Writing
Device Drivers
with GPIO
Calls

000959-A00

apollo

Writing Device Drivers with GPIO Calls

Order No. 000959-A00

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Confidential and Proprietary.
Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Apollo Computer, Inc., Chelmsford,
Massachusetts.

Unpublished —- rights reserved under the Copyright Laws of the United States. All Rights Reserved.

First Printing: November 1981
Latest Printing: July 1988

This document was produced using the Interleaf Technical Publishing Software (TPS) and the InterCAP Illustrator I
Technical Illustrating System, a product of InterCAP Graphics Systems Corporation. Interleaf and TPS are trademarks of
Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

3Com is a registered trademark of 3Com Corporation.

ETHERNET is a registered trademark of Xerox Corporation.

IMAGEN is a registered trademark of IMAGEN Corporation.

MULTIBUS is a trademark of Intel Corporation.

PC AT and PC XT are registered trademarks of International Business Machines Corporation.
UNIX is a registered trademark of AT&T in the USA and other countries.

VERSATEC is registered trademark of VERSATEC, Inc.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C, Domain/ComController,
Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL, Domain/Dialogue, Domain/DQC, Domain/IX,
Domain/Laser-26, Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain X.25, DPSS,
DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel, Network Computing System, Network
License Server, Open Dialogue, Open Network Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super
Workstation, Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this publication
without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Writing Device Drivers with GPIO Calls describes how to write device drivers for Domain®
nodes, using the General Purpose Input/Output (GPIO) software package.

Audience

This manual is intended for programmers who must write drivers for devices that Apollo®
does not support. Readers of this manual should be familiar with the hardware of the I/O
device and with its software requirements, and should have a working knowledge of Pascal
or C.

Organization

We’ve organized this manual as follows:

Part 1 I/0 Hardware and Software

Chapter 1 Describes the MULTIBUS* interface with Domain nodes, address
translation between MULTIBUS memory and processor memory,
and the rules for configuring MULTIBUS controllers.

Chapter 2 Describes the VMEbus and its interface with our system to help
you to write drivers for VMEbus devices.

* MULTIBUS is a trademark of the Intel Corporation.

Preface iii

Chapter 3

Chapter 4

Part 2

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9
Chapter 10
Chapter 11
Chapter 12
Part 3

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Describes the PC AT* compatible bus and its interface with our
system to help you to write drivers for PC AT devices.

Provides an overview of the major components of I/O software
(that is, the application, GPIO software, and the device driver).

Writing a Driver

Describes the different types of insert files that you can include in
your driver and how to set them up.

Describes the call side of the driver and how to write the routines
that belong there.

Describes how to transfer data using DMA, memory mapped I/0,
and programmed I/O.

Describes the interrupt side of the driver and different approaches
to processing interrupts.

Describes how to construct a global driver.
Describes how to bind and debug the driver.
Describes how to build the device descriptor file.
Describes how to acquire and release the device.
Reference Information

Describes the GPIO commands that the user invokes to run the
driver.

Describes the calling format and parameters of the GPIO routines.

Provides some tips on setting up the CSR page and using data
types in C.

Provides performance and timing information that relates to driver
execution on our operating system.

Provides a program listing of a device driver coded in C.

Provides a program listing of a device driver coded in Pascal.

A glossary of terms appears at the back of the manual.

*

iv Preface

PC AT is a registered trademark of International Business Machines Corporation.

Summary of Technical Changes

This manual has been revised for Software Release 10.

Related Manuals

The file /install/doc/apollo/os.v.latest software release number__manuals lists current ti-
tles and revisions for all available manuals.

For example, at SR10.0 refer to /install/doc/apollo/os.v.10.0__manuals to check that
you are using the correct version of manuals. You may also want to use this file to check
that you have ordered all of the manuals that you need.

(If you are using the Aegis environment, you can access the same information through the
Help system by typing help manuals.)

Refer to the Domain Documentation Quick Reference (002685) and the Domain Documen-
tation Master Index (011242) for a complete list of related documents. For more informa-
tion on GPIO, refer to the following documents:

The Aegis Command Reference (002547) manual describes the command environment as
well as the function and format of the commands that users can invoke.

The DN5xx-T Workstations and DSP500-T Server Technical Reference (009491) manual
and the DN5xx-T Workstations and DSP500-T Server Hardware Architecture Handbook
(009490) describe our implementation of the VMEbus.

The Domain Binder and Librarian Reference (004977) manual describes how to use the
Domain binder to combine several object modules (for example, a call library and an in-
terrupt library) into one executable object module.

The Domain C Language Reference (002093) and Domain C Library (CLIB) Reference
(005805) manuals describe our implementation of the C language.

The Domain Distributed Debugging Environment (Domain/DDE) Reference (011024)
manual describes how to use DDE.

The Domain/OS Calls Reference manuals, Volume 1 (007196) and Volume 2 (012886)
describe the calling syntax for the system services that your driver can call.

The Domain Pascal Language Reference (000792) manual describes our implementation of
the Pascal language. Appendix C lists our extensions to Standard Pascal.

Preface v

The Domain Personal Workstations and Servers Technical Reference (008778) and the Do-
main Personal Workstations and Servers Hardware Architecture Handbook (007861) de-
scribe our implementation of the PC AT compatible bus.

The IEEE Standard Microcomputer System Bus (IEEE-796 specification) provides detailed
information about the MULTIBUS.

The Installing Input/Output (I/0) Devices for Domain Nodes (008268) manual describes
the hardware requirements for attaching peripheral devices to the Domain system bus.

The Managing SysV System Software (010851) manual describes how to create the SysV
network environment, protect network software, and maintain and troubleshoot the net-
work.

The Microsystem Components Handbook (230843) is published by Intel.

The Programming with Domain/OS Calls (005506) manual describes the general purpose -
Domain/OS system calls that you can use to perform system services for your driver.

The Using the OPEN System Toolkit to Extend Your Domain Streams (008863) manual
describes how to extend the Streams facility so that it performs input and output for new
types of files and devices.

Problems, Questions, and Suggestions

vi

- We appreciate comments from the people who use our system. To make it easy for you to

communicate with us, we provide the Apollo Problem Reporting (APR) system for com-
ments related to hardware, software, and documentation. By using this formal channel,
you make it easy for us to respond to your comments.

You can get more information about how to submit an APR by consulting the appropriate
Command Reference manual for your environment (Aegis™, BSD, or SysV). Refer to the
mkapr (make apollo problem report) shell command description. You can view the same
description online by typing:

$ man mkapr (in the SysV environment)
% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader’s Response Form at the back of this manual to sub-
mit comments about the manual.

Preface

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions:

literal values

user-supplied values

example user input

output

[]

oo
oo

Bold words or characters in formats and command descriptions
represent commands or keywords that you must use literally.
Pathnames are also in bold. Bold words in text indicate the first
use of a new term.

Italic words or characters in formats and command descriptions
represent values that you must supply.

In examples, information that the user enters appears in bold.
Information that the system displays appears in this typeface.

Square brackets enclose optional items in formats and command
descriptions. In sample Pascal statements, square brackets assume
their Pascal meanings.

Braces enclose a list from which you must choose an item in for-
mats and command descriptions. In sample Pascal statements,
braces assume their Pascal meanings.

A vertical bar separates items in a list of choices.
Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a
control character sequence. Hold down <CTRL> while you press
the key.

Horizontal ellipsis points indicate that you can repeat the preced-
ing item one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure
or example have been omitted.

This symbol indicates the end of a chapter.

Preface vii

Contents

Chapter 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.4

I/0 Bus Structures: the MULTIBUS

MULTIBUS Compliance Levelsoi i, 1-2
Bus CONtrol .. .v vttt ittt ettt et 1-3
Data Patho e e 1-3
Memory Address Patho it 1-3
I/O Address Path it it it e e 1-4
Interrupt Request Lineso, 1-4
Bus Request Arbitration Resolution covvitn 1-4

MULTIBUS Address Translationoevueerunneennnnnnn 1-4
Address Translation from Processor to MULTIBUS 1-4

Programmed I/O ... oottt i i 1-5
Memory-Mapped I/Oo i it 1-6
Address Translation from MULTIBUS to Processor: DMA 1-6

Configuring MULTIBUS Controllerso, 1-7

Nodes With a 16-Bit MULTIBUScciiiiiinnnnn.. ... 1-8
Assigning CSR Addressesooovviiiiiininninnennnes 1-8
Configuring Controller Memorycovvvitininnnnenn 1-10
Configuring Controller Address Lines 1-10
Using Interrupt Request Lines v, 1-10

Nodes With a 20-Bit MULTIBUSo, 1-11
Assigning CSR Addressescooviiiiiiiiiiiiinnnn 1-11
Configuring Controller Memorycoovvvi i, 1-11
Configuring Controller Address Lines 1-12
Using Interrupt Request Lines, 1-12

Byte SWappDIng . . oo v i ittt i i e e i e e s 1-12

Contents

ix

Chapter 2 I/O Bus Structures: the VMEbus

2.1 Address Space Allocationcotiiiiiiiiiiiiii i 2-2
2.2 Bus Grant Levelottt it ittt 2-2
2.3 Address Modifiersottt i i e e i 2-2
2.4 Interrupt Level cvt ittt ittt ittt 2-3
2.5 Status/ID Byte . o vttt it e i i e e 2-3
2.6 Software Considerationsot iiiii i, 2-3
2.6.1 Wiring for DMA: pbu_S$wire_specialccovvn.n.. 2-4
2.6.2 Creating a DDF for a VMEbus Devicecovivvueinionn, 2-4
Chapter 3 I/O Bus Structures: the IBM PC AT Compatible Bus
3.1 PC AT Compatible Address Spacecc.ovoviviiiiinneinneienns 3-2
3.1.1 I/0 Address Spaceco.iriiiiiiiiiiiiii i 3-2
3.1.2 Memory Space i e i e 3-5
3.2 Unit NUMbering .. .vvvvi ittt ittt ennoeeenoanenens 3-6
3.3 Testing for Controller Presenceouiiieettiennrenennneens 3-8
3.4 DMA and IRQ LiNes ..t i ittt it ittt e ettt eeiniieeaneannnes 3-8
3.5 Byte SWappIng . .o vvi it i e i e 3-9
3.6 Software Considerationsc vt iii ittt e 3-10
3.7 Creating a DDF for a PC AT Compatible Device 3-11
Chapter 4 Overview of I/0 Software
4.1 Application Programo ittt i i i e 4-2
4.2 Streams Managerot init ittt i i e e 4-2
4.3 GPIO Commands and Routinescovvviiiinniiiiinneeineonss 4-3
4.4 Device DIiVerv ittt it i it ittt i 4-4
4.4.1 Driver FUNCHiONS iiiii it it 4-4
4.4.2 Major Components of a Driver oo iviiiiii i, 4-4
4.4.3 Operation of a Driver: A Dry Run of bm_example 4-6
4.4.3.1 INItAliZAtion . « . . vt v et 4-7
4.4.3.2 Command Processingo.oovtiiiiiniieinennnennes 4-7
4.4.3.3 Interrupt Handlingoiiiiiiiiiiiiiinenninne, 4-8
4.43.4 Cleanupcoiiiii i i e e e e 4-8
4.4.4 Driver Checklisti i et it e i 4-9

X Contents

Chapter 5 Insert Files

5.1 System Insert Filescointiiiiiniiiiiiiiiniiieennneeennn 5-2
52 Driver-Specific Insert Filesot 5-2
5.2.1 Private Insert Filecoiiuiiiiiii it 5-3
5.2.1.1 CSR Page . iiiiii ittt ittt ittt 5-3
5.2.1.2 Driver Control Blockciiiiuiiiiiiii i, 5-5
5.2.1.3 Internal Driver Routinescviiiiiiitiininnneenn. 5-6
5.2.2 Public Insert File oottt ittt 5-6
Chapter 6 Call-Side Routines
6.1 Initializationo iiiii i e 6-2
6.1.1 Initialization Routine Formato, 6-3
6.1.2 Initializing Driver Internal Storageccovuvviiinivnn e 6-4
6.1.3 Testing for Device Presencecoueeiieeieeeireneeeeeens 6-4
6.1.4 Initializing Controller Data Structuresccvvvuueenn. 6-6
6.1.4.1 Allocating Hard-Wired Control Blocks on the MULTIBUS 6-7
6.1.4.2 Defining Page-Aligned Control Blocks, 6-7
6.2 Command Processingovviiiiiinntiieniiennienrnnsns 6-8
6.3 Waiting for Device Interruptscoviiiiiiiiii i, 6-10
6.3.1 Using pbu_S$waitoovtinitiiiii ittt 6-10
6.3.2 Using pbu_$get_ ec and ec2_S$waitccoviiiiii i, 6-12
6.4 Performing Cleanup Functionsccoiviiiiiiiiinnennn., 6-14
Chapter 7 Transferring Data

7.1 DMA Transfers . ..o vvit ittt it ettt et innennnss 7-2
7.1.1 Using the I/0 Map to Perform DMA Transfers 7-2
7.1.1.1 Allocating Bus Address Spacecciiiiiiiiiiiie., 7-2
7.1.1.2 Wiring I/O Buffersccouiiiiiiiiiiiiiii i 7-3
7.1.1.3 Setting Upthe /O Mapo oo v it iii it i i e i e i 7-4
7.1.1.4 Preallocating I/O ResoUICescovviiiininnnnniennnnnn 7-5
7.1.1.5 Dynamic Resource Allocationccoiiiiivnn, 7-6
7.1.1.6 Scatter—Gather Operationscovtiiireiininenan, 7-6
7.1.2 Starting and Stopping a DMA Operation on the

PC AT Compatible BUSo ovvii ittt iiie e 7-8
7.1.2.1 DMA Transfers Without the /O Mapt 7-9
7.1.2.2 DMA Transfers Withthe /OMapcovvviiiinnn. 7-14
7.1.3 Releasing I/O Resources After a DMA Transfer 7-15
7.1.3.1 Deallocating the /O Mapcvviiiiiiiiniiinnnnennn 7-15
7.1.3.2 Unwiring the /O Buffer o i, 7-16
7.1.4 Releasing I/O Resources During Faults 7-16

Contents xi

7.2 Memory-Mapped Transferscciviiiiiiiiiiiiiiieeennn 7-17

7.2.1 Referencing Controller Memorycoviiinenvnennenenn. 7-18
7.2.2 Mapping Controller MemoOIycoviiiiiiiiiinnennenenns 7-19
7.2.3 Unmapping Controller Memory e 7-20
7.3 Programmed I/Oot i it i i e e 7-21
Chapter 8 Interrupt-Side Routines
8.1 Interrupt Side Restrictionscoviiii it nnenens 8-1
8.2 Interrupt Routinecoviiiiiiiiit i iniiniennennenns 8-2
8.2.1 Interrupt Routine Formatcciiiiii i, 8-3
8.2.2 Enabling and Disabling Device Interruptscovvvenn. 8-3
8.2.3 Processing Device Interruptscvv it ini i, 8-4
8.2.3.1 Processing by the System Interrupt Handler 8-5
8.2.3.2 Processing by the User—Written Interrupt Routine 8-5
8.2.4 Faults in User-Written Interrupt Routinesooovuen. 8-6
8.2.5 Mapping Buffers from the Interrupt Routine 8-7
8.3 Starting an I/O Operationcccitiit i nnenn. 8-7
Chapter 9 Global Drivers
9.1 Controlling Multiple Processescoviiiiiiiiiiiiiiineenns 9-2
9.1.1 Mutual EXCIUSION . . . oo v it i i i it et 9-2
9.1.2 Synchronizationiiit ittt i 9-3
9.2 Global MemMOTY « oot v ittt ittt ettt i i 9-4
9.3 Initialization and Cleanupcovtiiit i inann 9-4
9.4 Fault Handlingoitiiniiiiiiiiiiii it it ninnnnn 9-4
9.5 Loading and Unloadingoovuueeninrreennreennnnennneenns 9-5
9.6 Multiple—Device DIIVEIS . ..ot vt vttt it e iii et enaenas 9-5

Chapter 10 Building and Debugging

xii

10.1 Building the Device Driver . ..ottt iiean., 10-1
10.1.1 Compiling the Device Driverc.oviiiiiiiiiiniiinninnen. 10-1
10.1.2 Binding the Device Drivercoiiiiiiiiiiiiiiiienn., 10-2
10.1.2.1 Using Bind to Page Align Buffers 10-3
10.1.2.2 System Globalsoviiiii ittt i 10-4
10.2 Debugging the Device Drivercoiiiiiiiiiiiiinieenne.. 10-4
10.3 Debugging the Global Driverccovitiiiiiiiiniiineiean., 10-6

Contents

Chapter 11

Device Descriptor File

11.1 Building a DDF in a Shell Scripto i, 11-3
11,2 Version 2 DDF & o ii it ittt ittt it c i e 11-4
11,3 Version 3 DDF ...ttt ittt et 11-5
11.3.1 DDF for a PC AT Compatible Deviceo, 11-6
11.3.2 DDF for a VMEDUS DeviCevvvinininininiiiienennennenens 11-7
11.3.3 DDF for a Device Accessed Through a Streams Manager 11-8
Chapter 12 Acquiring and Releasing the Device
12.1 Acquiringthe Devicettt 12-1
12.1.1 USiNg aQdeV & v oo vt i e e e e 12-2
12.1.2 Acquiring a Device in Your Applicationc.cvuiu.. 12-2
12.1.3 Acquiring a Device with pbu_S$acquire_stream 12-3
12.2 Releasing the DeviCeiiuiiiniiiiiinitrernneenniiennnennnss 12-5

Appendix A

GPIO Commands

Appendix B

B.1
B.2
B.3

GPIO Routines

Data Typesot e B-1
GPIO Procedures and Functionscoviiiiiiin., B-11
EITOr MeSSagES v v tv e it iit ittt ia et e B-78

Appendix C

C.1
C.2
C.2.1
C.2.2
C.23
C2.4
C.2.5
C3

Programming Information

LG 2 V(PN C-1
Programming in C i e e C-3
Insert Fileso ittt C-3
Typeint ..o i it i e e C-3
Boolean Valuesciviiiiii i C-3
Universal Pointer Type ittt C-4
Defining Globalsottt C-4
Considerations for Compiler Optimization C-5

Contents

xiii

Appendix D

D.1
D.2
D.3
D.4

Performance Information

DMA Bandwidthottt D-1
Interrupt Processing Overheadcoviviiiiiiieniinenns D-2
Setting Up DMA Bufferscoittiiiiiiiiiiiniiiinnns D-3
Timing Informationcc ittt ittt D-4

Appendix E

E.1
E.2
E.3
E.4

Sample Driver in C

o) 4 8 o e E-2
bm Hb.C oo e e e E-7
bm_int lib.c.......... .. oiuy e e e E-17
makefile ... v e e e e E-21

Appendix F

Sample Driver in Pascal

F.1 o3 ¢ 05 o1 A0 - T F-2
F.2 DIMNS.PAS + v i e e e e F-4
F.3 bm_lib.pas ... e e F-6
F.4 bm_int_lib.pas ... vi i e e F-15

Glossary

Index

xiv Contents

Figures

1-1 Relationship Between a Domain Node and Peripheral Controllers 1-1
1-2 Mapping ‘CSR Pages to MULTIBUS I/O Spaceovvvvevnnnnn 1-5
1-3 Mapping Processor Address Space to MULTIBUS Memory Space 1-6
1-4 Mapping MULTIBUS Address Space to Processor Address Space . 1-7
1-5 8-Bit Controller CSR Assignmentcoviiniiitinnneenns 1-9
2-1 Relationship Between a Domain Node and Peripheral Controllers 2-1
3-1 Relationship Between a Domain Node and Peripheral Controllers 3-2
3-2 CSR Mapping Scheme for PC AT Compatible Devices 3-4
3-3 Mapping a 16-Bit PC AT Address to Processor Address Space 3-5
4-1 Interaction of I/O Softwarec.covuiiiiiinnenenennenannn 4-2
4-2 Driver Routines in bm_exampleo, 4-6
7-1 Mapping Discontiguous Bufferso i it 7-7
Tables

1-1 MULTIBUS Implementations on Node Models 1-2
1-2 MULTIBUS Address Space Used by Domain System-Supplied Devices 1-8
1-3 Allocation of Interrupt Request Linesc.ovviuiiinnenn.. 1-10
2-1 Address Space Allocated for DN5xx-T VMEbus Devices 2-2
3-1 I/0 Address Space Allocated for Domain System-Supplied Devices ... 3-3
3-2 DN3000/DN4000 Physical Memory Allocated for Domain

System—Supplied DeviCes v oo vt ittt et i e 3-6
3-3 Allocation of Unit Numbers on the DN3000 3-7
3-4 Allocation of Unit Numbers on the DN4000 3-7
4-1 GPIO Softwarecoviiiii ittt i e 4-3
5-1 System Insert Filesot it 5-2
6-1 pbu_$wait Actions When Asynchronous Faults Are Inhibited/Enabled . 6-12
11-1 Required Options for Different DDF Versionsocvun.. 11-2
B-1 GPIO Procedures and Functionscoiiiiiiiiininn.. B-11
D-1 CPU Times During Interrupt Processing, D-2
D-2 Timing for DN560, DSP80, DSP160, DN660, DN5xx-T,

DN3000, and DN4000 Workstationscoviuevnineennnn. D-5

Contents

XV

Chapter 1
I/O Bus Structures: the MULTIBUS

This chapter describes MULTIBUS implementations currently available for Domain nodes,
the theory of MULTIBUS address translation, how to configure a MULTIBUS controller,
and byte swapping. For detailed information about the MULTIBUS, refer to the JEEE
Standard Microcomputer System Bus (IEEE-796 specification). See the Preface for a
complete list of related manuals and their order numbers.

