| NEW!

F SPRINT & TURBO PROLOG 2.0
SEE MONEY-SAVING

TURBO
TECHNIX

THE BORLAND LANGUAGE JOURNAL ¢ JULY/AUGUST 1988 * VOLUME ONE NUMBER FIVE + $10.00

ONE DATABASE,
MANY INDEXES

Creating and using
multiple indexes
with Turbo Access

Turbo Pascal’s custom
text file device drivers

Sprint macros
for time and date
formatting

Creating Turbo Prolog
applications
with mouse support

VM TTLLVES
3Gl 'ON LINYAd
arvd
J9VLSOd 'S
1Va Y1nd

(et your

The future of personal computing is clear. More
powerful PCs. Easier to use PCs. With graphics
and character-based programs working side by
side. Talking to each other. Multitasking. Win-
dowing. Menuing. Mousing. Getting your work

done easier and faster.

2.0-32¢ Software: Most PC-DOS and MS-DOS application
programs; programs specific to Microsoft Windows 1.03-
203, GEM 1.1-3.0, IBM TopView 1.1+ Media: DESQview 2.0

19

ork done before

labels while you're writing a report in Word
Perfect, or laying out a newsletter in Ventura
Publisher, or designing a building in AutoCAD.
DESQview even lets you transfer text,
numbers, and fields of information between

programs

Payment Method U Visa O MasterCard Expiration

7l

is available on either 5-1/4" or 3-1/2" floppy diskette.

Trademarks are property oftheir espective hokders: BM, 06/, P/’ 1-2:3, Paradax, Word Perfect, Ventura Publisher, AutoCAD, Intel, Above Board, AST RAMpage,

Acount# (T T T T T T L LI]™"

L---------------
“This ALL CHARGECARD s designed for the IBM PC AT and PS/2 50 and 60. If you have another type of 80286-based PC, there's a version for you, too. Please call 1-800) 387-2744 ﬁxq;)edaladﬁh\ghlﬁxmﬁnmAug\sﬂ,l%&

co Boulevard, Santa Monica,

Advantage, Hercules, Mouse Systems, Hayes,

Have it all now. 3 4 uatiro ‘ Fulfill the 386 promuse.
DESQViGWm isthe o atmg envi- “ ?m”'a“ For 80836 PC users, DBQV]GW
ronment that gives DOS the capabil- Sartoh Virdous becomes a 386 control program when
ities of 05/2™ And it lets you, with . used in conjunction with
your trusty 8088, 8086, 80286, or 80386 ferrane Quarterd Eﬁ%{*nded Memory
PC, leap to the productivity of the next e lfVIanager (QEM: VI
generation. For not much money And [e o| transter aster multitasking as well as virtual
without throwing out your favorite T e Al il Y V/idowing support. _
software. ustid__fre e |t or Bt And when you use DESQuiew on
Add DESQVIEW to your PCand it 186 Sarah |, pochanical L____.__fi_m;l,__“, —— an [BM IS/2 Model 50 or 60 with
c_kly finds your programs and lists 6 mz;ui?lﬁi:ﬁi' = les TS N QEMM'SO/ 60 and the IBM Memory
(f]}n:m on menus. So you can just point Selling Gomeral & Alniistration Expansion Option, DESQview gives
to the program, usin%ke board or i youmultitasking beyom.i 640K.
mouse, to start it up. iew | Experts are voting for
knows where that program lives. And DESQview. And overa
what command loads it. O
bering ulcen.Open moreprogras than you million users, too.
DOgozoﬂm;so m\éfisﬁ?lilgismme ® have memc)cx?yp?gn And}r)n titask themyln Ifall of this sounds like promises you've
to DOS. Iteven lets yousort your | For programmers, DESQview’s 640K. Or if mwn a special been hearing for future systems, then you can
files and mark specific files fobe | APl wihis stengthsininter- EMS4.0o0r memory understand why over a million users have
copied, backed-up, or deleted— | foformoncatonsand muts board, or 2 386 PC, DESQuiew T ¢ jonosen DESQiew: And why PC
allwithout having to leavethe | wayteadapyntie e Wiy | o5 you break throughthe DOS i £ } g Magezine gave DESQuiew its
i 11% theym,s ngﬂbom andshared | 640K barrier for multitasking. If i == & ;Editor’s Choice Award for “The
ngf(\)‘y al DESQview accom- | Progrms programmersare | you have other non-EMS memo- Best Alternative to O5/2,” why
. , UL . | abletodesign programs rumning | 1y expansion products like AST's |-DITORS |readers of InfoWorld twice voted
plishes all this with a substantial | on DOS with capabilities ke A4 the IBMeM CHOICE IDESOview “Product of the Year”
speed advantage over any those of O5/2 aslage or e CMOTY Now. 24,1987 e
aﬁiidlaﬁve environment ion Option, we havea INFO .why, by popular vote at
') ' solution for you, too. The ALL CHARGE- WORLS (xr 15s7, Comdex Fall for two
Multitask beyond 640K. CARD™ ‘untfies’ all your memory to provide ~ |PRODUCT years in a row, DESQview
When you want to use several programs up to 16 megabytes of continuous workspace. |0 F_T H E |was voted “Best PC Environ-
together, you don't have to leave your DESQview lets you use this memory to Y E A R Jment”in PC Tech Journal's
current program. Just open the next pro- enhance your gmductivity. You can start 1-2-3 B Sy'stems Builder Contest.
gram. View your programs inwindowsor ~ calculating and tell Paradox to print mailing DESQview lets you have it all now.
DESQVIEW SYSTEM REQUIREMENTS: ----------_------_----1
BM Personal Computer and 100% compatibles (with 8086, YE S ' Qty Product Format Price Each Totals
e P Sy 2 erery 0k | . DESQiew 20 051/4 Q31/2_| $129% 1
Gty o ([need increased QR Qo412 | 8958 I
Intel AboveBoard; enhanced expanded memory boards * o -! i
o Lol i I productivity NOW! |11 cHARGECARD el forDESQuiew owers | 520000 |
d&*gx;’éﬁﬁzg&ﬁﬁgmg;?ﬁ il M Shipping & Handling| $5 in Usa/ $10 outside Usa]
(EGA), IBM Personal System,/2 Advanced Graphics Calif Residents add 6.5% |
(VGA}* Mouse (Optional: Mouse Systems, Microsoft and I Address Grand Total I

CA 90405 1
(213) 392-9851

Windows, Top View.

Make your
millions

oftimnes

smarter.

More and more, programmers and work-
station builders are using DESQview 2.0 as a
development tool. The reason is simple.
They can create powerful, multitasking
solutions today for the millions of DOS PCs
in use today. Solutions comparable to those
promised for tomorrow by OS/2.

Some of the applications under
development right now using
DESQview 2.0 API Tools: CAD,
Medical systems, insurance, 3270
mainframe communications,
network management, real
estate, typesetting, point of sale,
education, commodity trading,
stock trading and online voting.

80386 Power

80386 programmers can take advantage of
the 80386's protected mode for large
programs, yet run on DOS and multitask in
DESQview—side by side with other 80386
and DOS programs. The breakthroughs that
make this possible: DOS Extenders from
PharLap Software and Al Architects and

The API Advantage

Programmers who take advantage of DESQview’s APl
(Application Program Interface) get access to the powerful
capabilities built into DESQview—multitasking, window-
ing, intertask comunications, mailboxes, shared programs,
memory management, mousing, data transfer, menu-
building and context sensitive help.

Bells and Whistles

A program taking advantage of the DESQview 2.0 API can
spawn subtasks for performing background operations or
new processes for loading and running other programs
concurrently. It can schedule processing after an interval or
at a certain time. It can use DESQview’s intertask commu-
nications to rapidly exchange data between programs,
share common code and data; or interrupt at critical events.
It can use DESQview’s menuing and mousing capabilities
to create menus. And there’s lots more it can do.

Bri

DESQview support of these DOS extenders.

DESQview Developer Conference
So if you are a developer, looking to create programs with
mainframe capabilities, but wanting to sell into the existing
base of millions of DOS PCs, come to Quarterdeck’s first
DESQview API Developers Conference, August 16-18, 1988
at the Marina Beach Hotel, in Marina del Rey, California.
For more information call or write us.

Come learn about the DESQview 2.0 API and 80386 DOS
Extenders. Meet 80386 experts as well as those smart
people who are creating DESQview 2.0 API workstations
solutions.

And if you want to get a leg up before the conference, ask
us about the DESQview API Tools for assembler or C
programmers.

New Power to DOS.

DESQview 2.0 API Toolkit.

Quarterdeck Office Systems 150 Pico Blvd.,Santa Monica, CA 90405
(213) 392 9851

TURBO TECHNIX

The Borland Language Journal
July/August 1988
Volume 1 Number 5

FEATURES

TURBO PASCAL

12 Multiple Indexes with
Turbo Access
William Meacham

27 Catch and Throw with
Turbo Pascal
Jon Shemitz

30 Recursing Without Cursing
Jeff Duntemann

34 Custom Text File
Device Drivers
Neil Rubenking

A

86
Turbo Prolog 2.0 takes full advantage
of the Borland Graphics Interface
(BGI) for device-independent graph-
ics displays. Expert systems can now
show as well as tell what they know.

TURBO C

42 Mouse Mysteries, Part II:
Graphics
Kent Porter

54 Formatting Output in Turbo C
Peter Aitken

60 Allocating Full 64K Blocks in
Turbo C
Michael Abrash

61 Worth the Wait
Jonathan Sachs

TURBO PROLOG

70 Certainty Factors in
Turbo Prolog
Tom Castle

76 Failing with Grace
Edward B. Flowers

86 In Graphic Harmony
Alex Lane

92 Logic and Turbo Prolog
Alex Lane

98 Cat and Mouse in Turbo
Prolog, Part I1
Safaa H. Hashim

42

Mice can work well with text applica-
tions, but mice were created to steer a
graphics cursor around your screen.
The cursor can be a miniature icon
reflecting the work currently being
done, with one single pixel in the
cursor (called the “hot spot”)
empowered to say, You are here.

110
Moving a binary file across a 7-bit
communication channel can be done
by encoding the binary file as a series
of printable DATA statements within
an equally printable Turbo Basic pro-
gram. The program, when run on a
computer at its destination, re-creates
the original binary file.

TURBO BASIC

110 Binary to Text for
Communications
Robert E. Stearns, Jr.

114 Viewports in Turbo Basic
Peter Aitken

120 Calling BIOS Services
from Turbo Basic
Ethan Winer

BUSINESS LANGUAGES

122 Date Formatting with Sprint
Neil Rubenking

130 Bounce and Choose in PAL
Alan Zenreich

TURBO TECHNIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibility, however, for damages due to errors or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular
purpose. The liability, if any, of Borland, TURBO TECHNIX, or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or
omission shall be limited to the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential dam-
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prolog, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning, Lightning Word Wizard, SideKick,
SuperKey, Eureka, Reflex, Quattro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International, Inc. or its subsidiaries.

2 TURBO TECHNIX July/August 1988

Sprint, the Professional Word Proces-
sor, is now shipping. In keeping with

TURBO TECHNIX

Publisher
John Hemsath

Editor in Chief
Jeff Duntemann

EDITORIAL
Managing Editor
Michael Tighe

Technical Editor
Michael A. Floyd

Copy Editor
Pamela Dillehay

Editorial Assistant
Sheriann Glass

Technical Consultants
Brad Silverberg

Borland’s evolving open architecture DEPARTMENTS RZVid pEe

. : am Bosworth
philosophy, the engine at the heart of 6 Dial Paul Chui
the product is available to program- L Lee Cantey
mers through a powerful text-process- | 150 Archimedes’ Notebook: David Golden
ing programming language. Sprint’s F Peter Iaria
macro language is far more than gocl.(etgy SRR
recorded keystrokes—the language avid Eagle DESIGN & PRODUCTION
can make DOS and BIOS calls, create | 153 Crig que: Desktop for Paradox | Art Director
custom pop-up menus, treat entire AL Tl Karen Miner
documents as variables, and read or i Pr] .

; ; oduction Assistant
write any memory location or I/O 154 Critique: Peabody 1.02 Annette Fullerton
port, all within program structures Paler Atihors 1
familiar from C, Pascal, and BASIC. Typesetting Manager

Walter Stauss
gee_ page 122 for an exaﬂliple of i 155 BookCase: Turbo C: The Art of Topesatir Spiten Suferet
print’s macro power, and page Advanced Program Desi ti- i Jol LRvLon
for a special offer that could add sinken ar dg;)ebuggi%n’ O Jeffrey Schwertley
Sprint to your programming arsenal gt Typesetters
for less than you think. Reviewed by Marty Franz Ron Foster
156 BookCase: Turbo Basic Pro- feane S
ol ; Typesetting Traffic
— %%J gya;;"gfrt;f’kei"glm”s Charlene McCormick
COLUMNS Photo
grapher
’ . 157 Bradley R
4 BEGIN: Naming the Animals HmoiseCies i g
Jeff Duntemann ADMINISTRATION
Purchasing

132 Binary Engineering: Design-
ing Data Structures, Part I
Bruce F. Webster

Brad Asmus

ADVERTISING
SALES OFFICES
138 Language Connections: Home O
Turbo Prolog to Turbo C is (4‘(7)%‘; 43%?;321
Now a Two-Way Bridge Western Offic
. esi e
G‘"y En&smmger Janet Zamucen
145 Tales from the Runtime: il
A New England O
8rg'an'lzat.10n and Cover: Sorting a database can be done on | Mid-Atlantic Oj]jzﬁ;
PUBRzanon only one field at a time, and puts your Merrie Lynch
Mark L. Van Name data files at risk. Indexing a database can | Nancy Wood
and Bill Catchings be done on any number of fields, and (617) 848-9306

160 Philippe’s Turbo Talk

involuves little or no risk to the database
files themselves. Turbo Access (from the
Turbo Pascal Database Toolbox) provides
a fast interface to your database files
through as many indexes as you care to
create. Photography by Bradley Ream.

Southeastern Office
Megan Patti
(813) 394-4963

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 1800 Green Hills Road,
P.O. Box 660001, Scotts Valley, CA 95066-0001. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright ©1988 Borland
International, Inc. All rights reserved. No part of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a
statement of our permission policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECH-
NIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001. Editorial and business offices: O TECHNIX, 1800 Green Hills Road, P.O.
Box 660001, Scotts Valley, CA 95066-0001. Subscription rate is $49.95 per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is
$10.00. For subscription service write to Subscriber Services, TURBO TECHNIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001.

July/August 1988 TURBO TECHNIX 3

he story goes that God

created the animals, and

Adam named them—

not to call them, as in
Ralph or Chewy or Spike, but to
classify them. It was a process to
separate the eaters from the
eaten, the pet from the pot. A
name implies a method of dealing
with the named entity. If you get
the name wrong, your assump-
tions may never catch up with
reality, and you may end up (at
best) hunting mosquitoes with a
howitzer, or (at worst) hunting
tigers with a flyswatter.

One very fine example of this
kind of trap involves laser print-
ers versus the more traditional
dot-matrix and daisy-wheel print-
ers. We call them both “printers,”
but the two groups have a funda-
mental difference: Traditional
printers move a piece of paper
past a printhead, printing as the
paper goes by. Laser printers
build a virtual image in their
buffers, in a sense passing a vir-
tual printhead over the entire
sheet at random before finally
“developing” the image by send-
ing the paper through the xero-
graphic engine. This difference
intrudes when you try to mask
variations among printers behind
a suite of generalized printer rou-
tines. A PrinterXY routine that
moves the printhead to a given
X,Y position on the sheet is noth-
ing more than an escape se-
quence to a laser printer. On the
other hand, the paper in a matrix
printer can’t be backed up to pos-
ition 0,0 once it's been indexed
downward. Implementing Print-

BEGIN

Naming the animals

Jelf Duntemann

erXY on a matrix printer means
allocating and writing to a “virtual
page” in memory somewhere, and
not actually moving the physical
printhead over the paper until the
virtual image is complete and a
form feed is sent to the driver.
Quite apart from finding enough
memory for graphics imaging—
brother, can you spare me a
megabyte?—this is a lot like gluing
fangs on a hamster and calling it
a lion. The hamster people will
come to expect too much, and the
lion people will not be fooled.

The correct way to deal pro-
grammatically with laser printers,
as far as I'm concerned, is to call
them what they really are: plotters.
Plotters, like laser printers, can
write to any location on the sheet
at random, creating both text and
graphics interchangeably on com-
mand. Laser printers are primarily
character devices, but I have yet
to see one that couldn’t generate
a full page of graphics at some
resolution, even if not at 300 dpi.
Most plotter command sets (such
as the ubiquitous HPGL) include
commands for printing text at any
arbitrary size. Creating a common
API for laser printers and plotters
requires little more than a trans-
late table for each device, with no
need for jury-rigging virtual pages
in scarce system memory.

It’s far too late to get people to
call laser printers “plotters” out in
the real world. Within your pro-
grams, however, you can call
anything by any name you want.
Back in the software realm, text
files are character-oriented se-
quential devices, and binary files
are block-oriented random-access
devices. Calling both of them

“files” is confusing and limiting.
For clarity’s sake, it might make
sense to build a suite of block-
oriented storage routines that do
not rely on file jargon—with the
added benefit that storage could
be accessed identically whether
it were located on a disk, on the
heap, or on some I/0O mapped
peripheral. Just because it acts
like a file doesn’t mean it has to
be called a file.

Consider this an opportunity to
rethink the nature of every ele-
ment of your program design,
along with every machine compo-
nent your program must interact
with. The Game Control Adapter
is a joystick socket—says so right
on the label—yet it monitors four
switches and measures four resis-
tance values simultaneously. With
Sensors to monitor temperature,
humidity, and solar flux, and a
four-bit shaft encoder attached to
a wind vane, your joystick port be-
comes a weather station interface.

All too often, we accept a name
at face value without truly under-
standing what sort of creature
lives beneath the name. Names
evolve haphazardly, but the logic
and sense in a program cannot.
Consider each programming proj-
ect a new Eden, where you get to
name the animals. If it walks like
a duck, it may be a duck—or it
may be a hamster trying to live
up to the name Donald. W

Opinions expressed in this column are those
of the editor and do not necessarily reflect
the views of Borland International, Inc.

4 TURBO TECHNIX July/August 1988

Blaise Passe
the Screen lest.

POWER SCREE

Best performance in a supporting role.
Because your time is more valuable then ever, Blaise Computing presents POWER SCREEN
the new high performance screen management system designed to support your own creative
programming efforts.

POWER SCREEN provides reliable, lightning fast data entry screens and
menus to create your own sophisticated window oriented applications.
[t allows you to design screens exactly as you want them to appear in your
final application. Screens are efficiently stored in a file so they can be

PAINT, the screen painter included with POWER SCREEN, has the

appearance and performance of the popular integrated programming
language environments. It lets you design and modify screens, and
define and format fields. All VGA, EGA and monochrome text modes,
attributes and colors are supported.

The POWER SCREEN Runtime Library allows you to construct
screens in memory, display screens in windows and read and write
data to fields within the screen. All screens and menus are window-
oriented, so they can be stacked, removed or moved on the physical

screen. You can access screens field-by-field or a whole screen at a
time. POWER SCREEN takes care of field input editing, data and
range checking, and data formatting.

POWER SCREEN out-performs the runners-up with a dazzling
display of capabilities FEATURING:

#Virtual screens. Screens that can be larger than the physical
screen, with just a portion of the screen displayed within a window.
Write to any screen any time, even if it is not visible. Automatic
physical screen update.

@ Context sensitive help. Create help text on a field-by-field basis
or for the entire screen with a window-oriented help facility.

#Intervention routines. Install them so your application gains
control when a field is entered, exited and between keystrokes.

®Range checking. Supported for all standard data types.

@ Unlimited screens. Subject only to the amount of available
memory.

Definable keys. Fully configurable field editing keys.

POWER SCREEN includes PAINT, the POWER SCREEN
Runtime Library, as well as other utilities for creating help
files and maintaining and documenting your screen data-

base files. Language interfaces with source code are included
for C, Turbo Pascal 4.0 and Quick BASIC.

The package is accompanied by a fully-indexed comprehensive User Reference
ribing POWER SCREEN procedures and utilities. Complete example programs
re supplied on the diskettes.
POWER SCREEN requires an IBM PC, XT, AT, PS/2 or close compatible and DOS 2.00
or later. To write POWER SCREEN applications, you need one of the supported com-
pilers: Turbo C, Microsoft C (4.00 or later), QuickC, Turbo Pascal (4.0 or later),
QuickBASIC (4.0 or later). Interfaces for all supported compilers are included
with POWER SCREEN.
Blaise Computing: We've passed the screen test so you
won'’t have to.
Complete price: $129.
Blaise Computing has a full line of support products for both
Pascal and C. Call today for your free information packet.

O
W
BLAISE COMPUTING INC.

2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441

used by your application or later modified without program code changes.

_ overhead.
RUNOFF : 549,95
Text formatter for all programmers ‘Written

_ general macro facility.

- TO ORDER CALLTOLL FREE

including EGA and
memory control; ISRs;
tion code; and much more. Fo Tu

Turbo ASYNCH PLUS * $129.00
Interrupt driven support for up to four COM
ports. 1/0 buffers up to 64K; XON/XOFF;
hardware handshaking: up to 19.2K baud ;
modem control and XMODEM file transfer.

For Turbo Pascal. 5

C TOOLS PLUS $129.00
Windows: menus: ISRs: intervention code:
screen handling and EGA 43-lin¢ text mode *
support; direct screen access; DOS file
handling and more. Specifically designed for
Microsoft C 5.0 and QuickC.

C ASYNCH MANAGER 3$175.00
Full featured interrupt driven support for up
to four COM ports. 1/0 buffers up to 64K;
XON/XOFF; hardware handshaking; up to
19.2K baud; modem control and XMODEM
file transfer; For Microsoft C and Turbo C.

Turbo C TOOLS $129.00
Full spectrum of general service utility func-
tions including: windows: menus: memory
resident applications; interrupt service rou-
tines; intervention code; and direct video
access for fast screen handling. For Turbo C.

KeyPilot $49.95
“Super-batch” program. Create batch files
which can invoke programs and provide input
to them; run any program unattended; create
demonstration pro;,rams analyze keyboard
usage.

EXEC : $95.00
Program chaining executive. Chain Tro-
gram from another in different la
specify common data areas; less. thanVZK of

in Turbo Pascal: flexible printer control; user
defined variables: index generation; and ;

- 800-333-8087

DIALOG

Avre we glowing in the dark, or is the smoke pouring out
of your ears? Errata or accolade? Bug or feature? Let
us and your fellow readers know what’s on your mind,
and our editorial staff and authors will respond as best

they can.
Addbvess letters to:
DIALOG
TURBO TECHNIX Magazine
1800 Green Hills Road
P.O. Box 660001

Scotts Valley, CA 95066
Letters become the property of TURBO TECHNIX
and cannot be returned. We cannot answer all letters in-
dividually, but we will try to print a representative sam-
pling of mail received.

SAVE SOME MULTIPLIES

I was reading over the Bezier curve routines in Kent
Porter’s article, “Curves, Bezier-Style” (March/April,
1988), and thought you might be interested in a slightly
more efficient binomial coefficient function. Your
method, although more straightforward, requires

2D multiplies and 1 divide. If you recognize that

n! _ n(n-1)(n-2)...(n-it1)
il(n-1)! il
then you can rewrite the C function given in the article
as:

FUNCTION C(n,i :

Integer):Integer;

VAR
num,den, j : Integer;
BEGIN
num := 1;
den := 1;
FOR j := 2 TO i DO
BEGIN
num := num * (n-j+1);
den :=den * j
END;
¢ := num DIV den
END;

This method only requires 2" multiplies and 1 divide,
thus saving 2™ multiplies. It would certainly be diffi-
cult to find fault with such a well-written, informative
article, but in graphics, speed i everything!
—Paul Cifarelli
Forest Hills, NY

GOTO jail; do not pass the ROM BIOS;
do not collect 2¢-) multiplies.

Hey, I'll save a multiply anywhere I can, and I haven't
had the opportunity to save 2 of them in quite a while.
Thanks for the tip—every cycle, however spent, makes a
difference in plotting curves of any stripe.

—Jeff Duntemann

GOTO, GOTO, GONE

I enjoyed Bruce Webster’s Binary Engineering col-
umn “Go to, go to” (January/February, 1988), but I
must challenge his claim that one cannot prema-
turely exit a FOR loop in Turbo Pascal without use
of a GOTO. His example was:

FOR I := 1 TO 50 DO
BEGIN
: iF PanicButton THEN GOTO 100;
END;

100: Writeln('Loop finished!');

This can be revised to avoid the use of GOTO by
placing the FOR loop in its own procedure:

PROCEDURE Loop;

VAR I : Integer;
BEGIN
FOR I := 1 TO 50 DO
BEGIN

IF PanicButton THEN Exit;

END
END;

Loop;

Writeln('Loop finished!');

While I consider this to be another example of the
“Tastes Great/Less Filling” controversy, the fact re-
mains that the GOTO was not really necessary!

—P. Kenneth Morse
Augusta, GA

Your example is accurate but is one of those cases of the

cure possibly being worse than the disease. Yes, there are

times when it would be valid to transform a given FOR
continued on page 8

6 TURBO TECHNIX July/August 1988

Interlocking Pieces:

Blaise and
Turbo Pascal.

Whether you're a Turbo Pascal expert or a novice, you can benefit from using professional tools
to enhance your programs. With Turbo POWER TOOLS PLUS™ and Turbo ASYNCH PLUS™
Blaise Computing offers you all the right pieces to solve your 4.0 development puzzle.

Compiled units (TPU files) are provided so each package is ready to use
with Turbo Pascal 4.0. Both POWER TOOLS PLUS and ASYNCH PLUS

,;» use units in a clear, consistent and effective way. If you are familiar
/p/ with units, you will appreciate the organization. If you are just getting
started, you will find the approach an illustration of how to construct
and use units.

®POWER TOOLS PLUS is a library of over 180 powerful functions
and procedures like fast direct video access, general screen
A handling including multiple monitors, VGA and EGA 50-line
and 43-line text mode, and full keyboard support, including
the 101/102-key keyboard. Stackable and removable win-
dows with optional borders, titles and cursor memory
provide complete windowing capabilities. Horizontal, ver-
tical, grid and Lotus-style menus can be easily incorporated
into your programs using the menu management routines.
You can create the same kind of moving pull down menus
that Turbo Pascal 4.0 uses.

Control DOS memory allocation. Alter the Turbo Pascal heap
size when your program executes. Execute any program from
within your program and POWER TOOLS PLUS automatically
compresses your heap memory if necessary. You can even force
the output of the program into a window!

Write general interrupt service routines for either hardware or
software interrupts. Blaise Computing’s unique intervention
code lets you develop memory resident (TSRs) applications
that take full advamag,e of DOS capabilities. With simple pro-

* cedure calls, “schedule” a Turbo Pascal procedure to execute
elther when pressing a “hot key” or at a specified time.

®ASYNCH PLUS provides the crucial core of hardware interrupts
needed to support asynchronous data communications. This package offers
simultaneous buffered input and output to both COM ports, and up to four
ports on PS/2 systems. Speeds to 19.2K baud, XON/XOFF protocol, hard-
ware handshaking, XMODEM (with CRC) file transfer and modem control
are all supported. ASYNCH PLUS provides text file device drivers so you
can use standard “ReadIn” and “Writeln” calls and still exploit interrupt-driven
communication.

The underlying functions of ASYNCH PLUS are carefully crafted in assembler
and drive the hardware directly. Link these functions directly to your application
or install them as memory resident.

Blaise Computing products include all source code that is efficiently crafted,
readable and easy to modify. Accompanying each package is an indexed
manual describing each procedure and function in detail with example
code fragments. Many complete examples and useful utilities are
included on the diskettes. The documentation, examples and
source code reflect the attention to detail and commitment to
technical support that have distinguished Blaise Computing over
the years.

Designed explicitly for Turbo Pascal 4.0, Turbo
POWER TOOLS PLUS and Turbo ASYNCH
PLUS provide reliable, fast, professional routines —
the right combination of pieces to put your Turbo Pascal
puzzle together. Complete price is $129.00 each.

aH
h | 4
BLAISE COMPUTING INC.

2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441

' BLAISE
N U

2

Turbo POWER SCREEN 3129.00
NEW! General screen management; paint
screens: block mode data entry or field-by-
field control with instant screen access. Now
for Turbo Pascal 4.0, soon for C and BASIC.

Turbo C TOOLS $129.00
Full spectrum of general service utility func-
tions including: windows; menus; memory
resident applications; interrupt service rou-
tines: intervention code: and direet video
access for fast screen handling. For Turbo C.

C TOOLS PLUS $129.00
Windows; menus; ISRs; intervention code;
screen handling and EGA 43-line text mode
support; direct screen access; DOS file han-
dling and more. Specifically designed for
Microsoft C 5.0 and QuickC.

ASYNCH MANAGER $175.00
Full featured interrupt driven support for the
COM ports. 1/0 buffers up to 64K: XON/
XOFF: up to 9600 baud; modem control and
XMODEM file transfer. For Microsoft C and
Turbo C or MS Pascal.

PASCAL TOOLS/TOOLS 2 $175.00
Expanded string and screen handling; graph-
ics routines; memory management; general
program control; DOS file support and more.
For MS-Pascal.

KeyPilot $49.95

“Super-batch” program. Create batch files
which can invoke programs and provide input -
to them; run any program unattended; create
demonstration programs; analyze keyboard
usage.

EXEC $95.00
NEW VERSION! Program chaining execu-
tive. Chain one program from another in
different languages: specify common data
areas: less than 2K of overhead. ¢

RUNOFF $49.95
Text formatter for all programmers. Written
in Turbo Pascal: flexible printer control; user-
defined variables; index generation: and a
general macro facility.

TO ORDER CALL TOLL FREE
800-333-8087

TELEX NUMBER-338139

st i andQu kC are
remstered trademarks of

" Microsoft Corporation. Turbo Pascal is a regis-
tered trademark of Borland International.

DIALOG
continued from page 6

loop into a separate procedure (particularly if it were a
large FOR loop with several exit points), but to do so
merely to avoid using a GOTO statement in any FOR
loop could make the program less clear, not more.

—Bruce Webster
BIOS, THE MISUNDERSTOOD

Bearing in mind your January/February editorial
comment that “we” know “exactly” what DOS can
do, I am quite uneasy about the technique used in
the Turbo Pascal article “Replacing the Keyboard In-
terrupt,” by Neil Rubenking. The keyboard interrupt
is a hardware interrupt, and so may occur at any time,
including on an internal stack, on top of, and/or un-
derneath multiple other hardware interrupts on that
same stack.

Since DOS has limited-size internal stacks, and the
processor has no hardware stack-limit checks, it is
not hard to imagine that, under possibly rare but still
normal circumstances, the Turbo Pascal 4.0 interrupt
procedure overhead (that of pushing all registers
onto the current stack) may exceed the bounds of a
DOS internal stack. This will not cause an immediate
crash, but rather a probable crash waiting to happen,
which may occur when the overwritten code or data
are used. Turbo Pascal interrupt procedures are
somewhat more appropriate with software interrupts,
since an application stack will then be in control.
The timer (INT 1CH) is also a hardware interrupt,
of course.

As far as I know, this sort of problem has been
well understood for years, and indeed, has been
properly handled in various examples of public do-
main INLINE code for Turbo Pascal 3.0; it is thus
disappointing to see such an outdated and danger-
ous technique appear on your pages. Nevertheless,
your editorial made an interesting point, even with
our limited understanding of DOS.

—Terry Rutter
Austin, TX

There’s some truth in the caution that a replacement ISR
should not put anything onto the stack that the ROM
BIOS ISR doesn't put there, and Neil’s routines do push
a couple of extra registers onto the stack, which, as you say,
could be a DOS stack. However, as Lane Ferris reminded
me, there can never be more than one INT 9 stack frame on
the stack at any one time, because INT 9 disables inter-
rupts while it executes, and doesn’t enable them until it
goes home. The extra burden is thus never more than a
handful of bytes, and is unlikely to cause any problems.
INT $1C is, in fact, a software interrupt, called from the
INT 8 hardware interrupt ISR. However, because it’s
called from a hardware ISR, the INT $1C stack frame can
indeed be placed on the DOS stack. We'll be having some
articles from Lane on the problems of reentrancy, DOS
stacks, and TSRs in the future; we hope this material will
shed some light on this very messy issue.

—Jeff Duntemann

TP OR TC, IT’S ALL THE SAME TO ME

I thought your readers might be interested in this cu-
riosity—a program that compiles and runs identically
under both Turbo Pascal and Turbo C. (A warning is
generated by Turbo C, but can be ignored.)

const (* Zelkop) = 100;
main ()

€

printf ("Hello, world.\n");

b
/*) Zelkop = 100;
begin

writeln ('Hello, world.');
end.
X

The trick is to mix the comment delimiters. Turbo
Pascal ignores everything between (* and *), while
Turbo C ignores everything between /* and */. The
const may seem to serve no purpose, but it is essen-
tial, since const is the only token that can legally
begin both a Turbo Pascal and Turbo C program.

I don’t believe such a program can be written in
standard Pascal as defined by Wirth, or standard C as
defined by Kernighan and Ritchie. To compile with
Standard Pascal, it would have to begin with either
the word program, or an opening comment delim-
iter, (¥, but I can’t see any way to write a C program
that fits these criteria.

My thanks to Neil Rubenking for originally setting
me this challenge.

—David Dubois
Halifax, Nova Scotia
CANADA

At last, something for the Turbo hacker who can’t make up
his mind.
—Jeff Duntemann

RENDER UNTO THE WIZARDS ...

I have enjoyed my first issues of TURBO TECHNIX
immensely. I also find them very instructive and ap-
preciate the three-tiered approach to writing articles.
Not everyone is equally proficient at different lan-
guages. I, for example, am a BASIC programmer
from the bad old days of eight-bit machines, and am
able to appreciate and utilize articles at the Wizard
level. However, I am a much more recent C user and
the Programmer level is about as much as I can ab-
sorb without cerebral overload. Keep up the good
work.

There is a slight correction to be made to Bruce
Tonkin'’s article “Converting .COM Files to
$INCLUDE files” (January/February, 1988). The er-
ror only occurs if the last byte of the file corresponds
to the start of a new line. When this happens, the
last byte is just attached to the end of the previous
line, like so:

SINLINE &H1, &H2, &H3, &H4, &$H5&H6
The generated code should, in fact, look like this:

$INLINE &H1, &H2, &H3, &H4, &H5
$INLINE &H6

To correct this problem, replace these lines in
COM2INC.BAS:

continued on page 10

8 TURBO TECHNIX July/August 1988

We're Programmer’s Connection, the Ieadmg
independent dealer of quality programmer’s
development tools for IBM personal com-
puters and compatibles. We can give you the
knowledge to help you make the best software
buying decisions possible.

Informative Buyer’s Guide. The CONNECTION, our
comprehensive buyers guide and catalog, contains
prices and up-to-date descriptions of over 750
programmer’s development tools by over 250
manufacturers. Each description covers major
product features as well as special requirements, ver-
sion numbers, diskette sizes, guarantees, and more.
In addition, the CONNECTION features interesting ar-
ticles by leaders in the programming industry.

How to Get Your FREE Copy: 1) Mail us a card or
letter with your name and address; or 2) Call one of
our convenient toll free telephone numbers.

If you haven't yet received your copy of the
Programmer’s Connection Buyer’s Guide, act
now. Increasing you knowledge about these
products could be one of the most powerful
things you'll ever do.

386 products List Ours
386 AMS/386 LINK by Phar Lap SoftwareNew 495 389
386 DEBUGGER by Phar Lap Software...............New 195 145
FoxBASE +/386 by Fox Software New 595 399
Microsoft Windows 386 by Microsoft soe 1950 129
NDP C-386 by Microway................... .New 595 529
NDP FORTRAN-386 by Microway . New 595 529
Paradox 386 by Ansa/Bortand............................ New 895 639

blaise products

ASYNCH MANAGER Supports Turbo C..................... 175 135
CTOOLSPLUSS...........oersccemmmmrmmsmmnonssssss . 129 99
Turbo ASYNCH PLUS/4.0. T -
Turbo C TOOLS... i 129 99
Turbo POWER SCREEN.. corerrensnneeVlEW 128 99
Turbo POWER TOOLS PLUS/4.0... . 129 99

Peabody Pop-Up Reference Utility
by Copia International

List $100 Ours $89
Peabody is a fast and flexible on-line reference utility with
databases available for Turbo Pascal v 3 & 4, Turbo C, Microsoft
C v 5,MS Assembler, or MS DOS. It provides instant, accurate
and complete language information in pop-up frames at the
touch of a key. With Peabody, you can select general topics
from a structured subject menu, or use Peabody's hyperkey to
get instant help for the keyword closest to the cursor. Specify
database desired. Additional databases are available for $45.

borland products

EUREKA Equation Solver 167 115
Paradox 1.1 by Ansa/Bortand .. 495 359
Paradox 2.0 by Ansa/Bortand ... 725 525
Paradox 386 by Ansa/Bortand 895 639
Paradox Network Pack by Ansa/Boriand........ 995 725
Quattro: The Professional Spreadsheet.............. 247 179
Reflex: The Analystccoocooooverriiiioirnnns . 150 105
SBKEKRIIS ... 0. ooy ..New 200 125
Turbo Basic Comprler PRt R A R O 100 68
Turbo Basic Database Toolbox ... 100 68
Turbo Basic Editor Toolbox .. . 100 68
Turbo Basic Telecom Toolbox 100 68
Turbo C Compiler... 100 68
Turbo Lightning 100 68
Turbo Lightning and Lrghtmng Word Wizard 150 105
Turbo Pascal Ha 100 68
Turbo Pascal Database Toolbox . 100 68
Turbo Pascal Developer's Toolkit 395 285
Turbo Pascal Editor Toolbox 100 68
Turbo Pascal Gameworks Toolbox 100 68
Turbo Pascal Graphix Toolbox 100 68
Turbo Pascal Numerical Methods Toolbox 100 68
Turbo Pascal Tutor............................ 70 49
Turbo Prolog Compiler 100 68
Turbo Prolog Toolbox ... 100 68

.. 800-225-1166
Ohro & Alaska (Collect) . ..216-494-3781
International ..216-494-3781

TELEXE- S
FAXS. 2. ibor i 2 BB s,

Business Hours: 8:30 AM to 8:00 PM EST Monday through Friday
Prices, Terms and Conditions are subject to change.
Copyright 1988 Programmer’s Connection Incorporated

KNOWLEDGEA2POWER

USA........ 800-336-1166

.... 9102406879
.. 216-494-5260

Established 1984

c language
CBTREE by PeacoCk SYSIEMS.............ccocrivrceiiinnns 159 123
Essential Software Products A/l Vaneties. ... CALL CALL
Greenleaf Products A/ Varieties CALL CALL
creative programming products
Vitamin C Supports Turbo C...............cccooevvvrvriinns il hasi BT
Reference Database for Norton GuidesNew 50 47
VC Screen Forms Designer New Version 150 119
crescent software produts
GraphPak for Turbo BASIC...................ccovcoveeeviniiirinns 69 59
GraphPak Professional for T New 99 89
QBase Relational Database for Turbo BASIC ..o 99 89
QBase Report Report Generator for Turbo BASIC . 69 59
QuickPak Professional for Turbo BASIC 149 129
database management
Clipper by Nantucket 695 3719
dBASE Il Plus by Ashton-Tate 695 389
FoxBASE + by Fox Software ... 395 249
FoxBASE +/386 by Fox Software . 595 399
Genifer by Byte! 395 249
R:BASE for DOS by Microrim ... 725 539
R:BASE for 0S/2 by Micronm... 895 649
R:BASE Program Interface by . 595 389
microsoft products
Microsoft C Compiler 5 w/CodeViewNew Version 450 299
Microsoft COBOL Compiler with COBOL Tools .. 700 465
Microsoft FORTRAN Opam/zmg Camp ...New Version 450 299
Microsoft Macro AssemblerNewVersion 150 105
Microsoft Mouse A/l Varieties........... .. CALL CALL
Microsoft 0S/2 Programmer s Toolkit . ..New 350 239
Microsoft Pascal Compiler ... NewVersion 300 199
Microsoft QuickBASIC .. SR 99 69
Microsoft QuickC...... 93 69
Microsoft Windows .. 99 69
Microsoft Windows 3 195 129
Microsoft Windows Development Kit . 500 329
Microsoft Word ... 450 299
Microsoft Works... 195 129
migent products
DATABASE SERVER Multi-user database engine .. New 695 629
Developer’s Toolkit for C... 2 New 495 449
EAGLE Database Application Language Vrvsnes New 495 449
SUMMIT Database Add-in for Lotus 1-2-3New 195 175
nostradamus products
Instant Assistant... : 100 89
Instant Replay lll R 150 129
Turbo-Plus Supports Turbo %sca/ 40..... 100 89
peter norton products
Advanced Norton Utilities G 150 89
Norton Commander ... 75 5%
Norton Editor NewVerson 75 59

ORDERING INFORMATION

FREE SHIPPING. Orders within the USA (including
Alaska & Hawaii) are shipped FREE via UPS. Call for
express shipping rates.

NO CREDIT CARD CHARGE. VISA, MasterCard and
Discover Card are accepted at no extra cost. Your card
is .charged when your order is shipped. Mail orders
please include expiration date and authorized signa-
ture.

NO COD OR PO FEE. CODs and Purchase Orders are
accepted at no extra cost. No personal checks are ac-
cepted on COD orders. POs with net 30-day terms
(with initial minimum order of $100) are available to
qualified US accounts only.

NO SALES TAX. Orders outside of Ohio are not
charged sales tax. Ohio customers please add 5% Ohio
tax or provide proof of tax-exemption.

30-DAY GUARANTEE. Most of our products come
with a 30-day documentation evaluation period or a 30-
day return guarantee. Please note that some manufac-
turers restrict us from offering guarantees on their
products. Call for more information.

SOUND ADVICE. Our knowledgeable technical staff
can answer technical questions, assist in comparing
products and send you detailed product information
tailored to your needs.

INTERNATIONAL ORDERS. Shipping charges for In-
ternational and Canadian orders are based on the ship-
ping carrier's standard rate. Since rates vary between
carriers, please call or write for the exact cost. Inter-
national orders (except Canada), please include an ad-
ditional $20 for export preparation. All payments must
be made with US funds drawn on a US bank. Please
include your telephone number when ordering by mail.
Due to government regulations, we cannot ship to all
countries.

MAIL ORDERS. Please include your telephone num-
ber on all mail orders. Be sure to specify computer,
operating system, diskette size, and any applicable
compiler or hardware interface(s). Send mail orders

o Programmer’s Connection
Order Processing Department

7249 Whipple Ave NW

North Canton, OH 44720

Norton Guides Sper:/lytanguage amor 1000 69

For0S/2... New 150 109

Norton Utilities 100 59
quinn- curtrs products

DOS/BIOS & Mouse Tools for Turbo Pascal~ 75 69

MetraByte Data Acquisition Tools.... 100 89

Science & Engineering Tools 75 69

C-terp for Turbo C
by Gimpel Software

List $139 Ours $119
C-terp is an interpreter/semi-compiler that serves as a power-
ful, professional C debugging and development environment.
It features: full K&R C support with ANSI extensions; a full-
screen, built-in, reconfigurable editor; fast semi-compilation
and linking; complete multiple module support; 8087 support;
full graphics support including dual displays; and much more.

software bottlrng products
Flash-up.. S e R i 89 79

Flash-up Developer s Toolbox. ... 49 47
Screen Sculptor Supports Turbo Pascal .. 125 109
SoftCode Supports Borand tanguages 195 159
Speed Screen . 3B A
turbo pascal utrlrtres
Btrieve /SAM File Mgr by Novell . 3 245 184
Overlay Manager by TurboPower Software.. 45 43
TDEBUG 4.0 by TurboPower Software 45 43
Turbo Analyst by TurboPower Software 7% 69

Turbo Professional 4.0 TurboPower ... New Version 99 89

TurboHALO by IMSI, Specify Turbo C or Pascal.. 9% 15
TurboRef by Gracon Services o 50 45
other products
Brief by Solution SYSIEMSc.ccovcermrveererninnes .. 195 CALL
Dan Bricklin's Demo Il by Software Garden... 195 179
Dan Bricklin's Demo Pgm by Software Gamen T T
Dan Bricklin's Demo Tutorial by Software Garden 50 47
OPT-Tech Sort by Opt-Tech Data Proc....... 149 99
risC Assembly Language by IMSI.................c.......... 80 65

CALL for Products Not Listed Here

-

* Fills the color text mode screen with character,
* Character, displayed with attribute Attribute.
L/

void FillScreen(char Character, char Attribute)

int i;
unsig;\ed int far *DisplayMemoryPtr;
unsigned int VideoWord;

/* Construct a word that contains the character in the low
byte and the attribute in the high byte */
VideoWword = (Attribute << 8) | Character;

/* Build a far pointer to color text mode display memory */
DisplayMemoryPtr = MK_FP(COLOR_TEXT_SEGMENT, 0);

/* Set every character on the color text screen to Character,
displayed with attribute Attribute */

for (i = 0; i < FILL_LENGTH; i++)
*DisplayMemoryPtr++ = VideoWord;

DIALOG

continued from page 8

GET 1,LASTBYTE
PRINT #2,"&H";HEX$(ASC(A$))

In their place, put these lines:

GET 1,LASTBYTE
IF((I-1) MOD 5=0) THEN 'IF PREVIOUS LINE

PRINT #2, "n 'ENDS AT POSITION 5
PRINT #2, "SINLINE &H"; HEX$(ASC(A$))
ELSE
PRINT #2, "&H";HEX$(ASC(A$))
END IF
—Gavin Cole
Guelph, Ontario
CANADA

You've hit on our big secret, Gavin: While other magazines
only want to reach wizards, we want to make wizards.
In other words, wherever on the ladder you happen to fall
in connection with a given language, grab a rung—we’ll
give you a boost to the next step up. It’s called building
skills, and we think we do it like nobody else. Thanks for
the COM2INC patch, too.

—Jeff Duntemann

SCREAMIN’ SCREENS

Michael Abrash’s article “Building Far Pointers with
MK_FP” (March/April, 1988) has a sample program
that illustrates what is probably the most efficient
way of writing data directly to screen memory in
Turbo C. But if you are crazy about getting the most
from your C code, several changes would reduce the
statements in the for loop in function FillScreen() to
one statement. These changes are:

unsigned int far *DisplayMemoryPtr;
unsigned int VideoWord;

VideoWord = Attribute << 8;

for (i = 0; i < FILL_LENGTH; i++)
*DisplayMemoryPtr++ =
VideoWord | Character;
Everything else in the function can stay the same.
And, by the way, keep up the work on what appears
to be an excellent magazine. I'm looking forward to
the next issue.
—Ramon Rivas
Miami, FL

M. Rivas’ changes to FillScreen() certainly make the func-
tion more efficient, both in code size and in speed. Still,
there’s one tweak yet to be made to Mr. Rivas’s code: The
ORing together of the character and the attribute should be
moved out of the loop. After all, why perform this opera-
tion once every time through the loop, when we actually
only need to do it once, before the loop? I've written a ver-
sion of FillScreen() that incorporates both Mr. Rivas’s
suggestions and my final tweak. It’s shown in Listing 1.
—Michael Abrash

Listings may be downloaded from CompuServe as
DILOG5.ARC.

10 TURBO TECHNIX July/August 1988

Tuarbo Expert.

Now it doesn't take a genius to
plug into Expert Systems.

AR

For only $99.95, you can incorporate the power of a full-fledged Expert System into your TURBO PASCAL
programs. Seamlessly. Affordably. Finally. Actual Expert Systems, developed for simple use by any Turbo Pascal 4.0
programmer.

Take a look at all the features you suddenly have available with this single Turbo Pascal 4.0 Unit: The ability to
create large Expert Systems, or even link multiple Expert Systems together. A powerful backward-chaining inference
engine. Easy flow of both data and program control between Turbo Expert and the other parts of your program, to
provide Expert system analysis of any database, spreadsheet, file or data structure. The ability to add new rules in the
middle of a consultation, so your Expert Systems can learn—really /earn—and become even more intelligent.

You also have the ability to create large rule bases and still have plenty of room left for your program, thanks
to conservative memory use. You can link multiple rule bases, you'll be compatible with our Turbo
Toolkit units, and you'll be able to do mathematical calculations, -confidence factors, windowing, ~ SOFTUARE

and more.

Imagine a single “EXE” file containing your user interface and data handling, and a full Expert
system. Call for more information or to order, (317) 876-3042. Software Artistry Inc., 3500 Depauw Blvd.,
Suite 2021, Indianapolis, IN 46268 RRTISTRY

TURBO PASCAL

MULTIPLE INDEXES WITH

TURBO ACCESS

Use multiple indexes with the Turbo Pascal Database
Toolbox to sort your data—without physically sorting it at all.

William Meacham

One of the utilities provided with the
Turbo Pascal Database Toolbox is Turbo
Access, a set of functions and procedures
to create and manipulate data files and
their associated indexes.

An index shows the location of some-
thing. The index in the back of a book shows the
reader where various topics appear in that book. The
card catalog in a library is a huge index that shows
(if you know the codes) where to find each book. In
fact, a card catalog is actually a multiple index because
it shows, in more than one way, where a book is lo-
cated. You can look up a book by its title, by its au-
thor, or by its subject.

As used in computer databases, an index is a file
of pointers to records in another file. (A pointer is the
address of some data item—in this case, a pointer is
the address of a record in the other file. That file is
called the data file to distinguish it from the index
file.) Typically, the pointers in an index file are or-
dered in a way that makes them easy to search.
When you construct an index file, each record con-
tains both a key, which identifies the corresponding
record in the data file, and a pointer to the record in
the data file. Data file records need not be in order.
As long as the index is in order, it’s easily searched
for the pointer to the desired data file record.

As an example, let’s say that a data file contains
name and address records, and the key is the last
name. The data file might contain the following rec-
ords in this random order (each record also contains
additional data, not shown here for clarity’s sake):
MARTINEZ
ALPHONSE

SMITH
BRYKER

PROGRAMMER

If this data file doesn’t have an index, you have to
search the entire file to find Bryker. If the file con-
tains a large number of records, the search process
could get quite tedious. An index, however, speeds
up the search. In this example, the index file would
contain the records in the following order:

Key Record in data file
ALPHONSE 2
BRYKER 4
MARTINEZ 1
SMITH 3

The alphabetical order of the records makes it easy
to perform a binary search on the index to find the
desired last name. Once the name is found, we go
directly to that record in the data file without search-
ing the records before it.

In this case, a multiple index would simply be
two or more index files. One could be keyed on the
phone number, and another keyed on the last name.
Multiple indexes let you access information in more
than one way.

This is a very simplistic example. Turbo Access 4.0
is a collection of functions and procedures that you
can plug into your application to create data files
and indexes that far exceed this example—to the
tune of over two billion records! The indexes are so-
phisticated B+ trees, not just alphabetized lists, and
the search algorithm is faster than a binary search.
In this article, I'll show you how to use the Turbo
Access routines. I'll also provide concrete examples
from a shareware application I've written, called the
Reliance Mailing List.

DATABASE FUNCTIONS

There are basically seven things you can do with any
database:

1. Create the database;
2. Open the database;
3. Add or insert records;
4

. Retrieve records (either randomly or in order) to
be displayed, printed, etc.;

(&34

. Change or update records after retrieving them;

(o7]

. Delete records; and
7. Close the database.

continued on page 14

12 TURBO TECHNIX July/August 1988

manipulate the data files and the
index files separately. As a result,
you can index a non-Turbo Access
data file, or even use a Turbo Ac-
cess data file without any index
(although I don’t know why
anyone would want to do that).
The high-level calls treat the data
file and the index file as one en-
tity, called a data set. This makes

it easier to add, retrieve, update,
and delete records, but it has cer-
tain limitations. You can have only
one index per data set, and the in-
dex cannot contain duplicate keys.
I'll say nothing more about high-
level calls in this article; they're
easy, but low-level calls are much
more interesting.

INDEXES
continued from page 12

The rich set of procedures in
Turbo Access lets you do all of
these things with simple proce-
dure calls. In addition, you can
have more than one data file, and
more than one index per data file.

Turbo Access provides two dif-
ferent ways to handle database
functions: “high-level” calls and
“low-level” calls. If you've used
Turbo Access 1.x with Turbo
Pascal 3.0, you’ll feel right at
home with the low-level calls.
With Turbo Access 4.0 (which is
used with Turbo Pascal 4.0), the
low-level calls are the same as in
version 1.x, with a couple of addi-
tions. The low-level calls in 4.0

Write Better

Turbo 4.0 Programs...
Or Your Money Back

You’ll write better Turbo Pascal 4.0 programs easier and faster
using the powerful analytical tools of Turbo Analyst 4.0.
You get * Pascal Formatter * Cross Referencer * Program
Indexer * Program Lister « Execution Profiler,
and more. Includes complete source code.

Turbo Analyst 4.0 is the successor to the
acclaimed TurboPower Utilities:
“If you own Turbo Pascal you should own the Turbo
Power Programmers Utilities, that's all there is to it.”

Bruce Webster, BYTE Magazine, Feb. 1986

Turbo Analyst 4.0 is only $75.

A Library of Essential Routines
Turbo Professional 4.0 is a library of more than 400 state-of-the-art
routines optimized for Turbo Pascal 4.0. It includes complete
source code, comprehensive documentation, and demo
I programs that are powerful and useful. Includes
Il + TSR management * Menu, window, and data
'~ entry routines * BCD « Large arrays, and more.

Turbo Professional 4.0 is only $99.
Call toll-free for credit card orders.
1-800-538-8157 ext. 830 (1-800-672-3470 ext. 830 in CA)

Satisfaction guaranteed or your money back within 30 days.

Turbo Pascal 4.0 is required. — 3#
Owners of TurboPower Utilities w/o L

source may upgrade for $40, w/source,

$25. Include your serial number. For

other information call 408-438-8608.

Fast Response Series:

® T-DebugPLUS 4.0—Symbolic
run-time debugger for Turbo 4.0,
only $45. (890 with source code)
m Overlay Manager 4.0—Use over-

TurboPower Software
P. O. Box 66747

lays and chain in Turbo 4.0, only $45.
Scotts Valley, CA 95066-0747

Call for upgrade information.

Shipping & taxes prepaid in U.S. &
Canada. Elsewhere add $12 per item.

GETTING STARTED

First, create a file that defines the
data file record type(s) and the in-
dex file record type(s). Next, run
the TABUILD program to compile
the Turbo Access unit and config-
ure it for your application. This
is an important step because the
Turbo Access routines are gener-
ic—they work with any size data
record and any size index record
(within certain limits). Turbo Ac-
cess 1.x required that some global
variables be defined before the
Turbo Access source code was in-
cluded. The most important of
these global variables were Max-
DataRecSize (the size of the larg-
est data record) and MaxKeyLen
(the size of the largest string to be
used as a key). Turbo Access 4.0
resides in a unit that is compiled
separately from your program.
Since this unit needs to know the
values for these global variables,
the values are built in by TA-
BUILD when the unit is compiled.
Incidentally, this means that
you'll need to compile a separate
version of the TACCESS unit for
each of your applications. I keep
a separate subdirectory on my
hard disk for each application that
uses Turbo Access, and then com-
pile a separate version of TAC-
CESS in each subdirectory. For in-
stance, I used this command line
to compile TACCESS for my mail-
ing list program:
TABUILD \TP4\MAIL\MAIL.TYP

This command line was executed
from the TACCESS subdirectory.
During execution, it created TAC-
CESS.TPU in the MAIL subdirec-
tory. The important file here is
MAIL. TYP—you’ll need to under-
stand this file in order to follow
the examples presented later.
MAIL.TYP is listed in Figure 1.

TABUILD uses MaxDataType
to set aside enough space in
TACCESS.TPU for the largest data
record you’ll be using. Likewise,
MaxKeyType reserves enough
space for the largest index record.
You can have numerous data files
and indexes—TACCESS works
fine with all of them as long as no
data file record exceeds the size
of MaxDataType, and no index
file record exceeds the size of
MaxIndexType.

Figure 2 contains a few of the
constants and variables that are

continued on page 16

14 TURBO TECHNIX July/August 1988

Finallv:

Nobody ever said programming PCs
was supposed to be easy.

But does it have to be tedious and
time-consuming, too?

Not any more.

Not since the arrival of the remark-
able new program you see here.

Which is designed to save you
most of the time you're currently
spending digging through the books
and manuals on the shelf above.

A Guides reference summary screen
(shown in blue) pops up on top of
the program you're working on
(shown in green).

It’s one of a quintet of pop-up
reference packages, called the
Norton On-Line Programmer’s
Guides, that search for information
automatically—in DOS or in OS/2
protected mode.

Each package comes complete
with a comprehensive, cross-
referenced database crammed with
just about everything you need to
know to write applications.

Everything from facts about lan-
guage syntax to a variety of tables,
including ASCII characters, line

tool f(I))IF o
who hate

Summary data expands on
command into extensive detail.
And you can select from a wide

variety of information.

<

eople
mgnu%l labor:

drawing characters, : Which is why each ver-

error messages, (sion of the Norton Guides

memory usage maps, @ comes equipped with a

important data struc- = built-in compiler—the same

tures and more. I l compiler used to develop the data-
How much more? bases contained in the Guides.

Well, the Guides to BASIC, C and
Pascal contain detailed listings of
all built-in and library functions.

The Guide to BIOS/DOS/As-
sembly delivers a complete collec-
tion of DOS service
calls,interrupts
and ROM BIOS
routines.

While the Guide
to OS/2 API packs a
handy DOS-to-OS/2
conversion table.

find most of this
information in the
books and manuals
on our shelf.

But Peter Norton
—who’s written quite a few books
himself—figured you'd rather have
it on your screen.

Instantly.

In either full-screen or moveable
half-screen mode.

Popping up right next to your
work. Right where you need it.

This, you're probably thinking, is
precisely the kind of thinking that
produced the classic Norton Utilities

And you're right.

But even Peter Norton can’t think
of everything.

You can, of course,

Soyou can create newdatabases of
your own, complete with electronic
indexing and cross-referencing.

No wonder PC WEEK refers to
the Guides as “a set of programs
that will delight programmers?”’

Your dealer will be delighted to
give you more information. All you
have to do is call. Or call Peter
Norton Computing.

And ask for some guidance.

- Peter Norton-

COMPUTING

Designed for the IBM" PS/2" and PC families, and 100% compatibles. Available at most software dealers, or direct from Peter Norton Computing, Inc., 2210 Wilshire
Blvd. #186, Santa Monica, CA 90403.213-319-2000. Visa and MasterCard welcome.©1988 Peter Norton Computing.

type
date = record
yr,
mo,
dy : integer
end ;

key1_typ = stringl[5] ;

{ The key is the first five characters of the last name, stripped of

blanks and capitalized.)

key2_typ = string[14] ; { zip code + key1_typ }

mf_rec = record { Master File record }
status : longint ; { 0 = active, else deleted } (4}
last_name : string[30] ; 31>
frst_name : string[18] ; {193
title s stringf®l ; '€ eg, Dr., Mc.. Msy, etc) {10>
salutation : string[11] ; { Dear ...)} 12>
addr1 : string[25] ; 26>
addr2 : string[25] ; {26}
city s stringl23] ; (24>
state : stringl2] ; £ 3)
zip : stringl[9] ; {10>
home_phon : stringl14] ; {152
work_phon : string[14] ; {153
precinct : string(3] ; { 4)
last_amt : real ; { last contribution amount » { 6}
last_date : date ; { last contribution date) { 6
tot_amt s real ; { total contribution amount } ({ 6}
flags : byte ; { 8 booleans, user-defined > (1)

end ; { total 218}

MaxDataType = mf_rec ;
MaxKeyType = key2_typ ;

Figure 1. The master file record format for a typical database application.

const
mf_fname : string[14] = 'MASTER.RML' ; { master file)}
ix1_fname : string[14] = 'INDEX1.RML' ; { index file--last name }
ix2_fname : string[14] = 'INDEX2.RML' ; { " ziptlast name)}
no_dups = 0 ; { parameter for proc Openlndex }
dups_ok =1 ; { parameter for proc Openlndex }

var
master ¢ mf_rec ; { master record }
key1 : keyl_typ ; { keyl work area }
key?2 : key2_typ ; { key2 work area }
mf_file : datafile ; { master file -- type def. in TACCESS)
ix1_file : indexfile ; { index file -- type def. in TACCESS)
ix2_file : indexfile ; (index file -- type def. in TACCESS)
rec_num : longint ; { relative record number of master rec }

{ called DataRef in the manual)

Figure 2. File and record declarations for a typical database application.

INDEXES

continued from page 14

used later in the examples. My ap-
plication has one data file of
names, addresses, and other infor-
mation; and two index files.

The important items here are
the variable declarations for the
data file and the index files. The
type definitions, such as DataFile

and IndexFile, are predefined in
the TACCESS unit; all you have to
do is define the file variables. (Do
not declare mf_file as a file of mf_-
rec; instead, use the TACCESS
predeclared type DataFile.) Turbo
Access declares record types or
record variables for the indexes.

DATA FILE STRUCTURE

Basically, a Turbo Access data file
is a file of records that is just like

a normal Turbo Pascal file, except
that the first record is reserved for
system information and doesn’t
hold data. This first record con-
tains the length of each data rec-
ord, and a pointer to a list of
deleted records. Records are re-
trieved according to their physical
location in the file; I call this lo-
cation the relative record number.
The first record is record 0, the
second is record 1, and so on.

Record 0 also contains pointers
to a free list that is kept within the
file. A free list is a list of records
that have been logically deleted.
When the physical records are de-
leted, they’re not removed from
the file; instead, the deleted rec-
ords are marked with a long inte-
ger value that is stored in the rec-
ord’s first four bytes. Each value
points to (i.e., contains the relative
record number of) the next logi-
cally deleted record in the list.
The long integer value stored in
the last record in the chain is set
to -1. In accordance with the
manual’s recommendation, I've
set up a long integer status field in
the first four bytes (see the status
field in the mf_rec definition in
Figure 1). status indicates whether
the record is active or deleted.
When adding a record, set status
to 0, because a deleted record will
never have a status value of 0. You
can use the status field to rebuild
the indexes by searching the data
file sequentially. I'll give an exam-
ple of this process later on.

CREATING A DATABASE

Now let’s look at the seven basic
database functions, beginning
with the process of creating data
files and index files. When creat-
ing your files, you should follow
a certain sequence:

1. Create the data file;

2. If that is successful, create the
first index;

3. If that is successful, create the
second index; and

4. Repeat the index-creation step
for as many indexes as you
want to have.

If any step along the way fails,

halt the program immediately, be-

cause you can’t continue and still
generate an intact database.

continued on page 18

16 TURBO TECHNIX July/August 1988

For A
Code

If you think writing program code
is a dirty business, we have something
to help you clean up your act.

It’s called Matrix Layout. Layout
lets you create programs that do
exactly what you want, quickly and
easily—without writing a single line
of code. Layout does it for you auto-
matically, in your choice of Turbo
Pascal, Turbo C, Microsoft C, Quick-
Basic or Lattice C. And if you're not
a programmer, you can even create
programs that are ready-to-run.

As the first true CASE (Com-
puter Aided Software Engineering)
development tool for the PC, Layout
lets you write your programs simply
by drawing an icon-based flow chart.
They’ll have windows, icons, menus,
buttons, dialog boxes, and beautiful
graphics and text. Like the Macintosh
and the OS/2 Presentation Manager.

And because Layout is so effi-
cient, everything you create will
work incredibly fast, even on stan-
dard PC’s with 256K and only one
disk drive. To top it off, all your pro-
grams will feature Layout’s auto-
matic mouse support, sophisticated
Hypertext functions, and decision
handling.

The full Layout package also

yone Who Considers
Four Letter Word.

comes with three additional programs:
Matrix Paint is a professional
paint program that comes with a full
palette of high-powered graphics
tools, plus scanner support. And any
picture or symbol that you draw or

S R

1. Draw a flow-chart.
2. Matrix Layout creates
the program code.
3. Your program is complete.

LAYOUT

Matrix Software Technology Corporation « One Massachussetts Technology Center » Harborside Drive + Boston, MA 02128 - (617) 567-0037 ‘_‘

Matrix Software/UK ¢ Plymouth, England » 796-363 Matrix Software/Belgium ¢ Geldenaaksebaan 476 « 3030 Leuven « 016202064
The following are registered and unregistered trademarks of the companies listed: Matrix Layout. Matrix Paint, Matrix Helpmaker. Matrix Desktop.
Matrix Software Technology Corporation; Macintosh, Apple Computer. Inc.; OS/2 Presentation Manager. International Business Machines Corporation.

scan into Paint can be included in
your program.

