
SysV Command
Reference
0057I'I-AOO

apollo

SysV Command Reference

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005798-AOO

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc., Chelmsford, Massachusetts.
Unpublished - rights reserved under the Copyright Laws of the United States. All Rights Reserved.

First Printing: July 1988

Copyright 1979, 1980, 1983, 1986 Regents of the University of California and 1979, AT&T Bell Laboratories,
Incorporated.

UNIX is a registered trademark of AT&T in the USA and other countries.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

Concept is a trademark of Human Designed Systems. DEC, PDP, and VT I 00 are registered trademarks of Digital
Equipment Corporation. Datamedia is a registered trademark of Datamedia Corporation. Diabolo, ETHERNET,
and Xerox are registered trademarks of Xerox Corporation. Hazeltine is a registered trademark of Hazeltine
Corporation. IBM is a registered trademark of International Business Machines Corporation. Imagen is a
registered trademark of Imagen Corporation. Tektronix and Tektronix 4010 are registered trademarks of
Tektronix, Inc. Teletype is a registered trademark of AT&T. VAX is a registered trademark of Digital
Equipment Corporation. Versatec is a registered trademark of Versatec.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C, Domain/ComController,
Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL, Domain/Dialogue, Domain/DQC,
Domain/lX, Domain/Laser-26, Domain/LISP, DomainjPAK, DomainjPCC, Domain/PCI, Domain/SNA, Domain
X.25, DPSS, DPSS/MaiI, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel, Network Computing
System, Network License Server, Open Dialogue, Open Network Toolkit, Open System Toolkit, Personal
Supercomputer, Personal Super Workstation, Personal Workstation, Series 3000, Series 4000, Series 10000, and
VCD-8 are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this
publication without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST
SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER
INC. AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO
COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATING TO TillS PUBLICATION OR THE INFORMATION
CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD
HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN TillS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

The SysV Command Reference describes the user commands and games available
in Domain®/OS SysV. This manual is intended for users who are familiar with
System V Release 3 UNIX software and Domain/OS. It provides neither a general
overview of Domain/OS SysV nor details of the implementation of the system. We
assume that you are already familiar with the material in Using Your SysV Environ­
ment.

We have divided the SysV Command Reference into two sections:

Commands

Games

Section 1 provides reference material on user commands.

Section 6 provides reference material on games.

Each section consists of independent entries of a page or so each. The name of the
entry is in the upper comers of its pages, together with the section number, and
sometimes a letter characteristic of a class. For example, the ftp command is lC.
Each section begins with intro(N), followed by domain(N), where N is the number
of the section. Entries thereafter appear in alphabetical order.

Some entries may describe several features. In such cases, the entry may appear
only once, alphabetized under its "primary" name, the name that appears at the
upper comers of each manual page.

Entries with Domain/OS SysV (as contrasted with a simple SysV) centered at the
top of the page describe features unique to Domain/OS SysV. Each section con­
tains an entry with the name domain that provides an overview of the unique
features in that section.

We use the convention name(N) to cite entry name in section N of this and other
manuals. References to sections other than 1 or 6 mean that name is contained in
another manual. The SysV Programmer's Reference contains Sections 2, 3, 4, and
5. Managing SysV System Software includes Sections 1M and 7.

Preface

All entries are based on a common fonnat, not all of whose parts always appear:

NAME Gives the name of the feature and briefly states its purpose.

SYNOPSIS Summarizes the use of the feature being described. In the case
of system calls and subroutines, this summary usually specifies
header files (by way of the appropriate #include <file.h> prepro­
cessor statement) containing definitions needed by the call or
subroutine. This summary also usually contains a set of declara­
tions as they might appear in a C-language function header
defining the call or subroutine.

DESCRIPTION Describes the feature.

EXAMPLE(S) Gives example(s) of usage, where appropriate.

FILES Gives the filenames that are built into the feature.

SEE ALSO Gives pointers to related infonnation.

DIAGNOSTICS Discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

NOTES Gives generally "helpful hints" about the use of the feature.

WARNINGS Points out potential pitfalls.

BUGS Gives known bugs and sometimes deficiencies.

CAVEATS Gives details of the implementation that might affect usage.

A "Table of Contents" and a "Pennuted Index" derived from that table precede
Section 1. The Pennuted Index is a list of keywords, given in the second of three
columns, together with the context in which each keyword is found. Keywords are
either topical keywords or the names of manual entries. Entries are identified with
their section numbers shown in parentheses. This is important because there is con­
siderable duplication of names among the sections, arising principally from com­
ponents that exist only to exercise a particular system call. The right column lists
the name of the manual page on which each keyword may be found. The left
column contains useful infonnation about the keyword.

Online Access

ii Preface

We deliver a machine-readable version of this manual (and Sections 1M and 7) in
the files

/sysS.3/usr/catman/u _man/man [16]/name .[16]class,
and

/sysS.3/usr/catman/a _ man/man[17]/name.[1 M7]class,

where name is that of the feature documented, [1671M] is either 1, 6, 7, or 1M
depending upon the section, and class (C for communication"G for graphics, etc.)
mayor may not appear.

If you have installed these files on your workstation, or you have links from your
workstation to one where these files are installed, you may access them by way of
the man(l) command. (To read about man, type

$ man I man

or refer to man(l) in this book).

Related Manuals

The file /install/doc/apoll%s.v. "latest software release number" _manuals lists
current titles and revisions for all available manuals.

For example, at Software Release 10 (SRIO.0) refer to the file
/instali/dociapolioios.v.10.O manuals to check that you are using the correct ver­
sion of manuals. You may also want to use this file to check that you have ordered
all of the manuals that you need.

(If you are using the (AegisTM, envirorunent, you can access the same information
through the Help system by typing help manuals.)

Refer to the Domain Documentation Quick Reference (002685) and the Domain
Documentation Master Index (011242) for a complete list of related documents.

For introductory information about the Domain/OS system and details about using
the SysV environment, refer to the following documents:

• Getting Started with Domain/OS

• Using Your SysV Environment

• Domain Display Manager Command Reference

(002348)

(011022)

(011418)

For more information on programming in the Domain/OS SysVenvirorunent, refer
to the following documents:

• Domain/OS Call Reference, Volumes 1 and 2 (007196 and 0(2888)

• Domain/OS Programming Environment Reference (011010)

• Domain Binder and Librarian Reference

• Domain C Language Refe,.ence

(004977)

(002093)

Preface iii

• SysV Programmer's Reference (005799)

(01085l) • Managing SysV System Software

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make it easy for
you to communicate with us, we provide the Apollo® Product Reporting (APR)
system for comments related to hardware, software, and documentation. By using
this formal channel you make it easy for us to respond to your comments.

You can get more information about how to submit an APR by consulting the
appropriate Command Reference manual for your environment (Aegis, BSD, or
SysV). Refer to the mkapr shell command description. You can view the same
description online by typing:

$ man 1 mkapr (in the SysVenvironment)

% man I mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader's Response form at the back of this manual
to submit comments about the manual.

Documentation Conventions

This manual uses the following symbolic conventions:

literal values

user-supplied values

sample user input

examples

iv Preface

Bold words or characters in formats and command
descriptions represent commands or keywords that you
must use literally. Bold words in text indicate the first
use of a new term. Filenames and pathnames are also
in bold.

Placeholders for symbols that you must supply are
printed in italics. For example, the names chosen for
call arguments appear in italics.

In samples, information that the user enters appears in
bold.

Examples of program code appear in this
typeface.

---88---

Square brackets enclose optional items in formats and
command descriptions.

Braces enclose a list from which you must choose an
item in formats and command descriptions.

A vertical bar separates items in a list of choices.

Ellipses mean that the previous argument-prototype
may be repeated.

An argument beginning with a minus sign ("-") usu­
ally means that it is an option-specifying argument
used by the command itself, even if it appears in a
position where a file name could appear. Therefore, it
is unwise to have files whose names begin with "_".

This symbol indicates the end of a section.

Preface v

Contents

SysV Commands

1: Commands and Application Programs

intro(I) ... introduction to commands
domain(I) ...•......•...••....•.....•••..••••...••• Domain/OS-specific commands and extensions
300(1) handle special functions of DASI 300 and 300s terminals
450(1) .. handle special functions of the DASI 450 terminal
admin(I) .. create and administer sees files
are I) ... archive and library maintainer for portable archives
asa(I) .. interpret ASA carriage control characters
ate I) ..•. execute commands at a later time
awk(I) ... pattern scanning and processing language
banner(I) ... make posters
basename(I) .••..••••.•••...••••..•.•••••.•.•..••••.•••.•..•••...•••..•••••. deliver portions of path names
batch(I) ...•..•...•....••.....•....•...••........•.....•..........•.....•. execute commands at a later time
bc(I) .. arbitrary-precision arithmetic language
bdiff(I) ... big diff
bfs(I) .•.....•......•...•......•..........•.•..•.....•....•...•.....•.....•.•..•.•.•.••••..••....•••...•. big file scanner
bldt(1) ••..••••.••.••.••••••.•••.••••••••••.••..•.••..•••••.•••••. display time operating system was built
cal(1) .. print calendar
calendar(I) .••....••••..•.••..•••••..•••.....•........•.•...•.•.•.••....•••..•.••...•••.••••....•••...•••..•.•.. reminder
cancel(I) .. send/cancel requests to an LP line printer
cat(1) ..•.........•............. concatenate and print files
cb(l) ..•................•....•..•.. e program beautifier
cc(I) ... e compiler
cdC I) .. change working directory
cdc(1)•.................. change the delta commentary of an sees delta
cflow(I) ...•............•.•...............••....••....•..•....••..•..•...••..•.....•.••..•••. generate e flowgraph
chacl(I) ... change access control list
chfn(l) .. change password file information
chgrp(l) ...•....................• change owner or group
chmod(l) ... change mode
chown(I) ... change owner or group
chsh(I)•.......•..••.......•..••....•..•..•..•..••....•.•...•••.••.• change password file information
cmp(1) ••..•.•.••••••.•••.••.••••.•.•••••..•••.•••••.•••••...••••••••••••••.••••••.••••••••••.••••.• compare two files
col(I) ... filter reverse line feeds

Contents vii

comb(l)•...........................•...•.. combine sees deltas
comm(I) .. select or reject lines common to two sorted files
cp(1) .. copy files
cpacl(1) ... copy access control list
cpio(1) ... copy file archives in and out
cpp(1) .•.................................•...........•.............................. the e language preprocessor
cpscr(l) ... copy the current display to a file
crddf(l)•................................ create, display, or modify a device descriptor file
crontab(1) ... user crontab file
crp(1) ..•..................•........ create a process on a remote node
crpad(l) •..•............ create a transcript pad and window
crty(1)•.. create a new type
crtyobj(l) .. create a type object module for binding
csplit(1)•... context split
ctrace(l) .. e program debugger
cu(lc) ... call another UNIX system
cut(1) .. cut out selected fields of each line of a file
cvt_font(l) .. convert fonts from pre-SRIO to SRIO format
cvtname(1) convert pathnames between upper and lowercase and preserve colons
cvtrgy(l) convert registry between SR9.x and SRIO formats
cxref(l) ... generate e program cross-reference
date(1) ••....••...........•....•....••...•..••..•.••...........•...•.•.........•.....•.....••... print and set the date
dbacl(l) •.....................................•.....• Domain/Dialog based access control list editor
dbx(1) .. debugger
dc(1) ..••.....•..•...................................... desk calculator
dd(l) .. convert and copy a file
dde(l) ...•........ Domain Distributed Debugging Environment
delta(l) .. make a delta (change) to an sees file
diff(I) ...•...................................... differential file comparator
diff3(1) ...•.................... 3-way differential file comparison
dircmp(l) ... directory comparison
dirname(l)•......•..•.....•...........•.............. deliver portions of path names
disable(1) .. enable/disable LP printers
dlty(1) .. delete a type
dm(l) ... Display Manager Commands
dspst(l) ... display process status graphically
du(l)•.......•...........•...•....•... summarize disk usage
dump(l) .. dump selected parts of an object file
echo(1) .. echo arguments
ed(1)•...........•...............•..................•..................................•.•............ text editor
edfont(1)•...................................•... edit a character font
edit(1) •.•••••••••....•••.•.••...•..•.•••...••.....•....•••.••.• text editor (variant of ex for casual users)
edmtdesc(l) .. edit magtape descriptor file
egrep(1) search a file for a pattern using full regular expressions
emt(l)••.......................•............•................... emulate a dumb terminal
enable(l) .. enable/disable LP printers
env(1) .. set environment for command execution
erase(lg)•........................ graphical device routines and filters

viii Contents

esa(J) .. display address of external symbol
ex(I) ... text editor
expr(I) ... evaluate arguments as an expression
f77(1) ... Fortran 77 compiler
factor(I) ... obtain the prime factors of a number
false(1) ... provide truth values
fgrep(I) ... search a file for a character string
file(1) .. determine file type
find(I) ... find files
finger(I) .. user infonnation lookup program
french_to_iso(l) .. convert files to ISO format
fsplit(1) .. split FORTRAN or ratfor files
fst(I) ... print fault status information
ftp(1c) .. ARPANET file transfer program
gdev(Ig) .. graphical device routines and filters
german_to_iso(I) .. convert files to ISO format
get(I) ... get a version of an sees file
getopt(I) ... parse command options
getoptcvt(I) .. parse command options
getopts(I) ... parse command options
graph(lg) ... draw a graph
graphics(I g) ... access graphic and numeric commands
greek(I) .. select terminal filter
grep(I) .. search a file for a pattern
gutil(lg) .. graphic utilities
hardcopy(Igl ... graphical device routines and filters
hashcheck(I) .. find spelling errors
hashmake(I) ... find spelling errors
help(I) .. ask for sees help
hostid(I) .. set or print identifier of current host system
hostname(I) .. set or print name of current host system
hp(l) handle special functions of Hewlett-Packard terminals
hpc(l) ... program counter histogram
hpd(lg) .. graphical device routines and filters
id(l) ... print user and group IDs and names
inlib(I) ... install a user-supplied library
intm(I) ... install a type manager
inty(l) .. install a new type
ipcrm(l) remove a message queue, semaphore set, or shared memory id
ipcs(l) .. report inter-process communication facilities status
iso(I) ... convert files to ISO format
join(I) .. relational database operator
kbm(I) ... set/display keyboard characteristics
kil1(I) .. terminate a process
ksh(I) ... the Korn shell command programming language
las(l) ... list objects mapped into the address space
Ibr2ar(l) ... convert Ibr libraries to SRIO archive libraries
lem(I) .. ; Ioad a color map

Contents ix

Id(l) .. Iink editor for common object files
lex(I) .. generate programs for simple lexical tasks
line(I) •... read one line
lint(I) .. a C program checker
list(I) ... produce C source listing from a common object file
llib(I) .. list installed libraries
Ilkob(I) .. list locked objects
In(1) ...•................... create a hard or soft link
logger(I) .. make entries in the system log
login(I) ... sign on
logname(I)•.. get login name
lorder(1) .. find ordering relation for an object library
Ip(l) .. send/cancel requests to an LP line printer
Ipstat(I) ... print LP status information
Is(I) ... list contents of directory
Isacl(I) ... list access control list
Ity(1) .. list installed types
m4(1) ... macro processor
mail(l) .. send mail to users or read mail
mailx(I) .. interactive message processing system
make(l) maintain, update, and regenerate groups of programs
mane I) ... print entries in this manual
mcs(1) ...•... manipulate the object file comment section
mesg(l) ... permit or deny messages
mkapr(1) ... make an Apollo product report
mkapr(1) .. make a problem report
mkdir(I) ... make directories
mksinit(I) create initialization code for STREAMS drivers and modules
mmt(l) ... typeset documents, viewgraphs, and slides
mt(l) ... magnetic tape manipulating program
mv(I) ... move files
mvt(l) .. typeset documents, viewgraphs, and slides
netstat(1) .. show network status
newform(1) ... change the format of a text file
newgrp(1) ... log in to a new group
news(1) .. print news items
nice(I) ... run a command at low priority
nl(l) ... line numbering filter
nmO) .. print name list of common object file
nohup(I) .. run a command immune to hangups and quits
nor.dan_to_iso(1) .. convert files to ISO format
obj2coff(1) convert OBI format modules to COFF format modules
ode I) ... octal dump
pack(I) ... compress and expand files
passwd(I) .. change password file information
paste(1) merge same lines of several files or subsequent lines of one file
pcat(I) .. compress and expand files
pg(I) ... file perusal filter for CRTs

x Contents

pre 1) .. print files
prf(I) queue a file for printing by Domain/OS Aegis print spooler
prof(1) ... display profile data
prs(I) ... print an sees file
ps(1) ... report process status
ptx(l) ... permuted index
pwd(I) ... working directory name
ratfor(I) .. rational FORTRAN dialect
rbak(l) .. restore or index a magnetic media backup file
rcp(lc) .. remote file copy
red(I) ... text editor
regcmp(I) ... regular expression compile
remsh(I c) .. remote shell
rlogin(I c) ... remote login
rm(I) .. remove files or directories
rmail(l) ... send mail to users or read mail
rmdel(l) ... remove a delta from an sees file
rmdir(I) .. remove files or directories
rootnode(I) change the node to which the root directory refers
rsh(I) the standard/restricted Bourne Shell (command programming language)
ruptime(I c) ... show host status oflocal machines
rwho(I c) ... who' s logged in on local machines
rwmt(l) ... read/write foreign magtapes
sact(1) ... print current sees file editing activity
sccs(I) .. front end for the sees subsystem
sccsdiff(l) ... compare two versions of an sees file
scrattr(I) ... screen attributes
scrto(I) ... set/show screen timeout
sdiff(l) .. side-by-side difference program
sed(I) .. stream editor
sh(l) the standard/restricted Bourne Shell (command programming langnage)
size(l) .. print section sizes in bytes of common object files
sleep(I) ... suspend execution for an interval
sort(I) ... sort and/or merge files
spell(I) ... find spelling errors
spellin(I) .. find spelling errors
spline(Ig) ... interpolate smooth curve
split(I) .. split a file into pieces
start_she I) .. start a log-in shell
stat(lg) statistical network useful with graphical commands
stcode(l) ... translate status code value to text message
strinfo(1) .. prints STREAMS-related information
stripe 1) strip symbol and line number information from a common object file
stty(I) ... set the options for a terminal
suO) .. become super-user or another user
sum(I) .. print checksum and block count of a file
swapuI(I) ... rearrange underlining
swedish_to_iso(l) ... convert files to ISO format

Contents xi

swiss_to_iso(1) ... conven files to ISO fonnat
sync(1) ... forces write to disk
systype(1) .. 'display version stamp
tabs(1) .. set tabs on a tenninal
tail(1) .. deliver the last pan of a file
tar(1) .. tape file archiver
tb(1) ... print process traceback
td(lg) .. graphical device routines and filters
tee(1) •.•....••..••....•...•.•........•...•..•......•.••...•.•••.•.••...•.•...•.•..•......•..•.•..•..•.......••.. pipe fitting
tekset(Ig) .. graphical device routines and filters
telnet(lc) .. user interface to the TELNET protocol
test(l) .. condition evaluation command
tftp(1c) .. trivial file transfer protocol
time(1) ... time a command
timex(I) time a command; repon process data and system activity
touch(1) ... update access and modification times of a file
tplot(lg) .. graphics filters
tpm(I) ... set/display touchpad and mouse characteristics
tput(I) ... initialize a tenninal or query tenninfo database
tr(1) ... translate characters
tr_font(I) .. transliterate characters within a font
trconf(l) ••...••••..••.•••...•••••.. list active Streams or configure STREAMS trace modules
tnnon(l) print messages collected by trace modules on active Streams
true(l) ... provide truth values
ts(l) .. display the module name and time stamp
tson(l) ... topological son
tty(l) ... get the name of the tenninal
tz(l) .. set or display system time zone
uk_to_iso(1) .. conven files to ISO fonnat
umask(1) .. set file-creation mode mask
uname(1) ... print name of current UNIX system
unget(1) .. undo a previous get of an sees file
uniq(l) .. repon repeated lines in a file
units(l) ... conversion program
unpack(l) ... compress and expand files
uucp(lc) ... UNIX-to-UNIX system copy
uudecode(lc) encode/decode a binary file for transmission via mail
uuencode(lc) encode/decode a binary file for transmission via mail
uulog(lc) .••••••...••.••..•••••..••••••••••••••••••.•.••....•.•••...••••..•..••• UNIX-to-UNIX system copy
uuname(lc) .. UNIX-to-UNIX system copy
uupick(lc) .. public UNIX-to-UNIX system file copy
uustat(lc) •..••..••....•...•.•.••.•••..•...•.••..••.••..•..•.....•••...• uucp status inquiry and job control
uuto(lc) .. public UNIX-to-UNIX system file copy
uux(lc) .. UNIX-to-UNIX system command execution
val(1) .. validate sees file
vc(l) ... version control
vi(l) ... screen-oriented (visual) display editor based on ex
vsize(l) .. set/display VT100 window settings

xii Contents

vt I OO(I) ... VT100 terminal emulator
wait(l) ... await completion of process
wall(I) ... write to all users
wbak(I) .. create a magnetic media backup file
wc(I) .. word count
what(I) .. identify SCCS files
who(I) .. who is on the system
whois(l) .. DARPA Intemet usemame directory service
write(1) .. write to another user
xargs(I) .. construct argument list(s) and execute command
xdmc(I) .•.........••.•..•........•...............•.•............ execute a OM command from the shell
yacc(I) ... yet another compiler-compiler

6: Games

intro(6) .. introduction to games
domain(6) ... Domain/OS-specific games
backgammon(6) .. the game of backgammon
banner(6) ... print large banner on printer
battlestar(6) .. a tropical adventure game
bcd(6) ... convert to antique media
bgcolor(6) ... make interesting background colors
bj(6) .. the game of blackjack
boggle(6) ... play the game of boggle
btlfortune(6) ... print a random comment
btlgammon(6) ... the game of backgammon
btlhangman(6) .. guess the word
canfield(6) .. the solitaire card game canfield
craps(6) .. the game of craps
cribbage(6) .. the card game cribbage
dmoire(6) .. Domain/Dialogue-based moire generator
factor(6) .. factoring program
fish(6) .. play Go Fish
flake(6) ... induce terminal dandruff
fortune(6) ... print a random, hopefully interesting, adage
hangman(6) .. Computer version of the game hangman
hunt(6) ... a multi-player multi-terminal game
mastermind(6) .. Mastermind guessing game
maze(6) .. generate a maze
melt(6) ... melt the screen
mille(6) .. play Mille Bournes
monop(6) ... Monopoly game
moo(6) .. guessing game
number(6) .. convert Arabic numerals to English
primes(6) ... print prime numbers
puzzle(6) .. puzzle game
quiz(6) ... test your knowledge
rain(6) ... animated raindrops display
random(6) ... random number generator

Contents xiii

revscr(6) .. reverse screen
robots(6) .. fight off villainous robots
sail(6) .. multi-user wooden ships and iron men
scramble(6) ... tum your screen into a scramble puzzle
snake(6) ... display chase game
strfile(6) ... create a random access file for storing strings
teachgammon(6) ... teach the game of backgammon
trek(6) .. trekkie game
m(6) ... tic-tac-toe
vine(6) .. grow vines
worm(6) .. play the growing worm game
worms(6) ... animate worms on a display terminal
wump(6) ... the game ofhunt-the-wumpus

xiv Contents

PERMUTED INDEX

functions of DASI 300 and!
special functions of DASI

ofDASI 300 and 300s/ 300,
functions of DASI 300 and

comparison difO:
of the DASI 450 tenninal

special functions of the DASI
fl7: Fonran

of a file touch: update
chael: change

cpacl: copy
Isacl: list

dbael: Domain/Dialog based
/unstr: creale a random

commands graphics:
collected by trace modules on
STREAMS trace/ trconf: list

current sees file editing
report process data and system
random, hopefully interesting,

esa: display
list objects mapped into the

sees files
admin: create and

battlestar: a tropical
file for printing by Domain/OS

sort: sort
lenninal wonns:

rain:
bed: convert to

mkapr: make an
maintainer for portable/

number: convert
language bc:

for ponable archives ar:
conven Ibr libraries to SRIO

tar: tape file
maintainer for portable

cpio: copy file
command xargs: construct

echo: echo
expr: evaluate

hc: arbitrary-precision
ftp:

expr: evaluale arguments
characters asa: inlerpret

control characters
help:

a later time
a later time

scrattr: screen
wait:

processing language
backgammon: the game of

300, 300s: handle special 300(1)
300 and 300s tenninals/handle 300(I)
300s: handle special functions 300(I)
300s tenninals/handIe special 300(I)
3-way differential file difO{l)
450: handle special functions 450(1)
450 tenninal450: handle 450(1)
77 compiler ... fl7(l)
access and modification times touch(l)
access control list .. chacl(I)
access control list .. cpacl(I)
access control list .. Isacl{l)
access control list editor dbacl{l)
access file for storing! strfile(6)
access graphic and numeric graphics(lG)
active Streams/print messages•............. trmon(I)
active Streams or configure trconf(I)
activitysact: print .. sact(I)
activity/time a command; timex(l)
adagefortune: print a•............. fortune(6)
address of exlernal symbol esa(I)
address spacelas: ... las(l)
admin: create and adminiSIer admin(l)
administer sees files admin(I)
adventure game ... battlestar(6)
Aegis print spooler/queue a prf(l)
and!or merge files ... sort(l)
animate wonns on a display wonns(6)
animated raindmps display rain(6)
antique media .. bcd(6)
Apollo product report mkapr(I)
ar: archive and library ar(I)
Arabic numerals to English number(6)
arbitrary-precision arithmetic bc(l)
archive and library maintainer ar(I)
archive librarieslbr2ar: 1br2ar(I)
archiver ... tar(l)
archives/archive and library ar(1)
archives in and out .. cpio(l)
argumentlist(s) and execule xargs(I)
arguments ... echo(I)
arguments as an expression expr(I)
arithmetic language bc(I)
ARPANET file transfer program ftp(1C)
as an expression .. expr(1)
ASA carriage control asa(I)
asa: inlerpret ASA carriage asa(I)
ask for sees help ... help(1)
al, batch: execute commands at at(1)
al, batch: execute commands at batch(l)
attributes ...•............. scrattr(I)
await completion of process wait(1)
awk: pattern scanning and awk(l)
backgammon ... backgammon(6

Permuted Index xv

btlgammon: the game of backgammon ... btlgammon(6)
teacbgammon: teach the game of backgammon ... teachgammon(6)

backgammon backgammon: the game of backgammon(6)
bgcolor: make interesting background colors .. bgcolor(6)

or index a magnetic media backup filerbak: restore rbak(1)
wbak: create a magnetic media backup file .. wbak(1)

banner: make posters banner(I)
banner: print large banner on printer ... banner(6)

printer banner: print large banner on banner(6)
editor dbac1: Domain/Dialog based access control list dbac1(I)

(visual) display editor based on ex/screen-oriented vir I)
portions of path names basename, dimame: deliver basename(l)
portions of path names basename, dimame: deliver dimame(I)

later time at, batch: execute commands at a at(1)
later time at, batch: execute commands at a batch(I)

adventure game battlestar: a tropical battlestar(6)
arithmetic language bc: arbitrary-precision bc(1)

bcd: convert to antique media bcd(6)
bdiff: big diff .. bdiff(I)

cb: C program beautifier ... cb(I)
bfs: big file scanner bfs(I)

background colors bgcolor: make interesting bgcolor(6)
via mail /encode/decode a binary file for transmission uudecode(1C)
via mail/encode/decode a binary file for transmission uuencode(1C)

a type object module for bindingcrtyobj: create crtyobj(1)
bj: tbe game of blackjack bj(6)

bj: the game of blackjack ... bj(6)
system was built bid!: display time operating bldt(1)

sum: print checksum and block: count of a file sum(!)
boggle: play the game of boggle ... boggle(6)

boggle boggle: play the game of boggle(6)
rsb: the standard/restricted Bourne Shell (command/sb, rsh(I)
rsb: the standard/restricted Bourne Shell (command/sh, sh(I)

mille: play Mille Bournes ... mille(6)
comment btlfortune: print a random btlfortune(6)

backgammon btlgammon: the game of btlgammon(6)
btlhangman: guess the word btlhangman(6)

time operating system was builtbldt: display ... bldt(I)
size: print section sizes in bytes of common object files size(1)

cc: C compiler .. cc(I)
cllow: generate C 1I0wgrapb .. cllow(l)

cpp: the C language preprocessor cpp(l)
cb: C program heautifier cb(1)

lint: a C program checker lint(l)
cxref: generate C program cross-reference cxref(l)

ctrace: C program debugger ctrace(I)
object file list: produce C source listing from a common Iist(I)

cal: print calendar ... cal(1)
dc: desk calculator .. dc(I)
cal: print calendar ... cal(1)

calendar: reminder service calendar(I)
cu: call another UNIX system cur I C)

to an LP line printer Ip, cancel: send/cancel requests cancel(I)
to an LP line printer Ip, cancel: send/cancel requests lP(I)
the solitaire card game canfieldcanfield, cfscores: canfield(6)

solitaire card game canfield canfield, cfscores: the canfield(6)

xvi Permuted Index

cfscores: the solitaire
cribbage: the

asa: interpret ASA
text editor (variant of ex for

files

commentary of an sees delta

game canfield canfield,
list

delta: make a delta
edfont: edit a

fgrep: search a file for a
kbm: set/display keyboard

set/display touchpad and mouse
interpret ASA carriage control

tr: translate
tr_font: transliterate

snake, snscore: display
lint: a e program

file sum: print
password file information
password file information
password file information

chown,
chown,

group
group

file information chfn,
file information chfn,
file information chfn,

mksinit: create initialization
stcode: translate status

convert OBI format modules to

active/ trmon: print messages
and lowercase and preserve

lem: load a
make interesting background

comb:
common to two sorted files

test: condition evaluation
time: time a

argument Iist(s) and execute
nice: run a

env: set environment for
uux: UNIX-to-UNIX system

xdmc: execute a OM
quits nohup: run a

getopt: parse
getoplS, getoptcvt: parse

card game canfieldcanfield, canfield(6)
card game cribbage cribbage(6)
carriage control characters asa(I)
casual users)edit: .. edit(l)
cat fl concatenate and print cat(I)
cb: e program beautifier cb(I)
cc: e compiler ... cc(l)
cd: change working directory cd(I)
cdc: change the delta cdc(l)
cftow: genernte e ftowgrnph cftow(I)
cfscores: the solitaire card canfield(6)
chacl: change access control chacl(l)
(change) to an sees file delta(l)
charncter font .. edfont(I)
character string ... fgrep(l)
charncteristics ... kbm(I)
characteristicstpm: .. tpm(I)
charactersasa: .. asa(I)
characters .. If(I)
characters within a font tcfont(I)
chase game .. snake(6)
checker .. lint(I)
checksum and block count of a sum(l)
chfo, chsh, passwd: change chfn(l)
chfo, chsh, passwd: change chsh(I)
chfo, chsh, passwd: change passwd(l)
chgrp: change owner or group chgrp(l)
chgrp: change owner or group chown(l)
chmod: change mode chmod(l)
chown, chgrp: change owner or chgrp(l)
chown, chgrp: change owner or chown(l)
chsh, passwd: change password chfn(l)
chsh, passwd: change password chsh(1)
chsh, passwd: change password passwd(l)
cmp: compare two files cmp(I)
code for STREAMS drivers and! mksinit(i)
code value to text message stcode(I)
eOFF format modulesobj2coff: obj2coff(l)
col: filter reverse line feeds col(I)
collected by trace modules on trmon(I)
colons/between upper cvtname(I)
color map .. !cm(l)
colorsbgcolor: ... bgcolor(6)
comb: combine sees deltas comb(l)
combine sees deltas comb(l)
comm - select or reject lines comm(l)
command .. test(l)
command .. time(I)
commandxargs: construct xargs(I)
command at low priority nice(1)
command execution env(l)
command execution uux(l C)
command from the shell xdmc(l)
command immune to hangups and nohup(l)
command options .. getopt(I)
command options .. getoptcvt(I)

Permuted Index xvii

getopts. getoptcvt: parse command options .. getopts(l)
ksh: the Korn shell command programming language ksh(I)

/Bourne Shell (command programming language) rsh(l)
/Bourne Shell (command programming language) sh(l)

and system/ timex: time a command; report process data timex(l)
dm: Display Manager Commands .. dm(l)

access graphic and numeric commandsgraphics: graphics(lG)
intro: introduction to commands ... intro(1)

network useful with graphical commandsstat: statistical stat(IG)
domain: Domain/OS-specific commands and extensions domain(I)

at. batch: execute commands at a later time at(I)
at. batch: execute commands at a later time batch(I)

btlfortune: print a random comment .. btlfortune(6)
manipulate the object file comment sectionmcs: mcs(I)

cdc: change the delta commentary of an SCCS delta cdc(l)
C source listing from a common object file/produce list(1)

nm: print name list of common object file nm(1)
line number information from a common object file/symbol and strip(1)

Id: link editor for common object files Id(I)
section sizes in bytes of common object files/print size(l)

comm - select or reject lines common to two sorted files comm(l)
ipcs: report inter-process communication facilities/ ipcs(l)

diff: differential file comparator .. diff(l)
cmp: compare two files .. cmp(l)

SCCS file sccsdiff: compare two versions of an sccsdiff(I)
difO: 3-way differential file comparison ... dift3(l)

dircmp: directory comparison ... dircmp(I)
regcmp: regular expression compile ... regcmp(l)

cc: C compiler .. cc(I)
f/7: Fortran 77 compiler .. f/7(1)

yacc: yet another compiler-compiler .. yacc(l)
wait: await completion of process wait(l)

pack. pcat. unpack: compress and expand files pack(I)
pack. pcat. unpack: compress and expand files pcat(l)
pack. pcat. unpack: compress and expand files unpack(l)

hangman hangman: computer version of the game hangman(6)
cat fl concatenate and print files cat(I)

test: condition evaluation command test(l)
trconf: list active Streams or configure STREAMS trace/ trconf(1)

execute command xargs: CO!1~truct argument list(s) and xargs(l)
Is: list contents of directory Is(1)
csplit: context split ... csplit(l)

uucp status inquiry and job controluustat: .. uustat(IC)
vc: version control ... vc(l)

asa: interpret ASA carriage control characters .. asa(I)
chad: change access control list ... chael(l)

cpad: copy access control list ... cpael(l)
Isael: list ac",ss control list ... IsadO)

DomainlDialog based access control list editordbaci: dbad(l)
uuits: conversion program uuits(I)

dd: convert and copy a file dd(I)
English number: convert Arabic numerals to number(6)

iso: convert files to ISO format french_to_iso(l)
iso: convert files to ISO format german_to_iso(l)
iso: convert files to ISO format iso(l)
iso: convert files to ISO format nor.dan_to_iso(l)

xviii Permuted Index

iso:
iso:
iso:

SRIO fOlmat cvefon!:
archive libraries Ibr2ar:

COFF format modules obj2coff:
upper and lowercase/ cvtname:

and SRIO formats cvtrgy:
bed:

rcp: remote file
uuname: UNlX-to-UNIX system
uuname: UNlX-to-UNIX system
uuname: UNlX-to-UNIX system

UNlX-to-UNlX system file
UNlX-to-UNlX system file

dd: convert and
cpac!:
cpio:

cp:
file cpscr:
wc: word

sum: print checksum and block
hpc: program

list
and out

preprocessor
display to a file

craps: the game of

modify a device descriptor/
In:

file wbak:
crty:

node crp:
for storing/ strfile, unstr:

window crpad:
for binding crtyobj:

files admin:
device descriptor file crddf:

STREAMS drivers and! mksinit:
cribbage: the card game

cribbage
crontab: user

cxref: generate C program
remote node
and window

pg: file perusal filter for

module for binding

cpscr: copy the
set or print identifier of

convert files to ISO fonnat swedish_to_iso(!)
convert files to ISO format swiss_to_iso(l)
convert files to ISO format uk_to_iso(I)
convert fonts from pre-SRIO to cvtjont(l)
convert Ibr libraries to SRIO Ibr2ar(1)
convert OBI fonnat modules to obj2coff(l)
convert patbnames between cvtname(l)
convert registry between SR9.x cvtrgy(!)
convert to antique media bed(6)
copy .. rep(I C)
copyuucp, uulog, .. uucp(l C)
copyuucp, uulog, .. uulog(l C)
copyuucp, uulog, .. uunanle(I C)
copyuuto, uupick: public uupick(l C)
copyuuto, uupick: public uuto(lC)
copy a file ... dd(l)
copy access control list cpad(l)
copy file archives in and out cpio(l)
copy files ... cp(I)
copy the current display to a cpscr(l)
count ... wc(I)
count of a file .. sum(l)
counter histogram ... hpc(I)
cp: copy files ... cp(I)
cpacl: copy access control cpad(l)
cpio: copy file archives in cpio(l)
cpp: the C language cpp(l)
cpscr: copy the current cpscr(1)
craps .. craps(6)
craps: the game of craps craps(6)
crddf: create, display, or crddf(l)
create a hard or soft link In(l)
create a magnetic media backup wbak(I)
create a new type .. crty(1)
create a process on a remote crp(1)
create a random access file strfile(6)
create a transcript pad and crpad(I)
create a type object module crtyobj(I)
create and administer SCCS admin(I)
create, display, or modify a crddf(l)
create initialization code for mksinit(l)
cribbage .. cribbage(6)
cribbage: the card game cribbage(6)
crontab file .. crontab(I)
crontab: user crontab file crontab(l)
cross-reference .. cxref(l)
crp: create a process on a crp(I)
crpad: create a transcript pad crpad(I)
CRTs ... pg(l)
crty: create a new type crty(l)
crtyobj: create a type object crtyobj(I)
csplit: context split .. csplit(!)
ctrace: C program debugger ctrace(l)
cu: call another UNlX system cui I C)
current display to a file cpscr(1)
current host systemhostid: hostid(l)

Permuted Index xix

bostname: set or print name of current host system hostname(I)
activity sact: print current sees file editing sact(1)

uname: print name of current UNIX system uname(1)
spline: interpolate smooth curve ... spline(1G)

of each line ofa file cut: cut out selected fields cut(1)
each line ofa file cut: cut out selected fields of cut(1)

pre-SR 10 to SR 1 0 fonnat cvcfont: convert fonts from cvtjont(I)
between upper and lowercase/ cvtname: convert pathnames cvtname(I)

between SR9.x and SRIO/ cvtrgy: convert registry cvtrgy(1)
cross-reference cxref: generate e program cxref(l)

flake: induce tenninal dandruff .. flake(6)
directory service whois: DARPA Internet usemame whois(1)

/handle special functions of DASI 300 and 3008 tenninals 300(1)
special functions of the DASI 450 tenninal450: handle 450(1)

prof: display profile data ... prof 0)
/time a command; report process data and system activity timex(I)

a tennina! or query tenninfo databasetput: initialize tput(l)
join: relational database operator .. join(1)

date: print and set the date ... date(1)
date: print and set the date date(l)

access control list editor dbacl: Domain/Dialog based dbacl(1)
dbx: debugger ... dbx(1)
dc: desk calculator '" dc(l)
dd: convert and copy a file dd(1)

Debugging Environment dde: Domain Distributed dde(1)
ctrace: e program debugger ... ctrace(I)

dbx: debugger ... dbx(1)
dde: Domain Distributed Debugging Environment dde(I)

d1ty: delete a type•..• d1ty
basename, dimame: deliver portions of path names basename(I)
basename, dimame: deliver portions of path names dimame(1)

file tail: deliver the last part ofa tail(I)
delta commentary of an sees deltacdc: change the•..................... cde(l)

delta: make a delta (change) to an sees file deIta(l)
delta cdc: change the delta commentary of an sees cde(l)

nndel: remove a delta from an sees file nndel(l)
to an sees file delta: make a delta (change) delta(I)

comb: combine sees deltas ... comb(1)
mesg: pennit or deny messages .. mesg(1)

display, or modify a device descriptor file/create, cnidf(l)
edmtdesc: edit magtape descriptor file .. edmtdesc(1)

dc: desk calculator .. dc(I)
file: detennine file type .. file(l)

create, display, or modify a device descriptor filecn1df: cnidf(l)
/tekset, td: graphical device routines and filters erase(IG)
/tekset, td: graphical device routines and filters gdev(IG)
/tekset, td: graphical device routines and filters hanicopy(l G)
/tekset, td: graphical device routines and filters hpd(IG)
/tekset, td: graphical device routines and filters td(1G)
/tekset, td: graphical device routines and filters tekset(IG)

ratfor: rational FORTRAN dialect ... ratfor(l)
bdiff: big diff•... bdiff(1)

comparator diff: differential file diff(I)
comparison difO: 3-way differential file difO(l)

sdiff: side-by-side difference program sdiff(l)
diff: differential file comparator diff(l)

xx Permuted Index

dift3: 3-way

mkdir: make
rm, rmdir: remove files or
rm, rmdir: remove files or

cd: change working
Is: list contents of

dircmp:
pwd: working

the node to which the root
whois: DARPA Internet usemrune

path nrunes basenrune,
path names basenrune,

printers enable,
printers enable,

sync: forces write to
du: summarize

rain: animated raindrops
symbol esa:

snake, snscore:
vi: screen-oriented (visual)

dm:
descriptor/ crddf: create,

graphically dspst:
prof:

tz: set or
worms: animate worms on a

time stamp ts:
was built bldt:

cpscr. copy the current
systype:

Environment dde: Domain

xdmc: execute a

moire generator
slides mOlt, mvt: typeset
slides mOlt, mvt: typeset

Environment dde:
commands and extensions

games
control list editor dbacl:

generator dmoire:
/queue a file for printing by

and extensions domain:
domain:

graph:
/code for STREAMS

graphically

emt: emulate a
od: octal

an object file
object file dump:

echo:

differential file comparison diff3(1)
dircmp: directory comparison dircmp(I)
directories ... mkdir(I)
directories , rm(I)
directories ... rmdir(I)
directory .. cd(I)
directory .. Is(I)
directory comparison dircmp(I)
directory name .. pwd(I)
directory refers/change rootnode(I)
directory service ... whois(I)
dimrune: deliver portions of basenrune(I)
dimame: deliver portions of dimame(I)
disable: enable/disable LP disable(I)
disable: enable/disable LP enable(l)
disk .. sync(I)
disk usage ... du(I)
display ... rain(6)
display address of external esa(l)
display chase game ... '" snake(6)
display editor based on ex vi(l)
Display Manager Commands dm(l)
display, or modify a device crddf(1)
display process status dspst(l)
display profile data prof(l)
display system time zone tz(1)
display terminal .. worms(6)
display the module name and ts(l)
display time operating system bldt(1)
display to a file .. cpscr(l)
display version stamp systype(l)
Distributed Debugging dde(l)
dlty: delete a type .. dlty
DM command from the sheD xdmc(l)
dm: DiSplay Manager Commands dm(l)
dmoire: Domain/Dialogue-based dmoire(6)
documents, viewgraphs, and mmt(l)
documents, viewgraphs, and mvt(t)
Domain Distributed Debugging dde(l)
domain: Domain/OS-specific domain(l)
domain: Domain/OS-specific domain(6)
Domain/Dialog based access dbacl(l)
Domain/Dialogue-based moire dmoire(6)
Domain/OS Aegis print spooler prf(l)
Domain/OS-specific commands domain(I)
Domain/OS-specific games domain(6)
draw a graph ... graph(to)
drivers and modules mksinit(l)
dspst: display process statns dspst(l)
du: summarize disk usage du(l)
dumb terminal ... emt(l)
dump ... od(l)
dump: dump selected parts of dump(l)
dump selected parts of an dump(l)
echo arguments ... echo(1)
echo: echo arguments echo(1)

Permuted Index xxi

edfont:
edmtdesc:

ex for casual users)
sact: print current SCCS file

based access control list
ed, red: text

ex: text
ed, red: text
sed: stream

/(visual) display
Id: link

casual users) edit: text
descriptor file

pattern using full regular/

emt:
vt100: VT100 terminal

enable/disable LP printers
enable/disable LP printers

enable, disable:
enable, disable:

for/ uuencode,uudecode:
for/ uuencode,uudecode:

sces: front
convert Arabic numerals to

logger: make
man: print

command execution
Domain Distributed Debugging

execution env: set
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,

hashcheck: find spelling
hashcheck: find spelling
hashcheck: find spelling
hashcheck: find spelling

external symbol
expression expr:

test: condition
display editor based on

edit: text editor (variant of

shell xdmc:
construct argument list(s) and

time at, batch:
time at, batch:

set environment for commaod
UNIX-to-UNIX system command

sleep: suspend

xxii Permuted Index

ed, red: text editor ... ed(1)
ed, red: text editor ... red(1)
edfont: edit a character font edfont(l)
edit a character font edfont(l)
edit magtape descriptor file edmtdesc(l)
edit: text editor (variant of edit(1)
editing activity .. sact(l)
editordbacl: Domain/Dialog dbacl(l)
editor ... ed(1)
editor ... ex(l)
editor ... red(I)
editor ... sed(I)
editor based on ex ... vi(l)
editor for common object files Id(l)
editor (variant of ex for edit(l)
edmtdesc: edit magtape edmtdesc(l)
egrep: search a file for a egrep(l)
emt: emulate a dumb terminal emt(l)
emulate a dumb terminal emt(l)
emulator .. vt IOO(I)
enable, disable: ... disable(l)
enable, disable: ... enable(l)
enable/disable LP printers disable(l)
enable/disable LP printers enable(l)
encode/decode a binary file uudecode(I C)
encode/decode a binary file uuencode(I C)
end for the SCCS subsystem sces(I)
Englishnumher: ... numher(6)
entries in the system log logger(1)
entries in this manual man(l)
env: set environment for , env(l)
Environmentdde: .. dde(l)
environment for command env(l)
erase, hardcopy, tekset, td: erase(lG)
erase, hardcopy, tekset, td: gdev(lG)
erase, hardcopy, tekset, td: hardcopy(lG)
erase, hardcopy, tekset, td: hpd(lG)
erase, hardcopy, tekset, td: td(lG)
erase, hardcopy, tekset, td: tekset(lG)
errors/hashmake, spellin, hashcheck(I)
errors/hashmake, spellin, hashmake(l)
errors/hashmake, spellin, spell(l)
errors/hashmake, spellin, spellin(1)
esa: display address of esa(I)
evaluate arguments as an expr(1)
evaluation cOlI\ll)and test(l)
ex/screen-oriented (visual) vi(1)
ex for casual users) edit(l)
ex: text editor .. ex(I)
execute a DM commaod from the xdmc(1)
execute commandxargs: xargs(i)
execute commands at a later at(1)
execute commands at a later batch(i)
executionenv: .. env(I)
executionuux: ... uux(IC)
execution for an interval sleep(l)

pcat, unpack: compress and expand filespack, , pack(I)
pcat, unpack: compress and expand filespack, .. pcat(1)
pcat, unpack: compress and expand filespack, .. unpack(1)

expression expr: evaluate arguments as an expr(I)
expr: evaluate arguments as an expression ... expr(I)

regcmp: regular expression compile regcmp(l)
a pattern using full regular expressions/search a file for egrep(I)

commands and extensionslDomainlOS-specific domain(l)
esa: display address of external symbol .. esa(I)

cat f1 concatenate and print files cat(1)

factors of a number
factor:

factor: obtain the prime
true,
true,

fst: print
col: filter reverse line

character string
robots:

copy the current display to a
or modify a device descriptor

crontab: user crontab
fields of each line of a

dd: convert and copy a
a delta (change) to an sees

selected parts of an object
edit magtape descriptor

get: get a version of an sees
listing from a common object

change the format of a text
name list of common object

or subsequent lines of one
prs: print an sees

index a magnetic media backup
remove a delta from an sees

two versions of an sees
from a common object

checksum and block count of a
deliver the last part of a

and modification times of a
undo a previous get of an sees

report repeated lines in a
val: validate sees

create a magnetic media backup
tar: tape

cpio: copy
mcs: manipulate the object

diff: differential
diff3: 3-way differential

rcp: remote
public UNIX-to-UNIX system
public UNIX-to-UNIX system

sact: print current sees

t77: Fortran 77 compiler f77(1)
factor: factoring program factor(6)
factor: obtain the prime factor(I)
factoring program ... factor(6)
factors of a number factor(I)
false: provide truth values false(I)
false: provide truth values true(l)
fault status information fst(I)
feeds .. col(l)
fgrep: search a file for a fgrep(1)
fight off villainous robots robots(6)
filecpscr: ... cpscr(I)
filecrddf: create, display, crddf(l)
file ... crontab(I)
filecut: cut out selected cut(1)
file ... dd(l)
filedelta: make .. de/ta(I)
filedump: dump ... dump(l)
fileedmtdesc: ... edmtdesc(l)
file get(l)
filelist: produce e source list(I)
filenewform: ... newform(l)
filenm: print .. nm(l)
file/lines of several files paste(l)
file ... prs(l)
filerbak: restore or ... rbak(1)
filermdel: ... rmdel(I)
filesccsdiff: compare sccsdiff(l)
file/line number information stripe I)
filesum: print ... sum(l)
filetail: ... tail(l)
filetouch: update access touch(l)
fileunget: ... unget(l)
fileuniq: ... uniq(I)
file ... val(l)
filewbak: ... wbak(l)
file archiver .. , tar(I)
file archives in and out cpio(1)
file comment section mcs(I)
file comparator ... diff(I)
file comparison ... diff3(1)
file copy .. rep(I e)
file copyuuto, uupick: uupick(lC)
file copyuuto, uupick: uuto(1 C)
file: determine file type file(l)
file editing activity .. saet(I)

Permuted Index xxiii

fgrep: search a file for a character string fgrep(l)
grep: search a file for a pattern .. grep(!)

regular/ egrep: search a file for a pattern using full egrep(l)
Aegis print! prf: queue a file for printing by Domain/OS prf(l)

/unstr: create a rdlldom access file for storing strings strfile(6)
/encode/decode a binary file for transmission via mail uudecode(I C)
/encode/decode a binary file for transmission via mail 0 uuencode(lC)

chsh, passwd: change password file infonnationchfu, chfu(l)
chsh, passwd: change password file infonnationchfu, chsh(l)
chsh, passwd: change password file infonnationchfu, p'lSswd(l)

split: split a file into pieces ... splitt I)
pg: file perusal filter for CRTs pg(I)

bls: big file scanner .. bfs(I)
fip: ARPANET file transfer program ftp(IC)

tftp: trivial file transfer protocol tftp(lC)
file: detennine file type ... file(I)

umask: set file-creation mode mask umask(l)
create and administer SCCS filesadmin: .. admin(l)
cat fl concatenate and print files .. cat(l)

cmp: compare two files .. cmp(I)
lines common to two sorted filescomm - select or reject comm(I)

cp: copy files .. cP(l)
find: find files .. find(l)

split FORTRAN or ratfor filesfsplit: .. fsplit(I)
link editor for common object filesld: ... Id(l)

mv: move files .. mv(l)
unpack: compress and expand filespack, peat, .. pack(l)
unpack: compress and expand filespack, peat, .. pcat(I)

pr. print files .. pr(I)
in bytes of common object files/print section sizes size(I)

sort: sort and/or merge files .. sort(l)
unpack: compress and expand filespack, peat, .. unpack(l)

what: identify SCCS files .. what(l)
nn, nndir: remove fileS or directories ... nn(I)
nn, nndir: remove files or directories ... nndir(l)

/merge same lines of several files or subsequent lines of/ pastel l)
iso: convert files to ISO fonnat .. french_to_iso(l)
iso: convert files to ISO fonnat .. gennan_to_iso(l)
iso: convert files to ISO fonnat .. iso(l)
iso: convert files to ISO fonnat .. nor.dan_to_iso(l)
iso: convert files to ISO fonnat .. swedish_to_iso(!)
Iso: convert files to ISO fonnat .. swiss_to_iso(!)
iso: convert files to ISO fonnat .. uk_to_iso(!)

greek: select terminal filter ... greek(l)
nl: line numbering filter ... nI(I)

pg: file perusal filter for CRTs ... pg(1)
col: filter reverse line feeds col(l)

graphical device routines and filters/hardcopy, tekset, td: erase(lG)
graphical device routines and filters/hardcopy, tekset, td: gdev(lG)
graphical device routines and filters/hardcopy, tekset, td: hardcopy(LG)
graphical device routines and filters/hardcopy, tekset, td: hpd(1G)
graphical device routines and filters/hardcopy, tekset, td: td(lG)
graphical device routines and filters/hardcopy, tekset, td: tekset(lG)

tplot: graphics filters ... tplot(LG)
find: find files .. find(l)

find: find files .. find(l)

xxiv Permuted Index

object library lorder:
hashmake, speUin, hashcheck:
hashmake, spellin, hashcheck:
hashmake, spellin, hashcheck:
hashmake, spellin, hashcheck:

lookup program
fish: play Go

tee: pipe
dandruff

cflow: generate C
edfont: edit a character

characters within a
format cvt_font: convert

rwmt: read/write
fonts from pre-SR 10 to SR 10

iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO

OBI format modules to COFF
modules obj2coff: convert OBI

newform: change the
between SR9.x aod SRIO

f/7:
ratfor: rational

fsplit: split
hopefully interesting, adage
list: produce C source listing

land line number information
rmdel: remove a delta

cvt_font: convert fonts
xdmc: execute a OM command

subsystem sccs:
ratfor files

information
program

/a file for a pattern using
300, 300s: handle special

terminals hp: handle special
terminal 450: handle special

a tropical adventure
a multi-player multi-terminal

Mastermind guessing
monop: Monopoly

moo: guessing
puzzle: puzzle

snake, snscore: display chase
trek: trekkie

worm: play the growing worm
cfscores: the solitaire card

cribbage: the card
computer version of the

find ordering relation for an lorder(I)
find spelling errorsspell, hashcheck(l)
find spelling errorsspell, hashmake(l)
find spelling errorsspell, spell(I)
find spelling errorsspell, spellin(l)
finger: user information finger(I)
Fish ... fish(6)
fish: play Go Fish fish(6)
fitting ... tee(l)
flake: induce terminal flake(6)
flow graph .. cflow(1)
font .. edfont(1)
fonttcfont: transliterate trjont(l)
fonts from pre-SRIO to SRIO cvelont(l)
foreign magtapes .. rwmt(l)
formatcvefont: convert cVl_font(l)
format ... french_to_iso(
format ... german_to_isol
format ... iso(1)
format ... nor.dan_to_isol
format ... swedish_to_iso
format ... swiss_to_iso(1
format ... nk_to_iso(l)
format modules/convert obj2coff(l)
format modules to COFF format obj2coff(1)
format of a text file newform(l)
lormats/convert registry cVlrgy(1)
Fortran 77 compiler f/7(l)
FORTRAN dialect .. ratfor(l)
FORTRAN or ratfor files fsplit(l)
fortune: print a raodom, fortune(6)
from a common object file list(I)
from a common Object file strip(l)
from an SCCS file ... rmdel(1)
from pre-SR 10 to SR 10 format cVl_font(l)
from the shell .. xdmc(1)
front end for the SCCS sccs(l)
fsplit: split FORTRAN or fsplit(1)
fst: print fault status fst(l)
ftp: ARPANET file transfer ftp(IC)
full regular expressions egrep(l)
functions of OASI 300 and 300s/ 300(1)
functions of Hewlett-Packard hp(1)
functions of the OASI 450 450(1)
gamebattlestar: .. battlestart6)
gamehunt: ... hunt(6)
gamemastermind: ... mastermind(6)
game ... monop(6)
game ... moor 6)
game ... puzzle(6)
game ... snake(6)
game , .. trek(6)
game ... worm(6)
game canfieldcanfield, canfield(6)
game cribbage ... crihbage(6)
game hangmanhangman: hangman(6)

Permuted Index xxv

backgammon: the game of backgammon backgammon(6)
btlgammon: the game of backgammon btlgammon(6)

teachgammon: teach the game of backgammon teachgammon(6)
bj: the game of blackjack ... bj(6)

boggle: play the game of boggle ... boggle(6)
craps: the game of craps .. craps(6)

wump: the game ofhunt-the-wumpus wump(6)
domain: Domain/OS-specific games .. domain(6)

intro: introduction to games .. intro(6)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, erase(lG)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, gdev(lG)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, hardcopy(lG)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, hpd(IG)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, td(IG)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, tekset(IG)

maze: generate a maze .. maze(6)
cflow: generate e flowgraph cflow(I)

cross-reference cxref: generate e program cxref(l)
lexical tasks lex: generate programs for simple lex(l)

Domain/Dialogue-ba<;ed moire generatordmoire: _ dmoire(6)
random: random numher generator ... random(6)

get: get a version of an sees file get(l)
file get: get a version of an sees get(l)

logname: get login name .. logname(l)
unget: undo a previous get of an sees file unget(l)

tty: get the name of the terminal tty(1)
getopt: parse command options getopt(I)

options getopts, getoptcvt: parse command getoptcvt(l)
options getopts, getoptcvt: parse command getopts(l)

command options getopts, getoptcvt: parse getoptcvt(l)
command options getopts, getoptcvt: parse getopts(I)

graph: draw a graph ... graph(lG)
graph: draw a graph graph(IG)

graphics: access graphic and numeric commands graphics(lG)
gulil: graphic utilities ... gutil(IG)

/network useful with graphical commands stat(IG)
/erase, hardcopy, tekset, td: graphical device routines and! erase(IG)
/erase, hardcopy, tekset, td: graphical device routines and! gdev(lG)
/erase, hardcopy, tekset, td: graphical device routines and! hardcopy(IG)
/erase, hardcopy, tekset, td: graphical device routines and! hpd(IG)
/erase, hardcopy, tekset, td: graphical device routines and! td(IG)
/erase, hardcopy, tekset, td: graphical device routines and! tekset(lG)

dspst: display process status graphically .. dspst(l)
numeric commands graphics: access graphic and graphics(IG)

!plot: graphics filters .. tplot(lG)
greek: select terminal filter greek(I)

pattern grep: search a file for a grep(I)
chown, chgrp: change owner or group ... chgrp(1)
chown, chgrp: change owner or group ... chown(I)

newgrp: log in to a new group ... newgrp(l)
id: print user and group IDs and names id(l)

update, and regenerate groups of programs/maintain, make(l)
vine: grow vines .. vine(6)

worm: play the growing worm game worm(6)
btlhangman: guess the word .. btlhangman(6)

mastermind: Mastermind guessing game .. mastermind(6)

xX\'i Permuted Index

moo:

DASI 300 and 300s/ 300,300s:
Hewlett-Packard tenninals hp:

the DASI 450 tenninal 450:
computer version of the game

the game hangman
nohup: run a command immune to

In: create a
graphical/ gdev: hpd, erase,
graphical/ gdev: hpd, erase,
graphical/ gdev: hpd, erase,
graphical/ gdev: hpd, erase,
graphical/ gdev: hpd, erase,
graphical/ gdev: hpd, erase,

spell, hashmake, spellin,
spell, hashmake, spellin,
spell, hashmake, spellin,
spell, hashmake, spellin,
lind spelling errors spell,
lind spelling errors spell,
lind spelling errors spell,
lind spelling errors spell,

help: ask for SCCS

handle special functions of
hpc: program counter

fortune: print a random,
ruptime: show

or print identifier of current
set or print name of current

identifier of current host/
current host system

of Hewlett-Packard terminals

td: graphical device/ gdev:
td: graphical device/ gdev:
td: graphical device/ gdev:
td: graphical device/ gdev:
td: graphical device/ gdev:
td: graphical device/ gdev:

multi-tenninal game
wump: the game of

set, or shared memory
and names

system hostid: set or print
what:

id: print user and group
nohup: run a command

ptx: pennuted
file rbak: restore or

flake:
STREAMS/ mksinit: create

terminfo database tput:
library

uustat: uucp stams

guessing game .. moo(6)
gutil: graphic utilities gutil(lG)
handle special functions of 300(1)
handle special functions of hp(l)
handle special functions of 450(1)
hangmanhangman: .. hangman(6)
hangman: computer version of hangman(6)
hangups and quits ... nohup(1)
hard or soft link .. In(l)
hardcopy, tekset, td: erase(1 G)
hardcopy, tekset, td: gdev(lG)
hardcopy, tekset, td: hardcopy(l G)
hardcopy, tekset, td: hpd(lG)
hardcopy, tekset, td: td(lG)
hardcopy, tekset, td: tekset(lG)
hashcheck: lind spelling! hashcheck(l)
hashcheck: lind spelling! hashmake(I)
hashcheck: find spelling! spell(1)-
hashcheck: find spelling! spellin(I)
hashmake, spellin, hashcheck: hashcheck(l)
hashmake, spellin, hashcheck: hashmake(1)
hashmake, spellin, hashcheck: spell(l)
hashmake, spellin, hashcheck: speUin(!)
help ... help(l)
help: ask for secs help help(1)
Hewlett-Packard terminalshp: hp(1)
histogram .. hpc(I)
hopefully interesting, adage fortune(6)
host status of local machines ruptime(1C)
host systemhostid: set hostid(1)
host systemhosmame: hosruarne(l)
hostid: set or print ... hostid(l)
hosmame: set or print name of hostnarne(l)
hp: handle special functions hp(I)
hpc: program counter histogram hpc(1)
hpd, erase, hardcopy, tekset, erase(lG)
hpd, erase, hardcopy, tekset, gdev(lG)
hpd, erase, hardcopy, tekset, hardcopy(1G)
hpd, erase, hardcopy, tekset, hpd(lG)
hpd, erase, hardcopy, tekset, td(1G)
hpd, erase, hardcopy, tekset, tekset(lG)
hunt: a multi-player hunt(6)
hunt-the-wumpus .. wump(6)
id/a message queue, semaphore ipcnn(1)
id: print user and group IDs id(l)
identifier of current host hostid(l)
identify secs files what(l)
IDs and names .. id(1)
immune to hangups and quits nohup(l)
index ... plx(I)
index a magnetic media backup rbak(1)
induce terminal dandruff 6ake(6)
initialization code for mksinit(1)
initialize a terminal or query tput(1)
inlib: install a user-supplied inlib(l)
inqniry and job control uustat(1 C)

Permuted Index xxvii

inty:
intm

library inIib:
lIib: list
Ity: list

system mailx:
print a random, hopefully

bgcolor: make
protocol telnet: user

service whois: DARPA
spline:

characters asa:
facilities/ ipcs: repon

suspend execution for an

command~

intro:
intro:

semaphore set, or shared!
communication facilities/

multi-user wooden ships and
format
format
format
format
format
format
format

iso: conven files to
iso: conven files to
iso: conven files to
iso: conven files to
iso: conven files to
iso: conven files to
iso: conven files to

news: print news
operator

characteristics
kbm: set/display

quiz: test your
language ksh: the

programming language
scanning and processing

arbitrary-precision arithmetic
Korn shell command programming

Shell (command programming
Shell (command programming

cpp: the C

xxviii Permuted Index

the address space
libraries Ibr2ar: conven

to SRIO archive libraries

object files

install a new type .. inty(l)
install a type manager intm(I)
install a user-supplied inlib(l)
installed libraries .. lIib(l)
installed types ... Ity(l)
interactive message processing mailx(l)
interesting, adagefortune: fortune(6)
interesting background colors bgcolor(6)
interface to the TELNET telnet(IC)
Internet username directory whois(I)
interpolate smooth curve spline (I G)
interpret ASA carriage control asa(I)
inter-process communication ipcs(l)
intervalsleep: ... sleep(I)
intm install a rype manager intm(l)
intro: introduction to intro(1)
intro: introduction to games intro(6)
introduction to commands intro(I)
introduction to games intro(6)
inty: install a new type inty(l)
ipcrm: remove a message queue, ipcrm(I)
ipes: repon inter-process ipcs(I)
iron mensail: ... sail(6)
iso: conven files to ISO french_to_iso(l)
iso: conven files to ISO german_to_iso(l)
iso: conven files to ISO iso(I)
iso: conven files to ISO nor.dan_to_iso(l)
iso: conven files to ISO swedish_to_iso(l)
iso: conven files to ISO swiss_to_iso(l)
iso: conven files to ISO uk_to_iso(l)
ISO format .. french_to_iso(l)
ISO format .. german_to_iso(I)
ISO format .. iso(l)
ISO format .. nor.dan_to_iso(l)
ISO format .. swedish_to_iso(\)
ISO format .. swiss_to_iso(l)
ISO format .. uk_to_iso(l)
items .. news(1)
join: relational database join(l)
kbm: set/display keyboard kbm(l)
keyboard characteristics , kbm(I)
kill: terminate a process kill(l)
knowledge ... quiz(6)
Korn shell command programming ksh(l)
ksh: the Korn shell command ksh(l)
languageawk: pattern awk(l)
languagebc: ... bc(I)
languageksh: the ... ksh(I)
language)/Bourne ... rsh(1)
language)/Bourne ... sh(1)
language preprocessor cpp(l)
las: list objects mapped into las(l)
Ibr libraries to SRIO archive Ibr2ar(l)
Ibr2ar: conven Ibr libraries Ibr2ar(l)
lcm: load a color map icm(l)
Id: link editor for common Id(1)

simple lexical tasks lex: generate programs for lex(l)
generate programs for simple lexical taskslex: .. lex(l)
Ibr libraries to SR 10 archive librarieslbr2ar: convert Ibr2ar(l)

llib: list installed libraries.. llib(I)
libraries Ibr2ar: convert Ibr libraries to SRIO archive Ibr2ar(l J
inlib: install a user-supplied library ... inlib(l)

relation for an object librarylorder: find ordering lorder(I)
portable/ ar: archive and library maintainer for aJ1"IJ

line: read one line .. line(I)
col: filter reverse line feeds col(I)

strip: strip symbol and line number information from a/ strip(I)
nl: line numbering filter nl(l)

out selected fields of each line of a filecut: cut cut(l)
send/cancel requests to an LP line printerlp, cancel: cancel(1)
send/cancel requests to an LP line printerlp, cancel: Ip(l)

files comm - select or reject
uniq: report repeated

of several files or subsequent
subsequent! paste: merge same

In: create a hard or soft
files Id:

chac!: change access control
cpac!: copy access control

Isael: list access control
Isael:

configure STREAMS/ !rconf:
Is:

based access control
nib:
Ity:

l!kob:
address space las:

nm:printname
from a common object file

file list: produce C source
xargs: construct argument

line: read one line ... line(l)
lines common to two sorted comm(l)
lines in a file .. uniq(l)
lines of one file/same lines paste(l)
lines of several files or paste(l)
link ... In(l)
link editor for common object Id(l)
lint: a C pro gram checker lint(l)
list ... chacl(l)
list ... cpacl(1)
list ... Isacl(I)
list access control list Isacl(I)
list active Streams or trconf(l)
list contents of directory Is(l)
list editor/DomainjDialog dbac!(I)
list installed libraries IlibO)
list installed types ... Ity(1)
list locked objects ... I!kob(l)
list objects mapped into the la~(I)
list of common object file nm(l)
list: produce C source listing list(I)
listing from a common object list(I)
list(s) and execute command xargs(l)
llib: list installed libraries llib(l)
l!kob: list locked objects l!kob(I)
In: create a hard or soft link In(1)

\em: load a color map ... \em(I J
l!kob: list locked objects ... l!kob(I)

make entries in the system loglogger: .. logger(I)
newgrp:

rwho: who's
system log

rlogin: remote
logname: get

start_sh: start a

finger: user information
for an object library

nice: run a command at
/pathnames hetween upper and

log in to a new group newgrp(I)
logged in on local machines rwho(I C)
logger: make entries in the logger(I)
login .. riogin(I C)
login name .. lognanle(l)
log-in shell .. start_sh(I)
login: sign on .. login(I)
logname: get login name logname(l)
lookup program .. finger(I)
larder: tind ordering relation : ... lorder(l)
low prionty ... nice(I)
lowerc'lsc and preserve colons cvtname(1)

Permuted Index xxix

requests to an LP line/
requests to an LP line/

send/cancel requests to an
send/cancel requests to an

ilisable: enable/ilisable
disable: enable/disable

Ipstat: print
information

list

show host status of local
rwho: who's logged in on local

m4:
rbak: restore or index a

wbak: create a
program mt:

edmtdesc: edit
rwmt: read/write foreign

send mail to users or read
send mail to users or read

file for transmission via
file for tr<U1smission via

users or read mail
users or read mail

mail, rmail: send
mail, rmail: send

processing system
regenerate groups of/ make:

ar: archive and library
SCCS file delta:

mkapr:
mkapr:
mkdir:
logger:

colors bgcolor:
regenerate groups of programs

banner:
manual

intm install a type
dm:Display

comment section mcs:
mt: magnetic tape

man: print entries in this
lcm: load a color

las: list objects
umask: set file-creation mode

mastermind:
guessing game

maze: generate a

xxx Permuted Index

file comment section
bcd: convert to antique

restore or index a magnetic
wbak: create a magnetic

Ip, cancel: send/cancel cancel(l)
Ip, cancel: send/cancel IP(I)
LP line printerlp, cancel: cancel(l)
LP line printerlp, cancel: Ip(I)
LP printersenable, ... disable(I)
LP printersenable, ... enable(I)
LP status information Ipstat(l)
Ipst.t: print LP status Ipstat(I)
Is: list contents of directory Is(I)
Isad: list access control Isacl(l)
Ity: list installed types lty(l)
m4: macro processor m4(1)
machinesruptime: ... ruptime(I C)
machines ... rwho(lC)
macro processor .. m4(1)
magnetic media backup file rbak(I)
magnetic media backup file wbak(I)
magnetic tape manipulating mt(I)
magtape descriptor file edmtdesc(I)
magtapes ... rwmt(l)
mailmail, rmail: .. mail(I)
mailmail, rmail: .. rmail(!)
mail/encode/decode a binary uudecode(1 C)
mail/encode/decode a binary uuencode(I C)
mail, rmail: sendmailto mail(l)
mail, rmail: send mail to rmail(l)
mail to users or read mail mail(l)
mail to users or read mail rmail(l)
mailx: interactive message mailx(I)
maintain, update, and maker I)
maintainer for portable/ ar(I)
make a delta (change) to an delta(l)
make a problem report mkapr(l)
make an Apollo product report mkapr(l)
make directories .. mkdir(1)
make entries in the system log logger(l)
make interesting background bgcolor(6)
make: maintain, update, and maker 1)
make posters ... banner(1)
man: print entries in this man(l)
manager .. imm(l)
Manager Commands dm(l)
manipulate the. object file mcs(l)
manipulating program mt(l)
manual .. man(l)
map ... lcm(l)
mapped into the address space la8(1)
mask .. umask(l)
Mastermind guessing game mastermind(6)
mastermind: Mastermind mastermind(6)
maze .. maze(6)
maze: generate a maze mazer 6)
mcs: manipulate the object mcs(l)
media .. bcd(6)
media backup filerbak: rbak(l)
media backup file .. wbak(I)

melt:
semaphore set, or shared

sort: sort and/or
files or subsequent/ paste:

status code value to text
mailx: interactive

or shared/ ipcrm: remove a
mesg: permit or deny

modules on! trmon: print
mille: play

report

code for STREAMS drivers and/
viewgraphs, and slides
viewgraphs, and slides

chmod: change
umask: set file-creation

touch: update access and
crddf: create, display, or

CI1yobj: create a type object
ts: display the

code for STREAMS drivers and
format modules to COFF format

or configure STREAMS trace
/messages collected by trace

obj2coff: convert OBJ format
dmoire: Domain/Dialogue-based

monop:

tpm: set/display touchpad and
mv;

program
game hunt: a

hunt: a multi-player
iron men sail:

view graphs, and slides mmt,
viewgraphs, and slides mmt,

nS: show
commands stat: statistical

a text file

news: print

priority

object file
create a process on a remote

rootnode: change the
hangups and quits

melt: melt the screen ... " "" """ ... "" " melt(6)
melt the screen .""""""""" " .. "" .. ,, ,," melt(6)
memory id/a message queue, " .. "." "." ipcrm(I)
merge files " ... "" .. """""" " " ... " " sort(I)
merge same lines of several "" """" .. """ pastel I)
mesg: permit or deny messages ".""" ... ,, .. mesg(I)
messagestcode: translate ... " """ .. ,, .. ,," stcode(I)
message processing system ".""" ,,. mailx(I)
message queue, semaphore set, " ... " ". ipcrm(I)
messages """"""" .. """"" " " ... "" mesg(I)
messages collected by trace " "" trmon(I)
Mille Bournes " "" ... ".""." .. "" .. "". mille(ll)
mille: play Mille Bournes """ ... """"" ... "."" mille(6)
mkapr: make a problem report """"""" " mkapr(I)
mkapr: make an Apollo product """ .. "" .. ",,. mkaprl I)
mkdir: make directories " ... "".".".""" .. " ... ". mkdir(1)
mksinit: create initialization " " ... "" .. ",,. mksillll(I)
mmt, mvt: typeset documents, .. "." ... """""" mml(I)
mmt, mvt: typeset documents, ... """ .. " .. """. mvt(I)
mode ""."""""." ... "".""""."."""" """."" chm(xlll)
mode mask """".".""" .. " .. ""."""" " .. "" umask(1)
modification times of a file " "".",, touch(I)
modify a device descriptor/ """ .. """,, crddf(I)
module for binding ... " .. "." .. " "" ... " .. " " crtyobJ(I)
module name and time stamp "." ... """" ts(l)
modules/create initialization " " mksinit(I)
modulesobj2coff: convert OBI .. " " .. ,,""" obj2coll(I)
modules/list active Streams .. " "" .. " ... "",,. trconf(I)
modules on active Streams """ ,, trmon(I)
modules to COFF format moduJes "" obj2cofl(I)
moire generator .. " """ .. " ... " " .. " .. ,, .. ,," dmoire(6)
monop: Monopoly game "" .. " .. """" .. "" .. "". monop(ll)
Monopoly game .. """ " .. " .. " " ... "" .. ",,. monop(ll)
moo: guessing game .. "." " ... """ .. ,,. moo(ll)
mouse characteristics .. " " " "" .. " ... tpm(I)
move files .""""""" "" ... " .. " "" .. " .. " " mv(I)
mt: magnetic tape manipulating .. " """,,. ml(1)
multi-player multi-terminal "." """""""". hum(6)
multi-terminal game ." .. """""" .. """" .. " ... ". hunl(6)
multi-user wooden ships and " "" ... """"". sail(6)
mv: move files " "." "." mv(I)
mvt: typeset documents, " " ... """"."""". mml(I)
mvt: typeset docwnents, """"" ... """" .. " .. "" mvt(I)
network status """"" .. ""."""" ... " """"". netslal(I)
network useful with graphical " .. " """ stat(I C;)
newform: change the format of .. """" .. " .. "" newfonn(I)
newgtp: log in to a new group """" .. " .. "" newgtp(I)
news items """ ... """.""""" ""." ... """"". news(I)
news: print news items """""""""" .. """"". news(I)
nice: run a command at low"" ". nice(I)
uJ: line numhering filter " "" """."",,.,, uJ(l)
run: print name list of common " " run(1)
nodectp: """"".""" " "." ... """ """" ... ctp(I)
node to which the root/ """ """""""" rooln<xlc(I)
nohup: run a command immune to """" .. " ... nohup(I)
nS: show network status "" ... " ... ""." .. "". netSlat(1)

Permuted Index l\.Xxi

nl: line numbering filter ; nl(l)
number: convert Arabic numerals to English number(6)

graphics: access gmphic and numeric commands graphics(lG)
format/ obj2coff: convert OBJ format modules to COFF obj2coff(l)

modules to COFF format/ obj2coff: convert OBJ format obj2coff(l)
dump selected partS of an object filedump: .. dump(I)

C source listing from a common object filelist: produce Iist(I)
nm: print name list of common object file .. nm(l)

information from a common object file/and line number strip(I)
mcs: manipulate tbe object file comment section mcs(I)

Id: link editor for common object files ... Id(l)
sizes in bytes of common object files/print section size(l)

find ordering relation for an object libr-.uylorder: lorder(l)
crtyobj: create a type object module for binding crtyobj(l)

l!kob: list locked objects ... l!kob(l)
address space las: list objects mapped into the las(l)

number factor: obtain the prime factors of a factor(I)
od: octal dump .. od(1)

od: octal dump .. od(l)
bldt: display time opemting system was built bldt(l)

join: relational database operator ... join(I)
getopt: parse command options .. getopt(l)

getoptcvt: parse command optionsgetopts, .. getoptcvt(I)
getoptcvt: parse command optionsgetopts, .. getopts(l)

stty: set the options for a terminal stty(l)
object library lorder: find ordering relation for an lorder(l)

chown, chgrp: change owner or group ... chgrp(I)
chown, chgrp: change owner or group ... chown(l)

and expand files pack, pcat, unpack: compress pack(l)
and expand files pack. pcat, unpack: compress pcat(I)
and expand files pack, pcat, unpack: compress unpack(l)

crpad: create a transcript pad and window .. crpad(I)
getopt: parse command options getopt(l)

getopts, getoptcvt: parse command options getoptcvt(l)
getopts, getoptcvt: parse command options getopts(1)

information chfn, chsh, passwd: change password file chfn(l)
information chfn, chsh, passwd: change password file chsh(I)
information chfn, chsh, passwd: change password file passwd(l)

chfn, chsh, passwd: change password file information chtil(I)
chfn, chsh, passwd: change password file information chsh(I)
chfn, chsh, passwd: change password file information passwd(l)

several files or subsequent! paste: merge same lines of paste(l)
dirname: deliver portions of path namesbasename, basename(I)
dirname: deliver portions of path namesbasename, dirname(l)

lowercase/ cvtname: convert patbnames between upper and cvtname(I)
grep: search a file for a pattern ... grep(I)

processing language awk: pattern scanrting and awk(I)
egrep: search a file for a pattern using full regular/ egrep(l)

expand files pack, pcat, unpack: compress and pack(l)
expand files pack, pcat, unpack: compress and pcat(I)
expand files pack, pcat, unpack: compress and unpack(l)

mesg: permit or deny messages mesg(l)
ptx: permuted index ... ptx(l)

pg: file perusal filter for CRTs pg(l)
CRTs pg: file perusal filter for pg(I)

split: split a file into pieces .. split(1)

xxxii Permuted Index

tee: pipe fitting ... tee(l)
fish: play Go Fish .. fish(6)

mille: play Mille Boumes mille(6)
boggle: play the game of boggle boggle(6)
WOI1l1: play the growing WOI1l1 game woI1l1(6)

and library maintainer for portable archivesar: archive ar(1)
basename, dirname: deliver portions of path names basename(l)
basename, dirname: deliver portions of path names dirname(l)

banner: make posters ... banner(l)
pr: print files .. pr(I)

cpp: the e language preprocessor .. cpp(l)
upper and lowercase and preserve colons/between cvtname(l)

cvt_font: convert fonts from pre-SRIO to SRI0 format cvt_font(l)
unget: undo a previous get of an sees file unget(l)

by Domain/OS Aegis print! prf: queue a file for printing prf(I)
factor: obtain the prime factors of a number factor(1)

primes: print prime numbers .. primes(6)
primes: print prime numbers primes(6)

btlfortune: print a random comment btlfortune(6:
interesting, adage fortune: print a random, hopefully fortune(6)

prs: print an sees file ... prs(l)
date: print and set the date date(1)

cal: print calendar .. cal(l)
of a file sum: print checksum and block count sum(l)

editing activity sact: print current sees file sact(1)
man: prim entries in this manual man(l)

fst: print fault status infol1l1ation fst(l)
cat fl concatenate and print files ... cat(I)

pr: print files ... pr(l)
host system hostid: set or print identifier of current hostid(l)

banner: print large banner on printer banner(6)
Ipstat: print LP status infol1l1ation Ipstat(I)

trace modules on/ tl1l1on: print messages collected by tl1l1on(l)
object file nm: print name list of common nm(l)

system hostname: set or print name of current host hostname(l:
system uname: print name of current UNIX uname(l)

news: print news items .. news(l)
primes: print prime numbers primes(6)

tb: print process traceback tb(1)
of common object files size: print section sizes in bytes size(l)

printing by Domain/OS Aegis print spooler/a file for prf(l)
names id: print user and group IDs and id(l)

banner: print large banner on printer ... banner(6)
requests to an LP line printer/cancel: send/cancel cancel(l)
requests to an LP line printer/cancel: send/cancel Ip(I)

disable: enable/disable LP printersenable, .. disable(I)
disable: enable/disable LP printersenable, .. enable(l)
print! prf: queue a file for printing by Domain/OS Aegis prf(1)

infol1l1ation strinfo: prints STREAMS-related strinfo(I)
nice: run a command at low priority .. nice(I)

kill: tel1l1inate a process .. kill(l)
wait: await completion of process .. wait(l)

tinaex: tinae a command; report process data and system/ tinaex(I)
crp: create a process on a remote node crp(l)

ps: report process status .. ps(l)
dspst: display process status graphically dspst(l)

Permuted Index xxxiii

tb: print
awk: pattern scanning and

mailx: interactive message
m4: macro

a common object file list:
mkapr: make an Apollo

prof: display
ksh: fhe Korn shell command

!Bourne Shell (command
!Bourne Shell (command

user interface to fhe TELNET
tfip: trivial file transfer

true, false:
true, false:

your screen into a scramble
puzzle:

!put: initialize a terminal or
Domain/OS Aegis print/ prf:

ipcrm: remove a message
command immune to hangups and

display
rain: animated

strfile, unstr: create a
btlfortune: print a

adage fortune: print a
random:

generator
fsplit: split FORTRAN or

dialect
ratfor:

magnetic media backup file

rmail: send mail to users or
rmail: send mail to users or

line:
rwmt:

swapul:
ed,
ed,

to which the root directory
compile

make: maintain, update, and
SRIO formaLs cvtrgy: convert

regcmp:
file for a pattern using full

sorted files comm - select or
lorder: find ordering

join:
calendar:

xxxiv Permuted Index

process traceback .. tb(I)
processing language awk(I)
processing system ... mailx(I)
processor ... m4(I)
produce C source listing from list(I)
product report ... mkapr(I)
prof: display profile data prof(1)
profile data .. prof(l)
programming language ksh(l)
programming language) rsh(l)
programming language) sh(I)
protocoltelnet: telnet(lC)
protocol ... tftp(lC)
provide trufh values falser I)
provide trufh values truer I)
prs: print an SCCS file prs(l)
ps: report process status ps(l)
ptx: permuted index plx(1)
puzzlescramble: tum scramble(6)
puzzle game .. puzzle(6)
puzzle: puzzle game puzzle(6)
pwd: working directory name pwd(l)
query terminfo database tput(I)
queue a file for printing by prf(l)
queue, semaphore set, or/ ipcrm(l)
quitsnohup: run a .. nohup(l)
quiz: test your knowledge quiz(6)
rain: animated raindrops rain(6)
raindrops display .. rain(6)
random access file for storing/ strfile(6)
random comment. btlfortune(6)
random, hopefully interesting, fortune(6)
random number generator random(6)
random: random number random(6)
ratfor files .. fsplit(1)
ratfor: rational FORTRAN ratfor(1)
rational FORTRAN dialect ratfor(l)
rbak: restore or index a rbak(l)
rcp: remote file copy rcp(l C)
read mailmail, ... mail(I)
read mailmail, ... rmail(I)
read one line ... liner 1)
read/write foreign magtapes rwmt(I)
rearrange underlining swapul(I)
red: text editor ... ed(l)
red: text editor ... red(l)
refers/change fhe node rootnode(l)
regcmp: regular expression regcmp(l)
regenerate groups of programs make(l)
registry between SR9.x and cvtrgy(l)
regular expression compile regcmp(l)
regular expressions/search a egrep(1)
reject lines common to two camm(l)
relation for an object library lorder(I)
relational database operator join(l)
reminder service ... calendar(1)

rep:
rlogin:

crp: create a process on a
rS:

file nndel:
semaphore set, or/ ipcnn:

nn, nndir:
nn, nndir:

uniq: report
mkapr: make a problem

mkapr: make an Apollo product
communication/ ipcs:

timex: time a command;
ps:

file uniq:
Ip, cancel: send/cancel
Ip, cancel: send/cancel

media backup file rbak:
col: filter

revscr:

directories
directories

read mail mail,
read mail mail,

SCCSfile
directories nn,
directories nn,

robots: fight off villainous
robots

/change the node to which the
which the root directory/

/tekset, td: graphical device
/tekset, td: graphical device
/tekset, td: graphical device
/tekset, td: graphical device
/tekset, td: graphical device
/tekset, td: graphical device

Bourne Shell (command/ sh,
Bourne Shell (command/ sh,

nice:
hangups and quits nohup:

local machines
machines
magtapes

editing activity
and iron men

bfs: big file
language awk: pattern

the delta commentary of an
comb: combine

make a delta (change) to an
get: get a version of an

prs: print an

remote file copy " rcp(IC)
remote login .. " " """ """ .. """" rlogin(lC)
remote node "" """ """ """ crp(l)
remote shell "" .. " """ .. """""" "" " remsh(lC)
remove a delta from an SCCS """ ,, nndel(l)
remove a message queue, " """" " .. " .. ". ipcnn(l)
remove files or directories " .. " "" .. " .. ",, nn(l)
remove files or directories .. "" """ .. "" .. " nndir(l)
repeated lines in a file """"" .. "" .. " """ uniq(!)
report ."." " "."" ... "." " .. "."""" ... mkapr(l)
report """" .. " .. """" """ .. " .. "" .. " """ mkapr(l)
report inter-process """ """ """ ipcs(l)
report process data and system/ " .. "" "" timex(l)
report process status " .. "" """" """,, ... ps(l)
report repeated lines in a .. """ " .. " " uniq(l)
requests to an LP line printer "" " " cancel(l)
requests to an LP line printer " .. " "" " lp(l)
restore or index a magnetic .. " .. " .. "" " " rbak(!)
reverse line feeds " " col(l)
reverse screen """" " " " revscr(6)
revscr: reverse screen .. " " "" revscr(6)
rlogin: remote login rlogin(lC)
nn, nndir: remove files or nn(l)
nn, nndir: remove files or " " nndir(l)
nnail: send mail to users or mail(1)
rmail: send mail to users or nnail(I)
nndel: remove a delta from an " nndel(l)
rmdir: remove files or nn(l)
nndir: remove files or " " " nndir(l)
robots ... " robots(6)
robots: fight off villainous " robots(6)
root directory refers rootnode(I)
rootnode: change the node to rootnode(l)
routines and filters .. erase(IG)
routines and filters " gdev(lG)
routines and filters " " .. hardcopy(lC
routines and filters .. hpd(lG)
routines and filters " td(lG)
routines and filters .. tekset(lG)
rS: remote shell " " " remsh(lC)
rsh: the standard/restricted rsh(l)
rsh: the standard/restricted sh(1)
run a command at low priority " nice(l)
run a command immune to " nohup(l)
ruptime: show host status of " ruptime(lC)
rwho: who's logged in on local " .. rwho(lC)
rwm!: read/write foreign " " rwmt(l)
sact: print current SCCS file sact(l)
sail: multi-user wooden ships " sail(6)
scanner .. bfs(I)
scanning and processing awk(1)
SCCS deltacdc: change cdc(l)
SCCS deltas .. " " comb(l)
SCCS filedelta: " "" ... delta(!)
SCCS file " .. " """ .. " " " .. " "" get(l)
SCCS file .. """ """ """ .. " .. " .. prs(l)

Permuted Index xxxv

tmdel: remove a delta from an
compare two versions of an

undo a previous get of an
val: validate

sact: print current
admin: create and administer

what: identify
subsystem

help: ask for
sccs: front end for the

of an sees file
turn your screen into a

into a scramble puzzle

melt: melt the
revscr: reverse

scrattr:
scramble: turn your

scrto: set/show
display editor based on/ vi:

program
string fgrep:

grep:
using full regular/ egrep:

the object file comment
common object/ size: print

to two sorted files comm -
greek:

of a file cut: cut out
file dump: dump

ipctm: remove a message queue,
mail mail, tmail:
mail mail, rmail:

line printer Ip, cancel:
line printer Ip, cancel:

/a message queue, semaphore
characteristics kbm:
characteristics tpm:

settings vsize:
scrto:

set/display VT I 00 window
standard/restricted Bourne/
standard/restricted Bourne/

queue, semaphore set, or
rS: remote

staresh: start a log-in
execute a DM command from the

language ksh: the Korn
/the standard/restricted Bourne
/the standard/restricted Bourne

sail: multi-user wooden
program sdiff:

login:
lex: generate programs for

xxxvi Permuted Index

sees file .. tmdel(I)
sees filesccsdiff: ... sccsdiff(I)
sees fileunget: .. unget(1)
sees file .. val(l)
sees file editing activity sact(I)
sees files ... admin(1)
sees files ... what(l)
sccs: front end for the sees sccs(l)
sees help ... help(1)
sees subsystem ... sccs(I)
sccsdiff: compare two versions sccsdiff(l)
scramble puzzlescramble: scramble(6)
scramble: turn your screen scrarnble(6)
scrattr: screen attributes scrattr(l)
screen .. melt(6)
screen .. revscr(6)
screen attributes .. scrattr(l)
screen into a scramble puzzle scramble(6)
screen timeout ... scrto(I)
screen-oriented (visual) vi(l)
scrto: set/show screen timeout scrto(1)
sdiff: side-by-side difference sdiff(1)
search a file for a character fgrep(l)
search a file for a pattern grep(1)
search a file for a pattern egrep(l)
sectionmcs: manipulate mcs(1)
section sizes in bytes of size(l)
sed: stream editor .. sed(l)
select or reject lines common comm(l)
select terminal filter greek(1)
selected fields of each line cut(I)
selected parts of an object dump(I)
semaphore set, or shared/ ipctm(I)
send mail to users or read mail(l)
send mail to users or read rmail(I)
send/cancel requests to an LP cancel(1)
send/cancel requests to an LP Ip(l)
set, or shared memory id ipcrm(l)
set/display keyboard kbm(l)
set/display touchpad and mouse tpm(l)
set/display VT100 window vsize(l)
set/show screen timeout scrto(1)
settingsvsize: ... vsize(l)
sh, rsh: the ... rsh(1)
sh, rsh: the ... sh(l)
shared memory id/a message ipcrm(I)
shell ... remsh(lC)
shell ." .. start_sh(1)
shellxdmc: ... xdmc(l)
shell command programming ksh(I)
Shell (command programming! rsh(l)
Shell (command programming! sh(1)
ships"",, iron men .. saiI(6)
side-by-side difference sdiff(l)
sign on ... login(I)
simple lexical tasks lex(I)

bytes of common object files
Object/ size: print section

an interval
documents, view graphs, and
documents, view graphs, and

spline: interpolate
game
snake,

In: create a hard or
canfield, cfscores: the

tsort: topological
sort:

or reject lines common to two
object file list: produce C

mapped into the address
hashcheck: find spelling/
hashcheck: find spelling!
hashcheck: find spelling!
hashcheck: find spelling!
spelling! spell, hashmake,
spelling! spell, hashmake,
spelling! spell, hashmake,
spelling! spell, hashmake,

spellin, hashcheck: find
spellin, hashcheck: find
spellin, hashcheck: find
spellin, hashcheck: find

curve
csplit: context

split:
fsplit:

pieces
by Domain/OS Aegis print

/convert Ibr libraries to
convert fonts from pre-SRIO to

registry between SR9.x and
/convert registry between

systype: display version
the module name and time

Shell (command/ sh, rsh: the
Shell (command/ sh, rsh: the

start_sh:

useful with graphical/
with graphical commands stat:

communication facilities
nS: show network
ps: report process

message stcode: translate
dspst: display process

fst: print fault
Ipstat: print LP

uustat: uucp
ruptime: show host

value to text message

size: print section sizes in size(I)
sizes in bytes of common size(I)
sleep: suspend execution for sleep(l)
slidesmmt, mvt: typeset mmt(l)
slidesmmt, mvt: typeset mvt(l)
smooth curve .. spline(lG)
snake, soscare: display chase snake(6)
snscore: display chase game snake(6)
soft link ... In(l)
solitaire card game canfield canfield(6)
sort tsortO)
sort and/or merge files sartO)
sort: sort and/or merge files sort(l)
sorted filescomm - select comm(I)
source listing from a common list(I)
spacelas: list objects las(I)
spell, hashmake, spellin, hashcheckl
spell, hashmake, spellin, hashmake(
spell, hashmake, spellin, spell(l)
spell, hashmake, spellin, spellin(l)
spellin, hashcheck: find hashcheck
spellin, hashcheck: find hashmakel
spellin, hashcheck: find spell(i)
spellin, hashcheck: find spellin(I)
spelling errorsibashmake, hashcheck
spelling errorsibashmake, hashmakel
spelling errorsibashmake, spell(l)
spelling errorsibashmake, spellin(I)
spline: interpolate smooth spline(IG:
split ... csplit(I)
split a file into pieces splitt I)
split FORTRAN or ratfor files fsplit(1)
split: split a file into split(i)
spooler/a file for printing prf(l)
SR 10 archive libraries Ibr2ar(I)
SRIO formatcvt_font: cvcfont(l
SRIO formatscvtrgy: convert cvtrgy(l)
SR9.x and SRIO formats cvtrgy(l)
stamp ... systype(I:
stampts: display .. ts(l)
standard/restricted Bourne rsh(I)
standard/restricted Bourne sh(I)
start a log-in shell ... start_sh(l
start_sh: start a log-in shell start_sh(l
stat: statistical network stat(lG)
statistical network useful stat(IG)
status/report inter-process ipcs(l)
status ... netstat(I)
status ... ps(I)
status code value to text stcode(I)
status graphically .. dspst(i)
status information ... fst(I)
status information ... Ipstat(I)
status inquiry and job control uustat(lC
status of local machines ruptime(l
stcode: translate status code stcode(l)

Permuted Index xxxv

a random access file for
sed:

by trace modules on active
/create initialization code for

trace/ trconf: list active
active Streams or configure

strinfo: prints
random access file fori

STREAMS-related information
search a file for a character

random access file for storing
number infonnation from a/

information from a/ strip:
terminal

another user
/same lines of several files or
sccs: front end for the SCCS

count of a file
du:

su: become
interval sleep:

display address of external
information from/ strip: strip

tabs: set

a file
tar:

mt: magnetic

programs for simple lexical

/hpd, erase, hardcopy. tekset,
/hpd, erase, hardcopy, tekset,
/hpd, erase, hardcopy. tekset,
/hpd, erase, hardcopy, tekset.
/hpd, erase, hardcopy. tekset,
/hpd, erase, hardcopy, tekset,

teachgammon:
backgammon

gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, er.lSe, hardcopy,
gdev: hpd, erase, hardcopy,
telnet: user interface to tbe

TELNET protocol
functions of the DASI 450

emt: emulate a dumb
stty: set the options for a

tabs: set tabs on a
tty: get the name of the

xxxviii Permuted Index

storing strings/unstr: create strfiJe(6)
stream editor ... sed(l)
Streams/messages collected trmon(l)
STREAMS drivers and modules mksinit(1)
Streams or configure STREAMS trconf(l)
STREAMS trace modules/list trconf(I)
STREAMS-related information strinfo(l)
strfiJe, unstr: create a strfiJe(6)
strinfo: prints ... strinfo(I)
stringfgrep: ... fgrep(l)
strings/unstr: create a strfiJe(6)
strip: strip symbol and line strip(l)
strip symbol and line number stripe I)
stty: set the options for a stty(I)
su: become super-user or su(l)
subsequent lines of one file paste(l)
subsystem .. sccs(I)
sum: print checksum and block sum(l)
summarize disk usage du(l)
super-user or another user sur I)
suspend execution for an sleep(I)
swapul: rearrange underlining swapul(1)
symbolesa: .. esa(I)
symbol and line number stripe I)
sync: forces write to disk sync(l)
systype: display version stamp systype(I)
tabs on a terminal .. tabs(I)
tabs: set tabs on a terminal tabs(1)
tail: deliver the last part of tail(1)
tape file archiver ... tar(I)
tape manipulating program mt(1)
tar: tape file archiver tare 1)
taskslex: generate .. lex(1)
tb: print process traceback tbO)
td: graphical device routines/ erase(lG)
td: graphical device routines/ gdev(lG)
td: graphical device routines/ hardcopy(lG)
td: graphical device routines/ hpd(IG)
td: graphical device routines/ td(IG)
td: graphical device routines/ tekset(IG)
teach the game of backgammon teachgammon(6)
teachgammon: teach the game of teachgammon(6)
tee: pipe fitting .. tee(l)
tekset, td: graphical device/ erase(lG)
tekset, td: graphical device/ gdev(I G)
tekset, td: graphical device/ hardcopy(l G)
tekset, td: graphical device/ hpd(lG)
tekset, td: graphical device/ td(lG)
tekset, td: graphical device/ tekset(IG)
TELNET protocol ... telnet(IC)
telnet: user interface to the telnet(I C)
terminal450: handle special 450(I)
terminal ... emt(I)
terminal ... stty(I)
terminal ... tabs(I)
terminal ... tty(I)

animate worms on a display
flake: induce

vt100: VT100
greek: select

database tput: initialize a
functions of DASI 300 and 300s

functions of Hewlett-Packard
kill:

initialize a terminal or query
command

quiz:
ed, red:

ex:
ed, red:

casual users) edit:
change the format of a

translate status code value to
protocol

ttt:
execute commands at a later
execute commands at a later

time:
data and system/ timex:

built bldt: display
display the module name and

tz: set or display system
scrto: set/show screen

update access and modification
process data and system/

tsort:
modification times of a file

tpm: set/display

mouse characteristics
query terminfo database

terminalworms: ... worms(6)
terminal dandruff .. flake(6)
terminal emulator .. vt100(I)
terminal filter .. greek(l)
terminal or query terminfo tput(l)
terminals/handle special 300(1)
terminalshp: handle special hP(l)
terminate a process kill(l)
terminfo databasetput: lput(l)
test: condition evaluation test(l)
test your knowledge quiz(6)
text editor .. ed(l)
text editor .. ex(l)
text editor " .. red(l)
text editor (variant of ex for edit(l)
text filenewform: .. newform(l:
text messagestcode: stcode(I)
tftp: trivial file transfer tftp(lC)
tic-tac-toe .. ttt(6)
timeat, batch: .. at(l)
timeat, batch: .. batch(l)
time a command ... time(l)
time a command; report process timex(l)
time operating system was bldt(l)
time stampts: ... IS(I)
time: time a command time(l)
time zone .. tz(l)
timeout ,, scrto(l)
times of a filetouch: touch(l)
timex: time a command; report timex(l)
topological sort ... tsort(!)
touch: update access and touch(l)
touchpad and mouse/ tpm(l)
tplot: graphics filters tplot(IG)
tpm: set/display touchpad and tpm(l)
tput: initialize a terminal or tput(l)
tr: translate characters tr(l)

Streams or configure STREAMS trace modules/list active trconf(l)
/print messages collected by trace modules on active/ """""""""'"'''''''''' trmon(l)

tb: print process traceback ... tb(l)
crpad: create a transcript pad and window crpad(l)

ftp: ARPANET file transfer program ... ftp(IC)
tftp: trivial file transfer protocol .. tftp(lC)

tr: translate characters tr(l)
text message stcode: translate status code value to stcode(l)
within a font tr_font: transliterate characters trjont(l)

/a binary file for transmission via mail uudecode(
/a binary file for transmission via mail uuencode(

configure STREAMS trace/ trconf: list active Streams or trconf{l)

trek:
characters within a font

tftp:
collected by trace modules on!

battlestar: a
values

trek: trekkie game ... trek(6)
trekkie game ... trek(6)
tr_font: transliterate trjont(l)
trivial file transfer protocol tftp(lC)
trmon: print messages trmon(l)
tropical adventure game battlestar(
true, false: provide truth false(l)

Permuted Index xxxi:

xl Permuted Index

values
true, false: provide
true, false: provide

and time stamp

tenninal
crty: create a new

dlty: delete a
file: detennine file
inty: install a new

intm install a
crtyobj: create a
Ity: list installed

and slides mmt, mvt:
and slides mmt, mvt:

zone
mask

UNIX system
swapul: rearrange

file unget:
an SCCS file

a file

execution uux:
uucp, uulog, uuname:
uucp, uulog, uuname:
uucp, uulog, uuname:

uuto, uupick: public
uuto, uupick: public

files pack, pcat,
files pack, pcat,
files pack, pcat,

file for storing! strfile,
times of a file touch:

of programs make: maintain,
/convert patbnames between

duo summarize disk
stat: statistical network

become super-user or another
write: write to another

id: priut
crontab:

program finger:
protocol telnet:

whois: DARPA Internet
(variant of ex for casual

wall: write to all
mail, nnail: send mail to
mail, nnail: send mail to

inlib: install a
/search a file for a pattern

gutil: graphic
control uustat:

UNIX-to-UNIX system copy
UNIX-to-UNIX system copy

true, false: provid~ truth "." ... " true(l)
truth values """"""""""""""""",,"""""",,. false(l)
truth values """"""""""""""""""""""""". true(l)
ts: display the module name """"""""""",,. ts(l)
tsort: topological sort """""""""""""""""" tsort(l)
ttt: tic-tac-toe """""""""""""""""""""""" ttt(6)
tty: get the name of the """""""""""""""". tty(l)
type """""""""""""""""""""""",,"",,"",,. crty(l)
type .""."""."" .. "."."." .. "" ... "."" ... ""." ,, dlty
type """"""""""""."""".,,"""""""""""",,. file(l)
type .""".""""""""."""",,,,,,,,,,,,,,,,,,,,,,,,,,,,,. inty(l)
type manager """""""""""""""""""""""" intm(I)
type object module for binding """""""""". crtyobj(l)
types "".""""""""""""""",,"",,.,,,,""""""" Ity(l)
typeset documents, viewgraphs, """"""",,,,. mmt(I)
typeset documents, viewgraphs, """"""""", mvt(l)
tz: set or display system time "",,",,""""""" tz(l)
umask: set file-creation mode """"""""",,,,. umask(l)
uname: print name of current """"""""""", uname(I)
underlining """""""""""""""""""""""""" swapul(l)
undo a previous get of an SCCS """"""""". unget(l)
unget: undo a previous get of """"""",,"",,. unget(I)
uniq: report repeated lines in """""""""""" uniq(l)
units: conversion program ",,"""""""""""" units(l)
UNIX-to-UNIX system command """"""". uux(IC)
UNIX-to-UNIX system copy""""""""""". uucp(lC)
UNIX-to-UNIX system copy""""""""""". uulog(lC)
UNIX-to-UNIX system copy""""""""""". uuname(lC)
UNIX-to-UNIX system file copy"""""""". uupick(lC)
UNIX-to-UNIX system file copy"""""""". uuto(lC)
unpack: compress and expand "" .. "" pack(l)
unpack: compress and expand """"""""""" pcat(l)
unpack: compress and expand """"""""",," unpack(l)
unstr: create a random access """""""""",,. strfile(6)
update access and modification """""""""" touch(l)
update, and regenerate groups """"""""""" make(l)
upper and lowercase and/ """""""""""""". cvtname(l)
usage " .. """"."."""."" .. "." ... "."""",.""""". due I)
useful with graphical commands """"""""" stat(IG)
usersu: """"""",,"""""""""""""""""""",,. su(l)
user """"""".".""".".""".""""."".""""."." write(l)
user and group IDs and names """""""""". id(l)
user crontab file """""""""""""""""""".". crontab(l)
user infonnation lookup """"""""""""""", finger(l)
user interface to the TELNET """"""""""" telnet(lC)
username directory service """"""""""""". whois(l)
users)edit: text editor """""""""""""""""" edit(l)
users """."""""""""""""""""""""""""",,. wall(l)
users or read mail """"""""""""""""""""" mail(l)
users or read mail """"""""""""""""""""" nnail(l)
user-supplied library """""""""""""""""". inlib(I)
usiug full regular expressions """""""""",,. egrep(I)
utilities ."" ... ""."""."."."."""",,.,,"",,.,, ... ,," gutil(IG)
uucp status inquiry and job """"""""""""", uustat(lC)
uucp, uulog, uuname: """"""""""""""""'" uucp(lC)
uucp, uulog, uuname: """"""""""""""""". uulog(IC)

UNIX-to-UNIX system copy
encode/decode a binary tile/
encode/decode a binary file/

system copy uucp,
system copy uucp,
system copy uucp,
copy uucp, uuiog,
copy uucp, uuiog,
copy uucp, uuiog,

system tile copy uuto,
system tile copy uuto,

and job control
UNIX-to-UNIX system tile copy
UNIX-to-UNIX system tile copy

command execution

val:
stcode: translate status code

true, false: provide truth
true, false: provide truth

users) edit: text editor

vc:
get: get a

hangman: computer
systype: display

sccsdiff: compare two
display editor based on ex

a binary tile for transmission
a binary tile for transmission

mmt, mvt: typeset documents,
mmt, mvt: typeset documents,

robots: fight off

vine: grow
on ex vi: screen-oriented

window settings
vt100:

vsize: set/display
process

backup tile

who:

directory service
machines rwho:

create a transcript pad and
vsize: set/display VT I 00

sail: multi-user
cd: change

pwd:
worm: play the growing

game

uucp, uulog, uuname: uuname(lC)
uuencode,uudecode: uudecode(IC
uuencode,uudecode: uuencode(IC
uulog, uuname: UNIX-ta-UNIX uucp(lC)
uulog, uuname: UNIX-ta-UNIX uulog(lC)
uulog, uuname: UNIX-to-UNIX uuname(lC)
uuname: UNIX-to-UNIX system uucp(IC)
uuname: UNIX-to-UNIX system uulog(lC)
uuname: UNIX-to-UNIX system uuname(IC)
uupick: public UNIX-to-UNIX uupick(lC)
uupick: public UNIX-to-UNIX uuto(lC)
uustat: uucp status inquiry uustat(lC)
uuto, uupick: public uupick(l C)
uuto, uupick: public uuto(1 C)
uux: UNIX-to-UNIX system uux(lC)
val: validate SCCS file val(l)
validate SCCS file ... val(l)
value to text message stcode(l)
values .. false(l)
values .. true(I)
(variant of ex for casual edit(l)
vc: version control .. vc(I)
version control .. vc(I)
version of an SCCS file get(I)
version of the game hangman hangman(6)
version stamp .. systype(l)
versions of an SCCS tile sccsdiff(l)
vi: screen-oriented (visual) vi(l)
via mail/encode/decode uudecode(II
via mail/encode/decode uuencode(II
viewgraphs, and slides mmt(l)
viewgraphs, and slides mvt(l)
villainous robots ... robots(6)
vine: grow vines ... vine(6)
vines .. vine(6)
(visual) display editor based viOl
vsize: set/display VT100 vsize(l)
VT I 00 terminal emulator vt100(I)
vt100: VT 100 terminal emulator vII 00(1)
VT I 00 window settings vsize(l)
wait: await completion of waite I)
wall: write to all users wall(l)
wbak: create a magnetic media wbak(1)
wc: word count ... wc(l)
what: identify SCCS tiles what(l)
who is on the system who(I)
who: who is on the system who(I)
whois: DARPA Internet username whois(l)
who's logged in on local rwho(lC)
windowcrpad: ... crpad(I)
window settings .. vsize(l)
wooden ships and iron men sail(6)
working dire~-tory ... cd(l)
working directory name pwd(I)
worm game ... wornl(6)
worm: play the growing worm worm(6)

Permuted Index xli

display terminal worms: animate worms on a worms(6)
worms: animate worms on a display terminal worms(6)

wall: write to all users .. wall(l)
write: write to another user write(I)

sync: forces write to disk .. sync(l)
write: write to another user write(I)

hunt-the-wumpus wump: the game of wump(6)
list(s) and execute command xargs: construct argument xargs(l)

from the shell xdmc: execute a DM command xdmc(l)
compiler-compiler yacc: yet another yacc(l)

tz: set or display system time zone tz(I)

xlii Permuted Index

INTRO(!) SysV INTRO(1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands for general utility. In addition,
some special commands for communication purposes are described. All commands are
listed in alphabetic order, and each is suffixed by "(1)" to help identify its place in the
SysV Command Reference.

