 
buffers. The global buffer is used for the overall shift 
register clock, while the alternate buffer is used to 
provide a low-skew control for shift/hold control. If the 
hold control logic timing is not well controlled, skews 
between the control signal, as seen by the blocks, could 
cause a partial shift. Some blocks could get the signal 
but others may not get it in time to hold relative to the 
next clock edge. This becomes less of a factor in 
choosing routing for control signals as the timing 



constraints are relaxed. 

Direct Connects 

Each CLB and 108 has capabilities to connect directly to 
other adjacent blocks as shown in Figure 5. A direct 
connect provides a signal path which has virtually zero 
delay and does not use any of the general interconnect 
or long line resources. For maximum performance and 
minimum routing resource impact, use of direct 
connects is a primary objective. Because direct 
connects exist primarily in vertical or left to right 
directions, blocks which represent stages in a process 
should be arranged sequentially: either vertically or from 
left to right. Left edge 1/0 blocks naturally become data 
inputs while right edge 1/0 blocks become data outputs. 
Top or bottom edge 1/0 blocks can be either direct 
inputs or outputs, with alternate blocks having direct-in 
or direct-out paths. 

As an example, consider the circuit of Figure 6. The 

data byte is to be loaded into the shift register in a 
parallel fashion and then shifted out with each clock 
cycle. Figure 7 shows two alternative implementations 
of this circuit. In implementation A, the eight CLBs used 
for the stages of the shift register are arranged in a 
rectangular area in the upper left corner of the device, 
with general interconnect providing many of the signal 
paths. Implementation B uses direct connects 
exclusively, providing zero-delay paths from block to 
block and allowing higher performance. In this design, 
the worst case delays (shown in Figure 7c) show that the 
maximum load and shift clock rate is 17.5, 31.3, and 
43.5 for the 20, 33 and 50 MHz devices respectively. 
Note also that the general interconnect in this 
implementation is available for other uses. The LOAD 
signal has been routed on a long line driven from a 
directly-connected 110 block. 

In non-synchronous intensive designs, such as 
commonly found in glue logic replacement, direct 
connects normally cannot be exploited to the degree 
shown in this example. However, whenever possible, a 

Figure 5. Direct Connect Resources 

2-49 

• -



Placement and Routing Optimization 

SERIALIN 

8 
DATA BUS-~ .. 

SHIFT/LOAD 

SHIFT CLOCK 

- 8-BIT PARALLEL 
LOAD, SERIAL IN 
SERIAL OUT, SHIFT 
REGISTER 
(SIMILAR TO 74HC165) 

SERIAL OUT 

SHIFT!lc5Ai5 c~~~------
8 BIT REGISTER 

IFN-o THEN aN_, ISSERIALIN. 
IF N ~ 7 THEN Q N IS SERIAL OUT. 

Figure 6. 8-Bit Parallel Load Shift Register 

ONE BIT OF SHIFT REGISTER 

ROUTING CONGESTION CAUSED BY PLACEMENT CHOICE 

Figure 7a. 8-Bit Parallel Load Shift Register 
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signal should use direct connect from one block to 
another in the Logic Cell Array. Direct connect 
considerations should be a primary factor in block 
placement. For each connection done with direct 
connect, a general interconnect resource is released for 
use in implementing some other function. Experience 
indicates that extensive use of direct connect can boost 
the logic utilization of the Logic Cell Array by as much as 
30%. 

Data Flow 

Data flow describes the process of evaluating the 
sequential nature of logic to be implemented in making 
placement and routing decisions. An examination of the 
data flow should provide some insight into which signals 
are most effectively placed on long lines and direct 
connects, as well as guidelines in the placement of 
required logic blocks. In general, data processing in the 

DATA 
INPUT 

Logic Cell Array flows most naturally either from left to 
right or vertically. Flow up and flow down are virtually 
identical. 

To illustrate data flow analysis, consider the block 
diagram of Figure 8. This example is a dual-ported 
memory interface used as a high speed serializer, as 
might be found in a video pixel processing or serial 
communications application. Both the serial data output 
device and the microprocessor must have access to the 
memory. In looking at the data flow, there must be an 
eight bit path to and from the memory to the 
microprocessor, as well as an eight bit path from the 
memory to the serializer. The serializer requires an eight-
bit parallel-to-serial data flow. The addresses to the 
memory are generated internally for the serialization 
process, and are supplied externally by the 
microprocessor. They are always outputs to the external • 
memory. In summary, the data flow paths consist of 

-

ALL DIRECT CONNECT USED 

Figure 7a. 8-Bit Parallel Load Shift Register 
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Delays for 8 bit shift register with parallel load 

For -1 (20 MHZ) speed device 

From: 
Thru: 

To: 

From: 
Thru: 

To: 

From: 
Thru: 

To: 

8-BITDATABUS 
TO PROCESSOR 

BLK GA (CLOCK to GA.X ) 35ns 
NET S6 (GA.X to HA.A ) Ons 
BLK HA (HA.A to SETUP) 22ns 

: 
For -2 (33 MHz) speed device 

BLK GA (CLOCK to GA.X ) 20ns 
NET S6 (GA.X to HA.A ) Ons 
BLK HA (HA.A to SETUP) 12ns 

For -50 (50 MHz) speed device 

BLK GA (CLOCK to GA.X ) 15ns 
NET S6 (GA.X to HA.A ) Ons 
BLK HA (HA.A to SETUP) Sns 

*TOTAL CLOCK TO CLOCK DELAY-WORST CASE 

Figure 7c. Delay Report For Direct Connect Placement 

8-BIT OATA BUS 
TO RAM 

DATA PATH 
SELECT 

8-BIT 
SHIFT REGISTER 

MANCHESTER 

35ns) 
35ns) 
57ns)* 

20ns) 
20ns) 
32ns) • 

15ns) 
15ns) 
23ns)* 

PROCESSOR 
CONTROL BUS ADDRESS/DATA 12-BITADDRESS 

CONTROL ARBITERAND t---- GENERATOR 
DECODE 1----~ CONTROL LOGIC '---...----' 

12-BIT ADDRESS BUS 
TO RAM 

Figure 8. Seriallzer Block Diagram 
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• 8 bits from microprocessor to memory 
• 8 bits from memory to microprocessor 
• 8 bits from memory to serializer 
• 12 bits from address generator to memory 
• 12 bits from microprocessor address to memory 

In examining these, there is a requirement for a 
bidirectional data path between the memory and the 
microprocessor. This same path needs to supply data to 
the serializer. The serializer may be viewed as a process 
"perpendicular" to the data flow because it takes parallel 
data and serializes it. The memory address path is wider, 
but is unidirectional, with a common "connection" only at 
the output point. Figure 9 shows a flow analysis of this 
design example. 

Based on the flow analysis of Figure 9, the eight-bit data 
path should be run vertically to take advantage of direct 
connect in both up and down directions. The serializer, 
which could use direct connect in either left to right or 
vertical orientation, can be placed perpendicular to the 
vertical data path orientation, and can use the direct left­
to-right capabilities. Since it is unidirectional, the 
address path will be routed with direct connect where 
possible between CLBs near the edge of the device 
and adjacent 1/0 blocks driving the address lines. These 
general guidelines can be used for selection of routing 
alternatives, as well as placement of the blocks within 
the device. 

LOGIC BLOCK PLACEMENT 

One of the most critical elements in achieving an 
efficient design with the Logic Cell Array is the proper 
placement of the logic blocks and 1/0 blocks. Logic 

PR~~~~~~~-----------.~~TtAM 
PROCESSOR DATA 

DATA OUT FROM RAM 

CONTROL FROM __ _ 

PROCESSOR 

ADDRESS FROM 
PROCESSOR --- ADDRESS 

GE~~~fg~ ----1,__s_E_L_Ec_T_J 
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SERIAL 
DATA OUT 

ADDRESS 
TO RAM 

Figura 9. Data Flow Analysis of Sarlallzar 

block placement is more critical than 1/0 block placement 
because it offers more degrees of freedom and the final 
CLB placement can dictate most IOB placement. Both 
performance and routability of the design can be 
improved by proper placement. Good placement will 
relieve the designer from solving routing related 
problems, and will generally result in good initial 
performance. Fine tuning of a design for ultimate 
performance may affect final placement, while a good 
initial placement will serve as a sound basis for achieving 
design completion with a minimum number of placement 
and routing iterations. Maximizing the use of the direct 
connections between blocks is an important goal. 

Guidelines for placement of logic blocks can be 
summarized as: 

1. First consider the various functional elements in the 
design and the shapes that each may take, and their 
relative interconnection. Try the placement of these 
functional blocks on a printout of a blank LCA to see 
how they might fit together. The layout in Figure 10 
was obtained using this basic analysis. 

2. Inputs and outputs, both internal and external, for 
each block of logic should be examined. Blocks with 
a high number of common interconnections should 
be placed near each other. 

3. When considering the relative placements of 
individual logic blocks and 1/0 blocks, a key 
consideration is to utilize the direct connect 
resources wherever possible. 

4. Arrange related groups of logic blocks in rectangular 
shapes if possible. 
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5. Place blocks with the greatest number of 
interconnects to other blocks, both logic and 1/0, at 
the perimeter of rectangular shapes. 

6. Use "long" and '1hin" shapes only where data is 
going to flow through the shape to some other logic 
perpendicular to its long axis. 

7. Blocks of control logic or miscellaneous functions 
which have minimal external 1/0 are often best placed 
near the center of the device. 

8. Where possible, minimize the number of different 
clocks in the design, particularly those generated 
internally. A completely synchronous design with a 
single clock, using the global clock buffer is ideal. 

Many of these recommendations are similar to those 
applied to layout of printed circuit boards using SSl/MSI 
devices. The examples in the following section should 
help illustrate how effective placements can be made. 

• 
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1/0 BLOCK PLACEMENT 

110 block placement is normally dictated by the final 
placement of the logic blocks which must receive or 
originate the signals connected to the 1/0 blocks. 
However, consideration of placement constraints must 
be examined, as they can have a significant impact on 
overall placement and routing. General guidelines for 
110 block placement fall into several categories: 

1. Locate 1/0 adjacent to the logic blocks which use the 
most associated signals. 

2. If 1/0 blocks are being used as busses, special 
considerations should be made: 

a. Data busses which are to be latched should be 

located on a single device edge to allow use 
of the flip-flop in the 1/0 block, and share the 
single 1/0 clock on the edge of the device. 

b. Address busses may be limited to the top of the 
device if the pins are to be used during 
configuration as the external EPROM I ROM 
address lines. 

3. Unused 1/0 blocks can be used as registers for data 
or shift registers. They must have the 1/0 clock on 
that edge of the device available. 

4. Care must be exercised in selecting 1/0 block usage 
where pins have special functions during 
configuration. Generally, pins which are inputs 
during configuration should be used as user inputs, 

INTERLEAVED PROCESSOR/MEMORY DATA SUSSES 

MO PO M1 P1 M2 P2 M3 P3 M4 P4 MS PS M6 P6 M7 P7 

00 00 00 00000 00 00 00 
8 BIT PARALLEL LOAD SHIFT REGISTER 

MANCHESTER 
ENCODER 

1a a a a a a a al 
ffi q WRITE SECONDARY DATA REGISTER 

~ ~ a B a ei fj [/STROBE 

RAM TO PROCESSOR DATA HOLD REGISTER CHIP 

rn 5 a a a a El a lfil/SELECT2 

fil ADDRESS/DATA /ID PROCESSOR CONTROL 

ill e5 El El El ARgER el a El % BUS INTERFACE LOGIC 

ffi AND CONTROL ffi} CHIP 

121 El el a a LOaC El e El 12J/SELECT1 w m ~~ 
! e ri B n ri ei n n ~/SELECT 0 

W jfil 12 BIT BINARY ! a El el El a El ~ADDRESS COUNTER 

: ~XTL1 
~ a a ~ a a a ~~ 
IMl ' -~===============================~--, 151 12 x 2:1 
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\INTERLEAVED PROCESSOR/RAM ADDRESSES \ 
XTL2 

Figure 10. Serlalizer Placement Plan 
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while pins which are outputs during configuration 
should be used only as user outputs during 
operation. This generally eliminates contention 
between configuration use and operation use. 

5. If spare 1/0 blocks are available, multiple 1/0 
connections for a single external signal may greatly 
improve the routability for that signal. This is 
particularly true of control inputs which have high 
internal fanout. Care must be exercised to avoid race 
conditions or metastability problems when separate 
inputs are used. 

EXAMPLES 

The following examples illustrate many of the placement 
guidelines previously discussed. The sample design 
used here is the data serializer used for the data flow 
analysis. Individual elements of the design are used for 
each topic. Figure 8 shows the overall block diagram, 
and Figure 10, the LCA layout of the serializer. 

l:XILINX 

1. One method of implementing individual functional 
blocks is to use macros. The address generator 
portion of the serializer is shown in Figure 11. This 
function is a 12-bit binary counter which addresses 
the external RAM holding the data to be serialized. 
In generating the counter, macros representing 
three bits each were used. The placement of the 
logic blocks in the macro illustrates the desirability of 
rectangular placements. Figure 12 shows the three-
bit macro C8BCR (Counter, modulo 8, Binary 
sequence, Clock enable and Reset synchronous 
controls) placed in two ways. Placement A is a linear 
placement. Placement B uses the recommended 
placement from the Macro Library reference manual. 
Notice that in the linear placement, all of the signals 
must travel the height of the macro to get to the 
terminal count (CTCname) block. This congests the I 
routing in the columns to the left and right of the 
column where the macro is located. The rectangular 
placement shown in B makes the routing more 
compact and allows additional space for routing • 

Figure 11. 12-Bit Address Counter 
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around the module. In addition, the square structure 
allows easier placement in a clense design. 

2. An example of the "long and thin" approach is the 
data shift register at the top of the device in Figure 8. 
Notice how the data comes in from the pins at the top 
and naturally flows into the blocks of the shift 
register. If these blocks were placed in a traditional 
rectangular shape some bits would travel long 
distances to get to the appropriate shift register 
block. With this arrangement, the secondary data 
register in the B row of logic blocks can get the data 
as it flows through the shift register from the pins. 

The address multiplexer also uses long, thin shapes, 
with emphasis on the direction of information flow . 
Figure 13 shows how two different bits of the 
multiplexer use the direct interconnect paths. Use of 

direct connect can reduce the congestion in general 
interconnect and results in an improved placement. 
The initial placement had each alternate 1/0 block 
connected to the memory or processor address bus. 
After examining the direct interconnect, the position 
of the processor bus interface 1/0 relative to the 
multiplexer block was modified to use direct connect, 
since it provided a11 input to each block. Along the 
bottom, the processor blocks were placed to the left 
of the memory block for the same bit to take 
advantage of direct connect for botti input and 
output paths. 

3. In some cases, placements may be made which trade 
off resource utilization for performance. In this 
design, the primary performance-limiting element will 
be the speed of the address generator section: the 
12 bit counter. In the initial design shown in Figure 

Figure 12. 3-Blt Counter Macro (SBCR) Placement Alternatives 
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10, macros were used to build the counter. These 
allow rapid implementation of the function, but may 
not provide optimum performance. Each three-bit 
section can operate at high speed because there is 
only a single logic function required between clock 
edges. Additional logic block delays are inserted 
between each three-bit stage, which reduces the 
overall performance. To obtain higher performance, 
the toggle condition of each bit in the counter would 
be generated in the minimum number of logic levels. 
This would require approximately 18 blocks and 
much more care in placement and routing. See the 
application note Counter Examples for more 
information on counter implementations. 

MODIFYING PLACEMENT 

If initial placement of logic blocks and 1/0 blocks fails to 
produce a design which can be readily routed, 
placement modifications can be made. Some 
guidelines for modifying the placement include: 

1. If congestion exists in the middle of a placement, 
move the blocks interior to the area to the outside 
and move the outside blocks inside. This ''turn it 
inside out" concept will normally alleviate congestion 
except for those cases where the original exterior 
blocks have a large number of connections to 
resources outside of the area being examined. 
Figure 14 shows a block of logic which has interior 
congestion, and an alternative placement which 
relieves the congestion. 

2. Spreading 1/0 connections out, rather than cluster­
ing them together, will often relieve congestion near 
the edge of the device. Some 1/0 intensive applica­
tions can benefit from interleaving related 1/0 blocks 

ADDRESS 
BITIN 

as was done in the address bus area in Figure 13. 

3. Groups of logic which exhibit routing congestion 
problems in horizontal directions may be better 
placed so that the majority of signals are vertically 
oriented. Remember, there are effectively 10 
vertical connections in each column (5 general 
purpose, 3 long lines and one direct connect to 
block above and below) and only 6 horizontal 
connections in each row. 

4. Move data register functions out of the logic block 
area and utilize unused. 1/0 blocks to perform that 
function. This is particularly effective for function 
control registers written with an external data bus. 
Pins adjacent to the data bus input pins can be used 
for direct data input connections. 

ROUTING 

Routing resources are comprised of the general 
purpose interconnects, the long lines and the direct 
connections from a block to the adjacent blocks. The 
use of routing resources must balance the partitioning 
of the logic and the block placement in generating an 
effective completed design. 

Manual Editing 

In some designs it will be necessary for the user to 
interact in the routing process. This may be necessary 
to; a) relieve congestion to allow a signal to route, b) 
force use of selected resources for performance or utili­
zation, or c) modify existing routes to ''tune" delays for a 
particular requirement. EDITNET is the XACT command 
used to perform manual routing of signals or nets. 

BIT OUT 

Figure 13. Use of Direct Connect in Address MUX. 
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EDITNET allows the user to selectively enable or disable 
any of the programmable interconnect points (PIPs) on 
the device. This is done with the following sequence: 

1. Select the EDITN ET command either with the mouse 
or enter it from the keyboard. 

2. Specify the Net which you wish to manually 
manipulate. The net must have the source and 
destination connections on block pins defined. 

3. Move the mouse to position the cursor over a 
programmable interconnect point (PIP) for the 
desired path. 

4. Pushing the select button on the mouse will toggle 
the selected connection. If it was connected, 
pushing select will disconnect it, and if it was not 
connected, pushing select will connect it. 

CONGESTION 

A.) BEFORE BLOCK SWAPPING 

CONGESTION 

B.) AFTER BLOCK SWAPPING 

Figure 14. Block Swapping to Relieve Congestion 

5. For the switching matrices located where the general 
interconnect segments meet, a pair of "magic" pins 
must be selected. Table 1 shows the allowed 
connections for the various switching matrices. 
Connections are made or broken by selecting the 
desired pair of pins. When the second pin is 
selected, current connections will be broken and 
unconnected pins will be connected. Figure 15 
shows the sequence of operations for editing 
connections in switch matrices. 

6. When all connections have been made, select the 
DONE option. The XACT system will automatically 
calculate the delays associated with the 
interconnections, and make them available for 
display. The delay from the source of a net to its 
destination will be shown whenever the cursor is 
positioned at a destination pin. 

When using EDITNET, an error message of "connection 
shorts pin zz.v" may be displayed. This indicates that a 
connection would provide a signal to a block pin which 
has not been assigned to the net being routed. If that 
pin is to be connected to the net, it must first be 
assigned to the net using the ADDPIN command. 

Although some connections between pairs of switch 
matrix pins cannot be made directly, it is possible to use 
a combination of the valid connections to accomplish 
the desired routing. For example, connection from pin 1 
to pin 4 is not valid but can be accomplished by 
connecting pin 1 to pin 5 and pin 5 to pin 4. This 
involves an additional switch delay, but may be essential 
in routing in a congested area. 
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Some additional routing techniques include: 

• Do not route through inputs and outputs 

• Seed the routing for a net before using auto-routing 

• Pre-route selected nets onto long lines 
• Route high fanout items first / last 

DO NOT ROUTE THROUGH INPUTS AND OUTPUTS 

Although the inputs and outputs of the various blocks 
are shown as lines with multiple connections on them, it 
is not possible to use them as connections between 
parallel interconnect segments. Each input or output 
connection to a pin of a block is uni-directional and only 
one connection per pin is allowed. 

The EDITNET command will allow the user to turn on 
multiple programmable connections on an input, but 
only the connection from the driving interconnect 
segment to the input pin is valid. Any additional 
connection points which are turned on will not be 
connected to the driving segment, although they 



appear to be connected. If the design rule check, DRC, 
command is executed, nets which have been routed in 
this way will be flagged as unrouted and their attendant 
delays will not be calculated. Figure 16 shows an 
improperly connected net routed through an input 
switch path. 

£XILINX 

Outputs of blocks may drive multiple interconnect 
segments, although it is not generally necessary, but a 
net not driven by that block may not be interconnected 
using the output path switches. Figure 16 shows a net 
improperly connected using the output path switches. 
In both input and output cases, these connections can 

5-VERTICAL GENERAL INTERCONNECT 

2 

8 3 

7 4 3 3 

2 4-HORIZONTAL 
GENERAL 

6 5 INTERCONNECT 
8 3 4 4 

7 4 2 

FROM 
1 2 3 4 

1 =VALID CONNECTION 
0 = INVALID CONNECTION 

00100003 7b 

Table 1. Allowed Connections Through Switching Matrices 
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only be made with the EDITNET command. Caution is 
advised when using this command to avoid these 
improper connections. 

SEEDING ROUTING 

An effective technique for improving the resource 
utilization of the router is to manually "seed" the routing 
prior to allowing the router to operate. This seeding may 

A.) POINT TO FIRST PIN [MAGIC 5] AND SELECT 

take two forms, depending on the desired effect. 

1. If the user chooses to utilize a particular long line 
resource for a signal path based on delays or general 
placement, the router typically will not route onto that 
long line if an alternate path is available. One 
technique to force a signal onto a long line is to pre­
route it onto the long line before actually routing the 
signal. This is done as follows: 

B.) POINT TO SECOND PIN [MAGIC 4] AND SELECT 

C.) RESULT - DISCONNECT BY POINT TO FIRST PIN 
[MAGIC 4] AND SELECT 

D.) POINT TO SECOND PIN [MAGIC 7] AND SELECT E.) RESULT 

Figure 15. Sequence of Operation for Connecting through Switch Matrices 
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a. If the net is already entered, use UNROUTE or 
CLEARPIN to deconfigure the routing for each 
pin on the net. If the net has not been entered, 
disable the automatic router using the 
AUTOROUTE OFF command, found in the MISC 
menu, and define the net using the ADDNET 
command. This avoids the delays involved in 
routing each pin and the necessity to unroute 
them after they are entered. 

b. Using EDITNET, choose the net to be routed on 
the long line and turn on/off the appropriate 
switches to get the signal from its source block 
onto the long line. 

c. End the EDITNET command by selecting DONE. 
A warning message will be issued indicating that 
the net has not been routed. 

d. Select the ROUTE command from the NET 
menu. When prompted, select the net which was 
manually routed onto the long line. The router 
will then complete routing of that net. 

Figure 17 shows an example of this technique. In some 
cases where the destination pins are not directly 
accessible from the long line, the router will still not 
utilize the selected long line. In these cases it may be 
necessary to use both techniques 1 and 2 to force use 
of a long line. 

2. In some cases, pins are added to a net throughout 
the course of the design. With the automatic router 
enabled throughout this process, each pin will be 
routed as it is added. The resultant net routing may 
become contorted and interwoven because the 

ILLEGAL CONNECTION 
THROUGH INPUT LINE. 
DESTINATION GD.A IS 
NOT CONNECTED TO 

SOURCEHB.X 

l:XUJNX 

router will route each pin independently. Extreme 
cases may have loops in the interconnect, or very 
long delays as the source block becomes more 
heavily loaded and the routing more degenerate. 
This may also cause severe congestion in some 
areas as the routing resources are unnecessarily 
consumed by the multiple routes. To help relieve 
this problem, and other similar multi-destination 
problems, enter the destinations in a sequence 
which progresses naturally from the source location 
to the farthest destination. Remember, the router 
will route to the first specified destination first, then 
the second, third and so forth. 

To avoid the necessity of entering destinations in 
location-specific sequence for large nets, the 
following may be done. 

a. Enter the nets into the design with the router 
disabled or unroute the net (See 1.a above). 

b. When all of the destinations for the high fanout 
net have been entered, use EDITNET to man­
ually route to the destination which is physically 
the most distant from the source. If the routing to 
this pin does not use a long line, ROUTEPIN may 
be used to accomplish the initial routing. 

c. Use the ROUTE command to allow the router to 
complete routing of the other destinations in the 
net. 

Figure 18 shows the use of this technique for a net with 
many destinations. Another alternative method is to use 
a text editor to modify the sequence of destination pin 

ILLEGAL OUTPUT 
CONNECTION DESTINATION GC.A 

IS NOT CONNECTED TO 
SOURCEHC.X 

Figure 16. Illegal Connection 
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Figure 17a. Output DB.X Routed Via General Interconnect 

Figure 17b. After UNROUTE Command; EDITNET has Forced Output onto Long Line 
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specifications in the design file (.LCA) for the design. 

ROUTING HIGH FANOUT NETS 

When placing and routing designs involving high fanout 
nets, congestion problems will often occur if the design 
is routed as it is entered with the auto router enabled. In 
these instances, alternate placements will probably be 
needed to complete a good design. The following 
sequence of steps is suggested. 

a. Plan an initial placement on a blank LCA printout with 
the previous placement tips. Pay particular attention 
to the use of direct interconnect. 

b. Begin entry of the design with the automatic router 
enabled. When entering the high fanout net(s), 
enter only the destination pins. Leave the source 
undefined, even though you know what it is. This 
allows the system to route faster and leaves a less 

cluttered design. 

c. When all of the regular nets have been entered, look 
at the congested areas. These can be easily 
identified by counting the used vertical and 
horizontal general interconnect segments in each 
column/row. A printout of the complete design with 
the options SHOW USED enabled may be helpful. 

d. Save the design as a backup in case subsequent 
modifications fail to produce anything useful. 

e. Generate a new placement based on the congested 
areas identified above. MOVEBLK and SWAPBLK 
should be used to move the blocks to new locations. 
The criteria for the new placement should be to 
eliminate the congestion as much as possible. 

f. Implement the new placement with the automatic 
router disabled. 

Figure 17c. Result After Route of Signal-Long Line Used 
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g. Route the high fanout net(s) using techniques 1 and 
2 from above. The high fanout net(s) should be 
optimally routed with this technique. Viewing the 
design in either large or medium scale allows more of 
the blocks to be seen at one time to get a good 
sense of where routes should be placed. Also 
HILIGHT of the high fanout net will show stubs at 
each of the required connections, allowing better 
visualization of their physical relationships. 

h. Save the intermediate results as a backup. 

i. Route the remaining nets either with a ROUTE * 
command or by selecting each Net with a ROUTE 
command. 

This iterative technique of manually routing selected 
nets should minimize routing problems and improve 
performance. This technique may be applied equally 
well to nets with performance constraints as to those 
with fanout constraints. 

OTHER USEFUL ROUTING FUNCTIONS 

There are several other useful routing related functions 
which should be explored in optimizing designs. These 
are SWAPSIG, CLEARPIN, and ROUTEPIN. 

SWAPSIG 

The SWAPSIG command, located in the PIN menu is 
quite useful when optimizing the routing of a signal to a 
specific block. In many cases, signals will be better 
routed to a specific block pin, in spite of the general 
interchangeability of the pins. Figure 19 shows some 
typical signal routes where the choice of block pins can 
be modified to relieve routing congestion. The 
SWAPSIG command logically interchanges the net 
connections of the block pins and simultaneously 
changes the block function to match the new pin 
assignment of the signals. SWAPSIG should always be 
used as opposed to SWAPPIN when working with pins 
on a single block since it modifies the internal function to 

Figure 1Ba. Routing Without Seeding 
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match the pin swapping. SWAPPIN is valuable for 
moving a net connection from one block to another. 

Figure 19a shows a net which is routed with the general 
interconnect. Using SWAPSIG allows the pin 
assignment of the destination block to be easily 
"interchanged" to make use of the direct connect. The 
general segment is then freed for use by other routing. 
The SWAPSIG command can also be used on block 
outputs to swap them for use of direct connect, or to 
allow driving a particular adjacent general interconnect 
segment. In the case of outputs, X and Y are completely 
interchangeable internally, so their selection should be 
based entirely on their external connection usage. 

Figure 19b shows two pins which have been swapped 
using SWAPSIG because it allowed more efficient use 
of the general interconnect. The initial connection to 
pin C came from a signal running in the adjacent 
horizontal channel. Pin D came from an adjacent vertical 
channel. Swapping the signals allows the vertically 
oriented signal to route directly to C and the horizontal 
signal to route to D. The internal constraints on the 

input pins to logic blocks may limit some uses of 
SWAPSIG. These will be flagged when the command is 
executed. 

CLEARPIN 

This command allows the user to de-configure the 
interconnect for a particular pin on a net. In the process 
it also removes any spurious interconnect segments 
from the net. CLEARPIN, located in the PIN menu, is 
particularly useful when attempting to relieve 
congestion in an area. It allows interconnect from a 
single pin on a net to be returned to the available pool of 
resources. When routing critical or high fanout nets, the 
freed interconnect can be used for a particular route. 
The unrouted pin can then be routed either manually or 
with the ROUTEPIN command. 

ROUTEPIN 

When manipulating the routing for a portion of a design, 
pins are often left unrouted. It is possible to route these 
pins with the ROUTEPIN command for the pin, but 

...... .: .. ,~ 
t;:J(:j ~'ml 

Figure 18b. Routing After Seeding 
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ROUTEPIN forces the user to select all pins to be 
routed. ROUTE, on the other hand, routes all of the 
pins assigned to the net that is selected. Figure 20 
shows how this can be more efficient if a large number of 
unrouted pins are to be handled. ROUTEPIN will, 
operate faster than ROUTE for a single pin because it is 
only concerned with a single pin on any net. ROUTE 
will check each pin on the net, and operates on a single 
net at a time. 

THE TIMING DELAY CALCULATOR 

The XACT Development System includes a unique 
interactive timing delay calculator which allows the 
designer to see the worst case delays associated with a 
design, without the need for simulating the design. This 
is particularly useful in selecting placement and routing 
alternatives in the process of tuning a design for 
maximum performance. Delay information is available for 
the logic blocks, 1/0 blocks and the interconnect paths . 

• , , ••• ··'I•••••• ·•'I•••••• •• •I•••••• •• •t ••,. •• •·'I••"'''' . ·:-:-. :- . -:-:·· :· . -:-:·· :- . -:<·· :- . -:-: .. :- ·:-a .. ·.· a, ::·.-a::·.-a::·.-a::·.-a::·.-a: . ......... ......... ......... ......... ......... ......... .. ······· ....... ....... ....... ....... ....... . . .. . :· ... :· ... :· ... :· ... :· ... :· . 
. . . . 1"I.. . . . 

. ii ~;,: ii~;,:: ii~;,: ii ~;,:: :: ~;,:: :; ~;,: ;: I'.; 

a ... tlE .. ·m·. a ... a ... fl ... a. . ......... ......... ........ ......... ......... . ........ ' .. ....... ....... ...... ....... ....... ....... . . 
.. . :· ... :· ... :· ... :· ... :· ... :· . 

: :: ~,: ~; ~;,: i; . ;,.: :; ~;,:: ii~;,: ii~;,: :: I'.; 

a···e··· c ·· c ···a···a···a· . ......... ...... ......... ......... ......... .. ....... ..... .. .... ....... ....... ....... .. 
... :· .. . . . :· ... :· ... :· ... :· . 

· l ~;,: J, ~;,: Ji~/ Ji~;,:: Jl ~;,:: Jl ~< J, I'.; 
A.) CONNECTION FROM CC TO CD SHOULD 

USE DIRECT CONNECT 

C.) CONNECTION CB.XTO BD.C SHOULD BE IN 
HORIZONTAL CHANNEL AND CC.X 
TO BD.D IN VERTICAL CHANNEL. 

Logic and 1/0 block delays are fixed worst case values 
based on the particular configuration of the block. 
These delays are characterized from operating devices 
at worst case conditions and are typically constant for a 
particular speed grade. 

Interconnect delays are more complicated. Each 
interconnect segment which is used in a signal path 
represents a distributed R/C delay. Inputs to each logic 
or 1/0 block have a small capacitance which can be 
ignored in comparison to the capacitance associated 
with the interconnect segments. To correctly calculate 
the worst case delay for interconnect, the accumulation 
of these delays must be accounted for. In addition, 
each transistor switch represents a non-linear 
impedance which modifies the drive characteristics as 
viewed by downstream segments. Figure 21 
summarizes these delays and the elements included in 
the model for interconnect delay calculations. 

As signals pass through several of these segments and 

B.) RESULT AFTER SWAPSIG OF CD.A AND CD.B 

D.) RESULT AFTER SWAPSIG OF BD.D AND BD.C 

Figure 19. SWAPSIG Candidates 

2-66 



Querynet: PNRFG25B.LCA, XACT 1. 21 

netl. DD.X ·*** DE.A 
*** CF.D 
*** CG.D 

net2. DE.X ·*** CE.D 
*** CF.B 
*** EF.A 

net3. ED.X ·*** EE.B 
*** EF.B 
*** DG.C 

This report of unrouted nets indicates 9 unrouted pins. 

With ROUTEPIN this requires 1 command selection and 9 location selections. 

With ROUTE this requires 1 command selection and 3 location selections. 

CLB 

DELAY: 

INCREMENTAL 

IF R1=R2=R3=R AND C1=C2=C3=C 

THEN CUMULATIVE DELAY 

00100003 17 

Figure 20. ROUTE and ROUTEPIN Comparison 

3RC 5RC 

r--, 
L_.J 

REPOWERING 
BUFFER 

6RC 

Figure 21. Interconnection Delay Example 
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switches, their signal quality is degraded. In the general 
purpose interconnect area, bi-directional buffers are 
used to re-power the signals after they pass through 
several segments. Each buffer also represents a delay, 
but after the buffer, the initial signal quality is restored. 
These buffer delays are accounted for in the overall 
delay calculation. 

The delay calculator includes all of these elements when 
calculating interconnect delays. Whenever the cursor in 
the overall LCA screen is positioned on a destination pin 
for a net, the worst case delay from the net's source to 
that destination is displayed on the information line of 
the display (See Figure 22). As the cursor is positioned 
on each destination, the appropriate delay is shown. 

Calculations for delays are performed on a net by net 
basis, as the complete net configuration must be 
considered to determine the delay. When nets are 
being defined, the delay to each point is not available 
until the source and all of the destinations have been 
specified. When the DONE option in the net 
specification process is selected, interconnect delays 
will be calculated if the Net has been routed; this is 
typical if the automatic router is enabled. For pins which 
have not been routed, a delay of ? is displayed. 

When manual routing is being performed with EDITNET 
or any of the other techniques, interconnect delay 
calculations will not be performed until a) the DONE 
option has been selected and b) a destination pin has 
actually been connected to the source pin. If a net is 
subsequently modified by addition of other pins or 
interconnect, a new net delay calculation will be 
performed and the new timing information will be 
available. 

Interconnect delay information is available interactively 
(on the information line of the display). It may also be 
obtained in text reports, either to the screen or in 
printed form. Figure 23 shows a sample delay report 
printed by selecting REPORT DELAY and specifying 
the desired FROM and TO options. Delay information is 
also included in printed or screen information obtained 
with the QUERYNET command. 

In a clocked system, delay calculations are made from 
clock-edge to clock-edge. Since it has no knowledge of 
the dynamic operation of the system, the delay 
calculator can only consider the elements which logically 
are connected from one clocked device to the next 
clocked device; latch or flip-flop. Simulation is required 
to investigate the operational constraints of the clocked 
system. However, the delay calculator does calculate 
the complete clock-edge to clock-edge path, including 
the clock to output delay and the required setup time. 
With these complete delay paths, the worst case clock 
frequency can be easily obtained: worst case frequency 
= 1 I (clock-to-clock delay). In Figure 23, the worst case 
clock-to-clock delay for Net17 and Net18 is calculated as 
98 ns. This circuit could be clocked at 10 MHz worst 
case. 

In the Logic Cell Array family multiple speed grades are 
available. The delay calculator has information which 
allows it to calculate all of the delays for a design, 
assuming different speed grades. The speed grade 
selection is made by selecting the SPEED command 
from the MISC menu. The currently available speed 
grades for the selected device will be displayed and the 
user selects the desired one. The delay calculator then 
re-computes all of the delays in the device and makes 
them available, either for display on the screen or in the 

DELAY FROM SOURCE TO DESTINATION 
POINTED TO BY CURSOR 

Figure 22. Delay Calculator Result On-screen 
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reports available for the design. 

WHAT DOES TILDE MEAN? 

Because of the nature of the pass transistors used to 
perform the interconnection of the various signal path 
elements, the rise and fall times and general signal 
quality are degraded by each switch element. When 
taken together over a long signal path, these two factors 
can significantly degrade the predictability of the delay 
for a particular path. The bidirectional buffers used to re­
power the signals in the general interconnect will nor­
mally alleviate most of these conditions, H they are in the 
signal path. Because of the presence of manual editing 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X to 
Thru: BLK BD (BD.D to 
Thru: NET netl5 (BD.X to 

To: BLK CD (CD.A to 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X to 

To: BLK CD (CD.B to 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X to 

To: BLK CE (CE.A) 

From: BLK BC (BC.X) 

l:X!UNX 

capabilities and the router's ability to route signals with 
remaining resources, some paths with significant signal 
degradation may be created in a design. 

Signal paths which have degraded signals will be 
flagged by the delay calculator with a tilde (-) preceding 
the calculated delay. These "degenerate" nets may be 
the result of one or more factors: 

a. A general interconnect segment and its associated 
signal are driving a long line. Because of their "long" 
nature, long lines represent a high capacitance. This 
high capacitance affects the signal quality, 
particularly when driven by a general interconnect 
segment and not the direct source of a signal. 

Ons Ons) 
BD.D ) 20ns 20ns) 
BD.X ) 35ns 55ns) 
CD.A ) Ons 55ns) 
SETUP) 22ns 77ns) 

Ons Ons) 
CD.B ) 18ns 18ns) 
SETUP) 22ns 40ns) 

Ons Ons) 
CE.A ) 22ns 22ns) 

Ons 22ns) 

Ons Ons) 
Thru: NET netl4 (BC.X to CE.B ) 15ns 15ns) 

To: BLK CE (CE.B) Ons 15ns) 

From: BLK CB (CB.X) Ons Ons) 
Thru: NET netl2 (CB.X to BD.D 20ns 20ns) 
Thru: BLK BD (BD.D to BD.X 35ns 55ns) 
Thru: NET netl5 (BD.X to CE.C ens 63ns) 

To: BLK CE (CE.C) Ons 63ns) 

From: BLK AE (AE.Y) Ons Ons) 
Thru: NET netl6 (AE.Y to CE.D ) 33ns 33ns) 

To: BLK CE (CE.D) Ons 33ns) 

From: BLK AE (AE.Y) Ons Ons) 
Thru: NET netl6 (AE.Y to CF.B 23ns 23ns) 

To: BLK CF (CF.B) Ons 23ns) 

From: BLK CD (CLOCK to CD.X ) 35ns 35ns) 
Thru: NET netl7 (CD.X to BE.D ) 6ns 4lns) 
Thru: BLK BE (BE.D to BE.Y ) 35ns 76ns) 
Thru: NET netl8 (BE.Y to BF.B) Ons 76ns) 

To: BLK BF (BF.B to SETUP) 22ns 98ns) 

From: BLK CB (CB.X) Ons Onsi'\ 
Thru: NET netl2 (CB.X to BD.D 20ns 2ons) WORST CASE 
Thru: BLK BD (BD.D to BD.X 35ns 55ns) 
Thru: NET netl5 (BD.X to BF.C llns 66ns) CLOCK TO CLOCK 

To: BLK BF (BF.C) Ons 66ns) PA1H-10mHzCLOCK 

From: BLK CC (CC.X) Ons Ons) 
Thru: NET netl3 (CC.X to AD.C ) 9ns 9ns) 

To: BLK AD (AD.C) Ons 9ns) 

Figure 23. Printed Output From Delay Calculator 
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b. A long line is driving a general interconnect segment 
or group of segments. In general, the long lines will 
greatly decrease the effective drive capability of the 
source of the signal. When driving general 
interconnect segments, the interconnect switch 
impedance and long line combine to create a 
problem. 