Matrix Helpmaker allows you
to include an electronic manual in all
your programs. Context-sensitive help
windows, a table of contents, index-
ing, and the convenience of Hypertext
functionality can now become a part
of everything you create.

Finally, Matrix Desktop gives
you the ability to organize your files
and disks in a very Macintosh-like
easy to see, easy to use way. ,

What's the cost? At just $149.95
for the entire package, Layout speaks
in a language you'll love to hear. Jgg;
Especially with our free customer
support, no copy protection, and a
30-day, money-back guarantee.

Video Tape Offer

Our new demonstration video-
tape graphically illustrates how the
many features of Matrix Layout will
make a difference in your life. Call
1-800-533-5644 and order your VHS
copy now (just $9.95 for shipping
and handling, credited against your
purchase). In Massachussetts, call
(617) 567-0037. :

Do it today. Because once you
see what Layout can do for you, we
think you'll swear by it.

St

procedure create_files ;

{ This is called if files are not found on the selected drive.
It creates the master and index files. }

{ global type
str14 = string[14] ; 2}

procedure bomb (filename :
begin

str14) ;

show_msg (concat('CANNOT CREATE ',filename,'!')) ;

halt
end ;

begin

makefile (mf_file,mf_fname,sizeof(master)) ;
if not OK then bomb (mf_fname) ;
makeindex (ix1_file,ix1_fname,sizeof(key1)-1,dups_ok) ;

if not OK then bomb (ix1_fname)

makeindex (ix2_file,ix2_fname,sizeof(key2)-1,dups_ok) ;

if not OK then bomb (ix2_fname)

clear_master ;

{ set values to zero and blank }

addrec (mf_file,rec_num,master) ;

deleterec (mf_file,rec_num) ;

close_database

end'; € --- Procedure create files ---)

Figure 3. Creating a database.

procedure close_database ;

{ Close master file and index files }

begin
closefile (mf_file) ;
closeindex (ix1_file) ;
closeindex (ix2_file)
end ; { proc close_database)

Figure 4. Closing a database.

INDEXES

continued from page 16

Figure 3 shows a portion of my
code for creating a database. The
Turbo Access routines called by
procedure create_files are Make-
File, Makelndex, AddRec, and
DeleteRec.

MakeFile takes three param-
eters: a file of type DataFile, the
filename, and the length of the
record. Notice the use of Turbo
Pascal’s SizeOf function. You
probably know better than to code
a numeric constant into a call like
this, because if you change the
record size, you risk forgetting to
change the numeric constant
somewhere.

Makelndex takes four param-
eters. The first three correspond
closely to those of MakeFile. The
fourth parameter, Status, is a flag
that indicates whether duplicate
keys are allowed. Status is passed
a value of 0 if duplicate keys are
forbidden, and a value of 1 if du-
plicates are allowed. Notice that
the size of the key variable passed
to MakeIndex in the KeyLen

parameter is one less than the ac-
tual size of the variable. This is
because all index keys are strings.
If a key is of another type (such as
a real or an integer), that key must
first be converted to a string in
order to be used as a key. Makeln-
dex wants the maximum number
of bytes of string data containable
in the string, not the physical
length of the entire variable. The
length byte must not be counted
in the value passed in KeyLen.
Boolean variable OK is prede-
fined in the TACCESS unit, and its
value is updated after many of the
Turbo Access procedure calls. Ac-
cording to the documentation, if
a call to MakeFile or MakeIndex
fails, OK is set to False. (I have
not tested every possible way to
make these procedures fail. I have
found, however, that if a disk is
full, the program crashes with an
170 error. Although it looks
pretty, my bomb procedure has

never been executed; I leave it in
just in case.)

Now look at what happens after
the files are created—a record is
added and then deleted. Why? To
protect data file integrity, I prefer
to keep files closed except when
they're actually being accessed.
But if you create a file and then
close it before writing any records,
the file length is zero. However,
since no record 0 exists, the nec-
essary system information is not
contained anywhere. As a result,
the data file crashes the applica-
tion when the data file is opened
later on. The solution is to add a
record and then delete the record
immediately. This creates record
0 (and record 1, which, as you
may recall, is logically but not
physically removed from the file).

Procedure Close_Database is
shown in Figure 4. This procedure
is an easy way to close the data
file and the index files at the
same time.

OPENING A DATABASE

The steps for opening the data-
base are very similar to those for
creating the database:

1. Open the data file;

2. If that is successful, open the
first index;

3. If that is successful, open the
second index; and

4. Repeat for as many indexes as
you want to have.

Figure 5 contains my open_-
database procedure. The param-
eters for OpenFile and Openln-
dex are exactly the same as for
MakeFile and MakeIndex. Notice
that in both sets of procedures, ac-
tual records are not passed. In-
stead, only the length of the data
or index records contained in the
file is passed.

ADDING RECORDS

Now we're ready to add records.
The procedure for adding a rec-
ord mirrors that for creating and
opening databases, with a few ad-
ditional steps. Assuming that the
user has filled out a data entry
screen for the record to be added,
take the following steps:

1. Construct a key for the first in-
dex. Each key should be related

continued on page 20

18 TURBO TECHNIX July/August 1988

MAGIC PC ELIMINATES CODING . .. CUTS MONTHS OF DATABASE DEVELOPMENT!

Time is money. And codinga DBMS
application like Accounting or Order
Entry takes a lot of both. Simply be-
cause hacking out mountains of code
with your RDBMS or 4GL is too
slow. Not to mention the time to re-
write if you make a mistake or change
the design.

EXECUTION TABLES
ELIMINATE CODE!
Magic PC cuts months of your appli-
cation development time because it
eliminates coding. You program with
the state-of-the-art Execution Tables
in place of conventional programming.

HOW DOES IT WORK?
Magic PC turns your database design
scheme directly into executable appli-
cations without any coding. Use Exe-

cution Tables to describe only what

your programs do with compact design
spec’s, free from lengthy how to pro-
gramming details. Each table entry is
a powerful non-procedural design in-
struction which is executed at com-
piled-like speed by a runtime engine.
Yet the tables can be modified “on the
fly” without any maintenance. De-
velop full-featured multi-user turn-
key systems with custom screens,
windows, menus, reports and much
more in days — not months! No more
low-level programming, no time
wasted . . .

MVAG IC PC

Database Language

i “Magic PC’s database en-

it gine delivers powerful app-

' lications in a fraction of

thetime... thereis nocom-
petitive product.”

i “Overall, Magic PC is one
of the most powerful DBMS
packages available.”

® Quick Application Generator

® BTRIEVE® — based multi-user RDBMS
® Visual design language eliminates coding
©® Maintenance-free program modifications
® Easy-to-use Visual Query-By-Example
© Multi-file Zoom window look-ups

® Low-cost distribution Runtimes

® OEM versions available

ATTENTION BTRIEVE® USERS
Now you can quickly enhance your BTRIEVE®-
based applications beyond the capabilities of
XTRIEVE® and RTRIEVE®. Use Magic PC as
aturn-key BTRIEVE® Application Generator to
customize your applications without even chang-
ing your existing code.

AKeER

19782 MacArthur Boulevard, Suite 305
Irvine, California 92715
TLX: 493-1184 FAX: 714-955-0199

DATABASE PROGRAMMERS
Join the thousands of professional
database programmers and vertical
market developers who switched to
Magic PC from dBase®, R:BASE®,
Paradox®, Clipper®, Dataflex®, Rev-
elation®, Basic, C, Pascal, etc.

TRY BEFORE YOU PAY

We’re so sure you’ll love Magic PC —
we'll let you try the complete package
first. Only a limited quantity is avail-
able, so call us today to reserve your
copy. Pay for Magic PC only after 30
days of working with it.* To cancel.. .
don’tcall... simply return in 30 days
for a $19.95 restocking fee.

OR PAY NOW AT NO RISK
Pay when you order and we’ll wave
the $19.95 restocking fee so you have
absolutely no risk.

SPECIAL OFFER ¥

1998

Magic LAN multi-user — $399
Magic RUN — call for price

Order Now Call:
800-345-MAGIC

In CA 714-250-1718

Add $10 P&H, tax in CA. International orders add $30.
*Secured with credit card or open P.O. Valid in US.
Dealers welcomed

procedure open_database ;
{ Open master file and index files }

procedure bomb (filename : stri14) ;
begin
show_msg (concat('CANNOT OPEN ', filename,'!')) ;
halt
end ; { proc bomb }

begin
openfile (mf_file,mf_fname,sizeof(master)) ;
if not OK then bomb (mf_fname) ;
openindex (ix1_file,ix1_fname,sizeof(key1)-1,dups_ok) ;
if not OK then bomb (ix1_fname) ;
openindex (ix2_file,ix2_fname,sizeof(key2)-1,dups_ok) ;
if not OK then bomb (ix2_fname)

end ; { proc open_database }

Figure 5. Opening a database.

{ global type
str30 = string[30] ;
str_type = string[80] ; >
{ cremsereErpnse==aa)

function purgech (instr : str_type ; inchar : char) : str_type ;
{ Purges all instances of the character from the string }

var
n : integer ; { Loop counter)}
outstr : str_type ; { Result string)
begin
outstr := '' ;

for n := 1 to length (instr) do
if not (instr[n]l = inchar) then
outstr := concat (outstr, instr[nl) ;
purgech := outstr
end ;

function build_key1 (name : str30) : keyl_typ ;
{ Construct key for index file 1, last name)}

var
work_area : keyl_typ ; { only five characters }
i : integer ;

begin

{ Get rid of blanks and }
{ truncate to 5 characters }
for i := 1 to length(work_area) do { Make upper case }
work_areali]l := upcase(work_arealil) ;
build_key1 := work_area
end ; { function build_keyl }

work_area := purgech(name,' ') ;

function build_key2 (name : str30 ; zip : str9) : key2_typ ;
{ Construct key for index file 2, zip plus last name)
begin
build_key2 := concat(purgech(zip,' '),build_keyl(name))
end ; { function build_key2 >

{ Code fragment -- Save_It is a boolean to capture the user's
response to the question whether to save the data just entered. }

if save_it then
begin
keyl := build_keyl1 (master.last_name) ;
key2 := build_key2 (master.last_name,master.zip) ;
addrec (mf_file,rec_num,master) ;
addkey (ix1_file,rec_num,keyl) ;
addkey (ix2_file,rec_num, key2)
end ;

{ User says to save the record)

Figure 6. Adding a record to a database.

INDEXES

continued from page 18

to the data record in some un-
ambiguous way;

2. If there is more than one in-
dex, construct the key for the
second index, and so on for all
of the remaining indexes;

3. Add the record to the data file.
The AddRec procedure returns
the relative record number of
the new record in the data file;

4. If adding the record was suc-
cessful, add the key to the first
index through the AddKey pro-
cedure, using the first key value
and the relative record number
of the new record. This inserts
the index record into the index
file in its proper place, so that
the index file is always easily
searchable; and

5. Repeat the previous step for
each of the remaining indexes.

The code in Figure 6 demon-
strates this process. Procedure
AddRec adds the record to the
data file (reusing a deleted record
slot if available), and returns the
relative record number in the
global variable rec_num. AddKey
uses this variable and the key
value to add an index record to
the index. AddKey inserts the in-
dex record into its proper place in
the B+ tree, adjusting the tree as
necessary.

The global Boolean flag OK
is not checked after these calls.
AddRec doesn’t update OK; if
AddRec fails, the program crashes
with a Turbo Pascal I/0O error.
AddKey does affect OK, but OK is
relevant only if the index files
were created and opened with
duplicate keys disallowed. In such
a case, an attempt to add an index
record with a key that was already
in the index fails, and OK is set to
False. My particular application al-
lows duplicate keys, so there is no
need to check OK.

Note how the key is constructed.
The primary key consists of the
first five characters of the last
name, forced to uppercase and
purged of blanks. This puts all of
the keys into a standard format so
that they can be compared easily,
but leaves the information in the
data file intact. Since the key can

continued on page 22

20 TURBO TECHNIX July/August 1988

Sophisticated User Interfaces in Minutes!

Put magic in your programs with ¢

ll,-b
/

(/WW o
The World’s Best Code Generator!

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop-
up menus, and pull-down menu systems. Overlay them. Scroll within them.

Users and critics say it all!...

“.. the best I've used ... The code that it generates is excellent, with every feature you
could conceivably desire. ... if you have problems, they give excellent technical advice
over the phone. ... It saves time, is flexible and produces screens which are state of the
art.” Sally Stott, Software Developer

“... the best screen generator on the market.” George Kwascha, TUG Lines, Nov/ Dec 87

“... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC
is extremely flexible. ... [it] clearly offers the greatest variety of options.”
Jim Powell, Computer Language, Jun 87

“Fast automatic updating of dependent fields adds flair to your input screens. ...
turboMAGIC will be a blessing for programmers who would rather not write the user
interface for every program.” Neil Rubenking, PC Magazine, 24 Feb 87

“I'was impressed with the turbo MAGIC package. ... the procedures created by turboMAGIC
are well commented and easy to add to your own code.”
Kathleen Williams, Turbo Tech Report, May/Jun 87

“... definitely a recommended program for any Turbo Pascal programmer, novice or expert.”
Terry Lovegrove, Library Hi Tech News, Oct 87

ORDER your Magic TODAY! Only $199.
CALL TOLL FREE 800-225-3165 or 205-342-7026

sophisticated
software

£5

6586 Old Shell Road, Mobile, AL 36608
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15.

{ Code fragment for searching an index file

and retrieving a data record)}

keyl := build_keyl (name) ;
findkey (ix1_file,rec_num,keyl) ;
if OK then

begin

getrec (mf_file,rec_num,master) ;
{ display the record on the screen }

end ;

Figure 7. Searching an index file and retrieving a data record.

INDEXES

continued from page 20

always be reconstructed from the
information in the data file, in-
dexes can be rebuilt if index files
are corrupted or destroyed. The
key string is short in order to save
disk space. Allowing duplicate
keys is essential, and we’ll see how
that impacts retrieval shortly.

Let’s step back and look at what
we have at this point. The data file
contains a new record, at relative
record number n. The informa-
tion in the data record bears no
relation to the relative record
number. Each index file also con-
tains a new record, which is in-
serted in order according to the
key value. The index record con-
tains the key and the relative rec-
ord number of the associated data
record. Assuming that the user
has entered a sufficient number
of data records to be useful, we
are now in a position to retrieve
information from the database.

RETRIEVING RECORDS

In an interactive environment,
records can be retrieved either
one at a time (perhaps for display
on the screen) or as a series (per-
haps for printing a list of names,
or a series of mailing labels). Re-
trieving one record at a time is
easy. Assuming that the user has
entered the name of the person
whose record is to be retrieved,
take these steps:

1. Build the key from the last
name;

2. Search the index for the key;
and

3. If successful, retrieve the rec-
ord pointed to by the index rec-
ord found.

These steps are demonstrated
by the code in Figure 7. Turbo
Access’s procedure FindKey is
passed the index file’s name and

the key, and returns the relative
record number. FindKey also up-
dates the global Boolean flag OK.
If OK becomes True, the relative
record number is that of the first
index record containing a key that
exactly matches the key passed to
FindKey. Next, call GetRec and
pass the data file and the relative
record number to that procedure.
GetRec reads the record at the
designated relative record number
into the data record variable.

There are two interesting pos-
sibilities beyond this simple sce-
nario. The first is that the re-
trieved record may not be the rec-
ord that the user wants, because
more than one record has the
same key. The other possibility is
that no matching key may be
found at all.

It is likely that more than one
record will have the same key in
this example, since the key is com-
posed of the first five characters
of the last name. “Johnson,”
“Johns,” and “Johnston” all have
the same key. Therefore, the user
is shown the record that was re-
trieved, and then allowed to
browse through the database in
either direction from that point.
The procedures PrevKey and
NextKey handle the browsing
process. Given a key, PrevKey
finds the previous key, and Next-
Key finds the next one. FindKey
returns the first matching key and
its relative record number. Calls
to these procedures are encapsu-
lated in my procedures get_prev_-
rec and get_next_rec. If the user
chooses to look at the previous
record, get_prev_rec is called and
displays the record. get_next_rec
works similarly for the next rec-
ord. Note that these are the pre-
vious and next logical records, in
key sequence, not the next or pre-
vious physical records, whose se-

quence is generally unordered.
The code is shown in Figure 8.

PrevKey and NextKey are vir-
tually identical (except, of course,
that they get different keys). The
new key value is returned in the
Key parameter passed to both pro-
cedures. If the previous or next
key is found, each procedure sets
OK to True. If OK is False, you
are at the beginning or the end of
the index file. I found out through
trial and error that when OK is
False, the values of the rec_num
and Key parameters are still up-
dated. That's why I save the initial
value and re-establish the index
pointer by calling FindKey again
after a failed PrevKey or NextKey
operation.

The other possible outcome of
an attempt to retrieve a record is
that the index search may not be
successful. In this case, instead of
displaying an error message, I ask
the user if he or she wants to view
the closest record found. If the
user agrees, the closest record is
found and displayed as shown in
Figure 9.

Figure 9 requires a little expla-
nation. When FindKey fails and
returns False in OK, it has in fact
found a key, which is the first key
greater than the key searched for.
Instead of showing the record as-
sociated with this key, the user is
shown the record just before it. If
a call to PrevKey to retrieve that
record fails (meaning we are at
the beginning of the index file)
SearchKey is called to retrieve the
first key in the file. SearchKey is
similar to FindKey, except that
SearchKey returns the record
number of the first key that is
equal to or greater than the key
requested. FindKey, by contrast,
only returns success for an exact
match. If PrevKey fails, the user
is at the beginning of the file, so
Searchkey returns True in OK.

RETRIEVING MULTIPLE
RECORDS

A mailing list program would not
amount to much if it could not
print a sorted list of its records.
The procedure for printing a
sorted list is straightforward:

1. Position the index pointer at
the beginning of the index file;
and

continued on page 24

22 TURBO TECHNIX July/August 1988

YOU'LL LOVE
THESE UTILITIES.

SAYWHAT?!

—'| The lightning-
/1 @Lﬂ — | v fastscreen
Q\f&) generator

It doesn't matter which language you pro-
gram in. With Saywhat, you can build beautiful
elaborate, colorful screens in
minutes! That's right. Truly
fantastic screens for menus,
data entry, data display, and
help-panels that can all be displayed
with as little as one line of code in any
language. Batch files, too.

With Saywhat, what you see is
exactly what you get. And response time
is snappy and crisp, the way you like it.
That means screens pop up instantly,
whenever and wherever you want them.

Whether you're a novice program- { %
mer longing for simplicity, oraseasoned '—=

professional searching for higher produc- “/ 2N
tivity, you owe it to yourself to check out ([222>
Saywhat. For starters, it will let you build \J//S‘)

your own elegant, moving-bar menus into \ \\
any screen. (They work like magic in any //12
application, with just one line of code!) &
You can also combine your screens into extremely
powerful screen libraries. And Saywhat's remarkable
VIDPOP utility gives all languages running under PC/
MS-DOS, a whole new set of flexible screen handling
commands. Languages like dBASE, Pascal, BASIC, C,
Modula-2, FORTRAN, and COBOL. Saywhat works with
all the dBASE compilers, too!

With Saywhat we also include a bunch of terrific
utilities, sample screens, sample programs, and out-
standing technical support, all at no extra cost. (Com-
prehensive manual included. Not copy protected. No
licensing fee, fully guaranteed). $49,95

WE
GUARANTEE IT!

O IRON CLAD
MONEY-BACK
GUARANTEE.
If you aren’t completely
delighted with Saywhat or
Topaz, return them within
30 days for a prompt,

friendly refund.

TOPAZ.

The breakthrough ¢
toolkit for
Turbo Pascal 4.0

A

s

If you'd like to combine the raw power and
speed of Turbo Pascal with the simplicity and
elegance of dBASE, Topaz
is just what you're looking
for. You see, Topaz (our
brand new collection of
units for Turbo Pascal 4.0) was specially
created to let you enjoy the best of both
worlds. The result? You can create truly
dazzling applications in a very short
time. And no wonder. Topaz is a compre-
hensive toolkit of ABASE-like commands
and functions, designed to help you
create outstanding, polished programs,
fast. Think of it. With Topaz you can write
Pascal code using SAYs and GETs,
PICTURE and RANGE clauses, then SELECT and USE

@

@

\ databases (real dBASE databases!), SKIP through

records, APPEND data, and lots more.

In fact, we've emulated nearly one hundred actual
dBASE commands and functions, and even added new
commands and functions to enhance the dBASE
syntax! All you have to do is declare Topaz's units in
your source code and you're up and running!

The bottom line? Topaz makes writing sophisti-
cated Pascal applications a snap. Data entry and data
base applications come together with a minimum of
code and they'll always be easy to read and maintain.

Topaz comes with a free code generator that auto-
matically writes all the Pascal code you need to
maintain a dBASE file with full-screen editing. Plus
outstanding technical support, at no extra cost. (Com-
prehensive manual included. Not copy protected. No
licensing fee, fully guaranteed). $§49 .95

ORDER NOW. YOU RISK NOTHING. Thousands of satisfied users have already ordered from us. Why not call toll-free, right
now and put Saywhat and Topaz to the test yourself? They're fully guaranteed. You don't risk a penny.

l SPECIAL LIMITED-TIME OFFER! Buy
Saywhat?! and Topaz together for just
$85 (plus $5 shipping & handling).
That's a savings of almost $15.

E,YES. I want to try:

To order: Call toll-free

Saywhat?! your lightning-fast screen gener-
ator,sosend __ copies (549.95 each, plus $5
shipping & handling) subject to your iron-clad
money-back guarantee

Topaz, your programmer's toolkit for Turbo |
Pascal 4.0, so send copies (549.95 each, |
plus $5 shipping & handling) subject toyouriron- |
clad money-back guarantee.

|

|

|

|

| |
' [J YES. 1 want to take advant. i i |

3 age of your special offer! Send me _ copies of both Saywhat?!
: 800'468'9273 and Topaz at $85 per pair (plus $5 shipping & handling). That's a savings of almost $15. |
| InCalifornia: 800-231-7849 N :
| International: 415-571-5019 ADDRESS |
| The Research Group £l i Al |
: 88 South Linden Ave. [J check enclosed [shipco.p. [credit card :
I South San Francisco, CA 94080 L Exp. date Signature |
g i | B R E S £ A R C N G R O U P

procedure get_prev_rec ;

{ We have already established a value for key1.
This procedure returns the previous key and associated record.)

var
entrykey1 : keyl_typ ;
begin
entrykeyl := keyl ;

{ save inital value)}

prevkey (ix1_file,rec_num, keyl) ;

if OK then

{ OK = found previous key)}

getrec (mf_file,rec_num,master)

else
begin

key1 := entrykeyl ;

{ not OK = at first key)
{ re-establish pointer to keyl }

findkey (ix1_file,rec_num, key1)

end
end ; { proc get_prev_rec }

procedure get_next_rec ;

{ We have already established a value for key1l.
This procedure returns the next key and associated record. }

var
entrykeyl : keyl_typ ;
begin
entrykeyl := keyl ;

{ save initial value }

nextkey (ix1_file,rec_num,keyl) ;

if OK then

{ OK = found next key }

getrec (mf_file,rec_num,master)

else
begin

key1l := entrykeyl ;

{ not OK = at last key)

{ re-establish pointer to keyl }

findkey (ix1_file,rec_num,key1)

end
end ; { proc get_prev_rec }

Figure 8. Moving forward and backward from a found key.

{ Code fragment.

if get_closest then
begin

prevkey (ix1_file,rec_num, key1);

if not OK then

searchkey (ix1_file,rec_num_key1);

Recrieve the record just before the
one that caused FindKey to fail)

{ user said yes)}

{ get the key before)
{ the key actually >
{ found)

{ searchkey will always }
{ return OK true unless }
{ at the end of the }
{ index file 2}

getrec (mf_file,rec_num,master)

end ;

Figure 9. Retrieving the closest record to a record not found.

INDEXES

continued from page 22

2. Get keys in sequential order,
then print the record for each
key until the end of the index
is reached.

My application easily sorts by
last name and zip code because it
has two indexes. The code in Fig-
ure 10 shows how calls to two dif-
ferent indexes can be incorporat-
ed into one procedure.

One Turbo Access procedure
that I have not yet discussed is

ClearKey. ClearKey positions the
index pointer to just before the
first key and just after the last key.
That’s not a contradiction if you
think of the index as circular. Go-
ing forward from the last record,
you arrive at the first record; go-
ing backward from the first rec-
ord, you arrive at the last record.
ClearKey puts you in a limbo po-
sition between the last and first in-
dex records. Following ClearKey,
a call to NextKey gives the first in-

dex record, and a call to PrevKey
gives the last record. To print a list
in reverse order, substitute Prev-
Key for NextKey in the code
shown in Figure 10.

UPDATING RECORDS

A database application must let
the user update records. The al-
gorithm for updating records is a
variant of the algorithm for add-
ing a record. Instead of adding a
new record, the program retrieves
an existing record, accepts
changes from the user, and writes
the record back out. Assuming
that the user has entered the
name of the person whose record
is to be retrieved, take these steps:

1. Build the key from the last
name;

2. Search the index for the key;

3. If successful, retrieve the rec-
ord pointed to by the index;

4. Accept changes from the user;

5. Write the changed record to
the same position in the data
file where the original record
was read; and

6. If no key fields were changed,
the job is done. If one or more
key fields were changed, these
actions must be performed:

a. Delete the old key or keys,
and

b. Add the new key or keys.

We’ve already seen how to per-
form steps 1 through 3. While step
4 is not difficult, it’s outside the
scope of this article. Figure 11
contains example code for per-
forming steps 5 and 6 with multi-
ple indexes, and incorporates new
Turbo Access procedures. PutRec,
which looks a lot like AddRec,
writes data to an existing record
in the data file. The parameter
rec_num is passed to PutRec,
rather than passed back from it.
In Figure 11, rec_num has already
been established by reading a rec-
ord from the data file. Since the
value of rec_num is not altered, it
can be used to write the record
back out to the file.

The interesting part of Figure
11 is what happens if a field
from which a key is derived has
changed. First of all, the original
value of each of the key fields
must be saved for comparison to
the values afier the user changes

continued on page 25

24 TURBO TECHNIX July/August 1988

{ Code fragment for sequential retrieval.
The user has already chosen whether to retrieve
in order by last name or by zip code.)

open_database ;
if how_to_sort = name then
clearkey (ix1_file)
else { how_to_sort = zip code }
clearkey (ix2_file) ;
repeat
if how_to_sort = name then
begin
nextkey (ix1_file,rec_num, key1) ;
if OK then
getrec (mf_file,rec_num,master)

{ initialize index pointer)

end
else { how_to_sort = zip code }
begin
nextkey (ix2_file,rec_num, key2) ;
if OK then
getrec (mf_file,rec_num,master)
end ;
if OK then
{ print the record)
until not OK ;
close_database ;

Figure 10. Sequential retrieval on one of two indexes.

{ Code fragment for updating a data file and its indexes.
This assumes the user has retrieved a record and made some
changes to it. When the record was retrieved, the values of
the key fields, last_name and zip, were saved in EntryName and
EntryZip. The application has just asked the user if he or
she wishes to save the changes to disk. }

if save_it then
begin
putrec (mf_file,rec_num,master) ;
{ change the keys if needed)
if not (entryzip = master.zip)
or not (entryname = master.last_name) then
begin
key2 := build_key2 (entryname,entryzip) ;
deletekey (ix2_file,rec_num, key2) ;
key2 := build _key2 (master.last_name,master.zip) ;
addkey (ix2_file,rec_num,key?2)
end ;
if not (entryname = master.last_name) then
begin
keyl := build_keyl1 (entryname) ;
deletekey (ix1_file,rec_num, keyl) ;
key1 := build_key1 (master.last_name) ;
addkey (ix1_file,rec_num, key1)
end
end

{ User says to save the record }

Figure 11. Updating a database file and its index files.

{ Code fragment for deleting a data record and its indexes.
User has retrieved a record and displayed it. Program has
asked if the user really wants to delete it.)

if delete_it then
begin
deletekey (ix1_file,rec_num, key1) ;

{ user says to delete the record }

{ we already built keyl }
{ to retrieve the record }
key2 := build_key2 (master.last_name,master.zip) ;
deletekey (ix2_file,rec_num, key?2) ;
deleterec (mf_file,rec_num)
end ;

Figure 12. Deleting a database record and its keys.

INDEXES
continued from page 24

the record. If the user changes a
key field, DeleteKey is called with
the original value of the key in
order to delete the old key. Then
AddKey is called with the new key
value, in order to add the new key.

The value of OK is not checked
after these operations for two rea-
sons: First, PutRec does not affect
OK; and second, although Delete-
Key and AddKey update OK, OK
will be True after the operations.
DeleteKey returns False in OK if
either the requested key is not
found, or (if duplicates are allow-
ed) the requested key is found, but
the requested record number is
not. Since the record is already
successfully retrieved, DeleteKey
finds the key and record number
passed to it. AddKey returns False
in OK only if you try to add a du-
plicate key when duplicates are
not allowed. Duplicates are allow-
ed in this application, so AddKey
always returns True in OK.

DELETING RECORDS

Deleting a record is much like
changing a record. Assuming that
the user has entered the name to
be deleted, take these steps:

1. Build the key from the last
name;

2. Search the index for the key;

3. If successful, retrieve the rec-
ord pointed to by the index;

4. Show the user the record and
ask for verification;

5. Delete the key or keys; and
6. Delete the record.

Since we've already been
through steps 1 through 4, Figure
12 shows steps 5 and 6. DeleteRec
does just what its name implies—
when passed the filename and a
record number, it deletes the rec-
ord. DeleteRec does not affect the
global Boolean flag, OK. Delete-
Key affects OK, but there is virtu-
ally no chance that it would return
OK = False in this situation be-
cause the key value was used to re-
trieve the record in the first place.

This completes the discussion
of the seven basic database func-
tions. Now, let’s investigate some
advanced topics.

continued on page 26

July/August 1988 TURBO TECHNIX 25

INDEXES

continued from page 25

UNORDERED SEQUENTIAL
SEARCH

The fact that the data file is sep-
arate from the index file (or files)
allows some flexibility in dealing
with the data file. It is quite pos-
sible to access the data file inde-
pendently of the indexes. This
can be useful if you don’t need to
access the data records in order.
For instance, the process of count-
ing the number of records that
meet a certain criterion—such as
zip codes within a certain range—
is made faster by going through
the file sequentially, rather than
alphabetically. Figure 13 shows
such an operation.

The new procedure shown in
Figure 13 is FileLen, which returns
the number of records in the data
file as a long integer. Remember
that the records are numbered
from 0, not 1, so a file of 100 rec-
ords contains records numbered
0-99. The WHILE..DO condition
tests the number of records; it suc-
ceeds for record 99 and fails for
record 100. Notice the use of the
Status field in the master record—
this field is a long integer whose
value is 0 if the record has not
been deleted. If the record has
been deleted, the value of Status
reflects the record’s position in
the free list of deleted records.

REBUILDING AN INDEX

Eventually, you will need to re-
build damaged or incomplete in-
dex files. Index files can be dam-
aged in a variety of ways, ranging
from bad disk media to user error
(such as turning off or rebooting
the computer before properly ex-
iting the program). If a machine
failure occurs after one index is
updated but before another one
is updated, then the indexes are
incomplete. You can rebuild an
index by using this procedure to
read the data file sequentially and
write new index files:

1. Delete the old index files;

2. Create new index files;

3. Open the data file; and

4. Read the data files sequentially.
For each data file whose Status

field contains 0 (i.e., is not de-
leted), perform these steps:

{ Code fragment -- unordered sequential search counting zip

codes)
var
tot_recs, { total records in file }
num_found : integer ; { number found that match)}
beg_zip, { beginning zip code }
end_zip : string[9] ; { ending zip code }

{ User enters beginning and ending zip codes in range to count }

num_found := 0 ; { initialize counter }
tot_recs := f1lelen(mf _file); { get number of records in data file)
rec_num := 1 ; { skip record 0; it contains no user data }
while rec_num < tot_recs do
begin
getrec (mf_file,rec_num,master) ;
if (master.status = 0)
and (copy(master.zip,1,5) >= beg_zip)
and (copy(master.zip,1,5) <= end_zip) then
num_found := succ(num_found) ;
rec_num := succ(rec_num)
end ; { while }
writeln ('Number found =

{ zero = undeleted record }

',num_found) ;
Figure 13. Counting records with an unordered sequential search.

{ Code fragment -- unordered sequential search to rebuild index
files)

var
tot_recs, { total records in file }
{ open files, create new indexes, etc. }

tot_recs := filelen(mf_file); { get number of records in data file }
rec_num := 1 ; { skip record 0; it contains no user data }
while rec_num < tot_recs do
begin
getrec (mf_file,rec_num,master) ;

if (master.status = 0) then { zero = undeleted record }

begin
keyl := build_keyl (master.last_name) ;
key2 := build_key2 (master.last_name,master.zip) ;

addkey (ix1_file,rec_num,keyl) ;
addkey (ix2_file,rec_num, key2)

end ;
rec_num := succ(rec_num)
end ; { while }

Figure 14. Rebuilding index files with an unordered sequential traversal of the
database.

a. Construct the key for the
first index, call AddKey to
add it to the index file, and

b. Repeat step a for each
index.

5. When you are done, close all
files.

The code in Figure 14 demon-
strates this process.

A BASE FOR YOUR DATABASE

This article has described the
basic database functions and their
implementation using Turbo Ac-
cess, which is part of the Turbo
Pascal Database Toolbox. I've fo-
cused on the use of multiple in-
dexes and low-level Turbo Access
procedure calls. Turbo Access pro-

vides a wide range of procedures
and functions for manipulating
data files and their associated in-
dexes. Use of the Toolbox can re-
lieve you of considerable tedium
and intellectual effort when build-
ing these procedures and func-
tions yourself. The examples here
should be enough to get you start-
ed on your own application. ®

William Meacham is a systems analyst
in Austin, Texas and a part-time free-
lance author and programmer. He is
the author of the Reliance Mailing
List program, a shareware applica-
tion that uses Turbo Access. Contact
him at 1004 Elm Street, Austin, TX,
78703.

26 TURBO TECHNIX July/August 1988

CATCH AND THROW IN

TURBO PASCAL

Mark a point in your program and return to it

from anywhere —instantly!

Jon Shemitz

Procedures and functions are two of the
most powerful constructs Pascal offers.
These two constructs let us break down
complex actions into successive layers of
ever-simpler code in order to write clear,
. maintainable programs. By reusing the
code in several places, our programs act consistently.

Sometimes, however, a neatly procedural structure
fails us. Consider these scenarios:

WIZARD

® A complex file transaction, involving perhaps sev-
eral reads and writes, fails at any point across many
levels of procedure nesting;

® A spreadsheet program encounters a divide by zero
during recalculation of a chain of dependent cells;

® A confused user presses a “go home” key to escape
to the main menu from a deeply nested tangle of
options and suboptions.

These scenarios have one element in common: An
exception that occurs deep inside a chain of procedure
and function calls, when it's unacceptable to simply
halt the program and return to DOS. We want the op-
portunity to do some cleaning up, or perhaps give the
user a chance to take some corrective action; ultimately
we want to return to the main input-action loop as
though nothing out of the ordinary has happened.
How do we return from all of those nested calls?

In many cases, the simplest, most compact solution
is to write code as though all the subprograms always
work, and then to “magically” undo all the calls and in-
voke an exception handler when they don’t.

Clearly, this “magic” solution needs two routines: a
setup routine that establishes a target or “home base”
to return to, and a second routine that returns control
to the target. A return involves resetting the stack to a
previous state; therefore, the most sensible place to re-
turn to is the place where we set the target in the first
place—the setup routine.

This method makes the setup routine a thoroughly
strange creature: we only enter it once, but we can
“return” from it any number of times. The first return
is normal—we’ve just set a return point. Any subse-
quent “returns” are magical—we’ve encountered an
exception and called the second routine to pass control

back to the target point. Obviously, on return from the
setup routine we need to know whether we just did a
setup or whether we have an exception to handle. The
setup routine is a function that specifies which type of
“return” it is. The call to the setup routine looks like this:
IF {setup} THEN {proceed normally}

ELSE {handle exception}

In C, these two routines are usually called SetJjump
and LongJump; in LISP these routines are usually
called Catch and Throw. I have implemented Catch
and Throw for Turbo Pascal 4.0 as a unit called Xcep-
tion, (Listing 1); one part of Xception is an assembly
language external, XCEPTION.ASM (Listing 2).

Turbo Pascal 4.0 never changes the data or stack seg-
ments, nor does it make any assumptions from state-
ment to statement about the contents of the extra seg-
ment or the general purpose and index registers. Con-
sequently, Catch and Throw can totally ignore SS, DS,
ES, SI, DI, and the general purpose registers, and still
do an effective job of saving and restoring the “system
state.” This means that Catch need only store its return
address and the stack and base pointers (SP and BP),
while Throw need only restore SP and BP and do a
long jump to Catch’s return address (see Listing 2).
However, since an interrupt procedure may well use a
different stack, Catch and Throw do, in fact, save and
restore the stack segment as well.

The skeletal program in Figure 1 illustrates the fun-
damental use of Catch and Throw. You must:

1. Include Xception in your USES statement;
2. Declare a variable of type Target; and

3. Initialize the variable Target by calling Catch. (Note:
throwing control to a target that hasn’t been set will
almost certainly cause a spectacular system crash.)

Once you have initialized the Target variable Excep-
tion, calling Throw(Exception) at any point in your
program causes control to return through Catch, ex-
cept that Catch now returns the value ExceptionUsed,
not ExceptionSet.

Like any other variable, the target variable can be
used only within its scope; therefore, it'’s normally global

continued on page 28

July/August 1988 TURBO TECHNIX 27

LISTING 1: XCEPTION.PAS

unit Xception; { Exception handling via CATCH and THROW)
{$D+)
interface
type
Target = record
Private: array[1..10] of byte; { “Abstract data type")
Point: pointer; { The THROWing point)

end;
ExceptionMode =
(ExceptionSet, ExceptionUsed);

function Catch(var Exception: Target): ExceptionMode;
procedure Throw(var Exception: Target);
function CanonicThrowingPoint(var Exception: Target): pointer;
implementation
{SL Xception.obj }
function Catch(var Exception: Target): ExceptionMode; external;
procedure Throw(var Exception: Target); external;
function CanonicThrowingPoint(var Exception: Target): pointer;
type

DWord = record

Lo, Hi: word;

3

begin
Dec(DWord(Exception.Point).Hi, PrefixSeg + $10);
CanonicThrowingPoint := Exception.Point;

end.

LISTING 2: XCEPTION.ASM

;XCEPTION.ASM -- Jon Shemitz

3 Assemble by: MASM XCEPTION;
public Catch
public Throw

BreakPnt struc

cSSs dw ?

cSP dw ?

cBP dw ?

clp dw ? ; offset is low word

cCs dw ?

tIP dw ?

tcs dw g

BreakPnt ends

code segment word public

Catch proc far
pPop dx ; Ofs(return address)
pop bx ; Seg(Return address)
pop di ; Ofs(Break)
pop es ; Seg(Break)
cld ; we use STOSW to save

; a few bytes

mov ax,ss ; get the stack segment
stosw ; save the stack ptr
mov ax,sp ; get the stack ptr
stosw ; save the stack ptr
mov ax,bp ; get the base ptr
stosw ; save the base ptr
mov ax,dx ; get Ofs(Return address)
Stosw ; save Ofs(Return address)
mov ax,bx ; get Seg(Return address)
stosw ; save Seg(Return address)
xor ax,ax ; Return BreakPointSet
jmp dword ptr es:[di-4] ; elP

Catch endp

Throw proc far
pop ax ; Ofs(return address)
pop dx ; Seg(return address)
pop di ; get Ofs(BreakPnt)
pop es ; get Seg(BreakPnt)
mov es: [di].tCS,dx ; save the Throw-ing point
mov es: [di].tIP,ax
mov ss,es: [dil.cSS ; restore Catch's SS
mov sp,es: [di]l.cSP ; restore Catch's SP
mov bp,es: [di].cBP ; restore Catch's BP
mov ax,1 ; Return BreakPointUsed
jmp dword ptr es:[dil.cIP

Throw endp

code ends
end

CATCH AND THROW
continued from page 27

PROGRAM Fragment;
USES Xception;

VAR
Exception: Target;

BEGIN
IF Catch(Exception) = ExceptionUsed THEN
BEGIN

{handle exceptions};
END;
{ Main input/action loop: }
REPEAT

Throw(Exception);

UNTIL Quit;
END.

Figure 1. A simple use of Catch and Throw. The first time
that Catch is called, it returns a value of ExceptionSet and
control drops through to the rest of the program. Later, if the
Catch function returns the constant ExceptionUsed, it means
that Catch caught a “throw” from somewhere else in the pro-
gram, and must handle the exception before continuing.

to the entire program. (Obviously, if the target is local
to a subprogram, it can only be used within that sub-
program or within nested subprograms.) Of course,
you can reset a target so that the same exception is
treated differently at different points in the program’s
execution. For example, if you call Catch(Exception)
more than once, Throw(Exception) passes control to
the point where you last called Catch(Exception).

You can also have more than one target set at any
one time, such as FileException and UserException.
Throw passes control to the point where its parameter
(which may be any initialized target) was set.

Finally, be aware that Throw’s ability to restore the
system’s state is absolute. If Throw is executed to a target
within a unit’s initialization section during the main
program block’s execution, your program will effec-
tively restart partway through the chain of unit initial-
ization sections, rerunning the initialization sections of
any “downstream” units, and finally restarting execu-
tion of the main program block. However, remember
that TURBO.TPL executes prior to the earliest point at
which you can set a target, and thus will not be reini-
tialized.

All of this is quite unstructured, of course, and I
would be the last to recommend heavy use of Catch
and Throw. Used with discretion, however, Catch and
Throw can make your code faster, simpler, and easier
to read. W

Jon Shemitz is a consultant in Santa Cruz, California. He
can be reached at (408) 479-9916 (voice) or (408) 476-4945
(BBS).

Listings may be downloaded from CompuServe as
CATCH.ARC.

28 TURBO TECHNIX July/August 1988

“Occasionally, a utility
comes along that makes a
programmer’s life much
easier. SOURCE PRINT
is such a program.

It contributes to the
programmer’s job by
organizing code into a
legible format and by

Programmers: Go home early!

C, BASIC, Pascal, dBASE® FORTRAN and Modula-2 programmers:
be more productive by clarifying and documenting your source code.

Source Print”

organizes your source code, simpli-
fies debugging, and makes documen-
tation a snap! It lists one or more
source files with informative page

150 FOR INDX = 1 TO 100
160 IF TB(INDX) = O THEN X = §
70 C = E K ¢z 1000: TB(K) = 0: K = K + X: WEND

200 NEXT INDX

150 FOR INDX = 1 TO 100
0 IF TBCINDX) = O THEN X = 5

Before

headings and op-

tional line numbers, Cs

while offering it

invaluable features: 45 i
The Index

Wed 12-31-86 07:22:03 INDEX (Cross Ref)
all identifiers

P = &(ares(larl(1));

l':\le (d = sp)

[
(Cross-Reference oot
list) saves you time i
by showing exactly
where variables are
used and where functions, pro- $9 700
cedures, and routines are called.

Locations where new

inrecord 4.191 9=396 19.825 19=826
21.889 22.922 22.953 23=978

23.990

ins 53.2293 53=2309 53=2319 53.2325
54.2331 54.2332 54.2336 54=2346

54.2354 54.2364 54.2365 54.2366

intext 4.193

9=395 43.1796 43.1815
43=1820 45=1902

Index

helping to organize the
documentation and
debugging process.”

— PCMagazine

Source Print and Tree Dia-
grammer both have easy-to-use
menus with point-and-shoot file
selection, and let you search for
files containing a given string.
For IBM PC and compatibles
with 256K.

Join thousands of program-
mers who are working more
efficiently using Source Print
and Tree Diagrammer. Order
these indispensable tools today.
We ship immediately, and
there’s no risk with our 60-day
money-back guarantee. Order
both and save. Only $155.00.

800-257-5773 "%

MasterCard, VISA, American
Expréss, COD. Add $5 for
shipping/handling.

or see your local dealer!

Source Print and Tree Diagrammer are
trademarks of Power line, Inc. dBASE is

a trademark of Ashton Tate. Prices subject
to change without notice.

sun

T values may be assigned to
: variables are shown, making it easy to track down that
mysterious value change.

Structure Outlining solves the problem of hard-to-
see nested control structures by automatically drawing
lines around them.

Automatic Indentation of source code and listings
reduces your editing time and ensures indentation accuracy.

Plus . .. Source Print generates a table of contents
listing functions and procedures. Keywords can be printed
in boldface on most printers. Multi-statement BASIC lines
can be split for readability. Functions and procedures can
be drawn by name from one or more source files to form a
new file.

Tree Diagrammer”

shows your program’s overall organization at a
glance. Ordinary program listings merely display
functions, procedures, and subroutines sequen-
tially, but do not display the relationships be-
tween these routines. Our revolutionary new
Tree Diagrammer automatically creates an
“organization chart” of your program showing the
hierarchy of calls to functions, procedures, and
subroutines. Recursive calls are indicated and
designated comments in the source code
will appear on the chart.

Tree Diagrammer helps you organize your
program more logically. And you'll be amazed at

how easy it is to debug when you $7 700

see how your routines interact.

Powerline, Inc. 2531 Baker Street, San Francisco, CA 94123 415-346-8325

YES! RuSh IN1€ [Source Print @ $97. [Tree Diagrammer (@ $77.
[Both $155. Ship/Handling $5. For CA add 6% tax Total

Name
Company
Address
City State Zip
[1Check enclosed [JVISA [JMasterCard [J]American Express

Card # Exp. Date
Signature Phone # T6

RECURSING WITHOUT CURSING

Call yourself anytime —just know when to stop.

Jeff Duntemann

On an overwarm September day in 1980,
I was sweating into my spiral notebook
while Amtrak’s Lake Shore Limited
wobbled its way across the Ohio hinter-
lands toward Chicago. Having covered
several pages with a tangle of boxes and
arrows, I suddenly felt Carol’s hand on my arm.

“You're turning green. Are you carsick?”

“No,” I grumbled. “I'm trying to learn
recursion.”

An old hacker’s chestnut kept running through
my head on that train: 7o iterate is human; to recurse,
divine. Iteration 1 understood: to repeat a process
some number of times, as in a FOR loop, a
REPEAT..UNTIL loop, or a WHILE..DO loop. Re-
cursion, on the other hand, is one of those peculiar
concepts that just refuses to come clear in the mind
until eventually some small spark of understanding
happens, and then, wham!, it becomes simple or
even obvious. A great many people have trouble un-
derstanding recursion at first glance, so if you do too,
don’t think less of yourself for it. We all start out
human. Divinity takes a little work.

Recursion is when a function or procedure invokes
itself. It seems somehow intuitive to beginners that
having a procedure call itself is either impossible or
else an invitation to disaster. These fears are un-
founded, of course. Let’s look at them both.

Recursion is indeed possible. From a coding per-
spective, in fact, having a procedure call itself is no
different than having a procedure call any other pro-
cedure. What happens when a procedure calls an-
other procedure? Only this: First, the called proce-
dure is instantiated; that is, its formal parameters and
local variables are allocated on the system stack.
Next, the return address (the location in the code
from which the procedure was called and to which
it must return control) is “pushed” onto the system
stack. Finally, control is passed to the called proce-
dure’s code.

SQUARE ONE

When the called procedure is finished executing,
it retrieves the return address from the system stack
and then clears its variables and formal parameters
off of the stack by a process called “popping.” Next,
the procedure returns control to the code that called
it by branching to the return address.

None of this changes when a procedure calls it-
self. Upon a recursive call to itself, new copies of the
procedure’s formal parameters and local variables
are instantiated on the stack. Then control is passed
to the start of the procedure again.

The potential problem shows up when execution
reaches the point in the procedure where it calls it-
self. A third instance of the procedure is allocated
on the stack, and the procedure begins running
again. This is followed by a fourth instance, and a
fifth...and after a few hundred recursive calls the
stack has grown so large that it collides with some-
thing important in memory, and the system crashes.
If you run the following kind of procedure, such a
thing would happen very quickly:

PROCEDURE Fatal;

BEGIN

Fatal
END;

This situation is an unlimited feedback loop. It is this
possibility that makes newcomers feel uneasy about
recursion.

Obviously, the important part of recursion is know-
ing when to stop.

A recursive procedure must test some condition
before it calls itself, to see if it still needs to call itself
to complete its work. This condition could be a com-
parison of a counter against a predetermined num-

30 TURBO TECHNIX July/August 1988

INSTANTIATION #1

INSTANTIATION #2

INSTANTIATION #3

INSTANTIATION #4

INSTANTIATION #5

ber of recursive calls, or some Boolean condition
that becomes True (or False) when the time is right
to stop recursing and go home.

When controlled in this way, recursion becomes a
very powerful and elegant way to solve certain pro-
gramming problems.

Let’s go through a simpleminded example of a
controlled recursive procedure. Read through the
code in Listing 1 very carefully.

The program itself is nothing more than setting a
counter to 1 and calling the recursive procedure
Dive. Dive prints the word “Push!” when it begins
executing, and the word “Pop!” when it ceases exe-
cuting. In between, it prints the value of the variable
Depth and then increments it.

Note the integer constant, Levels. If the incre-
mented value of Depth is less than Levels, Dive calls
itself. Each call to Dive increments Depth by 1, until
at last Depth is greater than Levels. Then recursion
stops.

Running program PushPop produces the follow-
ing output. Can you tell yourself exactly why?

Push!

Our depth is now 1

Push!

Our depth is now 2

Push!

Our depth is now 3

Push!

Our depth is now 4

Push!

Our depth is now 5

Pop!

Pop!

Pop!

Pop!

Pop!

Follow the execution of PushPop through all of its
steps, until the output makes sense to you.

€ SSEG + $M STACK ALLOCATION
VALUE; DEFAULTS TO 16,384

Figure 1. Each instantiation of a re-
cursive routine reduces the amount of
available stack space.

« STACK POINTER

« SSEG

NUMBERS? NUMBERS!

Certain programming problems simply cry out for
recursive solutions. Perhaps the simplest and best-
known is the matter of calculating factorials. (The !
operator indicates the factorial operation, rather
than any sort of numeric enthusiasm.) A factorial is
the product of a digit multiplied by all of the digits
less than itself, down to one:

Bl=5X4X3X2X1

A little scrutiny here will show that 5! is the same as
5 X 4!, and that 4! is the same as 4 X 3!, and so on.
In the general case, N! = N X (N-1)! Whether you
see it immediately or not, we have already expressed
the factorial algorithm recursively by defining it in
terms of a factorial. This will become a little clearer
when we express it in Pascal, as is done in Listing 2.

There isn’t a great deal to function Factorial. The
function body is a single statement, and we express
it as a conditional statement because there must al-
ways be something to tell the code when to stop re-
cursing. Without the N > 1 test, the function merrily
decrements N down past zero and recurses away un-
til the system crashes.

The way to understand this function is to work it
out for N =1, then N =2, N = 3, and so on. For
N =1, the N > 1 test returns False, so Factorial is as-
signed the value 1. No recursion is involved: 1! = 1.
For N = 2, a recursive call to Factorial is made: Fac-
torial is assigned the value 2 * Factorial(1). As we
saw above, Factorial(1) = 1. So 2! =2 X 1, or 2. For
N = 3, two recursive calls are made: Factorial is as-
signed the value 3 * Factorial(2). Factorial(2) is com-
puted (as we just saw) by evaluating (recursively)

continued on page 32

July/August 1988 TURBO TECHNIX 31

LISTING 1: PUSKPOP.PAS

PROGRAM PushPop;

CONST
Levels = 5;

VAR
Depth : Integer;

PROCEDURE Dive(VAR Depth : Integer);

BEGIN
Writeln('Push!');
Writeln('Our depth is now: ', Depth);
Depth := Depth +1;
IF Depth <= Levels THEN Dive(Depth);
Writeln('Pop!')

END;

BEGIN
Depth := 1;
Dive(Depth);
END.

 LISTING 2: FACTORL.SRC.

FUNCTION Factorial(N : LongInt) : Longlnt;

BEGIN

IF N > 1 THEN Factorial := N * Factorial(N-1)
ELSE Factorial := 1
END;

RECURSIVE
continued from page 31

Factorial(1). Factorial(1) simply equals 1. Catching
on? One interesting thing to do is to add (temporari-
ly) a Writeln statement to Factorial that displays the
value of N at the beginning of each invocation.

A note on the power of factorials: Calculating any-
thing over 7! overflows Turbo Pascal’s two-byte inte-
ger type Integer. This is why Factorial returns a long
integer. Actually, long integers don'’t help all that
much, since the largest factorial representable in a
long integer is 16!, which evaluates to 2,004,189,184.

THE HAZARDS OF CALLING YOURSELF

Even when you build machinery into a recursive rou-
tine that terminates the recursion at some point, re-
cursion carries with it a certain hazard to the unwary.
Knowing when to stop is the key; and the obvious
answer is to stop when the work is done. However,
there is the danger that you may run out of space on
the stack for a new instantiation of the recursive rou-
tine before the work is done. So the problem devolves
to this: How do you know when your stack is run-
ning low?

The good news is that Turbo Pascal can tell you
how much stack space you have left.

The bad news is that that may not help you very
much.

The good news comes in the form of a predefined
function named Sptr, which quite simply returns the
current value of the stack pointer register. Without
getting into too many gritty details, the stack in your
PC looks like Figure 1. The stack begins at a location
in memory called SSeg, and continues upward in
memory, usually to a length of 16,384 bytes. This
stack size value may be increased to 65,520 bytes with
the $M compiler directive (see Appendix C in the
Turbo Pascal Owner’s Handbook). The stack pointer is
the 8088’s thumb in the stack; it indicates where the
next available byte of stack space falls. Turbo Pascal
sets up its stack so that the stack pointer starts off at
the high end of the stack. As stack space is used up,
the stack pointer is moved closer and closer to the
bottom of the stack. When the value of the stack
pointer is 0, you're out of stack and out of luck.

Now, by using Sptr to check the value of the stack
pointer before each recursive call, you can theoret-
ically see 0 coming and stop recursing before it’s too
late. However, you have no good way to know how
much stack space each instantiation of your recur-
sive routine will demand. Thus, while you can test
whether the stack pointer is greater than zero, you

32 TURBO TECHNIX July/August 1988

don’t really know how close you can cut it before
runtime error #202 (Stack Overflow) puts your pro-
gram out of its misery.

Now wait, it gets worse. Suppose you're in the mid-
dle of some recursive task, and you notice that your
stack is about gone. It’s time to stop recursing and
pop your way back up to reality—except that you will
be partway through some job that now will not be
completed. You may have traversed a binary tree
partway, or partially filled a graphics screen, or done
something else partway, but you may not know how
far you've gotten, and you may have changed things
that can’t easily be undone.

An excellent example of this was provided by Fred
Robinson in “Filling Regions with the Turbo Pascal
Graphix Toolbox,” (TURBO TECHNIX, March/April,
1988). Fred showed us Flood_Fill, a very small, very
fast routine for filling irregular areas on a graphics
screen. This routine uses recursion, but the number
of recursive calls required to fill a given area cannot
be predicted ahead of the fact. A small area might be
filled successfully, while a slightly larger area could
exhaust the stack, leaving the program crashed and
the area only partly filled.

Fred decided that recursion was not an appro-
priate way to fill regions of an arbitrary size, and de-
signed a different, nonrecursive routine to do the
job. You may also need to make that decision at
some point. There are only a few useful guidelines
that I can provide on creating a successful recursive
procedure or function:

® Use as few procedure parameters and local vari-
ables as you can. The idea is to minimize the use
of stack space, and every parameter and local
variable must be allocated on the stack each time
the routine calls itself.

® Use recursion only in situations where the num-
ber of recursive calls needed to get the job done
is relatively low. The best situation is where the
application limits the number of recursive calls, as
in the Factorial function discussed earlier (limit-
ed to 16 levels), or in a routine that traverses the
DOS directory structure with one recursive call
per nested subdirectory. Subdirectories are rarely
nested more than four or five levels deep.

® As a corollary to the above, applications where
the number of recursive calls is measured in the
hundreds—rather than the dozens—are always
bad medicine. Use a nonrecursive algorithm.

NEITHER HUMAN NOR DIVINE

Some people believe that recursion is inherently
slow, or else inherently fast. In fact, recursion is
neither—it imposes no more of a performance
burden on your programs than does a procedure
call, which is all that recursion is. On the other
hand, a procedure call takes some grimbling by the
CPU—getting things onto the stack and off again—
that WHILE..DO or FOR loops do not require. Us-
ing recursion is slower than using a FOR loop, so if
a FOR loop is called for, use it.

On the other hand, there is a species of problem
that simply falls out in recursive terms, as Douglas
Hofstader has argued in his deep but fascinating
book Goedel, Escher, Bach: An Eternal Golden Braid
(New York: Basic Books, Inc., 1979), which, I must
warn, is not Square One material! The trick in using
recursion lies in recognizing those problems, and
not recasting iterative problems in recursive terms
merely for the self-referential strangeness of it all. ®

Listings may be downloaded from CompuServe as
RECURS.ARC.

Get To Know
Your Programs

Inside!
and Out!

Now you can analyze
your programs with
unprecedented detail
with Inside!, a new
software package from
Paradigm Systems.

Inside! allows you to examine
the route your programs take
through execution counts, minimum, maximum and
total elapsed times and a count of how many times
each source line executes—function by function—
for Turbo Pascal and Turbo C!

New Product Offer:

Call Paradigm Systems before Sept. 1 and
get your easy-to-use Inside! software for
only $65.00. Inside!, which is also
available in other languages, will sell for
$75.00 after this special introductory offer.

Paradigm Systems Incorporated
P.O. Box 152 Milford, MA 01757
(800)537-5043 (617)478-0499

Turbo C and Turbo Pascal are registered trademarks of Borand Intemational Inc.
Inside! is a trademark of Paradigm Systems Incorporated.

PARADIGM

SYSTEVS:

July/August 1988 TURBO TECHNIX 33

TURBO PASCAL

CUSTOM TEXT FILE
DEVICE DRIVERS

Create

pseudo-files with special properties using

this new Turbo Pascal 4.0 feature.

Neil Rubenking

Turbo Pascal 4.0’s new text file device
driver (TFDD) feature gives you full con-
trol of the routines that open, close, read
from, and write to a text file. TFDDs are
well suited to a range of applications, in-
AP cluding console drivers for specialized
monitors, serial port I/0, or any kind of text device
I/0 that isn’t handled by the ordinary Turbo Pascal
text file functions.

By contrast, the input and output of logical devices
in Turbo Pascal 3.0 was controlled via user-created
I/0 drivers that could only be altered for a text de-
vice, not for a text file variable. To change all 1/0,
you had to modify the CON device; to change only
certain I/O operations, you modified the USR
device.

Turbo Pascal 4.0’s TFDD provides access to the file
handle and other internals of a Text variable that
were accessed in 3.0 via the file interface block. List-
ing 1 shows the standard type definition for a
TextRec, which is the record that corresponds to a
text file variable. This type definition is contained in
the DOS unit.

Notice the 16-byte array, called UserData, in List-
ing 1. With Turbo Pascal 4.0, you can create your
own TextRec type, and replace UserData with any
other fields that total 16 bytes.

WIZARD

A TFDD FOR STRING CONVERSION

All variables that are written to the screen or to a text
file become character strings. When you want to con-
vert variables to strings yourself (perhaps as input to
a string-manipulation routine), you can select from
numerous string conversion methods. One method,
which handles components in a piecemeal fashion,
uses the Str procedure to convert numeric values
into strings and then concatenates the various sub-
strings into a single string. This method is not a
general solution, because it must be hand-coded to
fit each individual situation.

A better, and far more general, method involves
writing a TFDD to do string conversion. UsrFile
(Listing 2) demonstrates this technique.

The UsrFile TFDD. UsrFile is a write-only TFDD—
you can’t Reset it or Read from it. Instead, you
create a pseudo text file using the special AssignUsr
procedure, Rewrite that file, and write anything you
wish converted into a string to that file. Any data type
that can be written either to the screen or to an or-
dinary text file can be written to UsrFile (including
numeric values and Boolean values, but not enumer-
ated types, arrays, records, or sets). Data that has
been written to UsrFile is converted to string data
and concatenated into a single string value that (as
with all Turbo Pascal strings) may be up to 255 char-
acters in length. A single call to the function Read-
Usr returns the string value that has accumulated in
the file and clears the file. The genuinely clever
thing about UsrFile is that the actual process of con-
version to string data is handled by Turbo Pascal’s
Write statement—UsrFile intercepts characters that
are already converted by Write, before those charac-
ters reach their typical destinations on the screen or
in an ordinary text file.

Customizing TextRec. A TFDD requires a custom-
ized TextRec. Examine UsrFile’s redefined TextRec
type in Listing 2—rather than containing 16 bytes of
UserData, TextRec has three new fields. UFilePos
and UFileSize are Word fields that contain the cur-
rent file position and size. The Data field is a pointer
to the device’s string data area. TextRec contains two
2-byte words, one 4-byte pointer, and eight bytes

of unused space. This unused space in the original
UserData is declared to be an 8-byte array called
UserData in order to hold its space. Keep in mind
that if you accidentally create a TextRec type com-
prising the wrong number of bytes, you’ll get an “In-
valid type cast” error when you try to compile your
I/0 routines.

34 TURBO TECHNIX July/August 1988

Customizing I/0 routines. In ad-
dition to the customized TextRec,
a TFDD requires several custom-
ized 1/0 routines, which must fol-
low a very specific format. First,
these routines must all use the far
call model (so we enable far calls
throughout the definitions of the
I/0 routines by bracketing their
definitions with the $F+ and $F-
compiler directives). Second, these
170 routines must all take a single
VAR parameter of type TextRec.
Third, they must return an integer
result. A result that is anything
other than zero is reported at run-
time as an I/0 error.

UsrFile requires three custom
I/0 routines. One routine opens
the pseudo-file, the second rou-
tine closes the pseudo-file, and
the third routine writes to the
pseudo-file. The UsrOpen routine
sets the file size and file position
to zero. In a full read/write
TFDD, we would have to deal with
three different kinds of file open-
ing routines: Reset, Rewrite, and
Append. However, since UsrFile
is a write-only version, it only has
to handle Rewrite. If you try to
Reset or Append the file, the
Open routine triggers an 1/0
erTor.

You could omit a file-close rou-
tine in the case of this particular
TFDD, because there’s little point
in closing a pseudo-file such as
the one used in UsrFile. However,
if you did attempt to close the
pseudo-file without initializing the
value of the CloseFunc field of the
file’s TextRec record, your pro-
gram would crash. The UsrClose
routine exists to prevent such
crashes. UsrClose is the smallest
size that it could possibly be, and
it simply returns the integer zero
value to indicate success.

UsrOutput. Procedure UsrOutput
is called whenever you write to the
pseudo-file. During such a write
operation, Turbo Pascal’s Runtime
code takes the data passed to the
Write statement, converts that
data into a string of characters,
and puts the characters into the
file variable’s buffer. (This buffer
is the referent of the BufPtr field
in the file variable’s TextRec.)

The BufPos field of the pseudo-
file’s TextRec reports how many
characters were placed in the
buffer. The purpose of UsrOutput
is to do something with those char-
acters and then set BufPos back
to zero, so that the next write op-
eration will not overwrite data
written to the buffer during the
previous write operation.

UsrOutput first checks that add-
ing more characters to its internal
string buffer from the pseudo-
file’s buffer won’t overrun the
buffer’s 255-byte limit. If the cur-
rent file position, plus the number
of new characters in the buffer
(BufPos), is greater than the
buffer’s size, UsrOutput returns a
“File Full” error. Also, if the file
mode is anything other than
fmOutput, UsrOutput returns an
appropriate error code. If there is
no error, UsrOutput moves the
characters from the file’s internal
buffer to its own internal string
buffer and updates the pseudo-
file’s position and size fields in the
TextRec.

A special Assign procedure.
UsrOpen, UsrClose, and UsrOut-
put are the only custom routines
needed to create the TFDD. How
do these routines get attached to
a text variable? You have to write
a special version of Turbo Pascal’s
familiar Assign procedure. The
key to the process lies in four spe-
cial pointer fields present in all
TextRec variables that belong to
all files of type Text. These point-
er fields—OpenFunc, InOutFunc,
FlushFunc, and CloseFunc—are
normally initialized to the stan-
dard text file I/O routines that re-
side in the Turbo Pascal Runtime
Library. To associate a text file
with a suite of custom TFDD I/0
routines, reassign these pointer
values to point to your custom
I/0 routines. Certain other fields
in the TextRec must also be ini-
tialized, just as they would be if
the file variable was passed to the
standard Assign procedure.