N.B.: Commands that relate to system maintenance, distinguished by (1M) in earlier
UNIX System documentation, are described in Managing SysV System Software.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by the sys­
tem giving the cause for termination, and (in the case of "normal" termination) one
supplied by the program [see wait(2) and exit(2)]. The former byte is 0 for normal ter­
mination; the latter is customarily 0 for successful execution and non-zero to indicate
troubles such as erroneous parameters, or bad or inaccessible data. It is called variously
"exit code", "exit status", or "return code", and is described only where special con­
ventions are involved.

Some commands produce unexpected results when processing files contammg null
characters. These commands often treat text input lines as strings, and become confused
at encountering a null character (the string terminator) within a line.

SEE ALSO
Section 6 (for computer games), Getting Started with Domain/OS, and Using Your SysV
Environment.

Commands 1-1

DOMAIN(l) Domain/OS SysV DOMAIN(l)

NAME
domain - Domain/OS-specific conunands and extensions

DESCRIPTION
While providing all of the significant capacity of System V Release 3, Domain/OS
SysV actually represents only a subset of the greater capacity of Domain/OS. Further­
more, Domain/OS SysV omits some features of System V that are irrelevant to
Apollo® workstations. The following paragraphs describe aspects that are visible to
the Domain/OS SysV user and sununarize features of System V not implemented under
Domain/OS SysV.

Domain/OS Additions to SysV

1-2

Pages that describe the Domain/OS-specific conunands are identified with the page
heading "Domain/OS SysV;" pages describing standard System V UNIX conunands
are "Sys V" .

The /usr/apollo/bin Directory

All systems, even if they only have the Aegis environment, now have a /usr/apollo
directory. It contains certain Domain extensions to the UNIX environment. It also
includes C include files for Domain system calls, as well as other added-value files.

The /usr/apollo/bin directory contains Domain conunands that apply to all three
environments or extend the UNIX environment. The following Domain/OS-specific
conunands appear in /usr/apollo/bin:

bldt

chacl

cpacl

cpscr

crddf

crp

crpad

crty

crtyobj

cvtJont

Displays information about the version of Domain/OS.

Changes the entries in an object's access control list (ACL).

Copies access control lists (ACLs).

Copies the current screen image, without clearing it, to the file you
specify.

Creates, displays, or modifies a device descriptor file (DDF).

Creates a process on a remote node.

Creates a transcript pad, copies a file (or standard input) into that
pad, and then opens a window into the pad.

Creates a new type. It creates an identifier for the new type, and
associates it with the supplied type name. New types are used to
identify a new kind of manager for streams.

Creates an object module that contains a global symbol with the type
UID. This module is bound with type managers. The variable is
passed into calls to trait _ $mgr _ del to declare support for the
specified type.

Converts SR9 font files to the new font format for SRIO.

Conunands

DOMAIN(1)

cvtname

cvtrgy

dbacl

dde

dlty

dm

dspst

edfont

edmtdesc

emt

esa

fst

hpc

intm

inty

iso

kbm

las

Commands

Domain/OS SysV DOMAIN(l)

Converts SR9 patbnames between upper and lowercase and preserve
colons.

Allows the system administrator to generate an SR10 format registry
database from SR9.7 registry files, or generates SR9.7 registry files
with data from the SR 1 0 registry.

Provides an interactive menu-based editor for manipulating Access
Control Lists (ACLs).

Allows you to load and debug programs written in any programming
language supported by the Domain/OS operating system, including
assembler.

Deletes a type and any installed type manager.

Contains a list of Display Manager commands.

Displays process statistics in a graphical, bar-chart fashion within the
current process window.

Allows you to create, edit and view character font files.

Allows you to create, list, and modify the magnetic tape descriptor
object.

Allows your node to emulate an ASCII terminal connected to another
computer. This asynchronous connection exists through a stream
opened on one of the node's SIO lines. emt also permits ASCII file
transfer between your node and the remote host.

Displays the address of an external symbol in an installed library.
TItis command is primarily intended for system-level debugging.

Prints information about the most recent fault that occurred in the
process.

The hpc (histogram...program_counter), part of Domain/PAK
(Domain Performance Analysis Kit), looks at the performance of
programs at the PC level.

Installs a type manager for the type_name.

Installs a type from one node to another.

Converts files written with the overloaded 7 -bit national fonts to the
International Standards Organization (ISO) 8-bit format. This
includes: french_to_iso, german_to_iso, nor.dan_to_iso,
swedish_to_iso, swiss_to_iso, and uk_to_iso

Allows you to set the characteristics for the keyboard.

Produces a list of objects mapped into the address space.

1-;

DOMAIN(1)

Ibr2ar

Icm

IIib

IIkob

Isad

Ity

mkapr

obj2coff

prf

rbak

rwmt

scrattr

scrto

stcode

tb

tpm

tr font

ts

tz

1-4

Domain/OS SysV DOMAlN(1)

Converts pre-SRlO Ibr library files containing object modules in
OBI format to SRlO ar library archive files containing object
modules in COFF format.

Loads a color map from a file that specifies a set of color map
entries.

Lists those libraries which have been installed in the current process
via the build-in inlib shell.

Lsts the locked objects resident on volumes mounted on this node,
and objects resident in other nodes that are locked by processes run­
ning locally.

Shows the access control list (ACL) associated with the files and
directories specified.

Lists the types currently installed on a volume.

Makes an Apollo product report.

Converts SR9.5 or later object format modules to SRlO COFF format
modules. Either individual modules, or complete bound programs
may be converted.

Queues a file for printing.

Restores objects from the backup input media written by wbak
(write_backup). The backup input media can be magnetic media, file
or standard input.

Reads tapes from non-Domain installations and writes tapes that can
be read by non-Domain installations. rwmt can read and write u nla­
beled tapes, as well as ANSI level 1-4 labeled tapes.

Lists the X and Y dimensions of the display in pixels.

Sets or displays the number of minutes the system waits before it
shuts off the display screen. It begins counting minutes after the last
input event or window configuration change.

Prints the text message associated with a hexadecimal status code.

Prints a process traceback, listing the name and current line number
of each routine on the call stack.

Allows you to define characteristics for the touchpad and mouse.

Allows you to change the order in which characters appear in fonts.

Displays the time stamp and module name stored in an object
module.

Sets the system time zone to a known time zone or to an offset from
Coordinate Universal Time (utc).

Commands

DOMAIN(l)

vsize

vt100

wbak

xdmc

Domain/OS SysV DOMAIN(l)

Allows you to set the dimensions of the VT100 emulator window
pane. This command is valid only from within the VT100 emulator
(which is invoked with the VT100 command); attempting to use it
directly from the shell causes an error.

Creates a window running the VT100 terminal emulator and starts up
a shell within the window.

Writes one or more objects to either a removable media, disk file
or standard output.

Allows you to invoke Display Manager commands from the com­
mand shell or from within a shell script.

Domain/OS SysV Extensions
This section describes Apollo extensions to standard UNIX commands.

ar Domain/OS SysV ar builds a module name table and a long name table
in addition to the symbol table; these tables are stored in files that are
never mentioned or accessible. This makes ranlib obsolete.

cc

cp

csh

ksh

Id

In

Commands

cc is the Domain/OS SysV interface to the preprocessor (cpp), the
Domain C compiler, and the link editor (Id). The Domain/OS SysV cc
command provides some unique options; not all standard UNIX options
are available. The -A option identifies a unique set of Domain/OS exten­
sions to cc and Id.

The cp command includes a number of Domain/OS extensions. See
cp(l) for a complete description of these extensions.

limit -h resource maximum-use. You cannot use limit to set the stack
size, and the coredumpsize limit is always 0 in Domain/OS. path. The
default search path in Domain/OS SysV is (. lusr/ucb Ibin lusr/bin
lusr/apollo/bin). However, this may vary from system to system. For the
super-user, the default search path is (/etc Ibin lusr/bin lusr/apollo/bin),
which may also vary.

Domain/OS SysV includes support for the Kom shell and adds some
extensions to this shell. See "UNIX Shell Extensions", below for a
brief summary of the added features.

The Domain/OS SysV version of Id includes support for features that are
not available on System V Release 3. Domain/OS Id supports the follow­
ing extensions: static resource information records (.sri), module infor­
mation records (.mir), and control of global variable visibility. The-A
option identifies a unique set of Domain/OS SysVextensions to cc and
Id.

Symbolic links in Domain/OS are implemented as soft links. These are
identical in behavior, except that soft links to not have protections asso­
ciated with the links themselves.

1-5

DOMAIN(l)

login

lorder

Is

mkdir

nm

passwd

ps

ranIib

strip

tftp

1-6

Domain/OS SysV DOMAIN(l)

The login command is a merge of the System V and 4.3BSD login com­
mands. The -p argument causes the remainder of the environment to be
preserved, otherwise any previous environment is discarded.

Domain/OS login includes new security features for dial-up lines,
/etc/d_users and letc/d_passwd. letc/d_users is simply a file containing
a list of users authorized to log in on this node. letc/d _passwd is a file
containing lines which specify a user's log-in shell, and the dial-in pass­
word for the specified shell as returned by crypt(3). If an entry for the
user's log-in shell is not found in this file, the password for Ibin/sh is
used.

The need for lorder has vanished on Domain/OS systems, since ar(l)
and Id(l) cooperate to create randomly accessed libraries.

If you specify - T with the -I option, it shows the Domain/OS "type" of
each file.

The mechanism for assigning the initial file ACL and initial directory
ACL for the directory created by the mkdir command has been changed.
The initial file ACL and initial directory ACL are now inherited from the
parent directory.

The -Ag option checks KGT (Known Global Table) to see if undefined
globals are defined in global libraries. If specified with the -u option,
nm will not print those undefined symbols that are defined in global
libraries.

On Domain/OS systems, the letc/passwd file is a typed file, which is
automatically generated by the registry daemon. The registry administra­
tor can make the person information in the registry read-only, in which
case normal users cannot change the "Name" field.

The Domain/OS nodename option shows information about processes
running on the specified node.

ranlib is not necessary on Domain/OS SysV systems; however, it is pro­
vided as a no-op for compatibility.

The -Aa option strips all debugging information, including that needed
for traceback. The .blocks and .Iines sections, if present, will be
removed. This option strips more information than the default strip
behavior, and is added for users who wish to remove all symbolic infor­
mation.

The Domain/OS SysV versions of tftp and tftpd(lM) are adaptations of
the MIT Project Athena implementations of the tftp protocol.
Domain/OS SysV tftp will interface with any RFC783 compliant imple­
mentation.

Commands

DOMAIN(l) Domain/OS SysY DOMAIN(l)

uucp Domain/OS SysV supports "HoneyDanBer" uucp for both the SysV
and SysV environments. (See "UUCP Support" below).

who The who command includes a number of Domain/OS extensions.

UNIX Shell Extensions
Domain/OS includes support for the additional shell built-in comrnmands inlib, root­
node, and ver.

root node causes / to refer to the node entry directory of Iinodename instead of the
current node entry directory.

inlib installs a library at the current shell level; it remains installed until the shell that
installed it exits. The newly installed library will be used to resolve external references
of programs (and libraries) loaded after its installation.

ver changes, temporarily or permanently, the UNIX version of commands that are exe­
cuted by the shell. The command also displays the version in use.

csh and sh also include support for a new command line option, -Dname=value. This
option sets the parameter name to value, then passes it to the shell's environment. This
option is useful for tailoring the environment of a shell invoked from a program that
isn't a shell (such as the Display Manager).

ksh has also been extended to support editing commands in Display Manager pads. If
the value of the variable EDITOR ends in emacs, gmacs, or vi and the VISUAL is not
set, the corresponding option is turned on. This value should be unset for shells running
in Apollo transcript pads.

For Apollo transcript pads, the variable FCEDIT should be set to 'pad'. With dialup
lines or in VT100 windows, values like vi or emacs are useful.

The in-line editing options are not useful in Apollo transcript pads. The command input
pane associated with Transcript pads allows full command line editing. Setting
VISUAL or EDITOR in Apollo transcript pads causes the pad to flip in and out of raw
mode.

TCP/IP Support
At SRIO, Domain/OS supports TCP/IP in the Aegis, BSD and SysV environments. One
version operates in all environments.

Commands 1-7

DOMAIN(I) Domain/OS SysV DOMAIN(I)

Unsupported Commands
The following commands from System V are not supported.

4014 bs ct
cw eqn ged
hpio ismpx jterm
jwin login mm
nroff sag sar
shl sysadm tbl
toe troff

At this revision nroff, troff, tbl, and associated text processing tools are bundled and
sold as a separate package for System V users.

SEE ALSO

1-8

intro(l), domain(lM), domain(7),
Using Your SysV Environment;
Managing SysV System Software.

Commands

300(1) SysV 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s teoninals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
The 300 conunand supports special functions and optimizes the use of the DASI 300
(GSI 300 or DTC 300) teoninal; 300s perfonns the same functions for the DASI 300s
(GSI 300s or DTC 300s) teoninal. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. In the following discussion of
the 300 conunand, it should be noted that unless your system contains the
DOCUMENTER'S WORKBENCH Software, references to certain conunands (e.g., nroff,
neqn, eqn,) will not work. It also attempts to draw Greek letters and other special sym­
bols. It permits convenient use of 12-pitch text. It reduces printing time 5 to 70%.
You can use the 300 conunand to print equations neatly, in the sequence:

OPTIONS
+12

-n

-dt,I,e

Conunands

neqn file ..• 1 nroff 1300

Permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nortnally
allow only two combinations: lO-pitch, 6 lines/inch, or 12-pitch, 8
lines/inch. To obtain the 12-pitch, 6 lines per inch combination, turn the
PITCH switch to 12, and use the +12 option.

Controls the size of half-line spacing. A half-line is, by default, equal to
4 vertical plot increments. Because each increment equals 1/48 of an
inch, a lO-pitch line-feed requires 8 increments, while a 12-pitch line­
feed needs only 6. The first digit of n overrides the default value, thus
allowing for individual taste in the appearance of subscripts and super­
scripts. For example, nroff half-lines can be made to act as quarter-lines
by using -2. You can also obtain appropriate half-lines for 12-pitch, 8
lines/inch mode by using the option -3 alone, having set the PITCH
switch to 12-pitch.

controls delay factors. The default setting is -d3,9O,30. DASI 300 ter­
minals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non-identical
characters. One null (delay) character is inserted in a line for every set
of t tabs, and for every contiguous string of e non-blank, non-tab charac­
ters. If a line is longer than I bytes, 1 +(totallength)/20 nulls are inserted
at the end of that line. Items can be omitted from the end of the list,
implying use of the default values. Also, a value of zero for t (e) results
in two null bytes per tab (character). The fortner may be needed for C
programs, the latter for files like /etc/passwd. Because teoninal
behavior varies according to the specific characters printed and the load

1-9

300(1)

NOTE

SysV 300(1)

on a system, you may have to experiment with these values to get correct
output. The -d option exists only as a last resort for those few cases that
do not otherwise print properly. For example, you can print the file
letc/passwd using -d3,30,S. The value -dO,l is a good one to use for C
programs that have many levels of indentation.

You can use 300 with the nroff -s flag or .rd requests, when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of pressing
RETURN in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff - T300 files ... and nroff files .. ~ 300
nroff - T300-12 files. .. and nroff files .. ~ 300 + 12

Using 300 can often be avoided unless special delays or options are required; in a few
cases, however, the additional movement optimization of 300 can produce better­
aligned output.

The neqn names of, and resulting output for, the Greek and special characters sup­
ported by 300 are shown in greek(5).

The delay control interacts heavily with the prevailing carriage return and line-feed
delays. The stty(l) modes nlO cr2 or nlO cr3 are recommended for most uses.

WARNING

BUGS

If your terminal has a PLOT switch, make sure it is turned ON before 300 is used.

Some special characters cannot be correctly printed in column I because the print head
cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a tendency to
slip when reversing direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

SEE ALSO

1-10

450(1), mesg(l), graph(IG), stty(l), tabs(l), tplot(lG).
greek(5) in the SysV Programmer's Reference.

Commands

450(1) SysY 450(1)

NAME
450 - handle special functions of the DASI 450 tenninal

SYNOPSIS
450

DESCRIPTION

NOTE

The 450 command supports special functions of, and optimizes the use of, the DASI 450
tenninal, or any tenninal that is functionally identical, such as the Diablo 1620 or
Xerox 1700. It converts half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts to draw Greek letters and other
special symbols in the same manner as 300(1). Use 450 to print equations neatly, in the
sequence:

neqn file ... I nroff I 450

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert paper manu­
ally or change fonts in the middle of a document. Instead of RETURN in these cases,
you must use the line-feed key to get any response.

Frequently, you can eliminate using 450 in favor of one of the following:

nroff -T450 files ...
or

nroff -T450-l2 files ...

Using 450 can thus often be avoided unless special delays or options are required; in a
few cases, however, the additional movement optimization of 450 can produce better­
aligned output.

neqn names of, and resulting output for, the Greek and special characters supported by
450 are shown in greek(5).

Unless your system contains DOCUMENTER'S WORKBENCH Software, certain com­
mands (e.g., eqn, nroff, tbl) will not work.

WARNING

BUGS

Make sure the PLOT switch on your tenninal is ON before you use 450. The SPAC­
ING switch should be put in the desired position (either 10- or l2-pitch). In either
case, vertical spacing is 6 lines/inch, unless dynamically changed to 8 lines/inch by an
appropriate escape sequence.

Some special characters cannot be correctly printed in column 1 because the print head
cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a fonns tractor; although good enough for drafts, the latter has a tendency to
slip when reversing direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

Commands 1-11

450(1) SysY 450(1)

SEE ALSO

1-12

300(1), mesg(I), stty(I), tabs(l), graph(IG), tplot(IG).
eqn(l), moff(I), tbl(l) in the UNIX System V Documentor's Workbench Reference
Manual.
greek(5) in the SysV Programmer's Reference.

Commands

ADMIN(l) SysV ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-~ag[ftag-val]] [-dflag[ftag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

DESCRIPTION
admin creates new sees files and changes parameters of existing ones. Options to
admin can appear in any order and must be preceded by a dash (-), and named files
(note that sees file names must begin with the characters s.). If a named file does not
exist, it is created, and its parameters are initialized according to the specified options.
Parameters not initialized by an option are assigned a default value. If a named file
does exist, parameters corresponding to specified options are changed, and other param­
eters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the pathname
does not begin with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the name of an
sees file to be processed. Again, non-sees files and unreadable files are silently
ignored.

OPTIONS
-n
-i[namej

-rrel

-t[namej

Commands

Indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is to be taken.
The text constitutes the first delta of the file (see -r option for delta
numbering scheme). If i is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encoun­
tered. If this option is omitted, then the sees file is created empty.
Only one sees file can be created by an admin command on which the i
option is supplied. Using a single admin to create two or more sees
files requires that they be created empty (no -i option). Note that the-i
option implies the -n option.

The release into which the initial delta is inserted. This can only be used
if -i is also used. If -r is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by default initial del­
tas are named 1.1).

The name of a file from which descriptive text for the sees file is to be
taken. If -t is used and admin is creating a new sees file (the -n
and/or -i options also used), the descriptive text file name must also be
supplied. In the case of existing sees files: (1) using -t without a file
name causes removal of descriptive text (if any) currently in the sees
file, and (2) using -t with a file name causes text (if any) in the named
file to replace the descriptive text (if any) currently in the sees file.

1-13

ADMIN(l) SysV ADMIN(l)

1-14

-fj1ag Specifies aflag, and, possibly, a value for the flag, to be placed in the
SCCS file. You can use several -f's on a single admin command line.
The allowable flags and their values are:

b Allows use of -b on a get(1) command to create branch
deltas.

cceil

fj100r

dSID

ilstrl

j

Ilist

<list>

n

The highest release (Le., "ceiling"), a number greater
than 0 but less than or equal to 9999, which can be
retrieved by a get(I) command for editing. The default
value for an unspecified c flag is 9999.

The lowest release (Le., "floor"), a number greater than
o but less than 9999, which can be retrieved by a get(1}
command for editing. The default value for an
unspecified f flag is 1.

The default delta number (SIDs+I) to be used by a get(l)
command.

Causes the "No id keywords (ge6)" message issued by
get(l} or delta(1) to be treated as a fatal error. In the
absence of this flag, the message is only a warning. The
message is issued if no SCCS identification keywords [see
get(1} 1 are found in the text retrieved or stored in the
sces file. If a value is supplied, the keywords must
exactly match the given string, however the string must
contain a keyword, and no embedded newlines.

Allows concurrent get(l} commands for editing on the
same SIDs+ 1 of an sees file. This allows multiple con­
current updates to the same version of the sees file.

A list of releases to which deltas can no longer be made
(get -e against one of these' 'locked" releases fails). The
list has the following syntax:

::= <range> I <list>, <range>
<range>-::= I a

The character a in the list is equivalent to specifying all
releases for the named sces file.

Causes delta(1} to create a "null" delta in each of those
releases (if any) being skipped when a delta is made in a
new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may later be
created from them. The absence of this flag causes
skipped releases to be non-existent in the sces file,

Commands

ADMIN(l) SysV ADMIN(l)

preventing branch deltas from being created from them
in the future.

qtext User definable text substituted for all occurrences of the
%Q% keyword in sees file text retrieved by ge (1).

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

ttype Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text retrieved
by get(1).

vpgm Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number vali­
dity checking program [see deUa(1)]. (If this flag is set
when creating an sees file, the m option must also be
used even if its value is null).

-dflag Causes removal (deletion) of the specified flag from an sees file.
The -d option can be specified only when processing existing
sees files. Several -d options can be supplied on a single admin
command. See the -f option for allowable flag names.

Ilist A list of releases to be "unlocked". See the -f option
for a description of the I flag and the syntax of a list.

-alogin A login name, or numerical UNIX system group ID, to be added to
the list of users which may make deltas (changes) to the sees file.
A group ID is equivalent to specifying all login names common to
that group rD. Several a options can be used on a single admin
command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is
empty, anyone can add deltas. If login or group ID is preceded by
a ! they are to be denied permission to make deltas.

-elogin A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the sees file. Specify­
ing a group ID is equivalent to specifying all login names common
to that group ID. You can use several -e's on a single admin
command line.

-m[mrlistJ The list of Modification Requests (MR) numbers is inserted into
the sees file as the reason for creating the initial delta in a manner
identical to delta(l). The v flag must be set and the MR numbers

Commands 1-15

ADMIN(l)

1-16

SysV ADM1N(l)

are validated if the v flag has a value (the name of an MR number
validation program). Diagnostics occur if the v flag is not set or
MR validation fails.

-y[commentJ The comment text is inserted into the sees file as a comment for
the initial delta in a manner identical to that of deJta(1). Omission
of the -y option results in a default comment line being inserted in
the fonn:

-h

-z

date and time created YY/MM/DD HH:MM:SS by login

The -y option is valid only if the -i and/or -n options are
specified (i.e., a new sees file is being created).

Causes admin to check the structure of the sees file [see
sccsfile(5)], and to compare a newly computed check-sum (the
sum of all the characters in the sees file except those -in the first
line) with the check -sum that is stored in the first line of the sees
file. Appropriate error diagnostics are produced. This option inhi­
bits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when pro­
cessing existing files.

The sees file check-sum is recomputed and stored in the first line
of the sees file (see -h, above).

Note that use of this option on a truly corrupted file can prevent
future detection of the corruption.

The last component of all sees file names must be of the fonn s.file-name. New
sees files are given mode 444 [see chmod(l)]. Write pennission in the pertinent
directory is, of course, required to create a file. All writing done by admin is to a
temporary x-file, called x.file-name, [see get(l)], created with mode 444 if the
admin command is creating a new sees file, or with the same mode as the sees
file if it exists. After successful execution of admin, the sees file is removed (if
it exists), and the x-file is renamed with the name of the sees file. This ensures
that changes are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode 444. The mode of the directories allows only the
owner to modify sees files contained in the directories. The mode of the sees
files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of ed(l). Care must be taken! The
edited file" should always be processed by an admin -h to check for corruption
followed by an admin -z to generate a proper check-sum. Another admin -h is
recommended to ensure the sees file is valid.

Commands

ADMIN(l) SysV ADMIN(l)

FILES
g-file

p-file

q-fiIe

x-file

z-file

d-file

admin also makes use of a transient lock file (called z.fiIe-name), which is used
to prevent simultaneous updates to the sces file by different users. See get(l)
for further information.

Existed before the execution of delta; removed after completion of
delta.
Existed before the execution of delta; may exist after completion of
delta.
Created during the execution of delta; removed after completion of
delta.
Created during the execution of delta; renamed to SCCS file after com­
pletion of delta.
Created during the execution of delta; removed during the execution of
delta.
Created during the execution of delta; removed after completion of
delta.

lusr/bin/bdiff Program to compute differences between the "gotten" file and the g­
file.

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO
deJta(1), get(I), prs(l), sccs(1), what(1), sccsfile(4).
ed(1), help(l) in the Using Your SysV Environment.

Commands 1-17

AR(l) SysV AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key I"posname] afile [name] .•.

DESCRIPTION
ar maintains groups of files combined into a single archive file. Although its main use
is to create and update library files as used by the link editor, ar can be used for any
similar purpose. The magic string and the file headers used by ar consist of printable
ASCII characters. If an archive is composed of printable files, the entire archive is
printable.

When ar creates an archive, it produces headers in a format that is portable across all
machines. The portable archive format and structure is described in detail in ar(4).
The link editor uses the archive symbol table to effect multiple passes over libraries of
object files in an efficient manner. The link editor is further described in Id(l).

ar creates and maintains an archive symbol table and module name table only when
there is at least one object file in the archive. The archive symbol table is in a specially
named file which is always the first file in the archive. This file is never mentioned or
accessible. Whenever ar creates or updates the contents of such an archive, it also
rebuilds the symbol table. Domain/OS SysV ar builds a module name table and a long
name table in addition to the symbol table; these tables are stored in files that are never
mentioned or accessible.

key is an optional dash (-) followed by one character from the drqtpmx set, optionally
concatenated with one of more characters from the vuaibcls set. posname is the name
of an optional positioning character. afile is the archive file.

OPfION
A This option mayor may not begin with a dash (-), and is used with the mxtd

keys to move, extract, list or delete by module name.

KEY CHARACfERS

1-18

d Deletes named files from the archive file.

r

q

Replaces named files in the archive file. If the optional character u is used
with r, then only those files with dates of modification later than the archive
files are replaced. If an optional positioning character from the set abi is used,
then the posname argument must be present and specifies that new files are to
be placed after (a) or before (b or i) posname. Otherwise new files are placed
at the end.

Quickly appends named files to the end of the archive file. Optional position­
ing characters are invalid. Do not check whether the added members are
already in the archive. Useful for avoiding quadratic behavior when creating a
large archive piece-by-piece. Unchecked, the file can grow exponentially up
to the second degree.

Commands

AR(l) SysV AR(l)

Prints a table of contents of the archive file. If no names are given, table all
files. If names are given, table only those files named.

p Prints named files in the archive.

m Moves named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

x Extracts named files. If no names are given, '11.1 files in the archive are
extracted. In neither case does x alter the archive file.

KEY ARGUMENTS

NOTES

FILES

v Gives a file-by-file description of the making of a new archive file from the old
archive and the constituent files. When used with t, give a long listing of all
information about the files. When used with x, precede each file with a name.

c Creates afile and suppress the message produced by default when afile is
created.

Places temporary files in the local (current working) directory rather than in
the default temporary directory, TMPDlR.

s Forces the regeneration of the archive symbol table even if ar(i) is not
invoked with a command that modifies the archive contents. Useful for restor­
ing the archive symbol table after the strip(l) command has been used on the
archive.

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

$TMPDlRI* Temporary files

$TMPDIR is usually /usr/tmp but can be redefined by setting the environment variable
TMPDlR [see tempnamO in tmpnam(3S)].

SEE ALSO
ld(l), lorder(l), strip(I), tmpnam(3S), a.out(4), ar(4) in the SysV Programmer's Refer­
ence.

Commands 1-19

ASA(l) SysY ASA(l)

NAME
asa - intetpret ASA carriage control characters

SYNOPSIS
asa [files 1

DESCRIPTION
Asa intetprets the output of FORTRAN programs that use ASA carriage control charac­
ters. It processes either the files whose names are given as arguments or the standard
input if no filenames are supplied. The first character of each line is assumed to be one
of the following control characters:

o
1

+

(Blank) Single newline before printing;

Double newline before printing;

New page before prirtting;

Ovetprint previous line.

If a line begins with anything other than the above characters, asa automatically inter­
prets it as beginning with a ' " and produces an appropriate diagnostic on the standard
error. It never prints the first character of a line, and it always forces the first line of
each input file to start on a new page.

SEE ALSO
ratfor (1).

1-20 Commands

AT(l) SysV AT(!)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -rjob ...
at -I [job ...]

batch

DESCRIPTION
at and batch read commands from standard input to be executed at a later time. at
allows you to specify when the commands should be executed, while jobs queued with
batch execute when system load level permits.

Standard output and standard error output are mailed to you, unless you redirect them
elsewhere. Shell environment variables, current directory, umask, and ulimit are
retained when you execute either at or batch. Open file descriptors, traps, and priority
are lost.

You can use at if your name appears in the file lusrllib/cron/at.al!ow. If that file does
not exist, the file lusr/lib/cron/at.deny determines whether or not you are allowed to
use at. If neither file exists, only root can submit a job. The allow/deny files consist of
one user name per line. These files can only be modified by the superuser.

batch submits a batch job. It is equivalent to the command at now with the exceptions
that batch goes into a differenct queue and responds earlier with error messages.

OPTIONS
The following options apply to at only:

[time] [+ increment]
Specify time when commands are to be executed. One- and two-digit numbers
indicate hours, four-digit numbers show hours and minutes. You may alter­
nately specify the time as two numbers separated by a colon, meaning
hour:minute. You can also append an am or pm suffix; otherwise the com­
mands assume a 24-hour clock. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

You can specify an optional date as either a month name followed by a day number
(and possibly a year number preceded by an optional comma), or a day of the week
(fully spelled or abbreviated to three characters). Two special "days", today and
tomorrow are recognized. If you have not provided a date, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is less. If the
given month is less than the current month (and no year is given), next year is assumed.

The optional increment is a number suffixed by one of the following: minutes, hours,
days, weeks, months, or years. (The singular form is also accepted.)

Commands 1-21

AT(I) SyaV AT(I)

-rjob Remove jobs previously scheduled with at.

-I [job] Report all jobs (by job number) scheduled for the invoking user.

EXAMPLES

Fll.ES

at and batch read from standard input the commands to be executed at a later time.
sh(l) provides different ways of specifying standard input. Within your commands, it
may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
sort filename >outfile
<control-D> (hold down "CIRL" and press 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):

batch«!
sort filename 2>&1 >outfile I mailloginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by including
code similar to the following within the shell file:

echo "sh shellfile" I at 1900 thursday next week

Some examples of simple, yet valid at command lines are shown here:
at 0815am Jan 24
at 8: 15am Jan 24
at now + 1 day
at 5 pm Friday

lusrlIib/cron
lusr/lib/cron/at.aIlow
lusr/lib/cron/at.deny
lustlIib/cron/queue
lusrlspool/cron/atjobs

Main cron directory
List of allowed users
List of denied users
Scheduling information
Spool area

DIAGNOSTICS
Complains about various syntax errors and times out of range.

SEE ALSO

1-22

kill(l), mail(l), nice(l), ps(l), sh(l), sort(l).
cron(lM) in Managing SysV System Software.

Commands

AWK(l) SysV AWK(l)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc] [prog] [parameters] [files]

DESCRIPTION
awk scans each input file for lines that match any of a set of patterns specified in prog.
With each pattern in prog there can be an associated action that will be performed when
a line of a file matches the pattern. The set of patterns may appear literally as prog, or
in a file specified as -f file. The prog string should be enclosed in single quotes (') to
protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name -
means the standard input. Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a
sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric values
as appropriate, and are built using the operators +, -, *, I, %, and concatenation (indi­
cated by a blank). The C operators ++, -, +=, -=, *=,1=, and %= are also available
in expressions. Variables may be scalars, array elements (denoted xli]) or fields. Vari­
ables are initialized to the null string. Array subscripts may be any string, not neces­
sarily numeric; this allows for a form of associative memory. String constants are
quoted (It).

Commands 1-23

AWK(l) SysV AWK(l)

The print statement prints its arguments on the standard output (or on a file if >expr is
present), separated by the current output field separator, and terminated by the output
record separator. The printf statement formats its expression list according to the for­
mat [see printf(3S) in the SysV Programmer's Reference].

The built-in function length returns the length of its argument taken as a string, or of
the whole line if no argument. There are also built-in functions exp, log, sqrt, and int.
The last truncates its argument to an integer; substr(s, m, n) returns the n-character
substring of s that begins at position m. The function sprintf(jmt, expr, expr, ...) for­
mats the expressions according to the printf(3S) format given by fmt and returns the
resulting string.

Patterns are arbitrary Boolean combinations (!, II , &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded by
slashes and are as in egrep (see grep(l». Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in relational expressions.
A pattern may consist of two patterns separated by a comma; in this case, the action is
performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where: relop is any of the six relational operators in C, and a matchop is either (for
contains) or! (for does not contain). A conditional is an aritlunetic expression, a rela­
tional expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN { FS = c }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name of
the current input file; OFS, the output field separator (default blank); ORS, the output
record separator (default new-line); and OFMT, the output format for numbers (default
%.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

1-24 Commands

AWK(1)

BUGS

SysV

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; -i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: awk -f program n=5 input

Input white space is not preserved on output if fields are involved.

AWK(1)

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string (" ") to it.

SEE ALSO
grep(l), sed(l).
lex(l), printf(3S) in the SysV Programmer's Reference.

Commands 1-25

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

SysV BANNER(l)

banner prints its arguments (each up to 10 characters long) in large letters on the stan­
dard output.

SEE ALSO
echo(l).

1-26 Commands

BASENAME(l) SysV

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix 1
dirname string

DESCRIPTION

BASENAME(l)

basename deletes any prefix ending in I and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution
marks (' ') within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument lusrlsrc/cmd/cat.c, compiles the
named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example sets the shell variable NAME to lusrlsrc/cmd:

SEE ALSO
sh(l).

Commands

NAME='dirname lusrlsrc/cmd/cat.c'

1-2

BATCH(I) SysV BATCH(I)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -rjob ...
at -I [job ...]

batch

DESCRIPTION
at and batch read commands from standard input to be executed at a later time. at
allows you to specify when the commands should be executed, while jobs queued with
batch execute when system load level pennits.

Standard output and standard error output are mailed to you, unless you redirect them
elsewhere. Shell environment variables, current directory, umask, and ulimit are
retained when you execute either at or batch. Open file descriptors, traps, and priority
are lost.

You can use at if your name appears in the file lusr/lib/cron/at.allow. If that file does
not exist, the file lusrllib/cron/at.deny detennines whether or not you are allowed to
use at. If neither file exists, only root can submit a job. The allow/deny files consist of
one user name per line. These files can only be modified by the superuser.

batch submits a batch job. It is equivalent to the command at now with the exceptions
that batch goes into a differenct queue and responds earlier with error messages.

OPTIONS

1-28

The following options apply to at only:

[time] [+ increment]
Specify time when commands are to be executed. One- and two-digit numbers
indicate hours, four-digit numbers show hours and minutes. You may alter­
nately specify the time as two numbers separated by a colon, meaning
hour :minute. You can also append an am or pm suffix; otherwise the com­
mands assume a 24-hour clock. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

You can specify an optional date as either a month name followed by a day number
(and possibly a year number preceded by an optional comma), or a day of the week
(fully spelled or abbreviated to three characters). Two special "days", today and
tomorrow are recognized. If you have not provided a date, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is less. If the
given month is less than the current month (and no year is given), next year is assumed.

The optional increment is a number suffixed by one of the following: minutes, hours,
days, weeks, months, or years. (The singular fonn is also accepted.)

Commands

BATCH(l) SysV BATCH(l)

-rjob Remove jobs previously scheduled with at.

-1 [job] Report all jobs (by job number) scheduled for the invoking user.

EXAMPLES

FIT..ES

at and batch read from standard input the commands to be executed at a later time.
sh(l) provides different ways of specifying standard input. Within your commands, it
may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
sort filename >outfile
CTRL/D

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):

batch «!
sort filename 2>&1 >outfile I mailloginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by including
code similar to the following within the shell file:

echo "sh shellfile" I at 1900 thursday next week

Some examples of simple, yet valid at command lines are shown here:
at 0815am Jan 24
at 8: 15am Jan 24
at now + 1 day
at 5 pm Friday

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/lib/cron/queue
/usr/spool/cron/atjobs

Main cron directory
List of allowed users
List of denied users
Scheduling information
Spool area

DIAGNOSTICS
Complains about various syntax errors and times out of range.

SEE ALSO
kill(l), mail(l), nice(1), ps(1), sh(1), sort(l).
cron(lM) in Managing SysV System Software.

Commands 1-2~

BC(l) SysV BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e] [-1] [file • ..]

DESCRIPTION
be is an interactive processor for a language that resembles C but provides unlimited
precision arithmetic. It takes input from any files given, then reads the standard input.
The be(l) utility is actually a preprocessor for de(I), which it invokes automatically
unless the -e option is present. In this case the de input is sent to the standard output
instead.

1'1- ~ value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on arithmetic operations in the
manner of de(l). Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple variable simultane­
ously. All variables are global to the program. "Auto" variables are pushed down dur­
ing function calls. When using arrays as function arguments or defining them as
automatic variables, empty square brackets must follow the array name.

PROGRAM SYNTAX

1-30

The syntax for be programs is shown below; (L means letter a-z, E means expression,
S means statement).

Comments

Names

Enclosed in /* and */

Simple variables: L
Array elements: L [E)
The words "ibase", "obase", and "scale"

Other Operands
Arbitrarily long numbers with optional sign and decimal point
(E)
sqrt(E)
length (E)
scale (E)
L(E, ... ,E)

Operators

Number of significant decimal digits
Number of digits right of decimal point

+ - * / % - (% is remainder; - is power)
++ - (Prefix and postfix; apply to names)
== <= >= != < >
= =+ =- =* =/=% =-

Commands

8C(1)

Statements
E
(S; ... ;S I
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function Definitions
define L (L , ... , L) (

auto L, ... , L
S; ... S
return (E)

Functions in -I Math Library
sex) sine
c(x) cosine
e(x) exponential
lex) log
a(x) arctangent
j(n,x) Bessel function

SysV

All function arguments are passed by value.

OPTIONS
--c Compile only. The output is send to the standard output.

8C(1)

-\

EXAMPLE

Argument stands for the name of an arbitrary precision math library.

scale = 20
define e (x) (

Commands

auto a, h, c, if S

a = 1

b = 1

s = 1

for(i=l; 1==1; i++){

a = a*x
b = b*i

c = alb
if(c == 0) return(s)
s = s+c

1-31

BC(l)

BUGS

FILES

SysV BC(l)

defines a function to compute an approximate value of the exponential function
and

for(i=l; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

The bc command does not yet recognize the logical operators, && and I I .
For statement must have all three expressions (E's).
Quit is interpreted when read, not when executed.

lusr/libllib.b
lusr/bin/dc

Mathematical library
Desk calculator proper

SEE ALSO
dc(I).

1-32 Commands

BDIFF(l) SysV BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
bdiff is used in a manner analogous to diff(l) to find which lines in two files must be
changed to bring the files into agreement. Its purpose is to allow processing of files
which are too large for diff.

OPTIONS

FILES

filel (file2) The name of a file to be used. If filel (file2) is -, the standard input is
read.

n

-s

The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too
large for diff, causing it to fail.

Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff(I), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of each
file into n-line segments, and invokes diff upon corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the
segmenting of the files (that is, to make it look as if the files had been processed whole).
Note that because of the segmenting of the files, bdiff does not necessarily find a smal­
lest sufficient set of file differences.

Itmp/bd?????

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO
diff(I), help(I).

Commands 1-33

BFS(I) SysV BFS(l)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION

1-34

bfs is like ed(l) except that it is read-only and processes much larger files. Files can be
up to I024K bytes and 32K lines, with up to 512 characters, including new-line, per line
(255 for 16-bit machines). bfs is usually more efficient than ed(l) for scanning a file,
since the file is not copied to a buffer. It is most useful for identifying sections of a
large file where csplit(l) can be used to divide it into more manageable pieces for edit­
ing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w command. The optional - suppresses printing of sizes. Input is prompted
with * if P and a carriage return are typed, as in ed(I). Prompting can be turned off
again by inputting another P and carriage return. Note that messages are given in
response to errors if prompting is turned on.

All address expressions described under ed(l) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and?: > indicates down­
ward search without wrap-around, and < indicates upward search without wrap-around.
There is a slight difference in mark names: only the letters a through z may be used,
and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed(l). Com­
mands such as --, +++-, +++=, -12, and +4p are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only prints the name of the file being
scanned; there is no remembered file name. The w command is independent of output
diversion, truncation, or crunching (see the XO, xt and xc commands, below). The fol­
lowing additional commands are available:

xffile
Further commands are taken from the named file. When an end-of-file is
reached, an interrupt signal is received or an error occurs, reading resumes
with the file containing the xf. The xf commands may be nested to a depth
of 10.

xn Ust the marks currently in use (marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666 (readable and writable by every­
one), unless your umask setting (see umask(l)) dictates otherwise. If file
is missing, output is diverted to the standard output. Note that each diver­
sion causes truncation or creation of the file.

Commands

BFS(l)

Corrunands

SysV BFS(l)

: label
This positions a label in a command file. The label is terminated by new­
line, and blanks between the: and the start of the label are ignored. This
command may also be used to insert comments into a command file, since
labels need not be referenced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to label. This
command is the only one that does not issue an error message on bad
addresses, so it may be used to test whether addresses are bad before other
commands are executed. Note that the command

xb[/label

is an unconditional jump.
The xb corrunand is allowed only if it is read from someplace other than a
terminal. If it is read from a pipe only a downward jump is possible.

xl number
Output from the p and null commands is truncated to at most number char­
acters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The commands
xv5100 or xv5 100 both assign the value 100 to the variable 5. The com­
mand xv61,100p assigns the value 1,100p to the variable 6. To reference a
variable, put a % in front of the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing
a match. To escape the special meaning of %, a \ must precede it.

g/" A% [cds lip

1-3:

BFS(l)

1-36

SysV BFS(l)

. could be used to match and list lines containing print! of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output from a
UNIX system command can be stored into a variable. The only require­
ment is that the first character of value be an !. For example:

.w junk
xv5 !cat junk
!rmjunk
!echo "%5"
xV6!expr %6 + 1

would put the current line into variable S, print it, and increment the vari­
able 6 by ('ne. To escape the special meaning of ! as the first character of
value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the execu­
tion of a UNIX system command (!command) or nonzero value, respec­
tively, to the specified label. The two examples below both search for the
next five lines containing the string size.

xc [switch]

xv55
: 1
/size/
xv5!expr %5-1
!if 0%5 != 0 exit 2
xbnl
xv45
: 1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbzl

If switch is 1, output from the p and null commands is crunched; if switch
is 0 it is not. Without an argument, xc reverses switch. Initially switch is

Commands

BFS(l)

DIAGNOSTICS

SysV BFS(l)

set for no crunching. Crunched output has strings of tabs and blanks
reduced to one blank and blank lines suppressed.

? for errors in commands, if promFting is turned off. Self-explanatory error messages
when prompting is on.

SEE ALSO
csplit(1), ed(I), umask(l).

Commands 1-37

BLDT(l) Domain/OS SysV

NAME
bldt - display time operating system was built

SYNOPSIS
bldt [options] [node _id]

DESCRIPTION
bldt displays the time at which the running version of Domain/OS was built.

BLDT(l)

node)d (optional) Display the build time of the node whose network root directory
is pathname.

OPTIONS
-n node_spec ...

-3

EXAMPLES
$ bldt I/ward

Default if omitted: display build time of current node

Display build time of specified node[s].

Display build time of all nodes.

**** Node 29C27. 4B51 **** "/ /ward"
Domain/OS kernel(3), revision 10.0, b120.1 April 15, 1988 1:02:54 pm

$ bldt -n I/june

**** Node 29C27.CBB9 ****
Domain/OS kernel(8), revision

$ bldt -n CBB9

"//june"
10.0, bl17.3 February 9, 1988

**** Node 29C27.CBB9 **** "//june"
Domain/OS kernel(8), revision 10.0, bl17.3 \

February 9, 1988 8:12:37 am

8:12:37 am

1-38 Commands

CAL(l)

NAME
ca I - print calendar

SYNOPSIS
cal [[month 1 year 1

DESCRIPTION

SysV CAL(l)

cal prints a calendar for a specified month and/or year. If neither is specified, cal prints
a calendar for the present month only.

Both year and month must be Arabic numbers. The range for year
is 1-9999. The range for month is 1-12.

EXAMPLES

BUGS

To print a calendar for the entire year of 1988, type the following:

cal 1988

To print a calendar for December, 1988, type:

cal 12 1988

The year always starts in January.

Note that "cal 88" refers to the year 88, not 1988.

Commands 1-39

CALENDAR(l) SysV CALENDAR(l)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

BUGS

FILES

calendar provides an individual reminder sevice by consulting the file calendar in your
login directory and printing out lines containing today's or tomorrow's date. You must
create the file before calendar can successfully run.

A typical line in your calendar file may look like this:

12/15 Departmental meeting at 3 p.m.

calendar recognizes most month-day entries (e.g., 12/15, Dec. 15, december 15), but
not day-month items (e.g., 15 December, 15/12). On weekends, "tomorrow" extends
through Monday.

When an argument is present, calendar looks in all users' login directories for a file
named calendar and sends any positive results by mail(l).

Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays.

!usr!lib!calprog to figure out today's and tomorrow's dates !etc!passwd !tmp!cal*

SEE ALSO
mail(1).

1-40 Commands

CANCEL(l) SysV CANCEL(l)

NAME
Ip, cancel- send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-eldest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-wjiles]
cancel [ids] [printers]

DESCRIPTION
Ip arranges for the named files and associated information (collectively called a
"request") to be printed by a line printer. If no file names are mentioned, the standard
input is assumed. A dash (-) used as a file name indicates the standard input and may
be supplied on the command line in conjunction with named jiles. The order in which
jiles appear is the same order in which they will be printed.

Ip associates a unique "id" with each request and prints it on the standard output. This
id can be used later to cancel (see cancel) or find the status (see Ipstat(l» of the
request.

OPTIONS
The following options to Ip may appear in any order and may be intennixed with file
names:

-c

-ddest

-m

-nnumber

-ooption

Commands

Makes copies ofthejile(s) to be printed immediately when Ip is invoked.
Normally,jiles will not be copied, but will be linked whenever possible.
If the -c option is not given, then you should be careful not to remove
any of the jile(s) before the request has been printed completely.
Without the -c option, any changes made to the named jiles after the
request is made, but before it is printed, will be reflected in the printed
output.

Chooses dest as the printer or class of printers where printing will take
place. If dest is a printer, the request will be printed only on that specific
printer. If dest is a class of printers, the request will be printed on the
first available printer that is a member of the class. Under certain condi­
tions (printer availability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(lM) and Ipstat(l». By
default, dest is taken from the environment variable LPDEST (if it is
set). Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see Ipstat(l».

Sends mail after thejiles have been printed (seemail(I».Bydefault.no
mail is sent.

Prints number copies of the output (default is 1).

Specifies a printer-dependent or class-dependent option. Several such
options may be collected by specifying -0 more than once. For more
information about what are valid options, see Models in Ipadmin(lM).

1-41

CANCEL(l) SysV CANCEL(l)

FILES

-s

-ttitle

Suppresses messages from Ip(l) such as "request id is ... ".

Prints title on the banner page of the output.

-w Writes a message to your terminal after the files have been printed. If
you are not logged in, mail is sent instead.

Cancel cancels line printer requests made by Ip(l). The command line arguments can
be either request ids (as returned by Ip(l» or printer names (for a complete list of
printer names, use Ipstat(l». Specifying a request id cancels the associated request
even if it is currently printing. Specifying a printer cancels the request which is
currently printing on that printer. In either case, the cancellation of a request that is
currently printing frees the printer to print its next available request.

/usr/spool/lp/*

SEE ALSO
enable(l), Ipstat(l), mail(l).
accept(lM), Ipadmin(lM), Ipsched(lM) in the Managing SysV System Software.

1-42 Commands

CAT(l) SysV CAT(l)

NAME
ca t - concatenate and print files

SYNOPSIS
cat [-u 1 [-s 1 [-v [-tl [-ell file ...

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. If no input file is
given, or if the argument "-" is encountered, cat reads from the standard input file.

OPTIONS
-u Produce unbuffered output. (The default is buffered output.)

-s Ignore non-existent files.

-v Make non-printing characters visible (except for tabs, new-lines and form-
feeds). Print control characters (CTRL key and X) as '''X'', the delete charac­
ter (DELETE key - octal 0177) as a caret with a question mark '''7'', and non­
ASCn characters (with the high bit set) as M-x. where x is the character
specified by the seven low-order bits.

-t With the -v option, print tabs as 'I.

-e With the -v option, print a dollar sign ($) at the end of each line (prior to the
new-line).

The -t and -e options are ignored if the -v option is not specified.

EXAMPLES

BUGS

To write filel on standard output, type the following:

cat filel

To write standard input tofilel, use this command:

#cat >filel

To write filel andfile2 to file3, type this:

cat file 1 file2 >file3

Command formats such as cat filet file2 >filel destroy the original data infilel. Be
careful when using shell special characters.

SEE ALSO
cp(l), pg(l), pr(I).

Commands 1-43

CB(l) SysV CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s 1 [-j 1 [-I leng 1 [file ... 1

DESCRIPTION
cb reads C programs from its arguments or from the standard input, and writes them on
the standard output with spacing and indentation displaying the structure of the code.
Under default options, cb preserves all user new-lines.

OPTIONS
-s

-j

-Ileng

BUG

Causes code to conform to the style of Kernighan and Ritchie in The C
Programming Language.

Puts split lines back together.

Splits lines that are longer than [eng.

Punctuation that is hidden in preprocessor statements causes indentation errors.

SEE ALSO
cc(l).
The C Programming Language. Prentice-Hall, 1978.

1-44 Commands

CC(l) SysV CC(l)

NAME
cc - C compiler

SYNOPSIS
cc [options 1 files

DESCRIPTION
cc is an interface to the preprocessor (cpp), the Domain C compiler, and the link editor
(ld). cc processes the supplied options and then executes the various tools with the
proper arguments. cc accepts several types of files as argument~:

Files whose names end with .c are taken to be C source programs and may be prepro­
cessed, compiled, and link edited. The compilation process may be stopped after the
completion of any pass if the appropriate options are supplied. If the compilation pro­
cess runs through the compiler then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .c. However, the .0 file is nor­
mally deleted if a single C program is compiled and then immediately link edited. Files
whose names end in .i are taken to be preprocessed C source programs and may be
compiled and link edited. Files whose names do not end in .c, or .i are handed to the
link editor.

Assembly source programs (files whose names end in .s) are not supported.

Since cc usually creates files in the current directory during the compilation process, it
is necessary to run cc in a directory in which a file can be created.

Not all standard UNIX options are available. Furthermore, some unique options are
provided by the Domain cc command. If the cc command does not recognize an option
as a preprocessor or compiler option, it assumes that it is an option for the link editor
(Id) and passes it along. The options the cc interface recognizes as preprocessor options
are: -C, -D, -H, -I, and -U. The link editor options are: -3, -I, -L, -m, -M, -0, -r,
-s, -t, -u, -V, -x and -z. Options that are recognized but ignored are: -ds, -dl, -f,
-F and -So When you use these options, you get a warning that they are not supported.

OPTIONS
-A cpu,id Generates code for a particular class of processor. Legal values for id

are:

any Standard M68000 code
160 DSP160 code
460 DN460code
660 660 code
90 DSP90 code
330 DN330code
560 DN560code
570 DN570code
580 DN580code
3000 DN3000code

Commands 1-45

CC(l)

1-46

SysV CC(l)

4000 DN4000 code
FPX Floating-Point Accelerator Board
PEB Perfonnance Enhancement Board

-A nansi Does not compile with ANSI rules. This option passes -ntype to the
compiler and does not define the preprocessor symbol_STDC_.

-A runtype,type
Passes type infonnation to compiler and linker.

-A systype,type

-c

-E

-g

-H

~ outftle

-0

-p

-p

-qg

Defines the target system type (systype) for the compiled object. type can
be one of:

TYPE
any
bsd4.2
bsd4.3
sys5
sys5.3

DESCRIPTION
Version independent
Berkeley version 4.2
Berkeley version 4.3
UNIX System V
UNIX System V.3

This replaces the - T option.

Suppresses the linking phase of the compilation and forces an object file
to be produced, even if only one program is compiled.

Runs only cpp(l) on the named C programs, and sends the result to the
standard output.

Causes the compiler to generate additional infonnation needed for using
dbx(1) or dde(l).

(cpp switch) Prints out to stderr the pathname of each file included dur­
ing this compilation.

Produces an output object file named outfile. The name of the default
file is a.out. This is a link editor option.

Turns on compilation phase optimitzations.

Produces code that counts the number of times each routine is called;
also, automatically calls monitor(3C). Produces a mon.out file at nor­
mal tenninal execution of the object program. An execution file is then
generated by using prof(1).

Runs only cpp(l) on the named C programs, and leaves the result on
corresponding files suffixed with.i. Passes this option to cpp(I).

Produces profiled code that allows profiling with gprof(1). Produces a
gmon.out file at nonnal tennination of execution of the object program.

Commands

CC{l) SysV CC(l)

-qp Produces profiled code where the p argument produces identical results
to the -p option (allows profiling with prof(l».

-T systype Defines the target system type (systype) for the compiled object. systype
can be one of:

any
bsd4.2
bsd4.3
sysS
sysS.3

Version independent
Berkeley version 4.2
Berkeley version 4.3
UNIX System V
UNIX System V.3

Note this option is identical to the -A systype,type option, but may
become obsolete in a future release. We recommend using -A
systype,systype.

-V Prints the version of the compiler and/or link editor that is invoked.

-Wc,argl,[arg2 ...)
Hands off the arguments argi to pass c where c is one of p, 0, or 1, indi­
cating the preprocessor, compiler, or link editor, respectively. Using
-WO enables you to use Icornlce options that are not available with
Ibin/ee. For example: -WO, -pic passes -pie to the compiler.

-¥[pOISILU), dir

-Bstring

Specifies a new pathname, dirname, for the locations of the tools and
directories designated by the first argument.

p Preprocessor (epp)
o Compiler (ee)
I Link editor (Id)
S Directory containing start-up routine (/usr/Iib/ertO.o)
I Default include directory searched by preprocessor (/usr/include)
L First default library directory searched by link editor (/usr/lib)
U Second default library directory searched by link editor (no default)

If the location of a tool is being specified, the new pathname for the tool
will be Idirname/tool. If more than one -Y option is applied to anyone
tool or directory, the last occurrence holds.

-t[p02al] These options will be removed in the next release. Use the - Y
option.

ee also recognizes -C, -D, -H, -I and -U and passes these options and their agru­
ments directly to the preprocessor without using the -W option. Similarly, ee recog­
nizes -a, -I, -L, -m, -M, 4), -r, -s, -t, -u, -V, -x, -z and passes these options and
their arguments directly to the loader. See epp(l) and Id(l).

Commands 1-47

CC(l)

NOTES

FILES

SysV CC(l)

Other agruments are taken to be C compatible object programs, typically produces by
an earlier cc run, or perhaps libraries of C compatible routines and are passed directly to
the link editor. These programs, together with the results of any compilations specified,
are link edited (in order given) to produce an executable program with name a.out
unless the -0 option of the link editor is used.

If cc is put in file preftxcc the prefix will be parsed off the command and used to call the
tools, i.e., preftxtool. For example, OLDcc will call OLDcpp, OLDcomp, OLDoptirn,
OLDas and OLDld and will link OLDcrtl.o. Therefore, one MUST be carefule when
moving cc around. The prefix will apply to the preprocessor, compiler, link editor, and
the start-up routines.

By default, the return value from a compiled C program is completely random. The
only two guaranteed ways to return a specific value are to explicitly call exit(2) or to
leave the function rnainO with a "return eJl.pression;" construct.

file.c
file.i
file.o
a.out
LIBDlR/crtO.o
TMPDlR/*
LIBDlR/cpp
lusr/apollo/lib/cc
BINDlR/ld

LIB D1R is usually lusrllib
BINDIR is usually fbin

C source file
Preprocessed C source file
object file
Link edited output
Start-up routine
Temporary files
Preprocessor, cpp(l)
Compiler
Link editor, Id(l)

TMPDlR is usually fusrftrnp but can be redefined by setting the environment variable
TMPDlR [see tempnarnO in tmpnarn(3S)].

SEE ALSO

1-48

ld(ll, cpp(l), gencc(l),lint(l), prof(l), dbx(l), tmpnam(3S).
Domain C Language Reference
"The C Programming Language", Kernighan, B.W. and Ritchie, D.M. Prentice-Hall,
1978.

Commands

CD(l) SysV CD(l)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, cd uses the value of shell parameter $HOME as the new
working directory. If directory specifies a complete path starting with a slash (/), a
period (.), or two consectutive periods (.•), directory becomes the new working direc­
tory. If neither case applies, cd tries to find the designated directory relative to one of
the paths specified by the $CDPATH shell variable. $CDPATH has the same syntax as,
and similar semantics to, the $PATH shell variable. cd must have execute (search) per­
mission in directory .

Because a new process is created to execute each command, cd would be ineffecrive if
it were written as a normal command; therefore, it is recognized by, and is internal to,
the shell.

EXAMPLES
To change your working directory to the directory called mydata, type the following:

#cd mydata

To advance your working directory one level up in the naming hierarchy, use this com­
mand:

#cd .•

SEE ALSO
pwd(l), sh(l).
chdir(2) in the SysV Programmer's Reference.

Commands 1-49

COC(l) SysV eDe(1)

NAME
cdc -change the delta commentary of an sees delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
cdc changes the delta commentary for the SID (SeeS IDentification string) specified by
the -r option, of each named sees file.

Delta commentary is defined to be the Modification Request (MR) and comment infor­
mation normally specified via the delta(1) command (-m and -y arguments).

If a directory is named, cdc behaves as though each file in the directory were specified
as a named file, except that non-sees files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read (see BUGS) and each line of the standard input is taken to be the
name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of options and file names.
All options described below apply independently to each named file.

0PI10NS

1-50

-rSID Specifies the sees IDentification (SID) string of a delta for which the
delta commentary is to be changed.

-mmrlist Supplies a list of MR numbers to be added and/or deleted in the delta
commen_ary of the SID specified by the -r option. The sees file must
have the v flag set. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of
delta(I). In order to delete an MR, precede the MR number with the
character! (see EXAMPLES). If the MR to be deleted is currently in the
list of MRs, it is removed and changed into a .. comment" line. A list of
all deleted MRs is placed in the comment section of the delta commen­
tary and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unes­
caped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(l)], it is taken to be the
name of a program (or shell procedure) which validates the correctness
of the MR numbers. If a non-zero exit status is returned from the MR
number validation program, cdc terminates and the delta commentary
remains unchanged.

Commands

COC(1) SysV CDC(l)

-y[commentJ Arbitrary text used to replace the comments already existing for the delta
specified by the -r option. The previous comments are kept and pre­
ceded by a comment line stating that they were changed. A null com­
ment has no effect.

If -y is not specified and the standard input is a tenninal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a tenninal, no prompt is issued. An
unescaped new-line character tenninates the comment text.

EXAMPLES

BUGS

FILES

cdc -r1.6 -m"bI78-12345 !bI77-54321 bI79-0000I" -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list, removes bl77-54321 from the MR list,
and adds the comment trouble to delta 1.6 of s.file.

cdc -r 1.6 s.file
MRs? !bI77-54321 b178-12345 bI79-00001
comments? trouble

does the same thing.

If SCCS file names are supplied to the cdc command via the standard input (- on the
command line), then the -m and -y keyletters must also be used.

To modify the delta commentary, you must be either (1) the creator of the delta, or (2)
the owner of the SCCS file and directory.

x-file [see delta(l)]
z-file [see deita(l)]

DIAGNOSTICS
Use he/pel) for explanations.

SEE ALSO
admin(l), delta(l), get(l), prs(I), sccsfile(4}.
help(I) in the Using Your SysV Environment.

Commands 1-51

CFLOW(l) SysV CFLOW(l)

NAME
cflow - generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-i_] [-<Inurn] files

DESCRIPTION
cflow analyzes a collection of C, yacc, lex, and object files and attempts to build a graph
charting the extemal references. Files suffixed with .y, .I, and.c are yacced, lexed, and
C-preprocessed as appropriate. The results of the preprocessed files, and files suffixed
with .i, are then run through the first pass of lint(l). Files suffixed with .0, have infor­
mation extracted from their symbol tables. The results are collected and tumed into a
graph of extemal references, which is displayed on the standard output.

Each line of output begins with a reference number, followed by a suitable number of
tabs indicating the level, then the name of the global symbol followed by a colon and its
definition. Usually only function names that do not begin with an underscore are listed
(see the -i options below). For information extracted from C source, the definition con­
sists of an abstract type declaration (char, for instance), and, delimited by angle brack­
ets, the name of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in C-style extemal names
are deleted.

Once a definition of a name has been printed, subsequent references to that name con­
tain only the reference number of the line where the definition may be found. For
undefined references, only < > is printed.

OPTIONS

1-52

In addition to the -D, -I, and -U options [which are interpreted just as they are by
cc(l) and cpp(l)], the following options are interpreted by cflow:

-r

-ix

-i

-<lnum

Reverses the "caller: callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexico­
graphical order by callee.

Includes extemal and static data symbols. The default is to include only
functions in the flowgraph.

Includes names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

The nurn decimal integer indicates the depth at which the flowgraph is
cut off. By default this is a very large number. Attempts to set the cut­
off depth to a nonpositive integer will be ignored.

Commands

CFLOW(l) SysV CFLOW(l)

EXAMPLE
As an example, given the following in file.c:

int i;

main()
{

fO
(

the command

fO;
gO;
fO;

i h 0 ;

cHow -ix file.c

produces the output

1 main: intI), <file.c 4>
2 f: intI), <file.c 11>
3 h: <>
4

5 g: <>
i: int, <file.c 1>

When the nesting level becomes too deep, the output of cHow can be piped to pr(l),
using the -e option, to compress the tab expansion to something less than every eight
spaces.

DIAGNOSTICS

BUGS

Notifies you of bad options. Complains about multiple definitions and only believes the
first. Other messages may come from the various programs used (e.g., the C­
preprocessor).

Files produced by lex(l) and yacc(l) cause the reordering of line number declarations
which can confuse cHow. To get proper results, feed cHow the yacc or lex input.

SEE ALSO
cc(l), cpp(l), lex(l), lint(l), nm(1), yacc(l).
pr(1) in Using Your SysV Environment.

Commands I-53

CHACL(l) Domain/OS SysV CHACL(1)

NAME
chacl - change access control list

SYNOPSIS
chacl [-odfvLR] <spec> file ...

chacl [-odfvLR] -D <sid> file ...

chacl [-odfvLR] [-u <owner>] [-g <group>] [-z <organization>] file ...

chacl [-odfvLR] (-c 1 -I 1 -n) file ...

chacl [-vLR] (-8 1 -S) file ...

DESCRIPTION
The chacl command changes the entries in an object's access control list (ACL). Use
the specification (spec) part of the command line either to set the rights for a given sub­
ject identifier (sid), or to change the inheritance mechanisms of a directory. The
specification syntax, shown below, is similar to chmod's symbolic mode form.

<spec>:
<sid>:
<req>:
<op>:
<inh>:
<rights>:

<sid><op><rights> 1 <req><op><inh> 1 <spec>[,<spec> ...]
%.%.% 1 <req>
[ugzo] 1 a
=1+1-
[UP]
[prwxksl]

OPTIONS
-8
-S

-c

-I

-n

-0

1-54

The -8 (BSD) and -S (SysV) options simply set a directory to use the
appropriate semantics. Any existing ACLs are removed, and the protec­
tions on the directory are determined by the current umask(2). Owner,
group, and organization inheritance are determined using the appropriate
semantics (SysV, all from current process; BSD, owner from current
process, group from directory. Organization is marked "ignore" for
both).

Force calculation of the extended entry mask. The mask represents the
maximum rights of all extended ACL entries, and is automatically calcu­
lated each time chacl is run. This option is used to undo the effects of
the chmod command, as chmod affects the mask as well as the world
required entry (%.%.%) when changing rights for "other".

Set local access. With local access set, an object can be accessed only
from the node on which it is located.

Set network access.

Make the changes on the ACL itself for the objects specified. If the -0,

-d, or -f options are not specified, -0 is assumed These options can be
used in any combination.

Commands

CHACL(1)

-d

-f

-v

-L

-R

-D

-u

-g

Domain/OS SysV

Make the changes on the initial directory ACL.

Apply the changes to the initial file ACL.

(verbose) List each destination as the ACL is changed.

CHACL(l)

Follow any soft links encountered. and operate on the object to which
the link points. Since soft links in Domain/OS do not have ACLs.
attempting to change a soft link without the -L flag simply results in a
warning. with no change.

Apply the changes recursively to any directories encountered among the
files listed. Be very careful when combining this option with the -L
option!

Delete extended entries from an ACL. Required entries may not be
deleted. so ~id> must be an actual subject identifier (see below).

Set the owner field in an ACL.

Set the group field in an ACL.

-z Set the organization field in an ACL.

SUBJECT IDENTIFIERS
The sid (Subject IDentifier) used in the first form (~id><op><rightS» is a way of
specifying a user or set of users. It may include a usemame. group name and organiza­
tion name. any of which may be replaced with the wildcard %. orleft off. as described
in acl(7). The special cases u. g. z and 0 refer to the required entries in the ACL for
user. group. organization and world. The special case a refers to the all of the above
(user. group. organization and world). as does a null SID field. These special cases do
not affect required entries that are marked "Ignore". Short user IDs that are a combi­
nation of the letters u. g. z and 0 are distinguished from the special cases by the use of
the % syntax described above. Thus oz+x adds execute rights for other and organiza­
tion. whereas oz. %. %+x or oz •• +x adds execute rights for just the user oz.

ACCESS RIGHTS
Access rights are specified by the op (operator) and rights parameters to chacl. Valid
operators are =. +. and -. The = operator specifies absolute rights for the SID. If the
ACL already contains an entry for this SID. ad changes it to contain the rights listed.
Otherwise. it adds an entry with the specified SID and access rights.

If you specify the + operator. the rights are added to any existing rights for the specified
SID. Likewise. the - operator removes the rights from the ACL entry for the SID. If no
entry exists for the SID. the entire ACL is searched for more general entries that apply
to this SID. The specified rights are then added to or removed from this aggregate set
of rights. and a new entry is created for the specific SID.

Commands 1-55

CHACL(l) Domain/OS Sys V CHACL(l)

1-56

Access rights consist of any combination of the following letters:

Files:

p Protect rights; allow rights to be changed
r Read rights; allows file to be read
w Write rights; allows file to be written
x Execute rights: allows file to be executed
k Keep; prevents file from being deleted or having its name changed
s Set ID; usable only with u, g and z (user, group, and

organization); causes this executable to be run with
the effective ID of the user, group or organization

Directories:

p Protect rights; allow rights to be changed
r Read rights; allows directory to be listed
w Write rights; allows names to be added, changed or deleted
x Execute rights; allows subordinate objects to be used, without allowing

the directory to be listed; also called search rights
k Keep; prevents directory from being deleted or having its name changed

The following is used alone, and overrides any other rights specified:

Ignore; used to ignore the rights in the required owner, group,
organization, and other entries

To change the inheritance properties of a directory, use the second form of ACL
specification «req><op><inh». In this case, the first field must consist only of
required entries u, g, z, or a (user, group, organization, all) and the second field
specifies the inheritance option.

The valid inheritance options are as follows:

u

p

Umask; the rights for new objects in this directory are those
requested by the process creating them as modified by the umask(2)
of that process

Process; inherit user, group or organization from the
process creating a new object in this directory

Commands

CHACL(l) Domain/OS SysV CHACL(l)

EXAMPLES
chad g+w *

Add write rights for the group to each file in this directory.

chad a=rx foo

Give owner, group, organization and world read and execute rights to the file foo.

chad ugz=l.

Ignore the required entries for owner, group and organization.

chad % .os=prwx .

Give the os group full rights to this directory.

chad •• mktg-pw, •• r_d=prwx.

Be sure that the mktg organization does not have write or protect rights and that r _ d
has full rights to the current directory.

chad-8 lusr/u/bar

Strip any extended ACLs from lusr/u/bar, and set it up as a BSD directory.

chad -D arnold.statT *
Delete any ACL entries referring to arnold.statT.

chad-od susan+x lusr/u/zap

Always allow susan to use objects in lusr/u/zap directory, and to search any new sub­
directories.

chad -odf user= magicdir

Insure that user has no rights to magicdir, nor to any files or sub-directories subse­
quently created in magicdir.

chad -f ugz= UP •

Newly created files in the current directory inherit owner, group, and organization (and
the associated rights) from the process.

chad -df goP •

Do not inherit group from the process, that is, inherit it from this directory for new files
and sub-directories.

SEE ALSO
lsacl(l), cpacl(l), chmod(l), chgrp(l), chorg(1),chown(2), umask(2), salacl(lM), acl(5)

Commands 1-57

CHFN(l) SysV CHFN(l)

NAME
chfn, chsh, passwd - change password file infonnation

SYNOPSIS
passwd [-s] [-f] [name]
chsh shell
chfn

DESCRIPTION

1-58

The passwd conunand changes or installs a password, log-in shell (-s option), or
OECOS infonnation field (-f option) associated with the user name (your own name by
default).

chsh changes a log-in shell, and is equivalent to passwd -so

chth changes the OECOS infonnation field, and is equivalent to passwd -f.

When altering a password, passwd prompts for the current password and then for the
new one; you must supply both. You must type the new password twice to forestall
mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough.

Only the owner of the name or the super-user can change a password; owners must
prove they know the old password.

When altering a log-in shell, (using passwd -s or chsh) the program displays the
current log-in shell and then prompts for the new one. The new log-in shell must be
one of the approved shells listed in letc/shells unless you are the super-user. If
letc/shells does not exist, the only shells that can be specified are Ibin/sh, Ibin/csh,
Ibin/ksh, and Icornlsh.

The super-user can change anyone's log-in shell; nonnal users can only change their
own log-in shell(s).

When altering the OECOS infonnation field, (using passwd -f or chfn), the program
displays the current infonnation, broken into fields, as interpreted by the finger(1) pro­
gram (among others) and prompts for new values. These fields can include a user's
"real life" name, office room number, office phone number, and home phone number.
Each prompt includes a default value, which is enclosed between brackets. The default
value is accepted simply by typing a carriage retum. To enter a blank field, the word
"none" can be typed. Phone numbers can be entered with or without hyphens. It is a
good idea to run finger after changing the OECOS infonnation to make sure everything
is set up properly.

The super-user can change anyone's OECOS infonnation; nonnal users can only
change their own.

Commands

CHFN(1) SysV

EXAMPLE
Below is a sample run:

NOTES

% passwd-f
Name [Biff Studsworth II]:
Room number (Exs: 597E or 197C) []: SUE
Of fice Phone (Ex: 1632) []: 1863
Home Phone (Ex: 987532) [5771546]: none

CHFN(1)

On Domain/OS systems, the /etc/passwd file is a typed file, which is automatically gen­
erated by the registry daemon. The registry administrator can make the person informa­
tion in the registry read-only, in which case normal users cannot change the "Name"
field.

FILES
/etc/passwd
!etc/shells

The file containing all of this information
The list of approved shells

SEE ALSO
login(l), finger(l), passwd(4), crypt(3C), edrgy(lM);
Using Your SysV Environment

Commands 1-5~

CHGRP(l) SysV CHGRP(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. ,

chown owner directory ...

chgrp group file ...

chgrp group directory ...

DESCRIPTION

NOTES

FILES

chown changes the owner of the files or directories to owner. The owner may be either
a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group may be
either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the owner or group of that file.

In a Remote File Sharing environment, you may not have the permissions that the out­
put of the Is -I command leads you to believe.

/etc/passwd
/etc/group

SEE ALSO
chmod(I).
chown(2), group(4), passwd(4) in the SysV Programmer's Reference.

1-60 Commands

CHMOD(l) SysV CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

chmod mode directory ...

DESCRIPTION
chmod allows the permissions of the named files or directories to be changed accord­
ing to mode, which may be absolute or symbolic. An absolute mode is an octal number
constructed from the OR of the following modes:

4000 set user ID on execution
20#0 set group 10 on execution if # is 7, 5, 3, or 1

enable mandatory locking if # is 6, 4, 2, or 0
1000 sticky bit (sticky bit is not supported in SysV)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access classes and to
the individual permissions themselves. Permissions to a file may vary depending on
your user identification number (UIO) or group identification number (GIO). Permis­
sions are described in three sequences each having three characters:

User Group Other

rwx rwx rwx

In this example, user, group, and others all have reading, writing, and execution per­
mission to a given file. There are two categories for granting permissions: the access
class (who) and the permissions themselves. Thus, to change the mode of a file's (or
directory's) permissions using chmod's symbolic method, use the following syntax:

[who 1 operator [permission(s)], ...

A command line using the symbolic method would appear as follows:

chmod gHw file

This command would make file readable and writable by the group.

who is a combination of the letters u for owner's permissions), g (group), and 0 (other).
The letter a stands for ugo, the default if who is omitted.

Operator can be plus (+) to add permission to the file's mode, minus (-) to take away
permission, or equal (=) to assign permission absolutely (reset all other bits).

Permission is any compatible combination of the following letters:

Commands 1-61

CHMOD(l) SysV CHMOD(l)

r reading pennission
w writing permission
x execution pennission
s user or group set-ID is turned on
t sticky bit (sticky bit is not supported in SysV)
I mandatory locking will occur during access

Multiple symbolic modes separated by commas can be given, though no spaces may
appear between these modes. Operations are perfonned in the order given. Multiple
symbolic letters following a single operator cause the corresponding operations to be
perfonned simultaneously. The letter s is only useful with u or g, and t only works with
u.

EXAMPLES

BUGS

1-62

chmod a-x file

chmod 444 file

The first examples deny execution permission to all. The absolute (octal) example per­
mits only reading permissions.

chmod gOHw file

chmod 606 file

These examples make a file readable and writable by the group and others.

chmod +Ifile

This causes a file to be locked during access.

chmod =rwx.g+s file

chmod 2777 file

These last two examples enable all to read, write, and execute the file; and they turn on
the set group-ID.

Mandatory file and record locking (I) refers to a file's ability to have its reading or writ­
ing permissions locked while a program is accessing that file. It is not possible to per­
mit group execution and enable a file to be locked on execution at the same time. In
addition, it is not possible to turn on the set-group-ID and enable a file to be locked on
execution at the same time. The following examples,

chmod g+x,+ljile

chmod g+s,+ljile

are, therefore, illegal usages and will elicit error messages.

Commands

CHMOD(l) SysV CHMOD(l)

Only the owner of a file or directory (or the super-user) may change a file's mode. Only
the super-user may set the sticky bit. In order to turn on a file's set-group-IO, your own
group 10 must correspond to the file's, and group execution must be set.

The DOMAIN system's single-level store requires that all files be mappable and, there­
fore, readable by the os. This means that SysV does not recognize execute-only or
write-only files. For example, if you type chmod 11 L foo, SysV automatically sets read
permissions for the owner as follows:

-r-xr-xr-x 1 owner unix 5 May 22 11:47 fc

Also, if you type chmod 222 foo, Sys V automatically sets read permissions for owner
as follows:

-rw-rw-rw- 1 harper sys 5 May 22 11:50 foo

Only the owner of a file (or the super-user) may change its mode.

To set the group ID, the group associated with the file must correspond to your current
group ID.

SEE ALSO
Is(l).
chmod(2) in the SysV Programmer's Reference.

Commands 1-6:

CHOWN(l) SysV CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file ...

chown owner directory ...

chgrp group file ...

chgrp group directory ...

DESCRIPTION

NOTES

FILES

chown changes the owner of the files or directories to owner. The owner may be either
a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group may be
either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the owner or group of that file.

ht a Remote File Sharing environment, you may not have the permissions that the out­
put of the Is -I command leads you to believe. For more information see the "Mapping
Remote Users" section of Chapter 10 of the SysV System Administrator's Guide.

/etc/passwd
/etc/group

SEE ALSO
chmod(l}.
chown(2), group(4}, passwd(4} in the SysV Programmer's Reference.

1-64 Commands

CHSH(l) SysV CHSH(l)

NAME
ehfn, ehsh, passwd - change password file information

SYNOPSIS
passwd [-s] [-f] [name]
ehsh shell
ehfn

DESCRIPTION
The passwd command changes or installs a password, log-in shell (-s option), or
GECOS information field (-f option) associated with the user name (your own name by
default).

ehsh changes a log-in shell, and is equivalent to passwd -so

ehfn changes the GECOS information field, and is equivalent to passwd -f.

When altering a password, passwd prompts for the current password and then for the
new one; you must supply both. You must type the new password twice to forestall
mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough.

Only the owner of the name or the super-user can change a password; owners must
prove they know the old password.

When altering a log-in shell, (using passwd -s or ehsh) the program displays the
current log-in shell and then prompts for the new one. The new log-in shell must be
one of the approved shells listed in fete/shells unless you are the super-user. If
fete/shells does not exist, the only shells that can be specified are /bin/sh, /bin/esh,
/bin/ksh, and /eornlsh.

The super-user can change anyone's log-in shell; normal users can only change their
own log-in shell(s).

When altering the GECOS information field, (using passwd -f or ehfn), the program
displays the current information, broken into fields, as interpreted by the finger(l) pro­
gram (among others) and prompts for new values. These fields can include a user's
"real life" name, office room number, office phone number, and home phone number.
Each prompt includes a default value, which is enclosed between brackets. The default
value is accepted simply by typing a carriage rerum. To enter a blank field, the word
"none" can be typed. Phone numbers can be entered with or without hyphens. It is a
good idea to run finger after changing the GECOS information to make sure everything
is set up properly.

The super-user can change anyone's GECOS information; normal users can only
change their own.

Commands 1-65

CHSH(I) SysV CHSH(I)

EXAMPLE

NOTES

FILES

Below is a sample run:

% passwd-f
Name [Biff Studsworth II]:
Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863
Home Phone (Ex: 987532) [5771546]: none

On Domain/OS systems, the /etc/passwd file is a typed file, which is automatically gen­
erated by the registry daemon. The registry administrator can make the person informa­
tion in the registry read-only, in which case normal users cannot change the "Name"
field.

/etc/passwd
/etc/shells

The file containing all of this information
The list of approved shells

SEBALSO

1-66

login(I), finger(l), passwd(4), crypt(3C), edrgy(IM);
Using Your SysV Environment

Commands

CMP(l) SysV CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I 1 [-s 1 file I file2

DESCRIPTION
cmp compares two files. (If filel is -, the standard input is used.) Under default
options, cmp makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial subse­
quence of the other, that fact is noted.

OPTIONS
-I

-s

DIAGNOSTICS

Prints the byte number (decimal) and the differing bytes (octal) for each
difference.

Prints nothing for differing files; return codes only.

Exit code 0 is returned for identical files, I for different files, and 2 for an inaccessible
or missing argument.

SEE ALSO
comm(l), diff(l).

Commands 1-6~

COL(l) SysV COL(l)

NAME
col - filter reverse line feeds

SYNOPSIS
col [-bllt 1

DESCRIPTION
col reads the standard input and writes the standard output. It perfonns the line over­
lays implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half
line feeds (ESC-9 and ESC-8). col is particularly useful for filtering multicolumn out­
put made with the .rt command of nroff(l) and output resulting from using the tbl(l)
preprocessor.

Although col accepts half line motions in its input, it nonnally does not emit them on
output. Instead, it moves text that would appear between lines to the next lower full
line boundary.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end
text in an alternate character set. col remembers the character set (primary or alternate)
associated with each printing character read. On output, col generates SO and SI char­
acters where necessary to maintain the correct treatment of each character.

All control characters are removed from the input except space, backspace, tab, return,
newline, and ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last
character is an alternate fonn of full reverse line feed, for compatibility with some other
hardware conventions. All other non-printing characters are ignored.

OPTIONS

BUGS

-b

-f

-h

Assumes that the output device in use is not capable of backspacing. If
several characters are to appear in the same place, only the last one read
will be taken.

Allows the output to contain half-line feeds (ESC-9). Even with this
option it will never contain either kind of reverse line motion.

Converts white space to tabs to shorten printing time.

col can't back up more than 128 lines.
There can be no more than 800 characters, including backspaces, on a line.

SEE ALSO
troff(l), tbl(1)

1-68 Commands

eOMB(l) SysV eOMB(1)

NAME
comb - combine sees deltas

SYNOPSIS
comb files

DESCRIPTION

BUGS

FILES

comb generates a shell procedure [see sh(l)] which, when run, reconstructs the given
sees files. The reconstructed files will, hopefully, be smaller than the original files.
The arguments may be specified in any order, but all keyletter arguments apply to all
named sees files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-sees files (last component of
the path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the input is taken to be the
name of an sees file to be processed; non-sees files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named
file is to be processed, but the effects of any keyletter argument apply independently to
each named file. each get -e generated, this argument causes the reconstructed file to
be accessed at the release of the delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor. Use of the ~ keyletter may decrease
the size of the reconstructed sees file. It may also alter the shape of the delta tree of
the original file. This argument causes comb to generate a shell procedure which, when
run, produces a report giving, for each file: the file name, size (in blocks) after combin­
ing, original size (also in blocks), and percentage change computed by:

100 * (original- combined) / original

It is recommended that before any sees files are actually combined, one should use this
option to determine exactly how much space is saved by the combining process. sees
IDentification string (SID) of the oldest delta to be preserved. All older deltas are dis­
carded in the reconstructed file. A list (see get(l) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact,
it is possible for the reconstructed file to actually be larger than the original.

s.COMB
comb?????

The name of the reconstructed sees file.
Temporary.

Commands 1-69

COMB(I) SysV COMB(l)

Use he/p(l) for explanations.

SEE ALSO
admin(l), delta(l), get(l), prs(l), sccsfile(4).

1-70 Commands

COMM(l) SysV

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION

COMM(l)

comm readsfilel andfile2, which should be ordered in ASCII collating sequence (see
sort(l», and produces a three-column output: lines only infilel ; lines only infile2; and
lines in both files. The file name - means the standard input.

Rags I, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints
only the lines common to the two files; comm -23 prints only lines in the first file but
not in the second; comm -123 prints nothing.

SEE ALSO
cmp(l), diff(l), sort(1), uniq(l).

Commands 1-71

CP(l) SysV CP(l)

NAME
cp - copy files

SYNOPSIS
cp [-CcfiopPsv] file] file2

cp [-CcfiopPrsv] file ... directory

DESCRIPTION
cp copies file] onto file2. By default, cp preserves the mode and owner of file2 if file2
already exists; otherwise it uses the mode of the source file modified by the current
umask(2) is used.

In the second form, one or more files are copied into the directory with their original
filenames.

cp refuses to copy a file onto itself.

OPTIONS
-i

-p

-r

Prompt the user with the filename whenever the copy will cause an old
file to be overwritten. An answer of 'y' causes cp to continue. Any other
answer prevents it from overwriting the file.

Attempt to preserve (duplicate) in copies the modification times and
modes of the source files, ignoring the present umask.

If any of the source files is a directory, copy each subtree rooted at that
name; in this case the destination must be a directory.

Domain/OS SysV OPTIONS

1-72

-C Change the names of any existing files which would have been overwrit­
ten. The current date is appended to the filename, in the format
@mm.dd[.n]. If this name already exists, an additional number is
appended. If you specify the -C option, the files copied in will not adopt
the mode and owner of the existing files.

-c

-f

-0

Change the names of any existing files which would have been overwrit­
ten. The current date is appended to the filename, in the format
.mm.dd[.n]. If this name already exists, an additional number is
appended. If you specify the -c option, the files copied in do not adopt
the mode and owner of the existing files.

Force locked files to be overwritten, and mark the overwritten files to be
deleted when they become unlocked. If you specify the -f option, the
files copied in do not adopt the mode and owner of the existing files.

Copy each file as a typed object, without attempting to open a stream to
the file. This is useful in cases where opening a stream would succeed,
but not yield the entirety of the underlying object.

Commands

CP(l)

-s

-v

-P

SEE ALSO

SysV CP(l)

Treat symbolic links as files to be copied, rather than copying the desti­
nation of the link. This is especially useful when the -r option is used to
copy an entire directory tree that may contain links to other file systems.

Print the name of each file copied, on the standard output (verbose).

Attempt to preserve any extended access control list (ACL) on the
source files, ignoring both the present umask and the destination ACL.

cat(I), cpacl(I), mv(I), rcp(lC), acl(7)

Commands 1-73

CPACL(l) Domain/OS SysV CPACL(l)

NAME
cpacl - copy access control list

SYNOPSIS
cpacl [-odfitvLR] source destinations ...

DESCRIPTION
cpacl copies access control lists (ACLs). If you do not specify an option, cpacl
assumes -0.

The first argument specifies the object from which to copy the ACL. This ACL is then
applied to the remaining files and directories as specified. Since only directories have
fields specifying ACL inheritance, use of the -d, -f, and -i options requires that the
source object be a directory. The destinations can be anything, and the appropriate set
of fields are applied (see below).

OPTIONS
-0

-d

-f

-i

-t

-v

-L

-R

1-74

Copies the object ACL associated with source to each of destinations. This is
the default if you do not specify an option.

Copies the initial directory ACL associated with the specified directory to all
destinations that are directories.

Copies the initial file ACL associated with the specified directory to all desti­
nations that are directories.

Copies an initial default ACL onto an object ACL. The source must be a
directory; destinations that are files receive the initial file ACL of the source,
and directories w receive the initial directory ACL of the source. If you use -i
in combination with the -d or -f options, cpacl copies the initial directory or
initial file ACL in the usual way.

Uses the object ACL of the source as a template for the initial file or directory
ACL of the destination. If the source is a file,cpacl copies its ACL to the ini­
tial file ACL of any directories. If the source is a directory, cpac\ copies its
ACL only to the initial directory ACL of target directories.

Produce verbose output; that is, show the name of each target as an ACL is
copied to it.

Directs cpacl to follow any soft links encountered, and operate on the object to
which the link points. Since soft links in Domain/OS do not have ACLs,
attempting to copy to or from a soft link without the -L flag produces just a
waming, with no change.

Recursively descends any directories encountered among the destination
objects. Be very careful when you combine this option with the -L option!

Commands

CPACL(l) Domain/OS SysV CPACL(l)

EXAMPLES
To copy the ACL on foo to objects bar and zap, enter the following:

cpacl foo bar zap

To copy the ACL, initial directory ACL, and initial file ACL on the lusr/u/fred direc­
tory to all objects in the current directory (files will have only the object ACL applied),
enter the following:

cpacl -odf lusr/u/fred *

To copy the initial file ACL on fred to all files in that directory, and the initial directory
ACL on fred to all sub-directories (also, copy the initial file and directory ACLs to the
initial file and directory ACLs of any subdirectories), enter the following:

cpacl -idf lusr/u/fred lusr/u/fred/*

To copy the object ACL on file-template to the initial file ACL of the current directory,
enter the following:

cpacl -t lusr/u/fred/file-template

To copy the object ACL on dir-template to the initial directory acl of the current direc­
tory, enter the following:

cpacl -t lusr/u/fred/dir-template

SEE ALSO
cp(l), chacl(l), Isacl(l), dbacl(1), chmod(1), chgrp(1), chorg(l), chown(l), acl(5),
umask(2), salacl(lM)

Commands 1-75

CPIO(l) SysV CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o[acBv]

cpio -i[BcdmrtuvfsSb6] [patterns]

cpio -p[adlmuvJ directory

DESCRIPTION
cpio -0 (copy out) reads the standard input to obtain a list of path names and copies
those files onto the standard output together with path name and status information.
Output is padded to a 512-byte boundary.

cpio -i (copy in) extracts files from the standard input, which is assumed to be the pro­
duct of a previous cpio -0. Only files with names that match patterns are selected.
Patterns are regular expressions given in the name-generating notation of she 1). In pat­
terns, meta-characters ?, *, and [... J match the slash / character. Multiple patterns
may be specified and if no patterns are specified, the default for patterns is * (i.e.,
select all files). Each pattern should be surrounded by double quotes. The extracted
files are conditionally created and copied into the current directory tree based upon the
options described below. The permissions of the files will be those of the previous cpio
-0. The owner and group of the files will be that of the current user unless the user is
super-user, which causes cpio to retain the owner and group of the files of the previous
cpio-o.

cpio -p (pass) reads the standard input to obtain a list of path names of files that are
conditionally created and copied into the destination directory tree based upon the
options described below.

OPTIONS
a

B

d

c

r

u

1-76

Resets access times of input files after they have been copied. Access
times are not reset for linked files when c pio -pia is specified.

Blocks input/output 5,120 bytes to the record. (Does not apply to the
pass option; meaningful only with data directed to or from a character
special device, e.g. /dev/rmt/Om.)

Creates directories as needed.

Writes header information in Ascn character form for portability. Use
this option when origin and destination machines are different types.

Interactively renames files. If you type a null line, the file is skipped.
(Not available with cpio -p.)

Prints a table of contents of the input. No files are created.

Copies unconditionally (normally, an older file will not replace a newer
file with the same name).

Commands

CPIO(l)

NOTES

SysV CPIO(l)

v (verbose) Causes a list of file names to be printed. When used with the t option,
the table of contents looks like the output of an Is -I command (see
Is(l».

m

f

s

S

b

6

Links files rather than copying them. Usable only with the -p option.

Retains previous file modification time. This option is ineffective on
directories that are being copied.

Copies in all files except those in patterns.

Swaps bytes within each half word. Use only with the -i option.

Swaps halfwords within each word. Use only with the -i option.

Reverses the order of the bytes within each word. Use only with the -i
option.

Processes an old (i.e. UNIX System Sixth Edition format) file. Only use­
ful with -i (copy in).

If cpio -i tries to create a file that already exists and the existing file is the same age or
newer, cpio will output a warning message and not replace the file. (The -u option can
be used to unconditionally overwrite the existing file.)

cpio assumes four-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing to (-0) or
reading from (-i) a character special device, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and carriage return. You may want to continue by direct­
ing cpio to use a different device. For example, if you have two floppy drives you may
want to switch between them so cpio can proceed while you are changing the floppies.
(A carriage retum alone causes the cpio process to exit.)

Path names are restricted to 256 characters.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

EXAMPLES
The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the files so they can
be directed (» to a single file (. ./newfile). Instead of "Is," you could use find, echo, cat,
etc. to pipe a list of names to cpio. You could direct the output to a device instead of a
file.

Commands 1-77

CPIO(l) SysV CPIO(l)

Is I cpio -0 >.Jnewfiie

cpio -i uses the output file of cpio -0 (directed through a pipe with cat in the example),
takes out those files that match the patterns (mem%j, memo/b*), creates directories
below the current directory as needed (-d option), and places the files in the appropriate
directories. If no patterns were given, all files from "new file" would be placed in the
directory.

cat newfile I cpio -id mem%j memo/b*

cpio -p takes the file names piped to it and copies or links (-1 optiort) those iiles to
another directory on your machine (newdir in the example). The -d options says to
create directories as needed. The -m option says retain the modification time. (It is
important to use the -depth option of find to generate path names for cpio. This elim­
inates problems cpio could have trying to create files under read-only directories.)

find. -depth -print I cpio -pdlmv newdir

SEE ALSO
ar(1), find(l),ls(l), tar(l).
cpio(4) in the SysV Programmer's Reference.

1-78 Commands

CPP(l) SysV CPP(l)

NAME
cpp - the C language preprocessor

SYNOPSIS
LIBDlR/cpp [option . .. J [ifile [ofile J J

DESCRIPTION
cpp is invoked as the first pass of any C compilation by the cc(l) command. Therefore,
cpp's output is designed to be in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of the C compilation package
are modified to follow these changes.

cpp optionally accepts two file names as arguments. ifile and ofile are respectively the
input and output for the preprocessor. They default to standard input and standard out­
put if not supplied.

OPTIONS
-p

-c

-Uname

-Oname

Preprocesses the input without producing the line control information used by
the next pass of the C compiler.

Passes along C-style comments (except those found on cpp directive lines). By
default, cpp strips out C-style comments.

Removes any initial definition of name, where name is a reserved symbol that
is predefined by the particular preprocessor. Following is the current list of
these possibly reserved symbols. On Apollo computers, unix, apollo, and
aegis are defined.

operating system:
hardware:

UNIX system variant:
lint(1):

unix, dmert, gcos, ibm, os, tss, aegis
interdata, pdpll, u370, u3b, u3b5, u3b2,
u3b20d, vax, apollo
RES,RT
lint

-Oname=def
Defines name with value def as if by a #define. If no =def is given, name is
defined with value 1. The -0 option has lower precedence than the -U option.
That is, if the same name is used in both a -U option and a -0 option, the
name will be undefined regardless of the order of the options.

- T Uses only the first eight characters to distinguish preprocessor symbols. This
option is included for backward compatibility.

-ldir Changes the algorithm for searching for #include files whose names do not
begin with a slash (I) to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in double quotes
(" ") are searched for first in the directory of the file with the #include line,
then in directories named in -I options, and last in directories on a standard

Commands 1-79

CPP(l) SysV CPP(1)

list. For #include files whose names are enclosed in angle brackets «», the
directory of the file with the #include line is not searched.

- Y dir Uses directory dir in place of the standard list of directories when searching
for #include files.

-H Prints, one per line on standard error, the path names of included files.

-tsys Sets the environment variable SYSTYPE to sys while cpp is running. This
option is useful for setting the resolution of systype-dependent links. For
example, if your systype is sys5.3 and you specify -tbsd4.3, the file
lusr/include/rdmb.h resolves to Ibsd4.3/usr/include/ndmb.h instead of
IsysS.3/usr/include/ndmb.h.

Two special names are understood by cpp. The name __ LINE __ is defined as the
current line number (as a decimal integer) as known by cpp, and __ FILE __ is defined
as the current file name (as a C string) as known by cpp. They can be used anywhere
(including in macros) just as any other defined name.

DIRECTlVES

1-80

All cpp directive lines start with # in column 1. Any number of blanks and tabs is
allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ... , arg) token-string
Notice that there can be no space between name and the (. Replace subsequent
instances of name followed by a (, a list of comma-separated sets of tokens,
and a) followed by token-string, where each occurrence of an arg in the
token-string is replaced by the corresponding set of tokens in the cornma­
separated list. When a macro with arguments is expanded, the arguments are
placed into the expanded token-string unchanged. After the entire token-string
has been expanded, cpp re-starts its scan for names to expand at the beginning
of the newly created token-string.

#Undef name
Cause the definition of name (if any) to be forgotten from now on. No addi­
tional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run through
cpp). When the <.filename> notation is used, filename is only searched for in
the standard places. See the -I and -Y options above for more detail. No
additional tokens are permitted on the directive line after the final" or >.

Commands

CPP(l) SysV CPP(l)

#Iine integer-constant "filename"

#endif

Causes cpp to generate line control information for the next pass of the C com­
piler. Integer-constant is the line number of the next line and filename is the
file from which it comes. If "filename" is not given, the current file name is
unchanged. No additional tokens are permitted on the directive line after the
optional file name.

Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each
test directive must have a matching #endif. No additional tokens are permitted
on the directive line.

#ifdef name
The following lines appear in the output only if name has been the subject of a
previous #define and not the subject of an intervening #Undef. No additional
tokens are permitted on the directive line after name.

#ifndef name
The following lines appear in the output only if name has not been the subject
of a previous #define. No additional tokens are permitted on the directive line
after name.

#if constant-expression
The following lines appear in the output only if the constant-expression evalu­
ates to non-zero. All binary non-assignment C operators, the ?: operator, the
unary -, !, and - operators are all legal in constant-expression. Operator pre­
cedence is the same as defined by the C language. There is also a unary opera­
tor defined, which can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility of #ifdef and
#ifndef in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In particular,
the sizeof operator is not available.

To test whether either of two symbols,foo andjUm, are defined, use

#if defined(foo) II defined(fum)

#elif constant-expression
An arbitrary number of #elif directives is allowed between a #if, #ifdef, or
#ifndef directive and a #else or #endif directive. The lines following #elif
appear in the output only if the preceding test directive evaluates to zero, all
intervening #elif directives evaluate to zero, and the constant-expression
evaluates to non-zero. If constant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any constant-expression
allowed in a #if directive is allowed in a #elif directive.

Commands 1-81

CPP(l)

NOTES

FlLES

SysV CPP(1)

#else The following lines appear in the output only if the preceding test directive
evaluates to zero, and all intervening #elif directives evaluate to zero. No
additional tokens are permitted on the directive line.

The test directives and the possible #else directives can be nested. In addition, the fol­
lowing directives are recognized by cpp and passed to the Domain C compiler:

apollo
apollo_bit
debug
eject
list
module
nolist
systype
backstop
section
inhibit
attribute
options

Using cpp other than through the cc(l) command is not suggested. See m4(1) for a
general macro processor.

The unsupported -W option enables the #c1ass directive. If it encounters a #c1ass
directive, cpp exits with code 27 after finishing all other processing. This option pro­
vides support for "C with classes" .

Because the standard directory for included files may be different in different environ­
ments, use the following form of the #include directive:

#include <file.h>

rather than one with an absolute path, like:

#include "/usr/include/file.h"

cpp warns about the use of the absolute pathname.

INCDIR

LlBDIR

DIAGNOSTICS

Standard directory list for #include files, usually /usr/include

lusr/lib

The error messages produced by cpp are intended to be self-explanatory. The file name
and line number where the error occurred are printed along with the diagnostic.

SEE ALSO
cc(l), lint(l), m4(1). Domain C Language Reference.

1-82 Commands

CPSCR(l) Domain/OS SysV CPSCR(l)

NAME
cpscr - copy the current display to a file

SYNOPSIS
cpscr [-inv] [-append] [-gprLbitmapll pathname

DESCRIPTION
cpscr copies the current screen image, without clearing it, to the file you specify. Use
the prf (princfile) command to print the file.

Use the DM command cpo to copy the screen without creating a new process window
or changing the current transcript pad. cpo invokes the cpscr command from the DM
without creating a pad or window. Thus, press <CMD> and type

cpo lusr/apollo/bio/cpscr pathname

You may copy small portions of a black and white screen (such as a single window)
with the DM command xi.

By default, black and white screens are copied into a GMF file. Color screens are
copied into a GPR bitmap.

pathname (required) Specify file to that the screen is copied.