Degradation of signal quality as indicated by the tilde 
preceding the calculated delay affects the signal 
primarily in differences between rise and fall times. As 
the delay number increases, the difference between 
rising signal delay and falling signal delay increases. As 
an example, consider a delay indicated as -50. This 
indicates: 

a. Falling signals (1 to 0 transitions) will occur more 
rapidly than indicated. For this case, the falling 
transition may propagate in 35 to 40 ns, worst-case. 

b. Rising signals (0 to 1 transitions) will occur in more 
time than indicated. For this case, the rising 
transitions may require 70 ns or more, worst-case. 

The percent variation between rising and falling 
transitions in the degenerate cases is difficult to predict, 
but generally will be in the range of 20 to 40% below or 
above the indicated value. 

When delays are displayed with the tilde, caution must 
be exercised by the designer. If these signals are timing 
critical, it is highly recommended that they be re-routed 
to eliminate the tilde indication. In some cases such as 
static control, the actual delays are not critical and the 
tilde may be safely ignored. 

In other cases, the difference between rising and falling 
delays may be compensated for by appropriate logic 
sense selection. For example, a relatively common high 
fanout signal used in counter applications is a 
synchronous reset generated by a terminal count 
detection. If the signal sense is defined as high true, 
reset when "1", then the critical timing edge is the rising 
edge. Analysis indicates that the rising edge will be 
slower than the falling edge, so a re-definition of the 
signal to be low true, reset on "O", will take advantage of 
the quicker propagation time for falling signal transitions. 
This may improve the overall capability of the system by 
eliminating potential metastability or partial counter reset 
problems that might otherwise occur. 

Paralleling Block Outputs 

A technique which can be employed for high fanout 
signals which cannot use either of the clock buffers is to 

use multiple block outputs to drive a paralleled network. 
This provides higher initial drive capability and lower path 
impedence to the various destinations. Figure 24 
shows a circuit where a block output drives many other 
block inputs. Both the global and alternate clock buffers 
are being used to supply clock signals to many different 
blocks. 

To provide additional drive capability, the signal inside 
the block drives both the X and Y ouputs. Each output 
is routed directly onto a long line, and those lines are 
then connected into a grid to provide low impedence to 
the many different destinations. This arrangement of 
multiple outputs and paths provides significant 
improvement over a single output and path, but at the 
expense of using more interconnect resources. 

Analysis of Intermediate Timing 

In a circuit which has a long path, it may be valuable to 
measure or predict the intermediate delays as part of 
making decisions about placement and routing 
alternatives. One method of either seeing the delay 
calculator results or measuring delay differences along a 
path is through temporary 1/0 block connections. Figure 
24 shows two 1/0 blocks which are temporarily defined 
along the path. The delay calculator can be used to see 
the total delay to each block. The differences can then 
be used either to analyze the results of routing 
changes, or to determine timing skew related issues. If 
the In-Circuit Emulator is being used, these .1/0 blocks 
may be temporarily defined as outputs and the timing 
differences measured directly. 

EXAMPLES 

Figure 25 shows an example where a tilde indicates a 
potential problem because the net has been routed 
through several general interconnect segments prior to 
driving a long line. The timing delay calculator number 
shown in the lower right corner of the screen shows 
-35ns. After modifying the routing, as shown in Figure 
25 B, the delay has been decreased to 28 ns and the 
tilde is no longer indicated. 
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Figure 26 shows an example where the tilde indication 
can be safely ignored. The net shown is a static input 
used for function selection by several blocks. In this 
case, the delay and signal quality is not of concern 
because the signal is not changing. This might be the 
case for switch-type inputs or other human interface 
signals. The only concern with long delay signals of this 
type is that any blocks which use that signal will latch it 
correctly after it has made a transition. 



CONCLUSION 

Appropriate use of the XACT system capabilities gives 
the user powerful control over all of the aspects of the 
system design. Simple designs can quite often be 
entered directly without significant attention to the 
details of placement and routing. Only when complex 
designs or ones with stringent performance constraints 
are to be implemented do the issues of placement and 
routing need special attention. The techniques 
discussed here should guide a user in implementing a 

l::XIUNX 

complex design with minimum effort. 

Future products for designing with Logic Cell Arrays will 
offer improved methods of design entry and will provide 
greater isolation of the user from the details of the 
device. Regardless of the sophistication of these 
development systems enhancements, there will always 
be a requirement for interactive design optimization, 
either for performance or resource utilization. The XACT 
Development System combines simplicity of operation 
with capabilities to quickly optimize a design. 

PARALLELED 
,,..,_...-_~ LONG LINES 

Figure 24. Paralleled Drivers and Long Line to Provide Higher Fanout Slgnal Source 
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Figura 25. Routing With Tiida on Delay Value 
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LONG DELAY CAN BE IGNORED BECAUSE DYNAMIC 
PERFORMANCE OF SIGNAL IS NOT OF INTEREST 

Figure 26. Signal With Long Delay to Final Destination 
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INTRODUCTION 

Each new technology used for digital design offers the 
designer a new set of characteristics. These include 
speed, power, integration level, reliability and selection 
of logic functions. These factors can affect the desig­
ner's methodology and logic architecture. The following 
examples show that digital design and architecture for 
Logic Cell™ Arrays (LCA) is similar to that of 
conventional TTL SSl/MSI or Gate Arrays. The designer 
using the Logic Cell Array has additional design 
flexibility, since he is not constrained by limitations such 
as four-bit or eight-bit increments, a specific set of inputs 
and outputs, or a specific combination of logic functions. 
The core of the CMOS Logic Cell Array integrated circuit 
is an array of user-programmable logic elements called 
Configurable Logic Blocks (CLBs). User-programmable 
interconnections implement the required logic 
networks. Input/Output interfaces are implemented with 
individually programmable Input/Output Blocks (IOBs). 
With these facilities, the designer is free to tailor the 
logic as required and is not confined to standard product 
devices or gate array library elements. The Xilinx 
XACT™ Development System provides a macro library 
of common logic elements to help the designer 
implement a design. Unique functions and user­
defined macros are also available. The IBM PC™-based 
development system provides the user with graphic 
design entry and design verification capabilities. Trans­
lation of schematic capture to a design file and automatic 
placement and routing of the design are also available. 
The development system is also used to generate the 
configuration program for the device. The LCA can 
automatically load its program from an external EPROM 
or be initialized as a peripheral by a microprocessor at 
power-up. 

Compared with other standard product alternatives, the 
Xilinx Logic Cell Array provides the designer a higher 
level of integration. Benefits include increased perfor­
mance and reliability, reduced printed circuit board 
space, lower power requirements, shorter design times, 
and smaller component inventories. The logic capacity 
in one LCA which would typically require from 40-100 
SSl/MSI packages to implement. Using the gate array 
convention of "gate" as a 2-input NANO function, the 
Logic Cell Array family presently provides logic capacity 
up to 1800 gates. A single LCA solution can reduce the 
total package pin count from hundreds of SSl/MSI pins 

A Design Methodology 
for the 
Logic Cell™ Array 

to 48 to 84 Logic Cell Array pins. The devices are 
available in 48, 68 or 84 pin packages, providing up to 
74 pins which the designer may program as logic input, 
output, or bi-directional package pins. The user­
programmable nature of the LCA affords the user a 
single fully-tested inventory item which may be used in 
multiple products. 

The Configurable Logic Block 
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A description of the Configurable Logic Block structure 
will help in understanding its logic capabilities. Each 
Configurable Logic Block has four logic inputs and two 
logic outputs. It includes a combinatorial function 
portion and a "storage element" portion, which may be 
configured as a transparent latch or an edge triggered 
flip-flop. The development system provides the method 
of design entry and verification. The development 
system translates designs into a configuration program 
which defines logic look-up tables and multiplexer paths 
within the Configurable Logic Block. Interconnection 
between blocks is accomplished by a two-layer grid of 
metal segments, joined at intersections by switching 
matrices of program-controlled pass transistors. 
Additional pass transistors provide connection of the 
metal interconnections to the block inputs and outputs. 

Figure 1 shows a single memory cell controlling a simple 
two-to-one multiplexer made of two pass transistors. 
Combining eight readable memory cells and a controlled 
eight-to-one multiplexer tree, as shown in Figure 2, 
creates a circuit which is capable of generating any logic 
function of the three input variables: A, B and C. The 
C,B,A input code 101 reads the contents of memory cell 
five. The data pattern of the readable memory cells 
defines the logic function. Doubling the look-up table 
and multiplexer creates a circuit which can implement 
any function of four variables. This is the basis of the 
combinatorial portion of the Configurable Logic Block. 
The Configurable Logic Block includes programmable 
multiplexers for the input variables A, B, C, D and a and 
a selection of outputs to form a single function of four of 
the variables or two functions of three variables each. 
The combinatorial portion of the configurable logic block 
is shown in Figure 3. When a four-variable function is 
implemented, the same selection of either input variable 
Dor the a of the storage element is made in both halves 
of the look-up table, and the single result produces both 
F and G outputs. For implementing two functions of 
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three variables, each of the D vs. Q choice is selected 
independently for the functions F and G. Each function 
may then use any three of the five available variables: A, 
B, C, D or Q of the CLB storage element. A third type of 
function may be implemented by using the input 
variable B to select between the two three-variable 
combinatorial functions. This results in a compound 
function which may involve some combinations of all five 
variables. 

The programmable features of the Configurable Logic 
Block storage element are shown in Figure 4. The 
storage element may be left unused, or programmed as 
a level-transparent latch or as an edge-triggered flip-flop. 

Its data input is supplied from the combinatorial function 
F. The invertible flip-flop clock, or latch enable, may be 
selected from one of three sources, on a block-by-block 
basis. Each CLB storage element has an active high 
asynchronous set and reset available. Reset is domi­
nant over set and the active low chip input, RESET, 
clears all storage elements. 

The Input/Output Block 

As shown in Figure 5, the Input/Output Blocks have the 
capability of providing a direct or registered input to the 
chip. The positive edge clock for the register function is 
common along each die edge. The chip configuration 

WRrrE I l ....-----------..a 

PROGRAM \ 

PROGRAM 
MEMORY 
CELL 

DATA L,~'-''»''»~»,,•»»~,.,.,,,,,,,,,,~»,,.,.,,,,.k•»>,'»"<•»>,•»,•»>t•~·'·''~''•»~'~''''"•~v.~w 

CBA=101 

READS BIT 5 

DATA1 -----1-----~ 

DATAO-----------' 

Figure 1. Memory Cell Multiplexer (Mux) Control 

A (LSB) B 

MULTIPLEXER 
DATA 

C (MSB) 

~'-----.---...J'-----.,---...J'---.....---' 

EIGHT FOUR 2 TO 1 
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MEMORY 
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TWO 2T01 
MUXs 

Figure 2. Look-Up Function Generator 
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process, as well as the active-low chip, RESET, clears 
the storage elements. Each Input/Output Block 
includes an input/output buffer which may be enabled 
continuously to implement an output pin, disabled 
continuously to implement an input or unused pin, or 
enabled by logic signals to implement an 1/0 or bus pin. 

0010003 6 

SET 

Q 

RES 

Figure 4. CLB Storage Element 

COMBINATORIAL FUNCTIONS 

Basic Gate Functions 

Logic implemented in TTL devices often uses NANO 
gates to implement a OeMorganized NANO, an OR of 
low-level inputs. The function is schematically 
represented as a NANO due to the package type. The 
resulting schematic is often confusing when the 
symbols used do not represent the function performed. 
The mix of inverters may complicate interpretation of the 
logic. Oescrepancies between the logic symbol and the 
logic function are particularly confusing to users who 
were not the original designers. With the availability of 
complex logic functions in the configurable logic block, 
there are often several ways to visualize a function. The 
CLB allows the user to choose between equivalent 
ways of representing it, both schematically and in 
equation terms. Karnaugh maps, truth tables and 
Boolean equations are all supported by the XACT 
Editor. The ability of the CLB to accommodate either 
sense of input variables and to generate either sense of 
an output allows the elimination of extraneous inverters. 
In most cases, it is practical to route only active high 
signals avoiding the duplication of routing both true and 
complement signals. 

A typical four-variable combinatorial function is shown in 
Figure Sa as a logic diagram, a Boolean equation and a 

TS (OUTPUT ENABLE) 

OUT 

IN 

D Qt---~ 

--fl__ _ PROGRAM-CONTROLLED 
~ - MULTIPLEXER 

Figure 5. 110 Block 
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Karnaugh map. An equivalent form of the function is 
shown in Figures 6b and 6c. The active-low inputs have 
replaced the inverters of the conventional represen­
tation, and the output symbol is an OR. Xilinx software 
supporting schematic capture can perform this logic 
conversion and combinatorial gate grouping as a part of 
its translation to an LCA design file. 

The ADDER of Figure 7 is an example of using two 
combinatorial functions of three variables. The SUM and 
CARRY functions would usually be grouped in the same 
CLB by virtue of their common input variables. The four­
input exclusive-OR gates of Figure Sa and Sb are an 
example of a common logic function which is not an 
obvious four-variable unit. It is a modulo 2 add without 
carry. COMPARE is a similar function which is typically 
thought of as a two input function. Figure 9 shows a 
CLB implementation of a "dual compare" function which 
compares two bits from each of two sources. 

The design element of four input variables may be 
expanded by using multiple CLB levels. One CLB 
driven by four others can make the sixteen-variable 
function of Figure 10. Selection of decodes to use 
common terms in several functions can allow those 
CLBs to be shared. A related technique can be used to 

A-----~ ~r>---r"°'n---~ 
B---f"°""\ c I>---

a. 

A-------d""°""\ 
B---T­
C----1..--' 

b. 

A--------d""°""\ 
B----T----Q......./ 

encode the results of a pair of three-input two-output 
Configurable Logic Blocks. One of three output codes 
can be used to indicate which of three selected input 
conditions exists. The combinations of the two outputs 
of the CLB may represent four conditions: One, Two, 
Three, or "Other." Each CLB encodes a three-input 
subset of the variables. When two of these first-level 
codes are input to another CLB, its result can be a 
complex function of six inputs. Figure 11 shows two 
encoded results, each a function of three inputs. Each 
CLB responds with the selected code when its inputs 
match its portion of the desired minterm. A high output 
indicates that both codes match the same selected 
value. This yields a sum of three six-variable products. 

Decoders and Multiplexers 

Decoders illustrate several points of practical design with • 
CLBs. If a design does not require some portion of a 
conventional logic function, that portion need not be 
implemented. Since in this case the design does not 
use all of the decodes of a set of input variables, the 
unused decodes can be omitted. In an output intensive 
function, using each CLB to implement two functions of • 
three shared variables can be more efficient than 
implementing one function per CLB. An example is 

>--- Z1=Z2=Z3 

Z,=A• (B+C)+B•C•D 

0010024 8 

Figura 6. Alternate Representations of Same Function 
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SUM A 

A B----------1-_,[::::>.__-----

"~ 
~}c 

C SUM= A •B•C+A·B·C 
+A. B•C+A•B•C 

Figure 7. One Bit Adder With Carry In 

Za=AE9BE9CE9D 

~~h.,..____ 
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Figure 8. Four-Input Exclusive-Or 
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Figure 9. Dual Compare CLB 
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shown in Figure 12. The "preselect" enabling gates 
implemented in this figure are an example of a common 
term of a wider input function. In order to improve 
system speed the variables which are stable earlier may 
be used as inputs to the first level of logic. They may 
propagate while the more time-critical inputs of the 
design drive the shorter propagation path in order to 
improve system speed. 

Wide multiplexer functions can be built from a tree of 2-
to-1 multiplexers. This leaves the storage element and 
one input variable of the CLB available for an 
independent register function, as in Figure 13. In other 
cases the multiplexer may be the data input to the 
storage element or may share input variables or may use 
the output of the storage element. These examples 
provide a natural grouping of shared functions in a CLB. 

A commonly used element in digital systems is a group 
of registers with sets of enabled output buffers bussed 
together. The structure shown in Figure 14 is not, 
always recognized as a multiplexer. The multiple 
sources provide the inputs and the enables represent 
the select lines. All inputs driven by the bus are driven 
by the multiplexer output. 

TIMING 

Any Boolean function generated by a Configurable 
Logic Block requires the same time delay as any other 
function. The concept of "levels" of logic or gate delay 
loses its significance with a technology which uses 
higher-level primitives to perform logic. The primary 
timing factors involved in design with a Logic Cell Array 
are the propagation time of a combinatorial Configurable 
Logic Block, the clock to block output via Q, the input 
setup time for block input variables of a flip-flop, the 
delays of input and output pad buffers and the timing of 
the interconnections. Some of these are represented 
in Figure 15. Although other switching characteristics 
are specified in the LCA data sheet, these are the most 
important factors determining performance. 

MSI devices typically have matched internal delay paths • 
and low impedance outputs which are independent of 
loading. As with CMOS gate arrays, variations in internal 
signal delays are more significant in the Xilinx Logic Cell 
Array. In programmable CMOS array architectures, logic 
delays are more sensitive to output loading than are 
bipolar devices. With such devices synchronous design • 

A7 D ~---A 

~---.. B 

..-----.. c 
..----.. o 

t---_.Z=f(AO-A15) 

A12 A 

A13 B 

A14 C 

A15 D 

0010024 10 

Figure 10. A Function of 16 Variables 
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minimizes the complexities of signal timing produced by 
various combinations of delay accumulations.'t An addi­
tional advantage of synchronous design is better control 
of output timing. The clock distribution resources of the 
LCA simplify synchronous design. Since any function 
of the input variables is obtainable, it is simple to include 
such controls as reset, clock enable and parallel enable 
in the logic function for the data input of flip-flops. All flip­
flops can then use a common clock. With the flexibility 
of the LCA, it is possible to generate and use individual 
CLB clocks, as well as asynchronous set and reset if 
required by the application. 

Latches and Flip-flops 

The level transparent form of the storage element is the 
D-latch. The edge-clocked form is the D flip-flop. For 
both cases the data input is supplied by the function F 
and the clock (load enable) is supplied by the .K or .C 
pin or the function G. This choice and the active sense 
of the signal is made on a block-by-block basis. The 
configurability of the Logic Cell Array allows the designer 
to tailor the storage elements of the CLBs to fit the 
application. Together with complex combinatorial data 
functions this allows a wider variety of latches and flip­
flops than is found in standard products or gate array cell 
libraries. Including a RESET variable in the combinatorial 
input of a flip-flop produces a synchronous reset, as 
shown in Figure 16a. Use of a combinatorial function of 
"Q" together with input variables implements a clock 
enable as shown in Figure 16b. Implementation of a 
multiplexer as the input of a flip-flop provides a parallel 
enable as shown in Figure 16c. A flip-flop implemen­
tation can have parallel data or reset inputs which do or 
do not depend on clock enable. Like the J-K flip-flop, 
an interesting derivative of the set-reset flip-flop is one 
which will not change for the case of simultaneous set 
and reset conditions. The set dominant or reset 

CLOCK TO 

dominant are the other alternatives. The availability of 
this variety of synchronous set-reset flip-flops provides 
alternatives for logic implementation that may minimize 
next-state control conditions. 

Registers 

Related flip-flops with similar functions form registers. 
Registers may be grouped into two categories: data 
registers and shift registers. Data registers are sets of 
flip-flops with independent parallel input paths and 
common control. Shift registers are sets of flip-flops with 
serial data relationships. Both are composed of 
combinatorial variations of signals supplying the data 
input of the basic edge-triggered D flip-flop. 

Counters 

Counters are a simple example of a state machine with a 
regular sequence. The most familiar counters are the 
binary weighted sequence, the Johnson (Mobius) coun­
ter and the Liner Feedback Shift Register. Johnson 
counters often offer advantages for counter designs 
with a modulo of less than 1 O or 12. They also lend 
themselves to simple placement and routing, and the 
simple combinatorial functions shown in Figure 17 are 
compatible with maximum clock frequency. Decodes of 
single or consecutive states are simple and "glitch" free. 
The initialization of the Logic Cell Array clears all storage 
elements. However due to the presence of unused 
states, the Johnson counter might enter an alternate 
state sequence if there are asynchronous control 
inputs. As shown in Figure 17, additional input variables 
from QB and OD in the feedback function can return the 
count to the proper sequence. 

The implementation of a large-modulo CMOS binary­
weighted counter presents the designer with a number 

OUTPUT COMBINATORIAL SETUP 

14----rcKo •I• T1Lo------T1cK---~ 

CLB ·•·11 
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.............. . . ' . ~! t 
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11-H>:: 
IOB 

[ . 
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Figure 15. Examples of Speed Factors 
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delay. A compromise can be made by use of block level 
carries. The 3-bit segment size shown in the lower half 
of the figure accommodates the three stages and a carry­
in within the CMOS 4-input gate limit. The only 
combinatorial delays involved are those of T3' and T6'. 
Without a clock enable, input the first section could be 4-
bits followed by 3-bit sections. The designer should be 
observant for design trade-offs and not try to fit a 
standard solution into all applications. Figure 21 shows 
another synchronous 8-bit counter with a single level of 
combinatorial propagation. It illustrates the merging of 
sequential elements and combinatorial elements of the 
CLB. Periodic look-ahead carry terms are implemented 
to make efficient use of variables within the block. 

Synchronous Architecture 

of trade-offs. The most effective in terms of resources is 
a simple ripple counter, but the accumulation of multiple 
clock-to-a flip-flop delays can be prohibitive as the 
outputs ripple for varying times. Figure 18a illustrates a 
synchronous toggle flip-flop. It changes state synchro­
nously if "T' is HIGH. It is shown with its simplified 
symbol in Figure 18b. The AND of two inputs to 
produce the "T" is shown symbolically in Figure 18c. 
Figure 19 shows a fully synchronous counter solution 
composed of T flip-flops. Its toggle ripple carry is 
implemented for each bit by adding a carry gate which 
tests the previous toggle carry and the state of its flip­
flop in a 'daisy chain' fashion. The clock rate is 
determined by the total propagation time for the carry 
path from CLKENA to data setup of the last bit. The fully 
parallel counter of Figure 20a implements each toggle 
function directly. It will require an n-wide gate for toggle 
control of each bit of the counter. This design may be 
extended to 12 bits of counter with a single combi­
natorial propagation delay between register CLBs, plus 
one clock-to-a, one set-up time, and interconnection 

Efficient LCA-based designs may depart from MSI • 
implementations. MSI elements were designed using 
another technology and with a goal of creating general­
purpose building blocks. Most were designed to fit a set 

0010024 16 
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of standard package sizes and remaining pin functions 
were chosen to provide a useful standard product. In an 
LCA design it is advantageous to implement the specific 
logic function needed in a way that uses a minimal 
number of blocks and routing. It is often possible to 
adapt the logic to minimize the effects of constraints 
such as availability and function of logic elements and 
routing resources. This will allow optimization of logic 
capacity and performance. 

Implementation of many designs in LCAs and gate 
arrays has indicated that the three- and four-variable 
capability of the Configurable Logic Block is a good 
balance. Using a conventional logic diagram and group­
ing combinatorial functions will give an approximate CLB 
count. In register-intensive designs the number of flip­
flops needed determine the logic capacity and related 
combinatorial functions are merged with the sequential 
portions. 

Figure 22 shows a design example. It incorporates a 
counter which sets and resets output control bits at 
specific times in the sequence. Decodes of the desired 
states with NANO gates drive the asynchronous set and 
reset inputs of flip-flops. When the counter increments 
to state D it should asynchronously reset to 0. Since the 
counter bits in an MSI device are matched, this might 
operate if it were an MSI device. For implementation of 
this counter in a gate array or LCA the decodes of the 
counter states will involve mismatched loading and 
layout, of various bits of the counter. As a result the 
decode gates will be likely to produce output spikes 
which causes erratic operation of the output control flip­
flops which use these signals as asynchronous inputs. 
Although the decode spikes may be too narrow to be 
noticed during design verification, they might produce 
erratic output control changes in operation. The 
decode of the terminal count has the potential for spur­
ious outputs. Even with a valid terminal count decode, a 
mismatch in counter bit speeds could result in some bits 
being reset and terminating the reset state decode 
signal before all bits of the counter are reset. This could 
leave the counter in an undefined or incorrect state. 

The Linear Feedback Shift Register in Figure 23 is an 
alternative to an asynchronous-reset binary counter. 
This class of counter follows a less familiar sequence, 
but its decodes of specific counts are predictable. Use 
of OR/AND feedback for inputs on the output flip-flops 
results in a synchronous set/reset function for the 
output control bits, making them immune to decoding 
spikes. Notice that the resulting X and Y sequences are 
identical, although the counter sequences differ and 
the control decodes of the synchronous version 
represent the state before X or Y transition. This design 
revision also provides timing control of the output by the 
clock rather than by the accumulation of delay from clock 
to the counter output, to the state decode, and through 
the flip-flop to the output as in the 'ripple' imple-
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x y 03 0201 Oo 
Sx 1 0 0 0 0 0 0 

0 1 0 0 0 1 
0 2 0 0 1 0 

CLK CLK 1 Sy3 0 0 1 1 (/) 

1 1 4 0 1 0 0 ::::> 
0 

CLR Rx 0 5 0 1 0 1 ~f-
00 01 02 03 0 6 0 1 1 0 c:W 

0 1 7 0 1 1 1 5~ 
0 1 8 1 0 0 0 

zc: 
>-

0 0 Ry9 1 0 0 1 (/) 
<( 

0 0 A 0 1 0 
0 0 8 0 1 1 
0 0 c 1 0 0 

1 0 1 

s 
Q 

x 

R 

s 
y 

Q 

R 

CLOCK 

QA (COUNTER) 

0 8 (COUNTER) 

QX/Y __A_ 

ACCUMULATED ERRATIC 
DELAY OPERATION 

0010024 22 

Figure 22. Simple "Ripple' State Machines 

2-92 



I c(]( 

QA QB QC OD - -PojD Ohr°jD O~D OHr°:iD QI--< 

l 

I 
CLK 

REk-Q 
I 

I\) 

cb 

I 

w 

I 

0010024 23 Figure 23. Synchronous State Machine 

I • 

x y 
1 0 0 
1 0 1 
1 o Sy 2 

Rx 1 1 3 
0 1 4 
0 1 5 
0 1 6 
0 1 7 
0 1 Ry 8 
0 0 9 
0 0 A 
O 0 B 

Sx 0 O C 

QAQB OcOo 
0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
0 1 1 1 

0 1 1 
1 0 1 

0 1 1 0 
0 0 1 1 
1 0 0 1 
0 1 0 0 
1 0 1 0 
0 1 0 1-
0 0 1 0 
0 0 0 1 -
1 1 1 1±:> 

Q 

D Q 

... 
w 
Cf) 
w 
a: 

M 



A Design Methodology for the Logic Cell Array 

documentation, the parameter order is indicated in the 
syntax statement. Users may create customized macros 
in their own directories by using the cutmacro command. 

Execution of a macro involves providing a set of parame­
ters for the executing file. The parameters must be 
entered in the order required by the macro, and must 
include such information as an instance name, names of 
networks providing inputs and block locations. The 
instance name is used by the macro to compose unique 
block and net names to distinguish each use of the 
macro. 

An LCA design may be created with edit commands and 
macro executions, which may in turn be modified with 
the editor commands. Portions of that design may then 
be incorporated into a new user macro. For example, it 
may be desirable to create a one-bit slice of logic which 
may include several Configurable Logic Blocks. Multiple 
installations of that macro may be used to implement a 
logic unit such as a data path. A user-defined macro 
describing a section of counter may be used to 
generate a unit of control logic. 

IN 
CLOCK~ 

I 

I 

INJ: 
I 
I A_µ-
I 

BJ: 
I 

IN D a 

In creating macros the designer uses the keyboard or 
mouse to specify blocks of a design, that are to be 
included in the macro. The software will assign a 
parameter for each network needed as an input and 
each CLB and 108 used. All block names and netnames 
sourced by the macro blocks will be included in a .MAC 
file in the current directory. When the macro is invoked 
the system will prompt for parameters in the order they 
are needed. The first is always the instance name. This 
name is used to differentiate one instance of a macro 
from another instance of the same macro in the same 
design. The instance name is added as a prefix to the 
macro's original netnames for all nets driven by blocks 
included in the macro. This groups net names for Query­
Block. The instance name will be added as a suffix to 
the original block names of all blocks of the macro to 
allow the first characters of the block names to show in 
the editor display. All block and net names must be 
unique. The names A, B, C, D, K, I, 0, X and Y are 
already used for block pin names. AA through last 
row/column and P1 through highest pin number are 
used as block names. Some additional names are 
assigned to configuration and power pins. 

D a 

D a 

CLOCK 

D a 

'-------+---! D 0 

CLOCK ----------------<...._-t> 
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Figure 24. Synchronization of an Asynchronous Input 
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The following is a copy of the macro for the FDR, a 
simple D-type flip-flop which provides a synchronous 

reset. The first two lines are comment lines indicating 
the syntax and parameter order. 

0010024 25 

;MACRO FDR Name Clock 

%1 %2 

Parameter NAME ? Enter instance name: 
Parameter NET Clock Select Clock net: 
Parameter NET Data Select Data net: 
Parameter NET Reset Select Reset net: 

Parameter CLB ? Select %1 block: 

Nameblk %5 %1 

Editblk %5 
Base 3var 

Data 

%3 

Reset 

%4 

Location nameblock 

%5 NAME 

Parameter statements specify 
parameter type, the default 
names for nets, followed Parameter 
by the Select prompts 
for the editor screen. 

Editor commands to name the 
block %5 (fifth parameter) 

Config X:Q Y:Q F:B:C G: Q:FF SET: RES: CLK:K 
Equate F = B*-C 

with the instance name (%1) 
Edit the block (%5) and define 
its configuration and equation. 

Endblk 

Addpin %2 %5.K 
Addpin %3 %5.B 
Addpin %4 %5.C 
Addpin %1Q %5.X 

CLOCK 

IN 

QA 

OB 

START 

m1 

Addpin commands define the nets. The first 
parameter variable is the name (or default) 
supplied by that parameter in the installation 
statement. The %1Q is a Q concatenation on 
the instance name %1. 

\\\\\\ 

TRANSITION I 
--~ 

\,____ ____ / \_ 

Figure 25. Data Synchronizer and Fiiter 
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The following is a copy of the macro for the GOSC, a 
simple oscillator which uses two external R-C networks, 

two input output blocks and one configurable logic 
block functioning as a set-reset latch. 

;macro GOSC Name LocQ LocCQ LocCQL 

%1 %2 %3 

Parameter NAME ? Enter instance name: 
Parameter CLB ? Select %1 CLB block: 
Parameter IOB ? Select CQ%1 I/O block: 
Parameter IOB ? Select CQL%1 I/0 block: 

Nameblk %2 %1 
Editblk %2 
Base 3var 

%4 

Parameter statements 
defining parameter type 
and screen prompt. 

Config X:F Y:G F:A:C:B G:A Q: SET: RES: CLK: 

Assigns the first 
parameter (%1) as 
block name to block 
specified by (%2) 
and configures it. Equate F -B*(C+A) 

Equate G = -A 
Endblk 

Nameblk %3 CQ%1 
Editblk %3 
Base IO 
Config I:PAD BUF:TRI 
Endblk 

Nameblk %4 CQL%1 
Editblk %4 
Base IO 
Config I:PAD BUF:TRI 
Endblk 

Addpin %1Q %2.X %2.A %3.0 %3.T 
Addpin %1Reset %3.I %2.B 
Addpin %1Set %4.I %2.C 
Addpin %1QL %2.Y %4.0 %4.T 

The order and concatenation of Xilinx library macros has 
been chosen for consistency. When a user macro is 
created the net parameters are chosen in the order that 
they are encountered by the cutmacro process. The 
block order is the same as the order selected when 

Assigns the CQ prefix 
to instance name for 
the block selected as 
the third parameter 
and configures it. 

Assigns the CQL prefix 
to block name for the 
fourth parameter and 
configures it. 

Creates nets of names 
with concatenation to 
the pins .x, .a, .o, .t 
etc. of the blocks 
identified by the %2, %3, 
%4 parameters. 

created. The user may use a text editor to rearrange 
parameter order or redefine the concatenation strings. 
Care should be exercised to maintain a match between 
all uses of any parameter (o/on) 

P/N 0010024 01 
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INTRODUCTION 

Historically, designers used multiple 74-series TTL 
devices to implement various digital counters. However, 
in application specific intergrated circuit (ASIC) designs 
the overall performance and effective utilization of a 
counter depends on the type of counter used and upon 
the architecture of the ASIC device employed. The 
flexible array architecture found in the Xilinx Logic Cell™ 
Array (LCA) provides the designer with numerous 
options when implementing counters. Implementing a 
design on "uncommitted" silicon is different from being 
forced into an inflexible, fixed architecture. Accordingly, 
a designer can optimize a counter to meet his specific 
application needs. Tailoring a counter for an application 
reduces the amount of wasted silicon resources 
associated with fixed-architecture logic devices. 

Within a Logic Cell Array, a designer can implement 
various counter types, including 

• Binary counters (2" possible states) 
• Johnson counters (2n possible states) 
• Linear Feedback Shift Registers 

(2"--1 possible states) 
• Up/Down counters (typically binary) 

• Heterodyne (mixed modulo) 

~ltllii£~~~~ii~: 
By selecting the proper type of counter or even the right 
mix of counters, a designer maximizes performance and 
utilization within an LCA design. Choosing the right 
counter for the application depends on whether the 
counter application requires 

• Binary or non-binary counting sequence, or 
• High or low counter modulo, or 

• Optimal performance, or 
• Optimal register and routing resource efficiency. 

Some counter applications require control signals which 

Counter Examples 

may include parallel load of data, clock enable, 
synchronous or asynchronous SET or RESET, 
UP/DOWN control, or others. Synchronous binary 
counters are widely-used in digital design but their 
complexity can degrade their overall speed and 
effectiveness. The extra routing and logic required to 
implement a wide toggle lookahead-carry function, for 
example, quickly consumes the resources available in I 
any logic device (a toggle lookahead-carry should not be 
confused with the lookahead-carry used in arithmetic 
logic). For speed, ease of routing, and glitch-free 
decoding, Johnson counters are often the best solution 
for applications of modulo ten or less. If a non-binary, 
pseudorandom counting sequence is acceptable, 
Linear Feedback Shift Register (LFSR) counters can 
best implement counts above modulo 32. • 

The purpose of this application note is to help the 
designer choose which counter to use for specific 
applications in the XC2064 and XC2018 Logic Cell 
Arrays (LCAs). Another goal is to help the designer start 
thinking about alternatives to 7400-series counters. 
There are various means of attacking the same counter 
application. A designer should use a specific type of 
counter to fill a specific application-not because it is the 
only counter type available but because it is the best 
counter for the specific application. The LCA gives the 
designer added flexibility, and this application note 
suggest ways to take advantage of this flexibility in 
counter designs. Descriptions of various counter 
applications are provided with examples wherever 
possible. 
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Resource Efficiency 

Binary counters are more register efficient than other 
counter types since their capability increases as the 
exponent of the number of registers, as shown in Figure 
1. Binary counters have up to 2" possible states. 
Sometimes, however, the more complex routing of a 
binary counter can make it less silicon efficient than a 
comparable counter of a different type. With only one 
less state than a binary counter of comparable size 
(2"-1), Linear Feedback Shift Registers follow closely 
behind in counting capability. The ease of routing within 
an LFSR counter design sometimes outweighs their 
non-binary, pseudorandom counting sequence. 
Lowest on the list of register efficiency is the Johnson or 
Mobius counter. With only 2n possible states, Johnson 
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counters are less resource-efficient for modules much 
higher than 12 (six registers). However, extremely high­
performance Johnson counters can operate at speeds 
near the overall toggle frequency of the LCA since the 
counter logic and routing is simple. 

Since each Configurable Logic Block (CLB) within the 
XC2064 and XC2018 Logic Cell Arrays has a single flip­
flop or storage element, there is a direct relation 
between flip-flop efficiency and CLB efficiency. These 
terms are practically synonymous when referring to the 
counter bits required to implement a counter. Since 
some designs require additional logic beyond the logic 
associated with the flip-flop inside a CLB, some forms of 
counters require more CLBs than flip-flops. 

BINARY COUNTERS 

Overview 

This section addresses the design and associated 
topics regarding binary ripple, ripple-carry, and 
lookahead-carry counters. The performance of a binary 
counter increases with the amount of lookahead-carry 

220 

218 

216 

214 

212 

COUNTER 210 
MODULO 

28 

26 

24 

22 

20 

0 5 

performed at each counter stage. Simple ripple 
counters have no lookahead-carry and are the lowest­
perfomance binary counter. Higher-performance binary 
counters require additional silicon resources to decode 
and propagate the carry signals. The ripple-carry and 
lookahead-carry counters require partial or full decoding 
of all of the previous counter bits. This requires extra 
logic and routing resources for the carry signals but buys 
increased performance. 

Binary counters operate differently depending on the 
amount of lookahead carry. Simple ripple counters 
operate asynchronously since they do not generate 
carry signals, whereas ripple-carry and lookahead-carry 
counters are synchronous. Typically synchronous 
design is safer since it is more immune to glitches. 

Ripple Counters 

In simple binary ripple counters, as shown in Figure 2, 
carry signals are not generated. The output of each 
counter stage asynchronously clocks the next counter 
stage. The resource requirements to implement a ripple 
counter are low-only one CLB per counter bit 
regardless of counter length. The routing for a binary 

JOHNSONCOUNTERS 
2N STATES (LINEAR) 

20 

10 15 20 

COUNTER REGISTERS 
0010023 1 

Figure 1. Different types of counters require different amounts of registers and resources for the same task. 
The capability of binary counters Increases exponentially with the number of bits while Johnson counters 
increase only linearly. 
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ripple counter is also simple. The penalty for this 
simplicity is lower performance. Each counter bit 
degrades the overall performance by a CLB delay time. 
The overall counter clock period must be greater than or 
equal to the total delay of all the CLBs used to 
implement the counter, as shown in Equation 1. 

Binary ripple counters are primarily used only in 
applications that require optimal device utilization 
without regard to performance. The increased silicon 
utilization is gained by eliminating carry signals. 
However, the flip-flops within a binary ripple counter are 
asynchronously toggled in operation. There are 
synchronous forms of this counter that have better 
performance and require the same resources. This is 
true because of the flexible array-type architecture of 
the LCA and because of the capability of a single CLB. 
An example is shown in Figure 3. This synchronous 
binary ripple-carry counter still requires only one CLB 
per bit. Since the ripple-carry includes only the previous 
counter stage, resource requirements are minimal. Its 
synchronous design affords more reliable operation. 

Ripple Counter = N • (Clock to Output Delay [1] 
Clock Period 

where 

N 
Clock toOutput 

= number of ripple counter flip-flops 
= Tcko for K-clock input 

0010023 2 

= Tcco for C-clock input 
= Tcio for logic clock input 

CLOCK(-) 

RESETDIR 

Figure 2. Binary ripple counters are simple to Implement and can be cascaded to nearly any desired length. 
Their disadvantage stems from their asynchronous operation and their degraded performance with each 
additional counter bit. They are not recommended for most designs because of their asynchronous operation. 
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0010023 3 

C28CR C2BCR C2BCR C2BCR 
MACRO MACRO MACRO MACRO 

Figure 3. A single-bit ripple-carry counter requires as few resources as a standard ripple counter but has 
synchronous operation. While highly CLB efficient, this design does have performance below counters with 
greater amounts of ripple-carry and below all lookahead-carry counters. 
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Although the single-bit ripple-carry counter requires few 
resources, it still suffers from lower performance, much 
like the standard ripple counter. It also exhibits lower 
peformance with each additional CLB or flip-flop. 

Ripple-Carry Counters 

The design shown in Figure 3 is just one example of a 
binary ripple-carry counter. Ripple-counters have been 
used by designers for quite some time. In the past, 
designers typically implemented large binary ripple-carry 
counters with conventional 74-series logic devices. 
Designers tended to cascade the ripple-carry output of 
one 4-bit counter segment with the enable of the next 4-
bit counter segment to build larger counters. Counter 
implementations within an LCA do not lend themselves 
to the "one size fits all" approach of the 74-series 
devices, since the architectures are different. However, 
some of the general ideas still apply. 

Table 1 shows the wide variety of possible binary ripple­
carry counters to eight bits in length. Larger ripple-carry 
counters are possible but there are far too many 
permutations to mention them all. The counters shown 
in the table consist of smaller counter segments, each 
with its own terminal count and clock enable. Larger 
counters can be built by cascading these segments 
together. The terminal count of one segment feeds the 
clock enable of the next segment and so on. The 
cascaded connection of the terminal count to clock 
enable is called a ripple-carry. 