The I/O bus is the network of signal routes through which device controllers and the proc-
essor address one another and transfer data. The bus is, therefore, the key hardware
component of a computer system’s I/O structure. Figure 1-1 shows the relationship of the
I/0 bus to a Domain node and a set of controllers. The processor, memory, and memory
management (address translation) subsystems are linked by an internal bus. Interface
hardware connects this internal bus to the I/O bus. User-supplied and Domain system-
supplied device controllers attach to the I/0 bus and, through the bus, link to the node.

Domain
Processor and Memory

[
< Internal Bus >
| I | I

Ring In“'slearsnsal
Display Adapter Storage
< 1/0 Bus >
Device Device Device Device

Controller Controller | | Controller | | Controller

Figure 1-1. Relationship Between a Domain Node and Peripheral Controllers

The MULTIBUS 1-1

1.1 MULTIBUS Compliance Levels

The MULTIBUS supports compliance levels that allow for the varying capabilities of differ-
ent computer systems. The levels are described in the IEEE Standard Microcomputer Sys-
tem Bus (IEEE-796 specification). To know the implementation available for a particular
node model, refer to the section on MULTIBUS interfaces in the peripheral installation
instructions or refer to the operating guide for the node model, if one is shipped with the
node. If the peripheral installation instructions provide interface information for your node
model, you will find the MULTIBUS implementation level available and specific hardware
information for that node type. For node models that have an operating guide, you will

find the same information in the guide. Table 1-1 lists the MULTIBUS implementation

levels that we currently support for various node models.

Table 1-1. MULTIBUS Implementations on Node Models

Node Type

MULTIBUS Implementation

Compliance Level

DN660,
DSP160

DSP80
DSP90

DNS5xx, DN5xx~-T

16-bit MULTIBUS, serial
arbitration priority -

20-bit MULTIBUS, parallel
arbitration priority

20-bit MULTIBUS, serial
arbitration priority

MASTER D16 M16 116 VO L

MASTER D16 M20 I16 VO L

MASTER D16 M20 I16 VO L

The notation used to specify the compliance level is interpreted as follows:

MASTER D16 Mxx

L

I16 VO L

8- and 16-Bit Data Path

Can Be Bus Master or Bus Slave

Level-Triggered Interrupt Sensing
Non-Bus-Vectored Interrupts

8- or 16-Bit I/O Address Path
16— or 20-Bit Memory Address Path
L (depending on which is specified)

The following sections explain the compliance levels more fully, particularly the two levels
that we currently support:

e MASTER D16 M16 I16 VO L
e MASTER D16 M20 I16 VO L

1-2 The MULTIBUS

1.1.1 Bus Control

A device controller is bus master when it acquires control of the bus, and bus slave when
it carries out commands or decodes addresses presented by another device acting as bus
master. Domain nodes with 16-bit MULTIBUS implementation allow both the central
processor and any attached controller to act as bus masters:

® When the processor is bus master, it can address 32 KB of MULTIBUS I/O space
and 32 KB of MULTIBUS memory space (0-7FFF). '

® When a controller is bus master, the processor must be the only slave; it responds
to addresses in the range 0-FFFF (64K).

Domain nodes with 20-bit MULTIBUS implementations also allow either the processor or
the controllers to act as bus masters:

® When the processor is bus master, it can address 64 KB of MULTIBUS 1/0 space
and 1 MB of MULTIBUS memory space.

® When a controller is bus master, either the processor or another controller on the
MULTIBUS may be the slave; up to 1 MB of address space is available.

NOTE: Although the full 64 KB of I/O address space is implemented on
nodes with a 20-bit MULTIBUS, user Control and Status Regis-
ter (CSR) page addresses are restricted to the first 16 KB of
MULTIBUS I/O space (see Subsection 1.3.2).

1.1.2 Data Path

For all Domain nodes, the MULTIBUS supports either an 8- or a 16-bit bidirectional
data path (D16) for the transfer of data from MULTIBUS memory or I/O addresses. The
bus master drives the data lines on a write operation, and the slave drives them on a read
operation (memory or I/0).

1.1.3 Memory Address Path

Under compliance level MASTER D16 M16 116 VO L, the MULTIBUS supports 16-bit
memory addresses on the memory address path; whereas under compliance level MASTER
D16 M20 116 VO L, the MULTIBUS supports 20-bit memory addresses. We use the terms
16-bit MULTIBUS or 20-bit MULTIBUS to describe nodes whose I/O hardware supports
16— or 20-bit memory addresses.

NOTE: If a node with a 20-bit MULTIBUS is fully configured with 3
MB of memory, the upper half (512 KB) of the address space is
unavailable for memory-mapped operations.

The MULTIBUS 1-3

1.1.4 I/0 Address Path B

For all Domain nodes, the MULTIBUS 1/O address path supports 8-bit or 16-bit I/O ad-
dresses (116).

1.1.5 Interrupt ReQuest Lines

The MULTIBUS provides eight interrupt request lines: line 0 is the highest priority line
and line 7 the lowest. A device generates an interrupt by activating its assigned interrupt
request line. The MULTIBUS on all Domain nodes uses nonbus-vectored interrupts (VO0).
With this type of interrupt, the device raises its interrupt line without sending its interrupt
vector address over the bus; the I/O hardware generates the interrupt vector address to
identify the interrupting device to the processor.

1.1.6 Bus Request Arbitration Resolution

MULTIBUS devices can arbitrate for bus control by using serial or parallel priority resolu-
tion. All Domain 16-bit MULTIBUS implementations use a serial scheme. Some 20-bit
implementations use a parallel scheme and others use a serial scheme. See the peripheral
installation instructions for the priority resolution scheme used by each node type.

With serial resolution, device controllers are daisy—chained together. The first device in
the daisy-chain has highest priority. With parallel resolution, arbitration logic in the I/O
hardware determines the device that gets highest priority, instead of the device’s position
relative to other controllers. See the node’s operating guide or peripheral installation in-
structions for the priority assignments supplied by our I/O hardware for nodes that use par-
allel arbitration resolution.

1.2 MULTIBUS Address Translation

Device drivers on nodes with a 16-bit MULTIBUS can allocate up to 32 pages of proces-
sor address space to reference MULTIBUS address space; drivers on nodes with a 20-bit
MULTIBUS can allocate up to 1024 pages of processor address space. On any node, the
I/0 hardware translates addresses between MULTIBUS and processor memory in units of
1024-byte pages. The method of translation depends upon whether processor addresses are
to be translated into MULTIBUS addresses (initiated by the processor) or MULTIBUS
addresses into processor addresses (initiated by the controller).

1.2.1 Address Translation from Processor to MULTIBUS
When the processor acts as bus master, it initiates a read or write to MULTIBUS address

space, and the I/O hardware automatically translates the virtual address that refers to proc-
essor address space into a physical address.

1-4 The MULTIBUS

This physical address refers to either one of two separate address spaces supported by the
MULTIBUS, depending on the kind of I/O operation:

® T/O space: Used for programmed I/O data transfers
® Memory space: Used for memory-mapped data transfers

Much of what follows concerning processor-to-MULTIBUS address translation depends on
this concept of two separate MULTIBUS address spaces.

1.2.1.1 Programmed I/O

In programmed I/O, data is transferred as single words or bytes by means of Control and
Status Registers (CSRs) on the controller. Device drivers pass or reference data by using
these CSRs.

References to the MULTIBUS I/O space are actually references to a controller’s CSRs. A
page from MULTIBUS 1/O space is allocated to them and becomes the controller’s CSR
page. Section 1.3 describes how to allocate pages of MULTIBUS 1/O space for controller
CSRs.

When the device is acquired, the GPIO device acquisition routine, pbu_S$acquire, auto-
matically maps the CSR page to processor address space (that is, establishes a correspon-
dence between MULTIBUS I/O space and processor address space) and passes a pointer
to the driver initialization routine. The device driver can then obtain controller status and
activate the controller by using the pointer to read and write to the mapped CSRs.

Figure 1-2 shows how CSR pages mapped to processor address space correspond to MUL-
TIBUS I/O locations.

Processor
AddressSpace CSR Page
Process 1 MULTIBUS
Memory
2D0400 Management /O Space 0
Unit (MMU)

2DO7FF

Process 2
2D0400 Unused
1/0
Locations
2DO7FF
l 16K

Figure 1-2. Mapping CSR Pages to MULTIBUS 1/0 Space

The MULTIBUS 1-5

1.2.1.2 Memory-Mapped I/O

In memory-mapped I/O, the controller appears to the processor as so many memory loca-
tions, and the processor performs I/O operations by storing data to or fetching it from con-
troller memory.

Device drivers gain access to areas of MULTIBUS memory space by calling GPIO routines.
These routines map areas of processor address space and particular sections of MULTI-
BUS memory space. Device drivers next call the GPIO routines that map a controller’s
memory to processor address space. The drivers can then read and write to controller
memory through reads and writes in processor address space. Figure 1-3 illustrates how
controller memory is mapped to processor address space.

Processor Memory MULTIBUS
Address Space Management Memory Space
Unit (MMU) 0
Process 1

2C0000

Memory
Locations

2C3FFF

16K

Process 2
2C4000

2C8000 E:

32K

Figure 1-3. Mapping Processor Address Space to MULTIBUS Memory Space

1.2.2 Address Translation from MULTIBUS to Processor: DMA

1-6

A Direct Memory Access (DMA) operation contrasts with programmed I/O and memory
mapping in the following ways:

® The controller is the bus master.
® Address translation proceeds from the MULTIBUS to the processor.

® A bus address (referred to as an iova) is translated into a physical address in
processor memory.

The MULTIBUS

Once activated by its device driver, a DMA controller can transfer large amounts of data
directly between processor memory and MULTIBUS address space. The job of translating
references to MULTIBUS address space into references to processor address space is per-
formed by a data structure called the I/O map. The I/O map contains entries that each
map one page of processor memory. The device driver calls GPIO routines to allocate 1/0
map entries for the DMA. Chapter 7, Section 7.1 describes these GPIO routines in more
detail.

For nodes with a 16-bit MULTIBUS, controllers can transfer up to 64 pages of data be-
tween the MULTIBUS and the processor at one time. For nodes with a 20-bit MULTI-
BUS, controllers can transfer up to 1024 pages at one time. Figure 1-4 illustrates a DMA
transfer of 64 pages of MULTIBUS address space to two different areas of processor ad-
dress space.

Processor MULTIBUS
Address Space Address Space
I/10 Map

0

200000

207FFF

2C0000

2C7FFF

Figure 1-4. Mapping MULTIBUS Address Space to Processor Address Space

1.3 Configuring MULTIBUS Controllers

When you supply your own MULTIBUS controllers for use with a Domain node, you must
observe basic configuration rules. The following subsections summarize controller configura-
_tion rules for nodes with a 16— or 20-bit MULTIBUS. Table 1-2 lists the address ranges

reserved for Domain system-supplied devices.

The MULTIBUS 1-7

Table 1-2. MULTIBUS Address Space Used by Domain System—Supplied Devices

Devices

Addresses Used

Domain/ComController ™ Memory pages 4000 to 7F00 and I/0 page 0800 are always in

use on a 16-bit MULTIBUS.

ETHERNET"* Interlan Board Uses three dynamically allocated memory pages for DMA I/O

address space 080-08F every 256 bytes (180-18F, 280-28F,
380-38F, etc.).

FSD-500 Memory pages F400 and F800 on a 16-bit MULTIBUS or

memory pages 6F400 and 6F800 on a 20-bit MULTIBUS are
used by the mnemonic debugger, then released during operating
initialization. The operating system uses two dynamically allo-
cated memory pages for DMA.

Magtape Uses 19 dynamically allocated memory pages for DMA, plus

Storage

memory page FC00 (used during initialization, then released).

Module Device (SMD) | Memory pages F400 and F800 on a 16-bit MULTIBUS or
memory pages 6F400 and 6F800 on a 20-bit MULTIBUS are
always reserved, whether or not SMD is in use.

VERSATEC** and IMAGEN™*** | Uses five dynamically allocated memory pages for DMA; 1/O

Printers

X.25

page 400 reserved.
Pages 7000-7C00 are always in use.

* ETHERNET is a registered trademark of the Xerox Corporation.
** VERSATEC is a registered trademark of VERSATEC, Inc.
*** IMAGEN is a registered trademark of the IMAGEN Corporation.

1.3.1 Nodes With a 16-Bit MULTIBUS

1-8

You can connect only one 8-bit controller to a 16-bit MULTIBUS; the others must be
16-bit controllers.

1.3.1.1 Assigning CSR Addresses

Each controller is allocated one page of MULTIBUS 1/O space for its set of CSR ad-
dresses. MULTIBUS I/O space is divided into two 16-page sections. The lower 16-page
section is reserved for the CSR pages of user-supplied controllers; the top 16-page section
is reserved for the CSR pages of controllers that Apollo supplies. You can assign the CSR
addresses of a 16-bit controller to any page within the 16 pages of MULTIBUS I/O space
(0-3FFF hex) allocated to user-supplied controllers. Word (2-byte) and longword
(4-byte) registers must reside on even-byte addresses.

The MULTIBUS

If an 8-bit controller is present on your system, its CSR addresses should fall between 80
and FF (hex) on the first page (page 0) of the allocated I/O address space. Of the remain-
ing pages (1-15), 16-bit controllers must occupy only the first 128 bytes (0-7F) of each
page. This arrangement is necessary because 8-bit controllers respond to any address in
the range 0-FF, modulo 255. For example, an 8-bit controller CSR at address 80 re-
sponds to page 0 addresses of 80, 180, 280, 380; page 1 addresses of 480, 580, 680, 780;
and so on. By restricting 8-bit controller CSRs to the range 80-FF, all addresses in the
range 0-7F become available to 16-bit controllers. Refer to Chapter 11, Section 11.2 for
a description of how to set the address of an 8-bit controller CSR.

If you do not have an 8-bit controller on your system and never plan to add one, you can
configure a 16-bit controller to respond to any addresses (0-3FF) on its CSR page. Again,
word and longword registers must reside on even-byte addresses.

Figure 1-5 illustrates the allocation of CSR addresses when an 8-bit controller is present.

MULTIBUS /O Space

CSR Page 0 0
7F
8-Bit CSRs 80
FF
CSR Page 1 400
16-Bit CSRs
(128 Bytes)
47F
CSR Page 2 800
16-Bit CSRs
(128 Bytes)
87F
// //
e e
CSR Page 15 3C00
16-Bit CSRs
(128 Bytes)
3C7F

Figure 1-5. 8-Bit Controller CSR Assignment

The MULTIBUS 1-9

1-10

1.3.1.2 Configuring Controller Memory

Drivers call GPIO routines to map a controller’s memory to processor address space so that
programs can refer to the controller’s memory directly. When configuring controller mem-
ory on nodes with a 16-bit MULTIBUS, the following rules apply:

® Controller memory must begin on a page boundary and must reside completely in
the first 32 KB (0-7FFF) of MULTIBUS memory space.

® Because of hardware restrictions, the part of the MULTIBUS memory space occu-
pied by controller memory is permanently unavailable for DMA to or from any
controller on the bus.

® Programs can access controller memory through the MULTIBUS, but other con-
trollers on the bus cannot do so (see Chapter 7, Subsection 7.2.1).

1.3.1.3 Configuring Controller Address Lines

On a node with a 16-bit MULTIBUS, up to 64 pages of MULTIBUS address space can
be mapped (through the I/O map) to processor memory. Controller references to
MULTIBUS addresses above 64K are wrapped; the top four bits of addresses on the bus
are driven to 0. For example, a controller reference to 65K appears as a reference to 1K.
Consequently, when you have the choice of configuring a controller to a 16-bit or a 20-bit
address path, configure for a 16-bit address path.

1.3.1.4 Using Interrupt Request Lines

Of the eight interrupt request lines available on the MULTIBUS, the highest priority line
(line 0) is reserved for customer devices. The remaining seven interrupt lines are reserved
for devices that we supply. Table 1-3 lists the allocation of bus interrupt request lines.

Table 1-3. Allocation of Interrupt Request Lines

Line Owner

0 Customer devices ‘
1 COM-ETH product controller

2 COM-X.25 product controller and
Domain/ComController product

3 Magtape controller

4 Storage module or FSD-500 product controller

5 VERSATEC printer/plotter controller and IMAGEN
printer with MULTIBUS option

6 Parallel output/line printer (only on 16-bit MULTIBUS;
unused on 20-bit MULTIBUS)

7 Reserved

The MULTIBUS

Because line 6 is used for parallel I/0, it is unavailable for your use. Lines 1 through 5,
though reserved for our use, are available to user—supplied controllers. However, if you as-
sign your device to one of lines 1 through 5 and later acquire one of our supported devices
assigned to that line, conflicts will result. Line 0 is reserved for customer devices and will
never be used by Domain devices.

A single controller can be configured to request interrupts on more than one request line,
but each line can handle only one controller.

On nodes with a 16-bit MULTIBUS, the processor is solely responsible for acknowledging
peripheral device interrupt requests. Device controllers should never respond to interrupt
requests from other peripheral devices on the bus.

1.3.2 Nodes With a 20-Bit MULTIBUS

Nodes with 20-bit MULTIBUS implementations can also handle 8-bit or 16-bit control-
lers. Of the devices that can be attached to such nodes, only one can be an 8-bit control-
ler; the others must be 16-bit controllers.

1.3.2.1 Assigning CSR Addresses

On nodes with a 20-bit MULTIBUS, 64 pages of MULTIBUS I/O space are available;
however, user devices are restricted to the first 16 pages because Domain system-supplied
devices occupy the second 16 pages and addresses 8000-FFFF are reserved for future use.
Each controller is allocated one page of the first 16 pages of I/O address space for its set
of CSRs (if any). You can assign the addresses of a 16-bit controller to any page within
the first 16 pages (0-3FFF hex). Word (2-byte) and longword (4-byte) registers must re-
side on even-byte addresses. If an 8-bit controller is present in your configuration, assign
its CSRs according to the rules outlined in Subsection 1.3.1.

1.3.2.2 Configuring Controller Memory

If a node with a 20-bit MULTIBUS is fully configured with 3 MB of memory, the upper
half (512 XB) of the address space is available for DMA operations only. Also, if your
configuration includes both 16-bit and 20-bit memory-mapped controllers, you must use
caution when configuring 20-bit controller memory into MULTIBUS memory space to
avoid possible conflicts with 16-bit controller memory. For example, a 16-bit controller
configured to respond to memory address C000 will also respond to addresses 1C000,
2C000, ... FC000. In this case, you must ensure that the MULTIBUS addresses assigned
to the 20-bit controller do not equal C000, modulo 64K.

The MULTIBUS 1-11

1.3.2.3 Configuring Controller Address Lines

Nodes with a 20~bit MULTIBUS implementation can map up to 1024 pages of
MULTIBUS address space through the I/O map to processor memory. As in 16-bit
MULTIBUS systems, controller references to MULTIBUS addresses above 1 MB are
wrapped. Consequently, when you have the choice of configuring a controller to a 24-bit
or a 20-bit address path, configure for a 20-bit address path.

1.3.2.4 Using Interrupt Request Lines

Nodes with a 20-bit MULTIBUS allocate interrupt request lines in the same way as nodes
with a 16-bit MULTIBUS, except that lines 6 and 7 are also available (although they are
reserved for Domain system-supplied devices). Again, the processor is solely responsible
for acknowledging peripheral device interrupt requests; device controllers should never re-
spond to interrupt requests from other peripheral devices on the bus. Table 1-3 lists the
allocation of bus interrupt lines.

1.4 Byte Swapping

1-12

The necessity for byte swapping (exchanging the left and right bytes of a word) arises from
the fact that the Domain processor, which is based on the Motorola 68000 family, orders
bytes within a word the opposite of the way Intel processors order them on MULTIBUS
controllers.

This is how our processor does it: This is how MULTIBUS does it:

15 8 7 0 15 8 7 0
BYTE O BYTE 1 BYTE 1 BYTE O

The MULTIBUS

We deal with this incompatibility by swapping bytes in hardware during byte transfers. Ef-
fectively, character strings copied as bytes and integers copied as words are preserved, but
character strings copied as words (and words copied as bytes) are byte swapped. The fol-
lowing illustrates this strategy:

Word Transfer Byte Transfers
15 0 0 15

Processor:

16

MULTIBUS:

Note that this strategy uses the following byte/word arrangements:

® Pointers to words must be even.
® DPointers to processor left bytes (byte 0) must be even.

® Pointers to processor right bytes (byte 1) must be odd.

The GPIO call pbu_$control is available for 20-bit MULTIBUS implementations (refer to
Appendix B for a description of the call). This call gives you control over the byte-swap-
ping hardware so that you can specify other byte/word arrangements than those just spelled
out (the pbu_swap_off option gives you the arrangement described previously). By speci-
fying the pbu_swap_words option with this call, you ensure that all character strings have
their byte order preserved regardless of whether they are copied as words or bytes and that
integers are always byte swapped. The following illustrates byte swapping when
pbu_swap_words is specified:

Word Transfer Byte Transfers
0 15

Processor:

MULTIBUS:

The MULTIBUS 1-13

By specifying the pbu_swap_bytes option with the pbu_$control call, you ensure that inte-
gers have their byte order preserved regardless of whether they are copied as words or
bytes and that character strings are always byte swapped. The following illustrates byte
swapping when pbu_swap_bytes is specified:

Word Transfer Byte Transfers
0 15
Processor:
0 15
MULTIBUS:

It should be noted that single byte transfers always occur on MULTIBUS data lines 0
through 7 and that word transfers use all 16 data lines.

