
TUllllO 
TECHNIX 

NEW! 
SPRINT & TURBO PROLOG 2.0 

SEE MONEY-SAVING 
OFFERS INSIDE! 

T HE BORLAND lANGUAGEJOURNAL •JULY/ AUGUST 1988 •VOLUME ONE NUMBER FIVE • $10.00 

VAi l1ilV3S 
6~M 'ON .Lll'Hll d 

QJVd 
J'.lV.LSOd ·s·n 
31~ll1011 

ONE DATABASE, 
MANY INDEXES 

Creating and using 
multiple indexes 
with Turbo Access 

Turbo Pascal's custom 
text file device drivers 

Sprint macros 
for time and date 
formatting 

Creating Turbo Prolog 
applications 
with mouse support 



The future of personal computing is clear. More 
powerful PCs. F.asier to use PCs. With graphics 
and character-based programs working side by 
side. Talking to each other. Multitasking. Wm­
dowing. Menuing. Mousing. Getting your work 
done easier and faster. 

labels while you' re writing a report in Wmi 
Perfect, or laying out a newsletter in Ventura 
Publisher, or designing a building in AutoCAD. 

DFSQview even lets you transfer text, 
numbers, and fields of information between 

Have it all now. 
programs. 

_, Fulfill the 386 promise. 
DFSQview™ is the operating envi­

ronment that gives IXY3 the capabil­
ities of Cf3/2.™ And it lets you, with 
your trusty lmS, &ll6, 00286, or 00386 
PC, leap to the productivity of the next 
generation. For not much money. And 
without throwing out your favorite 
software. 

Add DFSQview to your PC and it 
quickly finds your programs and lists 
them on menus. So you can just point 
to the program, using ~Y!?<md or 
mouse, to start it up. DRiQview 
knows where that program lives. And 
what command loads it. 

For those who have trouble remembering full screen. Open more programs than you 
IXY3 commands, it adds menus have memory for. And multitask them. In 
to IXY3. It even lets you sort your ~Fo-r-programm--ers-,-o~--. -s- 640K Or if you own a special 
files and mark specific files to be API, with its strengths in inter- EMS 4.0 or EEMS memory 
copied, backed-up, or deleted- task communications and multi- board, or a 386 PC, DFSQview 

tasking, brin&5 a quick and easy lets ou break throi the IXY3 
all without having to leave the way to adapt to the future. With 640 Y bani , . kin If 
program you're in. theAPI's mailboxesand shared K er 1orm titas g. 

Best of all, DFSQview accom- programs •. programmers are . you have other non-EMS memo-
ableo n ~eSlwi.gnth caprogram;pabili'ties' runrunlike g ry expansion products like Asr s plishes all this with a substantial lAl.:J 

speed advantage over any thu;e of CJ3/2 Advantage or the IBM~ Memory 
. alternative environment. Expansion Option, we have a 

Multitask beyond 640K 
When you want to use several programs 

together, you don't have to leave your 
current program. Just open the next pnr 
gram. View your programs in windows or 

solution for you, too. The ALL CHARGE-
CARD™ 'unifies' all your memory to provide 
up_!_o_16 megabytes of continuous workspace. 
DE5Qview fets you use this memory to 
enhance your productivity. You can start 1-2-3 
calculating and tell Paradox to print mailing 

For 8ffi36 PC users, DFSQview 
becomes a 386 control program when 
used in conjunction with 
Quarterdeck's Expanded Memory 
Manager (QEMM>-386--itiving 
faster multitasking as weff as virtual 
windowing support. 

And when you use DFSQview on 
an IBM PS/2™ Model 50 or 60 with 
QEMM-50/ 60 and the IBM Memory 
Expansion Option, DFSQview gives 
you multitasking beyond 640K. 

Experts are voting for 
DESQview. And over a 

million users, too. 
If all of this sounds like promises you've 

been hearing for future systems, then you can 
understand why over a million users have 
; _ .,. • "'I chosen DFSQview. And why PC 
! ! l !;.l gazine gave DFSQview its 
! :! fl ·tor's Choice Award for 'The 

, , t Alternative to Cf3/2," why 
EDIT~'S readers of Info Warld twice voted 
c_ HOI( E DESQview ''Product of the Year'' 

NOV. 24, 1987 
why, by po&ular vote at 

INFO 1986 c Fall ' WOA-i:a- AND 1987 om ex 1or two 
PRODUCT years in a row, DF.5Qview 
o F T H E was voted ''Best PC Environ­
y E A R ment" in PC Tech Journal's 
•••mlSystems Builder Contest. 

DFSQview lets you have it all now. 



More and more, programmers and work­
station builders are using DESQview 2.0 as a 
development tool. The reason is simple. 
They can create powerful, multitasking 
solutions today for the millions of DOS PCs 
in use today. Solutions comparable to those 
promised for tomorrow by C/3/2. 

The API Advantage 

Some of the applications under 
development right now using 
DESQview 2.0 API Tools: CAD, 
Medical systems, insurance, 3270 
mainframe communications, 
network management, real 
estate, typesetting, point of sale, 
education, commodity trading, 
stock trading and online voting. 

80386Power 
80386 programmers can take advantage of 
the 80386' s protected mode for large 
programs, yet run on DOS and multitask in 
DESQview-side by side with other 80386 
and DOS programs. The breakthroughs that 
make this possible: DOS Extenders from 
Pharlap Software and AI Architects and 
DESQview support of these DOS extenders. 

Programmers who take advantage of DESQview' s API 
(Application Program Interface) get access to the powerful 
capabilities built into DESQview-multitasking, window­
ing, intertask comunications, mailboxes, shared programs, 
memory management, mousing, data transfer, menu­
building and context sensitive help. 

Bells and Whistles 
A program taking advantage of the DESQview 2.0 API can 
spawn subtasks for performing background operations or 
new processes for loading and running other programs 
concurrently. It can schedule processing after an interval or 
at a certain time. It can use DESQview' s intertask commu­
nications to rapidly exchange data between programs, 
share common code and data; or interrupt at critical events. 
It can use DESQview' s menuing and mousing capabilities 
to create menus. And there's lots more it can do. 

DESQview Developer Conference 
So if you are a developer, looking to create programs with 
mainframe capabilities, but wanting to sell into the existing 
base of millions of DOS PCs, come to Quarterdeck's first 
DESQview API Developers Conference, August 16-18, 1988 
at the Marina Beach Hotel, in Marina del Rey, California. 
For more information call or write us. 

Come learn about the DESQview 2.0 API and 80386 DOS 
Extenders. Meet 80386 experts as well as those smart 
people who are creating DESQview 2.0 API workstations 
solutions. 

And if you want to get a leg up before the conference, ask 
us about the DESQview API Tools for assembler or C 
programmers. 

New Power to DOS. 
ew 2.0 API Toolkit. 

Quarterdeck Office Systems 150 Pico Blvd.,Santa Monica, CA 90405 
(213) 392 9851 



I TURBO TECHNIX 
The Borland Language Journal 
July/ August 1988 
Volume 1 Number 5 

FEATURES 

TURBO PASCAL 

12 Multiple Indexes with 
Turbo Access 
William Meacham 

27 Catch and Throw with 
Turbo Pascal 
Jon Shmtitz 

30 Recursing Without Cursing 
Jeff Duntemann 

34 Custom Text File 
Device Drivers 
Neil Rubenking 

86 
Turbo Prolog 2.0 takes full advantage 
of the Borland Graphics Interface 
(BGI) for device-independent graph­
ics displays. Expert systems can now 
show as well as tell what they know. 

TURBOC 

42 Mouse Mysteries, Part II: 
Graphics 
Kent Porter 

54 Formatting Output in Turbo C 
Peter Aitken 

60 Allocating Full 64K Blocks in 
Turbo C 
Michael Abra.sh 

61 Worth the Wait 
Jonathan Sachs 

TURBO PROLOG 

70 Certainty Factors in 
Turbo Prolog 
Tom Cast'le 

76 Failing with Grace 
Edward B. Flowers 

86 In Graphic Harmony 
A'lexLane 

92 Logic and Turbo Prolog 
Alex Lane 

98 Cat and Mouse in Turbo 
Prolog, Part II 
Safaa H. Hashim 

42 
Mice can work well with text applica­
tions, but mice were created to steer a 
graphics cursor around your screen. 
The cursor can be a miniature icon 
reflecting the work currently being 
done, with one single pixel in the 
cursor (called the "hot spot") 
empowered to say, You are here. 

110 
Moving a binary file across a 7-bit 
communication channel can be done 
by encoding the binary file as a series 
of printable DATA statements within 
an equally printable Turbo Basic pro­
gram. The program, when run on a 
computer at its destination, re-creates 
the original binary file. 

TURBO BASIC 

llO Binary to Text for 
Communications 
Robert E. Stearns, Jr. 

ll4 Viewports in Turbo Basic 
Peter Aitken 

120 Calling BIOS Services 
from Turbo Basic 
Ethan Winer 

BUSINESS LANGUAGES 

122 Date Formatting with Sprint 
Neil Rubenking 

130 Bounce and Choose in PAL 
Alan anreich 

TURBO TECHNIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no 
responsibility, however, for damages due lo errors or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular 
purpose. The liability, if any, of Borland, TURBO TECHNIX, or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or 
omission shall be limited to the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential dam­
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occuning. 

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prowg, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning, Lightning Word Wizard, SideKick, 
SuperKey, Eureka, Reflex, Qµattro, Sprint, Paradox, and Borland are trademarks or reg;Utered trademarks of Borland International, Inc. or its subsidiaries. 

2 TURBO TECHNIX July/August 1988 



·~ ·... s .. P.R .. i .. N "r· 
'll 
)J 

Sprint, the Professional Word Proces­
sor, is now shipping. In keeping with 
Borland's evolving open architecture 
philosophy, the engine at the heart of 
the product is available to program­
mers through a powerful text-process­
ing programming language. Sprint's 
macro language is far more than 
recorded keystrokes-the language 
can make DOS and BIOS calls, create 
custom pop-up menus, treat entire 
documents as variables, and read or 
write any memory location or 1/0 
port, all within program structures 
familiar from C, Pascal, and BASIC. 
See page 122 for an example of 
Sprint's macro power, and page 125 
for a special offer that could add 
Sprint to your programming arsenal 
for less than you think. 

-COLUMNS 
4 BEGIN: Naming the Animals 
Jeff Duntemann 

132 Binary Engineering: Design­
ing Data Structures, Part I 
Bruce F. Webster 

138 Language Connections: 
Turbo Prolog to Turbo C is 
Now a Two-Way Bridge 
Gary Entsminger 

145 Tales from the Runtime: 
Organization and 
Optimization 
Mark L. Van Name 
and Bill Catchings 

160 Philippe's Turbo Talk 

DEPARTMENTS 

6 Dialog 

150 Archimedes' Notebook: 
Rocketry With Eureka 
DavidEag"le 

153 Critique: Desktop for Paradox 
Alan knreich 

154 Critique: Peabody 1.02 
Peter Aitken 

155 BookCase: Turbo C: The Art of 
Advanced Program Design, opti­
mization, and Debuggi,ng 
Reviewed by Marty Franz 

156 BookCase: Turbo Basic Pro­
grams for Scientists & Engineers 
Reviewed by Peter Aitken 

157 Turbo Resources 

Cover: Sorting a database can be done on 
only one field at a time, and puts your 
data fil.es at risk. Indexing a database can 
be done on any number of fields, and 
involves little or no risk to the database 
files themselves. Turbo Access (from the 
Turbo Pascal Database Toolbox) provides 
a fast interface to your database fil.es 
through as many indexes as you care to 
create. Photography by Bradley Ream. 

TURBO TECHNIX 

Publisher 
John Hemsath 

Editor in Chief 
Jeff Duntemann 

EDITORIAL 

Managing Editor 
Michael Tighe 

Technical Editor 
Michael A. Floyd 

Copy Editor 
Pamela Dillehay 

Editorial Assistant 
Sheriann Glass 

Technical Consultants 
Brad Silverberg 
David Intersimone 
Adam Bosworth 
Paul Chui 
Lee Cantey 
David Golden 
Peter Iaria 

DESIGN & PRODUCTION 

Art Director 
Karen Miner 

Production Assistant 
Annette Fullerton 

Typesetting Manager 
Walter Stauss 

Typesetter/ System Supervisor 
Jeffrey Schwertley 

Typesetters 
Ron Foster 
Jeanie Maceri 

Typesetting Traffic 
Charlene McCormick 

Photographer 
Bradley Ream 

ADMINISTRATION 

Purchasing 
Brad Asmus 

ADVERTISING 
SALES OFFICES 

Home Office 
(408) 438-9321 

Western Office 
Janet Zamucen 
(714) 858-0408 

New England Office 
Mid-Atlantic Office 
Merrie Lynch 
Nancy Wood 
(617) 848-9306 

Southeastern Office 
Megan Patti 
(813) 394-4963 

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 1800 Green Hills Road, 
P.O. Box 660001, Scotts Valley, CA 95066-0001. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright C>l988 Borland 
International, Inc. All rights reserved. No part of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a 
statement of our permission policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECH­
NIX, 1800 Green Hills Road, P.O. Box 660001 , Scotts Valley, CA 95066-0001. Editorial and business offices: TURBO TECHNIX, 1800 Green Hills Road, P.O. 
Box 660001, Scotts Valley, CA 95066-0001. Subscription rate is $49.95 per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is 
$10.00. For subscription service write to Subscriber Services, TURBO TECHNIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001. 

July/ August 1988 TURBO TECHNIX 3 



BEGIN 
Naming the animals 

Jeff Duntemann 

T he story goes that God 
created the animals, and 
Adam named them­
not to call them, as in 

Ralph or Chewy or Spike, but to 
classify them. It was a process to 
separate the eaters from the 
eaten, the pet from the pot. A 
name implies a method of dealing 
with the named entity. If you get 
the name wrong, your assump­
tions may never catch up with 
reality, and you may end up (at 
best) hunting mosquitoes with a 
howitzer, or (at worst) hunting 
tigers with a flyswatter. 

One very fine example of this 
kind of trap involves laser print­
ers versus the more traditional 
dot-matrix and daisy-wheel print­
ers. We call them both "printers," 
but the two groups have a funda­
mental difference : Traditional 
printers move a piece of paper 
past a printhead, printing as the 
paper goes by. Laser printers 
build a virtual image in their 
buffers, in a sense passing a vir­
tual printhead over the entire 
sheet at random before finally 
"developing" the image by send­
ing the paper through the xero­
graphic engine. This difference 
intrudes when you try to mask 
variations among printers behind 
a suite of generalized printer rou­
tines. A PrinterXY routine that 
moves the printhead to a given 
X,Y position on the sheet is noth­
ing more than an escape se­
quence to a laser printer. On the 
other hand, the paper in a matrix 
printer can't be backed up to pos­
ition 0,0 once it's been indexed 
downward. Implementing Print-

4 TURBO TECHNIX July/ August 1988 

erXY on a matrix printer means 
allocating and writing to a "virtual 
page" in memory somewhere, and 
not actually moving the physical 
printhead over the paper until the 
virtual image is complete and a 
form feed is sent to the driver. 
Quite apart from finding enough 
memory for graphics imaging­
brother, can you spare me a 
megabyte?-this is a lot like gluing 
fangs on a hamster and calling it 
a lion. The hamster people will 
come to expect too much, and the 
lion people will not be fooled. 

The correct way to deal pro­
grammatically with laser printers, 
as far as I'm concerned, is to call 
them what they really are: plotters. 
Plotters, like laser printers, can 
write to any location on the sheet 
at random, creating both text and 
graphics interchangeably on com­
mand. Laser printers are primarily 
character devices, but I have yet 
to see one that couldn't generate 
a full page of graphics at some 
resolution, even if not at 300 dpi. 
Most plotter command sets (such 
as the ubiquitous HPGL) include 
commands for printing text at any 
arbitrary size. Creating a common 
API for laser printers and plotters 
requires little more than a trans­
late table for each device, with no 
need for jury-rigging virtual pages 
in scarce system memory. 

It's far too late to get people to 
call laser printers "plotters" out in 
the real world. Within your pro­
grams, however, you can call 
anything by any name you want. 
Back in the software realm, text 
files are character-oriented se­
quential devices, and binary files 
are block-oriented random-access 
devices. Calling both of them 

"files" is confusing and limiting. 
For clarity's sake, it might make 
sense to build a suite of block­
oriented storage routines that do 
not rely on file jargon-with the 
added benefit that storage could 
be accessed identically whether 
it were located on a disk, on the 
heap, or on some 110 mapped 
peripheral.Just because it acts 
like a file doesn't mean it has to 
be called a file. 

Consider this an opportunity to 
rethink the nature of every ele­
ment of your program design, 
along with every machine compo­
nent your program must interact 
with. The Game Control Adapter 
is a joystick socket-says so right 
on the label-yet it monitors four 
switches and measures four resis­
tance values simultaneously. With 
sensors to monitor temperature, 
humidity, and solar flux, and a 
four-bit shaft encoder attached to 
a wind vane, your joystick port be­
comes a weather station interface. 

All too often, we accept a name 
at face value without truly under­
standing what sort of creature 
lives beneath the name. Names 
evolve haphazardly, but the logic 
and sense in a program cannot. 
Consider each programming proj­
ect a new Eden, where you get to 
name the animals. If it walks like 
a duck, it may be a duck-or it 
may be a hamster trying to live 
up to the name Donald. • 

Opinio ns expressed in I.his column are those 
of the editor and do not necessarily reflect 
the views of Borland International, Inc. 



Blaise Passes 
the Screen Test. 

POWER SCREE 
Best performance in a supporting role. 
Because your time is more valuable then ever, Blaise Computing presents POWER SCREEN;" 
the new high performance screen management system designed to support your own creative 
programming efforts. 

POWER SCREEN provides reliable, lightning fast data entry screens and 
menus to create your own sophisticated window oriented applications. 
It allows you to design screens exactly as you want them to appear in your 
final application. Screens are efficiently stored in a file so they can be 
used by your application or later modified without program code changes. 
PAINT, the screen painter included with POWER SCREEN, has the 
appearance and performance of the popular integrated programming 
language environments. It lets you design and modify screens, and 
define and format fields. All VGA, EGA and monochrome text modes, 
attributes and colors are supported. 
The POWER SCREEN Runtime Library a llows you to construct 
screens in memory, display screens in windows and read and write 
data to fields within the screen. All screens and menus are window­
oriented, so they can be stacked, removed or moved on the physical 
screen. You can access screens field-by-field or a whole screen at a 
time. POWER SCREEN takes care of field input editing, data and 
range checking, and data formatting. 

POWER SCREEN out-performs the runners-up with a dazzling 
display of capabilities FEATURING: 
+Virtual screens. Screens that can be larger than the physical 
screen, with just a portion of the screen displayed within a window. 
Write to any screen any time, even if it is not visible. Automatic 
physical screen update. 
+Context sensitive help. Create help text on a field-by-field basis 
or for the entire screen with a window-oriented help facility. 
+Intervention routines. Install them so your application gains 
control when a field is entered, exited and between keystrokes. 
+Range checking. Supported for all standard data types. 
+Unlimited screens. Subject only to the amount of available 
memory. 
+Definable keys. Fully configurable field editing keys. 

POWER SCREEN includes PAINT, the POWER SCREEN 
Runtime Library, as well as other utilities for creating help 
files and maintaining and documenting your screen data­

base files. Language interfaces with source code are included 
for C, Turbo Pascal 4.0 and QuickBASIC. 

The package is accompanied by a fully-indexed comprehensive User Reference 
describing POWER SCREEN procedures and utilities. Complete example programs 
are supplied on the diskettes. 

POWER SCREEN requires an IBM PC, XT, AT, PS/2 o r c lose compatible and DOS 2.00 
or later. To write POWER SCREEN applications , you need one of the supported com­

pilers: Turbo C, Microsoft C (4.00 or later), QuickC, Turbo Pascal (4.0 or later) , 
QuickBASIC (4.0 or later). Interfaces for all supported compilers are included 
with POWER SCREEN. 

Blaise Computing: We've passed the screen test so you 
won't have to. 

Complete price: $129. 

Blaise Computing has a full line of support products for both 
Pascal and C. Call today for your free information packet. 

~ .... 
~~~~~~-~~~~~~~~ 

BLAISE COMPUTING INC. 
2560 Ninlh Slreel. Suilc 316 Berkeley, CA 94710 (415) 540-5441 

Turbo POWER TOOLS 
Screen, window. and menu rnanagem 
including EGA and VGA support: DOS' 
memory control: ISRs: scheduled interven­
tion code; and much more. For Turbo Pascal. 

Turbo ASYNCH PLUS $129.00 
Interrupt driven support for up to four COM 
ports. l/O buffers up to 64K: XON/ XOFF; 
hardware handshaking: up to 19.2K baud: 
modern control and XMODEM file transfer. 
For Turbo Pascal. 

CTOOLSPLUS $129.00 
Windows: menus: ISRs: interven.tion code: 
screen handling and EGA 43-line text mode 
support; direct screen access; DOS file 
handling and more. Specifically designed for 
Microsoft C 5.0 and QuickC. 

C ASYNCH MANAGER $175.00 
Full featured interrupt driven support for up 
to fo ur COM ports. 1/ 0 buffers up to 64K: 
XON/ XOFF: hardware handshaking; up to 
19.2K baud: modern control and XMODEM 
file transfer: For Microsoft C and Turbo C. 

Turbo C TOOLS $129.00 
Full spectrum of general service utility func­
tions including: windows: menus: memory 
resident applications: interrupt service rou­
tines: intervention code; and direct video 
access for fast screen handling. For Turbo C. 

Key Pilot $49.95 
··Super-batch .. program. Create batch files 
which can invoke programs and provide input 
to them: run any program unattended ; create 
demonstration programs; analyze keyboard 
usage. 

EXEC $95.00 
Program chaining executive. Chain one pro­
gram from another in different languages; 
specify common data areas: less than 2K of 
overhead. 

RUNOFF $49.95 
Text formatter for all programmers. Written 
in Turbo Pascal: flexible printer control; user­
defined variables: index generation; and a 
general macro facility. 

TO ORDER CALL TOLL FREE 
800-333-8087 

uickC and QuickBASIC 
are registered trademarks of Microsoft 

Corporation. Turbo C and Turbo Pascal are 
registe,.ed trudemarks of Borland International. 



DIALOG 
GOTO jail; do not p~ the ROM BIOS; 
do not collect 2<0

-
1> multiplies. 

Are we glowing in th.e dark, or is th.e smoke pouring out 
of your ears? Errata or accolad£? Bug or feature? Let 
us and your fellow readers know what's on your mind, 
and our editorial staff and authors will respond as best 
they can. 

Address l.etters to: 
DIALOG 

TURBO TECHNIX Magazine 
1800 Green Hills Road 

P.O. Box 660001 
Scotts Valley, CA 95066 

Letters becom£ th.e property of TURBO TECHNIX 
and cannot be returned. We cannot answer all l.etters in­
divUlually, but we will try to print a representative sam­
pling of mail re<:eived. 

SA VE SOME MUITIPLIES 
I was reading over the Bezier curve routines in Kent 
Porter's article, "Curves, Bezier-Style" (March/ April, 
1988), and thought you might be interested in a slightly 
more efficient binomial coefficient function. Your 
method, although more straightforward, requires 
2 (n- I ) multiplies and 1 divide. If you recognize that 

n! = n(n-l)(n-2) . .. (n-i+ 1) 

i!(n-1)! i! 

then you can rewrite the C function given in the article 
as: 
FUNCTION CCn,i : Integer):lnteger; 

VAR 
nl..lll,den,j : Integer; 

BEGIN 
nl..lll := 1; 
den := 1; 
FOR j := 2 TO i DO 

BEGIN 
nl..lll := nl..lll * (n-j+1); 
den := den * j 

END; 
c := nl..lll DIV den 

END; 

This method only requires 2 (i-I) multiplies and 1 divide, 
thus saving 2 (n- •) multiplies. It would certainly be diffi­
cult to find fault with such a well-written, informative 
article, but in graphics, speed is everything! 

6 TURBO TECHNIX July/ August 1988 

-Paul Cifarelli 
Forest Hills, NY 

Hey, I'll save a multiply anywh.ere I can, and I haven't 
had th.e opportunity to save 2 (n-i! of th.em in quite a while. 
Thanks for th.e tip-every cycle, however spent, makes a 
difference in plotting curves of any stripe. 

-Jeff Duntemann 

GOTO, GOTO, GONE 
I enjoyed Bruce Webster's Binary Engineering col­
umn "Go to, go to" Oanuary/ February, 1988), but I 
must challenge his claim that one cannot prema­
turely exit a FOR loop in Turbo Pascal without use 
of a GOTO. His example was: 

FOR I := 1 TO 50 DO 
BEGIN 

IF PanicButton THEN GOTO 100; 

END; 
100: Yriteln('Loop finished!'); 

This can be revised to avoid the use of GOTO by 
placing the FOR loop in its own procedure: 
PROCEDURE Loop; 

VAR I Integer; 

BEGIN 
FOR I := 1 TO 50 DO 

BEGIN 

IF PanicButton THEN Exit; 

END 
END; 

Loop; 
YritelnC'Loop finished!'); 

While I consider this to be another example of the 
"Tastes Great/ Less Filling" controversy, the fact re­
mains that the GOTO was not really necessary! 

-P. Kenneth Morse 
Augusta, GA 

Your example is accurate but is one of those cases of th.e 
cure possibly being worse than th.e disease. Yes, th.ere are 
times when it would be valid to transform a given FOR 

continued on page 8 



Interlocking Pieces: 
Blaise and 

Turbo Pascal. 
Whether you're a Turbo Pascal expert or a novice, you can benefit from using professional tools 
to enhance your programs. With Turbo POWER TOOLS PLUS™ and Turbo ASYNCH PLUS!" 
Blaise Computing offers you all the right pieces to solve your 4.0 development puzzle. 

Compiled units (TPU files) are provided so each package is ready to use 
with Turbo Pascal 4.0. Both POWER TOOLS PLUS and ASYNCH PLUS 

~~ use units in a clear, consistent and effective way. If you are familiar 
co~"''f,./ with units , you will appreciate the organization. If you are just getting 

.,.?" started, you will find the approach an illustration of how to construct 
and use units. 

+POWER TOOLS PLUS is a library of over 180 powerful functions 
and procedures like fast direct video access, general screen 

handling including multiple monitors, VGA and EGA 50-line 
and 43-line text mode, and full keyboard support, including 

the 101/ 102-key keyboard. Stackable and removable win­
dows with optional borders , titles and cursor memory 
provide complete windowing capabilities. Horizontal , ver­

tical , grid and Lotus-style menus can be easily incorporated 
into your programs using the menu management routines. 
You can create the same kind of moving pull down menus 
that Turbo Pascal 4.0 uses. 

Control DOS memory allocation. Alter the Turbo Pascal heap 
size when your program executes. Execute any program from 
within your program and POWER TOOLS PLUS automatically 
compresses your heap memory if necessary. You can even force 
the output of the program into a window! 

Write general interrupt service routines for either hardware or 
software interrupts. Blaise Computing's unique intervention 
code lets you develop memory resident (TSRs) applications 
that take full advantage of DOS capabilities. With simple pro­
cedure calls, "schedule" a Turbo Pascal procedure to execute 

either when pressing a "hot key" or at a specified time. 

+ASYNCH PLUS provides the crucial core of hardware interrupts 
needed to support asynchronous data communications. This package offers 

simultaneous buffered input and output to both COM ports, and up to four 
ports on PS/2 systems. Speeds to 19.2K baud, XON/ XOFF protocol , hard­

ware handshaking, XMODEM (with CRC) file transfer and modem control 
are all supported. ASYNCH PLUS provides text file device drivers so you 

can use standard "Readln" and "Writeln" calls and still exploit interrupt-driven 
communication. 

The underlying functions of ASYNCH PLUS are carefully crafted in assembler 
and drive the hardware directly. Link these functions directly to your application 
or install them as memory resident. 

Blaise Computing products include all source code that is efficiently crafted , 
readable and easy to modify. Accompanying each package is an indexed 

manual describing each procedure and function in detail with example 
code fragments. Many complete examples and useful utilities are 

included on the diskettes. The documentation , examples and 
source code reflect the attention to detail and commitment to 
technical support that have distinguished Blaise Computing over 

the years. 

Designed explicitly for Turbo Pascal 4.0, Turbo 
POWER TOOLS PLUS and Turbo ASYNCH 

PLUS provide reliable, fast , professional routines-
the right combination of pieces to put your Turbo Pascal 
puzzle together. Complete price is $129.00 each. 

~~ 
~~~~-~~~~~~-
BLAISE COMPUTING INC. 
2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441 

u 

Turbo POWER SCREEN $129.00 
NEW! General screen management; paint 
screens: block mode data entry or field-by­
field control with instant screen access. Now 
for Turbo Pascal 4.0. soon for C and BASIC. 

Turbo C TOOLS $129.00 
Full spectrum of general service utility func­
tions including: windows: menus; memory 
resident applications: interrupt service rou­
tines: intervention code; and direct video 
access for fast screen handling. For Turbo C. 

CTOOLS PLUS $129.00 
Windows: menus: ISRs: intervention code; 
screen handling and EGA 43-line text mode 
support; direct screen access; DOS file han­
dling and more. Specifically designed for 
Microsoft C 5.0 and QuickC. 

ASYNCH MANAGER $175.00 
Full featured interrupt driven support for the 
COM ports. 1/0 buffers up to 64K; XON/ 
XOFF: up to 9600 baud; modem control and 
XMODEM file transfer. For MicrosoftC and 
Turbo C or MS Pasca l. 

PASCAL TOOLS/TOOLS 2 $175.00 
Expanded string and screen handling: graph­
ics routines: memory management : general 
program control: DOS file support and more. 
For MS-Pascal. 

Key Pilot $49.95 
"Super-batch'' program. Create batch files 
which can invoke programs and provide input 
to them: run any program unattended; create 
demonstration programs: analyze keyboard 
usage . 

EXEC $95.00 
NEW VERSION! Program chaining execu­
tive. Chain one program from another in 
different languages: specify common data 
areas: less than 2K of overhead. 

RUNOFF $49.95 
Text formatter for all programmers. Written 
in Turbo Pascal: flexible printer control; user­
defined variables; index generation: and a 
general macro facility. 

TO ORDER CALL TOLL FREE 
800-333-8087 

TELEX NUMBER-338139 

rcrosofl 
and QuickC are 

registered uademarks of 
Microsoft Corporation. Turbo Pascal is a reRis· 
Lered uademark of Borland International. 



DIALOG 
continued from page 6 

loop into a separate procedure (particularly if it were a 
large FOR loop with several exit points), but to do so 
merely to avoid using a GOTO statement in any FOR 
loop could make the program less clear, not more. 

-Bruce Webster 

BIOS, THE MISUNDERSTOOD 
Bearing in mind your January/ February editorial 
comment that "we" know "exactly" what DOS can 
do, I am quite uneasy about the technique used in 
the Turbo Pascal article "Replacing the Keyboard In­
terrupt," by Neil Rubenking. The keyboard interrupt 
is a hardware interrupt, and so may occur at any time, 
including on an internal stack, on top of, and/ or un­
derneath multiple other hardware interrupts on that 
same stack. 

Since DOS has limited-size internal stacks, and the 
processor has no hardware stack-limit checks, it is 
not hard to imagine that, under possibly rare but still 
normal circumstances, the Turbo Pascal 4.0 interrupt 
procedure overhead (that of pushing all registers 
onto the current stack) may exceed the bounds of a 
DOS internal stack. This will not cause an immediate 
crash, but rather a probable crash waiting to happen, 
which may occur when the overwritten code or data 
are used. Turbo Pascal interrupt procedures are 
somewhat more appropriate with software interrupts, 
since an application stack will then be in control. 
The timer (INT 1 CH) is also a hardware interrupt, 
of course. 

As far as I know, this sort of problem has been 
well understood for years, and indeed, has been 
properly handled in various examples of public do­
main INLINE code for Turbo Pascal 3.0; it is thus 
disappointing to see such an outdated and danger­
ous technique appear on your pages. Nevertheless, 
your editorial made an interesting point, even with 
our limited understanding of DOS. 

-Terry Ritter 
Austin, TX 

There's some truth in the caution that a replacement JSR 
should not put anything onto the stack that the ROM 
BIOS JSR doesn 't put there, and Neil 's routines do push 
a couple of extra registers onto the stack, which, as you say, 
could be a DOS stack. However, as Lane Ferris reminded 
me, there can never be more than one INT 9 stack frame on 
the stack at any one time, because INT 9 disables inter­
rupts while it executes, and doesn't enable them until it 
goes home. The extra burden is thus never more than a 
handful of bytes, and is unlikely to cause any problems. 
INT $JC is, in fact, a software interrupt, called from the 
INT 8 hardware interrupt JSR However, because it's 
called from a hardware JSR, the INT $JC stack frame can 
indeed be placed on the DOS stack. We'll be having some 
articles from Lane on the problems of reentrancy, DOS 
stacks, and TSRs in the future; we hope this material will 
shed some light on this very messy issue. 

-Jeff Duntemann 

8 TURBO TECHNIXJuly/ August 1988 

TP OR TC, IT'S ALL THE SAME TO ME 
I thought your readers might be interested in this cu­
riosity-a program that compiles and runs identically 
under both Turbo Pascal and Turbo C. (A warning is 
generated by Turbo C, but can be ignored.) 

const C* Zelkop ) = 100; 
main () 
{ 

printf C "Hello, world.\n" >; 
} 

/*) Zelkop = 100; 
begin 

writeln C 'Hello, world.' >; 
end. 
*I 

The trick is to mix the comment delimiters. Turbo 
Pascal ignores everything between (* and *), while 
Turbo C ignores everything between / * and * / . The 
const may seem to serve no purpose, but it is essen­
tial, since const is the only token that can legally 
begin both a Turbo Pascal and Turbo C program. 

I don't believe such a program can be written in 
standard Pascal as defined by Wirth, or standard C as 
defined by Kernighan and Ritchie. To compile with 
Standard Pascal, it would have to begin with either 
the word program, or an opening comment delim­
iter,(*, but I can't see any way to write a C program 
that fits these criteria. 

My thanks to Neil Rubenking for originally setting 
me this challenge. 

-David Dubois 
Halifax, Nova Scotia 

CANADA 

At last, something for the Turbo hacker who can't make up 
his mind. 

-Jeff Duntemann 

RENDER UNTO THE WIZARDS ... 
I have enjoyed my first issues of TURBO TECHNIX 
immensely. I also find them very instructive and ap­
preciate the three-tiered approach to writing articles. 
Not everyone is equally proficient at different lan­
guages. I, for example, am a BASIC programmer 
from the bad old days of eight-bit machines, and am 
able to appreciate and utilize articles at the Wizard 
level. However, I am a much more recent C user and 
the Programmer level is about as much as I can ab­
sorb without cerebral overload. Keep up the good 
work. 

There is a slight correction to be made to Bruce 
Tonkin's article "Converting .COM Files to 
$INCLUDE files" (January/ February, 1988). The er­
ror only occurs if the last byte of the file corresponds 
to the start of a new line. When this happens, the 
last byte is just attached to the end of the previous 
line, like so: 
SJNLINE &H1, &H2, &H3, &H4, &SH5&H6 

The generated code should, in fact, look like this: 
SINLINE &H1, &H2, &H3, &H4, &HS 
SJNLINE &H6 

To correct this problem, replace these lines in 
COM2INC.BAS: 

continued on page 10 



KNOWLEDGEJ§. POWER 
We're Programmer's Connection, the leading 
independent dealer of quality programmer's 
development tools for IBM personal com­
puters and compatibles. We can give you the 
knowledge to help you make the best software 
buying decisions possible. 
Informative Buyer's Guide. The CONNECTION, our 
comprehensive buyers guide and catalog, contains 
prices and up-to-date descriptions of over 750 
programmer's development tools by over 250 
manufacturers . Each description covers major 
product features as well as special requirements, ver­
sion numbers, diskette sizes, guarantees, and more. 
In addrtion, the CONNECTION features interesting ar­
ticles by leaders in the programming industry. 
How to Get Your FREE Copy: 1) Mail us a card or 
letter with your name and address; or 2) Call one of 
our convenient toll free telephone numbers. 

If you haven't yet received your copy of the 
Programmer's Connection Buyer's Guide, act 
now. Increasing you knowledge about these 
products could be one of the most powerful 
things you'll ever do. 

386 products List Ours 
386 AMS/386 LINK byffilrl.ap Software .......... .New 495 
386 DEBUGGER by ffilr Lap Software ............... .New 195 
Fox BASE +/386 by Fox Softwam .. ....... ..... ...... .. .New 595 
Microsoft Windows 386 by M1crosoff ... 195 
NOP C-386 byMicroway ... .. . . .. .. ............. .New 595 
NOP FORTRAN-386 by Microway .... ... . .. ..... . .New 595 
Paradox 386 by AnsaJBortand ...................... ... .New 895 

blaise products 

389 
145 
399 
129 
529 
529 
639 

ASYNCH MANAGER Supports Turoo C ... 175 135 
C TOOLS PLUS/5.0 .. . 129 99 
Turbo ASYNCH PLUS/4.0 ... 129 99 
Turbo C TOOLS ... 129 99 
Turbo POWER SCREEN ................................... New 129 99 
Turbo POWER TOOLS PLUS/4.0... 129 99 

Peabody Pop-Up Reference Utility 
by Copia International 

List $1 DO Ours $89 
Peabody is a fast and flexible on-line reference util ity with 
databases available for Turbo Pascal v 3 & 4, Turbo C, Microsoft 
C v 5,MS Assembler, or MS DOS. It provides instant, accurate 
and complete language information in pop-up frames at the 
touch of a key. With Peabody, you can select general topics 
from a structured subject menu, or use Peabody's hyperkey to 
get instant help for the keyword closest to the cursor. Specify 
database desired. Additional databases are available for $45. 

borland products 
EUREKA Equat1onSoNer .. 167 115 
Paradox 1.1 by AnsaJBortand...... 495 359 
Paradox 2.0 by AnsaJBorland... 725 525 
Paradox 386 by AnsaJBotland... .. ............ New 895 639 
Paradox Networ1< Pack by Ansa/Botland... .. . 995 725 
Quattro: The Professional Spreadsheet... . 247 179 
Reflex: The Analyst.. 150 105 
Sidekick Plus... . .............. ............ New 200 125 
Turbo Basic Compiler... 100 68 
Turbo Basic Database Toolbox.. .. 100 68 
Turbo Basic Editor Toolbox... 100 68 
Turbo Basic Telecom Toolbox.. 100 68 
Turbo C Compiler... 100 68 
Turbo lightning .................... .. ... 100 68 
Turbo lightning and lightning Word Wizard . 150 105 
Turbo Pascal .. 100 68 
Turbo Pascal Database Toolbox .. 100 68 
Turbo Pascal Developer"s Toolkit .. 395 285 
Tu~~~~~~~ ...... 100 M 
Turbo Pascal Gamewor1<s Toolbox... 100 68 
Turbo Pascal Graph ix Toolbox.. . . 100 68 
Turbo Pascal Numerical Methods Toolbox . 100 68 
Turbo Pascal Tutor ... 70 49 
Turbo Prolog Compiler ... 100 68 
Turbo Pro log Toolbox.. 100 68 

USA ........ 800-336-1166 
Canada .......................................... 800-225-1166 
Ohio & Alaska (Collect) .............. .... 216-494-3781 
lnternational. ... .. ............ ............... .. 216-494-3781 
TELEX .......... ..... ... ........ .................... 9102406879 
FAX .. ................................ ......... .. . 216-494-5260 
Business Hours: 8:30 AM to 8:00 PM EST Monday through Friday 

Prices, Terms and Condttions are subject to change. 
Copyright 1988 Programmer's Connection Incorporated 

Established 1984 

c language 
CBTREE byl\?acock Systems.. ... 159 129 
Essential Software Products All llarielies.. . CALL CALL 
Greenleaf Products All Varieties .. CALL CALL 

creative programming products 
Vitamin C Supports Turoo c.. . 225 159 

Reference Database tor Norton Guides .. .. .. .New 50 47 
VC Screen FormsDesigner ................. NewVer.;ion 150 119 

crescent software produts 
GraphPak for TulboBAS/C ................... .. .. . 
GraphPak Professional torTuroo BASIC ... .. ...... New 
QBase Relafional Database forTuroo BASIC .. 
QBase Report Report Generator forTuroo BASIC ... 
Quick Pak Professionaflor Turoo BASIC .... 