By cascading various counter segment macros together 
in the proper order, a designer can construct counters 
with various performances and control inputs. The table 
indicates the counter size in bits and in total modulo. 
The table also indicates whether CLOCK ENABLE (CE) 
or TERMINAL COUNT (TC) is available for that particular 
counter. The number of CLB logic levels required to 
implement the counter function. is displayed under 
"Ripple Levels". The higher the number of ripple levels, 
the slower the counter will run since each ripple level 
corresponds to a single CLB block delay. 

The actual number of CLBs needed to implement a 
counter function depends on the number of control 
signals required. Wheras a simple CLOCK ENABLE 
(CE) and RESET take minimal resources, a PARALLEL 
ENABLE (PARENA) typically requires an additional CLB 
as shown in the table. 

DESIGN EXAMPLE 1. Escaping from the TTL "one size 
fits all'' approach. Building an eight-bit ripple-carry 
counter with 7 4-series TTL and with an LCA. 

Assume that a counter application requires an eight-bit 
binary counter with reset. Figure 4a shows a common 
implementation of an eight-bit counter using two 74-161 

TTL devices. A designer unfamiliar with the capability of 
the LCA might choose a similar implementation using 
two of the 74-161 counter macros available within the 
XACT™ Development System. However, a direct one­
for-one substitution is wasteful. It would require sixteen 
CLBs to implement the two 74-161 equivalent circuits. 

The Xilinx 74-161 macro contains the same functior;tality 
as a 74-161 device. Typically however, not all of the 
resources of a 7 4-161 are used in a design. This is the 
case in Figure 4a. Some of the CLB capability has been 
wasted on circuitry which will not be used for the design 
(Note: The Xilinx FutureNet Schematic Capture Library 
and Conversion Package reduces the macros to their 
primitive gate levels and then frees any unused 
resources). 

A more rational approach uses only the required amount 
of circuitry to implement the design. For example, it is 
simpler and more resource efficient to build the eight-bit 
counter with the generic counter macros available within 
XACT. Table 1 shows some of the possible macro 
combinations used to build an eight-bit counter. 

An equivalent counter built with two C8BC-rd counter 
macros and one C4BC-rd counter macro is shown in 
Figure 4b. The eight-bit counter is built with two 3-bit 
pieces and a single 2-bit piece. This implementation 
was chosen over using two 4-bit pieces since the former 
has superior performance. The 4-bit pieces each have 
two ripple-carry levels each. Therefore the eight-bit 
counter implemented with 4-bit pieces will have four 
ripple-carry delay levels overall. A similar implementation 
based on the two 3-bit pieces, and a 2-bit piece only has 
three ripple-carry delay levels, and therefore has higher 
performance. 

Building the 8-bit counter by cascading smaller counter 
macros reduces the number of required CLBs from 
sixteen to ten while simultaneously increasing 
performance. 

Generally large ripple-carry counters should be built with 
multiple 3-bit pieces instead of 4-bit pieces since there 
are fewer ripple-carry delays through a 3-bit piece. The 
various ripple-carry possibilities are described in Table 
1. When given a schematic drawn with 74-series 
devices, a designer should consider the function 
required for the application, and not blindly implement a 
one-for-one 74-series logic substitution. 

DESIGN EXAMPLE 2. 
asynchronous design! 

Avoiding the pitfalls of 

A common practice when designing with 74-series 
devices is to use the terminal count of a counter as an 
asynchronous signal to either RESET the counter or to 
load the counter with a predetermined value. Figure Sa 
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COUNTER SIZE AVAILABLE RIPPLE 
SELECTIONS LEVELS 

20 21] 22 23 24 2s 2s 27 (Modulo) CE TC 

s (4) x x 1 

FT C4B x 1 

C4B ] FT 
(8) 

x 1 

C8B x x 1 

FT C4B FT 1 

FT C8B x 1 
(16) 

C8B FT x 1 

C4B 1 C4B x x 2 

FT C8B FT - 1 

FT C4B C4B x 2 

C4B 1 (32) 
C4B FT x - 2 

C8B C4B x x 2 

FT C4B C4B FT 2 

FT C8B C4B - x 2 

C8B C4B FT (64) x - 2 

C8B C8B x x 2 

C4B ] C4B C4B x x 3 

FT CBB C4B FT 2 

FT CBB CBB x 2 

FT C4B C4B C4B - x 3 

CBB C8B FT 
(128) 

x - 2 

C4B I C4B C4B FT x 3 

C8B C4B C4B x x 3 

FT CBB CBB FT 2 

FT C4B C4B C4B FT 3 

FT C8B C4B C4B x 3 

CBB C4B C4B FT 
(256) 

x 3 

CBB CBB C4B x x 4 

C4B l C4B C4B C4B x x 4 

NOTE: THE ABOVE COMBINATIONS MAY BE CASCADED FOR LARGER MODULO. 
CE/CLKENA =CLOCK ENABLE 
PARENA = PARALLEL ENABLE 
FT= TOGGLE FLIP-FLOP 
TC= TERMINAL COUNT 

CLKENAOR 
CE& RESET 

CLBs 

3 

3 

4 

4 

4 

5 

5 

4 

6 

5 

5 

6 

6 

7 

7 

8 

6 

8 

9 

7 

9 

7 

8 

10 

8 

9 

9 

10 

8 

Table 1. Binary ripple-carry counters from two to eight bits. 
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CLKENA 
&PARENA 

CLBs 

3 

4 

4 

5 

5 

6 

6 

6 • 7 

7 

7 

8 -8 

9 

9 

10 

9 

10 

11 

10 

11 

10 

11 

12 

11 

12 

12 

13 

12 
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0 74-161 

ENABLE 

MR 

CLOCK 

CLEAR 

00-03 04-07 

Figure 4a. An eight-bit counter with reset built with two 74-161 TTL devices. Notice that not all of the device 
connections are used to implement the function required. A direct 74-series substitution proves wasteful. 
Use only the logic required to implement the required function. 

r--------------------------------------------------------------,--------------------------------------------------------------,--------------------------------------------1 

L.--------------------------------------------------------------J--------------------------------------------------------------1-------------------------------------------
MACROCBBC-RD MACROC8BC-RD MACRO C4BC-RD 

Figure 4b. A better implementation of an eight-bit ripple-carry counter based on various macros from the XACT Development 
System. When designing with an LCA, an engineer can tailor his logic so that the LCA performs the required function with the 
minimum amount of logic. 
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Figure 5a. The asynchronous design practices of 74-series TTL devices are discouraged. An asynchronous design is less 
reliable and riskier since it Is unforgiving to unknown design conditions. 

Figure Sb. Synchronous design provides more relable operation. 
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demonstrates how a similar design might be 
implemented within an LCA although the asynchronous 
implementation is not recommended. The drawback to 
this design is that it is potentially unreliable. The terminal 
count (and RESET signal) is generated by ANDing all of 
the register outputs. When the counter reaches state 
1111, the asynchronous RESET signal is asserted. Not 
all of the registers will be reset simultaneously because 
of the delay along the RESET network. Since the 
RESET signal is formed by the AND of the register 
outputs, the RESET signal will no longer be asserted 
and the remaining registers may fail to reset if any one of 
the registers is reset before the others. 

The asynchronous RESET signal will also experience 
decoding glitches as the various counter bits propagate 
through their nets to the AND gate. Any glitch on this 
signal can partially reset the counter. 

An improved design appears in Figure Sb. In this 
example the RESET signal is asserted synchronously. 
This gives the synchronous RESET signal until the next 
clock edge to propagate to all of the CLBs and also 
prevents any of the CLBs from being reset by glitches 
on the RESET line. Since both asynchronous and 
synchronous RESET require a single CLB input, no 
more resources are required to build a completely 
syn9hronous design than the more risky asynchronous 
design. In general, synchronous design practices apply 
not only to counter design, but to all digital designs. 

Lookahead-Carry Counters 

There are applications where binary ripple and ripple­
c:ury counters are too slow. In such cases, synchronous 
binary counters with lookahead-carry are an answer. 
Building high-performance synchronous binary 
counters within an LCA is a simple process but, it 
involves a few special techniques. 

High-performance synchronous counters derive their 
speed by decoding lookahead-carry signals from all of 
the previous counter stages. There is not a ripple-carry 
as described earlier-all of the previous counter outputs 
are decoded to form a single lookahead-carry signal for 
each counter stage. Combining all of the ripple-carry 
into a single lookahead-carry reduces overall design 
delays and increases performance. 

Decoding lookahead-carry signals requires additional 
Configurable Logic Blocks (CLBs) in addition to more 
routing resources. The additional CLBs allow faster 
counters to be built. Higher performance is obtained by 
increasing the number of CLBs required to perform the 
function (divide and conquer!). 

The generalized equation for synchronous binary 
lookahead-carry counters is given in Equation 2. 

00 = ((CE• RESET• PARENA) e 00) [2] 
+ PARENA• DO 

01 = ((CE• RESET• P~A~R=EN-A • 00) E0 01) 
+ PARENA * D1 

On= ((CE• RESET• PARENA • 00 • 01 • ... • On-1) 
e On) + PARENA * Dn 

where 

CE 
RESET 
PAR ENA 
On 
Dn 

= Clock Enable 
= Register Reset 
= Parallel Enable 
= Register Value 
= Register Input Value 

Th~ .complexity of the counter can be reduced by 
om1tt1ng one or more of the control signals (i.e., CE, 
RESET, etc.). For example, one way to remove RESET 
is to realize that all of the registers in the LCA are reset 
after configuration or any time the device RESET line 
has been asserted LOW. 

From the generalized equation shown above, the 
overall complexity of the design grows with each 
additional counter bit. Since the CLBs within the 
XC2064 and XC2018 have up to four and sometimes 
five inputs, the logic equations for the counter bits need 
to be partitioned into smaller pieces. Design Example 3 
describes the partitioning of a 10-bit counter. 

DESIGN EXAMPLE 3. A 10-bit synchronous binary 
counter with CLOCK ENABLE (CE) and 
RESET_DIRECT (RESET) 

The. 10-bit binary counter requires 14 Configurable 
Logic Blocks (CLBs)-ten blocks to implement the ten 
counter registers plus four additional blocks to generate 
the lookahead-carry logic. The clock signal (CLOCK) 
connects to the global clock buffer (upper left-hand 
corner of the die) to minimize clocking skew to each of 
the counter registers. The RESET_DIRECT signal 
feeds into the reset-direct input to the flip-flop in each 
CLB (the D-input to the CLB). 

The set of logic equations for each CLB used in this 
counter appears in Equation 3. 

BitO = ClkEna E9 QO (3) 
Bitl = (ClkEna * QO) ED Ql 

Bit2 = (ClkEna * QO * Ql) ED Q2 
q02_CE = QO * Ql * Q2 * ClkEna ;lookahead­

carry of bits 
O thru 2 
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Bit3 q02_CE © Q3 

Bit4 (q02_CE * Q3) © Q4 

BitS (q02_CE * Q3 * Q4) © QS 
q35 = Q3 * Q4 * QS ;lookahead-carry 

Bit6 = (q02_CE * q35) © Q6 
q36 = Q3 * Q4 * QS * Q6 

Bit7 = (q02_CE * q36) © Q7 

of bits 3 thru 5 

;lookahead-carry 
of bits 3 thru 6 

Bit8 = (q02_CE * q36 * Q7) © Q8 
q78 = Q7 * QB ;lookahead-carry 

of bits 7 and 8 

Bit9 = (q02_CE * q36 * q78) © Q9 

There are two more vertical long lines than horizontal 
long lines in each routing channel. The counter is 
placed in a vertical orientation so that both of the high­
fan-out lookahead-carry signals (q02_CE and q36) 
connect to long lines. By routing both the q02_CE and 
q36 lookahead-carry signals on long lines, the routing­
dependent delays are greatly reduced and the counter 
performance is increased accordingly. The layout for 
this counter is shown in Figure 6 on an XC2064 die 
picture. An eight-bit example of a lookahead-carry 
counter is expressed in schematic form in Figure Sc. 

DESIGN EXAMPLE 4. Loading a counter with an initial 
value. 

Preloading a counter with an initial value is desired in 
some designs. Within an LCA design, this is 
accomplished with the asynchronous SET and RESET 

· inputs to a CLB or through synchronous SET and 
RESET inputs. Figure 7 shows a four-bit binary counter 
which can be set to an initial value of 0100 binary before 
counting begins. This is accomplished by having three 
of the CLB registers asynchronously RESET through 
input-D and one CLB register asynchronously SET 
through input-A. 

Binary Counter Summary 

An n-bit binary counter has 2n possible states. Even 
within the general category of binary counters, there are 
various ways to implement a counter function. Typically, 
highly resource-efficient binary counters have degraded 
performance, whereas high-performance binary 
counters require additional resources. 

Use of ripple counters is discouraged because of their 
asynchronous operation. Ripple-carry counters are 
easily constructed with the macros available within the 
Xilinx XACT Development System. For high­
performance binary counter operation, lookahead-carry 
counters are recommended. 

As an illustrative example, Figure S shows three eight-bit 

counters. The first (Figure Sa) is implemented as a ripple 
counter, the second (Figure Sb) as a ripple-carry counter 
and the third (Figure Sc) as a lookahead-carry counter. 
Note the resource requirements and the relative 
performance of each implementation. 

JOHNSON COUNTERS 

Overview 

A Johnson (or Mobius) counter can be thought of as a 
special type of shift register. In a Johnson counter, the 
last bit of the shift register is inverted and then fed back 
into the first bit, as shown in Figure 9. Only a single bit 
changes during a clock transition, as shown in Figure 9. 
Therefore each state, or contiguous states of a Johnson • 
counter can be decoded, without glitches, using only a 
two-input AND gate. This structure and counting 
sequence allows an N-bit Johnson counter to count up 
to 2n possible states as opposed to the 2n possible 
states allowed in a binary counter. 

Since the placement and routing of Johnson counters is • 
simple, extremely fast Johnson counters are possible. 
A well designed Johnson counter can approach the 
toggle frequency of the LCA (minus any routing delays). 
One drawback to Johnson counters is that their 
capability increases only linearly with additional bits as 
opposed to exponentially like binary counters. Johnson 
counters become less efficient at modules greater than 
ten or twelve. Another potential drawback stems from 
the invalid counter states possible in a Johnson counter 
sequence (there are 2°-2n possible invalid states). 
Invalid states can be cleared eventually with a small 
amount of additional logic (see Design Example 5). 

Johnson counters can only be effectively implemented 
in the flexible array architectures like those found in gate 
arrays and in LCAs. In array architectures, the signals 
from internal registers can be easily routed to other 
registers within the device. A Johnson counter can 
even be built with the storage elements located in the 
Input/Output Blocks (IOBs) of the LCA (see The Ins and 
Outs of Logic Cell Array lnpuVOutput Blocks). Similar 
implementations in PLA-type (sum-of-products) 
architectures are ineffcient since registers are typically 
hard-wired to outputs. 

DESIGN EXAMPLE 5. Building Johnson counters with 
odd modules (2n-1). 

Odd modulo Johnson counters (2n-1) require few more 
resources than their even modulo (2n) counterparts. A 
standard Johnson counter uses only an inverting 
feedback from the last bit to the first bit. In a modulo 
2n-1 Johnson counter, a NOR of the last two 
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Figure 6. Wide, lookahead-carry counters should have a vertical orientation to make maximum use of the 
vertical long lines to propagate lookahead-carry signals. 
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bits fed back into the first bit forces the counter to skip a 
single state, as shown in Figure 1 O for a four-bit 
Johnson counter. The designer should be aware 
however, that not all of the counter states can be 
decoded glitch-free in an odd-modulo Johnson 
counter. A potential glitch may occur whenever two bits 
change during one of the clock transitions, as indicated 
in Figure 10. 

The added NOR feedback gives the counter an 
additional capability. If the Johnson counter ever gets 
into an "unallowed" state, the NOR feedback eventually 
forces the counter back into its normal counting 
sequence, again shown in Figure 1 O. 

DESIGN EXAMPLE 6. Building a fast clock divider using 
a Johnson counter. 

In many designs, counters are used to divide an 
incoming clock signal to derive lower-frequency clock 
signals for other portions of the logic. Sometimes this 
proves difficult if the frequency of lthe incoming clock is 
extremely high, or if only a binary counter is allowed 
because of the fixed architecture of the logic device. 

One method of building a clock divider is to use a 
Johnson counter. The simple placement and routing of 
Johnson counters makes them extremely high 
performance, if designed correctly. A well-designed 
Johnson counter can operate at nearly the maximum 
toggle frequency of the LCA. Another benefit of a 
Johnson counter is its ability to generate glitch-free 
decoded outputs of the counter state by ANDing only 
two of the register outputs. The circuit shown in Figure 
11 demonstrates the use of a Johnson counter to 
derive a variety of clock frequencies and phases from a 
single incoming clock source. Typically a clock that is 

CLKENA 

CLOCK 

INIT 

nearly any integral divisor of the input frequency can be 
derived. Since the counter in Figure 11 is modulo 6, the 
frequency can be divided by 2, 3, or 6. Duty-cycles are 
available in 100%/DIVIDER increments (or 16.67% for 
the three-bit example). Phase shifting can be done in 
increments of 360 degrees/MODULO or 60 degrees for 
the three-bit Johnson counter (360/6 = 60). 

Table 2 shows some of the various modules, duty­
cycles, and phase shifting that can be derived from the 
three-bit Johnson counter shown in Figure 11. 

DESIGN EXAMPLE 7. Building fast binary counters with 
a Johnson counter prescaler. 

Higher frequencies reduced with Johnson counters can 
be fed into lower performance counters. For example, 
instead of requiring a 10-bit synchronous binary counter • 
to operate at near the toggle rate, the same counter can 
be designed with a two-bit Johnson counter as a two-bit 
prescaler, and a lower-frequency synchronous binary 
counter as the most-significant eight-bits. The entire 
counter can appear to operate at the toggle frequency 
when, in actuality, only the Johnson counter operates 
that quickly and the binary counter operates at a quarter -
of that speed. Figure 12 shows a counter built with both 
a Johnson counter and a binary ripple-carry counter. 

Since binary counters are capable of counting to higher 
modulos than Johnson counters with the same number 
of flip-flops, they are more resource efficient for higher 
modulos. But since Johnson counters can be built with 
minimal delays, they are higher performance than binary 
counters. By mixing the two types into a single "hybrid" 
counter, the designer can optimize both speed and 
resource utilization. 

TC 

0010023 7 

Figure 7. Use the asynchronous SET and RESET pins available within a CLB to preload a counter with an lnital value. 
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Figure Sa, Ripple counters are discouraged because they are asychronous. 

Figure Sb. Ripple-carry counters are synchronous and are resource efficient. However, the performance of a wide ripple-carry 
counter will be degraded because of the number of ripple-carry delay levels. 
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Figure Be. Lookahead-carry counters are the highest performance binary counters. However, their complexity can make them 
more dHficult to implement H they are exceedingly wide. 
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Counter Examples 

CLOCK 

RESET 

00 

STATE TABLE 

00 01 Q2 03 

0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
1 1 1 1 
0 1 1 1 
0 0 1 1 
0 0 0 1 

01 02 03 

® 
0010023 9 

Figure 9. Johnson (or Moblus) counters can be thought of as a special form of shift register. Only a sing le bit 
changes during a clock transition. Johnson counters have 2n possible states. 

01 02 03 

( xxxx) = INVALID ST A TE 

Figure 10. Johnson counters can have odd modulos (2n-1) by means of adding simple feedback logic. 
Feedback logic also converts Invalid counter states back Into valid counter states. 
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CLOCK 
DIVIDER/DUTY CYCLE/PHASE-SHIFT 

+ 6116.67%/0° 

6--1--+--ID--- + 3166.67%/240° 

+ 2150.00%/60" 

+ 6150.00%/0° 

+ 6183.35%/0° 

Figure 11. Johnson counters can provide decoded signals of various modulos, 
duty-cycles, and phase shift from an Incoming clock signal. 

DIVIDER DUTY-CYCLE PHASE-SHIFT LOGIC EQUATION 

2 50-00 0 -(QO @ Ql @ Q2) 
2 50-00 60 QO @ Ql @ Ql 

3 66.67 0 -(Ql @ Q2) 
3 66.67 60 QO @ Q2 
3 66. 67 240 -(QO @ Q2) 
3 33.33 0 QO*Ql*Q2 + -QO*-Ql*-Q2 
3 33.33 120 QO*Ql*-Q2 + -QO*-Ql*Q2 

6 16.67 0 -QO • -Q2 
6 16. 67 60 QO * -Q2 
6 16. 67 120 QO * Ql 
6 16. 67 180 QO * Q2 
6 16. 67 240 -QO * Ql 
6 16. 67 300 -Ql • Q2 
6 33.33 0 Ql • Q2 
6 50.00 0 -Q2 
6 66.67 0 -(-QO • Q2) 

6 83.35 0 -(-Ql • Q2) 

Note: - =negation 
@ = exclusive OR 

Table 2. The clocks of various modulos, duty-cycles, and phase-shifts derived from a three-bit Johnson counter. 
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In some designs, only the terminal count of a counter is 
used. Binary counters will produce glitches if all of the 
counter bits are decoded with a large AND gate. 
Johnson counters, however, are inherently glitch-free 
for simple AND decoding. Again by mixing the two 
types, a glitch-free decoded terminal count is produced. 
This is accomplished by using the Johnson counter 
outputs as part of the terminal count decoding circuitry, 
as shown in Figure 12. 

LINEAR FEEDBACK SHIFT REGISTER 
(LFSR) COUNTERS 

Linear Feedback Shift Registers (LFSR) counters (also 
called polynomial, or pseudo-random, or full-cycle 
counters), are another special type of shift register. 
Although an LFSR counter is similar in some ways to a 
Johnson counter, there is one important difference. 
Johnson counters can count to a maximum of 2n 
possible states. An LFSR counter, however, has nearly 
the same capability of a binary counter since it can count 
to 2"-1 possible states (the difference between binary 
and LFSR counters becomes insignifigant at high 
modulos). 

The counting sequence is the major difference 
between a binary counter and an LFSR counter. The 
counting sequence of an LFSR counter is non-binary 
and essentially pseudorandom (the pseudo random 
behavior of LFSR counters can be used to build 
encryption and decryption circuits as done in the Xilinx 
application note, A UART Design Example). 

LFSRs also have simple placement and routing, much 
like Johnson counters. Fast LFSRs are also possible, 
since the primary delay derives from decoding the 
feedback from the various counter bits. Although not all 
LFSRs will operate at the same maximum frequency as a 
Johnson counter, they will have superior performance 
to binary counters of nearly the same modulo. If the 
LFSR counts to 2"-1 instead of some lower modulo, it 
can operate near the toggle frequency of the device. If 
the LFSR counts to some lower modulo, the extra 
required logic lowers the overall performance. 

Like shift registers and Johnson counters, an LFSR 
counter can be built using only the registers in the 
Input/Output Blocks (IOBs) of the LCA and a few CLBs. 
This is discussed in detail in the Xilinx application note, 
The Ins and Outs of Input/Output Blocks in Logic Cell 
Arrays. 

An n-bit LFSR counter can produce a pseudorandom 
sequence of up to 2"-1 unique states. By adding logic 

to the feedback path, the LFSR counter can be forced 
to skip any number of states (from one to 2"-1). By 
forcing the counter to skip M states, a LFSR counter can 
implement any modulo as described in Equation 4. 

MODULO= (2"-1 ) - M 

where n = number of shift-register bits 
M = number of "skipped" states 

[4] 

Figure 13 shows the counting sequence for a three-bit 
LFSR counter with exclusive-NOR (XNOR) feedback. 
There are two counter states for which only the first bit 
differs (for example, locate the states 101 and 001). 
Inverting the feedback with an XOR or XNOR gate 
causes the counter to "skip" all of the states between 
the two indicated values. This can be accomplished by 
decoding (ANDing) the state just previous to the state to 
be skipped. Using this method and the proper 
feedback into the leading bit, a counter of any modulo 
from one to 2n-1 can be built. 

The designer should be careful to avoid the "stuck" 
state. The "stuck" state is the state missing from the 
2"-1 counting sequence (if the "stuck" state were 
included, the LFSR counter could have 2n possible 
states). This state occurs when the feedback path 
forces the counter into an ever-repeating single state. 
As a simple example, assume that a LFSR counter were 
built with a two-input exclusive-OR feedback path as 
shown in Figure 14. Upon configuration or external 
RESET, the counter would begin operation in the all 
zeroes state (000) and would be "stuck" in that state 
due to the type of feedback used (0 XOR O = 0). Thus, 
exclusive-NOR (XNOR) feedback is suggested for LCA 
designs since all register are reset upon configuration (0 
XNOR 0=1). 

An interesting thing occurs when all but the first bit of 
the "stuck" state is decoded (ANDed together) and 
included in the feedback path. Instead of counting over 
a possible range of 2"-1 states, the extra decoding 
causes the LFSR counter to count to all 2n states. 

Wider LFSR counters with higher possible modulos and 
more complex feedback mechanisms can be built but 
their analysis is well beyond the scope of this application 
note. Unfortunately there are no simple rules of 
determining which bits to use as feedback or which bits 
to decode to derive a specific skipping pattern. The 
basic concepts come to digital design via discrete linear 
algebra. Table 3 presents some of the possible 
feedback combinations for LFSR counters of three bits 
to ten bits in length. 
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Figure 12. Johnson counters are useful for implementing clock dividers or counter pre-scalars within an LCA. 
Decoding their states with a two-Input AND function provides glitch-free outputs. Johnson counters can 
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'STUCK' STATE 

~ 

Figure 13. The counting sequence for a three-bit LFSR using XNOR (excluslve­
NOR) feedback. All of the possible "skip" paths are Indicated. Also shown Is the 
"stuck" state. 
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Figure 14. A simple XOR LFSR counter which will be "stuck" In state 000 after configuration since all registers are reset. 
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DESIGN EXAMPLE 8. A modulo five Linear Feedback 
Shift Register (LFSR) counter. 

Figure 15 shows the schematic for a three-bit LFSR 
counter which implements a modulo-five (divide by five) 
counter. To generate a modulo five output from a three­
bit LFSR counter, two states must be skipped as 
indicated by Equation 4. The initial state from which the 
counter can jump two states is 101. By decoding the 
state (011) just prior the initial skip state (101), the sense 
of the feedback into the first bit can be inverted when 
fed into the XNOR feedback path. In operation, the 
counter will skip from state 011 to state 001, thus 
implementing a modulo five counter. 

The registers within the counter will initialize to state 000 
after configuration or after RESET is asserted. The 
counter sequence never enters the "stuck" state (111) 
because of the XNOR feedback. 

DESIGN EXAMPLE 9. Adding another state to a Linear 
Feedback Shift Register. 

Linear Feedback Shift Registers can normally only count 
to 2n-1 possible states. However, with the addition of a 
small amount of additional logic, an LFSR counter will 
instead count to the full 2n states. This gives the LFSR 
counter the same capability as a full binary counter. To 
give the LFSR an additional counter state, all but the last 
bit of the "stuck" state is decoded and included in the 
feedback path. Again, a three-bit LFSR counter will be 
used as an example. 

The "stuck" state for an XNOR feedback LFSR counter 
is the all ones state or 111. To make a three-bit LFSR 
counter count to eight instead of seven, all but the last 
bit of the "stuck" state must be decoded (ANDed 
together) and included as part of the XNOR feedback. 

(2n -1) 7 15 31 63 127 255 511 1023 

Modulo 

Feed- 1,3 1,4 2,5 1,6 1,7 1,2,7,8 4,9 3,10 

back 2,3 3,4 3,5 5,6 3,7 5,9 7,10 

Options 4,7 
into Bit 1 6,7 

Table 3. Possible feedback combinations for LFSR counters 
of three to ten bits In length. 

This circuit is shown in Figure 17. The LFSR counter 
begins operation as it normally would if it did not have 
the extra logic. The additional state is inserted just after 
state 110. The extra decoding inverts the sense of the 
feedback to produce the additional state 111. In the 
previous example, state 111 was the "stuck" state. 
However, the additional logic again inverts the normal 
sense of the feedback to produce state 011. From 
there, the LFSR counts as it normally would except that 
it now is a modulo eight counter instead of a modulo 
seven counter as it would be without the extra logic. 
Notice the new counting sequence which is also shown 
in Figure 16. 

The macro library included with the Xilinx XACT 
Development System includes another LFSR counter 
which is a modulo 256 counter with clock enable and 
reset-direct. This macro can be found in the macro • 
library under C256FC-rd. 

UP/DOWN COUNTERS 

Another form of digital counter is the UP/DOWN 
counter. In operation, a counter bit will toggle either if all • 
of the previous counter bits are HIGH and the direction is 
UP, or if all of the previous counter bits are LOW and the 
direction is DOWN. Therefore each CLB or counter bit 
of an UP/DOWN counter must: 

• Toggle On if all 00 to On-1 are HIGH 
and direction is UP, or 

• Toggle On if all 00 to On-1 are LOW 
and direction is DOWN 

Adding clock enable, reset, parallel enable and various 
other control inputs can make the algorithm for the 
counter fairly complex. Since an UP/DOWN counter is 
complex to begin with, every effort should be made to 
minimize the number of control signals required for the 
design. For example, if the counter only need be reset 
at initialization, use the fact that all registers within the 
LCA are reset upon configuration. Whenever possible, 
build ripple-carry UP/DOWN counters, as opposed to 
lookahead-carry types. 

DESIGN EXAMPLE 10. A 13-bit binary UP/DOWN 
counter with synchronous RESET. 

This design example describes two possible imple­
mentations of the same counter function. One 
implementation is performance-driven and therefore 
requires a lookahead-carry UP/DOWN counter. In the 
second, the amount of resources required for the 
counter function are minimized by using a ripple-carry 
UP/DOWN counter. 
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SCHEMATIC 

r:4_____..,1, 
::~: 

l ·=· 

CLOCK Jl,_ -+---+---+ltl 
RESET ,.,.} :~~;_J ,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,_.,.,.,.,.,.,., ,.,.,.,.,., .. 

00 01 02 

STATE TABLE 

00 01 02 

0 0 0 
1 0 0 
1 1 0 
0 1 1 
0 0 1 

Figure 15. A modulo-five Linear Feedback Shift Register (LFSR). The counting sequence 
for an LFSR counter Is a non-binary, pseudo-random pattern. 

SCHEMATIC 

QOCJ.1~ _ _.__-+--!-' -<.....,;--+-_...,~__. 
RESET .J.~~ ------'"' ~-t;;;;:::;:it;;:::::H--:;;;;:::::.,.,.,.,.,.,.,./ 

STATE TABLE 

QO 01 02 

0 0 0 
1 0 0 
1 1 0 
1 1 1 
0 1 1 
1 0 1 
0 1 0 
0 0 1 

00 01 02 

14- "STUCK" STATE APPEARS IN AN LFSR COUNTING 
SEQUENCE IF ALL BUT THE FIRST BIT (02) OF THE 
"STUCK" STATE IS DECODED AND INCLUDED IN 
THE FEEDBACK PATH 

Figure 16. By ANDing all but the last bit of the "stuck" state and using this value In the 
feedback path, an LFSR can be forced to count to 2n possible states Instead of the 

2n-1 states usually associated with an LFSR counter. 
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For maximum performance with a binary counter, a 
lookahead-carry implementation should be used. The 
general algorithm for binary lookahead-carry UP/DOWN 
counters is described in Equation 5. 

Assumptions: 

• RESET is active HIGH 
• Direction is UP/DOWN 

Equation: 

00 = RESET • 00 
01 = RESET• [01 @ {(UP • 00) +(UP· 00))) 
02 =RESET ~02@ {(UP. 00. 01) 

+(UP• 00 • 01))) 

On= RESET• [On@ {(UP• 00 • ... • On-1) 

+(UP· oo • ... • on-1))) 

[5] 

As shown by the general equation, an UP/DOWN 
counter quickly becomes more complex with each 
additional bit. This example does not include the other 
possible control signals such as clock enable or parallel 
enable. If a 13-bit binary UP/DOWN counter with 
lookahead carry and RESET were built in either the 
XC2064 or XC2018, it would require an estimated 42 
Configurable Logic Blocks! However, using the -70 (70 
MHz) speed grade device, the 13-bit UP/DOWN counter 
can operate at 15 MHz. 

If minimizing LCA resources is the goal, a ripple-carry 
implementation should be used. In a ripple-carry 
UP/DOWN counter, all of the required logic can fit into a 
single CLB. The general equation for a single-bit ripple­
carry UP/DOWN counter is indicated in Equation 6. 

On= RESET• [On@ {(UP• On-1) 
+(UP• On-1))) 

COUNTER A 

MODULO 2 3 4 5 

co 3 
a: 
w 4 .... z 
:::> 5 
0 
CJ 

6 

7 

[6]. 

6 7 8 9 

Table 4. Heterodyne Counter can be built from two 
counters (counter A and counter B) with different modulos 

By cascading multiple single-bit counter segments, the 
13-bit UP/DOWN counter can be built with only 13 
CLBs. However, it will have lower performance than the 
lookahead-carry version. 

Generally it is best to limit lookahead-carry UP/DOWN 
counters to a reasonable number of counter bits. With 
more than ten counter bits, a lookahead-carry 
UP/DOWN counter starts to consume a great deal of 
resources. If possible, UP/DOWN counters should be 
built with cascaded counter segments. The counter 
segments can be larger than the single-bit 
implementation shown in Design Example 11 in order to 
increase performance. 

HETERODYNE COUNTERS 

Another class of counter is the heterodyne counter. In 
this category, the terminal counts of two or more 
counters with different modulos combine to produce a 
counter of yet another modulo. The AND decoded 
terminal counts from the first set of counters combine in 
such a way as to produce an additional counter with a 
modulo equal to the least common multiple of the 
counters as described in Equation 7. 

MODULO X =LC.M. (MODULO Y, [7] 
MODULO Z, ... MODULO n) 

For example, the terminal counts from a modulo-three 
counter and a modulo-four counter can be combined to 
form a modulo-twelve counter (the least common 
multiple of three and four). This kind of counter can be 
useful in designs where two other counter modulos 
already exist or in designs where a counter of one 
modulo exists and a second counter can be built with 
few additional resources. To make use of an existing 
counter, the added counter must have the same clock 
input as the existing counter. 

None of the first set of counters should have a modulo 
which is a multiple of the other. For example, a modulo­
two counter combined with a modulo-four counter only 
produces a modulo-four counter instead of a modulo­
eight as might be thought. This occurs because four is a 
multiple of two and the least common multiple of both 
numbers is still four. 

The counters used to implement a heterodyne counter 
may be of different types. For example, a binary 
lookahead-carry counter can be combined with a 
Johnson counter or a Johnson counter with a LFSR 
counter. 

Table 4 indicates just a few of the various modulos 
available by building heterodyne counters using two 
counters with the indicated modulos. The blank areas 
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indicate counter combinations which are not applicable 
such as cases in which one modulo is a multiple of the 
other. 

DESIGN EXAMPLE 11. A modulo-15 heterodyne 
counter. 

Assume a design requires a modulo-15 counter. Also 
assume that a modulo-5 LFSR counter is already 
required for another portion of logic. Luckily the modulo-
5 counter uses the same clock input that the modulo-15 
counter requires. Instead of building an entire modulo-
15 counter which will require at least four CLBs just for 
registers, a modulo-15 heterodyne counter can be built 
with only two additional CLBs. 

From Table 4, a modulo-15 counter can be built with a 
modulo-5 counter and a modulo-3 counter. In the case 
of the hypothetical design, the modulo-5 counter al­
ready exists. Only a modulo-3 counter need be added. 

The best method to implement a modulo three counter 
is with a Johnson counter. The placement and routing is 
simple, and it can operate at high frequencies. Figure 
17a shows the schematic for the modulo-15 heterodyne 
counter built from one existing counter and one new 
counter. Figure 17b shows the timing diagram 
generated by this combination of counters. Notice that 
both counters coincidently generate a terminal count 
after fifteen clock cycles and do so only every fifteen 
clock cycles. 

SUMMARY 

The flexible array architecture of a Xilinx Logic Cell Array 
(LCA) allows various implementations of digital counters. 
This flexibility frees the designer from the limitations 
imposed by both 74-series devices and the sum-of­
products architectures found in Programmable Logic 
Arrays (PLAs). 

This application note described several counters 
applicable to Logic Cell Array designs. These counter 
types included common binary, Johnson, Linear 
Feedback Shift Register, and heterodyne counters. 

By choosing the appropriate counter for a given appli­
cation, a designer can optimize both resource efficiency 
(the routing and logic required for a function) and overall 
performance. Resource efficiency is increased when 
implementing only the required function and not 
substituting a one-for-one logic replacement for another 
logic technology. 

Table 5 lists the various counter types and associated 
comments. It should prove helpful when determining 
which counter to use for an application. In some 
applications, overall performance may be the critical 
need. With others, absolute resource efficiency may by 
required. With more than one possible implementation 
available, the designer can tailor the logic to custom-fit 
his application instead of wasting resources on circuitry 
that is not used for his application. 

TECHNICAL SOURCES: 

1. Messina, A. Considerations for Non-Binary Counter 
Applications. Computer Design, November 1972. pp. 
99-101. 
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Figure 17a. A modulo-15 heterodyne counter built from a 
modulo-5 LFSR Counter and a modulo-3 Johnson counter 
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Figure 17b. Timing diagram for the modulo-15 heterodyne counter. Notice that the terminal colllilts from the first two.couqters 
combine to produce a third terminal count e:very fifteen clock cycles. 
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COUNTING 
STYLE 

Counter Type 

Modulo 

CLB Efficiency 

Routing Efficiency 

Performance 

Best-Use 

Advantage(s) 

Disadvantage(s) 

BINARY NON-BINARY 

Ripple Ripple-Carry Lookahead-Carry Johnson Linear Feedback 
Shift Register 

2N 2N 2N 2N 2N-1 

Excellent Good Good-Fair Good below modulo 6 Good 
Decreases slowly 
with increasing modulo Poor above modulo 12 

Excellent Good Good-Fair Excellent Good 
Decreases with 

increasing modulo 

Very poor Fair Good Excellent Good 
1 CLB delay per Decreases with Gradually decreases One CLB delay Gradually decreasin~ 
counter bit increasing modulo with increasing modulo with increasing mo ulo 

Not suggested General binary Higher-performance Very high- Higher-performance 
Use only where Counters with binary counters performance counters counters with 
silicon efficiency fair to good with low modulo large modules 
demands performance 

Low resource Easy to use with Hi9hest performing Very high-performance Good performance 
requirements macro library binary counter Easy routing at high modules 

Easy routing Good, all-around Glitch-free decoding 
counters 

Asynchronous Decreasing Requires additional Low register Non-binary, 
Slow performance with logic and routing efficiency above pseudo-random 

increasing modulo resources modulo 12 counting sequence 

Table 4. A summary of the various counter types and their applications in LCA designs. M 
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INTRODUCTION 

Metastability is a condition of unstable flip-flop output 
caused by changes in the input data at or near the 
critical clock edge. A metastable condition may be 
induced during attempts to clock flip-flops with data 
which is not synchronized with the clocking signal. 
Flip-flop outputs may oscillate or exhibit an intermediate 
output level during a period of metastability. The proba­
bility of a metastable condition existing and its duration 
depend on many factors, only some of which the user 
can control. In implementing systems with any tech­
nology, an understanding of metastability is necessary 
to insure proper operation in clocking asynchronous 
signals. 

One critical element in examining metastability is the 
loop delay of the flip-flop in question. Loop delay is the 
time required for a signal at any point in the flip-flop to 
propagate through the flip-flop circuit and cause a 
reinforcement of the signal at its starting point. Figure 
1 shows one type of flip-flop with the loop delay path 
indicated. A change in the state of a node in the flip-flop, 
the input for example, requires one loop delay to be 
held by the flip-flop. In a metastable condition, an 
internal node, typically in the input stage, attains an 
intermediate level as a result of the data signal changing 
while the clock· is changing. The intermediate level, 
neither "1" nor "O", is propagated around the loop, 
forcing the output into a metastable state. The flip-flop 
will only achieve a "1" or "O" output when a node with 
the intermediate level becomes "1" or "O" and the new 
value is propagated through the loop forcing the 
output out of the metastable condition. Movement of 
internal nodes away from the intermediate level is a 

DATA--~n 

LOOP DELAY= (A TO B) + (B TOC) + (C TO A) 

0010018 1 

Figura 1. Flip-Flop Implementation 

Metastability Analysis 
Of Logic Cell™ Array 
Flip-Flops 

random activity and therefore cannot be guaranteed. 