OPTIONS
-inv

-append

-gpr _bitmap

EXAMPLES

Invert image. Use this option to store the image in reverse video.
Black screen pixels become white and white screen pixels
become black. Do not used this option with the -gpr _bitmap
option or on color nodes.

Appends a black and white screen image to an existing GMF file.
You cannot use this option with the -gpr_bitmap option or on
color nodes.

Use this option to copy a black and white screen into a GPR bit­
map file rather than a GMF file. This option has no meaning for
color nodes since color screens are already copied into GPR bit­
maps.

Invert and copy the current screen image to the specified file. Since the command line
is echoed in the shell's process transcript pad prior to execution, this command will
appear in the resulting image.

$ cpscr -iov Ilus/looky _there

Commands 1-83

CPSCR(l) Domain/OS SysV CPSCR(1)

1-84

<cmd>
Command: cpo /usr/apollo/bio/cpscr -iov //us/IookLthere

Same result as in the previos example, but the cpscr line will not appear in the plotted
output.

Commands

CRDDF(l) Domain/OS SysV CRDDF(l)

NAME
crddf - create, display, or modify a device descriptor file

SYNOPSIS
crddf [options ...] pathname

DESCRIPTION
crddf creates, displays, or modifies a device descriptor file (DDP). A DDF defines a
peripheral bus unit (PBU) device for which you have written a driver. See Writing Dev­
ice Drivers with GP [0 Calls for details on both DDFs and PBUs.

crddf is valid only if the general purpose input/output (GPIO) software is running on
your network.

pathname (required) Specify narne of the DDF to be created, modified, or displayed.

OPTIONS
Reads further options from standard input. Signal completion
with-end.

-at Specifies that device lives on the AT-compatible bus.

-calUibrary pathname
Specifies pathnarne of the call side of the device driver library.
This option is required.

-check Checks the DDF to ensure that all required fields have been
specified.

-cleanup Joutine [entry_name]
Specifies the entry-point narne of the clean-up routine in the call
library. Omitting the entry narne deletes a previously existing
clean-up routine.

-csr _offset port_number

-csr _page iova

Commands

Specifies the offset into the control status register (CSR) page, in
hexadecimal format, at which the device's controVstatus registers
are located. Device drivers may use this information during con­
troller initialization.

Specifies the hexadecimal address of the CSR page for the device
in the bus address space. The following information applies to
the particular bus structure implemented on your system:

• MuItibus: optional

• VME bus: optional. If specified, must be page-aligned and in
the range COOO-DOOO.

1-85

CRDDF(l) Domain/OS SysV CRDDF(l)

1-86

-debug

-display

• AT-compatible bus: If specified, may indicate a range (for
example, -csr_page 200 21F). If the second parameter is
missing, a range of 8 consecutive bytes is assumed (for exam­
ple, -csr _page 200 assumes a range of 200-207).

Sets a flag that can be used to tum on debugging logic in a driver.

Displays the current contents of the DDF.

-dma _channel channel-number

-end

Specifies to the driver the DMA channel number used by AT­
compatible device. This is a Version 3 option.

Ooses the updated DDF and exit.

-initiali:fJltion Joutine entry_name (required)
Specifies the entry-point name of the initialization routine in the
call library .

-interrupt_library pathname
Specifies the pathname of the interrupt side of the device driver
library.

-interruptJoutine level [entry_name] (required)
Specifies a level at which the device interrupts and the entry­
point name of an optional interrupt routine.

-major ddevice number
- Specifies the DDF's major device number in range 0-31.

-minor ddevice number
- Specifies the DDF's minor device number in range 0-511.

-memory_base iova Specifies the MULTIBUS address that marks the base of a

-memory_size length

-multiple

controller's local memory. If the specified iova is less than 64K
this is a Version 2 option, if iova is greater than 64K, this is a
Version 3 option.

Specifies the size, in hexadecimal format, of the controller
memory. If the specified iova less than 64K, this is a Version 2
option; if greater than 64K, this is a Version 3 option.

Specifies that the device driver supports more than one device
and cause the crddf command to check the driver entry-point
names listed in the DDF for each device to ensure that it doesn't
load multiple copies of the same driver.

Commands

CRDDF(l) Domain/OS SysV CRDDF(l)

-node[1] {node numberl*} (required)

-quit

-remddf Iinode name

-replace

Specifies the hexadecimal node ID of the node to which the dev­
ice is physically connected. -nodef suppresses the check which
makes certain the node exists. You may use an asterisk (*)
instead of the node ID to indicate the local node.

Exits without modifying the original DDF.

Specifies a remote node on which the DDF resides.

Replaces (i.e., overwrite) an existing DDF with a new version.
To modify only selected portions of an existing DDF, use
-update.

-revision [string] Specifies an optional revision number as an 8-character string.

-serial_number [string]
Specifies an optional serial number as a l6-character string.

-share Specifies a DDF for a controller that can be shared among multi­
ple processes.

-stack_size [decimal number]

-type type name

Specifies the number of bytes, in decimal, to be allocated to the
interrupt stack (default is 1024).

Specifies the DDF's type. The type must already be installed on
the node.

-unit unit number (required)
Specifies the unit number of the device (must be equal to the
lowest interrupt level on which the device interrupts).

eMULTIBUS:

eVMEbus:

Must be in range 0-5.

Must be in range 8-14.

e AT-compatible bus: Must be in range 0-15.

-update Modifies selected portions of an existing DDF. If this option is
specified, it must precede all other options on the command line.
To replace a DDF completely, use -replace.

-user _infu [string] Specifies up to 64 characters of optional user information (no
embedded blanks).

-vme Specifies that device lives on VME bus. This is a Version 3
option.

-20_bit_addressing Specifies 20-bit memory address size of controller. You must use
PBU2 calls.

Commands 1-87

CRDDF(l) Domain/OS SysV

EXAMPLES
1. Create a new DDF specifying only the required infonnation.

1-88

$ crddf Idev/mtO -
New DDF.

$

> -unit 3
> -node 2F
> -csr-page 1400
> -call_library /lib/mt.lib
> -initialization routine mt_$init
> -interrupt_library /lib/mt.int.lib
> -interrupt_routine 3 mt_$int
> -check
No missing fields.
> -end

2. Display a DDF.

$ crddf Idev/mtO -display

$

ddf version: 1
device uid: 00030003 0000002F (unit 3, node 2F)
csr page iova: 1400
call library:
interrupt library:

/lib/mt.lib
/lib/mt.int.lib

initialization entry point: mt_$init
cleanup entry point: mt_$cleanup
interrupt stack size: 1024
interrupt routines:

level 0: [unused]
level 1: [unused]
level 2: [unused]
level 3: mt $int -
level 4 : [unused]
level 5: [unused]
level 6 : [unused]
level 7: [unused]
serial number:
revision:
user info:

CRDDF(l)

Commands

CRDDF(I) DomaiD/OS SysV

3. Change the name of the interrupt routine in an existing DDF.

$ cnldf Idev/mtO -update -interrupt_routine 3 mt_$sio

4. Replace a DDF on the node I/grip with a new version.

$ crddf -remddf IIgrip Idev/x25 -
> -replace

$

> -unit 2
> -node *
> -call_library /sys/x25/x25_driver.lib
> -interrupt_library /sys/x25/x25_driver_int.lib
> -initialization_routine x25_driver_$init
> -cleanup_routine x25_driver_$cleanup
> -interrupt_routine 2 x25_driver_$int
> -memory_base 7000
> -memory_size 1000
> -revision 7.0
> -serial number
> -user info release
> -display
> -end

CRDDF(I)

5. Create a new DDF for a device that will be accessed through streams for the
installed type foodev:

Commands

$ crddf Idev/foodev -
New DDF.

$

> -unit 3

> -node *
> -csryage 1400
> -call_library /lib/foodev.lib
> -initialization routine foodev_$init
> -interrupt_library /lib/foodev.int.lib
> -interrupt_routine 3 mt_$int
> -type foodev
> -check
No missing fields.
> '-end

1-89

CRONTAB(l) SysV CRONTAB(l)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -I

DESCRIPTION

1-90

crontab copies the specified file, or standard input if no file is specified, into a directory
that holds all users' crontabs.

You can use crontab if your name appears in the file lusr/lib/cron/cron.aIlow. If that
file does not exist, crontab checks the file lusr/lib/cron/cron.deny to determine if you
should be allowed access. If neither file exists, only root is allowed to submit a job. If
cron.allow does not exist and cron.deny exists but is empty, global usage is permitted.
The allow/deny files contain one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0--59),
hour (0--23),
day of the month (1-31),
month of the year (1-12),
day of the week (0--6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of
elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). If both are
specified as a list of elements, both are adhered to. For example, 0 01,15 * 1 would run
a command on the first and fifteenth of each month, as well as on every Monday. To
specify days by only one field, the other field should be set to * (for example, 0 0 * * 1
would run a command only od Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated to a
new-line character. Only the first line (up to a % or end of line) of the command field is
executed by the shell. The other lines are made available to the command as standard
input.

The shell is invoked from your $HOME directory with an argO ofsh. Users who desire
to have their .profile executed must explicitly do so in the crontab file. Cron supplies a
default environment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh),
and PATH(=:/bin:/usr/bin:/usr/lbin).

Commands

CRONTAB(l) SysV CRONTAB(l)

If you do not redirect the standard output and standard error of your commands, any
generated output or errors is mailed to you.

OPTIONS
-r

-I

WARNING

Removes your crontab from the crontab directory.

Lists the crontab file for the invoking user.

If you inadvertently enter the crontab command with no argument(s), do not try to get
out with a CTRL/D. This causes all entries in your crontab file to be removed. Instead,
exit with a DEL.

FILES
lusrllib/cron
/usrlspool/cron/crontabs
lusr/lib/cron/log
lusrllib/cron/cron.allow
lusr/lib/cron/cron.deny

SEE ALSO
sh(l).

Main cron directory
Spool area
accounting Information
List of allowed users
List of denied users

cron(lM) in the Managing Your SysV System Software.

Commands l-S

CRP(l) Domain/OS SysV CRP(l)

NAME
crp - create a process on a remote node

SYNOPSIS
crp -on node_spec [options] [command line]

DESCRIPTION
crp creates a process on a remote node.

command line (optional)
Specify command line to be executed by the remote process. If
the command string contains embedded blanks, enclose it in quo­
tation marks.

OPTIONS

1-92

The following option, which specifies the remote node, is required:

-on node _spec Specify the remote node on which the process is to be created.

You can specify one of the following options.

-cp (default)

-nwp

-cpo

-cps

-n name

Create a remote process running with standard streams connected
to the current window. The option is not valid if -cpo or -cps is
specified.

Do not create a window-pane legend indicating that the local
window is connected to a remote process. Use with the -cp
option only.

Create a remote process without a connection to the current win­
dow, and an identity of user.none.none. This option is not valid
if -cp or -cps is specified. To stop these processes, you must
first create a visible remote process running the shell, then issue
the sigp command to stop the background process.

Create a remote process without a connection to the current win­
dow, and an identity of user.server.none. This option is not
valid if -cp or -cpo is specified. To stop these processes, you
must first create a visible remote process running the shell, then
issue the sigp command to stop the background process.

Specify the name of the remote process. If this option is not
specified, the default is user id.node _id. This allows remote
processes to be traced to their originator.

-login name [password]
Specify the log-in sequence for the remote process on the com­
mand line. If the password is omitted, the system prompts you for
it. A null (zero-length) password is specified by the null string

Commands

CRP(l)

-me

-quiet

Domain/OS SysV CRP(1)

Normally -login appears with -cpo However, you may use
-login with -cpo and -cps as well. If -login is specified with
either -cpo or -cps, the identity of the created process is the
same as that of the caller (as opposed to user.none.none or
user.server.none, respectively). This means that -cpo and -cps
are identical if -login is also specified.

If you use -login with -cpo or -cps, you must place both the
name and the password on the command line. No prompting is
available in this case.

Specified instead of -login. If -me is specified, the created pro­
cess on the remote node inherits the caller's working directory,
naming directory, horne directory text string, and SID. This is
similar to popping up another shell except that the process is run­
ning on another node. If -me is specified with either -cpo or
-cps, the identity of the created process is also that of the caller's
(as opposed to user.none.none or user.server.none, respec­
tively). This means that -cpo and -cps are identical if -me is
also specified.

Suppress connection/disconnection messages in the transcript
pad.

EXAMPLES
Create a process on node 532 running the shell, and login with the user ID joe.

$ crp -on 532 -login joe

Create a process on node aef running the shell, and inherit the current process state
information.

$ crp -on Oaef -me

Commands 1-9:

ClU'AD(1) Domain/OS SysV CRPAD(l)

NAME
crpad - create a transcript pad and window

SYNOPSIS
crpad [options] ("pathname]

DESCRIPTION
crpad creates a transcript pad, copies a file (or standard input) into that pad, and then
opens a window into the pad. This new pad is not related to the transcript pad attached
to processes running the shell; it is for viewing file contents only. This is primarily use­
ful for displaying output being produced inside a pipeline without interrupting the flow
of control in the pipe.

You cannot edit transcript pads. If you wish to place a file in a pad for editing, use the
EDIT key or the DM command ceo

crpad -input behaves differently. This creates an edit pad and lets you create what­
ever text you want. When you close the edit pad (with wc or the EXIT key), that text is
copied to standard output.

pathname (optional) Specify the file to be copied into the pad. Not valid if -input is
used.

Default if omitted: copy standard input

OPTIONS
-i[nput] Copies data from a temporary edit window to standard output.

Not valid if -tee or -pn are specified.

-pen] pathname Specify a pathname for the pad. If you specify a pathname, the
pad is saved in that file. Note that you can also save the pad after
it is created by using the DM command pn (pad_name) ..

-tlee]

EXAMPLES

Copy output to standard output in addition to the new pad.

Create a pad that displays the file test.data.

$ crpad test.data

Display the intennediate results in a pipeline.

$ $grep 256· phone. book I crpad -tee I sort >phone.book.Iocal

1-94 Commands

CRPAD(l) nomain/OS SysV CRPAD(l)

Create an edit pad. When the pad is closed, sort the text edited and display it in a tran­
script pad.

$ crpad -input I sort I crpad

Commands 1-95

CRTY(l) Domain/OS SysV CRTY(l)

NAME
crty - create a new type

SYNOPSIS
crty [options] type_name

DESCRIPTION
crty creates a new type. It creates an identifier for the new type, and associates it with
the supplied type name. New types are used to identify a new kind of manager for
streams.

type_name (required) Specify the name to assign to the created type.

OPTIONS
-n node_spec Specify the node on which the type is to be created. You may

also specify the entry directory of a volume mounted for software
installation, as shown in the example below. If this option is
omitted, the type is created on the current node.

-1 List the type name/type identifier pair that is created.

-b[inary] pathname Create the type from the specified object module (which was
created by crtyobj). This allows you to use an object module
(shipped on media like floppies, magnetic tapes, etc) to add a
new type to a system.

-u high. low Create the type with the specified unique identifier (UID). Give
the high and low addresses for the UID as indicated.

Note: Use this option only for system debugging.
Misuse of this option may cause programs to
behave incorrectly.

EXAMPLES
$ crty example_type-I
"example_type" 24BF9F41.l00001FB created.

$ crty example_type -0 Iltest_vol-1
"example_type" 24BFA6F8.200001FB created on volume Iitest_volo

1-96 Commands

CRTY(l) Domain/OS SysV CRTY(1)

In the following example, the disk has been mounted for software installation. The
disk's top level directory (cataloged as Imount_disk by the mount(IM) command)
must contain a sys directory. If it does not, you get a "type manager directory not
found" error.

$ erty example_type -n Imount_disk-\
"example_type" 24BFB71E.200001FB
created on volume //my_node/mount_disk.

SEE ALSO
dlty(l), inty(l), Ity(1), mount(1M)

Commands 1-97

CRTYOBJ(l) Domain/OS SysV CRTYOBl(l)

NAME
crtyobj - create a type object module for binding

SYNOPSIS
crtyobj [options] type_name [variable_name]

DESCRIPTION
crtyobj creates an object module that contains a global symbol with the type UID. This
module is bound with type managers. The variable is passed into calls to
trait _ $mgr _ del to declare support for the specified type.

type_name (required) Specify the name of the type for which an object module is to
be created.

variable_name (optional)
Specify the variable name for the type UID.

Default if omitted: name the variable type_name _$uid

OPTIONS
-b bin name Specify the output binary file name. The default is

type _name.bin.

-sect section name Specify the section name for the data area in which the variable
is declared. The default section name is .data.

-u high. low Specify the type UID explicitly with the high and low addresses
in the positions indicated.

NOTE: Use this option only for system debugging.

EXAMPLES
$ crtyobj example_type example_$uid
$ bind -b example_mgr example_main.bin example_calIs. bin example_type.bin

SEE ALSO
crty(l), dlty(l), Ity(1)

1-98 Commands

CSH(l) SysV CSH(l)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [-Dname=value] [arg ...]

DESCRIPTION
csh is a command-language interpreter that incorporates a history mechanism (see His­
tory Substitutions), job control facilities (see Jobs), interactive filename and usemame
completion (see Filename Completion), and a C-like syntax.

csh begins by executing commands from the .cshrc file in your home directory. If this
is a log-in shell, then it also executes commands from your .Iogin file. CRT users often
place an stty crt command in their .login files, and also invoke tset(1) there. To be
able to use its job control facilities, users of csh must (and automatically) use the tty
driver fully described in tty(4). This tty driver allows you to generate interrupt charac­
ters from the keyboard to tell jobs to stop. See stty(1) for details on setting options in
the tty driver.

Normally, the shell then begins reading commands from the terminal, prompting with
"% " . Upon reading a line of command input, the shell breaks it into words, places
this sequence of words on the command-history list, parses it, and then executes each
command in the line.

When a log-in shell terminates, it executes commands from the .logout file in your
home directory.

LEXICAL STRUCTURE
Usually, csh splits input lines into words at blanks and tabs. The following, however,
are exceptions to this:

• The characters: &, I, ;, >, <, (, and) form separate words. If doubled in &&, II, «,
», these pairs form single words. You can make these parser metacharacters part
of other words or prevent their special meaning by preceding them with a \
(backslash) character. A newline preceded by a backslash is equivalent to a blank.

• Strings enclosed in matched pairs of quotation marks, " " or ", form parts of a
word; metacharacters in these strings, including blanks and tabs, do not form
separate words. Within pairs of ' or " characters, a newline preceded by a
backslash gives a true newline character.

• When the shell's input is not a terminal, the # character introduces a comment that
continues to the end of the input line. To prevent this special meaning, you can pre­
cede the # by a \ or place it in quotations, using', " and ".

Commands 1-99

CSH(l) SysV CSH(l)

COMMANDS

JOBS

1-100

A simple command is a sequence of words, the first of which specifies the command to
be executed. A simple command or a sequence of simple commands separated by I
characters forms a pipeline. The output of each command in a pipeline is connected to
the input of the next. Sequences of pipelines may be separated by ; characters, and are
then executed sequentially. A sequence of pipelines can be placed in the background
by adding an & character at the end.

Any of the above may be placed in parentheses to form a simple command (which may
be a component of a pipeline, and so on). You can also separate pipelines with II or &&
characters to indicate, as in the C language, that the second is to be executed only if the
first fails or succeeds, respectively (see Expressions).

csh associates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started asyn­
chronously with an &, csh prints a line similar to the following:

[1] 1234

This indicates that the job, which was started asynchronously, was job number 1 and
had one (top-level) process whose process ID was 1234.

To suspend a running job, you must send it a stop signal, usually with CTRL/Z. Once
csh has indicated that the job has been stopped (and has printed a prompt), you can
manipulate the state of this job. You can put it in the background with the bg com­
mand, or run some other commands and then eventually bring the job back into the
foreground with the fg command. A suspend takes effect inunediately, causing csh to
discard pending output and unread input. There is another special key, CTRLlY, which
does not generate a STOP signal until a program attempts to read(2) it. Type CTRLlY
ahead when you have prepared some commands for a job that you wish to stop after the
program has read them. CTRLlY is not supported in the Display Manager.

A job being run in the background stops if it tries to read from the terminal. Back­
ground jobs are normally allowed to produce output, but you can disable this by speci­
fying the stty tostop command. Specifying stty tostop causes background jobs to stop
when they try to produce output just as they do when they read input.

There are several ways to refer to jobs in the shell. The % character introduces a job
name. Job number 1, for example, becomes % 1. Naming a job brings it to the fore­
ground; thus, % 1 is a synonym for fg % I, bringing job 1 back into the foreground.
Similarly, specifying % I & resumes job 1 in the background. Jobs can also be named
by prefixes of the string typed in to start them, if the prefix is unambiguous. For exam­
ple, %ex normally restarts a suspended ex(l) job, if there is only one suspended job
whose name begins with the string "ex". You can also specify %?string, to indicate a
job whose text contains string, if there is only one such job.

Commands

CSH(1) SysV CSH(1)

csh maintains a notion of the current and previous jobs. In output pertaining to jobs, it
marks the current job with a + and the previous job with a -. The abbreviation % +
refers to the current job, and %- refers to the previous job. For close analogy with the
syntax of the history mechanism (described below), a % % also represents the current
job.

STATUS REPORTING
csh knows immediately when the state of a process changes. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just
before it prints a prompt. (This is so that it does not otherwise disturb your work.) How­
ever, if you set the notify shell variable, csh immediately reports status changes in
background jobs. The notify shell command also marks a single process so that its
status changes are immediately reported. By default, notify marks the current process.
Thus, you only have to type notify after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you are warned that "You have
stopped jobs." You can use the jobs command to see which jobs are stopped. A second
attempt to exit causes the suspended jobs to terminate without warning.

FILENAME COMPLETION
When the filename completion feature is enabled by setting the shell variable filec (see
set), csh interactively completes filenames and usemames from unique prefixes, when
they are input from the terminal followed by the escape character (the escape key, or
CTRL/L). For example, if the current directory looks like

DSC.OLD bin
DSC.NEW chaosnet
bench class

and the input is
% vi ch<ESC>

cmd
cmtest
dev

lib
mail
mbox

xmpl.c
xmpl.o
xmpl.out

csh completes the prefix "ch" to the only matching filename "chaosnet", changing the
input line to

% vi chaosnet
However, if you specify

% \i D<ESC>
csh expands the input only to

% vi DSC.
and sounds the terminal bell to indicate that the expansion is incomplete, because two
filenames match the prefix "DSC".

If a partial filename is followed by the end-of-file character (usually ClRL/D), then,
instead of completing the name, csh lists all filenames matching the prefix. For exam­
ple, the input

% vi D<CTRLlD>

Commands 1-101

CSH(l) SysV

causes all files beginning with "D" to be listed:
DSC.NEW DSC.OLD

while the input line remains unchanged.

CSH(l)

You can use the same system of escape and end-of-file to expand partial usemames, if
the word to be completed (or listed) begins with the character "-". For example, typ­
ing

cd -ro<CTRLID>
may produce the expansion

cd -root

Set the variable nobeep, to inhibit the use of the terminal bell to signal errors or multi­
ple matches.

Normally, all files in the particular directory are candidates for name completion. Files
with certain suffixes can be excluded from consideration by setting the variable !ignore
to the list of suffixes to be ignored.

Thus, if you set !ignore by the command
% set !ignore = (.0 .out)

then typing
% vi x<ESC>

results in the completion to
% vi xmpl.c

ignoring the files xmpl.o and xmpl.out. However, if the only completion possible
requires not ignoring these suffixes, they are not ignored. Also, !ignore does not affect
the listing of filenames by CTRL/D. All files are listed regardless of their suffixes.

mSTORY SUBSTITUTIONS

1-102

History substitutions place words from previous command input as portions of new
commands, making it easy to repeat commands, repeat arguments of a previous com­
mand in the current command, or fix spelling mistakes in a previous command with lit­
tle typing and much confidence. History substitutions begin with the character ! and
can start anywhere in the input stream (providing that they do not nest). Precede the!
with a \ to prevent its special meaning. For convenience, a ! is passed unchanged when
it is followed by a blank, tab, newline, =, or (. History substitutions also occur when an
input line begins with a . (see below). Before being executed, input lines containing his­
tory substitution are echoed on the terminal as they could have been typed without his­
tory substitution.

csh saves input commands consisting of one or more words on the history list. The his­
tory substitutions reintroduce sequences of words from these saved commands into the
input stream. The size of the history list is controlled by the history variable. The previ­
ous command is always retained, regardless of its value. Commands are numbered
sequentially from 1.

Commands

CSH(l) SysV

For example, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

CSH(l)

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but you can make the current event number part of the prompt by plac­
ing an ! in the prompt string.

Supposing the current event is 13, you can refer to previous events by event number, as
in !11 for event 11; relatively, as in !-2 for event 11; by a prefix of a command word, as
in !d for event 12 or !wri for event 9; or by a string contained in a word in the com­
mand, as in !?mic?, also referring to event 9.

These forms, without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special case, !! refer to the pre­
vious command. Thus,!! alone is essentially a redo.

To select words from an event, you can follow the event specification by a : and a
designator for the desired words. The words of an input line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being I, and so
on. The basic word designators are:

o First (command) word
n n 'th argument

First argument, i.e. 'I'
$ Last argument
% Word matched by (immediately preceding) ?s? search
x-y Range of words
-y Abbreviates 'O-y'
* Abbreviates '--$', or nothing if only 1 word in event
x* Abbreviates 'x-$'
x- Like 'x *' but omitting word '$'

The : separating the event specification from the word designator can be omitted if the
argument selector begins with a -, $, * - or %. After the optional word designator can
be placed a sequence of modifiers, each preceded by a:. The following modifiers are
defined:

h
r
e
slllr /
t
&
g

Remove a trailing patlmame component, leaving the head.
Remove a trailing' _1:XX' component, leaving the root name.
Remove all but the extension '.xu' part.
Substitute / for r
Remove all leading patlmame components, leaving the tail.
Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g. 'g&'.

Commands 1-103

CSH(l) SysV CSH(l)

p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a g, the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left-hand side of substitutions are not regular expressions in the sense that they are
in the editors (ed, vi, and so on) rather they are strings. You can use any character as
the delimiter in place of a I. A \ quotes the delimiter into the I and r strings. The char­
acter & on the right-hand side is replaced by the text from the left. A \ also quotes an
&. A null I uses the previous string either from an lor from a contextual scan string s
in !?s? The trailing delimiter in the substitution, as well as the trailing? in a contex­
tual scan, can be omitted if a newline follows immediately.

You can specify a history reference without an event specification, for example, !$. In
this case, the reference is to the previous command unless a previous history reference
occurred on the same line (in which case this form repeats the previous reference).

Thus, !?fOO?A !$' gives the first and last arguments from the command matching ?foo?

A special abbreviation of a history reference occurs when the first non-blank character
of an input line is a A. This is equivalent to !:SA and provides a convenient shorthand for
substitutions on the text of the previous line. Thus, Alb Alib fixes the misspelling of lib in
the previous command. Finally, a history substitution may be surrounded with { and}
if necessary, to insulate it from the characters that follow. Thus, after Is -Id -paul you
might type !{I}a to do Is -Id -paula while !Ia looks for a command starting with la.

QUOTATIONS WIlH SINGLE AND DOUBLE QUOTES
Placing strings in single and double quotation marks prevents all or some of the remain­
ing substitutions. Those enclosed in single quotation maiXs are prevented any further
interpretation; those in double quotation marks may be expanded as described below.

In both cases, the resulting text becomes all or part of a single word. In only one spe­
cial case (see COMMAND SUBSTITUTION below) does a double-quoted string yield
parts of more than one word; single-quoted strings never do.

ALIAS SUBSTITUTION

1-104

csh maintains a list of aliases that can be established, displayed, and modified by the
alias and una lias commands. After it scans a command line, csh parses the line into
distinct commands and checks the first word of each command, left-to-right, for an
alias. If it finds one, it rereads the text that is the alias for that command (with the his­
tory mechanism available) as though that command were the previous input line. The
resulting words replace the command and argument list. If no reference is made to the
history list, csh leaves the argument list unchanged.

For example, if the alias for Is is Is -I, the command Is lusr maps to Is -I lusr and the
argument list is undisturbed. Similarly, if the alias for lookup is grep r letc/passwd,
then lookup biII maps to grep biII letc/passwd.

Commands

CSH(l) SysY CSH(l)

Every time csh finds an alias, it transforms the input text and begins the aliasing process
again on the reformed input line. Prevent looping (if the first word of the new text is
the same as the old) by flagging the first word to prevent further aliasing. csh detects
other loops and returns an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus, you can
specify alias print 'pr \!* I Ipr' to make a command that pr's its arguments to the line
printer.

Y ARIABLE SUBSTITUTION
csh maintains a set of variables, each having as value a list of zero or more words. csh
sets some of these variables, and merely refers to others. For instance, the argv variable
is an image of the shell's argument list, and words of its value are referred to in special
ways.

You can display and change the values of variables by using the set and unset com­
mands. Some of the variables the shell refers to are toggles. The shell does not care
what their value is, only whether they are set. For instance, the verbose variable is a
toggle that causes command input to be echoed. Use the command line option -v to set
this variable.

Other operations treat variables numerically. The command represented by the at sign,
@, permits numeric calculations to be performed, with the result assigned to a variable.
However, variable values are always represented as (zero or more) strings. In numeric
operations, the null string is considered to be zero, and the second and subsequent
words of multiword values are ignored.

After csh has aliased and parsed the input line, and before executing each command, it
. performs variable substitution keyed by $ characters. You can prevent this expansion

by preceding the $ with a \, except within double quotation marks (It), where it always
occurs, and within single quotation marks n where it never occurs. Strings enclosed in
single quotation marks are interpreted later (see COMMAND SUBSTITUTION below),
so the dollar sign ($) substitution does not occur until later, if at all. A $ is passed
unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable­
expanded separately. Otherwise, the command name and entire argument list are
expanded together. Therefore, the first (command) word to this point can generate
more than one word; the first word becomes the command name, and the rest become
arguments.

Unless you enclose the results of variable substitution in double quotation marks or
specify the :q modifier, they may eventually be command and filename substituted.
Within double quotation marks, a variable whose value consists of multiple words
expands to a portion of a single word, with the words of the variable's value separated
by blanks. When the :q modifier is applied to a substitution, the variable expands to
multiple words with each word separated by a blank and enclosed in quotation marks to
prevent later command or filename substitution.

Commands 1-105

CSH(l)

1-106

SysV CSH(l)

The following metasequences are provided to introduce variable values into the shell
input. Except as noted, you cannot reference a variable that is not set. You can apply
the :h, :t, :r, :gh, :gt, and :gr modifiers to most of the substitutions below. Substitu­
tions that you cannot do this with are mllIked accordingly. If braces appear in the com­
mand form, you must put the modifiers within the braces. You can apply only one
modifier beginning with a colon (;) on each expansion preceded by a dollar sign ($).

$name
${name}

$name[selector]
${name[selector]}

$#name
${#name}

$0

$number
${number}

$*

$?name
$?{name}

$?O

$$

Replace text by the words of the value of variable name, each
separated by a blank:. Braces insulate name from following char­
acters, which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters and digits starting with a
letter. The underscore character (_) is considered a letter. If
name is not a shell variable, but is set in the environment, that
value is returned. However, colon (;) modifiers and the other
forms given below are not available in this case.

Select only some of the words from the value of name. The selec­
tor is subjected to $ substitution and may consist of a single
number or two numbers separated by a dash (-). The first word
of a variable's value is numbered 1. If you omit the first number
of a range, the number defaults to 1. If you omit the last member
of a range, the number defaults to $#name. The selector * selects
all words. It is not an error for a range to be empty if you omit
the second argument or it is in range.

Give the number of words in the variable. This is useful for later
use in a "[selector]".

Substitute the filename from which command input is being read.
An error occurs if the name is not known.

This sequence is equivalent to $argv[number].

This sequence is equivalent to $argv[*].

Substitute the string 1 if name is set; 0 if it is not. This substitu­
tion cannot be modified with modifiers preceded by a:.

Substitute 1 if the current input filename is known; 0 if it is not.
This substitution cannot be modified with modifiers preceded by
a:.

Substitute the decimal process number of the parent shell. This
substitution cannot be modified with modifiers preceded by a :.

Commands

CSH(l) SysV CSH(l)

$< Substitute a line from the standard input, with no further interpre­
tation. This sequence is useful for reading from the keyboard in a
shell script. This substitution cannot be modified with modifiers
preceded by a :.

COMMAND AND FILENAME SUBSTITUTION
csh applies the remaining substitutions, command and filename substitution, selectively
to the arguments of built-in commands. This means that portions of expressions not
evaluated are not subjected to these expansions. Names for commands that are not
internal to the shell are substituted separately from the argument list. This occurs very
late, after input/output redirection is performed, and in a child of the main shell.

COMMAND SUBSTITUTION
Enclosing a command in closing quotation marks (q) indicates command substitution.
csh usually breaks the output from such a command into separate words at blanks, tabs,
and newli,nes. It discards null words, and uses the modified text to replace the original
string. Within double quotation marks, only newlines force new words; blanks and tabs
are preserved.

In any case, the single final newline does not force a new word. Note that it is thus pos­
sible for a command substitution to yield only part of a word, even if the command out­
puts a complete line.

FILENAME SUBSTITUTION
If a word contains any of the characters *, ?, [, {, or it begins with -, that word is a can­
didate for filename substitution, also known as "globbing." csh regards the word as a
pattern, replacing it with an alphabetically sorted list of filenames that match the pat­
tern. In a list of words specifying filename substitution, at least one pattern must match
an existing filename, but each pattern need not match. Only the metacharcters *, ?, and
[imply pattern matching. The characters - and { are like abbreviations.

In matching filenames, you must match a • at the beginning of a filename or immedi­
ately following a / explicitly. This is also true for the / itself. An * matches any string
of characters, including the null string. A ? matches any single character. The
sequence [... J matches anyone of the characters enclosed. Within such a sequence, a
pair of characters separated by a - matches any character lexically between the two.

The character - at the beginning of a filename refers to home directories. Standing
alone, it expands to your home directory (reflected in the value of the variable home).
When the - is followed by a name consisting of letters, digits, and -, csh searches for a
user with that name and substitutes his home directory. Thus, -ken might expand to
/usr/ken and -ken/chmach to /usr/ken/chmach. If the - is followed by a character
other than a letter or /, or if it appears somewhere other than at the beginning of a word,
the shell leaves it undisturbed.

The rnetanotation a{b.c.d}e is shorthand for abe ace ade. Left-to-right order is
preserved. The results of matching are sorted separately at a low level to preserve this
order (nesting is acceptable). Thus, -source/sl/{oldls,ls}.c expands to

Commands 1-107

CSH(l) SysV CSH(l)

/usr/source/slfoldls.c /usr/source/sl/ls.c whether or not these files exist, without any
chance of error if the home directory for source is /usr/source. Similarly,
. .I{memo,*box} might expand to . .Imemo . .Ibox . .Imbox. (Note that memo was not
sorted with the results of matching *box.) As a special case, the shell passes all single
unmatched braces or an empty pair of braces undisturbed.

INPUT/OUTPUT

1-108

To redirect the standard input and standard output of a command, use the following
syntax:

<name

«word

> name
>! name
>& name
>&! name

» name
»& name
»! name
>&!> name

Open the file name (which is first variable-, command-, and filename­
expanded) as the standard input.

Read the shell input up to a line identical to word. word is not subjected
to variable-, filename-, or command-substitution. Each input line is
compared to word before any substitutions are done on this input line.
Unless a quoting \, ", or ' character appears in word, csh performs vari­
able and command substitution on the intervening lines, allowing \ to
quote a $, a \, and '. Commands that are substituted have all blanks and
tabs preserved. All newlines except for the final one are also preserved.
The resulting text is placed in an anonymous temporary file, which is
given to the command as standard input.

Use the file name as standard output. If the file does not exist, create it;
if the file does exist, truncate it, discarding its previous contents.

If the variable noclobber is set, the file must not exist, or it must be a
character special file (for example, a terminal or /dev/null), or an error
results. This helps prevent accidental destruction of files. The ! forms
suppress this check.

Forms involving & route the diagnostic output, as well as the standard
output, into the specified file. name is expanded in the same way as
input filenames beginning with < are.

Use the file name as standard output, but place output at the end of the
file. If the variable noclobber is set, it is an error for the file not to exist
unless you specify one of the forms beginning with!.

Commands

CSH(l) SysV CSH(l)

A command receives the environment in which the shell was invoked, as modified by
the input/output parameters and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of shell commands have no
access to the text of the commands by default; rather, they receive the original standard
input of the shell. The« mechanism should be used to present in-line data. This per­
mits shell command scripts to function as components of pipelines and allows the shell
to block-read its input. Note that the default standard input for a command run
detached is not modified to be the empty file /dev/null. Rather, the standard input
remains as the original standard input of the shell. If this is a terminal and if the process
attempts to read from the terminal, the process blocks and you are notified (see JOBS
above.)

Diagnostic output may be directed through a pipe withthe standard output. Simply use
the form 1& instead of 1 to do this.

EXPRESSIONS
A number of the built-in commands take expressions that have operators similar to
those used for the C language, with the same precedence. These expressions appear in
the @, exit, if, and while commands. The following operators are available:

I I && I A A & == != =- r <= >= < > « » + _ * / % ! - ()

Here the precedence increases to the right, The following characters are, in groups, at
the same level:

!= - !-
<= >= < >
« »
+

* %

The following operators compare their arguments as strings:

== !=

All others operate on numbers. The operators =- and !- are like == and != except that
the right-hand side is a pattern (containing, for example, asterisks, question marks, and
instances of [... J characters) against which the left-hand operand is matched. This
removes the need to use the switch statement in shell scripts when all you need is
pattern-matching.

Commands 1-109

CSH(l) SysV CSH(l)

csh considers strings beginning with a zero to be octal numbers. it interprets null or
missing arguments as zero. The results of all expressions are strings, which represent
decimal numbers. Note that no two components of an expression can appear in the
same word. You should surround them by spaces, except when they are adjacent to
components of expressions that are syntactically significant to the parser (&, I, <, >, (,
».
Also available in expressions as primitive operands are command executions enclosed
in braces «(and I), and file enquiries of the form -/ name where / is one of the follow­
ing:

r Read access
w Write access
x Execute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

csh performs command and filename expansion on the specified name, and then checks
to see if it has the specified relationship to the real user. If the file does not exist, or if it
is inaccessible, all inquiries return false (0). Command executions succeed, returning
true (1), if the command exits with status 0; otherwise, they fail, returning false (0). If
you require more detailed status information, execute the command outside an expres­
sion and examine the status variable.

CONTROL FLOW
csh contains a number of commands to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from terminal input. These commands
all operate by forcing the shell to reread or skip in its input and, due to the implementa­
tion, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if
statement require that the major keywords appear in a single simple command on an
input line, as shown below.

If the shell's input is not seekable, the shell buffers input whenever a loop is being read
and performs seeks in this internal buffer to accomplish the rereading implied by the
loop. (To the extent that this allows, backward gotos succeed on non-seekable inputs.)

BUILT-IN COMMANDS

1-110

Built-in commands are executed within the shell. If a built-in command occurs as any
component of a pipeline except the last, it is executed in a sub-shell.

alias Print all aliases.

alias name
Print the alias for name.

Commands

CSH(l) SysV CSH(l)

alias name wordlist
Assign the specified wordlist as the alias of name. The wordlist is command­
and filename-substituted. name cannot be alias or unalias.

alloc Show the amount of dynamic memory acquired, broken down into used and
free memory. With an argument, this command shows the number of free and
used blocks in each size category. The categories start at size eight and double
at each step. This command's output may vary across system types.

bg
bg %job ...

Put the current or specified jobs into the background, continuing them if they
were stopped.

break Resume execution after the end of the nearest enclosing foreach or while.
Execute the remaining commands on the current line. Thus you can have
multi-level breaks by writing them all on one line.

breaksw
Break from a switch. resuming after the endsw.

case label:
Specify a label in a switch statement.

cd
cd name
chdir
chdir name

Change the shell's working directory to directory name. If you do not specify
an argnment, change to the home directory of the user.

If name is not found as a subdirectory of the current directory and does not
begin with I, .I, or .. I, check each component of the variable cdpath to see if it
has a subdirectory name. Finally, if all else fails but name is a shell variable
whose value begins with I, check to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. Execute remain­
ing commands on the current line.

default: Label the default case in a switch statement. This command should follow all
case labels.

dirs Print the directory stack. The top of the stack is at the left, and the first direc­
tory in the stack is the current directory.

echo wordlist
echo -n wordlist

Write the specified words to the shell's standard output, separated by spaces,
and terminated with a newline, unless you specify the -n option.

Commands 1-111

CSH(l)

1-112

else
end
endif

SysV CSH(1)

endsw See the description of the foreach, if, switch, and while statements below.

eval arg ...
Read the arguments as input to the shell, executing the resulting command(s)
in the context of the current shell. This occurs as in sh(l). The command is
generally used to execute commands generated as the result of command or
variable substitution, since parsing occurs before these substitutions. See
tset(I) for an example of using eval.

exec command
Execute the specified command in place of the current shell.

exit Exit with the value of the status variable.

exit(expr)
Exit with the value of the specified expr.

fg
fg %job ...

Bring the current or specified jobs into the foreground, continuing them if they
were stopped.

foreach name (wordlist)

end Successively set the variable name to each member of wordlist, and execute
the sequence of commands between this command and the matching end.
(Both foreach and end must appear alone on separate lines.)

Use the continue command to continue the loop prematurely. Use the break
command to tenninate it prematurely. When the shell reads this command
from the tenninal, it reads the loop once, prompting with "? " before execut­
ing any statements in the loop. If you make a mistake typing in a loop at the
tenninal, you can interrupt it.

glob wordlist
Perfonn the same function as the echo command, but do not recognize
backslash escapes, and delimit words by null characters in the output. Use this
command with programs that use the shell to filename-expand a list of words.

goloword
Perfonn filename- and command-expansion on the specified word to yield a
string of the fonn label. Cause the shell to rewind input as much as possible
and search for a line of the fonn label: (possibly preceded by blanks or tabs).
Continue execution after the specified line.

Commands

CSH(l)

hashstat

SysV CSH(l)

Print a statistics line indicating how effective the internal hash table has been
at locating commands and avoiding instances of the exec command. An exec
is attempted for each component of the path where the hash function indicates
a possible hit, and in each component that does not begin with a slash.

history Display the history event list.

history n
Print only the n most recent events in the history event list.

history -r n
Print the most recent events first (rather than printing the oldest first).

history -h n
Print the history event list without leading numbers. Use this command to pro­
duce files suitable for sourcing with the -h option to the source built-in com­
mand.

if (expr) command
If the specified expression evaluates true, execute the single command with
arguments. Variable substitution on command happens early, at the same time
it does for the rest of the if command. The command must be a simple com­
mand, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, in which case, command is
not executed.

if (expr) then

else if (expr2) then

else

endif If the specified expr is true, execute the commands to the first else; otherwise if
expr2 is true, execute the commands to the second else, and so on. Any
number of else-if pairs are possible; only one endif is needed. The else part is
optional. (The words else and endif must appear at the beginning of input
lines; the if must appear alone on its input line or after an else.)

inlib lib Install a user-supplied library specified by lib in the shell process. The library
is used to resolve external references of programs (and libraries) loaded after
its installation. Note that the library is not loaded into the address space unless
it is needed to resolve an external reference. The list of inlibed libraries is
passed to all children of the current shell. Use llib(l) to examine this list.

jobs List the active jobs.

jobs -I List the active jobs, and include process IDs.

Commands 1-113

CSH(l)

1-114

SysV CSH(l)

kill %job
kill-sig %job ...
kill pid
kill -sig pid ...
kill -I Send either the TERM (terminate) signal or the specified signal to the jobs or

processes indicated. Provide signals by number or by names (as given in
/usr/include/signaI.h, stripped of the SIG prefix). A kill -I lists the signal
names. There is no default process for this command. If the signal being sent
is TERM (terminate) or HUP (hangup), the job or process is sent a CONT
(continue) signal as well.

limit
limit resource
limit resource maximum-use
limit -h
limit -h resource
limit -h resource maximum-use

Limits the consumption by the current process and each process it creates, to
not individually exceed maximum-use on the specified resource. If you do not
specify maximum-use, the current limit is printed; if you do not specify
resource, all limitations are given. If you specify the -h flag, the hard limits
are used instead of the current limits. The hard limits impose a ceiling on the
values of the current limits. Only the super-user can raise the hard limits, but a
user can lower or raise the current limits within the legal range.

Resources controllable currently include cpu time (the maximum number of
CPU seconds to be used by each process), filesize (the largest single file that
you can create), datasize (the maximum growth of the data+stack region via
sbrk(2) beyond the end of the program text), stack size (the maximum size of
the automatically-extended stack region), and coredumpsize (the size of the
largest core dump that will be created). NOTE: You cannot use limit to set
stacksize; the coredumpsize limit is always 0 in Domain/OS.

You can specify the maximum-use as a (floating point or integer) number fol­
lowed by a scale factor. For all limits other than cputime the default scale is
'k' or 'kilobytes' (1024 bytes); you can also us a scale factor of 'm' or 'mega­
bytes'. For cputime the default scaling is 'seconds', but you can specify 'm'
for minutes or 'h' for hours, or a time of the form 'mm:ss' giving minutes and
seconds.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

login Terminate a log-in shell, replacing it with an instance of /bin/login. This is one
way to log out, and it is included for compatibility with sh(1).

logout Terminate a log-in shell. This command is especially useful if ignoreeof is
set.

Commands

CSH(l) SysV CSH(l)

nice Set the nice(l) scheduling priority for this shell to 4.

nice +number
Set the nice(l) priority to the given number.

nice command
Run command at nice(l) priority 4.

nice +number command
Run command at positive number nice(l) priority. The greater the number, the
lower CPU priority the process gets. The super-user can specify negative
priority by using nice -number The command is always executed in a
sub-shell, and the restrictions placed on commands in simple if statements
apply.

nohup When you specify this command in a shell script, ignore hangups for the
remainder of the script.

nohup command

notify

Run the specified command with hangups ignored. This happens to all
processes detached with &.

notify %job ...
Notify the user asynchronously when the status of the current or specified jobs
changes (normally, notification is presented before a prompt). This is
automatic if the shell variable notify is set.

onintr Restore the default action of the shell on interrupts (to terminate shell scripts
or to return to the terminal command input level). In any case, if the shell is
running detached and interrupts are being ignored, all forms of onintr have no
meaning, and interrupts continue to be ignored by the shell and all invoked
commands.

onintr -
Ignore all interrupts.

onintr label
Execute a goto label when an interrupt is received or a child process ter­
minates because it was interrupted.

popd Pop the directory stack, returning to the new top directory. The elements of
the directory stack are numbered from zero, starting at the top.

popd +n
Discard the nth entry in the directory stack.

pushd Exchange the top two elements of a directory stack.

pushd name
Change to name directory and push the old current working directory onto the
directory stack.

Commands 1-115

CSH(l)

1-116

SysV CSH(l)

pushd +n
Rotate the nth argument of the directory stack around to be the top element
and change to it. The members of the directory stack are numbered from zero,
starting at the top.

rehash Recompute the internal hash table of the contents of the directories in the path
variable. This is needed if new commands are added to directories in the path
while you are logged in. This should be necessary only if you add commands
to one of your own directories, or if someone changes the contents of one of
the system directories.

repeat count command
Execute the specified command (subject to the same restrictions as the com­
mand in the one-line if statement above) count times. I/O redirections occur
exactly once, even if count is zero.

rootnode arg
Change the current node entry directory to arg. See rootnode(1).

set Show the value of all shell variables. Variables that have other than a single
word as their value appear as a parenthesized word list.

set name
Set name to the null string.

set name=word
Set name to the single word. In all cases, the value is command- and filename­
expanded.

set name[indexl=word
Set the indexth component of name to word. This component must already
exist. In all cases, the value is command- and filename-expanded.

set name=(wordlist)
Set name to the list of words in wordlist. In all cases, the value is command­
and filename-expanded. You can repeat these arguments to set multiple values
in a single set command. Note, however, that variable expansion happens for
all arguments before any setting occurs.

setenv List all current environment variables.

setenv name
Set name to an empty string.

setenv name value
Set the value of the environment variable name to be value, a single string.
The most commonly used environment variables - USER, TERM, and PATH
- are automatically imported to and exported from the csh variables user,
term, and path. You do not have to use setenv for these.

Commands

CSH(l) SysV CSH(l)

shift Shift the members of argv to the left, discarding argyl IJ. It is an error for the
argv variable not to be set or to have less than one word as its value.

shift variable
Shift the specified variable to the left, discarding variable[IJ.

source name
Read commands from name. You may nest source commands, but if you nest
them too deeply, the shell may run out of file descriptors. An error in a source
at any level terminates all nested source commands.

source -h name
Place commands in the history list without executing them. Normally, input
during source commands is not placed on the history list.

stop Stop the current job that is executing in the background.

stop %job ...

suspend

Stop the specified job that is executing in the background.

Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with CfRL/Z. This is most often used to stop shells started by su(l)

switch (string)
case strl:

breaksw

default:

breaksw
endsw

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters *, ? and [... J
may be used in the case labels, which are variable expanded. If none of the
labels match before a "default" label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels as
in C. If no label matches and there is no default, execution continues after the
endsw.

time Print a summary of time used by this shell and its children.

time command
If arguments are given the specified simple command is timed and a time

Commands 1-117

CSH(I)

1-118

SysY CSH(I)

summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask Display the file-creation mask (in octal).

umask value
Set the file-creation mask to the specified value. Common values for the mask
are 002 (giving all access to the group and read and execute access to others)
or 022 (giving all except write access to users in the group or others).

unalias pattern
Discard all aliases whose names match the specified pattern. Thus, unalias *
removes all aliases. It is not an error for nothing to be unaliased.

un hash Disable the internal hash table mechanism, normally used to speed location of
executed programs.

unlimit
unlimit resource
unlimit-h
unlimit -h resource

Removes the limitation on resource. If you do not specify resource, all
resource limitations are removed. If you specify -h, the corresponding hard
limits are removed. Only the super-user can do this.

unset pattern
Remove all variables whose names match the specified pattern. Thus, unset *
removes all variables. This has noticeably distasteful side-effects. It is not an
error for nothing to be unset.

unsetenv pattern
Remove all variables whose names match the specified pattern from the
environment. Also refer to the setenv built-in shell command, above, and the
printenv(l) command.

ver [systype [command]]
With no arguments, return the current value of the SYSTYPE environment
variable. With a systype argument, change the SYSTYPE environment vari­
able to either bsd4.3 or sys5.3. depending on which is specified.

wait Wait for all background jobs. If the shell is interactive, an interrupt can dis­
rupt the wait, and the shell prints the names and job numbers of all jobs known
to be outstanding.

which Identify which file would be executed if the command were submitted for exe­
cution. The command is submitted to normal alias and variable substitutions.

while (expr)

end While the specified expression evaluates to nonzero, evaluate the commands
between the while and the matching end. You can use break and continue to

Commands

CSH(l) SysV CSH(l)

tenninate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs the first time through the loop, as
for the foreach statement if the input is a tenninal.

%job Bring the specified job number into the foreground.

%job&
Continue the specified job in the background.

@ Print the values of all the shell variables.

@name=expr
Set the specified name to the value of expr. If the expression contains a >, <,
&, or I character, you must enclose at least that part in parentheses.

@ name[indexl = expr
Assign the value of expr to the indexth argument of name. Both name and its
indexth component must already exist.

The operators *=, +=, etc., are available as in C. The space separating the
name from the assignment operator is optional. However, spaces are manda­
tory in separating components of expr that would otherwise be single words.
Special postfix ++ and - - operators increment and decrement name, respec­
tively, for example, @ i++.

PREDEFINED AND ENVIRONMENT VARIABLES
The following variables have special meaning to csh. Of these, the shell sets argv, cwd,
home, path, prompt, shell, and status. Except for cwd and status, this setting occurs
only at initialization. These variables will not then be modified unless you explicitly
perfonn the modification.

csh copies the USER environment variable into the user variable; TERM into term;
and HOME into home. It then copies these back into the environment whenever the
nonnal shell variables are reset.

csh handles the PATH environment variable in a similar manner. Do not worry about
the setting for PATH other than in the file .cshrc. Inferior csh processes import the
definition of path from the environment, and re-export it if you then change it.

argv

cdpath

cwd

echo

Commands

Set to the arguments to the shell. It is from this variable that posi­
tional parameters are substituted, that is, $argv[l] replaces $1, etc.

Give a list of alternate directories searched to find subdirectories in
chdir commands.

Give the full pathname of the current directory.

Echo each command and its arguments just before the command is
executed. This variable is set when you specify the -x command
line option. For non-built-in commands all expansions occur before
echoing. Echo built-in commands before command and filename
substitution, since these substitutions are then done selectively.

1-119

CSH(l)

1-120

filee

histchars

history

home

ignoreeof

mail

noclobber

noglob

nonomateh

notify

path

SysV CSH(l)

Enable filename completion.

Change the characters used in history substitution, if you specify a
string value. Use the first character of its value as the history substi­
tution character, replacing the default character!. The second char­
acter of its value replaces the' character in quick substitutions.

Control the size of the history list. If you specify a numeric value, do
not discard any command that has been referenced in that many
events. The last executed command is always saved on the history
list. The shell may run out of memory if the value of history is too
large.

Represents the home directory of the invoker, initialized from the
environment. The filename expansion of - refers to this variable.

If set, ignore the end-of-file from terminal input devices. This
prevents shells from accidentally being killed by an EOF.

Represent the files where the shell checks for mail. This is done after
each command completion that results in a prompt, if a specified
interval has elapsed. The shell will tell you that you have new mail,
if the file exists with an access time not greater than its modify time.
If the first word of the value of mail is numeric, it specifies a dif­
ferent mail-checking interval (in seconds) than the default (10
minutes). If you specify multiple mail files, the shell tells you that
you have new mail in name, when there is mail in the file name.

Restrict output redirection to ensure that files are not accidentally
destroyed, and that redirections done with » refer to existing files.

If set, inhibit filename expansion. Use this in shell scripts that do not
deal with filenames, or after you have obtained a list of filename,s
and further expansions are not desirable.

If set. it is not an error for a filename expansion not to match any
existing files; rather, the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed, that is, echo [still
gives an error.

If set, notify the user asynchronously of job completions. By default,
the shell presents job completions just before printing a prompt.

Each word of the path variable specifies a directory in which com­
mands are to be sought for execution. A null word specifies the
current directory. If there is no path variable, esh executes only full
pathnames. The default search path in Domain/OS SysV is (.
lusr/ucb Ibin lusr/bin lusr/apollo/bin). However, this may vary
from system to system. For the super-user, the default search path is
(/ete Ibin /usr/bin /usr/apollo/bin), which may also vary. A shell

Commands

CSH(l)

prompt

savehist

shell

status

time

verbose

SysV CSH(l)

that is given neither the -c nor the -t option normally hashes the
contents of the directories in the path variable after reading .cshrc,
and each time the path variable is reset. If new commands are added
to these directories while the shell is active, it may be necessary to
give the rehash comand, or the new commands may not be found.

The string printed on the csh command line, before the shell reads
commands from an interactive terminal input. If! appears in the
string, replace it by the current event number (unless a preceding
backslash is given). The default prompt is "% "; for the super-user,
the default prompt is .. #" .

Give a numeric value to control the number of history list entries
saved in -I. history at log-out time. Save any command that has been
referenced in that many events. During start-up, the shell sources
-I. history into the history list, enabling history to be saved across
log-ins. If the value of savehist is too large, the shell is slow during
start-up.

Represent the file in which the shell resides. This is used in forking
shells to interpret files that have execute bits set, but are not execut­
able by the system. (See the description of Non-Built-in Command
Execution, below.) This variable is initialized to the (system­
dependent) home of the shell.

Give the status returned by the last command. If it terminated abnor­
mally, add 0200 to the status. Built-in commands that fail return exit
status 1. All other built-in commands set status O.

Control automatic timing of commands, if a numeric value is sup­
plied. If set, print the user, system, a utilization percentage, and real
times for any command that takes more than this many CPU seconds,
when the command terminates. A utilization percentage is the ratio
of user time plus system time to real time.

Print the words of each command after history substitution. 1bis
variable is set by the -v command-line option to csh.

NON-BUILT-IN COMMAND EXECUTION
When a command to be executed is found to be something other than a built-in com­
mand, csh attempts to execute it via execve(2). Each word in the variable path names a
directory from which the shell attempts to execute the command. If you do not specify
either a -c or a -t option, the shell hashes the names in these directories into an internal
table so that it tries an exec in a directory only if the command potentially resides there.
This greatly speeds command location when a lot of directories are present in the search
path. For each directory component of path that does not begin with a I, the shell con­
catenates with the given command name to form a pathname of a file that it then
attempts to execute. The shell also does this if the internal hash table mechanism is

Commands 1-121

CSH(l) SysV CSH(l)

turned off (via unhash), or a -c or -t command-line option is specified in csh.

Commands in parentheses are always executed in a sub-shell. Thus, (cd; pwd) ; pwd
prints the home directory, leaving you where you were (printing this after the home
directory). On the other hand, cd ; pwd leaves you in the home directory. Commands
in parentheses are most often used to prevent chdir from affecting the current shell.

If a file has execute permissions but is not an executable binary to the system, csh
assumes it to be a file containing shell commands, and spawns a new shell to read it.

If there is an alias for shell, the words of the alias are prefixed to the argument list to
form the shell command. The first word of the alias should be the full pathname of the
shell (for example, $shell). Note that this is a special, late-occurring, case of alias sub­
stitution, and it only allows words to be prefixed to the argument list without
modification.

COMMAND LINE OPTIONS
-b This flag forces a break from option processing, causing any further shell argu­

ments to be treated as non-option arguments. The remaining arguments are not
interpreted as shell options. You can use the -b to pass options to a shell script
without confusion or possible subterfuge. The shell will not run a set-user 1D
script without this option.

-c Commands are read from the (single) following argument, which must be
present. Any remaining arguments are placed in argv.

-Oname==value
Set the parameter name to value, then pass it to the shell's environment. This
option is useful for tailoring the environment of a shell invoked from a program
that isn't a shell (such as the DM). For example, if your key definition sets the-O
variable as follows: kd cp /bin/csh -ONEWPAO=true ke, the .cshrc script can
use the value of the NEWPAD variable to execute additional commands or per­
form special processing. You can specify a number of -0 options.

-e The shell exits if any invoked command terminates abnormally or yields a
nonzero exit status.

-f The shell starts faster, because it neither searches for nor executes commands
from the file .cshrc in the invoker's home directory.

-i The shell is interactive and prompts for its top-level input, even if it appears not
to be a terminal. Shells are interactive without this option if their inputs and out­
puts are terminals.

-n Parse commands, but do not execute them. This aids in syntactic checking of
shell scripts.

-s Take command input from the standard input.

-t Read and execute a single line of input. Use a backslash (\) to escape the newline
at the end of this line and continue onto another line.

1-122 Commands

CSH(l) SysV CSH(l)

-v Set the verbose variable, causing command input to be echoed after history sub­
stitution.

-x Set the echo variable, so that commands are echoed immediately before execu­
tion.

-V Set the verbose variable even before .cshrc is executed.

-X Set the echo variable even before .cshrc is executed.

ARGUMENT LIST PROCESSING
If argument 0 to the shell starts with a dash (-), this is a log-in shell. If arguments
remain after command-line options are processed, but you did not specify one of the -c,
-i, -S, or -t options, the first argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for possible resubstitution by $0.
Since many systems use either the standard version 6 or version 7 shells whose shell
scripts are not compatible with this shell, csh executes a standard shell if the first char­
acter of a script is not a pound sign (#), that is, if the script does not start with a com­
ment. Remaining arguments initialize the argv variable.

SIGNAL HANDLING
csh normally ignores quit signals. Jobs running detached, either by &, or the bg or
% ••• & commands, are immune to signals generated from the keyboard, including hang­
ups. Other signals have the values the shell inherited from its parent. Use onintr. to
control the shell's handling of interrupts and terminate signals in shell scripts. Log-in
shells catch the TERM (terminate) signal. Otherwise, this signal is passed on to chil­
dren from the state in the shell's parent. In no case are interrupts allowed when a log-in
shell is reading the file .logout.

LIMITATIONS

BUGS

Words can be no longer than 1024 characters. The system limits argument lists t(l
10240 characters. The number of arguments to a command that involves filename
expansion is limited to one-sixth the number of characters allowed in an argument list.
Command substitutions may substitute no more characters than are allowed in an argu·
ment list. To detect looping, the shell restricts the number of alias substitutions on ,
single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in i:
this is different from the current directory; this can be misleading (that is, wrong) as th(
job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the forn
'a ; b ; c' are also not handled gracefully when stopping is attempted. If you suspem
'b', the shell immediately executes 'c'. This is especially noticeable if this expansiOi
results from an alias. It suffices to enclose the sequence of commands in parentheses t,
force it to a subshell, for example, '(a ; b ; c)'.

Commands 1-12

CSH(l)

FILES

SysY CSH(l)

Control over tty output after processes are started is primitive; perhaps this will inspire
someone to work on a good virtual terminal interface. In a virtual terminal interface
much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; you should
use shell procedures rather than aliases.

Commands within loops, prompted for by"?", are not placed in the history list. Con­
trol structure should be parsed rather than being recognized as built-in commands. This
would allow control commands to be placed anywhere, to be combined with I, and to be
used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. All
and more than one: modifier should be allowed on $ substitutions.

The way the filec facility is implemented is ugly and expensive.

-I.cshrc
-/.login
-I. logout
Ibin/sh
Itmp/sh*
letc/passwd

Read at beginning of execution by each shell.
Read by log-in shell, after .cshrc at login.
Read by log-in shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary file for '«'.
Source of home directories for '-name'.

SEE ALSO

1-124

sh(I), access(2), execve(2), fork(2), pipe(2), umask(2), wait(2), tty(4), a.out(5),
environ(7) ;
Using Your SysV Environment.

Commands

CSPLIT(l) SysV CSPLIT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [... argn]

DESCRIPTION
csplit reads file and separates it into n+ 1 sections, defined by the arguments argl . ..
argn. By default the sections are placed in xxOO ... xxn (n may not be greater than
99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by
argl.

01: From the line referenced byargl up to the line referenced by arg2.

n+ I: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

OPTIONS
-s

-k

-f prefix

Suppresses the printing of all character counts. csplit normally prints the
character counts for each file created.

Leaves previously created files intact. csplit normally removes created
files if an error occurs.

If the -f Names created files prejixOO ... prefixn. The default is xxOO
... xxn.

file (argl ... argn)

I rexp I A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. The current line becomes the line con­
taining rexp. This argument may be followed by an
optional + or - some number of lines (e.g., IPage/-5).

%rexp%

{nno

Commands

This argument is the same as /rexp /, except that no file is
created for the section.

A file is to be created from the current line up to (but not
including) lnno. The current line becomes {nno.

l-l~

CSPLIT(l) SysV CSPLIT(l)

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows lnno,
the file is split every lnno lines (num times) from that
point. Enclose all rexp type arguments that contain
blanks or other characters meaningful to the shell in the
appropriate quotes. Regular expressions may not contain
embedded new-lines. csplit does not affect the original
file; it is your responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division!' /parS.! /parl6.!

This example creates four files, cobolOO ... cobol03. After editing the "split" files,
they can be recombined as follows:

cat coboI0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k option
causes the created files to be retained if there are less than 10,000 lines; however, an
error message would still be printed.

csplit -k prog.c '%main(%' '(j/+l' {20}

Assuming that prog.c follows the nonnal C coding convention of ending routines with
a } at the beginning of the line, this example will create a file containing each separate
C routine (up to 21) in prog.c.

DIAGNOSTICS
Self-explanatory except for:

arg - out of range

which means that the given argument did not reference a line between the current posi­
tion and the end of the file.

SEE ALSO
ed(I), sh(I).
regexp(5) in the SysV Programmer's Reference.

1-126 Commands

CTRACE(l) SysV CTRACE(l)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION
ctrace allows you to follow the execution of a C program, statement-by-statement. The
effect is similar to executing a shell procedure with the -x option. ctrace reads the C
program infile (or from standard input if you do not specify file), inserts statements to
print the text of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. You must put the
output of ctrace into a temporary file because the cc(1) command does not allow the
use of a pipe. You then compile and execute this file.

As each statement in the program executes it will be listed at the terminal, followed by
the name and value of any variables referenced or modified in the statement, followed
by any output from the statement. Loops in the trace output are detected and tracing is
stopped until the loop is exited or a different sequence of statements within the loop is
executed. A warning message is printed every 1000 times through the loop to help you
detect infinite loops. The trace output goes to the standard output so you can put it into
a file for examination with an editor or the bfs(1) or tail(l) commands.

OPTIONS
-f functions Traces only these functions.

-v functions Traces all but these functions.

You may want to add to the default formats for printing variables. Long and pointer
variables are always printed as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int variables are also printed as signed
integers and, if appropriate, as characters. Double variables are printed as floating point
numbers in scientific notation. String arguments to the string(3C) functions and return
values from fgets(3S), gets(3S), and sprintf(3S) are printed as strings.

ADDITIONAL VARIABLE OPTIONS
You can request that variables be printed in additional formats, if appropriate, with
these options:

-0

-x

-u

Octal

Hexadecimal

Unsigned

-e Floating point

SPECIAL CIRCUMSTANCE OPTIONS
These options are used only in special circumstances:

-I n Checks n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.

Commands 1-127

CTRACE(l) SysY CTRACE(l)

-s

-tn

-p

-b

-p string

-rf

Suppresses redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by use
of the = operator in place of the == operator.

Traces n variables per statement instead of the default of 10 (the max­
imum number is 20). The Diagnostics section explains when to use this
option.

Runs the C preprocessor on the input before tracing it. You can also use
the -D, -I, and -U cpp(l) options. These options are used to tailor the
run-time trace package when the traced program will run in a non-UNIX
System environment:

Uses only basic functions in the trace code, that is, those in ctype(3C),
printf(3S), and string(3C). These are usually available even in cross­
compilers for microprocessors. In particular, this option is needed when
the traced program runs under an operating system that does not have
signal(2), fflush(3S), longjmp(3C), or setjmp(3C).

Changes the trace print function from the default of 'printf('. For exam­
ple, 'fprintf(stderr,' would send the trace to the standard error output.

Uses file f in place of the runtime.c trace function package. This lets you
change the entire print function, instead of just the name and leading
arguments (see the -p option).

EXAMPLE

1-128

If the file Ic.c contains this C program:

1 #include <stdio.h>
2 maine) /* count lines in input */
3 (
4 int c, nl;
5
6 nl = 0;
7 while «c = getchar (» ! = EOF)

8 if (c = '\n')
9 ++nl;

10 printf("%d\n", nl);
11

and you enter these commands and test data:

cc Ic.c
a.out
1
(CTRL/d)

Commands

CTRACE(l) SysV CTRACE(l)

the program will be compiled and executed. The output of the program will be the
number 2, which is not correct because there is only one line in the test data. The error
in this program is common, but subtle. If you invoke ctrace with these commands:

ctrace Ic.c >temp.c
cc temp.c
a.out

the output will be:

2 main ()

6 nl = 0;

1* nl 0 *1
7 while ((c = getchar ()) ! = EOF)

The program is now waiting for input. If you enter the same test data as before, the out­
put will be:

1* c == 49 or '1' *1
8 if (c = , \n')

1* c == 10 or '\n' *1
9 ++nl;

1* nl == 1 *1
7 while ((c = getchar ()) ! = EOF)

1* c == 10 or '\n' *1
8 if (c = '\n')

1* c == 10 or '\n' *1
9 ++nl;

1* nl == 2 *1
7 while ((c = get char ()) ! = EOF)

If you now enter an end of file character (CTRL/d) the final output will be:

l*c==-l*1
10 printf("%d\n", nl);

1* nl == 2 */2
return

Note that the program output printed at the end of the trace line for the nl variable.
Also note the return comment added by ctrace at the end of the trace output. This
shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value' I ' in line 7, but in line 8 it
has the value '\n'. Once your attention is drawn to this if statement, you will probably

Commands 1-129

CI'RACE(l) SysY CTRACE(l)

realize that you used the assignment operator (=) in place of the equality operator (==).
You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you use the -f
or -v options to trace specific functions. This does not give you statement-by-statement
control of the tracing, nor does it let you tum the tracing off and on when executing the
traced program.

You can do both of these by adding ctroffO and ctronO function calls to your program
to tum the tracing off and on, respectively, at execution time. Thus, you can code arbi­
trarily complex criteria for trace control with if statements, and you can even condition­
ally include this code because ctrace defines the CTRACE preprocessor variable. For
example:

ififdef CTRACE
if (c

ifendif

, !' && i > 1000)
ctron () ;

You can tum the trace off and on by setting static variable tr3t_ to 0 and 1, respec­
tively. This is useful if you are using a debugger that cannot call these functions
directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the traced
code often gets some cc warning messages. You can get cc error messages in some rare
cases, all of which can be avoided.

ctface Diagnostics

1-130

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out of
tree space; simplify expression" error. Use the -t option to increase this
number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are using tabs
to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the middle
of a C statement, or by a semicolon at the end of a #define preprocessor state­
ment.

'if ... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option

Commands

CTRACE(l) SysV CTRACE(l)

Use the -P option to preprocess the ctrace input, along with any appropriate
-D, -I, and -U preprocessor options. If you still get the error message, check
the Wamings section below.

cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeofreturns 0

Ignore these messages.
compiler takes size offunction

See the ctrace "possible syntax error" message above.
yacc stack overflow

See the etrace "'if '" else if sequence too long" message above.
out of tree space; simplify expression

Use the -t option to reduce the number of traced variables per statement from
the default of 10. Ignore the "ctrace: too many variables to trace" wamings
you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

WARNINGS

BUGS

FILES

You will get a etraee syntax error if you omit the semicolon at the end of the last ele­
ment declaration in a structure or union, just before the right brace (}). This is optional
in some C compilers. Defining a function with the same name as a system function
may cause a syntax error if the number of arguments is changed. Just use a different
name.

ctraee assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will cause a
syntax error.

ctraee does not know about the components of aggregates like structures, unions, and
arrays. It cannot choose a format to print all the components of an aggregate when an
assignment is made to the entire aggregate. ctrace may choose to print the address of
an aggregate or use the wrong format (e.g., 3.149050e-311 for a structure with two
integer members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elitnination is done separately for each file of a multi-file pro­
gram. This can result in functions called from a loop still being traced, or the elitnina­
tion of trace output from one function in a file until another in the same file is called.

lusr/lib/ctrace/runtime.c Run-titne trace package

Commands 1-131

CTRACE(l) SysV

SEE ALSO
signal(2), ctype(3C), fclose(3S), printf(3S), setjrnp(3C), string(3C).
bfs(I), tail(l) in the Using Your SysV Environment.

1-132

CTRACE(l)

Conunands

CU(lC) SysV CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-Iline] [-h] [-t] [-d] [-0 I -e] [-n] telno
cu [-s speed] [-h] [-d] [-{) I -e] -I line
cu [-h] [-d] [-{) I -e] systemname

DESCRIPTION
cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible Ascn file transfers.

After making the connection, cu runs as two processes: the transmit process reads data
from the standard input and, except for lines beginning with a tilde n, passes it to the
remote system; the receive process accepts data from the remote system and, except for
lines beginning with a tilde n, passes it to the standard output. Normally, an automatic
DC3/DC1 protocol is used to control input from the remote so the buffer is not overrun.
Lines beginning with a tilde C) have special meanings. Both the transmit and the
receive processes are described in the sections below.

When cu is used on system X to connect to system Y and subsequently used on system
Y to connect to system Z, commands on system Y can be executed by using a double
tilde C). Executing a tilde command reminds the user of the local system uname. For
example, uname(l) can be executed on Z, X, and Y as follows:

uname
Z
-[X]!uname
X
--[Y]!uname
Y

In general, a tilde C) causes the command to be executed on the original machine; a
double tilde C) causes the command to be executed on the next machine in the chain.

The SysV version of cu supports the Vadic 212 Autodialer.

OPTIONS
-sspeed

-Iline

Commands

Specifies the transmission speed (300, 1200, 2400, 4800, 9600); The
default value is "Any" speed which will depend on the order of the lines
in the lusr/lib/uucplDevices file. Most moderns are either 300 or 1200
baud. Directly connected lines may be set to a speed higher than 1200
baud.

Specifies a device name to use as the communication line. Can be used
to override searching for the first available line having the right speed.
When this option is used without the -s option, the speed of a line is
taken from the lusr/lib/uucp/Devices file. With the -s option, the

1-133

CU(lC)

-h

-t

-d

SysV CU(lC)

Devices file is searched for the requested speed for the requested line. If
possible, the connection is made at the requested speed; otherwise, an
error message is printed and the call is not made. The specified device is
generally a directly connected asynchronous line (e.g., Idev/ttyab) in
which case a telephone number (telno) is not required. The specified
device need not be in the Idev directory. If the specified device is asso­
ciated with an auto dialer, a telephone number must be provided. Use of
this option with systemname rather than telno will not give the desired
result (see systemname below).

Emulates local echo, supporting calls to other computer systems that
expect terminals to be set to half-duplex mode.

Sets appropriate mapping of carriage-return to carriage-retum-line-feed
pairs. Used when dialing an ASCII terminal set to auto answer.

Prints diagnostic traces.

Generates even parity for data sent to the remote system.

-0 Generates odd parity for data sent to the remote system.

-0 Prompts you to provide the telephone number to be dialed rather than
taking it from the command line (for added security).

SPECIAL ARGUMENTS
telno

systemname

TRANSMIT PROCESS

When using an automatic dialer, felno is the telephone number
with equal signs for secondary dial tone or minus signs placed
appropriately, for delays of 4 seconds.

System name is a uucp system name that may be used rather than
a phone number. Cu obtains an appropriate direct line or phone
number from lusr/lib/uucp/Systems. Cu tries each phone
number or direct line for systemname in the Systems file until a
connection is made or all the entries are tried. Note: the system­
name option should not be used in conjunction with the -I and -s
options, as cu will connect to the first available line for the sys­
tem name specified, ignoring the requested line and speed.

The transmit process interprets the following:

-!cmd ...

1-134

Terminate the conversation.

Escape to an interactive shell on the local system.

Run cmd on the local system, via the -c option to the sh(l)
command.

Run cmd locally and send its output to the remote system.

Commands

CU(lC)

-%take from [to]

-%put from [to]

-- line

-%break

-%debug

-,

-%nostop

SysV CU(lC)

Change the directory on the local system. NOTE: A -!cd
causes the command to be ron by a sub-Shell, which was prob­
ably not what was intended.

Copy file from (on the remote system) to file to on the local
system. H to is omitted, the from argument is used in both
places.

Copy file from (on the local system) to file to on the remote
system. H to is omitted, the from argument is used in both
places.

For both -% take and put commands, as each block of the file
is transferred, consecutive single digits are printed to the ter­
minal.

Send the line - line to the remote system.

Transmit a BREAK to the remote system (this option can also
be specified as -%b).

Toggle the ·d debugging option on or off (this option can also
be specified as -%d).

Print the values of the termio structure variables for the user's
terminal (useful for debugging).

Print the values of the termio structure variables for the remote
communication line (useful for debugging).

Toggle between DC3/DCl input control protocol and no input
control. This is useful when the remote system is one which
does not respond properly to the DC3 and DCl characters.

RECEIVE PROCESS
The receive process normally copies data from the remote system to its standard output.
Internally the program accomplishes this by initiating an output diversion to a file when
a line from the remote begins with -.

Data from the remote is diverted (or appended, if» is used) to file on the local system.
The trailing -> marks the end of the diversion.

Using -%put requires stty(l) and cat(l) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to the current ones
on the local system. Backslashes are inserted at appropriate places. There is an
artificial slowing of transmission during the -% put operation, so that loss of data is
unlikely.

Using -%take requires echo(l) and cat(l) on the remote system. The stty tabs mode
should also be set on the remote system, if tabs are to be copied without expansion.

Commands 1-135

CU(lC) SysV CU(lC)

EXAMPLES

BUGS

1-136

To dial a system whose number is 9 201555 1212 using 1200 baud (where you expect a
dialtone after the 9), use the following command:

eu -s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line, type this (where XX is a valid TIY
number):

eu -I Idev/ttyXX
or

#eu -I ttyXX

To dial a system with the specific line and a specific speed, type this (where XX is a
valid TIY number):

eu -s1200 -I Idev/ttyXX

To dial a system using a specific line associated with an auto dialer, execute the follow­
ing command (where XX is a line number):

eu -I eulXX 9=12015551212

To use a system name, use this command (where YYYZZZ is the name of the system):

#eu YYYZZZ

If you eu to a DOMAIN node whose default start-up shell is leom/sh (as opposed to
Ibin/sh or Ibin/esh), you should either: 1) change your command search rules (i.e., do a

esr -a Ibin lusr/bin ...

inside the AEGIS Shell) so that the eu transmit process can properly locate SysV com­
mands, or 2) have the remote start-up AEGIS Shell invoke a SysV Shell (i.e., Ibinlsh) so
that the eu receive process can properly parse the request (since the tilde character has a
special meaning in the AEGIS Shell).

eu buffers input internally.

The eu command does not do any integrity checking on data it transfers. Data fields
with special eu characters may not be transmitted properly. Depending on the intercon­
nection hardware, it may be necessary to use a -. to terminate the conversion even if
stty 0 has been used. Non-printing characters are not dependably transmitted using
either the -%put or -%take commands. eu between an IMBRI and a pemil modem
will not return a login prompt immediately upon connection. A carriage return will
return the prompt.

Commands

CU(lC)

FILES
/usr/Iib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK .. (tty-device)

DIAGNOSTICS

SysV

Exit code is zero for normal exit, one otherwise.

SEE ALSO
cat (1), echo (1), stty (1), uname (1), uucp (1C).

Commands

CU(1C)

1-137

CUT(l) SysV CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ..•]
cut -flist [-dchar] [-s] [file .•.]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data base
parlance, it implements the projection of a relation. The fields as specified by list can
be fixed length, i.e., character positions as on a punched card (-c option) or the length
can vary from line to line and be marked with a field delimiter character like tab (-f
option). cut can be used as a filter; if no files are given, the standard input is used. In
addition, a file name of "-" explicitly refers to standard input.

OPTIONS
list

-elist

-flist

-dchar

-s

Creates a comma-separated list of integer field numbers (in increasing
order), with optional- to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short
for 1-5,10); or 3- (short for third through last field)].

-e (no space) Specifies character positions (e.g., -e1-72 would pass the
first 72 characters of each line).

Lists fields assumed to be separated in the file by a delimiter character
(see -d); e.g., -fl,7 copies the first and seventh field only. Lines with
no field delimiters will be passed through intact (useful for table sub­
headings), unless -s is specified.

Delimits the field (-f option only). Default is tab. Space or other char­
acters with special meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -e or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(l) to put
files together column-wise (i.e., horizontally). To reorder columns in a table, use cut
and paste.

EXAMPLES
Mapping of user IDs to names:

cut -d: -fJ,S /etc/passwd

Setting name to current login name:

name='who am i I cut -fl-d" II'

1-138 Commands

CUT(l) SysV CUT(l)

DIAGNOSTICS
ERROR: line too long

A line can have no more than 1023 characters or fields, or there is no
new-line character.

ERROR: bad list for c / f option

ERROR: no fields

Missing -c or -f option or incorrectly specified list. No error occurs
if a line has fewer fields than the list calls for.

The list is empty.

ERROR: no delimeter
Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>

SEE ALSO
grep(l), paste(I).

Commands

Either filename cannot be read or does not exist. If multiple
filenames are present, processing continues.

1-139

Domain/OS SysV

NAME
cvtJont - convert fonts from pre-SRlO to SR10 format

SYNOPSIS
cvtJont destination sourcel [source2]

DESCRIPTION
The cvt font command creates a new font file formatted for SRlO. If one source name
is given, it is converted and placed in the destination file. If two source names are
given, then the characters in the second source font are concatenated with the characters
in the first font, converted, then placed in the destination font file.

The source font(s) must be in pre-SR10 format. Since all pre-SR10 fonts have space
pre-allocated for 128 characters, the new font can contain up to 256 characters.

If the destination font file already exists, or if cvt Jont fails to find either source file, an
error is printed, and the command terminates without changing any fonts.

EXAMPLES
The following example takes the vt100s font from /sys/dm/fonts and formats it for
SRlO in the file vt 100s in the working directory:

$ cvtJont vt100s /sys/dmlfonts/vtlOOs

The following example takes the courier 10 and courierlO.a font files from
/sys/dm/fonts, concatenates them, and formats them for SRlO in the file courierlO in
the working directory:

$ cvtJont courierlO /sys/dmlfonts/courierlO /sys/dmlfonts/courierlO.a

SEE ALSO
tr_font(!)

1-140 Commands

CVTNAME(l) Domain/OS SysV CVTNAME(l)

NAME
cvtname - convert patbnames between upper and lowercase and preserve colons

SYNOPSIS
cvtname [options]

DESCRIPTION
Prior to SR10, the colon (:) was used as an escape character for the pwpose of storing
mixed-case names. For example, the filename "Readme" was stored as ":readme".
Domain/OS programs mapped ":r" and interpreted it as "R". In pre-SRlO Aegis-only
environments, colons used in patbnames were treated as literal characters, since Aegis
was not case sensitive.

Colon-character constructs in pathnames from pre-SRlO file systems are converted to
the appropriate uppercase letter (or special character) automatically when they are
copied to SR10 systems. The cvtname command allows you to selectively undo that
process and thereby restore literal colons to patbnames. cvtname also allows you to
convert pathnames to all uppercase or all lowercase. The tool operates on entire path­
names. That is, you cannot convert one capital letter in an SRlO patbname back to a
"colon-character" sequence without converting them all.

Regardless of the mode specified, cvtname queries you before converting each path­
name, unless you specify -nq, in which case the changes are applied to all objects
subordinate to the patbname specified.

OPTIONS
Without options, cvtname converts capital letters back to colon-character sequences.

-m pathname Convert capital letters in the names of all objects in pathname
back to colon-character sequences. If -Ii is also specified, poten­
tial changes are listed but no changes are made. If -nq is
present, the changes are done automatically and all modified
names are listed. (The default is -m without -nq)

-Ipathname

-upathname

EXAMPLES

Convert pathname and subordinate object names to all lowercase.
If -Ii is also specified, potential changes are listed but no changes
are made. If -nq is present, the changes are done automatically
and all modified names are listed.

Convert pathname and subordinate object names to all uppercase.
If -Ii is also specified, potential changes are listed but no changes
are made. If -nq is present, the changes are done automatically
and all modified names are listed.

The following example allows you to convert the capital letters or colon-character con­
structs in pathnames in the directory leduc, querying you before making any changes.
Output is shown under the command line. The left-hand column shows unconverted
name; right shows converted. Type y to convert, n to keep old name.

Commands 1-141

CVTNAME(l) Domaiil/OS SysV CVTNAME(l)

\-142

$ cvtname Iledu
/ledu/:C
/ledu/CAT
/ledu/CAT converted to

/ledu/:::c n
/ledu/:c:a:t y
/ledu/:c:a:t

The following example allows you to selectively convert pathnames in led" to upper­
case.

$ cvtname -upper Iledu
/ledu
/ledu/:c
/ledu/:c:a:t
/ledu/acl_from_whoville

/LEDU n
/ledu/:C n
/ledu/:C:A:T n
/ledu/ACL_FROM_WHOVILLE y

/ledu/acl_from_whoville converted to /ledu/ACL_FROM_WHOVILLE
/ledu/backup.pas /ledu/BACKUP.PAS n
/ledu/ffl /ledu/FFl y

/ledu/FFl /ledu/ffl converted to
/ledu/TD/backup_history /ledu/TD/BACKUP HISTORY n

Commands

CVTRGY(l) Domain/OS SysY CVTRGY(l)

NAME
cvtrgy - convert registry between SR9.x and SRlO fonnats

SYNOPSIS
cvtrgy [-from9tolO I -fromlOto9 [-favor_etc]] -readonly I

-owner pgo I -first I -nq I -from sourceJgy -to destJgy

DESCRIPTION
The cvtrgy command allows the system administrator to generate an SRIO fonnat
registry database from SR9.7 registry files, or generates SR9.7 registry files with data
from the SRlO registry. The tool operates on SR9.7 nodes only. Both the rgyd and
IIbd servers must be running on the SRlO node, except when the -first option is used.
Run cvtrgy the first time when you add SRIO nodes to your network, and periodically
thereafter to keep the pre-SRlO and SRlO registry infonnation synchronized.

You must specify either -from9tolO or -fromlOto9. By default, cvtrgy creates a
read-only registry of the destination type. That is, c,trgy -from9tolO creates a read­
only SRlO fonnat master registry, while cvtrgy -fromlOto9 creates a read-only SR9.x
fonnat master registry. You can then propagate the infonnation to replica registries in
the appropriate way.

Whenever the conversion from SRlO to SR9 occurs, if the registry files exist at the des­
tination node specified in the command line, the tool quits without updating. This
means that before running cvtrgy -from 1 Oto9, you should rename (or move) the SR9.x
registry database on the destination node.

The cvtrgy tool assigns UNIX identifiers automatically during the conversion process if
you prefer. However, if your pre-SRIO node runs Domain/OS, you should preserve the
identifiers associated with accounts in your current (pre-SRlO) /etc/passwd and
/etc/group files. In nonnal operation, cvtrgy looks for the /etc/passwd and /etc/group
files and assigns identifiers from them, if they exist. Therefore, you should run cvtrgy
on a 9.7 node that either contains your master /etc/passwd and /etc/group files or has a
link to them.

If cvtrgy doesn't find the /etc/passwd and /etc/group files and an /etc directory exists,
it queries you before assigning new UNIX identifiers, unless the -nq (no query) flag is
turned on, in which case cytrgy exits with an error.

In order to add or change accounts and other registry data, you must edit the writable
registry with the tool appropriate to the registry's fonnat (Le., with edrgy on SRlO,
edacct and edppo on SR9.x) on a node running the same software release as the fonnat
of the writable registry. Thus, if your SR9.x registries were writable, you'd have to' edit
them using edacct and edppo, from a node running SR9.7. Once your SRlO registry is
the writable one, use edrgy.

The cvtrgy tool resides in the /install/tools/cvtrgy after an SRlO installation and must
be copied to an SR9.7 node before you run it. After running cytrgy, you must also run
the crpasswd command on an SR9.x node to update the /etc/passwd and /etc/group
files. The SRIO directory /install/tools contains a new version of crpasswd which you

Commands 1-143

CVTRGY(l) Domain/OS SysV CVTRGY(l)

should copy to all SR9.7 nodes that need to run crpasswd. (You can rename or replace
the old version of crpasswd.) See the SRlO Transition Guide for further details on run­
ning cvtrgy.

OPTIONS
-from9tolO Convert SR9.x registry files to SRIO registry format

-fromlOt09 Convert SRIO registry data to SR9.7 format and place in SR9.7
registry files

-from source Jgy Specify source for registry data to be converted. For
-from9tolO, must be in the form
//node_name/registry/rgLsite. For -fromlOt09, must be
//node_name. Either or both registry sites may be remote from
the node running cvtrgy.

-to dest Jgy Specify destination for converted registry data. For -from9to lo,
must be in the form //node name/registry/rgy site. For
-fromlOt09, must be //node_name. Either or both r~gistry sites
may be remote from the node running cvtrgy.

-owner pgo Specify SRlO registry owner, in the SID form p.g.o, where all
pgo names and the pgo account already exist in the SR9.7 regis­
try. pgo is a string of the form pers.group.org. You must specify
with every invocation of -from9tolO. This option is meaningful
only with the -from9tolO option.

-first Specify that this is the first invocation of cvtrgy. In this case
only, cvtrgy runs without rgyd and IIbd servers running. Use
only once. Only meaningful with -from9tolO.

-readonly Make SR9.7 registries read-only, permanently. Only meaningful
with -from9tolO. Can only be run in this mode once; after run­
ning, cannot use -from9tolO again.

-nq No query. Silent mode. Don't query before assigning new
UNIX identifiers (cvtrgy quits). Don't query for owner (cvtrgy
quits).

-favor_etc If you've edited UNIX IDs (numbers) in the SR9.7 /etc/passwd
or /etc/group after you've already run cvtrgy at least once, you
should propagate the new numbers to the SRlO registry. Run­
ning cvtrgy with this option, in the -from9tolO direction, pro­
pagates the new UNIX IDs to the SRIO registry. After running
cvtrgy with this option, you must also run /etc/syncids on all
SRIO disks. Only meaningful with -from9tolO.

CONVERTING FROM SR9.7 TO SRlO

1-144

You must be root to run cvtrgy. Use the following command line. The node namel is
the SR9.7 node.

Commands

CVfRGY(l) Domain/OS SysV

$ evtrgy -from9tolO -from Iinode_ namellregistry/rgy _site
-to IInode _ name2 -owner pgo -first

CONVERTING FROM SRlO TO SR9.7

CVTRGY(l)

The person who runs the tool must be logged in as root or locksmith. Use the following
command line. The node namel is the SRlO node.

$ evtrgy -fromlOt09 -from IInode _ namel -to IInode _ name2/registry/rgLsite

EXAMPLE
The following is a sample transcript from a cvtrgy session that converts SR9.x registry
data files to an SRIO format registry database. This is the first time cvtrgy has been run
on the network. A single collision is shown to illustrate ntrgy's warning message for­
mat; you may see more wamings at your site.

$ evtrgy -from9tolO -from IIdog/registry/rgLsitel -to lIeat -first -owner %.sys _ admin. %

Phase 1 - opening registry files:

Phase 2 - modifying SR9 registry files:

Converted person file saved in registry
//dog/registry/rgy_sitel

Converted project file saved in registry
//dog/registry/rgy_sitel

Converted org file saved in registry
//dog/registry/rgy_sitel

Phase 3 - converting person file:

?(cvtrgy) Warning - unix id collision:
person bin_sr9 reassigned from 3 to 10002
Converted person file saved in registry
//dog/registry/rgy_sitel

Commands 1-145

CVTRGY(1) Domain/OS SysV

Phase 4 - converting project file:

?(cvtrgy) Warning - unix id collision:
project backup reassigned from 1001 to 3
Converted project file saved in registry
//dog/registry/rgy_sitel

Phase 5 - converting org file:

Converted org file saved in registry
//dog/registry/rgy_sitel

Phase 6 - converting accounts:

Phase 7 - adding default accounts:

Converted account file saved in registry
//dog/registry/rgy_sitel

Phase 8 - closing the sr9 registry files:

Phase 9 - writing conversions to srlO registry:

Conversion completed successfully:

SEE ALSO
passwd(4), group(4)

1-146

CVTRGY(l)

Commands

CXREF(l) SysV CXREF(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
cxref analyzes a collection of C files and attempts to build a cross-reference table.
cxref uses a special version of cpp to include #define'd information in its symbol table.
It produces a listing on standard output of all symbols (auto, static, and global) in each
file separately, or, with the -c option, in combination. Each symbol contains an asterisk
(*) before the declaring reference.

In addition to the -D, -I and -U options [which are interpreted just as they are by cc(l)
and cpp(l)], the following options are interpreted by cxref.

OPTIONS

FILES

-c

-w<num>

-0 fIle

-s

-t

LLlBDIR

Prints a combined cross-reference of all input files.

Formats output no wider than <num> (decimal) columns. Defaults to 80
if <num> is not specified or is less than 51.

Directs output to file.

Operate silently; do not print input file names.

Lists format for 80-column width.

usually /usr/lib

LLlBDlRjxcpp special version of the C preprocessor.

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot compile these
files.

cxref considers a formal argument in a #define macro definition to be a declaration of
that symbol. For example, a program that #includes ctype.h, contains many declara­
tions of the variable c.

SEE ALSO
cc(l), cpp(l).

Commands 1-147

DATE(l) SysV DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]]1 +/ormat]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the
day number in the month; hh is the hour number (24 hour system); the second mm is
the minute number; yy is the last 2 digits of the year number and is optional. For exam­
ple:

date

10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is men­
tioned. The system operates in GMT. date takes care of the conversion to and from
local standard and daylight time. Only the superuser can change the date.

If an argument begins with +, the output of date is under the control of the user. All
output fields are of fixed size (zero padded if necessary). Each field descriptor is pre­
ceded by % and is replaced in the output by its corresponding value. A single % is
encoded by % %. All other characters are copied to the output without change. The
string is always terminated with a new-line character.

Field Descriptors:
n Insert a new-line character
t Insert a tab character
m Month of year - 01 to 12
d Dayofmonth-Ol t031
y Last 2 digits of year - 00 to 99
D Date as mm/dd/yy
H Hour - 00 to 23
M Minute - 00 to 59
S Second - 00 to 59
T Time as HH:MM:SS

Day of year - 00 I to 366
w Day of week - Sunday = 0
a Abbreviated weekday - Sun to Sat
h Abbreviated month - Jan to Dec
r Time in AM/PM Notation

1-148 Commands

DATE(1) SysV

EXAMPLE
The following input:

date '+DATE: %m/%d/%y%nTlME: %H:%M:%S'

would have generated as output:

DIAGNOSTICS

DATE: 08/01/76
TIME: 14:45:05

no permission You are not the super-user and you try to change the date.
bad conversion

The date set is syntactically incorrect.
bad format character

The field descriptor is not recognizable.

Commands

DATE(I)

1-149

DBACL(l) Domain/OS SysV DBACL(l)

NAME
dbacl- Oomain/Dialog™-based access control list editor

SYNOPSIS
dbacl [file]

DESCRIPTION
dbacl provides an interactive menu-based editor for manipulating Access Control Lists
(ACLs). It is primarily designed with novice or occasional ACL users in mind.
chacl(I), cpacl(I), and Isacl(l) are better suited to complicated actions on large
numbers of ACLs.

To use dbacl, press the left mouse key (or the Fl key) to select items on the screen such
as buttons or ACL entries. The bar at the top of the screen contains a "Quit" button, and
names of menus. By pressing the mouse key over one of the menu names, yuu are
presented with a pop-up menu with commands. Pull down and release the key over the
name of a command to select it.

If a command appears in grayed-out text, it is not currently selectable. For example,
before selecting "Cut" from the "Entry" menu, you must select an entry to cut, by click­
ing on it with the mouse.

You can use the right mouse key (or the F3 key) as a short cut for selecting an entry and
choosing the "Change Entry" command.

If a button has a double outline, you can select it by pressing the RETURN key any­
where in its window. Likewise, the ESC key nearly always cancels the current com­
mand.

SEE ALSO
chacl(I), cpacl(I),lsacl(I), acl(5), salacl(1M)

1-150 Commands

DBX(l) SysV DBX(l)

NAME
dbx - debugger

SYNOPSIS
dbx [-r] [-i] [-I dir] [-no_sre] [-noJrame] [-e file] [objfile]

DESCRIPTION
dbx is a tool for source level debugging and execution of programs under SysV. The
objfile is an object file produced by a compiler with the appropriate flag (usually -g)
specified to produce symbol information in the object file. The machine level facilities
of dbx can be used on any program.

The object file contains a symbol table that includes the name of the all the source files
translated by the compiler to create it. These files are available for perusal while using
the debugger.

If the file .dbxinit exists in the current directory then the debugger commands in it are
executed. ,B dbx also checks for a .dbxinit in your home directory if there isn't one in
the current directory.

dbx creates a separate transcript pad for debugger interactions unless the -no_frame
option is specified. dbx also creates a window to display source code unless -no_sre is
specified.

OPTIONS
-r Executes objfile irrunediately. If it terminates successfully dbx exits.

Otherwise the reason for termination will be reported and the user
offered the option of entering the debugger or letting the program fault.
dbx reads from Idevltty when -r is specified and standard input is not a
terminal. Unless -r is specified, dbx just prompts and waits for a com­
mand.

-i Forces dbx to act as though standard input is a terminal.

-I dir Adds dir to the list of directories that are searched when looking for a
source file. Normally dbx looks for source files in the current directory
and in the directory where objfile is located. The directory search path
can also be set with the use command.

-efite Executes the dbx commands in the file before reading from standard
input.

-no src Disables source display.

-no frame Does not create a separate debugger transcript pad.

Execution and Tracing Commands

run [args] [<filename] [> filename]
rerun [args] [<filename] [> filename]

Start executing objfile, passing args as command line arguments; < or> can be

Commands 1-151

DBX(l)

1-152

SysV DBX(l)

used to redirect input or output in the usual manner. When rerun is used
without any arguments the previous argument list is passed to the program;
otherwise it is identical to run. If objfile has been written since the last time
the symbolic information was read in, dbx will read in the new information.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A number is
associated with the command that is used to tum the tracing off (see the delete
command).

The first argument describes what is to be traced. If it is a source-line-number,
then the line is printed immediately prior to being executed. Source line
numbers in a file other than the current one must be preceded by the name of
the file in quotes and a colon, e.g. "mumble.p": 17.

If the argument is a procedure or function name then every time it is called,
information is printed telling what routine called it, from what source line it
was called, and what parameters were passed to it. In addition, its return is
noted, and if it's a function then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expres­
sion is printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed
whenever it changes. Execution is substantially slower during this form of
tracing.

If no argument is specified then all source lines are printed before they are exe­
cuted. Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be printed
only while executing inside the given procedure or function.

Condition is a boolean expression and is evaluated prior to printing the tracing
information; if it is false then the information is not printed.

Commands

DBX(l) SysV

stop if condition
stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

DBX(l)

Stop execution when the given line is reached, procedure or function called,
variable changed, or condition true.

status [> filename]
Print out the currently active trace and stop commands.

delete command-number ...
The traces or stops corresponding to the given numbers are removed. The
numbers associated with traces and stops are printed by the status command.

catch number
catch signal-name
ignore number
ignore signal-name

Start or stop trapping a signal before it is sent to the program. This is useful
when a program being debugged handles signals such as interrupts. A signal
may be specified by number or by a name (e.g., SIGINT). Signal names are
case insensitive and the "SIG" prefix is optional. By default all signals are
trapped except SIGCONT, SIGCHlLD, SIGALRM and SIGKILL.

cont integer
cont signal-name

Continue execution from where it stopped. If a signal is specified, the process
continues as though it received the signal. Otherwise, the process is continued
as though it had not been stopped. Execution cannot be continued if the pro­
cess has "finished", that is, called the standard procedure "exit".

step Execute one source line.

next Execute up to the next source line. The difference between this and step is
that if the line contains a call to a procedure or function the step command will
stop at the beginning of that block, while the next command will not.

return [procedure]
Continue until a return to procedure is executed, or until the current procedure
returns if none is specified.

call procedure(parameters)
Execute the object code associated with the named procedure or function.

Commands 1-153

DBX(l)

1-154

SysV DBX(l)

Printing Variables and Expressions

Names are resolved first using the static scope of the current function, then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message
''[using qualified name]" is printed. The name resolution procedure may be overridden
by qualifying an identifier with a block name, e.g., "module.variable". For C, source
files are treated as modules named by the file name without" .c".

Expressions are specified with an approximately common subset of C and Pascal (or
equivalently Modula-2) syntax. Indirection can be denoted using either a prefix "*" or a
postfix "." and array expressions are subscripted by brackets (" [n. The field reference
operator (".") can be used with pointers as well as records, making the C operator "->"
unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by
using "type-name(expression)". When there is no corresponding named type the special
constructs "&type-name" and "$$tag-name" can be used to represent a pointer to a
named type or C structure tag.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [> filename]
Print the names and values of variables in the given procedure, or the current
one if none is specified. If the procedure given is ".", then the all active vari­
ables are dumped.

print expression [, expression ...]
Print out the values of the expressions.

whatis name
Print the declaration of the given name, which may be qualified with block
names as above.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the
identifier is associated with.

up [count]
down [count]

Move the current function, which is used for resolving names, up or down the
stack count levels. The default count is 1.

where Print out a list of the active procedures and function.

whereis identifier
Print the full qualification of all the symbols whose name matches the given
identifier. The order in which the symbols are printed is not meaningful.

Commands

DBX(l)

Accessing Source Files

/regular expression[/]
?regular expression[?]

SysV DBX(l)

Search forward or backward in the current source file for the given pattern.

edit !filename]
edit procedure/function-name

Invoke an editor on filename or the current source file if none is specified. If a
procedure or function name is specified, the editor is invoked on the file that
contains it. Which editor is invoked by default depends on the installation.
The default can be overridden by setting the environment variable EDITOR to
the name of the desired editor.

file !filename]
Change the current source file name to filename. If none is specified then the
current source file name is printed.

func [procedure/function]
Change the current function. If none is specified then print the current func­
tion. Changing the current function implicitly changes the current source file
to the one that contains the function; it also changes the current scope used for
name resolution.

list [source-line-number [, source-line-number]]
list procedure/function

List the lines in the current source file from the first line number to the second
inclusive. If no lines are specified, the next 10 lines are listed. If the name of
a procedure or function is given lines n-k to n+k are listed where n is the first
statement in the procedure or function and k is small.

use directory-list
Set the list of directories to be searched when looking for source files. The
directory-list is used if the specified file cannot be found, or if the file is found
but the modified time does not match the time in the object module. If a file is
found using directory-list, or if the file's modified time is different then the
source display banner will display the filename being displayed as well as the
stored filename in parentheses.

Commands 1-15:

DBX(l)

1-156

Command Aliases and Variables

alias name name
alias name "string"
alias name (parameters) "string"

SysV DBX(l)

When commands are processed, dbx first checks to see if the word is an alias
for either a command or a string. If it is an alias, then dbx treats the input as
though the cOiTesponding string (with values substituted for any parameters)
had been entered. For example, to define an alias "rr" for the command
"rerun", one can say

alias rr rerun

To define an alias called "b" that sets a stop at a particular line one can say

alias b(x) "stop at x"

Subsequently, the command "b(12)" will expand to "stop at 12".

set name [= expression]
The set command defines values for debugger variables. The names of these
variables cannot conflict with names in the program being debugged, and are
expanded to the corresponding expression within other commands. The fol­
lowing variables have a special meaning:

$hexchars
$hexints
$hexoffsets
$hexstrings

When set, dbx prints out out characters, integers, offsets from registers, or
character pointers respectively in hexadecimal.

$listwindow
The value of this variable specifies the number of lines to list around a function
or when the list command is given without any parameters. This value is also
used when displaying source in the source window. The current line is posi­
tioned so that as much of the listwindow as possible is visible. Its default
value is 10.

$unsafecall
$unsafeassign

When "$unsafecall" is set, strict type checking is turned off for arguments to
subroutine or function calls (e.g. in the call statement). When "$unsafeassign"
is set, strict type checking between the two sides of an assign statement is

Commands

DBX(l) SysV DBX(l)

turned off. These variables should be used only with great care, because they
severely limit dbx's usefulness for detecting errors.

unalias name
Remove the alias with the given name.

unset name
Delete the debugger variable associated with name.

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if coM]
stopi [if cond]
stop at address [if cond]

Tum on tracing or set a stop using a machine instruction address.

stepi

nedi Single step as in step or next, but do a single instruction rather than source
line.

address ,address/ [mode]
address / [count] [mode]

Print the contents of memory starting at the first address and continuing up to
the second address or until count items are printed. If the address is ".", the
address following the one printed most recently is used. The mode specifies
how memory is to be printed; if it is omitted the previous mode specified is
used. The initial mode is "X". The following modes are supported:

i Print the machine instruction
d Print a short word in decimal
D Print a long word in decimal
o Print a short word in octal
o Print a long word in octal
x Print a short word in hexadecimal
X Print a long word in hexadecimal
b Print a byte in octal
c Print a byte as a character
s Print a string of characters terminated by a null byte
f Print a single precision real number
g Print a double precision real number

Symbolic addresses are specified by preceding the name with an "&". Registers are
denoted by $00-$07, for the data registers, and $AO-$A 7, for the address registers. FOI

convenience, $OB, $SB, $SP, and $PC are also available. Addresses may be

Commands 1-157

DBX(l)

NOTES

FILES

SysV DBX(l)

expressions made up of other addresses and the operators "+", "-", and indirection
(unary "*").