database management 

69 59 
99 89 
99 89 
69 59 

149 129 

Clipper by Nantucket... 695 379 
dBASE Ill Plus by Ashton-Tate ... 695 389 
FoxBASE+ byFoxSoftwam .. 395 249 
FoxBASE+/386 byFoxSoftwam ..................... New 595 399 

~~~- -~ R:BASE for DOS by MicrOlim .. 725 539 
R:BASE for OS/2 byMicrorim ....... .................... .New 895 649 
R:BASE Program lnterface byMicrOlim... 595 389 

microsoft products 
Microsoft C Compiler 5 w/CorJeView ....... New Version 450 299 
Microsoft COBOL Compiler with COBOL Tools .. 700 465 
Microsoft FORTRAN Opfimizing Comp .. .. . New Ver.;ion 450 299 
Microsoft Macro Assembler .................. New Version 150 105 
Microsoft Mouse All llarieties ... CALL CALL 
Microsoft OS/2 Programmer's Toolkit ............. New 350 239 
Microsoft Pascal Compiler ................... New Version 300 199 
Microsoft QuickBASIC .. 99 69 
Microsoft QuickC . .. 99 69 
Microsoft Windows .. 99 69 
Microsoft Windows 386 ... 195 129 
Microsoft Windows Development Kit .. 500 329 
Microsoft Word .. 450 299 
MicrosoftWorks .. . 195 129 

migent products 
DATABASE SERVER Muhi-user database engine ... New 695 629 
Developer's Toolktt for C .................................. New 495 449 
EAGLE Dalabase Appl cafion Language .................. New 495 449 
SUMMIT DatabaseMd-nfor l.otus 1-2-3 ............ .New 195 175 

nostradamus products 
Instant Assistant... 
Instant Replay Ill ..... 
Turbo-Plus Supports Tumo P.lsca/ 4.0 ... . 

peter norton products 

100 89 
150 129 
100 89 

Advanced Norton Utilities .. 150 89 
Norton Commander ... . 75 55 
Norton Editor ... .. .... .. New Version 75 59 

ORDERING INFORMATION 
FREE SHIPPING. Orders within the USA (including 
Alaska & Hawaii) are shipped FREE via UPS. Call for 
express shipping rates. 
NO CREDIT CARD CHARGE. VISA, MasterCard and 
Discover Card are accepted at no extra cost. Your card 
is charged when your order is shipped. Mail orders 
please include expiration date and authorized signa­
ture . 
NO COD OR PO FEE. CODs and Purchase Orders are 
accepted at no extra cost. No personal checks are ac­
cepted on COD orders. POs with net 30-day terms 
(with initial minimum order of $100) are available to 
qualified US accounts only. 
NO SALES TAX. Orders outside of Ohio are not 
charged sales tax. Ohio customers please add 5% Ohio 
tax or provide proof of tax-exemption. 
30-DAY GUARANTEE. Most of our products come 
with a 30-day documentation evaluation period or a 30-
day return guarantee. Please note that some manufac­
turers restrict us from offering guarantees on their 
products. Call for more information. 
SOUND ADVICE. Our knowledgeable technical staff 
can answer technical questions, assist in comparing 
products and send you detailed product information 
tailored to your needs. 
INTERNATIONAL ORDERS. Shipping charges for In­
ternational and Canadian orders are based on the ship­
ping carrier's standard rate. Since rates vary between 
carriers, please call or write for the exact cost. Inter­
national orders (except Canada) , please include an ad­
ditional $20 for export preparation. All payments must 
be made with US funds drawn on a US bank. Please 
include your telephone number when ordering by mail. 
Due to government regulations, we cannot ship to all 
countries. 
MAIL ORDERS. Please include your telephone num-
ber on all mail orders. Be sure to specify computer, • --• 
operating system, diskette size. and any applicable 
compiler or hardware intertace(s). Send mail orders 

to: Programmer's Connection 
Order Processing Department 

7249 Whipple Ave NW 
North Canton , OH 44720 

Norton Guides Speedy Language .. 1 oo 65 
For OS/2 .................................................... New 150 1 09 

Norton Utilities ..... 1 oo 59 

quinn-curtis products 
DOS/BIOS & Mouse Tools for Turoo P.lscaf .. 
MetraByte Data Acquisition Tools ... 
Science & Engineering Tools .. 

C-terp for Turbo C 
by Gimpel Software 

List $139 Ours $119 

75 69 
100 89 
75 69 

C-terp is an interpreter/semi-compiler that serves as a power­
ful , professional C debugging and development environment. 
It features: full K&R C support with ANSI extensions; a full­
screen. built-in , reconfigurable editor ; fast semi-compilation 
and linking; complete multiple module support; 8087 support; 
full graphics support including dual displays; and much more. 

software bottling products 
Flash-up.... 89 79 
Flash-up Developer's Toolbox... 49 47 
Screen Sculptor Supports Tulbo P.lscaf .... 125 109 
SoftCode Supports Borland Languages ................ New 195 159 
Speed Screen .... 35 34 

turbo pascal utilities 
Btrieve !SAM File Mgr by Novell ... 
Overlay Manager by Tulbofbwer Softwam ...... .... New 
TDEBUG 4.0 by TurooFower Software .. 
Turbo Analyst by Turoofbwer Softwam .............. .New 
Turbo Professional 4.0 Tulbofbwer ........ .New Version 
TurboHALO by IMS/, Spedfy Tulbo C or P.lscal ... 
Turbo Ref by Gr.Icon SelVices .. 

other products 
Brief by Solut/On Syslems .. .. ... 
Dan Bricklin"s Demo ll bySottwamGanlen ... 
Dan Bricklin's Demo Pgm by Software Ganten .... 
Dan Bricklin 's Demo Tutorial by Sottwam Garden .. 
OPT·Tech Sort by Opt-Tech Dala Proc ... 
risC Assembly Language by IMS/ ... 

245 184 
45 43 
45 43 
75 69 
99 89 
95 75 
50 45 

195 CALL 
195 179 
75 57 
50 47 

149 99 
80 65 

CALL for Products Not Listed Here 



LISTING 1: SCREEN.C 

/* 
• Fil ls the color text mode screen with character, 
* Character, displayed with attribute Attribute. 
*I 

void FillScreen(char Character, char Attribute) 
{ 

int i; 
unsigned int far *OisplayMemoryPtr; 
unsigned int VideoWord; 

/* Construct a word that contains the character in the low 
byte and the attribute in the high byte */ 

VideoWord = (Attribute « 8) I Character; 

/* Build a far pointer to color text mode display memory */ 
0 i splayMemoryPtr = HK_FP(COLOR_TEXT _SEGMENT, 0); 

/* Set every character on the color text screen to Character, 
displayed with attribute Attribute */ 

for ( ; = O; ; < FILL_LENGTH; i++ ) 
*OisplayMemoryPtr++ = VideoWord; 

10 TURBO TECHNIXJuly/ August 1988 

DIALOG 
continued from page 8 

GET 1,LASTBYTE 
PRINT #2, 11&H 11 ;HEX$(ASC(A$)) 

In their place, put these lines: 

GET 1 I LASTBYTE 
IFCCl-1) MOO 5=0) THEN 'IF PREVIOUS LINE 

PRINT #2, 1111 'ENDS AT POSITION 5 
PRINT #2, 11 $JNLINE &H 11 ; HEX$(ASC(A$)) 

ELSE 
PRINT #2, 11&H 11 ;HEX$(ASC(A$)) 

END IF 
-Gavin Col,e 

Guelph, Ontario 
CANADA 

You've hit on our big secret, Gavin: Whil,e other magazines 
only want to reach wizards, we want to make wizards. 
In other words, wherever on the ladder you happen to fall 
in connection with a given language, grab a rung-we'll 
give you a boost to the next step up. It's call,ed building 
skills, and we think we do it like nobody else. Thanks for 
the COM2INC patch, too. 

-Jeff Duntemann 

SCREAMIN' SCREENS 
Michael Abrash's article "Building Far Pointers with 
MK_FP" (March/ April, 1988) has a sample program 
that illustrates what is probably the most efficient 
way of writing data directly to screen memory in 
Turbo C. But if you are crazy about getting the most 
from your C code, several changes would reduce the 
statements in the for loop in function FillScreen() to 
one statement. These changes are: 
unsigned int far *DisplayMemoryPtr; 
unsigned int VideoWord; 

VideoWord = Attribute << 8; 

for Ci = O; i < FILL LENGTH; i++) 
*DisplayMemoryPtr++ = 
VideoWord I Character; 

Everything else in the function can stay the same. 
And, by the way, keep up the work on what appears 
to be an excellent magazine. I'm looking forward to 
the next issue. 

-Ramon Rivas 
Miami, FL 

Mr. Rivas' changes to FillScreen() certainly make the func­
tion more efficient, both in code size and in speed. Still, 
there's one tweak yet to be made to Mr. Rivas's code: The 
ORing together of the character and the attribute should be 
moved out of the loop. After all, why perform this opera­
tion once every time through the loop, when we actually 
only need to do it once, before the loop? I've written a ver­
sion of Fil/Screen() that incorporates both Mr. Rivas's 
suggestions and my final tweak. It's shown in Listing 1. 

-Michael Abrash 

Listings may be downloaded from CompuServe as 
DILOG5.ARC. 



Turbo Expert. 
Now it doesn't take a genius to 

plug into Expert Systems. 

For only $99.95, you can incorporate the power of a full-fledged Expert System into your TU RBO PASCAL 
programs. Seamlessly. Affordably. Finally. Actual Expert Systems, developed for simple use by any Turbo Pascal 4.0 
programmer. 

Take a look at all the features you suddenly have available with this single Turbo Pascal 4.0 Unit: The ability to 
create large Expert Systems, or even link multiple Expert Systems together. A powerful backward-chaining inference 
engine. Easy flow of both data and program control between Turbo Expert and the other parts of your program, to 
provide Expert system analysis of any database, spreadsheet, file or data structure. The ability to add new rules in the 
middle of a consultation, so your Expert Systems can learn-really learn-and become even more intelligent. 

You also have the ability to create large rule bases and still have plenty of room left for your program, thanks 
to conservative memory use. You can link multiple rule bases, you'll be compatible with our Turbo 
Tuolkit unit5, and you'll be able to do mathematical calculations, ,confidence factors, windowing, rnflWRRf 
and more. 

Imagine a single "EXE" file containing your user interface and data handling, and a full Expert 
system. Call for more information or to order, (317) 876-3042. Software Artistry Inc., 3500 Depauw Blvd., 
Suite 2021, Indianapolis, IN 46268 



MULTIPLE INDEXES WITH 
TURBO ACCESS 
Use multiple indexes with the Turbo Pascal Database 
Toolbox to sort your data-without physically sorting it at all. 

William Meacham 

One of the utilities provided with the 
Turbo Pascal Database Toolbox is Turbo 

.. 

Access, a set of functions and procedures 
to create and manipulate data files and 
their associated indexes. 

PROGRAMMER An index shows the location of some-
thing. The index in the back of a book shows the 
reader where various topics appear in that book. The 
card catalog in a library is a huge index that shows 
(if you know the codes) where to find each book. In 
fact, a card catalog is actually a multip!,e index because 
it shows, in more than one way, where a book is lo­
cated. You can look up a book by its title, by its au­
thor, or by its subject. 

As used in computer databases, an index is a file 
of pointers to records in another file . (A pointer is the 
address of some data item-in this case, a pointer is 
the address of a record in the other fil e. That file is 
called the data fik to distinguish it from the index 
file .) Typically, the pointers in an index file are or­
dered in a way that makes them easy to search. 
When you construct an index file, each record con­
tains both a key, which identifies the corresponding 
record in the data file, and a pointer to the record in 
the data file. Data file records need not be in order. 
As long as the index is in order, it's easily searched 
for the pointer to the desired data file record. 

As an example, let's say that a data file contains 
name and address records, and the key is the last 
name. The data file might contain the following rec­
ords in this random order (each record also contains 
additional data, not shown here for clarity's sake): 

MARTINEZ 
ALPHONSE 
SMITH 
BRYKER 

If this data file doesn't have an index, you have to 
search the entire file to find Bryker. If the file con­
tains a large number of records, the search process 
could get quite tedious. An index, however, speeds 
up the search. In this example, the index file would 
contain the records in the following order: 

12 TURBO TECHNIXJuly/ August 1988 

Key Record in aata file 

ALPHONSE 2 
BRYKER 4 
MARTINEZ 1 
SMITH 3 

The alphabetical order of the records makes it easy 
to perform a binary search on the index to find the 
desired last name. Once the name is found, we go 
directly to that record in the data file without search­
ing the records before it. 

In this case, a multiple index would simply be 
two or more index files. One could be keyed on the 
phone number, and another keyed on the last name. 
Multiple indexes let you access information in more 
than one way. 

This is a very simplistic example. Turbo Access 4.0 
is a collection of functions and procedures that you 
can plug into your application to create data files 
and indexes that far exceed this example-to the 
tune of over two billion records! The indexes are so­
phisticated B+ trees, notjust alphabetized lists, and 
the search algorithm is faster than a binary search. 
In this article, I'll show you how to use the Turbo 
Access routines. I'll also provide concrete examples 
from a shareware application I've written, called the 
Reliance Mailing List. 

DATABASE FUNCTIONS 
There are basically seven things you can do with any 
database: 

1. Create the database; 

2. Open the database; 

3. Add or insert records; 

4. Retrieve records (either randomly or in order) to 
be displayed, printed, etc.; 

5. Change or update records after retrieving them; 

6. Delete records; and 

7. Close the database. 

continued on page 14 





INDEXES 
continued from page 12 

The rich set of procedures in 
Turbo Access lets you do all of 
these things with simple proce­
dure calls. In addition, you can 
have more than one data file, and 
more than one index per data file. 

Turbo Access provides two dif­
ferent ways to handle database 
functions: "high-level" calls and 
"low-level" calls. If you've used 
Turbo Access l.x with Turbo 
Pascal 3.0, you'll feel right at 
home with the low-level calls. 
With Turbo Access 4.0 (which is 
used with Turbo Pascal 4.0), the 
low-level calls are the same as in 
version l .x, with a couple of addi­
tions. The low-level calls in 4.0 

manipulate the data files and the 
index files separately. As a result, 
you can index a non-Turbo Access 
data file, or even use a Turbo Ac­
cess data file without any index 
(although I don't know why 
anyone would want to do that). 
The high-level calls treat the data 
file and the index file as one en­
tity, called a data set. This makes 
it easier to add, retrieve, update, 
and delete records, but it has cer­
tain limitations. You can have only 
one index per data set, and the in­
dex cannot contain duplicate keys. 
I'll say nothing more about high­
level calls in this article; they're 
easy, but low-level calls are much 
more interesting. 

Write Better 
Turbo 4.0 Programs ... 

Or Your Money Back 
You'll write better Turbo Pascal 4.0 programs easier and faster 

using the powerful analytical tools of Turbo Analyst 4.0~ 
You get • Pascal Formatter • Cross Referencer • Program 
Indexer • Program Lister • Execution Profiler, 
and more. Includes complete source code. 

Turbo Analyst 4.0 is the successor to the 
acclaimed TurboPower Utilities: 
"l.fyou own Turbo Pascal you should own the Turbo 
Power Programmers Utilities, that's all there is to it." 

Bruce Webster, BYfE Magazine, Feb. 1986 

GETTING STARTED 
First, create a file that defines the 
data file record type(s) and the in­
dex file record type(s). Next, run 
the TABUILD program to compile 
the Turbo Access unit and config­
ure it for your application. This 
is an important step because the 
Turbo Access routines are gener­
ic-they work with any size data 
record and any size index record 
(within certain limits). Turbo Ac­
cess l .x required that some global 
variables be defined before the 
Turbo Access source code was in­
cluded. The most important of 
these global variables were Max­
DataRecSize (the size of the larg­
est data record) and MaxKeyLen 
(the size of the largest string to be 
used as a key) . Turbo Access 4.0 
resides in a unit that is compiled 
separately from your program. 
Since this unit needs to know the 
values for these global variables, 
the values are built in by TA­
BUILD when the unit is compiled. 

Incidentally, this means that 
you'll need to compile a separate 
version of the TACCESS unit for 
each of your applications. I keep 
a separate subdirectory on my 
hard disk for each application that 
uses Turbo Access, and then com­
pile a separate version ofTAC­
CESS in each subdirectory. For in­
stance, I used this command line 
to compile TACCESS for my mail­
ing list program: 
TA~UILD \TP4\MAIL\MAIL.TYP 

This command line was executed 
from the TACCESS subdirectory. 

Turbo Analyst 4.0 is only $75. 
~ :'!:~~~;;:::;~· 1 During execution, it created TAC­
'"i CESS.TPU in the MAIL subdirec­

A Library of Essential Routines 
Turbo Professional 4.0 is a library of more than 400 state-of-the-art 

routines optimized for Turbo Pascal 4.0. It includes complete 
--~ source code, comprehensive documentation, and demo 

programs that are powerful and useful. Includes 
• TSR management • Menu, window, and data 

entry routines • BCD • Large arrays, and more. 

Turbo Professional 4.0 is only $99. 
Call toll-free for credit card orders. 

1-800-538-8157 ext 830 (1-800-672-3470 ext. 830 in CA) 

Satisfaction guaranteed or your money back within 30 days. 

Fast Response Series: 
• T-DebugPLUS 4.0- Symbolic 
run-time debugger for Turbo 4.0, 
only $45. ($90 with source code) 
• Overlay Manager 4.0- Use over­
lays and chain in Turbo 4.0, only $45. 
Call for upgrade information. 

Turbo Pascal 4.0 is required. 
Owners ofTurbofuwer Utilities w/o 
source may upgrade for $40, w/source, 
$25. Include your serial number. For 
other information call 408-438-8608. 
Shipping & taxes prepaid in U.S. & 
Canada. Elsewhere add $12 per item. 

14 TURBO TECHNIXJuly/August 1988 

TurboPower Software 
P. 0. Box 66747 

Scotts Valley, CA 95066·0747 

tory. The important file here is 
MAIL.1YP-you'll need to under­
stand this file in order to follow 
the examples presented later. 
MAIL.TIP is listed in Figure 1. 

TABUILD uses MaxDataType 
to set aside enough space in 
TACCESS.TPU for the largest data 
record you'll be using. Likewise, 
MaxKeyType reserves enough 
space for the largest index record. 
You can have numerous data files 
and indexes-TACCESS works 
fine with all of them as long as no 
data file record exceeds the size 
of MaxDataType, and no index 
file record exceeds the size of 
MaxlndexType. 

Figure 2 contains a few of the 
constants and variables that are 

continued on page 16 



• Finally. A progr~ 
tool for people 

who hate mantial labor. 
Nobody ever said programming PCs 
was supposed to be easy. 

But does it have to be tedious and 
time-consuming, too? 

Not any more. 
Not since the arrival of the remark­

able new program you see here. 
Which is designed to save you 

most of the time you're currently 
spending digging through the books 
and manuals on the shelf above. 

drawing characters, ~!==~i~ Which is why each ver-
error messages, ': • sion of the Norton Guides 
memory usage maps, • i. '--; "' ·' comes equipped with a 
important data struc- -===--I - • built-in compiler-the same 
tures and more. compiler used to develop the data-

How much more? bases contained in the Guides. 
Well, the Guides to BASIC, C and So you can create new databases of 

Pascal contain detailed listings of your own, complete with electronic 
all built-in and library functions. indexing and cross-referencing. 

The Guide to BIOS/DOS/As- No wonder PC WEEK refers to 
sembly delivers a complete collec- the Guides as "a set of programs 

tion of DOS service that will delight programmers'.' 
calls, interrupts Your dealer will be delighted to 
and ROM BIOS give you more information.All you 
routines. have to do is call. Or call Peter 

While the Guide Norton Computing. 
to OS/2 API packs a And ask for some guidance. 
handy DOS-to-OS/2 
conversion table. 

A Guides reference summary screen 
(shown in blue) pops up on top of 
the program you 're working on 

(shown in green). 

Summary data expands on 
command into extensive detail. 
And you can select from a wide 

variety of information. 

You can, of course, 
find most of this 
information in the 
books and manuals 
on our shelf. 

It's one of a quintet of pop-up 
reference packages, called the 
Norton On-Line Programmer's 
Guides, that search for information 
automatically-in DOS or in OS/2 
protected mode. 

Each package comes complete 
with a comprehensive, cross­
referenced database crammed with 
just about everything you need to 
know to write applications. 

Everything from facts about lan­
guage syntax to a variety of tables, 
incluqing ASCII characters, line 

But Peter Norton 
-who's written quite a few books 
himself-figured you'd rather have 
it on your screen. 

Instantly. 
In either full-screen or moveable 

half-screen mode. 
Popping up right next to your 

work Right where you need it 
This, you're probably thinking, is 

precisely the kind of thinking that 
produced the classic Norton Utilities. 

And you're right 
But even Peter Norton can't think 

of everything. '::P.eterN~ 
COMPUTING 

Designed for the IBM • PS/2 " and PC families, and 100% compatibles. Available at most software dealers.or direct from Peter Norton Computing, Inc., 2210 Wilshire 
Blvd. #186. Santa Monica.CA 90403. 213-319-2000. Visa and MasterCard welcome.© 1988 Peter orton Computing. 



type 
date record 

yr, 
mo, 
dy : integer 

end ; 

key1_typ = string[5] ; 
{ The key is the first five characters of the last name, stripped of 

blanks and capitalized. } 

key2_typ = string[14l ; { zip code + key1_typ } 

mf_rec = record 
status 
last name 
frst-name 
title 
salutation 
addr1 
addr2 
city 
state 
zip 
home_phon 
work_phon 
precinct 
last amt 
last= date 
tot amt 
flags 

end ; 

longint ; 
string C30l 
stringC18l ; 
string C9l ; 
stringC11l 
string C25l 
string C25l 
string C23l ; 
string C2l ; 
string C9l ; 
string [14] ; 
string C14l ; 
string C3l 
real 
date 
real 
byte 

{Master File record} 
{ 0 = active, else deleted } 

{ eg, Dr., Mr., Ms., etc} 
{Dear ... } 

{ last contribution amount } 
{ last contribution date } 
{ total contribution amount } 
{ 8 booleans, user·def ined } 

{ total 

{ 4} 
{31} 
{19} 
{10} 
<12} 
{26} 
{26} 
{24} 
{ 3} 
{10} 
{15} 
{15} 
{ 4} 
{ 6} 
{ 6} 
{ 6} 
{ 1} 

218} 

MaxDataType = mf_rec 
MaxKeyType = key2_typ ; 

Figure 1. The master fi/,e record format for a typical database application. 

const 

var 

mf f name 
ixi" fname 
ix2-fname 
no_dups = 0 
dups_ok = 1 

master 
key1 
key2 

mf file 
ixi" file 
ix2=file 

rec_num 

string [14] 
string [14] 
string [141 

mf rec ; 
key1_typ 
key2_typ 

datafile; 
indexfi le 
indexfile 

longint ; 

'MASTER.RML' ; {master file} 
'INDEX1.RML' ; { index file--last name} 
'INDEX2.RML' ; { " zip+last name } 
{ parameter for proc Openlndex } 
{ parameter for proc Openlndex } 

{ master record } 
{ key1 work area } 
{ key2 work area } 

{master file -- type def. in TACCESS} 
{ index file -- type def. in TACCESS} 
{ index file -- type def. in TACCESS} 

{ relative record number of master rec } 
{called DataRef in the manual } 

Figure 2. Fi/,e and record declarations for a typical database application. 

INDEXES 
continued from page 14 

used later in the examples. My ap­
plication has one data file of 
names, addresses, and other infor­
mation; and two index files. 

The important items here are 
the variable declarations for the 
data file and the index files. The 
type definitions, such as DataFile 

16 TURBO TECHNIXJuly/ August 1988 

and IndexFile, are predefined in 
the TACCESS unit; all you have to 
do is define the file variables. (Do 
not declare mf_file as a file of mf_ -
rec; instead, use the TACCESS 
predeclared type DataFile.) Turbo 
Access declares record types or 
record variables for the indexes. 

DATA FILE STRUCTURE 
Basically, a Turbo Access data file 
is a file of records that is just like 

a normal Turbo Pascal file, except 
that the first record is reserved for 
system information and doesn't 
hold data. This first record con­
tains the length of each data rec­
ord, and a pointer to a list of 
deleted records. Records are re­
trieved according to their physical 
location in the file; I call this lo­
cation the relative record number. 
The first record is record 0, the 
second is record 1, and so on. 

Record 0 also contains pointers 
to a free list that is kept within the 
file. A free list is a list of records 
that have been logically deleted. 
When the physical records are de­
leted, they're not removed from 
the file; instead, the deleted rec­
ords are marked with a long inte­
ger value that is stored in the rec­
ord's first four bytes. Each value 
points to (i.e., contains the relative 
record number of) the next logi­
cally deleted record in the list 
The long integer value stored in 
the last record in the chain is set 
to -1. In accordance with the 
manual's recommendation, I've 
set up a long integer status field in 
the first four bytes (see the status 
field in the mf_rec definition in 
Figure 1). status indicates whether 
the record is active or deleted. 
When adding a record, set status 
to 0, because a deleted record will 
never have a status value of 0. You 
can use the status field to rebuild 
the indexes by searching the data 
file sequentially. I'll give an exam­
ple of this process later on. 

CREATING A DATABASE 
Now let's look at the seven basic 
database functions, beginning 
with the process of creating data 
files and index files. When creat­
ing your files, you should follow 
a certain sequence: 

1. Create the data file; 

2. If that is successful, create the 
first index; 

3. If that is successful, create the 
second index; and 

4. Repeat the index-creation step 
for as many indexes as you 
want to have. 

If any step along the way fails, 
halt the program immediately, be­
cause you can't continue and still 
generate an intact database. 

continued on page 18 



If you think writing program code 
is a dirty business, we have something 
to help you clean up your act. 

It's called Matrix Layout. Layout 
lets you create programs that do 
exactly what you want, quickly and 
easily-without writing a single line 
of code. Layout does it for you auto­
matically, in your choice of Turbo 
Pascal, Turbo C, Microsoft C, Quick­
Basic or Lattice C. And if you're not 
a programmer, you can even create 
programs that are ready-to-run. 

As the first true CASE (Com­
puter Aided Software Engineering) 
development tool for the PC, Layout 
lets you write your programs simply 
by drawing an icon-based flow chart. 
They'll have windows, icons, menus, 
buttons, dialog boxes, and beautiful 
graphics and text. Like the Macintosh 
and the OS/2 Presentation Manager. 

And because Layout is so effi­
cient, everything you create will 
work incredibly fast, even on stan­
dard PC's with 256K and only one 
disk drive. To top it off, all your pro­
grams will feature Layout's auto­
matic mouse support, sophisticated 
Hypertext functions, and decision 
handling. 

The full Layout package also 

comes with three additional programs: 
Matrix Paint is a professional 

paint program that comes with a full 
palette of high-powered graphics 
tools , plus scanner support. And any 
picture or symbol that you draw or 

== 
.---11.tii.1c..:;t1~"· 

~"e" Jjj:::·~!;, :J·=-- J 
~~ -··= .::.'!1:1.'1'-·-J 
lli®l=r.::1.~t:ll ..... J figTatt~r=-.,.,i 

~] R:U.~~--.. J f'".: Ill!"-'"'"'-•·-] 
11:J.1= =.."!!!."'-·-J lraJ.~..:.=~·-J 

1~=:,,.,l::f-~] ·~~J=A• J 
llilJIJ~J.=... J 11r ire.·= J 

1. Draw a flow-chart. 
2. Matrix Layout creates 

the program code. 
3. Your program is complete. 

LAYOUT 

scan into Paint can be included in 
your program. 

Matrix Helpmaker allows you 
to include an electronic manual in all 
your programs. Context-sensitive help 
windows, a table of contents, index­
ing, and the convenience of Hypertext 
functionality can now become a part 
of everything you create. 

Finally, Matrix Desktop gives 
you the ability to organize your files 
and disks in a very Macintosh-like 
easy to see, easy to use way. 

What's the cost? At just $149.95 
for the entire package, Layout speaks 
in a language you'll love to hear. 
Especially with our free customer 
support, no copy protection, and a 
30-day, money-back guarantee. 

Video Tape Offer 
Our new demonstration video­

tape graphically illustrates how the 
many features of Matrix Layout will 
make a difference in your life. Call 
1-800-533-5644 and order your VHS 
copy now Gust $9.95 for shipping 
and handling, credited against your 
purchase). In Massachussetts, call 
(617) 567-0037. 

Do it today. Because once you 
see what Layout can do for you, we 
think you'll swear by it. 

Matrix Software Technology Corporation • One Massachussetts Technology Center· Harborside Drive· Boston, MA 02128 • (617) 567-0037 
Matrix Soll ware/ UK• Plymouth. E~land • 796-363 •Matrix Software/ Belgium• Gcldcnaaksebaan 476 • 3030 Leuven • 016202064 

The following are regi~tered and unregistered trademarks of the companies listed: Matrix. Layout Matrix Paint. Matrix t-l elpmaker. Matri x Desktop. 
Ma trix Software Technology Corporation: Macinto..,h. Apple Com1>uler. Inc.: OS 12 Pre~entation Manager. International Business Machines Corporation. 



procedure create tiles · 
{This is call~ if flles are not found on the selected drive. 

It creates the master and index files. } 

{ global type 
str14 = string[14J ; } 

procedure bont> (filename : str14) ; 
begin 

show msg (concat('CANNOT CREATE ',filename,'!')) 
halt-

end ; 

begin 
~kefile Cmf_file,mf_fname,sizeof(master)) ; 
1f not OK then bont> Cmf fname) · 
~keindex Cix1_file,ix1=fname,slzeof(key1)-1,dups ok) 
1f not OK then bont> (ix1 fname) · -
~keindex Cix2_file,ix2_f'name,si;eof(key2)-1,dups ok) 
1f not OK then bont> (ix2_fname) ; -

clear_master ; {set values to zero and blank} 
addrec Cmf_file,rec_nl.ITI,master) 
deleterec Cmf file rec nl.ITI) · 
close_ database ' - ' 

end; { --- Procedure create_files --- } 

Figure 3. Creating a database. 

procedure close database · 
{Close master file and

1 

index files} 

begin 
closefile Cmf file) · 
closeindex Cix1 file) 
closeindex (ix2-file) 

end ; { proc close_database } 

Figure 4. Closing a database. 

INDEXES 

continued from page 16 

Figure 3 shows a portion of my 
code for creating a database. The 
Turbo Access routines called by 
procedure create_files are Make­
File, Makelndex, AddRec, and 
DeleteRec. 

MakeFile takes three param­
eters: a file of type DataFile, the 
filename, and the length of the 
record. Notice the use of Turbo 
Pascal's SizeOf function. You 
probably know better than to code 
a numeric constant into a call like 
this, because if you change the 
record size, you risk forgetting to 
change the numeric constant 
somewhere. 

Makelndex takes four param­
eters. The first three correspond 
closely to those of MakeFile. The 
fou~h ~arameter, Status, is a flag 
that mdicates whether duplicate 
keys are allowed. Status is passed 
a value of 0 if duplicate keys are 
forbidden, and a value of 1 if du­
plicates are allowed. Notice that 
the size of the key variable passed 
to Makeindex in the KeyLen 

18 TURBO TECHNIXJuly/ August 1988 

parameter is one less than the ac­
tual size of the variable. This is 
because all index keys are strings. 
If a key is of another type (such as 
a real or an integer), that key must 
first be convened to a string in 
order to be used as a key. Makeln­
dex wants the maximum number 
of bytes of string data containable 
in the string, not the physical 
length of the entire variable. The 
length byte must not be counted 
in the value passed in KeyLen. 

Boolean variable OK is prede­
fined in the TACCESS unit, and its 
value is updated after many of the 
Turbo Access procedure calls. Ac­
cording to the documentation, if 
a call to MakeFile or Makelndex 
fails, OK is set to False. (I have 
not tested every possible way to 
make these procedures fail. I have 
found, however, that if a disk is 
full , the program crashes with an 
I/O error. Although it looks 
pretty, my bomb procedure has 

never been executed; I leave it in 
just in case.) 

Now look at what happens after 
the files are created-a record is 
added and then deleted. Why? To 
protect data file integrity, I prefer 
to keep files closed except when 
they're actually being accessed. 
But if you create a file and then 
close it before writing any records, 
the file length is zero. However, 
since no record 0 exists, the nec­
essary system information is not 
contained anywhere. As a result, 
t?e data file crashes the applica­
t10n when the data file is opened 
later on. The solution is to add a 
record and then delete the record 
immediately. This creates record 
0 (and record 1, which, as you 
may recall, is logically but not 
physically removed from the file) . 

Procedure Close_Database is 
~hown in Figure 4. This procedure 
1s an easy way to close the data 
file and the index files at the 
same time. 

OPENING A DATABASE 
The steps for opening the data­
base are very similar to those for 
creating the database: 

1. Open the data file; 

2. If that is successful, open the 
first index; 

3. If that is successful, open the 
second index; and 

4. Repeat for as many indexes as 
you want to have. 

Figure 5 contains my open_­
database procedure. The param­
eters for OpenFile and Openln­
dex are exactly the same as for 
MakeFile and Makelndex. Notice 
that in both sets of procedures, ac­
tual records are not passed. In­
stead, only the length of the data 
or index records contained in the 
file is passed. 

ADDING RECORDS 
Now we're ready to add records. 
The procedure for adding a rec­
ord n:iirrors that for creating and 
openmg databases, with a few ad­
ditional steps. Assuming that the 
user has filled out a data entry 
screen for the record to be added 
take the following steps: ' 

1. Construct a key for the first in­
dex. Each key should be related 

continued on page 20 



SUN MON TUE WED THU FRI SAT 
NOTES 

6 

Cut to the Quick 

13 

20 

27 

MAGIC PC ELIMINATES CODING ••• CUTS MONTIIS OF DATABASE DEVELOPMEN11 

Time is money. And coding a DBMS 
application like Accounting or Order 
Entry takes a lot ofboth. Simply be­
cause hacking out mountains of code 
with your RDBMS or 4GL is too 
slow. Not to mention the time to re­
write if you make a mistake or change 
the design. 

EXECUflON TABLES 
ELIMINATE CODE! 

Magic PC cuts months of your appli­
cation development time because it 
eliminates coding. You program with 
the state-of-the-art Execution Tables 
in place of conventional programming. 

HOW DOES IT WORK? 
Magic PC turns your database design 
scheme directly into executable appli­
cations without any coding. Use Exe­
cution Tables to describe only what 
your programs do with compact design 
spec's, free from lengthy how to pro­
gramming details. Each table entry is 
a powerful non-procedural design in­
struction which is executed at com­
piled-like speed by a runtime engine. 
Yet the tables can be modified "on the 
fly" without any maintenance. De­
velop full-featured multi-user turn­
key systems with custom screens, 
windows, menus, reports and much 
more in days - not months! No more 
low-level programming, no time 
wasted ... 

MAGIC PC™ 
The Vf1v.4/oatabase Language 

"Magic PC's database en­
gine delivers poweiful apJr 
lications in a fraction of 
the time ... there is no com­
petitive product" 

"Overall, Magic PC is one 
of the most powerful DBMS 
packages available." 

• Quick Application Generator 

• BTRIEVE® - based multi-user RDBMS 

• VJ.SUal design language eliminates coding 

• Maintenance-free program modifications 

• Easy-to-use Visual Query-By-Example 

•Multi-file Zoom window look-ups 

• Low-cost distribution Runtimes 

• OEM versions available 

ATTENTION BTRIEVE® USERS 
Now you can quickly enhance your BTRIEVE®­
based applications beyond the capabilities of 
XTRIEVE® and RlRIEVE®. Use Magic PC as 
a turn-key BlRIEVE® Application Generator to 
customize your applications without even chang­
ing your existing code. 

AK~it 
19782 MacArthur Boulevard, Suite 305 

Irvine, California 92715 
1LX: 493-1184 FAX: 714-955-0199 

DATABASE PROGRAMMERS 
Join the thousands of professional 
database programmers and vertical 
market developers who switched to 
Magic PC from dBase®, R:BASE®, 
Paradox®, Clipper®, Dataflex®, Rev­
elation®, Basic, C, Pascal, etc. 

'ljjl:1tl·Vil'Jl1
• 

We'resosureyou'llloveMagicPC­
we'lllet you try the complete package 
first Only a limited quantity is avail­
able, so call us today to reserve your 
copy. Pay for Magic PC only after 30 
daysofworkingwithit *To cancel. .. 
don't call ... simply return in 30 days 
for a $19.95 restocking fee. 

ORPAYNOWATNORISK 
Pay when you order and we'll wave 
the $19.95 restocking fee so you have 
absolutely no risk. 

SPECIAL OFFER~ 

s199c .. ~ 
Magic LAN multi-user - $399 

Magic RUN - call for price 

Order Now Call: 
800-345-MAGIC 

In CA 714-250-1718 
TI 

Add $10 P&H, tax in CA. International orders add $30. 
'Secured with credit card or open P.O. Valid in US. 

Dealers welcomed 



procedure open_database ; 
{Open master file and index files} 

procedure bomb (filename : str14) 
begin 

show msg (concat('CANNOT OPEN ',filename,'!')) 
halt-

end ; { proc bomb } 

begin 
openfile (mf_file,mf_fname,sizeof(master)); 
if not OK then bomb (mf fname) ; 
openindex (ix1_file,ix1=fname,sizeof(key1)-1,dups_ok) 
if not OK then bomb (ix1 fname) ; 
openindex (ix2_file,ix2_fname,sizeof(key2)-1,dups_ok) 
if not OK then bomb (ix2_fname) 

end ; { proc open_database } 

Figure 5. Opening a database. 

C global type 
str30 string[30l 
str _type = string [80) } 

{ -------------------- } 

function purgech (instr : str_type; inchar : char) : str_type 
{Purges all instances of the character from the string} 

var 
n 
outs tr 

integer 
str_type 

{ Loop counter } 
{Result string} 

begin 
outstr := '' ; 
for n := 1 to length (instr) do 

if not (instr[n] = inchar) then 
outstr := concat (outstr, instr[n]) 

purgech := outstr 
end 

{ -------------------- } 

function build key1 (name: str30) : key1_typ; 
{Construct key for index file 1, last name} 

var 
work_area 
i 

begin 

key1_typ ; 
integer ; 

work_area := purgech(name,' ') ; 

{ only five characters } 

{ Get rid of blanks and } 
{ truncate to 5 characters } 

for i := 1 to length(work area) do { Make upper case } 
work_ area [i l : = upcase(work_area [i]) 

build key1 :=work area 
end; {function build_key1 } 

{ -------------------- } 

function build_key2 (name : str30 ; zip : str9) : key2_typ; 
{Construct key for index file 2, zip plus last name} 

begin 
build_key2 := concat(purgech(zip,' '),build_key1(name)) 

end; {function build_key2} 

{ -------------------- } 

{ Code fragment -- Save It is a boolean to capture the user's 
response to the question whether to save the data just entered. } 

if save it then { User says to save the record } 
begin-

key1 := build_key1 (master.last_name) ; 
key2 := build_key2 (master.last_name,master.zip) 
addrec (mf file,rec num,master) ; 
addkey (ix1 file,rec num,key1) 
addkey (ix2-file,rec-num,key2) 

end ; - -

Figure 6. Adding a record to a database. 

20 TURBO TECHNIXjuly/ August 1988 

INDEXES 
continued from page 18 

to the data record in some un­
ambiguous way; 

2. If there is more than one in­
dex, construct the key for the 
second index, and so on for all 
of the remaining indexes; 

3. Add the record to the data file. 
The AddRec procedure returns 
the relative record number of 
the new record in the data file; 

4. If adding the record was suc­
cessful, add the key to the first 
index through the AddKey pro­
cedure, using the first key value 
and the relative record number 
of the new record. This inserts 
the index record into the index 
file in its proper place, so that 
the index file is always easily 
searchable; and 

5. Repeat the previous step for 
each of the remaining indexes. 

The code in Figure 6 demon­
strates this process. Procedure 
AddRec adds the record to the 
data file (reusing a deleted record 
slot if available), and returns the 
relative record number in the 
global variable rec_num. AddKey 
uses this variable and the key 
value to add an index record to 
the index. AddKey inserts the in­
dex record into its proper place in 
the B+ tree, adjusting the tree as 
necessary. 

The global Boolean flag OK 
is not checked after these calls. 
AddRec doesn't update OK; if 
AddRec fails, the program crashes 
with a Turbo Pascal 110 error. 
AddKey does affect OK, but OK is 
relevant only if the index files 
were created and opened with 
duplicate keys disallowed. In such 
a case, an attempt to add an index 
record with a key that was already 
in the index fails, and OK is set to 
False. My particular application al­
lows duplicate keys, so there is no 
need to check OK. 

Note how the key is constructed. 
The primary key consists of the 
first five characters of the last 
name, forced to uppercase and 
purged of blanks. This puts all of 
the keys into a standard format so 
that they can be compared easily, 
but leaves the information in the 
data file intact. Since the key can 

continued on page 22 



Sophisticated User Interfaces in Minutes! 

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop­
up menus, and pull-down menu systems. Overlay them. Scroll within them. 

Users and critics say it all!. .. 

" ... the best I've used .. . The code that it generates is excellent, with every feature you 
could conceivably desire . ... if you have problems, they give excellent technical advice 
over the phone . ... It saves time, is flexible and produces screens which are state of the 
art." Sally Stott, Software Developer 

" ... the best screen generator on the market." George Kwascha, TUG Lines, Nov/ Dt:c 87 

" ... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC 
is extremely flexible . ... [it] clearly offers the greatest variety of options." 

Jim Powell, Computer Language, Jun 87 

"Fast automatic updating of dependent fields adds flair to your input screens. . .. 
turbo MAGIC will be a blessing for programmers who would rather not write the user 
interface for every program. " Neil Rubenking, PC Magazine, 24 Feb 87 

"I was impressed with the turbo MAGIC package .... the procedures created by turbo MAGIC 
are well commented and easy to add to your own code. " 

Kathleen Williams, Turbo Tech Report, May/ Jun 87 

" ... definitely a recommended program for any Turbo Pascal programmer, novice or expert." 
Terry Lovegrove, Library Hi Tech News, Oct 87 

ORDER your Magic TODAY! Only $199. 

CALL TOLL FREE 800-225-3165 or 205-342-7026 

sophisticated 
software 
m 

6586 Old Shell Road, Mobile, AL 36608 
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15. 



{Code fragment for searching an index file 
and retrieving a data record } 

key1 := build_key1 (name) ; 
findkey (ix1_file,rec_nlln,key1) 
if OK then 

begin 
getrec (mf file,rec nLJn,master) , 
{ display the record on the screen } 

end ; 

Figure 7. Searching an index fil,e and retrieving a data record. 

INDEXES 
continued from page 20 

always be reconstructed from the 
information in the data file, in­
dexes can be rebuilt if index files 
are corrupted or destroyed. The 
key string is short in order to save 
disk space. Allowing duplicate 
keys is essential, and we'll see how 
that impacts retrieval shortly. 

Let's step back and look at what 
we have at this point. The data file 
contains a new record, at relative 
record number n. The informa­
tion in the data record bears no 
relation to the relative record 
number. Each index file also con­
tains a new record, which is in­
serted in order according to the 
key value. The index record con­
tains the key and the relative rec­
ord number of the associated data 
record. Assuming that the user 
has entered a sufficient number 
of data records to be useful, we 
are now in a position to retrieve 
information from the database. 

RETRIEVING RECORDS 
In an interactive environment, 
records can be retrieved either 
one at a time (perhaps for display 
on the screen) or as a series (per­
haps for printing a list of names, 
or a series of mailing labels). Re­
trieving one record at a time is 
easy. Assuming that the user has 
entered the name of the person 
whose record is to be retrieved, 
take these steps: 

1. Build the key from the last 
name; 

2. Search the index for the key; 
and 

3. If successful, retrieve the rec­
ord pointed to by the index rec­
ord found. 

These steps are demonstrated 
by the code in Figure 7. Turbo 
Access's procedure FindKey is 
passed the index file's name and 

22 TURBO TECHNIXJuly/ August 1988 

the key, and returns the relative 
record number. FindKey also up­
dates the global Boolean flag OK. 
If OK becomes True, the relative 
record number is that of the first 
index record containing a key that 
exactly matches the key passed to 
FindKey. Next, call GetRec and 
pass the data file and the relative 
record number to that procedure. 
GetRec reads the record at the 
designated relative record number 
into the data record variable. 

There are two interesting pos­
sibilities beyond this simple sce­
nario. The first is that the re­
trieved record may not be the rec­
ord that the user wants, because 
more than one record has the 
same key. The other possibility is 
that no matching key may be 
found at all. 

It is likely that more than one 
record will have the same key in 
this example, since the key is com­
posed of the first five characters 
of the last name. ''.Johnson," 
''.Johns," and ''.Johnston" all have 
the same key. Therefore, the user 
is shown the record that was re­
trieved, and then allowed to 
browse through the database in 
either direction from that point. 
The procedures PrevKey and 
NextKey handle the browsing 
process. Given a key, PrevKey 
finds the previous key, and Next­
Key finds the next one. FindKey 
returns the first matching key and 
its relative record number. Calls 
to these procedures are encapsu­
lated in my procedures get_prev _ -
rec and get_next_rec. If the user 
chooses to look at the previous 
record, get_prev _rec is called and 
displays the record. get_next_rec 
works similarly for the next rec­
ord. Note that these are the pre­
vious and next logical records, in 
key sequence, not the next or pre­
vious physical records, whose se-

quence is generally unordered. 
The code is shown in Figure 8. 

PrevKey and NextKey are vir­
tually identical (except, of course, 
that they get different keys). The 
new key value is returned in the 
Key parameter passed to both pro­
cedures. If the previous or next 
key is found, each procedure sets 
OK to True. If OK is False, you 
are at the beginning or the end of 
the index file. I found out through 
trial and error that when OK is 
False, the values of the rec_num 
and Key parameters are still up­
dated. That's why I save the initial 
value and re-establish the index 
pointer by calling FindKey again 
after a failed PrevKey or NextKey 
operation. 

The other possible outcome of 
an attempt to retrieve a record is 
that the index search may not be 
successful. In this case, instead of 
displaying an error message, I ask 
the user if he or she wants to view 
the closest record found. If the 
user agrees, the closest record is 
found and displayed as shown in 
Figure 9. 

Figure 9 requires a little expla­
nation. When FindKey fails and 
returns False in OK, it has in fact 
found a key, which is the first key 
greater than the key searched for. 
Instead of showing the record as­
sociated with this key, the user is 
shown the record just before it. If 
a call to PrevKey to retrieve that 
record fails (meaning we are at 
the beginning of the index file) 
SearchKey is called to retrieve the 
first key in the file. SearchKey is 
similar to FindKey, except that 
SearchKey returns the record 
number of the first key that is 
equal to or greater than the key 
requested. FindKey, by contrast, 
only returns success for an exact 
match. If PrevKey fails, the user 
is at the beginning of the file, so 
Searchkey returns True in OK. 

RETRIEVING MULTIPLE 
RECORDS 
A mailing list program would not 
amount to much if it could not 
print a sorted list of its records. 
The procedure for printing a 
sorted list is straightforward: 

1. Position the index pointer at 
the beginning of the index file ; 
and 

continued on page 24 



You'LLLOVE 
/ ~ THESE UTILITIES. 
/~ SAYWHAT?! TOPAZ. 

The breakthrough 
'o ""\) fast screen toolkit for 

~\i b generator Turbo Pascal 4.0 I 
'--.../ 

It doesn't matter which language you pro- Wi If you'd like to combine the raw power and 
gram in. With Saywhat, you can build beautiful E speed of Turbo Pascal with the simplicity and 
elaborate, colorful screens in elegance of dBASE, Topaz 

minut~s! That's right. Truly Gur ARANTEE JT I is just what you 're looking 
fantastic screens for menus, 'I"\. for. You see, Topaz (our 
data entry, data display, and • brand new collection of 
help-panels that can all be displayed Q () units for Turbo Pascal 4.0) was specially 
with as little as one line of code in any IRON CLAD Y created to let you enjoy the best of both 
language. Batch files. too. ~8~X:JT"'\~K worlds. The result? You can create truly 

With Saywhat. what you see is • dazzling applications in a very short 
If you aren't completely 

exactly what you get. And response time delighted with Saywhat or time. And no wonder. Topaz is a compre-
is snappy and crisp, the way you like it. Topaz, return them within hensivetoolkitofdBASE-likecommands 
That means screens pop up instantly, 30 days for a prompt, and functions, designed to help you 
whenever and wherever you want them. ~friendly refund. ,... create outstanding, polished programs, 

Whether you're a novice program- 0 ~ fast. Think of it. With Topaz you can write 
merlongingforsimplicity,oraseasoned -~ Pascal code using SAYs and GETs, 
professional searching for higher produc- ,.i r) , PICTURE and RANGE clauses, then SELECT and USE 
tivity, you owe it to yourself to check out ((.:__,./, \) databases (real dBASE databases!). SKIP through 
Saywhat. For starters, it will let you build 0~ records. APPEND data, and Jots more. 
your own elegant. moving-bar menus into ' \ ' In fact. we've emulated nearly one hundred actual 
any screen. (They work like magic in any J /) J dBASE commands and functions, and even added new 
application, with just one line of code!) !.;::; lL commands and functions to enhance the dBASE 
You can also combine your screens into extremely syntax! All you have to do is declare Topaz's units in 
powerful screen libraries. And Saywhat's remarkable your source code and you 're up and running! 
VIDPOP utility gives all languages running under PC/ The bottom line? Topaz makes writing sophisti-
MS-DOS, a whole new set of flexible screen handling cated Pascal applications a snap. Data entry and data 
commands. Languages like dBASE, Pascal. BASIC. C. base applications come together with a minimum of 
Modula-2, FORTRAN, and COBOL. Saywhatworkswith code and they'll always be easy to read and maintain. 
all the dBASE compilers, too! Topaz comes with a free code generator that auto-

With Saywhat we also include a bunch of terrific matically writes all the Pascal code you need to 
utilities. sample screens, sample programs, and out- maintain a dBASE file with full-screen editing. Plus 
standing technical support, all at no extra cost. (Com- outstanding technical support, at no extra cost. (Com-
prehensive manual included. Not copy protected. No prehensive manual included. Not copy protected. No 
licensing fee, fully guaranteed). $49.95 licensing fee, fully guaranteed). $49.95 

ORDER NOW. YOU RISK NOTHING. Thousands of satisfied users have already ordered from us. Why not call toll-free, right 
now and put Saywhat and Topaz to the test yourself? They're fully guaranteed. You don't risk a penny. 

SPECIAL LIMITED-TIME OFFER! Buy 
Saywhat?! and Topaz together for just 
$85 (plus $5 shipping & handling). 
That's a savings of almost $15. 

To order: Call toll-free 

800-468·9273 
In California: 800-231-7849 

International : 415-571-5019 

The Research Group 
88 South Linden Ave. 

South San Francisco, CA 94080 

~YES. I want to try : 

Saywhat71 your lightning-fast screen gener- Topaz, your programmer's toolkit for Turbo I 
ator. so send __ copies 1$49.95 each. plus $5 Pascal 4.0. so send __ copies ($49.95 each. I 
shipping & handling! subject to your iron-clad plus $5 sh ipping & handling) subject to your iron- I 
money-back guarantee. clad money-back guarantee. I 

0 YES. I want to take advantage of your special offer! Send me __ copies of both Saywhat?! I 
and Topaz at $85 per pair {plus $5 shippi ng & handling). That's a savings of almost $15. I 

NAME I 
I ADDRESS _______________________ I 

CITY ____________ STATE ____ ZIP ______ I 

0 Check enc losed 0 Ship C.O.D. 0 Credit card I 
"---------Exp. date __ Signature ________ ! 

T H E R E S E A R C H G R 0 U P 



procedure get_prev_rec ; 
{We have already established a value for key1. 

This procedure returns the previous key and associated record. } 

var 
entrykey1 : key1_typ ; 

begin 
entrykey1 := key1 ; 
prevkey Cix1_file,rec_num,key1) 
if OK then 

{ save inital value } 

{ OK = found previous key } 
getrec Cmf file,rec num,master) 

else - -
begin 

key1 := entrykey1 ; 

{ not OK = at first key} 
{re-establish pointer to key1 } 

findkey Cix1 file,rec num,key1) 
end - -

end ; { proc get_prev_rec } 

{ ----------------------------------------------------------- } 

procedure get_next_rec ; 
{We have already established a value for key1. 

This procedure returns the next key and associated record. } 

var 
entrykey1 : key1_typ ; 

begin 
entrykey1 := key1 ; { save initial value } 
nextkey Cix1 file,rec num,key1) 
if OK then - - { OK = found next key } 

getrec Cmf_file,rec_num,master) 
else 

begin 
key1 := entrykey1 ; 

{ not OK = at last key } 
{re-establish pointer to key1 } 

findkey Cix1 file,rec num,key1) 
end - -

end ; { proc get_prev_rec } 

Figure 8. Moving forward and backward from a found key. 

{ Code fragment. Re·.: r i eve the record just before the 
one that caused FindKey to fail} 

if get closest then 
begin 

{ user said yes } 

prevkey Cix1_file,rec_num,key1); { get the key before } 
{ the key actually} 
{ found } 

if not OK then 
searchkey Cix1_file,rec_num_key1); { searchkey will always} 

{ return OK true unless } 
{ at the end of the } 

getrec (mf_file,rec_num,master) 
end ; 

{ index file } 

Figure 9. Retrieving the closest record to a record not found. 

INDEXES 
continued from page 22 

2. Get keys in sequential order, 
then print the record for each 
key until the end of the index 
is reached. 

My application easily sorts by 
last name and zip code because it 
has two indexes. The code in Fig­
ure 10 shows how calls to two dif­
ferent indexes can be incorporat­
ed into one procedure. 

One Turbo Access procedure 
that I have not yet discussed is 

24 TURBO TECHNIXJuly/ August 1988 

ClearKey. ClearKey positions the 
index pointer to just before the 
first key and just after the last key. 
That's not a contradiction if you 
think of the index as circular. Go­
ing forward from the last record, 
you arrive at the first record; go­
ing backward from the first rec­
ord, you arrive at the last record. 
ClearKey puts you in a limbo po­
sition between the last and first in­
dex records. Following ClearKey, 
a call to NextKey gives the first in-

dex record, and a call to PrevKey 
gives the last record. To print a list 
in reverse order, substitute Prev­
Key for NextKey in the code 
shown in Figure 10. 

UPDATING RECORDS 
A database application must let 
the user update records. The al­
gorithm for updating records is a 
variant of the algorithm for add­
ing a record. Instead of adding a 
new record, the program retrieves 
an existing record, accepts 
changes from the user, and writes 
the record back out Assuming 
that the user has entered the 
name of the person whose record 
is to be retrieved, take these steps: 

1. Build the key from the last 
name; 

2. Search the index for the key; 

3. If successful, retrieve the rec­
ord pointed to by the index; 

4. Accept changes from the user; 

5. Write the changed record to 
the same position in the data 
file where the original record 
was read; and 

6. If no key fields were changed, 
the job is done. If one or more 
key fields were changed, these 
actions must be performed: 

a. Delete the old key or keys, 
and 

b. Add the new key or keys. 

We've already seen how to per­
form steps 1 through 3. While step 
4 is not difficult, it's outside the 
scope of this article. Figure 11 
contains example code for per­
forming steps 5 and 6 with multi­
ple indexes, and incorporates new 
Turbo Access procedures. PutRec, 
which looks a lot like AddRec, 
writes data to an existing record 
in the data file. The parameter 
rec_num is passed to PutRec, 
rather than passed back from it. 
In Figure 11, rec_num has already 
been established by reading a rec­
ord from the data file. Since the 
value of rec_num is not altered, it 
can be used to write the record 
back out to the file. 

The interesting part of Figure 
11 is what happens if a field 
from which a key is derived has 
changed. First of all, the original 
value of each of the key fields 
must be saved for comparison to 
the values after the user changes 

continued on page 25 



{Code fragment for sequential retrieval. 
The user has already chosen whether to retrieve 
in order by last name or by zip code. } 

open_database ; 
if how to sort = name then 

clearkey Cix1 file) { initialize index pointer} 
else { how_to_sort = zip code } 

clearkey Cix2_file) ; 
repeat 

if how to sort = name then 
begin -

nextkey (ix1_file,rec_nun,key1) 
if OK then 

getrec (mf_file,rec_nun,master) 
end 

else { how_to_sort = zip code } 
begin 

nextkey (ix2_file,rec_nun,key2) 
if OK then 

getrec (mf_file,rec_nun,master) 
end ; 

if OK then 
{ print the record } 

until not OK; 
close_database ; 

Figure 10. Sequential retrieval on one of two indexes. 

{ Code fragment for updating a data file and its indexes. 
This HSSLITie$ the user has retrieved a record and made some 
changes to it. When the record was retrieved, the values of 
the key fields, last_name and zip, were saved in EntryName and 
EntryZip. The application has just asked the user if he or 
she wishes to save the changes to disk. } 

if save it then { User says to save the record } 
begin-

putrec (mf_file,rec_nun,master) ; 
{ change the keys if needed } 

if not (entryzip = master.zip) 
or not (entryname =master.last name) then 

begin -
key2 := build_key2 (entryname,entryzip) 
deletekey (ix2_file,rec_nun,key2) ; 
key2 := build_key2 (master.last_name,master.zip) 
addkey (ix2 file,rec nun,key2) 

end ; - -
if not (entryname =master.last name) then 

begin -
key1 :=build key1 (entryname) ; 
deletekey Cix1 file,rec nun,key1) ; 
key1 :=build key1 (master.last name) 
addkey (ix1 file, rec nun,key1) -

end - -
end ; 

Figure 11. Updating a database fil,e and its index files. 

{ Code fragment for deleting a data record and its indexes. 
User has retrieved a record and displayed it. Program has 
asked if the user really wants to delete it.} 

if delete it then { user says to delete the record } 
begin -

deletekey (ix1_file,rec_nun,key1) ; {we already built key1 } 
{ to retrieve the record } 

key2 := build_key2 (master.last_name,master.zip) 
deletekey (ix2 file,rec nun,key2) 
deleterec (mf file,rec nun) 

end ; - -

Figure 12. Del,eting a database record and its keys. 

INDEXES 
continued from page 24 

the record. If the user changes a 
key field, DeleteKey is called with 
the original value of the key in 
order to delete the old key. Then 
AddKey is called with the new key 
value, in order to add the new key. 

The value of OK is not checked 
after these operations for two rea­
sons: First, PutRec does not affect 
OK; and second, although Delete­
Key and AddKey update OK, OK 
will be True after the operations. 
DeleteKey returns False in OK if 
either the requested key is not 
found, or (if duplicates are allow­
ed) the requested key is found, but 
the requested record number is 
not. Since the record is already 
successfully retrieved, DeleteKey 
finds the key and record number 
passed to it. AddKey returns False 
in OK only if you try to add a du­
plicate key when duplicates are 
not allowed. Duplicates are allow­
ed in this application, so AddKey 
always returns True in OK. 

DELETING RECORDS 
Deleting a record is much like 
changing a record. Assuming that 
the user has entered the name to 
be deleted, take these steps: 

1. Build the key from the last 
name; 

2. Search the index for the key; 

3. If successful, retrieve the rec­
ord pointed to by the index; 

4. Show the user the record and 
ask for verification; 

5. Delete the key or keys; and 

6. Delete the record. 

Since we've already been 
through steps 1 through 4, Figure 
12 shows steps 5 and 6. DeleteRec 
does just what its name implies­
when passed the filename and a 
record number, it deletes the rec­
ord. DeleteRec does not affect the 
global Boolean flag, OK. Delete­
Key affects OK, but there is virtu­
ally no chance that it would return 
OK = False in this situation be­
cause the key value was used to re­
trieve the record in the first place. 

This completes the discussion 
of the seven basic database func­
tions. Now, let's investigate some 
advanced topics. 

continued on page 26 

July/ August 1988 TURBO TECHNIX 25 



INDEXES 

continued from page 25 

UNORDERED SEQUENTIAL 
SEARCH 
The fact that the data file is sep­
arate from the index file (or files) 
allows some flexibility in dealing 
with the data file. It is quite pos­
sible to access the data file inde­
pendently of the indexes. This 
can be useful if you don't need to 
access the data records in order. 
For instance, the process of count­
ing the number of records that 
meet a certain criterion-such as 
zip codes within a certain range­
is made faster by going through 
the file sequentially, rather than 
alphabetically. Figure 13 shows 
such an operation. 

The new procedure shown in 
Figure 13 is FileLen, which returns 
the number of records in the data 
file as a long integer. Remember 
that the records are numbered 
from 0, not 1, so a file of 100 rec­
ords contains records numbered 
0-99. The WHILE .. DO condition 
tests the number of records; it suc­
ceeds for record 99 and fails for 
record 100. Notice the use of the 
Status field in the master record­
this field is a long integer whose 
value is 0 if the record has not 
been deleted. If the record has 
been deleted, the value of Status 
reflects the record's position in 
the free list of deleted records. 

REBUILDING AN INDEX 
Eventually, you will need to re­
build damaged or incomplete in­
dex files. Index files can be dam­
aged in a variety of ways, ranging 
from bad disk media to user error 
(such as turning off or rebooting 
the computer before properly ex­
iting the program). If a machine 
failure occurs after one index is 
updated but before another one 
is updated, then the indexes are 
incomplete. You can rebuild an 
index by using this procedure to 
read the data file sequentially and 
write new index files: 

1. Delete the old index files; 

2. Create new index files; 

3. Open the data file; and 

4. Read the data files sequentially. 
For each data file whose Status 
field contains 0 (i.e., is not de­
leted), perform these steps: 

26 TURBOTECHNIXJuly/ August 1988 

{ Code fragment -- unordered sequential search counting zip 
codes } 

var 
tot recs, 
num-found 
beg=zip, 
end_zip 

integer ; 

string [9] 

{total records in file} 
{ nunber f o~nd that match } 
{ beginning zip code } 
{ ending zip code } 

{ User enters beginning and ending zip codes in range to count } 

num found := 0; { initialize counter} 
tot-recs := filelen(mf file); {get nunber of records in data file} 
rec-num := 1 ; - {skip record O; it contains no user data} 
while rec num < tot recs do 

begin - -
getrec Cmf_file,rec_num,master) ; 
if (master.status = 0) { zero = undeleted record } 
and (copy(master.zip, 1,5) >= beg_zip) 
and (copy(master.zip,1,5) <= end_zip) then 

num found := succ(num found) ; 
rec num-:= succ(rec num) -

end ;-{ while} -
writeln ('Number found= ',num_found) ; 

Figure 13. Counting records with an unordered sequential search. 

{Code fragment -- unordered sequential search to rebuild index 
files} 

var 
tot_recs, {total records in file} 

{open files, create new indexes, etc. } 

tot recs := filelen(mf file); {get nunber of records in data file} 
rec-num := 1 ; - {skip record O; it contains no user data} 
while rec num < tot recs do 

begin - -
getrec (mf file,rec num,master) ; 
if (master.status; 0) then { zero = undeleted record } 

begin 
key1 := build_key1 (master.last_name) ; 
key2 := build_key2 (master.last_name,master.zip) 
addkey (ix1 file,rec num,key1) 
addkey Cix2=file,rec=num,key2) 

end ; 
rec num := succ(rec num) 

end ;-{ while} -

Figure 14. Rebuilding index files with an unordered sequential traversal of the 
database. 

a. Construct the key for the 
first index, call AddKey to 
add it to the index file, and 

b. Repeat step a for each 
index. 

5. When you are done, close all 
files. 

The code in Figure 14 demon­
strates this process. 

A BASE FOR YOUR DATABASE 
This article has described the 
basic database functions and their 
implementation using Turbo Ac­
cess, which is part of the Turbo 
Pascal Database Toolbox. I've fo­
cused on the use of multiple in­
dexes and low-level Turbo Access 
procedure calls. Turbo Access pro-

vides a wide range of procedures 
and functions for manipulating 
data files and their associated in­
dexes. Use of the Toolbox can re­
lieve you of considerable tedium 
and intellectual effort when build­
ing these procedures and func­
tions yourself. The examples here 
should be enough to get you start­
ed on your own application. • 

William Meacham is a systems analyst 
in Austin, Texas and a part-time free­
lance author and programmer. He is 
the author of the Reliance Mailing 
List program, a shareware applica­
tion that uses Turbo Access. Contact 
him at 1004 Elm Street, Austin, TX, 
78703. 



CATCH AND THROW IN 
TURBO PASCAL 
Mark a point in your program and return to it 
from anywhere- instantly! 

Jon Shemitz 

Procedures and functions are two of the 
most powerful constructs Pascal offers. 
These two constructs let us break down 
complex actions into successive layers of 
ever-simpler code in order to write clear, 

wiZAno maintainable programs. By reusing the 
code in several places, our programs act consistently. 

Sometimes, however, a neatly procedural structure 
fails us. Consider these scenarios: 

• A complex file transaction, involving perhaps sev­
eral reads and writes, fails at any point across many 
levels of procedure nesting; 

• A spreadsheet program encounters a divide by zero 
during recalculation of a chain of dependent cells; 

• A confused user presses a "go home" key to escape 
to the main menu from a deeply nested tangle of 
options and suboptions. 

These scenarios have one element in common: An 
exception that occurs deep inside a chain of procedure 
and function calls, when it's unacceptable to simply 
halt the program and return to DOS. We want the op­
portunity to do some cleaning up, or perhaps give the 
user a chance to take some corrective action; ultimately 
we want to return to the main input-action loop as 
though nothing out of the ordinary has happened. 
How do we return from all of those nested calls? 

In many cases, the simplest, most compact solution 
is to write code as though all the subprograms always 
work, and then to "magically" undo all the calls and in­
voke an exception handler when they don't 

Clearly, this "magic" solution needs two routines: a 
setup routine that establishes a target or "home base" 
to return to, and a second routine that returns control 
to the target A return involves resetting the stack to a 
previous state; therefore, the most sensible place to re­
turn to is the place where we set the target in the first 
place-the setup routine. 

This method makes the setup routine a thoroughly 
strange creature: we only enter it once, but we can 
"return" from it any number of times. The first return 
is normal-we've just set a return point Any subse­
quent "returns" are magical-we've encountered an 
exception and called the second routine to pass control 

back to the target point Obviously, on return from the 
setup routine we need to know whether we just did a 
setup or whether we have an exception to handle. The 
setup routine is a function that specifies which type of 
"return" it is. The call to the setup routine looks like this: 
IF {setup} THEN {proceed normally} 

ELSE {handle exception} 

In C, these two routines are usually called SetJump 
and LongJump; in LISP these routines are usually 
called Catch and Throw. I have implemented Catch 
and Throw for Turbo Pascal 4.0 as a unit called Xcep­
tion, (Listing l); one part ofXception is an assembly 
language external, XCEPTION.ASM (Listing 2). 

Turbo Pascal 4.0 never changes the data or stack seg­
ments, nor does it make any assumptions from state­
ment to statement about the contents of the extra seg­
ment or the general purpose and index registers. Con­
sequently, Catch and Throw can totally ignore SS, DS, 
ES, SI, DI, and the general purpose registers, and still 
do an effective job of saving and restoring the "system 
state." This means that Catch need only store its return 
address and the stack and base pointers (SP and BP), 
while Throw need only restore SP and BP and do a 
long jump to Catch's return address (see Listing 2). 
However, since an interrupt procedure may well use a 
different stack, Catch and Throw do, in fact, save and 
restore the stack segment as well. 

The skeletal program in Figure 1 illustrates the fun­
damental use of Catch and Throw. You must: 

1. Include Xception in your USES statement; 

2. Declare a variable of type Target; and 

3. Initialize the variable Target by calling Catch. (Note: 
throwing control to a target that hasn't been set will 
almost certainly cause a spectacular system crash.) 

Once you have initialized the Target variable Excep-
tion, calling Throw(Exception) at any point in your 
program causes control to return through Catch, ex­
cept that Catch now returns the value ExceptionUsed, 
not ExceptionSet. 

Like any other variable, the target variable can be 
used only within its scope; therefore, it's normally global 

continued on page 28 

July/ August 1988 TURBO TECHNIX 27 



LISTING 1: XCEPTION.PAS 

unit Xception; { Exception handling via CATCH and THROll } 

($0+} 

interface 

type 
Target = record 

Private: array[! •• 10J of byte; < "Abstract data type" > 
Point: pointer; < The THROl/ing point } 
end· 

Except i orl4~ = 
CExceptionSet, ExceptioriJsed); 

flllCtion Catch(var Exception: Target): Exceptiorl4ode; 

procedure Throw(var Exception: Target); 

flllCtion CanonicThrowingPoint(var Exception: Target): pointer; 

i~lementation 

{SL Xception.obj > 

function Catch(var Exception : Target): Except i orl4ode; external; 

procedure Throw(var Exception: Target); external; 

flllCtion CanonicThrowingPoint(var Exception: Target): pointer; 
type 

01/ord = record 

begin 

lo, Hi: word; 
end · 

Dec(Dllord(Exception.Point).Hi, PrefixSeg + S10); 
CanonicThrowingPoint :== Exception.Point; 

end; 

end. 

LISTING 2: XCEPTIDll.ASll 

;XCEPTION.ASM -- Jon Shemitz 
Assenble by: HASH XCEPTION; 

ptbl ic Catch 
ptbl ic Throw 

BreakPnt struc 
cSS dw 
cSP dw 
cBP dw 
clP dw 
cCS dw 
tlP dw 
tCS dw 
Break.Pnt ends 

code segment word ptbl i c 

Catch proc far 
pop dx 
pop bx 
pop di 
pop es 
cld 

mov ax,ss 
stosw 
mov ax,sp 
stosw 
mew ax,bp 
stosw 
mov ax,dx 
stosw 
mov ax,bx 
stosw 
xor ax,ax 
j~ dword ptr es:Cdi-4J 

Catch endp 

Throw proc far 
pop ax 
pop dx 
pop di 
pop es 
mov es: Cd J .tcs,dx 
mov es: Cd J. t IP ,ax 
mov ss,es Cdil .cSS 
mov sp,es Cdil .cSP 
mov bp,es CdiJ .cBP 
mov ax, 1 
j~ dword ptr es: Cdil .clP 

Throw endp 

code ends 
end 

offset is low word 

; Ofs( return address) 
; Seg(Return address} 
; OfsCBreak) 

Seg(Break) 
we use STOSI/ to save 
a few bytes 
get the stack segment 
seve the stack ptr 
get the stack ptr 
save the stack ptr 
get the base pt r 
save the base ptr 
get Ofs(Return address) 
save Ofs(Return address) 
get Seg(Return address) 
save Seg(Return address) 
Return BreakPoi ntSet 
elP 

; Ofs(return address) 
Seg( return address) 
get Ofs(BreakPnt) 
get Seg(BreakPnt) 
save the Throw· ing point 

restore Catch 1 s SS 
restore Catch's SP 

; restore Catch 1 s BP 
; Return BreakPointUsed 

28 TURBO TECHNIXJuly/ August 1988 

CATCH AND THROW 

continued from page 27 

PROGRAM Fragment; 

USES Xception; 

VAR 
Exception: Target; 

BEGIN 
IF Catch(Exception) 

BEGIN 
ExceptionUsed THEN 

{handle exceptions}; 

END; 

{ Main input/action loop: } 
REPEAT 

Throw(Exception); 

UNTIL Quit; 
END. 

Figure 1. A simpl.e use of Ulich and Thruw. The first time 
tlzat Catch is call.ed, it returns a value of &ceptUmSet and 
control dr<Y!Js through to the rest of the program. Later, if the 
Ulich function returns the constant F.xceptionUsed, it means 
tlzat Ulich caught a "throw" from somewhere else in the pro­
gram, and must lzandl.e the exception before continuing. 

to the entire program. (Obviously, if the target is local 
to a subprogram, it can only be used within that sub­
program or within nested subprograms.) Of course, 
you can reset a target so that the same exception is 
treated differently at different points in the program's 
execution. For example, if you call Catch(Exception) 
more than once, Throw(Exception) passes control to 
the point where you last called Catch(Exception). 

You can also have more than one target set at any 
one time, such as FileException and UserException. 
Throw passes control to the point where its parameter 
(which may be any initialized target) was set 

Finally, be aware that Throw's ability to restore the 
system's state is absolute. If Throw is executed to a target 
within a unit's initialization section during the main 
program block's execution, your program will effec­
tively restart partway through the chain of unit initial­
ization sections, rerunning the initialization sections of 
any "downstream" units, and finally restarting execu­
tion of the main program block. However, remember 
that TURBO.TPL executes prior to the earliest point at 
which you can set a target, and thus will not be reini­
tialized. 

All of this is quite unsouctured, of course, and I 
would be the last to recommend heavy use of Catch 
and Throw. Used with discretion, however, Catch and 
Throw can make your code faster, simpler, and easier 
to read. • 

Jon Shemitz is a consultant in Santa Cruz, California. He 
can be reached at (408) 479-9916 (voice) or (408) 476-4945 
(BBS). 

Listings may be doumloacl.ed from Compuserve as 
CATCH.ARC. 



Now 
Supports 

Programmers: Go home early! Quick 
BASIC 4.0, 

Turbo 
Pascal 

4.0 
C, BASIC, Pascal , dBASE~ FORTRAN and Modula-2 programmers: 

be more productive by clarifying and documenting your source code. 

"Occasionally, a utility 
comes along that makes a 
programmer's life much 
easier. SOURCE PRINT 
is such a program. 

Source Print'" 
\~O FOR !MOX : I TO 100 
160 IF TS{ INDX) : 0 THiN X : ~ 
170 C : ~O ' llHI \.[ K c. 1000 TB ! K l : O K : K • X lftND 
180 GOSUB 2000 
190 XT(C l: X T2! CI = K C: C •I 
200 NIXT INOX r----------1 

170 C= !10 

organizes your source code, simpli­
fies debugging, and makes documen­
tation a snap! It lists one or more 
source files with informative page 
headings and op­
tional line numbers, 
while offering 
invaluable features: 

Before l
. W81U: K (: 1000 

Teti() 0 
'JIDfDK • K• X 

:~g [ roll ~ :o~I; l~D~ 10g T'flD X = !I 

The Index 
(Cross-Reference 
list) saves you time 
by showing exactly 
where variables are 

c 

: li~'°' " : ""'[:• "" < om .. uooU., HOJ '' o J 

: [" :"' "'''"•lll]l0<0) 
1 p: • ( •rn(hrlll]l, 

: ""c'I'" ' " ' 10 p•• 
II loop• • 
12 l 

" l 1 4 i • r .. 

" l 
" l 

l 80 006UB 2000 
190 XT CC) : X 

T21CJ: K 

200 MDTCl~D~ • I BASIC 

After 

Wed 12-ll-86 07:22:0) 
all 1dent1f 1era 

inrecord 

in• 

4.191 
21.889 
21.990 

Sl . 2291 
54. 2lll 
5 4 .215 4 

INDEX ( Cro•• Ref J 

9•396 
22.922 

53•2309 
5 4 .2])2 
54.216 4 

19.825 
22.95) 

Sl•2ll9 
54. 2ll6 
54.2365 

19•8 26 
2)• 971 

Sl.2125 
54•2 346 
54 .2366 

It contributes to the 
programmer's job by 
organizing code into a 
legible format and by 
helping to organize the 
documentation and 

debugging process." 

used and where functions, pro- $9 700 
cedures, and routines are called. intext 4 1.1796 43.1815 

- PC Magazine 

Source Print and Tree Dia­
grammer both have easy-to-use 
menus with point-and-shoot file 
selection , and let you search for 
files containing a given string. 
For IBM PC and compatibles 
with 256K. 

Join thousands of program­
mers who are working more 
efficiently using Source Print 
and Tree Diagrammer. Order 
these indispensable tools today. 
We ship immediately, and 
there's no risk with our 60-day 
money-back guarantee. Order 
both and save. Only $155.00. 

800-257-5773 ·~~~t. 

MasterCard, VISA, American 
Express, COD. Add $5 for 
shipping/hand Ii ng. 

or see your local dealer! 

Source Print and Tree Diagrammer are 
trademarks of Power line, Inc. dBASE is 
a trademark of Ashton Tate. Prices subject 
to change without notice. 

.... LIC •~L~o , Y011, • o il, vall 

[~:~;~~!:: ::::;:~:::., ...... . 
::::~::;:· -~ ......... ~· .. 

Locations where new 
values may be assigned to 
variables are shown, making it easy to track down that 
mysterious value change. 

Structure Outlining solves the problem of hard-to­
see nested control structures by automatically drawing 
lines around them. 

[
;;l·~:~:::::; :?!! ... 

l 
~• k>K .... - . -

DOPIOC I 
CA&akloCto< • "1" 

[I' :::~• !::h'°! g..~• 
CA&akle<:<O<•"I" 

Automatic Indentation of source code and listings 
reduces your editing time and ensures indentation accuracy. 

~~J:~~:~:: ~i::.~:· 

n n 1-
DOclo""" • 
el-.<oll 

• • lwo• • ol"••O<i•n 
• • ll••• l)•g.,,on 

dB ASE 

Plus ... Source Print generates a table of contents 
listing functions and procedures. Keywords can be printed 
in boldface on most printers. Multi-statement BASIC lines 
can be split for readability. Functions and procedures can 
be drawn by name from one or more source fi !es to form a 
new file. 

Tree Diagrammer"' 
shows your program's overall organization at a 
glance. Ordinary program listings merely disp lay 
functions, procedures, and subroutines sequen­
tially, but do not display the relationships be­
tween these routines. Our revolutionary new 
Tree Diagrammer automatically creates an 
"organization chart'. ' of your program showing the 
hierarchy of calls to functions, procedures, and 
subroutines. Recursive calls are indicated and 
designated comments in the source code 
will appear on the chart. 

Tree Diagrammer helps you organize your 
program more logically. And you'll be amazed at 
how easy it is to debug when you $ 7 700 
see how your routines interact. 

'N<O 01·0•·11 OOol l oU 
01-01-11 oo,o~.i • 1.o.i.u.c 

J 

rcnUUllH UJ.U.C U 

l1natuluuv.,1d~ll.C 

L 

--r"'-"" """' " L~•D&u ,,_,,, .. , 
L 

~"" 
["'"' 

['::;.:::, ..... J 

Powerline, Inc. 2531 Baker Street, San Francisco, CA 94123 415-346-8325 

YES! Rush me 0 Source Print (ll $97. 0 Tree Diagrammer (ll $77. - ---
0 Both $155. Ship/Handling $5 . For CA add 6% tax Total------
Name ----------------------------~ Company ____________________ _ ___ ___ _ 
Address ___________________________ _ 
City ____________ _____ State _ _ Zip ______ _ 

0 Check enclosed 0 VISA 0 MasterCard 0 American Express 
Card# Exp. Date _________ _ _ _ 
Signature ____ ___ _____ Phone # T6 

Index 



RECURSING WITHOUT CURSING 
Call yourself anytime-just know when to stop. 

Jeff Duntemann 

On an overwarm September day in 1980, 
I was sweating into my spiral notebook 
while Amtrak's Lake Shore Limited 
wobbled its way across the Ohio hinter­
lands toward Chicago. Having covered 

SQUARE ONE several pages with a tangle of boxes and 
arrows, I suddenly felt Carol's hand on my arm. 

"You're turning green. Are you carsick?" 
"No," I grumbled. 'Tm trying to learn 

recursion." 
An old hacker's chestnut kept running through 

my head on that train : To iterate is human; to recurse, 
divine. Iteration I understood: to repeat a process 
some number of times, as in a FOR loop, a 
REPEAT .. UNTIL loop, or a WHILE .. DO loop. Re­
cursion, on the other hand, is one of those peculiar 
concepts that just refuses to come clear in the mind 
until eventually some small spark of understanding 
happens, and then, wham!, it becomes simple or 
even obvious. A great many people have trouble un­
derstanding recursion at first glance, so if you do too, 
don't think less of yourself for it. We all start out 
human. Divinity takes a little work. 

Recursion is when a function or procedure invokes 
itself. It seems somehow intuitive to beginners that 
having a procedure call itself is either impossible or 
else an invitation to disaster. These fears are un­
founded, of course. Let's look at them both. 

Recursion is indeed possible. From a coding per­
spective, in fact, having a procedure call itself is no 
different than having a procedure call any other pro­
cedure. What happens when a procedure calls an­
other procedure? Only this: First, the called proce­
dure is instantiated; that is, its formal parameters and 
local variables are allocated on the system stack. 
Next, the return address (the location in the code 
from which the procedure was called and to which 
it must return control) is "pushed" onto the system 
stack. Finally, control is passed to the called proce­
dure's code. 

30 TURBO TECHNIX July/ August 1988 

When the called procedure is finished executing, 
it retrieves the return address from the system stack 
and then clears its variables and formal parameters 
off of the stack by a process called "popping." Next, 
the procedure returns control to the code that called 
it by branching to the return address. 

None of this changes when a procedure calls it­
self. Upon a recursive call to itself, new copies of the 
procedure's formal parameters and local variables 
are instantiated on the stack. Then control is passed 
to the start of the procedure again. 

The potential problem shows up when execution 
reaches the point in the procedure where it calls it­
self. A third instance of the procedure is allocated 
on the stack, and the procedure begins running 
again. This is followed by a fourth instance, and a 
fifth . . . and after a few hundred recursive calls the 
stack has grown so large that it collides with some­
thing important in memory, and the system crashes. 
If you run the following kind of procedure, such a 
thing would happen very quickly: 

PROCEDURE Fatal; 

BEGIN 
Fatal 

END; 

This situation is an unlimited feedback loop. It is this 
possib~lity that makes newcomers feel uneasy about 
recurs10n. 

Obviously, the important part of recursion is know­
ing when to stop. 

A recursive procedure must test some condition 
before it calls itself, to see if it still needs to call itself 
to complete its work. This condition could be a com­
parison of a counter against a predetermined num-



.-------------------------~ _,.. SSEG + $M STACK ALLOCATION 
INSTANTIATION #I 

INSTANTIATIO #2 

INSTANTIATION #3 

INSTANTIATIOJ\l #4 

INSTANTIATION #5 

FREE STACK 
SPACE 

ber of recursive calls, or some Boolean condition 
that becomes True (or False) when the time is right 
to stop recursing and go home. 

When controlled in this way, recursion becomes a 
very powerful and elegant way to solve certain pro­
gramming problems. 

Let's go through a simpleminded example of a 
controlled recursive procedure. Read through the 
code in Listing 1 very carefully. 

The program itself is nothing more than setting a 
counter to 1 and calling the recursive procedure 
Dive. Dive prints the word "Push!" when it begins 
executing, and the word "Pop!" when it ceases exe­
cuting. In between, it prints the value of the variable 
Depth and then increments it. 

Note the integer constant, Levels. If the incre­
mented value of Depth is less than Levels, Dive calls 
itself. Each call to Dive increments Depth by 1, until 
at last Depth is greater than Levels. Then recursion 
stops. 

Running program PushPop produces the follow­
ing output. Can you tell yourself exactly why? 

Push! 
Our depth is now 1 
Push! 
Our depth is now 2 
Push! 
Our depth is now 3 
Push! 
Our depth is now 4 
Push! 
Our depth is now 5 
Pop! 
Pop! 
Pop! 
Pop! 
Pop! 

Follow the execution of PushPop through all of its 
steps, until the output makes sense to you. 

VALUE; DEFAULTS TO 16,384 

Figure 1. Each instantiation of a re­
cursive routine reduces the amount of 
availab/,e stack space. 

_,.. STACK POINTER 

_,.. SSEG 

NUMBERS? NUMBERS! 
Certain programming problems simply cry out for 
recursive solutions. Perhaps the simplest and best­
known is the matter of calculating factorials. (The ! 
operator indicates the factorial operation, rather 
than any sort of numeric enthusiasm.) A factorial is 
the product of a digit multiplied by all of the digits 
less than itself, down to one: 

5! = 5 x 4 x 3 x 2 x 1 

A little scrutiny here will show that 5! is the same as 
5 X 4!, and that 4! is the same as 4 X 3!, and so on. 
In the general case, N! = N X (N-1)! Whether you 
see it immediately or not, we have already expressed 
the factorial algorithm recursively by defining it in 
terms of a factorial. This will become a little clearer 
when we express it in Pascal, as is done in Listing 2. 

There isn't a great deal to function Factorial. The 
function body is a single statement, and we express 
it as a conditional statement because there must al­
ways be something to tell the code when to stop re­
cursing. Without the N > 1 test, the function merrily 
decrements N down past zero and recurses away un­
til the system crashes. 

The way to understand this function is to work it 
out for N = 1, then N = 2, N = 3, and so on. For 
N = 1, the N > 1 test returns False, so Factorial is as­
signed the value 1. No recursion is involved: 1 ! = 1. 
For N = 2, a recursive call to Factorial is made: Fac­
torial is assigned the value 2 *Factorial( I). As we 
saw above, Factorial( I)= 1. So 2! = 2 X 1, or 2. For 
N = 3, two recursive calls are made: Factorial is as­
signed the value 3 * Factorial(2). Factorial(2) is com­
puted (as we just saw) by evaluating (recursively) 

continued on page 32 

July/ August 1988 TURBO TECHNIX 31 



LI ST I NG 1 : PUSH POP. PAS 

PROGRAM PushPop; 

CONST 
Levels = 5; 

VAR 
Depth : Integer; 

PROCEDURE Dive(VAR Depth : Integer); 

BEGIN 
Wri teln( 1 Push1 '); 
llritelnC 'Our depth is now: ',Depth); 
Depth : = Depth +1; 
IF Depth <= Levels THEN Oive(Oepth); 
llritelnC ' Popl ') 

END; 

BEGIN 
Depth := 1; 
Dive(Oepth); 

ENO. 

LISTING 2: FACTDRL.SRC 

FUNCTIOll factorial(N : Longlnt) : Longlnt; 

BEGIN 
IF N > 1 THEN Factorial := N * Factorial(N· 1) 

ELSE factorial := 1 
END; 

32 TURBO TECHNIX July/ August 1988 

RECURSIVE 
continued from page 31 

Factorial(!). Factorial(!) simply equals 1. Catching 
on? One interesting thing to do is to add (temporari­
ly) a Writeln statement to Factorial that displays the 
value ofN at the beginning of each invocation. 

A note on the power of factorials: Calculating any­
thing over 7! overflows Turbo Pascal's two-byte inte­
ger type Integer. This is why Factorial returns a long 
integer. Actually, long integers don't help all that 
much, since the largest factorial representable in a 
Jong integer is 16!, which evaluates to 2,004,189,184. 

THE HAZARDS OF CALLING YOURSELF 
Even when you build machinery into a recursive rou­
tine that terminates the recursion at some point, re­
cursion carries with it a certain hazard to the unwary. 
Knowing when to stop is the key; and the obvious 
answer is to stop when the work is done. However, 
there is the danger that you may run out of space on 
the stack for a new instantiation of the recursive rou­
tine before the work is done. So the problem devolves 
to this: How do you know when your stack is run­
ning low? 

The good news is that Turbo Pascal can tell you 
how much stack space you have left. 

The bad news is that that may not help you very 
much. 

The good news comes in the form of a predefined 
function named Sptr, which quite simply returns the 
current value of the stack pointer register. Without 
getting into too many gritty details, the stack in your 
PC looks like Figure 1. The stack begins at a location 
in memory called SSeg, and continues upward in 
memory, usually to a length of 16,384 bytes. This 
stack size value may be increased to 65,520 bytes with 
the $M compiler directive (see Appendix C in the 
Turbo Pascal Owner's Handbook) . The stack pointer is 
the 8088's thumb in the stack; it indicates where the 
next available byte of stack space falls. Turbo Pascal 
sets up its stack so that the stack pointer starts off at 
the high end of the stack. As stack space is used up, 
the stack pointer is moved closer and closer to the 
bottom of the stack. When the value of the stack 
pointer is 0, you're out of stack and out of luck. 

Now, by using Sptr to check the value of the stack 
pointer before each recursive call, you can theoret­
ically see 0 coming and stop recursing before it's too 
late. However, you have no good way to know how 
much stack space each instantiation of your recur­
sive routine will demand. Thus, while you can test 
whether the stack pointer is greater than zero, you 



don't really know how close you can cut it before 
runtime error #202 (Stack Overflow) puts your pro­
gram out of its misery. 

Now wait, it gets worse. Suppose you're in the mid­
dle of some recursive task, and you notice that your 
stack is about gone. It's time to stop recursing and 
pop your way back up to reality-except that you will 
be partway through some job that now will not be 
completed. You may have traversed a binary tree 
partway, or partially filled a graphics screen, or done 
something else partway, but you may not know how 
far you've gotten, and you may have changed things 
that can't easily be undone. 

An excellent example of this was provided by Fred 
Robinson in "Filling Regions with the Turbo Pascal 
Graphix Toolbox," (TURBO TECHNIX, March/ April, 
1988). Fred showed us Flood_Fill, a very small, very 
fast routine for filling irregular areas on a graphics 
screen. This routine uses recursion, but the number 
of recursive calls required to fill a given area cannot 
be predicted ahead of the fact. A small area might be 
filled successfully, while a slightly larger area could 
exhaust the stack, leaving the program crashed and 
the area only partly filled. 

Fred decided that recursion was not an appro­
priate way to fill regions of an arbitrary size, and de­
signed a different, nonrecursive routine to do the 
job. You may also need to make that decision at 
some point. There are only a few useful guidelines 
that I can provide on creating a successful recursive 
procedure or function: 

• Use as few procedure parameters and local vari­
ables as you can. The idea is to minimize the use 
of stack space, and every parameter and local 
variable must be allocated on the stack each time 
the routine calls itself. 

• Use recursion only in situations where the num­
ber of recursive calls needed to get the job done 
is relatively low. The best situation is where the 
application limits the number of recursive calls, as 
in the Factorial function discussed earlier (limit­
ed to 16 levels), or in a routine that traverses the 
DOS directory structure with one recursive call 
per nested subdirectory. Subdirectories are rarely 
nested more than four or five levels deep. 

• As a corollary to the above, applications where 
the number of recursive calls is measured in the 
hundreds-rather than the dozens-are always 
bad medicine. Use a nonrecursive algorithm. 

NEITHER HUMAN NOR DIVINE 
Some people believe that recursion is inherently 
slow, or else inherently fast. In fact, recursion is 
neither-it imposes no more of a performance 
burden on your programs than does a procedure 
call, which is all that recursion is. On the other 
hand, a procedure call takes some grimbling by the 
CPU-getting things onto the stack and off again­
that WHILE .. DO or FOR loops do not require. Us­
ing recursion is slower than using a FOR loop, so if 
a FOR loop is called for, use it. 

On the other hand, there is a species of problem 
that simply falls out in recursive terms, as Douglas 
Hofstader has argued in his deep but fascinating 
book Goedel, Escher, Bach: An Eternal Golden Braid 
(New York: Basic Books, Inc., 1979), which, I must 
warn, is not Square One material! The trick in using 
recursion lies in recognizing those problems, and 
not recasting iterative problems in recursive terms 
merely for the self-referential strangeness of it all. • 

Listings may be downloaded from CompuServe as 
RECURS.ARC. 

Get To Know 
Your Programs 

Inside! 
and Out! 
Now you can analyze 

your programs with 
unprecedented detail 

Inside! allows you to examine 
the route your programs take 

through execution counts, minimum, maximum and 
total elapsed times and a count of how many times 
each source line executes - function by function ­
for Turbo Pascal and Turbo C! 

New Product Offer: 
Call Paradigm Systems before Sept. 1 and 
get your easy-to-use Inside! software for 
only $65.00. Inside!, which is also 
available in other languages, will sell for 
$ 7 5. 00 after this special introductory offer. 

Paradigm Systems Incorporated 
P.O. Box 152 Milford, MA 01757 
(800)537-5043 (617)478-0499 
Turtx:J C and TUfbo Pascal in 19g15tered tr90em8rk$ o f Borland lm.ernaoonel Inc 

~·~ lnsode'•etl'llClemanlofPatadigrnSvsterr.lnoott>orated 

July/ August 1988 TURBO TECHNIX 33 



CUSTOM TEXT FILE 
DEVICE DRIVERS 
Create p seudo-files with special properties using 
this new Turbo Pascal 4.0 feature. 

Neil Rubenking 

Turbo Pascal 4.0's new text file device 
driver (TFDD) feature gives you full con­
trol of the routines that open, close, read 
from, and write to a text file. TFDDs are 
well suited to a range of applications, in-

wizARo eluding console drivers for specialized 
monitors, serial port I/O, or any kind of text device 
I/O that isn't handled by the ordinary Turbo Pascal 
text file functions. 

By contrast, the input and output of logical devices 
in Turbo Pascal 3.0 was controlled via user-created 
I/O drivers that could only be altered for a text de­
vice, not for a text file variable. To change all I/O, 
you had to modify the CON device; to change only 
certain I/O operations, you modified the USR 
device. 

Turbo Pascal 4.0's TFDD provides access to the file 
handle and other internals of a Text variable that 
were accessed in 3.0 via the file interface block. List­
ing 1 shows the standard type definition for a 
TextRec, which is the record that corresponds to a 
text file variable. This type definition is contained in 
the DOS unit. 

Notice the 16-byte array, called UserData, in List­
ing 1. With Turbo Pascal 4.0, you can create your 
own TextRec type, and replace UserData with any 
other fields that total 16 bytes. 

A TFDD FOR STRING CONVERSION 
All variables that are written to the screen or to a text 
file become character strings. When you want to con­
vert variables to strings yourself (perhaps as input to 
a string-manipulation routine), you can select from 
numerous string conversion methods. One method, 
which handles components in a piecemeal fashion, 
uses the Str procedure to convert numeric values 
into strings and then concatenates the various sub­
strings into a single string. This method is not a 
general solution, because it must be hand-coded to 
fit each individual situation. 

34 TURBO TECHNIX July/ August 1988 

A better, and far more general, method involves 
writing a TFDD to do string conversion. UsrFile 
(Listing 2) demonstrates this technique. 

The UsrFile TFDD. UsrFile is a write-only TFDD­
you can't Reset it or Read from it. Instead, you 
create a pseudo text file using the special AssignUsr 
procedure, Rewrite that file, and write anything you 
wish converted into a string to that file. Any data type 
that can be written either to the screen or to an or­
dinary text file can be written to UsrFile (including 
numeric values and Boolean values, but not enumer­
ated types, arrays, records, or sets). Data that has 
been written to UsrFile is converted to string data 
and concatenated into a single string value that (as 
with all Turbo Pascal strings) may be up to 255 char­
acters in length. A single call to the function Read­
Usr returns the string value that has accumulated in 
the file and clears the file . The genuinely clever 
thing about UsrFile is that the actual process of con­
version to string data is handled by Turbo Pascal's 
Write statement-UsrFile intercepts characters that 
are already converted by Write, before those charac­
ters reach their typical destinations on the screen or 
in an ordinary text file. 

Customizing TextRec. A TFDD requires a custom­
ized TextRec. Examine UsrFile 's redefined TextRec 
type in Listing 2-rather than containing 16 bytes of 
UserData, TextRec has three new fields. UFilePos 
and UFileSize are Word fields that contain the cur­
rent file position and size. The Data field is a pointer 
to the device's string data area. TextRec contains two 
2-byte words, one 4-byte pointer, and eight bytes 
of unused space. This unused space in the original 
UserData is declared to be an 8-byte array called 
UserData in order to hold its space. Keep in mind 
that if you accidentally create a TextRec type com­
prising the wrong number of bytes, you'll get an "In­
valid type cast" error when you try to compile your 
IIO routines. 



Customizing 1/0 routines. In ad­
dition to the customized TextRec, 
a TFDD requires several custom­
ized I/O routines, which must fol­
low a very specific format. First, 
these routines must all use the far 
call model (so we enable far calls 
throughout the definitions of the 
IIO routines by bracketing their 
definitions with the $F+ and $F­
compiler directives) . Second, these 
I/O routines must all take a single 
VAR parameter of type TextRec. 
Third, they must return an integer 
result. A result that is anything 
other than zero is reported at run­
time as an I/O error. 

UsrFile requires three custom 
IIO routines. One routine opens 
the pseudo-file, the second rou­
tine closes the pseudo-file, and 
the third routine writes to the 
pseudo-file. The UsrOpen routine 
sets the file size and file position 
to zero. In a full read/ write 
TFDD, we would have to deal with 
three different kinds of file open­
ing routines: Reset, Rewrite, and 
Append. However, since UsrFile 
is a write-only version, it only has 
to handle Rewrite. If you try to 
Reset or Append the file, the 
Open routine triggers an I/O 
error. 

You could omit a file-close rou­
tine in the case of this particular 
TFDD, because there's little point 
in closing a pseudo-file such as 
the one used in UsrFile. However, 
if you did attempt to close the 
pseudo-file without initializing the 
value of the OoseFunc field of the 
file's TextRec record, your pro­
gram would crash. The UsrOose 
routine exists to prevent such 
crashes. UsrOose is the smallest 
size that it could possibly be, and 
it simply returns the integer zero 
value to indicate success. 

UsrOutput. Procedure UsrOutput 
is called whenever you write to the 
pseudo-file. During such a write 
operation, Turbo Pascal's Runtime 
code takes the data passed to the 
Write statement, converts that 
data into a string of characters, 
and puts the characters into the 
file variable's buffer. (This buffer 
is the referent of the BufPtr field 
in the file variable's TextRec.) 

The BufPos field of the pseudo­
file's TextRec reports how many 
characters were placed in the 
buffer. The purpose of UsrOutput 
is to do something with those char­
acters and then set BufPos back 
to zero, so that the next write op­
eration will not overwrite data 
written to the buffer during the 
previous write operation. 

UsrOutput first checks that add­
ing more characters to its internal 
string buffer from the pseudo­
file's buffer won't overrun the 
buffer's 255-byte limit. If the cur­
rent file position, plus the number 
of new characters in the buffer 
(BufPos), is greater than the 
buffer's size, UsrOutput returns a 
"File Full" error. Also, if the file 
mode is anything other than 
fmOutput, UsrOutput returns an 
appropriate error code. If there is 
no error, UsrOutput moves the 
characters from the file's internal 
buffer to its own internal string 
buffer and updates the pseudo­
file's position and size fields in the 
TextRec. 

A special Assign procedure. 
UsrOpen, UsrOose, and UsrOut­
put are the only custom routines 
needed to create the TFDD. How 
do these routines get attached to 
a text variable? You have to write 
a special version of Turbo Pascal's 
familiar Assign procedure. The 
key to the process lies in four spe­
cial pointer fields present in all 
TextRec variables that belong to 
all files of type Text. These point­
er fields-OpenFunc, InOutFunc, 
FlushFunc, and OoseFunc-are 
normally initialized to the stan­
dard text file I/O routines that re­
side in the Turbo Pascal Runtime 
Library. To associate a text file 
with a suite of custom TFDD I/ O 
routines, reassign these pointer 
values to point to your custom 
1/0 routines. Certain other fields 
in the TextRec must also be ini­
tialized, just as they would be if 
the file variable was passed to the 
standard Assign procedure. 

In the UsrFile program, proce­
dure AssignUsr sets up all the nec­
essary fields in TextRec. The ini­
tial mode is fmOosed; since the 
filename is irrelevant, we make it 
a null string. File position and size 
are initialized to zero. The real ac-

tion of AssignUsr lies in its mod­
ification of the TextRec's four 
pointers to I/O routines. Note 
that both InOutFunc and Flush­
Func point to the custom UsrOut­
put routine. This ensures that text 
is sent to the internal string buffer 
Data at the end of every Write 
statement. Without a FlushFunc 
routine, the converted text would 
not necessarily be moved out to 
Data until your program either 
flushed or closed the file. 

Notice that procedure ReadUsr 
is not a TFDD routine. In one sin­
gle operation, ReadUsr returns a 
string containing everything that 
you've written to the pseudo-file 
and clears the file. This applica­
tion is simple enough that it 
doesn't require a true Usrlnput 
routine. 

The main body of UsrFile dem­
onstrates how to write a TFDD to 
do string conversion. Any combi­
nation of variables, constants, or 
function results (or anything that 
can be written to the screen) that 
doesn't exceed 255 characters in 
length can be written to UsrFile. 
UsrFile also demonstrates an 
I/O error from our special I/O 
routines-proving that this error 
is just like an I/O error generated 
during I/O to a normal text file. 

Next, let's examine a more com­
plex TFDD that handles a variety 
of activities. 

A RAM FILE WITHOUT A 
RAM DISK 
MEMFILE.PAS (Listing 3) demon­
strates a complete TFDD with all 
functions. You can Rewrite, Reset, 
Append, Read, or Write to 
MEMFILE, which creates a "file" 
on the heap of a size that you 
specify. In the example, the max­
imum size of the file is 4096 bytes; 
you can change that 'value to any 
amount of available heap memory 
by changing the constant UsrSize. 

The special AssignUsr proce­
dure is much like the one belong­
ing to the UsrFile program de­
scribed previously. However, fields 
InOutFunc and FlushFunc aren't 
actually reinitialized to point to 

continued on page 36 

July/ August 1988 TURBO TECHNIX 35 



DEVICE 

continued from page 35 

custom routines until you open 
the file, because the file may be 
opened with Reset, Rewrite, or 
Append. The routines whose ad­
dresses are assigned to InOutFunc 
and FlushFunc vary, depending 
on the file mode in force when 
the file is opened by a call to 
UsrOpen. 

If UsrOpen is called by Reset, 
the file mode is fmlnput, which 
means that the file is to be open­
ed for reading. The Erased flag in 
the modified TextRec type lets us 
know if the file in fact exists-if it 
doesn't exist, an error value is re­
turned. If the file exists, we point 
the InOutFunc pointer to the Usr­
lnput routine, point FlushFunc to 
a dummy routine called Usrlg­
nore that simply returns a zero 
value, and put the file position at 
zero. 

On a Rewrite call, the file size 
and position are both set to zero. 
If Erased is equal to True, then 
RAM hasn't been allocated for it 
yet, so that step is also performed 
now. Both the InOutFunc and 
FlushFunc pointers are set to 
point to the output routine, 
UsrOutput. . 

Append is a curious comb1.na­
tion of both Reset and Rewnte. 
Append first checks to be sur~ that 
the file exists-if it doesn 't exist, 
an error code is returned. If the 
file does exist, the file pointer is 
pointed to the very end of the file 
by setting FilePos to FileSize. The 
mode is changed to fmOutput, 
and again both InOutFunc and 
FlushFunc are set to point to 
UsrOutput. 

The output routine, UsrOutput, 
is identical to the one by that 
name in the UsrFile program de­
scribed earlier. In this case, how­
ever, the internal buffer is an en­
tire RAM file existing on the heap. 
The process of transferring data 
to the internal buffer from the 
TextRec's temporary buffer after 

36 TURBO TECHNIX July/ August 1988 

each write operation is the same 
in both cases. Only the pointer 
referents differ. 

The Usrlnput routine is a bit 
more complicated. It returns char­
acters if any more characters exist 
in the file, and signals End of File 
(EoF) if no characters exist after 
the file pointer. If the current file 
position is either at or past the file 
size, then we're at EoF. This is in­
dicated by setting both BufPos 
and BufEnd to zero. Otherwise, 
the process is almost exactly the 
reverse of sending output to the 
RAM file, except that the possibil­
ity of overrunning the file vari­
able's relatively small internal 
buffer is avoided. If more charac­
ters are available than can fit in 
the buffer, we process one buffer­
full at a time. 

Once you no longer need a 
memory file, procedure EraseUsr 
removes it by deallocating the 
heap memory that held the file 's 
buffer, and setting the Erased flag 
to True. Without this procedure, 
a new memory file's heap alloca­
tion would be lost for the duration 
of the program each time that the 
new memory file was opened. 

You can use the memory file 
concept in any program (such as 
a text sorter or a translation pro­
gram) that requires temporary text 
files during its operation. If you're 
currently running your program 
from a RAM disk for better perfor­
mance, consider the possibility of 
using a RAM file instead. Without 
any DOS overhead, it's likely to be 
significantly faster. 

ALTERING AN EXISTING 
TEXT DEVICE 
In Turbo Pascal 3.0, the internal 
variable ConOutPtr contained the 
offset of the internal routine that 
output a single character to the . 
console. Console output was redi­
rected to a custom driver by set­
ting the ConOutPtr to the address 
of your custom console output 
routine. A custom ConOut proce­
dure simply accepted a single 
character and did something with 
it. With Turbo Pascal 4.0, however, 
the console output driver must be 
modified according to TFDD 

standards. To illustrate this pro­
cess, we'll create BackUnit (Listing 
4) . 

BackUnit causes output from all 
Write and WriteLn statements to 
appear backward on the screen. 
This slightly frivolous example 
doesn't require any special hard­
ware-try it out on any system 
with a CRT that responds to 
standard PC BIOS calls for video 
output. As the program demon­
strates, the TextColor and Text­
Background statements work fine 
on backward text, and you'll find 
that GotoXY, Where:X, and 
WhereY perform correctly as well. 

The initialization section. A unit 
can have an initialization section 
containing code that executes au­
tomatically at the start of any pro­
gram that uses the unit. This code 
lies between the BEGIN .. END 
pair at the very end of the unit.. In 
BackUnit, the initialization secuon 
saves the current addresses of the 
1/0 functions that are to be 
changed, and sets up an exit pro­
cedure that gets control at the end 
of any program that uses the unit. 
BackUnit has a minimal exit pro­
cedure-it turns off backward 
writing by restoring the saved 
1/0 routine addresses, and then 
chains to the previously active 
ExitProc. (For more on unit ini­
tialization sections and exit pro­
cedures, see "Custom Exit Proce­
dures," TURBO TECHNIX, 
March/ April, 1988.) 

Changing pointers in TextRec: In 
order to change the output acuon 
of a text file , we have to change 
the InOutFunc and FlushFunc 
pointers in the file's TextRec. 
Turbo Pascal 4.0's strong type cast­
ing ability makes it easy for us to 
access the fields of the TextRec 
record that corresponds to Out­
put. We refer to the record as 
TextRec(Output), which recasts 
OutPut to a TextRec type. (Under 
3.0, we had to declare a TextRec 
variable as ABSOLUTE at the 
same address as Output.) 

Since the existing addresses for 
InOutProc and FlushProc were 
saved, it's easy to turn the new ver­

continued on page 38 



PolyAWK. - The Toolbox Language·. 
For C, Pascal, Assembly & BASIC Programmers. 

We call PolyAWK our "toolbox" language 
because it is a general-purpose language that 
can replace a host of specialized tools or pro­
grams. You will still use your standard language 
(C, Pascal, Assembler or other modular 
language) to develop applications, but you will 
write your own specialized development tools 
and programs with this versatile, simple and 
powerful language. Like thousands of others, 
you will soon find PolyAWK to be an indis­
pensable part of your toolbox. 

A True Implementation 
Under MS-DOS 

Bell Labs brought the world UNIX and C, and 
now professional programmers are discovering 
AWK. AWK was originally developed for UNIX 
by Alfred Aho, Richard Weinberger & Brian 
Kernighan of Bell Labs. Now PolyAWK gives 
MS-DOS programmers a true implementation 
of this valuable "new" programming tool. 
PolyAWK fully conforms to the AWK standard 
as defined by the original authors in their book, 
The AWK Programming Language. 

A Pattern Matching Language 
PolyAWK is a powerful pattern matching 
language for writing short programs to handle 
common text manipulation and data conver­
sion tasks, multiple input files, dynamic regular 
expressions, and user-defined functions . A 
PolyAWK program consists of a sequence of 
patterns and actions that tell what to look for 
in the input data and what to do when it's 
found. PolyAWK searches a set of files for lines 
matched by any of the patterns. When a match­
ing line is found, the corresponding action is 
performed. A pattern can select lines by com­
binations of regular expressions and com­
parison operations on strings, numbers, fields, 
variables, and array elements. Actions may per­
form arbitrary processing on selected lines. The 
action langauge looks like C, but there are no 
declarations, and strings and numbers are built­
in data types. 

Saves You Time & Effort 
The most compelling reason to use PolyAWK is 
that you can literally accomplish in a few lines 
of code what may take pages in C, Pascal or 
Assembler. Programmers spend a lot of time 
writing code to perform simple, mechanical 
data manipulation - changing the format of 
data, checking its validity, finding items with 
some property, adding up numbers and print­
ing reports. It is time consuming to have to 
write a special-purpose program in a standard 

Requires 
MS-DOS 
2.0 or above & 256K RAM. $99 
When you order PolyAWK you receive a copy 
of The AWK Programming Language written by 
the authors of the original UNIX-based AWK. 