Another method to illustrate metastability is to plot the 
worst-case-clock to flip-flop-output delay versus the 
delay from stable data to the clock edge. Figure 2 
shows this type of plot for a typical flip-flop. As the data 
transition approaches the clock edge, the stable output 
delay begins to increase. For any flip-flop type, there I 
is a finite probability that the output delay at the critical­
data-to-clock relationship may be "infinitely" long. 

ANALYSIS OF A LOGIC CELL ARRAY CIRCUIT 

The critical issues in examining metastability 
characteristics of flip-flops in any system are the pro­
bability of an error based on a metastable condition and • 
the methods of minimizing the error probability. For 
logic implemented with Logic Cell Arrays, some 
additional control is possible. The probability of a flip-
flop passing through a metastable region can be 
calculated as 1 

Probability = 1 - e(-settling time / loop delay) 

The probability of a flip-flop remaining in the metastable 
region is then: 

Probability of Error = e(-settling time /loop delay) 

For the circuit shown in Figure 3, settling time is the 
difference between the worst case delay from a clock 
edge clocking the flip-flop in Configurable Logic Block 
(CLB) 1, output propagating to the flip-flop in CLB 2 
with setup time and the delay from one clock edge to 

CLOCK-TO­
OUTPUT DELAY 

NOMINAL DELAY 

0010018 2 

<CRITICAL CRITICAL >CRITICAL 
TIME TIME TIME 

CLOCK-TO-DATA TRANSITION TIMING 

Figura 2. Flip-Flop Output Crltlcal Timing 
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the next. The maximum delay path must be considered 
because it would produce the lowest settling time with a 
correspondingly higher probability of error. 

Examining a specific case for which the XC2064 has a 
worst case flip-flop loop delay of 2 ns, the critical timing 
parameters required to estimate the error probability for 
a metastable condition are: 

Flip-flop clock to output delay 
Interconnect delay 
Flip-flop setup time 
Flip-flop loop delay 
Clock Period (10 MHz.) 

20 ns 
15 
12 
2 

100 

For this example, a value of error probability can be 
calculated. 

P (Error] eH100-(20+ 15+ 12JJ!2J 
e(-53/2) 
3.1 x 10-12 

This represents the probability of a flip-flop remaining in 
a metastable region beyond the given settling time for 
a single event. For multiple events, which would be 

CLB#1 

DATA IN --' ;;----
F t---i 

'-- D 

COMMON 0 CLOCK 

representative of a repetitive clock sampling an 
asynchronous signal, the time between failures can be 
calculated by the following relationship: 

Failures Per Time Period = Probability per Event X 
Events per Time 

The time between failures is then the inverse of these 
failures per time-period value. For our example, 

Failures per Time Period = (3.1X10-12) X (1X107) 
3.1 x 10-S 

Time BetweenFailures 1 I (3.1 X 10-5) sec 
3.3 X 104 sec 
8.96 hrs 

This number would indicate a very short time between 
errors for sampling an event at 10 MHz. It must be 
realized that this is a worst case calculation, because it is 
based on an assumption that a potential error condition 
exists for each clock edge. In a real system, this would 
not be the case. Actual asynchronous events occur 
only a small percent of the time of operation, not at each 
clock edge as this calculation assumes. 

CLB #3 

.----

F r-, 

'--1 D 

~ 0 

CLB#2 

CRITICAL .~ 
INTERCONNECT~ '-+-I 

F t--

'-- D 

01---+--

·•·········•·•·•••·•·•·•·•·•·•· . ···································•·•·•·•·•·•·•·•·•·•·•}···· 
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Figure 3. LCA Implementation 
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Based on this type of calculation, several methods to 
improve this error performance are possible: 

1 . Reduce interconnect delay 
2. Use higher speed device 
3. Decrease the clock rate 

Reduce Interconnect Delay 

If direct connect can be utilized in this critical path area, 
the 15 nanosecond delay for interconnect could be 
reduced to 0. The effect on the error probability can be 
easily seen. 

P [Error] e(-[100-(20+ 12)]/2) 
e(-68/2) 
1.71 x 10-15 

For the same 10 MHz clock, this results in a failure 
period; 

Time Between Failures = 1 /(1.71 X 10-15) X 
(1X107) sec 
5.83 X 107 sec 
675 days 

Use a Faster Device 

Use of a faster device will improve all of the device­
related performance parameters. Moving to the next 
higher speed grade would result in the following critical 
parameters: 

Flip-flop clock to output delay 
Interconnect delay 
Flip-flop setup time 
Flip-flop loop delay 

15.0 ns 
7.0 
8.0 
1.5 

The clock period remains the same at 100 ns. 

The new error probability becomes: 

P [Error] eH100-(15+7+8)J!1.5) 
e(-46.667) 
5.4x10-21 

For the 10 Mhz clock rate, this results in a new failure 
period: 

Failure Period= 1/(5.4X10-21)X(1X107) sec 
1.85X1013 sec 
2.14X108 days 
(approx. 563 years) 

Change Clock Rate 

If the clock rate which is used to perform the sampling 

l:XIUNX 

can be reduced, a dramatic reduction of the failure rate 
results. If the clock rate were reduced from 1 O MHz to 5 
MHz, error performance can be examined with the 
following parameters: 

Clock to flip-flop output 20 ns 
Interconnect delay to second block 15 
Setup time for second flip-flop 12 
Flip-flop loop delay 2 
Clock period 200 (5 MHz) 

P (Error] eH200-(20+ 15+ 12) 112) 
e(-153/2) 
5.98 x 10-34 

For 5 MHz clocking, the failure period is calculated as: 

Failure Period = 1/(5.98 X 10-34)(5 X 106) sec 
3.35 X 1026 sec 
3.87 X 1021 days 
(approx. 1.1 X 1019 years!) 

OTHER CONSIDERATIONS 

Flip-flops in the Logic Cell Array family have been specifi­
cally designed to reduce the loop delay to a practical 
minimum to reduce the probability of a metastability­
induced error. Another critical factor in determining the 
metastability characteristics of flip-flops in a device is 
the loading of the flip-flop. In virtually all other 
technologies, particularly gate arrays, the output of the 
flip-flop may be loaded differently depending on how 
the user has connected the device. This difference in 
loading can significantly complicate the analysis of the 
flip-flop's metastability behavior. In the Logic Cell 
Array, all of the flip-flops are immediately followed by a 
buffer, prior to any user-programmable connections. 
This buffer serves to isolate the flip-flop from any 
variations in loading that could adversely affect its 
metastability behavior. For the user, this significantly 
simplifies analysis of metastability effects in the system. 

CONCLUSION 

As shown by these examples, the probability of a failure 
based on a metastable condition and the subsequent 
system failure period, can vary widely and are 
dependent on several factors. When using the Logic 
Cell Array to implement system level functions, the 
user has significant control over some of the critical 
parameters necessary to provide sufficient immunity 
to metastable conditions. 

1 G. A. Couranz and D. F. Wann, Theoretical and 
Experimental Behavior of Synchronizers Operating in 
the Metastable Region, IEEE Transactions on 
Computers, vol c-24, no. 6, June 1975. 
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Users of Logic Cell Arrays (LCAs) who wish to verify the 
data loading and storage of the configuration program 
for the Logic Cell Array can perform a data readback on 
the device(s) after programming. Performing this 
programming data readback verification requires a 
knowlege of the format and manipulation of the 
configuration program or bitstream. The purpose of this 
application brief is to provide the information needed to 
understand the bitstream format for loading and 
readback verification. Information regarding the specific 
contents of the bitstream is beyond the scope of this 
application brief. 

PROGRAM BITSTREAM 

The first step in understanding the readback verification 
process is to examine the composition of the bitstream 
that is to be loaded into the device. In this discussion, 
we are assuming that the device is being configured 
from a processor, either in peripheral or slave mode. 
The connections to the device and the timing needed 
to perform the configuration are discussed in the 
Applications Note Methods of Configuring the LCA. 
Regardless of the configuration method, the bitstream 
data is the same; our bitstream is assumed to be in a 
PROM file created with the MAKEPROM command and 
formatted for Intel MCS86 compatibility. 

Figure 1 shows the data format of the PROM file. The 
information preceeding the first data field is required to 

Reading Back 
Logic Cell™ Array 
Configuration Programs 

initialize the configuration logic on the LCA for the 
proper bitstream length. Each subsequent data field 
provides configuration information for a portion of the 
device. The beginning of a PROM file for an XC2064 is 
shown in Figure 2. Note that the first byte of the data 
field (underlined in line 2) is hex 4F. The required 
leading 1 s are in the low nibble, with the preamble in the 
high nibble. The bits are arranged in this fashion to 
simplify the connections from an external PROM or ROM 
to the LCA in master mode. 

Although the LCA's internal memory is always loaded 
serially, master mode reads the configuration program in 
parallel directly from an external memory device, such as 
a PROM, and serializes the data internally for loading 
into the memory cells. The PROM connections provide 
the least significant bit of the byte (DO) as the bit which is 
serialized first. The consequence of this is that the data 
bits in the individual bytes in the PROM file are reversed 
from the order in which they will be interpreted by the 
device. During loading of the configuration data with a 
processor, the PROM file data is read one byte at a time 
and is supplied to the LCA one bit at a time, beginning 
with the least significant bit (DO). 

Consider the next three bytes of the PROM file, Figure 
2; the hexadecimal OOF460 represents the 24-bit binary 
length count of 000000000010111100000110 (12038 
decimal), i.e., the total number clock cycles required to 
load this bitstream. Three aditional clocks are required 
to complete configuration and activate the device. The 

1111 
0010 

DUMMY BITS (4 BITS MINIMUM) 
PREAMBLE CODE 

< 24 BIT LENGTH COUNT> 
1111 

0 < DATAFRAME#001>111 
0 <DATAFRAME#002> 111 
0 <DATAFRAME#003> 111 

0 <DATAFRAME#159> 111 
0 <DATAFRAME#160> 111 

1111 

TOTAL NUMBER OF BITSTREAM BITS 
DUMMY BITS (4 BITS MINIMUM) 

160 CONFIGURATION DATA FRAMES 

(EACH FRAME CONSISTS OF: 
A START BIT 
A 71-BIT DATA FIELD 
2 OR MORE DUMMY BITS 

POST AMBLE CODE (4 BITS MINIMUM) 

Figure 1. Configuration Data Arrangement for the XC 2064 
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fifth byte (hexadecimal EF) contains the four pad 1s, the 
start bit, and the first 3 bitsof the 71-bit data field. All of 
the data bits in the configuration data fields are the 
complement of the bits needed to control the elements 
associated with the memory cell. The LCA performs an 
inversion of the incoming data, so actual data bits stored 
in the memory cells will be the complement of the input 
data. 

Internal Data Storage 

Data that is supplied to the Logic Cell Array during 
configuration is shifted into a 71-bit shift register. When 
the shift register is filled, it is written into the internal 
memory cells as a single 71-bit word. In the XC2064 
there are 160 words of 71 bits each, comprising a total of 
11,360 bits of programming data. For the XC2018, 
there are 196 words of 87 bits; a total of 17,052 bits. 

Read back 

Readback allows the user to extract the configuration 
program from the Logic Cell Array, even while the device 
is operating. This data may be used to verify that the 
contents of the memory cells have not been changed 
since the last programming cycle. In addition, the 
readback data contains the state of all of the storage 
elements in the logic blocks, as well as the state of the 
input connection point on each 1/0 block. 

The readback process is accomplished without using 

any of the user 1/0 pins. CCLK, MO and M1 are used to 
read the data in a serial fashion. The readback process 
is triggered by a low-to-high transition on the MO/RT pin. 
On subsequent cycles of CCLK, internal configuration 
data are supplied on the M1/RD pin. Figure 3 shows this 
data reading process. 

Individual frames of data are read back in the same 
sequence that they are supplied to the device. In the 
readback serial data stream, the individual bits are the 
true sense of the internally stored data bit; the bits in the 
programming stream are inverted from those stored 
internally. The initial data frame is preceeded by a 
dummy clock cycle and two dummy bits whose state is 
unknown. After the first data frame, there will be a stop 
bit, 0, and a single start bit, 1, prior to the next frame. 
After the last frame, there is a single O stop bit. Even if 
additional CCLK cycles are applied after the last data 
frame is read, the M1/RD output will be three-stated; the 
pin is not driven after the final stop bit. 

Readback Data Contents 

After the configuration program has been read back, it 
may be compared to the input data stream to determine 
if the device is correctly configured. Input data dummy 
bits and start bits and readback data start and stop bits 
need to be removed, either as part of the 
programming/readback process or after the readback is 
complete. 

In the programming and readback bitstreams, some of 

:020000020000FC 
:100000004FOOF460EFFAF3F3FFF7C5FFFF7FD39CD7 
:10001000ASEBBB5975F7FFFB3F7FFEFEFEB5FCFF6E 
:10002000DFBD59AFBDBE4FFFFBFEFEDFBFBFAF5F01 
:100030007F7FF7F7FF7FFFFDFDFFFBFFBFFFFFFFA8 
:10004000CBD7FFB7FFFFFDFFFFBF3EFFFF7FFFEFF7 
:10005000FFFFBDFFFFFFB7FF7BFFFFFFFFFFDFEFEE 
:10006000FFFDFBFFFFFFDFFFFFFFFF9D7F7FFFFE29 
:10007000FCFAFD7DEFEEFFFFFFFFFFFFFFFFF7FF45 
:10008000FFFFFFFFFFFF7F3FFFFFFFFFFFFFFFFFCO 
:10009000FEF9EFEFDFFFD7BFBFFFCFDFFFFFFFBFEF 
:1000AOOOFFFFFF77EFEFDFDFDFBFBFBFFFF3FF7FB4 
:1000BOOOFFCFBFDFFFFF9DFBFAB7F7F7FFFF7FEF33 
:1000COOOFAFEFEFDFD7D7B7BFBF7FFFFFFFFFFFBE5 
:lOOODOOOFBFB3FF3F7EFE9EFFFFFFFDBB9BD5D3B54 
:1000E0005BFB77F7F7CE7777EFEFAED5D7D77B9F70 
:1000F0009F3F3F3E373E3EDE7B67FFFEFEFEEEFF4C 

Figure 2. Beginning of Typical Hex PROM File 
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the memory locations do not correspond to actual 
memory cells in the device. These locations may be 
unused during both programming and readback. They 
contain the storage element and input block values 
during readback. The storage element and input block 
values are extracted and displayed by the in-system 
emulator during debugging. For readback to verify 
configuration, the user must ignore these bit locations 
since their contents may not be the same as the 
corresponding positions in the programming bitstream. 

stream that is to be ignored is represented by a "O" in 
the mask PROM file. Figure 4 shows the beginning of a 
mask bitstream file for an XC2064 that has been 
converted into a PROM. Note that this file has the same 
preamble, length count and pad bits as the regular 
programmimg data file. 

Bit positions that are to be ignored in the readback data 
stream can be generated in a standard XACT bit file with 
the MAKEMASK command. The .BIT file generated 
with MAKEMASK can be converted into a PROM file 
with the MAKE PROM command. The format for the final 
mask PROM is exactly the same as for the configuration 
program PROM. Each data bit in the readback data 

To utilize the mask information, users should strip off the 
preamble and length count information and extract the 
appropriate data bits for each data field. Since the 
PROM format has the data bits arranged with the least 
signifigant bit in the DO position, the data bits must also 
be reordered to put them in the correct sequence (See 
Figure 5). A simple program could be written to create 
the mask bit fields for each data field. Note that the end 
of one data field and the beginning of the next field can 
be verified by detecting the dummy bits and the start bit 
between each field. 

:020000020000FC 
:100000004FOOF4608FEDEDDD8BDBBBB78770ECEF5D 
:10001000DF1FDCBFBF3F9463FFFFFFE9FFFFFFB3BC 
:100020001DFFFFFBD7FFF7FFAFED587FDFFEFEBEE2 
:10003000FDFD2DC7FAFFFEFFFFFDFF7FB9E6FFF7CD 
:10004000BFFFEFFF7FDB35FFBFFFF77FFFFFDFEE77 
:10005000FlF3E7A7E7CFCFCF7EBFBC7C7979F9F288 
:10006000F2FAFBF575EBEBEBD6D7D7DFA7A74B4F33 
:100070004F979E9EFE3E3D5D7A7ABAF4F4F4D7ED3A 
:10008000EDDADBDBB5B7B7BD7F7FF7FEFEEEFDFD3A 
:10009000FDFDFFFFFFFFFFFFFFEFEFFBFBF5F7F7B6 
:1000AOOOEBEF6F7FDEDFAFBFBF5F7F7FBB7B78F89B 
:lOOOBOOOFOFOFOE1ElClDEEFEFDBDFDFB7BFBFFE65 
:1000C0007E7FFFFEFEFEFDFDF5D7F9F9F2F3F3E5C5 
:1000DOOOE7E7BDCECF979F9F2F3F3FEF757FBFFED6 
:1000EOOOFE7EFDFD7DEFFBFBF5F7F7EBEFEF7FFFOE 
:1000FOOOFFEFFFFFDFFFFFFFFBFFFFFFFFFFFFFF44 

Figure 4. Mask PROM File 

1STBYTE 2ND BYTE 

FJi~~ D7 D6 DS D4 D3 D2 D1 DO D17 D16 D'S D14 D'3 D12 D11 D'o ••• 

REfgg~~ DO D1 D2 D3 D4 DS D6 D7 D'O D'1 D12 D'3 D'4 D'S D16 D17 ••• 

Figure 5. Data Bit Sequence 
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OVERVIEW 

This application note shows the design engineer how to 
implement a sample complex digital logic function using 
the Xilinx XC2064 Logic Cell™ Array (LCA). The design 
implemented is a Universal Asynchronous Receiver 
Transmitter (UART). The UART design adds a number 
of complexities in order to illustrate various features and 
flexibility of the XC2064 LCA including: 

• The amount of logic that can be implemented in an 
LCA. 

• The versatility of the LCA's Configurable Logic Blocks 
(CLBs) and Input/Output Blocks (IOBs) in implement­
ing any logic function. 

• The extent of user control of the design process. 

It is important to remember that any logic function having 
up to four variables can be implemented in any one of 
the 64 CLBs in an LCA. Therefore the implementation 
process can be focused on function rather than being 

FROM 
DATA BUS 

8 

TRANSMIT 
DATA 

REGISTER 

ENCRYPTION 
PARITY AND 

FRAMING 

CLOCK SERIAL 
DATA TO 

RECEIVER 

0010006 1 & 2 

Figure 1. Block Diagram of UART Transmitter 
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constrained to an implementation based on a fixed set 
of available logic functions. 

This application note provides: 

• A description of the design and operation of the 
UART 

• A suggested methodology for user implementation of 
logic functions in LCAs 

• Examples of how various portions of the UART are 
implemented using the suggested methodology 

The UART in this application has a fixed format and uses 
eight-bit data words with even parity. It is designed to 
operate as a typical peripheral device on a microproces-
sor data bus. Its operation is similar to that of an 8251 
configured for asynchronous operation, except that this 
application incorporates cipher feedback encryption and 
decryption in the serial data path. • 

The Transmitter portion of the UART prepares data for • 

CLOCK 

CLOCK 
DIVIDER 

PARITY AND 
FRAME 

CHECKING 

SERIAL 
DATA FROM 

TRANSMITTER 

DECRYPTION 

TO DATA BUS 

Figure 2. Block Diagram of UART Reclever 



A UART Design Example 

transmission by converting each parallel byte it receives 
from the microprocessor data bus into a serial data 
stream. The encryption circuitry encodes the serial data 
for security and additional logic provides the start bit, 
parity bit and stop bits (framing). As shown in the block 
diagram in Figure 1, the transmitter consists of five logic 
sections: 

• Transmit data register 

• Transmit shift register 

• Encryption 

• Parity and framing 

• Clock divider 

The receiver portion of the UART receives the 
transmitted frame, decrypts the data, and converts it to a 
parallel data byte. Additional logic detects parity, framing 
and overrun errors. Figure 2 shows the five sections of 
the receiver: 

• Parity and framing check 

• Decryption 

• Receive shift register 

• Receive data register 

• Clock divider 

TRANSMITIER DESIGN 

Figure 3 shows the schematic of the transmitter portion 
of the UART. When TXRDY is high, it indicates that the 
transmit data register shown at the top of the diagram is 
ready to be loaded with data. Data are loaded from the 
processor when signals chip select (CS) and write 
enable (WE) are activated. Subsequently TXRDY goes 
low. The internal TLOAD signal then controls the 
parallel transfer of data from the transmit data register to 
the transmit shift register below it and resets TXRDY. 
The ninth-bit at the left end of the transmit shift register 
is a tag bit. Instead of using a bit counter, the position of 
the tag pit (a logic zero) followed by logic ones, is used 
internally by the parity and framing logic to determine 
when to insert parity and stop bits into the serial data 
stream. 

Note that all of the flip-flops in the transmit data register 
and transmit shift register operate synchronously with 
the exception of the asynchronous reset of the data 
register status flip-flop as indicated by RD on that flip­
flop. Also note that control functions have been 
implemented within the flip-flop data logic. The control 
function parallel enable js indicated on the logic diagram 
by PE on the flip-flop· symbol; clock enable, by CE; 
synchronous reset, by R; synchronous set, by S; and 
the Data input, by D. When power is applied to the 
UART, an external active-low CLEAR drives a flip-flop 

which provides the synchronized signal, RESET, to 
initialize the device. 
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Clock Divider 

As an illustration of the flexibility of the design approach, 
a cascaded pair of modulo-4 Johnson counters, 
TCCO/TCC1 and TCC2/TCC3, shown at the bottom of 
the diagram, is used to divide the clock input by 16 to 
produce the transmit clock. This was chosen as an 
alternative to the more common binary weighted 
counter. When the transmit shift register is empty, the 
IDLE signal maintains the counters in a (0000) state. 
Thus, when the transmitter is idle, the clock operates at 
full rate. When the UART is loaded and begins actively 
transmitting serial data, the transmit clock operates at 
one-sixteenth the input clock rate. This fine timing 
resolution minimizes the time it takes to recognize and 
load data when the transmitter is idle. 

Encryption 

Figure 4 shows the schematic for the encryption and 
decryption registers used in the UART design. To 
synchronize the encryption registers with the 
decryption registers of the receiver, the clocks are 
enabled only when data are being shifted. The 
encryption circuit exclusive-ORS (XORs) the data with a 
pseudorandom bit sequence. It is implemented in two 
stages using an 8-bit Linear-Feedback Shift Register 
(LFSR) cascaded with a 9-bit LFSR. The output of the 
Transmit Shift Register is XORed with the feedback bits 
(1, 3, 5, 8) of encryption register R1. The result is 
XORed with the feedback bits (1, 5, 8, 9) of encryption 
register R2. 

Parity and Framing Generation 

Located in the lower right of the diagram are TSC1 and 
TSCO, a two-bit state controller that cycles through the 
following sequence of states: 

State Condition 

TSC1 TSCO 

0 

0 

O Data has been loaded into the transmit 
shift register, signals TDATA DONE 
and TPARITY DONE are not active. 

O TPARITY DONE goes active when the tag 
bit is detected in the proper position. 

Follows the previous state (10). If TXRDY 
indicates data is ready to be loaded, 
TLOAD goes active. 

Follows the previous state (11 ). Maintains 
the clock at full rate until TLOAD goes 
active. 
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SERIAL 
TRANSMIT 

DATA 
(NO FRAMING( 

~ 
SERIAL 

RECEIVE 
DATA 

(NO FRAMING) 

ENCRYPTION 

- FRAMING ADDED AND DELETED -

DECRYPTION 

TRANSMIT REGISTER Rl 
P(x) =XO+ x 1 + x3 +XS+ xB 

TRANSMIT REGISTER R2 
P(x) = x0 + x 1 + x 5 + xB + x9 

RECEIVE REGISTER R2 
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Figure 4. Encryption/Decryption Schematic 
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The output of flip-flop PARO, which is shown below the 
encryption function, generates parity as it toggles once 
for each data bit which is a 1. The position of the tag bit 
is detected by the extent to which the register has filled 
by all ones. After the data has shifted, PARO then 
provides the parity bit and produces the stop bits. 
TLOAD resets PARO, TAG and the start bit when the 
next data word is loaded. 

RECEIVER DESIGN 

Figure 5 shows the schematic of the receiver portion of 
the UART. The receiver uses the same 16X clock input 
as the transmitter. As with the transmitter clock, when 
the receiver is actively receiving a frame of data, a clock 
divider located at the bottom of the figure generates a 
receive clock signal that is one-sixteenth the input clock 
rate. When the receiver is idle, the clock operates at full 
rate searching for a start bit. 

Data Sampling 

The data-input portion at the lower left of the receiver 
schematic includes a synchronous data filter, the 
receive data filter (RDF). It provides noise filtering on the 
input data stream at the 16X clock rate. When a start bit 
is detected at the data filter output, the clock divider 
begins counting. After eight clock cycles (mid-bit), the 
clock divider generates a receive data clock to sample 
the value of the RDF output. The data is sampled every 
16 clock cycles thereafter until a complete frame is 
shifted in. 

Error Detection 

Each data bit is shifted into the RSRP flip-flop, where 
parity is accumulated for comparison with the transmitted 
value. The framing error logic checks for the correct 
stop bits when the start bit reaches the last bit of the 
receive shift register. The Overrun, framing and parity 
error flags can be read by the processor on data lines 
D3, D4 and D5, respectively, after RLOAD goes active. 

Decryption 

At the receiver, the encrypted data is input to a shift 
register that creates the same feedback data by using 
the same polynomials as the encryption registers. The 
feedback data is XORed with the encrypted data to 
regenerate the original data. With this encryption 
method, a transmission error causes a difference 
between the encryption and decryption register data. 
The decrypted data is incorrect for as long as its takes to 
flush the error the lngth of the decryption registers. 
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Receive Shift Register and Data Register 

During receiver idle time, the receive shift register 
located below the receive data register is loaded with all 
ones so that the start bit (a logic zero) of a frame can be 
detected when it shifts through to the right end of the 
register. When the receive shift register is loaded with a 
complete data byte, RLOAD enables the receive data 
register. On the next receive clock signal, the data are 
loaded in parallel into the receive data register and 
RXRDY output becomes active indicating that the data 
can be read by the processor. At the same time, the 
clock divider is reset in preparation for the next data byte 
and RDF begins monitoring the serial input signal for the 
next start bit. 

LOGIC CELL ARRAY IMPLEMENTATION 

Orderly and logical assignment of logic functions to the 
CLBs and their placement in the LCA contributes to 
simplified routing and performance optimization in the 
final implementation of a design. A good design metho­
dology will result in a more effective and efficient 
implementation. The methodology used in this example 
involves some preparation before using the Xilinx XACT 
LCA Development System to implement the design. 

This methodology includes three basic steps: 

Step 1. Group Logic For CLB and IOB Utilization 

The first step in implementing the UART design in an 
LCA is to examine the schematic diagram to identify CLB 
segments that will be able to share common inputs. 
Since the UART design is register-intensive, most CLB 
groupings consist of a flip-flop function and some 
associated logic. Figure 5 shows the receiver schematic 
with the logic functions grouped into CLBs. Shaded 
boxes indicate the logic to be implemented within single 
CLBs. 

When assigning functions to a CLB on the schematic, 
note that each CLB is composed of a 4-input combina­
tional logic module, a general-purpose storage element, 
and routing selection logic. The combinatorial function 
may be split into two functions, each using up to three of 
the available variables. Combinatorial functions which 
·share common variables with a flip-flop's function are 
more effective in the same CLB. 1/0 Blocks (IOBs) are 
composed of a three-state output buffer, an input 
buffer and an input flip-flop. An 108 flip-flop can be 
used internally if its corresponding pad/pin is not being 
used for external connections. This was the case for 
major portions of the encryption/decryption registers. 

• -
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Since the implementation process using XACT will likely 
reveal alternatives in design, partitioning, or placement 
for a particular application, it is not necessary that all logic 
elements be assigned at this point. 

Step 2. Assign CLBs and IOBs within the LCA 

After grouping logic, a placement plan is prepared. To 
optimize routing, look for the following when placing 
CLBs: 

• Functions that are repeated (e.g., by data word or bit­
slice) 

• Good utilization of LCA long lines for common control 
functions 

• Clustering to optimize direct interconnect resources 

• Orderly assignment of input and output pins 

• Pin requirements for the selected LCA configuration 
mode 

The upper left portion of the receiver diagram is a bit­
slice consisting of one bit each of the receive shift 
register, the receive data register, and the data output 
buffer. Figure 5 shows this bit-slice function as a 
outlined box that includes the CLB boxes labeled R7, 
D7, and the associated 1/0 buffer. This function is 
repeated for each of the eight bits and shares common 
control signals in the design. 

Assigning one bit-slice to the CLBs of the top right 
corner of the LCA, the IOB three-state buffer becomes 
the receive bit-slice output buffer that connects to the 
processor data bus. The CLBs in column H and G 
become the receive data and the receive shift bit-slice, 
respectively. This horizontal arrangement allows best 
use of the direct interconnect resources between the 
CLBs when connections are routed for this function. 
Repeating this bit-slice function down the right edge of 
the LCA and extending the function to the full register 
size allows the use of vertical long lines for the common 
control signals such as clock, load data and read data 
signals used by each bit-slice. 

Figure 6 shows a completed LCA implementation with 
CLBs and IOBs placed, configured and routed for the 
UART application. The receive bit-slice function is 
indicated by the outlined area at the top right of the 
LCA. To aid in recognition of the placement of CLBs 
within the LCA, each CLB is labeled (e.g., r7, dO, fra_er) 
and corresponds to the CLB groups with the same label 
in the schematics (e.g., R7, DO, FRA_ER). The UART 
example allows logical placement of CLBs into transmit 
and receive halves. 

The clock divider is clustered in the center in columns D 
and E to optimize the direct interconnect resources. It is 
common for groups of associated blocks to be placed in 
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such clusters. 

The transmit data register fits well into the storage 
elements of the IOBs at the left edge of the LCA. The 
transmit shift register, together with framing bits and 
associated logic functions, is placed in a snake-like 
pattern alternating between columns A and B. This 
placement allows adjacent CLBs to use direct 
interconnect resources for the data connections and 
vertical long lines for common clock and parallel enable 
signals. 

Step 3. Use XACT to Place, Configure and Route 
CLBs and IOBs 

The placement plan prepared in Step 2 facilitates the 
placement and configuration of CLBs and IOBs with the 
Xilinx XACT LCA Development System. XACT is an 
integrated, easy-to-use system that provides complete 
design automation tools for users to specify and 
implement designs in an LCA. Placement, 
configuration and routing of CLBs and IOBs are handled 
in a graphics-oriented editing environment using the 
XACT LCA Editor. 

Using the LCA Editor for CLB and IOB placement and 
configuration for an application is an iterative process 
that employs several facilities in XACT. To efficiently 
investigate placement alternatives, repetitive functions • 
such as the transmit and receive data and shift registers 
can be placed, configured, and routed by means of an -
execution file of edit commands. A file of executable 
commands can be created and edited using any 
available text editor. This file contains LCA Editor 
commands (such as macro calls, add pin and edit block 
commands) that would normally be used during an 
editing session. 

Standard logic libraries and user-generated macro 
capabilities can be utilized for faster design entry. User 
macros can be generated for repetitive functions or 
groups of CLBs to increase the efficiency of 
implementation. For example, a macro was generated 
for the receiver bit-slice function shown in Figure 5. A 
user macro can be created by choosing the appropriate 
elements from the Xilinx macro library and/or direct logic 
definition using XACT facilities and then combining 
them in a new user macro with the CUTMACRO 
command. 

Once the macro is generated, it is easily used in the LCA 
implementation. For each occurrence of the function, 
the macro provides simple and repeatable iteration of 
the function in CLBs and IOBs on the LCA. Editing of 
the resulting logic can allow minor variations to individual 
sections of multiple instances of a macro. For example, 
in the transmit shift register, signal pin assignments were 
swapped on some CLBs to optimize routing. 



A UART Design Example 

The use of consistent pin sets would have resulted in 
the use of more routing resources. Figure 6 shows one 
bit-slice of the transmit register at the left-center edge of 
the LCA for which a macro was created, repeated and 
edited to optimize pin assignments. 

Attention should be paid to the routing of clock nets. In 
a fully synchronous design the long line network driven 
by the global clock buffer (in the upper left corner of the 
LCA) provides a stable skew-free clock source. Gated 
clocks and other timing signals may incur routing delays. 
For example, the most direct routing for the receive 
clock, generated in CLB RXCLK (row B, column F), 
would connect the receive clock to a long line in column 
G for the receive shift register, and to a long line in 
column F to the error flags, and then from column G to a 
long line in column H for the receive data register. This 
route results in a series of small R-C delays due to the 
impedance of the programmable interconnect points 
(PIPs) and the high fanout capacitance of the long lines 
used in the route. The consequence is that the receive 
clock of column F, and particularly of column H, could 
incur enough additional delay to cause the next data 
from the direct routing of the shift register to arrive at the 
data register before the clock for the current data, This 
would result in a data hold time violation. The routing 
can be changed by using the edit net command to 
connect the receive clock to the long lines of columns F 
and H and then from H to G. This routing guarantees 
adeqw~te data hold time for the receive data register 
inputs.·· 

The method used for routing the transmit clock 
illustrates a more direct solution to clock routing. The 
source of transmit clock (tscp in row E, column C) drives 
a horizontal long line near the bottom of the LCA. The 
vertical long lines in column A, B and C connect to the 
horizontal long . line to bring transmit clock to the 
Transmit Registers, the transmit state controller and 
other logic with equal delays. Figure 6 indicates the 
routing for the receive and transmit clock by 
highlighted lines. 

The appropriate use of long lines during automatic 
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routing is encouraged, as several techniques are 
available for placement and configuration. One is to use 
the edit net command to connect a network source 
manually to the desired long lines before automatic 
routing is used to complete the net routing. 

DOCUMENTATION 

XACT provides complete documentation for the LCA 
implementation. The documentation is maintained in 
files that may be printed or viewed on the monitor. 
These files include the following information: 

• LCA File - Contains all configuration, routing and 
name information 

• NET File - List of selected signals, their sources and 
destinations and propagation delays. Obtained with 
the Report, QueryNet command. 

• BLOCK Files - List of selected CLB and IOB 
designations, inputs, outputs, clocks, and equations; 
via Report QueryBlock command. 

• LOG File - All Edit commands executed in the last 
editing session 

A .LOG file may be created which is a record of the edit 
commands of an aborted XACT edit session. The .LOG 
file can be used to recover an editing session in which a 
major error was executed. The .LOG file is edited to 
remove the unwanted commands. Then, with the last 
saved LCA File, the edited log file can be executed, to 
restore the last session up to the edited point. 

At any point during the design implementation process, 
XACT can generate the configuration program file that 
defines the current design. With the XACT 
development tools, design verification is done through 
the use of timing analysis and logic simulation. Any 
required modifications to the design are easily 
accomplished with the LCA Editor. Also, the design can 
be physically programmed in an LCA, then analyzed and 
debugged in the target system using the XACTOR In­
Circuit Emulation capabilities. 
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INTRODUCTION 

This application note presents a practical application of 
XILINX's XC2064 Logic Cell™ Array (LCA) in a typical 
systems application. The objectives are to demonstrate 
the versatility of the LCA by designing it into a practical 
and useful application and, in so doing, to present to the 
reader some useful concepts and techniques for design­
ing with LCAs. The application example presented here 
is a printer buffer subsystem for driving printers with a 
parallel, Centronics-type interface, in which the LCA is 
programmed to act as the printer interface and Fl FO (first­
in-first-out) buffer controller. As shown in the block 
diagram in Figure 1, the LCA, together with external 
byte-wide static RAM, constitutes a complete printer 
buffer subsystem. This circuit permits a host system's 
processor to write characters into the FIFO buffer as if it 
were a high speed printer port. The LCA stores the print 
data in the external buffer memory until the printer is 
ready to accept it. Data stored in memory is then read 
back and delivered to the printer at its maximum rate until 
the buffer is empty. Once print data is loaded into the 
buffer, the actual printing operation is independent of 
and transparent to the processor. The result, from the 
processor's point of view, is an appreciable speedup of 
print operations, thereby freeing the processor earlier to 
perform its next task. For instances in which the entire 
print file fits into the print buffer, the print operation 
becomes a separate, parallel task requiring no further 
attention from the processor. 

The print buffer controller can be thought of as being 
comprised of three major functional areas. They are: 

A microprocessor bus interface which includes: 

• A data bus (for receiving data and reading status flags) 

• A 2-level input FIFO 

A parallel printer interface with handshake controls 

A circular queue mechanism consisting of: 

• Read-address and store-address pointers 

• An address comparator for sensing FULL condition 

• An address comparator for sensing EMPTY condition 

• A static RAM interface 

• Associated timing and control logic 

A Printer Buffer Controller 

IMPLEMENTATION ISSUES 

In defining the controller's functions and how these 
funtions are to be implemented in a LCA, attention must 
be given to certain physical and electrical limitations 
which dictate whether the application will fit into a single 
LCA device shown in Figure 2. The following para­
meters serve as good indicators in "sizing" a logic circuit: 

• The number of input/output pins (IOBs) required 

• The number of logic blocks (CLBs) required 

• The number of storage elements required 
(e.g., flip-flops) 

• The clock frequency and signal propagation delays 
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One of the primary criteria in sizing the application is the 
number of 1/0 pins required by the circuit; if the number 
exceeds 58, then an XC2018 or multiple XC2064s may 
be required. The pin count analysis for the print buffer I 
controller example is outlined in Table 1. Initial interpreta-
tion of that summary indicates the number of 1/0 pins on 
the XC2064 should be adequate for this application. • 

Let us examine the circuit requirements for the print 
buffer controller. Two necessary elements are the host 
processor interface and the printer interface. The host 
system's processor should be able to read status 
information about the buffer's current state (e.g., FULL 
and BUSY status flags) prior to each write operation in 
order to prevent buffer overflow and to determine when 
the print job is complete. The parallel printer interface 
should be able to recognize and respond to the printer's 
ACK (Acknowledge) and BUSY control lines with the 
appropriate handshake. 

Another necessary element is the FIFO (first-in first-out) 
memory. Because the objective was to be able to buffer 
up to 64K bytes of print data, external RAM devices 
were used instead of classical FIFO devices because 
they are more economical and offer higher capacities. 
The RAM serves as the actual print storage buffer, 
whereas the LCA provides the control and timing for the 
RAM as well as controlling the data path. The LCA also 
controls the addressing of the RAM to make it behave as 
a FIFO-like circular queue. (For more information on 
circular queues, see the side box that appears later in 
this appnote.) Once print data is loaded into the queue, 
the actual printing operation is independent and 
transparent to the processor. 



~ 
I\) 

FROM 
CPU 
BUS 

PRINT 
DATA 

R/W-------
cs--------' 

RESET-------... 

CLOCK~--------1~ 

DATA IN 

XC2064LCA 

2 1 ADDR DATAi...i •• 

RAM 
(64K XS) 

~------'" WE 

cs 

Figure 1. Block Diagram of Print Buffer 

I .PRINT DATA OUT DATA 

I .. ~ASTROBE 
• ACK 

i-------- BUSY 

TO 
PRINTER 

J> 
"!J 
S" a; .. 
m c 

~ 
0 

~ 
2. 
~ 
c: 
"' S" 

Cll 
-I 
:r 
CD 

>< 
9 
~ 
en 
~ 

g 



Figure 2. Placement of 110 and Logic Blocks 

3-13 

ID 
ID 
{fl 

ID 
{fl 

ID 
{fl 
[8J 

UJ I 
UJ • 
{fl 

UJ 
{fl 

ID 
[] 

@]~ Q [] 



A Printer Buffer Controller Using The XC2064 LCA 

To better understand what is required by the circular 
queue's control logic, consider that in order to read and 
write to the RAM in different locations, two separate 16-
bit address counters must be kept: one representing 
the current read pointer, and the second one the 
current store pointer. The values of these two address 
counters must be compared in order to determine 
whether the queue is full or empty. These two 
addresses are multiplexed to form the 16-bit phys-ical 
memory address bus. Although this multiplexing is 
easily accomplished using CL8s (requiring one CLB for 
each multiplexed address bit), an alternative and more 
efficient method of multiplexing buses is to use the 3-
state output feature of the 108s. With this approach, the 
output pins of the two address buses are paired bit-for­
bit and tied together externally with only one set of IOBs 
enabled at any given time. This technique trades off 
LCA 1/0 pins for CL8s. For reasons that become 
apparent later, a combination of these multiplexing 
techniques was chosen for this design. 