In the UsrFile program, proce-
dure AssignUsr sets up all the nec-
essary fields in TextRec. The ini-
tial mode is fmClosed; since the
filename is irrelevant, we make it
a null string. File position and size
are initialized to zero. The real ac-

tion of AssignUsr lies in its mod-
ification of the TextRec’s four
pointers to I/O routines. Note
that both InOutFunc and Flush-
Func point to the custom UsrOut-
put routine. This ensures that text
is sent to the internal string buffer
Data at the end of every Write
statement. Without a FlushFunc
routine, the converted text would
not necessarily be moved out to
Data until your program either
flushed or closed the file.

Notice that procedure ReadUsr
is not a TFDD routine. In one sin-
gle operation, ReadUsr returns a
string containing everything that
you've written to the pseudo-file
and clears the file. This applica-
tion is simple enough that it
doesn’t require a true UsrInput
routine.

The main body of UsrFile dem-
onstrates how to write a TFDD to
do string conversion. Any combi-
nation of variables, constants, or
function results (or anything that
can be written to the screen) that
doesn’t exceed 255 characters in
length can be written to UsrFile.
UsrFile also demonstrates an
1/0 error from our special I/0O
routines—proving that this error
is just like an I/0O error generated
during I/0 to a normal text file.

Next, let’s examine a more com-
plex TFDD that handles a variety
of activities.

A RAM FILE WITHOUT A
RAM DISK

MEMFILE.PAS (Listing 3) demon-
strates a complete TFDD with all
functions. You can Rewrite, Reset,
Append, Read, or Write to
MEMFILE, which creates a “file”
on the heap of a size that you
specify. In the example, the max-
imum size of the file is 4096 bytes;
you can change that value to any
amount of available heap memory
by changing the constant UsrSize.
The special AssignUsr proce-
dure is much like the one belong-
ing to the UsrFile program de-
scribed previously. However, fields
InOutFunc and FlushFunc aren’t
actually reinitialized to point to

continued on page 36

July/August 1988 TURBO TECHNIX 35

DEVICE
continued from page 35

custom routines until you open
the file, because the file may be
opened with Reset, Rewrite, or
Append. The routines whose ad-
dresses are assigned to InOutFunc
and FlushFunc vary, depending
on the file mode in force when
the file is opened by a call to
UsrOpen.

If UsrOpen is called by Reset,
the file mode is fmInput, which
means that the file is to be open-
ed for reading. The Erased flag in
the modified TextRec type lets us
know if the file in fact exists—if it
doesn’t exist, an error value is re-
turned. If the file exists, we point
the InOutFunc pointer to the Usr-
Input routine, point FlushFunc to
a dummy routine called Usrlg-
nore that simply returns a zero
value, and put the file position at
zero.

On a Rewrite call, the file size
and position are both set to zero.
If Erased is equal to True, then
RAM hasn’t been allocated for it
yet, so that step is also performed
now. Both the InOutFunc and
FlushFunc pointers are set to
point to the output routine,
UsrOutput.

Append is a curious combina-
tion of both Reset and Rewrite.
Append first checks to be sure that
the file exists—if it doesn’t exist,
an error code is returned. If the
file does exist, the file pointer is
pointed to the very end of the file
by setting FilePos to FileSize. The
mode is changed to fmOutput,
and again both InOutFunc and
FlushFunc are set to point to
UsrOutput.

The output routine, UsrOutput,
is identical to the one by that
name in the UsrFile program de-
scribed earlier. In this case, how-
ever, the internal buffer is an en-
tire RAM file existing on the heap.
The process of transferring data
to the internal buffer from the
TextRec’s temporary buffer after

each write operation is the same
in both cases. Only the pointer
referents differ.

The UsrInput routine is a bit
more complicated. It returns char-
acters if any more characters exist
in the file, and signals End of File
(EoF) if no characters exist after
the file pointer. If the current file
position is either at or past the file
size, then we're at EoF. This is in-
dicated by setting both BufPos
and BufEnd to zero. Otherwise,
the process is almost exactly the
reverse of sending output to the
RAM file, except that the possibil-
ity of overrunning the file vari-
able’s relatively small internal
buffer is avoided. If more charac-
ters are available than can fit in
the buffer, we process one buffer-
full at a time.

Once you no longer need a
memory file, procedure EraseUsr
removes it by deallocating the
heap memory that held the file’s
buffer, and setting the Erased flag
to True. Without this procedure,

a new memory file’s heap alloca-
tion would be lost for the duration
of the program each time that the
new memory file was opened.

You can use the memory file
concept in any program (such as
a text sorter or a translation pro-
gram) that requires temporary text
files during its operation. If you're
currently running your program
from a RAM disk for better perfor-
mance, consider the possibility of
using a RAM file instead. Without
any DOS overhead, it’s likely to be
significantly faster.

ALTERING AN EXISTING
TEXT DEVICE

In Turbo Pascal 3.0, the internal
variable ConOutPtr contained the
offset of the internal routine that
output a single character to the
console. Console output was redi-
rected to a custom driver by set-
ting the ConOutPtr to the address
of your custom console output
routine. A custom ConOut proce-
dure simply accepted a single
character and did something with
it. With Turbo Pascal 4.0, however,
the console output driver must be
modified according to TFDD

standards. To illustrate this pro-
cess, we'll create BackUnit (Listing
4).

BackUnit causes output from all
Write and WriteLn statements to
appear backward on the screen.
This slightly frivolous example
doesn’t require any special hard-
ware—try it out on any system
with a CRT that responds to
standard PC BIOS calls for video
output. As the program demon-
strates, the TextColor and Text-
Background statements work fine
on backward text, and you’ll find
that GotoXY, WhereX, and
WhereY perform correctly as well.

The initialization section. A unit
can have an initialization section
containing code that executes au-
tomatically at the start of any pro-
gram that uses the unit. This code
lies between the BEGIN..END
pair at the very end of the unit. In
BackUnit, the initialization section
saves the current addresses of the
I/0 functions that are to be
changed, and sets up an exit pro-
cedure that gets control at the end
of any program that uses the unit.
BackUnit has a minimal exit pro-
cedure—it turns off backward
writing by restoring the saved
I/0 routine addresses, and then
chains to the previously active
ExitProc. (For more on unit ini-
tialization sections and exit pro-
cedures, see “Custom Exit Proce-
dures,” TURBO TECHNIX,
March/April, 1988.)

Changing pointers in TextRec. In
order to change the output action
of a text file, we have to change
the InOutFunc and FlushFunc
pointers in the file’s TextRec.
Turbo Pascal 4.0’s strong type cast-
ing ability makes it easy for us to
access the fields of the TextRec
record that corresponds to Out-
put. We refer to the record as
TextRec(Output), which recasts
OutPut to a TextRec type. (Under
3.0, we had to declare a TextRec
variable as ABSOLUTE at the
same address as Output.)

Since the existing addresses for
InOutProc and FlushProc were
saved, it’s easy to turn the new ver-

continued on page 38

36 TURBO TECHNIX July/August 1988

PolyAWK - The Toolbox Language..

For C, Pascal, Assembly & BASIC Programmers.

We call PolyAWK our “toolbox” language
because it is a general-purpose language that
can replace a host of specialized tools or pro-
grams. You will still use your standard language
(C, Pascal, Assembler or other modular
language) to develop applications, but you will
write your own specialized development tools
and programs with this versatile, simple and
powerful language. Like thousands of others,
you will soon find PolyAWK to be an indis-
pensable part of your toolbox.

A True Implementation
Under MS-DOS

Bell Labs brought the world UNIX and C, and
now professional programmers are discovering
AWK. AWK was originally developed for UNIX
by Alfred Aho, Richard Weinberger & Brian
Kernighan of Bell Labs. Now PolyAWK gives
MS-DOS programmers a true implementation
of this valuable “new” programming tool.
PolyAWK fully conforms to the AWK standard
as defined by the original authors in their book,
The AWK Programming Language.

A Pattern Matching Language

PolyAWK is a powerful pattern matching
language for writing short programs to handle
common text manipulation and data conver-
sion tasks, multiple input files, dynamic regular
expressions, and user-defined functions. A
PolyAWK program consists of a sequence of
patterns and actions that tell what to look for
in the input data and what to do when it’s
found. PolyAWK searches a set of files for lines
matched by any of the patterns. When a match-
ing line is found, the corresponding action is
performed. A pattern can select lines by com-
binations of regular expressions and com-
parison operations on strings, numbers, fields,
variables, and array elements. Actions may per-
form arbitrary processing on selected lines. The
action langauge looks like C, but there are no
declarations, and strings and numbers are built-
in data types.

Saves You Time & Effort

The most compelling reason to use PolyAWK is
that you can literally accomplish in a few lines
of code what may take pages in C, Pascal or
Assembler. Programmers spend a lot of time
writing code to perform simple, mechanical
data manipulation — changing the format of
data, checking its validity, finding items with
some property, adding up numbers and print-
ing reports. It is time consuming to have to
write a special-purpose program in a standard

PolyAWK Comes With The
Definitive
Book On

AWK...

Requires il
MS-DOS
2.0 or above & 256K RAM. $99

When you order PolyAWK you receive a copy
of The AWK Programming Language written by
the authors of the original UNIX-based AWK.
The book begins with a tutorial that shows how
easy AWK is to use, followed by a comprehen-
sive manual. Because PolyAWK is a complete
implementation of AWK as defined by the
book’s authors, you will use this book as the
manual for PolyAWK.

You can purchase PolyAWK and the book, The
AWK Programming Language, for $99. If you
already have the book, you can order PolyAWK
software only for $85, which is $14 off the
regular $99 purchase price. (The book serves
as the User’s Manual, so you you should
already have a copy of the book if you are order-
ing the software only.)

PolyShell Bonus!

PolyShell gives you 57 of the most useful UNIX
commands and utilities under MS-DOS in less
than 20K. You can still use MS-DOS commands
at any time and exit or restart PolyShell without
rebooting. MS-DOS programmers — discover
what you have been missing! UNIX program-
mers — switch to MS-DOS painlessly!
PolyShell and PolyAWK are each $99 when
ordered separately. Save $50 by ordering the
PolyShell + PolyAWK combination package for
$149. Not copy-protected.

30-Day

Money Back Guarantee
Credit Card Orders:

1-800-547-4000

Ask for Dept. TTX
Send Checks and PO.s To:
POLYTRON Corporation
1700 NW 167th Place, Beaverton, OR 97006
(503) 645-1150 — FAX: (503) 645-4576

=S’OLY |RON

High Quality Software Since 1982

language like C or Pascal each time such a task
comes up. With PolyAWK, you can handle such
tasks with very short programs, often only one
or two lines long.

Prototype With PolyAWK,
Translate To Another Language

The brevity of expression and convenience of
operations make PolyAWK valuable for proto-
typing even large-sized programs. You start
with a few lines, then refine the program, ex-
perimenting with designs by trying alternatives
until you get the desired result. Since programs
are short, it's easy to get started and easy to start
over when experience suggests a different
direction. PolyAWK has even been used for
software engineering courses because it’s possi-
ble to experiment with designs much more
readily than with larger languages. It’s straight-
forward to translate a PolyAWK program into
another language once the design is right.

Very Concise Code

Where program development time is more

important than run time, AWK is hard to beat.

These AWK characteristics let you write short

and concise programs:

* The implicit input loop and the pattern-action
paradigm simplify and often entirely elimi-
nate control flow.

* Field splitting parses the most common forms
of input, while numbers and strings and the
coercions between them handle the most
common data types.

* Associate arrays use ordinary strings as the
index in the array and offer an easy way to
implement a single-key database.

® Regular expressions are a uniform notation
for describing patterns of test.

* Default initialization and the absence of
declarations shorten programs.

Large Model
Implementation

PolyAWK is a large model implementation and
can use all of available memory to run big pro-
grams or read files greater than 64K.

Math Support

PolyAWK also includes extensive support for
math functions such as strings, integers,
floating point numbers and transcendental
functions (sin, log, etc.) for scientific applica-
tions. Conversion between these types is
automatic and always optimized for speed
without compromising accuracy.

®

DEVICE
continued from page 36

sion of the predefined file OutPut
ON and OFF. To turn it ON, set
both pointers to the address of the
new UsrOutput procedure. To
turn it OFF, restore the original
values.

Converting with a ConOut re-
placement. The UsrOutput proce-
dure is a model for any program
that is converted from a 3.0 pro-
gram by using a ConOut replace-
ment. UsrOutput sends each
character in the file’s temporary
buffer to the ConOut procedure.
UsrOutput always returns the 0
value of success. The output por-
tion of the serial driver in Chapter
26 of the Turbo Pascal Owner’s
Handbook works in the same way.
The ConOut procedure per-
forms the real work of “backward
writing.” ConOut writes a charac-
ter to the screen through a call to
BIOS interrupt 10H, and then
moves the cursor to the left of the
character that was just written.
ConOut can’t simply use a Write
statement to write the character,

since each Write calls the UsrOut-
put routine, which in turn calls
ConOut. Since this type of endless
loop is the stuff of which system
crashes are made, ConOut makes
a BIOS call to interrupt 10H in-
stead. In addition to writing a
character and moving the cursor,
ConOut also handles a few special
characters—ASCII carriage re-
turn, line feed, backspace, and
bell. To scroll the screen, ConOut
deletes the top line and reposi-
tions the cursor.

Program Backward (Listing 5)
demonstrates BackUnit. Notice
that writing in a forward direction
is much faster than writing back-
ward. This is because Turbo
Pascal uses direct video memory
I/0 whenever you USE the CRT
unit, whereas ConOut always uses
BIOS calls. (Of course, you could
modify the ConOut routine to use
direct video I/0. BIOS calls are
used here because they do most
of the work for you.) Again, Back-
Unit is merely an example of how
to modify a standard file; optimiz-

ing a TFDD before it proves itself
truly useful to you would be
premature.

IN THE DRIVER’S SEAT

Turbo Pascal 4.0’s text file device
drivers offer many opportunities
for specialized input and output.
These drivers replace Turbo
Pascal 3.0’s user-written I/0
drivers, but give you considerably
more control. TFDDs can be en-
tirely new files or devices, or they
can replace standard files or de-
vices with new ones that are cus-
tomized to fit your needs. With a
little imagination, you can divert
a text stream to any reasonable
destination—and make it more
than just a series of characters

marching from here to there. ®

Neil Rubenking is a professional
Pascal programmer and writer. He
is a Contributing Editor for PC
Magazine, and can be found daily
on Borland’s CompuServe Forum
answering Turbo Pascal questions.

Listings may be downloaded from
CompuServe as TFDD.ARC.

LIST OURS LIST OURSI
C TOOLS PLUS/5.0 129 101 TURBO PASCAL 100 69
ESSENTIAL C UTILITY LIB. 185 125 TURBO PLUS 100 89
ESSENTIAL COMMUNICATIONS 185 125 TURBO POWER SCREEN 129 101
GREENLEAF C SAMPLER 95 69 TURBO POWER UTILITIES 9% 19
GREENLEAF COMM LIBRARY 185 125 TURBO PROFESSIONAL 4.0 99 80
GREENLEAF FUNCTIONS 185 125 TURBO WINDOW PASCAL 95 80
MICROSOFT QUICK C 99 69 UNIVERSAL GRAPHICS LIBRARY 150 121
ANEL/QC OR 129 99
PERISCOPE I1X 145 106 OTHER LANGUAGES
PFORCE 395 215 LAHEY PERSONAL FORTRAN77 95 86
RESIDENT C 99 85 LOGITECH MODULA-Il COMP PACK 99 81
TURBO C 100 69 MICROFOCUS PERSONAL COBOL 149 121
TURBO C TOOLS 120 101 PC/FORTH 150 109
Turbo POWER SCREEN DAN BRICKLIN'S DEMO PROGRAM 75 59
= T
= NEW powerful screen management for DAN BRICKLIN'S DEMO PROG. Il 195 179
Programmer’s Paradise Gives You buperb Selection, Pascal 4.0. Reliable, lightning fast da!a emry FANSI CONSOLE 75 66
Pe Se d Unb ble P ! screens and menus to create your own sophisti- FETCH ¥ 55 49
ersonal Service an nbeatable Prices! cated window oriented apph:auons MACE UTILITIES 99 90
Welcome to Paradise. The microcomputer software source that caters to your programming needs. ‘maintain screens and menus exactly as you want NORTON COMMANDER 75 56
Discover the Many Advantages of Paradise... them to appear in your final application. NORTON EDITOR 75 170
* Lowest price guarantced * Huge inventory, latest versions -Tu:hmul support NORTON UTILITIES 100 61
« Immediate shipment « 30-day k sales staff LIST: $129 OURS: $101 | NORTON ADVANCED UTILITIES 150 101
Over 500 brand-name pmdwcts in stock — if you dan’t see it, call! NORTON GUIDES 100 65
- = 5 TURBO HALO 100 8 BORLAND PRODUCTS
’Il Match Any Nationally Advertised Price. TURBO WINDOW/C 9 80 EU 167 119
A AL ANGOAGE REFLEX: THE ANALYST 150 109
LT OGRS LIST OURS ASC[i TURBO PROGRAMMER 29 259 Ik T I n
AZATAR DOS TOOLKIT 99 SUPERKEY 00 69
ARTIFICIAL INTELLIGENCE FINALLY! 99 90 :
MULISP-87 INTERPRETER 300 199 FLASH-UP g . DUSBIDS EMOBETOOLS 76 10 TURBO BASIC COMPILER 100 69
PC SCHEME 95 86 FLASH-UP TOOLBOX 49 46 MEE o DA TOOLS 100 5 TURBO BASIC DATABASE 10 &
SMALLTALK/V 100 85 GRAPHPAK R TR Y R 9 90 TURBO BASIC EDITOR TB 100
EGA/VGA COLOR OPTION 50 45 MICROHELP UTILITIES 59 49 e e 45 &0 TURBO BASIC TELECOM TB 100 69
GOODIES DISKETTE 50 45 PEEKS & POKES 1530 NG ENCINEERING TOOLS 75 69 LURBOC e 100 69
SMALLTALK/COMM 50 45 QBASE 99 90 ZEREEN SCULPTOR 125 9 TURB LIGHTNING o
TI PROCEDURE CONSULTANT 495 435 QBASE REPORT 69 59 SVSTEM BUILDER 150 131 LIGHTNING WORD WIZARD 150 109
TURBO PROLOG V.2.0 150 109 QUICKBASIC 99 69 S 150 131 TURBO PASCAL 100 69
TURBO PROLOG TOOLBOX 100 69 QUICKTOOLS 130 111 PEr BT BUILDER 100 30 TURBO PASCAL DBASE TOOLBOX 100 69
VP-EXPERT 100 90 ICKPAK G 6y | REEDREEL 30 118 TURBO PASCAL DEV. TOOLKIT 395 289
QUICKPAK 11 19 45 AL 46 33 TURBO PASCAL EDITOR TOOLBOX 100 69
ASSEMBLY LANGUAGE QUICKWINDOWS 99 80 . BO e 20 80 TURBO PASCAL GAMEWORKS TB 100 69
i e 100 % TURRO ADVANTAGE COMPLEX 90 80 1URBO DASCAL MM Tt e
OpTagy D ASSEMBLER 195 172 TURBO BASIC 100 ‘g6 TURBO ADVANTAGE DISPLAY 70 65 TURBO PASCAL TUTOR > % 3
THE VISIBLE COMPUTER:8088 80 66 DATABASE TOOLBOX 1000 en TUREGANARST 7 58 TURBO PROLOG COMPILER 150 109
THE VISIBLE COMPUTER:80286 100 90 EDITOR TOOLBOX 100 6 SR s 59 109 TURBO PROLOG TOOLBOX 100 69
TURBO EDITASM 99 8 TELECOM TOOLBOX 100 60 URED A e RV LIBRARY I
TURBO HALO 95 80
BASIC C LANGUAGE A
DB/LIB 139 121 C ASYNCH MANAGER 175 1y7 LuRBa MG e
EXIM SERVICES TOOLKIT 100 C-TERP FOR TURBO C 139 121 Call or Write for Latest Free Catalog!
R U e exeness 1-800-445-7899 Programmer’
e a0 Pt el
EEEEsT i I NY: 914-332-4548 e
Bt e prte ‘roducts hited n s Customer Service:
Hours SAM EST o TEM EQE o i ou mae 914-332-0869
s 4k o s et :
“Aak for detais. Sorme mamulctarers wil not allow returms once ditk International Orders:
seals are broken. 914-332-4548 A Division of Hudson Technologies, Inc.
Dealers and Corporate Buyers — Call for 42 River Street, Tarrytown, NY 10591
O Soetin dibcintnts and benehts! Telex: 510-601-7602

38 TURBO TECHNIX July/August 1988

TYPE
CharBuf = array[0..127] of char;
TextRec = RECORD
Handle : Word;
Mode : Word;
BufSize : Word;
Private : Word;
BufPos : Word;
BufEnd : Word;
BufPtr : “CharBuf;
Openfunc : pointer;
InOutFunc : pointer;
FlushFunc : pointer;
CloseFunc : pointer;
UserData : Array[1..16] of byte;
Name : Array[0..79] of char;
Buffer : CharBuf;
END;
{ File mode magic numbers)
CONST
fmClosed = $D7BO;
fminput = $D7B1;
fmoutput = $D7B2;
fminOut = $D7B3;

{SR-,1+,N-)
PROGRAM UsrFile;

USES Crt, DOS;

CONST
UsrSiz = 255;
10_NotOutput = 105;
10_FileFull = 101;
10_Invalid = 6;
TYPE

String255 = STRING[255];

CharBuf = ARRAY[0..127] OF Char;
FakeFile = ARRAY[0..UsrSiz] OF Char;
TextRec = RECORD

Handle : Word;
Mode : Word;
BufSize : Word;
Private : Word;
BufPos : Word;
BufEnd : Word;
BufPtr : “CharBuf;
Openfunc : pointer;
InOutFunc : pointer;
FlushFunc : pointer;
CloseFunc : pointer;
UFilePos : Word;
UFileSiz : Word;
Data : “FakeFile;
UserData : ARRAY[1..8] OF Byte;
Name : ARRAY[0..79) OF Char;
Buffer : CharBuf;
END;
VAR

UFile : Text;

CH : Char;

N, D : Integer;

{$F+)(Start making all routines FAR)
FUNCTION UsrOpen(VAR F : TextRec) : Integer;

BEGIN
UsrOpen := 0;
WITH F DO
IF Mode = fmOutput THEN
BEGIN
UFileSiz :=
UFilePos :=
END
ELSE UsrOpen := 10_Invalid;
END;

FUNCTION UsrClose(VAR F : TextRec) : Integer;

BEGIN
UsrClose := 0;
END;

FUNCTION UsrOutput(VAR F : TextRec) : Integer;

BEGIN
UsrOutput := 0;
WITH F DO
IF Mode = fmOutput THEN

BEGIN
IF UFilePos+BufPos >= UsrSiz THEN UsrOutput := I10_FileFull
ELSE
BEGIN
Move(BufPtr~, Data” [UFilePos], BufPos);
UFilePos := UFilePos+BufPos;
IF UFilePos > UFileSiz THEN UFileSiz := UFilePos;
BufPos := 0;
END;
END
ELSE
IF Mode = fmClosed THEN UsrOutput := 10_NotOutput
ELSE UsrOutput := 10_Invalid;
END;

{$F-)(Stop making all routines FAR)

FUNCTION ReadUsr(VAR F : Text) : String255;
VAR Temp : String255;

BEGIN
WITH TextRec(F) DO
BEGIN
Move(Data™, Temp[1], UFileSiz);
Temp[0] := Chr(UFileSiz);
UFileSiz 3
UFilePos := 0;
END;
ReadUsr := Temp;
END;

Cl
0
0

PROCEDURE AssignUsr(VAR F : Text);

BEGIN
WITH TextRec(F) DO
BEGIN
Mode := fmClosed;
BufSize 127;
BufPtr abuffer;
OpenFunc @UsrOpen;
CloseFunc aUsrClose;
InOutFunc := @UsrOutput;
FlushFunc aUsrOutput;
Name [0] #0;
UFileSiz 0;
UFilePos := 0;
New(Data);
END;
END;
BEGIN
Clrscr;
Write('Now writing several variables to "UFile" -- ');

WriteLn('they will become a single STRING.');

AssignUsr(UFile);

Rewrite(UFile);

Write(UFile, 'PI/4 = *, Pi/4:1:11);

Write(UFile, ' The biggest Long Integer is ', MaxLonglnt);
WriteLn('Press a key to see the result.');

CH := ReadKey;

WritelLn; WriteLn('"', ReadUsr(UFile), '"'); Writeln;
WriteLn('Now the UFile is clear, ready to accept input again');

N := 355; D := 113;
Write(UFile, N, */', D, ' ', Chr(247), ' PL.');
Write(UFile, * PI=', Pi:z1:11, * and ', N, '/', D, '=', N/D:1:11);
WriteLn('Press a key to see the result.');
CH := ReadKey;
WriteLn; WriteLn('"', ReadUsr(UFile), '"'); Writeln;
Writeln
('NOW to overload the UFile -- we will get a special 1/0 error');
WriteLn('Press a key to see the result.');
CH := ReadKey;
FOR N := 1 TO 9 DO
Write(UFile, 'THIS string has 32 characters. ');

(LISTING 3: MENFILE.PAS

($R-,1+,N-)
PROGRAM Memory File;

USES Crt, DOS;

CONST

BufSiz = 127;
UsrSiz = 4095;
10_Invalid = 6;

10_FileFull = 101;
10_NotOpen = 103;
10_NotInput = 104;
10_NotOutput = 105;

July/August 1988 TURBO TECHNIX 39

TYPE
FFileBuffer = ARRAY[0..UsrSiz] OF Char;
FFilePointer = “FFileBuffer;
CharBuf = ARRAY[0..BufSiz] OF Char;
TextRec = RECORD

Handle = Word;
Mode : Word;
BufSize : Word;
Private : Word;
BufPos : Word;
BufEnd : Word;
BufPtr : “CharBuf;
OpenfFunc : pointer;
InOutFunc : pointer;
FlushFunc : pointer;
CloseFunc : pointer;
UFilePos : Word;
UFileSiz : Word;
FileData : FFilePointer;
Erased : boolean;
UserData : ARRAY[1..7] OF Byte;
Name : ARRAY[0..79] OF Char;
Buffer : CharBuf;
END;

VAR
UsrFile : Text;
line : STRING[255];

{$F+) (Make routines with FAR calls from here on)}
FUNCTION Usrignore(VAR F : TextRec) : Integer;

BEGIN
Usrignore := 0;
END;

FUNCTION Usrinput(VAR F : TextRec) : Integer;

FUNCTION Min(A, B : Word) : Word;
BEGIN

IF A < B THEN Min := A ELSE Min := B;
END;

BEGIN

Usrinput := 0;

WITH F DO
IF Mode = fmClosed THEN Usrinput := 10_NotOpen

ELSE IF Mode = fmInput THEN
BEGIN
IF UFilePos >= UFileSiz THEN
BEGIN

BufEnd := 0;
=0

BEGIN
BufEnd := Min(UFileSiz-UFilePos, BufSiz);
Move(FileData” [UFilePos], BufPtr”, BufEnd);
UFilePos := UFilePos+BufEnd;
BufPos := 0;

END;

END
ELSE IF Mode = fmOutput THEN Usrinput := I0_NotOutput
ELSE Usrinput := 10_Invalid;
END;

FUNCTION UsrOutput(VAR F : TextRec) : Integer;

BEGIN
UsrOutput := 0;
WITH F DO
IF Mode = fmClosed THEN UsrOutput := 10_NotOpen
ELSE IF Mode = fmOutput THEN

BEGIN
IF UFilePos+BufPos >= UsrSiz THEN UsrOutput := 10_FileFull
ELSE
BEGIN
Move(BufPtr, FileData” [UFilePos], BufPos);
UFilePos := UFilePos+BufPos;
IF UFilePos > UFileSiz THEN UFileSiz := UFilePos;
BufPos := 0;
END;
END

ELSE IF Mode = fmlinput THEN UsrOutput := 10_NotInput
ELSE UsrOutput := 10_Invalid;
END;

FUNCTION UsrOpen(VAR F : TextRec) : Integer;

BEGIN
UsrOpen := 0;
WITH F DO
IF Mode = fmInput THEN
s b

(* RESET : open for input from the *)
(* "file". 1If size is 0, say the file *)
(* doesn't exist. Otherwise, set InOut *)
(* for INPUT and put the FilePos at 0. *)
(* *)

BEGIN
IF erased THEN UsrOpen := 10_NotInput
ELSE
BEGIN
FlushFunc := @Usrlgnore;
InOutFunc auUsrinput;
UFilePos := 0;
END;
END
ELSE IF Mode = fmOutput THEN
(' ')

(* REWRITE -- open for output TO the)
(* "file". Set FileSize and FilePos to *)
(* 0 end allocate space for the file's *)
(* data to reside in =
¢ 3
BEGIN
UFileSiz :=
UFilePos :=
IF erased TH
BEGIN
erased := false;
New(FileData);
END;
InOutFunc :
Flushfunc :
END
ELSE IF Mode = fmInOut THEN
45 i2?)
(* APPEND -- if the file doesn't exist *)
(* yet, say so. Otherwise, point the *)

aUsrOutput;
aUsroutput;

(* FilePos at the FileSize, so new 2)
(* WRITE statements will append to the *)
Cx NEflen)
-]
BEGIN

IF erased THEN UsrOpen := 10_NotOutput

ELSE

BEGIN

UFilePos := UFileSiz;
InOutFunc := @UsrOutput;
FlushFunc := auUsroutput;
Mode := fmOutput;
END;
END
ELSE UsrOpen := 10_Invalid;
END;

{$F-) (Stop making routines with FAR calls)

PROCEDURE EraseUsr(VAR F : Text);

BEGIN
WITH TextRec(F) DO
BEGIN
erased := true;
dispose(FileData);
mode := fmClosed;
END;
END;
PROCEDURE AssignUsr(VAR F : Text);
BEGIN
WITH TextRec(F) DO
BEGIN
Mode := fmClosed;
BufSize := BufSiz;
BufPtr := abuffer;
Openfunc := @UsrOpen;
CloseFunc := @Usrlgnore;
Name [0] = ¥0;
UFileSiz := 0;
UFilePos := 0;
Erased 1= true;
END;
END;
BEGIN
Clrscr;

AssignUsr(UsrFile);
Rewrite(UsrFile);
Write(UsrFile, '1 ');
Write(UsrFile, 'am ',
Writeln(UsrFile);
WriteLn(UsrFile, 'The value of pi is ', Pi:1:11);
Close(UsrFile);
Reset(UsrFile);
Writeln
('l have written some lines to the "fake file".
WriteLn
('back by READING the “fake file" and writing to
WriteLn('HERE they come:');
WHILE NOT(EoF(UsrFile) OR KeyPressed) DO
BEGIN
ReadLn(UsrFile, Lline);
Writeln(line);
END;

1.234, * feet high.');

1 can get them');

the screen.');

40 TURBO TECHNIX July/August 1988

Writeln;
WriteLn('Now going to APPEND -- ...');
Append(UsrFile);
WriteLn(UsrFile, 'What is 1/4 of pi? Is it ', Pi/4:1:11, '2');
Close(UsrFile);
Reset(UsrFile);
WHILE NOT(EoF(UsrFile) OR KeyPressed) DO
BEGIN
ReadLn(UsrFile, line);
Writeln(line);

LISTING 4: BACKUNIT

UNIT BackUnit;
Interface
Uses Crt, Dos;

PROCEDURE Backward_On;
PROCEDURE Backward_Off;

Implementation

VAR
SaveExit : Pointer;
HoldOutput, HoldFlush : pointer;

PROCEDURE ConOut(C : Char);

CONST
CR = #$0D; (carriage return)
LF = #S0A; (line feed)
BEL = #7; (bell character)
BKS = #8; (backspace)

VAR
regs
X, Y

Registers;
Byte;

BEGIN

WITH regs DO
BEGIN

CASE

CR

LF

OF
GotoXY(80,WhereY);
BEGIN
Y := succ(WhereY);
IF Y > 25 THEN
BEGIN
GotoXY(1,1);
DellLine;
X =25
END;
GotoXY(WhereX,Y);
END;
BEL: BEGIN Sound(750); Delay(300); NoSound; END;
BKS: BEGIN
X := WhereX;
IF X < 80 THEN
GotoXY(succ(X),wWhereY);
END;
EL:E {just write the character)
HiE 4
AL := 0Ord(C);
BH :
BL :
X :
r

“w a0

, regs);

{now reposition the cursor)
X := WhereX; Y := WhereY;
IF X > 1 THEN Dec(X)
ELSE
BEGIN
X := 80;
Inc(Y);
END;
IF Y > 25 THEN
BEGIN
GotoXY(1,1);
DelLine;
Y :=25;
X := 80;
END;
GotoXY(X,Y);
END; (CASE)
END;
END; {PROCEDURE ConOut(C : Char);)

{$F+) FUNCTION UsrOutput(VAR F : TextRec) : Integer;{$F-)
VAR N : Byte;
BEGIN

WITH F DO
BEGIN

FOR N := 0 TO Pred(BufPos) DO ConOut(BufPtr”[N]);
BufPos := 0;
END;
UsrOutput := 0;
END;

PROCEDURE Backward_On;
BEGIN
TextRec(Output).InOutFunc := aUsrOutput;

TextRec(Output).FlushFunc := @UsrOutput;
END;

PROCEDURE Backward_Off;

BEGIN
TextRec(Output).InOutFunc := HoldOutput;
TextRec(Output).FlushFunc := HoldFlush;
END;

{$F+)PROCEDURE MyExitProc;{$F-)

BEGIN
Backward_Off;
ExitProc := SaveExit;
END;

{Initialization section)

BEGIN
SaveExit := ExitProc;
ExitProc := @MyExitProc;
HoldOutput := TextRec(Output).InOutFunc;
HoldFlush := TextRec(Output).FlushFunc;
END.

LISTING 5: BACKWARD.PAS

{SR-,1+,N-)
PROGRAM Backward;
Uses Crt, Dos, BackUnit;

VAR
dummy : char;

PROCEDURE Write_Explanation;

BEGIN
Writeln('
Writeln(' b H
WriteLn(' This program demonstrates a Text');
WriteLn(' File Device Driver that replaces the');
Writeln(' standard driver for the OUTPUT ');
Writeln(' device in Turbo Pascal 4.0. When the');
WriteLn(' replacement TFDD is activated, ');
WriteLn(' all "Write" and "WritelLn" statements ');
Writeln(' will appear on the screen backward.');
Writeln;

END;

BACKWARD WRITING DEMO');
= .

BEGIN
TextColor(LightGray); TextBackground(black);
ClrScr;
Write_Explanation;
WriteLn('--PRESS a key to activate BACKWARD');
dummy := ReadKey;

Backward_On;

TextColor(Wwhite);

GotoXY(80,1);

Write_Explanation;

WriteLn('--PRESS a key to DEactivate BACKWARD');
dummy := ReadKey;

Backward_Off;

GotoXY(1,14);

Write(' The TextColor and TextBackground ');
WritelLn('procedures work just as they normally');
Write(' would, and text scrolls when it ');
WritelLn('reaches the bottom of the screen. Press');
Write(' a key to demonstrate this, and ');
WriteLn('press a key again to stop.');

Dummy := ReadKey;

Backward_On;

Writeln;

REPEAT
TextColor(random(16));
TextBackground(random(8));
Write('Press any key to STOP....');

UNTIL KeyPressed;

dummy := ReadKey;

Backward Off;

END.

July/August 1988 TURBO TECHNIX

41

TURBO C

MOUSE MYSTERIES, PART II:

GRAPHICS

Add the graphics touch to your Turbo C and Turbo Pascal
applications by combining the BGI with your mouse.

Kent Porter

In the first article of this two-part series
on mouse programming (see “Mouse
Mysteries, Part I: Text,” TURBO TECH-
NIX, May/June, 1988), I used a Turbo
Pascal unit and a Turbo C library to ex-
plore how a Microsoft/Logitech-compat-
ible mouse can be incorporated into the user inter-
face of text-oriented programs. In this final article of
the series, I'll discuss the techniques of mouse pro-
gramming in graphics mode. While the calls and
many of the programming techniques are the same
for both the text and the graphics mode, you'll dis-
cover that there are some dramatic differences in the
capabilities of the mouse, especially with respect to
cursor management.

In Part I, I discussed the two kinds of mouse text
cursors. Type 0 (in the call to mTextCursor) creates
a software cursor whose appearance can be custom-
ized; this cursor operates independently of the dis-
play adapter’s normal text cursor. Mouse cursor type
1, on the other hand, places the hardware cursor
under the control of the mouse, although the call to
mTextCursor doesn’t actually alter the location of
the next text input/output operation.

With mouse programming in graphics mode, we
meet a third type of mouse cursor. This cursor is sim-
ilar in some respects to the software text cursor (Type
0), but more flexible. The graphics cursor also has a
new characteristic, known as the hot spot, which is
the exact location of the cursor’s point of registration.

The graphics cursor is a 16 X 16-bit object that
tracks in response to the mouse. Unlike the cursor in
text mode, the graphics cursor doesn’t jump a char-
acter cell at a time; instead, it moves smoothly, pixel-
by-pixel. As you move the mouse, the cursor is re-
peatedly erased at its present position and redrawn
at the next location. The redraw operation occurs so
rapidly that the eye doesn’t detect it; the cursor ap-
pears to move continuously.

PROGRAMMER

Different graphics modes interpret combinations
of bits differently. For example, in CGA high-resolu-
tion (640 X 200 monochrome) graphics, each bit is
mapped to a single pixel. Therefore, a 16 X 16-bit
object is 16 pixels wide by 16 pixels high. On the
other hand, CGA four-color mode (320 X 200) uses
two adjacent bits to select a color from the active
palette, so that a 16 X 16-bit data object becomes a
visual object that is 8 pixels wide by 16 pixels high,
with each pixel’s color dependent upon the two-bit
pattern. These different interpretations of bit com-
binations have implications that I'll discuss later in
this article. The important thing to remember right
now is that a mouse cursor’s workspace is 16 X 16
bits, which (depending on the mode) might be 8 or
16 pixels wide. Incidentally, the physical proportions
don’t change between these modes, since one pixel
in four-color mode is the same physical width as two
pixels in high-resolution mode.

DEFINING THE CURSOR MASKS

A graphics mouse cursor consists of two related bit
maps (one superimposed on the other), called the
cursor mask and the screen mask. The cursor mask
defines the appearance of the cursor itself, while the
screen mask specifies how the underlying pixels are
treated. The mouse cursor is always in front of what-
ever is on the display, so that the screen mask selec-
tively passes through or blocks background informa-
tion as the cursor moves across fixed objects. Most
often, the screen mask blocks the background pixels
all around the cursor shape to create a border, thus
making the cursor visible even when it’s in front of
an object of the same color.

Specifically, the mouse device driver ANDs the
screen mask with the 16 X 16-bit display area where
the cursor is being placed. Then the mouse device
driver XORs the cursor mask with the result of the
AND. This process produces the screen display that
is summarized in Table 1.

42 TURBO TECHNIX July/August 1988

SCREEN MASK CURSOR MASK DISPLAY
BIT BIT BIT
0 0 0
0 1 1
1 0 Unchanged
1 1 Inverted

Table 1. Effects of the screen mask and the cursor mask on the display area.

If a screen bit is 1 and the corre-
sponding bit in the cursor mask
is 0, the background bit shines
through. A 0/0 combination in cor-
responding positions blocks the
background bit, while a 0/1 forces
the display bit ON. Although the
1/1 combination is seldom used,
we’ll see an application for it later
in this article in connection with
the I-beam shape.

Given these rules, let’s see what
a pair of masks actually looks like
in binary. The mask set shown in
Figure 1 defines an arrow point-
ing northwest, as the eye can
discern from the patterns of 1s
and Os.

Hex Screen mask

3FFF 0011111111111 11
1FFF 0001111111111
OFFF 0000111111111
O7FF 0000011111111
03FF 0000001111111111
O1FF 0000000111111111
OOFF 0000000011111111
007F 0000000001111111
003F 0000000000111111
001F 0000000000011111
O1FF 0000000111111111
10FF 0001000011111111
30FF 0011000011111111
F87F 1111100001111111
F87F 1111100001111111
FC3F 1111110000111111

In contrast, the first three rows for
the cursor mask are shown below:
000000O0O0O0COOCOOOOO
0100000000000000
0110000000000000
Thus, the tip of the arrow cursor
is located in the second column of
the second row. The screen mask
blocks the background pixels
above and to both sides of the
cursor with a 0/0 combination.
This northwest-pointing arrow
is the default graphics cursor. If you
don’t specify otherwise, this is the
cursor that is automatically shown
in a graphics mode. A custom cur-
sor can always be replaced by the

Cursor mask Hex
0000000000000000 0000
0100000000000000 4000
0110000000000000 6000
0111000000000000 7000
0111100000000000 7800
0111110000000000 7C00
0111111000000000 7E00
0111111100000000 7F00
0111111110000000 7F80
0111111111000000 7FCO
0111110000000000 7€00
0100011000000000 4600
0000011000000000 0600
0000001100000000 0300
0000001100000000 0300
0000000110000000 0180

Figure 1. Values for the screen mask and the cursor mask.

Note that the screen mask de-
scribes an outline for the cursor
mask; the region of 0s is one bit
greater in all directions than is the
shape defined by 1s in the cursor.
For example, the first three screen
mask rows are as follows:

(VI T Vo 1 s R T o
eI e | s s [T
oL 180t | 1 1 S M L6 D 1 [A

default graphics cursor by reset-
ting the mouse and then showing
the cursor again. It should never
be necessary to specify this default
mask set in your programs. (It’s in-
cluded here only to illustrate what
a mask set looks like.)

I'll present several predefined
cursor shapes shortly, and show
you how to activate them. First,
let’s explore the graphics cursor’s
hot spot.

PINPOINTING THE CURSOR’S
LOCATION

In text mode, the mouse cursor al-
ways occupies one character cell.
Since the text mouse moves one
full cell at a time, the cursor is
either in or out of a given cell. In
Part I of this series, I showed that
position inquiry calls to the device
driver return coordinates that cor-
respond to the CGA high-resolu-
tion graphics screen, which mea-
sures 640 X 200. The cursor is
mapped to a character position by
using the algorithm

mRowRange (0, GetMaxY);

along both axes to determine the
text row and column values.

The granularity of a graphics
screen is much finer than that of
a screen in text mode. However,
since the cursor spans an area of
either 8 X 16 or 16 X 16 pixels, a
problem arises: How can we iden-
tify the precise location of the cur-
sor? The solution is the cursor’s
hot spot.

The hot spot is a pixel position
within the mask that maps to a
single pixel on the display. The
device driver ascertains the cursor
position by locating and reporting
the coordinates of the display
pixel that is currently overlaid by
the hot spot. In the case of the de-
fault (northwest-pointing) graph-
ics cursor, this display pixel is lo-
cated at the position represented
by 1,1 (where 0,0 represents the
upper left corner of the mask). In
other words, this position is the
very tip of the arrow, which is lo-
cated in the second row and the
second column of the mask. If the
cursor was represented by a cross-
hair, the hot spot would logically
occur where the hairs intersect. If
the cursor was represented by a
pointing hand, the hot spot would
be at the tip of the index finger.

Thus, the hot spot is a relative
location defined with reference to
the upper left corner of the cursor

continued on page 46

July/August 1988 TURBO TECHNIX 43

Lots of software
packages help you work,

oving ahead takes
more than hard work,
it takes smart work.

There are stacks of productiv-
ity software you can buy for
your PC. But to work smart,
you only need one: SideKick®
Plus. It's the newest member
of Borland’s professional
series, from the same people
who brought you the original
SideKick: the program that
introduced more than a million
PC users to the convenience
of using their computer as an
organizing tool.

To buy productivity applica-
tions like those in SideKick
Plus separately, you'd spend
almost a thousand dollars and
drain your computer’s memory
dry. SideKick Plus takes
as little as

SideKick Plus puts you in control . . .
for as little as 64K!

64K of your computer’s RAM;
you decide exactly how much.
You can select just the
productivity applications you
need. Like a sophisticated tele-
communications package, a
powerful DOS manager, nine

Minimum System Requirements: For IBM PS/2,IBM family of personal computers,
and all 100% compatibles. Operating system: PC -DOS (MS-DOS) 2.0 or later. Minimum
system memory: 384K bytes. Minimum resident memory size: 64K Hard disk required

notepads, a versatile outliner,
four different calculators,
support for both EMS and
extended memory. And

lots more.

You decide how to use
SideKick Plus, too. Put your
applications on your hard disk
to call up when you need them,
or leave them in RAM for
instant availability. Either
way, they're always at your
fingertips. Accessible over any
other application you're work-
ing in. Amazingly affordable.
And very, very smart.

Here’s What You Get!

- The PhoneBook: complete
data and voice communications
that you can set to take place
in the background, with auto-
dialing, an encrypted glossary,

and a full Script language.

Even if you don’t have
a modem, it keeps
your names,
addresses,
and phone
numbers at
your fingertips
» Outlook:
The Outline

Processor: nine

Outliners with auto-
matic numbering, tree charts,
and table of contents

- The File Manager: extended
DOS file and directory
management

2
[~
f.

*Customer satistaction is our main concern If within 60 days of purchase this product does

not perform in accordance with our claims, call our customer service department and we
willarrange a refund

. The Calculator: four types:
business, scientific, program-
mer and formula

. The Clipboard: for copy-and-
paste integration between files
and with other applications

. The Time Planner: includes a
Calendar, Appointment Book,
and Schedule window, plus
alarms, repeating appoint-
ments, and attached agenda.
Supports networks via a
common calendar

The Notepad: nine file-
editor Notepads, up to 11,000
words each

The ASCII Table: to find
and paste characters quickly
and easily

Supports both EMS and
extended memory: if you
have expanded memory or the
Intel Above™Board, you can
load the SideKick Plus desk
accessories into expanded
memory and leave even more
of your conventional memory
for your other applications.

Only $199.95
(not copy protected)

60-day money-back guarantee*

For a brochure, the dealer
nearest you, or to order

Call (800) 543-7543

All Borland product registered of Borland
Other brand and product names are trademarks of their respective holders. Copyright
©1988 Borland International. Inc BI1

Only one helps
you work smarter...

Data Communications

o

SIDEKICK' Plus

esiiop Was28%"
Toe Professiost

SideKick Plus!

66 What [like most is new ideas in software.
Historically, one of the best new ideas was
Borland’s SideKick. SideKick Plus is a much
more powerful program than the original.

[t adds a lot of new features and gives you

a lot more flexibility over how you use its

many features.
Michael J. Miller, InfoWorld 99

MOUSE

continued from page 43

mask. The hot spot’s range along
the horizontal axis is 0..7 for CGA
four-color mode, and 0..15 for all
others (CGA high-resolution, Her-
cules, EGA, VGA, etc.). The hot
spot’s range along the vertical axis
is always 0..15.

The mouse device driver needs
to know the relative coordinates
of the masks and the hot spot in
order to manage the graphics
cursor.

DEFINING THE GRAPHICS
MOUSE CURSOR

Since the cursor’s description is
actually the combination of sev-
eral items, it'’s convenient to group
these items into a Pascal record or
a C structure. This object (which
is called gCursRec in the accom-
panying listings) consists of a
pointer to the mask set and two
unsigned integers that give the
hot spot’s relative X and Y coor-
dinates.

While the mask set logically
consists of two 16 X 16-bit arrays,
the device driver regards them as
one array of 16 X 32 bits. These
arrays are inherently fixed data.
In Turbo Pascal, they take the
form of typed constants. In Turbo
C, they take the form of the static
unsigned type. The arrays can be
initialized with hex numbers that
represent the bit patterns at
definition.

Listings 1 and 2 are include
files for Turbo Pascal and Turbo
C, respectively, that furnish five
common shapes for mouse cur-
sors: a check mark, a left-pointing
arrow, a cross, a pointing hand,
and an I-beam. The latter shape
is usually associated with text I/0O
on the Macintosh and in Mac-like
PC-based programs such as Xerox
Ventura Publisher. The other
shapes are used for pointing,
drawing, selecting, and so forth.

Customarily, mouse-driven pro-
grams use different cursor shapes
to identify the current mode. Such
actions tend to be highly applica-
tion-dependent.

The headings of these include
files also initialize the gCursRec
structures for each cursor type.

Note that the structure declara-
tions cannot initialize the pointers
during compilation; the pointers
can only be set to nil (the NULL
constant in Turbo C). This is be-
cause the addresses of the static
arrays are not assigned until link
time. Consequently, the include
files contain equivalent subpro-
grams called InitGCurs, which
must be called by the using pro-
gram. InitGCurs completes the
structure initializations by plug-
ging in pointers to the static ar-
rays. Remember to call InitGCur,
or else you'll get garbage cursor
forms.

Naturally, not every graphics
program needs five different
mouse cursors. You can rename
and edit the files in Listing 1 and
2 to remove the cursors that you
don’t need (and to add others if
you wish) for a specific applica-
tion. However, the memory ex-
pense for each cursor shape is
only 38 bytes (plus a few more
bytes for the initialization code),
so there’s not a great penalty for
including unused shapes.

The GMOUSCUR include files
also furnish a mouse event han-
dler. This handler is identical to
those used for text mode in Part
I of this article series. To install
the handler, use the mInstTask
call.

GETTING THE GRAPHICS
CURSOR UP

The process of moving from a
program’s initial text mode to a
mouse-driven graphics environ-
ment involves several steps. The
following is a step-by-step guide.
1. Initialize the cursor descriptor

structure(s) with a call to
InitGCurs;

2. Reset the mouse with mReset;
and

3. If the mouse exists, then:

a. Install the event handler
with mInstTask;

b. Enter the desired graphics
mode;

c. Build the environment
display;

d. Tell the device driver which
cursor shape you want via a
call to mGraphCursor (skip
this step if you're using the
default arrow cursor);

e. Show the cursor with
mShow;

f. Reset the mouse event flag
to 0; and

g. Enter a loop to process
mouse events.

The work of the program is
done in substep g. This activity
might involve drawing, text pro-
cessing, file I/0, dialog boxes,
and other operations. (As exam-
ples, consider PC Paintbrush and
Microsoft Windows applications.)
The loop must have an exit such
as a menu or icon selection that
can be clicked to graphics mode.
The process of withdrawing is
much simpler than that of setting
up, and requires these steps:

h. Reset the mouse with
mReset; and

i. Revert to text mode.

If a mouse isn’t present in the
system, none of the substeps a-i
can occur (unless you use the cur-
sor keys as an alternative to the
mouse).

The mGraphCursor routine is
furnished by the Pascal MOUSE
unit and the C file MOUSE.L This
call takes four parameters:

® The X and Y relative coordi-
nates of the hot spot; and

® The segment and offset of the
mask set.

As mentioned earlier, the mask set

is a 16 X 32-bit array (i.e., a 32-

word list). The first half of the ar-

ray holds the screen mask, and

continued on page 48

46 TURBO TECHNIX July/August 1988

A Deal You Can’t Refuse ..700 Functions, 20 Disks, Free Software
€ntelekon’s

C Business Library

or C STARTER PACKAGE

FREE* FREE* FREE*
TURBO C"” or QUICKC™ or C MATH TOOL BOX
Borland Microsoft 89 advanced

math/stat functions

*OR FREE REFUND if you already own one, see special offer (limited time)

What You Get With €nteleckon Libraries

A C COMPILER without a good add-on library is like a PC without a keyboard. ..
it won't do what you want it to do!
¥~ GAIN C POWER Add capabilities your compiler library does NOT have. e.a.:

&= New! Qwick Menuing—full 1-2-3 like menus & more & New! Qwick Data Entry with dialog boxes
= Flexible powerful windowing + new Qwick windows & Formatted, fully validated data entry

= Powerful cursor, video and attribute control = [Display default field values
= Time and date arithmetic @ Calculator style entry option
= Sample code and working examples @ 700 functions you need

! SAVE MONEY: Lowest Cost, Highest Quality Library/Windows Available!
ri‘ SMALLER PROGRAM SIZE: your application program can be up to 50% smaller!
& EASY for beginners! POWERFUL for professionals! 0:00

r“ SAVE TIME, TIME, TIME: man-years on development, calendar months on schedule!
rc’

¢ 1z ’6‘
g INSTANT INSTALLATION UTILITY included! ».;;’foéf@oo:@»o(
S, C
r—é{z SUPERB DOCUMENTATION: time saving, helpful, clear, complete, instructive. °¢;Z% %Q;
pe)
r-;'(” BUSINESS USERS: FREE 3 machine site license (C Library & Power Windows) o’@,,.o«%z%,,
& WS 72
r;"’ FULL SOURCE CODE included! NO ROYALTIES on products you develop. "’(, i
G Z,
r'ﬂ FREE UTILITY: To convert Turbo Pascal code to C code. ¢
SAVE MONEY! SAVE TIME! DON’T WAIT! ORDER NOW!
SATISFACTION GUARANTEED (Direct from Entelekon only) CALL (713) 468-4412
POWER WINDOWS™ C FUNCTION LIBRARY B-TREE LIBRARY & ISAM
MOST POWERFUL YET BEST YOU CAN GET DRIVER
POP-UP/PULL DOWN/OVERLAP OVER 500 FUNCTIONS POWERFUL DATA MANAGER
Menus/Overlays FULLY TESTED FAST! EASY TO USE!
Messages/Alarms BETTER FUNCTIONS 16.7 MILLION RECORDS/FILE
ZAP ON/OFF SCREEN Full source code $159.95 16.7 MILLION KEYS/FILE
FI#E;WIN(’%WVBMANASGEMIENT Fixed/Variable length records.
lorizonta rtical Scrolling Full N it $129 95
Word Wrap & Line Insertion C BUSINESS LIBRARY Py om0
Cursor/Attributes/Borders gﬁﬁ&;&gggg;mggggﬂg Sane C STARTER PACKAGE
Full source code $159.95 5 INCLUDES C FUNCTION LIBRARY. POWER
x ALLHOr o onmnais s 555 s $299.95 WINDOWS, SUPERFONTS FOR C
SPECIAL OFFER (A 500,00 VALUE) AL or A el] $199.95
(A $370.00 VALUE)

Free Turbo C or QuickC or C Math
Tool Box with purchase of C Starter

Package or C Business Library. Even M
if you already own Turbo C or QuickC

or C Math Tool Box, we will refund

up to the full purchase price of one

of these packages with the pur-

chase of C Starter Package or C SINCE 1982
Business Library. 12118 Kimberley, Houston. TX 77024 713-468-4412 VISA-MASTERCARD-CHECK-COD

MOUSE
continued from page 46

the second half contains the cur-
sor mask.

When the mGraphCursor rou-
tine is called, the mouse device
driver immediately displays the
cursor image and tracks the cur-
sor’s position using the hot spot.
By issuing a single call when the
program enters a new mode,
cursor shapes can be instantly
changed. This process is shown by
the demo routine in Listings 3
and 4, which displays the name of
the new mouse cursor and then
calls mGraphCursor to change
the cursor image (which is already
visible by the time demo is called).

The GMICE programs are writ-
ten in Turbo Pascal and Turbo C,
using the MOUSE units presented
in Part I and the include files
given earlier in this article. Since
the two GMICE programs are
functionally identical (except for
details of handling the mouse
event), we can speak of them as
one program.

GMICE uses CGA high-resolu-
tion mode, which is common to
all IBM graphics display adapters
(but not to the Hercules). The
program displays a white block in
the center of the screen. You can
use GMICE to view the default
cursor and the five cursors that
are defined in GMOUSCUR, by
moving the mouse to see the cur-
sor against both light and dark
backgrounds. Each time you click
a mouse button, the cursor and its
identifier change. The program
ends and reverts to text mode
when you click while the I-beam
cursor is displayed.

MORE ABOUT MASKS

The I-beam cursor is unique
among the shapes given here in
that its screen mask consists en-
tirely of one-bits. By combining
the one-bits and the cursor mask,
the background shows through
when the cursor shape is the in-

Scribble Clear Quit 0%, M
P
o - // .
| Ml]
\ P o
R
I , ~ Hold down left button to draw

Figure 2. Screen display of the SCRIBBLE program.

verse of the background. No out-
lining occurs when the 0/0 com-
bination is used because the I-
beam is a spindly object that lacks
any solid mass. An outline fattens
and distorts the shape against a
white background, so it works best
to use the 1/1 inversion combina-
tion for this particular image.

As an experiment, select some
of the other cursors with a cursor
mask that consists entirely of one-
bits. The results are interesting,
but not as satisfactory. The use of
the mouse in CGA four-color
graphics (mode CGACI or
CGAC2 with the BGI) is also un-
satisfactory. Change the assign-
ment of the mode variable to CGA
four-color mode and try it; you'll
see how the cursor picks up unde-
sirable colors as side effects due
to the two-bit pixels in this mode.

DRAWING WITH THE MOUSE

SCRIBBLE is a program that in-
corporates the principles I've dis-
cussed here. This simple drawing
program (of the sort that forms
the foundation for software pack-
ages such as PC Paintbrush) lets
you do exactly what its name im-
plies—scribble.

Figure 2 shows the display
created by SCRIBBLE, which is a
menu with the selections Scribble,
Clear, and Quit. A meter in the
upper right corner of the screen
continually tracks the display
position of the cursor’s hot spot.
The help box at the bottom of the
screen contains instructions.
When the program first displays
on the screen, the cursor has the
form of the pointing hand. To en-
ter drawing mode, you move to
the Scribble menu choice and
click any button.

Once you've entered drawing
mode, the cursor switches to the
cross form. It can be moved
around the large work area. To
draw, hold down the left button
and move the mouse. (This step
is shown within the help box in
Figure 2.)

When the Clear selection is
clicked, the program clears the
work area, restores the hand cur-
sor, and redisplays the initial help
message. This step resets the pro-
gram so that you can start a new
doodle. To end the program,
click Quit.

48 TURBO TECHNIX July/August 1988

Listings 5 and 6 show SCRIB-
BLE in Pascal and C. These are
equivalent programs that include
the appropriate version of
GMOUSCUR and call on the
MOUSE library routines present-
ed in Part I of this article series.

The subprograms MenuBox,
Help, and SetUpScreen, which
draw upon the Turbo Pascal/C
graphics library, handle the re-
spective activities that their names
suggest. UpdateMeter converts the
numeric coordinates of the cur-
sor’s hot spot into text and then
displays them in the meter box:
The main body of SCRIBBLE ini-
tializes the environment and dis-
patches the Work subprogram,
which controls the main opera-
tion of the program.

In Listing 5, Work consists
chiefly of a large CASE statement
(in Listing 6, switch is the equiva-
lent C construct). This is enclosed
inside a loop that repeats until the
user clicks the Quit selection. Af-
ter resetting the event flag, the
loop waits for a mouse event to
occur. When that event happens,
CASE (in Turbo Pascal) or switch
(in Turbo C) evaluates the event
flag and takes action as appro-
priate. The event mask that is
passed to the mouse driver is $55
in Pascal, or 0x55 in C. This mask
triggers an event any time the
mouse moves, or when any button
is released. Since the sum of the
case selectors is hex 55, they selec-
tively act on any possible event.

The first event is 0x01, which
signifies a movement of the
mouse. This case updates the me-
ter to indicate the new cursor
position. Before updating the me-
ter, however, the case checks the
status of the buttons. If the left
button is down and the cursor is
inside the work area (i.e., not in
the menu or help areas), the rou-
tine draws a dot at the point that
is covered by the hot spot. While

the pixel is being drawn, the cur-
sor must be hidden in order for
the display adapter to control the
area under the cursor.

The second case is entered
when any button release occurs.
Since the release of a button may
indicate a menu selection, this
case checks if the cursor is inside
the menu area. If so, the case ex-
amines the cursor’s horizontal
position to determine which selec-
tion the user has made. If the user
chooses Scribble, the cursor
switches to the cross image and
displays the second help message;
if the user selects Clear, the pro-
gram resets the work area and re-
stores the hand cursor and initial
help message. If Quit is chosen,
the program toggles the value of
the thru variable to TRUE. The
end of the loop checks this Bool-
ean and repeats the process if the
Boolean is still FALSE; otherwise,
the program quits.

THE GRAPHICS MOUSE WITH
THE EGA AND VGA

The mouse cursor’s appearance
is governed by the current graph-
ics mode (as you already noticed
if you switched to CGA four-color
mode). In EGA and VGA modes,
mouse cursors shrink along the
horizontal axis because these
modes place more Y units into the
same physical screen area (350 or
480 units, versus 200 units in
CGA). Thus, a cursor image that
is tall and skinny in CGA high-
resolution mode becomes rela-
tively shorter and fatter as the
number of Y coordinates in-
creases.

Mouse vendors strive to keep up
with evolving display technology
by releasing new versions of soft-
ware device drivers as new adapt-
ers come onto the market. Micro-
soft and Logitech currently ship
device drivers that handle the
common adapters up through
VGA 640 X 480 multicolor
graphics.

The latest released version of
the Logitech driver at the time of

this writing is 3.4. For this article
series, I first used Logitech ver-
sion 3.2 on a VGA; however, 1
found the driver to be slightly un-
reliable in EGA modes, and use-
less for true VGA. The problem in
EGA mode is that the cursor
sometimes refuses to drop below
row 199. The solution is simple:
after entering graphics mode,
issue the statement:

mRowRange (0, GetMaxY);

This apparently reassures the
mouse driver that it’s okay to use
the area beyond that which CGA
graphics provides. In VGA graph-
ics, the mouse cursor fails to ap-
pear at all. Both problems disap-
pear with the updated device
driver.

Unlike DOS, the de facto stan-
dard Microsoft Mouse device
driver has no function for ascer-
taining its own version level.
(That’s a shame, but that’s how it
is.) If you develop commercial
software and you use a higher-
resolution adapter, advise your
customers to use a device driver
that’s up to the proper level.

As I said at the beginning of
this series on mouse program-
ming, it's not difficult to incorpo-
rate a mouse into your user inter-
face. However, it is different
because you have to think in
terms of events and status checks.
The small extra effort is very
worthwhile, because a mouse can
add tremendous power and ease
of use to your software. The tools
and techniques in this series
should make it easier for you to
develop superlative mouse-based
user interfaces in Turbo Pascal
and Turbo C. W

Kent Porter is the author of Stretch-
ing Turbo Pascal and numerous
other programming books. He is a fre-
quent contributor to TURBO
TECHNIX.

Listings may be downloaded from
CompuServe as CMOUS2.ARC.