The book begins with a tutorial that shows how 
easy AWK is to use, followed by a comprehen­
sive manual. Because PolyAWK is a complete 
implementation of AWK as defined by the 
book's authors, you will use this book as the 
manual for PolyAWK. 
You can purchase PolyAWK and the book, The 
AWK Programming Language, for $99. If you 
already have the book, you can order PolyAWK 
software only for $85, which is $14 off the 
regular $99 purchase price. (The book serves 
as the User's Manual , so you you should 
already have a copy of the book if you are order­
ing the software only.) 

PolyShell Bonus! 
PolyShell gives you 57 of the most useful UNIX 
commands and utilities under MS-DOS in less 
than 20K. You can still use MS-DOS commands 
at any time and exit or restart PolyShell without 
rebooting. MS-DOS programmers - discover 
what you have been missing! UNIX program­
mers - switch to MS-DOS painlessly! 
PolyShell and PolyAWK are each $99 when 
ordered separately. Save $50 by ordering the 
PolyShell + PolyAWK combination package for 
$149. Not copy-protected. 

30-Day 
Money Back Guarantee 

Credit Card Orders: 

1-800-547-4000 
Ask for Dept. TIX 

Send Checks and P.O.s To: 
POLYTRON Corporation 

1700 NW 167th Place, Beaverton, OR 97006 
(503) 645-1150 - FAX: (503) 645-4576 

IBllBl=POILYlllR.O 
High Quality Software Since 1982 

language like C or Pascal each time such a task 
comes up. With PolyAWK, you can handle such 
tasks with very short programs, often only one 
or two lines long. 

Prototype With PolyAWK, 
Translate To Another Language 

The brevity of expression and convenience of 
operations make PolyAWK valuable for proto­
typing even large-sized programs. You start 
with a few lines, then refine the program, ex­
perimenting with designs by trying alternatives 
until you get the desired result. Since programs 
are short, it's easy to get started and easy to start 
over when experience suggests a different 
direction. PolyAWK has even been used for 
software engineering courses because it's possi­
ble to experiment with designs much more 
readily than with larger languages. It's straight­
forward to translate a PolyAWK program into 
another language once the design is right. 

Very Concise Code 
Where program development time is more 
important than run time, AWK is hard to beat. 
These AWK characteristics let you write short 
and concise programs: 
• The implicit input loop and the pattern-action 

paradigm simplify and often entirely elimi­
nate control flow. 

• Field splitting parses the most common forms 
of input, while numbers and strings and the 
coercions between them handle the most 
common data types. 

• Associate arrays use ordinary strings as the 
index in the array and offer an easy way to 
implement a single-key database. 

• Regular expressions are a uniform notation 
for describing patterns of test. 

• Default initialization and the absence of 
declarations shorten programs. 

Large Model 
Implementation 

PolyAWK is a large model implementation and 
can use all of available memory to run big pro­
grams or read files greater than 64K. 

Math Support 
PolyAWK also includes extensive support for 
math functions such as strings, integers, 
floating point numbers and transcendental 
functions (sin, log, etc.) for scientific applica­
tions. Conversion between these types is 
automatic and always optimized for speed 
without compromising accuracy. 

® 



DEVICE 

continued from page 36 

sion of the predefined file OutPut 
ON and OFF. To turn it ON, set 
both pointers to the address of the 
new UsrOutput procedure. To 
turn it OFF, restore the original 
values. 

Converting with a ConOut re­
placement. The UsrOutput proce­
dure is a model for any program 
that is converted from a 3.0 pro­
gram by using a ConOut replace­
ment UsrOutput sends each 
character in the file 's temporary 
buffer to the ConOut procedure. 
Usr Output always returns the 0 
value of success. The output por­
tion of the serial driver in Chapter 
26 of the Turbo Pascal Owner's 
Handbook works in the same way. 

The ConOut procedure per­
forms the real work of "backward 
writing." ConOut writes a charac­
ter to the screen through a call to 
BIOS interrupt lOH, and then 
moves the cursor to the left of the 
character that was just written. 
ConOut can't simply use a Write 
statement to write the character, 

since each Write calls the UsrOut­
put routine, which in turn calls 
ConOut. Since this type of endless 
loop is the stuff of which system 
crashes are made, ConOut makes 
a BIOS call to interrupt lOH in­
stead. In addition to writing a 
character and moving the cursor, 
ConOut also handles a few special 
characters-ASCII carriage re­
turn, line feed, backspace, and 
bell. To scroll the screen, ConOut 
deletes the top line and reposi­
tions the cursor. 

Program Backward (Listing 5) 
demonstrates BackUnit. Notice 
that writing in a forward direction 
is much faster than writing back­
ward. This is because Turbo 
Pascal uses direct video memory 
I/O whenever you USE the CRT 
unit, whereas ConOut always uses 
BIOS calls. (Of course, you could 
modify the ConOut routine to use 
direct video I/O. BIOS calls are 
used here because they do most 
of the work for you.) Again, Back­
Unit is merely an example of how 
to modify a standard file ; optimiz-

C TOOLS PWS/5.0 
ESSENTIAL C UTILITY LIB. 
ESSENTIAL COMMUNICATIONS 
GREENLEAF C SAMPLER 
GREENLEAF COMM LIBRARY 
GREENLEAF FUNCTIONS 
MICROSOFT QUICK C 
PANEUQC OR rrc 
PERISCOPE 11-X 
PFORCE 
RESIDENT C 
TURBO C 
TURBO C TOOLS 

ing a TFDD before it proves itself 
truly useful to you would be 
premature. 

IN THE DRIVER'S SEAT 
Turbo Pascal 4.0's text file device 
drivers offer many opportunities 
for specialized input and output. 
These drivers replace Turbo 
Pascal 3.0's user-written I/O 
drivers, but give you considerably 
more control. TFDDs can be en­
tirely new files or devices, or they 
can replace standard files or de­
vices with new ones that are cus­
tomized to fit your needs. With a 
little imagination, you can divert 
a text stream to any reasonable 
destination-and make it more 
than just a series of characters 
marching from here to there. • 

Neil Rubenking is a professional 
Pascal programmer and writer. He 
is a Contributing Editor for PC 
Magazine, and can be found daily 
on Borland's CompuServe Forum 
answering Turbo Pascal questions. 

Listings may be downloaded from 
CompuServe as TFDD.ARC. 

LIST OURS LIST OU RS 
129 IOI TURBO PASCAL 100 69 
185 125 TURBO PWS 100 89 
185 125 TURBO POWER SCREEN 129 IOI 
95 69 TURBO POWER UTILITIES 95 79 

185 125 TURBO PROFESSIONAL 4.0 99 80 
185 125 TURBO WJNOOW PASCAL 95 80 
99 69 UNIVERSAL GRAPHICS LIBRARY ISO 121 

129 99 
145 106 OTHE R LANGUAGES 
395 215 LAHEY PERSONAL FORTRAN 77 95 86 

99 85 LOGITECH MODULA-II COMP PACK 99 81 
100 69 MICROFOCUS PERSONAL COBOL 149 121 
129 IOI PC/FORTH ISO 109 

UTILITIES 

~ Turbo POWER SCREEN DAN BRJCKLIN'S DEMO PROGRAM 75 59 

Programmer's Paradise Gives You Superb Selection, 
Personal Service and Unbeatable Prices! 

Welcome to Paradise. The microcomputer software source that caters to your programming needs. 
Discover the Many Advantages of Paradise ... 

• Lowest price gu1r1 nteed • Huge in\·entory, latest ver1ion1 • Techmcal support 
• Immediate 1hipment • 30-diy money-back guarantee• • Knowledgeable a.Jes 11aff 

Over 500 brand-name products in stock-if you don't see it, call! 

We'll Match Any Nationally Advertised Price. 
LIST OU RS LIST OURS 

ARTI F ICIAL INTELLIGENCE 
MULISP-87 INTERPRETER JOO 199 
PC SCHEME 95 86 
SMALLTALKN JOO 85 

EGA/VGA COLOR OPTION so 45 
GOODIES DISKETTE so 45 
SMALLTALK/COMM so 45 

Tl PROCEDURE CONSULTANT 495 435 
TURBO PROLOG V.2.0 ISO 109 
TURBO PROLOG TOOLBOX 100 69 
VP-EXPERT JOO 90 

ASSEMBLY LANGUAGE 
EZ-ASM 70 66 
MS MACRO ASSEMBLER ISO 99 
OPTASM 195 172 
THE VISIBLE COMPUTER:8088 80 66 
THE VISIBLE COMPUTER:80286 100 90 
TURBO EDITASM 99 86 

BASIC 
DB/LI B 139 121 
EXIM SERVICES TOOLKIT 100 90 

Terms and Policies 
• We.__. MC, VISA, AMERICAN' EXPRESS 
No111rdm1fl'OflctMllcatdO#C.UD ~ymen1bychtt:k ~w 

~~5;:~~~~~:n~Ps':u.-~$h-=-~ 
ont~KINIKT'n«'t-aabil:Callor~>'.-..rltH 
• f'rotnonrner"s P~ncbK ..,. m•d• all)' currrnt ..al.IOnaly ldttmsed 
pnctwilh~111valrn!ttrm1lortMprodu.ct•llit~111thl•ld 
·Pnc ... nl'ollof1aubjett1nc~W'lthootnotic~ 
• Hoor1 9AM EST - 7PM EST 
• "'•" th4n• ;.nu~, .. , ,.. ... ~ ... ,..,., 
•Alli ior ~tails.. Some lfllnUfKtwtn .... 1101 ..... rtlllf'M ON:t dal.ll. 
M'alaartbroli"n 

Dealers and Corporate Buyeri. -Call fo r 
specia l discounts and bene l1t1! 

FINALLY! 99 
FLASH-UP 89 
FLASH-UP TOOLBOX 49 
GRAPHPAK 69 
MICROHELP UTILITIES 59 
PEEKS & POKES 45 
QBASE 99 
QBASE REPORT 69 
QUICKBASIC 99 
QUICK-TOOLS 130 
QUICKPAK 69 
QUICKPAK II 49 
QUJCKWJNDOWS 99 
TRUE BASIC JOO 

W/RUNTJME 150 
TURBO BASIC 100 

DATABASE TOOLBOX JOO 
EDITOR TOOLBOX 100 
TELECOM TOOLBOX JOO 

C LANGUAGE 
C ASYNCH MANAGER 175 
C-TERP FOR TURBO C 139 

1-800-445-7899 
In NY: 914-332-4548 

Customer Service: 
914-332-0869 

International Orders: 
914-332-4548 

Telex: 510-601-7602 

38 TURBO TECHNIX July/ August 1988 

90 
80 
46 
60 
49 
39 
90 
59 
69 
Ill 
60 
45 
90 
90 

135 
69 
69 
69 
69 

137 
121 

NEW powerful screen management for Turbo DAN BRICKLJN"S DEMO PROC. II 195 179 
Pascal 4.0. Reliable, lightning fast data entry FANSI CONSOLE 75 66 
screens and menus to create your own sophisti· FETCH 55 49 
cated window oriented applications. Design and MACE UTILITIES 99 90 
maintain screens and menus exactly as you want NORTON COMMANDER 75 56 
them to appear in your final application. NORTON EDITOR 75 70 

NORTON UTILITIES 100 61 
LIST· $129 OURS:$101 NORTON ADVANCED UTILITIES !SO IOI 

NORTON GUIDES 100 65 

TURBO HALO 100 86 BORLAND P RODUCTS 
TURBO WJNDOW/C 95 80 EUREKA 167 119 

PASCAL LANGUAC:E 
REFLEX: THE ANALYST ISO 109 
SIDEKICK 85 59 

ASC II TURBO PROGRAMMER 289 259 SIDEKICK+ 200 139 
AZATAR DOS TOOLKIT 99 86 SUPERKEY 100 69 
DOS/BIOS & MOUSE TOOLS 75 70 TURBO BASIC COMPILER 100 69 
MACH2 79 60 TURBO BASIC DATABASE 100 69 
METRABYTE DIA TOOLS 100 90 TURBO BASIC EDITOR TB 100 69 
OVERLAY MANAGER 45 40 TURBO BASIC TELECOM TB 100 69 

W/SOURCE CODE 90 80 TURBO C JOO 69 
SCIENCE & ENGINEERING TOOLS 75 69 TURBO LIG HTNING AND 
SCREEN SCULPTOR 125 96 LIGHTNING WORD WIZARD ISO 109 
SYSTEM BUILDER ISO 131 TURBO PASCAL 100 69 

JMPEX 100 90 TURBO PASCAL DBASE TOOLBOX 100 69 
REPORT BUILDER 130 116 TURBO PASCAL DEV. TOOLKIT 395 289 

T-DEBUG PWS 45 39 TURBO PASCAL EDITOR TOOLBOX JOO 69 
W/SOURCE CODE 90 80 TURBO PASCAL GAMEWORKS TB JOO 69 

TURBO ADVANTAGE so 45 TURBO PASCAL GRAPHIX TB JOO 69 
TURBO AOVANTAGE COMPLEX 90 80 TURBO PASCAL NUM. METHODS 100 69 
TURBO ADVANTAGE DISPLAY 70 66 TURBO PASCAL TUTOR 70 45 
TURBO ANALYST 75 59 TURBO PROLOG COMPILER !SO 109 
TURBO.ASM 99 70 TURBO PROLOG TOOLBOX JOO 69 
TURBO ASYNCH PWS 129 101 
TURBO GEOMETRY LIBRARY ISO 140 
TURBO HALO 95 80 
TURBO MAGIC 99 90 

Call or Wri te for Latest Free Cata log! 

n• OJ e TM 

A Div ision of Hudson Technologies, Inc. 
42 River Street. Tarrytown. NY 10591 



LISTING 1: TEXTREC.OEF 

TYPE 
CharBuf = array[O • • 12n of char; 
TextRec RECORD 

Handle Word; 
Mode Word; 
BufSi ze Word; 
Private Word; 
Buf Pos Word; 
BufEnd Word; 
BufPtr "CharBuf; 
OpenFL<lC pointer; 
lnOutFL<lC pointer ; 
FlushFunc pointer ; 
Closefi.n; pointer; 
UserOata Array[1 •• 16J of byte; 
Name Array[0 •• 79] of char ; 
Buffer CharBuf; 

ENO; 

< File lllOde magic nuit>ers 
CONST 

fmClosed = S07BO; 
fmlnput = S0781; 
fmoutput = S0782; 
fmlnOut c S07B3; 

LISTING 2: USRFILE.PAS 

{SR-, l+,N · } 
PROGRAM UsrFi le; 

USES Crt, DOS; 

CONST 
UsrSiz 
IO_NotOUtput 
10 FileFull 
IO)nval id 

TYPE 

= 255; 
= 105; 
= 101· 
: 6; I 

String255 STRING [255J; 
CharBuf = ARRAY[O •• 12n OF Char ; 
FakeFile = ARRAY[O •• UsrSizJ OF Char; 
TextRec = RECORD 

VAR 
UFi le 
CH 
N, 0 

Handle 
Mode 
BufSize 
Private 
BufPos 
BufEnd 
BufPtr 
OpenFL<lC 
lnOutFunc 
FlushFL<lC 
CloseFunc 
UFi lePos 
UFileSiz 
Data 
UserOata 
Name 
Buffer 

END; 

Text; 
Char; 

: Integer; 

Word; 
Word; 
Word; 
Word; 
Word; 
\Jord; 
"CharBuf; 
pointer; 
pointer; 
pointer; 
pointer; 
Word; 
Word; 
"FakeFi le; 
ARRAY [1 •• 8J OF Byte; 
ARRAY[0 •• 79] OF Char ; 
CharBuf; 

{SF+}(Start making all routines FAR> 

FUNCTION UsrOpenCVAR F : TextRec) : Integer; 

BEGIN 
UsrOpen : = O; 
WITH F 00 

IF Mode = fmDutput THEN 
BEGIN 

UFileSiz := O· 
UFi lePos := o; 

ENO 
ELSE UsrOpen : = IO_lnval id; 

ENO; 

FUNCTION UsrClose(VAR 

BEGIN 
UsrClose := O; 

ENO ; 

FUNCTION UsrOUtput(VAR 

BEGIN 
UsrOUtput := 0; 
WITH F 00 

TextRec) Integer; 

TextRec) Integer ; 

IF Mode = fmDutput THEN 

BEGIN 
IF UFilePos+BufPos >= UsrSiz THEN UsrOUtput .- IO_FileFull 
ELSE 

BEGIN 
Move(BufPtr", Oata" [UFi lePosJ, BufPosl; 
UFi lePos := UFi lePos+BufPos; 
IF UFi lePos > UFi leSiz THEN UFi leSiz := UFilePos; 
BufPos := O; 

ENO 
ELSE 

ENO; 

IF Mode = fmClosed THEN UsrOUtput := IO_NotOUtput 
ELSE UsrOUtput := IO_lnval id; 

END ; 

CSF-}{Stop making all routines FAR> 

FUNCTION ReadUsr(VAR F Text) String255; 

VAR T~ : String255; 

BEGIN 
WITH TextRec(F) DO 

BEGIN 
Move(Oata·, T~m. UFileSizl; 
T~[OJ := Chr(UFileSizl; 
UFileSiz := O; 
UF i lePos := O; 

END; 
ReadUsr := T~; 

END; 

PROCEDURE Ass i gnUsrCVAR 

BEGIN 
WITH TextRec(F) DO 

BEGIN 
Mode : = fmClosed; 
BufSize :c 127; 
BufPtr := iilbuffer; 

Text>; 

OpenFunc := aJsrOpen; 
CloseFL<lC := aJsrClose; 
lnOUtF<.ri<: := aJsrOUtput; 
FlushF<.rie := aJsrOUtput; 
Name[OJ := #0; 
UFileSiz := O; 
UFilePos := O; 
New(Oatal; 

ENO; 
ENO; 

BEGIN 
ClrScr; 
Write( 1Now writing several variables to 11UF i le11 

• • '>; 
Wr i teLnC'they will become a single STRING.'); 

AssignUsrCUFi le>; 
RewriteCUFi le>; 
Wr i te(UFile, 'Pl/4 = ', Pi/4:1 : 11); 
WriteCUFile, ' The biggest Long Integer is 1 , Maxlonglnt); 
Writeln( 1Press a key to see the result . •); 
CH : = ReadKey; 

Writeln · Writeln('"' Read.JsrCUFile) '"') " WriteLn· 
WriteLn( 1 Now the UFile is clear, ready to ~ccept i~t again'>; 

N := 355; 0 := 113; 
Write(UFile, N, 1 / 1 , O, • •, Chr(247), •PI.'); 
WdteCUFile, •Pl=', Pi:1:11, •and•, N, 1

/
1

, D, 1=1
, N/0:1:11); 

Wr i teLn( 'Press e key to see the result. 'l; 
CH :• React:ey; 
Writeln; Writeln(•N•, ReaclJsr(UFile), 1111

); Writeln; 
WriteLn 
C 'NOW to overload the UFi le -- we will get a special 1/0 error'); 
WriteLn( 'Press a key to see the result. 'l; 
CH :• ReadKey; 
FOR N :• 1 TO 9 DO 

WriteCUFile, 'THIS string has 32 characters. 'l; 
ENO. 

LISTING 3: MEMFILE.PAS 

{SR · , 1+,N·} 
PROGRAM Memory_Fi le; 

USES Crt , DOS; 

CONST 
BufS i z • 127· 
UsrSiz • 409S. 
10 lnval id = 6 · ' 
10-FileFul l • 101· 
IO=NotOpen • 103'. 
IO_Notlnput • 104'. 
IO_NotOUtput • 105; 

July/ August 1988 TURBO TECHNIX 39 



TYPE 
FFilelluffer = ARRAY[O •• UsrSizJ OF Char; 
FFilePointer = "ffilelluffer; 
CharBuf = ARRAYCO •• BufSizJ OF Char; 
TextRec = RECORD 

VAR 

Handle 
Mode 
BufSize 
Private 
BufPos 
BufEnd 
BufPtr 
OpenfU"IC 
lnOutfU"IC 
Flushfunc 
Closefunc 
Uf i lePos 
UFi leSiz 
FileData 
Erased 
UserData 
Nmne 
Buffer 

END; 

llord; 
llord; 
llord; 
\lord; 
\lord; 
llord; 
"CharBuf; 
pointer; 
pointer; 
pointer; 
pointer; 
\lord; 
Word; 
Ffi lePointer; 
boolean; 
ARRAYC1.. n OF Byte; 
ARRAYC0 •• 79] OF Char; 
CharBuf; 

UsrFi le Text; 
line STRING[255J; 

<SF+} <Make routines with FAR cal ls from here on} 
FUNCTION Usrlgnore(VAR F : TextRec) : Integer; 

BEGIN 
Usrlgnore :s: O; 

END; 

FUNCTION Usrlnput(VAR F : TextRec) : Integer; 

FUNCTION Min(A, B : llord) : llord; 
BEGIN 

IF A < B THEN Min :=A ELSE Min := B; 
END; 

BEGIN 

END; 

Usrlnput := O; 
lllTH F DO 

IF Mode= fn'Closed THEN Usrlnput := IO_NotOpen 
ELSE IF Mode = fmlnput THEN 

BEGIN 
IF UFilePos >= UFileSiz THEN 

BEGIN 
BufEnd := O; 
BufPos := O· 

END 
ELSE 

END 

BEGIN 
BufEnd := Min(Ufi leSiz · UFi lePos, BufSiz>; 
Move( Fi leDau· CUFi lePosJ, BufPtr ", BufEnd>; 
Ufi lePos := UFi lePos+BufEnd; 
BufPos := O; 

END; 

ELSE IF Mode = fnOutput THEN Usrlnput := IO_NotOutput 
ELSE Usrlnput := IO_lnval id; 

FUNCTION UsrOutput(VAR 

BEGIN 

TextRec) Integer; 

UsrOutput := O; 
lllTH F DO 

ENO; 

IF Mode = fn'Closed THEN UsrOutput := IO_NotOpen 
ELSE IF Mode = fnO.Jtput THEN 

BEGIN 
IF UFilePos+BufPos >= UsrSiz THEN UsrOutput : = IO_Filefull 
ELSE 

BEGIN 
Move(BufPtr·, Fi leData· CUFi lePosJ, BufPosJ; 
UFi lePos := Ufi lePos+BufPos; 
IF UFilePos > UFileSiz THEN UFileSiz := UFilePos; 
BufPos := O; 

END; 
END 

ELSE IF Mode fmlnput THEN UsrOUtput := IO_Notlnput 
ELSE UsrOutput := IO_lnvalid; 

FUNCTION UsrOpen(VAR 

BEGIN 

TextRec) Integer; 

UsrOpen : = O; 
lllTH F DO 

IF Mode = fmlnput THEN 
(* ==================================== *) 
(* RESET : open for input from the *) 
(* "file•. If size is 0, say the file *) 
(* doesn't exist. Otherwise, set lnOut *) 
(* for INPUT and put the Fi lePos at 0. *) 

(* =======-=:============================ *) 

40 TURBO TECHNIX July/ August 1988 

BEGIN 
IF erased THEN UsrOpen := IO_Notlnput 
ELSE 

BEGIN 
FlushFunc := aJsrlgnore; 
lnOutFunc := aJsrlnput; 
UFilePos := O; 

END; 
ENO 

ELSE IF Mode = fnO.Jtput THEN 
(* ==================================== *) 
(* REllRITE •• open for output TO the *) 
C* "file". Set FileSize and FilePos to *) 

(* 0 and al locate space for the file's *) 
(* data to reside in *) 

(* ==================================== *) 
BEGIN 

uF; leSiz := O; 
UF ilePos := O; 
IF erased THEN 

BEGIN 
erased := false; 
New( Fi leData); 
END; 

lnOutfunc := aJsrOutput; 
Flushfunc := aJsrOutput; 

END 
ELSE IF Mode = fml neut THEN 

(* ==================================== *) 
(*APPEND - - if the file doesn't exist *) 
(* yet, say so. Otherwise, point the *) 
(* Fi lePos at the Fi leSize, so new *) 
(* llRITE statements will append to the *) 
(* Nfj le11 *) 

(* ==================================== *) 
BEGIN 

IF erased THEN UsrOpen := IO_NotOutput 
ELSE 

END 

BEGIN 
UFilePos := UFileSiz; 
lnOutfunc := aJsrOJtput; 
Flushfunc := aJsrOJtput; 
Mode := fmoutput; 

END; 

ELSE UsrOpen := IO_Inval id; 
END; 

{Sf·} {Stop making routines with FAR calls} 

PROCEDURE EraseUsr(VAR Text); 

BEGIN 
lllTH TextRec(f) DO 

BEGIN 
erased := true; 
dispose( Fi leData); 
onode := fn'Closed; 

END; 
END; 

PROCEDURE AssignUsr(VAR 

BEGIN 
lllTH TextRec(F) DO 

BEGIN 
Mode := fn'Closed; 

:= BufSiz; 
:= ilbuffer; 

Text); 

BufSize 
BufPtr 
OpenFunc 
CloseFunc 
Name[OJ 
UFi leSiz 
UFi lePos 
Erased 

:= aJsrOpen; 
:= aJsrlgnore; 
:= #0; 

END; 
END; 

BEGIN 

:s O; 
: = O; 
:= true; 

ClrScr; 
AssignUsr(Usrfi le); 
Rewrite(UsrFi le); 
WriteCUsrfile, 1 1 '); 
Write(UsrFile, •am 1 , 1.234, 1 feet high.'); 
llriteLn(UsrFi le>; 
Writeln(Usrfile, 'The value of pi is ', Pi:1:11); 
Close(UsrFi le); 
Reset(UsrFi le); 
Writeln 
C'I have written some lines to the "falce file" . I can get them'); 
llriteLn 
('back by READING the •fake file" and writing to the screen.•); 
llri teLn< •HERE they come:• l; 
llHILE NOT(Eof(Usrfile) OR Keyf>ressed) DO 

BEGIN 
Readln(UsrFile, line); 
llriteLn(l ineJ; 

END; 



wr; teln; 
llriteLn('Now going to APPEND -- • •• '); 
AppendCUsrf i le); 
llriteLnCUsrfile, 'llhat is 1/4 of pi? Is it •, Pi/4:1:11, '?'); 
Close(Usrfi le>; 
Reset(Usrf i le>; 
llHILE NOTCEof(Usrfile) OR KeyPressed) DO 

BEGIN 
ReadLn(Usrfi le, l lne); 
llriteLn(line>; 

END; 
ENO. 

LISTING 4: IACKUNIT .PAS 

UNIT BackUnit; 

Interface 

Uses Crt, Dos; 

PROCEDURE Backward_On; 
PROCEDURE Backward_Off; 

l"l'lementation 

VAR 
SaveExit : Pointer; 
Hold'.>utput, HoldFlush : pointer; 

PROCEDURE Conlut ( c : Char); 

CONST 
CR • #$00· 
Lf = #SOA; 
BEL • #7· 
BKS = #8; 

(Carri age return} 
{line feed> 
{bell character} 
{backspace} 

VAR 
regs Registers; 
X, Y Byte; 

BEGIN 
lllTH regs DO 

BEGIN 
CASE C Of 

CR GotoXYC80, llhereY); 
Lf BEGIN 

Y := suc:c(N'hereY); 
If Y > 25 THEN 

BEGIN 
GotoXYC 1, 1 ) ; 
Del line; 
y := 25; 

END; 
GotoXY(llhereX, Y); 
ENO; 

BEL: BEGIN Sou-.d(750); Delay(300); NoSou-.d; ENO; 
BKS: BEGIN 

X := lilhereX; 
If X < 80 THEN 

GotoXY(succ(X) ,llhereY); 
END; 

ELSE 
AH := 9; 
AL := Ord(C); 
BH := O; 
BL := TextAttr; 
ex := 1; 
Intr(S10, regs); 

{just write the character 

{now reposition the cursor} 
X := WhereX; Y := WhereY; 
If X > 1 THEN Oec(X) 
ELSE 

BEGIN 
x := 80; 
lncCY); 

END; 
If Y > 25 THEN 

BEGIN 
GotoXY(1, 1); 
Dell ine; 
y := 25; 
x := 80; 

END; 
GotoXY(X, Y); 

END; {CASE> 
END; 

END; {PROCEDURE ConOUt(C : Char);) 

{SF+) FUNCTION UsrOutput(VAR f : TextRec) : Integer;{Sf·} 

VAR N : Byte; 

BEGIN 
lllTH f DO 

BEGIN 

FOR N := 0 TO Pred(BufPos) DO ConClut(BufPtr" [NJ); 
BufPos := O; 

END; 
UsrOUtput := O; 

END; 

PROCEDURE Backward_On; 

BEGIN 
TextRec(OUtput).lnDutfo.N: := iUsrOUtput; 
TextRec(OUtput). flushfo.N: := iUsrOUtput; 

END; 

PROCEDURE Backward_Off; 

BEGIN 
TextRec(OUtput). InDutfunc := Hold:lutput; 
TextRec(OUtput). Flush Fune := HoldFlush; 

END; 

{Sf+}PROCEDURE NyExitProc;{Sf-} 

BEGIN 
Backward Off; 
ExitProc-:= SaveEx;t; 

END; 

<Initialization section) 

BEGIN 
SaveExit := ExitProc; 
ExitProc := llNyExitProc; 
HoldOutput := TextRec(OUtput) . InDutfo.N:; 
HoldFl ush := TextRec(OUtput). f lushfunc; 

END . 

LISTING 5: IACKllARO.PAS 

{SR-,1+,N-) 

PROGRAM Backward; 

Uses Crt, Dos, BackUnit; 

VAR 
cUm!y : char; 

PROCEDURE llrite_Explanation; 

BEGIN 
llri teLnC' 
Writeln( 1 

Writeln( 1 

llr i teLn(' 
llriteLnC' 
Writeln( 1 

llri teLnC' 
Wri teln( 1 

Wri teln( 1 

Wri teln; 

BACKllARD llR IT I NG DENO' ) ; 
::================::::=::I ) ; 

This program demonstrates a Text 1 >; 
File Device Driver that replaces the'); 
standard driver for the OUTPUT '); 
device in Turbo Pascal 4.0. llhen the'>; 
replacement TFDD ;s activated, 1 >; 
ell "Write" end "Writeln" statements '); 
will appear on the screen backward. 1 ); 

END; 

BEGIN 
TextColor(L i ghtGray); TextBackgrou-.d(black); 
ClrScr; 
Wri te_Explanation; 
llri teLn( '--PRESS a key to activate BACKllARD'); 
cUm!y := Readeey; 

Backward On; 
TextColorCllhite); 
GotoXY(80, 1); 
Write Explanation; 
llriteln(' --PRESS a key to OEactivate BACKllARD' ); 
cUm!y := Readl::ey; 
Backward Off; 
GotoXYC1~14>; 
llrite(' The TextColor and TextBackgrou-.d '); 
llriteLnC'procedures work just as they normally'); 
llrite(' would, and text scrolls when it '); 
Wri teln( 1 reaches the bottom of the screen. Press 1 ); 

Wdte( 1 1 key to demonstrate this, end 1 >; 
Writeln( •press a key again to stop. 1 ); 

Dlmll)' := Readeey; 
Backward On; 
Writeln;-

REPEAT 
TextColor(random( 16)); 
TextBackgrOl.nd( random(8)); 
Write( 'Press any key to STOP .. . . '>; 

UNTIL KeyPressed; 
cUm!y :• ReadKey; 
Backward Off; 

END. -

July/ August 1988 TURBO TECHNIX 41 



i MOUSE MYSTERIES, PART II: 
~ GRAPHICS 

Add the graphics touch to your Turbo C and Turbo Pascal 
applications by combining the BGI with your mouse. 

Kent Porter 

In the first article of this two-part series 
on mouse programming (see "Mouse 
Mysteries, Part I: Text," TURBO TECH­
NIX, May/June, 1988), I used a Turbo 
Pascal unit and a Turbo C library to ex-

rRoGRAMMEn plore how a Microsoft/ Logitech-compat-
ible mouse can be incorporated into the user inter­
face of text-oriented programs. In this final article of 
the series, I'll discuss the techniques of mouse pro­
gramming in graphics mode. While the calls and 
many of the programming techniques are the same 
for both the text and the graphics mode, you'll dis­
cover that there are some dramatic differences in the 
capabilities of the mouse, especially with respect to 
cursor management. 

In Part I, I discussed the two kinds of mouse text 
cursors. Type 0 (in the call to mTextCursor) creates 
a software cursor whose appearance can be custom­
ized; this cursor operates independently of the dis­
play adapter's normal text cursor. Mouse cursor type 
1, on the other hand, places the hardware cursor 
under the control of the mouse, although the call to 
mTextCursor doesn't actually alter the location of 
the next text input/ output operation. 

With mouse programming in graphics mode, we 
meet a third type of mouse cursor. This cursor is sim­
ilar in some respects to the software text cursor (Type 
0), but more flexible. The graphics cursor also has a 
new characteristic, known as the hot spot, which is 
the exact location of the cursor's point of registration. 

The graphics cursor is a 16 X 16-bit object that 
tracks in response to the mouse. Unlike the cursor in 
text mode, the graphics cursor doesn'tjump a char­
acter cell at a time; instead, it moves smoothly, pixel­
by-pixel. As you move the mouse, the cursor is re­
peatedly erased at its present position and redrawn 
at the next location. The redraw operation occurs so 
rapidly that the eye doesn't detect it; the cursor ap­
pears to move continuously. 

42 TURBO TECHNIX July/ August 1988 

Different graphics modes interpret combinations 
of bits differently. For example, in CGA high-resolu­
tion (640 X 200 monochrome) graphics, each bit is 
mapped to a single pixel. Therefore, a 16 X 16-bit 
object is 16 pixels wide by 16 pixels high. On the 
other hand, CGA four-color mode (320 X 200) uses 
two adjacent bits to select a color from the active 
palette, so that a 16 X 16-bit data object becomes a 
visual object that is 8 pixels wide by 16 pixels high, 
with each pixel's color dependent upon the two-bit 
pattern. These different interpretations of bit com­
binations have implications that I'll discuss later in 
this article. The important thing to remember right 
now is that a mouse cursor's workspace is 16 X 16 
bits, which (depending on the mode) might be 8 or 
16 pixels wide. Incidentally, the physical proportions 
don't change between these modes, since one pixel 
in four-color mode is the same physical width as two 
pixels in high-resolution mode. 

DEFINING THE CURSOR MASKS 
A graphics mouse cursor consists of two related bit 
maps (one superimposed on the other), called the 
cursor mask and the screen mask. The cursor mask 
defines the appearance of the cursor itself, while the 
screen mask specifies how the underlying pixels are 
treated. The mouse cursor is always in front of what­
ever is on the display, so that the screen mask selec­
tively passes through or blocks background informa­
tion as the cursor moves across fixed objects. Most 
often, the screen mask blocks the background pixels 
all around the cursor shape to create a border, thus 
making the cursor visible even when it's in front of 
an object of the same color. 

Specifically, the mouse device driver ANDs the 
screen mask with the 16 X 16-bit display area where 
the cursor is being placed. Then the mouse device 
driver XO Rs the cursor mask with the result of the 
AND. This process produces the screen display that 
is summarized in Table 1. 



SCREEN MASK CURSOR MASK DISPLAY 
BIT BIT BIT 

0 0 0 
0 I I 
I 0 Unchanged 
I I Inverted 

Tab/,e 1. Effects of the screen mask and the cursor mask on the display area. 

If a screen bit is 1 and the corre­
sponding bit in the cursor mask 
is 0, the background bit shines 
through. A 010 combination in cor­
responding positions blocks the 
background bit, while a 0/ 1 forces 
the display bit ON. Although the 
111 combination is seldom used, 
we'll see an application for it later 
in this article in connection with 
the I-beam shape. 

Given these rules, let's see what 
a pair of masks actually looks like 
in binary. The mask set shown in 
Figure 1 defines an arrow point­
ing northwest, as the eye can 
discern from the patterns of ls 
and Os. 

Hex Screen mask _ .. _________ 

3FFF 0011111111111111 
1FFF 0001111111111111 
OFFF 0000111111111111 
07FF 0000011111111111 
03FF 0000001111111111 
01FF 0000000111111111 
OOFF 0000000011111111 
007F 0000000001111111 
003F 0000000000111111 
001F 0000000000011111 
01FF 0000000111111111 
10FF 0001000011111111 
30FF 0011000011111111 
F87F 1111100001111111 
F87F 1111100001111111 
FC3F 1111110000111111 

In contrast, the first three rows for 
the cursor mask are shown below: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thus, the tip of the arrow cursor 
is located in the second column of 
the second row. The screen mask 
blocks the background pixels 
above and to both sides of the 
cursor with a 0/ 0 combination. 

This northwest-pointing arrow 
is the default graphics cursor. If you 
don't specify otherwise, this is the 
cursor that is automatically shown 
in a graphics mode. A custom cur­
sor can always be replaced by the 

Cursor mask Hex 
............................ 

0000000000000000 0000 
0100000000000000 4000 
0110000000000000 6000 
0111000000000000 7000 
0111100000000000 7800 
0111110000000000 7COO 
0111111000000000 7EOO 
0111111100000000 7FOO 
0111111110000000 7F80 
0111111111000000 7FCO 
0111110000000000 7COO 
0100011000000000 4600 
0000011000000000 0600 
0000001100000000 0300 
0000001100000000 0300 
0000000110000000 0180 

Figure 1. Values for the screen mask and the cursor mask. 

Note that the screen mask de­
scribes an outline for the cursor 
mask; the region of Os is one bit 
greater in all directions than is the 
shape defined by ls in the cursor. 
For example, the first three screen 
mask rows are as follows: 

0 0 1 1 1 
0 0 0 1 1 
0 0 0 0 1 

default graphics cursor by reset­
ting the mouse and then showing 
the cursor again. It should never 
be necessary to specify this default 
mask set in your programs. (It's in­
cluded here only to illustrate what 
a mask set looks like.) 

I'll present several predefined 
cursor shapes shortly, and show 
you how to activate them. First, 
let's explore the graphics cursor's 
hot spot. 

PINPOINTING THE CURSOR'S 
LOCATION 
In text mode, the mouse cursor al­
ways occupies one character cell. 
Since the text mouse moves one 
full cell at a time, the cursor is 
either in or out of a given cell. In 
Part I of this series, I showed that 
position inquiry calls to the device 
driver return coordinates that cor­
respond to the CGA high-resolu­
tion graphics screen, which mea­
sures 640 X 200. The cursor is 
mapped to a character position by 
using the algorithm 

mRowRange (0, GetMaxY); 

along both axes to determine the 
text row and column values. 

The granularity of a graphics 
screen is much finer than that of 
a screen in text mode. However, 
since the cursor spans an area of 
either 8 X 16 or 16 X 16 pixels, a 
problem arises: How can we iden­
tify the precise location of the cur­
sor? The solution is the cursor's 
hot spot. 

The hot spot is a pixel position 
within the mask that maps to a 
single pixel on the display. The 
device driver ascertains the cursor 
position by locating and reporting 
the coordinates of the display 
pixel that is currently overlaid by 
the hot spot. In the case of the de­
fault (northwest-pointing) graph­
ics cursor, this display pixel is lo­
cated at the position represented 
by 1,1 (where 0,0 represents the 
upper left corner of the mask). In 
other words, this position is the 
very tip of the arrow, which is lo­
cated in the second row and the 
second column of the mask. If the 
cursor was represented by a cross­
hair, the hot spot would logically 
occur where the hairs intersect. If 
the cursor was represented by a 
pointing hand, the hot spot would 
be at the tip of the index finger. 

Thus, the hot spot is a relative 
location defined with reference to 
the upper left corner of the cursor 

continued on page 46 

July/ August 1988 TURBO TECHNIX 43 



Lots of software 
packages help you work, 
Moving ahead takes 

more than hard work. 
it takes smart work. 

There are stacks of productiv­
ity software you can buy for 
your PC. But to work smart. 
you only need one: SideKick® 
Plus. It's the newest member 
of Borland's professional 
series. from the same people 
who brought you the original 
SideKick: the program that 
introduced more than a million 
PC users to the convenience 
of using their computer as an 
organizing tool. 

To buy productivity applica­
tions like those in SideKick 
Plus separately, you'd spend 
almost a thousand dollars and 
drain your computer's memory 
dry. SideKick Plus takes 
as little as 

notepads. a versatile outliner. 
four different calculators. 
support for both EMS and 
extended memory. And 
lots more. 

You decide how to use 
SideKick Plus. too. Put your 
applications on your hard disk 
to call up when you need them. 
or leave them in RAM for 
instant availability. Either 
way, they're always at your 
fingertips. Accessible over any 
other application you're work­
ing in. Amazingly affordable. 
And very. very smart. 

Here's What You Get! 
• The PhoneBook: complete 

data and voice communications 
that you can set to take place 
in the background. with auto­
dialing. an encrypted glossary, 

and a full Script language. 
Even if you don't have 

a modem. it keeps 
your names. 

addresses. 
and phone 
numbers at 

your fingertips 
· Outlook: 

• The Calculator: four types: 
business. scientific. program­
mer and formula 

• The Clipboard: for copy-and­
paste integration between files 
and with other applications 

·The Time Planner: includes a 
Calendar. Appointment Book. 
and Schedule window. plus 
alarms. repeating appoint­
ments. and attached agenda. 
Supports networks via a 
common calendar 

• The Notepad: nine file­
editor Notepads. up to 11.000 
words each 

• The ASCII Table: to find 
and paste characters quickly 
and easily 

• Supports both EMS and 
extended memory: if you 
have expanded memory or the 
Intel Above'"Board. you can 
load the SideKick Plus desk 
accessories into expanded 
memory and leave even more 
of your conventional memory 
for your other applications. 

Only $199.95 
(not copy protected) 

SideKick Plus puts you in control . . . 
for as little as 64K! 

The Outline 
Processor: nine 

Outliners with auto­
matic numbering. tree charts. 
and table of contents 

60-day money-back guarantee* 

64Kof your computer's RAM: 
you decide exactly how much. 

You can select just the 
productivity applications you 
need. Like a sophisticated tele­
communications package. a 
powerful DOS manager. nine 

Minimum Sy a tern Aequll'9fMfll•: For IBM PSl2. IBM family ol personal compu1ers. 
and all 100% compatibles Operating system PC -DOS (MS-DOS) 2 0 or later Minimum 
system memory- 384K bytes M1n1mum resdenl memory size 64K. Hard disk required 

• The File Manager: extended 
DOS file and directory 
management 

For a brochure. the dealer 
nearest you. or to order 
Call (800) 543-7543 

·customer sa11stac11on 1s our main concern I! w1th1n 60 days ol purchase 11115 prexllJCt does AU Borland PfodvctS a1e trademarks or reQ1S1ered 11&0emarks of Borland 1nterna11onal 
not per!orm in accordance with our claims, call our cusiomer seMC:e depanment and we Other bf and and proclvct names are trademarks ot !heir respective holders Copynght 
will arrange a relund •1988 Borland International, Inc 811 



Only one helps 
you work smarter. 

Data Communications L 
VOICE COMMUNICATO\IS / 

~----­,..~---· 

SideKick Plus! 
'' What I like most is new ideas in software. 
Historically, one of the best new ideas was 
Borland's SideKick. SideKick Plus is a much 
more powerful program than the original. 
It adds a lot of new features and gives you 
a lot more flexibility over how you use its 
many features. 

Michael J. Miller, Info World '' 

INTERNATIONAl 

• • 



MOUSE 

continued from page 4 3 

mask. The hot spot's range along 
the horizontal axis is 0 .. 7 for CGA 
four-color mode, and 0 .. 15 for all 
others (CGA high-resolution, Her­
cules, EGA, VGA, etc.). The hot 
spot's range along the vertical axis 
is always 0 . .15. 

The mouse device driver needs 
to know the relative coordinates 
of the masks and the hot spot in 
order to manage the graphics 
cursor. 

DEFINING THE GRAPHICS 
MOUSE CURSOR 
Since the cursor's description is 
actually the combination of sev­
eral items, it's convenient to group 
these items into a Pascal record or 
a C structure. This object (which 
is called gCursRec in the accom­
panying listings) consists of a 
pointer to the mask set ~nd two 
unsigned integers that give the 
hot spot's relative X and Y coor­
dinates. 

While the mask set logically 
consists of two 16 X 16-bit arrays, 
the device driver regards them as 
one array of 16 X 32 bits. These 
arrays are inherently fixed data. 
In Turbo Pascal, they take the 
form of typed constants. In Turbo 
C, they take the fomi of the static 
unsigned type. The arrays can be 
initialized with hex numbers that 
represent the bit patterns at 
definition. 

Listings l and 2 are include 
files for Turbo Pascal and Turbo 
C, respectively, that furnish five 
common shapes for mouse cur­
sors: a check mark, a left-pointing 
arrow, a cross, a pointing hand, 
and an I-beam. The latter shape 
is usually associated with text I/O 
on the Macintosh and in Mac-like 
PC-based programs such as Xerox 
Ventura Publisher. The other 
shapes are used for pointing, 
drawing, selecting, and so forth . 

46 TURBO TECHNIX July/ August 1988 

Customarily, mouse-driven pro­
grams use different cursor shapes 
to identify the current mode. Such 
actions tend to be highly applica­
tion-dependent. 

The headings of these include 
files also initialize the gCursRec 
structures for each cursor type. 

Note that the structure declara­
tions cannot initialize the pointers 
during compilation; the pointers 
can only be set to nil (the NULL 
constant in Turbo C). This is be­
cause the addresses of the static 
arrays are not assigned until link 
time. Consequently, the include 
files contain equivalent subpro­
grams called lnitGCurs, which 
must be called by the using pro­
gram. InitGCurs completes the 
structure initializations by plug­
ging in pointers to the static ar­
rays. Remember to call InitGCur, 
or else you'll get garbage cursor 
forms. 

Naturally, not every graphics 
program needs five different 
mouse cursors. You can rename 
and edit the files in Listing 1 and 
2 to remove the cursors that you 
don't need (and to add others if 
you wish) for a specific applica­
tion. However, the memory ex­
pense for each cursor shape is 
only 38 bytes (plus a few more 
bytes for the initialization code), 
so there's not a great penalty for 
including unused shapes. 

The GMOUSCUR include files 
also furnish a mouse event han­
dler. This handler is identical to 
those used for text mode in Part 
I of this article series. To install 
the handler, use the mlnstTask 
call. 

GETTING THE GRAPHICS 
CURSOR UP 
The process of moving from a 
program's initial tex~ mode_ to a 
mouse-driven graphics environ­
ment involves several steps. The 
following is a step-by-step guide. 

1. Initialize the cursor descriptor 
structure(s) with a call to 
InitGCurs; 

2. Reset the mouse with mReset; 
and 

3. If the mouse exists, then: 
a. Install the event handler 

with mlnstTask; 

b. Enter the desired graphics 
mode; 

c. Build the environment 
display; 

d. Tell the device driver which 
cursor shape you want via a 
call to mGraphCursor (skip 
this step if you're using the 
default arrow cursor); 

e. Show the cursor with 
mShow; 

f. Reset the mouse event flag 
to O; and 

g. Enter a loop to process 
mouse events. 

The work of the program is 
done in substep g. This activity 
might involve drawing, text pro­
cessing, file I/O, dialog boxes, 
and other operations. (As exam­
ples, consider PC Paintb:Us~ and 
Microsoft Windows apphcauons.) 
The loop must have an exit such 
as a menu or icon selection that 
can be clicked to graphics mode. 
The process of withdrawing is. 
much simpler than that of setung 
up, and requires these steps: 

h. Reset the mouse with 
mReset; and 

i. Revert to text mode. 

If a mouse isn't present in the 
system, none of the substeps a-i 
can occur (unless you use the cur­
sor keys as an alternative to the 
mouse). 

The mGraphCursor routine is 
furnished by the Pascal MOUSE. 
unit and the C file MOUSE.I. This 
call takes four parameters: 

• The X and Y relative coordi­
nates of the hot spot; and 

• The segment and offset of the 
mask set. 

As mentioned earlier, the mask set 
is a 16 X 32-bit array (i.e., a 32-
word list) . The first half of the ar­
ray holds the screen mask, and 

continued on page 48 



A Deal You Can't Refuse .. .700 Functions, 20 Disks, Free Software 

Entelekon 's 

C Business Library 
or C STARTER PACKAGE 

FREE* FREE* 
TURBO C <R> 

Borland 
or 

FREE* 
QUICKC™ or C MATH TOOL BOX 

Microsoft 89 advanced 
math/stat functions 

*OR FREE REFUND if you already own one, see special offer (limited time) 

What You Get With Entelekon Libraries 
r ..j_( AC COMPILER without a good add-on library is like a PC without a keyboard ... 

it won 't do what you want it to do ! 
...,..!.! c GAIN C POWER Add capabilities your compiler library does NOT have. e.a.: 

s New' Owick Menuing-full 1-2-3 like menus & more 
s Flexible powerful windowing + new Owick windows 
s. Powerful cursor, video and attribute control 

s New' Ow1ck Data Entry with dialog boxes 
11111; Formatted, fully validated data entry 
11111; Display default field values 

s. Time and date arithmetic 11111; Calculator style entry option 
s Sample code and working examples im: 700 functions you need 

SAVE TIME, TIME, TIME: man-years on development, calendar months on schedule' 

SAVE MONEY: Lowest Cost, Highest Quality Library/Windows Available! 

~· 

~ 
r~r 
..-.;[\ SMALLER PROGRAM SIZE: your application program can be up to 50% smaller! 

~B ~ C - EASY for beginners! POWERFUL for professionals! ,_<l'o"':-<>~ 
~ ~~ ~ ..- - INSTANT INSTALLATION UTILITY included! ~-9. 00. 0 0 """ 

c ' ~~J '%l~ ~< 
_.... ",·1 SUPERB DOCUMENTATION: time saving, helpful, clear, complete, instructive. ~~"hi> 0 0" 

C I 0~4~~~ 
..- -:~_. BUSINESS USERS: FREE 3 machine site license (C Library & Power Windows). <S-,,_-"",..<9. .;>/,,. c " ,.k,.,,,,& o.., 
r~: FULL SOURCE CODE included! NO ROYALTIES on products you develop. ~~ .. ~~ 
r~1 FREE UTILITY: To convert Turbo Pascal code to C code. 

SAVE MONEY! SAVE TIME! DON'T WAIT! ORDER NOW! 
SATISFACTION GUARANTEED 

POWER WINDOWS'" 
MOST POWERFUL YET 

POP-UP/PULL DOWN/OVERLAP 
Menus/Overlays 

Messages/Alarms 
ZAP ON/OFF SCREEN 

FILE-WINDOW MANAGEMENT 
Horizontal & Vertical Scrolling 

V.Urd Wrap & Line Insertion 
Cursor/Attributes/Borders 

Full source code _ $159.95 

,,. SPECIAL OFFER 
Free Turbo C or QuickC or C Math 
Tool Box with purchase of C Starter 
Package or C Business Library. Even 
if you already own Turbo C or QuickC 
or C Math Tool Box, we will refund 
up to the full purchase price of one 
of these packages with the pur­
chase of C Starter Package or C 
Business Library. 

(Direct from Entelekon only) 

C FUNCTION LIBRARY 
BEST YOU CAN GET 

OVER 500 FUNCTIONS 
FULLY TESTED 

BETTER FUNCTIONS 
Full source code $15995 

C BUSINESS LIBRARY 
INCLUDES C FUNCTION LIBRARY. POWER 
WINDOWS, SUPERFONTS FOR C. B·TREE 
LIBRARY, !SAM 

ALL for .................. $299.95 
(A $500.00 VALUE) 

CALL (713) 468-4412 

B-TREE LIBRARY & ISAM 
DRIVER 

POWERFUL DATA MANAGER 
FAST! EASY TO USE! 

16. 7 MILLION RECORDS/FILE 
16.7 MILLION KEYS/FILE 

FixedNariable length records. 
Full source. No royalties $1 29 95 
Mulr1·User option available 

C STARTER PACKAGE 
INCLUDES C FUNCTION LIBRARY. POWER 
WINDOWS. SUPERFONTS FOR C 

ALL for ...... . ....... .. .. $199.95 
(A $370.00 VALUE) 

Entelekon 
SINCE1982 

12118 Kimberley. Houston. TX 77024 713-468-4412 VISA-MASTERCARD-CHECK·COD 



MOUSE 
continued from page 46 

the second half contains the cur­
sor mask. 

When the mGraphCursor rou­
tine is called, the mouse device 
driver immediately displays the 
cursor image and tracks the cur­
sor's position using the hot spot. 
By issuing a single call when the 
program enters a new mode, 
cursor shapes can be instantly 
changed. This process is shown by 
the demo routine in Listings 3 
and 4, which displays the name of 
the new mouse cursor and then 
calls mGraphCursor to change 
the cursor image (which is already 
visible by the time demo is called). 

The GMICE programs are writ­
ten in Turbo Pascal and Turbo C, 
using the MOUSE units presented 
in Part I and the include files 
given earlier in this article. Since 
the two GMICE programs are 
functionally identical (except for 
details of handling the mouse 
event), we can speak of them as 
one program. 

GMICE uses CGA high-resolu­
tion mode, which is common to 
all IBM graphics display adapters 
(but not to the Hercules). The 
program displays a white block in 
the center of the screen. You can 
use GMICE to view the default 
cursor and the five cursors that 
are defined in GMOUSCUR, by 
moving the mouse to see the cur­
sor against both light and dark 
backgrounds. Each time you click 
a mouse button, the cursor and its 
identifier change. The program 
ends and reverts to text mode 
when you click while the I-beam 
cursor is displayed. 

MORE ABOUT MASKS 
The I-beam cursor is unique 
among the shapes given here in 
that its screen mask consists en­
tirely of one-bits. By combining 
the one-bits and the cursor mask, 
the background shows through 
when the cursor shape is the in-

48 TUR BO TECHNIX July/ August 1988 

Scribble Clear ~it 103, 79 

Hold dcM1 left button to draw 

Figure 2. Screen display of the SCRIBBLE program. 

verse of the background. No out­
lining occurs when the 010 com­
bination is used because the I­
beam is a spindly object that lacks 
any solid mass. An outline fattens 
and distorts the shape against a 
white background, so it works best 
to use the 111 inversion combina­
tion for this particular image. 

As an experiment, select some 
of the other cursors with a cursor 
mask that consists entirely of one­
bits. The results are interesting, 
but not as satisfactory. The use of 
the mouse in CGA four-color 
graphics (mode CGACI or 
CGAC2 with the BGI) is also un­
satisfactory. Change the assign­
ment of the mode variable to CGA 
four-color mode and try it; you'll 
see how the cursor picks up unde­
sirable colors as side effects due 
to the two-bit pixels in this mode. 

DRAWING WITH THE MOUSE 
SCRIBBLE is a program that in­
corporates the principles I've dis­
cussed here. This simple drawing 
program (of the sort that forms 
the foundation for software pack­
ages such as PC Paintbrush) lets 
you do exactly what its name im­
plies-scribble. 

Figure 2 shows the display 
created by SCRIBBLE, which is a 
menu with the selections Scribble, 
Clear, and Quit. A meter in the 
upper right corner of the screen 
continually tracks the display 
position of the cursor's hot spot. 
The help box at the bottom of the 
screen contains instructions. 
When the program first displays 
on the screen, the cursor has the 
form of the pointing hand. To en­
ter drawing mode, you move to 
the Scribble menu choice and 
click any button. 

Once you've entered drawing 
mode, the cursor switches to the 
cross form. It can be moved 
around the large work area. To 
draw, hold down the left button 
and move the mouse. (This step 
is shown within the help box in 
Figure 2.) 

When the Clear selection is 
clicked, the program clears the 
work area, restores the hand cur­
sor, and redisplays the initial help 
message. This step resets the pro­
gram so that you can start a new 
doodle. To end the program, 
click Quit. 



Listings 5 and 6 show SCRIB­
BLE in Pascal and C. These are 
equivalent programs that include 
the appropriate version of 
GMOUSCUR and call on the 
MOUSE library routines present­
ed in Part I of this article series. 

The subprograms MenuBox, 
Help, and SetUpScreen, which 
draw upon the Turbo Pascal/C 
graphics library, handle the re­
spective activities that their names 
suggest. UpdateMeter converts the 
numeric coordinates of the cur­
sor's hot spot into text and then 
displays them in the meter box: 
The main body of SCRIBBLE ini­
tializes the environment and dis­
patches the Work subprogram, 
which controls the main opera­
tion of the program. 

In Listing 5, Work consists 
chiefly of a large CASE statement 
(in Listing 6, switch is the equiva­
lent C construct). This is enclosed 
inside a loop that repeats until the 
user clicks the Quit selection. Af­
ter resetting the event flag, the 
loop waits for a mouse event to 
occur. When that event happens, 
CASE (in Turbo Pascal) or switch 
(in Turbo C) evaluates the event 
flag and takes action as appro­
priate. The event mask that is 
passed to the mouse driver is $55 
in Pascal, or Ox55 in C. This mask 
triggers an event any time the 
mouse moves, or when any button 
is released. Since the sum of the 
case selectors is hex 55, they selec­
tively act on any possible event. 

The first event is OxOl, which 
signifies a movement of the 
mouse. This case updates the me­
ter to indicate the new cursor 
position. Before updating the me­
ter, however, the case checks the 
status of the buttons. If the left 
button is down and the cursor is 
inside the work area (i.e., not in 
the menu or help areas), the rou­
tine draws a dot at the point that 
is covered by the hot spot. While 

the pixel is being drawn, the cur­
sor must be hidden in order for 
the display adapter to control the 
area under the cursor. 

The second case is entered 
when any button release occurs. 
Since the release of a button may 
indicate a menu selection, this 
case checks if the cursor is inside 
the menu area. If so, the case ex­
amines the cursor's horizontal 
position to determine which selec­
tion the user has made. If the user 
chooses Scribble, the cursor 
switches to the cross image and 
displays the second help message; 
if the user selects Clear, the pro­
gram resets the work area and re­
stores the hand cursor and initial 
help message. If Quit is chosen, 
the program toggles the value of 
the thru variable to TRUE. The 
end of the loop checks this Bool­
ean and repeats the process if the 
Boolean is still FALSE; otherwise, 
the program quits. 

THE GRAPHICS MOUSE WITH 
THE EGA AND VGA 
The mouse cursor's appearance 
is governed by the current graph­
ics mode (as you already noticed 
if you switched to CGA four-color 
mode). In EGA and VGA modes, 
mouse cursors shrink along the 
horizontal axis because these 
modes place more Y units into the 
same physical screen area (350 or 
480 units, versus 200 units in 
CGA). Thus, a cursor image that 
is tall and skinny in CGA high­
resolution mode becomes rela­
tively shorter and fatter as the 
number of Y coordinates in­
creases. 

Mouse vendors strive to keep up 
with evolving display technology 
by releasing new versions of soft­
ware device drivers as new adapt­
ers come onto the market. Micro­
soft and Logitech currently ship 
device drivers that handle the 
common adapters up through 
VGA 640 X 480 multicolor 
graphics. 

The latest released version of 
the Logitech driver at the time of 

this writing is 3.4. For this article 
series, I first used Logitech ver­
sion 3.2 on a VGA; however, I 
found the driver to be slightly un­
reliable in EGA modes, and use­
less for true VGA. The problem in 
EGA mode is that the cursor 
sometimes refuses to drop below 
row 199. The solution is simple: 
after entering graphics mode, 
issue the statement: 

mRowRange (0, GetMaxY); 

This apparently reassures the 
mouse driver that it's okay to use 
the area beyond that which CGA 
graphics provides. In VGA graph­
ics, the mouse cursor fails to ap­
pear at all. Both problems disap­
pear with the updated device 
driver. 

Unlike DOS, the de facto stan­
dard Microsoft Mouse device 
driver has no function for ascer­
taining its own version level. 
(That's a shame, but that's how it 
is.) If you develop commercial 
software and you use a higher­
resolution adapter, advise your 
customers to use a device driver 
that's up to the proper level. 

As I said at the beginning of 
this series on mouse program­
ming, it's not difficult to incorpo­
rate a mouse into your user inter­
face. However, it is different 
because you have to think in 
terms of events and status checks. 
The small extra effort is very 
worthwhile, because a mouse can 
add tremendous power and ease 
of use to your software. The tools 
and techniques in this series 
should make it easier for you to 
develop superlative mouse-based 
user interfaces in Turbo Pascal 
and Turbo C. • 

Kent Porter is the author of Stretch­
ing Turbo Pascal and numerous 
other programming books. He is a fre­
quent contributor to TURBO 
TECH NIX. 

Listings may be downloaded from 
CompuSeroe as CMOUS2.ARC. 

July/ August 1988 TURBO TECHNIX 49 



LISTING 1: GMOOSCUR . INC 

{ GMOJSCUR. INC is an include file that defines several graphics 
( mouse cursor patterns. All are typed constants. 
{ This file also contains an event handler cal led by the nK>USe 
C device driver, and a global event record variable 1 theEvents' 
{ ------------------ ---·- ------ --------- -----· -------------- -------
{Sf+) { force the including progrMt to use far calls> 

TYPE eventRec :11: record { mouse event record ) 
flag, button, col, row : \.IORO; 

END• 
gCu~sPtr z '" gCurs; 
gCurs = ARRAY 11 •• 32] Of l.IORD; 
gCursRec • record 

( pointer to cursor image ) 
< cursor i mege array ) 

graph; cs cursor descriptor ) 
image gCursPtr; 
hotX, hotY : l.IORO; 

END; 

{ Check mark image > 
CONST checkllR : gCurs 

{ Left arrow image 
LArrlm : gCurs 

Cross image } 
crosslm : gCurs 

Pointing hand image > 
hand Im : gCurs = 

I-beam image > 
iBeaml'" : gCurs = 

Graph ks cursors } 
check gCursRec 
arrow gCursRec • 
cross gCursRec • 
hand gCursRec: • 
iBeM gCursRec = 

(SfffO, SFFEO, SFFCO, Sff81, { screen .,.sk ) 
SFF03, S0607, SOOOF, S001f, 
SC03F, SF07f, SFFFF, SFFFF, 
SFFFF, SFfff, Sffff, SFFFF, 
SOOOO, $0006, SOOOC, $0018, { cursor mask > 
S0030, S0060, S70CO, S1D80, 
S0700. soooo. soooo. soooo. 
soooo. soooo. soooo. soooo); 

(SFE1f, SF01f, SOOOO, SOOOO, screen mask ) 
SOOOO, SF01f, SFE1F, Sffff, 
SFFFF, SFFFF, Sffff, SFfff, 
Sffff, Sffff, SFFFF, Sffff, 
SOOOO, SOOCO, S07CO, S7f FE, < cursor mask > 
S07C0, SOOCO, SOOOO, SOOOO, 
soooo. soooo. soooo. soooo. 
soooo. soooo. soooo. soooo); 

CSFC3F, SFC3f, 
soooo. soooo. 
SFC3F, SFFFF, 
SFFFF, SFFFF, 
soooo, S0180, 
S7FFE, S0180, 
soooo. soooo. 
soooo. soooo. 

CSE1FF, SE1FF, 
SE1FF, SEOOO, 
soooo. soooo. 
soooo. soooo. 
S1EOO, S1200, 
S1200, S13FF, 
S1249, S9001, 
$8001. $8001. 

(SFFFF, SFFFF, 
SFFFF, SFFFF, 
SFFFF, SFFFF , 

SFC3f, SOOOO, screen mask > 
SFC3f, SFC3f, 
SFFff, SFFFF, 
SFFff, SFFFF, 
S0180, S0180, < cursor mask > 
S0180, S0180, 
soooo. soooo. 
soooo. soooo); 

SE1FF, SE1FF, {screen mask) 
SEOOO, SEOOO, 
soooo. soooo. 
soooo. soooo. 
S1200, S1200, { cursor mask ) 
S1249, S1249, 
$9001. S9001. 
S8001, SFFFF); 

SFFFF, SFFFF, { screen mask > 
SFFFF, SFFFF, 
SFFFF, SFFFF, 

SFFFF, SffFF, SFFFF, SFFFF, 
SFOOF, SOC30, $0240, S0240, { cursor mask ) 
S0180, $0180, $0180, $0180, 
$0180, $0180, $0180, $0180, 
S0240, S0240, SOC30, SFOOF); 

(image nil; hotX 6; hotY 7); 
(image nfl; hotX O; hotY 3); -
(image nil; hotX 7; hotY 4); 
(image nil; hotX 5; hotY 0); 
(image nil; hotX 7· hotY 7); 

VAR theEvents : eventRec; < global variable ) 

PROCEDURE EventHandler 
(Flags, CS, AX, BX, CX, DX, SI, DI, OS, ES, BP : \M:>RO); 

{ Mouse event handler cal led by device driver > 

INTERRUPT; 

Beg in 
theEvents. flag 
theEvents.button 
the£ vents. col 
theEvents.row 

:=AX; 
:=BX; 
:= ex; 
:=DX; 

inline ( 
S88/SE5/ 
SSD/ 
S07/ 
S1f/ 
SSF/ 
SSE/ 
SSA/ 
$59/ 

{ Exit processing for far return to device driver ) 
HOY SP,BP ) 

{PCP BP) 
{ POP ES ) 
{ POP OS > 
{ POP 01 ) 
{ PCP SI ) 
{ POP DX > 
{PIP CX) 

50 TURBO TECHNIX July/ August 1988 

END; 

S5B/ 
SSS/ 
see >; 

{POP BX) 
{POP AX) 
< RETF > 

{ ---- ----------------------- > 
PROCEDURE lni tGCurs; 

C Initial iz.e pointers in graphics cursor descriptors } 
< Pointers can only be initialized at rlll time > 

BEGIN 
check. image :z acheckllR; 
arrow. image :z at..Arrtm; 
cross. image := across Im; 
hand. image :• ahandllR; 
iBeam. image := QiBeamlm; 

END; 

{ End of gnK>UScur. inc > 

LISTING 2: GMOJSCUll.I 

/* GMOUSCUR.I is an #include file defining several graphics l!IOUSe */ 
/* cursor patterns. All are statics . */ 
/*This file also contains an event handler called by the nK>USe */ 
/* device driver, and a global event record variable 'theEvents' */ 
/*Must #include MOJSE.I above this #include file. */ 
!* - - - - . - - -- - -- - - - - - -- -- - - - - -- - -- - - - -- - -- - - - - - - - -- - - ---- -- - - -- -- - - *I 

typedef struct { /* mouse event record */ 
ll'lSigned flag, button, col, row; 

) EVENTREC; 

typedef struct { /* graphics cursor descriptor */ 
ll'lsigned *image; 
unsigned hotX, hotY; 
GCURSREC; 

/* check mark image */ 
static unsigned check!• C32J z { 

OxFFFO, OxFFEO, OxFFCO, 
OxFF03, Ox0607, OxOOOF, 
OxC03F, OxF07F, OxFFFF, 
OxFFFF, OxFFFF, OxFFFF, 
OxOOOO, Ox0006, OxOOOC, 
Ox0030, Ox0060, Ox70CO, 
Ox0700, OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, OxOOOO, 

/* Left arrow image */ 
static unsigned LArrllR [32] z { 

OxFE1f, OxF01f, OxOOOO, 
OxOOOO, OxF01f, OxFE1F, 
OxFFff, OxFFFF, OxFFFF, 
OxFfff, OxFFff, OxFFFF, 
OxOOOO, OxOOCO, Ox07CO, 
Ox07CO, OxOOCO, OxOOOO, 
OxOOOO, OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, OxOOOO, 

/* Cross image */ 
static unsigned cross!'" C32J = < 

OxFF81, 
Ox001F, 
OxFFFF, 
OxFFff, 
Ox00111, 
Ox1D80, 
OxOOOO, 
OxOOOO >; 

OxOOOO, 
OxFFFF, 
OxFfff, 
OxffFF, 
Ox7FFE, 
OxOOOO, 
OxOOOO, 
OxOOOO >; 

OxFC3F, OxFC3F, OxFC3F, OxOOOO, 
OxOOOO, OxOOOO, OxFC3F, OxFC3F, 
OxFC3F, OxFFFF, OxFFFF, OxFFFF, 
OxFFFF, OxFFFF, OxFFFF, OxFFFF, 
OxOOOO, Ox0180, Ox0180, Ox0180, 
Ox7FFE, Ox0180, Ox0180, Ox0180, 
OxOOOO, OxOOOO, OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, OxOOOO, OxOOOO ) ; 

/* Pointing hand image */ 
static unsigned hand!• 132] z { 

OxE1fF, OxE1fF, OxE1FF, OxE1fF, 
OxE1ff, OxEOOO, OxEOOO, OxEOOO, 
OxOOOO, OxOOOO, OxOOOO, OxOOOO, 
OxOOOO, OxOOOO, OxOOOO, OxOOOO, 
Ox1EOO, Ox1200, Ox1200, Ox1200, 
Ox1200, Ox13FF, Ox1249, Ox1249, 
Ox1249, Ox9001, Ox9001, Ox9001, 
Ox8001, Ox8001, Ox8001, OxFFFF >; 

static unsigned iBeamlm 132] = < 
OxFFFF, OxFFFF, OxFFFF, Oxffff, 
OXFFFF, OxFFff, OxFFFF, OxFFFF, 
OxFFFF, OxffFF, OxFFFF, OxFFFF, 
OxFFFF, OxFFFF, OxFFFF, OxFFFF, 
OxFOOF, Ox0C30, Ox0240, Ox0240, 
Ox0180, Ox0180, Ox0180, Ox0180, 
Ox0180, Ox0180, Ox0180, Ox0180, 
Ox0240, Ox0240, OxOC30, OxFOOF ); 

J* screen mesk * / 

/* cursor mask * / 

/* screen mask *I 

1• cursor mask *I 

/* screen mask *I 

/* cursor mask * / 

/* screen .,.sk *I 

/* cursor mask * / 

/* screen mask */ 

/* cursor mask *I 



/* Graphics cursor descriptors */ 
static GCURSREC check = {NULL, 6, n; 
static GCURSREC arrow = {NULL, O, 3}; 
static GCURSREC cross = {NULL, 7, 4>; 
static GCURSREC hand = {NULL, 5, 0}; 
static GCURSREC iBe'"' = {NULL, 7, n; 

/* Global far pointer to mouse event record */ 
static EVENT REC far *theEvents; 
I* ------------------------------------------ - ----- - - - ------ - - ---- */ 

void far handler (void) 
{ 

/* event handler called by device driver*/ 

EVENTREC far *save; 
Ll"\Signed a, b, c, d; 

/* pointer to save areo in diff segment */ 
/* t~ storage of registers *I 

a z _AX, b z _Bx, c z _ex, d • _ox; 
save = MIC FP C CS-0x10, OxOOCO); 
save·>fla9 =-a; 

/* save registers */ 
/* point to PSP user areo */ 

/* stuff registers into it */ 
save·>button = b; 

save·>col z c; 
save·>row = d; 
/* --- - -------------------- */ 

void initGCurs (void) 
{ 

/* initialize ptrs in cursor descriptors */ 

check. image = checklnt; 
arrow. image z LArrlm; 
cross.image= crosslm; 
hand. image = handlm; 
iBeam. image = iBeamlm; 

} /* -- - -- ------------ - ---- - - */ 
/* End of GMClJSCUR. l *I 

LISTING 3: GMICE.PAS 

Program gmi ce; 

{ Illustrates the four graphics mouse cursors fra1 gmouscur.inc, } 
{ plus the default graphics cursor. > 

Uses mouse, graph; 

{Si gmouscur. inc} 

CONST eventMask = S54; { mask to trip event handler when any 
llOUSe button is released } 

VAR theMouse : resetRec; 
driver, mode : INTEGER; 

{ --------------------------------------------------------------- --
PROCEDURE Identify (title : string); 

{ \Ir i te name of cursor near top of screen } 

VAR x : INTEGER; 

BEGIN 
SetViewPort CD, 0, GetMaxX, 30, TRUE); 
ClearViewPort; 
SetTextStyle CDefaultFont, HorizOir, 1); 
x := (GetMaxX - TextWidth (title)) DIV 2; 
OutTextXY (x, 20, title); 
SetViewPort (0, 0, GetMaxX, ".ietMaxY, TRUE); 

~N~'. ......................... } 
PROCEDURE GraphicScreen (title : string); 

Creates a graphics screen and shows the title > 

VAR x, y INTEGER; 
pr°""t string [301; 

BEGIN 
lnitGraph (driver, mode, '\DRIVERS'); C set graphics mode} 
IF GraphResul t = grOk THEN BEGIN 

Identify (title); 
Pr°""t := 'Click any button to continue'; 
x := CGetMaxX - TextWidth Cpr°""t)) DIV 2; { start of pr°""t 
OutTextXY Cx, GetMaxY • 20, pr°""t); 

Prepare to draw a rectangle as a lighted backdrop for cursor } 
SetFillStyle (SolidFill, 1); 
SetColor (1); 
x := CGetMaxX DIV 2) - 50; 
y := CGetMaxY DIV 2) - 50; 
Rectangle Cx, y, x+100, y+100); 
FloodFill (GetMaxX DIV 2, GetMaxY DIV 2, 1); 

END; 
ENO· { _: ________ __________ _______ } 

PROCEDURE demo (cursor : gCursRec; title : STRING); 

< Show the indicated graphics cursor > 

{ set corners } 
C draw } 
{ fill } 

BEGIN 
Identify (title); 
mGraphCursor (cursor .hotX, cursor .hotY, 

seg (cursor. i mege · ), ofs (cursor. image·)); 
theEvents. flag := O; 
REPEAT UNTIL theEvents.flag <> 0; 

END; 
{ --------------------------- } 

BEGIN 
< Set '-" for run > 

Driver := CGA; 
Mode :• CGAhl; 
InitGCurs; { initialize the cursor images 
~eset CtheMouse); 
IF theMouse.exists THEN BEGIN 

mlnstTask CeventMask, seg CEventHandler), ofs CEventHandler»; 

Show default cursor > 
GraphicScreen ('Default cursor'); 
mShow; 
theEvents.flag := O; 
REPEAT UNTIL theEvents.flag <> 0; 

END; 

{ Show the custom cursors > 
Demo (check, •check cursor•>; 
Demo (arrow, 1 Left arrow cursor•>; 
Demo (cross, •cross cursor•>; 
Demo (hand, 'Pointing hand•>; 
Demo ( i Beam, 1 I· Beam cursor 1 ) ; 

~eset ( theMouse); 
CloseGraph; 

ENO. 

LISTING 4: GM!CE.C 

/* GM!CE . C: Illustrates the default graphics mouse cursor, plus */ 
/* the four frOlll GMClJSCUR. l */ 

/* l NCLUOES AND DEF l NES *I 
#include <stdio.h> 
#include <dos.h> 
#include <graphics.h> 
#include <mouse. I> 
#include <gmouscur. i> 
#i fndef TRUE 
#define TRUE -1 
#define FALSE 0 
#endif 
#define EVENTMASIC Ox54 /* event when any mouse button released */ 

/* LOCAL PROTOTYPES *I 
void dewo (GCURSREC, char*); 
void graphicScreen (char*); 
void identify (char*>; 

!* GLOBALS *I 
union REGS refl; 
int driver z CGA, mode z CGAHI; 
char path Cl • •c: \TC"; 

void main 0 
{ 

resetRec *thefitouse; 

/* Set '-" for run */ 
;nftGCursO; 
theMouse • ~eset(); 

/* initialize the cursor images */ 
/* reset the mouse *I 

if CtheMouse->exists) < 
mlnstTask CEVENTMASIC, FP SEG (handler), 

FP OFF Chandler)); 
/* install handler*/ 

theEvents = MK_FP C_psp, OxOOCO); /* point to event record */ 

/* Show default cursor *I 
graphicScreen ("Default cursor">; 
mShowO; 
theEvents·>flag = O; 
while (theEvents·>flag == 0) 

/* Show the custom cursors *I 
demo (check, 11 Check11 ); 

} 

demo (arrow, "Left arrow">; 
demo (cross, 11 Cross11 ); 

demo Chand, "Pointing hand">; 
demo CiBeam, "!-Beam"); 
theMouse = ~eset(); 
closegraph( >; 

I* -------------- -- ---C--- - */ 

/* turn on cursor *I 

/* wait for click */ 

/* reset mouse *I 

July/ August 1988 TURBO TECHNIX 51 



void demo (GCURSREC cursor, char title[]) /*show graphics cursor*/ 
{ 

identify (title>; 
mGraphCursor (cursor.hotX, cursor.hon, (lllSigned) (_OS), 

( lllS i gned) (cursor. image)); 
theEvents->flag = O; 
while (theEvents->flag == 0) /* wait for click */ 

,. -~---------------------- ., 
void graphicScreen (char title[]) 
{ 

/* set up graphics screen*/ 

int x, y; 
ch a r pr°""t [301 ; 

initgraph (&driver, &mode, path); 
if (graphresul t() == grOk) { 

identify (title); 
strcpy (pr°""t, "Click any button to contirue•); 

x = (getmaxx() - textwidth Cpr°""t)) / 2; 
outtextxy ex, getmaxx() - 20, prOOlpt); 

/* draw rectangle as backdrop for cursor */ 
setfi l lstyle (SOLID_FILL, 1); 
setcolor (1); 

x • (getmexx()/2) - 50; 
y = (getmaxy0/2) - 50; 
rectangle (x, y, x+100, y+100); 
floodfill (getmaxx()/2, getl08X)l()/2, 1>; 

> I* ---------- -------------- *I 

void identify (char *title) 
{ 

int x· 

setviewport (0, 0, getmaxx(), 30, TRUE); 
clearv; ewport(); 
settextstyle (DEFAULT FONT. HORIZ DIR, 1>; 

x • (getmaxx() • textwidth (title)) / 2; 
outtextxy ex, 20, title); 
setviewport (0, 0, getmaxx(), getmaxy(), TRUE); 

> I* ------------------------ */ 

LISTING 5: SCRIBILE.PAS 

Program Scribble; 

{ A si""le utility for drawing with the rnouse in graphics mode ) 

USES muse, graph; 

($1 gmouscur. inc:> 

CONST EventMask = $55 • 
Menu • 20; 
HelpTop • 185; 
Box1 = 160; 
Box2 = 320; 

{ Any button released, or mouse moved > 
{ bott011 of ...,.., area > 

C top of help area > 
right end of each ...,.., box > 

Box3 • 480· 
HelpMsg1 • 'Click any button on Scribble to begin drawing'; 
HelpMsg2 = 'Hold down left button to draw'; 

VAR theMouse : resetRec; 
mouses : locRec; 

{ ---------------------------
PROCEDURE MenUlox (x1, x2 : INTEGER; It- : STRING); 

( Create a ...,.., box between indicated x•s at top of screen > 

BEGIN 
SetViewPort (x1+1, 1, x2-1, ....... -1, FALSE); 
ClearViewPort; 
OUtTextXT (50, 7, item); 
SetViewPort (0, 0, GetMaxX, HelpTop, FALSE); 

END; 
{ ---------------------------
PROCEDURE Help (Message : STRING); 

{ Display help message at bottOIO of screen ) 

VAR x : INTEGER; 

BEGIN 

local to help area > 

C display text > 
( drawing work area > 

X :• (GetMaxX - TextWidth (message)) DIV 2; C For centering > 
SetViewPort (1, helpTop+1, 638, GetMaxT - 1, FALSE); 
ClearViewPort; 
OUtTextXT ex, 3, message); ( write help message > 
SetViewPort (0, ...,..,, 639, HelpTop, FALSE); ( drawing work area > 

END; 
{ ------------------- -------- > 
FUNCTION SetUpScreen : BOOLEAN; 

{ Prepare screen, return TRUE if done, FALSE if can't ) 

52 TURBO TECHNIX July/ August 1988 

VAR driver. mode INTEGER; 

BEGIN 
Driver :s CGA; 
Mode := CGAhi; 
lnitGraph (driver, mode, '\TP' >; 
IF GraphResul t = grOIC THEN 

BEGIN 
SetColor < 1); 

use CGA hi-res mode > 

< set graphics mode > 
< if successful. •• > 

C initialize > 
SetTextStyle (Defaul tFont, HorizDi r, 
MerUlox (0, box1, •scribble'>; 
Rectangle (0, 0, box1, ...,..,); 

1); 

Men.Sox (box1, box2, ' Clear•); 
Rectangle (box1, O, box2, ...,..,>; 
Menu&ox (box2, box3, • Quit'>; 
Rectangle (box2, 0, box3, ...,..,>; 
Rectangle (box3, 0, 639, ...,..,>; 
Rectangle (0, HelpTop, 639, GetMaxT>; 
Help (helpMsg1 >; 
SetUpScreen :2 TRUE; 

ENO 
ELSE 

SetUpScreen :• FALSE; 
END; 
( ---------------------------
PROCEDURE UpdateMeter (x, y : INTEGER); 

< make ...,.., boxes > 

{ box for meter ) 
{ box for help > 

{ initial help message > 
( successful > 

unsuccessful > 

{ Update rnouse position ""'ter in upper right corner of display > 

VAR Position STRING [8); 
N"'*>er STRING C3J ; 

BEGIN 
Str ex : 3, numer>; < convert position to string > 
Position :• r'Ulber; 
Str (y : 3, numer); 
Position :• position + •, • + nullber; 
MerUlox (box3, 639, position); < display it > 

END; 
{ ------------------------ --- } 

PROCEDURE Work; 

( Draw with mouse until user clicks on Quit selection > 

VAR thru : BOOLEAN; 

BEGIN 
Thru := FALSE; 
REPEAT 

TheEvents. flag :• O; ( clear event flag } 
{ wait for mouse event > UPEAT UNTIL theEvents. flag <> O; 

CASE theEvents. flag OF 
$0001: BEGIN < mouse has moved > 

$0004, 
$0010, 

IF (( theEvents. row > ...,..,) AND 
(theEvents.row < HelpTop)) THEN ( in work area > 

IF theEvents.button • 1 THEN BEGIN ( and left down } 
mltide· 
PutPi~el (theEvents.col, theEvents.row, 1); {draw} 
mShow; 

END; 
UpdateMeter (theEvents.col, theEvents.row); C update> 

END; 

$0040: BEGIN any button released > 
< if in ...,.., area > 

< Scribble? > 
IF theEvents. row < ...,.., THEN 

IF theEvents.col < box1 THEN 
BEGIN 

WITH cross DO 
mGraphCursor (hotX, hotT, seg (image-), 

ofs (Image")); 
Help (HelpMsg2); 

ENO 
ELSE 

IF theEvents.col < box2 THEM { Clear? > 
BEGIN 

mltide· 
SetVi~ort (0, _,.,.1, GetMaxX, 

helpTop-1, TRUE]; 
ClHrViewPort; 
mShow· 
WITH hand DO 

mGraphCursor ChotX, hotT, seg (image-), 
ofs (image")); 

Help CHelpMsg1 >; 
END 

ELSE 
IF theEvents.col < box3 THEN { Quit? } 

thru :=- true; 
END; < of outer IF > 

ENO; ( of CASE } 
UNTIL thru; 

END; 
( --------------------------- } 

BEGIN 
Ini tGCurs; 
,..eset (theMouse); 
IF theMouse . exists THEN 

Initialize cursor images > 
( Initial fze mouse } 



BEGIN 
theEvents. flag :• O; 
IF SetUpScreen THEN 

BEGIN 
< if In graphics mode ••• 

mlnstTask (EventHask, seg CEventHandler), 
ofs CEventHandlerll; C Install hardier > 

lllTH hand DO < show pointing hand > 
mGraphCursor ChotX, hotT, seg Ci .. ge"), ofs (i .. ge")); 

mShow; 
mPos (mouses); 
UpdateHeter (mouses.column, 
Work; 
nteset CtheHouse); 
CloseGraph; 

ENO 
ELSE 

{ Get mouse position > 
mouses. row); 

C do what the program does } 
{ shut down the mouse > 

< beck to text mode > 

llRITELN C 'Graphics mode not available. Progr• ended.'>; 
END 

ELSE 
llRITELN ('House not active. Progrm1 ended.'); 

ENO. 

LISTING 6: SCllBILE.C 

/* SCRIBBLE.C: Simple utll ity for drawing with mouse in graphics */ 

I* INCLUDES *I 
#include <stdio.h> 
#include <dos.h> 
#include <graphfcs.h> 
#include <mouse. I> 
#include <gmouscur. i> 

I* DEFINE TRUE/FALSE */ 
#i frdef TRUE 
#define TRUE ·1 
#define FALSE 0 
#endif 

I* DEFINE CONSTANTS */ 
#define event Mask Ox55 
#define menu 20 
#define helpTop 185 
#define box1 160 
#define box2 320 
#define boxl 480 

I* any button released, or mouse moved */ 
/* bottOlll of menu ares *t 

I* top of help area * / 
I* right end of each menu box */ 

#define help14sg1 "Click any button on Scribble to begin drawing• 
#define help14sg2 "Hold down left button to draw" 

I* GLOBALS * / 
resetR:ec *theMouse; 
locA:ec *mouses; 

I* LOCAL FUNCTIONS */ 
void menu8ox C int, int, char*); 
void help (char*>; 
int setUpScreen (void); 
void updateHeter (int, int>; 
void work (void>; 

I* - - -- - - - - - - - - -- - --- --- - - -- - - ·· · - ---- - -- --- - - - - - -- --- - - - -- -- - -- - - *I 

void main () 
{ 

theEvents = HK_FP (_psp, OxOOCO); 
initGCurs O; 

theHouse = nteset Cl; 
if CtheHouse·>exists) < 

theEvents·>flag = O; 

I* point to event buffer */ 
/* initialize cursor images */ 

/* initialize mouse */ 

if CsetUpScreen()) { /* if in graphics mode ••• *I 
mlnstTask (eventHask, FP SEG(hardler), /* install hardier*/ 

FP _OFF(hardler)l; 
mGraphCursor Chard.hotX, hard.hotT, _DS, /* graphics curs */ 

(l61Signed) hard. image); 
mShow Cl; 
mouses :i: rrPos C); 
updateHeter (mouses->column, 
work Cl; 
theHouse = nteset (); 
closegraph Cl; 

> else 

mouses·>row>; 

/* cursor on *I 
/* get position */ 

/* do mouse stuff until thru */ 
/* reset mouse *I 

/* back to text mode *I 

puts ("\nGraphics mode not available. Progr1M ended."); 
else 
puts ("Mouse not active. Progr• ended . •); 

I* ------------------------ *I 

void menueox (int xi, int x2, char *ite11) 

I* create a menu box between x1 and x2 at top of screen * / 

setviewport Cx1+1, 1, xZ-1, menu-1, FALSE); 
clearvi ewport Cl; 
outtextxy (50, 7, item); /* display text */ 
setviewport CO, D, getmaxx(), helpTop, FALSE>; /* drawing area */ 

I* ------------------------ */ 

void help (char *message) 

< 

/* Display help message at bottom of screen */ 

int x; 

x = (getmaxx() - textwidth(message)) I Z; /* For centering */ 
setviewport (1, helpTop+1, 638, getmaxy() 1, FALSE); 
clearviewport Cl; 
outtextxy (X, 3, message); /* write help message */ 
setvfewport CO, menu, 639, helpTop, FALSE); /* drawing area */ 

> I* ------------------------ */ 

Int setUpScreen (void) 

I* Prepare screen, return TRUE ff done, FALSE if can• t * / 

< 
int driver :i: CGA, mode = CGAHI; I* use CGA hi-res mode */ 

I* path to drivers */ char path [61 = "C:\TC"; 

initgraph (&driver, &!rode, path>; 
if (graphresult () == grOk) { 

setcolor C1>; 
settextstyle CDEFAULT_FONT, HORIZ_DIR, 
menullox CO box1 "Scribble")• 
rectangle (o, 0, 'box1, menu);' 
menuBox Cbox1, box2, " Clear"); 
rectangle Cbox1, 0, box2, menu); 
menueox Cbox2, boxl, • Quit">; 
rectangle Cbox2, 0, boxl, menu); 
rectangle Cboxl, 0, 639, menu); 
rectangle (0, helpTop, 639, getmaxyOl; 
help ChelpHsg1 >; /* 
return CT RUE); 
else 
return C FALSE); 

I* set graph mode * / 
/* if successful. •• *I 

/* initialize*/ 
1>; 

/* make menu boxes * / 

/* box for meter * / 
/* box for help * / 

initial help message*/ 
/* successful exit */ 

/* uisuccessful *I 
> I* ------------------------ *I 

void updateHeter C int x, int y) 

I* Update mouse position meter, upper right corner*/ 

char position C91; 

sprintf (position, 11X3d, XJd", x, y); 
menueox Cboxl, 639, position); 

I* convert pos to string */ 
/* display it */ 

> ,. ------------------------ ., 

void work (void) 

/* Draw with mouse until user clicks on Quit selection */ 

< 
int thru • FALSE; 

do< 
theEvents·>flag % O; I* clear mouse event flag */ 

/* wait for mouse event */ while (theEvents·>flag == 0); 
switch CtheEvents->flag) { 

) 

case Ox0001: /* mouse has moved *I 
if (( theEvents · >row > menu) && 

C theEvents->row < helpTop)) 
ff (theEvents->button == 1> < 

mHide Cl: 

/* in work area */ 
/* ard left down * / 

) 

putpi xel CtheEvents·>col, theEvents· >row, 1); 
mShow O; 

updateHeter (theEvents·>col, theEvents·>row>; 
break; 
case Ox0004: 
case Ox0010: 

I* draw */ 

/* update */ 

case Ox0040: /* any button released */ 
ff (theEvents->row <menu) /* if in menu area*/ 

If (theEvents·>col < box1) { /* Scribble? */ 
mGraphCursor Ccross . hotX, cross.hon, _DS, 

(l61Signed) cross. image); 
help Chelp14sg2); 

> 
else 

ff CtheEvents->col < box2) < /* Clear? */ 
mHide O; 
setvlewport CO, menu+1, getmaxx(), helpTop-1, TRUE>; 
clearviewport O; 
mShow Cl; 
mGraphCursor Chsnd.hotX, hard.hotT, _DS, 

(unsigned) hard. image); 
help Chelp14sg1 >; 

> else 
if (theEvents·>col <. boxl) /* Quit? */ 

thru • TRUE; 
break; 

>while (lthru); 
> /* ------------------------ *I 

July/ August 1988 TURBO TECHNIX 53 



i FORMATTING OUTPUT 
~ INTURBOC 

Turbo C's output formatting capabilities may surprise you. 

Peter Aitken 

All computer programs have one thing in 
common-output. A program must send 
information somewhere, be it to a video 
display, a printer, or a modem. In many 
cases, the ease with which we can use that 

SQUARE ONE information depends upon its arrange-
ment and appearance-in other words, upon its for­
mat. No matter how skilled you are at writing tight 
code and efficient algorithms, your programs cannot 
reach their full potential until you're able to format 
output to its best advantage. 

Turbo C has an entire family of functions that pro­
duce formatted output. These functions are known 
collectively as the .. printf functions, and differ with 
respect to where they send output. The functions 
printf() and vprintf() send output to stdout, and 
cprintf() sends output directly to the console. (stdout 
normally is the console, but output to stdout can be 
redirected at the DOS level, whereas output direct to 
the console cannot be redirected.) The functions 
fprintf() and vprintf() place output in a named 
stream, while sprintf() and vsprintf() place output in 
memory. Rather than describing how these functions 
differ, this article focuses on one thing that they 
have in common-how the format of their output is 
controlled. The printf() function is used in examples 
throughout this article, but remember that the dis­
cussion applies to the other functions in the .. printf 
family as well. 

THE FORMAT STRING 
Information is passed to a C function by means of 
one or more arguments, which are enclosed in the 
parentheses following the function name. One of 
the arguments to the printf() function is the format 
string. This series of instructions, which is enclosed 
in double quotes, tells the printf() function about the 
size and appearance of the data that is being output. 
If you understand the various components of format 
strings, you'll have a great deal of control over the 
appearance of the output produced by the .. printf 
functions. 

54 TURBO TECHNIX July/ August 1988 

One component of the format string can be literal 
text, which is text that you want output exactly as 
shown. In fact, a format string can consist of literal 
text alone, as in the following example: 

Statement: 
printf("Hello there!"); 

Output: 
Hello there! 

But what about outputting data that is contained in 
a variable? To do this, you must add two components 
to the printf() arguments. The first component, of 
course, is the name of the variable (C is a powerful 
language, but it can't read your mind!). The second 
component is a format specifier, which tells printf() 
the type of data being output and how to format that 
data. In the example below, assume that number is 
an integer variable with a value of 8: 
Statement: 

printf("The value is %d",m.rnber); 

Output: 
The value is 8 

The %d in the format string is the format specifier. 
Format specifiers begin with a percent sign and end 
with a letter. The letter following the percent sign is 
the character code for the type of data that is being 
output. In this case, we use d, which stands for a dec­
imal (i.e., base 10) integer. C provides character 
codes for all of the types of numeric data that you 
could output; these codes are listed in Table 1. 

Note that some of the character codes in Table I 
can be upper- or lowercase. This allows you to spec­
ify the case of any output alphabetic characters. Spe­
cifically, this applies to formats where the output 
contains letters, such as hexadecimal notation. Any 
letters in the output will be in the same case as the 
character code in the associated format specifier. 

continued on page 56 





FORMATTING 

continued from page 54 

TYPE INPUT DATA OUTPUT 
CHARACTER TYPE FORMAT 

d or i 

u 

0 

x or X 

f 
e or E 

g orG 

integer 

integer 

integer 

integer 

floating pt. 
floating pt. 

floating pt. 

signed decimal (base 10) 
integer 
unsigned decimal (base 10) 
integer 
unsigned octal (base 8) 
integer 
unsigned hexadecimal 
(base 16) integer 
signed value [- ]dddd.dddd 
scientific notation [-]d.dddd 
e [+l-]ddd 
same as fore, depending 
on value and precision 

Tab"le 1. Input types and output formats. 

Look at the examples in Table 2-you should now 
be able to understand the connection between the 
format specifier and the resulting output. But what 
about those two strange results, where the computer 
doesn't seem to know the difference between -1 and 
65535? If you're familiar with the difference between 
signed and unsigned variables in C, you'll under­
stand the cause of the unexpected output (otherwise, 
refer to the accompanying sidebar for more infor­
mation). 

FORMAT 
DATA SPECIFIER OUTPUT 

188 %d or %i 188 
65535 %d - I (unexpected output) 

I %u I 
- I %u 65535 (unexpected output) 
99 %0 143 (143 is 99 decimal 

in octa l) 
56789 %x ddd5 
56789 %X ODDS 

18.405 %f 18.405000 
18.405 %e I .840500e+OOI 
18.405 %E l.840500E+ OOI 

Tab/,e 2. Examp"les of Turbo C's output formatting. 

A format string must contain one format specifier 
for each variable in the variable list. The format 
specifiers are applied to the variables in order. For 
example: 

int nun = 2; 
float root; 
root = sqrt(nun); 
printf("./%d = %f 11 ,nun,root); 

When compiled and executed, this code displays the 
output: 

,/2 = 1.414214 

FORMATTING CHARACTER OUTPUT 
Formatting character output is much simpler than 
formatting numeric output because fewer choices 
can be made. Characters come singly or in strings, 
and C offers a format specifier for each. Use %c to 
output a single character, and use %s to output a 
string. Some examples are shown in Table 3. 

56 TURBO TECHNIX July/ August 1988 

DATA 

" X" 
"The cat\ O" 

FORMAT 
SPECIFIER 

%c 
%s 

OUTPUT 

x 
The cat 

Tab/,e 3. Output formatting for character and string data. 

The "0" at the end of the string is a reminder that 
C doesn't have a special variable class for strings, 
and stores them instead as arrays of characters. The 
0 represents the null character and is the terminat­
ing character that marks the end of a string. 

OUTPUTTING POINTERS 
Turbo C has a special formatting character for out­
putting pointers. Although pointer values are rarely, 
if ever, a part of a finished program's output, it's of­
ten necessary to list them as part of the debugging 
process. The format specifier %p outputs a pointer 
(in hexadecimal) as YYYY (offset only) for near 
pointers, and as XXXX:YYYY (segment:offset} for 
far pointers. 

OPTIONAL FORMAT CONTROLS 
So far, we've discussed how to output literal text, and 
have covered lhe minimum format specifiers needed 
to output numeric and character variables. C offers 
a variety of optional format controls that let you 
specify the appearance of your program's output in 
more detail. One or more of these optional format 
controls can be placed in a format specifier, between 
the leading % and the type character. The compo­
nents of a format specifier, including the optional 
format controls, are: 

% [flags] [width] [.precision] 
[size modifier] type 

Flags. The first optional format control is the flags 
component. Flags control justification, numeric signs, 
decimal points, octal and hexadecimal prefixes, and 
trailing zeros. 

The minus (-) flag causes the output to be left­
justified in its field, and padded on the right with 
blanks if needed. If no flag is given, the default is 
right justification. Justification applies only if the out­
put is narrower than the specified field width. 

The plus(+) flag causes numeric output to be pre­
ceded by the appropriate sign (+or-). The default 
is that only negative numbers are preceded by a sign. 

With the blank ( ) flag, positive numbers are pre­
ceded by a blank (space); negative numbers are not 
affected. 

The pound sign (#) specifies that the argument is 
to be formatted using a so-called "alternate form." 
Alternate forms exist for certain type characters, as 
shown in Table 4. 

Width. The width specifier determines the minimum 
width of the field in which the output is placed. The 
word "minimum" is important here-if the output is 
wider than the specified field width, the field ex­
pands as necessary in order to contain the output. 
The output is never truncated to fit a too-small field. 



TYPE 
CHARACTER 

ALTERNATE 
FORM 

c, d, i, s, u 
0 

xorX 

e, E, or f 

gor G 

none (flag has no effect) 
0 will appear before nonzero 
argument 
Ox or OX will appear before 
argument 
decimal point included even if 
no digits follow it 
same as e and E, but trailing 
zeros are not removed 

Tabl,e 4. Alternate forms. 

The width specifier is simply a number that indi­
cates the width (in spaces) of the output field. If the 
output value is narrower than the field, the value is 
padded with enough spaces to fill the field. As the 
default for this specifier, the value is right-justified 
within the field. If the "-" flag is included, the value 
is left-justified. If the width specifier is preceded with 
a 0, the value is right-justified and padded on the left 
with zeros. Several examples are shown below: 
format 
specifier 

%12d 
%-12d 
%012d 

output 

<-width 12-> 

I 
1234561 

123456 
000000123456 

Precision. The precision specifier sets the number of 
digits that are printed to the right of the decimal 
point. When used with string variables, precision de­
termines the maximum number of output characters. 
The precision specifier always begins with a period 
(.)to separate it from the preceding width specifier 
(if any). If no precision specifier is given, the default 
value is used. The default precision is 1 for the d, i, 
o, u, x, and X types; 6 for e , E, and f types; and all 
significant digits for g and G types. For strings, the 
default precision is the full length of the string (i.e., 
all characters up to the terminating null character). 

When precision is set to 0, no decimal point is 
printed for e, E, and f types; other types are not af­
fected, and precision remains at the default value. 
Setting precision to a number n causes n digits to the 
right of the decimal point, or n characters, to be out­
put. If the output value is wider than n characters, 
strings are truncated and numbers are rounded in 
order to meet the specified precision. 

Both width and precision can be specified with a 
variable argument to the printf() function, rather 
than as part of the format string. To use a variable 
argument, place an asterisk in the format string at 
the position of the width or precision specifier, then 
place an integer variable in the argument list just be­
fore the variable that is being formatted. Both width 
and precision can be controlled at the same time 
with variable arguments. In the following code frag­
ment, both printf() statements produce the same 
output: 

int width = 12; 
int prec = 4; 
printf("%12.4f",value); 
printf( 11%*.*f 11 ,width,prec,value); ) ; 

Size. The final optional control involves input size 
modifiers, which apply only to numeric and pointer 
variables. Size modifiers tell the printf() function to 
interpret the argument's size as other than the de­
fault size. For pointers, the default size (near or far) 
is determined by the memory model in use. The in­
put size modifiers F and N cause a pointer argument 
to be interpreted as a far or near pointer, respec­
tively. 

For numeric variables, the modifier h applies only 
to integer arguments (types d, i, o, u, x, and X), and 
causes the argument to be interpreted as a short int. 
The modifier 1 applies to either integer (types d , i , o, 
u, x, and X) or floating point (types e, E, f, g, and G), 
and causes an integer argument to be interpreted as 
a long int (long integer) and a floating point argu­
ment to be interpreted as a double. The input size 
modifiers have no effect on character (c, s) types. 

ESCAPE SEQUENCES 
An escape sequence changes the meaning of certain 
characters in a string. For example, you might want 
a double quotation mark to be output as part of a 
string rather than to be interpreted as the end of 
the string. Use an escape sequence of a double 

continued on page 58 

"The cost involved, in writing one 
of these geometric routines, is more than 
the price of the TurboGeometry Library . ., 

TurboG 

Are you programming or planning to program CAD/ CAM 
or graphics applications? Many hours. even days, can be 
spent in writing and debugging geometric routines. 
TurboGeometry Library can relieve you of those time 
consuming tasks that are part and parcel of every 
CAD/ CAM or graphics program. There are over 150 
routines in the library, supported by example programs 
and a 400 page manual. The source code is included. 30 
day guarantee. Need IBMPC or Compatible, Turbo Pascal 
4 .0, Turbo C, or MS C. $149.95 plus $5.00 S&H in US. 
VISA, MasterCard, Check, PO, MO. No COD's Send for 
additional information or call 214-423-7288. 

Disk Software. Inc .• 2116 E. Arapaho #487 
Richardson, Texas USA 75081 

"In CAD/ CAM or graph ics, it all comes down 
to using geometry" 

July/ August 1988 TURBO TECHNIX 57 



NUMBERS AND THEffi NOTATION 
Hexadecimal is a number system 
that uses base 16, rather than the 
base 10 used by the everyday dec­
imal notation with which we're 
all familiar. In decimal notation, 
each position moving from right 
to left indicates a successive 
power often: 

456 (decimal) 

E 6 X I0°=6XI 
5Xl01 =5Xl0 
4 x 102 = 4 x 100 

6 
50 

400 

sum= 456 

Hexadecimal works the same 
way, except that each position in 
the number represents a power 
of 16: 

456 (hexadecimal) 

E 6Xl6°=6Xl 
5x161 =5x16 
4 x 162 = 4 x 256 

6 
80 

1004 

sum in decimal = 1090 

Because hexadecimal uses pow­
ers of 16, it needs single digits to 
represent numbers up to 15 (dec­
imal). The regular digits 0-9 rep­
resent themselves, and the (dec­
imal) numbers 10-15 are repre­
sented by the letters A-F. Thus, 
counting up from 0 in hexadec­
imal (with decimal equivalents), 
we have: 

Hex: I ... 9ABCDEF10 II 12 ... IE 
IF 20 ... FF 100 

Dec: I ... 9 10 11 12 13 14 15 16 17 18 ... 
30 31 32 ... 255 256 

And, as used in larger numbers: 

BCF (hexadecimal) 

E II X 16° =II X l 
12 x 161 = 12 x 16 
15 x 162 = 15 x 256 

II 
192 

3840 

sum in decimal = 4043 

Hexadecimal notation is a favor­
ite among programmers because 
the binary bit patterns that are 
used internally by computers 
translate directly into hex digits. 
A single hex digit represents 1 
nybble ( 4 bits), a pair of hex dig­
its represents 1 byte, and 4 hex 
digits are perfect for represent­
ing 16-bit memory addresses: 

Dec. Hex Binary 

0 
1 

00 
01 

0000 0000 
0000 0001 

58 TURBO TECHNIX July/ August 1988 

254 
255 

FE 
FF 

1111 1110 
1111 1111 

65534 FFFE 1111 1111 1111 1110 
65535 FFFF 1111 1111 1111 1111 

SCIENTIFIC NOTATION 
Scientific notation was develop­
ed to represent the very large 
and very small numbers that are 
often used by scientists and en­
gineers. Scientific notation ex­
presses any value as a number 
between 1 and 10 that is multi­
plied by a power of 10, as shown 
in these examples: 

As power In scientific 
Value of 10 notation 

5,450,000,000 5.45 x 109 5.45E+oo9 
0.0000000789 7.89 x 10-11 7.89E-008 

SIGNED AND UNSIGNED 
VARIABLES 
To avoid possible errors and 
confusion resulting from mixing 
signed and unsigned variables, 
you need to understand the dif­
ferences between these variables 
and the way that your computer 
represents them internally. In 
Turbo C, the two data types int 
(integer) and short are each 
stored internally as two bytes. 
The 16 bits in 2 bytes can repre­
sent a total of216 (or 65536) dif­
ferent values. If an int variable 
has been declared as type un­
signed, it can be assigned values 
between 0 and 65535. With un­
signed variables, the relationship 
between bit pattern and value is 
straightforward binary: 

0000 0000 0000 0001 1 
0000 0000 0000 0010 2 

0111 1111 1111 1110 32766 
0111 1111 1111 1111 32767 

1111 1111 1111 1110 65534 
1111 1111 1111 1111 65535 

If the variable is of the default 
type signed, however, things are 
different The 16 bits in the com­
puter still represent 65536 differ­
ent values, but the permissible 
range is -32768 to 32767. The 
positive values between 0 and 
32767 are represented by the 
same bit patterns that represent 

an unsigned integer, but the 
negative values are represented 
as two 's-romplements of the corre­
sponding positive value. A two's­
complement is formed by first 
reversing all of the bits (all Os 
become ls and vice versa) and 
then adding 1, as shown below: 

0011 0010 1001 1111 +12959 
1100 1101 0111 0000 reverse 

all bits 
+1 add 1 

1100 1101 0111 0001 -12959 

Here's where the possible con­
fusion arises: some bit patterns 
can represent two different 
values, depending upon whether 
they are interpreted as a signed 
or unsigned quantity. The fol­
lowing comparison shows how 
Turbo C interprets a single bi­
nary bit pattern as either a 
signed or an unsigned quantity: 

Binary 
Un­

Si gned signed 

1000 0000 0000 0000 -32768 32768 
1000 0000 0000 0001 -32767 32769 
1000 0000 0000 0010 ·32766 32770 

. 
1111 1111 1111 1110 
1111 1111 1111 1111 
0000 0000 0000 0000 
0000 0000 0000 0001 
0000 0000 0000 0010 

. 
·2 65534 
·1 65535 
0 0 
1 1 
2 2 

0111 1111 1111 1110 32766 32766 
0111 1111 1111 1111 32767 32767 

Note that for signed variables, 
the "high-order" bit (i.e., the bit 
farthest to the left) is 1 for all 
negative values and 0 for all 
positive values. Appropriately 
enough, this bit is called the 
sign bit. 

For values between 0 and 
32767, bit patterns are inter­
preted as having the same value 
for both signed and unsigned 
variables. Outside that range­
for any bit pattern in which the 
high-order bit is I- bit patterns 
are interpreted differently. We 
must be careful, therefore, to use 
the appropriate format specifier 
when outputting integer vari­
ables. Use %u only for variables 
that have been declared as un­
signed, and use 'fod (or %i) only 
for signed variables. • 

-Pet£r Aitken 



FORMATTING 
continued from page 57 

quotatio n mark preceded by a backslash (\") to tell 
the compiler to interpret the quotation mark as a lit­
eral character rath er th an as the string delimiter. 
This is shown in the fo llowing example: 

Statement: 
printf("She said "hello!"">; 

Output: 
(Will not c°""ile) 

Statement: 
printf("She said \"hello!\"" >; 

Output: 
She said "hello!" 

Escape sequences are also used for the so-called 
nonprinting ch aracters, such as tabs and line feeds, 
that are used to control printers and other output de­
vices. For example, \ n is the escape sequence for a 
newline. All of Turbo C's escape sequences are listed 
in Table 5. The \ n sequence can be used to insert a 
newline between the several variables passed as ar­
guments to printf, as shown in the following ex­
ample: 

Statement: 
printf 

("%ct %d %d",val1,val2,val3); 

Output: 
1 2 3 

Statement: 
printf 

( 11%d\n%d\n%d11 ,val1,val2,val3); 

Output: 
1 
2 
3 

The last two escape sequences shown in Table 5 
pe rmit you to include any character in a string by 
specifying its octal or h exadecimal value. 

You may think that someth ing is missing from the 
list of escape sequences-the percent sign. Since % 
marks the beginning of a format specifier, don't we 

SEQ UENCE 

\a 
\b 
\f 
\ n 
\r 
\t 
\v 
\\ 
\' 
\" 
\? 
\ DDD 
\xDDD 

Tabl,e 5. Escape sequences. 

INTERPRETATION 

bell (beeps speaker) 
backspace 
form feed 
linefeed 
carriage return 
horizontal tab 
vertical tab 
backslash 
single quote 
double quote 
question mark 
DDD = octal value 
DDD = hexadecimal value 

need to use the escape sequence \ % to put a literal 
% in the output? There's no escape sequence for%, 
however, because the percent sign has a special 
meaning only in C format strings. Escape sequences 
are used only for characters, such as quotation 
marks, that have special meanings in all C strings. To 
output a literal % with one of the .. printf functions, 
simply use two consecutive percent signs: %%. 

USE OF VARIABLES AS FORMAT STRINGS 
Up to this point, we've specified format strings as text 
enclosed in quotation marks. This method is per­
fectly adequate in many situations, but it limits flex­
ibility because the format string is hard-coded into 
the program and cannot be modified at runtime. To 
write programs that modify their own output format, 
use a string variable for a format string. 

As an example, let's say that we need to output a 
numeric variable whose value can span a wide 
range. If the variable's value is less than 1 million, 
we want it to be output in decimal integer format; if 
the value is greater that 1 million, we want the output 
to be in scientific notation. This is accomplished by 
the code in Figure 1. 

cha r fmt_string [20l; 

if (val ue > 1000000) 
s t rcpy(fmt_str i ng,"The value is %E 11

); 

e lse 
strcpy(fmt_string,"The va lue is %d 11

); 

printf(fmt_string,value); 

Figure 1. Using variabl,es as format strings. 

READY TO OUTPUT 
You should know enough about format strings now 
to successfully tailor the output of your Turbo C pro­
grams to suit your needs. Recall that a format string 
contains one or more of these components: 

1. Literal text that is output exactly as shown; 

2. Escape sequences for special characters and con­
trol codes; and 

3. One format specifier for each argument in the 
variable list. 

The Turbo C R.eference Guide's section on printf() con­
tains a short program listing that generates a variety 
of output formats. By experimenting with this pro­
gram, or with your own variant of it, you can quickly 
translate the information presented in this article 
into a working knowledge of format strings. • 

Peter Aitken is an assistant professor at Duke University 
Medical Center, and is the author of DigScope, a scientific 
software package. He writes and consults in the microcom­
puter field. 

July/ August 1988 TURBO TECHNIX 59 



i ALLOCATING FULL 64K 
~ BLOCKS IN TURBO C 

Benefit from every byte of 64K memory allocation­
without using huge pointers. 

Muhael Abrash 

Although Turbo C's familiar malloc func­
tion can only allocate memory blocks 
smaller than 64K (even in the Huge model), 
the fiu-malloc function can allocate blocks 
of memory that are 64K bytes (and larger) 

wiZARo in every model other than the Tiny model. 
Memory blocks that are 64K or smaller in size can 

be accessed with far pointers; blocks that are larger 
than 64K must be accessed with huge pointers. Since 
code that uses huge pointers is considerably less effi­
cient than code that uses far pointers, far pointers should 
be employed whenever possible. As a result, the opti­
mum size for large memory blocks is exactly 64K 

The use of fiu-malloc to allocate memory blocks that 
are exactly 64K in size, however, presents a small prob­
lem. The far pointers to the memory blocks that fur­
malloc returns don't necessarily point to the start of a 
segment In other words, allocated far pointers don't 
necessarily have a zero-offset portion; this is beneficial 
since the use of a nonzero-offset portion saves up to 15 
bytes per memory block. Also, only the offset portion 
of a far pointer can change. Thus, if a far pointer that 
is allocated with fiu-malloc is used to access the high 
end of a 64K block, the offset portion of that pointer 
might accidentally wrap around to zero and let the pro­
gram overwrite unrelated data in an adjacent segment 

The solution is simple: Adjust the far pointer that is 
returned by fiu-malloc so that the pointer has a zero­
offset portion. This step advances the address to which 
the far pointer points by up to 15 bytes; thus we have 
to ask furmalloc for an additional 15 bytes. While this 
process wastes 15 bytes, it's nothing compared with the 
code space saved by using far rather than huge pointers. 

Listing l, GetFarBlock, returns a zero-offset far poin­
ter to any block that is up to 64K bytes in size, thereby 
solving all of the problems that are associated with ac­
cessing 64K blocks by way of far pointers. Call Get­
FarBlock whenever you want to allocate any far blocks 
between 65,518 and 65,536 (inclusive) bytes in size. • 

Micluul Abrash is a senior software engi,neer at Orion Instru­
ments in Redwood City, California. 

Listing can be down/,oaded from CnmpuServe as FULL.ARC. 

60 TURBO TECHNIX July/ August 1988 

LISTING 1: FULL64K.C 

#include <alloc.h> /* required for farmalloc */ 
#include <dos.h> /* required for MK_FP, FP _SEG, FP _OFF */ 

J* Returns a far pointer to a block al located on the far heap. 
The offset portion of the pointer is guaranteed to be zero. 
Don't forget that BlockSize 111.Jst be a long, not an inti */ 

char far * GetFarBlock(unsigned long BlockSize) 
{ 

char far *teq>; 

/* Get a block 15 bytes larger than needed *J 
t'"'l> = farmal loc(BlockSize + 15>; 
/* Adjust the pointer up to the start of the next segment 

and force the offset portion to zero */ 
return(MK_FP( FP _SEG( t'"'l>)+( FP _OFF(t'"'l>)+15)/16, 0)); 



WORTH THE WAIT 
Waiting for one event or another-when neither may 
actually occur-takes some Turbo C finesse. 

Jonathan Sachs 

I once had to write a specialized telecom­
munication program to call another com­
puter, log on, transfer some files, and log 
off again-all automatically. The process 
was straightforward, but it depended up-

wizARo on a lengthy sequence of question-and-
answer exchanges between my program and the 
other computer's program. At any point, a malfunc­
tion could make the other system just "go away"­
forever fail to respond to my program's last message. 
My program had to be able to deal with that problem 
gracefully. Above all, it could never be allowed to 
lock up my machine, keeping it permanently waiting 
for a response that would never come. 

In solving this problem, I developed a set of Turbo 
C routines that accomplish the following tasks: 

• Wait for the passing of a specified time interval, or 
the occurrence of a specified event (such as the 
arrival of an incoming character on a serial port), 
whichever comes first; 

• Read and write characters to a serial port; and 
• Wait for the passing of a specified time interval 

alone. 
These functions provide a generalized way to 

wait for an event that should occur within a certain 
length of time, but due to some error condition, 
might never occur at all. This is a common require­
ment in programs that communicate with a modem 
or other serial device. The methods used in these 
routines demonstrate how function pointers can be 
used to simplify and generalize Turbo C code. 

TO WAIT OR NOT TO WAIT 
When I began to design the program, I immediately 
saw that it had to use code that follows the logic 
shown in Figure 1 in order to read incoming data 
from the modem. 

As the design progressed, this apparently simple 
logic became marvelously complex. It popped up all 
over the program, always in a slightly different form. 
For example, waiting "longer than we should have 

while (there's nothing to read yet) 
{ 

if (we've waited longer than we should have to) 
{ 

} 

indicate a "time-out"; 
break; 
} 

if (no time-out) 
read the next character; 

Figure 1. The timeout algorithm. 

to" meant different things in different cases. The 
time limit might be 10 seconds for a response to a 
log-on request, 2 seconds for the first character of an 
incoming message, 0.5 seconds for subsequent char­
acters of a message, and so on. In some cases, 
"longer than we should have to" meant that the op­
erator had gotten impatient and pressed a key on the 
keyboard! 

I needed to encapsulate the logic shown in Figure 
1 into a set of C functions flexible enough to meet all 
of the program's various requirements. The resulting 
functions are described in this article. 

A MINI-TOOLBOX 
The following functions comprise a mini-toolbox for 
dealing with time delays in serial communications 
situations: 

• wait waits for an event to occur, or for a specified 
time interval to elapse (whichever comes first). 

• delay waits for a specified time interval to elapse 
without reference to an event. 

• ticsm returns the number of centiseconds (hun­
dredths of a second) since midnight. Both wait 
and delay call ticsm. 

• sgetc reads a character from a serial port. If no 
character is ready, it returns -1, which is the cus­
tomary value of the symbol EOF (End Of File). 
My application uses this function to report the 
event (the arrival of an incoming character) to 
wait. 

continued on page 62 

July/ August 1988 TURBO TECHNIX 61 



WAIT 
continued from page 61 

• sputc writes a character to a se­
rial port. This function is not 
directly related to wait, but is 
presented here for complete­
ness. Programs that perform se­
rial input usually perform serial 
output as well. 

HOW THEY WORK 
Since wait is the most significant 
function of the group, we'll look 
at it first. Listing 1 provides the 
source code for wait, which ex­
pects two parameters: 

1. n specifies a timeout interval, 
measured in centiseconds (a 
centisecond is the smallest in­
terval measured by DOS's "get 
time" function). n is small 
enough to give reasonably pre­
cise control, but large enough 
to let an unsigned short value 
describe reasonable intervals 
(up to 655.35 seconds, or about 
11 minutes). 

2. event is a pointer to a function 
that tests whether the event of 
interest has occurred. If the 
event has occurred, the func­
tion returns a non-negative 
short value. If not, the function 
returns EOF (-1). 

wait simply calls event over and 
over until event returns a non­
negative value, or until n centisec­
onds have elapsed. wait reads the 
time of day before the first call to 
the event function and again after 
each call, computing elapsed time 
as the difference between the 
times. 

wait deals with a time interval 
that spans midnight by adding the 
number of centiseconds in a day 
to the time of day after an event 
function call occurs. Thus, the 
"before" and "after" times are ex­
pressed relative to zero at mid­
night on the same day. 

When wait is done, it returns 
the value last returned by the 
event function. This is EOF if the 
timeout occurred; otherwise, it's 
the value that represents the event 
(for example, the character read 
from the serial port). 

Notice how the event function 
is identified: a pointer to event is 
wait's second parameter. In C, a 
pointer to a function is represent­
ed by the function's name, with 

62 TURBO TECHNIX July/ August 1988 

no parentheses after it. Thus, a 
call to wait that specifies an event 
function named com_in might 
look like this: 

result= wait(500,com_in); 

For comparison, a direct call to 
com_in looks like this: 

result = com_in(); 

Inside wait, the event parameter 
is declared as a pointer to a func­
tion that returns an int. Near the 
end of the for loop, the function 
pointed to by event is called with 
no parameters. 

wait would be easier to under­
stand if we made it call sgetc di­
rectly by name, dispensing with 
the function pointer altogether. 
But wait would then be limited to 
testing for a single specific named 
event. To test for another event, 
we would have to write another 
version of wait to call a corre­
sponding event function. A func­
tion pointer enables wait to test 
for an unlimited variety of events, 
which are selectable at runtime 
rather than at compile time. The 
result is a much more useful func­
tion that is only fractionally more 
complex and less efficient. 

TICSM.C (Listing 2) contains 
the source code for ticsm. This 
function calls Turbo C's gettime 
function, which returns the time 
of day in a time structure. ticsm 
then converts the time contained 
in the time structure to hun­
dredths of a second. 

DELAY.C (Listing 3) contains 
the source code for delay. It fol­
lows logic similar to that of wait, 
except that delay doesn't call an 
event function. Instead, delay 
simply checks the time over and 
over again, until the timeout inter­
val has elapsed. 

If you understand the value of 
reusable code, you're probably 
wondering why delay doesn't 
simply call wait with an event that 
never happens, as shown in the 
following code: 

int no_event() 
< returnCEOF); } 

void delay(n) 
unsigned n; 

{ return( wait(n,no_event) ); } 

. . . or even with a macro, like this: 

#define delay(n) wait(n,no_.event) 

In fact, I initially made delay call 
wait. That approach caused de­
bugging problems, so I later 

backed off and made delay a sep­
arate function. I'll discuss this 
problem in a moment. 

SGETC.ASM (Listing 4) and 
SPUTC.ASM (Listing 5) contain 
the source code for sgetc and 
sputc, respectively. These listings 
are written in assembler because 
they manipulate hardware and 
need to be as time-efficient as pos­
sible. An important note: Assem­
ble SGETC.ASM and SPUTC.ASM 
with the /MX assembler com­
mand in force, so that the Turbo 
C linker recognizes the symbols 
during the link pass. For those 
who wish to experiment with 
these routines but do not have an 
assembler, the .OBJ files are pro­
vided in the listings archive on 
CompuServe. 

A complete explanation of 
these functions is outside the 
scope of this article, since both 
functions are intimately tied to the 
PC's serial communications hard­
ware. In essence, sgetc checks the 
status of a COM port. If the re­
ceive buffer contains a character, 
sgetc returns the character; if not, 
sgetc returns -1. sputc simply 
places a character in the transmit 
buffer; if the buffer is already full, 
the PC's hardware forces the func­
tion to wait. 

THE ROUTINES IN USE 
COMTEST.C (Listing 6) illustrates 
the use of the functions described 
in this article. When COMTEST 
receives a character from the se­
rial port, it displays the character's 
hexadecimal value and "echoes" 
a character whose value is one 
greater than the received charac­
ter. If the timeout interval expires 
without a character coming in, the 
program sends an impatient 
message. 

COMTEST uses a "help func­
tion" named comin to call sgetc. 
This is necessary because sgetc 
expects a parameter that gives a 
communication port number, and 
the parameter list of a call to wait 
has no place for one. 

To read a character, the pro­
gram calls wait with two param­
eters: the timeout interval and a 
pointer to comin. 

COMKEY2.C (Listing 7) con­
tains a function (com_key) that is 
similar to comin but tests for two 

continued on page 65 



11111 UP 11E PIWEI 
WITH TURBO TBBlBBXES! 

Add power to your Turbo language programs 
with the Borland Turbo Toolboxes.e They provide 
you with source code and routines to be added 
into your programs so you don't have to rein­
vent the wheel. And you don't pay royalties on 
your own compiled programs that include the 
Toolboxes' routines. 

TURBO C® 
TURBO C RUNTIME LIBRARY 
SOURCE CODE 
An indispensible tool for serious Turbo C pro­
grammers! The Runtime Library Source Code 
lets you get even more out of Turbo C's flexibil ­
ity and control , with a library of more than 350 
functions you can customize or use as is in 
your Turbo C programs. You get the source for 
the standard C library, math library and batch 
files to help with recompiling and rebuilding 
the libraries.· 

TURBO PASCAL® 
Turbo Pascal Runtime Library Source Code 
coming soon! 

TURBO PASCAL DATABASE TOOLBOX 
With the Turbo Pascal Database Toolbox you 
can build your own powerful, professional­
quality database programs. Included is a free 
sample database with source code and two 
powerful problem-solving modules. 
Turbo Accessr• quickly locates, inserts, or 
deletes records in a database using B+ 
trees- the fastest method for finding and 
retrieving database information. 
Turbo Sortr• uses the Ouicksort method to 
sort data on single items or on multiple keys. 
Features virtual memory management for sorting 
large data fi les. 

TURBO PASCAL NUMERICAL 
METHODS TOOLBOX 
Turbo Pascal Numerical Methods Toolbox 
implements the latest high-level mathematical 
methods to solve common scientific and engi­
neering problems. Fast. Every time you need to 
calculate an integral , work with Fourier Trans­
forms. or incorporate any of the classical 
numerical analysis tools into your programs. 
you don't have to re invent the whee l. It's a 
complete col lection of Turbo Pascal rout ines 
and programs that gives you applied state-of­
the-art math tools. Includes two graphics demo 
programs to give you the picture along with the 
numbers. Comes with complete source code. 

AlllONndptoduC1Saret1adem11rksor1eg151eredlridema1ksolBorl1ndlnte1nilt10nll.lnc 
Otherbl'Uld1ndl)fod11CtrnimtsJ1ebldemJ1ksoltt1ei11esoectiveholders Copyngh!0198ll 
&ori,nd1nterria~ . 1nc Bl12'58W 

TURBO PASCAL TUTOR 
Turbo Pascal Tutor is everything you need to 
start programming in Turbo Pascal. It consists 
of a manual that takes you from the basics up to 
the most advanced tricks, and a disk containing 
sample programs as well as learning exercises. 
It comes with thousands of lines of commented 
source code on disk, ready for you to compile 
and run. Files include all the sample programs 
from the manual as well as several advanced 
examples dealing with window management, 
binary trees. and real -time animation. 

TURBO PASCAL EDITOR TOOLBOX 
Turbo Pascal Editor Toolbox gives you three dif­
ferent text editors. You get the code, the manual, 
and the know-how. We provide all the editing 
routines. You plug in the features you want. 
MicroStar™: A lull-blown text editor with a 
complete pull-down menu user interlace. 
FirstEd'": A complete editor equipped with 
block commands, windows, and memory­
mapped screen routines. 
Binary Editor: Written in assembly language, a 
13K "black box" that you can easily incorporate 
into your programs 

TURBO PASCAL GRAPHIX TOOLBOX 
Turbo Pascal Graphix Toolbox is a collection of 
tools that will get you right into the fascinating 
world of high-resolution monochrome business 
graphics, including graphics window manage­
ment. Draw both simple and complex graphics. 
Store and restore graphic images to and 
from disk. 

TURBO PASCAL GAMEWORKS 
Explore the world of state-of-the-art computer 
games with Turbo Pascal GameWorks. Using 
easy-to-understand example games, it teaches 
you theory and techniques to quickly create 