Miscellaneous Commands

help Print out a synopsis of dbx commands.

quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL environment
variable determines which shell is used.

source filename
Read dbx commands from the given filename.

Assignments to structures with bit fields does not work, and assigning through a pointer
variable may cause dbx to have a stack underflow and abort.

Some problems remain with the support for individual languages. Fortran problems
include: inability to assign to logical, logical *2, complex and double complex vari­
ables; inability to represent parameter constants which are not type integer or real;
peculiar representation for the values of dummy procedures (the value shown for a
dummy procedure is actually the first few bytes of the procedure text; to find the loca­
tion of the procedure, use "&" to take the address of the variable).

a.out
.dbxinit

Object file
Initial commands

SEE ALSO
cc(l)

1-158 Commands

DC(l) SysV DC(l)

NAME
de - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
de is an arbitrary precision aritlunetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. (See bc(1), a preprocessor for de that provides infix notation
and a C-like syntax that implements functions. be also provides reasonable control
structures for programs.) The overall structure of de is a stacking (reverse Polish) cal­
culator. If an argument is given, input is taken from that file until its end, then from the
standard input.

OPTIONS
number The value of the number is pushed on the stack. A number is an unbro­

ken string of the digits 0-9. It may be preceded by an underscore C) to
input a negative number. Numbers may contain decimal points.

+ -/ * %' The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated C). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped by
two.

Q

x

x

Commands

Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

Treats the top element of the stack as a character string and executes it as
a string of de commands.

Replaces the number on the top of the stack with its scale factor.

1-159

DC(I) SysV DC(I)

[.•.] Puts the bracketed ASCll string onto the top of the stack.

<X >x =x The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v

e

o

o
k

z

z
?

, .

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

are used by be(l) for array operations.

EXAMPLE
This example prints the first ten values of n!:

[lal +dsa*plalO>y]sy
Osal
lyx

DIAGNOSTICS
x is unimplemented

x is an octal number.

stack empty
Not enough elements on the stack to do what was asked.

auto/space
The free list is exhausted (too many digits).

Out 0/ headers
Too many numbers being kept around.

1-160 Commands

nC(l) SysV

Out of pushdown
Too many items on the stack.

Nesting Depth

SEE ALSO
bc(l).

Commands

Too many levels of nested execution.

DC(l)

1-161

00(1) SysV 00(1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output with possible conversions. By
default, it uses the standard input and output. You may specify the input and output
block size. After completion, dd reports the number of whole and partial input and out­
put blocks.

OPTIONSNALUE PAIRS

1-162

ibs=n

obs::n

bs::n

cbs::n

skip::n

seek::n

count::n

conv=ascii
ebcdic
ibm
lease
ucase
swab
noerror

Inputs block size n bytes; 512 is the default.

Outputs block size; 512 is the default.

Sets both input and output block size, superseding ibs and obs.

Conversion buffer size; used only if conv=ascii or conv=ebcdic is
specified. In the former case, cbs characters are placed into the conver­
sion buffer, converted to ASCII, and trimmed of any trailing blanks.
Newlines are then added before sending the line to the output. In the
latter case, ASCII characters are read into the conversion buffer, con­
verted to EBCDIC, and blanks are added to make up an output block of
size cbs.

Skips n input blocks before starting copy.

Seeks n blocks from the beginning of the output file before copying.

Copies only n input blocks.

Converts EBCDIC to ASCII.
Converts ASCII to EBCDIC.
Maps ASCII to EBCDIC in a slightly different way than the above case.
Maps alphabetics to lowercase.
Maps alphabetics to uppercase.
Swaps every pair of bytes.

Does not stop processing on an error.
sync Pads every input block to ibs.

Represents several comma-separated conversions.

Where sizes are specified, a number of bytes is expected. A number may end with k, b,
or w to specify multiplication by 1024,512, or 2, respectively; a pair of numbers may
be separated by x to indicate a product.

The ASCIIIEBCDIC conversion tables are taken from the 256-character standard of the
CACM (November, 1968). The ibm conversion, while less accepted as a standard,
corresponds better to certain IBM print train conventions.

Commands

DD(l) SysV DD(l)

EXAMPLE
To read an EBCDIC tape blocked with ten 80-byte EBCDIC card images per block into
the ASCII file x, use the following:

dd if=/dev/rmtO of=x ibs=800 cbs=80

BUGS
SysV does not support some raw I/O devices typically used with dd.

Newlines are inserted only on conversion to ASCII. Padding is done only on conver­
sion to EBCDIC. These should be separate options.

DIAGNOSTICS
f+p blocks in(out)

SEE ALSO
cp (1).

Commands

Numbers of full and partial blocks read(written).

1-163

DDE(l) Domain/OS SysY DDE(l)

NAME
dde - Domain Distributed Debugging Envirorunent

SYNOPSIS
dde [-do "cmd_list'1

[[-on target_machine] [-target_type target_type]
{ [-input pathname] [-output pathname [-ao]]

[-errors pathname [-ae]] program_invocation
I -attach process _id }]

DESCRIPTION
The dde command invokes the Domain Distributed Debugging Envirorunent, the stan­
dard debugger for the Domain/OS operating system at SRlO. For complete information
about this debugger and its commands, consult the Domain Distributed Debugging
Environment Reference (011024) or invoke the debugger's own help command for
online assistance.

OPTIONS

1-164

-do "cmd list" Execute cmd _list (a list of debugger commands) before executing
any startup files or debugging the program. The sample option
specification -do "property layout -notarget" illustrates a common
use of this option (to inhibit the creation of a separate window for
the target program).

-on target_machine Debug the program or process on the specified target machine,
where target_machine is a node name or node rD.

-target_type target_type
Specify the type of target machine; target_type must be "m68k"
for SRI0.

-in put pathname Read target program input from pathname.

-output pathname [-ao]
Direct target program output to pathname. With -ao, append out­
put to pathname.

-errors pathname [-ae]
Direct target program error output to pathname. With -ae,
append error output to pathname. To redirect error output and
standard output to the same file, use the same pathname on both
options or use "&1" as an argument to the -errors option.

program_invocation Invoke program_invocation (the pathname of an executable
image, plus any arguments) for debugging. This specification
must be last on the dde command line.

Commands

DDE(l) Domain/OS SysV DDE(l)

-attach process _id Attach to a running process identified by the UNIX pid
process_id. Use the /bin/ps or /com/pst -un commands to get
the pid of a process.

Commands 1-165

DELTA(l) SysV DELTA(l)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-n] [-gUst] [-m[mrlistll [-y[commentll [-p] files

DESCRIPTION
delta pennanently introduces into the named sees file changes that were made to the
file retrieved by get(l) (called the g-file, or generated file).

delta makes a delta to each named sees file. If a directory is named, delta behaves as
though each file in the directory were specified as a named file, except that non-sees
files (last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read (see WARNINGS);
each line of the standard input is taken to be the name of an sees file to be processed.

delta can issue prompts on the standard output depending on certain options and flags
[see admin(l)] that may be present in the sees file (see -m and -y options below).

OPTIONS

1-166

Option arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the sees file. It is only
necessary to use this option if two or more outstanding gets for editing
(get -e) on the same sees file were done by the same person (login
name). The SID value specified with the -r option can be either the SID
specified on the get command line or the SID to be made as reported by
the get command [see get(l)]. A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the created delta's SID,
as well as the number of lines inserted, deleted and unchanged in the
sees file.

-n Specifies retention of the edited g-file (nonnally removed at completion
of delta processing).

-glist Creates a list (see get(1) for the definition of list) of deltas which are to
be ignored when the file is accessed at the change level (SID).

-m[mrlistJ If the sees file has the v flag set [see admin(l)] then a Modification
Request (MR) number must be supplied as the reason for creating the
new delta.

If -m is not used and the standard input is a tenninal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a tenninal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unes­
caped new-line character tenninates the MR list.

Commands

DELTA(l) SysV DELTA(l)

BUGS

FILES

Note that if the v flag has a value [see admin(1)], it is taken to be the
name of a program (or shell procedure) which will validate the correct­
ness of the MR numbers. If a non-zero exit status i~ returned from the
MR number validation program, delta terminates. (It is assumed that the
MR numbers were not all valid.)

-y[commentJ Arbitrary text used to describe the reason for making the delta. A null
string is considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the sees file differences
before and after the delta is applied in a diff(l} format.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
sees file unless the SOH is escaped. This character has special meaning to sees [see
sccsfile(4) (5)] and will cause an error.

Avoid using a get of many sees files, followed by a delta of those files, when the get
generates a large amount of data. Instead, use multiple get/delta sequences.

If the standard input (-) is specified on the delta command line, -m (if necessary) and
-y must also be present. Omission of these options causes an error.

Comments are limited to text strings of at most 512 characters.

g-file

p-file

q-fiIe

x-file

z-file

Existed before the execution of delta; removed after completion of
delta.
Existed before the execution of delta; may exist after completion of
delta.
Created during the execution of delta; removed after completion of
delta.
Created during the execution of delta; renamed to sees file after com­
pletion of delta.
Created during the execution of delta; removed during execution of
delta.

d-file Created during the execution of delta; removed after completion of
delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and the
g-file.

DIAGNOSTICS
Use help(1) for explanations.

Commands 1-167

DELTA(l) SysV

SEE ALSO

1-168

admin(1), cdc(1), get(1), prs(1), nndel(1), sccs(l), sccsfile(4).
bdiff(1), he1p(1) in Using Your SysV Environment.

DELTA(l)

Commands

DIFF(l) SysV DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-etbh 1 file1 file2

DESCRIPTION
diff tells what lines must be changed in two files to bring them into agreement. If file1
(jile2) is -. the standard input is used. If file1 (jile2) is a directory. then a file in that
directory with the name file2 (jile1) is used. The normal output contains lines of these
forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands used to convert file 1 into file2. The numbers after
the letters pertain to file2. In fact. by using a instead of d and reading backward. you
can see how to convertfile2 into file1. As in ed. identical pairs. where nl = n2 or n3 =
n4. are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged
by <. then all the lines that are affected in the second file flagged by>.

OPTIONS

BUGS

-b Causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

-e Produces a script of a, c. and d commands for the editor ed. which recreates
file2 fromfile1 .

-f Produces a similar script. not useful with ed. in the opposite order. In connec­
tion with -e. the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($1) and a chain of version-to-version ed
scripts ($2.$3) made by A "latest version" appears on the standard output.

(shift; cat $*; echo 'l.$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differ­
ences.

-h Does a fast. half-hearted job. It works only when changed stretches are short
and well separated. but does work on files of unlimited length. Options -e and
-f are unavailable with -h.

Editing scripts produced under the -e or -f option are naive about creating lines con­
sisting of a single period (.).

Commands 1-169

DIFF(l) SysV DIFF(l)

WARNINGS

FILES

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are different,
they will be flagged and output; although the output will seem to indicate they are the
same.

Itmp/d?????
lusr/Iib/diffb for-h

DIAGNOSTICS
Exit status is 0 for no differences, I for some differences, 2 for trouble.

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l).

1-170 Commands

DIFF3(1) SysV DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3] file1 file2 file 3

DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged
with these codes:

===1

===2

===3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some other is
indicated in one of these ways:

I: nl a Text is to be appended after line number nl in file I, where
1=1,2,or3.

l:nl,n2c Text is to be changed in the range line nl to line n2. If nl
= n2, the range may be abbreviated to nl .

The original contents of the range follows inunediately after a c indication. When the
contents of two files are identical, the contents of the lower-numbered file is suppressed.

OPTIONS
--e Publishes a script for the editor ed that incorporates into filel all changes

between file2 and file3. That is, the changes that normally would be
flagged == and ===3.

-x(-3) Produces a script to incorporate only changes flagged == (==3).
The following command applies the resulting script to file 1 .

FILES

BUGS

(cat script; echo 'I,$p') I ed - filel

Itmp/d3*
lusr/lib/diff3prog

Text lines that consist of a single. will defeat --e.
Files longer than 64K bytes will not work.

SEE ALSO
diff(l).

Commands 1-171

DIRCMP(l) SysV DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d 1 [-s 1 [-wn 1 dirl dir2

DESCRIPTION
dircmp examines dirl and dir2 and generates various tabulated information about the
contents of the directories. It generates lists of files that are unique to each directory for
all the options. If no option is entered, a list is output indicating whether the file names
common to both directories have the Same contents.

OPTIONS
-d

-s

-wn

SEE ALSO

Compares the contents of files with the same name in both directories
and outputs a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(l).

Suppresses messages about identical files.

Changes the width of the output line to n characters. The default width
is 72.

cmp(l), diff(l).

1-172 Commands

DIRNAME(l) SysV

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION

DIRNAME(l)

basename deletes any prefix ending in I and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution
marks (' ') within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument lusrlsrclcmd/cat.c, compiles the
named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example sets the shell variable NAME to lusrlsrclcmd:

SEE ALSO
sh(I).

Commands

NAME='dirname lusrlsrc/cmdlcat.c'

1-173

DISABLE(I) SysV DISABLB(I)

NAME
eliable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c) [-r[reason)) printers

DESCRIPTION
enable activates the named printers, enabling them to print requests taken by Ip(i).
Use Ipstat(l) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests taken by
Ip(I). By default, any requests that are currently printing on the designated printers are
reprinted in their entirety either on the same printer or on another member of the same
class. Use Ipstat(l) to find the status of printers.

OPTIONS FOR DISABLE ONLY

FILES

-c Cancels any requests that are currently printing on any of the designated
printers.

-r[reason] Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next -r option. If the -r
option is not present or the -r option is given without a reason, a default
reason is used. Reason is reported by Ipstat(l).

/usr/spool/lp/*

SEE ALSO
Ip(l),lpstat(I).

1-174 Commands

DLTY(l)

NAME
dlty - delete a type

SYNOPSIS
dlty [options] type_name

DESCRlPTION

Domain/OS SysV

dlty deletes a type and any installed type manager.

type_name (required) Specify the name of the type to be deleted.

OPTIONS

DLTY(l)

Specify the node on which the type is to be deleted. You may
also specify the entry directory of a volume mounted for software
updates, as shown in the example below. If you omit the -n
node-spec the type is deleted on the current node.

-I

EXAMPLES
$ dlty example_type -I

List the type nameltype identifier pair that is deleted.

"example_type" 24BF9F4l.l00001FB deleted.

$ dlty example _type -n Iltest _vol -I
"example_type" 24BFA6F8.200001FB
deleted from volume Iitest_vol.

In the following example, the disk has been mounted for software updates. The disk's
top level directory (cataloged as Imount_disk by the letc/mount(IM) command) must
contain a "sys" directory. If it does not, you get a "types file not found" error.

$ mtvol w Imount_disk
$ dlty example_type -n Imount_disk-I
"example_type" 24BFB71E.200001FB deleted

from volume //my_node/mount_disk.

SEE ALSO
crty(l), inty(l), lty(l), mount(lM)

Commands 1-175

DM(l) Domain/OS SysV DM(l)

NAME
DM conunands - Display Manager conunands

DESCRIPTION
Following is a list of DM conunands sorted by function.

CURSOR CONTROL COMMANDS:
al

ar

ad

au

Move cursor left I character position.

Move cursor right 1 character position.

Move cursor down I line.

Move cursor up one line.

as x y Set scale factors for arrow keys, in raster units.

curs [-onl-offJ

tI

tr

tt

Enable/disable cursor positioning via m.

Move cursor to the left edge of the pad.

Move cursor to the end of the line.

Move cursor to top edge of the window.

tb Move cursor to the last line in the window.

twb {-II-rl-tl-b I

th

thl

Move cursor to the specified window border.

Move cursor right to the next horizontal tab stop.

Move cursor left to the next horizontal tab stop.

ts nl n2 ... [-r] Set tab stops in columns nl, n2, etc., optionally repeating
the last interval.

tdm Move cursor to the Display Manager's input window.

t1w Move cursor to the previous window.

tn Move cursor to the next window on the display.

tni Move cursor to next unobscured icon on the display.

ti Move cursor to the next window in which input is enabled.

PROCESS CREATION COMMANDS:

1-176

cp [-il-c char] pathname [-n process_name] [args ... ll
Create a new process, input and transcript pads, and associated windows;
the process executes pathname; -i makes the window an icon; -c
specifies the icon character; -n names the process.

Conunands

DM(l) Domain/OS SysV DM(l)

cpo pathname [-n process_name [args ...]]
Create a process and execute pathname; do not create pads or windows.

cps pathname [-n process_name [args ...]]
Like cpo, except assign the process the SID 'user.server.none'.

PROCESS CONTROL COMMANDS:
dq [-sl-bl-c nn]

Cause a quit fault, which normally terminates program execution; -s
also stops the process; -b blasts the process, -{: generates an arbitrary
asynchronous fault with the specified hex status code.

ds Suspend execution of the process.

de Continue execution of a suspended process.

WINDOWjPAD CREATION COMMANDS:
ce pathname Create an edit pad and associated window.

cv pathname Create a view, that is, a read only edit pad.

cc Create a copy of an existing window.

WINDOW CONTROL COMMANDS:
wg Grow or shrink a window.

wge Grow or shrink a window with feedback.

wm Move a window.

wme Move a window with feedback.

wp [window_namelgroup_name] [-tl-b]
Push (named) window (or window group) to bottom of pile if unob­
scured, else pop to top. -t and -b will force a window to the bottom or
to the top.

we [-f] [-q] [-a] [-s]
Close (delete) a window. Use -a to automatically close and delete a win­
dow after a "Z and -s to reverse auto-close mode.

wa [-on I-off] Toggle auto-hold mode.

ws [-on I-off] Toggle window-at-a-time scroll mode.

wh [-onl-off]
Toggle hold mode.

wdf [n] Set the n'th default window creation boundaries.

PAD CONTROL COMMANDS:
pb Move the bottom of the pad into window.

Commands 1-177

DM(l) Domain/OS SysV DM(l)

pt Move the top of the pad into window.

pp [-]n

pv [-]n

ph [-]n

Move the pad forward [backward] n pages (n may be decimal fraction).

Move the pad forward [backward] n lines (n may be decimal fraction).

Move the pad n character positions horizontally (n may be decimal frac­
tion).

pn pathname Save the pad under pathname (transcript pads only).

WINDOW GROUP AND ICON COMMANDS:
icon [entry_name] [-i] [-w] [-c 'char']

Make a window or group of windows into an icon(s).

wi [entry_name] [-i] [-w]
Make a window or group of windows invisible.

wgra group_name [entry_name]
Add a window to a group of windows.

wgrr group_name [entry_name]
Remove a window from a group of windows.

cpb group_name
Display a list of the windows in a group.

idf Set icon positioning vector.

PAD EDITING COMMANDS:
Set modes:

ro [-on I-oft] Change pad from write to read-only mode or vice versa.

ei [-onl-oft] Change from insert to overstrike mode or vice versa.

Insert text:
es 'string'

en

er nn

eef

Delete text:
ed

ee

Cut and Paste:

Insert' string' at the current cursor position.

Insert a new line character.

Send raw hexadecimal data byte nn to user program.

Insert a stream end-of-file indicator.

Delete the character at the cursor position.

Delete the character immediately preceding the cursor.

xc [-r] [-fpathname I name]
Copy text into a paste buffer or file.

xd [-r] [-f pathname I name]
Copy text into a paste buffer or file and delete text.

1-178 Commands

DM(l)

Search:

Domain/OS SysY DM(l)

xp [-r] [-f pathname I name]
Insert contents of paste buffer or file into pad.

xi [-f pathname]
Copy display image to graphics map file for above cut and paste com­
mands: use -r for a rectangular cut. use -f to specify a file name.

/regular exp/ Search forward in the pad for a string which matches the regular expres­
sion; for help on regular expressions, type help patterns.

\regular exp\ Search backward in the pad for a string which matches the regular
expression.

//or\\

sq

Repeat last search forward or backward.

Abort search.

sc [-onl-oft1 Enable/disable case sensitivity for searches.

Substitute:
s/re/replace/ Substitute the replacement text for all strings in the range which match

the regular expression .

so/re/replace/ Substitute the replacement text for the first string in each line in the
range which matches the regular expression.

Miscellaneous:
undo

pw

echo [-r]

abrt

case [-ul-ll-s]

Undo file changes in an input pad or an edit pad; successive undos will
undo further back in history.

Write edit pad to new file, but don't close pad or delete window.

If a grow/move is in progress, then end feedback. Else begin text
highlighting feedback if the cursor is on text.

Abort text or window feedback, abort a search, or clear mark stack.

Change the case of the letters in a marked text range.
-s Switch to inverse case (default)
-u Change to upper case
-I Change to lower case

KEY DEFINITION COMMANDS:
kd key [[def] ke]

kbdn

Commands

Set or display a DM key definition.

Declare keyboard type; n must be '3' if your node has a Domain Pro­
grammable Keyboard (with numeric keypad); n must be '2' if your node
has a Low Profile Keyboard; n must be ' , if your node has an 880 key­
board; this command is only valid during node boot.

1-179

DM(\)

& 'prompt'

Domain/OS SysV DM(\)

Write the optional prompt string in the input pad, then read a line of
input

DISPLAY MANAGEMENT COMMANDS:
Login/Logout:

I pers [group [org]]

10 H1
ex

shut [-f]

Place/Clear Marks:
dr

gm

ems

rm

Miscellaneous:

aa

Login (valid only when logged out); the '1' is optional when preceded by
the "login:" prompt.

Logout (valid only when logged in)

Exit DM to boot shell.

Shutdown the system

Place a mark (for window control or cut and paste).

Go to mark.

Clear mark stack.

Push last mark back on the stack.

Display line, column number, and x,y pixel values of current cursor posi­
tion.

Acknowledge DM alarm.

ap Acknowledge DM alarm and pop the associated window.

bl [-il-e] [I_char] [rJhar]
Check and/or balance delimiting characters.

env var [value]

bge [-on I-off]

Set or display an environment variable; setting an environment variable
is only valid during login startup.

Tum on or off the gray scale background color (monochrome monitor).

inv [-onl-off] Invert the screen to black on white, or vice-versa (monochrome moni­
tor).

mono [-ool-off]
Enable/disable monochrome mode (color monitor).

msg'string' Display a message in the DM output window.

1-180 Commands

DM(l) Domain/OS SysV DM(l)

rs Refresh the entire screen.

rw [-rJ Refresh current window; -r option reenables window.

fl pathname [-iJ
Load a font to be used in later pads; -i indicates an icon font.

cmdf pathname
Execute DM script.

Commands 1-181

DSPST(l) Domain/OS SysV DSPST(l)

NAME
dspst - display process status graphically

SYNOPSIS
dspst [-r n] [-p] [-Ll] [-os] [-m]

[-io] [-a] [-n node_spec]

[-large I-small]

DESCRIPTION
dspst displays process statistics in a graphical, bar-chart fashion within the current pro­
cess window. The chart is updated periodically (see -r below). The default action of
this command is to display the brief Domain/OS process list, all user processes and all
I/O information in a font size automatically selected based on window size.

While dspst is running, the following keys are interpreted as follows:

All Keyboards:

CRTL{f
CRTL/B
RETURN
CRTL/N
CRTL/Y
Boxed up arrow
Boxed down arrow
Shifted up arrow
Shifted down arrow
EXIT or ABORT
SAVE

Move to top
Move to bottom
Exit
Exit
Exit and save current image
Scroll backward 1/2 window
Scroll forward 1/2 window
Scroll backward 1 line
Scroll forward 1 line
Exit
Exit and save current image

OPTIONS
-rn Specify that the display should be repeatedly updated every n

seconds. If this option is omitted, the display is updated every 4
seconds.

-p

-11

-os (default)

-m
-io (default)

1-182

Show process infonnation.

Show Domain/OS and user-process infonnation.

Show brief Domain/OS and full user-process infonnation.

Show missing CPU time.

Show I/O statistics.

Show all information (same as -11 -io -m).

Specify remote node whose process statistics are to be listed.

Commands

DSPST(l)

-large (default)

-small

EXAMPLES

Domain/OS SysV

Force use of large font for display.

Force use of small font for display.

1. Display Domain/OS, user process, and I/O status.

$ dspst

DSPST(l)

2. Display Domain/OS, user process, and I/O status for the node named Ilfred using
the large font.

$ dspst -n Ilfred -large

Commands 1-183

DU(l) SysY DU(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION
du prints the number of blocks (1024 bytes per block) contained in all files and direc­
tories specified by the names argument. The block count includes the indirect blocks of
the file. A file with two or more links is only counted once. If the names argument is
missing, a period (.) is used.

OPTIONS

BUGS

1-184

-a

-r

-s

Generates an entry for each file.

Generates messages about such things as directories that cannot be read
and files that cannot be opened. du is normally silent about these things.

Prints only the grand total of blocks for each of the specified names.

Absence of the -a or -s options causes an entry to be generated for each directory only.

If the -a option is not used, nondirectories given as arguments are not listed.

If too many distinct linked files exist, du counts the excess files more than once.

Files with holes in them will get an incorrect block count.

Commands

DUMP(l) SysV

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [options 1 files

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

DUMP(l)

dump accepts both object files and archives of object files. It processes each file argu­
ment according to one or more of the following options.

OPTIONS
-a Dumps the archive header of each member of each archive file argument.

-c Dumps the string table.

-f Dumps each file header.

-g Dumps the global symbols in the symbol table of an archive.

-h Dumps section headers.

-I Dumps line number information.

-L Interprets and prints the contents of the .lib sections.

-0 Dumps each optional header.

-r Dumps relocation information.

-s Dumps section contents.

-t Dumps symbol table entries.

-z name
Dumps line number entries for the named function.

-Aa Dumps the longname table and module table of an archive.

-Ai Interprets and prints the contents of the .inlib section.

-Am Interprets and prints the .mir section records.

-Ar Interprets and prints the .rwdi section records.

-AR Interprets and prints the contents of the .rwdi section.

-As Interprest and prints the .sri section records.

-AS Interprets and prints section contents.

MODIFIERS
The following modifiers are used in conjunction with the options listed above to modify
their capabilities.

-d number Dumps the section number, number, or the range of sections starting at
number and ending at the number specified by +d.

Commands 1-185

DUMP(1) SysV DUMP(I)

+d number Dumps sections in the range either beginning with first section or begin­
ning with section specified by -d.

-0 name Dumps information pertaining only to the named entity. This modifier
applies to -h, -s, -r, -I, and-t.

-p Suppresses printing of the headers.

-t index Dumps only the indexed symbol table entry. The -t used in conjunction
with +t, specifies a range of symbol table entries.

+t index Dumps the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

-u Underlines the name of the file for emphasis.

-v Dumps information in symbolic representation rather than numeric (e.g.,
C_STATIC instead of OX02). This modifier can be used with all the above
options except -s and -0 options of dump.

-z name ,number
Dumps line number entry or range of line numbers starting at number for
the named function.

+z number Dumps line numbers starting at either function name or number specified
by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the -z option may be replaced by a blank.

dump attempts to format the information it dumps in a meaningful way, printing cer­
tain information in character, hex, octal or decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

1-186 Commands

ECHO(l) SysV ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
echo writes its arguments separated by blanks and tenninated by a new-line on the stan­
dard output. It also understands C-like escape conventions; beware of conflicts with the
shell's use of \;

\b Backspace
\c Print line without new-line
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\On Where n is the S-bit character whose ASCII code is the 1-, 2- or 3-

digit octal number representing that character.

echo is useful for producing diagnostics in command files and for sending known data
into a pipe.

CAVEATS
When representing an S-bit character by using the escape convention \On, the n must
always be preceded by the digit zero (0).

For example, typing; echo 'WARNING:\OT will print the phrase WARNING: and
sound the "bell" on your tenninal. The use of single (or double) quotes (or two
backslashes) is required to protect the "'" that precedes the "07".

For the octal equivalents of each character, see ascii(5), in the SysV Programmer's
Reference.

SEE ALSO
sh(l).

Commands I-IS'

ED(l) SysV ED(l)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [file]

red [-s] [-p string] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates an e command
(see below) on the named file; that is, the file is read into ed's buffer so that it can be
edited.

ed operates on a copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

red is a restricted version of ed. It only allows editing of files in the current directory.
It prohibits executing shell commands using the !shell command. Attempts to bypass
these restrictions result in an error message (restricted she/I).

Both ed and red support the fspec(4) formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in sUy -tabs or
stty tab3 mode (see stty(l», specified tab stops are automatically used when scanning
file. For example, if the first line of a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: while inputing text, tab characters when typed are expanded
to every eighth column as is the default.

OPTIONS

1-188

-s Suppresses the printing of character counts bye, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt after a
!shell command. Also, see the WARNING section at the end of this
manual page.

-p Allows you to specify a prompt string. Commands to ed have a simple
and regular structure: zero, one, or two addresses followed by a single­
character command, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer. Every com­
mand that requires addresses has default addresses, so that the addresses
can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode,

Commands

ED(l) SysV ED(l)

no commands are recognized; all input is merely collected. Input mode is left by typ­
ing a period (.) alone at the beginning of a line, followed immediately by a carriage
return.

ed supports a limited form of regular expression notation; regular expressions are used
in addresses to specify lines and in some commands (s, for example) to specify portions
of a line that are to be substituted. A regular expression (RE) specifies a set of character
strings. A member of this set of strings is said to be matched by the RE.

REGULAR EXPRESSIONS
The following one-character REs match a single character:

• An ordinary character (not one of those discussed below) is a one-character RE that
matches itself.

• A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

" *, [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets.

~ (caret or circumflex), which is special at the beginning of an entire RE, or
immediately follows the left of a pair of square brackets.

$ (dollar sign), which is special at the end of an entire RE.

The character used to bound (i.e., delimit) an entire RE, which is special for that
RE (for example, see how slash (I) is used in the g command, below.)

• A period (.) is a one-character RE that matches any character except new-line.

• A non-empty string of characters enclosed in square brackets ([]) is a one-character
RE that matches anyone character in that string. If, however, the first character of
the string is a circumflex (~), the one-character RE matches any character except
new-line and the remaining characters in the string. The ~ has this special meaning
only if it occurs first in the string. The minus (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to [0123456789].
The - loses this special meaning if it occurs first (after an initial ~, if any) or last in
the string. The right square bracket (]) does not terminate such a string when it is
the first character within it (after an initial ~, if any); e.g., []a-f] matches either a
right square bracket (1) or one of the letters a through f inclusive. The four charac­
ters listed in 1. 2.a above stand for themselves within such a string of characters.

The following rules may be used to construct RE s from one-character REs:

• A one-character RE is a RE that matches whatever the one-character RE matches.

• A one-character RE followed by an asterisk (*) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftrnosl
string that permits a match is chosen.

Commands l-18~

EO(l)

1-190

SysV EO(1)

• A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a
range of occurrences of the one-character RE. The values of m and n must be non­
negative integers less than 256; \{ m \} matches exactly m occurrences; \{ m, \}
matches at least m occurrences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

• The concatenation of REs is a RE that matches the concatenation of the strings
matched by each component of the RE.

• A RE enclosed between the character sequences \(and \) is a RE that matches what­
ever the unadorned RE matches.

• The expression \n matches the same string of characters as was matched by an
expression enclosed between \(and \) the sub-expression specified is that beginning
with the n-th occurrence of \(counting from the left. For example, the expression
~\(.*\)\1$ matches a line consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final seg­
ment of a line (or both).

• A circumflex (~) at the beginning of an entire RE constrains that RE to match an ini­
tial segment of a line.

• A dollar sign ($) at the end of an entire RE constrains that RE to match afinal seg-
ment of a line.

The construction ~entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last para­
graph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com­
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

The character. addresses the current line.

The character $ addresses the last line of the buffer.

A decimal number n addresses the n -th line of the buffer.

'x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the k command described below.

A RE enclosed by slashes (I) addresses the first line found by searching fO/ward
from the line following the current line toward the end of the buffer and stopping
at the first line containing a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched. See also the last paragraph
before FILES below.

Commands

ED(1) SysV ED(!)

A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If neces­
sary, the search wraps around to the end of the buffer and continues up to and
including the current line. See also the last paragraph before FILES below.

An address followed by a plus sign (+) or a minus sign (-) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of
lines. The plus sign may be omitted.

If an address begins with + or -, the addition or subtraction is taken with respect
to the current line; e.g, -5 is understood to mean .-5.

If an address ends with + or -, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and the rule immediately above, the
address - refers to the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character ~ in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a cumulative effect,
so - refers to the current line less 2.

For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
(;) stands for the pair. ,$.

COMMANDS
Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first
address, and only then is the second address calculated. This feature can be used to
determine the starting line for forward and backward searches. The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses.
The parentheses are not part of the address; they show that the given addresses are the
default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e,f, r, or w) may be suffixed by I, n, or p in which case the current
line is either listed, numbered or printed, respectively, as discussed below under the I,
n, and p commands.

(.)a
<text>

Commands 1-191

ED(J)

1-192

(.)c

<text>

(. ,.)d

efile

Efile

f file

SysV ED(J)

The append command reads the given text and appends it after the addressed
line; . is left at the last inserted line, or, if there were none, at the addressed
line. Address 0 is legal for this command: it causes the "appended" text to be
placed at the beginning of the buffer. The maximum number of characters that
may be entered from a terminal is 256 per line (including the new-line charac­
ter).

The change command deletes the addressed lines, then accepts input text that
replaces these lines; . is left at the last line input, or, if there were none, at the
first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were ori­
ginally at the end of the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and
then the named file to be read in; . is set to the last line of the buffer. If no file
name is given, the currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is remembered for
possible use as a default file name in subsequent e, r, and w commands. If file
is replaced by !, the rest of the line is taken to be a shell (sh (1) command
whose output is to be read. Such a shell command is not remembered as the
current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

Iffile is given, the file-name command changes the currently-remembered file
name to file; otherwise, it prints the currently-remembered file name.

(1,$)giREicommand list
In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed with.
initially set to that line. A single command or the first of a list of commands
appears on the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \; a, i, and c commands and associ­
ated input are permitted. The. terminating input mode may be omitted if it
would be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V commands are not permit­
ted in the command list. See also BUGS and the last paragraph before FILES
below.

Commands

ED(l) SysV ED(l)

(1,$)GIREI

h

H

(.)i

<text>

(.,.+l)j

(.)kx

(.,.)1

(.,.)ma

Commands

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, • is
changed to that line, and anyone command (other than one of the a, c, i, g, G,
v, and V commands) may be input and is executed. After the execution of that
command, the next marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of
the execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal (ASCII DEL
or BREAK).

The help command gives a short error message that explains the reason for the
most recent? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the previous ? if
there was one. The H command alternately tums this mode on and off; it is
initially off.

The insert command inserts the given text before the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. This com­
mand differs from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum number of characters
that may be entered from a terminal is 256 per line (including the new-line
character).

The join command joins contiguous lines by removing the appropriate new­
line characters. If exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a
lower-case letter. The address IX then addresses this line; • is unchanged.

The list command prints the addressed lines in an unambiguous way: a few
non-printing characters (e.g., tab. backspace) are represented by visually
mnemonic overstrikes. All other non-printing characters are printed in octal,
and long lines are folded. An I command may be appended to any other com­
mand other than e .t, r, or w.

The move command repositions the addressed line(s) after the line addressed

1-193

ED(1)

1-194

(.,.)n

(.,.)p

p

q

Q

($)r file

SysV ED(l)

by Q. Address 0 is legal for Q and causes the addressed line(s) to be moved to
the beginning of the file. It is an error if address Q falls within the range of
moved lines; • is left at "the last line moved.

The number command prints the addressed lines, preceding each line by its
line number and a tab character; • is left at the last line printed. The n com­
mand may be appended to any other command other than e ,!, r, or w.

The print command prints the addressed lines; • is left at the last line printed.
The p command may be appended to any other command other than e ,!, r, or
w. For example, dp deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P com­
mand alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done;
however, see DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the buffer
since the last w command.

The read command reads in the given file after the addressed line. If no file
name is given, the currently-remembered file name, if any, is used (see e and!
commands). The currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked. Address 0 is legal for
r and causes the file to be read at the beginning of the buffer. If the read is
successful, the number of characters read is typed; • is set to the last line read
in. If file is replaced by !, the rest of the line is taken to be a shell (sh (I» com­
mand whose output is to be read. For example, "$r !Is" appends current direc­
tory to the end of the file being edited. Such a shell command is not remem­
bered as the current file name.

(.,.)s/RElreplacementl or
(.,.)s/RElreplacement/g or
(.,.)s/RElreplacement/n n=I-512

The substitute command searches each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all (non-overlapped)
matched strings are replaced by the replacement if the global replacement
indicator g appears after the command. If the global indicator does not appear,
only the first occurrence of the matched string is replaced. If a number n
appears after the command, only the n th occurrence of the matched string on
each addressed line is replaced. It is an error for the substitution to fail on all

Commands

ED{l)

(. ,.)ta

u

SysV ED{l)

addressed lines. Any character other than space or new-line may be used
instead of I to delimit the RE and the replacement; • is left at the last line on
which a substitution occurred. See also the last paragraph before FILES
below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this context
may be suppressed by preceding it by \. As a more general feature, the charac­
ters \n, where n is a digit, are replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character % is the only
character in the replacement, the replacement used in the most recent substi­
tute command is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of more
than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \. Such substitution
cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the last
line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s,
t, V, G, or V command.

(1, $)vlRElcommand list
This command is the same as the global command g except that the command
list is executed with. initially set to every line that does not match the RE.

(1,$)VIREI
This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do not match the
RE.

(1, $)w file
The write command writes the addressed lines into the named file. If the file
does not exist, it is created with mode 666 (readable and writable by every­
one), unless your umask setting (see umask(l» dictates otherwise. The
currently-remembered file name is not changed unless file is the very first file
name mentioned since ed was invoked. If no file name is given, the
currently-remembered file name, if any, is used (see e and! commands); • is
unchanged. If the command is successful, the number of characters written is

Commands 1-195

EO(I)

($)=

SysV EO(I)

typed. Iffile is replaced by!, the rest of the line is taken to be a shell (sh(l»
command whose standard input is the addressed lines. Such a shellcommand
is not remembered as the current file name.

The line number of the addressed line is typed; • is unchanged by this com­
mand.

!shell command
The remainder of the line after the! is sent to the UNIX system shell (sh(I» to
be interpreted as a command. Within the text of that command, the unescaped
character % is replaced with the remembered file name; if a ! appears as the
first character of the shell command, it is replaced with the text of the previous
shell command. Thus, !! will repeat the last shell command. If any expansion
is performed, the expanded line is echoed; . is unchanged.

(.+ 1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line
alone is equivalent to .+ 1 p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII OEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command list,
and 64 characters per file name. The limit on the number of lines depends on the
amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters. Files (e.g., a.out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed adds one and outputs a message
explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., I) would be the last
character before a new-line, that delimiter may be omitted, in which case the addressed
line is printed. The following pairs of commands are equivalent:

s/sIls2 s/sIls2/p
g/sl g/sIlp
?sl ?sl?

WARNINGS

BUGS

1-196

The - option, although supported in this release for upward compatibility, will no
longer be supported in the next major release of the system. Convert shell scripts that
use the - option to use the -s option, instead.

A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if the
editor is invoked from a restricted shell (see sh(1».
The sequence \0 in a RE does not match a new-line character.

Commands

ED(l)

FILES

SysV ED(l)

Characters are masked to 7 bits on input.
If the editor input is coming from a command file (e.g., ed file < ed-cmd-file), the editor
will exit at the first failure.

/usr/tmp
$TMPDlR

Default directory for temporary work file.
If this environmental variable is not null, its value is used in place of
/usr/tmp as the directory name for the temporary work file.

ed.hup
DIAGNOSTICS

?

Work is saved here if the terminal is hung up.

Command error.
An inaccessible file. ? file
(use the help command for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed wams the user if an attempt is made to destroyed's buffer via the e or q
commands. It prints? and allows one to continue editing. A second e or q command
at this point will take effect. The -s command-line option inhibits this feature.

SEE ALSO
edit(l), ex(l), grep(l), sed(l), sh(l), stty(l), umask(l), vi(1).
fspec(4), regexp(5) in the SysV Programmer's Reference.

Commands 1-197

EDFONT(l} Domain/OS Sys V EDFONT(l)

NAME
edfont - edit a character font

SYNOPSIS
edfont [file I -v 1

DESCRIPTION

1-198

edfont is an interactive program with both menu-driven and command-line interfaces.
It allows you to create, edit, and view character font files. You can specify the font file
with the file parameter, or use the "Open Font" entry in the "File" menu. If the -v
option is used, edfont will print its version number and exit.

Generally, you must press the left mouse button <MI> to activate commands in the
menu-driven interface. When you must enter a string (for example, when you designate
which font you want to open) and there is a "Done" field on the menu, enter the string,
point to "Done" and press <MI> to activate. If "Done" does not appear when you
must enter a string, simply type the string and press <RETURN> to activate the com­
mand.

When using the menu-driven interface, you may notice that you cannot always select
every menu choice. For example, you can't select "Open Font" if you already have
one open, and likewise it's invalid to try to close a font when no font is open. When
commands are invalid, as in these cases, their places on the menus are grayed out so
that they can't be selected.

edfont lets you select a character (glyph) in a variety of ways. The utility interprets
input this way:

• Any three-character string whose first character is a lowercase c has its final two
characters interpreted as a compose sequence (e.g., ca' for lowercase a with a
circumflex accent)

• Any string that begins with Ox is interpreted as a hexadecimal code (e.g., Ox41 for
uppercase A)

• Any string that begins with 0 (zero) is interpreted as octal (e.g., 0101 for A)

• Any string that begins with a digit other than zero is considered to be decimal (e.g.,
65 for A)

• Any other string is considered to be an ASCII character (e.g., A for A)

For more information on compose sequences, see your system's User's Guide. For a
list of decimal, octal, and hexadecimal values for the characters in Apollo's default
character set, as well as a list of the compose sequences, see the files in the /usr/pub
directory.

When you invoke edfont, it sets default values for several variables. You can change
those defaults using either the appropriate command in the menu-driven interface or set
in the command-driven interface. For more information on these interfaces see the sec­
tion on command interfaces, below.

Commands

EDFONT(l) Domain/OS SysV EDFONT(l)

The following table lists variables, their types, default values (if any), and purpose.

Variablerrype Default

fontpath/string :/sys/drn/fonts

fontservers/string /usr/apollo/lib/edfont

fill/string outline
fontorigin/coord none

fontsize/coord none

fontspacing/coord none

glyphoffset/coord none

glyphsize/coord none

glyphwidth/coord none

mask/string src ' dst

Description

List of directories, separated by colons,
in which edfont should search for fonts
The search path for the font servers
directory
The name of the current fill pattern
The coordinate value that tells the
number of pixels below and to the left
of the font origin
The width and height of the font bound­
ing box
The horizontal and vertical font spacing
(leading)
The offset of the current glyph from the
font origin
The width and height of the bitmap for
the current glyph
The number of pixels from the right
edge of the current glyph to the left
edge of the next glyph
The current mask
(raster operation)

edfont handles fonts created using Apollo's current and pre-SRI0 formats, as well as
Adobe BDF fonts.

Menu Interface
Note: You can get additional information about any item on the display by pressing the
HELP key at the cursor position where you need help. This pops a help box. To return
to the original display, move the cursor out of the help box.

Font When you position the cursor here and press <Ml>, edfont displays a

Commands

menu with the following choices:

Open Font
Close Font
Select Glyph
Font Params
Glyph Params
Quit

1-199

EDFONT(l) Domain/OS SysV EDFONT(l)

1-200

Use these choices to open and close the font you want to edit, select an individual
glyph (character) to edit, and examine or change the font's parameters or a single
glyph's parameters.

Tools If you press <MI>, you will see the following choices:

Grid
Metrics

By default, both are turned on. If you tum off Grid, you no longer will see the pixel­
by-pixel bitmap grid in the edit window. If you turn off Metrics, the glyph fills the edit
window.

Metrics shows these three attributes of your glyph and font:

• Origin and baseline (fine dotted line)

• Glyph-bounding box (long dashed line)

• Font-bounding box (short dashed line)

Commands If you press <Ml>, you will see the following choices:

Undo Undo remembers your last 10 changes to the current glyph. Undo
does not work on parameter changes, however.

Run Commands You can set up a file of commands and direct edfont to execute
that file. For more information on the commands you can use, see
the description of the command interface, below.

Copy Glyph Copies a glyph from elsewhere in your font or from another font.

Delete Glyph This deletes a glyph.

Rotate Glyph This rotates a glyph by the number of degrees you specify.

Draw When you position the cursor here and press <Ml>, you will see the fol­
lowing choices:

Pixel

Freehand

Line

Box

Circle

Cut

Copy

Manipulate individual pixels

Draw freehand

Draw lines

Draw boxes

Draw circles

Select and delete a pixel or range of pixels

Select and copy a pixel or range of pixels

Commands

EDFONT(l)

Fill

Domain/OS SysV EDFONT(l)

Paste Paste in a pixel or range of pixels that you have previ­
ously cut or copied

Zoom Zoom in on a selected portion of the glyph

Note that after you Cut or Copy, edfont automatically changes the Draw
mode to Paste. You can manually change it to something else if you
prefer.

When you position the cursor here and press <MI>, you will see the fol­
lowing choices:

Outline this is the default
25% gray
50% gray
75% gray
black
bricks
chex
/stripes right-leaning stripes
\stripes left-leaning stripes
istripes vertical stripes
-stripes horizontal stripes
tri
waves

The way edfont fills an entity such as a circle or box depends on which
fill you choose. If you choose 50% gray, for example, and then create a
box, edfont turns on half of the pixels inside the box to create a 50%
gray effect. If you choose 75% or 25% gray, edfont turns on proportion­
ally more or fewer pixels to get the desired effect.

Mask When you position the cursor here and press <MI>, you will see the fol­
lowing choices (where "src" means source, "dst" means destination,
and the other characters are logical operators):

Menu Choices Logical Operation

clear

src & dst

src & -dst

src

-src & dst

Commands

Assign zero to all new destination values

Assign source AND destination to new destination

Assign source AND complement of destination to new destina­
tion

Assign source values to new destination

Assign complement of source AND destination to new destina­
tion

1-201

EDFONT(l) Domain/OS SysV EDFONT(l)

dst

src A dst

src I dst

-(src I dst)

src == dst

src I-dst

-src I dst

-(src & dst)

Assign all destination values to new destination

Assign source EXCLUSIVE OR destination to new destination
(default)

Assign source OR destination to new destination

Assign complement of source AND complement of destination to
new destination

Assign source EQUN ALENCE destination to new destination

Assign complement of destination to new destination

Assign source OR complement of destination to new destination

Assign complement of source to new destination

Assign complement of source OR destination to new destination

Assign complement of source OR complement of destination to
new destination

set Assign 1 to all new destination values

Setting the mask value turns pixels on. That is, if you select a pixel or range of pixels
with this mask, all the pixels tum black, regardless of whether they already were black.
The mask clear turns a pixel or range of pixels off (white), regardless of the pixel's ini­
tial value.

The default mask src ' dst toggles pixels. That is, if they already were black, they
become white, and vice versa. However, if you are drawing in Freehand mode, this
mask toggles the first pixel you cross and then sets the rest of the pixels you cross to
that first pixel's value.

When you have a font open, the menu-driven interface also includes two boxes on the
right side of the display labeled "«<" and "»>". The two are for displaying the pre­
vious and next glyph, respectively, in the current font. Move the cursor over either box
and press <M1> to activate.

Command Interface

1-202

In addition to edfont's menu-driven interface, you can use the following commands in
the input pad at the bottom of the edfont window, or embed them in edfont scripts.

Commands (Arguments) Description

!shell-command

box xl yl x2 y2

circle x y r

Run a shell command in the edfont win­
dow.

Draw a box that is bounded by (xl,y]) and
(x2,y2).

Draw a circle which has its center at (x,y)
and a radius of r.

Commands

EDFONT(l)

close [-savel-nosaveJ

copy glyphcode [fontfile J

delete

grid on I off

help [command)

line xl yl x2 y2

metrics on I off

next

openfontfile

pixelxy

previous

quit [-savel-nosaveJ

Commands (Arguments)

rotate degrees

select glyphcode

set var=value

source filename

undo

unzoom

zoom xl yl x2 y2

Commands

Domain/OS SysV EDFONT(l)

Close the font. If you specify -save,
edfont saves your changes, while if you
specify -nl)save, edfont ignores them.

Copy the specified glyph to the current
glyph. If you specify a fontftle, edfont
copies the glyph from that font; otherwise,
it copies the glyph from the current font.

Delete the current glyph.

Tum the bitmap grid on or off.

Get a list of available commands, or get
help on the specified command.

Draw a line that begins at (xl,yl) and ends
at (x2,y2).

Tum the font metrics display on or off.

Go to the next glyph in the current font.

Open the specified fontfile.

Draw a pixel at (x,y).

Go to the previous glyph in the current
font.

Exit edfont, closing the current font (if one
is open). See close for information on
-save and -nosave.

Description

Rotate the current glyph by the specified
number of degrees.

Go to the specified glyph. For information
on entering a glyph or glyphcode see the
Description section above.

Set var to the specified value. var can be
one of the edfont's parameters, as
described in the Description section above.

Execute the command-script filename.

Undo the last bitmap operation.

Zoom out one level.

Zoom in so that the view is filled with the
box bounded by (xl, yl) and (x2,y2).

1-203

EDlT(l) SysV EDlT(1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] name ...

DESCRIPTION

OPTION

1-204

edit is a variant of the text editor ex recommended for new or casual users who wish to
use a command-oriented editor.

-r Recovers file after an editor or system crash. The following brief intro­
duction should help you get started with edit. If you are using a CRT ter-
minal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command "edit name" to the
shell. edit makes a copy of the file which you can then edit, and tells you how many
lines and characters are in the file. To create a new file, just make up a name for the file
and try to run edit on it; you will cause an error diagnostic, but do not worry.

edit prompts for commands with the character ':', which you should see after starting
the editor. If you are editing an existing file, then you will have some lines in edit's
buffer (its name for the copy of the file you are editing). Most commands to edit use its
"current line" if you do not tell them which line to use. Thus if you say print (which
can be abbreviated p) and hit carriage return (as you should after all edit commands)
this current line will be printed. If you delete (d) the current line, edit prints the new
current line. When you start editing, edit makes the last line of the file the current line.
If you delete this last line, then the new last line becomes the current one. In general,
after a delete, the next line in the file becomes the current line. (Deleting the last line is
a special case.)

If you start with an empty file or wish to add some new lines, then the append (a) com­
mand can be used. After you give this command (typing a carriage return after the
word append) edit will read lines from your terminal until you give a line consisting of
just a ".", placing these lines after the current line. The last line you type then
becomes the current line. The command insert (i) is like append but places the lines
you give before, rather than after, the current line.

edit numbers the lines in the buffer, with the first line having number 1. If you give the
command" 1" then edit types this first line. If you then give the command delete edit
deletes the first line, line 2 will become line I, and edit prints the current line (the new
line 1) so you can see where you are. In general, the current line is always the last line
affected by a command.

You can make a change to some text within the current line by using the substitute (s)
command. Use s/old/newl where old is replaced by the old characters you want to get
rid of and new is the new characters you want to replace it with.

Commands

EDIT(l) SysV EDIT(l)

The command file (0 tells you how many lines there are in the buffer you are editing
and will say "[Modified]" if you have changed it. After modifying a file you can put
the buffer text back to replace the file by giving a write (w) command. You can then
leave the editor by issuing a quit (q) command. If you run edit on a file, but do not
change it, it is not necessary (but does no harm) to write the file back. If you try to quit
from edit after modifying the buffer without writing it out, you are warned that there
has been "No write since last change" and edit awaits another command. If you wish
not to write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see lines in the
file you can make any changes you desire. You should learn at least a few more things,
however, if you are to use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply (as
in append you give lines up to a line consisting of only a ". "). You can tell change to
change more than one line by giving the line numbers of the lines you want to change,
i.e., "3,5change". You can print lines this way too. Thus "1,23p" prints the first 23
lines of the file.

The undo (u) command reverses the effect of the last command you gave which
changed the buffer. Thus if you give a substitute command which does not do what
you want, you can say undo and the old contents of the line will be restored. You can
also undo an undo command so that you can continue to change your mind. edit gives
you a warning message when commands you do affect more than one line of the buffer.
If the amount of change seems unreasonable, you should consider doing an undo and
looking to see what happened. If you decide that the change is ok, then you can undo
again to get it back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look at a
number of lines hit 'D (control key and, while it is held down D key, then let up both)
rather than carriage return. This will show you a half screen of lines on a CRT or 12
lines on a hardcopy terminal. You can look at the text around where you are by giving
the command' 'z.". The current line will then be the last line printed; you can get back
to the line where you were before the "z." command by saying "*(rq'. The z com­
mand can also be given other following characters "z-" prints a screen of text (or 24
lines) ending where you are; "z+" prints the next screenful. If you want less than a
screenful of lines, type in "z.12" to get 12 lines total. This method of giving counts
works in general; thus you can delete 5 lines starting with the current line with the com­
mand "delete 5" .

To find things in the file, you can use line numbers if you happen to know them; since
the line numbers change when you insert and delete lines this is somewhat unreliable.
You can search backwards and forwards in the file for strings by giving commands of
the form /text/ to search forward for text or ?text? to search backward for text. If a
search reaches the end of the file without finding the text it wraps, end around, and con­
tinues to search back to the line where you are. A useful feature here is a search of the

Commands 1-205

EDIT(l) SysV EDIT(l)

fonn rtext/ which searches for text at the beginning of a line. Similarly /text$/
searches for text at the end of a line. You can leave off the trailing / or ? in these com­
mands.

The current line has a symbolic name ; this is most useful in a range of lines as in
".,$print" which prints the rest of the lines in the file. To get to the last line in the file
you can refer to it by its symbolic name "$". Thus the command "$ delete" or "$d"
deletes the last line in the file, no matter which line was the current line before. Arith­
metic with line references is also possible. Thus the line "$-5" is the fifth before the
last, and ". + 20" is 20 lines after the present.

You can find out which line you are at by doing ".=". This is useful if you wish to
move or copy a section of text within a file or between files. Find out the first and last
line numbers you wish to copy or move (say 10 to 20). For a move you can then say
"10,20delete a" which deletes these lines from the file and places them in a buffer
named a.edit and has 26 such buffers named a through z. You can later get these lines
back by doing "put a" to put the contents of buffer a after the current line. If you want
to move or copy these lines between files you can give an edit (e) corturtand after copy­
ing the lines, following it with the name of the other file you wish to edit, i.e., "edit
chapter2". By changing delete to yank above you can get a pattern for copying lines.
If the text you wish to move or copy is all within one file then you can just say
"1O,2Omove $" for example. It is not necessary to use named buffers in this case (but
you can if you wish).

SEE ALSO
ed(l), ex(1), vi(l).

1-206 Commands

EDMTDESC(l) Domain/OS SysV EDMTDESC(l)

NAME
edmtdesc - edit magtape descriptor file

SYNOPSIS
edmtdesc {options) pathname

DESCRIPTION
edmtdesc allows you to create, list, and modify the magnetic tape descriptor object.
The descriptor file provides information to the streams manager so that it can handle
subsequent tape operations.

pathname (required) Specify name of magtape descriptor file to be created, listed, or
edited.

OPTIONS
At least one of the following options must be specified.

-c

-I [var ... J

-s {var value) ...

Variables

Create a new magtape descriptor object with the name given in
the pathname argument.

List the values of the variable(s) specified. If no variables are
named, the entire magtape descriptor is listed.

Set the variable(s) indicated to the specified value(s). At least
one variable/value pair is required if -s is specified. Multiple
variable/value pairs are permitted, separated by blanks.

The variables known to edmtdesc are listed below, along with their types and default
values. The variable types are: integer (int), Boolean (y/n), character string of n letters
(c [n]), and date (in format yy/mm/dd.hh:mm).

Name Type Default Definition

dev c[l] m Device type ('m' for magtape, 'c' for car-
tridge)

u int 0 Magtape unit number (normally 0)
lab yin yes 'Yes' if magtape is ANSI labeled, 'no' if

unlabeled
reo yin no 'Yes' to reopen previously used volume,

'no' to open new volume ('yes' suppresses
rewind)

clv yin yes 'Yes' closes volume when file is closed,
'no' leaves volume open

Commands 1-207

EDMIDESC(l) Domain/OS SysV EDMIDESC(l)

Name Type Default Definition

spos yin no 'Yes' saves volume position when volume is
closed (for reopen), 'no' rewinds volume
when closed

vid c[6] -auto Volume identifier (labeled volumes)
vacc c[l] Volume accessibility (labeled volumes)
own c[14] -auto Volume owner (labeled volumes)
f int* I file sequence number: integer or "cur" for

current file, or "end" for new file at end of
labeled volume

rf c[l] D record format -- "f' for fixed length, "d" for
variable length, "s" for spanned, "u" for
undefined

bl int 2048 block length, in bytes
rl int 2048 (maximum) record length, in bytes
ascnl yin yes 'Yes' for ASCII newline handling (strip

newlines on write, supply them on read),
'no' for no newline handling

fsect int File section number (labeled volumes)
fid c[17] File identifier (labeled volumes)
fsid c[6] File set identifier (labeled volumes)
gen int Generation of file (labeled volumes)
genv int Generation version of file (labeled volumes)
cdate date -auto Creation date of file (labeled volumes)
edate date -auto Expiration date of file (labeled volumes)
facc c[l] File accessibility (labeled volumes)
sysc c[xx] System code (labeled volumes)
sysu c[xx] System use (labeled volumes)
boff int 0 Buffer offset (labeled volumes, should be 0)

For cartridge tape (dev c), you must change the block length (bl) and the record length
(rl) to be 512 or less and the record format to be fixed ("rf f').

EXAMPLES

1-208

Edit file set_tape; set the tape unit number to I; declare tape as ANSI labeled.

$ edmtdesc set_tape -s u 1 lab yes

Create descriptor file ct for cartridge tape, blocking 4 records of maximum length 128
to each block.

$ edmtdesc ct -c -s dev c bl 512 rl 128 rf f

Commands

EGREP(1) SysV EGREP(l)

NAME
egrep - search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full regular expression [file ...]

DESCRIPTION
egrep (expression grep) searches files for a pattern of characters and prints all lines that
contain that pattern. egrep uses full regular expressions (expressions that have string
values that use the full set of alphanumeric and special characters) to match the pat­
terns. It uses a fast deterministic algorithm that sometimes needs exponential space.

egrep accepts full regular expressions as in edell, except for \(and \), with the addition
of:

• A full regular expression followed by + that matches one or more occurrences of
the full regular expression.

• A full regular expression followed by ? that matches 0 or 1 occurrences of the full
regular expression.

• Full regular expressions separated by I or by a new-line that match strings that are
matched by any of the expressions.

• Afull regular expression that may be enclosed in parentheses () for grouping.

Be careful using the characters $, *, [,', I , (,), and \ infull regular expression, because
they are also meaningful to the shell. It is safest to enclose the entire full regular
expression in single quotes ' ... '.

The order of precedence of operators is [], then *? +, then concatenation, then I and
new-line.

If no files are specified, egrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS
-b

-c

-i

-I

-n

-v

Commands

Precedes each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

Prints only a count of the lines that contain the pattern.

Ignores upper/lower case distinction during comparisons.

Prints the names of files with matching lines once, separated by new­
lines. Does not repeat the names of files when the pattern is found more
than once.

Precedes each line by its line number in the file (first line is 1).

Prints all lines except those that contain the pattern.

1-209

EGREP(l) SysV EGREP(1)

BUGS

-e special_expression

-fjile

Searches for a special expression (full regular expression that begins
witha-).

Takes the list ofjull regular expressions fromfile.

Ideally there should be only one grep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ char­
acters; longer lines are truncated. BUFSIZ is defined in lusr/include/stdio.h.

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files (even if matches were found).

SEE ALSO
ed(l), fgrep(1), grep(I), sed(I), sh(I).

1-210 Commands

EMT(l) Domain/OS SysV EMT(l)

NAME
emt - emulate a dumb tenninal

SYNOPSIS
emt [pathnamel

DESCRIPTION
emt allows your node to emulate an ASCII tenninal connected to another computer.
This asynchronous connection exists through a stream opened on one of the node's SIO
lines. emt also permits ASCII file transfer between your node and the remote host.

pathname (optional) Specify file containing emt commands.

Default if omitted: read commands from standard input

emt begins execution in local mode, and displays the following prompt:

emb

To enter remote mode, press Fl. (The emt command dl no longer exists.) In remote
mode, your terminal operates as if it were physically connected to the remote computer
("host"). You can log on and enter remote host commands.

To return to local mode, press Fl again.

INPUT/OUTPUT STREAMS
emt uses the four standard streams: standard input, standard output, error input, and
error output, as follows:

• emt commands are read from an emt command file or from standard input. The
command filename may be specified on the command line or using the emt run
command. Up to four levels of command files may be nested. When EOF is
reached in a command file, commands are read from the previous file or from stan­
dard input. If EOF is reached on standard input, emt exits.

• Keystrokes to be sent to the host computer are read from standard input only.

• The emt command responses and all messages from the host are written to standard
output.

• Error messages from Aegis system calls are written to error output. Optional moni-
toring (monit) may also be written to error output (or to a named file).

You may use redirection of standard input, command-line specification of a command
file or the emt run command to automate emt usage and use emt in shdl scripts. emt
behaves slightly differently with regard to host transmissions, depending on which of
these techniques you use and you may select the method that best suits your purpose.

When input is redirected to standard input (,emt <emtfilel'), lines in the command file
that are sandwiched between Fl commands (enter/exit remote mode) are transmitted to

Commands 1-211

EMT(I)

1-212

Domain/OS SysV EMT(I)

the host. Other lines outside FI commands are interpreted and executed as emt com­
mands.

Contents of emtfilel:

Command

intenn If
outtenn If
list
FI
hello host
goodbye host
-Ii

list
q

Description

Sets input tenninator.
Sets output tenninator.
Lists emt state settings.
Invokes remote mode (communication to host).
This and succeeding lines get sent to host.
Last line sent to host.
emtesc char, specifies 'FI', return to local mode.
Back in local mode, lists emt state settings.
Exit from emt.

When a command file is invoked either via the command line (emt emtfile2) or by
using the run command (run emtfile2), the behavior is different in that lines following
FI commands are not transmitted to the host. This is because host transmissions are
read from standard input and standard input has not been redirected to the file:

Contents of emtfiIe2:

Command Description

intenn If Sets input terminator.
outtenn If Sets output tenninator.
list Lists emt state settings.
FI Invokes remote mode (communication to host). All

host input is now taken from the keyboard (or from
standard input if it has been otherwise redirected).
Finally user types -lor presses FI to return to local
mode.

list Local mode, emt commands read from emtfile2
again.

q Exit from emt.

You may also use the xmit command to transmit a file (of commands or data) to the
host. Use the emt rcv command to receive host transmissions to a Domain file.

Commands

EMT(l) Domain/OS SysV EMT(l)

TRANSFERRING FaES
You can transfer files using emt's receive (rev) or transmit (xmit) conunands. xmit
sends a Domain file to the remote host. rev opens a Domain file to receive infonnation
from the remote host. For example, if you type (in local mode)

emt> xmit file A

emt displays the following message:

Ready to transmit file fileA

Next, press Fl. emt enters remote mode, and transmits fileA to the remote host.

If you type:

emt> rev fileB

emt displays this message:

Ready to receive file fileB.

Next, enter remote mode by pressing Fl. Use a remote host command to display the
infonnation that you want fileB to receive. emt automatically writes this and all subse­
quent host transmissions into fileB. To stop the rev, pre:;s F2.

TRANSMISSION CONVENTIONS
Use the emt eommand interm to specify the line terminator used by the host. If you do
not know what the host uses as a linll terminator, experiment by changing interm. Use
the emt command outterm to specify the line terminator to be transmitted to the host.

emt allows you to open only one Domain file at a time. If emt receives a xmit or rev
command while another Domain file is active, it closes the open Domain file, and exe­
cutes the new command.

During remote mode, emt waits on both the keyboard and SIO line for characters to
process, and monitors the data for characters of special interest to emt.

You can specify which keyboard characters emt should interpret by placing the key­
board in raw or cooked mode. In raw mode, emt passes all keyboard input (except the
function keys, keys L1 through L12, and keys Rl through R4), directly to the host.
Cooked mode lets you use many of the Display Manager's features for editing the input
pad. emt places your keyboard in cooked mode by default.

Commands 1-213

EMT(l) Domain/OS SysY EMT(l)

COMMANDS

1-214

The following commands are available while running emf:

Command Description

Fl Switch between local and remote modes.

F2

F3

F8

CTRLlF7

Interrupt a file transfer and close the file.

Tum tee on or off. tee on causes emt to display file transmission records
on the screen. You can use this feature to monitor file transfers, and
decide if and when you should stop or interrupt a transfer. The default is
tee on.

Send a break to the host.

Display function key definitions.

These function keys may be simulated by typing the emt ESC character followed by the
function key number (that is, -1 for Fl). When emt is used from the VT100 emulator,
use shift Fl instead of F2, and CTRL Fl instead of F3.

Command

ae

Description

Abort on error.

asconly I notasconly

break [nJ

close

Sift out most non-printing ASCII codes. Eliminates triangles, allows BS,
CR, ESC, FF, LF, TAB. The default is notasc.

Set the break duration value to n milliseconds. The default is 200. If set
to 0, the F8 (break) key does nothing.

Deactivate an rcv file. See the rcv command for related information.

code [xx I none]

cooked

Set the host-command-code to the hexadecimal number xx. The default
is none.

Place the keyboard in cooked mode. This enables many DM features for
editing the input pad, and provides an escape sequence for sending con­
trol characters to the remote host. To send the host a CTRL character,
precede the character with a tilde C). The sequence -_ transmits a delete
character. To send the host a single tilde character, type -.

Commands

EMT(I) Domain/OS SysV EMT(I)

The emt default is cooked mode. Cooked mode always echos keys­
trokes, so it does not require a full duplex connection to the host. (See
the raw command for related information.)

Note: The cooked and raw commands refer only to the transcript pad
and keyboard input. The SIO line itself is always in raw mode.

emtesc [chrlnone]
Set the emt escape character to chr. Use none to disable the escape
character. Default is - for "cooked" mode, none for "raw" mode.

The following three commands are usefnl when standard input is redirected to a file of
emt commands:

f1

f2

f3

Enter remote mode (Simulate function key Fl).

Terminate file transfer (Simulate function key f2).

Toggle tee mode (Simulate function key F3).

hangup Cause modem to break connection with the remote host.

help [tetl] Display information about emt commands or about tcll commands.

line {I 1 21 3 Ipathname I
Select the SIO line. Pathname must specify an SIO device descriptor (for
example,/dev/si02). The default SIO line is I (/dev/siol).

Display the current SIO line, all emt switch settings and the receive
filename, if any.

monit [pathname]

nomonit

Write every character received over the SIO line to pathname. If a
filename is not specified, the previous specification or error output is
used.

Stop monitoring.

quit End the emt session.

raw [-echol-noecho] [-If I-no If]
Place the keyboard in "raw" mode. This sends keyboard input directly to
the remote host, interpreting only function keys. The -echo option echos
keystrokes on standard output; you should use it when the host is in
half-duplex mode. The default is -noecho. The -If option converts car­
riage return (CR) to line feed (LF) for lines echoed. The default is
-nolf. (See the cooked command for related information.) Note: The
-echo and -If options are purely local functions that enable you to read
what you type. They do not in any way change host/node transmissions.

Commands 1-215

EMT(l)

1-216

Domain/OS SysV EMT(l)

rev [-r] [-keysl-nokeys] [pathname]
Prepare the Domain file specified to receive remote host transmissions.
If pathname already exists, emt appends the transmission to it, unless
you specify -r. The receive begins when you enter remote mode Fl. If
you omit the pathname, emt uses the previous name, if any. The -keys
option writes keystrokes to the file along with received data. The default
is -nokeys.

emt allows you to interrupt an rev command at any time by pressing F2.
emt remains in whatever mode it was in, but keeps the rcv file active.
When you are ready to continue receiving host transmissions, you may
type rcv again (in local mode) without a filename, and emt uses the
same rev file.

If you omit filename and no rev file is active, emt issues an error mes­
sage. If you specify a new rev file while another rev file is active, rev
closes the active file, and prepares the new file to receive the transmis­
sion.

Use the close command to deactivate an rev file.

tetl {tctl commands}

stty

If you are running under Aegis, pass this command line to the shell com­
mand teU to configure the SIO line. If this SIO line is not the default
line, then you must use the -line command. The speed and syne com­
mands have been superseded by this direct invocation of tetl. If only
UNIX is installed, use sUy to perform this action. If both UNIX and
Aegis are installed, you can use either tet! or sUy.

See tetl.

interm {erllflerlflvaxl 'hex'}
Select the input line terminator. The default is erlf.

outterm {crllflerlfl 'hex'}
Select the output line terminator. The default is er. emt transmits the
selected hexadecimal value as the terminator for each line.

xmit pathname
Prepare to transmit the Domain file specified to the remote host. If you
omit pathname, or if you specify a file that does not exist, emt issues an
error message. When you issue this command, emt remains in local
mode. emt transmits the file when you press Fl.

Commands

EMT(I) Domain/OS SysV EMT(I)

When emt completes the transfer, it closes the file and returns to the
previous mode. emt does not send an end-of-file (EOF) signal to the
remote host. If the host requires an EOF, enter remote mode and
transmit it manually.

emt can also receive commands from the host. If the host transmits the
sequence

host-command-code (emt command string) line-terminator

emt interprets the string as an emt command. Use the emt command
code to define [host-command-code].

Line Terminators emt Response

crlf Converts sequence to a line feed, ignoring any
null characters that may separate the pair.

cr Converts sequence to a line feed and ignores LFs.

If Interprets it as a line feed, and ignores CRs.

vax Interprets both CR and CR-LF as tertninators and
converts them to line feed.

'hex' Converts the given hexadecimal value to LF.

Commands 1-217

ENABLE(l) SysV ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason]] printers

DESCRIPTION
enable activates the named printers, enabling them to print requests taken by Ip(l).
Use Ipstat(l) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests taken by
Ip(l). By default, any requests that are currently printing on the designated printers are
reprinted in their entirety either on the same printer or on another member of the same
class. Use Ipstat(l) to find the status of printers.

OPTIONS FOR DISABLE ONLY

FILES

4: Cancels any requests that are currently printing on any of the designated
printers.

-r[reason] Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next -r option. If the -r
option is not present or the -r option is given without a reason, a default
reason is used. Reason is reported by Ipstat(l).

lusrispool/lp/*

SEE ALSO
Ip(l),lpstat(1).

1-218 Commands

ENV(l) SysV ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] '" [command args]

DESCRIPTION
env obtains the current environment, modifies it according to its arguments, then exe­
cutes the command with the modified environment. Arguments of the form
name=va[ue are merged into the inherited environment before the command is exe­
cuted. The - flag causes the inherited environment to be ignored completely, so that
the command is executed with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair
per line.

SEE ALSO
sh(l).
exec(2), profile(4), environ(S) in the SysV Programmer's Reference.

Commands 1-219

ERASE(lG) SysV ERASE(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION

1-220

All of the commands described below reside in /usr/bin/graf (see graphics(IG)).

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between I and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corner to n inches.

yvn Set height of viewport to n inches.

erase Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit, hard­
copy generates a screen copy on the unit.

tekset Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

Commands

ERASE(lG) SysV ERASE(lG)

td Translate a GPS to scope code for a Tektronix 4010 series storage tenninal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(1G).
gps(4) in the SysV Programmer's Reference.

Commands 1-22

ESA(l) Domain/OS SysV ESA(l)

NAME
esa - display address of external symbol

SYNOPSIS
esa symbol_name

DESCRIPTION
esa displays the address of an external symbol in an installed library. This command is
primarily intended for system-level debugging.

symbol_name (required) Specify the symbol whose address you wish to display. esa is
case sensitive with respect to the symbol name. Lowercase
must be used to refer to symbols defiried in FORTRAN and
Pascal programs. Mixed case may be used, as needed, for
symbols defined in C programs.

EXAMPLES

1-222

This command displays the address of gpr_ $init. This symbol resides within the GPR
library, which was installed at system start-up time.

$ esa gpr _ $init
A1580C
$

Commands

EX(l) SysV EX(l)

NAME
ex - text editor

SYNOPSIS
ex [- 1 [-v 1 [-t tag 1 [-r] [-R 1 [+command 1 name ...

DESCRIPTION
ex is the root of a family of editors that includes ex and vi. ex is a superset of ed, with
the most notable extension being a display editing capability. Display based editing is
the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see
vi(l), which is a command that focuses on the display editing portion of ex.

For ed Users
If you have used ed you will find that ex has a number of new features useful on CRT
terminals. Intelligent terminals and high-speed terminals are very pleasant to use with
vi. Generally, the editor uses far more of the capabilities ofterminals than ed does, and
uses the terminal capability data base and the type of the terminal you are using from
the variable TERM in the environment to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and which is the central mode of
editing when using vi(l).

ex contains a number of new features for easily viewing the text of the file. The z com­
mand gives easy access to windows of text. Pressing CTRL/D causes the editor to
scroll a half-window of text and is more useful for quickly stepping through a file than
just pressing return. Of course, the screen-oriented visual mode gives constant access
to editing context.

ex gives you more help when you make mistakes. undo (u) allows you to reverse any
single change. ex gives you a lot of feedback, normally printing changed lines, and
indicating when more than a few lines are affected by a command so that it is easy to
detect when a command has affected more lines than it should have.

The editor also prevents overwriting existing files unless you edited them so that you do
not accidentally clobber with a write a file other than the one you are editing. If the
system (or editor) crashes, or you accidentally hang up the telephone, you can use the
editor recover command to retrieve your work. This gets you back to within a few
lines of where you left off.

ex has several features for dealing with more than one file at a time. You can give it a
list of files on the command line and use the next (n) command to deal with each ir
tum. The next command can also be given a list of file names, or a pattern as used by
the shell to specify a new set of files to be dealt with. In general, file names in the edi·
tor may be formed with full shell metasyntax. The metacharacter '%' is also available
in forming file names and is replaced by the name of the current file.

Commands 1-22:

EX(!) SysV EX(!)

For moving text between files and within a file the editor has a group of buffers, named
a through z. You can place text in these named buffers and carry it over when you edit
another file.

There is a command & in ex that repeats the last substitute command. In addition,
there is a confinned substitute command. You give a range of substitutions to be done
and the editor interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. ex aiso allows regu ...
lar expressions which match words to be constructed. This is convenient, for example,
in searching for the word "edit" if your document also contains the word "editor."

INVOCATION OPTIONS
Suppresses all interactive-user feedback. Useful in processing editor
scripts.

-v Invokes vi.

-t tagfl Edits the file containing the tag and positions the editor at its definition.

-r file Recovers file after an editor or system crash. If file is not specified a list
of all saved files is printed.

-R Readonly mode set, prevents accidentally overwriting the file.

+command Begins editing by executing the specified editor search or positioning
command.

The name argument indicates files to be edited.

COMMAND NAMES AND ABBREVIATIONS
abbrev ab next n undo u
append a number nu unmap unrnap
args ar preserve pre version ve
change e print p visual vi
copy eo put pu write w
delete d quit q xit x
edit e read re yank ya
file f recover ree window z
global g rewind rew escape
insert set se Ishift <
join shell sh print next CR
list source so resubst &
map stop stop rshift >
mark rna substitute s scroll 'D
move rn unabbrev una

1-224 Commands

EX(l)

COMMAND ADDRESSES
n

$

line n
current
last

+

+n
%

next
previous
n forward
1,$

STATES
Command

Insert

Visual

INITIALIZING OPTIONS
EXINIT
$HOME/.exrc
.I.exrc
set x
set nox
set x=val
set
set all
set x?

MOST USEFUL OPTIONS
autoindent ai
autowrite aw
ignorecase ic
list
magic
number nu

/pat
?pat
x-n
x,y
'x

SysV

next with pat
previous with pat
n before x
xthroughy
marked with x
previous context

Normal and initial state. Input prompted for by:.
Your kill character cancels partial command.
Entered by a, i, or c. Arbitrary text may be
entered. Insert is normally terminated by a line having
only. on it, or abnormally with an interrupt.
Entered by vi, terminates with Q or A\.

Place set's here in environment var.
Editor initialization file
Editor initialization file
Enable option
Disable option
Give value val
Show changed options
Show all options
Show value of option x

Supply indent
Write before changing files
In scanning
Print 'I for tab, $ at end
. [* special in patterns
Number lines

paragraphs para Macro names which start ...
redraw Simulate smart terminal
scroll Command mode lines
sections sect Macro names '"
shiftwidth sw For < >, and input 'D
showmatch sm To) and} as typed
showmode smd Show insert mode in vi
slowopen slow Stop updates during insert
window Visual mode lines
wrapscan ws Around end of buffer?
wrapmargin wm Automatic line splitting

Commands

EX(l)

1-225

EX(l) SysV EX(l)

SCANNING PATTERN FORMATION

BUGS

FILES

$
• Any character
\<
\>
[str]
r1' Sir]

[x-y]

*
Vi ex

Beginning of line
End ofline

Beginning of word
End of word
Any char in str
... not in Sfr

... between x and y
Any number of preceding

The undo command causes all marks to be lost on lines changed and then restored if
the marked lines were changed.

undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line '-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting
the editor.

Null characters are discarded in input files and cannot appear in resultant files.

lusr/lib/ex? ?strings
lusr/lib/ex? ?recover
lusr/li b/ex?? preserve
lusrlIibM*
$HOME/.exrc
.I.exrc
Itmp/Exnnnnn
Itmp/Rxnnnnn
lusr/preservel login

Error messages
Recover command
Preserve command
Describes capabilities of tenninals
Editor startup file
Editor startup file
Editor temporary
Named buffer temporary
Preservation directory
(where login is the user's login)

SEE ALSO
awk(l), ed(l), edit(l), grep(l), sed(l), vi(l).
curses(3X), term(4), terminfo(4) in the SysV Programmer's Reference.

1-226 Commands

EXPR(l) SysV EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the
standard output. Terms of the expression must be separated by blanks. Characters spe­
cial to the shell must be escaped. Note that 0 is returned to indicate a zero value, rather
than the null string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus sign. Internally,
integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by \. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \1 expr
Returns the first expr if it is neither null nor 0, otherwise returns the second
expr.

expr \& expr
Returns the first expr if neither expr is null or 0,
otherwise returns O.

expr { =, \>, \>=, \<, \<=, !=) expr
Returns the result of an integer comparison if both arguments are integers, oth­
erwise returns the result of a lexical comparison.

expr { +, -) expr
Addition or subtraction of integer-valued arguments.

expr { *, I, %) expr
Multiplication, division, or remainder of the integer-valued arguments.

expr: expr

Commands

The matching operator : compares the first argument with the second argument
which must be a regular expression. Regular expression syntax is the same as
that of ed(1), except that all patterns are "anchored" (i.e., begin with 0) and,
therefore, 0 is not a special character, in that context. Normally, the matching
operator returns the number of characters matched (0 on failure). Alternatively,
the \(.•• \) pattern symbols can be used to return a portion of the first argument.

1-227

EXPR(l) SysV EXPR(l)

EXAMPLES

BUGS

To add 1 to the shell variable a:

a=,expr $a + I,

To return the last segment of a path name (i.e., file). Watch out for I alone as an argu­
ment: expr takes it as the division operator (see BUGS below).

, For $a equal to either" lusr/abc/fiJe" or just" file" ,
expr $a : '.*1\('*\)' \1 $a

To retum the number of characters in $V AR:

expr $VAR : '.*'

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

expr $a - ,-,

looks like:

expr - - -

as the arguments are passed to expr (and they are all be taken as the = operator). The
following works:

expr X$a = X=

DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values:

o If the expression is neither null nor 0
1 If the expression is null or 0
2 For invalid expressions.

syntax error Operator/operand error.
non-numeric argument

Arithmetic was attempted on such a string.

SEE ALSO
ed(l), sh(l).

1-228 Commands

F77(1) SysV F77(l)

NAME
r77 - Fortran 77 compiler

SYNOPSIS
f77 [options] files

DESCRIPTION
f77 is the UNIX Fortran 77 compiler; it accepts several types of file arguments: Argu­
ments whose names end with .f are taken to be Fortran 77 source programs; they are
compiled, and each object program is left in the curtent directory in a file whose name
is that of the source, with .0 substituted for .f. Arguments whose names end with .r are
taken to be RATFOR source programs. These are first transfortned by the appropriate
preprocessor, then compiled by f77, producing .0 files. Arguments whose names end
with .c are taken to be C source programs and are compiled, producing .0 files. Argu­
ments whose names end with .e or .s (EFL and assembly source programs) are not sup­
ported.

OPTIONS
The following options have the same meaning as in cc(l) (see Jd(l) for link editor
options):

-0

--Qoutput

Suppresses link editing and produce .0 files for each source file.

Causes optimized code to be generated.

Names the final output file output, instead of a.out.

-g Generates additional infortnation needed for the use of dbx(l).

The following options are peculiar to f77:

-C Generates code for run-time subscript range checking.

-1[24] Changes the default size of integer variables (only valid on machines where
the "nortnal" integer size is not equal to the size of a single precision real).
-12 causes all integers to be 2-byte quantities. The default, -14, causes all
integers to be 4-byte quantities. (The -Is option is not supported.)

-v Prints the version number of the compiler, and the name of each pass as it exe­
cutes.

-w Suppresses all waming messages. (-w66 is not supported).

-F Applies the RA TFOR preprocessor to relevant files, puts the result in files
whose names have their suffix changed to .f. (No.o files are created.)

-m Applies the M4 preprocessor to each RA TFOR source file before transfortning
it with the ratfor(l) processor.

-R The remaining characters in the argument are used as a RATFOR flag argument
whenever processing a .r file.

The following options are not supported in the SysV version of f77: -S, -f, -onetrip,
-I, -66, -U, -u, and -E.

Commands 1-229

F77(1)

FILES

SysV F77(1)

Other arguments are taken to be either link-editor option arguments or t77-compilable
object programs (typically produced by an earlier run), or libraries of t77-compilable
routines. These programs, together with the results of any compilations specified, are
linked (in the order given) to produce an executable program with the default name
a.out.

file.[frc]
file.o
a.out
lusrlIiblIibF77.a
lusrlIiblIibI77.a
lusr/apollollib/ftn

Input file
Object file
Linked output
Intrinsic function library
Fortran I/O library
Compiler

The following files are not supported:

.Ifort[pid]. ?
lusr/lib/t77passl
lusr/lib/t77pass2
IIib/c2

Temporary
Compiler
Pass 2
Optional optimizer

DIAGNOSTICS
The diagnostics produced by t77 itself are intended to be self-explanatory. Occasional
messages may be produced by the link editor,ld(I).

SEE ALSO
asa(l), cc(l), fsplit(I),ld(l), m4(1), prof(I), ratfor(I), dbx(l).

1-230 Commands

FACTOR(I) SysV FACTOR(I)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer 1

DESCRIPTION
When you use factor without an argument, it waits for you to give it an integer. After
you give it a positive integer less than or equal to 1014, it factors the integer, prints its
prime factors the proper number of times, and then waits for another integer. factor
exits if it encounters a zero or any non-numeric character.

If you invoke factor with an argument, it factors the integer as described above, and
then it exits.

The maximum time to factor an integer is proportional to -vn. factor takes this time
when n is prime or the square of a prime.

DIAGNOSTICS
Ouch For input out of range or for garbage input.

Commands 1-231

FALSE(l)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

SysY FALSE(l)

true does nothing, successfully. false does nothing, unsuccessfully. They are typically
used in input to sh(1) such as:

DIAGNOSTICS

while true
do

command
done

true has exit status zero; false has exit status nonzero.

SEE ALSO
sh(1).

1-232 Commands

FGREP(l) SysV FGREP(l)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]

DESCRIPTION
fgrep (fast grep) seaches files for a character string and prints all lines that contain that
string. fgrep is different from grep(l) and egrep(l) because it searches for a string,
instead of searching for a pattern that matches an expression. It uses a fast and compact
algorithm.

The characters $, *, [, " I , (,), and \ are interpreted literally by fgrep, that is, fgrep
does not recognize full regular expressions like egrep does. Since these characters
have special meaning to the shell, it is safest to enclose the entire string in single quotes
I I

If no files are specified, fgrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS

BUGS

-b

--c

-i

-I

-n

-v

-x

Precedes each line by the block number on which it was found. Useful
in locating block numbers by context (first block is 0).

Prints only a count of the lines that contain the pattern.

Ignores upper/lower case distinction during comparisons.

Prints the names of files with matching lines once, separated by new­
lines. Does not repeat the names of files when the pattern is found more
than once.

Precedes each line by its line number in the file (first line is 1).

Prints all lines except those that contain the pattern.

Prints only lines matched entirely.

--e special_string
Searches for a special string (string begins with a -).

-f file Takes the list of strings fromjile.

Ideally there should be only one fgrep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ char­
acters; longer lines are truncated. BUFSIZ is defined in lusr/include/stdio.h.

Commands 1-233

FGREP(l) SysV FGREP(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files (even if matches were found).

SEE ALSO
ed(1), egrep(I), grep(l), sed(1), sh(l).

1-234 Commands

Fll..E(l) SysV FILE(l)

NAME
file - detennine file type

SYNOPSIS
file [-e] [-f !file] [-m mfile] arg ...

DESCRIPTION
The file command performs a series of tests on each argument in an attempt to classify
it. If an argument appears to be ASCn, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file prints the version stamp,
if it is greater than zero.

The file command uses the file /etc/magic to identify files that have some sort of
"magic number", that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of Jete/magic explains its format.

OPTIONS

-f!file

-m mfile

Fll..ES
/etc/magic

SEE ALSO
filehdr(4)

Commands

Check the magic file for format errors. This validation is not normally
carried out, for efficiency reasons. No file typing is done under-c.

Take the next argument to be a file containing the names of the files to
be examined.

Use an alternate magic file, mfile.

1-235

FIND(l) SysV FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each pathname in the path-name­
list, seeking files that match a Boolean expression written in the primaries given below.
The Sys V implementation of find does not follow symbolic links.

EXPRESSIONS

1-236

(In the descriptions below, the argument n is used as a decimal integer where +n means
more than n, -n means less than n, and n means exactly n).

-name file True iffile matches the current filename. Normal shell argument
syntax may be used if escaped, but watch out for [, ? and *.

-perm anum

-type c

-links n

-user uname

-group gname

-size n[e)

-atime n

-mtimen

-ctime n

-exec cmd

True if the file permission flags exactly match the octal number
anum. If anum is prefixed by a minus sign, only the bits that are
set in anum are compared with the file permission flags, and the
expression evaluates true if they match. Information about file
permissions is found in ehmod(l).

True if the type of the file is c, where c is b (block special file), C

(character special file), d (directory), p (FIFO, or named pipe), f
(plain file), or I (softlink).

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric
and does not appear as a log-in name in the /ete/passwd file, it is
taken as a user ID.

True if the file belongs to the group gname. If gname is numeric
and does not appear in the jete/group file, it is taken as a group
ID.

True if the file is n blocks long (1024 bytes per block). If n is
followed by a e, the size is in characters.

True if the file has been accessed in n days. The access time of
directories in path-name-list is changed by find itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current pathname.

Commands

FIND(l)

-ok cmd

-print

-epio device

-newer file

-depth

-mount

-local

(expression)

SysV FIND(l)

Like -exec, except this prints the generated command line with a
question mark first, and executes only if you respond by typing y.

Always true; print the current pathname.

Always true; write the current file on device in cpio(4) format
(5l20-byte records).

True if the current file has been modified more recently than the
argument file.

Always true; descend the directory hierarchy so that all entries in
a directory are acted on before the directory itself. Can be useful
when find is used with cpio(l) to transfer files contained in
directories without write permission.

Always true; restricts the search to the file system containing the
directory specified, or if no directory was specified, the current
directory.

True if the file physically resides on the local system. Note: This
expression has no effect on Apollo systems.

True if a parenthetical expression is true (parentheses are special
to the shell and must be escaped).

OPERATORS
The primaries listed above may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of
two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

BUGS

To remove all files named a.out or *.0 that have not been accessed for a week:

find I \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm {} \;

letc/passwd
letc/group

find I I.depth always fails with the message:

find: stat failed: : No such file or directoLY

SEE ALSO
chmod (1), epio (1), sh (1), test (1), stat (2), umask (2), epio (4).

Commands 1-237

FINGER(l) SysV FINGER(l)

NAME
finger - user infonnation lookup program

SYNOPSIS
finger [options] name ...

DESCRIPTION
By default finger lists the log-in name, full name, tenninal name and write status (as a
•• *" before the tenninal name if write pennission is denied), idle time, log-in time, and
office location and phone number (if they are known) for each current user. (Idle time
is minutes if it is a single integer, hours and minutes if a ":" is present, or days and
hours if a "d" is present.)

A longer fonnat also exists and is used by finger whenever you specify a list of
people's names. Account names as well as users' first and last names are accepted.
This fonnat is multiline, and includes all the infonnation described above as well as the
user's home directory and log-in shell, any plan which the person has placed in the file
.plan in his home directory, and the project he is working on from the file .project, also
in the home directory.

finger can be used to look up users on a remote machine. Specify the user as
•• user@host". If you omit the usemame, finge r provides the standard fonnat listing on
the remote machine.

OPTIONS
-m Match arguments only on usemame.

Force long output fonnat.

FILES

NOTES

BUGS

1-238

-1

-p

-s

Suppress printing of the .plan files

Force short output fonnat.

letc/utmp
letc/passwd
lusr/adrn/lastlog
-I.plan
-I.project

who file
For users names, offices, ...
Last log-in times
Plans
Projects

finger perfonns poorly in large registries, unless you use the -m option.

finger prints only the first line of the .project file.

The encoding of the gcos field is UCB dependent.

You cannot pass arguments to the remote machine, as finger uses an internet standard
port.

Commands

FINGER(l) SysV FINGER(l)

A user infonnation database is in the works and will radically alter the way the infonna­
tion that finger uses is stored. finger will require extensive modification when this is
implemented.

Domain/OS does not support /usr/adm/lastlog.

SEE ALSO
chfn(l), who(l)

Commands 1-239

Domain/OS SysV

NAME
french_to_iso - convert files to ISO format

SYNOPSIS
french_to _iso input Jrle output Jrle

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7-bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit format. The overloaded fonts include any
with a specific language suffix (for example, f7xI3.french, or din_ f7xll.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCn characters and the national characters in one file. The 8-bit fonts
available as of SRlO include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (input Jrle) and your output Jrle. If output Jrle already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

/usr/apollo/bin/french_to)so Converts overloaded French to ISO format

/usr/apollo/bin/german _ to _iso Converts overloaded German to ISO format

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for­
mat

/usr/apollo/bin/swedish _to _iso Converts overloaded Swedish/Finnish to ISO for­
mat

/usr/apollo/bin/swiss _ to _iso

/usr/apollo/bin/uk _ to _iso

DIAGNOSTICS

Converts overloaded Swiss to ISO format

Converts overloaded U.K. English to ISO format

All messages are generally self-explanatory.

1-240 Commands

FSPLIT(l) SysV FSPLIT(l)

NAME
fsplit - split FORTRAN or ratfor files

SYNOPSIS
fsplit options flies

DESCRIPTION
The fsplit command splits the namedflle(s) into separate files, with one procedure per
file. A procedure includes block data, function, main, program, and subroutine pro­
gram segments. Normally, procedure X is put in file X.f or X.r, depending on the
language option chosen. The following exceptions apply: main is put in the file
MAIN.[fr], and unnamed blockdata segments in the files blockdataN.[fr] (where N is a
unique integer value for each file).

OPTIONS
-f Uses FORTRAN source program files as input.

-r

-s

SEE ALSO

Uses ratfor(l) source program files as input.

Strips FORTRAN input lines to 72 or fewer characters with trailing
blanks removed.

csplit (1), ratfor (1), split (1).

Commands 1-241

FST(I) Domain/OS SysV FST(I)

NAME
fst - print fault status information

SYNOPSIS
fst [[-s] [-r] I [-a]] [-u n]

DESCRIPTION
fst prints information about the most recent fault that occurred in the process. The
information always includes the fault status, the program counter (PC) at which the
fault occurred, and a textual description of the error as reported by the system call
error _ $print. fst is intended for system-level debugging.

If you are using a Peripheral Bus Unit (PBU) device, you can get fault information by
using the -u option (see below).

fst is obsolete and is valid only when running in INPROCESS compatibility mode with
the in process variable set and all commands running in-process. Use the command tb
-full instead of fst.

OPTIONS
-r Print the contents of the CPU general registers when the fault occurred.

-s Print the supervisor PC, entry control block (ECB), and status register (SR) if
the fault occurred in supervisor mode. This option is ignored if the fault
occurred in user mode.

-a Print all available fault information. (Prints the same information as both -s
and-r.)

-u n Print the same information as both -s and -r for faults caused by the PBU
interrupt handler for unit n.

EXAMPLES

1-242

$ fst-a

Fault Diagnostic Information
Fault Status 00120010:
process quit (from as I fault handler)
User Fault PC = 000157FC
00-07: 00120010 00000000 00000002 FFFFFFFE 00000008 00000006 \
00000182 00000004
AO-A7: 0020A452 00E2F22E 0020A3D4 0020A450 00E2F174 0000C92C \
002746B4 002746AC
Supervisor ECB 00000000
Supervisor SR 0000
Supervisor PC 00000000

Commands

FTP(lC) SysV FTP(lC)

NAME
ftp - ARPANET file transfer program

SYNOPSIS
rtp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION
rtp is the user interface to the ARPANET standard File Transfer Protocol (FTP). The
program allows you to transfer files to and from a remote network site.

You can specify the client host with which ftp is to communicate on the command line.
If you do, ftp inunediately attempts to establish a connection to an FTP server on that
host; otherwise, ftp enters its command interpreter and awaits instructions from you.
When ftp is awaiting commands from you, it displays the prompt "ftp>".

OPTIONS
You can specify options on the command line, or to the command interpreter.

-v

-n

-i

-d

-g

COMMANDS

(verbose on) Forces ftp to show all responses from the remote server, as
well as report on data transfer statistics.

Restrains ftp from attempting "auto-login" on initial connection. If
auto-login is enabled, ftp checks the .netrc (see below) file in your home
directory for an entry describing an account on the remote machine. If
no entry exists, ftp prompts for the remote machine log-in name (the
default is the user identity on the local machine), and, if necessary,
prompts for a password and an account with which to log in.

Turns off interactive prompting during multiple file transfers.

Enables debugging.

Disables filename globbing.

! [command [args]]
Invoke an interactive shell on the local machine. If you specify argu­
ments, ftp takes the first to be a command to execute directly, with the
rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef com­
mand. Arguments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access
to resources once a login has been successfully completed. If you do not
specify an argument, rtp prompts you for an account password in a non­
echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If you do not specify

Commands 1-243

FrP(lC)

1-244

ascii

bell

binary

bye

case

SysV FrP(lC)

remote-file, ftp uses the local filename, after applying the changes
required by any ntrans or nmap setting, to name the remote file. ftp
uses the current settings for type, form, mode, and structure.

Set the file transfer type to network ASCII. This is the default type.

Arrange that a bell be sounded after each file transfer command is com­
pleted.

Set the file transfer type to support binary image transfer.

Terminate the FTP session with the remote server and exit ftp. An end­
of-file also tenninates the session and exits.

Toggle remote computer filename case-mapping during mget com­
mands. When case is on (the default is off), remote computer filenames
with all letters in uppercase are written in the local directory with the
letters mapped to lowercase.

cd remote-directory
Change the working directory on the remote machine to remote­
directory.

cdup Change the remote-machine working directory to the parent of the
current remote-machine working directory.

close Tenninate the FTP session with the remote server, and return to the com­
mand interpreter. Any defined macros are erased.

cr Toggle carriage-return stripping during ASCII-type file retrieval.
Records are denoted by a carriage-retum/linefeed sequence during
ASCII-type file transfer. When cr is on (the default), carriage returns are
stripped from this sequence to conform with the UNIX single-line feed
record delimiter. Records on non-UNIX remote systems may contain
single linefeeds; when an ASCII-type transfer is made, you can distin­
guish these linefeeds from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-jile on the remote machine.

debug [debug-value 1
Toggle debugging mode. If you specify an optional debug-value, ftp
uses it to set the debugging level. When debugging is on, ftp prints each
command sent to the remote machine, preceded by the string "-->".

dir [remote-directory 1 [local-file 1
Print a listing of the directory contents in the directory, remote­
directory, and, optionally, place the output in local-file. If you do not
specify a directory, ftp uses the current working directory on the remote
machine. If you do not specify a local file, or local-file is -, ftp sends
output to the tenninal.

Commands

FJ'P(1C) SysY FJ'P(1C)

disconnect A synonym for close.

form/onnat Set the file transfer form t%rmat. The default and only supported for­
mat is file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If you do nt
specify the local filename, ftp gives it the same name it has on the
remote machine, subject to alteration by the current case, ntrans, and
nmap settings. ftp uses the current settings for type, form, mode, and
structure while transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If you tum
globbing off with glob, ftp takes the filename arguments literally and
does not expand them. Globbing for mput is done as in csh(l). For
mdelete and mget, each remote filename is expanded separately on the
remote machine and the lists are not merged. Expansion of a directory
name is likely to be different from expansion of an ordinary filename:
the exact result depends on the foreign operating system and FrP server,
You can preview the results by executing 'mlsremote-files-'. Note:
mget and mput are not meant to transfer entire directory subtrees of
files. You can do that by transferring a tar(1) archive of the subtree (in
binary mode).

hash Toggle hash-sign (#) printing for each data block transferred. The size
of a data block is 1024 bytes.

help [command]
Print an informative message about the meaning of command. If you do
not specify an argument, ftp prints a list of the known commands.

Icd [directory]
Change the working directory on the local machine. If you do not
specify a directory, ftp uses your home directory.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote
machine. If you do not specify remote-directory , ftp uses the current
working directory. If you do not specify a local file, or if local-file is -,
ftp sends the output to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name;
a null line (consecutive newline characters in a file or carriage returns
from the terminal) terminates macro input mode. There is a limit of 16
macros and 4096 total characters in all defined macros. Macros remain
defined until you execute a close command. The macro processor inter­
prets '$' and '\' as special characters. A '$' followed by a number (or
numbers) is replaced by the corresponding argument on the macro-

Commands 1-245

FI'P(1C)

1-246

SysV FI'P(1C)

invocation command line. A '$' followed by an 'i' signals that macro
processor that the executing macro is to be looped. On the first pass '$i'
is replaced by the first argument on the macro-invocation command line,
on the second pass it is replaced by the second argument, and so on. A
'\' followed by any character is replaced by that character. Use the '\' to
prevent special treatment of the '$'.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
This command works like dir, except that you can specify multiple
remote files. If interactive prompting is on, ftp prompts you to verify
that the last argument is indeed the target local file for receiving mdir
output.

mget remote-files
Expand the remote-files on the remote machine and execute a get for
each filename thus produced. See glob for details on the filename
expansion. Resulting filenames are then processed according to case,
ntrans, and nmap settings. Files are transferred into the local working
directory, which you can change with 'led directory'; You can create
new local directories with '! mkdir directory'.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
This command is like Is, except that you can specify multiple remote
files. If interactive prompting is on, ftp prompts you to verify that the
last argument is indeed the target local file for receiving mls output.

mode [mode-name]
Set the file transfer mode to mode-name. The default and only sup­
ported mode-name is stream.

mput local-files
Expand wildcards in the list of local files given as arguments and exe­
cute a put for each file in the resulting list. See glob for details of
filename expansion. Resulting filenames are then processed according to
ntrans and nmap settings.

nmap [inpattern outpattern]
Set or unset the filename-mapping mechanism. If you do not specify an
argument, the filename-mapping mechanism is unset. If you specify an
argument, nmap maps remote filenames during mput commands and
put commands issued without a specified remote-target filename. and
maps local filenames during mget commands and get commands issued
without a specified local-target filename. This command is useful when

Commands

FfP(lC) SysV FfP(1C)

you are connecting to a non-UNIX remote computer with different file­
naming conventions or practices.

The mapping follows the pattern set by inpattern and out pattern . Inpat­
tern is a template for incoming filenames (which may have already been
processed according to the ntrans and case settings). Include the
sequences '$1'. '$2' •...• '$9' in inpattern. if you want variable templat­
ing. Use '\' to prevent this special treatment of the '$' character. nmap
treats all other characters literally. and uses them to determine the nmap
inpattern variable values. For example. given inpattern $1.$2 and the
remote filename "mydata.data". $1 has the value "mydata". and $2 has
the value "data".

The out pattern determines the resulting mapped filename. The
sequences '$1'. '$2' •....• '$9' are replaced by any value resulting from
the inpattern template. The sequence '$0' is replaced by the original
filename. Additionally. the sequence ·[seqI.seq2]' is replaced by seqi if
seqi is not a null string; otherwise it is replaced by seq2. For example.
the command nmap $1.$2.$3 [$1,$2].[$2,file] yields the output filename
myfile.data for input filenames my file. data and myfile.data.old.
myfile.file for the input filename myfile; and myfile.myfile for the input
filename .myfile. You can include spaces in outpattern. as in the exam­
ple: nmap $1 Ised "s/ *$//" > $1 . Use the '\' character to prevent spe­
cial treatment of the '$'. '['. T. and',' characters.

ntrans [inehars [outehars]]
Set or unset the filename-character-translation mechanism. If you do not
specify an argument. the filename-character-translation mechanism is
unset. If you specify an argument. ntrans translates characters in remote
filenames during mput commands and put commands issued without a
specified remote-target filename. and translates characters in local
filenames during mget commands and get commands issued without a
specified local-target filename.

This command is useful when you are connecting to a non-UNIX remote
computer with different file-naming conventions or practices. ntrans
replaces characters in a filename matching a character in inehars with
the corresponding character in olttehars. If the character' s position in
inehars is longer than the length of ol/tehars. ntrans deletes the charac­
ter from the filename.

open host [port]
Establish a connection to the specified host FfP server. You can specify
an optional port number. in which case rtp attempts to contact an FfP
server at that port. If the auto-login option is on (default). rtp also

Commands 1-247

FTP(1C)

1-248

SysV FTP(lC)

attempts to automatically log you in to the FI'P server (see below).

prompt Toggle interactive prompting. Interactive prompting occurs during mul­
tiple file transfers to allow you to selectively retrieve or store files. If
prompting is turned off (default is on), any mget or mput transfers all
files, and any mdelete deletes all files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This com­
mand allows you to connect simultaneously to two remote FI'P servers
for transferring files between them. The first proxy command should be
an open, to establish the secondary control connection. Enter the com­
mand proxy ? to see other ftp commands executable on the secondary
connection. The following commands behave differently when prefaced
by proxy: open does not define new macros during the auto-login pro­
cess, close does not erase existing macro definitions, get and mget
transfer files from the host on the primary control connection to the host
on the secondary control connection, and put, mput, and append
transfer files from the host on the secondary control connection to the
host on the primary control connection. Third-party file transfers depend
upon support of the FI'P protocol P ASV command by the server on the
secondary control connection.

put local-file [remote-file 1
Store a local file on the remote machine. If you do not specify remote­
file, put uses the local filename after processing according to any ntrans
or nmap settings in naming the remote file. ftp uses the current settings
for type, form, mode, and structure.

pwd Print the name of the current working directory on the remote machine.

quit This is a synonym for bye.

quote argl arg2 ...
This command sends the arguments you specify, verbatim, to the remote
FI'P server.

recv remote-file [local-file 1
This is a synonym for get.

remote help [command-name 1
Request help from the remote FI'P server. If a command-name is
specified it is supplied to the server as well.

rename [from 1 [to 1
Rename the file from on the remote machine, to the file to.

reset Clear the reply queue. This command resynchronizes command/reply
sequencing with the remote FI'P server. Resynchronization may be
necessary following a violation of the FI'P protocol by the remote server.