July/August 1988 TURBO TECHNIX 49

LISTING 1: GMOUSCUR.INC

{ GMOUSCUR.INC is an include file that defines several graphics b
< mouse cursor patterns. All are typed constants.)
{ This file also contains an event handler called by the mouse b
(¢ device driver, and a global event record variable 'theEvents')

)}

(SF+) { Force the including program to use far calls)

eventRec = record { mouse event record)
flag, button, col, row : WORD;

END;

gCursPtr = “gCurs;

gCurs = ARRAY [1..32] OF WORD;

gCursRec = record
image : gCursPtr;
hotX, hotY : WORD;

END;

TYPE

{ pointer to cursor image)
{ cursor image array }
{ graphics cursor descriptor)

{ Check mark image)
CONST checkIm : gCurs = ($FFFO, SFFEO, $FFCO, $FF81, (screen mask)}
$FFO3, $0607, $O00F, $O001F,
$CO3F, SFO7F, SFFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
$0000, $0006, $000C, $0018, (cursor mask)}
$0030, $0060, $70c0, $1080,
$0700, $0000, $0000, $0000,
$0000, $0000, $0000, $0000);

{ Left arrow image)
LArrIm : gCurs = (SFE1F, $FO1F, $0000, $0000, (screen mask)
$0000, SFO1F, SFE1F, SFFFF,
. SFFFF, SFFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
$0000, $00CO, $07CO, $7FFE, (cursor mask)
$07c0, $00C0, $0000, $0000,
$0000, $0000, $0000, $0000,
$0000, $0000, $0000, $0000);

{ Cross image)

crossIim : gCurs = ($FC3F, $FC3F, $FC3F, $0000, (screen mask)
$0000, $0000, SFC3F, SFC3F,
SFC3F, SFFFF, SFFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
$0000, $0180, $0180, $0180, { cursor mask)
$7FFE, $0180, $0180, $0180,
$0000, $0000, $0000, $0000,
$0000, $0000, $0000, $0000);

{ Pointing hand image)

handIm : gCurs = (SE1FF, SE1FF, SE1FF, SE1FF, (screen mask }
SE1FF, $E000, $E000, $E000,
$0000, $0000, $0000, $0000,
$0000, $0000, $0000, $0000,
$1E00, $1200, $1200, $1200, { cursor mask)
$1200, $13FF, $1249, $1249,
$1249, $9001, $9001, $9001,
$8001, $8001, $8001, SFFFF);

{ I-beam image)

iBeamIm : gCurs = (SFFFF, SFFFF, SFFFF, $FFFF, (screen mask)
SFFFF, SFFFF, SFFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
$FOOF, $0C30, $0240, $0240, (cursor mask)
$0180, $0180, $0180, $0180,
$0180, $0180, $0180, $0180,
$0240, $0240, $0C30, $FOOF);

{ Graphics cursors)

check : gCursRec = (image : nil; hotX : 6; hotY : 7);

arrow : gCursRec = (image : nil; hotX : 0; hotY : 3);

cross : gCursRec = (image : nil; hotX : 7; hotY : 4);

hand : gCursRec = (image : nil; hotX : 5; hotY : 0);

iBeam : gCursRec = (image : nil; hotX : 7; hotY : 7);
S e s e s b m o ek)

VAR theEvents : eventRec; { global variable }

PROCEDURE EventHandler
(Flags, CS, AX, BX, CX, DX, SI, DI, DS, ES, BP : WORD);

{ Mouse event handler called by device driver)
INTERRUPT;
Begin

theEvents.flag :=
theEvents.button := BX;

theEvents.col = CX;

theEvents.row := DX;

inline ({ Exit processing for far return to device driver)
$38/$E5/ (MOV SP,BP)
$50/ { POP BP)
$07/ { POP ES)
$1F/ { POP DS)
$5F/ { POP DI)
$5€/ { POP SI)
$S5A/ { POP DX >
$59/ { POP CX)

$58/ CPOP BX)
558/ CPOP AX)
$cB); CRETF)

END;

€ -moememmmemsssesscsienonos >

PROCEDURE InitGCurs;

{ Initialize pointers in graphics cursor descriptors)
{ Pointers can only be initialized at run time)

BEGIN
check.image := achecklIm;
arrow.image := alLArrim;
cross.image := dcrossim;
hand.image := @handim;
iBeam.image := @iBeamim;
END;

{ End of gmouscur.inc }

/* GMOUSCUR.I is an #include file defining several graphics mouse
/* cursor patterns. All are statics.

/* This file also contains an event handler called by the mouse
/* device driver, and a global event record variable 'theEvents'

/* Must #include MOUSE.I above this #include file.
/' ...
typedef struct { /* mouse event record
unsigned flag, button, col, row;
) EVENTREC;
typedef struct { /* graphics cursor descriptor
unsigned *image;
unsigned hotX, hotY;
) GCURSREC;

/* check mark image */
static unsigned checklm [32] = (
OxFFFO, OxFFEO, OxFFCO, OxFF81, /* screen mask
OxFFO3, 0x0607, Ox000F, OxO001F,
0xCO3F, OxFO7F, OXFFFF, OXFFFF,
OxFFFF, OxFFFF, OXFFFF, OxFFFF,
0x0000, 0x0006, 0x000C, 0x0018, /* cursor mask
0x0030, 0x0060, 0x70c0, Ox1D80,
0x0700, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000 };

/* Left arrow image */
static unsigned LArrim [32] = (
OxFE1F, OxFO1F, 0x0000, 0x0000, /* screen mask
0x0000, OxFO1F, OxFE1F, OxFFFF,
OxFFFF, OxFFFF, OxFFFF, OxXFFFF,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x00C0, 0x07CO, Ox7FFE, /* cursor mask
0x07c0, 0x00C0, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000 };

/* Cross image */
static unsigned crossim [32] = (
OxFC3F, OxFC3F, OxFC3F, 0x0000, /* screen mask
0x0000, 0x0000, OxFC3F, OxFC3F,
OxFC3F, OxFFFF, OxFFFF, OXFFFF,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0180, 0x0180, 0x0180, /* cursor mask
Ox7FFE, 0x0180, 0x0180, 0x0180,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000 };

/* Pointing hand image */
static unsigned handIim [32] = (
OxE1FF, OxE1FF, OxE1FF, OxE1FF, /* screen mask
OxE1FF, OxE000, OxE000, OxE000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x1E00, 0x1200, 0x1200, 0x1200, /* cursor mask
0x1200, Ox13FF, 0x1249, 0x1249,
0x1249, 0x9001, 0x9001, 0x9001,
0x8001, 0x8001, 0x8001, OXFFFF);

static unsigned iBeamIm [32] = (

OxFFFF, OxFFFF, OxFFFF, OxFFFF, /* screen mask
OXFFFF, OxFFFF, OXFFFF, OxFFFF,

OxFFFF, OxFFFF, OxFFFF, OxFFFF,

OxFFFF, OxFFFF, OXFFFF, OXFFFF,

OxFOOF, 0x0C30, 0x0240, 0x0240, /* cursor mask
0x0180, 0x0180, 0x0180, 0x0180,

0x0180, 0x0180, 0x0180, 0x0180,

0x0240, 0x0240, 0x0C30, OxFOOF);

L

g

i

7

e’ §

ng

L7

&/

!

*/

*/

50 TURBO TECHNIX July/August 1988

/* Graphics cursor descriptors */

static GCURSREC check = (NULL, 6, 7);
static GCURSREC arrow = (NULL, 0, 3);
static GCURSREC cross = (NULL, 7, 4);
static GCURSREC hand = (NULL, 5, 0);
static GCURSREC iBeam = (NULL, 7, 7);

/* Global far pointer to mouse event record */
static EVENTREC far *theEvents;

/./
void far handler (void) /* event handler called by device driver */
<

EVENTREC far *save; /* pointer to save area in diff segment */
unsigned a, b, c, d; /* temp storage of registers */

a= _AX, b= BX, c= _CX, d= _DX;

_ /* save registers */
save = MK_FP (_CS-0x10, 0x00C0);

/* point to PSP user area */

save->flag = a; /* stuff registers into it */
save->button = b;
save->col =c;
save->row =d;
P N L L L e *
void initGCurs (void) /* initialize ptrs in cursor descriptors */
<
check.image = checklIm;
arrow.image = LArrim;
cross.image = crosslim;
= handim;
= iBeamIm;

/* End of GMOUSCUR.I */

LISTING 3: GMICE.PA

Program gmice;

{ Illustrates the four graphics mouse cursors from gmouscur.inc,)
< plus the default graphics cursor.)

Uses mouse, graph;
{$i gmouscur.inc)
CONST eventMask = $54;

{ mask to trip event handler when any
mouse button is released)

theMouse

: resetRec;
driver, mode :

INTEGER;

PROCEDURE Identify (title : string);

{ Write name of cursor near top of screen)

VAR x : INTEGER;
BEGIN
SetViewPort (0, 0, GetMaxX, 30, TRUE);
ClearViewPort;
SetTextStyle (DefaultFont, HorizDir, 1);
x := (GetMaxX - TextWidth (title)) DIV 2;
OutTextXY (x, 20, title);
SetViewPort (0, 0, GetMaxX, GetMaxY, TRUE);
END;

PROCEDURE GraphicScreen (title : string);

{ Creates a graphics screen and shows the title)
VAR

INTEGER;

X ¥, 3
: string [30]1;

prompt

BEGIN
InitGraph (driver, mode, '\DRIVERS');
IF GraphResult = grOk THEN BEGIN
Identify (title);
Prompt := 'Click any button to continue';
X := (GetMaxX - TextWidth (prompt)) DIV 2;
OutTextXY (x, GetMaxY - 20, prompt);

{ set graphics mode)

{ start of prompt)

~

Prepare to draw a rectangle as a lighted backdrop for cursor)}
SetFillStyle (SolidFill, 1);

SetColor (1);

x := (GetMaxX DIV 2) - 50;

y := (GetMaxY DIV 2) - 50; { set corners)

Rectangle (x, y, x+100, y+100); { draw)
FloodFill (GetMaxX DIV 2, GetMaxY DIV 2, 1); L ST
END;
END;
SR LG L L L R P O Doy n T b

PROCEDURE demo (cursor : gCursRec; title : STRING);

{ Show the indicated graphics cursor)

BEGIN
Identify (title);
mGraphCursor (cursor.hotX, cursor.hotY,
seg (cursor.image”), ofs (cursor.image’));
theEvents.flag := 0;
REPEAT UNTIL theEvents.flag <> 0;
END;

BEGIN
{ Set up for run)
Driver := CGA;
Mode := CGAhi;
InitGCurs;
mReset (theMouse);
IF theMouse.exists THEN BEGIN
minstTask (eventMask, seg (EventHandler), ofs (EventHandler));

-~

Show default cursor)
GraphicScreen ('Default cursor');
mShow;
theEvents.flag := 0;

REPEAT UNTIL theEvents.flag <> 0;

END;

{ Show
Demo
Demo
Demo
Demo
Demo

the custom cursors)

(check, 'Check cursor');
(arrow, 'Left arrow cursor');
(cross, 'Cross cursor');
(hand, 'Pointing hand');
(iBeam, 'I-Beam cursor');

mReset (theMouse);
CloseGraph;
END.

/* GMICE.C: Illustrates the default graphics mouse cursor, plus
= the four from GMOUSCUR.I

/* INCLUDES AND DEFINES */
#include <stdio.h>
#include <dos.h>

#include <graphics.h>
#include <mouse.i>
#include <gmouscur.i>
#ifndef TRUE

#define TRUE -1

#define FALSE 0

#endif
#define EVENTMASK 0x54
/* LOCAL PROTOTYPES */
void demo (GCURSREC, char*);
void graphicScreen (char*);
void identify (char*);

/* GLOBALS */

union REGS reg;

int driver = CGA, mode = CGAHI;
char path [1 = "C:\TC";

void main ()
<
resetRec *theMouse;
/* Set up for run */
initGCurs();
theMouse = mReset();
if (theMouse->exists) {
minstTask (EVENTMASK, FP_SEG (handler),
FP_OFF (handler));
theEvents = MK_FP (_psp, 0x00C0);

/* Show default cursor */
graphicScreen ("Default cursor");
mShow();
theEvents->flag = 0;
while (theEvents->flag == 0)

'

/* Show the custom cursors */
demo (check, "Check");
demo (arrow, "Left arrow");
demo (cross, "Cross");
demo (hand, "Pointing hand");
demo (iBeam, "I-Beam");
theMouse = mReset();
closegraph();

{ initialize the cursor images)

*
xf

/* event when any mouse button released */

/* initialize the cursor images */
/* reset the mouse */

/* install handler*/

/* point to event record */

/* turn on cursor */

/* wait for click */

/* reset mouse */

July/August 1988 TURBO TECHNIX

-

B

1

void demo (GCURSREC cursor, char title[]) /* show graphics cursor */
<
identify (title);
mGraphCursor (cursor.hotX, cursor.hotY, (unsigned) (_DS),
(unsigned) (cursor.image));
theEvents->flag = 0;

while (theEvents->flag == 0) /* wait for click */
3 /' -: '/
void graphicScreen (char title(l) /* set up graphics screen */
gnt X, ¥;

char prompt [30];
initgraph (&driver, &mode, path);
if (graphresult() == grok) ¢
identify (title);
strcpy (prompt, "Click any button to continue");
x = (getmaxx() - textwidth (prompt)) / 2;
outtextxy (x, getmaxx() - 20, prompt);

/* draw rectangle as backdrop for cursor */
setfillstyle (SOLID_FILL, 1);
setcolor (1);
x = (getmaxx()/2) - 50;
y = (getmaxy()/2) - 50;
rectangle (x, y, x+100, y+100);
floodfill (getmaxx()/2, getmaxy()/2, 1);

)
2 e S RO N S g ot ¥/,
void identify (char *title)
£
int x;

setviewport (0, 0, getmaxx(), 30, TRUE);
clearviewport();
settextstyle (DEFAULT_FONT, HORIZ_DIR, 1);
x = (getmaxx() - textwidth (title)) / 2;
outtextxy (x, 20, title);
setviewport (0, 0, getmaxx(), getmaxy(), TRUE);
b R e e R L %,

| LISTING 5: SCRIBBLE.PAS

Program Scribble;
C A simple utility for drawing with the mouse in graphics mode)
USES mouse, graph;

{$1 gmouscur.inc)

CONST EventMask = $55; { Any button released, or mouse moved }
Menu = 20; { bottom of menu area }
HelpTop = 185; { top of help area)
Box1 = 160; { right end of each menu box)
Box2 = 320;

Box3 = 480;
HelpMsg! = 'Click any button on Scribble to begin drawing';
HelpMsg2 = 'Hold down left button to draw';

VAR theMouse : resetRec;
mouses : locRec;
PROCEDURE MenuBox (x1, x2 : INTEGER; Item : STRING);
{ Create a menu box between indicated x's at top of screen)
BEGIN

SetViewPort (x1+1, 1, x2-1, menu-1, FALSE); (local to help area)
ClearViewPort;

OutTextXY (50, 7, item); { display text)
SetViewPort (0, 0, GetMaxX, HelpTop, FALSE); (drawing work area)
END;
fis=a=carsncriarresearavsensy >

PROCEDURE Help (Message : STRING);
{ Display help message at bottom of screen)
VAR x : INTEGER;
BEGIN
X := (GetMaxX - TextWidth (message)) DIV 2; { For centering)

SetViewPort (1, helpTop+1, 638, GetMaxY - 1, FALSE);
ClearViewPort;

OutTextXY (x, 3, message); { write help message)
SetViewPort (0, menu, 639, HelpTop, FALSE); (drawing work area)
END;
i =S renaaaaF raesenessesnon)

FUNCTION SetUpScreen : BOOLEAN;

(Prepare screen, return TRUE if done, FALSE if can't)

VAR driver, mode : INTEGER;

BEGIN
Driver := CGA;
Mode := CGAhi;
InitGraph (driver, mode, '\TP');
IF GraphResult = grOK THEN
BEGIN
SetColor (1);

{ use CGA hi-res mode)

{ set graphics mode)
{ if successful...)

{ initialize)

SetTextStyle (DefaultFont, HorizDir, 1);

MenuBox (0, box1, 'Scribble');

Rectangle (0, 0, box1, menu);

MenuBox (box1, box2, ' Clear');
Rectangle (box1, 0, box2, menu);
MenuBox (box2, box3, ' Quit');
Rectangle (box2, 0, box3, menu);
Rectangle (box3, 0, 639, menu);

{ make menu boxes)

{ box for meter)

Rectangle (0, HelpTop, 639, GetMaxY); { box for help)

Help (HelpMsg1);
SetUpScreen := TRUE;
END
ELSE
SetUpScreen := FALSE;

PROCEDURE UpdateMeter (x, y : INTEGER);

{ initial help message)
{ successful »

{ unsuccessful)

{ Update mouse position meter in upper right corner of display)

VAR Position : STRING [8];
Number : STRING [3];

BEGIN
Sstr (x : 3, number);
Position := number;
Str (y : 3, number);
Position := position + ', ' + number;
MenuBox (box3, 639, position);
END;

PROCEDURE Work;

{ convert position to string)

{ display it)

{ Draw with mouse until user clicks on Quit selection)

VAR thru : BOOLEAN;

BEGIN
Thru := FALSE;
REPEAT
TheEvents.flag := 0;
REPEAT UNTIL theEvents.flag <> 0;
CASE theEvents.flag OF
$0001: BEGIN

€ clear event flag)
{ wait for mouse event)

{ mouse has moved)

IF ((theEvents.row > menu) AND

(theEvents.row < Hel
IF theEvents.button =

pTop)) THEN { in work area)
1 THEN BEGIN { and left down)

col, theEvents.row, 1); {draw}

UpdateMeter (theEvents.col, theEvents.row); { update)

mHide;
PutPixel (theEvents.
mShow;
END;
END;
$0004,
$0010,

$0040: BEGIN

{ any button released)

IF theEvents.row < menu THEN € if in menu area)
IF theEvents.col < box1 THEN { Scribble?)
BEGIN
WITH cross DO

mGraphCursor (hotX, hotY, seg (image”),
ofs (image™));

Help (HelpMsg2);
END
ELSE

IF theEvents.col < box2 THEN { Clear?)

BEGIN
mHide;
SetViewPort (0,
hel

ClearViewPort;

mShow;

WITH hand DO
mGraphCursor (

Help (HelpMsgl);
END
ELSE

menu+1, GetMaxX,
pTop-1, TRUE);

hotX, hotY, seg (image”),
ofs (image™));

IF theEvents.col < box3 THEN € Quit?)

thru := true;
END; (of outer IF)
END; (of CASE)
UNTIL thru;
END;

BEGIN
InitGCurs;
mReset (theMouse);
IF theMouse.exists THEN

{ Initialize cursor images)
{ Initialize mouse)

52 TURBO TECHNIX July/August 1988

BEGIN
theEvents.flag := 0;
IF SetUpScreen THEN
BEGIN
minstTask (EventMask, seg (EventHandler),
ofs (EventHandler)); { install handler)
WITH hand DO { show pointing hand)}
mGraphCursor (hotX, hotY, seg (image”), ofs (image’));
mShow;
mPos (mouses); { Get mouse position)}
UpdateMeter (mouses.column, mouses.row);

{ if in graphics mode...)}

Work; { do what the program does)
mReset (theMouse); { shut down the mouse)
CloseGraph; { back to text mode)
END
ELSE
WRITELN ('Graphics mode not available. Program ended.');
END
ELSE
WRITELN ('Mouse not active. Program ended.');

'LISTING 6: SCRIBBLE.C

/* SCRIBBLE.C: Simple utility for drawing with mouse in graphics */
/* INCLUDES */

#include <stdio.h>

#include <dos.h>

#include <graphics.h>

#include <mouse.i>

#include <gmouscur.i>

/* DEFINE TRUE/FALSE */
#ifndef TRUE

#define TRUE -1
#define FALSE 0
#endi f

/* DEFINE CONSTANTS */
#define eventMask 0x55
#define menu 20
#define helpTop 185

/* any button released, or mouse moved */
/* bottom of menu area */
/* top of help area */

#define box1 160 /* right end of each menu box */
#define box2 320
#define box3 480

#define helpMsgl
#define helpMsg2

"Click any button on Scribble to begin drawing”
"Hold down left button to draw"

/* GLOBALS */
resetRec *theMouse;
locRec *mouses;

/* LOCAL FUNCTIONS */

void menuBox (int, int, char*);
void help (char*);

int setUpScreen (void);

void updateMeter (int, int);
void work (void);

,. ... Q/

void main ()
<
theEvents = MK_FP (_psp, 0x00C0);
initGCurs ();
theMouse = mReset ();
if (theMouse->exists) (
theEvents->flag = 0;
if (setUpScreen()) ¢ /* if in graphics mode... */
minstTask (eventMask, FP_SEG(handler), /* install handler */
FP_OFF(handler));
mGraphCursor (hand.hotX, hand.hotY, DS,
(unsigned) hand.image);

/* point to event buffer */
/* initialize cursor images */
/* initialize mouse */

/* graphics curs */

mShow ();
mouses = mPos ();
updateMeter (mouses->column, mouses->row);
work (); /* do mouse stuff until thru */
theMouse = mReset (); /* reset mouse */
closegraph (); /* back to text mode */
else
puts ("\nGraphics mode not available. Program ended.");

) else

puts ("Mouse not active. Program ended.");

b 7

/* cursor on */
/* get position */

-

void help (char *message)

/* Display help message at bottom of screen */

<
int x;
= (getmaxx() - textwidth(message)) / 2; /* For centering
setviewport (1, helpTop+1, 638, getmaxy() - 1, FALSE);
clearviewport ();
outtextxy (x, 3, message); /* write help message
setviewport (0, menu, 639, helpTop, FALSE); /* drawing area
) I¥ assnssssiacinnssnennunai L7 |

int setUpScreen (void)

/* Prepare screen, return TRUE if done, FALSE if can't */

<
int driver = CGA, mode = CGAHI;
char path [6] = "C:\TC";

/* use CGA hi-res mode
/* path to drivers */

initgraph (&driver, &mode, path);
if (graphresult () == grok) (

setcolor (1);
settextstyle (DEFAULT_FONT, HORIZ_DIR, 1);
menuBox (0, box1, "Scribble");
rectangle (0, 0, box1, menu);
menuBox (box1, box2, " Clear");
rectangle (box1, 0, box2, menu);
menuBox (box2, box3, " Quit");
rectangle (box2, 0, box3, menu);
rectangle (box3, 0, 639, menu);
rectangle (0, helpTop, 639, getmaxy());
help (helpMsg1);

/* set graph mode
/* if successful...
/* initialize

/* make menu boxes

/* box for meter
/* box for help
/* initial help message

return (TRUE); /* successful exit
) else
return (FALSE); /* unsuccessful
I IR pansannsnss e nmencm ey)
void updateMeter (int x, int y)
/* Update mouse position meter, upper right corner */
<
char position [9];
sprintf (position, "X3d, X3d", x, y); /* convert pos to string
menuBox (box3, 639, posnion), /* display it
) /0
void work (void)
/* Draw with mouse until user clicks on Quit selection */
<
int thru = FALSE;
do (
theEvents->flag = 0; /* clear mouse event flag
while (theEvents->flag == 0); /* wait for mouse event
switch (theEvents->flag) (
case 0x0001: /* mouse has moved
if ((theEvents->row > menu) &&
(theEvents->row < helpTop)) /* in work area
if (theEvents->button == 1) (/* and left down
mHide ():
putpixel (theEvents->col, theEvents->row, 1); /* draw
mShow ();
b
updateMeter (theEvents->col, theEvents->row); /* update

break;
case 0x0004:
case 0x0010:
case 0x0040: /* any button released
if (theEvents->row < menu) /* if in menu area
if (theEvents->col < box1) (/* Scribble?
mGraphCursor (cross.hotX, cross.hotY, DS,
(unsigned) cross.image);
help (helpMsg2);

else

if (theEvents->col < box2) (
mHide ();
setviewport (0, menu+i,
clearviewport ();
mShow ();
mGraphCursor (hand.hotX, hand.hotY, DS,

(unsigned) hand.image);

help (helpMsgl);

/* Clear?

getmaxx(), helpTop-1, TRUE);

7

b
7

L/

e
87
i

7
*
L]
¥

Y
*/

*/
8/

o

*¢
27

b/ 4

/2

*/

o .
o/

void menuBox (int x1, int x2, char *item)) else
if (theEvents->col < box3) /* Quit? */
/* create a menu box between x1 and x2 at top of screen */ thru = TRUE;
break;
<)
setviewport (x1+1, 1, x2-1, menu-1, FALSE);) while (!thru);
clearviewport (); O RS L o s TG b 4
outtextxy (50, 7, item); /* display text */
2 /.setkuport (0, 0, getmaxx(), helpTop, FALSE); /* drawing area */
________________________ *
July/August 1988 TURBO TECHNIX 53

TURBO C

FORMATTING OUTPUT

IN TURBO C

Turbo C’s output formatting capabilities may surprise you.

Peter Aitken

All computer programs have one thing in
common—output. A program must send
information somewhere, be it to a video
display, a printer, or a modem. In many
cases, the ease with which we can use that
information depends upon its arrange-
ment and appearance—in other words, upon its for-
mat. No matter how skilled you are at writing tight
code and efficient algorithms, your programs cannot
reach their full potential until you're able to format
output to its best advantage.

Turbo C has an entire family of functions that pro-
duce formatted output. These functions are known
collectively as the ..printf functions, and differ with
respect to where they send output. The functions
printf() and vprintf() send output to stdout, and
cprintf() sends output directly to the console. (stdout
normally is the console, but output to stdout can be
redirected at the DOS level, whereas output direct to
the console cannot be redirected.) The functions
fprintf() and vprintf() place output in a named
stream, while sprintf() and vsprintf() place output in
memory. Rather than describing how these functions
differ, this article focuses on one thing that they
have in common—how the format of their output is
controlled. The printf() function is used in examples
throughout this article, but remember that the dis-
cussion applies to the other functions in the ..printf
family as well.

SQUARE ONE

THE FORMAT STRING

Information is passed to a C function by means of
one or more arguments, which are enclosed in the
parentheses following the function name. One of
the arguments to the printf() function is the format
string. This series of instructions, which is enclosed
in double quotes, tells the printf() function about the
size and appearance of the data that is being output.
If you understand the various components of format
strings, you'll have a great deal of control over the
appearance of the output produced by the ..printf
functions.

One component of the format string can be literal
text, which is text that you want output exactly as
shown. In fact, a format string can consist of literal
text alone, as in the following example:

Statement:
printf("Hello there!™);

Output:

Hello there!

But what about outputting data that is contained in
a variable? To do this, you must add two components
to the printf() arguments. The first component, of
course, is the name of the variable (C is a powerful
language, but it can’t read your mind!). The second
component is a format specifier, which tells printf()
the type of data being output and how to format that
data. In the example below, assume that number is
an integer variable with a value of 8:

Statement:
printf("The value is %d",number);

Output:

The value is 8
The %d in the format string is the format specifier.
Format specifiers begin with a percent sign and end
with a letter. The letter following the percent sign is
the character code for the type of data that is being
output. In this case, we use d, which stands for a dec-
imal (i.e., base 10) integer. C provides character
codes for all of the types of numeric data that you
could output; these codes are listed in Table 1.

Note that some of the character codes in Table 1
can be upper- or lowercase. This allows you to spec-
ify the case of any output alphabetic characters. Spe-
cifically, this applies to formats where the output
contains letters, such as hexadecimal notation. Any
letters in the output will be in the same case as the
character code in the associated format specifier.

continued on page 56

54 TURBO TECHNIX July/August 1988

"Borland+Osbornel
McGraw-Hill offers you
the only full line of
endorsed books on
Quattro. These titles
combine Borland's own
technical expertise with
Osborne/McGraw-Hill's
publishing savvy. With
these official Quattro
titles, you'll have a com-
prehensive library that

- keeps pace with you as you

develop greater skills with

Quattro."”

Philippe Kahn, President &

CEO, Borland International,

Inc.

s

1\\%?‘ Juattro Made |
by Lisa Biow

Guides you through a
step-by-step introduction
$19.95 600 pp.

ISBN: 0-07-881347-6

The Professional Spreadsh

by Stephen Cobb

Gets you up and running fast
with basic to more advanced
techniques.

$21.95 584pp.

ISBN: 0-07-881330-1

0 ttro zecrets

Solutions, Short
by Craig Stinson

Unveils a clever selection of
Quattro tricks.

$21.95 650pp.

ISBN: 0-07-881400-6
Available: 8/88

by Stephen Cobb

Unlocks Quattro’s full power
for serious business.
$22.95 600pp.
ISBN: 0-07-881367-0

lete

by Yvonne McCoy

Details every Quattro feature,
command, and function.
$24.95 666pp.

ISBN: 0-07-881337-9

by Stephen Cobb

Puts essential commands and
features at your fingertips.
$5.95 128pp.

ISBN: 0-07-881378-6

ORDER TODAY!

Available at Fine Book Stores
and Computer Stores
Everywhere or

CALL TOLL FREE

800-227-0900
Visa, MasterCard, &
American Express Accepted

DRNE/McGRAW-HILL
S S SR 1T ES

briand International. Inc. Copyright©@ 1988, McGraw-Hill. Inc.

:J’l K OsborneMcGraw-Hill
P . 2600 Tenth Street
(H)

Berkeley, CA 94710

FORMATTING
continued from page 54
TYPE INPUT DATA OUTPUT
CHARACTER TYPE FORMAT
dori integer signed decimal (base 10)
integer
u integer unsigned decimal (base 10)
integer
o integer unsigned octal (base 8)
integer
x or X integer unsigned hexadecimal
(base 16) integer
£ floating pt. signed value [-]dddd.dddd
eorE floating pt. scientific notation [-]d.dddd
e [+/-]1ddd
gorG floating pt. same as f or e, depending

on value and precision

Table 1. Input types and output formats.

Look at the examples in Table 2—you should now
be able to understand the connection between the
format specifier and the resulting output. But what
about those two strange results, where the computer
doesn’t seem to know the difference between -1 and
655357 If you're familiar with the difference between
signed and unsigned variables in C, you'll under-
stand the cause of the unexpected output (otherwise,
refer to the accompanying sidebar for more infor-
mation).

FORMAT
DATA SPECIFIER OUTPUT
188 %d or %i 188
65535 Jod -1 (unexpected output)
1 %ou 1
-1 9ou 65535 (unexpected output)
99 %0 143 (143 is 99 decimal
in octal)
56789 Jox dddb
56789 %X DDD5
18.405 %f 18.405000
18405 %e 1.840500e+001
18.405 %E 1.840500E+001

Table 2. Examples of Turbo C’s output formatting.

A format string must contain one format specifier
for each variable in the variable list. The format
specifiers are applied to the variables in order. For
example:
int num = 2;
float root;
root = sqrt(num);
printf("J/%d = %f",num,root);

When compiled and executed, this code displays the
output:

V2 = 1.414214

FORMATTING CHARACTER OUTPUT

Formatting character output is much simpler than
formatting numeric output because fewer choices
can be made. Characters come singly or in strings,
and C offers a format specifier for each. Use %c to
output a single character, and use %s to output a
string. Some examples are shown in Table 3.

FORMAT

DATA SPECIFIER OUTPUT
e %e X
“The cat\0” %s The cat

Table 3. Output formatting for character and string data.

The “0” at the end of the string is a reminder that
C doesn’t have a special variable class for strings,
and stores them instead as arrays of characters. The
0 represents the null character and is the terminat-
ing character that marks the end of a string.

OUTPUTTING POINTERS

Turbo C has a special formatting character for out-
putting pointers. Although pointer values are rarely,
if ever, a part of a finished program’s output, it’s of-
ten necessary to list them as part of the debugging
process. The format specifier %p outputs a pointer
(in hexadecimal) as YYYY (offset only) for near
pointers, and as XXXX:YYYY (segment:offset) for
far pointers.

OPTIONAL FORMAT CONTROLS

So far, we've discussed how to output literal text, and
have covered the minimum format specifiers needed
to output numeric and character variables. C offers

a variety of optional format controls that let you
specify the appearance of your program’s outputin
more detail. One or more of these optional format
controls can be placed in a format specifier, between
the leading % and the type character. The compo-
nents of a format specifier, including the optional
format controls, are:

% [flags] [widthl [.precision]

[size modifier] type
Flags. The first optional format control is the flags
component. Flags control justification, numeric signs,
decimal points, octal and hexadecimal prefixes, and
trailing zeros.

The minus (-) flag causes the output to be left-
justified in its field, and padded on the right with
blanks if needed. If no flag is given, the default is
right justification. Justification applies only if the out-
put is narrower than the specified field width.

The plus (+) flag causes numeric output to be pre-
ceded by the appropriate sign (1 or -). The default
is that only negative numbers are preceded by a sign.

With the blank () flag, positive numbers are pre-
ceded by a blank (space); negative numbers are not
affected.

The pound sign (#) specifies that the argument is
to be formatted using a so-called “alternate form.”
Alternate forms exist for certain type characters, as
shown in Table 4.

Width. The width specifier determines the minimum
width of the field in which the output is placed. The
word “minimum” is important here—if the output is
wider than the specified field width, the field ex-
pands as necessary in order to contain the output.
The output is never truncated to fit a too-small field.

56 TURBO TECHNIX July/August 1988

TYPE ALTERNATE

CHARACTER FORM

c,d, i,s,u none (flag has no effect)

o O will appear before nonzero
argument

x or X Ox or OX will appear before
argument

e,E orf decimal point included even if
no digits follow it

gor G same as e and E, but trailing

zeros are not removed
Table 4. Alternate forms.

The width specifier is simply a number that indi-
cates the width (in spaces) of the output field. If the
output value is narrower than the field, the value is
padded with enough spaces to fill the field. As the
default for this specifier, the value is right-justified
within the field. If the “-” flag is included, the value
is left-justified. If the width specifier is preceded with
a 0, the value is right-justified and padded on the left
with zeros. Several examples are shown below:

format

specifier output
<—width 12—>

%12d 123456

%-12d 123456

%012d 000000123456

Precision. The precision specifier sets the number of
digits that are printed to the right of the decimal
point. When used with string variables, precision de-
termines the maximum number of output characters.
The precision specifier always begins with a period
(.) to separate it from the preceding width specifier
(if any). If no precision specifier is given, the default
value is used. The default precision is 1 for the d, i,
o, u, x, and X types; 6 for e, E, and f types; and all
significant digits for g and G types. For strings, the
default precision is the full length of the string (i.e.,
all characters up to the terminating null character).

When precision is set to 0, no decimal point is
printed for e, E, and f types; other types are not af-
fected, and precision remains at the default value.
Setting precision to a number n causes n digits to the
right of the decimal point, or n characters, to be out-
put. If the output value is wider than n characters,
strings are truncated and numbers are rounded in
order to meet the specified precision.

Both width and precision can be specified with a
variable argument to the printf() function, rather
than as part of the format string. To use a variable
argument, place an asterisk in the format string at
the position of the width or precision specifier, then
place an integer variable in the argument list just be-
fore the variable that is being formatted. Both width
and precision can be controlled at the same time
with variable arguments. In the following code frag-
ment, both printf() statements produce the same
output:

int width = 12;

int prec = &;

printf("%12.4f", value);

printf("%*.*f" width,prec,value);).

Size. The final optional control involves input size
modifiers, which apply only to numeric and pointer
variables. Size modifiers tell the printf() function to
interpret the argument’s size as other than the de-
fault size. For pointers, the default size (near or far)
is determined by the memory model in use. The in-
put size modifiers F and N cause a pointer argument
to be interpreted as a far or near pointer, respec-
tively.

For numeric variables, the modifier h applies only
to integer arguments (types d, i, o, u, X, and X), and
causes the argument to be interpreted as a short int.
The modifier 1 applies to either integer (types d, i, o,
u, x, and X) or floating point (types e, E, f, g, and G),
and causes an integer argument to be interpreted as
a long int (long integer) and a floating point argu-
ment to be interpreted as a double. The input size
modifiers have no effect on character (c, s) types.

ESCAPE SEQUENCES

An escape sequence changes the meaning of certain
characters in a string. For example, you might want
a double quotation mark to be output as part of a
string rather than to be interpreted as the end of
the string. Use an escape sequence of a double

continued on page 58

“The cost involved, in writing one
of these geometric routines, is more than
the price of the TurboGeometry Library.”

\‘1

TurboGeometr

Librgry

Are you programming or planning to program CAD/CAM
or graphics applications? Many hours, even days, can be
spent in writing and debugging geometric routines.
TurboGeometry Library can relieve you of those time
consuming tasks that are part and parcel of every
CAD/CAM or graphics program. There are over 150
routines in the library, supported by example programs
and a 400 page manual. The source code is included. 30
day guarantee. Need IBMPC or Compatible, Turbo Pascal
4.0, Turbo C, or MS C. $149.95 plus $5.00 S&H in US.
VISA, MasterCard, Check, PO, MO. No COD’s Send for
additional information or call 214-423-7288.

Disk Software, Inc., 2116 E. Arapaho #487
Richardson, Texas USA 75081

“In CAD/CAM or graphics, it all comes down
to using geometry’’

July/August 1988 TURBO TECHNIX 57

NUMBERS AND THEIR NOTATION

Hexadecimal is a number system
that uses base 16, rather than the
base 10 used by the everyday dec-
imal notation with which we're
all familiar. In decimal notation,
each position moving from right
to left indicates a successive
power of ten:

456 (decimal)
6X100=6Xx1 =
5X10'=5X 10 =

4 X 10* =4 X 100

sum =

§‘§sa

Hexadecimal works the same
way, except that each position in
the number represents a power
of 16:

456 (hexadecimal)
6X16°=6 X 1 = 6
5X 16' =5 X 16 = 80
4X16°=4X2%6 =

1004
sum in decimal = 1090

Because hexadecimal uses pow-
ers of 16, it needs single digits to
represent numbers up to 15 (dec-
imal). The regular digits 0-9 rep-
resent themselves, and the (dec-
imal) numbers 10-15 are repre-
sented by the letters A-F. Thus,
counting up from 0 in hexadec-
imal (with decimal equivalents),
we have:

Hex:1...9ABCDEF 101112 __T1E
1F 20 ... FF 100

Dec:1...91011 121314151617 18....
5031:32 ... 255 256

And, as used in larger numbers:
BCF (hexadecimal)

11 X16°=11X1
12X 16'=12X 16 192
15 X 16* = 15 X 256 3840

sum in decimal = 4043

11

Hexadecimal notation is a favor-
ite among programmers because
the binary bit patterns that are
used internally by computers
translate directly into hex digits.
A single hex digit represents 1
nybble (4 bits), a pair of hex dig-
its represents 1 byte, and 4 hex
digits are perfect for represent-
ing 16-bit memory addresses:

Dec. Hex Binary
0 00 0000 0000
1 01 0000 0001

254 FE
255 FF

1111 1110
1M1 1M1

65534 FFFE 1111 1111 1111 1110
65535 FFFF 1111 1111 1111 1111

SCIENTIFIC NOTATION

Scientific notation was develop-
ed to represent the very large
and very small numbers that are
often used by scientists and en-
gineers. Scientific notation ex-
presses any value as a number
between 1 and 10 that is multi-
plied by a power of 10, as shown
in these examples:

~ Aspower In scientific
Value of 10 notation
5,450,000,000 545x 10° 545E+009
0.0000000789 7.89x 10* 7.89E-008
SIGNED AND UNSIGNED

VARIABLES

To avoid possible errors and
confusion resulting from mixing
signed and unsigned variables,
you need to understand the dif-
ferences between these variables
and the way that your computer
represents them internally. In
Turbo C, the two data types int
(integer) and short are each
stored internally as two bytes.
The 16 bits in 2 bytes can repre-
sent a total of 2 (or 65536) dif-
ferent values. If an int variable
has been declared as type un-
signed, it can be assigned values
between 0 and 65535. With un-
signed variables, the relationship
between bit pattern and value is
straightforward binary:

0000 0000 0000 0001 1

0000 0000 0000 0010 2

-

0111 1111 1111 1110 32766
0111 1111 1111 1111 32767

111 1100 1111 1910 65534
1L 1 A 11 65535

If the variable is of the default
type signed, however, things are
different. The 16 bits in the com-
puter still represent 65536 differ-
ent values, but the permissible
range is -32768 to 32767. The
positive values between 0 and
32767 are represented by the
same bit patterns that represent

| 1000 0000 0000 0010 -32766 32770

an unsigned integer, but the
negative values are represented
as two’s-complements of the corre-
sponding positive value. A two’s-
complement is formed by first

‘reversing all of the bits (all Os
- become 1s and vice versa) and
- then adding 1, as shown below:

0011 0010 1001 1111 +12959

1100 1101 0111 0000 reverse
all bits
+1 add 1

1100 1101 0111 0001 -12959

Here’s where the possible con-
fusion arises: some bit patterns
can represent two different

 values, depending upon whether
~ they are interpreted as a signed
- or unsigned quantity. The fol-

lowing comparison shows how
Turbo C interprets a single bi-
nary bit pattern as either a
signed or an unsigned quantity:
Un-
Signed signed

1000 0000 0000 0000 -32768 32768
1000 0000 0000 0001 -32767 32769

1111 111 1111 1110 -2 65534

a1l -1 65535
0000 0000 0000 0000 0 0
0000 0000 0000 0001 1 1
0000 0000 0000 0010 £ 2

0111 1111 1111 1110 32766 32766
0111 1111 1111 1111 32767 32767

Note that for signed variables,

~ the “high-order” bit (i.e., the bit
~ farthest to the left) is 1 for all

negative values and 0 for all
positive values. Appropriately
enough, this bit is called the
sign bit.

For values between 0 and
32767, bit patterns are inter-
preted as having the same value
for both signed and unsigned
variables. Outside that range—

_for any bit pattern in which the
~ high-order bit is 1—bit patterns

are interpreted differently. We -
must be careful, therefore, to use
the appropriate format specifier
when outputting integer vari-
ables. Use %u only for variables
that have been declared as un-
signed, and use %d (or %i) only
for signed variables. W

— Peter Aitken

58 TURBO TECHNIX July/August 1988

FORMATTING

continued from page 57

quotation mark preceded by a backslash (\”) to tell
the compiler to interpret the quotation mark as a lit-
eral character rather than as the string delimiter.
This is shown in the following example:

Statement:
printf("She said "hello!"");

Output:
(Will not compile)

Statement:
printf("She said \"hello!\"");

Output:

She said "hello!"

Escape sequences are also used for the so-called
nonprinting characters, such as tabs and line feeds,
that are used to control printers and other output de-
vices. For example, \n is the escape sequence for a
newline. All of Turbo C’s escape sequences are listed
in Table 5. The \n sequence can be used to insert a
newline between the several variables passed as ar-
guments to printf, as shown in the following ex-
ample:

Statement:

printf
("%d %d %d",val1,val2,val3);

Output:
12y

Statement:
printf
("%d\n%d\n%d" ,val1,val2,val3);

Output:

1

2

5

The last two escape sequences shown in Table 5
permit you to include any character in a string by
specifying its octal or hexadecimal value.

You may think that something is missing from the
list of escape sequences—the percent sign. Since %
marks the beginning of a format specifier, don’t we

SEQUENCE INTERPRETATION
\a bell (beeps speaker)
\b backspace

\f formfeed

\n linefeed

T carriage return

\t horizontal tab

\v vertical tab

PN backslash

¢ single quote

N2 double quote

\? question mark
\DDD DDD = octal value
\xDDD DDD = hexadecimal value

Table 5. Escape sequences.

need to use the escape sequence \% to put a literal
% in the output? There’s no escape sequence for %,
however, because the percent sign has a special
meaning only in C format strings. Escape sequences
are used only for characters, such as quotation
marks, that have special meanings in all C strings. To
output a literal % with one of the ..printf functions,
simply use two consecutive percent signs: %%.

USE OF VARIABLES AS FORMAT STRINGS

Up to this point, we've specified format strings as text
enclosed in quotation marks. This method is per-
fectly adequate in many situations, but it limits flex-
ibility because the format string is hard-coded into
the program and cannot be modified at runtime. To
write programs that modify their own output format,
use a string variable for a format string.

As an example, let’s say that we need to output a
numeric variable whose value can span a wide
range. If the variable’s value is less than 1 million,
we want it to be output in decimal integer format; if
the value is greater that 1 million, we want the output
to be in scientific notation. This is accomplished by
the code in Figure 1.

char fmt_string([20];

if (value > 1000000)
strepy(fmt_string,"The value is %E");
else
strcpy(fmt_string,"The value is %d");
printf(fmt_string,value);

Figure 1. Using variables as format strings.

READY TO OUTPUT

You should know enough about format strings now

to successfully tailor the output of your Turbo C pro-
grams to suit your needs. Recall that a format string
contains one or more of these components:

1. Literal text that is output exactly as shown;

2. Escape sequences for special characters and con-
trol codes; and

3. One format specifier for each argument in the
variable list.

The Turbo C Reference Guide’s section on printf() con-
tains a short program listing that generates a variety
of output formats. By experimenting with this pro-
gram, or with your own variant of it, you can quickly
translate the information presented in this article
into a working knowledge of format strings. W

Peter Aitken is an assistant professor at Duke University
Medical Center, and is the author of DigScope, a scientific
software package. He writes and consults in the microcom-
puter field.

July/August 1988 TURBO TECHNIX 59

TURBO C

ALLOCATING FULL 64K
BLOCKS IN TURBO C

Benefit from every byte of 64K memory allocation—

without using huge pointers.

Michael Abrash

Although Turbo C’s familiar malloc func-
tion can only allocate memory blocks
smaller than 64K (even in the Huge model),
the farmalloc function can allocate blocks
of memory that are 64K bytes (and larger)
AP in every model other than the Tiny model.

Memory blocks that are 64K or smaller in size can
be accessed with far pointers; blocks that are larger
than 64K must be accessed with huge pointers. Since
code that uses huge pointers is considerably less effi-
cient than code that uses far pointers, far pointers should
be employed whenever possible. As a result, the opti-
mum size for large memory blocks is exactly 64K.

The use of farmalloc to allocate memory blocks that
are exactly 64K in size, however, presents a small prob-
lem. The far pointers to the memory blocks that far-
malloc returns don’t necessarily point to the start of a
segment. In other words, allocated far pointers don’t
necessarily have a zero-offset portion; this is beneficial
since the use of a nonzero-offset portion saves up to 15
bytes per memory block. Also, only the offset portion
of a far pointer can change. Thus, if a far pointer that
is allocated with farmalloc is used to access the high
end of a 64K block, the offset portion of that pointer
might accidentally wrap around to zero and let the pro-
gram overwrite unrelated data in an adjacent segment.

The solution is simple: Adjust the far pointer that is
returned by farmalloc so that the pointer has a zero-
offset portion. This step advances the address to which
the far pointer points by up to 15 bytes; thus we have
to ask farmalloc for an additional 15 bytes. While this
process wastes 15 bytes, it's nothing compared with the
code space saved by using far rather than huge pointers.

Listing 1, GetFarBlock, returns a zero-offset far poin-
ter to any block that is up to 64K bytes in size, thereby
solving all of the problems that are associated with ac-
cessing 64K blocks by way of far pointers. Call Get-
FarBlock whenever you want to allocate any far blocks
between 65,518 and 65,536 (inclusive) bytes in size. W

WIZARD

Michael Abrash is a senior software engineer at Orion Instru-
ments in Redwood City, California.

Listing can be downloaded from CompuServe as FULL.ARC.

LISTING 1: FULL64K.C

#include <alloc.h> /* required for farmalloc */
#include <dos.h> /* required for MK_FP, FP_SEG, FP_OFF */

/* Returns a far pointer to a block allocated on the far heap.
The offset portion of the pointer is guaranteed to be zero.
Don't forget that BlockSize must be a long, not an int! */

char far * GetFarBlock(unsigned long BlockSize)

<

char far *temp;

/* Get a block 15 bytes larger than needed */

temp = farmalloc(BlockSize + 15);

/* Adjust the pointer up to the start of the next segment
and force the offset portion to zero */

return(MK_FP(FP_SEG(temp)+(FP_OFF(temp)+15)/16, 0));

60 TURBO TECHNIX July/August 1988

WORTH THE WAIT

Waiting for one event or another —when neither may
actually occur—takes some Turbo C finesse.

Jonathan Sachs

I once had to write a specialized telecom-
munication program to call another com-
puter, log on, transfer some files, and log
~ off again—all automatically. The process
- was straightforward, but it depended up-
o on alengthy sequence of question-and-
answer exchanges between my program and the
other computer’s program. At any point, a malfunc-
tion could make the other system just “go away”—
forever fail to respond to my program’s last message.
My program had to be able to deal with that problem
gracefully. Above all, it could never be allowed to
lock up my machine, keeping it permanently waiting
for a response that would never come.
In solving this problem, I developed a set of Turbo
C routines that accomplish the following tasks:

WIZARD

® Wait for the passing of a specified time interval, or
the occurrence of a specified event (such as the
arrival of an incoming character on a serial port),
whichever comes first;

® Read and write characters to a serial port; and

® Wait for the passing of a specified time interval
alone.

These functions provide a generalized way to
wait for an event that should occur within a certain
length of time, but due to some error condition,
might never occur at all. This is a common require-
ment in programs that communicate with a modem
or other serial device. The methods used in these
routines demonstrate how function pointers can be
used to simplify and generalize Turbo C code.

TO WAIT OR NOT TO WAIT

When I began to design the program, I immediately
saw that it had to use code that follows the logic
shown in Figure 1 in order to read incoming data
from the modem.

As the design progressed, this apparently simple
logic became marvelously complex. It popped up all
over the program, always in a slightly different form.
For example, waiting “longer than we should have

while (there's nothing to read yet)
£
if (we've waited longer than we should have to)
{5
indicate a "time-out";
break;
)
)
if (no time-out)
read the next character;

Figure 1. The timeout algorithm.

to” meant different things in different cases. The
time limit might be 10 seconds for a response to a
log-on request, 2 seconds for the first character of an
incoming message, 0.5 seconds for subsequent char-
acters of a message, and so on. In some cases,
“longer than we should have to” meant that the op-
erator had gotten impatient and pressed a key on the
keyboard!

I needed to encapsulate the logic shown in Figure
1 into a set of C functions flexible enough to meet all
of the program’s various requirements. The resulting
functions are described in this article.

A MINI-TOOLBOX

The following functions comprise a mini-toolbox for
dealing with time delays in serial communications
situations:

® wait waits for an event to occur, or for a specified
time interval to elapse (whichever comes first).

® delay waits for a specified time interval to elapse
without reference to an event.

® ticsm returns the number of centiseconds (hun-
dredths of a second) since midnight. Both wait
and delay call ticsm.

® sgetc reads a character from a serial port. If no
character is ready, it returns -1, which is the cus-
tomary value of the symbol EOF (End Of File).
My application uses this function to report the
event (the arrival of an incoming character) to
wait.

continued on page 62

July/August 1988 TURBO TECHNIX 61

TURBO C

WAIT
continued from page 61

® sputc writes a character to a se-
rial port. This function is not
directly related to wait, but is
presented here for complete-
ness. Programs that perform se-
rial input usually perform serial
output as well.

HOW THEY WORK

Since wait is the most significant
function of the group, we’ll look
at it first. Listing 1 provides the
source code for wait, which ex-
pects two parameters:

1. n specifies a timeout interval,
measured in centiseconds (a
centisecond is the smallest in-
terval measured by DOS’s “get
time” function). n is small
enough to give reasonably pre-
cise control, but large enough
to let an unsigned short value
describe reasonable intervals
(up to 655.35 seconds, or about
11 minutes).

2. event is a pointer to a function
that tests whether the event of
interest has occurred. If the
event has occurred, the func-
tion returns a non-negative
short value. If not, the function
returns EOF (-1).

wait simply calls event over and
over until event returns a non-
negative value, or until n centisec-
onds have elapsed. wait reads the
time of day before the first call to
the event function and again after
each call, computing elapsed time
as the difference between the
times.

wait deals with a time interval
that spans midnight by adding the
number of centiseconds in a day
to the time of day after an event
function call occurs. Thus, the
“before” and “after” times are ex-
pressed relative to zero at mid-
night on the same day.

When wait is done, it returns
the value last returned by the
event function. This is EOF if the
timeout occurred; otherwise, it’s
the value that represents the event
(for example, the character read
from the serial port).

Notice how the event function
is identified: a pointer to event is
wait’s second parameter. In C, a
pointer to a function is represent-
ed by the function’s name, with

no parentheses after it. Thus, a
call to wait that specifies an event
function named com_in might
look like this:

result = wait(500,com_in);

For comparison, a direct call to
com_in looks like this:

result = com_in();

Inside wait, the event parameter
is declared as a pointer to a func-
tion that returns an int. Near the
end of the for loop, the function
pointed to by event is called with
no parameters.

wait would be easier to under-
stand if we made it call sgetc di-
rectly by name, dispensing with
the function pointer altogether.
But wait would then be limited to
testing for a single specific named
event. To test for another event,
we would have to write another
version of wait to call a corre-
sponding event function. A func-
tion pointer enables wait to test
for an unlimited variety of events,
which are selectable at runtime
rather than at compile time. The
result is a much more useful func-
tion that is only fractionally more
complex and less efficient.

TICSM.C (Listing 2) contains
the source code for ticsm. This
function calls Turbo C’s gettime
function, which returns the time
of day in a time structure. ticsm
then converts the time contained
in the time structure to hun-
dredths of a second.

DELAY.C (Listing 3) contains
the source code for delay. It fol-
lows logic similar to that of wait,
except that delay doesn’t call an
event function. Instead, delay
simply checks the time over and
over again, until the timeout inter-
val has elapsed.

If you understand the value of
reusable code, you're probably
wondering why delay doesn't
simply call wait with an event that
never happens, as shown in the
following code:

int no_event()
{ return(EOF); >

void delay(n)

unsigned n;
{ return(wait(n,no_event)); >
... or even with a macro, like this:
#define delay(n) wait(n,no_event)

In fact, I initially made delay call
wait. That approach caused de-
bugging problems, so I later

backed off and made delay a sep-
arate function. I'll discuss this
problem in a moment.

SGETC.ASM (Listing 4) and
SPUTC.ASM (Listing 5) contain
the source code for sgetc and
sputc, respectively. These listings
are written in assembler because
they manipulate hardware and
need to be as time-efficient as pos-
sible. An important note: Assem-
ble SGETC.ASM and SPUTC.ASM
with the /MX assembler com-
mand in force, so that the Turbo
C linker recognizes the symbols
during the link pass. For those
who wish to experiment with
these routines but do not have an
assembler, the .OB]J files are pro-
vided in the listings archive on
CompuServe.

A complete explanation of
these functions is outside the
scope of this article, since both
functions are intimately tied to the
PC’s serial communications hard-
ware. In essence, sgetc checks the
status of a COM port. If the re-
ceive buffer contains a character,
sgetc returns the character; if not,
sgetc returns —1. sputc simply
places a character in the transmit
buffer; if the buffer is already full,
the PC’s hardware forces the func-
tion to wait.

THE ROUTINES IN USE

COMTEST.C (Listing 6) illustrates
the use of the functions described
in this article. When COMTEST
receives a character from the se-
rial port, it displays the character’s
hexadecimal value and “echoes”
a character whose value is one
greater than the received charac-
ter. If the timeout interval expires
without a character coming in, the
program sends an impatient
message.

COMTEST uses a “help func-
tion” named comin to call sgetc.
This is necessary because sgetc
expects a parameter that gives a
communication port number, and
the parameter list of a call to wait
has no place for one.

To read a character, the pro-
gram calls wait with two param-
eters: the timeout interval and a
pointer to comin.

COMKEY2.C (Listing 7) con-
tains a function (com_key) that is
similar to comin but tests for two

continued on page 65

62 TURBO TECHNIX July/August 1988

TURN UP THE POWER

WITH TURBO TOOLBONES!

Add power to your Turbo language programs
with the Borland Turbo Toolboxes® They provide
you with source code and routines to be added
into your programs so you don't have to rein-
vent the wheel. And you don't pay royalties on
your own compiled programs that include the
Toolboxes' routines.

TURBO C°

TURBO C RUNTIME LIBRARY
SOURCE CODE

An indispensible tool for serious Turbo C pro-
grammers! The Runtime Library Source Code
lets you get even more out of Turbo C’s flexibil-
ity and control, with a library of more than 350
functions you can customize or use as is in
your Turbo C programs. You get the source for
the standard C library, math library and batch
files to help with recompiling and rebuilding

the libraries.

TURBO PASCAL®

Turbo Pascal Runtime Library Source Code
coming soon!

TURBO PASCAL DATABASE TOOLBOX

With the Turbo Pascal Database Toolbox you
can build your own powerful, professional-
quality database programs. Included is a free
sample database with source code and two
powerful problem-solving modules.

Turbo Access™ quickly locates, inserts, or
deletes records in a database using B+
trees—the fastest method for finding and
retrieving database information.

Turbo Sort™ uses the Quicksort method to
sort data on single items or on multiple keys.
Features virtual memory management for sorting
large data files.

TURBO PASCAL NUMERICAL
METHODS TOOLBOX

Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathematical
methods to solve common scientific and engi-
neering problems. Fast. Every time you need to
calculate an integral, work with Fourier Trans-
forms, or incorporate any of the classical
numerical analysis tools into your programs,
you don't have to reinvent the wheel. It's a
complete collection of Turbo Pascal routines
and programs that gives you applied state-of-
the-art math tools. Includes two graphics demo
programs to give you the picture along with the
numbers. Comes with complete source code

Al Borland products are trademarks or registered trademarks of Borland International, Inc

Other brand and product names are trademarks of their respective holders. Copyright ©1988
Borfand International, Inc BI 12658W

TURBO PASCAL TUTOR

Turbo Pascal Tutor is everything you need to
start programming in Turbo Pascal. It consists
of a manual that takes you from the basics up to
the most advanced tricks, and a disk containing
sample programs as well as learning exercises.

It comes with thousands of lines of commented
source code on disk, ready for you to compile
and run. Files include all the sample programs
from the manual as well as several advanced
examples dealing with window management,
binary trees, and real-time animation.

TURBO PASCAL EDITOR TOOLBOX

Turbo Pascal Editor Toolbox gives you three dif-
ferent text editors. You get the code, the manual,
and the know-how. We provide all the editing
routines. You plug in the features you want.
MicroStar™: A full-blown text editor with a
complete pull-down menu user interface.
FirstEd™: A complete editor equipped with
block commands, windows, and memory-
mapped screen routines.

Binary Editor: Written in assembly language, a
13K “black box” that you can easily incorporate
into your programs.

TURBO PASCAL GRAPHIX TOOLBOX

Turbo Pascal Graphix Toolbox is a collection of
tools that will get you right into the fascinating

world of high-resolution monochrome business
graphics, including graphics window manage-

ment. Draw both simple and complex graphics.
Store and restore graphic images to and

from disk.

TURBO PASCAL GAMEWORKS

Explore the world of state-of-the-art computer
games with Turbo Pascal GameWorks. Using
easy-to-understand example games, it teaches
you theory and techniques to quickly create
your own computer games. Comes with three
ready-to-play games: Turbo Chess,” Turbo
Bridge,” Turbo Go-Moku.™

TURBO PROLOG"

TURBO PROLOG TOOLBOX IS SIX
TOOLBOXES IN ONE

More than 80 tools and 8,000 lines of source
code help you build your own Turbo Prolog
applications. Includes toolboxes for menus,
screen and report layouts, business grpahics,
communications, file-transfer capabilities, parser
generators, and more!

TURBO BASIC®

TURBO BASIC DATABASE TOOLBOX
With the Turbo Basic Database Toolbox you can
build your own powerful, professional-quality
database programs. Includes Trainer, a demon-
stration program that graphically displays how
B+ trees work and a free sample database with
source code. The Toolbox enhances your pro-
gramming with 2 problem-solving modules:

Turbo Access quickly locates, inserts, or
deletes records in a database using B+
trees—the fastest method for finding and
retrieving database information.

Turbo Sort uses the Quicksort method to sort
data on single items or on multiple keys.

TURBO BASIC® EDITOR TOOLBOX

Turbo Basic Editor Toolbox will help you build
your own superfast editor to incorporate into
your Turbo Basic programs. We provide all the
editing routines. You plug in the features you
want! We've included two sample editors with
complete source code.

MicroStar: A full-blown text editor with a pull-
down menu user interface and all the standard
features you'd expect in any word processor.

FirstEd. A complete editor with windows,
block commands, and memory-mapped screen
routines, all ready to include in your programs.

System requirements: All Turbo Toolboxes for the IBM PS/2™ and
the IBM® family of personal computers and all 100% compatibles
PC-DOS (MS-DOS®) 2.0 or later. Turbo C Runtime Library Source
Code requires Turbo C 1.5 or later. Turbo Pascal Toolboxes require
Turbo Pascal 4.0 or later and 256K RAM. Turbo Prolog Toolbox
requires Turbo Prolog 1.1 or later and 384K RAM. Turbo Basic
Toolboxes require Turbo Basic 1.0 or later and 640K RAM

*Does not include source for graphics or floating point emulator.

/* WAIT.C: wait() */
#include <stdio.h>

extern unsigned long ticsm();

/tt'.’
* WYait a length of time or until an event occurs,
* whichever comes first.
"n" = maximum time to wait, in centiseconds.
i "event" points to a function that returns -1 if the timeout
* occurs, or a non-negative integer if the event occurs.
» This is designed primarily for use with "cgetc", which
* returns -1 for "no character ready."
* RETURNS: -1 if the time-out occurred.
* The value returned by (*event)() if the event occurred.
ttiii/
int wait(n,event)

unsigned n;

int (*event)();

<
unsigned long start_time, timeout_time, current_time;
int i;

/* Compute start time & timeout time. If the timeout time overflows
midnight, that's OK; a test inside the loop takes care of it. */
start_time = ticsm();

timeout_time = start_time + n;

/* Loop until the timeout happens or the event occurs. */
for 't ;5 &3
<

/* Compute current time. If we've wrapped past midnight, add a day's
worth of centiseconds. */
current_time = ticsm();
if (current_time < start_time)
current_time += 8640000L;

/* Check for timeout. */
if (current_time >= timeout_time)
return(-1);

/* Do the function. */

i = (*event)();

if (i!=EOF)
return(i);

/* TICSM.C: ticsm() */
#include <dos.h>

Vidiidd

* Compute the current time of day in centiseconds since midnight.
* RETURNS: centiseconds since midnight.
"it'/

long ticsm()

C

struct time tod;
gettime(&tod);

return(360000L*tod.ti_hour +
100*tod.ti_sec +

6000L*tod. ti_min +
tod. ti_hund 1]
)

/* DELAY.C -- unconditional wait. */
#include <stdio.h>

extern unsigned long ticsm();

/i""

* Unconditional wait for "u" centiseconds. This is the same as wait()
* except that it doesn't look for an event. Calling wait() would be
* easier, but would not permit us to replace wait() with a routine

* that doesn't look at time when debugging.

"'.t/
void delay(n)
unsigned n;

long start_time, timeout_time, current_time;

/* Compute start time & timeout time. */
start_time = ticsm();
timeout_time = start_time + n;

/* Loop until the timeout happens. */
for ¢ ; ;)
<

/* Compute current time. If we've wrapped past midnight, add a day's
worth of centiseconds. */
current_time = ticsm();
if (current_time < start_time)
current_time += 8640000L;

/* Check for timeout. */
if (current_time >= timeout_time)
return;

page 62,120
SGETC.ASM -- read a character from a serial port.
BE SURE TO ASSEMBLE WITH THE /MX COMMAND!!

;int sgetc(port)

; unsigned port;

JIN: port = serial port number. Any even number is interpreted
2 as 0, and any odd number is interpreted as 1.

JRETURN:EOF if no character is ready; else the character (0-OxFF).

bios equ 21H

EOF equ =1
PUBLIC _sgetc
_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS: _TEXT
_sgetc PROC NEAR

push bp
mov bp, sp
push di
push si

DX = port.

mov ax, [bp+4]
dec ax

and ax,1 ; AX = port-1, reduced to range [0-1]
push ds ; Note we save DS after usual stuffl
mov si,ax

add si,si ; SI = 2*(port-1).

mov dx, 40H

mov ds,dx ; *** DS points to device table. ***
mov dx, [si]

add dx,5 ; DX = status port address.

in al,dx ; Read line status.

test al,1 ; Receive buffer full?

jz sgetceof s Nos

xor ax, ax

mov dx, [sil ; DX = COMn data port address.

in al,dx ; read byte.

jmp SHORT sgetc2

sgetceof: ; No character ready;
mov ax,EOF ; return AX = EOF.
sgetc2:
pop ds 5 4R NS restored. *e*
pop si
pop di
mov sp, bp
pop
ret
_sgetc endp
_TEXT ends
end listing continued on page 66

64 TURBO TECHNIX July/August 1988

WAIT
continued from page 62

alternative events: either input on
a serial port, or input on the key-
board. com_key uses the standard
library function kbhit to test for
the presence of keyboard input.
Since com_key returns two pieces
of data and cannot have param-
eters (remember, it’s called
through a function pointer), it
deposits the data in global vari-
ables. This example gives you
some idea of how readily wait can
be adapted to complex situations.

WAITDEMO.C (Listing 8) is a
simplified version of the program
in Listing 6. WAITDEMO tests for
input from the keyboard instead
of input from the serial port. It’s
useful for trying out wait without
attaching a communications de-
vice to a serial port.

WHY delay DOESN’T CALL wait

I mentioned earlier that I had
written an original version of de-
lay that called wait with a pointer
to an event function that always
returns EOF. This removed any
reference to external events, and
caused wait to act like a simple
time-delay function. In true eco-
nomical programming style, I had
built upon the services provided
by wait, instead of duplicating
them.

While debugging my specialized
communications program, how-
ever, I found it useful to call an-
other computer that was running
an ordinary “plain vanilla” mo-
dem program, rather than a sec-
ond copy of my communications
program. I watched the other
computer receive my program’s
messages, and entered appro-
priate responses through the key-
board. In this testing situation, a
normally functioning wait would
have made debugging impossible,
since I couldn’t possibly type re-
sponses fast enough to prevent my
program from timing out when I
didn’t want it to.

I solved this problem by writing
a special version of wait that waits
for an event forever if the timeout
interval is specified as an even
number. The original timeout test
is shown below:
if ((current_time >= timeout_time))

return(-1);

The modified timeout test looked
like this (remember, n is the time-
out interval):
if ((n%2) &&

(current_time >= timeout_time))

return(-1);

Since timeout intervals ordinarily
are whole numbers, my program
ignores all of the even-valued
timeouts without making a single
change in its source code. I tested
the program’s timeout processing
by temporarily changing the time-
out intervals to odd values, in a
few selected cases at a time.

