

Copyright 1983 by Zilog, Inc. All rights reserved. No part
of this publication may be reproduced, stored 1n a retrieval
system, or transmitted, 1n any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Zilog.

The information contained herein 1s subject to change
without notice. Zilog assumes no responsibility for the use of
any circultry other than circuitry embodied in a Zilog pro-
duct No other circuit patent licenses are impled.

Introduction

Zilog's name has become synonymous with logic
innovation and advanced microprocessor architec-
ture since the introduction of the Z80® CPU in
1975. The Zilog Family of microprocessors and
microcomputers has grown to include the products
listed in the table below. Each product exhibits
special features that make it stand above similar
products in the semiconductor marketplace. These
special features have proven to be of substantial
aid in the solution of microprocessor design
problems.

This reference book contains a collection of
application information and Zilog microprocessor
products. It includes technical articles, appli-
cation notes, concept papers, and benchmarks.
This book is the second of an expected series of
such volumes. We at Zilog believe that designing
innovative microprocessor integrated circuit
products is only half the key that unlocks the
future of microprocessor-based end products; the
other half is the creative application of those
products. Advanced microprocessor products and
their creative applications lead to end product
designs with more features, more simply
implemented, and at a lower system cost. It is
hoped that this reference book will stimulate new
product design ideas as well as fresh approaches
to the design of traditional microprocessor-based
products.

The material in this book is believed to be accu-
rate and up-to-date. If you do find errors, or
would like to offer suggestions for future appli-
cation notes, we would appreciate hearing from
you. Correction inputs should be directed to Com-
ponents Division Technical Publications, and

application suggestions should be directed to Com-
ponents Division Application Engineering.

8-Bit Single-Chip Micro-
computer, 2K/4K Bytes

78 FAMILY ROM and 144 Bytes RAM

28601/28603/286L01 MCU
78611/2/3 MCU

Microcomputer Unit
Microcomputer Unit

78671 MCU Microcomputer Unit with
BASIC Debug
28681/2 ROMless
78090/4 & 78590/4 Z-UPC Universal Peripheral
Controller
8-Bit General-Purpose
780 FAMILY Microprocessor
78400 CPU Central Processing Unit
78410 DMA Direct Memory Access
28420 PIO Parallel I/0 Controller
28430 CTC Counter/Timer Circuit
28440/1/2 SIO Serial I/0 Controller
78470 DART Dual Asynchronous
Receiver/Transmitter
Low-Power 8-Bit General-
Z80L FAMILY Purpose Microprocessor
78300 CPU Central Processing Unit
78320 P10 Parallel Input/Output
28330 CTC Counter/Timer Circuit
28340 SIO Serial Input/Output

16-Bit General-Purpose

Universal Peripherals

78000 FAMILY Microprocessor 78500 FAMILY (Continued)

28001/2 CPU Central Processing Unit 28536 CIO Counter/Timer and

78003/4 Z-VMPU Virtual Memory Processing Parallel I/0 Unit
Unit 78581 CGC Clock Generator and

28010 Z-MMU Memory Management Unit Controller

78015 Z-PMMU Paged Memory Management

) Unit

78016 Z-DTC Direct Memory Access
Transfer Controller 8/16-Bit General-Purpose

28030 z-scC Serial Communications 7800 FAMILY Microprocessors
Controller

78031 Z-ASCC Asynchronous Serial 28108 MPU Microprocessing Unit
Communications 78208 MPU Microprocessing Unit
Controller 28116 MPU Microprocessing Unit

78036 Z-CIO Counter/Timer and 28216 MPU Microprocessing Unit
Parallel I/0 Unit

28038 Z-FIO FIFO I/0 Interface Unit

28060 Z-FIFO

Z-FIF0 Buffer Unit and
FIO Expander

28065 Z-BEP Burst Error Processor

78068 Z-DCP Data Ciphering Processor

78500 FAMILY Universal Peripherals

28530 SCC Serial Communications
Controller

28531 ASCC Asynchronous Serial

Communications
Controller

780,000 FAMILY

32-Bit General-Purpose
Microprocessor and 80-Bit
Arithmetic Processor

78070 APU

280,000 CPU

Arithmetic Processing
Unit
Central Processing Unit

Table of Contents

|
78 Family 1
Z8 Subroutine Library « « o« o o ¢ o o ¢ o o o o ¢ s e s s 6 6 0 0 s 0 e s e 0 o s 13
ZB MCU Test Mode & & ¢ o ¢ ¢ o o ¢ o o o ¢ « o o o o o o o o s s a o o s o o o oo 1=53
Build a Z8-Based Control Computer with BASIC . . o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o 1257
28671 Seven-Chip Computer « o o ¢ o ¢ ¢ ¢ o o o o o o o o o o o s o o o s o o o oo 1=77
A Single-Board Terminal Using the 78590 Universal
Peripheral Controller .« o« ¢ « ¢ « ¢ o o s ¢ o o o o s o o o o s o o o o o o o 1-85

280 Family 2
Z80 CPU vs. 6502 CPU Benchmark Report « « o o o ¢ 4 ¢ o o ¢ o o o o ¢ o o o o o o » 23

Integrating 8-Bit DMA to 16-Bit System Tutorial . . 2-23

Interfacing Z80 CPUs to the Z8500 Peripheral Family « o« « o o o ¢ o « o o o o o o« o 2=29

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

7800 Family 3
280 Memory Expansion for the Z800 « o ¢ o o+ o o o o ¢ « o o o s o o s o o o s o o o 3=3
On-Chip Memory Management Comes to 8-Bit Microprocessors. « . « « « ¢« ¢ « ¢ o o « « 3=15
8- and 16-Bit Processor Family Keeps Pace with Fast RAMs. . . « « ¢« ¢« + ¢ ¢ ¢« « o « 3=25

78000 Family 4
Cost-Effective Memory Selection for ZBOOD CPUS o« ¢« ¢ « o ¢ ¢ o o ¢ o o ¢ o o o o « 4-3
Benchmark Report: Z8000 vs. 68000 vS. 8086 ¢ « ¢« « « o o « o o o o o o o s o o o o 49
Operating System Support - The ZBOOD Way .« « ¢ o ¢ o ¢ ¢ o ¢ ¢ o o o o o o o o o+ o 4=21
A Performance Comparison of Three Contemporary 16-Bit Microprocessors . . . « « . . 4-27
16-Bit Microprocessors Get a Boost from Demand-Paged MU ¢« . « « « . . 4-39
Segmentation Advances Microcomputer Memory Addressing « « « « ¢« ¢ ¢« ¢ ¢ ¢ ¢« & o o o 4-45
Initializing the 78001 CPU for Segmented Operation with the Z8010 MMU 4-53
Nonsegmented Z8001 CPU ProgramminNg « « « o ¢ o o o ¢ o o o ¢ o o o s o o o o o « o 4-59
Calling Conventions for the Z8000 MiCrOproceSSOr « « « o o o ¢ o o o o o o s o o o 4-67
Fast Block Moves with the ZBOOO CPU « o ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o s o o ¢ o o o o o o o 4-75
Character String Translation: 78000 vs. 68000 vs. 8086 « « ¢« o« « ¢« ¢« ¢« « ¢ & « + » 4-79
78002 CPU Small Single-Board Computer . « « « ¢ ¢ ¢ o ¢ o ¢ ¢ o ¢ o o o o o o o « o 4=79
Interfacing the 78500 Peripherals to 68000. « « « o ¢ « ¢ ¢ o ¢ o o o o o o o o o o 4-93
Interfacing the Z-BUS Peripherals to the 8086/8088. . « « « « ¢« ¢« « ¢ « ¢« « o « + » 4=105
78016/28000 DTC DMA Transfer CONtroller o « o o ¢ o ¢ o « o o o o o o o o o o o o « 4113
Initializing the CIO &« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o o o o s o o s o oo 4-139
Using SCC with Z8000 in SDLC Protocol « « o o ¢ « ¢ o ¢ o ¢ ¢ ¢ o s o o o o o o + o 4=153
SCC in Binary Synchronous Communication « « ¢« « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ v ¢ o o o o o o 4-165
78530/28030 SCC Initialization: A Worksheet and Example .« « ¢ o « ¢ ¢ o o o o o+ o 4=175
The Z-FI0 in a Data Acquisition Application . . « ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « o « 4-183

iii

Z8"'Single Chip Microcomputer Family l

L AL P

Z8° Subroutine Library

Zilog

April 1982

INTRODUCTION

This application note describes a preprogrammed
78601 MCU that contains a bootstrap to external
program memory and a collection of general-purpose
subroutines. Routines in this application note
can be implemented with a Z8 Protopack and a 2716
EPROM programmed with the bootstrap and subroutine
library.

In a system, the user's software resides in
external memory beginning at hexidecimal address
0800. This software can use any of the

subroutines in the library wherever appropriate
for a given application. This application example
makes certain assumptions about the environment;
the reader should exercise caution when copying
these programs for other cases.

Following RESET, software within the subroutine
library is executed to initialize the control
registers (Table 1). The control register
selections can be subsequently modified by the
user's program (for example, to use only 12 bits
of Ports 0 and 1 for addressing external memory).
Following control register initialization, an EI

Table 1. Control Register Initialization

Control Register

Name Address Initial Value Meaning

TMR F1H OOH TO and T1 disabled

P2M FéH FFH P2g-P25 : inputs

P3M F7H 10H P2 pull-ups open drain;
P3g-P33 : inputs;
P35-P3 : outputs;
P34 : DM

PO1M F8H D7H P1g-P17 : ADg-ADy;
P00~P07 : AS—A15;
normal memory timing;
internal stack

IRQ FAH 00H no interrupt requests

IMR FBH 00H no interrupts enabled

RP FDH 00H working register file
00H-OFH

SPL FFH 65H 1st byte of stack is

register 64H

instruction is executed to enable interrupt
processing, and a jump instruction is executed to
transfer control to the user's program at location
0812y. The interrupt vectors for IRQy through
IRQs are rerouted to locations 0800y through
080Fy, respectively, in three-byte increments,
allowing enough room for a jump instruction to the

appropriate interrupt service routine. That is,
IRQy is routed to location 0800y, IRGy to
0803y, IRQ, to 0806y, IRQ3 to 0809y, IRQ, to
080Cy, and IRQs to 080Fy. Figure 1 illus-

trates the allocation of Z8 memory as defined by
this application note.

The subroutines available to the user are refer-
enced by a jump table beginning at location
001BH. Entry to a subroutine is made via the jump
table. The 32 subroutines provided in the library
are grouped into six functional classifications.
These classifications are described below, each
with a brief overview of the functions provided by
each category. Table 2 defines one set of entry
addresses for each subroutine in the library.

e Binary Arithmetic: Multiplication and division
of unsigned 8- and 16-bit quantities.

e BCD Arithmetic: Addition and subtraction of
variable-precision floating-point BCD values.

e Conversion Algorithms: BCD to and from decimal
ASCII, binary to and from decimal ASCII, binary
to and from hex ASCII.

e Bit Manipulations: Packs selected bits into
the low-order bits of a byte, and optionally
uses the result as an index into a jump table.

e Serial I/0: Inputs bytes under vectored inter-
rupt control, outputs bytes under polled inte-
rrupt control. Options provided include:

odd or even parity

BREAK detection

echo

input editing (backspace, delete)
auto line feed

e Timer/Counter: Maintains a time-of-day clock
with a variable number of ticks per second,
generates an interrupt after a specified delay,
generates variable width, variable frequency
pulse output.

The listings in the "Canned Subroutine Library"
provide a specification block prior to each sub-
routine, explain the subroutine's purpose, lists
the input and output parameters, and gives pertin-
ent notes concerning the subroutines. The follow-
ing notes provide additional information on data
formats and algorithms used by the subroutines.

REGISTER PROGRAM EXTERNAL DATA
FF FFFF FFFF
CONTROL
Fo REGISTERS
EF
UNIMPLEMENTED
80
- 7F
1
78
7A
2 USER USER
DEFINED DEFINED
6E
6D
3.
65
64
STACK
0812 START
1
o811 INTERRUPT VECTORS
USER (3 BYTE/IRQx)
DEFINED 0800
07FF
INTERNAL
04 SUBROUTINES
03
110 PORTS
00 0000 0000
REGISTERS USED BY SUBROUTINES:
1. USED BY MOST ROUTINES
2. USED BY SERIAL ROUTINES ONLY
3. USED BY TIMER/COUNTER ROUTINES ONLY
Figure 1. "ROMless Z8" Subroutine Library Memory Usage Map

1-4

Although the user is free to modify the condi-
tions selected in the Port 3 Mode register
(P3M, F7y), P3M is a write-only register.
This subroutine library maintains an image of
P3M in its register P3M__save (7Fy) . If
software outside of the subroutine package is
to modify P3M, it should reference and modify
P3M__save prior to modification of P3M. For
example, to select P32/P35 for handshake, the
following instruction sequence could be used:

OR
LD

P3M__save, #04H
P3M, P3M__save

For many of the subroutines in this library,
the location of the operands (source/destina-
tion) is flexible between register memory,
external memory (code/data), and the serial
channel (if enabled). The description of each
parameter in the specification blocks tells
what the location options are.

e The location designation "in reg/ext
memory" implies that the subroutine allows
the operand to exist in register or in
external data memory. The address of such
an operand is contained in the designated
register pair. If the high byte of that
pair is 0, the operand is in register
memory at the address held in the low byte
of the register pair. Otherwise, the
operand is in external data memory
(accessed via LDE).

e The location designation "in reg/ext/ser
memory" implies the same considerations as
above with one enhancement: if both bytes
of the register pair are 0, the operand
exists in the serial channel. In this
case, the register pair is not modified
(updated). For example, rather than stor-
ing a destination ASCII string in memory,
it might be desirable to output the string
to the serial line.

The BCD format supported by the following
arithmetic and conversion routines allows rep-
resentation of signed variable-precision BCD
numbers. A BCD number of 2n digits is repre-
sented in n+1 consecutive bytes, where the
byte at the lowest memory address (byte 0)
represents the sign and post-decimal digit
count, and the bytes in the n higher memory
locations (bytes 1 through n) represent the
magnitude of the BCD number. The address of
byte 0.and the value n are passed to the sub-
routines in specified working registers.

Digits are packed two per byte with the most-
significant digit in the high-order nibble of
byte 1 and the least-significant digit in the
low-order nibble of byte n. Byte 0 is organ-
ized as two fields:

Bit 7 represents sign:
1 = negative;
0 = positive.

Bits 0-6 represent post-decimal digit count.

For example:

byte 0 = 054y = positive, with five post-
decimal digits

= 80y = negative, with no post-
decimal digits

= 904y = negative, with 16 post-

decimal digits

The format of the decimal ASCII character

string expected as input to the conversion

routines "dascbcd" and "dascwrd" is defined

as:

(+1-) (<digit>) [(<dagit>)]

in which
() Parentheses mean that the enclosed

times or can be omitted.

Brackets denote that the enclosed

element is optional.

[]

Table 3 illustrates how various input strings
are interpreted by the conversion routines.

The format of the decimal ASCII character
string output from the conversion routine
"beddasc" operating on an input BCD string of
2n digits is

1 sign of character (+ 1 -)

2n-x pre-decimal digits

1 decimal point if x does not equal O
x post-decimal digits

The format of the decimal ASCII character
string output from the conversion routine
"wrddassc" is

1 sign character (determined by bit 15 of
input word)

6 pre-decimal digits

no decimal point

no post-decimal digits

Table 2.

Subroutine Entry Points

Address Name

Description

Binary Arithmetic Routines

0018 divide
001E div_16
0021 multiply
0024 mult 16

BCD Arithmetic Routines

0027 bcdadd
002A bedsub

Conversion Routines

002D beddasc
0030 dascbed
0033 bcdwrd

0036 wrdbed

0039 bythase
003C wrdhasc
003F hascwrd
0042 wrddasc
0045 dascwrd

Bit Manipulation Routines

0048 clb
0048 tmj

Serial Routines

004E ser_init
0051 ser_input
0054 ser_rlin
0057 ser_rabs
005A ser_break
005D ser_flush
0060 ser wlin
0063 ser:wabs
0066 ser_wbyt
0069 ser_disable

Timer/Counter Routines

006C tod i
006F tod
0072 delay
0075 pulse i
0078 pulse

16/8 unsigned binary division

16/16 unsigned binary division

8x8 unsigned binary multiplication
16x16 unsigned binary multiplication

BCD addition
BCD subtraction

BCD to decimal ASCII

Decimal ASCII to BCD

BCD to binary word

Binary word to BCD

Binary byte to hexadecimal ASCII
Binary word to hexadecimal ASCII
Hexadecimal ASCII to binary word
Binary word to decimal ASCII
Decimal ASCII to binary word

Collect bits in a byte
Table jump under mask

Initialize serial 1/0

IRQ3 (receive) service
Read line

Read absolute

Transmit BREAK

Flush (clear) input buffer
Write line

Write absolute

Write byte

Disable serial I1/0

Initialize for time-of-day clock
Time-of-day IRQ service
Initialize for delay interval
Initialize for pulse output
Pulse IRQ service

7.

Procedure name: ser input

The conclusion of the algorithm for BREAK
detection requires the Serial Receive Shift
register to be cleared of the character

The register pair SERhtime, SER1time was
initialized during ser 1nit to equal the
product of the prescaler and the counter
selected for the baud rate clock. That is,

currently being collected (if any). This SERhtime, SER1time = PREO x TO
requires a software wait loop of a
one-character duration. The following The instruction sequence

explains the algorithm used (code lines 464

through 472, Part II): inlop: 1d rSERtmpl, #53 (6 cycles)
. _ (128xPREOxTD) sec bit 1pl: djnz rSERtmpl, 1pl (12/10 cycles
1 character time = A it x 10 har taken/not taken)

_ 128B0xPREOxT0 sec
XTAL char

A software loop equal to one character time is
needed:

executes in

6 + (52 x 12) + 10 cycles = 640 cycles

8. BREAK detection on the serial input line
1 character time = —2 see cycle requires that the receive interrupt service
~ XTAL cycle loop 9 P

routine be entered within a half-a-bit time,

_2n sec since the routine reads the input line to
" XTAL loop detect a true (=1) or false (=0) stop bit.

Solve for n:

(1280 x PRED x T0) _ 2n
XTAL ~ XTAL

n = 640 x PREQ x TO

Since the interrupt request is generated
halfway through reception of the stop bit,
half-a-bit time remains in which to read the
stop bit level. Interrupt priorities and
interrupt nesting should be established
appropriately to ensure this requirement.

. . (128 x PRED x T0)
tt = e m—————
1/2 bit time TR 2 sec

Table 3. Decimal ASCII Character String Interpretation
Result
Input String Sign Pre-Decimal Post-Decimal Terminator
Digits Digits
+1234.567, + 1234 567 ,
+-==+.789+ - 789 +
1234.. + 1234 .
4976- + 4976 -

NOTE: The terminator can be any ASCII character that is not a valid ASCII string

character.

1-7

ROMLESS Z8 SUBROUTINE LIBRARY PART I

ZRASM 3.02

LoC OBJ CODE STMT SOURCE STATEMENT

PART_I

20 Note:

MODULE

! *ROMLESS 8" SUBROUTINE LIBRARY PART I

Initialize: a) Port 0 & Port 1 set up to address

64K external memory;
b) internal stack below allocated
RAM for subroutines;
c) normal memory timing;
d) IMR, IRQ, TMR, RP cleared;
e) Port 2 inputs open-drain pull-ups;
f) Data Memory select enabled;
g) EI executed to 'unfreeze' IRQ;
h) Jump to %0812.

The user is free to modify the initial
conditions selected for a, b, and c above,
via direct modification of the Port 0 & 1
Mode register (PO1M, %F8).

The user is free to modify the conditions
selected in the Port 3 Mode register (P3M, %FT7).
However, please note that P3M is a write-only
register. This subroutine library maintains

an image of P3M in its register P3M save (%47F).
If software outside of the subroutifie package

is to modify P3M, it should reference and modify
P3M save, prior to modification of P3M. For
example, to select P32/P35 for handshake, use

an instruction sequence such as:

OR P3M save, #%04
LD P3M,P3M_save

This is important if the serial and/or timer/
counter subroutines are to be used, since these
routines may modify P3M.

1-8

tAccess to GLOBAL subroutines in this library should
be made via a CALL to the corresponding entry in the
jump table which begins at address %000F. The jump
table should be referenced rather than a CALL to the
actual entry point of the subroutine to avoid future
conflict in the event such entry points change in
potential future revisions.

Each GLOBAL subroutine in this listing is headed by a
comment block specifying its PURPOSE and calling
sequence (INPUT and OUTPUT parameters). For many of
the subroutines in this library, the location of the
operands (sources/destinations) is quite flexible
between register memory, external memory (code/data),
and the serial channel (if enabled). The description
of each parameter specifies what the location choices
are:

- The location designation 'in reg/ext memory®
implies that the subroutine allows that the operand
exist in either register or external data memory
The address of such an operand is contained
in the designated register pair. If the high byte of
that pair is zero, the operand is in register memory
at the address given by the low byte of the register
pair. Otherwise, the operand is in external data
memory (accessed via LDE).

- The location designation

'in reg/ext/ser memory' implies the same
considerations as above with one enhancement: if both
bytes of the reg. pair are zero, the operand exists
in the serial channel. 1In this case, the register
pair is not modified (updated). For example, rather
than storing a destination ASCII string in memory, it
might be desirable to output such to the serial line.

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
131
135
136
137
138
139
140
141
142
143
144
145

CONSTANT
!Register Usage!

RAM_START

P3M save
TEMF_3
TEMP_2
TEMP:1
TEMP_4

*TF

RAM_START
P3M save-1
TEMP_3-1
TEMP_2-1
TEMP_1-1

!The following registers are modified/referenced

by the Serial Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Serial Routines!

SER_char HS TEMP 4-1

SER tmp2 HE SER_char-1
SER_tmp1 He SER_tmp2-1
SER_put t= SER_tmp1-1
SER_len HE SER put-1

SER buf t= SER”len-2
SER” imr := SER buf-1

SER cfg t= SER_imr-1
1Serial Configuration Data —

bit 7 : =1 => odd parity on

bit 6 : =1 => even parity on
(bit 6,7 = 11 => undefined)

bit 5 : undefined

bit 4 : undefined

bit 3 : =1 => input editting on

bit 2 : =1 => auto line feed enabled

bit 1 : =1 => BREAK detection enabled

bit 0 : =1 => input echo on

!

op H] %80

ep iz %40

ie i= %08

al := %204

be HE %02

ec HE %01

SER get t= SER_cfg-1
SER_flg iz SER_get-1
!1Serial Status Flags

bit 7 : =1 => serial I/0 disabled

bit 6 : undefined

bit 5 : undefined

bit 4 : =1 => parity error

bit 3 : =1 => BREAK detected

bit 2 : =1 => input buffer overflow

bit 1 : =1 => input buffer not empty

bit 0 : =1 => input buffer full

!

sd = %80

pe = %10

bd = %08

bo = 204

bne = %02

bf = %01

RAM_TMR t= RAM_START-%10
SERltime HE SER_flg-1

1-10

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
173
175
176
177
178
179
180
181
182
183
183
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

SERhtime t= SERltime-1

!The following registers are modified/referenced
by the Timer/Counter Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Timer/Counter Routines!

TOD tie H) RAM TMR-2

TOD imr iz TOD tie-1

TOD hr iz TOD imr-1

TOD min 1= TOD hr-1
TOD”sec = TOD_min-1

TOD tt HES TOD_sec-1

PLS”1 iz TOD tt-1

PLS tmr i= PLS_1-1

PLS”2 HES PLS_tmr-1

RAM END t= PLS 2

STATK t=z RAM_END
1Equivalent working register equates
for above register layout!

register file %70 - 47F!

RAM_STARTr Y %70 t for SRP!

rP3Msave i = R15

rTEMP_3 iz R1Y4

rTEMP_2 HEY R13

rTEMP_1 iz R12

rrTEMP_1 t= RR12

rTEMP_Th iz R12

rTEMP_11 iz R13

rTEMP 4 HEY R11

rSERchar 1= R10

rSERtmp2 S R9

rSERtmp1 t= R8

rrSERtmp iz RR8

rSERtmpl HE R9

r SERtmph t=z R8

r SERput HES RT7

rSERlen i= R6

rrSERbuf HEY RRY

rSERbufh t= RY

rSERbufl HE) R5

rSERimr HE R3

rSERe fg H R2

rSERget = R1

rSERflg = RO

tregister file %60 - %6F!

RAM TMRr iz %60 tfor SRP!
rTODtic iz R13

r TODimr HE R12

rTODhr iz R11

rTODmin HE] R10

rTODsec := R9

rTODtt t= R8

rPLS 1 HE R7

rPLSEmr iz R6

rPLS 2 iz R5

00 U U U'v

0000
0002
0004
0006
0008
000A

0800
0803
0806
0809
080C
080F

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

EXTERNAL
ser_init PROCEDURE
ser_input PROCEDURE
ser_rlin PROCEDURE
ser_rabs PROCEDURE
ser_break PROCEDURE
ser_flush PROCEDURE
ser_wlin PROCEDURE
ser_wabs PROCEDURE
ser wbyt PROCEDURE
ser_disable PROCEDURE
ser_get PROCEDURE
ser_output PROCEDURE
tod™i PROCEDURE
tod™ PROCEDURE
delay PROCEDURE
pulse_i PROCEDURE
pulse PROCEDURE
$SECTION PROGRAM
GLOBAL
!Interrupt vectors!
IRQ_O ARRAY [1 word]
IRQ 1 ARRAY [1 word]
IRQ_2 ARRAY [1 word]
IRQ_3 ARRAY [1 word]
IRQ_4 ARRAY [1 word]
IRQ_S5 ARRAY [1 word]

o 0o

£%08001]
[20803]
[%0806]
[%0809]
[%080C]
[%080F]

jala-)

o0 "uu

‘o W v W ‘U

o

000C
000C
000F

000F
0012
0015
0018

001B

001B
001E
0021
0024

0027
002A

002D
0030
0033
0036
0039
003C
003F
oou2
0045

0048
004B

OOUE

8D

8D
8D
8D

8D
8D

8D
8D
8D
8D
8D
8D
8D
8D
8D

&D
8D

8D

007B*

0099°
00BT"
00E2'
00F6"'

011A"

0117

0205
0363
0284
02CD!
025C!
0257
0319"
03BE'
034D*

O4A1Y
04B9*

0000#%

24y
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260
261
262
263
261
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

GLOBAL

tJump Table!
ENTER PROCEDURE
ENTRY

JP INIT
END ENTER

copyright ARRAY [# BYTE] := '(C)1980ZILOG'

!Subroutine Entry Points!
JUMP PROCEDURE
ENTRY

!Binary Arithmetic Routines!

JP divide 116/8 unsigned binary
division!

JP div_16 116/16 unsigned binary
division!

JP multiply 18x8 unsigned binary
multiplication!

JP mult 16 116x16 unsigned binary

- multiplication!

1BCD Arithmetic Routines!
JP bedadd 1BCD addition!
JP bedsub {BCD subtraction!

!Conversion Routines!

JP bcddase !BCD to decimal ASCII!
JP dascbed tDecimal ASCII to BCD!
JP bedwrd !BCD to binary word!

JP wrdbed tbinary word to BCD!

JP bythasc 1Bin. byte to Hex ASCII!
JP wrdhasec !Bin. word to hex ASCII!
JP hascwrd tHex ASCII to bin word!
JP wrddasc !Bin. word to dec ASCII!
JP dascwrd tdec ASCII to bin word!

tBit Manipulation Routines!
JP clb fcollect bits in a byte!
JP tjm 1Table Jump Under Mask!
!Serial Routines!

JP ser_init tinitialize serial I/O!

‘' ™ Y9 ‘v 9 ‘U v ‘U ‘O

‘¢ v v v ‘U U

v o ‘o0 'U'UUU"U'TU U

0051
0054
0057
005A
005D
0060
0063
0066
0069

006C
006F
0072
0075
0078
007B

0078

007B

007E

0081
0084
0087
0089
008C
008E
0090
0092
0095

0096
0099

8D
&D
8D
8D
8D
8D
eD
&D
8D

8D
aD
8D
8D
8D

E6

E6

EY
E6
BO
E6
BO
BO
BO
E6
9F

8D

0000#%
0000%
0000#*
0000%
0000%
0000%
0000#*
0000%
0000#*

0000%
0000*
0000*
0000*
0000%

F8 D7

7F 10

7F F7
FF 65

F6 FF

1IRQ3 (receive) service!
tread line!

fread absolute!
!transmit BREAK!

1flush (clear)

input buffer!

twrite line!

twrite absolute!

twrite byte!
tdisable serial I/O!

tinit for time of day!
ttod IRQ service!

tinit for delay interval
tinit for pulse output!

fpulse IRQ service!

tinternal stack;
AD0-A15;

normal memory
timing !

P3M_save,#%(2)00010000

IP3M is write-only,
so keep a copy in
RAM for later
reference !

tset up Port 3 !
tstack pointer |
Ireset timers!

tall inputs!

freset int. requests!
tdisable interrupts !
Iregister pointer!
fserial disabled!
tglobally enable
interrupts !

306 JP ser_input
307

308 JP ser_rlin
309

310 JP ser rabs
311 -

312 JP ser_break
313

314 JP ser flush
315 -

316 JP ser wlin
317 -

318 JP ser wabs
319 -

320 JP ser wbyt
321 -

322 JP ser disable
323 -

324 !Timer/Counter Routines!
325

326 JP tod i

327 -

328 JP tod

329

330 JP delay

331

332 JP pulse i
333 -
334 JP pulse

335

336 END JUMP

338 !Initialization!

339 INIT PROCEDURE

340 ENTRY

341

342 LD PO1M,#%(2)11010111
343

34y

345

346

347 LD

348

349

350

351

352 LD P3M,P3M save
353 LD SPL, #STACK
354 CLR TMR

355 LD P2M, #%FF
356 CLR IRQ

357 CLR IMR

358 CLR RP

359 LD SER_f1g, #%80
360 EI

361

362 JP %0812

363

364 END INIT

1-14

Binary Arithmetic Routines

P

U v

‘U9 'UU UV U o'v o -}

U U ‘O o

0099

0099
009B

009D
009F

00A1
00A2

00A3
00A5
00AT7
00A9
00AB
00AD
00AF
00BO

00B2
00BY

00B6
00B7

A9
AC

7C
08

BC
02

397
398
399
400
401
402
403
ol
405
406
407
408
409
410
411
412
413
y1
415
416
417
418
419
420
421
422
423
u2k
425
426
427
428
429
430
431
432
433
433
435
436
u37
438
439
440
uyq
B2

CONSTANT

div LEN HES R10
DIVISOR := R11
dividend HI t= R12
dividend_LO H R13

GLOBAL

divide PROCEDURE
A I e R R e R R R a2 a2 s aatss

Purpose = To perform a 16-bit by 8-bit unsigned
binary division.

Input = R11 = 8-bit divisor
RR12 = 16-bit dividend

Output = R13 = 8-bit quotient
R12 = 8-bit remainder
Carry flag = 1 if overflow
= 0 if no overflow
R11 unmodified
ERRBRRRRBRR BB R R R R R RN RN AR R R RN R RN AR R R AR RN R RRRRNRRRB R RN

ENTRY

1d TEMP_1,div_LEN !save caller's R10!

1d div_TEN,#8 {LOOP COUNTER!
1CHECK IF RESULT WILL FIT IN 8 BITS!

cp DIVISOR,dividend HI

Jjr UGT,LOOP TCARRY = 0 (FOR RLC)!
toverflow!

SCF 1CARRY = 1!

ret
LOOP: RLC dividend LO !DIVIDEND #* 2!

RLC dividend”HI

jr c,subt

cp DIVISOR,dividend_HI

jr UGT,next 1CARRY = 0!
subt: SuUB dividend_HI,DIVISOR

SCF !TO BE SHIFTED INTO RESULT!
next: djnz div_LEN,LOOP Ifno flags affected!
1ALL DONE!

RLC dividend LO

- 1CARRY = 0: no overflow!

ldt div_LEN,TEMP_1 Irestore caller's R10!

re
END divide

P

‘Y v'v'9'y'y'v ‘v ‘v 'Y'U 'Y'vU 'U'vU ‘U'U 'V'U 'U'U 'O

‘U v'v 'U'U 'U'U U U U U ‘U

00B7

00B7
00B9
00BB
00BC
00BE
00CO
ooc2
oocy
00C6
00C8
00CA
0ocC
00CE
00D0
00D2
00D4
00D6
00D8
00D9
00DB
00DD
00DF
00E1
00E2

00E2

C0E2
O0OEY
00E6
00E8
00E9
00EB
00ED
O00EF
00F1
00F3
00F5
00F6

79
7C
CF
BO
BO
10
10
10
10
7B
A2
BB
7B
A2
BB
22
32
DF
TA
10
10
78
AF

7C
10

EA
EB
ED

EB
EA
0A
8A
0B
ou
9B
05
B9
A8

E5
ED
EC
7C

7C
09
EC

EC
ED
02

F6
7C

yuy
yu5
uu6
un7
4148
449
450
451
452
453
54
455
456
457
458
459
460
461
462
463
u6k
465
466
467
468
469
470
471
y72
473
u7h
475
476
u77
478
479
480
481
482
483
gl
485
486
487
488
489

491
492
493
49y
495
496
497

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

CONSTANT
d16_LEN
dvsr_hi
dvsr_lo
rem hi
rem lo
quot_hi
quot lo

GLOBAL

R7
R8
R9
R10
R11
R12
R13

div_16 PROCEDURE

IRETERERRRRRRNRS
Purpose =

Input =

Output =

ERRREERRBRRERRER
ENTRY

1d
1d
ref
clr
clr
rlec
rlec
rlec
rlc
jr
cp
jr
jr
cp
jr
sub
sbe
scf
djnz
rle
rlc
1d
ret
END div_16

dlp_16:

subt_16:

skp_16:

CONSTANT
MULTIPLIER
PRODUCT_LO
PRODUCT_HI
mul LEN

GLOBEL

multiply
!i!l‘!ll!il!ll!l

Purpose =

Input =
Output =
FRRRRERRRERRRRES
ENTRY
1d
1d
clr
RCF
LOOP1: RRC
RRC
jr
ADD
NEXT: djnz
1d
ret
END multiply

I 22222222222 222222 22222222 2222222222

To perform a 16-bit by 16-bit unsigned
binary division.

RR8 = 16-bit divisor
RR12 = 16-bit dividend
RR12 = 16-bit quotient
RR10 = 16-bit remainder

RR8 unmodified
ERENER RN RN RN R RN RN R RN RNRRNNRRRNN)

!save caller's R10!
1LOOP COUNTER!
fcarry = 0!

TEMP_1,d16_LEN
d16_TEN,#18

rem_hi

rem lo

quot_lo

quot hi

rem_To

rem hi
c,subt_16

dvsr hi,rem hi
ugt,skp_16
ult,subt_16
dvsr_lo,rem_lo
ugt,skp 16
rem_lo,dvsr_lo
rem_hi,dvsr_hi
d16 LEN,dlp 16 !no flags affected!
quot_lo -

quot hi

d16_IEN,TEMP_1

R11
R13
R12
R10

PROCEDURE

EEEERERE RN RN RN NN NN RN R R RN RN RE RN
To perform an 8-bit by 8-bit unsigned
binary multiplication.

R11

= multiplier
R13 =

multiplicand

RR12 = product
R11 unmodified
EREEREERRRNRR R RN R RN RN RN RN RRRUNNRN)

TEMP _1,mul LEN !save caller's R10!

mul _CEN,#9~ 18 BITS!

PROBUCT_HI YINIT HIGH RESULT BYTE!
- 1CARRY = 0!

PRODUCT_HI

PRODUCT”LO

NC, NEXT

PRODUCT_HI,MULTIPLIER
mul LEN,LOOP1

mul _LEN,TEMP_1 !restore caller's R10!

1-16

P

‘Y'Y v 'uv'Y ‘'v'v 'UY'v ‘U 'Y ‘U U "U'YU ‘U

00F6

00F6
00F8
OOFA
00FC
OOFE
00FF
0101
0103
0105
0107
0109
010B
010D
010F
0111
0113
0116
0117

522
523
524
525
526
527
528
529
530
531
532
533

535
536
537
538
539
540
541
542
543
544
5u45
546
547
548
549
550
551
552

554
555
556
557
558
559
560
561
562
563

CONSTANT

m16_LEN HE R7
plier_hi iz R8
plier lo HE) R9
prod_hi 1= R10
prod_lo HE R11
mult hi iz R12
mult lo i= R13
GLOBAT

mult 16 PROCEDURE
PR TR RN R RN R R R R R RN R R R RN R R RN R R RN RN NN RN NN AN RN RN RN
Purpose = To perform an 16-bit by 16-bit unsigned
binary multiplication.

Input = RR@ = multiplier
RR12 = multiplicand

Output = RQ10 = product (R10, R11, R12, R13)
RR8 unmodified
Zero FLAG = 0 if result > 16 bits

= 1 if result fits in 16
(unsigned) bits (RR12 = result)
RN R R RN RN RN R RN R R R RN RN RN NN RN NN RN R R RN NN
ENTRY
1d TEMP_1,m16 LEN !save caller's RT!
1d m16_LEN, #17 116 BITS!
clr prod hi
clr prod_lo tinit product!
ref 1CARRY = 0!
loop16: rre prod_hi
rre prod lo tbit 0 to carry!
rre mult”hi fmultiplicand / 2!
rre mult 1lo
jr nc,next16
add prod lo,plier lo
ade prod_hi,plier”hi
next16: djnz m16 LEN,loop16 !next bit!
1d m16_LEN,TEMP 1 !restore caller's RT!
1d TEMP 1,prod hi !test product...!
or TEMP_1,prod”"lo !...bits 31 - 16!
ret
END mult_16

BCD Arithmetic Routines

593 !The BCD format supported by the following arithmetic
594 and conversion routines allows representation
595 of signed magnitude variable precision BCD

596 numbers. A BCD number of 2n digits is

597 represented in n+1 consecutive bytes where

598 the byte at the lowest memory address

599 ('byte 0') represents the sign and post-

600 decimal digit count, and the bytes in the

601 next n higher memory locations ('byte 1°'

602 through 'byte n’) represent the magnitude

603 of the BCD number. The address of 'byte 0°'
604 and the value n are passed to the subroutines
605 1in specified working registers. Digits are
606 packed two per byte with the most

607 significant digit in the high order nibble

608 of 'byte 1' and the least significant digit
609 in the low order nibble of 'byte n'. 'Byte 0'
610 1is organized as two fields:

611 bit 7 represents sign:

612 = 1 => negative

613 = 0 => positive

614 bit 6-0 represent post-decimal digit
615 count

616 For example:
617 'byte 0'= %05 => positive, with 5 post-decimal digits

618 = %80 => negative, with no post-decimal digits
g;g . = %90 => negative, with 16 post-decimal digits

622 CONSTANT

623 bed LEN := R12
624 bed SRC := R14
625 bed DST := R15

626 GLOBEL

P 0117 627 bedsub PROCEDURE
628 IHENNEEENEERERERRENRERRRUR NN BB RN RN RN RBURR R RN RN
629 Purpose = To subtract two packed BCD strings of
630 equal length.
631 dst <-- dst - src
632
633 Input = R15 = address of destination BCD
634 string (in register memory).
635 R14 = address of source BCD
636 string (in register memory).
ggg R12 = BCD digit count / 2
639 Output = Destination BCD string contains the
640 difference.
641 Source BCD string may be modified.
642 R12, R14, R15 unmodified if no error
643 R13 modified.
64y Carry FLAG = 1 if underflow or format
645 error.
GUEG HHEREREEEREENRRERR RN RN R RN RN R R AR RN RN R RN R RN RRURRNRE)
647 ENTRY

P 0117 BT EE 80 648 xor @bcd SRC, #%80 lcomplement sign of
649 - subtrahend!
650 !fall into becdadd!

P 011A 651 END bedsub

P

‘v'v'y 'v'U ‘YU UV 'U'U ‘U0 "U'U ‘U0 'U'D 'U'U 'UU

"0 ‘U ‘*Y *U ‘U U0 ‘O

"o 'v ‘U'Y ‘UU U

011A

011A
011D
011F
0121
0124
0127
012A
012D
0130
0132
0134
0137
013A
013C
013E
0140
0143
0145
o148
014A
014C
014E
0150

0152
0154
0157
0154
015D
0160
0162
0164

0166
0168
016A
016C
016E
0170
0173

TF
7D
TF
ED

TE
TE

653
654
655
656
657
658
659
660

682
683

702
703

706
707
708
709
710
7"
712
713
714
715
716

GLOBAL

bedadd PROCEDURE
R R R R R R RN R R R RN R R RN RN RN RN RN RN RN NN AR R RN R NS

Purpose = To add two packed BCD strings of
equal length.
dst <-- dst + sre
Input = R15 = address of destination BCD
string (in register memory).
R14 = address of source BCD
string (in register memory).
R12 = BCD digit count / 2
Output = Destination BCD string contains the sum.

Source BCD string may be modified.
R12, R14, R15 unmodified if no error
R13 modified.
Carry FLAG = 1 if overflow or format
error.
EREE R R R R R RN NN RN R R R RN R R RN RN RN R RN RN RN RN RN RN
ENTRY
tdelete all leading pre-decimal zeroes!

1d TEMP_3,#2
1d R13,becd SRC

ba 3: 1d TEMP_",SCd_LEN

- add TEMP 4, TEMP U4 ftotal digit count!

1d TEMP2,8R13™ tget sign/post dec #!
and TEMP 2, #%7F lisolate post dec #!
sub TEMP™ 4, TEMP 2 tpre-dec digit cnt!
jp ult,ba err — ! format error!
jr z,ba 1~ Ino pre-dec. digits!

ba_2: push R12 ~ Isavel
1d R12,1(R13) tleading byte!
tm R12, #%F0 test leading digit!
pop R12 !restore!
jr nz,ba 1 !no more leading 0's!
clr TEMP_T
call rdl frotate left!
inec 8R13 tupdate post dec #!
jp ov,ba err toops!
dec TEMP T tdec pre-dec #!
jr nz,ba_2 1loop!

ba_1: 1d R13,bcd_DST

- dec TEMP 3 1SRC and DST done?!

jr nz,ba 3 tdo DST!

!leading zero deletlon complete!

tinsure DST is > or = SRC; exchange if necessary!

1d R13,8bcd_DST

and R13,#%7F tisolate post dec #!
1d TEMP_2,@bcd_SRC

and TEMP™ 2, #%7F tisolate post dec #!
cp R13, TEMP 2

push R13 1savel

Jjr ult,ba U !DST > SRC!

jr ugt,ba_s I1DST < SRC!
tdecimal points in same position.

must compare magnitude!
14 R13,bcd LEN
1d TEMP 1,Bed_SRC

. 1d TEMP_ 4, bed_ “DST

ba_6: inc TEMP_1
ine TEMP_ U
1d TEMP_3,8TEMP_1 !get SRC byte!
cp TEMP_3,8TEMP_4 !compare DST byte!

o vU'Y Y'Y 'Yv'vvv'uv Uv'vy U'u‘U'U

'v'v'v'v ‘'Y'v'Y'y U 'YV 'U'U UV 'UU'UUU "U'U°'U‘U'" 0 v ‘o'u'u'u ‘U ‘'u'o-

0176
0178
017A
017C

017E
0180
0181
0183
0185
0187
0189
018C
018F
0192
0195
0197
0199
019B

019D

019F
01A2
01AY

01A6
01A8
01AA
01AC

01AF
01B2

01B5
01B7
01BA
01BC
01BE

01CO
01C1
01CY
01C7
01C9
01CC
01CE
01D1
01D3
01D6
01D8
01DA

01DC
01DE
01DF
01E1
01E3
01E6
01E8
O1EA

BB
7B
DA
8B

D8

02
02

00
E5

F5
F5
DA
D8
70

50

7C

EE
EF

70

ougs:!

EE
EF

EC
7D
45
ED
FC

EF
7B
05
EE
03
EE
7C
7C
EF
EE
ES

7D
02
09
EF

EF
F7

7B
7B

ED

7C
80

7C
7€
EF

00

1SRC > DST!
!SRC < DST!
tloop!

IDST > or = SRC!

tinclude flag/size byte!

fone byte swapped!

frestore!

talignment offset!
tdigits word aligned!

Jr _
gut least significant SRC post decimal digit!
d

tdec post dec digit #!

TEMP_U4,8bcd_SRC !sign of SRC!
TEMP_Y4,@bcd_DST !sign of DST!

tdone already!

fcarry = 0!

tadd or sub?!
tadd!

!may be zero!

jr ugt,ba_5
jr ult,ba 4
djnz R13,ba_6
jr ba U4
Iswap source and destination operands!
ba 5: 1d R13 bed_LEN
- ine R13
add bed_SRC,R13
add bed_DST,R13
ba T: dec bed SRC
- dec bed”DST
1d TEMP_1,@bed SRC
1d TEMP”4,8bcd”DST
1d @bed . SRC TEMP_4
1d @ébecd DST TEMP_1
djnz R13,ba 7
1d R13,TEMP_2
pop TEMP 2
push R13 —
texchange complete!
ba 4: pop R13
1RT3 = DST post decimal digit count
TEMP 2 = SRC post decimal digit count
R13 =< TEMP 2
sub ~ TEMP_2,R13
rre TEMP_2
nc,ba 8
Irotate
R13,bed_SRC
dec 6R13
clr TEMP_1
call rdr
tdetermine if addition or subtraction!
ba_8: 1d
xor
tget starting addressesl
1d R13,bed LEN
sub R13,TEMP_2
jr z, ba 1w -
add bcd SRC R13
add bcd:DST,bcd_LEN
Iready!!!
ref
ba_11: 1d TEMP_1,8bced_DST
tm TEMP 4, #%80
jr z,ba 9
sbe TEMP 1,8bcd_SRC
ir ba 10
ba_9: ade TEMP_1,8bed_SRC
ba_10: da TEMP_1
1d @bed DST TEMP_1
dec bed_DST
dec bed SRC
djnz R137ba 11
Ipropagate carry thru TEMP 2 bytes of DST!
1d R13,TEMP_2™
ine R13
djnz R13,ba_12
jr ba_13
ba 12: adc @bcd DST,#0
- da @bed DST
dec bed_DST
djnz R13,ba-12

1-20

a-avls-] ‘U*9"v 'U'U 'u'Y "u'o

01EC

01EE
01F1
01FU
01F7
01FA
01FC
01FF
0201
0202

0203
o204
0205

13

EF 7C
7C TF
0203
7C 10
EF
0485
EF

780
781
782
783
784
785
786
787
788
789
790
791

793
794
795
796

fcarry propagate complete!

ba 13: jr

nc,ba 14

tdone!

tRotate out least significant post decimal DST
digit to make room for carry at high end!

1d
and
Jjp
1d
1d
call
dec
ba 14: ref
- ret

ba_err: scf
ret
END bedadd

TEMP_1,€@bcd_DST
TEMP_1, #47F
z,ba”err

TEMP 1,#%10
R13,Bed_DST

rdr

@ébed_DST

fno post dec digits!

tdec digit cnt!

1-21

Conversion Routines

821
822
823
824
P 0205 825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
8k0
841
gu2
843
gul
P 0205 E6 7C 2D 8U5
P 0208 77 ED 80 846
P 020B EB 03 au7
P 020D E6 7C 2B 8u8
P 0210 E5 ED 7E 8u9
P 0213 56 TE 7TF 850
P 0216 02 CC 851
P 0218 70 EC 852
P 021A 24 TE EC 853
P 021D 50 7E 854
P 021F 7B 35 855
P 0221 D6 O03F4" 856
P 0224 7B 30 857
P 0226 A6 EC 00 858
P 0229 6B 22 859
P 022B 76 TE 01 860
P 022E EB Ol 861
P 0230 DE 862
P 0231 E5 ED 7D 863
P 0234 FO 7D 861
P 0236 E4 7D T7C 865
P 0239 56 7C OF 866
P 023C A6 T7C 09 867
P 023F BB 14 868
P 0241 06 7C 30 869
P 0244 D6 O3FY? 870
P 0247 00 7E 871
P 0249 6B OB 872
P 024B CA DE 873
P 024D E6 7C 2E 87h
P 0250 D6 O3F4! 875
P 0253 8B D6 876
P 0255 DF 877
P 0256 AF 878
P 0257 879
881
P 0257 882
883
884
885
886
887
888
889
890
891
892
P 0257 D6 025C' 893
P 025A C8 ED 891
895
P 025C 896

CONSTANT

bca LEN = R12
bea” SRC tz R13
GLOBAL

beddasc PROCEDURE

P RN NN NN NN NN RN NRNRNRRRREN
Purpose = To convert a variable length BCD

string to decimal ASCII.

RR14 = address of destination ASCII

string (in reg/ext/ser memory).

address of source BCD

string (in register memory).

BCD digit count / 2

Input =
R13 =
R12 =
Output = ASCII string in designated
destination buffer.
Carry FLAG = 1 if input format error
or serial disabled,
= 0 if no error.
R12, R13, R14, R15 modified.
Input BCD string ummodified.
BN NN RN R R R RN NN RN NN RN NN NN RRN |
ENTRY

1d TEMP_1,#'-" iminus sign!
tm @bca SRC,#%80 !src negative?!
jr nz,bed_d1 tyes!
1d TEMP_1,#'+"' lpositive sign!
bed d1: 1d TEMP_3,8bca SRC
- and TEMP™ 3, #%7F lisolate post dec ent!
add bca LEN,bca LEN !total digit count!
push bea”LEN -
sub bca LEN,TEMP 3 !pre-dec digit cnt!
pop TEMP 3 T ltotal digit count!
jr ult,bed d2 ! format error!
call put_dest tsign to dest.!
jr c,bed d2 !serial error!
cp beca LEN, #0 tany pre-dec digits?!
jr z,bcd déb fno. start with '."|
bed di: tm TEMP 3, #1 Ineed next byte?!
- jr nz,bed d3 Inot yet.!
ine bca_SRT tupdate pointer!
1d TEMP 2,8bca SRC !get next byte!l
bed_d3: swap TEMPT2 -
1d TEMP 1,TEMP 2
and TEMP:1,#$0F_ lisolate digit!
cp TEMP _1,#9 tverify bed!
jr ugt,bed_d5 fno good!
add TEMP_1,#%30 tconvert to ASCII!
call put dest tto destination!
dec TEMP 3 tdigit count!
jr z,bed_d2 tall done!
djnz bca LEN,bcd d4 Inext digit!
bed_d6: 1d TEMP_1,#'.'" ttime for dec. pt.!
call put dest Ito destination!
jr bed”dd tcontinue!
bed_d5: scf Iset error return!
bed”d2: ret
END beddase
GLOBAL

wrdhasc PROCEDURE
AR R R RN R RN RN R R R RN RN NN R RN RRNRRNRBRERNBRRRR R RN NN

Purpose = To convert a binary word to Hex ASCII.
Input = RR12 = source binary word.
RR1Y4 = address of destination ASCII
string (in reg/ext/ser memory).
Note = All other details same as for bythasc.

BRRRERRRERRERER RN RN RN RN RN RN R RN RN RN NN NN NN NN NN NN RN NNN)
ENTRY

call bythasec tfconvert R12!
1d R12,R13

1fall into bythasc!

END wrdhasec

1-22

P

‘'Y 'Y Y'Y 'UU UV ‘U0 U0 U U U0 U

025C

025C
025E
0261
0263
0265
0268
026B
026E
0270
0271
0274
0276
0279
027C
027E
0280
0282
0283
0284

02

OF
30
3A

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

CONSTANT
bna_SRC
GLOBAL

= R12

bythasc PROCEDURE
PR RN RN RN RN R RN RN RN RN RN RN RN N NN RN

To convert a binary byte to Hex ASCII.

Purpose =
Input =
Output =
ENTRY
clr
bca_go: 1d
bca go1: SWAP
- 1d
and
ADD
cp
jr
SCF
™
JR
ADD
skip: call
jr
dec
jr
RCF
bca ex: ret
END™

bythasec

RR14 =

address of destination ASCII

string (in reg/ext/ser memory).
R12 = Source binary byte.

ASCII string in designated
destination buffer.

Carry =

1 if error (serial only).

R14, R15 modified.
l’l‘l*‘l*!li‘!l!lilli*I.*'!!'!l**lll!!lllilll*’l&!*ll!

MODE
TEMP 2,#2
bna SRC

TEMP_1,bna_SRC

TEMP_1, #%0F
TEMP_1,#%30
TEMP_1,#%3A
ult,skip

MODE, #1
NZ,bca_ex
TEMP_1, #%07
put_dest
c,bca ex
TEMP_2
nz,bca_gol

1flag => binary to ASCII!

11ook at next nibble!

tisolate low nibble!
tconvert to ASCII!
1>971

ino!

tin case error!
tinput is BCD?!
!yes. error.!

tinput hex. adjust!
tput byte in dest!
terror!

tloop till done!
fcarry = 0: no error!
tdone!

1-23

P

*v*v*Y'vy 'U'vY 'U'Y 'V'U'UU 'U'U V'V 'U'U *U'U "U'U 'U'U 'U"U 'U'U U’V U U U

0284

0284
0286
0288
028B
028E
0290
0293
0295
0298
029B
029C
029F
02A2
02AY4
02A6
02A9
02AC
02AE
02BO
02B2
02BY
02B6
02B7
02BA
02BC
02BF
02C1
02C3
02C5
02C8
02CB
02CC
02CD

7B
TF

EF

7B
02

7D
00

80
80

01
00

CONSTANT
bed adr = R14
bed ent iz R15
GLOBAL

bedwrd PROCEDURE
PR R AR R RN RN R R RN R R RN RN NN NN RN R RN R RN RN RN RN RN RNRRN
Purpose = To convert a variable length BCD
string to a signed binary word. Only
pre-decimal digits are converted.

Input = R14 = address of source BCD
string (in register memory).
R15 = BCD digit count / 2

1

Output = RR12 = binary word
Carry FLAG = 1 if input format error
or dest overflow,
= 0 if no error.
R14,R15 modified.
AR R R R RN R R R R R RN N RN RN RN AR RN R R RN R RN RRRRR RN

ENTRY

clr R12 !init destination!
clr R13
1d TEMP_4,8bcd adr !get sign/post length!
and TEMP_4,#%7F tisolate post_Tength!
add bed_cnt,bed_cnt t# bed digits!
sub bed_ent,TEMP_4 !# pre-dec digits!
jr ult,becd w2 ! format error!
1d TEMP_U4,8bcd_adr !remember sign!
bed w3: 1d TEMP” 3, #2 tdigits per byte!
- ine bed adr 1src address!
1d TEMP_2,@bcd _adr !get next src byte!
bed_w1: cp bed_cnt,#0 tdigit count = 0?!
jr z,bcd wi fconversion complete!
swap TEMP_2 fnext digit!
1d TEMP 1, TEMP 2
call bed bin - faccumulate in binary!
jr c,bEd_w2 toverflow or format err!
dec bed ent fupdate digit count!
dec TEMP_3 tnext byte?!
jr nz,bed_wi tno. same.!
jr bed_w3 !next byte!
bed wli: scf tin case!
- tm R12,#%80 tresult > 15 bits?!
jr nz,bed_w2 toverflow!
bed w5: tm TEMP_4,#%80 !source negative?!
- jr z,bcd_wb Ino. done.!
com R12
com R13
add R13,#1
ade R12,#0 tRR12 two's complement!
bcd_w6: ref fcarry = 0!
bed_w2: ret
END bedwrd

1-24

P

v UV 'Yv'U ‘'U'U U0 "UU ‘v9'vY'Y'Yv'U'Y'Yv'Y'v 'Y 'v 'U"u 'U'U *'U'Y U0 U0 U

02CD

02CD
02CF
02D2
02Dy
02D7
02D9
02DB
02DE
02E1
02E3
02E5
02E6
02E8
02EA
02ED
02EF
02F1
02F2
02FY4
02F7
02F9
02FB
02FD
02FF

0301
0304
0307
0309
030C
030E
0310
0312
0314
0316
0318
0319

B1
76
6B
47
60
60
06
16
10
10
EE
E9

ou
00
B1
EE
FA
E6
70
10
10

F8

ES
15
40
F5
00
FA
50
7B
00
EB
AF

80
80

01
00

7C

OF

TE
TE

EE

990
991

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

GLOBAL

wrdbed PROCEDURE
Q02 IHERRARERERNRARERRRERRRRNRNRRRRARRNRN RN RN RN RRRRRRRRNRNN

Purpose =

Input =

Output =

To convert a signed binary word
to a variable length BCD string.

R14 = address of destination BCD
string (in register memory)

RR12 = source binary word

R15 = BCD digit count / 2

BCD string in destination buffer

Carry FLAG = 1 if dest overflow
=z 0 if no error.

R12,R13,R14,R15 modified.

L2 R R R R R R R R R R 222222 222222222]

ENTRY

wrd_b0: rle

ine
1d
1d
add
dec
wrd_bi1: clr
ine
djnz
1d
wrd b3: push
- rle
rlc
1d
1d

@bcd adr tinit sign/post dec cnt!
R12,7%80 1is input word hegative?
z,wrd b0

€bcd_adr, #%80 Iset result negative!
R13

R12

R13,#1

R12,#0 1RR12 two's complement!
R13

R12 tbit 15 not magnitude!
bed adr tfupdate dest pointer!

TEMP_1,bed_adr
TEMP_2,bcd_cnt !dest byte count!
TEMP_1,bcd”"ent

TEMP 1 'z bed end addr!
@bcd”adr tinitialize dest!
bed adr

bed_ent,wrd_b1

TEMP 3,#15 tsource bit count!
TEMP_3

R13

R12 tbit 15 to carry!

bed_adr,TEMP_1 !start at end!
bed cent,TEMP 2 !dest byte count!

1 (dest bed string) <-- (dest bed string * 2) + carry!

wrd b2: 1d
- ade

da
1d
dec
djnz
poP
jr
dec
jr

wrd ex: ret

END wrdbed

TEMP_3,6bcd_adr
TEMP_3,ebcd~adr 1% 2 4 carry!

TEMP”3

@bed adr,TEMP 3

bed_adr ~ Inext two digits!

bed ent,wrd b2 !loop for all digits!
TEMP_3 - trestore src bit cnt!
c,wrd ex tdest. overflow!
TEMP_3

nz,wrd_b3 fnext bit!

1-25

P

"YU ‘Uv'U 'U'U UV ‘U0

U0 ‘UU'U'U "0 U0 "U'T

0319

0319
031B
031D
031F
0322
0324
0327
0329
032C
032E

0331

0338
033B

0349
034B
034C
034D

7E
EC
ED

03DA!

ouoD!

22
7C

7C
ED
7D

7C
7C

EC
7D

Dy

39
37

FO
OF
ED

FO
OF
EC

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

GLOBAL
hascwrd PROCEDURE
IREREERRRRRR AR RN RN RN R RN RN RN RN R R RN R R RN RN RN RRR RN NN NN NN
Purpose = To convert a variable length Hex
ASCII string to binary.

Input = RR14 = address of source ASCII
string (in reg/ext/ser memory).

Output = RR12 = binary word (any overflow
high order digits are truncated
without error).

Carry FLAG = 1 if input error
(serial only)
(SER_flg indicates cause)
= 0 if no error
R14, R15 modified

Note = The ASCII input string processing is
terminated with the occurrence of a
non-hex ASCII character.

BN R RN RN RN R RN RN AR R AR RR RS RN RRRRRRRRRRRRRRNN

ENTRY

clr TEMP_3

clr R12

clr R13 tinit output!
has_ec1: call get_sre tget input!

Jjr c,has ex1 terror!

call ver asc tverify hex ASCII!

ir c,hds_ex tend conversion!

cp TEMP 1,#%39

jr ule,has_c2

sub TEMP_1,#%37

1Shift left one nibbTe!
!Insert new nibble in least significant nibble!
has_c2: swap R13

1d TEMP 2,R13

and R13,¥%F0

and TEMP 1, #%0F

or R13,TEMP_1

swap R12

and R12,#%F0

and TEMP 2, #%0F

or R12,TEMP_2

jr has_c1 11loop!
has ex: ref tno error!
has"ex1:ret
END hascwrd

1-26

P

‘U'Y'U ‘'U'U U U ‘U0 U

034D

034D
034F
0351
0354
0357
0359
035B
035E
0360
0363

03

08

FD ED
0363
F3

08

FD EE
03
0284

1094 GLOBAL

1095 dascwrd PROCEDURE
1006 IHEEREENERRRENRENRERRR RN RN R B RN RN RN RRR RN RRRURRRRR NN

1097 Purpose = To convert a variable length decimal
1098 ASCII string to signed binary.

1099

1100 Input = RR14 = address of source ASCII

1101 string (in reg/ext/ser memory).
1102

1103 Output = RR12 = binary word

1104 R8,R9,R10,R11 holds the packed BCD
1105 version of the result.

1106 Carry FLAG = 1 if input error

1107 (serial only)
1108 (SER_flg indicates cause)
1109 or dest overflow
1110 = 0 if no error

1111 R14, R15 modified

1112

1113 Note = The ASCII input string processing is
1114 terminated with the occurrence of a
1115 non-decimal ASCII character.

1116 Decimal ASCII string may be no more
1117 than 6 digits in length, else Carry
1118 will be returned.

1119 Post decimal digits are not included
1120 in the binary result.

1121 #EREERRRRRRRRRR R RN RR R RN RN RN RN RNR RN RN RRR RN NN RN NN
1122 ENTRY

1123 1d R12,#3 16 digits!

1124 1d R13,#8 temp addr =!

1125 add R13, RP {R8 thru R11!

1126 call dascbed fconvert to bed!
1127 Jjr c,has ex1 terror!

1128 1d R14,#8

1129 add R14, RP

1130 1d R15,#3

1131 jp bedwrd tconvert to binary!
1132 END dascwrd

1-27

P

‘0 'U'U ‘U0 'U U U'U ‘O

‘99 'v'Yv "YU ‘YU Uy 'v'U "YU UV 'U'U 'U'U ‘U'U O

0363

0363
0365
0367
0369
036A
036C
036E
0370
0372
0375

0377
0374
037C
037F
0382
0384
0387
0389
038C
038E
0391
0393
0395
0398
0394
039D
039F
0342
03A4
03A7
03AA
03AC
03AF

7E 01

ED 80

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

iz R12
t= R13

IRE X222 22 S22 RS2 2 2 22 2 222222 22222222 222 222222222222)

To convert a variable length decimal
ASCII string to BCD.

R13 = address of destination BCD
string (in register memory).
RR14 = address of source ASCII

string (in reg/ext/ser memory).

R12 = BCD digit count / 2

BCD string in designated destination
buffer (any overflow high order
digits are truncated without error).
Carry FLAG = 1 if input error

(serial only)

(SER_flg indicates cause)
or overflow

R14, R15 modified.

The ASCII input string processing is
terminated with the occurrence of a
non-decimal ASCII character.

LA i 2 R R 2 22 2R R A R R R R a2 R 222222]

dab LEN !save!

dab DST

@dab DST tinit. destination!

dab_DST

dab LEN das_g1

€dab_ psT tinit.!

dab DST restore!

dab”LEN

TEMP 3 #1 {for ver asc!

TEMP_ tbit 0 =5 digit seen;
bit 1 => dec pt seen;
bit 7 => overflow!

get_src fget input byte!

c,dab ex1 !serial error!

TEMP_T, #37F
TEMP”U, #303

CONSTANT
dab LEN
dab” DST

GLOBAL

dascbed PROCEDURE
Purpose =
Input =
Output =
Note =

ENTRY

push
push
das_g1: clr
ine
djnz
clr
pop
pop
1d
clr
das_g2: call
jr
and
tm
jr
cp
jr
cp
jr
xor
jr
das g5: jr
das”gli: cp
jr
or
jr
das g6: call
jr
or
call
jr
tm
jr

17-bit ASCII!
tcheck status!

nz,das_g5 !sign char not valid!
TEMP_1,#'+! tpositive?!

z,das_g2 tyes. no affect!
TEMP_1,#'- Inegative?!

nz,das gl tnot sign char!
@dab_DST, #%80 tcomplement sign!

das g2 !get next input!
mi,das g6 tdec pt has been seen!
TEMP 15#'.? tis char dec pt?!
nz,das_g6 !nope.!

TEMP_U4, #%03 tdec pt and digit seen!
das_g2 tget next input!

ver asc tis bed digit?!

c,dab _ex tend conversion.!
TEMP T, #%01 tdigit seen!

rdl tnew digit to dest!
nz,das g7 toverflow!

TEMP uT#%02 tpost dec digit?!

z das_gz Ino. get next input!

1-28

‘o' ‘U'U 'U'U

"' 'UU U 'U "U'U "0 'U UV U

03B1
03B3
03B5
03B8

03BA
03BD
03BE

03BE

03BE
03C0
03C2
03CHy
03C7
03C9
03CC
03CE
03D0
03D2
03D4
03D7
03DA

ED
c2
7B 80
BD

7B FC

EE

EF

08

FD EE
03
02CD"
EF

EE

03

08

FD ED
0205"'

1198
1199
1200
1201
1202
1203
1204
1205

1207
1208
1209
1210
121
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

ine @dab_DST !inc post dec cnt!
jr das_g2 tget next input!
das_g7: or TEMP_U, #%80 !set overflow!
jr das_g2 fget next input!
dab ex: 1d FLAGS,TEMP 4 fcarry = 0 or 1!
dab”ex1: ret -
END dascbed
GLOBAL
wrddasc PROCEDURE

IR 22222 R R 22 2 222 R R a2 22 R S R R R 222 2 2 2222222222222)

Purpose = To convert a signed binary word to
decimal ASCII

Input = RR12 = source binary word.
RR1Y4 = address of dest (in reg/ext/ser
memory) .
Output = Decimal ASCII in dest buffer.

R8,R9,R10,R11 holds the packed BCD
version of the result.
R12, R13, R14, R15 modified.

ERERRR R R RN R R RN RN NN RN RN NN R RN RN NN R RN RRRRRRNRNNNN

ENTRY

push R14

push R15 !save dest addr!

1d R14,#8

add R14,RP 'R8,9,10 & 11 temp!

1d R15,#3 !temp byte length!

call wrdbed tconvert input word!

pop R15

pop R14 trestore dest addr!

1d R12,#3 flength of temp!

1d R13,#8

add R13,RP taddr of temp!

jp beddase tconvert to ASCII!
END wrddasc

1-29

‘09U ‘YU 'UY 'U'Y ‘U U ‘U0 U'U U

U 'Y "UU U0 'U'U U U ‘U'U ‘U

03DA

03DA
03DB
03DC
03DE
03DF
03E1
03ElU
03E6
03E8
03EA
03EC
03EE
03EF
03F2
03F3
03F4

03F4

03F4
03F5
03F7
03F8
03FA
03FD
03FF
0401
0403
0405
o407
0408
040B
o40C
o40D

06

OE
0000#%

7C
BE

EE
7C EF

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

GLOBAL {for PART II only!
get src PROCEDURE
PR RN RN R RN N RN RN RN RN RN RN NRR RN RRRNRNRRN RN RN RN NRD
Purpose = To get source byte from
reg/ext/ser memory into TEMP_1.
Output = Carry FLAG 1 if error (serial)
, 0 if all ok
TEMP_1 = source byte.
RR14 updated.
BRI NN R NN RN RN RN NN RN NN RN NN RRRNNRRRNNRNN
ENTRY

ref !set good return code!
ine R14 ttest R14 = 0!
djnz R1l4,get s1 tsrc in ext memory!
inc R15 - ttest R15 = 0!
djnz R15,get_s2 Isrc in reg memory!
jp ser_get™ Isrc in ser memory!

get s1: push R11 t{save user's!

- lde R11,8RR1U tget byte!

1d TEMP_1,R11 Imove to common!
pop R11 tfrestore user's!
inew RR14 tfupdate src ptr!
ret

get s2: 1d TEMP_1,@R15 Iget byte!

- ine R15 ~ fupdate src ptr!

ret

END get_srec

GLOBAL {for PART II only!

put dest PROCEDURE

R i I e P e I R A R R A i i R a e 2ad

Purpose = To store destination byte from TEMP 1

into reg/ext/ser memory -
Output = RR14 updated.

P =
121 X 2 22 R RSS2SR 2222222222222 22222222222 2]
ENTRY

inc R1Y4 ftest R14 = 0!
djnz R14,put_s1 tdest in ext memory!
ine R15 ftest R15 = 0!
djnz R15,put_s2 tdest in reg memory!
jp ser output fdest in ser memory!
put s1: push R117 !save user's!
- 1d R11, TEMP 1
lde @RR14,R1T
pop R11 Irestore user's!
incw RR14
ret
put s2: 1d €R15,TEMP_1
- ine R15
ret
END put_dest

1-30

P

la-a-Ns -] '0U "vY'U'YU'UYU ‘YU v

‘0'Y'v Y'Y 'Y’V YUY ‘Uv'U 'U'U 'U'Y U0 'UU 'OU'U O

‘O Uy "Uv

040D

os0D
0410
ou13
0415
o418
041A
041D
Cu1F
o422
ou25
o427

042A
042B
ou2c

o42C

ou2c
OU2F
0432
ou3y
0u36
0438
0434
043C
0U3E
ou40
ouu2
ouuy
ouUu6
ouu48
ouuA
044D
0u50
0452
ou5y
0457
0459
045C

ousD
OUsF
0ué1
ou62
0463

56

BB
02
12
7B
70
70
02
12
7B
02
12
7B
ou
16
7B
50
oy
50

AF

50
50
DF
AF

7€
7C
16
7C
10
TE
0B
7C
7C
oy
7C

7C
7C
2D
DD
cc
27
EC
ED
DD
ccC
19

cc
13
7C
EC
0B
7C
7C
7C
7C

7C
7€

F
30

3A
01

DF
41

u7

OF

ED
00

ED
EC

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

CONSTANT

MODE HE TEMP_3
char HE) TEMP 1
INTERNAL -

ver asc PROCEDURE
PR ET R R R R RN R RN RN RN NN NN RN NN R RN RN RN R RN R RRRNREN

Purpose = To verify input character as valid
hex or decimal ASCII.

Input = TEMP_1 = 8-bit input
TEMP_3 = 0 => test for hex,
1 => test for decimal
Output = Carry FLAG = 0 if no error

1 if error.
ERRRERRR AR NN R RN RN NN NN RN RN NN R RN RN RN RN RRRR RN

ENTRY

and char,#%7F 17-bit ASCII!
cp char,#'0' frange start: '0'!
jr ult,ver err tno good!
cp char ,#'9'+1 tdec range end: '9'!
Jjr ult,ver ok tall's well!
tm MODE, #17 tdec or hex?!
jr nz,ver erc fno good!
and char ,#LNOT('a'-'A') linsure upper case!
cp char,#'A" tcheck A-F range!
jr ult,ver err !no good!
cp char,#'F'+1 tend hex range!
ver_ok:
ver erc: ccf fcomplement carry!

ver_err: ret
END ver_asc

INTERNAL
bed bin PROCEDURE
PEET AR R AR RN AR RN RN R RN R AR RN R RN RN RN R RN RN RN RN R R RN R RN

Purpose = To convert next bed digit to binary.
Input = TEMP_1 = digit
Output = RR12 = RR12 * 10 + digit

I I T Ty I e i 1 T T Y]
ENTRY

and TEMP_1, #%0F tisolate digit!
cp TEMP™1,#9 tverify valid!
jr ugt,bed b1 terror!
add R13,R13™
ade R12,R12 12x!
jr ¢,bed b1 toverflow!
push R12
push R13
add R13,R13
ade R12,R12 tUx!
jr c,bed b2 tfoverflow!
add R13,RT3
ade R12,R12 18x!
jr c,bed b2 toverflow!
add R13, TEMP 1
ade R12,#0 ~ 18x + d!
jr c,bed b2 toverflow!
pop TEMP_T
add R13, TEMP 1
pop TEMP_1 —
ade R12, TEMP 1 110x + d!
ret -
bed_b2: pop TEMP_1
pop TEMP_1 'restore stack!
bed b1: sef - terror!
- ret
END bed_bin

P

vy v'U'Y'UYU'U'UU'UU U0

‘U'v'u 'Y’y V'V 'U'U ‘UU "U'U

0463

0463
0u6s
0467
o469
046C
OU6F
ouT2
0475
o478
O47B
047D
O4TF
0482
ougy
0485

0485

ougs
0487
o488
0LugA
048D
0490
0493
0496
0499
ou9C
O49E
0U4A0
OuA1

7D
FO
OF
7C
ED
7C

OF

TE

FoO
7C
ED
7C

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
112
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1421
1425
1426
1427
1428

CONSTANT

s len = R12
s adr = R13
INTERNAL

rdl PROCEDURE

PRREE R RN NN NN RN RN R RN RN N RN RRNRR RN RRRRRNN N
Rotate Digit Left

Input =

Output =

R12 BCD string length
R13 BCD string address
TEMP_1 bit 3-0 = new digit

BCD string rotated left one digit;
new digit inserted in units position.
TEMP 1 bit 3-0 = digit rotated out
~ of high order digit position
bit 7-4 = 0
Zero FLAG = 1 if TEMP_1 <> 0
R12, R13 unmodified

22 3 s 22 2SR S22 a2 22222222 2222222 2222222]

ENTRY
push s len
add s adr,s len taddress of units place!
rdl_01: swap €s_adr —
1d TEMP 2,@s adr
and @s_adr, #%F0 tisolate digit!
and TEMP 1, #%0F fisolate new digit!
or TEMP”1,8s_adr
1d @s adr,TEMP 1 Isave new byte!
1d TEMP_1,TEMP_2
dec s adr tback-up pointer!
djnz s”len,rdl 01 1loop till done!
and TEMP 1, #%0F 1old high order digit!
pop s len trestore R12!
ret -
END rdl
INTERNAL
rdr PROCEDURE
PREEERRE RN RN RN NN RN RN RN NN RN RN NN RN RN R RN NN R RN RRNNNR

Rotate Digit Right

Input =

Output =

= BCD string length
R13 = BCD string address
TEMP_1 bit 7-U4 = new digit

BCD string rotated right one digit;
new digit inserted in high order
position.

R12 unmodified

R13 modified

(2222222 2222222222222 2222222 2222222222 22 22 Nl

ENTRY
push

rdr 01: inc

- swap

1d
and
and
or
1d
1d
djnz
pop
ret

END rdr

s_len

s adr

@S adr

TEMP 3,8s adr
@s_adr,#%0F
TEMP 1, #%F0
TEMP_1,8s_adr
@s adr,TEMP 1 !save new byte!
TEMP_1,TEMP_3

s len,rdr 01 tloop till done!
s_len - trestore R12!

tisolate digit!
tisolate new digit!

1-32

Bit Manmipulation Routines

P

‘'o'uv Y'Yy U 'U'U"U'U "U'U ‘U

O4A1

OuA1
OuAY
0UA6
OuUA8
OUAA
O4AC
OUAE
ouBO

OuB2
OuBY
OUB6
OuUB8
04B9

E6
BO
90
90
FB
EO
90
10

00
EB
Cc8
AF

7C
7D
EC
ED

EC
EC
7D

7C
FO
7D

08

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
172
1473
1478
1475
1476
1477
1478
1479
1480
1481
1482
1483
1481
1485
1486
1487
1488
1489
1190
1491
1492
1493
1494
1495
1496
1497

CONSTANT
tjm bits i= R12
tjm mask B R13
GLOBAL
clb PROCEDURE
PR R RN R R R RN R R RN RN R RN RN R R RN R RN NN RN RN RN
Purpose = To collect selected bits in a byte
into adjacent bits in the low order
end of the byte. Upper bits in byte
are set to zero.
Input = R12 = input byte
R13 = mask. Bit = 1 => corresponding
input bit is selected.
Output = R12 = collected bits
Note = For example:
Input : R12 = %(2)01110110
R13 = %(2)10000101
Output : R12 = %(2)00000010
RRERBRREERERRERBERFRRRRRRRRRBRRRRERRRRRRRRRRRRERRRRNR)
ENTRY
1d TEMP 1,#8 tbit count!
elr TEMP_2 1bits collected here!
nextl: ril tjm bits tbit 7 to bit 0!
rl tim_mask 'bit 7 to carry!
jr nc,no select tdon't use this bit!
rr tjm_bits
rl tjm bits !bit 7 to 0 and carry!
rlec TEMP 2 tcollect source bit!
no_select: -
dec TEMP_1
jr nz,next1 Irepeat!
1d R12,TEMP_2
ret
END clb

1-33

P 04B9

04Bg
0U4BC
OUBE
ouc1
oucs3
0uCé
oucs
0uCA
oucc

O04CE

v v Uy 'U'U 'O U "U'U U

o4Do

0 errors

D6
02
16
02
16
c2
Ao
c2
E8

30

OUA1!’
cC

EE 00
FC

EE 00
DE

EE

FE

ED

EE

Assembly complete

1499 CONSTANT
1500 tjm_tabh
1501 tjm_tabl
1502 tjm tab
1503 GLOBEL

: R14
R15
RR14

W

.
H

1504 tjm PROCEDURE
1505 IRERENERBRERRERRRRERERERBRRRRRRNRRRRRARRRRRR R RN AR RN

1506 Purpose =
1507

To take a jump to a routine address
determined by the state of selected

1508 bits in a source byte. A bit

1509 is 'selected' by a one in the

1510 corresponding position of a mask.

1511 The 'selected' bits are packed into
1512 adjacent bits in the low order end of
1513 the byte. This value is then doubled,
1514 and used as an index into the jump
1515 table.

1516

1517 1Input = RR14 = address of jump table in

1518 program memory.

1519 R12 = input data

1520 R13 = mask

1507 SERERERERRRRRERRNRBRERRERBRRRRRRE NN NN R RN R RN RR RN RN
1522 ENTRY

1523 call clb fcollect selected bits!
1524 add tjm bits,tjm bits lcollected bits * 2!
1525 ade tjm tabh, #0 !in case carry!

1526 add tjm_tabl,tjm bits

1527 ade tim_ _tabh, #0 !tjm_tab points to...!
1528 lde tjm_mask,@tjm tab !.7.table entry!
1529 incw tjm tab

1530 ldc tjm_tabl,@tjm_tab !get table entry...!
}gg; 1d tJm tabh,tjm_| mask !...into tjm_tab!
1533 jp @tjm tab tbye!

1534 -

1535 END

tim
1536 END PART_I

1-34

ROMLESS 728 SUBROUTINE LIBRARY PART 1I

Z8ASM 3.02
LocC OBJ CODE STMT SOURCE STATEMENT
1
2
g PART_II MODULE
5
g ;'ROMLESS 8" SUBROUTINE LIBRARY PART II
9 CONSTANT
10 !'Register Usage!
11
12 RAM_START iz % 7F
13
14 P3M_save = RAM_START
15 TEMP_3 B P3M save-1
16 TEMP_2 HE TEMP_3-1
17 TEMP 1 iz TEMP 2-1
18 TEMP_4 = TEMP_1-1
19

20 !The following registers are modified/referenced
21 by the Serial Routines ONLY. They are

22 available as general registers to the user

23 who does not intend to make use of the

24 Serial Routines!

25

26 SER_char = TEMP 4-1
27 SER tmp2 = SER_char-1
28 SER”tmp1 i= SER_tmp2-1
29 SER_put HES SER_tmp1-1
30 SER_len i= SER_put-1
31 SER buf t= SER”len-2
32 SER_imr =z SER_buf-1
33 SER cfg = SER imr-1

34 1Serial Configuration Data
35 bit 7 ¢ =1 => odd parity on

36 bit 6 : =1 => even parity on
37 (bit 6,7 = 11 => undefined)

38 bit 5 : undefined

39 bit 4 : undefined

40 bit 3 : =1 => input editting on

41 bit 2 : =1 => auto line feed enabled
42 bit 1 : =1 => BREAK detection enabled
43 bit 0 : =1 => input echo on

uy

45 op = %80

46 ep = %240

47 ie S %08

4g al = %04

49 be B %202

50 ec = %01

51 SER_get L0 SER_cfg-1

52 SER flg i= SER_get-1

53 1Serial Status Flags

54 bit 7 : =1 => serial I/0 disabled
55 bit 6 : undefined
56 bit 5 : undefined
gg bit 4 : =1 => parity error
bit 3 : =1 => BREAK detected

59 bit 2 : =1 => input buffer overflow
60 bit 1 : =1 => input buffer not empty
21 bit 0 : =1 => input buffer full

21

63 sd 1= %80

64 pe HY %10

65 bd iz %208

66 bo i= 04

67 bne i %02

68 bf iz %01

69

RAM_TMR

SERltime
SERht ime

!The following registers are modified/referenced
by the Timer/Counter Routines ONLY.
available as general registers to the user

.

RAM_START-%10

SER flg-

1

SERltime-1

who does not intend to make use of the
Timer/Counter Routines!

TOD tie
TOD imr
TOD hr
TOD min
TOD” sec
TOD tt
PLS”1

PLS tmr
PLS"2

RAM END
STATK

e o0 s e ae ee 4o oo oo
LU L T O [T T T T I 1}

RAM_TMR-2

TOD tic-

1

TOD imr-1

TOD hr-1

TOD min-
TOD sec-

TOD tt-1
PLS”1-1
PLS_tmr-

PLS 2
RAM_END

1
1

1

tEquivalent working register equates

for above register layout!
fregister file %70 - %7F!
RAM_STARTr = %70
rP3Msave HE) R15
rTEMP 3 HE) R14
rTEMP™ 2 t= R13
rTEMPT 1 iz R12
rrTEMP 1 = RR12
rTEMP Th = R12
rTEMP”11 t= R13
rTEMP 4 ‘s R11
rSERchar 1= R10
rSERtmp2 S R9
rSERtmp1 i= R8
rrSERtmp 5 RR8
r SERtmpl i= R9
rSERtmph t= R8
r SERput HE) R7
rSERlen i= R6
rrSERbuf HE RRY
rSERbufh iz RY
r SERbufl HE) R5
rSERimr i= R3
rSERefg HE R2
rSERget HES R1
rSERflg = RO
Iregister file %60 - %6F!
RAM TMRr iz %60
rTODtic i= R13
r TODimr t= R12
rTODhr iz R11
rTODmin t= R10
rTODsec HEY R9
rTODtt HE R8
rPLS 1 HE) R7
rPLStmr i= R6
rPLS 2 H] R5
EXTERNAL

get_srec PROCEDURE
put dest PROCEDURE
multiply PROCEDURE

$SECTION PROGRAM

! for SRP!

tfor SRP!

1-36

They are

Serial Routines

P

vy Y9 ‘UuY vU U

0000

0000
0001
0003
0005
0007
0009
000B
000D
000F

F7

164
165
166
167
168
169
170
171
172
173
174
175

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

CONSTANT
si_PTR
si TMP1
si TMP2

GLOBAL

ser init

RR1Y
R11
R13

.

PROCEDURE

!!l'll!l‘l!l!lilliillllil!!!il!!ll!l!!!*l‘llli!l!lli!l
serial initialize

Purpose

Output

Note =

To initialize the serial channel and
RAM flags for serial I/0. Serial
input occurs under interrupt control.
Serial output occurs in a polled mode.

RR14 = address of parameter list in
program memory (if R14 = O,
use defaults):

1 byte = Serial Configuration Data
(see definition of SER cfg)

1 byte = IMR mask for nestable
interrupts

1 word = address of circular input
buffer (in reg/ext memory)

1 byte = Length of input buffer
1 byte = Baud rate counter value
1 byte = Baud rate prescaler value

(unshifted)

Serial I/0 operations initialized.
R11, R12, R13, R14, R15 modified.

Defaults:

Input echo on

Input editting on

BREAK detection enabled

No parity

Auto line feed on

Input Buffer Address = SER_char
Input buffer length = 1 byte
Baud Rate = 9600 (assuming

XTAL = 7.3728 MHz)

The instruction at %0809 must result
in a jump to the jump table entry for
ser_input.

If BREAK detection is disabled, and a
BREAK occurs, it will be received as a
continuous string of null characters.

The parameter list is not referenced
following initialization.

REERE RN RN AR SRR RN R R R RN RN RR RN RN R RN R RRERRERRRRR RN

ENTRY

si_1:

si_2:

ine
djnz
1d
1d
1d
1d
ldei
djnz
and

R14 tuse defaults?!

R14,s1i 1 Ino. given by caller.!
R14, #HI ser def !address of default...
R15,#L0 ser def !... parameter list.
si_TMP1,#SER_cfg

si"TMP2,#5

@sT TMP1,8si PTR !get initialization...!

si_TMP2,si_ 27 1...parameters!
SER_imr,#%F7

!
!

tinsure no self-nesting!

1-37

‘0 'U'U ‘U U U U

'U'v 'U'U ‘U0 'U'U 'U U U

‘0 U0 v

‘o' U'UU ‘U

ha-Ba -]

0012
0015
0017
001A
001D
0020
0023

0026
0028
0024
002C
002E
0031
0033
0035
0037
0038
0034

003C
003D
003F
0041

0043
0046
0049
004cC

004D
0050
0051

0051
0053
0056

56 F1
B8 72
56 EB
46 EB
56 TF
44 EB
E4 7TF

BC F4
C2 DE
C3 BE
C2 BE

FC
80
40
3F

F7

D6 0000%

D9 6F
90 EB

10 EB
B9 F5
BO 71
B0 70
56 FA

56 FB
46 FB

46 F1

OF 00
007A 01
02 03

E7
EF
08

03

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
24y
245
246
247
2ug
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273

tinitialize Port 3 Mode Register for serial I/0!

AND TMR, #%FC tdisable TO!
1d si_TMP1,SER_cfg !configuration data!
AND si_TMP1,#%80 todd parity select!
OR si TMP1,#%40 tP30/7 = Sin/Sout!
AND P3M save,#%3F !mask off old settings!
OR P3M save,si TMP1 !new selection!
LD P3M,P3M_save tto write-only register!
tinitialize TO!
1d si TMP1,#TO
lde si_TMP2,@si_PTR !save counter!
ldei @s1 TMP1,8s1 PTR !init counter!
lde si_TMP1,68si_PTR !get prescaler!
call multiply !'TO x PREO!
1d SERhtime,R12 tsave for BREAK...!
1d SERltime,R13 !...detection !
rl si TMP1 !SHL 1!
sef - fcontinuous mode!
rle si TMP1 !SHL 2!
1d PREO,si TMP1
tinitialize RAM flags and pointers!
DI !disable interrupts!
clr SER get tinput buffer...!
clr SER put !...empty!
clr SER_flg Ino errors!
tinitialize interrupts!
AND IRQ, #%E7 fclear IRQ3 & 4!
and IMR, #%EF tdisable IRQYU (xmt)!
g; IMR, #%08 tenable IRQ3 (rev)!
tgo!
or TMR, #%03 !load/enable TO!
ret
END ser_init
tDefaults for serial initialization!
ser_def RECORD [cfg_, imr_ BYTE
buf WORD
len_, ctr_, pre_ BYTE]
[ec+al+ie+be, %00, SER char, 1, %02, %03]

1-38

P

‘v ‘U'U ‘U'U ‘U U U e

0058

0058

005A
005C
005E
0060
0063
0065
0068
006A
006D

301
302
303
304
305
306
307

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

335
336
337
338

CONSTANT
rli len HE R13
GLOBAL
ser rlin PROCEDURE
PHNTF AR RN R R RN R R R RN R RN RN NN RN RN RN RR RN RN R R RN NRN RN RN
read line
Purpose = To return input from serial channel
up to 'carriage return' character or
maximum length requested or BREAK.
Input = RR14 = address of destination buffer
(in reg/ext memory)
R13 = maximum length
Output = Input characters is destination buffer.
RR14 = unmodified
R13 = length returned
Carry Flag = 1 if any error,
= 0 if no error.
R12 indicates read status
Note = 1. Return will be made to the calling

program only after the requisite
characters have been received from
the serial line.

2. If input editting is enabled, a
'backspace' character will cause

the previous character (if any) in the
the destination buffer to be deleted;
a 'delete' character will cause all
previous characters (if any) in the
destination buffer to be deleted.

3. If parity (odd or even) is enabled,
the parity error flag (R14) will be set
if any character returned had a parity
error. (Bit 7 of each character may
then be examined if it is desirable to
know which character(s) had the error).

4, The status flags 'BREAK detected',
'parity error', and 'input buffer
overflow' will be returned

as part of R12, but will be cleared in
SER_stat.

5. The staus flags: 'input buffer full’
and 'input buffer not empty' will be

updated in SER stat.
EERNEEEEERE R R RN R R R R RN NN RN RN TR RN RN NN RN RN RN RN RN RN

ENTRY
clr TEMP 3 tflag => read line!
ser_read: -
push R14 !save original...!
push R15 1...dest. pointer!

push rli len

_ {...and length!
rli 4: call ser_get

tget input character!

jr c,rli 3 terror!

tm SER cTg,#op LOR ep !parity enabled?!
ir z,rTi_1 Ino!

tm TEMP_1,#%80 tparity error?!

jr z,rl11 1 fno!

1-39

P O06F 46 70 10 339 or SER flg,i#pe tyes. set error flag!
P 0072 D6 0000% 340 r1i_1: call put dest !store in bufferi
P 0075 A6 TE 00 341 ep TEMP 3,#0 fread line?!
P 0078 EB 31 342 jr nz,rTi_2 fno!
P 007A 56 7C TF 343 and TEMP_1,#%7F tignore parity bit!
P 007D 76 72 08 34y tm SER cfg,#ie tinput editting on?!
P 0080 6B 21 345 jr z,rTi 9 no.!
346 tinput editting! -
P 0082 A6 7C TF 347 cp TEMP_1,#%7F fchar = delete?!
P 0085 6B 3E 348 jr z,rlT 6 lyes!
P 0087 A6 7C 08 349 cp TEMP T,#%08 tchar = backspace?!
P 008A EB 17 350 jr nz,rii 9 'no. continue!
P 008C 50 7C 351 pop TEMP 17 Iget original length!
P 008E 70 7C 352 push TEMP_ 1
P 0090 A4 ED TC 353 cp TEMP—1,r11_1en tany characters?!
P 0093 6B 30 354 jr eq,rIi_6 fnone!
P 0095 DE 355 ine rli len tfundo last decrement!
P 0096 26 EF 02 356 sub R15,#2 !backspace & previous!
P 0099 EE 357 ine R14 freg or ext mem?!
P 009A EA 02 358 djnz R14,rl1i 7 text!
P 009C 8B C2 359 jr rli 4 ~ Ireg!
P 009E 36 EE 00 360 rli 7: sbe R14S#0
P 00A1 8B BD 361 - jr rli 4
362 -
P 00A3 00 ED 363 rli_9: dec rli_len tin case cr!
P 00A5 A6 T7C 0D 364 cp TEMP 1,#%0D lcarriage return?!
P 00A8 6B 03 365 jr z,rl1 3 tend input!
P OOAA DE 366 ine rli 1€n Irestore!
P 00AB DA B3 367 rli 2: djnz rli len,rli 4 !loop for max length!
P 0O0AD 50 7C 368 r1i 3: pop TEMP 1 - toriginal length!
P OOAF 24 ED T7C 369 - sub TEMP 1,rli len !# chars returned!
P 00B2 D8 7C 370 1d r1li_Ten,TEMP_1 I!tell caller!
P 00B4 C8 70 371 1d R12,SER flg freturn read status!
P 00B6 56 70 E3 372 and SER_f1g,#LNOT (pe LOR bd LOR bo)
373 Ireset for next time!
P 00B9 CF 374 ref tgood return code!
P O0BA 76 EC gC 375 tm R12,#pe LOR bd LOR bo LOR sd
P 00BD 6B 01 376 jr z,rli 5 !no error!
P O0BF DF 377 scf tset error return!
P 00CO 50 EF 378 rli_5: pop R15
P 00C2 50 EE 379 pop R14 toriginal buffer addr!
P 00C4 AF 380 ret
381
P 00C5 50 ED 382 rli 6: pop rli_len
P 00C7 50 EF 383 - pop R15
P 00C9 50 EE 384 pop R14
P 00CB 8B 8D 385 jr ser read 1start over!
P 00CD 386 END ser_rlin -
388 GLOBAL
P 00CD 389 ser rabs PROCEDURE
390 !‘!T!llllilii*illil‘llll*!l!!ill*l{*l’ii'!l‘ll!iilll*!
391 read absolute
392
393 Purpose = To return input from serial channel
394 of maximum length requested. (Input
395 is not terminated with the receipt of
396 a 'carriage return'. BREAK will
397 terminate read.)
398
399 Note = All other details are as for 'ser rlin'.
HOO #HEE AR NEN R RN RN RN RN RN RN NN R RN R RN RN RN RN RN R RN RN RN NTRRN
401 ENTRY
P 00CD E6 7E 01 402 1d TEMP 3, #1 1flag => read absolute!
P 00DO 8B 88 403 jr ser_Fead
P 00D2 404 END ser_rabs

1-40

P

99’ Y'Y ‘U'U ‘U'U UV U'U ‘U0 ‘U U U0 ‘O

*0v U U v

cob2

00D2
00D5
00D7
0ODA
00DB
00DD
0ODF
00E1
O0OEY
00E6
00ES8
0OEB
00ED
00EF
00F 1
00F3
00F6

00F8
O0OFB
O00FE

0100
0102
o104
0106
0108

78
FB

02

80

01

08
01

406 GLOBAL

407
408

410
411
412
413
41l
415
416
417
418
419
420
421
422
423
2l
u2s5
426
427
428
429
430
431
u32
433
43l
435
436
437
438
439
440
uy1
yy2
443
uul
45
446
uu7
4u8
u49
450
451
452
453
454
455
456
457
458
459
460
461
462
463
6
465
466
467
468
469

ser input

PROCEDURE

!l*TllllIl!ll*!li!lllillIll!lll!*l!&l!il!i!ll’!!l!ll{i
409 Interrupt service - Serial Input

Purpose =

Input =
Output =

Note =

To service IRQ3 by inputting current
character into next available position
in circular buffer.

None.

New character inserted in buffer.
SER_stat , SER_put updated.

1. If even parity enabled, the software
replaces the eigth data bit with a
parity error flag.

2. If BREAK detection is enabled, and
the received character is null,

the serial input line is monitored to
detect a potential BREAK condition.
BREAK is defined as a zero start bit
followed by 8 zero data bits and a
zero stop bit.

3. If 'buffer full' on entry, 'input
buffer overflow' is flagged.

4. If input echo is on, the character is
immediately sent to the output serial
channel.

5. IMR is modified to allow selected
nested interrupts (see ser init).

'l*!‘i*!ll*!!!l*li!l}i‘*ll’i*ill}!'ll"lillil!ll!llll!

ENTRY
1d
push
and
ei
push
srp
1d
tm
Jjr
clr
tm
jr
1d
ser_23: cp
jr
tm
Jjr
tis BREAK. Wait
or
ser_2U: tm

SER_tmp1,%03 tread stop bit level!
imr tsave entry imr!
imr ,SER_imr tallow nesting!

rp !save user's!
#RAM STARTr

rSERchar , SIO tcapture input!

rSERcfg,#fbe Ibreak detect enabled?!
z,8er 30 tnope.!
r SERtmp2
rSERefg, #fop todd parity enabled?!
z,ser_23 fno.!
rSERtmp2, #%80
rSERchar ,r SERtmp2 !8 received bits = 0?!
ne,ser 30 no!
rSERtmp 1, #1 ttest stop bit!
nz,ser 30 fnot BREAK!
for marking!
rSERflg,#bd tset BREAK flag!
%03, #1 !marking yet?!
jr z,ser 24 tnot yet!
twait 1 char time to Tlush receive shift register!
push SERhtime
push SERltime !save PREO x TO!
in_loop: 1d
1p1: djnz
decw

rSERtmp1, #53
rSERtmp1,1p1
SERhtime

tdelay 640 cycles!

1-41

v v ‘9*9Y'vy'v'y YU 'U'Y ‘Y'v'v'v'vu'v Y'Y "uv'u "'v'u 'u'v ‘v 'v 'u'v 0 *UU'U'U ‘uy ‘U'u v U 'u'u v

‘U9 'u'u

010A

010C
010E
0110
0113

0115
0118
0114
011D
011F
0121
0124
0126
0129
012C

012E
0130
0132
0134
0137
0139
013C
013E
0140
0142
014y
0146
0148
0149
014B
014D
0150
0151
0153
0155
0157
0159
015B
015E
0160
0161
0163

0164
0167

0169
016C
016E
0170

EO
F5

E8
A8
DD

F7

01
01

10

EF
)

00
01

02

01

ou

00

470
47
u72
473
u7y
475
476
477
478

480
481
482
483
48y
485
486
ug7
ug8
489
490
491
492
493
49y
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

jr nz,in_loop tdelay (128x10xPREOxTO)!
| L T !
! 2 !
pop SERltime
pop SERhtime trestore PREO x TO!
and IRQ, #LNOT %08 tclear int req!
jr ser_i5 Ibye!
ser 30: tm rSERflg,#bf tbuffer full?!
- jr nz,ser_i1 tyes.overflow!
tm rSERefg, #ec lecho on?!
jr z,ser i0 tno!
1d SI10,rSERchar techo!
ser i6: tem IRQ,#%10 tpoll!
- jr nz,ser i6 !loop!
and IRQ, #LNOT %10 tclear irq bit!
ser_i0: tm rSERefg,#ep teven parity?!
jr z,ser_22 no parity!
!calculate parity error flag!
1d rSERtmp1,#7
clr rSERtmp2 fcount 1's here!
ser_20: rre r SERchar Ibit to carry!
ade rSERtmp2, #0 tfupdate 1's count!
djnz rSERtmp1,ser_20 !loop till done!
and rSERtmp2, #1 11's count even or odd?!
xor r SERchar ,r SERtmp2
rre rSERchar !{parity error flag...!
rre rSERchar f...to bit 7!
ser 22: 1d rSERtmph,rSERbufh
- 1d rSERtmpl ,r SERbufl
add rSERtmpl ,r SERput !next char address!
ine r SERtmph !in external memory?!
djnz rSERtmph,ser i2 !yes.!
1d @rSERtmpl,r SERchar !store char in buf!
ser i3: or rSERflg,#bne tbuffer not empty!
- inc rSERput fupdate put ptr!
cp rSERput,rSERlen !wrap-around?!
jr ne,ser il fno!
clr rSERput tset to start!
ser il: cp rSERput,rSERget !if equal, then full!
- jr ne,ser iS5
or rSERf1g, #bf
ser_i5: g?p rp !restore user's!
pop imr restore entry imr!
iret
ser i1: or rSERflg,#bo tbuffer overflow!
- jr ser_i5
ser i2: adc rSERtmph, #0
- lde @rrSERtmp,rSERchar !store in buf!
jr ser_i3
END ser_input

1-42

525 GLOBAL {for PART I!

P 0170 526 ser get PROCEDURE
527 IHNT RN RN AR NN RN NN RN RN NN RN RN RN RN RN RN R NN NN NN RN
528 Purpose = To return one serial input character.
529
530 Input = None.
531
532 Output = Carry FLAG = 1 if BREAK detected or
533 serial not enabled
534 or buffer overflow
535 = 0 otherwise
536 TEMP_1 = character
537
538 Note = This routine will not return control
539 until a character is available in the
540 input buffer or an error is detected.
SRR T I e I A S R A L)
542 ENTRY

P 0170 70 FD 543 push rp !save caller's rp!

P 0172 31 70 54y srp #RAM STARTr tpoint to subr. RAM!

P 0174 DF 545 sef - tin case error!

P 0175 76 EO 8C 546 ser g1: tm rSERflg,#sd LOR bd LOR bo
547 - Iserial disabled or
548 BREAK detected or
549 buffer overflow?!

P 0178 EB 24 550 jr nz,ser_gb tyes.!

P 017A 76 EO 02 551 tm rSERflg,#bne tbuffer not empty?!

P 017D 6B F6 552 jr z,ser g1 tempty. wait!

P 017F D8 ES5 553 1d rTEMP_11,rSERbufl

P 0181 C8 Eu 554 1d r TEMP” 1h,r SERbufh

P 0183 8F 555 di - tprevent IRQ3 conflict!

P 0184 02 D1 556 add rTEMP 11,rSERget !next char address!

P 0186 CE 557 ine rTEMP_1h tinput buffer in...!

P 0187 CA 18 558 djnz rTEMP 1h,ser g3 !...external memory!
559 - T 1...register memory!

P 0189 E3 CD 560 1d rTEMP 1,8rTEMP 11 !get char!

P 018B 56 EO FE 561 ser gl: and rSERfIg,#LNOT bf !buffer not full!

P 018E 1E 562 - ine r SERget fupdate get pointer!

P 018F A2 16 563 cp rSERget ,rSERlen !wrap-around?!

P 0191 EB 02 564 jr ne,ser_g2 tno.!

P 0193 BO E1 565 clr rSERget lyes. set to start!

P 0195 A2 17 566 ser g2: cp rSERget,r SERput !buffer empty if get...!

P 0197 EB 03 567 - jr ne,ser g5 !...and put =!

P 0199 56 EO FD 568 and rSERf1g,#LNOT bne !buffer empty now!

P 019C CF 569 ser_g5: rcf 1set good return!

P 019D 9F 570 el fre-enable interrupts!

P 019E 50 FD 571 ser gb: pop rp tfrestore caller's rp!

P 01A0 AF 572 - ret
573

P 01A1 16 EC 00 574 ser_g3: ade r TEMP_1h, #0 trrTEMP 1 has char addr!

P 01A4 82 CC 575 lde rTEMP_1,8rr TEMP_1 !get Char!

P 01A6 8B E3 576 jr ser gl tclean up!

P 01A8 577 END ser_get -

P

ja-Jia -l ba-a- e}

'U'U 'U'U "Uu

01A8

01A8
01AA
01AC

01AE
01B1

01B1

01B1

01B2
01BY
01B6
01B9
01BA
01BB

BO
EB
8D

8F

BO
BO
56

AF

FoO
FA

0238

71
77
70

80

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
60U
605
606
607
608

GLOBAL
ser break PROCEDURE
PRET RN RN RN R RN NN NN R RN NN RN RN NN R RN RN RN RN RN R RN RN NN NN

break transmission

Purpose = To transmit BREAK on the serial line.
Input = RR14 = break length

Output = None.

Note = BREAK is defined as:

serial out (P37) = 0 for
2 x 28 cycles/loop x RR14 loops

RR1Y4 should yield at least 1 bit time
so that the last 'clr SIO' will

have been preceded by at least 1 bit
time of spacing. Therefore, RR14 should
be greater than or equal to

4 x 16 x PREO x TO

28
E 2322232222222 2222222222222 22222 2 22 2 2 2 3
ENTRY
ser_b1:
clr SIO
decw RR14
jr nz,ser b1
twait for last null to be fully transmitted!
Jjp ser_o1
END ser_break
GLOBAL
ser flush PROCEDURE

PRNT RN R RN RN R NN R R RN RN RN RN RN R RN RN NN RN RN NN NN RN NN NN
input flush

Purpose = To flush (clear) the serial input
buffer of characters.

Input = None

Output = Empty input buffer.

Note = This routine might be useful to clear

all past input after a BREAK has been
detected on the line.
i!‘ll!ll!llilillllllllﬁl!!!I*!ll{llil{*!!!l{l!i*iil!l]
ENTRY
di tdisable interrupts!
t(to avoid collision with
serial input)!

clr SER_get !buffer start!
clr SER_put != buffer end!
and SER_flg, #%80 fclear status!
ei !re-enable interrupts!
ret

END ser_flush

1-44

P

‘vv*9'v ‘'U'v 'v'v 'v'Y 'Uv‘'U 'v'YU 'U'V 'Y'U UV 'U'U U0 ‘U o

01BB

01BB

01BD
01BE
01C1
01C3
01C5
01C8
01CB
01CD
01D0
01D2
01D5
01D8
01DA
01DC
01DF
01E1
01E4
01E7
01E9
01EB
01ED
01F0
01F2
01F3
01F1

7C

642
643
6Ly
645
646
647
648
649
650
651
652
653
651
655
656
657
658
659
660
661
662
663
661
665
666
667

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

CONSTANT
wli len
GLOBAL

ser wlin

o= R13
PROCEDURE

IR22 22222222 R 22 222 22222222222 2222 s s ttss]

write 1i

Purpose

Input =

Output

Note =

ne

= To output a character string to serial
line, ending with either a 'carriage

return'
specified.

RR14 =

character or the maximum length

address of source buffer

(in reg/ext memory)

R13 = length

= RR14 = updated
Carry Flag =

1 if serial not enabled,

= 0 if no error.
R13 = # bytes output (not including

auto line feed)

If auto line feed is enabled, a
line feed character will be output
following each carriage return

(ser wlin only).

l*!l*ﬂ‘llilll‘I!l!l!?!Illi*l'*!!!!ll*l*lllll*ii‘***li!

ENTRY

write:

wli U4:

wli 5:
wli_2:

wli 1:
END

clr TEMP_3

scf

tm SER_flg,#sd
jr nz,wli 1

push wli lemn

call get src

call ser output

jr c,wli 2

cp TEMP_3, #0

jr nz,wli 5

and TEMP_1,#%7F
cp TEMP 1, #%0D
jr nz,wli_ 5

dec wli len

tm SERcfg,#al
jr z,wli 2

1d TEMP_T, #%40A
call ser output

jr wli~2

djnz wli len,wli U4
pop TEMP_1 -
sub TEMP 1,wli len
1d wli Ten, TEMP_1
ref -

ret

ser_wlin

tflag => write line!

tin case error!
tserial disabled?!
tyes. error!

twrite the character!
!serial disabled!
twrite line?!

'no, absolute.!

tmask off parity!
!line done?!

tyes.!

fauto line feed?!

tdisabled!
toutput line feed!

!loop!
toriginal length!

freturn output count!
tno error!

P

"0 "0 'u

‘0 UU'u'u'u Uy

01FY

01F4 E6 T7E 01
01F7 8B Cy4
01F9

01F9

01F9 C9 7C
01FB D6 020B'
O1FE 76 72 OU
0201 6B 3E
0203 A6 EC 0D
0206 EB 39
0208 E6 7C 0A
020B

698

700
701
702
703
704
705
706
707
708
709
710
711
712
713

715
716
717
718
719
720
721
722

724
725
726
727
728

730
731
732

734
735

737
738

GLOBAL
ser wabs PROCEDURE
RN TR RN AR R R R R R R RN R R RN R RN RN NN RE R RN AR RRRRRR RN

write absolute

Purpose = To output a character string to serial
line for the length specified. (Output
is not terminated with the output of
a 'carriage return').

Note = All other details are as for 'ser wlin'.
BN RN RN R RN RN RN R RN RN RN RN RN R RN RNRR RN NN RNTRRR)

ENTRY

TEMP_3, #1
jr write
END ser_wabs
ser_wbyt PROCEDURE

]I‘Tlilliﬂiil!l!!!!!l‘}*i!!i*ll!!!*!!l!llﬁl!l!!!l!!!l!
write byte

Purpose = To output a given character to the
serial line. If the character is a
carriage return and auto line feed
is enabled, a line feed will be output

as well.
Input = R12 = character to output
Note = Equivalent to ser wlin with length = 1.

ERERENE RN RN RN RRRNRRNRRRTRR RN R RN RN RN RN RN NNNN)
ENTRY

1d TEMP_1,R12
call ser_output foutput it!
tm SER cfg,i#al fauto line feed?!
jr z,ser 05 Inot enabled!
cp R12,#%Z0D tchar = car. ret?!
Jjr nz,ser 05 fnope!
1d TEMP 1, #%04 toutput line feed!
!fall into ser_output!
END ser_wbyt

1-46

P

‘o 'y'v'v'v 'Y’y 'U'vU 'U'U 'U'U 'U'U'U'U ‘U0 U U0 UU v

v v

o o

*v*U U Y

020B

020B
020C
020F
0211
0214

0216
0218
021B
021D
021F
0222
0224
0226
0229
022C
022F
0231
0233
0235
0238
023B
023D
0240
o241
o2u2

0242

0242
0243

0246
0249
024C
024F
0252

0253
0254

8F
46

56
56
56
EY4

9F
AF

70
F1
FB
TF
7F

80
40

07

00

01
FE

7C

FO
10

EF

80
FC
E7
BF
F7

806
807
808
809
810
811

GLOBAL ! for PART I!
ser output PROCEDURE
lilT!!l**lll***!l!!!l!il!&l*i*ill'*ll*lll!illii!ll*!l!
Purpose = To output one character to the serial
line.
Input = TEMP_1 = character
Output = Carry FLAG = 1 if serial disabled
= 0 otherwise.
Note = 1. If even parity is enabled, the eigth

data bit is modified prior to character
output to SIO.

2. IRQY4 is polled to wait for completion

of character transmission before control

returns to the calling progra
I.!lll'lll!&l!l!lili‘lilIl!!&l!i!!ll!ll!'ll!llll!iilll

ENTRY

scf !in case error!

tm SER flg,i#sd tserial disabled?!

ir nz,ser_05 lyes. error!

tm SER_cfg, #ep lteven parity enabled?!

jr ser_o2 fno. just output!
tcalculate parityf

push TEMP_3

1d TEMP_3,#7
clr TEMP_2
ser_04: rrec TEMP_1 !character bit to carry!
ade TEMP 2, #0 tfcount 1's!
dec TEMP_3
jr nz,ser 04 'next bit!
and TEMP_27#01 11's count odd/even!
and TEMP_1,#%FE
or TEMP_ 1, TEMP 2 tparity bit in DO!
rre TEMP™1
rre TEMP_1 tparity bit in DT!
pop TEMP 3
ser_o2: 1d S10,TEMP_t toutput character!
ser_ol: tem IRQ,#%10 fcheck IRQuU!
jr nz,ser o1l twait for complete!
and IRQ, #4EF tclear IRQU!
rcf fall ok!
ser 05: ret
END ser_output
GLOBAL
ser disable PROCEDURE

PR RN R RN R RN RN RSN RN R R AR RRAR AR R AR RN RN R RRRR NN
disable

Purpose = To disable serial I/O operations.
Input = None.
Output = Serial I/0 disabled.

AEREEEEEEE R R R R R R R R R R R R R R RN RN RN RN RN RN R RN RN R R RN RN NNNR
ENTRY

di tavoid IRQ3 conflict!
or SER_flg,#sd

I1set serial disabled!
and TMR, #%FC

tdisable TO!
and IMR, #%ET7

tdisable IRQ3, 4!
and P3M_save, #%BF

1P30/7 normal i/o pins!
1d P3M,P3M save
ei TlIre-enable interrupts!
ret

END ser_disable

1-47

Timer/Counter Routines

P

0o9'Y vy v

0254

0254
0256
0258
025A
025D
0260

6C

DE

DE

7B 6C
02B2!

840 CONSTANT

841 TMP = R13

842 PTR t= RR14
843 PTRh = R14

844 GLOBAL

845 tod i PROCEDURE
UG IHEFRRERER R AR RN RN RR RN R RN R RRRRN RN RN NN RN RN RN RN NN

847 time of day : initialize

848

849 Purpose = To initialize TO or T1 to function as

850 a time of day clock.

