TECHNIX

THE BORLAND LANGUAGE JOURNAL ¢ SEPTEMBER/OCTOBER 1988 * VOLUME ONE NUMBER SIX ¢ $10.00

BUG HUNTING,
BORLAND STYLE

Integrated and
standalone
symbolic debugging

Turbo Pascal 5.0
and Turbo C 2.0

Introducing
Turbo Assembler

Definite clause
grammars in Turbo

Prolog

VM ‘TLLIVES
3S¥1 'ON LIN¥Ad
arvd
AOVISOd SN
ALV WINd

DESQview API Reference Manual

This is the primary source of information
about the DESQview API. It contains all you
need to know to write assembly language pro-
grams that take full advantage of DESQview’s
capabilities. The Reference manual comes with
an include file containing symbols and macros
to aid you in development. AVAILABLE NOW!

DESQview API C Library

The DESQview API C Library provides
C Language interfaces for the entire set of API
functions. It supports the Lattice C, Metaware
C, Microsoft C, and Turbo C compilers for all
memory models. Included with the C Library

package is a copy of the API Reference
Manual and source code for the library.
AVAILABLE NOW!

DESQview API Debugger

The DESQview API Debugger is an
interactive tool that enables the API pro-
grammer to trace and single step through
API calls from several concurrently running
DESQview-specific programs. Trace infor-
mation is reported symbolically along with
the program counter, registers, and stack at
the time of the call. Trace conditions can be
specified so that only those calls of interest
are reported. AVAILABLE NOW!

view

Quarterdeck

Introducing
DESQview 2 0

API Tools

Bringing

NneEw power

DESQview API Panel Designer

The DESQview API Panel Designer is an
interactive tool to aid you in designing win-
dows, menus, help screens, error messages,
and forms. It includes an editor that lets you
construct an image of your panel using simple
commands to enter, edit, copy, and move text
as well as draw lines and boxes. You can then
define the characteristics of the window that

will contain the panel, such as its position, size,

and title. Finally, you can specify the locations
and types of fields in the panel.

The Panel Designer automatically generates
all the DESQview API data streams necessary

Quarterdeck Office Systems
150 Pico Boulevard

Santa Monica, CA 90405
(213) 392-9851

to DOS

to display and take input from your panel.
These data streams may be grouped together
into panel libraries and stored on disk or as
part of your program. AVAILABLE NOW!

DESQview API Pulldown
Menu Manager

The DESQview API Pulldown Menu
Manager is an interactive tool to aid you in
designing pulldown menus. This DESQview
API tool assists you in giving your DOS
program an OS/2-like look and feel.
AVAILABLE OCTOBER 88

MS-DOS and IBM PC-DOS are both trademarks of
Microsoft Corporation and IBM Corporation respectively.

TURBO TECHNIX

The Borland Language Journal
September/October 1988
Volume 1 Number 6

FEATURES
TURBO PASCAL

12 Turbo Pascal 5.0: I Can See!
Jeff Duntemann

27 A Directory Search Engine
in Turbo Pascal
Neil Rubenking

38 The Return of Overlays
Bruce F. Webster

Turbo Debugger arrives to provide
multiple windows into your largest
and most difficult programming proj-
ects. Advanced features such as 80386
virtual-86 partitions separate debugger
and debuggee to allow you to have
your full 640K of DOS memory—

and debug in it, too.

TURBO C

48 Bug Hunting, Borland Style
Jeff Duntemann

52 Turbo Debugger:
The View from Within
Michael Abrash

62 Turbo C 2.0: The Thrill
of the Hunt
Kent Porter

67 Floating Point:
The Second Wave
Roger Schlafly

74 A Directory Search Engine
in Turbo C
Jake Richter

TURBO PROLOG

80 Definite Clause Grammars
in Turbo Prolog
Barbara Clinger, Ph.D.

90 State Space
Dr. Robert Crawford

95 Taking to the Screen
Gaylen Wood

120
Borland’s new Turbo Assembler
cleans up MASM’s haphazard syntax
and command set, without sacrificing
compatibility with existing MASM
source code files.

ol 12
Seeing a bug happen is by far the
greater part of fixing it. Turbo Pascal
5.0’s Integrated Debugger lets you run
your program one step at a time and
inspect your data between each step.
Turn the lights on in your Pascal code
and watch those critters run!

TURBO BASIC

104 The Turbo Basic/Assembler
Connection
David A. Williams

110 Command Line Parameters
in Turbo Basic
Duke Kamstra

113 Getting In the LOOP
Tom Wrona

PROFESSIONAL TOOLS

120 Turbo Assembler: Civilizing
Machine Language
Tom Swan

126 Parsing PAL Strings
With MATCH
Bill Cusano

129 Capturing Directories
With Sprint
Bruce F. Webster

TURBO TECHNIX makes reasonable efforts to assure the accuracy of articles and information published in the magazine. TURBO TECHNIX assumes no
responsibility, however, for damages due to errors or omissions, and specifically disclaims any implied warranty of merchantability or fitness for a particular
purpose. The liability, if any, of Borland, TURBO TECHNIX, or any of the contributing authors of TURBO TECHNIX, for damages relating to any error or
omission shall be limited to the price of a one-year subscription to the magazine and shall in no event include incidental, special, or consequential dam-
ages of any kind, even if Borland or a contributing author has been advised of the likelihood of such damages occurring.

Trademarks: Turbo Pascal, Turbo Basic, Turbo C, Turbo Prolog, Turbo Assembler, Turbo Debugger, Turbo Toolbox, Turbo Tutor, Turbo GameWorks, Turbo Lightning,
Lightning Word Wizard, SideKick, SuperKey, Eureka, Reflex, Quattro, Sprint, Paradox, and Borland are trademarks or registered trademarks of Borland International,

Inc. or its subsidiaries.

2 TURBO TECHNIX September/October 1988

TURBO TECHNIX

Publisher
John Hemsath

Editor in Chief
Jeff Duntemann

EDITORIAL
Managing Editor
Michael Tighe
80 Technical Editor
Michael A. Floyd
The first steps toward natural lan- ‘K ae‘ i
guage comprehension involve the Copy Editor

analysis of a language’s syntax—a Famela Dillchay

task Turbo Prolog is uniquely suited
to perform.

Technical Consultants
Brad Silverberg

COLUMNS

4 BEGIN: The Zen Factor
Jeff Duntemann

136 Binary Engineering: Design-
ing Data Structures, Part II
Bruce F. Webster

140 Language Connections:
Turbo Prolog 2.0 Meets
Turbo Assembler
Phillip Seyer

144 Tales from the Runtime:
Reading the Command Line
Bill Catchings and
Mark L. Van Name

160 Philippe’s Turbo Talk

DEPARTMENTS
6 Dialog

150 Critique: Turbo Asynch Plus
Marty Franz

Critique: Turbo Professional
4.0 for Turbo Pascal
Rick Ryall

Critique: 386"
Jeff Duntemann

154 BookCase: C Programmer’s
Guide to Serial Commumnications
Reviewed by Reid Collins

BookCase: File Formats for
Popular PC Software

and More File Formats for
Popular PC Software
Reviewed by Marty Franz

157 Turbo Resources

Cover: The essence of debugging is simply
being able to see your code and data in
action. Far too many bugs hide behind
unwarranted assumptions and false infer-
ences, when one solid look into the whites
of their eyes would expose them for what
they are. Borland’s new tools for debug-
ging, the standalone Turbo Debugger and
the Integrated Debuggers built into the
latest releases of Turbo Pascal and Turbo
C, give you a close-up look inside the
closed universe of your latest program.
Cover photo by Bradley Ream.

David Intersimone
Roger Schlafly
Gary Whizin

Pat Williams

Chris Williams
Duke Kamstra

DESIGN & PRODUCTION

Art Director
Karen Lucas

Art Assistant
Carol Angelo

Typesetting Manager
Walter Stauss

Typesetter/System Supervisor

Jeffrey Schwertley

Typesetters

Ron Foster

Jeanie Maceri
Typesetting Traffic
Charlene McCormick
Photographer

Bradley Ream

ADMINISTRATION

Department Coordinator
Annette Fullerton

Purchasing
Brad Asmus

ADVERTISING
INFORMATION
(408) 438-9321

TURBO TECHNIX (ISSN-0893-827X) is published bimonthly by Borland Communications, a division of Borland International, Inc., 1800 Green Hills Road,
P.O. Box 660001, Scotts Valley, CA 95066-0001. TURBO TECHNIX is a trademark of Borland International, Inc. Entire contents Copyright ©1988 Borland
International, Inc. All rights reserved. No part of this publication may be reprinted or otherwise reproduced without permission from the publisher. For a
statement of our permission policy for use of listings appearing in the magazine, send a self-addressed stamped envelope to Permissions, TURBO TECH-
NIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001. Editorial and business offices: TURBO TECHNIX, 1800 Green Hills Road, P.O.
Box 660001, Scotts Valley, CA 95066-0001. Subscription rate is $49.95 per year; rate in Canada $60.00 per year, payable in U.S. funds. Single copy price is
$10.00. For subscription service write to Subscriber Services, TURBO TECHNIX, 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95066-0001.

September/October 1988 TURBO TECHNIX 3

ichael Abrash has
coined a new verb to
WL describe what he does
- | for a living: He “zens”
86-family machine code. Yes, he
programs in assembler, but his
methods differ so markedly from
standard practice that he feels a
new word is called for.

How one “zens” is hard to de-
scribe—though I'll try—but I'm
convinced that it works, having
seen an EGA-based graphics win-
dowing interface that Michael
wrote where a moving window
doesn’t “blank out” but retains its
contents, and moves smoothly
from top to bottom, without flicker
or any annoying refresh “swoop.”

And oh, right, I forgot to tell
you: This was on a 4.77-mHz 8088
machine.

The aim of zen coding is to pro-
duce the fastest, most compact ma-
chine code possible. Following are
the principles Michael uses to
achieve this aim.

Love the machine. 1 was tempted
to say, “Know the machine,” but
knowledge, while essential, isn’t
the germ of the principle. Too of-
ten we strive to know our hard-
ware like we’d know an enemy,
just in order to avoid getting
trounced. The aim of zen coding
is to wrap the program closely
around the hardware so that every
element of the hardware works for
us, not against us. First of all, this
means grabbing every available
reference on PC hardware and
digesting it down to the status bit
level and even further whenever
you can. But more than that, it
means looking at the complexity
of the hardware as an opportunity

BEGIN

The zen factor

Jeff Duntemann

to fine-tune, and not as a tar pit to
die in.

Once you know the hardware,
use it. Write to the bare metal at
every opportunity. Portability goes
out the window because you're
writing for this machine—next
year you can begin the process
again for some other machine.
Nothing says this kind of develop-
ment comes cheap.

Above all, love it. If you can’t
quite shake the notion that this is
somehow playing dirty, you're not
cut out for zen coding.

Assume nothing. Optimizing by
dead reckoning—that is, by writ-
ing a cycle count next to each in-
struction, adding them up, and
then seeing what you can pull
out—doesn’t work. It doesn’t work
because instruction cycles aren’t
the whole story. Every machine
has “cycle-stealers,” including
memory wait states, video wait
states, and DMA refresh delays,
that skew the total in ways that are
nearly impossible to predict on
paper. Furthermore, once you fac-
tor in the nondeterministic effects
of the filling and purging of the
prefetch queue, the paper chase
is simply over. You cannot know
how time-efficient a given solution
will be unless you go in and mea-
sure the solution in action. Forget
how fast a snippet of code must
be—go in and see how fast it is.

Look at all possible solutions.
Some folks build mini-interpret-
ers. Others optimize by giving

over subroutine calls and putting
repeated instances of the same
routine in one long sequence. Still
others will do anything to keep
values floating in registers. The
art of zen coding requires the
coder to keep an open mind and
have a feel for which solution is
right for the problem at hand.
Whether we realize it or not, we
often recast a problem in familiar
terms to conform to our familiar
solutions. Keeping things in reg-
isters may help—but eliminating
subroutine calls by keeping code
inline may help more. If you don’t
try, you can’t know.

None of this is easy. Nor is the
above summary the final word:
Michael emphasizes the impor-
tance of right-brain thinking to tie
it all together, and that may be the
toughest part of all. Still, I've per-
suaded him to take a shot at de-
scribing his methods in a book,
and with some luck, The Zen of As-
sembler will appear next year.

One thing is clear: There
comes a point when conventional
methods in conventional lan-
guages fail us. At that point the
only alternative is assembly lan-
guage, where the programmer be-
comes the code generator and the
rules get turned on their head.
Zen coding throws away the pre-
cepts of breaking down a problem
into independent modules, and
demands that the programmer
embrace the problem as an or-
ganic whole in the quest for a uni-
fied, optimal solution. Not every-
one can do it—but our very com-
petitive industry will be very good
to those who can. W

Opinions expressed in this column are those
of the editor and do not necessarily reflect
the views of Borland International, Inc.

4 TURBO TECHNIX September/October 1988

Blaise Passe
the Screen lest.

POWER SCREE

Best performance in a supporting role.
Because your time is more valuable then ever, Blaise Computing presents POWER SCREEN"
the new high performance screen management system designed to support your own creative
programming efforts.

POWER SCREEN provides reliable, lightning fast data entry screens and
menus to create your own sophisticated window oriented applications.
It allows you to design screens exactly as you want them to appear in your
final application. Screens are efficiently stored in a file so they can be
used by your application or later modified without program code changes.

PAINT, the screen painter included with POWER SCREEN, has the

appearance and performance of the popular integrated programming
language environments. It lets you design and modify screens, and
define and format fields. All VGA, EGA and monochrome text modes,
attributes and colors are supported.

The POWER SCREEN Runtime Library allows you to construct
screens in memory, display screens in windows and read and write
data to fields within the screen. All screens and menus are window-
oriented, so they can be stacked, removed or moved on the physical

screen. You can access screens field-by-field or a whole screen at a
time. POWER SCREEN takes care of field input editing, data and
range checking, and data formatting.

POWER SCREEN out-performs the runners-up with a dazzling
display of capabilities FEATURING:

@ Virtual screens. Screens that can be larger than the physical
screen, with just a portion of the screen displayed within a window.
Write to any screen any time, even if it is not visible. Automatic
physical screen update.

Context sensitive help. Create help text on a field-by-field basis
or for the entire screen with a window-oriented help facility.

@ Intervention routines. Install them so your application gains
control when a field is entered, exited and between keystrokes.

® Range checking. Supported for all standard data types.

Unlimited screens. Subject only to the amount of available
memory.

@ Definable keys. Fully configurable field editing keys.

POWER SCREEN includes PAINT, the POWER SCREEN
Runtime Library, as well as other utilities for creating help
files and maintaining and documenting your screen data-

base files. Language interfaces with source code are included
for C, Turbo Pascal 4.0 and QuickBASIC.

he package is accompanied by a fully-indexed comprehensive User Reference
scribing POWER SCREEN procedures and utilities. Complete example programs
are supplied on the diskettes.
POWER SCREEN requires an IBM PC, XT, AT, PS/2 or close compatible and DOS 2.00
or later. To write POWER SCREEN applications, you need one of the supported com-
pilers: Turbo C, Microsoft C (4.00 or later), QuickC, Turbo Pascal (4.0 or later),
QuickBASIC (4.0 or later). Interfaces for all supported compilers are included
with POWER SCREEN.
Blaise Computing: We've passed the screen test so you
won’t have to.
Complete price: $129.

Blaise Computing has a full line of support products for both
Pascal and C. Call today for your free information packet.

H
b, | 4
BLAISE COMPUTING INC.

2560 Ninth Street, Suite 316 Berkeley, CA 94710 (415) 540-5441

Screen, window. and
including EGA and

memory control; ISRs
tion code; and much

Turbo ASYNCH P U
Interrupt driven support

ports. 1/0 buffers 641
hardware handshaking: u L
modem control and XMODE 4
For Turbo Pascal. ‘

C TOOLS PLUS
Windows; menus; ISRs; inte:
screen handling and EGA 431

support; direct screen access; DOS file
handling and more. Specifically desxgﬂed
Microsoft C 5.0 and QuickC.

C ASYNCH MANAGER

to four COM ports. 1/0 buffers,up to
XON/XOFF; hardware handshaking; up to
19.2K baud: modem control and XMODEM
file transfer; For Microsoft C and Turl

TurboCTOOLS ~ 812900
Full spectrum of general service utility fi ne-
tions including: windows: menus; me
resident applications; interrupt sery. rouf
tines; intervention code; and dire

access for fast screen handhng For .

KeyPilot -

. “Supenbatch pmgram

whlch can invoke programs and

Are we glowing in the dark? Or is
the smoke pouring out of your
ears? Errata or accolade? Bug or
 feature? Let us and your fellow
 readers know what’s on your
' mind, and our editorial staff and
- authors will respond as best they
can. Address letters to: .

DIALOGC
TURBO TECHNIX Magazme
1800 Green Hills Road
Scotts Valley, CA 95066-0001
~ Letters become the property of
TURBO TECHNIX and cannot
be returned. We cannot answer all
letters individually, but we will try
to print a representative sampling

of mail received.

NOT PLATONIC

I want to correct an historical er-
ror on page 67 of your March/
April, 1988 issue. Keith Weiskamp
states that Plato is the “Father of
Logic.” Nonsense. Plato had the
first comprehensive organized
philosophic system, but logic was
not one of its attributes. It was Pla-
to’s student, Aristotle, who was the
true founder of logic (via his Prior
and Posterior Analytics for the
most part). This is well known and
easily verifiable by reading Plato
versus Aristotle, whose philoso-
phies are very much opposed for
the most part. Plato touted the
philosophy of “two worlds”; Aris-
totle rejected this. Plato believed
that all knowledge is innate, exist-
ing in people at birth, which is

DIALOG

Slander not Aristotle; remember the
RESTART; and how tightly is Bruce
coupled to his parachute?

hardly conducive to logic or any
logical theory of knowledge. Aris-
totle completely rejected this as
well, stating that all babies are
born “tabula rasa,” or like a blank
slate, and acquire all knowledge
after birth. Plato uses all sorts of
illogical premises and arguments.
Plato was basically a mystic and
the founder of the idea of totali-
tarianism, via The Republic. So
don’t ascribe logic, of all things, to
Plato. Give credit where credit is
due—to Aristotle.
—Philip Oliver
Indianapolis, IN

We sincerely hope that the old chap
will forgive us.
—Jeff Duntemann

SILICON NOSTALGIA

First let me thank you for what is
becoming a very excellent publi-
cation. There is little in the micro-
computer field today (other than
the continuing quality of Byte) that
offers genuine technical content
instead of business chatter.

However, at the risk of being
accused of nit-picking, I must take
issue with Jeff Duntemann’s state-
ment (“Exploring the Interrupt
Vector Table,” May/June, 1988)
that “Until the development of the
8086 and 8088, all interrupts were
hardware interrupts.”

Evidently Mr. Duntemann has
never programmed a Z80 or 8080
chip. Both of these older proces-
sors have a software interrupt ca-
pability very similar to that of the
8086/88 family, although they
only have eight vectors in contrast
to the 255 available on later chips.
I will not make any statements
crediting the 8080 as the first mi-

croprocessor to offer this feature,
since it may have existed even
earlier.

MS-DOS is not the first operat-
ing system to take advantage of
software interrupts, either. They
were used at least as early as the
CP/M-80 operating system, and
the LDOS/LS-DOS operating sys-
tems used on the Z80 made exten-
sive use of software interrupts
long before MS-DOS was intro-
duced.

Many writers today fall into the
common trap of assuming that
IBM, Intel, and Microsoft were in-
novators who virtually invented
microcomputers and operating
systems. This simply isn’t the case.
They all adapted concepts and
hardware that were already devel-
oped and in use at that time.

—Gary Lee Philipps
Chicago, IL

Nay, nay; I was there. Only just last
week Mr. Byte snuck into the garage
and lifted his leg on my cobwebbed
IMSAI 8080 S100 box, which I can’t
sell or even give away. What passes
for a software interrupt on the 8080
is the mysterious RESTART instruc-
tion, which I never used because none
of my books ever bothered to explain
what it was or how it worked. RE-
START 1 was roughly equivalent to
an 8088 INT 1, except that RE-
START 1 transferred control to a
JMP instruction in a calculated loca-
tion in low memory, rather than to an
address contained in a vector table.
8080 hardware interrupts worked in
much the same way, so while it’s true
continued on page 8

6 TURBO TECHNIX September/October 1988

POWER SCREEN

Multiple Screens...
give you the big picture.

BLAISE COMPUTING INC.

Presenting POWER SCREEN, a new
high performance screen manage-
ment system by Blaise Computing
which provides everything you
need to create lightning-fast win-
dow oriented applications.

Paint the screens exactly as you want
them to appear in your final applica-
tion. POWER SCREEN allows you to
construct screens

POWER SCREEN supports a variety of
languages including Microsoft C 5.0
and QuickC, Turbo C, Turbo Pascal 4.0,
and QuickBASIC.

POWER SCREEN includes The Norton
Guides Online Instant Access Program
ready to use with our database of on-
line help information.

in memory, dis-
play screens in
windows and
read and write
data to fields
within the screen.
All screens and
menus are win-
dow oriented, so
they can be stack-
ed, removed or
moved about on
the physical
screen. You can

-Virtual screens!

-Context sensitive help!

-Total control over every keystroke during data entry.
-Write to any screen any time, even if it is not visible.
-Automatic physical screen update.

-Range checking is supported for all standard data types.
-Number of screens is limited only by the amount of
available memory.

-Detects which display adapter and monitor are used.
-Fully configurable field editing keys.

-Well documented source code.

-No royalty payments.

access screens

field-by-field, or a whole screen at a
time. POWER SCREEN takes care of
field input editing, data and range
checking, and formatting of the data.

POWER SCREEN has the appearance
and performance of the popular in-
tegrated programming language en-
vironments. [t helps you to design and
modify screens, define fields and how
they are formatted, specify range
values and field output masks. All at-
tributes and colors are supported in-
cluding all VGA, EGA and
monochrome text modes.

More than just a code generator;, screens
are stored in a Runtime library that you
can later access and modify without
program code changes.

This package is accompanied by a fully-
indexed comprehensive User
Reference manual describing POWER
SCREEN procedures and utilities.
Complete example programs are sup-
plied as well as utilities for creating help
files and maintaining and document-
ing your screen database files.

POWER SCREEN requires an IBM PC,
XT, AT, PS/2 or close compatible and
DOS 2.00 or later. To write POWER
SCREEN applications, you need one of
the supported compilers: Turbo C,
Microsoft C (4.00 or later), QuickC,
Turbo Pascal (4.0 or later), QuickBASIC
(4.0 or later). Interfaces for all sup-
ported compilers are included with
POWER SCREEN.

YOUR
QUALITY
CONNECTION...

Programmer’s
Connection

US 800-336-1166

DIALOG
continued from page 6

that RESTART acted like a software
interrupt, nobody ever called it a soft-
ware interrupt, and very few people
ever made the connection.

Flipping through the yellowing
pages of 1978-vintage books on the
8080 CPU and S100 bus last night
(I wire-wrapped my first machine in
1976 and am by no means a newcom-
er to this business) made me appreciate
how much more we know about our
hardware and our operating systems
than we did ten years ago. The 8080
and CP/M-80 were much more potent
than we ever appreciated, because back
then we were working almost blind.
As 1 said in my January/February ed-
itorial, much of the power of the 8088
and DOS stems from the depth of our
understanding of them. Had I known
what RESTART was in 1979, 1
would have used it, and I would have
explained to others how to use it, but
the 8080 and CP/M vanished before
the industry’s understanding of them
achieved the critical mass that the
8088 and DOS enjoy today.

—Jeff Duntemann

MAKING TIME

I read Mr. Ron Sires’ feature “A
Memory Resident Clock Utility,”
May/June, 1988, with great inter-
est, since I write numerous
memory-resident programs. Mr.
Sires described a manual proce-
dure for determining the size of
a program. He did a compile with
the map option set in order to de-
termine the size of the
CLOCK.EXE program from the
TLINK map. The value 1298H for
_BSSEND was rounded up to
1300H and then divided by 16 giv-
ing the value 130H for the pro-
gram size. This value was then
used in his main() function in the
keep(0, 0x0130) statement. This
manual procedure could be re-
placed with an automatic proce-
dure by changing the original
KEEP statement to the following:
keep(O0,

(C(unsigned int)sbrk(0)+15)/16);
Thus, if the size of the program
changes, the second parameter to
the keep function will automati-
cally change to compensate. Note
that the return value from the
sbrk function is cast to an un-
siggned int so that values greater

than 7FFFH will be processed cor-
rectly. The sbrk function is de-
scribed in detail in the Turbo C
Reference Guide, page 44.

—Alan Cohn
Irvine, CA

Neat hack, Alan. Thanks; I'd been
looking for a way to do that. I've
tested it in CLOCK.C and it works
fine, and is a good general way to do
the program-sizing job I described how
to do manually. The only caution is
that I've only tested it under the Tiny
code model, and sbrk really doesn’t
make sense under any but the Tiny
and Small code models, since it de-
pends on there being only a single
data segment in the program.

—Ron Sires

MAC SCENE

Even though I do all of my pro-
gramming on an Apple Mac+, I
find all of the articles in TURBO
TECHNIX help me to write better
code. The best features of the
Borland programming languages
are that they are complete, up to
date, similar in format and are
thoroughly supported by good tu-
torials specific to the languages.
Tutorials like the Borland/
Osborne-McGraw Hill books are
nonexistent for the Macintosh,
and if there is anything that a be-
ginner needs for the Macintosh,
it’s a good tutorial specific to the
language. I do have Borland’s
Turbo Pascal Tutor for the Macin-
tosh and it is complete but lacks
the short programming examples
that the Borland/Osborne-
McGraw Hill books use to help a
programmer get started. (I realize
that in a book as big and complex
as the Turbo Pascal Tutor this is
not possible.)

I would like to see a Borland
Turbo C and Turbo Basic, both
supported by Borland/Osborne-
McGraw Hill tutorials, for the
Macintosh. Following that, a
TURBO TECHNIX for the Mac
would be great. Is there any pos-
sibility of that in the near future?

—Robert Orthman
Boulder, CO

Well, gee, given endless funds we can
do almost anything—but software

R & D and magazine publishing are
two of the most expensive endeavors

I can think of. Borland’s commitment
to Macintosh developer tools is secure,
and we can’t be much more specific
than that. As for a TURBO TECH-
NIX for the Mac—that might be a
long, long wait. In the meantime, you
can’t do much better than Mac Tutor,
The Macintosh Programming Journal
(P.O. Box 400, Placentia, CA
92670). They publish monthly at
$30/year, with 86 pages per issue.
Their motto is “No fluff,” and they
mean it, with the (minor) downside
that they don’t publish what we would
consider Square One material.

As for tutorial books, help is com-
ing. The venerable Scott, Foresman &
Company has concluded an agreement
with Borland very similar to the one
between Borland and Osborne-
McGraw Hill, to copublish a series of
books on Borland’s Macintosh prod-
ucts. All Mac products, including the
business products, will be covered,
and the books will begin to appear
later this year. Watch for Complete
Macintosh Turbo Pascal by Joseph
Kelly as the first programming tuto-
rial in the series. There will be more.
If there were another two or three of
me, I'd write one myself.

—Jeff Duntemann

AFTER YOU, BRUCE

Bruce Webster is an interesting
man; I had the pleasure of jump-
ing out of an airplane with him
and a bunch of other distin-
guished programmers on a fine
sunny day at an altitude of about
3000 feet. Bruce, of course, had
impeccable taste. He wore an
olive-drab parachute and used
structured programming method-
ology to enter and leave the air-
plane: One way in, one way out.

I enjoyed his “How Loosely Are
You Coupled?” article in the May/
June, 1988 issue. It coincides with
my recent learning about the
topic, which has been around for
about ten years. Coupling (and
the associated topic, “cohesion”)
will be, I predict, the next pro-
gramming rage.

continued on page 10

8 TURBO TECHNIX September/October 1988

DEGLARATION & INDEPENDENCE

in’de-pen’dent (in’di-pen’dent)
adj. 1. not influenced by others in opinion,
conduct, etc. 2. not affiliated; sovereign in
authority. —n. (in’de-pen-dence) someone
or something independent.

FACT:

Many major dealers specializing in programming
tools for personal computers are legal affiiates of
companies who also publish development software.

FACT:

Programmer’s Connection is not a publisher and is
not affiliated to any company that has ever been in
the business of publishing software.

When you come to Programmer’s Connection,
you'll find our knowledgeable, non-com-
misioned salespeople and technical consult-
ants will give you an unbiased look at the
products we carry.

List Ours
386 products
386 AMS/386 LINK by Phar Lap Software New 495 389
386 DEBUGGER by Phar Lap Software .New 195 145
FoxBASE +/286 by Fox SoftwareNew 595 399
Microsoft Windows 386 by Microsoft 195 129
NDP C-386 by Microway New 595 529
NDP FORTRAN-386 by Microway New 595 529
Paradox 386 by Ansa/Bortand.......... New 895 639
blaise products
ASYNCH MANAGER Supports Turbo C 175 135
C TOOLS PLUS/5.0.... s, 129 99
Turbo ASYNCH PLUS/4.0. 129 99
Turbo CVOOLS.: . tveswseseains et 129109
Turbo POWER SCREEN............. New 129 99
Turbo POWER TOOLS PLUS/4.0. . ; 120 99
SoftCode
by Software Bottling
List $195 Ours $179

SoftCode is a screen editor and program generator which makes
use of language templates. You simply design a screen with the
editor and SoftCode generates the code using templates. You
can use Software Bottling's prewritten templates in C, BASIC,
dBASE, and Pascal or write your own. The templates generate
full data entry routines with file checking, list checking, range
checking, calculated fields and more.

borland products

EUREKA Equation Sotver 167 115
Paradox 2.0 by Ansa/Bortand... 725 525
Paradox 386 by Ansa/Bortand 895 639
Paradox Network Pack byAnsa/BO/1and 995 725
Quattro: The Professional Spreadsheet 247 179
Reflex: The Analyst . 150 105
Sidekick Plus 200 125
Turbo Basic Compiler.... 100 68
Turbo Basic Database Toolbox 100 68
Turbo Basic Editor Toolbox............ 100 68
Turbo Basic Telecom Toolbox 100 68
Turbo C Compiler 100 68
Turbo Lightning 100 68
Turbo Lightning and I.lghlmng Word Wizard 150 105
Turbo Pascal . 100 68
Turbo Pascal Database Toolbox . 100 68
Turbo Pascal Developer's Toolkit 395 285
Turbo Pascal Editor Toolbox 100 68
Turbo Pascal Gameworks Toolbox 100 68
Turbo Pascal Graphix Toolbox 100 68
Turbo Pascal Numerical Methods Toolbox 100 68
Turbo Pascal Tutor - . 70 49
Turbo Prolog Compiler New Version 150 115
Turbo Prolog Toolbox ... 100 68

Please join us in our Declaration of Indepen-
dence. Call Programmer’s Connection today
and be sure to ask for your FREE subscription
to the Connection, our 120 page comprehen-
sive buyer’s guide. It contains descriptions for
over 750 products by more than 250 manufac-
turers, and informative articles by leaders in
the programming industry.

CALL for Products Not Listed Here

USA........ 800-336-1166

...800-225-1166

Ohio & Alaska (Collect) ...216-494-3781
Internationals e, Sen b an. o 216-494-3781
i Gt Rl TR I 216-494-5260
T M 9102406879

Business Hours: 8:30 AM to 8:00 PM EST Monday through Friday
Prices, Availability, Terms and Conditions are subject to change.
©Copyright 1988 Programmer's Connection Incorporated

PROGRAMMER'S CONNECTION

database management

Clipper by Nantucket................. 695 519
dBASE Ill Plus by Ashton- Tate... wee (095 439
FoxBASE + by Fox Software .. w395 249
FoxBASE +/386 by Fox Software . ’ 595 399
FrontRunner by Ashton-Tate New 195 175
Genifer by Bytel g 395 249
HI-SCREEN XL bySOHWAY 149 129
Magic PC by Aker .. 199 179
R:BASE for DOS DyMlcn)nm S O Y 725 539
microsoft products
Microsoft C Compiler 5 w/CodeView................. 450 299
Microsoft COBOL Compiler w/Toofs New Version 900 659
Microsoft FORTRAN Opﬂmmng Cnmp 450 299
Microsoft Macro Assembler... 150 105
Microsoft Mouse 4/ Vareties ... st .. CALL CALL
Microsoft 0S/2 Programmer s Toolkit ... 350 239
Microsoft Pascal Compiler.... 300 199
Microsoft QuickBASIC ... 99 69
Microsoft QuickC... 99 69
Microsoft Windows 99 69
Microsoft Windows 386. . 195 129
Microsoft Windows Development Kn s 500 329
Microsoft Word - - 450 299
Microsoft Works... 195 129
Turbo Programmer
by ASCII
List $389 Ours $309

Turbo Programmer/C

List $499 Ours $399
Turbo Programmer is an application development system
designed to quickly and efficiently produce database applica-
tions in Turbo Pascal or C. All you do is draw and paint your
screens and tell Turbo Programmer how you want to retrieve yous
data. With Turbo Programmer you can create entire database
application programs complete with b-tree indexes, context-sen-
sitive help, and automatic programmer documentation

nostradamus products

Instant Assistant... 100 89
Instant Replay Il R 150 129
Turbo-Plus Supports Turbo Pascal 4. 0. 100 89
peter norton products

Advanced Norton Utilities . 150 89
Norton Commander S0 75 5%
Norton Editor. —_ 75 59
Norton Guides Specify Language 100 65

For 0S/2 .. 150 109
Norton Utilties 100 59

software bolllmg products

Flash-up.......... 8 19
Flash-up Developer S Toolbox 49 47

ORDERING INFORMATION

FREE SHIPPING. Orders within the USA (lower 48
states only) are shipped FREE via UPS Ground. Call
for APO, FPO, PAL, and express shipping rates.

NO CREDIT CARD CHARGE. VISA, MasterCard
and Discover Card are accepted at no extra cost.
Your card is charged when your order is shipped.

authorized signature.

available to qualified US accounts only.

Ohio tax or provide proof of tax-exemption.

information tailored to your needs.

product weight.

Guide.
write for the exact cost.

mail.
ship to all countries.

hardware interface(s). Send mail orders to:

Programmer’s Connection
Order Processing Department
7249 Whipple Ave NW
North Canton, OH 44720

Mail orders please include expiration date and

NO COD OR PO FEE. CODs and Purchase Orders
are accepted at no extra cost. No personal checks
are accepted on COD orders. POs with net 30-day
terms (with initial minimum order of $100) are

NO SALES TAX. Orders outside of Ohio are not
charged sales tax. Ohio customers please add 5%

30-DAY GUARANTEE. Most of our products come
with a 30-day documentation evaluation period or
a 30-day return guarantee. Please note that some
manufacturers restrict us from offering guarantees
on their products. Call for more information.
SOUND ADVICE. Our knowledgeable technical
staff can answer technical questions, assist in
comparing products and send you detailed product

INTERNATIONAL ORDERS. Shipping charges for
International and Canadian orders are based on
The standard rates used are
published in the Fall 1988 issue of our Buyer's
If you do not have a copy, please call or
All payments must be
made with US funds drawn on a US bank. Please
include your telephone number when ordering by
Due to government regulations, we cannot

MAIL ORDERS. Please include your telephone
number and complete street address on all mail or-
ders. Be sure to specify computer, operating sys-
tem, diskette size, and any applicable compiler or

Screen Sculptor Supports Turbo Pascal .] 125 109
SoftCode Supooﬁs Bortand Languages ot New 195 179
SPEEHESCIBRNc..iccivisbusussiss swnsivsasiarmmsovisiorias B A
turbo pascal utllmes
Btrieve ISAM File Mgr by Novell ; 245 184
Overlay Manager by TurboPower Software .. 45 43
TDEBUG 4.0 by TurboPower Software .. 45 43
Turbo Analyst by TurboPower Software 7% 69
Turbo Professional 4.0 TurboPower ... 99 89
Turbo Programmer by ASCII ... : 389 309
TurboHALO by IMSI, Specify Tumo C or F{asca/ 95 75
other products
Brief by Solution Systems 195 CALL
CBTREE by Peacock Systems....... 159 129
Dan Bricklin’s Demo Il by Software Garden 195 179
Epsilon EMACS-type Text Editor by Lugan .. 195 149
OPT-Tech Sort by Opt-Tech Data Proc 149 129
PolyAwk by Polytron ... [New 99 95
PolyShell by Polytron 93 95
risC Assembly Language by /MS/ 80 65
Source Print by Powerline Software 97 19
Tree Diagrammer by Powerfine Software .. 7 65
Turbo Programmer/C by ASCII New 499 399

Established 1984

DIALOG
continued from page 8

Coupling and cohesion were
brought out of the closet by E.
Yourdon and L. Constantine in
their 1979 Prentice-Hall book,
Structured Design. A lot of pro-
grammers are just now talking
about it in the magazines. There
is an excellent summary of it in
PJ. Plauger’s “Programming on
Purpose” column in the January,
1988 issue of Computer Language.
(See also an interesting related let-
ter to the editor, entitled “The
Zen of Plauger,” in the April, 1988
issue.)

There were a few things I
wanted to touch on in Webster’s
article. First, there were two dis-
turbing points mentioned. Dealing
with global variables by passing
them as parameters to a module
does not reduce coupling. Global
variables are global variables. No
matter how you access them, the
trouble remains the same: You're
never quite sure how other mod-
ules affect them, and you’re never
sure if what you're doing to them
adversely affects some other
module.

The other point is that the sort
routine of Listing 3 is not quite
“completely” decoupled. The com-
plexity of its interface requires the
programmer to worry about how
the routine does its job: It needs
to know the number of bytes in
each array element, as well as the
number of elements. In addition,
coupling is raised with the implicit
assumptions that only numbers
will be sorted, and that numbers
will be in the array. A completely
decoupled sort routine procedure
header would look something like
this:

PROCEDURE Sort(VAR AnyStructure);

I don’t think Pascal can handle
such a declaration, but from what
I've read, C can do it with func-
tion pointers.

Thanks, Bruce, for some
thought-provoking reading. I'm
looking forward to the next in-
stallment.

—Bill Parker
Culver City, CA

I take issue with Bill’s assertion that
passing global variables as param-
eters, instead of modifying them di-
rectly (based on scope), doesn’t reduce
coupling. One measure of coupling is
the ability (or lack thereof) to pick up
a routine from one program and drop
it into another without modification;
another is the ability to use the routine
with various sets of parameters. Direct
use of globals increases coupling in
both of those respects.

As for the sort routine—there’s a
distinction between coupling and
generality (though the two are re-
lated). A sort routine that I can drop
into any program and use without
having to add new global definitions
(constants, types, variables, other rou-
tines) is loosely coupled. This doesn’t
mean that it has to handle all sorting
situations; I can have a routine that
sorts only arrays of integers, and it
can still be loosely coupled if it meets
the criteria above.

Bill’s example of a general sort rou-
tine, though, is possible in Turbo
Pascal, which does allow untyped
VAR parameters (all versions) and
procedural parameters (version 5.0,
though you can kludge them in earlier
versions). You would need to pass the
structure, the size of a given element
in bytes, the total number of elements
in the structure, and a pointer to the
Junction that compares any two ele-
ments and returns True if the first is
less than the second, False otherwise.

And yes, it’s true, I did jump out
of a plane with Bill and the other
charter members of the PMS Com-
mando Team (and we won’t discuss
having my right boot momentarily en-
tangled in my suspension lines after
the parachute opened). What “Col-
onel” Bill Parker failed to mention is
that he’s the one who proposed the
Jump in the first place. We all wore
custom T-shirts stating that this was
the “Ist Annual Idiot Programmers’
Jump,” which would make Bill . . .
naw, it’s too easy. Good to hear from
you, Colonel.

—Bruce Webster

MANDELBROT MANIA

Let me start off by saying that I
enjoyed immensely Fred Robin-
son’s article, “Plotting the Mandel-
brot Set With the BGIL,” in your
May/June, 1988 issue. I enjoyed

it not only because I am a Man-
delbrot Set fan but also because it

illustrated very well the use of the
BGI for making a program device
independent.

You may not be aware of it, but
there are a lot of us out there who
work with the Mandelbrot Set—
some seriously and others like me
who do it for fun. As a matter of
fact, we have our own newsletter
called Amygdala, which has a cir-
culation of a few hundred copies
and comes out about ten times a
year.

Amygdala is published by Rollo
Silver, and costs $15 for ten issues.
The address is:

Amygdala
P.O. Box 219
San Cristobal, NM 87564

I look forward to seeing more
interesting articles in your publi-
cation.

—Hector Santos
Los Angeles, CA

Fred’s Mandelbrot Set article gener-
ated an astonishing volume of mail
and CompuServe activity for some-
thing most of us here considered a so-
phisticated party game. Fred has re-
written and greatly improved his
Mandelbrot Set generator, and now
makes it available as a shareware
product. Those interested may obtain
it directly from Fred for $15:

Fred Robinson
29766 Everett
Southfield, MI 48076

Another TURBO TECHNIX au-
thor, Jon Shemitz, offers a very inno-
vative Mandelbrot generator that
plots a “sparse” image—setting only
every fifth pixel and every fourth scan
line—uvery quickly so that you can
cancel the full plot if the image doesn’t
look interesting enough at first glance.
The program, which also features
mouse-based crosshair zooming, may
be obtained directly from Jon for $25:

Jon Shemitz

Emerald City Software
1805A Felt Street
Santa Cruz, CA 95062

Many thanks to Hector for bring-
ing Amygdala to the readership’s
attention. &

—Jeff Duntemann

10 TURBO TECHNIX September/October 1988

Now available in Turbo C,” Microsoft C,’
JPI Modula 2, and Logitech Modula 2.

Turbo Expert. Now it doesn't
take a genius to plug into Expert Systems.

For only $99.95, you can incorporate the power of a full-fledged Expert System into your TURBO PASCAL programs. Seamlessly. Affordably.
Finally. Actual Expert Systems, developed for simple use by any Turbo Pascal 4.0 programmer.

Take a look at all the features you suddenly have available with this single Turbo Pascal 4.0 Unit: The ability to create large Expert
Systems, or even link multiple Expert Systems together. A powerful backward-chaining inference engine. Easy flow of both data and program
control between Turbo Expert and the other parts of your program, to provide Expert System analysis of any database, spreadsheet, file
or data structure. The ability to add new rules in the middle of a consultation, so your Expert Systems can learn—really /earn—and
become even more intelligent.

You also have the ability to create large rule bases and still have plenty of room left for your program, thanks to conservative memory
use. You can link multiple rule bases, you'll be compatible with our Turbo Companion units, and you have available advanced features like
date and time arithmetic, confidence factors, windowing, demons, agendas, blackboards, and more.

Imagine a single “EXE” file containing your user interface and data handling, and a full Expert System.

For a limited time, get a FREE copy of our Turbo SnapShot graphics package worth $79.95. We'll give one away with every copy of
Turbo Expert sold between now and September 30. This package will let you capture graphics images from other programs
and use them in any Turbo Pascal program. SOFTWARE

You can even convert images from any CGA or EGA format to any other.
On top of all that, Turbo Snapshot has routines for graphic gauges and dials as well as mouse support. You'll have all
you need for a sophisticated graphics front-end for your Expert Systems— free.

Call for more information or to order, (317) 876-3042. Software Artistry Inc., 3500 Depauw Blvd., Suite 2021, Indianapolis,
IN 46268. Include $5.00 for shipping and handling. RRTISTRY

TURBO PASCAL

TURBO PASCAL 5.0:

I CAN SEE!

When your Turbo Pascal program catches a bug, let the
Borland Integrated Debugger help you with the diagnosis.

Jeff Duntemann

My initial reaction to Turbo Pascal 4.0 was
summarized well in a single word: Wow!
If I had to characterize my initial reaction
to release 5.0, it would be a different but
no less enthusiastic response: I can see!

The better part of doing what you must
is seeing what you're doing, and while you can work
in the dark, you can work faster with the lights on.
The whole thrust of 5.0 is to turn the lights on, via
the Integrated Debugger.

LET THERE BE LIGHT

A Pascal program consists of code and data, and
neither can be observed directly. Instead, you look to
a program’s effects: what it puts on the screen, what
it prints to the printer. There are always inferences
to be drawn, and if you draw the wrong inferences,
you lose.

The Integrated Debugger lets you look directly at
both program execution and program data. The
means is remarkably straightforward: With a pro-
gram displayed in the editor window, a colored high-
light bar (called the execution bar) covers the next
statement to be executed. You press a function key.
Bang! That statement executes, and the bar moves to
the next statement. Press the function key again.
Bang! The statement executes, and the bar moves yet
another step forward.

All the while, in a separate window beneath the
edit window, one or more variable names appear be-
side a display of their current values. After each
statement is executed, the values of the displayed
variables are rewritten to the screen. Thus, while the
program runs, you can watch the ebb and flow of
program data in the window, which is called the
watch window.

The synergy between the execution bar and the
watch window cannot be overemphasized: You can
now determine exactly when the value of a variable
changes. Spotting “side effects,” where a stretch of
code modifies an apparently uninvolved variable, is
now a snap. Place the corrupted variable in the

SQUARE ONE

watch window, and then step through the code until
the variable changes. What took hours to solve by in-
ference now takes seconds—simply because you

can see.

INTEGRATED INSTRUMENTS

The Integrated Debugger’s tools fall into two
categories:

® Tools that control program execution; and
® Tools that manage the display of data items.

Let’s look at execution control first.

The Integrated Debugger offers the choice of two
methods to control program execution: single-
stepping and breakpoints. A breakpoint is a stop sign
that can be erected anywhere in the source code file.
Once the breakpoint is set, simply run the program.
When execution reaches the breakpoint, the pro-
gram pauses, but nothing is lost: The state of the pro-
gram is retained, and the program can be started
again as though it had never stopped.

Single-stepping is just that: The program executes
one line of code, and then pauses. As with break-
points, the pause is not destructive. Single-stepping
your way through a program is logically equivalent
to simply running the program without interruption.

This is a good place to make an important distinc-
tion: The Integrated Debugger is a line-oriented sys-
tem. The execution bar highlights an entire line of
source code, not a single Pascal statement. If a line
contains more than one statement, all of the state-
ments on that line are executed in one single step.

Of course, much of the power of Pascal stems
from its procedural nature, in which a number of
statements are grouped together as a named proce-
dure that’s invoked as a single statement. Do you
execute the whole procedure as though it were a sin-
gle statement? Or do you enter the procedure and
then execute its component statements individually?

You do what you must. Turbo Pascal 5.0 lets you
have it either way. Two separate commands control
single-stepping: Step over (F8) and Trace into (F7).

12 TURBO TECHNIX September/October 1988

Step over treats a subprogram as an
indivisible statement, executing it
completely before pausing again.
Trace into enters the subprogram
and allows you to single-step the
subprogram’s statements as well.
The two commands are inter-
changeable (except for their ef-
fects). You can merrily step along
the main program, treating sub-
programs as statements, until you
reach a subprogram call that’s
been acting suspiciously. Then
you can duck into the call and
take a close look around.
Breakpoints and single-stepping
work very well together. In a
larger program, you may have a
strong hunch where a problem
lies. Instead of tediously single-

stepping to that point, set a break-
point shortly before the point
where you expect the trouble be-
gins, and then execute the pro-
gram without pausing until that
breakpoint is reached. From the
breakpoint, carefully single-step
until trouble happens.

LOOKING FOR TROUBLE

Trouble, when you see it, may be
a bad branch or some other fail-
ure of program control. More
likely, trouble will mean that a
variable is filled with the right
stuff at the wrong time, or the
wrong stuff at the right time, or
the wrong stuff all the time. To
spot that kind of trouble, variables
as well as program code must be
watched. The Integrated Debug-
ger offers two mechanisms for

this process: the watch window
and the evaluation box. Both are
ways of looking at the contents of
program variables. The watch win-
dow allows you to watch a variable
continuously while the program
runs. The evaluation box lets you
take a quick peek at something at
irregular intervals, and also lets
you change the values of program
variables when program execution
is paused.

The 5.0 watch window takes the
place of the Turbo Pascal 4.0 out-
put window on the screen when-
ever debugging is enabled. One
or more variables can be placed
into the watch window, and the
display of their values is updated

continued on page 14

September/October 1988

TURBO TECHNIX 13

TURBO PASCAL 5.0
continued from page 13

in the window every time program
execution pauses for a breakpoint
or after a single-step.

Unlike the watch window,
which always displays during de-
bugging, the evaluation box ap-
pears only when summoned.
When the name of a variable is
typed into the box, the variable’s
current value appears below its
name. Alternatively, you can
“point and shoot” by placing the
cursor on a variable name and
pressing Ctrl-F4; the variable
name appears in the evaluation
box automatically. Whole expres-
sions may be “grabbed” from the
edit buffer by placing the cursor
at the start of an expression and
then using the right arrow key to
copy as much text as desired into
the box. A new value for the vari-
able can also be entered; this
value is then loaded into the vari-
able, ready for use when program
execution restarts.

Both the watch window and the
evaluation box can display data in
many different ways. Binary val-
ues may be displayed as sequenc-
es of bytes in decimal or hex. Rec-
ords may be displayed with field
labels or without. Pointers appear
as pairs of segment and offset
values. Dynamic variables are dis-
played as dereferenced pointers.
Sets are shown as set elements be-
tween set constructor brackets,
with closed intervals identified
and displayed as such. Files, when
displayed, indicate their current
mode (OPEN, CLOSED, READ, or
WRITE) and the physical file-
name to which they have been as-
signed. Arrays are displayed in the
same format that array constants
are defined.

Furthermore, data may be dis-
played in terms of simple vari-
ables and expressions. The ex-
pression may include literals,
constants, variables, all legal
Turbo Pascal operators, typecasts,
and a limited suite of standard
functions that include SizeOf, Abs,
Chr, Ord, Succ, Pred, Length,
Addr, CSeg, DSeg, Seg, Ofs, Ptr,
SPtr, SSeg, IOResult, MemAuvail,
MaxAvail, Hi, Lo, and Swap.

Examples of various ways to dis-
play data in a watch window are
shown in Figure 1.

DISPLAY SWAPPING

The process of watching code in
the edit window, and watching
variables in the watch window,
doesn’t leave any room on the
screen for the operation of the
program being examined. Given
that most modern programs use
the entire screen, it seemed inap-
propriate to divide the screen yet
another time for a run window.
Instead, Turbo Pascal 5.0 uses a
system called display swapping to
share the screen between the two
debugging windows and the appli-
cation being debugged.

During the debugging process,
the Integrated Debugger ordinar-
ily keeps control of the visible
screen. A screen buffer for the ap-
plication being debugged is main-
tained in memory. This buffer is
brought into view only when the
application needs to write to the
screen, and then only long
enough for the write operation to
take place. Then the altered
screen is saved back out to mem-
ory, and the Integrated Debugger
takes control of the screen again.
These steps happen very quickly,
especially on fast 286 or 386
machines.

This feature, called smart display
swapping, is the default mode. You
can also specify that the applica-
tion take over the display every
time the application executes a
statement, or that the application
and the Debugger share the same
screen. (This works acceptably
well if the application does little
or no screen 1/0. If the Debugger
screen is disrupted, the screen can
be rewritten by a menu com-
mand.) Turbo Pascal 5.0 can also
circumvent the display problem by
allowing dual-screen operation,
with the Debugger on the mono-
chrome screen and the applica-
tion on the color screen.

GOIN’ ON A BUG HUNT

Neil Rubenking was nice enough
to share a bug he tangled with
while developing his directory
search engine (See “A Directory
Search Engine in Turbo Pascal,”
p. 27 of this issue.) The bug would
rear its ugly head during any use
of the search engine, but let’s
track it down in the context of the
Where program presented in
Neil’s article.

The bug came to light while
testing WHERE.EXE in a directory
that contained a number of files
whose names included the string
“ENGINE”: ENGINE.PAS, EN-
GINE2.PAS, and ENGINE3.PAS,
plus .BAK and .TPU versions of
the aforementioned files. When
WHERE was invoked as WHERE
E**, all of the engine files were
correctly found and displayed.
However, when WHERE was in-
voked as WHERE ENGINE* *,
none of the files turned up.
Hmmmm.

The flawed copy of EN-
GINE.PAS is shown in Listing 1.
(The source code for WHERE.PAS
is the same as that given in Listing
3 of Neil’s article.) You can down-
load the buggy ENGINE.PAS from
CompuServe if you want to follow
along in real time—just don’t mix
up the buggy version with the
working version from Neil’s
article!

Prepare the application for de-
bugging by loading WHERE.PAS
into the editor, and entering a
command line string of “EN-
GINE*.*” through Options/Pa-
rameters. Be sure the source code
for ENGINE.PAS is available to
the Integrated Debugger.

Now, we can look at anything
we want to. So what do we look at?
A hacker’s hunch tells us that the
file spec must be getting stepped
on under certain circumstances,
so a good place to start is to watch
the file spec as it wends its way
through program logic. Since
Where passes the file spec to
SearchEngine in a variable called
template, let’s take the first step of
setting a watch on template
through either Break/watch/Add
watch or its shortcut, Ctrl-F7. To
avoid having to single-step
through the procedure that vali-
dates the command-line param-
eters, let’s set a breakpoint on
Where’s invocation of SearchEn-
gine. To do so, move the cursor to
the line that contains the call to
SearchEngine, and toggle a break-
point on by way of either Break/
watch/Toggle breakpoint or its
shortcut, Ctrl-F8. The line changes
color. It’s ready.

Run the program by bringing
down the Run menu and choos-
ing the Run option. (In Turbo
Pascal 5.0, Run is a menu, and all

continued on page 16

14 TURBO TECHNIX September/October 1988

YOU'LL LOVE
THESE UTILITIES.

SAYWHAT?!
The lightning-

/' @H — | o fastscreen

(\/\f&) generator

It doesn't matter which language you pro-
gram in. With Saywhat, you can build beautiful
elaborate, colorful screens in
minutes! That's right. Truly
fantastic screens for menus,
data entry, data display, and
help-panels that can all be displayed
with as little as one line of code in any
language. Batch files, too.

With Saywhat, what you see is
exactly what you get. And response time
is snappy and crisp, the way you like it.
That means screens pop up instantly,
whenever and wherever you want them.

Whether you're a novice program-
mer longing for simplicity, or a seasoned

professional searching for higher produc- 1 N
tivity, you owe it to yourself to check out (;.,/)
Saywhat. For starters, it will let you build \J/S)

your own elegant, moving-bar menus into \
any screen. (They work like magic in any ,Z
application, with just one line of code!) &L
You can also combine your screens into extremely
powerful screen libraries. And Saywhat's remarkable
VIDPOP utility gives all languages running under PC/
MS-DQOS, a whole new set of flexible screen handling
commands. Languages like dBASE, Pascal, BASIC, C,
Modula-2, FORTRAN, and COBOL. Saywhat works with
all the dBASE compilers, too!

With Saywhat we also include a bunch of terrific
utilities, sample screens, sample programs, and out-
standing technical support, all at no extra cost. (Com-
prehensive manual included. Not copy protected. No
licensing fee, fully guaranteed). $§49 .95

Q IRON CLAD @
MONEY-BACK
GUARANTEE.
If you aren’t completely
delighted with Saywhat or
Topaz, return them within
30 days for a prompt,
friendly refund.

,\0/;
TOPAZ. / N
The breakthrough (~——

toolkit for
Turbo Pascal 4.0

If you'd like to combine the raw power and

o

WE speed of Turbo Pascal with the simplicity and
elegance of dBASE, Topaz
GUARANTEE IT!

is just what you're looking
for. You see, Topaz (our
brand new collection of
units for Turbo Pascal 4.0) was specially
created to let you enjoy the best of both
worlds. The result? You can create truly
dazzling applications in a very short
time. And no wonder. Topaz is a compre-
hensive toolkit of dBASE-like commands
and functions, designed to help you
o, create outstanding, polished programs,
- fast. Think of it. With Topaz you can write

Pascal code using SAYs and GETs,
PICTURE and RANGE clauses, then SELECT and USE

\ databases (real dBASE databases!), SKIP through

records, APPEND data, and lots more.

In fact, we've emulated nearly one hundred actual
dBASE commands and functions, and even added new
commands and functions to enhance the dBASE
syntax! All you have to do is declare Topaz's units in
your source code and you're up and running!

The bottom line? Topaz makes writing sophisti-
cated Pascal applications a snap. Data entry and data
base applications come together with a minimum of
code and they'll always be easy to read and maintain.

Topaz comes with a free code generator that auto-
matically writes all the Pascal code you need to
maintain a dBASE file with full-screen editing. Plus
outstanding technical support, at no extra cost. (Com-
prehensive manual included. Not copy protected. No
licensing fee, fully guaranteed). $§49 .95

ORDER NOW. YOU RISK NOTHING. Thousands of satisfied users have already ordered from us. Why not call toll-free, right
now and put Saywhat and Topaz to the test yourself? They're fully guaranteed. You don't risk a penny.

Saywhat?! and Topaz together for just
$85 (plus $5 shipping & handling).
That's a savings of almost $15.

To order: Call toll-free

800-468-9273

[vES. 1 want to take advantage of your special offer! Send me
and Topaz at $85 per pair (plus $5 shipping & handling). That's a savings of almost $15

| SPECIAL LIMITED-TIME OFFER! Buy §27ES. | want to try:
Saywhat?! your lightning-fast screen gener- Topaz, your programmer's toolkit for Turbo |
ator, so send copies ($49.95 each, plus $5 Pascal 4.0, so send

shipping & handling) subject to your iron-clad plus $5 shipping & handling) subject toyour iron- |
money-back guarantee

copies ($49.95 each, |

clad money-back guarantee.

copies of both Saywhat?!

NAME
International: 415-571-5019 ADDRESS
CITY

STATE ZIP

The Research Group
88 South Linden Ave.

|
|
|
|
|
|
|
| InCalifornia: 800-231-7849
|
|
|
I South San Francisco, CA 94080 i~

[J Check enclosed [Ship CO.D [credit card

Exp. date Signature

T H E

R E S E A RCMH

G R O U P

Edit Run Compile

ptions

Break/watch

Debug

Edit

A t}l. |

= RECORD

X, %2

Color
END;

Ay Ind B
Insert Indent

' Word:
. Byte

. SET OF Char;
. PointRec3
' “PointRec3D:

APoint
PointPtr

BEGIN
Neu(PointPtr):
fnswerSet -
WITH APoint DO

Unindent C:DATATEST.PAS

Watch

F5-Zoom F6-8Suitch F7-Trace

File Edit Run Compile

F8-Ste

Options

Make Fif-Menu

Debug Break/vatch

Edit

Line 46 Col 1 Insert Indent
IF path = '’ THEN
BEGIN
GetDir(@, path):
IF Length(path) = 2 THEN path
ELSE path[B] = #3;
END:
END:

BEGIN
Validate:

"

WriteLn(’Searching for

END.

, template, '

Unindent C:WUHEREB.PAS

'= path + '\

in or below ", path, '"

Watch

Fi-Help F5-Zoom F6-Switch F7-Trace

TURBO PASCAL 5.0
continued from page 14

of Run’s options support debug-
ging in various ways. The Run op-
tion is the normal way to run a
program under the Integrated En-
vironment, whether you're debug-
ging or not.)

Execution pauses at the break-
point. The watch window shows
the current value of template: EN-
GINE*.* (see Figure 2). So far, so
good—or, so far, no bug.

The light blue bar on the call to
SearchEngineAll is the execution
bar, which rests on the next state-

F8-Step

F9-Make F

ment to be executed, not the state-
ment that was just executed. At
this point, we can either execute
SearchEngineAll as a single state-
ment by pressing Step over (F8) or
else descend into SearchEngineAll
and single-step SearchEngineAll’s
statements by pressing Trace into
(F7). Since the problem obviously
isn’t located in the main body of
Where, press F7 to duck into
SearchEngineAll and have a look
around.

Nothing changes in the watch
window. A quick look at the body
of SearchEngineAll suggests that
this routine is largely a frame for
calling SearchEngine. In any
event, nothing is done to the file
spec within the body of Search-

Figure 1. Watches on data items and
expressions. Note the type casting of

Byte field Z of a PointRec3D record
onto a character value.

Figure 2. The execution bar pauses at
the breakpoint line. The contents of
template, as seen in the watch win-
dow, are still intact.

EngineAll, which suggests that the
problem lies somewhere within
SearchEngine. Before single-
stepping, move up the source code
and set a breakpoint at the first
executable statement in the body
of SearchEngine by moving the
cursor to that statement and press-
ing Ctrl-F8. Once the new break-
point is set, press Ctrl-F9 to start
things running again.

The execution bar moves in-
stantly to the first line of Search-
Engine. template hasn’t changed
... but whoa, hold on: As an ac-
tual parameter passed by value to
SearchEngine, template isn’t

continued on page 22
sidebar begins on page 20

16 TURBO TECHNIX September/October 1988

"Borland+Osborne/
McGraw-Hill offers you
the only full line of
endorsed books on
Quattro. These titles
combine Borland's own
technical expertise with
Osborne/McGraw-Hill' s
publishing savvy. With
these official Quattro
titles, you'll have a com-
prehensive library that
keeps pace with you as you
develop greater skills with
Quattro."

Philippe Kahn, President &
CEO, Borland International,
Inc.

Quattro® Made Easy

by Lisa Biow

Guides you through a
step-by-step introduction
$19.95 600 pp.

ISBN: 0-07-881347-6

Using Quattro
The Professi I Spreadsheet
by Stephen Cobb

Gets you up and running fast
with basic to more advanced
techniques.

$21.95 584pp.

ISBN: 0-07-881330-1
Quattro®: Secrets
Solutions, Shortcuts

by Craig Stinson

Unveils a clever selection of
Quattro tricks.

$21.95 650pp.