1-14 The MULTIBUS

Chapter 2
I/0O Bus Structures: the VMEDbus

This chapter presents information you need to know about the VMEDbus in order to use
GPIO software to write device drivers for VMEbus devices, specifically, address space allo-
cation. grant levels, use of address modifiers, interrupt levels, and software considerations.
For additional information about the VMEbus, refer to the DN5xx-T Workstations and
DSP500-T Server Technical Reference manual and the Motorola VMEbus Specification
Manual, Rev. C.1 or IEEE P1014/D1.2.

The 1/0 bus is the network of signal routes through which device controllers and the proc-
essor address one another and transfer data. The bus is, therefore, the key hardware
component of a computer system’s I/O structure. Figure 2—-1 shows the relationship of the
1/0 bus to a Domain node and a set of controllers. The processor, memory, and memory
management (address translation) subsystems are linked by an internal bus. Interface
hardware connects this internal bus to the I/O bus. User-supplied and Domain system-—
supplied device controllers attach to the I/O bus and, through the bus, link to the node.

Domalin
Processor and Memory

I
< | lntern[al Bus | T>

Internal
Ring
Display Adapter S%?:Ze
< I/0 Bus >
Device Device Device Device

Controller Controller Controller Controller

Figure 2-1. Relationship Between a Domain Node and Peripheral Controllers

The VMEbus 2-1

2.1 Address Space Allocation

Because there is no mapping mechanism between the VMEbus and a customer VMEbus

device, there must be agreement as to what VMEbus addresses are reserved for your con-
trollers. In addition, you must be aware that as our allocation of the physical address
space on existing and future workstations changes, it may be necessary for you to modify
your controllers to respond to different addresses on different workstations.

The address layout for the DN5xx-T is listed in Table 2-1.

Table 2-1. Address Space Allocated for DN5xx—-T VMEbus Devices

Physical Addresses Resource Address/Data Lines

0000-7FFF VMEbus CSRs 16-Bit Addressing, 16-Bit Data Path
C000-DFFF VMEDbus CSRs 24-Bit Addressing, 16-Bit Data Path
80000-FFFFF User VMEbus 24-Bit Addressing, 16-Bit Data Path
200000-2FFFFF User VMEDbus 24-Bit Addressing, 16-Bit Data Path
310000-3FFFFF User VMEbus 24-Bit Addressing, 16-Bit Data Path
600000-7FFFFF User VMEbus 24-Bit Addressing, 32-Bit Data Path
800000-FFFFFF User VMEbus* 24-Bit Addressing, 32-Bit Data Path
3000000-300FFFF Vé\éll]z))us I/0 32-Bit Addressing, 32-Bit Data Path
3200000-3FFFFFF %J’ser VMEDbus 32-Bit Addressing, 32-Bit Data Path

* Available only on DN570-T workstation.

2.2 Bus Grant Level

VMEbus devices should use bus grant level 2.

2.3 Address Modifiers

2-2

® 2D: 16-Bit Addressing

® 3D: 24-Bit Addressing

® (0D: 32-Bit Addressing

The VMEbus

The current DN5Sxx-T VMEbus interface defines the following address modifiers for all
references to VMEbus controllers:

Domain system-supplied controllers also use these address modifiers for DMA activity.

Apollo recommends that the address modifiers that a device uses be held in two program-
loadable registers, one for slave responses and the other for master requests. In the initial
power—on/reset state of the device, it should be possible to load these registers by using
any address modifier.

2.4 Interrupt Level

Customer VMEbus devices are currently assigned to VMEbus interrupt level 5. The
VMEDbus interrupt level used by a customer device should be jumperable to allow for possi-
ble changes in interrupt level allocation on future workstations.

2.5 Status/ID Byte

A VMEDbus controller presents a status/ID byte during a VMEbus interrupt acknowledge
cycle. The operating system uses this byte to distinguish between multiple VMEbus devices
and by GPIO as the unit number identifying the device. Status/ID bytes F§8 through FE
(corresponding to unit numbers 8 through 14) are available for customer devices; status/ID
bytes FO through F7 and FF are reserved.

The Device Descriptor File (DDF) for a VMEbus device defines the bottom nibble of the
status/ID as the device unit number.

2.6 Software Considerations

GPIO software supports memory-mapped I/0, programmed 1/0, and DMA operations on
the VMEDbus.

NOTE: Apollo provides two kinds of calls, pbu_$ and pbu2_$, for sev-
eral GPIO operations. When referring to either kind inter-
changeably, we use the term pbu[2]_$routine_name.

There is no DMA address translation hardware (I/0 map) for the VMEDbus; the following
GPIO calls are, therefore, not applicable to drivers that support VMEbus devices:

® pbu[2] S$allocate_map
® pbu[2]_ $free_map
® pbul2] $map

® pbul[2]_$unmap

The VMEbus 2-3

In addition, the following GPIO calls are not applicable to VMEbus devices and cannot be
used in drivers for VMEbus devices:

e pbu_$device_interrupting
® pbu_$disable_device

® pbu_$enable_device

® pbu_§$control

® pbu[2]_S$dma_start

pbu[2]_$dma_stop

Otherwise, you use GPIO software when writing drivers for VMEbus devices just as you
would for MULTIBUS devices. Extensions to the GPIO package to accommodate the
VMEDbus in no way limit the current facilities of GPIO.

2.6.1 Wiring for DMA: pbu_$wire_special

Since there is no mapping hardware between the customer’s device and the VMEbus, de-
vice drivers should call pbu_$wire_special (instead of pbu[2]_$wire) to wire buffers for
DMA operations. This call returns a list of physical (VMEbus) addresses at which the
buffer is located. The customer’s driver or controller hardware uses the addresses to per-
form the necessary scatter—gather operations. Refer to Appendix B for a full description of
this call.

2.6.2 Creating a DDF for a VMEbus Device

2-4

To create a DDF for a VMEDbus device, you must specify the ~vme option with the crddf
command. This option indicates to GPIO that the device in question resides on the
VMEDbus. It is recommended that this option be the first specified when building a new
DDF. Valid unit numbers when the —vme option is specified are in the range 8 to 14
(pbu_$min_vme_unit to pbu_$max_vme_unit).

If the —~vme option is specified, the specification of a CSR page is optional. If a CSR page
is specified, it must be page-aligned and in the range 0000-7C00 (A16) or
C000-DCO00 (A24).

Refer to Appendix A for a full description of the crddf command and the —vme option
and to Chapter 11, Subsection 11.3.2 for an example of the crddf command with the
-vme option.

oo
oa

The VMEbus

Chapter 3

I/O Bus Structures: the IBM
PC AT Compatible Bus

This chapter presents information about the IBM PC AT compatible bus in order to use
GPIO software to write device drivers for PC AT compatible devices, specifically: I/0 ad-
dress and memory space allocation, unit numbering, testing for device presence, DMA and
interrupt lines, byte swapping, and software considerations. For additional information

about the PC AT compatible bus, refer to the Domain Personal Workstations and Servers
Technical Reference manual.

NOTE: Apollo provides two kinds of calls, pbu_$ and pbu2_8$, for sev-
eral GPIO operations. When referring to either kind inter-
changeably, we use the term pbu[2]_$routine_name.

The IBM PC AT Compatible Bus 3-1

The 1/0 bus is the network of signal routes through which device controllers and the proc-
essor address one another and transfer data. The bus is the key hardware component of a
computer system’s I/O structure. Figure 3-1 shows the relationship of the I/O bus to a Do-
main node and a set of controllers. The processor, memory, and memory management
(address translation) subsystems are linked by an internal bus. Interface hardware con-
nects this internal bus to the I/O bus. User-supplied and Domain system-supplied device
controllers attach to the I/O bus and, through the bus, link to the node.

Domalin
Processor and Memory

I
< | Intern[ll Bus - T >

Internal
Ring
Display Adapter Sm‘;‘:ge
< 1/0 Bus >
Device Device Device Device

Controller | | Controller | | Controller | | Controller

Figure 3-1. Relationship Between a Domain Node and Peripheral Controllers

3.1 PC AT Compatible Address Space

The physical address space on the PC AT compatible bus that is available to the user con-
sists of I/O address space (reserved for device CSRs), and memory address space (reserved
for memory-mapped controllers). The following subsections describe these two address
spaces in detail. For additional information on the PC AT compatible bus address space,
refer to the Domain Personal Workstations and Servers Hardware Architecture Handbook.

3.1.1 I/O Address Space

3-2

The I/O address space (0-3FF) is reserved for device CSRs. Table 3-1 lists the address
ranges within this area that are reserved for Domain system-supplied devices and those
that are available for customer devices. If your system is not configured with the system-
supplied device that occupies a particular address range, then you may use that range for
your own device.

The IBM PC AT Compatible Bus

Table 3-1. I/0 Address Space Allocated for Domain System-Supplied Devices

Bus Address (Hex) | Device

000-0FF Reserved

100-19F Customer Devices

1A0-1A7 Disk Controller

1A8-1FF Customer Devices

200-207 Tape Controller

208-21F Customer Devices

220-23F Apollo Token Ring Network Controller-AT
240-2F7 Customer Devices

2F8-2FF Serial-Parallel Expansion (SPE) option — Serial Line 2
300-307 802.3 Network Controller-AT

310-317 802.3 Network Controller-AT (Alternate)
320-33F Apollo Token Ring Network Controller—AT
340-377 Customer Devices

378-37F SPE option — Parallel Port

380-3AF Customer Devices

3B0-3BF Monochrome Graphics (Alternate Color)
3C0-3CF Customer Devices

3D0-3DF Color Graphics (Alternate Monochrome)
3E0-3EF Customer Devices

3F0-3F7 Disk Controller

3F8-3FF SPE — Serial Line 1

To provide protection for system devices and virtual memory support, addresses in the

PC AT compatible I/O address space are mapped differently from addresses in
MULTIBUS and VMEbus address spaces. Ten-bit consecutive addresses in the I/O ad-

dress space are mapped into processor address space in groups of eight bytes, and each
group is assigned the first eight bytes of a different, but consecutive, page (1024 bytes).
Thus, the first 1024 addresses in PC AT compatible address space (0-3FF) map to 128

physical pages (40000-5FFFF) in processor address space.

A PC AT compatible controller using three 8-byte CSR addresses might have the following

type declaration:

typedef struct csr_page_t {
char first_eight[7];

char next_eight[7];
char last_eight[7];

} csr_page_t #attribute[device];

The IBM PC AT Compatible Bus

3-3

In Apollo systems, however, the type declaration should be as follows:

typedef struct csr_page_t {
char first_eight[8];
char padl[bytes_per_page-8];
char next_eight[8];
char pad2[bytes_per_page-8];
char last_eight[8];
char pad3[bytes_per_page-8];
} csr_page_t #attribute[device];

Figure 3-2 illustrates the mapping scheme for the preceding example (csr_ptr is the pointer
that pbu_$acquire passes to the device initialization routine after mapping the CSR page(s)
into driver address space).

BUS ADDRESS SPACE DEVICE DRIVER
ADDRESS SPACE
200 > csrptr T* S s
+007
207
208
20F = 2
210 —
I +400 |
+407 [~
21F
~ ~
» +800
+807 |
-~ o

T T

Figure 3-2. CSR Mapping Scheme for PC AT Compatible Devices

Sixteen-bit addresses (so—called PC AT addresses, which are not supported on the PC AT
compatible bus) extend the address range beyond the 1 KB (0-3FF) range of 10-bit
addresses up to 64 KB (0-FFFF). Such addresses are “folded” and mapped to different
locations on the same set of 128 physical pages as are occupied by 10-bit addresses.

3-4 The IBM PC AT Compatible Bus

Figure 3-3 shows how the 16 bits of an PC AT compatible I/O. address are translated to a
processor physical address.

s, 7, T, T T,
Uy Yy, M, o,
A
", Y, i,
%,

TR T T
", i, iy, i, ",
Uy, Yy, ey, Ty, ey,
1, P, ", M, M, M,
A Uy Mty My Ty, 0,
My, T, Y, Y,
| oy 1, "y Ty, iy, Ty,
1y, "y, Yy Yy Y,
Yy, Yy, Yy, Yy,

Ty, My, Ty, Yy,
Uy lty, U, Ty, 0
Y M, e,
e, Ty,
O

"
o i

16 - 10 9
cru [of1]o}

T T
I, "l/, ""':, "'/, ,
t, Y, T,

", 'ty Yy,

t, by, Yy Yty Yy
eyt Ty Ty,

oy Yy, Yy, T, Yy,

?
g, ey, ey g, ey

Figure 3-3. Mapping a 16-Bit PC AT Address to Processor Address Space

Apollo provides the cvt_at command to return the iova for 10- and 16-bit addresses.
The cvt_at command also reports any conflict between the address you specify for your

device and the address of any system-supplied devices. Refer to Appendix A for the syn-
tax and usage.

3.1.2 Memory Space

The PC AT compatible memory space is used for memory-mapped and bus-master de-
vices. Addresses are mapped one-to-one to processor physical address space. Controllers

are mapped and unmapped using the GPIO routines pbu2_$map_controller and
pbu2_$unmap_controller.

Table 3-2 lists the address ranges that are reserved for Domain system-supplied devices as
well as those that are available for customer devices. If your system is not configured with
the system-supplied device that occupies a particular address range, then you may use that
range for your own device. For a more detailed map of memory space usage, refer to the
Domain Personal Workstations and Servers Hardware Architecture Handbook.

The IBM PC AT Compatible Bus 3-5

Table 3-2. DN3000/DN4000 Physical Memory Allocated for Domain

System—-Supplied Devices

Physical Address (Hex)

Device

000000-03FFFF
040000-05FFFF
080000-09FFFF
0A0000-0BFFFF
0C0000-0DFFFF

0E0000-0FFFFF

100000-8FFFFF*
900000-BFFFFF
C00000-CFFFFF
D00000-DFFFFF
E00000-F9FFFF
FA0000-FDFFFF
FE0000-FFFFFF

Reserved for the System

I/O Address Space (see Table 3-1)
Available for Customer Devices

Color or Alternate Monochrome Graphics

Alternate Monochrome Graphics or Apollo Token
Ring (0D0000-0DFFFF)

Alternate Color Graphics or Alternate or Second
‘Single~Board Ring (0E0000-0EFFFF)

Main Memory

Available for Customer Devices
PC Coprocessor

PC Coprocessor Alternate
Available for Customer Devices
Monochrome Graphics
Available for Customer Devices

for customer devices.

*On the DN4000, this area is not occupied by main memory and is available

3.2 Unit Numbering

3-6

The unit number of an PC AT compatible device is identical with the Interrupt Request

(IRQ) line. There are 16 possible unit numbers; unit number 0 has the highest priority.
However, since Domain system-supplied devices also use this range, not all unit numbers
are available for customer devices. The current allocation of unit numbers as well as the

interrupt priority (from highest to lowest) assigned to each unit number are listed in
Table 3-3 for the DN3000 and in Table 3-4 for the DN4000.

NOTE: In Table 3-3 and Table 3-4 the phrase “or User Device”
means that the IRQ reserved for a device that is not present on
the system can be used for another device.

The IBM PC AT Compatible Bus

Table 3-3. Allocation of Unit Numbers on the DN3000

Unit No.| Interrupt
and IRQ| Priority Device
0*. 1 Timer
1* 2 Keyboard
2* - Reserved
3 3 Apollo Token Ring Network Controller-AT
4 12 SPE — Serial Line 1 or User Device
5 13 Tape Controller
6 14 Disk Controller or User Device
7 15 SPE — Parallel Line or User Device
8* 4 Calendar — Serial Lines 1 and 2
9 5 ETHERNET 2, SPE — Serial Line 2 or User Device
10 6 ETHERNET 1 or User Device
11 7 PC Coprocessor or User Device
12 8 User Device
13* 9 Reserved
14 10 Disk Controller
15 11 PC Coprocessor Alternate or User Device

*This IRQ line is used by the processor and is not available on the bus.

Table 3-4. Allocation of Unit Numbers on the DN4000

Unit No.| Interrupt
and IRQ| Priority Device
’ 0* 1 Timer
1* 2 Keyboard
2% - Reserved
3 3 Apollo Token Ring Network Controller-AT
4 12 SPE — Serial Line 3 or User Device
5 13 Tape Controller
6 14 Disk Controller or User Device
7 15 SPE — Parallel Line or User Device
8* 4 Calendar — Serial Lines 1 and 2
9 5 ETHERNET 2, SPE — Serial Line 4 or User Device
10 6 ETHERNET 1 or User Device
11 7 PC Coprocessor or User Device
12 8 User Device
13* 9 Reserved
14 10 Disk Controller
15 11 PC Coprocessor Alternate or User Device

*This IRQ line is used by the processor and is not available on the bus.

The IBM PC AT Compatible Bus

3-7

3.3 Testing for Controller Presence

The PC AT compatible bus does not generate bus time-outs. Therefore, you cannot use
the GPIO calls pbu_$read_csr or pbu_$write_csr to test for controller presence on the
bus. Instead, you must write to an I/O register control bit and check if the appropriate
status bit(s) react as you would expect if the controller were present on the bus.

3.4 DMA and IRQ Lines

DMA and IRQ lines typically float on PC AT compatible controllers. Refer to the device
documentation for specific information on enabling these lines. Generally, however, you
should do the following:

® Call pbu[2]_$dma_start after enabling the DMA lines and pbu[2]_$dma_stop
before disabling them (refer to Appendix B for information on these GPIO calls).
If the device only does DMA at your command, you can set a “DMA enable” bit
in the driver’s initialization routine and then do pbu[2]_$dma_start followed by
the data transfer command to the device in your driver.

® Call pbu_S$enable_device after you have set up the controller to have some inter-
rupts enabled. Call pbu_$disable_device before you clear all interrupt enables
from the controller. Refer to Appendix B for more information on these GPIO
calls.

3-8 The IBM PC AT Compatible Bus

3.5 Byte Swapping

The necessity for byte swapping (transposing the order of the bytes in a word) arises from
the fact that the Domain processor orders bytes differently from the way that a PC AT
compatible controller does. To compensate for this, I/O hardware performs byte swapping
during data transfers according to the following rules:

® I/0 hardware transposes the bytes of words transferred between the processor and
the bus. Thus, integers and CSRs defined as 16 bits are byte swapped. For ex-
ample, a CSR that has the following internal representation on the PC AT com-
patible controller:

15 0
L DMA Enable L Device Busy
would look like this on our processor£

7 015 8

B T

Device Busy DMA Enable

® Byte swapping does not occur during byte transfers. Thus, characters are trans-
ferred correctly.

The following illustration shows byte swapping between the processor and the PC AT com-
patible bus:

Word Transfer Left Byte Transfer Right Byte Transfer

“,\“ R
< BYTE 0
&

s &
5 8 N W

EE

&

CPU: |
* [« BYTE O

':"‘
S

e
BUS: gl

R,

e
&
« BYTE O
L
R s

W g
&
E

&

W

oo

The IBM PC AT Compatible Bus 3-9

3.6 Software Considerations

3-10

GPIO software supports four kinds of I/O operations on the PC AT compatible bus:

® Memory-mapped I/O

® Programmed I/O0

® DMA by nonbus-master devices
® DMA by bus-master devices

Memory-mapped I/0 and programmed I/O work on the PC AT compatible bus the same
way as on the MULTIBUS or VMEbus and do not require any special GPIO routines.
DMA operations by both bus-master and nonbus-master devices, however, do require two
special GPIO routines: pbu[2]_$dma_start and pbu[2]_$dma_stop. (If your driver is to
run on the DN4000, use pbu2_$dma_start and pbu2_$dma_stop; if on the DN3000, use
pbu_$dma_start and pbu_$dma_stop.)

If you are writing a driver for a device that cannot request external bus mastership, your
driver must surround each DMA operation with pbu[2]_$dma_start and
pbu[2]_$dma_stop, no matter whether the operation was successful or not. The
pbu[2]_$dma_start routine prepares the processor’s DMA hardware for the DMA opera-
tion. After the driver calls pbu[2]_$dma_start, the controller can begin its operation.
When the controller indicates that the operation is completed, the driver next calls
pbu[2]_$dma_stop to get status from DMA hardware to ensure that the hardware has
completed its share of the operation as well. The driver must call pbu[2]_$dma_stop
even if the controller reports an error. The driver may ignore the status returned by
pbu[2]_$dma_stop; however, if the controller had a problem, it is likely that the DMA
operation did not run to completion. The call to pbu[2]_$dma_stop must be made so
that software can reset its knowledge of who is using the DMA channel. '

If you are writing a driver for a device that can request external bus mastership, your
driver must call pbu[2]_$dma_start once, specifying the pbu_dma_cascade option. This
option reserves the DMA channel and provides bus arbitration. The pbu[2]_$dma_stop
routine must be called when the device is released.

For more detailed information on what GPIO routines to call and how to use them when
performing DMA on the PC AT compatible bus, refer to Chapter 7, Subsections 7.1.1 and
7.1.2.