851

852 1Input = RR14 = address of parameter list in

853 program memory:

854 1 byte = IMR mask for nestable

855 interrupts

856 1 byte = # of clock ticks per second

857 1 byte = counter # : = %F4 => TO

858 = ¢F2 => T1

859 1 byte = Counter value

ggo 1 byte = Prescaler value (unshifted)
1

862 TOD_hr, TOD min, TOD_sec, TOD_tt

863 initialized to the Starting Time of

86U hours, minutes, seconds, and ticks

865 respectively.

866

867 Output = Selected timer is loaded and

868 enabled; corresponding interrupt

869 is enabled.

370 R13, R14, R15 modified.

71

872 Note = The cntr and prescaler values provided

873 are those values which will generate an

874 interrupt (tick) the designated # of

875 times per second.

876

877 For example:

878 for XTAL = 8 MHZ, cntr = 250 and

879 prescaler = 40 yield a .01 sec interval;

880 the 2nd byte of the parameter list

881 should = 100 .

882

883 For TO the instruction at %080C or

884 for T1 the instruction at %080F must

885 result in a jump to the jump table entry

886 for 'tod'.

287

888 The parameter list is not referenced

889 following initialization.

SO0 HENENRERNENERRENRRRNERRREERNRNRRNRRR NS RN RN RN RRRRRRRRNN
891 ENTRY

892 1d TMP,#TOD imr

893 ldei @TMP,@PTR timr mask!

894 ldeci @TMP,@PTR tticks/second!
895 1d TEMP_4,#TOD_imr

896 jp pre ctr tetr & prescaler!
897 END tod_1i -

1-48

U "Y9'Y 'U'U 'U'U U0 "U'U 'U U "U'U "UU U

‘v'uv'uv U

0260

0260
0262
0265
0266
0268
026A
026B
026D
026F
0271
0272
0275
0277
0279
027A
027D
027F
0281

0282
0284
0285
0287
0288

FB
6C

FD
60

8D
E8
E9
E9
EA
H
FD
FB

FB

3C

3C

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

GLOBAL
tod

PROCEDURE

IR 2R 22 R R R R 2 R 2 2 2 2 2 2 22 R R 2222222222 2222222222 2]

Interrupt service - time of day

Purpose =

ENTRY
push
and
ei
push
srp
inec
cp
jr
clr
ine
cp
jr
clr
ine
cp
jr
clr
inc
tod ex: pop
- di
pop
iret

END tod

To update the time of day clock.
ERREER RN RN RN RN R RN R R R RN E R RN RN RN RN R R RN RERRRRNRRN

imr
imr,TOD_imr

rp
#RAM_TMRr
rTODEt

rTODtt,rTODtic

ne,tod_ex
rTODtt

r TODsec
rTODsec, #60
ne,tod_ex
rTODsec
rTODmin
rTODmin, #60
ne,tod ex
rTODmin

r TODhr

rp

imr

!save entry imr!

tallow nested interrupts
tenable interrupts!
!save rp!

tpoint to our set!
fticks/second!

!second complete?!
!nope.!

!seconds!
fminute complete?!
fnope.!

!minutes!
thour complete?!
!nope.!

thours!

!restore rp!
tdisable interrupts!
frestore entry imr!

P

U 'Y'YU'yU 'UvU 00U 00

ja"Zia-Ra -} 0 ‘u'u

0288

0288
028A
028C
028E
0290
0292
0294
0297
0294
029D
0240
02A3

02A3

02A3
02A6
02A9

02AC
02AF
02B0

B4
By
BY

F5
BF

65

DE

DE

DE

EE

EE

F1 3F
7F DF
TF F7
7B 01
02B2"
65 67
67 65
65 67
67 66

932
933
934
935
936
937
938
939
9u0
941
9u2
9u3
9uy
9us5
946
9u7
948
9u9
950
951
952
953
954
955
956
957
958
959

GLOBAL
pulse i PROCEDURE
PR R TR RN RN R RN RN R R R R R R R RN RN RN R R RN R RN NN NN AR RN NN NNND
Purpose = To initialize one of the timers
to generate a variable frequency/
variable pulse width output.

Input = RR14 = address of parameter list in
program memory:
1 byte = cntr value for low interval
1 byte = counter # : = %F4 => TO
= %F2 => T1
1 byte = cntr value for high interval
1 byte = prescaler (unshifted)

Output = Selected timer is loaded and
enabled; corresponding interrupt
is enabled. P36 is enabled as Tout.
R13, R14, R15 modified.

Note = The parameter list is not referenced
following initialization.

The value of Prescaler x Counter
must be > 26 (=%1A) for proper
operation.
EREE RN RN R R RN RN RN RN RN RN RN R RN RN NN NN NNRN)
ENTRY
LD TMP, #PLS_2
ldei @TMP,@PTR
ldei 6TMP,@PTR
ldei @TMP,@PTR
decw PTR
decw PTR

tlow interval cntr!
ttimer addr!
thigh interval cntr!

tback to flag!

and TMR, #%3F fwill be modifying TMR!
and P3M save,#%DF 1P36 = Tout!
1d P3M,P3M_save
1d TEMP 4, #%1 tflag for pre ctr!
jp pre ctr Iset up timer
END pulse_i -

GLOBAL

pulse PROCEDURE
PRE RN RN E RN RN RN RN RN RN RN RN RN NN RN RN RN

Purpose = To modify the counter load value
to continue the pulse output generation.

R RN E RN R RN R E RN RN RN RN RN RN NN RN RRNRRRRRNR)
ENTRY
lexchange values!

xor PLS_1,PLS_2
xor PLS_2,PLS 1
xor PLS_1,PLS_2
fexchange complete!
1d €PLS tmr,PLS_1 !load new value!
iret -
END pulse

1-50

P 02BO

P 02B0 BO 7B
P 02B2

991 GLOBAL
992 delay PROCEDURE
93 I HEREAERERRRRR R R RN R RN RN R RN RN RN RN RN RRANR RN

994 Purpose = To generate an interrupt after a

992 designated amount of time.

99

997 Input = RR14 = address of parameter list in
998 program memory:

999 1 byte = counter # : = %FU4 => TO
1000 = $F2 => T1
1001 1 byte = Counter value
1002 1 byte = Prescaler value and count mode
1003 (to be loaded as is into
1004 PREO or PRE1).

1005
1006 Output = Selected timer is loaded and
1007 enabled; corresponding interrupt
1008 is enabled.

1009 R13, R14, R15 modified.
1010

1011 Note = This routine will initialize the timer
1012 for single-pass or continuous mode
1013 as determined by bit 0 of byte 3 in
1014 the parameter list.

1015 The caller is responsible for provid-
1016 ing the interrupt service routine.
1017

1018 The parameter list is not referenced
1019 following initialization.

1020 #EERERERRRRAERRRERRERRRRRRBFR RN R R RN RN R RN RN RR RN RRNN)
1021 ENTRY

1022 clr TEMP_U4
1023 !fall into pre_ctr!
1024 END delay

1-51

1026

INTERNAL

P 02B2 1027 pre ctr PROCEDURE
1028 [l'T!llll!!llllll!'llilll!!&!ll*ll!lﬁ&!lll!'l‘l&lllitl
1029 Purpose = To get counter and prescaler values
1030 from parameter list and modify control
1031 registers appropriately.
1032
1033 Input = TEMP_4 = 0 => for 'delay'
1034 = 1 => for 'pulse'
1035 = TOD imr => for 'tod'
1036 SHREERRNERRRRREERRRRRRRRRRRRETRRR N RN RRRRNNRRR RN NN
1037 ENTRY
P 02B2 C2 DE 1038 lde TMP,8PTR 1TO or T1!
P 02B4 A0 EE 1039 inew PTR
P 02B6 E6 7D 8C 1040 1d TEMP_2,#%8C { for TMR!
P 02B9 E6 T7E 20 1041 1d TEMP™ 3, #%20 1 for IMR!
P 02BC A6 ED F2 1042 cp TMP,#T1
P 02BF 6B 06 1043 jr eq,pre_1 tis for T1!
P 02C1 E6 7D 43 1044 1d TEMP 2, #%43 {for TMR!
P 02C4 E6 TE 10 1045 1d TEMP:3,#$10 t for IMR!
P 02C7 C3 DE 1046 pre 1: 1ldei @TMP,E@PTR tinit counter!
P 02C9 C2 EE 1047 - lde PTRh,€@PTR Iprescaler!
P 02CB A6 7B 00 1048 cp TEMP U4, #0 tshift prescaler?!
P 02CE 6B 12 1049 jr eq,pre 2 tno!
P 02D0 DF 1050 sef - tinternal clock!
P 02D1 10 EE 1051 rle PTRh
P 02D3 DF 1052 sef fcontinuous mode!
P 02D4 10 EE 1053 rlc PTRh
P 02D6 A6 7B 6C 1054 cp TEMP_U4, #TOD_imr
P 02D9 EB OA 1055 Jjr ne,pre_3 1 for 'pulse'!
P 02DB 60 7E 1056 com TEMP 3
P 02DD 54 TE 6C 1057 and TOD TImr,TEMP_3 !insure no self-nesting!
P 02E0 60 7E 1058 com TEMP 3
P 02E2 56 7D OF 1059 pre 2: and TEMP™ 2, #%0F Ino Tout mode mod!
P 02E5 F3 DE 1060 pre 3: 1d @TMP, PTRh tinit prescaler!
P 02E7 44 7D F1 1061 - or TMR, TEMP 2 1init tmr mode!
P 02EA 8F 1062 di -
P O2EB 44 7E FB 1063 or imr ,TEMP 3 tenable interrupt!
P 02EE 9F 1064 ei -
P 02EF AF 1065 ret
P 02F0 1066 END pre_ctr
1067 END PART_II
0 errors
Assembly complete
1-52 00-2160-01

Z8° MCU Test Mode

Zilog

Application
Note

June 1982

This application note is intended for use by those
with either a 78601 or a 78611 Microcomputer
device. It is assumed that the reader is familiar
with both the 78 and its assembly language, as
described in the following documents:

] Z8 Technical Manual (Reset Section)
(03-3047-02)

. 28 Family 78601, 78602, 78603 Product Spec
(00-2037-A0)

. 78 Family 78611, 78612, 78613 Product Spec
(00-2038-A0)

] 78 PLZ/ASM Assembly Language Programming

Manual (03-3023-03)

This note briefly discusses the operation of Test
Mode, which is a special mode of operation that
facilitates testing of both Z8 devices that incor-
porate an internal program ROM (Z8601, 1Z8611).
There are two problems associated with testing a
78 with an internal program ROM; the solutions are
presented below.

The first problem is: how can the device be
tested with standard microprocessor automatic test
equipment? To solve this problem, Test Mode
causes the Z8 to fetch instructions from Port 1
while it is in the external Address/Data bus mode,
instead of fetching instructions from the internal
Program ROM. Diagnostic test routines are then
forced onto this external bus from the test equip-
ment in the same manner as with microprocessor
testing.

The second problem is: since the Test Mode
requires that Port 1 operate only in the
Address/Data bus mode, how are the other Port 1
modes of operation tested? To solve this problem,
an on-chip Test ROM is provided for execution
while in Test Mode. The program in the Test ROM
checks the other modes of Port 1: input, output,
with handshake control, and without handshake con-
trol.

Figure 1 compares normal and Test Mode operations
in the Z8. (In both normal and Test Mode, program

execution begins at address 00Cy.)

<D

TEST
MODE

NORMAL NORMAL
MODE OR TEST MODE
RESET

ACCESS NORMAL ACCESS TEST
ROM AT 00CyH ROM AT 00Cy
7FFy (28601) 03F
FFFu (28811)
TEST
28601 ROM
z8611 00CH
ON-CHIP
PROGRAM
ROM
TEST MODE
e
H
Figure 1. Comparison of Normal

and Test Modes

1-83

Test Mode can be entered immediately after reset
by driving the RESET input (pin 6) to a voltage of
Vee + 2.5 V. (See the Reset section of the
28 Technical Manual for a description of the Reset
procedure.) Figure 2 shows the voltage waveform
needed for Test Mode. After entering Test Mode,
instructions are fetched from the internal Test
ROM, which is programmed with Port 1 diagnostic
routines. The 78 stays in Test Mode until a
normal reset occurs.

Veg +25Vmm e e

RESET PIN

v osv
AL A

XTAL —>]

CLKS

MAX

Note the maximum ramp for application of
+7.5 VDC to RESET pin, After a minimum of
6 XTAL CLK cycles, the RESET voltage can be
relaxed to VRH.

Figure 2. Test Mode Wave Form

The program listing in the ROM is included at the
end of this document. Program Listing A (Internal
Test ROM Program) is mask programmed into the
internal Test ROM of the Z8601. Program Listing B
(External Test Program) is an example of a program
that could be executed while in Test Mode. It was
written as a compliment to the internal Test ROM
program, to check the Port input and output func-
tions. To test the other functions of the Z8, the
user must execute other programs developed for
testing.

The interrupt vectors in the Z8601 Test ROM point
to the locations in external memory %800, %803,
%806, %809, %80C, %80F. The interrupt vectors in
the 78611 Test ROM point to the locations in
external memory %1000, %1003, %1006, %1009, %100C,
%100F. This allows the external program to have a
2- or 3-byte jump instruction to each interrupt
service routine.

Programs that are run in Test Mode can use an LDE
instruction for accessing the Test ROM. The LDC
instruction can be used for accessing the program
ROM.

Program Listing A. Internal Test ROM Program

Z8ASM 4.0
LoC OBJ CODE STMT SOURCE STATEMENT

1 ! 28 TEST ROM ROUTINE FOR VERIFYING !

2 ! PORT 1 I/0, WITH AND WITHOUT H.S. !

3

i

2 TESTROM MODULE

7

8 $SECTION PROGRAM

9 $ABS 0

10 INTERNAL
P 0000 0BOO0 0803 11 RUPT_VECTOR ARRAY [6 WORD]:=
P 0004 0806 0809
P 0008 080C O80OF

12 [%2800 %803 %806 %809 %80C %80F]

13 $SDEFAULT

14

15

16 INTERNAL

17 TEST
P 000C 18 PROCEDURE ENTRY $ABS %00C

19
P 000C E6 F8& 96 20 LD PO1M #%96 ! P1&PO0=EXT MEM,STK=IN,NORMAL !
P OOOF 8D 0812 21 JP EXT !t JUMP TO EXTERNAL TEST CODE !
P 0012 99 F8 22 START1: LD PO1M R9 ! START OF P71 I/0 TEST !
P 0014 A9 F7 23 LD P3M R10 ! SET H.S.& P2 PU ACTIVE !
P 0016 48 E3 24 LD R4 %E3 ! TEST RDY=1,DAV=z1 !
P 0018 F3 DE 25 LD €R13 R14 ! WRITE PORT !
P 001A 61 ED 26 COM €R13 ! WRITE PORT !
P 001C 58 E3 27 LD R5 $%E3 !t TEST RDY=0,DAV=1 !
P OO0iE E3 6B 28 LD R6 @R11 1 READ PORT & STUFF DATA !
P 0020 E3 7B 29 LD R7 €R11 ! DITTO !
P 0022 88 E3 30 LD R8 %E3 ! TEST RDY=1,DAV=1 !
P 0024 C9 F8 31 LD POIM R12 1 CONFIGURE FOR EXT !
P 0026 8D 0831 32 JP VERIFY1 ! JUMP TO VERIFY ROUTINE !

33

1-54

2242-002

Program Listing A.

‘UYVUUUUvu'u v

Program

o

‘'9'Y'Y'Y'U 'Y 'Y 'U'U ‘UuuU U ‘v'U'v'v u°vY ‘U 'UU U U0

U uY o

Internal Test ROM Program (continued)

0029 B9 F7 34 START2: LD P3M R11 !
002B 99 F8 35 LD PO1M R9 !
002D 1E 36 INC R1 !
002E Fo F8 37 LD PO1M R15 !
0030 1E 38 INC R1 !
0031 98 E1 39 LD R9 %E1 !
0033 C9 F8 40 LD POIM R12 !
0035 8D 086D 41 JP VERIFY2 !
0038 42 END TEST
Listing B. External Test Program
47 INTERNAL
48 SETUP
0800 49 PROCEDURE ENTRY $ABS %800
50
0800 8D 0800 51 VECT1: JP VECT1
0803 8D 0803 52 VECT2: JP VECT2
0806 8D 0806 53 VECT3: JP VECT3
0809 8D 0809 54 VECT4: JP VECT4
080C 8D o080C 55 VECTS5: JP VECTS
080F 8D O080F 56 VECT6: JP VECT6
57
0812 8F 58 EXT: DI
0813 31 00 59 SRP #%00
0815 2C FF 60 LD R2 #%FF !
0817 3C FF 61 LD R3 #4FF !
0819 E6 F6 FF 62 LD P2M #%FF !
081C 4C 88 23 LD R4 #%88 :
081E 5C 00 65 LD R5 #%00 !
0820 9C 86 66 LD R9 #%86 !
0822 AC 39 67 LD R10 #%39 !
0824 BC 02 68 LD R11 #%02 !
0826 CC 96 69 LD R12 #%96 !
0828 DC 01 70 LD R13 #%01 !
082A FC 86 71 LD R15 #%86 !
082C EC AA T2 LD R14 #%AA !
082E EE 10 10 73 LD %10 #%10 !
0821 EE 11 40 T4 LD %11 #%40 !
0834 8D 0012 75 JP START1 !
0837 76 END SETUP
77
78
79 INTERNAL
80 VERIFY
0831 g; PROCEDURE ENTRY $ABS %831
83
0831 DC 02 84 VERIFY1:LD R13 #%02 !
0833 BC 01 85 LD R11 #%01 !
0835 E6 F6 00 86 LD P2M #%00 !
0R38 66 E4 50 87 TCM R4 #9%50 !
88 !
89 !

START TEST NO H.S. !

SET P1 TO INPUT !

READ & WRITE P1 AS INPUT !
SET P1 TO OUTPUT !

READ & WRITE PI AS OUTPUT !
SAVE RESULTS IN R9 !
P1&PO=EXT,STK IN, NORMAL !
JUMP TO VERIFY #2 ROUTINE !

INITIALIZE P2 !

DITTO !

SET P2 TO INPUT !

SET P2<>P1 MUX,P3 GRP B MUX !
ALSO DUMMY ADDRS HIGH BYTE !
DUMMY ADDRS LOW BYTE !

P1 OUTPUT MODE VALUE !

R10 SETS H.S.MODE & P2 PULLUPS
R11 POINTS TO P2 FOR PASS1 !
R12 SETS PO1M TO EXT MEM,ETC.
R13 POINTS TO P1 FOR PASS1 !
SAME AS R9 !

DATA LOADED TO TEST PORT !
RDY/DAV RESULT PASS 1 !

DITTO !

END SETUP--JUMP TO TEST START

R13 POINTS TO P2 FOR PASS2 !
R11 POINTS TO P1 FOR PASS 2 !
SETS P2 FOR OUTPUT !

FROM HERE TO THERE WE VERIFY !
TEST RESULTS FOR 1/0 WITH H.S.
BOTH PASS 1&2 !

1-55

Program Listing B.

o~ Ba] ‘U 'U'YU 'v'U 'U'0 *U'U ‘'v'VU 'U'U UV U0 'U

083B
083E
0841
oguy
0847
084A
084D
0850
0853
0856
0859
085C
085F
0862
0865
0867
086A
086D

0870
0873

0890
0890
0892

0880

0880
c882

ED
64
ED
74
ED
A6
ED
A6
ED
66
ED
A6
E6
E6
9C
6D
8D
A6

6D

8B

External Test Program (continued)

0880

FE

FE

116
117

124
125
126
127
128
129
130
131
132

JP NZ FAIL
TCM RS %10
JP NZ FAIL
TM RS %11
JP NZ FAIL
CP R6 #%AA
JP NZ FAIL
CP R7 #%55
JP NZ FAIL
TCM R8 #%50
JP NZ FAIL
CP R9 #%86 !
LD %10 #%40 !
LD %11 #%10 !
LD R9 #%8E !
JP EQ START1 !
JP START2 !
VERIFY2:CP R9 #%57 !
JP EQ PASS
END VERIFY
INTERNAL
TPASS
PROCEDURE ENTRY $ABS %890
PASS:JR PASS
END TPASS
INTERNAL
TFAIL
PROCEDURE ENTRY $ABS %880
FAIL:JR FAIL
END TFAIL

END TESTROM

IS THIS PASS1? !

RDY/DAV RESULT PASS 2 !

DITTO !

P1 IS GOING TO BE AN OUTPUT !
PASS1 SUCCESSFUL--TRY PASS2 !
PASS2 SUCCESSFUL--TEST NO H.S.
CHECK RESULT OF 1/0 NO H.S.TES

1-56

00-2042-01

Build a Z8-Based Control
Computer with BASIC, Part 1

1 hope you believe me when I say
that I have been waiting years to pre-
sent this project. For what has seemed
an eternity, I have wanted a micro-
computer with a specific combination
of capabilities. Ideally, it should be
inexpensive enough to dedicate to a
specific application, intelligent
enough to be programmed directly in
a high-level language, and efficient
enough to be battery operated.

My reason for wanting this is pure-
ly selfish. The interfaces 1 present
each month are the result of an
overzealous desire to control the
world. In lieu of that goal, and more
in line with BYTE policy, I satisfy this
urge by stringing wires all over my
house and computerizing things like
my wood stove.

There are many more places I'd like
to apply computer monitoring and
control. I want to modify my home-
security system to use low-cost
distributed control rather than central
control. I want to try my hand at a
little energy management, and, of
course, I am still trying to find some
reason to install a microcomputer in a
car. (How about a talking dash-
board?)

Generally, the projects I present
each month are designed to be at-
tached to many different commercial-
ly available microcomputers through

Copynght © 1981 by Steven A Ciarcia
All nghts reserved

Reprinted with permission of Byte Publications, Inc

Steve Ciarcia
POB 582
Glastonbury CT 06033

existing I[/O (input/output) ports.
Most of my projects are applicable
for use on the small (by IBM stan-
dards) computers owned by many
readers, but, unfortunately, a typical
home-computer system cannot be
stuffed under a car seat.

The Z8-BASIC
Microcomputer is a
milestone in low-cost
microcomputer
capability.

The time has come to present a ver-
satile “Circuit Cellar Controller”
board for some of these more am-
bitious control projects. I decided not
to adapt an existing single-board
computer, which would be larger,
more expensive, and generally limited
to machine-language programming.
Instead, I started from scratch and
built exactly what I wanted.

The microcomputer/controller I
developed is called the Z8-BASIC
Microcomputer. Its design and ap-
plication will be presented in a two-
part article beginning this month. In
my opinion, it is a milestone in low-
cost microcomputer capability. It can
be utilized as an inexpensive tiny-
BASIC computer for a variety of
changing applications, or it can be
dedicated to specialized tasks, such as

, 1981

1-57

security control, energy manage-
ment, solar-heating-system monitor-
ing, or intelligent-peripheral control.
[Editor’s Note: We are using the term
“tiny BASIC"” generically to denote a
small, limited BASIC interpreter. The
term has been used to refer to some
specific commercially available prod-
ucts based on the Tiny BASIC con-
cept promulgated by the People’s
Computer Company in 1975....RSS]

The entire computer is slightly
larger than a 3 by 5 file card, yet it in-
cludes a tiny-BASIC interpreter, 4 K
bytes of program memory, one RS-
232C serial port and two parallel I/0
ports, plus a variety of other features.
(A condensed functional specification
is shown in the “At a Glance” text
box.) Using a Zilog Z8 microcom-
puter integrated circuit and Z6132
4 K by 8-bit read/write memory
device, the Z8-BASIC Microcom-
puter circuit board is completely self-
contained and optimized for use as a
dedicated controller.

To program it for a dedicated
application, you merely attach a user
terminal to the DB-25 RS-232C con-
nector, turn the system on, and type
in a BASIC program using keywords
such as GOTO, IF, GOSUB, and
LET. Execution of the program is
started by typing RUN. If you need
higher speed than BASIC provides, or
if you just want to experiment with
the Z8 instruction set, you can use the

GO@ and USR keywords to call
machine-language subroutines.

Once the application program has
been written and tested with the aid
of the terminal, the finished program
can be transferred to an EPROM
(erasable programmable read-only
memory) via a memory-dump pro-
gram and the terminal disconnected.
Next, the 28-pin Z6132 memory com-
ponent is removed from its socket
and either a type-2716 (2 K by 8-bit)
or type-2732 (4 K by 8-bit) EPROM
is plugged into the lower 24 pins.
(The choice of EPROM depends upon
the length of the program.) When the
Z8 board is powered up, the stored

the Z80 or the Intel 8080 require sup-
port circuitry to make a functional
computer system. A single-chip
microcomputer, on the other hand,
can function solely on its own.

The concept is not new. Single-chip
microcomputers have been around
for quite a while, and millions of
them are used in electronic games.
The designers of the Z8, however,
raised the capabilities of single-chip
microcomputers to new heights and
provided many powerful features
usually found only in general-
application microprocessors.

Typically, single-chip microcom-
puters have been designed for

intensive applications. Under pro-
gram control, the Z8 can be con-
figured as a stand-alone microcom-
puter using 2 K to 4 K bytes of inter-
nal ROM, as a traditional micropro-
cessor with as much as 120 K to
124 K bytes of external memory, or
as a parallel-processing unit working
with other computers. The Z8 could
be used as a controller in a
microwave oven or as the processor
in a stand-alone data-entry terminal
complete with floppy-disk drives.

Getting Specific: The Z8671
The member of the Z8 family used
in this project is the Z8671. This com-

program is immediately
executed. The EPROM
devices and the Z6132
read/write memory
device are pin-
compatible. Permanent
program storage is
simply a matter of
plugging an EPROM
into the Z6132’s socket.

There is much more
power on this board
than is alluded to in this
simple description.
That is why I decided
to use a two-part article
to explain it. This
month, I'll discuss the
design of the system
and the attributes of the
Z8 and Z6132. Next
month, I'll describe ex-
ternal interfacing
techniques, a few ap-
plications, and the

>
£ »
-
8
e
T *
-

Photo 1: A prototype of the versatile “Circuit Cellar Controller,” for-
mally called the Z8-BASIC Microcomputer. The printed-circuit board
measures 4 by 4% inches and has a 44-pin (two-sided 22-pin) edge con-
nector with contacts on 0.156-inch centers. A 2716 or 2732 EPROM
can be substituted for the Z6132 Quasi-Static memory, plugging into
the same socket.

ponent differs from the
garden-variety Z8601
chiefly in the contents
of the ROM set at the
factory. The pinout
specification of the
Z8671 is shown in
figure 1b, and the
package is shown in
photo 2 on page 41.
The Z8671 package
contains the processor
circuitry, 2 K bytes of
ROM (preprogrammed
with a tiny-BASIC in-
terpreter and a debug-
ging monitor), 32 I/0
lines, and 144 bytes of
programmable (read/
write) memory.

The operational ar-
rangement of memory-
address space is shown
in figure 1c. The inter-
nal read/write memory

steps involved in transferring a pro-
gram into an EPROM.

Single-Chip Microcomputers

The central component in the
Z8-BASIC Microcomputer is a
member of the Zilog Z8 family of
devices. The specific component
used, the Z8671, is just one of them.
Unlike a microprocessor, such as the
well-known Zilog Z80, the Z8 is a
single-chip microcomputer. It con-
tains programmable (read/write)
memory, read-only memory, and
1/O-control circuits, as well as cir-
cuits to perform standard processor
functions. Microprocessors such as

microcontroller applications and op-
timized for I/O processing. On a
40-pin dual-inline package, as many
as 32 of the pins can be I/O related. A
ROM-programmed single-chip
microcomputer used in an electronic
chess game might offer a thousand
variations in game tactics, but it
could not be reprogrammed as a
word processor. The ability to
reorient processing functions and
reallocate memory has generally been
the province of microprocessors, with
their memory-intensive architecture.

The Z8 architecture (shown in
figure 1la on page 40) allows it to
serve in either memory- or 1/O-

1-58

is actually a register file (illustrated in
figure 2) composed of 124 general-
purpose registers (R4 thru R127), 16
status-control registers (R240 thru
R255), and 4 1/O-port registers (RO
thru R3). Any general-purpose
register can be used as an accumula-
tor, address pointer, index register, or
as part of the internal stack area. The
significance of these registers will be
explained when I describe the tiny-
BASIC/Debug interpreter/monitor.
The 32 1/0 lines are grouped into
four separate ports and treated inter-
nally as 4 registers. They can be con-
figured by software for either input or
output and are compatible with

OUTPUT INPUT Ve GND

I I

XTAL AS DS R/W RESET

Hitt |

4 MACHINE_TIMING 8
PORT 3 < U INSTRUCTION CONTROL
UART K ALU
PROGRAM
FLAGS EmoRY"
2048 BY 8-BIT
TIMER/ —
COUNTERS
(2)
REG. POINTER ‘l [
INTERRUPT REGISTER FILE] PROGRAM
CONTROL C 124 BY 8-BIT COUNTER
PORT 2 PORT 0 PORT 1
ADDRESS OR 170 ADDRESS /DATA OR 1/0

170
{BIT PROGRAMMABLE)

(NYBBLE PROGRAMMABLE)

(BYTE PROGRAMMABLE)

Figure 1a: Block diagram of the Zilog Z8-family single-chip microcomputers. Their ar-
chitecture allows these devices to serve in either memory- or 1/ O-intensive applications.
This figure and figures 1b, Ic, 2, 3, and 4 were provided through the courtesy of Zilog

Inc.

LSTTL (low-power Schottky transis-
tor-transistor logic). In addition, port
1 and port 0 can serve as a multi-
plexed address/data bus for connec-
tion of external memory and
peripheral devices.

In traditional nomenclature, port 1
transceives the data-bus lines DO thru
D7 and transmits the low-order
address-bus signals A0 thru A7. Port
0 supplies the remaining high-order
address lines A8 thru A15, for a total
of 16 address bits. This allows 62 K
bytes of program memory (plus 2 K
bytes of ROM) to be directly ad-
dressed. If more memory is required,
one bit in port 3 can be set to select
another memory bank of 62 K bytes,
which is referred to as data memory.
In the Z8-BASIC Microcomputer
presented here, a separate data-
memory bank is not implemented,
and program and data memory are
considered to be the same.

The Z8 has forty-seven instruc-
tions, nine addressing modes, and six
interrupts. Using a 7.3728 MHz

crystal (producing a system clock rate
of 3.6864 MHz) most instructions
take about 1.5 to 2.5 us to execute.
Ordinarily, you would not be con-
cerned about single-chip-microcom-
puter instruction sets and interrupt
handling because the programs are
mask-programmed into the ROM at
the factory. In the Z8671, however,
only the BASIC/Debug interpreter is
preprogrammed. Using this inter-
preter, you can write machine-
language programs that can be ex-
ecuted through subroutine calls writ-
ten in BASIC. This feature greatly
enhances the capabilities of this tiny
computer and potentially allows the
software to control high-speed
peripheral devices. (A complete
discussion of the Z8 instruction set
and interrupt structure is beyond the
scope of this article. The documenta-
tion accompanying the Z8-BASIC
Microcomputer Board describes the
instruction set in detail.)

The final area of concern is com-
munication. The Z8 contains a full-

1-59

vee 1] ’ []40 P3¢
xtaLz 2]] 39 p3,
xTaLl 3[]]38 P2y
p3; 4[] []37 P2
P3g 5[] []36 pa2s
RESET 6 [] z8/40 35 P2,
R/W 7] (z8671)]34 P23
CE]33 P2,
s o] 132 P2y
p3s 0[] 131 P2y
eno 11[] []30 P33
P3p 12[] []29 P34
Pog 13[] [] 28 P17
Po; 14[] [] 27 p1g
Pop 5[] [] 26 r1s
po3 16 [] [] 25 P14
pog 17 []] 24 P13
Pos 18[]] 23 p1p
Pog 19 [] 22 Py
po; 20] 121 r1

Figure 1b: Pinout specification of the
Zilog 28671 microcomputer. The Z8671 is
a variant of the basic Z8601 component of
the Z8 family. The 28671 is used in this
project because it contains the
BASIC/Debug interpreter/monitor in
read-only memory. Other members of the
Z8 family are supplied in different
packages, chiefly to support system-
development work.

duplex UART (universal asyn-
chronous receiver/transmitter) and
two counter/timers with prescalers.
One of the counters divides the
7.3728 MHz crystal frequency to one
of eight standard data rates. With the
28671, these rates range between 110
and 9600 bps (bits per second) and
are switch- or software-selectable.

A block diagram of the serial-I’O
section is shown in figure 3. Serial
data is received through bit 0 of port
3 and transmitted from bit 7 of port 3.
While the Z8 can be set to transmit
odd parity, the Z8671 is preset for 1
start bit, 8 data bits, no parity, and 2
stop bits. Received data must have 1
start bit, 8 data bits, at least 1 stop
bit, and no parity (in this configura-
tion).

Quasi-Static Memory
A limiting factor in small controller

(DECIMAL) (DECIMAL)
65535 65535
(DECIMAL)
EXTERNAL 255
CONTROL_AND
o EXTERNAL STATUS REGISTERS
PROGRAMMABLE PROGRAMMABLE 240
(R/W) MEMORY (R/W) MEMORY NoT
IMPLEMENTED
127
GENERAL
2048 2048 REGISTERS
2047 2047
ON-CHIP NOT 4
ROM ADDRESSABLE 70 PORT 3
0 o REGISTERS
PROGRAM MEMORY DATA MEMORY PROGRAMMABLE
REGISTER MEMORY
(ON CHIP)

Figure 1c: The operational arrangement of memory-address space in the Z8 family. The
regions labeled “program memory” and “data memory” may map to the same physical
memory, or two separate banks may be used, selected through one bit of 1/0 port 3.
The internal programmable (read/write) memory is a register file containing 124
general-purpose registers, 16 status-control registers, and 4 I/O-port registers.

designs has always been the trade-off
between memory size and power con-
sumption. To keep the number of
components down and simplify con-
struction, a designer generally selects
a limited quantity of static memory.
Frequently, the choice is to use two
type-2114 1 K by 4 NMOS
(negative-channel metal-oxide
semiconductor) static-memory
devices. In practice, however, the
1 K-byte memory size thereby pro-
vided is rather limited. It would be
much better to expand this to at least
4 K bytes. Unfortunately, eight 2114
chips require considerably more
circuit-board space and consume
about 0.7 amps at +5 V. Not only
would this make the design ill suited
for battery power, it could never fit
on my 4- by 4%2-inch circuit board.

Another approach is to use
dynamic memory, as in larger com-
puters. Dynamic memory costs less,
bit for bit, than static memory and
consumes little power. Unfortunate-
ly, most dynamic-memory com-
ponents require three separate
operating voltages and special refresh
circuitry. Adding 4 K bytes of
dynamic memory would probably
take about twelve chips. The advan-
tages gained in reduced power con-
sumption hardly justify the expense
and effort.

The solution to this problem, sur-

prisingly enough, also comes from
Zilog, in the form of the Z6132
Quasi-Static Memory. The Z6132,
shown in photo 4 on page 43, is a
32 K-bit dynamic-memory device,
organized into 4 K 8-bit (byte-size)
words. It wuses single-transistor
dynamic bit-storage cells, but the
device performs and controls its own
data-refresh operations in a manner
that is completely invisible to the user
and the rest of the system. This
eliminates the need for external
refresh circuitry. Also, the Z6132 re-
quires only a +5 V power supply.
The result is a combination of the
design convenience of static memory
and the low power consumption of
dynamic memory. All 4 K bytes of
memory fit in a single 28-pin dual-in-
line package, which typically draws
about 30 milliamps.

An additional benefit in using the
Z6132 is that it is pin-compatible with
standard type-2716 (2 K by 8-bit)
and type-2732 (4 K by 8-bit)
EPROMs. This feature is extremely
beneficial when you are configuring
this Z8 board for use as a dedicated
controller. As previously mentioned,
the Z6132 can be removed and an
EPROM inserted in the low-order 24
pins of the same socket. Thus, any
program written and operating in the
Z6132 memory can be placed in a
nonvolatile EPROM. (There are some

1-60

LOCATION IDENTIFIERS
255{ STACK POINTER (BITS 7-0) sPL
254 STACK POINTER (BITS 15-8) SPH
253/ REGISTER POINTER RP
252{ PROGRAM CONTROL FLAGS FLAGS
251 INTERRUPT MASK REGISTER IMR
250(INTERRUPT REQUEST REGISTER |IRQ
249| INTERRUPT PRIORITY REGISTER |IPR
248| PORTS 0-1 MODE POIM
247| PORT 3 MODE P3M
246 PORT 2 MODE P2M
245| TO PRESCALER PREO
244| TIMER/COUNTER 0 T0
243 T1 PRESCALER PRE1
242| TIMER/COUNTER 1 T1
241{ TIMER MODE TMR
240 SERIAL 1/0 slo

NOT IMPLEMENTED

127

GENERAL PURPOSE

REGISTERS
4
3| PORT 3 P3
2| PORT 2 P2
1| PORT 1 3
o[PORT 0 PO

Figure 2: An expanded view of the
register-memory section of figure Ic,
showing the organization of the register
file. Any general-purpose register can be
used as an accumulator, address pointer,
index register, or as part of the internal
stack area.

Photo 2: The Zilog Z8671 single-chip
microcomputer, a member of the Z8

family of devices. This dual-inline
package contains the processor cir-
, cuitry, 2 K bytes of ROM, 32 I/O
lines, and 144 bytes of programmable
memory.

Photo 3: A photomicrograph of the silicon chip containing the working parts of a Z8 microcomputer.

Z8-BASIC Microcomputer power supply

Z8-BASIC Microcomputer
(Size: 2% by 4% inches)

The following items are available
Documentation ncludes:

from.

The MicroMint Inc Z8 Technical Manual, Z8 Product Provides: +5 V, 300 mA

917 Midway Specification +12 V, 50 mA
—12 'V, 50 mA

Z6132 Product Specification

Woodmere NY 11598
BASIC/Debug Manual

Assembled and tested....$35

Telephone.
(800) 645-3479 (for orders) Z8-BASIC Microcomputer Construc- Kit... $27
(516) 374-6793 (for technical information) tion/Operator’s Manual
Assembled and tested ...$170
Kit....$140

All printed-circuit boards are solder-masked and silk-screened.
The documentation supplied with the Z8 board includes approximately 200 pages of materials. It is available separately for $25. This

charge will be credited toward any subsequent purchase of the Z8 board
Please include $4 for shipping and handling. New York residents please include 7% sales tax.

1-61

_At a Glance

Name
Z8-BASIC Microcomputer

Processor

Zilog Z8-family Z8671 8-bit microcomput-
er with programmable (read/write)
memory, read-only memory, and I/O in a
single package. The Z8671 includes a

2 K-byte tiny-BASIC/Debug resident in-
terpreter in ROM, 144 bytes of scratch-
pad memory, and 32 I/0 lines. System
uses 7.3728 MHz crystal to establish clock
rate. Two internal and four external inter-
rupts.

VARRNE

Memory

Uses Z6132 4 K-byte Quasi-Static
Memory (pin-compatible with 2716 and
2732 EPROMs); 2 K-byte ROM in Z8671.
Memory externally expandable to 62 K
bytes of program memory and 62 K bytes
of data memory.

Photo 4: The Zilog Z6132 Quasi-Static Memory device, shown with the hood up.

Thi b o .. Input/Output
dy:,Sa ::;;r_z:::;r:::rty s;;f: 32 K bits in the form of 4 K bytes in invisibly refreshed Serial port: RS-232C-compatible and

switch-selectable to 110, 150, 300, 1200,
2400, 4800, and 9600 bps.

Parallel I/O: two parallel ports; one
dedicated to input, the other bit-

programmable as input or output; pro-
grammable interrupt and handshaking
lines; LSTTL-compatible.

External I/0: 16-bit address and 8-bit

bidirectional data bus brought out to ex-
pansion connector.

BASIC Keywords
GOTO, GO@, USR, GOSUB,
IF...THEN, INPUT, LET, LIST, NEW,

i g 3 REM, RETURN, RUN, STOP, IN,
3 C188>MAD €108 PRINT, PRINT HEX. Integer
VAR 111725 4 t e nd 1) arithmetic/logic/operators: +, —, /, *,
and AND; BASIC can call machine-
language subroutines for increased execu-
tion speed; allows complete memory and
register interrogation and modification.

Power-Supply Requirements

+5 V £5% at 250 mA

+12 V £10% at 30 mA

—12 V £10% at 30 mA

(The 12 V supplies are required only for
RS-232C operation.)

Dimensions and Connections

4- by 4Y;-inch board; dual 22-pin
(0.156-inch) edge connector. 25-pin RS-
232C female D-subminiature (DB-25S)
connector; 4-pole DIP-switch data-rate

lector.
Photo 5: The Z8-BASIC Microcomputer Board attached to a power supply. Power selector
can be supplied either through the separate power connector, as shown, or through Operating Conditions
the edge connector. Temperature: 0 to 50°C (32 to 122°F)
Humidity: 10 to 90% relative humidity
(noncondensing)

1-62

INTERNAL DATA BUS

<
R240 (READ)——j \l r——-nz«uwnnm
<
) TO INT P
RECEIVE LOAD TRANSMIT _"L%src ERRUPT
DATA R TERS SHIFT
REGISTER REGISTER
<
T0
INTERRUPT
rv_oc»c
1\/b
RECEIVE
P3, —] | o COUNTER/ PARITY
0 SIN S drer TIMER 0 CHECKER | Sout [*P37
PARITY DIVIDE DIVIDE
CHECKER BY 16 BY 16

Figure 3: Block diagram of the serial-1/O section of the Z8-family microcomputers. The
Z8 contains a full-duplex UART (universal asynchronous receiver/transmitter). The
data rates are derived from the clock-rate crystal frequency. Serial data is received
through bit 0 of port 3 and is transmitted from bit 7 of port 3. An interrupt is generated
within the Z8 whenever transmission or reception of a character has been completed.

110 R MEMRY TP ROUTINE
12 TN X, Y: "START AODRESS". X, */*, HEX(X); * HEX", " STOP
ALIRESS=" Y. "/* HEX(Y); * HEX"

INTHEX (B0),: TF XY THEN STOP

#1 GOTO 139

Photo 6: The Z8-BASIC Microcomputer in operation, communicating with a video
terminal (here, a Digital Equipment Corporation VT8E). A memory-dump routine,
written using the BASIC/Debug interpreter, is shown on the display screen. The
starting address of the dump is the beginning of the user-memory area; the hexa-
decimal values displayed are the ASCII (American Standard Code for Information
Interchange) values of the characters that make up the first line of the memory-dump
program.

1-63

limitations placed on the number of
subroutine calls and variables al-
lowed by this substitution because
variable data and return addresses
must be stored in the Z8's register
area instead of in external read/write
memory.)

Z8-BASIC Microcomputer

Figure 5 on pages 46 and 47 is the
schematic diagram of the seven-inte-
grated-circuit Z8-BASIC Microcom-
puter Board, shown in prototype
form, with a power supply, in photo
5. IC1 is the Z8671 microcomputer,
the member of the Z8 family that con-
tains Zilog's 2 K-byte BASIC/Debug
software in read-only memory. IC2 is
the Z6132 Quasi-Static Memory, and
IC3 is an 8-bit address latch. Under
ordinary circumstances, the Z6132 is
capable of latching its address inter-
nally, but IC3 is included to allow
EPROM operation. IC4 and IC5 form
a hard-wired memory-mapped input
port used to read the data-rate-
selection switches. IC6 and IC7 pro-
vide proper voltage-level conversion
for RS-232C serial communication.

The seven-integrated-circuit com-
puter typically takes about
200 milliamps at +5 V. The +12 V
and —12 V supplies are required
only for operating the RS-232C inter-
face. Power required is typically
about 25 milliamps on each.

The easiest way to check out the
Z8-BASIC Microcomputer after as-
sembly is to attach a user terminal to
the RS-232C connector (J2) and set
the data-rate-selector switches to a
convenient rate. I generally select
1200 bps, with SW2 closed and SW1,
SW3, and SW4 open. After applying
power, simply press the RESET push
button.

Pressing RESET starts the Z8's ini-
tialization procedure. The program
reads location hexadecimal FFFD in
memory-address space, to which the
data-rate-selector switches are wired
to respond. When it has acquired this
information, it sets the appropriate
data rate and transmits a colon to the
terminal. At this point, the Z8 board
is completely operational and pro-
grams can be entered in tiny BASIC.

Ag THRU A11 S

3!

T

REFRESH) ADDRESS cLOCK
ADDRESS — MULTIPLEX MEMORY ARRAY BUFFERS GENERATOR
COUNTER Y L1\ T ss BeconeR
] 128 SENSE AMPLIFIERS
)| BUFFERS (1 OF 128)
MEMORY ARRAY
—
: >
SE“NSE la—4
Ay COLUMN DECODER AMPLI- o
THRU (1 OF 16) :3 FERS "‘D DATA THRU
7 BY 8 DATA BUS 170 - BUFFERS o7
DRIVERS
_D MEMORY ARRAY
LA | MULTIPLEX ROW
Ag -+ INPUT |—»| DECODER | 128 SENSE AMPLIFIERS
L] ADDRESS (1 OF 128)
— Jerock BUFFERS
CS -»| GENERATOR MEMORY ARRAY
REFRESH
AC-—> DEMAND
LOGIC
(CYCLE
COUNTER)
BUSY

Figure 4: Block diagram of the Zilog Z6132 Quasi-Static Memory component. This innovative part stores 32 K bits in the form of
4 K bytes, using single-transistor dynamic random-access bit-storage cells, but all refresh operations are controlled internally. The
memory-refresh operation is completely invisible to the user and the other components in the system. The Z6132 draws about 30
milliamps from a single +5 V power supply.

(With the simple address selection
employed in this circuit, the data-rate
switches will be read by an access to
any location in the range hexadecimal
C000 thru FFFF. This should not un-
duly restrict the versatility of the
system in the type of application for
which it was designed.)

BASIC/Debug Monitor

I'll go into the features of the tiny-
BASIC interpreter in greater detail
next month, but I'm sure you are
curious about the capabilities present
in a 2 K-byte BASIC system.

Essentially an integer-math dialect
of BASIC, Zilog's BASIC/Debug
software is specifically designed for
process control. It allows examina-
tion and modification of any memory
location, I/O port, or register. The
interpreter processes data in both
decimal and hexadecimal radices and
accesses machine-language code as
either a subroutine or a user-defined
function,

BASIC/Debug recognizes sixteen
keywords: GOTO, GO@, USR,
GOSUB, IF..THEN, INPUT, IN,
LET, LIST, NEW, REM, RUN,
RETURN, STOP, PRINT, and
PRINT HEX. Standard syntax and
mathematical operators are used.

The 28 board is
not my idea of what
should be available;

it is available now.

Twenty-six numeric variables,
designated by the letters A thru Z, are
supported. Variables can be used to
designate program line numbers. For
example, GOSUB B*100 and GOTO
A*B*C are valid expressions.

In my opinion, the 2 K-byte inter-
preter is extremely powerful. Because
it operates easily on register and
memory locations, arrays and blocks
of data can be easily manipulated.

1-64

(Full appreciation of the Z8-BASIC
Microcomputer comes after a com-
plete review of the operating manuals
and a little experience. Documenta-
tion approximately 200 pages long is
supplied with the unit; the documen-
tation is also available separately.)

In Conclusion

It's easy to get spoiled using a large
computer as a simple control device. I
have heard of many inexpensive in-
terfaces that, when attached to any
computer, supposedly perform con-
trol and monitoring miracles. Fre-
quently overlooked, however, is the
fact that implementation of these in-
terfaces often requires the software-
development tools and hardware-
interfacing facilities of relatively large
systems. The Z8-BASIC Microcom-
puter, with its interpretive language,
virtually eliminates the need for cost-
ly development systems with memo-
ry-consuming text editors, assem-
blers, and debugging programs.

PORT 3

PORT 2

PORT 0

CONTROL

PORT 1

POWER

’r | SERIAL OUT(TTL)

| I
SERIAL IN (TTL)
>

B>

]

0

|

30

CRYSTAL

IO?F 7.3728MHz

10pF

e

(1

| B> 32

3 P

P0; POg POs PO4 PO3 PO, POy POg R/W

XTAL2 XTAL1

1c1
28671

Z8 MICROCOMPUTER
WITH BASIC /DEBUG

D

s Plg P

RESET &

SERIAL OUT (P37) 4

SERIAL IN (P3g)

Pl Pl3 Pl Plg Plg Ply

20 |19

18

17

16

S
15 |14 (13 8

~

9 21 |22 |23

24

25 (26 |27

28

N

| A0O/DO

| a1/01

| A2/D2

| A3/D3

o680 ©§

A4/D4

Y

| A5/D5

| A6/D6

000

| a7/07

+12V
SUPPLY

A

N

N

| 80
T~ 0#F TypicaL
| 25V FOR 3

1
I c8 <12

L v
T+ suppLY

+5V SUPPLY

U

c9

T
L ps

J1
CONNECTOR

0

—

21]24 j25 |27 11

Al0 A9 A8 WE DS Vcc Dp D

Ic2

26132

4K BY 8

PROGRAMMABLE (R/W) MEMORY

All Vss

Dy

BUSY

23

1[—-——1——1 L
‘RAMY}zzK T;isx ',;RAM

14

JUMPERS

1-65

If you need a proportional motor-
speed control for your solar-heating

J2 system, you don't have to dedicate
R2 MC1488 RS 232C :
K CONNECTOR your Apple II or shut off your heating
|"c1 IRE::: 2 coe B r S system when you balance your
2 2uF ¢) checkbook. From now on, there is a
f]? | > small, cost-effective microcomputer
J— wciass | +12v —I—D specifically designed for such applica-
RS o —ID tions. The Z8 board described in this
3670 1 ‘—lD article is not my idea of what should
vailable: it i .
{—) jl ,J;__LD be available; it is available now.
—I 1 g b)o! Next Month:
I Y 2 : I will elaborate on interfacing and
N : %}Rs I applications for the Z8-BASIC
| 74Ls10 | Microcomputer.®
L — |
+5V
.
ln 1(s1P) 9 Acknowledgment
> b 4.7K 1 Special thanks to Steve Walters and Peter
1 TYPICAL FOR 8 Brown of Zilog Inc for help in production of
16 17 CPEPPPEEP B, this article.
s ica Ay Bg | <X
6
2Y3 74Us244 2A3 s o | <H
7 5
2Y2 2A2 <37
2y, 2a,fH Ba | <3 Editor’s Note: Steve often refers to previous
12 1v, 1048 B3 | <3} Circuit Cellar articles as reference material for
14) 4 By | the articles he presents each month. These
1Y 1A J_F]
16 3 3 . B | articles are available in reprint books from
1Y 1A2— <J BYTE Books, 70 Main St, Peterborough NH
By | 8
18 1Yy 1A 2 (] <0 03458. Ciarcia’s Circuit Cellar covers articles
GROUND L appearing in BYTE from September 1977 thru
To —_ November 1978 Ciarcia’s Circuit Cellar,
SWI’I Volume Il presents articles from December
+5V 1978 thru June 1980.
sw2
veel22 sw3 DATA-RATE
0 o3 33 SELECTOR
—814p 7415373 ¢cs Swa
1315y ADDRESS o1uF L o7t
14 LATCH
6D
—Msp anpf
1815,
i
10 20 30 40 50 _6Q_7Q_8Q Figure 5: Schematic diagram of the Cir-
: !2 |5 6 [9 [12 [15 [16 [19 cuit Cellar Z8-BASIC Microcomputer.
Five jumper connections are provided so
different memory devices can be used. For
E— general-purpose use and program
development, the 4 K-byte Z6132
read/write memory device will be used;
for dedicated applications, two kinds of
EPROMs can be substituted in the same
integrated-circuit socket. Standard 450 ns
type-2716 or type-2732 EPROM chips can
Number Type 45V GND —12V +12V be used. The co;lmection labeled "%2 K
\C1 78671 1 11 should be closed if a type-2732 EPROM is
Ic2 76132 28 14 installed; the connection labeled “16 K"
IC3 7418373 20 10 should be closed for use of a type-2716
IC4 7418244 20 10 EPROM.
:gg K:&S 41808 4 ; 14 4 The pull-up resistors adjacent to IC4
IC7 MC1489 14 7 (the 7415244 buffer) are contained in a
SIP (single-inline package).

1-66

Build a Z8-Based Control
Computer with BASIC, Part 2

The Z8-BASIC Microcomputer
system described in this two-part
article is unlike any computer pre-
sently available for dedicated control
applications. Based on a single-chip
Zilog Z8 microcomputer with an on-
board tiny-BASIC interpreter, this
unit offers an extraordinary amount
of power in a very small package. It is
no longer necessary to use expensive
program-development systems. Com-
puter control can now be applied to
many areas where it was not
previously cost-effective.

The Z8-BASIC Microcomputer is
intended for use as an intelligent con-
troller, easy to program and inexpen-
sive enough to dedicate to specific
control tasks. It can also serve as a
low-cost tiny-BASIC computer for
general interest. Technical specifica-
tions for the unit are shown in the “At
a Glance” box.

Last month I described the design
of the Z8-BASIC Microcomputer
hardware and the architectures of the
Z8671 microcomputer component
and Z6132 32 K-bit Quasi-Static
Memory. This month I'd like to con-
tinue the description of the tiny-
BASIC interpreter, discuss how the
BASIC program is stored in memory,
and demonstrate a few simple appli-
cations.

Process-Control BASIC
The BASIC interpreter contained in

Copyright © 1981 by Steven A Ciarcia.
All rights reserved

Steve Ciarcia
POB 582
Glastonbury CT 06033

ROM (read-only memory) within the
Z8671 is officially called the Zilog
BASIC/Debug monitor. It is essen-
tially a 2 K-byte integer BASIC which
has been optimized for speed and
flexibility in process-control applica-
tions.

There are 15 keywords: GOTO,
GO@, USR, GOSUB, IF...THEN,
INPUT, IN, LET, LIST, NEW, REM,
RUN, RETURN, STOP, PRINT (and
PRINT HEX). Twenty-six numeric
variables (A through Z) are sup-
ported; and numbers can be ex-

-
i3
H

Photo 1: Z8-BASIC Microcomputer. With the two “RAM" jumpers installed, it is
configured to operate programs residing in the Z6132 Quasi-Static Memory. A
four-position DIP (dual-inline pin) switch (at upper right) sets the serial data rate
for communication with a user terminal connected to the DB-255 RS-232C con-
nector on the top center. The reset button is on the top left.

1-67

pressed in either decimal or hexadeci-
mal format. BASIC/Debug can
directly address the Z8's internal
registers and all external memory.
Byte references, which use the “@"
character followed by an address,
may be used to modify a single
register in the processor, an I/0 port,
or a memory location. For example,
@4096 specifies decimal memory
location 4096, and @ %F6 specifies
the port-2 mode-control register at
decimal location 246. (The percent
symbol indicates that the characters
following it are to be interpreted as a
hexadecimal numeral.) To place the
value 45 in memory location 4096,
the command is simply, @4096=45
(or @ %1000= %2D).

Command abbreviations are stan-
dard with most tiny-BASIC interpre-
ters, but this interpreter allows some
extremes if you want to limit program
space. For example:

IF 1> X THEN GOTO 1000
can be abbreviated
IF 1> X 1000

PRINT“THE VALUE IS ”;S

can be abbreviated

“THE VALUE IS ”;S

IFX=YTHENIF Y=Z

THEN PRINT “X=2Z"
can be abbreviated

IFX=YIFY=Z “X=2Z"

One important difference between
most versions of BASIC and Zilog's
BASIC/Debug is that the latter
allows variables to contain statement
numbers for branching, and variable
storage is not cleared before a pro-
gram is run. Statements such as
GOSUB X or GOTO A*E—Z are
valid. It is also possible to pass values
from one program to another. These
variations serve to extend the capa-
bilities of BASIC/Debug.

In my opinion, the main feature
that separates this BASIC from others
is the extent of documentation sup-
plied with the Z8671. Frequently, a
computer user will ask me how he can
obtain the source-code listing for the
BASIC interpreter he is using. Most
often, I have to reply that it is not
available. Software manufacturers
that have invested many man-years

parallel port on the Z8 board.

Photo 2: The Z8/Micromouth demonstrator. A Z8-BASIC Microcomputer is

configured to run a ROM-resident program that exercises the Micromouth speech
synthesizer presented in the June Circuit Cellar article. A Micromouth board
similar to that shown on the left is mounted inside the enclosure. Six pushbutton
switches, connected to a parallel input port on the Z8 board, select various
speech-demonstration sequences. The Micromouth board is driven from a second

_At a Glance

Name
Z8-BASIC Microcomputer

Processor

Zilog Z8-family Z8671 8-bit microcomput-
er with programmable (read/write)
memory, read-only memory, and 170 in a
single package. The Z8671 includes a

2 K-byte tiny-BASIC/Debug resident in-
terpreter in ROM, 144 internal 8-bit
registers, and 32 170 lines. System uses
7.3728 MHz crystal to establish clock
rate. Two internal and four external inter-
rupts.

Memory

Uses Z6132 4 K-byte Quasi-Static
Memory (pin-compatible with 2716 and
2732 EPROMs); 2 K-byte ROM in Z8671.
Memory externally expandable to 62 K
bytes of program memory and 62 K bytes
of data memory.

Input/Output

Serial port: RS-232C-compatible and
switch-selectable to 110, 150, 300, 1200,
2400, 4800, and 9600 bps.

Parallel I70: two parallel ports; one
dedicated to input, the other bit-
programmable as input or output; pro-
grammable interrupt and handshaking
lines; LSTTL-compatible.

External I/0: 16-bit address and 8-bit
bidirectional data bus brought out to ex-
pansion connector.

BASIC Keywords

GOTO, GO@, USR, GOSUB,
IF...THEN, INPUT, LET, LIST, NEW,
REM, RETURN, RUN, STOP, IN,
PRINT, PRINT HEX. Integer
arithmetic/logic operators: +, —, /, *,
and AND; BASIC can call machine-
language subroutines for increased execu-
tion speed; allows complete memory and
register interrogation and modification.

Power-Supply Requirements

+5 V £5% at 250 mA

+12 V £10% at 30 mA

—12 V £10% at 30 mA

(The 12 V supplies are required only for
RS-232C operation.)

Dimensions and Connections

4- by 4%2-inch board; dual 22-pin
(0.156-inch) edge connector. 25-pin RS-
232C female D-subminiature (DB-25S)
connector; 4-pole DIP-switch data-raie
selector.

Operating Conditions

Temperature: 0 to 50°C (32 to 122°F)
Humidity: 10 to 90% relative humidity
(noncondensing)

1-68

in a BASIC interpreter are not easily
persuaded to give away its secrets.
In most cases, however, a user
merely wants to know the location of
the GOSUB...RETURN address stack
or the format and location of stored
program variables. While the source
code for BASIC/Debug is also not
available (because the object code is
mask-programmed into the ROM,
you couldn’t change it anyway), the
locations of all variables, pointers,
stacks, etc, are fixed, and their stor-
age formats are defined and described
in detail. The 60-page BASIC/Debug
user’s manual contains this informa-
tion and is included in the 200 pages

FFFF
FFFD —— Data-rate switches
Remainder
undefined
C000
BFFF
User-memory and 1/O-
expansion area
8000
7FFF
undefined
2000
17FF

On-board 4 K bytes of read/write
memory or EPROM

800
TFF
BASIC/Debug ROM

100

FF

Z8 registers

00

Figure 1: A simplified hexadecimal

memory map of the Z8-BASIC Micro-
computer.

of documentation supplied with the
Z8-BASIC Microcomputer board.
(The documentation is also available
separately.)

Memory Allocation

Z8-family microcomputers distin-
guish between four kinds of memory:
internal registers, internal ROM, ex-
ternal ROM, and external read/write
memory. (A slightly different dis-
tinction can also be made between
program memory and data memory,
but in this project this distinction is
unnecessary.) The register file resides
in memory-address space in hexadeci-
mal locations O through FF (decimal 0
through 255). The 144 registers in-
clude four 1/0O- (input/output) port
registers, 124 general-purpose regis-
ters, and 16 status and control regis-
ters. (No registers are implemented in
hexadecimal addresses 80 through EF
[decimal addresses 128 through 239]).

The 2 K-byte ROM on the Z8671
chip contains the BASIC/Debug in-
terpreter, residing in address space
from address 0 to hexadecimal 7FF
(decimal 0 to 2047). External memory
starts at hexadecimal address 800
(decimal 2048). A memory map of the
Z8-BASIC Microcomputer system is
shown in figure 1.

When the system is first turned on,
BASIC/Debug determines how much
external read/write memory is avail-
able, initializes memory pointers, and
checks for the existence of an auto-
start-up program. In a system with
external read/write memory, the top
page is used for the line buffer,
program-variable storage, and the
GOSUB...RETURN address stack.
Program execution begins at hexadec-
imal location 800 (decimal 2048).

When BASIC/Debug finds no ex-
ternal read/write memory, the inter-
nal registers are used to store the vari-
ables, line buffer, and GOSUB...RE-
TURN stack. This limits the depth of
the stack and the number of variables
that can be used simultaneously, but
the restriction is not too severe in
most control applications. In a sys-
tem without external memory, auto-
matic program execution begins at
hexadecimal location 1020 (decimal
4128).

1-69

In a system that uses an external
2 K-byte EPROM (type 2716), wrap-
around addressing occurs, because
the state of the twelfth address line on
the address bus (A11) is ignored. (A
4 K-byte type-2732 EPROM device
does use A11.) A 2716 EPROM de-
vice inserted in the Z6132’s memory
socket will read from the same mem-
ory cells in response to accesses to
both logical hexadecimal addresses
800 and 1000. Similarly, hexadecimal
addresses 820 and 1020 will be treated
as equivalent by the 2716 EPROM.
Therefore, when a 2 K-byte 2716
EPROM is being used, the auto-start
address, normally operating at hexa-
decimal 1020, will begin execution of
any program beginning at hexadeci-
mal location 820. For the purposes of
this discussion, you may assume that
programs stored in EPROM use type-
2716 devices and that references to
hexadecimal address 820 also apply
to hexadecimal address 1020.

Program Storage

The program-storage format for
BASIC/Debug programs is the same
in both types of memory. Each
BASIC statement begins with a line
number and ends with a delimiter. If
you were to connect a video terminal
or teletypewriter to the RS-232C
serial port and type the following
line:

100 PRINT “TEST”

it would be stored in memory begin-
ning at hexadecimal location 800 as
shown in listing 1.

The first 2 bytes of any BASIC
statement contain the binary equiva-
lent of the line number (100 decimal
equals 64 hexadecimal). Next are
bytes containing the ASCII (Ameri-
can Standard Code for Information
Interchange) values of characters in
the statement, followed by a delimiter
byte (containing 00) which indicates
the end of the line. The last statement
in the program (in this case the only
one) is followed by 2 bytes containing
the hexadecimal value FFFF, which
designates line number 65535.

The multiple-line program in listing
2 further illustrates this storage for-
mat.

One final example of this is il-
lustrated in listing 3. Here is a pro-
gram written to examine itself. Essen-
tially, it is a memory-dump routine
which lists the contents of memory in
hexadecimal. As shown, the 15-line
program takes 355 bytes and occupies
hexadecimal locations 800 through
963 (decimal 2048 through 2499). I
have dumped the first and last lines of
the program to further demonstrate
the storage technique.

I have a reason for explaining the
internal program format. One of the
useful features of this computer is its
ability to function with programs re-
siding solely in EPROM. However,
the EPROMs must be programmed

The first application I had for the
unit was as a demonstration driver
for the Micromouth speech-processor
board I presented two months ago in
the June issue of BYTE. (See “Build a
Low-Cost Speech-Synthesizer Inter-
face,” in the June 1981 BYTE, page
46, for a description of this project,
which uses National Semiconductor’s
Digitalker chip set.) It's hard to dis-
cuss a synthesized-speech interface
without demonstrating it, and I didn't
want to carry around my big com-
puter system to control the Micro-
mouth board during the demonstra-
tion. Instead, I quickly programmed
a Z8-BASIC Microcomputer to per-
form that task. While I was at it, I set

Listing 1: Simple illustration of BASIC program storage in the Z8-BASIC Microcom-

puter.
100 P R I N
800 00 64 50 52 49 4E
E S T "

T
54 20 22 54

Listing 2: A multiple-line illustration of BASIC program storage.

100 A=5
200 B=6
3005 “A*B=";A"B

100 A = §
800 00 64 4 33D 35 00
8 3005 “ A
80A 3 0 0B BD 22 41
H A * B
3B

814 41 2A 42 00 FF

externally. While I will explain how
to serially transmit the contents of the
program memory to an EPROM pro-
grammer, some of you may have on-
ly a manual EPROM programmer or
one with no communication facility.
But if you are willing to spend the
time, it is easy to print out the con-
tents of memory and manually load
the program into an EPROM device.

Dedicated-Controller Use

The Z8-BASIC Microcomputer can
be easily set up for use in intelligent
control applications. After being
tested and debugged using a terminal,
the control program can be written
into an EPROM. When power is ap-
plied to the microcomputer, execu-
tion of the program will begin auto-
matically.

00 C8 42 3D
2A 42 3 22

FF

it up to demonstrate itself as well.

The result (see photo 2) has three
basic functional components. On top
of the box is a Z8-BASIC Microcom-
puter (hereinafter called the “Z8
board”) with a 2716 EPROM installed
in the memory integrated-circuit
socket, the Z8-board power supply
(the wall-plug transformer module is
out of view), and six pushbutton
switches. Inside the box is a proto-
type version of the Micromouth
speech-processor board (a final-ver-
sion Micromouth board is shown on
the left).

The Micromouth board is jumper-
programmed for parallel-port opera-
tion (8 parallel bits of data and a
data-ready strobe signal) and con-
nected to I/0 port 2 on the Z8 board.
The Micromouth BUSY line and the

1-70

six pushbuttons are attached to 7 in-
put bits of the Z8 board’s input port
mapped into memory-address space
at hexadecimal address FFFD
(decimal 65533).

The most significant 3 bits of port
FFFD are normally reserved for the
data-rate-selector switches, but with
no serial communication required,
the data rate is immaterial and the
switches are left in the open position.
This makes the 8 bits of port FFFD,
which are brought out to the edge
connector, available for external in-
puts. In this case, pressing one of the
six pushbuttons selects one of six
canned speech sequences.

Coherent sentences are created by
properly timing the transmission of
word codes to the speech-processor
board. This requires nothing more
than a single handshaking arrange-
ment and a table-lookup routine (but
try it without a computer sometime).
The program is shown in listing 4a.

The first thing to do is to configure
the port-2 and port-3 mode-control
registers (hexadecimal F6 and F7, or
decimal 246 and 247). Port 2 is bit-
programmable. For instance, to con-
figure it for 4 bits input and 4 bits out-
put, you would load FO into register
F6 (246). In this case, I wanted it con-
figured as 8 output bits, so I typed in
the BASIC/Debug command @246=0
(set decimal location 246 to 0).

The data-ready strobe is produced
using one of the options on the Z8's
port 3. A Z8 microcomputer has
data-available and input-ready hand-
shaking on each of its 4 ports. To set
the proper handshaking protocol and
use port 2 as | have described, a code
of hexadecimal 71 (decimal 113) is
placed into the port-2 mode-control
register. The BASIC/Debug com-
mand is @247= 113. The RDY2 and

DAV2 lines on the Z8671 are con-
nected together to produce the data-
available strobe signal.

Lines 1000 through 1030 in listing
4a have nothing to do with demon-
strating the Micromouth board. They
form a memory-dump routine that il-
lustrates how the program is stored in
memory. You notice from the mem-
ory dump of listing 4b that the first
byte of the program, as stored in the

ROM, begins at hexadecimal location
820 (actually at 1020, you remember)
rather than 800 as usual. This is to
help automatic start-up. The program
could actually begin anyplace, but
you would have to change the pro-
gram-pointer registers (registers 8 and
9) to reflect the new address. The 32
bytes between 800 and 820 are re-

served for vectored addresses to op-
tional user-supplied I/O drivers and
interrupt routines.

Programming the EPROM

The first EPROM-based program I
ran on the Z8-BASIC Microcomputer
was manually loaded. I simply
printed out the contents of the Z6132

Listing 3: A program (listing 3a) that examines itself by dumping the contents of mem-
ory in printed hexadecimal form. Listing 3b shows the first and last lines of the program

as dumped during exzcution.

(3a)

100 FRINT"ENTER START ADDRESS FOR HEX DUMF *35 $INFUT X
102 PRINV'THE L1ST IS HOW MANY BYTES LONG *3#:INFUT C

103
105
107
110
120
130
140
150
180
200
250
300
310

PRINTIFRINT

B=X+8 (A=X+C
PFRINT*AODRESS

FRINT HEX (X)3* 'y
GOSUER 300

X=Xt1

IF X=R THEN GOTO 180
GOTO 120

IF X&==A THEN 250

FRINT!STOF

FRINT HEX (@X)5§¢
RETURN

FRINT®

(3b)

DATA® IPRINT

FRINTIPRINT (B=X+8:G010 110

.
k4

:RUN

ENTER START ADDRESS FOR HEX DUMP ? 2048

THE LIST IS HOW MANY BYTES LONG ? 30

ADDRESS DATA
100 P R I

800 0 64 50 52 49

E N T E R
808 45 4E 54 45 52

A R T sp A
810 4 52 54 20 41

E S S sp F
818 45 53 53 20 46
:RUN

S0RUBI &=
SwRogwugn
Bg8wE AN =

ENTER START ADDRESS FOR HEX DUMP ? 2360

THE LIST IS HOW MANY BYTES LONG ? 45

ADDRESS DATA
o P 300
938 4F 50 0 1 2C
N T ssp H E
940 4E 54 20 48 45
@ X) : :
948 40 58 29 3B 3A
I N T “ sp
950 49 4E 54 22 20
310 R E
958 0 1 336 52 45
N 85535
960 4E 0 FF FF 0

28383 8x8~
3]
N

o
o
o

memory using the program of listing
3 and entered the values by hand into
the EPROM programmer. This is fine
once or twice, but you -certainly
wouldn’t want to make a habit of it.
Fortunately, there are better alterna-
tives if you have the equipment,

Many EPROM programmers are
peripheral devices on larger computer
systems. In such cases, it is possible to
take advantage of the systems’ capa-
bilities by downloading the Z8 pro-
gram directly to the programmer.

The programmer shown in photo 3
is a revised version of the unit I
described in a previous article, “Pro-
gram Your Next EROM in BASIC”
(March 1978 BYTE, page 84). It was
designed for type-2708 EPROMs, but
I have since modified it to program
2716s instead. All I had to do was
lengthen the programming pulse to
50 ms and redefine the connections to
four pins on the EPROM socket. It
still is controlled by a BASIC pro-
gram and takes less-than 222 minutes
to program a type-2716 EPROM de-
vice. Refer to the original article for
the basic design.

Normally, the LIST function or
memory-dump routine cannot be
used to transmit data to the EPROM
programmer because the listing is
filled with extraneous spaces and car-
riage returns. It is necessary to write a
program that transmits the contents
of memory without the extra charac-
ters required for display formatting.
The only data received by the
EPROM programmer should be the
object code to load into the EPROM.

In writing this program we can take
advantage of the Z8's capability of
executing machine-language pro-
grams directly through the USR and
GO@ commands. The serial-input
and serial-output subroutines in the
BASIC/Debug ROM can be executed
independently using these com-
mands. The serial-input driver starts
at hexadecimal location 54, and the
serial-output driver starts at hexadec-
imal location 61. Transmitting a sin-
gle character is simply done by the
BASIC statement

GO@ %61,C

where C contains the value to be

transmitted. A serial character can be
received by

C=USR (%54)

where the variable C returns the
value of the received data.

To dump the entire contents of the
Z6132 memory to the programmer,
the statements in listing 5 should be

included at the end of your program.

Execution begins when you type
GOTO 1000 as an immediate-mode
command and ends when all 4 K
bytes have been dumped. The trans-
mission rate (110 to 9600 bps) is that
selected on the data-rate-selector
switches.

Conceivably, this technique could
also be used to create a cassette-stor-

Listing 4: A program (listing 4a) that demonstrates the functions of the Micromouth
speech synthesizer, operating from a type-2716 EPROM. The simple 1/O-address
decoding of the Z8 board allows use of the round-figure address of 65000. The program
uses a table of vocabulary pointers that has been previously stored in the EPROM by
hand. Listing 4b shows a dump of the memory region occupied by the program, prov-
ing that storage of the BASIC source code starts at hexadecimal location 820.

(4a)

100 @246=0:@247=113

110 X=@65000 :A=%1400

120 IF X=254 THEN @2=0

130 IF X=253 THEN GOTO 500

140 IF X=251 THEN A=A+32 :GOTO 500

150 IF X=247 THEN A=A+64 :GOTO 500

160 IF X=239 THEN A=A+96 :GOTO 500

170 IF X=223 THEN A=A+128 :GOTO 500

180 IF X=222 THEN N=0 :GOTO 300

200 GOTO 110

300 @2=N :N=N+1 :IF N=143 THEN 110

310 IF @65000<129 THEN 310

320 GOTO 300

500 @2=@A :A=A+1

510 IF @65000<129 THEN 510

520 IF @A=255 THEN GOTO 110

530 GOTO 500

1000 Q=2048

1005 w=0

1010 PRINT HEX(@Q),:Q0=0+1

1015 w=w+l1 :IF W=8 THEN PRINT" ":GOTO 1005
1020 IF Q=4095 THEN STOP

1030 GOTO 1010

(4b)

:goto 1000

FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
0 64 40 32 34 36
3A 40 32 34 37 3D
33 0 0 6E 58 3D
35 30 30 30 20 3A
25 31 34 30 30 0
49 46 20 58 3D 32
20 54 48 45 4E 20
0! AT 1015

.

1-72

age capability for the Z8 board. In
theory, a 3- or 4-line BASIC program
can be entered in high memory (you
can set the pointer to put the program
there) to read in serial data and load it
in lower memory. Changing the pro-
gram pointer back to hexadecimal
800 allows the newly loaded program
to be executed. Since the Z8-BASIC
Microcomputer already has a serial
170 port, any FSK (frequency-shift
keyed) modem and cassette-tape re-
corder can be used for cassette data
storage.

1/0 for Data Acquisition

Data acquisition for process con-
trol is the most likely application for
the Z8-BASIC Microcomputer. Low-
cost distributed control is practical,
substituting for central control per-
formed by a large computer system.
Analog and digital sensors can be
read by a Z8-BASIC Microcomputer,
which then can digest the data and re-
duce the amount of information (ex-
periment results or control param-
eters) stored or transmitted to a cen-
tral point. Control decisions can be
made by the Z8-BASIC Microcom-
puter at the process locality.

The Z8 board can be used for
analog data acquisition, perhaps us-
ing an A/D (analog-to-digital) con-
verter such as that shown in figure 2.
This 8-bit, eight-channel A/D con-
verter has a unipolar input range of 0
to +5V (although the A/D in-
tegrated circuit can be wired for
bipolar operation), with the eight
output channels addressed as 1/O
ports mapped into memory-address
space at hexadecimal addresses BFOO

FF FF
FF FF
FF FF
FF FF
3D 30
31 31
40 36
41 3D
0 78
35 34

Listing 5: BASIC statements that print out
the entire contents of the 4 K bytes of user
memory, for use with a communicating
EPROM programmer.

1000 X= %800 :REM BEGINNING OF
USER MEMORY

1010 GO@ %61,@X :REM TRANSMIT
CONTENTS OF LOCATION X

1020 X=X+1 :IF X=%1801 THEN
STOP

1030 GOTO 1010

Listing 6: A simple BASIC program seg-
ment to demonstrate the concept of the
“black box"” method of modifying data be-
ing transmitted through the Z8-BASIC
Microcomputer.

100 @246=0:@247=113 :REM SET PORT
2 TO BE OUTPUT

110 @2=X :REM X EQUALS THE DATA
TO BE TRANSMITTED

through BF07 (decimal 48896 through
48903). When the Z8671 performs an
output operation to the channel ad-
dress, the channel is initialized for ac-
quiring data, while data is read from
the channel when the Z8671 performs
an input operation on the channel’s
address.

Intelligent Communication

Another possible use for the
Z28-BASIC Microcomputer is as an in-
telligent “black box” for performing
predetermined modification on data
being transmitted over a serial com-
munication line., The black box has
two DB-25 RS-232C connectors, one
for receiving data and the other for
retransmitting it. The intelligence of
the Z8-BASIC Microcomputer, acting
as the black box, can perform prac-
tically any type of filtering, condens-
ing, or translating of the data going
through.

Perhaps you have an application
where continuous raw data is trans-
mitted, but you would rather just
keep a running average or flag devia-
tions from preset limits at the central
monitoring point rather than contend
with everything. The Z8 board can be
programmed to digest all the raw
data coming down the line and pass
on only what's pertinent.

Another such black-box applica-
tion is to use the Z8 board as a printer
buffer. Photo 4 shows the interface
hardware of one specific application,

PN
o
Z:
N

[
mox

Qs
%
5

Photo 3: Type-2716 EPROM programmer, adapted from “Program Your Next
EROM in BASIC” (March 1978 BYTE, page 84). The circuit, which is driven
through parallel ports, programs a 2716 in about 2%: minutes and is controlled by
a BASIC program.

P T R R s 2 2 L S Ed o tdoitde

Photo 4: A three-integrated-circuit hardwired serial output port for the
Z8-BASIC Microcomputer. Connected to port 2, any program data sent to
register 2 will be transmitted serially at the data rate selected on the four-position
DIP switch (between 50 to 19200 bps). The Z8 board, configured with two serial
ports, is used to process raw data moving through it. Data is received on one
side, digested, and retransmitted in some more meaningful form from the other
port. Such a configuration could also be used to connect two peripheral devices
that have radically different data rates.

1-73

R/W [20>-

Mer 1
| 74Lsoa i INPUT CHANNELS
nol26
55 1Nz T ———— ! . Jo
2z
A15[S> I |2 1c1 | 3%isoe I N 28 !
|3 " | 3| ic2 741504 I INp————————————— <2
A“ 7atsa0 | NGB | 2 s —<J3 | anALoG
3T> | | 4 | 1 sl, INPUTS
A | I s 3 3) ¢ uT wep— s [0TOS5V
A2[Y)
> | | e | 22, .] E O |
Al [@>—o 8 | L 4 -
l In LS 4 e ¢ +12v
AloDl | | &) ¢ $1START 1] - — e [
a9 > I '12 |
I | | I———
' | Ic5
: | ADC0808
L
l | +Veer
: } Vee
_ 6
As @ﬁw ENABLE
| | 1C4
[7415373
3D 3q L
2D 2 2008
b 10}2 25100 A s
QUTPUT CTRL
1
L 1c7
. 74L500
A0/D0 < T>— DO 9
14 10 8
A1/D1 <I0> D1 CLOCK| 10
A2/D2 <1T> 1515,
03 <8 8lbs 1K 1K
5 18
D4 <5} D4 — <7 — ﬁl
05 <B— 1915 74LS00 |
= e
D7 27 2 |
GND__"VREF i
In 16 680pF
|
77 X500k Hz 2l
— m—
Number Type +5V GND +12V
IC1 74LS04 14 7 Figure 2: Schematic diagram of an A/D
IC2 74LS30 14 7 converter. This 8-bit, eight-channel unit
IC3 741802 14 7 has a unipolar input range of 0 to +5V,
IC4 74LS373 20 10 with the eight output channels addressed
:gg Afsggga see schemitlc dlag;am as 1/0 ports mapped into memory-
17 74LS00 14 7 address space at hexadecimal addresses
BF00 through BF07.

which I used to attach a high-speed
computer to a very slow printer. The

host computer transmitted data to the
78 boarr] at 4800 bns. Since the re-

rd at 4800 bps. Since the re
ceiving serial port used had to be bidi-
rectional to handshake with the host
computer, I added another serial out-
put to the Z8 board for transmitting
characters to the printer. Only three

integrated circuits were required to
add a serial output port. A schematic
diagram is shown in figure 3. The

UART (universal asynchronous re-
UANL junlversa: asyncnronous re

ceiver/transmitter, shown as IC1) is
driven directly from port 2 on the Z8
board (port 2 could also be used to
directly drive a parallel-interface
printer), and IC2 supplies the clock

1-74

signal for the desired data rate. Of
course, the UART could have been
attached to the data and address

but this was easier

CuUt s W Si€er.

buses directly
vuses airectly,

Transmitting a character out of this
serial port requires setting the port-2
and port-3 mode-control registers as
before. After that, any character sent
to port 2 will be serially transmitted.

DB-25
CONNECTOR
I

) P3;[39> . 3 |
NG s IR D B>\ ps-2szc
P3g[a0> Ic1 L5V !) ouTPuT
COM2017 E—D,
UART csl34 !
S £
R E
ns2[3L
P2y 2> 261151 a1 28
P2 | [[T> 21102 epsf32 A
P2, [[> 2811p3 xR A
P23 [I5> 231 1p4 GND % -
30 |
P2, 16> TD5 2 I8 2
P2 [a1l o6 STRSTT
P2 [{E> 2]107 Tep 4o E1EN R Swi
P2, [[3> 334 1p8 47K $
a sw2
Rsots 8 DATA-RATE
3
6 47K S sw3 GENERATOR
R¢ o——9
47K
I swa]
Number Type +5V GND -12V +12V XTAL1 XTAL2 h

IC1

COM2017 1 3 2
COM5016 2 11
COM1488 7

1C2
IC3

Figure 3: Schematic diagram of an RS-232C serial output port for the “black box" communication application of the Z8-BASIC

Microcomputer. The

28671 must be configured by software

to provide

the proper signals:

one such signal,

DAV2, is derived from two bits of 1/O port 3 on the Z8671. The pin numbers shown in the schematic diagram for P3, and P3s are
pins on the Z8671 device itself, not pins or sections on the card-edge connector, as are P2, through P2,.

ates moavaYs 12 - 1

WOTS TRENS

2
vy

Photo 5: When the Z8-BASIC Microcomputer is used with a ROM-resident pro-
gram, the two jumpers used with the Z6132 are removed, and the EPROM
jumper is installed instead. When using a type-2716 16 K-bit (2 K-byte) EPROM
device, the “16 K" jumper is installed. If a type-2732 32 K-bit (4 K-byte) EPROM
is used instead, the “32 K" jumper is installed. The EPROM is inserted in the
lower 24 pins of the 28-pin 26132 socket (IC2) as shown.

The minimum program to perform
this is shown in listing 6. This circuit
can also be used for downloading
programs to the EPROM programmer.

In Conclusion

It is impossible to describe the full
potential of the Z8-BASIC Micro-
computer in so few pages. For this
reason, considerable effort has been
taken to fully document its character-
istics. I have merely tried to given an
introduction here.

I intend to use the Z8-BASIC
Microcomputer in future projects. I
am interested in any applications you
might have, so let me know about
them, and we can gain experience
together.

Special thanks to Steve Walters and Peter
Brown of Zilog Inc for their aid in producing
these articles.

BASIC/Debug is a trademark of Zilog Inc.

1-75

Z8671 Seven Chip
Computer

Zilog

Hardware
Application Note

September 1981

INTRODUCTION

The 78601 is a single-chip microcomputer with four
8-bit 1/0 ports, two counter/timers with asso-
ciated prescalers, asynchronous serial communica-
tion interface with programmable baud rates, and
sophisticated interrupt facilities. The Z8601 can
access data in three memory spaces: 2K bytes of
on-chip ROM and 62K bytes of external program
memory, 144 bytes of on-chip Register, and 62K
bytes of external data memory.

The 78671 is a 78601 with a Basic/Debug Inter-
preter and Debug monitor preprogrammed into the 2K
bytes of on-chip ROM. This application note
discusses some considerations in designing a
low-complexity board that runs the Basic/Debug
Interpreter and Debug monitor with an external 4K
bytes of RAM and 2K bytes of ROM. The board
stands alone, allowing users to connect it with a
terminal via an RS232 connector and run the
Basic/Debug Interpreter.

The user of this board can run Basic/Debug with
little knowledge of the Z8601. The board, how-
ever, derives its power through its ability to
execute assembly language programs. To use the
board to its full potential, the Z8 Technical

Manual (document #03-3047-02) and the Z8 PLZ/ASM

Manual (document #03-3023-03) should be read. The
78 Basic/Debug Software Reference Manual (document
#03-3134-00) provides general information, state-
ment syntax, memory allocations, and other mate-
rial regarding Basic/Debug and the Debug monitor
provided by the Z8671. There are also two docu-
ments describing the Z6132; these are the 76132
Product Spec¢ification (document #00-2028-A), and
the Interfacing to the 76132 Intelligent Memory

Application Note (document #00-2102-A).

Basic/Debug

Basic/Debug is a subset of Dartmouth Basic, which
interprets Basic statements and executes assembly
language programs located in memory. Basic/Debug
can implement all the Dartmouth Basic commands
directly or indirectly.

One advantage to programming in Basic/Debug 1s the
interactive programming approach realized because
Basic/Debug 1s interpreted, not assembled or com-
piled. Modules are tested and debugged using the
interactive monitor provided with Basic/Debug.
Using Basic/Debug saves program development time
by providing higher-level language statements that
simplify program development. Using the INPUT and
PRINT statements simplify debugging.

The 78671 Microcomputer

Basic/Debug controls the memory interface, serial
port, and other housekeeping functions performed
by the assembly language programmer.

The 78671 uses ports 0 and 1 for communicating
with external memory. Port 1 provides the multi-
plexed address/data lines (ADg-AD7); port O sup-
plies the upper address bits (Ag-Ai5). The 78671
also uses the serial communications port for com-
municating with a terminal. Serial communication
takes two pins from port 3, leaving six 1/0 pins
from port 3 available to the user. The serial
communication interface uses one of the two
counter/timers on the Z8671 chip.

All other functions and features on the Z8601 are
avallable with the Z8671. The user may recon-
figure the Z8671 in software as a 78601 if
desired.

Applying the 78671

Applications of the 78671 range from a low-
complexity home microcomputer that is memory
intensive to an 1nexpensive, I/0-oriented micro-
controller.

For home computer users, Basic/Debug is used like
other available Basic interpreters. The 28671,
however, has many advantages over other computers.
For example, the programmer can use the available
functions such as interrupts to perform sophis-
ticated tasks that are beyond the scope of other
computer products. There is also a counter/timer

751-1927-0002

6/18/81

that is used as a watchdog counter, a time-of-day
clock, a variable pulse width generator, a pulse
width measurement device, and a random number
generator.

As an inexpensive microcontroller, Basic/Debug
speeds program development time by calling assem-
bly language subroutines (for time critical
applications) and by supplying high-level Basic
language statements that simplify the programming
of noncritical subroutines.

ARCHITECTURE
Two major design goals were set for this 78671
Basic board. First, the board was to be simple.
Second, the board needed to allow the user to
write Basic programs and to utilize the features
of the Z8601.

Overview

The board has seven IC packages:

e 78671 (28601 preprogrammed with
Basic/Debug)

e 26132 (4K bytes of pseudo-static RAM)

® 2716 (2K bytes of EPROM)

e 1488 (RS232 line driver)

e 1489 (RS232 line receiver)

e 74L.504 (Hex inverter)

® 74LS373 (octal latch)

With these chips, a complete microcomputer system
can be built with the following features:

® 2K byte Basic/Debug interpreter in the inter-
nal ROM.

e 4K bytes of user RAM.

® 2K bytes of user-programmable EPROM.

e Full-duplex serial operation with programmable
baud rates.

® RS232 interface.

e 8-bit counter/timer with associated 6-bit
prescalers.

e 124 general-purpose registers internal to the
78671.

e 14 1/0 lines available to the user.

e 3 lines for external interrupts.

e 3 sources of internal interrupts.

e Sophisticated, vectored interrupt structure
with programmable priority levels. Each can
be individually enabled or disabled, and all
interrupts can be globally enabled or
disabled.

e External memory expansion up to 124K bytes.

e Memory-mapped 1/0 capabilities.

This microcomputer can be used as a microcon-
troller, in which case a terminal is attached,
via the RS232 interface, and Basic/Debug is used
to create, test, and debug the system. When the
system is debugged, the program is put into the
EPROM, the terminal disconnected, and the board
run standing alone. The terminal can be reat-

tached at any time to monitor the subroutines
running on the board.

This proposed board meets the design requirements
of simplicity and of allowing the user to write
and debug programs in Basic while maintaining
access to the Z8671 on-chip features.

Interfacing the 78671 with External Memory

Both RAM and ROM are used in this application for
program development and to demonstrate the use of
components with and without address latches.

The RAM interface is easy to implement when using
a 26132 (Figure 1). No external address latch is
needed because the Z6132 latches the address
internally. The 26132 signals WE (Write Enable),
DS (Data Strobe), and AC (Address Clock) are wired
directly to the Z8671 signals R/W (Read/ Write),
DS (Data Strobe), and AS (Address Strobe). The
only other signal required is CS (Chip Select).
CS is provided by the Z8671 by decoding the upper
address bit of port 0. This board uses address
bit 15 to select the chip. Since there are two
memory chips on this board, the upper address bit
ensures that the Z6132 is selected for addresses
800-7FFF (Hex) and that the 2716 is selected by
addresses 8000-FFFF (Hex).

There are two major advantages to wusing the
76132, The interface to the Z8671 is uncompli-
cated because both components are Z-BUS'" compat-
ible, and it provides 4K bytes of RAM in one
package.

The ROM interface is not as simple as the inter-
face to the Z6132. Nevertheless, the circuit is
common in microcomputer applications. The ROM
does not latch the address from the Z8671 and
therefore needs an external address latch. The
74LS373 latches the address for the 2716 EPROM.
The Enable pin on the 74LS373 is driven by the AS
signal via an inverter. The EPROM is also
selected by the upper address nibble of port O.
Figure 2 shows the 7Z8671-to-2716 interface.

Interfacing the Z8671 with RS232 Port

The 78671 uses its serial communication port to
communicate with the RS232 port. Driver and
receiver circuits are required to supply the
proper signals to the RS232 interface. The circuit
of Figure 3 shows the interface between the Z8671
and the 1488 and 1489 for serial communication via
the RS232 interface.

The serial interface does not use the control
signals Clear to Send, Data Set Ready, etc. It
uses only Serial In, Serial Out and Ground, so it
is a very simple interface.

The Z8671 uses one timer and its associated pre-
scaler for baud rate control. When the 78671 is
reset, it reads location FFFD and uses the byte

751-1927-0002

6/18/81

Z8671

28671 26132
PORT 1o] 21 _ADo 10} Ao Dol
PORT 14|22 AD: 9] a4 o, 12
. PORT 12| 23 AD2 8] A2 D113
PORT 13}24 AD3 7] A3 D3 |15
PORT 1425 AD4 8] As e 18
PORT 15|26 ADs 5] As os 17
PORT 1] 27 __ADs 4] Ag e |18)
PORT 1,} 28 AD7 3] Ar o, |19)
PORT 0pL13__As 25} Ag
PORT oy | 14__ A9 24] A
PORT 02| 15__A10 21] Ao
PORT 03 16 A1q 231 Aqq
PORT 07| 20__At5 2lss
RWH 2 WE
iy T 2155
is 26},
Ves
2 %o.w F CERAMIC
Figure 1. The Z8671 and Z6132 Interface
5sl8
20
74L8373 OE
PORT 1 |21 220 a0 Laof2 8l oo}
AD
PORT 1, |22 AD‘ Aim s Ha o2
PORT 12 :3 AD’ 1A, LA2)6 - :1 ' o 1
4
PORT 13 I s ADS 1: N e i N orf
12
PORT 141 AD‘ 14 - ™ 15 3 M Ot :;
PORT 15 £ As LAs As 05
27 ADg 17] A L1s 2 16
=i 6 LA Ag 0
PORT1eI's __ AD 18 19 1 [z
7
PORT 17 | A7 LA7 A7 oy PL—
s o 1 eNaBLE E-‘-—l 2716
A —
poRT o7 22— >0 Als cE
PORT 0 13 231 A
14 Ag 22 Ag
PORT 01 [~ A "
PORT 0 - Ao
Figure 2. The 78671 and 2716 Interface

751-1927-0002

1-79

6/18/81

stored there to select the baud rate. The board

described 1n this application note uses EPROM to 1488
select the baud rate. On reset, the Z8671 reads soft Hineut
FFFD, which is in the EPROM, and decodes the baud OuTPUT|
rate from the contents of that location. The baud

I |
N o

rate can be changed in software. z8671 Rs.232
CONNECTOR
Figure 4 shows the full board design implemented 7
for this application note. =
si
Uncommitted 1/0 Pins and Other Pins ’”“;2 X‘s““
Using the above design, port 2 is available for
user applications. Any of the port 2 pins can be 73728 MHz
individually configured for input or output. There
are also six pins in port 3 available to the user. Figure 3, 78671 Interface
The port 3 input pins can be used for interrupts. for Serial Communications
SOF TWARE The RS232 port can interface to any ASCII terminal
1f the baud rate setting is matched to the value
Getting Started programmed into the EPROM. With power supplied to
the board and the terminal connected to it, the
The Z8671 board needs +5 V and ground to run all reset button resets the 78671 and the prompt char-
components on the board except the 1488 EIA line acter appears (":").
driver. The 1488 needs +12 V and -12 V in addition
to the +5 V and ground. (If using no terminal, the
EIA driver/receiver circuit 1s disconnected. The board is ready for a Basic command when the
Consequently, the +12 V and -12 V lines are not ":" appears. The following sequence is a simple
required.) The test board ran at 200 mA. 1/0 example:
+5V
-12v 28
+12v| ¢ Ves Vee =l
Do 11 ADy
o.j12___AD1
1488 ! 26132 "" 2 A%
EIA »—o)'1 2ves 800-7FFF D15 ADs
DRIVER 14 RAM Ds 16 AD4
£ Ds 17 ADs
OUTPUT De, 18 ADg
o, 119 AD7
WE S AC As As Ato Att Ao At Az Ag As As As A7
|327 222625 (24 (21 221(19"0"7'6w5°4~3
= 1aliel 2| 2| 2| £1212(2]5]2]2]2]| 8] Ave-a0,
+5V 13 {14 {15 |16 | 21]22 |23 |24 |25 | 26 | 27 |28
m SP\'loI’t'l|Pt)zl’()sPlol"hP!zN;PhPI5PloP|7z"il_>
7 v P2, 32
-_r 3 xraLt Aot P2; K
= oo, |34
" 74L8373
RECENVER MICROGOMPUTER P ocraL
XTAL2 p2e| >
1 L
= Ats
+5V
3 I14 4
CONNECTOR Voo RESET
1 ‘.> ! 2 T 1:('_6
e T
GND = =

i

Figure 4, The Z8 System with Basic/Debug

751-1927-0002 1-80 6/18/81

:10 input a

:20 "a=";a

sTun

?5

a=5

slist

10 1nput a

20 "a="3a
When a number is entered as the first character of
a line, the Basic monitor stores the line as part
of a program. In this example, "10 input a" is
entered. Basic stores this instruction in memory
and prints another ":" prompt. The Run command
causes execution of the stored program. In this
example, Basic asked for input by printing "?". A
number (5) 1s typed at the terminal. Basic
accepts the number, stores it in the variable "a",
and executes the next 1instruction. The next
instruction (20 “"a=";a) is an implied print state-
ment; writing an actual "print" command is not
necessary here. This line of code produced the
output "a=5". The command "list" caused Basic to
display the program stored in memory on the ter-
minal.

Reading Directly from Memory

Basic lets the user directly read any byte or word
in memory using the Print command and "@' for byte
references or " A" for word references:

:print @8
10
:printhex(@8)
A
sprinthex(A 8)
AFé6

The first statement prints the decimal value of
Register 8. The next statement prints the hexa-
decimal value of Register 8 and the last statement
prints the hexadecimal value of Register 8 (OAH)
and Register 9 (F6H).

Writing Directly to Memory

Basic lets the user write directly to any register
or RAM location in memory using the Let command
and either "@" or " A",

:@%a=5%f f

: h4096=255
:print@10

255

:printhex(4 %1000)
FF

The Let command is 1implied to save memory space
but can be included. The first statement loads
the hexadecimal value FF into register 10 decimal
(AH). The next instruction loads the decimal

value 255 into register 4096 decimal (1000H). The
print commands write to the terminal the values
that were put i1n with the first two instructions.

Memory Environment

Table 1 gives the memory configuration for the
78671 application example. Chip Select is con-
trolled by the MSB (most significant bit or Aqs)
of port 0. Therefore, the RAM is selected for all
addresses between 800H (2048 decimal) and 7FFFH
(32767 decimal). Addresses 8FF, 18FF, 28FF, 38FF,
and 78FF address the same location in RAM in this
application because of Modulo 4K. EPROM is
selected for all addresses from 8000H to FFFFH
and, like the RAM, several addresses point to the
same location in the PROM.

Table 1
The Memory Environment
Decimal Hex Contents
0-2047 (0-7FF) Internal ROM
(BASIC/DEBUG)
2048-32767 (800-7FFF) RAM (Z6132)
32768-65536 (8000-FFFF) EPROM (2716)

Switching from RAM to EPROM

Register 8 and Register 9 contain the address of
the first byte of a user program or, if there is
no program, the address where the Z8671 will put
the first byte of a user program. In this appli-
cation example, when the 78671 is reset, Register
8 and Register 9 contain 800H, which points into
RAM. EPROM is selected by changing the contents
of register 8 from 08H to 80H (See Table 2).

Table 2
The Registers

Decimal Hex Contents

22-23 (16-17)
8-9 (8-9)

Current Line Number
Address of the First
Byte of User Program

For more details on the register assignments,
refer to the Pointer Registers-RAM System section
of the Z8 Basic/Debug Software Reference Manual.

After the instruction " A 8=%8000" is executed, the
28671 accesses the EPROM on the Basic/Debug Board.

The example below shows how to switch from RAM to
EPROM. The example uses two separate programs,
one in RAM and one in EPROM. The RAM program is
listed first, then the EPROM.

751-1927-0002

6/18/81

sprinthex(‘8)

800

slist

10 "executing out of RAM"

: | 8=%8000

:printhex(4 8)

8000

slist

10 "executing out of EPROM"

Baud Control

The baud rate is selected automatically by reading
location FFFDH and decoding the contents of that

location when the Z8671 is reset (the Z8 Basic/

Debug Software Reference Manual contains the baud
rate switch settings in Appendix B). This appli-
cation example holds the baud rate settings in its
EPROM. The least significant bits of location FFFD
hex will provide baud rates as follows:

Baud Rate Value Read

110 110

150 000

300 1M
1200 101
2400 100
4800 011
9600 010
19200 001

After a reset, the baud rate is programmed by
loading a new value into counter/timer 0 (see the
Z8 Technical Manual, section 1.5.7). A Reset
always changes the baud rate back to the rate
selected from the contents of location FFFD.

Burning an EPROM

The EPROM contains the baud rate selection byte in
location 7FDH. The other locations in memory are
used for program storage. See section 6.3 of the
Basic/Debug Manual for the format used to store
programs in memory. This format is used to store
programs 1in EPROM.

Example

The following is a printout of the game
Mastermind written in Basic/Debug.

10 @243=7

20 @242=10

30 @41=14

40 x=usr(B84):a=@242-1:x=usr(84) :b=@242-1
50 x=zusr(84):c=@242-1:x=usr(84) :d=@242-1
55 ll":i:O

100 "guess ",:in e,f,qg,h

110 i=i+1

300 j=%7f22:k=%7f2a

301 1=0

302 r=0:p=0

310 1f A j= A kp=p+1

320 j=j+2:k=k+2:1=1+1:1f 4 > 1310

330 J=%7f22:k=%7f2a

331 1=0

340 if b j=h kr=r+10: 4 j=§ j+10:1=3

341 j=j+2

350 1=1+1:if4 > 1340

351 j=%7f22

352 1=0

360 k=k+2:if%7f31>k340

363 j=%7f22:k=%7f2a

366 if b 39 A j= A j-10

367 j=j+2

368 if%7f29>j366

370 "right ";r;" place ";p

380 if4>p100

390 y=999

400 "right in ";i;" guesses;";"play another
y/n":inputx

410 ifx=y10

Lines 10 through 50 comprise the random number
generator for the program. The three lines:

10 @243=7

20 @242=10
30 @241=14

initialize counter/timer 1 to operate in modulo-10
count. Refer to the Z8 Technical Manual for com-
plete information on initializing timers.

The "usr(84)" function waits for keyboard input,
the ASCII value of the key is returned in a
variable with the following command:

210 x=usr(84):""
:15 printhex(x)
srun

5

35

In the above example, the program waits at line 10
until keyboard input, in this case the number 5.
The input value is stored in ASCII format in the
variable "x". The line:

40 x=usr(84):a=@242-1:x=usr(84) :b=@242-1

waits for input, reads the current value of timer
1, subtracts 1 (to get a number between 0 and 9),
and stores the number in variable a. Then it
waits for keyboard input at the second user func-
tion call, reads the current value of timer 1,
subtracts 1, and stores the number in variable b.
Line 50 of the example program gets twc more ran-
dom numbers and stores them in variables ¢ and d.
The four-digit random number is located in
variables a, b, c, and d.

Line 300 assigns the location of variable a to
variable j and the location of variable e (the

751-1927-0002

6/18/81

first variable 1n the guess string) to the
variable k. The strategy is to access these
variables 1indirectly and to increment pointers j
and k to access the variables.

A colon is used to separate commands on the same
line. This is useful in packing the program into
a small amount of memory space. The code, however,
is harder to read. See section 5 of the Basic/
Debug manual for more information on memory
packing techniques.

Below 1s a sample run of the Mastermind program:

sTun
(<RETURN> on the keyboard is entered Ffour
times here)

guess ? 0, 1, 2, 3

right 2 place 0

guess ? 4, 5, 6, 7

right 2 place 1

guess ? 0, 2, 4, 6

right 3 place 2

quess ? 4, 2, 1, 6

right 4 place 4

right in 4 guesses

play another? y/n

n

CONCLUSION

The design of this application example met the
major design goals of simplicity and functional-
ity. The first goal is accomplished by prudent
selection of support components, excluding any
unnecessary chips. The board allows the user to
exercise the full power and flexibility of the
features of the the Z8601 not used by Basic/Debug.
The user can write and debug Basic programs with-
out detailed knowledge of the Z8601.

The Basic application example demonstrates a
memory interface that is applicable for all 78
Family members. The case where there is no
address latch on the memory chip was discussed,
and an example of how to interface the multiplexed
address/data bus of the Z8 Family through an
address latch was shown.

The software section explains the memory environ-
ment and gives several examples of Basic/Debug.
These examples are a good introduction to the
board and to Basic/Debug.

The 78671 is a customized extension of the Z8601
single-chip microcomputer. The simplicity of the
Basic application example demonstrates the flexi-
bility of the 78601 microcomputer in an expanded
memory environment.

00-2151-02

1-83

6/18/81

A Single Board Terminal
Using the Z8590 Universal
Peripheral Controller

Zilog

Application Note

October 1981

INTRODUCTION

The Zilog 28590 Universal Peripheral Controller
(UPC) opens up a wide variety of applications for
distributed processing. One of the most useful
functions of the UPC is to off-load routine proc-
essing tasks, such as I/0 processing, from the
CPU. The advantages of such a distributed proc-
essing approach include greater system throughput,
more efficient use of system resources, and proto-
col converters that make different peripherals
look the same to the system software. The last
advantage is particularly useful where different
hardware configurations may be used with the same
software. So long as the UPC handles the CPU
interface in the same way, the peripheral devices
attached to the UPC are transparent to the CPU.

This paper describes a CRT display and keyboard

Z80 BUS
~—

280
cPU

interface circuit that was designed and built by
the Zilog Applications Group using the 28590 UPC
in a 280 system environment. The CRT display
function was chosen due to the widespread use of
CRT displays in the data processing environment.
For further information on the Z8590 UPC refer to
the Zilog Data Book, publication number
00-2034-01.

FUNCTIONAL DESCRIPTION

This paper describes the Input/Output (I/0) part
of a computer system in 1ts most rudimentary
form. Daistributed processing is the theme used 1in
this design so that as much of the low-level proc-
essing for I/0 as possible is performed by the
UPC. Figure 1 shows a block diagram of the UPC
1/0 system.

ASCII KEY
28500 INPUT
upc
S
MEMORY
DISPLAY —— \ cHARACTER
RAM —_._V GENERATOR
sme SHIFT
963648 REGISTER LEVEL
SION VIDEO
TIMING LOGIC OSCILLATOR

Figure 1. Block Diagram of the UPC
Single Board Terminal

The display interfaces to a standard video monitor
by way of a composite video signal. Characters
are represented by dots on a raster scan display
in the form of a 5 x 7 matrix. The CPU interface
to the UPC can transfer characters on a single
byte basis or by a block move. So far as the CPU
1s concerned, the UPC looks like a serial port
when used in single byte mode. This permits the
system software to remain virtually the same for a
serially-linked terminal or for the UPC. The UPC
also provides for programmable cursor control,
like that available on a standard terminal, with
the control characters being optionally selected
by the system software. When the UPC is initial-
ized by the CPU, a bit in the mode control
word can be set to indicate that cursor control
characters will follow. The keyboard input is
from an ASCII-encoded keyboard that has a strobe
to signal a valid character present.

The standard 7-bit ASCII code is supported with
the negative-going strobe pulse indicating valid
data. The keyboard input 1s TTL compatible and is
not buffered into the UPC.

SYSTEM DESIGN

The UPC 1/0 project is designed to fit within an
existing Z80-based test bed. Therefore, the
interface requirements include a Z80-type inter-
face with interrupt capability. Other specifica-
tions include:

Display format of 16 lines by 64 characters
5 x 7 dot matrix characters

Composite video output

ASCII character input from CPU

Programmable cursor control

ASCII keyboard input

Single +5V operation

Character or block transfer mode
Programmable CPU interrupts

Programmable enable for CRT and keyboard

HARDWARE DESIGN

The hardware design encompasses three basic ele-
ments: the Z8590 UPC and processor interface sec-
tion, the CRT display section, and the keyboard
input section.

The Z8590 UPC is treated as a peripheral by the
master CPU, in this case a Z80A CPU, and is
accessed using the standard Z80 I/0 instructions
via two ports. One of the two ports is selected
depending on the state of the A/D line. If A/D is
Low the address pointer is being written to. If

A/D is High the register currently addressed by
the address pointer is being accessed.

The Z8590 UPC coordinates operation of the display
section and the keyboard input with the Z80 CPU.
Six bits from Port 1 are used to transfer data
from the UPC to the CRT refresh memory. The other
two bits are used with bit 7 of Port 2 to form the
three bit command word for the CRT controller.
Seven bits of Port 2 are used to input ASCII data
from the keyboard. Since four of the bits on Port
3 are used for interrupt control, the other four
are used for I/0 control. Bit 3 of Port 3 is used
for the keyboard input strobe. This input gener-
ates an interrupt within the UPC when the strobe
input goes Low, indicating valid data at the key-
board inputs. Bit 4 of Port 3 is used to control
the RAM write pulse coming from the CRT Controller
(CRTC) and going to the RAM. When this bit is
Low, RAM writes are inhibited for operations such
as cursor home and cursor return. Bit 6 of Port 3
is used to generate the Data Strobe (D5) for the
CRTC. When DS goes from Low to High, the three
command bits are latched into the CRTC. Figure 2
shows the UPC and interface circuitry used.

The heart of the display circuit is the Standard
Microsystems CRT-96364B CRTC chap. The basic
design was derived from the CRT-96364B data sheet
by Standard Microsystems Corp. The CRTC contains
all the circuitry necessary to generate the video
timing pulses and memory address and control sig-
nals for the display RAM. The display format is
64 characters per line by 16 lines. This requires
a 1024 character memory which is supplied by the
2102 RAM devices. Since 64 ASCII characters are
displayed, only six bits of memory are required to
store character information. The memory address
and write signals are generated by the CRTC under
control of the UPC. Data is entered into the dis-
play memory by writing a command to the CRTC along
with the data. Figure 3 shows the logic used with
the CRTC.

Within an 8 x 8 dot character cell provided by the
CRT timing, only a 5 x 7 dot character is used.
The characters are formed using a 2716 EPROM char-
acter generator. The lowest three bits of the
2716 EPROM address inputs from the character row
count and come from the CRTC. The next six bits
form the character address. Each character is
stored i1n EPROM as eight contiguous bytes. The
row count addresses a row (equivalent to a byte)
within the character block. Therefore, the char-
acter addresses are modulo 8 and take a total of
512 bytes. The CRV output of the CRTC is used to
select the cursor pattern in EPROM. When CRV is
Low characters are normally displayed. When CRV

751-1809-0007

4
s
i

81

°z @anbry

I UoT3d3g “Ia[T0IWe] |Y¥J IdN-Z

188 07 o 114 9 Lt P Vee
18A Dp e 12] 8 141 b6 29 —
198 13 7 15 Pag Ds
P Ds 38
14 6 16 Par p— c2
19A Dy '—_—_15— rasus |- D4 P b2 ¢
20¢ Dﬂ_-——_s- Lid P P" 27 co
208 Dz’————‘ 4 18 DZ P: 29
208 D p—— 1§ 3 1o, e
PYTCRE YY) A1 2 2045, - sht 2
Pis DD5
_ | Juso 74504 P DpDs
12¢c RD 11 10 14 Pas 2L D3
13 23
. P12 DD2
1A RESET} 13 74L508 [23
11 L] el " P D1
12 i >~"*
9A WA +5V P1o DDO
j‘ JarKH
___ 2 1 20—
1B IOWAIT |- WAIT
¥ Y 28590
o [| 5 uee
88 INT}| \l P35
47K #4 i
28 Ak 3 g [2 sT8 J27
2A Ag—— 2 Y +5 Y ——— 1225
25C As - Ua
258 A4 - Sla1 7aLs138 Pasl 37 1221
. .
25A A3 b— L] Pas 38
26C Az |- A62a i 4248
74504 KB 4218
P)3t INPUT 509
P33 J26
P2 425
+5V 74L510 . 2
3 2% J217
= cs
2 3.054 MH.
47KH2 S Peik L Pouk-SHT.3
26A Ao | ok
—__ []
10A INTACK F— " P3; Ar /O ADDRESS o
7A 1B - P3o =
78 1EO} 31p3, Ves [ololol1|n]o|xluo|
]
= 0 = ADDRESS
= 1= Dy
+5V —r
118 [ORQ }—

CRT DATA I

KB DATA]

7 0
Pa[xlﬁ‘sl XIWEISKT%I xlxlx]

88-1

*¢ oanbr

I1 UOT}3ag ‘IB[T0IJUC) 1Y) IdN-Z

SHT. 3

L

S 3 ¢ < & <

CIK 31K S1K S 1K S1K 31K
"

|||-—

" #2 #4 #5 #6
pps —4 ::
pps — 2 -
o3 —24
SHLAQ oo, 6f swser f7
oot — 4 5
Do —2 3
1 |13 { | [1
Ml o oE || —_— ——] ==
15
16,
1] 2102A1
i S— —— — _— _—
i | —_— - -
741500] n 3 # #5 #6
S| —— 1 —— — j
8 ——— 4 — ——— ——1
8| —
oo WE — _— _— —— _—
741500 12 |3
WE R
#
4 |5 |6 |7 |8 J22|21]20]10 J18]47
sut.1 { s 1655 Ao As A7 As As As As Az A1 Ao WA —l [
c L 1S “ 14 |13 |11 |6 fa |a‘
Cy 2 Ct Ro| Rp—+5V
. LS I CRT 963648 R P2 7418174 0
R 13 cdq
15
CRV 15 [12 [10 |7 |5 |2
X0 DCC DCE CSYN &
COE G CCO P 7 fs {5 4 J3 j2 |1 |28
A Ay A3 Ay As As A7 Ag
CRT CLK osle ¢
pce T ,.;
MM2716 11 -
10 o
1
[
o
CSYN
DCE

DEVICE

% SHT.3

68-1

*y aanbr 4

III uo13dag ‘Ia[ToJUC]Y |N) IdN-Z

SPARES

74LS00 #1 74L802
13 4
12 6
[
10
9
1 +68F
CSYN 30 va COMPOSITE
(SHT. 2) 2 W i€ VIDEO OUT J2:4
1 74L508 421,2,3,24
s 9 4 A -
5| H L
e =
4
Cs 3T rastes
¢ e
SHT.2{ C2 P D +5V
[+ c
c 2l
° LoisHT | 680
C__Ca 1K #7
+5V pcc
_t5 l’ l |1o I [iz 74504 SHT.2
= Qc oS 8 LD
74LS161 (- 8)
9
2] u
1 Vee
8 [3 |+ |5 Ic |16 K=8
+5V
= 1 | PciLk (SHT. 2)
9 74LS00 _.[_
DCE 8 = 74LST73 (— 4)
(SHT.2)] " 1
Vee +5V
74504 74504 74504
0001
— >t P> £ a2 onr e .z
741892 (- 12) af?
AA— MA—
470 #2 470 +5V Vee A
1M1 6 I I1o
mil 1 HGFEDCBA
12.216 MHz =

CHARACTER
MATRIX

001
010
011

101
110
m

3 x 0 viva ‘u's

osy

3 viva wod

¢ v $s3HAAY WoY

. X . viva

ost 00z

2 x AYD ‘Ty-oy

1

{ fm MJO0TD aHom

—001—>]

7/

92a

"
|
__
_/ \ /

cls

——————————— Egé AW201D 1040

\

~7/

I'— suU618 TI

CRT 96364B Timing Waveforms

Figure 5.