your own computer games. Comes with three 
ready-to-play games: Turbo Chess: Turbo 
Bridge,- Turbo Go -Moku .~ 

TURBO PROLOG® 
TURBO PROLOG TOOLBOX IS SIX 
TOOLBOXES IN ONE 
More than 80 tools and 8,000 lines of source 
code help you build your own Turbo Prolog 
applications. Includes toolboxes for menus, 
screen and report layouts, business grpahics, 
communications. file-transfer capabilities, parser 
generators. and morel 

TURBO BASIC® 
TURBO BASIC DATABASE TOOLBOX 
With the Turbo Basic Database Toolbox you can 
build your own powerful, professional-quality 
database programs. Includes Trainer, a demon­
stration program that graphically displays how 
B+ trees work and a free sample database with 
source code. The Toolbox enhances your pro­
gramming with 2 problem-solving modules 
Turbo Access quickly locates. inserts, or 
deletes records in a database using B+ 
trees- the fastest method for finding and 
retrieving database information. 
Turbo Sort uses the Quicksort method to sort 
data on single items or on multiple keys. 

TURBO BASIC" EDITOR TOOLBOX 
Turbo Basic Editor Toolbox will help you build 
your own superlast editor to incorporate into 
your Turbo Basic programs. We provide all the 
editing routines. You plug in the features you 
want! We've included two sample editors with 
complete source code. 
MicroStar: A lull-blown text editor with a pull­
down menu user interlace and all the standard 
features you 'd expect in any word processor 
FirstEd. A complete editor with windows, 
block commands, and memory-mapped screen 
routines. all ready to include in your programs 

System requirements: All Turbo Toolboxes for the IBM PS/2''. and 
the IBM" family of personal computers and all 100% compatibles. 
PC-DOS (MS-OOS" J 2.0 or later. Turbo C Runtime Library Source 
Code requires Turbo C 1.5 or later. Turbo Pascal Toolboxes require 
Turbo Pascal 4.0 or later and 256K RAM. Turbo Prolog Toolbox 
requires Turbo Prolog 1.1 or later and 384K RAM. Turbo Basic 
Toolboxes require Turbo Basic 1.0 or later and 640K RAM. 

·ooes not include source for graphics or floating point emulator. 

INTERNATIONAL 



LISTING 1: WAIT .C 

/* llAIT .c: wait() */ 

#include <stdio.h> 

extern '61Signed long ticsm(); 

, ..... 
* Wait a length of time or l.1'1ti l an event occurs, 
* whichever comes first. 
* JN : "n" = maxinun time to wait, in centiseconds. 

"event" points to a flnCtion that returns ·1 if the timeout 
occurs, or a non· negative integer ;f the event occurs. 
This is designed primarily for use with 11cgetc", which 
returns · 1 for "no character ready." 

• RETURNS: -1 if the time-out occurred. 
The value returned by (*event)() if the event occurred. 

*****/ 
int wait(n,event) 

lX'ISigned n; 
int (*event)(); 

( 

unsigned long start_time, timeout_time, current_time; 
int i; 

/* C°"""te start time & timeout time. If the timeout time overflows 
midnight, that's Of(; a test inside the loop takes care of it . */ 

start time = ticsm<>; 
timeoUt_thne = start_time + n; 

/* Loop until the timeout happens or the event occurs. *I 
for ( ; ; > 

( 

/* C°"""te current time. If we've wrapped past midnight, add a day's 
worth of centiseconds. */ 

current time = ticsm(); 
if ( current time < start time 

current_time += 8640000L; 

/* Check for timeout. */ 
if ( current time>= timeout t i me 

return(-1 i; -
/* Do the function. *I 
i = (*event)(); 
if ( ii =EOF ) 

return( i); 

} 

LISTING 2: TICSM.C 

/* TICSM.C: ticsm() */ 

#include <dos.h> 

/***** 
* Coq>Ute the current time of day in centiseconds since midiight. 
• RETURNS : centiseconds since midnight. ..... , 
long ticsm() 
( 

struct time tod; 

gettimeC&tod); 
return( 360000L*tod.ti hour + 

100*tod. t !_sec - + 
6000L*tod.ti Min+ 
tod.ti_hund -

64 TURBO TECHNIX July/ August 1988 

>; 

LISTING 3: DELAY .C 

/* DELAY .C ·- unconditional wait. */ 

#include <stdio.h> 

extern '61Signed long ticsmO; 

/***** 
• Unconditional wait for •u• centiseconds. This Is the same as wait() 
*except that it doesn't look for an event. Calling wait() would be 
* easier, but would not pennit us to replace wait() with 1 routine 
• that doesn't look et time when debugging . 
*****/ 
void delay(n) 

l.rlS i gned n; 
( 
long start_time, timeout_time, current_time; 

/* C°"""te start time I. timeout time. */ 
start_time = ticsmO; 
timeout_time = start_tirne + n; 

/* Loop until the timeout happens. */ 
for ( ; ; l 

( 

/* C°"""te current time. If we've wrapped past midnight, add a day's 
worth of cent iseconds. *I 

current_time • ticsm<>; 
if ( current time < start time 

current_tiine +=-= 8640000l; 

/* Check for timeout. */ 
if ( current_t i me >= timeout_time) 

return; 

} 
} 

LISTING 4: SGETC.ASll 

page 62, 120 
SGETC.ASM - - read a character from a serial port. 

BE SURE TO ASSEMBLE lllTH THE /MX CCMIANOl I 

; int sgetc(port) 
; unsigned port; 

; IN: port = serial port nunber. Any even nurber is interpreted 
; as 0, and any odd nunber is interpreted as 1 • 
;RETURN:EOF if no character i s ready; else the character CO-OxFF). 

bios 
EOF 

21H 
- 1 

PUBLI c sgetc 
_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS: TEXT 
_ sgetc PROC NEAR -

push bp 
mov bp,sp 
push di 
push si 

mov ax, Cbp+4J OX z port . 
dee 
and 
push 

mov 
add 
mov 
mov 
mov 
add 
in 
test 
jz 
xor 
mov 
in 

j~ 

sgetceof: 
mov 

sgetc2 : 
pop 
pop 
pop 
mov 
pop 
ret 

_sgetc endp 
TEXT ends -

end 

ax 
IX, 1 
ds 

si ,ax 
sf ,si 
dx,40H 
ds,dx 
dx, Csil 
dx,5 
al,dx 
al, 1 
sgetceof 
ax, ax 
dx, Csil 
al,dx 

SHORT sgetc2 

ax,EOF 

ds 
si 
di 
sp,bp 
bp 

AX = port-1, reduced to range C0-1J 
Note we save OS after usual stuff I 

SI = 2*Cport-1). 

••• OS points to device table. 

ox = status port address. 
Read line status. 
Receive buffer full? 

No. 

OX = Cct4n data port address. 
read byte. 

No character ready; 
return AX = EOF. 

**** OS restored. 

listing continued on page 66 



WAIT 

continued from page 62 

alternative events: either input on 
a serial port, or input on the key­
board. com_key uses the standard 
library function kbhit to test for 
the presence of keyboard input. 
Since com_key returns two pieces 
of data and cannot have param­
eters (remember, it's called 
through a function pointer), it 
deposits the data in global vari­
ables. This example gives you 
some idea of how readily wait can 
be adapted to complex situations. 

WAITDEMO.C (Listing 8) is a 
simplified version of the program 
in Listing 6. WAITDEMO tests for 
input from the keyboard instead 
of input from the serial port. It's 
useful for trying out wait without 
attaching a communications de­
vice to a serial port. 

WHY delay DOESN'T CALL wait 
I mentioned earlier that I had 
written an original version of de­
lay that called wait with a pointer 
to an event function that always 
returns EOF. This removed any 
reference to external events, and 
caused wait to act like a simple 
time-delay function. In true eco­
nomical programming style, I had 
built upon the services provided 
by wait, instead of duplicating 
them. 

While debugging my specialized 
communications program, how­
ever, I found it useful to call an­
other computer that was running 
an ordinary "plain vanilla" mo­
dem program, rather than a sec­
ond copy of my communications 
program. I watched the other 
computer receive my program's 
messages, and entered appro­
priate responses through the key­
board. In this testing situation, a 
normally functioning wait would 
have made debugging impossible, 
since I couldn't possibly type re­
sponses fast enough to prevent my 
program from timing out when I 
didn't want it to. 

I solved this problem by writing 
a special version of wait that waits 
for an event forever if the timeout 
interval is specified as an even 
number. The original timeout test 
is shown below: 

if ((current time >= timeout_time)) 
returnC-1>"'i 

The modified timeout test looked 
like this (remember, n is the time­
out interval): 

if ((n%2) && 
(current time >= timeout_time)) 
return( :-1 ) ; 

Since timeout intervals ordinarily 
are whole numbers, my program 
ignores all of the even-valued 
timeouts without making a single 
change in its source code. I tested 
the program's timeout processing 
by temporarily changing the time­
out intervals to odd values, in a 
few selected cases at a time. 

This trick had a side effect, 
though: Because the original 
delay called wait, delay ignored 
even-valued timeout intervals, too. 
Since delay had no event to wait 
for, this made even-valued delay 
calls wait forever! 

I could have given all my delay 
calls odd-valued timeout intervals, 
but only by making numerous, 
scattered changes in source code. 
This was an unattractive prospect. 
Instead, I wrote a separate version 
of delay that doesn't call wait, and 
thus is not affected by the change 
in the debugging version of wait. 

I could have put the new ver­
sion of delay in a separate library 
along with the older, debugging­
oriented version of delay, but I 
foresaw that the problem I had 
just solved would recur whenever 
I had to debug a program that 
uses wait and delay. Therefore, it 
seemed wise to leave the new, in­
dependent version of delay in my 
working library, rather than to 
have to remember the "gotcha" 
caused by the original version 
each time I debugged a program. 

The moral: Principles like "de­
sign your code for reusability" are 
excellent guides to good software 
design, but few of them are infal­
lible, especially in sophisticated 
applications. There's no substitute 
for using your own hard-won ex­
perience as a guide. When a rule 
doesn't work-break it! • 

Jonathan Sachs has worked as a soft­
ware developer and technical writer 
since 1971. He operates a consulting 
company near San Francisco. 

Listings may be downloaded from 
CompuServe as WAIT.ARC. 

THE WINDOW BOX 

WINDOW BOX (n): 
1. A flower box that enhances the beauty of 

a window. 
2. A windowing toolbox for C programmers. 

Enhance the beauty of your C applications 
with THE WINDOW BOX. 

ADD SOME PIZAZZ! 
THE WINDOW BOX lets you ELECTRIFY 
your programs with pop-up windows, pull­
down menus with highlight bar selection. and 
context sensitive help. Watch your screen go 
blank when your program is idle. Assign 
functions to the function keys . Much more! 

ADD SOME POWER! 
Read many fields with one operation . Data 
entry windows offer many formats, com­
plete cursor navigation. and let you tie veri­
fication functions to any field. Use scrolling 
and text-editing windows, too. Print a 
window, not necessarily the whole screen. 
(Super for mailing labels!) Much more! 

SOURCE CODE PROVIDED. 
Contains no assembler code! Only standard 
C code. See how things work. Understand 
how things work. Change how things work . 
Compatible with all major C compilers. 
Requires MS-DOS/ PC-DOS. 

REASONABLE PRICE. 
And no royalties. Only $49.50 including 
shipping and tax . Or, try the demo disk and 
inspect the manual for only $10. Like what 
you see. and apply this $10 to the purchase 
price. Overseas add $5.00 per order and we 
will Air Mail. 

SATISFACTION GUARANTEED, or return in 
30 days for a full refund . 
Mastercard/Visa: Call 412-487-4282. 
Or. send checks (U.S. funds) to : 

Vertical Horizons Software 
113 Lingay Drive 
Glemshaw. PA 15116 

July/ August 1988 TURBO TECHNIX 65 



LISTING 5: SPUTC.ASM listing continued from page 64 

page 62, 120 
SPUTC.ASM ·- "'rite a character to a sedal port. 

BE SURE TO ASSEMBLE ~ITH THE /MX CCl4MANOI 

;char sputc(ch,port) 
char ch; 
unsigned port; 

; IN: ch = the character to put. 
port = the serial port nliltler. Any even nliltler is interpreted 

; as 0, and any odd nt..lt'ber is interpreted as 1 . 
;RETURN:ch. 

bios 
EOF 

equ 
equ 

PUBLIC 

21H 
-1 

_sputc 
TEXT SEGMENT BYTE PUBLIC - ASSUME CS: TEXT -_sputc PROC NEAR 

push bp 
mov bp,sp 
push di 
push si 

mov al, Cbp+4J 

•cooe• 

AL "ch". 
mov ah, 1 AH 1 (for "output"). 
mov dx, Cbp+6J OX port 
dee dx 
and dx, 1 OX port-1, reduced to range C0-11 
int 14H Do it. 
mov al, Cbp+4J Al 11 ch 11 

••• 

xor ah,ah AX = 11 ch 11 • 

pop si 
pop di 
mov sp,bp 
pop bp 
ret 

_sputc ~ 
TEXT ends -

end 

LISTING 6: CCJITEST .C 

/* C~TEST.C -- a test of the SGETC and SPUTC functions. */ 

#include <stdio.h> 

extern int wait(); 
extern void delay(); 
extern int sgetc(), sputcC>; 

/***** 
*This is the event fll1Ction. lt returns the next C~1 character, 
* or EOF if none is waiting. 
*****/ 
int comin() 
{ 

return( sgetc( 1) ) ; 
) 

main() 
{ 

int i; 

printf( "Press a key on a serial device cornected to COM1; 11 >; 
printf( "\nPress ENTER on the serial device to quh. 11 >; 

while ( i = wait(500,comin) I= OxOO 
{ 

if ( i EOF 
printf( 11 \nCome on, press a keyf " >; 

else 
{ 

) 

printf( "\nThe hex value of that key is OxX2X.", 
sputc( i + 1 , 1 >; 
) 

delay( 50 >; 
printf( 11 \nGoodbye, worldf\n" ); 
) 

66 TURBO TECHNIX July/ August 1988 

>; 

LISTING 7: COMKEY2.C 

#include <stdio.h> 

/***** 
*This is the event function. If a keyboard character is ready it 
* returns the character in 11 keyready11 ; else it returns EOF. 
* Similarly, if a character is waiting on the serial plrt it returns 
* character in 11 comready11 ; else it returns EOF. The fLnCtion waits 
* for one of the above to be ready, giving preference to the com 
* port, or for a timeout. It handles function keys, etc., in the 
• customary way: by returning 0 in the low byte and the scan code 
• in the high byte. The function returns 0 if EITHER a keyboard 
* character or a serial character is read; EOF if NEITHER is ready. 
******I 
int com key() 
{ -
/* Initialize keyready. •t 
keyready = EOF; 

/* Set comready to serial data or EOF. If EOF, return. *I 
comready = sgetc( 1); 
if ( comready ! = EOF > 

return( 0 ) ; 

/* No serial data. If no keyboard data, return. */ 
if ( !kbhit()) 

return< EOF >; 

/*Keyboard data is available. If it's ASCII, getche() returns its 
value. If it's an extended key, getche() returns 0 & a subsequent 
getch() returns its scan code. *I 

keyready = getche(); 
if ( ! keyready ) 

keyready = get ch() « 8; 
return( 0 >; 
) 

LISTING 8: ~AITOENO.C 

/* WAITDENO.C -- a demonstration of the WAIT and DELAY functions. */ 

#include <stdio.h> 

extern int wait(); 
extern void delay(); 

, ..... 
*This is the event function. It returns the next keyboard character, 
• or EOF if none is waiting. It handles function keys, etc., in the 
• customary way: by returning 0 in the low byte and the scan code in 
• the high byte. 
*****/ 
int keyin() 
{ 

int i; 

if ( kbhit() 
{ 

/*A key was pressed. If it's an ASCII key, getche() returns 
its value. If it's an extended key, getcheO returns 0 & a 
second getche() returns its scan code. */ 

i = getche(); 
if ( i ) 

return(i ); 
else 

return( get ch() « 8 ) ; 

else 
return( EOF ) ; 

main() 
{ 

int i; 

printf( 
11 Press a lcey and I'll tell you its hex value, or ENTER to quit. 11 >; 

while ( ( i = waitC500,keyin) !• OxOO 
{ 

if ( i == EOF ) 
pri ntf( 11 \nCome on, press a key! 11 ) ; 

else 
{ 

printf( "\nThe hex value of that key is OxX2X.", i >; 
printf( "\n\nPress another key. Press ENTER to quit. " ); 
) 

delay( 50 >; 
printf( 11 \nGoodbye, worldl\n11 >; 
) 



Yes Yes No Yes 

Powerful high level macro language Yes Yes No Yes Italian 

Full UNDO Yes Yes No No No 

Looks 
Visual marking of blocks Yes Yes Yes No Good 

Use 
Line. stream and column blocks Yes Yes No No Knife 

Automatic file save Yes Yes No No No 

Online help Extensive Limited Limited Limited 

Choice of keystroke commands or Menu 
menu system Yes No No Yes Available 

Function Key assignments labeled 
on screen (may be disabled) Yes No No No No 

Word processing functions Extensive Limited Limited Extra Cost 

Deep 
Complete DOS shell Yes No No No Dish 

Pop-up Programmer's Calculator and 
ASCII Table Yes No No No ASCII No 

Unlimited 'Off the Cuff' 
keystroke macros Yes No No Yes 

Allocates all available memory to Lots 
compiler when run from within editor Yes No No No of byles 

Intelligent indenting, template editing 
and brace/parenthesis/block 
matching and checking for C. 
PASCAL, BASIC and MODULA-2 Yes C Only No Limited 

Flexible condensed mode display Yes No Yes No 

Get our FULLY FUllCTIOllAL DEMO coou for onlu 84 
To Order, Call 24 hours a day: 

1-800-221-9280 Ext. 951 
In Arizona: 1-602-968-1945 

Credit Card and COD orders accepted. 

American 
Cybernetics 

1228 N. Stadem Dr. 
Tempe, AZ 85281 

Requires IBM/ PC/ XT/ AT/ PS2 or full compatib le, 256K RAM, PC/ MS-DOS 2.0 or later. 
Multi-Edit and American Cybernetics are trademarks of American Cybernetics. BRIEF 
is a trademark of Underware, Inc. Norton Editor is a trademark of Peter Norton 
Computing, Inc. Vedit is a registered trademark of CompuView Products Inc. Copy­
right 1987 by American Cybernetics. 

mu111-Edlt us. 

With EVERYTHING! 
, Is your editor OUT TO LUNCH? 
• Does it handle ALL OF YOUR NEEDS? 
• Is it flexible, programmable and reconfigurable? 
•MOST IMPORTANTLY, is it EASY TO USE? 

OR WOULD YOU RATHER BE EATING PIZZA? 

Only MULTI-EDIT tastes this good! 
Fully automatic Windowing and Virtual Memory 

Edit multiple files regardless of physical memory size 
Easy cut-and-past between files 
View different parts of the same file 

Powerful, EASY-TO-READ high-level macro language 
Standard language syntax 
Full access to ALL Editor functions 

Language-specific macros for C, PASCAL, BASIC 
and MODULA-2 

Smart Indenting 
Smart brace/ parenthesis/block checking 
Template editing 
More languages on the way 

Terrific word-processing features for all your 
documentation needs 

Intelligent word-wrap 
Automatic pagination 
Full print formatting with justification, bold type, underlining 
and centering 

Flexible line drawing 
Even a table of contents generator 

Compile within the editor 
Automatically positions cursor at errors 
Allocates all available memory to compiler 

Complete DOS Shell. 
Scrollable directory listing 
Copy, Delete and Load multiple files with one command 
Background file printing 

Regular expression search and translate 
Condensed Mode display, for easy viewing of your 

program structure 
Pop-up FULL-FUNCTION Programmer's Calculator 

and ASCII chart 

and MOST IMPORTANT, 
the BEST USER-INTERFACE ON THE MARKET! 

Extensive context-sensitive help 
Choice of full menu system or logical function key layout 
Function keys are always labeled on screen 
(no guessing required!) 

Keyboard may be easily reconfigured and re- labeled 
Extensive mouse support 
Easy, automatic recording and playback of keystrokes 
Anchovies easily removed 

MULTI-EDIT COMBINES POWER WITH 
EASE OF USE LIKE NO OTHER EDITOR 

ON THE MARKET TODAY. 



Paradox 2.0, the top-rated 
Network, 386, and 

Paradoxe is both the first family in 
DBMS and the top-rated relational 
database. Software Digest has 
ranked Paradox #1 for the past 
2 years; PC Magazine gave Paradox 
its "Editor's Choice" award and 
InfoWorld named it 1987 "Product 
of the Year" for Database Systems. 

Now there's OS/2 
Paradox OS/2 is the newest 

member of the Paradox family­
more are on the way and they're all 
100% compatible with each other. 

Paradox OS/2 allows you to take 
advantage of powerful OS/2 fea­
tures such as addressing up to 16 
megabytes of memory and running 
concurrent sessions. And Paradox 
OS/2 even lets you start new OS/2 
sessions from within Paradox. 

•customer satisfaction is our main concern; 1r within 60 days ol purchase Ulls 
product does not perform In accordance with our claims, call our customer 
servire departmenL. and we will arrange a rerund . 

All Borland produas m lnldemarU ot ttt:l!i&tted lrademarU ol 8oriand llllematlooal. Inc.. ()her 

brand and prodllCl names are ttadtmartsolthelr respec:Uve holders. Copyrl«ht • 11188 Bortand 
lmttnllklnll . Inc SI 12 28" 

Harness the power of 386 
Paradox 386 is powerful new 

DOS software for your powerful 
new hardware and it's designed 
exclusively for 80386-based sys­
tems. It also lets you ignore the old 
640K limits and races through your 
data 32 bits at a time instead of just 
16. It's a perfect solution for 
anyone faced with very large tables 
(tens of thousands of records or 
more) and/or large applications. 

'' As proof of Borland's commit­
ment to delivering compatibility 
across diverse hardware and soft­
ware environments. Paradox 386 
and Paradox 2.0 can share the 
same databases and applications 
on a network. 

Giovanni Perrone, PC Week 

Paradox ... it's the PC database­
management system equivalent to 
turbo-charging an M-series BMW. 

Giovanni Perrone. PC WEEK '' 

The Paradox Network 
really works 

Network users. you need 
Paradox's multiuser capabilities. 
The network runs smoothly, intelli­
gently and so transparently that 
multiusers can access the same 
data at the same time-without 
getting in each other's way. (But 
safeguards prevent multiple users 
from altering the same data at the 
same time.) And with screen 
refresh you get real-time data 
updates on your screen. 

'' [Paradox is] a true network 
application, a program that can 
actually take advantage of a net­
work to provide more features and 
functions. things that can't be done 
with a standalone PC. 

Aaron Brenner, LAN Magazine 

[Paradox] elegantly handles all 
the chores of a multiuser database 
system with little or no effort by 
network users. 

Mark Cook and Steve King 
Data Based Advisor '' 



relational database, has 
now OS/2 versions! 

"Query-by-Example" gives you 
the right answer, right now 

Our " Query-by-Example" (QBE) 
technique is just one illustration of 
the technological leadership offered 
by Paradox for the past 2 years. 

QBE is fast and simple to use. 
Simply call up a form and check off 
the information you want. 

Without having to write a line of 
code. you can. for example. get an­
swers to queries like: Find all the 
items we sold for more than $1000 
and tell me who ordered them. 

An artificial intelligence tech­
nique called "heuristic query 

optimization" gives Paradox's QBE 
the ability to figure out not just the 
right answer. but also the fastest 
way to get the right answer. 

QBE makes high-speed links 
between one piece of data and 
another and quickly sees the rela­
tionships your question calls for. 

P AL:T• A powerful 
programming language 

PAL. the Paradox Application 
Language. is a full-featured. high­
level. structured database program­
ming language that lets you write 
sophisticated Paradox programs 
(scripts) and applications. It in­
cludes such powerful features as 
looping constructs. arrays, branch­
ing, procedures. and a full set of 
functions. 

'' Most people we meet who 
give Paradox a try, end up 
switching to it . .. 

Mark Cook and Steve King 
Data Based Advisor '' 

There's a Paradox 2.0 
version for you 

Whether you're a DOS or 
OS/2 user. there's a Paradox 
version for you. 

60-Day Money-back Guarantee* 

For a brochure or t.he dealer nearest 
you . call (800) 543-7543 

INTERNATIONAl 



s CERTAINTY FACTORS IN 
~ TURBO PROLOG 
= s 
E--- Applications in chemistry: An infrared spectroscopy 

peak-matching facility for the identification of small 
organic compounds. 

Tom Cast/,e 

A major aspect of analytical chemistry 
deals with obtaining experimental data in 
order to identify or quantify a chemical 
compound. One of the main tools used 
by a chemist to gather this data is spec-

rROGRAMMER troscopy. For those who slept through 
Ch emistry 101, spectroscopy is an instrumental method 
that measures the interaction between a material 
and e lectromagnetic radiation (most commonly, 
ligh t). Some spectroscopic methods rely upon the ab­
sorption of ligh t by a material; other methods de­
pend on either scattering or fluorescence. 

Infrared (IR) spectroscopy is a standard tool of the 
analytical chemist. The spectrum of infrared light is 
of sufficient energy to cause various vibrational ex­
citations of organic molecules when the light is ab­
sorbed. Depending on the chemical nature of the 
bonds within the molecule, different frequencies are 
absorbed. In fact, one type of bond may absorb sev­
eral different frequencies of infrared light, depend­
ing on the vibrational mode of excitation. Thus, 
even a simple molecule possesses a complex and 
unique infrared absorption spectrum. Because of 
this uniqueness, the techn ique for identifying small, 
organic molecules is extremely valuable. A typical IR 
spectrum is shown in Figure 1. 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

% Transmittance 

4000 3000 

Frequency (cm-') 

2000 1600 1200 800 600 

Figure 1. A typical infrared absorption spectrum. 

70 TURBO TECHNIXJuly/ August 1988 

The complexity of an IR spectrum, and the unique 
relationship between a compound and its spectrum, 
are a blessing and a curse. On the positive side, 
matching an experimental spectrum to the spectrum 
of a known compound is unequivocal evidence for 
an identification. On the negative side, the sheer 
complexity of a spectrum only allows estimates of 
substructure classes based upon visual inspection of 
the spectrum. Luckily, computers appeared on th e 
scene. 

Since that time, chemical structure elucidation h as 
become heavily dependent on computers. T he 
chemist not only uses the computer to perform liter­
ature searches of various compounds, fami lies, and 
substructures, but also accesses huge databases that 
contain virtually any physical or chemical property 
of most compounds. 

An expert system can help maximize the benefits 
of computers and computer-based information. An 
expert system is simply a machine equivalent of a 
person who is knowledgeable about a specific range 
of subject matter. The system must be able to make 
decisions based upon the facts in its database, to an­
swer queries, and to explain its answers to the user. 
(For a detailed look at expert systems, see TURBO 
TECHNIX, March/ April, 1988.) 

IR PEAK MATCHING PROGRAM 
Listing 1 shows a bare-bones expert system for the 
identification of organic compounds using the pro­
cess of peak matching the infrared spectra of exper­
imental and known compounds. For the sake of sim­
plicity, I've kept the database to a minimum. Each 
record contains a compound name and a list of the 
integer values of the absorption peaks for that 
compound. Intensity values for the various peaks 
are not considered. The permanent database 
(IRPEAKS.DAT) is shown in Listing 2. 



Run the program in Listing 1 
and enter experimental values. 
The program compares those 
values to the lists of peak frequen­
cies in the database. The intersect 
rule (adapted from the difference 
rule found in Ivan Bratko's book, 
Pro log Programming for Artificial 
Intelligence) is used to find the 
common elements in the two lists. 
Once the number of common ele­
ments is determined, a score is as­
signed based on the degree of 
matching. The compounds with 
scores greater than a threshold 
value (arbitrarily set at 50 percent) 
are asserted into a temporary 
database. 

Data reliability 

hinges on three 

separate condi­

tions: accuracy, 

precision, and 

reproducibility. 

Once all of the "hits" have 
been asserted, they are converted 
into a list (using db_list) and 
sorted. The sorted list is then dis­
played by the write_list predicate. 
The user also has the opportunity 
to examine the actual database in­
formation for any record that 
came up in the "hit" list. Although 
the program is simple, it exempli­
fies an important consideration in 
data analysis-uncertainty. 

DATA RELIABILITY 
Data reliability hinges on three 
separate conditions: accuracy, pre­
cision, and reproducibility. For 
numerical data, these are com­
monly recognized terms. Accuracy 
is the conformity of a measure to 
a true or standard value. Precision 

continued on page 72 

LISTING 1: IRANAL.PRO 

/*******************************************************************/ 
/* */ 
/* IRANAL.PRO */ 
/* Using Turbo Prolog for the */ 
/* identification of small organic chemicals */ 
/* by Infrared Spectroscopy */ 
/* *I 
I* copyright (c) by Tom Castle, 1988 */ 
/* */ 
/*******************************************************************/ 

/*******************************************************************! 
/*The following program was designed to provide assistance in the*/ 
/*structure determination of small, organic molecules from simple*/ 
/* data sets obtained from infrared spectroscopy. The program is a*/ 
/* simple example of a typical EXPERT SYSTEM. our input data is */ 
/* compared against facts stored in a database by use of the */ 
/* designed INFERENCE ENGINE. Two important ideas are approached */ 
/*by this program. The first is CERTAINTY. The CERTAINTY SCORE*/ 
/* is an approximation of how confident we feel about the data */ 
/* presented or the answers obtained from the INFERENCE ENGINE. */ 
/*The peak matching facility generates a CERTAINTY SCORE which */ 
/* is calculated from the total nl.lllber of matches and mismatches */ 
/* encountered between experimental data and database information. */ 
/*The second idea probed is GATING for searching unreliable */ 
/*numerical values in a database. Much of what science tells us */ 
/* is wrong. ~rong in the sense that it is generally an */ 
/*approximation although sometimes a very precise approximation. */ 
/* ~rong also in the sense that facts are generally a statistically*/ 
/*derived value of observations continually being refined to more*/ 
/* closely reflect the truth. ~e must use GATING to offer */ 
/* ourselves a window of variable width with which to search for */ 
/* facts in the database since databases only recognize exact */ 
/* instances of unification. Life generally isn't that black and */ 
/* white. */ 
/*******************************************************************/ 

DOMAINS 
sampling= real 
certainty, data integer 
name = string 
target= t(name,certainty,sampling) 
targetlist =target* 
datalist =data* 

INCLUDE "tdoms.pro" 

DATABASE 
/* This is the permanent database predicate kept in the */ 
I* file "irpeaks.dat" : compound name and ir peak list */ 

compound(name,datalist) 

I* The next few database predicates are temporary items 
/* to hold the analysis and search results. 

certain thresh(integer) 
exp_dataCdatalist> 
gate width( integer) 
hits(target) 

*I 
*/ 

PREDICATES 
adjust_cursor(R~ 1 COL,R~,COL) 
bubblesort(targetlist,targetlist) 
db_list(targetlist) 
examine answers 
gated memt:>ercdata,datalist) 
get data 
intersect(datalist,datalist,datalist) 

July/ August 1988 TURBO TECHNIX 71 



list len(datalist,integer) 
makelist(datalist,RO\J,COL) 
match 
process( integer) 
process1(integer) 
retract t~ 
swap(targetlist,targetlist) 
write answers(targetlist) 
write-hits(targetlist,integer) 
write-list(datalist,RO\J,COL) 

INCLUDE 11 tpreds.pro11 

INCLUDE "menu.pro" 

GOAL 
consult( 11 irpeaks.dat 11 ), 

assert(gate width(10)), 
assert(certain thresh(50)), 
makewindow(1,32,7," IR Peak Matching Facility 11 ,0,0,25,80), 
repeat, 
clearwindow, 
menu(10,30,23,7, 

["Enter IR Data", 
"Search", 
"Change Gate Width", 
"Exi t"l, 
'"', 1, Choice), 

process(Choice). 

CLAUSES 
/*******************************************************************/ 
I* USER INTERFACE */ 
/* The PROCESS clauses are the responses to the menu items in the */ 
/* GOAL. The PROCESS1 clauses respond to the second menu for */ 
/* examining database records. */ 
/*******************************************************************/ 

process(O):- fail. 
process(1):- get data, !, fail. 
process(2):- match, 

process(3):-

db l ist(List), 
bubblesort(List,SortedList), 
write_answers(SortedList), 
examine answers, 
retract=t~s, ! , fail. 

gate width(GateWidth), 
write("The current variability gate for the">, 
write("search is set at 11 ,GateWidth, 11 • 11 ), nl, 
write("Enter a new gate size or hit <Return> : "), 
readint(New), 
retract(gate width( )), 
asserta(gate-width(New)), ! , fail. 

process(4):- exit~ 

get_data:­
retract_t~s, 

clearwindow, 
cursor( 1, 10), 
write("Enter data obtained from IR analysis"), 
cursor(2, 10), 
write(" Hit <Return> to quit."), 
makelist(Datalist,4,3), /*a writelist with cursor *J 
asserta(exp_data(Datalist)). 

write answers(List):­
clearwindow, 
field str(0,2,20, 11 Compound11 ), 

field=str(0,25,20,"Certainty Score"), 

field_str(0,45,20,"Sampling Score"), 
write_hits(List,2). 

72 TURBO TECH NIX July/ August 1988 

CERTAINTY FACTORS 
continued from page 71 

is the degree of tolerance or re­
finement of a measurement. Re­
producibility is generally a statisti­
cally derived value that represents 
the variation of a parameter be­
tween different measurement 
events. 

The collection and processing 
of IR peak data illustrate how 
experimental data can become 
unreliable. The peak frequencies 
can be obtained by having the 
spectrophotometer generate peak 
tables from the spectrum. Alterna­
tively, peak lists can be generated 
by either visual inspection or me­
chanical digitization of a pub­
lished spectrum. The method used 
to obtain peak lists dictates the de­
grees of accuracy, precision, and 
reproducibility. 

Non-numerical data can also be 
subject to these conditions of data 
reliability. If questioned about a 
given quality, the answer could be 
wrong (accuracy), vague (preci­
sion), or change from one query 
to another query (reproducibility). 
It's also difficult to establish a 
hierarchy for descriptive terms 
such as "good," "ok," "satisfac­
tory," "partly cloudy," and so 
forth. To increase data reliability, 
this type of subjective data is often 
converted into numerical terms. 

How do we take data reliability 
into account? A quick-and-dirty 
method to compensate for unre­
liability is gating, where all exper­
imental values are given a plus or 
minus tolerance of a specified 
amount. Experience dictates how 
wide the gate should be. Some sit­
uations are amenable to statistical 
analysis for determining the ap­
propriate gate width. I've provided 
a way to adjust the gate width in 
Listing 1. 

To incorporate gating into the 
program, I changed the common 
member predicate to the 
gated_member predicate. The 
new rule succeeds if a value is 
within a range that is specified by 
the gate width on either side of 
any member in a list. 



DATA SAMPLING 
One area of data reliability, data 
sampling, doesn't involve the nu­
merical values of the data them­
selves. Using the IR spectrum 
again as an example, there are 
many small intensity and partially 
overlapping peaks in any IR spec­
trum. These data may or may not 

The program 

must assign a score 

that reflects the 

amount of match­

ing from each data­

base record. This 

score is often called 

a certainty or 

confidence factor. 

be entered into peak lists. For in­
stance, one chemist might count 
a different number of peaks than 
another chemist, or obtain the 
data from a slightly different spec­
trum of the same compound, or 
use a different method of gener­
ating peak lists for different com­
pounds. 

The user should have some in­
dication if there are differences in 
sample size between the experi­
mental data set and the database 
records. Although there are rigor­
ous statistical tools for evaluating 
sampling, the sampling score has 
been kept simple. The equation is: 
Sampling_Score = 1 / ( abs(Db_len -
Exp_len) + 1 ) 

Dh_len and Exp_len represent the 
number of members in the data­
base and experimental lists, re­
spectively. The abs operator ob­
tains the absolute value of the 

continued on page 74 

write hits( Cl, ). 
write=hits([t(N,C,S)ITl,Row):­

field str(Row,2,20,N), 
Row1 ; Row + 1 , 
cursor(Row,30), 
write(C), 
cursor(Row,50), 
wri tef( 11%3.211 , S), 
write_hits(T,Row1). 

examine_answers:­
repeat, 
menu(15,50,7,7, 

["Examine Database Entry", 
"Return"] , 1111

, 1 , Choice), 
process1(Choice). 

process1(0):- fail. 
process1(1):­

nl,nl, 
write("Enter the c~und name you want to examine "), 
nl, readln(Name), nl, 
cursor(Row, ), 
c~und(Name,Exp_list), 
write_l ist(Exp_l ist,Row,3), ! , 
fail. 

process 1( 2). 

retract_temps:­
retract(exp_data(_)), fail. 

retract_ temps. 

/***********************************************/ 
I* LIST MANIPULATIONS */ 
/* Most of these are derivatives of the conmon */ 
/*predicates: readlist, writelist, listlen */ 
/* found in the TProlog Reference Manual or the*/ 
/* TProlog Toolbox TPREDS.PRO file. */ 
/***********************************************/ 

makelist(CHITl,Row,Col):­
cursor(Row,Col), 
readint(H), ! , 
adjust cursor(Row,Col,Row1,Col1), 
makelist(T,Row1,col1>. 

makel i st( Cl,_,_). 

write list([],,):-!. 
write=list(CHITl~Row,Col):­

cursor(Row,Col), 
write(H), 
adjust cursor(Row,Col,Row1,Col1), 
write_Tist(T,Row1,Col1). 

adjust cursor(R,C1,R,C2):­
c1 < 70, ! , 
C2 = C1 + 6. 

adjust cursor(R, ,R1,C):-
C-= 6, -
R1 = R + 1. 

l ist_len( Cl ,0). 
list_lenCC_ITl,N>:­

list_lenCT,X>, 
N=X+1. 

/*the listlen predicate in the */ 
I* Toolbox TPREDS.PRO file has a*/ 
/* stringlist domain for its arg.*/ 
/*This has an integerlist. */ 

July/ August 1988 TURBO TECHNIX 73 



/*******************************************************************/ 
/* INFERENCE ENGINE */ 
/*These are the rules which govern the search capabilities of the*/ 
/* program along with the processing and decision-making functions.*/ 
/* The main rule is MATCH which counts the nllllber of matches and */ 
/* mismatches between the ir experimental data set and the */ 
I* database data sets. A CERTAINTY or CONFIDENCE value is */ 
I* calculated along with a SAMPLING DIFFERENCE value. The database*/ 
/*entries with a CERTAINTY SCORE over a threshold value will be */ 
/*stored in a list. That list is then presented to the user. An*/ 
/* opportunity to inspect a database record is also available. */ 
/*******************************************************************/ 

match:- I* this is 
/* exp_data(Exp_l ist), 

list_lenCExp_list,Exp_len), 
cursorC1,30), 
write("Searching Database"), 
corrpound(Name,Db_list), 

what the psychologists*/ 
call free association.*/ 
/* It is unrestrained*/ 

/* backtracking. */ 

intersectCExp list,Db list,Common list), 
list lenCDb lTst,Db len), -
list-lencco.lmon list,Com len), 
minCDb_len,Exp_len,Min_len), 
Certainty = (Com len * 100) I Min len, 
certain_threshCT), -
Certainty> T, 
Sampling= 1 I Cabs(Db_len - Exp_len) + 1), 
asserta(hits(t(Name,Certainty,Sampling))), 
fail. 

match. 

/****************************************************/ 
/* MORE LI ST STUFF *I 
/* The GATED MEMBER is a take-off of the MEMBER */ 
/* predicate-found in the TProlog Reference Manual. */ 
/* The INTERSECT rule finds items from the first */ 
/* list that are common to the second list and */ 
/* places them in a third "common" list. It is */ 
/* derived from the DIFFERENCE rule found in Ivan */ 
/* Bratko's Prolog Programming for Artificial Intel.*/ 
/* The DB_LIST predicate converts the HITS database */ 
/*records into a list. That seemed easier than */ 
/*creating a list in the first place. */ 
I* The BUBBLESORT and SWAP rules are also from */ 
/* Bratko. (Steal from the best.) */ 
/****************************************************/ 

gated_member(X, CYl_J):­
gate width(GateWidth), 
X < Y + GateWidth, 
X > Y - GateWidth, !. 

gated_memberCX, c_ITailJ>:­
gated_memberCX,Tail). 

intersect([), , 0). 
intersectccx1r11,L2, CXILJ):­

gated member(X,L2), !, 
intersectCL1,L2,L). 

intersectCC_IL1J,L2,L):-
intersectCL1,L2,L). 

74 TURBO TECHNIXjuly/August 1988 

/* retrieve the gate width */ 
/* is X within the range of*/ 
/* the dbase value +/- the */ 
/* gate? */ 

/* if X is within the range */ 
/* of any of the items in the*/ 
/*second list, add it to the*/ 
/* third. If not, go on to */ 
/* the next member of the 1st*/ 

CERTAINTY FACTORS 
continued from page 73 

difference. This guarantees that 
the denominator is always posi­
tive. The value of 1 is added to the 
absolute difference of the list sizes 
to avoid division by zero errors, 
and to give a value of 1 for lists of 
equal size. 

SEARCH CERTAINTY 
The experimental data will sel­
dom, if ever, match a database 
record exactly. This will be true 
even when gating is applied. 
Therefore, the program must as­
sign a score that reflects the 
amount of matching from each 
database record. This score is of­
ten called a certainty or confidence 
factor. The certainty factor, like the 
sampling score, has nothing to do 
with probability statistics; rather, 
it's a general indication of the cer­
tainty of a given answer. To calcu­
late the certainty score, take the 
number of elements in the exper­
imental list that are common to a 
database record. Then divide by 
the smaller number of elements 
of the two lists, and multiply by 
100 to get a percent value. This 
score determines whether a data­
base record is a "hit." 

IMPROVEMENTS 
Dealing with uncertainty is a com­
mon feature of most expert sys­
tems. A true expert system, how­
ever, should be able to tell the 
user if additional information is 
required to make a better identi­
fication . A more sophisticated sys­
tem might keep database records 
of a companion list of peaks in 
database records thatjust barely 
missed selection with the defined 
gate. The program could then in­
form the user of better matches 
with slightly wider gates. Commer­
cial IR peak-matching programs 
always tell the user to compare the 
actual hardcopy spectra before 
making an identification. This is 
a sound approach. 

The program could also be im­
proved to make better use of 



the IR spectra information. Sub­
structure information for each 
compound could be incorporated 
into the database, since each ab­
sorption peak in a spectrum indi­
cates a specific chemical bond 

Other analyti­

cal techniques 

could be used to en­

hance the identifi­

cation methods, 

such as ultraviolet­

visible spectro­

scopy, which aids 

in structure 

identification. 

type and environment. The pro­
gram could then interpret the 
peaks and report on the substruc­
tures, and could also report the in­
terpretation of the experimental 
spectrum even if good matches 
were not found in the database. 

Other analytical techniques 
could be used to enhance the 
identification methods, such as 
ultraviolet-visible spectroscopy, 
which aids in structure identifica­
tion. Additional techniques that 
provide very specific information 
about compounds include mass 
spectrometry and nuclear mag­
netic resonance spectroscopy. 

Keep in mind, however, that 
more information necessitates 
more sophisticated programming. 
Several new problems will emerge 
if you try to make a single identi­
fication from several analytical 
methods. These are the dragons 
of incomplete data and conflicting 
data. • 

Tom Cast/,e i.s a chemist in Kalama­
zoo, Michigan. He writes software re­
views and C programming artic/,es for 
Atari ST magazines. 

Li.stings may be downloaded from 
CompuServe as IRANAL.ARC. 

db_list([t(Name,Conf,S~>ITl):­
hits(t(Name,Conf,Sa"")), 
retract(hits(t(Name,Conf,Sa""))),!, 
db list(T). 

db_l istcn >. 

bubblesort(Unsort,Sort):­
swap(Unsort,L), !, 
bubblesort(L,Sort). 

bubblesort(Sort,Sort). 

/* retireve the db*/ 
/* info, add to */ 
/* list & discard.*/ 

swap([t(N,C,S),tCN2,C2,S2>ITl, CtCN2,C2,S2),t(N,C,S)ITl):­
C < C2. 

swap( [t(N, C,S) I T1l, [t(N,C, S) I T2l >: -
swapCT1,T2). 

LISTING 2: IRPEAKS.DAT 

c°""°undC 11acetophenone11 ,[3400,3350,3070,3000,1683,1595,1580,1450, 
1356,1265,1175,1075,1020,953,755,687]) 

c°""°und( 11 a111110niun benzoate",C3000,1710,1600,1550,1385,1068,1022, 
835,720,708,685,680]) 

c°""°und( 11anisole11
, [3060,3030,3000,2950,2835,1920,1840,1770,1690, 

1590,1480,1460,1450,1330, 1300,1245,1075,1030,875,775,750, 
680]) 

c°""°und("benzyl alcohol", [3300,2985,2857, 1960, 1875, 1825, 1497, 1471, 
1453, 1208, 1017, 735,697]) 

c°""°und("cyclohexane", [2910,2840,2550, 1443,1251,900,855]) 
c°""°undC"cyclohexanone", [2930,2840,1710,1450,1425,1340,1310,1222, 

1120,1053,1018,908,853,748]) 
c°""°und("1-decene", [3049, 1645, 1470, 1390, 986, 907, 720]) 
c°""°und("heptanoic acid",[3000,2950,2920,2850,1715,1455,1408,1280, 

1230,1200,1100,930]) 
c°""°undC 11 hexane11

, [2980,2920,2860, 1468, 1378, 725]) 
c°""°undC 11 1-hexyne11

, [3268, 2941,2857,2110, 1470, 1430, 1247, 1105 ,667]) 
c°""°und("isobutyramide",[3350,3170,2960,1640,1468,1425,1290,1140, 

650]) 
c°""°undC"leucine-(D,L)", [2965,2910,2840,2500,2140,1610,1580,1505, 

1455,1405,1350,1300,1285,1225,1130,848,765,675]) 
c°""°und("mesitylene", [3003,2940,2874, 1760, 1720, 1610, 1475, 1390, 1038, 

837,687]) 
c°""°und("nitrobenzene", [3100,3080,2860, 1610, 1605, 1520, 1478, 1345, 

1315,1108, 1070,1022,935,852,793,702,680]) 
c°""°und("octylamine", [3365,3290,3200,2910,2850,2817,1620,1458,1370, 

1063, 790]) 
c°""°und("2-pentanol",[3333,2907,1460,1361,1142, 1101,1058,1030,1000, 

948,905,890,828,757]) 
c°""°und("2-pentanone",C2955,2930,2866,1725,1465,1430,1370,1295, 

1273, 1240, 1172, 965, 900, 727]) 
c°""°und("phenol", [3333,3045, 1925, 1840, 1770, 1700, 1580, 1495, 1468, 

1359,1223,1067,1020,998,805,745,685]) 
c°""°und("phenyl acetate",[3070,3040,1770,1593,1493,1360,1205,1183, 

1068,1025,1010,923,892,813,748,695]) 
c°""°und("2-phenyl propionaldehyde", [3077,3040,2985,2941,2874,2825, 

2717,1730,1600,1497,1453,1389,1070,1020,8980,860,749,699]) 
c°""°und("propionic anhydride",[2990,2950,2880,1825,1758,1465,1420, 

1348,1265,1090,1040]) 

July/ August 1988 TURBO TECHNIX 75 



FAILING WITH GRACE 
Replace recursion with iteration-and save memory. 

Edward B. Flowers 

Prolog's descriptive nature-and its ability 
to perform recursion-make it an ideal 
language for modeling ideas. However, 
since recursion tends to use a great deal 
of memory, the programmer must keep 

SQUARE ONE memory usage in mind when developing 
large programs. 

Programs that employ a menu-driven front end for 
obtaining and directing user input are particularly 
interesting challenges in Prolog. Such front ends use 
a loop to handle the process of displaying a menu, 
allowing the user to select an item from the menu, 
carrying out the action required by the menu choice, 
and returning the program to the menu so that the 
user can make other selections. In this article, I'll 
show how to economize the use of memory by em­
bedding menus within repeat .. fail and repeat .. 
condition loops. I'll also briefly discuss the role of re­
cursion in memory usage. Finally, I'll present itera­
tion as an alternative to recursion, and will cover me­
thods for controlling the side effects caused by 
backtracking in a repeat .. fail loop. 

RECURSION VERSUS ITERATION 
The beauty of recursion is that it allows us to de­
scribe an iterative process in just a few statements. 
Recursion is logically simpler than iteration, because 
recursion more closely models the way we think. Re­
cursion is used to solve problems that contain an­
other problem of the same kind within the larger 
problem. For example, an algorithm for taking the 
average of the numbers one through ten can be 
stated in the following five steps. 

76 TURBO TECHNIXJuly/ August 1988 

1. Check if ten values have been summed together. 
2. If so, divide the sum by ten in order to take the av­

erage of those values, and then quit. 

3. Otherwise, add the value one to the current 
number that is being added to the sum. 

4. Add that value to the current sum. 

5. Start over with step 1. 

In Turbo Prolog, this process translates into: 

average(10,S):-
Average = S/10, 
wr.ite("The average is ",Average),nl. 

average(X, Y): -

N = X + 1, 
NewSLITI = y + N, 
average(N,NewSLJTI). 

Notice how closely these clauses match the 
algorithm. 

Recursion, then, provides a natural and logical 
way to describe a problem. Unfortunately, recursion 
can use considerable amounts of memory because 
Turbo Prolog creates a record in memory, called a 
"stack frame." The stack frame maintains the value of 
variables at each recursion, as well as the pointers to 
which the program returns after the particular recur­
sion. As a recursive call proceeds, the program uses 
up more and more memory as additional frames are 
created. If enough calls are made to exhaust avail­
able memory, then the program fails. 

Turbo Prolog recognizes a special case of recur­
sion, called tail recursion, which occurs when the re­
cursive call is the last call in the clause (as shown in 
the previous code sample). In such cases, Turbo 
Prolog uses optimization techniques to minimize 
memory demands. (For more on this topic, refer to 
"The Tail Recursion Tiger," TURBO TECHNIX,Jan­
uary/ February, 1988.) Recursive clauses, however, 
cannot always be made tail recursive. 

continued on page 78 



Reflex: the database that 
maximizes your decision power 
T o get ahead in business. you 

must make decisions. And you 
must make them right ... the 

first time. That's why you need the 
power of Reflex:" The Analyst. It's a 

no-nonsense 
flat-file data­
base that 
stores and 
organizes 
your infor­
mation. 
Then works 
like a 
spread­
sheet for 
sophis­
ticated 

what-if analyses. Then shows you your 
information from every angle and per­
spective. uncovering all its hidden 
meanings. Then lets you move full 
speed ahead! 

The view is up to you 
Let Reflex break your data down. 

Turn it around. Show it off. And add it 
up. All with simple menus and com­
mands that don't turn you inside out. 

View your data one record at a time. 
Or all together in columns and rows. 
Create five different kinds of graphs. 
A numeric summary. Or a sophisti­
cated report that makes everything 
fall into place. Even get a split screen 
that shows a form and graph at the 
same time. As you edit the form. 
your changes are instantly reflected 
in the graph! 

Crosstabs show you the 
big picture 

Reflex can give you a unique Cross­
tab view of your information-a pow­
erful numeric summary divided into 
categories and displayed in a numeric 
summary table. Use it to pinpoint 
trends and relationships among the 
data and ask what-if questions. Your 
Crosstab shows Bob's average percent 
margin is higher than the other sales 
reps. Is he pushing too hard on price at 
the expense of volume? Quickly change 
the Crosstab for a second analysis. and 
Reflex will give you a whole new 
perspective. 

Even generate reports 
for 1-2-3 and dBASE files 

The Reflex Report view is a powerful 
report generator that can also accept 
files from popular applications like 
Lotus 1-2-3". dBASE". and and PFS: 
File. Use Reflex to generate everything 
from mailing labels to sophisticated 
custom reports-it's the only report 
generator you need! 

The Workshop's templates 
make it easier 

The Reflex Workshop, available 
separately, gives you 22 master tem­
plates for running almost any kind of 
business. The formats are all there: 
you just plug in the numbers. 

Use the Reflex Grossi.ab 
view to get the whole 
picture ... 

... or split your Reflex 
screen to show several 
views at once-and 
watch your dat.a change 
as you edit! 

Maximize your decision power! 
Give your decisions the power of 

Reflex. See your Borland dealer today. 

' ' If you need an analytical tool 
that's powerful. versatile. easy to 
use. and with the right price, Reflex 
is for you . 

Bob Weeks, Chicago Computer Guide '' 

Al Borland piOCU:ts •e lrtcleflaks or reQISlered •aoem.u o1 8orlind wenia1!0Nl, Inc Olhet Inna n:i ·eustomer satisfaction is OlJ main concern. ii w1lhin 60 days ot pt1chase this product 
111<Wc111M1eS are •aoen.ts Ii tew respeclrte llol*fs_ topyr91 • 19M8orland wetnal!ONI. k'c does not perform 1n accoraance wilt! w clam'JS, call our customer service departmenl, 

Bl 1233 Mid we will airaige a 1etood 



FAILING WITH GRACE 
continued from page 76 

REPEAT LOOPS 
The alternative to recursion is the 
use of backtracking in repeat 
loops to perform the iterative pro­
cess. To create a repeat loop, set 
a backtrack point by creating a 
nondeterministic call that always 
succeeds. Next, add the statements 
that are to be executed within the 
loop, and then end the clause 
with a failing condition (such as 
fail). When Turbo Prolog encoun­
ters the failing condition, it back­
tracks to the nondeterministic call 
(which says, "go look for more so­
lutions") and executes the loop 
once again. In this way, no stack 
frames are required and memory 
remains intact. 

The menu predicate in Listing 
1 provides an example of an un­
conditional repeat loop. These 
loops are commonly called re­
peat .. fail loops, because they 
begin with the programmer­
defined repeat predicate and end 
with the standard predicate fail. 
The following menu clause dem­
onstrates the overall structure of 
a repeat .. fail loop. 

menu if 
repeat, 

fail. 

repeat is a nondeterministic 
clause whose sole purpose is to set 
a backtrack point. (Remember, a 
backtrack point is established 
whenever more than one possibil­
ity for a solution exists, and Turbo 
Pro log must decide on one of two 
search paths.) repeat is defined in 
the context of the program as: 

repeat. 
repeat:- repeat. 

78 TURBO TECHNIXJuly/ August 1988 

The first clause establishes the 
backtrack point. The second re­
peat clause (which is tail recur­
sive) calls the first clause to set an­
other backtrack point whenever a 
"fail" occurs and the program 
backtracks across the original call 
to repeat. This process generates 
an infinite number of possible 
solutions. 

In the menu example above, re­
peat is followed by a number of 
program statements and finally a 
call to fail. fail forces Turbo 
Prolog to backtrack to repeat. 

Since repeat generates an infinite 
number of solutions, the search 
continues back down the clause to 
the fail again. This process con­
tinues ad infinitum until the 
<q>uit option is selected. 

Figure 1 diagrams how the pro­
gram in Listing 1 uses the main 
menu to route processing to 
groups of related predicates 
through the choice clauses. Mem­
ory is restored as control first re-

continued on page 80 

Goal 

I 
repeat 

MAIN MENU 

f~·i·I. .... -t-----------, 

dbase_list 
(backtracks) 

dbase_list 
(catch clause) 

I 
choice('u') if ... 

choice('c') if ... 

choice(_). 

Figure 1. The flow of program control in Listing 1. 

LI LJ 

repeat 

conditional_loop 

.____,__ Ch= 'q',!. 



"Those who are considering 
purchasing 1-2-3 will be 
better off with Quattro" 

-John Walkenbach, lnfoWorld 

11 There are some 
clear advantages 
in choosing Quattro 
over the 1-2-3 of 
today: easier instal­
lation, no copy pro­
tection, improved speed, much 
better macros, excellent graphics. 
a customizable command interface. 
and direct compatibility with 
industry standard file formats. If 
cost is a factor. you can get five 
copies of Quattro for the same 
money that would buy two 
1-2-3 packages." 

Quattro includes SOZ!" Plus data compression 

A special implemenuition of SQZ' Plus. the spread­
sheet fil e compression util ity. is built into Quattro and 
comes to you absolutely free. SQZ 1 Plus for Quattro 
automati cally compacts and expands Quattro spread­
sheets by up to 95% during file saving and retrieving. 

·CdorrefSil!SIM:bOniscu"*'conte1n, • .r 60111ySolpu1cr.sehsp10Cl.Clooesno1per1or11111ilCCorO.W::e 
#lfl OU'dloms.tlllauCUSlonlllwva~.lll(J we •1....,.11~ 

All Borlnl pu>Ck1Cb •t ...... u OI l'91S*fll •ilO!rr9"U ol Borlnl LU''*" In!; SQZI 1S ' rf9<Slelecl ~mn.1 
ol SrmnK Colp '"'*Hall~~- DI.- tw"b$¥1d prtdcl riar"'5•t•~Uotlllll ttsj)ed'V! 
flOIOlnCopyr9'1 •19M Bor\N~lnc 

Features: Improving the 
industry standard 
"Quattro takes the industry stan­
dard and improves upon it in the 
areas that count most. It addresses 
many of the weaknesses of 1-2-3 
and adds quite a few of its own 
unique touches." 

"Perhaps Quattro's main advan­
tage over most other spreadsheets 
is its minimal recalculation capa­
bility. When you make a change in 
your spreadsheet. only affected 
cells are recalculated, greatly 
speeding things up in most cases." 
"Other Quattro features that 
improve upon the 1-2-3 standard 
include auto-record macros. vastly 
superior graphics. and easy 
installation." 

BORLAND 
... 1 l R ~. A .. 1 

Performance: Markedly 
superior to 1-2-3 
"Our benchmark tests show 
Quattro markedly superior to 
1-2-3 in file saves and retrieves." 

"Quattro's graphics are a 
sight to behold." 

"Quattro makes working with 
macros practically painless. If 
you're into complex 1-2-3 macros. 
the debugging feature alone is 
good reason to make the switch 
to Quattro." 

"No one can argue that Quattro is 
anything less than an excellent 
spreadsheet value. H 

Excerpts from John Wa/kenbach 's 
review of Quattro·· in Info World, 
January 11, 1988. 

60-Day Money-back Guarantee* 
Includes 3\1/' and 51/4' disks. 

For the dealer nearest you or a 
brochure call (800) 543-7543 



LISTING 1: RLOOP.PRO 

I* Conditional and unconditional repeat .. fail loops*/ 

database 
sun( integer) 

predicates 
menu 
repeat 
choice(char) 
dbase list 
factCstring> 
conditional loop 
adder( char)-

goal 
asserta(sun(O)), 
makewindow(1,26,30, 11 Unconditional Repeat-Fail Loop 11 ,0,0,24,80), 
menu. 

clauses 

menu if /* the main menu is an unconditional loop */ 
repeat, 

clearwindow,nl,nl,nl, 
nl,write(" Main Menu: 11 ),nl, 
nl,write(" <u>nconditional loop. 11 ), 

nl ,write(" <c>ondi ti onal loop."), 
nl,write(" <ctrl><break> to quit."),nl, 
nl,write(" Choice: "), 
readchar(Ch), 
choice(Ch), 

fail. 

choice('u') if 
clearwindow,nl,nl,nl, 
nl ,write(" Unconditional Loop: 11 >, nl, 
nl,write(" This unconditional \"choice\" predicate"), 
nl,write(" routes data processing to the dbase_list"), 
nl,write(" predicate. 11 ),nl, 
nl,write(" <any> to continue: "), 
readchar( ) , nl, 
dbase list. 

choice< •c• > if 
clearwindow, 
retract (sun( )) , 
asserta(sun(O)),!, 
conditional_ loop. 

choice(_). 

dbase list if 
factcstring>, 
nl,write(" 

/*no fail is necessary after*/ 
/*the write statement. The main */ 

",String). /* menu repeat-fail loop causes */ 
/* dbase list to backtrack*/ dbase list if 

nl-:­
nl,write(" 
readchar(_). 

I* through the fact() database*/ 
<any> to continue: "), 

conditional loop if 
clearwindow,nl,nl, 
nl,write(" Conditional Loop: 11 ),nl, 
nl,write(" This conditional repeat-fail"), 
nl,write(" loop adds one to the Sun on"), 
nl,write(" each increment."),nl, 
nl,write(" Choices:"),nl, 
nl,write(" <any> to continue adding."), 
nl,write(" <q>uit."),nl, 
repeat, 

80 TURBO TECHNIXJuly/ August 1988 

FAILING WITH GRACE 
continued from page 78 

turns to the choice predicate and 
then returns to fail in the main 
menu. 

CONDITIONAL REPEAT 
LOOPS 
A conditional repeat loop might be 
called a "repeat .. condition loop" 
because the conditions of the loop 
begin with repeat and end with a 
condition that can either succeed 
or fail. If the condition fails, the 
loop repeats. On the other hand, 
meeting the requirements of the 
condition causes the loop to ter­
minate and processing continues. 
Therefore, a conditional repeat 
loop is similar to a DO .. WHILE 
loop. 

As an example, consider the fol­
lowing conditional_loop predicate 
(also shown in Listing 1): 

conditional_loop if 

repeat, 
adder(Ch), 

Ch = 'q' I!. 

The failing condition in this case 
is Ch = 'q'. If this condition fails, 
then processing proceeds again 
from repeat (which is located 
above the adder command). 
Therefore, Ch = 'q', takes the 
place of fail. 

Another characteristic of repeat 
loops is illustrated below by the 
loop structure in the economies 
predicate of Listing 3: 
economies if 

readchar(Graphit), clearwindow, 

repeat, 
both(StopCont), 
graphit(StopCont,Graphit), 

StopCont = "stop", ! . 



If, for instance, the "<g>raph the 
data" option is chosen, the vari­
able Graphit is instantiated to 'g' 
and retains that value while the 
loop continues its search for 
StopCont = "stop". The reason 
that Graphit is not freed during 
the backtracking process is that 
Graphit is instantiated outside 
of the loop. On the other hand, 
StopCont is instantiated within the 
loop, so this variable is freed each 
time that Turbo Prolog backtracks 
across it. 

SIDE EFFECTS OF 
BACKTRACKING 
When a clause is executed from 
within a repeat loop, backtracking 
takes place in all of the down­
stream predicate links. The prob­
lem then becomes how to isolate 
and control downstream back­
tracking alternatives. The cut op­
erator, !, is used to prevent back­
tracking into useless alternatives. 

For example, the dbase_list 
predicate in Listing 1 does not 
contain a fail. Nonetheless, 
dbase_list calls the fact database 
predicate until all alternatives are 
exhausted. Turbo Prolog does not 
stop after the first solution is 
found because fail (in the main 
menu's repeat loop) "reaches 
down" to dbase_list through 
choice('u') to exhaust all of the 
fact alternatives. This is true even 

continued on page 82 

adder(Ch), 
Ch= 'q',!. /*adding continues until Ch 

adder(Ch) if ! , 
retract(Sl.lll(Sl.111)), 
nl,write(" Sl.111 = ",Sl.111), 
SLm2 = Sl.111 + 1, 
asserta(sl.111(SLm2)), 
readchar(Ch). 

repeat. 
repeat if repeat. 

'q' is true */ 

fact("The Main Menu repeat-fail loop uses"). 
fact("the dbase_list predicate to retrieve"). 
fact("all of the fact predicates that contain"). 
fact("these statements."). 
fact ( ""). 
fact("Conditional and unconditional"). 
fact("repeat-fai l loops have very"). 
fact("low memory overhead."). 

LISTING 2: RMENU.PRO 

/* Corrbining repeat loops */ 

database 
key_nunber(integer) 

predicates 
menu 
repeat 
menu2Cchar) 
choice( char) 
corrbinations(integer) 
data nunber one(integer) 
data=nunber=two(integer) 

goal 
asserta(key nunber(O)), 
makewindowc1,26,30," Menus and Corrbinations ", 0,0,24,80), 
menu. 

clauses 

menu if 
repeat, 

clearwindow,nl,nl,nl, 
nl,write(" Main Menu:"),nl, 
nl,write(" repeat-<f>ai l menu."), 
nl, write(" repeat-<c>ondi ti on menu (with ! ) . 11 ), 

nl,write(" sil!l>le <p>redicate ! menu."), 
nl,write(" sil!l>le p<r>edicate menu (without ! )."), 
nl,write(" <ctrl><break> to quit."),nl, 
nl,write(" Choice: "), 
readchar(Ch), 
menu2(Ch), 

fail. 

July/ August 1988 TURBO TECHNIX 81 



menu2C'f') if 
repeat, 

clearwindow,nl,nl,nl, 
nl,write(" Repeat-Fail Menu:"),nl, 
nl,write(" <c>oobinations. 11 ), 

nl,write(" <ctrl><break> to quit. 11 ),nl, 
nl,write(" Choice: "), 
readchar(Ch), 
choice(Ch), 

fail. /*the fail in repeat*/ 
menu2C'c') if 

repeat, 
clearwindow,nl,nl,nl, 
nl,write(" Repeat-Condition Menu:"),nl, 
nl ,wri teC" <c>oobinat ions . 11 ), 

nl, write(" <q>ui t. "), nl, 
nl,write(" Choice: "), 
readcharCCh), 
choice(Ch), 

Ch= 'q', !. /*the condition*/ 
menu2C 'p') if 

repeat, /* has no effect */ 
· clearwindow,nl,nl,nl, 

nl,write(" Sirrple Predicate Menu (with terminating!):"), 
nl, 
nl,write(" 
nl,write(" 
nl,writeC" 
readchar(Ch), 
choice(Ch),nl, 

<c>oobinations. 11 ), 

<program terminates after first success>."),nl, 
Choice: "), 

nl,write(" <any> to continue: "), 
readchar( ), !. 

menu2C'r') if -
repeat, /* has no effect */ 

clearwindow,nl,nl,nl, 
nl,writeC" Sirrple Predicate Menu (without terminating!):"), 

<c>oobinations. 11 ), 

<ctrl><break> to quit. 11 ),nl, 

nl, 
nl,write(" 
nl,write(" 
nl,write(" 
readchar(Ch), 
choice(Ch). 

Choice: "), 

choice('c') if 
clearwindow,nl,nl, 
nl,write(" Find database coobinations with key nunber: "), 
readintCKeyNunber),nl, 
coobinations(KeyNunber). 

choice( ) if 
nl,nl,write(" <any> to continue: "), 
readchar(_). 

coobinations(KeyNunber) if 
data nunber one(One), 
data-nunber-twoCTwo), 
nl,writeC" - 11 ,Keym.mber, 11 11 ,0ne, 11 ",Two). 

data nunber one(1). 
data-nunber-oneC2). 
data=nunber=one(3). 

data nunber two(1). 
data-nunber-two(2). 
data=nunber=two(3). 

82 TURBO TECHNIXjuly/ August 1988 

FAILING WITH GRACE 
continued from page 81 

though neither choice('u') nor 
dbase_list contains a fail. Back­
tracking in dbase_list is caused by 
the repeat .. fail loop in the main 
menu, and ends only when all of 
the alternatives in the chain of 
predicates leading to dbase_list 
have been exhausted. This "re­
mote" cause of backtracking can 
be confusing in a large program. 

This same effect is also evi­
denced in the unconditional_loop 
clause in the earlier example. The 
use of the cut (!) after the Ch = 'q' 
condition is essential. Otherwise, 
the loop continues indefinitely, 
searching for 'q'. To see the effect 
of the cut operator on the loop, 
try removing the cut and running 
the program. 

COMBINATIONS OF REPEAT 
LOOPS 
Listing 2 provides a menu of sec­
ondary menus that illustrate some 
of the quirks of conditional and 
unconditional repeat loops. Each 
of the subsidiary menus routes 
processing to the following com­
binations clause: 

coobinations(KeyNunber) if 
data nunber one(One), 
data-nunber-two(Two),nl, 
write(" - 11 ,KeyNunber, 11 11 ,0ne, 11 ",Two). 

Find database coobinations with 
key nunber: 1 

1 1 
1 2 
1 3 
2 1 
2 2 
2 3 
3 1 
3 2 
3 3 

<any> to continue: 

Figure 2. The output generated by the 
combinations predicate. 



If backtracking occurs, combina­
tions writes out the nine combina­
tions of the numbers one through 
three, since data_number _one 
and data_number _two are non­
deterministic. In this case, combi­
nations generates the output 
shown in Figure 2. All but one of 
the example menu combinations 
cause backtracking in the combi­
nations predicate. 

The "repeat-<f>ail" option 
leads into a menu that is similar 
to the main menu and contains a 
repeat .. fail loop. This secondary 
menu repeats endlessly; pressing 
the Ctrl-Break sequence breaks 
the repeat .. fail loop. This menu's 
repeat .. fail loop causes backtrack­
ing, and prints the number com­
binations shown in Figure 2. 

The "repeat-<c>ondition" op­
tion routes processing to a menu 
that has a conditional repeat loop. 
When the condition Ch = 'q' is 
satisfied (by selecting <q>uit), the 
cut operator tells the loop to exit 
back to the main menu. This sec­
ondary menu's repeat .. condition 
loop also causes backtracking, and 
forces combinations to print out 
the nine number combinations. 

The main menu choice "simple 
<p>redicate ! menu" leads into 
a menu where repeat is followed 
by neither a terminating fail nor 
a failing condition. This menu op­
erates as a simple predicate, and 
the cut stops this loop after the 
loop's first success. The cut pre­
vents backtracking from occur­
ring, so that only the first combi­
nation is written. 

Choosing "simple <p>redicate 
menu (without!)" sends process­
ing to a menu where repeat is fol­
lowed by neither a condition nor 

continued on page 84 

repeat. 
repeat if repeat. 

LISTING 3: TMOOEL.PRO 

!* Trade Model */ 

database 
economy(integer,real,real,real,real,real,real,real) 

predicates 
menu 
repeat 
choice(char) 
clearbase 
s_string(integer,integer,string,integer) 
graphit(string,char) 
economies 
us_economy 
japan_economy(string) 
both(string) 
terminate(string,string) 

goal 
malcewindow(1,26,30," Trade Model 11 ,0,0,24,80), 
menu. 

clauses 

menu if 
repeat, 

clearwindow, 
s_string(3,5,"Main Menu:",29), 
nl,write(" <r>un an econometric sirwlation."), 
nl,write(" <ctrl><brealc> to quit."), 
nl,nl,write(" Choice: "), 
readchar(Ch), clearwindow, 
choice(Ch), 

fail. 

choice('r') if 
clearbase, 
assertz(economy(0,1,4,3,2,3,2,1)), 
clearwindow, 
economies, ! . 

economies if 
s_string(3,5,"New Sirwlation ---·----------------·" 29) 
nl,write(" <g>raph the data."), ' ' 
nl,write(" <ctrl-brlc> to quit."), 
nl,write(" <any> to continue: "), 
nl,nl,write(" Choice: "), 
readchar(Graphit), clearwindow, 
repeat, 

both(StopCont), 
graphit(StopCont,Graphit), 

StopCont = "stop", ! . 

both(StopCont) if 
us_economy, 
japan_economy(StopCont). 

July/ August 1988 TURBOTECHNIX 83 



Year I 

Year2 

Goal 

Main Menu 

choice 

economies if 
repeat, 
both, 
(graphit), 
StopCont= "stop",!. 

us_economy if 
retract( economy( Start Data)), 
assert(economy(US Data 1)). 

japan_economy 
retract(economy(US Data I)), 
assert(economy(Japan Data I)). 

us_economy if 
retract(economy(Japan Data 1)). 
assert(economy(US Data 2)). 

japan_economyif 
retract(economy(US Data 2)), 
assert(economy(Japan Data 2)). 

Figure 3. The flow of data in the Trade Model program of Listing 3. 

84 TURBO TECHNIXjuly/ August 1988 

FAILING WITH GRACE 
continued from page 83 

by a terminating cut. This menu 
operates under the direction 
of the main menu repeat .. fail 
loop, which runs the "simple 
p<r>edicate" loop repeatedly. 
In this case, the main menu's 
repeat .. fail loop causes back­
tracking. 

PASSING VARIABLES 
There are times when processed 
data must be passed from one iter­
ation of the repeat .. fail loop to 
another. In such instances, the re­
peat .. fail loop must use assert and 
retract to pass variable values 
from one iteration to the next. 
Listing 3 is an example in which 
a large number of econometric 
variables must be passed back and 
forth between the us_economy 
and japan_ economy predicates. 
This process is necessary because 
the Gross National Product (GNP) 
of each economy is dependent 
upon the variables of the other 
economy. In the current year, a 
portion of the U.S. GNP is added 
into the Japanese GNP. In the 
next year, a portion of Japanese 
GNP,JGnp2, is added into that 
year's U.S. GNP through the 
LastGnp variable. Notice that only 
one economy database predicate 
is necessary to pass all of these 
variable values from one iteration 
to the next: 

us_economy if 
retract(economy(lter1,LastGnp, 

Ucl ,Ui 1,Ug1, 
Jc1,Ji1,Jg1)), 

assertz(economy(lter2,Ugnp2, 
Uc2,Ui2,Ug2, 
Jct,Ji1,Jg1)). 

japan_economy(StopCont) if 
retract(economy(lter1,Ugnp2, 

Uc2,Ui2,Ug2, 
Jc1,Ji1,Jg1)), 

assertz(economy(lter2,Jgnp2, 
Uc2,Ui2,Ug2, 
Jc2,Ji2,Jg2)). 



In the conditional loop of List­
ing 1, the internal database must 
be used to pass the value of the 
Sum variable from one iteration 
to another so that the Sum may 
accumulate the individual values. 
Notice that the sum database 
predicate, like economy, accumu­
lates data in only one database 
variable. This is done in the data­
base sum(Sum) predicate. These 
database predicates use very little 
memory, since old values are re­
tracted before new values are 
asserted. 

MEMORY SAVED, 
MEMORY EARNED 
Although recursion has the virtue 
of stating algorithms elegantly, 
programs that rely heavily upon 
recursion often use a great deal of 
memory. In such applications, re­
placing recursive loops with re­
peat loops prevents the program 
from exhausting available mem­
ory. Remember to keep the pos­
sible side effects of backtracking 
in mind when converting recur­
sive loops to repeat loops. In ad­
dition, you' ll have to rewrite the 
loop to pass variables through the 
internal database, rather than 
through the parameters of a re­
cursive call. All in all, however, 
you'll find that the extra effort is 
worthwhile. • 

REFERENCES 
Shafer, Dan. Turbo Prolog Primer 
(Revised edition), Indianapolis, IN: 
Howard W. Sams & Company, 
1987. 

Shafer, Dan. Advanced Turbo 
Prolog Programming, Indianapolis, 
IN: Howard W. Sams & Company, 
1987. 

Edward B. Flowers is an associate 
professor of economics and finance at 
St. john '.s University in New York 
City. 

Listings may be downloaded from 
CompuServe as RPFAJL.ARC. 

graphit("stop", ) if ! . 
graphit( 11cont 11 ,lg 1 ) if 

clearwindow, 
nl,nl,nl,write(" 
nl,nl,write(" 
readchar( ). 

This routine graphs the data."), 
<any> to continue:"), 

graph it(_,_>:-

us_economy if 
retract(economy(Iter1,LastGnp,Uc1,Ui1,Ug1,Jc1,Ji1,Jg1)), 
lter2 = lter1 + 1, 
Uc2 = Uc1 + 1, Ui2 = Ui1 + 1, Ug2 = Ug1 + 1, 
Ugnp2 = Uc2 + Ui2 + Ug2 + (0.05*LastGnp), 
nl,writef(" Year: %2",lter2), 
s string(3 3 "United States ----------------------" 29) 
s:stringcs:o: 11 Gnp = c + I + G",Z1>,' 
writef(" %-6.2f = Ugnp2 = %-6.2f+%-6.2f+%-6.2f", 

Ugnp2,Uc2,Ui2,Ug2), 
assertz(economy(Iter2,Ugnp2,Uc2,Ui2,Ug2,Jc1,Ji1,Jg1)). 

japan_economy(StopCont) if 
retract(economyC I ter1 ,Ugnp2,Uc2,Ui2,Ug2, Jc·1, Ji 1, Jg1)), 
Iter2 = Iter1, 
Jc2 = Jc1+(0.05*Uc2), 
Ji2 = Ji1+(0.05*Ui2), 
Jg2 = Jg1+(0.05*Ug2), 
Jgnp2 = Jc2 + Ji2 + Jg2 + (0.05*Ugnp2), 
asser!zCeconomy(lter2,Jgnp2,Uc2,Ui2,Ug2,Jc2,Ji2,Jg2)), !, 
s str1ng(11 3 "Japa ------------------------------" 29) 
s:string(13;o;.. Gnp = c + I + G";21); 
writef(" %-6.2f = Jgnp2 = %-6.2f+%·6.2f+%-6.2f", 

, Jgnp2,Jc2,Ji2,Jg2), 
nl,nl,write(" <m>ain menu, <any> to continue: "), 
terminate( "text", StopCont), ! . 

terminate("text", "cont") if 
readchar(Ch), 
not(Ch = 'm'), 
cursor(0,0), ! . 

terminate("text", "stop") if clearwindow, ! . 

s_string(Row,Col,String,Attr) if 
cursor(Row, Col), 
str_len(String,Len), 
field_attr(Row,Col,Len,Attr), 
field_str(Row,Col,Len,String), 
Row2 = Row + 1 , 
cursor(Row2,0). 

clearbase if 
retract(economy(_,_,_,_,_,_,_,_)), 
fail. 

clearbase. 

repeat. 
repeat if repeat. 

July/ August 1988 TURBO TECHNIX 85 



s IN GRAPHIC HARMONY 
i 
Q.. 

g Using the BGI in your graphics routines means hardware 
~ compatibility for your program. 
~ 

Alex Lane 

In last issue's Turbo Pascal section, Tom 
Swan discussed the new Borland Graph­
ics Interface (see "Meet the BGI," TURBO 
TECHNIX, May/June, 1988). But Turbo 
Pascal users are not the only ones to reap 

_PROG_R_A_MM_E_R_ the benefits of the BGI-the BGI is also 
accessible from Turbo C 1.5, and most recently, from 
Turbo Prolog 2.0. Although Turbo Prolog 2.0 still 
supports turtle graphics, the BGI offers a far more 
comprehensive library of graphics routines. 

The BGI system furnishes the programmer with 
services ranging from high-level routines that create 
and manage viewports (virtual screens on the dis­
play); to routines that draw circles, ellipses, rectan­
gles, and other shapes; to routines that let the pro­
grammer define patterns for filling shapes on the 
screen. Since the various features of the BGI are dis­
cussed at great length in "Meet the BGI," I won't re­
peat that information here. If you would like to know 
more about the BGI in general, I highly recommend 
Mr. Swan's article as a starting point. 

In this article, we'll look at a number of graphics 
issues, such as the portability of graphics among 
computers equipped with different display hardware. 
We'll also explore programs for drawing and filling 
odd shapes, drawing lines, and labeling objects. The 
program in Listing 1 illustrates most of the points 
under discussion, and specifically addresses CGA, 
EGA, and VGA display adapters. 

THE BGI AND GRAPHICS PORTABILITY 
One of the thornier problems in programming is 
how to write graphics-based software that needs little 
or no modification in order to work with a variety of 
video adapters. This task is difficult because different 
adapters display graphics in several modes, all of 
which entail keeping tabs on the number of rows 
and columns on the screen, the number of colors 

86 TURBO TECHNIX July/ August 1988 

that can be displayed, and the screen's graphics res­
olution. For example, a low-resolution Color Graph­
ics Adapter (CGA) can display four colors (including 
background) with a resolution of 320 pixels horizon­
tally and 200 pixels vertically. When switched to a 
high-resolution mode, the same CGA display can 
then show 640 pixels horizontally, but can only sup­
port two colors (one of which is a background color). 
A computer with an Enhanced Graphics Adapter 
(EGA) card, on the other hand, can resolve 640 pix­
els across and 350 pixels down, while the resolution 
on Video Graphics Array (VGA) cards can go as high 
as 640 X 480. 

To survive in this morass of adapters and modes, 
a program must do three things. Using a program 
that draws a circle in the exact center of the screen 
as an example, the program must first figure out 
what type of graphics adapter is installed in the com­
puter. Second, it must initialize the appropriate 
graphics mode. Third, the program must locate the 
center of the screen and finally draw the circle. 
These tasks are relatively easy to perform with the 
Turbo Prolog BGI predicates. 

INITIALIZING THE GRAPHICS MODE 
The BGI predicate detectgraph checks the video 
hardware installed in the computer, determines 
which graphics driver and mode to use, and returns 
this information as two integer output parameters. 
To see which other modes are available, use the 
getmoderange predicate, which returns a low num­
ber and a high number that represent a range of 
modes that are available for a given driver. This is 
useful if you deliberately do not want to use the 
highest resolution screen mode for a particular 
adapter. 

By the way, the use of integers to represent modes, 
sizes, fonts, fill patterns, and so forth is a common 
theme in the BGI system. While this makes execu­
tion easy for the computer, it makes things difficult 
for the programmer in terms of readability. Fortu­
nately, a set of constant type declarations (a new fea­
ture of Turbo Prolog 2.0) in the file GRAPDECL.PRO 



(which comes on the Turbo Prolog 2.0 distribution 
disk) lets you use symbolic names like gothic_FONT 
and cga in predicates, instead of using numbers like 
4 and 0. 

Once the graphics adapter type is determined, the 
program in Listing 1 selects a mode by calling the 
user-written predicate set_mode. The point of this 
predicate is to force a low-resolution mode with col­
or palette 0 when a CGA card is found. In EGA and 
VGA modes, the highest resolution is set Once the 
adapter type and mode are determined, they are as­
serted into the database via the user-written graphic 
database predicate, since they are accessed whenever 
a display-sensitive decision needs to be made. 

Having established the adapter type and mode, 
the initgraph predicate initializes the graphics sys­
tem. Initialization consists of loading the appropriate 
graphics driver from disk (or validating a driver 
that's already linked into the program), and actually 
switching the system into graphics mode. Although 
initgraph is normally supplied with a graphics driver 
name and mode, it can also be invoked to automat­
ically detect the connected graphics hardware, and 
to select the highest possible resolution for that 
hardware. 

DRAWING SHAPES 
The BGI system offers a library of ready-made pred­
icates that draw lines and basic shapes like circles, el­
lipses, and rectangles. Other predicates draw circular 
arc segments, pie slices, two- and three-dimensional 

Figure 1. The symbol used to depict a centrifugal pump. 

bars, and irregular polygons. With these tools, you 
can draw just about any shape. 

An example from real-world engineering is a sym­
bol that is used in a number of graphics-oriented 
control systems to depict a centrifugal pump (see Fig­
ure 1). The code for drawing this symbol is in the 
predicate place_pump. This predicate allows the pro­
grammer to specify the pump name (which is printed 
below the pump), the pump's position on the screen, 
the pump's size, the direction of the pump's outlet, 
and whether the pump is on or off. The position of 
the pump on the screen is expressed using an arbi­
trary 0 to 100 scale, both horizontally and vertically. 
The point (0,0) is in the upper left corner; (100,100) 
is located in the lower right corner. The point (50,50) 
is located exactly in the center of the display. 

continued on page 88 

July/ August 1988 TURBO TECHNIX 87 



IN GRAPHIC HARMONY 

continued from page 87 

The idea behind using these coordinates is that a 
pump positioned at (50,50) appears in the center of 
the screen for CGA, EGA, and VGA displays without 
requiring the programmer to do any scaling. Scaling 
is performed with the user-written scale predicate, 
which uses the adapter and mode information to de­
termine the resolution and, subsequently, the actual 
coordinates for positioning. The same fundamental 
technique is used by adjust_size (user-defined) to es­
tablish a radius for the arc and thus, in effect, to set 
the size of the pump. 

The outline of the pump is basically a rectangle 
superimposed on a circle. However, if you draw it 
like this using the circle and rectangle predicates, 
you'll be obliged to fill the pump with the same col­
or that you used to draw the circle and rectangle. 
Otherwise, the part of the rectangle that lies inside 
the circle, and the arc that lies inside the rectangle, 
will remain visible. An alternate way of drawing a 
pump is to separately draw an arc that represents the 
pump body, and then draw the three line segments 
that represent the outlet. 

The BGI arc predicate draws arc segments in a 
counterclockwise direction and takes, among other 
parameters, angles that correspond to the start and 
end points of the arc. A point with an angle of 0 de­
grees corresponds to the 3 o'clock position on a 
clock face, with 90 degrees corresponding to 12 
o'clock, 180 degrees to 9 o'clock, and 270 degrees 
to 6 o'clock. 

I determined the angles for the pump symbol in 
the old-fashioned way, by first sketching the symbol 
on a piece of graph paper, and then using a protrac­
tor to find the angles for the endpoints of the arc. 
For a pump whose outlet faces to the right, the start­
ing point is at 90 degrees and the arc continues 
around to about 12 degrees; the arc for a left-facing 
pump starts at about 168 degrees and ends at 90 
degrees. 

The BGI predicate getarccords finds the coordi­
nates of the start and end points. The predicate get­
endcoords rearranges these coordinates so that the 
variables XO and YO in the place_pump predicate al­
ways denote the end under the pump outlet, and XI 
and Yl correspond to the top of the pump. Starting 
at (XO,YO), complete the outlet by drawing a line seg­
ment away from the body, another line segment up 
from the body, and a third line segment in toward 
the body. 

FILLING PATTERNS 
The process of coloring the completed pump reveals 
some adapter-related problems, which are primarily 
due to the differences between the way that color is 
controlled in CGA and EGA/VGA hardware. For ex­
ample, the CGA low-resolution modes allow you to 
choose from four predefined color palettes (see 
Table 1). In palette number 0, a pixel with a value of 

88 TURBO TECHNIX July/ August 1988 

PALETIE 
NUMBER 

0 
I 
2 
3 

COLOR ASSIGNED TO PIXEL VALUE 
I 2 3 

light green 
light cyan 
green 
cyan 

light red yellow 
light magenta white 
red brown 
magenta light gray 

Tab/,e 1. A list of possib/,e values for the Color Graphi,cs 
Adapter. 

1 appears light green on the display; a pixel value of 
2 appears light red; and a pixel value of 3 appears 
yellow. The same pixel values in palette number 2 
display light cyan, light magenta, and white, respec­
tively. Clearly, if you want a symbol to display red 
when the symbol is on, green when it's off, and yel­
low when it's malfunctioning, palette 0 (which cor­
responds to mode 0) should be active. 

In the CGA high-resolution mode, life becomes 
more difficult, since only two colors are available, 
and one must serve as a background color. One way 
to distinguish between pump states, in this case, is 
either to fill in the pump symbol or leave it as an out­
line figure. 

The user-written predicate adjust_color uses infor­
mation about the connected hardware and the cur­
rent mode to set colors for on and off pump states. 
For low-resolution CGA, the on color is 2 (which cor­
responds to the light red, light magenta, red, and 
magenta of palettes 0 through 3, respectively), and 
the off color is 1 (light green, light cyan, green, and 
cyan, respectively). 

With EGA and VGA hardware, 16 colors are avail­
able. For these adapters, the on color is red, and the 
off color is green. 

Filling the pump symbols with color is the job of 
fill_symbol. This predicate also uses information 
about the graphics hardware to decide how the 
pump symbol should be filled. In the EGA, VGA, and 
low-resolution CGA modes, the BGI predicate flood­
fill fills in the symbol solidly with the appropriate 
color. If you want to experiment with the BGI fill pat­
terns, replace the solid_FILL argument in the setfill­
style call with, for example, xhatch_FILL to obtain a 
heavy cross-hatch fill pattern. The fill_symbol pred­
icate also fills in the pump symbol in the high-reso­
lution CGA mode whenever the pump is on, and 
leaves the pump symbol as an outline figure when 
the pump is off. 

PUTTING WORDS ON THE SCREEN 
The last visible step in the process of placing a pump 
symbol on the screen is to print the pump's name 
beneath the symbol. Once again, adjustments need 
to be made on a hardware-dependent basis. The 
technique for printing the name is simple: Add a 
number to the pump's Y coordinate that is equal to 
the radius of the pump body multiplied by some fac­
tor. In CGA and VGA modes, this factor is 1.5; for 



EGA displays, the factor needs to be smaller 
(I selected 1.1). The user-written predicate adjust_­
label_distance selects the appropriate factor based 
on the hardware. 

The justification features of the BGI system let you 
center text with a simple call: 
settextjustify(center_TEXT,top_TEXT) 

Here, the first argument tells the BGI, "I want the 
text centered on the X coordinate given in outtextxy, 
and below the Y coordinate." 

The same basic steps are taken to title the screen 
using place_source_or _sink and place_ title. place_ -
source_or _sink simply prints the name of a flow 
source or sink on the screen, to be used later when 
all of the components are connected with line seg­
ments to form a network. place_title prints a string 
at the specified coordinates at a specified size. The 
predicate adjust_size_for _graphics handles sizing 
and font selection for printing titles on the screen. 
(The sizing of titles is also hardware-dependent; 
larger sizes become unwieldy on CGA displays.) The 
auxiliary predicate write_msg, used by place_title, 
temporarily changes the title's font, the direction of 
the title's text display, its horizontal and vertical jus­
tification, and its font size. place_title restores the 
original settings for those parameters. Figure 2 
shows the completed diagram generated by the 
program in Listing 1. 

CONNECTING THE PARTS 
In taking a closer look at Listing 1, notice that I 
assert instances of the component_point predicate in 
both place_pump and place_source_or _sink. In the 
case of place_pump, I determine the points on the 
symbol that represent the inlet (at the 9 o'clock posi­
tion for a right-facing pump; at 3 o'clock for a left­
facing pump) and outlet points. The coordinates of 
these points are asserted, along with their descrip­
tion and the pump's name. In the case of place_ -
source_or _sink, the coordinates, their description, 
and the name of the source or sink point are as­
serted in similar fashion. 

Figure 2. Di,agram output by the 
program in Listing 1. 

All of this leads to the connect predicate, which is 
called as: 
connect( "P"""-3", outlet, "P"""-2", inlet ) 

This call can be interpreted as "connect the outlet of 
device Pump-3 to the inlet of device Pump-2," and 
results in a line (or collection ofline segments) be­
ing drawn appropriately. The predicate draw _lines, 
which takes two pairs of coordinates and draws lines 
between them, uses write_msg to place the string 
"Flow-" vertically along any vertical line segment. 
With some modification to figure out the appropriate 
message (such as replacing "Flow-" with "-Flow") 
and to determine whether or not the message will fit, 
this labeling of line segments can be made smarter. 
In fact, with some added sophistication, the connect 
predicate in general can be made to act more intel­
ligently and to require less care in the selection of 
coordinates for displayed symbols. 

SUPPORTING THE HARDWARE 
The acid test for this program is getting it to perform 
successfully on a variety of machines. I tested the 
code on an AT-compatible machine with an installed 
Video Seven Vega VGA card, and on an IBM XT 
with a CGA card. To force the card to emulate the 
CGA and EGA modes on the AT, I replaced detect­
graph( G_driver) with: 

G_driver = cga 
G_driver = ega 

This replacement forced the hardware into the re­
spective mode. (I could have also used cga and ega 
as input parameters to initgraph with the same re­
sult, but that step would have required the driver and 
mode numbers to be asserted by hand.) All of the 
predicates that begin with adjust_ were spawned by 
watching how the displays came up under various 
modes. 

The BGI gives the programmer two fundamental 
ways to package graphics-driven code. The basic way 
is to compile the Turbo Prolog source to an .EXE file 

continued on page 90 

July/ August 1988 TURBO TECHNIX 89 



LIST 1111 1 : P\llP. PlO 

project 11 process1.prj" 

X bgidriver 11 CGA driver far" 
X bgidriver 11-EGAVGA driVer far" 
bg i font " goth i c foot tar• 
bgifont .. -small font far" 
bgifont 11-sansserif font far" 
bgifont 11=triplex_fOnt_f8r11 

code = 4000 

include "GRAPOECL. PRO" 
DATABASE 
COl'J1X>nent_poi nt(str ing , syri)ol, integer, integer) 
graphic( integer, integer) 

PREDICATES 
adjust_color(syn*>ol, integer) 
adjust label distance( real) 
adjus(s i ze(syn*>ol, integer) 
adjust_s i ze_for _graphics( integer, integer, integer) 
connect(string, syn*>ol, string, syn*>ol) 
di recti on_f actor(syrix>l, integer, integer, integer) 
draw_ l inesC integer, integer, i nteger, integer) 
f i l l_syn*>ol (integer, integer , syn*>ol, integer) 
getendcoords(syri>ol, integer, integer, integer, integer) 
lookup( integer, integer, integer, integer) 
max( integer, integer, integer) 
place-""""( string, integer, integer, syn*>ol, syn*>ol, syn*>ol) 
pl ace_source_or _s ink(stri ng, syri>ol, integer, integer) 
place_t i tle(stri ng, integer, integer, integer) 
re solution( integer, integer) 

scale( integer, integer, integer, integer) 
set_modeC integer, integer) 
s i ze_factor( syn*>ol, integer> 
vertical msg( integer, integer) 
wri te_ms9Cstri ng, integer, integer, integer, integer, integer, 

integer, integer) 

GOAL 
break( on), 

/**********************************************•••••••••********** 
The fol lowing line detects the video card in use in your 
machine . If you've got a rultimode card, you can set the driver 
"by hand" by replacing the following line with, for ex.,,.,le: 

G driver = vge, 
*****************************************************************I 

detectgraph(G_driver ,_), 

set_mode(G_driver ,G_mode), 

/********************************************************** 
A nurber of decisions 111.JSt be made based on the driver type, 
so we want to post this information for general cons"'fltion. 

**********************************************************I 
asserta(graphic(G_driver , G_mode)), 
InitGraph(G Oriver,G Mode, , , 1111 ), 

brealc(on), - - - -
set text justify( center_ TEXT , top_ TEXT), 

/********************************************************** 
The initialization phase if over. 

Now, we proceed to put together a fairly si""le display 
consisting of an 110Utput 11 point, and three pu?l>S. 

**********************************************************/ 
place_source_or _sink( 11 0Utput 11 , oot let, 10, 10), 
place_purp("P~-1 11 , 15, 70,medh.in, right,off), 
plaee~("PtJaP-211 , 60,40, large, left,on), 
plateJ>U">("Pt.19'>-311 ,85 ,80, small, left ,on), 

/********************************************************* 
Now set the color to white and connect these c"""'°"""ts. 

**********************************************************I 

setcolor(wh i te), 
cornect( 110Utput•, out let, 11PU11J-2 11

, ootlet), 
cornect( 11P~-1",outlet, 11 PU11J·2 11 ,out let), 
connectC"P"-""-3",outlet, 11P~· 2 11 , inlet), 

/**** As 1 final touch, title the display***************/ 

place_title( "PUMP SYSTEM" ,40, 15 ,4). 
place_title("(with flows indicated)",40,25, 1) , 
place_title("BGI graphics in Turbo Prolog 2. 01",5,95,2), 

moverel(O, 100), 
readchar(_). 

90 TURBO TECHNIX July/ August 1988 

IN GRAPHIC HARMONY 
continued from page 89 

and then distribute that file on a disk with the .BGI 
driver and the .CHR font files. While this is the 
simplest way to ensure portability of code across a 
variety of graphics hardware, it also exposes the larg­
est suiface area of your application to prospective us­
ers who now have to keep track of several files. (You 
probably have programs that require you to care for 
a number of auxiliary driver and configuration files. 
If you're like me, you try to leave them alone and 
hope nothing happens to them.) 

The alternative is to use the bgidriver and bgifont 
compiler directives to declare which drivers and 
fonts are to be part of your program, and to create 
an appropriate project file to link driver files to the 
rest of your program. The big plus in using this ap­
proach is that the end user only needs to keep track 
of one file-this minimizes the work he or she has 
to do in order to use your product. On the down 
side, incorporating every driver into your program 
can add almost 30K to the program's size, with the 
possibility that up to 24K is generated but not used. 
Personally, unless your application is already groan­
ing in size, I'd link in at least the CGA, EGA, and 
VGA drivers to cover the majority of prospective 
users. 

There are in-between alternatives, too. For exam­
ple, if you plan to write an application both for your 
VGA machine at home and your CGA machine at 
the office, you may choose to link in only those two 
drivers, and you'll still have to deal with only one 
program file . All in all, the ability to incorporate driv­
ers into finished programs is a big plus. 

PARTING WORDS 
Up until now, programmers have been pretty much 
at the mercy of language publishers with respect to 
graphics. Most languages made only half-hearted at­
tempts to support graphics, often requiring some 
pretty fancy programming in order to draw even sim­
ple shapes. The BGI, on the other hand, represents 
an extensive graphics environment that offers a va­
riety of shape, size, style, color, and positioning fea­
tures that programmers previously had to write 
themselves. 

On a more basic level, the question of hardware 
compatibility has also been a problem not easily 
solved by programming. In the past, if a particular 
language supported your graphics hardware, you 
were in luck; if not, well, you either rolled your own 
code (which required a lot of specialized knowledge) 
or you bought the required hardware. The BGI fur­
nishes the programmer with ready-written drivers 
that support a broad range of graphics hardware. 
Now the programmer is free to tackle the main task 
at hand-writing programs that get things done. • 

Aux Lane is a know/,edge engineer living injacksonvil/,e, 
Florida. He is the moderator of the Prolog conference on the 
Byte Information Exchange (BIX). 

Listings may be downloarkd from CompuServe as 
PROBGI.ARC. 



CLAUSES 

/* place_title publishes a Title at a position X_percent over 
frcm the left of the screen and Y_percent down from the top. 
Magn denotes the size. 

*I 

pl ace_ti t le<Ti tle,X_percent, Y _percent,Magn) 
scaleCX_percent, Y_percent,X, Y), 
adjust_s i ze_for _graphi cs(Magn, Size, Font), 
wri te_msg(Ti tle,X, Y, Font,horiz_DIR, left_ TEXT ,center _TEXT, Size). 

J* place_source_or _sink locates a point on the screen that serves 
as a source or sink for the displayed syst.,,,,, labels it, and 
keeps track of its location for future comection . 

*/ 
place_source_or _sink(Name, Id,X_percent, Y_percent) 

scale(X_percent, Y_percent,X, Y), 
asserta(c~t_point(Name, ld,X, Y)), 
adjust_size(smal l ,Del ta), 
Yname = Y + Del ta, 
outtextxyCX, Yname,Name), ! . 

/* place...JJUI" is designed to place a ~ figure identified with 
string Name at a position that is X_percent across and 
Y_percent down the screen. The size is either small,medilln or 
large, the P"1" can face left or right, and the ~can be 
either on or off. Once the~ has been displayed a global 
database is updated reflecting the inlet and outlet points of 
the ~ for future reference. . , 

place_purpCName,X_percent, Y _percent, Si ze,D i rec ti on, Status) 
scaleCX_percent, Y_percent,X, Y), 
direct i on_factor(D i rect ion, F, Start, Fini sh), 
adjust_ col or(Status, Col or), 
adjust_s i ze(Si ze,Radius), 
DX = -1.4 * Radius * F, 
HD = 0.42 * Radius * F, 
setcolor(Color), 
arc(X, Y, Start, Fini sh, Radius), 

getendcoords(Oi rect i on,XO, YO, , Y1), 
moveto(XO, YO), /* inside corner */ 

DY • Y1 - YO, 
l inerelCHD,0), /* out */ 
l i nerelCO,DY), /* up */ 
linerelCDX,0), /*in */ 
f i l l_synbol CX, Y, Status, Color), 

Xout = XO + HD • Yout = YO + DY/2, 
Xin = X • CF * Radius), 
asserta(c~t_point(Name, out let, Xout, Yout)), 
asserta(c~t_point(Name, inlet,Xin, Y)), 
adjust label distance( LF ), 
Yname ; Y + iadius * LF, 
outtextxy(X, Yname, Name). 

adjust color( Status,Color ) 
gra;ihic(cga,cgaHI ), Color = white; 
graphic(cga,_), Status = on, Color = 2; 
graphic(cga,_), Status= off, Color= 1; 
graphic(cga,cgac1), Status = on, Color = l ightmagenta; 
graphic(cga,cgac2), Status= on, Color = red; 
graphic(cga,cgac3), Status on, Color= magenta; 
graphic(vga,vgaHI), Status = on, Color= red; 
graphic(vga,vgaHl), Status= off, Color= green; 
graphic(ega, ) , Status = on, Color = red; 
graphic(ega,=), Status = off, Color=green. 

adjust_label_distance( 1. 1 ) :· graphic( ega,_). 

adjust_label_distance( 1.5 ). 

adjust sizeCSize,Radius) :­
size factor(Size,Factor), 
resoTutionCX, ), 
Radi us=X/Factor, I. 

adjust_s i ze_for _graphics(_, 1 ,defaul t_FOIH) : - graphic(cga,_) . 
adjust_s i ze_for _graphi cs(X, X, sans_seri f _FONT). 

connectCC~nt1 ,Point1 ,c~nt2,Point2) 
carponent_point(C~t1 ,Point1 ,X1, Y1 ), 
carponent_poi nt(C~t2,Point2,X2, Y2), 
draw_ l i nesCX1, Y1, X2, Y2). 

direction factor( left, ·1, 168, 90 ). 
direct ion)actor( right, 1, 90, 12 ). 

drawl nes(X,Y1,X,Y2) :- line(X,Y1,X,Y2),I. 
draw-l nes(X1,Y,X2,Y) :· lineCX1,Y,X2,Y),1. 
draw:l nes(X1,Y1,X2,Y2) :-

MX = CX1 + X2) I 2, MY • (Y1 + Y2) I 2, 
l ine(X1, Y1 ,MX, Y1 ), 
l ineCMX, Y1 ,MX, Y2), 
vert i cal_msg(MX,MY), 
l ineCMX, Y2,X2, Y2), I. 

f i l l_synbol CX, Y, Status,Color) 
graphic(_, cgaH I), 

Status = off, I; 
graph i cC_, cgaHI), 

Status = on, 
setbkcolor(Color), 
floodfi l l(X, Y ,Color), I; 

setfillstyle(sol id FILL,Color), 
floodfi l lcx, Y ,color>, 1. 

getendcoords( left, X,Y,A,8) :­

getarccoords(_,_,X, Y ,A,8). 
getendcoords( right, X, Y ,A,8 ) 

getarccoords(_,_,A, B,X, Y). 

lookup( cga, cgaHI, 
lookup( cga, -· lookup( mega, mcgaMED, 
lookup( mega, rncgaHI, 
lookup( mega, -· lookup( ega, egalO, 
lookup( ega, egaHI, 
lookup( ega64, ega64LO, 
lookup( ega64, ega64HI, 
lookup( egamono, 
lookup( hercmono, -· lookup( att400, att400HI, 
lookup( att400, att400MED, 
lookup( att400, 

vgaLO: lookup( vga, 
lookup( vga, vgaMED, 
lookup( vga, vgaHJ, 
lookup( pc3270, 

max(X, Y ,X) 
maxcx, Y, n 

X=Y,I. 
X<Y,t. 

640, 200 ). 
320, 200 ). 
640, 200 ). 
640, 480 ). 
320, 200 ). 
640, 200 ). 
640, 350 ). 
640, 200 ) • 
640, 350 ). 
640, 350 ) • 
720, 348 ) • 
640, 400 ) • 
640, 200 ) • 
320, 200 ) • 
640, 200 ). 
640, 350 ). 
640, 480 ) • 
720, 350 ) • 

resolution( X, Y > :­
graphic(Driver ,Mode), 
lookupCDriver ,Mode,X, Y), I. 

scaleCX_percent, Y_percent,X_absolute, Y_absolute) 
resolutionCX, Y), 
X_absolute = X_percent/100 * X 
Y_absolute • Y_percent/100 • Y ,I. 

/* set mode( cga, cgaHI) ! . *I /* this mode isn't too useful */ 
set mode( cga, cgaCO) I • 
set - mode( ega, egaH I ) : - I • 
se(modeC vga, vgaHI) :- I. 

size factor(small,64). 
s i ze-factor(mediun,32). 
size)actor( large,21 ). 

vertical msg(X,Y) :­
write-msg(11Flow·>" X Y 

- defaul t)oNT: vert_DIR, bottom_TEXT ,center _TEXT, 1). 

wri te_msg(Text ,X, Y ,Dfont ,Ddi r ,DHJ ,DVJ ,Os ize) : • 
gettextsettings( Font ,Direction, Size, HJ, VJ), 
settextstyleCDfont ,Ddi r, Os i ze), 
settextjusti fy(DHJ ,DVJ), 
outtextxy(X, Y, Text), 
sett ex tstyl e( Font, Direction, Size>, 
settextjusti fyCHJ, VJ). 

July/ August 1988 TURBO TECHNIX 91 



g LOGIC AND TURBO PROLOG 
~ 
g Prolog's origins in logic are reflected in the mindset behind 
§5 the language. 
E--

Alex Lane 

SQUARE ONE 

"Contrariwise," continued Tweedledee, "if it 
were so, it might be; and if it were so, it would 
be; but as it isn't, it ain 't. That's logic. " 

-Lewis Carroll, 
Through the Looking Glass 

Most introductory books on Prolog dutifully note 
that the name Prolog is derived from the phrase 
"programming in logic," and then they briskly move 
on to other subjects. Although most of us are famil­
iar with the concept of logic, there are many inter­
pretations. 

To some, logic means disciplined, emotionless 
thinking, as exemplified by Mr. Spock from Star Trek. 
Others think of the electrical AND and OR circuits 
that are used to build computers. Still others view 
logic as a branch of philosophy, owing more to 
Aristotle than to Spock. 

So, to clear the air: Logic, as discussed in this arti­
cle, is the branch of mathematics that is concerned 
with the form of statements, and with the determina­
tion of truth via mechanical manipulation of for­
mulas. 

TRUTH 
Truth is a fundamental idea in logic. Logical state­
ments can have one of two truth values: true or false . 
One pitfall when dealing with truth as a logical con­
cept is that it doesn't necessarily correspond to our 
everyday notion of truth as "conforming to fact," or 
"being forthright and sincere." Don't lose any sleep 
over this, but don't be surprised if mathematical logic 
isn't always intuitive, either. 

PROPOSITIONS 
Propositions are statements that can be evaluated as 
either true or false. They contain information about 
something. For example, the statement "Socrates" is 
not a proposition, because you cannot assign a truth 
value to it. Neither is the statement "is a man," for 
the same reason. On the other hand, the statement 

92 TURBO TECHNIX July/ August 1988 

"Socrates is a man" is a proposition that can be said 
to be true or false. The analysis of propositions using 
symbolic notation is called propositional calculus, and 
forms an important part of Prolog's logical foun­
dation. 

LOGICAL OPERATIONS 
In arithmetic, individual numbers like 3 and 47 are 
useful, but you can only do so much with them. By 
analogy, you can go only so far with individual 
propositions in logic. 

Again, in arithmetic, numbers are used in combi­
nation with the fundamental operations of addition, 
subtraction, multiplication, and division to express 
more than what the numbers alone can say. Sim­
ilarly, fundamental logical operations can be used 
with propositions in order to express additional 
information. 

There are four basic operations in logic: negation, 
conjunction, disjunction, and implication. (There is 
also a fifth connective-equivalence-which we will 
not consider here.) These operators are called "sen­
tential" or "logical connectives." Their names and 
symbols (both in logic and in Turbo Prolog) are 
shown in Table 1. 

CONNECTIVE 

Negation 
Conjunction 
Disjuntion 
Implication 

NAME 

NOT 
AND 
OR 
IF-THEN 

SYMBOL 

& 
+ 

TURBO 
PRO LOG 
NOTATION 

not( .. . ) 

Table 1. A list of logical connectives with their associ.ated 
symbols and notation. 



NOT 
A -A 

False True 
True False 

AND 
A B A&B 

False False False 
False True False 
True False False 
True True True 

OR 
A B A+B 

False False False 
False True True 
True False True 
True True True 

IF THEN 
A B A -B 

False False True 
False True True 
True False False 
True True True 

Tab/,e 2. Truth tab/,es for the various 
logi,cal operators. 

By using these connectives with 
propositions, we express state­
ments such as "Today is Monday 
AND the weather is sunny," and 
"IF Socrates is a man THEN 
Socrates is mortal." 

If you look closely at the last 
part of the previous sentence, 
you'll notice how the "and" that 
connects the two propositions 
creates another, more complex 
proposition. 

With the exception of NOT, all 
of these connectives are binary­
they only work with two proposi­
tions. The NOT connective is 
unary, and is applied to one 
proposition. 

Let's take a quick tour of these 
connectives. A set of truth tables 
that illustrate these operations ap­
pears in Table 2. 

NOT. The effect of NOT is to in­
vert the truth value of whatever it's 
applied to. Table 2 shows that if 
A is true, then - A is false. Con­
versely, if A is false, then - A is 
true. Applying the NOT connec­
tive twice to a proposition is the 
same as not applying it at all: 
-- A is the same as A. 

AND. The AND connective (rep­
resented as a comma"," in Turbo 
Prolog) operates on two proposi­
tions at a time, and is true only 
when both propositions are true 
(see Table 2). All other combina­
tions of truth values result in a 
value of false. When evaluating a 
series of ANDed propositions, 

One of the 

positive aspects of 

using logic for 

programming is the 

extent to which 

humans already 

incorporate these 

basic connectives 

into everyday 

thinking. 

everything stops as soon as a false 
proposition is encountered. In the 
Prolog predicate shown below, A 
must prove true before Prolog will 
try to prove B: 
Z :- A, B. 

If A fails, no attempt will be made 
to prove B. 

OR. The logical OR connective 
(represented by a semicolon ";" in 
Turbo Prolog) is false only when 
both of its associated propositions 
are also false (see Table 2). Other­
wise, the OR of the two proposi­
tions is true. (This is different 
from the case where either one 
proposition or the other is true; 
this situation is called an exclusive 
OR, and is not addressed here.) 

When ORed propositions are 
evaluated, the OR succeeds as 
soon as the first true proposition 
is found. Consider the following 
Turbo Prolog statement: 
Z :- A; B. 

If A is satisfied, no attempt at sat­
isfying B is made unless Prolog 
backtracks to this predicate. 

As just described, the AND and 
OR connectives are intuitive­
they act the way that you would 
expect them to act. One of the 
positive aspects of using logic for 
programming is the extent to 
which humans already incorpo­
rate these basic connectives into 
everyday thinking. Yet a major 
source of confusion when discuss­
ing logic concepts is that some of 
the ideas are simply not intuitive. 

IF-THEN 
In logic, IF-THEN statements are 
expressed in the form A - B, 
where the arrow means "implies." 
The concept of IF-THEN is cen­
tral to our thinking; we are ex­
posed to it daily. We use it in state­
ments like: "If today is Wednesday, 
then you're reading this magazine." 

Intuitively, the idea behind this 
statement is that IF the first part 
of the statement ("today is ... ") is 
true, THEN the second part 
("you're reading ... ") is also true. 
But what if today isn't Wednesday? 
You may or may not be reading 
this magazine. Is our original IF­
THEN statement true or false? 

In logic, the statement A - B is 
defined (see Table 2) to be true 
when B is true (regardless of the 
value of A) or when A is false (re­
gardless of B). Symbolically, A -
B is equivalent to the expression 
- A + B. So, it turns out that by 
definition, the proposition is true 
if you're reading this magazine, 
no matter what day it is. Similarly, 
if today is not Wednesday, the 
statement is true regardless of 
whether or not you're reading this 
magazine. 

If you're confused by this logic, 
remember that we're talking about 
the truth or falsity of the state­
ment A - B, not of the individual 
propositions A and B. In Prolog 
terms, given the statement A - B 
and the fact that A is false, we 
have: 
B :- A. 

continued on page 94 

July/ August 1988 TURBO TECHNIX 93 



LOGIC 

continued from page 93 

Remember that in Prolog, the 
positions of the antecedent (the 
proposition at the arrow's tail) and 
the consequent (the proposition 
that the arrow points to) are re­
versed. Thus, in Prolog, A - B is 
expressed as: 
B :- A. 

If A is false, nothing can logically 
be said about B one way or anoth­
er, and attempts to satisfy B in 
Prolog fail. Failure to satisfy a goal 
in Prolog is not the same as prov­
ing the goal to be false; it only 
demonstrates an inability to prove 
that the goal is true. This distinc­
tion may sound fine, but it is im­
portant. Failure to satisfy goal B 
using A does not prevent B from 
being satisfied in some other way. 
For example, if we know that Bis 
true, we have: 
B :- A. 
B. 

Now the goal B succeeds, regard­
less of the value of A. 

THE RULE OF MODUS 
PON ENS 
The logical definition of IF-THEN 
leads to a very important result: 
Given A - B and the fact that A 
is true, then B is true. This meth­
od of mechanically obtaining a re­
sult (known as a ru,/,e of inference) is 
called modus ponens and is central 
to the way Prolog works. In 
Prolog, modus ponens is express­
ed as: 

B :- A. 
A. 

Given this set of Prolog clauses, it 
is clear that the goal B can be 
satisfied. 

PREDICATE CALCULUS 
Ordinary propositional calculus is 
too limited for substantial use in 
logic programming. In Prolog, the 
statement "If Socrates is a man 
then Socrates is mortal" is ex- ' 
pressed in propositional form as: 

socretes_is_mortel:-
socretes_is_e_man. 

94 TURBO TECHNIX July/ August 1988 

The problem with using the prop­
ositional form for this statement 
is that a separate clause must then 
be generated for each individual 
that is considered; there is no way 
to generalize this relationship. 
You cannot express the idea "If 
<someone> is a man, then 
<someone> is mortal" in propo­
sitional calculus. In order to deal 
with objects in both an individual 
and a general way, we must use 
predicate calculus. 

Remember 

that in Prolog, the 

position of the 

antecedent (the 

proposition at the 

arrow's tail) and 

the consequent (the 

proposition that the 

arrow points to) are 

reversed. 

In both Prolog and logic, state­
ments about objects (both by 
themselves and in relation to 
other objects) are called predicates. 
Predicates have a specified 
number (or arity) of arguments. 
Continuing with the Socrates ex­
ample, let's define the predicates 
is_mortal and is_a_man. Each of 
these predicates takes one argu­
ment. Using the same notation as 
in propositional calculus, let's say: 
is_mortal( secretes ):-

is_e_man( secretes ). 

We can generalize this expression 
by not specifically identifying the 
predicate arguments, and by refer­
encing unknowns (variables): 
is_mortalC X ):-

i s_e_man( x ) . 
This expression says: "If someone 
unknown (denoted by X) can be 
said to be is_a_man, then that 
same someone can be said to be 
is_mortal." The instantiation (or 
binding) of X to a specific value 

is accomplished using a technique 
called "matching," or more for­
mally, "unification." 

Unification. For the purposes of 
our discussion, Prolog variables 
are unifiabl,e if they can be match­
ed together. Notice how variables 
are matched when trying to satisfy 
the member predicate: 
member( X, [X,_l ). /* succeed if 

X is the head 
of the list*/ 

I* otherwise ... */ 
member( X, [_,Tl ):-

member( X, T ). /* succeed if 
X is e member 
of the list 
tail */ 

Given an object and a list of ob­
jects, member succeeds if the 
object is in the list; otherwise, 
member fails. Given the following 
goal, the first clause fails after the 
variable X is instantiated to 'a' and 
then cannot match the head of 
the list (the character 'x'): 

member( 'e', C 'x', 'e', 'z' l ). 

In the second clause, X matches 
'a', and T matches ['a','z']. The fol­
lowing recursive call now suc­
ceeds, since the first argument 
and the head of the second argu­
ment match the specification in 
the clause: 

member( 'e', C'e', 'z'l ). 

WRAP-UP 
The mechanism used by Prolog is 
based on the idea of mechanical 
proof of logical statements. Given 
this mechanism, the challenge for 
the Prolog programmer is not to 
devise control strategies for pro­
gram operation, but rather to 
simply formulate a collection of 
true relationships-and then to let 
the mechanical features of Prolog 
deliver an answer. • 

Al,ex Lane is a knowl,edge engineer liv­
ing in]acksonvill,e, Florida. He is the 
moderator of the Prolog conference on 
the Byte Information Exchange (BIX). 



Turbo Prolog 2.0 is 
the Artificial Intelligence 

breakthrough you've 
been waiting for! 

/J 

'' If I had to pick one 
single recommendation for 
people who want to try to 
keep up with the computer 
revolution, I'd say, 'Get and 
learn Turbo Prolog.' 

-Jerry Pournelle, Byte '' 