This trick had a side effect,
though: Because the original
delay called wait, delay ignored
even-valued timeout intervals, too.
Since delay had no event to wait
for, this made even-valued delay
calls wait forever!

I could have given all my delay
calls odd-valued timeout intervals,
but only by making numerous,
scattered changes in source code.
This was an unattractive prospect.
Instead, I wrote a separate version
of delay that doesn’t call wait, and
thus is not affected by the change
in the debugging version of wait.

I could have put the new ver-
sion of delay in a separate library
along with the older, debugging-
oriented version of delay, but I
foresaw that the problem I had
Jjust solved would recur whenever
I had to debug a program that
uses wait and delay. Therefore, it
seemed wise to leave the new, in-
dependent version of delay in my
working library, rather than to
have to remember the “gotcha”
caused by the original version
each time I debugged a program.

The moral: Principles like “de-
sign your code for reusability” are
excellent guides to good software
design, but few of them are infal-
lible, especially in sophisticated
applications. There’s no substitute
for using your own hard-won ex-
perience as a guide. When a rule
doesn’t work—break it! B

Jonathan Sachs has worked as a soft-
ware developer and technical writer
since 1971. He operates a consulting
company near San Francisco.

Listings may be downloaded from
CompuServe as WAIT.ARC.

THE WINDOW BOX

[/

WINDOW BOX (n):

1. A flower box that enhances the beauty of
a window.

2. A windowing toolbox for C programmers.

Enhance the beauty of your C applications
with THE WINDOW BOX.

ADD SOME PIZAZZ!

THE WINDOW BOX lets you ELECTRIFY
your programs with pop-up windows, pull-
down menus with highlight bar selection, and
context sensitive help. Watch your screen go
blank when your program is idle. Assign
functions to the function keys. Much more!

ADD SOME POWER!

Read many fields with one operation. Data
entry windows offer many formats, com-
plete cursor navigation, and let you tie veri-
fication functions to any field. Use scrolling
and text-editing windows, too. Print a
window, not necessarily the whole screen.
(Super for mailing labels!) Much more!

SOURCE CODE PROVIDED.

Contains no assembler code! Only standard
C code. See how things work. Understand
how things work. Change how things work.
Compatible with all major C compilers.
Requires MS-DOS/PC-DOS.

REASONABLE PRICE.

And no royalties. Only $49.50 including
shipping and tax. Or, try the demo disk and
inspect the manual for only $10. Like what
you see, and apply this $10 to the purchase
price. Overseas add $5.00 per order and we
will Air Mail.

SATISFACTION GUARANTEED, orreturnin
30 days for a full refund.
Mastercard/Visa: Call 412-487-4282.
Or, send checks (U.S. funds) to:
Vertical Horizons Software
113 Lingay Drive
Glemshaw, PA 15116

July/August 1988 TURBO TECHNIX 65

bios
EOF

_TEXT

_Sputc

_sputc
CTEXT

page

port = the serial port number. Any even number is interpreted
5 as 0, and any odd number is interpreted as 1.
;RETURN:ch.

equ
equ

PUBLIC
SEGMEN
ASSUME
PROC
push
mov
push
push

mov
mov
mov
dec
and
int
mov
xor

pop
pop
mov

pop
ret

endp
ends

62,120

ING 5 smtcnsu listing continued from page 64

SPUTC.ASM -- write a character to a serial port.

BE SURE TO ASSEMBLE WITH THE /MX COMMAND!

;char sputc(ch,port)

; char ch;
; unsigned port;
;IN: ch = the character to put.

21H
=1

_sputc
T BYTE PUBLIC 'CODE*
cS: _TEXT
NEAR
bp
bp, sp
di

al, [bp+4]
ah,1

dx, [bp+6]
dx

dx, 1

14H

al, [bp+4]
ah,ah

~ we s

si
di
sp, bp
bp

LISTING 6: COMTEST.C

AL
AH
DX

Do
AL
AX

= Wchn,

= 1 (for "output").

= port

= port-1, reduced to range [0-1]

its
= MchM, ..
= MchM,

/* COMTEST.C -- a test of the SGETC and SPUTC functions. */

#include <stdio.h>

extern int wait();
extern void delay();
extern int sgetc(), sputc();

Vidiiid

*This is the event function.

* or EOF if none is waiting.

TREAR)

int comin()

return(sgetc(1));
>

main()

int i;

It returns the next COM1 character,

printf("Press a key on a serial device connected to COM1;");
printf("\nPress ENTER on the serial device to quit.");

while (

i

= wait(500,comin))

<
if (i == EOF)
printf("\nCome on, press a key! ");

else
¢

= 0x00)

printf("\nThe hex value of that key is 0x¥2X.", i);
sputc(i+1,1);

b
>

delay(50);
printf("\nGoodbye, world!\n");

>

LISTING 7: COMKEY2.C

#include <stdio.h>

/"'.Q

*This is the event function. If a keyboard character is ready it
returns the character in "keyready"; else it returns EOF.
Similarly, if a character is waiting on the serial port it returns
character in "comready"; else it returns EOF. The function waits
for one of the above to be ready, giving preference to the com
port, or for a timeout. It handles function keys, etc., in the
customary way: by returning 0 in the low byte and the scan code
in the high byte. The function returns 0 if EITHER a keyboard
character or a serial character is read; EOF if NEITHER is ready.
itﬁt.ﬁ/

int com_key()

*

% % % % %

/* Initialize keyready. */
keyready = EOF;

/* Set comready to serial data or EOF. If EOF, return. */
comready = sgetc(1);
if (comready != EOF)

return(0);

/* No serial data. If no keyboard data, return. */
if ('kbhit())
return(EOF);

/* Keyboard data is available. If it's ASCII, getche() returns its
value. If it's an extended key, getche() returns 0 & a subsequent
getch() returns its scan code. */
keyready = getche();
if (!keyready)
keyready = getch() << 8;
return(0);
>

LISTING 8: WAITDEMO.C

/* WAITDEMO.C -- a demonstration of the WAIT and DELAY functions. */
#include <stdio.h>

extern int wait();
extern void delay();

/.'*Q-

*This is the event function. It returns the next keyboard character,
* or EOF if none is waiting. It handles function keys, etc., in the
* customary way: by returning 0 in the low byte and the scan code in
* the high byte.

l'ﬁiﬁ/
int keyin()
<

int i;
if (kbhit())

/* A key was pressed. If it's an ASCII key, getche() returns
its value. If it's an extended key, getche() returns 0 & a
second getche() returns its scan code. */

i = getche();

R D
return(i);

else
return(getch() << 8);

else
return(EOF);
2

main()
<
int i;

printf(
“Press a key and I'Ll tell you its hex value, or ENTER to quit. ");

while ((i = wait(500,keyin)) 1= O0x00)

<

if (i == EOF)
printf("\nCome on, press a key! ");

else
<
printf("\nThe hex value of that key is Ox%2X.", i);
printf("\n\nPress another key. Press ENTER to quit. ");
>

)

delay(50);
printf("\nGoodbye, world!\n");
)

66 TURBO TECHNIX July/August 1988

With EVERYTHING!

Is your editor OUT TO LUNCH?

Does it handle ALL OF YOUR NEEDS?

~ + Is it flexible, programmable and reconfigurable?
« MOST IMPORTANTLY, is it EASY TO USE?

OR WOULD YOU RATHER BE EATING PIZZA?
Only MULTI-EDIT tastes this good!

Fully automatic Windowing and Virtual Memory
Edit multiple files regardless of physical memory size
Easy cut-and-past between files
View different parts of the same file

Powerful, EASY-TO-READ high-level macro language
Standard language syntax
Full access to ALL Editor functions

Language-specific macros for C, PASCAL, BASIC
and MODULA-2
Smart Indenting
Smart brace/parenthesis/block checking
Template editing
More languages on the way

Multi-Edit

Yes

Yes

Yes Yes No No

Yes Yes Yes No Good

3 "
Line, stream and column blocks Yes Yes No No Knife
Automatic file save Yes Yes No No No

Online help Extensive | Limited | Limited | Limited | Extensive

Terrific word-processing features for all your

cmmeﬁe?wﬂe commands or - ~ Meny documentation needs
menu system Yes No No Yes | Available Intelligent word-wrap

Automatic pagination

Full print formatting with justification, bold type, underlining
and centering

Flexible line drawing

Even a table of contents generator

Function Key assignments fabeled
on screen {may be disabled)

Word processing functions

Yes No No No No
Extensive | Limited | Limited | Extra Cost| Difficult

Deep
Yes No No No Dish

- Complete DOS shell Compile within the editor

Automatically positions cursor at errors
Allocates all available memory to compiler

Complete DOS Shell.
Scrollable directory listing
Copy, Delete and Load multiple files with one command
Background file printing

Regular expression search and translate

Pop-up Programmer’s Calculator and
ASCII Table Yes No No No ASCIH No

Unlimited ‘Off the Cuff’ Sauce on
keystroke macros Yes No No Yes Cuff often

Allocates all available memory to Lots
,comnilef when run from within editor] Yes No No No of bytes

_ Intelligent indenting, template editing

and brace/parenthesis/block . SERE
matching a?,dc,,eckmg for G, Limited Condensed Mode display, for easy viewing of your
PASCAL, BASIC and MODULA-2 Yes C Only No Limited |Intelligence program structure

Pop-up FULL-FUNCTION Programmer’s Calculator
and ASCII chart

and MOST IMPORTANT,
the BEST USER-INTERFACE ON THE MARKET!
Extensive context-sensitive help

Get Our FULLY FUNCTIONAL DEMO cuuv for umu s‘ Choice of full menu system or logical function key layout

Function keys are always labeled on screen

Flexible condensed mode display Yes No Yes No Definitely
PRICE $185 | About $12

To Order, Call 24 hours a day: American K(”Obguejsmg requireai!) S, S PR L A
1-800-221-9280 Ext. 951 Cybernetics E:tyen(;?\;e r:]ngzst;esiaSI g r‘;'econ igured and re-labele
In Arizona: 1-602-968-1945 1228 N. Stadem Dr. o

Easy, automatic recording and playback of keystrokes

Credit Card and COD orders accepted. Anchovies easily removed

Tempe, AZ 85281

Requires IBM/PC/XT/AT/PS2 or full tible, 256K RAM, PC/MS-DOS 2.0 or later.

Multi-Edit and American Cybe?r:e:c:ao::??aées\arks of American Cybernetics?ébglg: MULTI'ED’T COMB’NES POWER WITH
is a trademark of Und . Inc. Norton Editor is a trad k of Peter Nort

Computing?rln:. Verc‘litei?laa::gig:are: tr:gem;rcl)(r; ?Jorripiv:w ?’rogui:rts l(:\c,ogopy- EASE OF USE Ll KE NO OTHER EDITOR

right 1987 by American Cybernetics. ON THE MARKET TODAY.

aradox 2.0, the top-rated
Network, 386, and

Paradox” is both the first family in
DBMS and the top-rated relational
database. Software Digest has
ranked Paradox #1 for the past

2 years; PC Magazine gave Paradox
its “"Editor’s Choice’" award and
InfoWorld named it 1987 “*Product
of the Year™ for Database Systems.

Now there’s 0S/2

Paradox 0S/2 is the newest
member of the Paradox family—
more are on the way and they're all
100% compatible with each other.

Paradox 0S/2 allows you to take
advantage of powerful 0S/2 fea-
tures such as addressing up to 16
megabytes of memory and running
concurrent sessions. And Paradox
0S/2 even lets you start new 0S/2
sessions from within Paradox.

*Customer satisfaction is our main concern; if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund

All Borland products are trademarks or registered trademarks of Borland International, Inc. Other
brand and product names are trademarks of their respective holders. Copyright ©1988 Borland
International. Inc. BI 1228A

I s Y
A —

Harness the power of 386

Paradox 386 is powerful new
DOS software for your powerful
new hardware and it's designed
exclusively for 80386-based sys-
tems. It also lets you ignore the old
640K limits and races through your
data 32 bits at a time instead of just
16. It's a perfect solution for
anyone faced with very large tables
(tens of thousands of records or
more) and/or large applications.

€€ As proof of Borland’s commit-
ment to delivering compatibility
across diverse hardware and soft-
ware environments, Paradox 386
and Paradox 2.0 can share the
same databases and applications
on a network.

Giovanni Perrone, PC Week

Paradox . . . it's the PC database-

management system equivalent to

turbo-charging an M-series BMW.
Giovanni Perrone, PC WEEK ,,

The Paradox Network
really works

Network users, you need
Paradox’s multiuser capabilities.
The network runs smoothly, intelli-
gently and so transparently that
multiusers can access the same
data at the same time—without
getting in each other’s way. (But
safeguards prevent multiple users
from altering the same data at the
same time.) And with screen
refresh you get real-time data
updates on your screen.

€€ [Paradox is| a true network
application, a program that can
actually take advantage of a net-
work to provide more features and
functions, things that can’t be done
with a standalone PC.

Aaron Brenner, LAN Magazine

[Paradox] elegantly handles all
the chores of a multiuser database
system with little or no effort by
network users.

Mark Cook and Steve King
Data Based Advisor , ,

relational database, has
now OS/2 versions!

" ’I///ll//ﬂl//l/l//l//lllll o

“Query-by-Example” gives you
the right answer, right now

Our “Query-by-Example’ (QBE)
technique is just one illustration of
the technological leadership offered
by Paradox for the past 2 years.

(OBE is fast and simple to use.
Simply call up a form and check off
the information you want.

{ [F6] to include a field in the ANSUER; [FS) to give an Exaple 715 =
&‘MTSM ;T(MMT_—M,;—_—I_—SWQ—
PRODICT: Stock ripti

5]: Tﬁ ipt .,Tm MT_QW

Mink Imlergl(uefs un
Robot-valet

bt
= B!

823,

-valet
Hink Muthmls [{0)]
Robot-ual

SIRGIRIEIRT
=zssssss88

ot
BRS;

Without having to write a line of
code, you can, for example, get an-
swers to queries like: Find all the
items we sold for more than $1000
and tell me who ordered them.

An artificial intelligence tech-
nique called “‘heuristic query

optimization' gives Paradox’s QBE
the ability to figure out not just the
right answer, but also the fastest
way to get the right answer.

(OBE makes high-speed links
between one piece of data and
another and quickly sees the rela-
tionships your question calls for.

PAL:™ A powerful
programming language

PAL, the Paradox Application
Language, is a full-featured, high-
level, structured database program-
ming language that lets you write
sophisticated Paradox programs
(scripts) and applications. It in-
cludes such powerful features as
looping constructs, arrays, branch-
ing, procedures, and a full set of
functions.

€€ Most people we meet who
give Paradox a try, end up
switching to it .

Mark Cook and Steve King
Data Based Advisor ,,

There’s a Paradox 2.0
version for you

Whether you're a DOS or
0S/2 user, there's a Paradox
version for you.

60-Day Money-back Guarantee*

For a brochure or the dealer nearest
you, call (800) 543-7543

BORLAND

INTERNATIONAL

TURBO PROLOG

CERTAINTY FACTORS IN

TURBO PROLOG

Applications in chemistry: An infrared spectroscopy
peak-matching facility for the identification of small

organic compounds.

Tom Castle

A major aspect of analytical chemistry
deals with obtaining experimental data in
order to identify or quantify a chemical
compound. One of the main tools used
by a chemist to gather this data is spec-
troscopy. For those who slept through
Chemistry 101, spectroscopy is an instrumental method
that measures the interaction between a material
and electromagnetic radiation (most commonly,
light). Some spectroscopic methods rely upon the ab-
sorption of light by a material; other methods de-
pend on either scattering or fluorescence.

Infrared (IR) spectroscopy is a standard tool of the
analytical chemist. The spectrum of infrared light is
of sufficient energy to cause various vibrational ex-
citations of organic molecules when the light is ab-
sorbed. Depending on the chemical nature of the
bonds within the molecule, different frequencies are
absorbed. In fact, one type of bond may absorb sev-
eral different frequencies of infrared light, depend-
ing on the vibrational mode of excitation. Thus,
even a simple molecule possesses a complex and
unique infrared absorption spectrum. Because of
this uniqueness, the technique for identifying small,
organic molecules is extremely valuable. A typical IR
spectrum is shown in Figure 1.

PROGRAMMER

% Transmittance

90
80
70
60
50
40
30
20
10

AR v by B F e e el

4000 3000 1200
Frequency (cm™)

Figure 1. A typical infrared absorption spectrum.

2000 1600

800 600

The complexity of an IR spectrum, and the unique
relationship between a compound and its spectrum,
are a blessing and a curse. On the positive side,
matching an experimental spectrum to the spectrum
of a known compound is unequivocal evidence for
an identification. On the negative side, the sheer
complexity of a spectrum only allows estimates of
substructure classes based upon visual inspection of
the spectrum. Luckily, computers appeared on the
scene.

Since that time, chemical structure elucidation has
become heavily dependent on computers. The
chemist not only uses the computer to perform liter-
ature searches of various compounds, families, and
substructures, but also accesses huge databases that
contain virtually any physical or chemical property
of most compounds.

An expert system can help maximize the benefits
of computers and computer-based information. An
expert system is simply a machine equivalent of a
person who is knowledgeable about a specific range
of subject matter. The system must be able to make
decisions based upon the facts in its database, to an-
swer queries, and to explain its answers to the user.
(For a detailed look at expert systems, see TURBO
TECHNIX, March/April, 1988.)

IR PEAK MATCHING PROGRAM

Listing 1 shows a bare-bones expert system for the
identification of organic compounds using the pro-
cess of peak matching the infrared spectra of exper-
imental and known compounds. For the sake of sim-
plicity, I've kept the database to a minimum. Each
record contains a compound name and a list of the
integer values of the absorption peaks for that
compound. Intensity values for the various peaks
are not considered. The permanent database
(IRPEAKS.DAT) is shown in Listing 2.

70 TURBO TECHNIX July/August 1988

Run the program in Listing 1
and enter experimental values.
The program compares those
values to the lists of peak frequen-
cies in the database. The intersect
rule (adapted from the difference
rule found in Ivan Bratko’s book,
Prolog Programming for Artificial
Intelligence) is used to find the
common elements in the two lists.
Once the number of common ele-
ments is determined, a score is as-
signed based on the degree of
matching. The compounds with
scores greater than a threshold
value (arbitrarily set at 50 percent)
are asserted into a temporary
database.

Data reliability
hinges on three
separate condi-
tions: accuracy,
precision, and

reproducibility.

Once all of the “hits” have
been asserted, they are converted
into a list (using db_list) and
sorted. The sorted list is then dis-
played by the write_list predicate.
The user also has the opportunity
to examine the actual database in-
formation for any record that
came up in the “hit” list. Although
the program is simple, it exempli-
fies an important consideration in
data analysis—uncertainty.

DATA RELIABILITY

Data reliability hinges on three
separate conditions: accuracy, pre-
cision, and reproducibility. For
numerical data, these are com-
monly recognized terms. Accuracy
is the conformity of a measure to
a true or standard value. Precision

continued on page 72

LISTING 1: IRANAL.PRO

/****i*********t***********************t******t*********************/

/*
/*
/*
/*
/*
/*
/*
/*

IRANAL.PRO
Using Turbo Prolog for the
identification of small organic chemicals
by Infrared Spectroscopy

copyright (c) by Tom Castle, 1988

/******t**t*/

/*******t**tti**************i*l

The following program was designed to provide assistance in the */
structure determination of small, organic molecules from simple */

/*

data sets obtained from infrared spectroscopy.
simple example of a typical EXPERT SYSTEM. Our input data is
compared against facts stored in a database by use of the
designed INFERENCE ENGINE. Two important ideas are approached
by this program. The first is CERTAINTY.
is an approximation of how confident we feel about the data
presented or the answers obtained from the INFERENCE ENGINE.
The peak matching facility generates a CERTAINTY SCORE which
is calculated from the total number of matches and mismatches

encountered between experimental data and database information.

The second idea probed is GATING for searching unreliable
numerical values in a database. Much of what science tells us
is wrong. Wrong in the sense that it is generally an
approximation although sometimes a very precise approximation.

The CERTAINTY SCORE

The program is a*/

a/
7
*
.
%7
*/
*/
*/
o
2/
oy 4
oL
*/

Wrong also in the sense that facts are generally a statistically*/
derived value of observations continually being refined to more */

closely reflect the truth. We must use GATING to offer
ourselves a window of variable width with which to search for
facts in the database since databases only recognize exact
instances of unification. Life generally isn't that black and
white.

*/
B/
&
=/
*/

/******************************t********i***************************/

DOMAINS

sampling = real
certainty, data =
name = string
target = t(name,certainty,sampling)
targetlist = target*

datalist = data*

integer

INCLUDE "tdoms.pro"

DATABASE

/* This is the permanent database predicate kept in the
/* file "irpeaks.dat" : compound name and ir peak list

compound(name,datalist)

/* The next few database predicates are temporary items
/* to hold the analysis and search results.

certain_thresh(integer)
exp_data(datalist)
gate_width(integer)
hits(target)

PREDICATES

adjust_cursor(ROW,COL ,ROW,COL)
bubblesort(targetlist,targetlist)
db_list(targetlist)

examine_answers
gated_member(data,datalist)

get_data
intersect(datalist,datalist,datalist)

*/
57

o

July/August 1988 TURBO TECHNIX 71

/*
/*
/i
/t

INCLUDE
INCLUDE

GOAL

CLAUSES

/************i****************t********************it**i************/

GOAL.

list_len(datalist, integer)
makelist(datalist,ROW,COL)
match

process(integer)
process1(integer)
retract_temps
swap(targetlist,targetlist)
write_answers(targetlist)
write_hits(targetlist,integer)
write_list(datalist,ROW,COL)
“tpreds.pro"

"menu.pro"

consul t("irpeaks.dat"),
assert(gate_width(10)),
assert(certain_thresh(50)),
makewindow(1,32,7," IR Peak Matching Facility *,0,0,25,80),
repeat,
clearwindow,
menu(10,30,23,7,

["Enter IR Data",

"Search",

“Change Gate Width",

MExit"] -

#4# 1, Choice),
process(Choice).

USER INTERFACE */

The PROCESS clauses are the responses to the menu items in the */
The PROCESS1 clauses respond to the second menu for =

ning database records. *y

exami

/*************************i******************************t***t******/

process(0):- fail.
process(1):- get_data, !, fail.
process(2):- match,
db_Llist(List),
bubblesort(List,SortedList),
write_answers(SortedList),
examine_answers,
retract_temps, !, fail.
process(3):-

gate_width(GateWidth),

write("The current variability gate for the "),

write("search is set at ", GateWidth,"."), nl,

write("Enter a new gate size or hit <Return> :

readint(New),

retract(gate_width(_)),

asserta(gate_width(New)), !, fail.
process(4):- exit.

II),

get_data:-
retract_temps,
clearwindow,
cursor(1,10),
write("Enter data obtained from IR analysis"),
cursor(2,10),
write(" Hit <Return> to quit."),
makelist(Datalist,4,3), /* a writelist with cursor */
asserta(exp_data(Datalist)).

write_answers(List):-
clearwindow,
field_str(0,2,20,"Compound"),
field_str(0,25,20,"Certainty Score"),

field_str(0,45,20,"sampling Score"),
write hits(List,2).

CERTAINTY FACTORS
continued from page 71

is the degree of tolerance or re-
finement of a measurement. Re-
producibility is generally a statisti-
cally derived value that represents
the variation of a parameter be-
tween different measurement
events.

The collection and processing
of IR peak data illustrate how
experimental data can become
unreliable. The peak frequencies
can be obtained by having the
spectrophotometer generate peak
tables from the spectrum. Alterna-
tively, peak lists can be generated
by either visual inspection or me-
chanical digitization of a pub-
lished spectrum. The method used
to obtain peak lists dictates the de-
grees of accuracy, precision, and
reproducibility.

Non-numerical data can also be
subject to these conditions of data
reliability. If questioned about a
given quality, the answer could be
wrong (accuracy), vague (preci-
sion), or change from one query
to another query (reproducibility).
It’s also difficult to establish a
hierarchy for descriptive terms
such as “good,” “ok,” “satisfac-
tory,” “partly cloudy,” and so
forth. To increase data reliability,
this type of subjective data is often
converted into numerical terms.

How do we take data reliability
into account? A quick-and-dirty
method to compensate for unre-
liability is gating, where all exper-
imental values are given a plus or
minus tolerance of a specified
amount. Experience dictates how
wide the gate should be. Some sit-
uations are amenable to statistical
analysis for determining the ap-
propriate gate width. I've provided
a way to adjust the gate width in
Listing 1.

To incorporate gating into the
program, I changed the common
member predicate to the
gated_member predicate. The
new rule succeeds if a value is
within a range that is specified by
the gate width on either side of
any member in a list.

72 TURBO TECHNIX July/August 1988

DATA SAMPLING

One area of data reliability, data
sampling, doesn’t involve the nu-
merical values of the data them-
selves. Using the IR spectrum
again as an example, there are
many small intensity and partially
overlapping peaks in any IR spec-
trum. These data may or may not

" The program
must assign a score
that reflects the
amount of match-
ing from each data-
base record. This
score is often called
a certainty or

confidence factor.

be entered into peak lists. For in-
stance, one chemist might count
a different number of peaks than
another chemist, or obtain the
data from a slightly different spec-
trum of the same compound, or
use a different method of gener-
ating peak lists for different com-
pounds.

The user should have some in-
dication if there are differences in
sample size between the experi-
mental data set and the database
records. Although there are rigor-
ous statistical tools for evaluating
sampling, the sampling score has
been kept simple. The equation is:
Sampling_Score = 1 / (abs(Db_len -
Exp_len) + 1)

Db_len and Exp_len represent the
number of members in the data-
base and experimental lists, re-
spectively. The abs operator ob-
tains the absolute value of the

continued on page 74

write_hits([1,_).
write_hits([t(N,C,S)|T],Row):-
field_str(Row,2,20,N),
Rowl = Row + 1,
cursor(Row,30),
write(C),
cursor(Row,50),
writef("%3.2",8),
write_hits(T,Row1).

examine_answers:-
repeat,
menu(15,50,7,7,

["Examine Database Entry",
“Return"], ", ,1,Choice),

process1(Choice).

process1(0):- fail.
process1(1):-
ni,nl,

write("Enter the compound name you want to examine :

nl, readln(Name),nl,
cursor(Row,),
compound(Name ,Exp_Llist),

II)'

write_Llist(Exp_list,Row,3), !,

fail.
process1(2).

retract_temps:-
retract(exp_data(_)), fail.
retract_temps.

/******i**/

/% LIST MANIPULATIONS

¥/

/* Most of these are derivatives of the common */
/* predicates: readlist, writelist, listlen *f
/* found in the TProlog Reference Manual or the*/
/* TProlog Toolbox TPREDS.PRO file. s

/****i*t*t*t*****t******ii**********************/

makelist([H|T],Row,Col):-
cursor(Row,Col),
readint(H), !,

adjust_cursor(Row,Col ,Row1,Col1),

makelist(T,Row1,Col1).
makelist([l,_,_).

write ListCl), ,):= L.
write_List([H|T],Row,Col):-
cursor(Row,Col),

write(H),

adjust_cursor(Row,Col,Row1,Col1),

write_List(T,Row1,Col1).

adjust_cursor(R,C1,R,C2):-

CY < 70; 1,
€2 =C1 + 6.
adjust_cursor(R,_,R1,C):-
cC =6,
R1 =R + 1.
list_len([1,0). /*
list_len([_|T1,N):- /*
list_len(T,X), Y ot
N=X+1. r*

the listlen predicate in the */
Toolbox TPREDS.PRO file has a */
stringlist domain for its arg.*/
This has an integerlist. bt 4

July/August 1988 TURBO TECHNIX

73

/****************i**i**i************i******************ii*******i***/

/*

INFERENCE ENGINE

2,

/* These are the rules which govern the search capabilities of the */
/* program along with the processing and decision-making functions.*/

/* The main rule is MATCH which counts the number of matches and

/* mismatches between the ir experimental data set and the

/* database data sets.

/* stored in a list.

A CERTAINTY or CONFIDENCE value is
/* calculated along with a SAMPLING DIFFERENCE value.
/* entries with a CERTAINTY SCORE over a threshold value will be
That list is then presented to the user.

/* opportunity to inspect a database record is also available.
/*******i***********i*'*******i*****ﬁ*******************************l

match:-

exp_data(Exp_list),
list_len(Exp_list,Exp_Llen),
cursor(1,30),
write("Searching Database"),
compound(Name,Db_List),

intersect(Exp_list,Db_List,Common_list),

list_len(Db_list,Db_Llen),
list_len(Common_Llist,Com_Llen),

min(Db_len,Exp_len,Min_Llen),
Certainty = (Com_len * 100) / Min_len,

certain_thresh(T),
Certainty > T,

Sampling = 1 / (abs(Db_len - Exp_len) + 1),
asserta(hits(t(Name,Certainty,Sampling))),

fail.
match.

/*******#****t******************************t********[

/12 MORE LIST STUFF
/* The GATED_MEMBER is a take-off of the MEMBER *y
/* predicate found in the TProlog Reference Manual. */
/* The INTERSECT rule finds items from the first L
/* list that are common to the second list and =4

/* places them in a third "common" list.

*/

It is *y

/* derived from the DIFFERENCE rule found in Ivan */
/* Bratko's Prolog Programming for Artificial Intel.*/
/* The DB_LIST predicate converts the HITS database */

/* records into a list.

That seemed easier than */

/* creating a list in the first place. 7
/* The BUBBLESORT and SWAP rules are also from */
/* Bratko. (Steal from the best.)

/******i*******i*ﬁ***********************t********t**/

gated_member(X, [Y|_1):-
gate_width(GateWidth),
X < Y + GateWidth,
X > Y - GateWidth, !.
gated_member(X, [_|Taill):-
gated member(X,Tail).

intersect([1,_,[1).

intersect([X|L1],L2, [X|L]):-

gated_member(X,L2), !,

/* if X is within the range

/*
/*
/*
/*

*

WA
*f
L

The database*/

7

An */

=

/* this is what the psychologists*/
/* call free association.*/
/* It is unrestrained */

/* backtracking. */

retrieve the gate width */
is X within the range of*/
the dbase value +/- the */

gate?

&7

x/

/* of any of the items in the*/

intersect(L1,L2,L). /* second list, add it to the*/
intersect([_|L1],L2,L):- /* third. If not, go on to */
intersect(L1,L2,L). /* the next member of the 1st*/

CERTAINTY FACTORS
continued from page 73

difference. This guarantees that
the denominator is always posi-
tive. The value of 1 is added to the
absolute difference of the list sizes
to avoid division by zero errors,
and to give a value of 1 for lists of
equal size.

SEARCH CERTAINTY

The experimental data will sel-
dom, if ever, match a database
record exactly. This will be true
even when gating is applied.
Therefore, the program must as-
sign a score that reflects the
amount of matching from each
database record. This score is of-
ten called a certainty or confidence
factor. The certainty factor, like the
sampling score, has nothing to do
with probability statistics; rather,
it’s a general indication of the cer-
tainty of a given answer. To calcu-
late the certainty score, take the
number of elements in the exper-
imental list that are common to a
database record. Then divide by
the smaller number of elements
of the two lists, and multiply by
100 to get a percent value. This
score determines whether a data-
base record is a “hit.”

IMPROVEMENTS

Dealing with uncertainty is a com-
mon feature of most expert sys-
tems. A true expert system, how-
ever, should be able to tell the
user if additional information is
required to make a better identi-
fication. A more sophisticated sys-
tem might keep database records
of a companion list of peaks in
database records that just barely
missed selection with the defined
gate. The program could then in-
form the user of better matches
with slightly wider gates. Commer-
cial IR peak-matching programs
always tell the user to compare the
actual hardcopy spectra before
making an identification. This is
a sound approach.

The program could also be im-
proved to make better use of

74 TURBO TECHNIX July/August 1988

the IR spectra information. Sub-
structure information for each
compound could be incorporated
into the database, since each ab-
sorption peak in a spectrum indi-
cates a specific chemical bond

Other analyti-
cal techniques
could be used to en-
hance the identifi-
cation methods,
such as ultraviolet-
visible spectro-
scopy, which aids
in structure

identification.

type and environment. The pro-
gram could then interpret the
peaks and report on the substruc-
tures, and could also report the in-
terpretation of the experimental
spectrum even if good matches
were not found in the database.

Other analytical techniques
could be used to enhance the
identification methods, such as
ultraviolet-visible spectroscopy,
which aids in structure identifica-
tion. Additional techniques that
provide very specific information
about compounds include mass
spectrometry and nuclear mag-
netic resonance spectroscopy.

Keep in mind, however, that
more information necessitates
more sophisticated programming.
Several new problems will emerge
if you try to make a single identi-
fication from several analytical
methods. These are the dragons
of incomplete data and conflicting
data. ®

Tom Castle is a chemist in Kalama-
zoo, Michigan. He writes software re-
views and C programming articles for
Atari ST magazines.

Listings may be downloaded from
CompuServe as IRANAL.ARC.

db_List([t(Name,Conf,Samp)|T1):-
hits(t(Name,Conf,Samp)),
retract(hits(t(Name,Conf,Samp))),!,
db_Llist(T).

db_Llist([]1).

/* retireve the db*/
/* info, add to */
/* list & discard.*/

bubblesort(Unsort,Sort):-
swap(Unsort,L), !,
bubblesort(L,Sort).

bubblesort(Sort,Sort).

swap([t(N,C,S),t(N2,C2,S2)|T1, [t(N2,C2,S2),t(N,C,S)|T1):-
c < c2.

swap([t(N,C,S)|T1], [t(N,C,S)|T2]):-
swap(T1,T2).

LISTING 2: IRPEAKS.DAT

compound("acetophenone", [3400,3350,3070,3000, 1683, 1595, 1580, 1450,
1356,1265,1175,1075,1020,953, 755 687])

conpound("aumomun benzoate“ [3000 1710 1600 1550,1385,1068, 1022,
835,720,708, 685 680])

conpound("amsole" [3060 3030 3000,2950,2835, 1920, 1840,1770, 1690,
1590, 1480, 1460, 1450, 1330, 1300, 1245, 1075 1030,875, 775 750
680])

compound("benzyl alcohol", [3300,2985,2857,1960, 1875, 1825, 1497, 1471,
1453,1208,1017,735,6971)

compound("cyclohexane", [2910,2840,2550, 1443,1251,900, 8551)

compound("cyclohexanone", [2930, 2840 1710 1450 1425 1340 1310,1222,
1120,1053,1018,908, 853 7108])

compound("1- decene" [3049 1645 1470 1390,986,907,7201)

compound("heptanoic acid", [3000 2950 2920 2850 1715 1455,1408,1280,
1230,1200,1100 930])

con'pound("hexane“ [2980 2920 2860, 1468,1378,7251)

compound("1-hexyne", [3268 2941 2857 2110 1470 1430,1247,1105,6671)

compound("isobutyramide", [3350 3170,2960,1640, 1468 1425,1290,1140,
6501)

compound("leucine-(D,L)", [2965,2910,2840,2500,2140,1610,1580, 1505,
1455,1405,1350,1300, 1285, 1225, 1130,848,765,6751)

conpound("mes1tylene" [3003 2940 2874 1760 1720 1610 1475,1390,1038,
837,6871)

compound("ni trobenzene", [3100,3080,2860,1610,1605,1520, 1478, 1345,
1315,1108,1070,1022,935,852,793,702,680])

compound("octylamine", [3365,3290,3200,2910,2850,2817,1620, 1458, 1370,
1063,7901)

compound("2- pentanol" [3333,2907,1460,1361,1142,1101, 1058, 1030, 1000,
948,905,890,828, 757])

compound("2- pentanone" [2955 2930,2866,1725,1465,1430,1370,1295,
1273,1260,1172,965,900,727])

compound("phenol", [3333,3045, 1925, 1840, 1770, 1700, 1580, 1495, 1468,
1359,1223,1067,1020,998, 805, 745,6851)

compound(“phenyl acetate", [3070 3040 1770 1593,1493,1360, 1205, 1183,
1068,1025,1010, 923 892,813,748 695])

compound("2- phenyl proplonaldehyde" [3077 3040,2985,2941,2874,2825,
2717,1730,1600, 1497, 1453, 1389, 1070, 1020 8980 860 749 699])

conpound("proplomc anhydrlde" [2990 2950 2880 1825 1758 1465 1420
1348,1265,1090,10401)

July/August 1988 TURBO TECHNIX 75

TURBO PROLOG

FAILING WITH GRACE

Replace recursion with iteration—and save memory.

Edward B. Flowers

Prolog’s descriptive nature—and its ability
to perform recursion—make it an ideal
language for modeling ideas. However,
since recursion tends to use a great deal
of memory, the programmer must keep
memory usage in mind when developing
large programs.

Programs that employ a menu-driven front end for
obtaining and directing user input are particularly
interesting challenges in Prolog. Such front ends use
a loop to handle the process of displaying a menu,
allowing the user to select an item from the menu,
carrying out the action required by the menu choice,
and returning the program to the menu so that the
user can make other selections. In this article, I'll
show how to economize the use of memory by em-
bedding menus within repeat..fail and repeat..
condition loops. I'll also briefly discuss the role of re-
cursion in memory usage. Finally, I'll present itera-
tion as an alternative to recursion, and will cover me-
thods for controlling the side effects caused by
backtracking in a repeat..fail loop.

RECURSION VERSUS ITERATION

The beauty of recursion is that it allows us to de-
scribe an iterative process in just a few statements.
Recursion is logically simpler than iteration, because
recursion more closely models the way we think. Re-
cursion is used to solve problems that contain an-
other problem of the same kind within the larger
problem. For example, an algorithm for taking the
average of the numbers one through ten can be
stated in the following five steps.

SQUARE ONE

1. Check if ten values have been summed together.

2. If so, divide the sum by ten in order to take the av-
erage of those values, and then quit.

3. Otherwise, add the value one to the current
number that is being added to the sum.

4. Add that value to the current sum.
5. Start over with step 1.
In Turbo Prolog, this process translates into:

average(10,S):-

Average = S/10,

write("The average is ", Average),nl.
average(X,Y):-

N s X+ 1,
NewSum = Y + N,
average(N,NewSum).

Notice how closely these clauses match the
algorithm.

Recursion, then, provides a natural and logical
way to describe a problem. Unfortunately, recursion
can use considerable amounts of memory because
Turbo Prolog creates a record in memory, called a
“stack frame.” The stack frame maintains the value of
variables at each recursion, as well as the pointers to
which the program returns after the particular recur-
sion. As a recursive call proceeds, the program uses
up more and more memory as additional frames are
created. If enough calls are made to exhaust avail-
able memory, then the program fails.

Turbo Prolog recognizes a special case of recur-
sion, called tail recursion, which occurs when the re-
cursive call is the last call in the clause (as shown in
the previous code sample). In such cases, Turbo
Prolog uses optimization techniques to minimize
memory demands. (For more on this topic, refer to
“The Tail Recursion Tiger,” TURBO TECHNIX, Jan-
uary/February, 1988.) Recursive clauses, however,
cannot always be made tail recursive.

continued on page 78

76 TURBO TECHNIX July/August 1988

Reflex: the database that
maximizes your decision power

T 0 get ahead in business, you
must make decisions. And you
must make them right . . . the
first time. That’s why you need the
power of Reflex:® The Analyst. It's a
no-nonsense
flat-file data-
base that
stores and
organizes
your infor-
mation.
Then works
like a
spread-
sheet for

sophis-

ticated
what-if analyses. Then shows you your
information from every angle and per-
spective, uncovering all its hidden
meanings. Then lets you move full
speed ahead!

The view is up to you

Let Reflex break your data down.
Turn it around. Show it off. And add it
up. All with simple menus and com-
mands that don’t turn you inside out.

View your data one record at a time.
Or all together in columns and rows.
Create five different kinds of graphs.
A numeric summary. Or a sophisti-
cated report that makes everything
fall into place. Even get a split screen
that shows a form and graph at the
same time. As you edit the form,
your changes are instantly reflected
in the graph!

Crosstabs show you the
big picture

Reflex can give you a unique Cross-
tab view of your information—a pow-
erful numeric summary divided into
categories and displayed in a numeric
summary table. Use it to pinpoint
trends and relationships among the
data and ask what-if questions. Your
Crosstab shows Bob’s average percent
margin is higher than the other sales
reps. Is he pushing too hard on price at
the expense of volume? Quickly change
the Crosstab for a second analysis, and
Reflex will give you a whole new
perspective.

REFLEN: o -

o VERSION

All Borland products are trademarks or registered Irademarks of Borland International, Inc. Other brand and
product names are irademarks of their respective holders. Copyright ©1988 Boriand international, Inc.
BI 1233

Even generate reports
for 1-2-3 and dBASE files

The Reflex Report view is a powerful
report generator that can also accept
files from popular applications like
Lotus 1-2-3°, dBASE®, and and PFS:
File. Use Reflex to generate everything
from mailing labels to sophisticated
custom reports—it’s the only report
generator you need!

The Workshop’s templates
make it easier

The Reflex Workshop, available
separately, gives you 22 master tem-
plates for running almost any kind of
business. The formats are all there;
you just plug in the numbers.

| Views Edit Print/File Records Search Crosstab
oy
’Sunan;: | Field: | % Margin

"Alan" | "Bob" "Cathy"

'Paddles” © (12,8) 7.8 9.8
| "§$ilent" 74 4.3 3.7
"Sport" 8.6 39 3.9
"Swiftuater" ' 43.0° 48,5 43.7

AL 2.6 3.8

Views Edit
LIST

Print/#ile Records Search Graph Tupe
Product
Paddles
Silent

Use the Reflex Crosstab Sport

view to get the whole Sviftuater

picture . . . Paddles

Quantity : Sales § fwg Pric Unit Cos

FORM
(uantity: 81
Sales §: 96,558
fvg Price: %81 Feh‘-ss Mar-8S
Unit Cost: $77 Date

... or split your Reflex
screen lo show several
views at once —and
walch your data change
as you edit!

Maximize your decision power!
Give your decisions the power of
Reflex. See your Borland dealer today.

€Cir you need an analytical tool
that's powerful, versatile, easy to
use, and with the right price, Reflex
is for you.
Bob Weeks, Chicago Computer Guide ,,

“Customer satisfaction is our main concern; it within 60 days of purchase this product
does not perform in accordance with our claims, call our customer service department,
and we will arrange a refund.

FAILING WITH GRACE

continued from page 76

REPEAT LOOPS

The alternative to recursion is the
use of backtracking in repeat
loops to perform the iterative pro-
cess. To create a repeat loop, set
a backtrack point by creating a
nondeterministic call that always
succeeds. Next, add the statements
that are to be executed within the
loop, and then end the clause
with a failing condition (such as
fail). When Turbo Prolog encoun-
ters the failing condition, it back-
tracks to the nondeterministic call
(which says, “go look for more so-
lutions”) and executes the loop
once again. In this way, no stack
frames are required and memory
remains intact.

The menu predicate in Listing
1 provides an example of an un-
conditional repeat loop. These
loops are commonly called re-
peat..fail loops, because they
begin with the programmer-
defined repeat predicate and end
with the standard predicate fail.
The following menu clause dem-
onstrates the overall structure of
a repeat..fail loop.

menu if
repeat,

fail.

repeat is a nondeterministic
clause whose sole purpose is to set
a backtrack point. (Remember, a
backtrack point is established
whenever more than one possibil-
ity for a solution exists, and Turbo
Prolog must decide on one of two
search paths.) repeat is defined in
the context of the program as:

repeat.
repeat:- repeat.

The first clause establishes the
backtrack point. The second re-
peat clause (which is tail recur-
sive) calls the first clause to set an-
other backtrack point whenever a
“fail” occurs and the program
backtracks across the original call
to repeat. This process generates
an infinite number of possible
solutions.

In the menu example above, re-
peat is followed by a number of
program statements and finally a
call to fail. fail forces Turbo
Prolog to backtrack to repeat.

Since repeat generates an infinite
number of solutions, the search
continues back down the clause to
the fail again. This process con-
tinues ad infinitum until the
<g>uit option is selected.

Figure 1 diagrams how the pro-
gram in Listing 1 uses the main
menu to route processing to
groups of related predicates
through the choice clauses. Mem-
ory is restored as control first re-

continued on page 80

MAIN MENU

»| choice(u)if ...

choice('c) if ..

choice(_).

v

dbase_list
(backtracks)

dbase_list
(catch clause)

A4

repeat

conditiéﬁa;l;loop

Ch='q\.

Figure 1. The flow of program control in Listing 1.

78 TURBO TECHNIX July/August 1988

“Those who are considering
purchasing 1-2-3 will be
better off with Quattro”

—John Walkenbach, InfoWorld

Here’s what InfoWorld had
to say about Quattro

#6 There are some
clear advantages

in choosing Quattro
over the 1-2-3 of
today: easier instal-
lation, no copy pro- :

tection, improved speed, much
better macros, excellent graphics,
a customizable command interface,
and direct compatibility with
industry standard file formats. If
cost is a factor, you can get five
copies of Quattro for the same
money that would buy two

1-2-3 packages.”

Quattro includes SQZ!® Plus data compression
A special implementation of SQZ! Plus, the spread-

sheet file compression utility, is built into Quattro and
comes to you absolutely free. SQZ! Plus for Quattro
automatically compacts and expands Quattro spread-
sheets by up to 95% during file saving and retrieving.

Features: Improving the
industry standard

“Quattro takes the industry stan-
dard and improves upon it in the
areas that count most. It addresses
many of the weaknesses of 1-2-3
and adds quite a few of its own
unique touches.”

“Perhaps Quattro’s main advan-
tage over most other spreadsheets
is its minimal recalculation capa-
bility. When you make a change in
your spreadsheet, only affected
cells are recalculated, greatly
speeding things up in most cases.”

“Other Quattro features that
improve upon the 1-2-3 standard
include auto-record macros, vastly
superior graphics, and easy
installation.”

=

BORLAN

Performance: Markedly
superior to 1-2-3

“Our benchmark tests show
Quattro markedly superior to
1-2-3 in file saves and retrieves.”

“Quattro’s graphics are a
sight to behold.”

“(Quattro makes working with
macros practically painless. If
you're into complex 1-2-3 macros,
the debugging feature alone is
good reason to make the switch

to Quattro.”

“No one can argue that Quattro is
anything less than an excellent
spreadsheet value. 97

Excerpts from John Walkenbach's
review of Quattro™ in InfoWorld,
January 11, 1988.

60-Day Money-back Guarantee*
Includes 32" and 5%" disks.

For the dealer nearest you or a
brochure call (800) 543-7543

/* Conditional and unconditional repeat..fail loops */

database
sum(integer)

predicates
menu
repeat
choice(char)
dbase_list
fact(string)
conditional_Lloop
adder(char)

goal
asserta(sum(0)),
makewindow(1,26,30," Unconditional Repeat-Fail Loop ",0,0,24,80),
menu.

clauses

menu if

repeat,
clearwindow,nl,nl,nl,
nl,write(" Main Menu:"),nl,
nl,write(" <u>nconditional loop."),
nl,write(" <c>onditional loop."),
nl,write(" <ctrl><break> to quit."),nl,
nl,write(" Choice: "),
readchar(Ch),
choice(Ch),

fail.

/* the main menu is an unconditional loop */

choice('u') if
clearwindow,nl,nl,nl,
nl,write(" Unconditional Loop:"),nl,
nl,write(" This unconditional \"choice\" predicate"),
nl,write(" routes data processing to the dbase_list"),
nl,write(" predicate."),nl,
nl,write(" <any> to continue: "),
readchar(_),nl,
dbase_list.
choice('c') if
clearwindow,
retract(sum(_)),
asserta(sum(0)),!,
conditional_Lloop.
choice(_).

dbase_list if /* no fail is necessary after */

fact(String), /*the write statement. The main */
nl,write(" ",String). /* menu repeat-fail loop causes */
dbase_list if /* dbase_list to backtrack */

nl, /* through the fact() database */
nl,write(" <any> to continue: "),
readchar(_).

conditional_loop if
clearwindow,nl,nl,

nl,write(" Conditional Loop:"),nl,

nl,write(" This conditional repeat-fail"),
nl,write(" loop adds one to the Sum on"),
nl,write(" each increment."),nl,
nl,write(" Choices:"),nl,

nl,write(" <any> to continue adding."),
nl,write(" <gruit.™),nl,

repeat,

FAILING WITH GRACE
continued from page 78

turns to the choice predicate and
then returns to fail in the main
menu.

CONDITIONAL REPEAT
LOOPS

A conditional repeat loop might be
called a “repeat..condition loop”
because the conditions of the loop
begin with repeat and end with a
condition that can either succeed
or fail. If the condition fails, the
loop repeats. On the other hand,
meeting the requirements of the
condition causes the loop to ter-
minate and processing continues.
Therefore, a conditional repeat
loop is similar to a DO..WHILE
loop.

As an example, consider the fol-
lowing conditional_loop predicate
(also shown in Listing 1):

conditional_loop if

repeat,
adder(Ch),

Ch = 'q’,!.
The failing condition in this case
is Ch = ’q’. If this condition fails,
then processing proceeds again
from repeat (which is located
above the adder command).
Therefore, Ch ="q’, takes the
place of fail.

Another characteristic of repeat
loops is illustrated below by the
loop structure in the economies
predicate of Listing 3:

economies if

readchar(Graphit), clearwindow,

repeat,
both(StopCont),
graphit(StopCont,Graphit),
StopCont = "stop", !.

80 TURBO TECHNIX July/August 1988

If, for instance, the “<g>raph the
data” option is chosen, the vari-
able Graphit is instantiated to ’g’
and retains that value while the
loop continues its search for
StopCont = ”stop”. The reason
that Graphit is not freed during
the backtracking process is that
Graphit is instantiated outside

of the loop. On the other hand,
StopCont is instantiated within the
loop, so this variable is freed each
time that Turbo Prolog backtracks
across it.

SIDE EFFECTS OF
BACKTRACKING

When a clause is executed from
within a repeat loop, backtracking
takes place in all of the down-
stream predicate links. The prob-
lem then becomes how to isolate
and control downstream back-
tracking alternatives. The cut op-
erator, !, is used to prevent back-
tracking into useless alternatives.
For example, the dbase_list
predicate in Listing 1 does not
contain a fail. Nonetheless,
dbase_list calls the fact database
predicate until all alternatives are
exhausted. Turbo Prolog does not
stop after the first solution is
found because fail (in the main
menu’s repeat loop) “reaches
down” to dbase_list through
choice(’w’) to exhaust all of the
fact alternatives. This is true even

continued on page 82

adder(Ch),
Ch = 'q',!. /* adding continues until Ch = iqiiis truei®/
adder(Ch) if !,
retract(sum(Sum)),
nl,write(" Sum = ", Sum),
Sum2 = Sum + 1,
asserta(sum(Sum2)),
readchar(Ch).

repeat.
repeat if repeat.

fact("The Main Menu repeat-fail loop uses").
fact("the dbase_list predicate to retrieve").
fact("all of the fact predicates that contain").
fact("these statements.").

fact(vy,

fact("Conditional and unconditional™).
fact("repeat-fail loops have very").

fact("low memory overhead.").

/* Combining repeat loops */

database
key_number(integer)

predicates
menu
repeat
menu2(char)
choice(char)
combinations(integer)
data_number_one(integer)
data_number_two(integer)

goal
asserta(key_number(0)),
makewindow(1,26,30," Menus and Combinations ", 0,0,24,80),
menu.

clauses
menu if

repeat,
clearwindow,nl,nl,nl,
nl,write(" Main Menu:"),nl,
nl,write(" repeat-<f>ail menu."),
nl,write(" repeat-<c>ondition menu (with 1)."),
nl,write(" simple <p>redicate ! menu."),
nl,write(" simple p<r>edicate menu (without !).m),
nl,write(" <ctrl><break> to quit."),nl,
nl,write(" Choice: "),
readchar(Ch),
menu2(Ch),

fail.

July/August 1988 TURBO TECHNIX 81

FAILING WITH GRACE

continued from page 81
menu2('f') if
repﬁf:;m B o though neither choice(’'w’) nor
nl,write(" ¢ ’Re;;eaé-Fail Menu:"),nl, dbase_list Contains.a ﬁ.i.l Back-
nl,write(" <c>ombinations."), tracking in dbase_list is caused by
nl,write(" <ctrl><break> to quit."),nl, the repeat..fail loop in the main
"l':’:t“te(:h Choice:), menu, and ends only when all of
Zﬁgi ce?gt(\) g the alternatives in the chain of
fail. " /* the fail in repeat */ predicates leading to dbase_list
menu2('c') if have been exhausted. This “re-
f‘ePe?t. e mote” cause of backtracking can
clearwindow,nl,nl,nl, e
nl,write(" : 'Repeat-Condition Menu:"),nl, be co_nfusmg o lz?rge progam.
nl,write(" <c>ombinations."), This same effect is a}l§o evi-
nl,write(" <gruit."),nl, denced in the unconditional_loop
nl,write(" Choice: "), clause in the earlier example. The
FEG?Ch?ESh). use of the cut (!) after the Ch ="q’
C o‘ce -
Wi gy AP e C}?n?ltlon is e.ssenu?l.d()ftiht?rv:lse,
menu2('p') if the loop continues indefinitely,
repeat, /* has no effect */ searching for ’q’. To see the effect
clearwindow,nl,nl,nl, of the cut operator on the loop,
nl,write(* Simple Predicate Menu (with terminating !):"), try removing the cut and running
nl
nl:urite(" <c>ombinations."), the PIOgtatl
nl,write(" <program terminates after first success>."),nl
aUsritets Chotces %3, " | | COMBINATIONS OF REPEAT
readchar(Ch), LOOPS
choice(Ch),nl, SURA b 3
nl,write(" <any> to continue: "), Lls(timg 2 prowdﬁs a-ﬁlenu of sec
readchar(_), !. ondary menus that illustrate some
menu2('r') if of the quirks of conditional and
repeat, /* has no effect */ unconditional repeat loops. Each
clearwindow,nl,nl,nl, of the subsidiary menus routes
nl,write(" Simple Predicate Menu (without terminating !):"), processing to the following com-
nl soLEES §
nl:urite(“ <c>ombinations."), binations clause:
nl,write(" <ctrl><break> to quit."),nl, combinations(KeyNumber) if
nl,write(" Choice: "), data_number_one(One),
reat_ichar(Ch D data_number_two(Two),nl,
choice(Ch). write(" " KeyNumber," ", One," ", Two).
choice('c') if Find database combinations with
clearwindow,nl,nl, key number: 1
nl,write(" Find database combinations with key number: "),
readint(KeyNumber),nl,
combinations(KeyNumber).
choice() if
nl,nl,write(" <any> to continue: "),

readchar(_).

combinations(KeyNumber) if
data_number_one(One),
data_number_two(Two),
nl,write(" " Keynumber," ",One," ", ,Two).

i el /S ol i D
WWWNNON = = -
N =22 W -

<any> to continue:
data_number_one(1).
data_number_one(2). X
data_number_one(3). Figure 2 The output generated by the
combinations predicate.

data_number_two(1).
data_number_two(2).
data_number_two(3).

82 TURBO TECHNIX July/August 1988

If backtracking occurs, combina-
tions writes out the nine combina-
tions of the numbers one through
three, since data_number_one
and data_number_two are non-
deterministic. In this case, combi-
nations generates the output
shown in Figure 2. All but one of
the example menu combinations
cause backtracking in the combi-
nations predicate.

The “repeat-<f>ail” option
leads into a menu that is similar
to the main menu and contains a
repeat..fail loop. This secondary
menu repeats endlessly; pressing
the Ctrl-Break sequence breaks
the repeat..fail loop. This menu’s
repeat..fail loop causes backtrack-
ing, and prints the number com-
binations shown in Figure 2.

The “repeat-<c>ondition” op-
tion routes processing to a menu
that has a conditional repeat loop.
When the condition Ch ="q’ is
satisfied (by selecting <q>uit), the
cut operator tells the loop to exit
back to the main menu. This sec-
ondary menu’s repeat..condition
loop also causes backtracking, and
forces combinations to print out
the nine number combinations.

The main menu choice “simple
<p>redicate | menu” leads into
a menu where repeat is followed
by neither a terminating fail nor
a failing condition. This menu op-
erates as a simple predicate, and
the cut stops this loop after the
loop’s first success. The cut pre-
vents backtracking from occur-
ring, so that only the first combi-
nation is written.

Choosing “simple <p>redicate
menu (without !)” sends process-
ing to a menu where repeat is fol-
lowed by neither a condition nor

continued on page 84

repeat.
repeat if repeat.

/* Trade Model */

database
economy(integer,real,real,real,real,real,real,real)

predicates
menu
repeat
choice(char)
clearbase
s_string(integer, integer,string, integer)
graphit(string,char)
economies
us_economy
japan_economy(string)
both(string)
terminate(string,string)

goal

makewindow(1,26,30," Trade Model ",0,0,24,80),
menu.

clauses

menu if
repeat,
clearwindow,
s_string(3,5,"Main Menu:",629),

nl,write(" <r>un an econometric simulation."),
nl,write(" <ctrl><break> to quit."),
nl,nl,write(" Choice:),
readchar(Ch), clearwindow,
choice(Ch),

fail.

choice('r') if

clearbase,

assertz(economy(0,1,4,3,2,3,2,1)),

clearwindow,

economies, !.

economies if
s_string(3,5,"New Simulation -----------ccaeuouo. ¥.29),

nl,write(" <g>raph the data."),
nl,write(" <ctrl-brk> to quit."),
nl,write(" <any> to continue: "),

nl,nl,write(" Choice: ™),
readchar(Graphit), clearwindow,
repeat,
both(StopCont),
graphit(StopCont,Graphit),
StopCont = "stop", !.

both(StopCont) if
us_economy,
japan_economy(StopCont).

July/August 1988 TURBO TECHNIX

83

Year | FAILING WITH GRACE
Year 2 continued from page 83

by a terminating cut. This menu
operates under the direction

of the main menu repeat..fail
loop, which runs the “simple
p<r>edicate” loop repeatedly.
In this case, the main menu’s
repeat..fail loop causes back-
tracking.

PASSING VARIABLES

There are times when processed
data must be passed from one iter-
ation of the repeat..fail loop to
another. In such instances, the re-
peat..fail loop must use assert and
retract to pass variable values
from one iteration to the next.
Listing 3 is an example in which

a large number of econometric
variables must be passed back and
forth between the us_economy
and japan_economy predicates.
This process is necessary because
the Gross National Product (GNP)
of each economy is dependent
upon the variables of the other
economy. In the current year, a
portion of the U.S. GNP is added
into the Japanese GNP. In the
next year, a portion of Japanese
GNP, JGnp2, is added into that
year’s U.S. GNP through the
LastGnp variable. Notice that only
one economy database predicate
is necessary to pass all of these
variable values from one iteration
to the next:

us_economy if
retract(economy(Iter1,LastGnp,
Ucl,Ui1,ug1,
Jdet,di1,4dg1)),

assertz(economy(Iter2,Ugnp2,
Uc2,Ui2,Ug2,
Je1,4di1,4dg1)).

i japan_economy(StopCont) if

retract(economy(Iter1,Ugnp2,
Uc2,Ui2,ug2,
Je1,4di1,4g1)),

Figure 3. The flow of data in the Trade Model program of Listing 3.

assertz(economy(Iter2,Jgnp2,
Uc2,Ui2,ug2,
Je2,di2,4g2)).

84 TURBO TECHNIX July/August 1988

In the conditional loop of List-
ing 1, the internal database must
be used to pass the value of the
Sum variable from one iteration
to another so that the Sum may
accumulate the individual values.
Notice that the sum database
predicate, like economy, accumu-
lates data in only one database
variable. This is done in the data-
base sum(Sum) predicate. These
database predicates use very little
memory, since old values are re-
tracted before new values are
asserted.

MEMORY SAVED,
MEMORY EARNED

Although recursion has the virtue
of stating algorithms elegantly,
programs that rely heavily upon
recursion often use a great deal of
memory. In such applications, re-
placing recursive loops with re-
peat loops prevents the program
from exhausting available mem-
ory. Remember to keep the pos-
sible side effects of backtracking
in mind when converting recur-
sive loops to repeat loops. In ad-
dition, you’ll have to rewrite the
loop to pass variables through the
internal database, rather than
through the parameters of a re-
cursive call. All in all, however,
you’ll find that the extra effort is
worthwhile. B

REFERENCES

Shafer, Dan. Turbo Prolog Primer
(Revised edition), Indianapolis, IN:
Howard W. Sams & Company,
1987.

Shafer, Dan. Advanced Turbo
Prolog Programming, Indianapolis,
IN: Howard W. Sams & Company,
1987.

Edward B. Flowers is an associate
professor of economics and finance at
St. John’s University in New York
City.

Listings may be downloaded from
CompuServe as RPFAIL.ARC.

graphit("stop",) if !.
graphit("cont",'g') if

clearwindow,
nl,nl,nl,write(" This routine graphs the data."),
nl,nl,write(" <any> to continue:"),

readchar(_).
graphit(_,_).

us_economy if
retract(economy(Iter1,LastGnp,Uc1,Ui1,Ug1,dc1,Ji1,dg1)),
Iter2 = Iter1 + 1,
Uc2 = Ucl + 1, Ui2 = Ui1 + 1, Ug2 = Ugl + 1,
Ugnp2 = Uc2 + Ui2 + Ug2 + (0.05*LastGnp),
nl,writef(" Year: %2",Iter2),

s_string(3,3,"United States ----------------oaooon w29,

s_string(5,0," Grp = C + I + @"21),

writef(" %-6.2f = Ugnp2 = %-6.2f+%-6.2f+%-6.2f",
Ugnp2,Uc2,Ui2,Ug2),

assertz(economy(Iter2,Ugnp2,Uc2,Ui2,Ug2,Jc1,Ji1,Jg1)).

japan_economy(StopCont) if
retract(economy(Iter1,Ugnp2,Uc2,Ui2,Ug2,Jcl,di1,dg1)),
Iter2 = Iter1,
Je2 = Jc1+(0.05*Uc2),
Ji2 = Ji1+(0.05*Ui2),
Jg2 = Jg1+(0.05*Ug2),
Jgnp2 = Jc2 + Ji2 + Jg2 + (0.05*Ugnp2),
assertz(economy(Iter2,Jgnp2,Uc2,Ui2,Ug2,Jc2,Ji2,d4g2)), !,

s_string(11,3,"Japa --------=---cm-cmoeeeoo u.,29),
s_string(13,0," GRP SEF RGBT Gi91),
writef(" %-6.2f = Jgnp2 = %-6.2f+%-6.2f+%-6.2f",

b Jgnp2, Jc2,Ji2,4g2),
nl,nl,write(" <m>ain menu, <any> to continue: "),

terminate("text",StopCont), !.

terminate("text", "cont") if
readchar(Ch),
not(Ch = 'm'),
cursor(0,0), !.
terminate("text", "stop") if clearwindow, !.

s_string(Row,Col,String,Attr) if
cursor(Row,Col),
str_len(String,Len),
field attr(Row,Col,Len,Attr),
field_str(Row,Col,Len,String),
Row2 = Row + 1,
cursor(Row2,0).

clearbase if

fail.
clearbase.

repeat.
repeat if repeat.

July/August 1988 TURBO TECHNIX 85

IN GRAPHIC HARMONY

Using the BGI in your graphics routines means hardware
compatibility for your program.

Alex Lane

In last issue’s Turbo Pascal section, Tom
Swan discussed the new Borland Graph-
ics Interface (see “Meet the BGI,” TURBO
TECHNIX, May/June, 1988). But Turbo
Pascal users are not the only ones to reap
PROCRAMMER the benefits of the BGI—the BGI is also
accessible from Turbo C 1.5, and most recently, from
Turbo Prolog 2.0. Although Turbo Prolog 2.0 still
supports turtle graphics, the BGI offers a far more
comprehensive library of graphics routines.

The BGI system furnishes the programmer with
services ranging from high-level routines that create
and manage viewports (virtual screens on the dis-
play); to routines that draw circles, ellipses, rectan-
gles, and other shapes; to routines that let the pro-
grammer define patterns for filling shapes on the
screen. Since the various features of the BGI are dis-
cussed at great length in “Meet the BGL,” I won't re-
peat that information here. If you would like to know
more about the BGI in general, I highly recommend
Mr. Swan’s article as a starting point.

In this article, we’ll look at a number of graphics
issues, such as the portability of graphics among
computers equipped with different display hardware.
We’ll also explore programs for drawing and filling
odd shapes, drawing lines, and labeling objects. The
program in Listing 1 illustrates most of the points
under discussion, and specifically addresses CGA,
EGA, and VGA display adapters.