1-90

is High the character 1s replaced by an under-
score.

Five bits of the EPROM output are fed into the
74L5165 shift register. This shift register con-
verts the five column dots 1into a bit stream for
the video output signal. Composite video is
generated by merging the video dot stream with the
Composite Sync (CSYN) output of the CRTC through a
resistor summing network.

The remaining circuitry supplies clocks to various
parts of the circuit. Three elements of the 74504
form an oscillator. The output of the oscillator
goes to three places. It is divided by twelve by
the 74LS92 to form the 1.018 MHz clock required by
the CRT-96364B. It is also divided by four by the
741573 to provide the 3.054 MHz clock for the UPC.
The oscillator output is also ANDed with the Dot
Clock Enable (DCE) output of the CRTS and fed into
the 7415161 to form the Dot Character Clock (DCC)
pulses. Since a character cell time is eight
clock pulses long, the DCC 1s derived from a
divide-by-eight counter. The divide-by-eight
counter also loads the shift register at each
character time. Figures 4 and 5 show the circuit-
ry and waveforms for the timing and video output
circuitry.

The UPC emulates CRT terminal operations by pro-
viding keyboard data input to the master CPU as
well as CRT output. The keyboard inputs are 7-bit
ASCII encoded with TTL level signals. The Strobe
Input (5TB) is active Low to indicate a valid
character at the keyboard data inputs. When STB
goes Low, an interrupt is generated within the UPC
and the data inputs are read.

With this hardware a complete CRT terminal can be
constructed at minimal cost to the user with no
sacrifice in performance.

SOFTWARE DESIGN

The software design encompasses two areas: the
UPC programming and the master CPU interface. The
former includes the UPC internal register organi-
zation and program initialization. The latter
includes the data transfer protocol used between
the UPC and the master CPU.

UPC Programming

The specifics of this CRT project will now be dis-
cussed, as it is assumed that the reader is famil-
iar with the UPC in general. Of the 256 accessi-

ble registers within the UPC, 22 (addresses %F0
through %FF and %00 through %05) are special-
purpose control registers defined by the hard-
ware. The remaining 214 registers are general-
purpose in nature and are allocated as shown in
Figure 6.

CONTROL REGISTERS
%FO

STACK &
DATA AREA

%CO

KEYBOARD
BUFFER

%80

PARAMETER
AREA

%80

CRT
BUFFER

%20

CPU ACCESS

PROGRAM
SPECIAL

%10

%0

Figure 6. UPC Internal Register Allocation

The Program (PGM) registers (registers %06 through
%0F) are general-purpose data manipulation regis-
ters. These are the working-set registers used to
hold data temporarily and to perform various com-
parison and calculation functions within the pro-
gram.

The CPU access registers (%10 through %1F) are
used to facilitate communication between the UPC
and master CPU. Two bits in the status register,
CRT Busy (CRTBSY) and CPU Data Available (CPDAV),
are actually semaphores that form the key mecha-
nisms for data interchange. The CRTBSY bit can be
set only by the master CPU and can be cleared only
by the UPC. The CPDAV bit can be cleared only by
the master CPU and can be set only by the UPC.
These will be discussed in detail 1in the master
CPU access section.

A line of data on the CRT screen is 64 bytes
long. Therefore registers %20 through %SF form a
64 byte line buffer for the CRT display. This is
used only in Block Transfer mode, since the UPC
receives a block of data before outputting it to
the CRT.

The parameter area (registers %60 through %7F)
contains the cursor control characters and corre-

1-91

sponding information. Figure 7 1llustrates the
format of the parameter area. Since there are
eight cursor control characters and each occupies
four bytes of control block information, there are
a total of 32 bytes allocated for this purpose.
Most 1incoming control characters are compared with
the ASCII codes 1in this table, and 1f a match is
found the software determines what to do based on
the other values in the cursor control block.

PARAMETER BLOCK (CURSOR FUNCTIONS)

BYTE 1 ASCII CHARACTER CODE

BYTE 2 CRT CODE*

CURSOR CONTROL
BLOCK
BYTE 3

DELAY VALUE (MULTIPLE OF 4.2 ns)
BYTE4

*CRT CODE
7

KN I

PARAMETER BLOCK IS MADE OF 8 CURSOR CONTROL BLOCKS OF 4 BYTES
EACH FOR A TOTAL OF 32 BYTES THESE OCCUPY REGISTERS %60-%7F

INCR
COLCNT)

5

DECR
[COLCNT]

4 3

CLEAR | WRITE
COLCNT] ENABLE!

2 1 0

CRT COMMAND

Figure 7. UPC Parameter Block Definition

The keyboard buffer (registers %80 through %BF)
temporarily stores data coming from the keyboard
within the UPC until the master CPU reads the
data. The keyboard buffer is used in both charac-
ter and block modes since keyboard input is actu-
ally done by interrupts. In character mode, the
buffer is simply a circular buffer that accumu-
lates keyboard data until it is processed by the
master CPU. One pointer, the Keyboard Buffer
Pointer (KBBPTR), is used to indicate into which
location the next keyboard character will go. The
other pointer, the Keyboard Pointer (KBPTR), 1s
used to indicate which location the next character
will be read from by the master CPU.

Finally, the stack and data areas (registers %CO
through %EF) are used for variable storage. The
stack grows down from location %FO and occupies
about ten bytes maximum. The 1internal data area
contains various run-time variables used by the
UPC program, as shown 1in Table 1.

On power-up the UPC initializes the necessary
variables, all the control registers, and loads
the default parameters 1into the parameter area.
When all this is done the UPC sets the Enable Data
Transfer (EDX) bit in the Data Transfer Control

(DTC) register. This enables communication with
the master CPU to take place, and indicates to the
master CPU that the UPC 1s ready for operation.
If the EDX bit is cleared, data transfers to or
from the UPC are inhibited. At this point the UPC
waits for the Mode register to be set by the mas-
ter CPU before continuing.

Table 1. Internal Data Area

uprC

ADDRESS VALUE
%C0 FLAG
%C1 UBPTR
%C2 CBCNT
%C3 COLCNT
%C4 TIMER
%CS5 KBPTR
%C6 KBBPTR
%C7 CHAR

Appendix A contains the UPC program listing used
for this project. The UPC program structure con-
sists of constants declaration, the main program
body, and data tables. Within the main program
body are routines for initialization, the main
program loop, CRT output, keyboard input, inter-
rupt service, and other support routines.

Master CPU Interface

The master CPU communicates with the UPC through
20 special registers. These registers are
accessed directly by the I/0 instruction address
in the 78090 Z-UPC and indirectly by a register
pointer 1n the Z8590 UPC. To read or write data
for a particular register in the 28590, the
register pointer is first written (A/D line is
Low) and then data (A/D line is High) is written.
Thus, a register access operation involves two 1/0
transactions. The register pointer is latched
within the UPC so multiple reads of a particular
register (such as the status register) need not
have the pointer written each time. This is
useful when polling the status bits or using a
block move instruction for data transfers.

Of the twenty possible registers accessible to the
master CPU only ten are actually used. Figure 8
shows eight of these registers and their mean-
ings. The Mode register (register pointer address
%00), end-of-line edit character (EOL, %04), back-
space edit character (BS, %05), delete-line edit
character (DL, %06), and interrupt vector (VECT,

1-92

%07) are 1initialized once by the master CPU. The
status, CRT data (CRDAT), and keyboard data
(KBDAT) registers are used to control data flow
into and out of the UPC.

UPC TERMINAL CPU ADDRESS
7 8 5 a4 3 2 1 0
PARAMS [BLOCK] KB | CAT
[X X X X]:ouow MODE IENABLEIENA!LJ MODE REGISTER = %00

KB cP | CRT
X ovr | pav

BUSY

ASC Il DATA] CRDAT = %02

M ASC Il DATA] KBDAT = %03
I DATA] EOL = %04
l DATA J BS = %05
[DATA I DL = %06
[VECTOR J VECT = %07

NOTE: THESE ARE ACCESSIBLE TO THE MASTER CPU
FOR READ OR WRITE OPERATIONS.

Figure 8. UPC Program Status
and Control Registers

The master interrupt control register (MIC) is
used by the master CPU to control the UPC inter-
rupt condition. The upper three bits (D7, Dg, and
Ds) correspond to Interrupt Enable (IE), Interrupt
Under Service (IUS), and Interrupt Pending (IP),
respectively, by a master CPU read. When the CPU
writes these bits, their meanings change as illus-
trated in the table of Figure 9. The EDX bit (bit
3) is monitored by the CPU after power-up so the
CPU can determine when to initialize the UPC.

The data indirection register (DIND) is used for
block data transfers. The next section explains
this in greater detail.

Initializing the UPC

If vectored interrupt structure is supported, the
first byte to write to the UPC 1s the interrupt
vector. This is be the 8-bit vector returned by
the UPC when the master CPU generates an interrupt
acknowledge in response to an interrupt request by
the UPC. The vector register is accessed by writ-
ing a 07 hex to the UPC address port, and the
vector to the UPC data port.

STATUS REGISTER = %01

OTHER MASTER CPU REGISTERS"

[5 a4 3 2 1 0
I l L l JEDX' IXERRILERRIEOM'I

CPU ADDRESS

DTC = %18
I (INDIRECT DATA) j DIND = %15
I INTERRUPT VECTOR I MIV = %10
MIC = %1E

I IE* I IUS'J P I NV I EDXI bLC IDISWI EOMI

*FOR CPU READ, THESE BITS REFLECT IE, IP, AND IUS INTERNAL LATCHES
FOR WRITE, THESE BITS MEAN:

o
g
o
o

m
34
s

NULL
RESET IP AND IUS
SET IUS

Note: These are accessible to
the master CPU according to
UPC specifications.

4aaacooco

“s00maco

soa0=0a0
B

SET IE
RESET IE|

Figure 9. Other UPC Control Registers

Next comes the mode control byte. The lower four
bits determine the operation of the UPC environ-
ment. If CRT Enable (bit 0) is set, then data
transfers can occur from the master CPU to the CRT
display. If KB Enable (bit 1) is set, then data
transfers are enabled from the keyboard to the
master CPU. The block mode bit (bit 2) indicates
block transfer mode. This applies to both the CRT
output and keyboard input. Block mode is used
with the powerful Z80 block I/0 instructions or
with DMA.

The Parameters Follow bit (bit 3) indicates wheth-
er or not eight cursor control parameter bytes
will follow. If the Parameters Follow bit is set,
then the next eight bytes sent to the UPC are the
eight cursor control characters in the following
sequence: cursor home, cursor forward, cursor
back, cursor down, erase page, cursor return, cur-
sor up, and erase line. These eight bytes are
written via the DIND register. The DIND register
eight cursor control bytes are sent to the UPC
data port by a block move instruction (OTIR) on
the Z80.

This completes initialization of the UPC by the
master CPU. Listings found in Appendix B can be
used as an example of how the master CPU uses the
uPC.

Using the UPC

Of the ten registers utilized by the master CPU,
four or five are actually used for data transfer.
The status register (address 01 hex) contains two
bits that indicate the internal UPC status. These

1-93

bits are monitored and controlled by the master
CPU under the definition of the UPC interface pro-
tocol. The CRTBSY (bit 0) can be set only by the
master CPU and cleared only by the UPC. When the
master CPU writes data into the CRT Data register
(CRDAT, address 02 hex), it also sets the CRTBSY
bit in the status register. This does two
things. First, it indicates to the UPC that there
is data available in the CRDAT register ready to
output to the CRT display. Second, the busy bit
remains set and prevents further character trans-
fers until the UPC clears the busy bit. Figure 10
shows the data flow for character mode transfers
into and out of the UPC.

Similar to the CRT data transfer is the keyboard
data transfer. The keyboard data register (KBDAT,
address 03 hex) contains the keyboard data loaded
by the UPC, and the CPDAV bit in the status regis-
ter (bit 1) indicates keyboard data is available.
The CPDAV bit can be set only by the UPC and
cleared only by the master CPU. When the master
CPU reads KBDAT, it also clears CPDAV in the stat-
us register. This is also shown in Figure 10.
The sequence of events depicted in Figure 10 is
important. The order in which the registers are
accessed should be adhered to or the UPC may
change or lose data unexpectedly.

Character mode - CRT Output

o] [l
Read CRTBSY <——SI:L— CRIBSY = x
Loop if set «—*—— ;
CRDAT CRIBSY = 0, IP = 1
Wri ———l e
rite data STAT :

Set CRTBSY ——» (R

=

BSY

seee

1
>Process data
(Begin next transfer)

Character mode - KB input

Read CPDAV <2121 CPDAV = 0
Wait in{_ Branch if clear <«—=—— CPDAV = 1, IP = 1
loop or
exit Read KBDAT ?T':B%T
Clear.CPDAV ——— CPDAV = O
(exit)
Figure 10. Character Mode Data Transfer

The above description applies to character trans-
fers when polling the status register continuous-
ly. Interrupts can be used with the UPC to indi-
cate a change in either status bit. If CPDAV goes
from a 0 to a 1 (set) or CRT busy goes from a 1 to
a 0 (cleared) the UPC generates an interrupt. The
interrupt service routine must poll the status
register to determine the cause of the interrupt,
however, since there is only one vector returned
in vectored interrupt mode.

If interrupts are used, then the master CPU inter-
rupt service routine must perform several opera-
tions in addition to the data transfer(s). These
operations involve the Master Interrupt Control
(MIC) register (address 1E hex). After the data
transfer condition has been satisfied in the UPC
the master CPU must reset the IP and IUS latches
within the UPC. This restores the daisy chain to
its normal state. Then, to allow further inter-
rupts from the UPC, the IE latch must be set.
Using bits D;, Dg, and D5 of the MIC register
(shown in Figure 9), IP and IUS are cleared by
writing 001. IE is then set by writing 110 to
these bits. IE is cleared by the UPC on power-
up, thus the set IE command must be written to the
UPC during the initialization phase by the master
CPU so that interrupts can occur. The interrupt
operation applies to both character mode transfers
and block mode transfers.

Block mode data transfers are faster and more
efficient than character mode transfers. These
transfers access the status register, as do char-
acter transfers, but the data is exchanged via the
DIND register. DIND is a location pointed to by
another register within the UPC. Master CPU ac-
cesses to DIND automatically increment the pointer
register by one so that several consecutive regis-
ter locations can be written to or read from. The
number of bytes to transfer by DIND is written by
the master CPU into CRDAT for CRT block transfers,
and read from KBDAT for keyboard block transfers.
Thus, protocol exists for CTR block data trans-
fers, as Figure 11 illustrates. Up to 64 bytes
may be sent or received at one time in this mode.
Both the Z80 and Z8000 block move instructions
work very well with this method of data transfer,
resulting in superior sytem throughput.

Using the Z8090 Z-UPC

Implementing the single board terminal on a Z8000
or Z8 processor-based system is very easy with the
78090 Z-UPC. The software in the Z-UPC is iden-
tical to the software in the Z8590 UPC. The hard-
ware interface to the keyboard and display cir-

1-94

Block Mode (transfer handshake)

o we
Read CRTBSY <«—Al _ crrsy
If set, Loop -«———— CRIBSY
Write block —CROAL o
length
°ng STAT

Set CRTBSY ———— CRIBSY

STAT

Read CRTBSY <&—(f——
Loop if set E
Block output 4-—-:-——— CRTBSY
data __[}._J:.Nl;>
STAT

Set CRTBSY - (R

@
7]
<

eessesessNeeesecreeHecs0c0ccccnne

(begin next transfer)

X
0 (IP set af
CRTBSY was 1)

0, set IP

Process data

Figure 11. Block Mode Data Output to UPC

cuitry is also the same. The only difference is
the hardware interface to the CPU and the CPU
software. The protocol and register functions are
unchanged.

CONCLUSION

This paper describes the use of the 78590 UPC in a
distributed processing environment. System per-
formance can be most effectively improved by di-
viding CPU tasks into logical functions. Such a
task, as has been illustrated here, is a fundamen-
tal I/0 operation that facilitates communication
between the user and the computer. Other func-
tions may include such peripheral operations as a
flexible disk controller, a PROM programmer, a D/A
or A/D converter, or a communications protocol
controller.

Coupled with the powerful instruction set of the
Zilog family CPUs, the 78090 Z-UPC and 78590 UPC
find many uses in virtually any system environ-
ment .

APPENDIX A

UPC CRT Controller Program Listing

Z8ASM 3.03

Loc OBJY CODE STMT SOWRCE STATEMENT

1! UPC CRT TERMINAL DRIVER PROGRAM!
2
3 CRTC MODULE
4
S5 CONBTANT
) DTC: =0 'DATA XFER CONTROL REG!
7 P1:=1 ‘PORT 1!
-] P2: =2 'PORT 2!
? P3: =3 ‘PORT 3!
10 LC: =4 ‘LIMIT COUNT REG!
11 DIND: =5 'DATA INDIRECTION REG!
12 TMRVAL: =%28 !TIMER COUNT VALUE!
13 DBC: =%10 !CPU ACCESS AREA!
14 MODE: =DSC 'MODE REGISTER!
15 CRTEN: =1 !CRT ENABLE BIT!
16 KBEN: =2 ‘KB ENABLE BIT!
17 BLOK: =4 'BLOCK XFER!
18 PARMS: =8 'PARAMETERS FOLLOW!
19 STAT: =MODE+1 !STATUS REGISTER!
20 CRTBSY: =1 fCRT BUSY FLAG!
21 CPDAV: =2 !CPU KB DATA AVAIL!
22 KBOVF: =4 ‘KB BUFFER OVERFLOW!'
23 CRDAT: =STAT+1 !CRT DATA AREA!
24 KBDAT: =CRDAT+1 ‘KB DATA AREA!
25 EOL.: =KBDAT+1 'END OF LINE CHARACTER'!
26 BS: =EOL+1 !BACKSPACE CHARACTER!
27 DL: =BS+1 'DELETE LINE CHARACTER!
28 VECT: =DL+1 {CPU INTERRUPT VECTOR!
29 BUFF: =%20 'CRT BUFFER AREA!
30 PARAM: =%60 !'PARAMETER TABLE AREA!
31 KBUFF : =%80 'KEYBOARD INPUT BUFFER!
32 STOR: =%CO 'RAM STORAGE AREA!
33 FLAG: =STOR !'FLAG BYTE!
34 KBB: =1 'KB BUFFER DOVF FLAG!
35 KBDAV: =2 'KB DATA AVAIL!
3&6 CRTXFR: =4 {CRT XFER FLAG!
37 KBXFR: =8 KB XFER FLAG!
38 TMRFLG: =%480 !TIMER ACTIVE FLAG!
39 UBPTR: =FLAG+1 fUPC CRT BUFFER POINTER!
40 CBCNT: =UBPTR+1 !CPU CRT BYTE COUNT!
41 COLCNT: =CBCNT+1 'CRT COLUMN COUNT!
42 KBPTR: =COLCNT+1 KB OUTPUT BUFFER PTR!
43 KBBPTR: =KBPTR+1 KB INPUT BUFFER PTR!
44 TIMER: =KBBPTR+1 'TIMER VALUE!
45 CHAR: =TIMER+1 ‘KB CHARACTER STORAGE (KLUGE)!
46 MIV: =%FO 'CPU INTERRUPT VECTOR REG!
47 MIC: =%FE 'MASTER INTERRUPT CTRL!
48 EDX: =8 'ENABLE DATA XFER BIT!
49 IP: =%20 !'SET IP BIT!
50 DEOL : =%0D 'DEFAULT EOL.!
51 DBS: =%08 'DEFAULT BACKSPACE!
S2 DL: =%18 !DEFAULT DEL LINE!
53
54 $EECTION PROGRAM
55 eLOBAL
56 $ABS (o]
P 0000 0290 57 WvAL ERROR
P 0002 0219 58 WVAL KBINT
P 0004 0293 59 WVAL DUMMY
P 0006 0293 60 WvalL DUMMY
P 0008 0206 &1 WvaL TIMERO
P 000A 0218 &2 WwvalL TIMER1
&3
P 000C b4 MAIN PROCEDURE
&5 ENTRY
b6 BEGIN:
P 000C BF 67 DI
P QO0OD BO FD &8 CLR RP !CLEAR REGISTER POINTER

1-.97

TUVTVTTOTVTVTTTVTUVOVDTOUD

TTTVUT

TTVTVTUVO VTV o TUVTVTVTD VUV UVTTTO TOVUVTVTVUVTO T

TUVTUVWTVTUVTO

O0O0F
0011
0013
0015
0017
0019
001C
001F
0022
0025
coz8
002B
[elo=}0]
Q02F
0031

0033
V035
0037
0039
0O3B
003D

CO3F
0041

0043
0046
0048
004B
Q04E
0050
0053

0056
0059
005B
005D
O05F

0061
0063
0065
0068
0069

006B

006&C
006&F
0071
0074
0076

0079
007¢C
007E
o081
0083

0086
0089
Go8B
008D
00?0
0092

BO
BO
BO
BO
BO
Eé
Eé
E6
Eé
Eé
Eé
&6C
7C
8c
9C

c3
7A
8c
9C
6C
7C

Cc3
7A

a4
6B
E4
76
6B
E6
E6

44
EB
&C
7C
8c

E3
F3
06
8E
6A

9F

76
&B
76
&B
D&

76
6B
76
6B
D&

44
&B
68
D&
BO
8B

co
c7
Cé
10
11
CcS
c4
14
15
16
00
60
20
o2
A4

68
FC
02
94
FO
10

&8
FC

10
FB
17
10
iB
05
04

04
FB
08
60

20

98
79
E7

Fé

10
o8
11
03

80
80
oD
o8
18
10

10

FO
08

20
o8

04

04

01

01

0094

10
EE
co
03

o2

o2

00D8

c7
E1
c7

014C

c7
D8

c7

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
?1
92
93
94
95
96
97
98
9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

CLODP:

ILCOP:

ML:

ML1:

ML2:

SKIP:

LOCP:

Li:

La2:

CLR
CLR
CLR
CLR
CLR
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LDCI
DJUNZ
LD
LD
LD
LD

LDCI
DUNZ

OR
JR
LD
™
JR
LD
LD

OR
JR
LD
LD
LD

LD
LD
ADD
INC
DJNZ

EI

FLAG

CHAR

TIMER

MODE

STAT
KBBP TR, #KBUFF
KBPTR, #KBUFF
EOL., #DEOL

BS, #DBS

DL, #DDL

DTC, #DSC

R&, #PARAM

R7. #%20

R8, #HI CCTABL
R?, #.0 CCTABL

@R&, @RRB
R7, CLOOP
R8, #HI TABLE
R?, #L.0 TABLE
Ré&, #%F0
R7. #%10

@R&, @RREB
R7, ILOOP

MODE, MODE
Z, ML

MIV, VECT
MODE, #PARMS
Z, SKIP
DIND, #BUFF
LC, #8

LC.LC
NZ, ML1
Ré&. #8
R7, #PARAM
R8, #BUFF

R9, @R8
@R7,R9
R7., #4

R8

R&, ML2

'CLEAR
!CLEAR
{CLEAR
!CLEAR MODE!
!CLEAR STATUS!
tINIT KBBPTR!

FLAG BYTE!
CHARACTER!
TIMER!

!DEFAULT EOL=CR!
!'DEFAULT BS=BS!
!DEFAULT DEL LINE=CAN!
‘LOAD DTC REG. !

'PTR TO CCTABLE!

!MOVE 32 BYTES!

! SOURCE!

'MOVE BYTES!'

'LOAD INIT TABLE!

'POINT TO REES. !
'LOAD 16 REGISTERS!

!'MOVE INIT CODES ..!
!TO REGISTERS. !

!{MODE WORD SET?!

'NO, LOOP!

!SAVE CPU INT VECTOR!
!CHECK PARAMS BIT!
'SKIP IF CLEAR!

'WAIT FOR LC=0!

'MOVE 8 BYTES!

THIS IS THE MAIN PROGRAM LOOP.
UPC ARRIVES HERE AFTER INIT AND
MODE ARE DEFINED.

™
JR
™
JR
CALL

™
JR
™
JR
CALL

OR
JR
LD
CALL
CLR
JR

MODE, #CRTEN
Z,L1

STAT, #CRTBSY
Z, L1

CRT

MODE, #KBEN
Z, LooP
FLAG, #KBDAV
Z,L2

KB

CHAR, CHAR
Z, LOOP
Ré&, CHAR
DATOUT
CHAR

LOooP

!CRT ENABLED?!
!NO, BRANCH!
'CRT DATA AVAIL?!

‘KB DATA AVAIL?!
!NO, BRANCH!
!CHECK KB DATA!

'ECHO CHAR?!
!NO. BRANCH!

THIS ROUTINE PROCESSES CRT CHARACTERS THAT
ARRIVE FROM THE MASTER CPU.

1-98

PTVUVTVVTVOVTVOVVDVDVTVO

] TTVTV VUVOVDUVTOVUT T

VTV VDVDVVVOVVDOVDVD

v MVMVVOVTVTOVD

o TV TTVTOVUVD

0094
0097
0099
00%9C
00%E
00A1
00A3
00AS
00A8
00AA
GOAC
OOAE
00B1
00B4

00B7
00BA
00BD

OOBF
ooce2
00CS
00C7
00Ce
00CB
0O0CE

00DO
ooD2
00DS

o0oD7

ooD8
0O0DB
00DD
QOEQ
00E2
COES
Q0E7
OOES8
OOEB
OOEE
QOFO
QOF3

OOFé&
OOF8
OOFB
OOFD
OOFF
o102
0105

0108
010B

010D
0110
o112
0113
0116
0119
0o11C

O11E

76
6B
76
EB
76
EB
68
56
6B
34
69
E6
E6
46

S56
46
8B

ES
D6
20
00
EB
56
8B

&8
Dé
8B

AF

76
6B
76
EB
76
EB
8F
56
76
6B
46
56

68
26
69
&9
Eé

46

46
8B

76
EB
8F
56
Eé
E&
8B

76

10
37
co
39
co
1C
12
Eé
oD
04
c2
Cc1
035
co

11
FE
i8

Cc1

014C

c1
c2
F4
co
E7

12

04
08
04

3F

20
20
04
FE
20

Eé6

FB

014C

EO

10
41
co
68
co
26

11
co
06
11
co

cS
Eé
13
04
05

11

FE
3D

11
38

co
c4
CcS
29

11

04
04
o8
FB
01
04
FE

80

80
02
20

o2

F7
80
80

o2

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
i82
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

CRT:

CRT1:

CRT2:

CRT3:

CRT4:

KB:

KB1:

KB11:

KB2

KB3:

INPUTS: NONE
R6-R10 USED

OUTPUTS: NONE

™ MODE, #BLOK
JR Z, CRT3

™ FLAG, #KBXFR
JR NZ, CRT4

™ FLAG, #CRTXFR
JR NZ, CRT2

LD Ré&, CRDAT

AND Ré&, #%3F

JR Z,CRT1

LD LC.,R&

LD CBCNT. R6&

LD UBPTR, #BUFF
LD DIND, #BUFF
OR FLAG, #CRTXFR
AND STAT, #/4FF-CRTBSY
OR MIC, #1IP

JR CRT4

LD R&, @QUBPTR
CALL DATOUT

INC UBPTR

DEC CBCNT

JR NZ, CRT2

AND FLAG, #/FF-CRTXFR
JR CRT1

LD R&. CRDAT
CALL DATOUT

JR CRT1

RET

{CHECK MODE!

!BRANCH IF NOT BLOCK!
‘KB XFER? !

'YES, BRANCH!

ICHECK XFER FLAG!
!BRANCH IF BLOCK DATA!
!GET DATA!

'ONLY &4 BYTES!
!BRANCH IF NOTHING!
!MOVE BYTE COUNT!

'RESET BUFFER PTR!
'SET DIND PTR!
'SET XFER FLAG!

'CLEAR CRT BUSY

'ELSE, SET IP!

!GET DATA!
'SEND TO CRT!

!‘DECR BYTE COUNT!
!BRANCH IF MORE!

{CLR XFER FLAG!
YEXIT!

!GET DATA!
!SEND TO CRT!
EXIT!

THIS ROUTINE PROCESSES KEYBOARD DATA.

Ré& IS CLOBBERED

™ MODE, #BLOK

JR Z, KB3

™ FLAG, #CRTXFR
JR NZ, KB4

™ FLAG, #KBXFR
JR NZ, KB2

DI

AND STAT, #/.FF-KBOVF
™ FLAG, #KBB

JR Z, KB1

OR STAT, #KBOVF
AND FLAG, #%FF-KBB
LD R&, KBBPTR

SUB Ré&, #KBUFF

LD KBDAT, R6

LD LC.Ré&

LD DINL. #KBUFF
OR FLAG, #KBXFR
OR STAT, #CPDAV
OR MIC, #IP

JR KB4

™ STAT, #CPDAV
JR NZ, KB4

D1

AND FLAG, #/4FF-KBXFR
LD KBPTR, #KBUFF
LD KBBPTR, #KBUFF
JR KB32

™ STAT, #CPDAV

!BLOCK MODE?!
!NO, BRANCH!
!CRT XFER? !
!YES, BRANCH!
!XFER SET?!
!YES:, BRANCH!

!CLEAR KB OVF!
!CHECK KBB'!

!SKIP IF CLEAR!
!SET KB OVF!
!CLEAR KBB!

!GET LINE LENGTH!

!STORE COUNT!
!STORE BUFFER LENGTH!

'SET XFER!
!SET CP DAV!

!'SET IP!
tCPU THRU? !
!NO, CONTINUE!

'ELSE, CLEAR XFER!
!RESET KB PTR!

'CP DAV 7!

TUVTODDO MTVVTVTVTVTVVTVIVTVD TV VTOVTTVTD TOVTVTVTUVO v o o TUVTVUVUOTO TTUVTVVVTVTVO

TvTUVTUTUO

T

v oo

gizi
0123
0124
o127
0129
o12¢C
012F
0131
0134

0137
013A
013C
C13F
0142
0145

0147

014A
014B

014C
014F
0151
0154
0156
0158

015A
015C
015E
0161
0163
0165

0166
0167
0169
C16A
016C
016D
0170
0172
0174
0177
0179
C17B
017E

0180
0183
0185
o187

o189
o18C
Q18E
0190

0193
0195

0197
0199
019C

EB
8F
A4
6B
56
76
éB
46
56

ES
20
56
46
46
8B

56

9F
AF

AL
FB
Ab
&B
eC
AC

A3
&B
06
00
EB
AF

9E
E3
FE
E3
FE
76
&B
20
56
EB
E3
46
8B

76
6B
BO
8B

76
&B
00
56

&C
8B

&C
D&
&8

27

c4
1E
11
co
06
11
co

c4
c4
Cc4
Cc4
11
C1

co

Eé6
53
E&
41
&0
08

69
o8
E?
EA
FS

79
89

E7
OE
c3
Cc3
1A
89
E7
13

E7
04
Cc3
0A

E7
05
Cc3
c3

00
27

20
01A4
c3

CcS

FB
o1

04
FE

13

3F
80
02

FD

20

09

04

40

3F

08

10

20

3F

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296

KB31:

KB3R

KB4&:

DATOUT:

DATO:

DAT1:

DAT11:

DAT12:

DATS

DAT2:

JR
DI
CcP
JR
AND
™
JR
OR
AND

LD
INC
AND
OR
OR
JR

AND

EI
RET

NZ, KB4

KBBPTR, KBPTR

Z, KB32

STAT, #4FF-KBOVF
FLAG, #KBB

Z, KB31

STAT, #KBOVF
FLAG, #/FF-KBB

KBDAT, @KBPTR
KBPTR

KBPTR, #%3F
KBPTR. #KBUFF
STAT, #CPDAV
KB11

FLAG, #%FF-KBDAV

!YES, BRANCH!
!COMPARE KB PTRS!
!BRANCH IF EQUAL'!
!CLEAR KB OVF!
!'KBB SET?!

!NO. BRANCH!

!'SET KB OVF!
!CLEAR KBB!

'LOAD KB DATA!
'BUMP KB PTR!

!'SET CP DAV!

!CLEAR KB DAV!

THIS ROUTINE OUTPUTS DATA TO THE CRT,

IF DISPLAYABLE,

CONTROLLER FUNCTION.

INPUTS:

QUTPUTS:

cpP
JR
CP
JR
LD
LD

cP
JR
ADD
DEC
JR
RET

INC
LD
INC
LD
INC
™
JR
INC
AND
JR
LD
OR
JR

™
JR
CLR
JR

™
JR
DEC
AND

LD
JR

LD
CALL
LD

%R6=ASCII DATA
%R7-%R10 USED
NONE

R&, #%20
NC, CHROUT
R&, #9

Z, DAT2
R?: #PARAM
R10, #8

Ré&, @R?
Z, DAT1
R9, #4
R10

NZ, DATO

R9

R7, @R9
R?

R8, @R?
R?

R7. #740
Z,DAT11
COLCNT
COLCNT, #%43F
NZ, DATS
R8., @R
R7., #8
DATS

R7. #%410
Z, DATI2
COLCNT
DATS

R7, #7420
Z, DATS
COLCNT
COLCNT, #%3F

R&, #0
OUTP

Ré&, #%.20
CHROUT
Ré&, COLCNT

ELSE TRANSLATES THE CODE

INTO

!{CTRL CHAR ?!

!NO, BRANCH!

!TAB 7!

'YES: BRANCH!

!'POINT TO PARAM TABLE!

'!CHECK DATA AGAINST...'!
'...CTRL TABLE VALUES!

'LOOP UNTIL...!
'EXIT IF NO MATCH!

!'GET CRTC!
!GET NO SCROLL VALUE!

!POINT TO SCROLL VALUE'!
{INCR COLCNT 72!
!NO, BRANCH!

'EOL 2!

!NO, BRANCH!

‘LOAD SCROLL DELAY VAL'
'SET WRITE ENABLE!
OUTPUT CTRL CODE!

'CLEAR COLCNT 7!
!NO, BRANCH!

'DECR COLCNT?!
!NO, BRANCH!

!MODULD 64!

tOUTPUT TO CRTC!

'LOAD SPACE!
!DATA TO CRTC!
!CHECK COLUMN COUNT!

1-100

TV

TTUO MTVVV VVVUVUD

w’ VUV VVVVOVVIVVVVOVOVVTVTVLUD TVUVTVTVTTO

TTUVO

C19E
01A1
01A3

01A4
0146
01A8
O1AB
01AD

O1AF
01B2
O1B4
O1B7

01B9
O1BB
01BD

01BE
01C1
01C3
01Cé
01Cc?
01CB

01CE
01D1
01D3
01Dé&
o1iD8
01DA
01DC
O1DF
01E1
O1E3
O1ES
O1E8
O1EB
O1EE
O1iF1
O1iF4
01iF&
O1F8
O1FA
O1FD
0200
0203

0205

0206
0209
020B
020E

56
EB
AF

BO
20
56
EB
8c

26
7C
Dé
BC

00
EB
AF

76
EB
56
76
6B
46

56
98
s6
EO
EO
AB
S6
a2
&9
EO
56
56
44
B&
Bé
42
6B
89
a6
Eb6
a6
00

AF

a3
6B
E6
a6

E&
Fa

E8
c3
c3
02
04

Eé
OF
O1BE
07

EB
FC

co
FB
03
E7
03
03

Eé&

E9
E9
E9
E?
EA
6A
01
E9?
E9
02
E9
03

88
oD
cé
co
F4
Fi1
cée

co
09
Fa
F1

07

3F

20

80

EF
o8

10
3F

07

co

80
28
03

Ccé

28
03

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

CHROUT:

CROUTL:

CROUTR2:

OUTP:

OUTL:

ouTe

TIMERO:

AND R6. #7 !'MODULO 87!
JR NZ. DAT2 !NO, LOOP!
RET

THIS ROUTINE OUTPUTS A DISPLAYABLE CHARACTER
TO THE CRT. IF COLCNT = EOL (64) THEN DELAYS
FOR SCROLL. ELSE, NO DELAY.

CLR R8 'INIT DELAY VALUE!
INC COLCNT

AND COLCNT, #%3F !MODULO 64!

JR NZ, CROUT1

LD R8, #4 !SCROLL DELAY VALUE!
SUB R&, #7420 !REMOVE ASCII BIAS!
LD R7, #5.0F !CRTC COMMAND!

CALL OUTP 'DATA TO CRT!

LD R11, #7 !DELAY CHAR TIME!
DEC R11

JR NZ, CROUT2

RET

THIS ROUTINE DOES THE ACTUAL DATA WRITE TO
THE CRT CONTROLLER CHIP.

INPUTS: %ZR6=ASCII DATA
%R7=CRT COMMAND
%R8=TIMER DELAY VALUE

OUTP

™
JR
AND
™
JR
OR

AND
LD
AND
RR
RR
LD
AND
OR
LD
RR
AND
AND
OR
XOR
XOR
OR
JR
LD
OR
LD
OR
DEC

RET

INTERRUPT ROUTINES % !

OR
JR
LD
OR

uUTS:

%ZR9-R10 USED
NONE

FLAG, #TMRFLG
NZ, OUTP

P3, #/EF

R7, #8

Z,0UT1

P3, #%10

R&, #7.3F
R%., R7
R9, #7

R9

R
R10,R?
R10, #4CO
R&,R10
P1,Ré

R

R%. #7480
P2, #47F
P2, R?
P3, #440
P3, #7440
R8, R8
Z,0UT2
TIMER, R8
FLAG, #TMRFLG
TO, #TMRVAL
TMR, #3
TIMER

TIMER, TIMER
Z, DELAY1
TO, #TMRVAL
TMR, #3

{CHECK TIMER FLAG!
'LOOP IF BUSY!
!CLEAR WRITE ENABLE!
!WRITE ENABLE?!

!NO, BRANCH!

'RAM WRITE ENABLE!

!MASK UPPER BITS!
!MASK LOWER 3 BITS!

!MERGE COMMAND BITS!

!OUTPUT DATA & CMD!
{GET UPPER CMD BIT!

'CLEAR COMMAND BIT!
'WRITE UPPER CMD BIT!
!GENERATE DS!

'ZERO TIMER VALUE?!
!YES, SKIP!

!LOAD TIMER!

'FLAG TIMER BUSY!
!LOAD TIME CONSTANT!
!START TO!

!SEE IF TIME DONE!
!BRANCH IF DONE!
'ELSE, RESET TIMER!
LOAD & ENABLE TIMER!

v T

°

TVVTVTOVVVIVTVVVVVTVVTTTBTTVOTD

W TV TTVTVUVVTVT TVVTVTTVIV VTVVVIVTUVV VT TO

J]

0211
0213

0214
0217

0218

0219
021B
O21E
0221
0223
0226
0228
022B
022D
022F
0232
0234
0237
0239
023C
023E
0241
0243
0246
0249
024C
024E

0251
0254

0256
0259

025B
025E
0260
0263
0266
0269
026C
026E

0270
0273
0275
0278
027B

027D
0280
o282
0284
0287
0284
028C
028F

0290
0292

0293

0294

00
BF

56
BF

BF

F8
56
76
EB
76
6B
76
EB
F9
A4
6B
A4
6B
A4
6B
FS
20
Sé
46
A4
EB
46

46
8B

46
8B

FS

56
46
46
A4
6B
8B

FS
20
56
46
8B

A4
6B
00
56
46
8B

Eé6
BF

E8
BF

BF

Cé

co

00

0000

7F

7F
01

04
02

EF
EF
EF
cs
3F
80
cs
02

o1

02

cS

3F
80

(=]

(-]
3F
80
cS

3F
80

80

373
374
375
376
377
378
379
380
as1
3s2
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

DEC

IRET
DELAY1:

AND

IRET

TIMERL:
IRET

KBINT:
LD
AND
™
JR
™
JR
™
JR
LD
CcP
JR
cP
JR
cP
JR
LD
INC
AND
OR
CcP
JR
OR
KBI2:
OR
JR
KBI1:
OR
JR
KBI3:
LD
INC
AND
OR
OR
CcP
JR
JR
KBI4:
LD
INC
AND
OR
JR
KBIS:
CcP
JR
DEC
AND
OR
JR
KB16:
LD
KBI17:
IRET

ERRDR:
LD
IRET

DUMMY:
IRET

! REGISTER DATA

TABLE:
WVAL

TIMER

FLAG, #Z.FF-TMRFLG!CLEAR TIMER BUSY FLAG!

R15, P2

R15, #47F
FLAG, #KBB
NZ, KBI1
MODE, #BLOK
Z,KBI3
STAT, #CPDAV
NZ, KBI2
CHAR, R15
R1S5, EOL
Z,KBI14

R15, BS

Z, KBIS

R15, DL
Z,KB1&
@KBBPTR, R15
KBBPTR
KBBPTR, #%3F
KBBP TR, #KBUFF
KBBPTR, KBPTR
NZ, KBI7
FLAG, #KBDAV

FLAG, #XBB
KBI7

FLAG, #KBDAV
KBI7

@KBBPTR. R15
KBBPTR
KBBPTR, #7%3F
KBBPTR, #KBUFF
FLAG, #KBDAV
KBBPTR, KBPTR
Z,KB12

KBI17

@KBBPTR, R15
KBBPTR
KBBPTR, #%3F
KBBPTR, #KBUFF
KBI1

KBBPTR, KBPTR
Z,KB17

KBBPTR
KBBPTR, #%3F
KBBPTR, #KBUFF
KB17

KBBPTR. #KBUFF

R14,DTC

{BUMP TIME COUNT!

!GET KB CHAR!

!MASK UPPER BIT!

!'KBB SET?!
!YES, BRANCH!
!BLOCK MODE?!
!NO, BRANCH!
'CP DAV?!
{YES: BRANCH!
'ECHO TO CRT!
'EOL?!

'YES, BRANCH!
!BACKSPACE?!
!YES, BRANCH!
{DELETE LINE?!
!YES, BRANCH!
!STORE CHAR!
{BUMP KBBPTR!

'EOB?!
!NO, BRANCH!
!SET KB DAV!

!SET KBB!

{SET KB DAV!

!STORE CHAR!

!SET KB DAV!
'EOB?!

!YES:, BRANCH!

!STORE CHAR'!

'EOB?!

'YES, SKIP!

'RESET KBBPTR!

!CLEAR ERROR BITS!

TABLE FOR INITIALIZATION!

%0000

1-102

P 0296 00A2 449 WVAL %00A2
P 0298 00AO 450 WVAL %00A0
P 029A 7FC7 451 wWvaL %“7FC7
P 029C 0007 452 wWvaL %0007
P 029E 0033 453 wWvaL %0033
P 02A0 0000 454 WVAL %0000
P 02A2 08FO 455 WVAL %O8FO
456
457 ! CQURSOR CONTROL DEFAULT PARAMETER TABLE
458 SETUP AS FOLLOWS:
459 BYTE 1 - ASCII CHAR CODE
460 2 - CRT CODE
461 3 - NOT EOL DELAY VALUE
462 4 - EOL DELAY VALUE (FOR SCROLL) !
463
464 CCTABL:
P 02A4 01 465 BVAL %1 'CURSOR HOME!
P 02A5 10 466 BvVAL %10
P 02A6 4000 467 WvAaL %4000
468
P 02A8 06 449 BVAL %6 !CURSOR FORWARD!
P 02A9 47 470 BVAL %47
P 02AA 0004 471 WvaL %0004
472
P 02AC 08 473 BVAL %8 !CURSOR BACK!
P 02AD 24 474 BvAL %24
P 02AE 0000 475 wWvaL %0000
476
P 02BO OA 477 BVAL %Z0A !CURSOR DOWN!
P 02B1 0A 478 BvAL %“0A
P 02B2 0400 479 WAL %0400
480
P 02B4 0OC 481 BVAL %“0C !PAGE ERASE!
P 02BS 18 482 BVAL %18
P 02B& 4000 483 WvaL %4000
484
P 02B8 OD 485 BVAL %0D !CURSOR RETURN!
P 02B? 11 486 BVAL %11
P 02BA 0200 487 WVAL %0200
488
P 02BC 1A 489 BvVAL %1A !CURSOR UP!
P O2BD 06 490 BvAL %6
P O2BE 0000 491 WVAL %0000
492
P 02C0 OB 493 BVAL %0B 'ERASE LINE!
P 02C1 1D 494 BvVAL %“1D
P 02C2 0400 495 WvAL %0400
496
P 02C4 497 END MAIN

498 END CRTC

O errors
Assembly complete

Loc

0000

0000
0003
0005

0007
0009
000B
000D
OO0OF
0011
0012
0014
0016
0018
001A
001C
O01E
0020
0023

0025
0027

co29
002B

002D

314020
3E1E
D310

DBi1
CBSF
28FA
3EO0O
D310
AF
F602
F&01
F&04
F&08
P311
3E15
D310
21B100
GE11l

0608
EDB3

3EO01
P310

DB11

R) o 00 2o b b b bt b ba b
OIVONCUIRWN~OIVBONCODWN =

NN
WK~

NN N
DN 0

WN
(=]

WUWWWWWWW
VONCODWNRN =

bbb
SOWR

o UQ
A= O d

NNNoe o
N=OND>

73

V09090 N NN
RON233R2ZaR

APPENDIX B

Z80 Test Program Listings for SBT

i

KBEN
CRTEN
INTEN
BLOCK
PRMB

RAM
CPRT
DPRT
DTC
DIND
MIC
MODE
STAT
CRDAT
KBDAT
EOL
BS
DL

CPDAV
CRTBSY

BEGIN:

BGON

*L ON
*L ON
*L ON
*L ON

*L ON

*L ON

*L ON
LOCP:
*L ON

*L ON

LOGP1L:

UPC. INIT
OBJ CODE M STMT SOURCE STATEMENT

ASM 5.9

280 CODE TO TEST UPC CRT CONTROLLER

EQU -1

EQU -1

EQU 0o

EQU -1

EQU -1

EQU 2000H
EQU 10H

EQU CPORT+1
EQU 18H

EQU 15H

EQU 1EH

EQU 0o

EQU MODE+1
EQU STAT+1
EQU CRDAT+1
EQU KBDAT+1
EQU EOL+1

EQU BS+1

EQU 2

EGQU 1

ORG o]

LD SP, RAM+64
LD A, MIC

ouT (CPORT)., A
IN A, (DPORT)
BIT 3 A

JR Z, BGN

LD A, MODE
ouT (CPORT), A
XOR A

OR 2

OR 1

OR 4

OR 8

ouT (DPORT). A
LD A, DIND
ouT {CPORT). A
LD HL., PRMBLK
LD C, PPORT
LD B, PRMEND-PRMBLK
OTIR

CALL KBIN

LD
ouT

IN

A, STAT
(CPORT), A

A, (DPORT)

i KB INPUT ENABLE SW.

i CRT OUTPUT ENABLE SW.
s INTERRUPT ENABLE SW

i BLOCK MOVE ENABLE SW.
+ PARAMTERS TEST SW.

i UPC PORT ADDR

1UPC DATA PORT

i DTC CONTROL REGISTER
i DATA INDIRECTION REG
i MASTER INT CONTROL

i MODE REG

i STATUS REG

i CRT DATA REG

i KB DATA REG

;s END OF LINE CHAR

i BACKSPACE EDIT CHAR
s DELETE LINE EDIT CHAR

i CP DATA AVAIL FLAG
i CRT BUSY FLAG

i INIT SP

s POINT TO EDX BIT

i LOOP IF NOT SET

i WRITE MODE

i SET KB ENABLE BIT
i 8ET CRT ENABLE BIT
i SET BLOCK MOVE BIT

i WRITE PARAMTERS

i READ KB DATA

i CHECK CP DAV

1-108

002F
0031
0033
0035
0037
0039
003A
003B
003D
O03F
0041
0044
0046
0048
004A
004C
004E
0050
0052
0053
0054

0055
0058
005A

005C
005SE
0060
0062
0065
0067
0069
00&B
00&D
00&F
0071
0073
0075

0077

0079
007B

007D
007F
0081
0083
0085
0087
ooges
008A
008C
O08E
0090

E602
28FA
3E03
D310
DB11
47
57
3E15
D310
OE11
21BA00O
EDB2
360A
3EO1
D310
DB11
E&FD
D311
42
04
04

CD7900
3EO1
D310

DB11
E&O01
20FA
21B900
OE11
3E15
D310
EDB3
3EO1
D310
DB11
F&601
D311

18BO

3EO1
D310

DBi1
E&601
20FA
3E02
D310
78

D311
3EO1
D310
DB11
F601

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
120
121
126
127
128
133
134
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
159
160
161
162
165
166
167
168
169
170
171
172
173
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

*L. ON

*L ON

*L. ON

*L ON

DELAY:

*L ON

#L ON
S0:

*L ON

CRTOUT:

CRTL:

AND CPDAV

JR Z, LOOP1
LD A, KBDAT
ouT (CPORT), A
IN A, (DPORT)
LD B, A

LD DA

LD A, DIND
ouT (CPORT). A
LD C, DPORT
LD HL, MSSG+1
INIR

LD (HL), OAH
LD A, STAT
ouT (CPORT), A
IN A, (DPORT)
AND OFFH-CPDAV
ouT (DPORT), A
LD B, D

INC B

INC B

CALL CRTOUT

LD HL, MSS¢
CALL S0

LD B, MSGEND-MSS¢G
CALL CRTOUT

LD A STAT
ouT (CPORT), A
IN A, (DPORT)
AND CRTBSY

JR NZ, DELAY
LD HL., MSSG
LD C: DPORT
LD A, DIND
ouT (CPORT), A
OTIR

LD A, STAT
ouT (CPORT), A
IN A, (DPORT)
OR CRTBSY
ouT (DPORT), A
JR LOOP

LD A, (HL)

CcP ‘$’

RET z

LD B, A

CALL CRTOUT
INC HL

JR 80

LD A, STAT
ouTt (CPORT), A
IN A, (DPORT)
AND CRTBSY

JR NZ, CRT1
LD A, CRDAT
ouT (CPORT). A
LD A B

ouT (DPORT), A
LD A: STAT
ouT (CPORT), A
IN A, (DPORT)
OR CRTBSY

i LOOP UNTIL SET
i GET BYTE COUNT

i SAVE IN B
;COPY TO D
i READ DATA LINE

i THEN CLEAR CPDAV

i RESTORE BYTE COUNT
i ALLOW LF CHAR

s OUTPUT CRT DATA

iWRITE BLOCK LENGTH
iWAIT FOR CRT

i WRITE TO DIND

s THEN SET CRT BUSY

i READ CRT

; LOOP IF BUSY
;s THEN OUTPUT DATA

3 THEN FLAG CRT BUSY

1-106

0092 D311 193 ouT (DPORT), A

0074 ce 194 RET
198 L ON
199 KBIN:
0095 3E01 200 LD A, STAT i READ UPC STATUS
0097 D310 201 ouT (CPORT), A
202 HKBI1:
0099 DB11 203 IN A, (DPORT) i CP DAV?
009B E602 204 AND CPDAV
009D 28FA 205 JR Z,KBI1 iNO, LOOP
Q09F 3EO03 206 LD A, KBDAT ;s ELSE. READ DATA
00A1 D310 207 ouT (CPORT), A
00A3 DB11 208 IN A, (DPORT)
00AS 47 209 LD B/ A
00A& 3EO1 210 LD A, STAT i CLEAR CP DAV
00A8 D310 211 ouTt (CPORT), A
00AA DB11 212 IN A, (DPORT)
00AC E&FD 213 AND OFFH-CPDAV
O0AE D311 214 ouT (DPORT), A
00BO ce 215 RET
218 *L ON
219
00B1 o1 220 PRMBLK: DEFB 1 i HOME
00B2 oz 221 DEFB 2 ; FORW
00B3 03 222 DEFB 3 i BACK
00B4 04 223 DEFB 4 i DOWN
OOBS 05 224 DEFB S + ERASE PAGE
00B& 06 225 DEFB 6 i RETURN
O0B7 07 226 DEFB 7 i UP
00B8 o8 227 DEFB 8 i ERASE LINE
228 PRMEND: EQU s
229
230 MSSe:
00B? OA 231 DEFB OAH
00BA oD 232 DEFB ODH
QOBB 54484520 233 DEFM ‘THE QUICK BROWN FOX JUMPED OVER THE LA
DOGS TAIL“
OO0ED 24 234 MSGEND: DEFB ‘s’
235
236 END BEGIN

1-107

APPENDIX C

Internal UPC Organization

7 8 5 0
o]l T L [[| e

7 8 CRT DATA °
fel L LT T L J] e
~~

KEYBOARD DATA o

7
CRT CRT| KB
IIEOl DS l INT | WE STBIINTACKl X J IEII PORT 3

FF
CTRL REGS. CHAR
Fo
STACK & STORAGE TIMER
co KBBPTR
KBPTR
KB BUFFER
COLCNT
8 CBCNT
PARAMETER AREA
0 UBPTR
FLAG o
CRT BUFFER
20
DsSC
10
W. REGS. & PORTS
0

Figure C-1. Port and Data Definitions for UPC

FLAG
TMR X X X K8 CRT | KB | KBB
FLG xFR | xFr | pav | FuLL
CRTC
INCR_ | DECR | CLEAR | WRITE
I X Icorcnr—l corcurl COICNT ENABLEI 2 I c1 l co I

CRT COMMAND

CC TABLE
ASCHl ASCIl CHARACTER
CRTC CRT CODE 1 CURSOR CONTROL
NOT EOL CHARACTER ENTRY
Tor DELAY VALUE

Figure C-2. UPC Status Bytes and Cursor Control Table

REGISTER | CPU ADDRESS

7 4 3 0
PARAMS]BLOCK] KB | CAT
I X l X I X I X IFOLI.OW MODE | EN l en | MODE ©
2 3
X8 AT
I X I X I x I X l x OVFI"’”‘VI ausvl STATUS o1
I 0 I Ascll 1 CRDAT 0
[] l ASC I I KBDAT 03
l END OF LINE I EoL 04
I BACKSPACE] Bs 05
[DELETE LINE] oL 08
I VECTOR I veer o7
7 4 3 0
I e l |us| P I NV Ieoxl bLe Fnswl EOM_] mic 1€
I DATA INDIRECTION l DIND 15

Figure C-3. UPC-to-CPU DSC Registers

1-110 00-2163-01

Z80°8-Bit Microprocessor

__n

¢
(

\

C
C

N

02
O

]
u pf

N

Z80° CPU vs. 6502 CPU

Zilog

Benchmark Report

July 1981

INTRODUCTION

With the variety of microprocessors available
today, it is often difficult for users to know
which one best suits their needs. The choice can
be based on a number of factors, such as unit
cost, throughput, code density, ease of program-
ming, compatibility, software and hardware sup-
port, and availability of second sources.

In high-volume applications (with quantities
exceeding 10,000), the cost of parts, especially
of memory, is extremely critical. The right
microprocessor should be able to interface to
low-cost memory components and should be efficient
in its use of memory. In other applications where
a large software development effort is required,
the cost of such an effort may be of more con-
sequence than the cost of parts. Therefore, in
software intensive applications, a microprocessor
should be evaluated for its ease of programming.
In some applications, a particular task must be
done very rapidly, or a large number of tasks must
be executed in a small amount of time. Some proc-
essors perform particular tasks much faster than
others, whereas some might not be as fast at a
particular task, but are generally faster than
others when a large group of tasks is executed.
Unfortunately, a user might have to choose a
particular processor because it is the only one
that can perform a particular task fast enough,
even though it may be less memory efficient and
more difficult to program than other processors.

This report compares the capabilities of two
microprocessors: the 780 and the 6502. Both have
many characteristics in common, but they also have
a number of very significant differences. These
differences will be discussed in detail, and their
significance in terms of memory usage, number of
lines of code (ease of programming), and execution
speed will be measured by a group of benchmark
programs.

Ten different benchmark programs are presented
here. They represent many tasks commonly per-
formed by microprocessors, yet are short and
simple enough for the reader to understand and

verify without much effort. The programs have been
optimized for each processor.

COMMON CHARACTERISTICS OF THE Z80 AND THE 6502

The 780 and the 6502 are 40-pin microprocessors.
The two processors are clearly similar in many
respects. They transfer data to and from external
components on an 8-bit data bus. Memory is
addressed by a 16-bit address bus. Each processor
has various registers that are used for specific
functions, such as a 16-bit Program Counter, an
8-bit status register, a Stack Pointer, and an
accumulator. The 780 and 6502 both have maskable
and nonmaskable interrupt capabilities, both have
on-chip clocks, and they can both interface to
asynchronous as well as synchronous external
devices.

DISTINGUISHING CHARACTERISTICS OF THE Z80
AND THE 6502

Table 1 lists the distinguishing features of the
780 and the 6502. At first glance, the Z80
appears to have significantly greater resources
than the 6502. Each of these resources should be
examined to determine their relative importance.

751-1955-0002

2-3

Table 1. Distinguishing Architectural Features
280 6502
1. Number of 8-bit general-purpose |14 3
registers
2. Number of 16-bit general-purpose | 8 0
registers
3. Number of functionally distinct |76 29
instructions
4, Number of addressing modes 7 10
5. Vectored interrupt capability yes no
6. Separate I/0 addressing space yes no
7. Stack space 64K 256
8. Dynamic memory refresh capability|yes no
6/12/81

MAIN REGISTER SET

ALTERNATE REGISTER SET

A ACCUMULATOR

F FLAG REGISTER

' ACCUMULATOR

F’ FLAG REGISTER

GENERAL PURPOSE

C GENERAL PURPOSE

' GENERAL PURPOSE

C' GENERAL PURPOSE

D GENERAL PURPOSE

E GENERAL PURPOSE

' GENERAL PURPOSE

E' GENERAL PURPOSE

x

GENERAL PURPOSE

L GENERAL PURPOSE

’ GENERAL PURPOSE

L' GENERAL PURPOSE

8 BITS

72-80 Register Configuration

16 BITS

1X INDEX REGISTER

1Y INDEX REGISTER

SP STACK POINTER

PC PROGRAM COUNTER

| INTERRUPT VECTOR R MEMORY REFRESH

8 BITS

Z-80 Register Configuration

Figure 1.

GENERAL PURPOSE REGISTERS
A ACCUMULATOR

X INDEX REGISTER

Y INDEX REGISTER

-+——8-BITS——»

SPECIAL PURPOSE REGISTERS
SP STACK POINTER

P STATUS REGISTER

I PC PROGRAM COUNTER

- 16-BITS >

6502 Register Configuration

Register Architecture

One of the most striking differences between the
780 and the 6502 is the number of registers each
has (Figure 1). Excluding the Program Counter,
Stack Pointer, and Status (Flag) register, the Z80
has 14 general-purpose registers and four
special-purpose registers, and the 6502 has one
accumulator and two index registers.

Registers in the CPU can be accessed much more
rapidly than external memory; therefore, the more
data that can be kept and manipulated in regiters,
the faster a program can execute. A program,
however, consists of instructions that are located
in external memory, and all data must, at one time
or another, be transferred to or from external
memory. If a CPU could be designed to work
rapidly and efficiently with external memory, the
importance of a large register set would be
diminished.

The most disturbing aspect of the 6502 register
set is not the number of registers, but the size
of each. All of the programmer accessible reg-
isters in the 6502 are eight bits long. This is a
problem because the 6502 has 16-bit addressing
Jjust like the 780 has, and without 16-bit regis-
ters, the 6502 provides no convenient mechanism
for manipulating addresses.

The 780 can pair its general-purpose 8-bit reg-
isters, forming six 16-bit registers in addition
to its two 16-bit index registers. The term
"index" used to describe the Z80 registers IX and
IY is somewhat of a misnomer. The real usefulness
of registers IX and IY is in base register
addressing. Benchmark program number 10 (See
Appendix B) illustrates the use of register IX in
accessing specific bytes within a variably located
(dynamic) memory block.

The 6502 index registers are very useful in
indexing small data structures. Being only 8-bits
long, however, the 6502 index registers cannot be
used in data structures of more than 256 bytes,
except by breaking larger structures down into 256
byte sections (pages), as illustrated in benchmark
programs 4, 5 and 9 (see Appendix C).

The 6502 design concentrates on quick and effi-
cient exchanges between registers and external
memory. This is evident in the large number of
addressing modes. Nearly all of the 6502
instructions can address memory directly (absolute
addressing), and many instructions have indexed
addressing. A number of 6502 instructions have a
special form of pre- and post-indexed indirect
addressing as well.

751-1955-0002

2-4

6/12/81

An interesting feature of the 6502 is its Base
Page (or Page Zero) Addressing mode. In Base Page
Addressing, the upper 8-bits of the 16-bit address
are assumed to be zero. This mode is therefore
only applicable to the first 256 bytes of memory.
The advantage of Base Page Addressing is that only
one byte is needed to specify an address. With
single-byte addressing, instructions can be
shorter in length and therefore can execute faster
than instructions containing 16-bit addresses.
The base page assumption is also available in the
indexed addressing modes. In the pre- and
post-indexed indirect addresssing modes referred
to above, the location of the indirect address is
always assumed to be in page zero. Pre-indexed
indirect addressing works only with index register
X, and post-indexed indirect addressing works only
with index register Y. All of these addressing
modes are very important and very useful,
especially when dealing with the first 256 bytes
of memory.

Another interesting characteristic of the 6502 is
that its Stack Pointer is only eight bits long.
An 8-bit Stack Pointer allows 256 bytes of stack
space, which is sufficient for many applications.
However, there are applications that require more
stack space, and these applications would not be
able to use the 6502. The 6502 stack space is
dedicated to page one (the second lowest 256 byte
area of memory). As with base page addressing,
the upper byte of the 16-bit stack address is
implied and need not be computed during stack
accesses. Instructions in the 6502 that deal with
the stack, however, use the Stack Pointer
indirectly, so no savings in the length of the
address field can be attributed to the stack
limitation.

The Z80 has one very important addressing mode not
found in the 6502, referred to as Indirect Reg-
ister Addressing. In this mode, the operand is in
a memory location specified by the address
residing in a 16-bit register pair. With a 16-bit
address, this mode can cover the entire memory
space of the Z80. Since the register holding the
address is a pair of 8-bit registers, the upper
and lower halves can be manipulated independently
to access different bytes within a page or the
same byte in different pages. Another important
quality of Indirect Register Addressing is that
instructions using this mode need to specify only
the register pair and not the address itself. This
allows instructions to be shorter than instruc-
tions using other addressing modes.

Addressing modes are not realized without cost.
Every instruction a processor has must be repre-
sented by an opcode. One of the most fundamental
factors affecting the efficiency of a processor is
its instruction encoding. It is important to keep
instructions as short as possible, because the
length of instructions affects the amount of
memory used by a program and the program execution
time. If the opcode size is held to a fixed
length, such as one byte, the number of possible
instructions decreases as the number of addressing

modes increases. Instructions whose opcodes imply
the operands, as in Register and Indirect Register
Addressing, need only be one byte long, whereas
instructions with other addressing modes, such as
Direct, Indirect, Base Page, and Indexed, must
further contain the address itself and so are two
or three bytes long. A comparison of the Z80 and
the 6502 is a perfect example of this point: when
operand combinations are considered, the Z80 has
202 different one-byte instructions, and the 6502
has only 29 one-byte instructions (see Table 2).

Table 2. Instruction Length Data®

280 6502

Average number of bytes 2.03 2.13
per instruction

Number of instructions

taking
1 byte 202 29
2 byte 344 74
3 byte 74 48
4 byte 76 0

*Instruction counts here include permutations of
operand possibilities including registers and
addressing modes but not permutations of memory
addresses.

In the 780, 16-bit registers are useful not only
in addressing but also in manipulating 16-bit
data. The 780 provides instructions to add, sub-
tract, increment, decrement, load, store, and
exchange 16-bit registers. The 6502 has no 16-bit
data manipulation instructions. Manipulating
16-bit data with the 6502 usually requires several
more instructions than equivalent operations with
the 780.

The number of instructions a processor has and the
usefulness of those instructions are important
factors in the number of instructions required to
perform a particular task. Other important
factors are the addressing modes and the number of
accumulators or registers capable of being the
destination of arithmetic operations. The more
accumulators a processor has, the fewer extraneous
instructions are needed to move data to where it
can be manipulated. The 6502 has one B8-bit
accumulator through which every add and subtract
operation must pass. The 780, on the other hand,
has two 8-bit accumulators (A and A') and four
16-bit registers that can be the destination of
arithmetic operations (HL, HL', IX, and IY).

Both the 780 and the 6502 have interrupts. The
280 has the additional capability of automatically
vectoring to up to 128 different programmable
locations when interrupts occur. An 8-bit jump
table vector is automatically asserted by Zilog

751-1955-0002

6/12/81

Z80 peripherals. Vectoring reduces interrupt
response time by eliminating the need for software
polling to determine the source of an interrupt in
multiple interrupt systems. The Z80 also has non-
vectoring interrupt modes for use in less complex
systems. The 6502 has no interrupt vectoring
capability.

Another important difference between the two CPUs
in question is the way they address input and
output. The 6502 has no special provisions for
1/0 addressing and simply interfaces to input and
output devices as part of its memory space. This
is referred to as memory-mapped I/0. The Z80 has
specific I/0 instructions and a specific I/0
address space of 256 bytes in addition to its
memory addressing space. Keeping 1/0 in a
separate addressing space keeps the main memory
map clear and reduces the chances of an output
device being erroneously written to by runaway
programs. If the need for memory-mapped 1/0
addressing ever arises, the Z80 can accommodate
the need in the same manner as the 6502.

Dynamic memory is used in many microprocessor
applications. The Z80 can refresh dynamic memory
automatically without special refresh circuitry.
This feature can reduce the cost of a board by
decreasing the number of components needed. The
6502 has no refresh capability. Moreover, it is
particularly difficult to interface the 6502 with
dynamic RAM because of the critical nature of its
memory access timing.

The 780 and the 6502 are available in various
versions, specified by a letter appended to the
root name, for example, Z80A or 6502B. The ver-
sion, in the case of both of these microprocessors
is closely related to its memory access timing
(see Table 3). Notice that the memory access
timing for a Z80A is very close to the memory
timing for a 6502A. Notice also that the clock
frequency of the Z8B0OA is twice that of the 6502A.

Table 3. Memory Access Times
for Various Clock Rates

Memory Access Time Clock Frequency
780 575 ns 2.5 MHz
6502 650 ns 1.0 MHz
Z80A 325 ns 4.0 MHz
6502A 310 ns 2.0 MHz
7808 190 ns 6.0 MHz
65028 170 ns 3.0 MHz

The memory access timing of a microprocessor is
important when evaluating the overall speed and
the cost of a particular application. Faster
memory components are much more expensive and
difficult to obtain than slower ones. The Z80 has
a built-in provision for interfacing with com-
ponents that cannot respond in the normal access
time. The Z80 has an input pin called WAIT that
can be activated whenever a slow device is
addressed. Activating the WAIT input causes the

780 to add discrete clock cycles to its access
timing. The 6502 can interface to slower compo-
nents by controlling the clock directly, but doing
so requires much more critical timing considera-
tions than the method used with the 780, and it
defeats the usefulness of the 6502's internal
clock circuitry. Moreover, variations in the main
clock might not be tolerable to other devices in
the system.

Interfacing the 6502 to program memory that cannot
respond at full speed is futile, because 90 per-
cent of the 6502 clock cycles are typically pro-
gram memory accesses and little would be gained by
extending those cycles. It is, however, quite
productive to use a high-speed Z80 with program
memory that cannot respond at full speed, because,
typically, less than 25 percent of the Z80 clock
cycles are program memory accesses and extending
those cycles would have relatively little effect
on overall execution speed.

BENCHMARK RESULTS

There are so many factors involved in ascertaining
a processor's capabilities that it is difficult
to determine specific figures without actually
writing benchmark programs. When evaluating a
processor for use in a particular application, the
user should use programs representative of his or
her application. This report is intended for a
general audience of users and presents a wide
variety of program types (see Appendix A for the
benchmark program specifications).

Three different aspects of performance are
measured by the benchmark programs here:

1. Memory Utilization
2. Ease of Programming
3. Execution Speed

Memory utilization is often the most important
criterion in measuring the performance of a
processor. It measures the amount of memory
(usually program memory) used by the processor in
performing various tasks. It is important,
because the cost of memory is often one of the
dominating costs of a microprocessor application.
Table 4 lists the number of bytes of program
memory used by the Z80 and the 6502 in each of the
benchmark programs.

The ease of programming is a somewhat subjective
issue, but very important nonetheless. Software
development costs are enormous and can outweigh
many other considerations made by microprocessor
users. One measure of the ease of programming is
the number of instructions (lines of code)
required to perform a given task. This measure is
used in this report because of its simplicity and
objectivity. The number of lines of source code
in the benchmark programs for each of the micro-
processors is shown in Table 5.

751-1955-0002

6/12/81

Table 4.

Number of Bytes of Program Memory Used

Ratio
Program Description 180 6502 | 6502/180
Computed GOTO Implementation 9 27 3.00
8 x 8 Bit Multiply Routine 26 41 1.58
16 x 16 Bit Multiply 20 44 2.20
Block Move " 51 4.64
Linear Search 8 41 5.13
Insert into Linked List 12 19 1.58
Bubble Sort 23 31 1.35
Interrupt Handling 6 1" 1.83
Character String Translation 17 48 2.82
Dynamic Memory Access 1 24 2.18
Average ratio 6502/780 2.63
Teble 5, Number of Lines of Source Code
Ratio
Program Description 280 6502 6502/780
Computed GOTO Implementation 8 17 2.13
8 x 8 Bit Multiply Routine 14 20 1.43
16 x 16 Bit Multiply 1" 23 2.09
Block Move 27 6.75
Linear Search 3 22 7.33
Ingert into Linked List 6 10 1.67
Bubble Sort 15 15 0.00
Interrupt Handling 6 7 1.17
Character String Translation 10 26 2.60
Dynamic Memory Access 3 13 4,33
Average ratio 6502/280 3.05

Table 6. Program Execution Times for the Lowest Speed Versions*
Program Description usec usec Ratio
280 6502 6502/280

Computed GOTO Implementation 20.27 46.33 2.29
8 x 8 Bit Multiply Routine 160.80 196.00 1.22
16 x 16 Bit Multiply 405.20 713.00 1.76
Block Move 16138.00 31816.00 1.97
Linear Search 8406.00 13011.00 1.55
Insert into Linked List 24.80 34.00 1.37
Bubble Sort 250718.00 280474.00 1.12
Interrupt Handling 17.2 32.00 1.86
Dynamic Memory Access 27.60 47.00 1.70
Average ratio 6502/Z80 1.65

* 780 maximum clock frequency is 2.5 MHz.
* 6502 maximum clock frequency is 1.0 MHz.

Memory access time is 575 ns.
Memory access time is 650 ns.

751-1955-0002

2-7

6/12/81

Execution speed can be important in several ways.
A computer product that has a human interface,
such as a keybord and display, will be more
productive and enjoyable to use if it responds
quickly. A microprocessor being evaluated for use
in controlling a high-speed device might have to
be rejected if it cannot meet very rigid timing
requirements.

Execution time varies significantly depending on
which version of Z80 or 6502 is used, so a com-
parison of different versions is important. Table
6 lists the execution times of the benchmark pro-
grams for the lowest speed versions of the two
microprocessors.

The most relevant comparison of execution times is
shown in Table 7, where the data is calculated
from versions of the Z80 and 6502 that can operate
in systems of similar speeds. One should not be
confused by the higher clock rate of the 2808,
because even at twice the clock rate of the 65028,
the 7Z80B has a longer external component access
time than the 6502B (see Table 3).

CONCLUSION

The results of the benchmark programs presented in
this report show the Z80 performing significantly
better than the 6502 in nearly every aspect. In
six of the ten programs, the 6502 used more than
twice the amount of program memory than the Z80.
In the bubble sort program, the 6502's best re-
lative performance, it used 35 percent more
program memory than the Z80. The number of lines

of code used varies dramatically from one program
to another, but none of the programs have fewer
lines of 6502 code than Z80 code. Comparing ver-
sions of equivalent speed (Table 7), the Z80 ex-
ecutes eight of the ten programs in less time than
the 6502.

In all three measures of performance (Tables 4, 5,
and 7), the program that yields the best results
for the 6502 is the bubble sort. The bubble sort
program, as specified in Appendix A, operates on
an array of less than 256 bytes, so one of the
8-bit index registers in the 6502 can be used very
effectively. In applications that primarily use
short byte-oriented data structures, the 6502 is
worthy of consideration.

Some of the benchmark programs reveal outstanding
results in favor of the Z80. For example, the
linear search program and the dynamic memory block
access program have only three Z80 instructions,
and the block move program uses only eight bytes
of program memory. The reason for such outstand-
ing results with the Z80 is that it has many
exceedingly powerful instructions. The Block Move
and Block Search instructions illustrated in the
benchmark programs are only a subset of the many
block-oriented instructions of the Z80. The
ability to access and manipulate bytes in dynamic
memory blocks spans nearly the entire Z80 instruc-
tion set and is greatly appreciated by programmers
who deal with multi-tasking software.

In applications that require data structures
longer than 256 bytes or that manipulate 16-bit
data, the 780 is likely to be more efficient than
the 6502, particularly in terms of memory utili-
zation and programmer productivity.

Table 7. Execution Times for Versions with Equivalent Memory Access Time*
Program Description usec usec Ratio
7808 65028 6502B/780B

Computed GOTO Implementation 8.45 15.44 1.83
8 x 8 Bit Multiply Routine 67.00 65.33 0.98
16 x 16 Bit Multiply 168.83 237.67 1.41
Block Move 6724.17 10605.33 1.58
Linear Search 3502.50 4337.00 1.24
Insert into Linked List 10.33 11.33 1.10
Bubble Sort 104465.83 93491.33 0.89
Interrupt Handling 7.17 10.67 1.49
Character String Translation 5678.33 7356.00 1.30
Dynamic Memory Access 11.50 15.67 1.36
Average ratio 6502B/Z80B 1.32

* 780B maximum frequency is 6 MHz.

Memory access time is 190 ns.
* 6502B maximum clock frequency is 3 MHz.

Memory access time is 170 ns.

751-1955-0002

2-8

6/12/81

APPENDIX A, BENCHMARK PROGRAM SPECIFICATION
Computed GOTO implementation. A byte is tested
for three states: negative, zero, and positive.
The processor branches to a different variable
address for each state.

The byte is in a register, and the three 16-bit
addresses are on the stack.

8 x 8 Bit Unsigned Multiply Routine. Two 8-bit
unsigned integers (INT1, INT2) located randomly in
memory (RAM or ROM) are multiplied together to
form a 16-bit product (INT3) to be stored in RAM.

16 x 16 Bit Unsigned Multiply. Two 16-bit
unsigned integers, located wherever is most
efficient, are multiplied together to form a
32-bit product.

Block Move. Move a block of memory from one
location to another. The source and destination
addresses and the block size are known at assembly
time, but no restriction on their values are
allowed.

Use a block size of 1920 bytes (a typical CRT
screen) for time calculation.

Linear Search. Search for the first occurrence of
a certain byte in a string of bytes. The string
address and length are known at assembly time, but
no restrictions on their values are allowed.

Use string length equal to 1000 with no find for
time calculations.

Insert into Linked List, The linked list exists
in RAM (not page zero) and has 160 bit forward
pointers. The root (pointer to top entry) may be
in page zero.

The address of the entry to be inserted 1s speci-
fied wherever is most efficient. Insert the entry
into the top position.

Bubble sort. Using a standard bubble sorting
algorithm, arrange an array of bytes (length 256)
into descending order.

To calculate the timing, use a length of 100 and
assume that the array is in ascending order before
sorting.

Interrupt Handling. Respond to an interrupt, save
processor status, save registers, restore regis-
ters, restore processor status, and return.

Response time does not include the time for an
executing instruction to complete.

Character String Translation. A string of ASCII
characters of known length is translated into
EBCDIC according to an existing 256 byte trans-
lation table.

Use a length of 1000 for time calculations.

Dynamic Memory Access, The following operations
are performed on bytes within a 256 byte dynamic
memory block (dynamic means the block address is a
variable).

Set bit 5 of byte 151, increment byte 70, and
shift byte 205 left.

751-1955-0002

6/12/81

APPENDIX B: 780 PROGRAM LISTINGS

1. 280 Computed GOTO implementation

bytes cycles

1 10

1 10

1 4

1 11/5

1 10

2 12/7

1 4

1 4
Lines = 8
Bytes = 9

Cycles = 50.67

2. 180 8 x 8 Bit

bytes cycles

3 13

1 4

3 13

3 17

2 7

1 4

1 4

2 7

1 1

2 12/7

1 1

2 13/8

1 10

3 16
Lines = 14
Bytes = 26

!

! COMPUTED GOTO (REG A CONTAINS THE BYTE TO BE TESTED)
!

COGOTO POP DE IDE = JUMP ADDRESS IF POSITIVE

POP HL 'HL = JUMP ADDRESS IF ZERO

OR A ITEST THE BYTE

RET M !JUMP TO ADDRESS FOR NEGATIVE

PoP BC IDISCARD ADDRESS FOR NEGATIVE

JR Z,C06010 1JUMP IF BYTE ZERO

EX DE, HL 'HL = ADDRESS FOR POSITIVE
C0Go10 JP (HL) !JUMP TO APPROPRIATE ADDRESS

END

Unsigned Multiply Routine

!

! PREPARE ARGUMENTS FOR SUBROUTINE
!

LD A, (INT1) IRANDOM LOCATION

LD E,A 'REG E = MULTIPLICAND
LD A, (INT2) IREG A = MULTIPLIER
CALL MULTS8 ICALL SUBROUTINE

!
! 8 X 8 UNSIGNED MULTIPLY ROUTINE
'

MULT8 LD D,0 TEXTEND MULTIPLICAND TO 16 BIT

LD H,D VINITIALIZE MULTIPLIER/PRODUCT
LD L,A
LD B,8 VINITIALIZE LOOP COUNTER

MULTIT0 ADD HL,HL ISHIFT MULTIPLIER/PRODUCT LEFT
JR NC,MULTZ20 'JUMP IF MSB OF MULTIPLIER WAS O
ADD HL,DE 'ADD MPCAND TO PRODUCT

MULT20 DINZ MULT10 !DEC LOOP CNTR & JMP IF NOT O
RET 'RETURN

! STORE PRODUCT

LD (INT3),HL
END

Cycles = 402 average

751-1955-0002

2-10

6/12/81

3. 288 16 x 16 Bit Unsigned Multiply

! 16 x 16 BIT UNSIGNED MULTIPLY

! BC = MULTIPLICAND

!
!
[}
! DE = MULTIPLIER / PRODUCT MSW
!
!

A,16 'A = LOBP COUNT

HL,0 VINIT PRODUCT LSW

HL,HL ISHIFT MULTIPLIER/PRODUCT LEFT
E

D IMSB OF MULTIPLIER TO CARRY
NC,MULT30 1JUMP IF MSB WAS O

HL,BC IMULTIPLICAND + PRODUCT LSW
NC,MULT40 'HANDLE CARRY TO MSW

DE

A !DEC LOOP COUNT

NZ,MULT30 'LOOP TILL DONE

bytes cycles HL = PRODUCT LSW
2 7 MULT16 LD
3 10 LD
1 1" MULT30 ADD
2 8 RL
2 8 RL
2 12/7 JR
1 1 ADD
2 12/7 JR
1 6 INC
1 4 MULT40 DEC
3 10 JP
END
Lines = 11
Bytes = 20

Cycles = 1013 average

4. 1780 Block Move

!

bytes cycles ! Move a block of memory.
!
3 10 BLKMOV LD HL , SOURCE ISET UP POINTERS & COUNT
3 10 LD DE,DESTIN
3 10 LD BC,BLKSIZ
2 21/16 LDIR IMOVE BLOCK
END
Lines = 4
Bytes = 11
Cycles = 40345
5. 280 Linear Search
!
bytes cycles ! SEARCH FOR THE BYTE IN REG A
!
3 10 SEARCH LD HL,STRING 'HL = ADDRESS OF STING
3 10 LD BC,LENGTH !BC = LENGTH OF STRING
2 21/16 CPIR ISEARCH STRING
END
Lines = 3
Bytes = 8
Cycles = 21015
751-1955-0002 2-11 6/12/81

6., 780 Insert into a Linked List

!

INSERT THE ENTRY POINTED TO BY (HL)

bytes cycles !
1
3 13 INSERT LD
1 7 LD
3 13 LD
3 16 LD
1 6 INC
1 7 LD
END
Lines =
Bytes = 12
Cycles = 62

7. Z80 Bubble Sort

A, (ROOT)
(HL),A

A, (ROOT+1)
(ROOT) ,HL
HL

(HL),A

IXFER OLD TOP ENTRY PTR

'ROOT POINTS TO NEW ENTRY

BUBBLE SORT ARRAY INTO DESCENDING ORDER

bytes cycles !
!
3 10 SORT LD
3 10 LD
1 7 SORT20 LD
1 6 INC
1 7 LD
1 4 cp
2 12/7 JR
2 7 LD
1 7 LD
1 6 DEC
1 7 LD
1 6 INC
2 13/8 SORT30 DINZ
1 4 DEC
2 12/7
END
Lines = 15
Bytes = 23

Cycles = 626795

HL ,ARRAY
BC,PAIRCT*256
A, (HL)

HL

E,(HL)

E

NC, SORT30
c,1
(HL),A

HL

(HL),E

HL

SORT20

c

TINIT ARRAY POINTER

TINIT PAIR CNTR & ENCHANGE FLAG
IGET FIRST BYTE OF PAIR
'ADDRESS NEXT BYTE

!GET SECOND BYTE OF PAIR
ICOMPARE FIRST & SECOND BYTE
1JUMP IF FIRST > = SECOND

ISET EXCHANGE FLAG

IEXCHANGE THE PAIR

ILOOP TILL ALL PAIRS EXAMINED
ICHECK EXCHANGE FLAG
1JUMP IF EXCHANGE OCCURED

751-1955-0002

2-12

6/12/81

8. 1780 Interrupt Handling

bytes cycles

1 4
1 4
1 4
1 4
1 4
1 10
Lines = 6
Bytes = 6
Cycles = 43

!

! INTERRUPT OVERHEAD (ADD 13 CYCLES RESPONSE TIME)

!
INTRPT

EX
EXX
EXX
EX
EI
RET
END

AF ,AF*

AF ,AF*

9. 180 Character String Translation

bytes cycles

3 10

2 7

2 7

2 7

1 7

1 7

1 7

2 13/8

1 4

2 12/7
Lines = 10
Bytes = 17

Cycles = 34070

TRANSL

TRAN10

LD
LD
LD
LD
LD
LD
LD
DINZ
DEC
JR
END

10. 280 Dynamic Memory Access

bytes cycles

! REG IX = MEMORY BLOCK ADDRESS

1

DYNACC

HL,STRING
D,HI TABLE
B,L0 LENGTH
C,HI LENGTH+1
E,(HL)

A, (DE)

(HL),A
TRAN10

c

NZ1TRAN10

ISAVE REGISTERS AND STATUS

IRESTORE REGISTERS AND STATUS

IRETURN TO INTERRUPTED PROGRAM

TRANSLATE STRING FROM ASCII TO EBCDIC

TRANSLATION TABLE MUST BE AT A PAGE BOUNDARY.

'HL = STRING ADDRESS

!D = HIGH BYTE OF XLATION TALBE
!B = LOOP COUNTER LOW BYTE

IC = LOOP COUNTER HIGH BYTE
IGET AN ASCII CHARACTER

'USE IT TO INDEX EBCDIC TABLE
ISTORE EBCDIC CHAR IN STRING
IDEC AND TEST LOOP COUNT

1JUMP IF NOT DONE

4 23 SET 5, (IX+151) ISET BIT 5 OF BYTE 151
3 23 INC (I1X+70) IINCREMENT BYTE 70
4 23 SLA (IX+205) ISHIFT BYTE 205 LEFT
DONE END
Lines = 3
Bytes = 11
Cycles = 69
751-1955-0002 2-13 6/12/81

APPENDIX C.

6502 PROGRAM LISTINGS

1. 6502 Computed GOTO implementation

bytes cycles ! COMPUTED GOTO (REG X CONTAINS THE BYTE TO BE TESTED)

!
COGOTO

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2 3

1 2

2 3/2

1 6

1 4 C0Go10

1 4

1 2

2 3/2

3 5

3 5 C0G020
Lines = 17
Bytes = 27

Cycles = 46.33 average

PLA
STA
PLA
STA
PLA
STA
PLA
STA
TXA
BPL
RTS
PLA
PLA
TXA
BNE
JMP
JMP
END

POSADR
POSADR+1
ZERADR
ZERADR+1

C0G010

C0G020
(ZERADR)
(POSADR)

!POSADR=ADDRESS FOR POSITIVE

|ZERADR=ADDRESS FOR ZERO

ITEXT THE BYTE

!BRANCH IF NOT NEGATIVE

!JUMP TO ADDRESS FOR NEGATIVE
IDISCARD ADDRESS FOR NEGATIVE

ITEST THE BYTE

!BRANCH IF NOT ZERO

'JUMP TO ADDRESS FOR ZERO
1JUMP TO ADDRESS FOR POSITIVE

751-1955-0002

2-14

6/12/81

2, 6502 8 x B Bit Unsigned Multiply Routine

bytes cycles ! PREPARE ARGUMENTS FOR SUBROUTINE
!

3 4 LDA INT1 'RANDOM LOCATION
2 3 STA MPCAND !PAGE ZERO
3 4 LDA INT2 'RANDOM LOCATION
2 3 STA MPLIER IPAGE ZERO
3 6 JSR MULT8 ICALL SUBROUTINE
!
! 8 X 8 UNSIGNED MULTIPLY ROUTINE
]
2 2 MULTS LDA #0 !CLEAR LOW BYTE OF PRODUCT
2 2 LDX #8 IINIT LOOP COUNTER
1 2 MULT10 ASL A ISHIFT MULTIPLIER/PRODUCT LEFT
2 5 ROL MPLIER
2 2/3 BCC MULT20 !BRANCH IF MSB WAS O
! ADD MULTIPLICAND TO PRODUCT
1 CLC
2 3 ADC MPCAND
2 2/3 BCC MULT20 {HANDLE CARRY TO HIGH BYTE
2 5 INC MPLIER
1 2 MULT20 DEX IDECREMENT LOOP COUNTER
2 2/3 BNE MULT10 !BRANCH IF NOT DONE
1 6 RTS IRETURN
!
! STORE PRODUCT
]
3 4 STA INT3 ILOW BYTE
2 3 LDA MPLIER 'HIGH BYT
3 4 STA INT3+1
END
Lines = 20
Bytes = 41

Cycles = 196 average

751-1955-0002 2-15 6/12/81

3. 6502 16 x 16 Bit Unsigned Multiply

16 x 16 UNSIGNED MULTIPLY

MPCAND : 2 CONSECUTIVE BYTES IN PAGE O
MPLIER : 2 CONSECUTIVE BYTES IN PAGE O (PRODUC+2)

bytes cycles PRODUC : 4 CONSECUTIVE BYTES IN PAGE O (OVERLAPPING MPLIER)

2 2 MULT16 LDX #16 TINIT LOOP COUNTER

2 2 LDA #0 'INIT PRODUCT LSW

2 3 STA PRODUC

2 3 STA PRODUC+1

2 5 MULT30 ASL PRODUC ISHIFT MULTIPLIER/PRODUCT LEFT

2 5 ROL PRODUC+1

2 5 ROL MPLIER

2 5 ROL MPLIER+1

2 3/2 BCC MULT40 1JUMP IF MSB WAS O

1 2 cLC IMULTIPLICAND+PRODUCT LSW

2 3 LDA PRODUC

2 3 ADC MPCAND

2 3 STA PRODUC

2 3 LDA PRODUC+1

2 3 ADC MPCAND+1

2 3 STA PRODUC+1

2 3 LDA PRODUC+2 IPROPOGATE CARRY

2 2 ADC #0

2 3 STA PRODUC+2

2 3/2 BCC MULT40

2 5 INC PRODUC+3

1 2 MULT40 DEX IDEC LOOP COUNT

2 3/2 BNE MULT30 ILOOP TILL DONE

END

Lines = 23
Bytes = 44

Cycles = 713 average

751-1955-0002 2-16 6/12/81

4, 6502 Block Move

bytes

N aBNNDNNBRNNNNSGSNNRND=S2RNDNNNNDNNDNRNRNNNDNDNNNDNDDN

Lines =
Bytes =

Cycles = 31816

cycles

2
5

7
1

\n
o\

“w)
\NWW\NO\\N}NWNWNUNUN

N

N

N

wu e
N

5/6

3/2

!

! Move a block of memory.

!
BLKMOV

LooP1

LSTPAG

LOoP2

DONE

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDX
BEQ
LDY
LDA
STA
DEY
BNE
INC
INC
DEX
BNE
LDY
BEQ
DEC
DEC
LDA
STA
DEY
BNE
END

#L0 SOURCE
SRCADR

#HI SOURCE
SRCADR+1

"#LO DESTIN

DSTADR
#HI DESTIN
DSTADR+1
#HI COUNT
LSTPAG

#0
(SCRCADR), Y
(DSTADR), Y

LOOP1
SRCADR+1
DSTADR+1

LOOP1
#L.0 COUNT
DONE
SRCADR
DSTADR
(SRCADR),Y
(DSTADR), Y

LooP2

ISET UP POINTERS AND COUNT

IBRANCH IF SIZE < 256 BYTES
1Y REG USED AS INDEX & CNTR
IMOVE A 256 BYTE PORTION

IPOINT TO NEXT 256 BYTE PART

!X REG=NUM OF 256 BYTE PARTS

'Y REG=NUM OF BYTES REMAINING
!BRANCH IF NONE LEFT

!ADJUST ADDRESSES

IMOVE REMAINING BYTES

751-1955-0002

2-17

6/12/81

5. 6502 Linear Search

bytes cycles

2
3
2
3
2
3/2
2
5/6
3/2
2
3/2
5
2
3/2
2
3/2
2
5/6
3/2
2
2
3/2

NN =2NDNNNNNSDGDNN=SDNENNNNNNNNDN

Lines = 22
Bytes = 41
Cycles = 13011

"

6. 6502 Insert into Linked List

bytes cycles

2 2
2 3
2 6
2 3
1 2
2 [3
2 3
2 3
2 3
2 3
Lines = 10
Bytes = 19
Cycles = 34

! SEARCH FOR BYTE IN REG A

!
SEARCH

SRCH10

SRCH20

SRCH30

DONE

LDA
STA
LDA
STA
LDX
BEQ
LDY
CMP
BEQ
INY
BNE
INC
DEX
BNE
LDY
BEQ
LDY
CMP
BEQ
INY
CPY
BNE
END

#L0 STRING
STRADR

#HI STRING
STRADR+1
#HI COUNT
SRCH20

#0
(STRADR),Y
FOUND

SRCH10
STRADR

SRCH10
#LO COUNT
DONE

#0
(STRADR), Y
FOUND

#L0O COUNT
SRCH30

ISET UP STRING POINTER

!X = HIGH BYTE OF COUNT
!CHECK FOR O

'Y = COUNTER AND INDEX
IMATCH?

!BRANCH IF SO

'INCREMENT COUNT/INDEX
!BRANCH IF NOT DONE WITH 256
'UPDATE POINTER TO NEXT 256
'DECREMENT HIGH BYTE OF COUNT
!BRANCH IF NOT LAST PAGE
ICHECK LAST PARTIAL PAGE
IBRANCH IF NO PARTIAL PAGE
1Y = INDEX

!DONE WITH LAST PARTIAL PAGE ?
!BRANCH IF NOT

! INSERT THE ENTRY POINTED TO BY (NEWADR)

!
INSERT

LDY
LDA
STA
LDA
INY
STA
LDA
STA
LDA
STA
END

#0

ROOT
(NEWADR) , Y
ROOT+1

(NEWADR), Y
NEWADR
ROOT
NEWADR+1
ROOT+1

'INIT INDEX REG
IXFER OLD TOP ENTRY PTR
IFIRST 2 BYTES IS FORWARD PTR

'ROOT POINTS TO NEW ENTRY

751-1955-0002

2-18

6/12/81

7. Bubble Sort

bytes cycles ! BUBBLE SORT ARRAY INTO DESCENDING ORDER
!

2 2 SORT LDY #0 TINIT EXCHANGE FLAG
2 2 LDX #LENGTH-1 IINIT INDEX/PAIR COUNT
3 4/5 SORT10 LDA ARRAY ,X IGET FIRST BYTE OF PAIR
3 4/5 CMP ARRAY+1,X
2 3/2 BCS SORT20 !BRANCH IF FIRST > = SECOND
2 2 LDY #1 ISET EXCHANGE FLAG
1 3 PHA 'EXCHANGE THE PAIR
3 4/5 LDA ARRAY+1,X
3 5 STA ARRAY, X
1 4 PLA
3 5 STA ARRAY+1,X
1 2 SORT20 DEX IDEX INDEX/PAIR COUNT
2 3/2 BNE SORT10 ILOOP TILL ALL PAIRS EXAMINED
1 2 DEY {CHECK EXCHANGE FLAG
2 3/2 BEQ SORT IBRANCH IF EXCHANGE OCCURRED
END
Lines = 15
Bytes = 31

Cycles = 280474

8. 6502 Interrupt Handling

bytes cycles ! INTERRUPT OVERHEAD (ADD 7 CYCLES RESPONSE TIME)
!

1 3 INTRPT PHA !SAVE REGISTERS
2 3 STX XSAVE
2 3 STY YSAVE
2 3 LDY YSAVE IRESTORE REGISTERS
2 3 LDX XSAVE
1 4 PLA
1 6 RTI 'RESTORE PROCESSOR STATUS
END
Lines = 7
Bytes = 11
Cycles = 32

751-1955-000? 2-19 6/12/81

9. 6502 Character String Translation

bytes

N a2 NN=2SNNNNNNNN=S2SNN=2NNNNNNNNDN

Lines
Bytes

Cycles = 22068

nn

cycles

26
48

3

N

e
N

2
3
2
3
2
/.
3
2
5
2
4
6
2
%
5
5

3/2
2
3/2

NOESE DNV W

3/2

! TRANSLATE STRING FROM ASCII TO EBCDIC

!
TRANSL

TRAN1O

TRAN20

TRAN30

DONE

LDA
STA
LDA
STA
LDA
BEQ
STA
LDY
LDA
TAX
LDA
STA
INY
BNE
INC
DEC
BNE
LDY
BEQ
DEC
LDA
TAX
LDA
STA
DEY
BNE
END

#LO STRING
STRADR

#HI STRING
STRADR+1
#HI LENGTH
TRAN20
COUNT

#0
(STRADR), Y

TABLE, X
(STRADR) , Y

TRAN10
STRADR+1
COUNT
TRAN1D
#L0 COUNT
DONE
STRADR
(STRADR),Y

TABLE, X
(STRADR) , Y

TRAN30

ISET UP STRING POINTER

ICHECK HIGH BYTE OF LENGTH
!BRANCH IF STRING < 256 CHARS
TINIT COUNT

'Y = INDEX FOR PARTIAL STRING
ITRANSLATE A BYTE

' INCREMENT INDEX

!BRANCH IF NOT DONE WITH PAGE
TUPDATE POINTER TO NEXT PAGE
IDECREMENT COUNT

IBRANCH IF NOT LAST PAGE

1Y = INDEX/COUNT FOR LAST PAGE
IBRANCH IF NO PARTIAL PAGE
IADJUST POINTER

ITRANSLATE LAST PARTIAL PAGE

751-1955-0002

2-20

6/12/81

10. 6502 Dynamic Memory Access

bytes cycles

! (BLOCK) = ADDRESS OF MEMORY

!
DYNACC

BLOCK

2 2 LDY #151 ISET BIT 5 OF BYTE 151
2 5 LDA (BLOCK),Y
2 2 ORA #20
2 6 STA (BLOCK),Y
2 2 LDY #70 'INCREMENT BYTE 70
2 5 LDA (BLOCK),Y
1 2 cLC
2 2 ADC #1
2 6 STA (BLOCK) , Y
2 2 LDY #205 ISHIFT BYTE 205 LEFT
2 5 LDA (BLOCK) ,Y
1 2 ASL A
2 6 STA (BLOCK) , Y
DONE END

Lines = 13

Bytes = 24

Cycles = 47

00-2116.01 2-21 6/12/81

Integrating an 8-Bit
DMA Controller
into a 16-Bit System

Zilog

Tutorial

November 1980

The new generation of 16-bit microprocessors
allows the system designer to implement a
powerful, but cost-effective computer system
using the currently available 8-bit periph-
eral support devices., These processors

of fer advance block transfer operations that
allow blocks of data to be moved between
memory and an |nput/Output (1/0) device.
Although the data transfer rates achieved
are very high, they are still inadequate for
interfacing some system peripherals such as
the new 8" Winchester disk drives, To in-
corporate such high-speed peripheral
devices, the system designer needs to inte-
grate a Direct Memory Access (DMA) control ler
device into the system, This article illus-
trates the increase in throughput obtained by
integrating an 8-bit DMA device into a 16-
bit microprocessor system and discusses the
various Interface techniques and trade-offs
involved in such a task,

280 DIRECT MEMORY ACCESS CONTROLLER

A DMA device performs the dedicated task of
moving data in a microprocessor system inde-
pendently of the Central Processing Unit
(CPU). The transfers are usually between
memory and an 1/0 device, but some DMAs are
capable of moving data from memory to memory
or between two 1/0 devices, In a small
microprocessor system, the CPU can normally
do these transfers via software, but this
results in a reduction of system throughput
and ties up the CPU for long periods of time
when a large amount of data is to be moved,
The response time of the CPU in these CPU-
managed transfers is inherently slow and may
not be adequate in situations where the
nature of data transfers demands fast
response. The addition of a DMA device to an
8-bit microprocessor system is easily accom=
plished, since most 8-bit CPU families have a
DMA controller device that shares common
family interface protocol. Integrating a DMA
device into a 16-bit system poses two options
to the system designer. Since 16-bit LSI DMA
devices are not presently available, the
designer can use the 8-bit devices with addi-

tional hardware, or can opt for implementing
DMA functions using discrete TTL logic, The
latter approach offers the advantage of
implementing only those functions that are
needed., However, even In the most simple
cases, a high part count is required to add
DMA capability using this approach, The
8-bit devices, on the other hand, offer
extensive, integrated capabilities and
require relatively little additional logic
to interface to 16-bit processors,

The Z80 DMA is a powerful 8-bit DMA device
and, unlike most other DMAs, it takes com-
plete control of the system bus during the
data transfer, |t generates all bus signals
normal |y generated by the Z80 CPU during a
data transfer without any external TTL
packages, Data transfers can be accom-
plished in three different modes, In the
Byte mode, one byte of data is transferred at
a time, giving control of the system bus to
the CPU after each byte transfer. In the
Burst mode, a block of data bytes is trans-
ferred and data transfer operations continue
until the READY signal (normally from an 1/0
device) becomes inactive., At this time, bus
control Is returned to the CPU and when the
1/0 device is ready to move more data (acti-
vating the READY signal), the data transfer
operation is started again, These bursts of
data transfers continue until the whole block
has been moved. The Continuous mode operates
in the same fashion as the Burst mode, except
that the bus control is returned to the CPU
only when the operation is complete, If the
READY signal goes inactive before the whole
block Is moved, the DMA simply pauses until
it becomes active again, In addition to data
transfers, the Z80 DMA can also search for a
specific data byte. In the Search mode, data
bytes are compared to a programmable "match
byte" and an interrupt may be generated when
a match is found.

The Z80 DMA can generate two port addresses,
with either address being variable or fixed,
It is capable of doing a data transfer from
memory to memory or between two 1/0 devices,
using a single channel in any of the three

617-1564-0003

2-23

10/28/80

modes described above, The Z80 DMA has a
programmable cycle length. Thus, the read
and write cycles of a data transfer operation
can be made two, three or four clock cycles
long, and the four control signals associated
with data transfers can be deactivated one-
half clock cycle before the read or write
cycle ends. These programmable features allow
easy interface of the DMA to slow or fast
system components. In addition, the DMA can
be made to automatically repeat a complete
operation using the "auto restart" feature.
Multiple DMAs can be daisy-chained in a
system without any TTL support logic. A
complete description of all the available
features of the DMA can be found in the Z80
DMA Technical Manual (document #00-2013-A),

COMPARISON OF DATA TRANSFER
RATES IN A SMALL SYSTEM

Table 1 illustrates the various transfer
speeds that can be obtained in a micro-
processor system with a Z80A CPU, a Z8000
CPU, or a Z80A DMA, The Z80A DMA can achieve
an impressive transfer rate of 1 Mbyte/sec,
The Z80A CPU, using the powerful block trans-

programmed to search for a specific byte of
data while it Is transferring data. This
allows the system to perform powerful string
operations at very high data rates. The
transfer rates shown in Table 1 illustrate
the improvement in system throughput that can
be achieved with a DMA device,

INTEGRATION OF A Z80 DMA IN A Z8000 SYSTEM

A small, yet effective, Z8000 system can be
built using currently available Z80 periph-
erals, The implementation of such a system
is fully described in the Zilog application
note A Small Z8000 System (document
#03-8060~01), Previous discussion has proven
the advantage of the addition of a DMA device
to such a systems, The rest of this article
will describe the additional logic required
to integrate the 780 DMA into a Z8000-based
systems By carefully selecting and imple-
menting only those functions required, the
designer can minimize the additional TTL
logice Since Z80 peripherals share common
interface logic, it is not necessary to
duplicate the logic when other Z80 periph~
erals are added to the system,

Maximum Data Transfer Rates

780A DMA! 78000 CPU

1.0 Mbytes/sec
1.0 Mwords/sec¥**

0.44 Mbytes/sec
0.44 Mwords/sec

1.0 Mbytes/sec
1.0 Mwords/sec¥**

Table 1.
Z80A CPU

Memory 0.19 Mbytes/sec

to
Memory
1/0
to
1/0
1/0 0.19 Mbytes/sec
to
Memory

1.0 Mbytes/sec

1.0 Mwords/sec¥**
2,0 Mbytes/sec*
2,0 Mwords/sec*

0.4 Mbytes/sec

0.4 Mwords/sec

! continuous mode operation

* In Search/Transfer mode with external logic
*¥Requires external logic for word transfers

fer Instruction, can transfer data at 0.19
Mbytes/sec.s Since the DMA achieves the 1
Mbyte/sec. transfer rate using two-clock-
cycle operations for each byte of transferred
data, it requires memory devices with rela-
tively short access times. The Z8000 CPU has
a maximum memory-to-memory data transfer rate
of 0.44 Mtransfers/sec., and a maximum 1/0-
to-memory data transfer rate of 0.40 Mtrans-
fers/secs The same transfer rates are ob-
tained by the Z8000 CPU whether the data
transferred Is a byte or a word, However,
since the DMA can be made to transfer words
with some additional hardware, it can still
provide a data transfer rate of 1 Mtrans-
fer/sec, In addition, the DMA can also be

Figure 1 shows a block diagram of the Inter-
face requirements for a Z80 DMA device in a
28000 systems The Small Z8000 System Appli-
cation Note already implements part of the
logic shown in Figure 1. These interface
functions are common to other Z80 periph-
erals, such as the P10, SI0 and CTC., This
includes the 3-state address buffers and
bidirectional data buffers, which are used to
demultiplex the system address and data
buses, The DMA is connected to the demulti-
plexed address and data lines rather than
being placed closer to the CPU, Other common
functional blocks are the Status Decoder, 1/0
Decoder, and Z8000-to-Z80 Control Translator
logice

617-1564-0003

2-24

10/28/80

SYSTEM BUS

A
SNg-SNg SNo
SNg
ADDRESS
ADRG BUPFERS Rl 110 DECODER | | TRANSLATION
LoGIC
Do
D7
BIDIRECTIONAL /1
ADo-ADss DATA SYSTEM DATA BUS
BUFFERS [\ =
Do Ao
> la
{/ Ds <XDg-Dxx "
J > TE
+ 5V—>] v
GND—>1 28001/2 CONTROL DATA _ Z80A
CLK—>] cPU Vi REGISTER BUFFER Nt DMA -+ 5V
il BUSACK BAI GND
RESET—> susno\‘\‘ /.~ BUSRQ CLK
t |
ST, 1
= STATUS 4 L
sT. 7800112 TO Z80A 280A TO
2 /] pEcoDER CONTROL 280A BUS TIMING 280012
TRANSLATOR CONTROL
TRANSLATOR
\17
BUS TIMING SYSTEM CONTROL BUS

Figure 1. Block Diagram

Since the Z80 DMA takes complete control of
address and data buses during an operation,
it generates Z80 CPU system-bus-compatible
control signals, However, these signals are
not compatible with the system bus control
signals generated by Z8000 CPU, and a Z80-to-
28000 Control Translator logic block is
required to interface the DMA with the Z8000
system, In particular, the signals that need
to be generated in order to effectively
control the system bus are four status
signals STO-ST3, Byte/Word (B/W), Normal/
System (N/S), Read/Write (R/W), Memory
Request (MREQ), Data Strobe (DS), and Address
Strobe (AS). The segmented Z8001 CPU gene-
rates a segment address and a 16-bit offset
address within the segment, Since the DMA
can only output 16 bits of address informa-
tion, a Segment Register is required to store
the segment information, The segment number
is latched in this register by the Z8000 CPU
prior to DMA operation. In memory-to-memory
data transfers, the data to be moved must
reside In the same 54K address space. How
ever, in memory-to-1/0 operations, when the
block of data to be moved crosses a segment
boundary, the operation requires the loading
of a new segment number into the Segment
Register before crossing the segment
boundary. The Segment Register is shown in
Figure 1,

A 4-bit Control Register that has been
appropriately programmed by the Z8000 CPU
before it enables the DMA is used to generate
N/S, B/W, and W/DW signals. These three

signals remain active throughout the DMA
operation, The DMA provides two signals
(MREQ and IORQ) that indicate whether a
memory or an |/0 address is being accessed.
These signals are gated with signals
generated by the Z8000 Status Decoder, which
decodes the status signals ST0=-ST3 to dif-
ferentiate between memory and 1/0 accesses in
the current CPU operation. Since the memory
and |/0 address spaces of the DMA are the
same size, the MREQ and I0RQ signals can be
interchanged to generate other Z8000 control
signals. The Write (WR) signal of the DMA is
used to generate the R/W signal,

The timing relationship between the DMA
control signals (10RQ, MREQ, RD, WR) and
three of the Z8000 control signals (AS, DS,
MREQ) is shown in Figure 2, In order to
generate AS and DS from the DMA-generated
control signals, the DMA must be operated in
the variable cycle mode with a cycle length
of four clock cycles, The DMA, however, can
be allowed to run with an operational cycle
of two clock cycles, 1f the memory controller
can initiate and complete a memory transac-
tion with the DMA's control signals instead
of using AS and DS, and if the memory devices
have the fast access times necessary for
two-cycle transfers. Figure 3 illustrates
the generation of AS, DS, and MREQ signals
from DMA control signals RD, WR, and MREQ.
The four clock cycle memory read or write
operation of the DMA is translated to a
three clock cycle CPU memory read or write
operation with this logice The DS signal is

617-1564-0003

2-25

10/28/80

CLK

IORQ
DMA

generated from RD and WR signals as shown in
the same figure.

When a dynamic RAM array needs to be re-
freshed, it becomes necessary to extend a
DMA read or write cycle. This is achieved by
activating the WAIT signal of the DMA., This

MREQ, RD , WR
DMA

signal is multiplexed with the Chip Enable

— (CE) signal in the device, since the DMA

needs to be waited only when it is the bus

master. The WAIT signal, however, is sampled
only at fixed instances during a read or a

—————— N7X7\7%7r
WAIT X X X
______ LN LN/ NLN

write cycle and then only if the cycle is
more than two clock cycles long when the
programmable operational cycle feature is
selected, Thus, in a three or four clock
cycle Memory Read or Write, the WAIT line is
sampled at the falling edge of the second
clock, and on the falling edge of the third
clock in a four clock cycle 1/0 Read or Write
as illustrated in Figure 2, This implies
that in order to be able to use the WAIT
signal to extend the DMA operational cycle,
the designer has to opt for four clock cycle
transfers and use IORQ signal from the DMA to
generate AS and DS signals, rather than the
MREQ signal as shown in Figure 3. Since the

————— memory and 1/0 spaces of the Z80 DMA are 64K

bytes each, the IORQ signal can be used to
indicate a memory access and the MREQ signal
to indicate 1/0 access.