Several constraints of the XC2064 LCA must be kept in 
mind when assigning pinout definitions. One issue con­
cerns assignment of 110 pins and the placement of 
registered input buses relative to each other. Since all 
108 flip-flops on any given "side" of the LCA (i.e., top, 
bottom, left or right) share a common clock, registered 
input buses requiring different clock signals must be 
positioned on different sides of the LCA. 

The Data Path 

A good starting point in many designs is the con­
sideration of the data path. In this particular application, 

Table 1: Pin Requirements For the 
Print Buffer Controller 

Processor bus interface requires: 
a Chip Select pin (CS), 
a Read/Write pin (R/W), and 
eight Data bus pins (DO-D7) 

Parallel (Centronics-type) printer interface requires: 
a Data Strobe output (DS), 
eight printer Data outputs (PDO-PD7), 
a printer Busy input (BUSY), and 
a printer Acknowledge input (ACK) 

Buffer memory interface requires: 
a memory Chip Select output (CSM), 
a memory Write Enable output (WEM), 
a memory Address bus 

(outputs MAO-MA15), 
a bidirectional memory Data bus (MDO-MD7) 

Miscellaneous: 
a 1 O MHz system clock input (CLOCK) 
a "master reset" control (RESET) 

1 pin 
1 pin 
8 pins 

1 pin 
8 pins 
1 pin 
1 pin 

1 pin 
1 pin 
16 pins 

8 pins 

1 pin 
1 pin 

the XC2064 must be able to accept print data from the 
processor, store the data into the RAM, retrieve the data 
from the RAM and then finally deliver that data to the 
printer interface. Input data from the processor passes 
through a two-stage FIFO within the controller to speed 
up the operation and absorb minor data rate variations in 
storing data into RAM. A one-bit wide "slice" of the data 
path through the XC2064 is shown in Figure 3 and 
illustrates how maximum use can be made of the 108 
resources. The complete, 8-bit wide data path is shown 
in Figure 4 along with the logic necessary to control data 
flow. A write strobe causes data on the processor's data 
bus to be captured in Register 1, which is comprised of 
the input flip-flops in the associated 108s. The data in 
Register 1 is then synchronously transferred (in FIFO­
like fashion) to Register 2 before being presented to the 
static RAM interface. 

Moving in the other direction, print data read from the 
RAM are captured in the input (108) flip-flops (Reg 3) 
used for the bidirectional memory data bus pins, 
MDO-MD7. These data are then presented to the 
printer interfaces's data lines, PDO-PD7. The bidirec­
tional memory data bus pins are controlled by a timing 
circuit (see Timing Generation and Figure 5) in such a 
way that half of the time they are inputs for reading data 
from RAM, and half of the time they are outputs for 
writing data to the RAM. The LCA also controls the 
read/write timing of the RAM by controlling both its CE 
(Chip Enable) and WE (Write Enable) pins. 

Two portions of the data path make use of input flip­
flops within the 1/0 blocks: namely the processor data 
bus and the RAM data bus. Each set of flip-flops is 
clocked at different times and under different 
conditions. Since the XC2064 constrains all IOBs along 
any one edge of the LCA to share a common clock, 
these input data bus registers must be grouped 
together and located on different edges of the LCA. In 
the final design, the memory data bus pins are split 
equally between the top and bottom sides of the LCA 
due to layout considerations. See Figure 11. 
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TIMING GENERATION 

Before discussing details of the data path control logic, it 
is useful to examine the basic timing employed in that 
logic. The timing control logic for the data path is shown 
in Figure 5 along with details of the memory timing. Let 
us assume we have available a 10 MHz system clock 
(100 ns clock periods). Since most static RAMs have 
read and write cycle times of less than 400 ns and a 
minimum write strobe width of 200 ns or less, these 
values should accommodate most SRAMs. Slightly 
faster or slower memory operation is easily attained by 
adjusting the system clock frequency. A four-stage 
Johnson counter is used to generate 8 clock states from 
which the necessary control signals can be decoded in a 



glitch-free manner. As shown in the timing diagrams, 
the memory interface continually alternates between 4 
states of write cycle followed by 4 states of read cycle. 
All actual read or write operations with the RAM fit into 
these time slots. Some static RAMs require nonzero 
data setup and hold times before and after the write 
strobe. Consequently, the active-low Write Enable (WE) 
strobe to the RAM starts one state after the write cycle 
begins and ends one state before the write cycle ends. 
Similarly, during read cycles, the data read from the RAM 
is actually sampled one state prior to the end of the read 
cycle. 

For higher performance systems, this arrangement can 
be easily modified for tighter timing of read and write 
cycles by adding more states to the timing sequence 
and increasing the externally supplied clock frequency. 

The CLB partitioning for the timing circuit is shown as 
shaded areas in Figure 5, with each shaded area 
representing one CLB. The circuit requires four full 
CLBs plus a partial CLB which is shared with another 
design function. 

DATA PATH CONTROL LOGIC 

Figure 4 shows not only the full data path through the 

DATA BIT 
FROM CPU 

IOB 

RAM 
WRITE ENABLE 

CLB 

~--~~D ai------1 

INPUT 
LATCH 

STROBE 

TRANSFER 
STROBE 

E:X!UNX 

LCA, but also the logic necessary to control the data 
flow. This logic performs several functions vital to con­
troller operation. They include: 

• Coordinating data flow from the host processor 
to the RAM 

• Coordinating data flow from the RAM to the printer 
interface 

• Making status information available at the processor 
interface 

• Sensing and generating the appropriate printer 
handshake control signals 

Note that some of the flip-flops used in Figure 4 are rep­
resented as synchronous Set-Reset flip-flops. Although 
not typically available in other types of logic, these flip­
flop types are especially useful in CLB logic since they 
simplify logic schematics and aid in understanding circuit 
operation. Their operation is similar to a JKFF, except for 
the case where both Set and Reset inputs are aserted 
simultaneously. This potential conflict is resolved by 
choosing either the Set or Reset to be the dominant 
condition (indicated on the symbol as a dot after either 
the Sor R label). Figure 6 illustrates how easily these flip­
flop types can be implemented using CLBs. 

With a clearer understanding of these circuit elements, 
let us take a closer look at the details of the control logic. I 

• 
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Figure 3. One-Bit Slice of Data Path 
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DETAILED DESCRIPTION OF 
DATA PATH CONTROL LOGIC 

The data presented by the host CPU on the DO-D7 data 
bus pins is captured by the IOB's input flip-flops 
(collectively referred to here as Register 1) on the rising 
(trailing) edge of the active-LOW write pulse as shown in 
Figure 7. Flip-flop W1 (FF-W1) is set to indicate that new 
data has been loaded into. register Reg 1. This causes 
the READY status signal to be deasserted, and re­
synchronizing flip-flop FF-W2 to be set on the following 
clock edge. The data byte in Reg 1 will be copied into 
Reg 2 (the FIFO register) on the next clock edge, 
providing that Reg 2 doesn't currently contain valid data. 
If Reg 2 does contain valid data, then the new data byte 
is held in Reg 1 until Reg 2 becomes empty. Once the 
new data value is loaded into Reg 2, both FF-W1 and 
then FF-W2 are cleared, causing the READY status line 
to be asserted again. By sensing READY, the host CPU 
knows that the next data byte can be written into Reg 1 . 
This two-deep FIFO mechanism permits fast loading of 
the RAM with only a minimum amount of time during 
which the interface is not ready. 

Once new data is present in Reg 2, the next clock edge 
which occurs prior to the start of the next write PHASE 
causes the WRT REQuest flag (FF-W4) to be set 
provided however, that the RAM buffer is not full. This 
guarantees the integrity of the RAM write operation by 
insuring that the write cycle is not cut short by starting 
part way through a write time slot. The next write time 
slot (defined by the PHASE signal) is then used to 
present the byte to the memory data bus pins. During 
this time slot, the Chip Select for the memory (CSM) is 
asserted LOW, and the Write Enable (WEM) is pulsed 
LOW during the T1 + T2 time states. At the end of the 
write cycle, the WRT REQ bit (FF-W4) is reset and the 
Store address pointer incremented. 

Reading data from the memory and presenting it to the 
printer interface is accomplished in a similar fashion, as 
shown in Figure 8. Whenever the address comparators 
indicate that the RAM buffer is not EMPTY, the next 
available read time slot (as again determined by the 
PHASE signal) is used to read the next data byte from 
the RAM. In order to insure that an entire read time slot 
is used and not just a partial one, FF-Z1 is set at the end 
of T3 and cleared at the end of T7. The FF-Z1 output is 
used as the read cycle (signal RD CY) component of the 
RAM's chip select. One time state prior to the end of the 
read cycle (i.e., at the end of T6), FF-Z2 is set, which 
causes the data being read from the RAM to be clocked 
into Reg 3. Once FF-Z2 is set, FF-Z1 will clear on the 
next clock edge, ending the RAM read cycle and 
advancing the Read address counter. Flip-flops FF-Z3 
and FF-Z4 control the timing and handling of the print 
data. Since most parallel printers specify a data setup 
time, a data strobe pulse width and a data hold time of 
approximately 0.5 µs, these flip-flops are used to gen-
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Review of Circular Queue Concepts 

The familiar first-in-first-out (FIFO) memory is ideally 
suited to this print buffer application. Unfortunately, 
dedicated FIFO memory devices are generally expensive 
and very limited in size. However, an ordinary byte-wide 
static RAM, together with a moderate amount of control 
logic, can be made to function like a FIFO. An LCA 
device can be used effectively to implement this 
structure, commonly referred to as a circular queue. A 
circular queue can be thought of as a read-write memory 
with two address pointers: one pointer referred to as the 
store pointer, S, and the second one referred to as the 
read pointer, A. The read pointer indicates the address in 
the buffer memory where the next character to be read 
from the queue is located. The store pointer indicates 
the address where the next character to be placed into 
the queue will be stored. After a data word is entered or 
retrieved from the queue, the appropriate address pointer 
is incremented by one. Whenever one of the pointers 
reaches the last (highest) address in the read-write 
memory, it automatically wraps around to point to the first 
(lowest) memory address. If the memory size is a power 
of two, then these pointers can be implemented with 
simple 2n modulo counters. In order to detect the queue­
empty and-queue full conditions and prevent overruns 
and underruns, some simple rules are followed: 

1. Upon initialization, set A = S 
2. Whenever A = S, queue is empty; and 

whenever S + 1 = A, queue is full 
3. In writing to the queue: 

first verify that S+ 1 does not equal A; if it does, 
then queue is full, else write the new entry at 
address S and increment S by one. 

4. In reading from the queue: 
first verify that R does not equal S; if it does, 
then queue is empty, else read the entry at 
address A and increment A by one. 

erate that particular timing. Assuming a 1 O MHz clock is 
used, FF-Z3 is set at the end of the next T3 state, which 
is exactly five 1 OOns periods after data became valid at 
Reg 3. FF-Z4 is set at TO, exactly five 1 OOns periods 
after FF-Z3 went set. The condition in which FF-Z3 is 
set and FF-Z4 is not yet set is used to generate the data 
strobe pulse with the proper timing. This meets the data 
setup time and the data strobe pulse width require­
ments for most parallel printers. The printer responds 
some time later with an asynchronous ACK (Acknow­
ledge) handshake signal and possibly a BUSY status 
signal. When the ACKnowledge signal goes LOW 
(active), FF-Z3 is cleared. Later, when both ACK and 
BUSY become inactive, both FF-Z2 and FF-Z4 are also 
cleared. Until FF-Z2 is cleared, FF-Z1 cannot be set and 
new data cannot be read from the RAM. Consequently, 
data overruns cannot occur during the time required by 
the printer to complete its operation and release its 
BUSY signal. 
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The RAM's Chip Select (CSM) is generated by ORing, 
the WRT_CYCLE and READ_CYCLE signals together. 
In this way, the data bus between the LCA and the RAM 
is enabled only during memory cycles in which data is 
being transferred; at all other times the RAM is disabled, 
resulting in lower power dissipation from the RAM. 

ADDRESS COUNTERS 

The read and store address pointers required for a 
circular queue are nothing more than counters. 
Although almost any type of counter would suffice for 
this application, careful selection of the right type of 
counter can lead to some significant savings in terms of 
CLB usage. 

Although binary counters are the most familiar and the 
easiest to understand, synchronous versions are 
expensive to implement for larger modules. Johnson 
counters, which count through only 2n states rather 
than 2n, require an excessive amount of logic. The best 
counter in this case is a linear feedback shift register 
(LFSR) counter. The advantages in using LFSR 
counters in this application outweigh their main 
disadvantage-a nonconsecutive count sequence. 
They are very resource-efficient, since they consist 
merely of an n-bit shift register with bits from certain 
stages fed back to an exclusive-OR gate at the first 
stage. With proper selection of the feedback bits, 
these counters can be made to cycle through (2n)-1 
unique count states before repeating. 

A potential drawback of the LFSR counter is the 
possibility of "hanging up" in the excluded count state 
(usually the all 1s or the all Os state). Although this state 
cannot be entered in normal operation, it may possibly 
occur upon powerup. This situation can be prevented 
by guaranteeing that this excluded state is not one 
which occurs upon power-up. Through the use of the 
LCA's power-on reset which clears all the stages, and by 
inverting the sense of the feedback bit from the last 
counter stage, the count sequence commences with 
the all Os state and never enters the all 1s state. Since 
all the LCA's storage elements are cleared during 
configuration, this condition is assured. 

ADDRESS COMPARATORS 

Two address comparisons are required to implement a 
circular queue: one to detect the EMPTY condition (R = 
S) and one to detect the FULL condition (S+ 1 = R). 
(The values of the Read and Store address counters are 
referred to here as R and S, respectively. See the 
description of circular queues in the side box.) Whereas 
the comparison of the two address counter values for 
equality is straightforward, the comparison of two LFSR 
counter values for the FULL condition (S+ 1 = R) 

appears difficult because of the LFSR's nonconsecutive 
count sequence. However, it should be clear that the 
S+ 1 value of the store pointer is simply the next state 
value (S prime) of S and is available as the D input of 
each flip-flop stage of S. This next-state value of each 
stage is readily obtainable with LFSR counters and 
makes implementing the address comparators simply a 
matter of bit-wise exclusive NORing together the appro­
priate bits of the two address counters. 

Although address bus comparators are normally 
implemented as parallel exclusive-NOR structures, the 
architecture of the CLB with its dual outputs suggests 
an alternate, more efficient implementation. A serial 
implementation in which the result of each one-bit com­
pare was ANDed with the results of the previous stage 
and passed along to the next stage would afso serve the 
same function. Although this serial implementation is 
slower then a parallel one (yet still fast enough for our 
requirements), it has a major advantage over the parallel 
approach: such a circuit could be created from the same 
string of CLBs used to implement the two counters. 
Since each stage of the LFSRs consumes only the 
CLB's flip-flop and does not make use of the rest of the 
CLB's available combinational logic resourc-es, the serial 
address comparators could be implement-ad in those 
same CLBs. The combined implementation of both 16-
bit counters as well as the two 16-bit address 
comparators is shown in Figure 9. 

Note that with the 32 CLBs required to implement the 
two 16-bit counters, inclusion of the two 16-bit address 
comparators requires only one additional CLB, for a total 
of 33 CLBs. 

TRADE OFFS IN MULTIPLEXING THE ADDRESS 
OUTPUTS 
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The last portion of the print buffer controller to be 
designed is the address output multiplexing logic. After 
implementing all the other sections of the entire print 
buffer controller circuit, only 6 CLBs and 26 IOBs remain 
to implement the address multiplexing logic. If the 
address multiplexing were accomplished entirely with 3-
state outputs, then 32 IOBs would .be required, six more 
than the 26 available. The six unused CLBs could be 
used as six one-bit wide multiplexers, but this number is 
not sufficient either. However, this would reduce the 
IOB requirement by six, from 32 IOBs to 26, which is 
precisely the number available. With a combination of 
the two multiplexing techniques, it is possible to 
multiplex two 16-bit address buses and access a full 64K 
byte print buffer memory. Every CLB and JOB is utilized 
in this application. 

The XC2064's RESET pin acts as a master reset control 
for all flip-flops and latches during the LCA's user­
operating mode. Consequently, it can also be used to 



READ AND STORE ADDRESSES 

I -- -- - - - --

51 R1 S2 R2 53 R3 $4 SHi R16 

I I I . 
I 1 1 11 1 

I 

c..> 

"' c..> 

)----t---+~~EMPTY 

: ~ I I 1 .
1
. ~ l~ __ _L 

Ii i I ~1~--

r , H.

1 i5J ~DJ HIY 1 

I ' I I I I 

I I I :oJ i ~.I-+-----! 1 D Q~ D Q D 0 

I I R2 

AD_CY---__J~ ___ _j_-+------i-l---====1-~::±==~========J--;=t=:~========t-----

1---+---+----<~FU LL 

r -
L, 

RS 

! 

S1 S4 

WRT-CY----<1~------------.+---------+---------------------------------~ 

Figure 9. Address Counters and Comparator Logic M 

. -



A Printer Buffer Controller Using The XC2064 LCA 

reset the overall operation of the controller, and it can be 
thought of as a 59th 1/0 pin in this application. 

DETERMINING THE CLB AND 108 PLACEMENTS 

One of the important aspects of designing with LCAs is 
the placement of the IOBs and CLBs within the LCA. 
Defining which 1/0 pins serve which function is a matter 
of great interest to the system designer, since it directly 
affects printed circuit board layout and routing and, 
possibly, board space. Less obvious but just as 
important to the designer, however, is the judicious 
placement of CLBs within the LCA. Proper placement 
of CLBs is just as important as good logic design, since it 
directly affects how much logic can be packed into a 
single LCA device. This, in turn, affects the total 
number of ICs and ultimately the board size. Several 
IOB and CLB placements can be analyzed in order to 
determine the best solution for a particular application. 
The placement of CLBs and IOBs in this design example 
required several passes before selection of the final 
placement presented here. The factors affecting this 
particular layout are indicative of those affecting many 
designs. For example: 

• Wherever possible, an attempt was made to make 
maximal use of direct interconnect options. This was 
done to free general-purpose routing resources for 
other nets. 

• The two counters were positioned in vertical columns 
to use metal long lines for clock distribution and to 
minimize clock skew. 

• There is a high degree of connectivity between each 
CLB stage of one address counter and the 
corresponding CLB stage of the other counter due to 
the two address comparisons taking place. As a result, 
the pairs of corresponding CLB stages of the two 
counters are positioned adjacent to each other to 
minimize interconnect path lengths. See Figure 5. 
Since the pattern of interconnect between CLB pairs 
is repeated many times in the design, this pattern was 
carefully analyzed and optimized wherever possible. 

• The read and store address buses must be 
multiplexed to create a single physical address bus of 
Figure 10. Since only six CLBs were available for 
address multiplexing, only six pairs of address bits 
could be multiplexed in CLB logic. The remaining 
address bits are multiplexed at the 1/0 pins. 
Consequently, the CLBs comprising the address 
counters are positioned along the right side of the 
LCA with outputs on the top, bottom and right sides 
of the LCA. Bits of the innermost counter stages 
required longer path lengths to get to IOBs and, 
therefore, were chosen for logical multiplexing. This 
allowed routing one output signal to one IOB instead 

of routing two signals out to two IOBs. This resulted in 
considerably less routing congestion. 

• Since IOBs on each side of the LCA share a common 
input flip-flop clock, the IOBs (Reg1) for the processor 
data bus and the IOBs for the RAM data bus (Reg 3) 
must be located on separate sides of the LCA. The 
processor data bus IOBs were placed on the left side 
of the LCA. Because of CLB placement decisions 
and the large number of IOBs required by the memory 
address bus, the data bus to the RAM buffer was split 
with four IOBs on the top and four IOBs on the 
bottom. The eight CLBs associated with Reg 2 in the 
data path were likewise split four along the top and 
four along the bottom. See Figure 5. 

CONFIGURING THE LCA 

The LCA configuration program is 12,040 bits or 1,505 
bytes in length. This configuration program can be 
loaded either from a host CPU or automatically upon 
power-up from an external memory (e.g., an EPROM). 
The specific configuration mode employed by the LCA 
is determined by the strapping of two pins on the 
device, MO and M1, to either Vee or ground. 

In designs in which it is possible to let the host CPU 
handle the configuring, the LCA can be configured from 
the system bus as though it were a peripheral device. 
This is accomplished through use of three Chip Select 
pins, a serial DIN (Data In) pin, and a WRT (Write Strobe) 
pin. In this mode, the configuration program is written 
into the LCA serially, one bit at a time. If the CPU were 
not available to handle configuration, then the self­
programming (Master) mode could have been chosen. 
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In this application example, let us assume that 
configuration programming can be conveniently 
handled by the host CPU. In this case, the peripheral 
configuration mode is the most appropriate. With this 
mode, the configuration data can be stored anywhere in 
the system-possibly sharing space with program code 
in a "bootup" ROM or EPROM, or stored on a disk. This 
way, configuring the LCA can be made part of the 
bootup process. To use the peripheral mode, Mode 
Select pins MO and M1 must be tied HIGH and LOW, 
respectively. The device pins used for configuration 
then are: DIN, DOUT, CCLK, three Chip Selects and the 
WRT strobe. Since all of these pins are used as address 
outputs for the RAM in the final design, activity on these 
lines during the configuration process will not present a 
problem. However, since 5 of these 7 pins are inputs 
which are driven from the CPU's system bus during 
configuration, they must be isolated from the system 
bus once configuration is completed in order to prevent 
signal contentions. This is easily accomplished with a 
single three-state buffer package. 
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Figure 11. Placed and Routed Printer Buffer Controller LCA Design 
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DESIGN ALTERNATIVES 

A number of design alternatives are possible with the 
printer buffer controller example we have chosen. 
Modifications could have been made in a number of 
different areas, including the following: 

• Using a smaller address space (i.e., smaller counters 
and comparators) 

• Eliminating the input FIFO stage (Reg 2) 

• Implementing all the address multiplexing with CLBs 
rather than IOBs 

• Using a Johnson counter with more states for finer 
timing resolution 

• Using the on-chip oscillator rather than an 
external clock 

• Using a processor bus interface with separate read 
and write strobes 

• Supporting other printer signals (e.g., Out-of-paper, 
Off-line, Fault) 

• Supporting a different style printer interface 
altogether 

• Supporting an interrupt output to the host when the 
queue goes empty 

COMPARISION WITH ALTERNATIVE TECHNOLOGIES 

One method of evaluating the efficiency of the LCA in a 
given application is to consider the same logic design 
implemented with standard product SSl/MSI logic 
devices. The summary of SSl/MSI components in Table 
4 represents an equivalent 74LSxx logic family 
implementation of the print buffer controller design. 
Implementations in 4000 series CMOS or 74HCxx family 
CMOS would likely result in even higher package 
counts, since those logic families lack the breadth of the 
74LSxx product family. 

Another useful way of gauging the effectiveness of the 
LCA as a vehicle for implementing logic circuits is to 
consider the number of equivalent NANO gates 
required to implement the same design in a gate array. 
The usual procedure is to compute the number of 
equivalent 2-input NANO gates required to implement 
the same logic function. This type of calculation places a 
numerical measure on the amount of logic required to 
implement a specific circuit. An analysis of the printer 
buffer controller design, based on the macrocell library 
of a major gate array vendor, shows that the amount of 
logic necessary for a gate array implementation of this 
same circuit would be approximately 838 equivalent 
gates. 

Typically, gate array vendors reserve a margin of safety 

to guarantee routability. As a result, only about 80% of 
the total gates on a device are available for use by 
customer's logic. This number can vary slightly from 
design to design and from vendor to vendor, but usually 
it is near 80%. If we apply this factor to the actual 
computed gate count of 838, we see that this 
application design should require: 

gate count 

0.8 

838 
- = 1047 gates. 
0.8 

Accordingly, the printer buffer controller would require a 
gate array of at least 1,000 gates. 

The cost advantages of a gate array solution are often 
outweighed by the high costs and lengthy time delays 
required to produce a working prototype. The se­
quence of events which a designer must go through 
before working silicon can be delivered typically can take 
months, with the risk of future delays if errors are 
encountered. For many smaller gate array applications 
(such as this printer buffer controller}, the LCA 
combines high density with the advantages of user 
programmability. 

Table 4: An Equivalent Implementation Using SSl/MSI 
(74LSxx) 

Component Number of Device Pkgs 
Description Elements Number Req'd 

Counters and comparators section: 
octal shift reg. w/clear 74LS299 4 

and 3-state outputs 
quad exclusive NOR (oc) 32 74LS266 8 
quad exclusive OR 4 74LS86 1 
hex inverters 3 74LS04 1 
pull-up resistors 2 resistors 

Data Path section: 
octal DFF register w/clear 24 74LS273 3 
quad 3-state buffers 3 74LS125A 1 
octal 3-state buffers 8 74LS244 1 

Timing Generation section: 
quad DFF w/clear 4 74LS175 
quad 2-input ANDs 5 74LS08 

Control logic section: 
dual DFF w/ clear 8 74LS74 4 
quad 2-input ANDs 9 74LS08 3 
quad 2-input NANDs 6 74LSOO 2 
quad 2-input ORs 3 74LS32 1 
quad 2-input NORs 12 74LS02 3 
triple 3-input NORs 2 74LS27 1 
hex inverters 6 74LS04 1 

Total Packages Required: 36 
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A Printer Buffer Controller Using The XC2064 LCA 

SUMMARY 

This application note illustrates how an LCA could be 
designed into a printer buffer controller. Some of the 
many aspects of designing with LCAs have been presen-

ted and discussed. These same issues are applicable to 
a wide range of LCA applications. Some useful 
techniques for optimizing the efficiency of the LCA's 
logic and interconnect resources have also been 
described. 

PIN 0010016 01 
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INTRODUCTION 

The Xilinx XC2064 and XC2018 Logic Cell™ Arrays 
(LCA) easily accommodate a wide variety of different 
logic structures. This application note describes the 
design and entry of two such structures: A binary-to­
seven-segment display driver and a BCD- (binary coded 
decimal) to-seven-segment display driver. Although a 
designer would most likely use an off-the-shelf LED 
display driver, this application note describes the 
method of entering a display driver design (more as an 
example than an actual application). With the Xilinx 
XACTrM Development System, building the second 
driver design (BCD) is a simple matter of editing the first 
(binary). 

This application note also describes the Karnaugh map 
logic entry method available in the XACT Development 
System. For this design, the Karnaugh map entry saves 
time by simplifying the logic entry. The engineer can 
enter his logic directly through the Karnaugh map 
instead of deriving lengthy equations. 

Since the XACT Development System supports macros, 
a designer may build a logic design from higher level 
functions. Besides the extensive Xilinx macro library, a 
designer can choose from custom user-created macro 
functions. This application note demonstrates how to 
create two LED driver macros to add to the designer's 
personal macro library. These LED drivers could then 
be integrated with other logic structures. For example, a 
designer might decide to include the drivers with a 
custom front-panel controller or a custom clock-timer 
display to minimize overall system chip count. 

DESCRIPTION OF THE TWO DESIGNS 

Binary-to-Seven-Segment Display Driver. 

The first design, as graphically described in Figure 1, 
consists of logic to decode a four-bit binary input with 
binary values ranging from OOOOB to 1111 B (0 to 15 
decimal). The decoded values drive the seven 
segments of the LED display to display the 
corresponding hexadecimal character (0 through F). 
The "character set" for the binary-to-seven-segment 
display is shown in Figure 2. Alternate characters 
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representations are acceptable-especially for the "9", 
"b" and "d" symbols. 

The LED segment drivers have registered outputs 
driven by the Strobe clock input. The logic drives 
common cathode LED displays. In other words, a logic 
"1" lights a particular segment. Conversely, in common 
anode displays, a logic "O" drives a segment. 

BCD-to-Seven-Segment Display Driver 

The binary-to-seven-segment display driver created in 
the first design can be easily edited with the XACT 
Development System to create a BCD-to-seven­
segment display driver. The only modification required 
involves displaying an error character (in this case, an 
"e") any time the four-bit value exceeds 1001 B (9 
decimal). The complete "character set" for the BCD 
display driver is shown in Figure 3. 

KARNAUGH MAPS WITHIN THE XACT 
DEVELOPMENT SYSTEM 

For ease-of-use, the XACT Development System 
supports two forms of logic entry while editing a 
Configurable Logic Block (CLB). The first is standard 
Boolean equation entry. The second involves editing 
values within a Karnaugh map. The two entry methods 
are tightly coupled, and changes entered under one 
method are reflected in the other. For example an equa­
tion entered in standard Boolean form will be processed 
by the development system so that the equation also 
appears in its Karnaugh map representation. 

The XACT Development System supports Karnaugh 
maps with one to four input variables. Editing entries 
within the Karnaugh map involves placing the mouse 
cursor in the appropriate entry box and then toggling 
that box making the entry true or false. Both the truth 
table and the Boolean equation line are updated to 
reflect any change entered through the Karnaugh map. 

Karnaugh Map Background 

Karnaugh maps were originally developed by M. 
Karnaugh in the early 1950s. Karnaugh maps aid in 
analyzing and minimizing Boolean logic expressions. 

I 
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However because of the unique logic architecture of a 
Logic Cell Array, there is no need to minimize logic 
within a CLB. Logic within an LCA can be directly 
implemented as a Karnaugh map. Therfore logic 
minimization using Karnaugh maps will not be discussed 
here. 

For LCA designs, Karnaugh maps provide a quick and 
concise shorthand notation for defining combinatorial 
logic functions (although Boolean expressions are 
possible). This application note describes how to use 
the Karnaugh entry method to enter the design for the 
LED driver quickly. Using the Karnaugh map entry 
method saves a long and tedious step-converting the 
Karnaugh map into a reduced Boolean expression. 

Description of Karnaugh Maps 
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Within the XACT Development System, Karnaugh maps 
graphically describe the combinatorial logic inside a 
CLB. They may have from one to four input variables. 
The maps consist of a matrix of cells each corresponding 
to a single minterm of the four possible input variables. 

As a simple example, Figure 4 shows a two-input 
Karnaugh map along with its truth table. The bars on the 
edges of the Karnaugh map indicate the row or column 

S3 

S2 

S1 

so 

STROBE 

SEVEN-SEGMENT 
LED DRIVER 

COMMON 
CATHODE 

A 

D 

SEGA 

SEGB 

SEGC 

SEGO 

SEGE 

SEGF 

SEGG 

Figure 1. Basic Seven-Segment LED Driver 
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for which the specified input variable is true (logic "1"). 
Notice how the values from the truth table correspond to 
entries within the Karnaugh map. The first line of the 
truth table (A=O and B=O) maps into the upper left-hand 
entry of the Karnaugh map, where again A=O and B=O. 
The user can "direct map" this value into the Karnaugh 
map, or he can use the decimal value of the inputs (zero 
for A=O, B=O) and ''position map" the value into position 
zero of the Karnaugh map. 

To enter the simple equation in Figure 4, the user either 
enters the Boolean equation "A@B" or toggles the 
upper right-hand and lower left-hand entries in the 
Karnaugh map to the ON state using the mouse. 

1-1 
1:1 
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This technique becomes even more powerful with each 
additional input variable. For example Figure 5 shows 
this same technique applied to a four-input Karnaugh 
map. For some functions, the Karnaugh map represents 
a shorthand logic notation over standard Boolean 
equations. 

BINARY-TO-SEVEN-SEGMENT DISPLAY DRIVER 

Table 1 lists all of the possible inputs for the seven­
segment display driver, including which of the seven 
segments is driven by each stimulus. An asterisk 
indicates that the segment output is driven for the 
specified combination of inputs S3 through SO . 

~-1 
1:~ 

~-1 
0:1 

0010 0011 

·-~ 
1:1 

~-1 
0:1 

0110 0111 

1-1 
1:1 

·CJ~ 
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·=~ 

·-~ 
1:~ 
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Figure 2. Binary-to-Seven-Segment Display Character Set 
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A Seven-Segment Display Driver 

Obviously, converting this table into a series of Boolean 
logic equations would be tedious. A much simpler 
method involves entering this information directly into 
the CLBs using the XACT Editor's Karnaugh map entry 
facility. 

Before delving too deeply into the design entry 
method, some conventions must first be established. 
For example if the XACT command sequence 
Screen(Show(World)) appears, then select the Screen 
command using the mouse, then the Show command, 
and lastly the World command. A Done command is 
implied after each sequence unless the development 
system prompts for more inputs. From the keyboard, 
the user merely types Show World (the first command, 

0000 0001 

0100 0101 

1000 1001 

ERROR ERROR 

1-1 
1:~ 

1-1 
1:~ 

1100 1101 

Screen, does not need to be entered if typing the 
command from the keyboard) to accomplish the same 
goal. 

Keyboard command abbreviations are often indicated 
by uppercase highlighted characters in the menus. 
Abreviations are documented in the Editor section of 
the XACT LCA Development System Manual. 

To generate a blank Karnaugh map within a 
Configurable Logic Block (CLB), first select Blk(EditBlk) 
with the mouse or simply type EB with the keyboard. 
Then select the CLB in position AH (upper right-hand 
corner) to work on. This CLB will drive the Segment A 
(SEGA) signal line of the LED driver. 
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Figure 3. BCD·to-Seven-Segment Display Character Set 
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Figure 5. Four-Variable Karnaugh Map 

DECIMAL S3 S2 S1 so A B c D E F G 

0 0 0 0 0 . . . . . . 
1 0 0 0 1 . . A 
2 0 0 1 0 . . . . . 
3 0 0 1 1 . . . . . 
4 0 1 0 0 . . . . 
5 0 1 0 1 . . . . . 
6 0 1 1 0 . . . . . . 
7 0 1 1 1 . . . 
8 1 0 0 0 . . . . . . . 
9 1 0 0 1 . . . . . 

10 1 0 1 0 . . . . . . 
11 1 0 1 1 . . . . . 
12 1 1 0 0 . . . . D 

13 1 1 0 1 . . . . . 
14 1 1 1 0 . . . . . 
15 1 1 1 1 . . . . 

Table 1. Input Table for Binary-To-Seven-Segment Display 
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A Seven-Segment Display Driver 

Since each segment of the LED driver requires a 
function of four input variables, change the base 
configuration of the CLB from its default configuration 
(two functions, each using three of the five available 
input variables). Select Config(Base(F)) to do this. Now 
the CLB is configured to be a single function using four 
out of the five possible variables. 

To create a blank Karnaugh map, select 
Config(Order(F(A(B(C(D)))))) (remember to add the 
implied Done). The display should appear like Figure 6 
with a blank Karnaugh map appearing in the lower left 
hand corner. 

Configure the SEGA CLB by selecting "Q" to drive the X 
output. In addition, use the "K" clock input to clock the 
storage element. 

To save effort entering this design, copy the 
configuration in the SEGA CLB to six other CLBs (one 
each for the remaining six LED segments). First, select 
Screen(Switch) to switch to the physical interconnect 
editor. Then, select Blk(Copyblk) and click on block AH 
(which is the SEGA block). Copy this block to CLB 
blocks BH through GH (all along the right-hand edge of 
the die). Remember to select Done when complete. 
Again select Screen(Switch) to continue editing the 
SEGACLB. 

Using the information in Table 1, the user can enter the 
design directly into the Karnaugh map. For clarity and an 
as example, entering the data for Segment A (SEGA) of 
the seven-segment display is described. 

Table 2 contains the binary values of the input variables 
A, B, C, and D as well as the corresponding logic output 
F for SEGA. All of the possible values ranging from 
OOOOB to 1111 B are numbered with their 
corresponding decimal values. In addition, Figure 7a 
shows where each of the binary inputs is located within 
the Karnaugh map using the decimal values of the 4-bit 
binary input. Figure 7b details how the logic for SEGA 
maps into the Karnaugh map. 

Using the mouse, place the mouse cursor inside the 
upper left block of the Karnaugh map and toggle that 
block on (bright yellow) with the mouse select button. 
The logic for SEGA (when all of the inputs are logic "O") 
has just been set. The truth table to the left of the 
Karnaugh map and the Boolean equation line at the 
bottom of the screen should both reflect the change 
made in the Karnaugh map. 

Continue toggling on the indicated blocks for the 
remaining values, just as shown in Figure 7b. This is 
much simpler than typing the Boolean equation for 
SEGA: 

SEGA = -C*-A+C*B+D*-A+-D*B+-D*C*A*-C*-B 

Repeat this same process for the six remaining CLBs. 
The Karnaugh maps should appear like those shown in 
Figure 8. 

Now that each of the segment drivers has been 
configured, name each CLB with its corresponding 
segment identity. For Segment A, type 

NAMEB HA SEGA (Enter). 

The name SEGA should appear in block AH. To save 
the designer lime and effort, the development system 
keeps a running stack of the latest command line 
entries. This way, a user can pull up the last few 
commands and edit them to enter similar commands. 
For example to name Segment B, merely press the up 
cursor button. The line previously entered will appear 
on the command line. Edit the command line using the 

x 
y 
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SET c Q 
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CLK 
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o{e}c 
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XX XX L 
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Figure 6. Blank Karnaugh Map in CLB Display 

DECIMAL D c B A F 

0 0 0 0 0 . 
1 0 0 0 1 
2 0 0 1 0 . 
3 0 0 1 1 . 
4 0 1 0 0 
5 0 1 0 1 . 
6 0 1 1 0 . 
7 0 1 1 1 . 
8 1 0 0 0 . 
9 1 0 0 1 . 

10 1 0 1 0 . 
11 1 0 1 1 
12 1 1 0 0 . 
13 1 1 0 1 
14 1 1 1 0 . 
15 1 1 1 1 . 

0010017 14 

Table 2. Truth Table Specifically for Segment A 
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left and right cursor keys and the insert (Ins) and delete 
(Del) keys to read 

NAMEB HB SEGB. 

Now press the ENTER key. Continue naming the 
remaining blocks in the same manner. 

Add the required networks using the Addnet command. 
Connect a network called SO to the A-input of each CLB 
in the design, one called S1 to the B-input, one called 
S2 to the C-input, and one called S3 to the D-input. 
Attach all of the K clock lines together on a net called 
Strobe. 

For the X-output from each CLB, add an output network 
using a name specific for each segment output. For 
example, attach a network called A_Out to the X-output 
from the SEGA CLB. 

VALIDATING THE DESIGN 

Before a section of logic is saved as a macro function, its 
function should be thoroughly verified. Without 
verification, logic bugs could potentially be passed from 
one design to another (a veritable digital design 
influenza). Using the macro library, a designer builds his 
logic in debugged modules. 

Modular logic design accomplishes many of the same 
goals as modular software design. Modularity helps 
speed development by isolating errors to specific 
modules, making the system easier to debug. By using 
validated modules throughout his design, the designer 
reduces the time and frustration of the hardware debug 
cycle. Obviously validating macros is important. 

The minimum validation that should be applied to a 
macro function is the Design Rule Checker (DRC). To 
invoke the DRC for the LED driver design just entered, 
select Misc(DRC) from the LCA Editor. Warnings about 
missing sources or loads may be ignored if the specified 
networks are known not to have them. For example, in 
this design, the DRC indicates that networks SO, S1, 
S2, S3, and Strobe have no sources while networks 
A_Out through G_Out have no loads. Warnings about 
PIPs (programmable interconnect points) may be 
ignored if some of the networks have not been routed 
(as is the case with this design example). 

A much better way to validate the design involves either 
the simulator (P-SILOS™), the in-circuit emulator 
(XACTOR™), or the download cable. To validate the 
design with the simulator, run the simulation generator 
program (SimGen in the Executive Program menu). 
Then, using any standard text editor, edit the data file 
(<filename>.DAT) to include valid stimuli to test the 
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design. Figure 9 shows the stimuli used to verify the 
LED driver. Running a simulation based on these stimuli 
produces the graphical output shown in Figure 1 O. 

Emulation is even simpler. It involves downloading the 
design into a system and testing it there for functionality. 

After verifying the design, enter the LCA Editor by 
Selecting Editlca from the main Executive menu. Now, 
to save the binary-to-seven-segment display drive in the 
macro library, select Misc(Cutmacro). When the 
development system prompts for a file name, enter 
7SEG_BLC for a seven-segment display driver (7SEG_) 
using binary (B) input with latched output (L) to a 
common cathode (C) display. 

To save the desired portion of logic under this macro 
name, select the seven CLBs used in this design using 
the mouse. Select blocks AH through GH. Select Done 
when complete. The Cutmacro command automatically 
picks up the routing attached to the specified blocks (as 
well as any corresponding block and net names) and 
creates an ASCII text file containing all the macro 
information. A portion of the ASCII macro file called 
7SEG_BLC.MAC appears in Figure 11. The Cutmacro 
command also appends the file extension .MAC to a 
macro file. 