ISBN: 0-07-881400-6
Available: 8/88

Quattro®: Power User’s
Guide
by Stephen Cobb

Unlocks Quattro’s full power
for serious business.

$22.95 600pp.

ISBN: 0-07-881367-0
Quattro®: The Complete
Reference

by Yvonne McCoy

Details every Quattro feature,
command, and function.
$24.95 666pp.

ISBN: 0-07-881337-9

Quattro®: The Pocket
Reference

by Stephen Cobb

Puts essential commands and
features at your fingertips.
$5.95 128pp.

ISBN: 0-07-881378-6

ORDER TODAY!

Available at Fine Book Stores
and Computer Stores
Everywhere or

CALL TOLL FREE

800-227-0900
Visa, MasterCard, &
American Express Accepted

Wi OsborneMcGraw-Hil
o . 2600 Tenth Street
NN

Berkeley, CA 94710

98 c& 1 £ S

|
briand International. Inc. Copyrigl ﬂj‘)ﬁﬂ McGraw-Hill. Inc.

YOU GAN'T BEA

APPLICATION GENERATOR FOR TURBO PASCAL V4.0 AND TURBO C

The simple and " YOU CAN’T BEAT THE POWE

revolutionary ‘ :

new 4GL used DATABOSS DESIGNS. Databoss is revolu tionary because it lets you design and paint data entry

to develo screens and datafile layouts, as well as menus and reports: DATABOSS then automatically generates the
velop solid, structured Pascal or C source code that makes up your finished system.

sophisticated DATABOSS GENERATES. Databoss is a program generator that takes program definitions and produces

relational database TURBO C or TURBO PASCAL 4.0 source code. The definitions are created by pulldown-menu driven

applications. input screens. Code is generated for menus, file and record editing, file re-index and recovery, reports,

and file reconfiguration. No coding is necessary for most purposes.

DATABOSS IS UNIQUE. This unique Skeleton File system allows pregrammers to change the way
DATABOSS generates code. This means that DATABOSS can be used for any application, no matter
how complex or unusual.

DATABOSS can be modified to suit the individual programmer’s style and requirements.

YOU CAN’T BEAT THE FRIENDLINESS.

DATABOSS IS IDEAL for beginner programmers as it lets them create professional-level Database
systems with little or no programming required. It also allows beginners to learn Pascal and C more
quickly and easily for professional applications.

NOWPB=PU.

EH

YOU CAN’T BEAT THE SPEED.

DATABOSS IS FAST. Professional programmers will find that DATABOSS increases productivity by letting
them concentrate on the more challenging aspects of their project. DATABOSS will quickly generate
thousands of lines of complex, bug-free and easily modified source code that would take even
professional programmers months of work.

YOU CAN’T BEAT THE PRICE.

DATABOSS s a true 4GL, providing more power to the user than dBASE or similar products.

| Itis packaged specifically for ease of design and use. Which would you choose...

® dBASE (database management) + Genifer (code generator) + Clipper (compiler) + R&R (relational
| report writer) = $1,500 PLUS.

OR

DATABOSS + Turbo Pascal V4.0 or Turbo C = LESS THAN $500.

DATABOSS TOOLS

A function library to enhance the power of DATABOSS. An ideal two-in-one
Database Toolbox package for users of Turbo Pascal and Turbo C. An
integrated, intelligent, high level interface to DOS for managing

Files and Console input and output. Available as an
independent package for $99. An invaluable
adjunct to DATABOSS Application Generator

for the more sophisticated programmer.

¢

HE BOSS

- MENU GENERATOR:

® Jnlimited menu nesting

= Call internal DOS commands
and external .EXE .COM and
BAT files with parameters

® |nclude your own initialization
and exit routines

= Display date and time, copyright
notice and menu heading

= Nine security levels and
modifiable password file
with user

- SCREEN PAINTER:

= Free form full screen editor

® Draw lines and boxes —
full IBM extended character
set displayed choice

= Copy, move, insert, center
text etc.

= Color painting, foreground,
intensity and background
colors

'DATAFILE AND
'FIELD DEFINITION:

® Each field defined viaa
4GL template

® Jpto 16 related datafiles per
application module

® 16 index keys per datafile
unique or duplicate

= Upto 9 segments per index key

= Allows multiple use of fields in
key segments

® Automatic datafile linking

® Dynamic traceback of linked
datafiles

= Unlimited number of open files

® Character input control via
pictures

= Any field default value allowed

= [l field validation via
BOOLEAN check either
expression or function

® User defined error messages

= Compute and key expressions

= Aytomatically generated
re-indexing module

= Automatically generated datafile
reconfiguration module

THE MOST POWERFUL
RELATIONAL REPORT
GENERATOR EVER

= Design any type of report
® Automatic structure definition
for relational reports

= A report element can be a field,

text, function

= Unlimited number of totals and
subtotals

® Send report elements to CON,
LST, RS232, DSK individually
or simultaneously

= Paint and build report range
selection screens to select
specific data

® Print multiple records across
apage

-IMPEX QUERY BY
EXAMPLE MODULE

® |mport external ASClI files into
your DATABOSS database
definttions

® Query datafiles using point
and select cursor movements

= Select fields to be output
and specify order

® |mpose conditions for data

= Select existing index or create
onthefly
= Qutput to screen, disk or printer

PROGRAMMERS CAN
CUSTOMIZE AND MAKE
APPLICATIONS

MORE POWERFUL

= Write your own functions,
initialization and exit routines
and include them in the
function table

® Customize a skeleton file and
use this file at generation time

GENERATE AND
COMPILE USING
TURBO PASCAL
V4.0 OR TURBO C

= Generate 1000 lines of code
in 10 seconds

= Compile to produce fast
executable object code

= No runtime licence fees

= We provide you with end user
screen and printer installation
modules to include in your menus

= Provide the IMPEX query and

LRI
o2 50 SV oS!
«oﬁ?&‘“

SYSTEMS

Rush coupon below to:

TOP GUN SYSTEMS

SUITE 199

700 LARKSPUR LANDING CIRCLE
LARKSPUR, CALIFORNIA 94939
PHONE: (415) 461-4040

OR FOR ORDERS PHONE:

: import program to your end

selection USErs on your menu (800) 323 7767
] Yes! I've seen enough! TP
You CAN'T BEAT THE BOSS! e
Please send me DATABOSS Company:
APPLICATION GENERATOR
at $399 [J For Turbo Pascal Street Address:
V4.0, or L] For Turbo C. City: State: Zip
[] Yes! I've seen enough! — o
You CAN'T BEAT THE BOSS! 0 Check Charge] — vorercos | — [
Please send me DATABOSS enclosed. tomy _——— e
TOOLS at $99. Account No. Account Name

(] Yes! | want to know more
about revolutionary, new
DATABOSS! Please send me your
CAN'T BEAT THE BOSS booklet.

Expiry Date:

Signature:

Trademarks: dBase by Ashton-Tate. Clipper by Nantucket Corporation. R&R by Concentric Data Systems Inc. DATABOSS by Top Gun Systems. Turbo Pascal by Borland International MC29

Turbo C by Borland International. Genifer by Bytel Corporation

LANGUAGE

Falling as they do in the
shadow of Integrated Debug-
ging, Turbo Pascal 5.0’s other
enhancements run the danger
of being overlooked. This
would be a mistake—5.0 would
be a major upgrade even with-
out its debugging power.

Perhaps most important—
overlays are back. Bruce Web-
ster covers the new unit-based
overlay system on page 38; it’s
much smarter and faster than
the scheme in Turbo Pascal 3.0,
especially if EMS memory is
present in your system.

EMS support has another
wrinkle: The editor buffer is
now placed in EMS memory if
EMS memory is detected at
runtime. This step frees up to
64K of DOS memory for the In-
tegrated Environment and for
your application.

Apart from overlays, units
have been enhanced by permit-
ting them to have private USES
statements in their IMPLE-
MENTATION sections, thus
allowing circular references
among units to be resolved
cleanly. The DOS unit contains
new routines for parsing and
reading the DOS environment,
for reading and changing the
state of the DOS verify flag,
and for reading and changing
the state of Ctrl-Break checking
in DOS. ParamStr(0) returns
the DOS Exec path.

Neil Rubenking explores an-
other 5.0 enhancement, proce-
dural types, in “A Directory
Search Engine in Turbo Pascal”
on page 27 of this issue.

Turbo Pascal 5.0 now aligns
data items in the data segment
and on the stack on machine
word boundaries. (The heap is
not affected.) This allows the
CPU to fetch data from mem-
ory as much as 20 percent fas-
ter than before. A new com-
piler directive, {$A+}, has been

THE EVOLUTION OF A SYSTEMS

provided to enable or disable
this feature, which may affect
assembly language routines
that make assumptions about
data offsets from BP in the sub-
program stack frame.

FLOATING POINT
EMULATION

4.0 supported several IEEE nu-
meric types: Single, Double, Ex-
tended, and Comp. However,
these types were supported only
on machines that contain an
87-family numeric coprocessor.
Turbo Pascal 5.0 now emulates
the math coprocessor when it’s
run on machines that don’t
have a math coprocessor, by us-
ing the same system described
by Roger Schlafly in “Floating
Point in Turbo C,” TURBO
TECHNIX, January/February,
1988. In brief, when an .EXE
file generated by Turbo Pascal
5.0 is run, the file tests for the
presence of an 87, and then
either uses the coprocessor di-
rectly (for the fastest possible
floating point support), or else
emulates the coprocessor at the
cost of some performance.

CONSTANT EXPRESSIONS

In all previous versions of
Turbo Pascal, a named constant
could be defined only by equat-
ing it to some literal value. De-
fining a constant in terms of
expressions that incorporate
arithmetic operators and pre-
viously defined constants is
standard procedure in many
languages, including assembler
and C. Turbo Pascal 5.0 now al-
lows constant expressions that
contain previously defined con-
stants, most arithmetical, logi-
cal, bitwise and set operators,
and a limited number of stan-

dard functions including Size-
Of, Length, Abs, Chr, Ord,
Succ, Pred, Length, Hi, Lo, and
Swap.

The most important use of
constant expressions is to
create a “ripple down” effect
that changes the values of
many constants, based upon a
single constant defined earlier
in the program. A good exam-
ple involves the many “magic
numbers” sent out to UART
control registers in telecom-
munications applications.
These numbers differ depend-
ing upon which serial port is to
be used. A set of constant ex-
pressions based upon a port
number allows the source code
to be altered for a new serial

port simply by changing a

single constant definition:

COMPORT = 1; {1=COM1: 2=COM2:)

COMBASE = $2F8;

PORTBASE = COMBASE OR
(COMPORT SHL 8);

THR = PORTBASE;

RBR = PORTBASE;

IER = PORTBASE + 1;

I1IR = PORTBASE + 2;

LCR = PORTBASE + 3;

Here, all you have to do to
change to serial port COM2 is
redefine the constant COM-
PORT to 2, and the change
propagates through the rest of
the constants automatically.

BGI ENHANCEMENTS

The Borland Graphics Inter-
face has been considerably en-
hanced for Turbo Pascal 5.0
with the addition of several
new drivers and many new pro-
cedures and predefined con-
stants. The IBM 8514 is now
supported in its 640 X 480 and
1024 X 768 modes, and the
VGA driver suite includes sup-
port for the 320 X 200 X 256
color mode. The 8514 is fully
supported by all BGI features
(except that FloodFill does not
work on 8514 graphics). Also,

a new routine, SetRGBPalette,

20 TURBO TECHNIX September/October 1988

File iew un reakpoints

odule: SEARCHE CPU 86286

cs . AA45»B000
cs:8047 50
cs.0048 SDBEGBFE
cs:084C 16
cs:884D 57
cs.AA4E BOBFFAA
cs.80851 50

cs 08057 S8DBEMAFE
cs.0658 16
cs.885C 57

Va pg
SEARCHER . SEARCHC - 8592A 18822 | §
DOS.FINDFIRST
DOS . FINDNEXT

————

performs palette management
for all 256-color modes on the
8514 and the VGA; the earlier
BGI palette routines don’t work
in 256-color mode. Another
procedure, SetRGBColor, per-
forms color management for
256-color modes.

A Sector procedure has been
added to draw elliptical or cir-
cular segments that may be
filled using the scan converter.
A separate new routine, Fill-
Ellipse, draws full ellipses that
are automatically filled with the
current fill color and fill style.

New mechanisms enable the
registration of BGI fonts and
drivers provided by non-
Borland sources. InstallUser-
Driver installs a third-party
graphics driver into the BGI
driver table. InstallUserFont
performs the same function for
third-party fonts. Other new
BGI procedures and functions
include GetMaxMode, which
returns the maximum mode
number for the loaded driver;
GetModeName, which returns
the name of a mode given its
number; SetAspectRatio, which
allows fine-tuning of X/Y ratios
to correct for misaligned dis-

SEARCHER.42: GetDir(B,Directory);

cs 8852 9A216A4859
SEARCHER.44: IF Directory <> '\’ THEN

5909:06088 1D FA Fa 81 CD 36 DF A1 +=-E=6%
59@9:8818 CD 36 B4 6@ 86 3F 3E 21 =6e a7)!

@5948:883E§D01T 59196660 [SPRCER.TQLL

F2-Bkpt F3-Close F4-Here F5-Zoom FG-Next F7-Trace F3-8tep F'9-Run -Menu

indou ptions

nov al,he

push ax

lea di, [bp-82001
push ss

push di

nov ax,88FF

push ax

call 5948:8A21

Sum- T O WNO

lea di, [bp-02601
push ss
push di

3BC6 474E
:3BC4 414D
:3BCZ 5C3A
:3BCAr430E

1]

1]

12
“w u uw

“

play screens; SetWriteMode,
which specifies the binary op-
eration (XOR or MOV) used in
drawing straight lines; and Set-
UserCharSize, which allows the
width and height of stroked
fonts to be varied.

New predefined constants in-
clude CurrentDriver, for calls
that require a driver ID num-
ber.

TURBO DEBUGGER
SUPPORT

Turbo Pascal 5.0 fully supports
Turbo Debugger for standalone
symbolic debugging. In con-
trast to 5.0’s Integrated De-
bugger, Turbo Debugger lets
you follow the effects of your
program through all levels of
the underlying system includ-
ing memory, stack, and ma-
chine registers. All of the fea-
tures described by Michael
Abrash in “Turbo Debugger:
The View From Within” (p. 52
of this issue) may be used with
Turbo Pascal 5.0 just as easily
as with Turbo C 2.0.

Figure 1 shows a Turbo De-

=
52
>
=

(. IS . S)

TN T R T T

Figure 1. Turbo Debugger as it
might appear while tracing a
Turbo Pascal 5.0 program. The
assembly language equivalents of
two Turbo Pascal statements are
shown in the CPU viewer window.

bugger screen as it might ap-
pear while single-stepping a
small program. The source
code file is displayed in a mod-
ule viewer window, while the
generated machine code for
each Turbo Pascal statement is
shown with associated assembly
language mnemonics in the
CPU viewer window. The state
of all machine registers and
flags is updated after each
statement is executed. A vari-
able viewer window contains all
variables visible in the current
scope; any of these variables
may be chosen for closer
examination.

ALL SYSTEMS GO

With every new release since
1983, Turbo Pascal has moved
more and more toward a true
systems-implementation lan-
guage. I now consider it to be
the functional equivalent of
C—no part of the PC system is
beyond its grasp. Turbo Pascal
still puts the much-maligned
safety railing between you and
the cliff edge, but if you really
want to walk over that cliff, it'll
gently help you past the rail-
ing—and then say ... g’'day. &
— Jeff Duntemann

September/October 1988 TURBO TECHNIX 21

File Edit Run ompile

Line 68 Col 1 Insert Inden
VAR -
$! SearchRec: [b
P : PathStr: ’ [Tﬁask
Ext @ ExtStr; ;
|
|
|

BEGIN

Mask := Mask + Ext;| ;
FindFirst(P + Mask,| |
IF DosError <> 8 TH|
BEGIN E
ErrorCode := DosError;
Exit;
END;
WHILE DosError
BEGIN
Proc(S, P);
FindNext(S);

8 Do

ptions Debug Ereak/watch

Edit | |
t | Evaluate Ctrl-F4 |

—— Bvaluate

e e s et s e e 11’ s o s = e
"C:\enginex.’ I

[t Y 98

AR -t AR

Watch

File Edit Run Compile

Edit
Insert Indent

VAR ErrorCode '@ Byte)

Line 69 Col 1

VAR
S ! SearchRec:
P : PathStr;

Ext : ExtStr;

Debug Break/watch

Jptions

Ctrl-F4
Ctrl-F3

Evaluate

Call stack

Find function

Integrated debugging On’
Call Stack -

| SEARCHENGINE(' C:\enginex.’,32,PTR(5784B,5

SEARCHENGINEALLC' C:\’ " enginex.*' ,32,PTR(

BEGIN

Mask := Mask + Ext:
FindFirst(P + Mask, Attr, S).
IF DosError <> 8 THEN
BEGIN
ErrorCode :
Exit;
END;
WHILE DosError
BEGIN
Proc(S, P);

DosError;

8 Do

Watch

-View call

TURBO PASCAL 5.0

One way to check is to bring up

continued from page 16

referenced from within Search-
Engine. A watch was set—but on
the wrong item. There’s a lesson
here: Keep things like scoping in
mind while you debug, especially
while you're learning the Inte-
grated Debugger, and doubly es-
pecially if you're just learning to
program.

At this level in the program, the
file spec is held in a variable
named Mask. A watch could be set
on Mask, but the horse could al-
ready be out of the barn.

the evaluation box and look at the
current value of Mask. Place the
cursor on Mask, press Ctrl-F4, and
Enter. The evaluation box appears
with Mask in the Evaluate field,
and the current contents of Mask
appear in the box’s Result field
(see Figure 3).

Aha! Look closely at the file
spec: “C:\ENGINE*.”. The second
asterisk is gone. As a result, DOS
thinks that this file spec requires
files that don’t have any file exten-
sion at all. Nothing in the direc-
tory matches this file spec.

Don’t get too excited just yet.
This is the bug’s spoor; the bug it-
self is still nowhere in sight. But

Figure 3. The evaluation box reveals
a corrupted file spec in variable
Mask. The final asterisk has somehow
disappeared.

Figure 4. Display of the call stack
shows that the file spec is corrupted
some time after it’s passed to
SearchEngineAll, but before it’s
passed to SearchEngine.

where to look now? Sadly, execu-
tion can’t be “backed up” a step at
a time the way it can move for-
ward. The wise thing to do here

is to reset the program to its initial
state by selecting the Run/Pro-
gram reset item, and then start
again. This time, set a watch on
the right item and begin to single-
step a little earlier.

Before we do so, however, let’s
use another feature of the Inte-
grated Debugger, and take a quick
look at the call stack. Select De-
bug/Call stack, or use its shortcut,
Ctrl-F3. A box appears that con-
tains a summary of the current
state of subprogram nesting, in-

continued on page 26

22 TURBO TECHNIX September/October 1988

Vers1on III

“Instant Replay™ is one of those
products with the potential to go from
unknown to indispensable in your
software library.” PC Magazine

“Incredible . . . We built our entire
Comdex Presentation with Instant
Replay.™” Panasonic

When active, IMW
that runs, memorizes, ¢
It has the unusual akb
pop-up windows, g
ment, music, and

“Instant Replay™

brings new flexibility to prototypes,
tutorials, & their eventual implemen-
tation.” Electronic Design

replays. -
Building a Deme iseasy. Jus' run “] highly recommend Instant Replay.™”
any program Insfanfkeplay andinsert a Computer Language

explanation -up windows, prompts, user
involvement, music and so on. Instant Replay ™
remembers everything; it builds a demo that

will re-run the actual program or a screens i i
only profotype version. " Make insertons NS SN

Instant Replay™ includes a Screen Maker
for building pop-up windows, prototype win- s Sreo’;%‘::fs Vapor Ware from m

dows, and menu windows. Other useful tools reotihae Ii'
mcl,l:de a Prototyper, Keystroke Editor, Music g Ig?:;gﬁ:fgs‘c”rl:g;;zlzf:rﬂf;ray ng

Maker, Menu Maker, Presentation Text Editor, hiows
Control Guide, and Insertion Guide. N 'F;'r:'f'zg%enrdrl’l;;'lsgudes i ¥

The screen editor Screen Genie " is de- Keystroke/time editor, inserter, and
signed to be memorized by Instant Replay. ™ merger f i

“You need Instant Replay™!”
Washington Post

8 Insert: prompts, pop
music, and user mvoln

Creating animations is easy and fun; just run g Replay chaining and linking
Screen Genie™ and memorize your activity. ® Modular demo making facilities
! InstanH'?eplay"' for IBM and True Compat- ® Fast forward and single step modes
ibles, requires DOS 2.0 or greater. Instant u Self Made Tutorial inclided
Replay ™ is not copy protected. There are no & Tived Kaibend M
royalties required for distribution of i A;ur:eroz a‘::lrpowzt;z; vl
Demos.
tions for Tutorials

Instant Replay™ at $149.95 is an exciting M e o
new product. Because of the quality of this u Tont File Presentcmen framn PrOgramm'ng
product, Nostradamus® provides a 60-day : g:"st;;"; w;";dows Supports Turbo Pascal 4.0
satisfaction money back guarantee. Call or i el ; HardR ™
write, we accept VISA, AmEx, C.O.D., Check ™ Foreground or Background Music a unner
or P.O. with orders. Demo diskettes and free = Canned special sound ef_lec's and more
product brochure available. ® Unlimited replay branching g i
Nostradamus, Inc. 3191 S. Valley Street, ® Compressed screens '
(ste. 252) Salt Lake City, Utah 84109 ® Object oriented programming
voice (801) 487-9662 ® Tracking editor
Data/BBS 801-487-9715 1200/2400,n,8,1 ® Plus much more . . .

LISTING

NGINEB.PAS

UNIT Engine;

(
(**) INTERFACE (%)
(bl

USES DOS;
TYPE ProcType = PROCEDURE (VAR S : SearchRec; P : PathStr);

PROCEDURE SearchEngine(Mask : PathStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);

FUNCTION GoodDirectory(S : SearchRec) : Boolean;
PROCEDURE ShrinkPath(VAR path : PathStr);
PROCEDURE ErrorMessage(ErrCode : Byte);
PROCEDURE SearchEngineAll(path : PathStr;

Mask : NameStr;

Attr : Byte;

Proc : ProcType;

VAR ErrorCode : Byte);

()
(**) IMPLEMENTATION (**)

[Gdadaiebbebobbddeddd bt dd il D)

VAR
EngineMask : NameStr;
EngineAttr : Byte;
EngineProc : ProcType;
EngineCode : Byte;

PROCEDURE SearchEngine(Mask : PathStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);
VAR
S : SearchRec;
P : PathStr;
Ext : ExtStr;

{procedure FSplit(Path: PathStr; var Dir: DirStr;
var Name: NameStr; var Ext: ExtStr);)

BEGIN
FSplit(Mask, P, Mask, Ext);
Mask := Mask + Ext;
FindFirst(P + Mask, Attr, S);
IF DosError <> O THEN
BEGIN
ErrorCode := DosError;
EXit;
END;
WHILE DosError = 0 DO
BEGIN
Proc(S, P);
FindNext(S);
END;
IF DosError = 18 THEN ErrorCode := 0
ELSE ErrorCode := DosError;
END;

{$V-)

()
(* SEARCH ENGINE =)
(& Input Parameters: %)
% Mask : The file specification to search for i)
(* May contain wildcards L)
(* Attr : File attribute to search for a2
* Proc : Procedure to process each found file k]
Gt %)
(45 Ouput Parameters:)
(& ErrorCode : Contains the final error code.)
(64 *3
()

FUNCTION GoodDirectory(S : SearchRec) : Boolean;

BEGIN
GoodDirectory := (S.name <> ',') AND
(S.name <> '..') AND
(S.Attr AND Directory = Directory);
END;

PROCEDURE ShrinkPath(VAR path : PathStr);
VAR P : Byte;
Dummy : NameStr;
BEGIN
FSplit(path, path, Dummy, Dummy);
Dec(path(01);
END;

{$F+) PROCEDURE SearchOneDir(VAR S : SearchRec; P : PathStr); ($F-)
{Recursive procedure to search one directory)
BEGIN
IF GoodDirectory(S) THEN
BEGIN
P := P + S.name;
SearchEngine(P + '\' + EngineMask, EngineAttr,
EngineProc, EngineCode);
SearchEngine(P + '*.*' Directory OR Archive,
SearchOneDir, EngineCode);
END;
END;

PROCEDURE SearchEngineAll(path : PathStr;
Mask : NameStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);
BEGIN
(*Set up Unit global variables for use in
recursive directory search procedure*)
EngineMask := Mask;
EngineProc Proc;
EngineAttr := Attr;
SearchEngine(path + Mask, Attr, Proc, ErrorCode);
SearchEngine
(path + '*.*! Directory OR Attr, SearchOneDir, ErrorCode);
ErrorCode := EngineCode;
END;

PROCEDURE ErrorMessage(ErrCode : Byte);
BEGIN

CASE ErrCode OF

g s {OK -- no error)

: WriteLn('File not found');
: WriteLn('Path not found');
: WriteLn('Access denied');
: WriteLn('Invalid handle');
: WriteLn('Not enough memory');
10 : WriteLn('Invalid environment');
11 : WriteLn('Invalid format');

OoUnwWN

18 : ; (0K -- merely "no more files")
ELSE WriteLn('ERROR #', ErrCode);
END;
END;
END.

24 TURBO TECHNIX September/October 1988

ForA
Code

If you think writing program code
is a dirty business, we have something
to help you clean up your act.

It’s called Matrix Layout. Layout
lets you create programs that do
exactly what you want, quickly and
easily —without writing a single line
of code. Layout does it for you auto-
matically, in your choice of Turbo
Pascal, Turbo C, Microsoft C, Quick-
Basic or Lattice C. And if you're not
a programmer, you can even create
programs that are ready-to-run.

As the first true CASE (Com-
puter Aided Software Engineering)
development tool for the PC, Layout
lets you write your programs simply
by drawing an icon-based flow chart.
They’ll have windows, icons, menus,
buttons, dialog boxes, and beautiful
graphics and text. Like the Macintosh
and the OS/2 Presentation Manager.

And because Layout is so effi-
cient, everything you create will
work incredibly fast, even on stan-
dard PC’s with 256K and only one
disk drive. To top it off, all your pro-
grams will feature Layout’s auto-
matic mouse support, sophisticated
Hypertext functions, and decision
handling.

The full Layout package also

i Mamx Software T@chnology Corporati(m)n + One Massachussetts Technolqu Center » Harborside Drive « Boston, MA 02128 * (617) 567-0037

Matrix Software/UK e Plymouth, England » 796-363 » Matrix Software/Bel;

yone Who Considers

Four Letter Word.

comes with three additional programs:

Matrix Paint is a professional
paint program that comes with a full
palette of high-powered graphics
tools, plus scanner support. And any
picture or symbol that you draw or

1. Draw a flow-chart.
2. Matrix Layout creates
the program code.
3. Your program is complete.

-

© habeiny

EAY LIl I

.G Tl

The following are regi d and g

ed trademarks of the cc

ksebaan 476 + 3030 Leuven « 016202064
ies listed: Matrix Layout, Matrix Paint. Matrix Helpmaker. Matrix Desktop.
Matrix Software Technology Corporation: Macintosh, Apple Computer, Inc.; OS/2 Presentation Manager. International Business Machines Corporation.

scan into Paint can be included in
your program.

Matrix Helpmaker allows you
to include an electronic manual in all
your programs. Context-sensitive help
windows, a table of contents, index-
ing, and the convenience of Hypertext
functionality can now become a part
of everything you create.

Finally, Matrix Desktop gives

you the ability to organize your files
and disks in a very Macintosh-like
easy to see, easy to use way.

What's the cost? At just $149.95

for the entire package, Layout speaks
in a language you'll love to hear.
Especially with our free customer
support, no copy protection, and a
30-day, money-back guarantee.
Video Tape Offer

Our new demonstration video-
tape graphically illustrates how the
many features of Matrix Layout will
make a difference in your life. Call
1-800-533-5644 and order your VHS
copy now (just $9.95 for shipping
and handling, credited against your
purchase). In Massachussetts, call
(617) 567-0037.

Do it today. Because once you
see what Layout can do for you, we
think you’ll swear by it.

"

TURBO PASCAL 5.0
continued from page 22

cluding the actual parameters
passed to each currently active
subprogram. Examine Figure 4.

The call stack display shows
that the program started at Where,
called SearchEngineAll, and then
called SearchEngine. But look
closely at the actual parameters:
The file spec was passed correctly
to SearchEngineAll, but was al-
ready corrupted by the time it was
passed to SearchEngine.

We assumed too much when we
first descended into Search-
EngineAll. Something in that very
short and uncomplicated proce-
dure corrupted the spec. Reset the
program, reload WHERE.PAS us-
ing the pick list, and start the pro-
gram running again. The break-
points are still there, and
execution pauses at the call to
SearchEngineAll. Trace into
SearchEngineAll with a single
press of F7, and take a more care-
ful look around.

What does the program do to
Mask between the call to Search-
EngineAll and the call to Search-

Engine? Nothing! The same pa-
rameter, Mask, is passed through
untouched. The call stack showed
that the spec was passed intact
down into SearchEngineAll. Look
at Mask again by bringing up the
evaluation box once more.

ELEMENTARY, MY DEAR
PASCAL
Surprise! Mask is corrupted al-
ready, to “ENGINE*.”. If we had
looked at Mask immediately upon
entering SearchEngineAll, we
could have avoided the trip on-
ward into SearchEngine. However,
we’d still be confronted by a mys-
tery: The string “ENGINE*.*” is
passed to SearchEngineAll, and
the string “ENGINE*.” comes out
the other side. That’s a subtle
point, but it should suggest some-
thing to you. Let’s look at the
types of the formal and actual pa-
rameters here.

The actual parameter, template,
is type STRING, which is 255
characters long. However, the for-
mal parameter to which template
is passed is type NameStr, which
is a type defined within the DOS
unit. If you look in the documen-

VISITECH
SOFTWARE

Printed graphics in ultra-high resolution using
Turbo Pascal 4.0?7 Introducing . . .

GrapPHL INK™

The powerful printer software that gives you the same
control over your printer that Turbo's BGI graphics gives
you over your screen - in ultra-high resolution!

GrapHLINK commands work exactly like Turbo Pascal’s BGl commands
wherever possible, so you can quickly add printed graphics to
your programs. No need to learn a whole new syntax - you
alreadv know the commands!

GrapHLINK emulates every applicable BGI procedure and function, including
viewport and image-transfer routines.

GrapHLINK dynamically compresses images in conventional memory, so you
can store an 8” x 10”7, 150 dpi image in as little as 150 kB.
Optionally uses expanded memory!

GrapHLINK supports printers to their highest resolution:
® HP LaserdJet Il to 300 dpi ® Epson LQ series to 180 dpi
® NEC and Toshiba 24 pin printers to 360 dpi!

Only $69 + $5s/h (PA residents add 6% to total.)

Requires Turbo Pascal 4.0. Minimum 512 kB of memory recommended
Satisfaction guaranteed or your money back within 30 davs

D5 3807 Ridgewood Court
Pittsburgh, PA 15239
412/733-4775

tation for the DOS unit, you'll find
that NameStr is defined as
STRING(8], and therefore is only
eight characters long.

The string “ENGINE*.*” is nine
characters long. Mask literally isn’t
long enough to hold this string.
Since strict type-checking for
strings is disabled through the
{$V-} compiler directive at the
start of Where, the final asterisk
is truncated off into oblivion with
no one the wiser.

The bug is that Mask is de-
clared to be an inappropriate type.
The solution is fairly simple: De-
clare a new type in the Engine
unit that is large enough to hold
any file spec that doesn’t also in-
clude a path:

TYPE

Ful INameStr = STRING[12];

Next, redeclare all parameters or
variables that must contain a file
spec as type FullNameStr. Now re-
compile and test it out.

It works. The bug is dead. Long
live Turbo Pascal 5.0!

SIGHT, FORESIGHT, AND
HINDSIGHT

Hindsight is always perfect, and
also perfectly useless. Sure, this
was an easy bug to spot—but only
because we had the power to lift the
hood and take a look. Logical de-
duction almost never works on
bugs like this, because we rarely
remember to think of the match-
ing of formal and actual param-
eters as a real program action and
not simply a formality. Sooner or
later you'd spot it, but you'd prob-
ably waste half an hour in the
process. I've wasted far more time
on far wimpier bugs, simply be-
cause my mind gets locked into a
set of assumptions that logic alone
just won’t crack.

Debugging is a skill that takes
some practice to develop. It re-
quires that you study your chosen
language and your machine. It re-
quires that you keep an eye on
your assumptions, especially the
deadly one that insists that “noth-
ing really happens between here
and there.” Remember that Turbo
Pascal 5.0 still requires that you
learn how to look—but now, at
least, it lets you see. W

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGA, as PASBUG.ARC.

26 TURBO TECHNIX September/October 1988

A DIRECTORY SEARCH ENGINE
IN TURBO PASCAL

Turbo Pascal 5.0 allows you to build completely
generalized routines by supporting the passing of procedures —

and hence program actions—as parameters.

Neil Rubenking

Whatever high-level language you use,
eventually some of your programs will
need the ability to search a disk directory.
The machinery to do so is built into DOS,
and Turbo Pascal 5.0’s DOS unit provides
YA FindFirst and FindNext directory search
procedures that use DOS’s directory search func-
tions. To support FindFirst and FindNext, the DOS
unit provides the SearchRec data type that models
the DOS disk transfer area (DTA) as a Pascal record.
Unit DOS also contains built-in constants for each of
the DOS file attributes. These elements can be com-
bined into a completely generalized file search “en-
gine,” placed into a unit, and then used for any pur-
pose by any program that needs to search a directory
or a directory tree.

Engine (Listing 1) is the unit that contains the
generalized file search engine. Engine contains two
major procedures, SearchEngine and SearchEngine-
All. SearchEngine searches a single directory for
a file that matches a file specification and a file at-
tribute byte. SearchEngineAll traverses an entire di-
rectory tree or subtree during its search. Since the
compiler and the DOS unit handle so much of the
file search activity, the search engine unit can be
quite compact. (For information about the theory
behind DOS directory searching, see “A Directory
Search Engine in Turbo C” on p. 75 of this issue. In
this article, I cover the practical implementation of
DOS directory searches in Turbo Pascal 5.0.)

WIZARD

PROCEDURES AS PARAMETERS?

Procedure SearchEngine takes four parameters. This
procedure needs to know which file specification to
seek, which attribute to match, and which procedure
to call on every found file. SearchEngine then re-
turns the final DOS error code returned by the DOS
Find First and Find Next functions.

If you're alert, you're probably wondering how the
SearchEngine procedure could have a procedure as a
parameter. Procedural types (and function types) are
a new feature of Turbo Pascal 5.0. Conceptually, pro-
cedural types allow you to think of program state-

ments as just another kind of data. You can pass pro-
gram actions to a procedure just as easily as you can
pass an integer or a string to a procedure. This
makes the creation of certain kinds of general-
purpose routines possible. These general-purpose
routines are called “engines” because they provide
some central service to a wide variety of different ap-
plications, in the same fashion that a lawnmower en-
gine can be taken from a lawnmower and used with-
out modification to power a go-kart.

A procedure type declaration looks very much like
a procedure header minus the procedure’s name.
For example:

TYPE

P = Procedure(X : Integer; Ch : Char);

Procedural type P matches any procedure that has
parameters of the identical type and order of decla-
ration. The names of the procedure and its param-
eters aren’t important, but the types of the parameters
and their order must match exactly. This is best
shown by example. Figure 1 contains a number of
valid and invalid procedure declarations for proce-
dural type P. Study them closely.

A variable of some procedural type can be de-
clared and assigned to a matching procedure, or a
procedure name can be passed as an actual param-
eter to another procedure. In either case, the proce-
dure must follow the far calling convention. Force proce-
dures to far calling conventions by bracketing their
procedure headers between {$F+} and {$F-} com-
piler directives. Don’t forget that step, or your pro-
gram will crash every time.

Procedures that may act as procedural variables or
parameters have other restrictions. These proce-
dures must be declared at the global level; they may
not be INLINE or INTERRUPT procedures; and
they may not be standard procedures that reside in
SYSTEM.TPU. However, procedures in Turbo Pascal
standard units, such as DOS and Crt, may act as pro-
cedural variables and parameters.

continued on page 28

September/October 1988 TURBO TECHNIX 27

TURBO PASCAL

SEARCH ENGINE

continued from page 27

Declaration of procedural type P:

TYPE
P = Procedure(X : Integer; Ch : Char);

A valid procedure of type P:

PROCEDURE Manny(I : Integer; MyChar : Char);
Invalid procedures for type P:

W is the wrong type:

PROCEDURE Moe(W : Word; Letter : Char);

X formal parm not VAR:

PROCEDURE Jack(VAR I : Integer; Ch : Char);
Wrong number of parms:

PROCEDURE Bob(MyGrade : Char);

Wrong order of parms:

PROCEDURE Ray(NewCh : Char; K : Integer);

Figure 1. Valid and invalid procedures for procedural type
P. Note that the names of the procedures and their param-
eters do not matter. The type and order of the declaration
of parameters, and whether a parameter is passed by refer-
ence (VAR) or by value, are the only things that matter.

SearchEngine takes the parameter Proc, of type
ProcType. Each of the example programs contains
one or more procedures of this type. Within Search-
Engine, a call to formal parameter Proc has exactly
the same effect as a call to the procedure passed in
Proc as the actual parameter.

THE ENGINE

ENGINE.PAS (Listing 1) contains the directory
search unit. SearchEngine uses DOS unit procedures
FindFirst and FindNext to find all matching files.
Each time SearchEngine finds a matching file, it calls
the user-specified procedure passed in procedural
parameter Proc. Simple! SearchEngine also returns
the final DOS error code. However, if SearchEngine
finds at least one file during a search, it doesn’t con-
sider not finding additional files to be an error.

Procedure SearchEngineAll searches the given
path and all of its subdirectories for files that match
the file specification. Passing a path that specifies a
volume’s root directory, such as “C:\,” to SearchEn-
gineAll tells the procedure to search the entire vo-
lume. SearchEngineAll uses the file specification, at-
tribute, and user-specified procedure to call Search-
Engine in order to find and process all matching
files in a given directory. SearchEngineAll then calls
SearchEngine a second time. This time, however,
SearchEngineAll searches for subdirectories by spec-
ifying the directory attribute bit for the search.
SearchEngineAll then uses procedure SearchOneDir,
which is passed as a procedural parameter of type
Proc, to process the subdirectories that have been
found.

Like SearchEngineAll, SearchOneDir makes two
calls to the regular SearchEngine—one call matches
files, and the other call searches for more directo-
ries. Hence, SearchOneDir and SearchEngine form
a recursive loop. At each level of nesting, SearchOne-
Dir uses SearchEngine to look for any subdirectories.
If SearchEngine finds any subdirectories, it calls
SearchOneDir again. This process continues until all

of the subdirectories located beneath the initial path
passed to SearchEngineAll have been processed.
(For a discussion of recursion, see “Recursing with-
out Cursing,” TURBO TECHNIX, July/August, 1988.)

Other handy routines for directory searches are
included in ENGINE.PAS. Function GoodDirectory
returns True only if its SearchRec parameter refers
to a file that has the directory attribute and is neither
the current directory nor the parent directory (i.e.,
neither “.” nor “..”). ShrinkPath removes the last sub-
directory from a path, using Turbo Pascal 5.0’s new
FSplit procedure. Procedure ErrorMessage then
prints a message that’s appropriate to the DOS error
code passed to this procedure. These other routines
are used in the example programs.

INSTANT DISK UTILITIES

The various routines in Engine let you write useful
DOS disk utilities with very little additional code. Dir-
Sum (Listing 2) shows just how tiny a program that
uses the Engine unit can be. Small enough to fit on
one 25-line screen, DirSum manages both to display
the names of all of the files in the current directory
and to tally their sizes into one total size value. How
can DirSum be so small? Because all of the work
happens elsewhere. DirSum passes procedure Write-
It to SearchEngine, which causes the engine to write
the name of every file that it finds. When DirSum
has displayed the names of all of the files in the cur-
rent directory, it then displays the total number of
bytes of disk space that these files occupy. That’s aw-
fully easy, though. Let’s give the search engine more
of a challenge.

WHERE.PAS (Listing 3) contains Where, a pro-
gram to find files that match a file specification lo-
cated anywhere on your disk. With SearchEngineAll,
a task like this is almost ridiculously simple. Simply
pass the path, file template, and file attribute to
SearchEngineAll, along with the procedure for pro-
cessing each found file. In this case, procedure
ShowFile displays the full pathname of each found
file and—as a bonus—updates a tally (as does Dir-
Sum) of how much disk space the found files occupy.
ShowFile uses standard output for its screen displays
(note that the Crt unit is not named in the USES
statement). A handy disk file of found files can be
created by redirecting Where’s output to a file. For
example, the invocation WHERE *.* > AL-
LFILES.DIR creates a file named ALLFILES.DIR
that lists the name of every file located anywhere on
the current volume.

DELBAK.PAS (Listing 4) contains program Del-
Bak. DelBak performs a useful housecleaning task—
it deletes all .BAK files on the current volume. If you
haven’t purged your .BAK file collection in a while,
you may find that these files occupy tens or even
hundreds of thousands of bytes of hard disk space.

DelBak is similar in structure to Where. Again,
SearchEngineAll does all of the work. The file spec-
ification is fixed as “*.BAK.” The action procedure
passed to SearchEngineAll is DelFile, which simply
deletes the found file and notes how many bytes
were saved.

story continues on page 36
listing begins on page 34

28 TURBO TECHNIX September/October 1988

The

revolution
continues...

PR o e R R Y B
... withour new

What started
modestly
enough in
November of
1983 with the
launch of our
first program,
Turbo Pascal®, became a revo-
lution and it has been going like
a rocket ever since.

We've changed the way you
program. We invented inte-
grated environments with Turbo
Pascal and we brought that to
all our languages —to make you
instantly at ease with our lan-
guages. (No one else has even
tried to do that for you.) Read
these pages. You'll see that the
revolution continues.

New! Turbo
Assembler/Debugger

It's Assembler magic and a
revolution in source-level
Debugging.

TR0 TURBO

New Turbo Debugger
debugs all sizes

Nothing is too big or too
small, too simple or too compli-
cated. Nothing. With EMS
support, remote debugging, and
386 virtual machine debugging,
there’s no limit to the size of
program you can debug. In fact
with 386 virtual machine mode,
debugging takes zero, zip, nil,
no bytes of conventional mem-
ory.

See what's happening

Multiple overlapping windows
let you look at code and data
and work at any level—down to
CPU or up to source level. You
can see it all with multiple views
of the program you’re debug-
ging: source code, variables,
CPU registers, call stack,
watches, breakpoints, memory
dump, and more. And a new
“session-logging” feature tracks
and records your every move.

MBLER/ ASSEMBLER/
R DEBUGGER

We've brought “what
if” to Debugging!

Our breakpoints give you
more control than anyone
else’s. Ordinary debuggers only
get you to a stop, then they
stop. With ours you control
When they happen and What
happens next. When our break-
points are triggered you can
simply stop, or you can print
expressions, run code, send
messages to the session log, or
even evaluate an expression
with user-defined function calls.
You can control when these
breakpoints occur because all
our breakpoints are conditional.
In plain and simple terms we've
brought “what if” to debugging.

Unique Data
Debugging features

Plain Vanilla debuggers can
only give you code debugging.
Our new Turbo Debugger gives
you data debugging too. Now
it's easy to find the data you
want. You can browse through
your data from the simplest
byte to the hairiest data struc-
ture, inspect arrays, and walk
through linked lists. All by point
and shoot. And once you've
found the data you want, you
can get all the information you
want about it, and you can
change it.

Feature highlights

Multiple overlapping views
0 Source

Watches

O Variables

0O Breakpoints
O Call Stack
o

m]

o

CPU
Registers
1 Numeric Processor

O

Debugger, Assembler, &...

View un reakpoints
reakpoints
tack

oy

unp
egisters
umeric processor

ser screen Alt
nother

—Abort

Shown here is Turbo Debugger in action.
0 Memory Dumps

0O Session Log

O Files

0O User Screen

Breakpoints

0O Can perform these actions:
Stop, Print Expression, Run
Code, Log Expression

0 Can break on arbitrary condi-
tion, memory changed, pass
count; attach to specific line
of code, or apply continuously

O Includes breakpoints,
tracepoints, watchpoints, and
conditional breakpoints

Debug Any Program

O Turbo Pascal, Turbo C, and
Turbo Assembler

0O EMS support

0 386 virtual machine debugging

O Remote machine debugging

0 Supports CodeView®compati-
ble executables

Data Debugger

0 Follow pointers through linked
lists

O Browse through arrays and
data structures

O Variables view lets you see all
defined data

0O Displays type and value infor-
mation

Data

Jindow

Jjptions

0 Change data values

Minimum system requirements: For the IBM
PS/2 and the IBM family of personal com-
puters and all 100% compatibles. PC DOS
(MS DOS) 2.0 or later. 384K minimum.

New Turbo
Assembler® lets you
write the tightest,
fastest code

Turbo Assembler is faster
than other assemblers: not just
by a little, but by factors. You
can use it on your existing
code; it's fully MASM compati-
ble, 4.0, 5.0, and 5.1.

You choose the level of com-
patibility —even MASM can’t do
that. Turbo Assembler takes you
beyond MASM, with significant
new Assembly language exten-
sions, more complete error
checking, and full 386 support.
Turbo Assembler is designed for
easy interfacing with high-level
languages like Turbo Pascal and
Turbo C. (We use Turbo Assem-
bler on Quattro®, our best-
selling spreadsheet program;
now you can write your own
best-seller with Turbo Assem-
bler!)

Turbo Assembler and Turbo
Debugger are two of our secret

1) MENU SYSTEM: Global and local menus
let you easily control and configure your
programming environment.

2) VIEWS MENU: Multiple overlapping win-
dows; 12 different views of the debugging
session

3) BREAKPOINT MENU: Powerful breakpoint
capabilities; you can set local or global
breakpoints. Device driver for 80386 and
hardware assist breakpoints.

4) DATA MENU: Versatile data inspection fea-
tures; walk through linked lists using point &
shoot.

5) MODULE VIEW: One or more module
views show the multiple files that can make
up a program.

6) WATCH WINDOW: Watch variables and
expressions changes as you step through
your code.

7) LOG VIEW: Session log lets you keep
track of your debug operations, contents of
windows, and comments to annotate impor-
tant points.

weapons, now they can be
yours.

Feature highlights

O Factors faster than other
assemblers

o Full MASM (4.0, 5.0, and 5.1)
compatibility

O Significant new assembly lan-
guage extensions

0O Easy interfacing with high-
level languages including
Turbo C and Turbo Pascal

Turbo Assembler/Debugger:
only $149.95

For the IBM PS/2 and the IBM family of per-
sonal computers and all 100% compatibles.
PC DOS (MS DOS) 2.0 or later. 256K mini-
mum.

*Customer satisfaction is our main concern;
if within 60 days of purchase this product
does not perform in accordance with our
claims, call our customer service department
and we will arrange a refund.

t Run on an IBM PS/2 Model 60.

Prices and specifications subject to change
without notice.

All Borland products are trademarks or reg-
istered trademarks of Borland International.
Other brand and product names are trade-
marks or registered trademarks of their
respective holders. Copyright (c) 1988
Borland International, Inc. Bl 1279

...newTurboC2.0

New! Turbo C® 2.0
With integrated
source-level debugger

Borland’s revolutionary new
Turbo C 2.0 is the one C com-
piler that does it all; nothing is
half done or not done at
all—instead, your every pro-
gramming need is met. (We
wrote our best-selling word
processor Sprint with Turbo C
2.0; when you write with Turbo
C 2.0, the word is “revolution-
ary.”

At better than 16,000 lines a
minutet, Turbo C 2.0 compiles
your code 20-30% faster than its
predecessor Turbo C 1.5 which
was already faster than any other
C compiler.

Make bugs bug off

Nice bugs are dead bugs, and
Turbo C 2.0's integrated source-
level debugger lets you find
them and flatten them in a flash.
You can set multiple breakpoints,
watch variables and evaluate
expressions —all from inside
your integrated C environment.

Turbo C 2.0 has the
best of everything

O Includes the compiler, editor,
and debugger, all rolled into
one

O Integrated source-level
debugger lets you step code,
watch variables, and set break-
points

0 Develop and debug produc-
tion-quality code in all six
memory models

O Support for Turbo Assembler
and Turbo Debugger

0 Make facility with automatic
dependency checking

O Graphics library with over 70
graphics functions including
multi-font graphics text

onpi le

ress any key to con

getviewsettings(&vp)

width Cup.right up. left) 15

height Add Watch
width »* height

for(1=8 . <15 : i

Do)4
setfillstyle(SOLID _FILL, color++

bar(» x+twidth, ytheight)

color (MaxCo lors:
* Enc
\

Fi-Help —-Abort

Project ptions ebuy

we, ESC to| Delete watch

Break/watch

Add watch Ctrl-F7 |

dit watch
emove all watches

Debugging in the Turbo environment: shown here an expression is being added to
the Watch window in Turbo C. The Execution Bar highlights the next line the

debugger will execute.

O Faster than ever; compiles and
links 20-30% faster than Turbo
C1.5

0 EMS support

O Numerous levels of error
checking with built-in Lint

Turbo C 2.0: only $149.95

Minimum system requirements: For the IBM

PS/2* and IBM family of personal computers
and all 100% compatibles. PC-DOS (MS-DOS)

2.0 or later. 448K minimum (320K for the com-

mand-line version).

Turbo C2.0

Professional

Turbo C 2.0 plus both Turbo
Assembler & Turbo Debugger: all
three programs rolled into
one —the one C package that has
everything. A complete set of
tools that caters to every level of
programming expertise.

Turbo C Professional: $250

New! Turbo Pascal®
5.0 with integrated
source-level debugger

Turbo Pascal, the worldwide
favorite with over a million cop-
ies out there, just got even
smarter. The best got better.
Meet Version 5.0. In a word, it's
revolutionary.

Not only do you go code-rac-
ing at more than 27,000 lines a
minutet, you also now go into a
sophisticated debugging envi-
ronment—right at source-level.
It's completely integrated and
bullet-fast.

Turbo Pascal’s new integrated
debugger takes you inside your
code for fast fixes. You step,

rtian, goriAN?

i

...new Turbo Pascal 5.0!

ile dit ompile

Line 189
MoveMessage
ReadCon(’Move: |

until Length(Conman |

I ommand) ;

| | queen

ReadMove
CheckMove !

—Abort

ptions Debug
Edit

! Board[8].Piece

! ReadOption(Control);
CheckOption(Control):
Watch

reak/watch

Evaluate Ctrl-F4

Shown here is the Evaluate/Modify window of Turbo Pascal: look at expressions,
examine structured data types, change variables on the fly.

trace, set multiple breakpoints.
You modify variables —as you
debug—and watch full expres-
sions at run time.

Orbit with Units

Break your code into Units.
Compiled units make everything
go faster! Your separately com-
piled Units can be shared by
multiple programs and linked in a
flash with Turbo Pascal'’s built-in
Make utility and smart Linker. (We
give you a powerful library of
standard Units including the spec-
tacular Borland Graphic Interface
and our state-of-the-art overlay
manager.)

[
o

0 Ot ey
s stmn

Debugging: The inside
story

Turbo Pascal’s new integrated
source-level debugger takes you
inside your code to fix errors fast.
(Don't worry about errors, every-
one makes them; but with the
right debugger, this one, it's a fast
fix.)

Feature highlights

O Includes the compiler, editor,
and debugger, all rolled into

one

O Integrated source-level
debugger lets you step code,
watch variables, and set break-
points

0O Support for Turbo Assembler &
Turbo Debugger

0 Overlays, including EMS sup-
port

O IEEE standard floating point
emulation

0 Smaller, tighter programs:
Smart Linker strips both unused
code and data

O Procedural types, variables, and
parameters

0 EMS support for editor

Turbo Pascal 5.0: only $149.95

Minimum system requirements: For the IBM
PS/2* and IBM family of personal computers
and all 100% compatibles. PC-DOS (MS-DOS)
2.0 or later. 448K minimum (256K for the com-
mand-line version).

Turbo Pascal

Professional

Turbo Pascal 5.0 plus both
Turbo Assembler & Turbo
Debugger: all three programs
rolled into one —the one Pascal
package that has everything. A
complete set of tools that caters
to every level of programming
expertise.

Turbo Pascal Professional: $250

As you can see from all these
brand new programs, the revolu-
tion is alive and well. Borland
continues to bring you the best

For the dealer nearest you,
call (800) 543-7543.

BORLAND
B et e

LISTING 1: ENGINE.PAS

UNIT Engine;

{$V-)
(¢ *)
(* SEARCH ENGINE *3
* Input Parameters: *)
(* Mask : The file specification to search for Y
(& May contain wildcards *)
i Attr : File attribute to search for =)
= Proc : Procedure to process each found file &)
G »y
b Ouput Parameters: *)
& ErrorCode : Contains the final error code.)
¢ %)
(*khk)
Lo)
(**) INTERFACE (iad)
()

USES DOS;

TYPE
ProcType PROCEDURE (VAR S : SearchRec; P : PathStr);

FulINameStr = STRING[12];

PROCEDURE SearchEngine(Mask : PathStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);

FUNCTION GoodDirectory(S : SearchRec) : Boolean;
PROCEDURE ShrinkPath(VAR path : PathStr);

PROCEDURE ErrorMessage(ErrCode : Byte);
PROCEDURE SearchEngineAll(path : PathStr;
Mask : FullNameStr;
Attr : Byte;
Proc : ProcType;

VAR ErrorCode : Byte);

)

(
(**) IMPLEMENTATION (**)
)

(Frrwx

VAR
EngineMask : Ful INameStr;
EngineAttr : Byte;
EngineProc : ProcType;
EngineCode : Byte;

PROCEDURE SearchEngine(Mask : PathStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);
VAR
S : SearchRec;
P : PathStr;
Ext : ExtStr;

BEGIN
FSplit(Mask, P, Mask, Ext);
Mask := Mask + Ext;
FindFirst(P + Mask, Attr, S);
1F DosError <> O THEN
BEGIN
ErrorCode := DosError;
Exit;
END;

WHILE DosError = 0 DO
BEGIN
Proc(S, P);
FindNext(S);
END;
IF DosError = 18 THEN ErrorCode := 0
ELSE ErrorCode := DosError;
END;

FUNCTION GoodDirectory(S : SearchRec) : Boolean;
BEGIN

GoodDirectory := (S.name <> '.') AND

(S.name <> '..') AND

(S.Attr AND Directory = Directory);
END;

PROCEDURE ShrinkPath(VAR path : PathStr);
VAR P : Byte;
Dummy : NameStr;
BEGIN
FSplit(path, path, Dummy, Dummy);
Dec(path(0]);
END;

{$F+) PROCEDURE SearchOneDir(VAR S : SearchRec; P : PathStr); ($F-)
{Recursive procedure to search one directory)
BEGIN
1F GoodDirectory(S) THEN
BEGIN

P := P + S.name;
SearchEngine(P + '\' + EngineMask, EngineAttr,
EngineProc, EngineCode);
SearchEngine(P + '*.*' Directory OR Archive,
SearchOneDir, EngineCode);
END;
END;

PROCEDURE SearchEngineAll(path : PathStr;
Mask : Ful [NameStr;
Attr : Byte;
Proc : ProcType;
VAR ErrorCode : Byte);
BEGIN
(*Set up Unit global variables for use in
recursive directory search procedure*)
EngineMask := Mask;
EngineProc Proc;
EngineAttr := Attr;
SearchEngine(path + Mask, Attr, Proc, ErrorCode);
SearchEngine
(path + '*.*! Directory OR Attr, SearchOneDir, ErrorCode);
ErrorCode := EngineCode;
END;

PROCEDURE ErrorMessage(ErrCode : Byte);
BEGIN
CASE ErrCode OF
D= {OK -- no error)
Writeln('File not found');
WriteLn('Path not found');
WriteLn('Access denied');
WriteLn('Invalid handle');
WriteLn('Not enough memory');
0 : WriteLn('Invalid environment');
1 : Writeln('Invalid format');
18 = {OK -- merely "no more files")
ELSE WritelLn('ERROR #', ErrCode);
END;
END;

2
3
5
6
8
1
1

END.

LISTING 2: DIRSUM.PAS

($R-,S+,1+,D+,F- V- ,B- N- L+)
($M 2048,0,0)
PROGRAM DirSum;

()
(* Uses SearchEngine to write the names of all files *)
(* in the current directory and display the total disk *)
(* space that they occupy. *)
*hk)

LS
USES DOS,ENGINE;

VAR

Template : PathStr;
ErrorCode : Byte;
Total : Longint;

{($F+) PROCEDURE Writelt(VAR S : SearchRec; P : PathStr); ($F-)
BEGIN WriteLn(S.name); Total := Total + S.Size END;

BEGIN

Total := 0;

GetDir(0, Template);

IF Length(Template) = 3 THEN Dec(Template[0]);

{"Avoid ending up with "C:*.*"1}

Template := Template + '*.*!;

SearchEngine(Template, AnyFile, Writelt, ErrorCode);

IF ErrorCode <> 0 THEN ErrorMessage(ErrorCode) ELSE

Writeln('Total size of displayed files: ', Total : 8);

END.

LISTING 3: WHERE.PAS

{SR-,S+,1+,D+,F- V- ,B- N- L+)

{$M $4000,0,0)

PROGRAM where;
(FrrRRR ")
(* Uses SearchEngine to find and display matching files *)
(* in any subdirectory and total their sizes (e.g., to *)

(* find all Pascal files, execute WHERE *.PAS). 3
(o)
USES DOS,Engine;
VAR
template, path : STRING;
ErrCode : Byte;
Total : Longlnt;

{$F+) PROCEDURE ShowFile(VA% S : SearchRec; path : PathStr); ($F-)
BEGIN

WritelLn(path + S.Name);

Total := Total + S.Size
END;

34 TURBO TECHNIX September/October 1988

Sophisticated User Interfaces in Minutes!

Put magic in your programs with §£

ll[-b
/

The World’s Best Code Generator!

Windows for data-entry (with full-featured editing), context-sensitive help, Lotus-style menus, pop-
up menus, and pull-down menu systems. Overlay them. Scroll within them.

Users and critics say it all!...

“... the best I've used ... The code that it generates is excellent, with every feature you
could conceivably desire. ... if you have problems, they give excellent technical advice
over the phone. ... It saves time, is flexible and produces screens which are state of the
art.;” Sally Stott, Software Developer

“... the best screen generator on the market.” George Kwascha, TUG Lines, Nov/Dec 87

“... the Cadillac of prototyping tools for Turbo Pascal. ... Unlike the others, turboMAGIC
is extremely flexible. ... [it] clearly offers the greatest variety of options.”

Jim Powell, Computer Language, Jun 87

“Fast automatic updating of dependent fields adds flair to your input screens. ...
turboMAGIC will be a blessing for programmers who would rather not write the user
interface for every program.” Neil Rubenking, PC Magazine, 24 Feb 87

“Iwas impressed with the turbo MAGIC package. ... the procedures created by turboMAGIC
are well commented and easy to add to your own code.”
Kathleen Williams, Turbo Tech Report, May/Jun 87

“... definitely arecommended program for any Turbo Pascal programmer, novice or expert.”
Terry Lovegrove, Library Hi Tech News, Oct 87

ORDER your Magic TODAY! Only $199.
CALL TOLL FREE 800-225-3165 or 205-342-7026

sophisticated
software

£5

6586 Old Shell Road, Mobile, AL 36608
Requires 512K IBM PC compatible and Turbo Pascal 4.0. 30-Day Money Back Guarantee. Foreign orders add $15.

SEARCH ENGINE

continued from page 28

TWO LITTLE ENGINES

Keep the compiled ENGINE.TPU handy; you'll find
yourself thinking of new ways to use it all the time.
When you need to search for files within a single di-
rectory, use SearchEngine. For searches that traverse
a tree or a subtree, use SearchEngineAll.

Unit Engine illustrates an important principle of
software development: The more general a tool, the
more different problems it solves, and the more time
that it saves you. Turbo Pascal 5.0’s procedural types
make possible the creation of truly general tools
whose tasks can be specified at runtime. Other “en-
gines” suggest themselves, such as a graphics func-
tion plot engine that receives a function to plot via a
function parameter, or a general-purpose sort unit
that takes a function that specifies which of two data
items is considered greater than the other on some
sort sequence. Once you start thinking of program
statements as just another kind of data, these kinds
of solutions will seem the natural way to do business
in a system-level language such as Turbo Pascal 5.0. ®

Neil Rubenking is a professional Pascal programmer and
writer. He is a contributing editor for PC Magazine, and
can be found daily on Borland’s CompuServe forums an-
swering Turbo Pascal questions.

Listings may be downloaded from Library I of Compu-
Serve forum BPROGA, as PASENG.ARC.

~

“The cost involved, in writing one
of these geometric routines, is more than
the price of the TurboGeometry Library.””

\V

TurboG t
urboGepmetry”, i

Are you programming or planning to program CAD/CAM
or graphics applications? Many hours, even days, can be
spent in writing and debugging geometric routines.
TurboGeometry Library can relieve you of those time
consuming tasks that are part and parcel of every
CAD/CAM or graphics program. There are over 150
routines in the library, supported by example programs
and a 400 page manual. The source code is included. 30
day guarantee. Need IBMPC or Compatible, Turbo Pascal
4.0, Turbo C, or MS C. $149.95 plus $5.00 S&H in US.
VISA, MasterCard, Check, PO, MO. No COD’s Send for
additional information or call 214-423-7288.