Figure 2. Control Signal Timings

10011

MREQ 10011
DMA D a
74LS175
cLK CLK
WR
DMA o Q
74L8175
CLK

10111 AS
D gjoote CcPU
74L8175
11001 .
—] CLK] 11011 MREQ
10011 CPU
D
74LS175 DS
CPU

I

DMA D Q
74L8175

—]CLK

74L8175

CLK

'Figure 3. AS-,DS-.MREQ- Generation

617-1564-0003

2-26 10/28/80

CONTROL SIGNALS

ENBLG DIR

3l

SYSTEM SYSTEM
DATA By-Bg Ai-Ag m Do-D7 Ag-A1s] SAg-SA15) ADDRESS
BUS BUS
74LS245 IDo Z80A
BUS By DMA
TRANSCEIVER

Do-D7

Figure 4. 8-Bit Data Transfer Logic

BYTE, WORD AND DOUBLE WORD BATA- TRANSFERS

The address translation logic, in conjunction
with the data buffers, allows the DMA to
perform byte, word or double word transfers,
The designer has the option of -selecting one
or more of these data transfer modes, How-
ever, the hardware required to implement the
functions increases as more options are
selecteds When only byte transfers are
desired, no address translation logic or data
buffering is needed, -but, because the system
data bus is 16-bits wide, an 8~bit bus trans-
celver buffer is required to enable the DMA
to access the higher byte of the data bus
(Figure 4), In this case, the DMA's address
bus is directly connected to the system
address bus, When 16-bit transfers are
desired, the DMA address bus is shifted so
that low address bit A0 is physically con-
nected to system address bit SA1, In this
case, A15 of the DMA is not used and SAO is
ignored by the memory controller, An 8-bit

data buffer serves the purpose of storing the
higher order data byte during the read cycle
and driving it in the write cycle. This Is
I1lustrated In Figure 5, The 32-bit data
transfer operation is similar to the 16-bit
operation but requires two additional data
buffers and the shifting of the address bus
by an additional bit, These approaches,
however, require that the same data bus width
be used in data transfers between memory and
an 1/0 device.

Figure 6 shows the address translation logic
needed to do 8-, 16- and 32-bit data trans-
fers. The CPU needs to set up two signals,
B/W and W/DW, before enabling the DMA to
determine the data transfer width, These two
signals then control the shifting of the
DMA's address bus for the generation of
system addresses. Thus, while moving bytes,
the two transparent latches are enabled and
the DMA address bus remains unshifted, The
data byte can be stored in any of the data

CONTROL SIGNALS

CLK oc WR BAI RD
74LS364 Z80A

DATA BUFFER DMA

SYSTEM] SYSTEM
DATA 1p—8p 1q-8q Do-D7 Ao—A14] SAI-15)ADDRESS
BUS BUS
< Do-D7
Figure 5. 16-Bit Data Transfer Logic
617-1564-0003 2-27 10/28/80

buffers (Figure 5) or by the DMA, depending
upon the memory organization. To accomp!ish
word or double word transfers, the address
bus is shifted via the multiplexers by one or
two bits, depending on the control signals.
Only the four multiplexers and a data buffer
are required to perform 8- and 16-bit data
movements, Since the upper address bits from
DMA are not used in 16~ and 32-bit transfers,
up to 32K words and 16K double words can be
moved in a single DMA block transfer, To
compensate for the shifting of these
addresses, the actual port addresses are
shifted right by one or two bits before being
written to the DMA.

ler always transfers the data byte (in a byte
mode) on the low-order eight bits of the data
bus.

SUMMARY

Integration of a 8-bit DMA device into a

16-bit microprocessor system Improves system
performance and allows the system to add new
fast peripherals. The Interfacing requires
additional logic, but some of this logic Is
already implemented in the system since the
system usually contains other 8-bit periph-
erals of the same CPU family sharing common

WIDW —»
W] CONTROL
BW== "Loaic SYSTEM
| SVAO'SAO SA4-SA7 SAg-SA11 | SA|2;SA15 SA9-SA1s5 :DDRESS
] M M| us
= I L Ford
SEL 0C SEL OC SEL OC SEL OC
74L8257A 74L8257A 74L8257A 74L8257A

BAI GND l ?FM-Az ﬂz-ks | ;M-Aw i fho-ku

Z80A Ao-
DMA A5
Ao-A7 > 74L8363 [sAo-5A; SAo-SAts
oC G
Jree———
oc G
As-Ats 74L8363 [SAs-15
Figure 6. 8-, 16- or 32-Bit Data Transfer Add Translation Logic

USING THE SEARCH MODE

The search or search/transfer modes of the
Z80 DMA need special interfacing considera-
tion. Since the DMA can search for bytes
only, the use of these functions is |imited
in a 16~bit environment without any support
logice Thus, when the DMA is set up to do
8-bit transfers, the hardware shown in Figure
4 allows searches on both halves of the data
bus when the data bus is 16 bits wide. In
the 16~ and 32-bit transfer modes, however,
the DMA can compare only the low-order data
byte, and external hardware is required if
any of the higher order data bytes need to be
searcheds When the hardware is set up to do
8-, 16- and 32-bit data transfers, the search
mode can be used only if the memory control-

interface logice Also, the impiementation
of the extra logic needed to integrate the
8-bit DMA can be minimized by carefully
selecting and Implementing only necessary DMA
functions that contribute to the improvement
of overall system performance,

REFERENCES

1. Z80 DMA Technical Manual; Zilog Inc., May
1980,

2. "A Small Z8000 System", Application Note,
Zilog Inc., January 1980,

3. 28000 CPU Technical Manual, Zilog Inc.,
May 1980,

10/28/80

2-28 00-2054-01

Interfacing Z80 CPUs to the
Z8500 Peripheral Family

Zilog

Application
Note

May 1983

INTRODUCTION

The 78500 Family consists of universal peripherals
that can interface to a variety of microprocessor
systems that use a non-multiplexed address and
data bus. Though similar to Z80 peripherals, the
28500 peripherals differ in the way they respond
to I/0 and Interrupt Acknowledge cycles. In
addition, the advanced features of the 28500
peripherals enhance system performance and reduce
processor overhead.

To design an effective interface, the user needs
an understanding of how the Z80 Family interrupt
structure works, and how the 78500 peripherals
interact with this structure. This application
note provides basic information on the interrupt
structures, as well as a discussion of the
hardware and software considerations involved 1in
interfacing the 78500 peripherals to the Z80
CPUs. Discussions center around each of the
following situations:

Z80A 4 MHz CPU to
Z80B 6 MHz CPU to
Z80H 8 MHz CPU to
Z80H 8 MHz CPU to

78500 4 MHz peripherals
Z8500A 6 MHz peripherals
78500 4 MHz peripherals
Z8500A 6 MHz peripherals

This application note assumes the reader has a
strong working knowledge of the Z8500 peripherals;
1t is not intended as a tutorial.

CPU HARDWARE INTERFACING

The hardware 1interface consists of three basic
groups of signals: data bus, system control, and
interrupt control, described below. For more
detailed signal information, refer to Zilog's
Data Book, Universal Peripherals.

Data Bus Signals

D;-Dg Data Bus (bidirectional, 3-state). This
bus transfers data between the CPU and the

perapherals.

System Control Signals

An-Ag Address Select Lines (optional). These
lines select the port and/or control
registers.

TE Chip Enable (input, active Low). TE is
used to select the proper peripheral for
programming. CE should be gated with TORQ
or MREQ to prevent spurious chip selects
during other machine cycles.

TRO* Read (input, active Low). TRD activates the
chip-read circuitry and gates data from the
chip onto the data bus.

WR* Write (input, active Low). WR strobes data

from the data bus into the peripheral.

*Chip reset occurs when RD and WR are active
simultaneously.

Interrupt Control
INTACK Interrupt Acknowledge (input, active Low).
This signal indicates an Interrupt
Acknowledge cycle and 1s used with RD to
gate the interrupt vector onto the data
bus.

Interrupt Request
active Low).

(output, open-drain,

2-29

1IEI Interrupt Enable In (input, active High).

1E0 Interrupt
High).

Enable Out (output, active

These lines control the interrupt daisy
chain for the peripheral interrupt
response.

28500 1/0 OPERATION

The Z8500 peripherals generate internal control
signals from RD and WR. Since PCLK has no
required phase rtelationship to RD or WR, the
circuitry generating these signals provides time
for metastable conditions to disappear.

The 128500 peripherals are 1initialized for dif-
ferent operating modes by programming the internal
registers. These internal registers are accessed
during 1/0 Read and Write cycles, which are
described below.

Read Cycle Timing

Figure 1 illustrates the Z8500 Read cycle timing.
All register addresses and INTACK must remain
stable throughout the cycle. If TE goes active
after RD goes active, or if TE qoes inactive
before RD goes inactive, then the effective Read
cycle is shortened.

Write Cycle Timing

Figure 2 illustrates the 78500 Write cycle
timing. All register addresses and INTACK must
remain stable throughout the cycle. If TE goes
active after WR goes active, or if CE goes in-
active before WR goes 1inactive, then the effective
Write cycle 1is shortened. Data must be available
to the peripheral prior to the falling edge of WR.

PERIPHERAL INTERRUPT OPERATION

Understanding peripheral interrupt operation
requires a basic knowledge of the Interrupt
Pending (IP) and Interrupt Under Service (IUS)
bits in relation to the daisy chain. Both Z80 and
28500 peripherals are designed in such a way that
no additional interrupts can be requested during
an Interrupt Acknowledge cycle. This allows the
interrupt daisy chain to settle, and ensures
proper response of the interrupting device.

The IP bit is set in the peripheral when CPU
intervention is required (such conditions as
buffer empty, character available, error detec-
tion, or status changes). The Interrupt Ac-
knowledge cycle does not necessarily reset the IP
bit. This bit is cleared by a software command to
the peripheral, or when the action that generated
the interrupt is completed (i.e., reading a
character, writing data, resetting errors, or
changing the status). When the interrupt has been
serviced, other interrupts can occur.

ADDR X

ADDRESS VALID X

INTACK /

N
e

/

DATA

e \
{ oatavan A

Figure 1. 78500 Peripheral I/0 Read Cycle Timing

2296-001

ADDR x ADDRESS VALID X
INTACK / \
CE \ /
DATA (DATA VALID)
out \ /
Figure 2. 178500 Peripheral 1/0 Write Cycle Timing
The IUS bit indicates that an interrupt is When the 780 CPU executes the RETI instruction,
currently being serviced by the CPU. The IUS bit the peripherals monitor the data bus and the high-

is set during an Interrupt Acknowledge cycle 1if
the IP bit is set and the IEI line is High. If
the IEI line is Low, the IUS bit is not set, and
the device is inhibited from placing its vector
onto the data bus. In the Z80 peripherals, the
IUS bit is normally cleared by decoding the RETI
instruction, but can also be cleared by a software
command (SI0). In the Z8500 peripherals, the IUS
bit is cleared only by software commands.

780 Interrupt Daisy-Chain Operation

In the 780 peripherals, both the IP and IUS bits
control the IEQ line and the lower portion of the
daisy chain.

When a peripheral's IP bit is set, its IEOQ line is
forced Low. This is true regardless of the state
of the IEI line. Additionally, if the peripher-
al's IUS bit is clear and its IEl line High, the
INT line is also forced Low.

The Z80 peripherals sample for both M7 and TORQ
active, and RD inactive to identify an Interrupt
Acknowledge cycle. When M1 goes active and RD is
inactive, the peripheral detects an Interrupt
Acknowledge cycle and allows its interrupt daisy
chain to settle. When the TORQ line goes active
with MT active, the highest priority interrupting
peripheral places its interrupt vector onto the
data bus. The IUS bit is also set to indicate
that the peripheral is currently under service.
As long as the IUS bit is set, the IEO line is
forced Low. This inhibits any lower priority
devices from requesting an interrupt.

est priority device under service resets its IUS
bit.

78500 Interrupt Daisy-Chain Operation

In the 78500 peripherals, the IUS bit normally
controls the state of the IEO line. The IP bit
affects the daisy chain only during an Interrupt
Acknowledge cycle. Since the IP bit 1s normally
not part of the 78500 peripheral interrupt daisy
chain, there 1s no need to decode the RETI in-
struction. To allow for control over the daisy
chain, 78500 peripherals have a Disable Lower
Chain (DLC) software command that pulls IEO Low.
This can be used to selectively deactivate parts
of the daisy chain regardless of the interrupt
status. Table 1 shows the truth tables for the
78500 interrupt daisy-chain control signals during
certain cycles. Table 2 shows the interrupt state
diagram for the Z8500 peripherals.

Table 1. 78500 Daisy-Chain Control Signals

Truth Table for
Daisy Chain Signals
During INTACK Cycle

Truth Table for
Daisy Chain Signals
During Idle State

IEI IP IUS IEO IEl IP IUS IEO
0 X X o] 0 X X 0
1 X 0 1 1 1 X 0
1 X 1 1 X 1 0
1 0 o] 1

2296-002

2-31

Table 2. 78500 Interrupt State Diagram

Interrupt Condition

IP Set

IET High?

INT Active| <------ > Wait for CPU INTACK Cycle

INTACK * IEI * RD

IUS Set

CPU Read, Write, or Reset IP

IP Cleared

IED High?

IUS Cleared

Return to main program

The 128500 peripherals use INTACK (Interrupt
Acknowledge) for recognition of an Interrupt
Acknowledge cycle. This pin, used in conjunction
with RD, allows the 28500 peripheral to gate 1its
interrupt vector onto the data bus. An active RD
signal during an Interrupt Acknowledge cycle
performs two functions. First, it allows the
highest priority device requesting an interrupt to
place its interrupt vector on the data bus.
Secondly, it sets the IUS bit in the highest
priority device to indicate that the device 1is
currently under service.

INPUT/OUTPUT CYCLES

Although 78500 peripherals are designed to be as
universal as possible, certain timing parameters
differ from the standard 280 timing. The
following sections discuss the I/0 interface for
each of the Z80 CPUs and the 78500 peripherals.
Figure 5 depicts logic for the Z80A CPU to Z8500
peripherals (and Z80B CPU to Z8500A peripherals)
1/0 interface as well as the Interrupt Acknowledge

interface. Figures 4 and 7 depict some of the
logic used to 1interface the Z80H CPU to the Z8500
and Z8500A peripherals for the I/0 and Interrupt
Acknowledge interfaces. The logic required for
adding additional Wait states into the timing flow
is not discussed in the folowing sections.

Z80A CPU to 78500 Peripherals

No additional Wait states are necessary during the
1/0 cycles, although additional Wait states can be
inserted to compensate for timing delays that are
inherent in a system. Although the Z80A timing
parameters indicate a negative value for data
valid prior to WR, this is a worse than "worst
case" value. This parameter is based upon the
longest (worst case) delay for data available from
the falling edge of the CPU clock minus the
shortest (best case) delay for CPU clock High to
WR Low. The negative value resulting from these
two parameters does not occur because the worst
case of one parameter and the best case of the
other do not occur within the same device. This
indicates that the value for data available prior
to WR will always be greater than zero.

All setup and pulse width times for the Z8500
peripherals are met by the standard Z80A timing.
In determining the interface necessary, the TE
signal to the 78500 peripherals is assumed to be
the decoded address qualified with the TORQ
signal.

Figure 3a shows the minimum Z80A CPU to 28500
peripheral interface timing for [/0 cycles. If
additional Wait states are needed, the same number
of Wait states can be inserted for both I/0 Read
and Write cycles to simplify interface logic.
There are several ways to place the Z80A CPU into
a Wait condition (such as counters or shift
registers to count system clock pulses), depending
upon whether or not the user wants to place Wait
states in all 1/0 cycles, or only during Z8500 1/0
cycles. Tables 3 and 4 list the 78500 peripheral
and the Z80A CPU timing parameters (respectively)
of concern during the I[/0 cycles. Tables 5 and 6
list the equations used in determining if these
parameters are satisfied. In generating these
equations and the values obtained from them, the
required number of Wait states was taken into
account. The reference numbers in Tables 3 and 4
refer to the timing diagram in Figure 3a.

2-32

Table 3. 78500 Timing Parameters 1/0 Cycles

Worst Case
Min Max Units
6. TsA(WR) Address to WR Low Setup 80 ns
1. TsA(RD) Address to RD Low Setup 80 ns
2. TdA(DR) Address to Read Data Valid 590 ns
TsCE1(WR) CE Low to WR Low Setup) ns
TsCE1(RD) CE Low to RD Low Setup 0 ns
4. TwRD1 RD Low Width 390 ns
8. TwWRl WR Low Width 390 ns
3. TdRDF(DR) RD Low to Read Data Valid 255 ns
7. TsDW(WR) Write Data to WR Low Setup 0 ns
Table 4. 780A Timing Parameters 1/0 Cycles
Worst Case
Min Max Units
TeC Clock Cycle Period 250 ns
TwCh Clock Cycle High Width 110 ns
TfC Clock Cycle Fall Time 30 ns
TdCr(A) Clock High to Address Valid 110 ns
TdCr (RDf) Clock High to RD Low 85 ns
TdCr (I0RQF) Clock High to IORQ Low 75 ns
TdCr (WRF) Clock High to WR Low 65 ns
5. TsD(CF) Data to Clock Low Setup 50 ns
Table 5. Parameter Equations
28500 Z80A
Parameter Equation Value Units
TsA(RD) TeC-TdCr(A) 140 min ns
TdA(DR) 3TcC+TwCh-TdCr (A) -TsD(CF) 800 min ns
TdRDf(DR) 2TcC+TwCh-TsD(CF) 460 min ns
TwRD1 2TcC+TwCh+TFC-TdCr (RDF) 525 min ns
TsA(WR) TeC-TdCr(A) 140 min ns
TsDW(WR) > 0 min ns
TwWR1 2TcC+TwCh+TfC-TdCr (WRF) 560 min ns
Table 6. Parameter Equations
Z80A 78500
Parameter Equation Value Units
TsD(CF) Address
3TcC+TwCh-TdCr (A)-TdA(DR) 160 min ns
RD
2TcC+TwCh-TdCr (RDF)-TdRD(DR) 135 min ns

2-33

IORQ \ /—
* \ /-
READ 3(
CPU
DATA IN VALID DATA
%) » @ ol
WRITE s *—
@ L
CPU A
DATA OUT - VALID DATA)—
Figure 3a. Z80A CPU to 78500 Peripheral Minimum I/0 Cycle Timing

780B CPU to Z8500A Peripherals

No additional Wait states are necessary during 1/0
cycles, although Wait states can be inserted to
compensate for any system delays. Although the
780B timing parameters indicate a negative value
for data valid prior to WR, this is a worse than
"worst case" value. This parameter is based upon
the longest (worst case) delay for data available
from the falling edge of the CPU clock minus the
shortest (best case) delay for CPU clock High to
WR Low.

The negative value resulting from these

two parameters does not occur because the worst
case of one parameter and the best case of the
other do not occur within the same device. This
indicates that the value for data available prior
to WR will always be greater than zero.

All setup and pulse width times for the Z8500A
peripherals are met by the standard Z80B timing.
In determining the interface necessary, the CE
signal to the Z8500A peripherals is assumed to be
the decoded address qualified with the TORQ
signal.

2-34

2296-003

Figure 3b shows the minimum Z80B CPU to Z8500A
peripheral interface timing for I/0 cycles. If
additional Wait states are needed, the same number
of Wait states can be inserted for both I/0 Read
and 1/0 Write cycles in order to simplify inter-
face logic. There are several ways to place the
Z80B CPU into a Wait condition (such as counters
or shift registers to count system clock pulses),
depending upon whether or not the user wants to
place Wait states in all 1/0 cycles, or only

during Z8500A 1/0 cycles. Tables 7 and 8 list the
Z8500A peripheral and the Z80B CPU timing
parameters (respectively) of concern during the
1/0 cycles. Tables 9 and 10 list the equations
used in determining if these parameters are satis-
fied. In generating these equations and the
values obtained from them, the required number of
Wait states was taken into account. The reference
numbers in Tables 7 and 8 refer to the timing
diagram of Figure 3b.

T4 T2

Twa T3

ADDR

A

IORQ

\

A
o

le—(3) .

Sl L

VALID DATA

Y

S G

VALID DATA

).

READ
CPU
DATA IN
WR \
WRITE
CPU
DATA OUT .
Figure 3b.

Z80B CPU to Z8500A Peripheral Minimum I/0 Cycle Timing

2296-004

Table 7. Z8500A Timing Parameters I/0 Cycles

Worst Case Min Max Units
6. TsA(WR) Address to WR Low Setup 80 ns
1. TsA(RD) Address to RD Low Setup 80 ns
2. TdA(DR) Address to Read Data Valid 420 ns
TSCE1(WR) CE Low to WR Low Setup 0 ns
TsCE1(RD) CE Low to RD Low Setup 0 ns
4. TwRD1 RD Low Width 250 ns
8. TwWRl WR Low Width 250 ns
3. TdRDf(DR) RD Low to Read Data Valid 180 ns
7. TsDW(WR) Write Data to WR Low Setup 0 ns
Table 8. Z80B Timing Parameters I/0 Cycles
Worst Case Min Max Units
TeC Clock Cycle Period 165 ns
TwCh Clock Cycle High Width 65 ns
TfC Clock Cycle Fall Time 20 ns
fdCr(A) Clock High to Address Valid 90 ns
TdCr(RDf) Clock High to RD Low 70 ns
IdCr (IORQf) Clock High to IORQ Low 65 ns
TdCr(WRf) Clock High to WR Low 60 ns
5. TsD(Cf) Data to Clock Low Setup 40 ns
Table 9. Parameter Equations
78500A 7808
Parameter Equation Value Units
TsA(RD) TeC-TdCr(A) >75 min ns
TdA(DR) 3TcC+TwCh-TdCr(A) -TsD(Cf) 430 min ns
TdRDf(DR) 2TcC+TwCh-TsD(Cf) 345 min ns
TwRD1 2TcC+TwCh+TfC-TdCr (RDF) 325 min ns
TsA(WR) TeC-TdCr{A) 75 min ns
TsDW(WR) > 0 man ns
TwWR1 2TcC+TwCh+TFC-TdCr (WRF) 352 man ns
Table 10. Parameter Equations
7808 78500A
Parameter Equation Value Units
TsD(CF) Address
3TcC+TwCh-TdCr(A) -TdA(DR) 50 min ns
RD
2TcC+TwCh-TdCr (RDf) ~-TdRD(DR) 75 min ns

2-36

Z80H CPU to 78500 Peripherals

During an 1/0 Read cycle, there are three 28500
parameters that must be satisfied. Depending upon
the loading characteristics of the RD signal, the
designer may need to delay the leading (falling)
edge of RD to satisfy the 78500 timing parameter
TsA(RD) (Address Valid to RD Setup). Since Z80H
timing parameters indicate that the RD signal may
go Low after the falling edge of T,, it is
recommended that the rising edge of the system
clock be used to delay RD (if necessary). The CPU
must also be placed into a Wait condition long
enough to satisfy TdA(DR) (Address Valid to Read
Data Valid Delay) and TdRDf(DR) (RD Low to Read
Data Valid Delay).

During an 1/0 Write cycle, there are three other
78500 parameters that must be satisfied.
Depending upon the loading characteristics of the
WR signal and the data bus, the designer may need
to delay the leading (falling) edge of WR to
satisfy the 78500 timing parameters TsA(WR)
(Address Valid to WR Setup) and TsDW(WR) (Data
Valid Prior to WR setup). Since Z80H timing
parameters indicate that the WR signal may go Low
after the falling edge of T,, it is recommended
that the rising edge of the system clock be used
to delay WR (if necessary). This delay will
ensure that both parameters are satisfied. The
CPU must also be placed into a Wait condition long

enough to satisfy TwWRL (WR Low Pulse Width).
Assuming that the WR signal is delayed, only two
additional Wait states are needed during an 1/0
Write cycle when interfacing the Z80H CPU to the
28500 peripherals.

To simplify the I[/0 interface, the designer can
use the same number of Wait states for both 1/0
Read and 1/0 Write cycles. Figure 3c shows the
minimum Z8OH CPU to Z8500 peripheral interface
timing for the 1/0 cycles (assuming that the same
number of Wait states are used for both cycles and
that both RD and WR need to be delayed). Figure
4 shows two circuits that can be used to delay the
leading (falling) edge of either the RD or the WR
signals. There are several ways to place the Z80A
CPU into a Wait condition (such as counters or
shift registers to count system clock pulses),
depending upon whether or not the user wants to
place Wait states in all 1/0 cycles, or only
during 78500 [/0 cycles. Tables 4 and 11 list the
78500 peripheral and the Z80H CPU timing
parameters (respectively) of concern during the
1/0 cycles. Tables 14 and 15 list the equations
used 1in determining 1f these parameters are
satisfied. In generating these equations and the
values obtained from them, the required number of
Wait states was taken into account. The reference
numbers 1n Tables 4 and 11 refer to the timing
diagram of Figure 3c.

Table 11. Z80H Timing Parameter I/0 Cycles
Equation Min Max Units

TeC Clock Cycle Period 125 ns

TwCh Clock Cycle High Width 55 ns

Ifc Clock Cycle Fall Time 10 ns

fdCr(A) Clock High to Address Valid 80 ns

TdCr(RDf) Clock High to RD Low 60 ns

TdCr (IORQf) Clock High to IORQ Low 55 ns

TdCr (WRF) Clock High to WR Low 55 ns
5. TsD(Cf) Data to Clock Low Setup 30 ns

Table 12. Parameter Equations

78500 280H

Parameter Equation Value Units

TsA(RD) 2TcC-TdCr(A) 170 min ns

TdA(DR) 6TcC+TwCh-TdCr (A)-TsD(Cf) 695 min ns

TdRDf(DR) 4TcC+TwCh-TsD(CF) 523 min ns

TwRD1 4TeC+TwCh+TfC-TdCr (RDfF) 503 m1in ns

TsA(WR) WR - delayed

2TcC-TdCr(A) 170 min ns
TsDW(WR) > 0 man ns
TwWR1 4TcC+TwCh+TfC 563 min ns

2-37

CLOCK

ADDR

Tq

WAIT

2|
m
bd
O

|/
A 7
©

y

]

CPU
DATA IN

WR

g
)
o

WRITE

CPU
DATA OUT

SN YTTS

&—>]

VALID DATA

T
N

\

VdAl
71

%

VALID DATA

.
TS99

AL

Figure 3c. Z80H CPU to Z8500 Peripheral Minimum I/0 Cycle Timing

2-38 2296-005

Z80H CPU to Z8500A Peripherals

During an 1/0 Read cycle, there are three Z8500A
parameters that must be satisfied. Depending upon
the loading characteristics of the RD signal, the
designer may need to delay the leading (falling)
edge of RD to satisfy the Z8500A timing parameter
TsA(RD) (Address Valid to RD Setup). Since Z80H
timing parameters indicate that the RD signal may
go' Low after the falling edge of Ty, it is
recommended that the rising edge of the system
clock be used to delay RD (if necessary). The CPU
must also be placed into a Wait condition long
enough to satisfy TdA(DR) (Address Valid to Read
Data Valid Delay) and TdRDf(DR) (RD Low to Read
Data Valid Delay). Assuming that, the RD signal is
delayed, then only one additional Wait state is
needed during an I/0 Read cycle when interfacing
the Z80H CPU to the Z8500A peripherals.

During an 1/0 Write cycle, there are three other
Z8500A parameters that have to be satisfied.
Depending upon the loading characteristics of the
WR signal and the data bus, the designer may need
to delay the leading (falling) edge of WR to
satisfy the ZB500A timing parameters TsA(WR)
(Address Valid to WR Setup) and TsDW(WR) (Data
Valid Prior to WR Setup). Since Z80H timing
parameters indicate that the WR signal may go Low
after the falling edge of Ty, it is recommended
that the rising edge of the system clock be used

to delay WR (if necessary). This delay will
ensure that both parameters are satisfied. The
CPU must also be placed into a Wait condition long
enough to satisfy TwWR1 (WR Low Pulse Width).
Assuming that the WR signal is delayed, then only
one additional Wait state is needed during an 1/0
Write cycle when interfacing the Z80H CPU to the
Z8500A peripherals.

Figure 3d shows the minimum Z80H CPU to Z8500A
peripheral interface timing for the 1/0 cycles
(assuming that the same number of Wait states are
used for both cycles and that both RD and WR need
to be delayed). Figure 4 shows two circuits that
may be used to delay the leading (falling) edge of
either the RD or the WR signals. There are
several methods used to place the Z80A CPU into a
Wait condition (such as counters or shift
registers to count system clock pulses), depending
upon whether or not the user wants to place Wait
states in all I/0 cycles, or only during ZB8500A
1/0 cycles. Tables 7 and 11 list the Z8500A
peripheral and the Z80H CPU timing parameters
(respectively) of concern during the I/0 cycles.
Tables 14 and 15 list the equations used in
determining if these parameters are satisfied. In
generating these equations and the values obtained
from them, the required number of Wait states was
taken into account. The reference numbers 1in
Tables 4 and 11 refer to the timing diagram of
Figure 3d.

Table 13. Parameter Equations
Z80H 78500
Parameter Equation Value Units
TsD(CF) Address
6TcC+TwCh-TdCr(A)-TdA(DR) 135 min ns
RD - delayed
4TcC+TwCh+TfC-TdRD(DR) 300 min ns
Table 14. Parameter Equations
Zﬂm 7804
Parameter Equation Value Units
TsA(RD) 2TcC-TdCr(A) 170 min ns
TdA(DR) 6TcC+TwCh-TdCr (A) -TsD(Cf) 695 min ns
TdRDf(DR) 4TcC+TwCh-TsD(CF) 525 min ns
TwRD1 4TcC+TwCh+TfC-TdCr (RDF) 503 min ns
TsA(WR) WR - delayed
2TeC-TdCr(A) 170 min ns
TsDW(WR) > 0 min ns
TwWR1 2TcC+TwCh+TfC 313 min ns

2-39

TR

< D |
=~ &
READ)
\
- D l——(3} >le—>te(5)
D:TPAU IN l 4} VALID DATA)—-—

WRD “

L
el

<—-—-@/L >l J\D
WRITE \(
CcPU
DATA OUT o VALID DATA

Figure 3d. Z80H CPU to Z8500A Peripheral Minimum I/0 Cycle Timing

2-40 2296-006

RD (WR)

CLOCK

RD (WR)

CLOCK

CLOCK

3l
o
=
2

ol jo— +

74LS32
D Q RDD (
cK ap
c
T 74LS74
+
74LS04
s
D —— RDD (WRD)
CK Qp
c
T74LS74
+
5
D Q
cK Q fo— RDD (WRD)
[
74L874

74LS04

Figure 4. Delaying RD or WR

Table 15.

Parameter Equations

7804
Parameter

Z8500A

Equation Value

Units

TsD(CF)

Address
4TcC+TwCh-TdCr(A)-TdA(DR)
RD - delayed
2TcC+TwCh-TdRD(DR)

55 min

125 min

ns

ns

2296-007

2-41

INTERRUPT ACKNOWLEDGE CYCLES

The primary timing differences between the 780
CPUs and 78500 peripherals occur 1in the Interrupt
Acknowledge cycle. The 28500 timing parameters
that are significant during Interrupt Acknowledge
cycles are listed in Table 16, while the Z80
parameters are listed in Table 17. The reference
numbers 1n Tables 16 and 17 refer to Figures 6,
8a, and 8b.

If the CPU and the peripherals are running at
different speeds (as with the Z80H interface), the
INTACK signal must be synchronized to the
peripheral clock. Synchronization is discussed in
detail under Interrupt Acknowledge for Z80OH CPU to
28500/8500A Peripherals.

During an Interrupt Acknowledge cycle, Z8500
peripherals require both INTACK and RD to be
active at certain times. Since the 780 CPUs do
not issue either INTACK or RD, external logic must
generate these signals.

necessary to give the daisy chain time to settle.
Sufficient time between INTACK active and RD
active should be allowed for the entire daisy
chain to settle.

Since the 78500 peripheral daisy chain does not
use the IP flag except during interrupt
acknowledge, there is no need for decoding the
RETI instruction used by the Z80 peripherals. In
each of the 78500 peripherals, there are commands
that reset the individual IUS flags.

EXTERNAL INTERFACE LOGIC
The following sections discuss external interface
logic required during Interrupt Acknowledge cycles
for each interface type.

CPU/Peripheral Same Speed

Figure 5 shows the logic used to interface the
Z80A CPU to the 28500 peripherals and the Z80B CPU

. . . . to Z8500A peripherals during an Interrupt
Generating these two signals is easily ac- Acknowledge cycle. The primary component in this
complished, but the 780 CPU must be placed into a logic is the Shift register (74LS164), which
Wait condition until the peripheral interrupt generates INTACK, READ, and WAIT.
vector is valid. If more peripherals are added to
the daisy chain, additional Wait states may be

Table 16. 78500 Timing Parameters Interrupt Acknowledge Cycles
Worst Case 4 MHz 6 MHz
Min Max Min Max Units
1. TsIA(PC) INTACK Low to PCLK High Setup 100 100 ns
ThIA(PC) INTACK Low to PCLK High Hold 100 100 ns

2. TdIAi(RD) INTACK Low to RD (Acknowledge) Low 350 250 ns

5. TwRDA RD (Acknowledge) Width 350 250 ns

3. TdRDA(DR) RD (Acknowledge) to Data Valid 250 180 ns

TsIEI(RDA) IEI to RD (Acknowledge) Setup 120 100 ns
ThIEI(RDA) IEI to RD (Acknowledge) Hold 100 70 ns
TdIEI(IE) IEI to IED Delay 150 100 ns
Table 17. 780 CPU Timing Parameters Interrupt Acknowledge Cycles
Worst Case 4 MHz 6 MHz 8 MHz
Min Max Min Max Min Max Units
TdC(M1f) Clock High to M Low Delay 100 80 70 ns
TdM1f(IORQF) M1 Low to IORQ Low Delay 575% 345% 275% ns
4. TsD(Cr) Data to Clock High Setup 35 30 25 ns
*780A: 2TcC + TwCh + TfC - 65
Z80B: 2TcC + TwCh + TfC - 50
Z80H: 2TcC + TwCh + TfC - 45

2-42

74LS11

WR > t WRITE
RESET » —
D, » READ
RD |
74LS11
74LS164
INTACK [
MREQ »———1 A Q P>o— inTACK
74LS04 Qs —o 74LS04
1 iREAD 74LS04
M1 B Q; o o——Dc»—-
Q3 —o
CLR Qs f—o O—DO——\
Qs —o 741504
CLOCK »— D> Qs [0
Q7 p—o
74LS11 74LS00
WAIT =
WAIT'
Figure 5. Z80A/Z80B CPU to Z8500/Z8500A Peripheral Interrupt Acknowledge Interface Logic

During 1/0 and normal memory access cycles, the
Shift register remains cleared because the WT
signal is inactive. During opcode fetch cycles,
also, the Shift register remains cleared, because
only Os can be clocked through the register.
Since Shift register outputs are Low, TREAD,
WRITE, and WAIT are controlled by other system
logic and gated through the AND gates (74LS11).
During 1/0 and normal memory access cycles, READ
and WRITE are active as a result of the system RD
and WR signals (respectively) becoming active.
If system logic requires that the CPU be placed
into a Wait condition, the WAIT' signal controls
the CPU. Should it be necessary to reset the
system, RESET causes the interface logic to
generate both READ and WRITE (the 28500 peripheral
Reset condition).

Normally an Interrupt Acknowledge cycle is
indicated by the Z80 CPU when MT and TORQ are both
active (which can be detected on the third rising
clock edge after Tq). To obtain an early indica-
tion of an Interrupt Acknowledge cycle, the Shift
register decodes an active MT in the presence of
an inactive MREQ on the rising edge of Tp.

During an Interrupt Acknowledge cycle, the TNTACK
signal is generated on the rising edge of Ty.

Since it is the presence of INTACK and an active
READ that gates the interrupt vector onto the data
bus, the logic must also generate READ at the
proper time. The timing parameter of concern here
is Td1Ai(RD) [INTACK to RD (Acknowledge) Low
Delay]. This time delay allows the interrupt
daisy chain to settle so that the device
requesting the interrupt can place its interrupt
vector onto the data bus. The Shift register
allows a sufficient time delay from the generation
of TINTACK before it generates READ. During this
delay, it places the CPU into a Wait state until
the valid interrupt vector can be placed onto the
data bus. If the time between these two signals
is insufficient for daisy chain settling, more
time can be added by taking READ and WAIT from a
later position on the Shift register.

Figure 6 illustrates Interrupt Acknowledge cycle
timing resulting from the Z80A CPU to 8500
peripheral and the Z80B CPU to Z8500A peripheral
interface. This timing comes from the logic
illustrated in Figure 5, which can be used for
both interfaces. Should more Wait states be
required, the additional time can be calculated in
terms of system clocks, since the CPU clock and
PCLK are the same.

2296-008

2-43

CLOCK

Twa

,i.,

;

2
[~

ioRa \

4——@—————»

1
|
)

Y

INTACK /
WAIT
\ p—®
READ ‘\
VECTOR
DATA

VECTOR DATA)—-—

Figure 6. Z80A/Z80B CPU to Z8500/Z8500A Peripheral Interrupt Acknowledge Interface Timing

Z80H CPU to Z8500/Z8500A Peripherals

Figure 7 depicts logic that can be used in inter-
facing the Z80H CPU to the Z8500/Z8500A peripher-
als. This logic is the same as that shown in
Figure 5, except that a synchronizing flip-flop is
used to recognize an Interrupt Acknowledge cycle.
Since 78500 peripherals do not rely upon PCLK
except during Interrupt Acknowledge cycles,
synchronization need occur only at that time.
Since the CPU and the peripherals are running at
different speeds, TINTACK and RD must be
synchronized to the 78500 peripherals clock.

During 1/0 and normal memory access cycles, the
synchronizing flip-flop and the Shift register
remain cleared because the MT signal is inactive.
During opcode fetch cycles, the flip-flop and the
Shift register again remain cleared, but this time
because the MREQ signal is active. The synchro-
nizing flip-flop allows an Interrupt Acknowledge
cycle to be recognized on the rising edge of T,
when MT is active and MREQ is inactive, generating
the INTA signal. When INTA is active, the Shift
register can clock and generate INTACK to the
peripheral and WAIT to the CPU. The Shift
register delays the generation of READ to the
peripheral until the daisy chain settles. The

WAIT signal is removed when sufficient time has
been allowed for the interrupt vector data to be
valid.

Figure Ba illustrates Interrupt Acknowledge cycle
timing for the Z80OH CPU to 28500 peripheral inter-
face., Figure 8b illustrates Interrupt Acknowledge
cycle timing for the ZBOH CPU to Z8500A peripheral
interface. These timings result from the logic in
Figure 7. Should more Wait states be required,
the needed time should be calculated in terms of
PCLKs, not CPU clocks.

780 CPU to 780 and Z8500 Peripherals

In a 780 system, a combination of Z80 peripherals
and 78500 peripherals can be used compatibly.
While there is no restriction on the placement of
the 78500 peripherals in the daisy chain, it is
recommended that they be placed early in the chain
to minimize propagation delays during RETI cycles.

During an Interrupt Acknowledge cycle, the IEO
line from the Z8500 peripherals changes to reflect
the interrupt status. Time should be allowed for
this change to ripple through the remainder of the
daisy chain before activating IORQ' to the Z80
peripherals, or READ to the Z8500 peripherals.

2296-009

74LS11

WR > WRITE
RESET » i READ
RD »
74LS74 74LSM
MREQ 74LS08 o
74LS04 s INTA
mi a
CLOCK > D> s ap
74LS164
74LS04
INTACK —_
1 A Qo J|>o—-> INTACK
Qi —o0 74LS04
IREAD
— B Q; o o—Do———
Q3 p—o
dem afo o >Po—
Qs —o° 74LS04
PCLK » D> Qs 0
Q7 —o0
74LS11 74LS00
WAIT <
< WAIT'

Figure 7. Z80H to Z8500/Z8500A Peripheral Interrupt Acknowledge Interface Logic

During the RETI cycles, the IEO0 line from the
28500 peripherals does not change state as in the
280 peripherals. As long as the peripherals are
at the top of the daisy chain, propagation delays
are minimized.

The logic necessary to create the control signals
for both Z80 and Z8500 peripherals is shown in

Figure 9. This logic delays the generation of
I0RQ' to the Z80 peripherals by the same amount of
time necessary to generate READ for the 28500
peripherals. Timing for this logic during an
Interrupt Acknowledge cycle is depicted in
Figure 10.

2296-010 2-45

9T

110-9622

T2
CLOCK

Twa Twa Tw Tw Tw Tw Tw Tw

Tw

Tw

IORQ

INTA

PCLK

INTACK

1559

READ

VECTOR

©)

S

< VECTOR DATA

DATA

Figure 8a. Z80H CPU to 78500 Peripheral Interrupt Acknowledge Interface Timing

—

210-9622

Lyt

T2 Twa Twa Tw Tw Tw Tw Tw
CLOCK

o \

INTA

PCLK

INTACK

ST ¢

=

WAIT N\ \/‘ ~
READ \N(-

\

() —(D)—>
VECTOR

'
DATA g VECTOR DATA

T

Figure 8b. Z80H CPU to Z8500A Peripheral Interrupt Acknowledge Interface Timing

8%-C

£10-9622

__ 74LS11
RESET » I\ —
» READ
—/
74LS00
RD »
74LS04 74LS00
iORQ »—Dc IoRQ’
7405164
741504
R INTACK ____
MREQ »———] A Qo >°_' INTACK
74LS04 Q —o 74LS04
_ IREAD
M1 B Q }—o o—>o——
Q3 |—©°
o afo oo——
Qs —o 74LS04
CLOCK »—m> Qg |—o°
Q7 —o
74LS11 74LS00

w ~ =~
< WAIT'

Figure 9. 780 and 78500 Peripheral Interrupt Acknowledge Interface Logic

¥10-9622

6¥-C

T1

W—W\—/—\J—\-

T2

Twa Twa TW Tw TW

Ts

/

(

INTACK

)

S\
\

/|
—

:

READ

IORQ’

Figure 10.

[
\ \
N—

S\

780 and 78500 Peripheral Interrupt Acknowledge Interface Timing

SOF TWARE CONSIDERATIONS -- POLLED OPERATION

There are several options available for servicing
interrupts on the Z8500 peripherals. Since the
vector or IP registers can be read at any time,
software can be used to emulate the Z80 interrupt

response. The interrupt vector read reflects the
interrupt status condition even if the device is
programmed to return a vector that does not
reflect the status change (SAV or VIS is not
set). The code below is a simple software routine
that emulates the Z80 vector response operation.

780 Vector Interrupt Response, Emulation by Software

sThis code emulates the Z80 vector interrupt
soperation by reading the device interrupt
svector and forming an address from a vector

stable.

INDX: LD A,CIVREG
ouT (CTRL) ,A
IN A,(CTRL)
INC A
RET z
AND 000011108
LD E,A
LD D,0
LD HL,VECTAB
ADD HL,DE
LD A, (HL)
INC HL
LD H,(HL)
LD L,A
Jp (HL)

VECTAB: DEFW INT1
DEFW INT2
DEFW INT3
DEFW INT4
DEFW INTS
DEFW INT6
DEFW INT7
DEFW INTB

It then executes an indirect jump to
sthe interrupt service routine.

sCURRENT INT. VECT. REG.
sWRITE REG. PTR.

sREAD VECT. REG.

sVALID VECTOR?

sNO INT - RETURN

sMASK OTHER BITS

sFORM INDEX VALUE

sADD VECT. TABLE ADDR.
sGET LOW BYTE

sGET HIGH BYTE
sFORM ROUTINE ADDR.
sJUMP TO IT

2-50

A SIMPLE 780-78500 SYSTEM

The 78500 devices interface easily to the 780 CPU,
thus providing a system of considerable flexi-
bility. Figure 11 illustrates a simple system
using the Z80A CPU and the 78536 Counter/Timer and
Parallel (/0 Unit (CIO) in a mode 1 or non-
interrupt environment. Since interrupt vectors
are not used, the INTACK line is tied High and no
additional logic is needed. Because the CLO can

be used in a polled interrupt environment, the TNT

pin

1s connected to the CPU. The Z80 should not

be set for mode 2 interrupts since the CI0 will
never place a vector onto the data bus. Instead,

the

CPU should be placed into mode 1 interrupt

mode and a global interrupt service routine can
poll the CI0O to determine what caused the
interrupt to occur. In this system, the software
emulation procedure described above 1s effective.

+5V
+5V
INTACK
INT jo- . —of INT
/8
D7-Dg f=— 7 —»] D7-Do
oD
z80 28536
cPU cio
WR o—-———-———-—-h—{"‘\
WR
L J N
8 2
A7-Ag |= // // 1 Ai-Ag
A7
ioRG °_>°— of CE
— RESET WAIT
RESET o LOGIC LOGIC
CLK WAIT PCLK

]

CLOCK

GEN

Figure 11. Z80 to Z8500 Simple System Mode 1 Interrupt or Non-Interrupt Structure

Additional Information - Zilog Publications

1. 7280 CPU Technical Manual (03-0029-01)
2. 780 DMA Technical Manual (00-2013-A0)
3. 780 PIO Technical Manual (03-0008-01)
4, 780 CTC Technical Manual (03-0036-02)
5. 280 SIO Technical Manual (03-3033-01)
6. Z8OH CPU AC Characteristics (00-2293-01)

7. 780 Family Interrupt Structure

Tutorial (611-1809-0003)
8. 78530 SCC Technical Manual (00-2057-01)
9. 78536 CI0 Technical Manual (00-2091-01)
10. 78038 FIO0 Technical Manual (00-2051-01)
11. Z1log 1982/83 Data Book (00-2034-02)

2296-015

2-51

Z800™ 8/16-Bit Microproc

or Family 3

Q2

Z80° Memory Expansion For
The Z800™"

Zilog

Application
Note

March 1983

INTRODUCTION

As operating systems grow more sophisticated,
application programs more complex, and the use of
high-level languages even more prevalent, the need
for increased memory addressing space and some
form of memory protection becomes critical.

The memory space requirements of many micro-
processor applications have grown beyond the 64K
byte addressing range of today's 8-bit micro-
processors. While the available 16-bit processors
offer dramatically increased memory addressing
capabilities, the conversion to these products
often cannot be justified. For example, in many
cases an application might be better suited for
8-bit processing, and switching to a 16-bit
processor could result in a costlier and less
efficient implementation. Perhaps even more
serious is the problem of software incompatibility
that occurs when changing microprocessors. An
ideal solution is one that both extends memory
addressing space and is object code compatible
with the user's existing software.

An additional requirement placed on the user by
today's increasingly complex software is that of
maintaining system integrity. In order to ensure
this integrity, various parts of the system soft-
ware must be protected from illegal access.
Although memory protection features are an impor-
tant part of memory management, they are not found
on most microprocessors.

This application note describes a way in which the
780 user can increase memory addressing space to
16M and incorporate memory protection Ffeatures
while maintaining object code compatibility with
application software. The memory management
techniques employed here are a subset of those
used by the 7800 series of microprocessors soon to
be released by Zilog. These techniques provide a
direct path to the implementation of some 7800
features before the fully-integrated solution is
available.

MEMORY MANAGEMENT TECHNIQUES

Before discussing the techniques used to expand
the addressing space and provide memory
protection, the concept of logical and physical
addresses and of pages in memory needs to be
explained. The logical address is the address
generated by the microprocessor, and the physical
address is the address received by the system
memory. In a microprocessor system with no memory
management, the physical address is the same as
the logical address (Figure 1, section a). In a
microprocessor system with memory management, the
logical address generated by the processor is
translated, or expanded, by the Memory Management
Unit (MMU) before being sent to the system memory
as the physical address (Figure 1, section b).
For example, the 16-bit logical address of the Z80
could easily be expanded by an MMU to a 24-bit
address.

ADDRESS BUS
7
16 64K (2,
(a 8-BIT BYTES OF
CPU MEMORY
DATA BUS ,
7
8
EXPANDED
ADDRESS ADDRESS
BUS VEMORY BUS
A MANAGEMENT A
16 UNIT n
b 8-BIT 2" BYTES
(b) oPU OF MEMORY
DATA BUS ,
7
8
Figure 1. Address Expansion with Memory Management

While there are many techniques that can be used
to implement the address translation process, this
application note considers the paging technique
only. Two concepts are essential to the compre-
hension of paging: that of a logical page, which
is a section of the address space of the micro-
processor; and that of a page frame, which is a
section of physical memory. A page frame is
simply a fixed-length block of physical memory.
For the purposes of this application note, a page
frame consists of a 4K (4096 bytes) block of
physical memory. Each byte of a page frame can be

16-BIT
MAPPING REGISTERS

15 FFD16
14 80016
13 FFF1g

| |

| 1

I |
2 00016
1 801146
0 00445

Figure 2.

uniquely addressed by a combination of 12 address
lines (12 bits specify 4096 bytes). The 64K
logical address space of an B8-bit microprocessor
contains 16 logical pages, and a 16M physical
address space contains 4096 (4K) page frames. A
memory management system maps the 16 logical pages
that the microprocessor "sees" into 16 of the 4K
page frames in the 16M physical memory (Figure
2). By partitioning the physical memory space
into 4K page frames, both memory address space
expansion and memory protection can be easily
accomplished.

4K BYTE WIDE
PAGE FRAMES IN
PHYSICAL MEMORY

FFF XXX16
FFE XXX1¢
FFD XXX16
FFC XXX16
FFB XXX16

803 XXX16
802 XXX16
801 XXX1¢
800 XXX1¢
7FF XXX16

004 XXX16
003 XXX16
002 XXX16
001 XXX16
000 XXX16

Memory Management System

3-4

2265-001, 002

MEMORY ADDRESS SPACE EXPANSION

Memory address space expansion consists of taking
a 16-bit logical address output by the micro-
processor and generating from that a 24-bit
physical address. The logical address is divided
into two parts, a 12-bit displacement field and a
4-bit index field. The index field is used to
select one of 16 registers known as page
descriptor registers. Each page descriptor
register contains 12 bits of addressing informa-
tion, which is used to identify a page frame in
physical memory. The page descriptor registers
reside in the I/0 space of the system and are
maintained by the operating system. The physical
address is generated by concatenating the 12 bits
of page descriptor information from the selected
page descriptor register with the 12-bit displace-
ment field of the logical address. Therefore,
when the microprocessor places a 16-bit logical
address on the Address bus, the lower 12 bits
(AO—A“) of the address are presented to the
physical memory and Address bits Aj,-Aqg are used
to select one of the 16 page descriptor regis-
ters. The 12 bits of address contained in the
selected register are placed on the bus to form
the wupper 12 bits of the physical Address
(A12-A93). This process is shown in Figure 3.

16-BIT LOGICAL ADDRESS

4 BITS
INDEX
FIELD

12 BITS
DISPLACEMENT FIELD

|

16-BIT PAGE DESCRIPTOR REGISTERS

15

44 44

laBiTs §
le—— 12BTS — 5|

! I ATT
PAGE FRAME AD| RIBUTE
> E ADDRESS | ATTRIBY

4 12

;12
Y \

12 BITS
DISPLACEMENT

12 BITS
PAGE FRAME ADDRESS

24-BIT PHYSICAL ADDRESS

Figure 3. Logical-to-Physical Address

Translation Process

The 16 page descriptor registers allow the user to
access 16 separate page frames (64K bytes of
active memory) at any one time. If it becomes
necessary to access a page frame other than one of
the 16 that are currently active, the operating
system simply uses an I/0 instruction to load a
new page frame value into the appropriate page
descriptor register. If the page descriptor
registers are 1loaded with hex 000-00F, the
resultant addressing is exactly the same as if the
address space expansion were not present (i.e.,
the 24-bit physical Address bus addresses memory
locations hex 000000-00FFFF).

MEMORY PROTECTION

The memory protection features are implemented by
using attributes associated with each page frame

of memory. This is accomplished by assigning four
bits of attributes to each page descriptor
register. The page descriptor registers are 16

(rather than 12) bits wide. When a page de-
scriptor register is selected by Address bits
A12-A15, both the address and attribute informa-
tion corresponding to that particular page frame
is accessed. Attribute bits are used by external
circuitry in the memory management system to
monitor the types of accesses made to the page
frames and to record information about the use of
the page blocks. The attribute bits are the Valid
bit, Write-Protect bit, and Modified bit, with one
bit reserved for future use. A complete page
descriptor register is shown in Figure 4.

The Valid bit is used to indicate if the page
frame of memory associated with that particular
page descriptor register can be accessed. This
bit can be read from or written to by performing
an 1/0 read or write to the appropriate page
descriptor register. If the Valid bit of a page
register is set to 1, it can be used to access
memory. If the bit is cleared to 0, a memory
access to that register is invalid. When an in-
valid access is made, an interrupt is generated
and the address that caused the invalid access is
saved for processing by the interrupt service
routine.

The Write-Protect bit is used to assign
attributes to page frames of memory.
Valid bit, the Write-Protect bit can be
or written to by the user. If the bit
1, the memory is write-protected and an interrupt
occurs if a write to memory is attempted. When
the Write-Protect bit is cleared to 0, both read
and write operations can be performed. This bit

read-only
Like the
read from
is set to

2265-003

3-5

Loe « o - o foforon]

Aza J A12
ADDRESS BITS
VALID BIT

1-PAGE OK TO USE
0-PAGE UNAVAILABLE

WRITE PROTECT BIT
1-READ ONLY
0-READ AND WRITE

Figure 4.

is useful in a system in which multiple processors
share common memory, or in which an operating
system needs to be protected from accidental
writes by an executing program.

The Modified bit is a status bit that is auto-
matically set whenever a write is performed to a
logical address within the page frame. It can be
cleared only by reloading a 0 into the appropriate
lower bit of the page descriptor register. The
Modified bit is used to indicate if the page frame
has been used for a memory access and is helpful
in determining whether the information in the page
frame needs to be copied to secondary storage
before using the page frame for ancther purpose.

LOADING PAGE DESCRIPTOR REGISTERS

The page descriptor registers reside in the
microprocessor's 1/0 space and are accessed by the
microprocessor's I/0 instructions. Each register
is 16 bits long and so must be read to or written
from twice in order to access the full register.
To facilitate this double access, two I/0
addresses are assigned to each page descriptor
register: one for the upper byte and one for the
lower byte. The assigned I/0 addresses are listed
in Table 1. The page descriptor registers can be
accessed either individually or (by using the
microprocessor's Block I/0 instructions) as a
block in I/0 space.

MODIFIED BIT
1-PAGE FRAME HAS BEEN WRITTEN TO
0-PAGE FRAME NOT YET WRITTEN TO

RESERVED
BIT

Page Descriptor Register Format

Due to the uncertain state of the register content
at power-up, certain provisions are necessary to
ensure that the system behaves in a predictable
manner. A bypass mechanism known as Pass mode
enables the microprocessor to begin its
initialization as if no memory management
circuitry were present. In Pass mode, logical
Address bits Aj,-Aqg are passed on to physical
Address bits Aqp-Aq5 and the physical Address bits
Aqg-Az3 are set Low. After initializing the page
descriptor registers, the microprocessor can then
enter Address Translation mode.

Table 1. 1/0 Port Registers
Port

Address Registers
X X 00 System control port
X X 0 3 Page fault and system status
X X 1 0 Page descriptor register 0 (low byte)
X X 11 Page descriptor register 0 (high byte)
X X 12 Page descriptor register 1 (low byte)
X X 1 3 Page descriptor register 1 (high byte)
X X 1 4 Page descriptor register 2 (low byte)
X X 15 Page descriptor register 2 (high byte)
X X 2 E Page descriptor register 15 (low byte)
X X 2 F Page descriptor register 15 (high byte)

3-6

2265-004

IMPLEMENTATION OF MEMORY MANAGEMENT TECHNIQUES

Implementation of the memory management techniques
described above for the Z80 consists of circuitry
for the memory address space expansion and memory
protection features, as well as the necessary
logic for power-up and interrupt-handling.

The memory address space expansion circuitry is
based on the 745612 Memory Mapper. This TTL
circuit contains sixteen 12-bit registers which
are used as page descriptor reqisters. Because
the Memory Mapper's registers are only 12 bits
wide, sixteen 4-bit registers must be added to
utilize the protection features. These 4-bit
registers are added in the form of a 16 x 4 RAM

8
8 LINES (M0Op THROUGH M07)—>-+\
4

(745219) and an associated multiplexer (745257).
The registers contained in the RAM form the basis
on which the attribute bits are associated with
each page frame. These registers and the mapper
registers are loaded at the same time, and
together they form a set of 16-bit registers.

A functional block diagram of the circuit is shown
in Figure 5. The diagram shows two address paths
to the register set through the multiplexer.
Input pins RSy-RS; select a register for reading
or loading during an I/0 operation, and pins MAg-
MAs are used to generate a physical address.
Logical address bits Agp-Aq5 from the micro-
processor are the input signals to the map address
inputs MAg-MAs.

7~ MM <I: ME
e |
I
16x12 MULTIPLEXER] |
MAo THROUGH MA3 —x RAM ARRAY b “ e 12 wmop
NM =
o T = = AND THROUGH
RSo THROUGH RS3— MAP REGISTER il . 12 Lssu MOy
1) 3 -
ADDRESS J —NM =L ONLY I BUFFER
-
12 12 12
Do THROUGH D1 - —r :.)NATA ng e
w y
STROBE PASS MODE
(MM = H)
12 /‘ 12 MAO MO8
’ 7 MA1 MO9
BUFFER MA2 MO10
MA3 MO™
RIW:

Figure 5.

Memory Manager Block Diagram

2265-005

3-7

The 745612 Memory Mapper's Pass mode of operation
is slightly different from the Pass mode pre-
viously described, and provisions must be made for
it to operate in the required manner. In Pass
mode, the 745612 places the upper four bits of the
logical address (Aqp-Aq5) on what corresponds to
bits Ayg-Ay3 of the physical address while holding
bits Aqy-A1g9 Low. This results in a physical
address that is different from the logical address
and makes Pass mode not useable for initializa-
tion. To correct this problem, the registers are
loaded with data that has been rearranged so that
Pass mode operates properly for initialization,
but remains transparent to the user. This is ac-
complished by arranging the data lines and address
output lines as shown in Figures 6a and 6b.

Memory protection features are incorporated by
examining the attribute bits in the page de-
scriptor register associated with the page frame
of memory being accessed. Writing to or reading
from a block of memory whose Valid bit is cleared
to 0 or attempting to write to a page of memory
whose Write-Protect bit is set to 1 causes a fault
and interrupts the CPU. The Valid bit is tested
during every Read or Write cycle to ensure that
operations on that block of memory can be per-
formed. If a fault occurs, a nonmaskable inter-
rupt is generated to the CPU and Address bits
A12-Aq5 of the logical address are latched. If
the page is valid and a write is requested, the
Write-Protect bit is checked to see if the page of
memory is write-protected. As in the case of an
invalid access attempt (valid = 0), a write-
protect fault causes a nonmaskable interrupt to be
generated to the CPU, and logical Address bits
A12-A15 are latched. Since in both cases logical
bits Aqp-Aq5 are latched, the interrupt

service routine can read these bits to determine
which page descriptor register contains the
attribute bits that caused the faults. Reading
1/0 port 03y causes the four Address bits to be
placed on data lines Dg-D3.

The memory management circuit has two modes of
operatian: Pagss mode and Address Translation
mode. When powered up, the circuit is in Pass
mode and the system appears as an unmodified Z80.
During Pass mode and Interrupt Acknowledge cycles,
the nonmaskable interrupt is iphibited to prevent
any undesired interrupts from occurring. Memory
translation is enabled by writing a 00y to I/0
port 004, and Pass mode can be reestablished by
writing a 01y to the same I/0 port. The System
mode can be determined by reading bit 4 of I/0
port 03y.

The circuit shown in Figures 6a and 6b was tested
by using a Zileg ZDS 1/40 Development System with
ZAP (Zilog Analyzer Program). Since the ZDS 1/40
does not have 1/0 mapping capability, a user cleck
was built to provide a complete testing of I/0
ports used in the system. Some useful subroutines
that can be used by the memory management circuit
are given in the appendix.

CONCLUSION

The scheme described provides memory expansion and
memory protection by wusing a flexible paging
mechanism. The scheme is compatible with both 780
object code and the forthcoming Z800 design. It
therefore bridges the capabilities of the two
compatible microprocessor families and saves both
circuit design and software conversion effort.

3-8

r——"""—""""""/"/""/""/"7/777"7

Ag-Aqt l
I 1
| 1
i MEGAMEMORY l
| |
A12-Az3 |
MWR Do-D1
—————————— - T [
3 L4 RD MREQ
6
= pASS — N1 ZyeN
Ni 5V s R3
10 3 5 13
'T
WR
+5V .
WRITE 2 =N\ WR PROTECT a ,
PROTECTED T 12 10) N2 }
NMI
N DMREQ 9 2
MREQ o al; Ls32
(F4)
11 11
CLK >fp—ﬁ 9 VALID
+5V
10 10 8 PASS
VALID | 1 MOD WR
D1 —21 D Q s
741502 . INFIBIT
RFSH Wi ~2 7000W 9
WR 3
3 1 PR
. 10 11 i
LS375 4 @ — oA
(L2 m IOR
2|— Do RESET
LS138 5 — Dy
(D2) 6 — b,
Ao _1_ 9 b D3
A =28 Y3 13 12 — D4
3 14 15 f— ps
A2 vy ¢ OE CLK
Ioﬁx T G2A Y 1 11 13
iORQ T G2B v D5
— 0 11 12| 2
m G1 1000W

Figure 6a. Memory Expansion Hardware Schematic

2265-006 3-9

l I
] Ao-s | ™ Ar As As Ad Ar AsAz A AsAuAnAn aaal
I L}
1 vee K- 45y 7418138 +5v
1 (D4)
| GND ; A
! [5] ° 35
1 c MA 2 | A
4 37
1 G2A M, 25 | Ans
1 I 2o az8 “2 '™y 2 | A
! ml 2 a1 MAg 27 | Ass
1] A
] I 21 rso 15| Ay
i | 21 5s, 18] ase } Avehz
1 | +5 1
~ &s: 17| A
] 1 14 = RSy 18| Az
! ! w 1 .
] 1 1o0Qw A e 2] Az
] i 13
L] 2| An
I ze0 !
] (62) I Ls"T‘ PASS
I 1 _ LN
1 1 RESET MM
| by, 51 L 74L5612
] "D | 18 2 (81)
1] 16 .
1 1 14 '4" 6
1 1 12 N
1 [} 9 | 7418244 4 3 woe
I I S I :: Dy
[I L 15 MDyo
] 1 3] 24 Moy
[} 1
1 I 4
] ! Kl
[} | V J11 A1
M| wA 2 > 3 2 p—mom
I [IPY ; s |—mor
I AFSH = s }—mow
RESET | 8 o f—mov
| REQ % 13 [,
1.09F | N 14| 7418347
i] —o— SYTCLK 7 .
[
1i
1 oLk —o— USER CLK | 18] .
!
| 1
1 N
h 7 [_J1
I 2 18 7| woo
N 3 17 & | wo,
| 4 16 3| wo,
] 54 7aus2es |° 10 1 moy
1 L 3 AL} 11 Mo,
| 7 13 12| wpg
| 8 12 29 | o,
i) 11 30 | mo, o
[STROBE ME RIW
15 Je Io L8
6 Ns A
4 4 =
7 5 D1o
- o
2 : 0,2 s e
1
Ls219 ? >o—> T EC!
w7 (s
A —]2 2 = 1 VALID
A — s | cHanneL o LLE WS
A 14
Ay — 1 W o e B
— Ag
:‘ 7418257 cs__RW
12—y
FERE
—] MUX
A1s =16 L chaNNEL
A —4 10 B
13
SE
45V !
10
12
WR sUCCEss | ° Fs
oLk]
11
Tu
RESET

Figure 6b. Memory Expansion Hardware Schematic (Continued)

3-10 2265007

Appendix A. Some Useful Subroutines

B R RS ES
##% RETURN FROM LOAD & JUMP #¥*
3 SUBROUTINE L
363 AR R REREREREHHR

THIS ROUTINE PREPARES THE RETURN FOR THE ORIGINAL CALL.
IT WILL PUT BACK THE VALUE OF THE PAGE DESCRIPYOR REG.
WHICH WAS USED TO ACCESS ANOTHER 4K PAGE. FIRST IT POPS
THE RETURN ADDRESS OF THE ONE WHICH CALLED IT. NEXT IT
POPS THE ORIGINAL RETURN ADDRESS INTO DE THEN EXECUTES
THE JPINIT SUBROUTINE TO JUMP BACK.
PASSED PARAMETER:
1Y => PREVIOUS REGISTER DATA
IX => PREVIOUS REGISTER ADDRESS

L R

CALOUT:
POP DE i THROW THE CALL AWAY
POP DE i ORIG. RETURN ADDRESS
JP JPINIT

363636 336 36 36 36 36 36 3 36 30 36 36 3 36 3 36 36 36 36 30 36 3 3 3

33 LOAD THEN JUMP ROUTINE ##
36 36303 36 35 3636 36 3636 6 36330 3010 H IR H R H K

THIS WILL LOAD THE REGISTER WITH PREDEFINED ADDRESS
THEN JUMP TO THAT LOCATION BY CHANGING THE CONTENT OF
STACK POINTER BEFORE RETURN. THE FORMAT IS FOLLOWED:

LI I TN L B HL REGISTER

e ATTRIBUTE

P
i
i
-)

i 4 ' 1 1 ! DE REGISTER

! o e A11-AO
‘- LOGICAL PAGE (0-F)

PAGSSED PARAM. :
A23-Al6 => H
A15-A12 + 4 BITS ATTRIBUTE => L.
LOGICAL PAGE + Al1-A8 => D
A7-AO0 =2 E
IX =2> REGISTER ADDR. TABLE
IY => REGISTER DATA

o S P

3-11

Appendix A.

Some Useful Subreutines (Continued)

RETURN PARAM. :
PC=DE
IX =>» REGISTER ADDR. TABLE
1Y => REGISTER SAVED DATA

- e

JPINIT: CALL FINDRG
CALL SWAP

PUSH DE
RET i JUMP

FINDRG: LD C,D i MOVE LOGICAL PAGE
8RL. c i TO LOWER NIBBLE
SRL c
SRL. c
SRL. C
L.D B, O
ADD IX,BC i IX POINTS TO THE
RET i REGISTER ADDRESS

i THIS ROUTINE ONLY SWAPS THE CONTENT OF 1 REGISTER

SWAP: L.D C, (IX+0) i C HAS THE ADDRESS
1.D L, (IY+0) i NEW LOW BYTE
L.D H, (IY+1) i NEW HI-BYTE
IN B, (C)

L.D (IY+0)., B i SAVE LOW BYTE
auT) L i WRITE LOW BYTE
INC C

IN B, (C)

LD (IY+1),B i SAVE HI-BYTE
aQuT (€ H i WRITE HI-BYTE
RET

B30 30 36 3 336 30 40 30 0 30 303002 3 M
*H LOAD PAGE REGISTERS *3
i SUBROUTINE *3%
364630334 36 30 2096 3 38 30 30 30383030 303 H B30 30 M0

PASSED % RETURN PARAMETERS:
POINTER TO 18T DATA => HL
NUMBER OF PAGE => A
POINTER TO 1ST REGISTER ADDR. => IX

i
i
'
i
i
i
i
i
i

LOADRG: PUSH HL

PUSH IX

LD B, A

5l B i 2X # OF PAGES %
LDLOOP: LD C, (IX+O) i RESET Z FLAG

ouTI

JR Z, LDEXIT

INC IX

JP LDLOOP i NEXT
LDEXIT: POP IX

3-12

Appendix A. Some Useful Subroutines (Continued)

3
##

- e e

i
i
i
i
i

POP
RET

HL

SAVE PAGE REGISTERS
SUBROUTINE

NUMBER OF PAGES =2 A
POINTER TO 18T REG. ADDR.

POINTER TO 1ST SAVED DATA

SAVREG: PUSH

PUSH
L.D
SLA

SALOOP: LD

INI
JR
INC
JP

SAEXIT: POP

##

L T TR S S P S

TRAP:

POP
RET

HL

IX

B, A

B

C, (IX+0)

Z, SAEXIT
IX
SALOOP
IX

HL

PASSED PARAMETERS:
REGISTER ADDRESS TABLE POINTER => IX

RETURN PARAMETERS:
FAULT DATA => DE
REGISTER I1/0 ADR. LOW BYTE =3 C

INVALID ACCESS)

CAUSE

=> A (0

(1

A, (3H)
OFH

B, O

C, A
IX,BC

C, (IX+0)
E, (C)

C

D, (C)

c

3 E

Z, NVALID
2, E

NZ, WP
A, 2

i

i

WRITE

3 30 3 2 3 3 36 336 3 36 38 3 36 M b 36 3 I W 3
3%
#*#
363 36 3 36 3 36 3636 3 36 36 3 36 3 36 36 3633 36 3 36 3¢ 3 36 33 34 36

THIS ROUTINE SAVES DATA OF PAGE REGISTERS INTO ARRAY
POINTED BY HL. PASSED & RETURN PARAMETERS:

=3 IX
=>» HL

2X # OF PAGES %
i RESET Z FL.AG
DATA IN

NEXT

336 36 3 36 3o 36 36 36 3 36 3 36 3 36 33 36 3 36 3 3 3436 34 e 3030

ERROR TRAP HANDLER
31 3 A B I IR I B B

33

THIS ROUTINE FINDS THE PAGE FAULT WHICH GENERATED NMI.

PROTECTED)

READ PORT O3H
GOTCHA

.~ e e me

i € HAS REG. ADDRESS
i READ LOW BYTE

i HI-BYTE
TEST V BIT

TEST WP

P TR T

THIS SHOULDN‘T

3-13

Appendix A. Some Useful Subroutines (Continued)

NVALID:

WP :
DONE :

JP
LD
JP
LD
RET

DONE
A O
DONE
Al

i

i

i

HAPPEN
INVALID ACCESS

WP PAGE

00-2265-01

Increased speed, additional instructions and an addressing scheme that
extends the available memory address space give the Z8108, an updated
version of the Z80 microprocessor, greater flexibility.

On-chip memory management
comes to 8-bit uP

The trend toward the use of high-level
languages in microprocessor-based sys-
tems and toward complex configurations
has created the need for more memory
space, greater execution speed, easier ac-
cess to software libraries, and in general,
more sophisticated processor architectures.
To those ends, the Z8108 is the first 8-bit
microprocessor to provide on-chip memory
management to expand memory address-
ing and a range of operating speeds of 6
to 25 MHz for increased throughput.

The initial member of the Z800 family,
itis an enhanced version of the popular Z80
with new instructions and addressing
modes for greater flexibility. In addition,
a so-called system mode and a user mode
of operation improve system reliability.
The Z8108 also provides true 16-bit arith-
metic capability and performs mathemati-
cal operations not done by the Z80.

The 40-pin chip includes a Z80-com-
patible bus interface with 8 address/data lines and
11 address lines, an on-chip clock oscillator, program-
mable dynamic memory refreshing, and expanded
1/0 addressing (Fig. 1). Because of its less stringent
memory timing requirements, at an operating speed
of 6 MHz the response time of the memories used
need only be 250 ns. The processor’s programmable-
interrupt daisy-chain delay permits easy interfacing
with most high-speed interrupt-driven devices; no
external logic is required to generate additional wait
states during an interrupt-acknowledgment se-
quence. Also, a large memory can be directly ad-
dressed without external bank-switching circuitry.
Finally, because the processor executes all the in-
structions of the Z80, existing Z80 programs can be

Roger Whitcomb, Software Applications Engineer
Zilog Inc.
10460G Bubb Rd., Cupertino, Calif. 95014

Reprinted with permission of Electronic Design, October 14, 1982
Copyright 1982 Hayden Publishing Co., Inc

P 1

simply moved unchanged to the Z8108 for execution
at increased throughput or easily modified to take
advantage of the new processor’s capabilities.

Looking at the afchltecture

Because the Z8108 is binary-code-compatible with
the Z80, it has all the registers of the Z80, including
dual 8-byte register banks A-L and A’-L'; two 16-
bit index registers IX and IY; and a dual 16-bit stack
pointer and program counter. One stack pointer is
dedi%ated to system programs (including interrupts
and |traps), the other to user programs. The Z8108
has in addition a master status register that contains
a number of flags to indicate the processor’s current
status. Also included are an interrupt and trap-
vector table pointer and I/0 page registers.

Prograﬁls on the Z8108 will be executed in either
the system mhe user mode. System programs have

3-15

Microprocessor Special: Enhanced 8-bitprocessor

access to all registers and instructions, but user
programs are denied access to certain of these
resources in order to provide a more secure environ-
ment—for example, one in which programs can be
reserved in protected memory. The user mode is
regarded as a subset of the Z80 instruction set
because some Z80 instructions such as Halt are
privileged in the Z8108 and can only be executed
when the unit is in the system mode. Z80 programs
will operate completely and correctly on a Z8108
since the processor assumes the system mode on
power-up or reset.

The 78108 addresses memory management in a
number of ways. The on-chip memory management
unit (MMU) maps system and user programs and
instruction and data references separately, and easi-
ly remaps memory pages to different physical areas,
thereby permitting easy access to very large physical
memory spaces. Direct access to the memory
management hardware is usually available only to
system programs.

The 7Z8108’s added instructions include some
formalizations of undocumented Z80 instructions
(such as accessing the index registers one byte at a
time), in order to make the entire register set more
orthogonal. Four new addressing modes increase the
flexibility of the existing instructions and make code
generation for high-level languages much easier. In
addition, the Z8108 has a Test and Set instruction
to provide synchronization for multiple processors,
and both 8-bit and 16-bit multiplication and division
instructions to increase throughput in computation-
intensive applications.

The programmable bus timing feature increases
system throughput. Control-bit settings allow the
internal processor clock to be scaled for external bus
accesses and wait states to be automatically inserted
during bus cycles, as mentioned. Consequently, the
user can select very high clock speeds to increase
system performance without requiring high-speed
memories and I/0 devices.

The interrupt structure of the Z80 has been ex-
tended in the Z8108 to include program traps for
exceptions and error conditions and a forced
interrupt-service mode. This new mode provides
automatic vectoring for each interrupt and trap, and
provides support for nested interrupt processing.

With added interrupt-acknowledgment daisy-
chain delay, the contents of a control register may
be used to select a number of additional wait states
to be added to interrupt-acknowledge cycles. Thus,
slow peripheral devices or long interrupt daisy chains
can be accommodated.

The Z80’s input/output address space has been
augmented in the Z8108 by the addition of the I/0
page register that permits one of a number of blocks

of 1/0 locations to be selected. Changing this register
is a privileged operation that prevents any block from
being accessed illegitimately.

The Z8108 includes an on-chip dynamic memory
refresh controller. Refresh transactions can be
enabled or disabled under program control and the
refresh frequency can be selected. Unlke the Z80, the
78108 generates separate bus transactions for
refreshing, thus easing the memory-access timing
requirements. Refresh cycles lost because of DMA-
bus accesses or wait states are counted and
automatically generated when the CPU regains con-
trol of the bus. The Z8108s refresh controller
generates a 10-bit refresh address, ensuring support
for very large dynamic RAM chips.

The on-chip oscillator-clock generator of the Z8108
simplifies system design by eliminating the need for
an external MOS clock generator-driver. A crystal
can be connected directly to the processor, or an
external TTL-compatible clock signal can be pro-
vided. From this signal, the processor generates an
internal clock, its frequency being one-half that of
the input.

Addressing modes

Besides expanding the instruction set of the Z80
with four new addressing modes (see Table 1), the
78108 extends some of the existing addressing modes
(such as Register Indirect) to other instructions. The
new modes are: Indexed with 16-bit Displacement,
Stack Pointer Relative, Program Counter Relative,
and Base Index.

Central N
processing Oscillator
unit

T
k=
§ 8

Memory Refresh
management control
unit

1. The 40-pin 28108 microprocessor has abus interface
compatible with the Z80, an on-chip oscillator whose
frequency is selectable from 6 to 25 MHz, and expandable
1/O addressing. The Z8108 has all the registers of the Z80,
plus a master status register, an interrupt and trap vector
pointer, and an I/O page register for monitoring the
processor’s current status. The 16-bit microprocessor
executes all software instructions of the Z80.

3-16

The Indexed with 16-bit Displacement mode is an
extension of the Z80’s Indexed addressing mode and
uses a two-byte rather than a one-byte displacement.
This method permits access to large dynamic data
structures addressed by a pointer or access to arrays
whose base address is known and whose index value
can vary.

The Stack Pointer Relative mode is useful for high-
level language applications where subroutine
parameters and local variables are kept in the stack.
Addresses of these variables are fixed offsets from
the current top of the stack (located by the stack
pointer) and therefore can be accessed directly using
the Stack Pointer Relative mode.

With Program Counter Relative addressing,
position-independent code—that is, code that uses
only addresses relative to the current program loca-
tion and not absolute addresses—can be produced.
This procedure is useful for standard ROMs and
subroutine libraries that can be loaded at different
locations in memory for various applications, and it
also reduces the time required to link-edit large
programs. The Z80 has a few PC-relative instructions
(all of them jumps), but the Z8108’s PC-relative
instructions include all the conditional jumps and
calls, as well as 8-bit and 16-bit load, store, and
arithmetic instructions.

Based Indexed addressing uses two registers to
address an operand (any combination of the HL, IX,
and IY registers may be used). The contents of the
two are added to produce the effective address. In
that way, both the base address of a structure and

the index or offset can be computed at execution time
(as is required for dynamic arrays). What's more,
Base Indexing can be effectively combined with the
other addressing modes, using the LDA (Load Ad-
dress) instruction, to build up an arbitrarily complex
addressing mode involving any combination of index-
ing and indirect addressing.

In addition to the new addressing modes, the old
modes can be used for more instructions—for exam-
ple, 16-bit Load and Store using the Register Indirect
or Short Index mode, 16-bit ADD using an immediate
operand, PUSH using an immediate value, and PUSH
and POP using direct memory addressing (see Table
2). These extensions give the Z8108 the power and
flexibility appropriate for both high-level and as-
sembly language programming.

More instructions

Foremost among the Z8108’s new instructions are
those for multiplication and division. The multiplica-
tion instruction has several variations, including an
8-bit-by-8-bit to 16-bit result and 16-bit-by-16-bit to
32-bit result with the operands addressable using any
of the available addressing modes. Similarly, the
division operations include 16-bit-by-8-bit to 8-bit
quotient and remainder and 32-bit-by-16-bit to 16-
bit quotient and remainder. The division instructions
check for quotient overflow and attempted division
by zero; these conditions will cause a trap, notifying
the operating system to print a warning message or
to abort the user program.

The Test and Set instruction has been included in

Page frame
address Attribute
R { } P S o
s ¥ 121 o
. Page frame
address —! Offset J

e } Logical address

Page desonpto
! reg

} Physicat address |

2. The dynamic page relocator uses the processor’'s memory management unit to map and

enable system and user programs independently. The Z8108’s 16-bit logic addresses are
divided into two fields for defining the physical addresses and for identifying the required

set of page descriptor registers, one of which is used for system addresses, the other for

user addresses. The state of the enabling flags determines which of the programs are serviced.

3-17

Microprocessor Special: Enhanced 8-bit processor

the Z8108 to support multiprocessing. It tests the
most significant bit of the operand, setting the
condition codes appropriately and then sets the
operand to all 1s. This primitive operation is often
used as a signal between two or more cooperating
programs to guarantee exclusive access while updat-
ing shared resources.

In addition to 16-bit multiplication and division,
the Z8108’s architecture includes other 16-bit
arithmetic operations not found on the Z80. These
instructions include 8-bit and 16-bit Sign-Extend,
Add Accumulator to Addressing Register, 16-bit
Compare, 16-bit Increment or Decrement in Memory,
16-bit Negate, and Full 16-bit Add and Subtract. All

these operations use the HL register pair as a 16-
bit accumulator.

The entire register set is more fully exploited in
the 78108 than in the Z80. The Z8108’s IX and IY
registers each can be accessed as a 16-bit register
or as two single-byte registers (using any of the 8-
bit load, store, or arithmetic operations). That
capability in effect makes IX and IY into general-
purpose registers like the BC, DE, and HL pairs.

The Z8108 architecture includes a new group of
instructions for CPU control, to permit access to the
new registers (such as I70 page and master status)
and to handle system and user mode separation. The
LDCTL (Load Control) instruction loads data into, or

Table 1. The Z8108’s addressing modes

Rogsier

ol
&

o iifl) tioh whase addresgas |

Idipger o 1

' The content ok the Tooks
', the register
] 1 I A,

I
H

J Op‘erax';d !ﬁy
i N b |
bt 9"

ey

Ll
A AN

‘tion whase addresé isithe

Relative

¢ .content ' of the: gtack,’
Pointer " painer. offsevby the dis-

o in the'instryue "/,
tion ")

The content of the oca- '

Address tion whose address is the:

Base Index

Register address 2 [N

content of & register, off«

Operand set by the displacement in

Displacement +

a register

3-18

removes and stores data from, the special CPU
registers. Available only in the system mode, it is
used to initialize the I/0 page register and the
interrupt and trap-vector table pointer.

A number of privileged instructions can be ex-
ecuted only by programs running in the system
mode. These instructions provide control of the
registers and processor state that transcend any one
program and so are properly the province of the
operating system. The privileged instructions in-
clude Halt, Enable, or Disable Interrupts, Select
Interrupt Mode, Load the CPU Control Registers,
and Return from Interrupts.

The SC (System Call) instruction provides an
interface between user-mode programs and the
operating system running in the system mode. A
System Call pushes the processor status (in the
program counter and master status register) onto the
system stack, pushes a 16-bit system call number
from the SC instruction onto the stack, and then
executes a trap sequence. The operating system,
after vectoring to the appropriate trap service
routine, will normally use the system call number
as an index into a table of subroutine addresses for
the various system functions. This controlled
mechanism lets user.programs request privileged
services such as memory management from the
operating system without compromising the overall
system and user protection mechanism.

One of the most troublesome problems of today’s
microprocessor systems is management of large
program and/or data spaces. This problem has been
met in a variety of ways, such as adding external
memory-mapping circuitry (increasing board space
and complexity) and changing the design to use a
16-bit processor (losing compatibility with existing
code and increasing development time).

Memory space is quadrupled

The Z8108 tackles the problem by using the MMU
to allow page-oriented memory mapping and provide
protection without any external logic. The CPU itself
separates system space from user space and program
code from data references in both spaces, thereby
quadrupling available memory space without chang-
ing existing program code or adding external
hardware. An address translation mechanism, called
dynamic page relocation, is then used to map these
logical addresses into the physical address space.
Logical addresses generated by the CPU are passed
through the MMU and translated into physical
addresses using this mechanism before being sent
to the address lines coming out of a Z8108 chip.

Simply, the Z8108’s 16-bit logical address is divided
into two fields, a 12-bit offset and a 4-bit index (Fig.
2). The offset is passed to the physical address

Table 2. Addressing Comparison, Z80 vs Z8108

280
Mode instr
Stack Pointer | A
Relative
Base Index
Regtster
Indirect
"PuSH X
POP, 'DE K
Index LD . vHL,aaaa
ADD . HLDE
LD, AfHL)
Direct Lo HL {(pppp)
Address INC | HL, .
LD - (pppp)HL
Short LD . E(IX+24)
Index LD ' D{iX+25)

~ approximates corresponding operation in Z8108

= equivalent operation
unchanged, and the index selects one of the page
descriptor registers. The indexed register contains
the upper bits of the physical address and a set of
so-called attributes for that page. These attributes
indicate whether the table entry is valid (i.e.,
whether that page’s information resides in physical
memory), whether writes are allowed to the page,
and if so whether a write has actually occurred. If
an access is attempted to a page marked as invalid,
or a write is tried to a write-protected page, the
instruction is aborted and a trap is taken. The system
trap prevents a program from inadvertently access-
ing or modifying information not in its own purview.

As shown, the Z8108’s MMU actually contains two
sets of page descriptor registers with separate ena-
bling flags, one for system addresses, the other for
user addresses. The appropriate set is chosen based
on the state of the system/user flag in the master
status register. Thus system and user programs can
be independently mapped or unmapped, or mapped
into different areas of physical memory. In addition,
program and data separation can be enabled indepen-
dently for each mode. If separation is enabled, the
appropriate set of mapping registers is divided in
half, with one half available for program accesses,
and the other half for data accesses. In this case,
only 3 bits of the logical address are used to select
a page descriptor; the lower 13 bits of the logical

3-19

Microprocessor Special: Enhanced 8-bit processor

address pass through unchanged.

The Z8108 has a 512-kbyte physical address space.
The 19 bits of physical address are produced by 12
or 13 bits from the logical address and 6 or 7 bits
from the page descriptor registers. That translates
into 128 pages of 4 kbytes each with program and
data spaces integrated or 64 pages of 8 kbytes each
with program and data references separated.

The processor provides a mechanism for system
programs to access data using the user-mode map-
ping tables. Through the use of the LDUD (Load in
User Data Space) and LDUP (Load in User Program
Space) instructions, system routines can retrieve
parameters from user programs (passed via the
System Call instruction) or return values to user data
structures.

The MMU registers of the processor are accessed
by means of I/0 instructions to a fixed set of port
locations. These registers can be read or written
singly or in blocks using the Z800 family’s block I/0
instructions.

Using memory management

Using the memory management features is re-
latively simple. Since the MMU is part of the chip,
no external logic is needed; the chip merely presents
a large linear address range to the outside world.
Simple 780 programs running on a Z8108 need not
worry about memory management, since the Z8108
powers up in the pass-through mode, which means

Table 3:

that the logical address is passed directly to the
physical address lines without translation.

Programs written especially for the Z8108 or Z80
programs that could benefit from a larger address
space can use the memory management features in
a variety of ways. The first technique is to separate
the application program from the operating system.
Thus both the application (running in the user mode)
and the operating system (running in the system
mode) can reside in different areas of physical
memory, since they will use different sets of mapping
registers. Second, the MMU can be set to separately
map program and data references, allowing up to
64 kbytes of program code to access up to 64 kbytes
of data (Fig. 3a).

If this technique does not provide enough address-
ing space, a variation of the bank-switching
technique can be used (Fig. 8b). In this scheme, the
program or data is broken into sections each 64
kbytes in length. As long as a program or data
reference falls within the 64 kbyte range, normal
addressing is used. But a reference to a different
section must be preceded by a call to the operating
system (using the System Call instruction) to change
the page descriptor registers to map that reference.
Either one page or the entire 64-kbyte address space
can be remapped.

Another useful technique that takes advantage of
the Z8108’s memory management is called virtual
disk buffering. In this scheme, a large section of

Recognition, Z80 vs 28108

.\ " Inpuits — none
=1

i

Uses — A and F' only

LD
DEFB

JP
or
JP

This instruction sequence expolits the difference ; in gne. opcoda hatwenn the Z80 and tha 2800 hmﬂy
tu sllow a user program to decide which procasaor it Ia runmng on. The ﬂags are set thus

o Outputs — 8ign flag set acqordmg to CPU: . . .
s (M) if 280 :
= 0 (P) if 2800 .

; The key instruction is in the one undefined
; shift group on the Z80 that actually performs
a “logical shift left and insert 1" operation,

; with the same flag operation as the other
; shift/rotate instructions. This has been
; replaced on the ZB0O with the Test and Set

. instruction that tests the sign of the operand,
; sefting the sign flag accordingly, then setting
; the operand to all ¥’s. Thus with the proper choice
; of operand value, the sign flag resulting from
; this instruction becomes a Z80/Z800 flag.

A40H
OCBH,037H

M.z80
P,Z800

i This is the proper operand.
; This Is the key instruction.
; A ZB0 will change the operand to
61H (shift left, insert 1), setting
; the sign flag on the result.
A 2Z800 will test the original sign
; (0) and clear the sign flag, .
: then set A to altls.
; Now test the flag and jump.

3-20

memory (typically 256 kbytes or more) is used to
simulate all or part of a disk file. Whenever a disk
block would normally be read into a memory buffer,
the buffer is now simply mapped to point to the
appropriate part of the virtual disk area. If this area
is filled from the disk originally, all accesses to the
file can be made to memory instead of to the disk,
eliminating the long disk access times.

In summary, programs can now operate on large
data bases in memory without using temporary disk
files for storage. Programs larger than 64 kbytes can
be run using the MMU to map different areas of the
program in physical memory into the logical address
space as they are needed. Cooperating programs
running in a multitasking system can share portions
of data memory, yet each can have private code and
data that cannot be accessed by the other programs.
These applications all rely on the simplicity and
flexibility of the Z8108’s paged memory management
system and on the convenience of having the MMU
as part of the chip.

The 78108 also extends the I/0 capabilities of the
Z80. In addition to I/0 transfers to and from regis-
ters, data to be sent or loaded can be transferred
directly to or from memory. That gives greater
flexibility in I/0 transfers and can result in greater
throughput to the external device. The architecture

Program

i

A

also has the Z80’s block input and output instructions
for even greater I/0 transfer rates.

Also, the I/0 addressing space of a Z8108 is larger
than that of the Z80. The content of the special I/0
page register is used to drive the upper address bits
during an I/0 transaction, thereby permitting banks
of ports to be selected. The Z8108 supports eight
banks of port locations within the I/0 address space.
Because input and output themselves need not be
privileged operations in the Z8108, the I/0 page
mechanism affords protection to critical devices
(such as the on-board MMU) on a page basis, since
access to the I/0 page register is always a privileged
operation.

Interrupts and traps

The three interrupt service modes of the Z80 have
been expanded in the Z8108 by the addition of a
fourth mode and by the addition of internal inter-
rupts or traps using this mechanism. The four
interrupts are modes 0 to 3, with modes 0, 1, and
2 operating in the same way as in the Z80. Mode 0
expects an instruction to be placed on the data bus
during the interrupt acknowledgment cycle that is
executed to begin the interrupt service routine. Mode
1 ignores the data and executes an unconditional
jump to location 0038H. Mode 2 uses the contents

3. Separately mapped program and data references double the Z8108’s addressing space.

Eight descriptor registers are used to map program addresses, and eight to map data
addresses (a). Switching between banks of data can be done simply by changing the eight
data-page descriptor registers to a new block of physical memory (b).

3-21

Microprocessor Special: Enhanced 8-bit processor

of the special I register, along with the data read
during acknowledgment, to point into a table of
subroutine addresses, which dispatch the service
routine. Interrupt Mode 8 uses the interrupt and trap
vector table pointer register to point to an array of
new program status values (each consisting of a new
program counter value and a new master status
register value) for the traps and nonvectored inter-
rupts and an array of new program counter values
for use with vectored interrupts.

If a vectored interrupt is acecepted in mode 3, the
old contents of the program counter and the master
status register are saved on the system stack and
an interrupt vector is read from the interrupting
device. This value is then saved on the system stack
and used to fetch new contents for the program
counter from the trap vector table. This sequence
allows an interrupt to vector to any location in
memory for service and also permits complete nest-
ing of interrupts, since the previous state of the
interrupt enable is saved on the stack, not just in
a temporary flag register as in the Z80.

The processor supports both maskable and non-
maskable interrupts. Maskable interrupts are
enabled by a bit in the master status register and
are accepted only if the bit is set. Nonmaskable
interrupts cannot be disabled and are always ac-
cepted. The processor checks the state of the external
interrupt pins at the end of the current instruction
(or the end of an iteration of one of the block
instructions) and executes the interrupt service se-
quence before continuing with the next instruction.
Maskable interrupts can be accepted as either vec-
tored or nonvectored. If they are to be vectored,
processing occurs as described above. If nonvectored
(and in interrupt mode 38), a special nonvectored
interrupt table entry is used to dispatch the interrupt
service routine.

Traps in use interrupt mode 3 to vector to a service
routine and to load a new master status value for
that routine. Thus a trap can be at least partially
serviced in a user-mode program. The Z8108’s traps
include Privileged Instruction, System Call, Page
Fault (from the MMU), Division Exception, Single

ROM or PROM
array

CE

RAM array
RFSH WR
REQ RD

RD Ac-Aws

7

Z8108 microprocessor

DMA
controller

RDY

- MREG AoArs D
3 BAO:
1Et
IEO}

Wart

counter-timer
and parallel
1/0 unit

Port B

- IEI
INT
Port A

=]
——— controller

INT -
channel A

annel B Port C

Wl

” Iy

4. A system usingthe Z8108 may be designed into an existing system using the 280, peripherals, and medium-
speed memory devices. Having multiplexed address and databuses and an internal oscillator, the processor
cuts the package pin count without reducing flexibility.

3-22

Step, and Breakpoint on Halt. The last two facilitate
program debugging by providing a reliable means
of stepping through programs one instruction at a
time and breaking program execution at any instruc-
tion, respectively.

Following power-up or a reset, the Z8108 will
behave like a Z80 (or an 8080). This means that
memory management is disabled, the system/user
flag is set to system (allowing all privileged instruc-
tions to be executed), the system stack pointer is
enabled, the I/0 page register is cleared, and the
interrupt response is set to mode 0. All the Z80’s
instructions run identically on the Z8108. The Z8108,
however, operates two to eight times faster.

But what if a program needs to know whether it
is running on a Z80 or on a Z8108 (in order to take
advantage of the Z8108's power if it runs on one but
still be capable of execution on a Z80)? One of the
new instructions in the Z8108 replaces a previously
undocumented instruction of the Z80, permitting a
program to determine which processor it is running
on. The program achieves this by performing a test
sequence on the new instruction (see Table 3). The
instruction sequence is used to skip the initialization
procedure needed to activate the Z8108 if the pro-
gram is running on a Z80 or to jump to in-line Z8108
code (to do a multiplication, for instance) rather than
using a Z80 subroutine for the function.

Designing a system

The Z8108 has a multiplexed address and data bus
to reduce the package pin count without sacrificing
performance (memory transactions still require only
three clock cycles). In addition, design with the Z8108
is easy because of the on-chip oscillator, memory
refresh mechanism, and programmable bus timing
features. Figure 4 shows an example of a Z8108
design using existing peripherals and medium-speed
memory devices.

Note that the only external element required in
the oscillator circuit is a crystal (whose frequency
is twice the desired internal frequency). The external
clock output (CLK) line provides a system clock at
the internal clock frequency divided by the program-
mable bus timing value. The multiplexed address and
data bus is easily demultiplexed with a standard low-
power Schottky 8-bit latch. The Address Strobe (AS)
signal is used to gate the address into the latch. The
rest of the signals generated by the Z8108 are
compatible with standard Z80 signals.Ol

An advanced microprocessor family adds on-chip cache and
memory management yet retains software compatibility with its
predecessor. It gives the designer a virtual mainframe on a chip.

8-and 16-bit processor family
keeps pace with fast RAMs

For years, designers have not been able to take
full advantage of the speed of available RAMs. In
otherwise efficient microcomputer setups, the pro-
cessors have been the main drag on throughput.
This situation will change shortly with the intro-
duction of a new family of 8- and 16-bit processors.
These successors to the popular Z80 microprocessor
are expected to operate at a 25-MHz clock frequency
and can use a burst mode on their 16-bit bus to work
with 80-ns RAMs. But that is not all.

The Z800 family, to be fabricated using on an
advanced NMOS process, will have on a single chip
such features as a cache memory, memory manage-
ment, counter-timers, DMA controllers, and serial
1/0. Add to that new instructions to ease software
development and the designer will have a virtual
mainframe at his disposal.

The family consists of four members, two with an
8-bit, Z80-compatible interface and two with a
16-bit, Z-bus (Z8000 family) interface. All members
are totally code-compatible with the Z80 micro-
processor. The new instructions, combined with the
on-chip resources and high clock rate, extend per-
formance to the 5-million-instructions/s level, as
simulated via a Pascal compiler. This rate is com-
petitive with many of the so-called 32-bit micro-
processors.

To achieve the high clock rate, a 2-um n-channel
process was used. There are two levels of polysilicon
interconnections, the first a low-resistance layer
and the second for interconnections and high-
impedance load resistors. The process incorporates
four transistor types, as defined by their thres-
holds: one enhancement, one intrinsic, and two

William Carter, Engineering Manager

Jackson Hu, Design Engineer

Frank Lynch, Product Manager

David Stevenson, Processor Architect
Zilog Inc.

1315 Dell Ave., Campbell, Calif. 95008

Reprinted with permission Electronic Design, April 28, 1983

Copyright Hayden Publishing Company, Inc 3-25

depletion-mode devices.

The members of the Z800 family consist of the
8-bit Z8108 and 78208 and the 16-bit Z8116 and
78216 (see Table 1). However, only the Z8208 and
78216 have the on-chip peripherals and a full
16-Mbyte address space. To reduce the board space,
these processors are housed in dual in-line packages
with pins on 70-mil centers, permitting a 64-pin
package to fit in the board area of a 48-pin DIP
having leads on 100-mil centers.

With the Z-bus interface, the processors offer
twice the system throughput of the 8-bit bus de-
vices. They can take advantage of all the Z-bus pe-
ripherals already available for the Z8000 family of
16-bit processors.

The architecture of the Z800 processor core re-
sembles that of the Z80 microprocessor, with the
addition of several registers to increase flexibility
As part of the architectural enhancements, the pro-
cessor has been set up to operate in either a system
or a user mode. In the system mode, all of the in-
structions can be executed and all of the CPU regis-
ters accessed. This mode may be used with pro-
grams that perform operating system functions,
and it can also run Z80 software emulation. In the
user mode, some instructions cannot be executed
and some CPU registers are made inaccessible.
Thus, system integrity is ensured, even by run-away
application software that might otherwise alter
operating system information.

Enhanced instruction set

Supporting the two modes are two stack pointers,
one for the system mode and one for the user mode.
Additional flexibility was added to the register set
by the high- and low-order byte addressability of
the 16-bit IX and IY index registers.

The instruction set contains all of the Z80 com-
mands, and then some. Added are 8- and 16-bit mul-
tiplication and division operations; Sign Extend,

Electronic Design + April 28, 1983

Advanced processor family

16-bit Compare, Negate, and Increment and Decre-
ment in Memory; System Call; test and set com-
mands; several load control instructions; and some
commands that interface with the extended pro-
cessing units, such as the forthcoming Z8070
floating-point math processor.

Multiprocessing is supported by the Test and Set
instructions, which facilitate communication be-
tween programs that share resources. The Load
Control instruction group is used in the system
mode to set up registers that configure on-chip re-
sources and to poll the chip status. The System Call
instruction enables User programs to request ser-
vices available only in the processor’s system
mode—the enabling or disabling of interrupts, for
example.

Abundant silicon resources

Along with the new instructions come four new
addressing modes: index, base-index, stack-pointer-
relative, and program-counter-relative. These are
in addition to the five modes carried over from the

780 (register, immediate, direct-access, register-
indirect, and short-index).

An abundance of on-chip resources is available
for the designer (Fig. 1). The Z8216, the most com-
plex member of the family, and the 8208 have the
Memory Management Unit, cache memory, four
16-bit counter-timers, a serial port, four channels of
DMA control, and a dynamic RAM refresh control-
ler. These on-chip peripherals can also be linked
internally for further enhancement of their capabil-
ities. However, even the 40-pin Z8108 and Z8208
have the four counter-timers available for internal
timer applications.

The on-chip memory manager coordinates the
16-Mbyte address space of the Z8208 and Z8216 pro-
cessors (ELECTRONIC DESIGN, Oct. 14, 1982, p. 163)
with no speed penalty during the address trans-
lation. On the Z8108 and 78116, 19 address lines
provide access to 512 kbytes of memory. To trans-
late between the logical and physical address
spaces, the memory manager uses two sets of 16
page-descriptor registors—one set for the system

ik

System ADg-AD1s AD1g~AD2s
clock
L S , Bus
Cagche Bug interface control
memory Lo Lunit signals
Counter- ‘
. UART
. CTIO; =<4 L_cri,
RDY3 RDY: [RDY,4{RDY, CTlo — bees-CT102
CTlp ~— b—cTi, Tx Rx
DMASTB: DMASTB,

1. The high-end member of the Z800 family, the 28216, has on-chip resources that give it
the characteristics of a full minicomputer. Iincluded are a memory management unit, a
cache memory, multiple DMA channels, multiple counter-timers, and a serial port.

Electronic Design - April 28, 1983

3-26

mode and one for the user mode. Each 16-bit page
descriptor register contains 12 bits of address infor-
mation and 4 bits of attribute information.

Addresses are translated when the lower 12 or 13
bits (depending on whether the program/data sepa-
ration option is enabled or disabled) of the logical
address is concatenated to the address information
contained in the appropriate page descriptor regis-
ter (Fig. 2). This register is selected by the most
significant bits in the logical address.

Attribute bits control access and provide status
information for each page. They include a Valid bit,
which indicates whether or not a page descriptor is
valid for use; a Write Protect bit, which permits a
page of memory to be read only; a Modified bit,
which indicates whether a page in memory has been
written to; and a Cachable bit, which indicates
whether a page may be loaded into the cache memo-
ry. The combination of the Modified bit and the
ability to abort and restart an instruction upon an
access violation thus permits the processor to im-
plement a virtual memory system.

Logical address

L1]

Program/

data

Physical address

2. The on-chip memory manager translates a logical
address into a physical address to permit control of a
16-Mbyte address space and full implementation of a virtual
memory scheme.

To improve the access time for often-used or
time-critical program sections, an on-chip cache
memory consisting of 256 bytes is included on all
7800 processors. This cache can be configured to be
instruction-only, data-only, or a combination of
both. Since this memory is on the chip, no speed
penalty is incurred when stored items are accessed.

Operating on the principle that recently used in-
structions or data have a high probability of being
called up again, the cache holds the most recently
accessed code, thereby permitting repetitive items
to be executed much faster. Every time the pro-
cessor requires data or an instruction, it first checks
the cache memory to see if the item is present. If it
is, the processor will use it, and no external bus
access will be made. It is estimated that the use of
the Z800’s cache memory, will make the execution of
Z80 code some two to eight times faster.

Inside the cache memory

When configured as a cache, the memory is or-
ganized into 16 lines of 16 bytes each (see Table 2).
Associated with each line are two fields—a 20-bit
physical address tag and a 16-bit “valid” field. The
address tag is matched against the most significant
20 bits of every physical address generated by the
CPU and the memory manager, and if a match is
detected on any of the 16 tag addresses, the lower 4
bits of the physical address are used to select the
appropriate byte or word in the matched line. The
valid field contains one Valid bit corresponding to
each byte in the line.

If the appropriate Valid bit for the byte accessed
in the matched line is set, a cache “hit” occurs, and
that byte is used by the CPU. If the bit is not set, the
processor sends the address to the external memory
to fetch the data. This data is then used by the
processor and written into the cache, which causes
the Valid bit to be set for each byte written into the
cache. If none of the 16 tag addresses match the

Table 1. How the members of the Z800 tamily line up

Package Data bus On-chip Common
(no. of pins) interface (bits) peripherals features
Memory manager
28108 40 8
Flour 1?—blt co'umer-) Cache memory
timers (internal only)
28116) 16 R st
F -Di =
28208 64 8 ume",‘;'(Jﬁebihé‘?#&'ecfnny) Clock oscillator
Four DMA channels
28216 64 16 One asynchronous

3-27

Electronic Design + April 28, 1983

Advanced processor family

20-bit address, the line in the cache that has been
used least recently is “flushed” —that is, the pro-
cessor clears all the valid bits to invalidate the
bytes—and the 20-bit address becomes the new tag
address. The appropriate byte or bytes are then
pulled from the external memory.

The Z-bus interface on the Z8116 and Z8216 per-
mits the processors to use a burst-mode bus trans-
action to preload the cache. Although the burst
mode was designed for use with the new 64-kbit
dynamic RAMs that support a serial nibble output,
it will also work well to fill up the cache memory.

If the cache memory is not needed, the circuitry
can be disabled and the memory reconfigured as 256
bytes of fixed-address RAM. This “local” memory
can be used with ROM-only systems, or it can hold
those portions of a program that need the speed of
on-chip memory, such as interrupt routines. In the
fixed-address mode, the tag addressed identify indi-
vidual lines, but the settings of the Valid bits have
no meaning. Tag addresses can be set by the pro-
grammer and will remain fixed to guarantee the
addresses of the memory.

On-chip peripherals add power

With their ample peripherals on the chip, Z800
microprocessors are, in effect, full systems on a
minimum of board space, with minimum device in-
terconnections and components. They are excellent
for cost-sensitive applications. The four DMA chan-
nels of the Z8208 and 78216 provide independent,
high-speed data transfers; the serial port, a full-
duplex asynchronous interface capable of operating
at up to 2 Mbits/s at a 10-MHz clock rate. Each of
the DMA channels can be programmed to transfer
data from memory to memory, from memory to an
170 device (or vice versa), or from one I/0 device to
another. Moreover, data can be transferred in any
of three modes: single-transaction, burst, or con-
tinuous.

In the single-transaction mode, the DMA section
releases the bus to the CPU or another DMA chan-
nel between each byte or word transfer; the burst
mode permits the DMA section to transfer data as
long as the requesting peripheral remains ready.
The continuous mode, on the other hand, allows the
DMA circuit to transfer an entire block of data
without releasing the bus. Also, each channel of the
controller can operate in a “no transfer” mode, in
which it acts as a counter.

Each DMA channel consists of a 24-bit source
address register, a 24-bit destination address regis-
ter, a 16-bit count register, and a 16-bit transfer
descriptor register. All these registers are in the
170 space of the CPU and are accessed with the
word 170 instructions over the CPU’s internal bus.

Electronic Design * April 28, 1983

Externally, the DMA channels use the address, data
and control lines of the processor to transfer the
data. Each channel has an input pin associated with
it, to notify the channel that an external device is
requesting a transfer.

Controlling all four channels is a master DMA
control register that can direct the channels to link
with one another or to the serial I/0 channel. When
DMA channels are linked, one channel acts as a
slave that loads the master with new address, count,
and descriptor information. The master channel
transfers a block of data to the destination and then
waits while the slave updates its registers from in-

Table 2. How the Z800’s

cache memory is organized

20 bits 18 bits 16 X 8 bits

Line 0 Tag 0 Valid Cache data
bits

Line 1 Tag 1 Valid Cache data
bits

Line 2 Tag 2 Valid Cache data
bits

Line 156 Tag 15 Valid Cache data
bits

Register information
for master DMA residing
In memory

Destination address

Destination address

Source address

Source address

Count

Transfer
descriptor

Destination address ;. 1

Source address

Destination address

Destination address

Source address

Source address

Count

Transfer
descriptor

e T e e B e
Destination address

Source address

3. Linked DMA operations can be set up with two of the
on-chip DMA channels. One channel can be used to
download control information to another channel, thus
minimizing the number of times the processor must stop to
transfer control parameters.

3-28

formation transferred from memory (Fig. 3). With
this structure, transfers of different types and to
different locations can be initiated without CPU

intervention
Although all the processors have four counter-

timers on chip, only the Z8208 and Z8216 take the
lines of three to the outside; the fourth counter-
timer is an internal-only function on all four de-
vices. However, the three externally available
counter-timers on the Z8208 and Z8216 are full
16-bit down counters that can be independently pro-
grammed to count external events (count mode) or
internal clock cycles (timer mode). Two of the 16-bit

Global memory

i

Global
bus

Arbiter

J]

Local Local
bus bus

4. Complex systems using multiple 2800 processors, linked
through a global memory, can be readily implemented,
thanks to such chip features as the Global Bus
Request/Acknowledge lines and the local-address register.

3-29

counters also can be internally linked to form a
32-bit counter.

In use, each counter is loaded with an initial value
that is also latched into the 16-bit time-constant
register of that counter. When the counter value
reaches zero, the counter causes one of several
things to happen: an interrupt is generated, an ex-
ternal pulse is generated, or the counter is reloaded
from the time-constant register to restart the
countdown sequence. Command bit options specify
which of those events occurs. In addition, each coun-
ter can be gated or triggered by either external sig-
nals or software, thus providing an extra measure
of control.

Serial port shines

The serial port usually takes advantage of one of
the timers as a baud-rate generator or an external
clock source. The serial port can send and receive
data simultaneously, and two of the DMA channels
can be linked with the transmitting and receiving
sections to provide automatic high-speed serial
transfers. Like most universal asynchronous
receiver-transmitters, the port handles a data for-
mat that consists of a start bit; five to eight data
bits; even, odd, or no parity; and one or two stop bits.

The serial port also can be used to load data or
programs remotely if a Z800 device is used as a slave
to a larger host system. This remote-loading capa-
bility is supported by a bootstrap mode that can be
selected when the processor is reset. When selected,
this mode automatically links a DMA channel to the
receiver side of the serial port, programs a default
destination (000000) into the DMA channel, sets up
the serial port data format, and begins loading 256
bytes of data into memory via the serial channel.
That permits the Z800 to serve as a ROM-less slave
processor, subject to changes to suit the needs of the
host system.

Multiprocessor operation made easy

Besides serving as slave processors, the Z800
units can operate in multiprocessor systems. Both
the Z8208 and the Z8216 have on-chip features that
readily permit their incorporation into multi-
processor systems.

In the example (Fig. 4), two or more processors,
each with a local bus that supports some combina-
tion of memory and I/0 devices, communicate via a
memory block on the shared global bus. This archi-
tecture requires the use of bus arbitration logic to
allocate the global bus resource.

Only part of each Z800’s address space would be
assigned to the global bus via the processor’s local-
address register. Included in this scheme could also
be a master processor to control the global bus and

Electronic Design « April 28, 1983

Advanced processer family

2
]
8
i
5
I

RDY

RDY

INT,

2 F
= =
§ 280% §
= serial =
& communications §
§ controller

o o

Printer port

INT
28036

counter-1/0
chip

28 & 3

.
2
3
<

IEl

3

<

|

]
i

:

28038
counter-1/0
chip

218 % 3

INTe
INTa

BADo-BADs

Ac-Az

1/0 Transaction

INTACKa

Do-D7

Ao-An Fioppy-
disk

RWJ

R/W controller

110 cs,—
svs CLK-——I

W —q Even-
W odd
B/W —q multiplexer
BAD;—— Even
Odd

Address

Data
Request

INT

Vectored
interrupts 0-7

IEEE bus interface

INTACK

To floppy-disk
intertace

+—RDY:

decoder
CSo |
cs Dynamic RAM | pynamic RAM
" even bank, odd bank
nibble mode ; nibble mode
1] T

CSo oo |
[N o

Address

decoder

Electronic Design + April 28, 1983

3-30

Wait ———
Pause ~——f

Non-Maskable Interrupt —
Interrupt A —
Interrupt B ——
Interrupt C

Bus Request —
Bus Acknowledge —e—

Receive ——
Transmit —=—

Address 0-23

Address/Data 0-15

.3 Bufferred Address/Data 0-15 (BADo-BAD:1s)

N Address Strobe
Counter-Timer Input Oj CTlo piae Data Strobe
Counter-Timer /0 0 =e—| CTIOo bs 2 Str
IE Input Enable
Counter-Timer Input 1 CTlh o Output Enable
Counter-Timer I/0 1 j CTiO iy pu
Counter-Timer Input 2—— CTl, el Read/Write
Counter-Timer /0 2 ~=—{ CTIO: B/W
SYS CLK System Clock
Ready 0 — RDY,
DMA Strobe 0 ==—{ DMASTB, ST, [D—e= Internal Operation
Ready 1—— RDY,; ST, O—= Refresh
DMA Strobe 1-e— DMASTB, ST, D= 1/0 Transaction
Ready 2 — RDY:z ST, Status [0—= Halt
Ready 3—— RDYa decoder O—= Interrupt Acknowledge A

[O—= Interrupt Acknowledge NMI

D—= Interrupt Acknowledge C

D—= Interrupt Acknowledge B

D—= Memory Reference (Cachable)
D—s Memory Reference (Non-Cachable)

5. A complete microcomputer system can be built around the 28216, because its powerful
resources eliminate many peripheral functions. For parallel 1/0 and interrupt control, two
Z8036s can be added, and a Z8030 serial communication controller can add two more serial

170 channels.

allocate tasks to the slave Z800 processors.