~~~\Turbo Prolog 2.0 
Artificial Intelligence to ye 

Turbo Prolog• puts the power of 
advanced Artificial Intelligence into 
your hands-whether you're a 
professional programmer or just 
getting started. You'll spin out 
high-level, real-world applications 
faster than you ever thought pos­
sible. Because Borland's advanced 
compiler technology drives you 
right to the cutting edge of Artifi­
cial Intelligence development! 

Zoom into the future 
With its natural, English-like 

syntax, state-of-the-art compiler . 
and integrated environment. Turbo 
Prolog puts the power of the future 
at your fingertips. Building 
advanced applications like expert 
systems. customized knowledge 
bases. natural language interfaces, 
and smart database management 
systems has never been this fast. 
or this easy. 

_uerbpCCUERBITOXLJ, TOJCL1, CCOLICOLLJ,COLL1, 
uerbpCCOL,D_NOllft')):-

is_uerbCUERB>, 
s_nounpCTOXL,TOXI.1,COLL,COLL1,NOtltP,D_ 

_uer'bpCCUERBITOXLJ, TOXL, CCOLICOLLJ ,COLL, 
is_uerbCUERB>. 

CWORD>:-is_nounCWORD>,!. 
heckCWORD>:-is_detCWORD>,!. 

kCWORD> :-is_reJ<WORD>, ! . 
CWORD>:-is_uer'bCWORD>,!. 
CWORD>:- writeC"» Unknown word: ",WO 

nl, readchar(_). 

Turbo Prolog's powerful development environment makes developing high-level appli cati ons quicker and easier than 
you've ever imagined. Consider thi s execution of a sentence analyzer. The results of the sentence analysis are shown 
in the output window while the source code in the edit window traces the execution. The trace window shows the 
predicates being traced. 

With Turbo Prolog, you simply 
describe your problem. so you 
never get bogged down in proce­
dural language. Slide through even 
the most complex applications 
using only about one tenth the 
code. Your finished programs are 
tight. readable. and easy to 
maintain! 

New 2.0: the most powerful 
Prolog yet 

New Turbo Prolog 2.0 takes pro­
gramming to the limit. The new 
compiler is optimized to produce 
tighter and more efficient code than 
ever before. 

The new two-volume documenta­
tion includes an in-depth tutorial 
rich with examples and instruc­
tions-to take you all the way from 
basic programming through 
advanced techniques. 

And your fully-integrated envi­
ronment is even more convenient­
with a full-screen editor you can 
customize just the way you want it! 



delivers powerful 
Jr real-world applications! 

Powerful new tools save time 
Turbo Prolog 2.0 gives you new. 

powerful tools to take your pro­
grams anywhere your imagination 
wants to send them: 
• An external database system for 

developing large databases. Supports 
B+ trees and EMS 

• Support for the Borland Graphics 
Interface. the same professional­
quality graphics in Turbo Pascal," 
Turbo C" and Quattro." 

• Source code to a fully-featured 
Prolog interpreter. Plus step-by-step 
instructions to adapt it or include it 
as is in your own applications! 

• Full compatibility with Turbo C so 
the two languages can call each other 
forward and backward freely-and 
you can program with two of the most 
powerful languages around! 

• Full window management system 
• Powerful exception handling and 

error trapping features 
• High-resolution video support 
• And a lot more! 

Just $149.95 

Add the Turbo Prolog Toolbox: 
six powerful toolboxes in one 
make building applications 
even easier! 

Here's another breakthrough: 
the Turbo Prolog Toolbox. You get 
more than 80 tools and 8.000 lines 
of source code to help build your 
own Turbo Prolog applications­
including separate toolboxes for 
building menus. screen and report 
layouts. business graphics. com­
munications. file transfer capabili­
ties. parser generators. and more. 
Use the Toolbox code as is or mod­
ify it to suit your needs. 

Toolbox requires Turbo Prolog 1.1 
or later. 

Just $99.95 
System Requirements: For the IBM PS/2- and the IBM• family or personal 
oomputers and all 100% compatibl~. PC· OOS (MS-DOS) 2.0 or later. 
384K RAM. 

• customer satisfaction is our main concern: If within 60 days or purchase this 
producL does not perform In accordance with our claims. call our customer 
service departmenL. and we will arrange a refund . 

All Borlaodprodk!ClSare~markSorreels&t!ttdtrademarksofBorlaod lnLernatlonal. loc. A 
Borland Turbo Tool~ prodllCl. Other brand and prodl!Ct namts are 1tademarks or rqlsttttd 
tra<lfmarksofthd r ~vt hOI~ Copyrl&hl •1 988 Borland lnitmational. Inc. Bl 1263 

Upgrade now for just $64.95! 
If you're a registered Turbo 

Prolog owner. you can upgrade to 
2.0 now for the special introductory 
price of just $64.95 plus -$5 for 
shipping and handling. 

To charge your upgrade to your 
credit card. call us toll-free today 
at (800) 543-7543. Be sure to have 
your original Turbo Prolog serial 
number handy. 

60-Day Money-back Guarantee* 
For the dealer nearest you 
Call (800) 543-7543 

INTERNATIONAL 



~ CAT AND MOUSE IN TURBO 
~ PROLOG: PART II 
= ~ 
E-- Adding a Mac-like user interface is easy with Turbo Prolog. 

Saf aa H. Hashim 

The Turbo Prolog Toolbox contains a 
number of utilities for creating various 
types of menus such as pop-up menus, 
pulldown menus, scrolling menus, and 
more. With all of these menus, the user 

wrzARo initiates an action by pressing a combina-
tion of arrow keys and the Enter key. For example, 
in a pulldown menu program, the user moves to a 
particular menu using the arrow keys, and then 
presses the Enter key to activate the menu. Next, the 
arrow keys are pressed to highlight a particular op­
tion. By pressing the Enter key once again , the op­
tion is selected. 

While the menu programs greatly simplify the in­
teraction between the program and the user, we can 
streamline the user's actions even further through 
the use of a mouse. With the mouse, the user points 
to the particular menu and selects an option in that 
menu (this process is known as "point and click"). 

In Part I of this article (see "Cat and Mouse in 
Turbo Prolog: Part I," May/June, 1988) we explored 
the basics of mouse programming with Turbo Prolog. 
Here in Part II, I' ll discuss some of the menu pro­
grams in the Turbo Prolog Toolbox and will show 
you how to modify them to work with the Microsoft 
Mouse. 

A SIMPLE MOUSE-BASED MENU 
One of the programs in the Turbo Prolog Toolbox is 
MENU.PRO. This program implements two predi­
cates, menu and menu_leave, which allow the pro­
grammer to create simple pop-up menus. In the fol­
lowing discussion, I'll show you how to use input 
from the mouse rather than from the keyboard. The 
program SMSMENU.PRO (Simple MouSe MENU) in 
Listing 1 is the modified version of MENU.PRO. 
Note that SMSMENU.PRO works only with a mouse 
-keyboard input has been disabled. In comparing 
SMSMENU.PRO with MENU.PRO, notice that all the 
predicates that recognize keyboard strokes have 
been replaced with others that interact with the 
mouse. 

98 TURBO TECHNIXJuly/ August 1988 

To see how the modified program behaves, run 
Listing 1. (To run th e listings in this article, you must 
have MSM-DRV.PRO, which is presented in Part I.) 
Enter the goal: 

ms tes t 

The major predicates in Listing 1 are smsmenu, 
menuinit, and smsmenul. Let's consider smsmenu 
first: 

smsmenu(Button,ROW,COL,WATTR, 
FATTR,LIST,HEADER,CHOICE): ­

msm_init, 
msm_show, 
menuinit(ROW,COL , WATTR,FATTR, 

LIST , HEADER , NOOFROW , 
NOOFCOL), 

repeat , 
msm_statCButton, R, C) , 
MsR=R/8 , MsC=C/8 , 
smsmenu1(MsR,MsC , NOOFROW, 

NOOFCOL , CHOICE), ! , 
removewindow, 
msm_hide. 

In calling smsmenu, you can specify which mouse 
button will activate the pop-up menu (use Button 
= 1 for the left button, and Button = 2 for the right 
button). 

The first two subgoals in smsmenu initialize the 
mouse and show its cursor. Then menuinit (wh ich 
was taken directly from MENU.PRO) displays the 
window for the menu and a list of the menu's op­
tions. Each option is placed on a separate row. 

The next subgoal, r epeat, marks the beginning of 
the PSR (Press button, Select option, and Release 
button) loop. This loop provides the mechanism to 
pick an option by pressing the designated mouse 
button and holding it down, moving the cursor to 
the desired option, and selecting that option by re­
leasing the mouse button. 

In order for the program to know where the user 
stops in the list of menu options, smsmenul is called 
within the repeat loop. smsmenul calculates the cur­
sor's row position within the menu window, as 
shown in the following clause: 



smsmenu1CMsR,MsC,Nrows, 
Ncols,CHOICE):­

makewindow(X,_,_,_,Srow,Scol,_,_), 
X=81, 
SR1=Srow+1, SC1=Scol+1, 
COfl1'8re_pos(MsR,MsC,SR1,SC1, 

Nrows,Ncols,NewR, , 
inside), -

CHOICE= NewR + 1, !. 

Much of the work here is handled 
by compare_pos. compare_pos 
takes the row and column of the 
cursor's current position, along 
with the position and dimensions 
of the active window, and checks 
to see if the cursor is within the 
active window. compare_pos also 
returns the row and column of the 
cursor's position within the active 
window. 

DYNAMIC MOUSE MENU 
PROGRAM 
One drawback of SMSMENU.PRO 
is its static nature. The pop-up 
menu position is fixed, and is in­
dependent of the cursor's posi­
tion. It would be more useful to 
display the pop-up menu at the 
current cursor position, because 
you can then control where the 
menu appears. 

To display a menu at the cur­
rent cursor position, consider 
DMSMENU.PRO (Dynamic 
MouSe MENU) in Listing 2. The 
major difference between DMS­
MENU.PRO and SMSMENU.PRO 
lies in the main predicate dms­
menu and its subgoal dmsmenul. 
A close look at dmsmenu reveals 
that it contains an additional re­
peat loop: 
cinsmenu(Button,WATTR,FATTR,LIST, 

HEADER,STARTCHOICE,CHOICE):­
msm_init, 
msm_show, 
repeat, 

msm stat(Button,R,C), 
RO\.l;R/8, COL=C/8, 
menuinit(RO\.l,COL,WATTR,FATTR, 

LIST,HEADER,NOOFRO\.I, 
NOOFCOL), 

ST1=STARTCHOICE-1, 
maxC0,ST1,ST2), 
MAX=NOOFR0\.1-1, 
minCST2,MAX,STARTROlol), 
assert(currentrow(STARTRO\.I)), 
reverseattr(WATTR,REV), 
field_attr(STARTR0\.1,0, 

NOOFCOL,REV), 
repeat, 

msm stat(B,R1,C1), 
RO\.la=R1/8, COLa=C1/8, 
dmsmenu1CB,Button,RO\.la, 

COLa,NOOFROlol, 
NOOFCOL,CHOICE), 

!,removewindow, 
msm_hide. 

The first repeat loop waits for the 
user to position the cursor and 
press a button. The second repeat 
loop displays the menu at that 
position. 

ADDING SCROLL BARS 
Another useful feature in mouse 
applications is the scroll bar, 
which allows text to be scrolled 
up, down, left, or right. A scroll 
bar gives the visual effect of scroll­
ing the text in relation to the size 
of the whole document. From the 
user's perspective, a scroll bar al­
lows complete control of text 
movement in a window, without 
the need to memorize a set of 
commands. 

In order to develop a scroll bar 
program, we need to build a tool 
that allows text to be scrolled 
through windows. This tool, which 
relies upon the built-in scroll 
predicate, is shown in Listing 3. 
scroll inserts a blank line at the 
top or bottom of the currently ac­
tive window. This makes the text 
in the window appear to scroll 
down or up, respectively. In addi­
tion, scroll can be used to scroll 
text to the right and to the left of 
the currently active window. For 
instance, to scroll text up two 
rows, give the goal: 
scrollC2,0). 

To scroll text three rows down and 
five columns to the left, give the 
goal: 

scrollC-3,5). 

As you can see, scroll moves text 
both horizontally and vertically in 
the currently active window. Un­
fortunately, scroll doesn't allow 
the retrieval of text from a mem­
ory buffer. Therefore, once a por­
tion of the text is scrolled outside 
of the boundary of the currently 
active window, that portion of text 
is lost. 

To handle this problem, we can 
modify the scroll predicate to up­
date the screen by adding the fol­
lowing scr clause: 

scr(RO\.IS,COLS):-
fi le text(STRlist), 
makewindowc_,_,_,_,_,_,RN,cN> , , 
retract(pointer(Rpos,Cpos)), 
refreshRO\.ISCRO\.IS,Rpos,Cpos, 

STRlist,RN,CN), 
NewRpos=Rpos+RO\.IS, 
refreshCOLSCCOLS,NewRpos,Cpos,, 

STRlist,RN,CN), 
NewCpos=Cpos+COLS, 
assert(pointer(NewRpos,NewCpos)). 

To see how scr works, let's test it 
with a predicate: 
test_scr(RO\.l,COL):­

makewindow(1,7,0,11testing scr", 
0,0, 10,40), 

file_str("document.txt",STR), 
window str(STR), 
assertFILEstr("document.txt"), 
scr(RO\.l,COL), 
readlnC_). 

Now, give the goal: 
test_scr(S,10). 

In the first three subgoals of test_ -
scr, Turbo Prolog opens a window 
called "testing scr," reads the con­
tents of the file DOCUMENT.TXT, 
and copies those contents to the 
string variable STR. The contents 
of STR then display in the win­
dow. The next subgoal, assert­
FILEstr, converts the contents of 
DOCUMENT.TXT into a list of 
strings, with each string represent­
ing a line of text. Note that assert­
FILEstr asserts the list of lines 
into the knowledge base, using 
the database fact file_text. 

The next subgoal in test_scr is 
scr, where file_text retrieves 
STRlist from the knowledge base. 
STRlist represents a list of all 
lines in the file that are to be dis­
played in the currently active win­
dow. The scroll bar program 
(MSBAR.PRO) discussed below 
uses this list to track which pans 
of the file are visible or not visible 
in the current window. One way 
to do this is to use a database fact 
to register a pointer, pointer­
(ROW,COLUMN), into the text 
file. This pointer relates the upper 
left corner of the active window to 
a row and column in the text file. 
The diagram in Figure 1 may help 
you to visualize this situation. 

In order to scroll up five rows 
in the window, five rows need to 
be retrieved from the text file to 
fill the five rows of space at the 
bottom of the window. To scroll 
ten columns to the left of the win­
dow, ten columns must be re­
trieved from the text file to fill the 
ten columns of space to the right 
side of the scrolled text. Two pred­
icates perform these "refresh" 
functions: refreshROWS, to re­
fresh the rows, and refreshCOLS, 

continued on page 100 

July/ August 1988 TURBO TECH NIX 99 



po inter (ROW.COL) 

upper left --+-I­
corn er o f tex t 
in window 

fil e tex t 

sc reen window 

Figure 1. The relationship between text in a window and text in a file. 

Figure 2. These horizontal and vertical scroll bars are used to scroll through text 
in a window. 

PRO MOUSE 

continued from page 99 

to refresh the columns. The com­
plete program for the modified 
scroll predicate is SCROLL.PRO 
(Listing 3). 

THE SCROLL BAR PROGRAM 
Now that we have a working scroll 
predicate, we need to interface 
that predicate with the mouse. 
This step involves a graphical rep­
resentation of vertical and hori­
zontal scroll bars on the screen. 
Such graphical representation can 
take several forms; in this article, 

100 TURBO TECHNIXJuly/ August 1988 

windows are used to represent the 
scroll bars (see Figure 2). 

MSBAR.PRO (Listing 4), which 
handles this function, assumes 
that the user wants to scroll text in 
the currently active window. De­
pending upon the goal, the pro­
grammer implements a horizontal 
scroll bar, a vertical scroll bar, or 
a combination of horizontal and 
vertical scroll bars. To see how 
each of these is implemented, run 
Listing 4 with the following three 
goals: 
testHORZ /* To use only a 

horizontal bar */ 

testVERT /* To use only a 
vertical bar */ 

testBOTH /* To use both horizontal 
and vertical bars */ 

In examining the clauses for 
testHORZ, testVERT, and test­
BOTH in Listing 4, notice that 
there is little difference between 
the three predicates. The mechan­
ics of activating the different types 
of scroll bars are identical. test­
HORZ activates the horizontal 
scroll bar using addHbar; test­
VERT uses addVbar to activate 
the vertical scroll bar. testBOTH 
activates both horizontal and ver­
tical scroll bars, using a combina­
tion of addHbar and addVbar. 

One final point to note here is 
that the predicate ms_act is re­
sponsible for most of the scrolling 
action on the screen. Let's exam­
ine testBOTH in more detail: 
testBOTH:-

erase, 
file_str("b:scr.tst",STR), 
assertFILEstrC"b:scr.tst"), 
rnakewindow(1,6,71, 11 testBOTH 11 , 

10 I 5 I 10 I 65) 1 

addHbar(STR), 
addVbar(STR), 
msm_init, 
msm_show, 
file_text(listOfRows), 
list_len(ListOfRows,0,L), 
rnakewindow(_,_,_,_,_,_,_,NR), 
scrollUNIT(L,NR,RoWUnit), 
repeat, 

msm_stat(B,R,C), 
Row=R/8, Col=C/8, 
B <> 0, 
ms_act(B,Row,Col,RoWUnit), 

fail. 

First, erase is called to clear the 
knowledge base. file_str then 
reads the text file, SCR.TST, and 
puts its text into the string variable 
STR. Next, assertFILEstr converts 
STR to a list of lines, asserting the 
list as a file_text fact. 

After creating a window titled 
"testBOTH," addHbar puts a hor­
izontal scroll bar at the top of the 
window. The horizontal scroll bar 
is a window that is placed at the 
top of the original window (see 
Figure 2). Similarly, addVbar 
creates a vertical scroll bar to the 
right of the window. The vertical 
scroll bar is also a window, which 
is placed to the right of the orig­
inal window. The next step is to 
initialize the mouse (msm_init) 
and display the mouse cursor 
(msm_show). (These steps are dis-

continued on page 103 



UNLEASH YOUR 80386! 
Your 80386-based PC should run two to 
three times as fast as your old AT. This 
speed-up is primarily due to the doubl­
ing of the clock speed from 8 to 16 MHz. 
The new Micro Way products discussed 
below take advantage of the real power 
of your 80386, which is actually 4 to 16 
times that of the old AT! These new pro­
ducts take advantage of the 32 bit regis­
ters and data bus of the 80386 and the 
Weitek 1167 numeric coprocessor chip 
set. They include a family of MicroWay 

80386 compilers that run in protected 
mode and numeric coprocessor cards 
that utilize the Weitek technology. 

The benefits of our new technol­
ogies include: 
• An increase in addressable memory 
from 640K to 4 gigabytes using MS­
DOS or Unix. 
•A 12 fold increase in the speed of 32 bit 
integer arithmetic. 
•A 4 to 16 fold increase in floating point 

speed over the 80387 /80287 numeric 
coprocessors. 

Equally important, whichever Micro­
Way product you choose, you can be 
assured of the same excellent pre- and 
post-sales support that has made Micro­
Way the wor1d leader in PC numerics 
and high performance PC upgrades. 
For more information, please call the 
Technical Support Department at 

617-746-7341 
After July 1988 call 508-7 46-7341 

mW1167 Numeric 
Coprocessor Board 

Micro Way® 
80386 Support 

MicroWay 80386 Compilers 
NOP Fortran-386 and NOP C·3S6 are globally 
optimizing 80386 native code compilers that 
support a number of Numeric Data Processors, 
including the 80287, 80387 and mW1167. They 
generate mainframe quality optimized code and 
are syntactically and operationally compatible to 
the Berkeley 4.2 Unix f77 and PCC compilers. 
MS-DOS specific extensions have been added 
where necessary to make it easy to port pro­
grams written with Microsoft C or Fortran and 
RIM Fortran. 

The compilers are presently available in two 
formats: Microport Unix 5.3 or MS-DOS as ex· 
tended by the Phar Lap Tools. MicroWaywill port 
them to other 80386 operating systems such as 
OS/2 as the need arises and as 80386 versions 
become available. 

The key to addressing more than 640 kbytes 
is the use of 32-bit integers to address arrays. 
NDP Fortran-386 generates 32-bit code which 
executes 3 to 8 times faster than the current 
generation of 16-bit compilers. There are three 
elements each of which contributes a factor of 2 
to this speed increase: very efficient use of 
80386 registers to store 32-bit entities, the use of 
inline 32-bit arithmetic instead of library calls, 
and a doubling in the effective utilization of the 
system data bus. 

An example of the benefit of excellent code isa 
32-bit matrix multiply. In this benchmark an NDP 
Fortran-386 program is run against the same 
program compiled with a 16-bit Fortran. Both 
programs were run on the same 80386 system. 
However, the 32-bit code ran 7.5 times faster 
than the 16-bit code, and 58.5 times faster than 
the 16-bit code executing on an IBM PC. 
NOP FORTRAN-386 TM •••••• - ••• - - ••• $595 
NOP C·3S6™ - ...•.... _ .............. $595 

Micro 
Way 

MicroWay Numerics 
The mW1167™ is a MicroWay designed high 
speed numeric coprocessor that works with the 
80386. It plugs into a 121 pin "Weitek" socket 
that is actually a superset of the80387. This soc­
ket is available on a number of motherboards 
and accelerators including the AT&T 6386, 
Tandy 4000, Compaq 386/20, Hewlett Packard 
RS/20 and MicroWay Number Smasher 386. It 
combines the 64-bit Weitek 1163/64 floating 
point multiplier/adder with a Weitek/lntel de­
signed "glue chip". The mW1167™ runs at 3.6 
MegaWhetstones (compiled with NDP Fortran-
386) which is a factor of 16 faster!han an AT and 
2 to 4 times faster than an 80387. 
mW1167 16 MHz .•...•........• • .. $995 
mW1167 20 MHz .................. $1595 

Monoputer™ - The INMOS T800-20 Trans­
puter is a 32-bit computer on a chip that features 
a built-in floating point coprocessor. The T800 
can be used to build arbitrarily large parallel pro­
cessing machines. The Monoputer comes with 
either the 20 MHz T800 or the T 414 (a T800 
without the NDP) and indudes 2 megabytes of 
processor memory. Transputer language sup­
port from Micro Way includes Occam, C, Fortran, 
Pascal and Prolog. 
Monoputer T414-20 with 2 meg' ... $995 
Monoputer TS00-20 with 2 meg' ... $1495 

Quadputer'" can be purchased with 2, 3 or 4 
transputers each of which has 1 or 4 megabytes 
of memory. Quadputers can be cabled together 
to build arbitrarily fast parallel processing 
systems that are as fast or faster than today's 
mainframes. A single T800 is as fast as an 
80386/mW1167 combination! 
Biputer •• T800/T 414 with 2 meg1 • ••• $3495 
Quadputer 4 T414-20 with 4 meg1 ••• $6000 
'Includes Occam 

80386 Multi-User Solutions 
ATS™ -This intelligent serial controller series is 
designed to handle 4 to 16 users in a Xenix or 
Unix environment with as little as 3% degrada­
tion in speed. It has been tested and approved by 
Compaq, Intel, NCR, Zenith, and the Department 
of Defense for use in high performance 80286 
and 80386 Xenix or Unix based multi-user 
systems. 
AT4- 4 users ......•..•••••......... $795 
ATS - s users ..................••••• $995 
AT16- 16 users •••.••.•.•......... $1295 

Phar Lap'" created the first tools that make it 
possible to develop 80386 applications which 
run under MS-DOS yet take advantage of the full 
power of the 80386. These include an 80386 
monitor/loader that runs the 80386 in protected 
linear address mode, an assembler, linker and 
debugger. These tools are required for the MS­
DOS version of the MicroWay NDP Compilers. 
Phar Lap Tools ...................... $495 

PC/ AT ACCELERATORS 
287Turbo-10 10 MHz ................ $450 
2S7Turbo-12 12 MHz •...•........... $550 
287TurboPlus·12 12 MHz •••••...... $629 
FASTCACHE-286 9 MHz ......••••.. $299 
FASTCACHE·2S612 MHz ..•••...... $399 
SUPERCACHE·2S6 ...........•.••.. $499 

MATH COPROCESSORS 
80387·20 20 MHz ................... $725 
803S7·16 16 MHz ..•...........•.••• $475 
80287·10 10 MHz •...•.•....•....... $295 
802S7·S S MHz .•...•....••........• $239 
802S7·6 6 MHz •..•....••...•....... $155 
8087·2 S MHz .................••••. $154 
80S7 5 MHz .•...................•. • • $99 

The World Leader in PC Numerics 
P.O. Box 79, Kingston, Mass. 02364 USA (617) 746-7341 

32 High St., Kingston-Upon· Thames, U.K., 01-541-5466 
St. Leonards, NSW, Australia 02-439-8400 



LISTING 1: SMSMENU.PRO 

/* ******************************************************* *I 
/* smsmenu - sirT1'le mouse menu */ 
/* ** ***. * •• * * ** * *. * ••••• * ** *. ** *** * * * ** ******* * *. ******** 

smsmenu 
l"l'lements a pop·up menu with at most 23 possible choices. 
For more than 23 possible choices use longmenu. 

FLOJ PATTERN: (i,i,i,i,i,i,i,o) 

The argunents to menu are: 

smsmenu(BUTTON' ROii, COL, llINDOllATTR' FRAMEA TTR' STRI NGL !ST' 
HEADER, SELECT ION) 

BUTTON is the mouse button used for making 
selections. 
(i.e. 1:left Button, 2:right, 3:middle) 

ROii ard COL determine the position of the wirdow 

llATTR ard FATTR determine the attributes for the 
window ard its frame • if FATTR is zero there will 
be no frame around the wirdow. 

STRINGLIST is the list of menu items 
HEADER is the text to appear at the top of 

the menu window 

Exafll'le: smsmenu(1, 10, 10,6,4, ["Option A", 
"Option 811

, 

"Option C11 ] , 11 test 11 ,X) 

****************************************************** *I 
include 11msdoms.pro 11 

include 11msut.pro 11 

include 11msm-drv.pro11 

/* domains declarations */ 
/*utility predicates*/ 
/* the mouse-bios calls*/ 

PREDICATES 
ccxrpare_pos( INTEGER, INTEGER, INTEGER, INTEGER, INTEGER, 

INTEGER, INTEGER, INTEGER, SYMBOL) 
with i n_bourdary( INTEGER, INTEGER, INTEGER, INTEGER, 

INTEGER, INTEGER, I NT EGER, INTEGER, SYMBOL) 

CLAUSES 

/* ************************* carpare_pos **************** • t 
/* 11 cOl'll)Clre_pos 11 predicate takes the mouse position 

(MsR,HsC), and the currently active window positions and 
dimensions CSR,SC,NR,NC) and returns the position of the 
mouse in the currently active window. */ 

C°""'8re_pos(HsR, MsC, SR, SC, NR, NC, NewHsR, NewHsC, PCS): -
HsR >= SR, MsC >= SC, 
with in_bourdary(MsR,MsC, SR, SC, NR, 

NC, NewMsR, NewMsC, POS), ! 
c~re_pos(R,C,_,_,_,_,R,C,outside) :-! . 

with in_bour"IC:tary(MsR, MSC, SR, SC, NR, 
NC, NewMsR, NewMsC, inside): -

NewMsR=MsR- SR, NewMsC=MsC· SC, 
NewMsR < NR' NewHsC < NC. 

wi thin_boc.K'ldary(R, C,_,_,_,_, R,C, outside): - I . 

/* ****************************************************** *I 
/* ************************** rnsmenu ******************** *I 
/* ****************************************************** •I 
I* DATABASE 

current row(! NTEGER) *I 

PREDICATES 
smsmenu( INTEGER, INTEGER, INTEGER, INTEGER, 

INTEGER, STR I NGLI ST, STRING, INTEGER) 
menui nit( INTEGER, I NT EGER, INTEGER, I NT EGER, STR I NGLI ST, 

STRING, INTEGER, INTEGER) 
smsmenu1 (INTEGER, INTEGER, INTEGER, INTEGER, INTEGER) 

CLAUSES 

/* ********************** srnsmenu *********************** *I 
smsmenu(Button, ROii, COL, llA TTR' FATTR, LI ST' HEADER' CHOICE):­

msm init, 
msm-show, 
merui nit C ROii, COL, llATTR, FATTR, LI ST, 

HEADER, NOOFROll, NOOFCOL), 
repeat, 

msm stat(Button,R,C), 
MsR;R/8, MsC=C/8, 
smsmenu1 (MsR,MsC, NOOFROll, NOOFCOL, CHOICE)' ! 
removewindow, 
msm_hide. 