Once in ASCII form, the designer can use any standard 
text editor to edit the newly created macro file. For 
example, the designer may decide to change the 
default network or block names. 

0 1 3 2 

4 5 7 6 

12 13 15 14 

0010017 7a 
8 9 11 10 

Figure 7a. Position Map for a Four-Variable Karnaugh Map 

0010017 7b 
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Figure 7b. Segment A Logic Mapped Into Karnaugh Map 
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A Seven-Segment Display Driver 

The newly created macro file can now be used just like 
any standard macro library entry merely by selecting 
Misc(Macro)) and choosing macro 7SEG_BLC. 

BCD-TO-SEVEN-SEGMENT DISPLAY DRIVER 

Table 3 indicates which of the seven-segments are 
lighted by each of the sixteen input combinations. 
Notice that combinations 10 thrpugh 15 are identical 
(the error symbol "e"). Modifying the binary display 
driver to make it a BCD display driver is quite simple. 
Positions 10 through 15 in each Karnaugh map for 
Segments A through G must be modified. To display 
the error symbol, all of the LED segments except for 
Segment C (SEGC) are lighted. The edited Karnaugh 
maps for the BCD driver appear in Figure 12. 

Edit the Karnaugh maps for all of the LED segments 
(SEGA through SEGG) to reflect the changes and then 
perform a Design Rule Check to verify the design. 

Once verified, save this new design as another macro, 
this time c.alled BCD_7LC for BCD to seven-segment 
display (BCD_?) with latched outputs (L) for a common 
cathode display (C). 

OTHER POSSIBLE MODIFICATIONS 

Common-Anode Displays 

The logic for both LED display drivers presented here 
specifies active-high outputs (positive logic). Positive 

0 
{ 

logic drives common-cathode displays by sending a 
logic "1" to the appropriate segment. To drive common-
anode displays, however, the logic sense must be 
inverted. In other words, the positive logic equations 
must be converted to negative logic equations. 

Simply inverting every entry within each Karnaugh map 
for each CLB accomplishes this. However, in this case, 
editing the Boolean equation is much easier. While 
editing the correct CLB, select Config(Editeq(F)) and 
use the left and right cursor keys and the insert (Ins) and 
delete (Del) keys to edit the equation. For example, to 
invert the equation for SEGA, change the equation from 

F = -C*-A+C*B+D*-A+-D*B+-D*C*A+D*-C*-B 

to 

F = -(-C*-A+C*B+D*-A+-D*B+-D*C* A+D*-C*-B) 

by adding a "-(" to the front of the equation and a ")"to 
the back of the equation. Do this for each segment. 

Thus, two new macros can be created-one for a binary­
to-seven-segment display driver for common-anode 
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Figure 8. Karnaugh Map Seven-Segment Display 
(Binary Inputs) 
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DECIMAL $3 $2 $1 so A B c D E F G 

0 0 0 0 0 . . . . . . 
1 0 0 0 1 . . A 
2 0 0 1 0 . . . . . 
3 0 0 1 1 . . . . . 
4 0 1 0 0 . . . . 
5 0 1 0 1 . . . . . 
6 0 1 1 0 . . . . . . 
7 0 1 1 1 . . . 
8 1 0 0 0 . . . . . . . 
9 1 0 0 1 . . . . . 

10 1 0 1 0 . . . . . . 
11 1 0 1 1 . . . . . . 
12 1 1 0 0 . . . . . . D 
13 1 1 0 1 . . . . . . 
14 1 1 1 0 . . . . . . 
15 1 1 1 1 . . . . . . 

0010017 15 

Table 3. Input Table for BCD-To-Seven-Segment Display 

$ 
$ Simulation file for design 'KARANAUGH.LCA' type '2064c68-l' 
$ Created by XACT Ver. 1.1 at 15:01:43 MAR 23, 1986 
$ 
!INPUT KARANAUGH.sim 

$ INPUTS: I 
Strobe .CLK 0 so 100 Sl 200 so .REP 0 
GLOBAL.RESET .CLK 0 Sl 1 so $ Initial pulse to reset latches 

.PATTERN S3 S2 Sl so • 0 0 0 0 0 $hex 0 
500 0 0 0 1 $hex 1 
1000 0 0 1 0 $hex 2 
1500 0 0 1 1 $hex 3 
2000 0 1 0 0 $hex 4 
2500 0 1 0 1 $hex 5 
3000 0 1 1 0 $hex 6 
3500 0 1 1 1 $hex 7 
4000 1 0 0 0 $hex 8 
4500 1 0 0 1 $hex 9 
5000 1 0 1 1 $hex A 
5500 1 0 1 1 $hex B 
6000 1 1 0 0 $hex c 
6500 1 1 0 1 $hex D 
7000 1 1 1 0 $hex E 
7500 1 1 1 1 $hex F 
.EOP 

.MONITOR Strobe SO Sl S2 S3 ; A_Out B_Out C_Out D_Out E_Out F_Out G_Out 

.GRAPH Strobe so Sl S2 S3 ; A_Out B_Out C_Out D_Out E_Out F_Out G_Out 

Figure 9. Simulator Stimulus File to Validate Binary-to-Seven-Segment Display Design 
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A Seven-Segment Display Driver 

ABCDEFG ABCDEFG 

0000000 000 0000 
SSS S uuuuuuu ssss uuuuuuu 

TIME 3 2 1 0 TTTTTTT TIME 3 2 1 0 TTTTTTT 

0 0 0 0 0 1 1 1 1 1 1 0 0 4035 1 0 0 0 1 1 1 1 1 1 1 8 
500 0 0 0 1 1 1 1 1 1 1 0 4500 1 0 0 0 1111111 
535 0 0 0 1 0110000 1 4535 1 0 0 1 1 1 1 0 0 1 1 9 

1000 0 0 1 0 0110000 5000 1 0 0 1 1 1 1 0 0 1 1 
1035 0 0 1 0 1 1 0 1 1 0 1 2 5035 1 0 1 0 1 1 1 0 1 1 1 A 
1500 0 0 1 1 1 1 0 1 1 0 1 5500 1 0 1 0 1110111 
1535 0 0 1 1 1111001 3 5535 1 0 1 1 0011111 c 
2000 0 1 0 0 1111001 6000 1 0 1 1 0011111 
2035 0 1 0 0 0110011 4 6035 1 1 0 0 1001110 c 
2500 0 1 0 1 0110011 6500 1 1 0 0 1001110 
2535 0 1 0 1 1 0 1 1 0 1 1 5 6535 1 1 0 1 0111101 D 
3000 0 1 1 0 1 0 1 1 0 1 1 7000 1 1 0 1 0 1 1 1 1 0 1 
3035 0 1 1 0 1011111 6 7035 1 1 1 0 1 0 0 1 1 1 1 E 
3500 0 1 1 1 1011111 7500 1 1 1 0 1 0 0 1 1 1 1 
3535 0 1 1 1 1110000 7 7535 1 1 1 1 1 0 0 0 1 1 1 F 
4000 1 0 0 0 1110000 

Figure 1 o. Timing Diagram Output from P-SILOS for Binary-to Seven-Segment Display Driver 
(Diagram is used to validate logic) 
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; Cutmacro: KARANAUGH.LCA, XACT 1.1, 15:47:57 MAR 
Parameter NAME ? Enter instance name: 
Parameter NET S3 Select S3 net 
Parameter NET S2 Select S2 net: 
Parameter NET Sl Select Sl net: 
Parameter NET SO Select SO net: 
Parameter NET Strobe Select Strobe block: 
Parameter CLB ? Select SEGA block: 
Parameter CLB ? Select SEGB block: 
Parameter CLB ? Select SEGC block: 
Parameter CLB ? Select SEGD block: 
Parameter CLB ? Select SEGE block: 
Parameter CLB ? Select SEGF block: 
Parameter CLB ? Select SEGG block: 
Editblk %7 
C X:F Y: F:A:B:C:D Q:FF SET: RES: CLK:K 
Eq F = -C*-A+C*B+D*-A+-D*B+-D*C*A+D*-C*-B 
Endblk 
Editblk %8 

• 

• 
Editblk %13 
Base F 
Config X:F Y: F:A:B:C:D Q:FF SET: RES: CLK:K 
Equate F = -C*B+D*A+D*B+D*-C+-D*C*-A+-D*C*-B 
Endblk 
Addpin %2 %7.A %8.A %9.A %10.A %11.A %12.A %13.A 
Addpin %3 %13.B %12.B %11.B %10.B %9.B %8.B %7.B 
Addpin %4 %7.C %8.C %9.C %10.C %11.C %12.C %13.C 
Addpin %5 %13.D %12.D %11.D %10.D %9.D %8.D %7.D 
Addpin %6 %7.K %8.K %9.K %10.K %11.K %12.K %13.K 

23, 

} 

} 

1986 

Parameterized nets, 
default names and 
prompt messages 

l:XIUNX 

Parameterized blocks and 
prompt messages 

Logic 
Definition 

Parameterized net names 
and connections 

Figure 11. Portion of Newly Created LED Driver Macro (7SEG_BLC) 
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A Seven-Segment Display Driver 

displays and one to display BCD data on a common­
anode display. 

Direct Combinatorial Outputs 

For both of the designs presented here, latched 
outputs drive each segment LED. For direct 
combinatorial outputs (i.e. nonlatched), edit each CLB 
as follows: For combinatorial output, the X output must 
originate from Function F and not from the storage 
element "Q". Select "F" in the select field for the X 
output instead of "Q". 

SUMMARY 

Karnaugh map entry saves time over standard Boolean 
equation entry especially for complex expressions of 
four variables. Two seven-segment display driver de­
signs demonstrated the Karnaugh map entry technique. 

The Cutmacro command allows a user to create and 
save user-defined logic macros. In this application, two 
seven-segment display drivers created using the XACT 
Development System were saved as macros. 

Macro functions allow a designer to build modular logic 
designs. Modular design helps speed development by 
reducing errors. A designer should thoroughly validate 
a user-defined macro before saving it. Both the 
simulator (P-SILOS), the download cable, and the in­
circuit emulator (XACTOR) are helpful in validating 
designs. 
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Figura 12. Karnaugh Maps for Seven-Segment Display 
(BCD Inputs) 
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INTRODUCTION 

With the high cost of travel and labor, many companies 
are looking for alternatives to the conventional field ser­
vice person as the method of providing field updates for 
their products. A solution which is becoming more pop­
ular is the use of EEPROM (Electrically Erasable 
Programmable Read Only Memory) or Battery Backed­
up RAM as a method of storing control software. 
Remote loading of this memory allows changes to be 
made without the need to physically travel to a 
customer's site. This solution only addresses the need 
to provide software updates, but does not address the 
need for additional hardware to perform the update, or 
the potential requirement to update the hardware itself. 
Addition of extra hardware to perform software updating 
requires circuit board space and other specialized 
functions which may outweigh the potential benefit from 
a remote update capability. 

Logic Cell™ Arrays (LCAs) allow the hardware designer a 
degree of flexibility, similar to that of the software 
designer, for making rapid functional changes. With 
appropriate configurations, the Logic Cell Array may 
provide the additional hardware and control functions 
necessary to perform remote upgrading for both 
software and hardware. This logic may even be shared 
with the logic used for normal operation. 

DESCRIPTION 

Figure 1 shows a block diagram of a design for a remote 
EEPROM programmer The EEPROM could be loaded 
with either software modifications or hardware changes. 
If hardware changes are to be loaded into the EEPROM, 
a re-load of the Logic Cell Array would be performed 
after the EEPROM is programmed to insure that the 
Logic Cell Array has the correct configuration. The 
location of the address and data pins on the Logic Cell 
Array (see Figure 2) have been chosen to correspond to 
pins of the same function during configuration, insuring 
that proper loading can be performed without the need 
for any external circuitry. 

The incoming serial data stream is converted to eight-bit 
bytes by a shift register, while a three bit counter tracks 
the number of bits received. When eight data bits have 

Field Hardware/Software 
Updates Made Cost Effective 

been received they are loaded into an eight bit data 
buffer and the address generator is incremented. The 
address generator, a 16 bit counter, is held in a reset 
state until the first data byte has been received and load­
ed into the data buffer. This insures that the first byte of 
data will be programmed into hexadecimal location 0000 
of the EEPROM. One clock cycle after the data is 
loaded and the address counter incremented, the WE 
signal is asserted for one clock cycle. This allows an 
entire byte time for the write process of the EEPROM to 
be completed. (When writing to EEPROM, care should 
be taken in selecting a baud rate slow enough to allow 
ample time for the write cycle, approximately 1 O ms. 
Typically 800 baud or less would guarantee adequate 
time for the write cycle.) 
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This circuit requires less than two-thirds of an XC2064 
for implementation of the EEPROM programming func­
tion. The remaining logic could be used for additional 
features such as: • 

1. Parity and framing checking 
2. Detecting start and stop bits 
3. Logic to extract and load a starting address into the 

address generator 
4. Additional address bit generation capability to • 

extend the size of addressable memory beyond 64K 
bytes. 

5. Logic to detect a command to initiate a re­
configuration cycle of the Logic Cell Array 

6. Logic to perform a readback of the contents of the 
EE PROM for verification 

Additional information on the design of a complete 
UART device with the Logic Cell Array is available from 
Xilinx. 

CONCLUSION 

With the flexibility and capabilities of the Logic Cell Array, 
systems designers have new alternatives for remote 
operation, diagnostics, loading and control. The eco­
nomic benefits of precluding the requirement for field 
service visits to remote locations can easily justify the 
incremental design effort required to add the capabilities 
to the remote system using Logic Cell Arrays. 



Field Hardware/Software Updates Made Cost Effective 

DATA IN 

CLOCK 

DATA IN 

CLOCK 

DATA 
BUFFER 

ADDRESS 
GENERATOR 

WRITE 
ENABLE 

0010020 1A&B 

1J 

3-BIT 
COUNTER 

~ 

PIN 

8-BIT 
SHIFT 

REGISTER 

CLK 

CONTROL 
LOGIC 

CLK 

J 
[ 

~ 

RESET RESET 

CLK 
LOGIC 

CLK 

LJ 

Figure 1. E2 PROGRAMMER 

3-42 

8-BIT 
DATA 

BUFFER 

TD 

16-BIT 
COUNTER 
ADDRESS 

GENERATOR 

t--
t--
t--
t--
t--
t--
t--
i---

t--

i--
i--

i--

t--
t--
i---

i---

i---

i---

i---

i---

i---

i---

t--
t--

DO 

D1 

D2 

03 

04 

05 

D6 

07 

AO 

A1 

A2 

A3 

M 

AS 

A6 

A7 

AS 

A9 

A10 

A11 

A12 

A13 

A14 

A15 



(.) 

J:,. 
(.) 

lf.l 
IR.J 

{} 

1D 
~ " . 

1D 
{[} 

1D 
ID 
(} 
{ti 

~ 
!ITT 
IKJ 

u 
u 
u 
u 
u 
u 

© ffil 

u u 
LI u u 
u u u 
u 0 u 
LI u u 
u u u 
~~ imis m:1m~t®m t ~ffi 

Figure 2. LCA Placement and Routing 
DESERLIALIZER 

8-BIT SHIFT 
REGISTER 

I • 

[] 
16-BIT 
ADDRESS 
GENERATOR 

INITIALIZES 
ADDRESS 
GENERATOR 

BIT 
COUNTER 

8-BIT 
DATA BUFFER 

M 



Field Hardware/Software Updates Made Cost Effective 

PIN 0010020 01 

3-44 



INTRODUCTION 

Data communications is increasingly an integral part of 
successful businesses. Communication standards are 
being established, modified and reestablished to meet 
evermore demanding conditions. Among these is a 
requirement by the business community to curtail 
operating expenses. A natural way to govern the cost of 
new capabilities is to use existing facilities and expand 
their scope. The recent push to add digital data 
communications to equipment already used for voice 
transfer is an example of this expansion. The original T1 
transmission, repeating and reception standard has 
been extended by including data transmission 
interleaved with the previously defined voice 
transmission. This application note describes the 
implementaion of T1-compatible logic design in a Xilinx 
Logic Cell™ Array (LCA). 

....--
B 

F-BIT I 
LEAO T 
(1 BIT) 1 2 3 4 5 6 7 

A T1 Communicatons 
Interface 

THE T1 STANDARD 

The T1 transmission standard is based on a 1.544-MHz 
sampling frequency. The data is time-division multi­
plexed into "multiframes''. Each multiframe consists of 
12 frames of information. Each frame is divided into 24 
channels of 8-bit data bytes. The length of the frame is 
extended to a 193rd bit by adding a framing bit (F-bit) for 
synchronization. As discussed later, an extension to 
this basic standard has been defined and is referred to 
as the Extended Framing Format. This format consists 
of 24 frames, each organized as the same 24 8-bit 
channels (see Figure 1). This set of 24 frames is called a 
Superframe. 

The framing bit consists of two signals, Fs and Ft, 
transmitted alternately in the first bit position of each 
frame. Combining Fs and Ft forms an 8-KHz signal used 

NOTE1 
/ 

~ 
8BITS 

8 
~ =:;: -:;z:__ 

F 

c 
H 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 
F 
R 
A 
M 
E 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A B 

1. Bit 8 (LSB) of each channel of frames 6, 12, 18 and 24 is replaced 
by A, B, C and D signaling, respectively. 

16 17 18 

16 17 18 

c 

Figure 1. Extended Framing Format 
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A T1 Communications Interface 

for "robbed-bit" signaling and mainframe synchroni­
zation. The eighth bit (Least Signifigant Bit or LSB) of 
each channel of frame 6 will be replaced by "A" signaling 
information and the LSBs of frame 12 will be replaced by 
"B" signaling information. This information is used to 
indicate off-hook status, busy, and other telephone 
related information. 

For voice transmission, the robbed-bit signaling does 
not dramatically effect the receiver's ability to recover the 
entire voice-quality signal. However in the use of the 
facilities for data transmission, this bit replacement would 
be unacceptable. Data transmission precludes the 
insertion of signaling information into the bit stream. 

In 1981, AT&T and other contributing corporations 
defined an extension of the basic T1 transmission for­
mat. In AT&T Technical Advisory 70, the Extended 
Framing Format was defined as (1) extending the 
multiframe from 12 to 24 frames, (2) adding C and D 
signaling information into frames 18 and 24, respec­
tively, and (3) redefining the 8-KHz framing pattern into 
three subsections, now referred to as the Fe bit. 

The Fe bit consists of 2-KHz framing, 2-KHz cyclic 
redundancy check, and 4-KHz data link patterns. The 
framing pattern consists of a 001011 pattern transmitted 
in frames 4, 8, 12, 16, 20 and 24. The CRC-6 signal is 
transmitted in frames 2, 6, 10, 14, 18 and 22. The data 
link information is transmitted as the leading bit in 
alternate frames starting with frame 1. The data link 
information is transmitted using the X.25 level 2 
protocol. 

The standard also includes a specific requirement of 
maintaining a certain "ones density" on the transmission 
line. The T1 repeaters used on the telephone lines 
require enough energy (ones data and low-to-high 
transitions) to regenerate the signal and send the signal 
on to a subsequent repeater. The T1 specification 
allows the transmission of all 0 data channels by 
transmitting a specific bipolar violation signal instead of 
the standard alternate mark insertion (AMI) signal. 
Known as the B8ZS signal, this specific bipolar violation 
pattern can be distinguished by the receiver as an all­
zero data channel rather than a transmission line 
problem. 

T1 TRANSMITTER OPERATION 

As shown in the block diagram in Figure 2, the T1 
Extended Framing Format transmitter consists of six 
major subsections: the data input registers, the framing 
bit register, the signaling bit and data shift register, the 
counter based modulo 193 and 24 timing generators, 
the bit select multiplexer, and the bipolar generation 
circuitry. These subsections work together to generate 
a T1 transmission frame. 

T1 TRANSMITTER BLOCK DIAGRAM 

At system reset, the timing generator counters 
(CQO-CQ7, FRO-FR4) are synchronized and reset. 
The latched synchronization input, SYNCIN, can be 
used to hold off operation. The counters are held in the 
reset state by using the asynchronous reset capability of 
the Configurable Logic Block. At any time, the SYNCIN 
can be used to issue this reset request. External 
circuitry should monitor SYNCOUT for acknowledgment. 

The initial end-of-frame (EOF) pulse from the EOF 
decoder causes the bit select multiplexer to transmit the 
first framing bit, a data link information signal. This 
circuitry is also used to load the Fe bit shift register with 
its framing pattern. A second pulse is then issued to the 
frame counter to bypass the second unused state. 

The bit counter then processes 24 bytes of channel 
data using the input latch, data request register, shift 
register, signaling bit registers and the associated 
circuitry. The bit-select multiplexer monitors the 3 LSBs 
of the bit counter to issue a request for a new channel 
byte, to present channel data being sent and to insert 
signaling information when required. 

The shift register decodes the position of a preset flag 
bit that is shifted through the register. The flag decode 
logic issues a data request (DREQ) signal and the data 
request register loads subsequent channel byte 
information. Whenever the zero detection logic detects 
an insufficient ones density in the data stream, it signals 
for an external B8ZS zero substitution in lieu of the 
bipolar generation circuitry output. 

Each time the EOF signal is asserted, it causes the data 
shift register to pause. This allows the subsequent 
framing bit to be inserted into the bit stream as defined 
by the content of the frame decoder. Subsequent 
frames of channel data are transmitted using the same 
sequence. 

AN LCA BASED T1 TRANSMITTER DESIGN 

The Data Input Register 
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The data input register section includes the 8-bit input 
register, the 9-bit data shift register (8 data bits plus a 
flag bit), the zero detect logic section and the data 
request register. By utilizing eight of the 58 input 
registers of the XC2064 Logic Cell Array (LCA), the 
Input Latch was implemented without using any of the 
64 Configurable Logic Blocks (CLBs). To minimize the 
use of LCA resources, the designer should place all 
data inputs on a common side of the die. This 
orientation requires only one of the lnpuVOutput Block 
clocks to latch data. The other three sides are available 
for the framing and signaling inputs. 
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A T1 Communications Interface 

By generating the DREQ output, the data request 
register requests a byte of channel information. Figure 
3 shows an XACT "editblock" screen of the 
Configurable Logic Block implementing this function. 
External circuitry should respond by placing the data 
byte on the DO-D7 inputs and loads it into the input 
latch by asserting the DACK input. DACK also resets 
the request register. If the zero detect logic does not 
indicate an all-zero data byte, the byte is transferred into 
the shift register after the previous byte has finished. 
The decode logic in the data request register uses the 
flag bit to indicate that the previous byte has been sent. 

A modified version of the RSSPR macro (eight bit shift 
register with parallel load and synchronous reset) from 
the XACT macro library was used to implement the Data 
shift register of this application. Figure 4 shows the 
eighth bit implementation where pin B functions as a 
clock enable, pin C as load enable. The eight data bits 
are loaded into the data shift register in parallel and then 

)( G 

shifted out, one bit at a time onto the bit-select 
multiplexer. Replacing the synchronous reset with a 
clock-enable function will allow the end-of-frame (EOF) 
signal to force a pause in the shift, allowing the framing 
bit to be inserted into the bit stream. 

The Framing Bit Registers 

The extended framing Fe bits are placed in a 6-bit shift 
register shown left of the bit select multiplexer of Figure 
2. The framing bit registers for data Ink and CRC 
information use a similar handshake to the 
requesVacknowledge scheme used in the data input 
register. The F ext register's framing information is 
controlled with the common channel interoffice 
signaling (CCIS) input. All three registers, shown on the 
right of Figure 2, request new information during the 
frame prior to the frame in which they are used. External 
circuitry must respond to these requests within the 
alotted time for the data link and CRC cases. 
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The Signaling Bit Registers 

The signaling bit register in the upper right of Figure 2 
provides a request line and is loaded with an 
acknowledge signal. The A, B, C and D signaling 
information respectively, is substituted for the LSB of 
every channel byte of the 6th, 12th, 18th and 24th 
frames of the superframe. Externally connecting the DO 
input to the signaling inputs would facilitate the removal 
of signaling information. Signaling information is used 
only in voice transmission. 

The Timing Generation Section 

The timing generation section (top of Figure 2) includes 
the modulo-193 bit counter and the modulo-24 frame 
counter. The modulo-193 counter is a conventional 8-
bit binary counter with a special synchronous reset 
capability. The modulo-24 counter uses a "hold bit" 
technique to reduce the 5-bit, 32-state counter to the 
desired 24 state count. The LCA flexibility allows the 
user to tailor circuitry to the exact configuration needed. 

G1 = Oo• 01 = AND01 
AND03 

The Modulo-193 Bit Counter 

Figure 5 shows the bit counter. The 8-bit counter is 
reset synchronously after it cycles through 193 states. 
The end-of-frame (EOF) decoder indicates that the 
193rd state has been reached. The EOF signal is used 
in many places throughout the design. EOF allows the 
frame counter to increment by performing a clock­
enable function. It is also used to allow the proper 
framing bit to be inserted by holding off the data shift 
register for one clock cycle. Figure 6 shows the 
configuration for one of the CLBs used in this counter. 

The Modu/o-24 Frame Counter 

Figure 7 shows the 5-bit binary counter sequence used 
for the frame counter. Whenever the three least 
significant bits (FRO, FR1, FR2) reach all-ones state, the 
FR1 bit will be held. After every six sequential frame­
counter clock cycles, the next two binary states are 
skipped. In this way, four cycles of six states are used to 
generate a 24-state counter. Figure 7 also indicates the 

G4= AND03 • 04• Os= ANDOS 

G2= AND01 • 02• 03 Gs= ANDOS • Os• 01= SYNRST 

0010026 5 

Figure 5. Modulo 193 Bit Counter 
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A T1 Communications Interface 

relationship of each encoded value and its 
corresponding frame value. The CHCLK signal can be 
used to synchronize external decoder circuitry. Internal 
decoding could be included in this design, but is left up 
to the user to implement. Figure 8 shows an example 
CLB configuration for this counter. 

decoder (see Figure 10) with other logic and registers to 
determine whether data, signaling or framing information 
is to be sent. The presence of the EOF signal in the 
multiplexer determines which source of information 
should appear at the output signal. 

The Bit-Select Multiplexer 
The CCIS signal is used to insert an externally 
generated framing bit into the bit stream when the EOF 
signal is active. 

The bit-select multiplexer (see Figure 9) uses a frame 

PREVIOUS STATE NEXT STATE 
FRAME 

FR4 FR3 FR2 FR1 FRO FR4 FR3 FR2 FR1 FRO 

0 0 0 1 0 0 0 0 1 1 1 
0 0 0 1 1 0 0 1 0 0 2 
0 0 1 0 0 0 0 1 0 1 3 
0 0 1 0 1 0 0 1 1 0 4 

* 0 0 1 1 0 0 0 1 1 1 5 
0 0 1 1 1 0 1 0 1 0 6 
0 1 0 1 0 0 1 0 1 1 7 
0 1 0 1 1 0 1 1 0 0 8 
0 1 1 0 0 0 1 1 0 1 9 
0 1 1 0 1 0 1 1 1 0 10 
0 1 1 1 0 0 1 1 1 1 11 

* 0 1 1 1 1 1 0 0 1 0 12 
1 0 0 1 0 1 0 0 1 1 13 
1 0 0 1 1 1 0 1 0 0 14 
1 0 1 0 0 1 0 1 0 1 15 
1 0 1 0 1 1 0 1 1 0 16 
1 0 1 1 0 1 0 1 1 1 17 

* 1 0 1 1 1 1 1 0 1 0 18 
1 1 0 1 0 1 1 0 1 1 19 
1 1 0 1 1 1 1 1 0 0 20 
1 1 1 0 0 1 1 1 0 1 21 
1 1 1 0 1 1 1 1 1 0 22 
1 1 1 1 0 1 1 1 1 1 23 

* 1 1 1 1 1 0 0 0 1 0 24 

* Nex1 state holds FR1 high, therefore skipping two states four times during sequence. 
0010026 7 

Figure 7. Modulo-24 Frame Counter 

x 

~ 
'J Q 
Q FF 
SET 
RES D 
CLK }( 

Q 
y 

QBCA F Blk: ED 
LHHH 

}( D f:r4 
H 

HLXX H A:q3 
H XL X H A B:f:rMclk H XXL H QljB c:r:ran0_2 

RES D:syn_in 
c CLK K: clk1_5 x: 

Q v:r:r04 

F - C*A*-Q*B+-CC*A)i'EQ+-Bi'EQ 

Figure 8. The Fifth Bit of the Frame Counter 
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TLINK 

CRCBIT ---f-------------1"'-..., 
FE BIT ---1-----------i==;----L..J 

FRO ----"---' 

FR1 

FR2 

FR3 ------' 

FR4 ------1 

FRAME 
DECODER 

CRCSEL 

FESEL 

CCIS ------f-f-+--+--_J 
FEXT --------1---11--1--+-------+--' 

SIGRQ 

00 
01 
02 

ASIG 

BSIG 

CSIG 

EOF ---------------------

CLK ------------------------____J 

Figure 9. Bit-Select Multiplexer 

x F 
y 
Q ~~)( SET 
RES c Q 
CLJ< D 
DCBA F Blk: BE 
H H H L H 

clecsigl.2 
A:C:r04 

A B:C:r01. 

Dgjc 
C:C:r02 
D:C:r03 
)(: B F X:decsig_l.2 
Y: 

F - -A*B~*D 

Figure 10. Frame-12 Decoder Example 
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The framing decoder, CCIS, FeEXT, TLINK, TCRC and 
the associated logic will determine the proper bit to 
transmit. The frame decoder defines whether the Fe 
(frames 4, 8, 12, 16, 20 and 24) or CRC bit (frames 2, 6, 
10, 14, 18, and 22) is to be inserted into the framing bit 
position. When EOF is inactive, the least significant bit 
in the frame counter determines that the data link bit is to 
be inserted into the bit stream. CCIS and EOF are also 
used to gate transmissions of the framing bit. 

The framing decoder, the ASIG-DSIG, DATA BIT and the 
three least significant bits of the Modulo-193 counter 
determine the proper data bit to be transmitted. When 
the bit counter inputs are all in a zero state, the gating 
functions allow the previously__ sampled A, B, C or D 
signaling data to be inserted into the bit stream during 
the 6, 12, 18 and 24th frames, respectively. This 
signaling bit replaces the LSB from the data byte in the 
transmitted bit stream. 

Bipolar Generation 

The bipolar generation logic converts the binary output 
signal from the bit-select multiplexer into a pair of 
unipolar outputs. The bipolar generation logic utilizes 
an array of control logic along with a pair of registers to 
convert NRZ coded data into two unipolar alternate mark 
insertion (AMI) coded data. A third register indicates 
which unipolar output last received the mark pulse. 

These outputs can be externally tied to a T1 Line 
Interface Unit (LIU). The LIU will provide the paired 

unipolar output conversion to a bipolar signal. This LIU 
will also equalize the T1 transmitter circuitry to the 
transmission line. 

T1 TRANSMITTER DESIGN EXTENSIONS 

Many features of the T1 standard could be incorporated 
into designs similar to the one shown in this application 
note. One simple extension is the generation of the 
data format required for the CCITI (European version) 
version of the T1 standard. This version uses 256 bit 
frames (32 time slots of 8-bit bytes) for data transmission 
along with defined specific time slots sending signaling 
information. For flexibility, both designs could reside in 
configuration-program form, allowing the system to 
select which standard to use. 

Other possibilities could be insertion of a B8ZS zero­
suppression standard control section or alternate forms 
such as the HDB3 standard used in the CCITT format. 
Idle code transmission, digital milliwatt (the transmission 
of a repetitive data sequence in a individual channel), 
and internal CRC generation are all examples of further 
design extensions. 

With the advantages of LCA flexibility, a single EPROM 
could hold the configuration data for many different 
versions of the design. This would allow support of 
many transmission variations using the same common 
transmit hardware. 
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The DS21 XACT Design Editor provides 
all capabilities required for Logic Cell Array 
design. Additional development system 
options provide enhanced designer productivity 
during design entry, placement and routing, 
and design verification. 
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INTRODUCTION 

Xilinx provides a Development System which facilitates 
the design of systems which incorporate the Xilinx Logic 
Cell™ Array (LCA). All of its software is designed to run 
on two widely available, low-cost workstations: the IBM® 
PC/XT™, and PC/AT™ computers. The purpose of this 
application note is to advise users of the software how 
they should configure their PC to make the best use of 
the software. For the most part, this consists of 
choosing among the myriad of options which may be 
used with a standard PC/XT or PC/AT. 

First, let's make sure what we mean by a PC/XT or 
PC/AT. There are many so-called clones of the IBM 
PCs. The difference in cost between one of these 
clones and the original can be significant. In addition, 
some clones offer features and/or performance greater 
than that of the original. For these reasons, purchase of 
a clone may be a cost-effective alternative. Every clone 
tested so far, which claims to be PC compatible, has run 
the current Xilinx software. 

MINIMUM CONFIGURATION 

The minimum configuration required to run the Xilinx 
XACT™ Design Editor for the XC2064 LCA is as follows: 

• 1 - PC/XT 

• 1 - Hard disk drive 

• 1 - Floppy disk drive 

• 640K Bytes of memory 

• 1 - RS-232C serial port 

• 1 - Centronics printer parallel port 

• 1 - Color Graphics Adapter (CGA) 

• 1 - Color Graphics Display (CGD) 

• 1 - Mouse 

This is a minimum configuration. For many applications, 
the performance of the software in this configuration is 
adequate. Additional equipment may be needed to use 
some Development Systems options, or to design with 
larger arrays. 
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RECOMMENDED CONFIGURATION 

A more powerful configuration may result in significant 
improvements in productivity: 

• 1 - PC/AT 

• 1 - Hard disk drive 

• 1 - Floppy disk drive 

• 640K Bytes of memory 

• 2 - RS-232C serial ports 

• 1 - Centronics printer parallel port 

• 1 - EMS memory card with at least 256K 

• 1 - Enhanced Graphics Adapter (EGA) 

• 1 - Enhanced Graphics Display (EGO) 

• 1 - Mouse 

The first advantage of this configuration is performance. 
The performance of the software in this configuration is 
much improved over the minimum configuration. This is 
true both because of the improved performance of the 
80286 over the 8088 and the AT hard disk over the XT 
hard disk. 

The second advantage of this configuration concerns 
the display. Xilinx software only requires the CGA and 
CGD. However, the FutureNet™ schematic capture I 
package, which can be used in conjunction with the 
Xilinx software requires the EGA and EGO. In addition, • 
future versions of the Xilinx software will take advantage 
of the higher resolution of the EGA and EGO if available. 
The second serial 1/0 port provides a connection for the 
XACTOR™ In-Circuit Emulator. 

The final advantage of this configuration concerns 
future LCAs. Currently, we have squeezed both the 
XC2064 family and the XC2018 family of LCAs into the 
memory available on the PC/XT. Xilinx software to 
support larger LCAs will require the IBM PC/AT class of 
machines running a new version of MS-DOS™ which will 
use the protected mode of the 80286. The 
recommended configuration will provide support for the 
larger LCAs now in design. 



PC System Configurations 

SPECIFIC HARDWARE RECOMMENDATIONS 

Growth in the PC market has resulted in many options 
for each item in the configuration. The following is a 
description of the recommendations for each item: 

PC/XT 

There are many machines available in this category. 
Prices and quality vary greatly, but as noted previously, 
every compatible clone tested so far will run the current 
Xilinx software. The trade-off here is between quality 
and price. The IBM PC/XT has a proven record of 
reliability and the IBM keyboard has a better '1eel" than 
the keyboard found on most clones. On the other 
hand, a clone can be purchased for less than 1/3 the 
cost of the IBM. 

In addition to the system unit and keyboard, the PC/XT 
should include the following standard equipment: 

• 256K Bytes of memory on the motherboard 

• 1 - 360KB Floppy disk drive 

• 1 - 10MB Hard disk drive 

• 1 - Serial/parallel interface card 

The standard equipment helps to meet some of the 
other configuration requirements. If these are not 
included, they would have to be purchased separately. 

PC/AT 

There are many machines which fall into this category as 
well. However, there are a few more things to consider 
about clones of the PC/AT. Every clone of this type 
tested so far will run the current Xilinx software under 
versions of MS-DOS up to and including 3.2. However, 
since the protected mode version of MS-DOS is not yet 
available it is possible that a clone would not execute 
properly in that mode. One should try to get a 
guarantee from the manufacturer that their clone will 
work in the protected mode of MS-DOS, when that 
version arrives. Without such a guarantee, buying that 
clone will entail some risk-it will probably execute the 
current Xilinx software, but may not execute future 
versions of the software which require the protected 
mode MS-DOS . 

One of the most compelling reasons for selecting a 
PC/AT clone is that many of them are considerably faster 
than the the original. IBM has 2 PC/ATs: one runs at 6 
MHz and the other at 8 MHz. This speed improvement is 
quite noticeable when executing the Xilinx software. 
However, there are some potential pitfalls to selecting a 
faster machine. The biggest problem seems to be that 
not all add-on cards will behave properly in a faster 
PC/AT. Specifically, problems have been observed with 
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serial interface cards. The problem has been observed 
both in cards from IBM and in others. 

In addition to the system unit and keyboard, the PC/AT 
should include the following standard equipment: 

• 512K Bytes of memory on the motherboard 
• 1 - 1.2MB Floppy disk drive 

• 1 - 20MB Hard disk drive 
• 1 - Serial/parallel interface card 

As with the PC/XT, the standard equipment helps to 
meet some of the other configuration requirements. If 
these are not included, they must be purchased 
separately. 

640K of Memory 

The memory requirement is met differently depending 
on whether one is starting with a PC/XT or PC/AT. 

On a PC/XT, the 640K memory requirement is usually 
met with a multifunction card which has 384K of memory 
and a serial port. The most widely used such card is the 
AST Six-Pak™. Another way to meet this requirement is 
with a multifunction card which provides a serial port, 
384K of memory and 256K of EMS memory. An 
example of this kind of multifunction card is the Intel 
Above™Board/PS. 

On a PC/AT, this requirement is usually met with a 
multifunction card which has 128K of memory and a 
serial port. The most widely used such card is the AST 
Advantage™. Another way to meet this requirement is 
with a multifunction card which provides a serial port, 
128K of memory and 256K of EMS memory. An 
example of this kind of multifunction card is the Intel 
AboveBoard AT/PS. If you should decide to get 
separate cards for the additional memory and an extra 
serial port be careful when selecting serial port cards. 
Several serial cards, both from IBM and others, do not 
work in PC/AT's running at more than 6 MHz. 

EMS Memory Card 

An EMS memory card extends the PC memory beyond 
640K bytes. Sometime ago Lotus, Microsoft and Intel 
proposed a software standard for accessing a 64K page 
frame with a virtually unlimited number of pages. This 
standard is the "Expanded Memory Specification" or 
EMS. Because of the names of the companies 
involved, it is also sometimes referred to as the "LIM" 
standard. Hardware manufacturers have produced 
cards and related software device drivers which meet 
this standard. Software manufacturers like Xilinx have 
developed software which uses this standard to access 
memory in excess of the standard 640K. In the current 



Xilinx software, the EMS memory is used to expand the 
available memory so there is room for the extra data 
necessary to support larger LCAs, specifically the 
XC2018 family of LCAs. 

There are several different cards which meet the EMS 
standard: 

• Intel AboveBoard 

• Intel AboveBoard/PS 

• AST RamPage 

• Techmar Maestro 

This is not a complete list. There are several other cards 
on the market. Since there is a published standard for 
these cards, any card which claims to be an "EMS 
Standard" card should work with the Xilinx software. 
Usually, each card has 2 types: one type for the PC/XT 
and another for the PC/ AT. 

For the PC/AT, some extra features should be 
considered when purchasing an EMS card. These 
involve the protected mode MS-DOS which will be 
available in the future. The EMS card should be re­
configurable to be "extended memory" rather than 
"expanded memory" for use with protected mode MS­
DOS when it becomes available. The 8088 processor, 
which is found in the PC/XT (and its cousin the 8086) 
can directly address only 1 MB of memory. The 80286, 
which is found in the PC/AT, can address up to 16MB of 
memory when executing in its "protected" mode. IBM 
coined the term "extended memory" to refer to that 
memory in a PC/AT which is above the 1 MB limit and can 
only be accessed by the 80286 in protected mode. An 
EMS card which can be reconfigured as "extended 
memory" will be useful when the protected mode MS­
DOS is introduced. The Intel AboveBoard/AT is one 
EMS card which offers this feature. 