Disk Software, Inc., 2116 E. Arapaho #487
Richardson, Texas USA 75081

“In CAD/CAM or graphics, it all comes down
to using geometry’’

\

PROCEDURE Validate;
{validate the command line parameter}
VAR P : Byte;
Ext : ExtStr;
BEGIN
IF ParamCount <> 1 THEN
BEGIN
WriteLn('SYNTAX:
Halt;
END;
FSplit(ParamStr(1), path, template, Ext);
IF Length(path) = 2 THEN path := path + '\';
template := template + Ext;
(*IF no path specified, search from root of
current volume*)
IF path = '' THEN
BEGIN
GetDir(0, path);
IF Length(path) = 2 THEN path := path + '\!'
ELSE path[0] := #3;
END;
END;

"WHERE [path]filespect');

BEGIN
Total := 0;
Validate;
Writeln
('Searching for "', template, '" in or below "', path, '"!);
SearchEngineAll(path, template, Archive, ShowFile, ErrCode);
Writeln
('These files occupy ',Total : 8,' bytes of disk space.')
END.

LISTING 4: DELBAK.PAS

(SR-,S+,1+,D+,F- V- ,B- ,N-,L+ }
{$M $4000,0,0)
PROGRAM DelBak;

(2)
(* Uses SearchEngine to find and delete all *.BAK files *)
(* in any subdirectory in the current volume.)
(*)

USES DOS,Engine;

VAR
path : PathStr;
ErrCode : Byte;
Number : Integer;
Size : LonglInt;

{$F+) PROCEDURE DelFile(VAR S :
VAR F : FILE;
BEGIN
Inc(Size, S.Size);
Assign(F, path + S.name);
Erase(F);
Inc(Number);
END;

SearchRec; path : PathStr); ($F-)

PROCEDURE Initialize;
BEGIN
Number := 0;
Size := 0;
GetDir(0, path);
IF Length(path) = 2 THEN path := path + '\!'
ELSE path[0] := #3;
Writeln('Going to delete ALL *.BAK files in the current volume.');
WriteLn('Press <Return> to proceed, “Break to stop.');
ReadLn;
END;

BEGIN
Initialize;
SearchEngineAll(path, '*.bak', AnyFile, DelFile, ErrCode);
Writeln
('Erased ',Number,' *.BAK files for a saving of ',Size,' bytes');
END.

36 TURBO TECHNIX September/October 1988

PUT YOUR BEST
FACE FORWARD

With Our New User Interface Manager

The most important part of your program
is the user interface. . . . Getting that face
right used to be the hardest part of appli-
cation development. Not any more.

Introducing Facelt™ Creating menus
has never been easier with this new state-of-
the-art user interface manager. Facelt’s totally
different approach to menu creation gives
you perfect faces every time. You simply supply
the data and Facelt does the rest. It creates the face you need -
pop-ups, pull-downs, horizontal menus, help windows, dialog
boxes or multiple column menus, automatically, based on the data
you provide. And don’t worry if your files contain lots of text, Facelt
has built-in virtual windowing and scrolling capabilities.

How Facelt Works.

1. Define the contents of your menus using any editor or import
the data directly from a .DBF file.

2. Then Facelt, using this data, designs the interface you want.

3. Use the interface as is. Or, go into the interactive mode to change
it on the screen. Take total control over menu customization. Change

window shapes,
Pop-up border styles
Bortand | ascil text pull.down and color every
k [Facelt L)
Microsoft DBF file | Engine Help Window element' Olf :he
ABASE Horizontal menu righ
il Arid down to the

individual

menu item.
4. You're done. The Facelt faces are ready to be called directly
from your program.

Laying Out Different Menuing Systems Now Takes
Minutes. Using a new technology called “dynamic menuing
you get a complete menuing system in minutes. Facelt automat-
ically draws the boxes, puts the data into the menus, links them
together, positions them, handles all cursor control, saves and
restores the screen and provides mouse support. Create menus by
specifying any or all records or line numbers. Plus, because all
Facelt faces are live menus and not static, you can customize or
totally redesign them right there on the screen. Turn a pull-
down into a Lotus®™ style menu in seconds without any coding
or compiling!

Syracuse

Build this interface instantly. Simply display the
top level menu. Then interactively link the other
menus together, automatically.

More Than Just A Pretty Face.
Facelt faces are powerful and flexible. Use
them to design front-ends, build context-
sensitive online help systems or for pro-
totyping. Facelt menus can return to
your program the highlighted item, the
name of the menu and the number of
the item selected or a return string from
another menu.

Facelt Speaks Your Language. Facelt includes the lan-
guage specific modules (LSMS) for all Borland and Microsoft
languages, dBASE;" FoxBASE +," Clipper,™

Quicksilver,™ DBXL™ and Emerald Bay’s FaCe
Eagle™ LSMS provide the two-way
communication between your appli-
cation and the Facelt engine. Facelt
menus are called directly from your
programming language so there’s no
need for wake-up codes or hot keys.

The Perfect Turbo Companion.
Make your programs look like the Turbo environment you program
in. Facelt has no royalties or runtime fees and is backed by our

30 day unconditional money back guarantee. So whether you
program for yourself, your company or other people, Facelt will
create the right face and give your application the look it deserves.

Facelt

and put your best face forward.

Only $99
Call Today 212-787-6633
Black & White International, Inc.
PO. Box 21108
New York, NY 10129

Facelt Features: Scrolling menus with scroll bars, headers and footers, onscreen WYSIWYG menu customization, full
color support, separators/blank items, initial character selection, item/menu level help, default/manual placement
unavailable items, return strings, runtime module uses only 19K. Supports: The IBM® PC, XT, AT PS/2%® and true
compatibles, EMS 3.2 and above, 43 line EGA mode, 50 line VGA mode, 40 column mode, Microsoft mouse
compatible. Requires DOS 2.1 or higher. Not copy protected.

Facelt is a trademark of Black & White International, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

TURBO PASCAL

THE RETURN OF

OVERLAYS

Turbo Pascal 5.0 uses disk storage
and EMS to run your biggest program

in as little memory as possible.

Bruce F. Webster

Opverlays vanished in version 4.0 of Turbo
Pascal because the internal changes to
memory allocation made support of the
old 3.0-style overlays impossible. With the
advent of Turbo Pascal 5.0, however, a
OMREO™ _ new and much better implementation of
overlays has now appeared. In this article, we’ll take
a close look at how the 5.0-style overlays work, and
the ways that you can use them.

SQUARE ONE

THE MEMORY GAME

People who first met Turbo Pascal with version 4.0
may well be asking, “What are overlays anyway, and
why would I want to use them?” Let’s take the sec-
ond part of the question first. When a Turbo Pascal
program is run, the main program and all of the
units that it uses are loaded into memory. The main
program and each unit occupy separate code segments
that can each be up to 64K in size. All declared vari-
ables are created in memory within a single data seg-
ment, which also has a 64K size limit. In addition, a
program stack is allocated,; its size is determined
either by the Options/Compiler/Memory Size/Stack
command or by the $M compiler directive in the
main program. Finally, any remaining memory can
be allocated to the heap through $M; this is the loca-
tion in memory where any dynamic variables (which
are created using the New or GetMem procedures)
are allocated. Of course, a certain amount of mem-
ory is already occupied by DOS, any memory-
resident programs you might have already loaded,
and (if the programs are running under the Turbo
Pascal Integrated Environment) by Turbo Pascal
itself.

Although this may seem like a lot to have in mem-
ory all at once, most of the time there is memory
room to spare. However, you can run out of available
memory:

® If your program becomes very large;
® If you need to dynamically allocate large data
structures; or

® If you have other programs loaded at the same
time.

If your computer doesn’t have a lot of memory, your
program may not load; if it does load, it may halt
prematurely with a memory allocation error.

A solution to this problem is to break your pro-
gram up into relatively independent chunks, and
then load those chunks into memory as they are
needed. Once a given chunk is no longer needed,
the memory that it formerly occupied can be reused
for a different chunk.

This brings us back to the first part of the earlier
question, “What are overlays?” Basically, overlays are
those “chunks” I've been talking about. More specif-
ically, overlays are separately compiled Turbo Pascal
units that are loaded into memory as they are need-
ed, and then removed from memory until they are
required again. This process is handled for you in a
painless and generally invisible way—you simply tell
Turbo Pascal which units are to be used as overlays,
and then perform a few other preparations. (For
more information about units in general, see “Get-
ting to Know Units,” TURBO TECHNIX, November/
December, 1987.)

HOW OVERLAYS WORK

When you compile a program that uses overlays, all
of the executable code for the overlay units (the units
that are designated as overlays) is written to an over-
lay file rather than to the usual .EXE file. The overlay
file has the same filename as the .EXE file, with the
extension .OVR instead of .EXE.

At the same time, a unit known as the “overlay
manager” is linked into your program. The overlay
manager determines which overlay unit or units
should be in memory at any given moment, and
loads them in from the overlay file as needed.

When a program that uses overlays is run, the
main program, the overlay manager, and all non-
overlaid units are loaded into memory where they
remain while the program executes. The data seg-
ment and the stack are also created and used in the
same manner as with a nonoverlaid application.

continued on page 40

38 TURBO TECHNIX September/October 1988

Lahey Computer Systems, Inc.
Sets 3'New FORTRAN Standard!

Introducing the latest addition to our line of PC FORTRAN Language Systems—
Lahey Personal FORTRAN 77 Version 2.0

What You Get When
You Purchase
Lahey Personal
FORTRAN:

Lahey Experience.
We are experts in designing
and implementing FORTRAN
Language Systems. Lahey
has been producing
mainframe implementations
since 1967 and PC
FORTRANSs (F77L) since 1984.
In fact, F77L was named the -
“EDITOR’S CHOICE” among PC .
FORTRANSs by PC Magazine. This 20-
year span of specialization has been
incorporated into the design of our
revolutionary Lahey Personal FORTRAN 77.

LAHEY SLASHES COMPILATION TIME.
Compilation times (in seconds) for Whetstone Program (WHETS3H. FOR) =

Tos

mhev

1 1BM AT running at 6Mhz with 80287 i T T T T T T

Personal FORTRAN 77 Version 2.0 ($95) - 11.57
[Wiosofl___ o e 2 0 N 5 05

[Ryan McFariand _romran versen 21 sse9 —889
Customer Support:

Our philosophy is that customer relationships begin, rather than end, at the
point of sale. Services include free technical support, electronic bulletin board
for fast service and information access, and newsletters to keep you up to
date on our latest developments.

Purchasing the Lahey Personal FORTRAN 77 gives you software designed
by FORTRAN experts, a feature-loaded product with industry-leading
compilation speed, and quality technical support; all for $95.

International Representatives: Australia: Comp. Transitions, Tel. (03)5372786 * Canada: Barry Mooney & Assoc.,
Tel. (902)6652941 » Denmark: Ravenholm Computing, Tel. (02)887249 * England: Grey Matter Ltd., Tel. (0364)53499
* Holland: Lemax Co. BV. (02968)4210 ¢ Japan: Microsoftware Inc., Tel. (03)813822 « Norway: Polysoft A.S.
(03)892240 * Switzerland: DST Comp. Services, Tel. (022)989188

MS-DOS & MS FORTRAN are trademarks of Microsoft Corporation.

We have a complete line of PC FORTRAN Language Systems.
For developing or porting programs there is no substitute for a Lahey.

Lahey Personal...... So much for so little $95
7 L s e RS ““Editor’s Choice”’ PC Magazine $477
F77L-EM/16 Ability to write programs as large as 15 MB $695
F77L-EM/32 New 32-bit—Programs up to 4GB on 80386 $895

CALL FOR MORE INFORMATION

Featu re Loaded:

Full implementation of the
ANSI X39-1978 FORTRAN
Standard

e Fast Compilation (see chart)
e Popular Language

Extensions highlighted in the
manual

e Source On-Line Debugger
¢ English Diagnostics and

Warning Messages

e LOGICAL1, LOGICAL4

INTEGER*2, INTEGER*4
REAL*4, REAL'8, and
DOUBLE PRECISION
COMPLEX*8, COMPLEX*16
Recursion

31-Character Names

Trailing Comments

Cross Reference and Source
Listings

64 KB Generated Code

e 64 KB Stack Storage
e 64 KB Commons, Constants

and Saved Local Data

* Math coprocessor emulation

runs with or without a
math coprocessor chip

® 400-Page User Manual

SYSTEM REQUIREMENTS:
256K Ram MS-DOS (2.0 or later)

*95

Lahey is setting the
PC FORTRAN Standard.

TO ORDER

1-800-548-4778

(specify disk size)
Lahey Computer Systems, Inc.
PO. Box 6091
Incline Village, NV 89450
Telephone: (702) 831-2500
TELEX: 9102401256
FAX: (702) 831-8123

Lahey

Computer Systems Inc

OVERLAYS WITH 5.0

continued from page 38

When a program that uses over-
lays is run, however, part of the
heap is taken away and set aside
as the overlay buffer. By default,
this buffer is just big enough to
hold the largest overlay unit; how-
ever, you can specify a larger
buffer to improve performance
during unit loading. The overlay
manager then loads as many units
as possible into the overlay buffer.

When a routine in an overlay
unit is called, the overlay manager
checks if that unit is already in
memory. If the unit is not in mem-
ory, the overlay manager loads the
requested unit from the overlay
file into the overlay buffer, and re-
moves other units from the buffer
as needed. If the manager has a
choice of units to swap out, it’s
“smart” enough to remove the
unit that was least recently called,
based upon the assumption that

the other units in the buffer are
more likely to be called. This pro-
cess is performed automatically,
without any specific load or un-
load requests from your program.
The net benefit is that a large
program can run in a limited
memory space. While the costs are
four-fold, they can be minimized
by some attention to detail. First,
your program may need to be re-
structured in order to make it fea-
sible to use certain units as over-
lays. (This step may actually im-
prove your overall program
design.) Second, a disk access oc-
curs each time a unit is loaded
from disk into memory. These
disk accesses can be minimized by
either increasing the size of the
overlay buffer, or (if your com-
puter has expanded memory) by
instructing the overlay manager to
load the overlay file (not the over-
lay buffer) into expanded mem-
ory. Third, the overlay scheme re-

another a snap.

cial software.

Beat the Deadlines and

thrill them with Performance!!

Now there is a better, more productive way to create programs
that relieves your implementation worries and frees your mind,
so conquering your next big project becomes child’s play!
Whether you program in Turbo Pascal or Turbo C, we’ve got
you covered. Introducing The Developer’s Library Series - not
just a collection of handy routines like most libraries, but a
complete programming environment. Both libraries are
compatible, which makes switching from one language to

Turbo C or Turbo Pascal

Developer’s Libraries

Over 120 routines in each library for development of commer-
Includes routines for: networks, multi-user file
management, menuing, utilities, sample applications,and much
more. Complete with 450 page text from Howard W. Sams
Publishing and source code on diskette for IBM PC.

Only $6925 can

New ! The Floppy Librarian

A must for anyone with lots of floppy disks to manage!
Maintains physical locations of floppy disks, lists files stored on
any and all disks, tracks file changes and backups and more!

Stop asking, "Where is it?"!
Order Now! Ol’lly $29§

For IBM PC’s & Compatibles

it

63 Keystone Ave. Suite 206
Reno, Nevada 89503

Perpetual Data Systems, Inc.

(702) 348-8600

quires that far calls be used
throughout all procedure call
chains that extend into an overlay.
It also exacts an additional perfor-
mance penalty when string literals
and set constants are passed as
parameters. Fourth, when floating
point emulation is used, the inter-
rupt vector “backpatching”
scheme is reinitialized each time
an overlay is loaded into memory.
A small performance overhead oc-
curs when the overlay’s floating
point code is executed for the first
time.

GET READY TO OVERLAY

Several steps are necessary in
order to use overlays.

Units first. The program must first
be structured to make overlays
possible. Since only complete
units can be treated as overlays,
all sections that are to be overlaid
must be broken out and put into
units (if they’re not in units al-
ready). Overlaid units should be
relatively independent—they
should call one another’s routines
as little as possible, but preferably,
not at all. If one overlay calls rou-
tines in another overlay, disk
“thrashing” may occur—where a
distraught overlay manager loads
one overlay and then another in
rapid succession—bringing pro-
gram performance to its knees.
The Overlay Unit. The main pro-
gram must use the Overlay unit,
which is part of the TURBO.TPL
library. Overlay contains the over-
lay manager and provides several
routines that allow the program to
communicate with the overlay
manager. Also, the unit name
Overlay must appear in the USES
clause before the names of any of
the overlaid units. Preferably,
Overlay should be the first unit
named.

Compiler directives. Each unit
that will be used as an overlay unit
must be named in its own {$O}
compiler directive. These direc-
tives appear in the main program
after the USES clause, but before
anything else. The format is
simply {$O <unitname>>}, where

continued on page 42

40 TURBO TECHNIX September/October 1988

Mainframe Power for your PC!

If you need or are accustomed to the
throughput of a 32-bit mini, including any of
DEC'’s VAX series, MicroWay has great news
for you. The combination of our NDP compilers
and our mW1167 numeric coprocessor gives
your 386 PC, VAX speed!f you don't own a
386 PC, we provide a number of economical
PC and AT upgrade paths.

Many of our NDP Fortran-386 users are
reporting turn around times that are two to six
times faster than their VAX. The exact times
are a function of the VAX processor being used,
the speed of the 386, the number of users being
served by the VAX, and the coprocessor being
used with the 386. There are currently over 400
developers using our NDP tools to port 32-bit
applications. To help the 386/1167 engineering
standard emerge, MicroWay is co-marketing
several mainframe applications that have been
ported by our customers. In addition, this ad in-

32-Bit Compilers and Tools

NDP Fortran-386™ and NDP C-386™ Com-
pilers generate globally optimized mainframe
quality code and run in 386 protected mode
under PharLap extended MS-DOS, UNIX, or
XENIX. The memory model employed uses 2
segments, each of which can be up to 4
gigabytes in length. They generate code for the
80287, 80387, or mW1167. Both compilers in-
clude high speed EGA graphics extensions
written in C that perform BASIC-like screen
OPOrationS . .- s - »x - «io: smpseasas $595 each

* NDP Fortran-386™ Full implementation of
FORTRAN-77 with Berkeley 4.2, VAX/VMS
and Fortran-66 extensions.

* NDP C-386™ Fullimplementation of AT&T's
PCC with Microsoft and ANSI extensions.

NDP Package Pricing:
387FastPAK-16: NDP Compiler, PharLap,
and 80387-16 Coprocessor $1299

1167FastPAK-16: NDP Compiler, PharLap,
and mW1167-16 Coprocessor $1695

NDP Windows ™ — NDP Windows includes 80
functions that let you create, store, and recall
menus and windows. It works with NDP C-386
and drives all the popular graphics adapters.
Library $125, C Source $250

NDP Plot™ — Calcomp compatible plot pack-
age that is callable from NDP Fortran. It in-
cludes drivers for the most popular plotters and
printers and works with CGA, Hercules, EGA
BNANVER o oo Fnled ol il e oot B2 $325

NDP/FFT™ — Includes 40 fast running, hand
coded algorithms for single and double dimen-
sioned FFTs which take advantage of the 32-
bit addressing of the 386 or your hard disk. Call-
able from NDP Fortran or NDP C with 1167 and
S8 LSUPDOR . osiran Terer T ey rr e $250
387FFT for 16-bitcompilers............ $250

387BASIC™ — A 16-bit Microsoft compatible
Basic Compiler that generates the smallest
.EXE files and the fastestrunning numeric code
onthamarkek 5.5 5 L e s s $249

Dr. Robert Atwell, a leading defense scientist,
calculates that NDP Fortran-386 is currently
saving him $12,000 per month in rentals of
VAX hardware and software while doubling
his productivity!

Fred Ziegler of AspenTech in Cambridge,
Mass. reports "l ported 900,000 lines of
Fortran source in two weeks without a single
problem!" AspenTech’s Chemical Modeling
System is in use on mainframes worldwide
and is probably the largest application to ever
run on an Intel processor.

Dr. Jerry Ginsberg of Georgia Tech reports

"My problems run a factor of six faster using

NDP Fortran-386 on an mW1167 equipped
386/20 than they do on my MicroVAX II."

MicroWay °
80386 Support

Parallel Processing

Monoputer™

The world's most popular Transputer develop-
ment product runs all MicroWay Transputer
software using eithera T414 or T800. The T800
processor has built-in numerics and provides
performance comparable to an 80386 running
at20 MHz with an mW1167. The new 3L Paral-
lel C and Fortran Compilers makes this an
especially attractive porting environment. Can
be upgraded to 2 megabytes.
Monoputer with T414 (0 MB)
Monoputer with TBOO (OMB) $1495

Quadputer™

This board for the XT, AT, or 386 can be pur-
chased with 2, 3 or 4 Transputers and 1,4 or 8
megabytes of memory per Transputer. Two or
more Quadputers can be linked together to
build networks with mainframe power which
use up to 36 Transputers. One customer’s real-
time financial application has gone from 8
hours on a mainframe to 16 minutes on a sys-
tem containing five Quadputers. . . . from $3495

Transwuter Compilers and Applications
MicroWay and 3L offer Parallel languages for
the Monoputer and Quadputer.

MicroWay ParallelC $595
MicroWay Occam2 $495
B ParallollCre br=nilo i voe i irads S teg $895
3L Parallel Fortran: csumveens $895

uField — A specialty finite element analysis
package targeted at Transputer networks.
Ideally suited to take advantage of the 6
Megaflop speed of the Quadputer. $1600

Call (508) 746-7341 for our
free catalog!

troduces the first of many utilities that will ease
the porting of your favorite in-house programs.
These include tools like NDP-Plot, which
provides CalComp compatible screen and
printer graphics, and NDP Windows.

MicroWay has mW1167 boards in stock that
run on the Compaq 386/20, IBM PS2/80,
Tandy 4000, AT&T 6386, Acer 386/20, Everex
Step 386/16(20), H.P. Vectra RS/16(20) and
others. We now have a new board for the Com-
paq 386/20 which combines an 1167 with VGA
support that is register compatible with IBM —
the "SlotSaver". It features an extended
800x600 high res mode that is ideal for 386
workstations.

Finally, we still offer the 16-bit software and
hardware which made us famous. If you own a
PC or AT and are looking for the best
8087/80287 support on the market, call (508)
746-7341 and we'll send you our full catalog.

Numeric Coprocessors

mW1167™ — Built at MicroWay using Weitek
components and an 80387 socket.

N S T G s i s v s e $995
MWBIBTE20 8 o e Fr s e e b $1595
mW1167/VGA-20 "SlotSaver" $1995
UITE e 2 S AR I c R e KRR $99
B et i oo Ll gl bl $154
P VA e e s S SR $239
B ol o i o s) $295
BOSBIaIBA 0TI % 5T e oyl $475
BP0 Y s et el $725
287Turbo-12 (for AT compatibles)$450
DRAM... o s e CALL

(All of our Intel coprocessors include 87Test.)

PC and AT Accelerators

MicroWay builds a number of 8086 and 80286-
based PC accelerators that are backed up by
the best customer support in the industry.
Number Smasher™ (8087 & 512K) . .$499

FastCACHE-286/9MHz $299
FastCACHE-286/12MHz $399
SuperCACHE-286/12MHz $499
Intel Inboard™PC (1MB) $950

Intelligent Serial Controllers

MicroWay's AT4™ AT8™ and AT16™ are the
fastest 80186-based intelligent serial control-
lers on the market. They come with drivers for
UNIX, XENIX, and PC MOS.

AT4 ... $795 AT8..$995 AT16...$1295

32-Bit Applications

COSMOS-M/386 — SRAC's finite element
package for the 80386 with an 80387 or
mW1167 provides mainframe speed and
capacity. Turn around times rival the VAX 8650
and are 6 to 15 times that of an AT: from $995

PSTAT-386 — This mainframe statistics pack-
age has been used by government and in-
dustry for 20 years. The full version was ported.
Requires 4 to 6 megabytes of memory: $1495

NDP/NAG™ — Features a library of 800 en-
gineering and scientific numerical algorithms.
Callable from NDP Fortran............. $895

The World Leader in PC Numerics

P.O. Box 79, Kingston, MA 02364 USA (508) 746-7341
32 High St., Kingston-Upon-Thames, U.K., 01-541-5466
St. Leonards, NSW, Australia 02-439-8400

OVERLAYS
continued from page 40

unitname is the unit’s name as it
appears in the USES clause.

Also, an {$O+} compiler direc-
tive must be placed within each
overlaid unit in order to show to
the linker that the unit is to be
treated as an overlay.

Far calls. The main program and
all units should be compiled with
the Options/Compile/Force far
calls toggle set to On, or with the
{$F+} directive present in each
file. Far calls must be used with all
of the routines that call the rou-
tines in overlaid units, with all of
the routines that call those rou-
tines, and so on, back to the main
body of the program. The safest
way to enforce this requirement
is simply to use far calls through-
out the entire program.

The .OVR filename. The main
program must tell the overlay

manager the filename of the
.OVR overlay file by calling Ovr-

{$F+)
program Ship;
uses

Overlay, Graph, MainLib, Gamelnit,

Init (one of the routines in the
Overlay unit) with the appropriate
filename in Ovrlnit’s string pa-
rameter. The OvrResult variable
in the Overlay unit is set to the re-
sult code; this step allows the pro-
gram to detect errors and then
gracefully exit if the overlay man-
ager cannot read or otherwise
handle the overlay file whose
name was passed to Ovrlnit.
Other routines in the Overlay unit
allow the program to query the
current size of the overlay buffer,
increase the buffer’s size, and ask
the overlay manager to attempt to
load the overlay file into expand-
ed memory. These more advanced
routines are well-covered in the
Turbo Pascal Owner’s Handbook, so
I won’t discuss them here.

Now compile! After taking all of
these steps, simply compile the en-
tire program to disk. You may
want to use the Compile/Build
command to make sure that all
units are recompiled. The compil-

Navigation, Combat, Repair, Survey;

{$0 Gamelnit)
{$0 Navigation}
{$0 Combat)
{$0 Repair}
{$0 Survey)

var
GameState : States;

procedure SetupOverlays;

begin
OvrInit('SHIP.OVR');
if OvrResult <> 0 then begin

{ type defined in MainLib)}

Writeln('Overlay error: ',GvrResult);

Halt(1)
end
end; { of proc SetupOverlays }
begin
SetupOverlays;
Initialize; {
repeat
case GameState of
atHelm : DoNavigation; (
inCockpit : DoCombat; {
inPanels : DoRepair; {
atStation : DoSurvey &
end
until GameState = endGame;
SaveGame {

end. { of prog Ship)

in Gamelnit 2}

in Navigation)
in Combat)
in Repair)
in Survey)

in Gamelnit)}

Figure 1: The skeleton of a starship simulation game, which places each of the
several distinct functions of starship operation into a separate overlay.

er’s output (as mentioned earlier)
consists of two files: an .EXE file,
which contains the main program,
the overlay manager, and all non-
overlaid units; and an .OVR file,
which contains the code for the
overlaid units.

STARSHIP SIMULATION—AN
EXAMPLE

Obviously, I don’t have enough
space here to list an actual pro-
gram that is large enough to re-
quire overlays, but I can show you
a (somewhat contrived) example.

Suppose you want to write a
starship simulation to handle four
major functions: navigation, com-
bat, repair, and surveying. Since
each function is independent of
the others, your program can use
four major overlays. In addition,
the code that initializes the entire
simulation and cleans things up
afterwards might make a fifth
overlay.

Figure 1 shows how the main
body of such a program might
look. This program uses the
Graph unit, as well as the user-
defined (and nonoverlaid) unit
MainLib, which contains any
global types, variables, and sub-
programs.

When the main program exe-
cutes, it first calls the local routine
SetupOverlays. This procedure
then calls Ovrlnit, and passes
Overlnit the name of the overlay
file, SHIP.OVR. If an error occurs,
the entire program halts with an
erTor message.

The Initialize procedure is
stored in the Gamelnit overlay
unit. When Initialize is called, the
Gamelnit unit is loaded into the
overlay buffer. The program then
enters a loop and calls a proce-
dure in one of the other four
overlay units; the current value of
GameState determines which pro-
cedure is called. When a proce-
dure is called, its unit is loaded
into the overlay buffer, and any
unit that is currently residing
there is overwritten. When the
game is finished, the Gamelnit
overlay is loaded again so that
SaveGame can be called.

continued on page 46

42 TURBO TECHNIX September/October 1988

12 slices |
Italian
No

Looks
Good

Use
Knife

Yes

Yes

Extensive Extensive

Menu
‘ Available

Yes

Yes No

Extensive Extra Cost

Yes No Dish

Yes No

Sauce on
Cuff often

Allocates all available memory to Lots
. compi ‘when run from 'mthmedﬂoﬂ Yes No No No | ofbytes

Intelligent indenting, template editing
and brace/parenthesis/block
matching and checking for C, Limited
PASCAL, BASIC and MODULA-2 imi Intelligence
Flexible condensed mode display Definitely

PMCE About $12

Yes

To Order, Call 24 hours a day: American
1-800-221-9280 Ext. 951 Cybcrnetics
In Arizona: 1-602-968-1945 1228 N. Stadem Dr.

Credit Card and COD orders accepted. Tempe, AZ 85281

Requires IBM/PC/XT/AT/PS2 or full compatible, 256K RAM, PC/MS-DOS 2.0 or later.
Multi-Edit and American Cybernetics are trademarks of American Cybernetics. BRIEF
is a trademark of Underware, Inc. Norton Editor is a trademark of Peter Norton
Computing, Inc. Vedit is a registered trademark of CompuView Products Inc. Copy-
right 1987 by American Cybernetics

NZZA

With EVERYTHING!

Is your editor OUT TO LUNCH?
= Does it handle ALL OF YOUR NEEDS?

~ « Is it flexible, programmable and reconfigurable?

« MOST IMPORTANTLY, is it EASY TO USE?
OR WOULD YOU RATHER BE EATING PIZZA?

Only MULTI-EDIT tastes this good!

Fully automatic Windowing and Virtual Memory
Edit multiple files regardless of physical memory size
Easy cut-and-past between files
View different parts of the same file

Powerful, EASY-TO-READ high-level macro language
Standard language syntax
Full access to ALL Editor functions

Language-specific macros for C, PASCAL, BASIC
and MODULA-2
Smart Indenting
Smart brace/parenthesis/block checking
Template editing
More languages on the way

Terrific word-processing features for all your
documentation needs
Intelligent word-wrap
Automatic pagination
Full print formatting with justification, bold type, underlining
and centering
Flexible line drawing
Even a table of contents generator

Compile within the editor
Automatically positions cursor at errors
Allocates all available memory to compiler

Complete DOS Shell.
Scrollable directory listing
Copy, Delete and Load multiple files with one command
Background file printing

Regular expression search and translate

Condensed Mode display, for easy viewing of your
program structure

Pop-up FULL-FUNCTION Programmer’s Calculator
and ASCII chart

and MOST IMPORTANT,
the BEST USER-INTERFACE ON THE MARKET!
, Extensive context-sensitive help

Get our FULLY FUNCTIONAL DEMO colw for onw KFRfE Choice of full menu system or logical function key layout

Function keys are always labeled on screen

(no guessing required!)
Keyboard may be easily reconfigured and re-labeled
Extensive mouse support
Easy, automatic recording and playback of keystrokes
Anchovies easily removed

MULTI-EDIT COMBINES POWER WITH
EASE OF USE LIKE NO OTHER EDITOR
ON THE MARKET TODAY.

TURN UP THE POWER. ..

Add power to your Turbo language pro-
grams with the Borland Turbo Toolboxes.®
They provide you with source code and
routines to be added into your programs
so0 you don't have to reinvent the wheel.
And you don't pay royalties on your own
compiled programs that include the Tool-
boxes’ routines.

TURBO C°

TURBO C 2.0 RUNTIME LIBRARY
SOURCE CODE

An indispensible tool for serious Turbo C
programmers! The Runtime Library Source
Code lets you get even more out of Turbo
C’s flexibility and control, with a library of
more than 350 functions you can custom-
ize or use as is in your Turbo C programs.
You get the source for the standard C
library, math library and batch files to help
with recompiling and rebuilding the
libraries.*

TURBO PASCAL®

TURBO PASCAL 5.0 RUNTIME
LIBRARY SOURCE CODE

Modify the runtime library source code or
use it as is. You get the assembly language
and Pascal source to the System, Dos, Crt,
Printer, and Turbo3 units. Comes with a
batch file to help with recompiling and
rebuilding TURBO.TPL.

TURBO PASCAL DATABASE
TOOLBOX

With the Turbo Pascal Database Toolbox
you can build your own powerful, pro-
fessional-quality database programs.
Included is a free sample database with
source code and two powerful problem-
solving modules.

Turbo Access™ quickly locates, inserts,
or deletes records in a database using B+
trees—the fastest method for finding and
retrieving database information.

Turbo Sort™ uses the Quicksort method
to sort data on single items or on multiple
keys. Features virtual memory management
for sorting large data files.

All Borfand products are trademarks or registered trademarks of Borland International, Inc.
Other brand and product names are trademarks of their respective holders. Copyright ©1988
Borland International, Inc. Bl 12802C

i

TURBO PASCAL NUMERICAL
METHODS TOOLBOX

Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathemat-
ical methods to solve common scientific
and engineering problems. Fast. Every time
you need to calculate an integral, work with
Fourier Transforms, or incorporate any of
the classical numerical analysis tools into
your programs, you don’t have to reinvent
the wheel. It's a complete collection of
Turbo Pascal routines and programs that
gives you applied state-of-the-art math
tools. Includes two graphics demo pro-
grams to give you the picture along with
the numbers. Comes with complete

source code.

TURBO PASCAL TUTOR

Turbo Pascal Tutor is everything you need
to start programming in Turbo Pascal. It
consists of a manual that takes you from
the basics up to the most advanced tricks,
and a disk containing sample programs as
well as learning exercises.

[t comes with thousands of lines of com-
mented source code on disk, ready for you
to compile and run. Files include all the
sample programs from the manual as well
as several advanced examples dealing with
window management, binary trees, and
real-time animation.

System requirements: All Turbo Toolboxes for the IBM PS/2™ and
the IBM® family of personal computers and all 100% compatibles.
PC-DOS (MS-D0OS®) 2.0 or later. Turbo C Runtime Library Source
Code requires Turbo C 1.5 or later. Turbo Pascal Toolboxes require
Turbo Pascal 4.0 or later and 256K RAM. Turbo Prolog Toolbox
requires Turbo Prolog 1.1 or later and 384K RAM. Turbo Basic
Toolboxes require Turbo Basic 1.0 or later and 640K RAM.

*Does not include source for graphics or floating point emulator.

<

TURBO PASCAL EDITOR TOOLBOX

Turbo Pascal Editor Toolbox gives you
three different text editors. You get the
code, the manual, and the know-how. We
provide all the editing routines. You plug in
the features you want.

MicroStar™: A full-blown text editor with
a complete pull-down menu user interface.
FirstEd™: A complete editor equipped
with block commands, windows, and
memory-mapped screen routines.

Binary Editor: Written in assembly lan-
guage, a 13K “black box” that you can
easily incorporate into your programs.

TURBO PASCAL GRAPHIX
TOOLBOX

Turbo Pascal Graphix Toolbox is a collec-
tion of tools that will get you right into the
fascinating world of high-resolution mono-
chrome business graphics, including gra-
phics window management. Draw both
simple and complex graphics. Store and
restore graphic images to and from disk.

TURBO PASCAL GAMEWORKS

Explore the world of state-of-the-art com-
puter games with Turbo Pascal Game-
Works. Using easy-to-understand example
games, it teaches you theory and tech-
niques to quickly create your own com-
puter games. Comes with three ready-to-
play games: Turbo Chess,” Turbo Bridge,”
Turbo Go-Moku.”™

WITH TURBO TOOLBOXES!

TURBO PROLOG®

TURBO PROLOG TOOLBOX IS
SIX TOOLBOXES IN ONE

More than 80 tools and 8,000 lines of
source code help you build your own
Turbo Prolog applications. Includes tool-
boxes for menus, screen and report
layouts, business graphics, communica-
tions, file-transfer capabilities, parser
generators, and more!

TURBO BASIC®

TURBO BASIC DATABASE TOOLBOX
With the Turbo Basic Database Toolbox you
can build your own powerful, professional-
quality database programs. Includes
Trainer, a demonstration program that gra-
phically displays how B+ trees work and a
free sample database with source code.
The Toolbox enhances your programming
with 2 problem-solving modules:

Turbo Access quickly locates, inserts, or
deletes records in a database using B+
trees—the fastest method for finding and
retrieving database information.

Turbo Sort uses the Quicksort method to
sort data on single items or on multiple
keys.

TURBO BASIC® EDITOR TOOLBOX

Turbo Basic Editor Toolbox will help you
build your own superfast editor to incorpo-
rate into your Turbo Basic programs. We
provide all the editing routines. You plug in
the features you want! We've included two
sample editors with complete source code.

MicroStar: A full-blown text editor with a
pull-down menu user interface and all the
standard features you'd expect in any word
processor.

FirstEd: A complete editor with windows,
block commands, and memory-mapped
screen routines, all ready to include in
your programs.

To order, cal
(800) 543-7543

— 3

l

INTERNATIONAL

OVERLAYS WITH 5.0 Overlays can be a great help
when debugging very large pro-

grams. If kept fully intact, such

DEBUGGING SUPPORT programs may be too big to run in

der Turbo Pascal. B
The Turbo Pascal 5.0 Integrated s e i

breaking a very large program
Debugger. fully supports overlays. into overlays, the program may be
You can single-step through calls

% : 5 made small enough to run under
to routines in overlay units, and

; : > the Integrated Environment—
those units will be loaded into .and which plg:ces the services of the
out of memory as needed. Again, Integrated Debugger at your
this process is handled automat- disposal.
ically and invisibly (except, of
course, for the disk access that oc- | REMEMBER

curs as units are loaded into mem- | A Loobo L oe things should be
ory). You can set breakpoints kept in mind when using overlays.

within overlay units, use the Call Bivet. niake sure that Ovelnit is
Stack and Find Functions com- called before calls are made to

ma.nd.s, an.d otherwise treat th'ese any of the routines in overlay
units just like nonoverlaid units.

continued from page 42

Whrite Better

Turbo 4.0 Programs...
Or Your Money Back

You’ll write better Turbo Pascal 4.0 programs easier and faster
using the powerful analytical tools of Turbo Analyst 4.0.
You get * Pascal Formatter * Cross Referencer * Program
Indexer * Program Lister *« Execution Profiler,
and more. Includes complete source code.

Turbo Analyst 4.0 is the successor to the
acclaimed TurboPower Ultilities:
“Ifyou own Turbo Pascal you should own the Turbo
Power Programmers Utilities, that’s all there is to it.”

Bruce Webster, BY TE Magazine, Feb. 1986

Turbo Analyst 4.0 is only $75.

A Library of Essential Routines

Turbo Professional 4.0 is a library of more than 400 state-of-the-art
routines optimized for Turbo Pascal 4.0. It includes complete

source code, comprehensive documentation, and demo

| programs that are powerful and useful. Includes

|f + TSR management * Menu, window, and data

| entry routines « BCD « Large arrays, and more.

Turbo Professional 4.0 is only $99.
Call toll-free for credit card orders.
1-800-538-8157 ext. 830 (1-800-672-3470 ext. 830 in CA)

Satisfaction guaranteed or your money back within 30 days.
Fast Response Series: Turbo Pascal 4.0 is required. L ﬁ
®m T-DebugPLUS 4.0—Symbolic Owners of TurboPower Utilities w/o ‘
run-time debugger for Turbo 4.0, source may upgrade for $40, w/source,
only $45. (890 with source code) $25. Include your serial number. For
® Overlay Manager 4.0—Use over- other information call 408-438-8608. TurboPower Software
lays and chain in Turbo 4.0, only $45. Shipping & taxes prepaid in U.S. & P. O. Box 66747
Call for upgrade information. Canada. Elsewhere add $12 per item. Scotts Valley, CA 95066-0747

units. To be safe, call OvrlInit
either at the start of the main
body of the program, or (as de-
scribed below) in the initialization
code of a nonoverlaid unit.

Avoid having initialization code
in the overlay units. If such code
is necessary, then ensure that
Ovrlnit has been called before
those units are initialized. The
only way to do this is to put the
call to Ovrlnit into the initializa-
tion section of a nonoverlaid unit
that appears in the USES clause
prior to any overlaid unit.

Be sure to call Ovrlnit before
anything is allocated on the heap.
Unless the heap is completely un-
touched, OvrInit won't function
correctly when called.

Make sure that Overlay appears
in the USES clause before any of
the overlaid units. The safest
solution is to put Overlay first.

Also, make sure that all units, as
well as the main program, are
compiled with the {$F+} directive
present, or (equivalently) with the
Options/Compiler/Force far calls
toggle set to On.

Finally, the DOS unit is the only
one of the standard units shipped
with Turbo Pascal that may be
overlaid—and putting DOS out as
an overlay is not a good idea. Any
of your own units that contains in-
terrupt handlers also may not be
overlaid.

CONQUER SPACE

In order to write good programs,
the needs of the program specifi-
cation must be balanced against
available DOS memory, expanded
memory, and disk storage re-
sources. The size of Turbo Pascal
4.0 programs is limited to avail-
able DOS memory space. Turbo
Pascal 5.0’s overlays feature raises
that size limit well beyond the
megabyte point. How far you can
take the size of a single program
depends upon how efficiently you
use data space and symbol table
space. With some care in design,
your programs can (in most cases)
be as large as they need to be. B

Bruce Webster is a computer merce-
nary living in California. He can be
reached via MCI MAIL (as Bruce
Webster) or on BIX (as bwebster).

46 TURBO TECHNIX September/October 1988

NEW!

NEW!
LESS!

NEW!
NEW!

NEW!

NEW!
NEW!

NEW!

NEW!

NEW!

NEW! A
NEW!

C CODE FOR THE PC

source code, of course

MS-DOS File Compatibility Package (create, read, & write MS-DOS file systems on non-MS-DOS computers) $500
Bluestreak Plus Communications (lwo ports, prourammer’s interface terminallemulation) o w i oln w5 e s 6 e s s .. . $400
PforC or PforCe++ (COM, database, windows, file, user interface, DOS & R e T R v 3 5345
CQL Query System (SQL retrievals plus wmdows) o s s 4 5325
GraphiC 4.1 (high-resolution, DISSPLA-style scientific plots in color & hardcopy) oo RG0S
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC) e w800
Vmem/C (virtual memory manager; least-recently used pager; dynamic expansionof swapfile) $250
PC Curses (Aspen, Software, System V compatible, extensive documentation)00 ... $250
Greenleaf Data Windows (windows, menus, data entry, interactive form design) & aaa R0
VitaminiC (MacWInAOWs) i b s, 10l Sl e e st s e s S Rk el e b e s e e e ey 21
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) e
TurboTEX (TRIP certified; HP, PS, dot drivers; CM fonts L 2 g g S o i o o s e R . -« 3170
Essenual resident C (TSley C programs, DOS shared hbranes) i 5 . 165
Greenleaf Functions (296 useful C functions, all DOS SEIVICES) .« + + = w0 o & v 5 w5 5 % o » & ¢ 6 ¢ o 66 54 & & « @ & 3160
Bssential'€ Utitity I'ibrary (400useful C'Rinetions) .0 LIl o o e Gk e s il s G s s e e s e e e $160
Essential Communications Library (C functions for RS-232-based communication systems) e as 160
WKS Library Version 2.0 (C program interface to Lotus 1-2-3, dBase, Supercalc 4, Quatro, & Clipper) o &+ 9155
OS/88 (Ussx-like operating system, many tools, cross-development fromMS-DOS) $150
ME Version 2.0 (programmer’s editor with C-like macro language by Magma Software; Version 1.31 still $75) $140
Turbo G Graphics Library (all popular adapters, hidden lineremoval) S)
PCiCurses Package (full Berkeley 4.3, mentuand dataentryexamples) . . < . . ¢ . . . & & o & & 4 o w o s . ow ‘s o 8120
CBTree (B+tree ISAM driver, multiple variable-lengthkeys) L o000 s SIS
Minix Operating System (U=*sx-like operating system, includesmanual) > ¢ w5105
EEIR(CMMMITITCP AP ymblementationforPEs)S=Ti vl wh e 0 L L A i Sag Bl Shele ot o il $100
B-Tree Labrary & ISAM Driver (file;system utilities by Softfocus) ... < 0 L o ol o0 s b e e e e e $100
ihe/Brofilegntoprantexecttion proiletaon) . n b B SR o e B T e L e o e ey e el ca $100
Entelekon C Function Library (screen, graphics, keyboard, string, printer, €1C.) ¢ & v o o o 6 w0 a0 0 o w0 @ o o $100
Entelekon Power Windows (menus, overlays, messages, alarms, file handling,etc.) « w500
TutboGeonetry {librity of routines for computational SEOMEIY) v o s e ie o ia o o0 aie Foiedios o m o o od pat 5 o8 o e o el v s $90
QC88 C compiler (ASM output, small model, no longs, floats or bit fields, 80+ function library) $90
Wendin Operating System Construction Kitot PCNX, PCVMS O/SShells ¢ .\ & oo v oo s o oo o s ol o e DO
C Windows Toolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) $80
JATE Async Terminal Emulator (includes file transferand menusubsystem) 0 v v v v v o w w00 $80
MultiDOS Plus (DOS-based multitasking, intertask messaging, semaphores) o ek L RB0
WKS Library Version 1.03 (C program interface to Lotus 1-2-3 program & files) S R L R s e et 380
Professional C Windows (lean & mean window and keyboard handler) GRS
Ipi(flexibleprinter driver; most populatipanters’suppotted)™ T o 0l s s s e e e s e e s e s e e e < s . . D65
Quincy (interactive C mlerprexer) S e e, e i 900
EZ_-ASM (assembly language macros bridging CandMASM). . ¢ .+ « 4 & o v o o o« oo v e v e v s e e s e $60
PTree (parse tree management) G = eRe)
MicroPinn Toolkit (28 Unixesgueutilities forMS=-DOS) 0 Loy v o mfi s o s o 0w D s s w s e s e w6 e
XT BIOS Kit (roll your own BIOS with this complete set of basic input/output functions for XTs) ol Sadisng
HELER thop-Auphelpisystent e r) R s o e e e ot ve Eunis S B ot o e (i s oot ey o s vt v ot o $50
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modemcard) $50
Make (macros, alllianatiages bilt-in rules) & L i vy DR U o ot o L e w e e wpe e o gt B e o sy o 590
Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes tobitmaps) s sy e 050
Coder's Prolog (inference engine forusewith/C programs). « = < oo s 5 o s 5 & @ 6y & s s 56 siehet b s 5 4 e PERTREE v~
Virtual Memory/Systemi(least récentlyused swappin®g)l o1 & s o o owoe b s s e e 6w e R eREREGES o w840
C-Notes (pop-up/helpifor'C programmers.... add yOUEOWD ROES) .« + = v o 5 et ol afo oo o ohal s lolishinieis ol o o a0 o s 940
Biggerstafl’s System Tools (multi-tasking window managerkit)o 0L a0
PC-XINU (Comer’s XINtioperafingisystemforPEIRE & BL 5y oiiw o e uabie Jo a eh Bel o 1o o teitle SRR G |, £l O 2 B3
CLIES (rule-based'expert system generator, VErSIOR L) & & o= v = 4 5 o b le & % s le 6 v s st ool s 5 6 s SR RSaS
Tiny Curses (Berkeleveensesipg claeeyiCi s [RCE LS S WER ST 1 o o sl b s B e S AT & s P e L e PR 1
TELE Kemel or TELE Windows (Ken Berry’s multi-tasking kernel & window package) $30
SP (spelling checker with dictionary and maintenance tools) $30
Clispi(laspiinterpreter withiex(ensive intemals documentation)i. '« = o w » 5 v & b b e aibel e o 0 ciw s w4 s s el e s $30
Translate Rules'to C (YACC-like function generator forrule-based systems), « ¢ . . o o o o v v o 0 0o ow $30
6-Pack of Editors (sbepublic domain .cdilorsforuse; study &hacking) . . o o u v s e b dha s ol vl L sl e e e e s $30
Crunch Packi(14 Ble'compression & eXpanSion Programs) .o el L0 o 5 v o 4 s Gyle s w5 e sk e v s b kw6 s s e $30
JCON{sttinetand list processing language VErSIOmIIE il o 5 o b ai it D il e e N L L L e e e e Gl $25
PEEX (fast lexical analyzer generator new,amproved KEX) " 0 o 0 0 o il i i 0 0 s s s e i s e e a s b d eral st $25
[LEX (lexical analyzer gencrator; apoldiebubaigoodie) o il i o ol Gl d i s e ML el L $25
Bison & PREP (YACC workalike parser generator & attribute grammar preprocessor) $25
AutoTrace éprowram tracer and memory trasher NS oy G s S A o e e ks e el LS
ArraysforiC{imacro packageitoease handin@OEAMAYSY L . e s 0 e wls @ w6 e e m ek s e s ol s o w52
OOPS (collection of handy yC++ classes by Keith Gorlen of) o R S T e U L e R R N e $20
C:CompilecTorture’Test(checks a CicompiletagainstiO & R 4w b Glow s 5 5 e ovs o e b oie st ais oy e $20
Benchmark Package (C compiler, PC hardware, and Unixsystem) . = = 5 s = ¢ & o & s 5 o & o = 5 2 = 5 & s » 2 s 3 o $20
TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller) $20
R G TR s s S e o et s s i A R S) B R i O s S R $20
List-Pac (€ tunctionsor lists; stacks, andiquenesy .o 5 n 0 i m o 5 b o e e aa e i e LB s s sk e s et s $20
XL Macro Processor:(general purpose text translator) '« . v & 5.5 5 5 s 3 5 5 5 s e e e @ mee e osle s e sie s e st $20
Clreativiiyi(Bliza-based notelakeris B i o st R el ol bl b s it ot B e s $15
Data
WordCruncher/(text retrieval & document analysis program) « « s o+ /s s s = o o s s o v 4 a0 Sl s e e s Qe 9275
DNA Sequences (GenBank 52.0 including fast similarity search program) oo o 03150
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) i e 11
Webster’s Second Dictionary (234,932 words) $60
U. S. Cities (names & longitude/latitude of 32,000 U.S. cities and 6,000 state boundary points) $35
The World Digitized (100 000 longitude/latitude of world country boundaries) L. L S S
KST Fonts (13 200 characters in 139 mixed fonts: specify TeX orbitmapformat)o .0 0L $30
USNO Floppy Almanac (high-precision moon, sun, planet & star positions) oo 0oL $20
NBS Hershey Fonts (1,377 stroke characters in 14 ronls) SRR
U: S. Map/(15,701 poihts of State boundaries) .=. o o v o+ « 4 + o s ¢ 2 e e taile ssie e s el e e woee 0w s ea $15
The Austin Code Works Voice: (512) 258-0785
11100 Leafwood Lane acwlinfo@uunet.uu.net BBS: (512) 258-8831
Austin, Texas 78750-3409 USA FAX: (512) 258-1342

Free surface shipping on prepaid orders For delivery in Texas add 7% MasterCard/VISA

TURBO C

BUG HUNTING,

BORLAND STYLE

Jeff Duntemann

ack in 1976, I wire-wrapped a

computer that was based on a cir-

cuit diagram in Popular Electronics.

My new computer used the
CDP1802 CPU, which had a single-line se-
rial output that could be set to one or to
zero; I connected the line to an LED. A sin-
gle instruction brought the line high, and
another instruction brought it low again. In-
put to the machine was a row of eight toggle
switches; output was a two-digit hexadecimal
display. To test the machine, I toggled in the
single-byte opcode that should have turned
the LED on by bringing the serial line high.
Nothing happened. I triple-checked the op-
code (but seriously, how many ways are
there to toggle in 7BH?) The hex display
read 7B. The toggle switches were set to
0111 1011. The LED stayed off.

I assumed the CPU was bad, until I
swapped it into a friend’s similar machine
and found out that my CPU worked fine. I
swapped all the ICs. I checked all the wir-
ing. The machine appeared to be in perfect
condition—yet it wouldn’t run a one-byte
program. Time and lots of Mountain Dew
uncovered the following problems:

1. By mistake, I had wired the toggle
switches upside down; in other words, a
switch whose bat handle was high (indi-
cating a binary 1) was actually putting out
a binary 0.

2. By mistake, I had socketed an octal inver-
ter, rather than an octal driver, between
the toggle switches and the hex display.

What this means is that the toggle
switches were putting out an inverted byte,
but that the inverting drivers that fed the
hex display reinverted the inverted byte
from the toggle switches, making the byte
look normal again. The switches said 7BH.
The displays said 7BH. But the machine
was actually receiving an 84H byte, which
did something harmless but incorrect. It was
an accidental but diabolical partnership be-
tween two otherwise obvious screwups that
hid one another perfectly for several weeks.

We don’t wire-wrap our machines any-
more, thank God, so hardware bugs like this
have pretty much become extinct. But bugs
will always be with us, and my 1976 expe-
rience says something absolutely basic
about debugging: Inspection is not enough.
You can fix some bugs by staring at your
code after a good night’s sleep. You can fix
a few more by pulling procedures out of a
program piecemeal and plugging them into
proven programs to get a second opinion.
But even when all of the parts check out
separately, the little devils often refuse to
cooperate in peculiar ways when reassem-
bled, no matter how carefully.

LIFTING THE LID

There’s no way around it: You have to lift
the lid, go in there, and see what’s happen-
ing. Assume nothing. Watch every statement
execute. Look at every variable at every step
of the way. If you fail to do this, you’ll miss
something, and the something you’ll miss
will be the one thing you’ve been looking
for for weeks.

48 TURBO TECHNIX September/October 1988

The process of opening up the closed universe of
a computer program for examination requires spe-
cial tools. We call these tools debuggers, and commer-
cial software development would be impossible with-
out them. How debuggers work is the blackest of
black arts, but what they do falls into two broad
categories:

1. Debuggers stop and start program execution on
command without losing the current state of the
program. A program can be paused at a preset
point in the code (called a breakpoint), or it can be
made to pause after each program step. (This pro-
cess is called single-stepping or tracing.) Tracing a
program allows you to see “what it’s doing in
there.” Breakpoints offer a chance to examine the
effects of the program statements on program
variables in medias res.

2. Debuggers let us examine and change the values
of program data items. At the lowest level, this in-
cludes CPU registers, memory, and 1/0 ports.
Some advanced debuggers (called symbolic debug-
gers) have the ability to relate memory, and occa-
sionally machine registers, to program identifiers
such as variable names.

POINTS OF VIEW

Even with respect to the way that they execute those
two missions, debuggers are a pretty diverse lot. Ev-
ery debugger falls into one of three categories that
turn on the way the debugger (and, hence, you the
programmer) view the program under examination.
This matter of point of view is critical. There are two
points of view from which to examine a computer
program: the machine’s point of view, and the pro-
grammer’s point of view.

The machine sees the program as a series of ex-
ecutable binary instructions in memory, which are
located alongside other memory locations that are
set aside to store binary data. The machine’s view
also includes a set of values in machine registers that
continually change as the program executes. In ad-
dition, there may be I/0 ports that transfer data to
and from the outside world.

Since the invention of high-level languages, such
as C and Pascal, the programmer has had quite a dif-
ferent view of a program. A high-level language
groups incomprehensible machine instructions to-
gether into higher-level program statements that are
more easily read, remembered, and understood. The
language also partitions data storage memory into
named chunks that reflect familiar concepts in the
human culture: yes/no answers, numbers, charac-
ters, values that are grouped into indexed arrays or
named records, and so forth. The state of machine
registers is usually hidden from the programmer’s
view, except in rare circumstances.

You can think of a program as a structure printed
on a piece of paper that is suspended in space be-
tween the programmer (above) and the machine
(below). To the programmer, who looks down on the
program from above, the structure appears to be
made up of program statements and named vari-
ables. The machine, which looks up at the program
from below, sees a conglomeration of memory loca-
tions that contain either machine instructions or bi-

continued on page 50

September/October 1988 TURBO TECHNIX 49

BUG HUNTING

continued from page 49

nary data, plus a scattering of ever-changing regis-
ters. Two different views of exactly the same pro-
gram.

Debuggers are classified based upon whose view
they take. High-level debuggers look over the pro-
grammer’s shoulder, and understand and display
program statements and variables. They cannot dis-
play memory locations, machine instructions, or ma-
chine registers. Low-level debuggers can step through
machine instructions and display blocks of memory.
However, these dubuggers are ignorant of high-level
languages, and have no knowledge of program state-
ments or variables. Full symbolic debuggers sit on the
fence between the two worlds, embracing both of
them. On the one hand, these debuggers understand
high-level languages—they can step through a C or
Pascal program line by line, displaying the contents
of program variables as they go. On the other hand,
full symbolic debuggers can also show the machine’s
view of memory, instruction opcodes, and machine
registers. Best of all, these debuggers can show the
synergy between the two views of a program—vari-
ables that are loaded into machine registers; pro-
gram statements that display beside their equivalent
machine instructions; and data that moves among
variables, registers, and 1/0 ports.

The classic low-level debugger is DOS DEBUG,
which is included with every copy of DOS. Inter-

EASY

DATA ENTRY
WINDOWS
MENUS
HELP

If you are serious about programming

PLEASE try HI-SCREEN XL!

HI-SCREEN XL"
-
$149

only e .
Multilanguage support
No Royalties
| 30-day risk free

Call now for demo and information:

1-800-338-2852

in CA: (415) 397-4666

You may like other screen management tools,
but you will love HI-SCREEN XL.”

Softway, Inc., 500 Sutter St., Suite 222, San Franmsco, CA 94102

preted BASICA, with its TRON and TROFF state-
ments and BREAK/CONTINUE feature, is part
high-level debugger. Full symbolic debuggers include
SYMDEB, Periscope, and CodeView.

Up until now, the Borland line has been missing
an entry in the important category of debugging. But
now, as the cover theme of this issue of TURBO
TECHNIX indicates, we're introducing three differ-
ent debuggers that capably fill the vacuum.

INTEGRATED DEBUGGING

Both Turbo Pascal 5.0 and Turbo C 2.0 contain high-
level debuggers that are intimately intertwined with
both languages’ Interactive Development Environ-
ments. We call these new debuggers the Borland In-
tegrated Debuggers, because they’re always beside the
compiler, ready to go, while you're putting your pro-
grams together. I offer a close look at Turbo Pascal
5.0’s Integrated Debugger on page 12 of this issue;
Kent Porter leads a tour through Turbo C 2.0 and its
Integrated Debugger on page 62.

The Borland Integrated Debuggers handle most
program development, especially with respect to
small programs and programs that don’t perform a
lot of black magic. On the other hand, the larger
and the more ambitious your programs become, the
greater the chances that you'll concoct a bug that is
beyond the grasp of the Integrated Debuggers. The
pursuit of system-level code crickets requires the
synergy of a full symbolic debugger—and now you
can turn to Turbo Debugger. (If that won’t find ’em,
you’d better go have a look at your toggle switches.)
Michael Abrash shows you around the multi-win-
dowed mechanisms of Turbo Debugger on page 52
of this issue.

Turbo Pascal 5.0 contains a few other surprises as
well. Overlays are back, as Bruce Webster describes
on page 38. Procedural types (long a part of Modula
2) are now part of Turbo Pascal, and Neil Rubenking
uses them to create a generalized file search engine
on page 27. Turbo C’s floating point support has
seen a few enhancements, as Roger Schlafly points
out on page 67 in the sequel to his January/Febru-
ary, 1988 cover article, “Floating Point in Turbo C.”

Finally, Borland has released Turbo Assembler as
a companion product that ships with Turbo Debug-
ger. While retaining full compatibility with MASM
5.x, Turbo Assembler also offers Ideal mode, which
is a new and more comprehensible syntax for assem-
bly language, plus 286/386 support. Tom Swan intro-
duces Turbo Assembler’s features, including the new
Ideal mode syntax, on page 120.

The more power you have, the more ways there
are to go wrong. In future issues of TURBO TECH-
NIX, we’ll pursue our ongoing mission of putting
useful programming techniques in your hands. At
the same time, we’ll provide more information about
fixing things that don’t work the first time out. Re-
member: Assume nothing. Examine everything. And al-
ways use the best tools that you can bring to bear on
the problem. W

50 TURBO TECHNIX September/October 1988

THE LIGHTNING WAY TO C”

PRO-C. The first complete ‘C’ application tool that .
produces ‘C’ code. Programming can now be easier g
and routine coding problems are now eliminated. The

only source code generator that runs on MSDOS,

QNX, XENIX and UNIX, PRO-C has the ability to b
reproduce the normal functions of complex application ¢

software. “ @

@ DATA DEFINITION
Utilizing the integrated PRO-C generators to create menu, f
screen and report programs or batch processes.

@ INTEGRATED GENERATORS
Screens Menus Reports Batch processes. f

"
y
A‘.
A il
~
> -
L]
'

Combined they can generate any business or databasg
application. e

®CONTEXT - SENSITIVEHELP .~ |
Complete context sensitive help is ava//ab/e at the
touch of the help key. -~

o UTILITIES

Professional utilities allow the se/ect/on of your
aevelopment environment, on line help for generated
programs and full program documentation.

Call today for more information. Toll free -~ N
1-800-265-8887 north America Only. . P
Chancelogic Inc.] 8

Allen Square, 180 King St. South, Waterloo, Ont) /

Canada N2J 1P8. . /

Tel: 519-745-2700.

Fax: 519-746-1613.

PRO-C — CHANCELOGIC INC. XENIX and MSDOS — Microsoft Corp. QNX — Quantum Software { ! _
Systems Ltd. UNIX — AT&T Bell Laboratories. N

7 [.
’

TURBO DEBUGGER: THE VIEW

FROM WITHIN

Borland’s new Turbo Debugger adds unprecedented
symbolic debugging power to Turbo C and Turbo Pascal.