Commands

FfP(lC) SysV FfP(lC)

rmdir directory-name

runique

Delete the specified directory on the remote machine.

Toggle storing of files on the local system with unique filenames. If a
file already exists with a name equal to the target local filename for a get
or mget command, runique appends a.l to the name. If the resulting
name matches another existing file, runique appends a .2 to the original
name. If this process continues up to .99, runique prints an error mes­
sage. ftp does not execute the transfer, and reports the generated unique
filename. Note that runique does not affect local files generated from a
shell command (see below). The default value is off.

send local-file [remote-file 1
This is a synonym for put.

sendport Toggle the use of PORT commands. By default, ftp attempts to use a
PORT command when establishing a connection for each data transfer.
The use of PORT commands can prevent delays when you perform mul­
tiple file transfers. If the PORT command fails, ftp uses the default data
port. When the use of PORT commands is disabled,ftp does not attempt
to use PORT commands for each data transfer. This is useful for certain
FrP implementations that ignore PORT commands but indicate,
incorrectly, that they are accepted.

status Show the current status of ftp.

struct [struct-name 1

sunique

tenex

trace

Set the file transfer structure to struct-name; either stream or record.
By default, struct uses stream structure.

Toggle storing of files on remote machine under unique filenames. The
remote FrP server must support the FrP protocol STOU command for
successful completion. The remote server reports unique names. The
default value is off.

Set the file transfer type to that needed to talk to TENEX machines.

Toggle packet tracing.

type [type-name 1
Set the file transfer type to type-name; one of ascii, binary, image, or
tenex. If you do not specify a type, type prints the current type. The
default type is ascii (network ASCII).

user user-name [password 1 [account 1
Identify yourself to the remote FrP server. If the password is not
specified and the server requires it, ftp will prompt the user for it (after
disabling local echo). If the FrP server requires an account field and
you do not specify it, ftp prompts for it. If you specify an account field,
ftp relays an account command to the remote server after the log-in

Commands 1-249

FfP(lC)

verbose

? [command]

SysV FfP(lC)

sequence is completed, if the remote server did not require it for logging
in. Unless you invoke ftp with "auto-login" disabled, ftp executes this
process automatically, on initial connection to the FrP server.

Toggle verbose mode. In verbose mode, ftp displays all responses from
the FrP server and also reports statistics regarding the efficiency of a file
transfer, when the transfer completes. By default, verbose is on.

This is a synonym for help.

You can enclose command arguments that have embedded spaces in quotation (")
marks.

ABORTING A FILE TRANSFER
Use the terminal interrupt key (usually CTRL/C) to abort a file transfer. ftp immedi­
ately stops sending transfers. You can stop receiving transfers by sending a FrP proto­
col ABOR command to the remote server and discarding any further data received. The
speed at which this is accomplished depends on the remote server's support for ABOR
processing. If the remote server does not support the ABOR command, an "ftp>"
prompt does not appear until the remote server has completed sending the requested
file.

The terminal interrupt key sequence is ignored when ftp has completed any local pro­
cessing and is awaiting a reply from the remote server. A long delay in this mode may
result from the ABOR processing described above, or from unexpected behavior by the
remote server, including violations of the FrP protocol. If the delay results from unex­
pected remote server behavior, you mustkill the local ftp program by hand.

FILE-NAMING CONVENTIONS

1-250

ftp processes files that you specify as arguments according to the following rules:

1) If you specify the filename as a dash (-), ftp uses stdin (for reading) or stdout
(for writing).

2)

3)

If the first character of the filename is "I", ftp interprets the remainder of the
argument as a shell command, then forks a shell, using popen(3) with the
argument you specify, and reads (writes) from stdout (stdin). If the shell
command includes spaces, you must enclose the argument in quotation marks;
for example, "" lis -It" ". A particularly useful example of this mechanism is
"dir Imore".

Failing the above checks, if globbing is enabled, ftp expands local filenames
according to the rules used in the csh(l); see the glob command for a com­
parison. If ftp expects a single local file (for example, put), it uses only the
first filename generated by the" globbing" operation.

Commands

FfP(lC) SysV FfP(lC)

4) For mget commands and get commands with unspecified local filenames, the
local filename is the remote filename, that a case, ntrans, or nmap setting can
change. The remote server can then change the resulting filename, if runique
is on.

5) For mput commands and put commands with unspecified remote filenames,
the remote filename is the local filename, that a ntrans or nmap setting can
change. he remote server can then change the resulting filename, if sunique is
on.

FILE TRANSFER PARAMETERS
The FrP specification specifies many parameters that may affect a file transfer. The
type can be one of ascii, image (binary), ebcdic, and local byte size. ftp supports the
ascii and image types of file transfer, plus local byte size 8 for tenex mode transfers.

ftp supports only the default values for the remaining file transfer parameters: mode,
form, and struct.

THE .netre FILE
The .netrc file contains log-in and initialization information used by the auto-login pro­
cess. It resides in your home directory .. netrc recognizes the following tokens; you can
separate them by spaces, tabs, or newlines:

machine name

login name

password string

account string

Commands

Identify a remote machine name. The auto-login process
searches the .netrc file for a machine token that matches the
remote machine specified on the ftp command line or as an open
command argument. Once a match is made, the subsequent
.netrc tokens are processed, stopping when the end-of-file is
reached or another machine token is encountered.

Identify a user on the remote machine. If this token is present,
the auto-login process initiates a login using the specified name.

Supply a password. If this token is present, the auto-login pro­
cess supplies the string if the remote server requires a password
as part of the log-in process. Note that if this token is present in
the .netrc file, ftp aborts the auto-login process if the .netrc is
readable by anyone besides the user.

Supply an additional account password. If this token is present.
the auto-login process supplies the string if the remote servel
requires an additional account password, or the auto-login pro·
cess initiates an ACCT command if it does not.

1-25:

FfP(IC)

BUGS

1-252

macdef name

SysV FfP(lC)

Define a macro. This token functions like the ftp macdef com­
mand functions. A macro is defined with the specified name; its
contents begin with the next .net rc line and continue until a null
line (consecutive new-line characters) is encountered. If a macro
named init is defined, ftp automatically executes it as the last
step in the auto-login process.

Correct execution of many conunands depends upon proper behavior by the remote
server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ASCII-mode transfer
code has been corrected. This correction may result in incorrect transfers of binary files
to and from 4.2BSD servers using the ASCII type. Avoid this problem by using the
binary image type.

Conunands

GDEV(lG) SysV GDEV(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see graphics(lG».

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

erase

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left comer to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left comer to n inches.

yvn Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit, hard·
copy generates a screen copy on the unit.

tekset

Commands

Send characters to a Tektronix terminal to clear the display screen, set thl
display mode to alpha, and set characters to the smallest font.

1-25

GDEV(lG) SysV GDEV(lG)

td Translate a GPS to scope code for a Tektronix 4010 series storage tenninal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between I and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(I G).
gps(4) in the SysV Programmer's Reference.

1-254 Commands

Domain/OS SysV

NAME
german_to _iso - convert files to ISO fonnat

SYNOPSIS
german_to_iso inputJzle outputJzle

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7-bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit fonnat. The overloaded fonts include any
with a specific language suffix (for example, f7x13.french, or din_f7xll.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCII characters and the national characters in one file. The 8-bit fonts
available as of SRIO include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (inputJzle) and your outputJzle. If outputJzle already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

/usr/apollo/bin/french _to _iso Converts overloaded French to ISO format

/usr/apollo/bin/german _ to _iso Converts overloaded Gennan to ISO fonnat

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for­
mat

/usr/apollo/bin/swedish_to_iso Converts overloaded Swedish/Finnish to ISO for­
mat

/usr/apollo/bin/swiss _to _iso

/usr/apollo/bin/uk _ to _iso

DIAGNOSTICS

Converts overloaded Swiss to ISO fonnat

Converts overloaded U.K. English to ISO fonnat

All messages are generally self-explanatory.

Commands 1-25~

GET(l) SysV GET(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no.] [-k] [-e] [-l[pJ] [-p]
[-m] [-n] [-s] [-b] [-g] [-t] file . ..

DESCRIPTION
get generates an ASCII text file from each named sees file according to the
specifications given by its options, which begin with -. You can specify options in any
order, but all options apply to all named sees files. If a directory is named, get behaves
as though each file in the directory were specified as a named file, except that non-SeeS
files (last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed. Again, non­
sees files and unreadable files are silently ignored.

The generated text is nonnally written into a file called the g-fiIe whose name is
derived from the sees filename by simply removing the leading s.; (see also FILES,
below).

Each of the options is explained below as though only one sees file is to be processed,
but the effects of any option applies independently to each named file.

OPTIONS
-rSID

-ccutoff

-ilist

1-256

The ees IDentification string (SID) of the version (delta) of an sees file
to be retrieved. Table 1 shows, for the most useful cases, what version
of an sees file is retrieved (as well as the SID of the version to be even­
tually created by deJta(l) if the -e option is also used), as a function of
the SID specified.

Cutoff date-time, in the fonn IT[MM[DD[HH[MM[SSlllll No changes
(deltas) to the sees file which were created after the specified cutoff
date-time are included in the generated ASCII text file. Units omitted
from the date-time default to their maximum possible values; that is,
-c7502 is equivalent to -c750228235959. Any number of non-numeric
characters may separate the various 2-digit pieces of the cutoff date-time.
This feature allows you to specify a cutoff date in the fonn: "-c77/2/2
9:22:25". Note this implies that you can use the %E% and %U%
identification keywords (see below) for nested gets within, say the input
to a send(lC) command:

-!get "-c%E% %U%" s.fiIe

Forces a list of deltas to be included in the creation of the generated file.

The list has the following syntax:

Commands

GET(l)

-xlist

--e

-b

-k

-I[p]

-p

-s

Conunands

SysV

<list> ::= <range> I <list>, <range>
<range> ::= SID I SID - SID

GET(l)

SID, the sees Identification of a delta, can be in any fonn shown in the
"SID Specified" column of Table 1.

Forces a list of deltas to be excluded in the creation of the generated file.
See the -i option for the list fonnat.

Indicates the get is for the purpose of editing or making a change (delta)
to the sees file with the subsequent use of deJta(I). The --e option used
in a get for a particular version (SID) of the sees file prevents further
gets from editing on the same SID until the delta is executed or the j
(joint edit) flag is set in the sees file (see admin(l». Concurrent use of
get -e for different SIDs is always allowed.

If the g-file generated by get with an -e option is accidentally ruined in
the process of editing it, you can regenerate it by re-executing the get
command with the -k option in place of the --e option.

sees file protection specified by the ceiling, floor, and authorized user
list stored in the sees file (see admin(l» are enforced when the --e
option is used.

Used with the --e option to indicate that the new delta should have an
SID in a new branch as shown in Table 1. This option is ignored if the b
flag is not present in the file (see admin(l» or if the retrieved delta is not
a leaf delta. (A leaf delta is one that has no successors on the sees file
tree.)
Note: You can always create a branch delta from a non-leaf delta. Par­
tial SIDs are interpreted as shown in the "SID Retrieved" column of
Table 1.

Suppresses replacement of identification keywords (see below) in the
retrieved text by their value. The -k option is implied by the --e option.

Causes a delta summary to be written into an I-file. If -Ip is used then
an I-file is not created; the delta summary is written on the standard out­
put instead. See FILES for the fonnat of the I-file.

Causes the text retrieved from the sees file to be written on the standard
output. No g-file is created. All output which nonnally goes to the
standard output goes to file descriptor 2 instead, unless the -s option is
used, in which case it disappears.

Suppresses all output nonnally written on the standard output. How­
ever, fatal error messages (which always go to file descriptor 2) remain
unaffected.

1-257

GET(l)

1-258

-m

-n

-g

-t

-w string

-aseq-no.

SysV GET(l)

Causes each text line retrieved from the sees file to be preceded by the
SID of the delta that inserted the text line in the sees file. The format is:
SID, followed by a horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M% value,
followed by a horizontal tab, followed by the text line. When both the
-m and -n options are used, the format is: %M% value, followed by a
horizontal tab, followed by the -m option generated format.

Suppresses the actual retrieval of text from the sees file. It is primarily
used to generate an I-file, or to verify the existence of a particular SID.

Accesses the most recently created delta in a given release (e.g., -rl), or
release and level (e.g., -r1.2).

Substitutes string for all occurrences of % W% when getting the file.

The delta sequence number of the sees file delta (version) to be
retrieved (see sccsfile(5». This option is used by the comb(l) com-
mand; it is not a generally useful option. If both the -r and -a options
are specified, only -a is used. Take care when using -a in conjunction
with -e, as the SID of the delta to be created may not be what you
expect. -r can be used with -a and -e to control the naming of the SID
of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the sees file.

If -e is used, the SID of the delta to be made appears after the SID accessed and before
the number of lines generated. If there is more than one named file or if a directory or
standard input is named, each filename is printed (preceded by a new-line) before it is
processed. If -i is used included deltas are listed following the notation "Included"; if
-x is used, excluded deltas are listed following the notation "Excluded".

Commands

GET(l) SysV GET(l)

TABLE 1. Detennination of sees Identification String

SID* -b Option Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:l:

none:l:

R

R

R

R

R

R

R.L
RL

RL

RL.B
R.L.B

R.L.B.S

R.L.B.S
R.L.B.S

*

no R defaults to mR mR.mL mR.(mL+l)

yes R defaults to mR mR.mL mR.mL.(mB+l).l

no R>mR mR.mL RI***
no R=mR mR.mL mR.(mL+l)

yes R>mR mR.mL mR.mL.(mB+I).1

yes R=mR mR.mL mR.mL.(mB+l).1

R<mRand
hR.mL** hR.mL.(mB+l).l

R does not exist
Trunk succ.#
in release> R RmL R.mL.(mB+l).1
and R exists

no No trunk succ. R.L R.(L+l)

yes No trunk succ. R.L R.L.(mB+l).l

Trunk succ.
R.L R.L.(mB+l).1

in release ~ R

no No branch succ. R.L.B.mS R.L.B.(mS+l)

yes No branch succ. R.L.B.mS R.L.(mB+l).1

no No branch succ. R.L.B.S R.L.B.(S+I)

yes No branch succ. R.L.B.S R.L.(mB+l).l

Branch succ. R.L.B.S R.L.(mB+l).1

"R", "L", °B", and US" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means "maximum".
Thus, for example, "R.mL" means "the maximum level number within release
R"; "R.L.(mB+l).I" means "the first sequence number on the new branch (i.e.,
maximum branch number plus one) of level L within release R". Note that if the
SID specified is of the fonn "R.L", "RL.B", or "RL.B.S", each of the
specified components must exist.

** "hR" is the highest existing release that is lower than the specified, nonexistent,
release R.

*** This is used to force creation of the first delta in a new release.
Successor.
t The -b option is effective only if the b flag (see admin(1» is present in the file.

An entry of - means "irrelevant".
:I: This case applies if the d (default SID) flag is not present in the file. If the d flag is

present in the file, then the SID obtained from the d flag is interpreted as if it had
been specified on the command line. Thus, one of the other cases in this table
applies.

Commands 1-259

GET(l) SysV GET(l)

IDENTIFICATION KEYWORDS

1-260

Identifying infonnation is inserted into the text retrieved from the sees file by replac­
ing identification keywords with their value wherever they occur. The following key­
words may be used in the text stored in an sees file:

Keyword Value
%M% Module name: either the value of the m flag in the file (see admin(l», or if

%1%
%R%
%L%
%8%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

absent, the name of the sees file with the leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/yY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see admin(l».
sees filename.
Fully qualified sees filename.
The value of the q flag in the file (see admin(l).
Current line number. This keyword is intended for identifying messages
output by the program such as "this should not have happened" type errors.
It is not intended to be used on every line to provide sequence numbers.
The 4-character string @(#) recognizable by what(l).
A shorthand notation for constructing what(l) strings for UNIX system pro­
gram files. %W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(l) strings for non-UNIX
system program files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known generically as the
g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag. An aux­
iliary filename is fonned from the sees filename: the last component of all sees
filenames must be of the fonn s.module-name, the auxiliary files are named by replac­
ing the leading s with the tag. The g-file is an exception to this scheme: g-file is
named by removing the s. prefix. For example, s.xyz.c, the auxiliary filenames would
be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless
the f3-p option is used). A g-file is created in all cases, whether or not any lines of text
were generated by the get. It is owned by the real user. If -k is used or implied its
mode is 644; otherwise its mode is 444. Only the real user need have write pennission
in the current directory.

Commands

GET(l) SysV GET(l)

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -I option is used; its
mode is 444 and it is owned by the real user. Only the real user need have write per­
mission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY /MMIDD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizon­
tal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e option along to
delta. Its contents are also used to prevent a subsequent execution of get with an -e
option for the same SID until delta is executed or the joint edit flag, j, (see admin(I» is
set in the sees file. The p-file is created in the directory containing the sees file and
the effective user must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, followed by a
blank, followed by the SID that the new delta will have when it is made, followed by a
blank, followed by the login name of the real user, followed by a blank, followed by the
date-time the get was executed, followed by a blank and the -i argument if it was
present, followed by a blank and the -x argument if it was present, followed by a new­
line. There can be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents
are the binary (2 bytes) process ID of the command (i.e., get) that created it. The z-file
is created in the directory containing the sees file for the duration of get. The same
protection restrictions as those for the p-file apply for the z-file. The z-file is created
mode 444.

Commands 1-261

GET(l)

BUGS

Fll..ES

SysV GET(l)

If the effective user has write pennission (either explicitly or implicitly) in the directory
containing the sees files, but the real user does not, then only one file may be named
when the -e option is used.

g-file

p-file

q-fiIe

x-file

z-file

d-file

lusr/bin/bdiff

Existed before the execution of delta; removed after completion
of delta.
Existed before the execution of delta; may exist after completion
of delta.
Created during the execution of delta; removed after completion
of delta.
Created during the execution of delta; renamed to sees file after
completion of delta.
Created during the executio~ of delta; removed during the execu­
tion of delta.
Created during the execution of delta; removed after completion
of delta.
Program to compute differences between the "gotten" file and
the g-file.

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO
admin(l), delta(l), he1p(I), prs(I), sccs(1), what(l).

1-262 Commands

GETOPT(l) SysV GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set - ,getopt optstring $*,

DESCRIPTION
getopt breaks up options in command lines for easy parsing by shell procedures and
checks for legal options. optstring is a string of recognized option letters (see
getopt(3C»; if a letter is followed by a colon, the option is expected to have an argu­
ment which mayor may not be separated from it by white space.

The special option - is used to delimit the end of the options. If it is used explicitly,
getopt recognizes it; otherwise, getopt generates it; in either case, getopt places it at
the end of the options.

The positional parameters ($1 $2 ...) of the shell are reset so that each option is pre­
ceded by a - and is in its own positional parameter; each option argument is also parsed
into its own positional parameter.

You should begin using the new command getopts(l) in place of getopt. getopt will
not be supported in the next major release. For more information, see the WARNINGS
section.

EXAMPLE
The following code fragment shows how one might process the arguments for a com­
mand that can take the options a or b, as well as the option 0, which requires an argu­
ment:

set -- .getopt abo: $*,
if [$? != 0 1
then

fi

echo $USAGE
exit 2

for i in $*
do

case $i in
-a I -b) FLAG=$i; shift;;
-0) OARG=$2; shift 2;;
--) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file

Commands 1-263

GETOPT(l) SysV GETOPT(l)

cmd -oarg -a file file
cmd -a -oarg -- file file

WARNINGS
getopt does not support the part of Rule 8 of the conunand syntax standard (see
intro(l» that pennits groups of option-arguments following an option to be separated
by white space and quoted. For example,

cmd -a -b -0 "xxx Z yy" file

is not handled correctly). To correct this deficiency, use the new conunand getopts in
place of getopt.

getopt will not be supported in the next major release. For this release a conversion
tool has been provided, getoptcvt(l). For more information about getopts and
getoptcvt, see the getopts manual page.

IT an option that takes an option-argument is followed by a value that is the same as one
of the options listed in optstring, referring to the earlier EXAMPLE section, but using
the following conunand line:

cmd -0 -a file

get opt always treats -a as an option-argument to -0; it never recognizes -a as an
option. In this case, the for loop in the example shifts past the file argument.

DIAGNOSTICS
getopt prints an error message on the standard error when it encounters an option letter
not included in optstring.

SEE ALSO
getopts(l), getoptcvt(l), sh(l).
getopt(3C) in the SysV Programmer's Reference.

1-264 Conunands

GETOPTCVT(l) SysV GETOPTCVT(l)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
get opts optstring name [arg ... J"
/usrllib/getoptcvt [-b] file

DESCRIPTION
getopts parses positional parameters for shell procedures and checks for legal options.
It supports all applicable rules of the command syntax standard (see Rules 3-10,
intro(l». It should be used in place of the getopt(l) command. (See the WARNING­
section.)

optstring must contain the option letters recognized by the command using getopts; if a
letter is followed by a colon, the option is expected to have an argument, or group of
arguments, which must be separated from it by white space.

Each time it is invoked, getopts placea the next option in the shell variable name and
the index of the next argument to be processed in the shell variable OPTIND. When­
ever the shell or a shell procedure is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? is placed in name.

When getopts reaches the end of options, it exits with a non-zero exit status. The spe­
cial option "-" can be used to delimit the end of the options.

By default, getopts parses positional parameters. If extra arguments (arg ...) are given
on the getopts command line, getopts parses them instead.

/usr/lib/getoptcvt reads the shell script in file, converts it to use getopts instead of
getopt, and writes the results on the standard output.

So all new commands adhere to the command syntax standard described in intro, they
should use getopts or getopt(3C) to parse positional parameters and check for legal
options (see the WARNING section.)

OPTIONS
-b

Commands

Results of running /usrllib/getoptcvt are portable to earlier releases of the
UNIX system. /usr/lib/getoptcvt modifies the shell script infile so that when
the resulting shell script is executed, it determines at run time whether to
invoke getopts or getopt.

1-265

GETOPTCVT(l) SysV GETOPTCVT(l)

EXAMPLE
The following fragment of a shell program shows how one might process the arguments
for a command that can take the options a or b, as well as the option 0, which requires
an option-argument:

while getopts abo: c

do
case $c in
a I b) FLAG=$C; ;
0) OARG=$OPTARG; ;

\ ?) echo $USAGE
exit 2;;

esac
done
shift ,expr $OPTIND - L

This code will accept any of the following as equivalent:

cmd -a -b -0 "xxx Z YY" file
cmd -a -b -0 "xxx Z YY" - file

cmd -ab -0 xxx,z,YY file
cmd -ab -0 "xxx z YY" file
cmd -0 xxx,z,YY -b -a file

WARNING
Although the following command syntax rule (see intro) relaxations are permitted
under the current implementation, they should not be used because they may not be
supported in future releases of the system. As in the EXAMPLE section, a and b are
options, and the option 0 requires an option-argument:

cmd -aboxxx file

Rule 5 violation: options with option-arguments must not be grouped with other
options.

cmd -ab -oxxx file

Rule 6 violation: there must be white space after an option that takes an option­
argument.

Changing the value of the shell variable OPTlND or parsing different sets of arguments
may lead to unexpected results.

DIAGNOSTICS

1-266

getopts prints an error message on the standard error when it encounters an option letter
not included in optstring.

Commands

GETOPTCVT(l) SysV GETOPTCVT(l)

SEE ALSO
intro(1), sh(1).

getopts(3C) in the SysV Programmer's Reference.

Commands 1-267

GETOPTS(l) SysV GETOPTS(l)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg ... J

/usr/lib/getoptcH [-bJ file

DESCRIPTION
getopts parses positional parameters for shell procedures and checks for legal options.
It supports all applicable rules of the command syntax standard (see Rules 3-10,
intro(l». It should be used in place of the getopt(l) command. (See the WARNING­
section.)

optstring must contain the option letters recognized by the command using getopts; if a
letter is followed by a colon, the option is expected to have an argument, or group of
arguments, which must be separated from it by white space.

Each time it is invoked, getopts placea the next option in the shell variable name and
the index of the next argument to be processed in the shell variable OPTIND. When­
ever the shell or a shell procedure is invoked, OPTIND is initialized to l.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? is placed in name.

When getopts reaches the end of options, it exits with a non-zero exit status. The spe­
cial option "-" can be used to delimit the end of the options.

By default, getopts parses positional parameters. If extra arguments (arg .. .) are given
on the getopts command line, getopts parses them instead.

/usrllib/getoptcvt reads the shell script in file, converts it to use getopts instead of
getopt, and writes the results on the standard output.

So all new commands adhere to the command syntax standard described in intro, they
should use getopts or getopt(3C) to parse positional parameters and check for legal
options (see the WARNINGsection.)

OPTIONS
-b Results of running /usr/lib/getoptc"t are portable to earlier releases of the

UNIX system. /usr/lib/getoptcvt modifies the shell script infile so that when
the resulting shell script is executed, it determines at run time whether to
invoke getopts(l) or getopt(1).

EXAMPLE

1-268

The following fragment of a shell program shows how one might process the arguments
for a command that can take the options a or b, as well as the option 0, which requires
an option-argument:

Commands

GETOPTS(l) SysV

while getopts abo: c
do

done

case $c
a I b)
0)

\ ?)

esac

in
FLAG=$C; ;
OARG=$OPTARG;;
echo $USAGE
exit 2;;

shift ,expr $OPTIND - 1,

This code will accept any of the following as equivalent:

WARNING

cmd -a -b -0 "xxx Z YY" file
cmd -a -b - 0 "xxx Z YY" - file
cmd -ab -0 xxx,z,YY file
cmd -ab -0 "xxx z yyrl file

cmd -0 xxx, z, YY -b -a file

GETOPTS(1)

Although the following command syntax rule (see intro) relaxations are pennitted
under the current implementation, they should not be used because they may not be
supported in future releases of the system. As in the EXAMPLE section above, a and b
are options, and the option 0 requires an option-argument:

cmd -aboxxx file

Rule 5 violation: options with option-arguments must not be grouped with other
options.

cmd -ab -oxxx file

Rule 6 violation: there must be white space after an option that takes an option­
argument.

Changing the value of the shell variable OPTIND or parsing different sets of arguments
may lead to unexpected results.

DIAGNOSTICS
getopts prints an error message on the standard error when it encounters an option letter
not included in optstring.

SEE ALSO
intro(I), sh(1).
getopts(3C) in the SysV Programmer's Reference.

Commands 1-269

GRAPH(1G) SysV GRAPH(1G)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as abscissas and
ordinates of a graph. Successive points are connected by straight lines. The graph is
encoded on the standard output for display by the tplot(1 G) filters.

If the coordinates of a point are followed by a non-numeric string, that string is printed
as a label beginning on the point. Labels can be surrounded with quotes" , in which
case they may be empty or contain blanks and numbers; labels never contain new lines.

A legend indicating grid range is produced with a grid unless -s is present. If a
specified lower limit exceeds the upper limit, the axis is reversed.

OPTIONS

1-270

The following options are recognized, each as a separate argument:

-a Supplies abscissas automatically (they are missing from the input); spac­
ing is given by the next argument (default I). A second optional argu­
ment is the starting point for automatic abscissas (default 0 or lower
limit given by -x).

-b

-c

-g

-I

-m

-s

-x [I]

-y [I]

-h

-w

-r

Breaks (disconnects) the graph after each label in the input.

Character string given by next argument is default label for each point.

Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid
(default).

Next argument is label for graph.

Next argument is mode (style) of connecting lines: 0 disconnected,
connected (default). Some devices give distinguishable line styles for
other small integers (e.g., the Tektronix 4014: 2=dotted, 3=dash-dot,
4=short-dash,5=long-dash).

Saves screen, does not erase before plotting.

If I is present, x axis is logarithmic. Next 1 (or 2) arguments are lower
(and upper) x limits. Third argument, if present, is grid spacing on x
axis. Normally these quantities are determined automatically.

Similarly for y.

Next argument is fraction of space for height.

Similarly for width.

Next argument is fraction of space to move right before plotting.

Commands

GRAPH(lG) SysV GRAPH(lG)

-u Similarly to move up before plotting.

-t Transposes horizontal and vertical axes. (-x now applies to the vertical
axis.)

BUGS
graph stores all points internally and drops those for which there is no room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

SEE ALSO
graphics(lG), spline(IG), tplot(lG).

Commands 1-271

GRAPH(lG) SysV GRAPH(lG)

NAME
graphics - access graphic and numeric commands

SYNOPSIS
graphics [-r]

DESCRIPTION

OPTION

graphics prefixes the path name lusr/bin/grafto the current $PATH value, changes the
primary shell prompt to " and executes a new shell. The directory lusr/bin/graf con­
tains all of the graphics subsystem commands.

The fonnat for a graphics command is COmmiJnd name argument(s). An argument can
be afilename or an option string. Afilename is the name of any UNIX system file except
those beginning with -. The filename - is the name for the standard input. An option
string consists of - followed by one or more option(s). An option consists of a
keyletter possibly followed by a value. Options may be separated by commas.

The graphic commands consist of: Commands that manipulate and plot numeric data
(see stat(IG». Commands that generate tables of contents (see toc(IG». Commands
that interact with graphic devices (see gdev(IG» and ged(IG». A collection of graphic
utility commands (see gutil(IG».

You can generate a list of the graphics commands by typing whatis in the graphics
environment.

-r Creates a restricted environment for access to the graphical commands.
That is, $PATH is set to:

:/usr/bin/graf:/rbin:/usr/rbin:/bin:/usr/bin

and the restricted shell, rsh, is invoked. To restore the environment that
existed prior to issuing the graphics command, type EOT (CfRLjD on
most tenninals). To logoff from the graphics environment, type quit.

SEE ALSO
gdev(IG), gutil(lG), stat(IG), toc(1G).
gps(4) in the SysV Programmer's Reference.

1-272 Commands

GREEK(I)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminall

DESCRIPTION

SysV GREEK(I)

greek is a filter that reinterprets the extended character set, as well as the reverse and
half-line motions, of a 128-character Teletype Model 37 terminal for certain other ter­
minals. Special characters are simulated by overstriking, if necessary and possible. If
the argument is omitted, greek attempts to use the environment variable $TERM (see
environ(5». Currently, the following terminals are recognized:

FILES

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO

DASI300.
DASI 300 in 12-pitch.
DASI300s.
DASI 300s in 12-pitch.
DASI450.
DASI 450 in 12-pitch.
Diablo 1620 (alias DASI 450).
Diablo 1620 (alias DASI 450) in 12-pitch.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.

300(1),4014(1),450(1), hp(I), eqn(l), mm(I), nroff(I). tplot(lG).
environ(5), greek(5), term(5) in the SysV Programmer's Reference.

Commands 1-273

GREP(l) SysV GREP(l)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] limited regular expression Vile ..•]

DESCRIPTION
grep searches files for a pattern and prints all lines that contain that pattern. grep uses
limited regular expressions (expressions that have string values that use a subset of the
possible alphanumeric and special characters) like those used with ed(l) to match the
patterns. It uses a compact non-detenninistic algorithm.

Be careful using the characters $, *, [, ., I , (,), and \ in the limited regular expression
because they are also meaningful to the shell. It is safest to enclose the entire limited
regular expression in single quotes ' ... '.

If no files are specified, grep assumes standard input. Normally, each line found is
copied to standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS

BUGS

-b

-c

-i

-1

-n

-s

-v

Precedes each line by the block number on which it was found. Useful
in locating block numbers by context (first block is 0).

Prints only a count of the lines that contain the pattern.

Ignores upper/lower case distinction during comparisons.

Prints the names of files with matching lines once, separated by new­
lines. Does not repeat the names of files when the pattern is found more
than once.

Precedes each line by its line number in the file (first line is I).

Suppresses error messages about nonexistent or unreadable files.

Prints all lines except those that contain the pattern.

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
lusr/include/stdio.h.

If there is a line with embedded nulls, grep only matches up to the first null; if that
matches, it prints the entire line.

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files (even if matches were found).

SEE ALSO
ed(I), egrep(I), fgrep(I), sed(I), sh(l).

1-274 Commands

GUTll..(lG) SysV GUTll..(lG)

NAME
gutil - graphic utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device-independent utility commands found in
/usr/bin/graf. If no files are given, input is from the standard input. All output is to the
standard output. Graphic data is stored in GPS format; see gps(4).

bel Sends bel character to terminal.

cvrtopt [=sstring fstring istring tstring] [args]
Converts options. Reformats args (usually the command line arguments of
a calling shell procedure) to facilitate processing by shell procedures. An
arg is either a file name (a string not beginning with a -, or a - by itself) or
an option string (a string of options beginning with a -). Output is of the
form:

-option -option . .. file name(s)

All options appear singularly and preceding any filenames. Options that
take values (e.g., -rl.l) or are two letters long must be described through
options to cvrtopt.

cvrtopt is usually used with set in the following manner as the first line of
a shell procedure:

set - .cvrtopt =[options] $@.

Options to cvrtopt are:

sstring

fstring

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

String accepts integers as values.

String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

gd [GPSjiles] - GPS dump
Prints a human-readable listing of GPS.

Commands 1-275

GUTIL(lG) SysV GUTIL(lG)

gtop [-rnu] [GPSjiles]
GPS to plot(4) filter. Transforms a GPS into plot(4) commands display­
able by plot filters. GPS objects are translated if they fall within the win­
dow that circumscribes the first file unless an option is given. Options to
gtop are:

rn Translates objects in GPS region n.

u Translates all objects in the GPS universe.

pd [plot(5)files]
plot(4) dump. Prints a human-readable listing of plot(4) format graphic
commands.

ptog [plot(5)jiles]
plot(4) to GPS filter. Transforms plo(4) commands into a GPS.

quit Terminates session.

remcom [files]
Remove comments. Copies its input to its output with comments removed.
Comments are as defined in C (Le., /* comment */).

whatis [-0] [names]
Brief online documentation. Prints a brief description of each name given.
If no name is given, then the current list of description names is printed.
The command whatis* prints out every description. Using the -0 option
causes only command options to be printed.

yoofile Pipe fitting primitive. Deposits the output of a pipeline into a file used in
the pipeline. Without yoo, this is not usually successful as it causes a read
and write on the same file simultaneously.

SEE ALSO
graphics(1 G).
gps(4), plot(4) in the SysV Programmer's Reference.

1-276 Commands

HARDCOPY(lG) SysV HARDCOPY(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see graphics(1G».

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

erase

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left comer to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left comer to n inches.

yvn Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit, hard­
copy generates a screen copy on the unit.

tekset

Commands

Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

1-277

HARDCOPY(lG) SysV HARDCOPY(lG)

td Translate a GPS to scope code for a Tektronix 4010 series storage tenninal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(IG).
gps(4) in the SysV Programmer's Reference.

1-278 Commands

HASHCHECK(l) SysV HASHCHECK(l)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-I] [+localJr1e] [files]

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spelllhashcheck spelling_list

DESCRIPTION
spell collects words from the named files and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are printed on the standard output. If no
files are named, words are collected from the standard input.

spell ignores most troff(l), tbl(l), and eqn(l) constructions.

By default, spell follows chains of included files (.so and .nx troff(l) requests), unless
the names of such included files begin with /usr/lib. Under the -I option, spell will fol­
low the chains of all included files.

The spelling list is based on many sources, and while more haphazard than an ordinary
dictionary, is also more effective with respect to proper names and popular technical
words. Coverage of the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the history
file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would otherwise
pass.

Three routines help maintain and check the hash lists used by spell:

hashmake

spellin

hashcheck

OPTIONS

Reads a list of words from the standard input and writes the correspond­
ing nine-digit hash code on the standard output.

Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output.

Reads a compressed spelling_list and recreates the nine-digit hash codes
for all the words in it; it writes these codes on the standard output.

The following options apply to spell:

-v

-b

Commands

Prints all words not literally in the spelling list, and indicate plausible
derivations from the words in the spelling list.

Checks British spelling. Besides preferring centre, colour, programme,
speciality, travelled, etc., this option insists upon -ise in words like stan­
dardise, Fowler and the OED to the contrary notwithstanding.

1-279

HASHCHECK(l) SysV HASHCHECK(l)

FILES

BUGS

-x Prints every plausible stem with = for each word.

+localJile Removes words found in loca(jile are removed from spell's output.
Local Jele is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words
that are correct spellings (in addition to spell's own spelling list) for
each job.

D _ SPELL=/usr/lib/spell/hlist[ab]
Hashed spelling lists, American & British

S _ SPELL=/usr/lib/spell/hstop
Hashed stop list

H _ SPELL=/usrlIib/spell/spellhist
History file

/usr/lib/spell/spellprog
Program

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.

SEE ALSO
sed(I), sort(l), tee(I).

1-280 Commands

HASHMAKE(l) SysV HASHMAKE(l)

NAME
spell, hash make, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-I] [+loca(file] [files]

/usr/lib/spelllhashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION
spell collects words from the named files and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are printed on the standard output. If no
files are named, words are collected from the standard input.

spell ignores most troff(l), tbl(l), and eqn(l) constructions.

By default, spell follows chains of included files (.so and .nx troff(l) requests), unless
the names of such included files begin with /usr/lib. Under the -I option, spell will fol­
low the chains of all included files.

The spelling list is based on many sources, and while more haphazard than an ordinary
dictionary, is also more effective with respect to proper names and popular technical
words. Coverage of the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the history
file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would otherwise
pass.

Three routines help maintain and check the hash lists used by spell:

hash make Reads a list of words from the standard input and writes the correspond­
ing nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output.

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash codes
for all the words in it; it writes these codes on the standard output.

OPTIONS
The following options apply to spell:

-v

-b

Commands

Prints all words not literally in the spelling list, and indicate plausible
derivations from the words in the spelling list.

Checks British spelling. Besides preferring centre, colour, programme,
speciality, travelled, etc., this option insists upon -ise in words like stan­
dardise, Fowler and the OED to the contrary notwithstanding.

1-281

HASHMAKE(l) SysV HASHMAKE(l)

FILES

BUGS

-x Prints every plausible stem with = for each word.

+localJile Removes words found in local...flle are removed from spell's output.
Local...fzle is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words
that are correct spellings (in addition to spell's own spelling list) for
each job.

D _ SPELL=/usrllib/spell/hlist[ab 1
Hashed spelling lists, American & British

S _ SPELL=/usrllib/spell/hstop
Hashed stop list

H _ SPELL=/usrllib/spell/spellhist
History file

/usrllib/spell/spellprog
Program

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.

SEE ALSO
sed(1), sort(!), tee(!).

!-282 Commands

HELP(l) SysV HELP(l)

NAME
help - ask for SCCS help

SYNOPSIS
help [arguments]

DESCRIPTION

FILES

help finds infonnation to explain the use of, or a particular message from, an sees
command.

Arguments can be either message numbers (which nonnally appear in parentheses fol­
lowing messages), command names, or one of the following types:

type 1

type 2

type 3

/usr/lib/help

/usr/lib/help/helploc

Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program or set
of routines that produced the message. For example, ge3
means message 3 from the get(l) command.

Does not contain numerics. That is, it appears as a command
name such as the name get.

Is all numeric. For example, 26.

Directory containing files of message text

File containing locations of help files not in /usr/lib/helll

Commands 1-28

HOSTID(l) SysV HOSTID(l)

NAME
hostid - set or print identifier of current host system

SYNOPSIS
hostid [identifier 1

DESCRIPTION

1-284

The hostid command prints the identifier of the current host in hexadecimal. This
numeric value is expected to be unique across all hosts and is commonly set to the
host's Internet address. The super-user can set the host ID by giving a hexadecimal
argument or the hostname; this is usually done in the start-up script letc/rc.local.

Commands

HOSTNAME(l) SysV

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [name-oj-host]

DESCRIPTION

HOSTNAME(l)

The hostname command prints the name of the current host. The super-user can set the
host name by giving an argument; this is usually done in the start-up script letc/rc.Iocal.

Commands 1-28!

HP(I) SysV HP(I)

NAME
hp - handle special functions of Hewlett-Packard terminals

SYNOPSIS
hp [-e) [-m]

DESCRIPTION
hp supports sp<"cial functions of the Hewlett-Packard 2640 series of terminals, with the
primary purpose of producing accurate representations of most nroff output. A typical
usage is as follows:

nroff -hfiles ... hp

Regardless of the hardware options on your terminal, hp tries to do sensible things with
underlining and reverse linefeeds. If the terminal has the "display enhancements"
feature, subscripts and superscripts Can be indicated in distinct ways. If it has the
"mathematical-symbol" feature, Greek and other special characters can be displayed.

OPTIONS

NOTES

BUGS

1-286

-e

-m

Assumes that your terminal has the "display enhancements" feature, and
so makes maximum use of the added display modes. Overstruck charac­
ters are shown underlined. Superscripts are shown half-bright, and sub­
scripts in half-bright, underlined mode. If this option is omitted, hp
assumes that your terminal lacks the "display enhancements" feature. In
this case, all overstruck characters, subscripts, and superscripts are
displayed in inverse video.

Requests minimization of output by removal of new lines. Any contigu­
ous sequence of 3 or more newlines is converted into a sequence of only
2 newlines; i.e., any number of successive blank lines produces only a
single blank output line. This allows you to retain more actual text on
the screen.

With regard to Greek and other special characters, hp provides the same set as does
300(1), except that "not" is approximated by a right arrow, and only the top half of the
integral sign is shown.

The exit codes are 0 for normal termination, 2 for all errors.

An "overstriking sequence" is defined as a printing character, followed by a backspace,
followed by another printing character. In such sequences, if either printing character is
an underscore, the other printing character is shown underlined or in inverse video; oth­
erwise, only the first printing character is shown (again, underlined or in Inverse
Video). Nothing special is done if a backspace is adjacent to an ASCII control charac­
ter. Sequences of control characters (e.g., reverse linefeeds, backspaces) can make text
"disappear"; in particular, tables generated by tbl(l) that contain vertical lines will
often be missing the lines of text that contain the "foot" of a vertical line, unless the

Commands

HP(l) SysV HP(l)

input to hp is piped through coJ(l).
Although some terminals do provide numerical superscript characters, no attempt is
made to display them.

DIAGNOSTICS
line too long The representation of a line exceeds 1,024 characters.

SEE ALSO
300(1), coJ(l), eqn(l), greek(1). nroff(1), tbl(l).

Commands 1-287

HPC(l) Domain/OS SysY HPC(l)

NAME
hpc - program counter histogram

SYNOPSIS
hpc [-low xl [-high xl

[-from procedure]
[-to procedure]
[-proc procedure]
[-limit nl [-rate n]
[-nhdr] [-mapl
[-brief] pathname
[args ... l

DESCRIPTION

1-288

hpc (histogram_program_counter), part of Domain/PAK (Domain Performance
Analysis Kit), looks at the performance of programs at the PC level.

hpc produces a histogram of the program counter (PC) during program execution, thus
helping you locate the most compute-bound portions of your program.

While your program is executing, hpc samples the PC at regular intervals, gathering a
set of data points. Each data point records the region in which the program was execut­
ing the location of the PC when the sample was taken.

hpc divides your program into 256 equally sized regions called "buckets." The size of
the region depends on the size of your program or the range you select. The smaller the
region, the better the resolution of the analysis.

When execution of your program has ended, hpc displays statistics and a histogram
(bar graph) of the PC. Each bar corresponds to an area of program memory. The
length of the bar indicates how much time the program spent executing in the
corresponding area. hpc tells you which procedures and line numbers each bar
represents.

While hpc and your program are executing, a serial line is not available for output.

pathname (required) Specify the name of the program to be evaluated.

args (optional) Specify any arguments to be passed to the program path­
name. These are not processed by hpc, but passed
directly to your program.

Default if omitted: no arguments passed

Commands

HPC(l) Domain/OS SysV HPC(l)

OPTIONS
If no options are specified, a histogram is produced for the entire program, with 500
samples taken per second.

-low x

-high x

-from procedure

-to procedure

-proc procedure

-limitn

-rate n

-nhdr

-map

Commands

Specify lowest address x to be included in the histogram. x must
be a hexadecimal value. If this option is omitted, the histogram
starts at the beginning of the program or procedure (see -from
below).

Specify highest address x to be included in the histogram. x must
be a hexadecimal value. If this option is omitted, the histogram
continues to the end of the program or procedure (see -to below).

Specify the beginning of a procedure as the lowest address to be
included in the histogram. If both -from and -low are omitted,
the histogram starts at the beginning of the program. Note the the
procedure name is case-insensitive.

Specify the end of a procedure as the highest address to be
included in the histogram. If both -to and -high are omitted, the
histogram stops at the end of the program. Note the the procedure
name is case-insensitive.

Specify a single procedure to be included in the histogram. Note
the the procedure name is case-insensitive.

By limiting the range of addresses in the histogram with -low,
-high, -from, -to, and -proc, you can study a specific part of
your program, such as an I/O routine.

Limit the displayed histogram bars to those that represent more
than n% of the monitored program execution. The default value
for n is 1. Use -limit 0 to show all histogram entries.

Specify how many times n hpc samples the program counter per
second. n must be a decimal number in the range 5 to 2000. The
default is 500 samples per second. A higher rate results in a
more accurate histogram, but tends to slow program execution.

Generate the histogram without the header information. Using
this option makes filtering the output easier.

Generate a list of the names and starting and ending locations of
the procedures in the program. This list is reduced if -from, -to,
-high, or -low are used to restrict monitoring to specific pro­
cedures or memory addresses. The output from this option can
be quite verbose for large programs.

1-289

HPC(l)

-brief

SEE ALSO
dpat(1). dspst(1)

1-290

Domain/OS SysV HPC(l)

Produce a compact bar chart by showing only the name of the
first procedure. or procedure fragment. contained in the bucket
represented by each bar. By default. dpat shows the names of all
procedures or procedure fragments contained in the bucket. This
option also suppresses source-line information.

Commands

HPD(1G) SysV HPD(1G)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see graphics(IG)).

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

erase

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left comer to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left comer to n inches.

yvn Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display tenninal with a hard copy unit, hard­
copy generates a screen copy on the unit.

tekset Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

Commands 1-291

HPD(lG) SysV HPD(lG)

td Translate a GPS to scope code for a Tektronix 4010 series storage terminal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(1 G).
gps(4) in the SysV Programmer's Reference.

1-292 Commands

ID(l) SysV

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

ID(l)

id writes a message on the standard output, giving the user and group IDs and the
corresponding names of the invoking process. If the effective and real IDs do not
match, both are printed.

SEE ALSO
logname (I), getuid (2).

Commands 1-293

INLm(l) Domain/OS SysV INLIB(l)

NAME
inli b - install a user-supplied library

SYNOPSIS
inlib pathname ...

DESCRlPTION

1-294

inlib installs a library at the current shell level; it remains installed until the shell that
installed it exits. See the note below for information on loading a library that is used by
all processes. The newly installed library will be used to resolve external references of
programs (and libraries) loaded after its installation. (Thus, previously loaded libraries
and programs will not be affected.)

Note that only those global references that are marked by the binder become visible,
and that the default action of the binder is to leave globals unmarked. Therefore, you
should take care to mark all appropriate globals when you bind your library.

inlib is an internal shell command. You can create a library that is installed automati­
cally in every process. This library resides in the file llib/userlib.private. The pro­
cedure text in this library will be shared among all processes.

This library must be present at node start-up time in order to be installed. After copying
your library to llib/userlib.private, you must shut down the node and start it up again
in order to use the library. Changes to the library also require rebooting the node to
load the new routines.

Global names in /Iib/userlib.private must not duplicate names used in Domain
libraries.

pathname (required) Specify name of library file(s) to be installed. Multiple path­
names and wildcarding are permitted.

Commands

INTM(l)

NAME
intm - install a type manager

SYNOPSIS

Domain/OS SysV

intm [options] type_name [mgryathname]

DESCRIPTION

INTM(l)

intm installs a type manager for the type_name. The manager is copied into the type
manager directory from mgr yathname. If mgr yathname is omitted, the file named
type_name in the current directory is used. The intm command does not accept wild­
cards.

type_name (required) Specify the type for which the manager is to be installed.

mgr yathname (optional)
Specify the pathname of the manager object file to install for this
type.

Default if omitted: object file is named type_name

OPTIONS
-n node _spec Specify the node on which the type manager is to be installed. If this

option is omitted, the type manager is installed on the current node.

-I List the results of the operation.

-r Replace an existing type manager if it exists.

EXAMPLES
$ intm example_type Imydir/my_example_mgr.bin

$ intm example_type Imydir/old _ example_ mgr.bin -n Ilremote _vol -I
"/mydir/old_example_mgr.bin" installed as the manager for
type example_type on volume //remote_vol.

SEE ALSO
inty(l)

Commands 1-295

1NTY(1) Domain/OS SysV 1NTY(1)

NAME
iDly - install a new type

SYNOPSIS
iDly [options] type_name source_volume [-0 node_spec]

DESCRIPTION
iDly installs a type from one node to another. It installs both the type name and type
manager on the target node (given by the -0 option).

type_name (required) Specify the name of the type to be installed.

source _volume (required)
Specify the pathname of the source volume from which to copy
the type name and type manager.

OPTIONS
-0 node _spec Specify the node on which the type is to be installed. You may also

specify the entry directory of a volume mounted for software installa­
tion, as shown in the example below. If this option is omitted, the type is
installed on the current node.

-I List the results of the installation.

-r Replace any existing type name/manager pair.

EXAMPLES
$ inty example_type IItest_vol
Type "example_type" installed.

$ inty example_type IImy_vol-n IItest_vol-1
Type "example_type" installed on volume / /test_vol.

SEE ALSO
crty(I), dlty(I },lty(1), intm(I)

1-296 Commands

IPCRM(l) SysV IPCRM(l)

NAME
ipcrm - remove a message queue, semaphore set, or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
ipcrm removes one or more specified messages, a semaphore, or shared memory
identifiers.

OPTIONS
-q msqid Removes the message queue identifier msqid from the system and des­

troys the message queue and data structure associated with it.

-m shmid Removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des­
troyed after the last detach.

-s semid Removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

-Q msgkey Removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure associated
with it.

-M shmkey Removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associated
with it are destroyed after the last detach.

-S semkey Removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure associated
with it.

Details of the removes are described in msgctl(2), shmctl(2), and semctl(2). Find
identifiers and keys by using ipcs(1).

SEE ALSO
ipcs(1).
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2),
shmop(2) in the SysV Programmer's Reference.

Commands 1-297

IPCS(l) SysV IPCS(l)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
ipcs prints certain infonnation about active inter-process communication facilities.
Without options, infonnation is printed in short fonnat for message queues, shared
memory, and semaphores that are currently active in the system.

OPTIONS

1-298

-q Prints infonnation about active message queues.

-m Prints infonnation about active shared memory segments.

Prints information about active semaphores.

If -q, -m, or -s are specified, information about only those indicated is printed. If
none of these three are specified, infonnation about all three is printed subject to these
options:

-b

-c

-0

-p

-t

-a

Prints biggest allowable size infonnation. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

Prints creator's login name and group name.

Prints infonnation on outstanding usage. (Number of messages on queue
and total number of bytes in messages on queue for message queues and
number of processes attached to shared memory segments.)

Prints process number infonnation. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process
to attach or detach on shared memory segments.)

Prints time infonnation. (Time of the last control operation that changed
the access permissions for all facilities. Time of last msgsnd and last
msgrcv on message queues, last shmat and last shmdt on shared memory,
last semop(2) on semaphores.)

Uses all print options. (This is a shorthand notation for -b, -c, -0, -p,
and -t.)

Commands

IPCS(l) SysV IPCS(l)

The column headings and the meaning of the columns in an ipcs list are given below;
the letters in parentheses indicate the options that cause the corresponding heading to
appear; all means that the heading always appears. Note that these options only deter­
mine what information is provided for each facility; they do not determine which facili­
ties are listed.

COLUMNS
T (all) Type of the facility:

ID
KEY

MODE

(all)
(all)

(all)

OWNER (all)
GROUP (all)
CREATOR(a,c)
CGROUP (a,c)

Commands

q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.
The key used as an argument to msgget, semget, or shmget to create
the facility entry. (Note: The key of a shared memory segment is
changed to IPC_PRIVATE when the segment has been removed
until all processes attached to the segment detach it.)
The facility access modes and flags: The mode consists of 11 char­
acters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has been

removed. It will disappear when the last process
attached to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permis­
sions of others in the user-group of the facility entry; and the last to
all others. Within each set, the first character indicates permission
to read, the second character indicates permission to write or alter
the facility entry, and the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.
The login name of the owner of the facility entry.
The group name of the group of the owner of the facility entry.
The login name of the creator of the facility entry.
The group name of the group of the creator of the facility entry.

1-299

IPCS(l)

FILES

CBYTES (a,o)

QNUM (a,o)

QBYTES (a,b)

LSPID (a,p)

LRPID (a,p)

STIME (a,t)
RTIME (a,t)
CTIME (a,t)
NATTCH (a,o)

SEGSZ (a,b)
CPID (a,p)
LPID (a,p)

ATIME (a,t)

DTIME (a,t)

NSEMS (a,b)

OTIME (a,t)

/unix
/etc/passwd
/etc/group

SEE ALSO

SysV IPCS(l)

The number of bytes in messages currently outstanding on the asso­
ciated message queue.
The number of messages currently outstanding on the associated
message queue.
The maximum number of bytes allowed in messages outstanding on
the associated message queue.
The process ID of the last process to send a message to the associ­
atedqueue.
The process ID of the last process to receive a message from the
associated queue.
The time the last message was sent to the associated queue.
The time the last message was received from the associated queue.
The time when the associated entry was created or changed.
The number of processes attached to the associated shared memory
segment.
The size of the associated shared memory segment.
The process ID of the creator of the shared memory entry.
The process ID of the last process to attach or detach the shared
memory segment.
The time the last attach was completed to the associated shared
memory segment.
The time the last detach was completed on the associated shared
memory segment.
The number of semaphores in the set associated with the semaphore
entry.
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

System namelist
User names
Group names

msgop(2), semop(2), shmop(2) in the SysV Programmer's Reference.

1-300 Commands

ISO(l) Domain/OS SysV ISO(l)

NAME
iso - convert files to ISO format

SYNOPSIS
french_to_iso
german to iso
nor.dan to iso
swedish_to_iso
swiss to iso
uk_to_iso

input Jile output Jile
input Jile output Jile
input Jile output Jile
input Jile output Jile
input Jile output Jile
input Jile output Jile

DESCRIPTION
These utilities convert files written with the overloaded 7 -bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit format. The overloaded fonts include any
with a specific language suffix (for example, t7xl3.french, or din_t7xll.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCn characters with national ones, have that
subset of ASCl[characters and the national characters in one file. The 8-bit fonts
available as of SRlO include all the ASCll characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (inputJile) and your outputJile. If outputJile already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

Commands 1-301

ISO(I)

FILES

DomaiD/OS SysV ISO(1)

/usr/apollo/bin/french_to_iso Converts overloaded French to ISO fonnat

/usr/apollo/bin/german_to_iso Converts overloaded Gennan to ISO fonnat

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for­
mat

/usr/apollo/bin/swedish_to_iso Converts overloaded SwedishIFinnish to ISO for­
mat

/usr/apollo/bin/swiss _ to Jso

/usr/apollo/bin/uk _to _iso

DIAGNOSTICS

Converts overloaded Swiss to iSO fonnat

Converts overloaded U.K. English to ISO fonnat

All messages are generally self-explanatory.

1-302 Commands

JOIN(l) SysV JOIN(1)

NAME
join - relational database operator

SYNOPSIS
join [options) filel file2

DESCRIPTION
join fonns, on the standard output, a join of the two relations specified by the lines of
filel andfile2. Tifilel is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on
which they are to be joined, nonnally the first in each line [see sort(l»).

There is one line in the output for each pair of lines in filel and file2 that have identical
join fields. The output line nonnally consists of the common field, then the rest of the
line fromfile1, then the rest of the line fromfile2.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored. The default
output field separator is a blank.

Some of the options below use the argument n. This argument should be a 1 or a 2
referring to either file1 or file2, respectively.

OPTIONS
-an

-es

-jnm

-0 list

-tc

EXAMPLE

Produces a line for each unpairable line in file n, where n is 1 or 2, in
addition to the nonnal output.

Replaces empty output fields by string s.

Joins on the mth field of file n. Ti n is missing, use the mth field in each
file. Fields are numbered starting with 1.

Each output line comprises the fields specified in list, each element of
which has the fonn n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

Uses character c as a separator (tab character). Every appearance of c in
a line is significant. The character c is used as the field separator for
both input and output.

The following command line joins the password file and the group file, matching on the
numeric group ID, and outputting the login name, the group name and the login direc­
tory. It is assumed that the files have been sorted in ASCII collating sequence on the
group ID fields.

join -j I " -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

Commands 1-303

JOIN(l)

BUGS

SysV JOIN(l)

With default field sepatation, the collating sequence is that of sort -b; with -t, the
sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and aWk(l) ate wildly incongruous.
Filenames that ate numeric may cause conflict when the -0 option is used right before
listing filenames.

SEE ALSO
awk(l), comm(l), sort(l), uniq(l).

1-304 Commands

KBM(l) Domain/OS SysV KBM(l)

NAME
kbm - set/display keyboard characteristics

SYNOPSIS
kbm [-c argsl H argsl [-s argsl

DESCRIPTION
kbm allows you to set the characteristics for the keyboard. Settable characteristics are
the compose key(s), and the long and short shift key(s) on the Domain multinational
keyboard. The compose key is used to compose characters of the latin-l character set
that do not have corresponding keys on the keyboard. Long and short shift are used to
toggle the alternate key labels on the multinational keyboards.

OPTIONS
If no options are specified, kbm displays the current keyboard type and characteristics.

--c args

-I args

Set compose keys to those specified by list args.

Set long shift keys to those specified by list args.

-s args Set short shift keys to those specified by list args.

A key list is a list of function key names separated by commas. The following keys are
allowable:

Key Name

ll-lf
rl-r6
fO-f9
npO-np9, npa-npg, npp
tab,
bs
ar,al

Positions

Left function keys
Right function keys
Center function keys
Numeric pad
TAB
BACKSPACE
ALT keys (multinational keyboard only)

Shifted keys are specified by appending an "s" to the key name, control keys by append­
ing a "c", the up transition by appending an "u"; for example ar, ars, arc, am .

To disable a function specify a key name of "none".

Commands 1-305

KBM(I) Domain/OS SysV

EXAMPLES

1-306

Display current characteristics

$kbm
keyboard: 3
compose: fS
long_alt: als,ars
short alt: al,ar

Set long shift keys to shifted ar and shifted al; short shift keys to al and ar.

$ kbm -1 als,ars -s aI,ar

Disable the compose function.

$ kbm--c:none

KBM(I)

Commands

KILL(l) SysV KILL(l)

NAME
kill - tenninate a process

SYNOPSIS
kill [- signo 1 PIO ...

DESCRIPTION
kill sends signal 15 (tenninate) to the specified processes. This kills processes that do
not catch or ignore the signal. The process number (PIO) of each asynchronous process
started with & is reported by the shell (unless more than one process is started in a pipe­
line, in which case the number of the last process in the pipeline is reported). Process
numbers can also be found by using ps(1).

The details of the kill are described in kill(2). For example, if process number 0 is
specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent instead of
tenninate (see signal(2». In particular kill -9 is a sure kill.

SEE ALSO
ps(1), sh(l).
kill(2), signal(2) in the SysV Programmer's Reference.

Commands 1-307

KSH(l) SysV KSH(1)

NAME
ksh - the Korn shell command progranuning language

SYNOPSIS
ksh [-aefhikmnoprstuvx] [-0 option] .•. [-c string] [-D name=val ...]
[arg .. .] .

DESCRIPTION
ksh is a command progranuning language that executes commands read from a termi­
nal or a file. See Invocation below for the meaning of arguments to the shell. rksh
(the restricted version of this shell) is not supported by SysV.

Definitions
A metacharacter is one of the following characters:

; & () I < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters, digits, or underscores
starting with a letter or underscore. Identifiers are used as names for aliases, functions ,
and named parameters. A word is a sequence of characters separated by one or more
non-quoted metacharacters.

Commands

1-308

A simple-command is a sequence of blank separated words which may be preceded by
a parameter assignment list. (See Environment below). The first word specifies the
name of the command to be executed. Except as specified below, the remaining words
are passed as arguments to the invoked command. The command name is passed as
argument 0 (see exec(2». The value of a simple-command is its exit status if it ter­
minates normally, or (octal) 200+status if it terminates abnormally (see signal(2) for a
list of status values).

A pipeline is a sequence of one or more commands separated by I . The standard output
of each command but the last is connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the shell waits for the last com­
mand to terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or II , and option­
ally terminated by;, &, or I &. Of these five symbols, ;, &, and I & have equal pre­
cedence, which is lower than that of && and II . The symbols && and II also have
equal precedence. A semicolon (;) causes sequential execution of the preceding pipe­
line; an ampersand (&) causes asynchronous execution of the preceding pipeline (i.e.,
the shell does not wait for that pipeline to finish). The symbol I & causes asynchronous
execution of the preceding command or pipeline with a two-way pipe established to the
parent shell. The standard input and output of the spawned command can be written to
and read from by the parent shell using the -p option of the special commands read
and print described later. Only one such command can be active at any given time.
The symbol && (I I) causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) value. An arbitrary number of new-lines may appear
in a list. instead of semicolons, to delimit commands.

Commands

KSH(l) SysV KSH(l)

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple-command executed in
the command.

for identifier in word . .. do list done
Each time a for command is executed, identifier is set to the next word taken
from the in word list. If in word ... is omitted, then the for command exe­
cutes the do list once for each positional parameter that is set (see Parameter
Substitution below). Execution ends when there are no more words in the list.

select identifier in word . .. do list done
A select command prints on standard error (file descriptor 2), the set of words,
each preceded by a number. If in word ... is omitted, then the positional
parameters are used instead (see Parameter Substitution below). The PS3
prompt is printed and a line is read from the standard input. If this line con­
sists of the number of one of the listed words, then the value of the parameter
identifier is set to the word corresponding to this number. If this line is empty
the selection list is printed again. Otherwise the value of the parameter
identifier is set to null. The contents of the line read from standard input is
saved in the parameter REPLY. The list is executed for each selection until a
break or end-oj-file is encountered.

case word in pattern I pattern ...) list;; ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file-name
generation (see File Name Generation below).

if list then list elif list then list ... else list fi
The list following if is executed and, if it returns a zero exit status, the list fol­
lowing the first then is executed. Otherwise, the list following elif is executed
and, if its value is zero, the list following the next then is executed. Failing
that, the else list is executed. If no else list or then list is executed, then the if
command returns a zero exit status.

while list do list done
until list do list done

(list)

A while command repeatedly executes the while list and, if the exit status of
the last command in the list is zero, executes the do list; otherwise the loop
terminates. If no commands in the do list are executed, then the while com­
mand returns a zero exit status; until may be used in place of while to negate
the loop termination test.

Execute list in a separate environment. Note, that if two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid arith­
metic evaluation as described below. A parenthesized list used as a command
argument denotes process substitution as described below.

Commands 1-309

KSH(l)

{ list;}

SysY KSH(l)

list is simply executed. Note that { is a keyword and requires a blank in order
to be recognized.

function identifier {list ;}
identifier 0 { list ;}

Define a function which is referenced by identifier. The body of the function
is the list of commands between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user and system
time are printed on standard error.

The following keywords are only recognized as the first word of a command and when
not quoted:

if then else elif Ii case esac for while until do done { } func­
tion select time

Comments
A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.

Aliasing

1-310

The first word of each command is replaced by the text of an alias if an alias for this
word has been defined. The first character of an alias name can be any non-special
printable character, but the rest of the characters must be the same as for a valid
identifier. The replacement string can contain any valid shell script including the meta­
characters listed above. The first word of each command of the replaced text will not
be tested for additional aliases. If the last character of the alias value is a blank then the
word following the alias will also be checked for alias substitution. Aliases can be used
to redefine special builtin commands but cannot be used to redefine the keywords listed
above. Aliases can be created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in effect for sub-shells
but must be reinitialized for separate invocations of the shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are executed. Therefore,
for an alias to take effect the alias command has to be executed before the command
which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the alias­
ing facility allows the value of the alias to be automatically set to the full pathname of
the corresponding command. These aliases are called tracked aliases. The value of a
tracked alias is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH variable is reset. These aliases remain tracked
so that the next subsequent reference will redefine the value. Several tracked aliases are
compiled into the shell. The -h option of the set command makes each command name
which is a valid alias name into a tracked alias.

Commands

KSH(l) SysV KSH(l)

The following exported aliases are compiled into the shell but can be unset or
redefined:

false='let 0'
functions='typeset -f
history='fc -I'
integer='typeset -i'
nohup='nohup'
r='fc -e-'
true=':'
type='whence -v'
hash=' alias -t'

Tilde Substitution
After alias substitution is performed, each word is checked to see if it begins with an
unquoted -. If it does, then the word up to a / is checked to see if it matches a user
name in the /etc/passwd file. If a match is found, the - and the matched login name is
replaced by the login directory of the matched user. This is called a tilde substitution.
If no match is found, the original text is left unchanged. A - by itself, or in front of a /,
is replaced by the value of the HOME parameter. A - followed by a + or - is replaced
by the value of the parameter PWD and OLDPWD respectively.

In addition, the value of each keyword parameter is checked to see if it begins with a -
or if a - appears after a :. In either of these cases a tilde substitution is attempted.

Command Substitution
The standard output from a command enclosed in parenthesis preceded by a dollar sign
($0) or a pair of grave accents (, ,) may be used as part or all of a word; trailing new­
lines are removed. In the second (archaic) form, the string between the quotes is pro­
cessed for special quoting characters before the command is executed. (See Quoting
below). The command substitution $(cat file) can be replaced by the equivalent but
faster $(<file). Command substitution of most special commands that do not perform
input/output redirection are carried out without creating a separate process.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters *, @, #, ?, -,
$, and !. A named parameter (a parameter denoted by an identifier) has a value and
zero or more attributes. Named parameters can be assigned values and attributes by
using the typeset special command. The attributes supported by the shell are described
later with the typeset special command. Exported parameters pass values and attri­
butes to sub-shells but only values to the environment.

The shell supports a limited one-dimensional array facility. An element of an array
parameter is referenced by a subscript. A subscript is denoted by a [, followed by an
arithmetic expression (see Arithmetic evaluation below) followed by a J. The value of

Commands 1-311

KSH(l)

1-312

SysV KSH(l)

all subscripts must be in the range of 0 through 511. Arrays need not be declared. Any
reference to a named parameter with a valid subscript is legal and an array will be
created if necessary. Referencing an array without a subscript is equivalent to referenc­
ing the first element.

The value of a named parameter may also be assigned by writing:

name=value

name = value

If the integer attribute, -i, is set for name the value is subject to arithmetic evaluation
as described below.
Positional parameters, parameters denoted by a number, may be assigned values with
the set special command. Parameter $0 is set from argument zero when the shell is
invoked.
The character $ is used to introduce substitutable parameters.
${parameter}

The value, if any, of the parameter is substituted. The braces are required
when parameter is followed by a letter, digit, or underscore that is not to be
interpreted as part of its name or when a named parameter is subscripted. If
parameter is one or more digits then it is a positional parameter. A positional
parameter of more than one digit must be enclosed in braces. If parameter is *
or @, then all the positional parameters, starting with $1, are substituted
(separated by a field separator character). If an array identifier with subscript
* or @ is used, then the value for each of the elements is substituted (separated
by a field separator character).

${#parameter}
If parameter is * or @, the number of positional parameters is substituted.
Otherwise, the length of the value of the parameter is substituted.

${#identifier[*]}
The number of elements in the array identifier is substituted.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise substi­
tute word.

${parameter :=word}
If parameter is not set or is null then set it to word; the value of the parameter
is then substituted. Positional parameters may not be assigned to in this way.

${parameter :?word}
If parameter is set and is non-null then substitute its value; otherwise, print
word and exit from the shell. If word is omitted then a standard message is
printed.

Commands

KSH(l) SysV KSH(l)

${parameter: +word}
If parameter is set and is non-null then substitute word; otherwise substitute
nothing.

${parameter#pattern }
${parameter##pattern }

If the shell pattern matches the beginning of the value of parameter, then the
value of this substitution is the value of the parameter with the matched por­
tion deleted; otherwise the value of this parameter is substituted. In the first
form the smallest matching pattern is deleted and in the latter form the largest
matching pattern is deleted.

${parameter % pattern }
${parameter % % pattern}

If the shell pattern matches the end of the value of parameter, then the value
of parameter with the matched part deleted; otherwise substitute the value of
parameter. In the first form the smallest matching pattern is deleted and in the
latter form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell only checks
whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last executed command.
$ The process number of this shell.

The last argument of the previous command. This parameter is not
set for commands which are asynchronous. This parameter is also
used to hold the name of the matching MAIL file when checking for
mail. Finally, the value of this parameter is set to the full pathname
of each program the shell invokes and is passed in the environment.
The process number of the last background command invoked.

PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.
OLDPWD

The previous working directory set by the cd command.
RANDOM

Each time tris parameter is referenced, a random integer is generated.
The sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

Commands 1-313

KSH(l) SysV KSH(l)

REPLY This parameter is set by the select statement and by the read special
command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since
shell invocation is returned. If this parameter is assigned a value,
then the value returned upon reference will be the value that was
assigned plus the number of seconds since the assignment.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the edit
window for the shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see Spe­
cial Command set below) will be turned on. This value should be
unset for shells running in Apollo transcript pads.

ENV If this parameter is set, then parameter substitution is performed on
the value to generate the patbname of the script that will be executed
when the shell is invoked. (See Invocation below.) This file is typi­
cally used for alias and function definitions.

FCEDIT
The default editor name for the fc command. In Apollo transcript
pads, this variable should be set to 'pad'. On dialup lines or in VT 1 00
windows, values like 'vi' or 'emacs' are useful.

IFS Internal field separators, normally space, tab, and new-line that is
used to separate command words which result from command or
parameter substitution and for separating words with the special
command read. The first character of the IFS parameter is used to
separate arguments for the "$*" substitution (See Quoting below).

HISTFn..E
If this parameter is set when the shell is invoked, then the value is the
patbname of the file that will be used to store the command history.
(See Command Re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will be
greater than or equal to this number. The default is 128.

HOME The default argument (home directory) for the cd command.

1-314 Commands

KSH(l) SysV KSH(l)

LINES If this variable is set, the value is used to detennine the column length
for printing select lists. Select lists will print vertically until about
two-thirds of LINES lines are filled.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, then the shell informs the user of arrival of mail
in the specified file.

MAll..CHECK
This variable specifies how often (in seconds) the shell will check for
changes in the modification time of any of the files specified by the
MAILPATH or MAIL parameters. The default value is 600 seconds.
When the time has elapsed the shell will check before issuing the next
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set then
the shell informs the user of any modifications to the specified files
that have occurred within the last MAILCHECK seconds. Each file
name can be followed by a ? and a message that will be printed. The
message will undergo parameter and conunand substitution with the
parameter, $_ defined as the name of the file that has changed. The
default message is you have mail in $_.

PATH The search path for conunands (see Execution below). The user may
not change PATH if executing under rksh (except in .profile).

PSI The value of this parameter is expanded for parameter substitution to
define the primary prompt string which by default is "$ ". The char­
acter ! in the primary prompt string is replaced by the command
number (see Command Re-entry below).

PS2 Secondary prompt string, by default "> ".
PS3 Selection prompt string used within a select loop, by default" #? ".
SHELL The patbname of the shell is kept in the environment. This value

TMOUT

VISUAL

should be unset for shells running in Apollo transcript pads.

If set to a value greater than zero, the shell will tenninate if a com­
mand is not entered within the prescribed number of seconds aftel
issuing the PSI prompt. (Note that the shell can be compiled with I

maximum bound for this value which cannot be exceeded.)

If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Conunand set below) will be
turned on.

The shell gives default values to PATH, PSI, PS2, MAILCHECK, TMOUT and IFS
while HOME, SHELL ENV and MAIL are not set at all by the shell (although HOME i,
set by login(l». On some systems MAIL and SHELL are also set by login(l».

Conunands 1-31

KSH(l) SysV KSH(l)

Blank Interpretation
After parameter and command substitution, the results of substitutions are scanned for
the field separator characters (those found in IFS) and split into distinct arguments
where such characters are found. Explicit null arguments (" II or) are retained. Impli­
cit null arguments (those resulting from parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters *, ?, and
unless the -f option has been set. If one of these characters appears then the word is
regarded as a pattern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pattern, then the word is
left unchanged. When a pattern is used for file name generation, the character. at the
start of a file name or immediately following a /, as well as the character / itself, must
be matched explicitly. In other instances of pattern matching the / and. are not treated
specially.

* Matches any string, including the null string.
? Matches any single character.

Matches anyone of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "! "
then any character not enclosed is matched. A - can be included in
the character set by putting it as the first or last character.

Quoting

1-316

Each of the metacharacters listed above (See Definitions above) has a special meaning
to the shell and causes termination of a word unless quoted. A character may be quoted
(i.e., made to stand for itself) by preceding it with a \. The pair \new-Iine is ignored.
All characters enclosed between a pair of single quote marks ("), are quoted. A single
quote cannot appear within single quotes. Inside double quote marks (" "), parameter
and command substitution occurs and \ quotes the characters \, " ", and $. The mean­
ing of $* and $@ is identical when not quoted or when used as a parameter assignment
value or as a file name. However, when used as a command argument, "$*" is
equivalent to II $ld $2d ... " , where d is the first character of the IFS parameter, whereas
"$@" is equivalent to "$1" "$2" Inside grave quote marks C) \ quotes the char­
acters \, " and $. If the grave quotes occur within double quotes then \ also quotes the
character " .

,1*
The special meaning of keywords or aliases can be removed by quoting any character
of the keyword. The recognition of function names or special command names listed
below cannot be altered by quoting them.

Commands

KSH(1) SysV KSH(l)

Arithmetic Evaluation
An ability to perfonn integer arithmetic is provided with the special command let.
Evaluations are perfonned using long arithmetic. Constants are of the fonn base#n
where base is a decimal number between two and thirty-six representing the arithmetic
base and n is a number in that base. If base is omitted then base 10 is used.

An internal integer representation of a named parameter Can be specified with the -i
option of the typeset special command. When this attribute is selected the first assign­
ment to the parameter detennines the arithmetic base to be used when parameter substi­
tution occurs.

Since many of the arithmetic operators require quoting, an alternative fonn of the let
command is provided. For any command which begins with a «, all the characters until
a matching » are treated as a quoted expression. More precisely, « ... » is equivalent
to let" ... ".

Prompting
When used interactively, the shell prompts with the value of PSI before reading a com­
mand. If at any time a new-line is typed and further input is needed to complete a com­
mand, then the secondary prompt (i.e., the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. The following may appear anywhere in a simple­
command or may precede or follow a command and are not passed on to the invoked
command. Command and parameter substitution occurs before word or digit is used
except as noted below. File name generation occurs only if the pattern matches a single
file and blank interpretation is not perfonned.

<word Use file word as standard input (file descriptor 0).

>word

»word

«-word

Commands

Use file word as standard output (file descriptor 1). If the file does not
exist then it is created; otherwise, it is truncated to zero length.

Use file word as standard output. If the file exists then output is
appended to it (by first seeking to the end-of-file); otherwise, the file is
created.

The shell input is read up to a line that is the same as word, or to an
end-of-file. No parameter substitution, command substitution or file
name generation is perfonned on word. The resulting document,
called a here-document, becomes the standard input. If any character
of word is quoted, then no interpretation is placed upon the characters
of the document; otherwise, parameter and command substitution
occurs, \new-line is ignored, and \ must be used to quote the charac­
ters \, $, " and the first character of word. If - is appended to «, then
all leading tabs are stripped from word and from the document.

1-317

KSH(l)

<&digit

<&-

SysV KSH(l)

The standard input is duplicated from file descriptor digit (see
dup(2». Similarly for the standard output using >& digit.

The standard input is closed. Similarly for the standard output using
>&-.

If one of the above is preceded by a digit, then the file descriptor number referred to is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each
redirection in tenns of the (file descriptor, file) association at the time of evaluation.
For example:

... 1>/name 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with
the file associated with file descriptor I (i.e. /name). If the order of redirections were
reversed, file descriptor 2 would be associated with the tenninal (assuming file descrip­
tor 1 had been) and then file descriptor 1 would be associated with file fname .

If a command is followed by & and job control is not active, then the default standard
input for the command is the empty file Idev/null. Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking shell as modified
by input/output specifications.

Environment

1-318

The environment (see environ(7» is a list of name-value pairs that is passed to an exe­
cuted program in the same way as a nonnal argument list. The names must be
identifiers and the values are character strings. The shell interacts with the environment
in several ways. On invocation, the shell scans the environment and creates a parame­
ter for each name found, giving it the corresponding value and marking it export. Exe­
cuted commands inherit the environment. If the user modifies the values of these
parameters or creates new ones, using the export or typeset -x commands they become
part of the environment. The environment seen by any executed command is thus com­
posed of any name-value pairs originally inherited by the shell, whose values may be
modified by the current shell, plus any additions which must be noted in export or
typeset -x commands.

The environment for any simple-command or function may be augmented by prefixing
it with one or more parameter assignments. A parameter assignment argument is a
word of the fonn identifier= value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

Commands

KSH(l) SysV KSH(l)

If the -k flag is set, all parameter assignment arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b c and then
c:

echo a=b c
set -k
echo a=b c

Functions

Jobs

The function keyword, described in the Commands section above, is used to define
shell functions. Shell functions are read in and stored internally. Alias names are
resolved when the function is read. Functions are executed like commands with the
arguments passed as positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files, traps (other than
EXIT and ERR) and present working directory with the caller. A trap set on EXIT
inside a function is executed after the function completes. Ordinarily, variables are
shared between the calling program and the function. However, the typeset special
command used within a function defines local variables whose scope includes the
current function and all functions it calls.

The special command return is used to return from function calls. Errors within func­
tions return control to the caller.

Function identifiers can be listed with the -f option of the ty peset special command.
The text of functions will also be listed. Function can be undefined with the -f option
of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of
the typeset command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be placed in the ENV file.

If the monitor option of the set command is turned on, an interactive shell associates a
job with each pipeline. It keeps a table of current jobs, printed by the jobs command,
and assigns them small integer numbers. When a job is started asynchronously with &,
the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number I and had one
(top-level) process, whose process id was 1234.

This paragraph and the next require features that are not in all versions of UNIX and
may not apply. If you are running a job and wish to do something else you can press
CTRLlZ (control-Z) which sends a STOP signal to the current job. The shell will then
normally indicate that the job has been 'Stopped', and print another prompt. You can
then manipulate the state of this job, putting it in the background with the bg command,
or run some other commands and then eventually bring the job back into the foreground

Commands 1-315

KSH(l) SysV KSH(l)

with the foreground command fg. A 'z takes effect immediately and is like an interrupt
in that pending output and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal. Back­
ground jobs are normally allowed to produce output, but this can be disabled by giving
the command "stty tostop". If you set this tty option, then background jobs will stop
when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character % introduces a job
name. If you wish to refer to job number 1, you can name it as % 1 . Jobs can also be
named by prefixes of the string typed in to kill or restart them. Thus, on systems that
support job control, 'fg %ed' would normally restart a suspended ed(l) job, if there
were a suspended job whose name began with the string 'ed'.

The shell maintains a notion of the current and previous jobs. In output pertaining to
jobs, the current job is marked with a + and the previous job with a -. The abbreviation
% + refers to the current job and %- refers to the previous job. % % is also a synonym
for the current job.

This shell leams immediately whenever a process changes state. It nortnally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb your
work.

When you try to leave the shell while jobs are running or stopped, you will be wamed
that 'You have stopped(running) jobs.' You may use the jobs command to see what
they are. If you do this or immediately try to exit again, the shell will not warn you a
second time, and the stopped jobs will be terminated.

Signals
The INT and QUIT signals for an invoked command are ignored if the command is fol­
lowed by & and job monitor option is not active. Otherwise, signals have the values
inherited by the shell from its parent (but see also the trap command below).

Execution

1-320

Each time a command is executed, the above substitutions are carried out. If the com­
mand name matches one of the Special Commands listed below, it is executed within
the current shell process. Next, the command name is checked to see if it matches one
of the user defined functions. If it does, the positional parameters are saved and then
reset to the arguments of the function call. When the function completes or issues a
return, the positional parameter list is restored and any trap set on EXIT within the
function is executed. The value of a function is the value of the last command exe­
cuted. A function is also executed in the current shell process. If a command name is
not a special command or a user definedjitnction, a process is created and an attempt is
made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the com­
mand. Alternative directory names are separated by a colon (:). The default path is
fbin:fusrfbin: (specifying fbin, fusrfbin, and the current directory in that order). The

Commands

KSH(I) SysV KSH(t)

current directory can be specified by two or more adjacent colons, or by a colon at the
beginning or end of the path list. If the command name contains a / then the search
path is not used. Otherwise, each directory in the path is searched for an executable
file. If the file has execute permission but is not a directory or an a.out file, it is
assumed to be a file containing shell commands. A sub-shell is spawned to read it. All
non-exported aliases, functions, and named parameters are removed in this case. If the
shell command file doesn't have read permission, or if the setuid and/or setgid bits are
set on the file, then the shell executes an agent whose job it is to set up the permissions
and execute the shell with the shell command file passed down as an open file. A
parenthesized command is also executed in a sub-shell without removing non-exported
quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered from a terminal device
is saved in a history file. The file $HOME/.sh _history is used if the HISTFILE variable
is not set or is not writable. A shell can access the commands of all interactive shells
which use the same named HISTFILE. The special command fc is used to list or edit a
portion of this file. The portion of the file to be edited or listed can be selected by
number or by giving the first character or characters of the command. A single com­
mand or range of commands can be specified. If you do not specify an editor program
as an argument to fc then the value of the parameter FCEDIT is used. If FCEDIT is not
defined then /bin/ed is used. The edited command(s) is printed and re-executed upon
leaving the editor. The editor name - is used to skip the editing phase and to re-execute
the command. In this case a substitution parameter of the form old=new can be used to
modify the command before execution. For example, if r is aliased to 'fc -e -' then
typing 'r bad=good c' will re-execute the most recent command which starts with the
letter c, replacing the first occurrence of the string bad with the string good.

In-line Editing Options
Normally, each command line entered from a terminal device is simply typed followed
by a new-line ('RETURN' or 'LINE FEED'). If either the emacs, gmacs, or vi option
is active, the user can edit the command line. To be in either of these edit modes set the
corresponding option. An editing option is automatically selected each time the
VISUAL or EDITOR variable is assigned a value ending in either of these option
names.

The editing features require that the user's terminal accept 'RETURN' as carriage
return without line feed and that a space (' ') must overwrite the current character on
the screen. ADM terminal users should set the "space - advance" switch to 'space'.
Hewlett-Packard series 2621 terminal users should set the straps to 'bcGHxZ etX'.

The editing modes implement a concept where the user is looking through a window at
the current line. The window width is the value of COLUMNS if it is defined, otherwise
80. If the line is longer than the window width minus two, a mark is displayed at the

Commands 1-321

KSH(l) SysV. KSH(l)

end of the window to notify the user. As the cursor moves and reaches the window
boundaries the window will be centered about the cursor. The mark is a > «, *) if the
line extends on the right (left, both) side(s) of the window.

The in-line editing options are not useful in Apollo transcript pads. The command input
pane associated with transcript pads allows full command line editing. Setting
VISUAL or EDITOR in Apollo transcript pads causes the pad to flip in and out of raw
mode.

In-Line editing is very useful on dialup UP terminals or in a VT100 window where no
other editing is available.

Emacs Editing Mode

1-322

This mode is entered by enabling either the emacs or gmacs option. The only differ­
ence between these two modes is the way they handle 'T. To edit, the user moves the
cursor to the point needing correction and then inserts or deletes characters or words as
needed. All the editing commands are control characters or escape sequences. The
notation for control characters is caret (,) followed by the character. For example, 'F
is the notation for control F. This is entered by pressing 'f' while holding down the
'CTRL' (control) key. The 'SHIFT' key is not pressed. (The notation '? indicates the
DEL (delete) key.)

The notation for escape sequences is M· followed by a character. For example, M·f
(pronounced Meta f) is entered by depressing ESC (ascii 033) followed by 'f'. (M.F
would be the notation for ESC followed by 'SHIFT' (capital) 'F'.)

All edit commands operate from any place on the line (not just at the beginning). Nei­
ther the "RETURN" nor the "UNE FEED" key is entered after edit commands except
when noted.

'F
M·f

'8
M·b
'A
'E
']char
'X'X
erase

'D
M·d
M·'H
M·h
M·'?

Move cursor forward (right) one character.
Move cursor forward one word. (The editor's idea of a word is a string of
characters consisting of only letters, digits and underscores.)
Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor to character char on current line.
Interchange the cursor and mark.
(User defined erase character as defined by the stty command, usually °H
or #.) Delete previous character.
Delete current character.
Delete current word.
(Meta-backspace) Delete previous word.
Delete previous word.
(Meta-DEL) Delete previous word (if your interrupt character is '? (DEL,
the default) then this command will not work).

Commands

KSH(l)

'T

'C
M-c
M-I
'K

'W
M-p
kill

'Y
'L
'@
M­
'J
'M
eot

M-<
M->
'N

'Rstring

'0

M-digits

M-letter

M-.

Conunands

SysV KSH(l)

Transpose current character with next character in emacs mode. Transpose
two previous characters in gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lower case.
Kill from the cursor to the end of the line. If given a parameter of zero
then kill from the start of line to the cursor.
Kill from the cursor to the mark.
Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the stty conunand, usually 'G or
@.) Kill the entire current line. If two kill characters are entered in succes­
sion, all kill characters from then on cause a line feed (useful when using
paper terminals).
Restore last item removed from line. (Yank item back to the line.)
Line feed and print current line.
(Null character) Set mark.
(Meta space) Set mark.
(New line) Execute the current line.
(Return) Execute the current line.
End-of-file character, normally '0, will tenninate the shell if the current
line is null.
Fetch previous conunand. Each time 'P is entered the previous .command
back in time is accessed.
Fetch the least recent (oldest) history line.
Fetch the most recent (youngest) history line.
Fetch next conunand. Each time 'N is entered the next conunand forward
in time is accessed.
Reverse search history for a previous conunand line containing string. If a
parameter of zero is given, the search is forward. String is terminated by a
"RETURN" or "NEW LINE". If string is omitted, then the next command
line containing the most recent string is accessed. In this case a parameter
of zero reverses the direction of the search.
Operate - Execute the current line and fetch the next line relative to current
line from the history file.
(Escape) Define numeric parameter, the digits are taken as a parameter to

the next conunand. The conunands that accept a parameter are ., 'F, '8,
erase, '0, 'K, AR, 'P, 'N, M-., M-_, M-b, M-c, lVI-d, lVI-f, lVI-h and M-'H.
Soft-key - Your alias list is searched for an alias by the name _letter and if
an alias of this name is defined, its value will be inserted on the input
queue. The letter must not be one of the above meta-functions.
The last word of the previous command is inserted on the line. If preceded
by a numeric parameter, the value of this parameter determines which word
to insert rather than the last word.

1-323

KSH(l) SysV KSH(l)

M- Same as M-..
M-*

M-ESC
M-=
'U
\

Attempt file name generation on the current word. An asterisk is appended
if the word doesn't contain any special pattern characters.
Same as M-*.
List files matching current word pattern if an asterisk were appended.
Multiply parameter of next command by 4.
Escape next character. Editing characters, the user's erase, kill and inter­
rupt (normally'?) characters may be entered in a command line or in a
search string if preceded by a \. The \ removes the next character's editing
features (if any).

'V Display version of the shell.

Vi Editing Mode

1-324

There are two typing modes. Initially, when you enter a command you are in the input
mode. To edit, the user enters control mode by typing ESC (033) and moves the cur­
sor to the point needing correction and then inserts or deletes characters or words as
needed. Most control commands accept an optional repeat count prior to the conunand.
When in vi mode on most systems, canonical processing is initially enabled and the
conunand will be echoed again if the speed is 1200 baud or greater and it contains any
control characters or less than one second has elapsed since the prompt was printed.
The ESC character terminates canonical processing for the remainder of the command
and the user can than modify the command line. This scheme has the advantages of
canonical processing with the type-ahead echoing of raw mode. If the option viraw is
also set, the terminal will always have canonical processing disabled. This mode is
implicit for systems that do not support two alternate end of line delimiters, and may be
helpful for certain terminals.

Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the stty conunand, usu­

ally 'H or #.) Delete previous character.
Delete the previous blank separated word.
Terminate the shell.
Escape next character. Editing characters, the user's erase or kill
characters may be entered in a command line or in a search string
if preceded by a ·V. The'V removes the next character's editing
features (if any).
Escape the next erase or kill character.

Motion Edit Commands
These commands will move the cursor.
[countll Cursor forward (right) one character.
[countlw Cursor forward one alpha-numeric word.
[countlW Cursor to the beginning of the next word that follows a blank.
[countle Cursor to end of word.

Conunands

KSH(l)

[count]E
[count]h
[count]b
[count]B
[count]fc
[count]Fc
[count]tc
[count]Tc

o

SysV

Cursor to end of the current blank delimited word.
Cursor backward (left) one character.
Cursor backward one word.
Cursor to preceding blank separated word.
Find the next character c in the current line.
Find the previous character c in the current line.
Equivalent to f followed by h.
Equivalent to F followed by I.

KSH(l)

Repeats the last single character find command, f, F, t, or T.
Reverses the last single character find command.
Cursor to start of line.
Cursor to first non-blank character in line.

$ Cursor to end of line.
Search Edit Commands

These commands access your command history.
[count]k Fetch previous command. Each time k is entered the previous

command back in time is accessed.
[count]- Equivalent to k.
[countli Fetch next command. Each time j is entered the next command

forward in time is accessed.
[count]+ Equivalent to j.
[count]G The command number count is fetched. The default is the least

recent history command.
/string Search backward through history for a previous command con­

taining string. String is tenninated by a "RETURN" or
"NEW LINE". If string is null the previous string will be used.

?string Same as / except that search will be in the forward direction.
n Search for next match of the last pattern to / or ? commands.
N Search for next match of the last pattern to / or ?, but in reverse

direction. Search history for the string entered by the previous /
command.

Text Modification Edit Commands

Commands

These commands will modify the line.
a Enter input mode and enter text after the current character.
A Append text to the end of the line. Equivalent to $a.
[count]cmotion
c[count]motion

Delete current character through the cltaracter that motion would
move the cursor to and enter input mode. If motion is c, the entire
line will be deleted and input mode entered.

C Delete the current character through the end of line and enter input
mode. Equivalent to c$.

S Equivalent to cc.

1-325

KSH(l) SysV KSH(l)

D Delete the current character through the end of line. Equivalent to
d$.

[count]dmotion
d[count]motion

[count]p
[count]p
R

rc
[count]x
[count] X
[count].

Delete current character through the character that motion would
move to. If motion is d , the entire line will be deleted.
Enter input mode and inserr text before the current character.
Insert text before the beginning of the line. Equivalent to the two
character sequence 'i.
Place the previous text modification before the cursor.
Place the previous text modification after the cursor.
Enter input mode and replace characters on the screen with char­
acters you type overlay fashion.
Replace the current character with c.
Delete current character.
Delete preceding character.
Repeat the previous text modification command.
Invert the case of the current character and advance the cursor.

[countL Causes the count word of the previous command to be appended

*
and input mode entered. The last word is used if count is omitted.
Causes an * to be appended to the current word and file name gen­
eration attempted. If no match is found, it rings the bell. Other­
wise, the word is replaced by the matching pattern and input mode
is entered.

Other Edit Commands

1-326

Miscellaneous commands.
[count]ymotion
y[count]motion

Yank current character through character that motion would move
the cursor to and puts them into the delete buffer. The text and
cursor are unchanged.

Y Yanks from current position to end of line. Equivalent to y$.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.
[count]v Returns the command fc -e ${VISUAL:-${EDITOR:-\i}} count

in the input buffer. If count is omitted, then the current line is
used.
Line feed and print current line. Has effect only in control mode.
(New line) Execute the current line, regardless of mode.
(Return) Execute the current line. regardless of mode.
Sends the line after inserting a # in front of the line and after each
new-line. Useful for causing the current line to be inserted in the
history without being executed.

Commands

KSH(l)

@letter

SysV KSH(1)

List the file names that match the current word if an asterisk were
appended it.
Your alias list is searched for an alias by the name _letter and if an
alias of this name is defined, its value will be inserted on the input
queue for processing.

Special Commands
The following simple-commands are executed in the shell process. Input/Output
redirection is pennitted. Unless otherwise indicated, the output is written on file
descriptor 1. Commands that are preceded by one or two t are treated specially in the
following ways:
1. Parameter assignment lists preceding the command remain in effect when the

command completes.
2. They are executed in a separate process when used within command substitu­

tion.
3. Errors in commands preceded by tt cause the script that contains them to

abort.

t: arg ...
The command only expands parameters. A zero exit code is returned.

tt .file arg ..•
Read and execute commands from file and return. The commands are exe­
cuted in the current shell environment. The search path specified by PATH is
used to find the directory containing file. If any arguments arg are given, they
become the positional parameters. Otherwise the positional parameters are
unchanged.

alias -tx name =value ...
Alias with no arguments prints the list of aliases in the form name=value on
standard output. An alias is defined for each name whose value is given. A
trailing space in value causes the next word to be checked for alias substitu­
tion. The -t flag is used to set and list tracked aliases. The value of a tracked
alias is the full pathname corresponding to the given name. The value
becomes undefined when the value of PATH is reset but the aliases remained
tracked. Without the -t flag, for each name in the argument list for which no
value is given, the name and value of the alias is printed. The -x flag is used
to set or print exported aliases. An exported alias is defined across sub-shell
environments. Alias returns true unless a name is given for which no alias has
been defined.

bg %job

Commands

This command is only built-in on systems that support job control. Puts the
specified job into the background. The current job is put in the background if
job is not specified.

1-327

KSH(l)

1-328

break n

SysV KSH(l)

Exit from the enclosing for while until or select loop, if any. If n is specified
then break n levels.

continue n
Resume the next iteration of the enclosing for while until or select loop. If n
is specified then resume at the n -th enclosing loop.

t cd arg
t cd old new

This command can be in either of two forms. In the first form it changes the
current directory to arg. If arg is - the directory is changed to the previous
directory. The shell parameter HOME is the default argo The parameter PWD
is set to the current directory. The shell parameter CDPATH defines the search
path for the directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the current
directory). Note that the current directory is specified by a null pathname,
which can appear immediately after the equal sign or between the colon delim­
iters anywhere else in the path list. If arg begins with a I then the search path
is not used. Otherwise, each directory in the path is searched for arg. The
second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory. The cd com­
mand may not be executed by rksh.

echo arg ...
See echo(l) for usage and description.

tt eva I arg ...
The arguments are read as input to the shell and the resulting command(s) exe­
cuted.

tt exec arg ...
If arg is given, the command specified by the arguments is executed in place
of this shell without creating a new process. Input/output arguments may
appear and affect the current process. If no arguments are given the effect of
this command is to modify file descriptors as prescribed by the input/output
redirection list. In this case, any file descriptor numbers greater than 2 that are
opened with this mechanism are closed when invoking another program.

exit n Causes the shell to exit with the exit status specified by n. If n is omitted then
the exit status is that of the last command executed. An end-of-file will also
cause the shell to exit except for a shell which has the ignoreeof option (See
set below) turned on.

tt export name ...
The given names are marked for automatic export to the environment of
subsequently-executed commands.

Commands

KSH(l)

tt fc -e ename -nlr first last
tt fc -e - old=new command

SysV KSH(l)

In the first form, a range of commands from first to last is selected from the
last HISTSIZE commands that were typed at the terminal. The arguments first
and last may be specified as a number or as a string. A string is used to locate
the most recent command starting with the given string. A negative number is
used as an offset to the current command number. If the flag -I, is selected,
the commands are listed on standard output. Otherwise, the editor program
ename is invoked on a file containing these keyboard commands. If ename is
not supplied, then the value of the parameter FCEDIT (default /bin/ed) is used
as the editor. When editing is complete, the edited command(s) is executed. If
last is not specified then it will be set to first. If first is not specified the
default is the previous command for editing and -16 for listing. The flag -r
reverses the order of the commands and the flag -n suppresses command
numbers when listing. In the second form the command is re-executed after
the substitution old=new is performed.

fg %job
This command is only built-in on systems that support job control. If job is
specified it brings it to the foreground. Otherwise, the current job is brought
into the foreground.

inlib pathname
Install a user-supplied library specified by pathname in the current (shell) pro­
cess. The library is used to resolve external references of programs (and
libraries) loaded after its installation. Note that the library is not loaded into
the address space unless it is needed to resolve an external reference. The list
of inlibed libraries is passed to all children of the current shell. Use iii b(1) to
examine this list.

jobs -I Lists the active jobs; given the -I options lists process id' s in addition to the
normal information.

kill -sig process ...
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names
(as given in /usr/include/signal.h, stripped of the prefix "SIG"). The signal
numbers and names are listed by 'kill -I'. If the signal being sent is TERM
(terminate) or HUP (hangup), then the job or process will be sent a CONT
(continue) signal if it is stopped. The argument process can be either a process
id or ajob.

let arg ...
Each arg is an arithmetic expression to be evaluated. All calculations are done
as long integers and no check for overflow is performed. Expressions consist
of constants, named parameters, and operators.

Commands 1-329

KSH(l) SysV KSH(l)

The following set of operators, listed in order of decreasing precedence, have
been implemented:

unary minus
logical negation

* I %
multiplication, division, remainder

+ - addition, subtraction
<= >= < >

-- !=
comparison

equality inequality
arithmetic replacement

Sub-expressions in parentheses () are evaluated first and can be used to over­
ride the above precedence rules. The evaluation within a precedence group is
from right to left for the = operator and from left to right for the others.

A parameter name must be a valid identifier. When a parameter is encoun­
tered, the value associated with the parameter name is substituted and expres­
sion evaluation resumes. Up to nine levels of recursion are permitted.

The return code is 0 if the value of the last expression is non-zero, and 1 other­
wise.

tt newgrp arg ...
Equivalent to exec newgrp arg

print -Rnprsun arg . ..
The shell output mechanism. With no flags or with flag -, the arguments are
printed on standard output as described by echo(1). In raw mode, -R or -r,
the escape conventions of echo are ignored. The -R option will print all sub­
sequent arguments and options other than -no The -p option causes the argu­
ments to be written onto the pipe of the process spawned with I & instead of
standard output. The -s option causes the arguments to be written onto the
history file instead of standard output. The -u flag can be used to specify a
one digit file descriptor unit number n on which the output will be placed. The
default is 1. If the flag -n is used, no new-line is added to the output.

pwd Equivalent to print -r - $PWD

read -prsu n name?prompt name ...
The shell input mechanism. One line is read and is broken up into words using
the characters in IFS as separators. In raw mode, -r, a \ at the end of a line
does not signify line continuation. The first word is assigned to the first name,
the second word to the second name, etc., with leftover words assigned to the
last name. The -p option causes the input line to be taken from the input pipe
of a process spawned by the shell using I &. If the -s flag is present, the input
will be saved as a command in the history file. The flag -u can be used to

1-330 Commands

KSH(l) SysV KSH(l)

specify a one digit file descriptor unit to read from. The file descriptor can be
opened with the exec special command. The default value of n is O. If name
is omitted then REPLY is used as the default name. The return code is 0
unless an end-of-file is encountered. An end-of-file with the -p option causes
cleanup for this process so that another can be spawned. If the first argument
contains a ?, the remainder of this word is used as a prompt when the shell is
interactive. If the given file descriptor is open for writing and is a tenninal
device then the prompt is placed on this unit. Otherwise the prompt is issued
on file descriptor 2. The return code is 0 unless an end-of-file is encountered.

tt readonly name ...
The given names are marked readonly and these names cannot be changed by
subsequent assignment.

tt return n
Causes a shell function to return to the invoking script with the return status
specified by n. If n is omitted then the return status is that of the last com­
mand executed. If return is invoked while not in afunction or a . script, then
it is the same as an exit.

rootnode [arg]
Change the current node entry directory to arg.

set -aefhkmnostuvx -0 option. .. arg ...
The flags for this command have meaning as follows:
-a All subsequent parameters that are defined are automatically

exported.
-e If the shell is non-interactive and if a command fails, execute the

ERR trap, if set, and exit immediately. This mode is disabled while
reading profiles.

-f Disables file name generation.
-h Each command whose name is an identifier becomes a tracked alias

when first encountered.
-k All parameter assignment arguments are placed in the environment

for a command, not just those that precede the command name.
-m Background jobs will run in a separate process group and a line will

print upon completion. The exit status of background jobs is
reported in a completion message. On systems with job control, this
flag is turned on automatically for interactive shells.

-n Read commands but do not execute them. Ignored for interactive
shells.

-0 The following argument can be one of the following option names:
allexport

Same as -a.
errexit Same as -e.

Commands 1-331

KSH(1)

1-332

SysV KSH(l)

bgnice All background jobs are run at a lower priority.
emacs Puts you in an emacs style in-line editor for command

entry.
gmacs Puts you in a gmacs style in-line editor for command entry.
ignoreeof

The shell will not exit on end-of-file. The command exit
must be used.

keyword Same as -k.
markdirs

All directory names resulting from file name generation
have a trailing I appended.

monitor Same as -m.
noexec
noglob

Same as -no
Same as -f.

nounset Same as -u.
protected

Same as -po
verbose Same as -v.
trackall Same as -h.
vi Puts you in insert mode of a vi style in-line editor until you

hit escape character 033. This puts you in move mode. A
return sends the line.

viraw Each character is processed as it is typed in vi mode.
xtrace Same as -x.
If no option name is supplied then the current option settings are printed.

-p Resets the PATH variable to the default value, disables processing of
the $HOME/.profile file and uses the file letclsuid _profile instead of
the ENV file. This mode is automatically enabled whenever the
effective uid (gid) is not equal to the real uid (gid).

-s Sort the positional parameters.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.
Do not change any of the flags; useful in setting $1 to a value begin­
ning with -. If no arguments follow this flag then the positional
parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can also
be used upon invocation of the shell. The current set of flags may be found in
$-. The remaining arguments are positional parameters and are assigned, in
order, to $1 $2 If no arguments are given, then the values of all names are
printed on the standard output.