THE BGI AND GRAPHICS PORTABILITY

One of the thornier problems in programming is
how to write graphics-based software that needs little
or no modification in order to work with a variety of
video adapters. This task is difficult because different
adapters display graphics in several modes, all of
which entail keeping tabs on the number of rows
and columns on the screen, the number of colors

PROGRAMMER

that can be displayed, and the screen’s graphics res-
olution. For example, a low-resolution Color Graph-
ics Adapter (CGA) can display four colors (including
background) with a resolution of 320 pixels horizon-
tally and 200 pixels vertically. When switched to a
high-resolution mode, the same CGA display can
then show 640 pixels horizontally, but can only sup-
port two colors (one of which is a background color).
A computer with an Enhanced Graphics Adapter
(EGA) card, on the other hand, can resolve 640 pix-
els across and 350 pixels down, while the resolution
on Video Graphics Array (VGA) cards can go as high
as 640 X 480.

To survive in this morass of adapters and modes,
a program must do three things. Using a program
that draws a circle in the exact center of the screen
as an example, the program must first figure out
what type of graphics adapter is installed in the com-
puter. Second, it must initialize the appropriate
graphics mode. Third, the program must locate the
center of the screen and finally draw the circle.
These tasks are relatively easy to perform with the
Turbo Prolog BGI predicates.

INITIALIZING THE GRAPHICS MODE

The BGI predicate detectgraph checks the video
hardware installed in the computer, determines
which graphics driver and mode to use, and returns
this information as two integer output parameters.
To see which other modes are available, use the
getmoderange predicate, which returns a low num-
ber and a high number that represent a range of
modes that are available for a given driver. This is
useful if you deliberately do not want to use the
highest resolution screen mode for a particular
adapter.

By the way, the use of integers to represent modes,
sizes, fonts, fill patterns, and so forth is a common
theme in the BGI system. While this makes execu-
tion easy for the computer, it makes things difficult
for the programmer in terms of readability. Fortu-
nately, a set of constant type declarations (a new fea-
ture of Turbo Prolog 2.0) in the file GRAPDECL.PRO

86 TURBO TECHNIX July/August 1988

Output

BGl graphics in Turbo Prolog

(which comes on the Turbo Prolog 2.0 distribution
disk) lets you use symbolic names like gothic_FONT
and cga in predicates, instead of using numbers like
4 and 0.

Once the graphics adapter type is determined, the
program in Listing 1 selects a mode by calling the
user-written predicate set_mode. The point of this
predicate is to force a low-resolution mode with col-
or palette 0 when a CGA card is found. In EGA and
VGA modes, the highest resolution is set. Once the
adapter type and mode are determined, they are as-
serted into the database via the user-written graphic
database predicate, since they are accessed whenever
a display-sensitive decision needs to be made.

Having established the adapter type and mode,
the initgraph predicate initializes the graphics sys-
tem. Initialization consists of loading the appropriate
graphics driver from disk (or validating a driver
that’s already linked into the program), and actually
switching the system into graphics mode. Although
initgraph is normally supplied with a graphics driver
name and mode, it can also be invoked to automat-
ically detect the connected graphics hardware, and
to select the highest possible resolution for that
hardware.

DRAWING SHAPES

The BGI system offers a library of ready-made pred-
icates that draw lines and basic shapes like circles, el-
lipses, and rectangles. Other predicates draw circular
arc segments, pie slices, two- and three-dimensional

PUMP SYSTEM

(with flows indicated)

2.0

Figure 1. The symbol used to depict a centrifugal pump.

bars, and irregular polygons. With these tools, you
can draw just about any shape.

An example from real-world engineering is a sym-
bol that is used in a number of graphics-oriented
control systems to depict a centrifugal pump (see Fig-
ure 1). The code for drawing this symbol is in the
predicate place_pump. This predicate allows the pro-
grammer to specify the pump name (which is printed
below the pump), the pump’s position on the screen,
the pump’s size, the direction of the pump’s outlet,
and whether the pump is on or off. The position of
the pump on the screen is expressed using an arbi-
trary 0 to 100 scale, both horizontally and vertically.
The point (0,0) is in the upper left corner; (100,100)
is located in the lower right corner. The point (50,50)
is located exactly in the center of the display.

continued on page 88

July/August 1988 TURBO TECHNIX 87

IN GRAPHIC HARMONY

continued from page 87

The idea behind using these coordinates is that a
pump positioned at (50,50) appears in the center of
the screen for CGA, EGA, and VGA displays without
requiring the programmer to do any scaling. Scaling
is performed with the user-written scale predicate,
which uses the adapter and mode information to de-
termine the resolution and, subsequently, the actual
coordinates for positioning. The same fundamental
technique is used by adjust_size (user-defined) to es-
tablish a radius for the arc and thus, in effect, to set
the size of the pump.

The outline of the pump is basically a rectangle
superimposed on a circle. However, if you draw it
like this using the circle and rectangle predicates,
you'll be obliged to fill the pump with the same col-
or that you used to draw the circle and rectangle.
Otherwise, the part of the rectangle that lies inside
the circle, and the arc that lies inside the rectangle,
will remain visible. An alternate way of drawing a
pump is to separately draw an arc that represents the
pump body, and then draw the three line segments
that represent the outlet.

The BGI arc predicate draws arc segments in a
counterclockwise direction and takes, among other
parameters, angles that correspond to the start and
end points of the arc. A point with an angle of 0 de-
grees corresponds to the 3 o’clock position on a
clock face, with 90 degrees corresponding to 12
o’clock, 180 degrees to 9 o'clock, and 270 degrees
to 6 o’clock.

I determined the angles for the pump symbol in
the old-fashioned way, by first sketching the symbol
on a piece of graph paper, and then using a protrac-
tor to find the angles for the endpoints of the arc.
For a pump whose outlet faces to the right, the start-
ing point is at 90 degrees and the arc continues
around to about 12 degrees; the arc for a left-facing
pump starts at about 168 degrees and ends at 90
degrees.

The BGI predicate getarccords finds the coordi-
nates of the start and end points. The predicate get-
endcoords rearranges these coordinates so that the
variables X0 and Y0 in the place_pump predicate al-
ways denote the end under the pump outlet, and X1
and Y1 correspond to the top of the pump. Starting
at (X0,Y0), complete the outlet by drawing a line seg-
ment away from the body, another line segment up
from the body, and a third line segment in toward
the body.

FILLING PATTERNS

The process of coloring the completed pump reveals
some adapter-related problems, which are primarily
due to the differences between the way that color is
controlled in CGA and EGA/VGA hardware. For ex-
ample, the CGA low-resolution modes allow you to
choose from four predefined color palettes (see
Table 1). In palette number 0, a pixel with a value of

PALETTE COLOR ASSIGNED TO PIXEL VALUE
NUMBER 1 2 3

0 light green light red yellow

1 light cyan light magenta white

2 green red brown

3 cyan magenta light gray

Table 1. A list of possible values for the Color Graphics
Adapter.

1 appears light green on the display; a pixel value of
2 appears light red; and a pixel value of 3 appears
yellow. The same pixel values in palette number 2
display light cyan, light magenta, and white, respec-
tively. Clearly, if you want a symbol to display red
when the symbol is on, green when it’s off, and yel-
low when it's malfunctioning, palette 0 (which cor-
responds to mode 0) should be active.

In the CGA high-resolution mode, life becomes
more difficult, since only two colors are available,
and one must serve as a background color. One way
to distinguish between pump states, in this case, is
either to fill in the pump symbol or leave it as an out-
line figure.

The user-written predicate adjust_color uses infor-
mation about the connected hardware and the cur-
rent mode to set colors for on and off pump states.
For low-resolution CGA, the on color is 2 (which cor-
responds to the light red, light magenta, red, and
magenta of palettes 0 through 3, respectively), and
the off color is 1 (light green, light cyan, green, and
cyan, respectively).

With EGA and VGA hardware, 16 colors are avail-
able. For these adapters, the on color is red, and the
off color is green.

Filling the pump symbols with color is the job of
fill_symbol. This predicate also uses information
about the graphics hardware to decide how the
pump symbol should be filled. In the EGA, VGA, and
low-resolution CGA modes, the BGI predicate flood-
fill fills in the symbol solidly with the appropriate
color. If you want to experiment with the BGI fill pat-
terns, replace the solid_FILL argument in the setfill-
style call with, for example, xhatch_FILL to obtain a
heavy cross-hatch fill pattern. The fill_symbol pred-
icate also fills in the pump symbol in the high-reso-
lution CGA mode whenever the pump is on, and
leaves the pump symbol as an outline figure when
the pump is off.

PUTTING WORDS ON THE SCREEN

The last visible step in the process of placing a pump
symbol on the screen is to print the pump’s name
beneath the symbol. Once again, adjustments need
to be made on a hardware-dependent basis. The
technique for printing the name is simple: Add a
number to the pump’s Y coordinate that is equal to
the radius of the pump body multiplied by some fac-
tor. In CGA and VGA modes, this factor is 1.5; for

88 TURBO TECHNIX July/August 1988

Output

PUMP SYSTEM

(with flows indicated)

BGl graphics in Turbo Prolog 2.0!

EGA displays, the factor needs to be smaller
(I selected 1.1). The user-written predicate adjust_-
label_distance selects the appropriate factor based
on the hardware.

The justification features of the BGI system let you
center text with a simple call:

settextjustify(center_TEXT, top_TEXT)

Here, the first argument tells the BGI, “I want the
text centered on the X coordinate given in outtextxy,
and below the Y coordinate.”

The same basic steps are taken to title the screen
using place_source_or_sink and place_title. place_-
source_or_sink simply prints the name of a flow
source or sink on the screen, to be used later when
all of the components are connected with line seg-
ments to form a network. place_title prints a string
at the specified coordinates at a specified size. The
predicate adjust_size_for_graphics handles sizing
and font selection for printing titles on the screen.
(The sizing of titles is also hardware-dependent;
larger sizes become unwieldy on CGA displays.) The
auxiliary predicate write_msg, used by place_title,
temporarily changes the title’s font, the direction of
the title’s text display, its horizontal and vertical jus-
tification, and its font size. place_title restores the
original settings for those parameters. Figure 2
shows the completed diagram generated by the
program in Listing 1.

CONNECTING THE PARTS

In taking a closer look at Listing 1, notice that I
assert instances of the component_point predicate in
both place_pump and place_source_or_sink. In the
case of place_pump, I determine the points on the
symbol that represent the inlet (at the 9 o’clock posi-
tion for a right-facing pump; at 3 o’clock for a left-
facing pump) and outlet points. The coordinates of
these points are asserted, along with their descrip-
tion and the pump’s name. In the case of place_-
source_or_sink, the coordinates, their description,
and the name of the source or sink point are as-
serted in similar fashion.

Figure 2. Diagram output by the
program in Listing 1.

All of this leads to the connect predicate, which is
called as:

connect("Pump-3", outlet, "Pump-2", inlet)

This call can be interpreted as “connect the outlet of
device Pump-3 to the inlet of device Pump-2,” and
results in a line (or collection of line segments) be-
ing drawn appropriately. The predicate draw_lines,
which takes two pairs of coordinates and draws lines
between them, uses write_msg to place the string
“Flow—" vertically along any vertical line segment.
With some modification to figure out the appropriate
message (such as replacing “Flow—" with “—Flow”)
and to determine whether or not the message will fit,
this labeling of line segments can be made smarter.
In fact, with some added sophistication, the connect
predicate in general can be made to act more intel-
ligently and to require less care in the selection of
coordinates for displayed symbols.

SUPPORTING THE HARDWARE

The acid test for this program is getting it to perform
successfully on a variety of machines. I tested the
code on an AT-compatible machine with an installed
Video Seven Vega VGA card, and on an IBM XT
with a CGA card. To force the card to emulate the
CGA and EGA modes on the AT, I replaced detect-
graph(G_driver) with:
G_driver = cga
G_driver = ega
This replacement forced the hardware into the re-
spective mode. (I could have also used cga and ega
as input parameters to initgraph with the same re-
sult, but that step would have required the driver and
mode numbers to be asserted by hand.) All of the
predicates that begin with adjust_ were spawned by
watching how the displays came up under various
modes.

The BGI gives the programmer two fundamental
ways to package graphics-driven code. The basic way
is to compile the Turbo Prolog source to an .EXE file

continued on page 90

July/August 1988 TURBO TECHNIX 89

project “processi.prj"

% bgidriver "_CGA_driver_far"
% bgidriver " _EGAVGA_driver_far"

bgifont " _gothic_font_far"
bgifont " _small_font_far"
bgifont "_sansserif_font_far"
bgifont "_triplex_font_far®
code = 4000

include "GRAPDECL.PRO"

DATABASE
component_point(string,symbol, integer, integer)
graphic(integer, integer)

PREDICATES

adjust_color(symbol, integer)
adjust_label_distance(real)
adjust_size(symbol,integer)
adjust_size_for_graphics(integer,integer,integer)
connect(string,symbol,string,symbol)
direction_factor(symbol, integer, integer, integer)
draw_lines(integer, integer, integer, integer)
fill_symbol(integer, integer,symbol, integer)
getendcoords(symbol, integer, integer, integer, integer)
lookup(integer, integer, integer, integer)

max(integer, integer, integer)
place_pump(string, integer, integer,symbol,symbol,symbol)
place_source_or_sink(string,symbol, integer, integer)
place_title(string, integer, integer, integer)
resolution(integer, integer)

scale(integer, integer,integer, integer)

set_mode(integer, integer)

size_factor(symbol, integer)

vertical_msg(integer,integer)

write_msg(string, integer,integer, integer,integer,integer,
integer, integer)

GOAL
break(on),

/ f
The following line detects the video card in use in your
machine. If you've got a multimode card, you can set the driver
"by hand" by replacing the following line with, for example:

G_driver = vga,

detectgraph(G_driver,),
set_mode(G_driver,G_mode),

/

A number of decisions must be made based on the driver type,
so we want to post this information for general consumption.
/

asserta(graphic(G_driver,G_mode)),
InitGraph(G_Driver,G_Mode, , ,""),
break(on),
settextjustify(center_TEXT,top_TEXT),

The initialization phase if over.

Now, we proceed to put together a fairly simple display
consisting of an "Output" point, and three pumps.

/
place_source_or_sink("Output",outlet,10,10),
place_pump("Pump-1",15,70,medium, right,off),
place_pump("Pump-2",60,40, large, left,on),
place_pump("Pump-3",85,80,small, left,on),

/ *
Now set the color to white and connect these components.
b /

setcolor(white),
connect("Output®,outlet,"Pump-2*,outlet),
connect("Pump-1",outlet, "Pump-2",outlet),
connect("Pump-3", outlet, "Pump-2",inlet),

/**** Ag a final touch, title the display ******akkadkids,
place_title("PUMP SYSTEM",40,15,4),
place_title("(with flows indicated)",40,25,1),
place_title("BGI graphics in Turbo Prolog 2.0!",5,95,2),

moverel(0,100),
readchar(_).

IN GRAPHIC HARMONY
continued from page 89

and then distribute that file on a disk with the .BGI
driver and the .CHR font files. While this is the
simplest way to ensure portability of code across a
variety of graphics hardware, it also exposes the larg-
est surface area of your application to prospective us-
ers who now have to keep track of several files. (You
probably have programs that require you to care for
a number of auxiliary driver and configuration files.
If you're like me, you try to leave them alone and
hope nothing happens to them.)

The alternative is to use the bgidriver and bgifont
compiler directives to declare which drivers and
fonts are to be part of your program, and to create
an appropriate project file to link driver files to the
rest of your program. The big plus in using this ap-
proach is that the end user only needs to keep track
of one file—this minimizes the work he or she has
to do in order to use your product. On the down
side, incorporating every driver into your program
can add almost 30K to the program’s size, with the
possibility that up to 24K is generated but not used.
Personally, unless your application is already groan-
ing in size, I'd link in at least the CGA, EGA, and
VGA drivers to cover the majority of prospective
users.

There are in-between alternatives, too. For exam-
ple, if you plan to write an application both for your
VGA machine at home and your CGA machine at
the office, you may choose to link in only those two
drivers, and you’ll still have to deal with only one
program file. All in all, the ability to incorporate driv-
ers into finished programs is a big plus.

PARTING WORDS

Up until now, programmers have been pretty much
at the mercy of language publishers with respect to
graphics. Most languages made only half-hearted at-
tempts to support graphics, often requiring some
pretty fancy programming in order to draw even sim-
ple shapes. The BGI, on the other hand, represents
an extensive graphics environment that offers a va-
riety of shape, size, style, color, and positioning fea-
tures that programmers previously had to write
themselves.

On a more basic level, the question of hardware
compatibility has also been a problem not easily
solved by programming. In the past, if a particular
language supported your graphics hardware, you
were in luck; if not, well, you either rolled your own
code (which required a lot of specialized knowledge)
or you bought the required hardware. The BGI fur-
nishes the programmer with ready-written drivers
that support a broad range of graphics hardware.
Now the programmer is free to tackle the main task
at hand—writing programs that get things done. W

Alex Lane is a knowledge engineer living in Jacksonville,
Florida. He is the moderator of the Prolog conference on the
Byte Information Exchange (BIX).

Listings may be downloaded from CompuServe as
PROBGI.ARC.

90 TURBO TECHNIX July/August 1988

CLAUSES

/* place_title publishes a Title at a position X_percent over
from the left of the screen and Y_percent down from the top.
Magn denotes the size.

7]

place_title(Title,X_percent,Y_percent, Magn) :-
scale(X_percent,Y_percent,X,Y),
adjust_size_for_graphics(Magn,Size,Font),
write_msg(Title,X,Y,Font, horiz_DIR, left_TEXT, center_TEXT,Size).

/* place_source_or_sink locates a point on the screen that serves
as a source or sink for the displayed system, labels it, and
keeps track of its location for future connection.

=7

place_source_or_sink(Name,Id,X_percent,Y_percent) :-
scale(X_percent,Y_percent,X,Y),
asserta(component_point(Name,Id,X,Y)),
adjust_size(small,Delta),

Yname = Y + Delta,
outtextxy(X, Yname, Name),!.

/* place_pump is designed to place a pump figure identified with
string Name at a position that is X_percent across and
Y_percent down the screen. The size is either small,medium or
large, the pump can face left or right, and the pump can be
either on or off. Once the pump has been displayed a global
database is updated reflecting the inlet and outlet points of
the pump for future reference.

i

place_pump(Name,X_percent,Y_percent,Size,Direction,Status) :-
scale(X_percent,Y_percent,X,Y),
direction_factor(Direction,F,Start,Finish),
adjust_color(Status,Color),
adjust_size(Size,Radius),

DX = -1.4 * Radius * F,

HD = 0.42 * Radius * F,
setcolor(Color),
arc(X,Y,Start,Finish,Radius),

getendcoords(Direction,X0,Y0,_,Y1),
moveto(X0,Y0), /* inside corner */
DY = Y1 - YO,

linerel(HD,0), /* out */
linerel(0,DY), /* up */
linerel(DX,0), /* in */
fill_symbol(X,Y,Status,Color),

Xout = X0 + HD , Yout = YO + DY/2,

Xin = X - (F * Radius),
asserta(component_point(Name,outlet, Xout,Yout)),
asserta(component_point(Name, inlet,Xin,Y)),
adjust_label_distance(LF),

Yname = Y + Radius * LF,
outtextxy(X,Yname, Name).

adjust_color(Status,Color) :-
graphic(cga,cgall), Color = white;
graphic(cga,_), Status = on, Color = 2;
graphic(cga,_), Status = off, Color = 1;
graphic(cga,cgac1), Status = on, Color = lightmagenta;
graphic(cga,cgac2), Status = on, Color = red;
graphic(cga,cgac3), Status = on, Color =
graphic(vga,vgaHl), Status = on, Color =
graphic(vga,vgaHl), Status = off, Color = green;
graphic(ega,_), Status = on, Color = red;
graphic(ega,_), Status = off, Color=green.

adjust_label_distance(1.1) :- graphic(ega,).

adjust_label_distance(1.5).

adjust_size(Size,Radius) :-
size_factor(Size,Factor),
resolution(X,_),
Radius=X/Factor,!.

adjust_size_for_graphics(_,1,default_FONT) :- graphic(cga,_).
adjust_size_for_graphics(X,X,sans_serif_FONT).

connect(Component1,Point1, Component2,Point2) :-
component_point(Component1,Point1,X1,Y1),
component_point(Component2,Point2,X2,Y2),
draw_lines(X1,Y1,X2,Y2).

direction_factor(left, -1, 168, 90).
direction_factor(right, 1, 90, 12).

draw_lines(X,Y1,X,Y2) :- line(X,Y1,X,Y2),!.
draw_lines(X1,Y,X2,Y) :- Lline(X1,Y,X2,Y),!.
draw_lines(X1,Y1,X2,Y2) :-

MX = (X1 + X2) /2, MY = (Y1 +Y2) / 2,
Line(X1,Y1,MX,Y1),

Line(MX,Y1,MX,Y2),

vertical_msg(MX, MY),
line(MX,Y2,X2,Y2),!.

fill_symbol(X,Y,Status,Color) :-
graphic(_,cgaHl),
Status = off,!;
graphic(_,cgaHl),
Status = on,
setbkcolor(Color),
floodfill(X,Y,Color),!;
setfillstyle(solid_FILL,Color),
floodfill(X,Y,Color),!.

getendcoords(left, X,Y,A,B) :-

getarccoords(_, ,X,Y,A,B).
getendcoords(right, X,Y,A,B) :-

getarccoords(_,_,A,B,X,Y).
Lookup(cga, cgaHl, 640, 200).
Lookup(cga, 320, 200).

Lookup(mcga, mcgaMED, 640, 200).
Lookup(mcga, mcgaHl, 640, 480).
Lookup(mcga, —e 320, 200).
Lookup(ega, egal0, 640, 200).
Lookup(ega, egaHl, 640, 350).
Lookup(egabh, egab4lo, 640, 200).
Lookup(egabhk, egab4Hl, 640, 350).
lookup(egamono, 640, 350).
Lookup(hercmono, _s 720, 348).
lookup(att400, att400HT, 640, 400).
lookup(att400, att4OOMED, 640, 200).

lookup(att400, _, 320, 200).
Lookup(vga, vgal0, 640, 200).
Lookup(vga, vgaMED, 640, 350).
Lookup(vga, vgaHl, 640, 480).
lookup(pc3270, _s 720, 350).

resolution(X,Y) :-
graphic(Driver, Mode),
lookup(Driver,Mode,X,Y),!.

scale(X_percent,Y_percent,X_absolute,Y_absolute) :-
resolution(X,Y),
X_absolute = X_percent/100 * X ,
Y_absolute = Y_percent/100 * Y ,I.

/* set_mode(cga, cgaHI) :
set_mode(cga, cgaC0) :- I.
set_mode(ega, egaHI) :- !.
set_mode(vga, vgaHI) :- I.

- 1. */ /* this mode isn't too useful */

size_factor(small,64).
size_factor(medium,32).
size_factor(large,21).

vertical_msg(X,Y) :-
write_msg("Flow->" X,Y,
default_FONT,vert _DIR,bottom_TEXT,center TEXT,1).

write_msg(Text,X,Y,Dfont,Ddir,DHJ,DVJ,Dsize) :-
gettextsettings(Font, Direction,Size,HJ,VJ),
settextstyle(Dfont,Ddir,Dsize),
settextjustify(DHJ,DVJ),
outtextxy(X,Y,Text),
settextstyle(Font,Direction,Size),
settextjustify(HJ, V).

July/August 1988 TURBO TECHNIX 91

TURBO PROLOG

LOGIC AND TURBO PROLOG

Prolog’s origins in logic are reflected in the mindset behind

the language.

Alex Lane

“Contrariwise,” continued Tweedledee, “if it
were so, it might be; and if it were so, it would
be; but as it isn't, it ain’t. That'’s logic.”

—Lewis Carroll,
s Through the Looking Glass
SQUARE ONE

Most introductory books on Prolog dutifully note
that the name Prolog is derived from the phrase
“programming in logic,” and then they briskly move
on to other subjects. Although most of us are famil-
iar with the concept of logic, there are many inter-
pretations.

To some, logic means disciplined, emotionless
thinking, as exemplified by Mr. Spock from Star Trek.
Others think of the electrical AND and OR circuits
that are used to build computers. Still others view
logic as a branch of philosophy, owing more to
Aristotle than to Spock.

So, to clear the air: Logic, as discussed in this arti-
cle, is the branch of mathematics that is concerned
with the form of statements, and with the determina-
tion of truth via mechanical manipulation of for-
mulas.

TRUTH

Truth is a fundamental idea in logic. Logical state-
ments can have one of two truth values: true or false.
One pitfall when dealing with truth as a logical con-
cept is that it doesn’t necessarily correspond to our
everyday notion of truth as “conforming to fact,” or
“being forthright and sincere.” Don’t lose any sleep
over this, but don’t be surprised if mathematical logic
isn’t always intuitive, either.

PROPOSITIONS

Propositions are statements that can be evaluated as
either true or false. They contain information about
something. For example, the statement “Socrates” is
not a proposition, because you cannot assign a truth
value to it. Neither is the statement “is a man,” for
the same reason. On the other hand, the statement

“Socrates is a man” is a proposition that can be said
to be true or false. The analysis of propositions using
symbolic notation is called propositional calculus, and
forms an important part of Prolog’s logical foun-
dation.

LOGICAL OPERATIONS

In arithmetic, individual numbers like 3 and 47 are
useful, but you can only do so much with them. By
analogy, you can go only so far with individual
propositions in logic.

Again, in arithmetic, numbers are used in combi-
nation with the fundamental operations of addition,
subtraction, multiplication, and division to express
more than what the numbers alone can say. Sim-
ilarly, fundamental logical operations can be used
with propositions in order to express additional
information.

There are four basic operations in logic: negation,
conjunction, disjunction, and implication. (There is
also a fifth connective—equivalence—which we will
not consider here.) These operators are called “sen-
tential” or “logical connectives.” Their names and
symbols (both in logic and in Turbo Prolog) are
shown in Table 1.

TURBO
PROLOG
CONNECTIVE NAME SYMBOL NOTATION
Negation NOT =~ not(...)
Conjunction AND &
Disjuntion OR + g
Implication IF-THEN — —

Table 1. A list of logical connectives with their associated
symbols and notation.

92 TURBO TECHNIX July/August 1988

NOT
A ~A
False True
True False

AND
A B A&B
False False False
False True False
True False False
True True True

OR
A B A+B
False False False
False True True
True False True
True True True
IF THEN

A B A —B
False False True
False True True
True False False
True True True

Table 2. Truth tables for the various
logical operators.

By using these connectives with
propositions, we express state-
ments such as “Today is Monday
AND the weather is sunny,” and
“IF Socrates is a man THEN
Socrates is mortal.”

If you look closely at the last
part of the previous sentence,
you’ll notice how the “and” that
connects the two propositions
creates another, more complex
proposition.

With the exception of NOT, all
of these connectives are binary—
they only work with two proposi-
tions. The NOT connective is
unary, and is applied to one
proposition.

Let’s take a quick tour of these
connectives. A set of truth tables
that illustrate these operations ap-
pears in Table 2.

NOT. The effect of NOT is to in-
vert the truth value of whatever it’s
applied to. Table 2 shows that if

A is true, then ~ A is false. Con-
versely, if A is false, then ~ A is
true. Applying the NOT connec-
tive twice to a proposition is the
same as not applying it at all:

~~ A is the same as A.

AND. The AND connective (rep-
resented as a comma “,” in Turbo
Prolog) operates on two proposi-
tions at a time, and is true only
when both propositions are true
(see Table 2). All other combina-
tions of truth values result in a
value of false. When evaluating a
series of ANDed propositions,

One of the
positive aspects of
using logic for
programming is the
extent to which
humans already
incorporate these
basic connectives
into everyday
thinking.

everything stops as soon as a false
proposition is encountered. In the
Prolog predicate shown below, A
must prove true before Prolog will
try to prove B:

2 :- A, B.

If A fails, no attempt will be made
to prove B.

OR. The logical OR connective
(represented by a semicolon “;” in
Turbo Prolog) is false only when
both of its associated propositions
are also false (see Table 2). Other-
wise, the OR of the two proposi-
tions is true. (This is different
from the case where either one
proposition or the other is true;
this situation is called an exclusive
OR, and is not addressed here.)

When ORed propositions are
evaluated, the OR succeeds as
soon as the first true proposition
is found. Consider the following
Turbo Prolog statement:

Zie= A3 BL
If A is satisfied, no attempt at sat-

isfying B is made unless Prolog
backtracks to this predicate.

As just described, the AND and
OR connectives are intuitive—
they act the way that you would
expect them to act. One of the
positive aspects of using logic for
programming is the extent to
which humans already incorpo-
rate these basic connectives into
everyday thinking. Yet a major
source of confusion when discuss-
ing logic concepts is that some of
the ideas are simply not intuitive.

IF-THEN

In logic, IF-THEN statements are
expressed in the form A — B,
where the arrow means “implies.”
The concept of IF-THEN is cen-
tral to our thinking; we are ex-
posed to it daily. We use it in state-
ments like: “If today is Wednesday,
then you're reading this magazine.”

Intuitively, the idea behind this
statement is that IF the first part
of the statement (“today is...”) is
true, THEN the second part
(“you’re reading ...”) is also true.
But what if today isn’t Wednesday?
You may or may not be reading
this magazine. Is our original IF-
THEN statement true or false?

In logic, the statement A — B is
defined (see Table 2) to be true
when B is true (regardless of the
value of A) or when A is false (re-
gardless of B). Symbolically, A —
B is equivalent to the expression
~ A + B. So, it turns out that by
definition, the proposition is true
if you're reading this magazine,
no matter what day it is. Similarly,
if today is not Wednesday, the
statement is true regardless of
whether or not you're reading this
magazine.

If you're confused by this logic,
remember that we’re talking about
the truth or falsity of the state-
ment A — B, not of the individual
propositions A and B. In Prolog
terms, given the statement A — B
and the fact that A is false, we
have:

B ="K,

continued on page 94

July/August 1988 TURBO TECHNIX 93

LOGIC
continued from page 93

Remember that in Prolog, the
positions of the antecedent (the
proposition at the arrow’s tail) and
the consequent (the proposition
that the arrow points to) are re-
versed. Thus, in Prolog, A — B is
expressed as:

B 2= K.

If A is false, nothing can logically
be said about B one way or anoth-
er, and attempts to satisfy B in
Prolog fail. Failure to satisfy a goal
in Prolog is not the same as prov-
ing the goal to be false; it only
demonstrates an inability to prove
that the goal is true. This distinc-
tion may sound fine, but it is im-
portant. Failure to satisfy goal B
using A does not prevent B from
being satisfied in some other way.
For example, if we know that B is
true, we have:

B 2= A.

B.

Now the goal B succeeds, regard-
less of the value of A.

THE RULE OF MODUS
PONENS

The logical definition of IF-THEN
leads to a very important result:
Given A — B and the fact that A

is true, then B is true. This meth-
od of mechanically obtaining a re-
sult (known as a rule of inference) is
called modus ponens and is central
to the way Prolog works. In
Prolog, modus ponens is express-
ed as:

B :- A.

A.

Given this set of Prolog clauses, it
is clear that the goal B can be
satisfied.

PREDICATE CALCULUS

Ordinary propositional calculus is
too limited for substantial use in
logic programming. In Prolog, the
statement “If Socrates is a man,
then Socrates is mortal” is ex-
pressed in propositional form as:

socrates_is_mortal:-
socrates_is_a_man.

The problem with using the prop-
ositional form for this statement
is that a separate clause must then
be generated for each individual
that is considered; there is no way
to generalize this relationship.
You cannot express the idea “If
<someone>> is a man, then
<someone>> is mortal” in propo-
sitional calculus. In order to deal
with objects in both an individual
and a general way, we must use
predicate calculus.

.~ Remember

that in Prolog, the
position of the
antecedent (the
proposition at the
arrow’s tail) and
the consequent (the
proposition that the
arrow points to) are

reversed.

In both Prolog and logic, state-
ments about objects (both by
themselves and in relation to
other objects) are called predicates.
Predicates have a specified
number (or arity) of arguments.
Continuing with the Socrates ex-
ample, let’s define the predicates
is_mortal and is_a_man. Each of
these predicates takes one argu-
ment. Using the same notation as
in propositional calculus, let’s say:

is_mortal(socrates):-
is_a_man(socrates).

We can generalize this expression
by not specifically identifying the
predicate arguments, and by refer-
encing unknowns (variables):
is_mortal(X):-

is_a man(X).
This expression says: “If someone
unknown (denoted by X) can be
said to be is_a_man, then that
same someone can be said to be
is_mortal.” The instantiation (or
binding) of X to a specific value

is accomplished using a technique
called “matching,” or more for-
mally, “unification.”

Unification. For the purposes of
our discussion, Prolog variables
are unifiable if they can be match-
ed together. Notice how variables
are matched when trying to satisfy
the member predicate:

member(X, [X,_1). /* succeed if

X is the head
of the list */

/* otherwise... */
member(X, [_,T]):-

member(X, T). /* succeed if

X is a member

of the list

tail */
Given an object and a list of ob-
jects, member succeeds if the
object is in the list; otherwise,
member fails. Given the following
goal, the first clause fails after the
variable X is instantiated to ‘@’ and
then cannot match the head of
the list (the character %’):
mr((] al i I z [3]) <
In the second clause, X matches
‘a’, and T matches [‘@’,'2’]. The fol-
lowing recursive call now suc-
ceeds, since the first argument
and the head of the second argu-
ment match the specification in
the clause:

member(‘a’,

[le, Ial,

e [

WRAP-UP

The mechanism used by Prolog is
based on the idea of mechanical
proof of logical statements. Given
this mechanism, the challenge for
the Prolog programmer is not to
devise control strategies for pro-
gram operation, but rather to
simply formulate a collection of
true relationships—and then to let
the mechanical features of Prolog
deliver an answer. W

Alex Lane is a knowledge engineer liv-
ing in Jacksonville, Florida. He is the
moderator of the Prolog conference on

the Byte Information Exchange (BIX).

94 TURBO TECHNIX July/August 1988

T THEAD

& Turbo Prolo 2018
the Artificial Intelhgence
breakthrough you've
been wai tlng for!

¢¢ If I had to pick one
single recommendation for
people who want to try to
keep up with the computer
revolution, I'd say, ‘Get and
learn Turbo Prolog.’

—Jerry Pournelle, Byte 99

«Turbo Prolog 2.0

Artificial Intelligence to y«

Turbo Prolog® puts the power of
advanced Artificial Intelligence into
your hands—whether you're a
professional programmer or just
getting started. You'll spin out
high-level, real-world applications
faster than you ever thought pos-
sible. Because Borland’s advanced
compiler technology drives you
right to the cutting edge of Artifi-
cial Intelligence development!

Zoom into the future

With its natural, English-like
syntax, state-of-the-art compiler,
and integrated environment, Turbo
Prolog puts the power of the future
at your fingertips. Building
advanced applications like expert
systems, customized knowledge
bases, natural language interfaces,
and smart database management
systems has never been this fast,
or this easy.

[COLICOLL1,COLL, ve

~is_verb(UORD), 1.
= write(">> Unknown word: ",WOR
nl, readchar(]).

F2-Save F3-Load F6-Switch F9-Compile

AN POPS IN AT

m
T R MOTORS, SILICON CITYS

N M
?};lﬁ;ccigT MANUFACTUR\N(, PMNT’T'

€on)
? HERE NEEDS
TURRp Pouwen -
1 CAN lreeg
IT

With Turbo Prolog, you simply
describe your problem, so you
never get bogged down in proce-
dural language. Slide through even
the most complex applications
using only about one tenth the
code. Your finished programs are
tight, readable, and easy to
maintain!

New 2.0: the most powerful
Prolog yet

New Turbo Prolog 2.0 takes pro-
gramming to the limit. The new
compiler is optimized to produce
tighter and more efficient code than
ever before.

The new two-volume documenta-
tion includes an in-depth tutorial
rich with examples and instruc-
tions—to take you all the way from
basic programming through
advanced techniques.

And your fully-integrated envi-

Turbo Prolog’s powerful development environment makes developing high-level applications quicker and easier than ronment iS even more convenient—
you've ever imagined. Consider this execution of a sentence analyzer. The results of the sentence analysis are shown . .
in the output window while the source code in the edit window traces the execution. The trace window shows the Wlth d full-screen edlEOF you can

predicates being traced. customize just the way you want it!

elivers power

1ir real-world applications!

5 A PERFECT JO&
Fon NEW TURBO PROLOG
2.0 -ITS ARTIFICIAL
INTELLIGEN
o Apo AL THE

N6 sV

APPL

Moorz_ NEW A
WE RE

Powerful new tools save time

Turbo Prolog 2.0 gives you new,
powerful tools to take your pro-
grams anywhere your imagination
wants to send them:

* An external database system for
developing large databases. Supports
B+ trees and EMS

e Support for the Borland Graphics
Interface, the same professional-
quality graphics in Turbo Pascal,®
Turbo C® and Quattro.®

* Source code to a fully-featured
Prolog interpreter. Plus step-by-step
instructions to adapt it or include it
as is in your own applications!

e Full compatibility with Turbo C so
the two languages can call each other
forward and backward freely—and
you can program with two of the most
powerful languages around!

* Full window management System

* Powerful exception handling and
error trapping features

* High-resolution video Support

* And a lot more!

Just $149.95

wlite
AR work

Fort \ou !

Add the Turbo Prolog Toolbox:
six powerful toolboxes in one
make building applications
even easier!

Here’s another breakthrough:
the Turbo Prolog Toolbox. You get
more than 80 tools and 8,000 lines
of source code to help build your
own Turbo Prolog applications—
including separate toolboxes for
building menus, screen and report
layouts, business graphics, com-
munications, file transfer capabili-
ties, parser generators, and more.
Use the Toolbox code as is or mod-
ify it to suit your needs.

Toolbox requires Turbo Prolog 1.1
or later.

Just $99.95

System Requirements: For the IBM PS/2™ and the IBM® family of personal
computers and all 100% compatibles. PC-DOS (MS-D0S) 2.0 or later.
384K RAM.

*Customer satisfaction is our main concern: if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund

All Borland products are trademarks or registered trademarks of Borland International, Inc. A
Borland Turbo Toolbox® product. Other brand and product names are trademarks or registered

trademarks of their respective holders. Copyright ©1988 Borland International, Inc Bl 1263

~ANOTHER DM“:’;\O o)
THE LIFE OF TU

AND ANOTHER Vicrony Fol
TECHNICAL EXCELLENCE y
AND THE BORULAND wAY

Upgrade now for just $64.95!

If you're a registered Turbo
Prolog owner, you can upgrade to
2.0 now for the special introductory
price of just $64.95 plus $5 for
shipping and handling.

To charge your upgrade to your
credit card, call us toll-free today
at (800) 543-7543. Be sure to have
your original Turbo Prolog serial
number handy.

60-Day Money-back Guarantee*
For the dealer nearest you
Call (800) 543-7543

BORLAND

INTERNATIONAL

TURBO PROLOG

CAT AND MOUSE IN TURBO
PROLOG: PART 11

Adding a Mac-like user interface is easy with Turbo Prolog.

Safaa H. Hashim

The Turbo Prolog Toolbox contains a
number of utilities for creating various
types of menus such as pop-up menus,
pulldown menus, scrolling menus, and
more. With all of these menus, the user
YIEARD _ initiates an action by pressing a combina-
tion of arrow keys and the Enter key. For example,
in a pulldown menu program, the user moves to a
particular menu using the arrow keys, and then
presses the Enter key to activate the menu. Next, the
arrow keys are pressed to highlight a particular op-
tion. By pressing the Enter key once again, the op-
tion is selected.

While the menu programs greatly simplify the in-
teraction between the program and the user, we can
streamline the user’s actions even further through
the use of a mouse. With the mouse, the user points
to the particular menu and selects an option in that
menu (this process is known as “point and click”).

In Part I of this article (see “Cat and Mouse in
Turbo Prolog: Part 1,” May/June, 1988) we explored

WIZARD

the basics of mouse programming with Turbo Prolog.

Here in Part II, I'll discuss some of the menu pro-
grams in the Turbo Prolog Toolbox and will show
you how to modify them to work with the Microsoft
Mouse.

A SIMPLE MOUSE-BASED MENU

One of the programs in the Turbo Prolog Toolbox is
MENU.PRO. This program implements two predi-
cates, menu and menu_leave, which allow the pro-
grammer to create simple pop-up menus. In the fol-
lowing discussion, I'll show you how to use input
from the mouse rather than from the keyboard. The
program SMSMENU.PRO (Simple MouSe MENU) in
Listing 1 is the modified version of MENU.PRO.
Note that SMSMENU.PRO works only with a mouse
—keyboard input has been disabled. In comparing
SMSMENU.PRO with MENU.PRO, notice that all the
predicates that recognize keyboard strokes have
been replaced with others that interact with the
mouse.

To see how the modified program behaves, run
Listing 1. (To run the listings in this article, you must
have MSM-DRV.PRO, which is presented in Part I.)
Enter the goal:

mstest

The major predicates in Listing 1 are smsmenu,
menuinit, and smsmenul. Let’s consider smsmenu
first:

smsmenu(Button, ROW,COL ,WATTR,
FATTR,LIST,HEADER, CHOICE): -
msm_init,
msm_show,
menuinit(ROW,COL,WATTR, FATTR,
LIST,HEADER,NOOFROW,
NOOFCOL),
repeat,
msm_stat(Button,R,C),
MsR=R/8, MsC=C/8,
smsmenu1(MsR,MsC, NOOFROW,
NOOFCOL,CHOICE), !,
removewindow,
msm_hide.
In calling smsmenu, you can specify which mouse
button will activate the pop-up menu (use Button
= 1 for the left button, and Button = 2 for the right
button).

The first two subgoals in smsmenu initialize the
mouse and show its cursor. Then menuinit (which
was taken directly from MENU.PRO) displays the
window for the menu and a list of the menu’s op-
tions. Each option is placed on a separate row.

The next subgoal, repeat, marks the beginning of
the PSR (Press button, Select option, and Release
button) loop. This loop provides the mechanism to
pick an option by pressing the designated mouse
button and holding it down, moving the cursor to
the desired option, and selecting that option by re-
leasing the mouse button.

In order for the program to know where the user
stops in the list of menu options, smsmenul is called
within the repeat loop. smsmenul calculates the cur-
sor’s row position within the menu window, as
shown in the following clause:

98 TURBO TECHNIX July/August 1988

smsmenul(MsR,MsC,Nrows,

Ncols, CHOICE): -
makewindow(X, , ,_,Srow,Scol,_,),
X=81,

SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,
Nrows,Ncols, NewR, _,
inside),
CHOICE = NewR + 1, !,
Much of the work here is handled
by compare_pos. compare_pos
takes the row and column of the
cursor’s current position, along
with the position and dimensions
of the active window, and checks
to see if the cursor is within the
active window. compare_pos also
returns the row and column of the
cursor’s position within the active
window.

DYNAMIC MOUSE MENU
PROGRAM

One drawback of SMSMENU.PRO
is its static nature. The pop-up
menu position is fixed, and is in-
dependent of the cursor’s posi-
tion. It would be more useful to
display the pop-up menu at the
current cursor position, because
you can then control where the
menu appears.

To display a menu at the cur-
rent cursor position, consider
DMSMENU.PRO (Dynamic
MouSe MENU) in Listing 2. The
major difference between DMS-
MENU.PRO and SMSMENU.PRO
lies in the main predicate dms-
menu and its subgoal dmsmenul.
A close look at dmsmenu reveals
that it contains an additional re-
peat loop:

dmsmenu(Button,WATTR, FATTR,LIST,
HEADER,STARTCHOICE,CHOICE): -
msm_init,
msm_show,
repeat,
msm_stat(Button,R,C),
ROW=R/8, COL=C/8,
menuinit(ROW,COL,WATTR, FATTR,
LIST,HEADER, NOOFROW,
NOOFCOL),
ST1=STARTCHOICE-1,
max(0,ST1,ST2),
MAX=NOOFROW-1,
min(ST2,MAX,STARTROW),
assert(currentrow(STARTROW)),
reverseattr(WATTR,REV),
field_attr(STARTROW,O,
NOOFCOL,REV),
repeat,
msm_stat(B,R1,C1),
ROWa=R1/8, COLa=C1/8,
dmsmenu1(B,Button,ROWa,
COLa, NOOFROW,
NOOFCOL,CHOICE),
!, removewindow,
msm_hide.

The first repeat loop waits for the
user to position the cursor and
press a button. The second repeat
loop displays the menu at that
position.

ADDING SCROLL BARS

Another useful feature in mouse
applications is the scroll bar,
which allows text to be scrolled
up, down, left, or right. A scroll
bar gives the visual effect of scroll-
ing the text in relation to the size
of the whole document. From the
user’s perspective, a scroll bar al-
lows complete control of text
movement in a window, without
the need to memorize a set of
commands.

In order to develop a scroll bar
program, we need to build a tool
that allows text to be scrolled
through windows. This tool, which
relies upon the built-in scroll
predicate, is shown in Listing 3.
scroll inserts a blank line at the
top or bottom of the currently ac-
tive window. This makes the text
in the window appear to scroll
down or up, respectively. In addi-
tion, scroll can be used to scroll
text to the right and to the left of
the currently active window. For
instance, to scroll text up two
rows, give the goal:

scroll(2,0).

To scroll text three rows down and
five columns to the left, give the
goal:

scrollG-3,/5)<

As you can see, scroll moves text
both horizontally and vertically in
the currently active window. Un-
fortunately, scroll doesn’t allow
the retrieval of text from a mem-
ory buffer. Therefore, once a por-
tion of the text is scrolled outside
of the boundary of the currently
active window, that portion of text
is lost. .

To handle this problem, we can
modify the scroll predicate to up-
date the screen by adding the fol-
lowing scr clause:

scr(ROWS,COLS): -
file_text(STRlist),
retract(pointer(Rpos,Cpos)),
refreshROWS (ROWS , Rpos, Cpos,
STRlist,RN,CN),
NewRpos=Rpos+ROWS,
refreshCOLS(COLS,NewRpos, Cpos,,
STRLlist,RN,CN),
NewCpos=Cpos+COLS,
assert(pointer(NewRpos,NewCpos)).

To see how scr works, let’s test it
with a predicate:
test_scr(ROW,COL):-
makewindow(1,7,0,"testing scr",
0,0,10,40),

file_str("document.txt",STR),
window_str(STR),
assertFILEstr("document.txt"),
scr(ROW,COL),
readln(_).

Now, give the goal:
test_scr(5,10).

In the first three subgoals of test_-
scr, Turbo Prolog opens a window
called “testing scr,” reads the con-
tents of the file DOCUMENT. TXT,
and copies those contents to the
string variable STR. The contents
of STR then display in the win-
dow. The next subgoal, assert-
FILEstr, converts the contents of
DOCUMENT.TXT into a list of
strings, with each string represent-
ing a line of text. Note that assert-
FILEstr asserts the list of lines
into the knowledge base, using
the database fact file_text.

The next subgoal in test_scr is
scr, where file_text retrieves
STRlist from the knowledge base.
STRlist represents a list of all
lines in the file that are to be dis-
played in the currently active win-
dow. The scroll bar program
(MSBAR.PRO) discussed below
uses this list to track which parts
of the file are visible or not visible
in the current window. One way
to do this is to use a database fact
to register a pointer, pointer-
(ROW,COLUMN), into the text
file. This pointer relates the upper
left corner of the active window to
a row and column in the text file.
The diagram in Figure 1 may help
you to visualize this situation.

In order to scroll up five rows
in the window, five rows need to
be retrieved from the text file to
fill the five rows of space at the
bottom of the window. To scroll
ten columns to the left of the win-
dow, ten columns must be re-
trieved from the text file to fill the
ten columns of space to the right
side of the scrolled text. Two pred-
icates perform these “refresh”
functions: refreshROWS, to re-
fresh the rows, and refreshCOLS,

continued on page 100

July/August 1988 TURBO TECHNIX 99

pointer (ROW,COL)

upper left .
corner of text

— file text

upper left
corner of text
in window

screen window

Figure 1. The relationship between text in a window and text in a file.

Figure 2. These horizontal and vertical scroll bars are used to scroll through text
in a window.

PROMOUSE

continued from page 99

to refresh the columns. The com-
plete program for the modified
scroll predicate is SCROLL.PRO
(Listing 3).

THE SCROLL BAR PROGRAM

Now that we have a working scroll
predicate, we need to interface
that predicate with the mouse.
This step involves a graphical rep-
resentation of vertical and hori-
zontal scroll bars on the screen.
Such graphical representation can
take several forms; in this article,

windows are used to represent the
scroll bars (see Figure 2).

MSBAR.PRO (Listing 4), which
handles this function, assumes
that the user wants to scroll text in
the currently active window. De-
pending upon the goal, the pro-
grammer implements a horizontal
scroll bar, a vertical scroll bar, or
a combination of horizontal and
vertical scroll bars. To see how
each of these is implemented, run
Listing 4 with the following three
goals:

testHORZ /* To use only a
horizontal bar */

testVERT /* To use only a
vertical bar */

testBOTH /* To use both horizontal
and vertical bars */

In examining the clauses for
testHORZ, testVERT, and test-
BOTH in Listing 4, notice that
there is little difference between
the three predicates. The mechan-
ics of activating the different types
of scroll bars are identical. test-
HORZ activates the horizontal
scroll bar using addHbar; test-
VERT uses addVbar to activate
the vertical scroll bar. testBOTH
activates both horizontal and ver-
tical scroll bars, using a combina-
tion of addHbar and addVbar.

One final point to note here is
that the predicate ms_act is re-
sponsible for most of the scrolling
action on the screen. Let’s exam-
ine testBOTH in more detail:
testBOTH: -

erase,

file_str("b:scr.tst",STR),

assertFILEstr("b:scr.tst"),

makewindow(1,6,71,"testBOTH",
10.5,10,65),

addHbar(STR),

addvbar(STR),

msm_init,

msm_show,

file_text(ListOfRows),

list_len(ListOfRows,0,L),

scrol LUNIT(L,NR,RowUnit),
repeat,
msm_stat(B,R,C),
Row=R/8, Col=C/8,
B <> 0,
ms_act(B,Row,Col ,RowlUnit),
fail.
First, erase is called to clear the
knowledge base. file_str then
reads the text file, SCR.TST, and
puts its text into the string variable
STR. Next, assertFILEstr converts
STR to a list of lines, asserting the
list as a file_text fact.

After creating a window titled
“testBOTH,” addHbar puts a hor-
izontal scroll bar at the top of the
window. The horizontal scroll bar
is a window that is placed at the
top of the original window (see
Figure 2). Similarly, addVbar
creates a vertical scroll bar to the
right of the window. The vertical
scroll bar is also a window, which
is placed to the right of the orig-
inal window. The next step is to
initialize the mouse (msm_init)
and display the mouse cursor
(msm_show). (These steps are dis-

continued on page 103

100 TURBO TECHNIX July/August 1988

UNLEASH YOUR 80386!

Your 80386-based PC should runtwoto
three times as fast as your old AT. This
speed-up is primarily due to the doubl-
ing of the clock speed from 8 to 16 MHz.
The new MicroWay products discussed
below take advantage of the real power
of your 80386, which is actually 4 to 16
times that of the old AT! These new pro-
ducts take advantage of the 32 bit regis-
ters and data bus of the 80386 and the
Weitek 1167 numeric coprocessor chip
set. They include a family of MicroWay

80386 compilers that run in protected
mode and numeric coprocessor cards
that utilize the Weitek technology.

The benefits of our new technol-
ogies include:
® An increase in addressable memory
from 640K to 4 gigabytes using MS-
DOS or Unix.
¢ A 12 fold increase in the speed of 32 bit
integer arithmetic.
* A 41to 16 fold increase in floating point

mW1167 Numeric
Coprocessor Board

MicroWay 80386 Compilers

NDP Fortran-386 and NDP C-386 are globally
optimizing 80386 native code compilers that
support a number of Numeric Data Processors,
including the 80287,80387 and mW1167. They
generate mainframe quality optimized code and
are syntactically and operationally compatible to
the Berkeley 4.2 Unix {77 and PCC compilers.
MS-DOS specific extensions have been added
where necessary to make it easy to port pro-
grams written with Microsoft C or Fortran and
R/M Fortran.

The compilers are presently available in two
formats: Microport Unix 5.3 or MS-DOS as ex-
tended by the Phar Lap Tools. MicroWay will port
them to other 80386 operating systems such as
0S/2 as the need arises and as 80386 versions
become available.

The key to addressing more than 640 kbytes
is the use of 32-bit integers to address arrays.
NDP Fortran-386 generates 32-bit code which
executes 3 to 8 times faster than the current
generation of 16-bit compilers. There are three
elements each of which contributes a factor of 2
to this speed increase: very efficient use of
80386 registers to store 32-bit entities, the use of
inline 32-bit arithmetic instead of library calls,
and a doubling in the effective utilization of the
system data bus.

An example of the benefit of excellent codeisa
32-bit matrix multiply. In this benchmark an NDP
Fortran-386 program is run against the same
program compiled with a 16-bit Fortran. Both
programs were run on the same 80386 system.
However, the 32-bit code ran 7.5 times faster
than the 16-bit code, and 58.5 times faster than
the 16-bit code executing on an IBM PC.

NDP FORTRAN-386™ $595
NDP C-386™.......cccvviiinnnnnnns $595

Micro

MicroWay Numerics

The mW1167™ is a MicroWay designed high
speed numeric coprocessor that works with the
80386. It plugs into a 121 pin “Weitek” socket
that is actually a super set of the 80387. This soc-
ket is available on a number of motherboards
and accelerators including the AT&T 6386,
Tandy 4000, Compaq 386/20, Hewlett Packard
RS/20 and MicroWay Number Smasher 386. It
combines the 64-bit Weitek 1163/64 floating
point multiplier/adder with a Weitek/Intel de-
signed “glue chip”. The mW1167™ runs at 3.6
MegaWhetstones (compiled with NDP Fortran-
386) which is a factor of 16 faster than an AT and
2 to 4 times faster than an 80387.

MWATET 18R . .o sl e wiaim v o x s s
mW1167 20MHzete $1595

Monoputer™ - The INMOS T800-20 Trans-
puter is a 32-bit computer on a chip that features
a built-in floating point coprocessor. The T800
can be used to build arbitrarily large parallel pro-
cessing machines. The Monoputer comes with
either the 20 MHz T800 or the T414 (a T800
without the NDP) and includes 2 megabytes of
processor memory. Transputer language sup-
port from MicroWay includes Occam, C, Fortran,
Pascal and Prolog.

Monoputer T414-20 with 2 meg' ... $995
Monoputer T800-20 with 2 meg' ...$1495

Quadputer™ can be purchased with 2, 3 or 4
transputers each of which has 1 or 4 megabytes
of memory. Quadputers can be cabled together
to build arbitrarily fast parallel processing
systems that are as fast or faster than today’s
mainframes. A single T800 is as fast as an
80386/mW1167 combination!

Biputer™ T800/T414 with2meg'....$3495
Quadputer 4 T414-20 with 4 meg' . ..$6000
TIncludes Occam

speed over the 80387/80287 numeric
COProcessors.

Equally important, whichever Micro-
Way product you choose, you can be
assured of the same excellent pre- and
post-sales support that has made Micro-
Way the world leader in PC numerics
and high performance PC upgrades.
For more information, please call the
Technical Support Department at

617-746-7341
After July 1988 call 508-746-7341

MicroWay"
80386 Support

80386 Multi-User Solutions

AT8™ - This intelligent serial controller series is
designed to handle 4 to 16 users in a Xenix or
Unix environment with as little as 3% degrada-
tion in speed. It has been tested and approved by
Compag, Intel, NCR, Zenith, and the Department
of Defense for use in high performance 80286
and 80386 Xenix or Unix based multi-user

systems.

b9 Tt L R O CO Y S $795
ATB -~ 8 USBI8 ... crsncinvassssons $995
AT16 =10 USOIS . .cuccoinvssnnssonss $1295

Phar Lap™ created the first tools that make it
possible to develop 80386 applications which
run under MS-DOS yet take advantage of the full
power of the 80386. These include an 80386
monitor/loader that runs the 80386 in protected
linear address mode, an assembler, linker and
debugger. These tools are required for the MS-
DOS version of the MicroWay NDP Compilers.

Phar Lap TOOIS . . : s cssnsvionssamsasass $495
PC/AT ACCELERATORS

287Turbo-10 1OMHz................ $450
287TTWDO- T2 12MHE. . oo oo cvneniinss $550
287TurboPlus-12 12MHz $629
FASTCACHE-286 9MHz $299
FASTCACHE-286 12MHz $399
SUPERCACHE-286 $499
MATH COPROCESSORS

80387-2020MHz................... $725
BO2BT-16 T8 MBZ. ... iciensiimannons $475
B0287T- M0N0 MR, i i sinncamenssan $295
B0287-8 BMHEZ:vnnssmnamnnss $239
BO287-6 GIMHIZ 1. . iz o thn $155
BOBTRBMHL =5 insesrraaransann $154
BOBT O INIRT o v cssssonlainieisioim ovaisistuisins $99

The World Leader in PC Numerics

Way

P.O. Box 79, Kingston, Mass. 02364 USA (617) 746-7341
32 High St.,, Kingston-Upon-Thames, U.K., 01-541-5466
St. Leonards, NSW, Australia 02-439-8400

LI

/*
/*
/*

STING 1: SMSMENU.PRO

*f
smsmenu - simple mouse menu L

smsmenu
Implements a pop-up menu with at most 23 possible choices.
For more than 23 possible choices use longmenu.

FLOW PATTERN: (i,i,i,i,i,i,i,0)
The arguments to menu are:

smsmenu(BUTTON, ROW, COL, WINDOWATTR , FRAMEATTR, STRINGLIST,
HEADER, SELECTION)

BUTTON is the mouse button used for making
selections.
(i.e. 1:left Button, 2:right, 3:middle)

ROW and COL determine the position of the window

WATTR and FATTR determine the attributes for the
window and its frame - if FATTR is zero there will
be no frame around the window.

STRINGLIST is the list of menu items
HEADER is the text to appear at the top of
the menu window

Example: smsmenu(1,10,10,6,4, ["Option A",
"Option B",
"Option C"],"test",X)

in

include "msut.pro"

in

PR

Ly
clude "msdoms.pro" /* domains declarations */

/* utility predicates */

clude "msm-drv.pro" /* the mouse-bios calls */

EDICATES
compare_pos(INTEGER, INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER, SYMBOL)
within_boundary(INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER, INTEGER, SYMBOL)

CLAUSES
/' * cmre-ms Akkkkhk kA k ko '/
/* “"compare_pos" predicate takes the mouse position

/*
/*
*

/*

(MsR,MsC), and the currently active window positions and
dimensions (SR,SC,NR,NC) and returns the position of the
mouse in the currently active window. */

compare_pos(MsR,MsC,SR,SC,NR,NC,NewMsR ,NewMsC,POS): -
MsR >= SR, MsC >= SC,
within_boundary(MsR,MsC,SR,SC,NR,
NC,NewMsR ,NewMsC,P0S), !.
compare_pos(R,C, , , , ,R,C,outside):-!.

within_boundary(MsR,MsC,SR,SC,NR,
NC,NewMsR ,NewMsC, inside):-
NewMsR=MsR-SR, NewMsC=MsC-SC,
NewMsR < NR, NewMsC < NC.
within_boundary(R,C, , , , ,R,C,outside):-!.

7

MSMENU FARARRARKAXXRKXRNANNR # /

7

DATABASE

currentrow(INTEGER) */

PREDICATES

smsmenu(INTEGER, INTEGER,, INTEGER , INTEGER,
INTEGER, STRINGLIST, STRING, INTEGER)
menuinit(INTEGER, INTEGER, INTEGER,, INTEGER, STRINGLIST,
STRING, INTEGER, INTEGER)
smsmenul(INTEGER, INTEGER, INTEGER, INTEGER, INTEGER)

CLAUSES

/*

/*

SRR smsmenu L
smsmenu(But ton,ROW, COL,WATTR, FATTR, L1ST,HEADER, CHOICE): -
msm_init,
msm_show,
menuini t(ROW,COL,WATTR, FATTR,LIST,
HEADER , NOOFROW, NOOFCOL),
repeat,
msm_stat(Button,R,C),
MsR=R/8, MsC=C/8,
smsmenul(MsR,MsC, NOOFROW, NOOFCOL , CHOICE), !,
removewindow,
msm_hide.

*kk MS Menu] **XXXXXXXAAKEARAS &/

smsmenul(MsR,MsC,Nrows,Ncols,CHOICE): -
makewindow(X, _, _,_,Srow,Scol,_,),
X=81,
SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,
Nrows,Ncols,NewR, ,inside),
CHOICE = Newk + 1, !.

/* Mouse button pressed outside menu window... quit and

do nothing */

smsmenul(MsR,MsC, Nrows,Ncols,0):-
makewindow(X, ,_,_,Srow,Scol,_,),
X=81,
SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,Nrows,Ncols,_,_,outside),
i.

= menuinit ~
menuinit(ROW,COL,WATTR, FATTR,LIST,
HEADER , NOOFROW , NOOFCOL) : -
maxlen(LIST,0,MAXNOOFCOL),
str_len(HEADER, HEADLEN),
HEADL 1=HEADLEN+4,
max(HEADL1,MAXNOOFCOL ,NOOFCOL),
listlen(LIST,LEN), LEN>O,
NOOFROW=LEN,
adjframe(FATTR,NOOFROW, NOOFCOL ,HH1,HH2),
adjustwindow(ROW,COL, HH1,HH2, AROW,ACOL),
makewindow(81,WATTR, FATTR ,HEADER, AROW,ACOL , HH1,HH2) ,
writelist(0,NOOFCOL,LIST).

/' *hw '/
= e TESTING # B
/* L7/
PREDICATES

mstest
CLAUSES

mstest:-

/* Button=1, left button */
smsmenu(1,10,10,6,4, ["Option A",

"Option B",

"Option C"],"test", X),
write(X).

J* REXRXKXRRKRRER END OF SMSMENU,PRO FA***XR*kAARARAARERN */

LISTING 2: DMSMENU.PRO

/' * * *
dmsmenu

dmsmenu generates a disappearing menu at any postion

on the screen that is pointed at by the mouse cursor.

dmsmenu(BUTTON, WATTR, FATTR,LIST,HEADER, STARTCHOICE , CHOICE)

BUTTON: This is the mouse button (1,2,3, ...,7) that will
activate the menu. If you press the particular
mouse button Turbo Prolog will display the menu at
the mouse-cursor position.

WATTR, FATTR: These are the "window" and "frame" attributes.

LIST: is the list of options in the menu, it is a list of
strings.

HEADER: Title of the menu.

STARTCHOICE: is the menu row to be first highlighted when
the menu is activated.

CHOICE: is an integer refering to the option we want to
select in the menu.

To run the program, give the goal: popup.

The mouse button is set to 2 which is the right button.
when you press the button you should get the test menu.
*7

include "msdoms.pro" /* domains declarations */
include "msut.pro" /* utility predicates */
include "msm-drv.pro" /* the mouse-bios calls */

PREDICATES
compare_pos(INTEGER, INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER, SYMBOL)
within_boundary(INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER,, INTEGER, INTEGER , SYMBOL)

CLAUSES

/i REARRAERAAR AN AR cmre—pos AARRAAEARARR AR AR ARR
compare_pos takes the mouse position (MsR,MsC),

and the currently active window positions and dimensions
(SR,SC,NR,NC) and returns the position of the mouse in the
currently active window. */

listing continued on page 104

102 TURBO TECHNIX July/August 1988

PROMOUSE

continued from page 100

cussed in Part I of this article, so
I won’t cover them in detail here.)

file_text then retrieves the list
of lines (asserted by assertFILE-
str), and list_len returns the
number of lines (L) in the text
file.

Another makewindow subgoal
retrieves the number of rows in
the actual scrolling window. After
adding horizontal and vertical
scroll bars, addVbar (in test-
BOTH) creates a window for
scrolling text; this window is lo-
cated within the original window.

scrollUNIT returns a scroll unit
R, which is the ratio between the
total number of lines in the text
file and the total number of rows
in the currently active window. In
other words, to scroll text verti-
cally, every vertical-bar row corre-
sponds to a value R in the text
file. On the other hand, to scroll
text horizontally, every horizontal-
bar column corresponds to one
column in the text file.

Finally, we come to the repeat
loop. msm_stat gives the button
that is currently being pressed,
along with the row and column of
the cursor. Then ms_act checks
whether the pressed button is the
button that activates the scroll
bars program. Next, ms_act checks
whether the cursor is in the ver-
tical bar window or the horizontal
bar window. Once ms_act knows
which bar the user is using, it re-
lates any movement of the bar in-
dicator (mouse cursor movements)
to the modified scroll predicate
scr.