The IBM PC AT Compatible Bus

3.7 Creating a DDF for a PC AT Compatible Device

To create a Device Descriptor File (DDF) for a PC AT compatible device, you must spec-
ify the —at option with the crddf command. This option indicates to GPIO software that
the device in question resides on the PC AT compatible bus. We recommend that this op-
tion be the first specified when building a new DDF. Valid unit numbers when -at is
specified are in the range 0-15, except for those assigned to Domain system—supplied de-
vices (see Table 3-3 and Table 3-4).

The —dma_channel option must be used with PC AT compatible devices to specify the
DMA channel number that a controller will use.

Refer to Appendix A for a full description of the crddf command and the —at and
—-dma_channel options and to Chapter 11, Subsection 11.3.1 for an example of the crddf
command with the -at option.

The IBM PC AT Compatible Bus 3-11

Chapter 4

Overview of I/0O Software

The major components of I/0O software are

® One or more application programs (user written)
® GPIO routines and commands (supplied by Apollo)

® Device driver routines (user written)

Section 4.1 through Subsection 4.4.3.4 briefly describe these components and show the
relationships among them. Figure 4-1 shows the relationships among the application pro-
gram, the device driver, and the GPIO routines and commands. Subsection 4.4.4 provides
a driver component checklist for your use when writing a driver.

Overview of 1/0 Software 4-1

A pbu_$acquire
or
: pbu_$acquire_stream
L
|
C
A
T
| |
(o] Ilnltlallzatlon Routine | Interrupt
N Private Routine '!l
Storage ! T
| ' forg Other E ?
or s Other Driver Routines call & Driver E D
Interrupt Routines uE
s Sides ! P
T I Cleanup Routine I T
R
E
A
M
S
‘ pbu_S$release
M
G
R. PROCESS
SPACE
SYSTEM
SPACE
GPIO ROUTINES System Interrupt
(PBU Manager) Handler

Figure 4-1. Interaction of 1/0 Software

4.1 Application Program

The application program can consist of one or more programs. For example, application
programs can call a device server, which is a collection of programs that perform device-
specific processing before calling the device driver to perform an I/O operation. In other
cases, the application program is the device driver itself.

4.2 Streams Manager

For information on how to write and use streams, refer to the Using the OPEN System
Toolkit to Extend the Streams Facility manual, and to Chapter 12, Subsection 12.1.3 in
this manual for examples of how to acquire a device with a streams manager using the
pbu_8$acquire_stream routine.

4-2 Overview of 1/0 Software

4.3 GPIO Commands and Routines

The GPIO commands and routines create the environment in which a device driver runs
by performing the following:

® Controlling the acquisition and release of the device

® (Creating and deleting the mapping between a device’s memory or registers and
processor address space

® Setting up the mechanisms to facilitate data transfers to and from a device

Table 4-1 lists the files associated with the GPIO software product. The individual com-
mands are described in Appendix A, the routines in Appendix B.

Table 4-1. GPIO Software

File Contents

Nlib/pbu_int_lib Library to be bound with user-written interrupt routines

/lib/pbulib GPIO routines and interface to internal GPIO
manager, automatically installed at system startup

/com/aqdev aqdev (acquire_device) command for users in the
Domain/Aegis environment (note that the agdev
command is not available to users in the Domain/
BSD4.3 or Domain/SysV environments)

/com/rldev rldev (release_device) command for users in the
Domain/Aegis environment (note that the rldev
command is not available to users in the Domain/
BSD4.3 or Domain/SysV environments)

/com/crddf crddf (create_ddf) command for users in the
Domain/Aegis environment

/com/cvt_at cvt_at (convert_at_addresses) command

/usr/apollo/bin/crddf crddf (create_ddf) command for users in the

fusr/apollo/bin/cvt_at

/sys/ins/pbu.ins.pas
/usr/include/apollo/pbu.h
/sys/help/pbu.hlp

/sys/help/agdev.hlp
/sys/help/rldev.hlp
/sys/help/crddf.hlp

/sys/help/cvt_at.hlp
/domain_examples/gpio_examples

Domain/BSD4.3 and Domain/SysV environments
cvt_at (convert_at_addresses) command for users
in the Domain/BSD4.3 and Domain/SysV
environments

Insert file for Pascal programs using GPIO routines
Insert files for C programs using GPIO routines

Help file for GPIO routines and command index
to GPIO commands

Help file for the agdev command
Help file for the rldev command
Help file for the crddf command

Help file for the cvt_at command
Directory containing sample drivers

Overview of 1/0 Software

4.4 Device Driver

The device driver is a user-written program, or set of programs, that controls a peripheral
device on behalf of an application program.

4.4.1 Driver Functions

In general, a device driver performs the following functions:

Ensures that the device is physically present on the bus

Initializes the driver control block

Allocates resources required for data transfers

Processes 1/O requests from the application into device-specific commands
Reads controller status registers

Responds to device interrupts

Responds to device time-out conditions

Responds to requests to cancel an 1/O operation

Performs status checking and error logging

Returns status from the device to the application that made the I/O request

4.4.2 Major Components of a Driver

4-4

To carry out these functions, a device driver may include the following routines:

An initialization routine called during device acquisition. This routine creates con-
troller data structures and readies the device for I/O operations. You must include
this routine in your driver, using the calling sequence described in Chapter 6, Sub-
section 6.1.1.

One or more interrupt routines called by the System Interrupt Handler to respond
to device interrupts. This routine is optional. If you decide to write an interrupt
routine, use the calling sequence described in Chapter 8, Subsection 8.2.1.

A cleanup routine called during device release (by pbu_$release). This routine
ensures that no I/O is in progress to or from the device and that the device will
not generate any more interrupts. Write the cleanup routine according to the call-
ing sequence in Chapter 6, Section 6.4. Although this routine is optional, we
strongly recommend that you include it in your device driver.

Overview of 1/0 Software

In addition, a driver may include one or more of the following routines:

® A validation routine that checks device—specific parameters of an I/O request

® I/O preprocessing routines that allocate the needed I/O data structures, depending
upon the type of transfer and the type of bus

® A data transfer routine

® A wait routine that waits for an interrupt or device time-out while the I/O opera-
tion is in progress

® Command handling routines that process commands from the application

Which of these routines you decide to include in your driver and how you implement them
depends on the requirements of the device and the application. To help you with the de-
sign of your driver, Part 2 of this manual “Writing a Driver” describes the driver compo-
nents in detail and explains how to construct them by using GPIO routines. Part 3 “Refer-
ence Information” provides information, such as the format and syntax of GPIO com-
mands and routines, performance information, and so on. You may also find it helpful to
refer to the following online sample drivers, located in subdirectories of /domain_exam-
ples/gpio_examples:

® Versions in C and Pascal of a device driver for a hypothetical “bulk memory” de-
vice (see subdirectories bm_example_c and bm_example; see also the program
listings in Appendixes E [C] and F [Pascal])

® A device driver for an Interlan controller (see subdirectory interlan_example)
® A device driver for a 3Com* controller (see subdirectory threecom_example)
® A shared driver for the SPE board (see subdirectory global_example)

To make the device driver accessible to user programs, you must bind the routines as de-
scribed in Chapter 10, Subsection 10.1.2. If your driver includes one or more interrupt
routines, you must bind them separately from the other routines.

You specify the pathname(s) of the device driver and the entry points of the initialization,
interrupt, and clean-up routines using the crddf (create_ddf) command. This command
establishes a DDF that describes the device to the system and allows GPIO routines to call
driver routines. See Chapter 11 and Appendix A for information about the purpose of the
DDF, how to build the DDF with the crddf command, and the options available with the
crddf command.

When a user process acquires the device (see Chapter 12), the driver routines are loaded
into its address space so that application programs can call them. The set of driver routines
that programs can actively call constitutes the call side of the driver, whereas the interrupt
routine(s) and associated data structures make up the interrupt side of the driver.

* 3Com is a registered trademark of 3Com Corporation.

Overview of 1/0 Software 4-5

4.4.3 Operation of a Driver: A Dry Run of bm_example

4-6

You may find the online sample driver in bm_example a good place to begin familiarizing
yourself with a driver. In order to give you a feel for how it functions, the following para-
graphs explain a typical DMA operation. The driver was written for a hypothetical bulk
memory MULTIBUS device in order to illustrate the general design of a driver and to
demonstrate the use of GPIO routines. For these reasons, the driver and the fictitious
controller for which it was written were kept simple: the controller has five 8-bit registers
and can perform read and write DMA operations. However, bm_example is a compilable
functioning driver and includes all the major components. Figure 4-2 illustrates how these
components relate to each other as well as to the application and GPIO routines. A
slightly reorganized version of the bm_example driver appears in Appendixes E (C) and F
(Pascal).

Note that names of driver routines begin with bm (Bulk Memory), whereas names of
GPIO routines all begin with pbu (Peripheral Bus Unit). Also, names of driver routines
that do not include a dollar ($) sign (for example, bm_command) are internal subroutines
that are not referenced outside the module in which they are defined.

v

l unwire_buffer |

aqdev ridev SYSTEM INTERRUPT HANDLER
A PBU MANAGER
P
P
L |
I | bm_$cleanup I | bm_$read] |
c ¥] bm_$int I
A _sinit | [bm_swarr |L_Pm_Swrite :
T %
I | bm_command bm_$slo
(o)
N

mo-—-un r>»o0
o
3
“vconIm4z-
- mo=—w

A 4
DEVICE REGISTERS, DEVICE MEMORY, OR GPIO ROUTINES

]

PERIPHERAL CONTROLLER

Figure 4-2. Driver Routines in bm_example

Overview of 1/0 Software

4.4.3.1 Initialization

After the device has been acquired, the PBU Manager (a collection of routines that are
internal to the operating system and manage GPIO resources) activates the driver’s initiali-
zation routine, bm_8$init. This routine does the following:

Initializes the driver control block (bmcb)
Calls pbu_$write_csr to determine if the device is physically present on the bus

Calls pbu_$allocate_map to allocate an area of the I/O map for mapping buffers
to MULTIBUS address space

The bm_8$init routine then returns control to the PBU Manager. The driver is now ready
to accept I/0 commands from the application.

4.4.3.2 Command Processing

The application calls one of the command-handling routines, bm_$read or bm_$write,
depending on the type of I/O operation. Either routine immediately calls an internal rou-
tine, bm_command, which in turn calls the following GPIO routines:

pbu_8$wire, to make the I/O buffer permanently resident in processor address
space so that it is unavailable to the operating system’s page-replacement mecha-
nisms

bm_$sio, to start up the DMA operation

pbu_$enable_device, to allow the controller to issue interrupts

When the driver’s data transfer routine, bm_$sio (the start I/O routine), is called, it does
the following:

Calls pbu_$map, which maps the I/O buffer into MULTIBUS address space

Issues the read or write command to the controller via the CSR page

Program control then passes from bm_$sio through bm_command and bm_$read/write to
the application. The application calls the driver’s wait routine, bm_$wait, which in turn
calls the following GPIO routines:

pbu_$wait, to wait either for the eventcount to advance (for information about
eventcounts, refer to Chapter 6, Section 6.3) or for a specified interval to pass,
whichever comes first

pbu_$unmap, to unmap the I/O buffer from MULTIBUS address space

pbu_$unwire (called via an internal routine, unwire_buffer), to unwire the I/O
buffer

The bm_$wait routine then returns a status code to the application that indicates whether
or not the I/O operation was complete.

Overview of 1/0 Software 4-7

4-8

4.4.3.3 Interrupt Handling

When the I/0 operation is complete, the device issues an interrupt that is intercepted by
the System Interrupt Handler. The System Interrupt Handler then transfers program con-
trol to the driver’s interrupt routine, bm_$int. This routine first determines whether any
more data remains to be transferred. If there is, bm_8$int calls bm_$sio to start the next
data transfer and enables the controller interrupt logic. Once all data has been transferred,
bm_$int advances the eventcount and returns program control to the PBU Manager.

4.4.3.4 Cleanup

The PBU Manager calls the driver’s cleanup routine, bm_$cleanup, when either the appli-
cation calls pbu_$release or the user inserts the End-Of-File (EOF) mark (under the
DM, this is usually done by pressing CTRL/Z or CTRL/D). Initially, bm_$cleanup deter-
mines if an I/O operation is still in progress. If so, it either resets the controller or calls
bm_$wait, depending on what the application specifies. Regardless of whether an I/O op-
eration is still in progress, bm_$cleanup calls the following GPIO routines:

® pbu_$free_map, to release the area of the I/O map previously allocated by
pbu_S$allocate_map

e pbu_$disable_device, to prevent the controller from issuing any more interrupts

The bm_$cleanup routine then returns program control to the PBU Manager, thus con-
cluding operation of the driver.

Overview of 1/0 Software

4.4.4 Driver Checklist

Following is a checklist of components that can be included in a driver. [talicized items
must be included. Whether or not you decide to include any of the other items depends
on the device you are supporting, the application, and your convenience.

[Insert files (Chapter 5)

Q System Insert Files (Section 5.1)

Q CSR Page (Subsection 5.2.1.1)

Q Driver Control Block (Subsection 5.2.1.2)
(1 Cali-Side Library (Chapter 6)

Q Initialization Routine (Section 6.1)

(Q Command-Processing Routine (Section 6.2): Required if the device is to be
under the control of the application

Q Wait Routine (Section 6.3): Necessary if your driver has an interrupt routine
Q Cleanup Routine (Section 6.4): Highly recommended

Q Data-Transfer Routine (Chapter 7): Can be installed in either the call-side
library or (if one exists) the interrupt-side library

[Interrupt Library (Chapter 8): Required only if your driver has an interrupt rou-
tine

Q Interrupt Routine (Section 8.2): Required if your device handles interrupts
and performs asynchronous transfers

(Q Start I/O Routine (SIO) (Section 8.3): Must be installed in the interrupt-side
library if called by any interrupt-side routine; otherwise, can be included as
part of the data-transfer routine in the call-side library

[Device Descriptor File: (Chapter 11)

oo
oo

Overview of 1/0 Software 4-9

Chapter 5

Insert Files

Insert files are included in the driver to enable it to reference certain resources: either sys-
tem calls that reside outside the driver (GPIO routines) or routines and data structures that
exist within the driver and which both call-side and interrupt-side routines can reference.
To reference any of these resources, you must specify the pathname of the insert file (us-
ing the #include keyword in C or the %INCLUDE directive in Pascal) in the module where
the calling routine resides. This chapter describes which system insert files to include in the
driver and explains how to set up driver-specific insert files. For a description of insert
files in general and available system calls, see the Programming with Domain/OS Calls
manual.

NOTE: Unlike Pascal, the C programming language is case-sensitive;
therefore, all system procedure names (such as GPIO routines)
must be lowercase, which is consistent with their appearance in
the system insert files. However, any global names in C that are
accessed by GPIO routines are case-sensitive.

Insert Files 5-1

5.1 System Insert Files

Table 5-1 shows the pathnames for the required and optional system insert files.

Table 5-1. System Insert Files

Language Required Insert Files Optional Insert Files
Pascal /sys/ins/base.ins.pas /sys/ins/vfmt.ins.pas
(base definitions) (variable formatting calls)
/sys/ins/pbu.ins.pas /sys/ins/error.ins.pas
(GPIO routines) (error reporting calls)
C <apollo/base.h> <apollo/vfmt.h>
(base definitions) (variable formating calls)
<apollo/pbu.h> <apollo/error.h>
(GPIO routines) (error reporting calls)

5.2 Driver-Specific Insert Files

5-2

Driver-specific insert files serve as links between the call side and the interrupt side of the
driver and between the driver and the application. They fall into two categories:

® Public Insert Files: Declare data structures and driver routines that the application
can use

® Private Insert Files: Declare the structures and. routines to which the driver alone
refers

This division between public and private is admittedly an artificial distinction, and you may
wish to ignore it by creating only one driver-specific insert file, especially if your driver is
simple and straightforward. However, creating two insert files does have the advantage of
presenting to the user, who may not care to know the inner workings of the driver, only
what is pertinent to interfacing the application with the driver. At any rate, we have fol-
lowed the distinction here, and Subsections 5.2.1 and 5.2.2 describe private and public
insert files separately.

Examples of public and private insert files appear in the bm_example in Appendix F, Sec-
tions F.1 and F.2.

Insert Files

5.2.1 Private Insert File

The private insert file connects the call and interrupt sides of the driver. It is where you
declare those internal components (flags, pointers, records, etc.) that are common to both
sides. The three most important of these components (the CSR page, the driver control
block, and internal driver routines) are described in Subsections 5.2.1.1 through 5.2.1.3.

5.2.1.1 CSR Page

The CSR page is a record structure that defines the controller’s internal registers which the
driver needs to access, such as the command, status, and address registers. It is through
the CSR page that the driver reads and writes to those registers. For this reason, it is im-
portant to set up each field in the CSR page so that it exactly matches the position of the
corresponding register in controller memory. This procedure ensures against, for example,
the driver writing to what it takes to be a write—only command register when in fact it is a
read-only status register.

An example of a CSR page as declared in a private insert file follows:

typedef union mm_csr_page_t
struct {

unsigned char command;
unsigned char status;
unsigned char pad_1;
unsigned char r_data;
unsigned char pad_2;
unsigned char int_status;
unsigned char pad_3;
unsigned char pad_4;
unsigned char d_data;
unsigned char int_enable;
unsigned char pad_5;
unsigned char pad_6;
unsigned char pad_7;
unsigned char pad_8;
unsigned char pad_9;

} e

char all[bytes_per_page];
} mm_csr_page_t #attribute[device];

Insert Files 5-3

5-4

As you examine the previous example, note the following points:

The #attribute [device] directive in this example is designed for use in a device
driver to protect against any undesired compiler optimization. Its function is ex-
plained more fully in Appendix C, Section C.3.

The record structure itself is of the union type so that, in this case, the CSR page
can be accessed either as a whole or register by register; it could, however, have
been constructed of fixed parts only, depending upon the requirements of the
driver.

Each structure member is of the char data type because each register consists of
eight bits; that is, the space allocated to the char data type. (Use of the char data
type, or arrays of chars, to specify structure members ensures that the compiler
does not perform improper compressions.)

The field “all” is declared as an array of bytes_per_page chars because that is the
space allocated to any CSR page.

Finally, pads are used where appropriate to maintain proper spacing between regis-
ters. Note that pad_5 through pad_9 could also have been coded as an array:

char pads[9-5+1];

In this CSR page, the interrupt enable register (int_enable), a write—only register,
is offset at 09 hex from the base address. If we were to remove the pads from
the CSR page record, int_enable would then be offset at 05 hex. Any attempt to
write to this register would result in a bus time-out error since we would actually
be trying to write to a read-only register, the interrupt status register (int_status),

* which is offset at 05 hex. If you are in any doubt about the positioning of fields

within the CSR page, you should use the compiler’s -map option so that you can
check the field displacements within the CSR page definition.

The record structure that defines the CSR page is referenced as a pointer; for this
reason, a declaration such as the following also appears in the private insert file:

typedef union mm_csr_page_ptr_t ({
mm_csr_page_t *C,
pbu_$csr_page_ptr_t p;

} mm_csr_page_ptr_t;

The pointer in this example is declared as a union so that it can be used in two
different contexts, either in the driver or in a GPIO routine.

For tips on setting up the CSR page, refer to Appendix C, Section C.1.

Insert Files

5.2.1.2 Driver Control Block

Although the driver control block is optional, you may find it useful to include one in your
driver as a storage area to be used for communications between the call and interrupt
sides. It contains information that is shared by different driver routines and continuously
updated, such as status flags, buffer address and length, and so on. The nature and layout
of this information depend upon the requirements of the driver and the convenience of the
programmer. In the following example, because the control block is referenced by the in-
terrupt handler, it must be part of the interrupt library.

It should be noted that, for drivers written in Pascal, if the control block is referenced by
the interrupt side, it must be allocated (using the DEFINE clause) in the interrupt library;
for more information on defining globals in drivers written in Pascal or C, refer to Appen-
dix C, Subsection C.2.5.

The driver control block in bm_example_c is declared in bm.h as follows:

typedef union {
struct {
unsigned int init: 1; /* set to true when controller
initialized */
unsigned int buffer_wired : 1; /* set when a buffer is wired */

unsigned int busy : 1; /* set when an operation is in
progress */
unsigned int done : 1; /* set by interrupt routine when
transfer completes */
unsigned int pad : 4; /* f£fill out to byte ? */
} b
char all;

} bm_$flags_t;
/* status register definition */

typedef union ({
struct {
unsigned int attention: 1; /* 1 => change in controller
status */

unsigned int status_modifier : 1; /* 1 => current
status unavailable */

unsigned int control unit_end : 1;/*%¥ 1 => busy condition
cleared */

unsigned int busy : 1; /* 1 => controller currently busy */
unsigned int channel_end : 1; /* 1 => end of operation */
unsigned int device_end : 1; /*¥ 1 => end of operation */
unsigned int unit_check : 1; /*¥ 1 => parity error in bm */
unsigned int unit_exception : 1; /* 1 => illegal bm address */
} b;

unsigned char all;

} bm_$status_t;

Insert Files 5-5

typedef struct { /* define communications area */

pbu_$unit_t pbu_unit_number; /* number of this pbu device */
bm_s$flags_t flags;
char pad; /* a byte of padding */
pbu_$ddf_ptr_t ddf_ptr /* pointer to mapped ddf */
bm_$csr_page_ptr_t csr_ptr; /* pointer to mapped csr page */
pbu_g$iova_t bm_iova; /* start of our area of i/o address
space */
bm_$buf ptr_t bufaddr; /* address of start of buffer */
bm_$buf_len_t buflen; /* total length of buffer */
bm_$bm_address_t bm_address; /* address of start of bm area */
unsigned char command; /* current command (read or
write) */
bm_g$buf_len_t rem_len; /* length remaining to read or
write */
bm_$status_t status; /¥ status from last interrupt */
status_$t sio_status; /* status from bm_$sio (start I/O
routine) called from int side */
bm_$buf ptr_t io_addr; /* address of last i/o transfer */
bm_$buf_ len_t io_len; /* length of last i/o transfer */
unsigned char init_cmd; /* initialization command (see
bm_$init!) */
unsigned char read_cmd; /* read command */
unsigned char write_cmd; /* write command */
} bm_$bmcb_t;
extern bm_$bmecb_t bmeb; /* main control block */

5.2.1.3 Internal Driver Routines

The only routines that must be referenced (using the EXTERN clause) in the private insert
file are those functions and procedures that are shared by the call and interrupt sides, but
not by the application. These routines must be allocated in the interrupt side. In
bm_example, there is only one such routine: bm_$sio (the start I/O routine). However,
you may wish to list all external routines (except those already referenced in the public
insert file; see Subsection 5.2.2) for documentation purposes.