/* *************************** ms menu1 ***************** *I 
smsmenu1 (MsR' HsC,Nrows, Ncol s I cH01 CE): -

mak:ewi ndow(X,_,_,_, Srow, Scol ,_,_), 
X=81 
SR1=Srow+1, SC1=Scol+1, 
ccxrpare_pos(MsR ,MsC, SR1' SC1' 

Nrows,Ncols,NewR,_, inside), 
CHOI CE = New!! + 1, ! • 

102 TURBO TECHNIX July/ August 1988 

/*Mouse button pressed outside menu window ... quit and 
do nothing */ 
smsmenu1 CMsR ,MsC, Nrows, Ncol s, 0): -

mak:ewi rdow(X ,_,_,_, Srow, Scot,_,_), 
X=81 
SR1=Srow+1, SC1=Scol+1, 
corrpere_pos(MsR, MsC, SR1, SC1, Nrows, Ncols,_,_, outside), 
!. 

/* ********************** menui nit ********************** *I 
menui ni t(ROll, COL, llATTR, FATTR, LI ST, 

HEADER, NOOFROll, NOOFCOL): -
maxl en(ll ST' 0 ,MAXNOOFCOL)' 
str _len(HEADER' HEADLEN)' 
HEADL 1 =HEADLEN+4, 
max( HEADL 1,MAXNOOFCOL, NOOFCOL)' 
l istlen(l!ST ,LEN), LEN>O, 
NOOFROll=LEN, 
adj frame( FA TTR' NOOFROll, NOOFCOL, HH1' HH2)' 
adj us twi rdow(ROll, COL, HH1, HH2 ,AROll,ACOL), 
makewi rdow(81, llATTR, FATTR, HEADER ,AROll,ACOL, HH1, HH2), 
wri tel i st(O, NOOFCOL, ll ST). 

/* ****************************************************** *I 
/* *********************** TEST I NG ********************** *I 
I* ****************************************************** *I 

PREDICATES 
ms test 

CLAUSES 
mstest:-

/* Button=1, left button*/ 
smsmenu( 1, 10, 10,6,4, [11 0pti on A", 

"Option 8 11 , 

"Option C"l ,"test 11 ,X), 
write(X). 

/* ************** ENO OF SMSMENU. PRO ******************** *I 

l!STING 2: DMSMENU.PRO 

,. ****************************************************** 
cinsmenu 

dnsmenu generates a disappearing menu at any postion 
on the screen that ; s pointed at by the mouse cursor. 

cinsmenu(BUTTON, llATTR, FATTR, LI ST, HEADER, START CHOI CE,CHOI CE) 

BUTTON: This is the mouse button (1,2,3, ••• ,7) that will 
activate the menu. If you press the particular 
mouse button Turbo Prolog will display the menu at 
the mouse-cursor position. 

UATTR, FATTR: These are the 11 window 11 and 11 frame 11 at t ributes. 

LIST: is the list of options in the menu, it is a l lst of 
strings. 

HEADER: Title of the menu. 

STARTCHOICE: is the menu row to be first highlighted when 
the menu is activated. 

CHOICE: is an integer refering to the option we want to 
select in the menu. 

To n..11 the program, give the goal: popup. 

The mouse button is set to 2 which is the right button. 
llhen you press the button you should get the test menu. 
*/ 

include 11msdoms. pro" 
include 11msut.pro11 

include 11msm-drv.pro 11 

PREDICATES 

/* domains declarations */ 
/* utility predicates */ 

/* the mouse·bios calls */ 

ccxrpare_pos( INTEGER, INTEGER' INTEGER' INTEGER' INTEGER' 
INTEGER, INTEGER, INTEGER, SYMBOL) 

wi thin_bo<xldary( INTEGER, INTEGER, INTEGER, INTEGER, 
I NT EGER, INTEGER, INTEGER, INTEGER, SYMBOL) 

CLAUSES 

!* ********************* tQOl)are_pos ******************** 
ccxrpare_pos takes the mouse position (MsR,MsC), 
and the currently active window positions and dimensions 
(SR,SC,NR,NC) ard returns the position of the mouse in the 
currently act;ve wirdow. */ 

listing continued on page 104 



PRO MOUSE 
continued from page I 00 

cussed in Part I of this article, so 
I won't cover them in detail here.) 

file_text then retrieves the list 
of lines (asserted by assertFILE­
str), and list_len returns the 
number of lines (L) in the text 
file . 

Another makewindow subgoal 
retrieves the number of rows in 
the actual scrolling window. After 
adding horizontal and vertical 
scroll bars, addVbar (in test­
BOTH) creates a window for 
scrolling text; this window is lo­
cated within the original window. 

scrollUNIT returns a scroll unit 
R, which is the ratio between the 
total number of lines in the text 
file and the total number of rows 
in the currently active window. In 
other words, to scroll text verti­
cally, every vertical-bar row corre­
sponds to a value R in the text 
file . On the other hand, to scroll 
text horizontally, every horizontal­
bar column corresponds to one 
column in the text file. 

Finally, we come to the repeat 
loop. msm_stat gives the button 
that is currently being pressed, 
along with the row and column of 
the cursor. Then ms_act checks 
whether the pressed button is the 
button that activates the scroll 
bars program. Next, ms_act checks 
whether the cursor is in the ver­
tical bar window or the horizontal 
bar window. Once ms_act knows 
which bar the user is using, it re­
lates any movement of the bar in­
dicator (mouse cursor movements) 
to the modified scroll predicate 
scr. 

APPLICATIONS FOR THE 
MOUSE 
With the basic mechanisms in 
place, there are a number of 
mouse features that you can add 
to your applications. For instance, 
the mouse can be used with Turbo 
Prolog windows to dynamically 
move windows on the screen. This 
allows the user to point to a win­
dow and use the mouse to drag it 
to a new position. The mouse 
could also be used to resize a win­
dow, or to shift between windows 
on the screen. Another useful fea­
ture you might add is the ability to 
use the mouse to move or copy 
strings of text. 

In graphics mode, you can add 
the capabilities to draw points, 
lines, and polygons. In addition, 
the mouse can be used to indicate 
the direction for rotation, reflec­
tion, perspective, and other kinds 
of graphical transformations. 
Once you start programming the 
mouse with Turbo Prolog, I'm sure 
you'll think of many other creative 
ways to use the mouse. • 

Safaa H. Hashim is a graduate stu­
dent in the computer science division 
at the University of California, 
Berkeley. 

Files may be downloaded from Com­
puServe as MOUSE2.ARC. 

REFERENCES 
Carrol,John M. (ed.). Interfacing 
Thought: Cognitive Aspects of Hu­
man-Computer Interaction, Boston, 
Massachusetts: MIT Press, 1987. 

Solution Systems. "Experts' Views 
on the Human Interface Traits of 
Successful Commercial Software." 
The Developer's Publisher, 1987. 

(For a copy of this report, write to 
Solution Systems, 541 Main Street, 
Suite 410, South Weymouth, MA 
02198.) 

Heckel, Paul. The Elements of 
Friendly Software Design, New York, 
New York: Warner Books, Inc., 
1984. 

King, Richard Allen. The MS-DOS 
Handbook, Berkeley, California: 
SYBEX Inc., 1986. 

Nath, Sanjiva. Turbo Prolog: Fea­
tures For Programmers, Portland, 
Oregon: MIS Press, Inc., 1986. 

Nickerson, Raymond S. Using Com­
puters: Human Factors in Informa­
tion Systems, Boston, Masssachu­
setts: MIT Press, 1987. 

Shneiderman, Ben. Designing the 
User Interface: Strategies for Effective 
Human-Computer Interaction, Read­
ing, Massachusetts: Addison­
Wesley Publishing Company, 1987. 

A Debugger and Overlays 
for Your Turbo Pascal 4.0 

T-DebugPLUS 4.0 is the powerful symbolic run-time debugger 
that helps you find and fix bugs faster than ever before. You get • Access 

to global and local variables •Watch variables •Conditional breakpoints 

• Support for graphics modes and dual displays • Source and assembly 

language modes and much more. T-DebugPLUS 4.0 is only $45. 

Overlay Manager 4.0 brings overlays to Turbo Pascal 4.0. 
Develop programs larger than available memory, even larger than the 

640K limit. Convert to the fantastic new Turbo 4.0 while retaining the 

overlays your program needs. Automatic EMS support. Source code 

included, no royalties. Overlay Manager 4.0 is only $45. 

Call toll-free for credit card orders: 

1-800-538-8157 ext. 830 (1-800-672-3470 ext 830 in CA) 

Satisfaction guaranteed or your money back within 30 days. 

For upgrade or other 
information, call 
408-438-8608. 

-L 
Shipping and taxes prepaid 
in U. S. and Canada. Else­
where add $ 12 per item. 

TurboPower Software P.O. Box 66747 Scotts Valley, CA 95066-0747 

July/ August 1988 TURBO TECHNIX 103 



listing continued from page 102 

corrpare_pos(MsR,MsC, SR, SC,NR, NC,NewMsR, NewMsC,POS): -
MsR >= SR, MsC >= SC, 
with i n_txx.ndar_ycMsR, MSC, SR, SC, NR, NC' NeWMsR:, Ne\lltsC, POS), 
I. 

corrpare_pos(R,C,_,_,_,_,R,C,outside):-t. 

within bcH.rdary(MsR ,MsC, SR, SC, NR ,NC, NewMsR, Ne.,..sC, inside):­
Ne..f4sR=MsR-SR, NewMsC=MsC-SC, 
NewMsR < NR, NewMsC < NC. 

wi thin_bolxldary(R,C,_,_,_,_,R,C,outside) :-! . 

/* ****************************************************** • , 
/* ****************** d'nsrnenu *************************** *I 
/* ****************************************************** *I 
/* DATABASE 

currentrow((NTEGER) */ 

PREDICATES 
ansmenu( INTEGER, INTEGER, lNTEGER,STRlNGLI ST, 

STRING, INTEGER, INTEGER) 
mer .. ini t( INTEGER, INTEGER, INTEGER, 

lNTEGER,STR lNGLI ST, STRl NG, INTEGER, I NT EGER) 

ansmenu1( l NTEGER, lNTEGER, l NTEGER, l NTEGER, 
INTEGER, INTEGER, INTEGER) 

CLAUSES 

I* ************************* ms menu ******************** *I 
ansmenu(Button, WAHR, FATTR, LI ST~ HEADER, STARTCHOlCE,CHOl CE):· 

msm init, 
msm=show, 
repeat, 

msm_stat(Button, R,C), 
ROll=R/8, COL=C/IS, 
menuini t(ROll, COL, WAHR, FATTR, L !ST, 

HEADER, NOOFROll, NOOFCOl), 
ST1 =START CHOI CE-1, 
max(0,ST1 ,ST2), 
MAX=NOOFROll· 1, 
mi n(ST2,MAX, STARTROll). 
assert( current row( STAR TROW)), 
reverseat tr(WA TTR, REV), 
field attr(STARTROW, 0, NOOFCOL,REV), 
repeat, 

msm stat(B,R1,C1), 
ROlla=R1/8, COLa=C1/8, 
ansmenu1 (B,Button, ROlla,COLa, 

NOOFROll,NOOFCOL,CHOICE), I, 
removewindow, 
msm_hide. 

/* ************************ ms menu1 ******************** *I 
cinsrnenu1 CB,B,MsR ,MsC, Nrows, NcoTs,_): -

makewindow(X, WATTR,_,_, Srow, Scot,_,_), 
X=81, 
SR1=Srow+1, SC1=Scol+1, 
Con"p8re_pos(MsR,MsC, SR1, SC1, Nrows,Ncols,NewRow,_, inside), 
currentrow(StartRow), 
StartRow <> NewR.ow, 
fie ld_att r( StartRow, O, Ncol s, WA TTRl, 
retract< current row< Start Row>>, 
assert( currentrow(NewRow)), 
reverseat tr(WATTR, REV), 
field attr(NewRow,0,Ncols,REV), I, 
fail. -

ansmenu1(B,81 ,MsR ,MsC, Nrows,Ncols, CHOICE):· 
B <> 81, 
rnakewindow(X,_,_,_, Srow, Scol ,_,_), 
X=81, 
SR1=Srow+1, SC1=Scol+1, 
corrpare_pos(MsR,MsC, SR1, SC1, Nrows,Ncols,NewR,_, inside), 
CHOICE=NewR+1, I. 

cinsmenu1(B,81 ,MsR,MsC, Nrows,Ncols,0): · 
B <> 81, 
makewindow(X,_,_,_, Srow, Scol ,_,_), 
X=81, 
SR1=Srow+1, SC1=Scol+1, 
COf1l>8re_pos(MsR,MsC,SR1, SC1 ,Nrows,Ncols,_,_,outsi de), ! . 

/* ******************* menuinit ************************* *I 
menuini t(ROll, COL,WATTR, FATTR, LIST, HEADER, NOOFROll, NOOFCOL): • 

maxlen( LI ST ,0,MAXNOOFCOL), 
str len(HEADER,HEADLEN), 
HEADL 1 =HEADLEN+4. 
max( HEADL, ,MAXNOOFCOL, NOOFCOL). 
l istlen(LIST ,LEN), LEN>O, 
NOOFROll=LEN, 
adj frame( FATTR, NOOFROll, NOOFCOL, HH1, HH2), 
adjustwi rdow(ROll,COL, HH1, HH2,AROW,ACOL), 
makewirdow(81, WAHR, FATTR, HEADER,AROW,ACOL, HH1, HH2), 
wri tel i st(O, NOOFCOL, LI ST). 

104 TURBO TECHNIX July/ August 1988 

/* ****************************************************** *I 
I* *********************** TEST I NG ********************** *I 
I* ****************************************************** *I 

PREDICATES 
~ 

GOAL 

~-

CLAUSES 
~:­

msm_init, 
msm_show, 
rnakewi ndow( 1, 7,0, 1111

, 0, 0, 25 ,80), 
/* BUTTON = 2, the right button is used */ 
ansmenu(1,71, 124, ["option 0 "· 

"option 1 11 , 
11 option 2 M 

"option 3 11 , 

11optfon 4 II 

11option 5 ", 
"option 6 "l, 

11MClJSE POPUP 11 ,2,X), 
wri te(X). 

/* ************** ENO OF DMSMENU. PRO ******************** *I 

LISTING 3: SCROLL.PRO 

/* ****************************************************** *I 
/* **** A scroll predicate with string saving buffer **** */ 
I* ****************************************************** 

NOTE: to test this progr'"" by itself, cncooment the 
lines with the 11i 11 synb>l. */ 

/* i inc l ude 11msdoms . pro• *I 

PREDICATES 
assertFlLEstr(STRING) /*assert a text file fact. */ 

getROWstr(STRlNGLIST) /* get list of RM (strings) */ 

scr(INTEGER,INTEGER) /*this is my "scroll(i,i)" */ 
refreshRows( INTEGER, l NTEGER, INTEGER, 

STRINGLIST, INTEGER, INTEGER) 
refreshU( INTEGER, lNTEGER. I NT EGER, STRINGLIST. 

l NTEGER, lNTEGER, INTEGER, I NT EGER) 
refreshD( INTEGER, INTEGER, INTEGER, STR INGLI ST. 

INTEGER, INTEGER, INTEGER, INTEGER) 
refreshRpos( l NTEGER, l NTEGER, STR I NGLI ST, 

INTEGER, INTEGER, INTEGER, INTEGER) 

refreshCOLS( INTEGER, INTEGER, INTEGER, 
STRINGLIST, INTEGER, INTEGER) 

refresh LC INTEGER, INTEGER, INTEGER, 
STRINGLIST, INTEGER, INTEGER) 

refreshR( INTEGER, INTEGER, INTEGER. STRINGLI ST, INTEGER) 
refreshCpos( INTEGER. INTEGER, INTEGER, 

INTEGER, STRl NGLI ST, INTEGER) 

getROllS( INTEGER, INTEGER, 
STR I NGLI ST, STR I NGLI ST) 

getROWS1( INTEGER, INTEGER, 
STR I NGLI ST, STR I NGLI ST) 

getROWS2( INTEGER, STRI NGLI ST, STR I NGLIST) 
ref reshCposA(lNTEGER, INTEGER, l NT EGER, INTEGER, 

STR I NGLI ST) 

/* Utility Predicates *I 

/* a repeat 
erase */ 

anal yseF I LE name( STRING. STRl NG, STRING) 
extract str(STRING, lNTEGER, INTEGER,STRlNG) 

extract_str1 (STRING, INTEGER, INTEGER, INTEGER. STRl NG) 
l i st_len(STRINGLI ST, INTEGER, INTEGER) 
poi nterLIMl T( INTEGER, INTEGER, INTEGER, INTEGER) 

/* a testscr( INTEGER, INTEGER) */ 

CLAUSES 

/* ***************** assertfllEstr ********************** */ 
assertFILEstr(lnFILEname) if 

open read( inf i le, l nF l LEname), 
readdevi ce( inf i le), 
getROllstr(LIST), 
assert(fi le text(LIST)), 
assert(poi nterCO, 0)), 
closefi le( infi le), 
readdevi ce(keyboard). 



.dJli Lahey Computer Systems, Inc. 
~~- Sets - New FORTRAN Standard! 

Introducing the latest addition to our line of PC FORTRAN Language Systems­
Lahey Personal FORTRAN 77 Version 2.0 

What You Get When 
You Purchase 
Lahey Personal 
FORTRAN: 
Lahey Experience. 
We are experts in designing 
and implementing FORTRAN 
Language Systems. Lahey 
has been producing 
mainframe implementations 
since 1967 and PC 
FORTRANs (F77L) since 1984. 
In fact, F77L was named the 
"EDllDR'S CHOICE" among PC 
FORTRANs by PC Magazine. This 20-
year span of specialization has been 
incorporated into the design of our 
revolutionary Lahey Personal FORTRAN 77. 

LAHEY SLASHES COMPILATION TIME. 
Compilation times (in seconds) for Whetstone Program (WHETS3H .FOR) 

0 
Tes f conaucted on IBM AT runmng at 6Mnz w•th 80287 

Customer Support: 
Our philosophy is that customer relationships begin, rather than end, at the 
point of sale. Services include free technical support, electronic bulletin board 
for fast service and information access, and newsletters to keep you up to 
date on our latest developments. 

Purchasing the Lahey Personal FORTRAN 77 gives you software designed 
by FORTRAN experts, a feature-loaded product with industry-leading 
compilation speed, and quality technical support; all for $95. 

International Representatives: Australia: Comp. Transitions, Tel. (03)5372786 • Canada: Barry Mooney & Assoc., 
Tel. (902)6652941 • Denmark: Ravenholm Computing, Tel. (02)887249 • England: Grey Maner Ltd ., Tel. (0364)53499 
• Holland: Lemax Co. B.V. (02968)4210 • Japan: Microsoftware Inc., Tel. (03)813822 • Norway: Polysoft A.S. 
(03)892240 • Switzerland: DST Comp. Services, Tel. (022)989188 

MS-DOS & MS FORTRAN are trademarks of Microsoft Corporation . 

We have a complete line of PC FORTRAN Language Systems. For 
developing or porting programs there is no substitute for a Lahey. If you 
would like information on any of these products, please call 1-800-548-4778. 

Lahey Personal FORTRAN 77 - So much for so little $95 

F77L - "Editor's Choice" PC Magazine $477 

F77L-EM/16 - Ability to write programs as large as 15 MB on 80286 $695 

F77L-EM/32 - New 32-bit - Programs up to 4GB on 80386. $895 

Feature Loaded: 
• Full implementation of the 

ANSI X3.9-1978 FORTRAN 
Standard 

• Fast Compilation (see chart) 
• Popular Language 

Extensions highlighted in the 
manual 

• Source On-Line Debugger 
• English Diagnostics and 

Warning Messages 
• LOGICAL*1 , LOGICAL*4 
• INTEGER*2, INTEGER*4 
• REAL*4, REAL*8, and 

DOUBLE PRECISION 
• COMPLEX*8, COMPLEX*16 
• Recursion 
• 31-Character Names 
• Trailing Comments 
• Cross Reference and Source 

Listings 
• 64 KB Generated Code 
• 64 KB Stack Sto~age 
• 64 KB Commons, Constants 

and Saved Local Data 
• Math coprocessor emulation 

runs with or without a 
math coprocessor chip 

• 400-Page User Manual 
SYSTEM REQUIREMENTS: 

256K Ram MS-DOS (2.0 or later) 

s95 
Lahey is setting the 

PC FORTRAN Standard . 
TO ORDER 

1-800-548·4 778 
(specify disk size) 

Lahey Computer Systems, Inc. 
P.O. Box 6091 

Incline Village, NV 89450 
Telephone: (702) 831-2500 

TELEX: 9102401256 
FAX: (702) 831-8123 



/* ********************* anal yseF I LEname **************** *I 
anal yseF J LEnameCSTRname,Name,Extens ion) if 

f ronttoken(STRname, Name, Rest), 
front token( Rest, 11 •

11
, Extension). 

/* ************************* getROWs tr ****************** *I 
getROllstr( [] ):- eof(infile), I. 
getROllstr( CH row I REST rows]):· 

readlnC Hrow), 
getROllstrCRESTrows), I. 

/* ************************* repeat ********************* •I 
/* a repeat. 

repeat: - repeat. 
*/ 
I* **********************************************'******** *I 
/* ******** S C R O l l P R E 0 I C A T E 11scr 11 ****** *I 
/* ******************************'************************ *I 

scr(ROllS,COLS) :-
f i le_text(STRl ist), 
makewi ndow(_, _, _, _, _,_,RN, CN), 

/* now start the operation of refreshing text */ 

!* pointer position Crow and col1.1111), 
the pointer position is the starting row and col1.1111 
of pert of the text file that will be displayed in 
the currently active window. The pointer position 
in text (say 3,0 or 4,5) always corresponds to 
window position of 0,0. */ 

/* pointer position in the text */ 
retract(pointer(Rpos, Cpos)), 

ref reshROWS(ROWS, Rpos, Cpos, STRl i st,RN , CN), 
NewRpos=Rpos+ROWS, 
ref reshCOLS(COLS, NewRpos,Cpos, STRl i st, RN, CN), 
NeWCpos=Cpos+COLS, 
assert (poi nter(NewRpos, NeWCpos)). 

I* ****************************************************** *I 
/* ************************* refreshROWS **************** */ 
/* ****************************************************** *I 

/* refresh the rows */ 
refreshROWSCO,_,_,_,_,_) :- I. 
refreshROllS(ROllS, Prow,Pcol, STRl i st, NR,NC): • 

ROWS > 0, 
UR=NR - 1, /* Assuning current window has no frame */ 
ref reshUCROWS,Prow, Pcol, STIH i st, WR, 0 , NR, NC), ! • 

refreshROllS(ROllS,Prow,Pcol ,STR list, NR, NC):· 
ROllS < 0, 
ref reshDCROWS,Prow, Pcol, STR list ,0, 0, NR,NC), I . 

/* ********************** ref reshD *********************** * / 
/* refresh Down, put text at bottom of window * / 
/* refresh from current position 11 Cpos11 Nrows 

going backward in the list of rows means 
upward in the window. */ 

refreshDCO,_,_,_,_,_,_,_): - I. 
ref reshD(RowNLlll, Prow,Pcol, STRl i st, Wrow, Wcol ,\JNR, \JNC): -

Tef!lll'os=Prow-1, 
scroll(-1,0), 
ref reshRpos( T~os,Pcol, STR list, Wrow,\Jcol, \JNR, \JNC), 
NewRowNun=RowNun+1, 
refreshD(NewRowN"11, Tef!lll'os,Pcol ,STRl ist, 

llrow,llcol,llNR,llNC), I. 

/* ******************** refreshU ************************ •I 
/* refresh Up, put text et top of window. 

refresh from current position 11Cpos" and Nrows going forward. 
Forward in list of rows means downward in the wirdow . */ 

refreshU(O,_,_,_,_,_,_,_) :- ! • 
ref reshU(RowNLlll, Prow, Pcol, STR list, WR, \IC, NR, NC): -

T""'*row=Prow+1, 
scroll(1,0), 

/* adjust the starting row to be pulled fr011 
text file and placed in window. lie do this by 
adding the window depth, nun of rows to the current 
pointer into the text file. The skipped rows are 
ass lined to be reserved on the screen by the 
bui lt · in scroll predicate. */ 

Adjust ed>row=P row+NR, 
ref reshRpos(AdjustecFrow,Pcol, STR list, WR, WC, NR, NC), 
NewRowHl.ilFROwNlll-1, 
refreshU(NewRowNl.111, Teft1lfrow,Pcol, 

STRl ist,llR,llC,NR,NC), I. 

I* ********************** ref reshRpos ******************* * / 
/* write a certain row, the 11 Pos 11 rK..JTt>ered row in the 

text file, at the field defined by the current window 
row, \Jrow,\Jcol,WNC and of course the string of that text 
file row, RowStr. */ 

106 TURBO TECHNIX July/ August 1988 

refreshRpos(_,_, Cl,_,_,_,_> :-1. 
ref reshRpos(O,Pcol, CROllstr l_l, llrow, llcol ,_, llNC): -

frontstr(Pcol,Rowstr, ,STR), 
field_str(llrow,llcol,lliiC,STR), I. 

ref reshRpos(Pos,Pcol, C_IRestRowsl, \JR,\IC, RN, CN): -
StepPos=Pos· 1, 
ref reshRpos(StepPos, Pcol, RestRows, WR, \IC, RN, CN), I. 

I* ****************************************************** *I 
/* *************************** ref reshCOLS ************** *I 
/* ****************************************************** *I 
/* Refresh the col 1.1111s 

*/ 

refreshCOLS(COLS,Prow, Pcol, STR list, RowN"11,ColN"11) 

COLS numer of col1.1111s to refresh 
Prow pointer row numer 
Pcol pointer col numer 
STRl ist list of rows in the text 
RowNuw nuTt>er of rows ;n screen window 
ColNt.n numer of col1.1111s in screen window 

refreshCOLS(O,_,_,_,_,_> :-1 . 
ref reshCOLSCCOLS,Prow, Pcol, STR list, RowN"11, ColN"11): • 

COLS > 0, /* scrolling text to the left */ 
scroll (0,COLS), 

/* ii readln(_), */ 
refreshl(COLS,Prow,Pcol,STRl ;st,RowNun,ColNun), ! . 

refreshCOLS(COLS,Prow, Pcol, STR list, RowNt.n,_): • 
COLS< 0, /*scrolling text to the right*/ 
scroll (0,COLS), 
refreshRCCOLS,Prow, Pcol, STR list, RowN"11), ! . 

/* ***************************** refreshl *************** */ 
/* refresh to the left */ 

refreshLCCOLS,Prow, Pcol, STR list ,RowNll11,ColN"11): -
/* pointer to start of refresh in Text */ 
TStartCo l =Pcol +Col Nt.n, 
/* pointer to start of refresh in llindow */ 
llStartCol =Col N"11-COLS. 
refreshCpos(COLS, TStartCol, llStartCol, 

Prow, STRl i st,RowN"11). 

/* ************************ ref reshR ******************** *I 
/* refresh to the right * / 

refreshRCCOLS, Prow, Pcol, STR list ,RowN"11): • 
TStartCol=Pcol +COLS, 
/* refreshing from left of screen starts at 0 */ 
llStartCol= 0, 
C = abs(COLS), 
ref reshCpos(C, TStartCol ,llStartCol, 

Prow,STRl ist,RowNt.n). 

/* ********************* ref reshCpos ******************** * / 
/* refresh a part of text into certain parts of screen */ 

refreshCpos(COLS, TstartCOL, llstartCOl,Prow, lnL i st, Rnun): -
getROllS(Prow, Rnun, I nL i st,OutL i st), 
llstartROll=O, 
refreshCposA(COLS, TstartCOl, llstartROll, 

\JstartCOl,OUtl i st). 

/* ***************** ref reshCposA *********************** * / 
refreshCposA(_,_,_,_, CJ ):·I. 
ref reshCposACCOLS, TstartC, llstartR, 

llstartC, CROllstr!Rest]):· 
NextllstartR=llstartR+1, 
extract_str(ROWstr, TstartC, COLS, STR), 
str len( STR,L), 
f i eTd_str(\JstartR, WstartC, L, STR), 
refreshCposACCOLS, TstartC,NextllstartR,llstartC,Rest), I. 

/* *********************** get ROWS ********************** *I 
getROWSCO, N...afRows, I nStrL i st ,OutStrL i st):· 

l i st_len( lnStrl i st, 0, Len), 
getROWS1(N...afRows, Len, lnStrli st,OutStrl i st), ! • 

getROllS(Poi nterROll, N...afRows, C_i Rest] ,Outlist): -
Updated'ointerRow=PointerRow-1, 
getROllS(Updated>ointerRow, N...afRows, Rest ,Outl i st). 

I* ******************* getROlJS1 ************************* *I 
getROllS1(N...afRows, Len, I nL i st,Outl i st): -

NLmOfRows < Len, 
getROllS2CN...afRows, !Nl ist,Outlist), I. 

getROllS1(_,_,List,List): · I. 

/* ************************ getROlJS2 ******************** *I 
getROllS2(0,_, CJ ) : ·I. 
getROllS2CN...afRows, CH I T1J, CH I T2]) :-

NewN=N...afRows-1, 
getROWS2(NewN, T1, T2>, I. 



I* *********************** extract_str ****************** */ 
/*Flow Patterns (i,i,i,o), (i,i,i,i) 

extract the string of characters OutStr that is part 
of the string Instr. OutStr starts at the colum StartCol 
in Instr. The length of OutStr is Length. */ 

extract_str( INSTR, SC, NC,OOTSTR) :­
str _len( INSTR, LENGTH), 
extract_str1 (INSTR, LENGTH,SC,NC,OOTSTR). 

extract_str1(_,LENGTH,SC,_,•m):- LENGTH < SC, I. 
extract_str1 (INSTR, LENGTH, SC,NC,OOTSTR): • 

LENGTH < SC+NC, 
frontstr(SC, l NSTR,_, STR), 
OOTSTR•STR, I. 

extract_str1 (INSTR,_, SC, NC,OOTSTR): -
frontstr(SC, INSTR,_, RESTSTR). 
frontstr(NC,RESTSTR,STR, ), 
OOTSTR=STR, I . -

/* **************************** list ten **************** */ 
list_len([),L,L):· I. -
l ist_lenC t_ITJ ,OldLength, CurrentLength>: • 

AddLength=OldLength+1, 
l ist_len(T ,AddLength,CurrentLength), ! . 

/* *************************** poi nterlIMIT ************* */ 
poi nterL I Ml TC RowNun, Length, Poi nterRow, NewRowNlill): -

RowNl.lft > 0, 
Limit 2 l~th · PointerRow · 1, 
RowNun >= limit, 
NewRowNun =Limit, I. 

poi nterL IM IT CRowNum,_, Poi nterRow, NewRowN1.11): • 
RowNllft < 0, 
N<n • abs(RowNun), 
Nl.lft >::i: PointerRow, 
NewRowNt.n 2 - PointerRow, I. 

poi nterll MI T<RowNum, _, _, RowNun): - I • 

J* ******************************* test ***************** */ 
/*a testscrCX,Y):-

*/ 

mekewindow(1, 71,0, "" ,5,0,5, 13), 
f i le_str( 11b:scr. tst", STR), 
window_str(STR), 
assertF ILEstr( 11b: scr. tst"), 
scr(X, Y), 
readln(_). 

J* *********************** ENO OF SCROLL.PRO ************* *I 

LISTING 4: MSBAR.PRO 

/* ****************************************************** *I 
/* A scroll ing·bar progr• */ 
/* ****************************************************** *I 
include "msdoms.pro• /* domains & database declarations */ 
include 11 msut.pro11 /*utility predicates*/ 
include 11msm· drv.pro11 /* the mouse·bios cal ls */ 
include "cOO'pSre.pro" /* COO'pSre mouse & screen positions */ 
include "scroll.pro"/* the modified scroll, 11 scr 11 */ 

PREDICATES 
ms_act( I NT EGER, INTEGER, INTEGER, I NT EGER) 

msbarV( INTEGER, INTEGER, INTEGER, 
INTEGER, INTEGER, INTEGER) 

msbarH( INTEGER, INTEGER, INTEGER, INTEGER, INTEGER) 

addVbarCSTRI NG) 
putVbar(STRING) 

addHbarCSTRING) 
putHbar(STRING) 

exist V8AR(!NTEGER) 
ex i st-H8ARC INTEGER) 
IN I TbSrV( INTEGER, INTEGER, INTEGER, 

INTEGER, INTEGER, INTEGER) 
I NITbarH( INTEGER, INTEGER, INTEGER, 

INTEGER, INTEGER, INTEGER) 

/* TESTING PREDICATES */ 
show8ARS 
testHORZ 
testVERT 
test80TH 

I* ADDITIONAL UTILITY PREDICATES */ 
erase 
scrol lUN I TC INTEGER, INTEGER, INTEGER) 

CLAUSES 

/* ****************************************************** *I 
/* 11 ms_act 11 Classifying and Executing mouse actions */ 
,. *****************************"************************* 

If mouse button "Button" was pressed inside the vertical 
bar window, then vertical scrolling is active, msbarV. */ 

ms _act (Button, MsR, MsC, RowUni t): -
makewi ndow(WN, _,_, _,_,_, _,_), 
8N=llN+ 100, 
barVCBN ,_,_,SR, SC, NR, NC), 
c~re_pos(MsR,MsC,SR,SC,NR,NC, NewRow, , inside), 
barROll(8R), -
BR = NewRow, 
repeat, 

msm_stat(8,R,C), 
Row=R/8, Col=C/8, 
msbarV(B,Button,Row,Col,BN,RowUnit), I. 

I* If mouse button "Button" was presesd inside the horiz. 
bar widow, then horizontal scrolling is active, msbarH */ 
rns_act(Button,MsR,MsC,_): -

makewi ndow(WN ,_,_,_,_,_,_,_), 
8N=llN+101, 
barH(BN ,_,_,SR, SC, NR, NC), 
COITp8re_pos(MsR,MsC, SR, SC,NR, NC,_, NeWCOL , inside), 
barCOL(CO), 
CO = NeWCOl, 
repeat, 

msm_statCB, R, C>, 
Row=R/8, Col=C/8, 
msbarH(8,8utton,Row,Col,8N), I. 

/* ****************************************************** • , 
/*********mouse controlled scrolling·bar program*******/ 
I* ****************************************************** *I 

msbarVCB, 8, Row, Col, BN, Scroll Factor):· 
barV(8N ,8ARattr, 80Xattr, SR, SC, NR, NC), 
ccwrpare_pos(Row,Col, SR, SC,NR, NC, NewRow,_, inside), 
barROll(OldRow), 
NewRow <> OldRow, 
sh if twi ndow(8N), 
f i eld_attr(OldRow, 0, NC, 8ARattr), 
f i eld_attr(NewRow, 0, NC,BOXattr), 
llN = 8N • 100 
shiftwindow(W), I, 
retract (barROllCOldRow)), 
assert(barROll(NewRow)), 
S = NewRow - OldRow, 
S1 = S • Scroll Factor, 
scr(S1,0), I, 
fail. 

msbarVCB, 81,Row,Col, BN, Scrol lFactor): · 
B <> 81, 
barVC8N , 8ARattr, 80Xattr, SR, SC, NR, NC), 
CClfll"'re_pos(Row, Col, SR, SC,NR, NC, NewRow, , inside), 
barROll(OldRow), -
NewRow <> OldRow, 
shi f twi ndow(8N), 
f i eld_attr(OldRow, 0, NC, 8ARattr), 
f i eld_attr(NewRow, 0, NC, 80Xattr), 
llN = 8N - 100, 
sh if twi ndow(llN), 
retract ( barROll(OldRow)), 
assert(barROll(NewRow)), I., 
S = NewRow - OldRow, 
S1 = S * ScrollFactor, 
scr(S1,0), f. 

msbarVC8,81,Row,Col,8N, ):-
8<>81, -
barV(BN ,_,_,SR, SC, NR,NC), 
COlrp8re_pos(Row, Col, SR, SC,NR. NC,_,_,outs ide). I. 

/* ********************* msbarH ************************* */ 
msbarH(8, 8, Row , Col, 8N) :-

barH(8N, 8ARattr, 80Xattr, SR, SC,NR , NC), 
COlrp8re_pos(Row, Col, SR, SC,NR, NC, ,NeWCol, inside), 
barCOL(OldCol), -
NeWCol <> OldCol, I, 
sh if tw i ndow( 8N), 
fi eld_attr(O,OldCol, 1, 8ARattr), 
f i eld_attr(O,NeWCol, 1, 80Xattr), 
llN = 8N · 101, 
sh i ftwindow(llN), 
retract(barCOL(OldCol)), 
assert(barCOL(NeWCol)), 
S = NeWCol - OldCol, 
scr(O,S), I, 
fail. 

msbarH(8,81, Row,Col ,8N): -
8 <> 81, 
barH(8N, 8ARattr, 80Xattr, SR, SC,NR,NC), 
coopare_pos(Row,Col ,SR,SC,NR,NC, ,NewCol, inside), 
barCOL(OldCol), -
NeWCol <> OldCol, I, 
sh i ftwi ndow(8N), 
field_attr(O,OldCol, 1 ,8ARattr), 
f i eld_attr(O, NeWCol, 1, BOXattr), 
llN = 8N·101, 
sh i ftwi ndow(llN) , 
retractCbarCOLCOldCol)), 
assertCbarCOLCNeWCol)), 

July/ August 1988 TURBO TECH IX 107 



S = NeWCol - OldCol, 
scr(O,S), I. 

msbarHCB, 81, Row, Col ,BN) :­
B <> 81, 
barH C BN, _,_,SR, SC, NR, NC), 
corrpare_pos(Row, Col, SR, SC, NR, NC,_,_, outside), I. 

J* *************** addVber & addHbar ******************** *I 
addVbarCSTR):-

mekewi ndow(WN ,Wat tr, Fat tr ,_,R, C, RN, CN), 
Fattr <> 0, 
New\IN=llN+20, 
NewRN=RN-2. NewcN=CN-2. NewR=R•1 • Newc=C•1 • 
makewi ndow(NewwN ,Wattr. 0, 1111

, NewR, NeWC, NewRN, NeWCN)' 
putVbarCSTR), I . 

addVbarCSTR):­
putVbarCSTR), I. 

addHbar(STR):-
makewindowCWN, Wat tr, Fattr ,_, R,C, RN, CN), 
Fattr <> 0, 
Newllll=llN+20, 
NewRN=RN-2, NewcN=CN-2, NewR=R•1, NeWC=C•1, 
makewindow(NewWN, Wat tr, 0, 1111

, NewR, NeWC,NewR.N , NeWCN), 
putHbar(STR), I. 

addHbar(STR):­
putHbar(STR), I. 

/* ••••*************** putVbar ************************** *I 
t• cheek if vertical bar already exists for the current 

window */ 

putVbar(_) :-
makewi ndowCNW, _, _, _, _,_,_, _), 
NII < 100, t• the window is not a bar window */ 
exist VBAR(Nll), 
sh if twindowCNll), 
wdte( 11 \n vertical scrolling bar already exists11 ), I. 

t• If window has horizontal bar then top level window is 
a horizontal bar window and needs be removed first then we 
resize main window and recreate horiz. bar then add 
vertical bar. */ 
putVbar(STR) :-

mak.ewi ndow(WN, Wat tr, Fattr, Label, 
Srow, Seel, Nrows,Ncols>, 

exist HBARCllN), /* horiz. bar. already ex i sts */ 
VBllN=iitMOO, 
HBllN=llN+101, 
NewNcols=Ncols·2, 
Bcol=Scol •NewNcols, 
Brow=Srow·1, /* save window status before removing window*/ 
removewindow, 
removewindow, t• remove old horiz. bar •t 
INITbarHCHBllN, 120, 16,Brow,Scol ,NewNcols), 
INITbarVCVBllN, 120, 16,Srow,Bcol,Nrows), 
mak.ewindow(WN,Wattr, Fattr, Label, 

Srow, Scol, Nrows, NewNcols), 
window_str(STR), I. 

/* Jf window has neither horizontal nor vertical bars, 
then create vertical bar •t 

putVbarCSTR):-
makewi ndow(Nll, llattr, Fattr, Label, 

Srow, Seal, Nrows,Ncols), 
VBllN=Nll+ 100, 
NewNcol s=Ncols-2, 
Bcol=Scol •NewNcol s, 
t• removing old window */ 

removewi ndow, 
/* create the vertical ber */ 
INITbarV(VBWN, 120, 16, Srow,Bcol, Nrows), 
t• update moin window •t 
makewi ndow(NW, Wat tr, Fattr, Label, 

Srow, Scot, Nrows,NewNcols>, 
window_str(STR), I. 

/* **************************** putHber *********************** *I 
t• Cheek if horizontal bar already exist for the current window •t 

putHbar(_) :-
makewi ndowCNW ,_,_,_, _, _, _, _ ), 
NII < 100, t• the window fs not a bar window •t 
ex st HBAR(Nll), 
sh ftwindowCNll), 
wr te("\n vertical scrolling bar already exists"), I . 

108 TURBO TECHNIX July/ August 1988 

t• If window has vertical bar then only resize window and recreate 
vertical bar, then add horizontal bar. •t 
putHbar(STR) :-

makewindow(llN,llattr, Fat tr, Label, 
Srow, Scol, Nrows,Ncols), 

exist VBARCllN), t• horiz. bar. already exists */ 
VBllN~+100, 
HBllN=llN+101, 
NewNrows=Nrows· 1, 
NewSrow=Srow+1, 
VBcol=Scol+Ncols, 
removewi ndow, 
removewindow, /* remove old vert. bar */ 
IN! TbarVCVBllN, 120, 16, NewSrow, VBcol, NewNrows), 
INITbarHCHBllN, 120, 16,Srow,Scol,Ncols), 
makewindow(WN, Wat tr, Fat tr, Label, NeWSrow, 

Scot, NewNrows,Ncols), 
window_str(STR), I. 

t• If window has neither horizontal nor vertical bars, 
create a horizontal bar •t 
putHbar(STR):-

mak.ewindow(WN,Wattr, Fat tr, Label, 
Srow, Scol ,Nrows,Ncols), 

HBllN=llN+101, 
NewNrows=Nrows· 1, 
NeWSrow=Srow+1, 
rernovew i ndow, 
INITbarH(HBllN, 120, 16,Srow,Scol,Ncols), 
mak.ewindowCWN, Wat tr, Fattr, label, 

News row, Scol ,NewNrows, Ncols), 
window_strCSTR), ! . 

/* ************ exist VBAR & exist _HBAR **************** */ 
exist VBARCllN):- -

Bllii=llN+100, 
exi stwindow(BllN). 

exist HBAR(llN):­
Bllii=llN+101, 
ex i stwi ndowCBllN). 

/* **************** INJTbarV & INITbarH ***************** */ 
t• Initialize the vertical scrolling bar •t 

INITbarVCllN, BARattr, BOXattr, Brow, Bcol ,Blength) :­
mak.ewindow(WN, BARattr, 0, 1111 , Brow,Bcol, Blength, 2), 
assert(barVCllN, BARattr, BOXattr, Brow,Bcol, Blength , 2)), 
field attrC0,0,2,BOXattr), 
assert(barROll(O)), I. 

t• Initialize the horizontal scrolling bar •t 
!NI TbarHCllN, BARattr, BOXattr, Brow, Bcol ,Blength) 

makewi ndowCWN, BAR at tr, 0, 1111 , Brow, Beal , 1, 8 length), 
assert(barHCWN, BARattr, BOXattr, Brow, ecol, 1, B length)), 
field_attrC0,0, 1,BOXattr), 
assert(barCOL(O)), I. 

I* ****************************************************** *I 
/* ********************* test i ng ************************ * / 
/* ****************************************************** *I 

showBARS:-
makew i ndow( 1, 70,2, 11SHOIJbars .. , O, 0,25 ,80), 
window_str(STR), 
addVbar(STR), 
readln(_), 
addHbar(STR), 
readln(_ ). 

testHOl!Z:­
erase, 
file str( 11 scr.tst11 ,STR), 
assei='tF I LEstr( 11scr. tst"), 
makewindowC 1,6, 71, 11 testHORZ 11 , 10, 5, 10,65), 
addHbar(STR), 
msm init, 
msm-show, 
file textCListOfRows), 
list -lenCL i stOfRows,O, L), 
makeWi ndow(_, _ ,_, _,_, _, _, NR), 
scrol lUNITCL,NR,R~ni t), 
repeat, 

msm_stat(B,R,C), 
Row=R/8, Col=C/8, 
B <> 0, 
ms_act(B, Row,Col, Ro.t.Jni t), fail.. 

testVERT:­
erase, 
file str( 11scr.tst 11 ,STR), 
assei='tFJ LEstr("scr. tst 11 ), 

makewi ndow( 1,6, 71, ntestVERT", 10,5, 10,65), 
addVbarCSTR), 
msm init, 
msm:show, 



f i le_text(L i stOfRows), 
l i st_len(L i stOfRows, 0, L), 
makewi ndow(_, _, _, _, _,_, _, NR), 
scrol lUNIT (L, NR,Ro..Uni t), 
repeat, 

msm_stat(B, R,C), 
Row=R/8, Col=C/8, 
B <> 0, 
ms_act(B,Row,Col, RowUni t), fail. 

testBOTH: -
erase, 
f i le_str( 11scr. tst 11 , STR), 
assertF ILEstr("scr. tst"), 
makewindow(1,6,71,"testBOTH", 10,5, 10,65), 
addHbar(STR), 
add\lbar(STR), 
msm init, 
msm-show, 
f i le_textCL i stOfRows), 
l ist_len(ListOfRows,0,L), 
makewi ndow(_,_, _, _, _,_, _, NR), 
scrol lUN IT(L, NR, RowUni t), 
repeat, 

msm_stat(B,R,C), 
Row=R/8, Col=C/8, 
B <> 0, 
ms_act(B,Row,Col,RowUnit), fail. 

I* ****************************************************** *I 
/* ********************* utility *********************'*** *I 
,. ****************************************************** 

L= ""'*>er of lines in text file. 
N= numer of rows in active window. 
R= a ll1it used by the bar moving indicator, such that 
for each window·row this indicators moves, the progran1 
scrolls R l Ines in the text file. */ 

scrol lUN IT( L, N,R): -
0 z L mod N, 
R : L div N, I. 

scrol lUNITCL,N, R): -
R•LdivN+1. 

/* retract all knowledge base facts. */ 
erase:- retract(_), fail. 
erase. 

/* ********************* ENO of msbar.pro *************** *I 

LISTI NG 5: NSOQIS. PltO 

J* ****************************************************** *I 
/* **************************** DOHA I NS ***************** *I 
/* ****************************************************** *I 

DOl4AI NS 
STRINGLIST • STRING* 
INTEGERLIST z INTEGER* 
FILE = infile 

DATABASE 

file text(STRINGLIST) 
pointer( INTEGER, INTEGER) 
barRC7W( INTEGER) 
bar COL (INTEGER) 

J* barV(Parent\Ji ndowNo, BarNo, Srow, Scol, Nrow) * / 
barV( INTEGER, INTEGER, INTEGER, I NT EGER, 

INTEGER, INTEGER, INTEGER) 
barH( INTEGER, INTEGER, INTEGER, INTEGER, 

INTEGER, INTEGER, INTEGER) 

current row( INTEGER) 

LISTING 6: MSUT .PRO 

/* File name: "m:sut . pro," 

NOTE: This file is extracted Iran A TURBO PROLOG TOOLBOX 
utility file . */ 

J* ****************************************************** •I 
/* **************************** UT IL I TES **************** *I 
/* ****************************************************** *I 

/* **************************** repeat ****************** *I 

PREDICATES 
nondetenw repeat 

CLAUSES 
repeat. 
repeat: - repeat. 

I* **************************************************** ... *I 
/* miscellaneous */ 
/* ****************************************************** *I 

PREDICATES 
/* The length of the longest string */ 

maxlen(STR INGLI ST, INTEGER, INTEGER) 
/*The length of a list */ 

l istlen(STRINGLIST, INTEGER) 
/* used in the menu predicates */ 

wri tel i st( INTEGER, INTEGER ,STRINGLI ST) 
J* Returns the reversed attribute */ 

reverseattr( INTEGER, INTEGER) 
min( INTEGER. INTEGER, INTEGER) 
max( INTEGER, INTEGER, INTEGER) 

CLAUSES 
maxlen( [HJTJ ,MAX,MAX1) :­

str len(H,LENGTH), 
LENGTH>MAX, I, 
maxlen(T. LENGTH,MAX1). 

maxlen( [_JTJ ,MAX,MAX1) :- maxlen(T ,MAJC,MAX1 ). 
maxlen( [],LENGTH, LENGTH). 

l istlen( !l ,0). 
l istlen( C_JTJ ,N) :-

1 istlen(T ,X), 
N=X+1. 

wri tel i st( , , []). 
writel ist(ll;ANTKOI., [H JTJ ):­

field str(LI ,0,ANTKOl.,H), 
LI 1=Ll+1, 
wri tel i st(LI 1 ,ANTKOI., T). 

min(X,Y,X):·X<=Y,I. 
niin(_,X,X). 

max(X, Y ,X) : ·X>=Y, I. 
max(_,X,X) . 

reverseattr(A1 ,A2) :-
bi tand(A1 ,S07,H11 ), 
bit left(H11 ,4, H12), 
bitand(A1 ,S70,H21 ), 
bi tri ght( H21 ,4, H22), 
bi tand(A 1, SOS, HJ1), 
A2=H12+H22+HJ1. 

/* •••••••••••••••••••••••••••••••••••••••••••••••••••••• *I 
/* &djustwindow takes a windowstart and a windowsize ard 

adjusts the windowstart so the window can be placed on 
the screen. adjframe looks at the frameattribute: if it 
is different fran zero, two is added to the size of the 
window */ 

I* ****************************************************** *I 

PREDICATES 
adjustwindow( INTEGER, I NT EGER, INTEGER, 

INTEGER, INTEGER, INTEGER) 
adj frame( INTEGER, INTEGER, INTEGER, INTEGER, INTEGER) 

CLAUSES 
adjustwi ndow( LI. KOL ,DLI , OKOL,ALI ,AKOL): -

LI <25-DLI, KOL <80- DKOL, I ,ALl=LI ,AKOL=KOI.. 
adjustwindow(LI, ,DLI ,DKOL ,ALI, AKOL): -

LI <25-DLI, I ,ALI =LI ,AKOL=80-DKOL. 
adjustwirdow(_,KOL,DLI ,DKOL,ALI ,AKOL):-

KOL <80-DKOL, I ,ALI =25-DLI, AKOL=KOL. 
adjustwindow(_,_,OLI ,DKOL,ALI ,AKOL):-

ALl=25 -DLI, AKOL=80-DKOL. 

adjf rame(O, R, C, R, C): - I -
adj frame(_, R1, C1 ,R2 , C2): -R2=R1+2, C2=C1+2. 

J* ****************************************************** *I 

July/ August 1988 TURBO TECHNIX 109 



BINARY TO TEXT FOR 
COMMUNICATIONS 
Transform binary files into transmittable Turbo Basic 
programs that can convert themselves back into 
their original form. 

Robert E. Stearns, Jr. 

Many electronic mail services, including 
MCI Mail, handle only text files, some­
times with limited character sets. A textfi/,e 
as used here means a file that contains 
only the printable characters in the ASCII 

PROGRAMMER character set, plus a handful of control 
characters that are often called "whitespace" charac­
ters: carriage return, line feed, tab, and sometimes 
BEL (character 7). If you want to send a binary file 
(or a file collection, such as an .ARC archive file) via 
such an electronic mail service, you have to first con­
vert the file to a text file . In addition, the recipient 
must have a corresponding program to re-create the 
text of your file in its original form. 

TEXTIFY.BAS 
TEXTIFY.BAS (Listing 1) streamlines both steps by 
converting any file to a Turbo Basic program that 
contains only the common displayable characters 
from the ASCII set, in lines less than 72 characters 
long. This new Turbo Basic program can then be re­
constructed on the receiving end using a BASIC in­
terpreter or compiler such as Turbo Basic, BASICA, 
or QuickBASIC (I've tested lengthy samples with all 
three) . With these options, almost anyone with an 
IBM PC or compatible should be able to retrieve a 
file that has been encoded with TEXTIFY. 

TEXTIFY, which is written in Turbo Basic, has 
three main parts: initialization, main file processing, 
and termination . In addition, a number of DATA 
statements contain the encoded data needed to re­
create the file in its original form. 

Initialization. Initialization involves several steps: 

• Getting the source file name; 
• Creating the destination filename; 
• Opening both the source and the destination 

files ; 
• Initializing the translation table; and 
• Writing the file re-creation program to the output 

file. 

110 TURBO TECHNIXJuly/ August 1988 

The translation table created by the initialization 
steps contains only upper- and lowercase alphabetic 
characters, the ten numeric digits, and the "@" and 
"$" symbols. The main file processing converts 8-bit 
binary values into the 64 characters in the transla­
tion table. 
Main file processing. Main file processing reads a 
section of the source file using BINARY mode file 
processing. If the character length of the last section 
of the source file is not equal to a multiple of three, 
that section is extended in order to equal that length. 
For every 3 bytes (24 = 3 X 8 bits) of the input file, 
4 integers in the range 0 to 63 (24 = 4 X 6 bits) are 
created. Each of the these integers is used as a sub­
script to access one of the characters from the trans­
lation table and then to write that character to disk. 

The characters are written to disk as part of a 
se1ies of DATA statements. As each section of the 
source file is converted, a checksum is calculated. Af­
ter the last character for each section has been writ­
ten to disk, this checksum is appended to the end of 
each DATA statement. After transmission, the fi le re­
creation program also computes this checksum, and 
then compares its result to the checksum read from 
the DATA statement in order to determine if the file 
has been corrupted by the transmission process. 
This process continues until no more data is left in 
the input file. Approximately every 1000 bytes, the 
user is informed about the progress of the 
conversion. 

Termination. Termination writes a final DATA state­
ment to the file, closes both the input and output 
files, and then tells the user that the process is 
complete. 

RE-CREATION 
The file re-creation program, embedded in string 
form in the DATA statements ofTEXTIFY, is the log­
ical inverse ofTEXTIFY. (It's written in a form that 
enhances its readability. If you often transfer small 
binary files, you may want to compress this file re-



creation program by eliminating 
spaces and using colons [" :"] to 
combine separate lines onto one 
line.) 

Re-creating the transmitted file 
involves nothing more than load­
ing the transmitted file into a 
compatible BASIC compiler or in­
terpreter and then running the 
file. The re-creation program con­
verts the data in its DATA state­
ments into a duplicate of the orig­
inal file. 

The re-creation process works 
like this: Since every character in 
the translation table is unique, the 
table can be used by the file re­
creation program to regenerate 
each corresponding integer value. 
The re-creation program takes 4 
characters at a time from its 
DATA statements, and maps each 
character into an integer in the 
range 0 to 63 (4 X 6 = 24 bits) us­
ing the INSTR function. It then 
converts these 24 bits to 3 bytes 
(3 X 8 = 24) of data, and writes 
these bytes to the output file. A 
checksum is computed for each 
DATA statement's data. That 
checksum is compared to the 
checksum that has been embed­
ded in the DATA statement by 
the conversion program. If the 
two checksums do not match, 
an error message is disp ye<l, 
indicating that 

the file took a "hit" during 
transmission through communi­
cation channels. 

READY, SET, TEXTIFY 
TEXTIFY may be used in two dif­
ferent ways. If you type its name 
as a command (with no oper­
ands), it prompts you for the 
name of the file to convert. Alter­
natively, you can type the 
following: 

TEXTIFY <filename> 

This command causes TEXTIFY 
to process the file named <file­
name>. This latter format is 
appropriate for use in either com­
munications scripts or .BAT files. 

The cost that TEXTIFY exacts 
for its service is an expansion in 
the size of the transmitted file, 

since every three binary bytes are 
represented by four ASCII char­
acters, plus the constant overhead 
of the embedded re-creation pro­
gram. Still, it's a small price to pay 
for being able to finesse a long 
string of eight-bit bytes through a 
seven-bit communications 
channel. • 

Bob Stearns is employed by the Uni­
versity of Georgi,a s Advanced Compu­
tational Methods Center. He is also 
a consultant on the use of supercom­
puters of several different architec­
tures, and acts as the public domain 
librarian for the ACMC and the local 
PC users group. 

Listings can be downloaded from 
CompuServe as TEXTFY.ARC. 

continued on page 112 



LISTING 1: TEXTIFY.BAS continued from page 111 

This program will take any file ard create a BASIC progr,.. 
which will recreate the file, but which contafns no characters 
that could cause any cOll1TU'lications link a problem. The only 
characters in the file are those from the 95 character graphic 
s.t>set of the ASCII set, ard many of the more obscure 
characters from that group have been eliminated as well. Any 
file created with program should pass through almost any 
connuiicat;ons link Lr1scathed. I even made sure the maxinu1 
line length was less than n. 

deHnt a·z 1 all integers makes everything faster 
1 the character conversion table dim tableSC63) 

chl.J'lks i ze=36 
aS=commandS 

' hardle the file in pieces this size 
' get the name of the f i le to convert 

if the file name is not present in the commard line, get it 
frOOI the user interactively. 

if aS= 1111 then 
input "Type the name of the ti le to process";aS 

erd if 
open as for binary as 1 
' 

the output file name will be the same as the i nput file name, 
including path, but with the extension BAS. 

i=instr(aS,". 11 ) 

if i=O then bS=aS else bS=leftS(aS,i - 1) 
bS=bS+" .BAS" 
open bS for output as 2 

' 
move the selected characters to the array to si""l i fy ard 
even speed up their access . 

read tbS, tbxS 
tbS=tbS+tbxS 
for i=O to 63 

tableS( i )=midSC tbS, i +1, 1) 
next i 

do 

read the conversion program from the data statements ard 
write it as the prefix to the converted data. 

read bl ineS 
print #2,bl ineS 

loop until bl ineS=" 9999 

write the first data statement containing the file length and 
file name to the converted file . 

filelen!=lof(1) 
print #2,using "#####DATA ";10000; 
print #2,aS, 11 , 11 ,filelenf 
print filelen! ; 11 bytes to do'11 Tell the user how ITIJCh there is to do 
l ineno=10001 ' The line nuit>er in the output progr .. 
filepos!=1 'Current position in the input file 
liml=1000 'When to tell how IT'lJCh we've done 

This is the main code of the program. It reads chunks of the 
input file, converts each group of three bytes to four 
characters in the output file, ard writes the characters to 
the output file in the form of data statements. As the input 
is processed, a checksum is formed for each chunk ard the 
checksum is written to the output file to be checked by the 
program which will reconstruct the file. 

whi leCfi leposl <=filelen!) 
seek #1, fi leposl-1 

if filepos!+chunksize-1<=filelenl then 
gets #1 , chunks i ze, tS 

else 
getS #1,filelenl - fileposl+1,tS 
i=len(tS) mod 3 ' for the rest of the code to 
if i=O then i=3 ' work properly, there nust be a 
tS=tS+leftS(" ",3- i) ' 111..1ltiple of 3 chars in tS 

erd if 
print #2,using 11 ##### DATA "; l ineno; 
l i neno= l i neno+ 1 
checksum=O 
for i=1 to len(tS) step 3 
j1=asc(midS(tS, i , 1)) 
j2=asc(midS(tS, i+1, 1)) 
jl=asc(midS(tS, i+2, 1)) 
c1= 
c2=((j1 ard 3) 
c3=C C j2 ard 15) 

j1 \ 4 
* 16 )+ j2 \ 16 
* 4 )+ j3 \ 64 

c4• (j3 ard 63) 
print #2, tableSCc1 >; 
print #2, tableS(c2); 
print #2, tableSCc3>; 
print #2, tableS(c4); 
checks..., = checkstm+ j 1+ j2+ j3 

1 aaaaaaaabbbbbbblxccccccc 
'111111222222333333444444 
• as the above bit map 
• shows, we will convert 
' 24 bi ts of three data 
' bytes to four nuit>ers 
' between 0 ard 63. 
1 Next, we print them as 
1 characters which can be 
' converted back to the 
1 corresponding nurbers. 
' al ways <= chlllks i ze*255 

112 TURBO TECHNIX July/ August 1988 

werd 

next i 
print #2, 11 ,";checlcsLD 
f i lepos ! =f i lepos ! +chunksize 
if fileposl>liml then 

print fi leposl ;" bytes done• 
l im! =l im!+1000 

erd if 

put on the final data statement irdicating the erd of the 
file, close the files ard tell the user we are done 

print #2 using "##### DATA "· l ineno· 
print #2:chrS(34);chrS(34); 11 :011 ' 

close #1 
close #2 
print "F i les closed, job Con'fllete" 
stop 

The characters to which the file is converted 

data ABCOEFGH I JKLMNOPQRSTUVWXYl 
data abcdefghi j k limopqrstuvwxyz0123456789aS 

' 
The file reconstruction program less the data statements 
which describe the ffle to be built. This progr""' does the 
inverse transform of the program above. It processes each 
gr~ of four characters into 6 bit integers, then concatenates 
consecutive groups of 8 bits into output characters. These 
output characters are then written to the output file until 
the original file size is reached. 

data " 1D DEFINT A-Z" 
data " 15 READ TBS, TBXS,FCS,JSS,JES" 
data " 16 TBS=TBS+TBXS" 
data " 20 READ AS" 
data " 30 OPEN AS FOR ClJTPUT AS #1" 
data " 40 READ FSI" 
data " 45 PRINT JSS;CHRS(32);AS" 
data " 50 READ LNS,CS" 
data • 55 L=10001" 
data " 60 WHILECLENCLNS)<>O)" 
data 11 65 CC=011 

data " 70 FOR 1=1 TO LEN(LNS) STEP 4" 
data" 80 D1=1NSTRCTBS,MIDS(LNS,I '1))-1" 
data" 90 D2=1NSTRCTBS,MIDSCLNS,1+1, 1))·1• 
data • 100 D3=1NSTRCTBS,MIDSCLNS, 1+2, 1))-1" 
data" 110 D4=1NSTR(TBS,MIDSCLNS,1+3, 1))-1" 
data " 120 C1•((01* 4) + (02 \ 16)) AND 255• 
data • 130 C2=( CD2*16) + CD3 \ 4)) AND 255• 
data " 140 C3=C CD3*64) + D4 ) ANO 255• 
data • 145 CC=CC+C1+C2+C3" 
data" 150 PRINT #1,CHRS(C1);" 
data " 160 X!=Xl+1" 
data• 170 IF X!<FS! THEN PRINT #1,CHRSCC2); X!=Xl+1• 
data• 180 IF Xl<FSI THEN PRINT #1,CHRSCC3); X!=Xl+1• 
data • 190 NEXT I" 
data " 195 IF CC<>CS THEN PRINT FCS;L" 
data • 200 READ LNS,cs• 
data " 205 L=L+1" 
data " 210 WEND" 
data " 220 CLOSE #1" 
data • 225 PRINT AS;CHRS(32);JES" 
data " 230 STOP" 
data • 1000 DATA ABCOEFGHI JKLMNOPQRSTUVWXYl" 
data " 1005 DATA abcdefghijklnnopqrstwwxyz0123456789aS• 
data " 1010 DATA FILE CORRUPTED AT" 
data " 1020 DATA CREATING FILE" 
data • 1030 DATA HAS BEEN CREATED" 
data " 9999 • • 



Basically speaking, there's 
one choice ... Turbo Basic! 

'' ... What really makes 
Turbo Basic special is its blind-
ing speed, small size. and many 
added commands. Programs 
compiled with Turbo Basic are 
often much faster and smaller 
than those produced by other 
compilers. 
Ethan Winer, PC Magazine Best of 1987 

Turbo Basic, simply put. is an 
incredibly good product. 

William Zachman, Computerworld '' 

Add another Basic advantage: 
The Turbo Basic Toolboxes New! 

• The Database Toolbox gives 
you code to incorporate into 

Turbo Basie's development environment gives you overlapping windows. pull down menus. and the ability 
to run text-based applications in a window. 

your own programs. You don't 
have to reinvent the wheel every 
time you write new Turbo Basic 
database programs. Turbo Basic" is the BASIC that 

lets even beginners write polished, 
professional programs almost as 
easily as they can write their names. 

The others don't. When you 
really examine them. you'll find 
that even though they may be 
"quick," they make it hard to 
get where you're going. (Sort of 
like a car with an engine but no 
steering wheel.) 

Turbo Basic takes you farther 
faster-in the comfort of a sleek 
development environment that 
gives you full control. Naturally 
it has a slick, fast compiler just like 
all Borland's technically superior 
Turbo languages. It also has a full­
screen windowed editor. pull-down 
menus. and a trace debugging 

Sys&.em Requirements: For the IBM PS/2 .. and the IBM.• ramily oC personal 
oompoters and all t<>Mb compatibles. Operating System: PC-OOS (M S-DOS) 
2.0 or later. ToolOOxes require TUrbo Basic 1.1. Memory: 384K RAM for 
oompUer. 640K RAM to compile Toolboxes. 

•Customer saUslaction is our main concern: if within 00 days oC purchase this 
prodlld. <tea not perform in acxordanre with our claims. call our cus&omer 
service department. and we will arrange a return:! . 

All BorlandproduasarettldemartsorrqlslttedlladcmrilolBortandllllMla&klrlal . I nc.~ 
lnnd Ind producs 1111i111e1 an: trademarbollbelr ~Ye holders. C,opyri&flL •1988 Borland 
ln~. lnc.. 811 246 

system. And innovative Borland 
features like binary disk files. true 
recursion. and more control over 
your compiling. Plus the ability to 
create programs as large as your 
system's memory can hold. 

The critics agree. The choice is 
basic. Turbo Basic from Borland. 

• The Editor Toolbox is all 
you need to build your own 
text editor or word processor. 
including source code for two 
sample editors. 

60-Day Money-back Guarantee* 

Compare the BASIC differences! 

Turbo Basic 1.1 QuickBASIC 4.0 QuickBASIC 4.0 
Compiler Interpreter 

Compile & Link to 3 sec. 7 sec. --
stand-alone EXE 

Size of .EXE 28387 25980 --
Execution time 0.16 sec. 16.5 sec. 21.5 sec. 
w/80287 

Execution time 0.16 sec. 286.3 sec. 292.3 sec. 
w/o 80287 

The Elkins Optimization Benchmark program from March 1988 issue of Computer Language was used. 
The Program was run on an IBM PS/2 Model 60 with 80287. The benchmark tests compiler's ability to 
optimize loop-invariant code. unused code. expression and conditional evaluation. 

BORLAND 
, N r r ,, N" r I 0 NA L 

For the dealer nearest you 
call (800) 543-7543 



VIEWPORTS IN TURBO BASIC 
Create a viewport-a screen within your screen-with the 
VIEW and WINDOW statements. 

Peter Aitken 

The screen display of graphics is an im­
portant part of the output of many com­
puter programs. Whether it involves the 

• 
simple shapes of a child's geometry tutor­
ing program, or the complex engineering 

SQUAREO~E drawings of a CAD package, graphical dis­
play is a fundamental component of today's personal 
computers. 

In Turbo Basic, the entire screen is normally used 
for graphics output. But what if we want to restrict 
the output to just a portion of the screen, so that the 
remainder of the screen can be used for something 
else? An example of how useful this can be is pro­
vided in Figure 1, which shows a screen from a sim­
ple program that I developed to quiz young children 
about basic geometrical shapes. Graphical output 
(the shapes) is restricted to the window, while the re­
mainder of the screen is available for text outpuL 
This Turbo Basic program uses the VIEW statement 
to establish a rectangular region of the screen, called 
a vil!wport, to which all graphics output is sent. 

In order to understand viewports and Turbo Ba­
sie's VIEW statement, you first need to understand 
the workings of the graphics screen and its coordi­
nate system. If you already understand screen coor­
dinates, feel free to skip ahead. If not, the following 
information will be useful. 

THE GRAPHICS SCREEN 
It's important to remember that viewports function 
only in graphics mode. In graphi£s mode, each of the 
individual dots, or pixels, on your screen can be con­
trolled to create any pattern. ln contrast, text mode 
displays predefined symbols, such as letters, num­
bers, and punctuation marks. While text can be dis­
played in graphics mode, individual pixels cannot be 
controlled in text mode. 

All IBM and compatible computers support text 
mode; whether your computer also supports graphics 
mode depends upon its display adapter. The most 
common graphics display adapters are the Color 

114 TURBO TECHNIX July/ August 1988 

Graphics Adapter, or CGA, and the Enhanced 
Graphics Adapter, or EGA. 

If we're going to control individual pixels, we need 
a way to specify their location. A pixel's location is 
specified by a pair of numbers, or coordinates, with 
the first, or X, coordinate giving the horizontal po­
sition, and the second, or Y, coordinate giving the 
vertical position. By convention, the pixel in the top 
left corner of the screen has coordinates (0,0). The 
X coordinate increases as you move to the right, and 
the Y coordinate increases as you move down, until 
you reach the pixel in the lower right corner of the 
screen. This pixel has the coordinates (XMAX-1, 
YMAX-1). The values XMAX and YMAX (which are 
used here simply for illustrative purposes, and are 
not predefined variables or constants) give the 
screen resolution. XMAX and YMAX, respectively, 
are the total number of pixels horizontally and ver­
tically on the screen. The screen resolution varies 
depending upon the type of graphics adapter. With 
a CGA, XMAX and YMAX are 640 pixels and 200 
pixels, respectively. With an EGA, they're 640 pixels 
and 350 pixels. For the remainder of this article, I'll 
assume CGA resolution; if you have an EGA, keep 
the difference in mind. 

The coordinate system just described involves phys­
ical coordinates, which are understood directly by your 
computer's display hardware. You can also define a 
separate system of wgical coordinates using Turbo Ba­
sie's WINDOW statement, as I'll describe a little later. 

VIEW PORTS 
Normally, graphics operations can utilize the entire 
screen. As I mentioned at the start of the article, 
Turbo Basie's VIEW statement lets you define a view­
port, to which graphics drawing operations are lim­
ited. The syntax of the VIEW statement is: 

VIE\I [ [SCREEN] [(X1 I Y1) - CX2, Y2) 
[,[color] [,boundary]]]] 



The coordinates Xl,Yl and X2,Y2 give the coor­
dinates of the top left and bottom right corners of 
the viewport. These coordinates must be given in 
real screen coordinates, even if a WINDOW state­
ment is in effecL I'll discuss screen coordinates in 
more depth shortly. 

color and boundary are optional numerical argu­
ments. If a color argument is included, the viewport 
is filled with that color and the previous contents of 
that screen region are erased. If no color argument 
is included, the previous contents of the viewport 
area are preserved. Including a boundary argument 
causes a border to be drawn around the viewport in 
the specified color. 

The optional SCREEN keyword determines the 
reference point for coordinates within the viewport. 
If SCREEN is included, pixel 0,0 remains at the top 
left corner of the screen; if SCREEN is omitted, pixel 
0,0 is at the top left corner of the viewport. Thus, 
omitting the SCREEN keyword has the effect of add­
ing Xl,Yl to any coordinates used in future graphics 
operations within the viewport. 

Let's take a look at how this works. I wrote a sim­
ple program that defines a viewport with coordinates 
(160,60)-(600,180), and then draws a circle whose 
center is at (260,60). Figure 2 illustrates the different 
results obtained by including or omitting the 
SCREEN keyword in the VIEW statemenL 

The VIEW statement without arguments defines 
the entire screen as the viewporL This has the effect 
of returning things to the way they were before any 
viewports were defined. Using the SCREEN state­
ment (not the VIEW statement's SCREEN keyword!) 
to change screen modes also cancels any VIEW 
setting. 

CLIPPING 
No, I haven't suddenly switched to talking about 
football penalties! Clipping is what happens to 
graphic output that falls outside the boundaries of 

Figure 1. Screen display of a child's 
geometry tutor program written in 
Turbo Basic. The VIEW statement 
was used to define the rectangular 
viewpoint, where all graphics output 
appears. The remainder of the screen 
is used for text. 

the active viewport: it is cut off, or clipped, and does 
not appear. Clipping applies to partial objects as well 
as to entire objects. For example, if you execute a 
CIRCLE statement, only that part of the circle that 
falls within the viewport appears. This could be the 
entire circle, part of the circle, or none of it at all. 

TEXT AND VIEWPORTS 
Often you'll want to put both text and graphics on 
the same screen. How does text output behave when 
a viewport is active? Just as it always does-as far as 
text is concerned, viewports don't exisL Text appears 
outside or inside a viewport, and can cross over the 
viewport boundary. Viewport clipping is not per­
formed on text. If you want to display text on a 
graphics screen with an active viewport, it's up to 
you to insure that the text does not impinge on the 
viewporL 

MULTIPLE VIEWPORTS 
You can have as many viewports on the screen as 
you like, although only the most recently defined 
viewport receives graphic output. When you deacti­
vate a viewport (by activating another viewport), the 
deactivated viewport's contents remain on the screen 
unless explicitly cleared. 

CLEARING THE SCREEN 
If a viewport is active, the as statement clears only 
the defined viewport, leaving the remainder of the 
screen unchanged. When it's first established, a view­
port is cleared only if a background color was spec­
ified in the VIEW statement. To clear the entire 
screen, first use the VIEW statement without argu­
ments to turn off the viewporL 

GET AND PUT 
What about using the GET and PUT statements with 
viewports? Both of these statements, which are used 
for screen animation and other interesting graphics 

continued on page 116 

July/ August 1988 TURBO TECH NIX 115 



Figure 2. The effects of including or 
omitting the SCREEN keyword in the 
VIEW statement. Both screens resulted 
from defining a viewport with corners 
at (160,60)-(600,180), and then 
drawing a circle whose center was at 
(260, 60 ). In the first screen, the 
SCREEN keyword was included; in 
the second screen, it was not. In the 
second screen, note how the circle is 
shifted to the right and downward by 
the same amount of pixels that the 
viewport is shifted from the upper left 
corner of the screen. 

VIEWPORTS 

continued from page 115 

effects, can be used with viewports-but with limita­
tions. Briefly, GET copies a portion of the screen 
into an array in memory. PUT does the reverse; it 
copies graphics data from a memory array to the 
screen. However, when used with viewports, the 
screen region addressed by a GET or PUT statement 
must be entirely within the active viewport. If the re­
gion being copied to or from crosses a viewport 
boundary, an Illegal Function Call error results. (If 
you're not familiar with GET and PUT, refer to the 
Turbo Basic Owner's Handbook.) 

REDEFINING SCREEN COORDINATES 
What if you don't like the normal screen physical 
coordinate system of640 X 200 (or 350 with the 

116 TURBO TECHNIX July/ August 1988 

EGA) pixels, with Y values increasing downward? 
The Turbo Basic WINDOW statement lets you rede­
fine the coordinate system to anything you like. Such 
a custom coordinate system consists of logical coordi­
nates that are remapped to your display's unchanging 
physical coordinates by Turbo Basie's runtime code. 
WINDOWs syntax is: 
WINDOW [[SCREEN] CX1,Y1)-(X2,Y2)l 

Xl,Yl are the new coordinates of the lower left 
comer of the screen, and X2,Y2 are the new coordi­
nates of the upper right comer. If the SCREEN key­
word is included, the Y coordinate system retains the 
default characteristic that larger Y values represent 
lower positions on the screen. 



Here's an example. After executing the statement 
WINDOW (0,0)-(1000,1000), the statement PSET 
(0,0) illuminates the pixel in the lower left comer of 
the screen (at physical coordinates 0,199), PSET 
(1000,1000) illuminates the pixel in the upper right 
comer (at physical coordinates 639,0), and PSET 
(500,500) illuminates the pixel in the center of the 
screen (at physical coordinates 320,100). The WIN­
DOW statement is extremely useful for customizing 
the screen coordinates to suit your needs. 

As mentioned earlier, the coordinates of a view­
port must be specified in physical screen coordinates 
even when a WINDOW statement is in effect. Plot­
ting within a viewport, however, makes use of the 
coordinate system established by a WINDOW 
statement. 

It's important to remember that the WINDOW 
statement does not change the physical resolution of 
the screen. After WINDOW (0,0)-(1000,1000), the 
screen does not suddenly have 1000 pixels vertically 
and horizontally. When a window statement is active, 
Turbo Basic translates the window's logical coordi­
nates into physical coordinates every time a drawing 
operation is performed. 

SCALING VIEWPORTS 
Why am I bringing up the WINDOW statement in an 
article on viewports? Although there is no direct con­
nection between the two statements, proper use of 
the WINDOW statement can greatly enhance the use 
of viewports. 

When used by itself, a VIEW statement sets up a 
viewport that shows only a portion of what would be 
drawn on the full screen. Anything that falls outside 
of the boundary of the viewport is clipped and there­
fore not seen. When the WINDOW statement is used 
appropriately, however, a viewport of any size or lo­
cation can become a miniature screen. The entire 
screen graphics image (as it would have appeared 
without a VIEW statement) is shrunken and scaled to 

Figure 3. Output of VIEW­
DEMO.BAS, which establishes a 
sca"led viewport using the subroutine 
ScaledVrewport. A graphics image is 
first drawn to the entire screen, then 
to a series of smal"ler viewports. Note 
how the full screen image is sca"led to 
fit within each viewport. 

fit entirely within the viewport. How do we do this? 
Conceptually, it's quite simple. Normal full-screen 

graphics operations use coordinates in the range 0,0 
through 639,199. All we need to do in order to 
"shrink" the full screen into a viewport is use the 
WINDOW statement to establish a coordinate system 

continued on page 118 

$149 HI-SCREEN XL™ 
only 

Multilanguage support 

No Royalties 

30-day risk free 

Call now for demo and information: 

1-800-338-2852 

Softway, Inc. , 500 Sutter St. , Suite 222, San Francisco, CA 94102 

July/ August 1988 TURBO TECHNIX 117 



LISTING I: VIEWDEMO.BAS 

'Turbo BASIC progr- VIEl«>EMO: demonstrates use of 
'subroutine ScaledViewport to create scaled graphics vieworts 

screen 2 

call DraWStuff 
delay I 

for i=6 to 2 step -I 
call Scaledlliewport( i*15, i*8, i*IDO, i*30) 
call DrawStuff 
delay I 

next i 

while not instat : wend 
end 

SUB Scaledlli ewport(XI, YI ,X2, Y2) 

•sets up a vi ewport with corners at XI, YI and X2, Y2. Full 
•screen graphics output will be scaled to fit the viewport 

xscale = 640 I (X2-X1) 
yscale = 200 I (Y2-Yll 
xoffset = -(XI * xscale) 
yoffset = -(YI • yscale) 
xmax = (640 • xscale) + xoffset 
ymax = (200 * yscale) + yoffset 
WINDOW SCREEN (xoffset, yoffset) - (xmax, ymax) 
VIEW SCREEN CXl,Yll - CX2,Y2)., I 
CLS 

END SUB 

SUB DrawStuff 
line (0,0)-(639, 199> 
line C0.199)-(639,0l 
circle (320, 100),50, 1 
circle (35,30),30, 1 
circle (605, 170),30, I 
circle (605,30),30, I 
circle (35, 170),30, I 

END SUB 

ll8 TURBO TECHNIX July/ August 1988 

VIEW PORT 

continued from page 117 

such that the viewport has coordinates 0,0 at its 
upper left comer and 639,199 at its lower right 
corner. 

The procedure may seem a bit tricky, but it's actu­
ally quite straightforward once you understand 
what's required. We first need scale factors for the X 
and Y coordinates. These factors are determined by 
dividing the screen size (width or height, 640 and 
200 or 350, respectively) by the size of the corre­
sponding viewport dimension. Calculate the X and 
Y offsets of the origin by multiplying the physical 
coordinates of the viewport's top left comer by the 
scale factors. These values, which are the new win­
dow coordinates of the top left corner of the screen, 
must be negative so that window coordinates 0,0 fall 
on the screen at the top left comer of the viewport 
Next, the window coordinates of the lower right cor­
ner of the screen must be calculated. Finally, WIN­
DOW and VIEW statements are executed to establish 
the coordinate system and the viewport 

Listing 1 provides a real example of how to create 
a viewport that is scaled to the full-screen coordinate 
system. The subroutine ScaledViewport does all of 
the interesting work. For demonstration purposes, 
ScaledViewport is embedded in a brief demonstra­
tion program that first draws a graphics image to the 
full screen, then draws the image to progressively 
smaller scaled viewports. The program's screen out­
put is shown in Figure 3. 

ScaledViewport accepts the coordinates of the de­
sired viewport as arguments. It then performs the 
needed calculations, sets up the coordinate system, 
and establishes and clears the viewport As written, 
the subroutine does not perform bounds checking 
on viewport dimensions, nor does it perform any 
other error checking. 

To ensure that you can understand what Scaled­
Viewport is doing, this subroutine does only what is 
necessary in order to create the scaled viewport. It 
could certainly be modified to be more general and 
more reliable by making certain additions. The ver­
tical screen dimension is currently "hard-coded" at 
200 pixels. A better method, however, would be to 
pass a parameter containing the vertical screen di­
mension, which may also be 350 pixels (on the EGA) 
or 480 pixels (with the VGA). It would also be a good 
idea to perform error checking on the coordinates 
that are passed as parameters to ensure that mean­
ingful values are always passed. With a little addi­
tional work, ScaledViewport could become an impor­
tant addition to your Turbo Basic graphics toolkit. • 

Peter Aitken is an assistant professor at Duke University 
Medical Center, and is the author of DigScope, a scientific 
software package. He writes and consults in the microcom­
puter field. 

Listings may be downloaded from CompuServe as 
VJEWYI'.ARC. 



It's Easy To See Why Quattro 
Is The Spreadsheet Of Choice! 

In fact. it's hard not to see. 
Because one look at Quattro" shows 
you a lot more for your money. 
More speed. more power. and the 
most spectacular presentation­
quality graphics anywhere-
built in. 

Dazzling and diverse 
If you went out looking, you'd 

be hard pressed to find spreadsheet 
graphics as dazzling and diverse 
as Quattro's. If you did, they'd be 
in a separate standalone package 
with a separate standalone price. 
And they still wouldn 't be inte­
grated with your spreadsheet's 
menu commands the way 
Quattro's are. 

Brilliance built in 
Quattro lets you choose from 10 

different types of presentation­
quality graphs and a huge selection 
of fonts. fill patterns and colors. 

Quattro supports Postscript" too. 
So you can use today's most popu­
lar laser printers and typesetters to 
make your work-and yourself­
look positively brilliant. 
"C'uscomer salls/'action is our main OOl'ICX'rn . i[ .. ·1Uun 60 days of pur<t!wit this prodUCl.doe:'l 
l'ltllperl'orminaocurda~,.1thoor cl11ms. calloorcus1omtt :ten iOl' dcpartment. aod,.-e ..,ill 
arrant,~arefood 

All HorlaOO prod\IC\.'i are t.rademarls Of reei~red trademarks of Borlaotl lnlcrnatiooal. Inc. W.Us 
andl -2.Jareregi*n:dttadi'marks of l.aus l>t...,-elopmentCorp Ulllerbtand1mdproduo.names 
aretra0ernarklioftlw'ir~""00111trs Copyrighl. Cll 968Bortllndlni.trnational.lnc. Bl 123&. 

Hard copy made easy 
Quattro makes it easy to get hard 

copies of your graphics-with a 
printer or plotter. directly from the 
spreadsheet. In fact. you don't even 
have to leave the spreadsheet. 

Seeing is believing! 
Dazzling graphics are just one 

of Quattro's eye-opening features; 
your dealer can show you the 
others. Quattro is easy to use and 
fully compatible; it even accepts 
familiar 1-2-3" compatible com­
mands and uses data files created 
with other spreadsheets and data­
bases. But Quattro gives you a lot 
more-in fact. twice the speed and 
power of the old standard. For only 
half the price. 

60-Day Money-back Guarantee* 

For the dealer nearest you 
call (800) 543-7543 

INffRNA TIONAL 

'' Quattro contains the most com­
prehensive presentation graphics 
capability available in a spread­
sheet ... The graphs Quattro can . 
produce surpass even those avail­
able through add-on products like 
Lotus Graphwriter or Freelance 
Plus. If Borland wanted to. it could 
certainly sell the graphics portion 
of the spreadsheet on its own merit 
as a standalone graphics application. 