Michael Abrash

Long ago, I made a comfortable living
writing video games for the PC. Whenever
I ran into a bug, I had no choice but to
fire up DEBUG, the debugger IBM then
provided free with DOS. DEBUG wasn’t
much of a debugger, since it had just one
kind of breakpoint, couldn’t display data structures,
and could only debug at the assembly language level.
In fact, the only thing DEBUG had going for it was
that it was better than the alternative, which was
nothing.

As you'll read elsewhere in this issue, Borland has
closed the debugging gap in a big way by adding in-
tegrated debugging to both Turbo Pascal (p. 12) and
Turbo C (p. 48). Still, because each of the integrated
debuggers has to squeeze into memory along with
an editor, a compiler, a linker, and a user program,
the integrated debuggers are inescapably less pow-
erful than standalone debuggers. Certain debugging
problems, such as runaway pointers, complex error
conditions, debugging of assembler code, and the
like, absolutely require a state-of-the-art symbolic de-
bugger. Unfortunately, advanced debuggers tend to
be difficult to use, and are generally more suited to
debugging assembly language than Pascal or C pro-
grams. The ideal debugger would not only be state-
of-the-art in terms of sheer power, but also would be
as easy to use for high-level languages as for
assembler.

Borland’s new Turbo Debugger fits that descrip-
tion to a T. Equally at home with Turbo Pascal, Turbo
C, or Turbo Assembler programs, Turbo Debugger
offers an intuitive interface and a suite of debugging
features that take software-only debugging to the lim-
its of possibility. On 386-equipped systems, Turbo
Debugger can put the advanced capabilities of the
80386 CPU to work to provide limited hardware as-
sistance in terms of hardware breakpoints. Another
386-based debugging breakthrough allows the de-
bugger to run in 386 protected mode and the appli-
cation being debugged to occupy a separate virtual-
86 partition. This means that your application can be
as large as necessary without crowding the Debugger

PROGRAMMER

out of DOS memory. Furthermore, the application
can reside at the same addresses that it will occupy
on its target system.

Let’s take a closer look at Turbo Debugger, and ex-
plore the situations when you might want to step up
to Turbo Debugger from your Turbo language’s in-
tegrated debugging.

ADVANCED DEBUGGING FEATURES

At heart, there’s only one question to ask about a de-
bugger: “How well does it let me catch error condi-
tions in my programs?” The key to catching error
conditions is breakpoint capability—and Turbo De-
bugger is extremely powerful in this area.

Breakpoint capability normally refers to the ability
to instruct a program to stop for examination when
a certain line of the program is reached. Turbo De-
bugger has all of the standard breakpoint features.
A breakpoint can be set simply by pressing the F2
function key on the line where you want the break
to occur, or a break address can be specified by way
of the Breakpoints menu. A program can also be
executed either one source code line or one assem-
bly language instruction at a time, and can either
step over or trace into subroutines. Alternately, you
can just sit back and watch your PC screen change as
Turbo Debugger runs a program line-by-line at a re-
duced speed. You can have Turbo Debugger run to
a certain line by pressing F4 on that line; to run
Turbo Debugger to the end of a function, simply
press Alt-F8.

These are fairly standard debugger breakpoint ca-
pabilities—and Turbo Debugger goes even further.

Turbo Debugger lets you stop a program either
when a memory location is changed, or when an ex-
pression becomes true. (By the way, expressions can
be evaluated in the notation of the language of your
choice—Pascal, C, or assembler—at any time, and
these expressions can even contain functions.)
What's more, you can select the number of times that
a breakpoint condition must occur before it causes
a break, so that you don’t have to wait through 100

continued on page 54

52 TURBO TECHNIX September/October 1988

THE VIEW FROM WITHIN

continued from page 52

iterations of a loop if the case you're interested in
occurs during the 101st pass. Alternatively, Turbo De-
bugger can record occurrences of a given breakpoint
in its ongoing log; later, you can refer back to the log
to see how the current state was reached. You can
also record comments and data dumps into the log,
and can record the log to disk. Perhaps most remark-
ably, you can instruct Turbo Debugger to execute the
expression of your choice at a given breakpoint;
since such expressions can modify variables, this
gives you a way to temporarily patch a line of code
into a program without leaving—or even restarting—
a debugging session. As I'll show later, these sophis-
ticated data breakpoints let you catch bugs that might
otherwise take hours to find.

There’s a price to be paid when the more sophis-
ticated breakpoints are used. Programs run more
slowly when a changed memory location breakpoint
is active, for example, since Turbo Debugger must
stop after each line to see whether the breakpoint
condition has been met. To speed things up, Turbo
Debugger offers an option that combines code and
data breakpoints. You can specify that a given data
breakpoint should only be checked when a given
line is executed; if you know where but not when a
bug occurs, you can quickly reach that point with a
combined code and data breakpoint.

To facilitate the use of hardware breakpoints,
Turbo Debugger contains a device-driver interface
that allows it to work with third-party hardware de-
bugger products from vendors such as Atron and
Periscope. The first such Turbo Debugger-compatible
product has already appeared, in the form of Purart’s
Trapper board (see accompanying sidebar). A device
driver is shipped with Turbo Debugger that allows
the use of the 386 CPU’s built-in hardware debug-
ging features without additional hardware.

THE USER INTERFACE

While breakpoints are a prominent feature of any
debugger, the user interface makes the power of a
debugger readily available. Turbo Debugger expands
upon the familiar Borland windowing interface in a
number of ways.

Look at the context. For starters, Turbo Debugger is
highly context-sensitive. Help is context-sensitive.
Local variables are popped up for inspection from a
default scope that is determined by the cursor’s loca-
tion in the source code. The default language con-
vention by which expressions are evaluated depends
upon the type of source module being debugged. If
Turbo Debugger thinks you're looking at a string, it
displays that data as text; otherwise, the data is dis-
played as hex bytes. Default responses to prompts
are based on the text located below the cursor. In
many cases, text can be highlighted on the screen
and then can serve as the response to a prompt; this
saves considerable typing.

Open a window. Turbo Debugger’s basic screen con-
sists of any number of windows, with pull-down
menus on the menu bar at the top of the screen. At
your option, windows may overlap to any degree or
not at all. Figure 1 shows a Turbo Debugger screen
that contains three windows and a pull-down menu.
You can readily rearrange, resize, and move between
the windows with either hotkeys or menu com-
mands. Window configurations can be saved to disk
and reloaded later. In addition, Turbo Debugger al-
lows you to undo the last window close, so you can
quickly recover if you close a window and then de-
cide you need that window after all.

Local menus. Each type of window has a specific
purpose. There are windows for viewing source
code, viewing the CPU state, inspecting data struc-
tures, watching variable values, dumping memory,
and more. Consequently, different actions are ap-
propriate to different types of windows. Rather than
try to cram the commands for all of the windows
onto the single menu bar at the top of the screen,
Borland instead chose to implement local menus. A
local menu is a popup menu specific to the window
that is currently active. The local menu for the cur-
rent window can be popped up at any time by press-
ing Alt-F10. Figure 2 shows the local menu for the
module viewer window.

Hotkeys and other tricks. As usual, Borland has pro-
vided hotkeys as a quick way to select many menu
items. To help you remember the many hotkeys, the
bottom line of the screen (known as the help line)
shows the available hotkeys at any given time. If you
hold the Alt key down, the help line shows the Alt
hotkeys. Hold down the Ctrl key, and the Ctrl hot-
keys are displayed. The Ctrl hotkeys are also hotkeys
into the current local menu, so holding down Ctrl is
a good way to see the local menu commands that are
available at any time.

The Turbo Debugger interface provides other
handy features. For instance, it maintains history lists
of your responses to prompts. When a given prompt
is issued, your recent choices are displayed as well;
you can save considerable typing by reusing or mod-
ifying one of your earlier choices.

As another convenience, whenever Turbo De-
bugger presents an alphabetized list (such as the list
of global variables in the variables viewer window),
you can start typing the name of any item in that list.
As you press each key, Turbo Debugger instantly dis-
plays the next item in the list that matches the key-
strokes you've entered so far. This is quite handy if
you use hundreds of variables and can’t remember
all of the letters in a given variable.

THE VIEW FROM WITHIN

As you can see, Turbo Debugger’s user interface is
designed to let you work as efficiently as possible—
but what does it actually let you do? Briefly put, the
interface offers very flexible ways to view and modify
code and data within an executing program.

54 TURBO TECHNIX September/October 1988

ile iew reakpoints ata Window

odule: demo File! demo.c 38

un ptions

main: main()

B1EErpush
>5:B1EF mov
B1F1 sub

cs:B1F4 push
s :B1F5 push
molt28

'6 mov

int Done = B; /* set to
word ptr [bp-86]

s.00P0 AP PG 0B BB 54 75 72 62

5:0088 6F 2D 43 20 2D 268 43 6F

reakpoints ata indow ptions

Inspect
atch

|'l|1|l]~"
ile.i,

rev l ous

i

earch...
ext
rigin
Do, .
dit

Help

Pick a level. You can view code at either the source
code or assembly language level. If you view code at
the source code level (in a module viewer window),
you don’t need to see individual instructions, regis-
ters, or flags unless you want to. At this level, code
can be single-stepped a source-level statement at a
time. If you view code at the assembly language level
(in a CPU viewer window), you can see every detail of
the program as it executes. Here, code can be single-
stepped an instruction at a time. As an alternative to
viewing code with either method individually, both
module and CPU viewer windows can be displayed
simultaneously so that you can watch code execute
at both levels.

Alt-F6

ne to log

Figure 1. Turbo Debugger’s window-
ing user interface. Each function oc-
cupies a separate window. The win-
dows may overlap or not, as desired.

"

Figure 2. The local menu of a module
viewer window.

Any or all of the source modules in a program can
be viewed at any time. You can search the source
code for a text string, just as you would search for a
text string in a text editor.

Follow the trail. The stack viewer window shows the
function calling trail that led to your current location
in the program. You can move to any function in the
stack viewer window and see that function’s local
variables and actual parameters.

Code can be assembled directly into the program
for patching purposes, although those changes are
only made to the program in memory. Such changes
are lost as soon as the debugging session is ended,
or the program is reloaded.

continued on page 56

September/October 1988 TURBO TECHNIX 55

THE VIEW FROM WITHIN

continued from page 55

Show me your data. Now we come to viewing data.
The dump viewer window lets you display any area of
memory in hex and ASCIL You can specify the area
of memory to dump with any expression that re-
solves to a memory address. You can modify memory
while you view it in either hex or ASCII. Hex values
can be displayed in a variety of formats, including
bytes, words, longs, and IEEE floats, and can be fol-
lowed as pointers via local menu commands.
Expressions can be evaluated at any time, and the
format in which the result displays can be controlled.
Expressions can modify variables directly by assign-
ing values to them. In many cases, an expression can
generate a value that is stored into memory.

WATCHES AND INSPECTORS

Turbo Debugger also understands variables at the
source code level—and that’s where the real power
of Turbo Debugger’s data access features becomes
apparent. Turbo Debugger not only knows about lo-
cal variables (automatic and static) and global vari-
ables, but also knows about data types, pointers, ar-
rays, structures, and unions. Named variables are
automatically displayed according to their original
source code data types in either the watches viewer
window or the data inspector window.

The watches viewer window, which normally occu-
pies the bottom of the screen, is the standard way to
keep an eye on the values of selected variables dur-
ing program execution. This window lets you select
one or more variables for display. (Actually, any ex-
pression that resolves to a value may be displayed.)
Structures and arrays can also be displayed. In addi-
tion, any memory location displayed in the watches
viewer window can be modified.

Data inspector windows are something else alto-
gether. These windows not only show the source
form of variables, but can also readily follow point-
ers, scroll through arrays, display nested structures,
and the like. Where watches viewer windows are use-
ful for posting the values of several variables, data
inspector windows are ideal for delving into the de-
tails of a specific variable or data structure. If the cur-
sor is located on the name of an array, pressing
Ctrl-I pops up a data inspector window for that array
on the spot. If the cursor is located on the name of
a pointer, an inspector can be popped up to show
that pointer’s referent, and another data inspector
window can even be popped up from the first inspec-
tor to show additional information about the refer-
ent. Data inspector windows can be chained to fol-
low a linked list of pointers, or to examine an array
of structures or a structure that contains arrays.

The data addressed by any expression that re-
solves to an address can be inspected, and type-

casting can be performed on any such expression.
Variables that appear in the module and watches
viewer windows can be inspected simply by pressing
Ctrl-I. Variables in a data inspector window can be
modified. Functions, local variables, and passed pa-
rameters can even be inspected by selecting them
directly from the source code in a module viewer
window.

More than any other feature, the data structures in
modern programming languages set these languages
apart from their predecessors. With data inspector
windows, Turbo Debugger puts data structures at
your fingertips.

THE DEATH OF HEISENBERG

Turbo Debugger offers a number of advanced fea-
tures that let you take on debugging problems that
go beyond the merely difficult to the brutal. One
such problem is the debugging of very large pro-
grams. The difficulty here is that a large program, a
debugger, and the information that the debugger
needs to maintain about the program often can'’t all
fit into the 640K DOS address space at the same
time. Turbo Debugger provides three different solu-
tions to this problem.

EMS storage. First of all, Turbo Debugger can store
the table of information about a program’s symbols
in EMS memory (if EMS memory is present), thereby
freeing the DOS memory that the table normally oc-
cupies and making that DOS memory available to
the program being debugged. Furthermore, EMS
memory can be shared between Turbo Debugger
and the application being tested.

Separate but linked. Second, if two computers are
available during development, Turbo Debugger can
be moved away from the target application to run on
another PC altogether, with debugging control taking
place over a serial link between the two machines. In
this configuration, Turbo Debugger needs only about
10K RAM on the target computer. This leaves plenty
of memory for the application.

Virtual-86 partitions. Turbo Debugger’s third solu-
tion to the problem of debugging large applications
is particularly exciting. Turbo Debugger can take ad-
vantage of the virtual-86 feature of the 80386 and
split memory into a virtual-86 partition for your ap-
plication being debugged and a 386 protected mode
partition for Turbo Debugger. This arrangement car-
ries two benefits: First, any program that runs on a
PC system can be debugged, no matter how large the
program is. Second, the program being debugged
loads at exactly the same memory location in the vir-
tual PC as the program would in a standard PC if
that program weren’t being debugged, and the nor-
mal amount of memory is available in the PC for the
program to use. As a result, in 80386 mode Turbo
Debugger eliminates the interference with the target
program that other debuggers inevitably introduce.
This interference is sometimes called the “Heisen-
berg effect,” after the famous physicist who demon-
strated that it’s impossible to observe subatomic
interactions without altering them. With the combi-

56 TURBO TECHNIX September/October 1988

nation of Turbo Debugger and a 386, it’s possible to
observe a program’s inner workings without the ob-
server getting in the way.

SCREENS AND KEYS

Another problem that arises during the debugging
process is that both the debugger and the target ap-
plication want to use the entire screen display. Turbo
Debugger offers a number of screen-handling solu-
tions. The debugger can switch between the user
screen and the debugger screen, use a second dis-
play, use the extra text pages of color adapters, or
turn off user display updating altogether. If none of
these options is ideal for a particular program, the
two-machine remote debugging approach described
earlier, which solves all display-related problems, can
be used.

Turbo Debugger allows the text editor of your
choice to be invoked directly from the debugging en-
vironment. You can then return to the debugger and
make changes to programs (or to data files) the in-
stant you recognize a bug. Similarly, files can be
viewed and modified directly from a file viewer
window.

Keystroke sequences can be assigned to keys, and
those keys can then be used instead of lengthy hand-
typed command sequences. These keyboard macros
are useful for quickly returning to a specific place in
a program; once the key sequence that gets you to a
given point is recorded, you can return to that point
at any time with a single keystroke.

Turbo Debugger can disassemble all 8086, 80286,
80386, 8087, 80287, and 80387 instructions, both real-
and protected-mode. It can also assemble all 8086,
80286, 8087, 80287, and 80387 instructions, plus most
80386 instructions. Turbo Debugger provides full
support and a special window for the 87-family nu-
Meric COProcessor.

Turbo Debugger is, as you'd expect, designed to
complement the latest generation of Turbo lan-
guages: Turbo C 2.0, Turbo Pascal 5.0, and Turbo As-
sembler 1.0. The current releases of Turbo Basic and
Turbo Prolog are not supported, but future releases
will be supported. If you use a compiler or assembler
from another vendor, you may still be able to use
Turbo Debugger, since it also supports programs
compiled for use with Microsoft’'s CodeView de-
bugger through a conversion utility. In addition, you
can always debug any program at the assembler level
with Turbo Debugger, regardless of the language
with which the program was created.

WHEN DO YOU NEED TURBO DEBUGGER?

Now that you have an idea of what Turbo Debugger
can do, the next question is when you might need to
move up from integrated debugging with your favor-
ite Turbo language to Turbo Debugger.

More and better. Turbo Debugger can help when you
feel that you need more sophisticated breakpoints,
or better display of data structures, than integrated
debugging offers. For example, if a given flag is set

to an incorrect value every 50 times that a function
is called, you'd be much better off having Turbo De-
bugger break on the incorrect value, rather than
break on the function 50 times in the integrated de-
bugger so that you have to manually check the value
of the flag each time.

Similarly, if you're having problems with nested
structures, structures of arrays, or complex pointers,
Turbo Debugger is the way to go. The data inspector
windows of Turbo Debugger are simply the best tool
around for examining complex data structures.

Low-level action. Turbo Debugger becomes abso-
lutely necessary when you need to observe low-level
machine functions in action. Integrated debugging
is confined to entities that are defined by and under-
stood by the high-level language that this debugging
serves: constants, variables, and high-level language
statements. If your program directly accesses DOS
functions, BIOS functions, BIOS variables, interrupt
vectors, display memory, or I/O ports; if you need to
access memory directly from the debugger or need
to know the actual addresses of variables; or if you're

continued on page 58

PURART’S TRAPPER
BOARD

Turbo Debugger’s 386 hardware debug support
proved to be so compelling during testing that a
hardware manufacturer has designed and is now
offering a low-cost support board for non-386 sys-
tems. Trapper provides a single hardware break-
point that may be set to trigger on one contiguous
range of memory or I/0O addresses. The trigger
may be set to occur either when any address
within the range is accessed, or when any address
outside of the range is accessed. Trapper can be set
to recognize read accesses, write accesses, or both.
Thus, Trapper could trap intended writes to a
buffer that “miss” the buffer somehow, or it could
trap unintended writes to a DTA or to the inter-
rupt vector jump table. The board can also distin-
guish between data and instruction access, thus al-
lowing (among other things) for breakpoints to be
set in ROM.

Trapper does not contain protected RAM in the
fashion of Periscope Corporation’s Submarine
board, nor is it intended to compete with high-
end hardware debug products such as those from
Periscope and Atron. The idea is to give 8088 and
286 programmers some of the same hardware as-
sistance that 386 users can tap from the CPU itself.

Trapper was designed by Purart, Inc., of Hamp-
ton Falls, New Hampshire, and will sell for
$149.95. For more information, contact:

ImageSoft

6-57 158 ™ Street
Beechhurst, NY 11357
(718) 746-9069

—Michael Abrash

September/October 1988 TURBO TECHNIX 57

Turbo C 2.0 program for use in a sample Turbo Debugger
debugging session. The bug: The Text array in the
TextBlock structure does not include space for the
terminating zero byte. The solution: Dimension the
Text array to (BUFFER_LENGTH + 1) characters in length.

By Michael Abrash 6/18/88

#include <stdio.h>
#include <alloc.h>

/*

Number of characters buffered per text block. */

#define BUFFER_LENGTH 20

/*

Structure we'll use to store text in. These structures
are combined into a singly linked list, with one
structure per allocated memory buffer. */

struct TextBlock ¢

char Text [BUFFER_LENGTH]; /* text buffer */
struct TextBlock *NextTextBlock; /* pointer to next
text block */

THE VIEW FROM WITHIN

continued from page 57

interested in the actual assembly language code gen-
erated by Turbo Pascal or Turbo C, you need Turbo
Debugger.

A SAMPLE SESSION

In this section, I'll show how Turbo Debugger lets
you catch a subtle bug that could be infuriating to
find when using a less-capable debugger. Listing 1
shows a Turbo C program that stores any amount of
typed text (converted to uppercase) in a linked list of
structures, which are allocated on the fly as they’re
needed. When all of the text is entered, the program
prints the uppercase text. The task is simple enough,

b H .
but a bug turns up when the program is run and the
e following lines are typed in:
int c; /* temporary storage for a character */ : $
int Done = 0; /* set to 1 when all text is buffered */ First l".1e
int TextCount; /* location in the current text buffer */ Second line
struct TextBlock *FirstTextBlock; e Third line
/* Points to the text block that 2
starts the linked chain. */ F(_)Ul‘th ':]ne
struct TextBlock *CurrentTextBlock; Fifth line
/* points to the current text block */ Sixth line
struct TextBlock *NewTextBlock; 2
/* points to the next text block */
e cet the initial text Elock %7 When these lines are entered, the text shown in Fig-
£ ¢ !(Firs?TextBlock = CurrentTextBlock = ure 3 results.
malloc(sizeof(struct TextBlock)))) € v 5 5
/% Ve couldn't get any memory */ Clearly, something is wrong—but where? To get a
A0 A handle on the problem, load the program into Turbo
Debugger and move the cursor to the following line,
/* Buffer the text the user types, allocating memory as lOCathJUSl bCfOI"C the ﬁnal dO lOOpZ
it's needed * ;
TexlCotsm':: 0; ! CurrentTextBlock = FirstTextBlock
while (!D) € s 3 3 2
A Getiheires € charoctenss/ Pressing F4 at this point instructs Turbo Debugger to
ST execute the program to this line and then to stop. Af-
/* 1t's the end of the file, so we're done */ ter the six lines of text are entered, Turbo Debugger
- . .
A L e e breaks at the selected line and brings up the debug-
CurrentTextBlock->Text[TextCount] = 0; ging interface. At this point, all of the entered text is
/* Mark that this is the last text block in the . 3 .
linked List */ supposed to have been stored in a linked list of
CurrentTextBlock->NextTextBlock = 0;
/* We've gotten all the text */ TextBlock str_uctures. 5
5 s 1; Here, data inspector windows can be used to great
else { . .
7% Bofter the'characterivy advantage. To create a data inspector window, press
CurrentTextBlock->Text [TextCount++] = toupper(c); Ctrl-I with the cursor positioned over any occurrence
if (TextCount >= BUFFER_LENGTH) {
/* This buffer's full, so allocate another of FirstTextBlock in the module viewer window. The
- .

e e window that appears shows the first TextBlock struc-
CurrentTextBlock->NextTextBlock = ture, which contains the first 20 text characters and
malloc(sizeof(struct TextBlock)))) € : .

#5is Coulikiit geb any more mewory 7 a pointer. This structure looks fine, so move the cur-
2;;'::%',‘0‘" of memory\n''); sor to the NextTextBlock field of the structure and

7 8 510t he ndof he e uter, B L Tk e por Moek Thetesticts
making it a string */ ’

CurrentTextBlock->Text [TextCount] = 0; hown in Figure 4.

/* Start buffering at the beginning of this g O. gure . ; 5 s 5
text block's text buffer */ Figure 4 makes it plain that something is wrong with

TextCount = 0; $ <

76 Wika, G ity SUlGented text Block: the [l}e location to wh{ch the NextTgxtBlock ﬁe.Id of

o Tre amk Block sl FirstTextBlock points. The data inspector windows

urrentTextBlock = NewTextB H .
) il show clearly that the block of data to which the first
3% link points does not contain the correct text. Two ex-
planations are possible: at some point in the pro-
/* Print out the uppercase result, starting with the x -
text stored in the first text block and continuing gram, either the second TextBlock structure is filled
until the last text block (the text block with a with garbage, or else the NextTextBlock field of
null link) has been displayed */ . . s
CurrentTextBlock = FirstTextBlock; FirstTextBlock is set to point somewhere other than
do (
s B to the second TextBlock structure.)
CurrentTextBlock = CurrentTextBlock->NextTextBlock; Turbo Debugger lets you check both cases simul-
) while (CurrentTextBlock); .
taneously. First, set the program back to the start by
selecting Program Reset from the Run menu. Then
58 TURBO TECHNIX September/October 1988

E>demo

First line

Second line

Third line

Fourth line

Fifth line

Sixth line

o2

FIRST LINE

SECOND LIiigYVi B

100 15UTeLLi} 7973707 60mIJE
UNBA/Y&eF ot N3LP ve3f Piif
UriodB3LI5UT=UlT "#Tw&i\
TaeiDe; [lr? 4Wiis

ULYY§t t97 [|iTe+ PiioB%4YY_"15UToUWT "@Twai\
Taed t'iDe; |jr? 4Wiin

Figure 3. The bug’s telltale. Bugs
have an affinity for “garbage” in pro-
grams, much as they do in real life.

P 60mUZ9--YY 6lalf_"Y3L 51 a0mi_&Caetus3fswgeF

UrYYda tO7 [T+ PU<BY%4YYIB3L "15UT=Ui "¢ TwdiDe9#Bq " 15UT=VUi4>Bq1E3LPS vef3 " ia]

2yY8Lu, T R [D8eq
«9Eedn Pi |ra®EePLENT [KensuSi “#XeGeiHi C

E)-

iew un reakpoints ata indow

odule: demo File: demo.c 92

ptions

@5584:FFCE : ds:069C
Text "FIRST LINE\nSECOND
Inspecting NextTextBlockSs

5584 :06B8 : ds 0808
Text "\x0B\xBO\xBANxE
struct TextBlock *

it

-Trace

2-Bkpt F3-Close F4-Here '—Zbon -Next | tep
move the cursor to the second occurrence of
CurrentTextBlock->Text[TextCount] = 0 and press
F4; this step runs the program up to the point at
which FirstTextBlock->NextTextBlock is set. After
the following text is typed in, the breakpoint is
reached, and the debugger interface comes up:
First line
Second line

Now, put a watch on FirstTextBlock->Next-
TextBlock by selecting Watch. .. from the Data menu

and entering the following:
FirstTextBlock->NextTextBlock

The watch shows that the next text block is at offset
8C6H. Use the Changed memory global... selection
in the Breakpoints menu to instruct Turbo Debugger
to stop whenever the value of the FirstText-

‘9-Run |

Figure 4. Using inspectors to trace
pointer referents.

#-Menu

Block->NextTextBlock field is changed. Now, if any
line in the program modifies the pointer to the sec-
ond text block at any time, Turbo Debugger breaks
back to the user interface, so there’s no way that the
link to the second block can possibly be trashed
without you knowing about it.

The other possible cause of the problem is trash-
ing of the text in the second text block. To check this
possibility, put a breakpoint at the line that stores

each character:
CurrentTextBlock->Text [TextCount++] = toupper(c)

To do so, move the cursor to that line, and press F2.
This step allows you to ensure that the correct char-

continued on page 60

September/October 1988 TURBO TECHNIX 59

ile un
odule: demo File! demo.c 88

reakpoints ption

THE VIEW FROM WITHIN

'T' 73 (Bx49)

continued from page 59

acters are being stored to their proper location.
Once you've verified that the block is filled properly
(if it is), you can set a breakpoint on any modifica-
tion of the first character of the Text field of the sec-
ond TextBlock structure in order to catch any state-
ment that might be trashing that block.

We're ready to catch the bug. Run the program by
pressing F9, then sit back and watch the results
come in.

In this case, you won'’t have to wait long. The pro-
gram breaks on the very next line:

TextCount = 0

This means that the following line changed
FirstTextBlock->NextTextBlock:

CurrentTextBlock->Text [TextCount] = 0

The watches viewer window agrees, reporting that
FirstTextBlock->NextTextBlock has changed to
800H.

How could this possibly have happened? Veteran
programmers will spot the problem right away: Text-
Count points past the end of the Text array, so that
the final zero is stored right over the variable that re-
sides immediately after Text; this variable just hap-
pens to be NextTextBlock. Since the lower byte of
NextTextBlock is forced to zero, NextTextBlock
now points not to the next text block, but rather to
some random area of memory. Thus, the link be-
tween the text blocks is broken. The fix is a simple
matter of dimensioning the Text array to BUF-
FER_LENGTH+1 characters in size.

Let’s examine how to narrow the cause of the bug
further (as we would have needed to do in this ex-
ample if we hadn’t immediately recognized the na-
ture of the problem). Bring up a watch on Text-

READ)
1

i Inspecting FirstTextBlock-)>TextS5H

Figure 5. The problem’s solution.
TextCount points past the end of the
Text array. A zero has been written
over the first byte of the next variable
in memory, which is part of pointer
NextTextBlock. The corrupted pointer
points to a random location, where
garbage lives.

Count (which reveals that TextCount is 20 at this
point in the program), and then bring up an inspec-
tor on FirstTextBlock->Text and scroll to the end of
the Text array (at this point, the data inspector win-
dow appears as shown in Figure 5). The inspector
shows that Text is only 20 characters long, and won’t
let you scroll past element 19; at the same time, the
watches viewer window shows that TextCount is 20.
To go further still, we could create two dump viewer
windows to dump the memory at both
FirstTextBlock->Text[TextCount] and
FirstTextBlock->NextTextBlock; these windows
would show that both variables refer to the same
address. That should narrow it down enough for
anyone!

WINDOWS WITH A VIEW

The ability to see what happens within a program is
by far the largest part of finding any bug. Turbo De-
bugger offers the power to watch every part of a pro-
gram in action, from the high-level statements of the
host language through the binary representations of
large data structures, down to the bare machine reg-
isters and memory locations. In a program, many
things happen at once—Turbo Debugger’s win-
dowed architecture lets you keep an eye on them all.
It makes good use of any machine’s resources, but
it’s especially powerful when paired with the 80386
CPU.

Turbo Debugger makes large-scale development
with the Turbo languages easier and faster than ever
before. The view is the power—look into it. W

Michael Abrash is a senior software engineer at Orion
Instruments, in Redwood City, California.

Listings may be downloaded from Library 1 of Compu-
Serve forum BPROGB, as DBDEMO.ARC.

60 TURBO TECHNIX September/October 1988

A Deal You Can’t Refuse ..700 Functions, 20 Disks, Free Software
€ntelekon’s

C Business Library

or C STARTER PACKAGE

FREE* FREE* FREE*
TURBO C® or QUICKC™ or C MATH TOOL BOX
Borland Microsoft 89 advanced

math/stat functions

*OR FREE REFUND if you already own one, see special offer (limited time)

What You Get With €ntecleckon Libraries

r“ A C COMPILER without a good add-on library is like a PC without a keyboard. ..
it won’t do what you want it to do!
r* GAIN C POWER Add capabilities your compiler library does NOT have. e.a.:

&= New! Qwick Menuing—full 1-2-3 like menus & more @& New! Qwick Data Entry with dialog boxes
== Flexible powerful windowing + new Qwick windows & Formatted, fully validated data entry

= Powerful cursor, video and attribute control = Display default field values

= Time and date arithmetic @& Calculator style entry option

= Sample code and working examples @ 700 functions you need

r‘ SAVE TIME, TIME, TIME: man-years on development, calendar months on schedule!
rc’z SAVE MONEY: Lowest Cost, Highest Quality Library/Windows Available!

rﬁ SMALLER PROGRAM SIZE: your application program can be up to 50% smaller!

rc‘z EASY for beginners! POWERFUL for professionals! @O"oo,&
%
r < INSTANT INSTALLATION UTILITY includea! »;;’fé@&o@o; ‘9»(/(
&, 55 0
ré{z SUPERB DOCUMENTATION: time saving, helpful, clear, complete, instructive. 062;’5%" :}}
G O
ri’ BUSINESS USERS: FREE 3 machine site license (C Library & Power Windows). o’@ﬂ%z’@,,é
@ g 2
<" FULL SOURCE CODE included! NO ROYALTIES on products you develop. 4,("0
G ¢
r—ﬂ FREE UTILITY: To convert Turbo Pascal code to C code. 4 8
SAVE MONEY! SAVE TIME! DON’T WAIT! ORDER NOW!
SATISFACTION GUARANTEED (Direct from Entelekon only) CALL (713) 468-4412
POWER WINDOWS™ C FUNCTION LIBRARY B-TREE LIBRARY & ISAM
MOST POWERFUL YET BEST YOU CAN GET DRIVER
POP-UP/PULL DOWN/OVERLAP OVER 500 FUNCTIONS POWERFUL DATA MANAGER
Menus/Overlays FULLY TESTED FAST! EASY TO USE!
Messages/Alarms BETTER FUNCTIONS 16.7 MILLION RECORDS/FILE
ZAP ON/OFF SCREEN Full source code $159 95 16.7 MILLION KEYS/FILE
FILE-WINDOW MANAgElf’ENT Fixed/Variable length records.
Horizontal & Vertical Scrolling Full N It $129 95
Word Wrap & Line Insertion C BUSINESS LIBRARY gagitaghy My
Cursor/Attributes/Borders WINDOWS, SUPERFONTS FOR C. B TREE. C STARTER PACKAGE
Full source code $159.95 HERARY, 1AM INCLUDES C FUNCTION LIBRARY, POWER
P ALLIOE .. v vnismanis e rion $299.95 WINDOWS, SUPERFONTS FOR C
SPECIAL OFFER (A $500.00 VALUE) AT o $199.95
(A $370.00 VALUE)

Free Turbo C or QuickC or C Math
Tool Box with purchase of C Starter

Package or C Business Library. Even ™
if you already own Turbo C or QuickC

or C Math Tool Box, we will refund

up to the full purchase price of one

of these packages with the pur-

chase of C Starter Package or C SINCE 1982
Business Library. 12118 Kimberley, Houston. TX 77024 713-468-4412 VISA-MASTERCARD-CHECK-COD

TURBO C

TURBO C 2.0: THE THRILL

OF THE HUNT

Turbo C 2.0 goes one better with integrated debugging!

Kent Porter

Turbo C has always offered a great “bang

for the buck.” The initial release of Turbo

C provided over 350 library functions, an
- integrated development environment,

and a variety of utilities to aid in program
development. Turbo C 1.5 (introduced last
winter) took a giant step forward with the addition of
the BGI graphics library. Now, Turbo C 2.0 is here—
and with the improvements to the toolset, including
integrated debugging, the language takes another
quantum leap.

Since Turbo C’s debugging features have garnered
so much interest, this article deals primarily with the
Integrated Debugger. First, however, let’s take a
quick tour of all of the enhancements in Turbo C 2.0.

MEET THE NEW TURBO C

For convenience, I've grouped Turbo C’s new and

expanded features into three categories.

Language Enhancements.

® Floating point emulation is faster.

® Long doubles are now supported for greater nu-
meric precision.

® The obsolete ssignal and gsignal functions (which
are leftovers from Unix System III) have been
dropped in favor of signal and raise. This change
improves compatibility with Unix System V.

Expanded Utilities.

® Turbo C 2.0 contains a new .OB]J file cross-
reference utility.

SQUARE ONE

® TLINK now generates .COM files from programs
that are compiled in the Tiny model.

® MAKE supports autodependencies.

New Tools of the Trade.

® Compiles and links are 10-20 percent faster.
® The Turbo C editor can use EMS for the edit

buffer. This can save up to 64K of memory for
compiling and running the program.

LISTING 1: FACTORL.C

/* FACTORL.C: Computes factorial of a keyed number */
/* Repeats until user enters 0 */

#include <stdio.h>

main ()

{

int value, atoi();
long fact();

char input [6];

do {
printf ("\nValue? ");
gets (input);
value = atoi (input);
if (value > 0)
printf ("\nFactorial = Xld\n", fact (value));
else
puts ("\nCannot take factorial of negative number\n");
) while (value);
>

long fact (int val)
{

long result = 0;

if (val)
result = val * fact (val-1);
return (result);
3

62 TURBO TECHNIX September/October 1988

® Wildcards can be expanded on
the application program’s com-
mand line.

® The integrated environment
takes advantage of dual mon-
itors.

® The editor supports unindent,
block indent/unindent, and
optimal fill.

® And, of course, Turbo C 2.0
offers interactive debugging.

The most apparent changes are
in the integrated environment.
The menu bar across the top of
the screen is a little more crowded
by the addition of a Break/watch
selection. Every selection (except
Edit) now has an associated pull-
down menu for greater control
over various aspects of the envi-
ronment and the programming/
debugging session (more on this
presently).

Overall, the environment—
while more comprehensive and
flexible—retains the same general
look and feel of Turbo C’s pre-
vious generations. Unlike the tran-
sition from Turbo Pascal 3.0 to 4.0,
there’s no “culture shock” in mov-
ing to Turbo C 2.0. But there is
plenty to learn, so let’s take a look.

INTEGRATED DEBUGGING

It’s tempting to say that Turbo C
2.0 has added a debugger, but the
fairer statement is that debugging
has been integrated into the
Turbo C environment. Unlike
most debugging packages, Turbo

C’s Debugger is not a standalone
utility. Rather, it’s an integral part
of the environment, seamlessly
folded into the process of writing,
making, and testing programs.

During a debugging session, for
example, you can edit and remake
the source code to fix errors, then
resume the debugging process.
The recompile doesn’t lose track
of breakpoints and watches that
were set earlier; they remain in ef-
fect even if source code is added
or removed. This allows you to
work out the bugs systematically,
without disrupting the natural
workflow.

The power of the C language
has its price: no matter how
skilled the programmer, it’s almost
impossible to write a C program
that runs right the first time. The
language’s flexibility and some-
times obscure syntax encourage
new techniques, and this experi-
mentation inevitably introduces
bugs. Therefore, Turbo C and in-
tegrated debugging go hand-in-
glove.

THE HUNT

To see how a debugging session
proceeds, let’s develop and debug
a simple program to compute the
factorial of a number. To refresh
your memory (in case your alge-
bra has gotten rusty), a factorial is
the series product of a value. For
example, the factorial of 5 (written
5! in mathematical notation) is
computed as 1 X 2 X 3 X 4 X5,
which equals 120.

FACTORL.C (Listing 1) has a
loop in main that repeatedly asks
for a value and prints the value’s
factorial until the user types 0.
FACTORL uses the recursive
function fact to solve for the fac-
torial. The program as listed con-
tains a bug; we’ll hunt the bug
down in order to examine a few
of the Debugger’s features.

The process of editing and
making a program in the develop-
ment environment has not
changed from Turbo C 1.5. The
process of running the program,
however, is a little different. The
Alt-R command now produces a
menu that includes some debug-
ger controls. You can circumvent
the menu and run the program by
using the new hotkey, Ctrl-F9.

When the program is run, it re-
turns 0 as the factorial of any
number. Thus, the fact function
appears to contain a bug.

To prepare a program for de-
bugging, an environmental con-
dition must be set: toggle Source
debugging (located on Turbo C
2.0’s revised Debug menu) to On
(see Figure 1). Also, since you're
dealing with a recursive function,
you might want to check the call
stack to make sure that the recur-
sion is working properly. To do so,
set Standard stack frame On from
the Options/Compiler/Code gen-
eration menu. Now, remake the
program and you're ready to go.

continued on page 64

September/October 1988 TURBO TECHNIX 63

File Edit FRun Compile

Live 1 Col 1

/= FACTORL.C: Computes factorial of a keyed

/% Repeats until user enters 8 »/
#include <{stdio.h>

main ()

{

int wvalue, atoi();
long fact();

char input [61:

do {
printf ("\walue? ");
gets (input);
value = atoi (input);

Project

jptions Debug Break/watch

‘valuate Ctrl-F4
Call stack Ctrl-F3
Find function
Refresh display
Jisplay swapping — Call Stack
ource debugging | fact(@)
e —| fact(1)
fact(2)

printf ("\nFactorial = z1d\n", fact (value)):

else

Watch

Fi-Help 1l++-Scroll I-Ujew call

File Edit Bun Compile

Project

Options Debug Break/watch

Edit

Line 29 Col 11
value = atoi (input

printf ("\nFactor
else
uts ("wnCamot t
} while (value);
}

result

long fact C(int val)
{
long result = 8;

if Cval)
result = val * fact (val-1);

¢

Insert Indent Tab | Evaluate Ctrl-F4

o e Hypluste ——~‘4~4‘——-—~4—-:iJ
e e R A »————————————————i::]
: New value -77~*~~—ﬁ—]

Watch

Fi-Help Esc-Abort

THE HUNT

continued from page 63

THE PROBLEM

The program runs normally until
the fact function is called from
within printf. At that point, stop
the program and observe what's
going on. Set an automatic stop
(called a breakpoint) by moving the
cursor to the statement if(value)
and pressing Ctrl-F8. (As an alter-
native approach, select Toggle
breakpoint from the Break/watch
menu.) Notice that the source line
is highlighted to indicate that it’s
a breakpoint. Now, run the pro-
gram.

The new “smart screen” option,
which is on by default, automat-
ically swaps between the edit
screen and the program display.
Whenever screen 1/0 occurs, the
program display appears. Conse-
quently, the program runs nor-
mally and asks for and receives
values until it hits the breakpoint.
The edit screen then reappears.

A bar, called the execution bar,
highlights the source line where
the program stopped.

One way to proceed is to single-
step, executing one line at a time,
and watch what happens. The
Turbo C 2.0 Debugger has two
single-step hot keys. F7 activates
Trace, which single-steps through
all function calls. F8 activates Step,

Figure 1. Examining the call stack.

Figure 2. The evaluation window.

which “steps over” functions, exe-
cuting them but not tracing their
execution. In this case, since the
bug is probably in the function,
select F7.

However, there’s an easier way
to locate the source of the prob-
lem. Whatever the value you
keyed, fact calls itself that number
of times before it encounters the
return statement. You can save a
lot of single-stepping by setting a
temporary breakpoint at the re-
turn. To do so, position the cursor
on the return statement, then se-
lect Go to cursor from the Run
menu. The program halts when it
reaches the line where the cursor
is positioned.

Now you can examine the state

64 TURBO TECHNIX September/October 1988

of affairs. First, check the call
stack to see if recursion is working
correctly (select Call stack on the
Debug menu). Assuming that the
keyed value is 3, this produces the
display shown in Figure 1. Note
that each invocation of fact is
passed an argument that is one
less than its predecessor. This is
as it should be. So where’s the
bug?

The program consistently re-
ports 0 as the factorial. Examine
the argument of return to see
what the fact function is return-
ing. To do so, place the cursor on
result, then press Ctrl-F4 (or select
Evaluate from the Debug menu).

Ctrl-F4 pops up the expression
evaluation window shown in Fig-
ure 2. A number of things can be
done in this window, such as typ-
ing expressions using C syntax
and viewing the results, or chang-
ing the value of a variable. In this
case, you simply want to see re-
sult’s value. The Debugger copies
the variable name from the cursor
position into the evaluate field.
Press Enter and the value appears
in the middle box. The value that
displays is zero, which explains
why the program returns incorrect
results.

THINKING IT THROUGH

A debugger is a tool for interac-
tively controlling and watching
the execution of a program, and
for examining the program’s in-
ternal conditions. The debugger
can tell you what’s happening, but
it can’t think for you. The ques-
tion is, “Why is the value returned
in result equal to 0?” To find the
answer, you have to inspect the al-
gorithm that yields this value.

In the fact function, result is
initialized to 0. Then, if the argu-
ment has a nonzero value, result
is assigned the value of the ex-
pression, which triggers a recur-
sive call. When the passed argu-
ment reaches 0, the if statement
fails and the return statement
sends back the original value of
result (0). This value becomes one
of the multipliers in the factorial
series:

0 xR 20% 35 s

Zero times anything else is zero.
Consequently, the bug is the result
of flawed logic; result should be
initialized to 1 so that the function
cannot return 0.

x N

To fix the program, change the
initializer, remake FACTORL, and
test the program again. This time
the program returns the correct
answer, and the bug is fixed.

STICKY BREAKPOINTS

An interesting thing happens
when you remake a program that
contains set breakpoints; the
breakpoints are retained, even if
source lines are added or re-
moved. The Turbo C 2.0 Debugger
tracks the physical source lines
that have breakpoints. When a
program is complex and buggy,
this automatic tracking process
saves you the hassle of reestab-
lishing breakpoints every time you
fix and retry. These “sticky break-
points” are one of the great ad-
vantages of having the Debugger
integrated into the editing envi-
ronment, rather than designed as
a separate utility.

WATCHING VARIABLES

Another feature of the Turbo C
2.0 Debugger is the ability to
watch one or more variables in a
window while the program exe-
cutes. This is particularly valuable
when a loop counter goes berserk,
or when some variable appears to
have been corrupted for reasons
unknown. The easiest way to set
watches on variables is to position
the cursor on some occurrence of
the variable to be watched. For
each variable, press Ctrl-F7 (or use
the Add watch selection in the
Break/watch menu). The watch
window appears at the bottom of
the display, similar to the error/
warning message window that ap-
pears during compiles. Also, F5
can be used to toggle between full
(zoomed) and split-screen mode,
and F6 switches between full-
screen edit and watch windows. In
split-screen mode, the watch win-
dow grows upward dynamically to
accommodate the number of
watched variables.

Local variables are visible only
while control resides within the
routine that owns them. There-
fore, as execution proceeds from
one routine to another, the auto
variables located outside of the
current routine become unde-
fined. The watch window only
shows values for the variables that
it sees. (This explains the “Unde-

continued on page 66

THE WINDOW BOX

A windowing toolbox for
C programmers.

Enhance the beauty of your C applications
with THE WINDOW BOX.

ADD SOME PIZAZZ!

THE WINDOW BOX lets you ELECTRIFY
your programs with pop-up windows, pull-
down menus with highlight bar selection, and
context sensitive help. Watch your screen go
blank when your program is idle. Assign
functions to the function keys. Much more!

ADD SOME POWER!

Read many fields with one operation. Data
entry windows offer many formats, com-
plete cursor navigation, and let you tie veri-
fication functions to any field. Use scrolling
and text-editing windows, too. Print a
window, not necessarily the whole screen.
(Super for mailing labels!) Much more!

FAST AND COMPATIBLE!

Stores directly in video RAM. If your
environment prohibits this, we can store in
the alternate display pages, or use DOS cails
exclusively.

SOURCE CODE PROVIDED!

Contains no assembler code! Only standard
C code. See how things work. Change how
things work. Compatible with all major C
compilers. Requires MS-DOS/PC-DOS

REASONABLE PRICE!
And no royalties. Only $49.50 including
shipping and tax.Including source code!
Overseas add $5 and we will Air Mail. US add
$10 and we will overnight
SATISFACTION GUARANTEED, or returnin
30 days for a full refund.
Mastercard/Visa: Call 412-487-4282.
Or, send checks (U.S. funds) to:

Vertical Horizons Software

113 Lingay Drive

Glemshaw. PA 15116

September/October 1988 TURBO TECHNIX 65

ile dit wn ompile

printf ("\wValue? ")
gets (input);
value = atoi (input);

roject
Edit

ptions ebug reak/watch

printf ("\wFactorial = z1d\n", fact (value)):

[

puts ("nCamnot take factorial of wegative number\n');

} vwhile (value):
}

long fact (int val)
{
long result = @;

result = val * fact (val-1);
return (result);

}

Watch

-Help -Zoon -Switch -Trace

THE HUNT

continued from page 65

fined symbol” message associated
with value in Figure 3. The execu-
tion bar shows that control is cur-
rently in fact; value, however, is
local to main.) Global variables
are, of course, visible from any-
where in the program.

The Break/watch menu pro-
vides options for changing and
deleting watches, as well as for
removing all watches at the same
time. Similar capabilities are avail-
able for controlling breakpoints.

If you want to watch certain ele-
ments within an array, you can
use a watch editor feature called
repeat counts. For example, to
watch elements 4 through 8 of an
array called num, specify the ele-
ments as the following:

num(4],5

This statement tells the Debugger
to watch the five elements of num,
starting at subscript 4. The watch
window then contains individual
entries for each element, building
upward from num[4].

If you're working with a large
application that involves many
source modules, you can qualify
variable names from other mod-
ules in order to watch their values.
This is true even if the variable
comes from a module outside of
the module you're currently de-
bugging, and the variable is local
to a specific function. The general
form of the syntax for the watch
editor is:

-Step -Make —Menu

.module.function.variable

The module must be made with

the debugging options on. How-
ever, the module doesn’t have to
be in the editing environment in
order to watch its indicated vari-
able while the program runs.

SMART SCREEN SWITCHING

With many debuggers, the process
of debugging graphics applica-
tions is often tricky (and some-
times impossible)—but not with
the Debugger in Turbo C 2.0. The
Turbo C 2.0 Debugger operates in
text mode, while the program dis-
play is in graphics mode. The
smart screen management built
into the Debugger lets you switch
back and forth readily. The pro-
gram display can be viewed at any
time, regardless of its mode, by
pressing Alt-F5. Pressing any key
returns you to the edit/debug
screen.

BAILING OUT

You may be wondering what
happens if your program hangs the
system. If your program is running
under the debugging environment,
you can usually (but not always) es-
cape by pressing Ctrl-Break, which
returns you to the edit/debug
mode. The Program reset option
from the Run menu (or Ctrl-F2) re-
initializes the program as if it had
never been run before. With this
option, you can start over and uti-
lize breakpoints, watches, and other
Debugger tools to pinpoint the
problem.

Figure 3. The watch window.

Once you've perfected your pro-
gram by using the Integrated De-
bugger, simply turn off the envi-
ronment’s debugging option and
recompile. The debugging options
insert some additional informa-
tion into the end of the .EXE file;
the final application will run with
this debug information still in
place, but the .EXE file size will be
smaller without it. This is in con-
trast to some debuggers that place
int calls in your code, forcing you
to remove the debug information
before running the final appli-
cation.

THE VELVET GLOVE

The essence of Turbo C 2.0 lies in
its enhancements to the toolset—
primarily in its addition of a pow-
erful Integrated Debugger that lets
you test, fix, remake, and retest
until your program works like it’s
supposed to. Almost by definition,
C is a language that encourages
both extraordinary power and its
accompanying bugs. Turbo C 2.0
fits integrated debugging over the
hand of C like a velvet glove—and
hurdles the last obstacle to true
programmer productivity. H

Kent Porter is a frequent contributor
to TURBO TECHNIX. His next
book, Stretching Turbo C, is due to
be released this fall.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGB, as FACTRL.ARC.

66 TURBO TECHNIX September/October 1988

FLOATING POINT:
THE SECOND WAVE

When a number isn’t exactly a number,

Turbo C 2.0 can handle it.

Roger Schlafly

Turbo C is very good at handling
numbers that represent quantities in the
real world, as I explained in “Floating
Point in Turbo C,” TURBO TECHNIX,
January/February, 1988. Turbo C 2.0 now
YEAR® ___ enhances floating point support with bet-
ter precision, better exception handling, and a
means of dealing with numbers that aren’t exactly
numbers.

Turbo C 2.0 fully supports the IEEE standard for
computer arithmetic (IEEE standards 754 and 854)
when used with an 8087 math coprocessor. (If an
8087 is not present and emulation must be used in-
stead, certain exceptions exist that are primarily re-
lated to denormals, as explained in my earlier article
on floating point.)

WIZARD

GREATER PRECISION

There is a very long road in California called El
Camino Real. Near Silicon Valley, FORTRAN pro-
grammers call it El Camino DOUBLE PRECISION.
Lisp programmers, who claim it originally extended
all the way to Mexico City, call it E1 Camino Bignum.
Turbo Pascal programmers call it E1 Camino Extend-
ed. Turbo C programmers can now call it E1 Camino
long double, in honor of Turbo C’s new data type,
which is called the “long double.” This type was
created by the ANSI C committee (X3]11) to accom-
modate the IEEE extended precision. Quite simply,
long doubles are very long reals.

Turbo C 1.0 and 1.5 actually allowed the long
double syntax, but long doubles were identical to
doubles. In Turbo C 2.0, the long double is a 10-byte
data type, whereas floats and doubles are 4 and 8
bytes in size, respectively (as in earlier releases of
Turbo C). Turbo C automatically performs conver-
sions among these types.

Long doubles are just as fast as floats and doubles.
The only penalty is the additional data space re-
quired by long doubles. The following examples
show the usefulness of long doubles.

Increased precision. Suppose you want to take the
sum of some number of real values in a vector. Such
calculations are prone to roundoff error, which is
why numerical analysts use tricks to carefully reorder
the numbers in order to minimize the loss in preci-
sion. A simpler alternative is to use long double pre-
cision to compute the sum, as shown in the following
example:

double vect_sum(int n, double x[1)

{
int i
long double sum = 0;
for (i = 0; i < n; ++{)
sum += x[i];
return sum;
>

Avoiding overflow and underflow. Turbo C has a hy-
pot() library function, which returns the hypotenuse
of the right triangle given the two remaining sides.
This function is quite useful in calculating the modu-
lus of complex numbers, in polar coordinate conver-
sions, and in many other situations. If you were to
create such a function, you would probably write it as
follows:
#include <math.h>
double hypot (double x, double y)
{
return sqrt (x*x + y*y);

3

The trouble with defining hypot() in this way is
that it’s susceptible to underflow or overflow of inter-
mediate results. For example, if x = 3200 and
y = 4e200, then hypot() overflows even though the
correct answer is 5e200, which is nowhere near the
overflow threshold of 1.8e308. Worse yet, hypot(3e-
200,4e-200) underflows and returns 0, when it should
return 5e-200. (This is worse because underflows are
ignored by Turbo C Runtime code, and you’ll have
no idea that the function underwent a complete loss
of precision unless you explicitly check for under-
flows.)

Now, examine the following hypot() function:

continued on page 68

September/October 1988 TURBO TECHNIX 67

TURBO C

FLOATING POINT

continued from page 67

double hypot (double x, double y)
{

long double z = x*x + y*y;
asm FLD tbyte ptr z
asm FSQRT
>

This hypot() function is similar to
the hypot() function included with
Turbo C, except that the Turbo C
library function calls matherr() if
an overflow or underflow occurs
in the result (i.e., if the resulting
long double is outside the limits
allowed for doubles). Thus, the
hypot() function shown above
avoids the difficulties that occur
with overflows and underflows.

Some inline assembler was used
here because the Turbo C sqrt()
function requires a double argu-
ment, rather than a long double
argument. The 8087 operation
FSQRT, however, returns a result
of any desired floating point type.
The process of returning a long
double is the same as that of re-
turning a double or a float, and
the 8087 supports all three types.
The results are returned on top of
the 8087 stack, and the 8087 chip
automatically performs the re-
quired conversion when a num-
ber is unloaded from the 8087
stack.

READING AND PRINTING
LONG DOUBLES

Long doubles can be read with
scanf() or printed with printf() by
using the L modifier for the usual
floating point conversion specifi-
ers. For example, the following
code reads m from a string and
prints it to 18 decimals:

#include <math.h>

#include <stdio.h>

#define STRINGIZE(p) #p

long double pi;
sscanf(STRINGIZE(M_PI),"%Lf" ,&pi);
printf("pi = %21.18Lf\n",pi);

PASSING PARAMETERS

The choice of using three floating
point data types complicates pa-
rameter passing conventions, and
makes it all the more likely that a
function will be called with the
wrong type parameter. I recom-
mend using ANSI C prototypes.

Be extra careful with functions

that cannot be adequately proto-
typed, such as printf{().

When passing a floating point
expression without a prototvpe,
Turbo C passes either a double or
a long double, depending upon
the longest type in the expression.
ANSI C stipulates that the L suffix
can be added in order to tell the
compiler to consider a constant to
be a long double. This step is
demonstrated in the following
example:
printf("double constant = %g\n",

352);
printf("long double constant =
%Lg\n",3.2L);
Some ANSI C compilers may also
require the L suffix in order to
achieve full accuracy in situations
such as the following:
long double x, y;
y = 3.20 F x:
With Turbo C, however, an L is su-
perfluous in this situation. Turbo
C automatically stores such con-
stants to long double precision.

PRECISION LOSS

Let’s consider a simple example
of an appropriate use of high pre-
cision. Suppose you want to com-
pute 1/3 to the power of n for var-
ious positive integers n, and the
answer must be accurate to about
three decimal digits. Several av-
enues of approach are possible:

® Method 1. Call the Turbo C
library function pow(3,-n).
® Method 2. Recursively calculate
x[n]=3™
x[01 =1

x[nl = x[n-11 / 3
® Method 3. Recursively calculate

for n> 0

x[n] =3™
x[0] =1
x(11 = 1./3

x[n] =

(31 * x[n-11 - 10 * x[n-21) / 3

for n > 1

Method 1 is both the most ac-
curate and the preferred method.
It should yield a result that is ac-
curate to full double precision.

Method 2 is the most straight-
forward approach if no library
function is available. While meth-
od 2 is quite accurate for small
values of n, each operation causes
a roundoff error. Still, roundoff
errors tend to average out, and
two or three significant digits are

lost only when n gets to be about
600 (which is near the range limits
for double precision anyway).
Computing the powers with long
double precision is a reasonable
approach, and provides the reas-
surance that the answer is as ac-
curate as double precision allows.

Method 3 is a rather silly way to
compute powers, but it’s mathe-
matically correct and similar to
the methods that are frequently
encountered in practice. Unfortu-
nately, this method is almost com-
pletely useless. In single precision,
it delivers an answer that is accu-
rate to three digits only if n <= 4.
Larger values cause the method to
yield garbage. Method 3 returns
answers for some higher values of
n by using high precision, but the
gain is minimal. Double precision
only works for n <= 10, and long
double precision only delivers
three-digit accuracy when
n <= 12.

The lesson here is that most
good numerical algorithms are
stable with respect to roundoff er-
ror, and that they deliver much
more precision than could ever be
used anyway. Poor numerical al-
gorithms can lose so much preci-
sion that they’re often useless,
even when plenty of precision is
available in the variables.

DEALING WITH THE
INFINITE

The enemies of numerical ana-
lysts are roundoff error, overflow,
underflow, and division by zero.
All of these situations involve nu-
meric values that cannot be fully
expressed in a finite number of
bits. These anomalous values can
infiltrate your program and create
havoc. The usual countermeasure
used by Turbo C and other C com-
pilers is a form of Mutual Assured
Destruction (MAD). If you give
Turbo C a floating point expres-
sion that blows up, it retaliates by
nuking your program, which
abruptly terminates with a mes-
sage such as:

Floating point error: Overflow.
The alternative is to negotiate
your own INF treaty. The idea is

to come to terms with the infinite,
and learn to live with it.

68 TURBO TECHNIX September/October 1988

The numbers won'’t get out of
control as long as the 8087 control
word is set properly. The control
word can be set to mask numeric
exceptions via a call to _control-
87() as follows:

#include <float.h>
_control87(MCW_EM-EM_DENORMAL ,
MCW_EM);
The second argument is the mask
that tells _control87() which bits
are being changed in the 8087
control word. The first argument
specifies the new bit values that
correspond to the exceptions that
are to be masked. The invocation
shown above masks all of the ex-
ceptions except the denormal ex-
ception. Denormal exceptions are
largely harmless, because the
Turbo C 2.0 Runtime Library con-
tains a denormal exception han-
dler.

The creation of denormals can
be regarded as mildly criminal be-
havior on the part of the 8087
chip. In dealing with denormals,
the 8087 tries to get something for
nothing. A denormal is a number
so small that it should be zero, but
the 8087 gives the number a pro-
bationary nonzero status. This
petty offense probably won’t
bother your program. However,
an annoying feature of the 8087
chip is that it doesn’t have much
of a rehabilitation program for de-
normals. If a denormal value in-
creases beyond a certain point,
the denormal can reenter the
range of the normals—in doing
so, however, the value does not
become normal. Instead, it be-
comes unnormal. Unnormals are
like convicted felons who have
not been rehabilitated. They are
not normal, they corrupt whatever
values they touch, and they can-
not even be stored in float or
double format. You don’t want
these animals in your neighbor-
hood.

Fortunately, Turbo C 2.0 goes
the 8087 one better with a denor-
mal exception handler that nor-
malizes denormals before they
mutate into unnormals. Turbo C
normalizes denormals automati-
cally when the denormal excep-
tion is left unmasked. Note that if
an 80386 machine has an 80387,

it doesn’t matter whether the de-
normal exception is masked or
not. The 80387 has a built-in nor-
malizer, and doesn’t generate un-
normals at all.

THREE NEW “NUMBERS”

All of the other exceptions may be
safely masked (and, in fact, that
approach may be preferred for
bulletproof programs). With de-
normals properly normalized, the
IEEE standard allows every arith-
metic operation to have a defined
result. The standard accomplishes

this end by adding the following
three new numbers:

+INF plus infinity
- INF minus infinity
NAN not-a-number

Two infinities. Having two infin-
ities is new to Turbo C 2.0. Early
drafts of the IEEE standard called
for two infinity modes—*“projec-
tive” and “affine.” While the 8087
supports both, it defaults to pro-
jective infinity; Turbo C 1.0 and
1.5 only supported projective in-

continued on page 70

SuperFAST!

C-Index" for Turbo C*

Database Toolkit

Your Turbo C programs will really fly with fast C-Index access. C-Index is ready-
to-use with Turbo C, right out of the box. No need to compile or change the source
code. Nine simple function calls give you the power of fast B+ Tree indexing and
automatic variable-length records. C-Index makes programming easy with a friendly
Application Program Interface. The excellent documentation includes extensive
examples and an interactive tutorial program. Order now and we will send you a
free database application, along with five additional utilities and fully commented
source code for everything.

C-Index is the database toolkit that has been successfully used in commercial
applications for the mass market, such as Prime Time. C-Index is the library of
choice for major financial institutions that have used it for sensitive monetary
transfers. Wayne Ratliff, author of dBase II and dBase III, thought C-Index was so
“terrific” that he uses it as the foundation for his new Emerald Bay database system.
Just link C-Index into your programs and you can be a database superstar too.

Every day thousands of people depend on C-Index to manage their data. Once you
discover the speed and power of C-Index, you won't write a program without it.

¢ Fast B+ Tree Indexing ® Variable Length Records

* Single and Multi-user Access ® Complete Random and Sequential Access
® Works with any standard MSDOS LAN e Data and Indexes in same file

® 170 page manual ® Multiple Record Formats per file

* Proven Reliability * No Application Royalties

“I heartily recommend this package.”