5.2.2 Public Insert File

5-6

The public insert file is a convenience for the user who wants to know only what is neces-
sary to interface the driver with the application. It therefore typically contains device
status codes that the user may want to access and any user-callable routines within the
driver, such as status-checking routines and user-visible entry points. The three user-call-
able routines listed in the bm_example_c public insert file, bm.h, are bm_$read,
bm_$wait, and bm_$write.

oo
oo

Insert Files

Chapter 6

Call-Side Routines

This chapter describes the following call-side routines:

Initialization
Command Processing
Wait

Cleanup

The data-transfer routine, which may be included in either the call-side library or the in-
terrupt-side library, is treated separately in Chapter 7.

For information on fault handling, refer to the description of the PFM calls in the Do-
main/OS Calls Reference manual.

NOTE: Unlike Pascal, the C programming language is case-sensitive;
therefore, all system procedure names (such as GPIO routines)
must be lowercase, which is consistent with their appearance in
the system insert files. However, any global names in C that are
accessed by GPIO routines are case—sensitive.

Call-Side Routines 6-1

6.1 Initialization

6-2

The device acquisition routine, pbu_$acquire, calls the driver initialization routine to per-
form the functions necessary to ready a controller for I/O operations. Typically, these func-
tions include:

Initializing any internal storage for the device driver and writing to it the device
unit number and pointers to the CSR page and the DDF.

Accessing the DDF (if necessary) to determine how the controller is configured on
the system.

Ensuring that the controller is present on the bus.

Allocating I/0 resources and saving pointers to these resources within the driver’s
control block. The resources allocated depend upon the method of data transfer
used by the controller and the type of bus.

Performing controller-specific initialization. This step can include setting up any
initialization control blocks or data structures that the controller requires.

Enabling device interrupts.

It should be noted that the initialization routine need not return after it initializes the de-
vice; it can perform all required device I/0O, service requests from other processes, and so

on.

Chapter 7 describes resource allocation for DMA and memory-mapped 1/O, and Chapter
8, Subsection 8.2.2 describes device enabling and disabling. Subsections 6.1.1 through
6.1.4 give more information about the required calling format for the initialization routine,
initializing driver storage, testing for controller presence, and setting up controller-specific
data structures. For an example of an initialization routine, see the bm_$init routine in
Appendix E, Section E.2 (C) and Appendix F, Section F.3 (Pascal).

Call-Side Routines

6.1.1 Initialization Routine Format

The initialization routine is called by GPIO software and must, therefore, conform to the
following calling sequence (shown in C and in Pascal):

Synopsis (C)

Synopsis (Pascal)

Description

void initialization_routine(

pbu_%unit_t &unit,
pbu_$ddf_ptr_t &ddf ptr,
pbu_$csr_page_ptr_t &csr_ptr,
status_$t *status

)

procedure initialization_routine(

in unit: pbu_$unit_t;

in ddf_ptr: pbu_$ddf_ptr_t;

in csr_ptr: pbu_S$csr_page_ptr_t;
out status: status_$t

)

If the initialization routine returns a nonzero status, pbu_$acquire unloads the driver, re-
leases the device, and returns an error status to its caller.

The input and output parameters are described as follows:

csr_ptr

ddf ptr

status

unit

The virtual address of the device’s CSR page in pbu_$csr_page ptr_t for-

A virtual address of the DDF in pbu_$ddf ptr_t format. This data type
is described in Appendix B, Section B.1.

Completion status in status_$t format.

The device unit number in pbu_8$unit_t format.

Call-Side Routines 6-3

6.1.2 Initializing Driver Internal Storage

Some device drivers may require an internal storage area, such as a driver control block,
to be used for communications between their call and interrupt sides. (The interrupt side
of the driver allocates this storage area, using the DEFINE clause, see Appendix C, Sub-
section C.2.5.) If a storage area has been defined, it should be initialized by the initializa-
tion routine. (When pbu_$acquire maps the page that contains the device’s CSRs into
user—process address space, it passes a pointer to the CSR page to the initialization routine.
If the initialization routine has stored the pointer, your program can refer to the CSR page
as necessary.) The routine can then optionally store pointers to the mapped CSR page
and DDF within it. During an I/O transfer, the call and interrupt routines can read and
write to it such information as I/O buffer location and length, current transfer status (read
or write), interrupt status, and other statistics.

In bm_example_c, the initialization routine, bm_$init, initializes the control block bmcb
with the following assignments:

bmeb.pbu_unit_number = unit; /* unit number to pass pbu

manager */
bmcb.ddf ptr = ddf_ptr; /* pointer to mapped ddf */
bmcb.csr_ptr.p = csr_ptr; /* pointer to mapped controller
page */

6.1.3 Testing for Device Presence

6-4

If a device is not present on the bus (MULTIBUS or VMEbus only) or if the driver at-
tempts to reference a nonexistent CSR, the system generates a bus time-—out error and re-
turns the application program to the shell command level (unless it has specified a fault
handler; see Chapter 7, Subsection 7.1.4).

The initialization routine can test for a device’s presence by reading or writing to its CSR
with the routines pbu_$read_csr or pbu_$write_csr. If the read or write request causes a
bus time-out error, the routines suppress normal bus time—out handling and instead return
an error status to the driver. In this way, the driver can retain control even if the device is
not responding or does not exist. (Device drivers can also use pbu_$read_csr and
pbu_$write_csr to refer to addresses on a memory-mapped controller; see Chapter 7,
Subsection 7.2.2.)

NOTE: The PC AT compatible bus does not generate bus time—out er-
rors, which means that you cannot use pbu_$read_csr or
pbu_$write_csr to test for device presence; instead, you must
tweak the appropriate device register and see if it responds as
you would expect if the device were present.

Call-Side Routines

In the following segment from bm_example_c, bm_8$init calls pbu_$write_csr in order to
test for device presence and to initialize it. After pbu_$write_csr returns, bm_$init
checks status for a nonzero value, indicating that the device was not present; if the status

is nonzero, program control returns to pbu_$acquire.

pbu_$write_csr(bmecb.pbu_unit_number, /*

(char)bmeb.csr_ptr.c—>command, /*

BM_INIT_CMD, /*

false, /*

status); /*

if (status->all == pbu_$bus_timeout) { /*

status—>all = bm_3%no_controller;
return;

}

else if (status—>all != status_$ok) {
status—>s.fail = 1;
return;

}

number of this pbu
device */

the command
register */
initialization
command */

do a byte, not word
write to command
reg */

returned status */

controller probably
not there if error */

This next example (taken from /domain_examples/gpio_examples/global_example),
tests for the presence of the device by issuing several device-specific commands.

the CSR page pointer correctly we will write to

e Nt Nt e

if the controller were present on the bus

with cb.device_csr_ptr.c” : csr do begin
{ Initialize controller to test for it’s presence
cb.line_cntrl_copy.wrd_len

cb.line_cntrl_copy.dlab
csr.line_cntrl :=

= 3;
:= false;

To test for the presence of the controller and that we are handling}

the controller and }

check if the appropriate status bit(s) react as you would expect }

}

}

{ 8-bits/char }
{ latch/off }

cb.line_cntrl_copy.all;

time_$wait (time_$relative, device_wait_time, st);

csr.int_enable := no_interrupts_byte;

{ disallow all }
{ interrupts }

time_$wait (time_$relative, device_wait_time, st);

cb.modem_cntrl_copy.loop
csr.modem_cntrl :=

= true;

{ loopback }

cb.modem cntrl _copy.all;

time_ $wait (time_$relative, device_wait_time, st);

Call-Side Routines 6-5

cb.line_cntrl_copy.dlab := true; { latch/on }
csr.line_cntrl := cb.line_cntrl_copy.all;
time_$wait (time_$relative, device_wait_time, st);

csr.data := chr(12); { set baud rate to 9600 }
time_$wait (time_$relative, device_wait_time, st);

csr.int_enable := chr(16#00); { set second baud rate byte }
time_$wait(time_$relative, device_wait_time, st);

cb.line_cntrl_copy.dlab := false; { done with setting baud }
{ rate, latch/off }

csr.line_cntrl := cb.line_cntrl_copy.all;

time_$wait (time_$relative, device_wait_time, st);

To test for the presence of the controller we will write to the}
transmit register. This should cause the “data ready’ bit in the line}
status register to become true. Next we will read the receive}
register. This should cause the “data ready” bit in the line status}
register to become false. }

csr.data := chr(16#5a); { write dummy data to transmit reg }
time_$wait(time_$relative, device_wait_time, st);

cb.line_st_copy.all := csr.line_st;
if not cb.line_st_copy.data_rdy then begin
if dbg in cb.flags then
vifmt_$write2(“data ready NOT true, should be
true%.”,0,0);
status.all := device_no_controller;
return;
end;

6.1.4 Initializing Controller Data Structures

6-6

Certain controllers, particularly those based on Intel 8089 I/O processors, may need to use
initialization control blocks or other data structures that are located at preset, or hard-
wired, memory addresses. During initialization, the controller makes DMA references to
these control blocks that are indistinguishable from normal DMA transfers to and from
processor memory. If a controller uses hard-wired addresses during initialization, the in-
itialization routine must first allocate memory for these addresses.

Call-Side Routines

6.1.4.1 Allocating Hard-Wired Control Blocks on the MULTIBUS

The initialization routine allocates hard-wired addresses by

o Calling the routine pbu_$allocate_map
® Specifying the memory’s starting address within MULTIBUS memory

® Giving a length, which must be in 1024-byte increments

As stated in Chapter 1, Subsection 1.2.2, each I/O map entry maps one page of
MULTIBUS memory address space. The pbu_$allocate_map routine allocates the I/O
map entries that correspond to the MULTIBUS address specified in the call, thereby re-
serving the addresses occupied by the control blocks.

For example, if a controller refers to MULTIBUS address FFF6 for an initialization con-
trol block, the initialization routine calls pbu_$allocate_map and specifies MULTIBUS
address FC00 (because it is a page-aligned address) and a length of 1024. Because the
routine specifies a particular address, the force_flag parameter must be set to “true” (see
Appendix B for a syntactic description of the GPIO call pbu_$allocate_map). If the driver
needs to allocate two pages of address space in addition to the page required during in-
itialization, it specifies a MULTIBUS address of F400 (FC00-800) and a length of 3072.

Controllers that use hard-wired control blocks during initialization greatly reduce the flexi-
bility with which the I/O map can be allocated. Moreover, if several peripheral devices are
simultaneously in use, the MULTIBUS address that the controller requires might already
be allocated to another controller. Since most controllers allow you to specify hard-wired
MULTIBUS addresses by setting switches on the controller, you should refer to the infor-
mation in Table 1-2 to avoid setting MULTIBUS addresses that Domain controllers are
likely to use.

NOTE: We make no guarantee that the addresses currently used by Do-
main controllers will not change.

6.1.4.2 Defining Page-Aligned Control Blocks

Device drivers for controllers using hard-wired initialization control blocks or PC AT com-
patible and VMEDbus controllers that need to align a 1-KB buffer must also ensure that the
data area used to define the control blocks is page aligned by allocating a buffer at least
one page larger than the required size.

Call-Side Routines 6-7

The following program allocates a page—aligned buffer for a data area less than or equal to
one page, and then sets the sixth byte in the page to 0 (“bytes_per_page” is defined in
pbu.ins.pas):

#nolist;

#include "<apollo/base.h>"
#include "<apollo/pbu.h>"
#list;

typedef struct buffer_t /* define buffer page */
char page[bytes_per_page];
} buffer_t;

char buffer[2*bytes_per_page-1];

main(argec, argv)
int argc;
char *argv[];

{
buffer t *p;

P (buffer_t *) buffer; /* point to start of buffer */

p (buffer_t *) (((unsigned long)p + bytes_per_page-1)

& ~(bytes_per_page-1)); /* round up to page boundary */
printf("buffer = %1x, p = %lx\n", buffer, p);

exit (0);
}

You can also page align control blocks and data buffers when you bind the driver by using
the —align option; refer to Chapter 10, Subsection 10.1.2.1.

6.2 Command Processing

6-8

The driver’s command-processing routine (or any other driver routine that performs com-
mand processing) is the application’s entry point into the driver. The command-processing
routine receives I/O requests from the application and, on the basis of those requests,
passes the appropriate command to the device. There are several ways to set up command
processing in the driver. The driver may include routines for each kind of I/O request that
the application may issue; one routine may handle all requests, or the initialization routine .
may do all command processing (it all depends upon the requirements of the application
and the kinds of I/O that the peripheral device services).

Call-Side Routines

Command processing in bm_example is performed by two types of routines (see Appendix
E, Section E.2 [C]) and Appendix F, Section F.3 [Pascal]:

® Command-specific routines, bm_$read and bm_$write, that the application can
call

® An internal routine, bm_command, that is called by the command-specific rou-
tines to perform any common processing before passing control to the routine that
starts the 1/O operation

Depending on whether the application wants the controller to do a read or write operation:

® The application calls either bm_$read or bm_$write, passing as parameters:
- The data buffer to be transferred
- Its address
= The bulk memory address

® The bm_§$read or bm_$write routine passes the same parameters, along with the
specific controller commands, to bm_command

@ The bm_command routine:

- Takes care of any processing common to both read and write commands, such
as checking to see that the controller has been initialized and is not busy and
- validating buffer length and address

- Wires down the buffer by calling pbu_$wire (wiring ensures that no buffers
are removed from memory, or “paged out,” during the I/O operation)

- Calls bm_$sio to start the I/O operation

The following program segment from bm_command shows how it prepares for
the call to bm_$sio (the expressions in the assignment statements were passed
to bm_command as parameters by one of the command-specific routines):

bmecb . command command ; /* command to perform */
bmecb.io_addr bmecb.bufaddr; /* first address to transfer */
bmcb.rem_len = len; /* length "remaining" to transfer */
bmeb.bm_address = bm_address; /* where to start in the bm */
bm_$sio(status); /* start up the operation */

- Just before returning, bm_command enables interrupts by calling
pbu_$enable_device.

Call-Side Routines 6-9

6.3 Waiting for Device Interrupts

The function of a wait routine is to defer any driver activity until either an interrupt occurs
(usually indicating the end of an I/O operation) or a specified time—out value elapses.

Wait routines, or for that matter any other driver routine, can wait for interrupts from a
device by calling either pbu_$wait alone or both pbu_$get_ec and ec2_$wait. The wait
routine in bm_example is bm_$wait; see Appendix E, Section E.2 (C) and Appendix F,
Section F.3 (Pascal).

6.3.1 Using pbu_$wait

Drivers (and their applications) use pbu_$wait if they need to wait for only three events:

® Device interrupt
® Device time-out
® Quit fault (asynchronous fault) from the terminal user

The pbu_$wait routine waits for any or all of the these events by checking for either of
the following conditions:

® The System Interrupt Handler has advanced the device’s eventcount since the last
call to pbu_$wait. If the eventcount is advanced, pbu_$wait returns immediately.
Eventcounts are described in Chapter 8, Subsection 8.2.3.

® A positive time-out value. If the time-out value is less than or equal to 0,
pbu_8$wait returns. Otherwise, the routine waits for the specified interval or until
the System Interrupt Handler requests an eventcount advance.

The pbu_$wait routine contains an internal flag that indicates whether or not the System
Interrupt Handler has advanced the device’s eventcount. When pbu_$wait returns, it re-
sets this flag to indicate an eventcount advance.

The caller can also permit quit faults (CTRL/Qs or CTRL/Ds) to terminate the wait state
by specifying a parameter to pbu_$wait; refer to Appendix B for a description of
pbu_$wait calling format.

The bm_$wait routine in bm_example_c specifies “index” as the output parameter of
pbu_$wait. Depending on whether the value of index is 0, 1, or 2, bm_$wait then deter-
mines which of the three events occurred and acts accordingly.

6-10 Call-Side Routines

The following segment illustrates how bm_$wait handles this task:

if (!bmcb.flags.done) {
pbu_timeout = timeout; /* value in seconds */
pbu_timeout (pbu_timeout == 0) ? (3600 * 1000)
(pbu_timeout * 1000);

* We want the ability to handle any faults through the
* return value of pbu_$wait, when we enable again, we

* will get the fault. If we did not inhibit before the
* pbu_$wait call, and we received a fault, we would not
¥ be able to cleanup (unmap and unwire buffer) since we
* would be blasted back to the shell or the last fault
* handler.

pfm_$inhibit(); /* inhibit faults */
index = pbu_$wait (bmeb.pbu_unit_number,
pbu_timeout /* number of
milliseconds to wait */
true, /¥ true means allow quits
while waiting */
status);

if (status—>all != status_%$ok) { /* he didn’t like
something */
status->s.fail = 1;
return;

}
}

else index = 0; /* transfer already complete */

switch (index) {

case 0O:
/* The operation completed. Get the ending status and
*¥ length transferred for the caller.
*/
bm_status—>all = bmcb.status.all;
if (bmecb.status.all == bm_$sio_error)
status—>all = bmcb.sio_status.all;
else if (bmecb.status.all != bm_$status_ok)
status—>all = bm_$io_error;
rem_len = bmcb.rem_len; / residual count */
break;
case 1:
/* the operation did not complete in time. */
status—>all = bm_$timeout;
break;
case 2:

Call-Side Routines 6-11

/*
* the user typed control-q while we were waiting. Note:
* the standard system fault catcher will blast us
¥ directly back to shell command level, so we’d never
*¥ get here. But just in case the fault catcher chooses
* to ignore the quit, we”ll handle it.
*/

status—->all = bm_$quit_during wait;

break;

default:
printf("Invalid pbu_$wait index value, %d\n", index);

}

Table 6-1 shows how pbu_$wait responds to asynchronous faults (quit faults), depending
on whether asynchronous faults are inhibited or enabled and whether errors are handled
by the cleanup handler or by the fault handler.

Table 6~1. pbu_8wait Actions When Asynchronous Faults Are Inhibited/Enabled

Handler Asynchronous Asynchronous
Response Faults Faults
Inhibited Enabled

Cleanup Handler
Response

Fault Handler
Response

Does not handle fault, but
returns indication that
quit fault did occur

Does not handle fault, but
returns indication that
quit fault did occur

Executes cleanup handler

Executes fault handler; if
fault handler returns con-
trol to the interrupted
code, pbu_$wait returns
an indication that a quit
fault occurred

6.3.2 Using pbu_$get_ec and ec2_$wait

A device driver or one of its applications may want to wait for more events than device
interrupt, time-out, or quit fault. For example, an application may be simultaneously han-
dling a peripheral device and fielding commands from the terminal. In this case, the appli-
cation uses system routines pbu_$get_ec and ec2_$wait to wait for a variety of events,
including device interrupt.

6-12 Call-Side Routines

The driver routine or application specifies the following as arguments to pbu_$get_ec:

® The unit number of the device.

® A key that indicates which eventcount to get. Currently, the key must be
pbu_$get_device_ec.

The pbu_$get_ec routine returns a value that identifies the device’s eventcount. Drivers
need to call pbu_$get_ec only once during the time the device is acquired; they should
store the returned pointer for subsequent use. However, no errors occur if pbu_$get_ec is
called more than once.

Next, the application or driver routine constructs two lists:

® A list of identifiers for any eventcounts to be waited on, including the identifier
returned by pbu_$get_ec

® A list of satisfaction values for each eventcount

The routine (or application) specifies these lists as parameters to ec2_$wait. This system
routine waits until one of the eventcounts reaches its corresponding satisfaction value and
returns an index value that indicates which eventcount was satisfied.

The following example shows how to wait for device interrupt with ec2_$wait. (For a de-
scription of ec2_$wait and the other eventcount routines, refer to the Domain/OS Calls
Reference manual.)