Commands

KSH(l) SysV KSH(l)

t shift n
The positional parameters from $n+ 1 ... are renamed $1 ... ,default nisI.
The parameter n can be any arithmetic expression that evaluates to a non­
negative number less than or equal to $#.

test expr
Evaluate conditional expression expr. See test(l) for usage and description.
The arithmetic comparison operators are not restricted to integers. They allow
any arithmetic expression. Four additional primitive expressions are allowed:
-L file True if file is a symbolic link.
filel -nt file2

True if file 1 is newer than file2 .
file 1 -ot file2

True iffile1 is older thanfile2.
filel -ef file2

True if filel has the same device and i-node number as file2.

times Print the accumulated user and system times for the shell and for processes run
from the shell.

trap arg sig ...
arg is a command to be read and executed when the shell receives signal(s)
sig. (Note that arg is scanned once when the trap is set and once when the
trap is taken.) Each sig can be given as a number or as the name of the signal.
Trap commands are executed in order of signal number. Any attempt to set a
trap on a signal that was ignored on entry to the current shell is ineffective. If
arg is omitted or is -, then all trap(s) sig are reset to their original values. If
arg is the null string then this signal is ignored by the shell and by the com­
mands it invokes. If sig is ERR then arg will be executed whenever a com­
mand has a non-zero exit code. This trap is not inherited by functions. If sig
is 0 or EXIT and the trap statement is executed inside the body of a function,
then the command arg is executed after the function completes. If sig is 0 or
EXIT for a trap set outside any function then the command arg is executed on
exit from the shell. The trap command with no arguments prints a list of com­
mands associated with each signal number.

tt typeset -HLRZfilprtuxn name =value
When invoked inside a function, a new instance of the parameter name is
created. The parameter value and type are restored when the function com­
pletes. The following list of attributes may be specified:
-H This flag provides UNIX to host-name file mapping on non-UNIX

machines.

Commands 1-333

KSH(l) SysV KSH(l)

-L Left justify and remove leading blanks from value. If n is non-zero it
defines the width of the field, otherwise it is determined by the width
of the value of first assignment. When the parameter is assigned to, it
is filled on the right with blanks or truncated, if necessary, to fit into
the field. Leading zeros are removed if the -Z flag is also set. The
-R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines
the width of the field, otherwise it is determined by the width of the
value of first assignment. The field is left filled with blanks or trun­
cated from the end if the parameter is reassigned. The L flag is turned
off.

- Z Right justify and fill with leading zeros if the first non-blank character
is a digit and the -L flag has not been set. If n is non-zero it defines
the width of the field, otherwise it is detennined by the width of the
value of first assignment.

-f The names refer to function names rather than parameter names. No
assignments can be made and the only other valid flags are -t, which
turns on execution tracing for this function and -x, to allow the func­
tion to remain in effect across shell procedures executed in the same
process environment.

-i Parameter is an integer. This makes arithmetic faster. If n is non­
zero it defines the output arithmetic base, otherwise the first assign­
ment determines the output base.

-I All upper-case characters converted to lower-case. The upper-case
flag, -u is turned off.

-p The output of this command, if any, is written onto the two-way pipe
-r The given names are marked readonly and these names cannot be

changed by subsequent assignment.
-t Tags the named parameters. Tags are user definable and have no spe­

cial meaning to the shell.
-u All lower-case characters are converted to upper-case characters. The

lower-case flag, -I is turned off.
-x The given names are marked for automatic export to the environment

of subsequently-executed commands.

Using + rather than - causes these flags to be turned off. If no name argu­
ments are given but flags are specified, a list of names (and optionally the
values) of the parameters which have these flags set is printed. (Using +
rather than - keeps the values to be printed.) If no names and flags are given,
the names and attributes of all parameters are printed.

ulimit -acdfmpst n
-a Lists all of the current resource limits (BSD only).
-d imposes a size limit of n kbytes on the size of the data area (BSD

only).

1-334 Commands

KSH(l) SysV KSH(l)

-f imposes a size limit of n 512 byte blocks on files written by child
processes (files of any size may be read).

-m imposes a soft limit of n kbytes on the size of physical memory (BSD
only).

-p changes the pipe size to n (UNIX/RT only).
-s imposes a size limit of n kbytes on the size of the stack area (BSD

only).
-t imposes a time limit of n seconds to be used by each process (BSD

only).

If no option is given, -f is assumed. If n is not given the current limit is
printed.

umask nnn
The user file-creation mask is set to nnn (see umask(2». If nlln is omitted, the
current value of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the alias list.

unset -f name ...
The parameters given by the list of name s are unassigned, i. e., their values
and attributes are erased. Readonly variables cannot be unset. If the flag, -f,
is set, then the names refer to function names.

ver [systype[commandl]
With no arguments, return the current value of the SYSTYPE environment
variable that specifies the version of UNIX commands being executed by the
shell. With a systype argument, change the SYSTYPE environment variable to
either bsd~.3 or s)"s5.3, depending on which is specified.

wait n Wait for the specified child process and report its termination status. If n is
not given then all currently active child processes are waited for. The return
code from this command is that of the process waited for.

whence -v name ...
For each name, indicate how it would be interpreted if used as a command
name. The flag -v produces a more verbose report.

Invocation.
If the shell is invoked by exec(2), and the first character of argument zero ($0) is -, then
the shell is assumed to be a logill shell and commands are read from jete/profile and
then from either .profile in the current directory or $HOME/.profile, if either file exists.
Next, commands are read from the file named by performing parameter substitution on
the value of the environment parameter ENV if the file exists. If the -s flag is not
present and arg is, then a path search is performed on the first arg to determine the
name of the script to execute. The script arg must have read permission and any setuid
and getgid settings will be ignored. Commands are then read as described below; the
following flags are interpreted by the shell when it is invoked:

Commands 1-335

KSH(l) SysV KSH(l)

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are

read from the standard input. Shell output, except for the output of the
Special commands listed above, is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a
terminal (as told by ioctl (2» then this shell is interactive. In this case
TERM is ignored (so that kill 0 does not kill an interactive shell) and
INTR is caught and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.
-Oname=value

You can use the -0 option to specify a parameter name that will be set
to value and then passed into the shell's environment. This SysV option
is useful for tailoring the environment of a shell invoked from a program
that is not another shell (such as the Display Manager). If the ENV
parameter is given in this way, the startup script it specifies will be run.
Note that any number of -0 options can be specified.

The remaining flags and arguments are described under the set command above.

rksh Only

1-336

Note: SysV does not support rksh. rksh is used to set up login names and execution
environments whose capabilities are more controlled than those of the standard shell.
The actions of rksh are identical to those of ksh, except that the following are disal­
lowed:

changing directory (see cd(1 »,
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing I,
redirecting output (> and »).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh to
execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of com­
mands; this scheme assumes that the end-user does not have write and execute permis­
sions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over
user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e., lusr/rhin) that
can be safely invoked by rksh Some systems also provide a restricted editor red.

Commands

KSH(I) SysV KSH(I)

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above). If the shell is being used non-interactively then
execution of the shell file is abandoned. Runtime errors detected by the shell are
reported by printing the command or function name and the error condition. If the line
number that the error occurred on is greater than one, then the line number is also
printed in square brackets ([]) after the command or function name.

CAVEATS

FILES

If a command which is a tracked alias is executed, and then a command with the same
name is installed in a directory in the search path before the directory where the original
command was found, the shell will continue to exee the original command. Use the-t
option of the alias command to correct this situation.

Some very old shell scripts contain a ' as a synonym for the pipe character I .
If a command is piped into a shell command, then all variables set in the shell com­
mand are lost when the command completes.

Using the fe built-in command within a compound command will cause the whole com­
mand to disappear from the history file.

The built-in command . file reads the whole file before any commands are executed.
Therefore, alias and unalias commands in the file will not apply to any functions
defined in the file.

/ete/passwd
/ete/profile
/etc/suid profile
$HOMEfprofile
/tmp/sh*
/dev/null

SEE ALSO
cat(l), cd(l), echo(l), emacs(l), env(l), gmacs(l), newgrp(l), test(l), umask(l), vi(l),
dup(2), exec(2), fork(2), ioctl(2), Iseek(2), pipe(2), signal(2), umask(2), ulirnit(2),
wait(2), rand(3), a.out(5), profile(5), environ(7).

Commands 1-337

LAS{l) Domain/OS SysV

NAME
las -list objects mapped into the address space

SYNOPSIS
las [options]

DESCRIPTION

LAS{l)

las produces a list of objects mapped into the address space. Information printed
includes the virtual address range, the starting address within the object, and its path­
name if available (in that order).

This command is most useful for system-level debugging.

OPTIONS
H no options are specified, las lists the address space of the current process.

-all List all address space, including that occupied by Aegis.

-f[rom] address

-t[o] address

Begin listing at the hexadecimal address specified.

End listing at the hexadecimal address specified.

EXAMPLES
1.

$ las

VA Range Obj Start Pathname

8000 - 17FFF 0 /sys/node_data/global_data
18000 - 2FFFF 0 /lib/pmlib
30000 - 37FFF 0 /lib/syslib.peb
38000 - 4FFFF 0 /lib/kslib
50000 - 57FFF 0 /lib/trait_type_ lib
58000 - 67FFF 10000 /sys/node_data/global_data
68000 - 9FFFF 0 /lib/streams
ADOOO - A7FFF 0 /lib/vfmt_streams
ABOOO - BFFFF 0 /lib/error
cOOOO - E7FFF 0 /lib/swtlib
E8000 - F7FFF 0 /lib/ftnlib
F8000 - FFFFF 0 /lib/pbulib

100000 - 127FFF 0 /lib/gprlib
128000 - 14FFFF 0 /lib/clib
150000 - 157FFF 0 /lib/lisp_initlib
158000 - 15FFFF 0 /sys/node_data/global_rws
160000 - 16FFFF 20000 /sys/node_data/global_data
170000 - 187FFF 0 /lib/shlib
188000 - 19FFFF 0 /lib/tfp

1-338 Commands

LAS(l)

lAOOOO - IBFFFF
lCOOOO - lC7FFF
IDOOOO - ID7FFF
200000 - 2AFFFF
2BOOOO - 2B7FFF
2B8000 - 2BFFFF
2COOOO - 2C7FFF
2C8000 - 2CFFFF
2DOOOO - 2F7FFF
BCOOOO - BCFFFF
BDOOOO - BDFFFF

2944 KB mapped.

2.

$ las -from 188000

VA Range Obj

188000 - 19FFFF
lAOOOO - lBFFFF
lCOOOO - lC7FFF
lDOOOO - lD7FFF
200000 - 2AFFFF
2BOOOO - 2B7FFF
2B8000 - 2BFFFF
2COOOO - 2C7FFF
2C8000 - 2CFFFF
2DOOOO - 2F7FFF
BCOOOO - BCFFFF
BDOOOO - BDFFFF

1408 KB mapped.

Commands

Domain/OS SysY

o
o

30000
o
o
o
o
o

BOOOO
o
o

Start

0
0
0

30000
0
0
0
0
0

BOOOO
0
0

/lib/dialoglib
/sys/node_data/ipc_data
/sys/node_data/global_data
-- temporary file -­
/sys/node_data/dm_mbx
/com/sh
-- temporary file
/com/las
-- temporary file
/help_area/worksite
/ jtj

Pathname

/lib/tfp
/lib/dialoglib
/sys/node_data/ipc_data
/sys/node_data/global_data
-- temporary file --

/sys/node_data/dm_mbx
/com/sh
-- temporary file
/com/las
-- temporary file
/help_area/worksite
/ jt j

LAS(l)

1-339

LAS(l)

1-340

3.

$ las -f 188000 -t 200000

VA Range

188000 -
lAGOOO -
lCOOOO -
IDOOOO -

19FFFF
IBFFFF
lC7FFF
ID7FFF

288 KB mapped.

Domain/OS SysV LAS(l)

Obj Start

o
o
o

30000

Pathname

I lib Itfp
llibl dialoglib
Isys/node_data/ipc_data
Isys/node_data/global_data

Commands

LBR2AR(1) Domain/OS SysY LBR2AR(1)

NAME
Ibr2ar - convert lbr libraries to SR10 archive libraries

SYNOPSIS
Ibr2ar [-y dirnamej lbrfile arfile

DESCRIPTION
The Ibr2ar command converts pre-SRlO lbr library files containing object modules in
OBJ format to SRI0 ar library archive files containing object modules in COFF fonnat.
The Ibr2ar command extracts each object module from the lbrfile, executes the
obj2coff converter to convert them to COFF, and creates a library archive (arfi/e) con­
taining the converted object modules. Note that both the library fonnat and the fonnat
of the individual object modules are changed.

OPTIONS

FILES

-ydirname

lusr/apollo/bin/obj2coff

/tmp/obj/*

Itmp/coffl*
SEE ALSO

obj2coff(l), ar(l).

Commands

This option allows you to specify a new pathnarne, dir­
name, for the location of obj2coff. The new pathname for
obj2coff is dirname/obj2coff. The default pathname for
obj2coff is lusr/apollo/bin.

obj 2coff converter

Temporary files

Temporary files

1-341

LCM(l) Domain/OS SysV LCM(l)

NAME
lem - load a color map

SYNOPSIS
Icrn [-p pathname]

DESCRIPTION

NOTE

Icm loads a color map from a file that specifies a set of color map entries. Each entry
establishes an association between an index and a color value. When the OM is ini­
tially loaded, it sets the node's color map from the file in /sys/dm/color_map.

If no pathname is given, Icrn loads the color map from /sys/dm/eolor _map. In this
case, all 16 colors (that is, color entries for color slots 0-15) are reloaded. If you
specify a,pathname, lern reads the given file and tries to load the colors associated with
the indexes.

If there are direct mode graphics programs running that have changed the color values
for color slots 0-15, the execution changes the colors in these windows as well as reset­
ting the OM's colors.

OPTIONS
-p pathname Specify the file that contains the color values for red, green, and blue.

The fonnat of this file should be identical to the OM's color map file,
/sys/dm/eolor _map. For more infonnation about the fonnat of this file,
please refer to the manual Programming with Domain Graphics Primi­
tives.

EXAMPLES
Load the OM's color map found in the file /sys/dm/eolor _map.

$lcrn

Load the color map specified in the file my _ eolorrnap.

$ lcm -p my _ colormap

1-342 Conunands

LD(l) SysV LD(l)

NAME
Id -link editor for common object files

SYNOPSIS
Id [options] filename

DESCRIPTION
Id combines several object files into one, performs relocation, resolves external sym­
bols, and supports symbol table information for symbolic debugging. In the simplest
case, the names of several object programs are given, and Id combines the objects, pro­
ducing an object module that can either be executed or, if the -r option is specified,
used as input for a subsequent Id run. Id' s output is left in a.out. By default this file is
executable if no errors occurred during the load. If any input file (jilename) is not an
object file, Id assumes it is either an archive library or a text file containing link editor
directives.

If any argument is a library, it is searched once at the point it is encountered in the argu­
ment list. Only those routines defining an unresolved external reference are loaded.
The library (archive) symbol table (see ar (4)) is searched sequentially with as many
passes as are necessary to resolve external references which can be satisfied by library
members. Thus, the ordering of library members is functionally unimportant, unless
there exist multiple library members defining the same external symbol.

OPTIONS
-a

-e epsym

-f fill

-b:

-L dir

-m

-M

Commands

Creates an absolute file. This is the default if the -r option is not used.
Used with the -r option, -a allocates memory for common symbols.

Sets the default entry point address for the output file to be that of the
symbol epsym.

Sets the default fill pattern for "holes" within an output section as well
as initialized bss sections. The argument fill is a two-byte constant.

Searches a library libx .a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -I is
significant. By default, libraries are located in LIBDlR or LLIBDIR.

Changes the algorithm of searching for libx.a to look in dir before look­
ing in LIBDIR and LLIBDlR. This option is effective only if it pre­
cedes the -I option on the command line.

Produces a map or listing of the input/output sections on the standard
output.

Outputs a message for each multiply-defined external definition.

1-343

LD(l)

-ooutfile

-r

-s

-t

SysV LD(l)

Produces an output object file by the name outfile. The name of the
default object file is a.out.

Retains relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subsequent
ld run. The link editor does not notice unresolved references, and the
output file is not executable unless -a is also specified.

Strips line number entries and symbol table information from the output
object file.

Turns off the warning about multiply-defined symbols that are not the
same size.

-u symname Enters symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of
the first routine. The placement of this option on the Id line is significant;
it must be placed before the library which will define the symbol.

-V Outputs a message giving information about the version of Id being
used.

-VS num Uses num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

-x Does not preserve local symbols in the output symbol table; enters exter­
nal and static symbols only. This option saves some space in the output
file.

-Y{LUj,dir Changes the default directory used for finding libraries. If L is specified,
the first default directory Id searches, LIBDIR, is replaced by dir. If U
is specified, and Id has been built with a second default directory, LLIB­
DlR, then that directory is replaced by dir. If Id was built with only one
default directory and U is specified, a warning is printed and the option
is ignored.

-T systype Defines the target system type (systype) for the compiled object. Same
as -A sys[type],sys.

1-344 Commands

LD(I) SysV LO(I)

Domain/OS SysV EXTENSIONS
The Domain/OS SysV version of Id, includes support for features which are not avail­
able on System V. Domain Id includes support for the following extensions: Static
Resource Information records (.sri), Module Information records (.mir), and control of
global variable visibility.

Each of the following options must be preceded by the -A switch.

-A sys[type],sys
Sets the environment variable SYSTYPE to sys while Id is running. If
sys is any, SYSTYPE is not reset. A Static Resource Information (SRI)
record for systype is produced. This option is useful to set the resolution
of systype-dependent links; e.g., if your systype is bsd4.3, and you
specify: -A systype,sysS.3, lusr/lib/libm.a resolves to
IsysS.3/usr/lib/libm.a, instead of Ibsd4.3/usrllib/libm.a.

-A run[type],sys
Determines the system call semantics of the object module. For exam­
ple, if you specify ·A systype,any, and specify -A runtype,bsd4.3, the
executable resolves pathnames according to your current SYSTYPE
value, but always uses bsd4.3 system call semantics.

-A stacksize,hexnum
Produces a stacksize (SRI) with the specified value; hexnum is a one to
eight digit hexadecimal number, optionally preceded by Ox or OX.

-A exp[unge],syml,sym2
Removes the defined global symbol from the symbol table. No subse­
quent link runs (using Id or bind) will be able to resolve to this symbol.
The symbol will not be entered into the KGT if this object is installed,
nor will it be visible if this object is part of an archive.

-A a\lexp[unge] [-A keep[sym],syml,sym2]
Expunges all defined symbols except those specified. If this option
appears multiple times, all symbols specified will be kept in the symbol
table.

-A looks[ection],secl ,sec2
Makes the named section available for sharing with a public section in
an installed library,

-A all\ooks[ection]

Commands

Makes all sections available for sharing with their counterpart public
sections in an installed library.

1-345

LD(l)

1-346

SysV LD(l)

-A marks[ection],sec1 ,sec2
Makes the specified section names (sec1 ,sec2) public. Affects only
those object files that ate destined to be installed as an installed library.

-A allmarks[ection]
Makes all sections public. Mfects only those object files that are des­
tined to be installed as an installed library.

-A nolooks[ection],sec1 ,sec2
Makes the named sections (sec,sec2) unavailable for shating.

-A allnolooks[ection]
Makes all data named sections unavailable for shating.

-A nomarks[ection],sec1 ,sec2
Makes the named sections private.

-A allnomarks[ection]
Makes all sections private.

-A inlib,pathnamei ,pathname2
Specifies the pathnames of the libraries to be installed at load time.

-A noinlib,pathname1 ,pathname2
Deletes the named libraries from the list of libraries to be installed at
load time.

-A load high Creates an Static Resource Infonnation (SRI) record to instruct the
loader to load the object at the "high" end of memory for position­
independent code.

-A module,name
Specifies the object module name of the output binary file. This name
will be stored in an object file Module Infonnation Record (MIR). The
default name of the object module is the name of the first object module
read.

-A nosys[tem]
Does not make system globals visible (turns off the check in the KGT
(Known Global Table) and installed libraries).

-A allres[olved]
Exits with an error status if unresolved references exist. This is the
default.

-A noallres[olved]
Tenninates successfully even if unresolved references exist (providing
there ate no other errors during linking). This option is useful when run­
ning Id from shell scripts or other drivers, such as Ibin/cc, or Ibin/make.

Commands

LO(I) SysV LD(I)

CAVEATS

FILES

Through its options and input ditectives, the common link editor provides great flexibil­
ity; however, you must assume some added responsibilities. Input ditectives and
options should ensure the following properties for programs:

• C defines a zero pointer as null. A pointer to which zero has been assigned must not
point to any object. To satisfy this, you must not place any object at vittual address
zero in the program's address space.

• When the link editor is called through cc (1), a startup routine is linked with your
program. This routine calls exitO after execution of the main program. If you call
the link editor ditectly, you must ensure that the program always calls exitO rather
than falling through the end of the entry routine (see exit(2».

The symbols etext, edata, and end (see end(3C» are reserved and are defined by the
link editor. Your program may not redefine them.

If the link editor does not recognize an input file as an object file or an archive file, it
assumes that it contains link editor ditectives and attempts to parse it. This occasion­
ally produces an error message complaining about "syntax errors".

Arithmetic expressions can only have one forward-referenced symbol per expression.

LIBDIR/libx.a
LLIBDlR/libx.a
a.out
LIBDIR
LLIBDlR

Libraries
Libraries
Output file
Usually /lib
Usually lusr/lib

SEE ALSO
ar(l), cc(l), end(3), ar(5), a.out(5), systype(lM)

Commands l-34i

LEX(l) SysV LEX(l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-retvn J [file J .,.

DESCRIPTION

1-348

lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be searched
for, and C text to be executed when strings are found.

The file lex.yy.e is generated. When loaded with the library, this file copies the input to
the output except when a string specified in the file is found; then the corresponding
program text is executed. The actual string matched is left in yytext, an external char­
acter array. Matching is done in order of the strings in the file. Strings can contain
square brackets to indicate character classes, as in [abx-zJ to indicate a, b, x, y, and z;
and the operators *, +, and? mean respectively any non-negative number of, any posi­
tive number of, and either zero or one occurrence of, the previous character or character
class. The character. is the class of all ASCII characters except newline. Parentheses
for grouping and vertical bar for alternation are also supported.

The notation r{d ,e} in a rule indicates between d and e instances of regular expression
r. It has higher precedence than I, but lower than *, ?, +, and concatenation. Thus
[a-zA-ZJ+ matches a string of letters. The character' at the beginning of an expres­
sion permits a successful match only immediately after a newline, and the character $ at
the end of an expression requires a trailing newline. The character / in an expression
indicates trailing context; only the part of the expression up to the slash is returned in
yytext, but the remainder of the expression must follow in the input stream. An opera­
tor character can be used as an ordinary symbol if it is used within double quotes (n), or
preceded by a backs lash (\).

Three subroutines defined as macros are expected: inputO to read a character;
unput(c) to replace a character read; and output(c) to place an output character. They
are defined in terms of the standard streams, but you can override them. The program
generated is named yylex(), and the library contains a main function (mainOl that calis
it. The action REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore() accumulates additional charac­
ters into the same yytext; and the function yyless(p) pushes back the portion of the
string matched beginning at p, which should be between yytext and yytext+yyleng. The
macros input and output use files yyin and yyout to read from and write to, defaulted to
stdin and stdout, respectively.

Commands

LEX(1) SysV LEX(1)

Any line beginning with a blank: is assumed to contain only C text and is copied; if it
precedes double percent characters (%%) it is copied into the external definition area of
the lex.yy.c file. All rules should follow a % %, as in Y ACC. Lines preceding % %
which begin with a non-blank: character define the string on the left to be the remainder
of the line; it can be called out later by surrounding it with {}. Note that curly brackets
do not imply parentheses; only string substitution is done.

External names generated by lex all begin with the prefix yy or YY.

Certain table sizes for the resulting finite state machine can be set in the definitions sec­
tion:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)

%0 n size of output array is n (3000)

The use of one or more of the above automatically implies the -v option, unless the -n
option is used.

OPTIONS
-r Indicates RA1FOR actions.

-c Indicates C actions. This is the default.

-t Causes the lex.yy.c program to be written instead to standard output.

-v Provides a one-line summary of staristics.

-n Does not print out the -v summary.

Multiple files are treated as a single file. If no files are specified, standard input is used.

Commands 1-349

LEX(l)

EXAMPLE

BUGS

SysV

D [0-9]

%%
if printf("IF statement\n");
[a-z]+ printf("tag, value %s\n",yytext);
O{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");
"+" printf ("binary op\n");
"/*" skipcommnts () ;
%%

skipcommnts ()
(

for (;;)

while (input () != '*')

if (input () != 'I')
unput(yytext[yyleng-l]);

else
return;

The -r option is not yet fully operational.

SEE ALSO
yacc(I).
Domain/OS Programming Environment Reference.

1-350

LEX(l)

Conunands

LINE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

SysV LINE(l)

line copies one line (up to a newline) from the standard input and writes it on the stan­
dard output. It returns an exit code of 1 on EOF and always prints at least a newline. It
is often used within shell files to read from the user's terminal.

SEE ALSO
sh(l).
read(2) in the SysV Programmer's Reference.

Commands 1-351

LINT(l) SysV LINT(l)

NAME
lint - a C program checker

SYNOPSIS
lint [option] ... file ...

DESCRIPTION
lint attempts to detect features of C program files that are likely to be bugs, non­
portable, or wasteful. It also checks type usage more strictly than the compilers.
Among the things that ate currently detected ate:

• Unreachable statement

• Loops not entered at the top

• Automatic vatiables declated and not used

• Logical expressions whose value is constant

• Functions that return values in some places and not in others

• Functions called with varying numbers or types of atguments

• Functions whose values ate not used or whose values ate used but none returned.

Arguments whose names end with .c ate taken to be C source files. Arguments whose
names end with .In ate taken to be the result of an eatlier invocation of lint with either
the -c or the -0 option used. The.ln files ate analogous to .0 (object) files that ate pro­
duced by the cc(1) command when given a .c file as input. Files with other suffixes are
wamed about and ignored.

lint takes all the .c, .In, and IIib·Ix.In (specified by -Ix) files and processes them in their
command line order. By default, lint appends the standatd C lint library (lIib·lc.ln) to
the end of the list of files. However, if the -p option is used, the portable C lint library
(lIib-port.In) is appended instead. When the -c option is not used, the second pass of
lint checks this list of files for mutual compatibility. When the -c option is used, the
.In and the IIib·lx .In files ate ignored.

Any number of lint options can be used, in any order, intermixed with file-name atgu­
ments.

OPTIONS

1-352

Options to Suppress Complaints

-a

-b

-h

Suppresses complaints about assignments of long values to vatiables that
ate not long.

Suppresses complaints about break statements that cannot be reached.
(Programs produced by lex or yacc often result in many such com­
plaints).

Does not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

Commands

LINT(l)

-u

-v

-x

SysV LINT(l)

Suppresses complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for running
lint on a subset of files of a larger program).

Suppresses complaints about unused arguments in functions.

Does not report variables referred to by external declarations but never
used.

Options That Alter lint's Behavior

-b: Includes additional lint library IIib-lx.ln. For example, you can include
a lint version of the math library IIib-lm.ln by inserting -1m on the com­
mand line. This argument does not suppress the default use of IIib-lc.ln.
These lint libraries must be in the assumed directory. This option can be
used to reference local lint libraries and is useful in the development of
multi-file projects.

-n

-p

-c

Does not check compatibility against either the standard or the portable
lint library.

Attempts to check portability to other dialects (mM and GeOS) of C.
Along with stricter checking, this option causes all non-external names
to be truncated to eight characters and all external names to be truncated
to six characters and one case.

Causes lint to produce a .In file for every .c file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for inter-function compatibility.

-() lib Causes lint to create a lint library with the name IIib-llib.ln. The-c
option nullifies any use of the -() option. The lin t library produced is the
input given to lint's second pass. The -() option simply causes this file
to be saved in the named lint library. To produce a IIib-llib.ln without
extraneous messages, use the -x option. The -v option is useful if the
source file(s) for the lint library are just external interfaces (for example,
the way the file IIib-lc is written). These option settings are also avail­
able through the use of "lint comments" (see below).

The -0, -U, and -1 options of cpp(l) and the -g and -0 options of cc(l) are also
recognized as separate arguments. The -g and -0 options are ignored, but, by recog­
nizing these options, lint's behavior is closer to that of the cc(l) command. Other
options are warned about and ignored. The pre-processor symbol "lint" is defined to
allow certain questionable code to be altered or removed for lint. Therefore, the sym­
bol "lint" should be thought of as a reserved word for all code that is planned to be
checked by lint.

Commands 1-353

LINT(I)

BUGS

FlLES

1-354

SysV LINT(l)

Certain conventional conunents in the C source change the behavior of lint:

/*NOTREACHED*/
At appropriate points stops conunents about unreachable code. (This
conunent is typically placed just after calls to functions like exit(2».

/*VARARGSn*/
Suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n argu­
ments are checked; a missing n is taken to be O.

/*ARGSUSED*/
Turns on the -v option for the next function.

/*LINTLIBRARY*/
At the beginning of a file shuts off complaints about unused functions
and function arguments in this file. This is equivalent to using the -v
and -x options.

lint produces its first output on a per-source-file basis. Complaints regarding included
files are collected and printed after all source files have been processed. Finally, if the
-c option is not used, information gathered from all input files is collected and checked
for consistency. At this point, if it is not clear whether a complaint stems from a given
source file or from one of its included files, the source file name is printed followed by a
question mark.

The behavior of the -c and the -0 options allows for incremental use of lint on a set of
C source files. Generally, one invokes lint once for each source file with the -c option.
Each of these invocations produces a .In file which corresponds to the .c file, and prints
all messages that are about just that source file. After all the source files have been
separately run through lint, it is invoked once more (without the -c option), listing all
the .In files with the needed -Ix options. This prints all the inter-file inconsistencies.
This scheme works well with make(l); it allows make to lint only the source files that
have been modified since the last time the set of source files were linted.

exit(2), setjmp(3C), and other functions that do not return are not understood; this
causes various lies.

LLIBDlR

LLIBDlR/lint[12j
LLIBDlR/llib-lc.ln

LLIBDlR/llib-port.ln

LLIBDlR/llib-lm.ln

The directory where the lint libraries specified by the -Ix option
must exist, usually lusr/lib
First and second passes
Declarations for C Library functions (binary format; source is in
LLIBDlR/llib-lc)
Declarations for portable functions (binary format; source is in
LLIBDlR/llib-port)
Declarations for Math Library functions (binary format; source
is in LLIBDlR/llib-lm)

Conunands

LINT(l)

TMPDIR/*lint*
TMPDIR

SEE ALSO
cc(l), cpp(l), make(l).

Commands

SysV LINT(l)

Temporaries
Usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR (see tempnam() in tmpnam(3S».

1-355

LIST(l) SysV LIST(l)

NAME
list - produce C source listing from a common object file

SYNOPSIS
list [-v 1 [-h] [-F function] source-file . .. [object-file]

DESCRIPTION
list produces a C source listing with line number information attached. If multiple C
source files were used to create the object file, list accepts multiple file names. The
object file is taken to be the last non-C source file argument. If no object file is
specified, the default object file, a.out, is used.

Line numbers are printed for each line marked as breakpoint inserted by the compiler
(generally, each executable C statement that begins a new line of source). Line
numbering begins again for each function. Line number 1 is always the line containing
the left brace ({) that begins the function body. Line numbers are also supplied for
inner block redec1arations of local variables so that they can be distinguished by the
symbolic debugger.

OPTIONS
-V

-h

-Ffunction

Prints, on standard error, the version number of the list command exe­
cuting.

Suppresses heading output.

Lists only the named function. The -F option can be specified multiple
times on the command line.

CAVEATS
Object files given to list must have been compiled with the -g option of cc(1).

Since list does not use the C preprocessor, it may be unable to recognize function
definitions whose syntax has been distorted by the use of C preprocessor macro substi­
tutions.

DIAGNOSTICS
list produces the error message "list: name: cannot open" if fUlme cannot be read. If
the source file names do not end in .c , the message is "list: name: invalid C source
name". An invalid object file causes the message "list: name: bad magic" to be pro­
duced. If some or all of the symbolic debugging information is missing, one of the fol­
lowing messages is printed: "list: name: symbols have been stripped, cannot proceed",
"list: name: cannot read line numbers", and "list: name: not in symbol table". The
following messages are produced when list has become confused by #ifdef's in the
source file: "list: name: cannot find function in symbol table", "list: name: out of
sync: too many I", and "list: name: unexpected end-of-file". The error message "list:
name: missing or inappropriate line numbers" means that either symbol debugging
information is missing, or list has been confused by C preprocessor statements.

SEE ALSO
cc(l),ld(l).

1-356 Commands

LLlB(l) Domain/OS SysV LLIB(l)

NAME
iii b - list installed libraries

SYNOPSIS
IIib [-a]

DESCRIPTION
The IIib command lists those libraries which have been installed in the current process
via the build-in inlib shell. These libraries are used to resolve unknown references
when loading a program. To find out if a symbol is known and will be used in resolv­
ing an unknown reference, use esa.

OPTIONS
-a Also list those libraries which are known globally to every process. These

libraries are installed at boot time using the configuration information in
/etc/sys.conf.

SEE ALSO
she 1), csh(1), ksh(1)

Commands 1-357

LLKOB(l) Domain/OS SysV LLKOB(l)

NAME
IIkob - list locked objects

SYNOPSIS
IIkob [options]

DESCRIPTION
IIkob lists the locked objects resident on volumes mounted on this node, and objects
resident in other nodes that are locked by processes running locally.

The listing for each object includes the locking constraints imposed on the object (for
example, n-readers XOR I-writer), the specific lock mode being used (for example,
read, write, read-intending-write), the network node 1D of the node at which the object
is located, the node 1D of the node in which the locking process is active, and the name
(if it is available) of the object itself.

OPTIONS
-r[emote] Specify list of only those objects that either reside on this node and are

locked by another node, or reside on another node and are locked by this
node (that is, those objects whose locks are in some way remote).

-c[ount]

EXAMPLES
$lIkob

List only a one-line summary of the number of objects locked.

HOME LOCKING
USE CONSTRAINT NODE NODE FILE

W nR xor - lW 21 21 /sys/dm/pclb
R nR xor lW - 21 21 /sys/dm/fonts/std
W nR xor lW - 21 21 --Temporary File--
R nR xor lW 21 21 --Uncataloged Permanent File--
W nR xor - lW 21 21 --Display Manager Pad--

$lIkob -c
locked: 102 -- 100 local, 2 remote; 100 locally locked, 2 remotely

1-358 Commands

LN(l) SysV LN(l)

NAME
In - create a hard or soft link

SYNOPSIS
In name [target 1
In -s name target
In name ... directory

DESCRIPTION
In creates both hard and soft links. A link is a directory entry that refers to a file. You
can have several links, in one or more directories, to the same file. Changes to a file are
effective whether or not the file is referenced through a link.

A hard link is indistinguishable from the original directory entry. Hard links may not
span file systems and may not refer to directories.

A soft (or symbolic) link contains a pathname. Symbolic links may span file systems
and may refer to directories.

An open(2) operation on a link opens the referenced file. A stat(2) on a soft link is
equivalent to a stat on the file that the link points to. Use Istat(2) to obtain infonnation
about the link itself. The readlink(2) call is useful for reading the contents of a soft
link.

Given one or two arguments, In creates a link to an existing file name. If target is
given, the link has that name. The target argument may also be a directory in which to
place the link. If target is not a directory, the link is placed in the current directory.

When the -s option is used, In requires that a target be specified. If target exists, In -s
will fail. If only the directory is specified, the link is made to the last component of
name.

Given more than two arguments, In makes links to all the named files in the named
directory. The links made will have the same name as the files being linked to.

OPTIONS
-f

-s

NOTE

Forces creation of the link if pennitted by access modes (hard links
only).

Creates soft (symbolic) links.

By default, In generates a hard link.

SEE ALSO
cp(l), mV(I), nn(1), link(2), readlink(2), Istat(2), stat(2).

Commands 1-359

LOGGER(l) SysV LOGGER(l)

NAME
logger - make entries in the system log

SYNOPSIS
logger [-t tag] [-p pri] [-i] [-f file] [message ...]

DESCRIPTION
logger provides a program interface to the syslog(3) system log module.

You can give logger a message on the command line, which is logged immediately, or
logger can read a file and log each line.

OPTIONS
-t tag

-ppri

-i

-fjile

message

EXAMPLES

SEE ALSO

Mark every line in the log with the specified tag.

Enter the message with the specified priority. You can specify the prior­
ity numerically or as a "facility.level" pair. For example, -p
local3.info logs the message(s) as informational level in the local3 facil­
ity. The default is "user.notice."

Log the process ID of the logger process with each line.

Log the specified file.

The message to log; if you do not specify one, logger logs the -f file or
standard input.

$ logger System rebooted

$ logger -p localO.notice -t HOSTIDM -f Idev/idmc

syslog(3), syslogd(IM)

1-360 Commands

LOGIN(l) SysV LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [-p 1 [username 1 [env-var ... 1

DESCRIPTION
The login command is used when a user initially signs on, or it may be used at any time
to change from one user to another. The latter case is the one summarized above and
described here. See Getting Started with Domain/OS for information on initially log­
ging in.

If login is invoked without an argument, it prompts you for a username, and, if
appropriate, a password. Echoing is turned off (if possible) while you type the pass­
word, so it will not appear on the written record of the session.

At some installations, an option may be invoked that requires you to enter a second
"dialup" password. This only occurs for dial-up connections, and is prompted by the
message "dialup password: ". Both passwords are required for a successful login.

After a successful login, accounting files are updated and the operating environment is
set from the -I.environ file if it exists, or from letc/environ if-I.environ doesn't exist.

If your environment is BSD, you are informed of the existence of mail (see maH(l».
For all environments, the message of the day (fetc/motd) is printed. Both are
suppressed if you have a .hushlogin file in your home directory; this is mostly used to
make life easier for non-human users, such as uucp(IC).

The login command initializes the user and group IDs and the working directory, and
modifies the environment as follows (see environ(7».

The basic SysV environment is initialized to:

Commands

HOME=your-log-in-directory
LOGNAME=your-log-in-name
MAIL=/usr/mail/your-log-in-name
NODEID=your-node's-hexadecimal-id
NODETYPE=yollr-node's-model-nllmber
ORGANIZA TION=yollr-organization-name
P A TH=:/bin :/usr/bin:/usr/a polio/bin
PROJECT=your-project-name
SHELL=last-field-of-passwd-entry
SYSTYPE=sysS.3
TERM=yollr-terminal-type
TZ=timezone-specification
USER=your-log-in-name

1-361

LOGIN(l) SysV LOGIN(l)

NOTES

1-362

The basic BSO environment is initialized to:

HOME=your-log-in-directory
LOGNAME=your-log-in-name
MAIL=lusrlspooIlmail/your-log-in-name
NOOEID=your-node's-hexadecirnal-id
NODETYPE=your-node's-model-number
ORGANIZATION=your-organization-name
PA1H=:/usr/ucb:/bin:/usr/bin:/usr/apollo/bin
PROJECT=your-project-name
SHELL=last-field-of-passwd-entry
SYSTYPE=bsd4.3
TERM=your-terminal-type
TZ=timezone-specijication
USER=your-log-in-name

The -p argument causes the remainder of the environment to be preserved, otherwise
any previous environment is discarded.

The environment can be expanded or modified by supplying additional arguments to
login, either at execution time or when login requests your log-in name. Arguments can
take either the form = or ==yyy. Arguments without an equal sign are placed in the
environment as

Ln==
where n is a number starting at 0 and is incremented each time a new variable name is
required. Variables containing = are placed in the environment without modification.
If they already appear in the environment, then they replace the older value, with two
exceptions. The variables PATH and SHELL cannot be changed. Both login and getty
understand simple single-character quoting conventions. Typing a backslash in front of
a character quotes it and allows the inclusion of such things as spaces and tabs.

After setting up the environment, login executes a command interpreter (for example, a
shell) as specified in the last field of your letc/passwd file entry. If this field in
letc/passwd is empty, the default command interpreter is Ibin/sh for the BSO and SysV
environments, and Icornlsh for the Aegis environment. See csh(l), ksh{l), and sh(l)
for a description of the shell's startup behavior. Argument 0 of the command interpreter
is the name of the command interpreter with a leading dash ("-").

If the file letc/nologin exists, login prints the contents of this file on your terminal and
exits. This is used by shutdown(8) to stop you from logging in when the system is
about to go down.

login is recognized by sh(l) and csh(l) and executed directly (without forking).

An undocumented option, -r is used by the remote login server, rlogind(lM) to force
login to enter into an initial connection protocol. -h is used by telnetd{lM) and other
servers to list the host from which the connection was received.

Commands

LOGIN(I) SysY LOGIN(I)

SECURITY

FILES

Sites wishing additional security protection on dial-up lines may want to use these secu­
rity features, letc/d_users and letc/d_passwd. letc/d_users is simply a file containing a
list of users authorized to log in on this node.

I etcl d _passwd is a file containing lines of the following format:

Ibin/sh:encrypted-password

where encrypted-password is the dial-in password for the specified shell as returned by
crypt(3). If an entry for the user's log-in shell is not found in this file, the password for
Ibin/sh is used.

letc/utmp
letc/wtmp
lusr/mail/your-name
letc/motd
letc/passwd
.hushlogin

Accounting
Accounting
Mailbox for user your-name
Message of the day
Password file
Makes login quieter

DIAGNOSTICS

BUGS

"Login incorrect," U semame or password cannot be matched.

"No Shell", "cannot open password file", "no directory": consult a UNIX system
programming counselor.

login(1) is not currently used for logging into the Display Manager or the Server Pro­
cess Manager, although the procedure used by those programs is similar.

The System Y Release 3 facility for using a "*" in the shell field of the letc/passwd file
is not supported by Domain/OS.

SEE ALSO
mail(l), newgrp(l), sh(l), su(IM).
passwd(4), profile(4), environ(5) in the SysV Programmer's Reference.

Commands 1-363

LOGNAME(1)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

SysV LOGNAME(l)

logname returns the contents of the environment variable $LOGNAME, which is set
when a user logs into the system.

FILES
/ etc/ profile

SEE ALSO
env(l),login(l).
logname(3X), environ(5) in the SysV Programmer's Reference.

1-364 Commands

LORDER(l) SysV LORDER(l)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file .•.

DESCRIPTION

FILES

Input is one or more object or library archive files (see ar(l». Standard output is a list
of pairs of object file or archive member names, meaning that the first file of the pair
refers to external identifiers defined in the second. Output may be processed by tsort(l)
to find an ordering of a library suitable for one-pass access by Id(l). Note that the link
editor Id(l) is capable of multiple passes over an archive in the portable archive format
[see ar(4)] and does not require that lorder(l) be used when building an archive. Using
10rder(l) may, however, allow for a slightly more efficient access of the archive during
the link edit process.

The following example builds a new library from existing .0 files.

ar -cr library 'Iorder *.0 tsort'

TMPDlR/*symref
TMPDlR/*symdef

Temporary files
Temporary files

TMPDIR is usually lusr/tmp but can be redefined by setting the environment variable
TMPDlR (see tempnamO in tmpnam(3S».

CAVEAT
(order accepts as input any object or archive file, regardless of its suffix, provided there
is more than one input file. If there is but a single input file, its suffix must be .0.

SEE ALSO
ar(l), Id(l), tsort(l), ar(4).

Commands 1-365

LP(l) SysV LP(l)

NAME
Ip, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [--c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-tritle] [-wfiles]
cancel [ids] [printers]

DESCRIPTION
Ip arranges for the named files and associated information (collectively called a
"request") to be printed by a line printer. If no file names are mentioned, the standard
input is assumed. A dash (-) used as a file name indicates the standard input and may
be supplied on the command line in conjunction with namedfiles. The order in which
files appear is the same order in which they will be printed.

Ip associates a unique "id" with each request and prints it on the standard output. This
id can be used later to cancel (see cancel) or find the status (see Ipstat(l» of the
request.

OPTIONS

1-366

The following options to Ip may appear in any order and may be intermixed with file
names:

--c

-ddest

-m

-nnumber

-ooption

Makes copies ofthefile(s) to be printed immediately when Ip is invoked.
Normally, files will not be copied, but will be linked whenever possible.
If the --c option is not given, then you should be careful not to remove
any of the filers) before the request has been printed completely.
Without the --c option, any changes made to the named files after the
request is made, but before it is printed, will be reflected in the printed
output.

Chooses dest as the printer or class of printers where printing will take
place. If dest is a printer, the request will be printed only on that specific
printer. If dest is a class of printers, the request will be printed on the
first available printer that is a member of the class. Under certain condi­
tions (printer availability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(IM) and Ipstat(l». By
default, dest is taken from the environment variable LPDEST (if it is
set). Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see Ipstat(l».

Sends mail after the files have been printed (seemail(l».Bydefault.no
mail is sent.

Prints number copies of the output (default is 1).

Specifies a printer-dependent or class-dependent option. Several such
options may be collected by specifying -0 more than once. For more
information about what are valid options, see Models in Ipadmin(lM).

Commands

LP(l)

FlLES

-s

-ttitle

SysV

Suppresses messages from Ip(l) such as "request id is ... ".

Prints title on the banner page of the output.

LP(l)

-w Writes a message to your terminal after the files have been printed. If
you are not logged in, mail is sent instead.

Cancel cancels line printer requests made by Ip(l). The command line arguments can
be either request ids (as returned by Ip(1» or printer names (for a complete list of
printer names, use Ipstat(1». Specifying a request id cancels the associated request
even if it is currently printing. Specifying a printer cancels the request which is
currently printing on that printer. In either case, the cancellation of a request that is
currently printing frees the printer to print its next available request.

lusrispooi/lp/*

SEE ALSO
enable(l),lpstat(1), mail(1).
accept(IM),lpadmin(IM),lpsched(IM) in the Managing SysV System Software.

Commands 1-367

LPSTAT(l) SysV LPSTAT(l)

NAME
Ipstat - print LP status infonnation

SYNOPSIS
I pstat [options]

DESCRIPTION
I pstat prints infonnation about the current status of the LP spooling system.

If no options are given, Ipstat prints the status of all requests made to Ip(l). Anyargu­
ments that are not options are assumed to be request ids (as returned by /p). Ipstat
prints the status of such requests. Options can appear in any order and may be repeated
and intennixed with other arguments. Some options can be followed by an optional list
that can be in one of two fonns:

• A list of items separated from one another by a comma

• A list of items enclosed in double quotes and separated from one another by a
comma and/or one or more spaces. For example:

Ipstat -u"userl, user2, user3"

The omission of a tist following these options causes all infonnation relevant to the
option to be printed, for example:

Ipstat -0

prints the status of all output requests.

OPTIONS
-a [tist]

-c[list]

-d

-o[tist]

-p[list]

-r

-s

-t

-u[list]

-v [list]

1-368

Prints acceptance status (with respect to /p) of destinations for requests.
List is a list of intennixed printer names and class names.

Prints class names and their members. List is a list of class names.

Prints the system default destination for /p.

Prints the status of output requests. List is a list of intennixed printer
names, class names, and request ids.

Prints the status of printers. List is a list of printer names.

Prints the status of the LP request scheduler

Prints a status summary, including the system default destination, a list
of class names and their members, and a list of printers and their associ­
ated devices.

Prints all status infonnation.

Prints status of output requests fvr users. List is a list of login names.

Prints the names of printers and the path names of the devices associated
with them. List is a list of printer names.

Commands

LPSTAT(l)

FlLES
lusrispooi/lp/*

SEE ALSO
enable(l),lp(l).

Commands

SysV LPSTAT(l)

1-369

LS(l) SysV LS(l)

NAME
Is - list contents of directory

SYNOPSIS
Is [-RSadCxmlnogrtucpFbqisff] [names]

DESCRIPTION
For each directory argument, Is lists the contents of the directory. For each file argu­
ment, Is repeats its name and any other information requested. By default, it sorts the
output alphabetically. If you specify no argument, Is lists the current directory. If you
give several arguments, Is first sorts the arguments appropriately, but prints file argu­
ments before directories and their contents.

Is produces lists in three major formats. By default, it lists one entry per line. It can
also generate a multi-column format, as well as stream output format in which files are
listed across the page, separated by commas.

OPTIONS
-R

-S
-a

-d

-C

-x

-m

-I

1-370

Recursively list subdirectories encountered. This option follows soft
links unless the -S option is also used.

Shows link text rather than the object to which the link has been made.

List all entries. Usually, entries whose names begin with a period (.) are
not listed.

If an argument is a directory, list only its name (not its contents). Often
used with -I to get the status of a directory.

Produce multi-column output with entries sorted down the columns.

Produce multi-column output with entries sorted across rather than down
the page. (-S is ignored.)

Produce stream output format.

List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file. If the file is a special
file, the size field contains the major and minor device numbers, rather
than a size. The mode printed under the -I option consists of 10 charac­
ters, interpreted as follows:

The first character is:

d Directory
b Block special file
c Character special file
p Fifo (also called a "named pipe") special file

Ordinary file

The next nine characters are interpreted as three sets of three bits each.

Commands

LS(l)

-n

-g
-r

-t

Corrunands

SysV LS(l)

The first set refers to the owner's permissions; the next to permissions of
others in the user group of the file; and the last to all others. Within each
set, the three characters indicate permission to read, to write, and to exe­
cute the file as a program, respectively. For a directory, execute permis­
sion is interpreted as permission to search the directory for a specified
file.

The permissions are indicated as follows:

r File is readable
w File is writable
x File is executable

Indicated permission is not Granted
Mandatory locking will occur during access (the set­
group-ID bit is on and the group execution bit is off)

s The set-user-ID or set-group-ID bit is on, and the
corresponding user or group execution bit is also on

S Undefined bit-state (the set-user-ID bit is on and the user
execution bit is off)
The 1000 (octal) bit, or sticky bit, is on (see chmod(l»,
and execution is on

T The 1000 bit is turned on, and execution is off (undefined
bit-state)

For user and group permissions, the third position (the execute permis­
sion) is sometimes occupied by a character other than x or -. An s or S
may occupy this position, indicating the state of the set-user-ID or set­
group-ID bit. The ability to assume the same ID as the user during exe­
cution is, for example, used during login when you begin as root but
need to assume the identity of the user stated at "login." The group
execute permission may be given as I, indicating that mandatory file and
record locking will occur. This permission describes a file's ability to
allow other files to lock its reading or writing permissions during access.
For others permissions, the third position may be occupied by t or T,
indicating the state of the sticky bit and execution permissions.

Same as -I, except that the owner's UlD and group's GID numbers are
printed, rather than the associated character strings.

Same as -I, except that the group is not printed.

Same as -I, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

Sort by time modified (latest first) instead of by name.

\-371

LS(l)

-u

-c

-p

-F

-b

-q

-i

-s

-f

-T

SysV LS(l)

Use time of last access instead of last modification for sorting (with the
-t option) or printing (with the -I option).

Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-I).

Put a slash (/) after each filename if that file is a directory.

Put a slash (/) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable. If used with -S,
softlinks will appear with an @ symbol.

Force nongraphic characters to be printed in the octal 'add notation.

Force nongraphic characters in filenames to be printed as question marks
(?).

For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry. Block size
is considered to be 1024. Print a total count of blocks when the sizes of
the files in a directory are listed.

Force each argument to be interpreted as a directory and list the name
found in each slot. Tum off -I, -t, -s, and -r, and turn on -a; the order
is the order in which entries appear in the directory.

Used with the -I option, - T shows the "Apollo rype" of each file.

EXAMPLES

1-372

The first set of examples refers to permissions.

To describe a file that is readable, writable, and executable by the user and readable by
the group and others:

-rwxr-r-

To describe a file that is readable, writable, and executable by the user, readable and
executable by the group and others, and allows its user-ID to be assumed, during execu­
tion, by the user presently executing it:

-rwsr-xr-x

To describe a file that is readable and writable only by the user and the group and can
be locked during access:

-rw-rwl-

Commands

LS(l)

NOTES

BUGS

FILES

SysV LS(l)

The following examples describe the output from Is.

Is-I

(the long list) prints its output as follows:

-rwxrwxrwx 1 smith dey 10876 May 16 9:42 part2

Reading from right to left, you see that the current directory holds one file, named
"part2". Next, the last time that file's contents were modified was 9:42 A.M. on May
16. The file is moderately sized, containing 10,876 characters, or bytes. The owner of
the file, or the user, belongs to the group "dev" (perhaps indicating development), and
his or her login name is "smith." The number, in this case "I," indicates the number
oflinks to file "part2". Finally, the row ofletters beginning with a dash (-) tells you
that user, group, and others have permissions to read, write, execute' ·part2. " The exe­
cute (x) symbol here occupies the third position of the three-character sequence. A - in
the third position would have indicated a denial of execution permissions.

Is -aisn

prints its output as follows:

923765600 16 -rwxrwxrwx 1 20123 38 16329 Sep 3 14:34

This command lists all entries (a), including those whose names begin with a period (.).
The output shows the i-number (the memory address of the i-node associated with the
file) printed in the left-hand column (i); the size (in blocks) of the files, printed in the
column to the right of the i-numbers (s); finally, the report is displayed in the numeric
version of the long list, printing the urn (instead of user name) and GID (instead of
group name) numbers associated with the files.

In a Remote File Sharing environment, you may not have the permissions that the out­
put of the Is -I command leads you to believe.

Unprintable characters in filenames may confuse the columnar output options.

/etefpasswd
fete/group
fusrflibfterminfo!?f*

To get user IDs for Is -I and Is -i)
To get group IDs for Is -I and Is -g
To get terminal information

SEE ALSO
chmod (1), find (1).

Commands 1-373

LSACL(l) Domain/OS SysV LSACL(l)

NAME
Isael - list access control list

SYNOPSIS
lsael [-odfsvnmlaLR] file . . .

DESCRIPTION
If you do not specify an option, Isael shows the access control list (ACL) associated
with the files and directories specified. It lists entries one per line in the following for­
mat:

%.%.% prwxk

where %. %. % represents a subject identifier (SID) in person.group.organization fonn,
and prwxk represents a set of rights. If one of the letters prwxk appears, the associated
right is present, if a - appears, it isn't. See ael(7) for more infonnation about access
rights. If you specify more than one file, the ACL is preceded by the filename.

OPTIONS
-0

-d

-f

-s

-v

-m

-n

-I

-a

-L

1-374

Lists the ACL associated with the specified objects. This is default if
you do not specify an option.

Shows how new sub-directories created in the specified directory will
inherit their protections. (This output is also known as the initial direc­
tory ACL.)

Shows how new files created in the specified directory will inherit their
protections. (This output is also known as the initial file ACL.)

Lists any sub-system infonnation. Protected sub-systems are an Aegis
analogue to setuid programs, and you should use the commands avail­
able in the Aegis environment to manipulate them. This option is pro­
vided so that UNIX users can be aware of files that use the feature.

Selects verbose output. In this mode, each ACL (object, initial file and
initial directory) is preceded by a label.

Shows the rights mask for extended ACL entries. By default, this infor­
mation is not shown.

Shows the node/network access rights.

Shows a long listing, equivalent to selecting all the above options.

Shows all bits in the rights field, rather than showing [ignore] and
[umask]. See chael(l) for a description of these bits.

Directs Isael to follow any soft links encountered, and operate on the
object to which the link points. Since soft links in Domain/OS do not
have ACLs, attempting to change or display the ACL on a link without
the -L flag simply results in a warning.

Commands

LSACL(1) Domain/OS SysV LSACL(l)

-R Recursively lists the ACLs of any directories specified on the command
line.

Only directories have additional fields relating to inheritance of protections for new
sub-directories and files. If you specify a non-directory with either the -d or -f option,
lsacl ignores them for that object.

SEE ALSO
chacJ(J), cpacJ(J), dbacJ(J), chmod(J), chgrp(J), chown(l), Is(1), salacJ(JM) umask(2)
acJ(5)

Commands 1-375

LTY(l) Domain/OS SysV LTY(l)

NAME
Ity - list installed types

SYNOPSIS
Jty [options]

DESCRIPTION
Jty lists the types currently installed on a volume. It can also be used to list the contents
of internal caches for debugging purposes.

OPTIONS
If no options are specified, Ity lists types installed on the boot volume.

-n node_spec

-u
-glob

-priv

Specify the node whose type names are to be listed. You may also
specify the entry directory of a volume mounted for software instal­
lation, as shown in the example below.

Display type UIDs as well as type names.

Display contents of global type name cache instead of the type file
(for debugging only).

Display the contents of the private (per-user) type name cache
instead of the type file (for debugging only).

EXAMPLES
$lty
Local type file

area bitmap
lheap mbx
pipe rec

boot
mt
sch

casehm ddf
nil null

evetype
obj

sio uasc und

hdru
objlib

ipad
pad

In the following example, the disk has been mounted for software installation. The
disk's top level directory (cataloged as Imounted_disk by the mount(lM) command)
must contain a sys directory. If it does not, you get a "types file not found" error.

$ letc/mount Imounted _disk
$ Ity -n Imounted _disk
Type file for "//my_node/mounted_disk"

area bitmap boot
lheap mbx mt
pipe rec sch

casehm ddf
nil null

evetype
obj

sio uasc und

hdru
objlib

ipad
pad

SEE ALSO
crty(l), dlty(l), inty(l), mount(IM)

1-376 Commands

M4(1) SysV M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
m4 is a macro processor intended as a front end for Ratfor, C, and other languages.
Each of the argument files is processed in order; if there are no files, or if a file name is
-, the standard input is read. The processed text is written on the standard output.

OPTIONS

-s

-Bint

-Hint

-Sint

-Tint

Operates interactively. Interrupts are ignored and the output is unbuf­
fered.

Enables line sync output for the C preprocessor (#line ...)

Changes the size of the push-back and argument collection buffers from
the default of 4,096.

Changes the size of the symbol table hash array from the default of 199.
The size should be prime.

Changes the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

Changes the size of the token buffer from the default of 512 bytes.

To be effective, these must appear before any file names and before -D or -U:

-Dname [=val]
Defines name to valor to null in val's absence.

-Uname
Undefines name.

Macro calls have the form:

name(arg1,arg2, ... , argn)

The left parenthesis (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro with no
arguments. Potential macro names consist of alphabetic letters, digits, and underscore
_, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments.
Left and right single quotes are used to quote strings. The value of a quoted string is
the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds nor­
mally during the collection of the arguments, and any commas or right parentheses
which happen to mm up within the value of a nested call are as effective as those in the

Commands 1-377

M4(l) SysV M4(l)

original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

BUll.T-IN MACROS

1-378

m4 makes available the following built-in macros. They may be redefined, but once
this is done the original meaning is lost. Their values are null unless otherwise stated.

defme Installs the second argument as the value of the macro whose name is the
first argument. Each occurrence of $n in the replacement text, where n
is a digit, is replaced by the n-th argument. Argument 0 is the name of
the macro; missing arguments are replaced by the null string; $# is
replaced by the number of arguments; $* is replaced by a list of all the
arguments separated by commas; $@ is like $*, but each argument is
quoted (with the current quotes).

undefme

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

undivert

Removes the definition of the macro named in its argument.

Returns the quoted definition of its argument(s). It is useful for renam­
ing macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s), exposing the previous
one, if any.

If the first argument is defined, the value is the second argument, other­
wise the third. If there is no third argument, the value is null. The word
unix is predefined on UNIX system versions of m4.

Returns all but its first argument. The other arguments are quoted and
pushed back with commas in between. The quoting nullifies the effect
of the extra scan that will subsequently be perfonned.

Changes quote symbols to the first and second arguments. The symbols
may be up to five characters long. Clumgequote without arguments
restores the original values (i.e." ,).

Changes left and right comment !llarkers from the default # and new­
line. With no arguments, the comment mechanism is effectively dis­
abled. With one argument, the left marker becomes the argument and
the right marker becomes new-line. With two arguments, both markers
are affected. Comment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is the
concatenation of the streams in numerical order; initially stream 0 is the
current stream. The divert macro changes the current output stream to
its (digit-string) argument. Output diverted to a stream other than 0
through 9 is discarded.

Causes immediate output of text from diversions named as arguments, or
all diversions if no argument. Text may be undiverted into another

Commands

M4(1)

divnum

dnl

ifelse

incr

decr

eval

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

Commands

SysV

diversion. Undiverting discards the diverted text.

Returns the value ofthe current output stream.

M4(l)

Reads and discards characters up to and including the next new-line.

Contains three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not, and if
there are more than four arguments, the process is repeated with argu­
ments 4, 5, 6 and 7. Otherwise, the value is either the fourth string, or, if
it is not present, null.

Returns the value of its argument incremented by 1. The value of the
argument is calculated by interpreting an initial digit-string as a decimal
number.

Returns the value of its argument decremented by I.

Evaluates its argument as an arithmetic expression, using 32-bit arith­
metic. Operators include +, -, *, I, %,' (exponentiation), bitwise &, I,
" and -; relationals; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the radix for the result;
the default is 10. The third argument may be used to specify the
minimum number of digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the second argument
begins (zero origin), or -1 if the second argument does not occur.

Returns a substring of its first argument. The second argument is a zero
origin number selecting the first character; the third argument indicates
the length of the substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

Transliterates the characters in its first argument from the set given by
the second argument to the set given by the third. No abbreviations are
permitted.

Returns the contents of the file named in the argument.

Is identical to include, except that it says nothing if the file is inaccessi·
ble.

Executes the UNIX system command given in the first argument. Nc
value is returned.

Is the return code from the last call to syscrnd.

Fills in a string ofXXXXX in its argument with the current process ID.

causes immediate exit from m4. Argument 1, if given, is the exit code
the default is O.

1-37'

M4(1)

m4wrap

errprint

dumpdef

traceon

traceoff

SEE ALSO
cc(l), cpp(l).

1-380

SysV M4(1)

Argument 1 is pushed back at final EOF; example: m4wrap(, cleanup() ,)

prints its argument on the diagnostic output file.

Prints current names and definitions, for the named items, or for all if no
arguments are given.

With no arguments, turns on tracing for all macros (including built-ins).
Otherwise, turns on tracing for named macros.

Turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific calls to
traceoff·

Commands

MAIL(I) SysV MAIL(1)

NAME
mail, rmail- send mail to users or read mail

SYNOPSIS
Sending mail:

mail [--oswt 1 persons

rmail [-oswt] persons

Reading mail:

mail [-ehpqr] [-f file] [-F persons]

DESCRIPTION
Sending mail:

A person is usually a user name recognized by login(l). When persons are named,
mail assumes a message is being sent (except in the case of the -F option). It reads
from the standard input up to an end-of-file (C1RL/D), or until it reads a line consisting
of just a period. When either of those signals is received, mail adds the letter to the
mailfile for each person. A letter is a message preceded by a postmark. The message
is preceded by the sender's name and a postmark. A postmark consists of one or more
'From' lines fol1owed by a blank line (unless the -s argument was used).

If a letter is found to be undeliverable, it is returned to the sender with diagnostics that
indicate the location and nature of the failure. If mail is interrupted during input, the
file dead.letter is saved to allow editing and resending. The dead.letter file is
recreated every time it is needed, erasing any previous contents.

The rmail command only permits the sending of mail; uucp(lC) uses rmail as a secu­
rity precaution.

If the local system has the Basic Networking Utilities installed, mail may be sent to a
recipient on a remote system. Prefix person by the system name and exclamation point.
A series of system names separated by exclamation points can be used to direct a letter
through an extended network.

Reading Mail:

The mail program, unless otherwise influenced by command-line arguments, prints a
user's mail messages in last-in, first-out order. For each message, the user is prompted
with a question mark (?), and a line is read from the standard input. The fol1owing
commands are available to determine the disposition of the message:

<newline>, +, or n

d, or dp

d#

dq

Commands

Go on to next message.

Delete message and go on to next message.

Delete message number #. Do not go on to next message.

Delete message and quit mail.

1-381

MAlL(l} SysV MAIL(l}

1-382

h

h#

ha

hd

p

a

r [users]

s [files]

y

urI]
w [files]

m [persons]

q, or ctl-d

x

!command

?

Display a window of headers around current message.

Display header of message number #.

Display headers of all messages in the user's mailfile.

Display headers of messages scheduled for deletion.

Print current message again.

Print previous message.

Print message that arrived during the mail session.

Print message number #.

Reply to the sender, and other user(s), then delete the mes­
sage.

Save message in the named files (mbox is default).

Same as save.

Undelete message number # (default is last read).

Save message, without its top-most header, in the named
files (mbo" is default).

Mail the message to the named persons.

Put undeleted mail back in the mailfile and quit mail.

Put all mail back in the mailfile unchanged and exit mail.

Escape to the shell to do command.

Print a command summary.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is made
if new mail arrives while using mail.

The mailfile may be manipulated in two ways to alter the function of mail. The other
permissions of the file may be read-write, read-only, or neither read nor write to allow
different levels of privacy. If changed to other than the default, the file will be
pre&el'Ved even when empty to perpetuate the desired permissions. The file may also
contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to person. A
"Forwarded by ... " message is added to the header. This is especially useful in a multi­
machine environment to forward all of a person's mail to a single machine, and to keep
the recipient informed if the mail. has been forwarded. Installation and removal of for­
warding is done with the -F option.

To forward all of one's mail to systema!user enter the following:

Commandll

MAIL(l) SysV MAIL(l)

mail-Fsystema!user

To forward to more than one user, enter this command line:

mail -F" user 1,systema!user2,systema!systemb!user3"

Note that when more than one user is specified, the whole list should be enclosed in
double quotes so that it may all be interpreted as the operand of the -F option. The list
can be up to 1024 bytes; either commas or white space can be used to separate users.

To remove forwarding, enter the following:

mail-F ""

The pair of double quotes is mandatory to set a NULL argument for the -F option.

In order for forwarding to work properly, the mailfile should have "mail" as group 10
and the group permission should be read-write.

OPTIONS
Sending mail:

--0 Suppresses the address optimization facility.

-s Suppresses the addition of a <newline> at the top of the letter being sent. See
WARNINGS below.

-w Causes a letter to be sent to a remote user without waiting for the completion
of the remote transfer program.

-t Causes a To: line to be added to the letter, showing the intended recipients.

Reading mail:

-e Causes mail not to be printed. An exit value of 0 is returned if the user has
mail; otherwise, an exit value of I is returned.

-h Causes a window of headers to be displayed rather than the latest message.
The display is followed by the '?' prompt.

-p Causes all messages to be printed without prompting for disposition.

-q Causes mail to terminate after interrupts. Normally an interrupt causes only
the termination of the message being printed.

-r Causes messages to be printed in first-in, first-out order.

-fftle Causes BI mail to use file (e.g., mbox) instead of the default mailfile.

-Fpersons
Entered into an empty mailbox, causes all incoming mail to be forwarded to
persons.

WARNING
The "Forward to person" feature may result in a loop, if sysl!userb forwards to
sys2!userb and sys2!userb forwards to sysl!userb. The symptom is a message saying
"unbounded ... saved mail in dead.1etter."

Commands 1-383

MAlL(1) SysV MAlL(1)

BUGS

FILES

The -s option should be used with caution. It allows the text of a message to be inter­
preted as part of the postmark of the letter, possibly causing confusion to other mail
programs. To allow compatibility with mailx(l), if the first line of the message is "Sub­
ject: •.. ", the addition of a <newline> is suppressed whether or not the -8 option is used.

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by typ­
ing a p.

letc/passwd
lusr/mail/user
$HOME/mbox
$MAIL
Itmp/ma*
lusr/mail/*.Iock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mail file
saved mail
variable containing path name of mail file
temporary file
lock for mail directory
unmailable text

SEE ALSO

1-384

login(l), mailx(l), write(l).
Managing SysV System Software.

Commands

MAILX(l) SysV MAILX(l)

NAME
maiIx - interactive message processing system

SYNOPSIS
mailx [options] [name ...]

DESCRIPTION
The command maiIx provides a comfortable, flexible environment for sending and
receiving messages electronically. When reading mail, mailx provides commands to
facilitate saving, deleting, and responding to messages. When sending mail, mailx
allows editing, reviewing and other modification of the message as it is entered.

Many of the remote features of mailx will only work if the Basic Networking Utilities
are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox for that user.
When maiIx is called to read messages, the mailbox is the default place to find them.
As messages are read, they are marked to be moved to a secondary file for storage,
unless specific action is taken, so that the messages need not be seen again. This secon­
dary file is called the mbox and is normally located in the user's HOME directory (see
"MBOX" (ENVIRONMENT VARIABLES) for a description of this file). Messages can
be saved in other secondary files named by the user. Messages remain in a secondary
file until forcibly removed.

The user can access a secondary file by using the -f option of the maiIx command.
Messages in the secondary file can then be read or otherwise processed using the same
COMMANDS as in the primary mailbox. This gives rise within these pages to the
notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments are taken
to be destinations (recipients). If no recipients are specified, maiIx will attempt to read
messages from the mailbox.

When reading mail, mailx is in command mode. A header summary of the first several
messages is displayed, followed by a prompt indicating maiIx can accept regular com­
mands (see COMMANDS below). When sending mail, mailx is in input mode. If no
subject is specified on the command line, a prompt for the subject is printed. As the
message is typed, maiIx will read the message and store it in a temporary file. Com­
mands may be entered by beginning a line with the tilde n escape character followed
by a single command letter and optional arguments. See TILDE ESCAPES for a sum­
mary of these commands.

At any time, the behavior of maiIx is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared via the set and unset
commands. See ENVIRONMENT VARIABLES below for a summary of these parame­
ters.

Commands 1-385

MAILX(l) SysV MAU.x(l)

1-386

Recipients listed on the command line may be of three types: login names, shell com­
mands, or alias groups. Login names may be any network address, including mixed
network addressing. If mail is found to to undeliverable, an attempt is made to return it
to the sender's mailbox. If the recipient name begins with a pipe symbol (I), the rest of
the name is taken to be a shell command to pipe the message through. This provides an
automatic interface with any program that reads the standard input, such as Ip(l) for
recording outgoing mail on paper. Alias groups are set by the alias command (see
COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode, com­
mands are recognized by the escape character, and lines not treated as commands are
taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion of a
current message, marked by a right angle bracket (» in the header summary. Many
commands take an optional list of messages (msglist) to operate on. The default for
msglist is the current message. A msglist is a list of message identifiers separated by
spaces, which may include:

n

$

*
n-m
user
/string
:c

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:

d Deleted messages
n New messages
o Old messages
r Read messages
u Unread messages

Note that the context of the command determines whether this type of
message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. File names, where expected, are expanded via the normal shell conventions
(see sh(l». Special characters are recognized by certain commands and are docu­
mented with the commands below.

Commands

MAILX(l) SysV MAILX(l)

At start-up time, mailx tries to execute commands from the optional system-wide file
(/usr/lib/mailx/mailx.rc) to initialize certain patameters, then from a private start-up
file ($HOME/.mailre) for personalized variables. With the exceptions noted below,
reguIat commands ate legal inside start-up files. The most common use of a start-up
file is to set up initial display options and alias lists. The following commands ate not
legal in the start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. An error in the start-up file causes the remaining lines in the
file to be ignored. The .mailre file is optional, and must be constructed locally.

OPTIONS
-e Test for presence of mail. The mailx command prints nothing and exits

with a successful return code if there is mail to read.

-f Iftlenamel Read messages from filename instead of mailbox. If no filename is
specified, the mbox is used.

-F Record the message in a file named after the first recipient. Overrides
the "record" vatiable, if set (see ENVIRONMENT VARIABLES).

-h number The number of network "hops" made so fat. This is provided for net­
work softwate to avoid infinite delivery loops. (See addsopt under
ENVIRONMENT VARIABLES)

-H Print header summary only.

-i Ignore interrupts. See also "ignore" (ENVIRONMENT VARIABLES).

-n Do not initialize from the system default mailx.rc file.

-N Do not print initial header summary.

-r address Pass address to network delivery software. All tilde commands ate dis-
abled. (See addsopt under ENVIRONMENT VARIABLES)

-s subject Set the Subject header field to subject.

-u user Read user's mailbox. This is only effective if user's mailbox is not read
protected.

-U Convert uuep-style addresses to internet standatds. Overrides the
"conv" environment vatiable. (See addsopt under ENVIRONMENT
VARIABLES)

COMMANDS
The following is a complete list of mailx commands:

Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful in .maitrc files.

Print the current message number.

Commands 1-387

MAILX(l) SysV MAILX(l)

1-388

?
Prints a sununary of conunands.

group alias name ...
Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

Declares a list of alternate names for your login. When responding to a
message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter­
nate names. See also "allnet" (ENVIRONMENT VARIABLES).

cd [directory J
chdir [directory J

Change directory. If directory is not specified, $HOME is used.

copy [msglist] filename
Copy messages to the file without marking the messages as saved. Oth­
erwise equivalent to the save conunand.

Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save conunand.

Delete messages from the mailbox. If "autoprint" is set, the next mes­
sage after the last one deleted is printed (see ENVIRONMENT V ARI­
ABLES).

ignore [header-field ... J

dp [msglist]

dt [msglist]

echo string ...

edit [ms g list J

exit

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"cc." The fields are included when the message is saved. The Print and
Type conunands override this conunand.

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete conunand
followed by a print conunand.

Echo the given strings (like echo(l).

Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed(l).

Conunands

MAll..X(l)

xit

file [filename]

SysV MAll..X(1)

Exit from mailx, without changing the mailbox. No messages are saved
in the mbox (see also quit).

folder [filename]

folders

from [msglist]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

%
%user

&

Current mailbox.
mailbox for user.
Previous file.
Current mbox.

Default file is the current mailbox.

Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENT VARIABLES).

Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" variable,
if set. See also the Followup, Save, and Copy commands and "out­
folder" (ENVIRONMENT VARIABLES).

Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from the
first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the followup,
Save, and Copy commands and "outfolder" (ENVIRONMENT V ARl­
ABLES).

Prints the header summary for the specified messages.

alias alias name ...

help

Commands

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRON­
MENTVARIAl3LES). See also the z command.

PrintsO a summary of commands.

1-389

MAILX(l) SysV MAILX(l)

1-390

hold [msglist]

preserve [msglist]
Holds the specified messages in the mailbox.

if sir

mail-commands

else

mail-commands

endif
Conditional execution, where s will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r causes the
mail-commands to be executed only in receive mode. Useful in the
.maitrc file.

discard header-field ...

list

mail name ...

Mail name

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"cc." All fields are included when the message is saved. The Print and
Type commands override this command.

Prints all commands available. No explanation is given.

Mail a message to the specified users.

Mail a message to the specified user and record a copy of it in a file
named after that user.

Arrange for the given messages to end up in the standard mbox save file
when mailx terminates normally. See "MBOX" (ENVIRONMENT
VARIABLES) for a description of this file. See also the exit and quit
commands.

Go to next message matching message. A msglist may be specified, but
in this case the first valid message in the list is the only one used. This is
useful for jumping to the next message from a specific user, since the
name would be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of possible mes­
sage specifications.

I [msglist] [shell-command]
Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current message
is piped through the command specified by the value of the "cmd"

Commands

MAILX(l)

hold [msglist]

Type [msglist]

print [msglist]

type [msglist]

quit

SysV MAILX(l)

variable. If the "page" variable is set, a fonn feed character is inserted
after each message (see ENVIRONMENT VARIABLES).

Preserve the specified messages in the mailbox.

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

Print the specified messages. If" crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the "PAGER" variable. The default command is
pg(I) (see ENVIRONMENT VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in a
file are deleted.

Respond [msglist]
Send a response to the author of each message in the msglist. The sub­
ject line is taken from the first message. If "record" is set to a file name,
the response is saved at the end of that file (see ENVIRONMENT V ARI­
ABLES).

respond [message]

Save [msglist]

Reply to the specified message, including all other recipients of the mes­
sage. If "record" is set to a file name, the response is saved at the end of
that file (see ENVIRONMENT VARIABLES).

Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and "outfolder" (ENVIRON­
MENTVARIABLES).

save [msglist] filename

set

Commands

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx ter­
minates unless "keepsave" is set (see also ENVIRONMENT VARIABLES
and the exit and quit commands).

1-391

MAILX(l) SysV MAILX(l)

1-392

set name

set name=string

set name=number

shell

size [msglist]

top [msglist]

Print [msglist]

type [msglist]

print [msglist]

unset name ...

version

Define a variable called name. The variable may be given a null, string,
or numeric value. Set by itself prints all defined variables and their
values. See ENVIRONMENT VARIABLES for detailed descriptions of
the mailx variables.

Invoke an interactive shell (see also "SHELL" (ENVIRONMENT VARI­
ABLES».

Print the size in characters of the specified messages.

Read commands from the given file and return to command mode.

Print the top few lines of the specified messages. If the "toplines" vari­
able is set, it is taken as the number of lines to print (see ENVIRON­
MENTVARIABLES). The default is 5.

Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal
termination. See exit and quit.

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the "PAGER" variable. The default command is
pg(1) (see ENVIRONMENT VARIABLES).

Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last message
of those restored is printed (see ENVIRONMENT VARIABLES).

Causes the specified variables to be erased. If the variable was imported
from the execution environment (i.e., a shell variable) then it cannot be
erased.

Prints the current version and release date.

Commands

MAILX(l)

xit

exit

z[+ 1-]

SysV MAILX(l)

Edit the given messages with a screen editor. The messages are placed
in a temporary file and the "VISUAL" variable is used to get the name of
the editor (see ENVIRONMENT VARIABLES).

Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

Exit from mailx, without changing the mailbox. No messages are saved
in the mbox (see also quit).

Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning a line
with the tilde escape character n. See "escape" (ENVIRONMENT VARIABLES) for
changing this special character.

-! shell-command
Escape to the shell.

Simulate end of file (tenninate message input).

-: mail-command

a

Commands

Perform the command-level request. Valid only when sending a message
while reading mail.

mail-command
Perform the command-level request. Valid only when sending a message
while reading mail.

Print a summary of tilde escapes.

Insert the autograph string "Sign" into the message (see ENVIRONMENT
VARIABLES).

Insert the autograph string "sign" into the message (see ENVIRONJ.\,IENT V ARl­
ABLES).

1-393

MAILX(l) SysV MAILX(l)

1-394

-bname ...
Add the names to the blind carbon copy (Bcc) list.

cname ...

e

Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See "DEAD" (ENVIRONMENT VARIABLES) for a
description of this file.

Invoke the editor on the partial message. See also "EDITOR" (ENVIRON­
MENT VARIABLES).

- f [msg!ist]

-j string

Forward the specified messages. The messages are inserted into the message,
without alteration.

Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with
an initial value, it may be edited as if you had just typed it.

Insert the value of the named variable into the text of the message. For exam­
ple, -A is equivalent to '-j Sign.'

-m [msg!ist]

p

q

Insert the specified messages into the letter, shifting the new text to the right
one tab stop. Valid only when sending a message while reading mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the message is
not null, the partial message is saved in dead. letter. See "DEAD" (ENVIRON­
MENT VARIABLES) for a description of this file.

-r filename
Read in the specified file.

-< filename
Read in the specified file.

Commands

MAll..X(l) SysV MAll..X(l)

< !shell-command
Read in the specified file. If the argument begins with an exclamation point
(!), the rest of the string is taken as an arbitrary shell command and is exe­
cuted, with the standard output inserted into the message.

s string ...
Set the subject line to string.

-t name ...

v

Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also "VISUAL"
(ENVIRONMENT VARIABLES).

-wfilename
Write the partial message onto the given file, without the header.

x
Exit as with -q except the message is not saved in dead. letter.

-I shell-command
Pipe the body of the message through the given shell-command. If the shell­
command returns a successful exit status, the output of the command replaces
the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment and are
not alterable within mailx.

HOME =directory
The user's base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOMEj.mailrc.

The following variables are internal mailx variables. They may be imported from the
execution environment or set via the set command at any time. The unset command
may be used to erase variables.

addsopt

Commands

Enabled by default. If fbinfmail is not being used as the deliverer, noaddsopt
should be specified. (See WARNINGS below)

1-395

MAILX(l) SysV MAILX(l)

1-396

aUnet

append

askcc

asksub

All network names whose last component (login name) match are treated as
identical. This causes the msglist message specifications to behave similarly.
Default is noaUnet. See also the altemates command and the "metoo" vari­
able.

Upon termination, append messages to the end of the mbox file instead of
prepending them. Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with the -s
option. Enabled by default.

autoprint

bang

Enable automatic printing of messages after delete and undelete commands.
Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell escape command
lines as in vi(I). Default is nobang.

cmd=shell-comrrumd
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid conver­
sion now is internet, which requires a mail delivery program conforming to the
RFC822 standard for electronic mail addressing. Conversion is disabled by
defanlt. See also "sendmail" and the -U command line option.

crt=number
Pipe messages having more than number lines through the command specified
by the value of the "PAGER" variable (pg(l) by default). Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of untimely inter­
rupt. Default is $HOME/dead.letter.

Commands

MAILX(l)

debug

dot

SysV MAILX(1)

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

Take a period on a line by itself during input from a terminal as end-of-file.
Default is nodot.

EDITOR=shell-command
The command to run when the edit or -e command is used. Default is ed(I).

escape=c
Substitute c for the - escape character. Takes effect with next message sent.

folder=directory

header

hold

ignore

The directory for saving standard mail files. User-specified file names begin­
ning with a plus (+) are expanded by preceding the file name with this direc­
tory name to obtain the real file name. If directory does not start with a slash
(j), $HOME is prepended to it. In order to use the plus (+) construct on a
mailx command line, "folder" must be an exported sh environment variable.
There is no default for the "folder" variable. See also "outfolder" below.

Enable printing of the header summary when entering mailx. Enabled by
default.

Preserve all messages that are read in the mailbox instead of putting them in
the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore.

ignoreeof

keep

Commands

Ignore end-of-file during message input. Input must be terminated by a period
(.) on a line by itself or by the -. command. Default is noignoreeof. See also
"dot" above.

When the mailbox is empty, truncate it to zero length instead of removing it.
Disabled by default.

1-397

MAILX(l) SysV MAILX(l)

1-398

keepsave
Keep messages that have been saved in other files in the mailbox instead of
deleting them. Default is nokeepsave.

MBOX=jilename

metoo

The name of the file to save messages which have been read. The xit com­
mand overrides this function, as does saving the message explicitly in another
file. Default is $HOME/mbox.

If yout login appears as a recipient, do not delete it from the list. Default is
nometoo.

LISTER=shell-command

one hop

The command (and options) to use when listing the contents of the "folder"
directory. The default is ls(1).

When responding to a message that was originally sent to several recipients,
the other recipient addresses are normally forced to be relative to the originat­
ing author's machine for the response. This flag disables alteration of the reci­
pients' addresses, improving efficiency in a network where all machines can
send directly to all other machines (Le., one hop away).

outfolder

page

Causes the files used to record outgoing messages to be located in the directory
specified by the "folder" variable unless the path name is absolute. Default is
nooutfolder. See "folder" above and the Save, Copy, followUp, and Followup
commands.

Used with the pipe command to insert a form feed after each message sent
through the pipe. Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be used to
specify the options to be used. Default is pg(l).

prompt=string

quiet

Set the command mode prompt to string. Default is "1 ".

Refrain from printing the opening message and version when entering mailx.
Default is noquiet.

ColIlllllinds

MAILX(l) SysV MAILX(l)

record=filename

save

Record all outgoing mail in filename. Disabled by default. See also "out­
folder" above.

Enable saving of messages in dead. letter on interrupt or delivery error. See
"DEAD" for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers command.

sendmail=shell-command
Alternate command for delivering messages. Default is mail(l).

sendwait
Wait for background mailer to finish before returning. Default is nosendwait.

SHELL=shell-commalld

showto

The name of a preferred command interpreter. Default is sh(l).

When displaying the header summary and the message is from you, print the
recipient'S name instead of the author's name.

sign=strillg
The variable inserted into the text of a message when the -a (autograph) com­
mand is given. No default (see also -i (TILDE ESCAPES».

Sign=strillg
The variable inserted into the text of a message when the -A command is
given. No default (see also -i (TILDE ESCAPES)).

toplines=llumber
The number oflines of header to print with the top command. Default is 5.

VISUAL=shell-commalld
The name of a preferred screen editor. Default is \'i(l).

Commands 1-399

MAILX(l) SysV MAILX(l)

FILES
$HOME/.mailrc Personal start-up file
$HOM/mbox Secondary storage file
lusr/maill * Post office directory
lusrllib/rnailxlmailx.help*Help message files
lusrllib/mailxlmailx.rc Optional global start-up file
Itmp/R[ernqsx]* Temporary files

WARNINGS

BUGS

The -h, -r and -U options can be used only if mailx is built with a delivery program
other than / bin/mail.

Where shell-command is shown as valid, arguments are not always allowed. Experi­
mentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards need
some time to settle down.,

Attempts to send a message having a line consisting only of a "." are treated as the
end of the message by mail(l) (the standard mail delivery program).

SEE ALSO
Is(I), mail(l), pg(I).

1-400 Commands

MAKE(l) SysV MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS

~H~~~~~~~~~~~~~~~

DESCRIPTION
make allows the programmer to maintain, update, and regenerate groups of computer
programs.

make executes commands in make file to update one or more target fUJmes. Name is
typically a program. If no -f option is present, makefiIe, MakefiIe, and the Source
Code Control System (SCCS) files, s.makefiIe, and s.MakefiIe are tried in order. If you
use a dash (-) in place of make file , the standard input is taken. More than one -
make file argument pair may appear.

Make updates a target only if its dependents are newer than the target (unless the -u
option is used to force an unconditional update). All prerequisite files of a target are
added recursively to the list of targets. Missing files are considered out-of-date.

Makefile contains a sequence of entries that specify dependencies. The first line of an
entry is a blank-separated, non-null list of targets, then a colon (:), then a (possibly null)
list of prerequisite files or dependencies. Text following a semicolon (;) and all follow­
ing lines that begin with a tab are shell commands to be executed to update the target.
The first non-empty line that does not begin with a tab or a pound sign (#) begins a new
dependency or macro definition. Shell commands may be continued across lines with
the <backslash><newline> sequence. Everything printed by make (except the initial
tab) is passed directly to the shell as is. Thus,

produces

echo a\
b

ab

like the shell does.

Sharp (#) and newline surround comments.

The following make file says that pgm depends on two files a.o and b.o, and that they in
tum depend on their corresponding source files (a.c and b.c) and a common file incl.h:

Commands

pgm: a.o b.o
cc a.o b.o -0 pgm
a.o: incl.h a.c
cc -c a. c
b.o: incl.h b.c
cc -c b.c

1-401

MAKE(l) SysV MAKE(l)

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to execute
commands. The default is Ibin/sh. The first one or two characters in a command can
be the following: -, @, -@, or @-. If @ is present, printing of the command is
suppressed. If - is present, make ignores an error. A line is printed when it is executed
unless the -s option is present, or the entry .SILENT: is in make file , or unless the initial
character sequence contains a @. The -n option specifies printing without execution;
however, if the command line has the string $(MAKE) in it, the line is always executed
(see discussion of the MAKEFLAGS macro under Environment). The -t (touch) option
updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is
present, or the entry .IGNORE: appears in make file , or the initial character sequence of
the command contains -. the error is ignored. If the -k option is present, work is aban­
doned on the current entry, but continues on other branches that do not depend on that
entry.

The -b option allows old makefiles (those written for the old version of make) to run
without errors.

Interrupt and quit cause the target to be deleted unless the target is a dependent of the
special name .PRECIOUS.

OPTIONS

1-402

-f make file Description file name. make file is assumed to be the name of a description
file.

-p

-i

-k

-s

-r

-n

-b

-e

-u

-t

Prints out the complete set of macro definitions and target descriptions.

Ignorse error codes returned by invoked commands. This mode is entered
if the fake target name .IGNORE appears in the description file.

Abandons work on the current entry if it fails, but continues on other
branches that do not depend on that entry.

Silent mode. Does not print command lines before executing. This mode
is also entered if the fake target name .SILENT appears in the description
file.

Does not use the built-in rules.

No execute mode. Prints commands, but does not execute them. Even
lines beginning with an @ are printed.

Compatibility mode for old make files.

Environment variables override assignments within make files.

Forces an unconditional update.

Touches the target files (causing them to be up-to-date) rather than issue
the usual commands.

Commands

MAKE(l)

-q

SPECIAL NAMES
.DEFAULT

.PRECIOUS

. SILENT

. IGNORE

ENVIRONMENT

SysY MAKE(l)

Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date.

If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name .DEFAULT
are used if it exists.

Dependents of this target will not be removed when quit or interrupt
are hit.

Same effect as the -s option .

Same effect as the -i option .

Make reads the environment, assuming all variables to be macro definitions and pro­
cessing them as such. The environment variables are processed before any make file
and after the internal rules; thus, macro assignments in a make file override environment
variables. The -e option causes the environment to override the macro assignments in
a makefile. Suffixes and their associated rules in the make file will override any identi­
cal suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any legal
input option (except -f and -p) defined for the command line. Upon invocation, make
"invents" the variable if it is not in the environment, puts the current options into it,
and passes it on to invocations of commands. Thus, MAKEFLAGS always contains the
current input options. This proves very useful for "super-makes." In fact, as noted
above, when the -n option is used, the command $(MAKE) is executed anyway; hence,
one can perform a make -n recursively on a whole software system to see what would
have been executed. This is because the -n is put in MAKE FLAGS and passed to
further invocations of $(MAKE). This is one way of debugging all of the makefiles for
a software project without actually doing anything.

INCLUDE FILES
If the string include appears as the first seven letters of a line in a makefile, and is fol­
lowed by a blank or a tab, the rest of the line is assumed to be a file name and will be
read by the current invocation, after substituting for any macros.

MACROS
Entries of the form stringl = string2 are macro definitions. String2 is defined as all
characters up to a comment character or an unescaped newline. Subsequent appear­
ances of $(stringl [:substl =[subst2]]) are replaced by string2. The parentheses are
optional if a single character macro name is used and there is no substitute sequence.
The optional :substl =subst2 is a substitute sequence. If it is specified, all non­
overlapping occurrences of substl in the named macro are replaced by subst2. Strings
(for the purposes of this type of substitution) are delimited by blanks, tabs, newline
characters, and beginnings of lines. An example of the use of the substitute sequence is
shown under Libraries.

Commands 1-403

MAKE(l) SysV MAIm(1)

INTERNAL MACROS
There are five internally maintained macros which are useful for writing rules for build­
ing targets.

$* The macro $* stands for the file name part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated
only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is
the module which is out-of-date with respect to the target (i.e., the "manufac­
tured" dependent file name). Thlis, in the .c.o ruie, the $< macro would evaluate
to the .c file. An example for making optimized .0 files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It
is the list of prerequisites that are out-of-date with respect to the target; essen­
tially, those modules which must be rebuilt.

$ % The $ % macro is only evaluated when the target is an archive library member of
the form lib(fiLe.o). In this case, $@ evaluates to lib and $% evaluates to the
library member,fiLe.o.

Four of the five macros can have alternative forms. When an upper case 0 or F is
appended to any of the four macros, the meaning is changed to "directory part" for 0
and "file part" for F. Thus, $(@O) refers to the directory part of the string $@. If
there is no directory part, .! is generated. The only macro excluded from this alternative
form is $?

PRESET VARIABLES

1-404

The currently defined preset variables are:

ACC = Icomlcc
ACFLAGS = -opt
AS=as
ASFLAGS=
BINO = Icomlbind
BINOFLAGS=
CC = Ibinlcc
CFLAGS = -0
F77FLAGS=
FFLAGS = -opt

Commands

MAKE(l)

SUFFIXES

FTN = fln
GET = get
GFLAGS=
LD = /bin/ld
LDFLAGS=
LEX = lex
LFLAGS=
MAKE = make
MAKEFLAGS = b
PAS = /com/pas
PFLAGS = -opt
RF = rf
SHELL = /bin/sh
YACC = yacc
YFLAGS=
$=$

SysV MAKE(l)

Certain names (for instance, those ending with .0) have inferable prerequisites such as
.c, .S, etc. If no update commands for such a file appear in makefile, and if an inferable
prerequisite exists, that prerequisite is compiled to make the target. In this case, make
has inference rules that allow files to be built from other files by examining the suffixes
and determining an appropriate inference rule to use. The current default single suffix
rules are:

.sh:

.f

.pas:

.c:

Commands

cp $< $@; chmod 0777 $@

&(F77) $(F77FLAGS) $(LDFLAGS) $< -0 $*

$(PAS) $@ $(PFLAGS)
mvf $@.bin $@ -r

$(CC) $(CFLAGS) $(LDFLAGS) $*.c -0 $*

1-405

MAKE(l) SysV MAKE(l)

1-406

The current default double suffix rules are:

markfile.o: markfile

.c.a:

.I.c:

.y.c:

.1.0:

.y.o:

.s.o:

.c.o:

A=@;echo "static char _sccsidD =\042'grep $$A'(#)' markfile'\042;'\
> markfile.c

$(CC) marlcfile
rm -fmarkfile.c

$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.0
rm-f$*.o

$(LEX) $(LfLAGS) $<
my lex.yy.c $@

$(YACC) $(YFLAGS) $<
my y.tab.c $@

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rmlex.yy.c
my lex.yy.o $@

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rmy.tab.c
my y.tab.o $@

$(AS) $(ASFLAGS) -0 $@ $<

$(CC) $(CFLAGS) -c $<

Commands

MAKE(1) SysV MAKE(l)

The internal rules for make are contained in the source file rules.c for the make pro­
gram. These rules can be locally modified. To print the rules compiled into the make
on any machine in a form suitable for recompilation, use the following command:

make -fp - 2>/dev/null <ldev/null

A tilde in the above rules refers to an sees file see sccsfile(4) for more information
about these files. Thus, the rule .c-.o transforms an sees C source file into an object
file (.0). Because the s. of the sees files is a prefix, it is incompatible with make's
suffix point of view. Hence, the tilde is a way of changing any file reference into an
sees file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from x.c. In
effect, the other suffix is null. This is useful for building targets from only one source
file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as a
prerequisite. The default list is:

.SUFFIXES: .0 .c £ .y f .pas .1 .r .s £ .sh .sh- .h X .f .r
Here again, the above command for printing the internal rules will display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate; .SUF·
FIXES: with no dependencies clears the list of suffixes.

INFERENCE RULES
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a. 0 b. 0: incl. h

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(l), lex(l), and yacc(l), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .0

from a file with suffix .c is specified as an entry with .c.o: as the target and no depen­
dents. Shell commands associated with the target define the rule for making a .0 file
from a .c file. Any target that has no slashes in it and starts with a dot is identified as a
rule and not a true target.

LIBRARIES
If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus

Commands 1-407

MAKE(l) SysV MAKE(l)

NOTES

BUGS

1--408

lib(file.o) and $(Lm)(file.o) both refer to an archive library which contains file.o. (This
assumes the Lm macro has been previously defined.) The expression $(Lm)(file1.o
file2.0) is not legal.

Rules pertaining to archive libraries have the form .xx.a where the XX is the suffix from
which the archive member is to be made. An unfortunate byproduct of the current
implementation requires the XX to be different from the suffix of the archive member.
Thus, one cannot have Iib(fiIe.o) depend upon file.o explicitly. The most common use
of the archive interface follows. Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC)
$ (AR)

rm -f

-c $ (CFLAGS) $<
$ (ARFLAGS) $@ $*.0
$*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this example.
A more interesting, but more limited example of an archive library maintenance con­
struction follows:

lib: lib(filel.o) lib(file2.0) libtfile3.0)
$ (cc) -c $ (CFLAGS) $(?:.o=.c)
$ (AR) $ (ARFLAGS) lib $?
rm $?
@echo lib is now up-to-date

. c. a: i

Here the substitution mode of the macro expansions is used. The $? list is defined to
be the set of object file names (inside lib) whose C source files are out-of-date. The
substitution mode translates the .0 to .c. (Unfortunately, one cannot as yet transform to
£; however, this may become possible in the future.) Note also, the disabling of the
.c.a: rule, which would have created each object file, one by one. This particular con­
struct speeds up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly programs
and C programs.

Some commands return non-zero status inappropriately; use -i to overcome the
diffi culty.

Filenames with the equal sign (=), colon (:), or at sign (@) characters will not work.
Commands that are directly executed by the shell, notably cd(l), are ineffectual across

Commands

MAKE(l) SysV MAKE(l)

newlines in make. The syntax (lib(filel.o file2.o file3.o) is illegal. You cannot build
lib(file.o) fromfile.o. The macro $(a:.o=£) does not work. Named pipes are not han­
dled well.

FILES
[Mmjakefile and s.[Mmjakefile
Ibin/sh

SEE ALSO
cc(I),lex(I), yacc(I), printf(3S), sccsfile(4), cd(I), sh(I).

Commands 1-409

MAN(l) SysV MAN(1)

NAME
man - print entries in this manual

SYNOPSIS
man [options] [section] title(s)

DESCRIPTION
man locates and prints the manual page(s) specified by the title argument. If you also
specify a section, man looks for the title only in the section indicated (otherwise, it
searches the whole manual). You must enter the title in lowercase, and the section
number may not have a letter suffix.

man examines the environment variable $TERM and attempts to select options that
adapt the output to the tennina1 being used. Refer to environ(5) for more infonnation.
The -Tterm option overrides the value of$TERM.

Section may be changed before each title.

OPTIONS
-Tterm

-w

-d

--c

Prints the entry as appropriate for tenninal type term. For a list of recog­
nized values of term, type help term2. Also refer to term(5) for further
details. The default value of term is 450.

Prints on the standard output only the pathnames of the entries, relative
to lusr/catman, or to the current directory for -d option.

Searches the current directory rather than lusrlcatman. This option
requires that you specify the full filename (e.g., cu.lc, rather than just
cu). .

Invoke col(l). This is done automatically, unless term is one of the fol­
lowing: 300, 3OOs, 450,37, 4oo0a, 382, 4014, tek, 1620, and X.

EXAMPLE

BUGS

FILES

To reproduce this page on the terminal, as well as any other entries named man that
may exist in other sections of the manual, use:

man man

man prints manual entries that were fonnatted by nroff(l) when the UNIX system was
installed. Entries are originally fonnatted with tennina1 type 37, and are printed using
the correct terminal filters as derived from the - Tterm and $TERM settings.

lusr/catmanl? _ man/man[1-81/*
Prefonnatted manual entries; system and command reference directories

SEE ALSO
col(l)
tenn(5) ..

1-410 Commands

MCS(l) SysV MCS(l)

NAME
mes - manipulate the object file comment section

SYNOPSIS
mes [options) object-file ...

DESCRIPTION
The mes command manipulates the comment section, nonnally the ".comment" sec­
tion, in an object file. It is used to add to, delete, print, and compress the contents of the
comment section in a UNIX System object file. The mes command must be given one
or more of the options described below. It takes each of the options given and applies
them in order to the object-files. If the object file is an archive, the file is treated as a set
of individual object files. For example, if the -a option is specified, the string is
appended to the comment section of each archive element.

OPTIONS
-a string

-c

-d

-n name

-p

Appends string to the comment section of the object-files. IJ
string contains embedded blanks, it must be enclosed in quota·
tionmarks.

Compresses the contents of the comment section. All duplicatf
entries are removed. The ordering of the remaining entries is no'
disturbed.

Deletes the contents of the comment section from the object file
The object file comment section header is removed also.

Specifies the name of the section to access. By default, me:
deals with the section named .comment. This option can be use«
to specify another section.

Prints the contents of the comment section on the standard out
put. If more than one name is specified, each entry printed i
tagged by the name of the file from which it was extracted, usin:
the filename:string fonnat.

EXAMPLES

NOTE

To print file's comment section:
mes -pfile

To append string to file's comment section:
mes -a string file

mes cannot add new sections or delete existing sections to executable objects wit
magic number 0413 [see a.out(4»).

Commands 1-41

MCS(l)

Fll..ES
TMPDlRjmcs*

Temporary files

TMPDlRj*
Temporary files

SysY MCS(l)

TMPDlR is usually /usrjtmp but can be redefined by setting the environment variable
TMPDlR [see tmpnam(3S)].

SEE ALSO
cpp(1), a.out(4).

1-412 Commands

MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [-n 1 [-y 1

DESCRIPTION

SysV MESG(I)

The command, with argument n, forbids messages via write(l) by revoking non-user
write permission on the user's terminal. The mesg command, with argument y, rein­
states permission. All by itself, mesg reports the current state without changing it.

FILES
Idev/tty*

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

SEE ALSO
write(l).

Commands

MKAPR(l) Domain/OS SysV MKAPR(l)

NAME
mkapr - make an Apollo product report

SYNOPSIS
mkapr [-vl

DESCRIPTION
The mkapr command creates a product report. This command replaces the crucr
(create a user change request form) utility available in prior software releases.

Output from mkapr may be in either (or both) of two forms:

1. Printed, human-readable copy; or
2. Encoded, transmittable form.

Printed product reports should be sent to:

APR Administrator/Customer Services
MIS CHGOICS
Apollo Computer lnc.
330 Billerica Road
Chelmsford, MA 01824

Encoded product reports may be sent to Apollo Customer Services via the UUCP net­
work. The network address is: apollo!apr_cs_admin
Recommended paths to Apollo are via attunix, mit-eddie, or decwrd!decvax (these
paths may change). Customer Services will acknowledge all product reports received.
Do not assume your product report has been received until you receive a reply.
Security-conscious sites should not send confidential material. Voluminous submis­
sions should be sent via magnetic media.

OPTIONS
mkapr supports only one option, -v. This will assert verbose mode; any system ser­
vices called by by mkapr will be allowed to send output to the standard output and/or
standard error devices. Normal mode operation is for mkapr to invoke the system ser­
vices silent! y.

SERVICES SUPPORTED

1-414

In addition to creating Apollo Problem Reports online, mkapr will make available
viewing, editing, printing and mailing services if they exist (and mkapr can find them).
The mailing service known to mkapr is:

UNIX environment - send mail

Commands

MKAPR(l) Domain/OS SysV

The print services known to mkapr are:

Aegis environment - prf
BSD environment - Ipr
SysV environment - Ip

MKAPR(1)

If a desired service is not available to mkapr, a product report (print or send) file will
be saved in the current directory for printing or sending at a later time.

DIALOG INTERFACE
mkapr will make use of the DIALOG graphic interface environment of the Apollo
Domain system whenever possible. This interface is designed for ease of learning and
use.

COMMAND DRIVEN INTERFACE
If the display environment you are using does not support the graphic interface, you
will see the following prompt:

mkapr>

Entering the command 'help' will display the available commands. Here is the list of
commands for reference:

Command

help [mkaprJ

change

edit

view

print

send

exit

cancel

Description

List Commands. To display the help file, use the mkapr option.

Change APR Information Fields.

Edit the detailed Problem Description.

View the current APR.

Print the current APR.

Send the current APR.

Save current customer information changes (if any) and exit.

Exit without saving customer information changes.

You need only enter as much of any command as is necessary to uniquely identify it.
For example, you need only type ch for the change command.

Detailed descriptions of commands
change Allow user to provide the necessary information prior to submitting an

APR. There are 2 kinds of input here. First, information that is
extracted from the system the user is on. Second, information that the
user must input. Most field defaults (including system extractable data)
will be overridable by the user. The date field is the only non-

Commands 1-415

MKAPR(l)

edit

view

print

send

exit

cancel

1-416

Domain/OS SysV MKAPR(l)

overridable field. A file exists between sessions which currently stores
customer contact, name, address, and telephone information. This file is
created upon the first invocation of the mkapr tool, is stored in the
current working directory and is called .aprinit. Upon subsequent invo­
cations of the mkapr tool, the customer information is used as the
default for these fields.