Robert Alonzo, Personal Computing 

Quattro's presentation-quality gra­
phics output capabilities rival 
those that 1-2-3 can obtain only in 
conjunction with separate presenta­
tion graphics software . . . For me, 
at least. Quattro has certainly 
become the character-oriented 
spreadsheet program of choice. 

William Zachmann, Computerworld 

In the few years since Lotus Devel­
opment Corp. introduced 1-2-3. 
many companies have attempted to 
unseat the king of the spreadsheet 
hill. The latest contender. Borland 
International Inc. 's Quattro, suc­
ceeds where other spreadsheet 
packages have failed . .. Quattro is 
at least two steps ahead of 1-2-3. 

Ricardo Birmele, PCResource '' 



~ CALLING BIOS SERVICES FROM 
~ TURBO BASIC 
E-

Now you can call BIOS without the agony of interpreted 
BASIC-just CALL INTERRUPT. 

Ethan Winer 

In the past, BIOS services could only be ac­
cessed from BASIC by using assembly lan­
guage. This process required a knowledge 
of all the various BIOS functions and how 
to call them, plus a great deal of tedious 

wiZAao coding. Worse, the only way that a BASIC 
program could communicate with an assembler rou­
tine was by passing variable addresses on the stack­
so the programmer needed a solid understanding of 
both assembly language and the way that BASIC stores 
variables internally. 

With the advent of Turbo Basic, the need to use as­
sembler for BIOS calls is behind us-Turbo Basic calls 
interrupts directly. Even locating variables can now be 
performed entirely within Turbo Basic. 

ENTER INTERRUPTS 
How can a program call on BIOS routines if it doesn't 
know where to find them? The very first few bytes of 
the PC's memory map contain a table of addresses, 
called the interrupt vector tabl,e. These addresses point to 
interrupts. The first four bytes in the interrupt vector 
table hold the segment and address for interrupt 0, the 
next four bytes in the table point to interrupt 1, and so 
forth. Thus, a program can use the number of an in­
terrupt to find that interrupt's service routine in mem­
ory. 

The Intel 86 family of microprocessors has a soft­
ware interrupt insouction (INT) for accessing routines 
through the interrupt vector table in low memory. 
Whenever the CPU encounters an insouction such as 
INT lOH, it goes to the interrupt table, obtains the ap­
propriate address, and calls the routine automatically. 

REGISTERS 
BIOS services are grouped by function. For example, 
screen-oriented ("video") services fall under interrupt 
lOH. To identify the particular INT lOH service that is 
needed, a service number is first placed into the pro-

120 TURBO TECHNIXJuly/ August 1988 

LISTlllG 1: SCROl.Lll'.IAI 

'****•••••• Scrol lUp.Bas 
UL.Row = 5 : UL.Col = 5 
LR.Row = 18 : LR.Col = 74 

XAX=1:XBX=2 
XCX=3:la>X=4 

CLS 
FOR X = 1 TO 24 

PRINT STRINGS(80, X + 64); 
NEXT 

1 specify the corners 

'define the registers 
• as named constants 

'print a test pattern 

INPUT; "How many rows to scroll? (0 to clear) ", Rows 

REG XAX, Rows + 256 * 6 
REG XllX, 7 * 256 
REG XCX, UL.Col + 256 * UL.Row 
REG :vix, LR.Col + 256 * LR.Row 

CALL INTERRUPT &H10 

•rows in AL, service 6 in AH 
•color in BH 
'UL.Col in CL, UL.Row in CH 
'LR.Col in DL, LR.Row in DH 

•call BIOS to do it 



cessor's AH register. Other information required by 
the interrupt may be passed in additional registers. 

A register is simply a memory location inside the mi­
croprocessor. You could think of registers as being the 
8088's built-in "local variables." An understanding of 
the difference between the various registers is helpful 
when using Turbo Basie's CAIL INTERRUPT instruc­
tion. The 8088 has 11 registers; we'll take a brieflook 
at each of them. 

General purpose registers. The four general purpose 
registers, called AX, BX, CX, and DX, are capable of 
holding operands for the simplest instructions (such as 
addition and subtraction). Each general purpose reg­
ister also has its own specialty. For example, AX is the 
only general purpose register that can be multiplied 

Index registers. Two other registers, called SI (Source 
Index) and DI (Destination Index), can also be used 
for simple addition and subtraction. However, the real 
purpose of these two registers is to perform indexing­
to point to an address that contains data. 

Segment registers. Four segment registers, called CS, 
DS, F.S, and SS, hold the current code, data, and stack 
segments, plus a spare or "extra" segment 

REGISTER ORGANIZATION 
Before moving on to the actual interrupts, we must first 
discuss the way that some of these registers are orga­
nized The four general purpose registers-AX, BX, 
CX, and DX-are all capable of holding a single 16-bit 
word However, each of these registers can also be con­
sidered as two separate 8-bit registers. 

When a general purpose register is treated as two 
separate 8-bit registers, each byte in the register can be 
accessed independently. For example, the high-byte 
portion of AX is referred to as AH, while the low-byte 
part of CX is called CL This approach is important to 
understand, because Turbo Basic does not allow the in­
dividual 8-bit portions of each register to be set or read 
Therefore, if a particular DOS service requires the AH 
register to be loaded first with a number, that number 
must be multiplied by 256 (which, in effect, shifts the 
8-bit quantity "up" into AH), and then the number is 
loaded into AX To load two separate quantities into 
AH and AL, the quantity that is intended for AH must 
first be multiplied by 256. Next, the resulting number 
must be added to the quantity that is intended for AL, 
and then the final sum is put into AX. 

Registers are loaded and read with Turbo Basie's 
REG statement, which can be used either as a state­
ment or as a function. Notice that REG doesn't really 
operate on the processor's registers; rather, REG reads 
or writes its parameters into a special area of memory. 
When CAIL INTERRUPT is used, those values are 
transferred to or from each machine register. 

TO CALL AN INTERRUPT 
Interrupt 5, which performs a Print Screen, is the 
simplest PC interrupt Unlike the other BIOS inter­
rupts, interrupt 5 needs no additional setup or pre­
loading of any registers. To access interrupt 5, issue 
the following call: 
CALL INTERRUPT 5 

That's all there is to it! This call simply accesses the 
code that is already built into ROM; the BIOS does the 

real work. If the GRAPHICS.COM utility (which is 
shipped with DOS) is already loaded, then that utility 
is called instead of the ROM-based routine. Remember 
that whenever an interrupt is invoked, the 8088 looks 
at low memory for the address that contains the actual 
service routine. Since GRAPHICS.COM places its own 
address into RAM, interrupt 5 is routed automatically 
to the RAM-resident routine, rather than to the origi­
nal code that is stored in the BIOS ROM. 

SCROLL 'EM 
Although BASIC has generally provided more features 
than any other compiled language, there are still sev­
eral BIOS services that even Turbo Basic doesn't per­
form well or at all. An example of such a service is the 
process of quickly clearing or scrolling rectangular 
subsets of the text display screen. 

BIOS handles the process of clearing and scrolling 
screen regions with two separate routines: Service 6 
scrolls a region up, and service 7 scrolls a region down. 
When these routines are called, a number of param­
eters must be specified that indicate the upper left and 
lower right comers of the screen region, the number 
of lines to be scrolled, and an attribute to which the 
blanked lines, or lines within the region, will be set 
Note that a screen region can be cleared by setting the 
number of scrolled lines in service 6 to zero. 

SCROI.LUP.BAS (listing 1) provides a small demo 
program that scrolls up or clears a specified number of 
rows. Notice that all of the BIOS video routines assume 
that rows are numbered from 0 to 24, and that col­
umns are numbered from 0 to 79. Also notice the use 
of Turbo Basie's named constants (which are preceded 
by%) to provide more meaningful names and to make 
register identification easier. 

When the upper and lower halves of each register 
are loaded, an extra step is necessary. Since Turbo 
Basic doesn't provide direct access to each register half, 
the register halves must be loaded by the multiplication 
and addition steps shown in SCROI.LUP. Note that a 
color or attribute parameter can be placed in the BH 
register to select the background Service 7 of interrupt 
IOH operates similarly to service 6; with both services, 
all parameters are passed in the same registers and 
carry the same meaning. The only difference between 
service 6 and service 7 is that the latter scrolls down­
ward, rather than upward 

WORK SMART 
There are many other useful BIOS services, all of 
which may be accessed through CAIL INTERRUPT. 
Keep in mind, however, that most BIOS functions 
(such as reading the cursor position, writing an individ­
ual pixel dot, and so forth) can be accessed more easily 
with Turbo Basie's built-in routines. Once you under­
stand the power of BIOS and Turbo Basic, CAIL IN­
TERRUPT will let you work as hard as you need to­
without working harder than you have to. • 

Ethan Winer owns Crescent Software, and is t!U! autlwr of t!U! 
QµickPak utiliti.e.5 for Turbo Basic and Microsoft 
Qµick.BASIC. 

Listings may be duum/.oodJJd from CampuServe as 
SCROLL.ARC. 

July/August 1988 TURBO TECHNIX 121 



~ DATE FORMATTING WITH 
;3 
~ SPRINT 
...;i 
rfJ 

~ Make a date with Sprint to explore the basics of building a 
§ ('(' soft" user interface. 
~ 

Neil Rubenking 

Behind Sprint's "soft interface" lies a pow­
erful programming language. Sprint pro­
grams (called macros) can build a complete 
custom user interface (UI) that makes 
Sprint look and act just like another word 

PROGRAMMER processing program. That's no mean feat, 
considering the wide variation in features among cur­
rent word processors. Here's how Sprint handles one 
particular feature of its WordPerfect UI. 

HOW ABOUT A DATE? 
In WordPerfect, pressing Shift-F5 and "l" inserts the 
current date into the text Pressing Shift-F5 and "2" al­
lows you to edit the date format Codes that control the 
format are contained in a special format string; each 
numeric character from "O" to "9" selects a different 
form of the time and date. For example, the default 
format string "3 1, 4" specifies the form ''.July 4, 1999." 
A percent character in the string forces a subsequent 
number to two digits, and adds a leading zero if neces­
sary. If the default string is changed to "3 %1, 4," the 
date appears in the form ''.July 04, 1999." 

In order to reproduce this WordPerfect feature, 
Sprint must both edit and interpret the format string. 
Since editing the string is easier than interpreting it, 
we'll look at the editing process first 

TO EDIT THE STRING 
Sprint stores the format string in Q-register G (QG). 
This one-line statement cou/,d perfonn the edit: 
message "Date Format: " set QG 

This command displays the words "Date Format:" on 
the status line, and makes the current contents of QG 
available for editing. However, we can't reasonably ask 
the user to haul out the manual for the list of legal 
codes-we need to display the available options on the 
screen. 

The macro DateFormat (Figure 1) uses an "infobox" 
to display the codes while the user enters the new date 
format An infobox is a noninteractive suucture that is 
otherwise similar to a Sprint menu, and consists of a 
box that is just big enough to hold all of the informa-

122 TURBO TECHNIXJuly/ Augusl 1988 

LISTI NG 1: FULL DATE.SPll 

JnsertOate : ; Take date format in QG and turn into today's date 
int x 
O -> posn 
set QQ 11Xd" 
do { 

posn slb:har QG -> x 
++posn 
x case < 

0 
•1• 
•2• 
•J• 
•4• 
•5• 
'6' .,. 
'8' 

•9• 
•o• 
•x• 
s 

break, 
(time 3 put qOl (set qO "Xd"), 
(time 4 put qOl (set qO "Xd"l, 
MonthName (set qO "Xd"), 
(1900+time 5 put) (set qO "Xd"), 
(time 5 put) (set qO "Xd"l, 
OayOflleek (set qO "Xd"), 
(time 2 put qOl (set qO "Xd"), 
(time 2->hours 7 ((hours >12)1 hours-12 : hours) 

: 12 put qOl (set qO "Xd:"l, 
(time 1 put qO) (set qO "Xd"), 
Cif time 2<12 "mn" else "P""'l (set qO "Xd"), 
set QO 11X.02d• 
(x insert) (s~t QO "Xd") ;other char, pass THROOGH 



DateFormat : 
infobox "Date Format" { 
"Character 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
%% 

Examples:", 

Meaning", 
Day of the month", 
Month (nllllber)", 
Month (word)", 
Year (all four digits)", 
Year (last two digits)", 
Day of the week (word)", 
Hour (24-hour clock)", 
Hour (12-hour clock)", 
Minute", 
am I pm", 
Include leading zero for nllllbers less", 
than 10 (must directly precede m.111ber) 11

, 

11 3 1, 4 = December 25, 1984 11
, 

11 %%2/%%1/5 (6) = 01/01/85 (Tuesday)" 
} (message "Date Format: " set QG) 

Figure 1. This Sprint infobox explains the ti'TTU! and date 
formatting aptWris avail,ahl,e in the WordPerf r,ct UI. 

ti on lines. The title line displays at the top of the box. 
When the macro that follows the infobox finishes exe­
cution, the box disappears. 

CALL MY INTERPRETER 
As described above, the process of editing the format 
string is relatively easy. The difficult task is in1£rfrreting 
the string into the appropriate date form. We'll use 
Sprint's macro time, which returns different portions 
of the current date and time. Table 1 shows the output 
of the time macro for different inputs. 

Input Output 

0 seconds (0-59) 
I minutes (0-59) 
2 hours (0-23) 
3 days (1-31) 
4 months (1-12) 
5 year minus 1900 (0-199) 
6 day of week (Sunday= 0) 

Tahl,e 1. Numeric formatting values returned by Sprint's time 
macro. 

continued on page 124 

July/ August 1988 TURBO TECHNIX 123 



SPRINT 

continU£d from page 123 

Note that most of time's outputs in Table 1 match se­
lections in Figure 1. However, time does not provide 
names for the months and days of the week. Figure 2 
lists a pair of macros that make up for the missing 
names. Important rwte: The entire "%[ ... ]" construct 
must occur on one line. The MonthName structure 
had to be broken onto three lines in order to fit on a 
magazine page, and the DayofWeek structure had to 
be broken onto two lines. 

OayofUeek : ;Enter day of week at cursor 
time 6 put 
"%[Sunday%;Monday%;Tuesday%;Uednesday%;Thursday%; 
Friday%;Saturday%J 11 

MonthName : ; Enter Month at cursor 
time 4 -1 put 
11%[January%;February%;March%;April%;May%;June%; 
July%;August%;September%;0ctober%;November%; 
December%] " 

Figure 2. Th£se two Sprint macros return names for th£ 
month and day of th£ week. (Not,e that se/,ection staf£ments 
must exist on one line, even tlwugh both were broken to fit on 
th£ magazine page.) 

THEWARMUP 
Rather than attempting to interpret the format all at 
once, we'll start with a simplified version. Macro Sim­
pleDate in Figure 3 handles all of the code characters 
except the "%%." SimpleDate does not allow you to 
force numeric fields to two digits. 

The major structures in the SimpleDate macro are 
the do loop and the case statement within that loop. 
The do loop checks each character of the format string 
stored in QG. The case statement acts on those char­
acters. 

The case statement contains three main alternatives: 
Variable x may contain one of the code characters, 
zero, or neither. When x contains a code character, the 
macro interprets that code character. When x contains 
a zero, the end of the format string has been reached, 
so the program breaks out of the loop. If x is any other 
character, then it's passed directly into the output text 

Option 8 may be a bit hard to understand due to the 
use of the abbreviation characters "?" and ":" for IF 
and El.SE. Here is that same line with the words spell­
ed out: 

IF time 2->hours { 
IF hours > 12 hours-12 
ELSE hours 

} ELSE 12 put 11%d11 

124 TURBO TECHNIXJuly/ August 1988 

Si~leOate : Turn date format in QG to today's date 
int x 
0 -> posn 
do { 

posn subchar QG -> x 
++posn 
x case { 

0 break, 

} 
} 

'1' 
'2' 
131 

141 

151 

'6' 
171 

'8' 

191 

•o• 
$ 

(ti me 3 put ll%dll) I 
(time 4 put ll%dll) I 

MonthName, 
(1900+time 5 put), 
(time 5 put) I 
DayOfUeek, 
(time 2 put H%dll) I 
(time 2->hours ? 

((hours >12)? hours-12 : hours) 
: 12 put ll%dll) I 

(time 1 put 11%d11 ), 
(if time 2<12 11 am11 else "pm"), 
ex insert) ; other char, pass it THROUGH 

Figure 3. The simplified dat,e formatting macro SimpleDare. 

Option 8 examines the hours value and then takes one 
of several steps: If the hours value is both nonzero and 
less than 12, it's used without being changed If the 
hours value is greater than 12, 12 is subtracted from 
that value. If the hours value is exactly zero, then the 
value of 12 is used 

THE MAIN EVENT 
The actual lnsertDate macro (Listing 1) is just Simple­
Date with some added formatting. A Sprint output for­
mat string is stored in Q-register 0. If two digits are be­
ing forced, "%o/v02d" is used; otherwise, "%%d" is used 
Because the code character "%%" affects an immediately 
subsequent numeric value, QO is set back to "%%d" af­
ter any other character. With that step, InsertDate is 
complete. 

Each word processing program takes its own unique 
approach to the tasks of writing and editing. With the 
powerful macro language in Sprint, these different ap­
proaches can be easily emulated. If you want to learn 
Sprint programming, study the alternate User Interface 
files, copy them to distinct names, and modify them to 
your own purposes. Soon you'll be ready to write your 
oum ultimate UI. As Sprint's philosophy says, "If a fea­
ture you need doesn't exist-build it!" • 

Neil Ruhenking is a professiuna/, Pascal programmer and 
writer. He is a contributing editor for PC Magazine, and 
mn be found daily on &rland's ComfruSerue Forum answer­
ing Turbo Pasml questions. 

Listings may be doumWaded from ComfruSerue as 
SPDATE.ARC. 



Introducing 
Sprint-

the professional, 
programmable 
word processor! 

SPECIAL OFFER: 
ONLY $99.95! 

INTERNATIONAL 



The race into the Age of 
Customization is on-led by 
Sprint.® You can use Sprint as 
is and be very happy with the 
way everything works for you 
-or you can easily customize 
Sprint to do everything 
your way. 

It's a completely 
customizable word processor 
that. for example. lets you 
re-define keys, delete menu 
items. make your own short­
cuts. invent your own menus. 
and use Sprint's online facil­
ity to create your own quick 
reference cards. 

• customer satisfaction is our main concern; if within 60 days of purchase this 
product does not perform in accordance with our claims. call our customer 
SCr\'ice department. and we will arrange a refund. 

All Bor land products are trademarks or registered trademarks of Bor land 
lnternalional. Inc. Other brand and product names are trademarks of their 
respective holders. 
Copyrighl CJ988 Borland International, Inc. Bl 1267 

Why walk when 

You're given the 
customizing power to avoid 
pop-up menus altogether-
if that's the way you like to 
work. Sprint can be com­
pletely function-key-driven. 
and while Sprint's function 
key assignments are logically 
defined. they're easy to alter. 

Nothing goes slow 
when you Sprint! 

Sprint is fast. It scrolls fast. 
edits fast. switches between 
files fast. offers fast shortcuts 
and proves that the slow way 
is no way. 

Prires and specifications subject to change without notice. 

Minimum System Requirements: 

t'or the IBM PS/ 2 and the IBM family of personal computers and all 100% 
oompatibles. Requires PC-OOS (MS-00$8) 2.0 or later. 256K memory (384K 
recommended). and two fioppy drives or a hard disk. 

You can work on up to 
24 files at once. divide 
your screen into as many 
as six windows. and never 
miss a beat because Sprint 
remembers which files 
you were working 
on last. 

Because Sprint brings 
you the speed you're 
used to with Turbo 
Pascal® and Turbo C.® 
it never wastes your 
time and true Turbo­
performance is finally 
available in a text 
editor. 

To see just how 
much faster Sprint works for 
you. check out the compara­
tive time tests. 

Sprint gives you six 
optional interfaces 
including EMACS 

The customizing you 
choose to do is one variation 
on Sprint's theme and there 
are six others. 

We give you free (for a 
limited time) Alternative 
User Interfaces for: 

• EMACS • WordPerfect® 
• WordStar® • MultiMate® 
• Microsoft® • SideKick® 

Word 

And you also get file 
conversions for: 

• WordStar 
• Microsoft Word 
• WordPerfect 
• MultiMate 
• DisplayWrite® 4 

(DCA RFf) 



you can Sprint? 
Sprint lets you use EGA 

and VGA cards for 43- or 
50-line displays; it directly 
reads ASCII files without 
conversion and saves files 
with hard carriage returns 
for electronic mail. 

See how fast you can Sprint! 
. - -

~-
Save File' Top to 

Bottom2 
Go To Line 

1500 
Search & Find 
Replace3 Unique Word 

Sprint 1.0 5.9 l .1 
--

WordPerfect 4 .2 41.1 I 5.3 
_j_ 

f 

WordStar 4.0 4.4 I 4.6 
--+ 

MS Word 4.0 9.7 .1 

+ . 1 

5.4 

4.7 

N/A 

1.6 

6.6 

17.1 
--

4.6 

3.3 

6.2 

13.8 

7.0 
You're given a built-in 

compiler with a syntax similar 
to C; separate source files; an 
extensive macro language; the 
ability to call DOS functions 
and much. much more. 

L --
Tests were perrormed on a Multitech 286 AT (8 MHz). 640K RAM. 'rile size 103K. ' 1636 lines. 
' 14 occurrences. Times shown are in seconds. (Benchmark details available upon request.) 

"Auto-Save" means you'll 
never lose your work when 
you Sprint! 

Forgetting to "Save" is a 
fact of life as are power out­
ages. and it used to be that 
a power outage could wipe 

out everything you've done. 
Not any more. Your work is 
always safe when you Sprint. 

Sprint's "Auto-Save" auto­
matically saves your words as 
you type. so if the lights do go 
out. you may be in deep dark-

ness but not deep trouble. 
Sprint's Auto-Save is more 
than "insurance." it's also 
invisible. You know it's there. 
but it does its job without 
interrupting yours. 

Stonewall Times 
sMYfHE 

sHf.RRY L. · Ave1111e 
222 Fo1mta1CA 95005 

Berr Lomond, 5555 
(408) 555-

ss10NAL osJECTl\IE: 
pROfE ofessional e 

any utilizing tnY pr 
. owing cotnP 

Position with a gr 

. R resenlative 

November 1987 
to 

custoineri~sERVt~fs, 1NC. d n 
50'FfWA c \ilom1a . ·t corresPon e 
Scotts Va~~1' lo~ handling pn~~ble !or alf wri~e 

Present ~:cr&o or ~~':S~:i'~r~~f°1~e1g1 ·;r~~~~"~~<lers West Germa tomers, invo vin rnanagernent t 
with U.S. c~i~ g· working wit\~ for company 
problem .fat~~~~es and repfa~es and spreads 
customed ol accounting pac 
know\ ge 

. . tJQ!lice Manager 

October 1986 

t~ove111ber J 987 

Rece~ionSERV ICES, 1NC. . 
oocrOR C rromia ·1 appoint 
Santa Cn~i~i\i~i~S inc\ud~d,lll~r~t~iningdan 
Rcspo . roduct101 ' ,ar es an 
e1nphas1s on pts receivable '\ ~,d contro 
posting acco~n balancing n1onll \-~em to an i 

August 1985 
1
ac1ober 1986 

April 1981 
to 5 August 198 

bank depos' ' f om a nianua sy 
the receivables r 

Accounts~gt~~~~ietoMPANY . 
!-IAROW 17 California batching AIR 
Santa Cri .'\'fes included. hi p./R sta 
Respcns1b1 ir~conci\cd rnont ler inquiri 
coo1'{'ule<;.,d handled cus:~"and prepar 
involCesd• ·1y cash rece1p d nPrforrn 
Posted ai EOP operator an r 
Assisted the 
as required-

Reception~~RE OFFICE 
HEAl.Tl-1 . · noi 
,._ Jose Cahlom.1a 1 ded daily apF~d 
.:Jo(IJ\ '. ·1·L·es me u • es an 
Respcns1b1' i_ Postin!!, charg ts 
_: .... .,,_nr:<"nce c\a10' 5 • ._'"'_.,"({ sta\ernen · 

The Employee Newsletter of Stonewall Brokers Inc 
May '88 ' . 

We'll Be Havin " 
Some Fun 

TI1i5 year's summer party 
will be held on Cowell 
Beach, down l>y the Board­
walk. on Friday, June 10th. 
rt wm start at high noon. 
We will have two volleybaJJ 
courts. loads of beach 
chairs, and food and drink 
until well Into the evening. 
We'IJ end wtlh a bonfire and 
marshmallows. 

We"ll be barbecuetng beef rib 
steaks. chicken thighs, 
salmon steaks. and vege· 
table kabobs. Since we 
can't provide an four to 
everybody. be sure lo sign 
up with Party Planning for 
your choice of food before 
June I st. We'll also have 
salads. breads. vegetables, 
baked potatoes. and des­
serts. as well as three or 
four do?.,cn different Items 
for your snacking pleasure. 

We want you lo have as 
much fun as you did last 
year. but we've decided 
against scrvtng and alloMng 
alcoholic bcvemges. Please 
don't brtng any. 

Just like last year. everyone 
\viii get a Stonewall Towel. 
Everything ts free, fndudtng 
the suntan oil. 

If you want lo help plan th<" 
party. come on down and 
give us your ideas. We ncerl 
to sign up volleybalJ referees 

Parking Problems 

As you can see by the 
follow111g chart, our little 
'company Isn't so little 
anymore ... - -

Unlfl f he new parklnl( 
structure Is finished. we're 
going to continue having 
parking problems. If you 
can car pool with a friend. 
please do so (ff you want 
names of people who live 
near you. contact Per­
sonnel). Whatever you do. 
don't lake up two spaces for 
any reason. The v1sltor 
parking area Is for visitors 
only. 011ars people who 
don't work here.) 

The garage ts schedu led lo 
be completed by June I sl. 
ll Will provide covered 
parking for 60 cars and 
uncovered parkJng for 
anolher 60. Since covered 
parkJng will be tn such 
demand, we're going lo 
devise a fair plan so lhal 
everyone gels to enjoy 11. 

Employees of the 
Month 

Congratulations to the fol­
lowing Stonewall employrcs; 

,... Annelle Christensctt and 
Brad Dix.for seltfng up tlw 
new computer system: 

1
.J Dennis F'el<lmanfor refer· 

ring a new large dienl: 
" Lorn Maltos for her 

exquisite cooking: 
, Bradley Nughes and 

Adam Vonwatfor iheir 
record sales acltleue¥ 
mems: and 

'.J Tom Stanley for 
reorganizing the 
warehouse. 

Promotions 

The Prestdcnt"s Office ts 
pleased and proud to 
announce U1e folJoWing 
promotions: 

, Robert Schindler has 
been named Assjstant 
Major Account Manager. 

o Betty Wiiiards will 
replace Robert as SenJor 
Account HeprescnlaUve. 

u Joy Flannery wtll be the 
new lnfonnatfon Systems 
Manager. 

W-4Fonn 

ffvru• h ...... 



You have a head start when you Sprint! 
Sprint WordPerfect MS Word 

1.0 4.2 4.0 

Maximum file size Disk Disk Disk 
Mail Merge Yes Yes Yes 
Thesaurus (integrated) Yes Yes Yes 
Windows Open (maximum) 6 1 8 
Files Open (maximum) 24 2 8 
Cross-Reference (dynamic) Yes No No 
Indexing Options 7 1 3 
Snaking Columns Yes Yes Not same pg. 

(chg # on same page) 
Parallel Columns Yes Yes Yes 
H-P LaserJet Support Full Full Full 
PostScript Support Full Text Full 
Mouse Support (integrated) Yes No Yes 
AutoSave (without interruption) Yes No No 
User Interface 

Define Shortcuts Dynamically Yes No No 
Run Al.ternative User Interface Yes No No 
Verify spelling as you type Yes No No 
Fully programmable macro Yes No No 

language 

Suggested List Price $199.95 $495.00 $450.00 

What you get when you Sprint! 

• Includes Auto-Save that 
saves your work without 
interrupting it 

• Sprint supports 350 popu­
lar printers including 
HP LaserJet,8 other laser 
printers and typesetters 
plus has PostScript8 

support 

• Supports multiple fonts. 
including downloadable 
fonts. in all sizes including 
scaled sizes 

• Includes file conversions for 
Microsoft Word, WordPer­
fect. MultiMate. WordStar. 
and DisplayWrite 4 
(DCA RF'f) 

• Includes Alternative User 
Interfaces for EMACS. 

SideKick. WordStar. Word­
Perfect. Microsoft Word. 
and MultiMate 

• Comes with an integrated 
100,000-word speller and 
220.000-word thesaurus 

• Produces highly profes­
sional output: long or short 
documents. cross-refer­
enci ng, indexing, structured 
headings, tables of contents. 
word spacing, automatic 
kerning and ligatures as 
well as character substitu­
tion for items like typog­
rapher's quotation marks 

• Can be used "as is." cus­
tomized by you and/or you 
can use the Alternative User 
Interface you already know 

Word Star MultiMate Adv. 
4.0 1.0 

4MB 128K 
Yes Yes 
Yes Yes 
1 1 
1 1 

No No 
3 No 

No Yes 

Yes Yes 
Partial Full 

No Text 
No No 
No No 

No No 
No No 
No No 
No No 

$495.00 $565.00 

INfERNA f/ONAL 

60-Day Money-back Guarantee* 

To order now. 
Call ( 800) 543-7543 



Special off er: 
Sprint for only $99.95 ! 

For registered Borland cus­
tomers and for a limited time 
only (offer ends September 
30, 1988), Sprint is all yours 
for only $99.95t direct from 
Borland! 

The suggested retail price 
for Sprint is $199.95. We 
think $100.00 off is the best 
way we can show our appreci­
ation for your loyalty and sup­
port. (When you consider that 
many word processors are in 

the $500 to $600 range, that 
$99.95, including 6 alterna­
tive user interfaces, should 
start looking even better!) 

Sprint works with today's 
hardware and will work with 
tomorrow's. Anywhere from 
an 8088 PC through a 386. 

It's already a major success 
story in Europe; it's the # 1 
selling word processor in 

France (and everyone knows, 
50 million Frenchmen can't 
be wrong!) 

Sprint. It's the word pro­
cessor you'd expect from 
Borland: the value, technical 
excellence and programma­
bility you'd expect from 
Borland. Sprint, for your 
eyes only, $99.95. 
tPlusshippingand handling 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Sections 

Chapter Heading 

Scalable Font SALES AND MARKETING PLAN 

Box Drawing 

• Section Heading 

• PostScript9 Graphics 

• Automatic Numbered List 

• Automatic Table-Referencing 

• Footnote Capability 

Page Footing 

despite increased Years our market ha 
"': will soon be ancompe~ition. To maintai: re ~s increased, 
llt~ualty and techn;o7/1c1ng Q_t-eanic Music$~'; dwtde~ing lead, 
Prtced below all but ~i t1uperior to all other ma~ eo 2 W,hich is 
be announced in Ne ' Yt c~apest entries. Th ket entnes and 

u ork s World Trade C e new Product will 
. enter fst>e P(l/Je 14) . 

5.1 

New Pricing tor Video 2 

&/ 
~ Oil 10 ,·1t - ,, 

\Ve took a random sa,..., n~...,, ,..._. ,., 

~~nsumers in each of ~~~~g2 of Olle hundred 
e .then averaged the our sales regions. 

maxnnum Price . numbers to get the 
~uggcsted Price fo~o~~~ <sec. Table 5.1 ). Tho 
lmum Price Point.8. 00 2 IS below alJ max • 

1CJb19 5. 1; Sutv.y '*ults 

5.2 
Marketing Tools 

NationaJ Oceanic Mwic Co . 
1'J>Orntion Rcporc. 



BOUNCE AND CHOOSE IN PAL 
Use Paradox's built-in menuing routines to create PAL menus 
that resemble Paradox menus. 

Alan 'Zenreich 

Paradox uses horizontal bounce bar menus 
that appear on the top two lines of the 
screen. I prefer to maintain this user inter­
face in my own PAL applications because 
the menus don't overlap data, and the user 

PROGRAMMER needn't enter responses manually. 
Listing 1 demonstrates three of Paradox's built-in 

procedures for creating bounce bar menus: SHOW­
MENU, SHOWfABLFS, and SHOWARRAY. The az. 
Sort() procedure prompts the user to select a table 
from the current directory, pick a field to sort by, and 
choose the direction of sort. azSort() then creates a 
new, sorted table called ANSWER 

All of the SHOW .. menus work similarly. The user 
can either move the cursor to the chosen item and 
press Enter, or else choose a menu item by pressing its 
first letter. The selection is assigned to the variable that 
follows the TO keyword. If the user presses Esc, the 
variable is assigned the string "Esc." 

SHOWfABLFS lists all of the tables for a given 
directory. It also searches memory for tables not yet 
written to disk, as well as for private tables. 

SHOWARRAY uses two array variables. The first is 
a list of menu items; the second array variable is a list 
of item descriptions. azSort() scans a structure table 
and places the field names into the zfield array. A de­
scriptive line for each item goes into zdesc. 

SHOWMENU requires one or more lines; each line 
contains a menu item and a description in the form of 
two strings that are separated by a colon. Except for the 
last one, each item must have a comma at the end of 
the line to signify that another choice follows. 

Obviously Listing 1 could be greatly enhanced. In its 
current form, however, this program demonstrates how 
easy it is to build menus that let the user select options 
in the comfortable Paradox style. • 

Al,an l.enrei£h is a Paradox consultant and the publisher of 
Paralex, the Paradox Documenter. He can be reached at 
l.enrei£h Systems, 78 Fifth Avenue, New York NY 10011. 

Listings may be doumloaded from ComfruServe as 
PDXMNU.ARC. 

130 TURBO TECHNIXJuly/ August 1988 

LISTING 1: DE~NU.SC 

PROC azTextline(zline,ztext) , centers a text at given line# 
izl ine, 0 ??FORMAT( 11W80,AC", ztext) 

ENDPROC 

PROC azSort() 
;-- keep variables private to proc: 
PRIVATE zsorttable, zsortf i eld, zsortorder, zf ields, zdesc 
CURSOR OFF ; • • turn off the cursor 
CLEAR ;-- clear the screen 
ClearAll ;-- remove any tables 
IF lsTable("Answer") THEN 

DELETE 11 answer" ;-- don't want answer table in list 
ENDI F 
azTextUneC4, 11Please select a table from the t ist above .. ) 
SHOllTABLES ;-- menu of available tables 
DIRECTORY() "Tables available for sorting" 
TO zsorttable ;-- get sort table 
IF zsorttable="Esc• THEN 

RETURN false ; -- quit if user presses Esc 
ENDIF 
azTextLine(4,"llorking, preparing list of fields for "+zsorttable) 
{Tools) {Info} {Structure} SELECT zsorttable ;-- get field list 
ARRAY zfields Cnrows()J for menu selections 
ARRAY zdesc Cnrows ()I , for menu desc r i pt ions 
SCAN ;-- scan the Struct table 

zfields Crecno()J=Cfield name] ;-- assign field name choice 
;-- assign field description: 
zdesc [recno()J="Sort table by "+zfields[[#JJ 

END SCAN 
DELETE "struc:t" ;-- remove struct table 
azTextlineC4, 11 Select field to sort by11 ) 

SHOllARRAY menu lets user select from 
zfields zdese , fields, with sort description 
TO zsortfield get sort field 
IF zsortfield="Esc• THEN 

RETURN false 
ENDI F 
a4,0 ezTextUneC4,"Select the sort order desired") 
SH""'4ENU 
11Ascending11 : 11 Sort in ascending order by 11 +zsortfield, 
110escending 11 : 11 Sort in descending order by "+zsortfield 
TO zsortorder get sort order 
IF zsortorder="Esc" THEN 

RETURN false 
ENDI F 
aztextline(4, 11 Preparing Sorted Answer table") 
IF zsortorder= "Ascending• THEN 

SORT zsorttable ON zsortfield TO "Answer" ;·· ascending sort 
ELSE 

SORT zsorttable ON zsortfield D TO "Answer" ;-- descending sort 
ENDIF 
HOVETO FIELD zsortfield ;-- move to the answer table field 
RETURN TRUE ;-- all done 

ENDPROC 

azsort() ;execute the proc (typically read in from a library) 



NEW! 

NEW! 

NEW! 

NEW! 

C CODE FOR THE PC 
source code, of course 

Bluestreak Plus Communications (two ports, programmer's interlace, terminal emulation) 
CQL Query System (SQL retrievals plus windows) . . . . . . . . . . . . . . . . . 
GraphiC 4.1 (high-resolution, D!SSPLA-style scientific plots in color & hardcopy) 
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC) 
Vmem/C (virtual memory manager; least-recently used pager, dynamic expansion of swap file) 
Aspen Software PC Curses (System V compatible, extensive documentation) . . . . 
Greenleaf Data Windows (windows, menus, data entry, interactive form design) . . . 
PforCe++ (COM, database, file, user interface, & CRT c++ classes among others) 
Vitamin C (MacWindows) . . . . . . . . . . . . . . . . . 
Turbo1)3X (TRIP certified; HP, PS, dot drivers; CM fonts; LaTF)() 
Essential resident C (TSRify C programs, DOS shared libraries) . 
Essential C Utility Library (400 useful C functions) . . . ... . 
Essential Communications Library (C functions for RS-232-based communication systems) 
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) 
Greenleaf Functions (296 useful C functions, all DOS seivices) . . . . . . . . . . . . 
OS/88 (U .. x-like operating system, many tools, cross-development from MS-DOS) . . . 
ME Version 2.0 (programmer's editor with C-like maa-o language 17f Magma Software; Version 1.31 still $75) 
Turbo G Graphics Library (all popular adapters, hidden line removal) 
PC Oirses Package (full Berkeley 4.3, menu and data entry examples) . 
CB'Ih:e (B+tree ISAM driver, multiple variable-length keys) 
Minix Operating System (U .. x-like operating system, includes manual) 
PC/IP (CMU/MIT TCP/IP implementation for PCs) . . . . . . . . 
B-'Itee Library & ISAM Driver (file system utilities 17f Softfocus) . . . 
The Profiler (program execution profile tool) . . . . . . . . . . . 
Entelekon C Function Library (screen, graphics, keyboard, string, printer, etc.) 
Entelekon Power Windows (menus, overlays, messages, alarms, file handling, etc.) . 
QC88 C compiler (ASM output, small model, no longs, floats or bit fields, 80+ function library) 
Wendin Operating System Construction Kit or PCNX, PCVMS O/S Shells . 
C Windows 1bolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) 
Professional C Windows (windows and keyboard functions) . . . . . . . 
.JATE Async Turminal Emulator (includes file transfer and menu subsystem) 
MultiDOS Plus (DOS-based multitasking, intertask messaging, semaphores) 
WKS Library (C program interlace to Lotus 1-2-3 program & files) . . 
Professional C Windows (lean & mean window and keyboard handler) . 
Quincy (interactive C interpreter) . . . . . . . . . . . . 
EZ..ASM (assembly language macros bridging C and MASM) 
P1h:e (parse tree management) . . . . . . . . . . . . . 
HELP! (pop-up help system builder) . . . . . . . . . . . 
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modem card) 
Make (macros, all languages, built-in rules) . . . . . . . . . . . . . . . . 
Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes to bitmaps) . 
Coder's Prolog (inference engine for use with C programs) 
C-Help (pop-up help for C programmers ... add your own notes) 
Biggerstalf's System 1bols (multi-tasking window manager kit) . 
PC-XINU (Comer's XINU operating system for PC) . . . . . 
CLIPS (rule-based expert system generator, Version 4.1) 
TELE Kernel or TELE Windows (Ken Berry's multi-tasking kernel & window package) 
Clisp (Lisp interpreter with extensive internals documentation) . . . . . . 
Translate Rules to C (YACClike function generator for rule-based systems) 
6-Pack of Editors (six public domain editors for use, study & hacking) 
Cruncl1 Pack (a dozen file compression & expansion programs) 
ICON (string and list processing language, Version 7) . . . 
FLEX (fast lexical analyzer generator; new, improved LEX) . 
LEX (lexical analyzer generator; an oldie but a goodie) . . . 
Bison & PREP (YACCworkalike parser generator & attribute grammar preprocessor) . 
AutoTrace (program tracer and memory trasher catcher) 
C Compiler Turture Tust (checks a C compiler against K & R) . . . . . . . . 
Benchmark Package (C compiler, PC hardware, and Unix system) . . . . . . 
TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller) 
A68 (68000 cross-assembler) . . . . . . . . . . . 
List-Pac (C functions for lists, stacks, and queues) 
XLT Macro Processor (general purpose text translator) 
Data 
WordCruncher (text retrieval & document analysis program) ..... . 
DNA Sequences (GenBank 52.0 including fast similarity search program) 
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) 
Webster's Second Dictionary (234,932 words) . . . . . . . . . . . . . . . . . . 
U. S. Cities (names & longitude/lat itude of 32,000 U.S. cities and 6,000 state boundary points) . 
TI1e World Digitized (100,000 longitude/latitude of world country boundaries) 
KST Fonts (13,200 characters in 139 mixed fonts: specify TFX or bitmap format) 
USNO Floppy Almanac (high-precision moon, sun, planet & star positions) 
NBS Hershey Fonts (1,377 stroke characters in 14 fonts) . 
U. S. Map (15,701 points of state boundaries) . . . . . . . . . . 

The Austin Code Works 
11100 Leafwood Lane acw!info@uunet. uu. net 
Austin, Texas 78750-3409 USA 

Free shipping on p1·epaid orders For delive1·y in Texas add 7% 

$400 
$325 
$325 
$300 
$250 
$250 
$250 
$345 
$200 
$170 
$165 
$160 
$160 
$150 
$150 
$150 
$140 
$135 
$120 
$115 
$105 
$100 
$100 
$100 
$100 
$100 
$90 
$80 
$80 
$80 
$80 
$80 
$80 
$70 
$60 
$60 
$60 
$50 
$50 
$50 
$50 
$45 
$40 
$40 
$35 
$35 
$30 
$30 
$30 
$30 
$30 
$25 
$25 
$25 
$25 
$25 
$20 
$20 
$20 
$20 
$20 
$20 

$275 
$150 
$60 
$60 
$35 
$30 
$30 
$20 
$15 
$15 

Voice: (512} 258-0785 
BBS: (512} 258-8831 

FidoNet : 1:382/1 2 

MasterCard/VISA 



BINARY ENGINEERING 
Designing data structures, part I 

Bruce F. Webster 

I 
n most discussions on program design, the fo­
cus is on the design and implementation of al­
gorithms, which are the actual program state­
ments that do the work. However, algorithms 

are only half of the story-without data structures, 
it's hard to write a meaningful program of any com­
plexity. In fact, as programs grow more complex, the 
data structures that they use become more important, 
and the design and implementation of those struc­
tures become more critical. Recognition of this pro­
cess has led to a new style of software design, known 
as object-oriented programming, where a program is 
viewed as a collection of data structures that com­
municate with one another. 

When I first learned Pascal some eight years ago, 
I had been using FORTRAN as my primary high­
level language for about five years. At that time, 
FORTRAN had one data structure-the array-and 
I was very good at turning arrays into whatever I 
needed. Pascal, though, was something of a shock. I 
had two new data types to work with-Boolean and 
enumerations-plus several new data structures, in­
cluding strings, records, and sets. I can still remem­
ber how uncertain I felt for several months about 
the best way to use all of these new tools. With time, 
though, I became more confident, and developed a 
knack for being able to quickly come up with the 
right data structure for a given application. 

Which brings us to my first point: The best way to 
learn how to design data structures is to design them. 
That's as true-and as discomforting- as saying that 
the best way to learn how to program is to program. 
But, as with programming, there are guidelines and 
rules of thumb to help you along the way. 

DATA CHOICES 
Pascal and C provide six basic data types: integers, 
reals, characters, pointers, Booleans, and enumer­
ated (user-defined) data types. In the case of C, Bool­
eans and enumerations are really just integer values, 
and are defined more by function than by actual 
type. In Pascal, however, Booleans and enumera­
tions are true separate data types. Here's a brief ex­
planation of each type and the way it's generally 
used. 

132 TURBO TECHNIX July/ August 1988 

• Integer: Whole numbers (both positive and neg­
ative), which are used for counting, and in situa­
tions where round-off errors must be avoided. 

• Real: Floating point numbers, which are used for 
very large, very small, and fractional numbers (es­
pecially in scientific and engineering applica­
tions) . 

• Character: Individual printing and control char­
acters, based on an extended ASCII set, which are 
used for text input, output, and manipulation. 

• Pointer: Addresses of variables, procedures, func­
tions, and key locations of system hardware, 
which are used to modify data, allocate data struc­
tures dynamically, and pass routines as param­
eters. 

• Boolean: The logical values False and True, 
which are used to compare values, test relation­
ships, and remember the outcome of such tests 
and comparisons. C does not have an actual Bool­
ean type, but considers the value 0 to be False 
and any nonzero value to be True (though logical 
expressions always return 1 as True). 

• Enumerated: User-defined data types that are 
built from a list of identifiers, such as days of the 
week or colors in a spectrum. Enumerated types 
are used to make code more self-documenting, 
and to avoid declaration of long lists of integer 
constants. 

These types are the building blocks for your data 
structures. A data structure is a collection or associa­
tion of data types that is constructed in such a way 
that the individual elements can be written to, re­
trieved, or tested. There are four basic types of data 
structures: arrays, records (or structures), files, and 
sets. There are also two derivative types: strings and 
unions. Yet another type of data structure-linked 
lists-is created by combining records and pointers. 



ARRAYS 
An array is a list of elements where each element is 
retrieved by indexing the array name. The power of 
an array is that the indexing can be done by an ex­
pression that is evaluated while the program runs. 
Indexing is possible because arrays are homoge­
neous-all the elements of the array, from 1 to n, are 
of the same data type. As a result, the compiler easily 
generates code to find the nth element of the array. 

What issues are involved in designing arrays? The 
biggest issue is size: How large do you make the ar­
ray, and how do you enforce that size limit? Once an 
array is allocated, its size is fixed. If it's too big, then 
you're wasting data space. If the array is too small, 
problems may occur while your program executes. 
And finally, since compilers have limits on array size, 
the array may not ever be big enough, period. 

For many applications, the array size has a natural 
limit that is defined by the problem itself. If you're 
using an array to count how many times each letter 
of the alphabet occurs in a given text, then you know 
that you only need 26 elements. If you're counting 
upper- and lowercase letters separately, you need 52 
elements. If you're counting occurrences of all char­
acters within a file, including punctuation, digits, and 
special characters, then you need 256 elements (one 
for each possible character). 

However, there are times when the number of 
items varies from one run of the program to another, 
sometimes by a great deal. In that case, you have two 
choices: set an arbitrary limit, or use dynamic array 
allocation. 

Setting an arbitrary limit is easy, but it has the 
drawbacks mentioned earlier of either wasting data 
space or else not having enough data space. Actually, 
"wasted space" isn't really wasted unless you have to 
eliminate some other data structures in order to 
make room for the array. Not having enough space 
is more serious. If the array runs out of room while 
the program is executing, then the program has to 
handle that error condition gracefully. If possible, 
you should let the user know about any limits ahead 
of time, as well as when he or she might encounter 
them. 

One technique for managing fixed array size 
within a program is to declare constants that define 
the array's limits, and then reference those constants 
when the array is used in the program. A better so­
lution, however, is dynamic array allocation. This 
can be accomplished in either C or Pascal (although 
it's a bit more complicated in Pascal). To do so, first 
find out how much space is required, then allocate 
that amount of space on the heap for the array. This 
process is handled by the C code shown in Figure 1, 
which takes advantage of the fact that arrays and 
pointers in C have the following relationship: 

{ 

} 

int *list,i,count; 

do { 
printf("Enter # of values: ">; 
scanf( 11%d11 ,&count); 

} while (count< 0); 
if (count == 0) 

exit(); 
list=(* int) calloc(sizeof(int),count); 
if (list== NULL) 

exit(); 
for (i=O; i<count; i++) { 

printf("Enter item #"Ml: 11 ,i>; 
scanf( 11%d11 , list [ i l ) ; 

} 

free(l ist); 

Figure 1. Dynamic array allocation in C. 

type 
Nl..ITlList = array[1 .. 2l of integer; 
NLPtr = "Nl..lllList; 

var 
List NLPtr; 
!,Count : integer; 

begin 
repeat 

Write('Enter #of values: '>; 
Readln(Count) 

until (0 <=Count); 
if Count = 0 

then Halt; 
GetMem(List,SizeOf(integer)*Count); 
for I := 1 to Count do begin 

Write('Enter value # 1 ,1:3, 1
: '); 

Readln(List"[I]) 
end; 

FreeMem(List); 
end. 

Figure 2. Dynamic array allocation in Pascal. 

*(a+ i) == a[il 

With this relationship, even though list is declared as 
a pointer to type int, it can be indexed just like an 
array. 

The Pascal solution, which is shown in Figure 2, 
isn't quite as tidy. It requires that we disable range 
checking and then declare a dummy array type and 
a pointer to that type. The number of elements to 
the array can be allocated by using GetMem and 
SizeOf. However, note that the pointer dereferenc­
ing operator C) must be used to access the array 
itself. 

With any solution, you need to be aware of the 
overall size of the array. There is a limit on how 

continued on page 134 

July/ August 1988 TURBO TECHNIX 133 



BINARY ENGINEERING 

continued from page 133 

large an array can be, even if it's allocated dynam­
ically. Typically, an array can be no larger than 64K, 
and it usually must be somewhat smaller. The limit 
on the number of elements then becomes a function 
of the size of the element. If the array contains bytes 
or integers, then element size probably isn't a prob­
lem. On the other hand, if the array contains rec­
ords that are each several hundred bytes long, then 
you can run out of array space very quickly. In this 
situation, you're probably better off with a linked list. 

Multidimensional arrays can also chew up mem­
ory in a big hurry. Consider the following Pascal ar­
ray declaration: 
VAR 

A : ARRAYC1. .100] [1. .20] [1. .20] 
OF real; 

What we have here is an array of one hundred 
20 X 20 floating point matrices. No problem, right? 
Wrong. The entire array holds 40,000 six-byte real 
numbers, and requires 240,000 bytes-definitely 
more than most compilers allow for any single array. 

RECORDS 
A record (in C terminology, a struct) is the data struc­
ture that complements the array. The elements of a 
record can be of different data types, making the rec­
ord heterogeneous. Each element, known as afield, has 
a name. An element is referenced by appending the 
field name to the record variable's name. This 
means, of course, that you can't index through the 
elements of a record in the same way that you can 
index the elements of an array. 

The strength of a record is its ability to associate 
data of different types. For example, suppose that 
you're writing a program to keep track of students in 
a school, and you design a record type to hold infor­
mation for each student. This information would in­
clude name, age, sex, Social Security Number, grade 
point average (GPA), and class standing. The Pascal 
result might look like that shown in Figure 3; the C 
equivalent is shown in Figure 4. 

type 
NameStr = stringC20l; 
Gender = (unknown,female,male); 
Grade = Cfreshman,sophomore,junior,senior); 
Students = record 

Last,First,Middle 
Age 
Sex 
GPA 
Standing 

end; 

NameStr; 
byte; 
Gender; 
real; 
Grade; 

Figure 3. A simp/,e record type in Pascal. 

134 TURBO TECHNIX July/ August 1988 

typedef unsigned char byte; 
typedef char nameStrC21l; 
typedef enllll { unknown, male, female } gender; 
typedef enllll { freshman, sophomore, junior, senior} grade; 

typedef struct { 
nameStr last,first,middle; 
byte age; 
gender sex; 
float gpa; 
grade standing; 

} students; 

Figure 4. A simp!,e record type in C. 

To reference a field in a Pascal record, write the 
record variable name, followed by a period ("."), fol­
lowed by the field name. For example, the following 
code contains a variable who of type student, and as­
signs the value of 4.0 to the field GPA: 
Who.GPA := 4.0; 

How do you design a record? The first step, of 
course, is to list the information that belongs in the 
record. As you do so, give a name to each item and 
note which type of data or range of values are 
needed. For the example above, you might have 
created a list similar to the one shown in Figure 5. 

last name Last string 
first name First string 
middle name Middle string 
age Age 0 to 150 
sex Sex male, female , unknown 
grade point average GPA 0.0 to 4.0 
current class Standing frosh, soph,jun, senior 

Figure 5. The first step in designing a record: List your 
data items. 

The second step is to define any auxiliary data 
types that you might need (or want) in order to 
create the record. In doing so, there are certain 
tradeoffs to bear in mind. For example, three strings 
are needed for the first, middle, and last names. 
Since strings are just a form of array, you face the 
usual array tradeoff of making the array too large 
and wasting space, or else making it too small to 
hold any reasonable instance of its data. In this case, 
I chose 20 characters per name as a nice compro­
mise. That's large enough to handle 99+ percent of 
the names, but doesn't waste a tremendous amount 
of space. Still, those 63 bytes (each string has an ad­
ditional byte to hold its current length) represent 
most of the space occupied by a Students record; if 
the overall record size is too big, that's the first place 
to cut. 

Similarly, fields that are described with lists of 
words (such as "male, female, unknown") are good 



candidates for enumerated data types. They provide 
a level of self-documentation to your code that can 
be very useful, especially when using a debugger that 
recognizes enumerated types. Since enumerated 
types occupy only a single byte, they are always a 
more efficient choice than that of storing the equiv­
alent lists of words as strings. 

Finally, numeric fields should use the appropriate 
numeric type. When integer values are involved, use 
the appropriate integer type to enhance error check­
ing and to minimize space. A list of the integer types 
in Turbo C and Turbo Pascal, according to ranges of 
values, is given in Figure 6. 

Range 

-128 . .127 
0 .. 255 

-32768 .. 32767 
0 .. 65535 

-2147483648 . . 2147483647 
0 . .4294967295 

Turbo Pascal 

shortint 
byte 
integer 
word 
longint 
< none> 

Turbo C 

signed char 
unsigned char 
int 
unsigned int 
long 
unsigned long 

Figure 6. Integer data types availab/,e in Turbo Pascal and 
Turbo C. 

Likewise, use the appropriate floating point type 
for real numbers. In Turbo C, use float or double, 
depending upon how much precision and exponent 
range is needed. In Turbo Pascal, the usual choice is 
real; however, if you have an 8087 / 80287 math co­
processor, you can use one of the standard IEEE 
types (single, double, extended) to better fit your 
needs. 

Since a record can have data structures as its 
fields, you might want to also declare those data 
structures as distinct types. Unless you run into a se­
rious problem with confusing identifier names, 
you're usually better off declaring each data structure 
as a separate type, then using that type name in de­
claring the record. This approach has three advan­
tages. First, it produces cleaner and more readable 
code. Second, it makes it easier to pass record, set, 
and array fields as separate parameters to subpro­
grams, since you now have predefined types for the 
subprogram's formal parameters. Third, it allows you 
to quickly change the underlying data structure of a 
given field by redeclaring that type and then mod­
ifying the program wherever it references that data 
structure. Having defined any needed types, you can 
then declare the record type itself, listing each field 
name and its corresponding type. A more extended 
example of this process can be seen in Figure 7, 
which I'll discuss in more detail later. 

ARRAYS OF RECORDS 
One of the most useful data structures is an array of 
records. This is just what it sounds like: An array of 

some size, where each element of the array is a rec­
ord. As an indexed list with each element containing 
a mixture of data types, this array combines the best 
of both data structures 

The process of setting up an array of records is 
just like that of setting up any other array. For exam­
ple, an array of Student records might be declared 
as: 
VAR 

Slist : ARRAYC1 •• 100] OF Student; 

You can now set the GPA field of the 20th record 
with the following code: 
Slist[20].GPA := 4.0; 

Arrays of records fall prey to the same problems 
that befall other arrays: wasted space, not enough 
space, or being too large for a single data segment. 
Since it's easy to create records that are several doz­
en (or even several hundred) bytes, the problems are 
all magnified. An alternative to an array of records 
is a linked list of records, but linked lists are beyond 
the scope of this month's column. 

NESTED RECORDS 
Both C and Pascal allow you to nest records-to de­
fine record fields that are themselves records. This 
approach lets you "modularize" your records by re­
placing several fields with a single field; this single 
field consists of a record containing the replaced 
fields. In other words, just as you can break a large 
section of code into several smaller subroutines, you 
can take a record with a long list of fields and break 
it down into several "subrecords." This method of­
fers several advantages. It makes the overall record 
structure easier to follow, and groups related infor­
mation together into a single field. It allows those 
groups of information to be manipulated as single 
entities (assigning, passing as parameters, and so 
on). 

Figure 7 shows an extended version of the type 
Student. Several new record types (Time, Periods, 
Oasses) have been created to add the student's class 
schedule. Arrays of type Periods have been added to 
let each class have up to six periods per week. Arrays 
of type Oasses let each student have up to 12 classes. 

If you have a nested record and want to reference 
a field of a subrecord's field, take this approach: Use 
another period, followed by the field name. For ex­
ample, if you have a variable Temp of type Period, 

continued on page 136 

July/ August 1988 TURBO TECHNIX 135 



const 
PM ax 
CM ax 

type 

= 6; 
12; 

st r i ng [20] ; Names tr 
Gender 
Grade 
graduate); 
Days 

(unknown,female,male); 
Cfreshman,sophomore,junior,senior, 

Time 
(sun,mon,tues,wed,thur,fri,sat); 
record 

Hour 
Min 

end; 

Periods = record 

0 .. 23; 
0 .. 59 

Day : Days; 
Start,Finish : Time 

end; 
Plist = array[1 .. PMax] of Periods; 

Classes = record 
Title, Instructor 
Period 
PNun 
Score 

NameStr; 
Plist; 
0 .. PMax; 
real 

end; 
Clist array[1 .. CMaxl of Classes; 

Students = record 
Last,First,Middle 
Age 
Sex 
GPA 
Standing 
Class 
CNun 

end; 

NameStr; 
byte; 
Gender; 
real; 
Grade; 
Clist; 
0 .. CMax 

Figure 7. A more comflex record type in Pascal. 

BINARY ENGINEERING 

continued from page 135 

you can set it to "Wednesday, from 11 :00 am to 12:20 
pm" with the following statements: 

T~.Day := wed; 
T~.Start.Hour := 11; 
T~.Start.Min := 00; 
T~.Finish.Hour := 12; 
T~.Finish.Min := 20; 

There is one disadvantage to nested records: the 
need to reference an individual field through many 
levels. Suppose you want to find the closing time of 
the last period of the first class for the 17th student 
~n SList. Assuming that LHour and LMin are of type 
mteger, the statements would look like this: 

LHour 

LMin 

:= Slist C17l .ClassC1l. 
PeriodCPNunl.Finish.Hour; 

:= Slist C17l .Class[1]. 
PeriodCPNunl.Finish.Min; 

136 TURBO TECHNIX July/ August 1988 

As you can see, it can get a bit unwieldy at times. 
Pascal's solution is the WITH statement, which lets 
you drop the record name and period, and simply 
reference the field. WITH statements can be nested 
so that you can work your way inward. This is dem- ' 
onstrated in Figure 8, which shows a section of code 
that adds up to all of the class time that a student 
should be spending. 

const 
SM ax 100; 

var 
Slist array[1 •• SMaxl of Students; 
SCount 0 •• SMax; 
I,J,K byte; 
DM,DH : integer; 
Minutes,Hours : word; 

begin 
•.. {get data in somehow} 
for I := 1 to SCount do with Slist[ll do begin 

Minutes := O; 
for J := 1 to CNun do with Class[Jl do begin 

for K := 1 to PNun with PeriodCKl do begin 
OM := Finish.Min - Start.Min; 
DH := Finish.Hour - Start.Hour; 
Minutes := Minutes + OM + 60*DH 

end 
end; 
Hours := Minutes div 60; 
Minutes := Minutes mod 60; 
IJriteln(last,' ',Hours:2, ': ',Minutes:2) 

end; 

end. 

Figure 8. Tallying the total time spent in class by each 
student. 

Since C has no analogous statement to Pascal's 
WITH, explicit referencing is required. The best so­
lution is to limit how deeply records are nested. Bar­
ring that, you can assign a pointer to the subrecord 
and reference that subrecord, but it's not quite as 
clean and easy, and sometimes it doesn't help all that 
much. 

How deeply should records be nested? As deeply 
as makes sense. The example in Figure 7 is justifi­
able by a simple test: How would each record type 
look if there were no nesting? In fact, could you 
even implement the Student data type without nest­
ing records? Yes, but it would require the use of lots 
of arrays, including some two-dimensional arrays. 

That's as much as I can cover in this issue. As you 
can guess, we've just begun to touch on some of the 
aspects of data structure design. In the next issue, I'll 
talk more about data structures, and will explore 
some general design issues. • 

Bruce Webster is a computer mercenary living in Califor­
nia. He can be reached via MCI MAIL (as Bruce Webster) 
or on BIX (as bwebster ). 



"Behind the beauty of the 
Turbo C environment 
stands the brawn of 

a full-fledged compiler" 
" Taking compilers and pro­
gram development tools into the 
next generation is Borland 
International 's Turbo C. a 
$99.95 package that will stun 
you with in-RAM compilations 
that operate at warp speed . 

. . . a 21st century compiler at a 
preinflation 1967 price. Is it any 
wonder that Turbo C was 
included in the Best of 1987? 

Richard Hale Shaw, PC Magazine 

Turbo C represents an all-new 
price-performance level-one 
that will be hard to match. much 
less beat. 

Marty Franz, PC Tech Journal 

Stephen Randy Davis, PC Magazine Actual photograph ol Turbo C graphics displayed on IBM 8514 screen.· 

Turbo C showed excellent 
compiler speeds. good overall 
benchmark scores. and extraor­
dinary floating-point performance. 
Scott Robert Ladd, Micro Cornucopia " 

Our new Turbo C 1.5 is a 
technological tour de force 

At Borland we believe the slow 
way is no way, so Turbo C® is a 
racer . And as well as white-knuckle 
speed, Turbo C also gives you 
spectacular graphics. 

lll•lmt1m •1'1•m r1qt1/rtm1nt1: Fm lhe IBM PS/2 .. and lhe IBM• tamity ot per· 
sonal computers and all 100% compatibles. PC·DOS {MS·OOS•) 2 O or late1 38-4K 
• ArlwOl'k metaliie cou11esy or Genigraphics• Corporal ion 

··customer salistaction is our main concern, ii within 60 days or p1Xchase this prnduct 
does nol perlorm in accordance with our claims, call oor customer service departmenl. 
and we will arrange a relund. 

A118orllnclprD<klcts1tetraotmarks01reg.sieredtrademar•sol8orlandlnlet1111!0llll,lnc Olherbrnland 
prcWctnames11etr1demarksorreg1S18fedlr16emar•soltht1rrespettiweholdefs Co!lrr1QN 0 19888orlancl 
lnlenlll1onal,lnc 811232 

Some of the reasons why the 
critics are so enthusiastic 
about Turbo C 1.5 
Turbo C now includes: 
• A professional-quality graphics 

library of over 70 functions 
• A librarian that allows you to 

build your own object module 
libraries 

• Context-sensitive help for the 
language and the library routines 

• Text/ video functions. 
including windows 

• 43- and 50-line mode support 
• VGA. CGA, EGA, Hercules. and 

IBM 8514 support 
• File search utility (GREP) 
• Sample graphics applications 
• More than 100 new functions 

The professional optimizing 
compiler for less than $100.00 

For professional-quality C at a 
sane price. nothing comes close to 
Turbo C. It's super-fast and super­
graphic. (We used it ourselves to 
write Eureka :·· The Solver and to 
develop the presentation-quality 
graphics in Quattro .~ our new and 
highly successful professional 
spreadsheet.) No one can deliver 
technical superiority like Borland. 

INTERNATIONAL 



LANGUAGE 
CONNECTIONS 
Turbo Prolog to Turbo C is now a 
two-way bridge! 

Gary Entsminger 

T 
he new Turbo Prolog (version 2.0) is the 
BMW of programming languages, the 
Prince of Pro logs. Michael Floyd intro­
duced Turbo Prolog 2.0 and its new fea­

tures in the May/June issue of TURBO TECHNIX. 
In this column, I'll focus on Turbo Prolog's exciting 
new language interface, which not only allows Turbo 
Prolog programmers to call functions written in 
other languages, but also allows programmers using 
other languages (such as Turbo C) to call predicates 
written in Turbo Prolog. In addition, Turbo C pro­
grammers can call the Turbo Prolog library predi­
cates. Now you can have the best of worlds-Turbo 
C's speed and efficiency, Turbo Prolog's logic, and 
the Turbo Prolog Runtime Library-at your finger­
tips. 

To see how the interface works, we'll examine 
three examples. The first example demonstrates the 
basic interfacing process, and points out a few of the 
differences between Turbo Prolog 2.0 and earlier 
versions. The second example shows how to call 
Turbo Prolog built-in predicates, and other Turbo 
Prolog predicates, from Turbo C. Finally, the last ex­
ample is a variation of the last "Language Connec­
tions" column (TURBO TECHNIX, May/June, 1988) 
in which Michael Floyd converted a Turbo Prolog list 
into a Turbo C array and back again. This third ex­
ample highlights some of the new memory manage­
ment features of Turbo Prolog. 

DECLARING EXTERNAL FUNCTIONS 
Recall that to use external functions with Turbo 
Prolog, we must declare them as global predicates in 
the Turbo Prolog module. To declare a global pred­
icate for an external procedure, we must specify the 
global predicate's name, the data types of its argu­
ments, its flow variants, and the language that the 
global predicate will interface with. For instance, to 
declare a global predicate called add that is written 
in Turbo C, we make a declaration similar to: 

global predicates 
add(integer, integer, integer) 

- (i,i,o) language c 

138 TURBO TECHNIXJuly/ August 1988 

This statement declares the external procedure add, 
which takes two integers and returns a third (as spec­
ified by the (i,i,o) flow pattern). Remember that 
Turbo Prolog requires the programmer to specify in­
put and output parameters (or flow patterns) when 
declaring a function written in another language. 
Known parameters in the flow pattern are input pa­
rameters, and unknown parameters are output pa­
rameters. This in-and-out pattern indicates how the 
function behaves. 

Turbo Prolog lets us declare more than one flow 
pattern per function. This enables us to "get more 
out of a function" by calling it under different cir­
cumstances, with different known (or bound) and un­
known (or free) variables. To allow add to handle the 
different cases, simply add additional flow patterns 
to the declaration: 

global predicates 
add(integer,integer,integer) -

(i,i,o) (i,o,i) (o,i,i) 
(i,i,i) language c 

Of course, we must have a separate function to han­
dle each of the possible flow patterns. 

Internally, Turbo Prolog generates a different call 
for each of the global predicate's possible flow pat­
terns. Each subsequently generated call consists of 
the predicate's name, followed by an underscore 
character, and then a number. The number for the 
first flow pattern is 0. For each additional flow pat­
tern, the number increments by one. In this case, 
the predicate add has four flow patterns, and Turbo 
Prolog generates four calls to functions named 
add_O, add_l, add_2, and add_3. You must keep this 
naming convention in mind when creating your 
Turbo C functions. 

In Listing 1, add describes the relationship be­
tween three integer variables: x, y, and z (where z is 
the sum of x and y). Flow pattern 1 says, "We know 
x and y, so find the value of z." The Turbo C func­
tion add_O looks like this: 

add_O(int x, int y, int *z) 
{ 

*z = x + y; 
} 



Turbo Prolog passes the values that are bound to x 
and y to the Turbo C function, which adds them to­
gether and passes the sum (z) back. 

Flow pattern 2 says, "We know values for x and z. 
Now find the value ofy." The Turbo C function 
add_l takes the difference of z and x and returns a 
pointer to y: 

add_1(int x, int *y, int z) 
{ 

*y = z - x; 
} 

Likewise, Listing 1 contains functions add_2 and 
add_3 to handle the additional flow patterns. 

THE ''AS" KEYWORD 
Interfacing Turbo Prolog 1.1 with routines already 
developed in Turbo C means that you must rename 
all of your Turbo C routines to handle the 0 suffix 
generated by Turbo Prolog. This may be a problem 
if these same routines are also used by other Turbo 
C modules. Turbo Prolog 2.0 overcomes this problem 
by allowing you to alias the internal call generated 
by Turbo Prolog. For instance, if a Turbo C function 
called bin_search is to be called by Turbo Prolog, 
make the following declaration in Turbo Prolog: 
global predicates 

binary_search(integer,integer) -
Ci,o) language c as bin_search 

The as keyword in this declaration tells Turbo Prolog 
to generate a call to bin_search instead of binary_ -
search_O. Therefore, you can call Turbo C routines 
without having to rename them. 

There is one word of caution when using the as 
keyword. If the global predicate is declared in such 
a way that Turbo Prolog must generate more than a 
single call, you will not be able to take advantage of 
the as keyword because as only allows a single alias 
name to be generated. In such cases, Turbo Prolog 
adds the _O suffix to the alias name specified by the 
as keyword. 

This situation arises in two cases. The first case is 
when more than one flow pattern is specified in the 
global predicates declaration (as I discussed earlier). 
The second case arises when a global predicate has 
multiple arities; this situation is discussed next. 

MULTIPLE ARITIES 
As you may already know, Turbo Prolog 2.0 now al­
l?ws yo~ to decl_a_re predicates to have multiple ari­
t.J.es. This capability extends to global predicates as 
well. Turbo Prolog generates an additional call for 
each arity and uses the same naming conventions 
that I described for multiple flow patterns. In the 
case of the global predicate match, which takes 
either one or two arguments, we could make the 
following declaration: 
global predicates 

match( integer) - (i) language c 
match(integer,real) - (i,o) 

language c 

Turbo Prolog generates two calls, match_O and 
match_l. 

You ~ay now be wondering what happens when 
each anty has several flow patterns. In this situation, 
Turbo Prolog generates names for each flow pattern 
within a given arity first, then moves on to the next 
ari~. For example, consider the following decla­
rat.J.ons: 

global predicates 
match( integer) 

- Ci) (o) language c 

match(integer,real) 
- Ci,o) Ci,i) language c 

Here, Turbo Prolog generates two calls, match_O and 
match_l, for the first match predicate. Two addition­
al calls, match _2 and match_3, are created for the 
second match predicate. 

As mentioned earlier, the as keyword cannot be 
used to alias the generated calls, since multiple calls 
are generated. 

CALLING TURBO PROLOG FROM TURBO C 
Although Turbo Prolog version 1.1 permitted pro­
grammers to call external functions written in other 
languages, it had no hooks to allow Turbo Prolog 
predicates to be called from another language. With 
Turbo Prolog 2.0, this has changed-now if you de­
clare a global predicate in another language, and 
Turbo Prolog clauses exist for that predicate, Turbo 
Prolog 2.0 generates a callable routine for that lan­
guage. The key restriction is that Turbo Prolog must 
be the main program. This enables it to control 
memory and to set up its own heap and stacks. 

Listings 3 and 4 represent a simple example that 
uses !urbo C to call several user-defined predicates. 
In this example, the Turbo Prolog module is the 
'. 'main". program as designated by the goal. The goal 
1mmed1ately calls extprog, which is the Turbo C 
function. extprog then makes calls back to the Turbo 
Prolog module to create a window and display the 
~urrent directory. At this point, the user can high­
~1ght and sel~ct a give~ file which is then displayed 
m another wmdow usmg Turbo Prolog's built-in 
editor. 

Note in Listing 3 that, even though the language 
specified for all global predicates is c, the only exter­
nal function that is actually written in Turbo C is ext­
prog. Remember, the language specifier merely des­
ignates the calling conventions to be used (not 
necessarily the language that the external function 
is written in). 

Also, note in Listing 3 that I've made ample use of 
the as keyword. Of course, this would not have been 
possible had I specified multiple flow patterns or 
arities for a given predicate. 

continued on page 141 

July/ August 1988 TURBO TECHNIX 139 



LISTlllG 1: PAOD.PRO 

GLOBAL PREDICATES 
add( integer, i nteger, integer) 

Cf,t,o),(f,o,i),Co,i,i),(i,i,i) language c 

GOAL 
add(2,3,Z), write("2 + 3 • ",Z), nl, 
add(2,T,5), writeC"5 - 2 = ", Y), nl, 
add(X,3,5), wrhe( 115 3 tt,X), nl, 
add(2,3,5), write( 11 2 + 3 = 5"). 

LISTING 2: CADO.C 

void add O(int x, int y, int *z) /* (i,i,o) flow pattern)*/ 
{ -
*z • x + Yi 

) 

void add 1(int x, i nt *y, int z) /* Ci,o,i) flow pattern)*/ 
{ -

*y = z • x; 
) 

void add Z< int •x, int y) /* (o, i) flow pattern) */ 
{ -

*x • 1 • Yi 

void add 3( int x, int *y) /* ( i ,o) flow pattern) */ 
{ -

*y • x+x; 
) 

140 TURBO TECHNIXJuly/ August 1988 

LISTING 3: PEDIT .PRO 

GL08AL PREO I CATES 
mymakewindow( integer, integer, integer , string, integer, integer, 

integer, i nteger) - ( i , i , i, i, i, i , i , i ) 
language c as "makewindowM 

rrryremovewindow language c as "removew i ndow" 
clrscr language c as "clrscreen" 
myreadchar(char) (o) language c 
myreadl ine(string) (o) language c 
my_edit(string) (i) language c as "edit" 
my di r(string) (o) language c as "di r" 
myfile_str(string,string) (i,o) language c as "getfile" 

extprog 

GOAL 
extprog. 

CLAUSES 

language c 

mymakewindow(WNO,WATTR, FATTR, TEXT, SROW,SCOL , ROWS,COLS) :­
mekewindow(WNO,llATTR, FATTR, TEXT ,SROW,SCOL,ROWS,COLS). 

myremovewindow:· removewindow . 

clrscr: · clearwindow. 

myf i le str(File,StrJ:­
fi le_str(Fi le,Strl. 

my dir(Filename):-
-di r( 1111 , 11* .*11 , Fi tename). 

my edit(Str):­
-edit(Str,_). 

LISTING 4: CEOIT .C 

extprog_O() 
( char durmychar; char *Str; char *Filename; 

mak.ewindow(1, 7, 7, 11Di rectory Window11 ,5,5, 15,60); 
dir(&Filenamel; 
removewi ndow(); 
getfi le( Fi lename,&Strl; 
mak.ewindowC2, 7, 7, "Edit Window11 ,0,0,25 , 80); 
edit(Str); 
removew i ndow( ) ; 
clrscreen<>; 



LANGUAGE 

continued from page 139 

On the Turbo C side (see Listing 4), a Turbo 
Prolog external predicate is effectively identical to 
any other external function. Turbo C calls the Turbo 
Prolog predicate just as it would call another Turbo 
C function. The only difference is that the predicate 
is actually coded in Turbo Prolog. 

DYNAMIC MEMORY ALLOCATION 
In order to create a dynamic structure of unspecified 
size in Turbo C, we must take care of a few low-level 
details ourselves (such as memory allocation). Turbo 
C supplies the standard functions: malloc and free 
for handling the heap, and calloc for allocating 
space on the stack. However, we must handle the 
heap and stack by Turbo Prolog rules. Thus, in order 
to pass structures such as Turbo Prolog lists, we must 
allocate memory for the list using Turbo Prolog's li­
brary routines. 

Turbo Prolog provides two library routines to han­
dle the heap: _malloc and _free. These routines are 
declared in C as: 
void* malloc(unsigned size); 
void •=free(void *); 

In addition, alloc_gstack is provided to handle the 
stack: 

void *alloc_gstack(unsigned size) 

This routine returns a pointer to a memory block of 
length size. When you use alloc_gstack, any memory 
that was previously allocated is freed when a fail oc­
curs, which causes Turbo Prolog to backtrack across 
the memory allocation. 

I should mention that these memory management 
routines were previously provided by CPINIT.OBJ in 
the fonn of malloc_heap, release_heap, and palloc, 
respectively. Since Turbo Prolog's library routines are 
now directly callable from Turbo C, however, 
CPINIT is no longer required. 

The example in Listings 5 and 6 uses alloc_gstack 
to allocate memory on the Turbo Prolog global stack 
for a Turbo Prolog list By comparing this example 
with the memory allocation example in the May/ 
June "Language Connections" column, you'll be 
able to easily identify the differences in connecting 
the different versions of Turbo Prolog. In addition, 
you'll be able to see some of the new features that 
are added with the 2.0 connection. 

In both memory allocation examples, we begin in 
Turbo Prolog by asking for a list of integers. The 
user enters integers one at a time, terminating each 
entry with a carriage return, and ending the input by 
an arbitrarily chosen number (in this case, -999). 
The entries are stored temporarily in a database and 
then collected into a list using findall. 

continued on page 142 

LISTING 5: PSORT .PRO 

GL08AL COMA I NS 
list = integer* 

GL08AL PREO I CATES 
mymak.ewindow( integer, integer, integer, string, integer, 

integer, integer, integer) · 
( ; , i , i , i , i , i , i , i ) language c 

myremovewindow language c 
sortlist(list,list) (i,o) language c 
write string(string) - (i) language c 
pause - language c 

DATABASE 
cl:>( integer) 

PREDICATES 
r111 
repeat 
test_i'l"Jt( integer) 

GOAL 
r111. 

CLAUSES 
rt.ri:· /* Get items. */ 

clearwindow, 
repeat, 
write("Enter Ust (·999 to quit): 11 ), 

readint(S), 
test_i'l"Jt(S), 
f indal l (N ,cl:>(N), Li st), 
sortlist(List,L), /*Call C function. */ 
mak.ewindowC2,7,7, 11 In Turbo Prolog 11 ,7, 10,7,50), 
write(L),nl, 
pause, removewindow, clearwindow. 

test_ i 'l"Jt( S): -
s • -999. 

test_i'l"Jt(S):-
t• End of list, so succeed & process. */ 
/*If list hasn't been terminated, 
assert new ment>er, and fail to force 
backtracking. */ 

s <> ·999, 
assert(cl:>(S)), fail. 

repeat. 
repeat:- repeat. 

/* predicates cal led from Turbo C *I 

write_string(I):- write(!). 

pause:-
wr;te(11\n\n\n Press any Key To Conitn.Je •• • 11 ), 

readchar(_). 

mymakewindow(llNO, llATTR, FATTR, TEXT, SROll, SCOL, ROllS,COLS) :­
makewi ndow(llNO, llATTR, FATTR, TEXT, SROll, SCOL,ROllS, COLS). 

myr....,vewindow:­
removewindow. 

July/ August 1988 TURBO TECHNIX 141 



llSTING 6: CSORT .C 

#def i ne al loc gs tack wal loc 
#define l i stfiio 1 
#def i ne nil fno 2 

void *al loc gstack(unsignedl; 
- /* Declare • Prolog list in C */ 

typedef struct ilist C 
char FU"ICtor; 
int Value; 
struct i list *Next; 
> lntlist; 

int ListToArray(lntlist *List, int **ResultArray) 
( Jntlist *Savelist = List; 

int *Array; 
int i = O; 

/* Count list items. */ 
for(i=O; List·>Functor ==listfno; 

List = List ->Next) 
i++; 

/*Allocate stack space. */ 
Array • al loc_gstack( i*s i zeof( int)>; 

List :a Savelist; 
/* Copy list to array. */ 

fore; •O; Li st ·>Functor:: l i stfno; Li st:Li st·>Next) 
Array[i++J =Li st->Value; 

*Resul tArray=Array; 
return( i ); 
} 

ArrayTolist(int Array[],int n,lntlist **List) 
< int i; 

/* Al locate a record for each element. */ 
for Ci=O; i<n; i++) 
C lntlist *p = *List = alloc_gstack(sizeof(lntlist)); 

p· >fl..nctor a l istfno; 
p·>Value = ArrayCiJ; 
List = &(*L ist)·>Next; 

} 
/* Al locate th last record in the list . */ 

( lntlist *p =*List= alloc_gstack(sizeof(char)); 
p·>Functor = nil fno; 
} 

} 

/* Increment all values in the l ist. */ 
sortl ist O(lntl ist *lnl ist, lntlist **Clutlist) 
( int i, -j, n, tetrp, *Array; 

n = ListToArray(lnlist, &Array); 
for(i=O; i<n·1; i++) 

for(j=i+1; j<n; j++) 
if (Array[iJ > Array[jJ) 

( 

t""" • Array[jJ; 
Array[j] = Array[iJ; 
Array[iJ = t"""; 
} 

/* Call Prolog predicates. */ 
mymakewindow_0(1,7,7," In Turbo C ",5,5, 15,60); 
wr-ite string 0( 11 \n\n Sort Coq>letedl\n11 ); 

pause:oo; -
myremovewindow_oo; 
ArrayToL i st(Array ,n,Clutl i st); 

142 T URBO TECHNIXJuly/ August 1988 

LANGUAGE 

continued from page 141 

Turbo Prolog then passes this list to the Turbo C 
function ListToArray, which converts the list into an 
array and sorts the elements. Once the array is 
sorted, a window is created using mymakewindow. 
Next, a message is displayed (write_string) to indi­
cate that the sort is complete, and the system pauses 
(pause) until the user hits a key. (mymakewindow, 
write_string, and pause are all written in Turbo 
Prolog.) An interesting point is that pause is called in 
both the sortlist routine of the Turbo C module, and 
in the run clause of the Turbo Prolog program. This 
shows how a set of tools developed in Turbo Prolog 
can be directly callable from either Turbo Prolog or 
Turbo C without modification. 

Finally, the Turbo C sortlist routine converts the 
array back to a list using ArrayToList, and passes the 
list back to Turbo Prolog. 

COMPILING AND LINKING 
Much of the compile and link process is unchanged, 
so I will not reiterate the entire process. (For a com­
plete discussion, refer either to the Turbo Prowg 
Owner's Handbook, or to any of the earlier "Language 
Connections" columns.) On the Turbo C side, the ac­
tual compile has not changed. You must still use the 
Large memory model, and set Generate underbars 
OFF andjump optimization ON. 

The compile process has changed slightly on the 
Turbo Prolog side when you compile as a project. In 
this case, you now have the ability to link in other li­
braries in addition to the Turbo Prolog Runtime Li­
brary. This option is available in the Options pull­
down menu. 

The command line link process has a minor 
change. Turbo Prolog 2.0 no longer requires 
CPINIT.OBJ to set up the calling conventions, so 
CPINIT does not appear in the command line. 
Otherwise, the compile and link process has not 
changed. 

The new features in Turbo Prolog 2.0 make it a 
powerful programming tool, not only in its own right 
as a standalone programming language, but also as 
a utility for other languages such as Turbo C. Turbo 
C programmers who love to muck around in the 
depths, but hate learning high-level details (some of 
my favorite C programming friends talk this way) 
should look into this connection-you won't even 
have to clean up to do it. • 

Gary Entsminger is a freelance writer, and an associate 
editor of Micro Cornucopia magazine. 

Listings may be downwaded from CompuServe as 
LCV1N5.AR.C. 



PUT The Flying Club of America, Inc. 

YOUR 
BEST 

DBI 
Africa 
Asia 
Canada 
Europe 

Hawaii 
Illinois 
Kentucky 
Maryland 
Minnesota 
Montana 
Nebraska 

Edit Options 

U.S. States 
Iowa 
Indiana 
Louisiana 
Maine 
Missouri 
North Carolina 
New Hampshire' 

Introducing Face It 

Setup Save 

Idaho 
Kansas 

Mic 1gan 
Mississsippi 
North Dakota 
New Jersey 

Black FACE 
FORWARD 

& White International Inc. 

With Our New Interface Manager 

Introducing Facelt TM 

A powerful interface design tool for Turbo Basic®, C®, 
Pascal® and Prolog~ 

Just think of some of the best text-based menu driven inter­
faces you have encountered or even written. Now imagine be­
ing able to get those same pop-up, pull-down, horizontal, and 
multiple column menus in minutes, without writing a single 
line of code. Facelt lets you add state-of-the-art interfaces to 
all your Turbo programs. Use Facelt to create front-ends to 
systems, build online help systems or as a quick prototyping 
tool. 