#nolist;
#include <apollo/base.h>
#include <apollo/pbu.h>

#list;
boolean /* true => device advance */
dev_3$wait (uec, uecval, st) /* false => user’s ec advanced */
ec2_3%ptr_t *uecp; /* user’s eventcount */
long &uecval; /* user’s eventcount value */
status_$t *st;
{

int i;

ec2_$ptr_t ecp;

ec2_$ptr_t ec_ptr_list[2]; /*¥ ec ptr list and value arrays */
long ec_val_list[2];

/* get the device ec */
pbu_$get_ec(unit, pbu_$get_device_ec, &ecp, st);
if (st—>all != status_$ok)
return(false); /*¥ no eventcount */

Call-Side Routines 6-13

/* wait for either the device or the user’s ec to be advanced */
ec_ptr_list[0] = ecp;

ec_val 1list[0] ec2_8$read(*ecp) + 1;

ec_ptr_list[1] uecp;

ec_val_list[1] uecval;

/* if the operation is already done, don“t wait, just
return success */
if (op_already_done)
return(true);

i = ec2_$wait (ec_ptr_list, ec_val_list, st);
if (st—>all != status_$ok)
return(false); /* no eventcount */

return(i-1 == 0); /* ec2_%$wait returns 1..n */

}

In the example, op_already_done is a flag that the user-written interrupt routine sets when
an interrupt is received from the device. The example procedure checks the flag after it
calculates the eventcount value to wait for. In general, whenever a program waits for an
eventcount, it must provide a method (other than the eventcount itself) by which it can
identify whether or not the desired event has already occurred.

NOTE: The variable returned by pbu_$get_ec is an ec2_$ptr_t, which
is not a normal pointer. Do not assume that it contains a virtual
address.

The driver can go about other business while an I/O operation is in progress. In this case,
the driver should return an eventcount for the application to wait upon while the driver is
off doing something else.

6.4 Performing Cleanup Functions

6-14

User-written device drivers can optionally supply a cleanup routine to perform device-spe-
cific cleanup functions before a device is released. The routine pbu_$release obtains the
entry point of the cleanup routine from the DDF and calls the routine during device re-
lease. The cleanup routine in bm_example is called bm_$cleanup; refer to Appendix E,
Section E.2 (C) and Appendix F, Section F.3 (Pascal).

Call-Side Routines

Functions performed by the cleanup routine include:

® Ensuring that no I/0O is in progress when the device is released. The routine can
perform this function either by waiting for any outstanding device I/O to complete
or aborting any outstanding I/O.

® (learing any pending interrupts from the device.
® Deciding whether or not to cancel the release process.

® For PC AT compatible device drivers, ensuring that the last call to
pbu[2]_$dma_start had a corresponding call to pbu[2]_$dma_stop.

® Releasing any acquired 1/0 resources.

The cleanup routine is bound with the other call-side routines.

The cleanup routine is called by GPIO software and must, therefore, conform to the fol-
lowing calling sequence (shown in C and Pascal):

Synopsis (C)

void cleanup_routine(
pbu_$unit_t &unit,
boolean &force_flag,
status_$t *status
)
Synopsis (Pascal)

procedure cleanup_routine(

in unit: pbu_3$unit_t;
in force_flag: boolean;
out status: status_$t
)i
Description
force_flag A Boolean value that indicates whether or not the cleanup routine can
abort the device release operation. If this parameter is set to “true”, the
device is released regardless of the status returned by the cleanup routine.
If this flag is set to “false”, the cleanup routine can abort the release pro-
cedure by returning a nonzero status code. Upon receipt of the status,
pbu_8$release aborts device release and returns to its caller. This flag is
the same as the force_flag parameter for pbu_$release.
status Completion status in status_$t format.
unit The device unit number in pbu_$unit_t format.

oo
oo

Call-Side Routines 6-15

Chapter 7

Transferring Data

Data can be transferred between the application and the device by means of DMA, mem-
ory—-mapped I/O, or programmed I/O. The method you use depends on the kind of con-
troller your driver supports. This chapter describes how to implement each method in your
driver, using GPIO routines.

NOTE: Apollo provides two kinds of calls, pbu_$ and pbu2_$, for sev-
eral GPIO operations. The pbu2_$ routines take addresses and
lengths specified as 4-byte integers rather than 2-byte integers.
When referring to either kind interchangeably, we use the term
pbu[2]_$routine_name.

MULTIBUS users should take note that drivers running on nodes equipped with a 16-bit
MULTIBUS can also use pbu2_$ routines; however, on nodes with a 20-bit MULTIBUS,
the driver must not call a pbu_$ routine for which there is a pbu2_$ counterpart. For this
reason, it may be convenient always to use the pbu2_$ routine, where one is available, so
that the same driver can run on either 16-bit or 20-bit MULTIBUS nodes. Also, note
that if your driver specifies a 20-bit MULTIBUS address and is running on a node with a
16-bit MULTIBUS, the GPIO routines will return an error indication because the 16-bit
MULTIBUS supports only 16-bit MULTIBUS addresses.

If you are writing a driver for an PC AT compatible and VMEbus device, you must use
pbu2_$ routines where they are available. The one exception to this rule concerns
pbu[2]_$dma_start and pbu[2]_$dma_stop routines. Drivers running on the DN3000 use
pbu_$dma_start and pbu_$dma_stop. Drivers running on the DN4000 use
pbu2_$dma_start and pbu2_$dma_stop. The exception to the exception is that if you
are writing a driver for a device that can exert bus mastership on a DN4000, you must use
pbu2_$dma_start and pbu2_$dma_stop.

Transferring Data 7-1

{

NOTE: Unlike Pascal, the C programming language is case-sensitive;
therefore, all system procedure names (such as GPIO routines)
must be lowercase, which is consistent with their appearance in
the system insert files. However, any global names in C that are
accessed by GPIO routines are case-sensitive.

7.1 DMA Transfers

A DMA transfer to or from processor memory occurs when a DMA controller makes
memory references to bus address space. Apollo supports DMA transfers on the
MULTIBUS, PC AT compatible bus, and VMEbus. Differences in the way you implement
a DMA transfer in your driver depend not so much on the kind of bus as on whether your
node’s I/O hardware includes an I/O map. All workstations that support the MULTIBUS
are equipped with the I/O map. For the PC AT compatible bus, the DN3000 doesn’t have
the I/O map and the DN4000 does. If your workstation has the I/O map, refer to Subsec-
tion 7.1.1; otherwise, refer to Subsection. 7.1.2.1. You should also refer to Chapter 1,
Chapter 2, and Chapter 3 of this manual for additional bus—specific information.

7.1.1 Using the I/O Map to Perform DMA Transfers

The I/0 map translates memory references to bus address space into processor memory
references. Before the controller can initiate memory references, the device driver must
establish an association between the pages of processor memory and the pages of bus ad-
dress space. This is referred to as mapping an I/0 buffer.

The process of mapping an 1/O buffer consists of the following:

® Allocating bus address space for the controller
® Wiring the pages of the I/O buffer

® Setting up the I/O map to establish mapping between processor memory and bus
address space

7.1.1.1 Allocating Bus Address Space

All controllers use the same bus address space to access processor memory.

NOTE: The address space is 64 KB for 16-bit controllers, 1024 KB for
20-bit controllers, and 16 MB for 24-bit controllers.

Transferring Data

Since 1/O buffers concurrently in use by controllers must not overlap in bus address space,
the device driver must ensure against overlap by allocating a section of bus address space
for the controller. You use the GPIO routine pbu[2]_$allocate_map to allocate the section
for the controller. The driver specifies the length of the I/O buffer to
pbu[2]_$allocate_map; the routine locates a portion of the I/O map that matches the
given length and returns the address of the first page of bus memory allocated to the
buffer.

If another device is active when the driver calls pbu[2]_$allocate_map, either the re-
quested amount of I/O map space may be unavailable or a hard-wired bus address may
already be in use (see Chapter 6, Subsection 6.1.4). In this case, the driver has several
choices:

® Wait for an interval and then retry the operation

® Request a smaller amount

® Report the error to the application program

e Inform the interactive user that the requested system resources are unavailable

The following call to pbu_$allocate_map (from the initialization routine of
bm_example_c) allocates an area of the I/O map that corresponds to the largest block
(32 KB) the driver ever reads or writes. The constant bm_$block_len is declared as hav-
ing a value of 32768; bmcb.bm_iova contains the start of the allocated area of bus address
space.

bmcb.bm_iova = pbu_$allocate_map (
bmcb.pbu_unit_number, /* number of this pbu device */

bm_$block_len, /* maximum block size we”ll use */
false, /* don’t need a specific iova */
0, /* forced iova would go here */
status); /* returned status */

7.1.1.2 Wiring I/O Buffers

A buffer is wired when it is permanently resident in processor memory and is, therefore,
unavailable to the MMU'’s paging operations. Device drivers must wire their I/O buffers
because the I/O map cannot handle the movement or absence of pages during an I/O op-
eration.

A device driver wires an I/0 buffer by calling the routine pbu[2]_$wire, specifying the
buffer to be wired and its length. A page that is part of a wired buffer cannot be wired
again. If a page of the requested buffer is already wired, pbu[2]_$wire returns an error
indication to the driver.

Transferring Data 7-3

The bm_command routine in bm_example_c calls pbu_$wire just before sending the read
or write command to the routine, as follows:

bmeb.bufaddr = buffer; /* save address of buffer */

bmcb.buflen = len; /* save length of buffer */

pbu_$wire (bmcb.pbu_unit_number, /* number of this pbu unit */
(void *)buffer, /* buffer to wire */
bmcb.buflen, /* length to wire (in bytes) */
status); /* returned status */

if (status—>all != 0) { /* give up if something goes

wrong */

status—>fail = 1;
return;

}

bmeb. flags.buffer wired = 1; /* remember we wired the buffer */

The size of a node’s main memory determines the maximum number of 1024-byte pages
that can be wired by all drivers in the system. To determine the approximate maximum
number of wired pages for your node, subtract 256 from the number of pages of memory
that the node has. For example, for a node with 1 MB of main memory, 1024 pages mi-
nus 256 (pages) equals 768, so drivers must wire fewer than 768 pages.

The driver can also wire an I/O buffer by defining a static storage area in the interrupt
routine and copying data to it or from it for I/0. If the storage area is allocated in the
interrupt module, it is wired by virtue of being allocated in the interrupt side, which is itself
wired; therefore, no call to pbu[2]_$wire need ever be made.

For timing considerations in wiring and unwiring an I/O buffer, refer to Appendix D, Sec-
tion D.3.

7.1.1.3 Setting Up the I/0 Map

After the driver has allocated pages of bus address space for the buffer and wired the
buffer into processor memory, it must establish the mapping between the buffer and the
pages of bus address space by calling the GPIO routine pbu[2]_$map. This routine takes
three arguments:

® The I/O buffer
® The I/O buffer’s length
® A bus address within any page of the area allocated by pbu[2]_$allocate_map

The pbu[2]_$map routine establishes the displacement within bus address space for the
buffer and returns an address that corresponds to the start of the buffer.

7-4 Transferring Data

If the buffer you want to map is permanently wired, you can call pbu[2] $map in the in-
itialization routine, just after calling pbu[2]_$allocate_map; otherwise, you should call it in
one of the command-processing routines or in the start I/O routine. In the following ex-
ample (from bm_example_c), pbu_$map is called in the start I/O routine (bm_$sio), just
before touching the controller’s command register. The return value (bmcb.csr_ptr.c) is
the buffer’s address, which is written to the controller’s address register:

bmeb.csr_ptr.c->iova = pbu_S$map (bmcb.pbu_unit_number, /* number
of this pbu unit */
(void *)bmcb.bufaddr, /* virtual address of buffer */

bmeb.io_len, /* length of buffer */
bmcb.bm_iova, /* iova we got from pbu_$allocate_map */
status); /* returned status */

if (status->all != 0)
return;

7.1.1.4 Preallocating I/O Resources

A device driver does not need to allocate and deallocate I/O map entries for each I/O op-
eration. Instead, when it initializes the device, the driver can allocate a portion of the I/O
map that corresponds to the largest buffer that will be used during I/O transfers. The
driver can map buffers via the allocated I/O map entries until the device is released.

Similarly, the device driver can “permanently” wire and map an I/O buffer at device in-
itialization for the duration of driver execution. During device initialization, the initializa-
tion routine can call the routines pbu[2]_$allocate_map, pbu[2]_$wire, and
pbu[2]_$map to establish a correspondence between this preallocated buffer and a section
of bus address space. The routine saves the address returned by pbu[2]_$map. To per-
form a DMA transfer, the driver copies data into the preallocated buffer, loads the address
returned by pbu[2]_$map into the controller’s DMA registers, and initiates the transfer.
Appendix D, Section D.4 discusses some performance advantages of a permanently wired
buffer.

Another way to preallocate I/O resources is to define a preallocated buffer in the interrupt
side of the driver, as described in Subsection 7.1.1.2, “Wiring I/O Buffers.”

Transferring Data 7-5

7.1.1.5 Dynamic Resource Allocation

Drivers for applications that move data directly to or from a file-system object mapped into
processor address space usually wire and unwire a buffer for each I/O operation. For ex-
ample,

map file into address space;
i = 0;
WHILE i < number_of pages_in_file DO BEGIN
wire pages i to i+n-1;
do i/o;
unwire pages i to i+n-1;
i = i+n;
END;

Note that the driver need not wire any pages used by the interrupt routine; they are wired
when the driver is installed into user—process address space during device acquisition.
Sometimes, however, the device driver may attempt to wire a buffer in the data$ section of
an application program that shares a page with the data$ section of the interrupt routine.
Because this page has already been wired, pbu[2]_$wire returns an error. To prevent this
error, the driver can

® Place the buffer in dynamic storage (the stack)
® Place the buffer in a mapped object (which will always be page aligned)

® Declare a dummy array of one page immediately following the buffer declaration

7.1.1.6 Scatter-Gather Operations

A scatter—gather I/O operation consists of reading (scattering) or writing (gathering) a sin-
gle block of data in bus address space to or from discontiguous buffers in processor ad-
dress space. For example, when the operating system reads a Domain disk block, it places
the 32-byte header in supervisor memory and the 1024 bytes of data elsewhere in mem-
ory.

The pbu[2]_$map routine can be used to implement limited forms of scatter-gather by
observing Rules 1, 2, and 3:

1. The end of the first section of data to be read or written must fall on a page-
aligned boundary.

2. The driver should map each subsequent section to a bus address that is one page
higher than the page address of the previous section.

3. All blocks of data following the first section must be an integral number of pages
in length and must start on page-aligned boundaries. (The last section need not
end on a page boundary.)

7-6 Transferring Data

The following example shows how to apply the rules when mapping a block of data to
discontiguous buffers. In this example, the block has a 5C-byte header and 1A0 bytes of
data.

First, the driver calls pbu[2]_$allocate_map, which reserves an area of the I/O map and
returns the address of the first available page in bus memory (in this example, 3000).

Next, the driver calls pbu[2]_$map, specifying iova 3000, the length 5C, and buffer ad-
dress 2A9FA4 (that is, the start of the area in processor address space where the header is
to be transferred). The buffer address is obtained by subtracting the length of 5C from a
page-aligned address in processor address space (2AA000), giving the starting address
2A9FA4. This procedure satisfies Rule 1 by ensuring that the first section ends on a page-
aligned boundary. The pbu[2]_$map routine returns the header’s starting address (33A4)
in bus address space.

The 1A0 bytes of data are to be transferred to a buffer at address 2E4400, thus satisfying
Rule 3, which requires each subsequent section to start on a page boundary. The driver
calls pbu[2]_$map, specifying iova 3400, the length of the data 1A0, and the address
2E4400. The pbu[2]_$map routine returns a bus address 3400 for the data, in accordance
with Rule 2, which requires the driver to map each subsequent block to a bus address that
is one page higher than the bus address of the previous block.

Figure 7-1 illustrates this example of mapping to discontiguous buffers.

Header

Bus
(5C Bytes) Processor

Address Space Address Space
2A9C00 3000

1/0 Map

2A9FAL o BAY T T TR
& Header

o o

+. (5C Bytes)

' e ytes) *

2 000 3 400 S i
AA AT e T AR L
A
S gy

R Ty
A Y o

o e
e

X &
< Header

N W

2E4400 [o S
¢ . (1A0 Bytes)' s
; < es)’ s

IR &
R R
Sy A
- DR
K et
o

e
o o
S

2E45A0

Figure 7-1. Mapping Discontiguous Buffers

Transferring Data 7-7

7.1.2 Starting and Stopping a DMA Operation on the PC AT Compatible Bus

You must use the pbu2_$ DMA calls for bus-master PC AT compatible devices with an
I/0 map. For bus-master PC AT compatible bus devices without an I/O map, we prefer
that you also use the pbu2_$ DMA calls. Although the nonbus-master device code may
use either pbu2_$ or pbu_$ DMA calls to perform DMA operations, we recommend that

the pbu2_$ calls be used for the following reasons:

® pbu2_$ DMA calls will work on machines with or without I/O map hardware.

® Even if I/O map hardware is present, drivers that use the pbu_$ DMA calls are
still restricted to DMA operations with a maximum length of one page.

@ If I/O map hardware is present, drivers that make pbu2_$ DMA calls have better
control over and can more efficiently use the I/O map resources, and may per-

form DMA operations of more than one page.

For drivers that wish to use pbu_$ DMA calls on machines without 1/0 map hardware and
pbu2_$ DMA calls on machines with I/O map hardware, use the pbu_$get_info call to

determine the presence of an I/O map.

#nolist

#include <apollo/base.h>
#include <apollo/pbu.h>
#list

void device_$init(

pbu_%unit_t &unit,
pbu_$ddf ptr_t &ddf_ptr,
pbu_$csr_page_ptr_t &csr_ptr,
status_$t *status)
{
pbu_$info_t info;

.......

/* determine configuration */

pbu_%$get_info(sizeof (info), &info, status);

if (status—>all != status_$ok) return;

/*
/*
/*
/*

unit number */
pointer to ddf */
pointer to csr page */
returned status */

/* check for iomap existence for bus my device is on */

if (info.iomap_types & pbu_atbus_iomap) {

/* yes, machine has an iomap */

.......

7-8 Transferring Data

/* is there an iomap for

atbus? */

/* machine has no iomap */

7.1.2.1 DMA Transfers Without the I/0 Map

In drivers for nonbus—-master devices, pbu_$dma_start and pbu_$dma_stop must sur-
round each DMA operation, whether successful or not. The pbu_$dma_start routine pre-
pares DMA hardware for the controller’s operation. After the driver calls
pbu_8$dma_start, the controller can begin its operation. When the controller indicates
that the operation is completed, the driver calls pbu_$dma_stop to get status from DMA
hardware to ensure that the hardware completed its share of the operation as well. The
driver must call pbu_$dma_stop even if the controller reports an error. The driver may
ignore the status returned by pbu_$dma_stop, but if the controller had a problem, it is
likely that the DMA operation did not run to completion. The call to pbu_$dma_stop
must, in any case, be made so that software can reset its knowledge of who is using the
DMA channel.

It is important that these two calls surround each DMA operation. If you make a call to
pbu_$dma_start without a subsequent call to pbu_$dma_stop, the channel you specified
in pbu_$dma_start becomes unavailable for any additional DMA activity; the next time
you attempt to call pbu_$dma_start, you will get a REQUESTED DMA CHANNEL IN
USE error message. If you get this message, however, you can call pbu_$dma_stop to
release the channel.

Use the following calls in the sequence in which they appear. The sequence of calls made
by a driver using pbu2_$dma_start/stop for nonbus-masters follows:

® pbu2_$wire Wires the buffer

® pbu_$dma_start Sets up and starts DMA operation
® Device-specific code to activate DMA operation

e pbu_$dma_stop Stops DMA operation

® pbu2 $unwire Unwires the buffer

Transferring Data 7-9

Drivers for bus-master devices must call pbu[2]_$dma_start once, specifying the
pbu_dma_cascade option. This option reserves the DMA channel and provides bus arbi-
tration. The pbu[2]_$dma_stop routine must be called when the device is released.

Use the following calls in the sequence in which they appear. The sequence of calls made
by a driver using pbu_$dma_start/stop for bus-masters follows:

® pbu_$dma_start Sets processor’'s DMA hardware to cascade mode so that the
device can use its own DMA hardware

® pbu2_$wire Wires the buffer
® Device specific code to activate DMA operation
® pbu2_$unwire Unwires the buffer

® pbu_$dma_stop Takes DMA processor’'s DMA hardware out of cascade mode

Unless the device itself supports scatter—gather operations, DMA transfers without the I/O
map are limited to 1024 bytes of data per operation and must not cross page boundaries.
(Methods of aligning a buffer on a page boundary are discussed in Chapter 6, Subsection
6.1.4, and Chapter 10, Subsection 10.1.2.1.) If your device has its own scatter—gather
hardware, your driver must wire its I/O buffer by calling pbu_$wire_special, specifying as
arguments the buffer to be wired and its length. The routine returns a list of physical ad-
dresses, which the driver sends to the device. Refer to Appendix B, Section B.2 for a de-
scription of this GPIO routine.

PC AT compatible devices that can request bus mastership must also call
pbu_S$wire_special, specifying as arguments the buffer to be wired and its length. (Drivers
for nonbus-master devices must call pbu2_$wire.)

Drivers designed to run only on the DN3000 should call pbu_$dma_start and
pbu_$dma_stop. How you use these calls depends on whether your driver supports a
bus-master or nonbus—master device.

NOTE: If you are designing your driver to run on the DN4000 and you
wish to take advantage of its I/O map, you must use
pbu2_$dma_start and pbu2_$dma_stop (see Subsection
7.1.1).

The following program segments are from a DN3000 driver for a nonbus-master device.
Included here are parts of the call-side transfer routine (dma_data), which initiates the
DMA operation, and the interrupt routine (dev_$int), which services device interrupts and
stops the DMA operation.