APPLICATIONS FOR THE
MOUSE

With the basic mechanisms in
place, there are a number of
mouse features that you can add
to your applications. For instance,
the mouse can be used with Turbo
Prolog windows to dynamically
move windows on the screen. This
allows the user to point to a win-
dow and use the mouse to drag it
to a new position. The mouse
could also be used to resize a win-
dow, or to shift between windows
on the screen. Another useful fea-
ture you might add is the ability to
use the mouse to move or copy
strings of text.

In graphics mode, you can add
the capabilities to draw points,
lines, and polygons. In addition,
the mouse can be used to indicate
the direction for rotation, reflec-
tion, perspective, and other kinds
of graphical transformations.
Once you start programming the
mouse with Turbo Prolog, I'm sure
you'll think of many other creative
ways to use the mouse. W

Safaa H. Hashim is a graduate stu-
dent in the computer science division
at the University of California,
Berkeley.

Files may be downloaded from Com-
puServe as MOUSE2.ARC.

REFERENCES

Carrol, John M. (ed.). Interfacing
Thought: Cognitive Aspects of Hu-
man-Computer Interaction, Boston,
Massachusetts: MIT Press, 1987.

Solution Systems. “Experts’ Views
on the Human Interface Traits of
Successful Commercial Software.”
The Developer’s Publisher, 1987.

(For a copy of this report, write to
Solution Systems, 541 Main Street,
Suite 410, South Weymouth, MA
02198.)

Heckel, Paul. The Elements of
Friendly Software Design, New York,
New York: Warner Books, Inc.,
1984.

King, Richard Allen. The MS-DOS
Handbook, Berkeley, California:
SYBEX Inc., 1986.

Nath, Sanjiva. Turbo Prolog: Fea-

tures For Programmers, Portland,
Oregon: MIS Press, Inc., 1986.

Nickerson, Raymond S. Using Com-
puters: Human Factors in Informa-
tion Systems, Boston, Masssachu-
setts: MIT Press, 1987.

Shneiderman, Ben. Designing the
User Interface: Strategies for Effective
Human-Computer Interaction, Read-
ing, Massachusetts: Addison-
Wesley Publishing Company, 1987.

language modes and much more.

included, no royalties.

4:.0 A Debugger and Overlays
i) for Your Turbo Pascal 4.0

T-DebugPLUS 4.0 is the powerful symbolic run-time debugger
that helps you find and fix bugs faster than ever before. You get B Access
to global and local variables B Watch variables B Conditional breakpoints

B Support for graphics modes and dual displays B Source and assembly
T-DebugPLUS 4.0 is only $45.

Overlay Manager 4.0 brings overlays to Turbo Pascal 4.0.
Develop programs larger than available memory, even larger than the
640K limit. Convert to the fantastic new Turbo 4.0 while retaining the
overlays your program needs. Automatic EMS support. Source code
Overlay Manager 4.0 is only $45.

Call toll-free for credit card orders:
1-800-538-8157 ext. 830 (1-800-672-3470 ext 830 in CA)

Satisfaction guaranteed or your money back within 30 days.

For upgrade or other
information, call

e A,
U344

Shipping and taxes prepaid
in U.S. and Canada. Else-

408-438-8608.

o

TurboPower Software P.O. Box 66747 Scotts Valley, CA 95066-0747

where add $12 per item.

July/August 1988 TURBO TECHNIX

103

listing continued from page 102

compare_pos(MsR,MsC,SR,SC,NR,NC,NewMsR ,NewMsC,POS): -
MsR >= SR, MsC >= SC,
uithin_bmndal:‘y(nsk,nsc,sk,SC,NR,NC,NemsR,NemsC,POS),
LS

compare_pos(R,C, , , , ,R,C,outside):-!.

within_boundary(MsR,MsC,SR,SC,NR,NC, NewMsR,NewMsC, inside):-
NewMsR=MsR-SR, NewMsC=MsC-SC,
NewMsR < NR, NewMsC < NC.
within_boundary(R,C, , , ,_,R,C,outside):-!.

ik *
[REERERRRERRRRRCRES Gnomeny */
s y

/* DATABASE
currentrow(INTEGER) */

PREDICATES
dmsmenu(INTEGER, INTEGER, INTEGER, STRINGLIST,
STRING, INTEGER, INTEGER)
menuini t(INTEGER, INTEGER, INTEGER,
INTEGER, STRINGLIST, STRING, INTEGER, INTEGER)

dmsmenu1(INTEGER, INTEGER, INTEGER,, INTEGER,
INTEGER, INTEGER, INTEGER)

CLAUSES
* ms_menu - f
dmsmenu(Button,WATTR, FATTR, LIST, HEADER, STARTCHOICE,, CHOICE) : -
msm_init,
msm_show,
repeat,

msm_stat(Button,R,C),
ROW=R/8, COL=C/8,
menuini t(ROW,COL,WATTR, FATTR,LIST,
HEADER, NOOFROW,NOOFCOL),
ST1=STARTCHOICE-1,
max(0,ST1,872),
MAX=NOOFROW- 1,
min(ST2,MAX, STARTROW),
assert(currentrow(STARTROW)),
reverseattr(WATTR,REV),
field_attr(STARTROW,0,NOOFCOL,REV),
repeat,
msm_stat(B,R1,C1),
ROWa=R1/8, COLa=C1/8,
dmsmenu1(B,Button,ROWa,COLa,
NOOFROW, NOOFCOL ,CHOICE), !,
removewindow,
msm_hide.

il ms_menul */
dmsmenu1(B,B,MsR,MsC,Nrows,Ncols,):-
makewindow(X,WATTR, , ,Srow,Scol,_,),
x=81,
SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,Nrows,Ncols,NewRow, _, inside),
currentrow(StartRow),
StartRow <> NewRow,
field_attr(StartRow,0,Ncols,WATTR),
retract(currentrow(StartRow)),
assert(currentrow(NewRow)),
reverseattr(WATTR,REV),
field_attr(NewRow,0,Ncols,REV), I,
fail.
dmsmenu1(B,B1,MsR,MsC,Nrows,Ncols,CHOICE):~
B <> B1,
makewindow(X,_,_,_,Srow,Scol,_,),
X=81,
SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,Nrows,Ncols,NewR, ,inside),
CHOICE=NewR+1, 1!.
dmsmenul(B,B1,MsR,MsC,Nrows,Ncols,0):-
B <> B1,
makewindow(X, _,
x=81,
SR1=Srow+1, SC1=Scol+1,
compare_pos(MsR,MsC,SR1,SC1,Nrows,Ncols, , ,outside), !.

Srow,Scol,_,),

/' AhhARRARR AR d R R bR "Eﬂuinit * *hk * ﬁl
menuini t(ROW,COL,WATTR, FATTR,LIST, HEADER , NOOFROW, NOOFCOL) : -
maxlen(LIST,0,MAXNOOFCOL),
str_Len(HEADER, HEADLEN),
HEADL 1=HEADLEN+4,
max(HEADL1, MAXNOOFCOL , NOOFCOL),
Listlen(LIST,LEN), LEN>0,
NOOFROW=LEN,
adj frame(FATTR, NOOFROW, NOOFCOL , HH1, HH2),
adjustwindow(ROW, COL , HH1, HH2, AROW, ACOL),
makewindow(81,WATTR, FATTR, HEADER , AROW, ACOL , HH1, HH2),
writelist(0,NOOFCOL,LIST).

”* */
2 TESTING *t*= */
/' * '/
PREDICATES

Popup
GOAL

Popup.
CLAUSES

msm_init,

msm_show,

makewindow(1,7,0,"",0,0,25,80),
/* BUTTON = 2, the right button is used */
dmsmenu(1,71,124, ["option 0 ™

"option 1 u:
Yoption2 =,
“option 3 ",
“option 4 ",
"option 5 ™,
“option 6 "1,
""MOUSE POPUP",2,X),

write(X).

J* weRaEARAEARAES END OF DMSMENU.PRO ***#**knussaukensnsns #/

LISTING 3: SCROLL.PRO

/' * " -
/* **** A scroll predicate with string saving buffer **** #/
/¥ *

NOTE: to test this program by itself, uncomment the
lines with the "a" symbol. */

/* @ include "msdoms.pro® */

PREDICATES
assertFILEstr(STRING) /* assert a text_file fact. */
getROWstr(STRINGLIST) /* get list of ROWS (strings) */

scr(INTEGER, INTEGER) /* this is my "scroll(i,i)" */
refreshRows(INTEGER, INTEGER, INTEGER,
STRINGLIST,INTEGER, INTEGER)
refreshU(INTEGER, INTEGER, INTEGER, STRINGLIST,
INTEGER, INTEGER, INTEGER, INTEGER)
refreshD(INTEGER, INTEGER, INTEGER, STRINGLIST,
INTEGER, INTEGER, INTEGER, INTEGER)
refreshRpos(INTEGER, INTEGER, STRINGLIST,
INTEGER, INTEGER, INTEGER, INTEGER)

refreshCOLSCINTEGER, INTEGER, INTEGER,
STRINGLIST, INTEGER, INTEGER)
refreshL(INTEGER, INTEGER, INTEGER,
STRINGLIST, INTEGER, INTEGER)
refreshRCINTEGER, INTEGER, INTEGER, STRINGLIST, INTEGER)
refreshCpos(INTEGER, INTEGER, INTEGER,
INTEGER,STRINGLIST, INTEGER)

getROWS(INTEGER, INTEGER,
STRINGLIST,STRINGLIST)
getROWS1(INTEGER, INTEGER,
STRINGLIST,STRINGLIST)
getROWS2(INTEGER, STRINGLIST, STRINGLIST)
refreshCposACINTEGER, INTEGER, INTEGER, INTEGER,
STRINGLIST)

/* Utility Predicates */

/* @ repeat
erase */
analyseFILEname(STRING,STRING, STRING)
extract_str(STRING, INTEGER, INTEGER,STRING)
extract_str1(STRING, INTEGER, INTEGER, INTEGER,STRING)
List_Len(STRINGLIST, INTEGER, INTEGER)
pointerLIMIT(INTEGER, INTEGER, INTEGER, INTEGER)

/* @ testscr(INTEGER, INTEGER) */
CLAUSES

/' AhkkhRA AR hdd assertF'LEStr AARRARRAAARAARAA AR AR, '/
assertFILEstr(InFILEname) if
openread(infile, InfFILEname),
readdevice(infile),
getROWstr(LIST),
assert(file_text(LIST)),
assert(pointer(0,0)),
closefile(infile),
readdevice(keyboard).

104 TURBO TECHNIX July/August 1988

Lahey Computer Systems, Inc.
*Sets 4’New FORTRAN Standard!

Introducing the latest addition to our line of PC FORTRAN Language Systems—
Lahey Personal FORTRAN 77 Version 2.0

What You Get When
You Purchase

Lahey Personal
FORTRAN:

Lahey Experience.
We are experts in designing
and implementing FORTRAN
Language Systems. Lahey
has been producing
mainframe implementations
since 1967 and PC
FORTRANSs (F77L) since 1984.
In fact, F77L was named the
“EDITOR’S CHOICE” among PC
FORTRANSs by PC Magazine. This 20-
year span of specialization has been
incorporated into the design of our
revolutionary Lahey Personal FORTRAN 77.

LAHEY SLASHES COMPILATION TIME. ‘
Compilation times (in seconds) for Whetstone Program (WHETS3H. FOR) e

Test conducted on IBM AT running at 6Mhz with 80287 l T T T T | T

- Lahey Personal FORTRAN 77 Version 2.0 ($95) - 11.57
[Wisosot o e v I 5 05
[_Ryan McFarland _rorrean versen 21 (59 _889

Customer Support:

Our philosophy is that customer relationships begin, rather than end, at the
point of sale. Services include free technical support, electronic bulletin board
for fast service and information access, and newsletters to keep you up to
date on our latest developments.

Purchasing the Lahey Personal FORTRAN 77 gives you software designed
by FORTRAN experts, a feature-loaded product with industry-leading
compilation speed, and quality technical support; all for $95.

International Representatives: Australia: Comp. Transitions, Tel. (03)5372786 ¢ Canada: Barry Mooney & Assoc.,
Tel. (902)6652941 » Denmark: Ravenholm Computing, Tel. (02)887249 « England: Grey Matter Ltd., Tel. (0364)53499
* Holland: Lemax Co. BV. (02968)4210 * Japan: Microsoftware Inc., Tel. (03)813822 ¢ Norway: Polysoft A.S.
(03)892240 » Switzerland: DST Comp. Services, Tel. (022)989188

MS-DOS & MS FORTRAN are trademarks of Microsoft Corporation.

We have a complete line of PC FORTRAN Language Systems. For
developing or porting programs there is no substitute for a Lahey. If you
would like information on any of these products, please call 1-800-548-4778.

Lahey Personal FORTRAN 77 — So much for so little $95
F77L — “Editor’s Choice’” PC Magazine $477
F77L-EMN16 — Ability to write programs as large as 15 MB on 80286 $695
F77L-EM/32 — New 32-bit — Programs up to 4GB on 80386. $895

Featu re Loaded:

Full implementation of the
ANSI X39-1978 FORTRAN
Standard

Fast Compilation (see chart)
Popular Language
Extensions highlighted in the
manual

Source On-Line Debugger
English Diagnostics and
Warning Messages
LOGICAL1, LOGICAL*4
INTEGER*2, INTEGER*4
REAL*4, REAL*8, and
DOUBLE PRECISION
COMPLEX*8, COMPLEX*16
Recursion

31-Character Names

Trailing Comments

Cross Reference and Source
Listings

64 KB Generated Code

64 KB Stack Storage

64 KB Commons, Constants
and Saved Local Data

Math coprocessor emulation
runs with or without a

math coprocessor chip
400-Page User Manual

SYSTEM REQUIREMENTS:
256K Ram MS-DOS (2.0 or later)

*95

Lahey is setting the
PC FORTRAN Standard.

TO ORDER

1-800-548-4778

(specify disk size)
Lahey Computer Systems, Inc.
PO. Box 6091
Incline Village, NV 89450
Telephone: (702) 831-2500
TELEX: 9102401256
FAX: (702) 831-8123

/*

/*

/*
/*
/*

/*

/*
Vid
Vad

/*
/*

Vid
/*

RAA AR ittt] leSQflLEm EA A2 d 22 sttt '/
analyseFILEname(STRname,Name, Extension) if
fronttoken(STRname, Name,Rest),
fronttoken(Rest,"." Extension).

GEtROWSL ***ANAEARR*ANRRERR &/

getROWstr([]1):- eof(infile), I.
getROWstr([(Hrow|RESTrows]):-

readln(Hrow),
getROWstr(RESTrows), |.

re”.t whhkw '/
a repeat.
repeat:- repeat.
* '/
#eevessx GCROLL PREDICATE "scrh wheess a/
hx * ./
scr(ROWS,COLS):~
file_text(STRlist),
makewindow(_, _, _,_,_,_,RN,CN),

/* now start the operation of refreshing text */

/* pointer position (row and column),
the pointer position is the starting row and column
of part of the text file that will be displayed in
the currently active window. The pointer position
in text (say 3,0 or 4,5) always corresponds to
window position of 0,0. */

/* pointer position in the text */
retract(pointer(Rpos,Cpos)),
refreshROWS (ROWS, Rpos,Cpos,STRList ,RN,CN),
NewRpos=Rpos+ROWS,
refreshCOLS(COLS,NewRpos,Cpos,STRList ,RN,CN),
NewCpos=Cpos+COLS,
assert(pointer(NewRpos,NewCpos)).

*

refreshkws ARk kbR '/

* .I
refresh the rows */

refreshROWS (ROWS, Prou Pcol STRllst NR,NC):-
ROWS > 0,
WR=NR-1, /* Assuming current window has no frame */
refreshU(ROWS,Prow,Pcol ,STRList,WR,0,NR,NC), !.
refreshROWS(ROWS,Prow,Pcol ,STRList,NR,NC):~
ROWS < 0,
refreshD(ROWS,Prow,Pcol ,STRlist,0,0,NR,NC), !.

refreshD .7 4
refresh Down, put text at bottom of window A
refresh from current position "Cpos" Nrows

going backward in the list of rows means
upward in the window. */

refreshD(0,_,_,_
refreshD(RowNum,
TempPos=Prow-1,
scroll(-1,0),
refreshRpos(TempPos,Pcol,STRList,Wrow,Wcol ,WNR,WNC),
NewRowNum=RowNum+1,
refreshD(NewRowNum, TempPos,Pcol ,STRList,
Wrow,Wcol ,WNR,WNC), !.

Pcol STRLlist,Wrow,Wcol ,WNR,WNC): -

AhRARARRNRNRRERRRERR rafraghl */

refresh Up, put text at top of window.
refresh from current position "Cpos" and Nrows going forward.
Forward in list of rows means downward in the window. */

refreshU(0, _, , . s s_v)" 1.
refreshU(RowNum,Prow,Pcol ,STRList,WR,WC, NR,NC):-
TempProw=Prow+1,

scroll(1,0),

/* adjust the starting row to be pulled from
text file and placed in window. We do this by
adding the window depth, num of rows to the current
pointer into the text file. The skipped rows are
assumed to be reserved on the screen by the
built-in scroll predicate. */

AdjustedProw=Prow+NR,

refreshRpos(AdjustedProw,Pcol ,STRList,WR,WC, NR,NC),

NewRowNum=RowNum-1,

refreshU(NewRowNum, TempProw,Pcol ,
STRList,WR,WC,NR,NC), !.

ARk RR AR AR AR AR R refreshkms AR At s S ettt] ./
write a certain row, the "Pos" numbered row in the

text file, at the field defined by the current window
row, Wrow, Wcol ,WNC and of course the string of that text
file row, RowStr. */

*

/* 3@

/*
/*

Vid
/*

/*
/*

/*

/*

refreshRpos(_,_,00,_,_,_,):-1.

refreshRpos(0,Pcol, [RWstr| 1,Wrow, Wcol, _,WNC):-
frontstr(Pcol ,Rowstr, _ ,STR),
field_str(vrou,\lcol,HNC,STR), R

refreshRpos(Pos,Pcol , [_|RestRows] ,WR,WC,RN,CN) -
StepPos=Pos-1,
refreshRpos(StepPos,Pcol ,RestRows,WR,WC,RN,CN), !.

-
refreshCOLS *****xaxkxssss */

*hRh ARk kR *y

Refresh the columns

refreshCOLS(COLS,Prow,Pcol,STRList,RowNum,ColNum)

coLs number of colums to refresh

Prow pointer row number

Pcol pointer col number

STRlist list of rows in the text

RowNum number of rows in screen window
ColNum number of columns in screen window

refreshCOLS(COLS,Prow, Pcol ,STRList,RowNum,ColNum): -

coLs > 0, ? it scrolling text to the left */
scrol 1(0,COLS),
readln(_), */

refreshL(COLS,Prow,Pcol ,STRList,RowNum,ColNum), 1.

refreshCOLS(COLS,Prow,Pcol,STRList,RowNum,):-
coLs < 0, /* scrolling text to the right */
scrol L(0,COLS),
refreshR(COLS,Prow,Pcol ,STRList,RowNum), !.

refresh to the left */

refreshL(COLS,Prow,Pcol ,STRList,RowNum,ColNum): -
/* pointer to start of refresh in Text */
TStartCol=Pcol+ColNum,
/* pointer to start of refresh in Window */
wWStartCol=ColNum-COLS,
refreshCpos(COLS, TStartCol ,WStartCol,

Prow,STRList,RowNum).

refreshL */

* refreshR RRRAARA AR AR Rd '/
refresh to the right */
refreshR(COLS,Prow,Pcol ,STRList,RowNum): -
TStartCol=Pcol+COLS,
/* refreshing from left of screen starts at 0 */
WStartCol= 0,
C = abs(COLS),
refreshCpos(C,TStartCol ,WStartCol,
Prow,STRList,RowNum).

ARRRARRRAR AR ARk d refreshcm ARRAEAAR AR AR AR AR '/
refresh a part of text into certain parts of screen =y

refreshCpos(COLS, TstartCOL,WstartCOL,Prow, InList,Rnum): -
getROWS(Prow,Rnum, InList,OutList),
WstartROW=0,
refreshCposA(COLS, TstartCOL ,WstartROW,
WstartCOL,OutList).

RAA i it it st d refresh‘:posA t/
refreshCposA(_, _, _,_, [1):-!.
refreshCposA(COLS, TstartC,WstartR,
WstartC, [ROWstr|Rest]):-

NextWstartR=WstartR+1,

extract_str(ROWstr, TstartC,COLS,STR),

str_len(STR,L),

field_str(WstartR, WstartC,L,STR),

refreshCposA(COLS, TstartC,NextWstartR, WstartC,Rest),!.

getROWS o
getROWS(0,NumofRows, InStrList,OutStrList):-
list_len(InStrList,0,Len),
getROWS1(NumofRows,Len, InStrList,OutStrList),
getROWS(PointerROW, NumofRows, [_|Rest],OutList):-
UpdatedPointerRow=PointerRow-1,
getROWS(UpdatedPointerRow, NumofRows ,Rest,OutList).

ARERRAARERRAAR AR getRws1 '/
getROWS1(NumofRows,Len, InList,OutList): -

NumofRows < Len,

getROWS2(NumofRows, INList,OutList), |.
getROWS1(_, _,List,List):-!.

getkwsz ARAAAAAA AR ARk h kR ./
getROWS2(0, , [1):-1.
getROWS2(NumofRows, [H|T11, [H|T21):-

NewN=NumofRows-1,

getROWS2(NewN, T1,12), 1.

106 TURBO TECHNIX July/August 1988

/. extract str RRRRARA AR AR d '/
/* Flow Patterns (i,i,i,0), (i,i,i,i)
extract the string of characters OutStr that is part
of the string InStr. OutStr starts at the column StartCol
in InStr. The length of OutStr is Length. */

extract_str(INSTR,SC,NC,OUTSTR):~
str_len(INSTR,LENGTH),
extract_str1(INSTR,LENGTH,SC,NC,OUTSTR).

extract_str1(_,LENGTH,SC,_,""):- LENGTH < SC, !.
extract_str1(INSTR,LENGTH,SC,NC,OUTSTR):~

LENGTH < SC+NC,

frontstr(SC, INSTR,_,STR),

OUTSTR=STR, 1I.
extract_str1(INSTR,_,SC,NC,OUTSTR):-

frontstr(SC, INSTR, _,RESTSTR),

frontstr(NC,RESTSTR,STR,_),

OUTSTR=STR, !.

/- h® lis‘ \en RRRARAR R AR AR '/
list_len(l],L,L):- 1.
List_len([_|T1,0ldLength,CurrentLength):-

AddLength=0ldLength+1,
list_len(T,AddLength,CurrentLength), !.

/* pointerLIMIT ***sasasnuss %/

pointerLIMIT(RowNum,Length,PointerRow, NewRowNum) : -

RowNum > 0,

Limit = Length - PointerRow - 1,

RowNum >= Limit,

NewRowNum = Limit, 1.
pointerLIMIT(RowNum, ,PointerRow,NewRowNum):-

RowNum < 0,

Num = abs(RowNum),

Num >= PointerRow,

NewRowNum = - PointerRow, !.
pointerLIMIT(RowNum, , ,RowNum):- |.

¥ by . * test *)
/* @ testscr(X,Y):-
makewindow(1,71,0,"*,5,0,5,13),
file_str("b:scr.tst",STR),
window_str(STR),
assertFILEstr("b:scr.tst"),
scr(X,Y),
readin(_).
7
/bs END' OF SCROLL.PRO *#tauadiantns 4/

ye */
/* A scrolling-bar program bt
/' * ./

include "msdoms.pro*® /* domains & database declarations */
include "msut.pro* /* utility predicates */

include "msm-drv.pro" /* the mouse-bios calls */

include "compare.pro" /* compare mouse & screen positions */
include "scroll.pro " /* the modified scroll, "scr* */

PREDICATES
ms_act (INTEGER, INTEGER, INTEGER, INTEGER)
msbarV(INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)
msbarH(INTEGER, INTEGER, INTEGER, INTEGER, INTEGER)

addvbar (STRING)
putVbar(STRING)

addHbar (STRING)
putHbar (STRING)

exist_VBAR(INTEGER)
exist_HBAR(INTEGER)
INITbarV(INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)
INITbarH(INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)

/* TESTING PREDICATES */
showBARS
testHORZ
testVERT
testBOTH

/* ADDITIONAL UTILITY PREDICATES */
erase
scrol LUNITCINTEGER, INTEGER, INTEGER)

CLAUSES

¥ */
/* "ms_act" Classifying and Executing mouse actions 7§
/'

1f mouse button "Button" was pressed inside the vertical
bar window, then vertical scrolling is active, msbarV. */

ms_act(Button, MsR,MsC,RowUnit):-

BN=WN+100, 2
barV(BN,_,_,SR,SC,NR,NC),
compare_pos(MsR,MsC,SR,SC,NR,NC,NewRow, _, inside),
barROW(BR),
BR = NewRow,
repeat,

msm_stat(B,R,C),

Row=R/8, Col=C/8,

msbarV(B,Button,Row,Col ,BN,RowUnit), !.

/* 1f mouse button "Button" was presesd inside the horiz.
bar widow, then horizontal scrolling is active, msbarH */
ms_act(Button,MsR,MsC,):-

BN=WN+101,
barH(BN,_,_,SR,SC,NR,NC),
compare_pos(MsR,MsC,SR,SC,NR,NC, ,NewCOL, inside),
barCOL(CO),
CO = NewCOL,
repeat,
msm_stat(B,R,C),
Row=R/8, Col=C/8,
msbarH(B,Button,Row,Col ,BN), I.

(i W
/* werrsrs mouse controlled scrolling-bar program *+*+#+ =/
" S

msbarV(B,B,Row,Col ,BN,Scrol lFactor):-
barV(BN,BARattr,BOXattr,SR,SC,NR,NC),
compare_pos(Row,Col ,SR,SC,NR,NC,NewRow, ,inside),
barROW(OldRow),
NewRow <> OldRow,
shiftwindow(BN),
field_attr(OldRow,0,NC,BARattr),
field_attr(NewRow,0,NC,BOXattr),
WN = BN - 100,
shiftwindow(WN), 1,
retract(barROW(OldRow)),
assert(barROW(NewRow)),
S = NewRow - OldRow,
§1 = § * ScrollFactor,
scr(s1,0), !,
fail.
msbarV(8,B1,Row,Col ,BN,ScrollFactor):-
B <> B1,
barV(BN,BARattr, BOXattr,SR,SC,NR,NC),
compare_pos(Row,Col,SR,SC,NR,NC,NewRow, _, inside),
barROW(OldRow),
NewRow <> OldRow,
shiftwindow(BN),
field_attr(OldRow,0,NC,BARattr),
field_attr(NewRow,0,NC,BOXattr),
WN = BN - 100,
shiftwindow(WN),
retract(barROW(OldRow)),
assert(barROW(NewRow)), !,
S = NewRow - OldRow,
§1 = § * ScrollFactor,
scr(s1,0), !.
msbarV(B,B1,Row,Col BN,):-
B <> B1,
barV(BN,_,_,SR,SC,NR,NC),
compare_pos(Row,Col,SR,SC,NR,NC, _, ,outside), !.

/. Rk dkh R d ko nsbarH ./
msbarH(B,B,Row,Col ,BN):~-
barH(BN,BARattr,BOXattr,SR,SC,NR,NC),
compare_pos(Row,Col,SR,SC,NR,NC, _,NewCol,inside),
barcOL(OldCol),
NewCol <> OldcCol, !,
shiftwindow(BN),
field_attr(0,0ldCol,1,BARattr),
field_attr(0,NewCol,1,BOXattr),
WN = BN-101,
shiftwindow(WN),
retract(barCOL(OldCol)),
assert(barCOL(NewCol)),
S = NewCol - OldCol,
scr(0,8), !,
fail.
msbarH(B,B1,Row,Col ,BN):-
B <> B1,
barH(BN,BARattr, BOXattr,SR,SC,NR,NC),
compare_pos(Row,Col ,SR,SC,NR,NC, _,NewCol,inside),
barCoL(OldCol),
NewCol <> OldCol, !,
shiftwindow(BN),
field_attr(0,0ldCol,1,BARattr),
field_attr(0,NewCol,1,BOXattr),
WN = BN-101,
shiftwindow(WN),
retract(barCoOL(OldCol)),
assert(barCOL(NewCol)),

July/August 1988 TURBO TECHNIX

107

S = NewCol - OldCol,
scr(0,8), 1.
msbarH(B,B1,Row,Col ,BN): -
B < B1,
barH(BN,_,_,SR,SC,NR,NC),
compare_pos(Row,Col,SR,SC,NR,NC, , ,outside), !.

/. ARAARAAAARARAAN mr ‘ m"b.r RERRARAAAAARAR AR RSN 'I

addVbar(STR): -
makewindow(WN,Wattr,Fattr,
Fattr <> 0,
NewWN=WN+20,
NewRN=RN-2,NewCN=CN-2,NewR=R+1,NewC=C+1,
makewindow(NewWN,Wattr,0,"" NewR, NewC, NewRN, NewCN),
putVbar(STR), !.

addVbar(STR): -
putVbar(STR), !.

_.R,C,RN,CN),

addHbar (STR):~
makewindow(WN,Wattr, Fattr, ,R,C,RN,CN),
Fattr <> 0,
NewWN=WN+20,
NewRN=RN-2,NewCN=CN-2,NewR=R+1,NewC=C+1,
makewindow(NewwN,Wattr,0,"" NewR ,NewC,NewRN,NewCN),
putHbar(STR), !.

addHbar (STR): -
putHbar(STR), 1.

J* wRRRRRAERRARAREARNE O tVhar */

/* check if vertical bar already exists for the current
window */

putVbar(_):-
makewindow(NW, , , , , , ,),
NW < 100, /* the window is not a bar window */
exist__VBAR(W),
shiftwindow(NW),
write("\n vertical scrolling bar already exists"), !.

/* 1f window has horizontal bar then top level window is
a horizontal bar window and needs be removed first then we
resize main window and recreate horiz. bar then add
vertical bar. */
putVbar(STR): -
makewindow(WN, Wattr, Fattr,Label,
Srow,Scol ,Nrows,Ncols),
exist_HBAR(WN), /* horiz. bar. already exists */
VBWN=WN+100,
HBWN=WN+101,
NewNcols=Ncols-2,
Bcol=Scol+NewNcols,
Brow=Srow-1,
removewindow,
removewindow, /* remove old horiz. bar */
INITbarH(HBWN, 120, 16,Brow,Scol ,NewNcols),
INITbarV(VBWN, 120, 16,Srow,Bcol ,Nrows),
makewindow(WN,Wattr, Fattr,Label,
Srow,Scol ,Nrows,NewNcols),
window_str(STR), !.

/* 1f window has neither horizontal nor vertical bars,
then create vertical bar */

putVbar(STR):-

makewindow(NW,Wattr, Fattr, Label,
Srow,Scol ,Nrows,Ncols),

VBWN=NW+100,

NewNcols=Ncols-2,

Bcol=Scol+NewNcols,

/* removing old window */

removewindow,

/* create the vertical bar */

INITbarV(VBWN, 120, 16,Srow,Bcol ,Nrows),

/* update main window */

makewindow(NW,Wattr,Fattr, Label,
Srow,Scol ,Nrows,NewNcols),

window_str(STR), I.

s putHbar

putHbar(_):-
makewindow(NW, , , , , ,_,.),
NW < 100, /* the window is not a bar window */
exist_HBAR(W),
shiftwindow(NW),

write("\n vertical scrolling bar already exists"), !.

/* save window status before removing window */

*/

/* Check if horizontal bar alrendy exist for the current window */

/* 1f window has vertical bar then only resize window and recreate

vertical bar, then add horizontal bar. */
putHbar(STR): -
makewindow(WN,Wattr, Fattr, Label,

Srow,Scol ,Nrows,Ncols),
exist_VBAR(WN), /* horiz. bar. already exists */
VBWN=WN+100,

HBWN=WN+101,

NewNrows=Nrows-1,

NewSrow=Srow+1,

VBcol=Scol+Ncols,

removewindow,

removewindow, /* remove old vert. bar */
INITbarV(VBWN, 120,16, NewSrow, VBcol ,NewNrows),
INITbarH(HBWN, 120, 16, Srow, Scol ,Ncols),
makewindow(WN,Wattr, Fattr,Label ,NewSrow,

Scol ,NewNrows, Ncols),
window_str(STR), !.

/* 1f window has neither horizontal nor vertical bars,
create a horizontal bar */
putHbar(STR): -
makewindow(WN,Wattr, Fattr,Label,
Srow,Scol ,Nrows,Ncols),
HBWN=WN+101,
NewNrows=Nrows-1,
NewSrow=Srow+1,
removewindow,
INITbarH(HBWN, 120, 16,Srow, Scol ,Ncols),
makewindow(WN,Wattr, Fattr,Label,
NewSrow,Scol ,NewNrows,Ncols),
window_str(STR), !.

/* werwkdkatat exist_VBAR & exist _HBAR *#*#asaxawswiwss %/
exist_VBAR(WN):-
BWN=WN+100,
existwindow(BWN) .

exist_HBAR(WN):-
BWN=WN+101,
existwindow(BWN) .

/' ARARARRAE AR AR RN lNlTbarV ‘ INlTbaru RRERARARAARAA AR ./
/* Initialize the vertical scrolling bar */
INITbarV(WN,BARattr, BOXattr,Brow,Bcol ,Blength) :-
makewindow(WN,BARattr,0,"", Brow,Bcol ,Blength,2),
assert(barV(WN,BARattr,BOXattr, Brow,Bcol ,Blength,2)),
field_attr(0,0,2,B0Xattr),
assert(barROW(0)), !.

/* Initialize the horizontal scrolling bar */
INITbarH(WN,BARattr,BOXattr,Brow,Bcol ,Blength) :-

makewindow(WN,BARattr,0,"" Brow,Bcol,1,Blength),
assert(barH(WN,BARattr BOXattr,Brow,Bcol,1,Blength)),
field_attr(0,0,1,B0Xattr),

assert(barCOL(0)), !.

* * "k ./
;: ARRARAR AR Rd test i n‘ ./
L/ 4

showBARS: -

makewindow(1,70,2,"SHOwbars",0,0,25,80),
window_str(STR),

addvbar(STR),

read(n(),

addHbar(STR),

readln(_).

testHORZ: -
erase,
file_str("scr.tst",STR),
assertFILEstr("scr.tst"),
makewindow(1,6,71,"testHOR2",10,5,10,65),
addHbar (STR),
msm_init,
msm_show,
file_text(ListOfRows),
list_len(ListOfRows,0,L),

makeulndou(_ —r—v_s_s_s_sNR),
scrol LUNIT(L,NR,RowUnit),
repeat,

msm_stat(8,R,C),

Row=R/8, Col=C/8,

B < 0,

ms_act(B,Row,Col ,RowUnit), fail.

testVERT:-
erase,
file_str("scr.tst",STR),
assertFILEstr("scr.tst"),
makewindow(1,6,71,"testVERT",10,5,10,65),
addvbar(STR),
msm_init,
msm_show,

108 TURBO TECHNIX July/August 1988

file_text(ListOfRows),
list_len(ListOfRows,0,L),
makewindow(_, ,_,_,_,_,_,NR),
scrol LUNIT(L,NR,RowUnit),
repeat,

msm_stat(B,R,C),

Row=R/8, Col=C/8,

B <> 0,

ms_act(B,Row,Col ,RowUnit), fail.

testBOTH: -

erase,
file_str("scr.tst",STR),
assertFILEstr("scr.tst"),
makewindow(1,6,71,"testBOTH",10,5,10,65),
addHbar (STR),
addvbar(STR),
msm_init,
msm_show,
file_text(ListOfRows),
list_len(ListOfRows,0,L),
makewindow(_, _, _,_,_,_._,NR),
scrol LUNIT(L,NR,RowUnit),
repeat,

msm_stat(B,R,C),

Row=R/8, Col=C/8,

B <0,

ms_act(B,Row,Col ,RowUnit), fail.

Fhs il 4
Y il utility L7
/.

L= number of lines in text file.

N= number of rows in active window.

R= a unit used by the bar moving indicator, such that
for each window-row this indicators moves, the program
scrolls R lines in the text file. */

scrol LUNITCL,N,R):~
0 =L mod N,
R=LdivN, I

scrol LUNITCL,N,R):-
R=LdivN+1

/* retract all knowledge base facts. */
erase:- retract(_), fail.
erase.

J* wekkaatasnkdaesksants END of msbar.pro FreAEwENEwRaANs 4/

LISTING 5: MSDOMS.PRO

- */
/' DOMAINS LA et i e Pa i il] .,
[*
DOMAINS

STRINGLIST = STRING*
INTEGERLIST = INTEGER*
FILE = infile

DATABASE

file_text(STRINGLIST)
pointer(INTEGER, INTEGER)
barROW(INTEGER)
barCOL(INTEGER)

/* barV(ParentWindowNo,BarNo,Srow,Scol ,Nrow) */
barV(INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)
barH(INTEGER, INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)

currentrow(INTEGER)

LISTING 6: MSUT.PRO

/* File name: "msut.pro,"

NOTE: This file is extracted from A TURBO PROLOG TOOLBOX
utility file. */

/* b
/l * * UT"-[TES ARRAARRAR ARy ./
i .
Y& repeat */
PREDICATES

nondeterm repeat
CLAUSES

repeat.

repeat:-repeat.

1% o
/* miscel laneous &7
/% */
PREDICATES

/* The length of the longest string */
maxlen(STRINGLIST, INTEGER, INTEGER)

/* The length of a list L7
Listlen(STRINGLIST, INTEGER)
/* used in the menu predicates 4]

writel ist(INTEGER, INTEGER,STRINGLIST)
/* Returns the reversed attribute */
reverseattr(INTEGER, INTEGER)
min(INTEGER, INTEGER, INTEGER)
max(INTEGER, INTEGER, INTEGER)

CLAUSES
maxlen¢ [H|T],MAX, MAX1) :-
str_len(H,LENGTH),
LENGTH>MAX, !,
maxlen(T,LENGTH,MAX1).
maxlen([_|T],MAX,MAX1) :- maxlen(T,MAX, MAX1).
maxlen([1,LENGTH, LENGTH).

listlen([1,0).

ListlenC[_|T1,N):-
listlen(T,X),
N=X+1.

writelist(_,_,[1).

writelist(LI,ANTKOL, [H|T]):-
field_str(LI,0,ANTKOL, H),
LI1=LI+1,
writelist(LI1,ANTKOL,T).

min(X,Y,X):-X<=Y, 1,
min(_,X,X).

max(X,Y,X):-X>=Y, 1.
max(_,X,X).

reverseattr(A1,6A2):-
bitand(A1,$07,H11),
bitleft(H11,4,H12),
bitand(A1,$70,H21),
bitright(H21,4,H22),
bitand(A1,$08,H31),
A2=H12+H22+H31.

> i

/* adjustwindow takes a windowstart and a windowsize and
adjusts the windowstart so the window can be placed on
the screen. adjframe looks at the frameattribute: if it
is different from zero, two is added to the size of the
window */

” S

PREDICATES
adjustwindow(INTEGER, INTEGER, INTEGER,
INTEGER, INTEGER, INTEGER)
adjframe(INTEGER, INTEGER, INTEGER, INTEGER, INTEGER)

CLAUSES
adjustwindow(L1,KOL,DLI,DKOL,ALI,AKOL): -
L1<25-DLI,KOL<80-DKOL, ! ,ALI=L1,AKOL=KOL.
adjustwindow(LI,_,DLI,DKOL,ALI,AKOL):~
LI<25-DLI,!,ALI=L1,AKOL=80-DKOL.
adjustwindow(_,KOL,DLI,DKOL,ALT,AKOL): -
KOL<80-DKOL, | ,AL1=25-DL1, AKOL=KOL.
adjustwindow(_,_,DLI,DKOL,ALI,AKOL):-
AL1=25-DLI, AKOL=80-DKOL.

adjframe(O,R,C,R,C):-1.
adjframe(_,R1,C1,R2,C2):-R2=R142, C2=C1+2.

I

e

July/August 1988 TURBO TECHNIX

109

TURBO BASIC

BINARY TO TEXT FOR
COMMUNICATIONS

Transform binary files into transmittable Turbo Basic
programs that can convert themselves back into

their original form.

Robert E. Stearns, Jr.

Many electronic mail services, including
MCI Mail, handle only text files, some-
times with limited character sets. A text file
as used here means a file that contains
only the printable characters in the ASCII
character set, plus a handful of control
characters that are often called “whitespace” charac-
ters: carriage return, line feed, tab, and sometimes
BEL (character 7). If you want to send a binary file
(or a file collection, such as an .ARC archive file) via
such an electronic mail service, you have to first con-
vert the file to a text file. In addition, the recipient
must have a corresponding program to re-create the
text of your file in its original form.

PROGRAMMER

TEXTIFY.BAS

TEXTIFY.BAS (Listing 1) streamlines both steps by
converting any file to a Turbo Basic program that
contains only the common displayable characters
from the ASCII set, in lines less than 72 characters
long. This new Turbo Basic program can then be re-
constructed on the receiving end using a BASIC in-
terpreter or compiler such as Turbo Basic, BASICA,
or QuickBASIC (I've tested lengthy samples with all
three). With these options, almost anyone with an
IBM PC or compatible should be able to retrieve a
file that has been encoded with TEXTIFY.

TEXTIFY, which is written in Turbo Basic, has
three main parts: initialization, main file processing,
and termination. In addition, a number of DATA
statements contain the encoded data needed to re-
create the file in its original form.

Initialization. Initialization involves several steps:
® (etting the source file name;
® (Creating the destination filename;

® Opening both the source and the destination
files;

® [nitializing the translation table; and

® Writing the file re-creation program to the output
file.

The translation table created by the initialization
steps contains only upper- and lowercase alphabetic
characters, the ten numeric digits, and the “@” and
“$” symbols. The main file processing converts 8-bit
binary values into the 64 characters in the transla-
tion table.

Main file processing. Main file processing reads a
section of the source file using BINARY mode file
processing. If the character length of the last section
of the source file is not equal to a multiple of three,
that section is extended in order to equal that length.
For every 3 bytes (24 = 3 X 8 bits) of the input file,
4 integers in the range 0 to 63 (24 = 4 X 6 bits) are
created. Each of the these integers is used as a sub-
script to access one of the characters from the trans-
lation table and then to write that character to disk.
The characters are written to disk as part of a
series of DATA statements. As each section of the
source file is converted, a checksum is calculated. Af-
ter the last character for each section has been writ-
ten to disk, this checksum is appended to the end of
each DATA statement. After transmission, the file re-
creation program also computes this checksum, and
then compares its result to the checksum read from
the DATA statement in order to determine if the file
has been corrupted by the transmission process.
This process continues until no more data is left in
the input file. Approximately every 1000 bytes, the
user is informed about the progress of the
conversion.

Termination. Termination writes a final DATA state-
ment to the file, closes both the input and output
files, and then tells the user that the process is
complete.

RE-CREATION

The file re-creation program, embedded in string
form in the DATA statements of TEXTIFY, is the log-
ical inverse of TEXTIFY. (It’s written in a form that
enhances its readability. If you often transfer small
binary files, you may want to compress this file re-

110 TURBO TECHNIX July/August 1988

creation program by eliminating
spaces and using colons [*:”] to
combine separate lines onto one
line.)

Re-creating the transmitted file
involves nothing more than load-
ing the transmitted file into a
compatible BASIC compiler or in-
terpreter and then running the
file. The re-creation program con-
verts the data in its DATA state-
ments into a duplicate of the orig-
inal file.

The re-creation process works
like this: Since every character in
the translation table is unique, the
table can be used by the file re-
creation program to regenerate
each corresponding integer value.
The re-creation program takes 4
characters at a time from its
DATA statements, and maps each
character into an integer in the
range 0 to 63 (4 X 6 = 24 bits) us-
ing the INSTR function. It then
converts these 24 bits to 3 bytes
(3 X 8 = 24) of data, and writes
these bytes to the output file. A
checksum is computed for each
DATA statement’s data. That
checksum is compared to the
checksum that has been embed-
ded in the DATA statement by
the conversion program. If the
two checksums do not match,
an error message is d
indicating that

the file took a “hit” during
transmission through communi-
cation channels.

READY, SET, TEXTIFY
TEXTIFY may be used in two dif-
ferent ways. If you type its name
as a command (with no oper-
ands), it prompts you for the
name of the file to convert. Alter-
natively, you can type the
following:

TEXTIFY <filename>

This command causes TEXTIFY
to process the file named <file-
name>>. This latter format is
appropriate for use in either com-
munications scripts or .BAT files.
The cost that TEXTIFY exacts
for its service is an expansion in
the size of the transmitted file,

since every three binary bytes are
represented by four ASCII char-
acters, plus the constant overhead
of the embedded re-creation pro-
gram. Still, it’s a small price to pay
for being able to finesse a long
string of eight-bit bytes through a
seven-bit communications
channel. W

Bob Stearns is employed by the Uni-
versity of Georgia’s Advanced Compu-
tational Methods Center. He is also

a consultant on the use of supercom-
puters of several different architec-
tures, and acts as the public domain
librarian for the ACMC and the local
PC users group.

Listings can be downloaded from
CompuServe as TEXTFY.ARC.

continued on page 112

LISTING 1: TEXTIFY.BAS continued from page 111

This program will take any file and create a BASIC program
which will recreate the file, but which contains no characters
that could cause any communications link a problem. The only
characters in the file are those from the 95 character graphic
subset of the ASCII set, and many of the more obscure
characters from that group have been eliminated as well. Any
file created with program should pass through almost any
communications link unscathed. I even made sure the maximum
line length was less than 72.

defint a-z ' all integers makes everything faster
dim table$(63) ' the character conversion table
chunksize=36 ' handle the file in pieces this size
a$=command$ ' get the name of the file to convert
.
' if the file name is not present in the command line, get it
L from the user interactively.
.
if as$="" then

input "Type the name of the file to process";a$
end if

open a$ for binary as 1

the output file name will be the same as the input file name,
including path, but with the extension BAS.

=instr(as,"."

f i=0 then b$=a$ else b$=left$(as$,i-1)
b$=b$+" . BAS"

open b$ for output as 2

'

'
'
'
.
i
i

U move the selected characters to the array to simplify and
' even speed up their access.
L}
read tb$, tbx$
tb$=tbs$+tbxs$
for i=0 to &3
table$(i)=mid$(tbs,i+1,1)
next i
L]
’ read the conversion program from the data statements and
' write it as the prefix to the converted data.
L)
do
read bline$
print #2,bline$
loop until bline$=" 9999 'n

3 write the first data statement containing the file length and
! file name to the converted file.
.

filelen!=lof(1)

print #2,using "##### DATA ";10000;

print #2,as,",", filelen!

print filelen!;" bytes to do"' Tell the user how much there is to do

Lineno=10001 ' The line number in the output program
filepos!=1 ' Current position in the input file
Lim!=1000 ' When to tell how much we've done

This is the main code of the program. It reads chunks of the
input file, converts each group of three bytes to four
characters in the output file, and writes the characters to
the output file in the form of data statements. As the input
is processed, a checksum is formed for each chunk and the
checksum is written to the output file to be checked by the
program which will reconstruct the file.

while(filepos!<=filelen!)
seek #1,filepos!-1

if filepos!+chunksize-1<=filelen! then
get$ #1,chunksize,t$

else
get$ #1, filelen!-filepos!+1,t$
i=len(t$) mod 3 ' for the rest of the code to
if i=0 then i=3 ' work properly, there must be a
t$=t$+left$(" ", 3-i) ' multiple of 3 chars in t$

end if

print #2,using "##### DATA ";lineno;

Lineno=Lineno+1

checksum=0
for i=1 to len(t$) step 3
j1=asc(mid$(ts,i ,1)) A b

'111111222222333333444444
as the above bit map
shows, we will convert
24 bits of three data
bytes to four numbers
between 0 and 63.

Next, we print them as
characters which can be
converted back to the
corresponding numbers.
always <= chunksize*255

j2=asc(mid$(t$,i+1,1))
j3=asc(mid$(t$,i+2,1))

cl= AN
c2=((j1 and 3) * 16)+j2 \
c3=((j2 and 15) * 4)+j3 \
c4= (j3 and 63)

print #2,table$(c1);

print #2,table$(c2);

print #2,table$(c3);

print #2,table$(cé);
checksum = checksumt+j1+j2+j3

next i
print #2,%, ";checksum
filepos!=filepos!+chunksize
if filepos!>lim! then
print filepos!;" bytes done"
lim!=Lim!+1000

end if
wend
L
5 put on the final data statement indicating the end of the
! file, close the files and tell the user we are done

]

print #2,using "##### DATA ";lineno;
print #2,chr$(34);chr$(34);", 0"
close #1

close #2

print "Files closed, job complete"
stop

.

3 The characters to which the file is converted
1

data ABCDEFGHIJKLMNOPQRSTUVWXYZ

data abcdefghi jklmnopqrstuvwxyz0123456789a$

L

The file reconstruction program less the data statements

which describe the file to be built. This program does the
inverse transform of the program above. It processes each
group of four characters into 6 bit integers, then concatenates
consecutive groups of 8 bits into output characters. These
output characters are then written to the output file until

the original file size is reached.

data " 10 DEFINT A-2"

data 15 READ TBS,TBXS,FCS,JSS,JESH
data " 16 TBS=TBS+TBXS"

data " 20 READ AS"

data " 30 OPEN AS FOR OUTPUT AS #1%
data " 40 READ FSI"

data " 45 PRINT JSS;CHRS(32);AS"
data " 50 READ LNS,CS"

data " 55 L=10001"

data " 60 WHILECLEN(LNS)<>0)"

data " 65 cc=o"

data ® 70 FOR I=1 TO LEN(LNS) STEP 4"

data " 80 D1=INSTR(TBS ,MIDS(LNS,I ,1))-1*

data " 90 D2=INSTR(TBS ,MIDS(LNS, I+1,1))-1"

data * 100 D3=INSTR(TBS ,MIDS(LNS, [+42,1))-1"

data " 110 D4=INSTR(TBS ,MIDS(LNS, 1+3,1))-1"

data * 120 C1=((D1* 4) + (D2 \ 16)) AND 255%

data * 130 C2=((D2*16) + (D3 \ 4)) AND 255%

data " 140 C3=((D3*64) + D&) AND 255%

data * 145 CC=CC+C1+C2+C3"

data " 150 PRINT #1,CHRS$(C1);"

data " 160 Xt=X1+1%"

data * 170 IF X!<FS! THEN PRINT #1,CHRS$(C2); : X!=X!+1®
data * 180 IF X!<FS! THEN PRINT #1,CHR$(C3); : X!=X!+1®
data * 190 NEXT "

data " 195 IF CC<>CS THEN PRINT FCS$;L"

data " 200 READ LNS$,CS™

data * 205 L=L+1"

data " 210 WEND™

data " 220 CLOSE #1*

data 225 PRINT AS;CHR$(32);JES"

data " 230 STOP™

data " 1000 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ™

data " 1005 DATA abcdefghi jklmnopqgrstuvwxyz0123456789as"
data " 1010 DATA FILE CORRUPTED AT"

data " 1020 DATA CREATING FILE"

data " 1030 DATA HAS BEEN CREATED"

data " 9999 '™

112 TURBO TECHNIX July/August 1988

Basically speaking, there’s
one choice ... Turbo Basic!

Turbo Basic

ile dit un onpile

Edit | Compile to

KEY OFF

COLOR 7, B

CL

COLOR 4, B

LOCATE 1, 2

PRINT "TOW

COLOR 6, 8

LOCATE #PromptLine,

from th

Options

etup indow ebug

Menory Trace
887 required OFF

eyboard break ON

ounds OFF

verf louw ON

tack test ON

arameter line
etastatements

Run

er of Dis

-Help ~Zoon -Next -Goto

-Size/move

Turbo Basic's development environment gives you overlapping windows, pull down menus, and the ability

to run text-based applications in a window.

Turbo Basic® is the BASIC that
lets even beginners write polished,
professional programs almost as
easily as they can write their names.

The others don’t. When you
really examine them, you'll find
that even though they may be
“quick,”” they make it hard to
get where you're going. (Sort of
like a car with an engine but no
steering wheel.)

Turbo Basic takes you farther
faster—in the comfort of a sleek
development environment that
gives you full control. Naturally
it has a slick, fast compiler just like
all Borland’s technically superior
Turbo languages. It also has a full-
screen windowed editor, pull-down
menus, and a trace debugging

System Requirements: For the IBM PS/2™ and the IBM® family of personal
computers and all 100% compatibles. Operating System: PC-DOS (MS-DOS)
2.0 or later. Toolboxes require Turbo Basic 1.1. Memory: 384K RAM for
compiler, 640K RAM to compile Toolboxes.

*Customer satisfaction is our main concern; if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund

All Borland products are trademarks or registered trademarks of Borland International, Inc. Other

brand and product names are trademarks of their respective holders. Copyright ©1988 Borland
International, Inc Bl 1246

system. And innovative Borland
features like binary disk files, true
recursion, and more control over
your compiling. Plus the ability to
create programs as large as your
system’s memory can hold.

The critics agree. The choice is
basic. Turbo Basic from Borland.

€6 ... What really makes
Turbo Basic special is its blind-
ing speed, small size, and many
added commands. Programs
compiled with Turbo Basic are
often much faster and smaller
than those produced by other
compilers.

Ethan Winer, PC Magazine Best of 1987

Turbo Basic, simply put, is an
incredibly good product.

William Zachman, Computerworld 99

Add another Basic advantage:
The Turbo Basic Toolboxes

» The Database Toolbox gives
you code to incorporate into
your own programs. You don’t
have to reinvent the wheel every
time you write new Turbo Basic
database programs.

* The Editor Toolbox is all
you need to build your own
text editor or word processor,
including source code for two
sample editors.

New!

New!

60-Day Money-back Guarantee*

Compare the BASIC differences!

Turbo Basic 1.1

5 Compile & Link to

| stand-alone EXE 3 sec.
Size of .EXE 28387
Execution time e
w/80287 0.16 sec.

y e 0.16 sec.

w/0 80287

QuickBASIC 4.0 QuickBASIC 4.0

Compiler Interpreter
7 sec. | —_—
25980 e

16.5 sec. 21.5 seo.

286.3 sec. 292.3 sec.

The Elkins Optimization Benchmark program from March 1988 issue of Computer Language was used.
The Program was run on an IBM PS/2 Model 60 with 80287. The benchmark tests compiler’s ability to
optimize loop-invariant code, unused code, expression and conditional evaluation.

For the dealer nearest you
call (800) 543-7543

TURBO BASIC

VIEWPORTS IN TURBO BASIC

Create a viewport—a screen within your screen—with the

VIEW and WINDOW statements.

Peter Aitken

The screen display of graphics is an im-

portant part of the output of many com-

puter programs. Whether it involves the
- simple shapes of a child’s geometry tutor-

ing program, or the complex engineering
drawings of a CAD package, graphical dis-
play is a fundamental component of today’s personal
computers.

In Turbo Basic, the entire screen is normally used
for graphics output. But what if we want to restrict
the output to just a portion of the screen, so that the
remainder of the screen can be used for something
else? An example of how useful this can be is pro-
vided in Figure 1, which shows a screen from a sim-
ple program that I developed to quiz young children
about basic geometrical shapes. Graphical output
(the shapes) is restricted to the window, while the re-
mainder of the screen is available for text output.
This Turbo Basic program uses the VIEW statement
to establish a rectangular region of the screen, called
a viewport, to which all graphics output is sent.

In order to understand viewports and Turbo Ba-
sic’s VIEW statement, you first need to understand
the workings of the graphics screen and its coordi-
nate system. If you already understand screen coor-
dinates, feel free to skip ahead. If not, the following
information will be useful.

SQUARE ONE

THE GRAPHICS SCREEN

It’s important to remember that viewports function
only in graphics mode. In graphics mode, each of the
individual dots, or pixels, on your screen can be con-
trolled to create any pattern. In contrast, text mode
displays predefined symbols, such as letters, num-
bers, and punctuation marks. While text can be dis-
played in graphics mode, individual pixels cannot be
controlled in text mode.

All IBM and compatible computers support text
mode; whether your computer also supports graphics
mode depends upon its display adapter. The most
common graphics display adapters are the Color

Graphics Adapter, or CGA, and the Enhanced
Graphics Adapter, or EGA.

If we’re going to control individual pixels, we need
a way to specify their location. A pixel’s location is
specified by a pair of numbers, or coordinates, with
the first, or X, coordinate giving the horizontal po-
sition, and the second, or Y, coordinate giving the
vertical position. By convention, the pixel in the top
left corner of the screen has coordinates (0,0). The
X coordinate increases as you move to the right, and
the Y coordinate increases as you move down, until
you reach the pixel in the lower right corner of the
screen. This pixel has the coordinates (XMAX-1,
YMAX-1). The values XMAX and YMAX (which are
used here simply for illustrative purposes, and are
not predefined variables or constants) give the
screen resolution. XMAX and YMAX, respectively,
are the total number of pixels horizontally and ver-
tically on the screen. The screen resolution varies
depending upon the type of graphics adapter. With
a CGA, XMAX and YMAX are 640 pixels and 200
pixels, respectively. With an EGA, they're 640 pixels
and 350 pixels. For the remainder of this article, I'll
assume CGA resolution; if you have an EGA, keep
the difference in mind.

The coordinate system just described involves phys-
ical coordinates, which are understood directly by your
computer’s display hardware. You can also define a
separate system of logical coordinates using Turbo Ba-
sic’s WINDOW statement, as I'll describe a little later.

VIEWPORTS

Normally, graphics operations can utilize the entire
screen. As I mentioned at the start of the article,
Turbo Basic’s VIEW statement lets you define a view-
port, to which graphics drawing operations are lim-
ited. The syntax of the VIEW statement is:

VIEW [[SCREEN] [(X1,Y1) - (X2,Y2)
[, [color]l [,boundaryll]l]

114 TURBO TECHNIX July/August 1988

The coordinates X1,Y1 and X2,Y2 give the coor-
dinates of the top left and bottom right corners of
the viewport. These coordinates must be given in
real screen coordinates, even if a WINDOW state-
ment is in effect. I'll discuss screen coordinates in
more depth shortly.

color and boundary are optional numerical argu-
ments. If a color argument is included, the viewport
is filled with that color and the previous contents of
that screen region are erased. If no color argument
is included, the previous contents of the viewport
area are preserved. Including a boundary argument
causes a border to be drawn around the viewport in
the specified color.

The optional SCREEN keyword determines the
reference point for coordinates within the viewport.
If SCREEN is included, pixel 0,0 remains at the top
left corner of the screen; if SCREEN is omitted, pixel
0,0 is at the top left corner of the viewport. Thus,
omitting the SCREEN keyword has the effect of add-
ing X1,Y1 to any coordinates used in future graphics
operations within the viewport.

Let’s take a look at how this works. I wrote a sim-
ple program that defines a viewport with coordinates
(160,60)-(600,180), and then draws a circle whose
center is at (260,60). Figure 2 illustrates the different
results obtained by including or omitting the
SCREEN keyword in the VIEW statement.

The VIEW statement without arguments defines
the entire screen as the viewport. This has the effect
of returning things to the way they were before any
viewports were defined. Using the SCREEN state-
ment (not the VIEW statement’s SCREEN keyword!)
to change screen modes also cancels any VIEW
setting.

CLIPPING

No, I haven’t suddenly switched to talking about
football penalties! Clipping is what happens to
graphic output that falls outside the boundaries of

Figure 1. Screen display of a child’s
geomelry tutor program written in
Turbo Basic. The VIEW statement
was used to define the rectangular
viewpoint, where all graphics output
appears. The remainder of the screen
is used for text.

the active viewport: it is cut off, or clipped, and does
not appear. Clipping applies to partial objects as well
as to entire objects. For example, if you execute a
CIRCLE statement, only that part of the circle that
falls within the viewport appears. This could be the
entire circle, part of the circle, or none of it at all.

TEXT AND VIEWPORTS

Often you’ll want to put both text and graphics on
the same screen. How does text output behave when
a viewport is active? Just as it always does—as far as
text is concerned, viewports don’t exist. Text appears
outside or inside a viewport, and can cross over the
viewport boundary. Viewport clipping is not per-
formed on text. If you want to display text on a
graphics screen with an active viewport, it’s up to
you to insure that the text does not impinge on the
viewport.

MULTIPLE VIEWPORTS

You can have as many viewports on the screen as
you like, although only the most recently defined
viewport receives graphic output. When you deacti-
vate a viewport (by activating another viewport), the
deactivated viewport’s contents remain on the screen
unless explicitly cleared.

CLEARING THE SCREEN

If a viewport is active, the CLS statement clears only
the defined viewport, leaving the remainder of the
screen unchanged. When it’s first established, a view-
port is cleared only if a background color was spec-
ified in the VIEW statement. To clear the entire
screen, first use the VIEW statement without argu-
ments to turn off the viewport.

GET AND PUT

What about using the GET and PUT statements with
viewports? Both of these statements, which are used
for screen animation and other interesting graphics

continued on page 116

July/August 1988 TURBO TECHNIX 115

Figure 2. The effects of including or
omitting the SCREEN keyword in the
VIEW statement. Both screens resulted
from defining a viewport with corners
at (160,60)-(600,180), and then
drawing a circle whose center was at
(260,60). In the first screen, the
SCREEN keyword was included; in
the second screen, it was not. In the
second screen, note how the circle is
shifted to the right and downward by
the same amount of pixels that the
viewponrt is shifted from the upper left
corner of the screen.

VIEWPORTS

continued from page 115

effects, can be used with viewports—but with limita-
tions. Briefly, GET copies a portion of the screen
into an array in memory. PUT does the reverse; it
copies graphics data from a memory array to the
screen. However, when used with viewports, the
screen region addressed by a GET or PUT statement
must be entirely within the active viewport. If the re-
gion being copied to or from crosses a viewport
boundary, an Illegal Function Call error results. (If
you're not familiar with GET and PUT, refer to the
Turbo Basic Owner’s Handbook.)

REDEFINING SCREEN COORDINATES

What if you don’t like the normal screen physical
coordinate system of 640 X 200 (or 350 with the

EGA) pixels, with Y values increasing downward?
The Turbo Basic WINDOW statement lets you rede-
fine the coordinate system to anything you like. Such
a custom coordinate system consists of logical coordi-
natles that are remapped to your display’s unchanging
physical coordinates by Turbo Basic’s runtime code.
WINDOW's syntax is:

WINDOW [[SCREEN] (X1,Y1)-(X2,Y2)]

X1,Y1 are the new coordinates of the lower left
corner of the screen, and X2,Y2 are the new coordi-
nates of the upper right corner. If the SCREEN key-
word is included, the Y coordinate system retains the
default characteristic that larger Y values represent
lower positions on the screen.

116 TURBO TECHNIX July/August 1988

O Figure 3. Output of VIEW-

i

O

DEMO.BAS, which establishes a
scaled viewport using the subroutine
ScaledViewport. A graphics image is
first drawn to the entire screen, then
to a series of smaller viewports. Note
how the full screen image is scaled to
fit within each viewport.

[

P

Here’s an example. After executing the statement
WINDOW (0,0)-(1000,1000), the statement PSET
(0,0) illuminates the pixel in the lower left corner of
the screen (at physical coordinates 0,199), PSET
(1000,1000) illuminates the pixel in the upper right
corner (at physical coordinates 639,0), and PSET
(500,500) illuminates the pixel in the center of the
screen (at physical coordinates 320,100). The WIN-
DOW statement is extremely useful for customizing
the screen coordinates to suit your needs.

As mentioned earlier, the coordinates of a view-
port must be specified in physical screen coordinates
even when a WINDOW statement is in effect. Plot-
ting within a viewport, however, makes use of the
coordinate system established by a WINDOW
statement.

It’s important to remember that the WINDOW
statement does not change the physical resolution of
the screen. After WINDOW (0,0)-(1000,1000), the
screen does not suddenly have 1000 pixels vertically
and horizontally. When a window statement is active,
Turbo Basic translates the window’s logical coordi-
nates into physical coordinates every time a drawing
operation is performed.

SCALING VIEWPORTS

Why am I bringing up the WINDOW statement in an
article on viewports? Although there is no direct con-
nection between the two statements, proper use of
the WINDOW statement can greatly enhance the use
of viewports.