Dr. Dobb's Examining Room, June ‘88

C-Index" for Turbo C*

Single/Multi-User version with complete source code.

Order now at this introductory price and
receive the free database application.

Trio Systems
2210 Wilshire BI.

213/394-0796
Suite 289 Santa Monica, CA 90403

September/October 1988 TURBO TECHNIX 69

FLOATING POINT

continued from page 69

finity. However, projective infinity
was dropped from the standard
and is now obsolete. In keeping
with the new IEEE standard, the
80387 supports only affine infinity,
as does the Turbo C 2.0 8087 em-
ulator. Only affine infinity will be
discussed in this article. If you are
still using Turbo C 1.0 or 1.5 with
an 8087 or 80287, you can select
affine infinity by calling _control-
87(), as shown in the following
code:

#include <float.h>
_control87(IC_AFFINE,MCW_IC);
Hello, NAN. NAN is even strang-
er, and its name is something of
an oxymoron. NAN isn’t really a
number (as its name implies), but
it has a legitimate representation
in each of the floating point for-
mats. Actually, there are many
such representable NANSs, but the
8087 generates only one, and that
NAN will suffice for this discus-
sion.

Any arithmetic operation on
floating point numbers results in
either a traditional floating point
number or else one of these three
special numbers. Overflows be-
come infinities just as underflows
become zero, as shown in the fol-
lowing example:

double x = 1e-200 * 1e-200;
returns x = 0

double x = 1e+200 * 1e+200;
returns x = +INF

double x = - 1e+200 * 1e+200;

returns x = -INF

If an operation is mathemati-
cally undefined (such as 0/0), the
result is NAN. One of the less ob-
vious cases is that 1/0 = +INF.
Mathematicians will tell you that
1/0 is just as likely to yield -INF as
+INF. Having 1/0 yield +INF is
rationalized because 0 really con-
sists of two numbers: +0 and -0.
While the difference between the
two numbers isn’t obvious because
both zeros are numerically equal,
there is a subtle difference be-
tween +0 and -0 that is shown in
the following relationship:

(+0 == -0)

Essentially, you have to divide by
0 in order to see which zero is
present. The rule is 1/+0 =
+INF, and 1/-0 = -INF.

The 8087 and 80287 (but not
the 80387) support pseudozeros,
which can occur when unnormals
multiply and the product gets too
close to (true) zero. Pseudozeros
are also equal to zero, but they re-
tain the taint of the unnormals
that produced them. With the
Turbo C 2.0 denormal handler
preventing unnormals from occur-
ring, pseudozeros shouldn’t ap-
pear either.

Arithmetic can also be per-
formed on these special numbers,
as the following example demon-
strates:

+INF + 5 = +INF

1/+INF = +0
+INF/+INF = NAN
5 * NAN = NAN

The constants +INF, -INF, and
NAN as used in this example are
not predefined in Turbo C. How-
ever, you can easily create con-
stants that have these special
numbers as their values by re-
membering that Turbo C (like
most C compilers) evaluates con-
stant expressions at compile time.
Thus, INF and NAN can be
created as constants with the fol-
lowing definitions:
#define INF ¢1.70.)
#define NAN (0.7/0.)
What are all these crazy numbers
good for? When performing com-
putations on a computer, it’s very
important to have a closed arith-
metic system. A closed arithmetic sys-
tem means that every arithmetic
operation yields a quantity that is
somehow representable within the
system. If a long sequence of op-
erations is performed and the re-
sult is a NAN, then a mathemat-
ically invalid operation was
performed somewhere along the
way. Since the result of every ex-
pression—including an invalid re-
sult—is represented, the Runtime
Library never has to throw up its
hands in despair and crash.
Another use for NANS is in
creating “uninitialized” data. In C,
all uninitialized data are initial-
ized with 0 at startup. (That’s +0,
not -0.) Occasionally, a variable
must truly be recognizable as un-
initialized through some unique
nonzero value. A constant that is

defined as a NAN (as shown ear-
lier) can be used to initialize the
variable with the value NAN.
Since any operation on a NAN
yields a NAN, a faulty answer
won’t occur when calculations are
accidentally performed with un-
initialized data.

READING AND PRINTING
INF, NAN

INF and NAN values may be read
into variables and displayed, just
as with any legitimate floating
point value. If a value happens to
be plus infinity, minus infinity, or
not-a-number, then it’s printed as
“+INF,” “-INF,” or “+NAN.”

The values INF and NAN can
be read into any of the floating
point formats, but only if pre-
ceded by a sign symbol. Thus
“+INF,” “-INF,” “+NAN,” and
“-NAN” are considered legitimate
numbers to scanf{(). In the case of
NAN, the sign is meaningless, ex-
cept to indicate to scanf() that
NAN is a number and not a vari-
able.

RECOGNIZING INF AND NAN

Since many situations require spe-
cial treatment of INF and NAN,
it’s necessary to be able to recog-
nize these values when they occur
in your program. For example, if
a function returns a NAN, you
may need to know immediately
that the function failed.

Turbo C 2.0 handles +INF and
-INF correctly in comparisons.
The following method can deter-
mine if x equals -INF:

#define INF C1./00)
if (x == -INF) ...

Unfortunately, Turbo C does
not support comparisons between
floating point values and NANs.
This support is not present in
Turbo C for two reasons. First,
ANSI C does not require it; and
second, due to the way that the
Intel CPU and coprocessor chips
work, this support could not be
added without slowing down every
floating point compare operation.
Therefore, unless the invalid op-
eration exception is masked, a
comparison that involves NANs
generates the exception and ter-

70 TURBO TECHNIX September/October 1988

x == NAN
x != NAN
x < NAN

x <= NAN

always TRUE
always FALSE
unreliable
unreliable

Assume this definition for the above compar-
isons: #define NAN(0./0.)

Table 1. Results of comparisons in-
volving NAN.

minates the program with the fol-
lowing message:

Floating point error: Domain.

If the INVALID exception is
masked, the comparison generates
inconsistent results, as shown in
Table 1. Therefore, I recommend
using a procedural test, such as
the ieee_type() function given in
Listing 1, in order to determine
whether or not a number is a
NAN.

The function ieee_type() in
IEEETYPE.C (Listing 1) identifies
numbers as belonging to one of
four categories: normal, +INF,
-INF, and NAN. Zeros, normals,
unnormals, and denormals are all
classified as normals for simplicity.
As long as a prototype can be
used before ieee_type() is called,
this function can be used for clas-
sifying float, double, or long
double arguments. Because
ieee_type() requires that long dou-
bles be in the 10-byte format, this
function will not work with Turbo
C versions that are earlier than

2.0.

INFINITE PHILOSOPHIES

Different people have different at-
titudes towards floating point
overflows. The traditional (and
common) view is that debugged
programs don’t overflow. On
many mainframes, this may truly
be the case, because the hardware
may prevent the program from
continuing after an overflow oc-
curs. Therefore, your program
had better be debugged. In defer-
ence to this view, the default
Turbo C behavior is to terminate
the program in the event of an
overflow.

If you share this traditional
view, Turbo C 2.0 has some new
features to help you. You can trap

the overflow, and even though
you may consider the overflow to
be fatal, your program can print
some useful diagnostics before it
dies.

The more progressive view is to
not discriminate against infinities
and NANs, and to not trap any
floating point exceptions. This
view seems more appropriate for
C programs. After all, C is the lan-
guage that assumes that the pro-
grammer knows what to do and
then lets the programmer do it.

Currently, Turbo C 2.0 library
functions such as exp() will not re-
turn a value larger than 1.8e+308.
Tradition requires Turbo C to re-
turn representable numbers, and
1.8e+308 is the largest such num-
ber. If the answer should be larg-
er, then matherr() is called to no-
tify the programmer of the error.
However, the new IEEE standard
has caused people to become
more broadminded about the def-
inition of a number—now a num-
ber can be INF, or even NAN.
The latest ANSI C draft allows
these special numbers to be con-
sidered representable.

In keeping with this trend,
some future Turbo C release will
probably assume that C program-
mers are ready to play as fast and
loose with floating point numbers
as they currently do with pointers
and other data types. INFs and
NAN;s will be declared represent-
able numbers, just as the ANSI C
draft allows. When exp(lel0) is
called, it will just return +INF,
and possibly not even call math-
err(). A call to sqrt(-1) might just
return NAN.

In the meantime, the same
thing can be accomplished under
Turbo C 2.0 by replacing the li-
brary’s matherr() with a matherr()
of your own devising, and then
modifying the variable _huge_-
dble. _huge_dble occurs in
<math.h> in the following con-
text:

#define HUGE_VAL _huge_dble

The purpose of _huge_dble is to
contain the largest representable
value for programs that need this
variable. The library functions
that need this value must simply
reference _huge_dble. The default
is 1.8e+308. This value can also
be defined as +INF. (Turbo C 1.0

and 1.5 used a function called
_huge_val() for HUGE_VAL.)

If you include MATHERR.C
(Listing 2) in your program, and
call startfp() when the program
first runs, then all exceptions
other than the denormal excep-
tion are masked, all library errors
are ignored, and the library func-
tions return INF under appro-
priate circumstances.

CONTINUED FRACTIONS
Here is a typical example where
arithmetic with infinities is useful,
even when a finite result is being
calculated. Consider the following
formula:

tan x =

The formula converges to
tan(x) for any value of x. This
type of formula is called a con-
tinued fraction, and can be thought
of as being analogous to a power
series. In this case, the continued
fraction can be more useful for
approximating the tangent of x
since the formula converges ev-
erywhere, and converges more
rapidly than the power series.
(The power series is only good for
|x| < /2, as the tangent function
has a singularity at m/2.)

The code in TAN.C (Listing 3)
uses long doubles for interme-
diate results. The calculation is
likely to lose only a couple of bits
of long double precision due to
roundoff error, which won’t mat-
ter once the calculation is round-
ed again to double precision.
Thus, an answer will be accurate
to the limits of double precision.

The nice thing about this exam-
ple is that infinities can occur in
the calculation, yet it always gives
the correct finite answer if

continued on page 72

September/October 1988 TURBO TECHNIX 71

FLOATING POINT
continued from page 71

enough terms are used. In fact,
because of the way the calculation
is coded, it divides by 0 the first
time through the loop!

Not all calculations are so for-
tunate. If a calculation produces
an infinity, there’s the risk that a
0*INF, INF-INF, or INF/INF
might produce a NAN. (0/0 also
produces a NAN.) Any calculation
that depends upon a NAN yields
a NAN. If the introduction of a
NAN into a calculation is a possi-
bility, then the calculation must
check the result to see if the result
is a NAN, or if the invalid bit was
set in _status87(). For example,
consider the following expression:
_status87() &

(SW_INVALID | SW_ZERODIVIDE |
SW_OVERFLOW)

If this expression evaluates to a
nonzero value, then an invalid op-
eration, a divide by zero, or an
overflow must have occurred after
either the start of the program or
the last call to _clear87() or _fpre-
set(). Arithmetic operations on
NANSs are considered invalid
operations.

Note that approx_tan() treats
x = 0 as a special case. If this were
not so, then approx_tan() would
encounter 0/0 and return a NAN.
A better fix for this problem is to
initialize y with some nonzero
value.

USING signal() TO TRAP
EXCEPTIONS

ANSI C specifies a portable way to
trap floating point exceptions.
This method involves using the
signal() function to install a float-
ing point exception handler. Tur-
bo C 2.0 fully supports this
scheme, as shown in SIGTEST.C
(Listing 4).

Call signal(SIGFPE, fphandler)
to install the handler, and call
setjmp(jumpl) before doing any
floating point calculations. Every
time the handler is triggered, it
must reinstall itself, because each
signal causes the main program to
revert to its default signal handler.
(This is an old UNIX quirk.)

Following are the reasonable al-
ternatives for a floating point ex-
ception handler. Items 3 and 4 re-
quire a physical coprocessor.

1. Print a suitable error message
and exit (this is the process per-
formed by the default handler).
A program that wants to do the
same thing may still wish to re-
place the handler in order to
do some additional house-
cleaning or to print a more in-
formative error message.

2. Perform a long jump to a safe
place in the program. If this is
done, the program must pay at-
tention to all of the usual haz-
ards of long jumps. In addi-
tion, the program should call
_fpreset() to reset the coproces-
sor or emulator. (The library
function _fpreset() resets the
coprocessor. If for some reason
a special value is maintained
for the 8087 control word, then
the control word must be reset
to that special value because
_fpreset() installs the default
Turbo C control word.) Since
interrupts occur asynchro-
nously, there is more than the
usual danger here that an in-
terrupt will happen while the
code is in an inconsistent state.

3. Set a flag and continue. As with
case 3, most programs may pre-
fer the simpler strategy of
masking the exceptions. The
occurrence of the exception
can still be detected by exam-
ining the status word with
_status87(). The status word
can then be cleared with
_clear87().

4. Attempt to analyze the damage
and repair it. This is nearly im-
possible, because the 8087 is a
very complex chip with many
instructions, data types, regis-
ters, and special cases. How-
ever, the Turbo C Runtime Li-
brary Source does include a C
interface to handle floating
point exceptions, in which
some additional information is
provided.

Anyone who traps exceptions
should be aware that some ver-
sions of DOS 3.2 contain a rather
nasty bug, where DOS only allows
eight exceptions before it halts the

machine. Microsoft has a patch
that fixes the problem. If you are
using DOS 3.2 and a coprocessor,
I strongly recommend that you
either obtain the patch or else
switch to DOS 3.1 or 3.3.

R.I.P. UNARY PLUS

As described in my earlier article
on Turbo C floating point, the
ANSI C draft had proposed a una-
ry plus sign to force expressions
to be evaluated in a particular
order. This was needed by numer-
ical analysts because C compilers
traditionally reserve the right to
ignore parentheses in an expres-
sion such as the following:

X=(y=2.1) + z;

Turbo C 1.0 and 1.5 supported
a unary plus to force a particular
order of expression evaluation. At
the ANSI C meeting in December
1987, however, the decision was
made that compilers should al-
ways evaluate parenthesized ex-
pressions first, unless it’s provable
that the expression evaluation
order doesn’t make any differ-
ence. Turbo C 2.0 supports this
change. Thus, the unary plus is
obsolete in Turbo C, yet still sup-
ported.

MAKING POINTS

The C language is becoming in-
creasingly popular for numerical
work. Its old defects (such as re-
arranging parenthesized expres-
sions and not type-checking func-
tion arguments) are no longer
present. Turbo C now has features
that FORTRAN programmers can
only dream about: extended pre-
cision, trappable exceptions, INF,
and NAN. These, along with all of
the usual advantages of C (porta-
bility, preprocessor, dynamic
memory, convenient data types,
and control structures) and the
advantages of Turbo C (speed, in-
tegrated environment, third-

party support) make Turbo C the
language of choice for nearly all
numerical tasks. W

Roger Schlafly is in charge of scientific
and engineering products at Borland.
He is the author of Eureka: The
Solver and worked on floating point
support for Turbo C.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGB, as CFLT20.ARC.

72 TURBO TECHNIX September/October 1988

LISTING 1: IEEETYPE.C

enum ieee (
ieee_normal,
ieee_pINF,
ieee_mINF,
ieee_NAN,

ieee ieee_type(long double x)

g~

unsigned int *a = (unsigned int *) &x;

if ((al4) & OX7FFF) 1= OX7FFF) return ieee_normal;

if (al0] | ar1] | al2] | (al3] & Ox7FFF)) return ieee_NAN;
return af4] & Ox8000 ? ieee_mINF : ieee_pINF;

#include <math.h>
#include <float.h>

#define INF (1.70.)
#define NAN €0./0.)

void startfp(void)

LISTING 3: TAN.C

#define NUM_TERMS 15
double approx_tan(double x)
<

b

int i;

long double x2 = x*x, y = 0;

if (x == 0) return 0;

for (i 2*NUM_TERMS-1; i >= 0; i -= 2)
y=i-x1/7y;

return x / y;

/* for _control87 */
#include <float.h>
/* for tan */
#include <math.h>

int cdecl main(int argc, char **argv)

<

double x, y;

/* mask all exceptions but denormal */
_control87(MCW_EM-EM_DENORMAL ,MCW_EM) ;

X ® 2,15

y = tan(x);

printf("tan(Xg) = %25.20g\n",x,y);

y = approx_tan(x);
printf("approx_tan(%g) = %25.20g\n",x,y);

< . —_
/* mask all exceptions but denormal */ LISTING 4: SIGTEST.C
_control87(MCW_EM-EM_DENORMAL ,MCW_EM); .
HUGE_VAL = +INF;

b

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

/* this gets called by library functions
if a domain or range error occurs
*/

int cdecl matherr(struct exception *e)

/* return nonzero to show error has been handled */
/* Lib functions will return something sensible, */
/* if you let them */
/* we don't need no steenkeen' errors! */

return 1;

extern jmp_buf jumpi;

void cdecl fphandler(int sig)
<

fprintf(stderr,"Floating point error.\n");
/* clean off the chip */

_fpreset();

/* reinstall the exception handler */
signal (SIGFPE, fphandler);

/* jump to a safe place */

Llongjmp(jump1);

September/October 1988 TURBO TECHNIX 73

A DIRECTORY SEARCH
ENGINE IN TURBO C

Here’s a truly generalized directory
search routine that calls a procedural parameter
each time it finds a matching file.

Jake Richter

DOS would not have made it very far
without the ability to use wildcard charac-
ters for certain file operations, such as
COPY, DIR, and ERASE. Imagine copying
all 142 of your C source code files from
your hard disk to a floppy disk by typing
their names on the DOS command line, one at a
time. The means to avoid this sort of mindless
drudgery are the low-level DOS functions Find First
and Find Next.

Find First searches for the first occurrence of a
given file specification in a specified directory. The
file specification may contain the wildcard characters
“*” and “?,” and thus can match more than one file.
Find Next simply attempts to locate the next occur-
rence of the same file spec, and can be called repeat-
edly until no more matching files are found. Find
First and Find Next comprise DOS’s built-in file
search toolkit. In this article, we’ll examine the work-
ings of Find First and Find Next, and will build them
into a generalized file search “engine” for use with
Turbo C. (On page 26 of this issue, Neil Rubenking
implements a file search engine under Turbo Pascal
5.0, also using Find First and Find Next.)

ENTER THE DTA

Under DOS 2.x and later, Find First and Find Next
are implemented as DOS functions 4EH and 4FH,
respectively. Both functions require that a filename
template (with optional path) and a file attribute
value be specified. Using Find First and Find Next
also requires the use of the DOS Disk Transfer
Area (DTA).

The Disk Transfer Area is used by DOS for exactly
what its name implies: Disk data is transferred to and
from this area of memory. When Find First and Find
Next are called, the information returned by DOS is
placed into the DTA. When a DOS application first
starts up, the DTA is set to a 128-byte region at offset
80H into its Program Segment Prefix (PSP). The
Program Segment Prefix is a 256-byte block that is allo-
cated by DOS in memory, in front of a loaded pro-
gram. The DTA can also be moved to a more con-

PROGRAMMER

venient place, such as your program’s data space.
This move is accomplished by using the DOS func-
tion Set DTA Address (1AH), which is called through
DOS interrupt 21H using the following register
values:

® AH = 1AH Specifies the Set DTA Address
function
® DS:DX = Segment:Offset of new DTA

Function 1AH returns no errors.

When moving the DTA to your own program
space, make sure that enough space is allocated for
whatever DOS operation you plan to use. For the
Find First and Find Next functions, the minimum
DTA size is 43 bytes.

DIRECTORY ENTRIES AND ATTRIBUTES

When Find First and Find Next find a file, they re-
turn information in the DTA that comes from the
found file’s disk directory entry. There are three
basic types of directory entries: volume labels, subdi-
rectories, and normal files. Each entry in the direc-
tory structure uses the same amount of directory
space. The entry types are differentiated from one
another by the values in the file attribute field.

Six file attributes are currently supported by DOS,
and each file attribute has its own bit flag in the at-
tribute field.

Bit 0 (01H): Read-Only. This attribute applies only
to regular files. When set, it indicates that the file
cannot be deleted or written to. A subdirectory en-
try’s Read-Only flag can be set, but the flag doesn’t
affect the use of that subdirectory. The Read-Only
flag can be modified by using the ATTRIB program
under PC-DOS and some versions of MS-DOS.

Bit 1 (02H): Hidden File. This flag applies to files
and subdirectories. When it’s set, the file or subdirec-
tory can’t be seen in a DIR listing, and a hidden file
can’t be deleted from the command line. However,
the file can still be accessed by a program, or by
other DOS utilities such as TYPE or COPY. Hid-

den subdirectories can be accessed by RMDIR and
CHDIR.

74 TURBO TECHNIX September/October 1988

Bit 2 (04H): System File. The System File attribute’s
effects are similar to those of the Hidden File attri-
bute. The reason for the existence of the System File
attribute lies in the DOS boot process. When IBM
versions of DOS boot up, they search for two hidden
system files, IBMBIO.SYS and IBMDOS.SYS, which
are required in order to complete the boot proce-
dure.

Bit 3 (08H): Volume Label. This attribute identifies
its directory entry as the current volume’s volume
label. Each DOS volume can only have one valid
volume label. If multiple directory entries have the
Volume Label bit set in their attribute fields, then
only the entry that is listed first in the directory is
recognized. No other attributes can be set in con-
junction with this attribute. Once it’s flagged as a
volume label, the directory entry can only be mod-
ified by using an extended FCB (as explained in
“Taking Charge of DOS Volume Labels,” TURBO
TECHNIX, November/December, 1987).

Bit 4 (10H): Subdirectory. All subdirectories have
this flag set in their attribute field.

Bit 5 (20H): Archive. This flag is set each time a
file is altered. DOS programs such as BACKUP and
XCOPY use this bit to perform incremental backups
(i.e., to back up only those files that have changed
since the previous backup). When the file is copied
by these utilities, its Archive flag is cleared; the flag
remains clear until it’s set again by a subsequent
modification. The Archive flag has no effect on sub-
directories. Like the Read-Only flag, the Archive flag
can be modified by the ATTRIB program.

DOS FUNCTION 4EH

The DOS Find First function is called via INT 21H

by using the following register protocol:

® AH = 4EH

® CX = File attribute

® DS:DX = Segment:Offset of ASCIIZ pathname
string

Here are some things to keep in mind when setting

up and using Find First.

1. The DTA must have been previously set to a buffer
that contains at least 43 bytes of free memory.

2. The file attribute parameter specifies which file at-
tributes must be present in order for a match to be
legal. Four attributes are valid when using Find
First: Hidden File, System File, Volume Label, and
Subdirectory. If no attribute bits are specified, reg-
ular files (those with no attribute set) are searched
for, as well as those files whose Archive or Read-
Only attributes are set. If only the Volume Label at-
tribute is set, then only a volume label is searched
for.

3. The ASCIIZ string can contain both a path and
the file specification. The file specification can
consist of a combination of valid characters and
the two wildcard characters, “*” and “?.”

If the Carry flag is set upon return from Find First,
then one of the following errors occurred in the
code returned in AX:

® File not found—02H
® Path not found—03H
® No more files/No match found—12H

If the Carry flag is not set, then no error occurred
and the DTA contains the information returned by
this call. In essence, if DOS reports an error on Find
First or Find Next, then there are no more files to be
found (assuming that you've previously validated the
file path).

The information returned by DOS is placed in the
DTA, and can be represented by the C structure
shown in Figure 1.

struct ffblk

{
char ff_reserved[21]1; /* Reserved by DOS.*/
char ff_attrib; /* Attribute found.*/
int ff_ftime; /* File time. *7
int ff_fdate; /* File date. 7
long ff_fsize; /* File size. R
char ff_fname[13]; /* Found file name.*/
X;

Figure 1. A C structure to divide the DTA into named fields.

The fiblk structure is defined by Turbo C in the
DIR.H include file. The ff_reserved field is used by
DOS to store information pertinent to the search,
such as current index into search, search mask, and
so forth. The ff_fname field is an ASCIIZ string that
contains the name of the file that was just found by
Find First (and Find Next), with all spaces removed
and a “.” added to separate the filename and exten-
sion. ff_attrib, ff_ftime, ff_fdate, and ff_fsize are the
attribute, the time and date of last update, and the
size of the found file, respectively.

Certain constant definitions in Turbo C’s DOS.H
file can help break down the ff_attrib field into its
individual bit flags. The definitions and their mean-
ings are summarized in Table 1.

Turbo C implements a function that calls Find
First as findfirst(); the function definition is shown
in Figure 2. findfirst() returns a nonzero value if no
files that match the filename are found. The Turbo
C version of the call requires a pointer to an fiblk
structure because Turbo C sets the DTA to the spec-
ified fiblk structure, prior to calling the DOS-level
Find First. This approach is very useful when several
fiblk structures are active at the same time, as I'll de-
scribe shortly.

CONSTANT VALUE MEANING
FA_RDONLY 0x01 Read-Only
FA_HIDDEN 0x02 Hidden File
FA_SYSTEM 0x04 System File
FA_LABEL 0x08 Volume Label
FA_DIREC 0x10 Directory
FA_ARCH 0x20 Archive

Table 1. Predefined constants in DOS.H that specify indi-
vidual bit flags in the file attribute byte.

DOS FUNCTION 4FH

The DOS Find Next function is also called via INT
21H, with register AH set to 4FH. No other registers
need to be set. As its name implies, Find Next re-

continued on page 76

September/October 1988 TURBO TECHNIX 75

SEARCH ENGINE

continued from page 75

#include <dir.h>
#include <dos.h>
typedef FFBLK struct ffblk;

int findfirst(filename, ffblkPtr, attrib)

char *filename; /* File mask w/optional path */
FFBLK *ffblkPtr; /* Pointer to an ffblk struct */
int attrib; /* Valid attributes for search */

/* For cleaner decl.*/

Figure 2. Function findfirst() and its associated
definitions.

quires a DTA that has been initialized by a Find First
call. (Without a properly initialized DTA, DOS won'’t
know what file spec or attribute to search for, nor
even where to start looking.) When it locates an ad-
ditional match, Find Next updates the information in
the DTA.

If the Carry flag is set upon return from the Find
Next call, then either error code 02H (file not found)
or 12H (no more files found) is returned in AX. If
the Carry flag is cleared, then no error has occurred.

In Turbo C, Find Next is accessed through library
function findnext(), which is defined as shown in
Figure 3. As with findfirst(), the value returned by
the findnext() function is nonzero if no files that
match the file specification (which is already in the
DTA) are found. findfirst() and findnext() both use
the fiblk structure to divide the DTA into fields.

THE SEARCH ENGINE

As you may have gathered from the discussion so far,
the findfirst() and findnext() routines work best in
combination. They suggest a general-purpose file
search “engine” that searches a specified directory
for files that match a given file spec and file attribute
value. When a file is found, the engine takes some
action by calling a function that is passed to the en-
gine through a procedure pointer. I've implemented
such a search engine function as a separate code
module that can be linked with other Turbo C pro-
grams. The SearchEngine() function definition is
given in Figure 4. The actual code for SearchEn-
gine() can be found in ENGINE.C (Listing 1).
SearchEngine() takes a file spec (which may in-
clude a path), an attribute value that specifies which
file attributes are valid to search for (see the earlier
explanation of Find First), and a pointer to a proce-
dure. This procedure is called each time a file that
matches the file spec and attribute is found. The pro-
cedure’s definition (assuming that you name the
function MyFunc()) is as follows:
#include <dir.h>

#include <dos.h>
typedef FFBLK struct ffblk;

void MyFunc(ptrFFBLK)
FFBLK *ptrFFBLK;

If the step of passing a procedure to the search
engine doesn’t appear useful at first glance, let me
provide an example. Let’s assume that it’s necessary
to view the names of all of the current directory’s C
source code files that have been modified since your

#include <dir.h>

#include <dos.h>

typedef FFBLK struct ffblk;

int findnext(ffblkPtr)

FFBLK *ffblkPtr; /* Pointer to an ffblk struct */

Figure 3. Function findnext() and its associated definitions.

#include <dos.h>

void
char
char
void

SearchEngine(filename, attribute, procPtr)
*filename;

attribute;

(*procPtr)();

Figure 4. Function SearchEngine() and its associated
definitions.

last backup. The code for this task is provided in
MODIF-C.C (Listing 2).

MODIF-C contains two routines, main() and Dis-
playModC(). main() serves as the program entry
point, and initiates the call to SearchEngine(). Note
that SearchEngine() is passed a file spec that con-
tains a wildcard character “*” as the filename, with
the extension fixed as “C.” The attribute that is
passed is “0,” which indicates that only plain files are
valid (Read-Only and Archive attributes are consid-
ered plain for our purposes). Also, a pointer is
passed to DisplayModC() so that SearchEngine() can
call DisplayModC() on each “hit” during the search.

Note that the function called by SearchEngine()
has complete access to the found file’s directory in-
formation, via the pointer to the found file’s DTA.
This means that the file’s name, date, time, size, and
attribute are available to the procedure called
through the procedure pointer. If necessary, the di-
rectory for the file can be determined by making a
call to the Turbo C library function, getcwd() (Get
Current Working Directory), as I'll demonstrate later.

To re-create MODIF-C.EXE with the command-
line Turbo C compiler, execute the following DOS
command-line commands:
tcc -c¢ modif-c.c
tcc -c engine.c
tcc modif-c.obj engine.obj
The -c option indicates that only an object file
should be produced for the given source code file.
The last line specifies that the two object code files
are to be linked into an executable file. The .PR] file
that creates MODIF-C.EXE using the Turbo C Inte-
grated Development Environment contains just two
lines:
modif-c
engine

SEARCHING A DIRECTORY TREE

Let’s go one step further than the previous example,
and say that we want to display the names of all of
the modified C source code files that are located any-
where on the current drive, even though these files
might be in different subdirectories. This is not an
easy problem to solve with typical iterative program-
ming methods. Fortunately, this kind of problem is
easy to solve by using recursion.

76 TURBO TECHNIX September/October 1988

B
Cah
E F
|
L K

Figure 5. A schematic of a directory tree.

First, a warning to those who aren’t familiar with
recursive techniques: Recursion is not free. Its cost is
stack space. Every time a call is made, stack space is
used to save the return address. If parameters are
passed to a function, the parameters are placed on
the stack as well. Finally, if local variables are de-
clared within a function, those variables are also al-
located on the stack.

As you might know, the stack is limited in size. In
the case of the PC, the maximum stack size is 64K
(usually, however, the size limit is far less). Based on
this, a tradeoff can be made between greater nesting
depth versus a greater number of parameter and
local variables when you design a function.

If the stack size is exceeded, then critical data or
code may be overwritten, crashing the application or
even the system. This condition is known as stack
overflow. Turbo C lets you guard against stack over-
flow to some extent by using the -N switch on the
command-line version of the compiler. Unfortu-
nately, -N will not always work, especially if inline as-
sembler code is used to manipulate the stack. Also,
-N adds overhead in terms of execution speed and
executable code size. I'd recommend using -N only
for debugging recursive routines; eliminate it once
the routine has been thoroughly shaken out.

In the case of Small model Turbo C code, each
call requires four bytes of stack. Local variables re-
quire two bytes or more per variable. (The precise
number of bytes depends upon a variable’s type; use
sizeof() to determine the variable’s size.) Each pa-
rameter requires at least two bytes (again, the num-
ber of bytes depends upon the parameter’s type).
The amount of stack space available in the Small
model depends upon the amount of space used by
your global and static data.

RECURSIVE SEARCHES

DIRTREE.C (Listing 3) implements a routine that
performs a recursive tree search of a directory tree,
starting at the current directory. DIRTREE uses two
routines, DirTree() and GetNextDir(). DirTree() is
the entry point for the module. In addition, Dir-
Tree() cuts down on stack overhead by initializing
static variables that are used by the recursive routine,
GetNextDir(). Since GetNextDir() has no param-
eters and no local variables (it uses static variables
instead), the only stack overhead incurred at each
nesting level is the call data, which amounts to four
bytes for the Small model.

The prime directive when designing recursive rou-
tines is to build in a fail-safe mechanism that termi-
nates recursion at some point. Any one of the follow-
ing three conditions terminates recursive calls to
GetNextDir():

1. The current directory has no subdirectories;

2. All of the subdirectories of the current directory
have already been searched; or

3. The nesting depth exceeds the maximum depth
of the algorithm. GetNextDir() currently handles

a maximum directory tree depth of 15 levels; this

value can be changed. (The only reason for its

current setting is that I consider 15 levels to be

an extreme depth that virtually no one would

require.)
Note that conditions 1 and 2 are normal terminators,
while 3 is an error condition.

Each level of recursion (and, hence, each direc-
tory to be searched) has its own FFBLK structure.
This is necessary in order to determine whether ter-
minating condition #2 (as given above) has oc-
curred. The DTA for a specific search contains a
place marker that DOS uses to determine the starting
position for Find Next. Therefore, DOS knows when
its search on any given directory is complete. This al-
lows the transparent use of findfirst() and findnext()
in a recursive directory tree search, as long as a
pointer is passed to the correct FFBLK structure for
any given level.

The association of each level of recursion with its
own FFBLK is performed by declaring an array of
FFBLK structures named fileBlock. The number of
elements in fileBlock is given by the constant MAX-
DIRDEPTH (which, at 15, allows more nesting levels
than anyone is ever likely to encounter). A variable
named curDepth acts as the index into the array of
FFBLK structures. Each successive call to GetNext-
Dir() increments curDepth, and each return from
GetNextDir() decrements it.

If the FFBLK structures were declared as local to
GetNextDir(), DirTree() would be significantly sim-
plified, since as the array and its index would no
longer be required. Each recursive level’s FFBLK
would be created on the stack when each recursive
call is instantiated, and the different FFBLK struc-
tures would never get mixed up. This method, how-
ever, uses a great deal more stack space, and the aim
here is to use as little stack space as possible.

Turbo C’s findfirst() and findnext() also make it
convenient to integrate the recursive directory
search routine GetNextDir() with SearchEngine().
Each time a normal terminating condition is en-
countered, a call is made to SearchEngine(). The
normal terminating conditions are designed such
that each directory in a tree causes only one termi-
nating condition. As an example, consider Figure 5,
which schematically shows a directory tree whose
root is a directory named “A.”

When called to process the subdirectories in Fig-
ure 5, SearchEngine() processes them in the follow-
ing order: E, L F, J, K, G, B, C, H, D, and A. Sub-
directories E, 1,], K, C, and H cause termination
condition #1 (notice that they have no child directo-
ries). The rest of the subdirectories cause condition

continued on page 78

September/October 1988 TURBO TECHNIX 77

LISTING 1: ENGINE.C

/
ENGINE.C - by Jake Richter

Provides core routine for a search engine that searches
the current directory for a given file name (which may
contain wildcards) with specific attributes. When a file is
found, the engine calls a function whose pointer it is
passed upon entry with the contents of the DTA returned by
the Find First and Find Next functions.

/
#include “dos.h" /* Contains ffblk structure. i
#include "dir.h" /* Required by findfirst, findnext,

getcwd. »f
/
Program Definitions

/
#define FALSE 0
#define TRUE 1FALSE

typedef struct ffblk FFBLK;

/
Mandatory Global Declarations

static FFBLK procBlock; /* Declare a file info block

for the specific procs.*/

/ *
void SearchEngine(filename, attribute, procPtr)

This routine sets up the call for the recursive tree
search routine and the search engine.
- /
void SearchEngine(filename, attribute, procPtr)
char *filename;
char attribute;
void (*procPtr)();

<
int done;
done = findfirst(filename, &procBlock, attribute);
/* wWhile there are still matching files... */
while (!done)
<
(*procPtr)(&procBlock); /* Call the user's function. */
done = findnext(&procBlock); /* Search again. =)
]
return;

LISTING 2: MODIF-C.C

I*
MODIF-C.C - by Jake Richter

Displays all C source files in the current directory
that have their archive bits set.

i /
#include <stdio.h>
#include <dos.h>
#include <dir.h>

JrEReR *he
Program Definitions
* * 7
#define FALSE 0
#define TRUE IFALSE
typedef struct ffblk FFBLK;

/

Externals
* i/
extern void SearchEngine();

/
void DisplayModC()

This routine is called once for every C source file
in the current directory. It displays only those C files that
have their Archive attribute bit set.

Ve
void DisplayModC(searchRec)

FFBLK *searchRec;

<

if (searchRec->ff_attrib & FA_ARCH)
printf("Xs\n", searchRec->ff_name);

return;
b

SEARCH ENGINE
continued from page 77

#2 after all of their child directories have been
searched.

TWO ENGINES

What we now have are two different routines, both
of which are general-purpose search engines for
DOS directories. SearchEngine() searches a single di-
rectory, and DirTree() searches the entire directory
tree of the current drive. Use whichever routine is
appropriate; their parameter lists are identical.

For example, to incorporate full recursive tree
search into the simple MODIF-C demo program, just
substitute the following line for the original call to
SearchEngine():

DirTree("*.C", 0, DisplayModC);

Then recompile DIRTREE.C, recompile MODIF-C.C,
and link the final .EXE file to the Turbo C com-
mand-line compiler using the following commands:
tcc -c dirtree.c

tcc -c modif-c.c

tcc modif-c.obj engine.obj dirtree.obj

If you're using the Integrated Development Environ-
ment, the .PR] file would look like this:

modif-c

engine

dirtree

The resulting program, MODIF-C.EXE, finds and
displays the names of all of the modified C source
files that are located in the current directory and in
all of the directories below it.

To make the interface to the two search engine
routines clear, MODIF-C has been kept bare-bones
simple. Your first enhancement should almost cer-
tainly be to retrieve command-line parameters so
that the program can be set to search for more than
just C source code files. [Editor’s note: In future
issues of TURBO TECHNIX, we’ll publish short arti-
cles that present file utilities built around the search
engines—watch for them.]

DON’T SOLVE PROBLEMS—BUILD TOOLS!

Because the search engines’ action is specified by
the calling logic at runtime through procedure point-
ers, the search engines can be applied to a variety of
tasks, such as building linked lists of directory en-
tries, deleting files, printing file headers, moving files
out to a backup drive, and so forth. The possibilities
are virtually unlimited, and need not be specified at
compile time. That’s the advantage of an “engine”
concept, as opposed to simply hard-coding fixed so-
lutions to individual problems. When you solve a
problem, work a little longer to turn the solution into
a tool—and you’ll work less the next time the prob-
lem comes up. W

Jake Richter is the President of Panacea, Inc., a PC con-
sulting company in Woburn, Massachusetts. He can be
reached on MCI MAIL and on BIX as jrichter.

Listings may be downloaded from Library 1 of Compu-
Serve forum BPROGB, as CENGN.ARC.

78 TURBO TECHNIX September/October 1988

/ *ax
main()

Here we make the call to SearchEngine.

/i

main()

SearchEngine("*.C", 0, DisplayModC);

exit(0);
b,
LISTING 3: DIRTREE.C
/
DIRTREE.C - by Jake Richter

Provides core routines for traversing a directory tree,
using a "bottom-most first" algorithm.

As presented, code will search the directory tree and
for each directory found, will call a routine called
SearchEngine(), which in turn will process certain files in
that directory in some fashion.

#include "“dos.h" /* Contains ffblk structure. */
#include "dir.h" /* Required by findfirst, findnext,
getcwd. "y
/
Program Definitions
U
#define MAXDIRDEPTH 15 /* Maximum directory depth. >
#define FALSE 0
#define TRUE I FALSE
typedef struct ffblk FFBLK;
/
Mandatory Global Declarations
/
/* Declare a file info block
for each potential
directory level. *)
static FFBLK fileBlock [MAXDIRDEPTH];
static int curDepth = -1; /* Depth indicator. */
static int done; /* Used as a local flag in

the recursive function.
Declared globally to
minimize stack usage
incurred by recursion. */

static char *filename; /* Filename mask for the
Search Engine. */

static char attribute; /* Attribute for engine. */

static void (*funcPtr)(); /* Function ptr for engine*/

/
void GetNextDir()

This is the recursive routine that traverses the
directory tree.

*% /
static void GetNextDir()
<
curDepth++; /* Every time this code gets called, we go down
a level in the tree. */
/* We can't go too deep because we have only
so many file block structures. 7
if (curDepth >= MAXDIRDEPTH)

return;

/* Since this section is encountered only when
going down to a new level, (re)initialize
the current level's file block by calling
findfirst. findfirst and findnext return a
TRUE (non-zero) value when all files in the
current directory have been "found." A
separate block is needed for each level
because previously determined information
(set by findfirst() and subsequent findnext()
calls) must be maintained until an entire
directory level has been searched. w7

done = findfirst("*.*", &fileBlock[curDepth], FA_DIREC);

/* 1t is important to remember that “." and
".." are valid directory names, but that
they also should be ignored while
traversing the tree. The following
conditional in psuedo-code:

while((not all files have been "found")
AND (((the currently found file is really a directory)
AND (this directory starts with “."))
OR (this the file is not really a directory)))
then
get the information of the next file found and check
it against the previous conditions.

27!
while(!done
&& (((fileBlock[curDepth].ff_attrib == FA_DIREC)
& (fileBlock[curDepth].ff_name[0] == '.'))
|| ¢fileBlock[curDepth].ff_attrib != FA_DIREC)))
done = findnext(&fileBlock [curDepthl);

/* When we get to this point, one of two
things must be true: either we are out of
files, in which case (done == TRUE), or we
have found the first valid directory name

in the current directory. ./
if (!done)
< /* Since we have found a valid directory, go
to it and repeat the above. L7 4
chdir(fileBlock [curDepth].ff_name);
GetNextDir(); /* Call this routine again. *f
chdir(".."); /* Move back up to the correct directory
for this level. by 2
curDepth--; /* Also adjust the depth gauge. L i
b
else
{ /* There are no valid directories below
the current one, therefore this one must
be at the end of a branch and should be
processed. =7,
/* Process this directory. */
SearchEngine(filename, attribute, funcPtr);
return; /* We're done at this level. xy
b

/* Get the information about the next file. */
done = findnext(&fileBlock[curDepthl);

/* We are now searching for all other
directories that might be below the current

one. L
while (1)
¢ /* This "while" is the same as the previous.*/
while (!done

& (((fileBlock[curDepth].ff_attrib il
&& (fileBlock[curDepth].ff name[O] ot %)
|| (fileBlock[curDepth].ff attrib t= FA_DIREC)))
done = fmdnext(&flleBlock[curDepth]),

if (!done)
< /* Drop down to the next level. L 4
chdir(fileBlock [curDepth].ff_name);
GetNextDir(); /* Call this routine again. */
chdir(".."); /* Move back up. .
curDepth--;
/* Prepare for the "while" above. *)
done = findnext(&fileBlock [curDepth]);
b
else /* No more files to be found. Break out of
outer loop. ./
break;
i

/* Process the current directory since all the
ones below it have already been processed*/
SearchEngine(filename, attribute, funcPtr);
return; /* Bye. */
} |

JEERn

void DirTree(fname, attr, proc)

This routine sets up the call for the recursive tree
search routine and the search engine.

void DirTree(fname, attr, proc)

char *fname;

char attr;

void (*proc)();

{
filename = fname;
attribute = attr;
funcPtr = proc;
GetNextDir(); /* Initiate recursive search. wy
return;

/* Set global variables for Engine.*/

September/October 1988 TURBO TECHNIX

79

TURBO PROLOG

DEFINITE CLAUSE GRAMMARS
IN TURBO PROLOG

A parser is only as good as its grammar.

Barbara Clinger, Ph.D.

Since microcomputers have become faster
and contain more memory, producers of
software are under pressure to create
friendlier software. If “user friendly” is a
euphemism for the ability to exchange in-
YEAR® __ formation with computers in English,
then programs need a process to extract key infor-
mation from the average user’s input. One such pro-
cess uses a definite clause grammar (DCG).

The investigation of definite clause grammars is
the primary purpose of this article. We’ll also exam-
ine parsers as a means to scan and interpret English
sentences. In addition, two methods of partition-
ing—simple partitioning, and parsing by difference
lists—will be explored and compared. Finally, we’ll
examine a simple mathematical expression parser.

WIZARD

GRAMMARS

Languages are built with words; the lexicographic
level is the dictionary which gives the definition, as
well as the function, of a word (noun, verb, and so
on). A language syntax imposes structure upon
words. In English, phrases and sentences are part of
the syntactic structure. In a programming language,
such as Pascal, syntax is often provided through syn-
tax diagrams. Figure 1 depicts a syntax diagram for
a Pascal identifier (name). This diagram shows that
the identifier must begin with a letter and may be
followed by a combination of letters and digits.

Grammars provide another method for describing
a language. A grammar allows a language to be pre-
cisely described by the use of a specific syntax. One
popular grammar, called Bacus-Naur Form (BNF), is
used to define the Turbo Prolog language (see Figure
2). To see how BNF syntax is read, consider the fol-
lowing statement:

<name> ::= (<letter> | _)

{ <letter> | <digit> | _ >*
This statement says that a name consists of a letter
or an underscore, followed by zero or more repeti-
tions of a letter, a digit, or an underscore.

Identifier

Figure 1. Syntax diagram for a Pascal identifier (name).

Letters and digits are also defined in BNF nota-
tion. As any programmer knows, failure to follow the
syntax of a language results in the ubiquitous “SYN-
TAX ERROR” message, and rejection of the program
by the compiler. A general discussion of BNF syntax
can be found in Chapter 7 of the Turbo Prolog Tool-
box Owner’s Handbook.

Using these simple concepts, I can define a very
simple context-free grammar. My dictionary consists
of three nouns (dog, cat, and water) and one verb
(drinks). The syntax of this language has one rule: A

<name> s2= (<letter> | _)

{ <letter> | <digit>| _)»*
<name-list> ::= <name> | <name> , <name-list>
<variable> ::= (<capital-letter> | _) [<name>]
<functor> ::= <small-letter> [<name>]
<letter> ::= <small-letter> [<name>]
<small-letter> =ralbles 12z
<capital-letter> ::= A[B| ... |Z
<digit> 1= 0[1] ... |9

Figure 2. BNF syntax used to describe a subset of the
Turbo Prolog language.

80 TURBO TECHNIX September/October 1988

sentence takes the form of a noun, followed by a
verb, followed by a noun. Using BNF notation, this
grammar is defined as:
<sentence> ::= <noun> <verb> <noun>
<noun> dog | cat | water
<verb> ::= drinks
In this language, the following are all correct
sentences:
dog drinks water
cat drinks water
water drinks cat

The last sentence is correct since it adheres to the
syntax of a sentence; this sentence emphasizes why
this grammar is called “context-free.” The next
higher level of a grammar imposes semantics (the
meaning of words) on the language, and is beyond
the scope of this article.

DCG NOTATION

A definite clause grammar (DCG) is simply a
grammar that is expressed as logic
statements; parsing is the execution of the
statements. Although I'll use DCGsin
context-free grammars in this article, keep
in mind that they can be used for more
powerful grammars.

The notation used with a DCG differs
slightly from the BNF notation used in
Figure 2. However, the translation between
the BNF notation and the DCG notation
(given in Figure 3) is quite simple. For in-
stance, the DCG notation for the simple
grammar in the previous example is the
following:
sentence --> noun, verb, noun
noun --> dog
noun --> cat

noun --> water
verb --> drinks

&

“sentence,” “noun,” and “verb” are called nontermi-
nals. The tokens (also called terminals) are “dog,”
“cat,” “drinks,” and “water.”

The beauty of using DCGs to define a grammar is
that the implementation in definite clause grammars
follows naturally from the grammar’s English de-
scription. For instance, the next example
defines a grammar to parse sentences
of the following form:

John likes Mary.

The man sees a dog.

Mary likes the dog.

John eats.

The grammar for these
sentences can be described
in English as listed below:

® A sentence takes the form
of a noun phrase,
followed by a verb phrase.
® A noun phrase takes
either the form of a
determiner (definite
article) that is followed
by a noun; or else
the form of a noun.

continued on page 82

Model: Mr. Byte

TOKEN
terminals.

NONTERMINALS

The dictionary words are called tokens or

These are words used in the grammar which are not

terminals; they are given in terms of other

language elements.

== This symbol is the equivalent of the ::= in BNF
form and is read "takes the form of".

B The comma is read "followed by".

Figure 3. The translation between BNF and the DCG notation.

DEFINITE CLAUSE

continued from page 81

® A verb phrase takes either the
form of a verb that is followed
by a noun phrase; or else the
form of a verb.

Since the DCG form of the
grammar will be converted into
executable Prolog predicates, ac-
ceptable Turbo Prolog names are
used in the following definitions:
sentence --> noun_phrase,

verb_phrase
noun_phrase --> determiner, noun
noun_phrase --> noun
verb_phrase --> verb, noun_phrase
verb_phrase --> verb
These definitions, along with the
dictionary and a mechanism to
convert DCGs into executable
Turbo Prolog predicates, parse
sentences of the desired form.

There is one more point to note
in this example. Since these def-
initions will be converted to exe-
cutable predicates, the order in
which the definitions are listed
can be very important. For in-
stance, defining the verb phrase
before defining the noun phrase
does not affect the outcome in the
example. However, if the two verb
phrase definitions are inter-
changed, then the outcome is
drastically changed. I'll say more
about this later in the section on
difference lists.

SCANNING AND PARSING

A parser has two components: the
“reader” and the “tester.” The
reader (also called the scanner) ac-
cepts a stream of input and pro-
cesses it into the appropriate data
structure, which is then given to
the tester. If the tester determines
that the input is acceptable, it
passes the information to the in-
terpreter, which is the portion of
the program that acts upon the
information.

Before we can implement a
DCG, we must decide upon the
form of the data that goes into
and comes out of the parser. The
decision to use a list of tokens as
input is almost universal. There-
fore, the reader’s output should
consist of a list of tokens to be
parsed. XPARS.SCA in the Turbo
Prolog Toolbox is an example of
a reader that’s designed for input
into predicates produced by the
parser generator. The predicate
reader in Listing 1 produces a list
of strings that are used as tokens
in that program.

Before the parser can be imple-
mented, the form of the data
that’s required by the rest of the
program must be known. The out-
put can be as trivial as a true or a
false to indicate that the parsing
was successful or unsuccessful, re-
spectively (as shown in Listing 1).
Alternatively, the output can be a
list of keywords, a numerical
value, or a more complicated
structure that represents a parse
tree.

A parse tree is a structure that
shows the overall construction of
the original source input. In
Pascal, the implementation of a
tree structure is accomplished
through pointers and records,
where a record contains some in-
formation along with pointers to
other nodes in the tree. In Turbo
Prolog, a tree structure is repre-
sented through the use of com-
pound objects. For instance, the
sentence “the man sees a dog”
can be represented by the follow-
ing Turbo Prolog structure:

sentence(noun_phrase(
determiner(the),
noun(man)),
verb_phrase(verb(sees),
noun_phrase(determiner(a),
noun(dog)))).

Figure 4 shows the parse tree for

this sentence.

With this sentence structure as
output, the appropriate predicates
must be written to extract the in-
formation from the tree and then
evaluate that information. Recall
the DCG for the sentence struc-
ture:

sentence --> noun_phrase,verb_phrase

The translation of this DCG re-
quires the input list to be parti-
tioned into two sublists A and B,
in such a way that the list A is a
noun phrase and the list B is a
verb phrase. To see this clearly,
consider the following input list:

[the, man, sees, a, dog]

This list can be partitioned into
the sublists:

[the, man]

[sees, a, dog]

The next step is to test whether
the sublists [the, man] and [sees,
a, dog] satisfy the criteria of being
a noun phrase and a verb phrase,
respectively.

A very simplistic method for
partitioning the input list is to use
the predicate append. This two-
way predicate not only appends
two lists to produce a third, but it
can also return all of the parti-
tions of a list as two sublists. In
simple grammars (such as the
grammar implemented in Listing
1), append is adequate for the job,
and uses less stack than does the
difference list method (which is
described shortly). In a more com-
plicated grammar, append re-
quires a lot of backtracking and is
less efficient.

DIFFERENCE LISTS

A more efficient method of parti-
tioning is based upon an incom-
plete data structure called the dif-
ference list. This alternative to list
processing can greatly simplify
list-processing programs.

In order to use this partitioning
method, a “subtraction” between
two lists must first be defined.
Let’s examine the list A = [a, b, c].
A can be considered, in many
ways, to be the difference of two

82 TURBO TECHNIX September/October 1988

sets, such as in the following
examples:

[a,b,c] = [a,b,c,d,e] - [d,e],
[a,b,c]l = [a,b,c,d]l - [d]
[a,b,c]) = [a,b,c] - -

In fact, the following statement is
true for any set T, where the arbi-
trary T makes the data structure
incomplete:

fa,b,c] = [a,b,c|T] - T,

In general, if A =[ab, ... ,d], then
A is the difference between the
list X = [a,b, ... ,d|T] and T, where
T can be any list; this difference
is denoted by A = X - T. Note that
the empty list [] is expressed as
X-X.

To apply difference lists to
DCGs, let A = [the, man, sees, a,
dog! T] and look at the following
grammar in terms of difference
lists:
sentence --> noun phrase,

verb phrase

According to this particular
grammar, the difference list A - T
is a sentence if A - Y is a noun
phrase and Y - T is a verb phrase,
for some list Y.

To represent this as a Turbo
Prolog clause, one would like to
write:
sentence(A - T):-

noun_phrase(A - Y),
verb_phrase(Y - T).

The minus sign, however, normal-
ly implies subtraction between real
numbers. We could define a pred-
icate, such as difference(X,Y,Z)
where the difference of X - Y is
returned in Z, and use difference
in the clause for sentence. The
same idea can also be coded with
two arguments as in the following
clause:

sentence(A,T):-

noun_phrase(A,Y),
verb_phrase(Y,T)

Keep in mind that the two argu-
ments in this clause refer to the
difference lists.

Listing 2 is similar to Listing 1,
except that difference lists per-
form the partitioning process in
Listing 2. The difference lists are
handled in the following clauses:

sentence(List_in,Rest):-
noun_phrase(List_in,Y),
verb_phrase(Y,Rest).

noun_phrase(X,Rest): -
determiner(X,Y),
noun(Y,Rest).

verb_phrase(X,Rest):-

sentence

e

verb phrase

noun phrase

Vi i e

verb
(sees)

determiner
(the)

noun
(man)

noun])hl"d.SC

720

determiner noun

(a) (dog)

Figure 4. Parse tree for the sentence “the man sees a dog.”

verb(X,Y),
noun_phrase(Y,Rest).

determiner(["the" |Rest],Rest).

noun(["man" |Rest] ,Rest).

To better visualize the action of
these clauses, Figure 5 shows the
CALLs and RETURN:S from a
trace of Listing 2 using List_in =
[“the”, “man”, “sees”, “a”, “dog”].
In particular, look at the first
CALL to noun_phrase (line 2 in
Figure 5) and follow the sequence
to its RETURN (line 6). The call

is made with the second param-
eter (Rest) uninstantiated. Upon
the RETURN, Rest is instantiated
to the noun phrase (which is sat-
isfied by List_in - Rest), and to the
potential verb phrase.

If the first and third clauses for
verb_phrase in Listing 2 are inter-
changed, the parser succeeds as
soon as the verb “sees” is found,
which causes the noun phrase
[“a”, “dog”] to be returned in
Rest. This means that the parser
has successfully found an accept-
able sentence, but that the parser
did not scan all of List_in.

The program that uses differ-
ence lists seems more difficult
than the program that uses ap-
pend. Even in such a simple gram-
mar, however, the difference list
version saves several calls to
noun_phrase and verb_phrase.
The time that’s saved is not no-
ticeable in a simple grammar. In
more sophisticated grammars,
however, the difference in time is
important.

PARSING MATHEMATICAL
EXPRESSIONS

My final example of the use of
DCGs scans a mathematical ex-
pression. This example illustrates
several points, including how to
handle a DCG that requires spe-
cific symbols (such as the arith-
metic operators “+” or “/”); how
to handle functions (such as the
trigonometric functions); and how
to return information from a scan-
ner.

For this example, Listing 3 re-
turns the numeric value of an ex-
pression, and Listing 4 returns the
parse tree of an expression.

Before defining the DCGs to
parse an expression, let’s think for
a moment about the precedence
of operations. Consider the fol-
lowing expression:

2 * 3 - 4+ 5%sin(1.5) + 8°2) + 6/7

The precedence of operations
dictates that expressions within
parentheses are evaluated first,
then the individual terms that use
multiplication and division are
evaluated, and finally, the terms
are summed. In evaluating such
an expression, parentheses have
the highest priority, followed by
exponentiation, then by multipli-
cation and division, and finally by
addition and subtraction. Also,
sin(1.5) represents a number that
must be “looked up” before the
expression inside the parentheses
can be evaluated. I've defined a
DCG in which the terminals are
numbers (including pi and func-

continued on page 84

September/October 1988 TURBO TECHNIX 83

DEFINITE CLAUSE

continued from page 83

tions that return numbers), with
the syntax imposed by the oper-
ators. The order in which the
grammar is stated determines the
priority of the operators.

The previous expression con-
tains four terms: 2*3, 4, 5*(sin(1.5)
+ 8°2), and 6/7. These terms are
summed together to give the value
of the expression. The word
“sum” is used here because the
operation of subtraction is math-
ematically defined in terms of ad-
dition. Subtraction introduces er-
ror into some implementations of
an expression parser that tries to
evaluate from left to right. When
a left to right evaluation is needed
or desired, the safest method is to
replace the -4 with its mathemat-
ical equivalence, + (-1)*4. (List-
ings 3 and 4 perform a right to left
evaluation.)

In the following example, to-
kens that are used specifically
within the definitions are en-
closed in brackets in order to dis-
tinguish terminals from nonter-
minals.

expr --> expr, [+]1, term
expr --> expr, [-1, term
expr --> term

term --> term, [*], power
term --> term, [/], power

term --> power

power --> group, ["], power
power --> group

group --> [(], expr, [)]
group --> number

number --> [+], number
number --> [-]1, number
number --> [sin], group

number --> [cos], group

number --> [pil
number --> [N].

The implementation of this
grammar (in Listing 3) returns the
value of an expression. Listing 4
is an abbreviated version of this
grammar that returns a structure
for a parse tree.

Let’s compare the first clause
for expr from Listing 3 and List-
ing 4:

/* From Listing 3 */
expr(X,L1,L2):-
append(Left, ["+"|Rightl,L1),
expr(Vv1l,Left,L2),
term(V2,Right,L2)
X = V1 + V2.

/* From Listing 4 */
expr(branch(op("+"),L_node,
R_node),L1,L2):-
append(Left, ["+", [Right1,L1),
expr(L_node,Left,L2),
term(R_node,Right,L2).
In both programs, the first argu-
ment determines the nature of the
output of the parser, while L1 and
L2 represent a difference list,
L1 - L2. In both programs, append
splits the original list (L2) into two
sublists. The left part of this list is
sent to expr, which checks if this
part is an expression; the right
part of the list is sent to term,
which checks if this part is a term.

[Illnanll i Ilseesll y llall 4 lldog])

[Ilseesll - llall o Ildogll])

CALL: sentence(["the","man", "sees","a","dog"]1, _)

CALL: noun_phrase(["the", "man", "sees","a", "dog"], _)
CALL: determiner(["the","man","sees", "a", "dog"], _)
RETURN: determiner(["the", "man","sees","a", "dog"],
CALL: noun(["man", "sees","a","dog"]l, _)

RETURN: noun(["man", "sees", "a", dog"] > ["sees","a","dog“])
RETURN: *noun_phrase(["the", "man", "sees","a", "dog"],
CALL: verb_phrase(["sees","a","dog"], _)

CALL: verb(["sees","a","dog"]. _)

RETURN: verb(["sees","a", "dog"], ["a","dog])

CALL: noun_phrase(["a","dog"], _)

CALL: determiner(["a","dog"]l, _)

RETURN: determiner(["a","dog"], ["dog"])

CALL: noun(["dog"1, _)

RETURN: noun(["'dog"], [1)

RETURN: *noun_phrase(["a","dog"], [1)

RETURN: *verb_phrase(["sees", "a","dog"], [1)

RETURN: sentence(["the","man","sees", 6 "a","dog"], [1)

Figure 5. A sample trace from the program in Listing 2.

In the case of Listing 3, if both
calls are successful, then the re-
turn values are added together
(X = V1 + V2), and the resulting
value is returned by expr. In the
case of Listing 4, if both calls are
successful, then the node branch-
(op(“+”), L_node, R_node) is re-
turned, where both L_node and
R_node have been instantiated
through calls to term.

Finally, looking at the hierarchy
of operations, the tokens (num-
bers) have highest priority, groups
(parentheses) have next highest
priority, and so on up to + and -,
which have lowest priority. This
priority order corresponds to the
DCG form of the parser from bot-
tom to top.

TRANSLATORS

The advantage of using a pre-
written translator is that the parser
is generated automatically. The
disadvantage to this approach is
the need to use output in a form
that is determined by the transla-
tor. For example, XPARS from the
Turbo Prolog Toolbox illustrates

a parser for simple algebraic ex-
pressions. With an input of “2 - 10
+ 3,” the parser returns the fol-
lowing structure as its output:

plus(minus(int(2),int(10)),int(3)).

The parser generator could be
modified to customize the output
for your specific needs, although
this is not a trivial task.

In summary, there’s really noth-
ing mysterious or difficult about
definite clause grammars. The dif-
ficulty lies in the translation from
DCG notation to executable
Prolog clauses. The process of
writing your own translator re-
quires more effort in order to de-
velop the parser, while the use of
a utility (such as the parser gener-
ator from the Turbo Prolog Tool-
box) requires more effort in order
to use the output in a specific

program. W

Barbara Clinger is a professor of
mathematics at Wheaton College in
Norton, Massachusetts.

Listings may be downloaded from

Library 1 of CompuServe forum
BPROGB, as DCG.ARC.

listings begin on page 86

84 TURBO TECHNIX September/October 1988

PolyAWK' - The Toolbox Language .

For C, Pascal, Assembly & BASIC Programmers.