7-10 Transferring Data

The driver assumes that the data to be transferred

is page aligned, but it does include a

check to determine if the amount of data to be transferred exceeds the 1-KB limit per
DMA operation. If the amount of data exceeds 1 KB the interrupt routine restarts the
DMA operation for the next 1-KB block of data and continues to do so until all of the

data is transferred.
First, the transfer routine:

PROCEDURE dma_data (

DMA data to/from the
controller }

{

IN cb_ptr: dev_cb_ptr_t;{ control block pointer }
IN dir_read: boolean; { a flag:
True = read data
from device
False = write data to
device }
IN va: univ_ptr; { virtual address
(pointer) to the
buffer to read/write }
IN len: pinteger; { length to dma in bytes}
OUT status: status_$t { return status }
)3
VAR
dma_buf_ ptr: “string;
dma_dir: pbu_$dma_direction_t;
st: status_$t;
cnt: pinteger;
begin

with cb_ptr“:cb, cb.csr_ptr-:csr d
cb.dma_complete := false;

{ Enable the DMA request on the
start_dma. This must be done

o begin
{ no DMA started yet }

device before calling
because the DMA line will float

unless the dma enable bit is set. }

cb.dev_control:= cb.dev_control +
[dma_ienable, dma_enable];

o=

csr.dev_control := cb.dev_control;

if dir_read then cb.dma_dir

else cb,dma_dir := pbu_dma_write;

pbu_dma_read;

{ DMA interrupt enable,
DMA enable }

{ write driver’s copy to
csr page }

{ if true, DMA
read}

{ if false, DMA
write}

{ Check that that the data to DMA is in bytes_per_page chunks. }

Transferring Data 7-11

7-12

cb.dma_buf_ptr := va;
if cnt > bytes_per_page then begin;

cb.dma_remainder := cnt - bytes_per_page;
cnt := bytes_per_page;
end

else cb.dma_remainder := 0O;

{ Call PBU routine to setup and enable DMA controller on CPU
board. }

pbu_8$dma_start (cb.pbu_unit, cb.dma_chan, cb.dma_dir,
cb.dma_buf_ptr~, cnt, [], status);
if status.code <> status_$ok then goto dma_fail;

{ Wait for the DMA to complete. The interrupt routine will call
pbu_$dma_stop if DMA goes to completion. }

while not cb.dma_complete do
if (pbu_$wait (cb.pbu_unit, dev_timeout, true, status)<>0)

then exit;
if not cb.dma_complete then begin {interrupt did not happen...}
status.all := dev_$dma_timeout; { ... DMA timed out, so

abort DMA. }
dma_fail: discard(pbu_$dma_stop (cb.pbu_unit, cb.dma_chan, st));

cb.dev_control := cb.dev_control -
[dma_ienable, dma_enable}; { turn off device’s DMA
enables }
csr.dev_control := cb.dev_control; { write driver’s copy

out to csr page }
end; { if not cb.dma_complete }
end; { with cb_ptr”, cb.csr_ptr" }
return;
end { dma_data };

Next, the interrupt routine (some device-specific code is omitted at the beginning of the
routine that checks for a command-complete interrupt):

FUNCTION dev_$int (in unit: pbu_$unit_t): pbu_$interrupt_return_t; ({
device interrupt

routine }
var
st: status_9$t;
begin
dev_$int := [pbu_$interrupt_advance,
pbu_$interrupt_enable]; { default return }

with dev_8$cb[0]:cb, cb.csr_ptr®:csr do begin

Transferring Data

end;

{ Check for DMA-complete interrupt. It is necessary to disable
the DMA channel before disabling DMA on the device, because as
soon as DMA is disabled on the device, the DMA request lines
will float, causing spurious DMA cycles if the DMA channel were
still enabled. }

if csr.dev_status.dma_done then begin
discard(pbu_$dma_stop(cb.pbu_unit, cb.dma_chan,
cb.dma_stop_stat));

{ Make sure we don’t try to DMA more than 1K at a time.
cb.dma_remainder is initialized in dma_data and is updated
here. }

if cb.dma_remainder <> O then begin { more to do }
dev_$int := [pbu_$interrupt_enable];

{ adjust the buffer pointer to the
bytes_per_page block }

cb.dma_buf ptr :=
univ_ptr(integer32(cb.dma_buf_ ptr) +
) bytes_per_page) ;
{ check to see if we have more than bytes_per_page
left to transfer }

if cb.dma_remainder > bytes_per_page then begin
cnt := bytes_per_page;

cb.dma_remainder := cb.dma_remainder -
bytes_per_page;
end
else begin
cnt := cb.dma_remainder;
cb.dma_remainder := O;
end;

{ start up the DMA channel for the next
bytes_per_page block }
cb.dev_control := cb.dev_control -
[dma_enable,dma_ienable]; { disable DMA

interrupt and
DMA lines }

cb.dev_control; { copy to CSR

page }

csr.dev_control :

cb.dma_complete := true; { flag dma complete }
end; { if - then - else cb.dma_remainder <> O }
end; { if csr.dev_status.dma_done }
end; { with dev_8$cb[0], cb.csr_ptr” }
{ dev_s$int }

Transferring Data 7-13

7-14

7.1.2.2 DMA Transfers With the I/0 Map

Drivers that are designed to run on a PC AT compatible bus machine with an I/O map
and take advantage of its I/O map use the same calls as drivers for MULTIBUS devices.
In addition, such drivers also call pbu2_$dma_start and pbu2_$dma_stop. How you
make these calls depends on whether your driver supports a bus—master or nonbus-master
device.

In drivers for nonbus-master devices, pbu2_$dma_start and pbu2_$dma_stop must sur-
round each DMA operation, whether successful or not. The pbu2_$dma_start routine
prepares DMA hardware for the controller’s operation. After the driver calls
pbu2_$dma_start, the controller can begin its operation. When the controller indicates
that the operation is completed, the driver calls pbu2_$dma_stop to get status from the
DMA hardware to ensure that the hardware completed its share of the operation as well.
The driver must call pbu2_$dma_stop even if the controller reports an error. The driver
may ignore the status returned by pbu2_8$dma_stop, but if the controller had a problem, it
is likely that the DMA operation did not run to completion. The call to pbu2_$dma_stop
must, in any case, be made so that software can reset its knowledge of who is using the
DMA channel. '

It is important that these two calls surround each DMA operation. If your driver makes a
call to pbu2_$dma_start without a subsequent call to pbu2_$dma_stop, the channel you
specified in pbu2_$dma_start becomes unavailable for any additional DMA activity; the
next time the driver attempts to call pbu2_$dma_start, you will get a REQUESTED DMA
CHANNEL IN USE error message. If you get this message, however, you can call
pbu2_$dma_stop to release the channel.

Use the following calls in the sequence in which they appear. The sequence of calls made
by a driver for a nonbus~master device follows:

® pbu2 $allocate_map Allocates an area of the I/O map
® pbu2 $wire Wires the buffer

® pbu2 $map Maps the buffer to bus memory space

® pbu2_$dma_start Sets up and starts the DMA operation
® Device-specific code to activate DMA operation

® pbu2_$dma_stop Stops the DMA operation

® pbu2 $unmap Unmaps the buffer

® pbu2 $unwire Unwires the buffer

® pbu2 $free_map Releases the previously allocated area of the I/0 map

Transferring Data

Drivers for bus-master devices must call pbu2_$dma_start once, specifying the
pbu_dma_cascade option. This option reserves the DMA channel and provides bus arbi-
tration. The pbu2_$dma_stop routine must be called when the device is released.

Use the following calls in the sequence in which they appear. The sequence of calls made
by a driver for a bus—master device follows:

e pbu2_$dma_start Sets the processor’'s DMA hardware to cascade mode so that
the device can use its own DMA hardware

® pbu2_$allocate_map Allocates an area of the I/O map
® pbu2_$wire Wires the buffer

® pbu2_$map Maps the buffer to bus memory space

® Device-specific code to activate DMA operation

© pbu2_$unmap Unmaps the buffer

® pbu2 $unwire Unwires the buffer

® pbu2 dma_stop Takes the DMA hardware out of cascade mode

pbu2_$free_map Releases the previously allocated area of the I/O map

7.1.3 Releasing I/O Resources After a DMA Transfer

The driver uses GPIO routines to release I/O resources following the completion of a DMA
transfer. Subsections 7.1.3.1 and 7.1.3.2 describe what routines to call and how to use
them.

NOTE: If you are not designing your driver to run only on the DN4000,
only Subsection 7.1.3.2 is pertinent to you.

7.1.3.1 Deallocating the I/O Map

Because each device can have only one area of the I/O map allocated to it at a time, the
device driver must call pbu[2]_$free_map to deallocate I/O map entries before it can call
pbu[2]_$allocate_map again. However, the driver need not allocate the I/O map dynami-
cally (see Subsection 7.1.1 for more information about I/O resource allocation).

Transferring Data 7-15

7.1.3.2 Unwiring the I/O Buffer

Device drivers that have wired their buffers by using pbu[2]_$wire or pbu_$wire_special
must unwire them with pbu[2]_$unwire unless they are going to use them again for an-
other I/O operation. If the buffer is a file-system object into which data has been read,
the driver should ensure that the data is saved when the file is closed by

® Copying the buffer to another area in memory before unwiring it, or

® Setting to “true” the modify_flag argument to pbu[2]_S$unwire so that
pbu[2]_$unwire marks each page of the buffer as having been modified before
unwiring it

7.1.4 Releasing I/O Resources During Faults

7-16

If a device driver has allocated I/O resources and a synchronous or asynchronous fault oc-
curs, the allocated resources (I/O map entries, wired buffers, or mapped memory) are not
deallocated unless the application program or driver establishes a cleanup handler or the
process terminates.

The application or driver uses the system function pfm_$cleanup to establish its own fault
handling routine. The device driver should also contain a cleanup routine that deallocates
I/0 resources and disables the device. The driver should monitor the allocation of the fol-
lowing I/O resources:

® The area of the I/O map that is allocated
® Locations and sizes of wired buffers
® Bus memory addresses and sizes of mapped buffers

When a fault occurs, the application’s fault handler, as one of its functions, calls the driver
cleanup routine to release any allocated 1/0 resources.

If the initialization routine contains the entire application, the application need not estab-
lish a fault handler. The pbu_$acquire routine establishes a fault handler before calling
the initialization routine, so that any fault during initialization causes the device to be re-
leased, thereby releasing any allocated resources.

Transferring Data

7.2 Memory-Mapped Transfers

A memory-mapped controller contains on-board memory that can store data received
from external devices. However, the controller itself does not transfer the blocks of data to
processor address space, as it would if it performed DMA; instead, the device driver moves
the data to or from controller memory.

The driver in /domain_examples/gpio_examples/threecom_example supports a memory-
mapped controller.

Before a device driver can refer to controller memory, it must associate the area of con-
troller memory with an area of processor address space. The way this mapping is accom-
plished depends on the node’s bus.

® Device drivers running on a node equipped with a 16-bit MULTIBUS call GPIO
routines pbu_$map_controller and pbu_$unmap_controller to map and unmap
controller memory to and from processor address space.

® Drivers for 20-bit controllers running on nodes with a 20-bit MULTIBUS call
GPIO routines pbu2_$map_controller and pbu2_$unmap_controller to map and
unmap controller memory to and from processor address space.

® Drivers for VMEbus and PC AT compatible devices call GPIO routines
pbu2_$map_controller and pbu2_$unmap_controller to map and unmap con-
troller memory to and from processor address space.

NOTE: If a DNSxx workstation, DSP80, or DSP90 with a 20-bit
MULTIBUS is fully configured with 3 MB of memory, only
512 KB of the MULTIBUS address space is available for mem-
ory-mapped operations. This restriction does not apply to the
DNS5xx-T family.

Transferring Data 7-17

7.2.1 Referencing Controller Memory

7-18

Certain restrictions apply when referencing controller memory on the MULTIBUS,
VMEDbus, and PC AT compatible bus.

For the MULTIBUS:

® Controller memory must be page aligned and must occupy only the first 32 KB of
MULTIBUS memory space on nodes with a 16-bit MULTIBUS and 1 MB on
nodes with a 20-bit MULTIBUS. (For more controller configuration information,
see Chapter 1, Section 1.3.)

® The area of MULTIBUS memory space occupied by the controller memory is per-
manently unavailable to DMA operations by any controller.

® On the 16-bit MULTIBUS, neither the memory-mapped controller nor any other
controller can use the MULTIBUS to read or write to memory on the memory-
mapped controller.

The reason for this restriction is that the I/O hardware interprets memory refer-
ences on the bus as DMA references to processor memory. If the reference is a
memory write, the data is transferred to both controller memory and processor
memory, causing a bus time-out error if the I/O map was not set up correctly. If
the reference is a memory read, the I/O hardware and the controller simultane-
ously become bus masters, resulting in corrupted data.

This restriction does not apply to the 20-bit MULTIBUS.
For the VMEbus:

® Controller memory must be page aligned.

® Controller memory must lie within the area reserved for it in processor physical
address space (see Table 2-1).

® The area of memory space occupied by controller memory is permanently unavail-
able to DMA operations by any controller.

For the PC AT compatible bus:

® Controller memory must be page aligned.

® Controller memory must occupy user—available locations in processor physical ad-
dress space (see Table 3-2).

Transferring Data

7.2.2 Mapping Controller Memory

The device driver calls pbu[2]_$map_controller to map controller memory to processor
address space. The pbu[2]_$map_controller routine returns a virtual address that repre-
sents the start of the mapped area in processor address space. Any subsequent reads or
writes to this area will read or write directly to controller memory. The driver can use
pbu_S$read_csr and pbu_$write_csr to reference the mapped memory. These routines
suppress normal bus time—out generation if part of the memory is not responding.

NOTE: The PC AT compatible bus does not generate bus time-outs,
which means that you cannot use pbu_$read/write_csr to test
for controller presence; instead, you must tweak the appropriate
device register and see if it responds in a predictable fashion to
determine if the device is present.

The following segment is from the initialization routine for a driver supporting a memory-
mapped controller. The routine calls pbu_$map_controller and pbu_$read_csr to test if
the controller is present on the bus and, if it is, to initialize it; cbp has been declared as a
pointer to the driver control block.

with cbp” do begin

mem_ptr := pbu_$map controller (pbu_unit, mem_base, mem len,
status);

if status.all <> status_$ok then
begin
status.fail := true;
return;
end;

{ Read the status register with read_csr to see if the
controller is really there. }

pbu_$read_csr (pbu_unit, mem ptr~.csr, i, false, status);

if status.all = pbu_$bus_timeout then
begin
status.all := dev_$no_controller;
return;
end;

if status.all <> status_$ok then

begin
status.fail := true;
return;
end;
flags := flags + [init]; { tell everyone we’re initialized }

Transferring Data 7-19

{ Issue a reset command to the controller, then go online.
From here on in, we depend on dev_$cleanup to clean up if we
get an error. } :

dev_$set_mode (unit, dev_$reset, [], status);
if status.all <> status_$ok then return;
dev_$set_mode (unit, dev_$online, [], status);
if status.all <> status_$ok then return;

end;

MULTIBUS users should take the following precautions when performing memory-mapped

The pbu[2]_$map_controller routine makes the area of bus memory space allo-

cated to the controller unavailable for any subsequent DMA operations. Note that
the bus addresses required for the controller may already be allocated for a DMA
transfer. To prevent this situation from occurring, application programs should ac-
quire memory-mapped devices before DMA devices.

Because the hardware has no indication that a memory-mapped controller is pre-
sent until pbu[2]_$map_controller is called, the I/O map allocation routines may
allocate, for the memory-mapped controller or for another controller, an I/O map
area that overlaps the area allocated to the memory-mapped controller. As a pre-
caution, you should configure the controller memory to occupy the high end of
bus memory space, because the I/O map allocation routines allocate I/O map
areas from low addresses to high addresses.

If the driver of a memory-mapped controller needs to perform a DMA transfer, it
can call pbu[2]_$allocate_map to allocate another area of the I/O map. How-
ever, the device driver must call pbu[2]_$map_controller before calling
pbu[2]_$allocate_map.

7.2.3 Unmapping Controller Memory

7-20

Drivers must call pbu[2]_$unmap_controller to unmap controller memory. If the driver
needs to retain an image of the controller memory, it must copy the memory to another
area of processor address space before calling pbu[2]_$unmap_controller.

Transferring Data

7.3 Programmed I/0O

In programmed I/O, the processor transfers the data one word (or byte) at a time, testing
a device register following each transfer to determine if it was complete. A device for any
bus may perform programmed I/O, provided it is equipped with the necessary interface.

Writing a data-transfer routine using programmed I/O is the simplest of the three methods
because there are no buffers to allocate and wire (and deallocate and unwire), no I/O map
to set up, and no DMA hardware to turn on and off. However, programmed I/O is also
generally the slowest because

® The rate of transfer is limited to one word or byte at a time.
® The transfer itself is under the control of software rather than hardware.

® The device must inform the processor after each transfer.

In the case of the DN3000, however, programmed I/O is appreciably faster than DMA be-
cause

@ The MC68020 programmed I/O transfer rate is 12 MHz versus the specification
for the PC AT compatible bus DMA transfer rate of 6 MHz.

e DMA transfers for nonbus—master devices on the DN3000 are limited to 1 KB.

Thus, given the choice, you may wish to opt for programmed I/O, especially in drivers for
slow (serial lines) or fast (hard disk) buffered devices, and reserve DMA for devices of
intermediate speed (floppy disk).

Transferring Data 7-21

Chapter 8

Interrupt—Side Routines

The interrupt side differs from the call side in that all memory on the interrupt side is
wired to prevent paging. How this affects what you can and cannot do with the interrupt
side is the subject of Section 8.1. Not all drivers require an interrupt side. Whether or not
you include one in your driver depends on whether you want the driver or the System In-
terrupt Handler to handle interrupts. Refer to Subsection 8.2.3 for a comparison of the
way that the System Interrupt Handler processes interrupts with the way a user—written in-
terrupt routine does. Also, refer to Appendix D, Section D.4 for interrupt-processing
times. If you decide to include an interrupt routine in your driver, then the interrupt side
must be bound separately from the call side (see Chapter 10, Section 10.1.2).

Included in this chapter is a description of the Start I/O (SIO) function. Although an I/0
operation may be started in the call side of the driver, it must be started in the interrupt
side if the interrupt routine is going to call it.

NOTE: Unlike Pascal, the C programming language is case sensitive;
therefore, all system procedure names (such as GPIO routines)
must be lowercase, which is consistent with their appearance in
the system insert files. However, any global names in C that are
accessed by GPIO routines are case-sensitive.

8.1 Interrupt Side Restrictions

The interrupt side differs from the call side because it is wired to protect the address space
occupied by the interrupt routine from memory management paging operations. This
means that, for drivers written in Pascal, any routine or data structure referenced by the
interrupt routine must be installed and DEFINEd in the same module as the interrupt rou-
tine. As a result, the interrupt side is set up somewhat differently from the call side. (For
more information about defining globals, see Appendix C, Subsection C.2.5.)

Interrupt-Side Routines 8-1

No interrupt-side routine must ever reference unwired memory, shared nonglobal memory,
or global memory. This restriction applies to referencing library routines such as PGM and
VEMT calls and doing reads or writes in Pascal or C. Such references could cause a page
fault, thus aborting interrupt processing and generating a fault in the driver process (see
Subsection 8.2.4). The only GPIO routines that an interrupt-side routine can call are
pbu[2]_$map, pbu[2]_$unmap, pbu_$device_interrupting (which determines whether an
interrupt occurred), pbu_$advance_ec, pbu[2]_$dma_start, and pbu[2]_$dma_stop.

Because any reference that an interrupt-side routine makes to globals must be resolved
internally to the interrupt library, all routines and data structures referenced in the inter-
rupt side must be allocated there. Thus, for example, you must allocate the driver control
block (using the DEFINE clause, if your driver is written in Pascal) within the interrupt
side in order to reference it there. The same holds true for routines. To ensure that the
interrupt side makes no unresolved references, we recommend that you specify the —sys
option when you bind the interrupt library. This option produces a listing of all system
globals that cannot be resolved within the input object module; a successful binding should
result in the message, “All globals are resolved” (see Chapter 10, Subsection 10.1.2.2).

NOTE: pbu_$acquire, pbu_$acquire_stream, and aqdev will refuse to
load an interrupt library with unresolved globals.

A driver can contain several interrupt routines to handle a device that interrupts on more
than one request line. However, the size of the interrupt module (the interrupt routine(s)
and any other procedures bound with it) must not exceed 32 KB, including procedure,
data, and debug information.

8.2 Interrupt Routine

Drivers handle interrupts by performing the following functions:

® Enabling and disabling interrupts from the device
® Waiting for interrupts from the device
® Processing (optionally) device interrupts with one or more interrupt routines

Subsections 8.2.1 through 8.2.5 discuss these functions as well as other aspects of interrupt
routines.

Interrupt-Side Routines

8.2.1 Interrupt Routine Format

The interrupt routine is called by GPIO software and must, therefore, conform to the fol-
lowing formats:

For C:

pbu_8$interrupt_return_t interrupt_routine (pbu_$unit_t &unit);

For Pascal:

function interrupt_routine(in unit:pbu_$unit_t):pbu_$interrupt_return_t;

The input parameter, unit, is optional (for more information, see Chapter 9, Section 9.6).
The function returns a set of flags in pbu_$interrupt_return_t format that specify actions
that the System Interrupt Handler is to perform. Possible values are

® pbu_S$interrupt_advance, which directs the System Interrupt Handler to advance
the device’s eventcount

® pbu_S$interrupt_enable, which directs the System Interrupt Handler to re-enable
interrupts from the device

8.2.2 Enabling and Disabling Device Interrupts

On all buses except the VMEbus, a hardware interrupt mask register controls the proces-

sor’s receipt of interrupts. Each bit within the register corresponds to one of the interrupt
lines. Resetting the bit prevents the processor from receiving interrupts from the device. If
the device requests an interrupt and the interrupt mask bit is reset, the interrupt is taken

when the bit is set.