A New Way To Create Interfaces 
We know how hard it is to create that special " look and feel". 
Menus used to take hours and even days to design, code and 
tweak just to get them right. But now there's Facelt. Facelt 
does all the work of menu and interface creation for you. You 
specify the contents of the menu and Facelt does the rest. It 
designs perfect menus and layouts every time. 

How Facelt Works 
I. You define the contents of your menus using any editor. Or, 
you can import data directly from a dBASET~ DBF file. 
2. Then Facelt, using this data, designs a single menu or 
multiple-menu interface. 
3. Use the interface as is or polish it up using Facelt's interac­
tive mode. 
4. You're done. 

Facelt Features 
0 Scrolling menus with scroll bars 0 Return Strings 

Build Interfaces Right On The Screen 
Design sophisticated multi-menu systems with Facelt's interac­
tive mode. Start with a single main menu. Link sub-menus to 
the main menu. Annotate each item with status lines. Then 
add context-sensitive help. 

Total Menu Customization 
Change window shapes, border styles and color every element 
of the menu right down to the individual menu item. 

Multiple-Language Support 
Facelt includes language specific modules (LSMS) for all 
Borland and Microsoft lanfiuages, a dBASET;-i FoxBASET;-i 
Clipper™ and Quicksilver ~ These LSMS provide the two 
way communication between your application and the Facelt 
engine. Facelt can return to your program the face of the 
menu or a return string from another menu or the name of the 
menu and the number of the item selected. 

The Perfect Turbo Companion 
Facelt includes a royalty-free runtime module that you may 
distribute with your applications. So, whether you program for 
yourself, your company or other people, Facelt will create the 
right face and give your application the look it deserves. 

Facelt™ 
0 Headers and Footers 0 
0 Onscreen Menu Customization 0 

Runtime Module Uses Only 
Supports 

19K and put your best face forward . 
0 Full Color Support 
0 Separators/Blank Items 
0 Initial Character Selection 
0 Item/Menu Level Help 
0 Default/Manual Placement 
0 Unavailable Items 

EMS 3.2 and above 
43 Line EGA Mode 
50 Line VGA Mode 
40 ColumnMode 
Microsoft Compatible Mice 

0 Not Copy Protected 

Try Facelt risk free! Faccll is backed by our JO day unconditional money back guarantee. 

Only $99 

Call Today 212-787-6633 

Black & White lntemational, Inc. 
PO Box 21108 
NY. NY 10129 

Faccll is a trademark of Black & White International , Inc. Other brand and product names arc trademarks or registered trademarks of their rcspecitvc holders. 

Requires DOS 2.1 or higher, for the IBC PC, PS/2 and true compatibles 



· Our readers know that TURBO TECHNIX is the place 
to be when the focus is on development. They watch 
us for the tips and techniques that help them utilize 
the speed and power of Borland's programming lan­
guages. And they spend a lot of time in these pages. 
Your ad should be here. 

NOVEMBER/DECEMBER 1988 
ISSUE CLOSING DATE: SEPTEMBER 8 

Multitask Turbo Pascal applications under DOS . . . understand 
and circumvent the DOS reentrancy problem with TSRs .. . write 
code-generating scripts in PAL ... take the mystery out of suuc­
tures and unions in Turbo C .. . store data in 286 extended mem­
ory ... discover definite clause grammars in Turbo Prolog .. . plus 
our columnists, Dialog, and Philippe at his provocative best. 

JANUARY / FEBRUARY 1989 
ISSUE CLOSING DATE: NOVEMBER 2 

Implement a "poor man's LAN" using PC parallel ports ... learn 
about Turbo Pascal's enumerated types . . . interpret HPGL plotter 
command files to the screen . .. understand state space through 
Turbo Prolog . .. tum data files to .OBJ files for linking as exter­
nals to Turbo Pascal ... study Paradox memory management . .. 
and enjoy all our regular columnists and features. 

144 TURBO TECHNIX July/August 1988 

There's only 
one way 
to reach 
a programmer­

Use the 
programmers' 

• magazine: 
TURBO 
TECHNIX 
THE BORLAND LANGUAGE J OURNAL 

CALL NOW 
RESERVE YOUR 
TURBO TECHNIX 
SPACE TODAY! 

Publisher 
John Hemsath 

Home Office 
( 408) 438-9321 

Western Office 
(714) 858-0408 
Janet Zamucen 

New England Office 
Mid-Atlantic Office 
(617) 848-9306 
Merrie Lynch 
Nancy Wood 

Southeastern Office 
(813) 394-4963 
Megan Patti 



TALES FROM THE 
RUNTIME 
Organization and optimization 

Mark L. Van Name and Bill Catchings 

I 
n the past few columns, we've focused on add­
ing capabilities to the Turbo C Runtime Li­
brary. In this column, we discuss two primarily 
procedural topics: How to use the Runtime's 

source code organization and batch files (see accom­
panying sidebar, "Runtime Maintenance"), and how 
to optimize Runtime C routines by translating them 
into assembly language. 

The motive for such translations is clear: no mat­
ter what you want your code to do, you usually want 
the code to do it faster. You get the biggest speed im­
provements, of course, with better algorithms, but 
you can often get substantial gains by recoding a few 
key routines in assembler. 

If you program regularly in assembler, you might 
not find this kind of recoding much trouble. For 
most of us, however, it's a slow process that requires 
a great deal of attention to detail. Fortunately, you 
can skip a great deal of work by having Turbo C gen­
erate the initial assembly language version of the 
routine-then you only have to improve that version 
and integrate it with the rest of the Library. (While 
we'll look at an example from the Runtime, you can 
also use this technique for other routines.) 

We feel obliged to point out that you probably 
should avoid this kind of optimization except for 
heavily used routines, or routines where perfor­
mance is crucial. One of the main points of using C 
is to work with a high-level, structured language. 
Furthermore, much of the Runtime is already in as­
sembler, in keeping with Borland's emphasis on per­
formance. Finally, Turbo C generates basically good 
code, so you'll often find (as we did in the example 
below) that there is little to improve. 

OPTIMIZING THE rand FUNCTION 
Before you translate an entire routine to assembler, 
consider replacing only small parts of its C code with 
some inline assembly code. If you do include assem­
bler in a C routine, remember to put the following 
directive early in the file: 

#pragma inl ine 

Also, each line of assembly code must begin with the 
Turbo C reserved word asm. 

Assuming, however, that you want to go for the 
whole enchilada, let's look at a procedure that you 
can use. We chose the Runtime's rand function (see 
Listing 1) because it provides a simple starting point, 
and we'll make only a very minor improvement to 
this routine. We want to examine the procedure itself 
more than the particular changes. 

First, compile the routine with TCC using the -S 
option to produce a listing of the assembler routine 
that was generated. TCC names the file <filename>.ASM 
(in our case, RAND.ASM). Notice that Turbo C adds 
line numbers as comments-these line numbers 
identify the source lines that correspond to each sec­
tion of the assembler code, and are handy if you 
want to replace specific lines with more efficient in­
line assembler fragments. 

We made a copy of the assembler output file to use 
later for discussion and comparison, and named that 
copy RAND.Our (see Listing 2). We then worked di­
rectly on RAND.ASM; Listing 3 shows the final ver­
sion of that code. 

Notice first that RAND.Our contains many setup 
and cleanup instructions (these instructions are com­
mon to most routines, so there's not much new 
here). Furthermore, these instructions can make it 
difficult to see what the code is really doing. To cor­
rect these problems, we cut away the code containing 
the instructions, and replaced it with the Runtime as­
sembler macros that surround most Runtime assem­
bler routines. We lifted this boilerplate code directly 
from spawn, in the file SPAWN.ASM (but nearly any 
other Runtime assembler routine would do as well). 

As we described in a previous column, most of 
these macros come from the file RULES.AS!, so you 
need to include that file in the code. The macro 
Header@ replaces most of the setup code that Turbo 
C generates. The CSeg@ and CSegEnd@ macros re­
place most of the other setup and cleanup instruc­
tions. These macros signal the start and end, respec­
tively, of the code segment. 

HANDLING VARIOUS MEMORY MODELS 
This approach does have one limitation-the as­
sembler code that Turbo C generates only works for 
the memory model that is used for the compilation. 
If you're not sure whether your code should vary 

continued on page 146 

July/ August 1988 TURBO TECHNIX 145 



FROM THE RUNTIME 
continued from page 145 

from one memory model to another, compile the 
code with several different memory models and com­
pare the resulting .ASM files. If they are all the same, 
you have no problem. 

If they are different, or if you already know that 
you need to make some changes to force your code 
to work with all of the memory models, then you 
have a little more work to do. The memory model 
that we use in RAND.ASM could affect the code in 
three areas. 

First, we have to decide whether to declare the 
procedures as near (for Small-code memory models) 
or as far (for Large-code memory models). Fortu­
nately, the standard Runtime macro PubProc@ han­
dles this problem for us. By replacing the procedure 
declarations with PubProc@, we make those proce­
dures public (callable from anywhere in a program). 
PubProc@ also takes the memory model switch from 
the MASM command line, and uses the switch to de­
termine if the routines should be near or far. We use 
the second PubProc@ argument, _CDECL_, to in­
dicate that the routines should use calling and nam­
ing conventions in C rather than in Pascal. 

We also must deal with the different stack offsets 
of the seed argument to srand. We use a defined 
constant, SEEDOFF, in srand to retrieve the argu­
ment correctly. Conditional assembly defines SEED­
OFF appropriately for the routine's memory model. 

The third difference arises only in the case of the 
Huge memory model, where each file places its static 
variables into its own data segment. This feature re­
quires us to manipulate the DS segment register in 
order to access the seed variable in the Huge mem­
ory model. To eliminate this potential problem, we 
put the seed variable in the code segment after the 
CSeg@. 

OTHER CONSIDERATIONS 
Once the code works for all of the memory models 
that you might use, make a few more changes before 
you begin to speed up the code. For one thing, 
Turbo C expands all of the C #define statements, so 
that the assembler output shows no constant vari­
ables. To make the code easier to read and maintain, 
put back these constants as we did with INCRE­
MENT, MULTHIGH, and MULTLOW. MULTHIGH 
and MULTLOW are the two 16-bit halves of MUL­
TIPLIER (a 32-bit constant). We had to declare two 
16-bit constants because the assembler works with 
16-bit quantities. 

A few other changes also make the routine easier 
to read. We removed unnecessary labels, such as @ l 
and @2. More importantly, we commented the code. 

continued on page 149 

146 TURBO TECHNIXJuly/ August 1988 

LISTING 1: RANO.C 

/*----- ---- --- -- - --- ------ - - -- -- -- --- - - - - ---- ----- ---- -- --------- ---* 
* filename - rand.c 

• fl.nction(s) 
* srand - initializes random nl.ITber generator 

rand - random r'K..ITber generator 
•---- --- -- ----- -- -- ------ - - - - -- -- -- - - - - - - --- ---- - ----- ------ -. ----*/ 

/*[]---- --------- --- ------------------ ----------------- []*/ 
r ~ 
/* Turbo C Run Time Library - Version 1.5 */ 
r ~ 
r ~ 
/* Copyright (c) 1987 by Borland International */ 
/* All Rights Reserved. */ 
r ~ 
/*[]---------- --------- -------- --- -- -- ---- -- -- ---------CJ*/ 

#include <stdl ib.h> 

#define KJLTJPUER 
#define INCREMENT 

Ox015a4e35L 
1 

static long Seed = 1; 

/*--- ---------------------------- ----- ----------------------------· 

Name srand - initializes random nurt>er generator 

Usage void srand(unsigned seed); 

Prototype in stdl ib.h 

Description see rand below 

Return value Nothing 

*·-··-·······--··------------- ----------------·------- ---------- -*/ 
void srand(unsigned seed) 
{ 

Seed = seed; 

/*------------- ------------------------------- --- -------- ----------• 
N...., rand - random nurber generator 

Usage int rand(voidl; 

Related 
functions usage void srand(unsigned seed); 

Prototype in stdl ib.h 

Description rand uses a 1!1Jl ti pl icative congruential random nurber 
generator with period 2 -32 to return successive 
pseudo- random nurbers in the range from 
Oto2"15-1. 

The generator is reinitialized by calling srand with 
an argtinent value of 1. It can be set to a new 
starting point by calling srand with a given seed 
nurber. 

•------------------------- ------ ----------- -----------------------*/ 
int rand(voidl 
{ 

Seed = KJL Tl PU ER * Seed + l NCREMENT; 
return(( int)(Seed » 16) & Ox7fff); 



RUNTIME MAINTENANCE 
When we started this column 
nearly a year ago, the Runtime 
Source that we used did not in­
clude any source code mainte­
nance batch files or support di­
rectories. In our first column, 
therefore, we showed our own 
batch files and directories. The 
Turbo C 1.5 Runtime Source 
(now shipping) does include 
batch files and a good directory 
structure, so we'll use them in 
future columns. 

This newer Runtime also 
contains many new and 
changed source files. Don't 
worry, though-all of the mod­
ifications presented in previous 
columns are still valid. We sug­
gest that you take the changes 
from those columns and fit 
them into the new source, 
rather than entirely replacing 
the newer routines with the 
changed ones. In this way, you 
don't lose any improvements in 
the new routines. 

The version 1.5 Runtime 
uses the directory structure 
shown in Figure 1. Both the 
CLIB and MATH directories 
contain six object file subdirec­
tories: SMALL, COMPACT, 
MEDIUM, LARGE, HUGE, and 
OBJ. The first five hold the ob­
jects for their respective mem­
ory models. The OBJ directory 
contains objects that are inde­
pendent of any memory model. 
The libraries themselves go 
into the CUB and MATH 
directories. 

Be aware that while this new 
structure is easy to use, it con­
sumes a great deal of disk 
space because it retains one 
version of every object file for 
each memory model. 

NEW CUB.BAT 
NEW=MATH.BAT 
UPOASM.BAT 
UPOC.BAT 

(Creates a new set of general C libraries) 
(Creates a new set of math libraries) 
(Assembles a routine and adds it to the library> 
(Coq:>iles a routine and adds it to the library) 

Figure 2. A list of batch fi/,es mentioned in earlier columns that are now 
replaced by batch fil.es provided with the Turbo C Runtime Library Source. 

The Runtime also includes 
some batch files that help you 
manage your code. They re­
place the four batch files (in 
Figure 2) presented in our first 
column. 

One of the main new batch 
files is CUB.BAT, which recom­
piles all of the CLIB library 
source files for any memory 
model or for ALL of them, and 
then builds the specified library 
or libraries. CUB does not up­
date those libraries, however; 
instead, it builds them from 
scratch. It also lets you specify 
additional TCC options. For ex­
ample, you can build the Large 
memory model library with the 
following command: 
CLIB LARGE 

To build all of the memory 
model versions, and at the 
same time define DEBUG for 
conditional compilations, use 
the command: 
CLIB ALL -OOEBUG 

CLIBRLIB.BAT also builds 
the libraries from scratch, but 
it assumes that you have al­
ready compiled all of the rou­
tines. It skips the compilation 

and assembly stages and uses 
the existing objects. It also lets 
you specify a memory model or 
ALL. 

CLIBRCMP.BAT is 
almost "the other half" of 
CUBRLIB.BAT. It only com­
piles or assembles source files 
for a given memory model or 
ALL, and it does not touch the 
libraries. You can use it for 
both C and assembler files by 
specifying the file's extension 
separately in this command 
line format: 
CLIBRCMP <model> <filename> 

<extension> 
<MASM or TCC switches> 

To compile a single source 
file and update it in the library 
without rebuilding the entire li­
brary, use the new batch file 
CUBREPL.BAT: 
CLIBREPL <model> <filename> 

<extension> <library dir> 
<MASM or TCC switches> 

The Runtime also includes 
batch files that perform similar 
functions for the MATH li­
brary. These new batch files 
and directories, along with all 
of the new version 1.5 source 
code, are valuable additions to 
the Runtime. We're glad to 
have it shipping. • 

-Mark L. Van Name 
and Bill Catchings 

\TURBOC\LIBRARY\INCLUDE 
\TURBOC\LIBRARY\CLIB 
\TURBOC\LIBRARY\MATH 
\TURBOC\LIBRARY\EMU 

(include files) 
(C library sources) 
(Math library sources) 
(Floating point enulation sources) 

Figure 1. The directory structure used for the Turbo C Runtime Library Source. 

July/ August 1988 TURBO TECHNIX 147 



LISTING 2: RAND.OOT 

name 
text segment 

dgroup group 
assune 

text ends -
data segment 

- dil label 
:data erds 

bss - segment 
bil label -
bss erds -_data segment 
Seed label - dw 

dw 
data ends 

-text segment 
; Line 40 

srand proc 
- push 

mov 
Line 41 

mov 
xor 
mov 
mov 

; Line 42 
a1: 

pop 
ret 

srand endp 
YLine66 

rand proc 
Line 67 

mov 
mov 
mov 
mov 
call 
add 
&de 
mov 
mov 

Line 68 
mov 
and 

a2: 
; Line 69 

ret 

-rand endp 
text ends 

=data segment 
sa label 

:data ends 
text - segment 

public 
public 

text erds - extrn 
end 

} 

rand 
byte pub! ic •code' 
_data,_bss 
cs : _ text,ds :dgroup, ss : dgroup 

word public 'data• 
byte 

word public 1bss 1 

byte 

word public 'data• 
word 
1 
0 

byte public ' code' 

near 
bp 
bp,sp 

ax,word ptr [bp+4J 
dx,dx 
word ptr dgroup:_Seed+2,dx 
word ptr dgroup:_Seed,ax 

bp 

near 

dx,346 
ax,20021 
ex, word ptr dgroup:_Seed+2 
bx,word ptr dgroup:_Seed 
far ptr lX111JlOI 
ax, 1 
dx,0 
word ptr dgroup:_Seed+2,dx 
word ptr dgroup:_Seed,ax 

ax,word ptr dgroup:_Seed+2 
ax,32767 

word public •data• 
byte 

byte public •code• 
srand -rand 

LXlt.ILOl:far 

LISTING 3: RANO.ASll 

NAME RAND 
PAGE 60, 132 

INCLUDE RULES.AS! Get the standard assent>ler macros 

Segment definitions 

148 T URBO TECHNIXJuly/ August 1988 

Headera 

EXTRN LXlt.ILa: FAR 

Declare some constants 

INCREMENT equ 1 
It.IL THIGH equ 015AH 
lt.ILTLOll equ 4E35H 

IFDEF HUGE -SEEDOFF equ 8 
offset 

ELSE 
I FDEF LPROG 

SEE DOFF equ 6 
ELSE 

SEEDOFF equ 4 
ENDIF 

END! F 

CSegil 

_Seed dw 1 
dw 0 

PubProca srand, _CDECL_ 
push bp 
mov bp, sp 

Set the world up nicely 

LXlt.IL is always a far procedure 

High order word of the 111Jl ti plier 
Low order word of the 111Jl ti plier 

Pi ck the appropriate argunent 

Start the code segment 

The seed value (initially 1) 

; Declare a global C fLnCtion 
; Save the stack frame pointer 
; Get a new one 

mov ax, word pt r 
xor dx, dx 

[bp+SEEDOFFJ ; Get the requested seed 
Cast to a long 

mov Seed+2, dx 
mov -Seed, ax 
pop 
ret 

Erd>roca 

lip 

srand, _CDECL_ 

PubProca rand, _CDECL_ 
mov dx, MULTHIGH 
mov ax, lt.ILTLOll 
mov ex, Seed+2 
mov bx, -Seed 
call far ptr lx....,la 
add ax, INCREMENT 
&de dx, 0 
mov Seed+2, dx 
mov :seed, ax 

Erd>roca 

CSegEndil 

mov 
and 
ret 

END 

ax, dx 
ax, 7FFFH 

rand, _CDECL_ 

Save it as the seed 

Restore the old pointer 

Declare a global C fLnCtion 

Get the seed 

Multiply the two 32 bit nuitiers 
Add in the increment 
Make it a 32-bit add 
Save the answer as the new seed 

Get the answer to return 
Remove the sign bit 



RUNTIME 
continued from page 146 

If you plan to keep the assembler version of a rou­
tine, this task, while not the most pleasant, is very 
important. 

OPTIMIZING FOR SPEED 
Our lone optimization is a minor one. In the follow­
ing statement (which appears near the end of Listing 
2), Turbo C fetches the return value from memory: 
mov ax, _Seed+2 

Since the value is already in the register DX, we can 
avoid that memory fetch. We replaced that statement 
with this faster one: 
mov ax, dx 

While this improvement is only a tiny one, you'll 
often have opportunities to improve a routine. For 
example, if you are writing code for an 80386-based 
machine, you can speed up this routine a great deal 
by replacing the call to the 32-bit multiply routine 
with the 80386's 32-bit multiply instruction. You can 
use this instruction, as well as many others, even if 
you are not running the 80386 in protected mode. 

When you are done translating this routine, or any 
other routine, add your new version to the Runtime 
Library. The Turbo C 1.5 Runtime Library Source in­
cludes source code maintenance batch files (see the 
accompanying sidebar, "Runtime Maintenance"). 
Once you get used to them, you're off to the races 
with your new, faster routines. • 

Mark L. Van Name is a freelance writer. Bill Catchings is 
a freelance writer and a software engineer at Data General 
Corp. 

Listings may be downloaded from CompuSeroe as 
OPTMJZ.ARC. 

ADD TO THE POWER OF YOUR PROGRAMS WHILE YOU SAVE TIME AND MONEY! 

CBTREE does it all! Your best value in a B+tree source! 
Save programming time and effort. 
You can develop exciting file access programs quickly and easily because 
CBTREE provides a simple but powerful program interface to all B+tree 
operations . Every aspect of CBTREE is covered thoroughly in the 80 page 
Users Manual with complete examples. Sample programs are provided on 
disk. 

Gain flexibility in designing your applications. 
CBTREE lets you use multiple keys, variable key lengths, concatenated 
keys, and any data record size and record length. You can customize the 
B+tree parameters using utilities provided . 

Your programs will be using the most efficient searching techniques. 

CBTREE provides the fastest keyed file access performance, 
with multiple indexes in a single file and crash recovery utilities. 
CBTREE is a full function implementation of the industry 
standard B+tree access method and is proven in applications 
since 1984. 

Access any record or group of records by : 
·Get first 
·Get previous 
• Get less than 
• Get greater than 
• Get sequential block 
• Get all partial matches 
• Insert key and record 
• Delete key and record 
• Change record location 

Increase your Implementation productivity. 

•Getlast 
·Get next 
• Get less than or equal 
·Get greater than or equal 
• Get partial key match 
• Get all keys and locations 
•Insert key 

•Delete key 

CBTREE is over 8,000 lines of tightly written, commented C source code. 
The driver module is only 20K and links into your programs. 

Port your applications to other machine environments. 
The C source code that you receive can be compi led on all popular C 
compilers for the IBM PC and also under Unix, Xenix, and AmigaDos ! No 
royalties on your applications that use CBTREE. CBTREE supports multi­
user and network applications. 

CBTREE IS TROUBLE-FREE, BUT IF YOU NEED HELP WE PROVIDE FREE PHONE SUPPORT. 
ONE CALL GETS YOU THE ANSWER TO ANY QUESTION! 

CBTREE compares favorably with other software selling at 2,3 and 4 times our price. 
Sold on unconditional money-back guarantee. 

YOU PAY ONLY $159 -A MONEY-SAVING PRICE! NOW! Variable length records. 

<__. .:>· TO ORDER OR FOR ADDITIONAL INFORMATION 
f>EACOCH SYSTEms. nc CALL 1-800-346-8038 or (703) 847-17 43 NEW! --- Limited Time Offer. 

OR WRITE Object Library for Only $49! 

Peacock Systems, Inc., 2108-C Gallows Road, Vienna, VA 22180 

July/ August 1988 TURBO TECHNIX 149 



ARCHIMEDES' 
NOTEBOOK 
Rocketry with Eureka 

David Eag/,e 

M odeling is the process of performing 
experiments without really performing 
them. This can be critical in cases where 
the governing physical laws are well 

known, but the costs of "cut-and-try" analysis are 
prohibitive. Rocketry is a good example. Apart from 
using very small models, the costs and dangers of 
experimentation make it necessary to get as much in­
formation from analysis and modeling as possible. 

The ability to quickly and accurately predict verti­
cal rocket flight allows the analyst to assess the effect 
of different aerodynamic configurations, rocket en­
gines, and launch site conditions on the "best" alti­
tude performance. With Eureka, the analyst need 
only be concerned with formulating the equations 
that define a problem, not with the numerical meth­
ods required to solve the problem. 

ROCKET.EKA is an equation file that demon­
strates the ability of Eureka: The Solver to perform 
optimization with an inequality constraint. ROCKET 
determines the optimum launch mass of a single­
stage rocket in order to maximize the total altitude 
attained by the rocket. This fundamental and impor­
tant problem in aerospace engineering illustrates the 
unique interaction between aerodynamics, flight me­
chanics, and propulsion. 

DENSITY MODEL 
The atmospheric density model used in ROCKET 
compensates for "nonstandard" launch sites. These 
are sites that may not be at sea level, or rocket 
launchings that occur anywhere on unusually hot or 
cold days when variations exist in atmospheric den­
sity due to temperature. The user must specify the al­
titude of the launch site and the ambient tempera­
ture on the launch day. Launch site altitudes are 
positive for sites above sea level, and negative for 
sites below sea level. The density model is valid for 
rocket flight to altitudes of 11,000 meters (11 kilome­
ters). Above that threshold altitude, a different model 
(not given here) must be used. 

The atmospheric density at the launch site (as a 
function of the altitude and temperature) is com­
puted with Equation 1, as shown in Figure 1. 

FLIGHT MECHANICS 
The rocket's altitude and velocity at the moment of 
rocket engine burnout are computed with Equations 
2 and 3, as shown in Figure 2. 

150 TURBO TECHNIX July/ August 1988 

The altitude gained by the rocket during the coast­
ing portion of the flight, and the coasting time, are 
determined using Equations 4 and 5, as shown in 
Figure 3. 

Finally, the maximum altitude and total flight time 
are shown below in Equations 6 and 7. 

~=~+~ ~ 

'Fiotal = Td + Tc (7) 

xmax is the value we are trying to maximize with 
Eureka: The Solver. 

WORKING WITH ROCKET 
ROCKET.RPT (Listing 1) is a Eureka report file con­
taining both the equation file ROCKET.EKA and its 
~olutio~ file. The equation file begins with the inputs 
1t reqmres and the outputs to be generated as part of 
the solution. The equation file specifies both the 
variable names used in the program and their units 
of measure (note the use of the metric system). After 
several unit conversions and constants are defined, 
the equation file lists nine items that must be defined 
by the user in order for Eureka to solve the equation 
file . Eureka recognizes these user-defined items as 
the input items specified earlier in the file. You can 
model different rockets and different launch circum­
stances by varying the values of these items. 

It's very important that the user set the inequality 
constraint, and the initial guess for massi, equal to 
the propellant mass (in kilograms) of the rocket en­
gine. This is shown in the following lines from the 
equation file: 
massi > .0083 

massi := .00833 [kilograms] 

After all the input items are set to reasonable 
values, Eureka calculates the atmospheric density at 
the launch site and performs several intermediate 
calculations before finally solving for the maximum 
altitude reached by the rocket. Eureka iterates for the 
initial launch mass of the rocket massi through the 
following directive, which is defined at the beginning 
of the equation file: 
$ max(alt.max) 

The equation file can be easily modified to calcu­
late a rocket's maximum altitude for a fixed value of 
initial mass by removing the max directive and in­
equality lines, and hardwiring the value for massi. 



P= 

where 

1.22557(1 - 2.2556913E-5h) 4256116 

l + (T- 59) 
518.67 

(1) 

P = launch site density (kilograms per cubic meter) 
h = launch site altitude (meters) 
T =launch site temperature (degrees Fahrenheit) 

Figure 1. The atmospheric density model used in 
ROCKET.EKA. 

X00 = (m ...;- k) In { cosh[4Jk (F- mg)...;- m]} 

V00 = J(F-mg)7k tanh{4Jk(F-mg) 7m} 
where 

xbo = burnout altitude (meters) 

vbo =burnout velocity (meters) 

Figure 2. The equations defining rocket altitude and 
velocity at burnout. 

X, = (m ...;- 2k) ln(kV~ ...;- mg+ 1) 

7; = J(m ...;- kg) atan { vbo Jk ...;- mg} 
where 

X, =coast altitude (meters) 

7; =coast time (seconds) 
and 

m = average rocket mass (kilograms) 

k = 112 p Cd A (kilograms/ meter) 

r =atmospheric density (kilograms/ meter 3) 

A= cross-sectional area (meters 2) 

It 
F = average thrust= -- (newtons) 

4 
It = rocket engine total impulse (newton seconds) 

4 = thrust duration (seconds) 

(2) 

(3) 

(4) 

(5) 

Figure 3. The equations defining the altitude and velocity 
during coast time. 

At the end of Listing 1 is Eureka's solution of the 
equation file. The message "Warning: root or log of 
negative number" indicates that Eureka encountered 
an undefined quantity (either the root or the log of 
a negative number) during its iterative solution of 
the equation file. This in no way corrupts Eureka's 
final solution of the equation file, as I have proven 
by duplicating the logic of the equation file in BASIC 
and noting that the resulting values are identical to 
those of Eureka. With the provided solution as a 
general guide for what is reasonable, vary the model 
and see how the outputs change. No programming 
is required-such is the power and purpose of 
Eureka: The Solver. • 

David Eag/,e is an aerospace engineer in Texas. 

Listings may be downloaded from CompuServe as 
ROCKET.ARC. 

LISTING 1: ROCKET.RPT 

*************************************************************** 
Eureka: The Solver, Version 1. 0 
Friday April 15, 1988, 11 : 40 am. 
Name of input file: C:\EUREKA\ROCKET .EKA ....................•.........................................• 

program 11 ROCKET . EKA11 April 15, 1988 

For a given rocket engine and aerodynamic characteristics, 
this Eureka program determines the optinun launch mass of 
a single stage rocket which maximizes total altitude. 

Copyright (c) 1988 by David Eagle 

Input 

= altitude at laLnCh site 
= tefl1)erature at lalllCh site 

alt.site 
t°"".site 
tburn 
irrpulse 
~rop 

= thrust duration of rocket engine 
= total irrpulse of rocket engine 

C meters ) 
( degrees F 
( seconds ) 
( newtons ) 

= rocket engine propel Lant mass ( kilograms ) 
C millimeters di a1neter 

cd 

; output 

= frontal diameter of rocket 
= drag coefficient of rocket 

al t.bo = burnout altitude 
vel.bo = burnout velocity 
mass. bo = burnout mass 
tcoast = coast time 
tflight =total flight time 
alt.max = maxirrun altitude 
messi = optirrun initial rocket mass 

C non-dimensional 

C meters ) 
( meters per second ) 
( kilograms ) 
C seconds ) 
C seconds ) 
C meters l 
( kilograms ) 

; maximize the total altitude with Eureka•s 11maxtt directive 

S max C alt.max > 

; define Ll"lit conversions 

S units 
kilograms -> grams : x • 1000 
meters -> ki L01T1eters : x / 1000 
degF - > degC : 5 I 9 * C degF - 32 ) 

S end 

; define the acceleration of gravhy 
; C meters per second per second ) 

gravity = 9 .80665 

gravity := gravity [ meters/sec-2 J 

NOTE: the next nine items are user inputs 

laLnCh site altitude C meters ) • 

alt.site = 100 

alt.site : = alt.site [ meters J 

; laLnCh site t"""°rature C degrees F 

t°"".site = 70 

t°"".site := t°"".site [ degf J 

; rocket engine thrust duration ( seconds ) 

tburn • 1 .2 

tburn : = tburn [ seconds J 

; rocket engine total irrpulse ( newton-seconds ) 

irrpulse = 5 

irrpulse := irrpulse [ newtons J 

; rocket engine propel Lant mass ( kilograms ) 

~rop = • 00833 

~rop := ~rop C kilograms J 

; rocket frontal diameter ( mil lameters ) 

diameter = 18 

July/ August 1988 TURBO TECHNIX 151 



diameter :=diameter C millimeters 

; drag coefficent ( non-dimensional 

cd • .3Z1 

constrain the initial launch mass to a value greater than 
the rocket's propellant mass ( kilograms ) 

massi > .0083 

provide Eureka with an initial guess for the rocket's 
initial launch mass ( kilograms ) 

"massi" is initially set equal to the propellant mass 

massi := .00833 [ kilograms l 

; cOOlJUte the atmospheric density at the lai.nch site 
; ( kilograms per cubic meter ) 

density= 1.22557 * < 1 - 2.2556913E-5 *alt.site ) · 4.256116 /_ 
( 1 + ( t""".site - 59 ) I 518.67 > 

density := density [ kg/m"3 l 

; calculate the rocket 1 s average thrust ( newtons ) 

thrust = i..,ulse / tburn 

thrust := thrust [ newtons l 

; calculate the rocket's average mess ( kilograms ) 

mass • ( mass I - . 5 * mprop 

mass := mass kilograms l 

; calculate the rocket's average weight C newtons ) 

weight = mass * gravity 

weight := weight [ newtons 

; determine the rocket's "total" aerodynamic coefficient 

k • .5 *density* cd *pi() *diameter • 2 I 4e6 

; C""l'IJte burnout altitude ( meters ) 

alt.bo = ( mass / k ) * ln ( cosh ( tburn * 
sqrt ( k * ( thrust - weight ) ) /-mass ) ) 

alt.bo :• alt.bo [meters l 

; COOlJUte burnout velocity ( meters per second ) 

vel.bo • sqrt ( ( thrust - weight ) I k ) *-
tanh ( tburn * sqrt ( k * ( thrust - weight ) ) / mass ) 

vel .bo := vel .bo [ meters/second l 

; cOOlJUte burnout mass C kilograms > 

mass.bo = massi - mprop 

mass.bo :• mass.bo [ kilograms 

; COOlJUte burnout weight ( newtons 

weight.bo = mass.bo * gravity 

weight.bo :• weight . bo C newtons 

; COOlJUte coast time seconds ) 

tcoast = sqrt ( mass.bo I ( k *gravity ) ) *-
atan2 ( vel.bo * sqrt ( k I weight.bo ) , 1 ) 

tcoast := tcoast seconds l 

; COOlJUte the total flight time of the rocket ( seconds ) 

tf light tburn + tcoast 

tflight := tflight [seconds 

152 TURBO TECHNIX July/ August 1988 

; solve for the rocket's rnaxift'lft altitude C meters ) 

alt.max= alt . bo + ( .5 * mass.bo I k) •_ 

ln ( k * vel.bo - 2 / weight.bo + 1 ) 

alt.max :=alt.max [meters l 

............................•............•...••...•...........• 
Solution: 

Vari ables 

alt.bo 

alt.max 

alt.site 

cd 

density 

diameter 

gravity 

i..,ulse 

mass 

mass.bo 

massi 

mprop 

tburn 

tcoast 

t""".site 

tfl i ght 

thrust 

vel.bo 

weight 

weight.bo 

Values 

125. 11504 meters 
• 12511504 kilometers 

546.24549 meters 
. 54624549 k i l ometers 

100. 00000 meters 
. 10000000 k i l ometers 

.32100000 

1.1886383 kg/m"3 

18.000000 mill imeters 

9.8066500 meters/sec"2 

5. 0000000 newtons 

. 000048546694 

.020707348 kilograms 
20. 707348 grams 

.016542348 kilograms 
16.542348 gr'""5 

.024872348 kilograms 
24.872348 grams 

.0083300000 kilograms 
8.3300000 grams 

1 . 2000000 seconds 

7.5213853 seconds 

70. 000000 degF 
21.111111 degC 

8. 7213853 seconds 

4.1666667 newtons 

190.35449 meters/secord 

• 20306971 newtons 

• 16222501 newtons 

Confidence level • 96.3% 
All constraints satisfied. 
\larning: root or log of negative nuii>er. 

............................................................... 



CRITIQUE 

DESKTOP FOR PARADOX 
Kallista, Inc. 
600 South Dearborn Street, Suit,e 1611 
Chicago, fllinois 60605 
(312) 663-0101 
$45.00 

Many Paradox users never expe­
rience programming with PAL, the 
Paradox Applications Language. 
This is a shame, because under­
standing PAL can dramatically in­
crease your productivity as a 
Paradox user. Almost anything that 
you do repetitively might be better 
left to a small PAL program that 
can be invoked by a single key­
stroke. Because utility programs like 
this take time and inspiration to de­
velop, they often go undone. 
Kallista, Inc.'s Desktop for Paradox 
is a collection of utility programs 
and help screens that are coded en­
tirely in PAL-and they're only a 
keystroke away. 

Desktop includes about 30 rou­
tines that are invoked by SETKEY 
assignments in !NIT.SC, which is 
the script that Paradox looks for 
when first loaded. The Desktop 
scripts can also be incorporated 
into your own scripts. Desktop re­
quires a hard disk, and Kallista rec­
ommends at least 640K RAM. 

The well-organized 40-page man­
ual is conversational in tone and 
includes many asides directed at 
the reader. The documentation in­
cludes an overview, a discussion of 
programming style, installation 
notes, and a reference section that 
describes each routine in detail. 
The author points out some anom­
alies in the Paradox keyboard map-

ping, as well as other minor 
Paradox inconsistencies that might 
otherwise go unnoticed. 

Program installation is straight­
forward and well-documented, even 
to the point of showing how to 
place the files on a RAM disk for 
faster access. Paradox reassigns 
keys per !NIT.SC; thus, when one 
of the reassigned keys (Ctrl- and 
Shift-function keys, or Alt-number 
keys) is pressed later, the desired 
utility activates. Pressing Alt-Fl 
brings up Desktop Help, which is 
a master menu of Desktop's avail­
able features. 

The help screens give a full­
screen display of commonly refer­
enced pages in the PAL manual. 
These screens include syntax for 
ValCheck pictures, field assign­
ments, FORMAT parameters, PAL 
keystroke assignments, and abbre­
viated menu commands. PAL 
ERRORCODFS, automatic record­
locking constraints, Paradox data 
types and expressions, and ASCII 
codes for commonly used keys are 
all available. These help screens 
can save innumerable trips to the 
massive PAL manual. However, 
they pop up only while you're using 
Paradox. As a result, some of their 
usefulness is lost if you EXEC out 
to an external editor (as many of us 
do). 

Kallista suggests that you retain 
the use of the PAL editor and then 
hot-key to your own editor for 
heavy-duty work. However, I know 
very few people who feel that re­
taining the PAL editor is worth­
while. Although it's provided with 
basic cut-and-paste block operations 
by Desktop, the PAL script editor is 
probably more useful for designing 
forms and reports than for design-

ing PAL scripts. Another script­
oriented routine, called PALKEY­
WORDS(), generates the proper 
syntax for often-used expressions 
like SHOWMENU, WAIT, 
IF .. THEN .. ~E, and so forth. This 
routine also places that syntax at 
the cursor position, which can be 
helpful for the novice who is not 
familiar with the PAL syntax. A 
box-draw program assigns border 
characters to the cursor keypad, 
and can be used in script, form, or 
report design to speed up other­
wise tedious screen drawing. A 
keyboard-to-ASCII converter types 
the ASCII code for a pressed key 
directly into a script 

Desktop for Paradox contains 
several SideKick-like functions 
(although they are not memory­
resident) that include pop-up calcu­
lators, a calendar, a filecard viewer, 
ASCII tables, and a mini-notepad. 
More unique to Paradox, and per­
haps more helpful among the pop­
up utilities, are a screen attributes 
table, a system information screen, 
a Paradox table status display, and 
a program that lets you change a 
Paradox directory by selecting from 
a table of available directories. 

The programs in Desktop are 
more interesting from a coding 
standpoint than from a perfor­
mance standpoint, because their 
performance can be sluggish. The 
code appears to run smoothly, and 
is professionally presented and 
commented. Since all of the source 
code is provided (along with per­
mission to use portions in your own 
applications), Desktop's well­
documented scripts go a long way 
toward educating new PAL pro-

continued on page 154 

July/ August 1988 TURBO TECHNIX 153 



KALLISTA 
continued from page 153 

grammers. Kallista even acknowl­
edges that the programs might not 
be the most efficient, and points to 
PAL's flexible coding style. If you 
like the way the code works, you 
can use it as is; if not, you're en­
couraged to improve on it and to 
contact the author. 

Desktop's value will depend upon 
your experience level and program­
ming style. It can offer something 
for everyone, from novice to 
Paradox power user. At $45.00 and 
with a 30-day, no-questions-asked, 
money-back guarantee, Desktop is 
certainly a bargain. All else aside, 
having an opportunity to take a 
close look at someone else's PAL 
code is more than enough reason 
to purchase Desktop. 

-Alan limreich 

PEABODY 1.02 

Copia international, Ltd. 
1964 Richton Drive 
V\lheaton, lllinois 60187 
(312) 665-9850 
$50.00 per database 

Peabody, an online reference to 
several popular programming lan­
guages, contains one or more disk­
based databases, plus an "engine" 
that accesses the databases. Pea­
body runs either in standalone 
mode or as a memory-resident 
"pop-up." Although the 550K data-· 
base must remain on disk, an effi­
cient indexing scheme makes infor­
mation retrieval very fast 

Peabody displays information in 
overlapping windows, called frames. 
The program is invoked by press­
ing either of two possible hot-key 
sequences, or by using a "hyper­
key" sequence. The Ctrl-tab hot-key 
sequence pops up Peabody's table 
of contents and allows you to select 
information by topic. An alternate 
hot-key sequence (leftshift-tab) re­
displays the most-recently displayed 
frame. The "hyper-key" sequence 
(Alt-leftshift) reads the word that is 
located nearest to the screen cursor. 
If that word is one of Peabody's 
keywords, which number over 400, 
then the program displays the re­
lated information; otherwise, 
Peabody displays the table of 
contents. 

154 TURBO TECHNIXJuly/ August 1988 

Three different methods allow 
you to exit from Peabody. Pressing 
the Esc key backs Peabody out one 
frame at a time, and eventually 
returns you to your application. 
When the Ctrl-Esc sequence is 
pressed, Peabody erases all frames 
and exits immediately. The so­
called "sticky key" sequence (Ctrl­
backspace) returns you to your ap­
plication, but leaves the most recent 
Peabody frame displayed on the 
screen (this makes the transfer of 
information from Peabody to your 
program much easier). With a sec­
ond tap of the sticky key, that frame 
is erased. 

The Peabody databases are quite 
complete. For example, the Turbo 
C database includes clear explana­
tions of all Turbo C statements, op­
erators, functions, and data types, 
plus information about the Turbo 
C compiler. In addition, Peabody 
can keep more than one database 
on-call. A different hyper-key can 
be assigned to each database, or a 
single hyper-key can initiate a 
search through all databases. Other 
nice features include the ability to 
list disk directories and to display 
the contents of disk files and blocks 
of memory. Peabody also displays 
several useful tables of ASCII char­
acters, extended keyboard codes, 
and a list of C data types. 

Peabody comes with several util­
ity programs. One utility lets you 
change aspects of Peabody's setup, 
such as key assignment, display col­
ors, and frame size and position. 
Another utility allows information 
to be added to a Peabody database. 
For example, if you've purchased a 
specialized function library for 
Turbo C, you can add information 
about that library to the Peabody 
database. 

At this writing, Peabody data­
bases are available for Turbo Pascal 
3.0 and 4.0, Turbo C 1.5, and 
Microsoft C 5.0. By the time this ar­
ticle is published, databases for MS­
DOS and the Microsoft Macro As­
sembler 5.0 should be available. 
Peabody requires a hard disk plus 
one floppy disk, DOS 2.1 or higher, 
and at least 256K of memory. In 
memory-resident mode, Peabody 
uses a minimum of 89K 

Despite Peabody's many strong 
points, some aspects of its opera­
tion could stand improvement For 
example, frames pop up in a fixed 
screen location, and often obscure 
the section of source code on 
which you're currently working. Al­
though a frame can be moved in 
order to uncover the display that 
lies below, this is a tedious proce­
dure that requires pressing Scroll 
Lock and then using the arrow keys 
to move the frame a character at a 
time. 

Peabody's video display is slow 
and uses screen space very ineffi­
ciently. When a topic includes more 
information than can be presented 
in a single frame, the program uses 
multiple frames that partially over­
lap. When several frames are dis­
played at the same time (printf, for 
example, uses 11 frames), much of 
the screen area is taken up with 
partially covered frames that ob­
scure the underlying application 
without providing any useful infor­
mation. It would be much better to 
use a single frame that allows data 
to be scrolled. 

Another problem with Peabody 
is the lack of a cross-referencing 
system. When you're reading about 
one topic, you may want to quickly 
move to a related topic and then re­
turn to the original topic. For exam­
ple, the Peabody section on the 
fprintf() function refers the user to 
the section on printf() for details 
on format strings; however, Pea­
body offers no easy way to move 
between these related topics. The 
hyper-key lets you move between 
topics only if the desired keyword 
appears in the current frame (and 
the cursor has to be moved, one 
character at a time, to that word). 
Otherwise, the main keyword index 
must be called and then scrolled 
through until the desired keyword 
is found. 

Online databases of program­
ming information are a great idea, 
and can be extremely useful. As it 
stands, Peabody is good. If the 
above-mentioned problems were 
corrected, it would be terrific. • 

-Peter Aitken 



BOOKCASE 

TURBO C: THE ART OF 
ADVANCED PROGRAM 
DESIGN, OPTIMIZATION, 
AND DEBUGGING. 

Stephen R Davis, M & T Books, 
Redwood City, CA: 1988, ISBN 
0-934375-38-0, 439 pages, softcover, 
$24.95, book and listings disk $39.95. 

S 
teven R Davis' book, Turbo 
C: The Art of Advanced Pro­
gram Design, Optimization, 
and Debuggi,ng, is intended 

for programmers who use Turbo C 
on the IBM PC. Davis covers the 
additional topics that a Turbo C 
programmer needs to know in 
order to write programs that use 
the PC's facilities (MS-DOS, the 
BIOS, and the underlying 
hardware). 

The book begins with an over­
view of the C language, then 
quickly moves into a comparison 
of Turbo C and Kernighan and 
Ritchie's C. These two sections are 
intentionally skimpy, since they 
cover material already presented in 
the Turbo C documentation. Even 
so, more material covering the 
Turbo C Integrated Development 
Environment (IDE) and command 
line utilities would be welcome. In 
particular, a detailed example of the 
command-line version of MAKE 
would be helpful. 

After this overview, the book 
turns next to pointers and linked 
lists. These are glossed over by both 
Kernighan and Ritchie and the 
Turbo C manual, so their inclusion 
in Davis' book is worthwhile. Davis 
also covers pointers to functions 
(another useful programming fea­
ture that is unique to C) and linked­
list integrity (which most C pro-

grammers learn about the hard 
way, after trying to debug a linked­
list program). This section is well­
written, and goes beyond the basics 
of the code in explaining the phi­
losophy behind writing these types 
of programs in C. 

Davis then covers the specifics of 
Turbo C programming on the PC. 
Three chapters peel away the PC's 
architecture layer by layer, begin­
ning with MS-DOS, then moving to 
the BIOS, and finally going over 
the hardware. Rather than exhaus­
tively covering each layer, the intent 
of these chapters is to provide sug­
gestions and background informa­
tion about using the large Turbo C 
library-but more information 
should have been included. Non­
etheless, some good tips can be 
gleaned from the material. In par­
ticular, the chapter on PC hardware 
presents windowing functions that 
work directly with screen memory 
and do not cause flicker on CGA 
adapters. The MS-DOS chapter in­
cludes a good discussion of the 
exec() and spawn() functions. 

This book explores two areas of 
keen interest to PC programmers 
who write commercial applications: 
optimizing Turbo C programs for 
maximum performance, and writ­
ing Terminate and Stay Resident 
(TSR) or "pop-up" programs. The 
optimization chapter offers good 
advice, and includes a section on 
rewriting the time-sensitive parts of 
a program in inline assembly lan­
guage. This chapter also includes 
information about the optimiza­
tions already available within Turbo 
C, including the size, speed, and 
auto-enregistering compilation op­
tions available from the IDE. 

Davis does a good job of explain­
ing the basics ofTSR program­
ming, but he leaves out a few de­
tails. For example, he briefly covers 
how to write an interrupt Ox21 sen­
try that knows if DOS is active 
when the TSR program is invoked. 
(Since DOS is not reentrant, the 
programmer needs to know this in 
order to avoid making any DOS 
calls and crashing the program.) 
Unfortunately, Davis does not pre­
sent any C or assembler code to 
perform this valuable function. 

Davis pays a lot of attention to 
detail in his sample code. For in­
stance, the function that converts a 
number to ASCII outputs octal and 
hex as well as decimal. The code is 
thoroughly commented and can be 
readily incorporated into a C pro­
grammer's toolbox. 

On the whole, the book is well­
written and informative, but it has 
one problem-it should include 
more detailed technical informa­
tion on some topics. For example, 

continued on page 156 

July/ August 1988 TURBO TECHNIX 155 



BOOKCASE 
continued from page 15 5 

even though "debugging" is men­
tioned in the book's title, no men­
tion is made about the use of pop­
ular debuggers such as Code View 
or Periscope with Turbo C pro­
grams. There is no coverage of MS­
DOS critical error and Control­
Break interrupt handlers, which is 
an advanced topic that program­
mers need to know about 

But these are minor criticisms. If 
you crave more information than 
the Turbo C manuals provide, then 
by all means check out Turbo C: 
The An of Advanced Program Design, 
Optimization, and Debuggi,ng. • 

-Marty Franz 

TURBO BASIC PROGRAMS 
FOR SCIENTISTS & 
ENGINEERS 
Alan R Miller, Sybex Books, Berkeley, 
CA: 1987, ISBN 0-89588-4291, 276 
pages, softcover, $19.95. 

M 
athematical analysis is 
an integral part of al­
most every area of 
science and engineer­

ing. While applications for some 
mathematical techniques are lim­
ited to one or two scientific special­
ties, other techniques are widely 
used across many scientific disci­
plines. Alan R Miller's Turbo Basic 
Programs for Scientists & Engineers 
provides a library of Turbo Basic 
routines for solving some of these 
commonly encountered mathe­
matical problems. 

The first chapter examines the 
suitability of Turbo Basic for use 
with the types of numerical compu­
tations that are involved in scien­
tific and engineering problems. 
Specifically, the precision and 
range of floating point operations, 
along with the accuracy of some 
functions, are evaluated and found 
to be acceptable. This chapter also 
briefly describes some features of 
Turbo Basic (the availability of sub­
routines, multiline functions, and 
local variables) that make it more 
suitable than earlier BASICs for 
scientific computation. 

The next two chapters introduce 
some fundamental statistical, vector, 
matrix, and random number oper­
ations. One chapter-the longest 

156 TURBO TECHNIXJuly/ August 1988 

one in the book-deals with the si­
multaneous solution of linear equa­
tions. Cramer's Rule, Gauss and 
Gauss-Jordan elimination, and the 
Gauss-Seidel iterative method are 
covered. This chapter also discusses 
ill-conditioned equations (using the 
Hilbert Matrix as an example), and 
includes sections on a simultaneous 
equation best-fit program, and on 
equations with complex coefficients. 

Three chapters are devoted to 
curve fitting. The first is a general 
introduction, which presents the 
least-squares method for linear fits. 
The second chapter in this group 
presents a generalized least-squares 
program, dealing first with second­
order polynomial equations that 
are fit by a parabola, then fitting to 
higher-order polynomials and non­
polynomial equations. The third 
chapter in this section deals with 
nonlinear curve fitting. Sorting rou­
tines for the curve-fitting programs 
are developed as a separate chapter 
on data sorting methods that covers 
bubble, shell, and quick sorts. 

The book includes a chapter on 
the solution of equations by Newton's 
method, which is an important 
technique with many applications. 
Another chapter deals with numer­
ical integration and covers the 
trapezoid, Simpson's, and Rom­
berg's methods. Finally, a chapter 
on "Advanced Applications" dis­
cusses the Gaussian function (and 
its complement), the gamma func­
tion, and the Bessel function. 

The author's teaching back­
ground is evident in the pedantic 
style of the book. Each chapter 

ends with exercises on that chap­
ter's topics; the answers are given 
at the end of the book. For some of 
the numerical techniques, real­
world examples are presented and 
solved. I tested most of the book's 
routines and sample programs, and 
found no flaws in either the pro­
gramming or the algorithms. 

It's difficult to determine the 
target audience at which this book 
is aimed. It is certainly not merely 
a "cookbook" of analysis routines 
intended for those who are already 
familiar with the numerical tech­
niques and simply want a collection 
of tested BASIC routines to plug 
into their own programs. Because 
earlier chapters develop techniques 
and code that are used in later 
chapters, the text is intended to be 
read from beginning to end. The 
book resembles a textbook in that 
mathematical algorithms are de­
scribed and explained before the 
BASIC code is developed. Expla­
nations are somewhat superficial, 
however; while they help in code 
development, they come nowhere 
near a rigorous theoretical founda­
tion for the described techniques. 

The book is also inconsistent in 
terms of the knowledge that it ex­
pects on the part of the reader. The 
author sometimes assumes that the 
reader is familiar with differential 
and integral calculus; other times, 
however, much simpler mathemat­
ical concepts, such as the standard 
deviation, are explained in great 
detail. 

Although it may not sound as 
though I like the book, my overall 
impression is actually positive. The 
weaknesses that I've mentioned 
may actually be the book's greatest 
strength. If Turbo Basic Programs for 
Scientists & Engineers were a pure 
cookbook of numerical routines, or 
if it included a complete theoretical 
exposition on the algorithms, it 
would better suit a much smaller 
audience. As it stands, this book 
may not meet anyone's needs per­
fectly, but it will be of some value to 
a relatively wide audience. Unfor­
tunately, a program disk is not avail­
able for purchase (although the au­
thor provided one for this review), 
so you'll be in for a bit of typing. 
But even if you use only a couple 
of the routines in this book, your 
purchase cost will be justified. • 

-Peter Aitken 



TURBO RESOURCES 

COMPUSERVE 
The best online information about 
the Borland languages can be found 
on CompuSetve's three Borland fo­
rums. Quite apart from providing the 
listings appearing in TURBO TWl­
NIX, the Borland forums contain 
many megabytes of useful utilities and 
source code in all Borland languages. 
Funhennore, some of the most inter­
esting and knowledgeable people in 
the programming subculture hang out 
on CompuSetve, providing an infor­
mal, online user group that is always 
in session. If you have a question, 
leave a message in the appropriate fo­
rum, and in almost every case some­
one will jump in with an answer. 

Subscribing to CompuSetve can be 
done through the coupon enclosed 
with every Borland product (which 
also includes $15 worth of online time 
for your first month) or by calling 
CompuSetve at (800) 84S-8199. You'll 
need a modem and some son of com­
munications software that supports 
the XMODEM file transfer protocol. 

How to accea the Borland Foruma 
on CompuServe: 
TURBO TECHNIX listings for Turbo 
Pascal and Turbo Basic are available 
in DL 1 (Data Library 1) of the 
BPROGA Borland Programming Fo­
rum (GO BPROGA). Turbo C and 
Turbo Prolog listings are stored in 
DL 1 of the BPROGB Forum (GO 
BPROGB). Listings for Business Lan­
guage articles are also available in DL 
1 of the Borland Applications Forum 
(GO BORAPP). From the initial Com­
puSetve prompt, type GO <forum 
name> or follow the menus. If you're 
not already a member of a forum, you 
must join by following the menus be­
fore you can download the listing 
files. 

How to download TURBO 
TECHNIX code listings from 
CompuServe: 
At the Functions prompt, type: DL 1. 
This will take you to the TURBO 
TECHNIX data library, where all list­
ing files are stored. Listing files are ar­
chived using the ARC52 archiving 
scheme. You will need the 
ARCE.COM program (available in 
DL 0 of BPROGA, BPROGB, and BO­
RAPP) or one compatible with it to 
extract listing files from downloaded 
archives. 
. Magazine archive files are organ­
ized two ways: by article and by issue. 
In other words, there will be one 
ARC file for every article that in­
cludes listings; and a single, larger 
ARC file for each issue that contains 
all of the individual .ARC files for that 
issue. You can therefore download 
listings for individual articles, or 
download the entire issue's listings in 
one operation. 

The all-issue files follow a naming 
convention such that NVOC87.ARC 
(which contains all listing archives 
from the November/December, 1987 
issue),JNFB88.ARC (for the January/ 
February, 1988 issue), and so on. The 
name of an article's individual listings 
archive file is given at the end of the 
article. 

To download an archive file, bring 
up the DL 1 prompt and type: 

DOW <filename>IPROTO: XMO 

After pressing Enter, stan your own 
communications program's XMO­
DEM receive function. After you have 
completely received the file, you must 
press Enter once to inform Compu­
Serve that the download has been 
completed Once you have down­
loaded an archive file, you can "ex­
tract" its component files by invoking 
ARCE.COM at the DOS prompt with: 

C>ARCE <filename> • 

YOUR SUBSCRIPTION 

A free trial subscription to TURBO 
TECHNIX is yours for the asking when 
you register any of the Borland lan­
guages, language toolboxes, or Paradox. 
A. subscription request card is packaged 
with each of those products-do fill it 
out and return it to be sure you get ev­
ery issue. Don't forget your signature 
and the serial number of a qualifying 
Borland product-we need them to 
grant your free subscription. 

If you have moved or changed your 
name, please use the card in this issue 
to update the information. If possible, 
attach the old mailing label to the card. 

ONLINE AND 
BETWEEN COVERS 
The following information describes 
two sources where you can learn more 
about Borland language products: On 
the Borland CompuServe forums, and 
in books now or soon to be in print 
This issue, the CompuServe highlights 
are from the Turbo C/Turbo Prolog Fo­
rum, BPROGB. The files shown in this 
section are oot related to articles in 
!f!RBO TECHNIX, but are of general 
interest to Turbo programmers. All files 
for Turbo C are stored in DL 4; all 
Turbo Prolog files are stored in DL 2. 
The books presented here are only a 
sampling. (We can't possibly list all pub­
lished Borland-related books. Also, this 
listing reflects no judgment about the 
quality of any book.) For more informa­
tion on these and other Borland­
related books, contact the publishers 
or your local bookstore. 

TURBOC: 

INTER.ARC Uploaded: 04/ 14/ 88 
Size: 73,728 bytes 
A cornucopia of descriptions of inter­
rupt and function calls on the IBM PC. 
A great thing to have on your hard disk 
if you don't have a Ray Duncan or 
Peter Nonon book handy. 

continued on page 158 

July/ August 1988 TURBO TECHNIX 157 



TURBO RESOURCES 
continued from page 157 

CRT43.ARC Uploaded: 01 / 17/ 88 
Size: 5,354 bytes 
Replacement for the CRTINIT module 
in each of the five Turbo C Libraries. 
This enables Turbo C I.S's console I/O 
functions to take advantage of the full 
screen in EGA 43-line and VGA 50-line 
modes. 

3DLIB.ART Uploaded 02/ 29/ 88 
Size: 62,782 bytes 
Displaying solid objects in three dimen­
sions. Requires Turbo C 1.5 to use all 
of the functions. You may obtain per­
mission to use 3D TRANSFORMS com­
mercially, along with complete source 
code for $25.00. 

TCPOPU.DEF Uploaded: 11 / 25/ 87 
Size: 2,431 bytes 
Mouse menu definition file that en­
ables you to use a Logitech or Microsoft 
Mouse to drive Turbo C's Integrated 
Development Environment 

CHRLST.EXE Uploaded: 03/29/ 88 
Size: 13,106 bytes 
This program "decompiles" BGI font 
files (*.chr) into the Turbo C 1.5 BGI 
function calls that are necessary to 
draw the characters. This is an interest­
ing file for BGI enthusiasts. 

CHAIN.C Uploaded: 6/ 21 / 87 
Size: 4,297 bytes 
Outline of the techniques involved in 
trapping an interrupt in C, chaining to 
another interrupt handler, and setting 
the stack properly. 

TURBO PROLOG: 

STRING.PRO Uploaded: 09/ 11187 
Size: 3,823 bytes 
This will help you interface Turbo C 
routines with Turbo Prolog. The file 
shows how to pass strings between the 
two languages. 

LIGHT.ARC Uploaded: 03/ 23/ 88 
Size: 5,716 bytes 
Much like the Word Wizard package for 
Turbo Pascal, this file summarizes the 
Turbo Prolog calls that access the Turbo 
Lightning dictionaries and thesaurus. 
With the power of Turbo Prolog, very 
interesting games and/ or applications 
can be built with this collection of 
Lightning calls. 

CPINIT.ARC Uploaded: 3/ 1/88 
Size: 2,688 bytes 
The latest versions of CPINIT.OBJ, 
CPINIT.LIB, and CPINIT.DOC, which 
allow even greater flexibility in the in­
terface between Turbo Prolog and 
Turbo C 1.5. 

PROTUN.ARC Uploaded: 06/ 25/87 
Size: 19,840 bytes 
Contains files to assist you in linking 
Turbo Prolog programs with assembly 
language. Areas covered include com­
pound objects, strings, symbols, and 

158 TURBO TECHNIX July/ August 1988 

lists. The files are well wriuen, and will 
help any programmer who wishes to in­
terface Turbo Prolog with either as­
sembler or Turbo C. 

TURBO PASCAL BOOKS 

Turbo Paswl &press; Robertjourdain; 
Brady Utilities. 

Advanced Turbo Paswl; Herbert Schildt; 
Osborne/ McGraw-Hill. 

Turbo Paswl: The CompleU Reference; Ste­
phen O'Brien; Osborne/ McGraw-Hill. 

Turbo Paswl for BASIC Programmers; 
Paul Garrison; Que Corp. 

Mastning Turbo Paswl 4.0; Tom Swan; 
Howard W. Sams & Co. 

Compl£t.e Turbo Paswl 4.0; Jeff Dunte­
mann; Scott, Foresman & Co. 

Stretching Turbo Paswl; Kent Porter; 
Brady Books. 

Turbo Paswl Programs for Scientists & 
Engineers; Alan R Miller; Sybex, Inc. 

Using Turbo Pascal Library Units; Namir 
Shammas; Wiley & Sons, Inc. 

The Compl£t.e Turbo Programmer's Refer­
ence; Keith Weiskamp; Wiley & Sons, Inc. 

TURBO C BOOKS 

Using Turbo C; Herbert Schildt; 
Osborne/ McGraw-Hill. 

Advanced Turbo C; Herbert Schildt; 
Osborne/ McGraw-Hill. 

Turbo C: Memory Resident Utilities, Screen 
IIO and Programming TechnU,ues; Al 
Stephens; MIS Press. 

Turbo C, The An of Program De.sign, 
Gptimization and Delntgging-, Stephen 
Randy Davis; M&T Books. 

Turbo C: The Compl£t.e Reference; Stephen 
O'Brien; Osborne/ McGraw-Hill. 

Turbo C Programming for the IBM; Rob­
ert LaFore; Howard W. Sams & Co. 

Compl£t.e Turbo C; Strawberry Software; 
Scott, Foresman & Co. 

Programming with Turbo C; Beverly and 
Scott Zimmerman; Scott, Foresman & 
Co. 

Systems Programming in Turbo C; 
Michael Young; Sybex, Inc. 

Turbo C At Any Speed; Richard Wiener; 
Wiley & Sons, Inc. 

TURBO PROLOG BOOKS 

Turbo Prol.og Features for Programmers; 
Sanjiva Nath; MIS Press. 

Using Turbo Prowg-, Khin Yin; Que 
Corp. 

Mastning Expert Systems with Turbo 
Prol.og-, Carl Townsend; Howard W. 
Sams &Co. 

Turbo Prol.og Primer, Dan Shafer; 
Howard W. Sams & Co. 

Advanced TechnU/ueJ in Turbo Prof.off, 
Carl Townsend; Sybex Inc. 

Introduction to Turbo Prol.og-, Carl Town­
send; Sybex Inc. 

Turbo Prol.og Advanced Programming 
Techni.ques; Philip Seyer, Safaa Hashim; 
Tab Books. 

Al Programming with Turbo Prol.og-, Keith 
Weiskamp, Terry Hengl; Wiley & Sons, 
Inc. 

TURBO BASIC BOOKS 

Using Turbo Basic; David Schneider, 
Frederick Moser; Osborne/ McGraw­
Hill. 

Advanced Turbo Basu; Ken Knecht; 
Scott, Foresman & Co. 

Turbo Basic, Programs for Scientists & 
Engineers; Alan R Miller; Sybex Inc. 

Introduction to Turbo Basic; Douglas 
Hergent; Sybex Inc. 

The Power of Turbo Basic; Leon Wort­
man; Tab Books Inc. 

PARADOX BOOKS 

The ParatkJx Companion; Douglas Cobb, 
Steven S. Cobb, Ken E. Richardson; 
Bantam Books. 

ParatkJx: The Compl£t.e Reference; James 
Keogh; Osborne/ McGraw-Hill. 

Using ParatkJx; George T. Chou; Que 
Corp. 
ParatkJx for the Programm£r, Nelson T. 
Dinerstein; Scott, Foresman & Co. 

TUG 

The national user group for Turbo lan­
guages is TUG, the Turbo User Group. 
TUG publishes a bimonthly journal 
called Tug Lines that contains bug re­
ports, programming how-to's, and prod­
uct reviews. Extensive public-domain 
utility and source code libraries are 
available to members. An optional 
multi-user BBS with file uploading/ 
downloading, messaging, and telecon­
ferencing is available to the public. 
Membership dues are $24.00 US/year 
(including Washington State); $28.00 
Canada and Mexico; $39.00 overseas. 

TUG 
PO Box 1510 
Poulsbo, WA 98370 
BBS: (206) 697-1151 

LOCAL USER GROUPS 

One of the best places to look for ad­
vice and face-to-face assistance with 
your programming problems is at a lo­
cal user group meeting. Most user 
groups in the larger cities have special 
interest groups (SIGs) devoted to the 
most popular programming languages, 
usually with strong Turbo presences. 
We will be listing some of the largest 
and most active user groups in major 
urban areas across the country; ob­
viously, there are thousands of user 
groups that we cannot list due to space 
limitations. If no listed group is conve-



nient to you, ask about local user 
groups at a local computer store or 
check with a faculty member at a high 
school or college with a computer 
curriculum. 

BOSTON COMPUTER SOCIElY 
Informatron: (617) 367-8080 
BBS: (617) 227-7986 
One Center Plaza 
Boston, MA 02108 

CAPITAL PC USER GROUP (DC) 
4520 East-West Highway, Suite 550 
Bethesda, MD 20814 

CHICAGO COMPUTER SOCIElY 
Information: (312) 942-0705 
BBS: (312) 942-0706 

HAL/PC (HOUSTON) 
lnformatron: (713) 524-8383 
BBS: (713) 847-3200 or (713) 442-6704 

NEW YORK PC USER GROUP, INC. 
Informatron: (212) 533-6972 
BBS: (212) 697-1809 
40 Wall Street, Suite 2124 
New York, NY 10005 

PACS (PHilADELPHIA) 
Informatron: (215) 951-1255 
BBS: (215) 951-1863 
PACS, c/o Lasalle University 
Philadelphia, PA 19141 

SAN FRANCISCO PC USERS GROUP 
InformatWn: (415) 221-9166 
444 Geary Blvd, Suite 33 
San Francisco, CA 94118 

ST LOUIS USERS GROUP 
Informatron: (314) 968-0992 
BBS: (314) 361-8662 

TWIN cmES PC USER GROUP 
Informatron: (612) 888-0557 
BBS: (612) 888-0468 
PO Box 3163 
Minneapolis, MN 55403 

ADVERTISERS' INDEX 
Advertiser 

Aker Corp. 

American Cybernetics 

ASCII 

Austin Code Works 

Page No. 

19 

67 

159 

131 

Black and White International 143 

Blaise Computing 5, 7 
Borland International 44-45, 63, 68-69, 

77, 79, 95-97, 113, 119, 125-129, 137 

Computer Solutions 159 

Disk Software 57 

English Knowledge Systems, Inc. 159 

Entelekon Software Systems 47 

Lahey Computer Systems, Inc. 105 

Matrix Software 

MicroWay, Inc. 

17 

101 

I C:>CLASS.ADS 
C:>CLASS.ADS is TURBO 
TECHNIX magazine's display 
classified advertising section. 
We welcome to these pages all 
those who would like to take 
advantage of the special sizes 
and rates available for 
C:>CLASS.ADS-$150 per col­
umn inch, with a 2-inch min­
imum. (A minimum ad, for 
example, measures exactly 
2 1/ 16" wide by 2" long.) All 
C:>CLASS.ADS must be pre­
paid and submitted in camera­
ready form (black and white 
PMT or Velox) to: 

C:>CLASS.ADS 
TURBO TECHNIX 
1800 Green Hills Road 
P.O. Box 660001 
Scotts Valley, CA 95066-0001 

For additional information, 
please call Production Assistant 
Annette Fullerton at (408) 
438-9321. 

Turbo C or TPascal 4.0 
Complete data base 

code in just 10 minutes! 
II raw paint your screens, point out 
indexes & that's 1t! Generator has: B-tree 
file manager, Automatic indexing, Contex.t 
sensitive help, Automatic programmer 
documentation. 

Unlimited free support 

$289 - TP or TC I $475 for both 
3 d 

Nostradamus 

Opt-Tech Data Processing 

Osborne/ McGraw-Hill 

Paradigm Systems 

Peacock Systems 

Chen and Associates 

Peter Norton Computing 

Polytron Corp. 

Powerline Software 

Programmer's Connection 

Programmer's Paradise 

Quarterdeck Office Systems 

Software Artistry 

Softway, Inc. 

Sophisticated Software 

The Research Group 

Turbo Power Software 

Vertical Horizons 

C3 

159 

55, C4 

33 

149 

159 

15 

37 

29 

9 

38 

C2-l 

11 

117 

21 

23 

14, 103 

65 

"'"'Convert Turbo Pascal (V3.X) to Turbo c1 
~Saves You Hundreds of Hours! 

"'$49 + S&H (US/Canada=$5, Foreign=$20) 
!I Foreign Bank Check, add $30 

P.O./C.O.D., add $10 
~ Demo Disk = $5 

CHEN & ASSOCIATES, INC. 
4884 Constitution Ave., Ste. 1 E 
Baton Rouge, Louisiana 70808 

(504) 928-5765 (Inquiries) / 1-800-448-CHEN (Orders) 

TURBO SOFTWARE 
We have a large collection of the best Shareware & 
Public Domain for the Turbo Languages I 

Turbo Pascal 3.0 6 disks for S25 
4.0 4 disks for S 18 

Turbo Prolog 3 disks for S 14 
Turbo C 5 disks for $21 
Turbo Basic 3 disks for $14 

3 112 disk format S1 per disk extra. 
All dsks completely fi11edt Windowing Packages, Utilities, Ex­
amples, Tutorials, Enhancements, and more. Free 32 pg. cata­
loge 'Nith over 200 disks described. Each disk only $4.50 Of less. 
Free shipping! Visa/Master Card, C.0.0. 

Computer Solutions 
P.O. Box 354 •Mason, Ml 48854 

1-800-874-9375 to order 
1-5 17-628-2943 for info & Ml 

JAKE: A BREAKTHROUGH IN 
NATURAL LANGUAGE SOFTWARE 

Create a natural language front end to 
your database. game. or graphics 
program! JAKE is a library usable with 
Turbo C for translating English queries 
and commands into function calls and 
data structures. JAKE offers context­
sensitive semantic processing. while 
interfacing easily to any application and 
using <64K of memory . $495 complete. 

Sound too good to be true? Get our 
interactive demo for only $10 and see. 

CALL (408) 438-6922 VISA. MC 
~ English Knowledge Systems. Inc. 
;;!!s 5525 Scotts Valley Dr. Suite 22 

Scotts Valley. CA 95066 

OPT-TECH SORT TM 

The High Performance Sort/ 
Merge utility. Use stand-alone or 
Call as a subroutine. Unlimited 
filesize, multiple keys, record 
selection & much more! 

for MS-DOS $149. 
Call or write for more info. 

Opt-Tech Data Processing 
P.O. Box 678/Zephyr Cove, NV 89448 

(702) 588-3737 

July/ August 1988 TURBO TECHNIX 159 



PHILIPPE'S 
TURBO TALK 
The technology of success 

Philippe Kahn 

Editor's note: The following was ex­
cerpted from an interoiew conducted 
by Odi/,e Conscil ofVSD France, a 
weekly newspaper in Paris, and is 
translated from the French. 

VSD: Philippe, what sort of skills 
do you feel will be particularly re­
warding in the 90s, in view of 
emerging technologies such as 
fast telecommunications, artificial 
intelligence, biotechnology, and 
so on? 

PHILIPPE: That's difficult to say. 
All technologically competent 
people will probably do very well, 
but you can be sure that world­
dass programmers will never find 
themselves on unemployment. In 
fact, I believe that they will see 
their salaries rise far more quickly 
than the average. More and more, 
they are going to have to write 
quality programs, and that's a hu­
man problem rather than a simple 
matter of getting some predictable 
technology to work predictably. 

VSD: What will be the most 
sought-after skills in the future? 

PHILIPPE: To be considered the 
best, people will have to acquire 
highly specialized technological 
skills. Expertise in computer pro­
gramming, biotechnology, super­
conductivity, etc., will all be very 
much in demand. Keep in mind 
that such specialized skills will be 
necessary to make this highly ad­
vanced technology accessible to 
less technical or non-technical 
users. 

VSD: Can one still make a fortune 
·in developing software? And if so, 
under what conditions? 

160 TURBO TECHNIX July/ August 1988 

PHILIPPE: Of course. The es­
sential factor is innovation. But in 
practical terms, you have to have 
a first-class product. Then you 
need a workable strategy for 
bringing the product to market­
and that is a challenge that cannot 
be underestimated, either. It is 
certainly more difficult today than 
it was five years ago. But, with 
talent, creativity, and a lot of work, 
anything is possible. 

VSD: Will the current feverish in­
terest in artificial intelligence be 
maintained through the next six 
or seven years, and if so, by 
whom? 

PHILIPPE: I believe that you 
have to look at artificial intelli­
gence as a part of the general cul­
ture of computer science. Artificial 
intelligence is not a standalone 
field, but one of the basic techni­
cal skills that all high-end software 
engineers must master. Al meth­
ods should be transparently inte­
grated into the software of the fu­
ture, rather than studied in iso­
lation as they often are today. 

VSD: To make it in the computer 
industry today, is it enough to be 
a clever engineer ... or do you 
have to be a sort of generalist sa­
vant, comfortable in any field? 

PHILIPPE: That depends on 
what you mean by "making it." If 
success means making a fortune, 
I believe that you had better be 
able to handle engineering prob­
lems and anything else that comes 
along. On the other hand, if suc­
cess means simply making a good 
living doing interesting work, then 
technical competence alone may 
be enough. Let me emphasize that 
financial success should never be 

a goal. It should be a conse­
quence of getting a great job 
done. And no matter what, there 
is an incredible satisfaction in do­
ing a great job. 

VSD: Being that sort of financially 
secure Renaissance man, what 
kind of services are you yourself 
willing to pay for? 

PHILIPPE: As I said, at Borland 
we are always willing to pay, and 
pay well, for the most competent 
and motivated people we can find. 
My collaborators are stars in their 
fields. To succeed, it is essential to 
surround yourself with brilliant 
people. You might say that we're 
always ready to make an excep­
tion for the exceptions. 

VSD: What insights have your life 
in the United States and your trav­
els around the world brought to 
mind concerning the evolution of 
businesses over time? 

PHILIPPE: More than anything 
else, I have noticed that one es­
sential quality tends to disappear: 
courage. The courage to work 
from 12 to 18 hours per day for 
months on end. The courage to 
keep from quitting the first time 
things go sour. We see these qual­
ities in Japan, in Korea, and all 
around the Pacific Rim. Unfortu­
nately, I meet too many people in 
our Western culture who want to 
be "lounge chair entrepreneurs." 
We need to redefine a real ethic 
of business and work. It's 
essential! • 





SPECIAL TURBO SALE 
Get $5.00 Off Every Turbo Pascaf4 Book 
Get $3.00 Off Every Turbo c·& Turbo Basic' Book 

Using Turbo C' 
by Herbert Schildt 
For all C programmers, beginners to pros . this excellent guide 
helps you write Turbo C programs that get professional results. 
~Paperback , ISBN: 0-07-881279-8. 431 pp . 7'1 x 91 

, 

Borland·Osborne/McGraw-Hill Programming Series 

$16 .95 

Advanced Turbo C' 
by Herbert Schildt 
Unveils Turbo C power programming techniques to serious 
programmers. Covers Turbo Pascal conversion to Turbo C and 
Turbo C graphics. 
~Paperback. ISBN: 0-07-881280-1 . 397 pp . 73/" x 91 , 

Borland•Osborne/McGraw-Hill Programming Series 

$19 .95 

Turbo c' : THE COMPLETE REFERENCE 

By Herbert Schildt Covers Verswn 1.5 
Programmers at every level of Turbo C expertise can quickly 
locate information on Turbo C functions . commands . codes. and 
applications-all in this handy encyclopedia . 
>'9S Paperback. ISBN: 0-07-881346-8 . 850 pp . 73's x 91 

, 

Borland•Osborne/McGraw-Hill Programming Series 
$21 .95 

Turbo Pascal ' 
THE COMPLETE REFERENCE 

Covers Version 4 
by Stephen 0 'Brien 
The first single resource that lists 
every Turbo Pascal command , 
function , and feature. all illustrated 
in short examples and applications. 
Ideal for every Turbo Pascal 
programmer. 

~Paperback . ISBN: 0-07-881290-9. 814 pp. 7'1s x 91
1 

Borland·Osborne/McGraw-Hill Programming Series 

$19.95 

For A Limited Time Only 

Using Turbo Pascal ' VERSION 4 

by Steve Wood 
Build the skills you need to become a productive Turbo Pascal 4 
programmer. Covers beginning concepts to full-scale 
app11cations 

):184S'Paperback, ISBN: 0-07-881356-5 , 546 pp .. 73/s x 91/1 
Borland·Osborne/McGraw-Hill Programming Series 

$14.95 

Advanced Turbo Pascal ' VERSION 4 
by Herbert Schildt 
The power of Turbo Pascal 4 will be at your fingertips when you 
learn the top-periormance techniques from expert Herb Schildt. 
~Paperback. ISBN: 0-07-881355-7 . 416 pp . 73/s x 91

/., 

Borland•Osborne/McGraw-Hill Programming Series 

$16.95 

Turbo Pascal ' 
PROGRAMMER'S LIBRARY. SECOND EDITION 

by Kris Jamsa and Steven Nameroff 
Take full advantage of Turbo Pascal . and the newest versions of 
Turbo Pascal . with this outstanding collection of programming 
routines . Includes routines for the Turbo Pascal toolboxes . 
~Paperback , ISBN: 0-07-881368-9 , 600 pp ., 73/a x 91/1 

Borland•Osborne/McGraw-Hill Programming eries 

$17.95 

Using Turbo Basic ' 
by Frederick E. Mosher 
and David I. Schneider 
Introduces Turbo Basic to novices 
and seasoned pros alike. Learn 
about the Turbo Basic operating 
environment and the interactive 
editor. 
~Paperback . 

ISBN: 0-07-881282-8 , 
457 pp ., 73/s x 91/1 

Borland•Osborne/McGraw-Hill Programming Series 

$1 6.95 

ORDER TODAY! CALL TOLL-FREE 800-227-0900 Use Your Visa , MasterCard, 
or American Express 

~ 'J ~ Osborne McGl'aw-l-lill 
-J • 2600 Tenth Street 

I. M ~ Berkeley. California 94 710 
Turbo Basic Turbo C and Turbo Pascal are registered tradema rks 
ol Borland International Copyright © 1988 McG raw-Hill Inc 

a: 
0 
m 

• 


	2022-09-02-0001
	2022-09-02-0002
	2022-09-02-0003
	2022-09-02-0004
	2022-09-02-0005
	2022-09-02-0006
	2022-09-02-0007
	2022-09-02-0008
	2022-09-02-0009
	2022-09-02-0010
	2022-09-02-0011
	2022-09-02-0012
	2022-09-02-0013
	2022-09-02-0014
	2022-09-02-0015
	2022-09-02-0016
	2022-09-02-0017
	2022-09-02-0018
	2022-09-02-0019
	2022-09-02-0020
	2022-09-02-0021
	2022-09-02-0022
	2022-09-02-0023
	2022-09-02-0024
	2022-09-02-0025
	2022-09-02-0026
	2022-09-02-0027
	2022-09-02-0028
	2022-09-02-0029
	2022-09-02-0030
	2022-09-02-0031
	2022-09-02-0032
	2022-09-02-0033
	2022-09-02-0034
	2022-09-02-0035
	2022-09-02-0036
	2022-09-02-0037
	2022-09-02-0038
	2022-09-02-0039
	2022-09-02-0040
	2022-09-02-0041
	2022-09-02-0042
	2022-09-02-0043
	2022-09-02-0044
	2022-09-02-0045
	2022-09-02-0046
	2022-09-02-0047
	2022-09-02-0048
	2022-09-02-0049
	2022-09-02-0050
	2022-09-02-0051
	2022-09-02-0052
	2022-09-02-0053
	2022-09-02-0054
	2022-09-02-0055
	2022-09-02-0056
	2022-09-02-0057
	2022-09-02-0058
	2022-09-02-0059
	2022-09-02-0060
	2022-09-02-0061
	2022-09-02-0062
	2022-09-02-0063
	2022-09-02-0064
	2022-09-02-0065
	2022-09-02-0066
	2022-09-02-0067
	2022-09-02-0068
	2022-09-02-0069
	2022-09-02-0070
	2022-09-02-0071
	2022-09-02-0072
	2022-09-02-0073
	2022-09-02-0074
	2022-09-02-0075
	2022-09-02-0076
	2022-09-02-0077
	2022-09-02-0078
	2022-09-02-0079
	2022-09-02-0080
	2022-09-02-0081
	2022-09-02-0082
	2022-09-02-0083
	2022-09-02-0084
	2022-09-02-0085
	2022-09-02-0086
	2022-09-02-0087
	2022-09-02-0088
	2022-09-02-0089
	2022-09-02-0090
	2022-09-02-0091
	2022-09-02-0092
	2022-09-02-0093
	2022-09-02-0094
	2022-09-02-0095
	2022-09-02-0096
	2022-09-02-0097
	2022-09-02-0098
	2022-09-02-0099
	2022-09-02-0100
	2022-09-02-0101
	2022-09-02-0102
	2022-09-02-0103
	2022-09-02-0104
	2022-09-02-0105
	2022-09-02-0106
	2022-09-02-0107
	2022-09-02-0108
	2022-09-02-0109
	2022-09-02-0110
	2022-09-02-0111
	2022-09-02-0112
	2022-09-02-0113
	2022-09-02-0114
	2022-09-02-0115
	2022-09-02-0116
	2022-09-02-0117
	2022-09-02-0118
	2022-09-02-0119
	2022-09-02-0120
	2022-09-02-0121
	2022-09-02-0122
	2022-09-02-0123
	2022-09-02-0124
	2022-09-02-0125
	2022-09-02-0126
	2022-09-02-0127
	2022-09-02-0128
	2022-09-02-0129
	2022-09-02-0130
	2022-09-02-0131
	2022-09-02-0132
	2022-09-02-0133
	2022-09-02-0134
	2022-09-02-0135
	2022-09-02-0136
	2022-09-02-0137
	2022-09-02-0138
	2022-09-02-0139
	2022-09-02-0140
	2022-09-02-0141
	2022-09-02-0142
	2022-09-02-0143
	2022-09-02-0144
	2022-09-02-0145
	2022-09-02-0146
	2022-09-02-0147
	2022-09-02-0148
	2022-09-02-0149
	2022-09-02-0150
	2022-09-02-0151
	2022-09-02-0152
	2022-09-02-0153
	2022-09-02-0154
	2022-09-02-0155
	2022-09-02-0156
	2022-09-02-0157
	2022-09-02-0158
	2022-09-02-0159
	2022-09-02-0160
	2022-09-02-0161
	2022-09-02-0162
	2022-09-02-0163
	2022-09-02-0164