We call PolyAWK our “toolbox” language
because it is a general-purpose language that
can replace a host of specialized tools or pro-
grams. You will still use your standard language
(C, Pascal, Assembler or other modular
language) to develop applications, but you will
write your own specialized development tools
and programs with this versatile, simple and
powerful language. Like thousands of others,
you will soon find PolyAWK to be an indis-
pensable part of your toolbox.

A True Implementation
Under MS-DOS

Bell Labs brought the world UNIX and C, and
now professional programmers are discovering
AWK. AWK was originally developed for UNIX
by Alfred Aho, Richard Weinberger & Brian
Kernighan of Bell Labs. Now PolyAWK gives
MS-DOS programmers a true implementation
of this valuable “new” programming tool.
PolyAWK fully conforms to the AWK standard
as defined by the original authors in their book,
The AWK Programming Language.

A Pattern Matching Language

PolyAWK is a powerful pattern matching
language for writing short programs to handle
common text manipulation and data conver-
sion tasks, multiple input files, dynamic regular
expressions, and user-defined functions. A
PolyAWK program consists of a sequence of
patterns and actions that tell what to look for
in the input data and what to do when it’s
found. PolyAWK searches a set of files for lines
matched by any of the patterns. When a match-
ing line is found, the corresponding action is
performed. A pattern can select lines by com-
binations of regular expressions and com-
parison operations on strings, numbers, fields,
variables, and array elements. Actions may per-
form arbitrary processing on selected lines. The
action langauge looks like C, but there are no
declarations, and strings and numbers are built-
in data types.

Saves You Time & Effort

The most compelling reason to use PolyAWK is
that you can literally accomplish in a few lines
of code what may take pages in C, Pascal or
Assembler. Programmers spend a lot of time
writing code to perform simple, mechanical
data manipulation — changing the format of
data, checking its validity, finding items with
some property, adding up numbers and print-
ing reports. It is time consuming to have to
write a special-purpose program in a standard

PolyAWK Comes With The
Definitive ‘
Book On

AWK...

Requires
MS-DOS
2.0 or above & 256K RAM. $99

When you order PolyAWK you receive a copy
of The AWK Programming Language written by
the authors of the original UNIX-based AWK.
The book begins with a tutorial that shows how
easy AWK is to use, followed by a comprehen-
sive manual. Because PolyAWK is a complete
implementation of AWK as defined by the
book’s authors, you will use this book as the
manual for PolyAWK.

You can purchase PolyAWK and the book, The
AWK Programming Language, for $99. If you
already have the book, you can order PolyAWK
software only for $85, which is $14 off the
regular $99 purchase price. (The book serves
as the User’s Manual, so you you should
already have a copy of the book if you are order-
ing the software only.)

PolyShell Bonus!

PolyShell gives you 57 of the most useful UNIX
commands and utilities under MS-DOS in less
than 20K. You can still use MS-DOS commands
at any time and exit or restart PolyShell without
rebooting. MS-DOS programmers — discover
what you have been missing! UNIX program-
mers — switch to MS-DOS painlessly!
PolyShell and PolyAWK are each $99 when
ordered separately. Save $50 by ordering the
PolyShell + PolyAWK combination package for
$149. Not copy-protected.

30-Day
Money Back Guarantee
Credit Card Orders:
1-800-547-4000

Ask for Dept. TTX
Send Checks and PO.s To:
POLYTRON Corporation
1700 NW 167th Place, Beaverton, OR 97006
(503) 645-1150 — FAX: (503) 645-4576

POLY TROIN

High Quality Software Since 1982

language like C or Pascal each time such a task
comes up. With PolyAWK, you can handle such
tasks with very short programs, often only one
or two lines long.

Prototype With PolyAWK,
Translate To Another Language

The brevity of expression and convenience of
operations make PolyAWK valuable for proto-
typing even large-sized programs. You start
with a few lines, then refine the program, ex-
perimenting with designs by trying alternatives
until you get the desired result. Since programs
are short, it's easy to get started and easy to start
over when experience suggests a different
direction. PolyAWK has even been used for
software engineering courses because it’s possi-
ble to experiment with designs much more
readily than with larger languages. It's straight-
forward to translate a PolyAWK program into
another language once the design is right.

Very Concise Code

Where program development time is more

important than run time, AWK is hard to beat.

These AWK characteristics let you write short

and concise programs:

® The implicit input loop and the pattern-action
paradigm simplify and often entirely elimi-
nate control flow.

* Field splitting parses the most common forms
of input, while numbers and strings and the
coercions between them handle the most
common data types.

* Associate arrays use ordinary strings as the
index in the array and offer an easy way to
implement a single-key database.

¢ Regular expressions are a uniform notation
for describing patterns of test.

* Default initialization and the absence of
declarations shorten programs.

Large Model
Implementation

PolyAWK is a large model implementation and
can use all of available memory to run big pro-
grams or read files greater than 64K.

Math Support

PolyAWK also includes extensive support for
math functions such as strings, integers,
floating point numbers and transcendental
functions (sin, log, etc.) for scientific applica-
tions. Conversion between these types is
automatic and always optimized for speed
without compromising accuracy.

®

LISTING 1: GRAMMAR.PRO

/* Simple DCG parser
Barbara Clinger, 1988

This program illustrates the expansion of a simple DCG.
Its vocabulary consists of:

Nouns: John, Mary, man, dog;

Determiners: the, a

verbs: likes, sees

Sample input: The man sees a dog.
Output: True or False, for success or failure of parsing.
L7 |

domains
toklist = string*

predicates
reader(string,toklist)
remove_period(toklist,toklist)
append(toklist,toklist,toklist)

/* the reader */

/* The grammar */

sentence(toklist, toklist, toklist) /* the parser */

noun_phrase(toklist)
verb_phrase(toklist)
determiner(string)
noun(string)
verb(string)

goal

clauses

/* The clause do parses a sentence and returns true or false. Its
writing is informational only. */

do :-
nl,write("Enter a sentence --> "),
readln(S),nl,nl,
reader(S,List), /* use the reader */
write("Output of the reader: ", List),nl,nl,
remove_period(List, List_in),
sentence(List_in,Noun_phrase,Verb_phrase),
write(" Noun phrase: ", Noun_phrase),nl,
write("Verb phrase: ", Verb_phrase),nl.

It
Using append to split the List_in into possible noun phrases and
verb phrases is not efficient, but for simple grammars it is
adequate.

*f

/* expansion of:
sentence --> noun_phrase, verb_phrase

o

sentence(List_in,Noun_list_out,Verb_list_out) :-
append(Noun_list_out,Verb_list_out,List_in),
noun_phrase(Noun_list_out),!,verb_phrase(Verb_list_out).

/* expansion of:
noun_phrase --> determiner, noun
noun_phrase --> noun
)
noun_phrase([A,B]) :- determiner(A),noun(B).
noun_phrase([A]) :- noun(A).

/* expansion of:
verb_phrase --> verb, noun_phrase
verb_phrase --> verb, noun
verb_phrase --> verb
*/
verb_phrase([A|B]) :- verb(A), noun_phrase(B).
verb_phrase([A,B]) :- verb(A),noun(B).
verb_phrase([A]) :- verb(A).

/* the dictionary */
determiner("the").
determiner(™a").

noun("man").
noun(* john").
noun(“mary").
m(“doﬂ“) oy

verb("likes").
verb("sees").
/* end of dictionary */

/* reader

(1) the empty string returns the empty list,

(2) if the string is not empty, it recursively takes the front
token, converts it to lower case, then reads the rest of the
list, until the string is empty.

L)

reader("*,[]) :- I,

reader(Str, [Token|Rest]) :-
fronttoken(Str,Tok,Str1),
upper_lower(Tok, Token),
reader(Str1,Rest),!.

/* removes the period from list of tokens, if it exists */
remove_period(L1,L2) :-

append(L2, ["."],L1).
remove_period(L1,L1).

append([],List,List).
append((H|T1,L, H|T2]) :-
append(T,L,T2).

LISTING 2: DIFFRENC.PRO

/* Parsing by difference lists
Barbara Clinger, 1988

For input and output, this program is identical to
Program Listing 1. However, the expansion of the grammar is
done with difference lists rather than using append to split
the list of tokens into noun phrases and verb phrases.

*7

domains
toklist = string*
predicates
do
reader(string, toklist) /* the reader */

remove_period(toklist,toklist)
append(toklist, toklist,toklist)
/* The grammar */
sentence(toklist,toklist)
noun_phrase(toklist, toklist)
verb_phrase(toklist, toklist)
determiner(toklist,toklist)
noun(toklist,toklist)
verb(toklist,toklist)

goal

clauses

do :-
nl,write("Enter a sentence --> "),
read(in(S),nl,nl,
reader(S,List),

write("Output of the reader: ", List),nl,nl,
remove_period(iist,List_in),
sentence(List_in,List_out),
write("List out: ",List_out),nl, /* informational write */
List_out = [].
/* do succeeds when List_out = []1, that is, all the list was
parsed */

/* sentence:
List_in is a sentence if List_in - Y is a noun phrase and
Y - Rest is a verb phrase. If the predicate sentence succeeds
in parsing the entire list then Rest is the empty list.

b

sentence(List_in,Rest) :-
noun_phrase(List_in,Y),verb_phrase(Y,Rest).

/* noun_phrase
X is a noun phrase
if X - Y is a determiner and Y - Rest is a noun,
or if X - Y is a noun.
*/

noun_phrase(X,Rest) :- determiner(X,Y), noun(Y,Rest).
noun_phrase(X,Y) :- noun(X,Y).

/* verb_phrase
X is a verb phrase
if X - Y is a verb and Y - Rest is a noun phrase,
or if X - Y is a verb and Y - Rest is a noun
or if X - Y is a verb.
*

verb_phrase(X,Rest) :- verb(X,Y), noun_phrase(Y,Rest).
verb_phrase(X,Rest) :- verb(X,Y), noun(Y,Rest).
verb_phrase(X,Rest) :- verb(X,Rest).

/* the dictionary

where X is ["the“|Rest], determiner is saying is that
"the" is a determiner since [“the"] is ["the"|Rest] - Rest.
i

determiner(["the"
determiner(["a"

Rest] ,Rest).
Rest] ,Rest).

noun(["man" |[Rest],Rest).
noun([john" [Rest] ,Rest).
noun(["mary* [Rest] ,Rest).
noun(["dog" |Rest] ,Rest).

verb(["likes" |Rest],Rest).
verb(["sees" |Rest] ,Rest).

/* end of dictionary */

86 TURBO TECHNIX September/October 1988

/* reader

(1) the empty string returns the empty list,

(2) if the string is not empty, recursively it takes the front
token, converts it to lower case, then reads the rest of the
list, until the string is empty.

=,

reader(*™, 1) - 1.

reader(Str, [Token|Rest]) :-
fronttoken(Str,Tok,Str1),
upper_Llower(Tok, Token),
reader(Str1,Rest),!.

/* remove a period at the end of a sentence */
remove_period(L1,L2) :-

append(L2, [*."],L1).
remove_period(L1,L1).

append([],List,List).
append([H|T],L, [H|T2]) :-
append(T,L,T2).

LISTING 3: MATHEXP.PRO

/* Mathematical Expression parser
Barbara Clinger, 1988

This program parses a mathematical expression and returns the
value of the expression. It allows the use of ~ for exponation,
grouping using parentheses, evaluation of functions (sine,
cosine, ...). Decimals in the range from -1 to +1 must be entered
with a leading zero (i.e., 0.25). A warning is issued if negative
numbers are raised to fractional powers; the indeterminant zero
raised to the zero power stops execution of the program.

sample input: 2°3 + (sin(2*pi/3) + 1)°2 - In(0.123)
7]

domains
toklist = string*

predicates
reader(string, toklist)
give_result(real,toklist,toklist)
append(toklist,toklist, toklist)
do
if_can_do(real,real,real)
is_odd_int(real)
is_even_int(real)

/* the grammar */
expr(real,toklist,toklist)
term(real,toklist,toklist)
power(real,toklist, toklist)
group(real,toklist, toklist)
number(real ,toklist,toklist)

/* goal

S

clauses

do :-
write("When entering numbers between -1 and +1 enter"),nl,
write("a leading zero. For example 0.15"),nl,nl,
nl,write("Enter an expression: "),nl, write(">"),
readln(s),nl,nl, /* get the expression */
reader(s,List_in), /* process for expr */
expr(Info_out,List_in,Rest),!, /* parse expression */
give_result(Info_out,List_in,Rest). /* print results */

give_result(N,_,T) :-
T=10,
write("The value of the expression is ", N),nl.
give_result(_,_ ,T) :-
write("Cannot evaluate the expression."),nl,
write("Unevaluated remainder list is:"),nl,nl,
write(T),nl,nl.

/* THE GRAMMAR */
/* An expression takes the form of
an expression plus a term,
Oor an express minus a term,
or a term
*/

expr(X,L1,L2) :-
append(Left,(""'lRiuht],U),
expr(vl, Left,L2),
term(V2,Right,L2),
X =Vl + V2,
expr(X,L1,L2) :-
append(Left, ["-"|Right],L1),
expr(Vvl,Left,L2),
term(V2,Right,L2),
X = Vvl - v2. /* returns left value minus right value */
expr(X,L1,L2) :- term(X,L1,L2).

/* returns left value plus right value */

/* A term takes the form of
a term times a power
or a term divided by a power
or a power
*7

term(X,L1,L2) :-

append(Left, ["*"|Right],L1),

term(V1,Left,L2),

power(V2,Right,L2),

X = V1 *v2. /* returns left value times right value */
term(X,L1,L2) :-

append(Left, ["/"|Right],L1),

term(V1,Left,L2),

power(V2,Right,L2),

X =Vl ve. /* returns left value divided by right */
term(X,L1,L2) :- power(X,L1,L2).

/* A power takes the form of
a group raised to a power
or a group

Not all expressions of the form X ~ Y are possible. The clause
if_can_do allows the obvious cases to be evaluated.
&7

power(X,L1,L2) :-

append(Left, [*""|Right],L1),

group(Vv1l,Left, L2),

power(V2,Right,L2),

if_can_do(X,V1,V2). /* check for acceptable cases */
power(X,L1,L2) :- group(X,L1,L2).

/* a group takes the form of
an expression enclosed in parentheses
or a number
e

group(X, ["("|L11,L2) :-

append(Sub_expr, [*)"],L1),

expr(V,Sub_expr,L2),!,

X = V. /* return the value inside the parentheses */
group(X,L1,L2) :- number(X,L1,L2).

/* a number takes the form of
a plus sign followed by a an unsigned number N
or a minus sign followed by a an unsigned number N
or sin(x), cos(x), ... , In(x), or the number pi
or an unsigned number N

o/ f

number (X, ["+"|T],L2) :- /* + N is the same as N */
number(X,T,L2).

number(X, ["-"|T],L2) :- /* return negative of unsigned N */
number(X1,7,L2),
X = -X1.

number(X, ["sin"|L1],L2) :- /* use of the sine function, must */
group(V,L1,L2), /* be of the form sin(arg) */

X = sin(V),!.
number(X, ["cos" |L1],L2) :-

group(V,L1,L2),X = cos(V),!.
number (X, ["tan"|L1],L2) :-

group(V,L1,L2), X = tan(V),!.
/* secant definition */
number (X, ["sec"|L1],L2) :-

group(Vv,L1,L2),

cos(V) <> 0,

X = 1/cos(V),!.
number(_, ["sec"|L1],L2) :-

group(Vv,L1,L2),

cos(V) = 0,

write("error in secant argument"),nl,nl,!, fail.
number (X, ["arctan®|L1],L2) :-

group(V,L1,L2),X = arctan(V),!.
number (X, ["exp"|L1],L2) :-

group(V,L1,L2), X = exp(V),!.
number (X, ["ln"[L1],L2) :-

group(V,L1,L2), X = Ln(V),1.
number (X, ["pi®|T1,T) :-

X = 4 * arctan(1),!.

/* the angle whose tangent is 1 is pi/4 */

Number (Num, [H|T],T) :-

str_real(H,Num),!. /* convert string to unsigned number */

reader("", (1) :- I.

reader(Str, [Tok|Rest]) :-
fronttoken(Str,Tok,Str1),
reader(Str1,Rest),!.

append([],List,List).
append([H|T1,L, [H|T2)) :-
append(T,L,T2).

September/October 1988 TURBO TECHNIX 87

/* The clause if_can_do tests some cases for the evaluation of
expressions of the form V1
b/
if_can_do(X,V1,V2) :-
vi > 0,!,
X = exp(V2 * In(V1)).
if_can_do(X,V1,V2) :-
vi=0,v2=0,!,

/* positive base, all ok */

/* 0 raised to 0 is indeterminant */

write(ERROR).nL,
write("expression contains indeterminant form 0 ~ 0"),nl,
write()t nl,
= In(v1). /* automatic stop of program */
if_can_do(X,v1,) :-
Vi =0, /* 0 raised to nonzero power is 0 */
X = 0.
if_can_do(X,_,V2) :-
V2 =0, /* any number except 0 raised to */
X =1. /* the 0 power is 1 */

if_can_do(X,V1,V2) :- /* negative number to an odd */
is_odd_int(V2), /* integer is ok */
X = -exp(V2 * In(abs(V1))).
if_can_do(X,V1,V2) :- /* negative number to an even */
is_even_int(V2), /* integer is ok */
X = exp(V2 * In(abs(V1))).
/* negative number to a fractional power can swing right or wrong.
For example:
(-32)" 0.2 (the fifth root of -32) is -2
(-1024)°0.1 (the 10th root of -1024) does not exist.*/
if_can_do(X,V1,v2) :-
X = exp(V2 * In(abs(V1))),
uri te(ll'.".i'ﬂ"tiiﬁti WARNING i.ﬁ..'t't'.'ttn)'nl 5
write("expression contains (",V1,") ~ ", v2),nl,
write("had to use (abs(",v1,")) ~ *,v2),nl,nl.

is_odd_int(X) :- X =
is_even_ int(x) :- X =

round(X), (round(X) mod 2) =
round(X).

LISTING 4: PARSTREE.PRO

/* Parse Tree example
Barbara Clinger, 1988

This program illustrates a parser for simple algebraic expressions,
(no exponentation, parentheses, or functions). It returns the parse
tree of the expression. The tree is built using the structure node,
which is essentially an operator or number with left and right
branches.

Sample input: 2*3 -4 /5% 10+ 6
The output is a tree which represents the number (in functor form)
+(-(*(2,3), *(/(4,5), 10)), 6)

=

domains
item = op(string) ; leaf(real)
node = branch(item,node,node) ; empty
toklist = string*

predicates

reader(string, toklist)
give_result(node, toklist, toklist)
append(toklist,toklist,toklist)
do

/* the grammar */
expr(node, toklist,toklist)
term(node, toklist,toklist)
number(node, toklist, toklist)

goal
do.

clauses

do :-
nl,write("Enter an expression --> "),
readln(String),nl,nl,
reader(String,List_in),
expr(Tree,List_in,Rest),
give_result(Tree, List_in,Rest).

give_result(N,_,T) :-
T =
write("The structure of the expression is:"),nl,nl,
write(N),nl.
give_result(_, ,) :-
write("Cannot evaluate the expression."),nl.

reader("", 1) :- !.

reader(Str, [Tok|Rest]) :-
fronttoken(Str,Tok,Str1),
reader(Str1,Rest),!.

/* expansion of:
expr --> expr, [+], term
expr --> expr, [-], term
expr --> term
»
expr(branch(op("+"),L_node,R_node),L1,L2) :
append(Left, ["+"|Right],L1),
expr(L_node,Left,L2),
term(R_node,Right,L2).
expr(branch(op("-"),L_node,R_node),L1,L2) :
append(Left, ["-"|Right],L1),
expr(L_node,lLeft,L2),
term(R_node,Right,L2).
expr(X,L1,L2) :- term(X,L1,L2).

'

/* expansion of:
term --> term, [*], number
term --> term, [/], number
term --> number

el d

term(branch(op("**),L_node,R_node),L1,L2) :
append(Left, t"""lnght] Ly,
term(L_node,Left,L2),
nuber(k node ,Right,L2).

ter-(branch(op('/") L_node,R_node),L1,L2) :
append(Left, [-/"lnmhtl L,
term(L_node, Left,L2),
mr(l_node,kight,LZ).

term(X,L1,L2) :- number(X,L1,L2).

/* expansion of:
numbe

r ==> [+], number
number --> [-1, number
number --> [N]
'
number(X, [*+*|T],12) :-
number(X,T,L2).

number(X, (*-*|1],L2) :-
zru.llber(brnnch(leaf(u),upty,elwty) T,L2),
= i
X = branch(leaf(l) empty,empty).
number (branch(Leaf (X) , empty, empty), (H|T1,T) :-
str_real(H, X).

append([],List,List).
eppend(H|T1, L, H[T2]) :-
append(T,L,T2).

88 TURBO TECHNIX September/October 1988

w Turbo Prolog 2.0:
Powerful Artificial Intelligence
for your real-world applications!

New Turbo Prolog® 2.0 lets you
harness powerful Al techniques.
And you don’t have to be an
expert programmer or artificial
intelligence genius!

You get an all-new Prolog
compiler that’s been optimized
to produce smaller and more
efficient programs than ever
before. An improved full-screen,
completely customizable editor
with easy pull-down menus. All-
new documentation, including a
tutorial rich with examples and
instructions to take you all the
way from basic programming
to advanced techniques. Even
online help!

Turbo Prolog Toolbox
is 6 toolboxes in one!

More than 80 tools and 8,000
lines of source code help you
build your own Turbo Prolog
applications. Includes toolboxes
for menus, screen and report
layouts, business graphics, com-
munications, file-transfer capa-
bilities, parser generators, and
more!

Toolbox requires Turbo Prolog
1.1 or later

Just $99.95

System Requirements For the IBM PS/2™ and the IBM® family of per-
sonal computers and all 100% compatibles. PC-DOS (MS-DOS) 2.0 or later
384K RAM

*Customer satisfaction is our main concern: if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund.

All Borland products are trademarks or registered trademarks of Borland International, Inc. Other
brand and product names are trademarks of their respective holders. Copyright ©1888 Borland
International, Inc. BI 12574

More new features!

* An external database

system for developing
large databases. Supports
B+ trees and EMS
Source code for a fully-
featured Prolog interpre-
ter written entirely in
Turbo Prolog. Plus step-
by-step instructions to
adapt it or include it as is
in your own applications!
Support for the Borland
Graphics Interface, the
same professional-quality
graphics in Turbo Pascal,
Turbo C, and Quattro
Improved windowing
Powerful exception
handling and error
trapping features

Full compatibility with
Turbo C so the two lan-
guages can call each
other freely

Supports multiple
internal databases
High-resolution video
support

Just $149.95!

BORLAND

INTERNATIONAL

¢¢ If I had to pick one
single recommendation for
people who want to try to
keep up with the computer
revolution. I'd say, ‘Get and
learn Turbo Prolog.’

—Jerry Pournelle, Byte

An affordable, fast, and
easy-to-use language.
—Darryl Rubin, Al Expert 39

60-Day Money-back Guarantee*

For the dealer nearest you
Call (800) 543-7543

TURBO PROLOG

STATE SPACE

Minimal search—maximum performance.

Dr. Robert Crawford

Most computer programs are reasonably
well-behaved. In the absence of perni-
cious bugs, a program will dutifully follow
its algorithm, feeding on data along the
way, then produce its results and call it a
wrap. Artificial intelligence programs de-
viate from this procedural pattern, however. These
eccentrics show not the slightest reluctance in plung-
ing headlong into an unexplored search space in
pursuit of an answer. All too often their nonchalant
entry into such a system results in their program
counter being irresistibly attracted to a black hole
from which it never returns—and the program is lost
in space.

The above scenario unfolds when the program-
mer fails to provide the program with an appropriate
navigation system. The many techniques for guiding
a program through its problem space are called
search strategies. This article examines three of the
simplest search strategies: depth-first search,
breadth-first search, and best-first search. The depth-
first and breadth-first searches are known as blind (or
uninformed) methods since they utilize no heuristic
information (or rules of thumb) about the problem. A
best-first search, on the other hand, uses problem-
specific information to traverse the search space
more efficiently. Despite their differences, it turns
out that all three approaches can be described in a
uniform framework. We will look first at the general
principles that are involved, and then I'll discuss
their implementation in Turbo Prolog.

SQUARE ONE

STATE SPACE

One popular problem-solving technique, known as
“state space,” is used in a wide variety of Al applica-
tions including puzzles and games, natural language,
and pattern-directed inference systems. This tech-
nique uses a directed graph of nodes to represent a
given problem. Each node in the graph, called a
state, represents a particular problem situation. One
node is connected to another node by an arc. An arc
between nodes exists if it’s possible to get from the

first node to the second node by a legal move (some-
times referred to as a transition).

Now suppose that we have a directed graph that
models a search space. One of the nodes of the
graph, called the start node, is designated as the be-
ginning point for the search. Also, some of the
nodes of the graph are designated as goal nodes, and
represent the states that we want to reach. The object
is to find, if possible, a path from the start node to
some goal node. A small example of such a graph is
given in Figure 1, where node 0 is the start node and
nodes 13, 14, and 15 are goal nodes. I'll use this
graph as an illustration, and will presume that the
successors of a given node are generated in increas-
ing numerical order.

Some preliminary bookkeeping prevents going
around in circles, exploring a section of the graph
over and over. I therefore assume the existence of a
mechanism for marking the nodes of the graph. In
addition, a couple of simple data structures are re-
quired. The first data structure is the list L of nodes
that have been discovered but not fully explored.
These nodes are the possible starting points for
further probes into the graph. The other data struc-
ture is a collection P of pointers joining pairs of
nodes that have been discovered. When a goal node
is found, this collection is used to construct a path
from the start node to the goal node. Initially, only
the start node is marked, L contains just the start
node, and P is empty.

The general approach can now be described, be-
ginning with the start node. If the start node is also
a goal node, the search has succeeded with no effort,
and the trivial path can be returned as the answer. If
the start node is not a goal node, then proceed with
the search as follows:

1. Choose the next node; and

a. If the list L is empty, report failure; or

b. If the list L is not empty, remove a node N
from L and expand the node (i.e., generate a
list S of all of the node’s unmarked successors);

90 TURBO TECHNIX September/October 1988

Start Node
(initial state)

Goal Nodes
(solution states)

Figure 1. State space graph depicting node 0 as the initial state, and nodes 13,

14, and 15 as the solution states.
2. a. If one of these successors
(say G) is a goal node, use P
to generate a path from the
start node to N, add the
move from N to G, and re-
turn this as the successful re-
sult of the quest; or

b. If no goal nodes have

been generated, mark the
elements of S and add them
to L. Also add a pointer,
which points from N to each
element of S, to the collec-
tion P;

3. Go to step 1.

All three of the search tech-
niques that we are concerned with
follow the outline just given. The
difference lies in the manner with
which the next node to be ex-
panded is chosen. As you'll see,
varying the way that this choice is
made leads to strategies with
widely disparate philosophies.

DEPTH-FIRST SEARCHES

Beginning at the start node, a
depth-first search traverses down
the levels of the search tree,
choosing the lefthand node when-
ever more than one node exists.
In this way, a depth-first search
travels down the left side of the
search tree first. If no solution is
found, the search backs up one
level and tries the righthand

node. This process continues until
all nodes have been examined.

In Figure 1, a depth-first search
generates the path (0,5,8,9,14)
from the start node 0 to the goal
node 14. The source of the name
“depth-first” becomes clear as the
progress of the search is traced.
The search moves as far down
into the graph as it can go before
giving up and seeking alternate
routes. When the path (0,5,8,3,1)
is generated during the search, a
dead end has been reached. The
process then backs up, first to 3
and then to 8, before taking the
step from 8 to 9, which eventually
leads to success.

In terms of our general descrip-
tion, some care is needed when
adding new nodes to the list L. In
particular, always put S at the be-
ginning of L. When the time
comes to pick a new node for ex-
pansion, choose the first element
of L. In this way, the list L be-
haves like a stack—the last ele-
ment in is the first element out.

The reference to “backing up”
the search tree is reminiscent of
the backtracking mechanism of
Turbo Prolog—and that’s no ac-
cident. Turbo Prolog searches for
solutions in a depth-first fashion.
One reason for using a depth-first
search is that relatively little infor-
mation needs to be maintained in
order to recover the entire path

once a goal node is found. The
collection P of pointers that our
implementation maintains is more
than is needed for depth-first
searching. At any stage, in fact, it’s
only necessary to track the point-
ers along the current path.

Depth-first searching, however,
is not without difficulties. A major
problem stems from the fact that
the graphs involved in practical
problems are very large, and
sometimes infinite. It's relatively
easy for a depth-first search to be
led astray and to begin investigat-
ing a hopeless path—like the
(0,5,8,3) route in our example. If
the graph along such an avenue
is large or infinite, a black hole
develops and absorbs our intrepid
explorer.

BREADTH-FIRST SEARCHES

One way to avoid such a demise
is to adopt a more cautious
strategy for moving around in the
graph. A breadth-first search is
one such approach. The basic
idea behind a breadth-first search
is simple. Investigate the graph
level by level, beginning with the
root. Look next at the nodes that
are one step removed from the
root, then examine nodes that are
two steps away, and so forth. In
terms of our general paradigm,
simply add the elements of S to
the end of L instead of to the be-
ginning of L, and continue to
choose the first element of L as
the next node to be expanded. In
this case, the list L is used as a
queue (a first-in-first-out list).

When applied to the graph in
Figure 1, the breadth-first search
yields the path (0,6,9,14). At a
length of three, this is one step
shorter than the path that is gen-
erated by the depth-first search.
Indeed, it’s easy to see that a
breadth-first search always finds
a path of minimal length between
the start node and a goal node,
since all paths of length n are in-
vestigated before any paths of
length n+1.

You may now be wondering, “If
a breadth-first search always yields
the shortest possible path, why not
use it all the time?” A primary rea-
son is that the goal nodes may be
quite far away from the start node.
In such a case, a depth-first search
may well get lucky and reach a

continued on page 92

September/October 1988 TURBO TECHNIX 91

STATE SPACE

continued from page 91

goal quickly, having explored rel-
atively few false leads along the
way. A breadth-first search, on the
other hand, fans slowly down-
ward, looking at the entire width
of the graph until it reaches a
goal. If all of the goals are far re-
moved from the start node, the
breadth-first search may take an
intolerably long time.

Another concern with using a
breadth-first search is memory us-
age. With a depth-first search, only
the links that lead from the start
node to the node currently being
investigated need to be remem-
bered in order to recapture the fi-
nal path. A breadth-first search
needs to remember all of the links
in the whole bushy tree that it’s
built in order to function, since
the search jumps to far-removed
sections of the tree as it progress-
es. This exorbitant memory re-
quirement prevents practical im-
plementations of logic program-
ming languages, which are based
on a breadth-first search.

It's normally better to use a
depth-first search when the search
graph, as viewed from the per-
spective of the start node, is long
and deep. If the search graph is
short and wide, breadth-first
searching is more appropriate.
Both methods are prone to con-
siderable difficulties, and it’s often
necessary to provide additional in-
formation about the graph (over
and above the successor relation)
in order to obtain an effective
technique. This is what a best-first
search tries to do.

BEST-FIRST SEARCHES

In order to describe the best-first
search, it’s necessary to make one
additional assumption about our
graph. Suppose that there is a rule
by which two nodes in the graph
can be compared in order to se-
lect which node is more likely to
lead to a goal node. Such a rule is
typically based on heuristic knowl-
edge about the particular problem
being solved, and the rule may be
quite inaccurate. As an example,
take the number of each node in
our sample graph as a measure of
the “goodness” of the node. The
higher the number, the more

likely our heuristic thinks that the
corresponding node will lead to
success.

The description of the best-first
search is clear. Always expand the
node whose heuristic value is the
largest of all the nodes in L—in
other words, follow your best
guess. Whether this represents an
improvement over the earlier
blind methods depends entirely
upon how good the heuristic is.
With a typical “good but not per-
fect” rule, a best-first search ex-
plores the graph in a depth-first
fashion for a while. If success is
not forthcoming, the rule causes
a jump to another part of the
graph in a manner similar to the
breadth-first search. A carefully
chosen heuristic can often get the
best of both worlds. In this case,
it’s worth noting that the list L. be-
haves like a priority queue.

A best-first search yields the
path (0,7,10,9,14) when applied to
Figure 1. The best-first search
finds this path with less explora-
tion of the graph than either the
depth-first or breadth-first
searches, because it only looks at
one short deadend (involving the
step from 10 to 4).

IN TURBO PROLOG

A complete implementation of all
three search techniques is given
in SEARCH.PRO (Listing 1). Since
Turbo Prolog is perfectly suited to
problems of this type, the majority
of the code is straightforward. I'll
touch only on the highlights here,
paying particular attention to
those items which need to be
changed in order to handle differ-
ent problems.

The vertices of the search
graph are represented by entries
of type node. In Listing 1, node is
simply a new name for integer. In
general, the definition of the node
domain should be modified to fit
the problem at hand. The remain-
ing domains—pointer, pointers,
and path—need no adjustment
for other problems. The graph it-
self is described by the predicates
start_node, goal_node, and arcc.
Naturally, the clauses for these
predicates must be modified to
apply to other search spaces.

The predicates search and con-
tinue_search form the heart of the
search mechanism. The first
clause of search says that the
search (of whatever type) is over
if the first node in the list of un-
expanded nodes is a goal node. If
this is not the case, the second
clause of search expands the first
(unexpanded) node and passes its
arguments, together with the list
of new nodes that it found, to con-
tinue_search. In turn, continue_-
search checks to see if a goal node
is to be found among the newly
generated nodes. If a new goal
node is found, the search is over;
otherwise, the new nodes are
marked so that they will not be
found again and are then merged
into the list of unexpanded nodes.
Finally, the pointer list is updated
and control is passed back to
search.

The difference between the
three search techniques manifests
itself in the merge predicate. For
the depth-first search, new nodes
are appended to the front of the
list of old nodes. For the breadth-
first search, new nodes are ap-
pended to the end of the list. In
the case of the best-first search, an
insertion sort inserts the new
nodes into the list of old nodes.
The only predicate related to
merge that requires modification
for other problem setups is better,
which determines the ordering of
nodes in the best-first search.

NAVIGATIONAL CONTROLS

These search methods can pro-
vide adventurous programs with
reliable controls. In general, blind
searches should only be used in
situations where no guiding infor-
mation is available—they’re the
hallmark of programs that are in-
tended to be of such general ap-
plication that no particulars can
be assumed. The time spent in
manufacturing an accurate navi-
gational heuristic pays sizable div-
idends in performance. W

Dr. Robert Crawford is a professor of
computer science at Western Kentucky
University.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGB, as SEARCH.ARC.

listing begins on page 94

92 TURBO TECHNIX September/October 1988

It's Easy To See Why Quattro
Is The Spreadsheet Of Choice!

b’"’rv
7

\A
= ‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

e rag, -4 ;
o

In fact, it's hard not to see.
Because one look at Quattro® shows
you a lot more for your money.
More speed, more power, and the
most spectacular presentation-
quality graphics anywhere—

built in.

Dazzling and diverse

If you went out looking, you'd
be hard pressed to find spreadsheet
graphics as dazzling and diverse
as Quattro’s. If you did, they'd be
in a separate standalone package
with a separate standalone price.
And they still wouldn’t be inte-
grated with your spreadsheet’s
menu commands the way
Quattro’s are.

Brilliance built in

Quattro lets you choose from 10
different types of presentation-
quality graphs and a huge selection
of fonts, fill patterns and colors.

Quattro supports PostScript® too.
S0 you can use today’s most popu-
lar laser printers and typesetters to
make your work—and yourself—
look positively brilliant.

Hard copy made easy

Quattro makes it easy to get hard
copies of your graphics—with a
printer or plotter, directly from the
spreadsheet. In fact, you don’t even
have to leave the spreadsheet.

Seeing is believing!

Dazzling graphics are just one
of Quattro’s eye-opening features;
your dealer can show you the
others. Quattro is easy to use and
fully compatible; it even accepts
familiar 1-2-3° compatible com-
mands and uses data files created
with other spreadsheets and data-
bases. But Quattro gives you a lot
more—in fact, twice the speed and
power of the old standard. For only
half the price.

60-Day Money-back Guarantee*

For the dealer nearest you
call (800) 543-7543

=

s

INTERNATIONAL

& @mmm)

STy

€€ Quattro contains the most com-
prehensive presentation graphics
capability available in a spread-
sheet . .. The graphs Quattro can
produce surpass even those avail-
able through add-on products like
Lotus Graphwriter or Freelance
Plus. If Borland wanted to, it could
certainly sell the graphics portion
of the spreadsheet on its own merit
as a standalone graphics application.

Robert Alonzo, Personal Computing

Quattro’s presentation-quality gra-
phics output capabilities rival

those that 1-2-3 can obtain only in
conjunction with separate presenta-
tion graphics software . .. For me,
at least, Quattro has certainly
become the character-oriented
spreadsheet program of choice.

William Zachmann, Computerworld

In the few years since Lotus Devel-
opment Corp. introduced 1-2-3,
many companies have attempted to
unseat the king of the spreadsheet
hill. The latest contender, Borland
International Inc.’s Quattro, suc-
ceeds where other spreadsheet
packages have failed . .. Quattro is
at least two steps ahead of 1-2-3.

Ricardo Birmele, PCResource 9'9

LISTING 1: SEARCH.PRO

/* Graph Searching */

domains
node = integer
pointer = ptr(node,node)
pointers = pointer*
path = node*

database
mark(node)

/* Predicates defining the search space */
/* Change these to fit the problem. 7

predicates
start_node(node)
goal_node(node)
arcc(node, node)

clauses
start_node(0).

goal_node(13). goal_node(14). goal_node(15).

arcc(0,5). arcc(0,6). arcc(0,7). arcc(3,1).
arcc(4,2). arcc(5,8). arcc(6,9). arcc(7,10).
arcc(8,3). arcc(8,9). arcc(9,11). arcc(9,12).
arcc(9,14). arcc(10,4). arcc(10,9). arcc(11,13).
arcc(11,14). arcc(12,14). arcc(12,15).

/* General purpose predicates */

predicates
member (pointer,pointers)
member (node, path)
append(path, path, path)
my_retractall(string)

clauses
member(H, [H]|_1).
member(H, [_|T]) :-
member(H,T).

append((1,L,L).
append([Nl‘l‘],l., H]|T11) :-
append(T,L,T1).

my_retractall(merk) :-
retract(mark(_)),
my_retractall(mark).

my_retractall().

/* The search mechanism */
predicates

unmarked_successor(node, node)
search(string,path,pointers,node,path)
continue_search(string,path,pointers, node,path,path)
insert(node,path,path)

merge(string,path, path,path)

findpath(pointers, path, path)

markal L (path)
update_pointers(node,peth,pointers, pointers)

clauses
better(X,Y) :-
X>= Y,

unmarked_successor(N,M) :-

better(node,node) /* Modify this to suit the problem.

/* Modify this to fit the problem. */

*/

arcc(N M),
not(mark(M)).

search(_, [TheGoal | _1,P,TheGoal Path) :-
goal_node(TheGoal),
findpath(P, [TheGoal] ,Path),
%

search(Type, [N | R],P,TheGoal,Path) :-
findall(X,unmarked_successor(N,X) New),
continue_search(Type, [N|R],P,TheGoal ,Path, New).

continue_search(_, [N | _],P,TheGoal, Path, New) :-
member(TheGoal ,New),
goal_node(TheGoal),
findpath(P, [N, TheGoal],Path),
L[

continue_search(Type, [N|R],P,TheGoal ,Path, New) :-
markall(New),
merge(Type, New,R, Newl),
update_pointers(N,New,P, NewP),
search(Type, Newl ,NewP, TheGoal ,Path).

findpath(P, [H|T],Path) :-
member(ptr(X,H),P),
I,
findpath(P, [X,H|T],Path).
findpath(_,Path,Path).

markal L([H|T]) :-
assert(mark(H)),
markal L(T).

markall([]).

insert(Node, [H|T], [Node,H|T]) :-
better(Node, H),
I.

insert(Node, [H|T], [H|NewT1) :-
insert(Node,T, NewT).

insert(Node, [1, [Node]).

merge("depth”, New,R, NewL) :-
append(New,R, NewlL).
merge("breadth”, New,R Newl) :-
append(R,New,Newl) .
merge(“best™, [H|T1,L, Newl) :-
insert(H,L,Templ),
merge("best®, T, Templ ,Newl).
merge("best", [1,Newl ,Newl).

update_pointers(N, [H|T],P, NewP) :-
update_pointers(N,T, [ptr(N,H) | P], NewP).
update_pointers(_, ,NewP NewP).

goal

makewindow(1,7,7,"",5,5,10,65),
my_retractall(mark),
write("\n\tWhat type of search (depth, breadth, best)? ™),
readln(Type),
clearwindow,
start_node(S),
search(Type, [S], [1,TheGoal ,Path),
write("\n\tThe goal ", TheGoal,
" was reached via a ", Type, "-first search."),
nl,
nl,

write("\tA path leading from a start node to this goal is:\n\n\t",

Path),
nt,nl.

94 TURBO TECHNIX September/October 1988

TAKING TO THE SCREEN

Take control of the Turbo Prolog Toolbox for your next

generation of screens.

Gaylen Wood

The Turbo Prolog Toolbox offers an array
of screen layout tools that allow you to
easily design input screens. One such
tool, the screen definition tool, is a program
that lets you interactively design a form
™™ on the screen. Once the screen has been
designed, the screen definition program saves the
Turbo Prolog description of this screen as database
facts. This definition file can then be consulted by
other programs. With the aid of other tools in the
toolbox, called screen handlers, the program displays
and uses the screens that are defined by the screen
layout tool. This approach allows the programmer to
design a screen visually, rather than by the trial-and-
error methods that are usually required by program-
ming the screen manually.

A problem that arises is that many of the keys that
are used by the screen handlers for input, such as
the Tab key or the F10 key, are predefined to per-
form in a specific manner. Other keys, including
most of the function keys, are not defined at all.
These tools must be modified during the develop-
ment of a “user familiar” application so that they
perform in a way that the end user expects. Fortu-
nately, the source code for the screen handling tools
is included in the Turbo Prolog Toolbox, and it’s rel-
atively easy to modify them to suit your specific
needs.

In this article, I'll explain how to modify these
tools to emulate a specific user interface. In particu-
lar, I'll show how to enable all of the function keys,
and how an additional key for user input can be de-
fined. I'll also show how the Tab function can be
given a “wrap around” capability, and we’ll look at a
method for correcting the cursor position when a
field is full. Finally, I'll define a function to “back
tab” from the middle of an input field. The specific
changes that are involved in these tool modifications
may not be of interest to everyone. The modification
techniques, however, should interest any-ne who
wishes to customize input screens.

PROGRAMMER

THE BASICS

The process of creating a screen with the screen
layout tool SCRDEF.PRO (which is on the distribu-
tion disk) is fairly straightforward, and is described
in Chapter 3 of the Turbo Prolog Toolbox User’s Guide.
The result of this screen creation process is a consult
file that describes text and input/output fields. This
file is ready for consulting by the application pro-
gram, and contains database facts that correspond to
the following:

field(FieldName, Type,Row,Col,Length)
textfield(Row,Col,Length,FieldString)
windowsize(Height,Width)

Once the screen values have been consulted, the
presentation of the screen and the acceptance of in-
put are handled by the tools in SCRHND.PRO. All
screen handling capabilities can be invoked by a sin-
gle call to the tool scrhnd:
scrhnd(STATUSON,KEY): -

settopl ine(STATUSON),
mkheader,
writescr,
field(FNAME, ,R,C,),!,
cursor(R,C),
chng_actfield(FNAME),
showcursor,
repeat,
writescr,
keypressed,
readkey(KEY),
scr(KEY),
showcursor,
endkey(KEY),!.

The predicates settopline and mkheader establish
a top line status window. The fields and associated
screen text are then presented by writescr. The cur-
sor is placed into the currently active field, which is
defined by chng_actfield. Finally, showcursor dis-
plays the cursor’s row and column position in the
top line status window.

Processing begins with the repeat loop, which
presents the fields and screen text with writescr. The
keypressed predicate keeps the program “idling” un-

continued on page 96

September/October 1988 TURBO TECHNIX 95

90'104d 09YNL

TAKING TO THE SCREEN
continued from page 95

til a key is pressed. The pressed
key is then converted by readkey
into a symbolic value, and the
symbolic key’s actions are defined
by scr. Another call to showcursor
updates the cursor position in the
top line status window. Next, end-
key checks if the symbolic key is
defined as a “quit processing” key;
if the key is not so defined, the
program backtracks to the repeat
loop and begins processing again.

DEFINING NEW KEYS

The first changes to be made to
the screen handling tools define
a new key for user input and en-
able the use of all ten function
keys. My particular user environ-
ment requires the + key located
next to the numeric key pad to be
used as an input key—after filling
in the fields on the screen, the
user presses the + key to tell the
computer that input is finished.
An additional requirement of my
application is that the user termi-
nate the session by using any of
the function keys. (The original
tool only provides the F10 key or
the Esc key for this purpose.) Nat-
urally, the function keys can be
defined to perform any action you
wish.

To define a new key, we must
first look at the object KEY in
TDOMS.PRO (provided on the
Turbo Prolog Toolbox distribution
disk). TDOMS declares the do-
main names for all of the keys
that are recognized by the tools.
To define the new key, simply pick
an appropriate symbolic name
and add that name to the domain
list. (I chose the symbolic name
plus.) Note that function keys are
already defined by the domain
declaration:

fkey(INTEGER)

There is no need to modify this
declaration. The new version of
TDOMS is shown in Listing 1.
The readkey predicate, which
reads an input character and
returns its symbolic name, must
now be modified to recognize the
new key. readkey and its asso-
ciated predicates can be found in
TPREDS.PRO (also on the distri-
bution disk). readkey reads a char-
acter from the keyboard, converts

that character into its ASCII code
equivalent, and passes that code
to readkeyl. Extended keys, such
as the function keys or Ctrl-key se-
quences, actually generate two
characters; the first value for an
extended key is always 0. If read-
keyl detects an extended key, the
rest of the ASCII code is passed to
readkey?2, as shown in the follow-
ing code:
readkey1(KEY,_,0):-

!, readchar(T),

char_int(T,VAL),

readkey2(KEY,VAL).
readkey1(cr,_,13):-!.
readkey1(esc,_,27):-!.
readkey1(break,_,3):-!.
readkey1(tab, _,9):-!.
readkey1(bdel, ,8):-!.
readkey1(ctrlbdel,_,127):-!.
readkey1(plus,_ ,43):-!.
readkey1(char(T),T,_) .
The + key has an ASCII code of
43, and doesn’t generate an ex-
tended key code. Therefore, the
+ key is included by simply add-
ing another readkeyl clause:
readkey1(plus,_,43):-!.

Again, fkey is already defined in
readkey2, and there’s no need to
modify its definition.

The modified version of
TPREDS.PRO is shown in List-
ing 2.

SCRHND.PRO defines the ac-
tions that will be initiated by each
of the function keys and by the +
key. At this point, all ten function
keys can be enabled. First, add a
clause to scr for each additional
key. Inspection of the clauses for
scr reveals that a clause for
fkey(10) is already present. There-
fore, clauses need to be added
only for function keys 1 through
9, and for the + key.

scr(fkey(1)):-not(typeerror).
scr(fkey(2)):-not(typeerror).
scr(fkey(3)):-not(typeerror).
scr(fkey(4)):-not(typeerror).
scr(fkey(5)):-not(typeerror).
scr(fkey(6)):-not(typeerror).
scr(fkey(7)):-not(typeerror).
scr(fkey(8)):-not(typeerror).
scr(fkey(9)):-not(typeerror).
scr(plus) :-not(typeerror).

not(typeerror) simply ensures that
data in the current field is consis-
tent with the field definition that
was established when the screen
was created.

Finally, the action for each key
is defined as follows:

endkey(fkey(1)):-!.
endkey(fkey(2)):-1!.
endkey(fkey(3)):-1.
endkey(fkey(4)):-!.
endkey(fkey(5)):-!.
endkey(fkey(6)):-!.

endkey(fkey(7)):-!.
endkey(fkey(8)):-!.
endkey(fkey(9)):-!.
endkey(plus):-!.

In this case, all of these keys ter-
minate the session. However,
these keys can be defined to per-
form any action you wish.

WRAPPING THE TAB

The Tab key is used by the screen
handler to jump from one field to
the next. If the Tab key is pressed
while the cursor is located in the
last field, however, nothing hap-
pens. Getting the tab function to
wrap around simply means that
when the Tab key is pressed, the
cursor moves from the last field
on the screen to the first field.
The functioning of the Tab key
is defined in the clause scr(tab) in
SCRHND.PRO, as shown:

scr(tab):-

cursor(rR,C),

nextfield(r,C).
cursor determines the current cur-
sor position. nextfield establishes
the next field in the sense of left
to right, top to bottom:
nextfield(_,_):-typeerror,!, fail.
nextfield(R,C):-

field(FNAME, ,ROW,COL,),
gtfield(ROW,R,COL,C),
chng_actfield(FNAME), !,
cursor(ROW,COL).
nextfield(_,).

The first clause simply verifies
that the definitions of the fields
are consistent, and then it fails.
Invalid fields are skipped. The
second clause succeeds until the
cursor is in the last field. At that
point, a field whose cursor values
qualify it as the “next field” can-
not be found, and the second
clause fails. Turbo Prolog back-
tracks to the next clause, which al-
ways succeeds. As the clause is
currently written, however, no ac-
tion is taken—nothing happens
on the screen. To make the Tab
key wrap around, simply change
the third clause to:
nextfield(_,_):-scr(home).

Now, when the second clause of
nextfield fails, the third clause always
succeeds, and the cursor is placed in
the first defined field of the screen.

continued on page 98

96 TURBO TECHNIX September/October 1988

SideKick Plus Gives Your PC
the Power of Communication!

Get full communi- ——
cations capabilities
without leaving
Quattro—or any

other application

you're using

1
2
3
5

{=MCI Logon to MCI (Both Services) Put
=MCIBOTH |Gets and Sends MCI Mail Put
|=MCIBOTHA |Gets and Sends MCI Mail (Advanced) Put
Gets MCI Mail Put

[=MCIGET

|=MCISEND |[Sends MCI Mail Put
=MCISENDA |Sends MCI Mail (Advanced Service) Put

Online Help is ——
always available

[t’s a full-fledged communi-
cations program for data and
voice ... plus a lot more!

Communication is power. And with
SideKick® Plus, it's at your fingertips.
Because SideKick Plus is the only com-
munication software you need. To send
your message around the world. Or to
pick up messages from MCI or Dow
Jones or any other electronic service.
Automatically—even if you're down
the hall in a meeting. Or doing some-
thing else you do on your PC. (Try
asking CrossTalk® software to do that!)

SideKick Plus saves you time and
keystrokes with sample scripts for pop-
ular programs like MCI® Mail, Compu-
Serve,® and BIX.® You can create
scripts by simply recording your key-
strokes, or edit scripts to access the
full power of the script language.

Turbo charge your Phonebook

SideKick Plus lets you create the
most high tech address books you've
ever seen—entering names and
addresses in the form you choose.
Searching electronically for the infor-
mation you need. And attaching notes
and comments about each person
listed.

F4 Print
Phonebook Script

write B@mciname,cr
199 |match "word: ",20
urite Omcipsu,cr

82 match "MCI",60
select(68)
case "Your INBOX has"
match “"command”,30

F5 Zoonm
F6 Switch

F7 Begin Blk
F8 End Blk

; reply with Glos||

; reply with Glos

nunber here
nunber here

Ready-to-use scripts
make it easy to log
onto MCI, Compu-

Serve, or BIX

; Wait for pass||

; Waits Tor#C

; Check for messal
; Someone likes m
: Wait for prompt|

Define your pass-
word and encrypt it
for security

nunber here
nunber here
nunber here
nunber here

Add in your local
access number with
a simple entry

F9

F18 Menu

Esc-8yntax Check and Exit

SideKick Plus is communications
and more: seven powerful
software packages in one!

= A complete outliner that lets you
open nine files at once

m A sophisticated DOS file manager

m A calendar you can use as a common
scheduler if you're on a local area
network

= Multiple notepads

m A phonebook with full communications

m Your choice of four different calculators

m An ASCII table

Plus:

= Support for both expanded and extended
memory. If you have an Intel Above®
Board, you can take full advantage of
your 640K of RAM and yet use all
your SideKick Plus desk accessories
at any time.

= All completely integrated and instantly
accessible over any other application
you're working in

m All taking up as little as 72K of your
computer’'s RAM

Minimum System Requirements: For IBM PS/2, IBM family of personal com-
puters. and all 100% compatibles. Operating system: PC -DOS (MS-DOS) 2.0
or later. Minimum system memory: 384K bytes. Minimum resident memory
size: 72K Hard disk required. Supports both EMS and extended memory

*Customer satisfaction is our main concern: if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund.

All Borland products are trademarks or registered trademarks of Borland International, Inc. Other
brand and product names are trademarks of their respective holders.

Copyright ©1988 Borland International, Inc. BI 1238A

¢ ¢ The built-in communications
program is very impressive . ..
Unlike most communications pro-
grams (including some that cost
twice as much as SideKick), the
new SideKick lets your computer
communicate with another machine
while you are running another
program.

—Lawrence Magid, Washington Post ,,

Get the power!

To buy this kind of communication
power and all the other SideKick Plus
features separately, you'd spend
hundreds of dollars and drain your
computer’s memory dry. Instead, just
see your Borland dealer and get the
power of SideKick Plus!

Hard disk required.

60-Day Money-back Guarantee*

For the dealer nearest you
Call (800) 543-7543

TAKING TO THE SCREEN
continued from page 96

AUTO FILL WITH
WRAPAROUND

Perhaps the most significant en-
hancement in terms of appear-
ance is the modification of the ac-
tions that occur when a field has
been filled. The goal is to have
the cursor move to the next field.

As each character is entered, it’s
processed by scr(char(T)) in
SCRHND.PRO. scr(right), which
is the last call in scr(char(T)), han-
dles the cursor as each character
is entered. This process is shown
in the following code:
scr(right):-

actfield(FNAME),

not(noinput (FNAME)),

field(FNAME, ,_,C,L),

cursor(ROW,COL),

coL<C+L-1,1,

COL1=COL+1,

cursor(ROW,COL1).
scr(right):-move_right.
If the current field is not full, the
first clause of scr(right) moves the
cursor to the right. If the current
field is full, then the second
clause goes into action.

The temptation is to resolve the
algorithm in move_right. Thanks
to the declarative nature of Turbo
Prolog, there’s an easier way—
simply tell the second clause of
scr(right) to act like the Tab key.
The second clause then becomes:

scr(right):-scr(tab).

This method resolves more
than the auto fill issue. Because
the Tab key was previously mod-
ified to wrap around, the auto fill
wraps also. When the last field is
full, the cursor returns to the first
field on the screen.

BACK TAB FROM THE
MIDDLE OF A FIELD

Another useful feature is the abil-
ity to back tab (Shift-Tab) from the
middle of a field and move the
cursor to the start of the field.
The clause scr(btab) in
SCRHND.PRO defines the back
tab function. scr(btab) establishes
the current cursor position and
calls prevfield. prevfield only suc-
ceeds when the cursor is in the
first position of any field other
than the first field. prevfield,
along with chk_found, uses a fail
to encourage Turbo Prolog’s back-

tracking mechanism to do the
work. The following code demon-
strates this process:
prevfield(_,_):-typeerror,!, fail.
prevfield(R,C):-
field(FNAME, ,ROW,COL,),
chk_found(FNAME,R,C,ROW,COL), !,
actfield(F1),
fieldCEl, SRR,CC,),
cursor(RR,CC).

chk_found(_,R,C,R,C):-!.
chk_found(FNAME, , , ,):-

chng_actfield(FNAME), fail.

Let’s create a hypothetical ex-
ample to see how this works.
Assume that the cursor is located
in the first character position of
the third field on a screen when
the back tab function is invoked.
When prevfield is called, field re-
trieves the values for fieldl on the
screen from the internal database.
Those values are then passed to
chk_found, along with the cursor
position of the currently active
field. The first clause of chk_-
found fails, since the row and col-
umn values of the current field
are not equal to the row and col-
umn values for fieldl. The second
clause establishes fieldl as the
previous field, and then fails.

prevfield repeats the process,
retrieving the values for field2 on
the screen. Once again, chk_-
found checks if the row and col-
umn values correspond to the cur-
rently active field. The first chk_-
found clause fails, the second
clause establishes field2 as the
previous field, and the program
backtracks once again. On the
third pass, chk_found verifies that
the cursor values of field3 corre-
spond to the currently active field.
The remaining subgoals of prev-
field determine the corresponding
row and column values for this
field, and place the cursor appro-
priately.

chk_found must determine if
the current cursor position is
within a defined field, and if so,
reestablish the current field as the
active field. First, the predicate
declaration of chk_found must be
expanded as follows, in order to
include the length that corre-
sponds to the row and column
values being used:

chk_found(FNAME ,ROW,COL ,ROW,COL,LEN)
Next, prevfield must be modified

to include the new parameter in
the call to chk_found. The final

step is to modify the existing chk_-
found clauses and add a new
chk_found clause. Since the exist-
ing two clauses of chk_found don’t
require the new parameter, this
parameter may be included as an
anonymous variable. The new
chk_found clause, however, does
use that new variable, as the fol-
lowing code demonstrates:
chk_found(_,R,C,R,C,):-1.
chk_found(FNAME,R,C,R,COL,LEN): -

C > CoL,

C < COL + LEN,

chng_actfield(FNAME).

chng_actfield(FNAME), fail.

The second clause of chk_-
found now checks if the current
cursor position, which is provided
by prevfield, is located in a de-
fined field. If the current cursor
position is in a defined field, then
chk_found establishes that field as
the currently active field, and al-
lows chk_found to succeed.

Now, when the cursor is located
in the middle of a field and the
back tab function is used, the cur-
sor returns to the first character
position of that field. If used fur-
ther, the back tab function will act
as originally defined.

If you're using Turbo Prolog 2.0,
you must make one other change.
SCRHND defines a predicate
called trunc to truncate strings. In
Turbo Prolog 2.0, trunc is a built-
in predicate that truncates a real
number and returns its integer
value. Therefore, you need to
change the name of the toolbox
predicate from trunc to something
else, such as trunc_.

Listing 3 incorporates all of
the changes that were made to
SCRHND.PRO. The file TEST-
PROG.PRO (Listing 4) contains a
short program that tests the
changes. (HNDBASIS.PRO from
the distribution disk was used as
a template for creating this test
program.) Run these programs
and observe the changes. I'm sure
you’ll find that your own personal
requirements can also be easily
incorporated into the already
powerful Turbo Prolog Toolbox. B

Gaylen Wood is a senior systems ana-
lyst for the packaging division of the
Weyerhauser Paper Company.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGB, as SCRHND.ARC.

98 TURBO TECHNIX September/October 1988

LISTING 1: XTDOMS.PRO

/* Listing 1: XTDOMS.PRO *

/ Rk dekk iRk ek *h

Turbo Prolog Toolbox
(C) Copyright 1987 Borland International.

In order to use the tools, the following domain declarations
should be included in the start of your program

/
/
* Modified 2/5/88 G. Wood
* Added 'plus' to domain of KEY. See changes in
* XTPREDS.PRO and XSCRHND.PRO
/

DOMAINS

ROW, COL, LEN, ATTR = INTEGER

STRINGLIST = STRING*

INTEGERLIST = INTEGER*

KEY = cr; esc; break; tab; btab; del; bdel; ctrlbdel; ins;
end ; home ; fkey(INTEGER) ; up ; down ; left ; right ;
ctrileft; ctriright; ctrlend; ctrlhome; pgup; pgdn;
ctripgup; ctripgdn; char(CHAR) ; plus; otherspec

LISTING 2: XTPREDS.PRO

/* Listing 2: XTPREDS.PRO */

/ *
Turbo Prolog Toolbox
(C) Copyright 1987 Borland International.

This module includes some routines which are used in nearly
all menu and screen tools.
i 4 /
7 *
* Modified 2/5/88 G. Wood
* Added the '+' key (as 'plus') to be a recognized key
* See predicate readkeyl (below) and changes in XTDOMS.PRO
* and XSCRHND.PRO

/

/ /
/e repeat .
/ "k *hk etk ok /
PREDICATES

nondeterm repeat
CLAUSES

repeat.

repeat:-repeat.
/ /
7 55 miscel laneous Y
¥ '/

PREDICATES
maxlen(STRINGLIST,COL,COL)
/* The length of the longest string */
Listlen(STRINGLIST,ROW)

/* The length of a list f
writelist(ROW,COL,STRINGLIST)
/* used in the menu predicates &/

reverseattr(ATTR,ATTR)

/* Returns the reversed attribute */
min(ROW, ROW, ROW)
min(COL,COL,COL)
min(LEN,LEN,LEN)
minCINTEGER, INTEGER, INTEGER)
max(ROW,ROW,ROW) max(COL,COL,COL)
max(LEN,LEN,LEN) max(INTEGER, INTEGER, INTEGER)

CLAUSES
maxlen([H|T],MAX,MAX1) :-
str_len(H,LENGTH),
LENGTH>MAX, !,
maxlen(T,LENGTH,MAX1).
maxlen([_|T],MAX,MAX1) :- maxlen(T,MAX, MAX1).
maxlen([1,LENGTH,LENGTH).

listlen([1,0).

ListlenC[_|TI,N):-
Listlen(T,X),
N=X+1.

writelist(_, ,0)).

writelist(LI,ANTKOL, [H|T]):-
field_str(L1,0,ANTKOL, H),
LI1=L1+1,
writelist(LI1,ANTKOL,T).

min(X,Y, X):-X<=Y, 1.
min(_,X,X).

max(X,Y,X):-X>=Y, 1!,
max(_,X,X).

reverseattr(A1,A2):-
bitand(A1,$07,H11),
bitleft(H11,4,H12),
bitand(A1,$70,H21),
bitright(H21,4,H22),
bitand(A1,$08,H31),
A2=H12+H22+H31.