Device interrupts are automatically disabled under the following conditions:

® At system initialization (all device interrupts disabled)
® After the device is acquired

® When the System Interrupt Handler intercepts an interrupt from the device, re-
gardless of whether the driver includes a user-written interrupt routine

® When the device is released

® During system shutdown

When the device driver requires that the processor receive interrupts from the device, it
enables interrupts by calling the routine pbu_$enable_device. This routine clears the de-
vice’s interrupt mask bit, permitting the processor to receive interrupts from the device.
Calling the routine pbu_$disable_device sets the interrupt mask bit, which prevents receipt
of device interrupts.

Interrupt-Side Routines 8-3

Any of the routines that make up the call side of the driver can call pbu_$enable_device
and pbu_$disable_device to prevent the interrupt routine from running during the execu-
tion of critical sections of code. The interrupt routine can optionally enable interrupts by
setting the appropriate return value, but it cannot call pbu_$enable_device or
pbu_$disable_device. In bm_example_c, bm_command calls pbu_$enable_device just
after it calls bm_$sio to start the I/O operation, and bm_$cleanup calls
pbu_8$disable_device as part of the release routine.

Of course, the controller itself may provide its own means of enabling and disabling inter-
rupts that the driver can directly access. Refer to the controller documentation.

NOTE: Interrupt lines typically float on the PC AT compatible bus (see
Chapter 3, Section 3.4 for important information on enabling
and disabling interrupts).

8.2.3 Processing Device Interrupts

8-4

Processing a device interrupt proceeds through three stages:

1. When an interrupt occurs, control is transferred to the System Interrupt Handler.

2. If a user-written interrupt routine exists, the System Interrupt Handler transfers
control to this routine for further interrupt processing.

3. The user—written interrupt routine returns control to the System Interrupt Handler,
which returns from the interrupt.

The System Interrupt Handler synchronizes operations with driver routines using
eventcounts. An eventcount is an ec2_$eventcount type that programs can define to count
the occurrence of a specific event. The eventcount may be shared among two or more
processes, any of which can increment the eventcount to mark the passing of an event.

Each device has an associated eventcount. The System Interrupt Handler can advance this
eventcount to indicate that an interrupt occurred. The driver’s call side waits for an inter-
rupt to occur by waiting for this eventcount to advance, as does the bm_$wait routine in
bm_example_c. Thus, the device’s eventcount provides the method by which the interrupt
handler can signal to the driver’s call side that an interrupt is completed. The Program-
ming with Domain/OS Calls manual describes eventcounts in detail.

Depending on the requirements of the device and your driver, you may decide to let the
System Interrupt Handler do all of the interrupt processing and not include an interrupt
side in your driver. The advantage of not including an interrupt side is that you decrease
the time it takes for program control to return from the System Interrupt Handler to the
call side. (For information about interrupt processing overhead, see Appendix D, Section
D.2))

Interrupt-Side Routines

8.2.3.1 Processing by the System Interrupt Handler

When the System Interrupt Handler gains control, it performs the following functions:

After determining which device has requested the interrupt, it disables further in-
terrupts from the device by resetting the appropriate bit in the interrupt mask reg-
ister.

If a user-written interrupt routine exists, the System Interrupt Handler transfers
control to it. Otherwise, the handler advances the eventcount associated with the
device and exits. Note that in the latter case the handler does not enable inter-
rupts from the device when it exits, and the driver must make another call to
pbu_$enable_device if it wants to re—enable interrupts.

8.2.3.2 Processing by the User-Written Interrupt Routine

The user-written interrupt routine performs device-specific interrupt processing. Typically,
these functions include

Reading the device’s status register(s) by referencing offsets into the CSR page
Writing to the device’s CSRs to acknowledge the interrupt
Saving information about the interrupt for use by other driver functions

Determining whether or not the device must perform more I/0, and restarting the
device or calling an SIO routine

Calling pbu[2]_$map to map a new I/O buffer
Determining whether any other driver functions should be notified of the interrupt
Determining whether or not to re—enable interrupts from the device

Determining whether or not to advance the eventcount associated with the device

For an example of a user—written interrupt, refer to Appendix E, Section E.3 (C) and Ap-
pendix F, Section F.4 (Pascal).

Interrupt-Side Routines 8-5

8.2.4 Faults in User-Written Interrupt Routines

8-6

As noted in Section 8.1, a user-written interrupt routine is not allowed to generate any
faults. If a fault does occur during interrupt processing, the operating system takes the fol-

lowing actions:

1. It locates the process owning the device, and saves fault diagnostic information at
the low end of the interrupt routine’s stack.

2. It generates an asynchronous fault for the owner process. The fault status is
fault_$pbu_user_int_fault (in /sys/ins/fault.ins.lan).

3. It discontinues processing of the interrupt, advances the eventcount for the device,
and resumes the interrupted process.

4. When the owning process next gains control, it receives the fault status that the
system generated in Step 2.

Information about the fault can be obtained by using the tb (traceback) command with the
—-u option. The -u option dumps the pbu unit fault information, as shown in the following
example. (Or you can supply a specific unit number for tb to dump, by using the —u
<unit number> option to the tb command.)

$ tb —u

Process
Time
Program
Status

In routine
Called from
Called from

86 (parent 85, group O)

88/03/15.10:08(EST)

//cray/dmb/pbu_test.new/pbutest

00120017: fault in user-space interrupt handler for
pbu device (0S/fault handler)

"pbutest" line 872

"PM_$CALL" line 151

"pgm_$load_run" line 605

Fault frame for pbu unit 4

Fault Status
User Fault PC
DO-D3:

D4-D7:

AQO-A3:

A4-AT:
Supervisor ECB
Supervisor SR
Supervisor PC

00120003: integer divide by zero (0S/fault handler)
031F0D30

00000001 00000000 00000000 OOOOQOFFFF

OO0OOOFFFF 000002DC 00000000 0002331C

03150B8C 03C89E18 03C89E18 02D48400

031CFDF8 031F15CC 03150B7C 03150B64

00000000

0000

00000000

The “User Fault PC”, along with a map of the interrupt library and the information
printed by the agdev command (available only in the Aegis environment) with the -d[b]
option, or by the pbu_$acquire routine with debug set to “true”, can be used to isolate
the logic that caused the fault.

Interrupt-Side Routines

8.2.5 Mapping Buffers from the Interrupt Routine

Drivers for devices that need to queue more data buffers than they can transfer at one
time can facilitate transfers by calling pbu[2]_$map (and pbu[2]_$unmap) from their in-
terrupt routines. An outline of this sequence of events follows:

1. The driver’s resource allocation routines obtain the data to be transferred and wire
down the needed buffers until they reach the limit set by pbu[2]_$wire (see
Chapter 7, Subsection 7.1.1).

2. The driver calls pbu[2]_$map to map the first buffer and starts the I/O transfer.

3. When the interrupt routine gains control at the end of the first transfer, it saves
the ending status. If there is another buffer waiting to be transferred, the interrupt
routine calls pbu[2]_$map and starts another I/O transfer.

Mapping buffers from the interrupt routine ensures a minimal delay between data transfer
startups because the interrupt routine need not reactivate the call side of the driver until an
entire sequence of I/O has finished.

To use this same technique in a driver for an PC AT compatible device, you would make
the following changes, depending on the machine type:

® Drivers running on the DN4000 would call pbu2_$dma_start and
pbu2_$dma_stop in addition to pbu2_$map and pbu2_S$unmap.

® Drivers running on the DN3000 would call pbu_$dma_start and pbu_$dma_stop
instead of pbu2_$map and pbu2_$unmap.

8.3 Starting an I/0 Operation

The Start I/O (SIO) routine is that part of the driver which actually performs the data
transfer. The mechanics of the data transfer have already been described in Chapter 7.
You might want to include an SIO routine in the interrupt side because the driver may
have more data to transfer than can be handled in one I/O operation, and the interval
between I/O operations is shorter when the interrupt side interacts directly with the SIO
routine rather than going through the call side. In any case, if the interrupt routine (or
any routine installed in the interrupt-side library) calls the SIO routine, it must be installed
in the interrupt-side library.

In the sample driver in bm_example, the SIO routine (bm_$sio) is called by both call and
interrupt sides and is, therefore, included in the interrupt side; refer to Appendix E, Sec-
tion E.3 (C) and Appendix F, Section F.4 (Pascal).

Interrupt-Side Routines 8-7

Chapter 9

Global Drivers

This chapter describes how to design and write global device drivers. A global driver al-
lows different processes to multiplex different operations on various devices such as the
ETHERNET controller.

The general organization of a global driver is the same as for a private driver, consisting of
a call side, interrupt side, and insert files. Likewise, the program crddf creates a DDF for
a global driver in the same way as it does for a private driver: arguments to the program
specify the unit number, call and interrupt libraries, initialization and cleanup entry points,
interrupt entry points, and other useful information.

Whereas the private driver resides in user private address space where it is accessible only
to the process assigned to that address space, the global driver resides in global address
space where it is accessible to any process that wants it. This difference impacts the design
of the global driver, which must be capable of handling calls from multiple processes and
keeping them separate from each other.

NOTE: Writers of global device drivers must not use variable names that
conflict with names of system-defined symbols. Use the esa
(external_symbol_address) command to determine if a name
belongs to a system-defined symbol.

See /domain_examples/gpio_examples/global_example for an example of a global driver.

Global Drivers 9-1

9.1 Controlling Multiple Processes

The major design consideration of a global driver is how to control multiple processes that
are attempting to access the same procedure or data structure. Specifically, a global driver
must be designed to perform these functions:

® Mutual exclusion; that is, preventing two or more processes from getting into the
call library at the same time and tripping over each other

® Synchronization among client processes where one may be controlling resources on
which others need to wait

9.1.1 Mutual Exclusion

9-2

Any routines in the call-side library that update shared data structures, including those that
actually control the device, must be protected with mutual exclusion (MUTEX) locks; that
is, surrounded by calls to mutex_$lock and mutex_S$unlock. This precaution ensures that
only one process can be executing in the body of a procedure at a time. A procedure de-
signed for mutual exclusion would typically look like the following:

mutex_lock_rec_t lock;
void p (parameters)

if (mutex_$lock(lock, wait_time)) {
/* body of procedure */
mutex_$unlock (lock);
}
}

It should be noted that prior to releasing the lock (either for the purpose of waiting or
upon exiting) the procedure must restore the state of all shared data structures to some-
thing that is “safe” for any other process.

If in the body of the procedure a process needs to wait on an event, the procedure must
provide a means of releasing the lock so that another process can begin execution and sat-
isfy the wait condition, as in the following:

mutex_$unlock (lock);
ec2_S$wait (...);
(void) mutex_$lock (lock, wait_time);

Global Drivers

9.1.2 Synchronization

As described in Chapter 8, GPIO software provides one built-in eventcount per device as a
means of synchronizing device operations with driver routines. However, a global driver
typically needs multiple eventcounts (for example, per client process, per socket, or per
queue). The driver’s interrupt handler must also be able to advance one or more of these
eventcounts selectively. The following GPIO calls provide this functionality:

® pbu_$allocate_ec
® pbu_$release_ec
® pbu_$advance_ec

The first two are paired calls that manage the allocation from a special pool of eventcounts
in wired space in the nucleus. The third enables an interrupt handler to selectively ad-
vance a particular eventcount based on the type of interrupt, data received, etc. All three
routines use ordinary ec2_$ptr_t eventcount pointers; thus, the ordinary ec2_$... routines
can be used. (Note, however, that only eventcounts from the special pool can be ad-
vanced by an interrupt handler.) For a description of these calls, refer to Appendix B.

The interrupt handler decides which eventcount to advance based on status or the results
of the device, then advances that particular eventcount, awakening whatever process is
waiting for that particular event. For example, a network device supports multiple devices,
each waiting on an eventcount for a particular packet. When a packet comes in, the inter-
rupt handler decides which process it is destined for by checking the packet type or other
information in the packet. It then advances the appropriate eventcount, which notifies the
process that its packet has arrived.

The procedures pbu_$wait and pbu_$get_ec work as they do for private drivers. The
pbu_$get_ec procedure returns the pointer to the built-in eventcount in the device control
table entry. This is advanced under control of the return value from the interrupt handler.
The procedure pbu_$wait can be used to wait on this eventcount and a time-out. How-
ever, it should only be used in a global driver under the protection of a MUTEX lock. It
is subject to a race condition so that, if two processes try to call it at approximately the
same time, one waits while the other does not. The behavior is likely to appear unpredict-
able to the developer of a device driver.

Global Drivers 9-3

9.2 Global Memory

Because global drivers reside in global memory, they are like global libraries in that they
must be loaded at system initialization and unloaded at system shutdown. However, a
global driver differs from a global library in that a global driver has read-write “state” and
its data sections are loaded into writeable global virtual memory, making it accessible to all
processes. Read-write data structures for global drivers can be declared in a data section
of the call or interrupt library, or allocated dynamically by calling the routines
rws_$alloc_rw_pool and rws_$alloc_heap_pool. If you call either procedure in a global
driver, you must specify rws_$global_pool as an input parameter (for private drivers, you
must specify rws_$std_pool).

There is only one copy of the data for the entire system, not one per process (as with the
..._impure_data$ sections for ordinary global libraries) or one read—only section per system
(as with data$ and ..._pure_data$ sections). Any routines and variables that are exported
by both the call-side and interrupt—side libraries are entered in the system-wide Known
Global Table (KGT) so that they are visible and accessible to all processes and, therefore,
corruptible by all processes.

If you wish to avoid filling up the KGT and generating long, unique variable names, you
should put all variables in a named common section (overlay section) in the insert file;
only one entry will be stored in the KGT rather than one for each variable. You should
be forewarned, however, that if an overlay section contains initialization data, it is reinitial-
ized each time a program containing that section is loaded.

9.3 Initialization and Cleanup

All driver initialization occurs when the driver is loaded (at system initialization), and all
cleanup occurs when the driver is unloaded (at system shutdown). In other words, there is
no per-process initialization or cleanup for global drivers. Each procedure in a global
driver must be so designed that it restores the module invariant (doesn’t leave the proce-
dure in an inconsistent state) before releasing the lock and allowing another process to be-
gin execution.

9.4 Fault Handling

9-4

If the interrupt handler in a private driver takes a fault, the fault is reflected back to the
process that owns the driver. In a global driver, however, the fault is reflected back to the
process that last touched the driver. The reason for this difference is that in a global
driver you don’t want the fault to reflect back to the owning process, which is the DM, the
SPM, or the init process. As a result, if an interrupt handler generates a fault, the fault
may not be sent back to the offending process.

Global Drivers

9.5 Loading and Unloading

Unlike private drivers, which are dynamically loaded, global drivers must be loaded at sys-
tem initialization. To load a global driver, you place the DDF for the global device in the
directory /dev/global_devices. Immediately after loading the global libraries, the system
searches the directory /dev/global_devices for global device drivers and then calls
pbu_S$acquire for each DDE it finds. If it finds non-DDF objects, it writes a message into
the /dev/sio file for display on the screen or terminal, identifying them and the fact that
they were not loaded. The list of global devices is recorded (by unit number) in
pbu_$global_units. This read-only variable is initialized during system initialization and is
readable by all processes. Thus, a driver can discover if it is loaded globally by testing
whether its unit number is in that set. Devices are initialized in ascending order of unit
number.

A status code is returned for any DDF that cannot be loaded, and the DDF is ignored.
Files in the directory that are not DDFs are also ignored.

During system initialization for the DM, SPM, or init process and immediately after all li-
braries are initialized, the driver initialization routine is called for each global device. As
mentioned, devices are initialized in ascending order of unit number. If a driver initializa-
tion routine returns bad status, system initialization is immediately suspended and an error
message is displayed. The system cannot be restarted until either the problem is corrected
or the device’s DDF is removed from the directory /dev/global_devices. Note that DDFs
can be removed with the delete_file (dlf) command to the phase II shell (the boot shell).

When the system exits, it calls the cleanup routine of each global driver to gracefully re-
lease each device. Devices are called in descending order of unit number so that they are
released in Last In, First Out (LIFO) order.

9.6 Multiple-Device Drivers

The GPIO software package allows the same driver (either global or private) to support
more than one device. A node configured with two ETHERNET controllers, for example,
can be supported either by two independent drivers or by the same driver. In the latter
case, the same call and interrupt libraries service both devices, using common data struc-
tures to control them. This holds true, whether or not the devices are shared.

Each device is specified by its own DDF. The DDF specifies the interrupt level, CSR
page, entry points for the initialization and cleanup routines, and other vital information
for the device. Different DDFs may point to the same call and interrupt modules. Speci-
fying the multiple option with the crddf command ensures that pbu_$acquire doesn’t load
multiple copies of the same library. Note, however, that the initialization and cleanup en-
try points are called individually for each device.

Global Drivers 9-5

The interrupt handler has an input parameter, in pbu_$unit_t format, that identifies the
unit which this handler services so that it knows which registers to read, which data struc-
tures to work on, and so on. Thus, one interrupt routine can support multiple devices at
different interrupt levels and decide dynamically which one has interrupted. This parame-
ter is passed to the interrupt handler at interrupt time. The procedure signature of an in-
terrupt handler is as follows:

For C:

pbu_$interrupt_return_t interrupt_handler (pbu_$unit_t &unit);

For Pascal:

function interrupt_handler(in unit:pbu_$unit_t):pbu_$interrupt_return_t;

oo
oo

9-6 Global Drivers

Chapter 10
Building and Debugging

The final steps in creating your device driver are

® Building a single output file by compiling and binding the modules that make up
your driver

® Debugging the driver

10.1 Building the Device Driver

The purpose of building is to create a single output object file by compiling and binding
the several modules that make up your driver.

10.1.1 Compiling the Device Driver

A sample compile line from a build script from
/domain_examples/gpio_examples/bm_example/build_lib.sh follows. Notice the —pic
option to create a relocatable executable library.

pas bm _1lib -pic -opt -b -1 -map "1 "2 "3 "4

NOTE: You must use the —pic option to the compiler in order to create
a relocatable executable library.

Building and Debugging 10-1

10.1.2 Binding the Device Driver

As input, the bind operations take the call-side and the interrupt-side (if one exists) rou-
tines. The output of the bind becomes the input for the DDF’s call_library and
interrupt_library parameters. Follow the instructions in this section to produce the proper
input for the DDF. (Chapter 11 and Appendix A describe how to build the DDF and the
DDF parameters.)

During device acquisition, pbu_$acquire reads the DDF to find the pathname in
call_library and uses the pathname to install the device driver into user—-process address
space, making it accessible to user programs. Specification of interrupt_library is optional,
depending on whether you have written interrupt routines for the driver.

If the driver does support one or more interrupt routines, use two bind operations to pro-
duce two separate executable modules:

@ The call-side module (input for call_library in the DDF)

e The interrupt-side module (input for interrupt_library in the DDF)

For convenience, you can write a shell script to perform the two bind operations. This sec-
tion provides a sample shell script.

The call-side module contains the call-side routines. For input to the bind, use the binary
file produced in a successful compilation of the module(s) that contain the call-side rou-
tines, including

® The device initialization routine
® The driver routines

® An optional cleanup routine

The interrupt-side module contains the interrupt-side routine(s), bound with the GPIO
source library /lib/pbu_int_lib. The interrupt-side module also contains any communica-
tions areas (a driver control block) to be shared between the interrupt routine(s) and the
call-side routines. For input to the bind, use

® The system binary file /lib/pbu_int_lib.

® The binary file produced in a successful compilation of the interrupt-side module.
In the sample shell script, this module is named interrupt_side.bin.

® Any other areas that the driver’s interrupt routine references.

If you’ve written a device acquisition program (see Chapter 12, Subsection 12.1.2), you
should not bind it with the driver.

10-2 Building and Debugging

When binding a driver that contains variables that are globally visible, we recommend using
the —mark option to specifically mark each variable, rather than the —allmark option.
Such variables include anything you want to share between the call side and the interrupt
side as well as routines that are entry points for the application or GPIO software. If you
are writing a shared driver you must not use the —allmark option. Refer to the Domain
Binder and Librarian Reference manual for information on the —mark option.

Sample bind lines from a build script from
/domain_,examples/gpio_examples/bm_example/build_lib.sh follow. Notice the use of
the —mark option, and that only symbols use the —mark option.

bind -b bm.lib -map >bm_lib.map - <<!
bm_lib.bin

—allunmark

-mark bm_$init

-mark bm_$cleanup

-mark bm_$read

-mark bm_$write

-mark bm_$wait

—end
!

cpf bm.1lib /lib/bm.1lib -chn
dlf bm_lib.bin

10.1.2.1 Using Bind to Page Align Buffers

If you have to page align a buffer, you may want to consider using the —align option. To
use this option, you must declare the area of memory you want page aligned in a specially
marked data section and then specify (in this order) -align, the name of that section, and
the word page when entering the bind command line. For example, to page align a 1-KB
area of memory called dma_buffer, first you would declare the following area o