For maximizing board space for memory, the
7.8216 is the best choice. It offers many of the func-
tions a designer needs to build a microcomputer
board. All that must be added are the interface logic
and buffers required to tie into a system bus like the
IEEE-696 or IEEE-796.

To handle interrupts and provide a parallel port
for a printer, two Z8036 counter-timer and parallel
1/0 cirecuits can be added. For additional serial 1/0,
a 78030 dual-channel serial communications con-
troller can be connected-to the local bus (Fig. 5).

Since the processor contains its own clock oscil-
lator as well as a clock output, all timing can origi-
nate from its crystal. One of the counter-timers acts
as a baud-rate generator for the built-in serial port,
and the off-chip serial communications controller
has its own baud-rate generator, reducing system
complexity.

The special status and control signals available
from the Z8216 simplify the external logic needed to
generate the bus and buffer control signals. To de-
multiplex the lower 16 address/data lines, the ad-
dress latch must simply be strobed with the address
strobe line, and the status lines can readily be deco-

00-2321-01 3-31

ded by either a 1-0f-10 or a 1-of-16 decoder. (The
first 10 status outputs are used in systems that do
not have an extended processing unit, so the smaller
decoder can be used. If an extended processing unit
is present, the remaining six outputs should be
decoded.)

Since the processor contains its own 10-bit
refresh-address generator, dynamic RAMs as large
as 1 Mbit can readily be handled without the space-
consuming refresh logic often needed in medium-
size systems. Also, the processor can automatically
generate the appropriate wait states, thus permit-
ting the bus timing to be optimized for the memory
access speed. O

Acknowledgments

The authors would like to thank Greg Barr, Gary Cole, Monte
Dalrymple, Khue Duong, Bob Kurihara, Stanley Lai, Donald
Mar, Lan Nguyen, Mike Pitcher, Gurdev Sin?h, and Irving Stu-

artfw their valuable contributions to the development of the Z800
Processors.
How useful? Circle
Immediate design application 556
Within the next year 557
Not applicable 558

Electronic Design « April 28, 1983

Cost-Effective Memory
Selection for Z8000™ CPUs

Zilog

Application
Note

February 1982

COST EFFECTIVE MEMORY SELECTION FOR 78000 CPUs

The "memory-effective" architecture of the Z8000
CPU is the key to cost-effective system design in
many applications. 78000 CPUs are designed to
achieve high performance without the use of high-
performance memories. Because a single spplica-
tion often requires hundreds of memory chips for
each CPU, this memory-effective design can result
in large cost savings.

Many factors enter into the selection of CPU and
memory characteristics for a given application.
This application note examines the simple formula
that relates these factors to each other and pro-
vides examples of the formula applied in common

gituations. Background for the material in this
application note can be found in the 28000 CPU
Manual (document #00-2010-C0) and in the
28001/28002 CPU Product Specification (document
#00-2045-A0).

THE BASIC FORMULA

Figure 1 shows a generalized view of the informa-
tion path taken when the CPU issues a valid memory
address. This process ends when valid data, re-
present ing the contents of the addressed location
is returned to the CPU. Not all of the elements
shown in Figure 1 are necessarily present in every
application, in which case the basic formula is
simplified for that application.

LOGICAL
CPU > MMU
ADDRESS

(CD) (MM)

PHYSICAL DATA AND
MEMORY ECC
ARRAY
ADDRESS CHECK BITS

VALID DATA |

(MA) (EC)

T\r

those applications.

This schematic view shows the principal elemerts that enter into the basic
formula relating memory and CPU timing characteristics. Many applications
use subsets of these elements, which simplifies the basic formula for

The two-letter symbol in each box is used in the basic formula to repre-
sent the time length of that box's task.

Figure 1. The Address-to-Data Path Illustrates the Basic Formula

2206-001

The address issued by the CPU is called a logical

address. It is transformed by the MMU (or other
memory management circuitry) into a physical
address. The symbol "MM" in Figure 1 represents

the time required for this transformation. When
no address translation circuitry is present in a
given application, MM=0.

When a physical address is emitted by the MMU (or
by the CPU if address translation is not used), it
is presented to the memory array. After an
interval of time represented by "MA" in the basic
formula, data representing the contents of the
addressed location and check bits associated with
that location appear at the output of the memory.

If no error check/correction circuitry is used in
a given application, then no check bits appear,
and the output of the memory is presented to the
CPU as valid data representing the contents of the
addressed location. If error correction circuitry
is used, then the memory output is input to the
error check/correction circuitry. After an
interval of time represented by EC in the basic
formula, the output of the error check/correction
circuitry is presented to the CPU as the contents
of the addressed location.

The three time periods represented by MM, MA, and
EC all contribute to the total time elapsed in the
address-to-data path, but one additional calcula-
tion is required to reach the total. MM, MA, and
EC represent the times elapsed in the correspond-
ing elements in the information path. The remain-
ing term, BD, represents the time elapsed while
passing information between the specific areas.
Thus, BD must include the delays in any buffers
required for interboard bus transfers and time
spent in address decoders or other selection
logic. Even the time taken for propagation of
signals must be considered, although the amount is
usually negligible in comparison with MM + MA +
EC. ‘

The total time elapsed in the address-to-data path
is the sum of the four terms MM, MA, EC, and BD.
This total must be less than the maximum, CD,
specified for the given CPU. This leads to the
most fundamental form of the basic formula:

MM + MA + EC + BD < CD (1)
The term CD, however, can also be expressed as a
formula. CD depends partly upon the characteris-
tics of the clock supplied to the CPU and partly

upon constants that depend upon the maximum clock
speed rating of the CPU. Furthermore, the 78000
architecture allows "wait states" to be inserted
into memory access transactions. The number of
wait states inserted is another factor entering
into the formula for CD. Finally, there are two
possible expressions for CD, depending upon
whether independent timing or the address strobe
signal (AS) is used to signal "address valid."

The published ac characteristics of the Z8000 CPUs
specify the exact point at which addresses become
valid, (Parameter 9 of the a characteristics
table relates this point to a rising clock edge.)
An address strobe signal, AS, is also provided by
the Z8000 CPU. The rising edge of AS, which
occurs approximately one-half clock period after
addresses become valid, can be used to signal
"address valid." Use of AS simplifies the
circuitry but places a greater demand on the
memory. Furthermore, no similar signal is availa-
ble from the MMU circuits designed for use with
the 78000 CPUs, so that AS can only be used as
described above in a system without memory address
translation (i.e., when MM=0).

The two ways of computing CD (ac characteristic
parameters 11 and 27) are expressed in the fol-
lowing two equations:

CD = (2+W)+CP + CH - K1 (2a)
CD = (24W)°CP - CF - K2 (2b)
where:
W = number of wait states
CP = clock period
CH = clock width (high)
CF = clock falling time
K1,K2 = constants whose values depend on the

rated maximum clock speed of the CPU

The right hand side of equation (2a) expresses the
time between the actual appearance of a valid
address output and the point at which valid data
is required. The right hand side of equation (2b)
expresses the time between the rising edge of AS
and the point at which valid data is required.
The values of K1 and K2 for Z8000 CPUs are given
in Table 1.

The foregoing considerations can now be summarized
in the basic formula (Figure 2). There are two
versions of this formula, one for each of the two
expressions for calculating CD (2a and 2b).

4-4

K1

K2

THE WAIT STATE TRADEOFF

As either version of the basic formula shows,

Maximum Rated Clock Speed adding a wait state to the process increases the

4 MHz

6 MHz 10 MHz maximum memory access rating (MA) by one clock

130 ns

period (CP). (Fractions of wait states can be
simulated by "clock stretching," to which the
95 ns 60 ns discussion in this section also applies.) CPU
performance, however, is lessened by the introduc-

120 ns

tion of wait states. This section is concerned

with the estimation of that reduction.
100 ns 50 ns

The decline in performance level attributable to

Table 1.
the Basic Formula periods with a wait state--a reduction of 1.4% in

the introduction of wait states into memory
accesses is difficult to pinpoint, since each
instruction is affected differently. For example,
a register-to-register multiplication takes 70
CPU Speed Rating Affects clock periods without wait states and 71 clock

execution speed. A register-to-register load, on
the other hand, takes three clock periods without

The Basic Formula
(Two Versions)

MA < (2+W) * CP + CH - (MM + EC + BD + K1) (A)

MA < (2+W) * CP - CF - (EC + BD + K2) (8)

MA = rated access time of the memory
number of wait states

CP = clock period

CH = clock width (high)

CF = clock fall time

MM = memory translation (MMU) overhead

EC = error check/correction overhead

BD = selection logic, buffers, bus delay
K1,K2 = constants (see Table 1)

L
"

The basic formula determines the maximum access time for memories used
with a 78000 CPU as a function of any factors that might affect it.
The first version of the formula is the general case and assumes that
an independent circuit is used to signal the memory when the CPU or
the MMU emits a valid address. The second version, not applicable if
memory management is used, assumes that the rising edge of address
strobe (AS) will be used to generate the RAS or equivalent signal to
the memory.

Figure 2. The Basic Formula

4-5

wait states and four clock periods with a wait
state--a reduction of 25% in execution speed.

In one published study (AMD, 28000 Benchmark
Report, 1981), five Z8000 programs were analysed.
The objective was to compare Z8000 performance
with that of competing microprocessors, but
included in the reported results was a performance
comparison of each of the five Z8000 programs with
and without a wait state. The reductions in
execution speed were 5%, 6%, 15%, 17% and 21%.
The 5% and 6% reductions appeared in the "auto-
mated parts inspection" and "XY transformation,"
both of which involve many register-to-register
arithmetic operations and few memory reference
instructions. The 15% and 17% reductions appeared
in the "block translation" and in the "bubble
sort,”" both of which involve a great many memory
accesses. The 21% reduction appeared in a dummy
"reentrant procedure," which does almost nothing
other than save and restore the general registers.

As the study cited above shows, the effect of
adding wait states varies from gpplication to
application. If a numerical value can be assigned
to the reduction in performance level caused by
wait states in a given application, then that
value can also be compared with the reductions
arising from other approaches to providing a given
target memory access rating, such as:

e Reducing the clock speed (increasing CP).
e Using values of W other than 1.

The effect of each of these alternatives can be
evialuated numerically and compared with the effect
of adding one wait state.

Reducing Clock Speed

Assume that values have been assigned to all of
the variables in the basic formula and that it is
desired to increase CP to achieve a higher upper
bound on MA. If AMA is the desired increase in
the right side of the basic formula, then each
version of the basic formula gives rise to an
equation for the required change ACP:

AMA
ACP = TV rer)
AMA
P = e—
AC W (3)

Since the execution speed of the CPU is inversely
proportional to the clock period, the ratio of the
new speed to the old after the change A CP in
clock period is

-1
cp AMA

P T+ acr (1 * (2+W)'CP+CH) (42)
cP am \7

P mram* (1 * (sz)-u.n) (%)

For example, assume that version (B) of the basic
formula has been used with values W = 0, CP =
250ns (4 MHz), CF = 10ns, EC = O, BD = 60ns, and
K2 = 120ns. Then MA < 500 - 10 - (60 + 120) =
310ns. If memories rated at 350ns access time are
desired the required A MA is 40ns. Using (3b),
the required ACP is 20ns, leading to a new CP of
270ns, which corresponds to a clock speed of 3.70
MHz. Formula (4b) gives a value of

a0\
pe(1.i) =

That is, reducing the clock speed to achieve the
desired memory access time results in an 8% reduc-
tion in execution speed. If, instead, one wait
state had been inserted (increasing the maximum MA
from 310ns to 560ns), the reductions in execution
speed for the programs cited above would range
from 5% to 21%.

Using Values of W Other than 1

Assume that values have been assigned to all of
the variables in the basic formula and that wait
states are desired to achieve a higher upper bound
on MA. Assume also that a relative performance
level of pg is achieved when W=1. (For example,
for the five programs cited earlier, the values of
pg would be .95, .94, .85, .83, and .79.) Then,
for either version of the basic formula, the
performance level corresponding to W wait states
is given by

— PO
pg + (1 - pg)°W

4-6

Thus, for example, if insertion of one wait state
leads to a performance level of .85 (a reduction
of 15%), the insertion of one-half wait state (by
clock stretching) leads to a performance level of

.85

P o= T15(.5)

.85 + -92

or a reduction of 8%.

EXAMPLE 1: THE ZILOG SYSTEM 8800
The Zilog System 8000 provides an example that
includes all of the elements of the basic
formula. The following characteristics describe
the main memory of the System 8000:

MA = 150ns (dynamic RAM)
W =0
CP = 180ns (5.56 MHz)
CH = 80ns
MM = 90ns (28010 MMU, 6éMHz rated)
EC = 40
BD = 60 (Buffers and selection logic)
K1 = 95ns (28001, 6 MHz rated)

Version (A) of the basic formula must hold:

150 < (2+0) +180+80-(90+40+60+95) = 155

The difference of only 5 ns indicates that the
system characteristics have been closely matched.
Notice that the clock is running at less than the
rated maximum speed. An increase to the maximum
allowed for a 6 MHz rated Z8001 CPU would result
in a clock peried (CP) of 165ns, and thus a maxi-
mum memory access rating (MA) of 118. The 5.56
MHz clock speed results in a relative performance
level of 165/180 = .92, or an 8% reduction in
execut ion speed.

EXAMPLE 2: A 78002 WITH A 76132

The 26132 quasistatic 4K byte RAM is designed for
use with the 78000 CPUs. For example, with the
28002's AS line tied directly to the AC input of
the Z6132 (see Figure 6 of the 26132 Product
Specification, document number 00-2028-A0, version
(B) of the basic formula can be used:

MA < 2¢CP - CF - K2

For 4 and 6 MHz rated CPUs running at maximum
speed and using the longest allowed clock fall
time (ac characteristic parameter 4), the basic
formula gives:

MA < 2250 - 140
MA < 2:165 - 110 =

360 ns
220 ns

(4 MHz)
(6 MHz)

Thus, a 350ns Z6132 can be used with a 4 MHz Z8000
and a 200ns Z6132 can be used with a 6 MHz 78000.

00-2206-01

4-7

These benchmarks compare the performance of

the Z8001 and Z8002, the Motorola 68000 and the

Intel 8086 running the set of programs which have

become industry standards for comparing micro-

processors The data demonstrates that

= The 6MHz Z8000 outperforms the 8MHz 68000
and any version of the 8086.

= At any given memory access time, the Z8000
gives higher performance than the 8086 or 68000.

= Any given performance level can be reached with
the Z8000 using slower memories than the 8086
or 68000.

For a demanding microprocessor application the user

has the choice of three competing microprocessor

families

= The Z8000 manufactured by Zilog and AMD
m The 8086 (or IAPX 86/10) manufactured by Intel
» The 68000 manufactured by Motorola

A widely quoted benchmark comparison of these
three microprocessors was published by Intel In
1980 under the title' “16-bit Benchmark Report
IAPX86, Z8000 and 68000" (Intel Publication No
AFNO1551A)

Not surprisingly, the Intel 8086 was announced the
winner in that publication Intel achieved this result by
inefficiently coding the competing devices, thus not
utilizing the powerful instruction sets of the more
modern Z8000 and 68000 microprocessors

In order to refute the wrong conclusions drawn by
Intel, we purposely used the same benchmarks, and
even the identical flow diagrams We give Intel the
benefit of the doubt and assumed their performance
figures from the above mentioned document For the
Z8000 and the 68000, however, we rewrote the code
efficiently. We did not use exotic tricks, just plain
straightforward, efficient coding that takes advantage
of the powerful instructions of the Z8000 and the
68000.

We made one minor modification to the Intel defini-
tion of the Block Translation We write the translated
character back into the same buffer where the EBCDIC
character was stored We see no reason why anybody
would perform a non-destructive translation It wastes
memory space The purist who wants our exact
response to the Intel benchmark should subtract 13%
from the Z8000 performance to accommodate non-
destructive translation, which happens to be less effi-
cienton the Z8000, but does not affect the 8086 and
68000 performance.

Description of Benchmark Tests

The benchmark tests used in this performance
evaluation were selected for variety and are
representative of applications including data
processing, Image processing and arithmetic
processing Detailed coding is shown in the appendix.

Automated Parts Inspection

The automated parts inspection program controls the
interface to an image-dissector camera, and compares
the gray shade signal from each of 16,384 pointsto a

BENCHMARK REPORT
Z8000 vs 8086 vs. 68000

reference gray shade held in memory The program
controls the X-Y scan control to the camera by means
of two 7-bit D-A converters and reads the resultant
gray shade signal via a 12-bit A-D converter

20D/A X Control l
Computer Converters

gonﬁfm Y Control |Image Dissector

System AD Camera

Converter | Gray Shade
Signal s
71N
/1 \\
Reject Part

Advance Conveyor

20=Good Data
Z=Measured Data
Percent=Percent
Tolerance

I Output Data To X And Y D/As I
Compute Toler = Z0*Percent/100
and Start A/D Converter
[Input Z From A/D Converter J

]

| Compute Delta = 7 - 20

Update Pointers

| Reject Part |

NO

Yes

Automated Parts Inspection

Block Translation — Destructive

The block translation benchmark translates a string of
EBCDIC characters into a string of ASCII characters,
and overwrites the EBCDIC string. The benchmark
assumes 121 characters in the source string

Reprinted with permission of Advanced Micro Devices

4-9

& 28000
Relative //
Performance Z8000B ,
3.0
68000/10
r"
25 /%
68000
Z8000A ,
68000/8
2.0
iAPX 86/10
78000 8086/8 /
15
68000/4
1.0
8086/5
0.5 £ | 1 B K &
3 4 5 6 7 8 9 10

MHz

Figure 1 Relative Performance as a Function of Clock Frequency
Maximum frequencies are shown for available speed selections. Dotted lines indicate planned
extensions.

4-10

Bubble Sort

The bubble sort is a well-known algorithm for sorting
data elements into one sequence (in this case, numer-
ically ascending order). The benchmark assumes that
aone-dimensional array of ten elements is to be sorted
and that the elements are intitially in numerically
descending order.

Array(0) 750 Array(0) 300
[&D] 700) 350
2 650 @ 400
3) 600 Arrange In 3) 450
(@) 550 Ascending Order (4) 500
(5) 500 (5) 550
(6) 450 6) 600
(@] 400 (] 650
(8) 350 (8) 700
[©)] 300)] 750

Flag = True

Flag=True?

Count = Number of Integers
No In Array

Flag = False
KNT = Count — 1
1=0

Yes " | Exchange Array (1)
_ And Array (I + 1)
Flag = True

I=1+1
KNT = KNT 1

Bubble Sort

XY Transformation

The XY transformation scales a selected graphic win-
dow containing 16-bit unsigned integer XY pairs. Each
X data is offset by XO and multiplied by a fractional
scale factor L2/L1. Each Y data is offset by YO and
multiplied by the same scale factor. The benchmark
assumes the selected window contains 16,384 XY
pairs.

— 2 —
- Ll
Q| | =
Expand The Selected Q
Window To Fill The
X0.Y0 Screen

KNT = Count

X(1) = [(X(1) = X0JL2/L1

Count = Number Of XY Parrs YO = [(Y()) = YOJ*L2/L1

I=1+1
KNT = KNT — 1

No

Yes

Computer Graphics XY Transformation
This flowchart was originally presented by Intel

Reentrant Procedure

This benchmark demonstrates the ability of the proc-
essor to handle reentrant procedures and parameter
passing between procedures. The input parameters
are passed (by value) to the procedures. Prior to the
call, the first parameter is in one of the general registers
while the second and third parameters are stored in
memory locations PARAM2 and PARAMS3, respectively.

Upon entry, the procedure preserves the state of the
processor, and it is assumed that the procedure uses
eight of the general-purpose registers. Next, the
procedure allocates the storage for three local
variables (LOCAL1, LOCAL2, LOCAL3). The
procedure then adds the three passed parameters
and stores the result in the first local variable. Upon
exit from the procedure, the state of the processor is
restored.

Table 1 shows execution times for each benchmark
on each microprocessor without and with one Wait
State. Execution times are then inverted to indicate
performance (not time), and normalized with respect
to the slowest device, the 5SMHz iAPX 86/10 (i.e. the
original 8086). As can be seen from the detail data in
the appendix, the Z8001 and Z8002 are so similar in
performance that they can be grouped together.

Figure 1 shows the average performance data
graphically.

4-11

Benchmark Z8000B Z8000A 28000 68000-10 68000-8 iAPX 86/10 iAPX 86/10
(8MHzZ) (6MHz2) (4MHz2) (10MHz) (8MHz) (10MHz) (8MH2)
oW 1w oW W oW W oW 1TW OW 1W oW 1w ow W
Absolute Performance
Auto Parts 478 508 637 677 956 1016 470 498 587 623 668 708 835 885 ms
Inspection
Block 388 456 517 607 776 912 757 916 946 1145 744 824 930 1030 us
Translation
Bubble 539 646 718 861 1078 1292 507 614 634 768 912 1007 1140 1259 us
Sort
XY 793 827 1057 1103 1585 1655 777 804 971 1005 1120 1152 1400 1440 ms
Transformation
Boentrant 286 32¢&8 24 43 51 S5 25 31 32 39 3i 35 39 43 us
Procedure
Performance Relative To iAPX 86/10 @ 5MHz
Auto Parts 28 263 21 197 14 131 284 268 227 214 200 189 160 151
Inspection
Block 384 326 288 245 192 163 196 162 157 13 200 181 160 144
Translation
Bubble 338 282 254 212 169 141 36 297 287 238 200 181 160 145
Sort
XY 282 271 212 203 141 135 288 279 23 223 200 194 160 156
Transformation
Reentrant 242 19 182 144 121 095 248 200 193 159 200 177 160 144
Procedure
Average 305 266 228 199 153 134 275 24 219 193 200 1.84 160 1.48
Relative
Performance
OW = No Wait State, 1W = One Wait State per memory access.
Table 1
Memory Access Time Device Tac IN nanoseconds for various
The benchmark data compares the performance of anlalT 1
the three microprocessors at nominal clock rates W=0T =
without regard to the memory access time required Sevs
to achieve the performance. and T= T= T= T=
i i Speed f D 250ns 167ns 125ns 100ns

Me_mory'speed is however, an important systems Speed o Tmax PV VAN VAV AT
consideration since it has a strong impact on memory 78001,
cost and the design of the supporting circuitry. In most 78002 4MHz 150ns 475 - - -
systems memory cost far exceeds the cost of the CPU. Z8001A,
Itis therefore more useful to treat the CPU clock fre- 528852 BMHz 95 530 320 - -
quency as a variable and plot performance as a func- 280028 8MHz 75 550 340 238 _
tion of memory access time requirement. For each 68000-4 4MHz 120 505 _ _ _
CPU, the memory access time requirement can be 68000-8 8MHz 90 535 325 223 -
relaxed by using a higher speed version of the CPU, by ggggogo 1gmz 133 2?2 335 233 170

g . X X 2 _ _ _

Isotwterlng the actual clock frequency, or by adding Wait 8086.5 oVt 80 670 a0 295 -

ates. 8086-10 10MHz 60 690 430 315 240

Data sheets for the various microprocessors indicate
the relationship between memory access time and
clock period Every Wait State adds another clock
period to the memory access time.

Tac =(K+W)T-D

Tac = memory access time required (at CPU pins)

K =clock cycles/access (K=3 for the 8086,
K=2.5 for the Z8000 and 68000)

W = r11)umber of Wait States inserted (usually O or

T = actual clock period in ns

D =sum oftime for CPU delays, set-up times,

etc. This is a constant for a given part type
and speed selection. See Table for value.

Table 2 Memory Access Times Required

4-12

The relative performances computed previously are
obviously directly proportional to the clock frequency
used. Thatis, for a given device selection, the relative
performance is inversely proportional to T, the actual
clock period. The memory access time requirement is
also related to the clock period.

Tag +D=(K+W)T=K{T

_Kao
and, RP = T
_ KiKp
Therefore, RP “Tac+D

and Relative Performance can be plotted against
memory access time required, with the clock frequency

being allowed to vary as required, down from the maxi-
mum for the part selection. As the clock frequency

1S reduced, a point is reached where equal performance
can be achieved by raising the clock frequency back
up and inserting a Wait State. This results in the same
performance but a lower memory access time require-
ment, so it s logical to do so.

Table 3 contains computed data of memory access
time requirements as a function of relative performance
for each device selection with 0 and 1 Wait States.
Figure 2 plots this data and shows the point at which
the Wait State can be inserted without reducing
performance

Relative
Performance
3.5
30 280008
68000-10 i
add 1 Wait State
25 N
68000-8 Z8000A
20 \ \ add 1 Wait State
' IAPX 86/10 NN e e s e e
(10MHz) ————
iAPX 86/10
(8 MHzZ) add 1 Wait State
15 >~
1 0 2 3 B I 2 1 i 1
200 250 300 350 400 450 500 550

ns

Fig. 2 Relative Performance as a Function of Memory Access Time
Wait States are inserted when they reduce access time requirements without affecting performance

(clock frequency is raised).

Relative 280008 Z8000A 28000 68000-10 68000-8 IAPX86/10 iAPX86/10

Performance (f=8MH2) (f=6MHz) (f=4MHz) (f=10MHz) (f<8MHz2) (f=10MHz) (f=8MHz)
W=0_W=1_W=0_ W=1_W=0 W=1_W=0_ W=1_ W=0_ W=1_W=0 W=1_W=0_ W=1

34

33

32

31

30 243

29 254

28 266

27 279 175

26 292 373 184

25 307 391 195

24 323 410 206 270

23 340 432 219 285

2.2 359 455 335 233 302 221

21 380 480 356 247 320 235

20 402 508 378 486 264 340 252 240

19 427 538 403 517 282 362 270 354 256

18 455 572 431 551 302 387 290 379 273 349

17 487 610 462 589 324 414 312 406 293 373

186 522 653 496 631 350 445 337 437 315 400 295

15 561 702 536 680 488 378 480 366 472 340 431 320 413

14 607 757 581 735 533 411 520 398 512 369 466 349 449

13 659 821 633 799 586 449 566 436 559 402 506 382 489

12 721 896 694 873 647 827 493 620 479 613 440 553 420 537

11 793 984 765 961 719 916 545 684 531 677 485 609 465 593

10 880 1090 851 1067 806 1023 608 760 593 753 540 676 520 660

W=0 = No Wait State, W=1 = One Wait State per memory access

Table 3 Required Memory Access Time to Achieve a Given Relative Performance (in nanoseconds)

What This Benchmark Does And Doesn't Tell You
Benchmarks are popular simplifications to compare
the performance of different microprocessors. Like
all other simplifications, benchmarks must be used
with care.

At best they accurately compare the performance
of different microprocessors in a limited set of applica-
tions, which may or may not be representative of the
applications that the user needs.

At worst they are distorted by a manufacturer who
wants to “prove” that his device is the best. By choosing
examples that favor a particular microprocessor or —
more deviously — by writing inefficient code for the
competitor's device, any manufacturer can “prove” that
his product is superior to the competition's.

Moreover, benchmarks describe only one aspect of
the microprocessor: speed (or throughput). Other
important technical considerations are:

Code efficiency

Ease of programming

Ease of interfacing to memory and I/0

Avallability of powerful peripheral devices

Availability of hardware and software support

Finally there are good business reasons for favoring

a particular microprocessor:

= Price, availability and multiple sourcing

= Vendor reputation and quality of field application
support

= Device reliability and qualtty level.

Benchmarks tell nothing about these important aspects.

In spite of these limitations, benchmarks are an
important tool for adding quantitative data to the com-
plicated task of selecting the nght microprocessor.

The soon-to-be-announced 8MHz Z80008is 11%
faster than the soon-to-be-announced 10MHz
68000-10, and the Z8000B achieves this superior
performance even with substantially slower memories.

The 6MHz Z8000A is 4% faster than the 8BMHz
68000-8, and the ZBO0OO0A can tolerate memory access
times 100ns longer than required by the 68000-8.
The iAPX 86, even in its fastest 10MHz version is no
contender.

The Z8000 is better.

4-14

APPENDIX

A. Automated Parts Inspection Z8001 (Continued) # of Clock Cycles
28002 # of Clock Cycles BYPASS CcP R4,R3 44+ W
JRLE ENDTEST 6+ W
Tol
LD R12, PER CENT ,Load Percent oer?rfzw ouT RI3.R4 10+ W
LDR8, T GRAYTAB Gray Table Base Address ENDTEST DINZ ROLOOP 1t w
7+ oW Total clocks. 3,825,706 + 239,219 W
LD RO, 16383 ‘Number of Scans Notice that there Is practically no performance deterioration due
7+ 2W to segmentation
LD R10, SIGNAL ,Load A/D Converter 68000 # of Clock Cycles
Address 7 +2W
LDR11,XYSCAN Load Addresses for the MOVEW DO, #16383 ‘Number of
2 D/A Converters scans
7 +2W —-D0 8+2W
LDR13,REJECT ,Load Reject Port Address MOVEW D6, #PERCENT Percent
7+ 2W Tolerance
—>D6 8+2W
LOOR™ " OUTRI, RO Wrte X Goordinates MOVEL A3, #GRAYTAB Gray Table — A3
— 12+ 3W
INR4, R10 Z=Ra(ReadSignal MOVEW A5, #XYSCAN .D/A Address
_ — A5 8+2W
LDR3.R8T Z0=R3 (Read Reference) MOVEW A6, #REJECT Addressof
Reject Message
INCRS, 2 Inc Reference ':OI?;E_B: w A6 8+ 2W
LDR1 R3 R1=70 « 34 W MOVEW A4, #SIGNAL \A/D Address
: e S A4 8+2W
MULRR2. Rz RS=ZOPERCENT LOOP MOVEW (A5), DO Write XY
DIVRR2, #100 [R3=Z0*PERCENT/100 Cooranates &
* 95 +
SUBR4 R I MOVEW D4, (A4) Read Signal D4
. ' . 8+2W
NS S 2200 MOVEW D3, (A3)+ Read Reference
' PAY D3 8+ 2W
R MOVEW D1,D3 44+ W
BYPASS CPR4,R3 | ?(-)%)OI -Z0 I?'ERI‘CENEV/ MULU D3, D6 .D3=D3*D6
70+ W
JRLE ENDTEST ,| Z-Z0 | <20 * PERCENT/ DIVU D3, #100 \D3=D3*D6/100
00 * & + W 144+ 2W
OUTRI13, R4 [RejectSignal 10+ W SUBW D4, D1 D4=27-70
ENDTEST DJNZ RO, LOOP .Process Next Point 4+ W
*11+ W
D4<
CONSTANT PERCENT= BGEBYPASS D=0, 10+ W
CONSTANT SIGNAL= ,
CONSTANT XYSCAN= , NEGW Ds D e W
CONSTANT REJECT=
BYPASS CMPW D4,D3 | Z-20|-20*
GRAYTAB WORD (16384) PERCENT/100
On average, of 16384 times through Loop we assume that 4+ W
8192tmes Z-Z0>0 BLg ENDTEST || Z-20 |<Z0*
8192tmes Z-Z0<01e we execute NEG R4 PERCENT/100
1638 times (10% of the cases) we reject the part, 1 e we execute 8/10+ W
OUTR13, R4 MOVEW (A6),D4 Reject Signal
Total Clocks 6(7+2W) + 8192 (229 + 14W) +8192 (236 + 8+2wW
15W) + 1638(10 + W) = 16422 + 1650W + 8192 ENDTEST DBg DO, LOOP ,Loop to Next Call

(465 +29W) = 3,825,702 +239,218W

28001 # of Clock Cycles
LD R12, PERCENT 7+ 2W

LDL RR8, TGRAYTAB 11+ 3W

LD RO, 16383 7 +2W

LD R10, SIGNAL 7 +2W

LD R11, XYSCAN 7+2W

LD R13, REJECT 7 +2W

LOOP ouT R11,R0 10+ W
IN R4,RO 10+ W

LD R3,RR8T 7+2W

INC R9,2 3+ W

LD R1,R3 3+ W

MUL RR2,R12 70+ W

DIV RR2,#100 95 + 2W

SuUB R4,R1 4+ 2W

JRGE BYPASS 6+ W

NEG R4 7+ W

14 + 3W/10 + 2W

Total clocks. 52 +13W + 8192 (285 + 11W) + 8192 (287 +
18N) + 1638 (8-2+2W)=52 + 13W + 8192 (572 + 35W) +
1638(6 +2W)=4,695,576 + 290 009W

iAPX 86/10 # of Clock Cycles
XOR CX.CX ZEROXand Y
3
MOV SI, OFFSET(GDATA) INIT POINTER
4+ W
CLD [DF=FORWARD
2
AGAIN MOV AX.CX OUTPUT X
2
OUT DTOAAX ANDY
10+ W
LODS GDATA GET 20
12+ W

4-15

iAPX 86/10 (Continued) # of Clock Cycles Z8002 (Continued) # of Clock Cycles
MOV BXAX ,STORE Z0 IN LD R3, EBCBUF ;Address of
BX 2 EBCDIC String
MUL PERCNT ,Z0 PERCNT —-R3 7+2W
130+ W LD R2,EBCEQT ,EDT Char — R2
OUT CONVRTAX START A/D 7+ 2W
CONVERTER LD RO, COUNT ,RO=COUNT
100+ W 7+ 2W
DIV HUNDRD ZO*PERCNT/ LDR1 RO , 3+ W
100161+ W CPIRB R2,R37,R0,EQ ;RO=COUNT-
MOV DX, AX ,DX=TOLER 11 4+ 2W+132(9+W)
2 SUBR1, RO ,R1=R1-R0O=o
IN AX,ATOD JINPUT Z FROM 14+ 2W
A/D 10+ W LD R3,TEBCBUF ,Address of
SUB AXBX JDELTA—Z-Z0 EBCDIC String
3 L7+ 2W
JA CMPARE JUMPIF LD R5,7TRTAB :Address of
POSITIVE Translation
4/16+ W Table 7 +2W
NEG AX ,DELTA=-DELTA TRIRB R3T,R5T,R1 ,
3 11 +2W + 132(14+3W)
CMPARE. CMP AX,DX DELTA<= LDB R3T, ASCEOT \Write ASCEOT
TOLER? 11+ 3W
3 Total clocks 3111 + 547W
JBE INCCX JUMPIF YES This s the worst possible case since the scanning of the string is
416+ W actually done only for characters (until the encounter of EOT)
Z8001 # of Clock Cycles
OUT REJECTAX ,REJECT PART
10+ W TRTAB ,
JMP SHORT(NEXT) , 15+ W EBCBUF ;
INCCX INC CX INCX&Y CONSTANT EBCEDT=3 LEOT In EBCDIC
2 CONSTANT COUNT=132
CMP CX,4000H ,DONE? CONSTANT ASCEOT=04 ,EOTin ASCII
4+ W LDL RR2,TEBCBUF 11+ 3W
JNE AGAIN ,NO, PROCESS LD R4,EBCEQT 7+2W
4/16+ W LD RO,COUNT 7+2wW
JNEXT POINT LD R1,RO 3+ W
. CPIRB R4, RR27,R0,EQ
NEXT 11+ 2W +132(9+W)
) SUBR1,R0 44+ W
HUNDRD. DW 100 LDL RR2,TEBCBUF 11+ 3W
LDL RR6,T TRTAB 11+ 3W
Total number of clock cycles 6,680,000 + 400W, TRIRBRR2 RR6T R
Block Translate — Destructive 11+ 2W +132(14+3W)
(Special feature for Z8000) # of Clock Cycles LDB RR2T,ASCEOT 11+ 3W
LD RO,COUNT ,.Get Length of Total clocks. 3123 + 550W
gﬁgg‘c 68000 # of Clock Cycles
7+2W MOVEB D2,#EOT ,Get EOT
LD R3, TEBCBUF ,Address of 8 + 2W
EBCDIC MOVEW DO, #COUNT ;Get Length of
String 7 + 2W EBCDIS
LD R5, TTRTAB ,Address of String 8 +2W
Translation BEO DONE ;Length=0 Exit
Table 7 +2W 10/8+ W
TRIRBR3 T,R5T,RD, Translate MOVEL A3, #EBCBUF A3=Address of
EBCDIC EBCDIC
String String
11+ 2W + +(14+3W)132 12 + 3W
Total Clocks' 1880 + 404W MOVEL A5, #TRTAB /A5=Address of
Translation
B. Block Translate Benchmark — Destructive Table 12 + 3W
78002 # of Clock Cycles LOOP MOVEB D1,(A3) ,Get EBCDIC
TRTAB ‘CICEBD-ASCII Character
Translation i
Table MOVEB (A3),A5(0,D1) ,Replace it by
EBCBUF ,EBCDIC-String -?rigs”lanon
CONSTANT EBCEOT=03 ,EOTin EBCDIC 19 + 4W
CONSTANT COUNT=132
CONSTANT ASCEOT=04 EOT In ASCIl CMPB D2(AZ+ EOT? - Btaw

4-16

68000 (Continued) # of Clock Cycles Z8002 (Continued) # of Clock Cycles
BEO DONE .Yes — Exit COMP: LDL RRO,RR12 11 +2W
10/8+ W CP RO,R1 4+ W
DBF DO,LOOP ,No-—Loop JRLEDECCNT 6+ W
10 + 2W/14 +3W EXRO,R1 6+ W
DONE LDL RR27T,RRO 11+ 2W
Total clocks 48 + 11W + 132(57 + 12W) — (4 + W) = 44 SETBRLS,0 4+ W
+ 10W + 7524 + 1584W = 7568 + 1594W DECCNT INCR3.2 4+ W
) DEC R4 4+ W
iAPX 86/10 # of Clock Cycles JRGT COMP 6+ W
BITB RL6,0 4+ W
M X,OFF TAl JINIT TRANSLATION !
OV BX.OFFSET(TABLE) F|’TR A Sl_4 lo] 10{ SRNZINIT POV
MOV SI, OFFSET(EBCBUF) |INIT EBCDIC BUFR (SS) Total clocks' 26 + 7W + 10[(19 + 4W) + (3 + W)] + 45(91
PTR 4 + 18W) = 4341 + 867W
MOV DI,OFFSET(ASCBUF) INIT ASCII BUFR (LS) Total clocks: 28 + 8W + 10[(19 + 4W) + (3 + W)] + 45(91
PTR 4 + 18W) = 4343 + 868W
MOV CX.COUNT INTCOUNT 68000 # of Clock Cycles
CLD DF=FORWARD 2 BSORT MOVEAL A1,400 Start Address — A1
JCXZ FINISH ,JUMP IF COUNT=0 12+3W
6/18+ W MOVEW D3,404 ,Count—=D3
NEXT LODS EBCBUF :GET EBCDIC 12+ 3W
CHAR 124+ W SUBQ D3, #1 4+ W
XLAT TABLE TRANSLATE TO CLRB D1 [Exchange Flag = 0
ASCII 11+ W 4+ W
STOS ASCBUF STORE IN ASCII 10 [INIT MOVEAL AO0Q,A1 .Copy Start Address
BUFR 1M1+ W into AQ 4+ W
CMP ALEOT ‘CHAR=EQT? MOVEW D0,D3 ,Copy Count into DO
4 4+ W
LOOPNE NEXT LOOP IF NE OR * COMP- MOVEW D2,(A0)+ [Fetchword 8 +2W
CX<>05/19+ W * CMP (A0),D2 :Next word greater?
FINISH . ' 8+2wW
Total Number of clock cycles. 7,400 + 800W BLSS DECCNT Yes. Con“g‘ﬁo W
C. Bubble Sort MOVEW (A0)(-2).(A0) ;No.Exchange these
17 + 4W
Z8002 of Clock Cycles
ye'e MOVEW (A0).D2 twowords 9+ 2W
BSORT LDR4,ADR ,Load Starting Address TAS D1 \Exchange Flag=1
9+ 3W 4+ 3W
LDR5,COUNT :Load Word Count 9+ 3W * DECCNT DB DO,COMP :Done?
DECR5 ;Set Number of Compares 10 + 2W/14 + 3W
4+ W 10 NOTB Di :No. Test Exchange
INIT RESBRL6,0 :Clear ExchangeFlag 4 + W Flag 4+ W
10 LDLRR2,RR4 ,Copies of Adr and Count BPL S INIT 8/10+ W
5+ W 10
* COMP LDLRRO,R27T Fetch 2 wordsinRO,R1 Total clocks' 32 + 8W + 10 (22 + 4W) — 2 +mé1
11+ 2W -
* CP RO,R1 ;Out of Order? 4+ W g(g)gbmj(fg;;\;W)ﬂmJ)(40+8W)-10(4 W=
* JR LE DECCNT .No-Continue 6+ W
EXRO,R1 ,Yes-Swap them 6+ W iAPX 86/10 # of Clock Cycles
LDLR2T,RRO Store Back 11 +2W MOV BL,0FFH “EXCHANGE=TRUE
SETBRL6,0 4+ W 4
* DECCNT INCR2,2 ;Point to Next Pair 4+ W .
. DECR3 Decr, Word Count 4+ W A1 CMPBLOFFH , EXCHANGE=TRUE?
* JRGTCOMP ;Done? 6+ W 4
{ BITBRL6,O [Exchange Flag =174 + W JINE A4 :NO, FINISHED 4/16+ W
10 JRNZINIT .Yes-Start Next Pass 6 + W XOR BL,BL - EXCHANGE=FALSE
,No-Doq% 3
Total clocks 22 + 7W + 10 (19 + 4W) + % MOV CX,COUNT ; CX=COUNT-1
[(10-m)(56+11W)+ m=1 14+ W
(M-1)(35+7W)] = 212 + 47W + 45 (91 + 18W) = 4307 + 857W DEC CX 2
28001 # of Clock Cycles XOR SI,SI :SI=0 3
LS SS i
BSORT LDLRR12, ADR 15 + 4W/13 + 3W A2: MOV AX,ARRAY(SI) , ARRAY(!) > 17+ W
LD R5, COUNT 9+ 3W CMP AX ARRAY(SI+2) ;ARRAY(I+1)? 18+ W
DECR5 4+ W JLEA3 ;NO 4/16+ W
INIT RESBRL6.,0 4+ W XCHG ARRAY(SHZ) AX ;EXCHANGE ELEMENTS
10 LDL RR2,RR12T 5+ W 6+ W
LDR4,R5 3+ W ARRAY(S),AX 18+ W

4-17

iAPX 86/10 (Continued) # of Clock Cycles 68000 (Continued) # of Clock Cycles
MOV BL,OFFH : EXCHANGE=TRUE MOVEW D4 X0 JINIT X0 12+ 3W
4 MOVEW D5,Y0 JINIT YO 12 +3W
; MOVEW D6,L2 INITL2 12+ 3W
A3 INCSI ,SI=SI+2 2 MOVEW D7,L1 JANIT LA 12+ 3W
INC SI 2 XYSCAL: MOVEW D1(A3) GETX 8+ 2W
LOOP A2 :DEC CX & LOOPIF<>0 SUBW D1,D4 X-X0 4+ W
5/17 + W MULU D1,D6 (X-X0)*L2 70+ W
JMP A1 15+ W DIVU D1,D7 (X-XO)L2/L1 140+ W
A4 MOVEW (A3)+,D1 ,STORE & INC POINTER
Total number of clock cycles. 9,120 + 950W 8+ 2w
MOVEW D1,(A3) ‘GETY 8+ 2W
D. Computer Graphics XY Transformation SUBW D1,D5 Y-YO 4+ W
28002 # of Clock Cycles MULU D1,06 (Y-Y0)*L2 70+ W
Cyoles DIVU D1,D7 (Y-YO)L2/L1- 140+ W
LD R2.COUNT TNIT GOUNT 0+3W MOVEW (A3)+,D1 ;STORE&INC POIgllE;W
LDR3,TARRAY :INIT ARRAY POINTE7R+ - DB D2 XYSCAL SRR g
LDR4 X0 JINIT X0 9 +3W Total clocks: 64 + 16W + 16386 (474 + 17W) = 7,766,016
LDRS5,Y0 JINIT YO 9 +3W + 278.544W
LDR6,L2 INITL2 9 +3W
LDR7.L1 ANIT L1 9+ 3W iAPX 86/10 # of Clock Cycles
XYSCAL LDR1,R37 GETXELEMENT 7 +2W MOV CX,COUNT JINIT COUNT
SUBR1,R4 X-X0 4+ W 14+ W
MULT RRO,R6 J(X-X0) *L2 70+ W MOV SI,OFFSET(ARRAY) INIT ARRAY
DIV RRO,R7 XX0)*L2/L1 95+ W POINTER 4
LDR37\R1 :STORE ELEMENT 8 + 2W MOV DI,S! JINIT ARRAY
INCR3,2 INCPOINTER 4+ W POINTER 2
LDR1,R37 GETYELEMENT 7 +2W CLD :DF=FORWARD
SUBR1,R5 2Y-YO 4+ W 2
MULT RRO,R6 (Y-YO)*L2 70+ W XYSCAL' LODS ARRAY :GET X ELEMENT
DIV RRO,R7 O-YORL2/L1 95+ W 12+ W
LD R317\R1 ‘STORE ELEMENT 8 + 2W SUB AX.X0 X-X0 15+ W
INC R3,2 INCPOINTER 4+ W MUL L2 J(X-X0)*L2
DJNZ R2 XYSCAL :DEC R2 &LOOP IF 130+ W
'R2<>0 11+ W DIV L1 J(X-X0)*L2/L1
161+ W
Total clock cycles = 52 + 17W + 16384 (387 +17W) STOS ARRAY ‘STORE ELE:\?E_NTW
=6.340.660 +278.545W LODS ARRAY (GET Y ELEMENT
Z8001 # of Clock Cycle 12+ Y
Cycles SUB AX,YO Y-Y0 15+ W
LDR2,COUNT (INITCOUNT 9+3W MuLL2 ((-YoyL2
LDR3,X0 INIT X0 10 +3W 130+ W
LD R4,YO INT YO 10 +3W DivLY LY-YOyL2/Lt
LDR5,L2 INITL2 10 + 3W 161+ W
LDR6 L1 INIT L1 10 + 3W STOS ARRAY STORE ELEMENT
LDL RR8,TARRAY INIT ARRAY POINTER n+ w
11+ 2W LOOP XYSCAL DEC CX & LOOP IF
' 5/17+ W
XYSCAL: LDR1,RR8T :GET X ELEMENT 7 + 2W CX<>0
SUBR1,R3 X-0 4+ W Total number of clock cycles = 11,200,000 + 320,000W
MULT RRO,R5 S(X-X0)*L2 70+ W
DIV RRO,R6 XX0*L2/L1 95+ W E. Reentrant Procedure
LD RR8T,R1 STORE ELEMENT 8 + 2W 28002 # of Clock Cycles
INCR9,2 JINC POINTER 4+ W PUSH R157,R8 'R8=PARAM1
! 9+ 2W
LDR1, RR8T ‘GETY ELEMENT 7 +2W PUSH R157,PARAM2 ,PUSH PARAM2
SUBR1,R4 ,Y-YO 4+ W 13+ 4W
MULT RRO.RS (y-yoyL2/Lt 70+ W PUSH R157,PARAM3 ;PUSH PARAM3
LD RR8T,R1 STORE ELEMENT 8 + 2W 13+ 4w
INCR9,2 INC POINTER 4+ W CALR PROC1 : 10+ W
DJNZR2,XYSCAL n+ w INCR15,6 {Remove PARAM1-
Total clocks' 60 + 17W + 16384(387 + 17W) = 6,340,668 3 from the Stack
+278,545W 4+ W
PROC1 PUSHRIi57,R14 ‘Save R14 9+ 2w
68000 # of Clock Cycles LDR14,R15 IntalizeR14 3+ W
MOVEW D2,COUNT INITCOUNT 12 +3W SUBR15,6+16 :Set up Local
MOVEW A3#ARRAY :INIT ARRAY POINTER Storage 7+ 2W

8 +2W

28002 (Continued) # of Clock Cycles 68000 (Continued) # of Clock Cycles
LDM R157,R0,8 :Save Registers RO-7 BSR SUB \ 20+ 4w
25+ 10W ADDQ SP#6 :Remove PARAM1-3
,PROCEDURE BODY from the Stack
LD R0,8(R14) ,Get PARAM1 44+ W
104+ 3w SUB LINK A6, #6 ;A6=Framepointer
ADD R0,6(R14) LADD PARAM2 18+ 4W
10+ 3W MOVEMW OFFO,-(SP) Save A3-0,D7-40n
ADD R0,4(R14) LADD PARAM3 Stack 48 + 10W
10+ 3W ,PROCEDURE BODY
LD -2(R14),R0 ,Store in LOCAL1 MOVEW DO0,A6(+10) ,Get PARAM1
12+ 3W 12+ 3W
,PROCEDURE RETURN ADDW DO0,A6(+8) :Add PARAM2
LDM R0,8,R157 ,Restore General 12+ 3W
Registers 35+ 10W ADD W DO0,A6(+6) ;Add PARAM3
ADDR15,6+16 :Restore SP to Point 12+ 3W
toR14 7+ 2wW MOVEW A6(-2),D0 ,Store in LOCAL1
POPR14,R157T :RestoreR14 18+ 2W 9+ 3W
RET ,PROCEDURE RETURN
Total clocks: 205 + 55W MOVEMW (SP)+,OFFO ;Restore A3-0,D7-4
44 + 11W
Z8001 # of Clock Cycles UNLK A6 Restore A6 12+ 3W
PUSH RR147,R8 ,R8=PARAM1 RTS 16+ 4w
9+ 2W Total clocks 250 + 58W
PUSH RR14T, PARAM2 'Pus1h 4%33\”12 6+ 5W iAPX 86/10 # of Clock Cycles
PUSH RR14T, PARAM3 ,Push PARAM3 PUSH AX ,PUSH PARAM1 10+W
14 +4W/16 + 5W PUSH PARAM2 22+ W
CALR PROCH1 PUSH PARAM3 22+ W
15+ 3W CALL PROCH 194+ W
INCR15,6 ,Remove PARAM1-3 ,
fromstack 4+ W , PROCEDURE ENTRY
PROC1 PUSHL RR147,RR12 SaveRR12 12+ 3W .
LDL RR12,RR14 Initialize RR12 5+ W PROCt PUSHBP ;SAVE BP 10+W
SUBRI156 + 16 ,Setup Local Storage MOV BPSP JINITIALIZE BP 2
7+ 2W SUB SP6 ,SETUP LOCAL STORAGE
LDM RR147,R0,8 Save RO-7 35+ 10W 4
,PROCEDURE BODY PUSH AX ,SAVE GENERAL 10+ W
LD R0,12(RR12) ,Get PARAM1 PUSH BX [REGISTERS 10+ W
14+ 3W PUSH CX 10+W
LD R1,10(RR12) ,Add PARAM2 PUSH DX 10+W
14+ 3W PUSH SI 10+W
ADD RO,R1 , 44+ W PUSH DI 10+W
LD R1,8(RR12) ,Add PARAM3 ,
14+ 3W , PROCEDURE BODY
ADD RO,R1 , 4+ W ,
LD -2(RR12),R0 ,Store in LOCAL1 MOV AX,(BP+8) ,GET PARAM1 17+W
14+ 3W ADD AX,(BP+86) ;ADD PARAM2 18+ W
,PROCEDURE RETURN ADC AX,(BP+4) ,ADD PARAM3 18+ W
LDM R0,8,RR147 ;Restore RO-7 MOV (BP-2),AX STOREINLOCAL1 18+ W
35+ 10W .
ADDR15,6+16 ,Restore SP to Point to ; PROCEDURE RETURN
RR12 7+ 2W .
POPL RR12,RR147 ,Restore RR12 POPDI [RESTORE GENERAL 8+ W
12+ 3W POP SI ,REGISTERS 8+ W
RET 10+ W POP DX 8+ W
Total clocks (Short segmentation): 243 + 60W POP CX 8+wW
Total clocks (Long segmentation) 247 + 62W POP BX 8+W
POP AX 8+ W
68000 # of Clock Cycles MOV SPBP RESTORE SP 2
MOVEW -(SP),DO DO=PARAM1 POP BP ,RESTORE BP 8+ W
9+ 2W RET 6 20+ W
MOVEW -(SP),PARAM2 Push PARAM2 Total number of clock cycles = 310 + 35W
17+ 3W
MOVEW -(SP),PARAM3 Push PARAM3
17+ 3W

4-19

SPECIAL REPORT ON FUTURE DIRECTION IN SYSTEMS DESIGN

MICROPROCESSORS/MICROCOMPUTERS

OPERATING SYSTEM

SUPPORT—

THE 28000 WAY

All processor architectures are not created equal when it
comes to providing designers with the tools they need for
effective system resource management

by Richard Mateosian

deallocation, and protection of processing and
storage elements, external interfaces, programs,
and program status. They manage communication and
sharing, and define, facilitate, and enforce protocols,
conventions, and policy. Several kinds of architectural
support facilitate the operating system’s task in a wide
range of applications: restriction of central processing
unit and memory use, memory mapping, sharing of pro-
grams and data, program relocation, stacks, context
switching, input/output system and interrupts,
distributed control, and support for conventions.
Operating system support is an important feature of
z8000* architecture. Special consideration was given to
that function during design of the 28000 central process-
ing unit (CPU), the Z-BUS* component interconnect, and
their support chips. In this discussion, ‘‘operating
system’’ will comprise the portion of the computer
application—both hardware and software—that is
devoted to managing hardware and software resources.

n perating systems are responsible for allocation,

Richard Mateosian, 28000 specialist at Zilog, Inc, 1315
Dell Ave, Campbell, CA 95008, is the author of
Programming the 28000 (Sybex 1980) and Inside BASIC
Games (Sybex 1981). Formerly employed in the
development of minicomputer based turnkey systems,
he has a BS in mathematics from Rensselaer
Polytechnic Institute and a PhD from the University
of California at Berkeley.

CRT
CONTROLLER ﬂ
DISPLAY
SCREEN

GAME
CONTROLS

RAM
SUBSYSTEM

Fig 1 Hardware block diagram of arcade game system.
Essential elements include cPU, memory, input and display
devices, and clock circuits.

To show how the Z8000 provides operating system
support, an application of the hardware and software
similar to that used in a popular arcade game will be
described. Fig 1 shows the game’s hardware configura-
tion; the system elements are pieces of hardware
including CPU, memory, realtime clock, input and
display units, and integrated circuits for interface to the
CPU. Arrows represent electrical connections through
which data and control signals are passed among the
elements. Configuration of the hardware elements
alone, however, provides little insight into the game’s
operation.

In the game’s software architecture (Fig 2), system
elements are pieces of software ‘‘in action’’ on the data
defining the state of play at any time. Connecting

*78000 and Z-BUS are registered trademarks of Zilog, Inc

Reprinted with permission of Computer Design, May 1982

4-21

ll

Restriction of CPU access
The operating system must allocate

CLOCK TICK
GENERATOR

STATIONARY |
OBIECTS

the CPU to a process while protec-
ting itself and other processes. In
other words, the operating system

must be able to turn the CPU over to

VERTICAL
TICK -----—- -
GENERATOR

INVADER

a process that will not perform
potentially destructive actions. To
this end, the Z8000 incorporates a
system/normal (S/N) bit in its flag/

FLEET
HORIZONTAL |—.
TICK

GENERATOR |

== DEFENDER

control word (FCW) register, which
corresponds to the program status
word (PSW) in other machines. (See
Fig 4.) The S/N bit determines

GUNS

Lw| ScoREKEEPER T

GAME
CONTROLS

whether the CPU executes in system
or normal mode. In normal mode,
the portion of the FCW containing
S/N is inaccessible; the only way to
enter system mode is through execu-

HIT
PROCESSOR

tion of a system call (SC) instruction.
The refresh and program status

area pointer (PSAP) control registers

SCREEN DISPLAY

and the system mode stack register
are all inaccessible from normal
mode. The normal mode stack

register is accessible from system
mode under the alias normal stack

Fig 2 Software block diagram of arcade game application. Essential elements are
processes, or tasks, that provide for graphics generation, horizontal and vertical

synchronization, and realtime scorekeeping.

pointer (NSP), so that normal mode
programs can pass arguments to
system mode programs on the nor-
mal mode stack. When the S/N bit is

arrows represent the paths and directions of inter-
process communications (messages). The software con-
figuration gives a good idea of how the game works.
Fig 3 lists system elements supporting the hardware and
software function outlined in Fig 1 and Fig 2. These
software components allow manipulation of hardware
and applications.software, and represent system services
that all operating systems must supply.

in the normal state, privileged instructions—ie, 170,
interrupt return, nonmemory synchronization, control
register manipulation, and halt—cannot be executed;
operating system tasks are executed in the system mode.

Another protective feature is associated with the
S/N- bit. There are two copies of the implied stack
register, one for interrupt and one for subroutine
returns. One is used when the CPU is executing in system
mode, the other when it is in normal mode. Programs
executing in normal mode have no access to the system
mode stack register.

PROCESS MANAGER EVENT QUEUE/ MEMORY ALLOCATOR
« CREATE/DESTROY SEMAPHORE MANAGER o ALLOGATE/RELEASE
« SUSPEND/RESUME « CREATE/DESTROY
« LOCK/UNLOCK « QUEUE/DEQUEVE
« SCHEDULE « WAIT/TEST/SIGNAL
CLOCK MANAGER MESSAGE EXCHANGE MESSAGE HANDLER
« SET/READ CLOCK MAILBOX MANAGER « CREATE/DESTROY
o INTERVAL/FIXED- « CREATE/DESTROY « SEND/RECEIVE
o TIME AURMS « PREPARE/READ
« HARDWARE INTERFACE « REPLY
INTERRUPT/TRAP UTILITY ROUTINES MEMORY MANAGEMENT
HANDLER CALLING « MAPPING
o CONTEXT SWITCH CONVENTIONS o ACCESS RESTRICTION
« DISPATCH « RELOCATION
« SHARING
« VIRTUAL MEMORY

‘Passing between system and normal modes requires a
change to the FCW, which is accomplished through a
privileged instruction or automatically in response to an
interrupt or trap. Privileged instructions are load from
control register (LDCTL), interrupt return (IRET), and
load program status (LDPS). A system call trap, which is
a l-word instruction with eight programmable bits,
allows a normal mode program to call one of 256 system
mode programs.

The arcade game illustrates how system and normal
modes can be used. All of the application software pro-
cesses seen in Fig 2 can run in normal mode, while the
operating system elements in Fig 3 can run in system
mode. Calls to the operating system elements from the
applications software processes are made using the 256
system calls. For example, the defender guns process
can execute the instruction SC #createprocess in order to
fire a rocket. The constant, createprocess, is a number
from 0 to 255 encoding one of the system functions—

Fig 3 Underlying operating system elements required by
arcade game application. All elements support software
functions. Hardware support is provided by interrupt/trap
handler, clock manager, and utility elements.

namely, the one that creates processes. Programs and
data that constitute the initial state of the new process
can be passed to the process creation program in
registers or on a stack.

4-22

_—__——;—————__—ﬂ

INACCESSIBLE IN
NORMAL MODE

[secTsmleralwelme] T T T FLAGS]
FLAG CONTROL WORD

1 = SYSTEM MODE
0 = NORMAL MODE

REGISTER SET

[REFRESH REGISTER] reeresn

RO TO R13*

| PSA POINTER |psar

SAVE

-
NSP REGISTER “SomAL. SvSTEW
WODE MODE

[NORMAL STACK REGISTER

STACK REGISTER

INACCESSIBLE IN NORMAL MODE 0
16 BITS 1

[Mumer npex |——

SC INSTRUCTION
(CAUSES TRAP TO SYSTEM MODE) 255

ENCODES UP TO
256 SYSTEM
PROGRAMS

[7

* OR RO TO R14 AND R15 IN NONSEGMENTED OPERATION

Fig 4 z8000 system/normal operation. s/N bit of
flag/control word determines execution mode, system or
normal, of CPU.

Memory management

Existence of a user mode and privileged instructions
does not solve the entire protection problem; the other
half of the solution involves restriction of memory use.
Most CPU designs call for a comprehensive memory
management facility to unify the approach to restriction
of memory use, memory mapping, program relocation,
sharing of programs and data, and stack use.

The Z8000 uses an external memory management unit
(MMU) that is integrated with a segmented addressing
scheme in the CPU. The MMU translates addresses,
checks attributes, and interrupts the CPU if an invalid
access occurs. Sets of attributes are checked against ac-
cess rights implicitly or explicitly associated with each
process. Then, for example, if a program in user mode
attempts to access a memory address whose attributes
do not match the program’s access rights, the CPU will
trap to a system routine designed to deal with such in-
valid accesses. CPU addressing scheme and the MMU
determine which sets of attributes can be associated with
portions of the memory address range. Typically, at-
tributes are associated with a segment in a machine that
uses 2-dimensional, or segmented, addressing. In a
machine with linear addressing, attributes are usually
associated with fixed size blocks of addresses called
pages.

The arcade game probably does not need memory
mapping or virtual memory, since the total memory
space of such an application is small. Access restriction,
relocation, and sharing of programs and data can be
useful in any application, however. On the other hand,
UNIX and UNIX-like operating systems, in which there
are many small processes, are well suited to the Z8000’s
segmented addressing and memory management.

Use of stacks

Stacks are important tools for meeting the operating
system’s responsibilities. A stack is a last in, first out
memory associated with two operations: pushing (adding

an item) and popping (removing an item). Stacks are
explicitly or implicitly used by the operating system to
allocate memory in a flexible way, which, in connection
with based addressing, allows programs needing non-
register storage to be reentrant and position indepen-
dent. A special case of this is storage of return addresses
for subroutine calls and machine state for interrupt pro-
cessing. In the arcade game, the use of stacks to allow
reentry of programs plays an important role. Rocket
processes, for example, can all share a common process-
ing routine while each uses a different set of data.

Z8000 architecture calls for the placement of stacks as
arrays in memory with an address register marking the
top of the stack and providing, through based address-
ing, access to items at locations relative to the top of the
stack. The stack register is a dedicated (special purpose)
register in some architectures. In the 28000, any of the
registers R1 to RIS can be used as a stack register,
although the architecture determines which stack
register is to be used for saving returns from a
subroutine or the machine state on interrupts.

The implementation of stacks as arrays in memory
and the use of general purpose address registers for
stack registers make provision for overflow and
underflow protection difficult. The Z8000 provides stack
limit protection through use of the attribute specifica-
tion associated with memory protection. Other architec-
tural features are desirable for the support of stacks,
including the ability to designate one or more stacks for
program use, single- and multiple-argument push and
pop instructions, and automatic warning (traps) of
impending stack overflow or underflow.

Context switching

One difficulty that arises when several processes run
concurrently is the overhead associated with context
switching. The context of a process is that portion of its
state which occupies shared resources. For example,
since all processes must share the program counter (PC),
each process’s PC value is part of its context. The Z8000
has a single set of general purpose registers, control
registers, CPU status registers, and so forth. Thus, when
the same processing element (CPU) is allocated to more
than one process, the process contexts must include the
contents of any register that is used. Context switching
saves the context of one process and recalls the stored
context of another process.

Automatic context switching is provided for inter-
rupts and traps. When an interrupt occurs, the current
CPU status (FCW and PC) is saved on the system mode
stack, along with a ‘‘reason”’ read from the address data
lines AD1S to ADO during the interrupt acknowledge
cycle. Then new values for the FCW and PC are taken
from the program status area (PSA). The IRET instruc-
tion restores PC and FCW to the preinterrupt state and
discards the reason, leaving the stack as it was before
the interrupt. Architectural features that expedite con-
text switching include automatic saving of CPU state on
interrupts, single-instruction block register saving and
restoring, and access to all necessary control registers.

The Z8000 interrupt and trap handling facility pro-
vides an automatic, rapid context switch from the exe-
cuting program to the interrupt processing routine using
interrupt vectors stored in a memory table (the PSA).
The FCW, PC values, and a reason are saved on the

4-23

system mode stack, and new FCW and PC values are set
from the PSA entry (vector) corresponding to the inter-
rupt type. The IRET instruction restores the CPU to the
preinterrupt state, while at the same time removing the
saved information from the stack.

Context switching involving general purpose registers
is facilitated in the architecture by block register saving
and restoring instructions. These can be used to
simulate pushing or popping a block of registers to or
from any stack. For example, the eight registers R0Oto R7
can be saved on the stack controlled by register RR14 by
executing

!Make room on stack!
!Save the registers!

DEC R15,#16
LDM @RRI14,R0,#8

These two instructions require 39 clock cycles of exe-
cution time, or less than 4 us at 10 MHz.

Stacks are an important tool for
meeting the operating system’s
responsibilities.

In some cases, the values of control registers are
essential to the context of a process; the normal mode
stack register and the flags register, which contains the
bits that define condition codes such as ‘‘less than or
equal to,”” are obvious examples. A load control register
instruction allows the transfer of any of these registers
to or from a general purpose register, permitting them
to be saved and restored.

10 system and interrupts

Operating system responsibilities in the 1/0 system and
interrupts vary greatly with the type of application. Ar-
chitecture of a general purpose CPU must provide the
flexibility necessary to accommodate the 1/0 re-
quirements of a wide range of applications.

One of the operating system’s most difficult tasks is
control of access to 1/0 resources. Unlike memory,
which can be divided into large, relatively homogeneous
blocks, the elements of the 170 space require special pur-
pose management, protection, and access techniques. In
addition, device timing requirements and externally set
policies for conflict resolution make hardware support
of 170 mechanisms mandatory.

Architectural features that support the 170 system and
interrupts are a vectored interrupt scheme; specification
under program control of the CPU state to be established
for each type of interrupt; and a rapid, automatic con-
text switching mechanism in response to interrupts.
Also desirable are a means of defining conflict resolu-
tion policies and interruptibility of interrupt processing;
a coherently designed family of components, com-
patible interconnection bus, and established set of bus
protocols to allow future family growth; block 170
instructions and direct memory access; and restricted
access to 170 facilities.

A vectored interrupt scheme allows the CPU state to
be switched immediately to an appropriate processing
routine without the need for software to ascertain the
interrupt type and call the appropriate routine. This is
done on the basis of either the port of connection or the
contents of a vector supplied by the interrupting device.

The PSA block of memory stores interrupt vectors (ie,
the new CPU status) for each type of interrupt and trap.
In addition to separate lines for nonvectored and vec-
tored interrupts, as well as a nonmaskable interrupt for
situations that cannot wait, there is a table of PC values
to be indexed by an 8-bit vector placed on the AD bus by
the interrupting device. The block of memory used for
the PSA is not fixed, as it is in some CPUs; it can be
anywhere in memory, and a pointer to it (the PSAP
register) can be set using the privileged LDCTL instruc-
tion.

Conflict resolution is achieved through a simple
scheme. The three levels of interrupt—nonmaskable,
nonveciored, and vectored—are assigned three ieveis of
priority by the CPU. Using the privileged disable/enable
interrupt (DI/EI) instruction, the vectored and nonvec-
tored interrupt lines can be masked so that interrupts
wait until the unmasking of the associated line. When
interrupts arrive simultaneously on more than one line,
priority determines which will be processed first. The
processing routine for one interrupt type can be inter-
rupted by the routine for another if the corresponding
line has not been masked. Whether other lines are to be
masked or not can be determined automatically by
specifying the appropriate mask bit in the FCW portion
of the PSA entry. Otherwise, the determination can be
made by the program, which can bracket interrupt sen-
sitive code between DI and EI instructions.

A priority scheme is daisy chained through devices at-
tached to the CPU on the same interrupt line. In this way
devices closer to the CPU can interrupt the processing of
more remote device interrupts unless the given line is
masked during all or part of the processing. This
approach allows any priority resolution scheme to be
implemented externally.

Block 1/0 instructions and direct memory access are
important and straightforward performance improve-
ment features. Block 170 instructions require careful
implementation; they must use general purpose registers
continuously to save their current state so that they can
be interrupted. Direct memory access functions require
the development of bus control protocols and a means
of protecting partially loaded or saved memory blocks
from access by concurrently executing programs. A key
aspect of the 28000 1/0 system is the protection privileged
instructions provide, allowing an operating system to
manage the I/0 interfaces without interference from
normal mode programs.

Distributed control
When processes to which separate processing units may
have been allocated share a common memory, guarded
commands and semaphores are used. Basic architectural
support for these techniques is atomic test and set
(TSET), a CPU instruction that tests a memory location
for the value ‘‘available’’ and simultaneously sets the
value to ‘‘not available.” ‘‘Atomic’’ refers to the fact
that there can be no other access to the given memory
location between the test and set portions of the instruc-
tion. This prevents two concurrently running processes
from finding the location set to ‘‘available’’
simultaneously.

Architecture provides synchronizing procedures, both
for processes that share memory and for those that do
not. In the case of shared memory, the TSET instruction

R}

4-24

provides the basis for synchronization. In the case of
nonmemory synchronization, the z-BUS specification
includes a set of lines and a protocol for resolving
simultaneous requests for shared resources while the
CPU provides instructions to support the bus connection
and protocol.

Support for conventions

In the design of a CPU, consideration must be given to
whether architecture should support all conventions
equally or encourage specific conventions through
special features. For instance, should a CPU be designed
with general support for high level languages, or should
it be designed to optimize Pascal at the expense of
FORTRAN programming efficiency? Should it provide
special features that make a subroutine argument pass-
ing convention using the stack especially efficient at the
expense of the efficiency of other argument passing con-
ventions? 28000 design supports many conventions,
including a segmented addressing scheme, message pass-
ing for interprocess communication, component and
backplane bus protocols, and interrupt protocols for all
components.

A message is a set of characters (or words) emitted’by
one process and received, asynchronously, by another.
The processes do not need to know whether they have
been allocated the same or different processing
elements. Message passing support includes block 1/0
instructions in the 28000 CPU; asynchronous inter-
processor connection in the z-FIO (first in, first out) buf-
fer chip; acceptance of commands from and delivery of
messages to the master CPU in designated message

registers by the universal peripheral controller (zZ-UPC);
and-allowance for high speed direct access to memory
from external devices (eg, a Z-FIO chip) through the
direct memory access chip.

Summary

Several kinds of architectural support are available to
system designers for meeting the requirements of the
modern operating system. Restriction of access to CPU
facilities, restriction of memory use, memory mapping,
sharing of programs and data, program relocation,
stacks, context switching, an 170 system and interrupts,
and distributed control and support for conventions are
all tools that can expedite effective system resource
management.

4-25

The performance of two addressing mechanisms

on three different microprocessors is examined. One of the

mechanisms—and one of the micros—provided superior performance.

A Performance
Comparison of Three
Contemporaty 16-bit

Microprocessors

Martin De Prycker*

University of Ghent

The choice of a new computer system is influenced
by considerations of various importance: compatibility
with the former system, software availability, cost,
maintenance, and system performance.! To a great ex-
tent, the system’s performance depends on the central
processor’s architecture. To study the performance of a
particular architecture, two methods are frequently us-
ed. One is that which was used in the CFA project,2-4 in
which three architectural parameters were defined and
compared for a set of machine language routines. The
other method consists of measuring the execution times
of assembly language benchmarks on different pro-
cessors, as was done at Carnegie-Mellon’ and by Nelson
and Nagle.6 Other contributions to architecture evalua-
tion have been made by Shustek,” who compared in-
struction execution times, and by Lunde,8 who
evaluated an ISP description of the processors. How-
ever, in order to obtain performance figures with any of
these methods, the actual processor, or a simulator, has
to be available.

The above-mentioned methods involve comparisons
of performance made at a low level; here, I compared
the performances of processors executing high-level-
language programs. In block-structured high-level
languages, a major part of execution time is spent on
procedure and block entry/exit. (This has been noted by
Batson, Brundage, and Kearns, Tanenbaum,!0 and
Blake.!!) When we also include the execution time of
variable addressing, it is clear that a large amount of the

“Now with Bell Telephone Manufactunng Company, Antwerp, Belgium

0272-1732/83/0400-0026$01.00 @ 1983 IEEE

4-27

Reprinted with permission of |IEEE, April 1983

execution time of block-structured high-level-language
programs is spent on procedure and block entry/exit
and variable addressing. The overall system perfor-
mance is thus strongly influenced by the implementation
of the addressing mechanism. Therefore, several var-
iable addressing mechanisms have been proposed, e.g.,
the display mechanism introduced by Dijkstral2 and the
addressing mechanism presented by Tanenbaum.!0

In a recent paper,!3 I analyzed a method for describ-
ing variable addressing implementation performance,
one that employs three independent parameter sets: a set
of program statistics determined by high-level-language
benchmarks, a set of architectural parameters based on
the processor architecture and the variable addressing
mechanism, and a set of technology-dependent param-
eters. The usefulness of this model lies in the in-
dependence of the three sets, and in the fact that the
processor is available in neither physical nor virtual (i.e.,
simulated) form. Hence, a complete performance anal-
ysis can be done analytically. In addition, in order to
evaluate the program statistics, the high-level-language
benchmarks can be run on any computer system.

Using this analytical model, 1 compared the address-
ing mechanisms implemented on a number of pro-
cessors. I chose three comparable 16-bit micros—the In-
tel i8086,!4 the Zilog Z8000,! and the Motorola
MC68000.16

In the next section I will explain the performance
model, as adapted to processors with an instruction
prefetch pipeline.!7 I describe a set of Algol and Pascal
benchmarks in the third section of this article and

IEEE MICRO

Addressing mechanisms that implement
the block structure in high-level languages

In block-structured high-level languages, program
statements can be recursively grouped into com-
posite statements by means of two block delimiters
(begin-end and procedure-return). The recursive pro-
gram structure so generated can be represented by a
program tree (Figure 1). Each composite statement or
block can thus be given a number, its static lexical
level, which is the depth at which the block definition

in lanatad i dran
VAN pregram uee.

Hence, the lexical level of a block is always deter-
mined by the level of the (static) surrounding block: A
begin generates a lexical level which is one level
higher than the surrounding block; a corresponding
end returns the level of the block to the surrounding
level. A procedure call generates a lexical level which
is one higher than the level at which the procedure is
declared; a return puts the level back to the calling
level.

Variables may be accessed only when they are
declared within the same block or in static surround-
ing blocks, that is, when they reside at a lexical
parent level. With respect to the program tree, this
means that we can access all variables declared in
path nodes from the root to the actual active node.
This also means that scope rules are fully determined
by the static program structure known at compile
time. Within a block, each variable gets a sequence
number, and a lexical address is formed by the pair
(lexical level, sequence number). When a block ends
(by an end or return), all variables within that block
are no longer visible.

For the implementation of the scope rules of a
block-structured language, one needs two stacks: a
stack with static information (known at compile time),
and a stack with dynamic information (known only at
run time). Generally, one combines these stacks with
the evaluation/allocation stack on which the defined
variables and the temporary results are stored. The
three stacks are merged into one stack via a linked-
list technique. The stack of static and dynamic en-
vironments is implemented through marker words
that are linked. Among other information, each
marker contains two pointers: a static link, pointing
to its parent static environment, and a dynamic link,
pointing to the previous dynamic environment. The
top-most stack marker serves as the base address of

begin 0
a0 1)
realab b0 2)
begin 1
c(1.1)
real cd d(12)
begin 2 e2 1)
real e f f(22)
Q
end
end
end

Figure 1. Lexical level and program tree.

the allocation/evaluation stack of the current environ-
ment For the sake of efficiency, the latter stack is im-
plemented contiguously.

It 1s clear that, with the above simple structure, ac-
cessing variables In parent static environments
necessitates tracing down the static pointer chain,
possibly to a depth of several levels. In order to
lessen or avoid this run-time overhead, two mech-
anisms have been proposed, namely the display mech-
anism and Tanenbaum’s proposal

The display mechanism. In order to provide fast ac-
cess {0 any iexicai ievei, 1his scheme uses an extra
stack (display) Each display location contains a
pointer to the base of a visible environment. When a
variable at lexical level i is accessed, DISPLAY[i] is
used as base for level i. Thus, only one level of in-
direction is needed to access a variable at any static
level. The main benefit of the display mechanism is
that the address of any variable can be determined
very easily: address DISPLAY[i] + sequence
number. Thus, the variable access time is indepen-
dent of the lexical level.

During the execution of statement Q in our exam-
ple, the display and data stack appear as shown in
Figure 2. Variables are accessible through the
display:All variablesin the three levels can be reached.

Tanenbaum’s mechanism. In order to reduce the
overhead associated with display rebuilding—which
must be done after every procedure return—Tanen-
baum reduced the display to two pointers: a local
pointer LP and a global pointer GP. Local and global
variables can be reached through these pointers, and
intermediate variables must be accessed by tracing
the static pointer chain through indirections. The ra-
tionale behind this approach is that the addressing of
variables at levels between the current level and the
global level (i.e., intermediate variables) is a relatively
rare event.

In our example the data stack during the execution
of statement Q will appear as shown in Figure 3.
Local (e,f) and global (a,b) variables can be addressed
directly; intermediate variables (c,d) can be reached
only by tracing the static pointer chain.

f
e
4 A
STACK DISLAY

STATIC | DYNAMIC
Figure 2. Display and stack during statement Q.

<
<

C
STATIC | DYNAMIC

b
a

o =

f
e

STATIC [DYNAMIC

d
c

STATIC | DYNAMIC

b
a

LP

X

STACK
Figure 3. Pointers and stack during statement Q.

Apnl 1983

4-28

discuss their statistical parameters. In the tourth section
Dykstra’s and Tanenbaum’s addressing mechanisms, as
implemented on the three microprocessors, are com-
pared. It 1s shown that Tanenbaum’s mechanism always
pertorms better than Diykstra’s display mechanism. In
the last section, 1 compare the relative performance of
the three microprocessors, as a function of memory
speed. I conclude by ranking the processors according to
their performance. The correspondence with low-level
performance analyses performed elsewhere is striking,
not only qualitatively but also quantitatively. I also
discuss a cost/performance model.

Variable addressing implementation model

In an earlier work,!3 I expressed overall system per-
formance as a function of three independent factors: the
high-level-language programs (benchmarks); the pro-
cessor architecture, 1.e., the instruction set and register
organization; and the technology. Here, I will examine
this model as it has been adapted to processors with in-
struction prefetch buffers of different lengths.17

The overall system execution cost K, induced by pro-
cedure and block entry/exit and variable addressing, can
be written as a product of three independent arrays: one
composed of high-level-language program statistics S,
one determined by the processor’s architecture M, and
one influenced by the technology Kt. That is,

K=Ky~ M- ST,)

where the superscript T denotes array transposition.
This model was obtained in a very straightforward
way: The execution cost of any high-level-language pro-
gram can be determined as a weighted sum of the execu-
tion costs of the individual high-level-language instruc-
tions, with the frequency of these instructions in the test
program as the weight factor. Thus, we can write

K=T. ST)

The array S contains high-level-language program
statistics concerning variable addressing, and thus is in-
dependent of either architecture or technology. The
statistics which make up the S array comprise the
following:

® The number of block entry/exits (n;).

¢ The number of procedure call/returns (n,).

® The number of variables accessed in the program
(n).

The number of local variables accessed (n;). Local
variables are variables which are accessed at the
same level at which they are declared.

The number of global variables accessed ().
Global variables are variables which are declared at
the outermost level.

The number of intermediate variables accessed (#,).
Intermediate variables are nonglobal variables

which are accessed at an higher levical level than
that at which they are declared.

The total lexical-level difference of mtermediate
variables (di,), that 15, the sum of the lexical-level
differences between declaration and access.

The total lexical-level difference between declara-
tion and access of procedures (dp,)

The operations described here can be viewed as ‘‘generic
instructions,”” and each high-level-language program
can thus be written as a sequence of these generic in-
structions.
In Equation 2, 7 denotes an array of execution costs
T, of the generic instructions 7, or
T=(T,...T . Ty). 3)
One possible description of the execution cost K is the
execution time of the test program. Since my study in-
volves only microprocessors, this execution time can be
expressed in terms of the number of clock cycles, be-
cause of the indivisibility of the clock cycle time ¢ (in
nanoseconds).

The number of clock cycles T, needed to execute each
generic instruction ¢ depends on various parameters:

¢ The number of clock cycles TC, needed to execute

each generic instruction /. It is assumed that the

memory is fast enough (no wait states) and the in-

struction pipeline is always full.

The number of extra clock cycles needed to per-

form a memory read (TMR)) and a memory write

(TMW,) and used by slower memory.

The number of extra clock cycles in the delay TPC,.

This delay is caused by an empty pipeline resulting

from the execution of a sequence of instructions

when not enough memory is free.

¢ The number of clock cycles in the delay TPS,. This
delay is caused by a memory that is slower than
specified in the user’s manual; hence, extra wait
states are introduced in order to have a full
pipeline.

The total number of cycles T, can thus be written as a
sum of clock cycles:

T,=TC,+TMR, + TMW, + TPC, + TPS,. (4)

The value of each of these parameters is determined by
the processor’s architecture and technology. If we ex-
press each parameter as a product of a technology-
dependent part and an architecture-dependent part,
then Equation 1 will be satisfied, since the technological
parameters are independent of i:

TC,=C, - K¢ (5a)
TMR, =MR, - Kmr (5b)
TMW, =MW, - Kyw (5¢)
TPC,=PC, - Kpc (5d)
TPS,=PS, - Kps (5e)

IEEE MICRO

4-29

It we define a technological array Kt and an architec-
tural array M, as

K1 =(Kc Kmr Kmw Kpc Kps) (6)
and

M,=(C, MR, MW, PC, PS)T, 7

then we can rewrite Equation 4:

T,=K;- M, (8a)
or
T=Kr-M (8b)
1f
M=M; .. . M, ... M,y).)

Applying Equation 8b to Equation 2 finally leads to the
basic model of Equation 1.

For each of the five parameters of Equation 5, the
question of whether to separate them into technology-
dependent and architecture-dependent parts must be in-
dividually determined.

Execution time in the optimal case. When the memory
is fast enough (no wait states) and the instruction
pipeline is full, the total number of clock cycles needed
for each generic instruction 1 is the sum of the number of
clock cycles C, needed for the machine instructions j
which compose the generic instruction /. These numbers
C, can be easily found in the microprocessor user’s
manual.

Influence of slower memory on data memory opera-
tions. The read/write timing diagrams of the typical
user’s manual give the minimum number of clock cycles
needed by the processor to execute a memory read or
write. We call these values m, and m,,. Let us denote the
memory access time as x (in nanoseconds). The memory
15 fast enough if x/1 < m, for a data read— no wait states
have to be introduced. The number of clock cycles to be
inserted depends on the memory speed, e.g., when
m, <x/t.<m,+ 1, only one cycle has to be introduced.
The number of clock cycles to be inserted can thus be
written as

D, =max{0,[x/t.—m,1}, (10
where [l denotes the smallest integer greater than or
equal to z. A similar expression D,, exists for data write
operations.

This delay occurs for each data memory operation.
The total number of memory operations required for
each generic instruction ¢ is the sum of the number of
memory operations required for the individual machine
nstructions ; (R, read operations, W,, write operations).

April 1983

Pipeline influence. The number of clock cycles re-
quired for each machine instruction, as described in the
user’s manual of a microprocessor with an instruction
pipeline, is only the number of clock cycles needed to
“‘really’’ execute the instruction. It is assumed that the
instruction word 1s already prefetched and available in
the pipeline buffer. However, since the memory bus is
not always free to fill the pipeline, sometimes the
pipeline buffer is empty. This causes a delay so that the
buffer can be filled before the instruction is executed.
Microprocessor manufacturers give a typical value of §
to 10 percent for this delay, but note that the value can
be much higher, depending on the instruction sequence.

To determine this delay TPC, exactly, the internal
microcode of each processor would have to be available.
However, since no information on this microcode was
available, I used a best/worst-case analysis to determine
an upper and lower bound for TPC,.

In the best case 1 assumed that all free clock cycles in
one machine instruction were grouped consecutively.
For instance, when an instruction needed eight clock
cycles and two memory operations of three cycles each, 1
supposed that the two free clock cycles were contiguous,
as shown in Figure 1. Only one cycle needed to be in-
serted to do the prefetch.

The number of cycles to be inserted for each machine
instruction can be determined by using the values of R,
W,,, and I, (the number of clock cycles for that instruc-
tion), and a table. One such relation for the Z8000,
which has a pipeline length of one word, is shown in
Table 1.

In the worst case 1 assumed that the free bus cycles
were not grouped, as shown in Figure 2. In this example,
two clock cycles have to be inserted. The number of
cycles to be inserted can again be determined using a
table, as shown for the Z8000 in Table 2.

| ONE MACHINE INSTRUCTION |

I'MEmoRY I MEMORY | FREE

OPERATION 1 OPERATION 2 CLOCK
CYCLES

Figure 1. Memory operation in the best-case model.

Table 1.

Number of clock cycles to be inserted in the Z8000

for the best-case model.

by

1 2 3 4 5 6 7 8 9 10 u
Ry + W,
0 2 1 o 0 o0 0 O0 O o0 0 O
1 . - 3 2 1 0o 0o 0 0 0 O
2 - - - 3 2 1 0o 0 o0
3 - - - - - - 3 2 1

4-30

Influence of slower memory on the use of a pipeline.
When the memory 1s slower than specified, problems
can arise in filling the pipeline buffer during instruction
execution. These problems cause a delay TPS, that 1s
dependent on the memory speed v. Again, information
on the microcode would be needed to determine this
delay exactly, and again 1 used a best/worst-case
analysis to find bounds for this delay.

In the best case 1 took into account only the instruc-
tions Q which have just enough free clock cycles to do
the prefetch without delay when fast memory 1s used.
This is a lower bound, since I eliminated the instructions
which operate without delay even when the memory 1s
slower, i.e., instructions which have at least one free

| ONE MACHINE INSTRUCTION |
! n 1
Imemory [3
OPERATION 1 M

1 1
[mMemory T3
OPERATION 2 I

Figure 2. Memory operation in the worst-case model.

Table 2.

Number of clock cycles to be inserted in the Z8000

for the worst-case model.

ly

Ry + W,
0 2 1 0 0 0 0 0 0 0 0 0
1 - - 3 2 2 2 2 2 2 2 2
2 - - - - 3 2 2 2 2 2
3 . B S
Table 3a.

M for the display mechanism, implemented on the Z8000

for the best and worst cases.

clock cycle available. The number ot cycles to be n-
serted for these mnstructions Q depends on the memory
speed and 15 equal to D, (Equation 10).

In the worst case 1 assumed that every nstruction
causes a delay of D, clock cycles, except the instructions
which use the memory data bus very little and thus have
enough free cycles. However, since in principle infimtely
slow memory can be used, no nstruction will have
enough free cycles. Therefore I reduced the mmimum
memory speed to a practical value. This minimum 1s ob-
tained for a maximum access time vyy. Thus an mstruc-
tion which causes no delay in doing a prefetch must have
at least Z free cycles, with

Z =max{m,,[xp/t]1}—m,. (11
This value 1s maximum (an upper bound) for a
minimum value of ¢_. This minimum value ¢, means a
maximum processor clock frequency.

Given these descriptions, it is easy to determine the M
array for both addressing mechanisms in both the best
and worst cases; Tables 3a and 3b show M for the
Z8000. It is obvious that only the fourth rows of the M
arrays differ in the best and worst cases.

The KT, M, and S values can be applied to Equation 1
to obtain a lower bound K; for the total number of
clock cycles in the best case, and an upper bound Ky for
the total number of clock cycles in the worst case. The
total execution time of a test program’s block-structured
and variable addressing instructions, running on a pro-
cessor with clock cycle time ¢, will always lie in the
range [Kp - ¢, Ky - 7.]. This range can be used to com-
pare addressing mechanisms and processors, as describ-
ed in the following sections.

Benchmarks and program statistics

Processors and addressing mechanisms are usually
more suited to some languages and applications than to
others. In a statistical analysis, one hopes to eliminate
this bias by considering different languages and applica-
tions. In this study, I was limited to two languages, and I
considered only a few applications. However, even with
applications belonging to totally different domains, the

82 1?‘1‘ 2‘2‘ 42 82 1?‘1‘ 2‘2‘ 4§ results were almost language- and application-inde-
M 4 7 1 _ s pendent, as is shown in the next two sections. In my
BEST = 1 Mworst = | 4 7 1 1 ' .
0 0 0 © 12 30 3 8 system, 1 used HP Algol,!8 a slightly changed version of
3 6 0 0 13 31 4 6 Algol 60, and Swedish Pascal,!? a version of Jensen and
Wirth’s Pascal.20
Table 3b.
M for Tanenbaum’s proposal, implemented on the Z8000 for the best and worst cases.

64 139 14 14 22 18 64 139 14 14 22 18

3 8 1 1 1 1 3 8 1 1 1 1

MBEST = 3 6 1 1 1 0 Mwonsy = 3 6 1 1 1 0

0 0 0 0 0 0 12 24 2 2 4 2

3 5 0 0 1 0 11 23 2 2 4 2
IEEE MICRO

4-31

The programs tested concern nonhomogeneous ap-
plications such as numerical problems, compiler con-
struction, and data manipulation. They were written by
graduate and postgraduate students. Let us call the
graduate students programmers A and B, and the
postgraduate students programmers C and D. DIGFD,
DIGFP, and DIGFK are numerical programs used for
digital filtering and speech recognition, and BUBBLE is
a bubblesort; all were written in Algol. The Pascal pro-
grams are TREE, a program that generates the syntax
tree of a program, and SPLIT, which generates the
LR(0)-items and adds the look-aheads in a syntax-
analyzer generator.2! The numerical programs were
written by programmer C, TREE and BUBBLE by D,
and SPLIT by A and B. Dynamic program statistics ob-
viously depend on their input data. Therefore each pro-
gram was run several times with different input data.

In order to measure the program statistics as describ-
ed in the preceding section, I developed a measurement
system that can analyze any block-structured high-level-
language program and measure any high-level-language
program statistic.22 In the same work, I identified a set
of useful statistics. For a comparative study of variable
addressing mechanisms on microprocessors, I needed
only a few of these statistics, namely those defined in the
section above. These statistics, measured for the pro-
grams described above, are shown in Table 4.

A comparison of two variable addressing
mechanisms

In order to compare the display mechanism with
Tanenbaum’s proposal, I applied the M array of each to
Equation 1. By doing so, I obtained a measurement pro-
portional to the execution time of programs which im-
plement Tanenbaum’s mechanism, and one proportion-
al to the execution time of programs which implement
the display mechanism. As stated in the second section
of this article, I was also able to analyze the influence of
memory speed on these measurements, for the three
microprocessors under both the best- and worst-case
models.

To compare the two addressing mechanisms, I calcu-
lated R, which is the ratio of the execution time of Tan-
nenbaum’s proposal to that of the display mechanism:

R=Kra - t/Kpj - fc. (12)

Figures 3a and 3b show this ratio, under both the best-
and worst-case models, for an i8086 with a memory fast
enough to eliminate wait states. This ratio lies in the
range [0.73, 0.86] for Algol programs and in the range
[0.57, 0.59] for Pascal programs and is almost indepen-
dent of program and input data. Both figures show that
Tanenbaum’s mechanism really performs better than
the display mechanism. The better behavior of Tanen-
baum’s mechanism in the Pascal programs is due to the
low use of intermediate variables in Pascal, which is a
consequence of the ability to compile Pascal programs
separately. Figures and results for the Z8000 and MC-
68000 are very similar.

April 1983

4-32

A measurement system for high-level-
language program statistics

The measurement system we developed has two
important features: It is independent of language and
it can be adapted to any program statistic. Such a
system needs three types of input:

(1) a description of the language to be analyzed;

(2) some indications of the statistics that must
be measured; and

(3) a program in the language to be analyzed.

In contrast, language-dependent measurement
systems lack Input 1—i.e., the language description
is built-in.

Since both the description of the language and the
description of the statistics are intimately connected
with the syntactic structure of the language, a formal
means of describing this structure can be used to
describe both the language and the statistics. In our
system we used the BNF notation developed by
Backus and Naur.!

Our measurement system uses the above-
mentioned connections between the program syntax
and the statistics. The way in which this is done can
best be explained by considering the compilation
process. A compiler first creates the syntax tree of
the program (i.e., by means of a syntax analyzer).
Then, this tree is converted to machine code via
semantic routines, which generate specific pieces of
code for each BNF rule. In a high-level-language inter-
preter system, the semantic routines directly execute
the semantic functions associated with the syntactic
construct.

In our measurement system, things are similar: We
first construct the syntax tree of the program, using
an automatic-construction parser. Rather than defin-
ing a semantic routine for each syntax rule, we ap-
pend one or more software probes to some or all syn-
tax rules. These software probes perform one of the
following functions:

(1) measurement of static statistics,

(2) insertion of write statements in particular
places in the test program, or

(3) insertion of block delimiters (begin-end) to keep
the test program syntactically correct and
semantically unchanged.

When the converted test program is compiled and
executed, the inserted write statements generate
trace files, which will later be analyzed to collect
dynamic high-level statistics.

1. P. Naur, “Revised Report on the Algorithmic Language
Algol 60,” Comm. ACM, Vol. 6, No. 1, Jan. 1963, pp. 1-17.

10+ 10
==
rrrr
05— 05
00 00
2 3t o2 3t o2 3t 2 4 5 T2 311 2
(a) DIGFD DIGFK DIGFP BUBBLE (b)

Figure 3. Execution time of Tanenbaum’s proposal relative to that of the display mechanism: for Algol programs on

the i8086 (a) and for Pascal programs on the i8086 (b).

Analyzing the influence of processor and memory
speed on R, I again drew similar conclusions: R is almost
independent of processor and memory speed. Figures 4a
and 4b show R for the three microprocessors (each with
memory that is fast enough) and for an ‘‘average’’ pro-
gram, i.e., a program exhibiting the average of the
statistics shown in Table 4. We see that the ratio is in-
deed very similar for the three microprocessors. The in-
fluence of the memory speed x (in nanoseconds) on a
12-MHz MC68000 is very small (Figure 5). Similar
figures can be drawn for the 18086 and the Z8000. Notice
also that the influence of memory on slower processors’
R is still smaller.

Given these results, I concluded that under both the
best- and worst-case models, and for all three micro-
processors, both languages, all programs and input
data, and any memory speed, Tanenbaum’s mechanism

1 OT @ 109 (b)
054 054
00

18086 28000 MC68000

18086 28000 MC68000

Figure 4. Kra/Kp, for Algol programs on the three processors (a);
Kra/Kp; for Pascal programs on the three processors (b).

results in considerably better performance than that pro-
vided by the classical display mechanism. The gain in
performance reaches a value of at least 14 percent for
Algol programs and 39 percent for Pascal programs.

Comparison of the three microprocessors

To compare the execution ties of procedure and block
entry/exit and variable addressing in high-level-language
programs running on the three microprocessor systems,
I used the model described in the second section of this
article. Applying the M arrays for the three processors
to Equation 1, I obtained sets of performance figures,
one for each processor and one for each addressing
mechanism in the best and worst cases, and one for the
individual programs. With such figures, one can com-
pare two processors for the different cases mentioned
above by examining the ratio of their respective perfor-
mance values.

In the course of my analysis, I arrived at an important
conclusion: The relationships among the performances
of the microprocessors are almost independent of pro-
gram and input data. This conclusion can be deduced
from Figures 6a and 6b, which describe the performance
of each processor relative to the 8086 worst case (assum-
ing that the memory is fast enough), for Algol programs
implementing the display mechanism on the Z8000, and
for Pascal programs implementing Tanenbaum’s pro-
posal on the MC68000. The figures for different pro-
grams and input data differ by only a few percent.
Notice also that best- and worst-case results lie within a
reasonable range. Because of this program and data in-
dependence, only the results of ‘‘average” Algol or
Pascal programs need to be discussed below. Average
Algol or Pascal programs are as defined in the preceding
section.

IEEE MICRO

4-33

Table 4.
Program statistics concerning variable addressing.

Ny np ny n ng n dit dp;
1 951 963 71583 6 19331 4 24690 6 27561 6 27561 6 1637 1
DIGFD 2 851 863 56390 6 15083 2 20225 2 21253 6 21253 6 1467 1
3 651 663 32061 6 7884 0 13140 0 11037 6 11037-6 1060 8
1 2102 2115 78014 5 19819 9 28675 6 29519.0 29519 0 4230 0
DIGFK 2 2102 2115 78014 5 19819 9 28675 6 295190 29519 0 4230 0
3 1402 1414 537856 13235 2 20556 8 19712.0 19712 0 2828 0
1 2752 2765 115857 0 38067 3 45239.4 32550 3 32550.3 5530 0
DIGFP 2 2752 2765 115857 0 38067 3 45239 4 32550 3 32550 3 5530 0
3 1852 1864 79150.0 85640 4 31957 6 21552.8 21552 8 37280
1 2 1 4620 0 21270 1572 0 921.0 921.0 00
2 2 1 2670 1170 96.0 54 0 54.0 00
BUBBLE 3 2 1 420 0 189 0 144 0 1140 114.0 00
4 2 1 291.0 129.0 1050 57 0 57.0 00
5 2 1 228 0 96 0 90 0 420 420 00
1 1 10 220000 0 211200 198880 0 00 00 20
SPLIT 2 1 10 110000 0 13310.0 96690.0 0.0 00 20
3 1 10 110000 0 13310.0 96690 0 00 0.0 20
TREE 1 1 380 20802 6 10782 3 10020 3 00 00 266 0
2 1 7501 408859.0 210806.2 198052 8 0.0 00 5250.7
np = NUMBER OF BLOCK ENTRY/EXITS ng = NUMBER OF GLOBAL VARIABLES ACCESSED
np = NUMBER OF PROCEDURE CALL/RETURNS ~ n, = NUMBER OF INTERMEDIATE VARIABLES ACCESSED
ny = NUMBER OF VARIABLES ACCESSED diy = TOTAL LEXICAL-LEVEL DIFFERENCE OF INTERMEDIATE VARIABLES
n; = NUMBER OF LOCAL VARIABLES ACCESSED dp; = TOTAL LEXICAL-LEVEL DIFFERENCE BETWEEN DECLARATION AND ACCESS OF PROCEDURES

Figure 7a shows the influence of memory speed on the
execution-time ratio Kzgooo/Kmcesooo for an average
Algol program, with the display mechanism, imple-
mented on 4, 8, 10, and 12-MHz processors. The same
ratio is shown in Figure 7b for Tanenbaum’s proposal.
Both addressing mechanisms have a better performance
when implemented on the Z8000 than when implement-
ed on the MC68000, provided that the memory is fast
enough for the processor’s clock frequency. With slow
memories and high processor clock frequencies, how-
ever, the MC68000 performance degrades more slowly
than that of the Z8000. Indeed, an MC68000 with a slow
memory actually performs better than a Z8000 with a
slow memory. This behavior can be easily explained.
The Z8000 needs only three clock cycles for a memory
operation (m,=m,, =3), whereas the MC68000 needs
four or five cycles (m, =4, m,, =5). When fast memories
are used, the Z8000 can operate at maximum speed and
thus execute a memory operation in only three clock
cycles. A better Z8000 performiance is thus obtained.
When slower memories are used, Z8000 performance
begins to degrade as soon as a memory operation re-
quires more than three clock cycles. This is in contrast to
the MC68000, the performance of which does not begin
to degrade until a memory operation requires more than
four clock cycles. Thus, MC68000 performance
degrades more slowly than Z8000 performance for
memory speeds of at least 3 - 7, e.g., 250 nanoseconds
for a 12-MHz processor and 300 nanoseconds for a
10-MHz processor (see again Figures 7a and 7b).

April 1983

Comparing Figures 7a and 7b, we see that the Z8000 is
better suited to the display mechanism than to Tanen-
baum’s proposal, compared to the MC68000. The main
reason for this lies in the method of computation of the
base address of the lexical level, which is slower in the
MC68000. In the display mechanism, this operation is
performed at each variable access and thus requires
more operations in the MC68000. Again note that the

A Kra/Kp)
101
094
WORST ALGOL /
08 o o ———
BEST
07t
WORST PASCAL
06+ //—
BEST X
05 } } ri
0 200 400

Figure 5. Influence of memory speed x on Kya/Kp, for a
12-MHz MC68000.

4-34

best- and worst-case ratios do not differ much: The ex-
act performance ratio lies between tight limits. Similar
figures can be derived for an average Pascal program.

Similar conclusions can be reached in comparing the
Z.8000 to the i8086 (Figures 8a and 8b). One major dif-
ference is striking: The performance of the i8086 is
much poorer than that of the MC68000.

Since the 18086 and the MC68000 both need an equal
number of clock cycles for a data read (m,=4), and
since only the number of memory write cycles is dif-
ferent (m,, =4 for the i8086, m,, =5 for the MC68000),
the influence of memory speed on the execution-time
ratio Kycegooo/Kigogs is very small, as is shown in
Figures 9a and 9b. Note also that both processors are
equally suited to both addressing mechanisms.

Using the results shown in Figures 7, 8, and 9, I made
a global performance analysis and compared my results
with those from other studies. To obtain one pertor-
mance value for each processor, I averaged the perfor-
mances of all the programs in both languages with both
variable addressing mechanisms. I also used average per-
formance values from the studies by other reseaichers;
these values were obtained by averaging the perfor-
mances of all programs, normalized to equal processor
clock frequencies. Figures 10a and 10b show the mean
performance ratio of programs analyzed by Nelson and
Nagle,6 by Grappel and HemenwayS and adjusted by
Patstone,23 by Hunter and Ready, Inc.,24 and by Han-
sen et al.25 They also show an upper and lower bound
for my results. The upper bound is obtained by dividing

20+ 2 O'}
— BEST
] BEST
| h
15 WORST 154
WORST
10 10
T2 3'1 2 3V'1 2 3%4 R T2 311 2
@ DIGFD DIGFK DIGFP BUBBLE (b SPLIT TREE

Figure 6. Relative performance of the Z8000 compared to the i8086 worst case, with the display mechanism im.
plemented for Aigol programs (a); relative performance of the MC68000 compared to the i8086 worst case, with

Tanenbaum’s mechanism implemented for Pascal programs (b).

A Kz8000/ Kmce8000
12 +
10 +
WORST
BEST - x
08 t + —
0 200 400 ns

(a)

j\ Kz8000/ KmCe8000
12

WORST
+ BEST

0 8——+—————+——+—4

EY B

(b)

Figure 7. Kzs000/Kmcesooo @s a function of the memory speed x for the display mechanism on 4, 8, 10, and 12-MHz pro-

cessors (a) and for Tanenbaum’s proposal on 4, 8, 10, and 12-MHz processors (b).

IEEE MICRO

4-35

A K g Ksige A Kz8000/Kigoss
0914+ 094+
071 07 worsT

WORST REQT
T BEST T
X X
05 A——t—+—+—1 ——f—t—t—t— T A R et
(a) 200 400 S (b) 0 200 400 ns

Figure 8. Kzgo00/Kigoss as a function of the memory speed x for the display mechanism on 4, 8, 10, and 12-MHz pro-
cessors (a) and for Tanenbaum’s proposal on 4, 8, 10, and 12-MHz processors (b).

A Kncsgoon”Kigose A Kmces000/ K goss
081 08+
WORST WORST
BEST
071 07 F5eeT
X X
06 et et > 0 64+—+—+—+—f—+—+——+——+— >
ns ns
@ O 200 400 ®) 200 400

Figure 9. Kmcesooo/Kisoss as a function of the memory speed x for the display mechanism on 4, 8, 10, and 12-MHz pro-
cessors (a) and for Tanenbaum’s proposal on 4, 8, 10, and 12-MHz processors (b).

20 207

-W UPPER

BOUND
UPPER

BOUND LOWER

15— 1 5 BOUND
LOWER
BOUND

"o NAGLE ~GRAPPEL HUNTER HANSEN OUR ' 0~NAGLE ~ GRAPPEL HUNTER OUR

(a) STUDY (b) STUDY

Figure 10. Relative performance of the MC68000 to the i8086 as determined in five studies (a); relative performance of
the Z8000 to the i8086 as determined in four studies (b).

April 1983 .
4-36

the best-case results for one processor by the worst-case
results for the other. The lower bound is similarly ob-
tained by dividing the worst-case results for the first pro-
cessor by the best-case results for the second processor.
The real performance ratio will always lie in the range
defined by these bounds. Note that there is a great
resemblance among the studies, even when my perfor-
mance figures include only the times to execute pro-
cedure and block entry/exit and perform variable ad-
dressing in high-level-language programs. This proves
that the results from an analytical model provide great
accuracy.

The results can also be combined to provide a
cost/performance analysis. Figure 11 shows a global
comparison of the three processors with a set of possible
clock frequencies. (We assume that each processor is or

5 54

f RELATIVE PERFORMANCE
B

s 18086

MC68000
= 78000

B = BEST

W = WORST

b
20 8<B }
4-<W ‘_‘I
o v?/ N
R
1! 8
10 i = T
1]
1] X
T T T T T e
100 200 300 400 500

Figure 11. Relative performance of the three 16-bit micros as a func-
tion of the memory speed x.

will be available with a 4, 8, 10, or 12-MH/ clock.) The
results depicted are for an average Pascal program hav-
ing the display mechanism, but similar results will be ob-
tained for an average Algol progitam and/or Tanen-
baum’s proposal. Even when programs producing dif-
ferent statistics are used, the results will be similar.
Thus, various microprocessor system configurations will
yield a relative performance of, say, 3.5: a 12-MHz
78000 with 395-nanosecond memory, a 12-MHz MC68000
with 445-nanosecond memory, a 10-MHz Z8000 with 380-
nanosecond memory, or a 10-MHz MC68000 with 415-
nanosecond memory. These solutions are for the worst-
case model.

By taking a set of processors T, with a memory speed
xwy, we can find the lowest-cost configuration, depend-
ing on the cost of the processor P;, the cost of the
memory My, and the size of the memory S. The pro-
cessor cost Py is a function of the processor type Ty,
which is characterized by the manufacturer /m; and the
clock frequency fy—thus, Py =P(my, f;). The memory
cost My is a function of the memory speed xwy, i.e.,
My =M(xwy). Thus, for each possible configuration k
we obtain a cost figure Cy:

Ci=P(my, fy) + S - M(xwy). (13)
The lowest-cost processor/memory configuration will
have the smallest Cy.

Since we used the worst-case model to obtain the
memory speed xwy, we can be sure that the relative per-
formance will be at least minimally acceptable, since the
real performance value will always lie in the range [worst
case, best case]. Systems using memories with a speed
xby obtained under the best-case model can also have
the same performance figure, even with a slower
memory, since xby > xwy. For instance, a relative perfor-
mance of 3.5 can be provided by a 10-MHz MC68000
and a memory with access time of 540 nanoseconds
(>415 nanoseconds), if the best-case results are taken.
Since the memory is slower, the cost will be lower.
However, given a memory speed xby, it cannot be
guaranteed that the performance will actually have the
value in mind, since the figures are obtained under best-
case models and the real performance value can thus be
smaller. The choice of memory speed depends on wheth-
er the application is time-sensitive. If it is, the worst-case
speed xw; must be used to ensure that the desired per-
formance will be obtained. If the application is cost-
sensitive rather than time-sensitive, the best-case speed
xby must be used, since it always results in a cheaper
configuration than if the worst-case speed is used. Of
course, this approach cannot ensure that the desired per-
formance will be obtained.

We have analyzed the performance of addressing
mechanism implementations for block-structured high-
level languages. The performance measure defined here
can be written as a (scalar) product of three arrays, each
array depending on one parameter set. These three sets
are completely independent—that is, they comprise
technological, architectural, and program-statistical sets.

IEEE MICRO

4-37

This model provided a basis for comparing, in three
contemporary 16-bit microprocessors, the implementa-
tion of the traditional display mechanism to the im-
plementation of the mechanism proposed by Tanen-
baum. A best/worst-case analysis overcame the lack of
information about the microcode and its relationship to
nstruction prefetch behavior.

The performance figures presented here were consis-
tent with one another and with those derived in other
studies. They showed that Tanenbaum’s proposal pro-
vided a uniformly better performance than the display
mechanism. The figures aiso indicated the relative per-
formance of the three microprocessors—the Z8000 did
the best, the MC68000 the second-best, and the i8086
the worst. These results agreed well with earlier data.
The methods presented here also showed how to deter-
mine the influence of memory speed on performance,
and how the results could be used to obtain a cost/per-
formance figure. l

Acknowledgment

The author wishes to thank Dr. J. Van Campenhout
for his many helpful comments and for his thorough
proofreading.

References

1. D. Fenari, Computer Systems Performance Evaluation,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

2. W. E. Burr and R. Gordon, “‘Selecting a Military Com-
puter Architecture,”” Computer, Vol. 10, No. 10, Oct.
1977, pp. 16-23.

3. S. H. Fuller and W. E. Burr, ‘“Measurement and Evalua-
tion of Alternative Computer Architectures,”” Computer,
Vol. 10, No. 10, Oct. 1977, pp. 24-35.

4. W. B. Dietz and L. Szewerenko, ‘‘Architectural Efficien-
cy Measures: An Overview of Three Studies,”” Computer,
Vol. 12, No. 4, Apr. 1979, pp. 26-32.

5. R. D. Grappel and J. E. Hemenway, ‘‘A Tale of Four
Micros: Benchmarks Quantify Performance,”” EDN,
Apr. 1, 1981, pp. 179-265.

6. V. P. Nelson and H. T. Nagle, ‘Digital Filtering Perfor-
mance Comparison of 16-bit Microcomputers,” IEEE
Micro, Vol. 1, No. 1, Feb. 1981, pp. 32-41.

7. L. J. Shustek, ‘‘Analysis and Performance of Computer
Instruction Sets,”” PhD thesis, Stanford University, Stan-
ford, CA, 1978.

8. A. Lunde, ‘“Empirical Evaluation of Some Features of
Instruction Set Processor Architectures,”” Comm. ACM,
Vol. 20, No. 3, Mar. 1977, pp. 143-153.

9. A. P. Batson, R. E. Brundage, and J. P. Kearns, ‘De-
sign Data for Algol 60 Machines,’’ Proc. 3rd Ann. Symp.
Computer Architecture, 1976, pp. 151-154.

10. A.S. Tanenbaum, ‘‘Implications of Structured Program
ming for Machine Architecture,”” Comm. ACM, Vol. 21,
No. 3, Mar. 1978, pp. 237-245.

11. R. P. Blake, ‘“Exploring a Stack Architecture,”” Com-
puter,Vol. 10, No. 5, May 1977, pp. 30-38.

12. E. W. Dijkstra, ‘‘Recursive Programming,”’ Numerische
Math, Vol. 2, 1960, pp. 312-318.

13. M. L. De Prycker, ‘A Performance Analysis of the Im-
plementation of Addressing Methods in Block-structured

April 1983

Languages,” [EEE Trans Computers, Vol. C-31, No 2,
Feb 1982, pp 155-163.