/ 7/
i Find letter selection in a List of strings e
rI* Look initially for first uppercase letter. v/
™ Then try with first letter of each string. A i
/ /
PREDICATES

upc (CHAR,CHAR) Lowc(CHAR,CHAR)
try_upper(CHAR,STRING)
tryfirstupper(CHAR, STRINGLIST,ROW,ROW)
tryfirstletter(CHAR, STRINGLIST,ROW,ROW)
tryletter(CHAR,STRINGLIST ,ROW)

CLAUSES
upc (CHAR, CH)z-
CHAR>='a',CHAR<='z',1,
char_int(CHAR,CI), CI1=C1-32, char_int(CH,CI1).
upc(CH,CH).

lowc(CHAR,CH): -

CHAR>='A' CHAR<='2',1,

char_int(CHAR,CI), CI1=CI+32, char_int(CH,CI1).
Lowc(CH,CH).

try_upper(CHAR,STRING): -
frontchar(STRING,CH,),
CH>='A',CH<=121,1,
CH=CHAR.

try_upper(CHAR,STRING): -
frontchar(STRING, _,REST),
try_upper(CHAR,REST).

tryfirstupper(CHAR, [W|_1,N,N) :-
try_upper(CHAR,W),!.

tryfirstupper(CHAR, [_|T]1,N1,N2) :-
N3 = N1+1,
tryfirstupper(CHAR, T ,N3,N2).

tryfirstletter(CHAR, [W|_1,N,N) :-
frontchar(W,CHAR,),!.

tryfirstletter(CHAR, [_|T],N1,N2) :-
N3 = N1+1,
tryfirstletter(CHAR,T,N3,N2).

tryletter(CHAR,LIST,SELECTION): -

upc(CHAR, CH), tryfirstupper(CH,LIST,0,SELECTION),!.
tryletter(CHAR,LIST,SELECTION):-

Lowc(CHAR,CH), tryfirstletter(CH,LIST,0,SELECTION).

/ /
/* adjustwindow takes a windowstart and a windowsize and adjusts */

/* the windowstart so the window can be placed on the screen. ~/
/* adjframe looks at the frameattribute: if it is different from */
/* zero, two is added to the size of the window */
Jren R f
PREDICATES

adjustwindow(ROW, COL ,ROW, COL , ROW, COL)
adjframe(ATTR,ROW, COL ,ROW, COL)

CLAUSES
adjustwindow(L1,KOL,DLI,DKOL,ALT,AKOL): -
L1<25-DL1,KOL<B0-DKOL , ! ,ALT=L1,AKOL=KOL .
adjustwindow(LI,_,DLI,DKOL,ALI,AKOL):~
LI1<25-DLI,1,ALI=L1,AKOL=80-DKOL .
adjustwindow(_,KOL,DL1,DKOL,ALI,AKOL): -
KOL<80-DKOL , ! ,AL1=25-DLI, AKOL=KOL.
adjustwindow(_,_,DLI,DKOL,ALT,AKOL):-
AL1=25-DLI, AKOL=80-DKOL.

September/October 1988 TURBO TECHNIX 99

adjframe(0,R,C,R,C):z-1.
adjframe(_,R1,C1,R2,C2):-R2=R1+42, C2=C1+2.

/ 7
! i Readkey */
/* Returns a symbolic key from the KEY domain */
/ /
/ /
/* Modified 2/5/88 G.Wood *

/* Added readkeyl clause for symbolic key 'plus' with ASCI1 43*/

JeROmRER . RRERIR

PREDICATES
readkey(KEY)
readkey1(KEY,CHAR, INTEGER)
readkey2(KEY, INTEGER)

CLAUSES
readkey(KEY):-readchar(T),char_int(T,VAL), readkey1(KEY,T,VAL).

readkey1(KEY,_,0):-!,readchar(T),char_int(T,VAL), readkey2(KEY,VAL).

readkeyl1(cr,_,13):-1.
readkeyl(esc, ,27):-!.
readkey1(break, ,3):-!.
readkeyl(tab, ,9):-!.
readkeyl(bdel, ,8):-!.
readkeyli(ctribdel, ,127):-!.
readkeyl(plus, ,43):-1.
readkey1(char(T),T,_) .

readkey2(btab,15):-1.
readkey2(del ,83):-1.
readkey2(ins,82):-!.
readkey2(up,72):-1.
readkey2(down,80):-!.
readkey2(left,75):-!
readkey2(right,77):-!.
readkey2(pgup,73):-1.
readkey2(pgdn,81):-1.
readkey2(end,79):-!.
readkey2(home,71):-1.

readkey2(ctrileft,115):-1.

readkey2(ctriright,116):-1!.

readkey2(ctrlend,117):-!.

readkey2(ctripgdn,118):-!.

readkey2(ctrlhome, 119):-!.

readkey2(ctrlpgup,132):-1.

readkey2(fkey(N) ,VAL):- VAL>58, VAL<70, N=VAL-58, !.
readkey2(fkey(N),VAL):- VAL>=84, VAL<104, N=11+VAL-84, |.
readkey2(otherspec,).

LISTING 3: XSCRHND.PRO

/* Listing 3: XSCRHND.PRO */

4

Turbo Prolog Toolbox
(C) Copyright 1987 Borland International.

SCRHND

This module implements a screen handler called by:

scrhnd(TOPLINE ,ENDKEY)
TOPLINE = on/off - determines if there should be a top line
ENDKEY - Esc or F10 used to return values
v/
/ *

* Modified 2/5/88 G.Wood

* Added capabilities to:

< - enable all function keys and define an additional input key
2 - allow the tab to wrap-around

* - correct cursor positioning when an input field is filled,
</ including wrap-around

* - define a back tab function from the middle of an input field
*

* See clauses scr

- nextfield

» chk_found

* prevfield

/'
DOMAINS
FNAME=SYMBOL
TYPE = int(); str(); real()

DATABASE

/* Database declarations used in scrhnd */

insmode

actfield(FNAME)

screen(SYMBOL ,DBASEDOM)
value(FNAME,STRING)
field(FNAME, TYPE,ROW,COL ,LEN)
txtfield(ROW,COL,LEN,STRING)
windowsize(ROW,COL).
notopline

/*
Vid
I*
/*
/*

Global insertmode */
Actual field */

Saving different screens */
value of a field */

Screen definition */

/* DATABASE PREDICATES USED BY VSCRHND */

windowstart(ROW,COL)
mycursord(ROW, COL)

/* Database declarations used in lineinp */

lineinpstate(STRING,COL)
L

PREDICATES
/* SCREEN DRIVER */
scrhnd(SYMBOL ,KEY)
endkey(KEY)
scr(KEY)
writescr
showcursor
mkheader
showoverwrite

ass_val (FNAME,STRING)
val id(FNAME,, TYPE,, STRING)
typeerror

chng_actfield(FNAME)
field_action(FNAME)
field_value(FNAME,STRING)
noinput (FNAME)

types(INTEGER, TYPE,STRING) /* Definition of the known types */

/
f* Create the window

/* This can be used to create the window automatically from the

/* windowsize predicate.

/

PREDICATES
createwindow(SYMBOL)

CLAUSES
createwindow(off):-
windowsize(R,C),!,
R1=R+3, C1=C+3,

makewindow(81,23,66,"",0,0,R1,C1).

createwindow(on): -
windowsize(R,C),!,
R1=R+3, C1=C+3,

makewindow(85,112,0,",0,0,1,C1),
makewindow(81,23,66,"".1,0,R1,C1).

/

1* Intermediate predicates

/

PREDICATES
trunc_(LEN,STRING,STRING)
oldstr(FNAME,STRING)
settopline(SYMBOL)

CLAUSES
endkey(fkey(10)):-1.
endkey(esc).

/
* Modified 2/5/88 G.Wood

* Added clauses to endkey for fkeys 1 thru 9, and
— new symbolic key 'plus.' Allows these keys to terminate
byl the screen handling predicate, scrhnd

endkey(fkey(1)):-1.
endkey(fkey(2)):-1.
endkey(fkey(3)):-1.
endkey(fkey(4)):-1!.
endkey(fkey(5)):-1.
endkey(fkey(6)):-1.
endkey(fkey(7)):-1.
endkey(fkey(8)):-1.
endkey(fkey(9)):-!.
endkey(plus):-1.

100 TURBO TECHNIX September/October 1988

trunc_(LEN,STR1,STR2):-str_len(STR1,L1),L1>LEN,!,
frontstr(LEN,STR1,STR2,).
trunc_(_,STR,STR).

settopline(_):-retract(notopline),fail.
settopline(off):-!, assert(notopline).
settopline(_).

oldstr(FNAME,S):-
oldstr(_,"").

value(FNAME,S),!.

ass_val (FNAME,):- retract(value(FNAME,)),fail.
ass_val (FNAME ,VAL):-VAL><"" assert(value(FNAME, VAL)), fail.
ass_val(_,_).

chng_actfield(_):-typeerror,!,fail.

chng_actfield(_):-
retract(actfield(_)),fail.

chng_actfield(FNAME): -
assert(actfield(FNAME)).

typeerror:-
actfield(FNAME),
field(FNAME,TYPE, , ,),
value(FNAME,VAL),
not(valid(FNAME,TYPE,VAL)),
beep, !.

valid(_,str,).
valid(_,int,STR):-str_int(STR,).
valid(_,real ,STR):-str_real(STR,_).

/* The known types */
types(1,int,"integer").
types(2,real,"real™).
types(3,str,"string").

/
i SCREEN DRIVER
/* Screen definition/input is repeated until F10 is pressed

/ *k

scrhnd(STATUSON,KEY): -

settopline(STATUSON),

mkheader,

writescr,

field(FNAME, ,R,C,_),!,cursor(R,C),

chng_actfield(FNAME),

showcursor,

repeat,

writescr,

keypressed, /*Continuation until keypress means
that time dependent
user functions can be updated*/

readkey(KEY),

scr(KEY),

showcursor,

endkey(KEY),!.

/
i Find the next field

*/
*/

/

PREDICATES

/* The predicates should be called with:
ACTROW, ACTCOL, MAXROW, MAXCOL, NEWROW, NEWCOL */

best_right(ROW,COL,ROW,COL ,ROW, COL)
best_left(ROW,COL,ROW,COL,ROW,COL)
best_down(ROW, COL ,ROW, COL , LEN,ROW, COL)
best_up(ROW,COL ,ROW, COL, LEN,ROW, COL)
better_right(ROW,COL,ROW, COL ,ROW,COL)
better_left(ROW,COL,ROW, COL,ROW,COL)
better_field(ROW,COL,ROW,COL ,LEN,ROW,COL,LEN)
calcdist(ROW,COL,ROM,COL,LEN, LEN)
move_left
move_right
nextfield(ROW,COL)
gtfield(ROW,ROW,COL,COL)
prevfield(ROW,COL)

/ *rx
* Modified 2/5/88 G.Wood

* Added LEN to predicate chk_found. See changes to
* chk_found clause.

/* chk_found(FNAME ,ROW,COL ,ROW,COL) */
chk_found(FNAME ,ROW, COL ,ROW, COL , LEN)
setlastfield

CLAUSES
best_right(RO,CO,R1,C1,ROW,COL):~
field(_,_,R2,C2,_), C2>CO,
better_right(R0,CO,R1,C1,R2,C2),!,
best_right(R0,C0,R2,C2,ROW,COL).
best_right(_,_,R,C,R,C).

better_right(RO,_,R1,_,R2,):-abs(R2-R0)<abs(R1-R0),!.
better_right(RO,_,R1,C1,R2,C2):-abs(R2-R0)=abs(R1-R0),C2<C1.

best_left(R0,CO,R1,C1,ROM,COL): -
field(_,_,R2,C2,), C2<CO,
better_left(RO,C0,R1,C1,R2,C2),!,
best_left(R0,CO,R2,C2,ROW,COL).
best_left(_, ,R,C,R,C).

better_left(R0, ,R1, ,R2,):-abs(R2-R0)<abs(R1-R0),!.
better_left(RO, ,R1,C1,R2,C2):-abs(R2-R0)=abs(R1-R0),C2>C1.

best_down(R0,CO,R1,C1,L1,ROW,COL):~
field(_,_,R2,C2,L2), R2>RO,
better_field(RO,CO,R1,C1,L1,R2,C2,L2),!,
best_down(R0,CO,R2,C2,L2,R0W,COL).

best_down(_,_,R,C,_,R,C).

best_up(RO,CO,R1,C1,L1,ROW,COL):-
field(_,_,R2,C2,L2), R2<RO,
i better_field(RO,CO,R1,C1,L1,R2,C2,L2),!,
best_up(R0,CO0,R2,C2,L2,ROW,COL).
best_up(_,_,R,C,_,R,C).

better_field(R0,CO,R1,C1,L1,R2,C2,L2):-
calcdist(RO,CO,R1,C1,L1,DIST1),
calcdist(RO,C0,R2,C2,L2,DIST2),
DIST2<DIST1.

calcdist(RO,CO0,R1,C1,L1,DIST):-
c11=C1+L1,
max(C0,C1,H1),
min(H1,C11,H2),
DIST=3*abs(R1-R0)+abs(H2-C0).

move_left:-
not(typeerror),
actfield(FNAME),
field(FNAME, ,R,C,),!
best_left(R,C, -100 -100 ROW,COL),
fleld(H,_,ROH coL,),
chng_actfield(F1),!,
cursor(ROW,COL).

move_right:-
not(typeerror),
actfield(FNAME),
field(FNAME, ,R,C,),!,
best_right(R,C,-100, 100 ROW,COL),
f|eld(r1, (ROW,COL,),
chng_actfield(ﬂ),!,
cursor(ROW,COL).

/4

* Modified 2/5/88 G. Wood

Changed chk_found clause in prevfield to include LEN.

Changed enst\ng chk_found clauses to incorporate the
additional variable position.

Added new chk_found clause (second position) to check
if current cursor position is in a defined field

These changes will allow use of back-tab when anywhere
in a field to return to first character of field then
proceed to “back up" one field at a time.

L B N

/
prevfield(_,_):-typeerror,!,fail.
prevfield(R,C):-

field(FNAME, ,ROMW,COL,LEN),

chk_found(FNAME ,R,C,ROW,COL,LEN),!, -

actfield(F1),

field(F1,_,RR,CC,),!,

cursor(RR,CC).

chk_found(_,R,C,R,C,):-!.
chk_found(FNAME ,R,C,R,COL,LEN): -
C > coL,
C < COL + LEN,
chng actfleld(FNAHE).

September/October 1988 TURBO TECHNIX 101

Y Adabodbdoded * ek

* Modified 2/5/88 - G.Wood

* Commented out nextfield(_,) and replaced with indicated clause.
* This will allow the scr(tab) clause to "wrap around" from last
* field to first field, and changes to scr(right) to allow filling
* last field and "wrap around" to first field.

s |

nextfield(_,_):-typeerror,!, fail.

nextfield(R,C):
field(FNAME, ,ROW,COL,_),gtfield(RON,R,COL,C),
chng_actfield(FNAME), !,
cursor(ROW,COL).

/* nextfield(_,). */

nextfield(_,):-
scr(home).

gtfield(R1,R2, ,):-R1>R2,!.
gtfield(R,R,C1,C2):-C1>C2.

setlastfield:-
field(FRAME, , ,_ ,),
chng_actfield(FNAME),

fail.
setlastfield.
/ /
i~ scr */
/ a4
/* Insert a new character in a field */ v
scr(char(T)):-actfield(FNAME),

not(noinput (FNAME)),
cursor(_,C),

field(FNAME, ,ROW,COL,LEN),!,
POS=C-COL,

oldstr(FNAME,STR),
Lin(char(T),POS,STR,STR1),
trunc_(LEN,STR1,STR2),
ass_val (FNAME,STR2),
field_str(ROW,COL,LEN,STR2),
scr(right).

/* Delete character under cursor */
scr(del):- actfield(FNAME),
not(noinput (FNAME)),
cursor(_,C),
field(FNAME, _,ROW,COL,LEN),!,
POS=C-COL,
oldstr(FNAME,STR),
Lin(del ,POS,STR,STR1),
ass_val (FNAME,STR1),
field_str(ROW,COL,LEN,STR1).

/* Delete character before cursor and move cursor to the left */
scr(bdel):- actfield(FNAME),
not(noinput (FNAME)),
cursor(_,C),
field(FNAME,_,ROW,COL,LEN),!,
POS=C-COL-1,
oldstr(FNAME,STR),
Lin(del ,POS,STR,STR1),
ass_val (FNAME,STR1),
field_str(ROW,COL,LEN,STR1),
scr(left).

/*1f there is an action - do it. Otherwise, go to next field*/
scr(cr):-

actfield(FNAME),

field_action(FNAME),

cursor(RR,CC),cursor(RR,CC),!.
scr(cr):-cursor(RR,CC),cursor(RR,CC),scr(tab).

/* Change between insertmode and overwritemode */
scr(ins):-changemode, showoverwrite.

/* escape */
scr(esc).

/* F10: end of definition */

scr(fkey(10)):-not(typeerror).

/*

* Modified 2/5/88 G.Wood

* Added clauses to scr for fkeys 1 thru 9, and new symbolic
* key 'plus.' Allows these keys to now be recognized and
s processed

ki bt /
scr(fkey(1)):-not(typeerror).

scr(fkey(2)):-not(typeerror).

scr(fkey(3)):-not(typeerror).

scr(fkey(4)):-not(typeerror).

scr(fkey(5)):-not(typeerror).
scr(fkey(6)):-not(typeerror).
scr(fkey(7)):-not(typeerror).
scr(fkey(8)):-not(typeerror).
scr(fkey(9)):-not(typeerror).
scr(plus) :-not(typeerror).

scr(right):-
actfield(FNAME),
not(noinput (FNAME)),
field(FNAME, , ,C,L),
cursor(ROW,COL), COL<C+L-1,!,
COL1=COL+1,
cursor(ROW,COL1).

/* scr(fkey(1)):-help.

/
* Modified 2/5/88 - G.Wood

Commented out scr(right):-move_right and replaced with
indicated clause to allow an auto-skip from active

field when full to next field, next in the sense of left to
right, top to bottom.

L O

to first field when last field is filled

/* scr(right):-move_right. */
scr(right):-
cursor(Rr,C),!,
nextfield(R,C).

scr(ctriright):-
actfield(FNAME),
not(noinput (FNAME)),
field(FNAME,_, ,C,L),
cursor(ROW,COL),
COL1=COL+5, COL1<C+L-1,!,
cursor(ROW,COL1).

scr(ctriright):-move_right.

scr(left):-
actfield(FNAME), field(FNAME, , ,C,),
cursor(ROW,COL),
coL>c, !,
coL1=coL-1,
cursor(ROW,COL1).

scr(left):-move_left.

scr(ctrileft):-
actfield(FNAME), field(FNAME, , ,C,),
cursor(ROW,COL),
COL1=COL-5, COL1>C,!,
cursor(ROW,COL1).

scr(ctrileft):-move_left.

scr(tab):-
cursor(Rr,C),
nextfield(R,C).

scr(btab):-
cursor(R,C),
prevfield(R,C).

scr(up):-
not(typeerror),
cursor(R,C),
best_up(R,C,-100,-100,1,ROW,COL),
field(F1,_,RONW,COL,),
chng_actfield(F1),!,
cursor(ROW,COL) .

scr(down): -
not(typeerror),
cursor(R,C),
best_down(R,C,100,100,1,ROW,COL),
field(F1,_,ROW,COL,_),
chng_actfield(F1),!,
cursor(ROW,COL) .

scr(home): -
not(typeerror),
field(F1,_,ROM,COL,),
chng_actfield(F1),!,
cursor(ROW,COL).

scr(end):-
not(typeerror),
setlastfield,
actfield(FNAME),
field(FNAME, ,ROW,COL,),!,
cursor(ROW,COL).

If helpsystem is used. */

See changes to nextfield clause which will cause "wrap around"

/

102 TURBO TECHNIX September/October 1988

/ / LISTING 4: TESTPROG.PRO
r* Predicates maintaining the top messages line */
& /

/* Listing 4: TESTPROG.PRO */
mkheader:-notopline,!.
mkheader: - /

shiftwindow(OLD),
gotowindow(85), Turbo Prolog Toolbox
field_str(0,0,30,"ROM: coL:"), (C) Copyright 1987 Borland International.
gotowindow(OLD).
HNDBASIS
PREDICATES This sample shows the minimum structure of a program using the
get_overwritestatus(STRING) screen handlers.
show_str(COL,LEN,STRING) /
showfield(ROW,COL)
CLAUSES
get_overwritestatus(insert):-insmode,!. / wh sbpdedi il
get_overwritestatus(overwrite). 1% Domains i
/ e /
show_str(C,L,STR):-
windowsize(_,COLS), include "xtdoms.pro"
c<coLs, !,
MAXL=COLS-C, DOMAINS
min(L,MAXL,LL), FNAME=SYMBOL
field_str(0,C,LL,STR). TYPE = int(); str(); real()
show_str(_, ,).

Y et s
showoverwrite:-notopline,!. /* Database predicates */
showoverwrite:- / /

shiftwindow(OLD),
gotowindow(85), DATABASE
get_overwritestatus(OV), /* Database declarations used in scrhnd */
show_str(20,9,0v), insmode /* Global insertmode */
gotowindow(OLD). actfield(FNAME) /* Actual field */
screen(SYMBOL ,DBASEDOM) /* Saving different screens */
showfield(_,_):-keypressed,!. value(FNAME,STRING) /* value of a field */
showfield(R,C):- field(FNAME, TYPE,ROW,COL,LEN) /* Screen definition */
field(FNAME, TYP,ROW,COL,LEN), txtfield(ROW,COL,LEN,STRING)
ROW=R, COL<=C, C<COL+LEN, windowsize(ROW,COL).
types(_,TYP,TYPE),!, notopline
show_str(30,8,TYPE),
STR=FNAME, show_str(38,42,STR). /* DATABASE PREDICATES USED BY VSCRHND */
showfield(_,):-keypressed,!. windowstart(ROW,COL)
showfield(R,C):- mycursord(ROW, COL)
txtfield(ROW,COL,LEN,TXT),
ROW=R, COL<=C, C<=COL+LEN,!, /* Database declarations used in lineinp */
show_str(30,1,"\""), lineinpstate(STRING,COL)
show_str(31,49,TXT). lineinpflag
showfield(_,_):-show_str(30,50,"").
shoucursor - keypressed | s /i“lﬁ"i'tﬁt'ittﬁ"ll‘l"'..ti'tﬂt"t't"***iiittitli't'kiﬁﬁt'ttﬁiitti/
showcursor:-notopline,!. Vil Include tools */
showcursor: - / i - FRARRKNRS /
shiftwindow(OLD),
cursor(R,C), include "xtpreds.pro"
str_int(RSTR,R), str_int(CSTR,C), include "menu.pro"
gotowindow(85), include "status.pro"
show_str(4,4,RSTR), show_str(14,4,CSTR), include "lineinp.pro"
showfield(r,C), include "xscrhnd.pro" /* Or vscrhnd.pro */
gotowindow(OLD),
cursor(R,C). CLAUSES
/ KARRK A *kkkk * *
Field action
/ i / * * ® /
” update all fields on the screen o
/ i /4 field_action(_):-fail.
writescr:- / * P ARRRKRAR *
field(FNAME, ,ROM,COL,LEN),)
field_attr(ROM,COL, LEN, 112, i e b ’
field_value(FNAME,STR),
:;;;g;:::g?j,cm,l.su,sm), field_value(FNAME,VAL):-value(FNAME,VAL),!.
writescr:-
txtfield(ROW,COL,LEN,STR), /
field_str(ROW,COL,LEN,STR), noinput
keypressed, ! . Liid * /
writescr.
noinput(_):-fail.
/ /
/* shift screen *f GOAL
/* Can be used if needed =y clearwindow,
/ /4 consult("test.scr"),
Vs createwindow(off),
PREDICATES scrhnd(off,EndKey),
shiftscreen(SYMBOL) removewindow,
write(EndKey).
CLAUSES
shiftscreen(_):-retract(field(_,_,_,_,_)),fail.
shiftscreen(_):-retract(txtfield(_,_,_,_)),fail.
shiftscreen(_):-retract(windowsize(_,_)),fail.
shiftscreen(NAME): -screen(NAME , TERM),assert(TERM), fail.
shiftscreen(_).
)
September/October 1988 TURBO TECHNIX 103

TURBO BASIC

THE TURBO BASIC/
ASSEMBLER CONNECTION

Werite your procedures in Turbo Basic
to make them work —then rewrite them
in Turbo Assembler to make them fast.

David A. Williams

Turbo Basic is so much faster than inter-
preted BASIC that you might wonder if
it’s possible to do better. It is possible, and
the way is through Borland’s new Turbo
Assembler. If certain key routines are
YIEARD ____ coded in assembly language and called by
Turbo Basic, your programs will have considerably
more zip. This technique gives you the best of both
worlds—the convenience of Turbo Basic, and the
speed of assembly language.

TO THE METAL

Turbo Basic provides three ways to tap the power of
assembly language.

CALL ABSOLUTE. The CALL ABSOLUTE state-
ment transfers control to an assembly language rou-
tine that was loaded prior to the call at a specific
memory location. Although cumbersome, this meth-
od is available in order to provide a degree of com-
patibility with interpreted BASIC, where this tech-
nique originated. There is no reason to recommend
CALL ABSOLUTE for new programs, and I'll not
discuss it further in this article.

CALL INTERRUPT. When used with the REG
statement and the REG function, the CALL INTER-
RUPT statement provides access to all DOS and
BIOS interrupt service routines. This technique has
a somewhat narrow application, but it does provide
a way to access certain information that is not other-
wise available to a BASIC program. (For more infor-
mation on CALL INTERRUPT, see “DOS Calls From
Turbo Basic,” TURBO TECHNIX, November/De-
cember, 1987; and “Calling BIOS Services From
Turbo Basic,” TURBO TECHNIX, July/August, 1988.)
Turbo Basic’s most general and powerful assembly
language interface method involves calls to special
procedures that are called INLINE procedures. IN-
LINE procedures may include assembly language
code in the form of strings of hexadecimal constants,
or code may be loaded from a machine-code binary
file at compile time.

WIZARD

INLINE PROCEDURES

A CALL statement that is used to call an INLINE
procedure is identical to a CALL statement that is
used to call any ordinary Turbo Basic procedure. In
fact, you can design programs with all procedures in
Turbo Basic, and then replace one or more of the
procedures with INLINE procedures in machine
code without changing the main program.

An INLINE procedure has the following structure:
SUB <procedure name> INLINE

$INLINE <byte list>

$INLINE "filename"
END SUB

Here, <procedure name> is the name that is used
in the CALL statement to call the procedure. The
$INLINE metastatement may take either a byte list
of values that represent machine code instructions,
or else a file of such instructions that exists sepa-
rately from the Turbo Basic source file on disk. Nor-
mally you won'’t use both of the two forms of the
$INLINE metastatement in the same procedure (but
there’s no harm in doing so). A single INLINE pro-
cedure may contain any number of $INLINE meta-
statements that specify byte lists. However, you may
load up to—but not more than—16 binary files
within a single INLINE procedure by naming each
file within its own $INLINE metastatement.

LISTS OF BYTES

The byte list is a series of values (usually hexadeci-
mal) that are separated by commas. Each value rep-
resents one byte of the code that comprises a ma-
chine instruction. (Machine instructions in Intel’s 86
family of processors may be anywhere from one to
six bytes in length, not counting prefixes.) You can
string as many values behind the $INLINE meta-
statement as you wish, and there’s no limit to the
number of $INLINE metastatements that can be
used within a single INLINE procedure.

104 TURBO TECHNIX September/October 1988

The process of entering code as
a byte list after an $INLINE meta-
statement is best used in very
short programs that contain no
jump instructions or other branch-
es. DOS’s DEBUG can perform
the assembly process, but instruc-
tions have to be entered one at a
time to DEBUG, and then the re-
sulting values must be keyed into
the INLINE procedure by hand.
Furthermore, DEBUG cannot con-
vert labels to addresses, and can
only treat each instruction in iso-
lation from all others. Trying to
hand- or DEBUG-assemble a com-
plex routine with lots of condi-
tional branches is the short path
to insanity, due to the maddening
difficulty of calculating relative
jump offsets by hand.

ENTER TURBO ASSEMBLER

The better method by far is to
load a binary file that contains
machine code that was generated
with an assembler. The $INLINE
metastatement can accept a file-
name that specifies a binary file of
machine code instructions, as
shown below:

$INLINE "MYCODE.BIN"

This metastatement becomes the
“beef” of an INLINE procedure.

It’s beyond the scope of this ar-
ticle to teach assembly language
programming. Although Turbo As-
sembler is fairly new, it’s highly
compatible with MASM, and
books previously published for
MASM programming will help you
get up to speed. Some tricks will
make the assemble/link process
smoother and more automatic.
The simple batch file below,
ASM.BAT, automates the process:
TASM %1;
TLINK %1;
DEL %1.0BJ
EXE2BIN %1 %1.BIN
DEL %1.EXE

Execute ASM.BAT by typing the
following command:

ASM <filename>

Here, <filename>> is the name of
the assembly language source file.
Do not include the source file-
name extension (i.e., “.ASM”).
ASM.BAT performs the assembly
process, the link process, and de-
letes the superfluous files. ASM
does leave the .MAP file on disk,
however, so if you don'’t intend to
use the .MAP information, the
.MAP file must be deleted. This
step can be performed manually

or by the addition of another line
to ASM.BAT to delete the . MAP
file.

ASM.BAT produces memory-
image binary files with a .BIN ex-
tension that are ready to load
through the $INLINE metastate-
ment. These files can also be
given a .COM extension; since
they’re not executable, however,
the .BIN extension is safer and
more descriptive. Contrary to the
instructions in the Turbo Basic
Ouwner’s Handbook, do not include
an ORG 100 directive in the
Turbo Assembler source files.

PROBING AN ARRAY

The rest of this article provides
two useful examples of assembly
language extensions to Turbo
Basic, and explains how those ex-
tensions are integrated into the
calling program. Future issues of
TURBO TECHNIX will present ad-
ditional assembly language rou-
tines, along with further discus-
sions of specific issues such as
parameter passing and the access
of global resources.
MAXDEMO.BAS (Listing 1)
contains the source code for a
simple Turbo Basic demo program
that finds the largest value in an

continued on page 106

September/October 1988 TURBO TECHNIX 105

THE TURBO CONNECTION

continued from page 105

integer array. TBMAX.ASM (List-
ing 2) is the assembly language
source code file for the routine
that MAXDEMO calls to do its
quick-and-dirty work. MAXDEMO
first creates the integer array A
with 100 elements, and then calls
the Turbo Basic procedure
GTMAX. This procedure executes
the machine code routine
TBMAX to locate the largest value
in the array. TBMAX executes
twice as fast as any Turbo Basic
routine that you could write to
perform the same function.

The stack is the key link be-
tween a Turbo Basic program and
any assembly language routine.
All values are passed to machine
code procedures by reference
rather than by value. This means
that the parameter’s data values
themselves are not passed on the
stack; instead, an address that
points to the memory location
where each value is stored is
placed on the stack by the com-
piler. The assembly language rou-
tine copies the address from the
stack and uses that address to read
the value of the actual parameter
from memory, or else to store a
value into memory as a means of
returning a value to the calling
Turbo Basic program.

The CALL to GTMAX passes
three parameters to GTMAX:
MAXVAL, in which the machine
code routine passes back the larg-
est array value; A(1), which is the
first element of the array; and
COUNT, which is the number of
array elements. Since Turbo Basic
stores array elements in contigu-
ous memory locations, the entire
array can be accessed once the to-
tal number of elements, and the
address of the first element, are
known.

The assembly language routine
must preserve the values in DS,
SP, BP, and SS. Any other regis-
ters may be freely changed. In the
case of TBMAX, the only critical
register is BP, which is pushed
onto the stack. Once BP is safely
on the stack, TBMAX loads the

Segment | BP+11H
BP+10H
Pointer to Maxval
Offset BP+0FH Maxval
BP+0EH —> ES:BX —>
Segment | BP+0DH
BP+0CH
Pointer to A(1)
Offset BP+0BH AC1)
BP+0AH —> ES:DI —>
Segment | BP+09H A(2)
BP+08H
Pointer to Count
Offset BP+07H Count
BP+06H —> ES:BX —>
Segment | BP+05H
BP+04H LES instructions are used
Return address to move the four-byte
Offset BP+03H pointers to the actual
parameters into registers
BP+02H ES and DI or BX. Then the
actual parameters are
BP+01H accessed through ES:[DI]
Caller's BP reg. or ES:[BX].
BP+00H

Figure 1. The stack as it appears immediately after BP is pushed.

stack pointer SP into BP. There-
after, TBMAX accesses its param-
eters through offsets from BP,
which now points to the top of the
stack.

The stack contains a 32-bit ad-
dress that points to the memory
location where each parameter
value is stored. Figure 1 shows the
stack as it exists after the PUSH
BP instruction. Each “brick” is
one byte of memory, with high
memory at the top of the figure.
The parameters can be accessed
in any order. In TBMAX, the pa-
rameter that is accessed first is
COUNT, which was the last one
pushed. The LES instruction was
designed specifically for retrieving
addresses from the stack: Given
the offset of the address from BP
(here, +06H, where the plus sym-
bol means that the offset is toward
high memory), LES copies the seg-

ment address from the stack into
ES, and copies the offset address
from the stack into BX. The MOV
CX, ES:[BX] instruction copies the
actual parameter’s value from
memory into the CX register. The
same technique is used to gener-
ate a pointer to the first element
of array A, but it’s put into DI
rather than into BX. Since the ar-
ray count parameter COUNT was
already moved from memory into
CX, the original pointer to
COUNT in BX is no longer
needed and can be overwritten.
Hence, the last step is to generate
a pointer to MAXVAL, and to
place that pointer into BX until
it's needed later on.

The rest of TBMAX compares
the value of each array element to
the value in AX. If an array ele-
ment is found to be larger, that
element replaces the previous
value in AX. Because integers are

106 TURBO TECHNIX September/October 1988

16 bits long, TBMAX increments
DI twice for each pass through the
loop. (Note: When working with
long integers or floating point
numbers, DI must be adjusted ac-
cording to the size of the base
type of the array.) After TBMAX
has examined each element of ar-
ray A, the value in AX is moved
into MAXVAL through the point-
er to MAXVAL that is now in reg-
isters ES and BX. TBMAX finishes
the process by popping BP off the
stack.

Some notes on TBMAX: The
same routine works with a multi-
dimensional array if COUNT con-
tains the total number of individ-
ual integer elements in the array.
Remember, however, that the di-
mension indexing system starts
with zero. For example, an array
dimensioned as A(2,50) has 153
elements. Also, keep in mind
when using an INLINE procedure
that neither the procedure nor the
machine code routine may con-
tain RETURN statements. Turbo
Basic takes care of that step auto-
matically.

PASSING STRING
PARAMETERS

The process of passing string
values to assembly language rou-
tines is a little more subtle.
SCRNDEMO.BAS (Listing 3)
shows a Turbo Basic demo pro-
gram that incorporates Listing 4,
TBQPA.ASM. TBQPA writes the
designated string parameter di-
rectly to display memory at the in-
dicated row and column location.
The parameter ATTRIB allows
changes to be made to the color
or to other screen attributes of the
screen area that underlies the
string to be written. This creates
very snappy screen displays and
provides a degree of color control
that’s not easily achieved with
standard Turbo Basic statements.
To keep TBQPA simple, I did not
include code to prevent video
snow when using IBM-style CGA
boards.

Since strings have a variable
length, and are stored in a differ-
ent memory segment than are
other variables, a different tech-
nique is needed in order to pass
string parameters. When a string
is passed as a parameter, Turbo
Basic pushes a full 32-bit pointer
to a “string descriptor” onto the
stack. The string descriptor consists
of a two-byte string length counter
and a two-byte offset into Turbo
Basic’s string data area (or string
space). An assembly language rou-
tine can access a string descriptor
in the same way that the routine
accesses a numeric variable. The
low 16 bits contain the string
length, and the high 16 bits con-
tain the offset into string space of
the first byte of string data.

The instruction LES BX,
[BP+12H] sets up ES and BX to
point to the first byte of the string
descriptor. The subsequent MOV
instruction moves the string
length value into CX. A minor
complication with the string
length counter is solved by an
AND instruction: The high bit (bit
15) of the string length counter
has a special meaning to the
Turbo Basic Runtime code, and
should not be interpreted as part
of the string length value. The
AND instruction masks out bit 15
to keep it out of later comparisons
and calculations. Finally, the start-
ing offset of string data within
string space is moved into SI, us-
ing the instruction MOV SLES:
[BX+02]. Note that this offset isn’t
a full 32-bit address; the segment
address of string space is still
needed, and can be found at
DS:00, which is the first word in
Turbo Basic’s data segment. A lit-
tle later in TBQPA, the caller’s DS
value is pushed onto the stack,
and then DS is loaded with the ad-
dress that is found at DS:00.

In order to move data directly
into video memory, the location
of video memory must be known.
Video memory may be at one of
two addresses (BOOOH or BSOOH)

depending upon which display
adapter is in use. TBQPA queries
BIOS interrupt 10H to identify the
video adapter, sets the address of
the video buffer accordingly, and
then moves the string and attri-
bute data to the video buffer via

a LOOP structure. When the data
has been transferred, the routine
restores the critical registers DS
and BP, and returns control to the
calling program.

NOT SO BASIC BASIC

TBMAX and TBQPA were kept
simple to emphasize the interface
between Turbo Basic and Turbo
Assembler, rather than the work-
ings of the assembly language
routines themselves. Once you un-
derstand how the two languages
mesh, you can build on your ex-
perience and write more ad-
vanced routines. For example, it’s
not especially difficult to write as-
sembly language routines that
modify string data and then pass
that data back to the calling pro-
gram—ijust remember that you
can’t change the length of the
string. If your application requires
you to change a string length,
then set up a dummy string of an
appropriate length first and pass
the modified string back in the
dummy string, rather than in the
original string.

Numeric processing and screen
handling are only two of the
many areas where assembly lan-
guage can improve the perfor-
mance of your Turbo Basic pro-
grams. Take the time to become
familiar with 86-family assembly
language—you’ll find that BASIC
is no longer as basic as it was
when you first typed RUN. B

David A. Williams is a principal staff
engineer for a major aerospace com-
pany. He can be reached at 2452
Chase Circle, Clearwater, FL. 34624.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGA, as TBTASM.ARC.

Listings begin on page 108

September/October 1988 TURBO TECHNIX

107

CLs

DEFINT A-2

DIM A(100)

RANDOMIZE(157)

FOR I=1 TO 100
A(1)=10000*RND(9)

NEXT

MAXVAL=0

COUNT=100

CALL GTMAX(MAXVAL,A(1),COUNT)
PRINT MAXVAL

END

SUB GTMAX INLINE
SINLINE "TBMAX.BIN"
END SUB

;TBMAX.ASM Routine to find max value in integer array
CODE SEGMENT
ASSUME CS:CODE,DS:CODE

PUSH BP :Save BP
MoV BP,SP ;Get stack address
;Get the arguments
LES BX, [BP+06H] ;Get addr of array count
MoV CX,ES: [BX] ;Put count in CX
LES DI, [BP+0AH] ;Get addr of first element
LES BX, [BP+0EH] ;Get addr of return value
;Find the max value
MOV AX,ES: [DI] ;Get first array element
A: CMP AX,ES: [DI+2] ;Compare present with next
JG B
MOV AX,ES: [DI1+2]) ;Put new, larger value in AX
B: INC DI
INC DI
LOoOP A
MOV ES: [BX] ,AX ;Store max value
;Clean up and leave
QUIT: POP BP ;Restore BP
CODE ENDS
END

CLs

DEFINT A-2Z

A$="THIS IS A TEST"

ROW=16

coL=15

ATTRIB=7

CALL WRT(A$,ROM,COL,ATTRIB)

CALL WRT("Another test",5,20,15)

CALL WRT(LEFT$(AS,8)+"ALSO GOOD",10,40,7)
END

SUB WRT INLINE
SINLINE "TBQPA.BIN"
END SUB

| LISTING 4: TBAPA.ASM

;TBQPA.ASM Fast screen write routine for Turbo Basic
CODE SEGMENT
ASSUME CS:CODE,DS:CODE

PUSH BP ;Save BP
MOV BP,SP ;Get stack address
;Get arguments
LES BX, [BP+0AH] :Get addr of Col variable
MoV DI,ES: [BX] ;Put Col number in DI
DEC DI ;Change Col # to 0 - 79
LES BX, [BP+0EH] ;Get addr of Row variabie
MoV AX,ES: [BX] ;Put Row # in AX
DEC AX ;Change to 0 - 25
LES BX, [BP+12H] ;Get addr of string pointer
MoV CX,ES: [BX] ;Put string length in CL
AND CX,7FFFH ;Remove high bit
CMP Cx,00 ;Is it zero?
Jz QIT :Yes, quit
MoV SI,ES: [BX+02] ;Put string start addr in SI
;Compute offset into video buffer
MOV DX, 0050H ;Num of char per row
MUL DX ;# rows times 80
ADD DI, AX ;Add column number
SHL DI, 1 sMultiply by 2
;Get video parameters
BX, [BP+06] ;Get address of attribute
MOV BX,ES: [BX] ;Put attribute in BX
MoV AX, 0BOOOH ;Video buffer addr, mono
MoV ES, AX ;Put it in ES
MOV AH, OFH ;Read video mode
INT 10H
CMP AL,7 ;Is it mono?
JE A
L% AX,0B800H ;Video buffer addr, mono
MOV ES,AX ;Put it in ES
A: PUSH DS ;Save DS on stack
;Copy data to video buffer
MOV DS,DS: [00] ;Get string segment
cLD ;Clear direction flag
B: MOvsB ;Send 1 byte to buffer
MOV BYTE PTR ES:[DI],BL ;Attribute byte
INC DI ;Skip attribute byte
LooP B ;Loop until done
;Clean up and leave
POP DS ;Restore DS
QuIT: POP BP ;Restore BP
CODE ENDS ;TB runtime handles return
END

108 TURBO TECHNIX September/October 1988

Basically speaking, there’s
one choice . .. Turbo Basic!

Edit Run

LOCATE 1,
PRINT "TOWERS €
CO b, 8
E #PromptLine, 7
PRINT "Nunber of

. LOCATE
INPUT Num
IF Number0

Fi-Help FS5-Zoom Fb-Next F7-Goto

Turbo Basic
Conpile Options

indow

etup

Compile to Memory

887 required OFF
Keyboard break ON
Bounds OFF
Jverf lou ON
itack test ON

| Parameter line

letastatements

BEEP

SCROLL-Size/move

Turbo Basic’s development environment gives you overlapping windows, pull down menus, and the ability

to run text-based applications in a window.

Turbo Basic® is the BASIC that
lets even beginners write polished,
professional programs almost as
easily as they can write their names.

The others don’t. When you
really examine them, you'll find
that even though they may be
“quick,” they make it hard to
get where you're going. (Sort of
like a car with an engine but no
steering wheel.)

Turbo Basic takes you farther
faster—in the comfort of a sleek
development environment that
gives you full control. Naturally
it has a slick, fast compiler just like
all Borland’s technically superior
Turbo languages. It also has a full-
screen windowed editor, pull-down
menus, and a trace debugging

System Requirements: For the IBM PS/2™ and the IBM® family of personal
computers and all 100% compatibles. Operating System: PC-DOS (MS-DOS)
2.0 or later. Toolboxes require Turbo Basic 1.1. Memory: 384K RAM for
compiler, 640K RAM to compile Toolboxes

*Customer satisfaction is our main concern: if within 60 days of purchase this
product does not perform in accc ce with our claims, call our customer

service department, and we will : a refund

trademarks of Borland International, Inc. Other
espective holders. Copyright ©1988 Borland
BI 1246

system. And innovative Borland
features like binary disk files, true
recursion, and more control over
your compiling. Plus the ability to
create programs as large as your
system’s memory can hold.

The critics agree. The choice is
basic. Turbo Basic from Borland.

€6 ... What really makes
Turbo Basic special is its blind-
ing speed, small size, and many
added commands. Programs
compiled with Turbo Basic are
often much faster and smaller
than those produced by other
compilers.

Ethan Winer, PC Magazine Best of 1987

Turbo Basic, simply put, is an
incredibly good product.

William Zachman, Computerworld 99

Add another Basic advantage:
The Turbo Basic Toolboxes

* The Database Toolbox gives
you code to incorporate into
your own programs. You don’t
have to reinvent the wheel every
time you write new Turbo Basic
database programs. -

e The Editor Toolbox is all
you need to build your own
text editor or word processor,
including source code for two
sample editors.

New!

60-Day Money-back Guarantee*

Compare the BASIC differences!

Turbo Basic 1.1

Compile & Link to

stand-alone EXE 8

Size of .EXE 28387
Execution time N oo
/80287 0.16 sec.
Execution time 0.16 sec.

w/0 80287

QuickBASIC 4.0 QuickBASIC 4.0

Compiler Interpreter
7 sec. _
25980 ——

16.5 sec. 21.5 sec.

286.3 sec. 292.3 sec.

The Elkins Optimization Benchmark program from March 1988 issue of Computer Language was used.
The Program was run on an IBM PS/2 Model 60 with 80287. The benchmark tests compiler’s ability to
optimize loop-invariant code, unused code, expression and conditional evaluation.

For the dealer nearest you
call (800) 543-7543

TURBO BASIC

COMMAND LINE PARAMETERS
IN TURBO BASIC

Divide the command line string

into parameters —

and conquer your Turbo Basic command line

entry problems.

Duke Kamstra

The ability to read parameters that are
entered on the DOS command line is a
powerful feature in any application or
utility program. Users have come to ex-
pect applications to read information
such as filenames from the command line
when a language compiler or database is invoked.
The Turbo Basic Integrated Development Environ-
ment is a good example. When entered at the DOS
command line, the following command invokes
Turbo Basic and loads the file PARAM.BAS into the
editor:

TB PARAM

PROGRAMMER

This example only uses one command line param-
eter, but many programs accept two or more. The
widely used ARC utility, which is sold by System En-
hancement Associates (Wayne, New Jersey) uses sev-
eral command line parameters. The following exam-
ple shows a typical invocation of ARC51.EXE:

ARC51 A COML.ARC *.BAS *.EXE DESCRIPT.CIS

This example command line contains five individual
parameters, which are separated from one another
by spaces.

BRINGING THE COMMAND LINE HOME

Most language compilers have some means of read-
ing the command line parameters that are used by
programs written in those languages. Turbo Basic’s
COMMANDS$ function returns all of the command
line parameters concatenated into one string. This
is a good start; however, the information in the com-
mand line string isn’t really useful until the string
has been separated into its individual parameters.
When accessing command line parameters, a pro-
gram needs access to two pieces of information: the
number of parameters that were entered, and the
values of the individual parameters themselves.
While Turbo Basic provides the command line

string, the process of counting and separating the
parameters that make up the string must be handled
with additional code. In PARAM.BAS (Listing 1), I've
provided the Turbo Basic function FNParam-
Count%(), which returns the number of parameters;
and FNParamStr$(), which returns individual pa-
rameters by number.

If you've done some Turbo Basic programming,
PARAM.BAS should not be difficult to understand.
FNParamCount%() handles the bulk of the work for
both functions. When FNParamCount%() is called
for the first time, it divides the command line string
into individual parameters, and then stores the pa-
rameters in the global array Parameters$(). At the
same time, FNParamCount%() counts the number of
parameters that it stores, and saves that count value
in the STATIC variable Result%. Result% becomes
the value returned by FNParamCount%() to the call-
ing program. After the first time it’s called, FNPa-
ramCount%() does not need to process the com-
mand string any further; when called again, FNPa-
ramCount%() simply returns the value it already
stored in Result%.

FNParamCount%() separates parameters by scan-
ning for separator characters (which may be either
spaces or double quotes) in the string that is re-
turned by COMMANDS. Each time FNParam-
Count%() finds a separator, the left and right char-
acter positions of the found parameter are recorded
in a two-dimensional integer array, ParamPos%().
ParamPos%() contains up to 25 pairs of integers
(each integer pair consists of a left and a right char-
acter position value). This limits the number of pa-
rameters that may be extracted from the command
string to 25. Since DOS limits the size of the com-
mand string to 127 characters, however, the maxi-
mum of 25 parameters should not be a crippling
limitation. Once the initial scan for separators is
complete, FNParamCount%() loops through the
command string a second time, and copies the

continued on page 112

110 TURBO TECHNIX September/October 1988

LISTING 1: PARAM.BAS

Author: Duke Kamstra
Mod. Date: 5/8/88

To use these routines in your own program, keep them in an
include file. When you need to manage command line parameters
in a program include these routines by inserting the
metastatement:

SINCLUDE “PARAM"
in your program. Be sure to set the named constant
XMAXPARAMETERS appropriately for your application. If the
number of parameters given on the command line is larger
than XMAXPARAMETERS the extras are ignored.

%MAXPARAMETERS = 25 ' Maximum # of parameters that can be read by the
' program. Should never be larger than 64 since
' DOS only allows a 127 character command line.

DIM Parameters$(0:XMAXPARAMETERS) ' String array used to store

! parameters

XTRUE = 1 ' Named constant representing boolean value

DEF FNParamCount%

Return the number of command line parameters passed to the program.

Store each of the parameters in the SHARED string array

Parameters$(). Note the function will only process up to

XMAXPARAMETERS command line parameters.

The first time the function is called it processes the parameter
Llist and sets a flag Initialized% to indicate that the command
line doesn't need to be processed again. Any subsequent calls to
the function will return the value stored in ResultX.

STATIC Initializedx ' Flag indicating parameters have been read
' and data structure has been initialized.
STATIC ResultX ' Store result after calling the function
' the first time
SHARED Parameters$() ' Global variable to store parameter data

LOCAL I%X, J%, CountX, ParamPos¥%(), SearchChar$

X =0 ' Named constants used to reference ParamPos¥%
%R =1
DIM ParamPos%(0:%MAXPARAMETERS, XL:%R) ' Make room for position

' information

IF InitializedX <> XTRUE THEN ' We haven't parsed the command
' line yet
' Set flag indicating we've parsed the command line
Initialized% = XTRUE
IF COMMANDS = "" THEN ' No command line parameters specified
FNParamCount% = 0 ' Return O for parameter count

ResultX = 0 ' Save parameter count in static variable
EXIT DEF ' Leave the function

ELSE ' At least one command line parameter was specified
' First we need to determine the number of parameters
IX =1

WHILE (IX <= LEN(COMMAND$)) AND (Count% < XMAXPARAMETERS)
Count¥ = CountX + 1 ' Increment parameter counter
ParamPosX(Count%, %L) = IX ' Store left position of parameter
! Determine what to search for as the end of the current
! parameter
IF MIDS(COMMANDS, IX,1) = CHR$(34) THEN
! Parameter is enclosed in double quotes

SearchChar$ = CHR$(34)
ParamPos%(CountX, XL) = _ ' we don't want the "
ParamPos%(CountX, X%L) + 1

ELSE
SearchChar$ = " »
END IF
' Check if the next character in the command line terminates
' the current parameter
IF INSTR(I%+1,COMMANDS SearchChar$) <> 0 THEN
' find end of parameter
IX = INSTR(IX+1,COMMANDS, SearchChar$)
' Store right position of parameter
ParamPosX(CountX, %R) = I%
' Advance past the "
IF SearchChar$ = CHR$(34) THEN IX = I1X + 1
ELSE
' Store right position of parameter
ParamPosX(CountX, XR) = LEN(COMMANDS) + 1
EXIT LOOP
END IF
WHILE MIDS(COMMANDS,I%,1) = ™ ™ AND IX < LEN(COMMANDS)
IX = 1% + 1 ' now find the start of the next parameter
WEND
WEND

' look for a space

' next we need to store the parameters in our SHARED string
' array

FOR JX = 1 TO CountX ! Store each of the parameters
Parameters$(JX) = MIDS(COMMANDS, ParamPosX(JX, X%L), _
ParamPosX(JX, %R) - ParamPosX(J%, %L))
NEXT J%
FNParamCountX = Count%
ResultX = CountX
END IF ' COMMANDS = "n
ELSE ' The function has already been called once
FNParamCount% = ResultX
END IF
END DEF ' FNParamCount%

DEF FNParamStr$(CountX)

Return the command line parameter indexed by CountX. The function
verifies that the parameter exists by calling FNParamCountX%(). If
the parameter exists it is read from the global SHARED array
Parameter$() and returned.

SHARED Parameters$() ' Global variable to store parameter data
LOCAL ParmCountX

IF CountX% <= FNParamCountX THEN ' Check to make sure parameter
FNParamStr$ = Parameters$(CountX) ' exists
ELSE
FNParamStr$ = "»
END IF
END DEF ' FNParamStr$()

LISTING 2: PARMDEMO.BAS

Author: Duke Kamstra
Mod. date: 5/8/88

This program demonstrates the subroutines FNParamCountX() and
FNParamStr$().

Compilation instructions:
1. In the Turbo Basic Integrated Development Environment:
a. Load the program into the Turbo Basic editor.
b. In the Options\Parameter line menu define a command
line parameter list. For example:
this is a "test parameter list"
c. Press ALT-R to run the program in memory.
11. From a .EXE file:
a. Load the program into the Turbo Basic editor.
b. In the Options\Compile to menu select EXE file.
c. Press ALT-C to compile PARAM.BAS to PARAM.EXE.
d. Press ALT-F Q to leave the Turbo Basic Integrated
Development Environment.
e. At the DOS command line type:
PARAM this is a "test parameter list"

SINCLUDE "PARAM" ' Include the command line parameter routines
CLS
PRINT FNParamCountX;" parameters were passed to PARMDEMO"
PRINT "The parameters are:"
FOR 1% = 1 TO FNParamCountX
PRINT "Parameter# ";IX,FNParamStr$(IX)
NEXT 1%

September/October 1988 TURBO TECHNIX 111

PARAMETERS
continued from page 110

parameters out into the Parameters$() string array
by using the left and right character positions stored
in ParamPos%).

FNParamStr$() is much simpler. It first calls
FNParamCount%() to make sure that the calling pro-
gram hasn’t asked for a nonexistent parameter. If
the requested parameter exists, that parameter is
read from the string array Parameters$() and re-
turned as the function return value. If the requested
parameter does not exist, no error is generated, but
FNParamStr$() returns an empty string.

TRYING IT OUT

The file PARMDEMO.BAS (Listing 2) demonstrates
the use of FNParamCount%() and FNParamStr$().
PARMDEMO simply $INCLUDE: the file PA-
RAM.BAS and calls the two functions to display any
parameters that are passed to PARMDEMO upon
PARMDEMO’s invocation. To try the demo program,
load PARMDEMO.BAS into Turbo Basic’s Integrated
Environment and then compile it to an .EXE file.
Next, exit Turbo Basic, and invoke PARM-
DEMO.EXE with one or more command line
parameters:

PARMDEMO fee fie foe fum

The PARMDEMO program immediately summarizes
the parameters, as shown in the following sample
output:

4 parameters were passed to PARMDEMO
The parameters are:

Parameter# 1 fee
Parameter# 2 fie
Parameter# 3 foe
Parameter# & fum

The PARMDEMO program calls FNParam-
Count%() to determine how many parameters were
passed to PARDEMO, and then calls FNParamStr$()
to read each of the individual parameters.

Note that your program may call either of the
functions in either order, and as often as necessary.
The call to FNParamCount%() in FNParamStr$() as-
sures that if FNParamStr$() is called first, the com-
mand line parameters are still processed and stored
in Parameters$(). Either way, the parameters will be
there when you need them. B

Duke Kamstra is a quality assurance coordinator for
Borland International, Inc.

Listings may be downloaded from Library I of Compu-
Serve forum BPROGA, as TBCOML.ARC.

PARADISE PRICES

. s
P s “

e T

CALL PROGRAMMER'S PARADISE TODAY and dis.

cover the best software at the best prices. You'll find software
pros to help you select the products you need. Immediate
shipment on our stock of over 1000 products with a 30-day
money back guarantee.

Basic Panel QC or TC 99
Quick Basic 69 Periscope Il X 106
db/Lib 121 Turbo C Tools 101
Finally! 99 Turbo Halo 80
Finally! X Graf 99 Cbtree 141
ick Wind 70
le/csc,ur'cne it 90 Pascal Language
Quick Pak | 60 Microsoft Pascal 3.0 189
Quick Pak Professional 129 Tdv?/?sli)gurllés 4.0 ;g
Grafpak Professi | 89
i Turbo Async Plus 101
C Language Turbo Geometry Library 90
C Tools Plus/5.0 101 Turbo Halo 80
Greenleaf TurboFunctions 109 Turbo Magic 179
Quick C (Microsoft) 69 Turbo Plus 5.0 89

Turbo Power Utilities 80 Source Print 80
Turbo Professional 4.0 80 Tree Diagrammer 70
Turbe Window/Pascal 80 Magic P 179
T 45 D i 115
opaz esqview
Turbo Analyst 59 Norton Guides 109
Y
s any >
socand Frodicts o HOW WE WORK
Reflex: The Analyst 109 PHONE ORDERS Hours 9 AM-7 PM
Siegick B e wcbuite 5 08 far
Sidekick + 139 item for shippin; and handlin.g. All
Superkey) 69 shipments by UPS ground. Rush service
¥urtb)0 gas!c gomé)ller 23 available.
urbo Basic Database e A

¢ 5 MAIL ORDERS POs by mail or fax
Turbo Bas!c Editor TB 69 are welcome. Please incluyde phone
Turbo Basic Telecom TB 69 imber
Turbo C 69 e AL “elel] e
Turbo Lightning and INTERNATIONAL SERVI(E call

Lightning Word Wizard 109 o faxfor information.

Turbo Pascal 69 DEALERS AND CORPORATE
Turbo Pascal Dbase Toolbox 69 ACCOUNTS Call for information.
Turbo Pascal Dev. Toolkit 289 UNBEATABLE PRICES we'll
Turbo Pascal Editor Toolbox 69 match lower nationally advertised
Turgo Pascal Gameworks TB 69 prices.
Turbo Pascal Graphix TB 69 TRCHNIC SUPPORT FRON
Turbo Pascal Num. Methods 69 l;‘iﬁi”l]‘l\‘_I\(R\p!]?&“)g FARROM
Turbo Pascal Tutor 45 e P i
Turbo Prolog Compiler 109 RETI Ri\“ I (s)l,l(Y 30-?ay no-hassle
Turbo Prolog Toolbox 69 Tetun policy.Seme manutacuurers |
Additional Products gEas dre bioKen:
Lahey Personal Fortran 86 In NY: 914-332-4548
Smalltalk/V 85 Customer Service: 914-332-0869
Smalltalk/286 169 International Orders: 914-332-4548
Multi-Edit 90 Telex: 510-601-7602
Poly Awk 90 Fax: 914-332-4021

1-300-445-78%)
Programers

oling

A Division of Magellan Software Corp.
55 South Broadway, Tarrytown, NY 10591

112 TURBO TECHNIX September/October 1988

GETTING IN THE LOOP

LOOP is the key to repeating blocks of statements

without using GOTO.

Tom Wrona

One of the key facets of structured pro-
gramming is the art of making loops.
While structured programming is permitted
by the syntax of BASIC, and encouraged by
certain Turbo Basic features, BASIC (un-
SQUAREOME _ like Pascal) does not require structured
programming. Thus, if your first programming lan-
guage is BASIC, you might not fully appreciate the
significance of loops in structured programming.
When using interpreted BASIC, it’s all too easy to
produce what professional programmers call “spa-
ghetti code”: meandering, unstructured code that’s
hard to understand and hard to debug. The two
prime spaghetti code influences in BASIC are the
language’s reliance upon line numbers, and its prim-
itive looping abilities. Turbo Basic, however, corrects
both problems. First of all, line numbers aren’t re-
quired in Turbo Basic; in fact, you should never use
them. Period. Second, Turbo Basic’s looping facilities
are much more sophisticated than interpreted
BASIC’s good old FOR..NEXT, as I'll explain in
this article.

SQUARE ONE

BEYOND FOR..NEXT

FOR..NEXT only permits a block of statements to be
repeated some number of times. Listing 1 is a min-
imal program that illustrates how FOR..NEXT works,
and shows the loop’s use of the STEP keyword to in-
crement the loop counter by a number other than
one. Run this listing and watch what it does. While
FOR..NEXT is useful, more powerful looping con-
structs are needed for writing commercial-quality
software.

When you first start programming, it’s a little dif-
ficult to see what your modest efforts have in com-
mon with commercial programs such as WordStar or
Lotus 1-2-3. You begin by learning that a program is
a list of instructions that are executed sequentially by
the computer; your own programs contain sequential
lists of Turbo Basic commands. However, when you
start up an advanced application such as MicroCalc
(the spreadsheet program that is included with
Turbo Basic), you notice that its commands don’t

seem to be very sequential—the program is just there,
on the screen, all at once.

All programs, MicroCalc included, are thoroughly
sequential—this becomes apparent when you look
closely at the nature of the sequence. Listing 2 shows
a short program that is very similar to programs writ-
ten by most BASIC programmers while they're get-
ting their feet wet. The program begins, executes
some statements, and stops, producing the output
shown in Figure 1. The text lines shown in Figure 1
appear on the screen, one after the other, as the pro-
gram executes each program line.

Figure 2 is a screen “snapshot” of the MicroCalc
screen that appears when MicroCalc executes. Com-
pare Figure 1 with Figure 2. Rather than appearing
to be the result of a sequence of instructions, Micro-
Calc seems to be just “there” all at once, awaiting
input.