Color Graphics Adapter (CGA) 
and Color Graphics Display (CGD) 

As first defined by IBM, the PC included two different 
display options. The first was the Monochrome Display 
and the second was the Color Graphics Display (CGD). 
The interfacing of these displays to the PC was done 
with two different cards: the Monochrome Display 
Adapter (MDA) and the Color Graphics Adapter (CGA). 
The Monochrome Display and MDA can only be used to 
display text. The text is of very high quality because the 
font is 9X14 pixels, i.e. 126 dots (9 times 14) were used 
to represent each text character. The Monochrome 
Display and its adapter were not designed to display 
graphics. The CGD and CGA were designed to display 
text and graphics. The text however is of poorer quality 
than the Monochrome Display because the font used is 
8X8 pixels, i.e. 64 dots (8 times 8) were used to 

4-3 

represent each text character. The CGD can display 
graphics by allowing individual pixels, or dots, in a 
320X200 grid to be manipulated. Each dot can be one 
of four colors. These two displays and adapters became 
the established standards. Since then, many other 
displays and adapters have been designed. Most of 
them are compatible with one of the original displays and 
offer other additional features. IBM designed a new 
display called the Enhanced Graphics Display (EGO) and 
an adaptor called the Enhanced Graphics Adapter (EGA) 
which emulates the older CGD and CGA. The EGO and 
EGA display text in a 8X14 pixel font and can display 
graphics in a native mode by allowing a 640X350 grid of 
pixels to be manipulated. 

Which is the right display for a system to be used for 
designing with LCAs? The minimum requirement is a 
display and an adapter that are compatible with the CGO 
and CGA. However, there are several reasons to 
choose the EGO and EGA. The first relates to the 
FutureNet™ schematic capture package. FutureNet 
requires a display and adapter that are compatible to the 
EGO and EGA. The EGO and EGA's text display is much 
better than that of the CGO and CGA. With the EGO and 
EGA, you can use your machine for other applications 
which require only a text display. When the EGO and 
EGA are used by the current Xilinx software, graphics will 
be displayed in the CGO and CGA compatible mode and 
text will be displayed in the native EGO and EGA mode. 
In the future however, Xilinx software which will use the 
EGO and EGA in the higher resolution native graphics 
mode will be available. 