14 The 8086 Famulv User's Manual, Intel Corp, Santa
Clara, CA, 1979

1S Z8000 CPU Technical Manual, Zilog Corp , Cupertino,
CA, 1980

16. MC68000 AMicroprocessor User’s Manual, Motorola
Semiconductor Products, Inc , Phoenn, AZ, 1979

17 M L De Prycker, “Representing the Etfects of Instruc-
tion Prefetch in a Microprocessor Petformance Model,”"
to appear in I[EEE Trans Computers

[IF Algul, Hewicu-Fackard Co., Cuperuno, CTA, i571.
Pascal for PDP-11 Under RSX /1S, Tech. Report S-126
25, L.M. Ericsson Co., Stockholm, Sweden, 1979

20. K. Jensenand N Wirth, Pascal User Manual and Report,
Springer Verlag, Berlin, 1976.

21. A. V. Aho and J. D. Ullman, Principles of Compiler
Design, Addison-Wesley, Reading, MA, 1977

22. M. L. De Prycker, “On the Development of a Measure-
ment System tfor High-Level Language Pirogram
Statistics,”” /IEEE Trans. Computers, Vol. C-31, No 9,
Sept. 1982, pp. 883-891

23. W. Patstone, ‘‘16-bit Micro Benchmarks: An Update
With Explanations,”” EDN, Sept 16, 1981, pp. 169-203.

24. Hunter and Ready, Inc., ‘“‘Executive in ROM Fits 8086,
68000, Electromics, Jan. 27, 1982, pp. 134-136.

25. P. M. Hansen et al., *‘A Performance Evaluation of the
Intel iIAPX 432, Computer Architecture News (ACM
Sigarch newsletter), Vol. 10, No. 4, June 1982, pp. 17-26.

S o

Martin De Prycker 1s a systems engineer
with Bell Telephone Manufacturing Com-
pany, Antwerp, Belgium, where he 1s in-
volved in long-range development A
member of the ACM and the IEEE, he
received the MS 1n electrical engineering
in 1978 from the Umwversity of Ghent,
Belgium, and the BS and PhD in com-
puter science from the same university in
@ 1979 and 1982.

De Prycker’s address is Bell Telephone Manufacturing Com-
pany, EAS, Fr. Wellesplein 1, B2000 Antwerpen, Belgium.

4-38

A paged-memory management chip brings virtual memory to two
16-bit CPUs. Additionally, a coordinated bus structure makes
possible distributed-processing or multitasking, multi-user systems.

16-bit uPs get a boost
from demand-paged MMU

Faced with applications that demand large pro-
grams and extensive data manipulation, micro-
computer manufacturers are turning to virtual
memory management, an approach originally de-
veloped for minicomputers. A single chip uses
demand-paged virtual memory to expand the al-
ready large memory-addressing capabilities of two
new 16-bit microprocessors.

Running the software being developed for those
processors—the 8-Mbyte Z8003 and the 64-kbyte
7.8004—means using the latest techniques for effec-
tive memory management. The technique known as
demand-paged virtual memory, chosen for the
78015 paged-memory management unit (PMMU),
keeps the most frequently used codes in fixed-
length blocks in RAM, swapping them in and out of
disk storage to extend the range of addresses. Such
a scheme naturally leads to multitasking and multi-
user systems, since the time spent accessing a disk
can be used for other tasks. With the Z8015, for
example, the Z8003's 8-Mbyte logical address space
translates into a 16-Mbyte physical address space.

The Z8015 has the same address translation and
access protection features as the
Z8010 but is based on 2-kbyte pages
rather than the variable-length
segments used in the earlier chip.
Together, the Z8015 and the Z8003
(or Z8004) bring multitasking and
multiuser capabilities to the micro-
computer.

In addition, the Z8015’s access vali-
dation feature protects memory from
unauthorized or unintentional ac-
cess. The memory management unit

Richard Mateosian,* Marketing Manager
Zilog Inc.

1315 Dell Ave.

Campbell, Calif. 95008

*Now with National Semiconductor Corp.

Reprinted with permission of Electronic Design, May 26, 1983
Copyright 1983 Hayden Publishing Co., Inc.

also generates an Instruction Abort signal during
page faults and at the same time saves sufficient
status and information to restart or resume any
instruction after the fault is corrected.

One important application of virtual memory is
in disk-based multitasking systems. A system of
this type can be implemented easily with the Z8003
and the Z8015.

Virtual memory enables a system to execute pro-
grams that do not fit into its primary memory. In
order to accomplish this, a secondary storage
device—usually a disk—is required. When a disk
access is required, however, the program in
progress must be interrupted. This interruption can
cause large and unpredictable delays known as
paging overhead, which may become excessive be-
cause of the slow access time and transfer rates of
floppy disks. For a typical personal computer or a
small business computer, these delays might slow a
system sufficiently to make virtual memory man-
agement impractical.

Hard-disk systems, on the other hand, are faster;
therefore, the paging overhead will be shorter and

Computer

4-39

Computer System Design: MMU for 16-bit uPs

therefore acceptable. When a CPU must access a
rigid disk fairly often—a condition called
thrashing—even the comparatively fast disk can
produce too much delay.

Fortunately, the paging overhead of a virtual
memory can be minimized with multitasking oper-
ating systems that allow one task to run while an-
other waits for access to the disk. Such multitasking
operating systems can be single-user systems, like
MD/M or multinear svatama lila Tnix

4vax/ aviy ULl 330UiuiTUBUL Oy OUlLIigy 110U Uiiia.

Virtual memory and multiprocessors

A distributed processing system —such as a local-
area network or an intelligent terminal—places
computing power and data where they are used,
rather than at a central host computer. Supplying
each processor in such a system with its own semi-
conductor or magnetic memory would be pro-
hibitively expensive. Virtual memory management,
however, permits resources to be shared among all
the devices in a system.

The entire Z8000 family, which uses extensively
programmable VLSI components, is geared to dis-
tributed processing strategies. Furthermore, a vari-
ety of features built into the Z-Bus—the inter-
connection protocol that all Z8000 family com-
ponents are designed to use—reduces the chances of
bus conflicts and data collisions while multiple pro-

cessors are being employed.

One such feature is the Bus Lock Status signal
that accompanies a Test and Set instruction in the
78003 or the Z8004. That instruction prevents access
to a shared memory by another CPU or DMA con-
troller. In that way, two CPUs, using a flag (sema-
phore) stored in shared memory, keep track of
which processor currently has access to a resource.
The Bus Lock Status lets other potential bus mas-

tova Innur that o waaniiwan ia ahait +4 ha waninatad
WIS ANCW Whaav & IS0Urce is aoduv v O réqulsita.

The Test and Set instruction consists of two sepa-
rate bus cycles: a memory read, followed by a memo-
ry write (Fig. 1a). When asserted, the Bus Lock sta-
tus replaces Data Read during both cycles (Fig. 1b).

Given the general picture of how the Bus Lock
Status is used to implement semaphores, the ques-
tion of what applications can benefit from the dis-
tributed processing approach still remains. One an-
swer is peripheral controllers.

Software and memory management

Most complex peripheral devices are governed by
microprocessor-based controllers, and it is natural
for a controller CPU and the main CPU to commu-
nicate through a shared memory. In such a config-
uration, semaphore locations can be used to manage
access to message buffers, with the Bus Lock Status
being used to generate these semaphores.

Phase Test Set
Address/data
Semaphore Semaphore Semaph
address oomtonts address - Not available
smuaH
= Data Read Status X Data Write Status —
(a)
Phase Test
Address/data
< Semaphore Semaphore soma ho!
address contenh p . Not avallable
Status
] 0-3
_@ Bus Lock Status }—
RIW —Q Data Read X Data Write >—
(b)

1. To share any resource, multiple processors must first test a location in memory, called a
semaphore, during a Test and Set instruction (a). Access then depends on the semaphore’s
contents. In addition, a Bus Lock Status signal is issued (b). This signal keeps other

potential bus masters from accessing the resource while it is being tested by the controller.

4-40

In addition to controlling access to shared re-
sources, another aspect of virtual memory manage-
ment is handling faults: CPU requests to those
memory locations which are not in the physical
memory space.

Every memory management scheme involves
translating logical addresses into physical address-
es. Additionally, most schemes involve both access
checking—to prevent invalid accesses—and usage
recording to assist in implementing memory allo-
cation algorithms.

For example, consider the flow of control in a
simple virtual memory system. During the exe-
cution of the main program, if the CPU issues an
address that does not correspond to a physical
memory, the memory management unit attempts a

logical-to-physical memory address translation. At
this point, the microprocessor’s Wait input is
asserted and the memory management circuitry
performs the necessary actions, including all disk
accesses. Afterward, execution of the interrupted
instruction resumes.

There are, however, drawbacks to this approach.
First, the CPU is idle while the fault is processed
and must therefore be isolated from the bus if direct
memory access is used for memory management.
Second, the entire fault-processing action is carried
out by the memory management circuitry, without
help from the CPU.

In an alternative approach that is employed by
the Z8003 and Z8004, page faults are processed by
the CPU’s ordinary interrupt-handling mechanism

Fault information
read from MMU

.

Saved FCW and
PC contents modified
on stack if
necessary

saving of program
counter’s contents,
tlow control |
word (FCW), and 16-bit
code from MMU
on stack

PC and FCW
set for fault
1 routine I

Fault-producing
address given
a block of
physical memory
(disk, write, and read,
as necessary)

Interrupt return
instruction

______ —

[P! g
l Main program —I
Flow of control
O S el I O —
. @ 1 jl |
Automatic

!
|
I
I
|
[
|
|
I
|
|
L

Saved PC contents and
FCW (as modified) restored
from stack;
16-bit MMU code
discarded from stack

e

2. To use virtual memory efficiently, a CPU should take part in page-fault processing. in
most cases, however, it is much easier to simply disable the CPU and leave the job to a
memory management unit. In the 78000 family, the CPU and MMU share the burden by
running fault-processing software (block B) with the CPU’s normal interrupt routine (blocks

A and C).

4-41

Computer System Design: MMU for 16-bit uPs

(Fig. 2), which generates an Instruction Abort sig-
nal. The signal terminates the instruction that has
produced the fault before the contents of any regis-
ters are changed. After the fault is corrected, the
instruction can simply be restarted.

Because certain instructions perform multiple
memory transfers, a fault may occur that requires
more than a simple restart. For this reason, the
73015 is designed to monitor the execution of in-
structions and to provide accurate restart informa-
tion to the fault-processing routine. Thus, the fault-
processing software restricts itself to correcting the
fault and resuming execution. Here again, a benefit
of multitasking is in switching tasks when a page
fault is being processed—allowing another task to
run while the necessary disk accesses are in the
process of being carried out.

Multiprocessor systems

Not all multiprocessor or multitasking systems
are as complex as the one just described, nor are
they all shared-resource designs. Some coprocessor
systems, for example, have been designed to run Z80
software in systems based on microprocessors like a
6502, 8088, 68000, or Z8000.

Taking that approach one step further is a system
that uses a Z8003 with a Z80 and Z8015, plus dual-
ported memory, to run under both Unix and CP/M
(Fig. 3).

Since no memory management is used for the Z80,
only 64 kbytes of the memory must be dual-ported.
The remainder needs to be accessible only to the
CPU. However, with memory management there is
no difficulty in extending the design to accommo-
date a multitasking version of CP/M. Tn that. ease,
as much memory as is needed in a particular appli-
cation must be dual-ported.

The system forms the nucleus of a high-end per-
sonal computer that runs Unix on the Z8003 and
CP/M on the Z80. In operation, a CP/M task is ini-
tiated through Unix, and a Unix task accepts an I/0
request from the CP/M program running on the
microprocessor, carries it out, and signals its com-
pletion to the system.

The dual-ported memory is a shared resource and
is controlled using semaphore locations in memory.
As described above, a Bus Lock Status issued during
the read cycle of the Z8003 Test and Set instructions
protects semaphore locations from access by the
associated Z80 microprocessor.

Unix CP/M
8-bit

Dual-
ported
memory

28015
Zggga paged-memory
management
unit

280 CPU

Disk
controller

Winchester
disk

Counter-timer Serlal
communications

controlier

an
parallel 1/0 unit

Parallel
Serial
ports ports

3. Using multiprocessor features and a shared 84-kbyte dual-ported memory, a Z8003 and a
Z80 can form the heart of a CP/M- and Unix-based microcomputer. Such a system would
use a Share semaphore and a Message flag in a shared-memory to carry out a handshake.

4-42

Computer System Design: MMU for 16-bit uPs

The 64-kbytes of dual-ported memory can run on
the Z8003 under Unix. It is controlled by the Share
semaphore—a mechanism that can be easily mod-
ified to cover multiple blocks of dual-ported memo-
ry. The Share semaphore is used only for Z8003
tasks to control access to the CP/M facility (Fig. 4).
In addition, a Start semaphore initiates I/0 re-
quests, utility calls, and the Done signal that are
passed from the Z80 to the Z8003 by means of a
message buffer register.

A Message flag is used for handshaking with this

and clearing Message.

The Start semaphore indicates that the Z80 is
executing programs in the shared memory and is set
by the Z80 only during its power-on initialization.
Following that, the Z80 microprocessor only clears
the Start flag. Subsequent setting is done by the
78003 whenever a Z80 program has been loaded into
the dual-ported memory of the system and is ready
to run the program’s instructions. After executing
the program, the Z80 clears the Start flag.0

buffer. That flag is set by the Z80, which then waits How useful? Circle
for it to be cleared before proceeding. The Z8003 Immediate desian application 553
clears Message before setting the Start semaphore. Within the n extgyeaf P 554
Thereafter, its principal loop consists of waiting for Not applicable 555
message to be set, performing the requested task,
Task Power on
created
semaphore (other
tasks can run)
i
Wait at Start
semaphore (other
« Load CP/M program Wait for Start
into shared memory semaphore set
o Clear Message flag
o Set Start semaphore - |
'l Execute CP/M .
W'al.}l ‘:M" :ﬁest;:” Ordinary ‘
r
!agsksszn(ﬁun) Instructions o request %:gt/ o
? utility call
Pl t i
Esaing st o wcereestn | [pacepons
" What kind ~I‘«q‘ buffer
1/0 request Done *
utlllt‘;/f call Set "1:;"99 Set Message
flag
Perform . CIearﬂMessage * '
requested a9 Wait until Wait until
*Clear Shart
task se:"a' ohor : Mm:f:a :Iag is Mess:ghz :lag is
Clear Message Task
flag complete
—l (a) (b)

4. Tasks running on the Z8003 (a) and the Z80 (b) communicate and synchronize their
activities through the message buffer, the message flag, and the Start semaphore. The
Share semaphore is used only in the Z8003 to allow its tasks to share access to the Z80

and the dual-ported memory.

4-43

As memory spaces for microcomputers grow, linearaddressing gets
cumbersome and error-prone. Segmented addressing solves these
problems efficiently, while anticipating 32-bitaddresses.

Segmentation advances
©C memory addressing

As a memory model, linear addressing has always
presented problems for microcomputers. In addition PROGRAM PROGRAM
to invalid accesses, traditional micros have faced
four major difficulties: accommodating objects
whose sizes vary (e.g., stacks or lists); creating and
deleting objects dynamically, causing memory
fragmentation; relocating objects after the loader
has established linkages among them; and sharing
objects among otherwise independent processes. All
five major problems—which have increased ex-
ponentially as systems have grown—can be avoided
by using the abstract addressing model provided by

ARRAY
1

LOADER

STACK

PROGRAM
1

segmentation and implemented in the Z8000 CPU
and its memory-management unit.

Segmentation organizes the address space into a
collection of independent objects corresponding to
the largely separate but interrelated objects found
in a typical programming situation. This method
works for addressing somewhat like a high-level
language: The programmer need not worry about the
computer memory’s physical implementation. Lin-
ear addressing, on the other hand, corresponds to
a machine language: The model used for the
computer’s memory is very close to its actual hard-
ware implementation. Examining some memory-
addressing tasks that confront programmers will
illustrate the trouble with this “machine language”
strategy.

In general, a programmer deals with a variety of
objects and their interactions. Depending on how

PROGRAM
2

ARRAY
1

STACK

’ A) .
“fine-grained” the picture is to be, a programmer ; ,raditional relocating loader puts the objects that make
could be said to deal with just two objects, the upaprogram sequentially into memory space.

program and the data. Or, at the other end of the
scale, he could be said to deal with a multitude of
objects—listing separately each instruction and
datum. Between these extremes lies the typical
programming situation dealing with largely separate

Richard Mateosian, Senior Microprocessor Specialist
Zilog Components Div.
10460 Bubb Rd., Cupertino, CA 95014

Reprinted with permission of Electronic Design, February 19, 1981
Copyright 1981 Hayden Publishing Co., Inc. 4.45

Segmentatlon

but interrelated objects. A chess-playing program,
for example, might include:

» Chessboard display program

= Representation of the current position

= Program to generate legal moves

= Routine to evaluate moves

» File of previously evaluated positions

= Handling routines for the previous-position file

a Program to study published games.

This software might run under the control of an
operating system, which can also be divided into
objects:

s Task scheduler

s Memory allocator

» Secondary-storage interface routines

s Terminal interaction routines

= Process status table

» System stack

= User-process status tables.

Usually, portions of the computer’s memory are
allocated to each of these objects. A relocating loader
might pack the programs together end to end and
then allocate fixed areas for data, also end to end,
in memory not occupied by the programs (Fig. 1).
In the earliest computers, each object received an
address directly related to—in fact, usually the same
as—the actual memory address at which it was
stored. These addresses were all numbers in the
range 0 to N—1, where N was the total number of
memory locations available. Every program that
wanted to access any of these objects had to use these
addresses. As a result, one problem that has always
affected linear addressing is invalid accesses.

This hassle occurs even in the smallest systems
and on the smallest computer—a program er-
roneously uses an address as if it belonged to a
certain object. For example, if an array is 1024 bytes
long and a program erroneously refers to its 1025th
byte, then the reference will actually be to the first
byte of the object stored in memory immediately
following the 1024-byte array. If the erroneous access
is a store operation, then the object following the
array will have been damaged (Fig. 2).

Problems stack up

Trouble also crops up with the use of stacks. A
common approach in a single-user system is to
allocate the lowest memory values to programs and
data and the highest ones to a stack, since the push
and pop instructions on most computers are designed
to make stacks grow “backwards” in memory. The
first item placed on the stack is at the highest-
numbered address, and the “top” of the stack is at
the lowest-numbered address. If program changes
cause the program and data areas to expand, less
and less remains for the stack. Sooner or later, a

4-46

Program

STA array X

2. The program executes a store-into-array, using
an out-of-range index. The resultis an invalid
access that wipes out part of the program.

Lowest address

Program
and
data

Next element pushed
goes here

et Highest address

3. Program and stack usually grow into memory space from
opposite ends. Eventually, they may collide.

stack push will cause the stack to overflow its allotted
area and destroy programs or data (Fig. 3).

Such problems are often attacked by creating an
“envelope” around the accesses in question. For
example, instead of using the computer’s indexing
capability to access arrays directly, the program
might call a subroutine that accepts the index and
the identity of the array as arguments and returns
a validated memory address for fetching or storing.
(The routine might handle the actual fetching or
storing as well.) In either case, the routine would
validate an access by using the array identity as a
key to a set of array attributes, including the array’s
length and location in memory.

In the case of a stack, a similar envelope would
be placed around pushes and pops. Rather than use
the machine’s push and pop instructions, the pro-
gram would call subroutines for these operations,
generating a large software overhead.

Handling invalid accesses

Another type of invalid access occurs when several
programs or sets of data—not necessarily related to
one another—share memory locations. As a result,
a program’s accesses might be restricted either to
its own subroutines and data, or to portions of
memory containing data or subroutines that it
shares with another program and to which it is only
allowed certain kinds/of access (such as “read only”
or “execute only”).

All the discussed software envelopes can be ex-
tended to shared-data access, but it is difficult to
place such envelopes around program accesses.
Furthermore, these envelopes are voluntary; that is,
a programmer who wishes to avoid them can usually
obtain the information needed to make the accesses
directly. To guard against such conflicts, hardware
solutions such as limit registers have been in-
troduced.

For example, the operating system might set
registers defining the limits of a program ready to
run at locations 10000 through 19999. In that case,
the program is free to make references of any sort,
8o long as the address used lies within the given
range. An attempt to call a subroutine at any higher
address, say at location 20000 would result in a
“trap,” and control would be returned to the operat-

ing system.

An envelope around push and pop instructions
could detect invalid accesses before they occurred,
and provide an alarm—but this is not a solution.
Figure 3 shows only one stack that doesn’t run out
of memory until the entire memory is exhausted.
However, if many stacks must be managed, it might
be best to assign a small amount of memory to each
stack and then expand those that were about to
overflow (Fig. 4). If all accesses to stacks go through
the envelopes that surround the push and pop in-
struction, the stack can be “continued” elsewhere in
memory. Through this operation, the gap in the
actual memory addresses between the last location
of the original stack and the first location of the
extension will be completely concealed from the
program using the stack.

Unfortunately, the way in which stacks are or-
dinarily used is not well suited to_this approach.
Frequently, a program is allocated a block of stack
space, which it then accesses via “based” addressing
—i.e., the actual memory address of the first location
of a block of stack space is kept in a register, and
accesses into the block are made by adding an “index”
(obtained, for example, from an instruction) to the
“base” address in the register. This common practice
is incompatible with the existence of gaps in the set
of addresses assigned to the stack.

The traditional solution is to allocate a larger
contiguous block of memory to the enlarged stack
—either by moving the stack to another part of
memory or by moving something else out of its way
so0 that it can be expanded where it is. This approach

Program |— — — PusH/POP
usin
PUSHIPOP envelope

b — —

Program

addressing

Basea-addressing
references to
L. . __J=— thislocationare

- actually meant

j«¢— for here

4. ArusHpoprenvelope conceals the allocation of the stack Into different segments. Lack of

such an envelope for based addressing invalidates this scheme.

4-47

Segmentation

has two inherent problems. For one thing, moving
objects around in memory and keeping the unused
memory all in one place increase the processing
overhead. For another, all those base addresses for
blocks of stack space that the program has in
registers or in storage must be exchanged. Save for
the most elementary cases, this obstacle is almost
insurmountable.

When no memory-management facility is avail-

2enn?ind do blan ndadla walann

uuw, the Prograiiiner is limited to the static reloca-
tion provided by a relocating loader.
Accommodating objects whose sizes vary leads to
yet another problem: creating and deleting objects
dynamically. It arises even in the simplest single-
user systems—for example, “initialization” code
might be abandoned after its first execution and the
space given to a large data array. Here, too, the
difficulties mount rapidly as the system becomes
more complex. Because of the difficulty in relocating
addresses, objects that should be moved to keep
unused memory together often are not. The unused

1st
object
e — - —
7th
2nd object
object 4
— ———]
3rd
object Hard-to-use
fragment
4th 8th
object object
abandoned
No continuous
space available
5th
object
6th
object

5. Memory gets fragmented when some original
objects are abandoned. Aithough there are
enough memory locations leftfor object 8, not
enough are contiguous to accommodate that
object.

memory soon becomes fragmented, which makes it
increasingly difficult to find contiguous blocks big
enough to accommodate newly created or expanded
objects—even when the total amount of unused
memory suffices (Fig. 5).

Up to now, the only “solution” has been to leave
management of the assigned memory to the user
program. The user is provided with tools like chain-
ing commands and overlay structures in some sys-
tems but, by and iarge, ihe creaiion and deieiion of
objects are simply treated as part of the algorithm
implemented by the program.

Relocation Is no easy task

After the loader has established links among
program parts, it becomes almost impossible to move
any of these parts. A hardware solution has been
provided at several levels.

Dynamic relocation, which occurs after initial
program loading, requires a mechanism that allows
actual addresses to be determined at run time. One
solution is provided by various kinds of based ad-
dressing, usually in the form of relative addressing:
Calls, jumps, and loads of program constants are
specified by an offset that is added to the actual
program-counter value. Data references, too, are
made via offsets that are to be added to a stack
pointer or other address register. Relocation by based
addressing is called “user-controlled” relocation,
since the running program controls setting of the
stack pointer or of another address register.

From the standpoint of reliability, “system-con-
trolled” relocation is usually a better solution. Its
simplest form, memory mapping, is a translation
mechanism that converts the addresses used by the
running program (logical addresses) into the actual
memory addresses (now called physical addresses).
With memory mapping, the program always uses a
fixed set of addresses, and relocation is achieved by
a change to the translation mechanism. For example,
a translation mechanism for a value set into a base
register automatically adds that value to any address
used in the program. This approach is similar to
based addressing, which, however, uses an explicit
reference to the base register in the instruction. In
memory mapping, the base register is used to trans-
late addresses completely independently of the pro-
gram that generates them (Fig. 6).

One natural outgrowth of memory mapping is a
mechanism for sharing objects among otherwise
independent processes, even though the mapping
mechanism must be more sophisticated than a
simple base register. If different blocks of logical
addresses are mapped independently of one another,
a program or data area in physical memory can
correspond to different logical addresses for dif-

4-48

ferent processes. Thus, the shared program or data
can reside at a convenient location in the logical
address space of each process. And the mapping
mechanism will cause references from each process
to be mapped by that process’s mapping scheme into
the given physical locations.

Segmentation offers better solutions

Memory mapping, which provides the means for
dealing with two major problems plaguing linear
addressing, ironically must be part of any
segmented-addressing scheme, since physical memo-
ries are not usually organized in segments. Moreover,
all five major problems stemming from a linear-
addressing model can be avoided.

The segmented addressing model assigns to each
object in the address space a “name” that is really
a binary number. Calling it a name emphasizes that
there is norelation between objects regardless of any
numerical relationship between their “names.”

In the chess-playing example, the chessboard dis-

play program could be assigned the name *“1,” the
current-position representation could be “2,” the
legal-move generation program could be “3,” and so
forth. The address of any location within the
chesshoard display program would then consist of
the name, 1, and an address within object 1’s linear
address space. If this program occupied 2048 bytes,
then the addresses within object 1 would range from
(1, 0) to (1, 2047). The length of 2048 bytes would
be an attribute of object 1 and the mechanism
responsible for the interpretation of segmented ad-
dresses would cause an appropriate error indication
if an address like (1, 2049) or higher were ever used
(Fig. 7).

Consider the case of the current-position program
—object 2 in Fig. 7. Suppose that this representation
takes the form of an array of 256 bytes. The addresses
of these bytes would be (2, 0), (2, 1)... (2, 255). One
way to refer to items of this array is indexed
addressing. The address of the desired item would
be specified by giving the array base address of

[} 0

“Logical”
addresses

K+M-1

Actual
addresses

6. Memory mapping becomes simple with abase register:
Its “value” Is automatically added to the logical addresses.

3 Error indication °

[
JMP to
(1LM+1)
1 of ! Seg;nem
M-1
Attributes
of segment 2
[}
Fetch
(3,K-2)
2 of seg 3 2
Lt
Fetched
value Seganent
Segment
3
K-1

7. With segmented addressing, the attributes of all objects
are known, and error messages prevent an lilegal access
before it can do any harm.

4-49

Segmentation

(2, 0) in one place—say, in the instruction or in a
register—and an index (also called an offset) in a
register. The index is simply a number to be added
to the second component of the segmented address.
If the index were 17, then the item address would
be (2, 17); the address manipulation cannot affect
the object-name portion of the address, only the
linear address within the object.

In obJect 1 of Fig. 7—the display program—the

lllc\alldlllﬁlll Avoyuumb‘u: f\ll Gddl UDa 'nuwxpn CDGI:AVII
performs a similar computation for addressing rela-
tive to the program counter. If the program contains
a branch to “current location + 1264,” for example,
then the offset given in the instruction is applied to
the second part of the address. If the call were made
from location (1, 562), then adding 1264 to 562 would
yield (1, 1826).

Preventing Invalid accesses

Suppose that a programming error causes the
current-position representation array to be ad-
dressed with an index value of 257. In a linear
addressing scheme, the result would be a reference
to the second byte of whatever object follows the

23-BIT LOGICAL ADDRESS

0 15 87 0

l SEG NO IL OFF:SET J

- - — - —

SEGMENT
DESCRIPTOR
REGISTER

23 N~ 8 23 16N\ "

|
|
I
|
|
I
| 8
: FASE Aoomsss] [00 I I
|
|
|
|
|

~~
24-BIT PHYSICAL ADDRESS

8. The Z8000's memory-management unit(MMU)
speeds up address transiation by forwarding the
low-offset byte directly, while adding the high byte
tothe segment value in hardware.

4-50

current-position representation array in memory. If
the legal-move generation program happened to
follow the array in memory, half of its first word
would be overwritten. With segmented addressing,
the mechanism that interprets addresses would dis-
cover that (2, 257) is incompatible with the declared
length of the array (256 bytes); an appropriate error
indication would be generated.

Once the mechanism to check accesses against

JE R PRI [P AP stablished ittaloshut
acciaica UIJJG\A: BA&U naa uvcn wﬂwullollvu’ 1A

a small step to add the checking of other object
attributes. Problems like protecting one process’s
data or program from accesses by anether process
or allowing “read only” or “execute only” accesses
to a section of data or program can be solved by
checking attributes associated with the objects in
question. A write into a “read-only” object, a user
access to a “system-only” object, and other such
invalid accesses can be identified and prevented.

This capability is available in the segmented-
addressing model built into the Z8001. Its 32-bit
addresses contain two fields, the segment-name field
and the “offset”; the latter is added to the physical
memory address of the segment “base” to obtain the
physical address of the element in question (Fig. 8).
For example, if segment 5 has a base address in
physical memory of 1024, then the physical memory
location addressed by the segmented address (5, 26)
is 1050, because 1024 + 26 = 1050.

Enter the memory manager

The Z8001 is designed to work with an external
circuit called a memory-management unit (MMU),
which keeps track of the base addresses correspond-
ing to the various segments, and computes the actual
physical addresses. This MMU can also associate a
variety of attributes with each segment, so it can
perform the corresponding access checking and gen-
erate an error interrupt (called a “segmentation
trap”) in the event of an invalid access.

Another feature of this implementation is that
seven bits have been assigned to the segment-name
field and 16 bits to the offset. The result is up to
128 segments, each of them presenting a linear
address space of 64 kbytes. Furthermore, the ex-
ternal MMU circuit is designed only to translate the
uppermost eight bits of the offset; the eight low-order
bits are passed directly to the physical memory.
Consequently, all segment-base addresses in physi-
cal memory must be a multiple of 256 (since the eight
low-order bits are zeroes), and the size of a segment
—one of the attributes that the MMU checks—must
be a multiple of 256 bytes.

One problem with the Z8001's segmentation
scheme is that no object can exceed 64 kbytes in size
unless it consists of more than one segment. For-

tunately, this rather infrequent problem can be
solved by software with very little overhead. For
example, to access the byte with an index kept in
R3 of the array whose base is in RR2, one must replace
the instruction

LD RL1, RR2 (R4)
with the sequence

EXB R4 Imove high-order index to
segment field!
ADD R3, R5 ladd low-order index to

offset field!
ladd (w. carry) high-order
index to segment field!

ADCB RH2, RH4
LD RL1, @RR2

where RR4 takes the place of R3. These instructions
place several segments “end-to-end” and treat the
segment name like a number.

However, the MMU implementation has a twofold

TOP OF STACK
MEMORY
ACTUALLY
ASSIGNED
NON-FATAL
STACK WARNING
OCCURS ON REFERENCE
64K TO THIS AREA
BYTES 256
BYTES
| |
| |
| |
| |
| |
| |
BASE l !
OF SEGMENT—»— — —]

9. When data begin to fill the top 256 bytes of assigned stack
space, a nonfatal warning is generated to prevent possibly
destructive overfiow.

speed advantage:

1. Since the segment-name field is not involved
in the address computations of indexed, based, or
relative addressing, this field can be output to the
MMU one cycle earlier than the offset portion of the
address, thus giving the MMU a one-cycle head start
on the address translation.

2. The eight low-order bits of the offset, which go
directly to the memory untranslated, are the bits
needed first by the memory, which enables the
memory to get a small head start on the transaction.

As a result, an external MMU circuit entails very
little time penalty in memory addresses. The true
independence of the segment-name field from the
offset in all address computations means that off-
chip memory mapping can be achieved with very
little overhead.

The architectural advantage of the Z8000 family
becomes clear by comparing its economical im-
plementation with the method by which a non-
segmented CPU might achieve memory man-
agement. Undoubtedly, the approach will take the
form of paging.

In a paged system, the uppermost bits of the linear
address are treated like a segment-name field after
the address computation is complete. Until the
computation is complete, these bits are treated like
part of a monolithic linear address—they can be
changed in the course of the computation. Thus,
while a paging scheme permits memory mapping and
attribute checking, it suffers from many of the
problems of linear addressing. In addition, it cannot
achieve the overlap of MMU and CPU computational
time that is available via the Z8000’s segmentation
scheme. The only antidote to the computation over-
head of an off-chip MMU for a linear-addressed
machine is to design an on-chip MMU; but with the
current technology, this approach is likely to require
the sacrifice of other features.

One more noteworthy point to be made about the
way the Z8001/MMU combination implements
segmented addressing concerns the use of stacks. The
most difficult problem associated with dynamically
expanding stacks involves the correction of pointers
into the stack when a stack is moved to another
location. Naturally, this problem goes away with
memory mapping, since the logical addresses of the
locations already used on the stack don’t change
when the stack is physically relocated in memory.
Furthermore, the MMU accepts as one of the at-
tributes of a segment that it is to be used for a stack.

Consequently, as Fig. 9 shows, a nonfatal stack-
warning interrupt occurs when the stack is nearly
full—i.e., when an access is made into the last 256
words allocated to the stack. Moreover, the employed
method for memory-address computation and size

4-51

Segmentation

specification takes into account that stacks grow
downward in memory, from the highest addresses
toward the lowest.

Segmented vs linear

Just as there are some who argue that higher-level
languages are “inefficient” and deny the program-
mer the total control of assembly-language program-
ming, a few designers adamantly reject segmenta-
tion and cling to linear addressing. In fact, their
argument has some merit. Just as high-level lan-
guages may be inappropriate for very small systems,
segmentation may represent overkill in a small
memory space. The Z8000’s answer to this problem
is to provide segments large enough to accommodate
a small application completely in one segment. One
of the Z8000’s addressing modes consists only of
offsets, so that no references occur outside the 64-
kbyte linear address space of one segment. In fact,
for such applications, a smaller package is available
that lacks the eight pins dedicated to segment-name
output and segment-error interrupt input; this
smaller version cannot enter the segmented mode of
operation at all.

Drawing the line

Where does one draw the line between systems
that are too small for segmentation, systems in
which segmentation is desirable but inessential, and
systems that are so large that segmentation is
mandatory? It is a matter of judgment. The Z8000
architecture provides a 16-bit linear address space;
in its 23-bit address space, clever, well disciplined
programmers can handle unrestricted linear ad-
dressing; in its ultimate 382-bit address space,
segmentation is undoubtedly the only viable ap-
proach.

This concern for the future expansion to 32-bit
address spaces greatly influenced the decision to use
segmented addressing in the 23-bit version. The
Z8000 represents a break from the architecture of
the Z80; it seemed shortsighted to ask designers
moving from 8-bit to 16-bit or 23-bit systems to face
one architectural break today and another in a few
years (not to mention the huge investment in
already-developed software). By developing his sys-
tem around a Z8000, a designer will not have to face
another architectural upheaval when segmentation
is introduced—which, if the address space increases
to 32 bits, seems inevitable.OO

4-52

Initializing the Z8001 CPU
for Segmented Operation
with the Z8010 MMU

Zilog

Application
Note

September 1981

INTRODUCTION

This application note explains how a Z8001 CPU, to
which at least one 78010 MMU 1s attached, 1s 1ni-
tialized for segmented operation. Described are
the specification of the 1initial CPU status to be
established 1n response to RESET, execution of the
first program out of unmapped memory, and imitial-
1zat1on of the first, and possibly the only, MMU.

While an attempt has been made to make this appli-
cation note self-contained, a general familiarity
with the Z8001 CPU and the 78010 MMU 1s assumed.
For further details, the reader 1s referred to the
technical manuals describing these components
(Z8000 CPU Technical Manual, document #00-2010-C,
and 28010 MMU Technical Manual, document #00-2015-
A).

INITIALIZING SEGMENTED PROGRAMMING

In response to a RESET signal, the Z8001 CPU
establishes the CPU status specified in locations
2 through 6 of segment 0 (see Figure 1). Mean-
while, the Z8010 MMU, which 1s assumed to be con-
nected to the CPU as shown 1n Figure 2, enters a
state in which 1t passes the SNg-SNg and AD45-ADg
lines directly through to its Ay,-Ag address out-
put lines and asserts a 0 on Ap3z. The practical
effect of this 1s that the first 1initialization
instructions to be executed are taken from speci-
fic addresses 1n physical (unmapped) memory.

Operation of the 78001 CPU 1in segmented mode
depends on the setting of the SEG bit (bit 15) 1in
the Flag/Control Word (FCW) control register. The
imtial FCW setting 1s taken from location 2 of
segment 0, so the contents of location 2 must have
bit 15 set to direct the CPU to enter segmented
operating mode.

The example shown 1n Figure 1 also has bit 14
set. Bit 14 1s the S/N bit, which controls the
CPU's choice of system or normal mode operation.
The setting of S/N bit directs the CPU to enter
system mode. The CPU must begin operation 1in
system mode, since the first order of business 1is
to establish an 1nitial setting for the System
mode stack register and to 1nitialize the MMU,
which requires the execution of privileged I/0
instruct 1ons.

The 1nitial setting of the EPU bit (bit 13) 1in the
example shown 1n Figure 1 1s 0; if an EPU 1s
present, this bit can be set initially, but 1t 1s
also possible for the CPU to determine the appro-
priate setting of the bit as part of 1its initiali-
zat 1on.

The 1nterrupt enable bits (bits 12 and 11) are
1mtially set to 0 by the FCW specified 1in Figure
1. This 1s mandatory during the 1intialization
process, because there 1s no automatic 1nitializa-
tion of the System mode stack register; the
System mode stack 1s used in the processing of all
traps and interrupts.

The 1nitial PC value of segment O, offset 8 given
in the example 1n Figure 1 1s a convenient one,
since 1t means that the 1nitialization programs
can follow the 1nitial CPU status 1in memory.
Also, the CPU status and the 1imitialization pro-
gram are 1in the same area of memory, so only a
small part of the physical memory address space
needs to be committed to a specific use.

The addresses of the 1initial CPU status and the
1nitialization program are logical addresses, but
at the time of execution of a reset or power-on
sequence, there 1s no assurance that the MMUs have
been 1nitialized to perform address translation.
The 78010 MMU, however, has been designed to enter

4-53

a mode after a reset or power-on sequence 1in which
1t passes addresses directly to physical memory
untranslated. (More precisely, 1t performs a sim-
ple, well-defined translation: segment N offset K
1s translated to physical address K + N x 216.)
Thus, the 1nitial CPU status is taken from phys-
1cal addresses 2 through 6, and 1n the example
shown 1in Figure 1, the 1nitialization program
begins at physical address 8. One of the tasks
that the 1initialization program must perform is to
imtialize MMU mapping tables. Ult imately the

PR

initiai CPU status and initialization code can be
removed entirely from the logical address space,
remaining 1in physical memory, that can be left
inaccessible until another reset or power-on

sequence occurs.

Figure 3 shows an 1nitialization program that con-

nert PSA and stack will be established 1n
mapped memory after initialization of memory

mapp1ing.)

(2) Call the SETMMU routine (Figure 5) to 1im-
tialize memory mapping, leaving the locations
in segment O used by the 1mtialization
sequence still mapped to the same physical
locations they were using before MMU 1nitial-
1zation.

(2) Initialize the Stack register and PSAP to

address the '"real" stack and Program Status
Area 1n mapped memory.

After carrying out these steps, the program trans-
fers to the SYSTART routine (not 1n segment 0) to
continue 1mtialization of the specific spplica-

tinues the example begun in Figure 1. The program tion. The routine at SYSTART 1is free to esteblish
carries out three steps: a new mapping for segment zero, rendering the
initialization code 1inaccessible; another reset

(1) Initialize the Stack register (RR14) and makes 1t available again.

Program Status Area Pointer (PSAP) to point

at a small temporary stack and a skeleton The routine at STARTUP, the skeleton Program

Program Status Area, both in known locations Status Area at INITPSA (Figure 4), and the SETMMU

in physical (unmapped) memory. (The perma- routine and 1ts associated table at MMTAB (Figure

CPU Status for RESET Instruction Memory, Segment 0, Offsets 2-6
Offset Contents (hexadecimal) Meaning

0 Irrelevant

2 Cooo Initial FCW: SEG (bit 15) and S/N (bit 14) set; all others O

4 0000 Initial PC: segment O (bits 14-8); all other bits must be zero

6 0008 Initial PC: offset 8 (16 bits)

8 (Start of startup program)

The values shown are a possible setting for the initial CPU status to be established when a
RESET signal 1s received. The FCW setting 1s taken from segment 0, offset 2. The value COOO
shown here results 1in the setting of segmented operating mode (bit 15) and System mode (bit
14). Bit 13 1s 0, 1indicating that no EPU 1s present, and bits 12 and 11 are 0, 1indicating
that neither vectored nor nonvectored interrupts are enabled. The settings of the FLAGS bits
(bits 7-2) and the unused bits (bits 1-0) are irrelevant 1in this example.

The PC segment number and offset are taken from segment 0, offsets 4 and 6, in the standard
two-word segmented address format. Any address can be specified. The value of segment O,
of fset 8 shown here allows the startup program to begin at the next location of segment O.

If MMUs are part of the system, they must handle the 1initial 1instruction fetches properly,
even though the CPU has not yet imitialized the MMU translation tables.

Figure 1. Locations 2-6 of Segment 0 Determine Initial CPU Status

751-1790-0008

4-54

4) all reside in ROM, whereas the temporary stack
(which need not exceed 10 words 1in length as the
present program 1s written) must reside in RAM,
preferably 1in "physical segment 0", 1.e., 1n the
first 65,536 bytes of physical memory. In fact,
using the MMTAB entry for segment 0 shown 1in
Figure 4, the temporary stack should reside 1n the
first 784 bytes of physical memory. Since all of
the 1instructions and tables shown 1in Figures 1
through 5 occupy less than 512 bytes, a physical
memory whose first 784 addresses refer to 512
bytes of ROM and 256 bytes of RAM (usable later
for other purposes) will suffice.

The skeleton PSA shown 1n Figure 4 needs little
explanation. Only the segmentation trap and the
nonmaskable 1interrupt must be provided for, since
no other 1interrupts or traps can occur 1in the

course of executing the programs shown in Figures
1 through 5. (Of course, a memory error could
lead to an unimplemented 1instruction or system
call trap, and a faulty CPU could do practically
anything.) Both of the interrupt routines
provided do nothing but halt. The segmentation
trap routine could do something more intelligent
1f 1t had access to a means of communicating error
information to the "outside world."

The MMU 1nitialization program shown in Figure 5
1s easlly understood by anyone familiar with the
contents of the Z8010 MMU Technical Manual. It
begins by transmitting a set of segment descrip-
tors to the MMU; then 1t enables address transla-
tion by the MMU. Two "programming tricks" and a
convent 10n must be understood.

Z8001 Z8o10
MEMORY
' l SuP
—D|®
—| SEGT RESET SEGT
ADy
AD7-ADg ADg =0
RESET l

first (possibly only) MMU.
0).

command by this MMU.

on CS during a reset.

MMUs .
accesses untranslated.

#00-2015-A).

This diagram shows the convention adopted in this spplication note for the connection of the
This MMU will translate references to segments O through 63 (SNg =
Its Chip Select (CS) signal 1s activated by a 0 on ADq, which means that any special 1/0
transaction whose I/0 address has a lower byte in which bit 1 1s zero will be recognized as a
The reason for using the complement of the given A/D line to select the
chip 1s an artifact of the behavior of 3-state logic.
Allowing the Reset line to be 1nput to TS causes this MMU to pass
addresses to the memory untranslated after a reset.

In multiple-MMU configurations, the Reset line needs to be tied to TS for only one of the
MSEN 1s set and TRNS 1s cleared i1n that MMU, allowing 1t to pass the initial memory
All other MMUs will 3-state their outputs.
shown here 1s the same as for MMU #1 1in the examples 1in the Z8010 MMU Technical Manual (doc

The "floating" value shows up as a High

The form of connection

Figure 2.

MMU Is Connected as MMU #1

4-55

The first programming trick 1s the use of a compu-
tation to determine the number of bytes to be
transferred to the MMU by the SOTIRB instruction.
The required number 1s the difference between the
of fset portions of two addresses: the first
descriptor byte and the first byte past the
descriptors.

The second programming trick 1s the inclusion of
the 1nitial SAR and mode register values 1in the
table of descriptor values. This programming
track 15 useful Decauss the two best instructions
to perform the one-byte transfers are SOUTB and
SOUTIB. The only alternative to the last two
instruct 1ons before the RET, for example, 1s

LDB RHO,#%C2
SOUTB %000D, RHO

That alternative 1s perfectly acceptable in this
case, but 1in cases where the identity of the MMU
to be addressed 1s not known 1in advance, the
alternative shown in Figure 5 1s preferable.

The convention that must be understood concerns
the way 1n which the special 1/0 instructions are
used to select MMU operations. The MMU opcode or
internal register address 1s represented in the
high-order byte of the special I/0 space address,
while an MMU selection code (decoded by special

circuitry) 1s contained in the lower byte. In the
example in Figure 4, the register R4 contains the
special I/0 address. The low-order byte (RL4)
contains the complement of the value 3 (bit 1
clear, all other bits except bit O set), which 1s
the selection code for MMU #1. The upper byte
(RH4) first contains 1 (the "address" of the MMU's
internal SAR regaster), then 2 (the opcode for
"transmit descriptor and 1increment SAR"); then O
(the "address" of the MMU's 1internal mode
register).

The table at MMIAB (Figure 5) can be easily
understood. The first entry, a single byte of O,
1s used to 1nitialize the SAR (segment address
register), an 1internal MMU register wused to
determine which of the 64 segment descriptor
registers 1s being addressed by the command to the
MMU.

The next 4°(n+1) bytes are the values used to
wnitialize the descriptors for segments 0O through
n. This 1s done using a block I/0 transfer to the
MMU "address" that loads a descriptor register
(four bytes) and then 1increments the SAR to
address the next descriptor register.

The final byte 1s wused to set the MMU mode
register ID field to 0 and the bits MSEN and TRNS
to 13 this 1s a change from the values

!
STARTUP: LDA RR14,INITSTACK
LDA RRO,INITPSA
LDCTL PSAPSEG,RO
LDCTL PSAPOFF,R1
CALR SETMMU

LDA RR14,REALSTACK
LDA RRO,REALPSA
LDCTL PSAPSEG,RO
LDCTL PSAPOFF,R1
JP SYSTART

mapping.

! This 1s the 1mtialization program transferred to after a reset of the Z8001 CPU, assuming
the settings shown in Figure 1 for locations 2-6 of segmert O.
results in entry to this routine in segmented system mode.

$ABS <0>8 !Program begins at segment 0, offset 8!
tInitialize system stack register!
tInitialize PSAP!

tInitialize memory mapping!
'Initialize system stack!
tInitialize PSAP!

This start-up program conducts a "bootstrap" operation.
(RR14) and the Program Status Address Pointer (PSAP) to values in the unmapped physical memory
area used by the initializaton routine. It then calls the SETMMU program to 1initialize memory
Finally, 1t sets RR14 and the PSAP to their correct values in the mapped memory and
jumps to the address SYSTART in mapped memory to continue the initialization process. At this
point, the space in physical memory used by STARTUP and the temporary PSA and stack, which was
not remapped by the SETMMU routine, can be released.

The FCW shown 1in Figure 1

It first sets the Stack register

Figure 3. Startup Code Initializes Interrupt Vectors and Memory Mapping

established by the RESET: MSEN set, TRNS zero.
MSEN (master enable) must be set to enable the MMU
to emit addresses (otherwise 1ts address output
lines remain 3-stated). If MSEN 1s set, the TRNS
bit determines whether address translation 1s
performed (TRNS = 1) or addresses are passed
through as 23-bit patterns (TRNS = 0). The other
settable bits of the mode register, which are left
clear by the value shown i1n Figure 4, are URS, MST
and NMS. URS (upper range select) allows the MMU
to respond to segment numbers 64-127 rather than
0-63 on the CPU output lines SNg-SNg. MST
(multiple segment tables) allows selective
enabling of address translation by the given MMU
(TS 1s used to enable command recognition by the
MMU but has no effect on address translation). If
MST 1s set, then matching the NMS (normal mode
select) value with the MMU's N/S 1nput line serves
as an enabling criterion for address translation.

Setting the ID field of the MMU's mode register to
0 directs the MMU to respond to the segment trap

acknowledge status output of the CPU by asserting
ADg (8 + value of the ID field) and leaving
ADq5-ADg 3-stated. Using the conventions given in
the Z8010 MMU Technical Manual, this 1identifies
the MMU as MMU #1 1in the "reason" placed on the
stack when a segment trap occurs.

The number and values of the descriptor settings
n the table at MMTAB depend on the details of the
spec1fic epplication and are not discussed further
here. The additional 1nitialization code at
SYSTART also depends on the specific spplication.
Typically, this code initializes peripheral device
handling, enables 1interrupts, and starts user
processes. The details are not discussed here.

This concludes the discussion of the specific
details common to the 1initialization of any Z8001
CPU/Z8010 MMU system. Variations are possible,
but, 1n most cases, the cgeneral form of
initialization shown here 1s followed.

following the STARTUP routine.
1

INITPSA: word

0,0,0,0
word 0,0,0,0
word 0,0,0,0
word 0,0,0,0
word 0,%C000
address SEGTRAP
word 0,%C000
address NMISTOP

! No more of the PSA 1s required.
locat 1ons.

!

NMISTOP: HALT

SEGTRAP: HALT

! This 1s the Program Status Area used temporarily during the stage of 1inmitialization that
precedes the 1initialization of memory mapping.

!Unused entry!

tUnimplemented instruction trap!
!Privileged instruction trap!
!System Call trap!

!Segmentat 1on trap!

!Nonmaskable interrupt!

Processing routines can reside in immediately following

This 1s the bootstrap PSA used for the orderly handling of unexpected interrupts during the
phase of the 1initialization process that precedes intialization of memory mapping.
processing routines, NMISTOP and SEGTRAP simply halt.
an actual system if sppropriate routines exist at known locations in physical memory.

It resides 1in physical memory directly

The two
More ef fect ive actions can be taken in

Figure 4. Initial PSA Has Few Real Entries

! This 1s the MMU 1nitialization routine called from the STARTUP program;
single-MMU system.

from a table in memory.

!
SETMMU

MMTAB:

MMTABX

This MMU 1nitialization routine transmits the table of segment
the MMU addressed by special I/0 instructions with a lower byte in which the value of bit 1 1is
0 (MMU #1 using the conventions suggested in the 28010 MMU Technical Manual).
transmits a mode register value i1n which the MSEN and TRNS bits are set and all others are O.

LDB RL4,#3

COMB RL&4

LDA RR2,MMTAB

I DR RH&,#1

SOUTIB @R4,@RR2,R1
LDA RRO,MMTABX

SUB R1,R3

LDB RH&4, #%F

SOTIRB @R4,E@RR2,R1
LDB RH&,#0

SOUTIB @R4,@RR2,R1
RET

byte O
word O
byte 2
byte %A

word BASEn
byte SIZEn
byte ATTRIBUTESh

byte %CO

First, up to 64 of the MMU's segment descriptor registers are loaded
Then address translation 1s enabled.
address translation set up this way 1s that the addresses of STARTUP must continue to be
mapped to the same physical locations.

1t assumes a

The only restriction on the

!Select MMU #1 and assure Bit 0 = 1!
'Use complement to activate CS!
!Address of information for MMU!
tAddress of SAR 1n MMU!

!Initi1alize SAR!

!Next byte past descriptor table!
!Number of bytes in descriptor table!
10pcode for descriptor transfer!
!Transmit descriptor table to MMU!
!0pcode for "set mode reg"!

1Enable address translation!

tInitial value (segment number) of SAR!
!Segment 0: starts at physical address 0!
! 784 bytes long !

! Execute only !

!Segment n (£63): starts at 256*BASEn!
! 256°(SIZEn + 1) bytes long !

! attributes as specified !

IMMU mode register value: MSEN, TRNS; ID = 0!

descriptors at MMTAB to

Finally, it

Figure 5.

A Few Instructions Initialize the MMU

4-58 00-2154-01

Non-Segmented Z8001
CPU Programming

Zilog

September 1981

INTRODUCTION

The 78001 CPU, which is designed to operate with 8M
byte segmented memory address spaces, can also be
operated in a nonsegmented mode. Thus the user
gets the best of two worlds: the flexibility and
power of 8M byte segmented memory address spaces,
and the economy of 16-bit addresses. Furthermore,
the 78000 CPU Family has been designed in such a
way that operation of the Z8001 CPU in nonsegmented
mode is compatible, to the extent possible, with
operation of the 28002 CPU, which is designed to be
used exclusively in nonsegmented mode.

This application note first describes in detail the
differences in memory and register space require-
ments and in instruction execution times between
segmented and nonsegmented Z8001 CPU operation. It
then enumerates and discusses the few points of
incompatibility between 28002 CPU operation and
nonsegmented Z8001 CPU operation. The 78003 CPU is
identical to the 78001 CPU for the purposes of this
note.

One of the trickier points in dealing with nonseg-
mented Z8001 CPU operation is the mixing of nonseg-
mented and segmented programs within an applica-
tion. Several ways to handle such mixing are dis-
cussed. Finally, to make parts of the discussion
completely specific, a means of handling the system
call (SC) trap is shown with actual 28001 CPU
programs, and several utility routines designed to
be invoked through the SC mechanism are presented.

This application note deals very specifically with
"esoteric" details of 78001 CPU operation. The
reader is assumed to have read the 78000 CPU

Technical Manual (00-2010-C) and to be familiar

with the general ideas of segmented memory address-
ing on the 78001 CPU and with interrupt and trap
handling in the 78001 CPU Family.

ECONOMIES OF NONSEGMENTED 78001 CPU OPERATION

All 78001 CPU memory addresses are 23 bits long.
In the segmented mode of operation, each address is
specified completely, using 32-bit representations
in instructions and registers. In nonsegmented
mode, all address representations assume implicitly
the 7-bit segment number field of the Program
Counter (PC), so that only 16 bits are required to
represent any address.

The ability to use 16-bit address representations
when operating the 728001 CPU in nonsegmented mode
results in economies of both space and time. The
economies of space derive from the smaller memory
and fewer registers used for 16-bit address repre-
sentations. The economies of time, generally
speaking, derive from the fact that there is no
need to fetch or store a second word of address
representations in instructions, in registers, or
on a stack. Thus, for example, a RET instruction
requires an additional three clock cycles of execu-
tion time in segmented mode, because an extra word
must be popped from the stack. The space and time
economies of nonsegmented mode Z8001 operation are
summarized in Table 1.

4-59

Table 1.

Economies of 78001
Nonsegmented Operation

Function

Instructions using
direct addressing
(compared with full
segmented address)

Instructions using
direct addressing
(compared with short
segmented address)

Instructions using
indexed addressing
(compared with full
segmented addresses)

Storage of an address
in a register

Moving an address

CALL or CALR

RET

LDPS

Loading to or from
PSAP or NSP control
register

JP using indirect
register mode (@)
if jump is taken

Use of indexed
addressing to
simulate based
addressing

Space Economy

1 word of
instruction
memory

1 word of
instruction
memory

1 word register

1 word of stack

2 words of data
memory

1 word register

1 word register

Fewer instructions
for many operations

Time Economy
(clock cycles)

3 cycles

1 cycle

3 cycles

Difference in
timing between
word and long

word version of

LD, PUSH, POP, etc.

5 cycles

3 cycles

3-4 cycles

7 cycles

5 cycles

2-4 cycles for
Load instruction;
added savings
when shorter
programs result.

4-60

Table 1 can also be regarded as summarizing the
"segmentation penalty" if nonsegmented operation is
taken as the standard. It is clear from the table
that among common operations the only difference in
size between segmented and nonsegmented mode in-
structions is the extra word required by direct or
indexed addressing using full (as opposed to short
segmented) addresses in the instructions. Most
large programs avoid direct addressing, except for
CALL instructions and references to global varia-
bles, hoth of which can use short segmented ad-
dressing in a large proportion of cases.

The table also shows that among common operations
not involving direct or indexed addressing, the
only difference in instruction execution time be-
tween the segmented and nonsegmented 28001 CPU
operating modes is 1in subroutine calling and
returning. This difference is due to the saving
and restoring of 32-bit return address representa-
tions.

A major savings that 1is difficult to measure
quantitatively results from the use of indexed
addressing in nonsegmented mode to simulate based
addressing. Thus, for example, it is possible to
write

ADD RO,4(R15)

to add the third word of the stack to the contents
of RO. In this construction, the offset (4) plays
the role of the address, and the address (the con-
tents of R15) plays the role of the offset. Since
each is 16 bits long, there is no difference; they
are added together to obtain the 16-bit offset por-
tion of the argument address; the segment number
portion is derived from the PC. Thus, based

addressing, which is essential for the handling of
stack-based data, is available with most instruc-
tions,

There is one pitfall to watch for when using index-
ed addressing to simulate based addressing. Index-
ed references never result in "stack reference"
status on ST3.g70, since thls status only occurs
when the Stack register (R15) is used as an address
register. In indexed addressing, the address comes
from the instruction, and the register contains an
offset. Thus, if data and stack memories are
distinguished by the ST3-STo Status outputs, then
indexed addressing cannot be used to access stack
elements

28002 Compatibility

The road between the 28002 CPU and nonsegmented
28001 CPU operation is a two-way street: programs
can migrate in either direction. For example, a
28001-based development system can be used to
develop and check programs whose target system is
28002-based. Conversely, a 28002-based application
can be easily evolved into a Z8001-based applica-
tion by using a nonsegmented 78001 operation as a
first step. Furthermore, utility routines or other
parts of a program developed for one of these CPUs
could be integrated with programs developed for the
other. All of these possibilities illustrate the
importance of writing nonsegmented code for the
28001 CPU.

There are very few differences between 78002 code
and nonsegmented 28001 code; all of them are
associated with interrupt processing (see Table 2).

4-61

Table 2.

Differences Between 78002 and

Nonsegmented 78001 CPU Operation

78002 Operation

Interrupts and traps, including
SC, cause a 3-word CPU status to
be saved on the stack in the
format:

SP ---> reason
FCW
16-bit PC

The 256 possible interrupt
vector byte values correspond
to legal vectored interrupts.

The 28002 CPU uses a Program
Status Area (PSA) format in
which one word is dedicated to
each FCW and each PC. No entry
is required for the "segmenta-
tion trap" vector.

The 78002 CPU must be placed in
system mode before the IRET
instruction is executed.

78001 Operation

Interrupts and traps, including
SC, cause a 4-word CPU status
to be saved on the stack in the
format:

SP ---> reason

FCW
PC - segment number
PC - offset

The 128 even-numbered interrupt
vector byte values correspond
to legal vectored interrupts.

The 78001 CPU, regardless of
the mode in which it is
operating, uses a PSA format
in which two words are
dedicated to each FCW and each
PC.

The 78001 CPU must be placed
into segmented system mode
before the IRET instruction is

executed.

4-62

The practical effect of these differences is very
small in many applications. The PSA differs
between the 78002 and 78001 versions, but the dif-
ferences are only in the sizes of the vector
entries--four words for the 28001, two words for
the 78002. The 78001 restriction to even-numbered
vectored interrupt devices limits the number of
devices to 128, which is ample for most applica-
tions. The interrupt and trap routines can be
almost identical for the two versions, unless they
access the saved PC value or anything "deeper" in
the stack. Since the "reason" and the saved FCW
are the top two words of the stack in either case,
the instructions that access these items can be the
same in both versions. The 78001 versions of the
interrupt routines can be written in nonsegmented
form. The SEG bit must be set to zero in the
corresponding PSA entry's FCW value, and the CPU
must be placed into segmented mode before execution
of the IRET instruction. A good approach to this
is to dedicate one of the SC instructions (e.g., SC
#0) to the performance of this kind of segmented
IRET. The details of this will be explained in a
later section; the advantage of the approach is
that it provides a one-word replacement for the
IRETs of a 78002-based program.

When the 78001 CPU is operating in nonsegmented
mode, R14 refers to the same register in both
System and Normal modes, just as in Z8002 CPU oper-
ation. This is not anomalous or surprising, but
many new 28000 programmers have been confused by
the requirement that interrupts be processed in
segmented mode. If an interrupt occurs when the
78001 CPU is operating in nonsegmented System mode,
the CPU immediately enters the segmented System
mode of operation. At that time, R14 begins to
refer to the segment portion of the stack register,
and the register previously referred to as R14 is
accessible now only by using the LDCTL instruction
with the NSPSEG operand. This situation remains in
effect until the CPU returns to nonsegmented opera-
tion, which could happen before the execution of
the first instruction of the interrupt-processing
routine if the FCW loaded from the PSA does not
have the SEG bit set.

COMBINING SEGMENTED AND NONSEGMENTED CODE FOR
THE 78001

Segmented and nonsegmented programs can be mixed to
any extent desired, since any program running in
System mode can carry out the required setting or
clearing of the SEG bit in the FCW. If such
switching of modes is to be done at many points, or
if it is to be done by programs running in Normal
mode, two of the 256 SC instructions can be dedica-
ted to the FCW changes.

Programs that access data or call programs in
another segment must consist wholly or partially of
segmented code. Programs that make no references
outside of their own segments can consist entirely
of nonsegmented code.

One point to consider when mixing segmented and
nonsegmented code is that operation of the RET
instruction depends on the mode in which the CPU is
operating when the RET is executed, whereas the
operating mode on entry to a subroutine is that of
the calling program. Thus, special steps must be
taken to assure that subroutines called by programs
running in either mode behave properly. One
approach is to enter such routines through the SC
mechanism. Another approach is to allocate two of
the SC instructions to subroutine entry and exit
functions. The first of these SC instructions is
executed as the first instruction of a subroutine
to save the caller's operating mode; the second
replaces the RET instruction and causes the CPU to
enter the proper mode before returning. Further-
more, there can be two versions of the first of
these SC instructions; each can save the caller's
operating mode, then place the CPU into the mode
appropriate for the given subroutine.

A Systems/Application Distinction

One separation of segmented and nonsegmented code
is on the basis of the System/Normal operating
mode. A set of general utility programs can be
written to be executed in segmented System mode,
and self-contained application programs can run in
nonsegmented Normal mode, using the SC mechanism to
make calls on the utility programs. An approach
such as this, which centralizes control of the mix-
ing of segmented and nonsegmented programs, avoids
the complications of uncontrolled mixing of modes.

THE SC MECHANISM

The preceding discussion includes several refer-
ences to the use of SC instructions. To allow
these examples to be understood at a more concrete
level, one of the many possible ways to handle SC
traps is elaborated here.

Figure 1 shows a program to be executed each time
an SC trap occurs; that is, it is assumed that the
address SCHAND will be stored in the PC field of
the SC entry (vector) of the PSA. The program at
SCHAND is assumed to be segmented, and it accesses
the System mode stack, so the SEG and S/N bits must
be set in the FCW field of the SC entry of the
PSA. Furthermore, the VIE and NVIE bits of the FCW
field of the SC entry in the PSA must be 0, for
reasons to be discussed shortly.

4-63

SCHAND :

DEC R15,#14

LDM @RR14,R0,#3
LD R1,RR14(#14)
CLRB RH1

MULT RRO,#6

LD R2,TABLE(R1)
INC R1,#2

LDL RRO,TABLE(R1)
LDL RR14(#10) ,RRO

1IN D1 DDALKIBAZN
LU R grunaTAn 19y

AND R1,#%1800
AND R2,#%E7FF
OR R2,R1

LD RR14(#8),R2
LDM RO,@R14,#3
INC R15,#6
IRET

1Room for new status & 3 registers!
!Use RO-R2 for working space!

1Get SC instruction (reason)!

'Low byte is index to table!

! of é-byte entries !

!Get FCW entry from TABLE!

'Get PC entry from TABLE!
!Put PC entry into new status!

10t mwmautane EOW antnul
+GCT PTOVATUS vwLw ORLTY.

1Save VIE,NVIE settings!

tZero VIE,NVIE in FCW from TABLE!
!Put saved bits into new FCW!

'Put FCW into new status!

!Restore registers used!

!Bring new status to top of stack!

This SC-handling routine allows each of the 256 SC instructions
to be written as if it had its own separate interrupt. An array
of 3-word entries called TABLE contains the FCW and PC values to
be established for each, except that the VIE and NVIE (interrupt

enable) bits in the FCW are taken from the saved status of the
program executing the SC instruction.

The Program shown here has not been optimized for speed. Multi-
plication of the low byte of the reason by 6, for example, can be

accomplished in fewer clock cycles than are required for the CLRB
and MULT instructions shown here.

Figure 1. A Flexible SC-handling Scheme

4-64

The program at SCHAND simulates a "vectored inter-
rupt" facility for SC instructions, but the VIE and
NVIE values are taken from the saved status of the
program executing the SC instruction, not from the
"vector" for that instruction. This assures that
the routines invoked by SC instructions, which can
be called from a variety of priority levels, won't
have the side effect of enabling any previously
disabled interrupts. For this reason, the FCW
entry for SC must leave both VI and NVI disabled.

Given this mechanism, several of the uses of the SC
instructions suggested earlier can now be made con-
crete. Figure 2 shows possible assignments for the
first three SC 1instructions; Figure 3 shows the
corresponding TABLE entries and implementing pro-
grams. A reader who has difficulty understanding
these programs or the program in Figure 1 should
review the material on interrupt and trap handling
in the 78000 CPU Technical Manual.

SC Instruction

Function

SC #0
SC #1
SC #2

Perform segmented IRET
Set SEG bit in FCW
Clear SEG bit in FCW

Figure 2. Possible SC Instruction Functions

clearing of SEG.
two functions.

by the IRET instruction.

TABLE: word %CO00 !SC #0: SEG, S/N set!
long SEGIRET
word %CO80 'SC #1: SEG, S/N, C set!
long SEGSET
word %CO00 ISC #2: SEG, S/N set!
long SEGSET

SEGIRET: INC R15, #8 'Remove SC-related stack items!
IRET

SEGSET: LD @RR14,R0 !Save RO, use reason as scratch!
LD RO,RR14(#2) !Get saved FCW from the stack!
JR C,$1 IC distinguishes SC #1 from SC #2!
RES RO,#15 !IC = 0 for clearing SEG!
JR $2

$1: SET RO,#15 IC = 1 for setting SEG!

$2: LD RR14(#2),RO !Replace altered FCW on stack!
LD RO,@RR14 !Restore RO!
IRET

This section of TABLE and the associated programs implement the
three SC instructions shown in Figure 2.
is operating in segmented mode because of its entry in TABLE, so
all it needs to do is return the stack register to its value
before execution of the SC #0 and to perform the IRET.

The program at SEGSET implements both the setting and the
The C bit setting in TABLE distinguishes the

The change to SEG is made in the saved FCW on the
stack, which is the source of the status that will be established

The program at SEGIRET

Figure 3. Implementation of Three SC Instructions

00-2152-01 4-65

Calling Conventions
For The
Z8000™ Microprocessor

Zilog

Software
Interface
Specification

February 1982

1.0 INTRODUCTION

The 78000 Calling Conventions allow programs
written 1n various languages for the Z8000 micro-
processor to communicate with each other and to
share common libraries. The conventions 1include
argument passing, Stack Pointer status, and regis-
ter assignments on entry to and exit from a
routine. The conventions described here apply to
all programming languages supported by the Z8000
M1CTOprocessor.

Calling conventions were developed that:

e Satisfy the requirements of languages such as
C. PLZ/SYS, FORTRAN, and PASCAL.

e Do not 1ntroduce undue call and return overhead
1n code generated by one language processor at
the expense of another.

e Minimize the complexity of the code generators.

e Allow passing of
value.

structured parameters by

e Encourage efficiency by allowing local vari-
ables to be kept in registers and parameters to
be passed 1n registers.

The calling convention has three parts which are
described in the following sections. These three
parts describe:

e How registers may be used by procedures and
what happens to the register contents when
calling or returning.

e How the stack must be organized when entering,
executing i1n, and returmning from a procedure.

o Where parameters must be when
returning from a procedure.

entering or

2.0 REGISTER USAGE

As shown 1n Figure 1, the Z8000's general-purpose
register set is divided into three groups for the
purposes of this calling convention.

NON-SEGMENTED SEGMENTED
PROGRAMS PROGRAMS
z .
RO RO
SCRATCH
[REGISTERS —>
R7 R7
ﬁ d
RS RE
SAFE
'4—‘ REGISTERS
OPTIONAL 12
FRAME R13
R14)4_]— POINTER R4
RIS $<-- STACK POINTER R15
Figure 1. 78000 Register Usage

The first group 1s called the scratch registers
and consists of RO-R7. These registers will
contain value or reference parameters when
entering a procedure and result parameters when
returning from a procedure. While executing, the

0130-001

4-67

procedure may use these registers in any way and
does not need to restore them to their original
values when 1t returns.

The second group 1s called the safe registers and
consists of R8-R14 for nonsegmented programs and
R8-R13 for segmented programs. The values 1n
these registers must be the same when a procedure
returns as they were when the procedure was
entered. This means a safe register can hold the

value of a local variable, because procedure calls

will not If a praocedure changees

1t must save the
1s entered, and

the value of a safe register,
value of that register when 1t
restore 1t when 1t returns.

The third group consists of the stack pointer
(SP), which 1s R15 for nonsegmented programs and
R14 and R15 for segmented programs. The stack
pointer always points to the top of the stack.

The calling convention also allows for, but does
not require, the use of a frame pointer to point
to the current stack frame (described in the next

section). When a frame pointer 1s used, 1t 1s
always the highest safe register, R14 for a
nonsegmented program, RR12 for a segmented
program.

The 78000 Floating-Point Registers (either

simulated in software by the 78070 emulation
package or provided in hardware by the 78070

arithmetis nroceccing unit) are eimilarly
Arithmellc precesein g uniy,; are simiiarly

into two groups as shown in Figure 2.

divided

FRO

FLOATING
SCRATCH
REGISTERS

XXX

FR3
FR4

FLOATING

SAFE
REGISTERS

FR7

Figure 2. 78000 Float ing-Point
Register Usage

The first group is the floating scratch registers,
FRO-FR3. These registers will contain floating-
point value parameters upon entering a procedure

and floating-point result parameters when
returning from a procedure. While executing, the
procedure may use these registers in any way and
does not need to restore them to their original
values.

The second group 1s the floating safe registers,
FR4-FR7. These registers are used in the same way
as the general-purpose safe registers and thus the
values 1n these registers must be the same when a
procedure returns as they were when the procedure

wae entered

3.0 STACK ORGANIZATION

Figure 3 shows how the top of the stack must look
when a procedure 1s entered. The return address
must be on the top of the stack (pointed to by the
stack pointer), followed by any parameters that
must be passed in on the stack. This figure also
shows the stack after the same procedure has
returned. The only difference 1s that the return
address has been popped off the stack.

UPON ENTRY AFTER RETURN
TOA FROM A
PROCEDURE PROCEDURE
e
-1 N N
PARAMETERS PARAMETERS
PASSED IN PASSED IN
STORAGE STORAGE
STACK
RETURN POINTER
STACK ADDRESS
POINTER
STACK
GROWTH
STACK
GROWTH
- e ~
Figure 3. The Stack Upon Entry To

and After Return From a Procedure

During the execution of a procedure, the stack
will contain a data area called the stack frame
(also known as the activation record) for that
procedure. The stack frame 1s allocated on the
stack by the procedure and contains saved values,

4-68

0130-002

local variables, and temporary locations for the
procedure. Figure 4 shows the stack while a
. procedure 1s executing.

STACK WITHOUT STACK WITH
FRAME POINTER FRAME POINTER
PARAMETERS PARAMETERS
PASSED IN PASSED IN
STORAGE STORAGE
[RETURN ADDRESS]
-, r—————d
FRAME OLD VALUE OF
SAFE REGISTER POINTER | ERAME POINTER
SAVE AREA SAFE REGISTER
SAVE AREA
———= =
STACK | I'FLOATING SAFE FLOATING SAFE
FR;'OI: REGISTER REGISTER STACK
SAVE AREA
EXECUTING | ey SAVEAREA ig“,""
PROCEDURE EXECUTING
LOCAL LOCAL PROCEDURES
VARIABLES VARIABLES
AND AND
TEMPORARIES TEMPORARIES
L STACK
POINTER
STACK STACK
GROWTH GROWTH

Figure 4. The Stack During Procedure Execution

The called procedure may or may not use the frame
pointer as shown. If no frame pointer 1s used.
the size of the stack frame must not change while
the procedure 1s executing. Thus parameters
passed 1n storage by calls from this procedure
must be accommodated in temporary locations at the
bottom of the stack frame, and not pushed onto the
stack. This organization of the stack substan-
tially shortens the subroutine entry and exit
sequence.

If a frame pointer is used, then the calling
procedures's frame pointer must be saved on the
stack by the called routine as shown in Figure &4.
If a frame pointer is used, the size of the stack
frame can vary, and thus parameters can be pushed
onto the stack if desired.

The calling convention allows procedures with and
without a frame pointer to be mixed on the stack
From this point of view, the frame pointer 1s just
a safe register that 1s used in an agreed upon way
by certain procedures.

If a procedure modifies the contents of any of the
safe registers or floating safe registers while 1t

executes, then 1t must save the values of these
registers 1n 1ts stack frame when 1t 1s entered so
that 1t can restore them when 1t returns. The
highest safe register not used as a frame pointer
should be saved at the top of the activation
record (nearest the return address) with lower
number registers saved at lower addresses. Thas
is the same order used by the LDM 1instruction.
Only those safe registers actually modified by the
procedure need to be saved.

Any floating safe registers that are modified by
the procedure are saved i1n the activation record
just below the last general purpose safe
register. Higher numbered floating registers are
saved toward the top of the activation record.

4.0 PARAMETERS

Parameters provide a substitution mechanism that
permits a procedure's activity to be repeated,
varying its arguments. Parameters are referred to
as either formal or actual. Formal parameters are
the names that appear in the definition of a
procedure. Actual parameters are the values that
are substituted for the corresponding formal
parameters when the procedure is called.

The ZB8000 parameter-passing conventions cover
three kinds of parameters: value, reference, and
result. Value and reference parameters are passed
from the calling routine to the called routine.
For value parameters, the value of the actual
parameter 1s passed. For reference parameters,
the address of the actual parameter 1s passed.
For result parameters, the value of the formal
parameter 1n the called routine 1s passed to the
corresponding actual parameter of the calling rou-
tine when the called routine returns.

Each kind of parameter has a length given in bytes
(denoted as length(p) for a parameter p). For
value and result parameters, this is the length of
the declared formal parameter as determined by its
type. For languages that do not declare formal
parameters or when the procedure declaration is
not accessible when the call is being compiled,
the length is the same as the length of the actual
parameter. For reference parameters, the length
is the length of an address, in other words, two
bytes in nonsegmented mode and four bytes in
segmented mode.

0130-003

4-69

In addition to a parameter's length, the calling
convention distinguishes between parameters of
floating-point type and parameters of all other
types.

The kind, type and length of a parameter are
determined by the conventions of the language in
which the calling and the called procedures are
written. The user must ensure that these conven-
tions match when making interlanguage calls.

4.1 THE PARAMETER REGISTER ASSIGNMENT ALGORITHM

This section describes an algorithm that assigns
every parameter in a parameter list to either a
general-purpose register, floating point register,
or storage offset. The parameter assigned to a
register 1s passed 1n that register during a
call. A parameter assigned to storage offset 1s
passed 1n a storage location whose address 1s the
given offset from the Stack Pointer on entry to
the called routine. The algorithm assigns as many
parameters to general-purpose registers r2-r7 and
floating-point registers fr0-fr3 as possible.

The algorithm makes the following assumptions:
There are four kinds of general-purpose registers:
e Byte (denoted as rln, rhn, n = 0...15)

e Word (denoted as rn, n = 0...15)

e Long Word (denoted as rrn, n = 0, 2, 4, 6, 8,
10, 12, 14)

e Quad Word (denoted as rgn, n = 0, 4, 8, 12)

e The length of a general-purpose register r
[(denoted length(r)] is 1 for a byte register,
2 for a word register, 4 for a long word
register, and 8 for a quad word register.

e Each general-purpose register has a set of
underlying byte registers as follows:

e The underlying register of byte register is the
register 1tself.

e The underlying registers of a word register
(rn) are the byte registers rln and rhn.

e The underlying registers of a long word
register (rrn) are rln, rhn, rln+1, and rhn+1.

e The underlying registers of a quad word regis-
ter (rgqn) are rln rhn, rln+l, rhn+l, rln+2,
rhn+2, rln+3. and rhn+3.

This 1s 1llustrated in Figure 5:

RQO RQ4

RRO RR2 RR4
XX N

RO R1 R2 R3 R4

UNDERLYING
BYTE m-m!mn HH1‘RL1 H2|RL2 nm!m 3 m-ul I

REGISTERS

Figure 5. The Underlying Registers

e If n > m, general-purpose register rxn or rn 1s
higher than a general-purpose register rxm or
rm. A byte register rln 1s higher than a byte
register rhn.

e There are eight floating-point registers, frO0-
fr7, each capable of holding one floating point
value of any precision.

e A floating register frn 1s higher than a float-
ing register frm 1f n > m.

The algorithm starts by processing each value or
reference parameter 1n left-to-right order. If
there are unused reqgisters of the same size and
type as the parameter. the parameter 1s assigned
to the highest of these registers; otherwise, 1t
1s assigned to the next available storage
locat ion. Once a parameter is assigned to
storage, all the parameters 1in the parameter list
that follow 1t are also assigned to storage. The
same thing 1s then done for the result parameters,
except they are assigned to the lowest available
registers in sequence r2, r3, r4, .., r7 (or fr0,
fr1, fr2, fr3), whereas the other parameters are
assigned to the registers in sequence r7, ré6, r5,
weey 12 (0Or fr3, fr2, fr1, fr0). The result
parameters can overlap value or reference
parameters in registers, but not 1in storage.

The algorithm marks byte registers and floating-
point registers as available or unavailable to
keep track of which registers have been assigned
to parameters, and it uses a variable, current
offset, to indicate which storage offsets have
been assigned parameters.

4-70 0130-004

4.2 THE ALGORITHM

This algorithm assigns parameters to registers and

storage.

The phrases in bold are defined in

detail in Table A.

1.

1.

Mark all byte registers underlying r2-r7 as
available, and mark all other byte registers as
unavailable. Mark floating-point registers
fr0-fr3 as available and mark all other float-
ing-point registers unavailable.

Initialize current offset to 4 if in segmented
mode or to 2 if in nonsegmented mode (this
allows for the return address to which the
stack pointer points).

For every value or reference parameter in
left-to-right order in the parameter list, do
the following:

a. Determine whether p will fit into a
register.

F

b. If p will fit into a register, assign p to
a value/reference register.

c. If p will not fit into a register, assign
p to storage and mark all available byte
and floating-point registers as unavail-
able.

Mark all byte registers underlying r2-r7 as
available and all other byte registers as
unavailable. Mark floating-point registers
frO0-fr3 as available and all other floating-
point registers as unavailable.

For every result parameter in left-to-right
order in the parameter list, do the following:

a. Determine whether p will fit into a
register.

b. If p will fit into a register, assign p to
a result register.

c. If p will not fit into a register, assign
p to storage and mark all available byte
and floating-point registers as unavail-
able.

Table A. Definition of Algorithm Elements

Determine whether p will fit into a register:

If p is a floating-point value or result
parameter, then p will fit into a register if
there is a floating-point register which is
available. Otherwise, p will fit into a
register if there is a register r such that
length(p) = length(r) and all byte registers
underlying r are available.

Assign p to a value/reference register:
value

If parameter p is a floating-point
parameter then:

a. Assign p to the highest available float-
ing-point register r.

b. Mark floating-point register r as unavail-
able.

Otherwise:

3. Find the highest general-purpose register
r such that length(p) = length(r) and all
byte registers underlying r are available.

b. Assign parameter p to register r.

c. Mark all byte registers underying r as
unavailable, and mark any higher available
byte registers as unavailable.

3.

4.

Assign p to a result register:

If parameter p is a floating-point result
parameter then:

a. Assign p to the lowest available float-
ing-point register r.

b. Mark floating-point register r as unavail-
able.

Otherwise:

a. Find the lowest general-purpose register r
such that length(p) = length(r) and all
byte registers underlying r are available.

b. Assign parameter p to register r.

c. Mark all byte registers underlying r as
unavailable, and mark any lower available
byte registers as unavailable.

Assign p to storage:

a. If length(p) > 1 and current offset is
odd, then add 1 to current offset.

b. Assign parameter p to storage at offset
current offset.

c. Add length(p) to current offset.

0130-0058

APPENDIX A

This appendix gives an example of using the Z8000
calling conventions for a C language routine,
"caller", which calls another routine, "called".

Figure 6 shows the C code, and Figure 9 shows the
corresponding assembly language code. Figure 7
shows the registers upon entry to "called" (just
after executing line 25 in Figure 9) and after
returning from routine "called" (just after exe-
cuting line 13 in Figure 9). Figure 8 shows how
the stack looks during execution of “called"
(line 11 in Figure 9).

long called (a,b,c,d,e)
/*called routine - returns long */

long b,c;
int a,d,e;

long y;
return y;
caller () /* calling routine */

long a2, a3, x;
int a1, a4, a5;

x = called (a1, a2, a3, a4, a5):

Figure 6: A Sample C Program

UPON RETURN
FROM “CALLED”

UPON ENTRY
TO “CALLED”

,

Vg Gy
Yk Y
= e
[] R13 J N] R13
e il e
Figure 7. Registers Upon Entry To and

Return From Routine Called

LOCALVARIABLES]
SAFE REGISTER
SAVE AREA AND
TEMPORARIES
OF “CALLER"”

AS (B)

STACK

ERAME

OF “CALLER”

A4 (D)
RETURN
ADDRESS

SAVED SAFE
REGISTERS

|«—— SP BEFORE CALL

< SP ON ENTRY
TO “CALLED”

STACK
FRAME
VARIABLES
OF “CALLED” AND
TEMPORARIES
OF “CALLED”

SP WHILE
“CALLED” IS
EXECUTING

STACK
GROWTH

Figure 8. The Stack Frame When the Routine
Called (From the Sample C Program) is Executing.

0130-007

4-72

O HswWN -

10
1"
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

modul MODULE
$SEGMENTED
CONSTANT
fp :=r15;
EXTERNAL
stkseg LABEL !stack segment!
code for routine called
GLOBAL
called PROCEDURE
ENTRY
dec fp,#4 !Allocate called's stack frame!
1d1 rr2,lstkseg|(fp) 'Assign local variable y to return register!
inc fp,# 'Deallocate stackframe!
ret
END called
code for routine caller
caller PROCEDURE
ENTRY
sub fp,#22 'Allocate caller's stackframe!
1d r2 stkseg+4+1al(fp)
1d stkseg|(fp),r 'Move a4 to overflow parameter area!
id r2 stkseg+4+16|(fp)
1d stkseg+2|(fp),r2 !Move a5 to overflow parameter area!
1d r7, stkseg+b+1zl(fp) 'Move al to r7!
1d1 rr4, |stkseg+4|(fp) 'Move a2 to rré4!
1dl rr2, stkseg+4+4|(fp) IMove a3 to rr2!
call called
1d1 lstkseg+h+8|(fp),rr2 'Assign returned value to x!
add p,#22 !Deallocate caller's stackframe!
ret
END caller
END modul
Figure 9. Actual 78001 Code for Program of Figure 4

4-73

0130-008

APPENDIX B

SPECIAL TREATMENT OF FLOATING POINT PARAMETERS

For programs which will run on a 78000 without a
28070 arithmetic processing unit or Z8070 software
emulator, floating-point value and result param-
eters should be treated just like non-floating-
point parameters.

Until September 1982, all Zilog compilers will
pass floating-point parameters in the same way as
non-floating-point parameters. Thereafter, the
full standard given here will be used.

4-74 03-0130-01

Fast Block Moves with the
Z8000"'CPU

Zilog

Application Brief

September 1981

The Z8000 CPUs are equipped with instructions that
allow memory-to-memory transfers to proceed at
speeds wusually associated with DMA equipment.
This application brief shows how to use the two
different mechanisms available in Z8000 CPUs for
block moves; then it compares their performance
for long and short blocks.

The two block-moving facilities in the Z8000 CPUs
are the LDIR instruction (and its alter ego, the
LDDR instruction) and the LDM instruction. With
LDIR, words are moved from one memory area to
another at a basic rate of 9 clock cycles per
word, using two address registers and a 16-bit
counter register. With LDM, words are moved from
memory into registers, then from registers into
the new memory area. The basic rate for this kind

of transfer is 6 clock cycles per word. In either
case, there is overhead associated with setup and
looping. The differences in overhead make LDM
more effective with small blocks and LDIR more
effective with large blocks. In either case, only
blocks of words, aligned on word boundaries, are
considered. For blocks of bytes, there is a byte
version of the LDIR instruction but no byte
version of LDM.

Figure 1 shows a comparison of the two methods in
moving a block of eight words. The method using
LDIR requires 88 clock cycles, while the method
using LDM requires only 70 clock cycles. At clock
rates of 10 MHz, these result in transfer rates of
1.82M bytes per second for the LDIR method and
2.29M bytes per second for the LDM method.

!
'LDIR version: !
LDK R9,#8
LDIR @RR12,@RR10,R9

'LDM version: !
LDM RO,@RR10,i#8
LDM @RR12,R0,#8

In this case,

version. Other differences are:

not .

'Assume that RR12 contains the address THERE and RR10 contains the address HERE.
ing sections of 78001 instruction move a block of 8 words from HERE to THERE.

5 cycles
83 cycles
88 cycles = 8.8 us @10 Miz or 1.82 M bytes/sec

35 cycles

35 cycles

70 cycles = 7.0 us @10 Miz, or 2.29 M bytes/sec
the LDM version is faster--taking B80% of the execution time
(1) The LDIR version uses R9 for a counter and modifies RR10 and RR12.

(2) The LDM version modifies RO-R7 but leaves all other registers unchanged.

In some applications, the modification of RR10 and RR12 may be desirable, in others it may

The follow-

of the LDIR

Figure 1:

LDM outperforms LDIR in an 8-word transfer.

©1981 by Zilog, Inc.

Figure 2 shows a comparison of the methods in

In summary, for large or small blocks of data the

moving a block of 128 words. In this case the 28000 CPUs are capable of ef fecting
LDIR method is faster, requiring only 1170 cycles memory-to-memory transfers at rates in excess of
as opposed to the 1415 cycles required for the LDM 2M bytes per second using CPU instructions,
method. At clock rates of 10 MHz, the LDIR method without the need for a DMA device.
gives a transfer rate of 2.19M bytes per second,
while the LDM method achieves a rate of 1.81M
bytes per second.

!Assume that RR12 contains the address THERE and RR10 contains the address HERE. Each of the

!
ILDIR version: !
LD R9,#128

ILDM version: !

7 + 16 x 88 = 1415 cycles

advantage of the LDM instruction.

two following sections of 78001 instructions moves 128 words from HERE to THERE.

7 cycles
LDIR @R12,@RR10,R9 1163 cycles
1170 cycles

LD R9,#16 7 cycles
LP: LDM RO,@RR10,#8 35 cycles—
LDM @RR12,R0, #8 35 cycles
INC R11,#16 4 cycles }-x16
INC R13,#16 4 cycles
DEC R9 4 cycles
JR GT,LP 6 cycles—

141.5 us @10 MHz, or 1.81 M bytes/sec

In this case, the overhead of the loop associated with the LDM version outweighs the speed
In fact,
repetitione of the sequence LDM, LDM INC INC (without the INCe on the final sequence), the

LDM version would still require 1240 cycles--70 more than the LDIR version.

117 us @10 Mz, or 2.19 M bytes/sec

even if the LDM version consisted of 16

Figure 2:

LDIR outperforms LDM in a 128-word transfer

4-76

00-2186-01

z i log October 1982

1315 Dell Avenue
Campbell, CA 95008
(408) 370-8000

CHARACTER STRING TRANSLATION:
Z8000 vs 68000 vs 8086

Task: Translate a string of 1000 characters from one code to
another, e.g.. EBCDIC TO ASCII.

EXECUTION TIME (xSEC)
(ALL CPUs AT 10 MH2)

5606
5042
4007
3604
2358
1404

LINES = 9 LINES = 7 LINES = 4 LINES = 12 LINES = 10 LINES =9
BYTES = 17 | BYTES = 26 | BYTES = 16 BYTES = 26 | BYTES = 36 | BYTES = 28

8086 68000 Z8000 8086 68000 Z8000

CASE 1: STRING LENGTH IS KNOWN CASE 2: STOP IF A SPECIAL CHARACTER

IS ENCOUNTERED

4-77 Printed 1n U S.A

8LV

10-862S-00

PROGRAM LISTINGS

Z8000* 68000 8086
CASE 1:
LD R3,#1000 MOVE.L #1000,D3 CLD
LD R6,#STRING LEAL STRING,A1 MOV CX,1000
LD R8,#TABLE LEAL TABLEA?2 MOV SI,STRING
TRIRB @R6,@R8,R3 CLRL DO MOV DI, SI
LOOP MOVE.B (A1),D0 MOV BX, TABLE
MOVE.B 0(A2,D0)(A1)+ | LOOP LODSB
DBF D3,LOOP XLAT
STOSB
LOOPNZ LOOP
CASE 2:
LDB RLO,#EOS MOVEL #EOS,D4 CLD
LD R1,#1000 MOVE.L #1000,D3 LES DISTRING
LD R2,R1 LEAL STRING,A1 MOV BX,TABLE
LD R3,#STRING LEAL TABLEA?2 LDS SI,STRING
LD R4,R3 CLRL DO MOV CX,1001
LD R5,#TABLE BRA ENTER Y AH,EOS
CPIRB RLO,@R3,R1,EQ | LOOP MOVE.B 0(A2,D0),(A1)+ JMP ENTER
SuB R2,R1 ENTER ~ MOVE.B (A1),D0 LOOP XLAT
TRIRB @R4,@R5,R2 CVMP.B D4,D0 STOSB
DBEQ D3,LOOP ENTER LODSB
CMP AH,AL
LOOPNE LOOP

*Code and timing applies to Z8001, Z8002, Z8003, and Z3004.
For Z8001 and Z8003 in Segmented mode, add five pusec, and four bytes.

Z8002° CPU
Small Single-
Board Computer

Zilog

Application
Note

August 1982

INTRODUCTION

This application note describes the design of a
system using a 28002 CPU and Z-BUS peripherals.
This system was designed to demonstrate that a
78002 system is easy to design and build, and to
provide a vehicle for the demonstration and evalu-
ation of Z-BUS peripherals. The system includes:
e 78002 CPU

Z-SCC Serial Communications Controller

e Z-CIO Counter-Timer Parallel Input/Output Unit
o Z-FIO FIFO Input/Output Unit

® 76132 Memory

e 2732 EPROM

Basic goals of this system design were:

o It should be simple, with minimum parts count.

It should use
wherever possible.

[] Z-BUS-compatible components

e It should be expandable

With these goals in mind, the next step in the
system design was to select the major devices in
the system.

The 28002 CPU was selected because of its high
performance and because its 64K byte addressing
range capably handles this application. This
allows a system that is hardware compatible with
all Z-BUS peripherals and memories, and thus keeps
the system cost down.

The peripherals were chosen to demonstrate Z-BUS
peripherals currently available (Z-SCC, Z-CIO, and
Z-FI0) and because of their ability to support
functions necessary for running this system. The
Z-SCC provides two channels of serial communi-
cations, one for a terminal and one for a link to
a host computer, such as the System B8000/Z-LAB.
The Z-CI0 and Z-FIO are included so that the user
of this system will have one of each Z-BUS
peripheral available on the board.

The Z6132 memories were chosen because they inter-
face easily to the Z8002 and provide 4K bytes of
storage per package. In a simple system such as
this, large amounts of dynamic RAM would be over-
kill. The Z6132 provides all the storage needed
in a convenient, easily interfaced device.

The 2732 EPROM was chosen because of its density
and speed. The 2732 is twice as dense as a 2716
and is available in higher speeds than the 2716.
The higher speed EPROMs would be necessary if this
system were to operate at 6 MHz.

The system was designed to allow the use of a
modified software monitor from the 78002
Development Module. Modifying the Software
Monitor is accomplished by simply rewriting the
serial I/0 drivers for connection to a Z-SCC
rather than a Z80 SI0, and by rewriting the
single-step code, which uses different hardware in
the new sytem. Starting from an existing monitor
considerably reduced the time necessary to
complete the software.

HARDWARE DESIGN

The 78000 CPU architecture is based on the machine
cycle as its fundamental unit of execution. All
hardware interface logic must be aware of what
kind of machine cycle is being executed so that,
for example, operations intended for memory affect

memory only, and not input/ouput devices. In
order to differentiate between the different
machine cycles, logic was included in this system
to decode the four CPU status lines, STp-ST3, and
to produce status signals to be used in other
parts of the system.

STATUS DECODING

U37 (see the schematics attached to end of
application note) is an octal decoder (74L5138)
that decodes the first eight status codes (those
codes for which ST3 = 0). Two sections of U15 (a
74L500) are used to derive a signal called MREF
which is valid for any memory access, regardless
of the type of address space (code, data, or
stack). MREF is represented by this logic
equation:

MREF = ST3*(ST{*ST,)

It would have been possible to include another
74L5138 to decode the upper eight status codes and
to OR the three status codes for code, data, and
stack memory accesses, but that would have added
additional chips, and would have been contrary to
the goal of minimum chip count. In addition to
this status decoding, one section of U15 and three
sections of U16 (a 74LS32) are used to generate a
signal that is the combination of Data Strobe from
the 78002 and a status signal for stack refer-
ences. This signal is used to drive the single-
step logic, which is discussed later.

MEMORY INTERFACE LOGIC

The memory interface logic is divided into two
major parts, the RAM interface (for the Z6132s),
and the EPROM interface (for the 2732s).

RAM INTERFACE

The RAM interface logic consists of even/odd bank
decoding, and chip select decoding. The even/odd
bank selection is done by one half of a 74L5157
multiplexer (U12). It takes as its inputs the
byte/word signal (B/W), the read/write signal
(R/W), and Address/Data bit O (ADg) from the Z8002
CPU. For any read operation, both outputs are
active. For write operations, if the byte/word
line indicates a word write, both outputs are
active. For write operations in which the byte/
word line indicates a byte write, only the even or
odd output is active, depending on the state of

ADg. In essence, for byte write operations,
ENAEVEN is active if ADp = 0 and ENAODD is active
if ADg = 1. For any other operation, both outputs
are active. This decoding is necessary because,
for byte write operations, however, the data
appears on both halves of the Address/Data bus, so
there must be some way of allowing writes to only

one bank of the memory.

The RAM chip select logic is composed of two
74L5138 decoders: one for the even byte (U4) and
one for the odd byte (U3). The decoders have as
inputs the uppermost three address bits (ADq5-
AD43), the MREF signal decoded from the status
lines, and either ENAEVEN or ENAODD. Each 76132
is connected to one of these chip select lines,
depending on the address desired and whether it is
the even or odd bank device for the address.

EPROM INTERFACE

The EPROM interface logic is simpler, because the
EPROMs have no requirement for even/odd bank
select because they do not respond to write
operations. The EPROM chip selection is done by
U5, a 74LS138 decoder. This decoder is enabled by
the MREF signal and uses as select inputs
AD15-AD¢3 (the 2732s are 4K x 8 devices). This
gives EPROM select signals that allow EPROMs to be
placed anywhere within the 64K byte address space
of the Z8002. Because there is no even/odd
selection, both even and odd byte devices at a
given address are wired to the same EPROM select
signal.

WALT STATE GENERATION

To accomodate slower memory devices, which are
often used for reasons of cost, separate wait
state generators are included for the RAMs and for
the EPROMs. Each generator takes the chip select
signals used on the board and ORs them together.
This ORed chip select is then gated with Address
Strobe (active High). The resulting signal
presets a 74LS74 flip-flop, causing the Q output
to go Low. This signal is used as the wait input
to the CPU. The first falling edge of PCLK clocks
the flip-flop with the "D" input Low, causing the
Q output to go High again. This allows the
generated wait signal to be recognized once,
adding one wait state to that memory access. The
outputs of both wait state generators go through
DIP switches to two sections of a 74LS32, which

4-80

combines these wait signals with the BUSY outputs
of the Z6132s into one WAIT output that is fed to
the WAIT input of the Z8002. The BUSY outputs of
the Z6132s must be included because they may need
to generate one or more wait states in order to
perform their internal refreshing. The DIP
switches allow the user to select one wait state
for RAM accesses, EPROM accesses, or both. More
elegant wait-state generators are possible with
selectable numbers of wait states, but the single
wait state circuits were used because of their low
parts count and simplicity.

PERIPHERAL INTERFACE

Using Z-BUS-compatible peripherals eliminates all
external interface logic except the chip select
circuitry. This function is handled by U21 and
U6. U21 is used to detect the case in which the
upper-most five address bits are all 1s. This
signal is fed into one of the enable inputs of U6,
a 74L5138 decoder. This decoder is also enabled
by the status 1line indicating an I1/0 machine
cycle. This one decoder gives eight chip select
signals derived from the upper eight bits of the
Address bus. Because Z-BUS peripherals are byte-
wide devices on the low byte of the Address/Data
bus, it is wise to perform the chip selection with
the bits not used by the peripheral for addressing
internal registers. By selecting only on the
basis of the upper eight bits, the design avoids
conflict with any peripheral, because one device
may use the lower six bits while another may use
the lower seven bits. To make these chip select
signals compatible with other devices, the latched
address lines LAg-LAq5 are used to drive the
decode logic. In this way the chip select outputs
are valid throughout the machine cycle. Z-BUS
peripherals latch the chip select input on the
rising edge of Address Strobe, so a longer chip
select signal is not necessary. However, because
compatability with devices other than Z-BUS parts
is desirable, and, because using the longer cycle
does not add any additional logic (the latched
addresses are already needed for addressing the
EPROMS), the longer chip select signal was
incorporated.

INTERRUPTS
Proper interconnection of Z-BUS periperal inter-
rupt signals is easily accomplished with the logic

already in the system.

The Z-BUS interrupt structure is based on a prior-
ity daisy chain for resolving conflicts when

several devices interrupt at the same time. In
order to allow experimentation with different
interrupt input to the CPU (in this case Vf, the
vectored interrupt input, was used), and the
interrupt acknowledge back to the peripherals
(VIACK). The interrupt input is a wired-ORed
signal, since all peripherals have open-drain out-
puts for this signal. The interrupt acknowledge
output of the status decoder is used to feed all
of the peripherals; the priority daisy chain
resolves for which peripheral the acknowledge is
intended.

SINGLE-STEP LOGIC

The single-step logic is composed of three flip-
flops (U22 and U28). The single-step logic is
enabled ("armed") by writing to an I/0 port
address (in this case F900). Writing to this port
address sets the first flip-flop (which is con-
nected as a set/reset latch). This then enables
the chain of two flip-flops (U28) to count stack
operations. Several gates are used to generate a
signal valid for any stack reference; this signal
is ANDed with Data Strobe.

The instruction sequence for single-stepping is to
arm the chain with an I/0 write to the single-step
port and to follow this instruction immediately
with an Interrupt Return Instruction (IRET). The
stack has already been set up to return to the
next instruction in the user program. The two
stack operations in the IRET instruction are
counted and a nonvectored interrupt is generated.
This interrupt is not generated until the rising
edge of Data Strobe during the last machine cycle
of the IRET instruction, so it is not recognized
during that instruction. It is recognized during
the next instruction, which is the next instruc-
tion of the user program. This instruction
executes to completion, and then the interrupt
acknowledge sequence starts.

After one instruction of the user program is
executed, control is returned to the monitor.
This allows user instructions to be executed one
at a time under software control. This method of
single instruction execution was used instead of a
method that uses hardware control of the CPU so
that the monitor could be used to examine and

alter memory and register contents between
execution of user instructions.

BUFFERING

In the hardware design of this system, an

important question was whether or not to buffer

4-81

the Address/Data bus and the control signals.
Several items were considered in order to answer
this question.

When considering the dc loads on the CPU outputs,
the only devices that present significant dc loads
are the "LS" series devices. A 78002 output
drives at least four LS-series inputs. The
memories and peripherals are all MOS devices, and
as such have negligible dc loading.

The capacitance of inputs is another item that
must be considered. The outputs of the Z8002 are
specified at a capacitance of 100 pF, so that the
sum of the input capacitances of the devices on
the bus must be less than 100 pF. The memory
devices have a 5-10 pF input capacitance and the
peripherals are typically 10-15 pF. With the
number of peripheral and memory devices in this
system, there is no problem driving these inputs
directly from the Z8002.

Considering the present loading, the status and
control signals were buffered by a 74L5244, al-
though Address Strobe, Data Strobe, and read/write
also go directly to the peripherals. The status
outputs are fed to a number of LS-series devices,
so buffering helps the loading here. Status is
not critical to timing, so the small delay the
buffer introduces has no effect. The Address/Data
bus was not buffered so that slower access time
memories could be used, but if the system were
expanded, 1t would be advisable to buffer the
Address/Data lines with 7415245 bidirectional
buffers.

SOF TWARE DESIGN

The monitor on the 78002 Small Single Board
Computer (SSBC) is a modified version of the
monitor used on the Zilog 28002 Development
Module. The commands are the same, except that
the TAPE and PUNCH commands have been deleted.

The syntax interpretation for 78002 SSBC monitor
commands is:

<address> :=z <number_in_16 bit range>

The following notation is used in the command
descriptions:

<> Angle brackets are used to enclose de-
scriptive names for the quantities to be
entered, and are not actually to be
entered.

[1] Square brackets are used to denote optional
quantities, and are not actually to be
entered.

\ Bar is used to denote "OR." For example,
wlB means either of the characters W or B
may be used.

(CR) Carriage return.

All commands can be abbreviated to their first
letter. Commands and options can be entered in
either upper or lower case. All numbers are
represented in hexadecimal notation and must begin
with a numeric digit. The first character typed
on a new line identifies the command being in-
voked. If the command is not understood, a "?"
is printed on the terminal and a new command is
requested.

SUMMARY OF COMMANDS:

BREAK <address> [<n>]
Set and clear breakpoint.

COMPARE <address1> <address2> <n>
Compare memory blocks.

DISPLAY <address> [<# of long words/words/bytes>]
[L|w|B]
Display and alter memory.

FILL <address1> <address2> <word data>
Fill memory.

GO
Branch to last PC.

I0PORT <port_address> [wla]
1/0 port read/write.

JUMP <address>
Branch to address.

LOAD <filename>
Load file from host system.

MOVE <address1> <address2> <n>
Move memory block.

NEXT [<n>]
Step instruction.

QuUIT
Enter transparent (terminal) mode.

4-82

REGISTER [<register name>]
Display and alter registers.

SEND <filename> <start_address> <ending_address>
[<entry_address>]
Send file to host system

NOTE
All outputs in monitor mode can be sus-
pended with the XOFF character (CONTROL
S), and resumed with the XON character
(CONTROL Q).

COMMAND DESCRIPTIONS:
BREAK

Syntax:
BREAK <address> [<n>]

Description

The BREAK command is used to set a breakpoint at
the given even address.

If n is specified, the user program execution
is not interrupted until the nth time the
breakpoint instruction is encountered. The value
for n should be in the range %0001 - %FFFF. If
n is not given, 1 is assumed. If the BREAK com-
mand is issued with no parameters, it clears any
previously set breakpoint. This action should
be performed before setting the current break-
points.

When user program execution is suspended by the
BREAK command, the monitor prints a message

informing the user of the break and the address
at which it occurred.

COMPARE

Syntax:
COMPARE <address1> <address2> <n>

Description:

The COMPARE command is used to compare the con-
tents of two blocks of memory.

Locations <address1> and <address2> specify the
starting addresses of the two blocks of memory;

<n> specifies the number of bytes to be
compared. If any locations of the two blocks
differ, the addresses and contents of those

locations are displayed on the terminal.

DISPLAY

Syntax:
DISPLAY <address> [<# of long
words/words/bytes>]
[LlwlB]

Description:

Displays the contents of specified memory
locations on the terminal, starting at the given
address, for the given number of bytes.

If the number (#) of long words/words/bytes
parameter is specified, the contents of the
desired locations are displayed, both in hexa-
decimal notation and as ASCII characters.

If the number of long words/words/bytes is not
specified, the memory locations are displayed
one at a time, with an opportunity to change the
contents of each location. For each location,
the address is displayed, followed by the
contents, followed by a space. If the contents
at that location must be changed, the new
contents are entered at this time. A carriage

return, either alone or after the new contents,
causes the next sequential 1location to be
displayed.

If the [LlwlB] parameter is not specified, data
is displayed in word format.

A "Q" followed by a carriage return terminates
the command.

FILL

Syntax:
FILL <address1> <address2> <word data>

Description:

The FILL command is used to store the given data
word into sequential memory locations starting
at <address1> up to and including <address2>.
The command addresses must be even hexadecimal
numbers.

4-83

GO that the FCW is set to an appropriate value.
Syntax:

GO LOAD DATA FROM HOST
Description: Syntax:

This command is used to branch to the current

LOAD <filename>

PC, thus continuing program execution from where Description:

it was last interrupted.

All registers and the FCW are restored before
branching. Before executing a GO command,
ensure that the FCW is set to the appropriate
value.

I0PORT

Syntax:
I0PORT <port_address> [W | B]

Description:

This command is used to read data from the given
port address, display the data on the terminal,
and write new data to that port address.

After the current port data is displayed, the
user can either enter a "Q" followed by a
carriage return to terminate the command, or
enter a series of bytes or words (maximum 128
characters per line). Bytes or words should be
blank delimited with a carriage return at the
end. This allows multiple writes to a port
without scrolling the terminal screen excess-
ively. If the [W|B] parameter is not specified,
byte data is read and written to the 1/0 port.
If a carriage return alone is entered, a zero
value is written to the port.

JuMp

Syntax:
JUMP <address>

Description:

The JUMP command is used to branch uncondition-
ally to the given even address.

All registers and the FCW are restored before
branching. Before executing a JUMP, ensure

This command is used to download a Z8000 program
from a host system into the SSBC memory.

The monitor program transmits the command line
to the host system exactly as entered. The
monitor assumes the host system recognizes this
command line. When the SSBC is connected to
either a PDS-8000 or a System-8000, this command
causes the file <filename> to be opened, the
data is converted to Tektronix hex format and
transmitted to the SSBC.

The monitor program verifies the two checksum
values in each record and stores the data in RAM
memory at the address specified in the record.
An acknowledgement from the SSBC causes the host
to send the next record.

A non-acknowledge from the SSBC causes the host
to retransmit the current record up to 10 times,
after which a record with an error message is
sent and the command aborted.

After successful completion of the loading
process, the entry point received in the last
record is printed on the terminal. An ESCAPE
key is used to abort the LOAD command. Any set
breakpoints from a previous program must be
cleared before loading a new program.

MOVE

Syntax:
MOVE <address1> <address2> <n>

Description:

This command is used to move the contents of a
block of memory from the source address
specified by <address1> to the destination
address specified by <address2>. The value <n>
is the number of bytes to be moved.

4-84

NEXT

Syntax:
NEXT [<n>]

Description:

The NEXT command causes the execution of the
next n user instructions, starting at the
current PC, and displays the contents of all
registers after each instruction is executed.

The value <n> should be in the range %001

%FFFF. If <n> is not specified, 1 is assumed.
QuIT
Syntax:

QuIT
Description:

The QUIT command is wused to enter the

Transparant mode (terminal mode) from Monitor
mode .

In Transparant mode, all keyboard input is
passed to the host serial port, and all input
from the host serial port is passed to the
terminal. The baud rate of the host serial port
is controlled by three switches of the eight
position DIP switch (U11).

The NMI switch on the SSBC is used to return to

Monitor mode.

REGISTER

Syntax:
REGISTER [<register_name>]

Description:

The REGISTER command is used to examine and
alter registers.

The following are valid register names:

e Any of the sixteen 16-bit registers named
Rgs Ryy RpeceRys

e Any of the sixteen 8-bit registers named
RHg, RLg, RHq, RLq...RHy, RLy

e Any of the eight 32-bit registers named RRg,

RR2, RRy...RRyy4

e Program counter register named RPC

e Flag and control word register named RFC

If no register name is given, the contents of
all registers are displayed. If a register name
is given, the specified register name is dis-
played, followed by its contents, followed by a
space.

If the contents of that register are to be
changed, the new contents can be entered at this
time. A carriage return, either alone or after
the new data, causes the next register.

A "Q" followed by a carriage return terminates
the command.

SEND DATA TO HOST

Syntax:
SEND <filename> <start_address> <ending_address>
[<entry_address>]

Description:

The SEND command is used to transfer the con-
tents of memory of the SSBC to a file on the
host system.

The monitor sends the command line to the host
system exactly as received. The SEND command on
PDS-8000 or a System-8000 opens a file name
<filename> and sends an acknowledge (ASCII 0) to
the SSBC to start transmission.

If the file cannot be opened, abort -
acknowledge (ASCII 9) is sent to the monitor and
the SEND command is aborted.

an

The monitor formats the contents of memory spec-
ified by <start_address, and <ending address>
into Tektronix hex format and transmits this
data to the host system. The monitor then waits
for an acknowledge before sending the next
record.

A nonacknowledge (ASCII 7) received by the
monitor causes the same record to be resent up
to ten times. If this record is still not sent
successfully, a record with double slash
characters (//), followed by a carriage return,
is sent to the host system to abort the SEND
program in the host. The two slash characters
are also sent if the ESCAPE key is pressed by
the user to abort the SEND process.

4-85

The address specified by <entry_ address> is sent
in the last record as the entry address for that
file. If no entry address is specified, an
address of %0000 is assumed.

RECORD FORMAT FOR LOAD/SEND COMMANDS:

The record format for the LOAD and SEND commands
is Tektronix hex format, which uses ASCII char-
acters only. Each record contains two checksum
bytes, a starting address, and a maximum of 30
bytes of data. The format of the record is shown
below:

For Records 1 to n:

/<address(4)><count (2)><checksum1(2)><data(2)...
<data(2)><checksum2(2)><(CRC)>

<address(4)> The address of the 1st byte of
data in the record (address is
represented as 4 ASCII char-
acters).

<count (2)> The number of data elements
(<data(2)> is one data element)
in the current record (2 ASCII
characters).
<checksum1(2)> The checksum for the address
and count field (2 ASCII char-
acters).
<data(2)> Data element. This is a byte
of data represented in two
ASCII characters.
<checksum2(2)> The checksum for the data por-
tion of the record (2 ASCII
characters).

For the last record:

This record has a 00 in the count field and indi-
cates the end of the load data.

/<entry_address(4)>00<checksum(4)><(CR>

<entry address> The starting address for the
program (4 ASCII characters).

<checksum> The checksum for the entry

address (4 ASCII characters).

For records with error messages:

If either the host system or the SSBC aborts a
LOAD or SEND process, it may send a record of the
form:

//<error_message_in_ASCII_text><(CR)>

ACKNOWLEDGE

After each record is received from the host system
while loading, an acknowledge (ASCII 0) is sent if
the checksum values are verified.