The operative word here is “awaiting.” By the time
MicroCalc has drawn the spreadsheet grid and be-
gins waiting for our input (in this case, a number, a
letter, a cursor movement key, or a slash command),
the program has already done a lot of preparatory
work and is in the middle of a loop. Examine Listing
3, which shows the source code for MicroCalc’s main
program. We can pinpoint the exact location in the
code when the program seemingly pops up on the
screen all at once. (I've added numbers to the print-
ed listing for reference purposes; these numbers are

continued on page 114

Let's play with numbers!

Pick a number and I'll tell you facts about it.
What's your number? 42

The square root of your number is 6.48074069840786.
Want to know something else (Y/N)? Y

A circle with a diameter of 42 would have

a circumference of 131.88.

That's all! Thanks for playing!

Figure 1. Programs written by newcomers often present a
simple, linear question-and-answer session such as the one
shown here. A repeating command loop offers a great deal
more sophistication with respect to how a program com-
municates with the user.

September/October 1988 TURBO TECHNIX 113

TURBO BASIC

A1, Text]

GETTING IN THE LOOP

Type 7/ for Commands, F2 for Edit

continued from page 113

not present in the actual MC.BAS
file.) Line 67 is the comment line
shown below:
'set up a LOOP UNTIL '/Q' command

is chosen

Immediately after this line, a
DO..LOOP begins that deter-
mines which key has been
pressed by the user. (I'll discuss
DO..LOOPs in more detail
shortly.) This DO..LOOP, which
is the main body of the program,
shunts the flow of the program to
the subroutine that is invoked by
the keypress. Everything above
line 67 in the program is prepara-
tion for the DO..LOOP. Lines 58-
65 check if a filename (of a pre-
viously saved spreadsheet) has
been typed in after the “MC” on
the command line; if the filename
was entered, then the subroutine
Load is CALLed to load that
sheet; otherwise (ELSE), a blank
spreadsheet is drawn by CALLing
the Grid subroutine. Subroutines
such as Grid are contained in var-
ious include files, which are part

of MicroCalc.

PSEUDO-CODE

One way to understand a pro-
gramming problem is to think in
terms of “pseudo-code.” Pseudo-
code is an English-language
“sketch” of a program that you
create before you get down to the
job of coding in your actual pro-
gramming language. (For more on

futoCalc is ON

pseudo-code, see “Binary Engi-
neering,” TURBO TECHNIX, No-
vember/December, 1987.)
Pseudo-code is useful not only
for creating a program, but also

for analyzing an existing program.

One good way to increase your
understanding of program struc-
ture is to reverse-engineer a pro-
gram’s source code back to
pseudo-code. For example, the
pseudo-code equivalent of the
code from the beginning of the
program to the start of the main
loop at line 68 is shown below:

Initialize all variables

and arrays (CALL Init)

IF a filename was typed in...

CALL the spreadsheet file

loading subroutine.
No filename? (ELSE)
CALL Grid to draw
a blank spreadsheet.
That's all, go on. (END IF)

The main loop extends from
the DO keyword in line 68 to
LOOP UNTIL CalcExit% in line
93. This main loop, called a
DO..LOOP, is one kind of control

structure.

CONTROL STRUCTURES

Control structures such as
DO..LOOPs are a language’s
method for determining which
instructions get executed, based
upon the value of a variable or
the occurrence of an event. Not
all control structures are loops.
For example, an IF..THEN condi-
tional test is used to determine if a
spreadsheet file should be loaded.

Figure 2. The command menu from
the MicroCalc spreadsheet, shown
here, uses a loop to repeatedly test the
keyboard until a command character
is entered. Once a character is detected,
the program executes the command
represented by that character.

The logic of such a test is very
English-like: IF the filename ex-
ists, THEN CALL Load to load it,
ELSE draw a blank spreadsheet.
Although multiple tests can be
performed using IF..THEN, each
test occurs only once. Thus,
IF..THEN is a one-way action, not
a loop.

The DO..LOOP statement. While
both IF..THEN statements and
DO..LOOP statements always in-
volve testing, DO..LOOPs are
used more as processing tools, in-
stead of testing tools. Again, the
name DO..LOOP reflects the
function of these keywords in an
English-like fashion: The program
will DO some process UNTIL or
WHILE some expression is true
or false.

What MicroCalc’s main
DO..LOOP does (and, therefore,
what the program spends most of
its time doing) is nothing more
than waiting for keyboard input.
When such input appears, the
program processes the keyboard
input to see what should be done
next. MicroCalc keeps on process-
ing keyboard input until a “/Q”
is entered to terminate the pro-
gram.

Calling ReadKBD. The main
loop’s first action (at line 69) is to
CALL a little subroutine called
ReadKBD. ReadKBD, which is
reproduced in Listing 4, tells its
caller which key has been pressed.
What is ReadKBD? Another loop,
of course. ReadKBD'’s loop is the

continued on page 118

114 TURBO TECHNIX September/October 1988

SUN TUE

MAGIC PC ELIMINATES CODING . .. CUTS MONTHS OF DATABASE DEVELOPMENT!

Time is money. And codinga DBMS
application like Accounting or Order
Entry takes a lot of both. Simply be-
cause hacking out mountains of code
with your RDBMS or 4GL is too
slow. Not to mention the time to re-
write if you make a mistake or change
the design.

EXECUTION TABLES
ELIMINATE CODE!
Magic PC cuts months of your appli-
cation development time because it
eliminates coding. You program with
the state-of-the-art Execution Tables
in place of conventional programming,

HOW DOES IT WORK?
Magic PC turns your database design
scheme directly into executable appli-
cations without any coding. Use Exe-

cution Tables to describe only what

your programs do with compact design
spec’s, free from lengthy how to pro-
gramming details. Each table entry is
a powerful non-procedural design in-
struction which is executed at com-
piled-like speed by a runtime engine.
Yet the tables can be modified “on the
fly” without any maintenance. De-
velop full-featured multi-user turn-
key systems with custom screens,
windows, menus, reports and much
more in days — not months! No more
low-level programming, no time
wasted . . .

R T T S T R e R TR S W AN (O ey

M\/AG IC PC

Database Language

] “Magic PC’s database en-
'TEg—:NI:\f[L gine delivers powerful app-
= lications in a fraction of
thetime... thereis nocom-
petitive product.”
“Overall, Magic PC is one
of the most powerful DBMS
packages available.”

® Quick Application Generator

® BTRIEVE® — based multi-user RDBMS
® Visual design language eliminates coding
©® Maintenance-free program modifications
® Easy-to-use Visual Query-By-Example
® Multi-file Zoom window look-ups

® Low-cost distribution Runtimes

® OEM versions available

ATTENTION BTRIEVE® USERS
Now you can quickly enhance your BTRIEVE®-
based applications beyond the capabilities of
XTRIEVE® and RTRIEVE®. Use Magic PC as
aturn-key BTRIEVE® Application Generator to
customize your applications without even chang-
ing your existing code.

[
Nk
19782 MacArthur Boulevard, Suite 305
Irvine, California 92715
TLX: 493-1184 FAX: 714-833-0323

Tordiidee DPTDIDVUD comeioms Nle e

DATABASE PROGRAMMERS
Join the thousands of professional
database programmers and vertical
market developers who switched to
Magic PC from dBase®, R:BASE®,
Paradox®, Clipper®, Dataflex®, Rev-
elation®, Basic, C, Pascal, etc.

TRY BEFORE YOU PAY

We're so sure you'll love Magic PC —
we’ll let you try the complete package
first. Only a limited quantity is avail-
able, so call us today to reserve your
copy. Pay for Magic PC only after 30
days of working with it.* To cancel...
don’tcall.. . simply return in 30 days
for a $19.95 restocking fee.

OR PAY NOW AT NO RISK
Pay when you order and we’ll wave
the $19.95 restocking fee so you have
absolutely no risk.

SPECIAL OFFER 695

Magic LAN multi-user — $399
Magic RUN — call for price

Order Now Call:
800-345-MAGIC

In CA 714-250-1718

Add $10 P&H, tax in CA. International orders add $30.
*Secured with credit card or open P.O. Valid in US.
Dealers welcomed

e RS A S e NSa L AR L R o R s e AR g

aradox 2.0, the top-rated
Network, 386, and

Paradox@’ is both the first family in
DBMS and the top-rated relational
database. Software Digest has
ranked Paradox #1 for the past

2 years; PC Magazine gave Paradox
its “"Editor’s Choice’ award and
InfoWorld named it 1987 **Product
of the Year" for Database Systems.

Now there’s OS/2

Paradox 0S/2 is the newest
member of the Paradox family—
more are on the way and they're all
100% compatible with each other.

Paradox 0S/2 allows you to take
advantage of powerful 0S/2 fea-
tures such as addressing up to 16
megabytes of memory and running
concurrent sessions. And Paradox
0S/2 even lets you start new 0S/2
sessions from within Paradox.

*Customer satisfaction is our main concern; if within 60 days of purchase this
product does not perform in accordance with our claims, call our customer
service department, and we will arrange a refund

Al Borland products are trademarks or registered trademarks of Borland International, Inc. Other
brand and product names are trademarks of their respective holders. Copyright ©1988 Borland
International. Inc BL1228A

Harness the power of 386

Paradox 386 is powerful new
DOS software for your powerful
new hardware and it’s designed
exclusively for 80386-based sys-
tems. It also lets you ignore the old
640K limits and races through your
data 32 bits at a time instead of just
16. It’s a perfect solution for
anyone faced with very large tables
(tens of thousands of records or
more) and/or large applications.

€€ As proof of Borland’s commit-
ment to delivering compatibility
across diverse hardware and soft-
ware environments, Paradox 386
and Paradox 2.0 can share the
same databases and applications
on a network.

Giovanni Perrone, PC Week

Paradox . .. it's the PC database-

management system equivalent to

turbo-charging an M-series BMW.
Giovanni Perrone, PC WEEK ,,

The Paradox Network
really works

Network users, you need
Paradox’s multiuser capabilities.
The network runs smoothly, intelli-
gently and so transparently that
multiusers can access the same
data at the same time—without
getting in each other's way. (But
safeguards prevent multiple users
from altering the same data at the
same time.) And with screen
refresh you get real-time data
updates on your screen.

¢ ¢ [Paradox is| a true network
application, a program that can
actually take advantage of a net-
work to provide more features and
functions, things that can’t be done
with a standalone PC.

Aaron Brenner, LAN Magazine

[Paradox] elegantly handles all
the chores of a multiuser database
system with little or no effort by
network users.

Mark Cook and Steve King
Data Based Advisor ,’

relational database, has
now OS/2 versions!

“Query-by-Example” gives you

the right answer, right now

Our ““Query-by-Example’” (QBE)
technique is just one illustration of
the technological leadership offered
by Paradox for the past 2 years.

(BE is fast and simple to use.
Simply call up a form and check off
the information you want.

{ [F6] to include a field in the MSIER; [F5) to give an Exaple
S-'M’—I—— Stock h—rismr————[:Ian
mxr Stack Twmmj:ﬂ fﬂvﬂ,—

Rink hmlmp;l fs (13)
Robot-valet

::é:tzl {rl‘dh"f{ clock

sumb 'M Beetle
Pobot-valet
lei I'mim}uels 3

Without having to write a line of
code, you can, for example, get an-
swers to queries like: Find all the
items we sold for more than $1000
and tell me who ordered them.

An artificial intelligence tech-
nique called “‘heuristic query

optimization' gives Paradox’s QBE
the ability to figure out not just the
right answer, but also the fastest
way to get the right answer.

OBE makes high-speed links
between one piece of data and
another and quickly sees the rela-
tionships your question calls for.

PAL:™ A powerful
programming language

PAL, the Paradox Application
Language, is a full-featured, high-
level, structured database program-
ming language that lets you write
sophisticated Paradox programs
(scripts) and applications. It in-
cludes such powerful features as
looping constructs, arrays, branch-
ing, procedures, and a full set of
functions.

€€ Most people we meet who
give Paradox a try. end up
switching to it .
Mark Cook and Steve King
Data Based Advisor ,,

There’s a Paradox 2.0
version for you

Whether you're a DOS or
0S/2 user, there's a Paradox
version for you.

60-Day Money-back Guarantee*

For a brochure or the dealer nearest
you, call (800) 543-7543

Eg_%

BORLAND

INTERNATIONAL

GETTING IN THE LOOP
continued from page 114

gateway into MicroCalc, the re-
ceiving dock where the characters
come when they’re shipped out of
the keyboard by the user’s fingers.
Below are the two statements con-
tained in ReadKBD, along with a
pseudo-code explanation of each:

STATEMENT: RetChar$ =
INKEY$

PSEUDO-CODE: Request a char-
acter from the keyboard (IN-
KEY$) and place it in the function
return variable (RetChar$).

STATEMENT: LOOP UNTIL
RetChar$< >""

PSEUDO-CODE: Keep requesting
a character from the keyboard un-
til the character that you get
(stored in RetChar$) is an actual
character and not a null string
(/lll)-

Essentially, ReadKBD is a
keyboard-input processing ma-
chine that receives characters
from the keyboard and places
them into the program. Why is an
input processing loop necessary
when INPUT can be used? Be-
cause when INPUT executes, it in-
variably puts that dumb question
mark on the screen—this is fine
for a quick and dirty program, but
inappropriate for professional-
quality programs that you can
write with Turbo Basic.

Loops within loops. ReadKBD’s
presence in the main loop is a
perfect illustration of the “loop
within a loop” type of program-
ming. Both ReadKBD and the
main loop are DO..UNTIL loops.
In this kind of loop, the process-
ing statements are repeated
UNTIL the test condition is true.
In the case of ReadKBD, the
clever construction UNTIL-
RetChar$ <> ”” means that un-
less the program has something
else to do, it remains in its tight lit-
tle loop, checking the keyboard
for characters. Given the relative
slowness of humans and the
speed with which the machine
can process their input, it’s safe to
say that MicroCalc spends over 90
percent of its time executing this
one line!

In the main loop, the test con-
dition is LOOP UNTIL Calc-
Exit%. Although CalcExit% is an
integer (this is indicated by the
presence of the percent sign), it’s
used here as a Boolean variable
that can be interpreted as either
True or False. In the Command
subroutine, which interprets slash
commands, there is a SELECT
CASE statement that assigns Calc-
Exit% with a value of True if
“/Q” has been pressed. (Just as
DO..LOOP is FOR..NEXT’s big
brother, SELECT CASE is
IF..THEN’s big brother. For more
on SELECT CASE, see “SELECT
CASE: Choosing One From the
Many,” TURBO TECHNIX,
March/April, 1988.)

Where to test? In both ReadKBD
and the main loop, the condition
is tested at the bottom of the loop.
However, testing can be perform-
ed at the top of the loop, at the
top and the bottom of the loop, or
at neither. If testing is not done at
either the top or the bottom of the
loop, the loop is then endless and
repeats forever, unless an exit is
performed somewhere in the mid-
dle of the loop via a GOTO state-
ment (bad practice), or else via the
EXIT LOOP statement (infinitely
better) as shown below:
DO

GetSomelnput(InputPresent%)

IF NOT InputPresent%

THEN EXIT LOOP

ProcessInput
LOOP

Testing at the top of the loop is
simple to perform, as demon-
strated by the following code:

QuitProcess% = 0

DO UNTIL QuitProcess%

DoSomeWork

AreWeDoneYet(QuitProcess%)
LOOP

The logical opposite of a
DO..UNTIL loop is a DO..WHILE
loop. In a DO..WHILE loop, the
processing operation is repeated
WHILE the condition is true. The
operation of a DO..WHILE loop
is shown below:
GetSomelnput(InputPresent%)
DO

Processlnput

GetSomelnput(InputPresent%)
WHILE InputPresent%
Notice that the presence of the
keyword WHILE at the bottom of
the loop makes the LOOP key-
word unnecessary.

Another syntax for DO..WHILE
is called WHILE..WEND:; this syn-
tax is borrowed from older ver-
sions of BASIC. WHILE..WEND
tests at the top of a loop, as dem-
onstrated in the following code:

GetSomelnput(InputPresent’%)

WHILE InputPresent’%
ProcessInput
GetMorelnput(InputPresent%)
WEND
WHILE..WEND is completely
equivalent to DO..WHILE;
whether you use it or not is strictly
a matter of taste.

ONWARD

To learn how to write commercial-
quality software, you have to un-
derstand how it differs from the
toy programs that we all write
when starting out. With Turbo
Basic, an important first step is to
understand structured program-
ming and control structures such
as DO..LOOP statements. Where
do you go from here? Try studying
the source code for MicroCalc.
Print it out and follow the pro-
gram flow into the various include
files and their procedures and
functions. Rewrite MC.BAS as
pseudo-code to get some more in-
sights into how large programs
are put together. Identify useful
subroutines like ReadKBD that
you can use and reuse in your
own projects. Obtain public do-
main programs that include
source code, and study the code
with a critical eye. Is the code
sloppy or tight? Is it spaghetti code
or well-commented structured
code?

The more source code that you
study, and the more that you write
yourself, the better you'll become
at programming in Turbo Basic.
And someday, perhaps, the com-
mercial program that pops up on
my screen will be yours. W

Tom Wrona is a writer, consultant,
and the author of How to Run a
Hard Disk PC, published in March
by Scott, Foresman & Company.
Reach Tom via CompuServe
(76137,3363) or MCI Mail.

Listings may be downloaded from
Library 1 of CompuServe forum
BPROGA, as LOOPS.ARC.

118

TURBO TECHNIX September/October 1988

LISTING 1: FORTEST.BAS

'A simple program demonstrating FOR..NEXT
' with the STEP modifier:

FOR i = 2 to 8 STEP 2
Print i
NEXT i
PRINT "Who do we appreciate?"

LISTING 2: NUMBERS.BAS

‘Toy Program by Tom Wrona

cLs

PRINT "Let's play with numbers!|"

PRINT “Pick a number and I'll tell you facts about it."
INPUT "What's your number";number

PRINT "The square root of your number is " SQR(number)"."
INPUT "Want to know something else (Y/N)" answer$

IF UCASES(answer$) = "N" GOTO DONE

PRINT "A circle with a diameter of"number"would have
PRINT "a circumference of" 3.14 * number"."

DONE :

PRINT "That's all! Thanks for playing!"

LISTING 3: MC.BAS

1]

2 ! MC.BAS

38 VERSION 1.0

‘ 1

S8 Turbo Basic

(I (C) Copyright 1987 by Borland International

7 1

8 '| System Requirements:

il @ - DOS Version 2.0 or later

300 - 320K

I

12 '| This program is a simple spreadsheet program that is provided
13 '| as an example of a simple application that can be done in
14 '| Turbo Basic. You are encouraged to study this program and
15 '| make any enhancements and modifications that you might want.
21 ¢

22

23 SDYNAMIC ' ALl arrays are DYNAMIC

24 $STACK 10240 ' to prevent stack overflow

25

26 SINCLUDE "MCO.INC" Global variables, named constant AND

array definition

N
~

29 SINCLUDE "MC1.INC" Miscellaneous commands AND utilities

30 ! (Keyboard,screen, toggles)

3

32 $INCLUDE "MC2.INC" ' Init, display & clear spreadsheet grid
33

34 SINCLUDE “MC3.INC" ' Display Cells; move around spreadsheet
35

36 SINCLUDE "MC4.INC“ Load, Save AND Print a spreadsheet;

display on-line manual; DOS shell

w
b}

40 SINCLUDE "MC5.INC" Procedures to evaluate formulas AND

41 ' recalculate the spreadsheet

42

43 SINCLUDE "MC6.INC" ' Procedures to read, update AND format
b4 ' cells; Commands dispatcher

45

46 SINCLUDE "MC7.INC" ' Some string functions

47

48 SINCLUDE "MC8.INC" Procedures to Read/Write records to or
49 from the spreadsheet data structure

52 RANDOMIZE TIMER
53 Begintimer=TIMER

init random number generator
initial time

55 ' MAIN PROGRAM i

57 CALL Init

58 FileName$=FNGetCmd$

59 IF FNExistsX(FileName$) THEN

60 CALL load

61 ELSE

62 CLs

63 CALL Grid

64 CALL GotoCell(GlobFXX, GlobFYX)

65 END IF

66

67 ' set up a LOOP UNTIL '/Q' command is chosen
68 DO

69 CALL ReadkBD(Ch$)

70 CALL IBMCh(Ch$)

n SELECT CASE left$(Chs,1)

72 CASE CHRS$(5) SE

3 CALL MoveUp

74 CASE CHR$(24), CHR$(10) ey
¢ CALL MoveDown

76 CASE CHR$(4), CHRS(13) D, M
a4 CALL MoveRight

78 CASE CHR$(19) Ut 3

™ CALL Moveleft

80 CASE CHRS(1) L

81 CALL MoveHome

82 CASE CHR$(6) o

a3 CALL MoveEnd

84 CASE /™ ' Command Header
85 CALL Commands

86 CASE CHR$(XEditKey) F2
87 CALL GetCell(GlobFXX, GlobFYX)

88 CASE ELSE

89 IF (left$S(Ch$,1) >= " ") AND (left$(ChS,1) <= CHR$(255))
90 THEN CALL GetCell(GlobFXX, GlobFYX)
91 END IF

92 END SELECT

93 LOOP UNTIL CalcExitX

9%

95 END

9 'L END MAIN PROGRAM —— |

LISTING 4: READKBD.BAS

'ReadKBD, a subroutine contained in MC1.INC

SUB ReadKBD(RetChar$)
' This function reads a keystroke from the keyboard
' and returns 1- OR 2-character string.

Do
RetChar$ = INKEY$
LOOP UNTIL RetChar$<>"n

' get the keyboard input

END SUB

September/October 1988 TURBO TECHNIX 119

PROFESSIONAL TOOLS

TURBO ASSEMBLER:
CIVILIZING MACHINE

LANGUAGE

If you’ve never tackled the 86-family’s own language,

thls may be the Ideal time to start.

Tom Swan

You've probably heard The Famous
Truths About Assembly Language—“Pro-
gramming in assembly language is more
difficult than teaching buffaloes to
piréuette;” “An assembly language pro-
SQUAREONE _ gram can trash memory faster than Oliver
North can shred a sensitive document;” and, “Only
13-year-old software prodigies can understand as-
sembly language mnemonics!”

These are bad raps. Assembly language is not a
great deal more difficult to learn and to use than any
other computer language. This is especially true now
with the availability of new features such as Ideal
mode, local labels, and improved command-line op-
tions in Turbo Assembler—Borland International’s
newest Turbo language and the partner of Turbo De-
bugger. If you're eager to learn assembly language,
you couldn’t have picked a better time to begin.

Turbo Assembler is not just for beginners, though.
If you're an experienced assembly language pro-
grammer, you'll be happy to know that Turbo As-
sembler is fully compatible with the Microsoft Macro
Assembler (MASM). Turbo Assembler recognizes all
MASM macros, conditional assembly and other di-
rectives, plus simplified segment models. If you have
existing assembly language programs to maintain,
Turbo Assembler can almost certainly assemble them.

Of course, Turbo Assembler carries the famous
Borland mark of the gazelle—it assembles a 2000-
line test file in less than four seconds on a 16-mHz
80386 system (about twice as fast as MASM 5.1). And,
like MASM, Turbo Assembler supports all typical PC
processors (8088, 8086, 80186, 80286, 80386) and
math coprocessors (8087, 80287, 80387).

Other features make Turbo Assembler friendly to
use. For example, the following command assembles
all of the .ASM files in a directory:

TASM *_.ASM

Turbo Assembler’s most intriguing new feature,
called Ideal mode, is a logical refinement to standard
MASM syntax. If you're new to assembly language
programming, Ideal mode will help you get up to

SQUARE ONE

.wumﬁgsmwmf%%’w‘

speed without getting
ogged down in minor syntac-
tical quirks that plague other assemblers (especially
MASM). If you're an old pro (or a young pro!), you'll
appreciate Ideal mode’s many improvements to
MASM syntax, plus the ability to switch back to full
MASM compatibility at any time and assemble exist-
ing modules written in the standard syntax. I'll cover
Ideal mode in more detail shortly.

First, however, a note to beginners: If assembly
language is still gobbledygook to you, skim over the
specific examples in this introduction. I've tried to
provide general information for those of you with lit-
tle or no assembly language experience, but there
isn’t enough room here for a complete tutorial. For
help with learning assembly language, refer to the
Turbo Assembler manual, other TURBO TECHNIX
articles, and forthcoming books on Turbo Assembler.
[Editor’s note: Including one by the estimable Mr.
Swan.]

USING TURBO ASSEMBLER

Unlike other Turbo languages, Turbo Assembler is not
an integrated development environment with a text
editor and pull-down menus. Instead, Turbo Assembler

120 TURBO TECHNIX September/October 1988

perates from
" the DOS command
e, similar to the way
M runs. Turbo Assembler
. requires the use of a separate
editor for typing programs, and most
"~ people probably will use the editor in Turbo C,
Turbo Pascal, Turbo Basic, or Turbo Prolog. Other
good choices are the MicroStar editor in the Turbo
Pascal Editor Toolbox, or the notepads in SideKick
and SideKick Plus. You can also use an editor such as
Brief (my favorite), or any word processor that edits
plain ASCII text.

Many people will use Turbo Assembler with one
or more high-level Turbo languages to convert se-
lected BASIC subroutines, Pascal procedures, or C
functions to assembly language in order to gain the
extra speed that only pure machine code can give. In
fact, experts estimate that most programs spend
about 90 percent of their time executing only 10 per-
cent of their code. In theory, therefore, the conver-
sion of the critical 10 percent of any program to as-
sembly language potentially increases program
speed by almost as much as could be done by rewrit-
ing the entire program.

To help you mix and match Turbo Assembler with
other Borland languages, individual chapters in the
Turbo Assembler manual explain how to interface
assembly language to Turbo Pascal, Turbo C, Turbo
Basic, and Turbo Prolog. Turbo C can even call
Turbo Assembler directly to assemble inline assem-
bly language statements embedded in Turbo C
source text.

Of course, standalone programs can also be as-
sembled with Turbo Assembler. Programs can be lo-
cated in one file, or else divided into modules, as-
sembled separately, and then linked with other
modules to create the final code file on disk. Since

embler is fully
e with MASM, you can take
of the thousands of lines of

- shed assembly language source code
: allable on bulletin boards, in magazines and
books, and elsewhere.

QUIRKS MODE

Through a special command, Turbo Assembler can
even reproduce known MASM bugs and quirks. To
use this command, type QUIRKS into your source
text to throw Turbo Assembler into quirks mode for
near 100-percent MASM source code compatibility,
warts, bugs, and all.

The only MASM programs that Turbo Assembler
cannot digest are a few rare (and poorly written) ex-
amples that rely on MASM’s two-pass nature. Turbo
Assembler is a one-pass assembler—it reads a pro-
gram text file a single time in order to generate an
object file that contains the assembled program code.
MASM reads a program text file twice—once to iden-
tify labels, and once again to generate the object
code. With respect to speed, one pass is obviously
better than two. Besides, you're better off not using—
and never writing—finicky two-pass-dependent pro-
grams in the first place.

IDEAL MODE—ENTER STAGE RIGHT

Besides MASM compatibility (with or without quirks),
Turbo Assembler introduces Ideal mode—this depar-
ture from MASM syntax is a subject that’s bound to
be controversial among bit-twiddlers everywhere.
Ideal mode is to assembly language what Hamlet
and other Shakespearean plays were (and are) to -
English—the sensible and inventive force that civi-
lizes an existing language. Shakespeare didn’t create
English. He improved and expanded the language in
ways that have lasted until today and that will no
doubt endure for as long as English itself. Similarly,
Turbo Assembler’s Ideal mode improves MASM syn-
tax in ways that are likely to have long-lasting effects
on PC assembly language programming. Ideal mode
is not just a new assembly language syntax—Ideal
mode has refined, reformed, and civilized MASM.

New and improved syntax. Ideal mode improves
MASM syntax in two fundamental areas: consistency

continued on page 122

September/October 1988 TURBO TECHNIX 121

TURBO ASSEMBLER

continued from page 121

and type-checking. An improved consistency among
commands helps you to remember syntax rules, and
lets Turbo Assembler use simpler parsing methods to
read and understand programs. Due to its simpler
parsing rules, Ideal mode assembles programs about
30 percent faster than they can be assembled in
MASM mode. That’s 30 percent faster than Turbo
Assembler’s own MASM-compatible mode, which is
already twice as fast as MASM itself!

Keywords. In Ideal mode, most keywords begin an
instruction, rather than appearing in the apparently
random fashion that they do in MASM. Table 1 com-
pares several Ideal mode keywords to their MASM
equivalents. Notice that ENDP and ENDS are option-
ally followed by the name of the procedure or seg-
ment that was previously used in a matching PROC
or SEGMENT directive. (In MASM, the name pre-
cedes the keyword and, therefore, must be used in
both places.)

MASM Mode Ideal Mode
name ENDP ENDP [name]
name ENDS ENDS [name]

name GROUP segs
name LABEL type
name MACRO args
name PROC type
name RECORD args

GROUP name segs
LABEL name type
MACRO name args
PROC name type
RECORD name args

name SEGMENT args SEGMENT name args
name STRUC STRUC name
name UNION UNION name

Table 1. Ideal mode versus MASM keywords. Bracketed
items are optional.

Type-checking. Ideal mode’s stronger type-checking
rules help you write programs that have fewer bugs
and make more sense both to you and to the assem-
bler. When assembling in Ideal mode, for example,
Turbo Assembler never lets addresses be confused
with values stored in memory (this is a prime source
of bugs even with experienced programmers). Ideal
mode also eliminates MASM’s annoying tendency to
calculate some offsets relative to individual segments
that are collected by the GROUP command. In Ideal
mode, items in grouped segments are always ac-
cessed relative to the group, not to the segment in
which the items reside.

Pascal and C programmers know that strong type-
checking helps prevent bugs by restricting assign-
ments and other operations to variables of compat-
ible types. With Turbo Assembler’s Ideal mode,
assembly language programmers can now enjoy sim-
ilar benefits with no loss of capability and no penalty
on program speed.

IDEAL MODE AND BRACKETS

An excellent example of how Ideal mode’s stronger
type-checking rules help prevent bugs is the way that
square brackets (e.g., []) are required in order to ob-
tain the contents of a memory location. For example,
[MyVar] with brackets refers to the contents stored
in memory at the location marked by the label,

MyVar. This rule has important consequences in
constructions such as the following:

Count dw O

mov ax, [Count]

Here, Count is a label (a pointer) that locates a
two-byte word in memory, which is initialized to zero.
(The dw stands for “define word.”) The second line
moves the contents of Count into register ax. Be-
cause of the brackets, there’s no question that
[Count] refers to the contents of the memory loca-
tion and not to the value of the Count label itself.
Contrast this with the following:

mov ax, Count

MASM allows this ambiguous construction. (So
does Turbo Assembler in MASM mode, of course.)
The instruction seems to be loading Count into ax.
But that’s silly. Count is a label, a 32-bit address com-
posed of 16-bit segment and offset values—and 32-
bit labels cannot be loaded into 16-bit registers. Only
16-bit values can be loaded into 16-bit registers, and
only 8-bit values can be loaded into 8-bit registers.
Since it knows that this instruction is senseless,
MASM assumes that you must be trying to load ax
with the contents stored at the address of Count and,
therefore, happily assembles the program as though
you had written mov ax,[Count] with brackets!

Turbo Assembler in Ideal mode properly warns
that you probably forgot the brackets around Count.
Ideal mode can do this because it checks that the
type of the destination (ax) is compatible with the
source (Count).

When you do want to load the value of a label intc
a register, you must specify which type-compatible
part of the label is to be used. To assign the 16-bit
offset value of the label Count to ax, relative to the
segment that declares the label, you must write:

mov ax, OFFSET Count

Both Turbo Assembler (in all modes) and MASM
correctly assemble this instruction. When the pro-
gram runs, the 16-bit offset address of Count is
moved (copied) into ax. The danger here—and the
reason that Ideal mode rejects the bracketless con-
struction—is that you might easily forget to type the
OFFSET keyword when referring to the label’s ad-
dress. If you do this in MASM, the assembled code
mistakenly refers to the contents stored at this ad-
dress, and you won’t know something is wrong until
the program begins to misbehave. Turbo Assembler’s
Ideal mode spots this and other subtle mistakes dur-
ing assembly, thus helping you to write programs
that run as you intend. Unlike MASM, Ideal mode
never tries to decide what you “really” mean!

OTHER IDEAL-MODE FEATURES

Another important Ideal-mode feature is a new job
description for a useful assembly language employee—
the lonely dot. In MASM, dots have many jobs. Dots
begin some directives (.LIST and .RADIX), but not
others (INCLUDE and COMM). Dots separate struc-
tures, as in CUSTOMER.ADDRESS. Dots are used in
floating point numbers (5.2) and in some commands
(.386) that look like numbers, but aren’t. It's enough

to drive you batty, if not dotty.

122 TURBO TECHNIX September/October 1988

The Ideal dot. In Turbo Assembler’s Ideal mode,
dots never begin keywords. Period. Dots always sep-
arate identifiers in structures and unions, and mark
the decimal places in floating point numbers.

Since no Ideal-mode keyword begins with a dot,
some MASM directives are necessarily different, as
shown in Tables 2 and 3. For instance, the MASM
command .286 (which enables 80286-processor in-
structions) is P286 in Ideal mode. Ideal mode com-
mands that begin with percent signs, such as %LIST
and %NOCREF, affect program listings. These
changes help clarify programs and make them easier
to read. In Ideal mode, you always know a command
when you see one. Even better, you don’t have to
hunt through the manual to find out whether a com-
mand requires a leading dot.

MASM Mode Ideal Mode
.CREF %CREF
.LALL %MACS
.LFCOND %CONDS
JLIST %LIST
.SFCOND %NOCONDS
XALL %NOMACS
XCREF 9%NOCREF
XLIST %NOLIST

Table 2. Ideal mode versus MASM listing controls.

MASM Mode Ideal Mode MASM Mode Ideal Mode
.186 P186 .ERR2 ERRIF2
.286 P286N .ERRB ERRIFB
.286C P286N .ERRDEF ERRIFDEF
.286P P286 .ERRDIF ERRIFDIF
.287 P287 .ERRDIFI ERRIFDIFI
.386 P386N .ERRE ERRIFE
.386C P386N .ERRIDN ERRIFIDN
.386P P386 .ERRIDNI ERRIFIDNI
.387 P387 .ERRNB ERRIFNB
.8086 P8086 .ERRNDEF ERRIFNDEF
.8087 P8087 .ERRNZ ERRIF
.FARDATA FARDATA .CODE CODESEG
.FARDATA? UFARDATA .CONST CONST
.MODEL MODEL .DATA DATASEG
.RADIX RADIX .DATA? UDATASEG
.ERR ERR STACK STACK
.ERR1 ERRIF1

Table 3. Ideal mode versus MASM dot commands.

Nesting and field names. Ideal mode structures and
unions can also be nested (this is an illegal opera-
tion in MASM). In addition, field names that are in-
side one structure can be the same as the field
names that are inside another structure. The ability
for two or more structures to have the same field
names is especially helpful during the manipulation
of linked lists with many structures, where all link
fields in various records are named something like
NextRec and PrevRec. MASM requires unique
names to be invented for fields in all records, even
when the fields have identical purposes.

PROGRAMMING IN IDEAL MODE

Other major differences between MASM and Ideal
modes are best described by example. Listing 1 is an

Ideal mode program that displays a disk directory.
This program incorporates a single directory “search
engine” that is similar to the search engines for
Turbo Pascal and Turbo C presented elsewhere in
this issue.

To create and run DR.EXE, use the following
commands:

TASM DR
TLINK DR
DR

After an initial comment line in the listing, the
keyword IDEAL initiates Ideal mode. Although not
shown here, the keyword MASM can be used to
switch back to MASM compatibility. This lets you al-
ternate between the two modes in the same listing as
often as you like.

Because the %TITLE directive begins with a per-
cent sign, you know that this command affects listing
output. Notice that a comment line (the text that fol-
lows the semicolon) is allowed because the title
string in Ideal mode must be enclosed in quotes. To
create a listing file, assemble the program with the
following command:

TASM /L DR

To generate a cross-referenced symbol table at the
end of the listing, use this command instead:

TASM /C/L DR

Table 4 lists other command-line options that can be
used during assembly.

continued on page 124

Get To Know
Your Programs

Inside!
and Out!

Now you can analyze
your programs with
o unprecedented detail
with Inside!, a new
software package from
Paradigm Systems.

~ Inside! allows you to examine
the route your programs take
through execution counts, minimum, maximum and
total elapsed times and a count of how many times
each source line executes—function by function—
for popular Borland and Microsoft languages!

Now available

Inside! Turbo C Inside! Quick C Inside! Microsoft Fortran
Inside! Turbo Pascal Inside! Quick Basic Inside! Lattice C
Inside! Microsoft Pascal Inside! Logitech Modula-2

!llllN

—
Paradigm $ @
Systems Each
Incorporated

P.O. Box 152 Milford, MA 01757

To Place Orders Product Support

(800)537-5043 (508)478-0499
2\ 2Va\s (e)W} Visa/Mastercard Accepted

SYSTEMS-INCORPORATED

Inside! is a trademark of Paradigm Systems Incorporated

September/October 1988 TURBO TECHNIX 123

TURBO ASSEMBLER
continued from page 123
Option Description
/A Order segments alphabetically
/C Add cross-reference to listing file
/D Define a symbol
/E Emulate floating point instructions
/H Display command-line syntax help
/1 Set include-file path
/] Define a startup directive
/L Generate a listing file
/ML Treat symbols as case-sensitive
/MU Convert symbols to uppercase
/MX Make public and external symbols case-sensitive
/N Suppress symbol table in listing file
/P Check for impure code
/8 Specify sequential segment-ordering
e Suppress messages on successful assembly
/W Enable warning messages
/X Include false conditionals in listing

/Z Display lines containing errors
Enable line-number information in object file
Enable debugging information in object file

Table 4. Turbo Assembler command-line options.

The DOSSEG, MODEL, and STACK commands
select the Small memory model, which is a good
choice for most standalone assembly language pro-
grams. Table 5 lists other memory models that can
be used in both Ideal and MASM modes.

Model Description

Tiny Code, data, and stack in one 64K segment.
Subroutine calls and data references are
near. Use for COM files only.

Code and data in separate 64K segments.
Subroutine calls and data references are
near. Use for most .EXE files and small- to
medium-size programs.

Unlimited code size. Data limited to one 64K
segment. Subroutine calls are far; data ref-
erences are near. Use for large programs
with minimal data.

Code limited to one 64K segment. Unlimited
data size. Subroutine calls are near; data ref-
erences are far. Arrays limited to 64K. Use
with small- to medium-size programs with
many or very large variables.

Unlimited code and data sizes. Subroutine
calls and data references are far. Arrays
limited to 64K. Use for largest program and
data storage requirements, as long as no sin-
gle variable exceeds 64K.

Unlimited code and data size. Subroutine
calls and data references are far. Arrays not
limited in size. Pointers to array elements
are far. Use for largest programs where one
or more variables exceed 64K.

Table 5. Turbo Assembler memory models.

Small

Medium

Compact

Large

Four equates (which use the EQU directive) asso-
ciate constant values with the identifiers: Attribute,
FileName, Cr, and Lf. During assembly in Ideal
mode, equates are stored as text. As a result, expres-
sions are not evaluated until the program uses the
equated identifier. At that time, the associated text re-
places the identifier in a process similar to the oper-
ation of a macro. In the sample listing, the equates
are simple numbers. Suppose, however, that you

have the following equates:

c = 4;
Value EQU C+10;
(= = 9:

In MASM mode, Value equals 14 because Turbo As-
sembler evaluates the expression C+10 when read-
ing the EQU declaration. In Ideal mode, Turbo As-
sembler evaluates C+10 at the place where the Value
identifier later appears in a program statement. The
difference is important. Because the second equate
redefines C to 9, Value in Ideal mode equals 19, not
14 as it would in MASM mode. (Here, an equals sign
is the same as EQU, but allows the value associated
with an identifier to be changed.) In Ideal mode, you
can be certain that C+10 uses the value of C because
C exists at the place in the program where the
equated identifier appears.

In Listing 1, DATASEG defines the program’s data
segment, which is the memory storage area for vari-
ables. Two of these variables are strings. FileSpec,
which is an ASCIIZ string that ends with a zero byte,
holds the directory search wildcard (identical to wild-
card expressions such as *.PAS or TEST.* in DOS
DIR commands). The program uses CrLf (a peculiar,
although common, kind of DOS string that ends with
a dollar sign) to display blank lines. The third vari-
able, DTA, reserves 128 bytes for the DOS directory
search functions.

The program’s code segment begins at the key-
word CODESEG. The comments to the right of each
line describe the assembly language instructions. No-
tice how OFFSET keywords specify label addresses.

The DATASEG and CODESEG keywords demon-
strate Turbo Assembler’s simplified memory seg-
ments. (Similar keywords are available in MASM
mode.) You can always define segments the hard way
by using SEGMENT directives, as required in early
versions of MASM. Most times, however, you can use
the simplified directives and select an appropriate
memory model from Table 5.

PROCEDURES AND LOCAL LABELS

Assembly language procedures, which are optionally
delimited by the PROC and ENDP directives, resem-
ble BASIC subroutines more than Pascal procedures
or C functions. As Listing 1 shows, the name follows
the PROC directive in Ideal mode; MASM reverses
this order.

Notice the labels @ @t10:, @ @t20:, and @ @t30:
inside DirSearch. Farther down, two of these same
labels appear again. After a LOCALS directive (not
required in Ideal mode), labels that begin with @@
are local to the portion of the program that is sepa-
rated from the rest of the program by nonlocal labels.

Local labels, which can be used in both Ideal and
MASM modes, have two main purposes. A local label
can define a temporary destination for a jump, such
as the jmp @@t10 instruction in procedure Dir-
Search. More importantly, a local label can also elim-
inate the worry that you may have used the same
label in another part of the program. The use of lo-
cal labels avoids the annoying MASM error “Symbol
already defined,” because unique labels no longer
have to be invented for every last destination in your

program.

124 TURBO TECHNIX September/October 1988

Local labels are not merely convenient, however. LISTING 1: DR.ASM
They can also help prevent serious bugs by restrict-

ing short jumps to small sections of code. For exam- ;-- Display disk directory. Written by Tom Swan in Turbo Assembler.
ple, if you misspell or forget to def}ne the @@t'10: . ek o A
label in procedure DirSearch, the jmp @ @110 in- XTITLE “OR.ASM" ; Comments allowed in titles!

: : 1y i : h iddl1 f DOSSEG ; Use standard segments
struction cannot accidentally jump into the middle o MODEL small 1 6AK toder GAK-dats
the next procedure, which also contains a label STACK 256 i Reserve space for stack
@ @t10:. The bug is prevented because the nonlocal Attribute EU 0 ; Attribute for Dirsearch
label Lis.tDir lies between the local label @@t10: £ T o - ‘A’;éf;'c:‘r’r::; Pate JPTA
and the jmp @ @110 instruction. Lt EQU 10 i ASCII Line feed

DATASEG

AN ASSEMBLY LANGUAGE SEARCH ENGINE

FileSpec DB Hau. 0 ASCIIZ (rull-ending) string

Listing 1 contains a procedure, DirSearch, that crif 08 Cr, Lf, '$' ; Carriage return, line feed
searches the current directory for a given file spec- s Sl PR
ification (which may contain wildcard characters) CODESEG
and a file attribute byte. DirSearch uses the DOS start:
Find First and Find Next functions (as described in e e B e i
“A Directory Search Engine in Turbo C” on page 74 mov dx, OFFSET DTA ; Tell DOS to use our
of this issue). To use DirSearch, extract the proce- e S i T
dure DirSearch from the program aqd include it into W S OO Lt AR Ll st
your own program. Call DirSearch with ds:dx ad- mov cx, Attribute i Assign attribute to cx
dressing a null-terminated file specification string. If it S’.—‘;s‘jﬁiiﬁ‘ i :23?2:‘.:‘.;‘?;2’352222'”
you desire, assign a set of attributes to cx that limits RESVRPE PR .
directory entries to those entries that are marked int 21 ; Return to DOS
with the Archive, Hidden, or other flags. Otherwise,
set cx to zero to ignore file attribute settings. i-- Directory Search subroutine

Assign to bx the code-segment offset of a proce- e 2: 5 :ff:;',t::,if;ﬁl:; e
dure to be called by DirSearch each time a matching | | ¢ R EaciEesnt o st Z i cicard string; 'a.g. 'RR.PASS, 0
file is found. The corresponding procedure in List- PROC DirSearch - E
ing 1 is ListDir, which simply transfers one filename, e Sk i e
a character at a time, to the standard output through 33t10: i AT e v
DOS function 2. In your own procedure, you might w20 : i i :
further examine the filename or other information o Lo s T
stored in DTA and take appropriate action. (Consult call bx ; Call user subroutine
a DOS reference for the offsets to various directory P R R i b
items.) For example, filenames could be transferred b ret i Return to caller
to an array and a sorted directory displayed later in-
side a window. Or, you could search for two different | |. LRt iipentory entey. Sibrating
filename endings and list all * EXE and *.COM files : Input: DTA contains one directory entry from Dirsearch
(a fancy pattern-matching scheme that DOS cannot PROC ListDir
{?ro'\;l((ije fr(i)mblts com.man(.i llrtlie)' The choices are :;3 si, OFFSET DTMFileﬂaﬂi ‘,-:l:;:lrg:;eﬁ::nn;:‘in DTA
imited only by your imagination. aat10: 4

After all, isn’t that the reason why you've decided T Pl LR
to learn—or why you’re already using—assembly je aat20 i 1f al = 0, jump to exit
language? Like no other programming language, e y ; ; LT
assembly language offers the most flexibility for the }: bl o b (o e i
implementation of your software dreams. %120: o .

If you've been meaning to learn assembly lan- o :‘x, OFFSET CrLf : :;:?;:Yoﬁf:st:ttr::ﬂ string
guage, or if you're tired of fighting MASM’s crock of int 21 ; Call DS, print string
quirks, take a look at Turbo Assembler and try a few ENDP £ fAsRmLe e

examples in Ideal mode. I think you’'ll be pleased.
Undoubtedly, some MASM fans will hear about Ideal
mode and say, “If it ain’t broke, why fix it?” I say,
“It's been broke all along, and the repair truck has
finally arrived.” ®

END Start ; End of text. Program entry point.

Tom Swan is the author of Mastering Turbo Pascal 4.0,
Second Edition (Howard W. Sams). Barring World War
III or, even worse, a coffee bean shortage, Tom’s new book,
Mastering Turbo Assembler, will be available early in
1989.

Listings may be downloaded from Library 1 of Compu-
Serve forum BPROGB, as TADIR.ARC.

September/October 1988 TURBO TECHNIX 125

PROFESSIONAL TOOLS

PARSING PAL STRINGS

WITH MATCH

A reliable tool for parsing string

S

is needed to split Paradox fields into subfields —

MATCH fills the bill.

Bill Cusano

Sooner or later it’s going to happen: Your
database needs will eventually grow to the
point where you need to restructure a ta-
ble to provide more detail. A 5000-record
name and address table that contains city,
state, and zip code information in a single
field is a perfect example. If you want to restructure
the table so that city, state, and zip code each have
their own field, you have a serious problem.

The solution is a parsing tool that splits the ad-
dress field into its three components: city, state, and
zip code. In the grammatical sense, parsing means to
split a sentence into its grammatical components
(i.e., subject, verb, object, and so forth). What’s
needed here is a variation on that theme—a method
of splitting a string along some logical boundary,
such as a comma, a space, or some other combina-
tion of characters.

PROGRAMMER

THREE ON A MATCH

A PAL function, called MATCH, provides a way to
match a string against a pattern. The syntax of
MATCH is:

MATCH(String, Pattern, [Vars])

String is the text string to be tested, Pattern is a
string template against which the string is matched,
and [Vars] is an optional list of variables used in seg-
menting the string on the first occurrence of a pat-
tern match. To see how this type of parsing can help
solve our problem, let’s look at a few typical strings
that contain city, state, and zip code data:

"Scotts Valley, CA 95066"

"Los Angeles, CA 90066"

"Redmond, WA 98073"

"East Hartford, CT 06108"

The four lines shown above contain similar logical
boundaries between the separate data elements that
are to be extracted. All of the lines contain at least a
comma between the city and state information, and

at least one space between the state and zip code in-
formation. This pattern is consistent through all of
the strings.

Defined concisely, the pattern consists of a vari-
able number of characters for the city, followed by a
comma and one or more spaces, followed by two or
more characters that represent the state, and ending
with one or more spaces followed by the zip code.

In PAL, the double period (..) in a pattern string
represents any number of alpha, numeric, or special
characters. The double period can be used to build
the pattern just described. The first part of the pat-
tern string contains a double period to represent the
variable number of characters (including spaces)
that comprise the city information. This double pe-
riod is then followed by a comma and a space (..,) to
indicate the logical break between the city and the
state.

Another double period followed by a space (..)
represents the pattern for the state information and
its separator from the zip code. Although each state
is represented by only two characters, we can’t be
sure how many spaces will precede the state infor-
mation, so the double period is used just to be safe.

A final double period represents the zip code and
the complete pattern string becomes “..,”. A vari-
able name must be present to receive each segment
of the information (i.e., each portion represented by
a double period); the variable names City, State, and
Zip are used in this example. A MATCH function
can then be stated for each of the example strings,
as shown in Figure 1.

Tidy as they seem, these MATCH invocations
won’t do the job in all cases. In all except the first ex-
ample string, in fact, the value of the variable State
is set to a single space character because multiple
spaces are present between the comma and the state
code. In such a case, the middle double period (..) in
the match pattern picks up the second blank space
after the comma and considers that blank space to

continued on page 128

126 TURBO TECHNIX September/October 1988

INTRODUCING

Version
24

from Zenreich Systems

In Paradox, you create many tables and often quite a bit of confusion.
How many times have you asked yourself:

e | have many tables in several directories, how can | keep track of them?
e Are my Field Types, Image Formats and Validity Checks consistent across my tables?
e | renamed my “Staff” table to “Employee”, where do | have to make Tablelookup changes?
® How much disk space is used by a table and its entire family?
e What settings have | placed in reports (length, width, setup, etc.)?
e How can | tell when my tables need to be restructured to remove wasted space?

e Which of my tables are encrypted, write protected, or corrupted?

e What rights have | assigned to each field for password protected tables?

The 12 Paralex reports answer all of these questions, and many more. Paralex creates Data, Table and Password
dictionaries that gather extensive information from your Paradox tables.

The reports may be sent to printer. screen, or disk file. Dictionaries are Paradox tables, so you have total flexibility
Paralex is menu driven, so it's easy to use. We can’t imagine Paradox applications without Paralex.

Although Paralex list price is $149.95,
you may order for only $99.95 + $5.00 shipping and handling.

You may order by credit card, by calling 800-336-6644. Checks and Purchase orders may be sent directly to:

Zenreich Systems
78 Fifth Avenue, New York., NY 10011 212-691-0170

Paralex requires Paradox 2.0 (or higher) and a 640kb machine Paralex was reviewed by the Paradox Users Journal, and DataBased Advisor
Paralex is wriften is proceduralized PAL code. Registered Paralex users will receive a disk with several useful procedures that went into the building of Paralex

Enhance the power of Paradox.

With PlayRight. The first ASCII text editor designed especially for Paradox. PlayRight's multi-file editing,
extensive block operation, script formatting, custom configuration and spool-printing capabilities bring speed
and efficiency to your writing—and debugging. And, because it looks and feels like your built-in PAL editor,
it's easy to use. PlayRight snaps right into Paradox, instantly replacing the simple PAL editor. Instantly
enhancing the power of Paradox.) .
Compatible with Paradox 2.0 and 386.
“PlayRight is great—I can hardly imagine anyone
who writes scripts being without this program.”
—Doug Cobb
Paradox Users Journal The Paradox™ Script Editor
October 1987

$129.95 30-day money back guarantee
To place your credit card order:
800-262-8069

For a free brochure, call

704-552-9875

The Burgiss Group 3332 Eastburn Road Charlotte North Carolina 28210

Paradox is a registered trademark of Ansa Software; Ansa is a Borland International Company.

LISTING 1: €SZ.SC

; SCRIPT: (CS2.SC
; AUTHOR: Bill Cusano (516) 293-6846
; FUNCTION: Demonstrate using MATCH to parse a string

PROC CSZSplit(CSZ)
PRIVATE x4,x5

The IF statement below tests whether the string in CSZ
matches a given pattern. The MATCH function performs
this test, and if the test passes, variables City and
State are assigned the values of their corresponding
patterns within the string. The double dot (..) pattern
used here accepts any number of characters or numbers in
the position.

B N

IF MATCH(CSZ,".., ..",City,State) THEN

The WHILE command below tests, in each pass through
the loop, that the string value of the variable State
matches the quoted pattern. Here, if the string
contains a leading space, the loop continues. The
MATCH function performs a logical test for a match
and, upon a match, it fills the variable x4 with all
characters to the right of the leading space.

~s me we S we e we

WHILE MATCH(State,™ ..", x4)

Each pass through the loop causes the variable
3 State to be reassigned to the value of x4. Thus
the string loses its leading blank space.

State = x4
ENDWHILE
The WHILE loop above would only be run if there
are leading spaces in the string. If it does

not run, we need to assign the value of State to
the variable x4, which is tested below.

.o s wo e

x4 = State

Here, we're using MATCH again to separate out the
State and ZIP data from the remains of the string
once City has been removed.

IF MATCH(x4,".. ..", State,Zip) THEN

2 ;l_n's WHILE statement removes leading spaces from
: ip:

WHILE MATCH(Zip," ..",x5)
Zip = x5

ENDWHILE
ENDIF
ENDIF
ENDPROC

; Below is a test program for procedure CSZSplit:

CitY = un
State = "
Zip = nn

@ 2,4 ? “Enter String: "
ACCEPT "A25" TO CSZ
cszsplit(Csz) ; Split city, state, and ZIP from CSZ

; Enter a string to split

@ 6,4 7?2 City
@ 7,4 77 State
@ 8,4 77 2ip
sleep 3000

; Show the three fields split from string CSZ

PARSING STRINGS
continued from page 126

MATCH
("Scotts Valley, CA 95066","..,", City, State,Zip)
MATCH

("Los Angeles,
MATCH
("Redmond,
MATCH
("East Hartford,

CA 90066",%..,",City,State,Zip)
WA 9B073%,%..,",City,State,Zip)
CT 0610BY Mo s <Y, City;State,Zip)

Figure 1. A first cut at using MATCH to parse city, state,
and zip information from a single string. This won't work
correctly because there may be multiple spaces between the
components, and there’s no way to match on multiple
spaces.

be the state information. The Zip variable then con-
tains all of the remaining information in the string,
which includes both the state and zip code.

To allow for extra spaces, the string must be split
into two stages. In the first stage, the string is split
into two pieces, rather than three. As a result of the
following MATCH statement, the variable City con-
tains the city information, and the variable State con-
tains both the state and the zip code:

MATCH("Redmond, WA 98073",".. ..", City,State)

Any leading spaces in the string in State can be
trimmed by using another MATCH statement within
a simple loop test, as shown in Listing 1.

Once the city data has been parsed out, the same
process is repeated in order to split the State string
that now contains the state and zip code information.
After copying State into a temporary variable named
x4, the following invocation of MATCH performs the
second split:

MATCH(x4,".. ..",State,Zip)

Again, a WHILE loop should be used after the split
to remove any leading space characters from the Zip
string.

LET’S SPLIT

The CSZSplit procedure in Listing 1 demonstrates the
versatility of the MATCH function in parsing the ad-
dress string to produce separate city, state, and zip
code strings. Once you add three new fields to the
original table to house these values, you can loop
through the expanded table record by record and
store the values of the variables City, State, and Zip
into the new fields. PAL can do it—problem

solved! ®

Bill Cusano is the owner of Cusano Marketing, a consult-
ing group that offers training and developer support mar-
keted under the name “Sable Solutions.”

Listings may be downloaded from Library 1 of CompuServe
forum BORAPP, as PMATCH.ARC.

128 TURBO TECHNIX September/October 1988

CAPTURING DIRECTORIES

WITH SPRINT

Sprint’s gateway to DOS—the call command —
lets you consider much of DOS’s power

as an extension of Sprint.

Bruce F. Webster

Quite apart from the expected text-pro-
cessing features, Sprint’s macro language
offers considerable low-level access to
DOS and to the computer itself. This is
exemplified by Sprint’s call command,
which lets you execute DOS commands or
external programs through DOS’s Exec function. In
this article, I'll present GetDirectory, a Sprint macro
that illustrates how a technical documentation spe-
cialist might take advantage of these features to cus-
tomize Sprint for special needs—in this case, to eas-
ily input a file directory summary without leaving
Sprint. GetDirectory uses call to execute a DOS DIR
<filespec> command, redirect DOS’s output to a
disk file, and then read the disk file into a document
at the cursor position.

PROGRAMMER

DISSECTING A MACRO

The Sprint source code for GetDirectory is given in
Listing 1. Because of the terseness of the Sprint
macro language—which resembles a cross between
Forth and C—GetDirectory isn't very big. Let’s dis-
sect it, line by line, to see just how it works.

The first line of code establishes the macro’s name
(GetDirectory). Macro names are not case-sensi-
tive—GetDirectory and getdirectory are seen as the
same by the macro compiler. When beginning a new
macro, you must specify the macro name, followed
by a colon. This signals the end of the previous
macro (if any) and the start of the new macro.

The command set QF “DIR.LST” on the next line
copies the string “DIR.LST” into the variable QF.
QF is one of Sprint’s 26 predefined string variables,
which are named Q0..Q9 and QA..QP. DIR.LST is
the name of the temporary disk file that will hold the
directory listing.

A file specification for the directory listing is en-
tered via the following line:

message "Enter filespec: " set Q0

This is a standard method for printing a prompting
message on the status line and then reading in a re-
sponse from the keyboard. In this case, the response

continued on page 130

LISTING 1: DIR.SPM

; GetDirectory:
asks for file specification, gets directory listing (redirected
into temp file), reads listing into file being edited, deletes
3 temp file
GetDirectory: ; name of macro
set QF "DIR.LST" ; set name of temp file
message "Enter filespec: " set Q0 ; get file specification
mark { to Q0 delete past iswhite) ; delete leading balnks
if (0 subchar Q0) (; if filespec entered
message "\nLooking for " message Q0 ; print message
32 call "command /cDIR "™ Q0 " >" QF ; do DIR command
read QF ; start reading file
status "\nReading in results..." ; print message
32 call “command /cERASE " QF ; ERASE temp file
P ¢ ; else do nothing

September/October 1988 TURBO TECHNIX 129

PROFESSIONAL TOOLS

DIRECTORY CAPTURE

continued from page 129

is copied into variable Q0. In general terms, the
command message <string> prints <string> on
the status line. The command set Q<n> may take
an optional string value (as shown earlier). When
the string value is present in a set command, the
value is copied into the named variable. Since no
string value is contained in the set command in Get-
Directory, set waits for string input from the key-
board. The string data read from the keyboard is
then assigned to Q<n>.

The mark command in the next line is somewhat
tricky. The syntax mark {. ..} saves your place in the
edit buffer, executes the commands within the curly
braces, and then returns you to your position in the
edit buffer. The command to QO states that you are
now editing the contents of Q0. The command
string delete past iswhite deletes any leading white-
space (blanks, tabs, and so forth) in Q0. The aim is
to remove any leading blanks that you might have
entered in the file specification.

The rest of GetDirectory is contained in a single
if statement. Sprint’s if statement general format is:

if <expression> <command>

Since each separate Sprint macro command can be
considered an expression, combinations of com-
mands that act as one expression must be enclosed
in parentheses. Likewise, in order for the if state-
ment to execute more than one command, the com-
mands to be executed must be within curly braces.

The expression (0 subchar Q0) tests to see
whether or not Q0 contains a file specification. The
literal effect of (0 subchar QO0) is to return the char-
acter stored in QO0[0]. If Q0 is nonempty, then the re-
turned character is nonzero, which is equivalent to
TRUE. If the expression resolves to TRUE, then the
rest of the if statement is executed. If Q0 is empty,
then the returned character is NULL (ASCII 0, the
standard C end-of-string character), which is equiva-
lent to FALSE—this means that the rest of the if
statement is then skipped.

The first line of the if statement’s block calls mes-
sage twice. The first invocation of message clears the
message bar (by virtue of the leading \n, which
prints a new line) and displays the string “Looking
for.” The second invocation of message prints the
file specification contained in Q0. The two displays
comprise a status message that’s shown to the user
while the directory is being read.

The next line contains the DOS Exec command
call. The number (32) that precedes call is a com-
mand code that tells call not to switch to the DOS
screen; as a result, the DOS operation happens invis-
ibly. All of the strings that follow the call keyword are
concatenated together and then passed to DOS
through the Exec function. In this case, COM-
MAND.COM is executed by using the /c directive to
pass a command line to COMMAND.COM that con-
sists of three items: “DIR,” the file spec in Q0, and
the redirection command “>DIR.LST.” In effect, the
following DOS command is being executed from
within Sprint:

DIR <filespec> > DIR.LST

The output from the DIR listing is redirected to the
file DIR.LST.

Once created, DIR.LST must be read into the file
that you're editing, by the read QF command. QF, if
you remember, contains the string “DIR.LST,”
which is the name of the file that contains the direc-
tory data. The read QF command automatically dis-
plays the message “Reading in DIR.LST...” and starts
the reading process.

The status command on the next line is very
much like the message command, except that status’s
message is automatically erased as soon as another
status or message command is executed. The status
command is actually executed before Sprint finishes
reading DIR.LST, so that status’s message replaces
the message displayed by the read command.

The macro’s last line uses the call command to
execute COMMAND.COM again. This time, COM-
MAND.COM is passed the command string “ERASE
DIR.LST,” which deletes the temporary file DIR.LST
once DIR.LST is no longer needed.

FETCHING A