Mouse 

Prior to release 1.3 of the Xilinx software, the choice of a 
mouse was easy: only the PC Mouse from Mouse 
Systems was supported. Starting with release 1.3 of the I 
Xilinx software however, several different kinds of mice 
~~~~: . 
• PC Mouse from Mouse Systems 
• Microsoft serial mouse 

• MicroSoft parallel mouse 

• LogiTech mouse 
• FutureNet mouse 

In addition to these mice, the software will also support 
any mouse which is either compatible to the PC Mouse 
or has a device driver which makes it look like a Microsoft 
Mouse. The choices here are driven by cost and by the 
requirements of other software used with the Xilinx 
software. With the FutureNet schematic capture system 
one should use the FutureNet Mouse which comes with 
that system. 
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Auto Place Schematic Entry 
and Route P-SILOS 

XACT XACTOR (APR) Simulator Futurenet 

System Memory1 ,2 640K 640K 640K 640K 512K 

Floppy Disk 360K 360K 360K 360K 360K 

Hard Disk3 10MB 10MB 10MB 10MB 10MB 

Mouse Systems, 
Mouse Microsoft, None None FutureNet 

FutureNet, or none 

Display and Standard Color Monochrome or Enhanced 
Adapter Card4 Display and Adapter Standard Color Color with 256K 

Serial Port 1 (Mouse) 2 (Mouse, 0 0 0 
XACTOR) 

1 (Download 1 (Printer, 1 (Printer, 1 (Printer, 0 
Parallel Ports Cable, Printer, Security Key) Security Key) Security Key) 

Security Key) 

Expanded With 256K With256K 
Memory for xc201a None for XC2018 None None 
Cards Designs Designs 

1. The XACT, XACTOR and APR programs will utilize expanded memory, if available. 
2. XACT, XACTOR and Auto Place and Route, require SOOK Bytes of available system memory to operate on a full design. 
3. XACT, XACTOR and P-SILOS combined require 3 M Bytes of Hard disk. Auto Place and Route requires an additional 1 M Byte. 
4. The XACT and XACTOR Program will utilize the enhanced color capability, if available. 
5. The following printer types are supported: OK192, IBM Graphics, HP Laser, MXSO, MX100, FXSO and FX100. 
6. EMS card not required for XC2064 designs. 

Table 1. Minimum PC Configurations for IBM PC XT/ATor Compatibles with DOS 2.1 or Later 

~ 
~.-... -,....-, 

~ 

1 
CD 
3 

f1 
3. 
ri 
c a s· 
i 



This Application Note describes the operation of two 
design verification tools for designers using Logic Cell™ 
Arrays: the XACTOR™ In-Circuit Emulator, and the P­
SILOS logic simulator. 

The Logic Cell™ Array (LCA) combines a high-perfor­
mance, general-purpose gate array architecture with 
user programmability. Since the Logic Cell Array is user­
programmed, designs can be verified in real-time in a 
system during development. 

Certain innovative provisions of the Logic Cell Array 
extend this in-circuit verification capability to in-circuit 
emulation. Emulation permits reading the state of inter­
nal logic and 1/0 latches during operation, as well as 
temporarily configuring unused 1/0 pins to monitor 
internal nodes during real-time operation. 

While in-circuit emulation adds a unique and valuable 
capability to an ASIC designer's repertoire, simulation 
remains a useful complementary tool for verification of 
critical paths and worst-case timing analysis. Simulation 
may also be used to verify logic modules before a 
prototype system is available for in-circuit emulation. 
With the Logic Cell Array (LCA), however, ASIC design 
success is no longer dependent on painstaking and 
exhaustive simulation. 

DESIGN METHODOLOGY 

The Logic Cell Array design methodology is based on a 
natural, iterative design approach in which successive 
design implementations can be readily verified in-circuit, 
as described in a design example below. 

The implementation of a Logic Cell Array design has 
three stages: design entry and partitioning, placement 
and routing, and compilation of the configuration 
program. First the design is entered, using either a PC­
based schematic capture package with a Xilinx library, or 
with the Xilinx XACT™ LCA Design Editor. Schematic 
entry permits entering the design with standard logic 
symbols such as gates and latches. The XACT editor is 
a graphical environment which permits direct design 
entry using equations or Karnaugh maps for each LCA 
Configurable Logic Block. 
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The design is then partitioned into blocks of logic 
corresponding to the LCA's Configurable Logic Blocks. 
For schematic entry users this is done by automatic gate­
to-LCA partitioning software provided with the sche­
matic library. For XACT users, the partitioning is per­
formed by the designer during design entry as each 
logic or 1/0 block is configured. 

As with a conventional gate array, each partitioned logic 
and 1/0 block is "placed" by assigning it to a specific 
physical location within the Logic Cell Array. Then the 
interconnect networks between blocks are routed. 
When a design is entered or edited with XACT, 
placement of each logic and 1/0 block is done implicitly 
as the block is configured to have the desired function. 
Routing software within XACT then automatically 
allocates programmable routing resources for each net 
in the design. Use of special interconnect resources 
such as direct interconnect and long lines for time-critical 
nets can also be specified by the designer. 

As an alternative to interactive placement and routing 
with XACT, designers may use a separate Xilinx software 
package on their PC to place and route a design which 
has been entered and partitioned with either the 
schematic entry package or XACT. Placement and 
routing constraints (such as forcing a net onto a long 
line) may be specified schematically with special 
attributes, or with a constraints text file. • 

Once a design has been placed and routed, it is auto­
matically compiled by the XACT system into a config- • 
uration program. For quick checks of performance 
during design entry, the design editor's built-in delay 
calculator provides a timing analysis using calculations 
based on actual logic placement and routing. 

Once a design has been implemented, it can be verified 
using the in-circuit emulator. A design is emulated by 
programming an emulation pod that is plugged into the 
target system. The heart of the in-circuit emulator is a 
Logic Cell Array within an emulation pod (Figure 1 ). The 
emulation LCA, connected to the target system by a flex 
cable, then performs the same function as an LCA 
plugged directly into the target system. 

This realtime operation of the LCA in the target system 
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provides the ultimate verification of an LCA design's 
interaction with the other elements in the system. 

Another advantage of emulation is that the LCA is also 
under control of the designer's PC. The basic functions 
of the emulation system are to program the emulation 
pod's LCA with the designer's configuration, to monitor 
and control the LCA's programming and control signals, 
and to readback and display the LCA's latch states. The 
emulation controller can manage up to four emulation 
pods concurrently. 

Due to the speed with which a design can be quickly 
modified in-circuit using XACTOR, it is frequently useful 
to implement temporary debugging circuitry in a design 
during development-such as temporarily connecting 
unused 1/0 blocks to internal nodes for viewing with a 
logic analyzer or an oscilloscope. 

Once the design function has been verified in-circuit, 
the designer may simulate critical paths to ensure 
correct timing under worst-case conditions. Since the 
design's functionality has been verified in-circuit at this 
point, a complete functional simulation is not generally 
necessary. By eliminating simulation for complete func­
tional design verification, the computer resources 
required for simulation are significantly reduced. An IBM 
PC provides adequate performance for timing simulation 
of critical paths. 

Simulation can also be performed on unrouted and 
partially routed designs. An unrouted net will be simu­
lated with zero interconnect delay, permitting a check of 
the design's logic. On extremely dense designs this 
logical check is useful since it permits designers to verify 
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the design's logic before performing final placement and 
routing. This is especially useful for designs entered 
with a XILINX-supported schematic capture package 
which have been partitioned but not placed and routed. 
An unrouted design may also be created in XACT by 
turning autoroute off before entering the design. 

DESIGN EXAMPLE 

The simple dual-speed, variable modulo counter of 
Figure 2 was designed to illustrate the basic operation of 
the XACTOR™ in-circuit emulator and the P-SILOS™ 
simulator. All input and output pins correspond to 
switches and LEDs on the Xilinx DB01 Demo Board for 
readers who wish to experiment further with the design. 

The circuit counts until its four outputs reach 0000, at 
which point it begins counting again at the number 
specified by the four parallel data inputs, 03-DO. The 
counter's up/down direction is selected by the switch 
input UP _ON, and its speed is selected by SW_SPEED. 
SW_SPEED = HIGH will cause the counter to run at the 
crystal's 1 MHz speed; SW_SPEED =LOW will select a 
divide-by-eight circuit to run the counter at 125 KHz. 

For example, if 03-DO are set to 0011 (3), 
UP _DN=LOW (down), and SW_SPEED=HIGH (fast), 
then the counter will repeat the sequence 

3-2-1-0-3-2 ... 

at the crystal's 1 MHz frequency. Each time the count 
equals zero a terminal count (TC_OUT) goes high for 
one clock cycle. 

DD 
GENERAL DD LOGIC PURPOSE LOGIC 

CELL 110 CELL 
ARRAY DD ARRAY SOCKET 

EMULATION DOD D CIRCUITRY 

EMULATION POD(S) SYSTEM UNDER DEVELOPMENT 

0010000 1 

Figure 1. Emulation POD Interface 
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The up/down counter is constructed from the C16BUD­
RD macro supplied with XACT. The Hl_LO logic block 
provides a HIGH signal which constantly enables the 
counter's clock enable input (CLKENA), and a LOW 
signal which constantly disables the counter's reset line. 
In a design where space is critical, a more efficient solu­
tion would have been to modify the counter blocks to 
eliminate the unused clock enable and reset functions. 

The four counter outputs (CNT_Q3-CNT_QO) are 
routed to the outputs Q3_0UT-QO_OUT, and to the 
parallel enable decode block, PE_TC. Each time the 
counter reaches zero, PE_ TC drives the counter's 
PARENA input (and the TC_OUT output pin) HIGH, 
loading the counter with the four D3-DO bits. 

The crystal oscillator clock and divide-by-eight prescaler 
are implemented with the GXTL macro and a 3-stage 
binary ripple counter. A multiplexing circuit controlled by 
SW_SPEED selects between the full-speed clock and 
the output of the prescaler. SW_SPEED is synchro­
nized with the crystal clock at the 1/0 block to prevent 
clock glitches during speed changes. While not 
required for a design running at only 1 MHz, the output 

PIN 111/0 BLOCK REGISTER 

SPEED 

l:XlLINX 

of the dual-speed clock is routed to the CLK.AA clock 
buffer to reduce skew at the counter's clock input. 

IN-CIRCUIT EMULATION 

Installation and operation of the XACTOR In-Circuit 
Emulator is detailed in chapter 8 of the XACT LCA Devel­
opment System user manual. Hardware installation 
consists of connecting the emulation controller to a 
serial port of the PC-based XACT development system, 
and connecting one or more emulation pods between 
the controller and the target system under devel­
opment, as shown in Figure 3. 

In addition, XACTOR users should ensure that the emu­
lation pod assembly contains an LCA of the same speed 
grade specified for their design. The emulation Logic 
Cell Array can be easily removed from its pod assembly 
and replaced with an LCA of the appropriate speed. 

After hardware installation, the XACTOR in-circuit 
emulator is invoked from the XACT development system 
Executive by selecting the XACTOR program from the 

SW_SPEED 11 D 01-----------------------~ 

1MHz 
XTAL 

UP_DN 

D3_1N 

D1_1N 

OO_IN 

0010030 2 

CLBCOODIV CLBCQ1DIV 

·1· 'O' 

CLKENA RESETDIR 
4BITUPIDOWN 

MACRO 
COUNTER WITH 

C16BUD-RD 
PARALLEL LOAD 

UP 

D3 CNT_Q3 

D2 CNT_Q2 

D1 CNT_01 

DO CNT_QO 

PARENA 

Figure 2. Dual Speed, Variable Modulo Counter 
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Fundamentals of In-Circuit Emulation and Simulation 

PROGRAM menu. Once the XACTOR software is run­
ning (Figure 4), emulating a Logic Cell Array design 
typically consists of: 

1. Turning ON the system under development, 
2. Loading LCA configuration program(s) into the 

emulation controller, and 
3. Programming the appropriate emulation pod(s) with 

their configuri:ition program(s). 

Once programmed, a pod provides the same function as 
a Logic Cell Array plugged into the target system. 

Loading the configuration program(s) into the XACTOR 
emulation controller is initiated with the LOADBITS 
command in the SETUP menu. A menu of all config­
uration bitstream files on the PC will be displayed. As 
each file is selected it is loaded into the emulation 
controller. The DONE command is used to indicate that 
all required bitstreams are loaded into the controller. 

Any of the loaded bitstreams can then be used to pro­
gram any pod connected to the controller. First the 
POD command in the XACTOR menu is used to specify 
a pod to program. Then the XACTOR menu's 
PROGRAM command is selected. A menu of the 
bitstreams in the controller is displayed, and the user is 
asked for both a primary and alternate bitstream. The 
same bitstream should be selected for a pod's primary 
and alternate bitstream (unless XACTOR's dual bit­
stream capability is being utilized as described in the 
XACTOR documentation). 

D 
MOUSE 

If the AUTOLOAD setting is OFF, the pod will be pro­
grammed as soon as the PROGRAM command is 
completed. The emulation pod's Logic Cell Array will 
then operate as configured in the designer's circuit, in 
real-time. 

If programming is to be initiated by the target system, 
using the configuration program stored in the emulation 
controller, the AUTOLOAD setting must be ON. When 
the target system's Done/Program line is pulsed LOW, 
the emulation pod will be programmed with the specified 
configuration program. 

READ BACK 

The Logic Cell Array has a built-in readback feature 
which permits reading the configuration and logic latch 
state of a configured LCA during operation. Since read­
back permits viewing the state of each latch in a design, 
this feature is especially useful when debugging 
counters and state machines. 

For example, in the dual-speed counter it is possible to 
read and display the state of each of the counter 
latches. Although the readback process is performed 
transparently while the Logic Cell Array is operating, it is 
typically necessary to temporarily inhibit further state 
changes during the readback period (typically 12 milli­
seconds or less). This is because readback is sequen­
tially performed on each column of LCA elements. 

SYSTEM(S) 
UNDER 
DEVELOPMENl 

PC-BASED DEVELOPMENT SYSTEM 

•SCHEMATIC CAPTURE 

XACTOR2 IN-CIRCUIT EMULATOR 

• DESIGN PLACE & ROUTE 
• COMPILATIONOFCONFIGURATION 

PROGRAM 
• CONTROL OF IN·CIRCUIT EMULATOR 

• REAL· TIME EMULATION OF 4 LOGIC CELL ARRAYS 
• READBACK OF INTERNAL DESIGN STATES 
• ACCESS TO INTERNAL NODES DURING DEBUG 

Figure 3. In-circuit Emulation Development System 
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During design debugging, therefore, it is useful to add 
circuitry which permits single-stepping the design 
clock(s). When a clock signal is generated externally, 
single-step circuitry may be added either within the LCA 
design, or externally. When a design uses the LCA's 
built-in crystal oscillator, as in the dual-speed counter 
example, the circuitry can be added internally, or the 
crystal can be replaced with an external clock source 
which can be single-stepped. In the DCOUNTER 
design, the crystal oscillator was temporarily replaced 
with a debounced switch to single step through several 
count sequences. 

Figures 5 and 6 show the result of performing a read­
back of the design example between two consecutive 
clock pulses. The latches corresponding to each 
design element can be identified by comparing the 
readback figures with the ''world view" of the LCA 
design in Figure 7. Note that in both cases the cursor 
has been placed over the CQOCNT block, so the status 
line (third line from the bottom of the screen) shows the 
block's name, position, and current logic state. 

Although not specifically used in this design example, 
XACTOR has provisions for isolating and monitoring 
several 1/0 and control lines. The operation of these 
features is described in the XACTOR documentation. 

SIMULATION 

Once the function of a design has been verified in­
circuit, designers can simulate critical paths to ensure 
that the design will function under worst-case process, 
voltage, and temperature conditions. Simulation is also 
a useful tool for determining the Logic Cell Array speed 
grade required for a particular application. The following 
discussion, while based upon a specific design 
example, is intended to illustrate the general mechanics 
of using P-SILOS. 

Before simulating a design, the designer must create a 
simulation network description of the design, and a simu­
lation setup file that defines the design's inputs and spe­
cifies which logic nodes to monitor and graph (Figure 8). 

The SIMGEN program in the XACT Executive auto­
matically creates a simulation network description of the 
design that is currently loaded into XACT. The network 
includes delay parameters corresponding to routing and 
logic delays, setup times, and hold times based upon 
the selected speed grade operating under worst-case 
temperature, voltage, and processing conditions. 
Unrouted LCA nets will be simulated with zero inter­
connect delay, permitting logic verification of unrouted 
logic paths. 
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.............................................. D." ............ :··· ... ~ ................................................. (:;;"··:;;,"·:;· .. ······ ...................... . 

JP o «l ., 1 U ,..( .... On 
Au. t:o 1 o.c.11..41: Off 

jt~~::~itr!!~~~~r~i~fi\I 
i""JtESETICl osed 3-s t IH ~ 
iM0/""RT'ICl osed 3-s t I" 1 
lM.1/"""RD Closed 3-s t Hi 
1g~~~ ig} g~:i ~=~ t .~.Q ........... .I 
!DIN fc1 osedl3-s t '.Pi n55 1Cl osedl ...................................... . 
!Pi n46 ICI osec\.ii,;;:,3;,· .. ;1;1''11;:· .. :,~, f"I , .. , c· 'I.If iu:Jt .• _ 1.. l, .i~.:11~ A 1P1n43 Closed1 · ........... .......... . 
!Pi n40 1Cl osedlµ.n~~~.~ .. ~ .............. .. 
!Pi n28 !Cl osed1·lfl::1i.:1~:r.: .. t .. I .. ~.:[!~_i·~~: .. 1 

1!1'. .. ~ IJ.! .. ! ....... ...1.~J ... Q .. ~ .. ~ .. ~.1.?. .. @~ .. ~.~.~f~ .. ~ ...... ....I i 
1 ............. """"""""·'""" """''"'"'·'"''"""'"'•'"!"''·' 

Figure 4. XACTOR2 Menu 
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When executed while the LCA design 
DCOUNTER.LCA is loaded, SIMGEN writes a simulation 
network description to DCOUNTER.SIM. The first time 
the network file is created for a design, SIMGEN also 
creates a default simulation setup file 
(DCOUNTER.DAT). Since the setup file is typically cus­
tomized with a text editor by the designer, SIMGEN will 
not overwrite the file on successive design iterations. It 
is therefore necessary for the designer to ensure that 
the .DAT file is kept up to date if subsequent design 
changes add or remove logic nodes. This is especially 
important to remember when using a hierarchical 
schematic capture package since the hierarchy names 
may change when new levels are added. 

The default setup file created by SIMGEN for the 
DCOUNTER design example is shown in Figure 9. 
Lines must be less than 80 characters, and any text after 
a comment character($) is ignored (such as the four line 
header which records the device type used to 
implement the design). The first command line is a 
command to P-SILOS to read the simulation network file 
DCOUNTER.SIM. 

The following eight lines define each of the design's 1/0 
block inputs as clocks with an initially unknown state. If a 
crystal oscillator is used, the crystal oscillator clock line 
(XCLKXTL in design example) is set to a default fre­
quency of 500 KHz. A global reset input, GLOBAL 
RESET-, is always created and included which is 
defined to pulse LOW for 1 ns, corresponding to the 

.SIM FILE 

Logic Cell Array's initial logic reset after configuration. 
The signal corresponds to the LCA's RESET pin. 

The .MONITOR instruction, which lists each 1/0 block 
input and output, initially assumes P-SILOS should mon­
itor and display each input and output node during a 
simulation run. As described below, additional (internal) 
nodes can be added to the .MONITOR instruction so 
designers can monitor the state of any desired nodes as 
simulation progresses. 

SIMULATION SETUP 

Before beginning simulation, designers can use a text 
editor to modify the default setup file to specify initial 
input states. 

In practice, the designer will need to assign to each 
input an initial logic state. A node's logic state is defined 
by its level and its strength, of which 12 combinations 
are possible. A node can be driven to a LOW level (0), a 
HIGH level (1 ), or can be unknown(*). A node's strength 
indicates its effective resistance, or how easily charge 
can be added to or removed from a node. Allowable 
logic strengths are supply level (S), driving level (0), 
resistive (R), or high-impedance (Z). 

An 1/0 block configured as an input is typically specified 
by the P-SILOS user to be driven by a supply strength 
(S), since it is assumed that the output driving the LCA's 

.DAT FILE 

SIMULATION NETWORK SIMULATION SETUP FILE, 
DESCRIPTION OF INITIALLY CREATED BY 

DESIGN, CREATED BY SIMGEN; EDITED BY 
SIMGEN FROM .LCA FILE DESIGNER 

I I 
INTERACTIVE 
CONTROL OF 

~ SILOS PROGRAM .... SIMULATION 
SESSION BY 

DESIGNER 

I l t 
OUTPUT SAVE 

FILE FILE 

OUTPUT RECORD OF PRINTER 
GRAPHS ALL SIMULA· 

AND TABLES TION RESULTS 

0010030 8 

Figure 8. Silos Inputs and Outputs 
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inputs can source or sink infinite charge. Internal logic 
signals and LCA outputs default to driving strengths (D). 

An external output driving a bidirectional 1/0 block may 
be specified as resistive (R) strength so the LCA output, 
when enabled, will override the external source. If 
simulating output contention is desired, the external 
output can be alternately modeled as a driving (D) 
strength when active, and high impedance (Z) when 
inactive. If contention occurs between the two driving 
outputs, the output state will appear as D* during 
simulation. This simulation technique places the burden 
of establishing the strength of the external output upon 
the P-SILOS user, but may result in a more accurate 
simulation of the bidirectional signals. 

The logic states P-SILOS can use are: 

Supply Driving Resistive 

High S1 
Unknown S* 
Low SO 

D1 
D* 
DO 

R1 
R* 
RO 

High-Z 

Z1 
z· 
zo 

The example of Figure 10, which is an edited version of 
the default setup file, illustrates several useful P-SILOS 
instructions. 

CLOCKS AND PATTERNS 

For simulation purposes, a Logic Cell Array crystal 
oscillator is not modeled. Instead the designer directly 
defines the state of the crystal buffer's output 
(XCLKXTL in the design example). The command 

XCLKXTL .CLK 0 SO 500 S1 1000 SO .REP 0 

is used to define the crystal oscillator output as a supply­
strength 1 MHz clock which is low for 500 nanoseconds, 
high for 500 nanoseconds, and then repeats the 
pattern indefinitely from time 0. For inputs which are not 
regular, any number of transitions at arbitrary intervals 
may be specified with .CLK. 

The .PATTERN instruction permits specifying input 
logic patterns as a group. This instruction is especially 
useful in conjunction with the .HEX or .OCT instructions 
which group nodes into a logic bus. For example the 
. HEX instruction in DCOUNTER.DAT specifies that the 
four parallel load inputs can be grouped together into a 
group called DBUS, whose levels can be specified with 
a hex digit. Setting DBUS to 5 within a .PATTERN 
instruction is equivalent is setting to D3=0, D2=1, D1=0, 

and D0=1. The .PATIERN instruction in 
DCOUNTER.DAT (Figure 10) defines a series of input 
transitions on DBUS, UP _DN (the count direction 
control), and SW_SPEED (the count speed select) 
which test the basic operation of the design. 

MONITOR, TABLE, GRAPH 

The setup file should generally include a .MONITOR 
instruction so that key node transitions are displayed 
during simulation runs. 

While calculating simulation results, P-SILOS will display 
the changes on the nodes specified in the .MONITOR 
instruction. This is useful to monitor the results of sim­
ulation as they occur. For example, if a lengthy 
simulation sequence is being performed it is helpful to 
monitor the key outputs to ensure that the simulation is 
progressing as intended. 
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Each node in the table is displayed in one column. 
Semicolons can be inserted to create blank columns 
that can make the output display more readable. When 
the list of nodes is longer than 79 characters, additional 
lines can be used as long as the first non-blank character 
is a continuation character(+). 

The .TABLE instruction defines the nodes that are recor­
ded for later display with OUTPUT instructions. The 
syntax and display format for the .TABLE instruction is 
the same as for .MONITOR. Typically designers include 
all nodes of potential interest in the .TABLE instruction 
since these transitions are generally the ones scruti­
nized after simulation to verify design performance. 

The nodes which P-SILOS will display in its graphical 
format are specified in the setup file's .GRAPH instruc­
tion. The syntax is the same as for .TABLE, and the 
node list is frequently the same, since one typically 
wants to view the same nodes in both tabular and 
graphic format. Several .GRAPH instructions may be 
used to produce separate graphs, although it is 
generally simpler to maintain one longer graph when 
graphs are to be printed and stored to disk. 

STARTING SIMULATION 

Once the setup file (.DAT) has been created, P-SILOS 
can be invoked from within XACT using the PROGRAM 
menu's SILOS command, or from DOS by typing SILOS . 
The simulation setup file DCOUNTER.DAT is loaded 
using the command INPUT DCOUNTER; the setup file 
then loads the simulation network DCOUNTER.SIM as 
specified in the file's INPUT command. 

• -
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$ 
$ Simulation file for design 'DCOUNTER.LCA' type '2064PC68-50 1 

$ Created by XACT Ver. 1.23 at 20:52:26 SEP 1, 1986 
$ 
!INPUT DCOUNTER.sim 

$ INPUTS: 
DO IN .CLK 0 S* 
oCIN .CLK 0 S* 
02 IN .CLK 0 S* -03 IN .CLK 0 S* 
GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches 
SW SPEED .c~ 0 S* 
UP-DN .CLK 0 S* 
XCLKXTL .CLK 0 so 1000 Sl 2000 so .REP 0 $ Osc output pin 

.MONITOR DO IN Dl IN D2_IN 03 IN SW SPEED UP DN XCLKXTL ; QO_OUT TC OUT cnt TC 
+ Ql_OUT Q2=0UT QJ_OUT 

Figure 9. Default DCOUNTER.DAT File Created by Simgen 

$ 
$ Simulation file for design 'DCOUNTER.LCA' type 1 2064c68-50' 
$ created by XACT Ver. 1.23 at 22:01:31 SEP 1, 1986 
$ 
!INPUT DCOUNTER.sim $ READ SIMULATION NETWORK FILE 

.HEX DBUS=D3_IN,D2_IN,Dl_IN,DO_IN $ DEFINE PARALLEL LOAD DATA 'BUS' 

$ INPUTS: 

.PATTERN DBUS UP_DN SW_SPEED 
0 5 1 1 $ LOAD-COUNT=5, UP, FAST 
15200 5 1 0 $ SLOW DOWN 
20200 5 0 0 $ REVERSE DIRECTION 
35200 8 1 1 $ LOAD-COUNT=B, UP, FAST 
.EOP 

GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches 

XCLKXTL .CLK 0 SO 500 Sl 1000 SO .REP 0 $ 1 MHZ CLOCK 

$ OUTPUT NODE DEFINITIONS TO WATCH WHILE SIMULATION RUNNING 
.MONITOR UP ON SPEED XCLKXTL XCLK CNTCLK DIV_Q2 DIV_Ql DIV_QO 
+ TC OUT D3-D2 Dl DO ; 
+ Q3=0UT Q2_0UT Ql_OUT QO_OUT cnt_TC 

$ OUTPUT NODES TO SHOW WITH 'TYPE OUTPUT' 
.TABLE UP DN SPEED XCLKXTL XCLK CNTCLK DIV_Q2 DIV_Ql DIV_QO 
+ TC OUT D3-D2 01 DO ; 
+ Q3=0UT Q2_0UT Ql_OUT QO_OUT cnt_TC 

$ OUTPUT NODES TO GRAPH WITH 'TYPE GRAPH' 
.GRAPH CNTCLK ; UP DN ; SPEED ; TC OUT ; D3 ; D2 ; Dl DO 
+ TC_OUT; Q3_0UT ; Q2_0UT ; Ql_OUT : QO_OUT ; CNTCLK 

$ ADDITIONAL SILOS OPTIONS 
.FORMAT .GFORMAT=l $ ENABLE PRINTING GRAPHICS ON EPSON PRINTER 
.FILE .SAVE=DSAVE $ 1 SAVE 1 COMMAND WILL SAVE SIMULATION IN DSAVE.SIM 
.FILE .STORE=DCOUNTER.OUT $ 'STORE' WILL PUT OUTPUT IN DCOUNTER.OUT 

Figure 10. DCOUNTER.DAT Edited by Designers to Initialize Simulation 
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If any errors or warnings are encountered while loading 
the .DAT and .SIM files, the command TYPE ERROR or 
TYPE WARNING will display a description of the pro­
blems P-SILOS encountered. If needed, the P-SILOS 
help facility is activated by typing HELP for a list of help 
topics, or HELP <keyword> for help on a specific topic. 

A simulation session generally consists of running a 
simulation for some period of time based upon the 
inputs specified in the .DAT setup file, then proceeding 
interactively by changing the state of one or more inputs 
and continuing simulation. 

The SIM command specifies how many nanoseconds of 
operation should be simulated without interruption, 
starting from the current logic state. In the DCOUNTER 
design, the command 

SIM 40000 

simulates for 40000 nanoseconds (or 40 clock cycles for 
a 1 MHz clock). P-SILOS also recognizes K (x1000) and 
M (x1000000) suffixes, so 

SIM 40K 

is equivalent. All nodes specified in the setup file's 
.MONITOR instruction will be output to the screen 
during simulation each time one of the nodes changes 
state (Figure 11 ). 

If it is necessary to abort the simulation process, the 
standard DOS Control-Break keyboard input will stop 
the simulation and return to the P-SILOS prompt. 
Control-C will terminate P-SILOS completely, returning 
the user to DOS. Control-Break is generally the 
preferred method of aborting a simulation. 

Input nodes can also be manually set to a state with the 
SET command. For example, to resume the above 
counter simulation, but counting in the opposite 
direction, the commands 

SET UP_DN=O 
SIM5K 

will set the up/down control line to O (DOWN) and 
resume simulation for another 5 microseconds. 

TABLE OUTPUTS 

The TYPE command is used to direct previously 
calculated simulation results to the PC screen, such as 
tables of simulation results specified by a .TABLE 
command, or graphs specified by a .GRAPH instruction. 

After a simulation run, the command TYPE OUTPUT can 
be used to display the state sequences of the nodes 
defined in the .TABLE instruction. Users can select the 
time interval to display, and whether to display the 
nodes at fixed regular intervals or only when one of the 
nodes changes state. 
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TIME 
0 

500 
504 
522 
555 
608 
614 
638 

1000 
1004 
1025 
1037 
1500 
1504 
1537 
1592 
1596 
2000 
2004 
2025 
2037 
2044 
2500 
2504 
2537 
2596 
3000 
3004 
3025 
3037 
3500 
3504 
3537 
3571 
3587 
3590 
3592 
3594 
3596 
4000 
4004 
4025 
4037 
4044 
4063 
4500 
4504 
4537 
4596 
5000 

USXXC DDD TDDDD 
PPCCN III C3210 

ELLT VVV 
DEKKC 0 
NDX L QQQ U 

T K 210 T 
L 

10000 
10100 
10110 
11110 
11111 
11111 
11111 
11111 
11011 
11001 
11001 
11000 
11100 
11110 
11111 
11111 
11111 
llOll 
llOOl 
11001 
11000 
11000 
11100 
11110 
11111 
11111 
llOll 
11001 
11001 
11000 
11100 
11110 
lllll 
11111 
11111 
11111 
11111 
11111 
11111 
11011 
11001 
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11000 
11000 
11000 
11100 
llllO 
11111 
11111 
11011 

000 10101 
000 10101 
000 10101 
000 10101 
000 10101 
000 10101 
000 10101 
000 00101 
000 00101 
000 00101 
001 00101 
001 00101 
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Figure 11 .. MONITOR Outputs During Simulation 
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A review of the state changes from time 20K to 25K in 
250 ns intervals is displayed with the command 

TYPE OUTPUT 20K TO 25K STEP 250 

while the command 

TYPE OUTPUT 20K TO 30K ON CHANGE 

will display a table showing each node transition 
between time 20K and 30K. 

Tabular results can also be printed or saved on disk as 
132 column ASCII text with the PRINT OUTPUT or 
STORE OUTPUT command. If only a narrow (80 
column) printer is available, NPRINT and NSTORE are 
used instead. 

The STORE commands will append the output in the file 
STORE.OUT unless the .FILE .STORE instruction is 
used to specify a different disk file. For example, if the 
instruction 

.FILE .STORE=DCOUNTER.OUT 

has been executed (perhaps in the setup file), then the 
command 

NSTORE OUTPUT 0 TO 6.5K ON CHANGE 

will append to the file DCOUNTER.OUT a table listing 
each node change between time O and 6.5 micro­
seconds for the nodes listed in the .TABLE instruction. 

GRAPHICAL OUTPUTS 

The TYPE GRAPH command will display the nodes 
(specified with the .GRAPH instruction) for any prior time 
interval. P-SILOS displays the graph using text char­
acters so graphing is possible with either a monochrome 
or color graphics adapter card. The starting and ending 
times to graph are specified as in the command 

TYPE GRAPH 0 TO 40K 

which produces the graph of Figure 12. Once displayed 
the graph can be scrolled with the graph mode's UP, 
DOWN, RIGHT, and LEFT commands. There are zoom 
commands (IN and OUT) which permit displaying more 
detail or wider time frames as well. The TIME command 
is a command to specify a specific starting and ending 
time to be displayed on the graph. For example, once in 
the graph mode, typing 

TIME 2750 4750 

at the graph prompt will display the indicated 2 micro­
second simulation period on the display. This command 

is especially useful for examining small delays while 
checking critical paths .. 

P-SILOS will also PRINT, NPRINT, STORE and 
NSTORE graphs, provided that printing graphs has 
been enabled with the instruction 

.FORMAT .GFORMAT =1 

which causes subsequent graphical output for each 
node to be displayed (or printed, or stored) on a single 
text line. This command is not required if an IBM 
compatible printer is used to print screen dumps using 
the PC's PRTSC (print screen) command. 

As before, the STORE commands will append the 
graphs to the current output file. 

BREAKPOINTS 

Simulation breakpoints allow users to automatically stop 
a simulation run if specified conditions are met. 
Simulation normally continues until the last specified 
SIM time point (or until Control-Break is pressed). Users 
can also select node conditions that will terminate a 
simulation. For instance, the DCOUNTER design 
simulation can be halted in the event that the parallel 
load data is set to 0 and PARENA is enabled since this 
state will loop indefinitely. The instruction to set this 
breakpoint condition would be 

.BREAK D3_!N=0 D2_1N=0 D1_1N=0 DO_IN·O PARENA=1 

SAVE/EXIT 

The EXIT command will not automatically save the 
current simulation records before exiting to DOS. If it is 
necessary to later return to P-SILOS to continue from 
the current simulation point, the SAVE command can be 
used to save all previous simulation results before 
EXITing. When P-SILOS is executed again, the GET 
command will restore all simulation results from disk, and 
the user can continue the simulation session as well as 
review previous simulation results. 

By default, SAVE and GET use files with various exten­
sions appended to the default name SAVE (such as 
SAVE.SIM and SAVE.ERR). However, the instruction 
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.FILE .SAVE=CNTSAVE 

would set the default SAVE filename to CNTSAVE (or 
any other specified filename). The next SAVE 
command will save all simulation results up to the current 
state in files named CNTSAVE. When P-SILOS is 
invoked later, the same instruction should be entered to 
set the default filename again before using the GET 



command; otherwise GET will attempt to read the default 
files (SAVE.SIM). 

SUMMARY 

A useful methodology for Logic Cell Array users is the 
combination of in-circuit emulation for real-time fun­
ctional design verification, and simulation for critical path 
verification. The combination of these two verification 
tools can significantly improve design productivity. 

The XACTOR in-circuit emulator simplifies initial devel-

* P·SILOS (C,A • 

opment work by permitting direct control of up to four 
LCAs connected to a system under development. The 
readback facility is especially suitable to debugging com­
plex state sequences, as it gives a snapshot of the inter­
nal operation of the Logic Cell Array during operation. 

Simulation, while no longer required for exhaustive 
function verification, is recommended for examining 
critical path performance under worst-case conditions. P­
SI LOS simulates performance based upon actual delays 
derived from the placement and routing of designs: it 
permits interactive or batch control of input patterns and 
the simulation session. 
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FEATURES 

• Runs on an IBM® PC/XT™, PC/AT™ or compatible 
computer 

• Complete basic system for design using Logic Cell™ 
Arrays 

• Interactive graphical design editor 
• Simplified definition, placement and interconnection 

capability for logic design and implementation 
• Macro library of 113 standard logic family equivalents 

• Utility for user-defined macros 

• Boolean equation or Karnaugh map alternatives to 
specify logic functions 

• Point to point timing calculations for critical path 
analysis 

• Automatic design consistency checking for 
connectivity and design violations 

• Documentation support with hardcopy output of 
logical and physical configuration information 

• Download cable to transfer configuration programs 
from PC to LCA in target system 

• Compatible hardware and software options to 
enhance design productivity 

GENERAL 

The XACT™ Design Editor provides users with a 
complete design and development system for 
specification and implementation of designs using Xilinx 
Logic Cell Arrays. Functional definition of Configurable 
Logic Blocks (CLBs), Input/Output Blocks (IOBs) and 
interconnection is performed with a menu driven 
interactive graphics editor. An automatic router greatly 
reduces the effort to interconnect logic. 

Designs are captured with a graphics based design 
editor using either a mouse for menu driven entry, or a 
keyboard for command driven entry. Functions are spec­
ified by CLB and IOB definitions plus their intercon­
nections. The macro library and user defined macros 
enable the user to easily implement complex functions. 

The check for logic connectivity and design rule viola­
tion is easily performed. All unused internal nodes are 
automatically configured to minimize power dissipation. 

XC-DS21 
DESIGN EDITOR 

Product Brief 

Interactive point-to-point timing delay calculation is pro­
vided for timing analysis and critical path determination. 
This ability enables the user to quickly identify and 
correct timing problems while the design is in progress. 

Automatic generation of simulator input netlist files with 
timing parameters simplifies the use of P-SILOS™ for 
logic and timing simulation. 

The XACT Design Editor includes hardcopy generation 
to document a design and automatically track design 
changes. Logic Cell Array configuration programs can 
be automatically translated into standard EPROM pro­
gramming bit pattern formats. 

A download cable included with XACT is useful for trans­
ferring configuration programs serially from the PC work­
station to a Logic Cell Array installed in a system. During 
product development and debug this capability can be 
used to save the time required to write a modified con­
figuration program into an EPROM. 

Xilinx provides ongoing support for XACT users. For the 
first year, software updates are included. After that, the 
user may purchase the XC-SC21 Annual Support 
Agreement to continue to receive the latest software 
releases. XACT users also receive a technical bulletin 
which includes information about Logic Cell Arrays, 
software updates and hints for designers. In addition, I 
Xilinx operates an electronic bulletin board to provide 
software enhancements and interactive factory support. 

• 
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XC-DS21 Design Editor 

XACT MACRO LIBRARY 

GENERAL CLBs FDCR D Flip-Flop w/ClkEna, Reset (1) 
FDCS D Flip-Flop w/ClkEna, Set (1) 

GADD Adder (1) FDM D Flip-Flop 2-lnput Data Mux (1) 
GCOMP Compare (1) FDMR D Flip-Flop 2-lnput Data Mux, Reset (1) 
GEQGT Equal or Greater (1) FDMS D Flip-Flop 2-lnput Data Mux, Set (1) 
GMAJ Majority (1) FDM-rd D Flip-Flop 2-lnput Data Mux, ResetDir (1) 
GMUX 2-to-1 Mux (1) FDM-sd D Flip-Flop 2-lnput Data Mux, SetDir (1) 
GPAR Parity (1) FSR Set-Reset Flip-Flop w/Set Dominate (1) 
GXOR Exclusive-OR (1) FRS Set-Reset Flip-Flop w/Reset Dominate (1) 
GXOR2 Dual Exclusive-OR (1) FJK J-K Flip-Flop (1) 
GXTL Crystal Oscillator (0+2108) FJKS J-K Flip-Flop w/Synchronous Set (1) 
GOSC Low Frequency (1+2108) FJK-rd J-K (Set-Reset) Flip/Flop w/ResetDir (1) 

Resistor-Capacitor Oscillator FJK-sd J-K (Set-Reset) Flip/Flop w/SetDir (1) 
FJK-srd J-K (Set-Reset) Flip/Flop w/SetDir, (1) 

PADS IOBs ResetDir 
FTO Self Toggle Flip-Flop (1) 

PIN Input Pad (1) FTOR Self Toggle Flip-Flop w/Reset (1) 
PINO Input Pad w/Storage (1) FT Toggle Flip-Flop (1) 
PIO Input/Output Pad (1) FTP Toggle Flip-Flop w/ParEna (1) 
PIOQ Input/Output Pad wllnput Storage (1) FTP-rd Toggle Flip-Flop w/ParEna, ResetDir (1) 
PIOC Input/Output Pad w/'Open Collector' (1) FTR Toggle Flip-Flop w/Reset (1) 
PIOQC Input/Output Pad w/lnput Storage, (1) FTS Toggle Flip-Flop w/Set (1) 

'Open Collector' FT2 2-lnput Toggle Flip-Flop (1) 
POUT Output Pad (1) FT2R 2-lnput Toggle Flip-Flop w/Reset (1) 
POU TC Output Pad wtOpen Collector' (1) 
PO UTZ Output Pad w/3-State Control (1) DECODERS CLBs 
PREG Output Pad w/lnput Storage (1) 

D2-4 1-of-4 Decoder (2) 
LATCHES CLBs D2-4E 1-of-4 Decoder, w/Ena (2) 

74-139 1-of-4 Single Decoder w/Low Output, Ena (4) 
LD Data Latch (1) D3-8 1-of-8 Decoder (5) 
LD-rd Data Latch w/ResetDir (1) D3-8E 1-of-8 Decoder w/Ena (6) 
LD-sd Data Latch w/SetDir (1) 74-138 1-of-8 Decoder w/Enables, Low Output (7) 
LD-srd Data Latch w/SetDir, ResetDir (1) 74-42 1-of-10 Decoder w/Low Output (8) 
LDM Data Latch w/2-lnput Data Mux (1) 
LDM-rd Data Latch w/2-lnput Data Mux, ResetDir (1) MULTIPLEXERS CLBs 
LDM-sd Data Latch w/2-lnput Data Mux, SetDir (1) 

M3-1 3-to-1 Mux (2) 
FLIP-FLOPS CLBs M3-1E 3-to-1 Mux w/Ena (2) 

M4-1 4-to-1 Mux (3) 
FD D Flip-Flop (1) M4-1E 4-to-1 Mux w/Ena (3) 
FDR D Flip-Flop w/Reset (1) 74-352 4-to-1 Mux w/Low Output, Ena (3) 
FDS D Flip-Flop w/Set (1) M8-1 8-to-1 Mux (7) 
FD-rd D Flip-Flop w/ResetDir (1) M8-1E 8-to-1 Mux w/Ena (7) 
FD-sd D Flip-Flop w/SetDir (1) 74-151 8-to-1 Mux w/Ena, (7) 
FD-srd D Flip-Flop w/SetDir, ResetDir (1) Complementary Outputs 
FDC D Flip-Flop w/ClkEna (1) 74-152 8-to-1 Mux w/Low Output (7) 
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REGISTERS CLBs ModuloB 

Data Registers CBBCP 3-Bit Binary Counters w/ClkEna, ParEna (5) 
CBBCR 3-Bit Binary Counters w/ClkEna, Reset (4) 

RD4 4-Bit Data Register (4) CB BC-rd 3-Bit Binary Counters w/ClkEna, ResetDir (4) 
RDS 8-Bit Data Register (8) CBJCR 3-Bit Johnson Counters w/ClkEna, Reset (4) 
RDBCR 8-Bit Data Register w/ClkEna, Reset (8) 

Modulo 10 
Serial to Parallel 

C10BC-rd 4-Bit BCD Counter w/ClkEna, ResetDir (4) 
RS4 4-Bit Shift Register (4) C10BCP-rd 4-Bit BCD Counter w/ClkEna, 
74-195 4-Bit Serial to Parallel ParEna, ResetDir (7) 

Shift Register w/ParEna, Reset (5) 74-160 4-Bit BCD Counter 
74-194 4-Bit Bi-Directional Shift (12) w/ClkEna, ParEna, ResetDir (8) 

Register w/ClkEna,ParEna, ResetDir C10BP-rd 4-Bit BCD Counter w/ParEna, ResetDir (6) 
RSB 8-Bit Shift Register (8) C10JCR 5-Bit Johnson Counter w/ClkEna, Reset (5) 
RSBCR 8-Bit Shift Register w/ClkEna, Reset (8) 
RSBPR 8-Bit Shift Register w/ParEna, Reset (8) Modulo 12 
RSBR 8-Bit Shift Register w/Reset (8) 
74-164 8-Bit Serial to Parallel Shift Register (8) C12JCR 6-Bit Johnson Counter w/ClkEna, Reset (6) 

w/ResetDir 
Modulo 16 

COUNTERS CLBs 
C16BA-rd 4-Bit Binary Ripple Counter w/ResetDir (4) 

Modulo2 C16BC-rd 4-Bit Binary Counter w/ClkEna, ResetDir (4) 
C16BCPR 4-Bit Binary Counter w/ClkEna, 

C2BCR 1-Bit Binary Counters w/ClkEna, Reset (1) ParEna, Reset (10) 
C2BC-rd 1-Bit Binary Counters w/ClkEna, ResetDir (1) C16BCP-rd 4-Bit Binary Counter 
C2BP 1-Bit Binary Counters w/ParEna (1) w/ClkEna, ParEna, ResetDir (6) 
C2BR 1-Bit Binary Counters w/Reset (1) 74-161 4-Bit Binary Counter w/ResetDir (8) 
C2B-rd 1-Bit Binary Counters w/ResetDir (1) C16BP-rd 4-Bit Binary Counter w/ParEna, ResetDir (5) 

C16BUD-rd 4-Bit Binary Up-Down Counter 
Modulo4 w/ParEna, ResetDir (8) 

C16JCR 8-Bit Johnson Counter w/ClkEna, Rese (8) 
C4BCP 2-Bit Binary Counters w/ClkEna, ParEna (3) 
C4BCR 2-Bit Binary Counters w/ClkEna, Reset (2) Modulo 256 
C4BC-rd 2-Bit Binary Counters w/ClkEna, ResetDir (2) 
C4JCR 2-Bit Johnson Counters w/ClkEna, Reset (2) C256FC-rd 8-Bit Modulo 256 Feedback Shift (9) 

Register\ w/ClkEna, ResetDir 
Modulo6 

C6JCR 3-Bit Johnson Counter w/ClkEna, Reset (3) 

XACT EXECUTIVE COMMAND SUMMARY 

PROGRAM MENU 

Quit 
DRC 
Make Bits 
Simgen 
Xprint 

DESIGNS MENU 

Directory 
Part 
Read 
Save 

EditLCA 
CONVERT 
Make Prom 
Maegan 
Dos 

Design 
Speed 
File 
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PROFILE MENU 

Settings 
ReadProfile 
Mouse 
Printer 

Save Profile 
Cursor 
Keydef 
Execute 

I 
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XC-DS21 Design Editor 

XACT DESIGN EDITOR COMMAND SUMMARY 

NET MENU 

QueryNet Add Net 
NameNet EditNet 
Route UnRoute 
Del Net Join Net 
Hilight UnHilight 
Flag Net 

PIN MENU 

Add Pin RoutePin 
ClearPin SwapPin 
Move Pin Del Pin 
SwapSig 

BLOCK MENU 

QueryBlk NameBlk 
MoveBlk CopyBlk 
SwapBlk EditBlk 
EndBlk DelBlk 
ClearBlk 

CONFIGMENU 

Base Config 
Equate Clear 
EditEq Order 
Cdata 

SYSTEM REQUIREMENTS 

Minimum System Configuration 
IBM PC/XT, PC/AT or compatible computer with: 

• MS-DOS™ 2.1 or higher 
• 640K Bytes RAM 
• 1 Diskette Drive 
• 10MB Hard Disk 

SCREEN MENU 

Show Cursor 
Print Redraw 
Find QueryGrid 
Switch 

MISC MENU 

Exit Speed 
File Save 
Report Dos 
Execute Cut 
Paste CutMacro 
Macro DRC 
Delay 

PROFILE MENU 

Settings Save Profile 
Read Profile Show 
Cursor Auto Time 
Key def Mouse 
Printer AutoRoute 

ORDERING INFORMATION 

Further information is available from your local Hamilton/ 
Avnet or other Xilinx distributor sales office or by con­
tacting the nearest Xilinx sales representative. 

Part Number Description 

• IBM or compatible Color Graphics Adapter and Display 
XC-DS21 
XC-SC21 

XACT Design Editor System 
XACT Annual Support Agreement 

• 1 Serial Interface Port 
• 1 Parallel Interface Port 
• Mouse Systems™, Microsoft® or compatible mouse 

PIN 0010031 01 
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FEATURES 

• Event driven logic and timing simulator 

• Logic network input automatically generated by 
XACT™ Design Editor 

• Control and observation of any physical circuit node 

• Multiple file input for vectors and commands 

• Interactive or batch mode operation 

• Output available in printed or tabular formats 

• Runs on an IBM® PC/XT™, PC/AT™ or compatible 
personal computer 

GENERAL 

P-SILOS is a powerful PC based simulator that provides 
event driven logic and timing simulation of Logic Cell™ 
Array designs. Simulation is particularly useful for test­
ing designs or design segments as well as for verifying 
critical timing over worst case power supply, temperature 
and process conditions. 

Simulation is useful in several stages of the design 
cycle. After design entry, simulation may be used to 
debug logic in an unplaced and unrouted design. This 
saves design time because logic errors can be detected 
and corrected prior to final placement and routing. After 
a circuit has been placed, routed and then fully debug­
ged using in-circuit emulation, worst case timing may be 
verified. This enables the user to select the correct 
Logic Cell Array speed grade for a particular application. 

Network inputs for Logic Cell Array designs are automat­
ically created by the Simgen utility in the XACT system. 
The network includes logic and routing delay para­
meters and setup and hold times based upon the 
selected speed grade operating under worst case 
conditions. Simulation stimuli are created with a set of 
clock statements or with an input pattern for either pad 
inputs or internal nodes. Simulation results are available 
in tabular, plotted and graphic formats. This flexibility 
makes the debugging easy for both the circuit function 
and timing. 

XC-DS22 
P-SILOS™SIMULATOR 

Product Brief 

SYSTEM REQUIRMENTS 

Minimum System Configuration 
IBM PC/XT, PC/AT or compatible computer with: 
• MS-DOS™ 2.1 or higher 

• 640K Bytes RAM 

• 1 Diskette Drive 

• 10MB Hard Disk 

• 1 Parallel Interface Port 
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Refer to the DS21 Design Editor Product Brief for additional 
equipment required for systems which will also run the XACT 
Design Editor 

ORDERING INFORMATION 

Further information is available from your local 
Hamilton/Avnet or other Xilinx distributor sales office, or 
by contacting the nearest Xilinx sales representative. 

Part Number Description 

XC-DS22 P-SILOS Simulator 

I 
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XC-DS22 P-SILOS Simulator 
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FEATURES 

• Automatic placement and routing of logic to minimize 
design cycle time 

• User control over placement of logic blocks 
• User specification of critical paths 
• Nellis! inputs from either schematic capture or XACT™ 
• May be used in conjunction with schematic capture or 

with the XACT Design Editor 
• Runs on IBM® PC/XT™, PC/A"fTM or compatible 

personal computer 

GENERAL 

The Automatic Placement and Routing program enhan­
ces the productivity of designers using Logic ~ell Ar~ays 
by reducing design placement and routing t1m~, 
whether the design logic is entered from a schematic 
capture package or from the XACT Design Editor. 

Designs that are developed incrementally ca.n also ta~e 
advantage of Automatic Placement and Routing. Partial 
Logic Cell Array layouts can be locked in place while addi­
tions to the design are automatically placed and routed, 
or the design can be completely rearranged to yield a 
new placement. 

The Automatic Placement and Routing program is 
extremely flexible. Through placement directives the 
user can control the placement process to achieve the 
best placement for a particular design. Routing re~our­
ces can be specified to minimize clock skews and signal 
delays for critical paths. The result is faster product 
development. 

Xilinx provides ongoing support for users of the 
Automatic Placement and Routing program. For the first 
year, software updates are included. After that, the user 
may purchase the XC-SC23 Annual Support Agreement 
to continue to receive the latest software releases. 

XC-DS23 
AUTOMATIC PLACEMENT 
AND ROUTING PROGRAM 

Product Brief 

SYSTEM REQUIRMENTS 

Minimum System Configuration 
IBM PC/XT, PC/AT or compatible computer with: 
• MS-DOS™ 2.1 or higher 
• 640K Bytes RAM 
• 1 Diskette Drive 
• 10MB Hard Disk 
• 1 Parallel Interface Port 
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Refer to the DS21 Design Editor Product Brief for additional 
equipment required for systems which will also run the XACT 
Design Editor 

ORDERING INFORMATION 

Further information is available from your local Hamilton/ 
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative. 

Part Number 

XC-DS23 

XC-SC23 

Description 

Xilinx Automatic Placement 
and Routing Program 
Xilinx Automatic Placement 
and Routing Program Annual 
Support Agreement 

I 
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XC-DS23 Automatic Placement and Routing Program 
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FEATURES 

• Real time in-circuit emulation in user's target system 

• Concurrent emulation of up to four devices 

• Readback and display of Logic Cell™ Array internal 
storage element states 

• Device status display with automatic update of 
asynchronous events 

• Control and 1/0 pin isolation from target system 
• Support for daisy chain programming of up to seven 

devices in a daisy chain 
• On-chip crystal oscillator support during emulation 
• Support for multiple device and package types 

• Runs on an IBM® PC/XT™, PC/AT™ or compatible 
personal computer 

GENERAL 

The XACTOR™ real-time in-circuit emulator provides 
interactive target system emulation of up to four Logic 
Cell Arrays from the host PC system. In-circuit emulation 
provides a powerful productivity enhancement to simu­
lation, providing capabilities to verify functionality in the 
target system at full speed with all other circuits and 
system software. 

The emulation system is composed of a microcomputer­
based controller, and from one to four universal emu­
lation pods each with an emulation header. One pod 
and header is included with the system. The controller 
is connected to the host PC through a serial port and 
provides local storage of configuration programs, control 
of individual device configurations, and control of the 
isolation of the pod device(s) from the target system. 
The user can set the state and isolation for each of the 
control signals to provide debugging of target hardware. 
Four general 1/0 pins are available to provide test points 
which may also be isolated from the target system. 

Target Logic Cell Arrays can be programmed individually 
or in a daisy chain. Daisy chains of up to seven devices 
may be supported from any of the four pods. Individual 
device isolation and configuration is controlled with 
mouse or keyboard commands and may be supple­
mented with user-defined setup files for easy system 
debugging. 

XC-0524, XC-0526, XC-0527 
XACTOR™ IN-CIRCUIT 
EMULATOR 

Product Brief 

Readback of device configuration may be performed on 
command for verification of the configuration process 
and interrogation of the internal states. The state of all 
internal storage elements is displayed after readback 
has been performed. Status displays showing the state 
of all isolation switches and control signal states are pro­
vided. The status display includes automatic reporting 
of asynchronous status changes in the target system. 

UNIVERSAL IN-CIRCUIT EMULATOR PODS 

Additional pods may be connected to the XACTOR in­
circuit emulator controller, up to a maximum of four pods 
per controller. Pod headers are interchangeable for 
different device and package types. Each pod provides 
a direct in-socket connection for a minimum disruption of 
the target system. Test points are provided to allow 
connection of a logic analyzer or other test equipment to 
aid in the system debugging. 
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XC-DS24, XC-DS-26, XC-27 XACTOR In-Circuit Emulator 

SYSTEM REQUIREMENTS 

Minimum System Configuration 
IBM PC/XT, PC/AT or compatible computer with: 
• MS-DOS™ 2.1 or higher 
• 640K Bytes RAM 
• 1 Diskette Drive 
• 10MB Hard Disk 
• IBM Color Graphics Adapter and Display 
• 2 Serial Interface Ports 
• 1 Parallel Interface Port 
• Mouse Systems™, Microsoft or compatible mouse 

ORDERING INFORMATION 

Further information is available from your local Hamilton/ 
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative. 

Part Number 

XC-DS24 

XC-DS26 
XC-DS27-PD48 
XC-DS27-PC68 
XC-DS27-PG68 
XC-DS27-PC84 
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Description 

XACTOR In-Circuit Emulator 
with 1 pod and PC68 header 
Universal Emulation Pod 
Emulation Header for 48 pin DIP 
Emulation Header for 68 pin PLCC 
Emulation Header for 68 pin PGA 
Emulation Header for 84 pin PLCC 
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FEATURES 

• Design entry via the FutureNet DASH™ Schematic 
Designer 

• Macro library of over 100 standard logic family 
equivalents derived from the XACT™ Macro Library 

• Library of logic symbols including all two-input, three­
input and four-input AND, OR and XOR gates plus 
storage, input/output and clock elements 

• User control for flagging critical paths for the XC-DS23 
Automatic Placement and Routing Program 

• Automatic partitioning and conversion of schematic 
drawings to a Xilinx Logic Cell™ Array design file 

• Output compatibility with XACT Design Editor and the 
Automatic Placement and Routing Program 

• Runs on an IBM® PC/XT™, PC/AT™ or compatible 
personal computer 

GENERAL 

Schematic entry and automatic partitioning of Logic Cell 
Array designs shortens product development times. 
Complex designs can be specified schematically and 
quickly implemented for in-circuit design verification. 

Xilinx's Future Net DASH Schematic Designer Library pro­
vides the symbol library and conversion utility to permit 
designers to enter Logic Cell Array designs with the 
FutureNet DASH Schematic Designer. The Xilinx library 
provides the logic, 1/0, and macro symbols to be used in 
the schematic. A Xilinx conversion utility automatically 
partitions the schematic into a Logic Cell Array design. 

Once partitioned, the design may be placed and routed 
with the XC-DS23 Automatic Placement and Routing 
Program or with XACT. The Xilinx symbol library includes 
symbols to flag critical data and clock signals which the 
Automatic Placement and Routing Program uses to 
prioritize those signals for minimum delay. 

Xilinx provides ongoing support for users of the Future­
Net DASH Schematic Designer Library. For the first 
year, software updates are included. After that, the user 
may purchase the XC-SC31 Annual Support Agreement 
to continue to receive the latest software releases. 

XC-DS31 FUTURENET 
DASH™SCHEMATIC 
DESIGNER LIBRARY 

Product Brief 

SYSTEM REQUIREMENTS 

Minimum System Configuration 
IBM PC/AT, PC/XT or compatible computer with: 
• FutureNet DASH-2 or later and associated hardware 

including mouse, Enhanced Graphics Adapter and 
Display 

• MS-DOS™ 2.1 or higher 

• 640K Bytes RAM 

• 1 Diskette drive 

• 1 OMB hard disk 
Refer to the DS21 Design Editor Product Brief for additional 
equipment required for systems which will also run the XACT 
Design Editor. 

ORDERING INFORMATION 

Further information is available from your local Hamilton/ 
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative. 

Part Number 

XC-DS31 

Description 

FutureNet DASH Schematic Design 
Library 

XC-SC31 FutureNet DASH Schematic Design 
Library Annual Support Agreement I 

• 
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XC-DS31 FutureNet DASH Schematic Designer Library 
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The Xilinx Logic Cell Arrray is a high-performance CMOS 
user-programmable gate array. The Xilinx Logic Cell 
Array Evaluation Kit is a software package that provides 
the capability to evaluate the Logic Cell Array for new 
applications. 

FEATURES 

• Design software package for IBM PC/XT, PC/AT or 
compatible computer 

• Interactive graphics-oriented designer interface 
• Simplified definition, placement and connection 

capability for implementation of complex logic 
• Boolean equation or Karnaugh map alternatives to 

specify logic functions 
• Macro library of 113 standard logic equivalents plus 

support for user-defined macros 
• Point-to-point timing calculations for critical path 

analysis 
• Automatic checking for connectivity and design 

consistency 
• Hardcopy output of logical and physical configuration 

information 

GENERAL 

The Evaluation Kit can be used to enter complete 
designs using a subset of the XACT design editor, 
including the use of the Xilinx macro library. Critical 
timing for the design can be evaluated with the timing 
delay calculator to evaluate the applicability of the Logic 
Cell Array technology to a particular design. 

Functional defintion of Configurable Logic Blocks 
(CLBs), and their internal routing, 1/0 Block (IOB) defini­
tions, and interconnection are all done within an inte­
grated graphics oriented system. Interactive placement 
and automatic routing of logic and 1/0 elements are 
accomplished quickly and easily via an easy-to-learn 
user interface. 

EK01 Logic Cell™ Array 
Evaluation Kit 

Product Brief 

Designs are captured with a graphics-oriented design 
editor, using either a mouse or keyboard entry or driven 
from command files. User functions are specified in 
terms of CLB definitions and interconnections. 
Standard logic functlions from the macro library or user­
defined macro capabilities can be utilized to quickly 
implement complex logic functions. Placement and rout­
ing can be edited easily to modify or optimize a design. 

Checking of logical connectivity is performed auto­
matically. All unused internal nodes are automatically 
configured to minimize power dissipation. 

Interactive point-to-point timing delay calculation is 
provided to simplify timing analysis and critical path 
determination. 

The Evaluation Kit includes hardcopy generation to 
document a design and automatically track design 
changes. 
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EK01 Logic Cell Array Evaluation Kit 

SYSTEM REQUIRMENTS 

Minimum System Configuration 
IBM PC/XT, PC/AT or compatible 
• MS-DOS™ 2.1 or higher 
• 640K Bytes of RAM 
• 1 Diskette drive 
• 1 OMB Hard disk 
• IBM or compatible Color Graphics Adapter and Display 
• 1 Serial interface port 
• Mouse Systems™, Microsoft® or compatible mouse 

ORDERING INFORMATION 

Further information is available from your local Hamilton/ 
Avnet or other Xilinx distributor sales office, or by con­
tacting the nearest Xilinx sales representative. 

Part Number Description 

XC-EK01 Logic Cell Array Evaluation Kit 
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Active High - A high-voltage active sense. 

Active Low - A low-voltage active sense. Signals which are 
active low have their names preceded by a tilde (-) or an 
overbar. 

Active Sense - The voltage level (high or low) associated with 
the Active State (logical "1 "). 

Active Edge - A signal transition upon which actions are 
dependent; a low-to-high or high-to-low transition used to 
initiate an action. 

ASIC - Application Specific Integrated Circuit. An integrated 
circuit tailored for a specific use by a single IC customer. 

Assert - To cause a signal to change from its inactive to its 
active state. 

Asynchronous - Not synchronized to a clock signal. An 
asynchronous input affects its circuit output directly. 

Bidis-A set of bidirectional buffers located in the LCA general 
interconnect and programmed automatically by the develop­
ment system to provide signal buffering. 

Bitstream - The object form of an LCA configuration program, 
organized serially and including length count and other control 
information. 

Buffer - (1) A structure for intermediate data storage. (2) A 
device for isolating a signal in a circuit. 

CLB - See Configurable Logic Block. 

Clear - To force to a logical "O". See also Reset. 

Combinatorial - A logic operation who's output is a direct 
function of a set of input variables, i.e., not dependent on a 
timing signal. 

Configurable Logic Block (CLB) - A subunit of an LCA that 
contains configurable combinational-logic and data-storage 
circuitry. 

Configuration Program - The data required by an LCA to 
determine the user-specified functions of the CLBs, the IOBs 
and the interconnection networks. 

Configuration Logic - The circuitry of the LCA t~at 
automatically recognizes, receives, and stores the config­
uration program and signals the completion of the con­
figuration process. 

Configuration Mode- The mode used to load the configuration 
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program into an lCA. The configuration mode is determined 
by the states of inputs MO, M1 and M2 at the conclusion of 
initialization. See also Peripheral Mode, Master Mode and 
Slave Mode. 

Daisy Chain - Several devices connected in such a way that 
configuration program data move serially from one device to 
the next. 

DASH™ - A FutureNet® schematic software program. 

De-assert - To cause a signal to change from its active to its 
inactive state. 

Direct Interconnect- Dedicated interconnect that can directly 
connect adjacent ClBs, IOBs and outputs. This type of inter­
connect provides the shortest propagation delay between 
such points and uses minimal interconnection networks. 

Enable - To allow a circuit to respond to an input. For 
example, a clock enable signal allows a circuit to respond to 
its clock input. 

Flip-Flop - A storage device whose output assumes a high or 
low state according to the states of its inputs and is 
synchronized to a clock transition. 

FutureNet™ - A schematic capture program which may be 
used for schematic definition of a logic design when used with 
the Xilinx Auto Place and Route Program. 

Gate Array - An integrated circuit which uses factory 
programmed metal interconnections to define the logic 
function. 

General Interconnect - Horizontal and vertical metal 
segments joining lCA switching matrices. 

Input/Output Block (IOB) -A subunit of an lCA that can be 
configured to connect the internal circuitry to an external 
package pin. It contains elements for input-data capture and 
for three-state output. 

IOB- See Input/Output Block 

Johnson Counter - A synchronous counter implemented as a 
shift register whose input is the inverse of the shifted-out end • 
bit. 

latch - A logic device which transfers the data of its input to -
its output when load enable is active, and retains its value 
when load enable is inactive. 

lCA- See logic Cell Array 
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Length Count - Part of the configuration program that 
specifies the number of Configuration Clock (CCLK) cycles 
from the start of configuration to the start of operation. 

LFSR- See Linear Feedback Shift Register. 

Linear Feedback Shift Register (LFSR) - A synchronous 
counter that is a shift register whose input bit is computed by 
XORing several bits of the current state. 

Logic Cell™ Array - A user-programmable gate array which 
can be configured (programmed) to perform a range of logic 
functions. 

Long Lines - Interconnect that routes a signal to several 
destinations in an LCA. This type of interconnect runs the full 
length or width of an LCA and is often used for clock signals. 

Macro - A file containing XACT™ editor commands which may 
be executed · by name and given a set of parameters for 
netnames, locations etc. in order to generate a logic element 
from a library. 

Master Mode -A configuration mode in which the LCA receive 
parallel (byte-wide} configuration data from an external 
memory. · The LCA generates read-addresses and 
automatically serializes (internally) the data for internal 
storage. 

PAL® - A Monolithic Memories fusible link integrated circuit 
which implements logic using sums of programmable product 
terms. 

Peripheral Mode -A configuration mode in which the LCA acts 
as a peripheral device. An external device, such as a 
processor, loa<!s the configuration data bits serially into the 
LCA. 

PIP - Programmable interconnect point, a configuration 
memory-controiled pass transistor used to control program­
mable interconnections in a Logic Cell Array. 

PLCC - Plastic Leaded Chip C<1rrier. An integrated circuit 
package w~h J-bend leads suitable for socket or surface 
mounting. 

Power-Down State - An idle current condition of the LCA in 
which its power-supply requirement can be reduced to a 
minimal level. Under this condition, circuit activity is 
suspended.and all configuration data are preserved. 

Preamble Nibble - A specific series of four data bits (0010) 
that signals the start of the configuration program for LCAs. 

Product- The result of a logical AND of two or more variables, 
i.e., logic inputl;l. 

Readback - To cause the LCA to output its configuration 
information. 

Re-configure - To program an LCA that already contains a 
configuration program with a new configuration program while 
power is continually supplied. 

Register -A group of related latches or flip-flops used to store 
and sometimes to manipulate data. 

Reset- (1) To initialize all storage elements of a device to a 
starting condition. (2) To force one or more storage elements 
to logical "O". This may be a synchronous (clocked) or an 
asynchronous (direct) operation. 

Set - To force one or more storage elements to logical "1". 
This may be a synchronous (clocked) or an asynchronous 
(direct) operation. 

Silos® - An optional logic and timing simulator developed by 
Simucad Corp. and supported by XACT for use in design 
verification of Logic Cell Array designs. 

Slave Mode -A configuration mode in which the LCA receives 
a serial configuration program and all control signals from 
another device, frequently another LCA. 

State - The condition of one or a set of flip-flops. 

State Machine -A set of flip-flops whose next state and next 
outputs are functions of its current state and a set of inputs. 

Storage Element - An 108 or CLB portion that can store data. 
The storage element of a CLB can be programmed to act as a 
latch or a flip-flop. 

A-4 

Sum of products - The result of a logical OR of two or more 
logical AND operations. 

Synchronous - Restricting output changes to those initiated 
by a transition of a timing signal. 

Three-State - (1) Able to function as an output, bidirectional 
connection or no connection (high impedance). (2) The high­
impedance state. 

Toggle - To change to the opposite state (e.g. active to 
inactive). 

Toggle rate - The maximum clock frequency at which a flip­
flop storage element will toggle properly. 

XACT™ - Xilinx Advanced CAD Technology. A set of 
computer programs that lets a designer specify, develop, and 
debug the configuration of an LCA using interactive computer 
graphics. 

XACTOR™ - An optional in-circuit emulator used for real-time 
functional verification of LCA designs. 
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Pompano Beach, FL 33069 1563 East Dorothy Lane SOUTHEAST ASIA 
(305) 977-9006 UTAH Suite 104 
TWX: 510-601-0120 Kettering, OH 45429 Excel Associates, Ltd. 
FAX: 305-977-9044 Front Range Marketing (513) 299-5877 1502 Austin Tower 

2520 South State St., 22-26A Austin Avenue 
RHODE ISLAND Suite 117 WISCONSIN (Western) Tsimshatsui, Kowloon 

Salt Lake City, UT 84115 Hong Kong 
Mill-Bern Associates, Inc. (801) 364-6481 Com-Tek Tel: 852-3-7210900 
120 Cambridge St, Suite 8 6525 City West Parkway FAX: 852-3-696826 
Burlington, MA 01803 VERMONT Eden Prairie, MN 55344 TLX:30841 
(617) 273-1313 (612) 941-7181 
TWX: 710-332-0077 Mill-Bern Associates, Inc. TWX: 310-431-0122 UK 
FAX: 617-229-7797 120 Cambridge St, Suite 8 FAX: 612-941-4322 

Burlington, MA 01803 Ambar Cascom, Ltd. 
SOUTH CAROLINA (617) 273-1313 WISCONSIN (Eastern) Rabans Close, 

TWX: 710-332-0077 Aylesbury, Bucks HP193RS 
The Nevus Group, Inc. FAX: 617-229-7797 Beta Technology Sales, Inc. England 
5337 Trestlewood Lane 9401 Beloit, Suite 304C Tel: 029634141 
Raleigh, NC 27610 VIRGINA Miiwaukee, WI 53227 TLX:837427 
(919) 833-7771 (414) 543-6609 FAX: (02) 9629670 
TWX: 510-600-0558 Micro Comp, Inc. 

1421 S. Caton Avenue FRANCE 
SOUTH DAKOTA Baltimore, MD 21227 CANADA 

(301) 644-5700 Reptronic 
Com-Tek TWX: 510-600-9460 11, Escalier des Ulis 
6525 City West Parkway FAX: 301-644-5707 BRITISH COLUMBIA 91400 Orsay, France 
Eden Prairie, MN 55344 Tel: 16-9288700 
(612) 941-7181 Micro Comp, Inc. Thorson Company Northwest TLX:610969F 
TWX: 310-431-0122 Rt. 2, Box 390 12301 N.E. 10th Place 

FAX: 612-941-4322 Huddleston, VA24104 Bellevue, WA 98005 R.T.F. (Radio Television 
(703) 297-6295 (206) 455-9180 Francaise S.A.) 

TEXAS 
ONTARIO 

13, rue Lhote 
WASHINGTON 33000 Bordeaux, France 

Bonser-Philhower Sales Tel: 16-56-52-99-59 
8200 MoPac Expwy., Thorson Company Northwest Electro Source, Inc. TLX:560627 

Suite 120 12301 N.E. 10th Place The Bell Mews, Suite 233 FAX: 16-56-48-17-83 

Austin, TX 78759 Bellevue, WA 98005 39 Robertson Road 

(512) 346-9186 (206) 455-9180 
Nepean, Ontario K2H 8R2 R.T.F. Quest 

TWX: 910-997-8141 FAX: 206-455-9185 (613) 726-1452 3, rue de Paris 
FAX: 613-726-8834 35510 Cesson Sevigne, 

Bonser-Philhower Sales WASHINGTON (Vancouver) France 

11321 Richmond, Suite 100A 
Electro Source, Inc. Tel: 16-99-83-84-85 • Houston, TX 77082 Thorson Company Northwest 
215 Carlingview Dr., TLX:741127 

(713) 531-4144 6700 S.W. 105th Ave., Suite 303 FAX: 16-99-83-80-83 

TWX: 910-350-3451 Suite 104 
Rexdale, Ontario M9W 5XB 

Beaverton, OR 97005 (416) 675-4490 

(503) 644-5900 
TWX: 06-989271 -FAX: 416-675-6871 
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Sales Offices 

R.T.F. Sud Quest 
Avenue de la Mairie 
31320 Escalquens, France 
Tel: 16-61-81-51-57 
TLX:520927F 
FAX: 16-61-81-22-36 

R.T.F. Gentilly 
9, rue d'Arcueil 
94253 Gentilly Cedex, 
France 
Tel: 46-64-11-01 
TLX:2010169F 
FAX: 46-64-41-99 

R.T.F. Rhone Alpes 
St. Mury, Le Vaucanson 
38240 Maylan, France 
Tel: 16-76-90-11-88 
TLX:980796 
FAX: 16-76-41-04-09 

GERMANY 

Metronik 
Semerteichstrasse 92 
4600 Dortmund 30 
Dortmund, Germany 
Tel: (0231) 423037138 
TLX:8227082 

Metronik 
Siemensstrasse 4-6 
6805 Heddesheim 
Mannheim, Germany 
Tel: (06203) 4701-03 
TLX:465053 

i:XILINX 
2069 Hamilton Avenue 
San Jose, CA 95125 
(408) 559-7778 
TWX: 510-600-8750 
FAX: 408-559-7114 

Metronik 
Leonhardsweg 2 
Postfach 13 28 
8025 Unterhaching 
Munich, Germany 
Tel: (089) 611080 
TLX:897434 
FAX: 89-611 6468 

Metronik 
Laufam holzstr. 118 
8500 Nurnberg 30 
Nurnberg, Germany 
Tel: (P911) 590061/62 
TLX: '626205 

Metronik 
Lowenstr. 37 
7000 Stuttgart 70 
Stuttgart, Germany 
Tel: (0711) 764033135 
TLX:7255228 

IS RAEL 

Hitek, Ltd. 
19, Keren Hayesod St. 
POB563 
Herzlia B, 46105 Israel 
Tel: 972-53-72538 
FAX: 972-3-236926 
TLX:361360 

Distributed By 

Hamilton/Avnet 
Locations throughout the 
U.S. and Canada. 

ITALY 

ACSIS S.R.L. 
Via Alberto Mario. 26 
20149 Milano, Italy 
Tel: (02) 4390832 
TLX:326566 
FAX: (02) 4697607 

Celdis ltaliana S.P.A. 
Via F.ill Gracchi 36 
20092 Cinisello Balsamo 
Milano, Italy 
Tel: (02) 61-839-1 
TLX:334887 
FAX: (02) 61-735-13 

Celdis ltaliana S.P.A. 
Via Massarenti 219/4 
40138 Bologna, Italy 
Tel: (051) 53-333-6 

Celdis ltaliana S.P.A. 
Via Savelli 15 
35100 Padova, Italy 
Tel: (049) 77-209-9 

Celdis ltaliana S.P.A. 
Via G. Pitre' 11 
00162 Roma, Italy 
Tel: (06) 42-897-1 

Celdis ltaliana S.P.A. 
Via Mombarcaro 96 
10136 Torino, Italy 
Tel: (011) 32-993-88 

JAPAN 

Okura & Co., Ltd. 
6-12, Ginza Nichome 
Chuo-Ku 
Tokyo, 104 Japan 
Tel: 03-566-6361 
TWX:J22306 
FAX: 03-563-5447 

Additional Sales Offices 
Opening Soon 
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NETHERLANDS 

Rodelco Electronics 
Takkebijsters 2 
P.O. Box 6824 
4802 HV Breda 
Tel: 76-784911 
TLX:54195 
FAX: 76-710029 

SWEDEN 

Sattco AB 
Dalvagen 10 
S-171 36 Solno 
Stockholm Sweden 
Tel: 46 87 340040 
TLX:11588 
FAX: 46-8-7349155 

SWITZERLAND 

Data Comp AG 
Silbernstrasse 1 O 
CH-8953 Dietikon 
Tel: 01-7405140 
Telex: 827750 
FAX: 01-7413423 



Notes 

• 
-
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For Further Information .. . Please check the appropriate box 

D Please have a Field Applications Engineer call me. 

D I would like to see a live demonstration of the Logic Cell™ Array 

D I would like to borrow a copy of your Logic Cell Array 
Technical Demonstration Video for two weeks. 

My application(s)-------------------

1 have a new design starting in __ week(s)--month(s) 

Name ___________ Title __________ _ 

Company _________ MIS ____ _ 

City __________ _ 

State------Zip----

Phone ( ___ ) ______ _ 
The Programmable Gate Array Company 

For Further Information . . . Please check the appropriate box 

D Please have a Field Applications Engineer call me. 

D I would like to see a live demonstration of the Logic Cell™ Array 

D I would like to borrow a copy of your Logic Cell Array 
Technical Demonstration Video for two weeks. 

My application(s) ------------------­

!have a new design starting in __ week(s) __ month(s) 

Name ___________ Title __________ _ 

Company __________ MIS ____ _ 

City ___________ _ 

State ______ Zip----

Phone( ___ ) ______ _ The Programmable Gate Array Company 
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I'M RFADY TO TAKE THE NEXT STEP 
0 I want to know if the Logic Cell Array is right for my design. 

Send me your EK-01 Evaluation Kit. 
0 Enclosed is my $250 check, payable to Hamilton/Avnet. 
0 Bill me the $250. 

D I think the Logic Cell Array is interesting, but my next design 
is a few months away. Please keep me on your list, though. 

Title/Position. ________________________ _ 

Company _________________________ _ 

Address _________________ Mail Stop ______ _ 

City _______________ State ____ Zip _____ _ 

Authorized Signature _____________________ _ 

I'M RFADY TO TAKE THE NEXT SfEP 
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0 Enclosed is my $250 check, payable to Hamilton/ Avnet. 
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is a few months away. Please keep me on your list, though. 
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City ______________ State ____ Zip _____ _ 

Authorized Signature _____________________ _ 
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