A non-acknowledge (ASCII 7) causes the host system
to load the same data record up to 10 times.
After the tenth try, the monitor program returns
to Monitor mode for the next command, and the host
system aborts the LOAD command.

An abort-acknowledge (ASCII 9) is sent to the host
system if the user decides to abort the LOAD or
SEND process by pressing the ESCAPE key. This
action also causes the host system to abort its
program. The monitor returns to Monitor mode for
the next command.

The address used in the data record during the
loading process is specified when the object file
is originally created on the host system. This
address must be greater than %4500 (%4000 - %44FF
is used by the monitor program).

For the SEND command, data is formatted and sent
to the host system in Tektronix hex format. An
ASCII 0 response from the host causes the next
data record to be sent.

The same data record is sent again if ASCII 7 is
received. The SEND command resends the same
record up to ten times before it aborts the
sending process.

An ASCII 9 response from the host system indicates
that the input file already exists, or that an
error occurred during a disk access.

MONITOR I/0 PROCEDURES

The SSBC monitor contains subroutines to do
character 1/0 to and from the terminal. These
subroutines can be called by a user program in
order to do terminal 1/0. A description of each

4-86

subroutine follows, along with details of which
registers, if any, are affected by calling the
routines. The hex address in parenthesis next to
the subroutine name is address to which the user
should do a CALL instruction to use that routine.
For example, to output a carriage return and line
feed to the terminal, a user should execute the
following instruction:

CALL %0FD4

loutput CR/LF. RO is lost !

TYIN (%0FAC)

Get a character from the keyboard buffer. If the
buffer is empty, this procedure waits for a char-
acter to appear. The character is stored in RLO,
and the contents of RHO are destroyed.

TYWR (%0FC8)

Display a character in RLO on the terminal. The
character is not displayed if the XOFF character
is received before this procedure is executed.
This procedure waits until an XON character is
received to display the character in RLO. If the
display character is a carriage return, the zero
flag is set and RHO is destroyed.

PUTMSG (%0FCO)

Send a character string to the terminal. Register
R2 should contain the address of the character
string buffer, and the first byte in the buffer
should be the number of characters to be dis-
played. If there is no carriage return in the
string, the entire string specified is displayed,
otherwise the string is displayed up to and
including the first carriage return. Registers
RO, R1, and R2 are destroyed.

TTY (%0FDC)

Receive and echo at the terminal a line of char-
acters up to the first carriage return. The

string is stored in a buffer pointed to by R2. R1
contains the size of the buffer. If the size of
the string received exceeds the size of the
buffer, the zero flag is set. All lower case
alpha characters are converted to upper case
before being stored in the buffer. R1 returns the
actual number of characters received from the
terminal. The contents of RO and R2 are des-
troyed.

CRLF (%0FD4)

Output a carriage return followed by a line feed
to the terminal. RO is destroyed.

EXPANSION

Chip decoding for extra EPROM and RAM and I/0
devices exists. To connect additional Z-BUS
peripherals, for example, the device is wired to
the Z-BUS signals required and an unused chip
select line is connected to the chip select input
of the peripheral. Other peripheral devices can
be connected, but they may require additional
circuitry in order to interface to the Z-BUS.

Additional 76132 RAM devices can be connected
directly to the Z-BUS 1in parallel with the
existing RAMs; the only difference being the chip
select lines, which should be selected from
currently unused outputs. Extra EPROMs can be
added in a similar manner. There is enough EPROM
decoding to fill the entire 64K byte address space
with 2732 EPROMs, and enough RAM decoding to do
the same with Z6832 RAMs. The user can select
either RAM or EPROM.

Any expansion beyond two additional peripheral
chips should be accompanied by the addition of
74LS245 buffers on the Address/Data lines. Buf-
fering is already present on AS, DS, R/W, B/W and
STg-5T3. If 74L5S245 buffers are added, their
direction should be controlled so that they drive
from the CPU to the outside world except during
the time that Data Strobe is active during a read
operation.

4-87

88-%

100-%92C

Vee Vee
vio
AD1s f— A5 —2 18 eas
WA - — 2 war Aot |2 55 —4] 116 555 2000
. AD13 P5— AW —] 4 erw 4000
4
— A012 b | aos-ants 8W— 7408244 |- BBW 6000
Vee _— = —2 svoj" vz0 |® g5t 8000
BUSAEG AD10 st L A000
1
uto| 2 A0S st2—22] R | gst2 I cooo
—] BUsAck AD8 sta—L 12— psta WREF €000
C 38
T o7 ADDRESS SELECTED
AJ [P a7 1 19 3
s AES apg |37
b No s ADs |35 1 AD1S
2 36 - AD14
pof | L . el e AD13
CEE " 28002 AP3FOE 8 ot
wi i cpu Aoz |5
vaz = 8 AD10
12 ' ADO-AD? AD9
i ADO |— AD8
7 x| L AD7
i s .- o3 ADE
sz L6 ADS
‘s wREG |- AD4
—] o AW 25 RW s b ap3
o s |- s AD2
Vee — +5v ow |28 ADO
Vee sto j2L-st0 . ADDRESS LATCHES
3t 20
W POLK GND sm B smt w[o T s
_l 12 ——ST2 17 16 LAM
uss | K1100a |8 oy EPRp Ao as
aMHz — aloe gsfs LA
7 aps-ap1s | <2 ps Q¢ 2 a2
L 2o wfd Ll
BST3 oz oz o LAw0
7l o1 [5_1ae
BSTO 1
3 2 s
LS04 — 0 Qo
BST2 o X
BSTI 1 2 110 DECODES
E— STARTING ADDRESS
L5373
o7 u27 07 La7 0000
b6 as La6 2000
o5 e LAs 4000
ADO-AD7 Uoe o Las 000
2oz @ LA3 8000
1 s L] LAz A000
Ls00 o a LAt coo0
; 3 — 0 LA E000
STATUS DECODING Lso0 G
74LS00 4 " EPROM DECODES
BSTO 9 8 5 m 6
BSTS ojuts Tasaz s L
s — =
)
4)ute WREF
Vee BST1 112 3 o 10 Juts, -STACKDS
Bst? z)ute
B w))
Pr Pr 2
Q 2o GRS Q 3 " 1v Jot— enaeven
BBIW ®
741874 741874 5] ° Lsis7
uzs u2s 22 vz .
afd 2 [i 8 af2 L1 1Y 2v jo!— ENAGOD
cl cl G s
|T 13 = 1
¢ l BRW
SINGLE-STEP CIRCUIT Ao
Figure 1a. SSBC Schematic

Z00-¥92Z

687

PROMP
RAMPR
!, 10
Pr Pr
-L_’ o o Vee I‘i b a
= 741874 = 741574
u2e R
N 3 6 U i U8 s sromwarr
PCLK.] A —1 a
cl i
1T ﬂT
AD1S AD15 — AD15—
AD14 AD:! RAMWAIT
AD13 AD13
AD12 18
Ap11 Ap11 ve AD11
AD10 47k (8 PLACES)
ADS ADS. i AD:
AD8 ADS. 6| 5] 4] 3 Ul
AD7 AD? 9 8 o
AD6 06 1 7
ADS ADS. 1 €
ADs AD4 12 S
D avs 1 « Tl
02 Ao i 3 = o:
AD1 ADY 15 2 ADY
ADO ADO. L !
Vee
vz WATT
N
p— BUSY Vee Vee
28 28
! BUSY 2; BuUsY s 25 2
2% E
52 ac 18 s
55 2 22| o w 1)% RR]
jnd — 13
RW z WE LA2 Hat
10 A0 LA a2 1
mpe : At LA 1 15
O A2 Las Aas 2732 18
wl 7| e ol wvEm L]
L] Slas LA7 21ns
S] P L a7
4 ; A8 L g
arfd a7 L =
26 Bl ze132 Lan 2] at0
26132 20 2‘ oDD] n
(EVEN) A 2 IAQ (ua' LA {an
uts ,lz 1 ato0
anj 24 14 Do 5e oo |
" —
i) Do PROMD 1L P o1 j2
12 224 o L—8a0 021
1
022 ‘: [Y o3
oy I L1 S 9 i)
pa |18 16 5} as 15
17 17 4 2732 16
s A4 (ODD)
73 o, vzl
1
2 07 CS Vss 2 as
20) \1 Har
. =m
22,0
19 ato
2 A1

Figure 1b.

SSBC Schematic

06%

£00-¥9ZC

ADY4
AD13
aD12
AD11
ADY0
AD9
D8
AD7
A6
DS
AD4
AD3
AD2
ADY
ADO
is
o8
RW
BUSY
RAWEO
RAMBE 424 oe o>
ROV Ty pe o1 o
LA 810 oz i
LA2 4 Y s fiS
215 LA3 L1 P93 [y i
2155 Las as 2732 o5
2 we Las Alas LOW. pg it
k] [3 BYTE 17
BUSY a6 as (opD) O7
|2 L2 e A7 2-IAs va2s
10 204 po Las Uar
mp 2 LA9 24 08
aft 2 a2 a1 2] 59
u A Py Lan 24 at0
af U P La12 24 an
as s
26132 A 4 26132
LOw-BYTE A8 [3]\° maHevTE el o
(0DD) A7 AT (EVEN) cE o1
ue A8 25 25 A8 u19 81,0 1
.l al, 1. 13
a0 P2 211010 6], pejit
an B Bl 2 2732 Osf
oo P4 u 4lae wiGH ool
12 12 a],. BYTE 17
o1 o1 (EVEN) O7
02 2 13 2|6 USY
o3 Js 15 11,
. 16 23] 08
os 22 17 2] ,o
o6 12 18] 190010
o7 P2 19 o7 Al PO

Figure 1ec.

SSBC Schematic

orjemayds Jass “pj aanbry

(43QVIH dIG Nid- ¥4)

ONILLIS ,
NIVHO LN ,
© o,
.A|AA|.||AH_.= 0 A|AA|AH—M.H o o, ”
zen 802038 3 4 sea vui03¢ 3 D 9 :
J o !
. ou s
Ry () o L L0 o5 =
) 851439 3 030 . T e :
o — ,
senp S s senpls 1312 _2 B 031s ,
5§ -—x A"—T@J -—
) asio3 ¥ 9 oo - vsioa P9 wne’ | GG
et ay m
eenpNZ NN ,
o Sl PP o |
LT gui03 HTE 2 ica - vaoa: b € A ,
N sov savi
l 194 ,
st iz o of
W o oy .
F L{on awso | L]] X
8s1d 1 el
+1 o = 8510 o o o2 sad
s | T
HOVINI a -
7] 8svwa —9 8034HI0 | Ay Bl €8d o —
21 SO 4N BOIUM | 2y BL 2ad b O
o] wovun 2ONAS | 18d f— '
ey Eu o il 20x1H |-t =1 0 08d fo— A
E— T o &2 BOXHL [y 59 252
s0xd |- cod |
My ovn PN - gaxs "y Lon 20d
v {sco82) L A) K 8], (lecosz 2
=1 s¢ 0142 %132 295z 3 EY 019z 19d fmH
v .l
B =2 B Y020 o 3 B 02d for
ysio b
+ «v s o +1 tav v |
o3 e YOIHHLC o =1 %ov ovd b
w1 sav YOIUM o 7] sov Svd b
w1 rv YONAS 1o Wl
] sov voxuy pr— 0 a1 cav v b
= v oxtL b 5 aav 2vd b
] v vaxy | W rov wvd |
rorf av vaxi 7] oov ovd
ans ol ase ano [®© AS+ OND €
3 T s 5} uw Bl A u.h
o 2o
"
AowiA
oay
rav
zav
sov
vav
sav
sav
av
sv
9
o

I

9n
ALy

3
00-2264-01

Interfacing the Z8500
Peripherals to the 68000

Zilog

Application
Note

October 1982

INTRODUCT ION

This application note discusses interfacing
Zilog's 78500 family of peripherals to the 68000
microprocessor. The 28500 peripheral family
includes the 28536 Counter/Timer and Parallel I/0
Unit (CIO), the Z8038 FIFO Input/Output Interface
Unit (FI0), and the Z8530 Serial Communications
Controller (SCC). This document discusses the
78500/68000 interfaces and presents hardware exam-
ples and verification techniques. One of the
three hardware examples given in this application
note shows how to implement the 28500/68000 inter-
face using a single-chip programmable logic array
(PAL).

This application note about interfacing supple-
ments the following documents, which discuss the
individual components of the interface.

® 78036 Z-C10/28536 CI0 Technical Manual (docu-
ment number 00-2091-01)

e 78038 Z-FI0 Technical Manual (document number
00-2051-01)

® 78030/28530 SCC Technical Manual (document num-
ber 00-2057-01)

e Motorola 16-Bit Microprocessor User's Manual
3rd ed. Englewood Cliffs, N.J., Prentice-Hall,
Inc. 1979.

e Monolithic Memories Bipolar LSI 1982 Databook

This application note is divided into four sec-
tions. The first section gives a general descrip-
tion of the 78500 family and discusses pin func-
tions, interrupt structures, and the programming
of operating modes. The second section discusses

the 78500 interface itself. It shows how the dif-
ferent Z8500 control signals are generated from
the 68000 signals and summarizes the critical tim-
ings for the three types of bus cycle. The third
section shows three examples of implementing the
68000-to-Zilog-peripheral interface. The fourth
section suggests methods of verifying the inter-
face design by checking the three different types
of bus cycle: Read, Write, and Interrupt Acknowl-
edge.

GENERAL 78500 FAMILY DESCRIPTION

The 78500 family is made up of programmable
peripherals that can interface easily to the bus
of any nonmultiplexed CPU microprocessor, such as
the 68000. The three members of this family, the
C1o, SCC, and FIO, can solve many design prob-
lems. The peripherals' operating modes can be
programmed simply by writing to their internal
registers.

Programming the Operating Modes

The CPU can access two types of register: Control
and Data. Depending on the peripheral, registers
are selected with either the Ag, Aq, A/B, or D/C
function pins.

Peripheral operating modes are initialized by
programming internal registers. Since these
registers are not directly addressable by the CPU,
a two-step procedure using the Control register is
required: first, the address of the internal reg-
ister is written to the Control register, then the
data is written to the Control register. A state
machine determines whether an address or data is
being written to the Control register. Reading an
internal register follows a similar two-step

procedure: first, then

the data is read.

the address is written,

The Data registers that are most frequently
accessed, for example, the SCC's transmit and
receive buffer, can be addressed directly by the
CPU with a single read or write operation. This
reduces overhead in data transfers between the
peripheral and CPU.

GENERATING Z8500 CONTROL SIGNALS

This section shows how to generate the 78500 con-
trol signals. To simplify the discussion, the
section is divided into two parts. The first part
takes each individual 78500 signal and shows how
it is generated from the 68000 signals. The
second part discusses the 78500 timing that must
be met when generating the control signals.

28500 Signal Generation

The right-hand side of Table 1 lists the 78500
signals that must be generated. Each of these
signals is discussed in a separate paragraph.

Ag, Aq, A/B, D/C. These pins are used to select
the peripheral's Control and Data registers that
program the different operating modes. They can

be connected to the 68000 Aq and A, Address bus
lines.

CE. Each peripheral has an active Low Chip
Enable that can be derived by ANDing the selected
address decode and the 68000's Address Strobe
(AS). The active Low AS guarantees that the 68000
addresses are valid.

Dg-D7. The 28500 Data bus can be directly con-
nected to the lowest byte (DU-D7) of the 68000
Data bus.

IEI and IEO. The peripherals use these pins to
decide the interrupt priority. The highest
priority device should have its I[EI tied High.
Its IEQO should be connected to the IEIL pin of the
next highest priority device. This pattern
continues with the next highest priority
peripheral, wuntil the peripherals are all
connected, as shown in Figure 1.

INT. The interrupt request pins for each periph-
eral in the daisy chain can be wire-ORed and con-
nected to the 68000's ILP, pins. The 68000 has
seven interrupt levels that can be encoded into
the ILPy, ILPq, and ILP, pins. Multiple 68000
interrupt levels can be implemented by using a
multiplexer like the 74L5148.

Table 1. 78500 and 68000 Pin Functions

68000 Signals 28500 Signals
Mnemonic Function Mnemonic Function
Aq-Az3 Address bus Ag,A1,A/B,D/C* Register select
AS Address Strobe CE Chip Enable
CLK 68000 clock (8 MHz) Dg-Dy Data bus
Dg-Dq5 Data bus IEL, IEO Interrupt daisy chain
DTACK Data Transfer Acknowledge control
FCp-FCy Processor status INT Interrupt Request
ILPg-ILP, Interrupt request INTACK Interrupt Acknowledge
R/W Read/Write PCLK Peripheral Clock
VMA Valid Memory Address RD Read strobe
VPA Valid Peripheral Address WR Write strobe

* The register select pins on each peripheral have different names.

4-94

INTACK. The INTACK pin signals the peripheral
that an Interrupt Acknowledge cycle is occurring.
The following equation describes how INTACK is
generated:

INTACK = (FCg)+(FCq)+(FCy)+(AS)

The 68000 FCy-FC, are status pins that indicate an
Interrupt Acknowledge when they are all High.
They should be ANDed with inverted AS to guarantee
their validity. The INTACK signal must be syn-
chronized with PCLK to guarantee set-up and hold
times. This can be accomplished by changing the
state of INTACK on the falling edge of PCLK. If
the INTACK pin is not used, it must be tied High.

PCLK. The SCC and CI0 require a clock for
internal synchronization. The clock can be
generated by dividing down the 68000 CLK.

RD. The Read strobe goes active Low under three
conditions: hardware reset, normal Read cycle,
and an Interrupt Acknowledge cycle. The following
equation describes how RD is generated:

RD = [(R/W)*(AS) + RESET]

The Read strobe timing must meet both the Read
timing and Interrupt Acknowledge timing discussed
in the following section. In addition to enabling
the Data bus drivers, the falling edge of RD sets
the Interrupt Under Service (IUS) bits during an
Interrupt Acknowledge cycle.

WR. This signal strobes data into the periph-
eral. A data-to-write setup time requires that
data be valid before WR goes active Low. The
equation for generating the WR strobe is made up
of two components: an active reset and a normal
Write cycle, as shown in the following equation:

WR = [(R/W)-(AS) + RESET]

Forcing RD and WR simultaneously Low resets the
peripherals.

28500 Timing Cycles

This section discusses the timing parameters that
must be met when generating the control signals.
The 28500 family uses the control signals to
communicate with the CPU via three types of bus
cycle: Read, Write, and Interrupt Acknowledge.

+5V
% IEl IEO IEl 1EOf—— o @ o ¢ —1 IEI IEO IEl 1EO
28500 28500 28500 28500
(FIRST) (MIDDLE) (MIDDLE) (LAST)
HIGHEST LOWEST
PRIORITY PRIORITY
PERIPHERAL PERIPHERAL

RSP N I I I I Iy I I I O 0

INTACK \

PERIPHERAL

(4AMHz) FIRST
cio 350
FIO 350
scc 250

tsettle (NS)

MIDDLE LAST
150 100

150 100
120 120

Figure 1. Peripheral Interrupt Daisy Chain

2267-001

4-95

The discussion that follows pertains to the 4 MHz
peripherals, but the 6 MHz devices have similar
timing considerations.

Although the peripherals have a standard CPU
interface, some of their particular timing
requirements vary. The worst-case parameters are
shown below; the timing can be optimized if only
one or two of the Z8500 family devices are used.

Read Cycle

The Read cycle transfers data from the peripheral
to the CPU. It begins by selecting the peripheral
and appropriate register (Data or Control). The
data is gated onto the bus with the RD line. A
setup time of 80 ns from the time the register
select inputs (A/B, C/D, Ags Aq) are stable to the
falling edge of RD guarantees that the proper reg-
ister is accessed. The access time specification
is usually measured from the falling edge of RD to
valid data and varies between peripherals. The
SCC specifies an additional register select to
valid data time. The Read cycle timing is shown
in Figure 2.

Write Cycle

The Write cycle transfers data from the CPU to the
peripheral. It begins by selecting the peripheral
and addressing the desired register. A setup time
of 80 ns from register select stable to the
falling edge of WR is required. The data must be
valid prior to the falling edge of WR. The WR
pulse width is specified at 400 ns. Write cycle
timing is shown in Figure 2.

Interrupt Acknowledge Cycle

The 28500 peripheral interrupt structure offers
the designer many options. In the simplest case,
the 78500 peripherals can be polled with inter-
rupts disabled. If using interrupts, the timing
shown in Figure 2 should be observed. (Detailed
discussions of the interrupt processing can be
found in the Zilog Data Book, document number
00-2034-02.) An interrupt sequence begins with an
INT going active because of an interrupt condi-
tion. The CPU acknowledges the interrupt with an
INTACK signal.

ADR x
—{>O—
>70
cvole = N_L______ /A
‘>°*I<———>4oo—-——>|
ﬁs
—Pl <300 |<— —bl >0
DATA OUT ==s VALID DATA ’4_
<—<590———->| —>| >0 je—
WR >400 ——3>
oveie — >0 | 0
DATA IN VALID DATA
s _f
=
INTERRUPT \ /
CKN >
AckNOWLEDOR > s00—|
L \ /
| w0 e
DATA IN \ VALID DATA) o
Figure 2. 78500 Interface Timing (4 MHz)

4-96

2267-002

A daisy-chain settle time (dependent upon the num-
ber of devices in the chain) ensures that the
interrupts are prioritized. The falling edge of
RD causes the IUS bit to be set and enables a
vector to go out on the bus.

The table given in Figure 1 can be used to calcu-
late the amount of settling time required by a
daisy chain. Even if there is only one peripheral
in the chain, a minimum settling time is still
required because of the internal daisy chain. The
first column specifies the amount of settling time
for only one peripheral. If there are two periph-
erals, the time is computed by adding together the
times shown in the first and the last columns.
For each additional peripheral in the chain, the
time specified in the middle column is added.

Recovery Time

The read/write recovery time specifies a minimum
amount of time between Read or Write cycles to the
same peripheral. The recovery time differs among
peripherals and is summarized in Figure 3. In
most cases, this parameter is met because of the
time required for instruction fetches. The recov-
ery time specification does not have to be met if
CE is deselected when Read or Write occurs.

68000 INTERFACE EXAMPLES

This section shows three examples, presented in
increasing order of complexity, for interfacing

Zilog's 4 MHz 18500 peripherals to an 8 MHz
68000. Faster CPUs or peripherals can be used by
modifying some of the timing. These examples
suggest possible ways of implementing the inter-
face but may require some modifications to operate
properly. They were chosen because they give the
user a variety of interface design ideas. The
first example uses a minimum amount of TTL logic
to implement the interface because the Valid
Peripheral Address (VPA) cycle meets the 28500
timing requirements. In this mode the 68000
accepts only nonvectored interrupts. The second
example uses the Data Transfer Acknowledge (DTACK)
pin. This interface allows faster operation and
makes use of the Z8500's 8-bit vectored
interrupts. The third example also uses a DTACK
cycle and is similar to the second, except the
external logic is integrated into a single chip,
the PAL20X10 programmable array logic.

EXAMPLE 1: A TTL Interface Using a VPA Cycle

The 68000 has a special input pin, Valid
Peripheral Address (VPA), that can be activated by
the 28500 chip select logic at the beginning of
the cycle to indicate to the 68000 that a periph-
eral is being accessed. This generates a special
Read/Write cycle that meets the peripheral timing
requirements. This cycle allows the Z8500 control
signals to be generated easily. The 68000
responds to interrupts using an autovector and the
28500 can be programmed not to return a vector.

| —

Peripheral Recovery Time

(4 MHz)
cio Greater than 3 PCLK cycles or 1000ns
FIO Greater than 1000ns
scc Greater than 6 PCLK cycles + 200ns

NOTE. The diagram shows that the recovery time is measured between consecutive reads

and writes only if the peripheral is selected

Figure 3.

Recovery Time

2267-003

4-97

Figure 4 shows how the hardware can be imple-
mented. PCLK is generated by dividing down the
68000 CLK. RD, WR, and INTACK are simply ANDed
68000 signals. The worst-case daisy-chain settle
time is 450 ns. Connecting INT to IPLg generates

a level 1 interrupt. The internal registers are
accessed by Ag, Aq, D/C, and A/B, which can be the
68000 lowest order addresses. The timing is shown
in Figure 5.

CLK

VPA
FCo
FCy D Q INTACK
FC2
S CLK
D 74L874
Q
8
Do-D7 7 Dg-D7
7
A17-Azs #' }: CE
68000
A Ag-DIC
Az At-AIB
RW] P—-IJ_ w
Z8500
Peripheral

iPLy j—'wv— +5V
1PLy

1PLy

PCLK

o
o

CLK

74L874

]

Figure 4. Interface Using the VPA Cycle

Jos | oo | |

)

8

ll
=
=
’l

Figure 5.

117

\

VPA Cycle Timing

4-98 2267-004, 005

Functional Description
VPA is pulled Low at the beginning of the cycle

and the CPU automatically inserts Wait states
until E is synchronized.

VPA = [(AS)*(CE)]

RD = [(CE)+(VMA)-(R/W)]

"

WR = [(CE)*(VMA)*(R/W)]

INTACK = [(FCO)-(FC1)+(FC2)*(AS)]

EXAMPLE 2: A TTL Interface Using DTACK Cycles
Using the 68000 Data Transfer Acknowledge (DTACK)
cycle is a second way of interfacing to the 78500
peripherals. The 68000 inserts Wait states until
the DTACK input is strobed Low to complete the
transfer. In addition to generating the control
signals, the interface logic must also generate
DTACK.

The timing shown in Figure 6 can be generated by
the hardware shown in Figure 7. The 8-bit Shift

ISO|S1|S2IS3|S4|

CLK

_/
as / \

PCLK

register (74L5164) is used to generate the proper
timing. At the beginning of each cycle, Qp
(Figure 7) is set High for one PCLK cycle and then
reset. This pulse is shifted through the
Qp-Qy outputs and is used to generate RD, WR,
and DTACK signals. Some of the extra Wait states
can be eliminated by tapping the Shift register
sooner (e.g., Qc).

EXAMPLE 3: Single-Chip Pal Interface

This example illustrates how to interface the 4
MHz 78500 peripherals to the 8 MHz 68000 using a
PAL20X10 device to generate all the required con-
trol signals. The PAL reduces the required inter-
face logic to a single chip, thus minimizing board
space. This interface offers flexibility because
the internal logic can be reprogrammed without
changing the pin functions. The PAL uses 68000
signals to generate Read, Write, and Interrupt
Acknowledge cycles. In addition to generating the
28500 control signals, the PAL also generates a
DTACK to inform the 68000 of a completed data
transfer cycle. This allows the 68000 to use the
peripheral's vectored interrupts.

lsslss|s7|sol

/" /N

—

Qe
o /N
RDIWR \ /
ACK __.....___/,_---
Figure 6. Timing for DTACK Interface
2267-006

4-99

+5V

Figure 7.

Functional Description

Figure B8 shows the PAL's pin functions. The PAL
generates five control signals, of which four (WR,
RD, Cy, and INTACK) go to the 8500 and one
(DTACK) goes to the 68000. The remaining signals

VPA —,
o =D o
RO
Ate
A7
A +5v—fD Q 5V
A P D ,_Do—> W
Az |)o— 741874 s
Az o Ga
CLR Qs
A2 J a
Az © —° Q
%o 74L874
B 74Ls164 g
—1o Q LK
QF a
« 74L874 Qe CLR
y
68000 r—o[ctr Qu 28500
cn @ GND PERIPHERAL
=
+5V CE
Y —Dc
ILP, +5V PCLK
1Py j_
1LPo INT
FCo
>c D [TNTACK
Fo1 74L874
FC2 oc. D>
BTACK o<]
Do-D7 CLR |——— Do-D7

Hardware Diagram for DTACK Interface

Timing diagrams for the Read, Write, and Interrupt
Acknowledge cycles are shown in Figure 9.

The PAL uses a 4-bit downcounter to generate the
proper placement of the control signals where CO

are used internally to generate these outputs. is the least-significant bit and C3 is the
ck 1 24 [Jvee
e[23 [JACK
ne[ds 22 [JWR
Test[]4 21 [J”D
as[ds 20 [JOTACK
rRw[]e 19 [JNC
Fc2[7 18 [JTve
3 m] 7 []ce
Fco[] e 16 [JTT
RESET [] 10 15 []cz
Ne [11 uf]o
ano[] 12 13[Joe
Figure 8. PAL Pinout
4-100 2267-007, 008

most-significant bit. All of the PAL is clocked inactive. CYC goes active Low at the same time

with the rising edge of the 68000's CLK. The the counter starts counting down. The equations
counter toggles between counts 14 and 15 and in Figure 10 can be entered into a development
starts counting down when AS goes active. The board to program the PAL.

counter goes back to toggling when AS goes

|$0'S1|$21$3|84| |S5|S§|S7I

CLK

Aas \
w " Y/ /S S S

L A WA
o \

r\

C3

DTACK \J

DTACK __/

INTERRUPT /
ACKNOWLEDGE {INTACK \
CYCLE

Figure 9. PAL Interface Timing

2267-009 4-101

PAL20X10

P7089 (10)

MC68000 TO ZILOG PERIPHERAL INTERFACE
MMI, SUNNYVALE, CA

CLK /CS NC TEST /AS RW

FC2 FC1 FCO /RESET NC GND

/OE /C3 /C2 /C1 /CO /CYC

NC /DTK /RD /WR /ACK VCC

Co := /CO*/TEST

C1 == /RESET*AS*C1
1 /RESET*AS*CO
€2 := /RESET*AS*C2
42 /RESET*AS*CO*C1
C3 ;= /RESET*AS*C3

42 /RESET*AS*CO*C1*C2

DTK :

CYC : /RESET*AS*/CYC*CO

+ /RESET*AS* CYC
t+: /RESET*CYC*DTK
RD : /RESET*CYC*/ACK*RW* C3*/C2*CS

/RESET*CYC* ACK*RW* C3

.
¥
.

= /RESET*/ACK*CYC*C3*/C2%/C1* CO*CS
+ /RESET* ACK*CYC*C3*/C2% C1*/C0

+ /RESET*CYC*/ACK*RW*/C3*C2*C1*CO*CS

PAL DESIGN SPECIFICATION

COUNT/HOLD (LSB)

HOLD
DECREMENT

e we

HOLD
DECREMENT

.o e

HOLD
DECREMENT

e we

DTACK FOR RD/WR CYCLE
DTACK FOR INTERRUPT
OPERATION

we we we

NEW CYCLE STARTED
PROCESSING OF CYCLE
END OF CYCLE

e we o

NORMAL READ OPERATION
NORMAL READ OPERATION
READ DURING OPERATION

o we we

+ RESET
WR = /RESET*CYC*/ACK*/RW* C3%/C2*CS s WRITE
+ /RESET*CYC*/ACK*/RW*/C3*% C2*C1*CO*CS s WRITE
e RESET
ACK := /RESET*FCO*FC1*FC2*AS* CYC*/CO INTERRUPT ACKNOWLEDGE

/RESET*FCO*F C1*FC2*CYC

+

.o we

INTERRUPT ACKNOWLEDGE

Figure 10. PAL Equations

Hardware Diagram

The hardware diagram of the PAL interface is shown
in Figure 11. The 68000 signals CLK, CS, AS, R/W,
FCq, FCq, and FC, are used to generate the 28500
control signals. The control signals are syn-
chronous with the rising edge of the 68000's CLK.
TEST and OE must be grounded. CS is used to

enable DTACK, RD, and WR as shown in the equa-
tions. The 28500 INT is connected to ifﬁn, which
generates a 68000 level 1 interrupt. The periph-
erals are memory-mapped into the highest 64K byte
block of memory, where Aq7-Az3 equals "FFy".
Addresses A,-Ag are used to select the peripheral;
Aq-As select the internal registers. Table 2
shows the peripheral's memory map.

4-102

2267-010

110-29z¢

€01-¥

VPA

Asg-A23

68000 As

Do-D7
ILPg
ILPy
ILP2

PORT 2

ﬁww
J

+5V
+5V
ﬂ' 16]
vee
dofen volHS
= WA 6 for yilts
——Solezs v2|3
3 3],
33 2 | 74138
32 1]
30 GND
)
20 "
10
24145V
15 1 Jeik DTACK J""’
2 17
L 20lcs co 2
6 5 Lol SERIAL
Is o |on 2°%10 22 PORTS
2 9 lrco WTATK|R
27 8 lee, oels
2 Z{rc, = Do-D7
+sv —° | pEsEr oic wr
4 1 vest
IEl_GND_IEO
- GND
12 L
= 8 -)
+
2
jwv—” +5V
23

PAL Hardware Diagram

+5V

T0
NEXT
PERIPHERAL

Table 2. Peripheral Memory Map

Peripheral Register Hex Address
SCC (28530)
Channel B Control FF0020
Channel B Data FF0O022
Channel A Control FFO024
Channel B Data FF0026

CIO (Z8536)

Port C's Data Register FF0010

Port B's Data Register FF0012

Port A's Data Register FF0014

Control Register FF0016
FIO0 (z8038)

Data Registers FFO000

Control Registers FF0002

INTERFACE VERIFICATION TECHNIQUES

This section suggests possible ways of verifying
the Read, Write, and Interrupt Acknowledge cycles.

Read Cycle Verification

The Read cycle should be checked first because it
is the simplest operation. The 28500 should be

hardware reset by simultaneously pulling RD and WR

Low. When the peripheral is in the reset state,
the Control register containing the reset bit can
be read without writing the pointer. Reading back
the FIO or CI0O Control register should yield a
01y.

The SCC's Read cycle can be verified by reading
the bits in RRO. Bits D; and Dg are set to 1 and
bits Dg, D1, and Dy are 0. Bits D3-Dg reflect the
input pins DCD, SYNC, and CTS, respectively.

Write Cycle Verification

The Write cycle can be checked by writing to a
register and reading back the results. Both the
CIO and FIO must have their reset bits cleared by
writing 00y to their Control registers and
reading back the result. The SCC can be checked
by writing and reading to an arbitrary read/write
register, for example, the Time Constant register
(WR12 or WR13).

Interrupt Acknowledge Cycle Verification

Verifying an Interrupt Acknowledge (INTACK) cycle
consists of several steps. First, the peripheral
makes an Interrupt Request (INT) to the CPU. When
the processor is ready to service the interrupt,
it initiates an Interrupt Acknowledge (INTACK)
cycle. The peripheral then puts an 8-bit vector
on the bus, and the 68000 uses that vector to get
to the correct service routine. This test checks
the simplest case.

First, load the Interrupt Vector register with a
vector, disable the Vector Includes Status (VIS),
and enable interrupts (IE = 1, MIE = 1, IEI = 1).
Disabling VIS quarantees that only one vector is
put on the bus. The address of the service rou-
tine corresponding to the 8-bit vector number must
be loaded into the 68000's vector table.

Initiating an interrupt sequence in the FIO and
CI0 can be accomplished by setting one of the
interrupt pending (IP) bits and seeing if the
68000 jumps to the service routine (setting a
breakpoint at the beginning of the service routine
is an easy way to check if this has happened).

Initiating an interrupt sequence in the SCC is not
quite as simple because the IP bits are not as
accessible to the user. An interrupt can be
generated indirectly via the CTS pin by enabling
the following: CTS IE (WR15 20), EXT INT EN
(WR1 01), and MIE (WR9 08). Any transition on the
CTS pin can initiate the interrupt sequence. The
interrupt can be re-enabled by RESET EXT/STATUS
INT (WRO 10) and RESET HIGHEST IUS (WRO 38).

CONCLUSION

Zilog's 28500 family of nonmultiplexed
Address/Data bus peripherals can interface easily
with the 68000 and provide all the support
required in a high-performance microprocessor sys-
tem. The many features offered by the SCC, FIO,
and CIO solve many system design problems by mak-
ing interfacing to the external world easy. These
intelligent peripherals also greatly enhance the
system performance by relieving the CPU of many
burdensome overhead tasks. Additionally, the
powerful interrupt structure allows the 68000 to
use vectors and reduce interrupt response time.

4-104

00-2267-01

Interfacing
the 2-BUS® Peripherals
to the 8086/8088

Zilog

Application
Note

July 1982

INTRODUCTION
Microcomputer systems based on Intel's 8086 and +5V
8088 CPUs can take advantage of the advanced 005‘55’0"0_:;' % E&:
features of Zilog's 78000 series of microprocessor z:"':
peripherals with a minimal amount of external MNIFX
logic. These devices are easily integrated and oTIR .l> RV
can satisfy many of the peripheral support N —
requirements in a typical 8086/8088-based system. ALE ¥V hs
This Application Note discusses a general design RD sV [
that enables the 8086/8088 to interface with
Zilog's Serial Communications Controller (Z8030 % oo | T UL | e
Z-SCC), Counter/Timer - Parallel I/0 Unit (28036 e sounce (NOTE 2)
2-Ci0), and FIFO 1/0 Controller (Z8038 Z-FIO). wR [ey
Discussions of the 28500 peripherals ST
(non-multiplexed address and data bus versions) svs ~ s
can be found in other Zilog documents. cLK > a] csy

CLR (NOTE 2)

INTACK
BUS INTERFACE
e o

The 28000 peripherals (also called Z-BUS peri-
pherals) lend themselves conveniently to 8086/8088 Ao Buhis) o Ess _
- based designs because of the multiplexed ad- _ pecooer [P %0
dress/data bus architecture. There is no need for mo",'é'?,
an external address latch because the 28000 ___J
peripherals latch addresses internally at the o
beginning of each bus cycle. Furthermore, the Note.
peripherals allow the CPU direct access to all of 1. The source of PCLK can, but need not, be derived from the
their data and control registers. Figure 1 shows System CLK.

the interface logic that translates the signals
generated by the 8086/8088 into the necessary
2-BUS signals, and Table 1 gives a description of
each signal.

2. Does not apply to Z-FIO
3. ADg-AD7 and Ag-A]g5 on 8088.
4. IO/M on 8088.

Figure 1. Interface Logic

2255-001

4-105

Table 1. Signal Descriptions

8086/8088 Signals

DI/R

ALE

Minimum/Maximum. This input is pulled high so that the CPU will operate in the "Minimum Mode."
Data Transmit/Receive. DT/R is high on write operations and low on read operations.

Address Latch Enable. ALE is used to latch addresses during the first T state of each bus
cycle so that the bus can then be free to transfer data.

Read. RD strobes data into the CPU on read operations.
Write. WR strobes data out of the CPU on write operations.

This is the 16-bit, multiplexed address/data bus on the 8086. The 8088 has a low order
address/data bus, ADg-AD7, and a high order address bus, Ag-A¢s.

Memory/Input-Output. This output distinguishes between memory and I/0 accesses. On the 8086
it is high on memory accesses and low on I/0 accesses. On the 8088, the polarity is reversed
(10/M).

Z-BUS Signals

PCLK

Read/Write. This input tells the peripheral whether the present access is a read or write. It
is generated by inverting DT/R of the 8086/8088.

Address Strobe. AS is the main clock signal for the Z-BUS peripherals. It is used to initiate
bus cycles by latching the address along with CSy and INTACK. It is generated by inverting ALE
of the 8086/8088.

Data Strobe. When the Z-BUS peripheral is selected, DS gates data onto or from the bus,
depending on the state of R/W. It is generated from the 8086/8088 signals RD and WR as shown
in Figure 1.

Interrupt Acknowledge. When low, this signal tells the peripheral that the present cycle is an
Interrupt Acknowledge cycle.

Address/Data Bus. This bus is connected directly to ADg~AD7 of the 8086/8088. It is possible
to connect it to ADg-AD45 of the 8086 as long as the 8086 doesn't expect to read an interrupt
vector from the peripheral during interrupt acknowledge transactions.

Chip selects. E§0 is active low and is latched with the rising edge of AS. CSq is active high
and is unlatched. In this interface, CSq is pulled high while CSy is generated from the
address decode logic.

Peripheral Clock. This signal does not apply to the Z-FIO. It can also be omitted from the
Z-CI0 interface if the chip is not used as a timer, its REQUEST/WAIT logic is disabled, and it
does not employ deskew timers in its handshake operations. The maximum frequency of PCLK is 4
or 6 MHz, depending on the grade of the component, and it can be asynchronous to the system
clock.

*A hardware reset of a Z-BUS peripheral is performed by driving AS and DS low simultaneously.

4-106

BUS TIMING

Each 8086/8088 bus cycle begins with an ALE pulse,
which is inverted to become Address Strobe (AS).
The trailing edge of this strobe latches the reg-
ister address, as well as the states of CSy and
INTACK within the peripheral. DS is then used to
gate data into (write) or from (read) the selected
register, provided that an active CSp has been
latched. To assure proper timing, the AC
Characteristics of both the 8086/8088 and the
Z-BUS peripherals, must be examined. The para-
graphs that follow discuss all of the significant
timing considerations that pertain to Read/Write
operations in this interface.

ADDRESS AND CHIP SELECT (CSp) SETUP TIMES. The 4
MHz Z-BUS peripherals require that the stable
address setup time prior to AS be at least 30 ns.
Since the 5 MHz 8086/8088 is guaranteed to provide
valid addresses at least 60 ns before Address
Latch Enable (ALE) goes low, this requirement is
easily satisfied. The CSp setup time is of no
concern because the 78000 peripherals require no
CSg setup time prior to AS.

200
| (NOTE 1)—>]
T T2 Ts Tw Ta
SYS CLK
(5 MHz)
100
= omN [
ALE

e
AD15-ADo
NOTED){ Ars-Ao }(DATA OUT r
%0 %0
N > N

=T\ ——

1000
;:: MIN_h (NOTE 3)
I e
o X

410
MIN

Note.

1. All timing 1n ns.

2. A)5-Ag and AD7-ADg on 8088

3 6 PCLK cycles + 200 ns for Z-SCC. This parameter only
applies to consecutive accesses to the same device

Figure 2. Write Cycle Timing

ADDRESS AND CHIP SELECT (_CSU) HOLD TIMES. The
Z-BUS specifications require that the address and
EO remain valid a certain period of time after
the rising edge of AS. These minimum values are
50 and 60 ns respectively for the 4 MHz devices.
At 5 MHz, the 8086/8088 will hold its addresses at
least 60 ns after ALE goes inactive. Although
this is equal to the minimum CSy hold time, a safe
margin will be maintained if the propogation delay
between the address going invalid to C_SU rising,
exceeds the propogation delay between ALE falling
and AS rising.

ADDRESS STROBE (AS) TO DATA STROBE (DS) DELAY.
The 4 MHz peripherals need a 60 ns delay between
AS rising and DS falling. This parameter is of no
concern on write cycles because the D-flop will
delay DS until the beginning of T3 (See Figure
2). On read cycles, DS follows RD, so the delay
between AS and DS is approximately equal to the
delay between ALE and RD. If ALE falls at its
latest possible point in time and RD falls at its
earliest point, the time between these two edges
would be about 60 ns. This result is unrealistic,
however, because a delay in the termination of ALE

200
(NOTE 1)’ | l I |
T T2 Ta Tw Ta
(5 MHz)
100
I
ALE -

60
MN [
Y3 20
As N 4 > [
60 160
> omn [MmN

AD{5-ADo) Ars-Ao DATA IN
(NoTE2) FLOAT FLOAT

k
& |\ [

—

| 08— Y (NOTE 3)
DS

160
MIN

525
MIN

Note:

1. All iming 1n ns

2 A)5-Agand AD7-ADg on 8088.

3. 6 PCLK cycles + 200 ns for Z-SCC This parameter only
applies to consecutive accesses to the same device.

Figure 3. Read Cycle Timing

2255-002, 003

4-107

will always lead to a delay in the activation of
RD. The actual time between the two edges is well
over 100 ns.

ADDRESS SETUP TIME TO DATA STROBE (DS). The 4
MHz Z-CI0 and Z-FI0O require that the stable
address setup time to DS be at least 130 ns.
Since the delay between AS rising and DS falling
is well over 100 ns, and since the address setup
time to AS is at least 60 ns, this requirement is
easily satisfied.

DATA STROBE (DS) LOW WIDTH. The minimum Data
Strobe Low Width of the 4 MHz Z-BUS peripherals is
390 ns. On read cycles, DS will have the same
width as RD, which is at least 325 + 200N, ns,
where N, is the number of wait states in the bus
cycle. On write cycles, the D-flop will shorten
this minimum width to 210 + N, 200 ns. One wait
state (T,) in the bus cycle will ensure a
sufficiently wide Data Strobe for both types of
bus cycles. A discussion of wait state generation
is presented in the next section.

WRITE DATA SETUP AND HOLD TIMES. On write cycles,
the Z-BUS peripherals require the CPU to put valid
data on the bus at least 30 ns before DS goes
active, and to hold it there at least 30 ns after
DS terminates. D-flip-flop in Figure 2 guarantees
the setup time by delaying the falling edge of WR
until the next falling edge of SYS CLK (Figure
2.). The Hold Time is also guaranteed because the
8086/8088 will hold valid data at least 90 ns
after the termination of WR.

READ DATA SETUP AND HOLD TIMES. When the 8086/
8088 reads from memory or peripherals, it requires
them to put valid data on the bus at least 30 ns
before the falling edge of SYS CLK at the begin-
ning of T4. It also requires them to hold the
valid data at least 10 ns after this edge. Since
the Z-BUS peripherals will provide valid data
early in T, and will hold it until after DS termi-
nates, these parameters are well within the speci-
fications.

VALID ACCESS RECOVERY TIME. This parameter refers
to the time between consecutive accesses to a
given peripheral. If the 4 MHz Z-SCC is accessed
twice, then the time between DS rising in the
first access and DS falling in the second access,
must be at least 6 PCLK cycles plus 200 ns (i.e.
1700 ns for a 4 MHz PCLK). The Valid Access
Recovery Time for the 4 MHz Z-CI0O and Z-FIO is
1000 ns, and this can't possibly be violated with
a 5 MHz 8086/8088 since there will always be at

least one instruction fetch cycle in between 1/0
accesses, and 1000 ns translates into only 5 clock
cycles at 5 MHz.

WALT STATE GENERATION

The previous section explained why the 4 MHz Z8000
peripherals need to place a wait state in 1/0 bus
cycles when interfaced to the 5 MHz 8086/8088.
The following two examples illustrate how wait
state generation can be implemented. Since
8086/8088 - based systems typically use an 8284
Clock Chip, which synchronizes the CPU's READY
input with the system clock, the task reduces to
designing a circuit that will control the RDY1
input of the 8284 (RDY2 is assumed to be
grounded).

SINGLE WAIT STATE GENERATION. For the processor
to enter a wait state after T3, the RDY1 input
must be low during the falling edge of SYS CLK at
the end of T,. Then, for the processor to enter
T, after the wait state, RDY1 must be high during
the next falling edge of SYS CLK. To make sure
that these levels are well-established during
their sampling windows, the single wait state
generator should toggle RDY1, using the clock
edges that precede the sampling edges (Figure 4).
The circuit in Figure 5 performs this function and
generates a single wait state when one of the 50
inputs is active.

SYS
CLK

RDY1
8284

Figure 4. RDY1 Timing for Single Wait State

CSo(1) +5V

LS74 LS73A

T
S

CLK
= TO RDY 1
Q>
CLK K 8284

CLR

SYs
CLK

Figure 5. Single Wait State Generator

4-108

2255-004, 005

MULTIPLE WAIT STATE GENERATION. Though Read/Write
operations require only one wait state, Interrupt
Acknowledge transactions need multiple wait states

to allow for daisy-chain settling, which is
explained in the next section. The following
discussion introduces a multiple wait state

generator and serves as a basis for understanding
the subsequent Interrupt Acknowledge Circuit.

In the preceeding discussion of the single wait
state generator, we established that RDY1 must be
high at the end of T3 for the processor to enter
Ty, after the wait state. In general, the
8086/8088 will continue to insert wait states
until RDY1 is driven high. In fact, the number of
wait states will be equal to the number of clock
cycles that RDY1 is held low after the rising
clock edge in Tj.

A convenient way to implement a multiple wait
state generator is to use a serial shift register
such as a 74L5164. Figure 6 shows a wait state
generator that requests one wait state on Read/
Write cycles, and up to seven wait states on
Interrupt Acknowledge cycles. When RD, WR, or
INTA goes active, the 74L5164 is taken out of the
clear state and logic "ones" are allowed to shift
sequentially from Q4 to Qy. On Read/Write
cycles, RDY1 is held low until the leading "one"

RD
WR
INTA LS164
CLR o, |0
+5V
QG O-—-——-0
t e
A
ap o
B [
(-1 =)
svs ag o
K
ck =Pk o
TO m;;lal }— INTACK

Figure 6. Multiple Wait State Generator

appears at Qg, and on Interrupt Acknowledge
cycles, RDY1 is held low until the leading "one"
appears at Qy. The next section shows how
INTACK can be generated and discusses the complete
interrupt interface.

INTERRUPTS
In Figure 1 the INTACK input to the Z-BUS
peripherals is pulled high. This does not mean

that the peripheral can't interrupt the CPU; it
just means that it won't respond to the CPU's
interrupt acknowledge. The designer can, however,
implement a circuit that will drive INTACK, and
allow the 8086/8088 to properly acknowledge the
interrupts of the Z-BUS peripherals. This section
examines the interrupt acknowledge protocols of
the 2Z-BUS peripherals and the 8086/8088, then
proceeds to show how they can be made compatible.

Z-BUS INTERRUPT ACKNOWLEDGE PROTOCOL. The Z-BUS
peripherals typically use the daisy-chain tech-
nique of priority interrupt control. In this
scheme the peripherals are connected together via
an interrupt daisy chain formed with their IEI
(Interrupt Enable Input) and IEO (Interrupt Enable
Output) pins (Figure 7). The interrupt sources
within a device are similarly chained together,
with the overall effect being a daisy chain con-
necting all of the interrupt sources. The daisy
chain allows higher priority interrupt sources to
preempt lower priority sources and, in the case of
simultaneous interrupt requests, determines which
request will be acknowledged.

In each bus cycle the Z-BUS peripherals use the
rising edge of AS to latch the state of INTACK.
If a low INTACK is latched, then the present cycle
is an Interrupt Acknowledge cycle and the daisy
chain determines which interrupt source is being
acknowledged in the following way. Any interrupt
source that has an interrupt pending and is not
masked from the chain will hold its IEQ low.

HIGHEST LOWEST
PRIORITY PRIORITY
+5V
z.BUS z.BUS z.BUS
' pemipnerar SO >|'® pepipwerar SO/ S>|"® peripHERAL
ADg-AD; AS DS INT INTACK ADp-AD; AS DS INT INTACK AD)-AD; AS DS INT INTACK
I A 1 o O O O ﬁr
ADo-AD7 l | 1 £
o I] 7~
bs 7
iNT S F
INTACK 1 £

Figure 7.

A Z-BUS Interrupt Daisy Chain

2255-006, 007

4-109

Similarly, sources that are currently under
service (i.e. have their IUS bit set) will also
hold their IEQO lines low. All other interrupt
sources make IE0 follow IEI. The result is that
only the highest priority, unmasked source with an
interrupt pending will have a high IEI input; only
this peripheral will be allowed to transfer its
vector to the system bus when the Data Strobe is
issued during the Interrupt Acknowledge cycle.

To make sure that the daisy chain has settled by
the time DS gates the vector onto the bus, the
2-BUS peripherals require a sufficient delay be-
tween the rising edge of AS and the falling edge
of DS in INTACK cycles. The amount of delay
required can be calculated using Table 2. For a
particular daisy chain, the minimum delay is:
Thigh for the highest priority device, plus Ty,
for the lowest priority device, plus T4 for each
device in between.

Table 2. Daisy Chain Settling Times for the Z-BUS
Peripherals (in ns)

Thigh Tmid Tlow

4MHz | 6MHz | 4MHz | 6MHz | 4MHz | 6MHz

Z-SCC 250 250 120 100 120 100
Z-CI0 350 250 150 100 100 70
Z-FI0 350 250 150 100 100 70

8086/8088 INTERRUPT ACKNOWLEDGE PROTOCOL. If the
8086/8088 receives an interrupt request (via its
INTR pin) while its Interrupt Flag is set, then it

will execute an Interrupt Acknowledge sequence.
The sequence consists of two identical INTA bus
cycles with two idle clock cycles in between
(Figure 8). In both bus cycles, RD and WR remain
inactive while an INTA strobe is issued with the
same timing as a WR strobe. The 8086/8088
requires an interrupt vector to appear on ADg -
ADy at least 30 ns before the beginning of T4 in
the second INTA cycle. This protocol is normally
used to read vectors from the 8259A Interrupt
Controller but it can easily be adapted to the
Z-BUS Interrupt Acknowledge Protocol, as
illustrated in the following paragraphs.

INTERRUPT ACKNOWLEDGE COMPATIBILITY. The first
function of the Interrupt Acknowledge circuit,
shown in figure 9, is to generate the Z-BUS INTACK
signal using INTA from the 8086/8088. Since INTA
goes active after ALE has terminated, the
peripherals will not latch an active INTACK during
the first INTA cycle. However, if the rising edge
of INTA is used to toggle INTACK, then an active
INTACK latches with the rising edge of AS in the
second INTA cycle. Thus a rising-edge triggered
toggle flip-flop, as configured in Figure 9, can
be used to generate INTACK. Figure 10 shows the
timing relationship between INTA and INTACK.

The next function of the Interrupt Acknowledge
circuit can be broken down into three operations:
first, it must cause the CPU to enter a series of
wait states after T3 in the second INTA cycle;
then, it must activate DS after a sufficient daisy
chain settling time; lastly, it must bring the CPU
out of the wait state condition when the vector is
available on the bus.

ADo-AD7 :I\

FLOAT

VECTOR

Figure 8. 8086/8088 INTA Sequence

4-110

2255-008

Figure 9 shows how the multiple wait state
generator, discussed in the previous section, can
be used to perform each of these operations.

+5V
8086/8088 z.scC
(5 MHz) z.cl10
Z.Fi0
WR b PR
sYs £ [
OLK CLR
RD DS
+5V
Ls164 3
o CLR g,}-o _o
=y
* a6 o
acl-o o
A Q-0 O—¢
8 Qo0 04 +5V
sys . lewk Qg —D
CLK
Qu
1EI
RESET ——-Do]—
e PR
INTA > af—y INTACK
+5V
TO RDY 1
8284
CLOCK CHIP
INTR INT
Figure 9. Interrupt Acknowledge Circuit
I I P N
T T2 Ts Tw* Ta T T Ty
SYS
cLK

While INTACK is high the circuit operates
normally; the number of wait states it requests is
determined by the positioning of the jumper on the
Q outputs. When INTACK goes low, it operates as
follows: the next activation of INTA brings the
shift register out of the clear state, and logic
"ones" shift into Qp until they fill the entire
register. When the leading "one" appears at Qg,
DS is driven low; when it appears at Qy, the CPU
is taken out of the wait state condition.

This arrangement takes advantage of the full
length of the shift register
daisy-chain settling time of more than 1300 ns,
which allows the implementation of a chain with as
many as seven Z-BUS devices. Figure 10 shows the
timing of the important signals in the Interrupt
Acknowledge transaction.

and provides a

HARDWARE RESET

The designer may want to incorporate a hardware
reset in the interface design. This can be
accomplished with two NOR gates as shown in Figure
11. The NOR gates allow the system RESET signal
to pull AS and DS low simultaneously, and hence
put the peripheral in a reset state. A hardware
reset is not necessary, however, because all of
the peripherals are equipped with software reset
commands.

S

DS
RDY 1
8284

U L
‘\ﬁl_g \
Ly

VECTOR

ADo-AD7 FLOAT

Note
* This assumes that Qg 1s the selected output

Figure 10.

- >1300 ns

SETTLE TIME

_—

Interrupt Acknowledge Timing

2255-009, 010

4-111

SUMMARY

The Z-SCC, 2Z-CIO, and Z-FIO can easily be designed

“L‘—_) Do—— &8 into 8086/8088 - based systems. Their data and

control registers can be mapped directly into the

- 5% I/0 address space, and the Z-BUS control signals
?:>ka can be generated with a minimal amount of external
a logic. The user can also take advantage of the

FROM D-FLIP-FLOP — devices' interrupt control capabilities because a
simple interface circuit makes their interrupt
Figure 11. Hardware Reset structure compatible with that of the 8086/8088.

4-112 00-2255-01

28016 Z8000™ DTC DMA
Transfer Controller

Zilog

Application
Note

February 1983

INTRODUCTION

Direct Memory Access (DMA) is a data transfer
method that uses special hardware to transfer data
between system memory and the outside world (e.g.,
a peripheral I/0 device) without the intervention
of a Central Processing Unit (CPU).

A transfer controller usually handles all aspects
of a data transfer: it provides read or write
control signals and addresses to the system,
updates the addresses, counts the number of words
or bytes in the transfer, and signals the end of
an operation. The advantage of DMA is speed.
Transfers can proceed at the memory's maximum
speed rather than waiting for the CPU to fetch and
decode the instructions, move the data, update the
addresses, and count the words or bytes. The DMA

SYSTEM BUS

!

BUS
INTERFACE

}
CHANNEL1 |

controller performs these tasks at hardware speed
and reduces CPU overhead costs.

The Z8016 DMA Transfer Controller (DTC) is a high-
performance 16-bit peripheral interface device
designed for 28000 processor systems. Each of the
DTC's two channels can perform the following kinds
of transfer: memory-to-peripheral, memory-to-
memory, peripheral-to-memory, and peripheral-to-
peripheral. For all DMA operations (i.e.,
Transfer, Search, and Transfer-and-Search), the
DTC operates with either word or byte data sizes
and provides a packing/unpacking capability. To
eliminate the overhead needed to load the internal
registers, the DTC provides an auto-chaining
operation to load and reload the 13 channel
registers (Figure 1b). The CPU need only load the
address of the control parameter table into the

CHANNEL 2

REGISTERS INTERNAL BUS

<> MASTER MODE

COMMAND

| REGISTERS

CHAIN
CONTROL

- TEMPORARY

Figure 1a.

INTERFACE
l«—>» TO
PERIPHERALS

CONTROL
LOGIC

28016 DTC Block Diagram

2271-001

4-113

Chain Address register and issue a Start Chain
command to load the control parameters from memory
into the channel's control registers.

The DTC is Z-BUS compatible and operates within
the 78000 daisy-chain, vectored-priority interrupt
scheme. Additionally, a demand interleave
operation is supported, which allows the DTC to
surrender the system bus to the external system or
to alternate between internal channels. This
capability allows for parallel operations between
the two channels or between a DTC channel and the

INTERFACING

A block diagram of the 28016 DTC (Figure 1) shows
the internal configuration. The internal
registers are defined in Figures 2 and 3 and
listed in Table 1. Figure 4 shows the interface
signals. A1l of the input and output signals
(except the clock input) are directly TTL
compatible. All outputs source at least 250 pA at
2.4 V and sink up to 3.2 mA at 0.4 V.

CPU.

SNQ TIYNYILNI

—

L]
|| _SEGMENT , _ ThG _ |
OFFSE

Figure 1b.

1

=

CHAIN ADDRESS REGISTER
SEGMENT, __ TAG _
OFFSET
CHANNEL MODE REGISTER
_.| _MODE(HIGH)_|
MODE(LOW)
PATTERN REGISTER
| PATTERN |

MASK REGISTER

MASK —l

STATUS REGISTER

STATUS I

INTERRUPT SAVE

REGISTER
| status '1 VECTOR]
INTERRUPT VECTOR)
REGISTER NOTE:

CHANNEL 1 AND
CHANNEL 2 ARE
IDENTICAL

l v :l VECTOR I

CURRENT OP COUNT REGISTER

I OP COUNT 1

BASE OP COUNT
REGISTER

OP COUNT j

CURRENT ADDRESS REGISTER A
SEGMENT _}_ TAG

OFFSE

BASE ADDRESSi i REGISTER A

1
| _SEGMENT _ IAG _

CURRENT ADDRESS REGISTER B
]
SEGMENT , _ TAG _
OFFSET

BASE ADDRESSi i REGISTER B

-

78016 DTC Block Diagram, Channel Registers

4-114

2271-002

MASTER MODE REGISTER BASE AND CURRENT ADDRESS

REGISTERS A AND B
[0 [05]2 [02 0,] 0o

87 6 5 4 3 2 1 0

TT SEGMENT | TAG . 1]

CHIP ENABLE T

LOGICALIPHYSICAL

ADDRESS SPACE 0] o] owar sTaTes
o[1]1wairstate

CPU INTERLEAVE AR

ENABLE 1 [o] 2war sTates
K

4 WAIT STATES

WAIT LINE ENABLE

1
|
|
|
|
|
|
DISABLE LOWER CHAIN | [0] o] INCREMENT ADDRESS
NO VECTOR ON INTERRUPT | [0] 1 | pECREMENT ADDRESS
|
|
|
|
|
|
|
|
|
|
|

L (1] x] Hovo aboress
ﬁ 0 | NVi ACKNOWLEDGE
0 | 1 | Vi ACKNOWLEDGE 0{ 0] 0| SYSTEM DATA MEMORY
1| o] Wi acknowLepce o[o] 1] system stack memory
[1| SEGMENT TRAP o] 1] 0| sysTEm PROGRAM MEMORY
ACKNOWLEDGE
of1]1]wo
1] 0| 0| NORMAL DATA MEMORY
COMMAND REGISTER 1] 0| 1] NORMAL sTACK MEMORY
DEDDDEE 1] 1] 0] NORMAL PROGRAM MEMORY
1] 1] 1] speciaLvo
L CHANNEL 2/CHANNEL 1
SET/CLEAR OFFSET -]
INTERRUPT
INTERRUPT UNDER SERVICE
STATUS REGISTER
INTERRUPT ENABLE
0o/ o|RESET lDusIDu[DmlD‘z'Dule]T)e l Dg l D7ID6 LDlea [DnggI D4 |Dn]
0 { 0| 1] NTERRUPT CONTROL
0 [1| 0 | SOFTWARE REQUEST INTERRUPT | O ©
STATUS { IUS [
o1 1]FurBir ST13-ST15 | mc § COMPLETION
1 | 0 [o | HARDWARE MASK STATUS ST0-ST4
1[0 1]starT cHaN 4 Mot
STA%‘; NAC ——] e — 0T
1 [1] o] not RecoanizED STATUS (s R | HARDWARE
1] 1] 1] NoT RecoGNIZED o INTERFACE
HM J sTATUS ST5-ST6

INTERRUPT SAVE REGISTER

{015[D1aD13fD12]D11 |D|n[Dsl£lerl ﬂns L04 I Dy I D[D1 [0 |

TEMPORARY REGISTER

|D1s|DnID13|DuIDn,D‘ol Dy | Dg I D7 | DsJDs lD: | Da[Dz I Dy |Do|
VECTOR
CHANNEL NUMBER
9-om PATTERN AND MASK REGISTERS
= CH2
e [p15]o14]15[D12[D1:]Ds0] D [D5 [07 T0s [D5 [0 [0 [02 01 [D6}
EOP
M
CHAIN ABORTED BASE AND CURRENT OPERATION COUNT REGISTERS
McL
MCH |315|014]D13|D12|D|v|01l;[Dy I Ds | D7 [Ds I Ds |D4] D3 | D2] D4 lDoI
INTERRUPT VECTOR REGISTER
CHAIN CONTROL REGISTER
(CHAIN LOADABLE ONLY) VR
AWAITE ONLY) Ltk 271 6 D5 [D4 | D3 [0z D1 o]
INTERRUPT
255§D Ds | D7 | Dg | Ds | D4 [D3 [02 {01 [Ba | VECTOR
I—
CHAIN ADDRESS (2 WORDS) CHAIN ADDRESS REGISTER
CHANNEL MODE (2 WORDS)
INTERRUPT VECTOR (1 WORD) 15 14 87 2 1 0
PATTERN AND MASK (2 WORDS) | SEGMENT | SR L4
BASE OP-COUNT (1 WORD) |
BASE ARB (2 WORDS) |
BASE ARA (2 WORDS) | [05] o warr states
CURRENT OP-COUNT (1 WORD) | [0+ war stares
CURRENT ARB (2 WORDS) | [1]0] 2 warr states
CURRENT ARA (2 WORDS) | 4 WAIT STATES
| [T
| THIS BIT IS
FOR PHYSICAL
| ADDRESS ONLY
l
| OFFSET 1

Figure 2. 78016 DIC Internal Registers

2271003 4115

DATA OPERATION FIELD

Operand Size Transaction
Code/Operation ARA ARB Type
Transfer
0001 Byte Byte Flowthrough
100X Byte Word Flowthrough
0000 Word Word Flowthrough
0011 Byte Byte Flyby
0010 Word Word Flyby
Transfer-and-Search
0101 Byte Byte Flowthrough
110X Byte Word Flowthrough
0100 Word Word Flowthrough
0111 Byte Byte Flyby
0110 Word Word Flyby
Search
1M Byte Byte N/A
1110 Word Word N/A
101X Illegal
TRANSFER TYPE FIELD AND MATCH CONTROL FIELD
Code Transfer Type Match Control
00 Single Transfer Stop on No Match
01 Demand Dedicated/Bus Hold Stop on No Match
10 Demand Dedicated/Bus Release Stop on Word Match
1" Demand Interleave Stop on Byte Match
lD4ID3|D2|D1|Do|
| ' _: MATCH CONTROL FIELD
| PULSED DACK
| HARDWARE REQUEST MASK
| SOFTWARE REQUEST
D15|D14|D13ID12|D11|D10| Dy | Dg |D7 | D¢ I Ds I Dy | D3 l D2 I D1 | Dol
TC —J L— DATA OPERATION FIELD
CHAIN M
ENABLE
EOP FLIP BIT
T (0) — ARA = src, ARB = dst
BTOC ¢ (1) — ARA = dst, ARB = src
RELOAD mc
ENABLE | gop TRANSFER TYPE FIELD
TC
INTERRUPT mc
ENABLE
EOP
Figure 3. 78016 DTC Channel Mode Register
2271-004

4-116

Table 1. 78016 DIC Internal Registers
Chain
Control Port Address(Hex)
Register Bit Channel 1 Channel 2
DEVICE REGISTERS
Master Mode register 38
Command register 2C

Chain Control register
Temporary register

CHANNEL REGISTERS
Address registers, chainable

Current Address - A
Current Address - B
Base Address - A
Base Address - B
Chain Address

Control registers, chainable

Current Op-Count
Base Op-Count
Channel Mode* - High
Channel Mode* - Low
Pattern*

Mask*

Interrupt Vector*

Status/Save registers, Non-chainable

Status register
Interrupt Save register

[= IV, I N I]

N WWa =

Segment/Tag Of fset

1A 0A
12 02
1E OE
16 06
26 22

32

36

56

52

4A

4E

SA

2E

2A

Segment/Tag Offset

18 08
10 00
c oc
14 04
24 20

30
30
54
50
48
4c
58

2C
28

*Slow-readable registers.

(<-— SNg ADg fa—>)
<] SN; AD{ ja—>
<«—1 SN2 AD2 fa—>
SEGMENT) <] SN AD;3 ft—>
NUMBER | <— s, ADg fe—n
<«— SNs AD;5 ja—>
<—] sNg ADg fe—>
\ <] SN7/MMUSYNC AD7 je—> ADDRESS/
ADg |« DATA
(-«—»] STy ADg >
> STy ADqg j—>
<> ST2 ADqy >
STATUS< S ey zggée Ay f—
<> RIW ADq3 >
<+—] B/W ADys f >
\ «— NS AD5 >)
sus | <" W CS/WAIT [=—
CONTROL { — ™| BAI DREQ,, DREQ; *— DMA
<«— 830 DACKy, DACK, —> CONTROL
EOP j=—>
BUS | <+—>]AsS
TlMlNG{ <> bs iNT —> INTER .
Il cou'r:g:
IEO >
+51V G1D CIK
Figure 4. 78016 DTC Pin Functions
The interface signals and pin assignments are which 1is tne 2Z4th address bit in the 1linear

listed in Table 2. Some of the signals are
three-state, i.e., they are high-impedance when
not under bus control. The open-drain pins
require a pullup resistor of 3.3K ohms or more.
The DTC decodes the status lines (STy-ST3) for the
Interrupt Acknowledge signal and generates status
for data transactions. The multiplexed input
CS/WAIT serves as an active Low Chip Select (CS)
signal when the DTC is a bus slave, and serves as
an active Low Wait (WAIT) signal when the DTC is
bus master and the control bit in the Master Mode
register is enabled. The multiplexed output
SN7/MMUSYNC is driven Low when the DTC is not in
control of the system bus and the MM1 bit of the
Master Mode register is set. SN7/MMUSYNC floats
to a high-impedance state when the DTC is not in
control of the system bus and the MM1 bit is
cleared. When the DTC is in control of the system
bus and is operating in logical address space,
this line outputs an active High MMUSYNC pulse
prior to each memory transaction cycle. In
physical address space, this line outputs SNy,

address space.

If a peripheral device requires DMA service, it
issues a request to the DTC by asserting DREQ. If
the channel receiving the request is enabled and
the BUSREQ and BAI lines are High, the DTC issues
a bus request to the CPU by driving the BUSREQ
line Low. When the CPU relinquishes bus control,
a Bus Acknowledge signal is output to the DTC by
driving the BAI line Low, indicating that the
request for bus control has been granted. Upon
receipt of the Bus Acknowledge signal, the DTC
issues a DMA Acknowledge signal £o the peripheral
by lowering the DACK output; it then issues the
control signals and addresses necessary to effect
the transfer. When the transfer is completed or
terminated, DACK is driven High and the DTC begins
the termination procedure. The DACK output can be
programmed as level or pulsed for Flyby transac-
tions and as level or inactive for Flowthrough
transactions via the CMjg bit of the Channel Mode
register.

4-118

2271-005

Table 2.

78016 DIC Interface Signals

Interface Signal Pin Number Input/Output Three-State Open-Drain
ADg-AD45 5-20 In/0Out Yes No
AS 44 In/0ut Yes No
BAI 1 In No No
BAD 3 Out No No
BUSREQ 2 In/0ut No Yes
B/W 35 Out Yes No
CS/WATT 42 In No No
DACK ; ,DACK 39,40 out No No
DREQ1,DRE02 36,37 In No No
DS 43 In/0ut Yes No
EOP 38 In/0ut No Yes
IEI 46 In No No
1IEO 48 Out No No
T 47 Out No Yes
N/S 30 Out Yes No
R/W 41 In/0ut Yes No
SNO—SN6 21-25,28,29 Out Yes No
SN7/MMUSYNC 27 Out Yes No
STg-ST3 31-34 In/0ut No No
CLK 45
GND 26
+5V 4

To establish DMA operation, the internal registers
can be loaded under software by the CPU. The
registers are addressed via the low byte of the
Address/Data bus (AD7-ADg). The high byte of the
Address/Data bus (ADq5-ADg) is decoded with the
user's chip select logic. Chip Select (CS) must
be valid prior to the rising edge of AS to allow
the CPU to write to, or read from, the DTC's
registers. During a DMA transfer, the DTC
generates control signals (R/W, B/W, N/S, and
STO-ST}) to indicate the transfer direction, the
data size, and the type of space and transaction.
It also generates AS, DS, DACK, and MMUSYNC
signals to synchronize timing and to demultiplex
the Address/Data Additionally, it
generates addresses (SN7—SNU and ADy5-ADg for
physical addressing space or SN6-SNU and AD;5-ADg
for logical addressing space) of the source and
destination of the transfer; samples the ﬁﬁfﬁ,
WAIT, and EOP lines; stores the data for the Flow-
through transaction; and issues an EOP Low signal
when the transfer is terminated. Upon termina-
tion, the DTC performs either an interrupt,
base-to-current reloading, chaining, or does
nothing, under the control of Channel Mode
register (i.e., bits CM;-CM;5).

lines.

To relinquish bus control, the DTC drives its
BUSREQ line High and allows BAO to follow BAI.

The CPU regains bus control upon sampling its
BUSREQ input; if inactive, the CPU drives its
BUSACK output inactive. Whenever both BAI and
BUSREQ are High and no DMA requests are pending,
the DTC passes the High signal through BAD to the
lower-priority device, enabling it to request bus
control. This procedure allows the CPU to regain
bus control whenever an interrupting device
releases bus control.
Book* for more details on the Zileg Z-BUS.

INITIALIZATION

After a hardware reset (i.e., AS and DS are
simultaneously Low) or a software reset (i.e., a
reset command is issued to the Command register),

take the following steps to initialize the system:

e Clear the Master Mode (MM) register to disable
the DTC.

e Set the Chain Abort (CA) and Non-Auto Chaining
(NAC) bits in each channel's Status register.

e Load each channel's Chain Address register.
@ Issue Start Chain command.

*(document number 00-2034-02)

4-119

See the Zilog 1982/83 Data

to minimize interaction with the host CPU, the DTC
loads its own control parameters from memory into
each channel (i.e., performs chaining). The CPU
need to only program the Master Mode register and
each channel's Chain Address register (Figure 5).
All other registers are loaded by the channels
themselves from a reload table located in system
memory and pointed to by the Chain Address
register. During chaining, the N/S and B/W lines
are driven Low and the ST3-STy outputs are set to
1000 (i.e., Memory Transaction for Data).

The first word in the reload table, the reload
word, specifies which registers in the channel are
to be reloaded. Bits 0 through 9 in the reload
word relate to either one or two registers in the
channel (Table 3). When a reload word bit is 1,
the register or registers corresponding to that
bit are reloaded. The data 1loaded into the
selected registers follow the reload word in
memory at successively larger addresses.

The reload table is of variable length. For
example, when the contents of the segment and
offset fields of Channel 1's Chain Address
register are 0000y and 1020y, the reload table
is started at location 10204. Thus, the data
stored at location 1020, is the reload word. If
the reload word is 03FFH, all of Channel 1's
registers are loaded with the data in locations

1022 through 1042H (a total of 17 words). If

the reload word is 0203y, only Current Address
register A (Current ARA), Channel Mode register,
and Chain Address register are reloaded with the
data in locations 1022, through 102C, (a total
of six words), and the remaining registers are not
changed. When loading the address registers, the
segment and tag word must precede the offset word
(e.g., the segment and tag word of Current Address
register A is located at 1022y, while the offset
word is located at 1024y).

After the Master Mode bit MMy is set, a Start
Chain command causes the selected channel to clear
the NAC bit in its Status register and to start
chaining. The control parameters of the channel
are reloaded and the channel is ready to perform
the DMA operation. DMA operation can be initiated
in one of the following three ways:
e By software request--issue a Set Software
Request command.

e By hardware request--apply a Low signal on the
channel's DREQ input; the Hardware Request Mask
bit (CMqg) in the Channel Mode register must be
cleared.

e By chaining--load a Software Request bit
(CMZD = 1) into the Channel Mode register
during chaining.

sRESET

;LOAD SEGMENT/TAG OF CHANNEL 1'S
sCHAIN ADDRESS REGISTER

sLOAD OFFSET OF CHANNEL 1'S
sCHAIN ADDRESS REGISTER

;LOAD MASTER MODE REGISTER TO
$sENABLE DTC

sLOAD START CHAIN COMMAND

’

Initialization of the 78016 DIC

0100 2101 0000 LD R1,4#0000
0104 3B16 002C ouT %002C,R1
0108 8D07 NOP
010A 2101 0000 LD R1,#0000
010E 3816 0026 ouT %0026,R1
0112 8D07 NOP
0114 2101 1020 LD R1,#1020
0118 3816 0022 ouT %0022,R1
011C 8D07 NOP
011E 2101 0001 LD R1,#0001
0122 3816 0038 out %0038,R1
0126 8D07 NOP
0128 2101 00AC LD R1,%00A0
012C 3816 002C ouT %002C, R1
0130 8D07 NOP

Figure 5.

4-120

2271-006

Table 3.

Example of Chain Control Tables

Memory Data Register

1020 03FF Chain Control register

1022 0000 Segment/Tag of Current Address Register A
1024 1F00 Offset of Current Address Register A

1026 0074 Segment/Tag of Current Address Register B
1028 FFO1 Offset of Current Address Register B

102A 00A0 Current Op-Count

102C 0000 Segment/Tag of Base Address Register A
102E 2F00 Offset of Base Address Register A

1030 0074 Segment/Tag of Base Address Register B
1032 FFO1 Offset of Base Address Register B

1034 0100 Base Op-Count Register

1036 1234 Pattern register

1038 FOO0 Mask register

103A 0002 Interrupt Vector register

103C 0004 Channel Mode High

103E 3042 Channel Mode Low

1040 0000 Segment/Tag of Chain Address

1042 1080 Offset of Chain Address

1080 0182 Chain Control register

1082 0076 Segment/Tag of Current Address Register B
1084 FFO02 Offset of Current Address Register B

1086 0050 Current Op-Count

1088 0010 Channel Mode High

108A 0240 Channel Mode Low

Remarks

Chaining all registers

System data mem, increment, 0 waits
Starting address

1/0, hold, 2 waits

Peripheral address

160 transfers

System data, increment, 0 waits
Starting address

1/0, hold, 2 waits

Peripheral address

256 transfers

0001001000110100 as pattern
1111000000000000 as mask

Vector = 02

Pulsed DACK

Chain at EOP, Base to Current at
TC, Address Register A to Address
Register B Demand/Bus release,
word-to-word flyby

Address of next chain control word

Chaining three registers

1/0, hold, 4 waits

Peripheral address

80 transfers

Software request during chaining
Interrupt at TC, Address Register A
to Address Register B, word flow-
through

When DMA operation is initiated by either software
or hardware request, the DTC drives the BUSREQ
line Low and performs the DMA operation after it
receives an active Low BAI signal. When DMA
operation is initiated by chaining, the DTC
performs the DMA operation as soon as chaining
ends if the MM, bit (CPU Interleave Enable bit) is
clear. If the MM, bit is set, the channel gives
up bus control after chaining and before DMA
operation.

DMA OPERATIONS

There are three types of DMA operation: transfer,
transfer-and-search, and search, each of which can
occur in either a Flowthrough or Flyby
transaction. They are controlled by programming

bits 0 through 3 of the Channel Mode register.
The Flip bit (CM,) is used to control the transfer
direction. Figure 6 shows state diagrams for the
various types of operations. Table 4 lists the
operation codes.

Flowthrough Transfer and Flowthrough Transfer-
and-Search operations consist of both read and
write transactions. When bit CM, is clear, the
DTC reads data from the location specified by The

Current Address Register A (ARA) (i.e., the
source), stores the data in the Temporary
register, compares the data with the unmasked
pattern, and then writes the data into the

location specified by the Current Address Register
B (ARB) (i.e., the destination). When bit CM, is
set, the source location is specified by the

TS
INTERRUPT AND/OR
B-TO-C RELOAD
AND/OR CHAIN

i

AS =1,D8 =0

PLACE DATA FROM

SOURCE ONTO BUS:
SAMPLE WAIT T22

SAMPLE DREQ AND BAI,

DRIVE BUSREQ.

A ON BUS
B ON BUS

T

SEND DATA TO DESTINATION:
DS =1
UPDATE ADDRESS/COUNT

AS=1;DS =0
BUS RESERVED FOR DATA:
SAMPLE WAIT T2

T

WAIT

PLACE DATA FROM
SOURCE INTO TEMPORARY
REGISTERS:

DS =1 T13
(CM4 = 0): C-ARB ON BUS
(CM4 = 1): C-ARA ON BUS
RW =

AS = T21

THID
SAMPLE DREQ & EOP

Figure 6a.

Flowthrough Transfer and Flowthrough Transfer-and-Search Operations

s
INTERRUPT AND/OR
1 B-TO-C RELOAD
AND/OR CHAIN

SAMPLING DREQ
DRIVING BUSREQ
SAMPLING BAI

DACK INACTIVE T

AS=1:D5=0

BUS RESERVED FOR DATA
SAMPLING WAIT

PULSED DACK ACTIVE T2

|

DATA INTO TEMPORARY REGISTER
COMPARING WITH

UNMASKED PATTERN:

DS = 0, PULSED DACK INACTIVE
UPDATE ADDRESS AND

COUNT CHECKING TC, MC,

EOP: SAMPLING DREQ T3

BUS NO BUS NO
RELEASE HOLD
M M
YES YES

@ SAMPLING DREQ

SAMPLING EOP
THLD

Figure 6b. Flyby Transfer and Flyby Transfer-and-Search Operations

Current ARB, and the destination is specified by
the Current ARA.

Flyby Transfer and Transfer-And-Search operations
consist of a single Read cycle or a single Write
cycle. When CM, is clear, the DTC reads the data

from the location specified by the Current ARA and
the DACK signal strobes the data to the flyby
peripheral. In Transfer-and-Search operations,
the data is also stored in the Temporary register
and compared with the unmasked pattern.

2271-008

4-123

‘ START ’

TS
INTERRUPT AND/OR
B-TO-C RELOAD
AND/OR CHAIN

IUS

SAMPLING DREQ
DRIVING BUSREQ
SAMPLING BAI

DACK = 1 T

(CM4 = 0): C-ARA ON BUS:
(CM4 = 1): C-ARB ON BUS:
RW =1,AS =0

DACK =0

™

AS=1:D5=0

BUS RESERVED FOR DATA
SAMPLING WAIT

PULSED DACK ACTIVE T2

= 0 (CHANNEL REQUESTED)

!

(CM4 = 0): DATA INTO FLYBY PERIPHERAL
(CM4 = 1): DATA FROM FLYBY PERIPHERAL

DS PULSED, DACK = 1,
UPDATE ADDRESS AND COUNT,
CHECKING TC, MC, EOP
SAMPLING DREQ

LK

us NO
HOLD

YES | g

SAMPLING DREG
SAMPLING EOP

THLD

Search Operation

4-124

2271-009

Table 4. Operation Codes And Programming Suggestions

Operation Operation Code Size Suggestions

CM5-CMy*
Flowthrough 0 W-W If CMy = O then ARA to ARB; if CMy = 1 then ARB to ARA
Transfer 1 B-B If CMyg = O then level DACK; if CMyg = 1 then DACK inactive
Flyby 2 W-W If CMg = O then ARA to ARB; if CM, = 1 then ARB to ARA
Transfer 3 B-8 If CMyg = 0 then level DACK; if CMjg = 1 then pulsed DACK
Flowthrough 4 W-W CMy, CMig same as flowthrough transfer
Transfer & 5 B-B If CMy7 = O then stop on no match; if CMy; = 1 then stop on
Search match
Flyby 6 W-W CMy, CMig same as flyby transfer
Transfer & 7 B-8B If CMyy7 = O then stop on no match; if CMy7 = 1 then stop on
Search match
Flowthrough 8 B-W Byte at ARA, word at ARB
Funneling 9 If CMy = O then byte-to-word; if CMy = 1 then word-to-byte
If CMyg same as transfer
Operation count = number of words
Flyby c B-W
Funneling D
Search E W-W If CM, = O then source at ARA; if CM, = 1 then at ARB
F B-B If CMy7 = O then stop on no match; if CMy7 = 1 then stop on
match
Operation Operation Code Suggestions
CM¢ CMs,
Single 0 0 Each Software Rec. command causes one operation;
Operation Each DREQ falling edge causes one operation**
Demand with 0 1 Each Software Req. command causes block operation***;
Bus Hold Operating when DREQ Low; Hold bus when DREQ High
Demand with 1 0 Each software Req. command causes block operation*x*;
Bus Release Operating when DREQ Low; Release bus when High
Demand 1 1 Each Software Req. command causes block operation***;
Interleave Operating when DREQ Low; Release bus to other

channel or CPU after each operation

*CM (Channel Mode) register's bit.

**The DREQ falling edge must meet the timing requirement.

***]f MM2 (Master Mode) bit is set (CPU interleave is enabled), the DTC releases the bus after each
operation when the channel is not in Bus Hold mode.

4-125

When Flip bit CM, is set, the DTC activates DACK
to the flyby peripheral, which enables the data
onto the A/D bus, writes the data into the
location specified by the Current ARB, stores it
in the Temporary register, and compares it with
the unmasked pattern.

The Search operation consists of a Read cycle
only. The DTC reads data from the source location
(specified by the Current ARA when CM, = 0 and by
Current ARB when CM, = 1), stores the data in the
Temporary register, and compares it with the
unmasked pattern. No data is written into any
location or peripheral. Channel Mode register
bits CMy7_CMy¢ are the match control field for
programming the Stop condition.

Channel Mode bits CMg-CMs select the channel's
response to the request to start a DMA operation.
There are four types of response: single
operation, demand dedicated with bus hold, demand
dedicated with bus release, and demand inter-
leave. These responses are detailed below.
Figure 7 shows flow charts for each of these
responses. Interleave operations between the CPU
and the DTC, and between DTC channels, are shown
in Figure 8.

The setting of bits CMg and CMg are described as
follows:

a) Single operation (CMg = 0, CMg = 0). In
response to a software request or active DREQ
High-to-Low transition, the channel performs a
singie DMA iteration. The DTC relinquishes bus

control after each transaction unless a second

High-to-Low DREQ transition meets the timing

requirement.

b) Demand Dedicated with Bus Hold (CMg = 0, CMg =
1). In response to a software request, the
channel acquires bus control, performs a DMA
operation until termination occurs (i.e., TC,
MC or EOP occurs), and then relinquishes bus
control.

In response to an active Low DREQ, the channel
acquires bus control, performs DMA operations
while DREQ is active Low, retains bus control
when DREQ is High but does nothing, resumes DMA
operation when DREQ is Llow again and only
relinquishes bus control when the operation
terminates (i.e., TC, MC, or EOP occurs). If
the DACK signal is programmed as level (CMyg =
0), it will be active Low from the time the
channel acquires bus control to when it
relinquishes control.

c) Demand Dedicated with Bus Release (CMg = 1,
CMg = 0). In response to a software request
the channel performs DMA iterations until TC,
MC, or EOP occurs. In response to a hardware
request, the channel performs DMA iterations
until DREQ goes inactive. The contents of the
Current Address registers and the Current
Operation Count register will not be reloaded
until TC, MC, or EOP occurs.

d) Demand Interleave (CMg = 1, CMg = 1). Demand
Interleave varies, depending on the setting of
Master Mode register bit MM,. If MM, is set
(CPU interleave is enabled), the DIC
relinquishes bus control after each DMA
iteration and then re-requests it. This
permits the CPU and other devices to gain bus
control during DMA operations. If MM, is clear
(CPU interleave is disabled), control can pass
from one channel to the other without releasing
bus control. If only one channel is programmed
in Demand Interleave mode, the other channel
will retain control until termination or until
DREQ goes inactive, at which time control is
returned to the other channel.

Channel Mode register bit CM;g selects the wave-
form of DACK. The pulsed DACK (CMqg = 1) is used
only in Flyby transactions. It is inactive during
Non-F1lyby transactions when CMjg is set.

Byte-word funneling allows packing and unpacking
of byte data to facilitate high-speed transfers
between byte-oriented peripherals and word-
organized memory. The funneling option can be
used only in Flowthrough transactions. For
transfers from a byte source to a word destina-
tion, two consecutive byte reads are performed to
move data from the source location. These bytes
are assembled in the Temporary register. The
Temporary register data is then written into the
destination location as a word. For word-to-byte
funneling, word data is read from the source
location into the Temporary register. This word
is then written to the destination in two
consecutive byte writes. The byte address must be
programmed in the Current ARA and the word address
must be in the Current ARB. Bit CMg in the
Channel Mode register is used to specify the
transfer direction. It is set to 0 to specify
byte-to-word funneling and to 1 for word-to-byte

funneling. To access the high byte of the word
first, bit TGz of the Current ARB must be
cleared. Bit TGz of the Current ARB is set when

accessing the low byte of the word first, after
which the ARB address increments. Figure 9 shows
two examples of data funneling.

4-126

—>] ONE DMA ITERATION I ONE DMA ITERATION |

YES INTERRUPT YES INTERRUPT
B-TO-C LOAD B-TO-C LOAD
CHAINING CHAINING
NO NO
YES @
NO

HIGH
ANOTHER ANOTHER
CHANNEL OR CHANNEL OR -
RELEASE BUS RELEASE BUS
EXIT EXIT

(A) Single operation (C) D d dedi d with bus rel
(hardware request)

1

ONE DMA ITERATION | ONE DMA ITERATION

L

| Low Y
NO
<—r
HIGH YES
INTERRUPT ‘
B-TO-C LOAD -
CHAINING INTERRUPT
B-TO-C LOAD
] CHAINING
ANOTHER !
CHANNEL OR
RELEASE BUS ANOTHER
CHANNEL OR
{ RELEASE BUS

EXIT

(B) Demand operation when
software requesting

EXIT

0

(D) Demand dedicated with
bus hold (hardware request)

Figure 7. Flow Charts of DMA Operations

2271-010 4-127

8Z1-¥

L10-1L22

CH 1: INTERLEAVE
CH 2: INTERLEAVE

CH 1: INTERLEAVE
CH 2: INTERLEAVE

CPU. NO INTERLEAVE CPU INTERLEAVE

CH 1- INTERLEAVE CH 1: DEMAND CH 1. DEMAND INTERLEAVE CH 1 DEMAND/INTERLEAVE CH 1. DEMAN/INTERLEAVE

CH 2: SOFTWARE DEMAND CH 2: DEMAND/BUS RELEASE CH 2: DEMAND/BUS HOLD CH 2: DEMAND/ BUS RELEASE CH 2: DEMANDS/BUS HOLD OR RELEASE
CPU: INTERLEAVE CPU: NO INTERLEAVE CPU: NO INTERLEAVE CPU: INTERLEAVE CPU: INTERLEAVE

DREQ1

ACTIVE

2
ERMINATE

1 DREG2Z
ACTIVE ACTIVE

DREQ1
INACTIVI

~-O-O-0O-

x

DREQ2

2
ERMINATE ACTIVE

CH1

TERMINATE TERMINATE

g—c

DREQ2
INACTIVE

DREQ2
INACTIVE

DREQ2
ACTIVE

DREQ2

INACTIVE
DREQ1
ACTIVE

Figure 8. Flow Charts of Interleave Operations

CH1
TERMINATE

A) Byte-to-Word Funneling: Data is moved from the byte source addressed at FA70 to the word
destination addressed from 1600.

Current ARA: 0010-FA70 (Segment = 00, Offset = FA70, Address hold)
Current ARB: 00xx-1604 (Segment = 00, Offset = 1604, Address hold/change)
Current Op-Count: 0003 (Three words)

Flip bit (CMy): O (Data from "ARA" to "ARB")

Destination Data Distribution

TGy TGy
ADDRESS 00 01 10 1
Source Data String
AA 00-1600 * FFEE * *
BB 00-1602 * pDCC * *
cc 00-1604 AABB | BBAA | EEFF | FFEE
DD 00-1606 [§{sh») * * *
EE 00-1608 EEFF * * *
FF 00-160A * * * *
ARB INC., | DEC. | HOLD | HOLD
NOTES | WRITE FIRST| HIGH | LOW HIGH | LOW

B) Word-to-Byte Funneling: Data is moved from the word source addressed from 1800 to the byte
destination addressed from 1A00.

Current ARA: 0000-1A00 (Segment = 00, Offset = 1A00, Address increment)
Current ARB: 00xx-1800 (Segment = 00, Offset = 1800, Address hold/change)
Current Op-Count: 003 (three words)

Flip bit (CMA): 1 (Data from "ARB" to "ARA")

Destination Data Distribution

TGy, TG3
ADDRESS 00 01 10 1"
Source Data Distribution

00-1A00 AA BB AA BB
Address Word Data 00-1A01 BB AA BB AA

00-1A02 cc 99 AA BB
00-17FA 00-1A03 DD 88 BB AA
00-17FC 6677 00-1A04 EE 77 AA BB
00-17FE 8899 00-1A05 FF 66 BB AA
00-1800 AABB 00-1A06 * * * *
00-1802 CCoD 00-1A07 * * * *
00-1804 EEFF 00-1A08 * * *
00-1806

ARB INC. DEC. HOLD | HOLD
NOTES | READ FIRST | HIGH | LOW HIGH | LOW

*Data unchanged

Figure 9. Examples of Byte/Word Funneling

2271-012 4-129

78016 DTC-T0-Z8000 CPU INTERFACE
CPU and DTC On Same Board

The Address/Data bus and control signals of the
28000 CPU and those of the Z8016 DTC are directly
connected. The AS, DS, and BUSACK signals of the
CPU are connected through the reset logic to the
AS, DS, and BAI signals of the DTC. CS/WAIT
demultiplexing logic is required for the CS/WAIT
input of the DTC if hardware waits are necessary.
The DREQ 1lines are connected to the request
outputs of peripheral devices. The DACK lines are
connected to the corresponding enable inputs of
the peripheral devices.

When programming for Flyby transactions, the R/W
input of the flyby peripheral should be inverted
internally by the peripheral or externally by
special logic. R/W High indicates that the flyby
peripheral should accept data, and R/W Low
indicates that the flyby peripheral should drive
data onto the bus. The memory or non-flyby
peripheral uses the R/W High signal to indicate
that it should drive data onto the A/D bus, and it
uses the R/W Low signal to indicate that it should
accept the data from A/D bus.

When reading a slow-readable register (e.g., the
Channel Mode register), external logic for
inserting hardware Wait states is required. The
worst-case DS low width for the slow-readable
registers is approximately 2000 ns for a 4 MHz
28016 DTC. The interrupt vector is supplied by
the Interrupt Save register (a fast-readable
register), therefore, the DS Low width for
Interrupt Acknowledge does not require hardware
Wait states.

Figure 10 shows the interface of the Z8000 CPU and
the 78016 DTC when located on the same board. No
buffer is required for BUSREQ. The pins of
BUSREQ, EOP and INT require 3.3k or larger pullup
resistors. When more than one DTC or other
peripherals are used, the BAI-BAO and IEI-IEO
daisy chains are used to determine priorities for
bus control and the interrupt service.

CPU and DTC on Different Boards

When the DTC and CPU are located on different
boards, the address/data and control signals pass
through the system bus. The system bus must
provide:

e Multiplexed Address/Data lines (ADg-AD4s5)

e Bus timing lines [Address Strobe (AS),
Data Strobe (DS)]

e Read/Write (R/W) status signal

e Bus control lines [Bus Request (BUSREQ) and Bus
Acknowledge (BUSACK)]

e Interrupt Request lines

e Status lines (STg-STs3)

e Ready (RDY) line

The BUSREQ pin of the DTC requires special
bidirectional buffer logic to prevent competition
between buses. The other connections are the same
as those made when the CPU and DTC are located on
the same board.

Figure 11 shows the interface configuration for a

Z-BUS system used with the 78016 DTC.

4-130

yi0-1L22

er-v

RESET

+5V
2 T, +5V
D,
BUSREQ BUSACK BAI BUSREQ
__ 1 / - DS IEl
RESET DS
— AS
As 28016
28000 DTC
CPU RIW W o MULTIPLEXING
_ RIY CSIWAIT |- LOGIC <
B/W T BIW
NS ' 1 NIS BAO
STo STo
ST3 ST3
Vi |- INT 1EO |—
ADp-AD15 ADo-AD15
| <]
ADDRESS/DATA BUS 7
iL +5V
DECODER
D B
__ 25LS8373
|| m 2946 co —
4
Y A n
U J\/L _\ @ \
- s X W RIW AS DS iNT BUSREQ Do-D IEO BAO 7
SYSTEM BUS Ao-A15 MS STo-ST3 BIW 0-D15 AT S

Figure 10.

DTC-to-Z8000 CPU Interface Configuration

zel-v

€l0-tLee

+5V

RESET
RESET OUT DECODER SYSTEM MEMORY
zeK cLocK Y }—] MREQ SNo-SN
cLk 8127 Z8000 o>
WAIT WAIT cPU
HUSHES RW Ao-A Do-D DS SLOW
-»| BUSREQ Sons A
READY BUSACK f
AS STo-STz B/W NIS RW DS ADg-AD¢s
CLK Y A
A 74LS164 _25L8373 2047 __
Qn OE (<] 1 TR OF |~
B
CLR D B
WAIT STATES CONTROL)])) J
RDY BUSREQ WAIT AS STo-ST3 BW NS RW DS ADp-ADi5 STp-ST3, NIS ADQ-AD15 AS RW ADg-AD15 DS RDY SNo-SN7
Z.BUS BUSACK
ADDRESS AS STo-ST3 B/W NS RW DS ADo-AD15 SNo-SN7 BUSACK WAIT A6 RDY RW AS BUSREQ
\ (A
DECODER
) v
L s cs SLoW
AS STo-ST3 B/W N/IS RW DS ADo-ADis FFERED
MULTIPLEXING ";'USEES
SNo-SN7 > LOGIC LOGIC
, —
Ve DREQ
Z80'16 BAI f f
n
DTC 5AG
+ DACK CSIWAIT
BUSREQ
Figure 11. DTC-to-Z-BUS System Interface Configuration

28016 DTC-T0-8086 CPU INTERFACE

To control data transactions the 8086 CPU provides
RD and WR signals and the 28016 DTC provides DS
and R/W signals. The R/W signal is valid and
stable at the T1 state, whereas RD and WR are
valid at the T2 state. Therefore, the use of RD
or WR to generate a R/W signal violates the
R/W-valid-to-DS falling edge setup time
requirement. To avoid this, the DT/R signal of
the 8086 CPU can be used to generate the R/W
signal for programming the DTC. This interface
configuration between the 78016 DTC and the 8086
CPU is shown in Figure 12.

External logic provides and controls the status
signals STy-ST3. See the Interface Support Logic
section of this application note for details.

78016 DTC-T0-Z8030 Z-SCC INTERFACE

The 28030 Serial Communications Controller (Z-SCC)
functions as a serial-to-parallel, parallel-to-
serial converter/controller. Address and data
transactions through the Z-SCC are activated by
controlling the E§0 and CSqy inputs. The CSq must
remain active High throughout the data transac-
tion. The TSy Low allows the address of the
internal register to be accessed. Figure 13 shows
the DTC-to-Z-SCC interface configuration.

When interfacing with the Z-SCC, the DTC should be
programmed for:

e Single operation or Demand operation

e Byte-to-byte flowthrough transfer, transfer-
and-search, or search. An FIO is necessary in
Flyby mode due to recovery time parameters.

e One wait state insertion for accessing the
Z-SCC and three wait states for the memory
cycle. This is to meet the SCC recovery time.

For example, to transfer data from the Z-SCC
(addressed as 00-FFBx) to memory (e.g., 00-2000 to
00-20FE), the ARA, ARB, Op-Count and Channel Mode
registers are:

ARA: 0000 - 2000
ARB: 0072 - FFBO
Op-Count: 0100

Channel Mode: 0000 - 1001

Because of the write to DS falling edge setup time
requirement, Flyby transactions are not
recommended unless the memory access time is fast
enough to meet this requirement. The Z-SCC
requests a DMA transfer by pulling the DTR/REQ
output Low.

28016 DTC-T0-Z8038 Z-FIO INTERFACE

The 128038 FIFO I1/0 Port (Z-FI0) provides an
asynchronous, 128-byte FIFO buffer. This buffer
is expandable in both width and depth. The data
transfer logic of the Z-FIO0 is especially designed
to work with DMA controllers in high-speed
transfers. Figure 14 shows the DTC-to-Z-FIO
interface configuration. The DACK output of the
DIC is connected to the DMASTB input of the
Z-F10. When DACK is active Low, it masks the CS
for Flyby DMA operations. The following rules
apply when programming the DTC to transfer data
between the A/D bus and the Z-FIO.

(1) The time between the rising edge of DS and
the next falling edge of DS in the DTC must
meet the valid access recovery time of the
Z-F10. In Demand Block transfer opera-
tions, the delay of two DS signals equals
approximately two DMA clock cycles.
Therefore, Demand Interleave transfer or
Single transfer operations are suggested.

(2) The pulsed DACK bit (CM;g) of the Channel
Mode register must be set.

(3) For Flowthrough operations, CS of the Z-FIO
must be activated.

(4) For word-to-word transfers, two FIOs must
be used.

4-133

¥el-¥

SL0-LL22

BUSREQ [[]
HOLD HLDA EOP
RESET }—»] RESET RD —
DS
- a DREQ |+
o204 Wh Z8016
$240 DTC
RIW DACK p—>
AEN1 AEN2 RDY1 READY 8086 B
cPU DTRR
L__ ALE Q AS
I BHE BIW
RDY MiO DEN ADg-AD15 OCF ADo ADQ-AD15 CS/WAIT BAO
i ADDRESS/DATA BUS ADg
ADp)
w
2 g !
s)
a <
a| MULTIPLEXING
LOGIC
A
WAIT STATE
GENERATOR -
L»| DIR LS245 G
D
. B Y
DE S373 LE §
=
1_ G DECODER S
Y
SLow mio RD WR BHE Ag-A15 SYSTEM BUS Do-D15 An SLow
Figure 12. 78016 DTC-to-8086 CPU Interface Configuration

910-1.22

SET-¥

—| E 1EQ »| IEI
AS |=— > AS IEO }——>
‘ s
DS |-
DREQ |- DTR/REQ CH1
28016 +5V
pTC DACK |—> o—wA—>| cs 28030

BAO > »| cso Z-SCC CH2

== MULTIPLEXING

BAI | LOGIC

CSIWAIT |- |
RIW | »| RIW
BUSREQ ADp-AD15 STo-ST3
+5V W/REQ
[ADQ-AD7
AB Y_o -
c,G Yi
DECODER
- ADo-
2 ADo-AD15 ADDR ADDRESS/DATA BUS 0-AD7 /
- Al
‘ s)]
STo-ST3 R/IW DS BAI STp AS WAIT

2 BUSREQ

CONTROL BUS

J

Figure 13.

DTC-to-Z-SCC Interface Configuration

—————— . — — |
— o |
DREQ REQ |
DACK DMASTB |
|
BAO > MULTIPLEXING cs |
I LOGIC |
CS/WAIT 1
28016 1 Z8038
pTC BAI 1 Z-FI0 popr2
RIW RIW |
B8 —»-| DS |
As > >| AS :
Yo Mo I
DECODER I
__ M1 J
STo-ST3 ADg-AD15 BUSREQ A B,C,GE Do-D7
A m = i l
~))
2 STo-ST3 BUSREQ BAI AS WAIT sT2 S RW conTROL BUS 2
ADQ-AD15 ADDR ADo-AD7
2 ADDRESS/DATA BUS ADg-AD15

Figure 14. DTC-to-Z-FIO Interface Configuration

78016 DYC-T0-7Z8010 MMUJ INTERFACE

The 78010 Memory Management Unit (MMU) contains a
table of access attributes that are individually
programmable for each segment. The attributes
provided are read-only, System-mode-only,
DMA-only, execute-only, and CPU-only. If the MMU
detects a memory access that violates one of the
attributes of a segment, the MMU interrupts the
CPU or DMA to inhibit an illegal memory access.

Figure 15 shows the DTC-to-MMU interface configur-
ation. The MMUSYNC output of the DTC ORed with
the BUSACK signal of the CPU is connected to the
DMASYNC input of the MMU. The MMUSYNC pin of the

DTC is multiplexed with SN;. If bit MM; of the
Master Mode register is set (Logical Addressing
mode), this pin outputs an MMUSYNC active High
pulse prior to each DMA cycle when the DTC is in
control of the system bus; when the DTC is not in
control of the system bus it outputs a Low level.
If the MMy is clear (Physical Addressing mode),
this pin outputs the SNy when the DTC is a bus
master and is driven with high-impedance off when
the DTC is not in control of the system bus.

The SUP output of the MMU is connected to the EOP
pin of the DIC so that DMA operation will be
terminated whenever a violation is detected.

4-136

2271-017

810-1L22

LET-v

+5V

))
l
MMUSYNC EOP DMASYNC SuUP
AS AS
Ag-A23 Ag-A23
DS DS
RW |- RW
28016 STo | STo 28010 "
__ DTC MMU OE G
>| BAl ST 8T O2sLsars
ST2 — ST2 D
BUSREQ ST ST3 P
CLOCK CLOCK SEGT x
NiS >
ADQ-AD15 SNo-SNg SNo-SNg ADg-AD15
s Z i i Z
BUSACK BUSREQ N/S CLK ST3 ST2 STy STg RW DS AS As
CONTROL BUS
) SNo-SNg SEGMENT BUS
\J ! !
ADo-AD15 ADDRESS/DATA BUS ADg-AD15 ADo-AD7

A~

—~

Figure 15.

DTC-to-MMU Interface Configuration

INTERFACE SUPPORT LOGIC shown assumes a timeout feature such as on the
AMZ8127 clock chip. Figure 17 shows the logic for

Figure 16 shows the external logic for decoding the status lines to generate the MREQ,

multiplexing CS and WAIT (or RDY) signals for the I0RQ, and M/I0 signals.

CS/WAIT input of the 28016 DIC. The slow circuit

WA
Bal CSIWATT
BAO
cs - oc
ADg D Q@ SLOW
RIW
cP
s tr
(A) WAIT, CS Multiplexing Logic
cs »e
BAO CSIWATT
BAI
cLocK »
RDY
(B) RDY, TS Multiplexing Logic
Figure 16. Multiplexing Logic For CS/WAIT Input
ST P Sg Yo iORQ
ST3] S Yi » INTACK
28148 _
S3 DECODER Y2
Et s WMEMRG
E2
— Do-—» MIio

Figure 17. Status Lines Decoding Logic

4-138 00-2271-02

Initializing
The CIO

Zilog

Application
Note

October 1982

INTRODUCTION

Zilog's 28536 Counter/Timer and Parallel I/0 Unit
(C10) and 78036 (Z-CI0) can provide convenient
solutions to many microprocessor-based design
problems. Their handshake control, bit manipu-
lation, pattern recognition, and interrupt control
capabilities extend the range of applications far
beyond that of traditional counter/timer and
parallel I/0 circuits. This application note
gives a generalized procedure for initializing the
CI0, as well as an initialization example for one
particular application. All comments in this
document referring to "the CIO" apply to both the
28036 and 28536. References to the Z-CI0 refer
only to the Z8036.

ACCESSING THE REGISTERS

From the programmer's point of view, the only dif-
ference between the 78036 and the 78536 is the way
the registers are accessed. In the 78036, they
are mapped directly into the CPU's 1/0 address
space, and the Right Justified Address (RJA) bit
in the Master Interrupt Control register deter-
mines which address bits are used to select them.
When RJA = 0, bits ADg-AD; are decoded, and when
RJA = 1, bits AD5-ADg are decoded.

The 28536 uses only Ag and Ay to select the regis-
ters and thus occupies only four bytes of I/0
address space. The Data registers for each port
are accessed directly using Ag and A4. The Con-
trol registers (as well as the Data registers) can
be accessed using the following two-step sequence
with Ag = A = 1: first, write the address of the
target register to an internal 6-bit pointer reg-
ister; then read from or write to the target reg-
ister. An internal state machine determines

whether a given access refers to the pointer or
the target register.

SOF TWARE RESET

A software reset is performed by writing a 1 to
the Reset bit in the Master Interrupt Control reg-
ister. This causes all control bits to be reset
to 0, all port I/0 lines to be at high impedance,
the Interrupt pin to be inactive, and the Inter-
rupt Enable Output (IED) pin to follow the Inter-
rupt Enable Input (IEI) pin. A reset disables all
functions except a read or write to the Reset bit;
therefore the Reset bit must be cleared before any
other control bits can be programmed.

INITIALIZATION

Once the CIO has been reset and, in the Z-CIO, the
RJA bit has been programmed, it can easily be ini-
tialized for a given application by using the pro-
cedures outlined in the flowcharts of Figures 1
through 7. These flowcharts are intended to serve
more as a logical guide than as a sequential algo-
rithm. The actual sequence of initialization is
unimportant, except that a few basic rules must be
observed:

e The ports and counter/timers should be enabled
only after their functions have been completely
specified.

e When Ports A and B are linked, Port B should be
enabled before, or simultaneously with, the
enabling of Port A. Also, the Port Link Con-
trol (PLC) bit in the Master Configuration
Control register should be set before either
port is enabled.

4-139

The counter/timers should be triggered only
after they have been enabled.

When Counter/Timers 1 and 2 are linked, the
functions of both must be specified and the
Counter/Timer Link Control (LC) bits (in the
Master Configuration Control register) must be
programmed before either counter/timer is
enabled.

The Master Interrupt Enable (MIE) bit in the
Master Interrupt Control register should be set
only after the functions of the CIO's interrupt
sources have been completely specified.

PORTAORB
INITIALIZATION

SPECIFY PORT
TYPE IN PORT'S
MODE SPECIFICATION

BIT PORT HANDSHAKE PORT

PERFORM BIT PORT
INITIALIZATION
(FIGURE 2)

PERFORM
HANDSHAKE PORT
INITIALIZATION
(FIGURE 3)

!

SET MASTER
INTERRUPT ENABLE BIT
IN MASTER INTERRUPT
CONTROL REGISTER IF

APPROPRIATE

Figure 1. Port A or B Initialization

Table 1. 78036/28536 CIO Register Summary

Internal
Address Read/Write Register Name
(Binary)
As...Ag Main Control Registers
000000 R/W Master Interrupt Control
000001 R/W Master Configuration Control
000010 R/W Port A Interrupt Vector
000011 R/M Port B Interrupt Vector
000100 R/W Counter/Timer Interrupt Vector
000101 R/W Port C Data Path Polarity
000110 R/W Port C Data Direction
000111 R/W Port C Special 1/0 Control
Most Often Accessed Registers
001000 * Port A Command and Status
001001 * Port B Command and Status
001010 * Counter/Timer 1 Command and Status
001011 * Counter/Timer 2 Command and Status
001100 * Counter/Timer 3 Command and Status
001101 R/W Port A Data**
001110 R/W Port B Data**
001111 R/W Port C Data**
Counter/Timer Related Registers
010000 R Counter/Timer 1 Current Count (MS Byte)
010001 R Counter/Timer 1 Current Count (LS Byte)
010010 R Counter/Timer 2 Current Count (MS Byte)

* All bits can be read and some bits can be written.
** Also directly addressable in 28536 using pins Ag and Aq.

4-140

2256-001

Table 1. 78036/18536 CIO Register Summary--Continued
Internal
Address Read/Write Register Name
(Binary)

Counter/Timer Related Registers (continued)

010011 R Counter/Timer 2 Current Count (LS Byte)
010100 R Counter/Timer 3 Current Count (MS Byte)
010101 R Counter/Timer 3 Current Count (LS Byte)
010110 R/W Counter/Timer 1 Time Constant (MS Byte)
010111 R/W Counter/Timer 1 Time Constant (LS Byte)
011000 R/W Counter/Timer 2 Time Constant (MS Byte)
011001 R/W Counter/Timer 2 Time Constant (LS Byte)
011010 R/W Counter/Timer 3 Time Constant (MS Byte)
011011 R/W Counter/Timer 3 Time Constant (LS Byte)
011100 R/W Counter/Timer 1 Mode Specification
011101 R/W Counter/Timer 2 Mode Specification
011110 R/W Counter/Timer 3 Mode Specification
011N R Current Vector

Port A Specification Registers
100000 R/W Port A Mode Specification
100001 R/W Port A Handshake Specification
100010 R/W Port A Data Path Polarity
100011 R/W Port A Data Direction
100100 R/W Port A Special I/0 Control
100101 R/W Port A Pattern Polarity
100110 R/W Port A Pattern Transition
100111 R/W Port A Pattern Mask

Port B Specification Registers
101000 R/MW Port B Mode Specification
101001 R/W Port B Handshake Specification
101010 R/W Port B Data Path Polarity
101011 R/W Port B Data Direction
101100 R/W Port B Special I/0 Control
101101 R/W Port B Pattern Polarity
101110 R/W Port B Pattern Transition
101111 R/W Port B Pattern Mask

4-141

BIT PORT
INITIALIZATION

SPECIFY DATA
DIRECTION OF EACH
BIT IN PORT'S DATA

DIRECTION REGISTER

)}

ANY INVERTING
DATA PATHS?