When used by itself, a VIEW statement sets up a
viewport that shows only a portion of what would be
drawn on the full screen. Anything that falls outside
of the boundary of the viewport is clipped and there-
fore not seen. When the WINDOW statement is used
appropriately, however, a viewport of any size or lo-
cation can become a miniature screen. The entire
screen graphics image (as it would have appeared
without a VIEW statement) is shrunken and scaled to

fit entirely within the viewport. How do we do this?
Conceptually, it’s quite simple. Normal full-screen

graphics operations use coordinates in the range 0,0

through 639,199. All we need to do in order to

“shrink” the full screen into a viewport is use the
WINDOW statement to establish a coordinate system

continued on page 118

EASY
DATA ENTRY

WINDOWS
MENUS
If you are serious about programming
™
a0 | HI-SCREEN XL

HELP
Multilanguage support

FAST

PROFESSIONAL

No Royalties
30-day risk free

Call now for demo and information:

1-800-338-2852

in CA: (415) 397-4666

“You may like other screen management tools,
but you will love HI-SCREEN XL.”

Softway, Inc., 500 Sutter St., Suite 222, San Francisco, CA 94102

July/August 1988 TURBO TECHNIX 117

LISTING 1: VIEWDEMO.BAS

'Turbo BASIC program VIEWDEMO: demonstrates use of

‘subroutine ScaledViewport to create scaled graphics vieworts

screen 2

call DrawStuff
delay 1

for i=6 to 2 step -1
call ScaledViewport(i*15,i*8,i*100,i*30)
call DrawStuff
delay 1

next i

while not instat : wend
end

SUB ScaledViewport(X1,Y1,X2,Y2)

'sets up a viewport with corners at X1,Y1 and X2,Y2. Full
‘screen graphics output will be scaled to fit the viewport

xscale = 640 / (X2-X1)

yscale = 200 / (Y2-Y1)

xoffset = -(X1 * xscale)

yoffset = -(Y1 * yscale)

xmax = (640 * xscale) + xoffset

ymax = (200 * yscale) + yoffset

WINDOW SCREEN (xoffset,yoffset) - (xmax,ymax)
VIEW SCREEN (X1,Y1) - (X2,Y2),,1

CcLS

END SUB

SUB DrawStuff
line (0,0)-(639,199)
Line (0,199)-(639,0)
circle (320,100),50,1
circle (35,30),30,1
circle (605,170),30,1
circle (605,30),30,1
circle (35,170),30,1

END SUB

VIEWPORT
continued from page 117

such that the viewport has coordinates 0,0 at its
upper left corner and 639,199 at its lower right
corner.

The procedure may seem a bit tricky, but it’s actu-
ally quite straightforward once you understand
what's required. We first need scale factors for the X
and Y coordinates. These factors are determined by
dividing the screen size (width or height, 640 and
200 or 350, respectively) by the size of the corre-
sponding viewport dimension. Calculate the X and
Y offsets of the origin by multiplying the physical
coordinates of the viewport’s top left corner by the
scale factors. These values, which are the new win-
dow coordinates of the top left corner of the screen,
must be negative so that window coordinates 0,0 fall
on the screen at the top left corner of the viewport.
Next, the window coordinates of the lower right cor-
ner of the screen must be calculated. Finally, WIN-
DOW and VIEW statements are executed to establish
the coordinate system and the viewport.

Listing 1 provides a real example of how to create
a viewport that is scaled to the full-screen coordinate
system. The subroutine ScaledViewport does all of
the interesting work. For demonstration purposes,
ScaledViewport is embedded in a brief demonstra-
tion program that first draws a graphics image to the
full screen, then draws the image to progressively
smaller scaled viewports. The program’s screen out-
put is shown in Figure 3.

ScaledViewport accepts the coordinates of the de-
sired viewport as arguments. It then performs the
needed calculations, sets up the coordinate system,
and establishes and clears the viewport. As written,
the subroutine does not perform bounds checking
on viewport dimensions, nor does it perform any
other error checking.

To ensure that you can understand what Scaled-
Viewport is doing, this subroutine does only what is
necessary in order to create the scaled viewport. It
could certainly be modified to be more general and
more reliable by making certain additions. The ver-
tical screen dimension is currently “hard-coded” at
200 pixels. A better method, however, would be to
pass a parameter containing the vertical screen di-
mension, which may also be 350 pixels (on the EGA)
or 480 pixels (with the VGA). It would also be a good
idea to perform error checking on the coordinates
that are passed as parameters to ensure that mean-
ingful values are always passed. With a little addi-
tional work, ScaledViewport could become an impor-
tant addition to your Turbo Basic graphics toolkit. B

Peter Aitken is an assistant professor at Duke University
Medical Center, and is the author of DigScope, a scientific
software package. He writes and consults in the microcom-

pulter field.

Listings may be downloaded from CompuServe as
VIEWPT.ARC.

118 TURBO TECHNIX July/August 1988

It's Easy To See Why Quattro

In fact, it's hard not to see.
Because one look at Quattro® shows
you a lot more for your money.
More speed, more power, and the
most spectacular presentation-
quality graphics anywhere—

built in.

Dazzling and diverse

If you went out looking, you'd
be hard pressed to find spreadsheet
graphics as dazzling and diverse
as Quattro’s. If you did, they’d be
in a separate standalone package
with a separate standalone price.
And they still wouldn’t be inte-
grated with your spreadsheet’s
menu commands the way
Quattro’s are.

Brilliance built in

Quattro lets you choose from 10
different types of presentation-
quality graphs and a huge selection
of fonts, fill patterns and colors.

Quattro supports PostScript® too.
S0 you can use today’s most popu-
lar laser printers and typesetters to
make your work—and yourself—
look positively brilliant.

if within 60 days of purchase this product does
all our customer service department, and we will

nc. Lotus

d trademarks of F
elopment Corp. (

ot names.
I Inc. BI 12364

Hard copy made easy

Quattro makes it easy to get hard
copies of your graphics—with a
printer or plotter, directly from the
spreadsheet. In fact, you don’t even
have to leave the spreadsheet.

Seeing is believing!

Dazzling graphics are just one
of Quattro’s eye-opening features;
your dealer can show you the
others. Quattro is easy to use and
fully compatible; it even accepts
familiar 1-2-3® compatible com-
mands and uses data files created
with other spreadsheets and data-
bases. But Quattro gives you a lot
more—in fact, twice the speed and
power of the old standard. For only
half the price.

60-Day Money-back Guarantee*

For the dealer nearest you
call (800) 543-7543

INTERNATIONAL

€€ Quattro contains the most com-
prehensive presentation graphics
capability available in a spread-
sheet . . . The graphs Quattro can
produce surpass even those avail-
able through add-on products like
Lotus Graphwriter or Freelance
Plus. If Borland wanted to, it could
certainly sell the graphics portion
of the spreadsheet on its own merit
as a standalone graphics application.

Robert Alonzo, Personal Computing

Quattro’s presentation-quality gra-
phics output capabilities rival

those that 1-2-3 can obtain only in
conjunction with separate presenta-
tion graphics software . .. For me,
at least, Quattro has certainly
become the character-oriented
spreadsheet program of choice.

William Zachmann, Computerworld

In the few years since Lotus Devel-
opment Corp. introduced 1-2-3,
many companies have attempted to
unseat the king of the spreadsheet
hill. The latest contender, Borland
International Inc.’s Quattro, suc-
ceeds where other spreadsheet
packages have failed . .. Quattro is
at least two steps ahead of 1-2-3.

Ricardo Birmele, PCResource 99

TURBO BASIC

CALLING BIOS SERVICES FROM

TURBO BASIC

Now you can call BIOS without the agony of interpreted
BASIC—just CALL INTERRUPT.

Ethan Winer

In the past, BIOS services could only be ac-
cessed from BASIC by using assembly lan-
guage. This process required a knowledge
of all the various BIOS functions and how
to call them, plus a great deal of tedious
YIARD ____ coding. Worse, the only way that a BASIC
program could communicate with an assembler rou-
tine was by passing variable addresses on the stack—
so the programmer needed a solid understanding of
both assembly language and the way that BASIC stores
variables internally.

With the advent of Turbo Basic, the need to use as-
sembler for BIOS calls is behind us—Turbo Basic calls
interrupts directly. Even locating variables can now be
performed entirely within Turbo Basic.

WIZARD

ENTER INTERRUPTS

How can a program call on BIOS routines if it doesn’t
know where to find them? The very first few bytes of
the PC’s memory map contain a table of addresses,
called the interrupt vector table. These addresses point to
interrupts. The first four bytes in the interrupt vector
table hold the segment and address for interrupt 0, the
next four bytes in the table point to interrupt 1, and so
forth. Thus, a program can use the number of an in-
terrupt to find that interrupt’s service routine in mem-
ory.
The Intel 86 family of microprocessors has a soft-
ware interrupt instruction (INT) for accessing routines
through the interrupt vector table in low memory.
Whenever the CPU encounters an instruction such as
INT 10H, it goes to the interrupt table, obtains the ap-
propriate address, and calls the routine automatically.

REGISTERS

BIOS services are grouped by function. For example,
screen-oriented (“video”) services fall under interrupt
10H. To identify the particular INT 10H service that is
needed, a service number is first placed into the pro-

1exxwnwwewr Serol [Up.Bas

UL.Row = 5 : UL.Col = §
LR.Row = 18 : LR.Col = 74
¥AX =1 : %BX = 2
%X =3 : %X =4

CLs
FOR X =170 24

PRINT STRINGS(80, X + 64);
NEXT

'specify the corners

'define the registers
' as named constants

'print a test pattern

INPUT; "How many rows to scroll? (0 to clear) ", Rows

REG XAX, Rows + 256 * 6

REG %8X, 7 * 256

REG %CX, UL.Col + 256 * UL.Row
REG %DX, LR.Col + 256 * LR.Row

CALL INTERRUPT &H10

‘rows in AL, service 6 in AH
‘color in BH

'UL.Col in CL, UL.Row in CH
'LR.Col in DL, LR.Row in DH

'call BIOS to do it

120 TURBO TECHNIX July/August 1988

cessor’s AH register. Other information required by
the interrupt may be passed in additional registers.

A register is simply a memory location inside the mi-
croprocessor. You could think of registers as being the
8088’s built-in “local variables.” An understanding of
the difference between the various registers is helpful
when using Turbo Basic’s CALL INTERRUPT instruc-
tion. The 8088 has 11 registers; we’ll take a brief look
at each of them.

General purpose registers. The four general purpose
registers, called AX, BX, CX, and DX, are capable of
holding operands for the simplest instructions (such as
addition and subtraction). Each general purpose reg-
ister also has its own specialty. For example, AX is the
only general purpose register that can be multiplied.

Index registers. Two other registers, called SI (Source
Index) and DI (Destination Index), can also be used
for simple addition and subtraction. However, the real
purpose of these two registers is to perform indexing—
to point to an address that contains data.

Segment registers. Four segment registers, called CS,
DS, ES, and SS, hold the current code, data, and stack
segments, plus a spare or “extra” segment.

REGISTER ORGANIZATION

Before moving on to the actual interrupts, we must first
discuss the way that some of these registers are orga-
nized. The four general purpose registers—AX, BX,
CX, and DX—are all capable of holding a single 16-bit
word. However, each of these registers can also be con-
sidered as two separate 8-bit registers.

When a general purpose register is treated as two
separate 8-bit registers, each byte in the register can be
accessed independently. For example, the high-byte
portion of AX is referred to as AH, while the low-byte
part of CX is called CL. This approach is important to
understand, because Turbo Basic does not allow the in-
dividual 8-bit portions of each register to be set or read.
Therefore, if a particular DOS service requires the AH
register to be loaded first with a number, that number
must be multiplied by 256 (which, in effect, shifts the
8-bit quantity “up” into AH), and then the number is
loaded into AX. To load two separate quantities into
AH and AL, the quantity that is intended for AH must
first be multiplied by 256. Next, the resulting number
must be added to the quantity that is intended for AL,
and then the final sum is put into AX.

Registers are loaded and read with Turbo Basic’s
REG statement, which can be used either as a state-
ment or as a function. Notice that REG doesn’t really
operate on the processor’s registers; rather, REG reads
or writes its parameters into a special area of memory.
When CALL INTERRUPT is used, those values are
transferred to or from each machine register.

TO CALL AN INTERRUPT

Interrupt 5, which performs a Print Screen, is the
simplest PC interrupt. Unlike the other BIOS inter-
rupts, interrupt 5 needs no additional setup or pre-
loading of any registers. To access interrupt 5, issue
the following call:

CALL INTERRUPT 5

That’s all there is to it! This call simply accesses the
code that is already built into ROM; the BIOS does the

real work. If the GRAPHICS.COM utility (which is
shipped with DOS) is already loaded, then that utility

is called instead of the ROM-based routine. Remember
that whenever an interrupt is invoked, the 8088 looks
at low memory for the address that contains the actual
service routine. Since GRAPHICS.COM places its own
address into RAM, interrupt 5 is routed automatically
to the RAM-resident routine, rather than to the origi-
nal code that is stored in the BIOS ROM.

SCROLL ’EM

Although BASIC has generally provided more features
than any other compiled language, there are still sev-
eral BIOS services that even Turbo Basic doesn’t per-
form well or at all. An example of such a service is the
process of quickly clearing or scrolling rectangular
subsets of the text display screen.

BIOS handles the process of clearing and scrolling
screen regions with two separate routines: Service 6
scrolls a region up, and service 7 scrolls a region down.
When these routines are called, a number of param-
eters must be specified that indicate the upper left and
lower right corners of the screen region, the number
of lines to be scrolled, and an attribute to which the
blanked lines, or lines within the region, will be set.
Note that a screen region can be cleared by setting the
number of scrolled lines in service 6 to zero.

SCROLLUP.BAS (Listing 1) provides a small demo
program that scrolls up or clears a specified number of
rows. Notice that all of the BIOS video routines assume
that rows are numbered from 0 to 24, and that col-
umns are numbered from 0 to 79. Also notice the use
of Turbo Basic’s named constants (which are preceded
by %) to provide more meaningful names and to make
register identification easier.

When the upper and lower halves of each register
are loaded, an extra step is necessary. Since Turbo
Basic doesn’t provide direct access to each register half,
the register halves must be loaded by the multiplication
and addition steps shown in SCROLLUP. Note that a
color or attribute parameter can be placed in the BH
register to select the background. Service 7 of interrupt
10H operates similarly to service 6; with both services,
all parameters are passed in the same registers and
carry the same meaning. The only difference between
service 6 and service 7 is that the latter scrolls down-
ward, rather than upward.

WORK SMART

There are many other useful BIOS services, all of
which may be accessed through CALL INTERRUPT.
Keep in mind, however, that most BIOS functions
(such as reading the cursor position, writing an individ-
ual pixel dot, and so forth) can be accessed more easily
with Turbo Basic’s built-in routines. Once you under-
stand the power of BIOS and Turbo Basic, CALL IN-
TERRUPT will let you work as hard as you need to—
without working harder than you have to. B

Ethan Winer owns Crescent Software, and is the author of the
QuickPak utilities for Turbo Basic and Microsoft

QuickBASIC.

Listings may be downloaded from CompuServe as
SCROLL.ARC.

July/August 1988 TURBO TECHNIX 121

BUSINESS LANGUAGES

DATE FORMATTING WITH

SPRINT

Make a date with Sprint to explore the basics of building a

“soft” user interface.

Neil Rubenking

Behind Sprint’s “soft interface” lies a pow-
erful programming language. Sprint pro-
grams (called macros) can build a complete
custom user interface (UI) that makes
Sprint look and act just like another word
processing program. That’s no mean feat,
considering the wide variation in features among cur-
rent word processors. Here’s how Sprint handles one
particular feature of its WordPerfect UL

HOW ABOUT A DATE?

In WordPerfect, pressing Shift-F5 and “1” inserts the
current date into the text. Pressing Shift-F5 and “2” al-
lows you to edit the date format. Codes that control the
format are contained in a special format string; each
numeric character from “0” to “9” selects a different
form of the time and date. For example, the default
format string “3 1, 4” specifies the form “July 4, 1999.”
A percent character in the string forces a subsequent
number to two digits, and adds a leading zero if neces-
sary. If the default string is changed to “3 %1, 4,” the
date appears in the form “July 04, 1999.”

In order to reproduce this WordPerfect feature,
Sprint must both edit and interpret the format string.
Since editing the string is easier than interpreting it,
we’ll look at the editing process first.

PROGRAMMER

TO EDIT THE STRING

Sprint stores the format string in Q-register G (QG).
This one-line statement could perform the edit:

message "Date Format: " set QG

This command displays the words “Date Format:” on
the status line, and makes the current contents of QG
available for editing. However, we can’t reasonably ask
the user to haul out the manual for the list of legal
codes—we need to display the available options on the
screen.

The macro DateFormat (Figure 1) uses an “infobox’
to display the codes while the user enters the new date
format. An infobox is a noninteractive structure that is
otherwise similar to a Sprint menu, and consists of a
box that is just big enough to hold all of the informa-

1

LISTING 1: FULLDATE.SPM

InsertDate : ;
int x

Take date format in QG and turn into today's date

0 -> posn
set Q0 "Xd"
do ¢
posn subchar QG -> x
++posn
x case {
0 break,

”"e (time 3 put q0) (set q0 "Xd"),

L (time 4 put q0) (set q0 “Xd*),

3 MonthName (set q0 "Xd"),

% (1900+time 5 put) (set q0 "Xd"),

15 (time 5 put) (set q0 "Xd"),

6! DayOfWeek (set g0 "Xd"),

7 (time 2 put q0) (set q0 "Xd"),

'8 (time 2->hours ? ((hours >12)? hours-12 : hours)
: 12 put q0) (set q0 "Xd:"),

198 (time 1 put q0) (set q0 "Xd"),

‘0 (if time 2<12 "am" else "pm") (set q0 "Xd"),

% set Q0 "X02d",

$ (x insert) (set Q0 "Xd") ;other char, pass THROUGH

122 TURBO TECHNIX July/August 1988

19881981198219831984198519861987 19891998199119921993199419951
;MARCH ;APRILMAY JUNEZ: AUGUST; SEPTEMBER: ; OCTOBERNOVEMB
"[Sunday;Mondayz; Tuesday”: Wednesdayy: Thursday; Fridayz: Saturday
AT NS T AR RN RIS oy DI SISO SR £ S A S NN e S T

| HAL

O T S T A e B NI GRS R SIS S Se WALV M. -
A3 4 “45 AL LAT 748

T - i Sy N SR S PSS SIS SRS SRR LA . ™
v#18 vzl “l12 213 214 #4415 %416

SEPOR R W TP O R R R PR 5 El e S SR RS

w17 418 %419 YA o | SALL wALd

A S . 2 S Gt R P F ERORRR ST o I VS M S S B UERe <MV BEBROEE N
424 4425 426 SALT #4280 %429 %438

A B e e R, SR e T
731

KRR N S I N A0 Wb . M- IR - PR AR L B) K Lo

line 1 col 1 F1=HELP

DateFormat : tion lines. The title line displays at the top of the box.
infobox "Date Format" {

: When the macro that follows the infobox finishes exe-
"Character Meaning", & e e 11k
nooq Day of the month", cution, the box disappears.
n 2 Month (number)",
" 3 Month (word)", CALL MY INTERPRETER
b Lk Year (all four digits)", As described above, the process of editing the format
i i " - - . . ~ - . .
:: Z ;garoil::: ::dezat‘):fi;"' string is relatively easy. The difficult task is interpreting
w7 Hozr (2&-hour clock)®. the string into the appropriate date form. We’ll use
" 8 Hour (12-hour clock)", Sprint’s macro time, which returns different portions
TE Minute", of the current date and time. Table 1 shows the output
=9 o, of the time macro for different inputs.
R Include leading zero for numbers less",
L than 10 (must directly precede number)",
“"Examples:", Input Output
w3 1,04 = December 25, 1984", "
"o %%2/%%1/5 (6) = 01/01/85 (Tuesday)" 0 seconds (0-59)
) (message '"Date Format: " set QG) 1 minutes (0-59)
2 hours (0-23)
- A e n ! " 3 days (1-31)
ljzgurp 1 . Thas .S[mnt mfoboxl explains the time and date 4 monidis (1-19)
formatting options available in the WordPerfect UL 5 year minus 1900 (0-199)
6 day of week (Sunday = 0)

Table 1. Numeric formatting values returned by Sprint’s time
macro.

continued on page 124

July/August 1988 TURBO TECHNIX 123

SPRINT

continued from page 123

Note that most of time’s outputs in Table 1 match se-
lections in Figure 1. However, time does not provide
names for the months and days of the week. Figure 2
lists a pair of macros that make up for the missing
names. Important note: The entire “%] ...]’ construct
must occur on one line. The MonthName structure
had to be broken onto three lines in order to fit on a
magazine page, and the DayofWeek structure had to
be broken onto two lines.

DayofWeek : ;Enter day of week at cursor
time 6 put
"% [Sunday%;Monday%; Tuesday%; Wednesday%; Thursday%;
Friday%; Saturday%]"

MonthName : ; Enter Month at cursor
time 4 -1 put
"%[January%; February%;March%; Apri L %;May%; June%;
July%;August%; September%; October%; November%;
December%]"

Figure 2. These two Sprint macros return names for the
month and day of the week. (Note that selection statements
must exist on one line, even though both were broken to fit on

the magazine page.)

THE WARMUP

Rather than attempting to interpret the format all at
once, we'll start with a simplified version. Macro Sim-
pleDate in Figure 3 handles all of the code characters
except the “%%.” SimpleDate does not allow you to
force numeric fields to two digits.

The major structures in the SimpleDate macro are
the do loop and the case statement within that loop.
The do loop checks each character of the format string
stored in QG. The case statement acts on those char-
acters.

The case statement contains three main alternatives:
Variable x may contain one of the code characters,
zero, or neither. When x contains a code character, the
macro interprets that code character. When x contains
a zero, the end of the format string has been reached,
so the program breaks out of the loop. If x is any other
character, then it’s passed directly into the output text.

Option 8 may be a bit hard to understand due to the
use of the abbreviation characters “?” and “:” for IF
and ELSE. Here is that same line with the words spell-
ed out:

IF time 2->hours (
IF hours > 12 hours-12

ELSE hours
) ELSE 12 put "%d»

SimpleDate :
int x
0 -> posn
do {
posn subchar QG -> x
++posn
x case {
0

; Turn date format in QG to today's date

break,
" (time 3 put "%d"),
124 (time 4 put "%d"),
139 MonthName,
" (1900+time 5 put),
£S5 (time 5 put),
16! DayOfWeek,
Ul (time 2 put "%d"),
184 (time 2->hours ?
(Chours >12)? hours-12 : hours)
: 12 put "%d"),
9 (time 1 put "%d"),
Qs (if time 2<12 "am" else "pm"),
$ (x insert) ; other char, pass it THROUGH
¥
)

Figure 3. The simplified date formatting macro SimpleDate.

Option 8 examines the hours value and then takes one
of several steps: If the hours value is both nonzero and
less than 12, it’s used without being changed. If the
hours value is greater than 12, 12 is subtracted from
that value. If the hours value is exactly zero, then the
value of 12 is used.

THE MAIN EVENT

The actual InsertDate macro (Listing 1) is just Simple-
Date with some added formatting. A Sprint output for-
mat string is stored in Q-register 0. If two digits are be-
ing forced, “%%02d” is used; otherwise, “%%d” is used.
Because the code character “%%” affects an immediately
subsequent numeric value, QO is set back to “%%d” af-
ter any other character. With that step, InsertDate is
complete.

Each word processing program takes its own unique
approach to the tasks of writing and editing. With the
powerful macro language in Sprint, these different ap-
proaches can be easily emulated. If you want to learn
Sprint programming, study the alternate User Interface
files, copy them to distinct names, and modify them to
your own purposes. Soon you'll be ready to write your
own ultimate UL As Sprint’s philosophy says, “If a fea-
ture you need doesn’t exist—build it!” W

Neil Rubenking is a professional Pascal programmer and
writer. He is a contributing editor for PC Magazine, and
can be found daily on Borland’s CompuServe Forum answer-
ing Turbo Pascal questions.

Listings may be downloaded from CompuServe as
SPDATE.ARC.

124 TURBO TECHNIX July/August 1988

Introducing
Sprint—

the professional
programmable

ord processor!

R

SPECIAL OFFER:
ONLY $99.95!

INTERNATIONAL

The race into the Age of
Customization is on—Iled by
Sprint.® You can use Sprint as
is and be very happy with the
way everything works for you
—oOr you can easily customize
Sprint to do everything

your way.

It's a completely
customizable word processor
that, for example, lets you
re-define keys, delete menu
items, make your own short-
cuts, invent your own menus,
and use Sprint’s online facil-
ity to create your own quick
reference cards.

*Customer satisfaction is our main concern; if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund.

All Borland products are trademarks or registered trademarks of Borland
International. Inc. Other brand and product names are trademarks of their
respective holders.

Copyright ©1988 Borland International, Inc. BI 1267

Why walk when

You're given the
customizing power to avoid
pop-up menus altogether—
if that’s the way you like to
work. Sprint can be com-
pletely function-key-driven,
and while Sprint’s function
key assignments are logically
defined, they're easy to alter.

Nothing goes slow
when you Sprint!

Sprint is fast. It scrolls fast,
edits fast, switches between
files fast, offers fast shortcuts
and proves that the slow way
iS no way.

Prices and specifications subject to change without notice.

Minimum System Requirements:

For the I1BM PS/2 and the IBM family of personal computers and all 100%
compatibles. Requires PC-DOS (MS-DOS®) 2.0 or later, 256K memory (384K
recommended). and two floppy drives or a hard disk.

You can work on up to

24 files at once, divide
your screen into as many
as six windows, and never
miss a beat because Sprint
remembers which files
you were working

on last.

Because Sprint brings
you the speed you're
used to with Turbo
Pascal® and Turbo C?

it never wastes your

time and true Turbo-
performance is finally
available in a text
editor.

To see just how
much faster Sprint works for
you, check out the compara-
tive time tests.

Sprint gives you six
optional interfaces
including EMACS

The customizing you
choose to do is one variation
on Sprint’s theme and there
are six others.

We give you free (for a
limited time) Alternative
User Interfaces for:

* EMACS * WordPerfect®

e WordStar® e« MultiMate®

¢ Microsoft® e SideKick®
Word

And you also get file
conversions for:

* WordStar
Microsoft Word
WordPerfect
MultiMate
DisplayWrite® 4
(DCA RFT)

you can Sprint?

See how fast you can Sprint!

Sprint lets you use EGA
and VGA cards for 43- or

-
|

Find

i Ll b giveoly sas s I;F(?trt)otl?ﬁ i ;Fé)ohnne Slgg)rl(;l(]:e% Unique Word |
reads ASCII files wntho_ut b, = 1 > o e
conversion and saves files Sprint 1.0 5.9 . . h >
with hard carriage returns WordPerfect 4.2 411 5.3 5.4 66 | 62 |
for electronic mail. WordStar 40 | 44 46 4.1 e | 188 |
You're given a built-in 5 - =

compiler with a syntax similar
to C; separate source files; an
extensive macro language; the
ability to call DOS functions
and much, much more.

“Auto-Save” means you'll
never lose your work when
you Sprint!

Forgetting to ““Save’ is a
fact of life as are power out-
ages, and it used to be that
a power outage could wipe

MS Word 4.0 9.7 4|

’ i H 'file size 103K. 1636 lines.
Tests were performed on a Multitech 286 AT (8 MHz), 640K RAM. fi :
“IZ occurre%ces. Times shown are in seconds. (Benchmark details available upon request.)

out everything you've done.
Not any more. Your work is
always safe when you Sprint.
Sprint’s “Auto-Save’’ auto-
matically saves your words as
you type, so if the lights do go
out, you may be in deep dark-

ness but not deep trouble.
Sprint’s Auto-Save is more
than “‘insurance,” it’s also
invisible. You know it’s there,
but it does its job without
interrupting yours.

Stonewall Times

ONAL OBJECTIVE:

PROFESS! ofession

any atilizing ™Y P*

ing comp
' Position with 3 855 RY
L TO! %
| ENT HIS
| E“PLOY“ tive
i ice Representatt -
@ 33 Service \NC' e
‘ 7 Custor RE SERVICES: nden
,ember 198 FTWA jfornia jority COTTeSPU i oy
R ol ey oy ST
Present Res C“‘fé of company- as well as \(‘;15:;;? p‘rd
West German (t:‘(;‘::\gfb "‘;""\v"-‘x\g anagement
: S. cus rking Wi compa
w:gt\ﬂe“‘ so‘v‘\;‘ag'se:' oatnd %epi‘:sesf-(:nd sprea
guslﬂ - ed%:‘gf ccounting packas:
know
agel'
;onistiOffice Maral
: Receptionies o VICES, INC: i
October 1986 DO"}’rOR ?E&ufom‘“ , daily appol

ponsibly . g taining @

’ﬁ s e E‘{Ra:spm\sm\\\hvei o:‘.\ et ma‘:;\rges a“
(emphass cco P\S receivable ‘c\ orges con
\.< eposit\s{, palancing n‘\Jo
\h: receivables from >

i ler!
Regt\ajtt:l‘l%gk COMPANY 1
California e A/R:
e included, R et
mi)r:ci ed monthly st

ces anrL ng\e::cg;sll:m
invol nd Fet ek
Pos!e‘lieddal\‘eyEDP operator &
Assisted

as requirec:

August 1985
!(%cmber 1986

jonist -FICE %’
: Receptionist, o (ppiC
April 1981 HEAY.THCamom_ia‘ ded, daily ?PF‘%
1985 ; posﬁng, d"*“'geb by
Ll o e =4

to
August OMSL Y ims, Stements

The Employee Newsletter o_}; Stonewall Brokers, Inc.
8

May *

We'll Be Havin’
Some Fun

This year's summer party
will be held on Cowell
Beach, down by the Board-
walk, on Friday, June 10th.
It will start at high noon.
We will have two volleyball
courts, loads of beach
chairs, and food and drink
until well into the evening.
We'll end with a bonfire and
marshmallows.

We'll be barbecueing beef rib
steaks, chicken thighs,
salmon steaks, and vege-
table kabobs. Since we
can’t provide all four to
everybody. be sure to sign
up with Party Planning for
Your choice of food before
June 1st. We'll also have
salads. breads, vegetables,
baked potatoes, and des-
serts. as well as three or
four dozen different items
for your snacking pleasure.

We want you to have as
much fun as you did last
year, but we've decided
against serving and allowing
alcoholic beverages. Please
don’t bring any.

Just like last year, everyone
will get a Stonewall Towel.
Everything is free, including
the suntan oil,

If you want to help plan the
party. come on down and

give us your ideas. We need
to sign up volleyball referees

Parking Problems

As you can see by the
following chart, our little
company isn't so liitle
anymore...

Personnet Requasments

Stonewall Brokars. Inc.

i9ms aew om0/ 1ven

Until the new parking
structure is finished, we're
going to continue having
parking problems. If you
can car pool with a friend,
please do so (if you want
names of people who live
near you, contact Per-
sonnel). Whatever you do,
don’t take up two spaces for
any reason. The visitor
parking area is for visitors
only. (That's people who
don’t work here.)

[—

The garage is scheduled to
be completed by June 1st.
It will provide covered
parking for 60 cars and
uncovered parking for
another 60. Since covered
parking will be in such
demand, we're going to
devise a fair plan so that
everyone gets to enjoy it.

Employees of the
Month

Congratulations (o the fol-
lowing Stonewall employees:

4 Annette Christensen and
Brad Dix for setting up the
new computer system;

4 Dennis Feldman for refer-
ring a new large client;

3 Lora Mattos for her
exquisite cooking:

4 Bradley Hughes and
Adam Voruwal for thetr
record sales achieve-
ments: and

4 Tom Stanley for
reorganizing the
warehouse,

Promotions

The President's Office is
pleased and proud to
announce the following
promotions:

< Robert Schindler has
been named Assistant
Major Account Manager.

o Betty Willards will
replace Robert as Senior
Account Representative,

4 Joy Flarmery will be the
new Information Systems
Manager.

W-4 Form

TP wrtve s Bersviaictll o Lol dee %

You have a head start when you Sprint/

Sprint WordPerfect MS Word WordStar MultiMate Adv.
1.0 4.2 4.0 4.0 1.0

Maximum file size Disk Disk Disk 4MB 128K
Mail Merge Yes Yes Yes Yes Yes
Thesaurus (integrated) Yes Yes Yes Yes Yes
Windows Open (maximum) 6 1 8 1 1
Files Open (maximum) 24 2 8 1 1
Cross-Reference (dynamic) Yes No No No No
Indexing Options 7 1 3 3 No
Snaking Columns Yes Yes Not same pg. No Yes

(chg # on same page)
Parallel Columns Yes Yes Yes Yes Yes
H-P LaserJet Support Full Full Full Partial Full
PostScript Support Full Text Full No Text
Mouse Support (integrated) Yes No Yes No No
AutoSave (without interruption) Yes No No No No
User Interface

Define Shortcuts Dynamically Yes No No No No

Run Alternative User Interface Yes No No No No

Verify spelling as you type Yes No No No No

Fully programmable macro Yes No No No No

language

Suggested List Price $199.95 $495.00 $450.00 $495.00 $565.00

What you get when you Sprint!

* Includes Auto-Save that
saves your work without
interrupting it

e Sprint supports 350 popu-
lar printers including
HP LaserJet,® other laser
printers and typesetters
plus has PostScript®
support

 Supports multiple fonts,
including downloadable

fonts, in all sizes including

scaled sizes

e Includes file conversions for
Microsoft Word, WordPer-
fect, MultiMate, WordStar,
and DisplayWrite 4
(DCA RFT)

* Includes Alternative User
Interfaces for EMACS,

SideKick, WordStar, Word-
Perfect, Microsoft Word,
and MultiMate

Comes with an integrated
100,000-word speller and
220,000-word thesaurus

Produces highly profes-
sional output: long or short
documents, cross-refer-
encing, indexing, structured
headings, tables of contents,
word spacing, automatic
kerning and ligatures as
well as character substitu-
tion for items like typog-
rapher’s quotation marks

Can be used ““as is,”” cus-
tomized by you and/or you
can use the Alternative User
Interface you already know

INTERNATI

To order now,

60-Day Money-back Guarantee*

Call (800) 543-7543

Special offer:
Sprint for only $99.95!

For registered Borland cus-
tomers and for a limited time
only (offer ends September
30, 1988), Sprint is all yours
for only $99.95% direct from
Borland!

The suggested retail price
for Sprint is $199.95. We
think $100.00 off is the best
way we can show our appreci-
ation for your loyalty and sup-

port. (When you consider that
many word processors are in

the $500 to $600 range, that
$99.95, including 6 alterna-
tive user interfaces, should
start looking even better!)
Sprint works with today's
hardware and will work with
tomorrow's. Anywhere from
an 8088 PC through a 386.
[t’s already a major success
story in Europe; it's the #1
selling word processor in

.TZhapter Heading

o Scalable Font

] Box Drawing

5.1

" Section Heading

New Pricing for Video 2

Video 2 will be price con

will be 109 below the Yo Petitively, [¢s Price

selling competit;
more 15 SCMpetition,

w Automatic Bulleted List

- PostScript® Graphics

rAutomalic Numbered List

- R T e
100 Pt Pricy g,

“ Suoce
€ took & random aapos
Consumers jp each z?'mphng” of one hundreq

€ then averggeq th

- Automatic Table-Referencing

France (and everyone knows,
50 million Frenchmen can’t
be wrong!)

Sprint. It’s the word pro-
cessor you'd expect from
Borland: the value, technical
excellence and programma-
bility you'd expect from
Borland. Sprint, for your
eyes only, $99.95.

tPlus shipping and handling

7Ret entries ang
"ew product win
(see page 14,

3 tain i ’
Sh“f'e With Video 2, ya ? nereasing maploq
i

music chaj

demo t; an 4 Stores .
followingee™ The literature spoug S, ith free

t other gimj|
T . Similar progy,
i o:';.,;::{:‘mg of produes, Show hm
Aol fisplay rack wij] fit o
of an aisle or gy part of i
I;n will be ablg 4o order
'S, and
Stack hnlanc;ng ifml:lue';

of Video 2 g,
the original Vigeq ;" *X¢¢ed their saley of

@

Table 5.1: survey Resuits * Trial Offer, 7y,
—— Maximym lable . The now, j ;
e Srceront wpyg ot "21e nitially g’y wppge’ed Video 2 wi b
o BEEOVE e, s e :
$2479 : \
$2324/1G0¢ 1230 Program i \avertising Program 1o
10.75 Ii Will emphagize ¢, This new 8
I‘i’: ;"'»V of the company, .n; :‘:W' collaboratiye o
: { © new product

rFoolnole Capability

Price a6 of Jun 1, 1ogs e Al e T ——
2. The pofl wes s
compholl %8 eonducted by ouy 3
results of the poif g t:n‘f;ﬁ:',\m" Group. The
ix

" Page Footing

Nationaj Ocean;,
nic Music Co, :
TPOration Repopy

BUSINESS LANGUAGES

BOUNCE AND CHOOSE IN PAL

Use Paradox’s built-in menuing routines to create PAL menus

that resemble Paradox menus.

Alan Zenreich

Paradox uses horizontal bounce bar menus
that appear on the top two lines of the
screen. I prefer to maintain this user inter-
face in my own PAL applications because
the menus don't overlap data, and the user
needn’t enter responses manually.

Listing 1 demonstrates three of Paradox’s built-in
procedures for creating bounce bar menus: SHOW-
MENU, SHOWTABLES, and SHOWARRAY. The az-
Sort() procedure prompts the user to select a table
from the current directory, pick a field to sort by, and
choose the direction of sort. azSort() then creates a
new, sorted table called ANSWER.

All of the SHOW.. menus work similarly. The user
can either move the cursor to the chosen item and
press Enter, or else choose a menu item by pressing its
first letter. The selection is assigned to the variable that
follows the TO keyword. If the user presses Esc, the
variable is assigned the string “Esc.”

SHOWTABLES lists all of the tables for a given
directory. It also searches memory for tables not yet
written to disk, as well as for private tables.

SHOWARRAY uses two array variables. The first is
a list of menu items; the second array variable is a list
of item descriptions. azSort() scans a structure table
and places the field names into the zfield array. A de-
scriptive line for each item goes into zdesc.

SHOWMENU requires one or more lines; each line
contains a menu item and a description in the form of
two strings that are separated by a colon. Except for the
last one, each item must have a comma at the end of
the line to signify that another choice follows.

Obviously Listing 1 could be greatly enhanced. In its
current form, however, this program demonstrates how
easy it is to build menus that let the user select options
in the comfortable Paradox style. W

PROGRAMMER

Alan Zenreich is a Paradox consultant and the publisher of
Paral ex, the Paradox Documenter. He can be reached at
Zenvreich Systems, 78 Fifth Avenue, New York NY 10011.

Listings may be downloaded from CompuServe as
PDXMNU.ARC.

LISTING 1: DEMOMENU.SC

PROC azTextLine(zline,ztext)
azline,0 ?7FORMAT("W80,AC", ztext)
ENDPROC

;-- centers a text at given line#

PROC azSort()
;-- keep variables private to proc:
PRIVATE zsorttable,zsortfield,zsortorder,zfields,zdesc
CURSOR OFF ;-- turn off the cursor
CLEAR ;-- clear the screen
ClearAll ;-- remove any tables
IF IsTable("Answer") THEN
DELETE "answer™
ENDIF
azTextLine(4,"Please select a table from the list above*)
SHOWTABLES ;-- menu of available tables
DIRECTORY() ™“Tables available for sorting"
TO zsorttable ;== get sort table
IF zsorttable="Esc" THEN
RETURN false
ENDIF
azTextLine(4,"Working, preparing list of fields for "+zsorttable)
{Tools) (Info) (Structure) SELECT zsorttable ;-- get field list
ARRAY zfields [nrows()] ;-- for menu selections
ARRAY zdesc [nrows()] ;-- for menu descriptions
SCAN ;-- scan the Struct table
zfields [recno()l=[field name] ;-- assign field name choice
;-- assign field description:
zdesc [recno()]="Sort table by "+zfields[[#]]
ENDSCAN
DELETE “struct™ ;-- remove struct table
azTextLine(4,"Select field to sort by")
SHOWARRAY ;-- menu lets user select from
zfields zdesc ;-- fields, with sort description
TO zsortfield ;-- get sort field
IF zsortfield="Esc" THEN
RETURN false
ENDIF
34,0 azTextLine(4,"Select the sort order desired")
SHOWMENU
"Ascending":"Sort in ascending order by "+zsortfield,
"Descending":"Sort in descending order by "+zsortfield
TO zsortorder ;-- get sort order
IF zsortorder="Esc" THEN
RETURN false
ENDIF
aztextline(4,"Preparing Sorted Answer table")
IF zsortorder= "Ascending" THEN
SORT zsorttable ON zsortfield TO "Answer"
ELSE
SORT zsorttable ON zsortfield D TO "Answer" ;-- descending sort
ENDIF
MOVETO FIELD zsortfield
RETURN TRUE
ENDPROC

;-- don't want answer table in list

;-- quit if user presses Esc

;-- ascending sort

;-- move to the answer table field
;-- all done

azsort() ;execute the proc (typically read in from a library)

130 TURBO TECHNIX July/August 1988

NEW!

NEW!

NEW!

NEW!

C CODE FOR THE PC

source code, of course

Bluestreak Plus Communications (two ports, programmer’s interface, terminal emulation) $400
CQL.Query System (SOL retrievals plusWindoWs) v o 1 5 s e 2 b o 2" o o el w6 s e e e e e s $325
GraphiC 4.1 (high-resolution, DISSPLA-style scientific plots in color & hardcopy) $325
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric),orUPC) $300
Vmem/C (virtual memory manager; least-recently used pager; dynamic expansion of swapfile) $250
Aspen Software PC Curses (System V compatible, extensive documentation)« ¢ v v v 4w w0 0. $250
Greenleaf Data Windows (windows, menus, data entry, interactive formdesign) $250
PforCe++ (COM, database, file, user interface, & CRT C++ classesamongothers) $345
Nt G (M A I O e e e o 0 e il s st et o R $200
AurboTEX (TRIP certified; HP, PS, dotidrivers; EMUORIS LATEX) v W5 o o b o s0iati o a5 et (o s il g ol 6 sis o e $170
Essential resident C (TSRify C programs, DOS sharedlibraries) ¢ < « ¢ ¢ 4 6o v o 4 o v v v o v o 0 o o o $165
EssentiallC UlilitylLibrary (400 useful Cfunctions) s e s i 8ol ol o o 0l e s o e e e e o s e e e s e s $160
Essential Communications Library (C functions for RS-232-based communication systems) $160
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) $150
Greenleaf Functions (296 useful C functions,allDOSservices)« « v v v v v v v v v v v v o v v w v v o $150
0OS/88 (Ussx-like operating system, many tools, cross-development fromMS-DOS) $150
ME Version 2.0 (programmer’s editor with C-like macro language by Magma Software; Version 1.31still $75) $140
Turbo G Graphics Library (all popular adapters, hiddenlineremoval) $135
PC Curses Package (full Berkeley 4.3, menu and.data/entry exXamples) o .« « o oo 6 o e o o 6 6 & 0 5 6 6 5 5 A sl 6w e $120
CBTree (B+tree ISAM driver, multiple variable-lengthkeys) $115
Minix Operating System (Ussx-like operating system, includesmanual) $105
PEAR(EMU/MIMIFCH ARimplementationtfor BESYR oy sis Lots oitdtng i whie men MLt ST i e e e $100
B-Tree Library & ISAM Driver (file system utilitiesby Softfocus) « ¢ o v v v ¢ v o v v v 0 v v e e e e e . $100
The Brofiler{prograniiexecution Drofletool) e sl pes. s SOl o S e W usin e oal oo Lal0 0 e et e b et $100
Entelekon C Function Library (screen, graphics, keyboard, string, printer,etc.) o $100
Entelekon Power Windows (menus, overlays, messages, alarms, file handling,etc.) $100
QC88 C compiler (ASM output, small model, no longs, floats or bit fields, 80+ functionlibrary) $90
Wendin Operating System Construction' Kitor PENX, PCVMS O/S'Shells . o . « 4 s & 4 o s o s o 5 s 6 6 s s s s o s & & $80
C Windows Toolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) $80
Professional'C Windows/(windows and keyboard functions)l ".Fei v 25 ¢ @ & i L i e b6 s e w5 6 6 e s s e s s 6 5w $80
JATE Async Terminal Emulator (includes file transfer and menu subsystem) $80
MultiDOS Plus (DOS-based multitasking, intertask messaging, semaphores) $80
WKS Library (C program interface to Lotus 1-2-3program &files) ¢ . . v v 0t e e e e $80
Professional C Windows (lean & mean window andkeyboard handler) $70
Quineyi(inleractive ICIRtErpreter)i.: T n o e s e h e e o e S e s e ey pa e s e s e e $60
EZ_ASM (assembly language macros bridging Cand MASM) oL 0 e e e $60
L (e T T) s e i e s b e e e B S R R SR s s o a0 $60
HEBPI papapihelh syt BIRIaer) el s o b o o behaelos it fonams ol for n ale's] s0s Lis) i Sfetmeiun g silafo s des o hl $50
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modemcard) $50
Make (macros allilanguagesibudt-Irailes) bl oo Salllill o 50w o e et e e e s b 6 4 e e e e p el et st $50
Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes tobitmaps) v o v v v v v . .. $50
Coder'siProlog (inference Engineiforuse With C DLOBrame)i ./ - 1o« febioliel iife ol B0 0ot & i ol wis eliel o fu e e fa Baiis o $45
C-Help (pop-up help for C programmers ... add YOUrOWNNOLES) . « o = 5. o s 5 o & s s o 3 s & 5 s o 5 & & s 5 5.5 o s $40
Biggerstaff’s System Tools (multi-tasking window managerkit) L0000 e e e e $40
PC-XINU (Conmer's XINL operating syslem forPEY e oo o ool i o o s 5 s 5 5 5 slea s e Bomaiel e i $35
CLIPS (rule-tusediexpert systemgeheaton i Version dil)ie o wois o e Wiaidtid 0 L s L $35
TELE Kemel or TELE Windows (Ken Berry’s multi-tasking kernel & window package) $30
Clisp/(Lisp interpreter with extensive internals documentation) » o « 5 e s o s & 5 6 s = s 2 s s el e 6 2 e s e s $30

Translate Rules to C (YACC-like function generator forrule-based systems) v o u . $30

6-Pack of Editors (six public domain editors foruse, study & hacking) L0000 e $30
Crninch’Fack (a'dozen file compression &ieXDANSION PIOPIAME) + & » @ o s o o & o o 4 e 5 o 2 o o o s o5 aile o s ats $30
JCON(stemgrandilist processing Janguage, VEISION YR AT 0ol 00 8 Bilatind st e oo s w6 s a6 & e [t e el e S $25
FLEX (fast lexical analyzer génerator; new, IMPIoved EEXY: o . o o o dc co ol @ o o aw e e e s e el el sl el e e et s $25
EEX (lexical analyzer generator; an/oldiebut A goodi€) s o & 5 i0 s o & mow W ss w8 e s 6w s AL 6 w6 % s e e $25
Bison & PREP (YACC workalike parser generator & attribute grammar preprocessor) « « o « o« v o o o o . $25
Auntoidrsee (programitracerand memoryitrasheceatcher) i ol ol 0 o RRe Ui L5 o e e e e S $25
C Compiler Torture Test (checks a'C compileragaibst K& R) v ¢ o s o v v i o vl e 050 o slie) & 5 oo & 5o 5 e & o) bios $20
Benchmark Package (C compiler, PChardware, and Unixsystem) . . . o . & s s s o o o o o o o s o o 0 o v o & o & v s $20
TN3270 (remote login to IBM VM/CMS as a 3270 terminal ona 3274 controller)« o v v v v v v v v v $20
7 A o A T S e e e i i el s B T R e N P S s S U e o $20
LisEEPac(C functions forlists, Stacks andIQUEHERY . 0 0 oo o Wy s q o a0 w8 s G e e e (8 e S s e e $20
XIEEMacro Processor (general pUrpose (ext IransIator) « i o o o s o s o 50 50 0w 5 o e e e e a s e alvs wre el le w1 s e $20
Data

WordCruncher (text retrieval & document analysiS PrOgramy) . « o o s o & & ® wis & = & ik 5 s s s % 5 604 e s ss $275
DNA Sequences (GenBank 52.0 including fast similarity search program)00 $150
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) $60
Webster's Second Diclionaty (234,932 wordS) & oo o b e Lo SRR 0o Rt et L e st e s ey L) e kGt S o gt ot ke $60
U. S. Cities (names & longitude/latitude of 32,000 U.S. cities and 6,000 state boundary points) $35
The World Digitized (100,000 longitude/latitude of world country boundaries) $30
KST Fonts (13,200 characters in 139 mixed fonts: specify TgX or bitmapformat) $30
USNO Floppy Almanac (high-precision moon, sun, planet & star positions) « .« « v o v 0 v v v 0 0. $20
NBS Hershey Fonts (1,377 strokecharactersin 14 fonts) . <« « + « s 4 =« s ¢ 0 o o w0 &0 o o v 0 s v o 6 o o 0 o o o $15
UJ.'S. Map!(15,701 points of stateboundaried)s - = o5 @ o e vt L e e s e we e ol R O 0 s S $15
The Austin Code Works Voice: (512) 258-0785
11100 Leafwood Lane acw!info@uunet.uu.net BBS: (512) 258-8831
Austin, Tezas 78750-3409 USA FidoNet: 1:382/12

Free shipping on prepaid orders For delivery in Texas add 7% MasterCard/VISA

Bruce F. Webster

n most discussions on program design, the fo-

cus is on the design and implementation of al-

gorithms, which are the actual program state-

ments that do the work. However, algorithms
are only half of the story—without data structures,
it’s hard to write a meaningful program of any com-
plexity. In fact, as programs grow more complex, the
data structures that they use become more important,
and the design and implementation of those struc-
tures become more critical. Recognition of this pro-
cess has led to a new style of software design, known
as object-oriented programming, where a program is
viewed as a collection of data structures that com-
municate with one another.

When I first learned Pascal some eight years ago,
I had been using FORTRAN as my primary high-
level language for about five years. At that time,
FORTRAN had one data structure—the array—and
I was very good at turning arrays into whatever I
needed. Pascal, though, was something of a shock. I
had two new data types to work with—Boolean and
enumerations—plus several new data structures, in-
cluding strings, records, and sets. I can still remem-
ber how uncertain I felt for several months about
the best way to use all of these new tools. With time,
though, I became more confident, and developed a
knack for being able to quickly come up with the
right data structure for a given application.

Which brings us to my first point: The best way to
learn how to design data structures is to design them.
That'’s as true—and as discomforting—as saying that
the best way to learn how to program is to program.
But, as with programming, there are guidelines and
rules of thumb to help you along the way.

DATA CHOICES

Pascal and C provide six basic data types: integers,
reals, characters, pointers, Booleans, and enumer-
ated (user-defined) data types. In the case of C, Bool-
eans and enumerations are really just integer values,
and are defined more by function than by actual
type. In Pascal, however, Booleans and enumera-
tions are true separate data types. Here’s a brief ex-
planation of each type and the way it’s generally
used.

BINARY ENGINEERING
Designing data structures, part I

® Integer: Whole numbers (both positive and neg-
ative), which are used for counting, and in situa-
tions where round-off errors must be avoided.

® Real: Floating point numbers, which are used for
very large, very small, and fractional numbers (es-
pecially in scientific and engineering applica-
tions).

® Character: Individual printing and control char-
acters, based on an extended ASCII set, which are
used for text input, output, and manipulation.

® Pointer: Addresses of variables, procedures, func-
tions, and key locations of system hardware,
which are used to modify data, allocate data struc-
tures dynamically, and pass routines as param-
eters.

® Boolean: The logical values False and True,
which are used to compare values, test relation-
ships, and remember the outcome of such tests
and comparisons. C does not have an actual Bool-
ean type, but considers the value 0 to be False
and any nonzero value to be True (though logical
expressions always return 1 as True).

® Enumerated: User-defined data types that are
built from a list of identifiers, such as days of the
week or colors in a spectrum. Enumerated types
are used to make code more self-documenting,
and to avoid declaration of long lists of integer
constants.

These types are the building blocks for your data
structures. A data structure is a collection or associa-
tion of data types that is constructed in such a way
that the individual elements can be written to, re-
trieved, or tested. There are four basic types of data
structures: arrays, records (or structures), files, and
sets. There are also two derivative types: strings and
unions. Yet another type of data structure—linked
lists—is created by combining records and pointers.

132 TURBO TECHNIX July/August 1988

ARRAYS

An array is a list of elements where each element is
retrieved by indexing the array name. The power of
an array is that the indexing can be done by an ex-
pression that is evaluated while the program runs.
Indexing is possible because arrays are homoge-
neous—all the elements of the array, from 1 to n, are
of the same data type. As a result, the compiler easily
generates code to find the nth element of the array.

What issues are involved in designing arrays? The
biggest issue is size: How large do you make the ar-
ray, and how do you enforce that size limit? Once an
array is allocated, its size is fixed. If it’s too big, then
you're wasting data space. If the array is too small,
problems may occur while your program executes.
And finally, since compilers have limits on array size,
the array may not ever be big enough, period.

For many applications, the array size has a natural
limit that is defined by the problem itself. If you're
using an array to count how many times each letter
of the alphabet occurs in a given text, then you know
that you only need 26 elements. If you're counting
upper- and lowercase letters separately, you need 52
elements. If you're counting occurrences of all char-
acters within a file, including punctuation, digits, and
special characters, then you need 256 elements (one
for each possible character).

However, there are times when the number of
items varies from one run of the program to another,
sometimes by a great deal. In that case, you have two
choices: set an arbitrary limit, or use dynamic array
allocation.

Setting an arbitrary limit is easy, but it has the
drawbacks mentioned earlier of either wasting data
space or else not having enough data space. Actually,
“wasted space” isn’t really wasted unless you have to
eliminate some other data structures in order to
make room for the array. Not having enough space
is more serious. If the array runs out of room while
the program is executing, then the program has to
handle that error condition gracefully. If possible,
you should let the user know about any limits ahead
of time, as well as when he or she might encounter
them.

One technique for managing fixed array size
within a program is to declare constants that define
the array’s limits, and then reference those constants
when the array is used in the program. A better so-
lution, however, is dynamic array allocation. This
can be accomplished in either C or Pascal (although
it’s a bit more complicated in Pascal). To do so, first
find out how much space is required, then allocate
that amount of space on the heap for the array. This
process is handled by the C code shown in Figure 1,
which takes advantage of the fact that arrays and
pointers in C have the following relationship:

int - *list, i, count;

do (
printf("Enter # of values: ");
scanf("%d",&count);
)} while (count < 0);
if (count == 0)
exit();
list = (* int) calloc(sizeof(int),count);
if (list == NULL)
exit();
for (i=0; i<count; i++) (
printf("Enter item #%d:
scanf("%d", list[il);

"oiy;
i:

free(list);
>

Figure 1. Dynamic array allocation in C.

type
NumList = array[1..2] of integer;
NLPtr = “NumList;
var
List suNLPtE;
I,Count : integer;
begin
repeat
Write('Enter # of values: ');
Readln(Count)
until (0 <= Count);
if Count = 0
then Halt;

GetMem(List,SizeOf(integer)*Count);

for I := 1 to Count do begin
Write('Enter value #',1:3,': ');
Readln(List"[I1)
end;
FreeMem(List);
end.

Figure 2. Dynamic array allocation in Pascal.

*(a + i) == alil

With this relationship, even though list is declared as
a pointer to type int, it can be indexed just like an
array.

The Pascal solution, which is shown in Figure 2,
isn’t quite as tidy. It requires that we disable range
checking and then declare a dummy array type and
a pointer to that type. The number of elements to
the array can be allocated by using GetMem and
SizeOf. However, note that the pointer dereferenc-
ing operator (") must be used to access the array
itself.

With any solution, you need to be aware of the
overall size of the array. There is a limit on how

continued on page 134

July/August 1988 TURBO TECHNIX 133

BINARY ENGINEERING

continued from page 133

large an array can be, even if it’s allocated dynam-
ically. Typically, an array can be no larger than 64K,
and it usually must be somewhat smaller. The limit
on the number of elements then becomes a function
of the size of the element. If the array contains bytes
or integers, then element size probably isn’t a prob-
lem. On the other hand, if the array contains rec-
ords that are each several hundred bytes long, then
you can run out of array space very quickly. In this
situation, you're probably better off with a linked list.

Multidimensional arrays can also chew up mem-
ory in a big hurry. Consider the following Pascal ar-
ray declaration:
VAR

A : ARRAY[1..1001[1..201([1..20]

OF real;

What we have here is an array of one hundred
20 X 20 floating point matrices. No problem, right?
Wrong. The entire array holds 40,000 six-byte real
numbers, and requires 240,000 bytes—definitely
more than most compilers allow for any single array.

RECORDS

A record (in C terminology, a struct) is the data struc-
ture that complements the array. The elements of a
record can be of different data types, making the rec-
ord heterogeneous. Each element, known as a field, has
a name. An element is referenced by appending the
field name to the record variable’s name. This
means, of course, that you can’t index through the
elements of a record in the same way that you can
index the elements of an array.

The strength of a record is its ability to associate
data of different types. For example, suppose that
you're writing a program to keep track of students in
a school, and you design a record type to hold infor-
mation for each student. This information would in-
clude name, age, sex, Social Security Number, grade
point average (GPA), and class standing. The Pascal
result might look like that shown in Figure 3; the C
equivalent is shown in Figure 4.

type

NameStr = stringl20];

Gender = (unknown, female,male);

Grade = (freshman, sophomore, junior,senior);

Students = record
Last,First,Middle : NameStr;
Age : byte;
Sex : Gender;
GPA : real;
Standing : Grade;

end;

Figure 3. A simple record type in Pascal.

typedef unsigned char byte;

typedef char nameStr[21];

typedef enum { unknown, male, female) gender;

typedef enum { freshman, sophomore, junior, senior) grade;

typedef struct {

nameStr last,first,middle;
byte age;
gender sex;
float gpa;
grade standing;
) students;

Figure 4. A simple record type in C.

To reference a field in a Pascal record, write the
record variable name, followed by a period (“.”), fol-
lowed by the field name. For example, the following
code contains a variable who of type student, and as-
signs the value of 4.0 to the field GPA:

Who.GPA := 4.0;

How do you design a record? The first step, of
course, is to list the information that belongs in the
record. As you do so, give a name to each item and
note which type of data or range of values are
needed. For the example above, you might have
created a list similar to the one shown in Figure 5.

last name Last string

first name First string

middle name Middle string

age Age 0 to 150

sex Sex male, female, unknown
grade point average GPA 0.0 to 4.0

current class Standing frosh, soph, jun, senior

Figure 5. The first step in designing a record: List your
data items.

The second step is to define any auxiliary data
types that you might need (or want) in order to
create the record. In doing so, there are certain
tradeoffs to bear in mind. For example, three strings
are needed for the first, middle, and last names.
Since strings are just a form of array, you face the
usual array tradeoff of making the array too large
and wasting space, or else making it too small to
hold any reasonable instance of its data. In this case,
I chose 20 characters per name as a nice compro-
mise. That’s large enough to handle 99+ percent of
the names, but doesn’t waste a tremendous amount
of space. Still, those 63 bytes (each string has an ad-
ditional byte to hold its current length) represent
most of the space occupied by a Students record; if
the overall record size is too big, that’s the first place
to cut.

Similarly, fields that are described with lists of
words (such as “male, female, unknown”) are good

134 TURBO TECHNIX July/August 1988

candidates for enumerated data types. They provide
a level of self-documentation to your code that can
be very useful, especially when using a debugger that
recognizes enumerated types. Since enumerated
types occupy only a single byte, they are always a
more efficient choice than that of storing the equiv-
alent lists of words as strings.

Finally, numeric fields should use the appropriate
numeric type. When integer values are involved, use
the appropriate integer type to enhance error check-
ing and to minimize space. A list of the integer types
in Turbo C and Turbo Pascal, according to ranges of
values, is given in Figure 6.

Range Turbo Pascal Turbo C
-128..127 shortint signed char
0..265 byte unsigned char
-32768. .32767 integer int
0. .65535 word unsigned int
-2147483648. 2147483647 longint long
0..4294967295 <none> unsigned long

Figure 6. Integer data types available in Turbo Pascal and
Turbo C.

Likewise, use the appropriate floating point type
for real numbers. In Turbo C, use float or double,
depending upon how much precision and exponent
range is needed. In Turbo Pascal, the usual choice is
real; however, if you have an 8087/80287 math co-
processor, you can use one of the standard IEEE
types (single, double, extended) to better fit your
needs.

Since a record can have data structures as its
fields, you might want to also declare those data
structures as distinct types. Unless you run into a se-
rious problem with confusing identifier names,
you're usually better off declaring each data structure
as a separate type, then using that type name in de-
claring the record. This approach has three advan-
tages. First, it produces cleaner and more readable
code. Second, it makes it easier to pass record, set,
and array fields as separate parameters to subpro-
grams, since you now have predefined types for the
subprogram’s formal parameters. Third, it allows you
to quickly change the underlying data structure of a
given field by redeclaring that type and then mod-
ifying the program wherever it references that data
structure. Having defined any needed types, you can
then declare the record type itself, listing each field
name and its corresponding type. A more extended
example of this process can be seen in Figure 7,
which I'll discuss in more detail later.

ARRAYS OF RECORDS

One of the most useful data structures is an array of
records. This is just what it sounds like: An array of

some size, where each element of the array is a rec-
ord. As an indexed list with each element containing
a mixture of data types, this array combines the best
of both data structures

The process of setting up an array of records is
just like that of setting up any other array. For exam-
ple, an array of Student records might be declared
as:

VAR
SList : ARRAY[1..100] OF Student;

You can now set the GPA field of the 20th record
with the following code:

SList[20].GPA := 4.0;

Arrays of records fall prey to the same problems
that befall other arrays: wasted space, not enough
space, or being too large for a single data segment.
Since it’s easy to create records that are several doz-
en (or even several hundred) bytes, the problems are
all magnified. An alternative to an array of records
is a linked list of records, but linked lists are beyond
the scope of this month’s column.

NESTED RECORDS

Both C and Pascal allow you to nest records—to de-
fine record fields that are themselves records. This
approach lets you “modularize” your records by re-
placing several fields with a single field; this single
field consists of a record containing the replaced
fields. In other words, just as you can break a large
section of code into several smaller subroutines, you
can take a record with a long list of fields and break
it down into several “subrecords.” This method of-
fers several advantages. It makes the overall record
structure easier to follow, and groups related infor-
mation together into a single field. It allows those
groups of information to be manipulated as single
entities (assigning, passing as parameters, and so
on).

Figure 7 shows an extended version of the type
Student. Several new record types (Time, Periods,
Classes) have been created to add the student’s class
schedule. Arrays of type Periods have been added to
let each class have up to six periods per week. Arrays
of type Classes let each student have up to 12 classes.

If you have a nested record and want to reference
a field of a subrecord’s field, take this approach: Use
another period, followed by the field name. For ex-
ample, if you have a variable Temp of type Period,

continued on page 136

July/August 1988 TURBO TECHNIX 135

const

PMax = 6;
CMax = 12;
type
NameStr = string[20]1;
Gender = (unknown,female,male);
Grade = (freshman, sophomore, junior,senior,
graduate);
Days = (sun,mon, tues,wed, thur,fri,sat);
Time = record
Hour : 0..25;
Min 0259
end;
Periods = record
Day : Days;
Start,Finish : Time
end;
PList = array[1..PMax] of Periods;
Classes = record
Title,Instructor : NameStr;
Period : PList;
PNum : 0..PMax;
Score : real
end;
CList = array[1..CMax] of Classes;
Students = record
Last,First,Middle : NameStr;
Age : byte;
Sex : Gender;
GPA : real;
Standing : Grade;
Class s CList;
CNum : 0..CMax
end;

Figure 7. A more complex record type in Pascal.
BINARY ENGINEERING

continued from page 135

you can set it to “Wednesday, from 11:00 am to 12:20
pm” with the following statements:

Temp.Day := wed;

Temp.Start.Hour 14

Temp.Start.Min := 00;
Temp.Finish.Hour := 12;
Temp.Finish.Min := 20;

There is one disadvantage to nested records: the
need to reference an individual field through many
levels. Suppose you want to find the closing time of
the last period of the first class for the 17th student
in SList. Assuming that LHour and LMin are of type
integer, the statements would look like this:

LHour := SList[17].Class[1].
Period[PNum] .Finish.Hour;
LMin := SList[17].Class[1].

Period[PNum] .Finish.Min;

As you can see, it can get a bit unwieldy at times.
Pascal’s solution is the WITH statement, which lets
you drop the record name and period, and simply
reference the field. WITH statements can be nested,
so that you can work your way inward. This is dem-
onstrated in Figure 8, which shows a section of code
that adds up to all of the class time that a student
should be spending.

const
SMax : 100;
var
SList : array[1..SMax] of Students;
SCount : 0..SMax;