Within the change command, the prompt becomes mkapr .. change>
Current input is then displayed by field. The user is asked to enter the
field # to change, then asked to enter the changed value (entering
<RETURN> effectively will abort the current change field # request
leaving the field unchanged). The cycle is then repeated. Replying 'h'
or 'help' at this point will display the following help message for the
change command:

Change Command

help [mkaprJ

dis play fields

change field n

exit

Description

List commands. To display the help file, use
the mkapr option.

Display all fields and their respective values.

Request to change the value of field # n.
Pressing the RETURN key at the prompt

enter new value ==>

will leave the value unchanged.

Exit the change command.

An appropriate editor will be invoked according to available system ser­
vices. The user should enter a detailed problem description and save and
exit the editor in the appropriate manner. You will then be returned to
the mkapr> prompt.

The current mkapr information will be displayed to the user in an
appropriate manner according to available system services.

The current mkapr information will be printed to the default printer
according to available system services.

The current mkapr information will be sent to Apollo Computer in an
appropriate manner according to available system services.

If any changes to customer information occurred during this session,
save all customer information to the non-system

Exit mkapr. Do not save changes to customer information from this
session.

Commands

MKAPR(l) Domain/OS SysV MKAPR(l)

INITIAL FIELD VALUES
The fields of an Apollo Problem Report that are collectively known as customer infor­
mation Fields are initialized from a file read when mkapr starts up. These fields con­
tain such information as the name of the customer contact, the name (company name)
of the customer, and the customer's address and telephone number. The initialization
file has the name .aprinit and the mkapr program will search for it. The search order
for the initialization file is:

1.

2.

3.

Look in the current working directory

Look in the home directory as given by the shell variable HOME

Look in the system directory jete/apr

It is not an error for no initialization file to exist; mkapr wi11leave the customer infor­
mation fields blank. The fields ean be edited and the initialization file will be updated
when mkapr exits.

The file /ete/apr/.aprinit is a special case; mkapr will not write to this file. The sys­
tem administrator (or other privileged account) must create the directory jete/apr with
appropriate access permissions, then run mkapr to create a local copy of the file
.aprinit and copy or move the file to the directory.

The initialization file is an ASCn text file that may be created and modified using any
of the text editors available to you. The body of the .aprinit file created by mkapr is
reproduced here:

Commands

Comment lines begin with '#'
Non-comment lines have the following form:
FIELD_NAME: FIELD_VALUE: IGNORED
The field name must not be changed.
The ':' character delimits fields.
The field value may be changed; it must not contain ':'.
unless the field value is quoted by either' , or " " pairs.
Anything after the second ':' is thrown away.

customer30ntact : A. Random User: 14
customer_name: Apollo Computer, Inc. : 21
customer_addrl : CHF 02 RD: 9
customer3ddr2 : 330 Billerica Road: 18
customer_addr3 : Chelmsford, MA 01824: 21
customer_addr4 : USA: 3
customer_phone: 1-508-256-6600 x7739 : 20
maiCpath: 'apollo!apr_cs_admin:' : 22

1-417

MKAPR(l) Domain/OS SysV MKAPR(l)

NOTES

Fll.ES

1-418

Since mkapr assumes that the site mail facility (probably sendmail) knows how to get
from your site to Apollo, you must edit the mail_path field value in .aprinit to give
mkapr the correct path. Be sure that your mail facility is setup correctly. See your site
administrator for help.

Run lusr/ucb/newaliases at least once before attempting to use mkapr's send function.

Offsite mailing may not be allowed by your site. If so, you must make other arrange­
ments to get mail to Apollo. See your site administrator for help.

lusr/apollo/bin/mkapr The executable object

lusr/man/cat l/mkapr.l This manual page (UNIX)

/sys/help/mkapr.hlp This help file (AEGIS)

Initial field values (search order):

.aprinit (1st) (updated)

$HOME/.aprinit (2nd) (updated)

/etc/apr/.aprinit (last) (read only)

/tmp/apr.* Temporary files:

apr.*.v Product report view file

apr.*.p Product report print file

apr.*.s Product report send file

apr.*.c Product report send command file

apr.*.e Problem description edit file

Commands

MKDIR(l) SysV MKDIR(l)

NAME
mkdir - make directories

SYNOPSIS
mkdir [-m mode] [-p] dirname ...

DESCRIPTION
mkdir creates specified directories in mode 777 (all access permissions granted). It
automatically makes standard entries of dot (.) and dot-dot (..) for its parent.

The owner ID and group ID of the new directories are set to the process's real user ID
and group ID, respectively.

OPTIONS
-m mode Allows you to specify the mode to be used for new directories. Choices

for modes can be found in chmod(l).

-p dirname Creates dirname by creating all the non-existing parent directories first.

EXAMPLE
To create the subdirectory structure Itr/jd/jan, type the following:

mkdir -p Itr/jdljan

BUGS
mkdir requires write permission in the parent directory.

umask(1) may alter the mode of specified directories normally created with mode 777.

DIAGNOSTICS
The mkdir command returns exit code 0 if all directories given in the command line
were successfully made; otherwise, it prints a diagnostic and returns non-zero. An error
code is stored in errno .

SEE ALSO
sh (1), rm (1), umask (1), intro (2), mkdir(2).

Commands 1-419

MKSINIT(I) SysY MKSINIT(I)

NAME
mksinit - create initialization code for STREAMS drivers and modules

SYNOPSIS
mksinit [-C number ...] master Jzle ...

DESCRIPTION
mksinit is a tool to create the Apollo-implementation-dependent initialization code for
STREAMS drivers and modules. The input to mksinit is a set of master files. The out­
put of mksinit is an init.e file in the current directory, which must be compiled and
linked with the module(s) and/or driver(s). The entry point of the module must be the
mksinit routine in init.e. The following is a sample module build:

mksinit master.d/sample*
Ibin/ee -e init.e
Ibin/ld -e mksinit init.o other module objects

OPTIONS
-C numbers Provides the number of controllers for the master files processed. Each

number corresponds in the order specified to one of the master files.

SEE ALSO
master(4)

1-420 Commands

MMT(l) SysV MMT(1)

NAME
mmt, mvt - typeset documents, viewgraphs, and slides

SYNOPSIS
mmt [options] [files]

DESCRIPTION
Although very similar to mm(I), these two commands typeset their input via troff(l),
as opposed to fonnatting it via nroff(I). The mmt command uses the MM macro pack­
age for its operations. The mvt command uses the Macro Package for View Graphs and
Slides. Preprocessing through tbl(l) and eqn(l) is available for both. The proper pipe­
lines and the required arguments and flags for troff(l) and the appropriate macro pack­
ages are generated, depending on the options selected.

Arguments or flags other than those given below are passed to troff(1) or to the macro
package, as appropriate. Such options can occur in any order, but they must appear
before the files argument. If no arguments are given, mmt prints a list of its options.

OPTIONS

BUGS

-e

-t

-Tdest

-DilO

-a
-y

-z

Invokes eqn(l) and causes it to read the /usr/pub/eqnchar file. See
eqnchar(5) for details concerning this file.

Invokes tbl(I).

Creates output for troff(l) device dest.

Directs the output to the local hnagen Imprint-l0 laser printer.

Invokes the -a option oftroff(I).

Uses the noncompacted version of the macros. This is the default.

Invokes no output filter to process or redirect the output oftroff(1).

If you specify simply a dash (-), -e option, and/or -t option along with the -olist
option of troff(I), a harmless "broken pipe" diagnostic may result. This usually hap­
pens under these conditions if the last page of the document is not specified in list.

DIAGNOSTICS
m{mvJt: no input file

SEE ALSO

None of the arguments is a readable file and the command is not used as a
filter.

env (I), eqn (I), mm (I), nroff (I), tbl (I), traff (I), environ (5), mm (5), mv (5).

Commands 1-421

MT(l) SysV MT(l)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
mt [-f tapename 1 command [count 1

DESCRIPTION
mt gives commands to a magnetic tape drive. If you do not specify a tape name, mt
uses the environment variable TAPE; if TAPE does not exist, it uses the device
Idev/rmt12. Note that tapename must reference a raw (not block) tape device. By
default mt performs the requested operation once. Specify count if you want to perform
operations more than once.

COMMANDS
The available commands are listed below. You need to specify only as many characters
as are required to uniquely identify a command.

eof, weof

fsf

fsr

bsf

bsr

rewind

Write count end-of-file marks at the current position on the tape.

Forward space count files.

Forward space count records.

Backspace count files.

Backspace count records.

Rewinds the tape. Ignore count.

omine, rewom
Rewinds the tape and place the tape unit offline. Ignore count.

status Prints status information about the tape unit.

DIAGNOSTICS

FILES

mt returns a 0 exit status when the operation(s) are successful; 1 if the command is
unrecognized; and 2 if an operation fails.

Idev/rmt* Raw magnetic tape interface

SEE ALSO
mtio(7), dd(l), ioctl(2), environ(5)

1-422 Commands

MV(l) SysV MV(l)

NAME
mv - move files

SYNOPSIS
mv [-[] filel [file2 ...] target
mv dirl dir2

DESCRIPTION
Mv moves file(s) to a specified target. Under no circumstances can any of the files
being manipulated be the same as the target, so take care when using shell metacharac­
ters. If target is a directory, then the filets) are moved to that directory. If target is a
file, its old contents are replaced by the contents offile.

If mv determines that the mode of target forbids writing, it prints the mode, asks for a
response, and reads the standard input for one line. If that line begins with y, the opera­
tion occurs if it is permissible; if not, mv exits. If the standard input is not a terminal,
or if the -f (force) option is used, the mv is performed, if permitted, with no questions
asked.

If filel is a directory, the directory rename occurs only if the two directories have the
same parent; filel is renamed target. If filel is a file and target is a link to another file
with links, the other links remain and target becomes a new file. If target is not a file,
mv creates a new file with the same mode as filel. The owner and group of target are
those of the user. If target is a file, moving a file into target does not change target's
mode, owner, or group. The cp(l) command sets the last modification time of target,
(and last access time, if target did not exist). If target is a link to a file, all links remain
and the file is changed.

OPTIONS
-f Forces the operation if it is permissable. Does not ask for confirmation.

SEE ALSO
chmod (I), cp (I), cpio (I), rm (I).

Commands 1-423

MVT(l) SysV MVT(1)

NAME
mmt, mvt - typeset documents, viewgraphs, and slides

SYNOPSIS
mmt [options] (files]

DESCRIPTION
Although very similar to mm(l), these two commands typeset their input via troff(l),
as opposed to formatting it via nroff(l). The mmt command uses the MM macro pack­
age for its operations. The mvt command uses the Macro Package for View Graphs and
Slides. Preprocessing through tbl(l) and eqn(1) is available for both. The proper pipe­
lines and the required arguments and flags for troff(l) and the appropriate macro pack­
ages are generated, depending on the options selected.

Arguments or flags other than those given below are passed to troff(l) or to the macro
package, as appropriate. Such options can occur in any order, but they must appear
before the files argument. If no arguments are given, mmt prints a list of its options.

OPTIONS

BUGS

-e

-t

-Tdest

-DilO

-a

-y

-z

Invokes eqn(l) and cause it to read the /usr/pub/eqnchar file. See
eqnchar(5) for details concerning this file.

Invokes tbl(1).

Creates output for troff(1) device dest.

Directs the output to the local Imagen Imprint-lO laser printer.

Invokes the -a option of troff(I).

Uses the noncompacted version of the macros. This is the default.

Invokes no output filter to process or redirect the output of troff(1).

If you specify simply a dash (-), -e option, and/or -t option along with the -olist
option of troff(I), a harmless "broken pipe" diagnostic may result. This usually hap­
pens under these conditions if the last page of the document is not specified in list.

DIAGNOSTICS
m[mv]t: no inputJile

None of the arguments is a readable file and the command is not used as a
filter.

SEE ALSO
env (1), eqn (1), mm (1), nroff (1), tbl (1), troff (1), environ (5), mm (5), mv (5).

1-424 Commands

NETSTAT(l) SysV NETSTAT(l)

NAME
nets tat - show network status

SYNOPSIS
netstat [-Aang 1 [-f addressJamily 1
netstat [-himnrstT 1 [-f address Jamily 1
netstat [-n 1 [-I interface 1 interval

DESCRIPTION
The nets tat command symbolically displays the contents of various network-related
data structures. You can specify one of a number of output formats. The first form of
the command displays a list of active sockets for each protocol. The second form
presents the contents of one of the other network data structures according to the option
selected. The third form, with an interval specified, continuously displays the informa­
tion regarding packet traffic on the configured network interfaces.

The default display, for active sockets, shows the local and remote addresses, send and
receive queue sizes (in bytes), protocol, and the internal state of the protocol. Address
formats are of the form host.port or network.port if a socket's address specifies a net­
work but no specific host address. It displays the host and network addresses, when
known, symbolically, according to the databases fete/hosts and fete/networks, respec­
tively. If a symbolic narne for an address is unknown, or if you specify the -n option,
netstat displays the address numerically, according to the address family. For more
information regarding the Internet "dot format," refer to inet(3N). netstat displays
unspecified, or "wildcard", addresses and ports an asterisk (*).

The interface display provides a table of cumulative statistics regarding packets
transferred, errors, and collisions. It also shows the network addresses of the interface
and the maximum transmission unit (mtu).

The routing table display indicates the available routes and their status. Each route con­
sists of a destination host or network and a gateway to use in forwarding packets.

The flags field shows the following:

• The state of the route (U if "up")

• Whether the route is to a gateway (G)

• Whether the route was created dynamically by a redirect (D)

• Whether the route has priority (P)

• Whether the route is a static (S) route added with route

• Whether the route has been marked for deletion (X).

Direct routes are created for each interface attached to the local host; the gateway field
for such entries shows the address of the outgoing interface. The refent field gives the
current number of active uses of the route. Connection oriented protocols normally
hold on to a single route for the duration of a connection while connectionless protocols

Commands 1-425

NETSTAT(l) SysY NETSTAT(l)

obtain a route while sending to the same destination. The use field provides a count of
the number of packets sent using that route. The interface entry indicates the network
interface utilized for the route.

When you invoke netstat with an interval argument, it displays a running count of
statistics related to network interfaces. This display consists of a column for the pri­
mary interface (the first interface found during auto-configuration) and a column sum­
marizing information for all interfaces. Use the -I option to replace the primary inter­
face with another interface. The first line of each screen of information contains a sum­
mary since the system was last rebooted. Subsequent output lines show values accumu­
lated over the preceding interval.

OPTIONS

1-426

-A

-a

-g
-h

-i

-I interface

-m

-n

-s

-r

With the default display, shows the address of any protocol-control
blocks associated with sockets; used for debugging.

With the default display, shows the state of all sockets; normally sockets
used by server processes are not shown.

With the default display, shows the first gateway used.

Shows the state of the IMP host table. Status flags show the gateway
entry (G), in use (U), a temporary entry (T).

Shows the state of interfaces that were auto-configured (netstat does not
show interfaces statically configured into a system, but not located at
boot time).

Shows information only about this interface; used with an interval as
described below.

Shows statistics recorded by the memory-management routines (the net­
work manages a private pool of memory buffers).

Shows network addresses as numbers (normally netstat interprets
addresses and attempts to display them symbolically). You can use this
option with any of the display formats.

Shows per-protocol and routing statistics.

Shows the routing tables.

-t When used with the -i option, shows timer column.

- T Shows all possible status information.

-f address Jamily
Limits statistics or address-control-block reports to those of the specified
address family. The following address families are recognized: inet, for
AF _INET; ns, for AF _NS; and unix, for AF _UNIX.

Corrunands

NETSTAT{I) SysV NETSTAT{I)

BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

SEE ALSO
hosts(4), networks(4). protocols(4). services(4), trpt(1M)

Commands 1-427

NEWFORM(l) SysV NEWFORM(l)

NAME
newform - change the fonnat of a text file

SYNOPSIS
newform [-s] [-i tabspec] [-0 tabspec] [-b n] [-e n] [-p n] [-a n] [-f] [-c char]
[-I n] (files]

DESCRIPTION
newform reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are refonnatted in accor­
dance with command line options in effect. Except for -s, command line options may
appear in any order, may be repeated, and may be intermingled with the optional files.
Command line options are processed in the order specified. This means that option
sequences like "-e15 -160" will yield results different from "-160 -e15". Options
are applied to allfiles on the command line.

OPTIONS
-s Shears off leading characters on each line up to the first tab and places up

to eight of the sheared characters at the end of the line. If more than eight
characters (not counting the first tab) are sheared, the eighth character is
replaced by a * and any characters to the right of it are discarded. The first
tab is always discarded.

An error message and program exit will occur if this option is used on a file
without a tab on each line. The characters sheared off are saved internally
until all other options specified are applied to that line. The characters are
then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs, and
text on each line, to a file beginning with the text, all tabs after the first
expanded to spaces, padded with spaces out to column 72 (or truncated to
column 72), and the leading digits placed starting at column 73, the com­
mand would be: newform -s -i -I -a -e filename

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification fonns
described in tabs(1). In addition, if you specify a simple dash (-) for the
value of tabspec , newform assumes that the tab specification is to be found
in the first line read from the standard input (see fspec(4». If no tabspec is
given, tabspec defaults to -8. A tabspec of -0 expects no tabs; if any are
found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for -itabspec.
If no tabspec is given, tabspec defaults to -8. A tabspec of -0 means that
no spaces will be converted to tabs on output.

-bn Truncate n characters from the beginning of the line when the line length is
greater than the effective line length (see -In). Default is to truncate the

1-428 Commands

NEWFORM(l) SysV NEWFORM(l)

BUGS

--en

-pn

-an

-f

-cchar

number of characters necessary to obtain the effective line length. The
default value is used when -b with no n is used. This option can be used to
delete the sequence numbers from a COBOL program as follows:
newform -II -b7 filename

Same as -bn except that characters are truncated from the end of the line.

Prefix n characters (see -cchar) to the beginning of a line when the line
length is less than the effective line length. Default is to prefix the number
of characters necessary to obtain the effective line length.

Same as -pn except characters are appended to the end of a line.

Write the tab specification format line on the standard output before any
other lines are output. The tab specification format line which is printed
will correspond to the format specified in the last --0 option. If no --0

option is specified, the line which is printed will contain the default
specification of -8.

Change the prefix/append character to char. Default character for char is a
space.

-In Set the effective line length to n characters. If n is not entered, -I defaults
to 72. The default line length without the -I option is 80 characters. Note
that tabs and backspaces are considered to be one character (use -i to
expand tabs to spaces). The -II option must be used to set the effective
line length shorter than any existing line in the file so that the -b option is
activated.

The newform command normally only keeps track of physical characters; however, for
the -i and --0 options, newform will keep track of backspaces in order to line up tabs in
the appropriate logical columns.

The newform command will not prompt the user if a tabs pee is to be read from the
standard input (by use of -i- or -0-).

If the -f option is used, and the last --0 option specified was -0-, and was preceded by
either a -0- or a -i-, the tab specification format line will be incorrect.

DIAGNOSTICS
All diagnostics are fatal.
usage: ...
not -s format
can't openjile
internal line too long

tabspec in error

Commands

newform was called with a bad option.
There was no tab on one line.
Self-explanatory .
A line exceeds 512 characters after being expanded in the
internal work buffer.
A tab specification is incorrectly formatted, or specified tab
stops are not ascending.

1-429

NEWFORM(I) SysV NEWFORM(I)

tabspec indirection illegal A tabspec read from a file (or standard input) may not con­
tain a tabspec referencing another file (or standard input).

o - normal execution
1 - for any error

SEE ALSO
csplit(l), tabs(l), fspec(4).

1-430 Commands

NEWGRP(l) SysY NEWGRP(1)

NAME
newgrp -log in to a new group

SYNOPSIS
newgrp [- 1 [group 1

DESCRIPTION

BUGS

The newgrp command changes your group identification. Although you remain logged
in during the process, and your current directory is unchanged, newgrp sets new real
and effective group IDs. The shell then performs calculations of access permissions to
files with respect to these new IDs. You are always given a new shell to replace the
current shell, regardless of whether newgrp terminates successfully or due to an error
condition (e.g., unknown group).

Exported variables retain their values after you invoke newgrp. All unexported vari­
ables, however, are either reset to their default value or set to null. Unless you or the
system itself exports system variables (e.g., PSI, PS2, PATH, MAIL, HOME), they are
reset to default values. For example, suppose you have a primary prompt string (PSI)
other than the default, a pound sign (#), and you have not exported PSl. After invoking
newgrp, successfully or not, your PSI variable is set to the default prompt string, the
pound sign (#). Use the shell command, export, to export variables so that they retain
their assigned value when invoking new shells. See sh(l) for more information.

With no arguments, newgrp changes the group identification back to the group
specified in the your password file entry. If the first argument to newgrp is a dash (-),
the environment changes to one that you would normally expect if you logged in again.

The newgrp command lets you change to any group of which you are a member. The
/etc/group file contains a list of all groups and the group's members. You are a member
of all groups for which you have an account. For example, if you have the following
three re gistry accounts,

user l.project l.org
user l.project2.org
user l.projecU.org

you are listed three times in the /etc/group file. You may not be listed in the group
entry for your default group.

The /etc/passwd file contains your default group. Even though this may not appear in
the /etc/group file, this group is always available as an option to the newgrp command.

SysY does not allow group passwords.

Commands 1-431

NEWGRP(l)

FILES
/etc/group
/etc/passwd

SEE ALSO

SysV

System's group file
System's password file

login(l), shell, group(4), passwd(4), environ(5).

1-432

NEWGRP(l)

Commands

NEWS(l) SysV NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION
The news program is used to keep the user informed of current events. By convention,
these events are described by files in the directory, lusr/news.

When invoked without arguments, news prints the contents of all current files in
lusr/news, most recent first, with each preceded by an appropriate header. The news
program stores the "currency" time as the modification date of a file named
.news_time in the user's home directory (the identity of this directory is determined by
the environment variable SHOME); only files more recent than this currency time are
considered "current."

Arguments other than the options listed below are assumed to be specific news items
that are to be printed.

IT delete is typed during the printing of a news item, printing stops and the next item is
started. Another delete within one second of the first causes the program to terminate.

OPTIONS

FILES

-a Prints all items, regardless of currency. In this case, the stored time is not
changed.

-n Reports the names of the current items without printing their contents, and
without changing the stored time.

-s Reports how many current items exist, without printing their names or con­
tents, and without changing the stored time. It is useful to include such an
invocation of news in one's .profile file, or in the system's letc/profile.

letc/profile
lusr/newsl*
$HOME/.news_time

SEE ALSO
profile(4), environ(5}.

Commands 1-433

NICE(l) SysV NICE(l)

NAME
nice - run a command at low priority

SYNOPSIS
nice [- increment] command [arguments]

DESCRIPTION

BUGS

The nice command executes command with a lower CPU scheduling priority. If the
increment argument (in the range 1-19) is given, it is used; if not, an increment of 10 is
assumed.

The super-user may run commands with priority higher than normal by using a negative
increment, e.g., -10.

An increment larger than 19 is equivalent to 19.

DIAGNOSTICS
The nice program returns the exit status of the subject command.

SEE ALSO
nohup(1), nice(2).

1-434 Commands

NL(l) SysV NL(l)

NAME
nl - line numbering filter

SYNOPSIS
nl [-h type] [-b type] [-f type] [-v start#] [-i incr] [-p] [-I num] [-s sep] [-w
width] [-n format] [-d delim] file

DESCRIPTION
The nl command reads lines from the named file or the standard input if no file is
named and reproduces the lines on the standard output. Lines are numbered on the left
in accordance with the command options in effect.

The nl command views the text it reads in terms of logical pages. Line numbering is
reset at the start of each logical page. A logical page consists of a header, a body, and a
footer section. Empty sections are valid. Different line numbering options are indepen­
dently available for header, body, and footer (e.g., no numbering of header and footer
lines while numbering blank lines only in the body), The start of logical page sections
are signaled by input lines containing nothing but the following delimiter character(s):

Line contents Start of

\:\:\:

\:\:

\:

Header

Body

Footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page
body. Command options may appear in any order and may be intermingled with an
optional filename. Only one file may be named.

OPTIONS
-btype

-htype

-ftype

Commands

Specifies which logical page body lines are to be numbered. Recognized
types and their meaning are:

Same as -btype except for header. Default type for logical page header is
n (no lines numbered).

a Number all lines
t Number lines with printable text only

pstring Number only lines that contain the regular expression
specified in string.

Default type for logical page body is t (text lines numbered).

Same as -btype except for footer. Default for logical page footer is n (no
lines numbered).

1-435

n

NL(l) SysV NL(1)

-vstart# Start# is the initial value used to number logical page lines. Default is 1.

-iincr Incr is the increment value used to number logical page lines. Default is 1.

-p Do not restart numbering at logical page delimiters.

-Inurn Num is the number of blank: lines to be considered as one. For example,
-12 results in only the second adjacent blank: being numbered (if the
appropriate -ha, -ba, and/or -fa option is set). Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number. Default
width is 6.

-nformat Format is the line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept. Default format is rn
(right justified).

-<lxx The delimiter characters specifying the start of a logical page section may
be changed from the default characters (\:) to two user -specified characters.
If only one character is entered, the second character remains the default
character (:). No space should appear between the -d and the delimiter
characters. To enter a backslash, use two backslashes.

EXAMPLE
The following command will number filet starting at line number 10 with an increment
often. The logical page delimiters are !+.

SEE ALSO
prCl).

1-436

nl-vtO -itO -d!+ filet

Commands

NM(l) SysV NM(l)

NAME
nm - print name list of common object file

SYNOPSIS
nm [options] filename ...

DESCRIPTION
nm displays the symbol table of each common object file listed on the command line.
The filename argument may refer to a relocatable or absolute common object file; or it
may be an archive of relocatable or absolute common object files. For each symbol, the
following information is printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its storage class.

Class Its storage class.

Type Its type and derived type. If the symbol is an instance of a structure or of a
union then the structure or union tag will be given following the type (e.g.,
struct-tag). If the symbol is an array, then the array dimensions will be
given following the type (e.g., char[n][m]). Note that the object file must
have been compiled with the -g option of the cc(1) command for this infor­
mation to appear.

Size Its size in bytes, if available. Note that the object file must have been com­
piled with the -g option of the cc(l) command for this information to
appear.

Line The source line number at which it is defined, if available. Note that the
object file must have been compiled with the -g option of the cc(l) com­
mand for this information to appear.

Section For storage classes static and external, the object file section containing the
symbol (e.g., text, data or bss).

The options listed below may be used in any order, either singly or in combination, and
they may appear anywhere in the command line. Therefore, both nm name -e -v and
nm -ve name print the static and external symbols in name, with external symbols
sorted by value.

OPTIONS
--0

-x

-h

-v

-n

-e

Commands

Prints the value and size of a symbol in octal instead of decimal.

Prints the value and size of a symbol in hexadecimal instead of decimal.

Does not display the output header data.

Sorts external symbols by value before they are printed.

Sorts external symbols by name before they are printed.

Prints only external and static symbols.

1-437

NM(l)

BUGS

FILES

SysV NM(l)

-f Produces full output. Prints redundant symbols (.text, .data, .lib, and
.bss), normally suppressed.

-u Prints undefined symbols only.

-r Prepends the name of the object file or archive to each output line.

-p Produces easily parsable, terse output. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters U (undefined), A
(absolute), T (text segment symbol), D (data segment symbol), S (user
defined segment symbol), R (register symbol), F (file symbol), C (com­
mon symbol), or G (global symbol) if -Ag is also specified. If the sym­
bol is local (non-external), the type letter is in lowercase.

-V Prints the version of the nm command executing on the standard error
output.

- T By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of charac­
ters, a name that is longer than the width of the column set aside for
names will overflow its column, forcing every column after the name to
be misaligned. The - T option causes nm to truncate every name which
would otherwise overflow its column and place an asterisk as the last
character in the displayed name to mark it as truncated.

-Ag Checks in KGT (Known Global Table) to see if undefined globals are
defined in gioballibraries. This affect the -p and -u options.

When all the symbols are printed, they must be printed in the order they appear in the
symbol table in order to preserve scoping information. Therefore, the -v and -n
options should be used only in conjunction with the -e option.

TMPDlR/* Temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environment variable
TMPDlR [see tempnamO in tmpnam(3S)].

DIAGNOSTICS
nm: name: cannot open

name cannot be read.

nm: name: bad magic
name is not a common object file.

nm: name: no symbols
The symbols have been stripped from name.

SEE ALSO
cc(l), ld(l), tmpnam(3S), a.out(4), ar(4). %W% of%G% macro stdmacro

1-438 Commands

NOHUP(l) SysV NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
The nohup command executes command with hangups and quits ignored. If output is
not redirected by the user, both standard output and standard error are sent to a
nohup.out file. If nohup.out is not writable in the current directory, output is
redirected to $HOME/nohup.out instead.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This can be
done only by placing pipelines and command lists in a single file, called a shell pro­
cedure. One can then issue this command:

nohup shfile

and the nohup applies to everything infile. If the shell procedure file is to be executed
often, then the need to type sh can be eliminated by giving file execute permission.
Add an ampersand and the contents of file are run in the background with interrupts also
ignored (see sh(l»,asinthefollowing

nohupfile &

Here is an example of what the contents of file could be:

sort ofile > nfile

WARNINGS
In the case of the following command, nohup applies only to command]:

nohup command]; command2

The command

nohup (commandl; command2)

is syntactically incorrect.

SEE ALSO
chmod(l), nice(l), sh(l), signal(2).

Commands 1-439

Domain/OS SysV

NAME
nor .dan to iso - convert files to ISO fonnat

SYNOPSIS
nor.dan_to_iso inputJrle outputJrle

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7-bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit fonnat. The overloaded fonts include any
with a specific language suffix (for example, f7xI3.french, or din_f7xl1.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCII characters and the national characters in one file. The 8-bit fonts
available as of SRI 0 include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (inputJrle) and your outputJrle. If outputJrle already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

/usr/apollo/bin/french _ to _iso Converts overloaded French to ISO fonnat

/usr/apollo/bin/german_to_iso Converts overloaded Gennan to ISO fonnat

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for­
mat

/usr/apollo/bin/swedish_to_iso Converts overloaded SwedishIFinnish to ISO for­
mat

/usr/apollo/bin/swiss _ to _iso

/usr/apollo/bin/uk _to _iso

DIAGNOSTICS

Converts overloaded Swiss to ISO fonnat

Converts overloaded U.K. English to ISO fonnat

All messages are generally self-explanatory.

1-440 Commands

OBJ2COFF(1) Domain/OS SysV OBJ2COFF(1)

NAME
obj2coff - convert OBI fonnat modules to COFF fonnat modules

SYNOPSIS
obj2coff objmodule coffmodule

DESCRIPTION

BUGS

The obj2cotT command converts SR9.5 or later object fonnat modules to SRlO COFF
fonnat modules. Either individual modules, or complete bound programs may be con­
verted.

This command cannot be used to convert object module libraries, see Ibr2ar(l) for that
purpose.

If obj2coff encounters an object module stamped with an SR8 systype (sys3, bsd4.1, or
any SR8), it converts it to COFF but does not change the systype, and issues a warning:

module is stamped with obsolete systype 'systype_name'

Some UNIX system calls may behave differently between sys3 and sys5, or between
bsd4.1 and bsd4.2, so users are cautioned to examine their programs carefully for any
effects caused by changes in system call semantics.

For object fonnat files, streams 2 and 3 are used for error input and error output, respec­
tively. No error input stream is automatically assigned for COFF format files; stream 2
is assigned to error output. Thus an object file which has been converted to COFF for­
mat may not work if it attempts to read error input. Moreover, if it writes to error out­
put, the error "operation attempted on unopened stream" will occur.

SEE ALSO
Ibr2ar(l)

Commands 1-441

00(1) SysV 00(1)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx] [file] [[+] offset [.][b]]

DESCRIPTION
Od dumps file in one or more selected formats. If none of the options below are
specified, file is intetpreted in octal by default.

The file argument specifies which file is to be dumped. If no file argument is specified,
the standard input is used.

The offset argument specifies the offset in the file where dumping is to commence. This
argument is normally intetpreted as octal bytes. If a period (.) is appended, the offset is
intetpreted in decimal. If b is appended, the offset is intetpreted in blocks of 512 bytes.
If the file argument is omitted, the offset argument must be preceded by a plus sign (+).

Dumping continues until end-of-file.

OPTIONS
-b

-c

-d

-0

-s

-x

1-442

Intetpret bytes in octal.

Intetpret bytes in ASCII. Certain nongraphic characters appear as C
escapes: null=\o, backspace=\b, formfeed=\f, newline='n, retum=\r,
tab=\t; others appear as three-digit octal numbers.

Intetpret words in unsigned decimal.

Intetpret words in octal.

Intetpret 16-bit words in signed decimal.

Intetpret words in hexadecimal.

Commands

PACK(1) SysV PACK(t)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack[-] [-f] name ...

peat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever possible and
useful, it replaces each input file name by a packed file name.z with the same access
modes, access and modified dates, and owner as those of name.

If pack is successful, it removes name. Packed files can be restored to their original
form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.

The amount of compression obtained depends on the size of the input file and the char­
acter frequency distribution. Because a decoding tree forms the first part of each .z file,
it is usually not worthwhile to pack files smaller than three blocks, unless the character
frequency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75 percent of their original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression, the packed versions being about 90 percent of the original size.
Pack returns a value equaling the number of files not compressed.

No packing occurs if one or more of the following conditions exists:

File appears to be already packed.
Filename has more than 12 characters.
File has links.
File is a directory.
File cannot be opened.
No disk storage blocks will be saved by packing.
A file called name.z already exists .
. z file cannot be created.
An I/O error occurred during processing.

The last segment of the filename must contain no more than 12 characters to allow
space for the appended .z extension. Directories cannot be compressed.

Pcat does for packed files what cat(l) does for ordinary files, except that pcat cannol
be used as a filter. The specified files are unpacked and written to the standard output
To view a packed file named name.z use:

peat name.z
or just:

peat name

Commands

PACK(l) SysV PACK(l)

To make an unpacked copy, say nnn, of a packed file named name.z (without destroy­
ing name.z) use the command:

pcat name> nnn

Pcat returns the number of files it was unable to unpack, but will fail if one of the fol­
lowing conditions exist:

Filename (exclusive of the .z) has more than 12 characters.
File cannot be opened.
File does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the command, a
search is made for a file called name.z (or just name, if name ends in .z). If this file
appears to be a packed file, it is replaced by its expanded version. The new file has the
.z suffix stripped from its name. It also has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. It will fail
for the same reasons as those listed for pcat, as well as for the following additional rea­
sons:

a file with the" unpacked" name already exists
the unpacked file cannot be created.

OPTIONS
(Note that these options are only for use with pack.)

-f

Set an internal flag that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on the stan­
dard output. Additional occurrences of - in place of name cause the
internal flag to be set and reset.

Force packing of name. Useful for causing an entire directory to be
packed even if some of the files will not benefit.

NOTES TO SysV USERS
The Apollo version of the pack command creates packed files that have an Apollo file
type of "uasc". The original file type information is not carried over to the packed file.
The unpack command checks the magic number of the unpacked file. If it matches one
of the Apollo object types or archive type, the file type of the unpacked file is changed
from "uasc" to "obj". If the file type of the original file is other than "uasc" or one
of the "obj" types checked for by unpack, the file type must be manually changed
after the file is unpacked.

SEE ALSO
cat (1).

1-444 Commands

PASSWD(l) SysV PASSWD(l)

NAME
chfn, chsh, passwd - change password file infonnation

SYNOPSIS
passwd [-s] [-f] [name]
chsh shell
chfn

DESCRIPTION
The passwd command changes or installs a password, log-in shell (-s option), or
GECOS infonnation field (-f option) associated with the user name (your own name by
default).

chsh changes a log-in shell, and is equivalent to passwd -so

chfn changes the GECOS infonnation field, and is equivalent to passwd -f.

When altering a password, passwd prompts for the current password and then for the
new one; you must supply both. You must type the new password twice to forestall
mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough.

Only the owner of the name or the super-user can change a password; owners must
prove they know the old password.

When altering a log-in shell, (using passwd -s or chsh) the program displays the
current log-in shell and then prompts for the new one. The new log-in shell must be
one of the approved shells listed in /etc/shells unless you are the super-user. If
/etc/shells does not exist, the only shells that can be specified are /bin/sh, /bin/csh,
/bin/ksh, and /comlsh.

The super-user can change anyone's log-in shell; nonnal users can only change their
own log-in shell(s).

When altering the GECOS infonnation field, (using passwd -f or chfn), the program
displays the current infonnation, broken into fields, as interpreted by the finger(l) pro­
gram (among others) and prompts for new values. These fields can include a user's
"real life" name, office room number, office phone number, and home phone number.
Each prompt includes a default value, which is enclosed between brackets. The default
value is accepted simply by typing a carriage return. To enter a blank: field, the word
"none" can be typed. Phone numbers can be entered with or without hyphens. It is a
good idea to run finger after changing the GECOS infonnation to make sure everything
is set up properly.

The super-user can change anyone's GECOS infonnation; nonnal users can only
change their own.

Commands 1-445

PASSWD(l) SysV PASSWD(l)

EXAMPLE

NOTES

FILES

Below is a sample run:

% passwd-f
Name [Biff Studsworth II]:
Room number (Exs: 597E or 197C) []: S21E
Office Phone (Ex: 1632) []: 1863
Horne Phone (Ex: 987532) [5771546]: none

On Domain/OS systems, the letc/passwd file is a typed file, which is automatically gen­
erated by the registry daemon. The registry administrator can make the person informa­
tion in the registry read-only, in which case normal users cannot change the "Name"
field.

letc/passwd
letc/shells

The file containing all of this information
The list of approved shells

SEE ALSO

1-446

login(I}, finger(I}, passwd(4}, crypt(3C), edrgy(lM);
Using YourSysV Environment

Commands

PASTE(l) SysV PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste filel file2 ...
paste -d list file 1 file2 ...
paste -s [-d list 1 filel file2 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input files
filel, file2, etc. It treats each file as a column or columns of a table and pastes them
together horizontally (parallel merging). If you will, it is the counterpart of cat(l)
which concatenates vertically, i.e., one file after the other. In the last form above, paste
replaces the function of an older command with the same name by combining subse­
quent lines of the input file (serial merging). In all cases, lines are glued together with
the tab character, or with characters from an optionally specified list. Output is to the
standard output, so it can be used as the start of a pipe, or as a filter, if a simple dash (-)
is used in place of a filename.

0PI10NS
-d list Replace the default tab character by one or more altemate characters, specified

in list. (see below). The list is used circularly, i.e., when exhausted, it is
reused. In parallel merging (i.e., no -s option), the lines from the last file are
always terminated with a new-line character, not from the list. The list may
contain the special escape sequences: \n (newline), \t (tab), \\ (backslash), and
\0 (empty string, not a null character). Quoting may be necessary, if characters
have special meaning to the shell (e.g., to get one backslash, use -d "\\\\"

If list is not specified, the newline characters of each but the last file (or last
line in case of the -s option) are replaced with a tab character.

-s Merge subsequent lines rather than one from each input file. Use tab for con­
catenation, unless a list is specified with -d option. Regardless of the list, the
very last character of the file is forced to be a newline.

May be used in place of any filename, to read a line from the standard input.
(There is no prompting).

EXAMPLES
To list a directory in one column:

Is I paste -d" -

To list a directory in four columns:
lsi paste---

To combine pairs oflines into lines:
paste -s -d"\ t\ nIt file

Commands 1-44i

PASTE(l) SysV PASTE(l)

DIAGNOSTICS
line too long Output lines are restricted to 511 characters.

too many files Except in the case of the -s option, no more than 12 input files may be
specified.

SEE ALSO
cut(l), grep(I), pr(l).

1-448 Commands

PCAT(l) SysV PCAT(l)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 [-f 1 name ...

pcat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever possible and
useful, it replaces each input file name by a packed file name.z with the same access
modes, access and modified dates, and owner as those of name.

If pack is successful, it removes name. Packed files can be restored to their original
form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.

The amount of compression obtained depends on the size of the input file and the char­
acter frequency distribution. Because a decoding tree forms the first part of each .Z file,
it is usually not worthwhile to pack files smaller than three blocks, unless the character
frequency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75 percent of their original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression, the packed versions being about 90 percent of the original size.
Pack returns a value equaling the number of files not compressed.

No packing occurs if one or more of the following conditions exists:

the file appears to be already packed
the filename has more than 12 characters
the file has links
the file is a directory
the file cannot be opened
no disk storage blocks will be saved by packing
a file called name.z already exists
the .z file cannot be created
an I/O error occurred during processing.

The last segment of the filename must contain no more than 12 characters to allow
space for the appended .z extension. Directories cannot be compressed.

Pcat does for packed files what cat(l) does for ordinary files, except that pcat cannot
be used as a filter. The specified files are unpacked and written to the standard output.
To view a packed file named name.z use:

pcat name.z
or just:

peat name

Commands 1-449

PCAT(l) SysV PCAT(l)

To make an unpacked copy, say nnn, of a packed file named name.z (without destroy­
ing name.z) use the command:

pcat name> nnn

Pcat returns the number of files it was unable to unpack, but will fail if one of the fol­
lowing conditions exist:

the filename (exclusive of the .z) has more than 12 characters
the file cannot be opened
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the command, a
search is made for a file called name.z (or just name, if name ends in .z). If this file
appears to be a packed file, it is replaced by its expanded version. The new file has the
.z suffix stripped from its name. It also has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. It will fail
for the same reasons as those listed for pcat, as well as for the following additional rea­
sons:

a file with the "unpacked" name already exists
the unpacked file cannot be created.

OPTIONS
(Note that these options are only for use with pack.)

-f

Sets an internal flag that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on the stan­
dard output. Additional occurrences of - in place of name cause the
internal flag to be set and reset.

Forces packing of name. Useful for causing an entire directory to be
packed even if some of the files will not benefit.

NOTES TO SysV USERS
The Apollo version of the pack command creates packed files that have an Apollo file
type of "uasc". The original file type information is not carried over to the packed file.
The unpack command checks the magic number of the unpacked file. If it matches one
of the Apollo object types or archive type, the file type of the unpacked file is changed
from "uasc" to "obj". If the file type of the original file is other than "uasc" or one
of the "obj" types checked for by unpack. the file type must be manually changed
after the file is unpacked.

SEE ALSO
cat (1).

1-450 Commands

PG(1) SysV PG(1)

NAME
pg - file perusal filter for CRTs

SYNOPSIS
pg [-number] [-p string] [-cefns] [+linenumber] [+/pattern/] ffiles ...]

DESCRIPTION
The pg program is a filter which allows the examination of files one screenful at a time
on a CRT. If you use a simple dash (-) and/or NULL arguments in place of a filename,
pg reads from the standard input. Each screenful is followed by a prompt. If you hit a
carriage return, pg displays another page; other possibilities are enumerated below.

This command is different from previous paginators in that it allows you to back up and
review something that has already passed. The method for doing this is explained
below.

In order to determine terminal attributes, pg scans the terminfo(4) database for the ter­
minal type specified by the environment variable TERM. If TERM is not defined, the
terminal type dumb is assumed.

The responses that may be typed when pg pauses can be divided into three categories:
those causing further perusal, those that search, and those that modify the perusal
environment.

Commands which cause further perusal normally take a preceding address, an option­
ally signed number indicating the point from which further text should be displayed.
This address is interpreted in either pages or lines depending on the command. A
signed address specifies a point relative to the current page or line, and an unsigned
address specifies an address relative to the beginning of the file. Each command has a
default address that is used if none is provided.

Perusal Commands
(+I)<newline> or <blank>

Displays one page. The address is specified in pages.

(+1) I With a relative address,simulates scrolling the screen, forward or back­
ward, the number of lines specified. With an absolute address, prints a
screenful beginning at the specified line.

(+1) d or"D Simulates scrolling half a screen forward or backward.

Perusal Commands That Take No Address
.0r"L Redisplays the current page of text.

$ Displays the last windowful in the file. Use with caution when the input
is a pipe.

Commands for Searching Text Patterns
The following commands are available for searching for text patterns in the text. The
regular expressions described in ed(l) are available. They must always be terminated
by a <newline>, even if the -n option is specified.

Commands 1-451

PG(l)

i/patternl

i'pattern
i'! pattern ?

SysV PG(l)

Searches forward for the ith (default i=l) occurrence of pattern.
Searching begins immediately after the current page and continues to the
end of the current file, without wrap-around.

Searches backwards fnr the ith (default i=l) occurrence of pattern. Searching
begins immediately before the current page and continues to the beginning of
the current file, without wrap-around. The circumflex n notation is useful for
Adds 100 tenninals which will not properly handle the question mark (?).

After searching, pg will normally display the line found at the top of the screen. This
can be modified by appending m or b to the search command to leave the line found in
the middle or at the bottom of the window from now on. The suffix t can be used to
restore the original situation.

Commands That Modify the Environment of

1-452

in Begins perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

i P Begins perusing the i th previous file in the command line. is an
unsigned number, default is ·1.

iw

sfilename

h

qorQ

Displays another window of text. If i is present, set the window size to i.

Saves the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a <newline>, even if the -n
option is specified.

Helps by displaying an abbreviated summary of available commands.

Quitspg.

!command Passes command to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if the
-n option is specified.

At any time when output is being sent to the terminal, you can hit the quit key (nor­
mally CTRL-\) or the interrupt (break) key. This causes pg to stop sending output, and
display the prompt. The user may then enter one of the above commands in the normal
manner. Unfortunately, some output is lost when this is done, due to the fact that any
characters waiting in the tenninal's output queue are flushed when the quit signal
occurs.

If the standard output is not a tenninal, then pg acts just like cat(I), except that a header
is printed before each file (if there is more than one).

Commands

PG(I) SysV PG(I)

OPTIONS
-number Uses number to specify the size (in lines) of the window that pg is to use

instead of the default. (On a tenninal containing 24 lines, the default
window size is 23).

-pstring

-c

-e

-f

-n

-s

Uses string as the prompt. If the prompt string contains a "%d", the
first occurrence of "%d" in the prompt will be replaced by the current
page number when the prompt is issued. The default prompt string is a
colon (:).

Homes the cursor and clear the screen before displaying each page. This
option is ignored if clear_screen is not defined for this tenninal type in
the terminfo(4) database.

Refrains from pausing at the end of each file.

Inhibits the splitting of lines. (Normally, pg splits lines longer than
screen width, but some character sequences in the text being displayed
(e.g., escape sequences for underlining) generate undesirable results.)

Causes an automatic end of command as soon as a command letter is
entered. (Normally, commands must be terminated by a <newline>
character.)

Prints all messages and prompts in standout mode (usually inverse
video).

+linenumber Starts up at linenumber.

+Ipatternl

EXAMPLE

Starts up at the first line containing the regular expression pattern.

NOTES

BUGS

A sample usage of pg in reading system news would be

news I pg -p (Page %d):

While waiting for terminal input, pg responds to BREAK, DEL, and • by terminating
execution. Between prompts, however, these signals interrupt pg's current task and
place the user in prompt mode. These should be used with caution when input is being
read from a pipe, since an interrupt is likely to terminate the other commands in the
pipeline.

Users of Berkeley's more(l) will find that the z and f commands are available, and that
the tenninal t, " or? may be omitted from the searching commands.

If tenninal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O options,
terminal settings may not be restored correctly.

Commands 1-453

PG(l)

FILES
lusrlIib/terminfol?l*
Itmp/pg*

SEE ALSO
ed(l), grep(l). tenninfo(4).

1-454

SysV

Tenninal infonnation database
Temporary file when input is from a pipe

PG(l)

Commands

PR(l) SysV PR(l)

NAME
p r - print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp] [+page] [-nck]

[-ooffset] [-I length] [-sseparator] [-h header] [file ...]

pr [[-m] [-wwidth]] [-eck] [-ick] [-drtfp] [+page] [-nck]
[-ooffset] [-Ilength] [-sseparator] [-h header] filel file2 ...

DESCRIPTION
The pr command formats and prints the contents of a file. If you specify a simple dash
(-) in place of file, or if you specify no files, pr assumes standard input. It prints the
named files on standard output.

By default, the listing is separated into pages, each headed by the page number, a date
and time, and the name of the file. Page length is 66 lines which includes 10 lines of
header and trailer output. The header is composed of 2 blank lines, 1 line of text (can
be altered with -h), and 2 blank lines; the trailer is 5 blank lines. For single column
output, line width may not be set and is unlimited. For multicolumn output, line width
may be set and the default is 72 columns. Diagnostic reports (failed options) are
reported at the end of standard output associated with a terminal, rather than inter­
spersed in the output. Pages are separated by series of line feeds rather than form feed
characters.

By default, columns are of equal width, separated by at least one space; lines which do
not fit are truncated. If the -s option is used, lines are not truncated and columns are
separated by the separator character.

Either -column or -m should be used to produce multi-column output. The -a option
should only be used with -column and not -m.

OPTIONS
+page

-column

-3

-m

Commands

Begin printing with page numbered page (default is 1).

Print column columns of output (default is 1). Output appears as if-e
and -i are turned on for multi-column output. May not use with -m.

Print multi-column output across the page one line per column. The
value of columns must be greater than one. If a line is too long to fit in a
column, it is truncated.

Merge and print all files simultaneously, one per column. The maximum
number of files that may be specifed is eight. If a line is too long to fit in
a column, it is truncated. May not use with -column.

1-455

PR(l)

-d

-eck

-ick

-nck

-wwidth

-ooffset

-Ilength

1-456

SysV PR(l)

Double-space the output. Blank lines that result from double-spacing are
dropped when they occur at the top of a page.

Expand input tabs to character positions k + I, 2 * k + I, 3 * k + I, etc. If k is
o or is omitted, default tab settings at every eighth position are assumed.
Tab characters in the input are expanded into the appropriate number of
spaces. If c (any non-digit character) is given, it is treated as the input
tab character (default for c is the tab character).

In output, replace white space wherever possible by inserting tabs to
character positions k+ 1, 2*k+ I, 3*k+ I, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any non­
digit character) is given, it is treated as the output tab character (default
for c is the tab character).

Provide k-digit line numbering (default for k is 5). The number occupies
the first k+ I character positions of each column of single column output
or each line of -m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab).

Set the width of a line to width character positions (default is 72). This
is effective only for multi-column output (-There is no line limit for sin­
gle column output.

Offset each line by offset character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

Set the length of a page to length lines (default is 66). The -10 argument
is reset to -166. When the value of length is 10 or less, -t appears to be
in effect since headers and trailers are suppressed. By default, output
contains 5 lines of header and 5 lines of trailer leaving 56 lines for user­
supplied text. When -Ilength is used and length exceeds 10, then
length-1O lines are left per page for user supplied text. When length is
10 or less, header and trailer output is omitted to make room for user
supplied text.

Commands

PR(l) SysV PR(I)

-h header Use header as the text line of the header to be printed instead of the file
name. -h is ignored when -t is specified or -Ilength is specified and the
value of length is 10 or less. (-h is the only pr option requiring space
between the option and argument.)

-p Pause before beginning each page if the output is directed to a terminal
(pr will ring the bell at the terminal and wait for a carriage return).

-f Use single form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first page if the
standard output is associated with a terminal.

-r Print no diagnostic reports on files that will not open.

-t Print neither the five-line identifying header nor the five-line trailer nor-
mally supplied for each page. Quit printing after the last line of each file
without spacing to the end of the page. Use of -t overrides the -h
option.

-sseparator Separate columns by the single character separator instead of by the
appropriate number of spaces (default for separator is a tab). Prevents
truncation oflines on multicolumn output unless -w is specified.

EXAMPLES

FILES

To print filel and file2 as a double-spaced, three-column listing headed by "file list",
type the following:

pr -3dh "file list" filel file2

To copy filel to file2, expanding tabs to columns 10, 19,28,37, ... use this command
line:

pr -e9 -t <file 1 >file2

To print file I and file2 simultaneously in a two-column listing with no header or trailer
where both columns have line numbers, type this:

pr -t -n filel I pr

Idev/tty*
to delay messages enabling them to print at the bottom of files rather than
interspersed throughout printed output.

SEE ALSO
cat(l), pg(l).

Commands 1-457

PRF(l) Domain/OS SysV PRF(l)

NAME
prf - queue a file for printing by Domain/OS Aegis print spooler

SYNOPSIS
prf [options] pathname ...

DESCRIPTION
The prf command queues a file for printing. The file must be an ASCII stream (that is,
text) file, a graphics map file (GMF), or a GPR bitmap object. After successfully queu­
ing a file, prf displays a message containing the full patbname of the file that you
queued.

You can execute prf once for each file that you want to print (specifying all the neces­
sary options every time), or you can enter prf's interactive mode and hand files to the
program continuously. See the examples for a sample interactive session.

Files queued by prf are physically printed by prsvr, the print server, running as a back­
ground task under control of prmgr, the print manager.

When you invoke prf, it first sets all options to their default states. Next, it looks for the
print options file called user _ data/startup.prf unless you invoke prf with the -ndb
option. If prf locates the option file, it executes the options contained in the file to
configure the current session. Finally, it processes all options on the command line.

pathname (optional) Specify the file to be printed. Multiple pathnames and patbname
wildcarding are permitted.

Default if omitted: read standard input

OPTIONS

1-458

The following options can appear on the shell command line or in prf interactive mode.
In addition, you can place one or more options in a prf option file so that they are exe­
cuted automatically whenever you invoke prf.

Many of the options have default values that are specified in the prsvr configuration file
established for each printer in the network by the system administrator. If you omit
these options, your file is printed using the values specified in the prsvr configuration
file. For example, omission of the -banner option could cause your file to be printed
with a banner page if the prsvrconfiguration file specifies one.

If no options are specified, the file is printed using ASCII carriage control, with pagina­
tion enabled, on the default printer as established by the system administrator.

Commands

PRF(l) Domain/OS SysV PRF(l)

Options Applying to All File Types
-inter[activej Enter interactive mode.

-sea[rch_dirj {onloff}

-cop[iesj n

-pr[interjname

Searches through all the directories of all the active processes on
your node for the file(s) to be printed. This option is most useful
in interactive mode, when the working directory of the prf pro­
cess may be different from the working directory of the file to be
printed.

The default is off.

Prints multiple copies of the file, where n is the requested number
of copies. If -cop[iesj is specified, n is required. The default is
one copy.

Specifies the name of the printer that should print the file. This
option is useful only if more than one printer is in use on the net­
work, or if a printer has been assigned a nonstandard name with
the printer_name configuration directive in the prsvr command.
If you omit this option, prf uses the default printer name, p. Note
that p is also the default printer name used by the print server.

-s[itej spool_node_name
Uses this option only if you are queuing jobs to a pre-SRIO print
server connected to a spool directory (/sys/print) that is different
from the one specified by your node. By default, SRID printers
find the spool node for you.

-nc[opyj Prints the specified file from its location in the user-specified
directory, bypassing /sys/print/spooler. If you select this option,
prf defaults to the no-delete (-nd) option. If you specify the
delete (-d) option, the file is deleted at the completion of the
print request. If you use this option (with or without the delete
option), do not open and alter the print file before the print job is
completed.

-d[eletej (default) Deletes the print file at the completion of the print job.

-nd[eletej Does not delete the print file when the print server is finished
printing it. This becomes default if -nc is specified.

-user[usernamej Specifies the user name that appears on the banner page of the
printed file. The alann facility of prf also uses this name to deter­
mine who should be notified when printing is complete (see -sig
below). This means that this name must be a valid log-in name
(unless you don't care about sending an alann).

The default is the curtent log-in name.

Commands 1-459

PRF(l)

1-460

Domain/OS SysV PRF(l)

-sig[naIJ {alarmloff} Requests an alann server signal when the file has finished print­
ing.

The default is off.

-ban[nerJ [onloff] Enables/disables banner page. If the banner setting in the prsvr
configuration file is off, no banner is printed.

The default is on.

-configUile] [pathname]
Specifies a file containing further prf options. one per line. Do
not use prefixed hyphens (-) with the option names in the
configuration file. If pathname is omitted, prf executes the prf
option file /user _data/startup _prf.

-ndb Suppresses processing of the prf option file.

-trans[parent] [onloff]

-fiIterL chain] string

off specifies that the file being printed is passed directly to the
printer driver routine with no processing by the print server. The
default is on.

Specifies a filter string that will be used by the print server to pro­
cess the job. This option overrides the default processing done by
the print server. It is most often used to invoke filters that have
been added to the print server. The format of the string is "filter!
I filter2", where filterl and filter2 are composed of strings of the
form "type1$type2" and "type2$type3". Note that the output
type of filter n must equal the input type of filter n+ 1 .

-paper_size (albllegalla3la4la51 b4lb5}
Selects the paper size. You must specify one of the following size
codes:

Code Size in inches (mm)

a 8.50 x 11.00
b 11.00 x 17.00
legal 8.50 x 14.00
a3 11.69 x 16.54 (297mm x 420mm)
a4 8.27 x 11.69 (210mm x 297mm)
as 5.38 x 8.27 (137mm x 21Omm)
b4 9.84 x 13.90 (257mm x 364mm)
b5 5.93 x 9.89 (182mm x 257mm)

TILDE ESCAPES.if 0=0 .m c. 38636-0-13

Commands

PRF(l) Domain/OS SysV PRF(l)

This option is available only for the DomainlLaser-26 and
APPLE LaserWriter* printers. Because prf assumes that the
correct paper is in the printer's paper tray, you should check the
paper tray before printing. The default paper size is specified in
the prsvr configuration file.

Options Applying to Text Files Only
-margins [onloff] Enables/disables margins generated by prf.

-topn

-bot[tom] n

-right n

-left n

-headers [onloff]

The default is on.

Specifies top page margin, in inches. The default is a value
specified in the prsvr configuration file.

Specifies bottom page margin, in inches. The default is a value
specified in the prsvr configuration file.

Specifies right margin, in inches. The default is 0 inches.

Specifies left margin, in inches. The default is 0 inches.

Enables/disables page headers and footers generated by prf. The
default is on.

-headL string] I-string / c-string /r-string

Commands

Specifies contents of left, center, and right components of the
page header generated by prf. Components can be empty strings.
The following special characters return the values indicated when
they appear in the header strings:

Character Return Value

@ = Escape character
= current Page number with 1 lead­

ing and 1 trailing space
% = Current date

= Filename
&

*
= Filename's last time, date modified
= Insert a space in text string (literal
spaces are not allowed)

TILDE ESCAPES.if 0=0 .m c. 38842-0-15

Example: -head !/Page#/% produces a header with the filename
in the left component, the string "Page" followed by the current
page number in the center component, and the current date in the
right component. The default header is a string specified in the
prsvr configuration file.

1-461

PRF(l) Domain/OS SysV PRF(l)

-footL stringll-string / c-string / r-string

-ftn [onloff]

-wrap [onloff]

-col[umnsl {tI2}

-Ipin

Specifies contents of page footers. The format is the same as for
-head above. There is no default footer.

Enables/disables FORTRAN carriage control. -ftn on causes the
print server to use FORTRAN forms control even if the file does
not have the FORTRAN carriage-control flag. Use of this option
causes prf to interpret the first character of each line as a FOR­
TRAN carriage control character (and not print it). This can be
unfortunate if the file has ASCII carriage control, so be careful.
-ftn off causes the print server to print the contents of column
one rather than trying to interpret it as FORTRAN forms control.
If this option is specified without on or off, on is assumed.

The default is off.

Enables/disables automatic line wrapping. When enabled, prf
wraps lines that exceed the right margin. When disabled, prf
truncates lines that exceed the right margin. If this option is
specified without on or off, on is assumed.

The default is off.

Specifies single-or double-column printing.

The default state is single column.

Specifies the line-spacing factor. n is an integer indicating the
number of lines per inch.

The default is six lines per inch.

Options for Variable Font and Pitch

1-462

-pitch n Sets the printer pitch (characters/inch). The following pitch set­
tings are available on the printers indicated.

Printer

Printronix *
Spinwriter*
IMAGEN*
GENICOM*
Versatec *
LaserWriter*
Laser-26

Pitch

10
12
8.5,10,12, 15, 17.1
10,12, 13.1, 16.7
12
1 to 100
1 to 100

TILDE ESCAPES.if 0=0 .nr c. 39004-0-l2

Commands

PRF(l) Domain/OS SysY PRF(l)

-point n Sets the point size for the font to be used. This is a real number
that specifies size in points. A point equals 1n2 inch.

-weight {Iightlmediumlbold}

-Iq [onloff]

Sets the weight of the font to be used.

The default is medium.

Specifies that the document is to be printed in letter quality (on)
or in draft (off) mode. With no argument, on is assumed when
this option is invoked. If the option is not invoked, draft mode is
the default.

Options Applying to Plot Files
-res[olution] n Specifies output plot resolution in dots per inch. If you specify a

resolution not available on the particular printer, prsvr prints the
file at the closest available resolution.

-whiter_space] n

The default resolution is specified in the prsvr configuration file.

Specifies the amount of white space (in inches) to appear
between multiple plots in one file.

The default is three inches.

-bwLrev] [onJoff] Enables/disables black and white reversal for bitmaps. If no argu­
ment is specified, on is assumed. If the option is not invoked,
black/white reversal is disabled.

-magn[ification] n Specifies bitmap magnification value. n is an integer in the range

Commands

-1 to 16. The values have the following meanings:

-1 Selects auto-scaling to magnify the bitmap to fill the
available page space.

o Selects one-to-one scaling between the display and the
printer for OMF bitmaps. (For OPR bitmaps, this
translates to magnification 1.)

1-16 Selects the magnification indicated by value. Where 1
equals I-to-1, 2 equals 2x, etc.

Default if omitted: n is 0

1-463

PRF(l) Domain/OS SysV PRF(l)

Options Applying to PostScript* Printers
The following options apply only for files sent to printers that contain the PostScript
interpreter, such as the Domain/Laser-26 and APPLE LaserWriter* printers.

-post[scriptl [onloff]
Enables/disables PostScript interpretation .. When enabled, the
data is passed through the PostScript interpreter. When disabled,
the data is printed as text, plot, or transparent data. If the option
is not invoked, PostScript interpretation is disabled.

The default is on.

-orient[ationl {port[raitliland[scape]}
Selects the page orientation. portrait specifies that the text or x­
axis of the bitmap is printed parallel to the short edge of the
paper. landscape specifies that the text or x-axis of the bitmap is
printed parallel to the long edge of the paper and perpendicular to
the short leading edge.

The default is portrait.

Infonnation Request Options
-check [-pr printer_name 1

Checks for the existence of the specified printer. If the printer
does not exist or is unavailable, an error message is returned.

-list_printers Lists the names and status of all printers currently attached to the
network.

-list sites Lists the names of all print managers currently in the network.

-sig_printer printer_name {-abortl-sus[pendllcont[inue)}

-prelO

Signals the printer to abort, suspend, or continue an active print
job.

Allows you to queue print requests to a pre-SR 1 0 print server.

COMMANDS

1-464

Once prf has been invoked in interactive mode (see -inter above), it accepts the fol­
lowing interactive commands at the "prf> " prompt (in addition to the options already
discussed).

p[rint 1 [print Jile yathname 1 [options 1
Queue the specified file for printing.

q[uitl Quit interactive mode and return to the shell.

Commands

PRF(1)

sh[ell]

init[ialize 1
r[eadl [printer]

wd [pathname 1

get option

can[ceJ] Uob _id]

Domain/OS SysV PRF(l)

Create a shell command line. This command allows you to issue
shell commands without leaving prf interactive mode. When
you finish entering shell commands, type CfRL{Z. This returns
you to prf interactive mode. Your previous prf option settings
remain undisturbed by the intervening shell commands.

Reset prf parameters to their default values.

List queue entries for the specified printer. If printer is omitted,
the contents of the queue (determined by the current setting of
-pr) are listed.

Execute the shell command wd (workinlLdirectory) to set or
display the working directory.

Display the value of the prf option specified. Use this command
to show the settings of the various prfparameters.

Cancel printing of the specified file at the current printer. Note
that you must specify the job ID assigned by prmgr when the file
is queued. Use the read command to display the names and job
IDs of currently queued files. This command affects jobs in the
print queue; it does not cancel a job being printed. To halt a job
being printed, use -pr _ sig with abort specified.

EXAMPLES
The following example, queues the file named mary for printing and forces FORTRAN
carriage retums:

$ prf mary -fln
"//nodel/my_dir/mary" queued for printing.
$

The following example queues the file named filex to the printer queue on the node
named Iitape:

$ prf filex -s litape
"/ /nodel/my_dir/test_file .pas" queued for printing at site / /tap.

$

This example shows the types of commands that might appear in the default prf
configuration file luser _ data/startup.prf:

pr ge
site //rye
foot %/my _ file/ &

Commands 1-465

PRF(l)

NOTES

1-466

Domain/OS SysV

The following example shows a sample interactive session:

$ prf-inter
prf> get pr
pr = p
prf> -prcx
prf> getpr
pr = ex
prf> -pitch 20
prf> print test_file.pas
"//nodel/my_dir/test_file.pas" queued for printing.
prf> q
$

PRF(l)

This example illustrated running prf from an icon. To run prf interactively in a process
devoted to it, insert the following command in the start-up file that you use to start the
DM:

cp -i -c 'P' IcomJprf -inter -n print_file

The above command creates a prf process and turns its window into an icon using the
print icon character in (/sys/dmJfonts/icons). Issue the DM command icon to change
the icon window into its full-size fonnat.

APPLE and LaserWriter are registered trademarks of Apple Computer, Inc.
Printronix is a trademark of Printronix, Inc.
Spinwriter is a registered trademark of NEC, Inc.
IMAGEN is a registered trademark of IMAGEN Corp.
GENICOM is a registered trademark of GENDICOM Corp.
Versatec is a trademark of Versatec, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.

Commands

PROF(l} SysV PROF(l}

NAME
prof - display profile data

SYNOPSIS
prof [-tean] [-ox] [-g] [-z] [-h] [-s] [-m mdata]" fprog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor(3C} function. The
symbol table in the object file prog (a.out by default) is read and correlated with a
profile file (mon.out by default). For each external text symbol the percentage of time
spent executing between the address of that symbol and the address of the next is
printed, together with the number of times that function was called and the average
number of milliseconds per call.

The mutually exclusive options t, e, a, and n determine the type of sorting of the output
lines. The mutually exclusive options 0 and x specify the printing of the address of
each symbol monitored. All other options may be used in any combination.

A program creates a profile file if it has been loaded with the -p option of ee(l}. This
option to the ee command arranges for calls to monitor(3C) at the beginning and end
of execution. It is the call to monitor at the end of execution that causes a profile file
to be written. The number of calls to a function is tallied if the -p option was used
when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environment
variable PROFDIR. IfPROFDIR does not exist, "mon.out" is produced in the directory
that is current when the program terminates. If PROFDIR string,
"string/pid.progname" is produced, where progname consists of argv[O] with any path
prefix removed, and pid is the program's process id. If PROFDIR is the null string, no
profiling output is produced.

A single function may be split into subfunctions for profiling by means of the MARK
macro [see prof(5}].

OPTIONS
-t Sort by decreasing percentage of total time (default).

--c

-a

-n

-0

-x

-g

-z

Commands

Sort by decreasing number of calls.

Sort by increasing symbol address.

Sort lexically by symbol name.

Print each symbol address (in octal) along with the symbol name.

Print each symbol address (in hexadecimal) along with the symbol name.

Include non-global symbols (static functions).

Include all symbols in the profile range [see monitor(3C)], even if asso­
ciated with zero number of calls and zero time.

1-467

PROF(l)

FILES

-h

-s

-m mdata

SysV PROF(l)

Suppress the heading normally printed on the report. (This is useful if
the report is to be processed further.)

Print a sununary of several of the monitoring parameters and statistics on
the standard error output.

Use file mdata instead of mon.out as the input profile file.

mon.out For profile
a.out For namelist

WARNINGS
The times reported in successive identical runs may show variances of 20% or more,
because of varying cache-hit ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background or
asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may "beat" with loops in a program, grossly distort­
ing measurements.

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text symbol if the
-g option is not used. However, the call counts for the preceding function are still
correct, i.e., the static function call counts are not added in with the call counts of the
external function.

CAVEATS
Only programs that call exit(2) or return from main will cause a profile file to be pro­
duced, unless a final call to monitor is explicitly coded.

The use of the -p option to ec(1) to invoke profiling imposes a limit of 600 functions
that may have call counters established during program execution. For more counters
you must call monitor(3C) directly. If this limit is exceeded, other data will be
overwritten and the mon.out file will be corrupted. The number of call counters used
will be reported automatically by the prof command whenever the number exceeds 5/6
of the maximum.

SEE ALSO
cc(l), exit(2), profil(2), monitor(3C), prof(5).

1-468 Conunands

PRS(l) SysV PRS(l)

NAME
prs - print an SCCS file

SYNOPSIS
prs [-d[dataspecJ] [-r[SIDJ] [-e] [-I] [-c[date-time]] [-a] file ...

DESCRIPTION
prs prints, on the standard output, part or all of an sees (Source Code Control System)
file in a user-supplied format. If you name a directory, prs behaves as though each file
in the directory is specified as a named file, except that it silently ignores non-SeeS and
unreadable files. If a dash (-) is given in place of a filename, prs reads the standard
input, taking each line to be the name of an sees file or directory to be processed.
Options to prs may appear in any order. Each argument applies independently to each
named file.

OPTIONS
-d[dataspec]

-r[SID]

-e

-I

-c[date-time]

-a

Commands

Specify the output data specification. The dataspec is a string con­
sisting of sees file data keywords interspersed with optional user­
supplied text.

Specify the sees Identification (SID) string of the delta for which
information is desired. If you do not specify an SID, then prs
assumes the SID to be that of the most recently created delta.

Request information for all deltas created earlier than and including
the delta designated via the -r keyletter or the date given by the -c
option.

Request information for all deltas created later than and including
the delta designated via the -r keyletter or the date given by the -c
option.

Specify date-time as cutoff for requesting information. This cutoff
date-time appears in the following form:

YY[MM[DD[HH[MM[SSlllll

Units omitted from the date-time default to their maximum possible
values; that is, -c8502 is equivalent to -c850228235959. Any
number of non-numeric characters may separate the various two­
digit pieces of the cutoff date in the following form:
-c85/2/29:22:25.

Request printing of information for both removed (delta type = R)
and existing (delta type = D) deltas. Refer to rmdel(l) for more
information. If you do not specify the -a keyletter, prs provides
information only on existing deltas.

1-469

PRS(l) SysV PRS(l)

DATA KEYWORDS

1-470

Data keywords specify those parts of an sees file to be retrieved and output. All parts
of an sees file have an associated data keyword. Refer to sccsfile(4) for more informa­
tion about the structure of these file types. There is no limit on the number of times a
data keyword may appear in a dataspec.

prs prints the user-supplied text, and appropriate values (extracted from the sees file)
substituted for the recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either "Simple" (S), in which keyword substitu­
tion is direct, or "Multiline" (M), in which keyword substitution is followed by a car­
riage return. User-supplied text is any text other than recognized data keywords.

A tab is specified by \t, and a carriage return/newline is speCified by \no The default
data keywords are: ":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

SCCS Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D orR S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created no S
:Dm: Month Delta created no S
:Dd: Day Delta created no S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created no S
:m: Minutes Delta created no S
:Ts: Seconds Delta created no S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:01: Seq-no. of deltas incl., excl., ignored :Dn:/:Ox:/:Dg: S
:00: Deltas included (seq #) :DS::OS: ... S
:Dx: Deltas excluded (seq #) :DS::DS: ... S

Commands

PRS(l)

Keyword

:Dg:
:MR:
:C:

:UN:
:FL:
:Y:

:MF:
:MP:
:KF:
:BF:
:J:

:LK:
:Q:
:M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
:W:
:A:
:Z:
:F:

:PN:

EXAMPLES

Conunands

SysV

SCCS Files Data Keywords (Contd.)
Data Item File Section

Deltas ignored (seq #)
MR numbers for delta
Conunents for delta
User names User Names
Flag list Flags
Module type flag
MR validation flag
MR validation pgm name
Keyword error/waming flag
Branch flag
Joint edit flag
Locked releases
User defined keyword
Module name
Floor boundary
Ceiling boundary
Default SID
Null delta flag
File descriptive text Conunents
Body Body
Gotten body
A form ofwhat(l) string N/A
A form ofwhat(l) string N/A
what(1) string delimiter N/A
SCCS file name N/A
SCCS file path name N/A

* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

% prs -d"Users and/or user IDs for :F: are:OUN:" s.file
Users and/or user IDS for s.file are:
xyz

131
abc

PRS(l)

Value Formal

:DS: :DS: ... S
text M
text M
text M
text M
text S

yes or no S
text S

yes or no S
yes or no S
yes or no S

:R: ... S
text S
text S
:R: S
:R: S
:I: S

yes or no S
text M
text M
text M

:Z::M:\t:l: S
:Z::Y: :M: :I::Z: S

@(#) S
text S
text S

% prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.ftle
Newest delta for pgm main.c: 3.7 Created 85/12/1 By cas

1-471

PRS(l)

FILES

SysV PRS(l)

A simple command line without options, such as prs s.file, may produce the following
on the standard output, for each delta table entry of the "0" type:

D 1.1 85/12/1 00:00:00 cas 1 000000/00000/00000
MRS:

b178-12345
b179-54321
COMMENTS:

this is the comment line for s.file initial delta
%

/tmp/pr?????

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO

1-472

admin(l), delta(l), get(l), help(l), sccs(I), sccsfile(4);
Using Your SysV Environment.

Commands

PS(l) SysV PS(l)

NAME
ps - report process status

SYNOPSIS
ps [options 1

DESCRIPTION
The ps command prints information about active processes. Without options, infonna­
tion is printed about processes associated with the controlling terminal. The output is a
list consisting of the process ID, terminal identifier, cumulative execution time, and the
command name. Otherwise, the information that is displayed is controlled by the selec­
tion of options.

All options accept names or lists as arguments. Arguments can be either separated from
one another by commas or enclosed in double quotes and separated from one another
by commas or spaces. Values for proC/ist and grplist must be numeric.

Under the -f option, ps tries to determine the command name and arguments given
when the process was created by examining the user block. Failing this, the command
name is printed, as it would have appeared without the -f option, in square brackets.

The column headings and the meaning of the columns in a ps list are given below; the
letters f and 1 indicate the option (full or long, respectively) that causes the correspond­
ing heading to appear; all means that the heading always appears. Note that these rwo
options determine only what information is provided for a process; they do not deter­
mine which processes will be listed.

F (I)

S (I)

UID (f,l)

PID (all)

PPID (f,l)

C (f,l)

PRI (I)

NI (I)

ADDR (I)

SZ (I)

WCHAN(I)

Commands

Flags (hexadecimal and additive) associated with the process

The state of the process:

The user ID number of the process owner (the login name is
printed under the -f option).

The process ID of the process (this datum is necessary in order to
kill a process).

The process ID of the parent process.

Processor utilization for scheduling.

The priority of the process (higher numbers mean lower priority).

Nice value, used in priority computation.

The memory address of the process.

The size (in pages or clicks) of the swappable process's image in
main memory.

The address of an event for which the process is sleeping, or in
SXBRK state, (if blank, the process is running).

1-473

PS(l)

STIME (f)

TTY (all)

TIME (all)

COMMAND(all)

SysV PS(l)

The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours before
the ps inquiry is executed is given in months and days.)

The controlling terminal for the process (the message, ?, is printed
when there is no controlling terminal).

The cumulative execution time for the process.

The command name (the full command name and its arguments
are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by the parent,
is marked <defunct>.

OPTIONS

1-474

The options are given in descending order according to volume and range of informa­
tion provided:

-e

-d

-a

-f

-I

-t termlist

-p proC/ist

-u uidlist

-g grplist

Print information about every process now running.

Print information about all processes except process group
leaders.

Print information about all processes most frequently requested:
all those except process group leaders and processes not associ­
ated with a terminal.

Generate a full list. (See below for significance of columns in a
full list.)

Generate a long list. (See below.)

List only process data associated with the terminal given in term­
list. Terminal identifiers may be specified in one of two forms:
the device's file name (e.g., tty04) or, if the device's file name
starts with tty, just the digit identifier (e.g., 04).

List only process data whvse process ID numbers are given in
proC/ist.

List only process data whose user ID number or login name is
given in uidlist. In the listing, the numerical user ID will be
printed unless you give the -f option, which prints the login
name.

List only process data whose process group leader's ID number(s)
appears in grplist. (A group leader is a process whose process ID
number is identical to its process group ID number. A login shell
is a common example of a process group leader.)

Commands

PS(l)

NOTE

FILES

SysV

You can perfonn a ps on a remote node. To do this, use the following syntax:
/bin/ps [optionsl-n [nodenamel

idev
idevitty*
ietcipasswd UID infonnation supplier

PS(l)

WARNING
Things can change while ps is running; the snap-shot it gives is only true for a split­
second, and it may not be accurate by the time you see it. Some data printed for
defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and stderr
in that order, looking for the controlling terminal and attempts to report on processes
associated with the controlling tenninal. In this situation, if stdin, stdout, and stderr are
all redirected, ps does not find a controlling terminal, and there is no report.

On a heavily loaded system, ps can report an Iseek(2) error and exit. The ps program
can seek to an invalid user area address; having gotten the address of a process' user
area, ps cannot seek to that address before the process exits and the address becomes
invalid.

Specifying ps -ef may not result in the reporting of the actual start of a tty login ses­
sion; instead, an earlier time, when a getty was last respawned on the tty line, may be
reported.

SEE ALSO
kill(l), nice(l), getty(IM).

Commands 1-47:

PTX(l) SysV PTX(l)

NAME
ptx - pennuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION
The ptx command generates the file output that can be processed with a text fonnatter
to produce a pennuted index of file input (standard input and output default). First, it
does the pennutation, generating one line for each keyword in an input line; then it
rotates the keyword to the front and sorts the pennuted file; and finally, it rotates the
sorted lines so the keyword comes at the middle of each line.

The output from ptx appears in the following fonn:

.xx "tail" "before keyword" "keyword and after" "head"

The .xx shown above is assumed to be an nroffO) or troff(l) macro that you provide.
The before keyword and keyword and after fields incorporate as much of the line as
will fit around the keyword when it is printed. Tail and head, at least one of which is
always the empty string, are wrapped-around pieces small enough to fit in the unused
space at the opposite end of the line.

OPTIONS

BUGS

FILES

1-476

-f

-t

-wn

-gn

-0 only

-i ignore

-b break

-r

Fold upper- and lowercase letters for sorting.

Prepare the output for the phototypesetter.

Use n as the length ofthe output line. The default line length is 72 char­
acters for nroffO) and 100 for troff(l).

Use n as the number of characters to reserve for each gap among the four
parts of the line as finally printed. The default gap is three characters.

Use as keywords only the words given in the only file.

Do not use as keywords any words given in the ignore file. If the -i and
-0 options are missing, use lusrllibl eign as the ignore file.

Use the characters in the break file to separate words. Tab, newline, and
space characters are always used as break characters.

Take any leading nonblank characters of each input line to be a reference
identifier (as to a page or chapter), separate from the text of the line.
Attach that identifier as a fifth field on each output line.

Line length counts do not account for overstriking or proportional spacing.

Because ptx uses tildes internally, lines containing them do not print correctly.

Ibin/sort
lusr/lib/eign

Commands

PWD(l)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION

SysV

The pwd command prints the pathname of the working (current) directory.

DIAGNOSTICS
Cannot open .. and Read error in ..

PWD(l)

Indicate possible file system trouble and should be referred to a UNIX
system administrator.

SEE ALSO
cd(I).

Commands 1-477

RATFOR(l)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS
ratfor [options] [files]

DESCRIPTION

SysV • RATFOR(l)

The ratfor command converts: rational dialect of FORTRAN into ordinary FORTRAN.
It provides control flow constructs essentially identical to those in C, as well as
simplified syntax to make programs easier to read and write. These constructs are
described below:

1-478

statement grouping:
{ statement; statement; statement)

decision-making:

loops:

if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

free form input:
multiple statementslline; automatic continuation

comments:
this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

derme:
define name replacement

include:
include file

Commands

RATFOR(l)

OPTIONS
-h

-c
-6x

Commands

SysV RATFOR(l)

Turn quoted strings into 27H constructs.

Copy comments to the output and attempt to format it neatly.

Make the continuation character x and place it in column six. Normally,
continuation lines are marked with an ampersand (&) in column one.

1-479

RBAK(l) Domain/OS SysV RBAK(l)

NAME
rbak - restore or index a magnetic media backup file

SYNOPSIS
rbak {-f filenol-fid id} [-dev I m[unit] I f let]

[-inti-index] [-slal-nsla] [-anys] [-reo] [-pr pn]
[-erl-rl-msl-md] [-force] [-du] HI-Idl-Ifl-II]
[-retenl-nreten] [-rewind] [-daell-sael]
[-from filename] [-pdt] [-stdin] {{-alilpn}
[-as diskynJ} ...

DESCRIPTION
rbak restores objects from the backup input media written by wbak (write_backup).
The backup input media can be one of magnetic media, file or standard input.

Use wbak and rbak to back up disks and to transfer information between separate
Domain installations. (Use the rwmt (read_write_magtape) command to transfer infor­
mation to and from non-Domain installations.)

rbak operates in either index or interchange mode. To restore objects to disk, use inter­
change mode (-int). To list object names on standard output, without restoring any
information to disk, use index mode (-index).

pathname (optional) Specify name of the object to be indexed or restored to disk.
This may be a directory, file, or link. If the object is being
restored, the new disk object has the same name. If you wish the
disk file to be saved under a different name, use -as (below).
Multiple pathnames are permitted; however, wildcarding is not
supported.

Default if omitted: must use -all

OPTIONS
Backup File Identifiers

One of the following options is required.

-ffile_no

-fcur

-int (default)

-index

1-480

Reads the back up file with the file number specified. You
assigned this number with wbak.

Begins reading at current position on the back up medium.

Reads the back up filename specified. You assigned this name
using wbak.

Selects interchange mode. Backup files are restored to disk.

Selects index mode. Backup filenames are listed on standard out­
put; no information is restored to disk.

Commands

RBAK(I)

Catalog Control
-all

-as pathnamel

-er (default)

-r

-force

-<iu

-ms

-pr pathname ...

-md

Label Control
-sla (default)

-nsla

Listing Control

Domain/OS SysV RBAK(I)

Restores or indexes all the objects in the back up file specified.
This option is required if you do not use the pathname argument
to indicate a particular object to be indexed or restored.

Restores the object specified and assign a different disk pathname
pathnamel. This option is valid only when used with the path­
name argument on the rbak command line.

Specifies create mode. rbak does not restore objects if their
names already exist on disk. It prints an error message if a name
exists on both disk and backup media, and continues.

Specifies replace mode. rbak deletes the existing disk object,
and replaces it with the object read from backup media.

Forces object deletion if you have owner rights, even if you don't
have delete rights.

Deletes when unlocked. If the object to be deleted is locked
when rbak is invoked, the delete operation is performed when
the object is unlocked.

Specifies merge-source mode. Similar to replace mode. If an
object already exists on disk, rbak deletes the disk version and
restores the backup media version (the source). However, if the
object is a directory, rbak merges the back up media directory's
contents with the disk directory.

Preserves specified objects on the disk. Multiple pathnames and
wildcarding are permitted. If the objects exist on disk, they are
not overwritten by backup media versions. This option must be
used with the -ms option.

Specifies merge-destination mode. Similar to create mode. If an
object already exists on disk (the destination) rbak does not
restore the backup media version, and retains the disk version.
However, if the object is a directory rbak merges the backup
media directory's contents with the disk directory.

Displays the backup media file label on standard output.

Does not display the backup media file label.

You may include the -I option, or any combination of-Id, -If, and -II.

-1 Writes all the file, directory, and link names to standard output.

Commands 1-481

RBAK(I)

-Id

-If

-II

Backup Device Control
-anys

-reo

-dev d[unit]

-fromjilename

-stdin

-reten

-nreten (default)

1-482

Domain/OS SysV

Writes all directory names to standard output.

Writes all filenames to standard output.

Writes alllinknames to standard output.

RBAK(I)

Forces rbak to accept any section of the backup file. When a
backup file spans multiple backup media volumes, rbak nor­
mally begins with the backup media volume containing the
backup file's first section, and proceeds to the backup media
volume containing the second section, and so on. If you know
which backup media volume contains the object you want to
restore or index, use this option. This lets rbak start at any sec­
tion of the backup file.

Forces previous volume to be reopened, and suppress reading of
backup media volume label. Use only when backup media has
not been repositioned since the last wbak or rbak.

Specifies device type and unit number. d must be either m (for
reel-to-reel magnetic tape, ct (for cartridge tape), or f (for
floppy), depending on which drive is being used. unit is an
integer (0-3). Both are required for reel-to-reel tapes (that is,
-dev m2). A unit number is not required for floppy disks and
cartridge tapes (that is, -dev f). If this option is omitted, rbak
assumes device mO.

Note: Floppy disk support for this command is limited.
In particular, error detection during reads and
writes is poor. Do not use this command with
floppy disks when the data being placed on the
floppy disks is critical and unrecoverable.

Reads the backup input from a file written by wbak using the -to
option. filename specifies the pathoame of the file.

Specifies the backup input media to be standard input. Used
along with I/O redirection, this option is useful for reading files
from foreign file systems.

Retensions the cartridge tape (unwind to the end, then rewind).
This can be helpful if you encounter cartridge tape reading errors.
Retensioning requires about 1.5 minutes to complete.

Do not retension the cartridge tape.

Commands

RBAK(l)

-rewind

ACL Control
-dac\ (default)

-sac\

-pdt

EXAMPLES
$ rbak -f 1 fred/soup

Domain/OS SysV RBAK(l)

Rewinds the cartridge tape after reading or indexing. If this
option is omitted, the cartridge tape is left positioned to the next
tape file. This option is valid only for the cartridge tape;
reel-to-reel tapes are rewound automatically when removed
from the drive.

Assigns the destination directory's default ACL to the object
being restored.

Retains the restored object's original ACL.

Preserves the object's original date-time modified and date-time
used.

Read fred/soup in backup file 1 and restore it to disk. fred/soup may be a directory,
file, orlink.

$ rbak -f 1 fred/soup -as IInodeS/noodle

Restore fred/soup and place it in noodle on node5.

$ rbak -dev ct -rewind

Rewind the cartridge tape prior to removing it from the tape unit.

$ rbak src -from /fred/bck _ out.file

Restore the directory src to disk. Read the backup input from the file
/fred/bck _ out.file, that should be written by wbak using the -stdout or -from option.

SEE ALSO
wbak(l), rwmt(l)

Commands 1-483

RCP(lC) SysV RCP(lC)

NAME
rep - remote file copy

SYNOPSIS
rep [-p 1 file! file2
rep [-p 1 [-r 1 file ... directory

DESCRIPTION
The rep command copies files oetween machines. Each file or directory argument is
either a remote file name of the form rhost:path, or a local filename containing no colon
characters (:) or a slash mark (f) before any colons (:).

By default, rep preserves the mode and owner of file2 if it already existed; otherwise
the mode of the source file modified by the umask(2) on the destination host is used.

If path is not a full path name, it is interpreted relative to your login directory on rhost.
A path on a remote host may be quoted by using a backslash (\), double quotes (n), or a
single quote (,), so that the metacharacters are interpreted remotely.

rep does not prompt for passwords; your current local user name must exist on rhost
and allow remote command execution via remsh(1C).

rep handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form marne@rhost to use rnarne rather than the
current user name on the remote host. The destination hostname may also take the form
host. marne to support destination machines that are running 4.2BSD versions of rep.

OPTIONS

BUGS

-r

-p

If any of the source files are directories, copy each subtree rooted at that
name; in this case the destination must be a directory.

Attempt to preserve (duplicate) in copies the modification times and
modes of the source files, ignoring the umask.

Doesn't detect all cases where the target of a copy might be a file in cases where only a
directory should be legal.
Is confused by any output generated by commands in a .login, .profile, or .cshrc file on
the remote host.

SEE ALSO
cp(1), ftp(lC), remsh(lC), rlogin(lC)

1-484 Commands

RED(l) SysV RED(1)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [file]

red [-s] [-p string] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates an e command
(see below) on the named file; that is, the file is read into ed's buffer so that it can be
edited.

ed operates on a copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

red is a restricted version of ed. It only allows editing of files in the current directory.
It prohibits executing shell commands using the !shell command. Attempts to bypass
these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) fonnatting capability. After including a format
specification as the first line of file and invoking ed with your tenninal in sUy -tabs or
sUy tab3 mode (see sUy(I», specified tab stops are automatically used when scanning
file. For example, if the first line of a file contained:

<;t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: while inputing text, tab characters when typed are expanded
to every eighth column as is the default.

OPTIONS
-s

-p

Suppresses the printing of character counts bye, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt after a
!shell com/1Ulnd. Also, see the WARNING section at the end of this
manual page.

Allows you to specify a prompt string. Commands to ed have a simple
and regular structure: zero, one, or two addresses followed by a single­
character command, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer. Every com­
mand that requires addresses has default addresses, so that the addresses
can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode,

Commands 1-485

RED(l) SysV RED(l)

no commands are recognized; all input is merely collected. Input mode is left by typ­
ing a period (.) alone at the beginning of a line, followed immediately by a carriage
return.

ed supports a limited form of regular expression notation; regular expressions are used
in addresses to specify lines and in some commands (s, for example) to specify portions
of a line that are to be substituted. A regular expression (RE) specifies a set of character
strings. A member of this set of strings is said to be matched by the RE.

REGULAR EXPRESSIONS

1-486

The following one-character REs match a single character:

• An ordinary character (not one of those discussed below) is a one-character RE that
matches itself.

• A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

" *, [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets.

~ (caret or circumflex), which is special at the beginning of an entire RE, or
immediately follows the left of a pair of square brackets.

$ (dollar sign), which is special at the end of an entire RE.

The character used to bound (i.e., delimit) an entire RE, which is special for that
RE (for example, see how slash (I) is used in the g command, below.)

• A period (.) is a one-character RE that matches any character except new-line.

• A non-empty string of characters enclosed in square brackets ([]) is a one-character
RE that matches anyone character in that string. If, however, the first character of
the string is a circumflex (~), the one-character RE matches any character except
new-line and the remaining characters in the string. The A has this special meaning
only if it occurs first in the string. The minus (-) may be used to indicate a range of
consecutive AseD characters; for example, [0-9] is equivalent to [0123456789].
The - loses this special meaning if it occurs first (after an initial ~, if any) or last in
the string. The right square bracket (]) does not terminate such a string when it is
the first character within it (after an initial A, if any); e.g., []a-f] matches either a
right square bracket (]) or one of the letters a through f inclusive. The four charac­
ters listed in 1.2.a above stand for themselves within such a string of characters.

The following rules may be used to co~struct RE s from one-character REs:

• A one-character RE is a RE that matches whatever the one-character RE matches.

• A one-character RE followed by an asterisk (*) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost
string that permits a match is chosen.

Commands

RED(I) SysV RED(I)

• A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a
range of occurrences of the one-character RE. The values of m and n must be non­
negative integers less than 256; \{ m \} matches exactly m occurrences; \{ m, \}
matches at least m occurrences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

• The concatenation of REs is a RE that matches the concatenation of the strings
matched by each component of the RE.

• A RE enclosed between the character sequences \(and \) is a RE that matches what­
ever the unadorned RE matches.

• The expression \n matches the same string of characters as was matched by an
expression enclosed between \(and \) the sub-expression specified is that beginning
with the n-th occurrence of \(counting from the left. For example, the expression
A \(.*\)\ 1$ matches a line consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final seg­
ment of a line (or both).

• A circumflex (A) at the beginning of an entire RE constrains that RE to match an ini­
tial segment of a line.

• A dollar sign ($) at the end of an entire RE constrains that RE to match a final seg-
ment of a line.

The construction A entire RE $ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last para­
graph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com­
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

The character. addresses the current line.

The character $ addresses the last line of the buffer.

A decimal number n addresses the n -th line of the buffer.

'x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the k command described below.

A RE enclosed by slashes (I) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stopping
at the first line containing a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched. See also the last paragraph
before FILES below.

Commands 1-487

RED(l) SysV RED(l)

A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If neces­
sary, the search wraps around to the end of the buffer and continues up to and
including the current line. See also the last paragraph before FILES below.

An address followed by a plus sign (+) or a minus sign (-) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of
lines. The plus sign may be omitted.

If an address begins with + or -, the addition or subtraction is taken with respect
to the current line; e.g, -5 is understood to mean .-5.

If an address ends with + or -, then I is added to or subtracted from the address,
respectively. As a consequence of this rule and the rule immediately above, the
address - refers to the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character A in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a cumulative effect,
so - refers to the current line less 2.

For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
(;) stands for the pair., $.

COMMANDS

1-488

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first
address, and only then is the second address calculated. This feature can be used to
determine the starting line for forward and backward searches. The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses.
The parentheses are not part of the address; they show that the given addresses are the
default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e,f, r, or w) may be suffixed by I, n, or p in which case the current
line is either listed, numbered or printed, respectively, as discussed below under the I,
n, andp commands.

(.)a

<text>

Commands

RED(I)

(.)c

<text>

(.,.)d

efile

Efile

ffile

SysV RED(I)

The append command reads the given text and appends it after the addressed
line; . is left at the last inserted line, or, if there were none, at the addressed
line. Address 0 is legal for this command: it causes the "appended" text to be
placed at the beginning of the buffer. The maximum number of characters that
may be entered from a terminal is 256 per line (including the new-line charac­
ter).

The change command deletes the addressed lines, then accepts input text that
replaces these lines; . is left at the last line input, or, if there were none, at the
first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were ori­
ginally at the end of the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and
then the named file to be read in; • is set to the last line of the buffer. If no file
name is given, the currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is remembered for
possible use as a default file name in subsequent e, r, and w commands. If file
is replaced by!, the rest of the line is taken to be a shell (sh(l» command
whose output is to be read. Such a shell command is not remembered as the
current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

Iffile is given, thefile-name command changes the currently-remembered file
name to file; otherwise, it prints the currently-remembered file name.

(1, $)g/RElcommand list

Commands

In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed with.
initially set to that line. A single command or the first of a list of commands
appears on the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \; a, i, and c commands and associ­
ated input are permitted. The. terminating input mode may be omitted if it
would be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V commands are not permit­
ted in the command list. See also BUGS and the last paragraph before FILES
below.

1-489

RED(l)

1-490

SysV RED(1)

(l,$)GIREI

h

H

(.)i

<text>

(., .+1)j

(.)kx

(.,.)1

(.,.)ma

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, . is
changed to that line, and anyone command (other than one of the a, c, i, g, G,
v, and V commands) may be input and is executed. After the execution of that
command, the next marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of
the execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal (ASCII DEL
or BREAK).

The help command gives a short error message that explains the reason for the
most recent? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the previous ? if
there was one. The H command alternately turns this mode on and off; it is
initially off.

The insert command inserts the given text before the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. This com­
mand differs from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum number of characters
that may be entered from a terminal is 256 per line (including the new-line
character).

The join command joins contiguous lines by removing the appropriate new­
line characters. If exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a
lower-case letter. The address' x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few
non-printing characters (e.g., tab, backspace) are represented by visually
mnemonic overstrikes. All other non-printing characters are printed in octal,
and long lines are folded. An I command may be appended to any other com­
mand other than e,J, r, or w.

The move command repositions the addressed line(s) after the line addressed

Commands

RED(1)

(.,.)n

(.,.)p

p

q

Q

($)r file

SysV RED(I)

bya. Address 0 is legal for a and causes the addressed line(s) to be moved to
the beginning of the file. It is an error if address a falls within the range of
moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by its
line number and a tab character; . is left at the last line printed. The n com­
mand may be appended to any other command other than e ,f, r, or w.

The print command prints the addressed lines; . is left at the last line printed.
The p command may be appended to any other command other than e ,f, r, or
w. For example, dp deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P com­
mand alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done;
however, see DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the buffer
since the last w command.

The read command reads in the given file after the addressed line. If no file
name is given, the currently-remembered file name, if any, is used (see e andf
commands). The currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked. Address 0 is legal for
r and causes the file to be read at the beginning of the buffer. If the read is
successful, the number of characters read is typed; • is set to the last line read
in. If file is replaced by !, the rest of the line is taken to be a shell (sh (1» com­
mand whose output is to be read. For example, "$r !Is" appends current direc­
tory to the end of the file being edited. Such a shell command is not remem­
bered as the current file name.

(.,.)slRElreplacementl or
(.,.)s/RElreplacementlg or
(.,. lslRElreplacementln n = 1-512

The substitute command searches each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all (non-overlapped)
matched strings are replaced by the replacement if the global replacement
indicator g appears after the command. If the global indicator does not appear,
only the first occurrence of the matched string is replaced. If a number n
appears after the command, only the nth occurrence of the matched string on
each addressed line is replaced. It is an error for the substitution to fail on all

Commands 1-491

RED(1)

1-492

(.,.)ta

u

SysV REO(l)

addressed lines. Any character other than space or new-line may be used
instead of I to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last paragraph before FILES
below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this context
may be suppressed by preceding it by \. As a more general feature, the charac­
ters \n, where n is a digit, are replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character % is the only
character in the replacement, the replacement used in the most recent substi­
tute command is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of more
than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \. Such substitution
cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the last
line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s,
t, v, G, orV command.

(1, $)vlRElcommand list
This command is the same as the global command g except that the command
list is executed with. initially set to every line that does not match the RE.

(l,$)VIREI
This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do not match the
RE.

(l ,$)w file
The write command writes the addressed lines into the named file. If the file
does not exist, it is created with mode 666 (readable and writable by every­
one), unless your umask setting (see umask(l» dictates otherwise. The
currently-remembered file name is not changed unless file is the very first file
name mentioned since ed was invoked. If no file name is given, the
currently-remembered file name, if any, is used (see e and! commands); . is
unchanged. If the command is successful, the number of characters written is

Commands

RED(l)

($)=

SysV REO(l)

typed. If file is replaced by !, the rest of the line is taken to be a shell (sh (1»
command whose standard input is the addressed lines. Such a shellcommand
is not remembered as the current file name.

The line number of the addressed line is typed; • is unchanged by this com­
mand.

!shell command
The remainder of the line after the! is sentto the UNIX system shell (sh(l» to
be interpreted as a command. Within the text of that command, the unescaped
character % is replaced with the remembered file name; if a ! appears as the
first character of the shell command, it is replaced with the text of the previous
shell command. Thus,!! will repeat the last shell command. If any expansion
is performed, the expanded line is echoed; . is unchanged.

(.+ 1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line
alone is equivalent to .+lp; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command list,
and 64 characters per file name. The limit on the number of lines depends on the
amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters. Files (e.g., a.out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed adds one and outputs a message
explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last
character before a new-line, that delimiter may be omitted, in which case the addressed
line is printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s21p
glsl g/sllp
?sl ?sl?

WARNINGS

BUGS

The - option, although supported in this release for upward compatibility, will no
longer be supported in the next major release of the system. Convert shell scripts that
use the - option to use the -s option, instead.

A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if the
editor is invoked from a restricted shell (see sh(l».
The sequence \n in aRE does not match a new-line character.

Commands 1-493

RED(I)

FILES

SysV RED(I)

Characters are masked to 7 bits on input.
If the editor input is coming from a command file (e.g., ed file < ed-cmd-file), the editor
will exit at the first failure.

lusr/tmp default directory for temporary work file.
$TMPDIR if this environmental variable is not null, its value is used in place of

lusr/tmp as the directory name for the temporary work file.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.
?file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroyed's buffer via the e or q
commands. It prints ? and allows one to continue editing. A second e or q command
at this point will take effect. The -s command-line option inhibits this feature.

SEE ALSO

1-494

edit(l), ex(l), grep(l), sed(l), sh(l), stty(l), wnask(l), vi(l).
fspec(4), regexp(5) in the SysV Programmer's Reference.

Commands

REGCMP(l) SysV REGCMP(1)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
The regcmp command perfonns a function similar to regcmp(3X) and, in most cases,
precludes the need for calling regcmp(3X) from C programs. This saves on both exe­
cution time and program size. The regcmp command compiles the regular expressions
in file and places the output in file.i. If a simple dash (-) is used in place of a filename,
regcmp directs the output to file .c. The fonnat of entries infile is a name (C variable),
followed by one or more blanks, followed by a regular expression enclosed in double
quotes. The output of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. All file.i files may thus be included in C programs,
or file .c files may be compiled and later loaded. In the C program that uses the regcmp
output, regex(abc ,line) will apply the regular expression named abc to line. Diagnos­
tics are self-explanatory.

EXAMPLES
name n([A-Za-z][A-Za-z0-9-1*)$On

tel no n\({O,I}([2-9][Ol][I-9])$0\){O,I} *n
n ([2-9][0-9){2})$I[_]{O,l}n
n([0-9]{4})$2n

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named felno to line.

SEE ALSO
regcmp(3X).

Commands 1-495

REMSH(lC) SysV REMSH(lC)

NAME
remsh - remote shell

SYNOPSIS
remsh host [-I username] [-n] command
host [-I username] [-n] command

DESCRIPTION
remsh connects to the specified host, and executes the specified command. remsh
copies its standard input to the remote command, the standard output of the remote
command to its standard output, and the standard error of the remote command to its
standard error. Interrupt, quit and tenninate signals are propagated to the remote com­
mand; remsh nonnally terminates when the remote command does.

The remote usemame used is the same as your local usemame, unless you specify a dif­
ferent remote name with the -I option.

If you omit command, then instead of executing a single command, you will be logged
in on the remote host using rlogin(lC).

Shell metacharacters which are not quoted are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine.

Host names are given in the file /etc/hosts. Each host has one standard name (the first
name given in the file), which is rather long and unambiguous, and optionally one or
more nicknames. The host names for local machines are also commands in the direc­
tory /usr/hosts; if you put this directory in your search path, then the remsh can be
omitted.

OPTIONS
-I username Specify a remote username different from your local usemame. This

remote name must be equivalent (in the sense of rlogin(lC» to the ori­
ginating account; no provision is made for specifying a password with a
command.

-n Redirect the input of remsh to /dev/null.

EXAMPLES

BUGS

1-496

The following command appends the remote file remotefile to the localfile localfile.

remsh otherhost cat remotefile » localfile

The command below appends remotefile to otherremotefile.

remsh otherhost cat remotefile "»" otherremotefile

If you are using csh(1) and put a remsh(1 C) in the background without redirecting its
input away from the terminal, it will block even if no reads are posted by the remote
command. If no input is desired you should redirect the input of remsh to !dev/null
using the -n option.

Commands

REMSH(lC) SysV REMSH(lC)

You cannot run an interactive command (such as rogue(6) or vi(l»; use rlogin(lC).

Stop signals stop the local remsh process only; this is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.

FILES
/etc/hosts
/usr/hosts/*

SEE ALSO
rlogin(lC)

Commands 1-497

RLOGIN(lC) SysV RLOGIN(lC)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [-e c] [-8] [-L] [-I username]
rhost [--ec] [-8] [-L] [-I username]

DESCRIPTION
rlogin connects your teoninal on the current local host system lhost to the remote host
system rhost.

Each host has a file, letc/hosts.equiv, that contains a list of rhosts with which it shares
account names. (The host names must be the standard names as described in
remsh(IC).) When you execute rlogin as the same user on an equivalent host, you
don't need to provide a password. Each user may also have a private equivalence list in
a file .rhosts in his or her log-in directory. Each line in this file should contain an rhost
and a username separated by a space, giving additional cases where logins without
passwords are to be permitted. If the originating user is not equivalent to the remote
user, then a login and password will be prompted for on the remote machine as in
login(l). To avoid some security problems, the .rhosts file must be owned by either the
remote user or root.