PROGRAM PORT'S
DATA PATH 1
POLARITY REGISTER

PROGRAM PORT'S
SPECIAL /0 1
CONTROL REGISTER

NEED
PATTERN
MATCH?

NO

YES

PERFORM PATTERN
RECOGNITION
INITIALIZATION
(FIGURE 7)

NEED
INTERRUPTS?

NO

INITIALIZATION
(FIGURE 6)

PERFORM INTERRUPT

!

INTERRUPT ON

ERROR FEATURE?

SET INTERRUPT ON

ERROR BIT IN PORT'S

COMMAND AND
STATUS REGISTER

WRITE INITIAL DATA
TO PORT DATA
REGISTER IF
NECESSARY

'

ENABLE PORT IN
MASTER CONFIGU-
RATION CONTROL

REGISTER

RETURN

Figure 2.

Bit Port Initialization

4-142

2256-002

HANDSHAKE
PORT
INITIALIZATION

NEED
DOUBLE
BUFFERED
PORT?

SET SINGLE BUFFERED
BIT IN PORT'S
MODE SPEC
REGISTER

INTERRUPT ON
TWO BYTES
FEATURE?

SET INTERRUPT ON
TWO BYTES BIT
IN PORT'S MODE
SPEC. REGISTER

Y

NEED
PATTERN
MATCH?

YES

PERFORM
PATTERN RECOGNITION
INITIALIZATION
(FIGURE 7)

SPECIFY HANDSHAKE
TYPE IN PORT'S
HANDSHAKE SPEC
REGISTER

Y

NEED
DESKEW
TIMER?*

YES

SET DESKEW TIMER
ENABLE BIT IN
PORT’S MODE SPEC.
REGISTER

PROGRAM DESKEW

TIME SPEC BITS IN

PORT'S HANDSHAKE
SPEC. REGISTER

REQ/WAIT
SIGNAL?

PROGRAM REQ/WAIT
SPEC BITSIN
PORT'S HANDSHAKE
SPEC. REGISTER

USING
PULSED
HANDSHAKE?

INITIALIZE
COUNTERITIMER 3

*Deskew Timers Are Used Only For Output Ports

Figure 3. Handshake Port Initialization

2256-003

4-143

NEED
ANY INVERTING
DATA PATHS?

PROGRAM PORT'S
DATA PATH POLARITY
EGISTEI

PROGRAM PORT’S
SPECIAL 10
CONTROL REGISTER

NEED
INTERRUPTS?

PERFORM
INTERRUPT
INITIALIZATION
(FIGURE 6)

NEED
PORTS A AND
B LINKED?

SPECIFY PORT B
AS A BIT PORT
IN PORT B MODE
SPEC REGISTER

SET PORT LINK
OL ! T

GURAYION
CONTROL REGISTER

WRITE INITIAL
DATA TO PORT
DATA REGISTER(S)
IF NECESSARY

!

INITIALIZE PORT C
FIGURE

'

ENABLE PORT A AND/OR
PORT B IN MASTER
CONFIGURATION CON-
TROL REGISTER

RETURN

~———

Figure 3.

(continued)

Handshake Port Initialization

PORTC
INITIALIZATION

SPECIFY DATA DIREC-

TIO OF EACH BIT IN

PORT C DATA DIREC
TION REGISTER

NEED
ANY INVERTING PR o ©

DATA PATHS POLARITY REGISTER

ANV OPEN
G St o ves| emogmameonte |

's

cATCH CONTROL REGISTER
NO

WRITE INITIAL DATA
OR HANDSHAKE
LEVELS TO PORT C
DATA REGISTER IF
NECESSARY

!

ENABLE PORT CIN

Figure 4.

Port C Initialization

4-144

2256-004, 005

COUNTERITIMER
INITIALIZATION

NEED
RETRIGGERABLE
COUNTER/TIMER?

SET RETRIGGER
ENABLE BIT IN
COUNTER/TIMER'S
MODE SPEC REGISTER

MODE SPEC REGISTER

!

NEED
EXTERNAL
ACCESS?

SET APPROPRIATE

EXTERNAL ENABLE

BITS IN C/T'S MODE
SPEC REGISTER

CIT10R2
EXTERNAL
ACCESS?

CIT3
EXTERNAL
ACCESS?

NO

INITIALIZE PORT B
AS A BIT PORT WITH
CORRECT DATA
DIRECTION ON
ACCESS BITS

INITIALIZE PORT C
AS A BIT PORT WITH
CORRECT DATA
DIRECTION ON
ACCESS BITS

1]

L |

LOAD APPROPRIATE
Al CIT'S

TIME CONSTANT REG
ISTERS (LSBs AND
MSBs)

i

NEED
INTERRUPTS?

PERFORM
INTERRUPT
INITIALIZATION
(FIGURE 6)

NEED
CITs 1 AND 2
LINKED?

PROGRAM THE CIT LINK
CONTROL BITS IN MAS-
TER CONFIGURATION
CONTROL REGISTER

:

ENABLE CIT IN MAS-
TER CONFIGURATION
CONTROL REGISTER

ENABLE C/Ts 1
AND 2 IN MASTER
CONFIGURATION

CONTROL REGISTER*

!

[}

GATE AND/OR
TRIGGER CIT IN
CIT's COMMAND AND
STATUS REGISTER

GATE AND/OR
TRIGGER CIT 2 IN
CIT 2 COMMAND AND
STATUS REGISTER

!

GATE AND/OR
TRIGGER C/T 1IN
CIT 1 COMMAND AND
STATUS REGISTER

SET MASTER INTER-
E BIT IN
MASTER INTERRUPT
CONTROL REGISTER IF
APPROPRIATE

E]
=
kl
3
m
z
>
]

*For linked operation C/Ts 1 and 2

L]

must

both be initialized before they are enabled

Figure 5.

Counter/Timer Initialization

2256-006

SET THE NO VECTOR
BIT IN MASTER
INTERRUPT CON-
TROL REGISTER

INTERRUPT
INITIALIZATION

NEED
INTERNALLY
GENERATED

VEC‘;ORS

SET THE APPROPRIATE
VECTOR INCLUDES
STATUS BIT IN MASTER
INTERRUPT CONTROL.

PROGRAM APPRO
PRIATE INTERRUPT
VECTOR REGISTER

Figure 6.

BIT PORT

NEED
LATCH ON
PATTERN MATCH
FEATURE?

SET LATCH ON
PATTERN MATCH
BIT IN PORT’S MODE
SPEC REGISTER

!

SET APPROPRIATE |E
BIT IN COMMAND
D STAEI.’;S

RETURN

Interrupt Initialization

PATTERN
RECOGNITION
INITIALIZATION

SPECIFY PATTERN
MATCH MODE IN
PORT’S MODE SPEC.
REGISTER

HANDSHAKE PORT

EE|
INTERRUPT
ON MATCH ONLY
FEATURE?

SET INTERRUPT ON

MATCH ONLY BIT IN

PORT’S MODE SPEC
REGISTER

R}

i

PROGRAM PORT’S
PATTERN POLARITY
REGISTER

!

PROGRAM PORT’S
PATTERN TRANSITION
REGISTER

!

PROGRAM PORT'S
PATTERN MASK
REGISTER

RETURN

Figure 7. Pattern Recognition Initialization

4-146

2256-007, 008

APPLICATION EXAMPLE

Figure 8 shows the 78036 configured to function
as:

An input handshake port

A priority interrupt controller
A squarewave generator

A watchdog timer

A general-purpose timer

In addition, there are two bits left over to
function as bit-addressable output lines. The
following sections discuss the specific initiali-
zation procedures used to program each of the
functions.

Z8036 2-Cl0
PAg-PA7 2-WIRE
INTERLOCKED
pC. RFD HANDSHAKE
CIT 1 AS A 10ms ° INPUT PORT
'WATCHDOG PC; j=+=—ACKIN.

TIMER

PCy BIT-ADDRESSABLE
PCo OUTPUT LINES

CIT2 PBg |~ WATCHDOG TRIGGER INPUT
P TERRACE AS AadokHz | o pBy | LI 100 KHz SQUARE
0 1z
SQUAREWAVE WAVE OUTPUT
P8y
pBs |e—r
6-INPUT PRIORITY
PB4y INTERRUPT
CIT3 PB3 |<¢—————— [CONTROLLER
AS A GENERAL-
PURPOSE TIMER PB; |e—
PBy
Figure 8. Z-CIO Application Example

Port A as an Input Handshake Port

In Figure 8, Port A is an input port with 2-Wire
Interlocked Handshake. (The CIO also supports
Strobed Handshake, Pulsed Handshake, and [EEE
3-Wire Handshake.) Port C provides the handshake
control signals, with PC, as ACKIN (Acknowledge
Input) and PC3 as the RFD (Ready For Data) output.

Port A is specified as an input handshake port by
writing a 0 to bit Dy and a 1 to bit Dg of the
Port A Mode Specification register. Writing a 1
to bit Dg and a 0 to bit D, of the same register
specifies the double-buffered mode and allows the
port to interrupt the CPU when both the Buffer
register and Input Data register are full. Since
the ports reset to Interlocked Handshake, the Port
A Handshake Specification register need not be
programmed in this example.

If Port A is to place an interrupt vector on the
system bus during Interrupt Acknowledge transac-
tions, then the Port A Interrupt Vector register
should be programmed with the appropriate value.
The Port A interrupt logic is enabled by writing
1s to bits Dy and Dg, and a 0 to bit Dg of the
Port A Command and Status register. This encoded
command sets the Port A Interrupt Enable (IE)
bit.

The programmer should specify the correct data
direction for the handshake bits, as well as the
initial state of RFD. Writing F4 (hexidecimal) to
the Port C Data Direction register programs PC3
(RFD) as an output bit, PC, (ACKIN) as an input
bit, and allows PCq; and PCy to function as bit-
addressable output lines. PCqg, PC4, and PC3 can
be programmed with their initial values by writing
to the Port C Data register. In this example, PC3
(RFD) is initially High, signaling that Port A is
ready for data.

Port B as a Priority Interrupt Controller

The priority interrupt controller is implemented
using the OR-Priority Encoded Vector (OR-PEV) mode
of pattern recognition. When any of the six
inputs (PB4-PBg and PB7;) are High, Port B's Pat-
tern Match Flag and Interrupt Pending (IP) bits
are set. If no higher priority interrupt sources
(e.g., Port A) are under service, and if Port B's
interrupts are enabled, the CIO interrupts the
CPU. If no higher priority interrupts are pending
at the time of the next Interrupt Acknowledge
cycle, then Port B places its interrupt vector on
the bus. Encoded within this vector is the value
of the highest priority interrupt request at Port
B (with PBy as the highest priority input). The
CPU can then automatically branch to the appro-
priate service routine.

To function as a priority interrupt controller,
Port B must be specified as a bit port with OR-PEV
pattern match; hence a 06y must be loaded into
the Port B Mode Specification register. PB-PBg
and PB; must be programmed as input bits by writ-
ing 1s to bits D¢-D5 and D; of the Port B Data
Direction register. The polarity of the interrupt
request signals can be specified independently in
the Port B Pattern Polarity register and the
sources can be individually masked using the Port
B Pattern Mask register. In this example, all of
the interrupts are active High and bits PBy and

2256-009

4-147

PBg are masked off; FFy is therefore loaded into
the Port B Pattern Polarity register, and BEy is
loaded into the Port B Pattern Mask register.
Transition pattern specifications should not be
used in the OR-PEV pattern match mode, so the Port
B Pattern Transition register should not be pro-
grammed.

The base interrupt vector should be loaded into
the Port B Interrupt Vector register, and the Port
B interrupt logic is enabled by writing 1s to bits
Dy and Dg, and a 0 to bit Dg of the Port B Command
and Status register. Also, the Port B Vector
Includes Status (VIS) bit should be set so that
unique vectors can be generated for each of the
interrupt sources (this can be done at the same
time the MIE bit is set).

Counter/Timer 1 as a Watchdog Timer

In this example, Counter/Timer 1 acts as a watch-
dog timer, interrupting the CPU whenever a 10 ms
interval elapses without the occurrence of a ris-
ing edge on its trigger input (PBg). Each time
the timer is triggered (i.e., with each rising
edge on PBé), it reloads its time constant and
begins counting down toward the terminal count.
Since the Counter/Timer 1 Time Constant is pro-
grammed to provide a timeout interval of 10 ms, a
terminal count condition always indicates that at
least 10 ms has elapsed since the last rising edge
on PBg.

The programmer must set bits Dy and Dy of the
Counter/Timer 1 Mode Specification register. Bit
Dy is the Retrigger Enable (REB) bit, and D4 is
the External Trigger Enable (ETE) bit. All other
bits in this register can remain reset to 0.
Since PBg is the designated external trigger input
whenever Counter/Timer 1's ETE bit is set, Port B
must be programmed as a bit port and PBg must be
programmed as an input bit.

Since Counter/Timer 1 is in the Timer mode (i.e.,
it does not have an external count input), it
counts the pulses of the internal clock signal
(PCLK/2). Assuming a 4 MHz PCLK, the Time
Constant should be 20,000¢g for a 10 ms timeout
interval. This can be achieved by loading 4Ey
to the most-significant byte of Counter/Timer 1's
Time Constant,' and 20y to the least-significant
byte of Counter/Timer 1's Time Constant.

The base interrupt vector should be loaded into
the Counter/Timer Interrupt Vector register, and
the Counter/Timer 1 interrupt logic is enabled by
writing 1s to bits Dy and Dg, and a 0 to bit Dg of
the Counter/Timer 1 Command and Status register.
Also, the Counter/Timer VIS bit should be set so
that Counter/Timers 1 and 2 can generate unique
vectors. (This can be done at the same time the
MIE bit is set.)

Counter/Timer 2 as a Squarewave Generator

While Counter/Timer 1 uses PBg as its trigger
input, Counter/Timer 2 can use PBg as its output.
The squarewave duty cycle is selected by writing a
1 to bit Dq and a 0 to bit Dy of the Counter/Timer
2 Mode Specification register. Setting bits Dy
and Dg of the same register specifies the Con-
tinuous mode with an external output. Since PBg
is the designated Counter/Timer 2 output whenever
Counter/Timer 2's External Output Enable (EOE) bit
is set, Port B must be programmed as a bit port
and PBg must be programmed as an output bit.

In the Squarewave mode, the timeout interval
should be equal to half the period of the desired
squarewave (see the CIO0 Technical Manual, section
4.2.5, document number 00-2091-01). A frequency
of 100 KHz corresponds to a period of 10 Ms and,
therefore, a timeout interval of 5 pus. With a
4MHz PCLK, the period of the input clock signal
(PCLK/2) is 0.5 ps, and therefore the necessary
Time Constant is 1045 or 000A,. This wvalue
should be loaded into the Counter/Timer 2 Time
Constant registers. Since the squarewave genera-
tor does not interrupt the CPU, there is no need
to enable Counter/Timer 2's interrupt logic.

Counter Timer 3 as a General-Purpose Timer

For Counter/Timer 3 to interrupt the CPU period-
ically, the user must specify the Continuous mode
by setting bit Dy of the Counter/Timer 3 Mode
Specification register. All other bits in this
register can remain reset to 0. Loading 4E20y
to the Counter/Timer 3 Time Constant registers
specifies a 10 ms timeout interval. Writing 1s to
bits Dy and Dg, and a 0 to bit Dg of the Counter/
Timer 3 Command and Status register enables the
Counter/Timer 3 interrupt logic.

4-148

When all of their Ffunctions have been completely
specified, the ports and counter/timers can be
enabled simultaneously by writing F4y to the
Master Configuration Control register. At this
point, the counter/timers can be started by set-
ting the Gate Command (GCB) and Trigger Command

(TCB) bits in each of their Command and Status
registers. Finally, setting the MIE bit, along
with the appropriate VIS bits, completes the ini-
tialization. Table 2 summarizes the initializa-
tion sequence for this application example.

Table 2.

Initialization Sequence for Application Example

Register Address Hex Value

Step Programmed AD7-ADg Loaded Comments

1. Master Interrupt X0000000* 01 Reset Z-CIO.
Control

2. Master Interrupt X000000X 00 Clear Reset.
Control

3. Port A Mode Spec- X100000X 60 Double-buffered input port,
ification interrupt on two bytes.

4. Port A Interrupt X000010X v Interrupt vector depends on
Vector user's system.

5. Port A Command X001000X co Port A Interrupt Enable.
and Status

6. Port C Data X000110X F4 PC, is imput PCy, PCy and PC3
Direction are output.

7. Port C Data X001111X 48 RFD is initially High. PCq

and PCq are initially Low.

8. Port B Mode X101000X 06 Bit port, OR-PEV pattern
Specification match.

9. Port B Data X101011X FE PBgy is output. PB4-PB; are
Direction input.

10. Port B Pattern X101101X FF Interrupt inputs are active
Polarity High.

1. Port B Pattern X101111X BE PBg and PBg are masked off.
Mask

12. Port B Interrupt X000011X v Interrupt vector depends on
Vector user's system.

13. Port B Command and X001001X co Port B Interrupt Enable.
Status

14, Counter/Timer 1 X011100X 14 Single cycle, External
Mode Specification Trigger Enable, Retrigger

Enable.

15. Counter/Timer 1's X010110X 4E Time Constant = (20,000) g
Time Constant-MSBs for a 10 ms timeout.

16. Counter/Timer 1's X010111X 20

Time Constant-LSBs

* If the initial state of the RJA bit is unknown, then the first access to the Master

Interrupt Control register must be performed with ADg = O.

4-150

Table 2. Initialization Sequence for Application Example--Continued
Register Address Hex Value
Step Programmed AD7-ADg Loaded Comments
17. Counter/Timer X000100X \A) Interrupt vector depends on
Interrupt Vector user's system.
18. Counter/Timer 1 X001010X co Counter/Timer 1 Interrupt
Command and Status Enable.
19. Counter/Timer 2's X011101X c2 Continuous, External Output
Mode Specification Enable, Squarewave duty
cycle.
20. Counter/Timer 2's X011000X 00
Time Constant MSBs
21. Counter/Timer 2's X011001X 0A Time Constant = (10)4q for
Time Constant LSBs 5 us timeout.
22. Counter/Timer 3 X011110X 80 Continuous, no external
Mode Specification enable.
23. Counter/Timer 3 X011010X 4E Time Constant = (20,000)4q
Time Constant MSBs for a 10 ms timeout.
24, Counter/Timer 3's X011011X 20
Time Constant LSBs
25. Counter/Timer 3 X001100X co Counter/Timer 3 Interrupt
Command and Status Enable.
26. Master Configuration X000001X F4 Enable all ports and counter/
Control timers.
27. Counter/Timer 1 X001010X 06 Trigger and Gate commands.
Command and Status
28. Counter/Timer 2 X001011X 06 Trigger and Gate commands.
Command and Status
29. Counter/Timer 3 X001100X 06 Trigger and Gate commands.
Command and Status
30. Master Interrupt X000000X 8C Master Interrupt Enable,
Control Port B Vector Includes
Status, Counter/Timer Vector
Includes Status.
00-2256-01 4-151

Using SCC With Z8000
In SDLC Protocol

Zilog

October 1982

This application note describes the use of the
78030 Serial Communications Controller (Z-SCC)
with the z8000™ CPU to implement a communica-
tions controller in a Synchronous Data Link
Control (SDLC) mode of operation. In this
application, the 28002 CPU acts as a controller
for the Z-SCC. This application note also applies
to the non-multiplexed Z8530.

One channel of the Z-SCC communicates with the
remote station in Half Duplex mode at 9600
bits/second. To test this application, two Z8000
Development Modules are used. Both are loaded with
the same software routines for initialization and
for transmitting and receiving messages. The main
program of one module requests the transmit
routine to send a message of the length indicated
by the 'COUNT' parameter. The other system
receives the incoming data stream, storing the
message in its resident memory.

DATA TRANSFER MODES

The Z-SCC system interface supports the following
data transfer modes:

o Polled Mode. The CPU periodically polls the
Z-SCC status registers to determine if a
received character is available, if a character
is needed for transmission, and if any errors
have been detected.

o Interrupt Mode. The Z-SCC interrupts the CPU
when certain previously defined conditions are
met.

o Block/DMA Mode. Using the Wait/Request (W/REQ)

signal, the Z-SCC introduces extra wait cycles
in order to synchronize the data transfer
between a controller or DMA and the Z-SCC.

The example given here uses the block mode of data
transfer in its transmit and receive routines.

SDLC PROTOCOL

Data communications today require a communications
protocol that can transfer data quickly and
reliably. One such protocol, Synchronous Data
Link Control (SDLC), is the link control used by
the IBM Systems Network Architecture (SNA)
communications package. SDLC is a subset of the
International Standards Organization (ISO0) 1link
control called High-Level Data Link Control
(HDLC), which is used for international data
communications.

SDLC is a bit-oriented protocol (BOP). It
differs from byte-control protocols (BCPs), such
as Bisync, in that it uses only a few bit
patterns for control functions instead of several
special character sequences. The attributes of
the SDLC protocol are position dependent rather
than character dependent, so the data link control
is determined by the position of the byte as well
as by the bit pattern.

A character in SDLC is sent as an octet, a group
of eight bits. Several octets combine to form a
message frame, in which each octet belongs to a
particular field. Each message contains: opening
flag, address, control, information, Frame Check
Sequence (FCS), and closing flag (figure 1).

l<— ZERO INSERTION/DELETION —>|

|<— CRC ACCUMULATION —>|

ONE ONE ZERO OR MORE 16-BIT
01111110 8-BIT 8-BIT - CRC- 01111110
CHARACTER | CHARACTER CHARACTERS ceIrT
FLAG ADDRESS CONTROL INFORMATION FCs FLAG
(BEGINNING (END OF
OF MESSAGE MESSAGE
FRAME) FRAME)
Figure 1. Fields of the SDLC Transmission Frame

Both flag fields contain a unique binary pattern,
01111110, which indicates the beginning or the end
of the message frame. This pattern simplifies the
hardware interface in receiving devices so that
multiple devices connected to a common link do not
conflict with one another. The receiving devices
respond only after a valid flag character has been
detected. Once communication is established with
a particular device, the other devices ignore the
message until the next flag character is detected.

The address field contains one or more octets,
which are used to select a particular station on
the data link. An address of eight 1s is a global
address code that selects all the devices on the
data link. When a primary station sends a frame,
the address field is used to select one of several
secondary stations. When a secondary station
sends a message to the primary station, the
address field contains the secondary station
address, i.e., the source of the message.

The control field follows the address field and
contains information about the type of frame
being sent. The control field consists of one
octet that is always present.

The information
transferred data.

field contains any actual
This field may be empty or it

may contain an unlimited number of octets.
However, because of the limitations of the
A. ZERO INSERTION
FLAG ADDRESS

CONTROL

error-checking algorithm used in the frame-check
sequence, however, the maximum recommended block
size is approximately 4096 octets.

The frame check sequence field follows the
information or control field. The FCS is a 16-bit
Cyclic Redundancy Check (CRC) of the bits in the
address, control, and information fields. The FCS
is based on the CRC-CCITT code, which uses the
polynomial (x16 + x12 4+ x5 4+ 1). The 28030 z-scC
contains the circuitry necessary to generate and
check the FCS field.

Zero insertion and deletion is a feature of SDLC
that allows any data pattern to be sent. Zero
insertion occurs when five consecutive 1s in the
data pattern are transmitted. After the fifth 1, a
0 is inserted before the next bit is sent. The
extra 0 does not affect the data in any way and is
deleted by the receiver, thus restoring the
original data pattern.

Zero insertion and deletion insures that the data
stream will not contain a flag character or abort
sequence. Six 1s preceded and followed by Os

indicate a flag sequence character. Seven to
fourteen 1s signify an abort; 15 or more 1s
indicate an idle (inactive) 1line. Under these

three conditions, zero insertion and deletion are
inhibited. Figure 2 illustrates the various line
conditions.

FLAG

rk
i ACTUAL

I 01111110 L10101011 | 0111110114 l L. l 01111110J DATA STREAM
77

ZERO INSERTION

ADDRESS = 10101011
CONTROL = 01111111

B. ABORT CONDITION

xxxx111111101111110........
~————
ABORT FLAG
C. IDLE CONDITION

xxxxit 111111111

Figure 2.

Bit Patterns for Various Line Conditions

4-154

2280-001, 002

The SDLC protocol differs from other synchronous
protocols with respect to frame timing. In Bisync
mode, for example, a host computer might
temporarily interrupt transmission by sending sync
characters instead of data. This suspended
condition continues as long as the receiver does
not time out. With SDLC, however, it is invalid to
send flags in the middle of a frame to idle the
line. Such action causes an error condition and
disrupts orderly operation. Thus, the trans-
mitting device must send a complete frame without
interruption. If a message cannot be transmitted
completely, the primary station sends an abort
sequence and restarts the message transmission at
a later time.

SYSTEM INTERFACE

The Z8002 Development Module consists of a 28002
CPU, 16k words of dynamic RAM, 2k words of EPROM
monitor, a Z80A SIO providing dual serial ports, a
7801 CTC peripheral device providing four
counter/timer channels, two Z80A PIO0 devices
providing 32 programmable I/0 lines, and wire wrap
area for prototyping. The block diagram is
depicted in Figure 3. Each of the peripherals in
the development module is connected in a
prioritized daisy chain configuration. The Z-SCC
is included in this configuration by tying its IEI
line to the IEQ0 1line of another device, thus
making it one step lower in interrupt priority
compared to the other device.

RS-202C
ADDRESS/ SERIAL
ADDRESS DATA WIRE WRAP AREA OUTPUT gm‘ahﬂs
RESET - DATA BUFFER BUFFERS @
SWITCH RESET
NMI NON MASKABLE II II ﬁ
switch [INTERRUPT
seament ——\] SEGMENT 280 PIO"
ADDRESS s
N e) @ Z80A CTC sio2
< ~ N -
STATUS ——N] status r
——/] pecoven
BUS |
28000
CONTROL 10
out CONTROL V0 BUS
2]
2
= EPROM
CONTROL 2 EPROM —
BUFFER 2 EPROM CONTROL BUS MEMORY
o
(3]
- DYNAMIC
e RAM CONTROL BUS RAM MEMORY
% CONTROL ¥/| (32K WORDS MAX)
cLock
cLock {
INIOUT \[%

CLOCK

Figure 3. Block Diagram of Z8000 DM

2280-003

4-155

Two 78000 Development Modules containing Z-SCCs
are connected as shown in Figure 4 and Figure 5.
The Transmit Data pin of one is connected to the
Receive Data pin of the other and vice versa. The
78002 is used as a host CPU for loading the
modules' memories with software routines.

28002 28002
2-SCC 2-SCC
LOCAL REMOTE

Figure 4. Block Diagram of Two Z8000 CPUs

The 78002 CPU can address either of the two bytes
contained in 16-bit words. The CPU uses an even
address (16 bits) to access the most significant
byte of a word and an odd address for the least
significant byte of a word.

When the 28002 CPU uses the lower half of the
Address/Data bus (ADy-AD; the least significant
byte) for byte read and write transactions during
I/0 operations, these transactions are performed
between the CPU and I/0 ports located at odd I/0
addresses. Since the Z-SCC is attached to the CPU
on the lower half of the A/D bus, its registers
must appear to the CPU at odd I/0 addresses. To
achieve this, the Z-SCC can be programmed to
select its internal registers using lines
AD1-AD5. This is done either automatically with
the Force Hardware Reset command in WR9 or by
sending a Select Shift Left Mode command to WROB
in channel B of the Z-SCC. For this application,
the Z-SCC registers are located at 1I/0 port
address 'FExx'. The Chip Select signal (CS0) is
derived by decoding I/0 address 'FE' hex from
lines ADg-AD4s5 of the controller.

To select the read/write registers automatically,
the Z-SCC decodes lines ADq-ADg in Shift Left
mode. The register map for the Z-SCC is depicted
in Table 1.

Table 1. Register Map

Address

(hex) Write Register Read Register

FEO1 WROB RROB

FEO3 WR1B RR1B

FEOS WR2 RR2B

FEQ7 WR3B8 RR3B

FEO9 WR4B

FEOB WRSB

FEOD WRéB

FEOF WR78B

FENM B DATA B DATA

FE13 WR9

FE15 WR10B RR108B

FE17 WR11B

FE19 WR12B RR128B

FE1B WR13B RR138

FE1D WR148

FE1F WR15B RR15B

FE21 WROA RROA

FE23 WR1A RR1A

FE25 WR2 RR2A

FE27 WR3A RR3A

FE29 WR4A

FE2B WR5A

FE2D WR6A

FE2F WR7A

FE31 A DATA A DATA

FE33 WR9

FE35 WR10A RR10A

FE37 WR11A

FE39 WR12A RR12A

FE3B WR13A RR13A

FE3D WR14A

FE3F WR15A RR15A
INITIALIZATION

The Z-SCC can be initialized for use in different
modes by setting various bits in its write
registers. First, a hardware reset must be

4-156 2280-004

S00-082Z

LST-¥

1AD5
1AD14
1AD43
1AD12

1A
1AD1g
1ADg
1ADs

1AD7
I1ADg
1ADs.
1ADg

1ADg
1AD2
1ADy
1ADy

RESET
4AMHz

Ls
243
Sl wls 8
[l e I 9
10 28 P 4 5
LLE PRI & 2
GBAGAB
13 Q1
Slie apd :
19 Ty & ;
LA PPN L
1 3 3
1B 1A
13 {1
[38
Sl S pe
21 o " pos
0ls 2
1 3 36
1B 1A
18 {1
8 6 24
13 i 33
w|® *IL 32
28 2
1 3 40
B 1A
GBAGAB
+5V [I |
47K
[] 2 1823
1 4 166
7] s 3 1
6| 244 14 12
1?__}_14
" 13
14
30

AD1s
AD1s
AD13
AD;2
As
ADyq _Bs
MREQ
AD:
AD;" STy
ST,
ADg 2
STq
STo
AD;
ADg
ADs
ADy o
RIW
NS
Z8002
ADy
AD2
ADy
ADy BUSACK
WAIT
STOP
i
i
Wi
RESET
CLOCK

4.7 KQ

kL

Figure 5.

28002 With SCC

» T M »
28 i DS
17 17 3 REG
16 4 18
18) Ls 12 s [
N
19 13] 244 |4 a].
20 6 14 2], 13 ii0
21 15 5 1 1], s
1@ 26 11 4 ﬁ"'
1 s
= o—EN
T——L— 47Ke +5V 28030
7 b7 VIACK INTAGK
1
1Ay »————4 AD, TR
39
_ — 3] AL
2 [Ty Rl W IADz 21 A% y
26 10 & 1AD3 »———————— AD3 [
N
LS 1aD, »——— 334 ap, 12
243
1Ds 3 4p,
n 37
GAB GBA 1ADg o
™ 1807 1 a0
L Vi 4————— iNT
amuz »———221 peik
2 ¢ "} 5V —— T g
P
o< IE0
[y e—
+5V B8 —_— 3 s
W —2] p
1ADss +5v o—— 2] cg
1AD4 3] &0
1ADy3
1ADs2
1AD11
1AD1o
1ADg

performed by setting bits 7 and 6 of WR9 to one;
the rest of the bits are disabled by writing a
logic zero.

SDLC protocol is established by selecting a SDLC
mode, sync mode enable, and a x1 clock in WR4. A
data rate of 9600 baud, NRZ encoding, and a
character length of eight bits are among the other
options that are selected in this example (Table
2).

Note that WR9 is accessed twice, first to perform
a hardware reset and again at the end of the
initialization sequence to enable interrupts. The
programming sequence depicted in Table 2
establishes the necessary parameters for the
receiver and transmitter so that they are ready to
perform communication tasks when enabled.

Table 2. Programming Sequence
for Initialization

Enable (VIE) bits set. The Program Status Area
Pointer (PSAP) is loaded with the address %4400
using the Load Control instruction (LDCTL). If the
28000 Development Module is intended to be used,
the PSAP need not be loaded by the programmer
because the development module's monitor loads it
automatically after the NMI button is pressed.

Since VIS and Status Low are selected in WR9, the
vectors listed in Table 3 will be returned during
the Interrupt Acknowledge cycle. 0f the four
interrupts listed, only two, Ch A Receive
Character Available and Ch A Special Receive
Condition, are used in the example given here.

Table 3. Interrupt Vectors

PS
Vector Address*

(hex) (hex) Interrupt

Value
Register (hex) Effect

WR9 co Hardware reset

WR4 20 x1 clock, SDLC mode, sync mode
enable

WR10 80 NRZ, CRC preset to one

WR6 AB Any station address e.g. "AB"

WR7 7E SDLC flag (01111110) = "7E"

WR2 20 Interrupt vector "20"

WR11 16 Tx clock from BRG output, TRxC
pin = BRG out

WR12 CE Lower byte of time constant =
"CE" for 9600 baud

WR13 0 Upper byte = 0

WR14 03 BRG source bit = 1 for PCLK as
input, BRG enable

WR15 00 External Interrupt Disable

WR5 60 Transmit 8 bits/character SDLC
CRC

WR3 C1 Rx 8 bits/character, Rx enable
(Automatic Hunt mode)

WR1 08 RxInt on 1st char & sp. cond.,
ext int. disable

WR9 09 MIE, VIS, status Low

28 446E Ch A Transmit Buffer Empty

2A 4472 Ch A External Status Change

2c 4476 Ch A Receive Char. Available
2E 447A Ch A Special Receive Condition

The 78002 CPU must be operated in System mode to
execute privileged I/0 instructions. So the Flag
and Control Word (FCW) should be 1loaded with
system normal (S/N), and the Vectored Interrupt

*Assuming that PSAP has been set to 4400 hex, "PS
Address" refers to the location in the Program
Status Area where the service routine address is
stored for that particular interrupt.

TRANSMIT OPERATION

To transmit a block of data, the main program
calls up the transmit data routine. With this
routine, each message block to be transmitted is
stored in memory, beginning with location 'TBUF'.
The number of characters contained in each block
is determined by the value assigned to the 'COUNT'
parameter in the main module.

To prepare for transmission, the routine enables
the transmitter and selects the Wait On Transmit
function; it then enables the wait function. The
Wait On Transmit function indicates to the CPU
whether or not the Z-SCC is ready to accept data
from the CPU. If the CPU attempts to send data to
the Z-SCC when the transmit buffer is full, the
Z-SCC asserts its Wait line and keeps it Low until
the buffer is empty. In response, the CPU extends
its I/0 cycles until the Wait line goes inactive,
indicating that the Z-SCC is ready to receive
data.

4-158

The CRC generator is reset and the Transmit CRC
bit is enabled before the first character is sent,
thus including all the characters sent to the
Z-SCC in the CRC calculation.

The 2Z-SCC's transmit underrun/EOM latch must be
reset sometime after the first character is
transmitted by writing a Reset Tx Underrun/EOM
command to WRO. When this latch is reset, the
Z-SCC automatically appends the CRC characters to
the end of the message in the case of an underrun
condition.

Finally, a three-character delay is introduced at
the end of the transmission, which allows the
Z-SCC sufficient time to transmit the last data
byte and two CRC characters before disabling the
transmitter.

RECEIVE OPERATION

Once the Z-SCC is initialized, it can be prepared
to receive the message. First, the receiver is
enabled, placing the Z-SCC in Hunt mode and thus
setting the Sync/Hunt bit in status register RRO
to 1. In Hunt mode, the receiver searches the
incoming data stream for flag characters.
Ordinarily, the receiver transfers all the data
received between flags to the receive data FIFO.
If the receiver is in Hunt mode, however, no data
transfer takes place until an opening flag is
received. If an abort sequence is received, the
receiver automatically re-enters Hunt mode. The
Hunt status of the receiver is reported by the
Sync/Hunt bit in RRO.

The second byte of an SDLC frame is assumed by the
Z-SCC to be the address of the secondary stations
for which the frame is intended. The Z-SCC
provides several options for handling this
address. If the Address Search Mode bit D2 in WR3
is set to zero, the address recognition logic is
disabled and all the received data bytes are
transferred to the receive data FIFO. In this
mode, software must perform any address recogni-
tion. If the Address Search Mode bit is set to
one, only those frames with addresses that match
the address programmed in WR6 or the global
address (all 1s) will be transferred to the
receive data FIFO, If the Sync Character Load
Inhibit bit (D1) in WR3 is set to zero, the
address comparison is made across all eight bits
of WR6. The comparison can be modified so that

only the four most significant bits of WRé need
match the received address. This alteration is
made by setting the Sync Character Load Inhibit
bit to one. In this mode, the address Ffield is
still eight bits wide and is transferred to the
FIF0O in the same manner as the data. In this
application, the address search is performed.

When the address match 1is accomplished, the
receiver leaves the Hunt mode and establishes the
Receive Interrupt on First Character mode. Upon
detection of the receive interrupt, the CPU
generates an Interrupt Acknowledge Cycle. The
Z-SCC returns the programmed vector %2C. This
vector points to the location %4472 in the Program
Status Area which contains the receive interrupt
service routine address.

The receive data routine is called from within the
receive interrupt service routine. While
expecting a block of data, the Wait On Receive
function is enabled. Receive read buffer RR8 is
read and the characters are stored in memory
location RBUF. The Z-SCC in SDLC mode auto-
matically enables the CRC checker for all data
between opening and closing flags and ignores the
Receive CRC Enable bit (D3) in WR3. The result of
the CRC calculation for the entire frame in RR1
becomes valid only when the End Of Frame bit is
set in RR1. The processor does not use the CRC
bytes, because the last two bits of the CRC are
never transferred to the receive data FIFO and are
not recoverable.

When the Z-SCC recognizes the closing flag, the
contents of the Receive Shift register are
transferred to the receive data FIFO, the Residue
Code (not applicable in this application) is
latched, the CRC error bit is latched in the sta-
tus FIFO0, and the End Of Frame bit is set in the
receive status FIFO. When the End Of Frame bit
reaches the top of the FIF0, a special receive
condition interrupt occurs. The special receive
condition register RR1 is read to determine the
result of the CRC calculation. If the CRC error
bit is zero, the frame received is assumed to be
correct; if the bit is 1, an error in the
transmission is indicated.

Before leaving the interrupt service routine,
Reset Highest IUS (Interrupt Under Service),
Enable Interrupt on Next Receive Character, and
Enter Hunt Mode commands are issued to the Z-SCC.

4-159

If receive overrun error is made, a special
condition interrupt occurs. The Z-SCC presents
vector %2E to the CPU, and the service routine
located at address %447A is executed. Register RR1
is read to determine which error occurred.
Appropriate action to correct the error should be
taken by the user at this point. Error Reset and
Reset Highest IUS commands are given to the Z-SCC
before returning to the main program so that the
other lower-priority interrupts can occur.

In addition to searching the data stream for
flags, the receiver also scans for seven
consecutive 1s, which indicates an abort
condition. This condition is reported in the
Break/Abort bit (D7) in RRO. This is one of many
possible external status conditions. As a result

transitions of this bit can be programmed to cause
an external status interrupt. The abort condition
is terminated when a zero is received, either by
itself or as the leading zero of a flag. The
receiver leaves Hunt mode only when a flag is
found.

SOF TWARE

Software routines are presented in the following
pages. These routines can be modified to include
various other options (e.g., SDLC Loop, Digital
Phase Locked Loop etc.). By modifying the WR10
register, different encoding methods (e.g., NRZI,
FMO, FM1) other than NRZ can be used.

4-160

Appendix

Software Routines

plzasm 1.3
LOC 0BJ CODE STMT SOURCE STATEMENT
1
2
3 SDLC MODULE
$LISTON $TTY
CONSTANT
WROA 1= $FE21
RROA 1= $FE2l
RBUF 3= $5400
PSAREA := $4400
COUNT 3= 12
0000 GLOBAL MAIN PROCEDURE
ENTRY
0000 7601 LDA R1,PSAREA
0002 4400
0004 7D1D LDCTL PSAPOFF,Rl
0006 2100 LD RO, #35000
0008 5000
000A 3310 LD R1(#81C),RO
000C 001C
000E 7600 LDA RO,REC
0010 00D6'
0012 33%0 LD R1(#876) ,RO
0014 0076
0016 7600 LDA RO, SPCOND
0018 OOFA*
001A 3310 LD R1(#%7A) ,RO
001C 007A
001E 5F00 CALL INIT
0020 0034*
0022 5F00 CALL TRANSMIT
0024 008C'
0026 EBFF JR $
0028 AB TBUF: BVAL $AB
0029 48 BVAL 'HY
002A 45 BVAL 'E'
002B 4C BVAL A
002C 4C BVAL 'L
002D 4F BVAL 0!
002E 20 BVAL ‘v
002F 54 BVAL e
0030 48 BVAL 'H!
0031 45 BVAL 'E*
0032 52 BVAL 'R!
0033 45 BVAL 'E'
0034 END MAIN

IBASE ADDRESS FOR WRO CHANNEL Al
IBASE ADDRESS FOR RRO CHANNEL Al
IBUFFER AREA FOR RECEIVE CHARACTER!
ISTART ADDRESS FOR PROGRAM STAT AREA!
INO. OF CHAR. FOR TRANSMIT ROUTINE!

ILOAD PSAP!

IFCW VALUE($5000) AT %441C FOR VECTORED!
| INTERRUPTS!

IEXT, STATUS SERVICE ADDR. AT %4476 IN!

1PSAl

1SP.COND,SERVICE ADDR AT $447A IN PSAl

ISTATION ADDRESS!

4-161

[*RRRRARRRRARRRRAR® INTTIALIZATION ROUTINE FOR Z—-SCC NN #ARkAhwad kANt dhkahh |

GLOBAL INIT PROCEDURE

RO, #15
R2,S8CCTAB
R1,#WROA
RL1,@R2

R2
€R1,€@RrR2,R0

RO
NZ , ALOOP

2*9
2Co
2*4
%20
2*10
280

2*6
$AB
2*7
$7E
2%2
%20
2*11
316
2*12
$CE
2*13

0
2*14
$03
2*15
800
2*5
60
2*3
$C5
2*]
208

2*9
209

INO.OF PORTS TO WRITE TO!
IADDRESS OF DATA FOR PORTS!

IPOINT TO WROA,WR1A ETC THRO LOOP!
1END OF LOOP?!

INO,KEEP LOOPING!

IWR9=HARDWARE RESET!

IWR4=X1 CLK,SDLC,SYNC MODE!

IWR10=CRC PRESET ONE,NRZ,FLAG ON IDLE,!|

IFLAG ON UNDERRUN!
IWR6= ANY ADDRESS FOR SDLC STATION!
IWR7=SDLC FLAG CHAR!
IWR2=INT VECTOR $20!
IWR11=Tx CLOCK & TRxC OUT=BRG OUT!
IWR12= LOWER TC=CEl
IWR13= UPPER TC=01
IWR14=BRG ON,BRG SRC=PCLK!
IWR15=EXT INT. DISABLE!
IWR5=Tx 8 BITS/CHAR, SDLC CRC!
IWR3=ADDR SRCH,REC ENABLEI!

IWR1=RX INT ON 1ST & SP COND,!
1EXT INT DISABLE!

IWR9= MIE,VIS,STATUS LOW!

JRRRRAARREARNRAAR®S RECEIVE ROUTINE **# A S ddhaddhaddhhdbd b dh A dd ke bk dddn |

! RECEIVE A BLOCK OF MESSAGE 1

GLOBAL RECEIVE PROCEDURE

ENTRY
2100 LD
000F
7602 LDA
004E*
2101 ALOOP: LD
FE21
0029 ADDB
A920 INC
3A22 OUTIB
0018
8D04 TEST
EEF8 JR
9E08 RET
12 SCCTAB: BVAL
co BVAL
08 BVAL
20 BVAL
14 BVAL
80 BVAL
0c BVAL
AB BVAL
OE BVAL
7E BVAL
04 BVAL
20 BVAL
16 BVAL
16 BVAL
18 BVAL
CE BVAL
1A BVAL
00 BVAL
1C BVAL
03 BVAL
1E BVAL
00 BVAL
0A BVAL
60 BVAL
06 BVAL
C5 BVAL
02 BVAL
08 BVAL
12 BVAL
09 BVAL
END INIT
ENTRY
Cc828 LDB
3A86 ouTB
PE23
6008 LDB
00A8
3A86 OUTB
FE23
2101 LD
FE31
2102 LD
000E
2103 LD
5400
3A18 INDRB
0230
9E08 RET
END RECEIVE

RLO,#%28
WROA+2,RLO

RLO,%A8
WROA+2,RL0O

R1,#RROA+16
R2, #COUNT+2

R3, #RBUF
€R3,€@RrR1,R2

IWAIT ON RECV.!

1ENABLE WAIT FNC. SP. COND. INT!

1COUNT+2 CHARACTERS TO READ!
IRECEIVE BUFFER IN MEMORY!
IREAD THE ENTIRE MESSAGE!

4-162

008C

008C
008E
0090
0092

0096
0098

00D6

00D6
00D8
00DA
00DC
00DE
00E0
00E2
00E4
00E6
00E8
00EA
00EC
00EE
00F0
00F2
O00F4
00F6
00F8
O00FA

liﬁtt*.'i"ﬁﬁttit

TRANSMIT ROUTINE ittittﬁt‘t'ti.i*iii*t.itt"titttﬁﬂitl

) SEND A BLOCK OF EIGHT DATA CHARACTERS 1
1 THE BLOCK STARTS AT LOCATION TBUF !
GLOBAL TRANSMIT PROCEDURE
ENTRY
2102 LD R2, #TBUF IPTR TO START OF BUFFER!
0028°*
Cc868 LDB RLO,#368
3A86 OUTB WROA+10,RLO I|ENABLE TRANSMITTER!
FE2B
Cc800 LDB RLO, #3800 IWAIT ON TRANSMIT!
3A86 OUTB WROA+2,RL0O
FE23
«:1:1:] LDB RLO, #388
3A86 OUTB WROA+2,RL0O IWAIT ENABLE!
FE23
Cc880 LDB RLO, #380
3A86 OUTB WROA,RLO IRESET TxCRC GENERATOR!
FE21
2101 LD R1,#WROA+16 IWR8BA SELECTED!
FE31
2100 LD RO, #1
0001
C869 LDB RLO,#%69 1SDLC CRC!
3A86 OUTB WROA+10,RLO IWR5A=TxCRC ENABLE!
FE2B
3A22 OTIRB €R1,@RrR2,R0 ISEND ADDRESS!
0010
C8Co LDB RLO, #3CO
3A86 OuTB WROA, RLO IRESET TxUND/EOM LATCH!
FE21
2100 LD RO, #COUNT-1
000B
3A22 OTIRB @R1,@RrR2,R0 ISEND MESSAGE!
0010
2100 LD RO, #926 ICREATE DELAY BEFORE DISABLING!
039E
F081 DEL: DJNZ RO,DEL ITRANSMITTER SO THAT CRC CAN BE!
Cc800 LDB RLO,#0 I1SENT!
3A86 OUTB WROA+10,RLO IDISABLE TRANSMITTERI
FE2B
9E08 RET
END TRANSMIT
J*RkARRSAdkA*% RECEIVE INT. SERVICE ROUTINE **#dRdadadhddhhbhdhhhhsds]
GLOBAL REC PROCEDURE
ENTRY
93F3 PUSH €R15,R3
93F2 PUSH €R15,R2
93F1 PUSH €R15,R1
93F0 PUSH €R15,R0
3a94 INB RL1,RROA IREAD STATUS REG RROA!
FE21
A690 BITB RL1,#0 ITEST IF Rx CHAR SET!
E602 JR Z,RESET IYES CALL RECEIVE ROUTINE!
SF00 CALL RECEIVE
006C*
Cc838 RESET: LDB RLO,#%38
3A86 OUTB WROA, RLO IRESET HIGHEST IUS!
FE21
97F0 POP RO,€R1S
97F1 POP R1,@R15
97F2 POP R2,€R15
97F3 POP R3,€R15
7800 IRET
END REC

4-163

93F0
3A84
FE23
A687

E603
Cc820
3A86
FE21
C830
3A86
FE21
Cc808
3A86
FE23
C838

FE21
97F0
7B00

Jx*kkkkddkdd% SPECIAL CONDITION INTERRUPT SERVICE ROUTINE **dkakkkhkakss]|

IREAD ERRORS!
1END OF FRAME 2!

+FRAMING ERRORS IF ANY!

GLOBAL SPCOND PROCEDURE

ENTRY
PUSH @R15,R0
INB RLO,RROA+2
BITB RLO, #7

IPROCESS OVERRUN
JR Z,RESE
LDB RLO,#%20
OUTB WROA, RLO

RESE: LDB RLO,#330
OUTB WROA, RLO
LDB RLO, #208
OUTB WROA+2,RLO
LDB RLO, #338
OUTB WROA, RLO
POP RO, @R15
IRET

END SPCOND

END SDLC

| YES,ENABLE INT ON NEXT REC CHAR!

1ERROR RESET!

IWAIT DISABLE,RxINT ON 1ST OR SP COND.!

IRESET HIGHEST IUSI

4-164

00-2280-01

SCC In Binary
Synchronous Communication

Zilog

Application
Note

October 1982

Z1log's 28030 Z-SCC Serial Communications Control-
ler 1s one of a family of components that are
Z-BUS™ compatible with the ZB8000™ CPU. Combined
with a Z8000 CPU (or other existing 8- or 16-bit
CPUs with nonmultiplexed buses when using the
78530 SCC), the Z-SCC forms an 1integrated data
communications controller that is more cost effec-
tive and more compact than systems incorporating
UARTs, baud rate generators, and phase-locked
loops as separate entities.

The approach examined here implements a communica-
tions controller in a Binary Synchronous mode of
operation, with a 78002 CPU acting as controller
for the Z-SCC.

One channel of the Z-5CC 1s used to communicate
with the remote station in Half Duplex mode at
9600 bits/second. To test this application, two
78000 Development Modules are used. Both are
loaded with the same software routines for 1ini-
tialization and for transmitting and receiving
messages. The main program of one module requests
the transmit routine to send a message of the
length indicated 1n the 'COUNT' parameter. The
other system receives the 1ncoming data stream,
storing the message in 1ts resident memory.

DATA TRANSFER MODES

The Z-SCC system interface supports the following
data transfer modes:

e Polled Mode. The CPU periodically polls the
Z-SCC status registers to determine the avail-
abilaity of a received character, if a character
is needed for transmission, and if any errors
have been detected.

o Interrupt Mode. The Z-SCC 1interrupts the CPU
when certain previously defined conditions are
met.

o Block/DMA Mode. Using the Wait/Request (W/REQ)
signal, the Z-SCC 1introduces extra wait cycles
to synchronize data transfer between a
CPU or DMA controller and the Z-SCC.

The example given here uses the block mode of data
transfer in its transmit and receive routines.

SYNCHRONOUS MODES

Three variations of character-oriented synchronous
communications are supported by the Z-SCC: Mono-
sync, Bisync, and External Sync (Figure 1). In
Monosync mode, a single sync character 1s trans-
mitted, which 1s then compared to an 1identical
sync character in the receiver. When the receiver
recognizes this sync character, synchronization is
complete; the receiver then transfers subsequent
characters into the receiver FIFO in the Z-SCC.

7k
~7/
I SYNC DATA ., DATA CRC1 CRCZJ

o

a. MONOSYNC MODE
ry3

7/
I SYNC SYNC DATA ., DATA CRC1 CRCZ]

7y
b. BISYNC MODE
EXTERNAL
SYNC SIGNAL

7/
DATA ., DATA CRC1 CRC2 l
7/

c. EXTERNAL SYNC MODE

Figure 1. Synchronous Modes of Communication

Bisync mode uses a 16-bit or 12-bit sync character
in the same way to obtain synchronization. Exter-
nal Sync mode uses an external signal to mark the
beginning of the data field; i.e., an external
input pin (SYNC) indicates the start of the infor-
mation field.

2278-001

4-165

In all synchronous modes, two Cyclic Redundancy
Check (CRC) bytes can be concatenated to the mes-
sage to detect data transmission errors. The CRC
bytes i1nserted in the transmitted message are com-
pared to the CRC bytes computed to the receiver.
Any differences found are held in the receive
error FIFO.

SYSTEM INTERFACE

The 78002 Development Module consists of a Z8002
CPU, 16K words of dynamic RAM, 2K words of EPROM

Two 78000 Development Modules containing Z-SCCs
are connected as shown in Figure 3 and Figure 4.
The Transmit Data pin of one is connected to the
Receive Data pin of the other and vice versa. The
78002 is used as a host CPU for loading the
modules' memories with software routines.

The Z8000 CPU can address either of the two bytes
contained in 16-bit words. The CPU uses an even
address (16 bits) to access the most-significant
byte of a word and an odd address for the least-
significant byte of a word.

RS-232C
ADDRESS/ SERIAL
ADDRESS DATA WIRE WRAP AREA ouTPUT SEANNELS
DATA BUFFER BUFFERS
RESET RESET @
SWITCH
NMI »] NON MASKABLE ﬂ ﬂ II
SWITCH INTERRUPT
g
zs08 10 280A CTC s102

LAt 10

seament —N oy
'ADDRESS
—/| ‘surren

STATUS N starus
DECODER
4 ADDRESS/DATA BUS |
28000
cPU <N >
CONTROL N)
RO 110 BUS
13
H
EPROM —
CONTROL 3 EPROM
BUFFER] EPROM CONTROL BUS MEMORY
INPUTS j j ; CONTROL (8K WORDS MAX)
A
RAM RAM CONTROL BUS RAM MEMORY
K WORDS MAX) [N\—————
cLock V'] G2 wo %
EXTERNAL A
cLOCK
INOUT \p

CLOCK

Figure 2. Block Diagram of Z8000 DM

monitor, a ZBOA SIO providing dual serial ports, a
Z80A CTC peripheral device providing four counter/
timer channels, two Z80A PIO devices providing 32
programmable I/0 lines, and wire wrap area for
prototyping. The block diagram is depicted in
Figure 2. Each of the peripherals in the develop-
ment module is connected in a prioritized daisy-c-
hain configuration. The Z-SCC is included 1in this
configuration by tying its IEI line to the IEO
line of another device, thus making it one step
lower in interrupt priority compared to the other
device.

TxD RxD
—————— -
28002 | oo — =] 2g002
2.8CC |<PXC_ _ TRXC | z.scc
RxD TxD
PP __Tx0 |
LOCAL REMOTE

Figure 3. Block Diagram of Two Z800O
Development Modules

4-166

2278-002, 003

%00-8LZC

LIT-¥

1ADs5
1AD14
1ADy3
1AD;2

1ADy
1AD1g
1ADg
1ADg

1AD;
1ADg
1ADs
1ADs

1AD3
1AD2
1ADy
IADg

NI

aMHz

243

48 4A

3B 3A

2B 2A

wlalo|o

alofo |e

1B 1A
GBAGAB

13 1

olalo|e

Blafm e

48

28

olalo|a

s|a(g)s

4A
38 3A
2A
1A

1B

wls|ole

si8l8|e

244

13

14

AD15
ADqy
ADy3
ADyz

ADqq
ADyo
ADy
ADg

£3

zslﬂli’
44

BUSACK

47Ke . D
¥ s
2 11 2 18 s
r
17 1 17 3 REG
16 4 16 |
18 8 Ls 12 sden
19 3] 244 [y sle
20 6 14 2], % b1a®
21 15 5 1 1l 1L:a
16 26 11 T 2 e
i | = o2 en
47K +5V 28030
& b VIACK e .
140, »————221 D, e
v 1D, »————— 1 ap, L
3
— —_— P
25 R L] R 1AD, i -
26 4 10 - 1aD; »———21 ap, ———»
Ls NG 38 12
1D, »—————1 aD, -2«
243 3
105] a0;
GAB GBA I1ADg >—‘ ADg
—T 1AD7 »———2] ap,
[—
h amnz ———— 2 poik
24 N I‘> +5V -—: 181
IE0
44 — 38}
AS »—————1 &S
+5V " _—: 5
IRW D—_Q; AW
1ADys ———— +5V o————] csi
I1ADy4 Bleso
1AD4; ——————
1ADyz
1ADyy —————
7Y Pp—
1ADg

i

1ADg

Figure 4. 78002 with SCC

TxDA
RxDA
TRxCA
WAIT
RTXCA

When the Z8002 CPU uses the lower half of the
Address/Data bus (ADg-AD; the least significant
byte) for byte read and write transactions during
I1/0 operations, these transactions are performed
between the CPU and I/0 ports located at odd 1/0
addresses. Since the Z-SCC is attached to the CPU
on the lower half of the A/D bus, 1its registers
must appear to the CPU at odd I/0 addresses. To
achieve this, the Z-SCC can be programmed to
select its internal registers wusing lines
AD1-AD5. This 1s done either automatically with
the Force Hardware Reset command in WR9 or by
sending a Select Shift Left Mode command to WROB
in channel B of the Z-SCC. For this application,
the Z-SCC registers are located at I/0 port
address 'FExx'. The Chip Select signal (CS0) 1s
derived by decoding I/0 address 'FE' hex from
lines ADg-ADqy5 of the controller. The Read/Write
registers are automatically selected by the Z-SCC
when 1nternally decoding lines AD¢-ADs5 1in Shift
Left mode. To select the Read/Write registers
automatically, the Z-SCC decodes lines AD4-ADg in
Shift Left mode. The register map for the Z-SCC
1s depicted in Table 1.

INITIALIZATION

The Z-SCC can be initialized for use in different
modes by setting various bits in its Write regis-
ters. First, a hardware reset must be performed
by setting bits 7 and 6 of WR9 to one; the rest of
the bits are disabled by writing a logic zero.

Bisync mode is established by selecting a 16-bit
sync character, Sync Mode Enable, and a X1 clock
in WR4. A data rate of 9600 baud, NRZ encoding,
and a data character length of eight bits are
among the other options that are selected in this
example (Table 2).

Note that WR9 is accessed twice, first to perform
a hardware reset and again at the end of the ini-
tialization sequence to enable the interrupts.
The programming sequence depicted in Table 2
establishes the necessary parameters for the
receiver and the transmitter so that, when
enabled, they are ready to perform communication
tasks. To avoid internal race and false interrupt
conditions, 1t is important to initialize the reg-
isters in the sequence depicted in this applica-
tion note.

Table 1. Register Map

Address

(hex) Write Register Read Register
FEO1 WROB RROB
FEO3 WR1B RR1B
FEDS WR2 RR2B
FEO7 WR38B RR3B
FEO9 WR4B
FEOB WR58
FEOD WRé6B
FEOF WR7B
FEN B DATA B DATA
FE13 WR9
FE15 WR10B RR10B
FE17 WR11B
FE19 WR128 RR12B
FE1B WR138 RR13B
FE1ID WR148
FE1F WR15B RR15B
FE21 WROA RROA
FE23 WR1A RR1A
FE25 WR2 RR2A
FE27 WR3A RR3A
FE29 WR4A
FE28 WR5A
FE2D WR6A
FE2F WR7A
FE31 A DATA A DATA
FE33 WR9
FE35 WR10A RR10A
FE37 WR11A
FE39 WR12A RR12A
FE3B WR13A RR13A
FE3D WR14A
FE3F WR15A RR15A

The 28002 CPU must be operated in System mode in
order to execute privileged I/0 instructions, so
the Flag Control Word (FCW) should be loaded with
System/Normal (S/N), and the Vectored Interrupt
Enable (VIE) bits set. The Program Status Area
Pointer (PSAP) is loaded with address %4400 using
the Load Control instruction (LDCTL). If the Z8000
Development Module is 1intended to be used, the
PSAP need not be loaded by the programmer as the
development modules monitor loads it automatically
after the NMI button is pressed.

4-168

Table 2. Programming Sequence
for Initialization

Value

Register (hex) Effect

WR9 co Hardware reset

WR4 10 x1 clock, 16-bit sync, sync mode
enable

WR10 0 NRZ, CRC preset to zero

WRé6 AB Any sync character "AB"

WR7 cD Any sync character "CD"

WR2 20 Interrupt vector "20"

WR11 16 Tx clock from BRG output, TRxC
pin = BRG out

WR12 CE Lower byte of time constant =
"CE" for 9600 baud

WR13 0 Upper byte = O

WR14 03 BRG source bit = 1 for PCLK as
wnput, BRG enable

WR15 00 External interrupt disable

WRS5 64 Tx 8 bits/character, CRC-16

WR3 Cc1 Rx 8 bits/character, Rx enable
(Automatic Hunt mode)

WR1 08 RxInt on 1st char & sp. cond.,
ext. int. disable)

WR9 09 MIE, VIS, Status Low

Since VIS and Status Low are selected in WR9, the
vectors listed in Table 3 will be returned during
the Interrupt Acknowledge cycle. 0f the four
interrupts listed, only two, Ch A Receive Charac-
ter Available and Ch A Special Receive Condition,
are used in the example given here.

Table 3. Interrupt Vectors

PS
Vector Address*
(hex) (hex) Interrupt
28 446E Ch A Transmit Buffer Empty
2A 4472 Ch A External Status Change
2c 4476 Ch A Receive Char. Available
2€ 447A Ch A Special Receive Condition

* "PS Address" refers to the location in the Pro-
gram Status Area where the service routine
address is stored for that particular interrupt,
assuming that PSAP has been set to 4400 hex.

TRANSMIT OPERATION

To transmt a block of data, the main program
calls up the transmit data routine. With this
routine, each message block to be transmitted 1is
stored i1n memory, beginning with location 'TBUF'.
The number of characters contained 1n each block
is determined by the value assigned to the 'COUNT'
parameter in the main module.

To prepare for transmission, the routine enables
the transmitter and selects the Wait On Transmit
function; 1t then enables the wait function. The
Wait On Transmit function 1indicates to the CPU
whether or not the Z-SCC 1s ready to accept data
from the CPU. If the CPU attempts to send data to
the Z-SCC when the transmit buffer is full, the
Z-SCC asserts its Wait line and keeps 1t Low until
the buffer is empty. In response, the CPU extends
its I/0 cycles until the Wait line goes 1nactive,
indicating that the Z-SCC is ready to receive
data.

The CRC generator 1s reset and the Transmit CRC
bit is enabled before the first character is
sent, thus including all the characters sent to
the Z-SCC in the CRC calculation, until the Trans-
mit CRC bit is disabled. CRC generation can be
disabled for a particular character by resetting
the TxCRC bit within the transmit routine. In
this application, however, the Transmit CRC bit is
not disabled, so that all characters sent to the
Z-SCC are included in the CRC calculation.

The Z-SCC's transmit underrun/EOM latch must be
reset sometime after the first character 1s trans-
mitted by writing a Reset Tx Underrun/EOM command
to WRO. When this latch 1s reset, the Z-SCC auto-
matically appends the CRC characters to the end of
the message in the case of an underrun condition.

Finally, a five-character delay is introduced at
the end of the transmission, which allows the
Z-SCC sufficient time to transmit the last data
byte, two CRC characters, and two sync characters
before disabling the transmitter.

RECEIVE OPERATION

Once the Z-SCC is ainitialized, 1t can be pre-
pared to receive data. First, the receiver is
enabled, placing the Z-SCC in Hunt mode and thus

4-169

setting the Sync/Hunt bit in status register RRO
to 1. In Hunt mode, the receiver 1s idle except
that it searches the incoming data stream for a
sync character match. When a match is discovered
between the incoming data stream and the sync
characters stored in WR6 and WR7, the receiver
exits the Hunt mode, resetting the Sync/Hunt bit
in status register RRO and establishing the
Receive Interrupt On First Character mode. Upon
detection of the receive interrupt, the CPU gener-
ates an Interrupt Acknowledge cycle. The Z-SCC
sends to the CPU vector %2C, which points to the
location in the Program Status Area from which the
receive interrupt service routine is accessed.

The receive data routine is called from within
the receive interrupt service routine. While
expecting a block of data, the Wait On Receive
function is enabled. Receive data buffer RR8 1s
read, and the characters are stored in memory
locations starting at RBUF. The Start of Text
(%02) character is discarded. After the End of
Transmission character (%04) is received, the two
CRC bytes are read. The result of the CRC check
becomes valid two characters later, at which time,
RR1 is read and the CRC error bit is checked. If
the bit is =zero, the message received can be
assumed correct; if the bit is 1, an error in the
transmission is indicated.

Before leaving the interrupt service routine,
Reset Highest IUS (Interrupt Under Service),
Enable Interrupt on Next Recieve Character, and
Enter Hunt Mode commands are issued to the Z-SCC.

If a receive overrun error is made, a special con-
dition interrupt occurs. The Z-SCC presents the
vector %2E to the CPU, and the service routine
located at address %447A is executed. The Special
Receive Condition register RR1 is read to deter-
mine which error occurred. Appropriate action to
correct the error should be taken by the user at
this point. Error Reset and Reset Highest IUS
commands are given to the Z-SCC before returning
to the main program so that the other lower prior-
ity interrupts can occur.

SOF TWARE

Software routines are presented in the following
pages. These routines can be modified to include
various versions of Bisync protocol, such as
Transparent and Nontransparent modes. Encoding
methods other than NRZ (e.g., NRZI, FMO, FM1) can
also be used by modifying WR10.

4-170

Software Routines
plzasm
Loc

1.3
OBJ CODE

Appendix

STMT SOURCE STATEMENT

1

BISYNC MODULE

SLISTON S$TTY

CONSTANT
WROA 3= $FE21
RROA 1= $FE21
RBUF 1= $5400
PSAREA 1= %4400
COUNT t= 12
GLOBAL MAIN PROCEDURE
ENTRY
LDA R1,PSAREA
LDCTL PSAPOFF,Rl
LD RO, #35000
LD R1(#%1C),RO
LDA RO,REC
LD R1(#3%76) ,RO
LDA RO, SPCOND
LD R1(#%7A) ,RO
CALL INIT
CALL TRANSMIT
JR $
TBUF: BVAL 202
BVAL 1’
BVAL '2!
BVAL 30
BVAL '4’
BVAL '5¢
BVAL ‘6
BVAL T
BVAL '8’
BVAL '9!
BVAL 0’
BVAL 1
END MAIN

IBASE ADDRESS FOR WR0O CHANNEL Al
IBASE ADDRESS FOR RRO CHANNEL Al
IBUFFER AREA FOR RECEIVE CHARACTER!
ISTART ADDRESS FOR PROGRAM STAT AREA!
INO. OF CHAR. FOR TRANSMIT ROUTINE!

ILOAD PSAP!

IPCW VALUE(%5000) AT $441C FOR VECTORED!
1INTERRUPTS!

1EXT. STATUS SERVICE ADDR, AT %4476 IN!
IPSAl

1SP,COND. SERVICE ADDR AT $447A IN PSAl

ISTART OF TEXT!
IBVAL MEANS BYTE VALUE. MESSAGE CHAR.!

4-171

|#RRRERRARRRIRR®R*% INITIALIZATION ROUTINE FOR Z-SCC ***Rahhukhdtkuhhhhasss|

GLOBAL INIT
ENTRY
LD

LDA
ALOOP: LD

ADDB
INC
TEST
JR
RET
SCCTAB: BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

BVAL
BVAL
END INIT

PROCEDURE
RO, #15
R2,SCCTAB
Rl, #WR0A
RL1,@R2

R
OUTIB @R1,@R2,R0

RO
NZ,ALOOP

2*9
$CO
2%4
210
2*10

0
2*6
fAB
2%7
*CD
2*%2
220
2*11
$16
2*12
$CE
2*13

0
2*14
%03
2*15
%00
2*%5
$64
2%3
$Cl
2*1
%08

2*9
209

INO.OF PORTS TO WRITE TO!
IADDRESS OF DATA FOR PORTS!

IPOINT TO WROA,WR1A ETC THRO LOOP!
1END OF LOOP?1!

INO,KEEP LOOPING!

IWR9=HARDWARE RESET!

IWR4=X1 CLK,16 BIT SYNC MODE!
IWR10=CRC PRESET ZERO,NRZ,16 BIT SYNC!
IWR6=ANY SYNC CHAR $AB!

IWR7=ANY SYNC CHARR %CD!

IWR2=INT VECTOR %201

IWR11=TxCLOCK & TRxC OUT=BRG OUT!
IWR12= LOWER TC=$CE!

IWR13= UPPER TC=01!

IWR14=BRG ON, ITS SRC=PCLK!
IWR15=NO EXT INT EN.!

IWR5= TX 8 BITS/CHAR, CRC-16!
IWR3=RX 8 BITS/CHAR, REC ENABLE!

IWR1=RxINT ON 1ST OR SP COND!
1 EXT INT DISABLE!

IWR9= MIE,VIS,STATUS LOW!

| *RRRRRANNRR AR k& *%% RECEIVE ROUTINE ***RANKRARddhhARARRhAAARRRRANRRRR RIS |

1
1

Cc828
3A86
FE23
6008
00A8
3A86
FE23
2101
FE31
3C18
C8C9
3A86
FE27
2103
5400
3Cl8
2E38
AB30
0A08
0404
EEFA
3Cls
3C18
3A84
FE23

€800
3A86
FE27
9E08

GLOBAL RECE
ENTRY
LDB
OoUTB

LDB
OUTB
LD

INB
LDB
OUTB

LD

READ: INB
LDB
DEC
CPB

JR

INB
INB
INB

PROCESS CRC
LDB

RECEIVE A BLOCK OF MESSAGE 1
THE LAST CHARACTER SHOULD BE EOT(%04) !
IVE PROCEDURE

RLO,#%28 IWAIT ON RECV,!

WROA+2,RL0

RLO, $A8

WROA+2,RL0O 1ENABLE WAIT 1ST CHAR,SP.COND. INT!

R1,#RROA+16

RLO, @Rl IREAD STX CHARACTER!

RLO, #3C9

WROA+6 ,RLO IRx CRC ENABLE!

R3, #RBUF

RLO, €R1 IREAD MESSAGE!

€R3,RLO 1STORE CHARACTER IN RBUF|

R3,#1

RLO, #304 1IS IT END OF TRANSMISSION 2!

NZ,READ

RLO,€R1 IREAD PAD1!

RLO, €R1 IREAD PAD2!

RLO,RROA+2 IREAD CRC STATUS!
ERROR IF ANY, AND GIVE ERROR RESET COMMAND IN WROA !

RLO, #0

WROA+6 ,RLO IDISABLE RECEIVER!

OUTB

RET
END RECEIVE

4-172

00A6

00A6
00A8

00AC
O0AE
00BO
00B2
00B4
00B6
00B8
00BA
00BC
00BE
00CO
00C2
00C4
00Cé6
00C8
00CA
0o0cc
00CE
00D0
00D2
00D4
00D6
00D8
00DA
00DC
OODE
00EQ
00E2
00E4
00E6
O00E8
O00EA
00EC
OOEE
00F0
00F2
00F4

93F0
3a84
FE21
A684
EE02
5F00
006C*
Cc808
3A86
FE23
C8Dnl
3A86
FE27
€820
3A86
FE21
Cc838
3a86
FE21
97F0
7B00

JRRRRR AR AR RNR AR

TRANSMIT ROUTINE *itﬁitt.'ikii*t't.'tttl*'**t*t"ii.ﬁl

SEND A BLOCK OF DATA CHARACTERS 1
THE BLOCK STARTS AT LOCATION TBUF 1

GLOBAL TRANSMIT PROCEDURE

ENTRY

DELs

LD

LDB
ouTB

LDB
OUTB

LDB
OUTB

LDB
OuUTB

LD

LDB
ouTB

LD
OTIRB

LDB
OUTB

LD
OTIRB
LDB
OUTB
LD
DJINZ
LDB
OUTB

RET

END TRANSMIT

| *kkkkkkkkkk*kx RECEIVE INT.

R2, #TBUF

RLO, #%6C
WROA+10,RLO

RLO, #3800
WROA+2,RL0O

RLO,#3%88
WROA+2,RL0

RLO, #380
WROA, RLO

R1l, #WROA+16

RLO, #36D
WROA+10,RLO

RO, #1
€R1,@R2,R0

RLO, #3C0
WROA, RLO

RO, #COUNT-1
€Rr1, @R2,R0
RLO, #304

€R1,RL0O
RO, #1670

WROA+10,RLO

GLOBAL REC PROCEDURE

ENTRY

RESET:

END REC

PUSH
INB

BITB
JR
CALL

LDB
OUTB

LDB
OUTB

LDB
ouTB

LDB
OUTB

POP
IRET

@R15,R0
RLO,RROA

RLO, #4
NZ,RESET
RECEIVE

RLO, #308
WROA+2,RLO

RLO, #3D1
WROA+6 ,RLO

RLO, #%20
WROA, RLO

RLO, #338
WROA,RLO

RO,@R15

IPTR TO START OF BUFFER!

1ENABLE TRANSMITTER}

IWAIT ON TRANSMIT!

IWAIT ENABLE,INT ON 1ST & SP COND!

IRESET TxCRC GENERATOR!
IWR8A SELECTED!

1Tx CRC ENABLE!

ISEND START OF TEXT!

IRESET TxUND/EOM LATCH!
ISEND MESSAGE!
1SEND END OF TRANSMISSION CHARACTERI!

ICREATE DELAY BEFORE DISABLING!

IDISABLE TRANSMITTER!

SERVICE ROUTINE **#®ktkakdthththdhhihns]

IREAD STATUS FROM RROA!

ITEST IF SYNC HUNT RESET!
IYES CALL RECEIVE ROUTINE!

IWAIT DISABLE!

1ENTER HUNT MODE!

1ENABLE INT ON NEXT CHAR!

IRESET HIGHEST IUS!

4-173

|*#a%sureanss SPECIAL CONDITION INTERRUPT SERVICE ROUTINE *#*ke#wswuswns|

0l1E GLOBAL SPCOND PROCEDURE
ENTRY

011E 93F0 PUSH @R15,R0
0120 3A84 INB RLO,RROA+2
0122 FE23

IPROCESS ERRORS!
0124 €830 LDB RLO, #%30
0126 3A86 OouTB WROA, RLO
0128 FE21
012A C808 LDB RLO, #3808
012C 3A86 OUTB WROA+2,RLO
012E FE23
0130 C8D1 LDB RLO, #$D1
0132 3A86 OUTB WROA+6 ,RLO
0134 FE27
0136 C838 LDB RLO, #%38
0138 3A86 OUTB WROA, RLO
013A FE21
013C 97F0 POP RO, €R15
013E 7B0O IRET
0140 END SPCOND

END BISYNC
0 errors

Assembly complete

IREAD ERRORS!

1ERROR RESET!

IWAIT DISABLE,RXINT ON 1ST OR SP COND.!

IHUNT MODE,REC. ENABLE!

IRESET HIGHEST IUSI

4-174

00-2278-01

Z8530 and Z8030
SCC Initialization:
A Worksheet and an Example

Zilog

Application
Note

September 1982

INTRODUCT ION

This application note describes the software
initialization procedure for the Zilog Serial
Communications Controller; the procedure applies
to both the Z-SCC (Z8030) and the SCC (Z8530).
Although the Z8030 and 28530 have different bus
interfaces, their registers are programmed in the
same order.

A worksheet is provided in this application note
to assist with the initialization process. A
program example of how the Z8000 initializes the
SCC for asynchronous operation is shown in
Appendix A. Other operation modes are initialized
in a similar manner and are described in the SCC
Technical Manual (document number 00-2057-01).

REGISTER OVERVIEW

Each of the SCC's two channels has its own
separate Write registers that are programmed to
initialize the different operating modes. There
are two types of bits in the Write registers:
Mode bits and Command bits. Write Register 14,

shown in Figure 1, is an example of a register
that contains both types of bits.

BR GENERATOR ENABLE
BR GENERATOR SOURCE
DTR/REQUEST FUNCTION
AUTO ECHO

LOCAL LOOPBACK

=

MODES

oJo]o] nuLLcommano

ojo|1 ENTER SEARCH MODE

o]1[o] Resermissina cLock

of1 |1 DISABLE DPLL

1{0]0 SET SOURTE = BR GENERATOR
1] 0] 1] SETSOURCE = ATxC

1]1]0 SET FM MODE

1[1]1] sernNrzimobE

Figure 1. Command and Mode Bits

Bits D4-Dg are Mode bits that can be enabled or
disabled by being set to 1 or reset to 0. Each
bit has one function. For example, bit Dy enables
and disables the BR generator.

2266-001

4-175

Bits Dy-Ds are Command bits, which require the
decoding of several bits to enable the function.
(Command bits are usually denoted by having boxes
drawn around them--see Figure 1.) Functions
controlled by the Command bits can only be
enabled; they cannot be toggled like the Mode
bits. For example, the Search .mode is entered by
setting bits Dy-Dg to 001. Each command requires
a separate write of the entire register. Care
must be taken when issuing a command, so that the
Mode bits are not changed accidentally.

INITIALIZATION PROCEDURE

The SCC initialization procedure is divided into
three stages. The first stage consists of
programming the operation modes (e.g., bits per
character, parity) and 1loading the constants
(e.g., interrupt vector, time constants). The
second stage entails enabling the hardware func-
tions (e.g., transmitter, receiver, baud rate
generator). It is important that the operating
modes are programmed before the hardware functions
are enabled. The third stage, if required, con-
sists of enabling the different interrupts.

Table 1 shows the order (from top to bottom) in
which the SCC registers are to be programmed.
Those registers that need not be programmed are
listed as optional in the comments column. The
bits in the registers that are marked with an "X"

are to be programmed by the user. The bits marked
with an "S" are to be set to their previously
programmed value. For example, in stage 2, Write
Register 3 bits Dq-D; are shown with an "S"
because they have been programmed in stage 1 and
must remain set to the same value.

INITIALIZATION TABLE

Figure 2 provides a worksheet that can be used as
an aid when initializing the SCC. The bits that
must be programmed as either a 0 or a 1 are filled
in; the remaining bits are 1left blank to be
programmed by the user according to the desired
mode of operation. The binary value can then be
converted to a hexadecimal number and placed in
the table after the Write register notation in the
column labeled "HEX." When completed, the
worksheet in Figure 2 can be used to produce a
program initialization table.

RESET CONDITIONS

The SCC should be reset by either hardware or
software before initialization. A hardware reset
can be accomplished by simultaneously grounding RD
and WR on the 28530 or AS and DS on the Z8030. A
software reset can be executed by writing a COy
to Write Register 9. The states of the SCC
registers after reset are shown in Figure 3.

4-176

Table 1. SCC Initialization Order

Register Data Comments
Stage 1. Modes and Constants

WR9 171000000 Hardware reset.

WRO 000000XX Select Shift mode (Z8030 only).

WR4 XXXXXXXX Transmit/Receive control. Selects Async or Sync mode.

WR1 0XX00X00 Select W/REQ (optional).

WR2 XXXXXXXX Program interrupt vector (optional).

WR3 XXXXXXXD0 Selects receiver control. Bit Dg (Rx enable) must be
set to 0 at this time.

WR5 XXXX0XXX Selects transmit control. Bit D3 (Tx enable) must be
set to 0 at this time.

WR6 XXXXXXXX Program sync characters.

WR7 XXXXXXXX Program sync characters.

WR9 00X0XXX Select interrupt control. Bit D3 (Master interrupt
enable) must be set to O

WR10 XXXXXXXX Miscellaneous control (optional).

WR11 XXXXXXXX Clock control,

WR12 XXXXXXXX Time constant lower byte (optional).

WR13 XXX XXXXX Time constant upper byte (optional).

WR14 XXXXXXXO0 Miscellaneous control. Bit Dy (BR Generator enable)
must be set to 0 at this time.

WR14 XXXSSSSS This register may require multiple writes if more than
one command is used.
Stage 2. Enables

WR3 $5SSSSSS1 Set Dg (Rx Enable).

WR5 $S55SS1SSS Set D3 (Tx Enable).

WRO 10000000 Reset TxCRC.

WR14 000SSSS1 BR Generator enable. Set bit Dy (BR Generator
Enable). Enable DPLL.

WR1 X$SS00S00 Set Dy, (DMA enable) if required.
Stage 3. Interrupt Enables

WR15 XXXXXXXX Enable external interrupts.

WRO 00010000 Reset EXT/STATUS twice.

WRO 00010000 Reset EXT/STATUS twice.

WR1 SSSXXSXX Enable receive, transmit, and external interrupt
master.

WR9 000SXSSS Enable Master Interrupt bit D3.

1 (Set to one)
0 (Set to zero)
X (User choice)

S (Same as previously programmed)

Label of SCC Table:

SCC Base Address:

Description:
Register Hex Binary Comments
Modes . .
WR9 C o [1i1]ofofolofolo] Software reset
WRO 0 Lol 1]
WR4 _ (T TTT1T
WR1 L OEEDDEDD
WR2 —_— LTIl
WR3 — LT P TTT [of
WRS o LI T T el T T]
WR6 o HEEEEEEN
WR7 I
WR9 - Lofofol Jo[T 1]
WR10 I LT T TTTT]
WR11 o N O B A
WR12 - LTI TTTT]
WR13 - LTI PTT
WR14 - LLI T T T [[o]
WR14 _— LL T TP T] o]
Enables
WR3 _ OOQOQooomm
WRS [IIrorrm
WRO 8 0 [1]ofofofofofo]o] Reset TxCRC
WR14 - [efolo[TT T I4]
WR1 . [OIrrormm
Interrupt
WR15 - [(TITTTT1T1]
WRO a1 o [olofol1To]o]o]o] Reset Ext/Status
WRO 1 o [oTolo []o]o]0]0] Reset Ext/Status
WR1 - [IIIIrrIT
WR9 — — [ERRTTTT
Figure 2. SCC Initialization Worksheet

4-178

2266-002

HARDWARE RESET CHANNEL RESET INITIALIZATION EXAMPLE

7 6 5 43 2 10 7 6 5 4 3 2 1 0

The program example in Appendix A shows how the

[0 0o 000 01 0] [o 000000 of wr
78000 initializes the Z-SCC for asynchronous

oo .00 o00] [oo 00 . 0o] wm communication. The initialization sequence is

.1 L | we2 stored in a table beginning with the program label

-] [0] wss SCCTABLE and is wused by a subroutine called

T B PP T wm ZINIT, The same subroutine can use different
initialization tables. The table in the program

L cooo] [- so00] w example requires two bytes for each register; the

L. 1 L .] wee first byte is the register address and the second

.- 1 C T] ww byte is the data. The ZINIT subroutine takes the

EREECRCRON 1 1 = 7w data in this table and writes it to the SCC.
Three arguments must be set before calling the

[o 000000 o0] [o. - 0000 0] wao subroutine:

[o 000 1 00 of L. | wen

[T =1 e o The peripheral base address (in R1).

(I 1 L] wens o The address of the beginning of the

[10000 0] [1000 1 wris initialization routine (in R2).

Lo ooo] Lot to0o] wme o The number of entries in the table (in R3).

[o 1 1 0o |o 1+ . .10 0] nmo

[o 000 0o 1+ 1 1] [0 0000 1 1 1] e For the 78000 to use vectored interrupts, the

peripherals must be connected to ADy-AD; of the
CPU's Address/Data bus.

[0 0o 000 000] [o o000 00 o] nam

[0o 00 000 0] [0 00000 o0 o] rao

Dots () are indeterminate, and may be a 1 ora 0.

Figure 3. Register Values After Reset

2266-003 4-179

Appendix A.

plzasm
LoC

28000 Program Example

1.3
OBJ CODE

STMT SOURCE STATEMENT

1 SCC_INIT MODULE
Sliston $tty
CONSTANT

!***!
! SCC BASE ADDRESS

1

! The SCC is I/O mapped at address location

IFEOC. This is accomplished in hardware by decoding
Ichip enable (CE) from addresses AD8-AD15 and the status!
!lines ST0-ST3. The SCC address is assigned to the !

!label SCCBASE in the following equate statement. !
Jhkkhhkhkhhhdhhhhkhhhhkhdhkhhhdhhhhhhhhkhhhkhkhhhhhhhkhhhk]

!
!
!
!

SCCBASE := $FEQOO 1Z-SCC base address !

khkkhkhkhhhhhkhhkhkhkhhhkhhhhhkhkhhkhkhhhkhhkkhkhkkhkhkkkhkhkkk

1]
! SCC REGISTERS !
! !
! For clarity, the address of the internal registers !
!is assigned a label as shown below in the equate !
Istatements. The peripheral's ADO-AD7 pins must be !
tconnected to the CPU's ADO-AD7 pins because the !
!CPU reads the interrupt vector from the low-order byte !
! (AD0-AD7) during an Interrupt Acknowledge cycle. !
{To access the peripheral's internal registers, the !
!least significant address bit (A0) in the register !
laddresses must be set to 1, and the Shift Left mode !

!

!

!must be selected.
!***

WROB := %01; WROA 1= %21
WR1B = %03; WR1A = %23
WR2B = %05; WR2A := %25
WR3B 1= %07; WR3A = $27
WR4B 1= %09; WR4A = %29
WR5B = %0B; WR5A = %2B
WR6B = $0D; WR6A i = %2D
WR7B 1= %0F; WR7A = % 2F
WR8B 1= %$11; WR8A := %31
WR9B = $13; WR9A = %33
WR10B = %15; WR10A := %35
WR11B := %17; WR11A = %37
WR12B = $19; WR12A = %39
WR13B 1= $1B; WR13A = %$3B
WR14B = %1D; WR14A := $3D
WR15B = $1F; WR15A = $3F

4-180

78000 Program Example (Continued)

0000

0000
0002
0004
0006
0008
000A
000C
000E

0010

0010

0010
0012
0014
0016
0018

001A

2101
FEO0O
7602
0o01C'
6103
0046
5F00
0010°"

2029
A920
3A22
0318
ECFB

9EO08

GLOBAL MAIN PROCEDURE

Phkkk kR hhhk ko hhhhkkhh kA kR Ak hhhhkhhhhhhhhhkkhkhhkhk |
! MAIN PROGRAM FLOW
!

!
!
! To initialize the SCC, the following four instruct- !
tions must be included in the main program. The first !
!three instructions load arguments into registers !
IR1-R3 for use by the initialization subroutine !
1ZINIT, The fourth instruction calls the ZINIT !

!

!

t{subroutine.
]***

ENTRY
LD R1, #SCCBASE 1I/0 address of Z-SCC !
LDA R2,SCCTABLE !Beginning of data table!
LD R3,SCCCOUNT 1Size of data table !
CALL ZINIT 1Call subroutine !
END MAIN

GLOBAL ZINIT PROCEDURE

R L T2 T T L]
! INITIALIZATION SUBROUTINE
!
!

!
!

This routine is called from the main program !
fto initialize a Z-BUS peripheral in a Z8000 system. !
IThe following arguments must be set: !
! Rl Base address of peripheral !
! R2 Pointer to data table !
! R3 Number of iterations !
! !

khkkkkkkkkkkhhhkhhkkkhhkhhkhhkhhhhhhhhhkkhhkhhhhkdhkhhkhhkkd

ENTRY
LDB RL1,@R2 lLoad register address !
Ifrom table !
INC R2 !Increment the table !
Ipointer !
OUTIB @R1,@R2,R3 IWrite data to the SCC !
JR NOV, ZINIT {Repeat if not at the !
lend of the table !
RET {Return to main program !

78000 Program Example (Continued)

001C
001D
001lE
001F

0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031
0032
0033
0034
0035

0036
0037
0038
0039
003A
003B

003C
003D
003E
003F
0040
0041
0042
0043
0044
0045

0046
0048

3D
03
27
Cl
2B

3F
00
21
10
21
10
33
09
23
10

0015

Thhhkkhkhhkhhhkhhkhkhkhhkhhkhhkhhkdhhhhhhhhhkhhkhkhhkhkhkhhkhhhhkhkhkhhkk

r—— s

SCC INITIALIZATION TABLE

! This table is used to initialize the SCC for

!Asynchronous operation, 8 bits/character, 2 stop bits,

!no parity, x16 clock, and 9600 baud.

Thkhkkhhhhhhhhkhkhhhkhkhhhhhdhhhhhhhhhhhhkhhhhkhhhkkhkdhkhhhkk

!Force hardware reset

!x16 clock,2 stop bits/character

!no parity

!Interrupt vector = %10

IRx 8 bits/char;Rx disabled
ITx 8 bits/char;DTR;RTS;Tx off
'null (no sync char)

tnull (no sync char)

IVIS; Status low

INRZ

!
!
!
!
!
!
!

!Tx & Rx clk = BRG;TRxC=BRG out !

!Time const = 6 (default=9600)
ITime const (high) = 0

I!BRG source = PCLK;BRG off

IBRG enable
IRx enable

ITx enable

1All ext/status rupts off
IReset Ext/Status interrupts
IReset Ext/Status interrupts
IMIE;VIS;Status low

IRx int on all rx chars or
Ispecial condition

(($=-SCCTABLE) /2) -1

SCCTABLE:

!MODES AND CONSTANTS!
BVAL WROA
BVAL %$CO
BVAL WR4A
BVAL $4C
BVAL WR2A
BVAL %10
BVAL WR3A
BVAL $CO
BVAL WR5A
BVAL $E2
BVAL WR6A
BVAL %0
BVAL WR7A
BVAL %0
BVAL WROA
BVAL %01
BVAL WR10A
BVAL %0
BVAL WR11A
BVAL %56
BVAL WR12A
BVAL %06
BVAL WR13A
BVAL %0
BVAL WR14A
BVAL %02

1ENABLES!
BVAL WR14A
BVAL %03
BVAL WR3A
BVAL %$Cl
BVAL WR5A
BVAL $EA

{ENABLE INTERRUPTS!
BVAL WR15A
BVAL %0
BVAL WROA
BVAL %10
BVAL WROA
BVAL %10
BVAL WRIA
BVAL %09
BVAL WR1A
BVAL %10

SCCCOUNT:
WVAL

END ZINIT

END SCC_INIT

4-182

00-2266-01

The 2-FIO in a Data
Acquisition Application

Zilog

Application
Note

March 1983

INTRODUCTION

The 78038 Z-FI0 is an intelligent 128x8 FIFO
buffer that can link two CPUs or a CPU and a
peripheral device. The Z-FI0 manages data trans-
fers by assuming Z-BUS, non-Z-BUS (a generalized
microprocessor interface), 2-Wire Handshake, and
3-Wire Handshake operating modes. These modes
facilitate interfacing dissimilar CPUs, or CPUs
and peripherals running under differing speeds or
protocols, allowing asynchronous communication and
reducing 1/0 overhead. The width of the buffer
can be expanded by connecting multiple Z-FIOs in
parallel, and the depth can be expanded by using
78060 FIFO buffers.

This application note illustrates the use of the
Z-FI10 in a simple data acquisition application, in
which a peripheral device transfers data to a
78002-based system at a constant rate of one byte
every 100 pus. In this application, it is
desirable for the system to record each byte in
memory as well as dynamically keep track of the
frequency of a certain data pattern. The Z-FIO
facilitates this task by allowing the CPU to
handle the data in blocks rather than requiring it
to service an interrupt every 100 us.

For a more complete understanding, this
application note should be read in conjunction
with the Z-FI0 Technical Manual (Document
#00-2051-01) .

HARDWARE CONFIGURATION

In this application, the Port 1 side of the Z-FIO
is connected to the lower byte of the system bus.
The Z-BUS Low Byte mode is programmed by
connecting My and Mq to ground. The Port 2 side
receives data from the peripheral device using the
Interlocked 2-Wire Handshake mode. Figure 1 shows

the 178038 hardware configuration, and Table 1
gives a description of each signal used in the
application.

INITIALIZING THE Z-FIO

Before writing the initialization software, the
user should keep in mind that the Z-FIO is con-
nected to the lower byte of the system bus, so all
of its registers have odd addresses. Since the
least significant address bit, Ag, must always
equal 1 when performing byte-oriented accesses to
the Z-FIO, this bit cannot be used to select
registers. It is for this reason that the Right
Justified Address (RJA) bit in Control Register O
(CRO) must be reset to 0, requiring the address to
be left-shifted by one bit (i.e bits Ay - Aq
are used to select the registers).

The first step in initializing the Z-FIO is the
software reset, performed by writing a 1 to the
Reset bit in CRO. Since no hardware reset circuit
is employed, it must be assumed that the RJA bit
is in an unknown state upon power-up. The first
access must be performed with A4 - Ag = 00000 so
that CRO is addressed regardless of the state of
the RJA bit. A word-oriented output instruction
(0UT) is executed, with the Z-FIO's even base
address as the destination. This procedure is
detailed in the program listing in the Appendix.

The ZINIT procedure completes initialization. It
is called with the Z-FI0's base address in R1, and
it uses the information in the table TAB to load
the Z-FI0's registers. TAB is a string of byte
value pairs, each pair consisting of a target
register address offset and a value to be loaded
into the corresponding target register. For
example, the first two byte values are 01 and 00.
ZINIT loads the value 00 to the target register
with address offset 01.

4-183

¥81-v

100-90€2

vi

ADg-AD1s5 <

Z8002
CPU

STp-ST3

AS
bs

RIW

+5V

INT

ADg-ADqs

ADDRESS

o———Cs
id

DECODER |

L]

PORT 1

>l ADo-AD7

K

Z8038

PORT 2

FULL
EMPTY

RFD/DAV

ACKIN

+5V

AA

Z-Flo :
Do-D7

TO/FROM
[————> > PERIPHERAL
DEVICE
+5V

IOREF
L]
sTATUS |
DECODER
® VIACK
jo— 1 INTA
As
»1 DS
»1 RW
TOIFROM | <«— IEO
SYSTEM
DAISY CHAIN | —> IEI
1 Mo
1 My
Figure 1. 78038 Hardware Configuration

Table 1. Signal Descriptions

ADg - AD7 (Address/Data)
DMASTB (Direct Memory

Access Straobe)

DS (Data Strobe)

R/W (Read/Mrite)

CS (Chip Select)

AS (Address Strobe)

INTACK (Interrupt Acknowledge)
IE0 (Interrupt Enable Out)

IEI (Interrupt Enable In)

INT (Interrupt)

Dg - D7 (Data)

RFD/DAV (Ready for Data/
Data Available)

ACKIN (Acknowledge Input)

FULL

EMPTY

Z-BUS Low Byte: Port 1 Side

Multiplexed, bidirectional Address/Data lines, Z-BUS
compatible.

Input, active Low, tied High in this example.
Input, active Low; provides timing for data transfer to or
from Z-FIO.

Input, active High signals CPU read from Z-F10; active Low
signals write to Z-FIO.

Input, active Low. Enables Z-FIO; latched on the rising
edge of AS.

Input, active Low. Addresses, CS and INTACK sampled while
AS Low.

Input, active Low. Acknowledges an interrupt. Latched on
the rising edge of AS.

Output, active High. Sends interrupt enable to lower
priority device IEI pin.

Input, active High. Receives interrupt enable from higher
priority device IEQ pain.

Output, open drain, active Low. Signals Z-FIO interrupt
request to CPU.

2-Wire Handshake: Port 2 Side
Bidirectional data bus. Input in this example.

Output, RFD active High. While port is input, signals that
Z-F10 is ready to receive data.

Input, active Low. Signals that input data is valid.
Pull-up resistor ensures that ACKIN is High when handshake
is enabled.

Output, input, open drain, active High. Must be pulled
High in this example since the conditions for setting the
Full Interrupt Pending (IP) bit are: Buffer is full, and
FULL input is High.

Output, input, open drain, active High. Must be pulled High
in this example since the conditions for setting the Empty
IP bit are: Buffer is empty, and EMPTY input
is High.

INTERRUPT CONSIDERATIONS

Essential to this application are the powerful
vectored interrupt capabilities inherent in Z-BUS
architecture. When the 28002 VI input is pulled
Low, a vectored interrupt is requested. If the
Vectored Interrupt Enable (VIE) bit in the Flag
Control Word (FCW) is set to 1, the 28002 executes
an Interrupt Acknowledge cycle during which it
reads a vector from the 1lower byte of the
Address/Data bus. The 28002 then loads the Program
Status registers (which include the FCW and the
PC) from the vector table in the Program Status
Area.

The Z-FI0 interrupts the CPU each time the buffer
is full. In servicing the Buffer Full interrupt,
the CPU performs the necessary overhead operations
and then executes an Input Increment and Repeat
Byte (INIRB) instruction to move the data from the
Z-F10 to memory.

In order to dynamically count the occurrences of a
certain data pattern, the Z-FIO0 must interrupt the
INIRB instruction each time the pattern appears in
the Data Buffer register. (INIRB is an iterative
instruction and can be interrupted after each
execution of the basic operation.) Finally, when
the buffer is empty, the Z-FIO interrupts the
INIRB instruction again so that a 1 can be loaded
into the iteration counter (in this case RO) and
the block move can be terminated. This method of
inputting data until the Z-FIO is empty is more
efficient than inputting a fixed number of bytes,
because the block size varies according to the
amount of time spent servicing Pattern Match
interrupts.

Initializing the Vector Table

The vector table in the Program Status Area
consists of an FCW, which is used for all vectored
interrupts, and up to 256 word values that can be
loaded into the CPU's PC during a Vectored Inter-
rupt Acknowledge cycle. These values correspond to
the 256 possible values of the Interrupt Vector
that is read on the lower byte of the Address/Data
bus. The vector value 0 selects the first PC
value, the vector value 1 selects the second PC
value, and so on up to the vector value 255.

Though Port 1 has only one Interrupt Vector
register, the three interrupt conditions used in
this application (Buffer Empty, Buffer Full, and
Pattern Match) can generate unique vectors via the
Vector Includes Status feature. This feature
encodes the interrupt status intec bits Dy - D3 of
the vector according to the convention shown in

Figure 2. Assuming a base vector value of 00,
Table 2 gives the vectors that the interrupt
conditions generate, their corresponding PC
values, and the byte offsets that address these
values in the Program Status Area.

e

l II|T

(NO INTERRUPTS PENDING 0
BUFFEREMPTY] 0 | 0 | 1
BUFFERFULLJ 0 | 1 | O
VECTOR OVER/UNDERFLOW ERROR| 0 | 1 1
STATUS BYTECOUNTMATCH| 1 | 0 | O
PATTERN MATCH | 1 0|1
DATA DIRECTION CHANGE | 1 1 [}
\ MAILBOX MESSAGE | 1 1 1
Figure 2. Interrupt Vector Register
Table 2. Interrupt Vectors
Interrupt Interrupt PC Byte
Condition Vector Value Of fset
(hex) (decimal)
Buffer Empty 02 PCs 34
Buffer Full 04 PCs, 38
Pattern Match 0A PCq1q 50

The software routines show how these byte offsets
(in conjunction with the PSAP) form indexed
addresses to initialize the vector table.

Buffer Full Interrupt

Buffer Full is the only interrupt that interrupts
the background task. Since one byte of data
is moved to the buffer every 100 ps, it takes
128 x 100 = 12.8 us from the time the buffer is
empty until the Buffer Full condition requires
service. The primary task of the FULL service
routine is to execute the INIRB instruction,
which moves the data from the Z-FIO to a memory
buffer starting at location BUF (6000y). Before
INIRB is executed, the Pattern Match interrupt is
enabled, the Full interrupt is disabled, and the
Disable Lower Chain command is issued so that no
interrupt sources of lower priority than the Z-FIO
can interrupt the FULL routine.

4-186

2306-002

After execution of the INIRB instruction, the
destination pointer (R1) is decremented to
compensate for the extra iteration that takes
place after the buffer goes empty. The Clear Full
Interrupt Pending command is issued in case the
Full IP bit has been set since the most recent
Clear Full IP command (e.g. the peripheral device
transferred a byte to the buffer just after the
first iteration of the INIRB instruction, thus
causing the buffer to go full and the Full IP bit
to be set). The Full IE bit is then set so the
Z-FI0 can cause an interrupt the next time it is
full, and the Pattern Match IE bit is cleared to
prevent a Pattern Match condition from inter-
rupting the background task. Finally, the lower
daisy chain is enabled and control is returned to
the background task.

Buffer Empty Interrupt

The Buffer Empty IP bit is set whenever the Z-FIO
makes a transition from a "not-empty" state to an
empty state. In this application, it is set when
the INIRB instruction reads the last byte from the
Z-FI0 buffer. Since the Buffer Empty interrupt
has lower priority than the Buffer Full interrupt,
the Full Interrupt Under Service (IUS) bit must be
cleared if the Buffer Empty condition is to
preempt the FULL service routine. (Z-BUS inter-
rupt sources hold their Interrupt Enable Output
(IEQ) line Low whenever their IUS bit is set.) The
EMPTY service routine loads a 1 into the itera-
tion counter (RO), causing the INIRB instruction
to be terminated after the next iteration. The
service routine then clears the Empty IP and IUS
bits and returns control to the FULL routine.

Pattern Match Interrupt

The Pattern Match interrupt is a higher priority
interrupt than the Buffer Full interrupt, and it
can preempt the FULL routine if the Pattern Match
IE bit is set. The Pattern Match IP bit is set
whenever the Data Buffer register contains the
pattern (specified as 554 by the initialization
sequence). The PAT service routine simply
increments the pattern counter (RL3), clears the
Pattern Match IP and IUS bits, and returns control
to the FULL routine. The IP and IUS bits are
cleared in separate commands to prevent a spurious
interrupt caused by IUS being cleared before IP is
cleared. The background task can interpret the
value in RL3 as the number of times the pattern
55y appears in the most recently transferred
block of data.

APPENDIX

Following is a listing of the software used in
this application. It is assumed that the PSAP has
been initialized and that the Z8002 is in System
mode when it enters the MAIN procedure. The
background task is simulated by the "JR $"
instruction.

Under ZINIT, each address offset shown is keyed to
the name of the corresponding register, and each
loaded value is keyed to the effect of the load.

4-187

Loc 08J CODE

0000

0000

0002
0004

0oos

oooc

0010

0012

0016
0018

001C

0020

0024

0028

002C

0030

0034
0036

0038

0038

7C01

BDO1
3B06

2101

5F00

D15

4D15

4000
7602

6F12

7602

6F12

7602

6F12

2101

7C05
EBFF

FDOO

FDOO
0000*

001C

0038’

0026

0084

0032

007A"

0022

6000

STMT

1
2
3

o v s

o

"
12
13
14

15
16

18
19
21
22
23

24

25

26

27

28

29

30

31

32

33

34

35

37
38
39
40

SOURCE STATEMENT

RECEIVE MODULE
EXTERNAL ZINIT PROCEDURE
INTERNAL CONSTANT

BUF := %6000 !MEMORY BUFFER!
FIOBASL := %FDOO {FI0 BASE ADDR!
FDATA := %FDIF 'FI0 DATA REG!
CRO := %FDO1 'CONTROL REG O!
ISR1 := %FDO7 TINTR STATUS REG 1!
ISR3 := %FDOB VINTR STATUS REG 3!
GLOBAL MAIN PROCEDURE
ENTRY
DI VI !DISABLE VECTORED
INTR!
VINITIALIZE FIO!
LDK RO,#1
out FIOBASE,RO !RESET FIO WITH
EVEN ADDR!
LD R1,#F IOBASE
CALL ZINIT

VINITIALIZE VECTOR TABLE!

LDCTL R1,PSAP 'LOAD PROG STATUS
AREA PTR!

LD 28(R1),#%4000 'LOAD FCW FOR

VECTORED INTR!

LDA R2,FULL 'LOAD ADDR OF FULL

PROCEDURE!

LD 38(R1),R2 YENTER ADDR IN

VECTOR TABLE!

'ENTER ADDR OF

PAT PROCEDURL!

LDA R2,PAT

LD 50(R1),R2 'ENTER ADDR IN
VECTOR TABLE!

LDA R2,EMPTY 'LOAD ADDR OF
EMPTY PROCEDURE!

LD 34(R1),R2 'ENTER ADDR IN

VECTOR TABLE!

LD R1,#BUF 'LOAD ADDR OF MEMORY
BUFFER!
EI VI 'ENABLE VECTORED INTR!
R $ 'BACKGROUND TASK!
END MAIN

INTERNAL FULL PROCEDURE
ENTRY

4-188

Loc 0BJ CODE

0038
003C
0040

0044
0048
004C
0050
0052
0056

0058

005C
005E
0060
0064
0068
006C
0070
0074

0078
007A

007A

007A
007¢C
007€E
0082
0084

0084
0084
0086
008A
008E

0092
0094

0000

2100
3A06
3AB6

2100
3A06
3A86
8cB8
2102
7C05

3A20

7€01
AB10
2100
3A06
3A86
2100
3A06
3A86

7800

BDO1
C302
3A36
7800

A8BO
2104
3A46
3AC6

7800

ocnc
FDO7
FDO1

20E0
FDOB
FDOB

FD1F

0010

Aoco
FDOB
FDOB
0E9C
FDO7
FDO1

FDOB

0AD6
FDO7
FDO7

STMT

41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77

78
79
80

O O NNV S WN -

SOURCE STATEMENT

LD RO, #%0CDC

ouTe ISR1,RHO ISET PATTERN MATCH IE!

ouTB CRO,RLO !DISABLE LOWER DAISY
CHAIN!

LD RO, #%20E0

ouTB ISR3,RHO ICLEAR FULL IP & IUS!

ouTs ISR3,RLO ICLEAR FULL IE!

CLRB RL3 'INITIALIZE COUNT!

LD R2,{#fFDATA

EI Vi 'ENABLE VECTORED INTR!

INIRB @R1,@R2,RO !READ DATA FROM FIO!

DI VI IDISABLE VECTORED INTR!
DEC R1
LD RO, #%A0CO
ouTsB ISR3,RHO {CLEAR FULL IP!
ouTs ISR3,RLO 'SET FULL IE!
LD RO, #%0E9C
ouTB ISR1,RHO ICLEAR PATTERN MATCH IE!
ouTB CRO, RLO 'ENABLE LOWER
DAISY CHAIN!
IRET
END FULL

INTERNAL EMPTY PROCEDURE

ENTRY
LDK RO,#1 ! TERMINATE BLOCK MOVE!
LDB RH3,#%02
ouTB ISR3,RH3 !CLEAR EMPTY IP AND IUS!
IRET

END EMPTY

INTERNAL PAT PROCEDURE

ENTRY
INCB RL3 ! INCREMENT COUNT!
LD R4, {#%0A06
ouTB ISR1,RH4 ICLEAR PATTERN MATCH IP!
ouTB ISR1,RL4 ICLEAR PATTERN MATCH IUS!
IRET

END PAT

END RECIEVE

ZIN MODULE

GLOBAL ZINIT PROCEDURE

! THIS IS A GENERAL ROUTINE USED !
! TO INITIALIZE A Z-BUS PERIPHERAL !
! IN THIS EXAMPLE [T INITIALIZES !
! THE Z-FIO. !

!

4-189

Loc 0BJ CODE

0000
0004

0oos8
000A
ooac

0010
0012

0014
0015
0016
0017
0018
0019
001A
0018
001C
001D
001E
001F
0020
0021

0022
0024

7602
6103

2029
A920
3A22

ECFB
9E08

01
00
01
oc
15
50
13
03
1B
55
08
cc
01
9C

0008

0014
0024'

0318

STMT SOURCE STATEMENT

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

' R1
! R2

PERIPHERAL BASE ADDR !
ADDR OF TABLE !

! R3 = NO. OF BYTES TO BE QUIPUT !

1

ENTRY
LDA
LD
LOOP:
LDB
INC
ouTIB

JR
RET

TAB:
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

COUNT:
WVAL

END ZINIT

END ZIN

R2,TAB

R3,COUNT

RL1,@R2

R2

@R1,8R2,R3

NOV,LOOP

%01 ICONTROL REGISTER 0!

%00 ICLEAR RESET!

%01 ICONTROL REGISTER 0!

%0C VINTERLOCKED HS PORT!
%15 ICONTROL REGISIER 3!

%50 1INPUT TO CPU!

%13 'CONTROL REGISTER 2!

%03 1ENABLE PORT 2!

%18 IPATTERN MATCH REGISTER!
%55 IPATTERN IS 55!

%08 VINTERRUPT STATUS REGISTER 3!
%CC 1SET FULL AND EMPTY IE!
%01 ICONTROL REGISTER 0!
%9C I1SET MIE BIT!

(($-7AB)/2 -1)

4-190

00-2307-01

Zilog Sales Offices and Technical Centers

West

Sales & Technical Center
Zilog, Incorporated

1315 Dell Avenue
Campbell, CA 95008
Phone: (408) 370-8120
TWX: 910-338-7621

Sales & Technical Center
Zilog, Incorporated
18023 Sky Park Circle
Suite J

Irvine, CA 92714

Phone: (714) 549-2891
TWX: 910-595-2803

Sales & Technical Center
Zilog, Incorporated
15643 Sherman Way
Suite 430

Van Nuys, CA 91406
Phone: (213) 989-7485
TWX: 910-495-1765

Sales & Technical Center
Zilog, Incorporated

1750 112th Ave. N.E.
Suite D161

Bellevue, WA 98004
Phone: (206) 454-5597

Midwest

Sales & Technical Center
Zilog, Incorporated

951 North Plum Grove Road
Suite F

Schaumburg, IL 60195
Phone: (312) 885-8080
TWX: 910-291-1064

Sales & Technical Center
Zilog, Incorporated
28349 Chagrin Blvd.
Suite 109

Woodmere, OH 44122
Phone: (216) 831-7040
FAX: 216-831-2957

South

Sales & Technical Center
Zilog, Incorporated

4851 Keller Springs Road,
Suite 211

Dallas, TX 75248

Phone: (214) 931-9090
TWX: 910-860-5850

Zilog, Incorporated
7113 Burnet Rd.

Suite 207

Austin, TX 78757
Phone: (512) 453-3216

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008

East

Sales & Technical Center
Zilog, Incorporated
Corporate Place

99 South Bedford St.
Burlington, MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726

Sales & Technical Center
Zilog, Incorporated

240 Cedar Knolls Rd.
Cedar Knolls, NJ 07927
Phone: (201) 540-1671

Technical Center L
Zilog, Incorporated

3300 Buckeye Rd.

Suite 401

Atlanta, GA 30341

Phone: (404) 451-8425

Sales & Technical Center
Zilog, Incorporated

1442 U.S. Hwy 19 South
Suite 135

Clearwater, FL 33516
Phone: (813) 535-5571

Zilog, Incorporated
613-B Pitt St.
Cornwall, Ontario
Canada K6J 3R8
Phone: (613) 938-1121

United Kingdom

Zilog (U.K.) Limited

Zilog House

43-53 Moorbridge Road
Maidenhead

Berkshire, SL6 8PL England
Phone: 0628-39200

Telex: 848609

France

Zilog, Incorporated
Cedex 31

92098 Paris La Defense
France

Phone: (1) 334-60-09
TWX: 611445F

West Germany

Zilog GmbH
Eschenstrasse 8
D-8028 TAUFKIRCHEN
Munich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d.

Japan

Zilog, Japan K.K.

Konparu Bldg. 5F

2-8 Akasaka 4-Chome
Minato-Ku, Tokyo 107
Japan

Phone: (81) (03) 587-0528
Telex: 2422024 A/B: Zilog J

Telephone (408)370-8000 TWX 910-338-7621

00-2320-01

Printed in USA