The remote teoninal type is the same as your local terminal type (as given in your
environment TERM variable). The terminal or window size is also copied to the
remote system if the server supports the option, and changes in size are reflected as
well. All echoing takes place at the remote site, so that (except for delays) the rlogin is
transparent. Flow control via CTRL/S and CTRL/Q and flushing of input and output on
interrupts are handled properly.

To disconnect from the remote host, use a tilde followed by a period C,). The tilde is
the escape character. Similarly, to suspend the rlogin session, use CfRLIZ, the
suspend character). By using CTRL/Y (the delayed-suspend character), you can
suspend the send portion of the rlogin, but allow output from the remote system. Use
the --e option to specify a different escape character.

OPTIONS
--ec Specify c as the escape character to use. There is no space separating --e

and the argument character.

-8 Allows an eight -bit input data path at all times; otherwise parity bits are
stripped except when the remote side's stop and start characters are other
than CfRL/S and CfRL/Q.

-L Allows the rlogin session to be run in litout mode.

-I username Specify a different username. This is necessary when the originating
user is not equivalent to the remote user.

1-498 Commands

RLOGIN(lC) SysV

FILES
/usr/hosts/* For rhost version of the command

BUGS
More of the environment should be propagated.

SEE ALSO
remsh(IC)

Commands

RLOGIN(lC)

1-499

RM(l) SysV RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] [-i] file ...

rm -r [-f] [-i] dirname ... [file ...]

rmdir [-p] [-s] dirname .. .

DESCRIPTION
The rm command removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, the full set of per­
missions (in octal) for the file are printed followed by a question mark. This is a prompt
for confirmation. If the answer begins with y (for yes), the file is deleted, otherwise the
file remains.

Note that if the standard input is not a terminal, the command will operate as if the -f
option is in effect.

The rmdir command removes the named directories, which must be empty.

OPTIONS

1-500

The following options apply to the rm command:

-f Remove all files (whether write-protected or not) in a directory without prompt­
ing the user. In a write-protected directory, however, files are never removed
(whatever their permissions are), but no messages are displayed. If the removal of
a write-protected directory was attempted, this option cannot suppress an error
message.

-r Recursively remove any directories and subdirectories in the argument list. The
directory will be emptied of files and removed. Normally, you are prompted for
removal of any write-protected files that the directory contains. The write­
protected files are removed without prompting, however, if the -f option is used,
or if the standard input is not a terminal and the -i option is not used.

-i

If the removal of a non-empty, write-protected directory was attempted, the com­
mand will always fail (even if the -f option is used), resulting in an error mes­
sage.

With this option, confirmation of removal of any write-protected file occurs
interactively. It overrides the -f option and remains in effect even if the standard
input is not a terminal.

Commands

RM(l) SysV RM(l)

The following options apply to the rmdir command:

-p Remove the directory dirname and its parent directories which become empty as
a result. Print a message on standard output telling whetber the whole path is
removed or part of the path remains for some reason.

-s Suppress the message printed on standard error when -p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.

It is forbidden to remove the files "." and " .. " in order to avoid the consequences of
inadvertently doing something like the following:

rm-r.*

Both rm and rmdir return exit codes of 0 if all the specified directories are removed
successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unIink(2), rtndir(2).

Commands 1-501

RMAIL(l) SysV RMAIL(l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
Sending mail:

mail [--oswt] persons

rmail [-oswt] persons

Reading mail:

mail [-ehpqr] [-f file] [-F persons]

DESCRIPTION
Sending mail:

1-502

A person is usually a user name recognized by login(l). When persons are named,
mail assumes a message is being sent (except in the case of the -F option). It reads
from the standard input up to an end-of-file (C1RLID), or until it reads a line consisting
of just a period. When either of those signals is received, mail adds the letter to the
mailfile for each person. A letter is a message preceded by a postmark. The message
is preceded by the sender's name and a postmark. A postmark consists of one or more
'From' lines followed by a blank line (unless the -s argument was used).

If a letter is found to be undeliverable, it is returned to the sender with diagnostics that
indicate the location and nature of the failure. If mail is interrupted during input, the
file dead.letter is saved to allow editing and resending. The dead.letter file is
recreated every time it is needed, erasing any previous contents.

The rmail command only permits the sending of mail; uucp(lC) uses rmail as a secu­
rity precaution.

If the local system has the Basic Networking Utilities installed, mail may be sent to a
recipient on a remote system. Prefix person by the system name and exclamation point.
A series of system names separated by exclamation points can be used to direct a letter
through an extended network.

Reading Mail:

The mail program, unless otherwise influenced by command-line arguments, prints a
user's mail messages in last-in, first-out order. For each message, the user is prompted
with a question mark (?), and a line is read from the standard input. The following
commands are available to determine the disposition of the message:

<newline>, +, or n

d,ordp

d#

dq

Go on to next message.

Deletes message and go on to next message.

Deletes message number #. Do not go on to next message.

Deletes message and quit mail.

Commands

RMAIL(l) SysV RMAIL(l)

h

h#

ha

hd

p

a

r [users 1
s [files 1
y

u[#]

Displays a window of headers around current message.

Displays header of message number #.

Displays headers of all messages in the user's mailfile.

Displays headers of messages scheduled for deletion.

Prints current message again.

Prints previous message.

Prints message that arrived during the mail session.

Prints message number #.

Replys to the sender, and other user(s), then deletes the message.

Saves message in the named files (mbox is default).

Same as save.

Undeletes message number # (default is last read).

w [files 1 Saves message, without its top-most header, in the named files (mbox is
default).

m [persons 1 Mails the message to the named persons.

q, or ctl-d

x

!command

?

Puts undeleted mail back in the mailfile and quits mail.

Puts all mail back in the mailfile unchanged and exits mail.

Escapes to the shell to do command.

Prints a command summary.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is made
if new mail arrives while using mail.

The mailfile may be manipulated in two ways to alter the function of mail. The other
permissions of the file may be read-write, read-only, or neither read nor write to allow
different levels of privacy. If changed to other than the default, the file will be
preserved even when empty to perpetuate the desired permissions. The file may also
contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to person. A
"Forwarded by ... " message is added to the header. This is especially useful in a multi­
machine environment to forward all of a person's mail to a single machine, and to keep
the recipient informed if the mail has been forwarded. Installation and removal of for­
warding is done with the -F option.

To forward all of one's mail to systema!user enter the following:

mail-Fsystema!user

Commands 1-503

RMAIL(l) SysV RMAIL(l)

To forward to more than one user, enter this command line:

mail-F"userl,systema!user2,systema!systemb!user3"

Note that when more than one user is specified, the whole list should be enclosed in
double quotes so that it may all be inteIpreted as the operand of the -F option. The list
can be up to 1024 bytes; either commas or white space can be used to separate users.

To remove forwarding, enter the following:

mail-F""

The pair of double quotes is mandatory to set a NULL argument for the -F option.

In order for forwarding to work properly, the mailfile should have "mail" as group ID
and the group permission should be read-write.

OPTIONS
Sending mail:

-0

-s

-w

-t

Reading mail:

-e

-h

-p

-q

-r

-fjile

-Fpersons

1-504

Suppresses the address optimization facility.

Suppresses the addition of a <newline> at the top of the letter being sent.
See WARNINGS below.

Causes a letter to be sent to a remote user without waiting for the com­
pletion of the remote transfer program.

Causes a To: line to be added to the letter, showing the intended reci­
pients.

Causes mail not to be printed. An exit value of 0 is returned if the user
has mail; otherwise, an exit value of 1 is returned.

Causes a window of headers to be displayed rather than the latest mes­
sage. The display is followed by the '?' prompt.

Causes all messages to be printed without prompting for disposition.

Causes mail to terminate after interrupts. Normally an interrupt causes
only the termination of the message being printed.

Causes messages to be printed in first-in, first-out order.

Causes BI mail to use file (e.g., mbox) instead of the default mailfile.

Entered into an empty mailbox, causes all incoming mail to be for­
warded to persons.

Commands

RMAIL(l) SysV RMAIL(l)

WARNING

BUGS

FILES

The "Forward to person" feature may result in a loop, if sysl!userb forwards to
sys2!userb and sys2!userb forwards to sysl!userb. The symptom is a message saying
"unbounded ... saved mail in dead.letter."

The -s option should be used with caution. It allows the text of a message to be inter­
preted as part of the postmark of the letter, possibly causing confusion to other mail
programs. To allow compatibility with mailx(l), if the first line of the message is "Sub­
ject: ... ", the addition of a <newline> is suppressed whether or not the -s option is used.

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by typ­
ing a p.

letc/passwd
lusr/mailluser
$HOME/mbox
$MAIL
Itmp/ma*
lusr/mail/*.Iock
dead.letter

To identify sender and locate persons
Incoming mail for user; i.e., the mailfile
Saved mail
Variable containing path name of mailfile
Temporary file
Lock for mail directory
Unmailable text

SEE ALSO
10gin(1), mailx(l), write(l).
Managing SysV System Software.

Commands 1-50~

RMDEL(l) SysV RMDEL(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

The rmdel commnd removes the delta specified by the SID from each named sees file.
The delta to be removed must be the newest (most recent) delta in its branch in the delta
chain of each named sees file. In addition, the SID specified must not be that of a ver­
sion being edited for the purpose of making a delta (i. e., if a p-file (see get(l)) exists
for the named sees file, the SID specified must not appear in any entry of the p-file).

The -r option is used for specifying the SID (SCCS IDentification) level of the delta to
be removed.

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If you specify a sim­
ple dash (-) in place of a filename, the standard input is read. Each line of the standard
input is taken to be the name of an sees file to be processed; non-sees files and
unreadable files are silently ignored.

Simply stated, the rules for using rmdel are as follows: (I) if you make a delta you can
remove it, or (2) if you own the file and directory you can remove a delta.

x.fiIe (see delta(l»
z.fiIe (see deUa(l»

DIAGNOSTICS
Use help (1) for explanations.

SEE ALSO
delta(l), get(I), help(l), prs(l), sccsfile(4).

1-506 Commands

RMDIR(l) SysV RMDIR(1:

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] H] file ...

rm -r [-f] [-i] dirname ... [file ...]

rmdir [-p] [-s] dirname .. .

DESCRIPTION
The rm command removes the entries for one or more files from a directory. If <II

entry was the last link to the file, the file is destroyed. Removal of a file requires writ,
pennission in its directory, but neither read nor write pennission on the file itself.

If a file has no write permission and the standard input is a terminal, the full set of pel
missions (in octal) for the file are printed followed by a question mark. This is a promI
for confirmation. If the answer begins with y (for yes), the file is deleted, otherwise th
file remains.

Note that if the standard input is not a terminal, the command will operate as if the -
option is in effect.

The rmdir command removes the named directories, which must be empty.

OPTIONS
The following options apply to the rm command:

-f

-r

Remove all files (whether write-protected or not) in a directory withOl
prompting the user. In a write-protected directory, however, files aJ

never removed (whatever their pennissions are), but no messages aJ

displayed. If the removal of a write-protected directory was attemptec
this option cannot suppress an error message.

Recursively remove any directories and subdirectories in the argumel
list. The directory will be emptied of files and removed. Normally, yc
are prompted for removal of arty write-protected files that the directol
contains. The write-protected files are removed without promptin
however, if the -f option is used, or if the standard input is not a termin
and the -i option is not used.

If the removal of a non-empty, write-protected directory was attempte
the command will always fail (even if the -f option is used), resulting
an error message.

-i With this option, confirmation of removal of any write-protected Ii
occurs interactively. It overrides the -f option and remains in effe
even if the standard input is not a terminal.

The following options apply to the rmdir command:

Commands

RMDIR(l) SysV RMDIR(l)

-p Remove the directory dirname and its parent directories which become empty
as a result. Print a message on standard output telling whether the whole path
is removed or part of the path remains for some reason.

-s Suppress the message printed on standard error when -p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.

It is forbidden to remove the files "." and " .. " in order to avoid the consequences of
inadvertently doing something like the following:

rm-r .*
Both rm and rmdir return exit codes of 0 if all the specified directories are removed
successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unlink(2), rmdir(2).

1-508 Commands

ROOTNODE(l) Domain/OS SysV

NAME
rootnode - change the node to which the root directory refers

SYNOPSIS
root node [node name 1

DESCRIPTION

ROOTNODE(l)

root node causes I to refer to the node entry directory of nodename instead of the
current node entry directory. The process must have execute (search) permission for the
node entry directory of node name .

Because a new process is created to execute each command, rootnode would be inef­
fective if it were written as a normal command. Therefore, it is an internal command in
the Bourne shell, Korn shell, and the C shell.

SEE ALSO
csh(l), sh(l), ksh(l), pwd(l), chdir(2)

Commands l-5(

RSH(l) SysV RSH(l)

NAME
sh, rsh - the standard/restricted Bourne Shell (command progranuning language)

SYNOPSIS
,h [-acefbiknrstuvx 1 [-Dname=value ... 1 [args 1
rsh [-acefbiknrstuvx 1 [-Dname=value ... 1 [args 1

DESCRIPTION
sh is a command progranuning language that executes commands read from a tenninal
or a file. rsh is a restricted version of the standard command interpreter sh; it is used to
set up login names and execution environments whose capabilities are more controlled
than those of the standard shell. See' 'Invocation" below for the meaning of arguments
to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores
beginning with a letter or underscore. A parameter is a name, a digit, or any of the
characters *, @,#, ?, -, $, and!.

Commands

1-510

A simple-command is a sequence of non-blank words separated by blanks. The first
word specifies the name of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2». The value of a simple-command is its exit
status if it terminates nonnally, or (octal) 200+status if it tenninates abnonnally (see
signal(2) for a list of status values).

A pipeline is a sequence of one Or more commands separated by I . The standard output
of each command but the last is connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the shell waits for the last com­
mand to terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or II , and option­
ally tenninated by ; or &. Of these four symbols, ; and & have equal precedence,
which is lower than that of && and II . The symbols && and II also have equal pre­
cedence. A semicolon (;) causes sequential execution of the preceding pipeline; an
ampersand (&) causes asynchronous execution of the preceding pipeline (i.e., the shell
does not wait for that pipeline to finish). The symbol & & (I I) causes the list follow­
ing it to be executed only if the preceding pipeline returns a zero (non-zero) exit status.
An arbitrary number of newlines may appear in a list, instead of semicolons, to delimit
commands.

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple-command executed in
the command.

for name [in word . .. 1 do list done
Each time a for command is executed, name is set to the next word taken from
the in word list. If in word ... is omitted, then the for command executes the

Commands

RSH(l) SysV RSH(l)

do list once for each positional parameter that is set (see Parameter Substitu­
tion below). Execution ends when there are no more words in the list.

case word in [pattern [I pattern 1 ...) list ;; 1 ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file-name
generation (see "File Name Generation") except that a slash, a leading dot, or
a dot immediately following a slash need not be matched explicitly.

if list then list [elif list then list 1 ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status, the list fol­
lowing the first then is executed. Otherwise, the list following elif is executed
and, if its value is zero, the list following the next then is executed. Failing
that, the else list is executed. If no else list or then list is executed, then the if
command returns a zero exit status.

while list do list done

(list)

{list;}

A while command repeatedly executes the while list and, if the exit status of
the last command in the list is zero, executes the do list; otherwise the loop
terminates. If no commands in the do list are executed, then the while com­
mand returns a zero exit status; until may be used in place of while to negate
the loop termination test.

Execute list in a sub-shell.

list is executed in the current (that is, parent) shell.

name 0 {list;}
Define a function which is referenced by name. The body of the function is the
list of commands between { and }. Execution of functions is described below
(see Execution).

The following words are only recognized as the first word of a command and when n01
quoted:

if then else elif Ii case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to a new
line to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (, ,) and the stan
dard output from these commands may be used as all or part of a word. Trailing new
lines from the standard output are removed. No interpretation is done on the strin!
before the string is read, except to remove backslashes (\) used to escape other charac
ters. Backslashes may be used to escape a grave accent (,) or another backslash (\) ani
are removed before the command string is read. Escaping grave accents allows nestel
command substitution. If the command substitution lies within a pair of double quote

Commands 1-51

RSH(l) SysV RSH(l)

(" •.. ' ... ' .•. "), a backslash used to escape a double quote (\") will be removed; other­
wise, it will be left intact. If a backslash is used to escape a newline character (\new­
line), both the backslash and the newline are removed (see the later section on "Quot­
ing"). In addition, backslashes used to escape dollar signs (\$) are removed. Since no
intetpretation is done on the command string before it is read, inserting a backslash to
escape a dollar sign has no effect. Backslashes that precede characters other than \, " II ,

newline, and $ are left intact when the command string is read.

Parameter Substitution

1-512

The character $ is used to introduce substitutable parameters. There are two types of
parameters, positional and keyword. If parameter is a digit, it is a positional parameter.
Positional parameters may be assigned values by set. Keyword parameters (also known
as variables) may be assigned values by writing:

name=value [name=value 1 ...
Pattern-matching is not perfonned on value. There cannot be a function and a variable
with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not to be
intetpreted as part of its name. If parameter is * or @, all the positional
parameters, starting with $1, are substituted (separated by spaces). Parameter
$0 is set from argument zero when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise substitute
word.

${parameter:=word}
If parameter is not set or is null set it to word; the value of the parameter is
substituted. Positional parameters may not be assigned to in this way.

${parameter: ?word}
If parameter is set and is non-null, substitute its value; otherwise, print word
and exit from the shell. If word is omitted, the message' 'parameter null or not
set" is printed.

${parameter :+word}
If parameter is set and is non-null, substitute word; otherwise substitute noth­
ing.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-,pwd,}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

Commands

RSH(l) SysV RSH(l)

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed com­
mand.

$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command.

PATH The search path for commands (see Execution below). The user may
not change PATH if executing under rsh.

CDPATH
The search path for the cd command.

ENV If this parameter is set, the Shell performs parameter substitution on
the value to generate the pathname of the startup script containing
commands that the Shell executes every time a new shell is invoked.
No error results if the file specified by the ENV parameter doesn't
exist or can't be read.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, the shell informs the user of the arrival of mail in
the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check
for the arrival of mail in the files specified by the MAIL PATH or
MAIL parameters. The default value is 600 seconds (10 minutes). If
set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that will be
printed when the modification time changes. The default message is
you have mail .

PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default' '> ".

IFS Internal field separators, normally space, tab, and newline.

SHACCT
If this parameter is set to the name of a file writable by the user, the
shell will write an accounting record in the file for each shell pro­
cedure executed.

Commands 1-513

RSH(l) SysV RSH(l)

SHELL When the shell is invoked, it scans the environment (see "Environ­
ment" below) for this name. If it is found and 'rsh' is the file name
part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PSI, PS2, MAILCHECK and IFS. HOME and
MAIL are set by login(l).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for
internal field separator characters (those found in IFS) and split into distinct arguments
where such characters are found. Explicit null arguments ("" or ,,) are retained.
Implicit null arguments (those resulting from parameters that have no values) are
removed.

Input/Output

1-514

A command's input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple-command or may precede
or follow a command and are not passed on as arguments to the invoked command.
Note that parameter and command substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).

>word

»word

«[-]word

<&digit

Use file word as standard output (file descriptor 1). If the file does not
exist it is created; otherwise, it is truncated to zero length.

Use file word as standard output. If the file exists output is appended
to it (by first seeking to the end-of-file); otherwise, the file is created.

After parameter and command substitution is done on word, the shell
input is read up to the first line that literally matches the resulting
word, or to an end-of-file. If, however, - is appended to «:

1) leading tabs are stripped from word before the shell input is read
(but after parameter and command substitution is done on word),

2) leading tabs are stripped from the shell input as it is read and
before each line is compared with word, and

3) shell input is read up to the first line that literally matches the
resulting word, or to an end-of-file.

If any character of word is quoted (see "Quoting," later), no additional
processing is done to the shell input. If no characters of word are
quoted:

1) parameter and command substitution occurs,

2) (escaped) \newline is ignored, and

3) \ must be used to quote the characters \, $, and , .

The resulting document becomes the standard input.

Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

Commands

RSH(l)

<&-

SysV RSH(l)

The standard input is closed. Similarly for the standard output using
>&-.

If any of the above is preceded by a digit, the file descriptor which will be associated
with the file is that specified by the digit (instead of the default 0 or l). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirec­
tions left-to-right. For example:

... b=2>&1

first associates file descriptor 1 with file =. It associates file descriptor 2 with the file
associated with file descriptor 1 (i.e., xxx). If the order of redirections were reversed,
file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had
been) and file descriptor 1 would be associated with file = .
Using the terminology introduced on the first page, under' 'Commands," if a command
is composed of several simple commands, redirection will be evaluated for the entire
command before it is evaluated for each simple command. That is, the shell evaluates
redirection for the entire list, then each pipeline within the list, then each command
within each pipeline, then each list within each command.

If a command is followed by & the default standard input for the command is the empty
file Idev/null. Otherwise, the environment for the execution of a command contains the
file descriptors of the invoking shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the characters *, ?,
and [. If one of these characters appears the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern. If no file name is
found that matches the pattern, the word is left unchanged. The character . at the start
of a file name or immediately following ai, as well as the character I itself, must be
matched explicitly.

Quoting

* Matches any string, including the null string.

? Matches any single character.

[... 1 Matches anyone of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening" [" is a "!"
any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termination of a
word unless quoted:

Commands 1-515

RSH(I) SysV RSH(I)

; & () I '< > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (, , or " "). During process­
in..;, the shell may quote certain characters to prevent them from taking on a special
meaning. Backslashes used to quote a single character are removed from the word
before the command is executed. The pair \newline is removed from a word before
command and parameter substitution.

All characters enclosed between a pair of single quote marks (, '), except a single
quote, are quoted by the shell. Backslash has no special meaning inside a pair of single
quotes. A single quote may be quoted inside a pair of double quote marks (for exam­
ple, " ''').

Inside a pair of double quote marks (" If), parameter and command substitution occurs
and the shell quotes the results to avoid blank interpretation and file name generation.
If $* is within a pair of double quotes, the positional parameters are substituted and
quoted, separated by quoted spaces ("$1 $2 ... "); however, if $@ is within a pair of
double quotes, the positional parameters are substituted and quoted, separated by
unquoted spaces ("$1" "$2" ...). \ quotes the characters \, " ", and $. The pair
\newline is removed before parameter and command substitution. If a backslash pre­
cedes characters other than \, " ", $, and newline, then the backslash itself is quoted by
the shell.

Prompting
When used interactively, the shell prompts with the value of PSI before reading a com­
mand. If at any time a newline is typed and further input is needed to complete a com­
mand, the secondary prompt (i.e., the value of PS2) is issued.

Envirorunent

1-516

The environment (see environ(5» is a list of name-value pairs that is passed to an exe­
cuted program in the same way as a normal argument list. The shell interacts with the
envirorunent in several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the corresponding value. If the user
modifies the value of any of these parameters or creates new parameters, none of these
affects the environment unless the export command is used to bind the shell's parame­
ter to the environment (see also set -a). A parameter may be removed from the
environment with the unset command. The environment seen by any executed com­
mand is thus composed of any unmodified name-value pairs originally inherited by the
shell, minus any pairs removed by unset, plus any modifications or additions, all of
which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one
or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

Commands

RSH(l) SysV RSH(1)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they
occur after the command name. The following first prints a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the com­
mand is followed by &; otherwise signals have the values inherited by the shell from its
parent, with the exception of signalll (but see also the trap command below).

Execution
Each time a command is executed, the above substitutions are carried out. If the com­
mand name matches one of the Special Commands listed below, it is executed in the
shell process. If the command name does not match a Special Command, but matches
the name of a defined function, the function is executed in the shell process (note how
this differs from the execution of shell procedures). The positional parameters $1, $2,
. . .. are set to the arguments of the function. If the command name matches neither a
Special Command nor the name of a defined function, a new process is created and an
attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the com­
mand. Alternative directory names are separated by a colon (:). The default path is
:/bin:/usr/bin (specifying the current directory, /bin, and /usr/bin, in that order). Note
that the current directory is specified by a null path name, which can appear immedi­
ately after the equal sign, between two colon delimiters anywhere in the path list, or at
the end of the path list. If the command name contains a / the search path is not used;
such commands will not be executed by the restricted shell. Otherwise, each directory
in the path is searched for an executable file. If the file has execute permission but is
not an a.out file, it is assumed to be a file containing shell commands. A sub-shell is
spawned to read it. A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by the shell
(to help avoid unnecessary execs later). If the command was found in a relative direc­
tory, its location must be re-determined whenever the current directory changes. The
shell forgets all remembered locations whenever the PATH variable is changed or the
hash -r command is executed (see below).

Special Commands
Input/output redirection is now permitted for these commands. File descriptor 1 is the
default output location.

. file

Commands

No effect; the command does nothing. A zero exit code is returned .

Read and execute commands from file and return. The search path specified
by PATH is used to find the directory containing file.

1-517

RSH(I)

1-518

SysV RSH(I)

break [n 1
Exit from the enclosing for or while loop, if any. If n is specified break: n lev­
els.

continue [n 1
Resume the next iteration of the enclosing for or while loop. If n is specified
resume at the n-th enclosing loop.

cd [arg 1
Change the current directory to arg. The shell parameter HOME is the default
arg. The shell parameter CDPATH defines the search path for the directory
containing argo Alternative directory names are separated by a colon (:). The
default path is <null> (specifying the current directory). Note that the current
directory is specified by a null path name, which can appear immediately after
the equal sign or between the colon delimiters anywhere else in the path list.
If arg begins with a I the search path is not used. Otherwise, each directory in
the path is searched for arg. The cd command may not be executed by rsh.

echo [arg ... 1
Echo arguments. See echo(1) for usage and description.

eval [arg ... 1
The arguments are read as input to the shell and the resulting command(s) exe­
cuted.

exec [arg ... 1
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and, if no
other arguments are given, cause the shell input/output to be modified.

exit [n 1
Causes a shell to exit with the exit status specified by n. If n is omitted the
exit status is that of the last command executed (an end-of-file will also cause
the shell to exit.)

export [name ... 1
The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, variable names
that have been marked for export during the current shell's execution are
listed. (Variable names exported from a parent shell are listed only if they
have been exported again during the current shell's execution.) Function
names are not exported.

getopts Use in shell scripts to support command syntax standards (see intro(l»; it
parses positional parameters and checks for legal options. See getopts (1) for
usage and description.

hash [-r 1 [name ... 1
For each name, the location in the search path of the command specified by
name is determined and remembered by the shell. The -r option causes the
shell to forget all remembered locations. If no arguments are given,

Commands

RSH(l) SysV RSH(l)

infonnation about remembered commands is presented. Hits is the number of
times a command has been invoked by the shell process. Cost is a measure of
the work required to locate a command in the search path. If a command is
found in a "relative" directory in the search path, after changing to that direc­
tory, the stored location of that command is recalculated. Commands for
which this will be done are indicated by an asterisk (*) adjacent to the hits
infonnation. Cost will be incremented when the recalculation is done.

newgrp [arg ... 1
Equivalent to exec newgrp arg See newgrp(l) for usage and description.

pwd Print the current working directory. See pwd(l) for usage and description.

read [name . .. 1
One line is read from the standard input and, using the internal field separator,
IFS (nonnally space or tab), to delimit word boundaries, the first word is
assigned to the first name, the second word to the second name, etc., with left­
over words assigned to the last name. Lines can be continued using \newline.
Characters other than newline can be quoted by preceding them with a
backslash. These backslashes are removed before words are assigned to
names, and no interpretation is done on the character that follows the
backslash. The return code is 0 unless an end-of-file is encountered.

readonly [name ... 1
The given names are marked readonly and the values of the these names may
not be changed by subsequent assignment. If no arguments are given, a list of
all readonly names is printed.

return [n 1
Causes a function to exit with the return value specified by n. If n is omitted,
the return status is that of the last command executed.

set [-aefhkntuvx [arg ... 1 1

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a non-zero exit status.

-f Disable file name generation

-h Locate and remember function commands as functions are defined

-k

-n
-t

-u

-v

(function commands are nonnally located when the function is exe­
cuted).

All keyword arguments are placed in the environment for a command,
not just those that precede the command name.

Read commands but do not execute them.

Exit after reading and executing one command.

Treat unset variables as an error when substituting.

Print shell input lines as they are read.

Commands 1-519

RSH(t)

1-520

SysV RSH(t)

-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to-.

Using + rather than - causes these flags to be turned off. These flags can also
be used upon invocation of the shell. The current set of flags may be found in
$-. The remaining arguments are positional parameters and are assigned, in
order, to $1, $2, If no arguments are given the values of all names are
printed.

shift [n]

test

times

The positional parameters from $n+l ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. See test(l) for usage and description.

Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell receives signal(s)
n. (Note that arg is scanned once when the trap is set and once when the trap
is taken.) Trap commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11 (memory fault) produces an error.
If arg is absent all trap(s) n are reset to their original values. If arg is the null
string this signal is ignored by the shell and by the commands it invokes. If n
is 0 the command arg is executed on exit from the shell. The trap command
with no arguments prints a list of commands associated with each signal
number.

type [name ...]
For each name, indicate how it would be interpreted if used as a command
name.

ulimit [n]
Impose a size limit of n blocks on files written by the shell and its child
processes (files of any size may be read). If n is omitted, the current limit is
printed. You may lower your own ulimit, but only a super-user (see su(IM»
can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn (see umask(1». If nnn is omitted, the
current value of the mask is printed.

unset [name . "]
For each name, remove the corresponding variable or function. The variables
PATH, PSt, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its

Commands

RSH(l) SysV RSH(l)

termination status. If n is omitted, all your shell's currently active background
processes are waited for and the return code will be zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is -,
commands are initially read from /etc/profile and from $HOME/.profile, if such files
exist. Thereafter, commands are read as described below, which is also the case when
the shell is invoked as /bin/sh. The flags below are interpreted by the shell on invoca­
tion only; Note that unless the -c or -s flag is specified, the first argument is assumed to
be the name of a file containing commands, and the remaining arguments are passed as
positional parameters to that command file:

-c string If the -c flag is present commands are read from string.

-s If the -s flag is present or if no arguments remain commands are read from
the standard input. Any remaining arguments specify the positional param­
eters. Shell output (except for Special Commands) is written to file
descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a ter­
minal, this shell is interactive. In this case TERMINATE is ignored (so that
kill 0 does not kill an interactive shell) and INTERRUPT is caught and
ignored (so that wait is interruptible). In all cases, QUIT is ignored by the
shell.

-r If the -r flag is present the shell is a restricted shell.

-Dname=value
Use the -D option to specify a parameter name, that will be set to value,
then passed into the shell's enviroument. This SysV option is useful for
tailoring the environment of a shell invoked from a program that is not
another shell (such as the Display Manager). If you set the ENV parameter
using this option, the startup script it specifies will be run. Any number of
-D options can be specified.

The remaining flags and arguments are described under the set command above.

rsh Only
rsh is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. The actions of rsh are identical to
those of sh, except that the following are disallowed:

changing directory (see cd(l»,
setting the value of$PATH,
specifying path or command names containing /,
redirecting output (> and »).

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the file name
part of the last entry in the /etc/passwd file (see passwd(4»; (2) the environment

Commands 1-521

RSH(l) SysV RSH(l)

variable SHELL exists and rsh is the file name part of its value; (3) the shell is invoked
and rsh is the file name part of argument 0; (4) the shell is invoke with the -r option.

When a command to be executed is found to be a shell procedure, rsh invokes sh to
execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of com­
mands; this scheme assumes that the end-user does not have write and execute permis­
sions in the same directory.

The net effect of these rules is that the writer of the .profile (see profile(4» has com­
plete control over user actions by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e., lusr/rbin) that
can be safely invoked by a restricted shell. Some systems also provide a restricted edi­
tor, red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. If the shell is being used non-interactively execution of the shell file is
abandoned. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above).

CAVEATS

BUGS

1-522

Words used for filenames in input/output redirection are not interpreted for filename
generation (see "File Name Generation," above). For example, cat filel >a* will
create a file named a *.

Because commands in pipelines are run as separate processes, variables set in a pipeline
have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the wait (I)
command to clean up your background processes. If this doesn't help, the system pro­
cess table is probably full or you have too many active foreground processes. (There is
a limit to the number of process ids associated with your login, and to the number the
system can keep track of.)

If a command is executed, and a command with the same name is installed in a direc­
tory in the search path before the directory where the original command was found, the
shell will continue to exec the original command. Use the hash command to correct
this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus
cannot be waited for.

Commands

RSH(l)

FILES

SysV RSH(l)

For wait n, if n is not an active process id, all your shell's currently active background
processes are waited for and the return code will be zero.

/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
cd(l), echo(l), env(l), getopts(l), intro(1), login(l), newgrp(l), pwd(l), test(l),
umask(l), wait(l).
dup(2), exec(2), fork(2), pipe(2), profile(4), signal(2), ulimit(2) in the SysV
Programmer's Reference.

Commands 1-523

RUPTIME(lC) SysV

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptime [-a] [-r] [-t] [-u]

DESCRIPTION

RUPTIME(lC)

The ruptime command gives a status line for each machine on the local network; these
are formed from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 11 minutes are shown as
being down. Users idle an hour or more are not counted unless the -a flag is given.
Normally, the listing is sorted by host name.

OPTIONS
-a

-r

-t

-u

FILES

Count the users who've been idle for an hour or more.

Reverse the sort order.

Sort the listing by uptime.

Sort the listing by number of users.

/usr/spool/rwho/whod.* data files

SEE ALSO
rwho(lC)

1-524 Commands

RWHO(lC) SysV RWHO(lC)

NAME
rw ho - who's logged in on local machines

SYNOPSIS
rwho [-a]

DESCRIPTION

BUGS

FILES

The rwho command produces output similar to who, but for all machines on the local
network. If no report has been received from a machine for five minutes, rwho
assumes the machine is down, and does not report users last known to be logged into
that machine.

If a user hasn't typed to the system for a minute or more, rwho reports this idle time. If
a user hasn't typed to the system for an hour or more, the user is omitted from the out­
put of rwho, unless you specified the -a flag.

The rwho command is unwieldy when the number of machines on the local net is large.

/usr/spool/rwho/whod.* Information about other machines.

SEE ALSO
ruptime(IC), rwhod(lM),
Managing SysV System Software.

Commands 1-525

RWMT(l) Domain/OS SysV RWMT(l)

NAME
rwmt - read/write foreign magtapes

SYNOPSIS
rwmt [option] ... [-p] {-rl-wl-il-II [pathname] ...

DESCRIPTION
rwmt reads tapes from non-Domain installations and writes tapes that can be read by
non-Domain installations. rwmt can read and write unlabeled tapes, as well as ANSI
level 1-4 labeled tapes.

pathname (optional) Specify the name of file to be read from or written to tape. This
argument is valid only with the -r and -w mode-control options
(below). Multiple pathnames are permitted. Wildcarding is per­
mitted for write (-w) operations only.

Default if omitted: read pathnames from standard input

OPTIONS
Mode control

1-526

You must specify one of the following mode-control options. If you omit this option,
rwmt prompts you for it. The -p option tells rwmt to prompt for all necessary options.

-I[abel] Write ANSI X3.27-1978 volume label on a tape. This option
causes rwmt to write an ANSI volume label and dummy file on
the magtape volume. You may specify an optional owner and
volume ID, which are stored in the volume label. (see -vid and
-own below. This is the way to initialize a labeled tape; if any
information existed on the tape, it is erased by this labeling
operation.

-i[ndex]

If you are labeling a tape, you can also use the following two
options.

-vid vol id Specifies a 1-6 character volume ID for use
when labeling a volume. This option is valid
only when used with the -I mode-control
option (above). The default volume ID is ' ,
(blank).

-own owner id Specifies a 1-14 character owner ID for use
when labeling a volume. This option is valid
only when used with the -I mode-control
option (above). The default owner Ii:> is ' ,
(blank).

Lists objects on an ANSI-labeled physical tape volume. -index
produces a listing of all files or file sections on an ANSI-labeled

Commands

RWMT(l)

-w[rite)

-r[ead)

Label Control
-ansi (default)

-unlab

-asc (default)

-ebc

-raw

-npar (default)

-par

-rl reclen

Commands

Domain/OS SysV RWMT(I)

physical tape volume. The contents of the physical volume
(VOLl) label and all file header labels are written to standard
output.

Specifies one or more disk files (pathname argument) to be writ­
ten to tape. The default format is ANSI labeled, ASCII,
fixed-length records of SO bytes each, and SO-byte blocks. If
desired, any of these parameters can be changed using the
options described below. If more than one pathname is specified,
the disk files are written to sequential tape files. Tapes written by
rwmt are always in accordance with ANSI level 4 format.
Before writing a labeled file, the tape volume itself must be
labeled with the -label mode-control option (above).

Specifies one or more tape files to be read from tape and stored
on disk. read reads one or more tape files and writes them to disk
using the specified pathnames (pathname argument). The default
tape file format is the same as that for the write option. If the
tape is labeled under ANSI level 2, 3, or 4, the file format (block
length, record length, and record format) is read from the tape. If
the tape is unlabeled, or labeled with ANSI levell, you must
specify the tape format using the options below. If more than
one pathname is specified, adjacent tape files are read and stored
under the specified pathnames.

Specifies that the tape is labeled in conformance to ANSI
X3.27-197S, level I, 2, 3, or4.

Specifies that the tape is unlabeled. Data spanning physical
volumes is not supported on unlabeled tapes.

Specifies that all tape file contents are in ASCII characters.

Specifies that all tape file contents (except labels) are in EBCDIC
characters.

Specifies that all tape file data is to be treated in raw form.

Specifies no disturbance of parity bits when reading or writing
data.

Specifies that parity bits should be forced off when reading data
from tape and forced on when writing data to tape.

Specifies the maximum length, in bytes, of a record in the tape
file. This option is valid only when used with either the -r or the
-w mode-control options (above). It is unnecessary when reading
an ANSI level 2, 3, or 4 file. The default record length is SO
bytes.

1-527

RWMT(l)

-bl blocklen

-bf blockfac

-rfformat

Tape File Identifiers
-tid file _id

-f [position]

1-528

Domain/OS SysV RWMT(l)

Specifies the length, in bytes, of a physical tape block. This
option is valid only when used with either the -r or the -w
mode-control options (above). It is unnecessary when reading an
ANSI level 2, 3, or 4 file. The default block length is 80 bytes.

Specifies a blocking factor - the number of records to store into
or read from a physical tape block. This is an alternative to the
-bl option, since the record length multiplied by the blocking
factor yields the block length. This option is valid only when
used with either the -r or -w mode-control options (above).
Using this option is meaningful only if your tape has
fixed-length records. This option is unnecessary when reading
an ANSI level 2, 3, or 4 file. The default blocking factor is 1.

Specifies record fonnat. Valid values for format are f
(fixed-length records and blocks); d (variable-length records
(this is ANSI 'D' fonnat»; s (spanned records); or u (undefined
record fonnat). The default fonnat is f. Note that if you are writ­
ing a cartridge tape, only 512 byte blocks may be written; d, s,
and u fonnats are not supported.

Specifies a 1-17 character file ID to be written in the file header
label for use when writing a file to a labeled volume. This
option is valid only when used with the -w mode-control option
(above). If this option is omitted, the name of the file being writ­
ten is used.

Specifies the file position for -r or -w operations. Valid values
for position are cur, end, or a nonzero integer value. A position
of cur selects the current tape position; the tape must have been
previously read or written by rwmt and its position must not
have been disturbed. This option is valid only when used with
either the -r or the -w mode-control options (above).

A position of end selects the end of the tape file set. This option
is valid only when used with the -w mode-control option, and
causes rwmt to append the specified disk file (pathname argu­
ment) to the very end of the tape file set.

A position specified by a nonzero integer value selects the file at
that absolute position in the tape volume. This option is valid
only when used with either the -r or -w mode-control options
(above). If multiple pathname arguments are supplied, the value
of position is incremented by one after each file has been read or
written.

Commands

RWMT(l)

Backup Device Conttol
-dev d[unitj

-nobs

-reten

-nreten (default)

Miscellaneous Conttol Options

Domain/OS SysV RWMT(l)

The default value for position is 1.

Specifies device type and unit number. d must be eitber m (for
reel-to-reel magnetic tape), ct (for cartridge tape), or f (for
floppy), depending on which drive is being used. unit is an
integer (0-3). Both are required for reel-to-reel tapes (that is,
-dev m2). A unit number is not required for floppy disks and car­
tridge tapes (that is, -dey 0. If this option is omitted, rbak
assumes device mO.

Specifies that byte swapping should not be done in software.
This operation is valid for magnetic tapes only. On the multibus
data gets byte swapped. rwmt does byte swapping in software so
that the tape gets written out in the correct machine order. wbak
and rbak do not do byte swapping in software, as a result the two
swaps done by the multibus cancel out. This option is useful in
writing to a magnetic tape an intermediate file to which wbak
output has been directed. Byte swapping should not be done by
rwmt if the intermediate file written by wbak is now written raw
to the magnetic tape using rwmt.

Retensions the cartridge tape (unwind to the end, then rewind).
This can be helpful if you have encountered cartridge-tape read­
ing errors. Retensioning requires about 1.5 minutes to complete.

Does not retension the cartridge tape.

-sbin Causes all stream files written to contain the binary attribute
(normally, output stream files contain the AScn attribute).

-p Causes rwmt to prompt for all unspecified parameters.

EXAMPLES
Initialize a tape with the given owner and volume ID.

$ rwmt -Iabel-own "R and D" -vid "demo"
List the files on the tape.

$ rwmt -index

Volume label:

Volume ID: "DEMO " Owner ID: "R AND D

Commands

Access: n n

1-529

RWMT(l) Domain/OS SysV RWMT(l)

File/Section File ID

1 1 CMF_EXAMPLE

2 1 CMT_EXAMPLE

3 1 CPBOOT_EXAMPLE

4 1 CPF_EXAMPLE

5 1 CPT_EXAMPLE

End of file set.

$

Cr Date

83/02/17

83/02/17

83/02/17

83/02/17

83/02/17

Copy tape file 3 to a disk file named cpboot_ example.tape.

$ rwmt -r cpboot_ example.tape -f 3
4 records read from tape file 3 into

ftcpboot_example.tape ft .

$

Acc RF RL BL

D 200 . 2048

D 200 2048

D 200 2048

D 200 2048

D 200 2048

rwmt permits a tape file to be read in "raw" mode. In this mode, each block read from the tape
is written into one record in a stream file, unmodified by the program. To read a file in "raw"
mode, you should specify the maximum record size using the -rl argument. If you do not, the
default value of 80 bytes is used, and any records longer than that are truncated. Also,
undefined record format should be used. For example

$ rwmt -r -f l-rf U -i"aW .. d 512 rawfiJe

reads tape file number 1 into rawfile, with a maximum record length of 512 bytes.

Files may be written in the same manner:

$ rwmt -w -f l-rf U -raw -rl 512 rawfile

The file /!backup/tmpl is written out to the magnetic tape in "raw" mode. The record length is
specified to be 8k and no byte swapping is done in software. This is useful for writing out an
intermediate file to which wbak has written its output. Note that all tapes written by rwmt
must have a ANSI standard volume label for rbak to be able to read the tape

rwmt -w -f 1 -raw -rl 8192 -nobs //backup/tmp1 -ansi

If rwmt writes a file with -nobs option, you should use -nobs option to read it using rwmt.

SEE ALSO
rbak(l), wbak(l)

1-530 Commands

SAeT(I) SysV SACT(I)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
The sact command informs you of any impending deltas to a named sees file. This
situation occurs when get(l) with the -e option has been previously executed without a
subsequent execution of delta(l). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a named file, except that
non-SeeS files and umeadable files are silently ignored. If you specify a simple dash
(-) in place of a filename, sact reads the standard input, taking each line as the name of
an sees file to be processed. The output for each named file consists of five fields
separated by spaces:

Field 1 Specifies the SID of a delta that currently exists in the sees file to
which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

DIAGNOSTICS

Specifies the SID for the new delta to be created.

Contains the logname of the user who will make the delta (i.e.,
executed a get for editing).

Contains the date that get -e was executed.

Contains the time that get -e was executed.

Use help(l) for explanations.

SEE ALSO
delta(1), get(I), unget(I).

Commands 1-531

SeeS(l) SysV SeeS(l)

NAME
sees - front end for the sees subsystem

SYNOPSIS
sees [-r] [-dpath] [-ppath] command [jlags] [arg ...]

DESCRIPTION

1-532

The sees command is a front end to the Source Code Control System (SeeS) programs
that helps them mesh more cleanly with the rest of UNIX. It also includes the capabil­
ity to run •• set user 10" to another user to provide additional protection.

Basically, sees runs the command with the specifiedjlags and args. Each argument is
normally modified to be prefixed with secs/s.
Flags to be interpreted by the sees program must appear before the command argument.
Flags to be passed to the actual sees program must come after the command argument.
These flags are specific to the command and are discussed in the documentation for that
command. The SEE ALSO section lists the standard sees commands that are docu­
mented in section one of this manual. For more information about the standard sees
commands, see the documentation for that command.

Besides the usual sees commands, several pseudo commands can be issued. These
pseudo commands are described in the following list.

edit Equivalent to get -e

delget

deledit

create

Perform a delta on the named files and then get new versions. The new
versions will have 10 keywords expanded, and will not be editable. The
-m, -p, -r, -s, and -y flags will be passed to delta, and the -b, -c, -e,
-i, -k, -I, -s, and -x flags will be passed to get.

Equivalent to delget except that the get phase includes the -e flag. This
option is useful for making a checkpoint of your current editing phase.
The same flags will be passed to delta as described above, and all the
flags listed for get above, except -e and -k, are passed to edit.

Creates an sees file, taking the initial contents from the file of the same
name. Any flags to admin are accepted. If the creation is successful,
the files are renamed with a comma on the front. These should be
removed when you are convinced that the sees files have been created
successfully.

Commands

SeeS(I) SysV SeeS(I)

fix Must be followed by a -r flag. This command essentially removes the named
delta, but leaves you with a copy of the delta with the changes that were in it.
It is useful for fixing small compiler bugs, etc. Since it doesn't leave audit
trails, it should be used carefully.

clean This routine removes everything from the current directory that can be
recreated from SCCS files. It will not remove any files being edited. If the -b
flag is given, branches are ignored in the determination of whether they are
being edited; this is dangerous if you are keeping the branches in the same
directory.

unedit This is the opposite of an edit or a get -e. It should be used with extreme cau­
tion, since any changes you made since the get will be irretrievably lost.

info Gives a listing of all files being edited. If the -b flag is given, branches (i.e.,
SID's with two or fewer components) are ignored. If the -u flag is given (with
an optional argument) then only files being edited by you (or the named user)
are listed.

check Like info except that nothing is printed if nothing is being edited, and a non­
zero exit status is returned if anything is being edited. The intent is to have
this included in an "install" entry in a makefile to insure that everything is
included into the sees file before a version is installed.

tell Gives a newline-separated list of the files being edited on the standard output.
Takes the -b and -u flags like info and check.

diffs Gives a difflisting between the current version of the program(s) you have out
for editing and the versions in sees format. The -r, -c, -i, -x, and -t flags
are passed to get; the -I, -s, --e, -f, -h, and -b options are passed to diff. The
-C flag is passed to diff as -c.

print This command prints out verbose- information about the named files.

OPTIONS
-r

-d

-p

Runs sccs as the real user rather than as whatever effective user sccs is
"set user ID" to.

Gives a root directory for the sees files. The default is the current
directory.

Defines the pathnarne of the directory in which the sees files will be
found; sees is the default.

The -p flag differs from the -d flag in that the -d argument is prepended to the entire
pathname and the -p argument is inserted before the final component of the pathname.

Commands 1-533

SCCS(l) SysV SCCS(l)

For example:

sees -d/x -py get alb

will convert to:

get Ixla/y/s.b

The intent here is to create aliases such as:

alias syssecs sees ·dlusrlsre

which will be used as:

syssees get emdlwho.e

If the environment variable PROJECT is set, its value is used to determine the -d flag.
If it begins with a slash, it is taken directly; otherwise, the home directory of a user of
that name is examined for a subdirectory sre or source. If such a directory is found, it
is used.

Certain commands (such as admin) cannot be run "set user ID" by all users, since this
would allow anyone to change the authorizations. These commands are always run as
the real user.

EXAMPLES

1-534

To get a file for editing, edit it, and produce a new delta:

sees get -e file.e
ex file.e
sees delta file.e

To get a file from another directory:

sees -p/usrlsre/secsls. get ee.e

or

sees get lusrlsrclsecs/s.ee.e

To make a delta of a large number of files in the current directory:

sees delta *.e

To get a list of files being edited that are not on branches:

sees info-b

To delta everything being edited by you:

sees delta' sees tell -u'

Commands

SeeS(l)

NOTES

SysV

In a make tile, to get source tiles from an sees tile if it does not already exist:

SRCS = <list of source files>
$(SRCS):

sees get $(REL) $@

SeeS(l)

It should be able to take directory arguments on pseudo commands like the sees com­
mands do.

SEE ALSO
admin(l), comb(l), delta(l), get(l), help(l), rmdel(l), sact(l), sccsdiff(l), what(l);
Domain/OS Programming Environment Reference

Commands 1-535

SCCSDIFF(l) SysV SCCSDIFF(l)

NAME
sccsdiff - compare two versions of an sces file

SYNOPSIS
sccsdiff -r SID1 -r SID2 [-p] [-s n] files

DESCRIPTION
The sccsdiff command compares two versions of an SCCS file and generates the differ­
ences between the two versions. Any number of SCCS files may be specified, but argu­
ments apply to all files.

OPTIONS

FILES

-rSID?

-p

-sn

Use SID1 or SID2 to specify the deltas of an secs file that are to be com­
pared. Versions are passed to bdiff(l) in the order given.

Pipe output for each file through pre 1).

Specify n as the file segment size that bdiff will pass to diff(l). This is
useful when diff fails due to a high system load.

Itmp/get?'???? Temporary files

DIAGNOSTICS
file: No differences The two versions are the same.

Use help(l) for explanations.

SEE ALSO
get(1), bdiff(l), help(l), prell.

1-536 Commands

SCRATIR(l) SysV SCRATIR(l)

NAME
scrattr - screen attributes

SYNOPSIS
scrattr [-avcpxy]

DESCRIPTION
Without any options, scrattr lists the X and Y dimensions of the display in pixels.
Screen attributes are always listed in the same order: X coordinates, Y coordinates,
number of planes, number of primary colors. This order is independant of the order in
which the options are specified.

OPTIONS
-a Display all attributes.

-v Print a verbose description of each field, with the attributes on separate lines.
(Without the -v option, attributes appear on the same line separated by tabs.)
If any options other than -v are specified, only that combination of attributes
will be displayed, and always in the canonical order given above.

--c Display the number of primary colors on the display.

-p Display the number of bit planes on the display.

-x Display the X dimension of the display in pixels.

-y Display the Y dimension of the display in pixels.

SEE ALSO
stty(l), tabs(!), tset(!), tty(l)

Commands 1-537

SCRTO(l) Domain/OS SysV SCRTO(l)

NAME
scrto - set/show screen timeout

SYNOPSIS
scrto [-none] [n]

DESCRIPTION
scrto sets or displays the number of minutes the system waits before it shuts off the
display screen. It begins counting minutes after the last input event or window
configuration change.

By default, the system waits 15 minutes before it shuts off the display. Domain/OS
turns the display back on whenever it receives an input event from the keyboard or
mouse or whenever the DM creates, pops, moves, or resizes a window.

n (optional) Set the number of Domain/OS minutes for to wait before it shuts off the
display.

Default if omitted: display current timeout setting

OPTIONS
-none Disables automatic timeout; never tum off the display.

EXAMPLES

1-538

Shows initial setting.

$ scrto
The screen timeout is set to 15 minutes
$

Sets delay to 10 min.

$ scrto 10
$

Commands

SDIFF(l) SysV SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ... J file1 file2

DESCRIPTION
The sdiff command uses the output of diff(l) to produce a side-by-side listing of twe
files indicating those lines that are different. Each line of the two files is printed with:
blank gutter between them if the lines are identical, a less-than sign «) in the gutter iJ
the line only exists infile1, a greater-than sign (» in the gutter if the line only exists ir
file2, and a pipe character (I) for lines that are different.

For example:

OPTIONS
-w n

-I

-s

-0 output

Commands

x y

a a
b <
c <
d d

> c

Uses the next argument, n, as the width of the output line. The defaul
line length is 130 characters.

Only prints the left side of any lines that are identical.

Does not print identical lines.

Uses the next argument, output, as the name of a third file that is create.
as a user-controlled merging of file1 and file2. Identical lines of file,
and file2 are copied to output. Sets of differences, as produced b
diff(l), are printed; where a set of differences share a common gutte
character. After printing each set of differences, sdiff prompts you wit
a percent character (%) and waits for one of the following user-type
commands:

r

s

Appends the left column to the output file

Appensd the right column to the output file

Turns on silent mode; do not print identical lines

Turns off silent mode

1-5~

SDIFF(l)

SEE ALSO
diff(l), ed(l).

1-540

SysV SDIFF(l)

e I Calls the editor with the left column

e r Calls the editor with the right column

e b Calls the editor with the concatenation ofteft and right

e Calls the editor with a zero length file

q Exits from the program

On exit from the editor, the resulting tile is concatenated on the end of the
output tile.

Commands

SED(l) SysV SED(l)

NAME
sed - stream editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files]

DESCRIPTION
The sed command copies the named files (standard input default) to the standard out­
put, edited according to a script of commands.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space (unless
there is something left after a D command), applies in sequence all commands whose
addresses select that pattern space, and at the end of the script copies the pattern space
to the standard output (except under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space for sub­
sequent retrieval.

An address is either a decimal number that counts input lines cumulatively across files,
a $ that addresses the last line of input, or a context address, i.e., a/regular expression/
in the style of ed(I) modified thus:

• In a context address, the construction \?regular expression?, where? is any charac­
ter, is identical to /regular expression!. Note that in the context address
\xabc\xdefx, the second x stands for itself, so that the regular expression is abcxdef.

• The escape sequence \n matches a newline embedded in the pattern space.

• A period. matches any character except the terminal newline of the pattern space.

• A command line with no addresses selects every pattern space.

• A command line with one address selects each pattern space that matches the
address.

• A command line with two addresses selects the inclusive range from the first patten
space that matches the first address through the next pattern space that matches the
second. (If the second address is a number less than or equal to the line number firs
selected, only one line is selected.) Thereafter the process is repeated, lookinl
again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of thl
negation function! (See the Functions section below).

OPTIONS
~script

Commands

Edit according to script. If there is just one -e option and no -f options, th
flag -e may be omitted.

1-54

SED(l) SysV SED(l)

-f sfile Take the script from file sfile; these options accumulate.

-n Suppress the default output.

FUNCTIONS

1-542

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end with \ to
hide the newline. Backslashes in text are treated like backslashes in the replacement
string of an s command, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rfile or wfile argument must terminate
the command line and must be preceded by exactly one blank. Each wfile is created
before processing begins. There can be at most 10 distinct wfile arguments.

(l)a\ text Append. Place text on the output before reading the next input

(2) b label

(2)c\ text

(2)d

(2)D

(2)g

(2)G

(2) h

(2)H

(l)i\text

(2)1

(2)n

(2)N

(2) p

line.

Branch to the: command bearing the label. If label is empty,
branch to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the next
cycle.

Delete the pattern space. Start the next cycle.

Delete the initial segment of the pattern space through the first
newline. Start the next cycle.

Replace the contents of the pattern space by the contents of the
hold space.

Append the contents of the hold space to the pattern space.

Replace the contents of the hold space by the contents of the pat­
tern space.

Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.

List the pattern space on the standard output in an \lnarnbiguous
form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.

Copy the pattern space to the standard output. Replace the pat­
tern space with the next line of input.

Append the next line of input to the pattern space with an embed­
ded newline. (The current line number changes.)

Print. Copy the pattern space to the standard output.

Commands

SED(I)

(2)P

(l)q

SysV S£o(I)

Copy the initial segment of the pattern space through the first
newline to the standard output.

Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile Read the contents of rfile. Place them on the output before read­
ing the next input line.

(2) s/regular expression/replacement/flags

(2)t label

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of t. For a fuller description see ed(l). Flags is zero or
more of:

n n= 1 - 512. Substitute for just the n th
occurrence of the regular expression.

g Global. Substitute for all nonoverlapping
instances of the regular expression rather than
just the first one.

p Print the pattern space if a replacement was
made.

w wfile Write. Append the pattern space to wfile if a
replacement was made.

Test. Branch to the colon (:) conunand bearing the label if any
substitutions have been made since the most recent reading of an
input line or execution of a t. If label is empty, branch to the end
of the script.

(2) w wfile Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringl /string2/ Transfonn. Replace all occurrences of characters in stringl with
the corresponding character in string2. The lengths of string]
and string2 must be equal.

(2)! function

(0): label

(1)=

(2){

(0)

Don't. Apply the function (or group, if function is a left brace
(D only to lines not selected by the addressees).

This conunand does nothing; it bears a label for b and t com­
mands to branch to.

Place the current line number on the standard output as a line.

Execute the following conunands through a matching right brace
(}) only when the pattern space is selected.

An empty conunand is ignored.

Conunands 1-543

SED(l)

(0)#

SEE ALSO

SysV SED(l)

If a pound sign (#) appears as the first character on the first line
of a script file, then that entire line is treated as a comment, with
one exception. If the character after the pound sign is an 'n',
then the default output will be suppressed. The rest of the line
after #n is also ignored. A script file must contain at least one
non-comment line.

awk(l), ed(l), grep(l).

1-544 Commands

SH(l) SysV SH(l)

NAME
sh - the Bourne shell command language

SYNOPSIS
sh [-ceiknrstuvx] [-Dname=value ...] [arg] ...

DESCRIPTION
sh is a command programming language that executes commands read from a terminal
or a file. A simple command is a sequence of nonblank words separated by blanks. A
blank is a tab or a space. The first word specifies the name of the command to be exe­
cuted. Except as specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument 0; refer to execve(2) for
further details. The value of a simple command is its exit status if it terminates nor­
mally, or 200+status if it terminates abnormally. See sigvec(2) for a list of status
values.

A pipeline is a sequence of one or more commands separated by I. The standard output
of each command but the last is connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the shell waits for the last com­
mand to terminate.

A list is a sequence of one or more pipelines separated by;, &, && or II and optionally
terminated by ; or &. ; and & have equal precedence which is lower than that of &&
and II, && and II also have equal precedence. A semicolon causes sequential execu­
tion; an ampersand causes the preceding pipeline to be executed without waiting for it
to finish. The symbol && (II) causes the list following to be executed only if the
preceding pipeline returns a zero (non zero) value. Newlines may appear in a list,
instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by
a command is that of the last simple-command executed in the command.

COMMANDS
for name [in word ...] do list done

Set name to the next word in the for word list each time a for command is exe­
cuted. If in word ... is omitted, in $@ is assumed. Execution ends when there
are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
Execute the list associated with the first pattern that matches word. The form
of the pattems is the same as that used for filename generation.

if list then list [elif list then list] ... [else list] fi

Commands

Execute the list following if, and if it returns zero, execute the list following
then. Otherwise, execute the list following elif, and if its value is zero, exe­
cute the list following then. Failing that, execute the else list.

1-545

SH(I) SysV SH(I)

while list [do list] done

(list)

{ list}

Repeatedly execute the while list, and if its value is zero, execute the do list;
otherwise, tenninate the loop. The value returned by a while command is that
of the last executed command in the do list. To negate the loop termination
test, use until in place of while.

Execute list in a sub-shell.

Simply execute list.

sh recognizes the following words only when they are the first word of a command, and
only when they are not quoted:

if then else elif fi case in esac for while until do done { }

COMMAND SUBSTITUTION
Use the standard output from a command, enclosed in a pair of back quotes C '), as part
or all of a word. Trailing newlines are removed.

PARAMETER SUBSTITUTION

1-546

A parameter is a sequence of letters, digits, or underscores (a name), a digit, or any of
the following characters: * @ # ? - $!. The character $ is used to introduce substitut­
able parameters. Positional parameters may be assigned values by set. Variables may
be set by writing

name=va[ue [name=value] ..

$ {parameter}
Substitute the value, if any, of the parameter. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not to be
interpreted as part of its name. If parameter is a digit, it is a positional param­
eter. If parameter is * or @ then all the positional parameters, starting with $1,
are substituted separated by spaces. $0 is set from argument zero when the
shell is invoked.

$ {parameter-word}
If parameter is set, substitute its value; otherwise, substitute word.

$ {parameter = word}
If parameter is not set, set it to word; then, substitute the value of the parame­
ter. You may not assign positional parameters in this manner.

$ {parameter? word}
If parameter is set, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, a standard message is printed.

$ {parameter+word}
If parameter is set, substitute word; otherwise, substitute nothing.

In the above, sh does not evaluate word unless it is to be used as the substituted string.
Thus, for example, echo ${d-'pwd'} only executes pwd if d is unset.

Commands

SH(I) SysV

The following parameters are automatically set by the shell:

Number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? Value returned by the last executed command in decimal.
$ Process number of this shell.

Process number of the last background command invoked.

The following parameters are used but not set by the shell:

HOME Default argument (home directory) for the cd command.
PATH The search path for commands (see EXECUTION).

SH(I)

ENV If this parameter is set, the shell performs parameter substitution on
the value to generate the pathname of the startup script containing
commands that the shell executes every time a new shell is invoked.
No error results if the file specified by the ENV parameter doesn't
exist or can't be read.

MAIL If this variable is set to the name of a mail file, the shell informs you
of the arrival of mail in the specified file.

PSI Primary prompt string; this is a dollar sign ($) by default.
PS2 Secondary prompt string; this is a greater-than sign (» by default.
IFS Internal field separators; these usually include space, tab, and new­

line. IFS is ignored if sh is running as root or if the effective user id
differs from the real user id.

BLANK INTERPRET A nON
After parameter and command substitution, sh scans the subsequent results for internal
field separator characters (those found in $IFS), and then splits its output into distinct
arguments where such characters are found. Explicit null arguments (It" or ") are
retained. Implicit null arguments (those resulting from parameters that have no values)
are removed.

FILENAME GENERATION
Following substitution, sh scans each command word for the characters *, ? and [. If
one of these characters appears, the word is regarded as a pattern. The word is replaced
with alphabetically sorted filenames that match the pattern. If no filename is found that
matches the pattern, the word is left unchanged. The character . at the start of a
filename or immediately following a I, and the character I, must be matched explicitly.

*
?
[... J

Commands

Matches any string, including the null string.
Matches any single character.
Matches anyone of the characters enclosed. A pair of characters separated by
- matches any character lexically between the pair.

1-547

SHe!) SysV SH(l)

QUOTING
The following characters have a special meaning to the shell and cause termination of a
word unless quoted:

; & () I < > newline space tab

You may quote a character by preceding it with a \ sh ignores a \newline. All charac­
ters enclosed between a pair of single quotation marks C '), except a single quote, are
quoted. Parameter and command substitution occurs inside double quotes (""). A \
quotes the following characters: \ ' " and $.

A "$*" is equivalent to "$1 $2 ... ", while "$@" is equivalent to "$1" "$2"

PROMPTING
When used interactively, sh prompts with the value of PSI before reading a command.
If, at any time, you type a newline and need further input to complete a command, sh
issues the secondary prompt ($PS2).

INPUT/OUTPUT

1-548

Before you execute a command, you may redirect its output by using a special notation
interpreted by the shell. The following may appear anywhere in a simple command or
may precede or follow a command, and are not passed on to the invoked command.
Substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does .not exist,
create it; otherwise, truncate it to zero length.

»word Use file word as standard output. If the file exists, append output (by seeking
to the end); otherwise, create the file.

«word Read the shell input up to a line the same as word or end-of-file. Make the
resulting document the standard input. If any character of word is quoted,
place no interpretation upon the characters of the document. Otherwise, do
parameter and command substitution, ignore \newline and use \ to quote the
following characters: \ $, and the first character of word.

<& digit
Duplicate the standard input from file descriptor digit. This works similarly for
the standard output using>. Refer to dup(2) for further details.

< & - Close the standard input. Perform the same function on the standard output,
using >.

If one of the above is preceded by a digit, the file descriptor created is that specified by
the digit (instead of the default 0 or 1). For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

Commands

SH(l) SysV SH(l)

If a command is followed by & the default standard input for the command is the empty
file (/dev/null). Otherwise, the environment for the execution of a command contains
the file descriptors of the invoking shell as modified by input/output specifications.

ENVIRONMENT
The environment is a list of name-value pairs that is passed to an executed program in
the same way as a normal argument list. Refer to execve(2) and environ(7). The shell
interacts with the environment in several ways. On invocation, the shell scans the
environment and creates a parameter for each name found, giving it the corresponding
value. Executed commands inherit the same environment. If you modify the values of
these parameters, or create new ones, the environment is unaffected, unless you use the
export command to bind the shell's parameter to the environment. The environment
seen by any executed command is thus composed of any unmodified name-value pairs
originally inherited by the shell, plus any modifications or additions, all of which must
be noted in export commands.

You may augment the environment for any simple command by prefixing it with one or
more assignments to parameters. Thus, the following two lines are equivalent:

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

SIGNALS
sh ignores the INTERRUPT and QUIT signals for an invoked command if the com­
mand is followed by &. Otherwise, signals have the values inherited by the shell from
its parent (see also trap).

EXECUTION
Each time a command is executed, the above substitutions are carried out. Except for
the special commands listed below, a new process is created, and an attempt is made to
execute the command via an execve(2).

The $P ATH shell parameter defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon (:). The default
path is lusr/ucb:/bin:/usr/bin:/usr/apollo/bin. If the command name contains a I, sh
does not use the search path. Otherwise, sh searches each directory in the path for an
executable file. If the file has execute permission but is not an a.out file, it is assumed
to be a file containing shell commands. A sub-shell (Le., a separate process) is spawned
to read it. A command in parentheses is also executed in a sub-shell.

SPEClAL COMMANDS
The following commands are executed in the shell process, and except where specified,
no input/output redirection is permitted for such commands.

For non-interactive shells, treat everything following the # as a comment, i.e.,
ignore the rest of the line. For interactive shells, the # has no special effect.

No effect; the command does nothing.

Commands 1-549

SH(l)

1-550

SysV SH(l)

. file Read and execute commands from file and return. Use the search path $PATH
to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified, break n lev­
els.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified,
resume at the nth enclosing loop.

cd [arg]
Change the current directory to arg. The $HOME shell parameter is the
default arg.

eval [arg ...]
Read the arguments as input to the shell and execute the resulting command(s).

exec [arg ...]
Execute the command specified by the arguments in place of this shell without
creating a new process. You may supply input/output arguments, and if you
give no other type of arguments, sh modifies the input/output.

exit [n] If the shell is not interactive, exit with the exit status specified by n. If you
omit n, the exit status is that of the last command executed. (An end-of-file
will also exit from the shell.)

export [name ...]
Mark the given names for automatic export to the environment of
subsequendy-executed commands. If no arguments are given, print a list of
exportable names.

login [arg ...]
Equivalent to an exec login arg ... command.

read name ...
Read one line from the standard input. Assign successive words of the input to
the variables name in order, with leftover words to the last variable. The
return code is 0 unless the end-of-file is encountered.

readonly [name ...]
Mark the given names as read-only. You cannot change the values of these
names by subsequent assignment. If no arguments are given, print a list of all
read-only names.

rootnode [arg]
Change the current node entry directory to arg.

set [-ekntuvx [arg ...]]
-e Exit immediately if a command fails (on some systems, this switch

works only on shells that are not interactive).

Commands

SH(l) SysY SH(l)

-k Place all keyword arguments in the environment for a command, not
just those that precede the command name. The following, used in the
shell, prints a=b c and c:

echoa=b c
set -k
echo a=b c

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Tum off the -x and -v options.

You can also use these options when you first invoke the shell. The current set
may be found in $- .

Remaining arguments are positional parameters. The shell assigns them, in
order, to $1, $2, etc. If no arguments are given, it prints the values of all
names.

shift The positional parameters from $2 ... are renamed $1 ...

times Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ...
Read and execute arg upon receipt of signal(s) n. (Scan arg once when the trap
is set and once when the trap is taken.) Execute trap commands in order of
signal number. If arg is absent, reset all trap(s) n to their original values. If
arg is the nul! string, the shell and invoked commands ignore this signal. If n
is 0, execute the command arg on exit from the shell. Otherwise, execute the
command upon receipt of signal n as numbered in sigvec(2). With no argu­
ments, trap prints a list of commands associated with each signal number.

umask [nnn]
Set the user file creation mask to the octal value nnn. See umask(2) for details.
If nnn is omitted, print the current value of the mask.

vcr [systype[commandl]
With no arguments, return the current value of the SYSTYPE environment
variable that specifies the version of UNIX commands being executed by the
shell. With a systype argument, change the SYSTYPE environment variable to
either bsd4.3 or sys5.3. depending on which is specified.

Commands 1-551

SH(l)

wait [n]

SysV SH(l)

Wait for the specified process and report its termination status. If n is not
given, wait for all currently active child processes. The return code from this
command is that ofthe process being awaited.

inlib pathname
Install a user-supplied library specified by pathname in the current (shell) pro­
cess. The library is used to resolve external references of programs (and
libraries) loaded after its installation. Note that the library is not loaded into
the address space unless it is needed to resolve an external reference. The list
of inlibed libraries is passed to all children of the current shell. Use IIib(l) to
examine this list.

COMMAND LINE OPTIONS

FILES

1-552

If the first character of argument zero is -, sh reads commands from $HOME/.profile , if
such a file exists. It then reads commands as described below. The following options
are interpreted by the shell when it is invoked.

-c string

-s

-i

Read commands from string.

Read commands from the standard input. Write shell output to file
descriptor 2. (Note that the same activity occurs if no arguments remain.)

Make the shell interactive. (Note that this also occurs if the shell input
and output are attached to a terminal, as told by gtty.) Ignore the ter­
minate signal SIGTERM, so that kill 0 does not kill the interactive shell.
Catch and ignore the interrupt signal SIGINT, so that wait is interruptible.
In all cases, ignore SIGQUIT.

-Oname=value
Use the -0 option to specify a parameter name, that will be set to value,
then passed into the shell's environment. This Domain/OS SysV option is
useful for tailoring the environment of a shell invoked from a program
that is not another shell (such as the Display Manager). If you set the
ENV parameter using this option, the startup script it specifies will be run.
For example, if you define your <SHELL> key as follows: cp Ibin/sh
-OENV=-I.shrc.pad, the -I.shrc.pad script can contain commands to per­
form special processing for the pad and the shell. You can specify more
than one -0 option.

The remaining flags and arguments are described under the set command.

$HOMEI. profile
/tmp/sh*
/dev/null

Commands

SH(l) SysV SH(l)

DIAGNOSTICS

BUGS

Errors detected by the shell, such as those that occur in syntax, cause sh to return a
nonzero exit status. If the shell is not being used interactively, then execution of the
shell file is abandoned. Otherwise, the exit status of the last command executed is
returned. Refer to exit under SPECIAL COMMANDS for more information.

If« is used to provide standard input to an asynchronous process invoked by &, the
shell gets confused about naming the input document. It creates a garbage file called
/tmp/sh * and complains about not being able to find the file by another name.

SEE ALSO
csh(I), ksh(l), rootnode(I), test(I), execve(2), environ(7)

Commands 1-553

SIZE(l) SysV SIZE(l)

NAME
size - print section sizes in bytes of common object files

SYNOPSIS
size [-n] [-f] [-0] [-x] [-V] files

DESCRIPTION
size produces section size information in bytes for each loaded section in the common
object files. The size of the text, data, and bss (uninitialized data) sections is printed, as
well as the sum of the sizes of these sections. If an archive file is input to the size com­
mand the information for all archive members is displayed.

OPTIONS
-n
-f

-0

-x

Includes NOLOAD sections in the size.

Produces full output, that is, it prints the size of every loaded section,
followed by the section name in parentheses.

Prints numbers in octal, rather than decimal.

-V
CAVEAT

Prints numbers in hexadecimal, rather than decimal.

Supplies version information.

Since the size of bss sections is not known until link-edit time, the size command will
not give the true total size of pre-linked objects.

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

SEE ALSO
cc(l), Id(1), a.out(4), ar(4).

1-554 Commands

SLEEP(l) SysV

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

sleepfl suspends execution for time seconds. It is used to execute a command after a
certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

SEE ALSO

comrrumd

sleep 37

alarm(2), sleep(3C) in the SysV Programmer's Reference.

Commands 1-555

SORT(l) SysV SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl [-pos2]]
[files]

DESCRIPTION
sort sorts lines of all the named files together and writes the result on the standard out­
put. The standard input is read if - is used as a file name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input. By
default, there is one sort key, the entire input line, and ordering is lexicographic by
bytes in machine collating sequence.

OPTIONS

1-556

Options that alter default behavior:

-c

-m

-u

-ooutput

-ykmem

Checks that the input file is sorted according to the ordering rules; gives
no output unless the file is out of sort.

Merges only, the input files are already sorted.

Unique: suppresses all but one in each set oflines having equal keys.

The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs. There
may be optional blanks between -0 and output.

The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to use more space as needed. If this option
is presented with a value, kmem, sort will start using that number of
kilobytes of memory, unless the administrative minimum or maximum is
violated, in which case the corresponding extremum will be used. Thus,
-yO is guaranteed to start with minimum memory. By convention, -y
(with no argument) starts with maximum memory.

-zrecsz The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the -e or -m options, a popular system default size will be used. Lines
longer than the buffer size will cause sort to terminate abnormally. Sup­
plying the actual number of byte~ in the longest line to be merged (or
some larger value) will prevent abnormal termination.

Options that override default ordering rules:

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

Commands

SORT(l)

-f

-i

-M

-n

SysV SORT(l)

Folds lower case letters into upper case.

Ignores characters outside the ASCII range 040-0176 in non-numeric
comparisons.

Compares as months. The first three non-blank characters of the field
are folded to upper case and compared so that "JAN" < "FEB" < ... <
"DEC". Invalid fields compare low to "JAN". The -M option implies
the -b option (see below).

An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the -b option (see below).
Note that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverses the sense of comparisons.

Options that alter the treatment of field separators:

-b

-tx

Ignores leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the first
+posl argument, it will be applied to all +posl arguments. Otherwise,
the b flag may be attached independently to each +posl or -pos2 argu­
ment (see below).

Uses x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (for example, xx delimits an empty field).

When ordering options appear before restricted sort key specifications, the requested
ordering rules are applied globally to all sort keys. When attached to a specific sort key
(described below), the specified ordering options override all global ordering options
for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and ending just
before pos2. The characters at position posl and just before pos2 are included in the
sort key (provided that pos2 does not precede posl). A missing -pos2 means the end of
the line.

Specifying pos] and pos2 involves the notion of a field, a minimal sequence of charac­
ters followed by a field separator or a new-line. By default, the first blank (space or tab)
of a sequence of blanks acts as the field separator. All blanks in a sequence of blanks
are considered to be part of the next field; for example, all blanks at the beginning of a
line are considered to be part of the first field.

Pos] and pos2 each have the form m.n optionally followed by one or more of the flags
bdfinr. A starting position specified by +m.n is interpreted to mean the n+ 1st character
in the m+ 1st field. A missing .n means .0, indicating the first character of the m+ 1st
field. If the b flag is in effect n is counted from the first non-blank in the m + 1 st field;
+m.Ob refers to the first non-blank character in the m+lst field.

Commands 1-557

SORT(l) SysV SORT(l)

A last position specified by -m.n is interpreted to mean the nth character (including
separators) after the last character of the m th field. A missing .n means .0, indicating
the last character of the m th field. If the b flag is in effect n is counted from the last
leading blank: in the m+lst field; -m.l b refers to the first non-blank: in the m+lst field.

When there are multiple sort keys, later keys are compared only after all earlier keys
compare equal. Lines that otherwise compare equal are ordered with all bytes
significant.

EXAMPLES
Sort the contents of injile with the second field as the sort key:

sort +1-2 infile

Sort, in reverse order, the contents of injilel and injile2 , placing the output in outfile and
using the first character of the second field as the sort key:

sort -r -0 outfile + 1.0 -1.2 infile 1 infile2

Sort, in reverse order, the contents of injilel and injile2 using the first non-blank: charac­
ter of the second field as the sort key:

sort -r + 1.0b -1.1 b infile 1 infile2

Print the password file (passwd(4» sorted by the numeric user ID (the third colon­
separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file injile, suppressing all but the first occurtence of
lines having the same third field (the options -urn with just one input file make the
choice of a unique representative from a set of equal lines predictable):

sort -urn +2 -3 infile

WARNINGS

FILES

Comments and exits with non-zero status for various trouble conditions (for example,
when input lines are too long), and for disorder discovered under the -c option. When
the last line of an input file is missing a new-line character, sort appends one, prints a
warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

/usr/tmp/stm???

SEE ALSO
comm(l), join(1), uniq(I).

1-558 Commands

SPELL(l) SysV SPELL(l)

NAME
spell, hash make, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-y] [-b] [-x] [-I] [+localJzle] [files]

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION
spell collects words from the named files and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are printed on the standard output. If no
files are named, words are collected from the standard input.

spell ignores most troff(l), tbl(l), and eqn(l) constructions.

By default, spell follows chains of included files (.so and .nx troff(l) requests), unless
the names of such included files begin with /usr/lib. Under the -I option, spell will fol­
low the chains of all included files.

The spelling list is based on many sources, and while more haphazard than an ordinary
dictionary, is also more effective with respect to proper names and popular technical
words. Coverage of the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the history
file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would otherwise
pass.

Three routines help maintain and check the hash lists used by spell:

hash make Reads a list of words from the standard input and writes the correspond­
ing nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output.

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash codes
for all the words in it; it writes these codes on the standard output.

OPTIONS
The following options apply to spell:

-y

-b

Commands

Prints all words not literally in the spelling list, and indicate plausible
derivations from the words in the spelling list.

Checks British spelling. Besides preferring centre, colour, programme,
speciality, travelled, etc., this option insists upon -ise in words like stan­
dardise, Fowler and the OED to the contrary notwithstanding.

1-559

SPELL(l) SysV SPELL(l)

FILES

BUGS

-x Prints every plausible stem with = for each word.

+localJile Removes words found in local..Jile are removed from spell's output.
Local..Jile is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words
that are correct spellings (in addition to spell's own spelling list) for
each job.

D _ SPELL=/usr/lib/spell/hlist[abj
Hashed spelling lists, American & British

S _ SPELL=/usr/lib/spell/hstop
Hashed stop list

H _ SPELL=/usr/lib/spelI!spellhist
History file

lusr/lib/spell/spellprog
Program

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.

SEE ALSO
sed(l), sort(l), tee(I).

1-560 Commands

SPELLIN(l) SysV SPELLIN(l)

NAME
spell, hash make, spelIin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-I] [+localJzle] [files]

/usrllib/spell/hashmake

/usrllib/spell/spelIin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION
spell collects words from the named files and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are printed on the standard output. If no
files are named, words are collected from the standard input.

spell ignores most troff(I), tbl(l), and eqn(l) constructions.

By default, spell follows chains of included files (.so and .nx troff(I) requests), unless
the names of such included files begin with lusr/lib. Under the -I option, spell will fol­
low the chains of all included files.

The spelling list is based on many sources, and while more haphazard than an ordinary
dictionary, is also more effective with respect to proper names and popular technical
words. Coverage of the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the history
file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would otherwise
pass.

Three routines help maintain and check the hash lists used by spell:

hash make

spellin

hashcheck

OPTIONS

Reads a list of words from the standard input and writes the correspond­
ing nine-digit hash code on the standard output.

Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output.

Reads a compressed spelling_list and recreates the nine-digit hash codes
for all the words in it; it writes these codes on the standard output.

The following options apply to spell:

-v

-b

Commands

Prints all words not literally in the spelling list, and indicate plausible
derivations from the words in the spelling list.

Checks British spelling. Besides preferring centre, colour, programme,
speciality, travelled, etc., this option insists upon -ise in words like stan­
dardise, Fowler and the OED to the contrary notwithstanding.

1-561

SPELLIN(I) SysV SPELLIN(I)

FILES

BUGS

-x Prints every plausible stem with = for each word.

+localJile Removes words found in local../Ile are removed from spell's output.
Local..file is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words
that are correct spellings (in addition to spell's own spelling list) for
each job.

D _ SPELL=/usr/lib/spell/hlist[ab 1
Hashed spelling lists, American & British

S _ SPELL=/usr/Iib/spelIlhstop
Hashed stop list

H _ SPELL=/usrlIib/spell/spellhist
History file

lusrlIib/spell/spellprog
Program

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.

SEE ALSO
sed(I), sort(1), tee(I).

1-562 Commands

SPLINE(lG) SysV SPL1NE(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
spline takes pairs of numbers from the standard input as abscissas and ordinates of a
function. It produces a similar set, which is approximately equally spaced and includes
the input set, on the standard output. The cubic spline output has two continuous
derivatives, and sufficiently many points to look smooth when plotted, for example by
graph(IG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input); spacing is
given by the next argument, or is assumed to be 1 if next argument is not a
number.

-k The constant k used in the boundary value computation:
Yo =ky;', y;;= ky;;-l

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between the lower
and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last input values
should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally, these limits
are calculated from the data Automatic abscissas start at lower limit (default
0).

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without interpolat­
ing extra points.

BUGS
A limit of 1,000 input points is enforced silently.

SEE ALSO
graph(IG).

Commands 1-563

SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

DESCRIPTION

SysV SPLIT(l)

split reads file and writes it in n-line pieces (default 1000 lines) onto a set of output
files. The name of the first output file is name with aa appended, and so on lexico­
graphically, up to zz (a maximum of 676 files). Name cannot be longer than 12 charac­
ters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

SEE ALSO
bfs(l), csplit(l).

1-564 Commands

SysV

NAME
start_sh - start a log-in shell

SYNOPSIS
start_sh
start_csh
start ksh
start rsh

DESCRIPTION

NOTE

When you log in, the first shell is a log-in shell, therefore, the first argument is pre­
ceded by a -. This first shell runs your .profile or .login file. There should only be a
single "log-in shell" created when you first log in. Other shells could be created with
the DM commands like:

cp Ibin/ksh - DENV=-I.kshrc.pad cp Ibin/sh - DENV=-I.shrc.pad cp Ibin/csh •
DNEWP AD=true

See csh(1) for more information about the C shell.

start_csh starts a log-in C shell (one that reads your .login file). start_csh is supported
for compatibility with previous releases, and is not the recommended command to use
atSRlO.

SEE ALSO
csh(l), sh(l), ksh(l)

Commands 1-565

STAT(IG) SysV STAT(IG)

NAME
stat - statistical network useful with graphical conunands

SYNOPSIS
node-name [options] [files]

DESCRIPTION

1-566

stat is a collection of conunand level functions (nodes) that can be interconnected using
sh(l) to form a statistical network. The nodes reside in /usr/bin/graf (see
graphics(lG». Data is passed through the network as sequences of numbers (vectors).
where a number is of the form:

[sign](digits)(.digits)[e [sign]digits]

evaluated in the usual way. Brackets and parentheses surround fields. All fields are
optional. but at least one of the fields surrounded by parentheses must be present. Any
character input to a node that is not part of a number is taken as a delimiter.

stat nodes are divided into four classes.

Transformers

Summarizers

Translators

Generators

Map input vector elements into output vector elements

Calculate statistics of a vector

Convert among formats

Sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated by a
leading minus (-). In general. an option is specified by a character followed by a value.
such as cS. This is interpreted as c := 5 (c is assigned 5). The following keys are used
to designate the expected type of the value:

c Characters

f
file

string

Integer

Floating point or integer

File name

String of characters. surrounded by quotes to include a shell argument
delimiter.

Options without keys are flags. All nodes except generators accept files as input, hence
it is not indicated in the synopses.

Transformers:

abs

af

[-ci] - absolute value
columns (similarly for -c options that follow)

[-ci tv] - arithmetic function
titled output. verbose

Conunands

STAT(lG)

ceil

cusum

exp

floor

gamma

list

log

mod

pair

power

SysV

[-ei] - round up to next integer

[-ei] - cumulative sum

[-ei] - exponential

[-ei] - round down to next integer

[-ei] - gamma

[-ei dstring] - list vector elements
delimiter(s)

[-ei bf] - logarithm
base

[-ei mf] - modulus
modulus

[-ei Ffile xi] - pair elements
File containing base vector, x group size

[-ei pf] - raise to a power
power

STAT(lG)

root [-ei rf] - take a root

round

sHine

sin

subset

Summarizers:

bucket

cor

hilo

Commands

root

[-ei pi si] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ei ifnisf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-ei] - sine

[-afbfci Ffile ii Ifni np pfsi til - generate a subset
above, below, File with master vector, interval, leave, master con­
tains element numbers to leave, master contains element numbers to
pick, pick, start, terminate

[-ai ci Ffile hf ii If oi] - break into buckets
average size, File containing bucket boundaries, high, interval, low,
number
Input data should be sorted

[-Ffile] - correlation coefficient
File containing base vector

[- h I 0 ox oy]- find high and low values
high only, low only, option form, option form with x prepended,
option form with y prepended

1-567

STAT(lG)

1-568

Ireg

mean

point

prod

qsort

rank

total

var

Translators:

bar

hist

label

pie

plot

SysV STAT(lG)

[-Ffile i 0 s] -linear regression
File containing base vector, intercept only, option form for siline,
slope only

[-fJ ni pf] - (trimmed) arithmetic mean
fraction, number, percent

[-fJ ni pf s] - point from empirical cumulative density functiori
fraction, number, percent, sorted input

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

[-a b f g ri wi xf xa yf ya ylf yhf] - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region, width in
percent, x origin, suppress x-axis label, y origin, suppress y-axis
label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

[-a b f g ri xf xa yf ya ylf yhf] - build a histogram
suppress axes, bold, suppress frame, suppress grid, region, x origin,
suppress x-axis label, y origin, suppress y-axis label, y-axis lower
bound, y-axis high bound

[-b c Ffile h p ri x xu y yr] -label the axis of a GPS file
bar chart input, retain case, label File, histogram input, plot input,
rotation, x-axis, upper x-axis, y-axis, right y-axis

[-b 0 P pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:=100), value as
percentage(:=i), draw percent of pie, region, no values, x origin, y
origin
Unlike other nodes, input is lines of the form

[< i e fcc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color slice
c=(black, red, green, blue)

[-a b cstring d f Ffile g m ri xf xa xif xhf xlf xni xt yf ya yif yhf
ylf yni yt] - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points, region, x
origin, suppress x-axis label, x interval, x high bound, x low bound,
number of ticks on x-axis, suppress x-axis title, y origin, suppress y-

Commands

STAT(1G) SysV STAT(lG)

axis label, y interval, y high bound, y low bound, number of ticks on
y-axis, suppress y-axis title

title [-b c Istring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

Generators:

gas

prime

rand

RESTRICTIONS

[--1:.i if ni sf tf] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni 1 - generate prime numbers
high, low, number

[--1:.i hf If mf ni si] - generate random sequence
high, low, multiplier, number, seed

Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(lG).
gps(4) in the SysV Programmer's Reference.

Commands 1-569

STCODE(l) Domain/OS SysY STCODE(l)

NAME
stcode - translate status code value to text message

SYNOPSIS
stcode hex stat code

DESCRIPTION
stcode prints the text message associated with a hexadecimal status code. This com­
mand is useful when a user program produces a hexadecimal status code instead of the
textual message.

stcode processes predefined status codes. No provision is currently made to add user­
defined status codes to the error text database.

hex_statJode (required)

EXAMPLES

Specifies hexadecimal status code to be translated.

$ stcode 80001
disk not ready (from as / disk manager)

1-570 Commands

STRINFO(l) SysV STRINFO(l)

NAME
strinfo - prints STREAMS-related information

SYNOPSIS
strinfo [-v] [-s] [-d attributes] [-m attributes]
[-q attributes] [-t attributes]

DESCRIPTION
strinfo prints information about configured STREAMS modules and drivers, currently
active queues and Streams, and cumulative usage statistics. getopt(2) standards are nol
followed; flags must appear separately in order to be recognized.

OPTIONS
-v

-s

-d attributes

-m attributes

-q attributes

Commands

Verbose output.

Print cumulative usage statistics.

Print information about configured drivers. attributes is a blank·
separated list of one or more of the following:

all Print all attributes (default).

index

majdev

id

name

stats

privstats

type

traits

psz

water

write

Index in the cdevsw or fmodsw table.

Major device number.

Id number.

Name.

Statistics.

Private statistics.

Object type of device.

Traits supported.

Minimum and maximum packet size.

Low and high water marks.

Print write-side information.

Print information about configured modules. attributes is a blanl
separated list of one or more of the attributes listed above for -d.

Print information about active queues. attributes is a blanl
separated list of one or more of the following:

all Print all attributes (default).

address

name

next

Address of the queue.

Name ofthe module.

Address of next queue.

1-5'

STRINFO(l)

-t attributes

SEE ALSO

count

flags

psz

water

msgs

SysV

Count of message blocks on queue.

Queue state.

Minimum and maximum packet size.

Low and high water mark.

Print contents of messages on queue.

STRINFO(l)

Print infonnation about active Streams. attributes is a blank­
separated list of one or more of the following:

all Print all attributes (default).

index

address

wrq

iocblk

inode

strtab

flag

iocid

iocwait

pgrp

wroff

error

pushcnt

list

sigflags

pollflags

Index into the Stream table.

Address of the Stream.

Address of Stream head read and write queues.

Return block for ioct!.

Inode pointer.

Pointer to the streamtab structure for the Stream.

State/flags.

ioctl id.

Count of processes waiting to do ioctl.

Process group, for signals.

Write offset.

Hangup or error to set u.u_error.

Number of pushes done on Stream.

Pointer to list of processes to receive SIGPOLL
and to wake up poll.

Logical OR of all signal list events.

Logical OR of all poll list events.

tnnon(1), trconf(l)

1-572 Commands

STRJP(l) SysV STRIP(l)

NAME
strip - strip symbol and line number information from a common object file

SYNOPSIS
strip [-1] [-x] [-b [-r] [-V] [-Aa] filename • ••

DESCRIPTION
The strip command strips the symbol table and line number information from conunon
object files, including archives. Once this has been done, no symbolic debugging
access is available for that file; therefore, this command is nonnally run only on produc­
tion modules that have been debugged and tested. By default, enough infonnation is
saved to allow traceback information to be obtained from stripped files.

The amount of information stripped from the symbol table can be controlled by using
any of the options listed below:

OPTIONS

Fll..ES

-1 Strips line number information only; does not strip any symbol table
information.

-x
-b

-r

Does not strip static or external symbol information.

Same as the -x option, but also does not strip scoping information (e.g.,
beginning and end of block delimiters).

Does not strip static or external symbol information, or relocation infor­
mation.

-V Prints the version of the strip command executing on the standard error
output.

-Aa Strips .blocks and .lines sections of common object files so that trace­
back information is no longer available.

IT there are any relocation entries in the object file and any symbol table infonnation i!
to be stripped, strip complains and terminates without stripping filename unless the -I
option is used.

IT you use strip on a common archive file [see ar(4)] the archive symbol table ane
module table are removed. You must restore the archive symbol table by executini
ar(l) with the s option before the archive can be link-edited by Id(I). strip produce:
appropriate warning messages when this situation arises.

strip is used to reduce the file storage overhead taken by the object file.

TMPDlR/strp* Temporary files

TMPDlR is usually /usr/tmp but can be redefined by setting the environment varlabll
TMPDlR [see tempnamO in tmpnam(3S)].

Commands 1-57

STRIP(1) SysV STRIP(l)

DIAGNOSTICS
strip: name: cannot open

If name cannot be read.

strip: name: bad magic
If name is not an appropriate common object file.

SEE ALSO
ar(l), cc(l),ld(l), ts(1), tmpnam(3S), a.out(4), ar(4).

1-574 Commands

SITY(l) SysV SITY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
stty sets certain terminal I/O options for the device that is the current standard input;
without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret C), then the value of that option is the
corresponding CTRL character (e.g., "'H" is CTRL/H ; in this case, recall that
CTRL/H is the same as the "back-space" key.) The sequence "--,, means that an
option has a null value. This has no effect on Apollo transcript pads. It is useful on
dialup terminals or VT100 windows. stty-a

-a Reports all of the option settings;

-g Reports current settings in a form that can be used as an argument to another
stty command.

Options in the last group are implemented using options in the previous groups. Note
that many combinations of options make no sense, but no sanity checking is performed.
The options are selected from the following:

Control Modes
parenb (-parenb) Enable (disable) parity generation and detection.
parodd (-parodd) Select odd (even) parity.
cs5 cs6 cs7 cs8 Select character size (see termio(7».
o Hang up phone line immediately.
no 300 600120018002400480096001920038400

Set terminal baud rate to the number given, if possible. (AI

hupcl (-hupcl)
hup (-hup)
cstopb (-cstopb)
cread (-cread)
clocal (-clocal)
loblk (-Ioblk)

Input Modes
ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)

Commands

speeds are not supported by all hardware interfaces.)
Hang up (do not hang up) Dataphone connection on last close.
Same as hupcl (-hupcl).
Use two (one) stop bits per character.
Enable (disable) the receiver.
n Assume a line without (with) modem control.
Block (do not block) output from a non-current layer.

Ignore (do not ignore) break on input.
Signal (do not signal) INTR on break.
Ignore (do not ignore) parity errors.
Mark (do not mark) parity errors (see termio(7».
Enable (disable) input parity checking.

1-57

STTY(l)

istrip (-istrip)
inler (-inler)
igner (-igner)
iernl (-icrnl)
iucle (-iucle)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)
oernl (-oernl)
onoer (-onoer)
onlret (-onlret)

ofill (-ofill)
of del (-of del)
erO ert er2 er3
nlO nil
tabO tab I tab2 tab3
bsO bsl
ffO fft
vtO vtl

Local Modes
isig (-isig)

1-576

ieanon (-ieanon)

xease (-xease)
eeho (-echo)
eehoe (-eehoe)

SysV

Strip (do not strip) input characters to seven bits.
Map (do not map) NL to CR on input.
Ignore (do not ignore) CR on input.
Map (do not map) CR to NL on input.

STTY(l)

Map (do not map) upper-case alphabetics to lower case on
input.
Enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by sending an
ASCII DCl.
Allow any character (only DCl) to restart output.
Request that the system send (not send) START/STOP charac­
ters when the input queue is nearly empty/full.

Post-process output (do not post-process output; ignore all
other output modes).
Map (do not map) lower-case alphabetics to upper case on out­
put.
Map (do not map) NL to CR-NL on output.
Map (do not map) CR to NL on output.
Do not (do) output CRs at column zero.
On tlte terminal NL performs (does not perform) the CR func­
tion.
Use fill characters (use timing) for delays.
Fill characters are DELs (NULs).
Select style of delay for carriage returns (see termio(7».
Select style of delay for line-feeds (see termio(7».
Select style of delay for horizontal tabs (see termio(7)).
Select style of delay for backspaces (see termio(7».
Select style of delay for form-feeds (see termio(7)).
Select style of delay for vertical tabs (see termio(7».

Enable (disable) the checking of characters against the special
control characters INTR, QUIT, and SWTCH.
Enable (disable) canonical input (ERASE and KILL process­
ing).
Canonical (unprocessed) upper!lower-case presentation.
Echo back (do not echo back) every character typed.
Echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed
character on many CRT terminals; however, it does not Keep
track of colunm position and, as a result, may be confusing on
escaped characters, tabs, and backspaces.

Commands

STTY(l)

eehok (-eehok)
Ifke (-Ifke)
echonl (-eehonl)
notlsh (-notlsh)
stwrap (-stwrap)

sttlush (-sttlush)

stappl (-stappl)

Control Assignments
control-character c

line j

Combination Modes

SysV

Echo (do not echo) NL after KILL character.
The same as eehok (-eehok); Obsolete.
Echo (do not echo) NL.
Disable (enable) flush after INTR, QUIT, or SWTCH.

STTY(l)

Disable (enable) truncation of lines longer than 79 characters
on a synchronous line.
Enable (disable) flush on a synchronous line after every
write(2).
Use application mode (use line mode) on a synchronous line.

Set control-character to c, where control-character is erase,
kill, intr, quit, swteh, eof, ctab, min, or time (etab is used
with -stappl; min and time are used with -icanon; see ter­
mio(7)). If c is preceded by an (escaped from the shell) caret
n, then the value used is the corresponding CTRL character
(e.g., "'D" is a CTRLID); "'?" is interpreted as DEL and
'" -" is interpreted as undefined.
Set line discipline to j (0 < j < 127).

evenp or parity Enable parenb and es7.
oddp Enable parenb, es7, and parodd.
-parity, -even p, or -odd p

Disable parenb, and set es8.
raw (-raw or cooked) Enable (disable) raw input and output (no ERASE, KUL, INTR,

nl (-nl)

lease (-lease)
LCASE (-LCASE)
tabs (-tabs or tab3)
ek
sane
term

SEE ALSO
tabs(I).

QUIT, SWTCH, EOT, or output post processing).
Unset (set) icml, onler. In addition -nl unsets inler, igner,
oeml, and onlret.
Set (unset) xease, iucle, and oleue.
Same as lease (-lease).
Preserve (expand to spaces) tabs when printing.
Reset ERASE and KILL characters back to normal # and @.
resets all modes to some reasonable values.
Set all modes suitable for the tenninal type term, where term
is one of tty33, tty37, vt05, tn300, moo, or tek.

ioctl(2) in the SysV Programmer's Reference.
termio(7) in the Managing SysV System Software.

Commands 1-577

SU(l) SysV SU(l)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION
su allows you to be recognized as another user without logging off. The default user
name is root (i.e., super-user).

su requires that you supply the appropriate password (unless you are already root). If
the password is correct, su executes a new shell with the real and effective user ID set
to that of the specified user. The new shell is the optional program named in the shell
field of the specified user's password file entry, or /bin/sh if none is specified. See
passwd(4) and sh(l) for more information. To restore normal user ID privileges, type
an EOF (CfRLjD) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs like sh(l), an argument of the form -c
string executes string via the shell, and an argument such as -r gives you a restricted
shell.

The following statements are true only if the optional program named in the shell field
of the specified user's password file entry is like sh(I). If the first argument to su is a
dash (-), the environment is changed to what would be expected if you actually logged
in as the specified user. This is done by invoking the program used as the shell with an
argument value whose first character is -, thus causing first the system's profile
(/etc/profile) and then the specified user's profile (.profile in the new HOME directory)
to be executed. Otherwise, the environment is passed along with the possible exception
of$PATH, which is set to /bin:/etc:/usr/bin:/usr/apollo/bin for root.

Note that if the optional program used as the shell is /bin/sh, your .profile can check
argO for -sh or -su to determine if it was invoked by login(1)
or su respectively. If your program is other than /bin/sh, then .profile is invoked with
an argO of -program by both login(l) and su.

All attempts to become another user using su are logged in the log file /usr/adm/sulog.

EXAMPLES

1-578

To become user bin while retaining your previously exported environment, execute the
following:

su bin

To become user bin but change the environment to what would be expected if bin had
originally logged in, execute:

su-bin

Commands

SU(1)

FILES

SysV SUet)

To execute command with the temporary environment and permissions of user bin,
type:

su - bin -c command args

/etc/passwd

Jete/profile

$HOME.profile

System's password file

System's profile

User's profile

/usr/adm/sulog Log file

SEE ALSO
env(l), login(l), sh(l), passwd(4), environ(5).

Commands 1-579

SUM(l) SysV SUM(l)

NAME
sum - print checksum and block count of a file

SYNOPSIS
~ 1m [-r] file

DESCRIPTION
sum calculates and prints a 16-bit checksum for the named file, and also prints the
number of blocks in the file. It is typically used to look for bad spots, or to validate a
file communicated over some transmission line. The option -r causes an alternate algo­
rithm to be used in computing the checksum.

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the block
count.

SEE ALSO
wc(l).

1-580 Commands

SWAPUL(l)

NAME
swapu! - rearrange underlining

SYNOPSIS
swapu!

DESCRIPTION

SysV SWAPUL(l)

swapu! reads lines from standard input, rearranges underlining so that underlines follow
a character in the output stream (instead of being preceded by them), and writes the
resulting text to standard output.

Commands 1-581

Domain/OS SysY

NAME
swedish_to)so - convert files to ISO fonnat

SYNOPSIS
swedish_to)so input ..file output ..file

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7-bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit fonnat. The overloaded fonts include any
with a specific language suffix (for example, tixl3.french, or din_tixlI.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCn characters and the national characters in one file. The 8-bit fonts
available as of SRIO include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (input..file) and your output..file. If output..file already exists,
the utilities abort.

The default location for the utilities is lusr/apollo/bin.

lusr/apollo/bin/french_to_iso Converts overloaded French to ISO fonnat

lusr/apolJo/bin/german _ to)so Converts overloaded Gennan to ISO fonnat

lusr/apollo/bin/nor.dan_to)so Converts overloaded Norwegian/Danish to ISO for­
mat

lusr/apollo/bin/swedish_to_iso Converts overloaded Swedish/Finnish to ISO for­
mat

lusr/apollo/bin/swiss _to _iso

lusr/apollo/bin/uk_to_iso

DIAGNOSTICS

Converts overloaded Swiss to ISO fonnat

Converts overloaded U.K. English to ISO fonnat

All messages are generally self-explanatory.

1-582 Commands

Domain/OS SysV

NAME
swiss to iso - convert files to ISO format

SYNOPSIS
swiss to iso input Jzle output Jzle

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7 -bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit format. The overloaded fonts include any
with a specific language suffix (for example, f7x13.french, or din_f7xll.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCIl characters and the national characters in one file. The 8-bit fonts
available as of SRIO include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (inputJzle) and your outputJzle. If outputJzle already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

/usr/apollo/bin/french _to _iso Converts overloaded French to ISO format

/usr/apollo/bin/german _ to _iso Converts overloaded German to ISO format

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for­
mat

/usr/apollo/bin/swedish_to_iso Converts overloaded Swedish/Finnish to ISO for­
mat

/usr/apollo/bin/swiss _ to _iso

/usr/apollo/bin/uk _ to _iso

DIAGNOSTICS

Converts overloaded Swiss to ISO format

Converts overloaded U.K. English to ISO format

All messages are generally self-explanatory.

Commands 1-583

SYNC(l)

NAME
sync - forces write to disk

SYNOPSIS
sync

DESCRIPTION

SysV SYNC(l)

The sync corrunand executes the sync system prumtlve. It flushes all previously
unwritten system buffers out to disk, thus assuring that all file modifications up to that
point are saved.

The sync operation is not actually necessary on DOMAIN hardware, because the sys­
tem buffers are automatically written to disk at shutdown. Nevertheless, we provide it
in the interest of ensuring compatibility.

SEE ALSO
sync(2)

1-584 Corrunands

SYSTYPE(l)

NAME
systype - display version stamp

SYNOPSIS
/usr/apollo/bin/systype file

DESCRIPTION

SysV SYSTYPE(l)

systype displays the UNIX version stamp of the specified object file. Four columns are
displayed in the output. The first (OBITYPE) contains the object type, the second
(SYSTYPE) contains the systype (one of the following):

none
any
sys5
sys5.3
bsd4.2
bsd4.3

The third column (RUNTYPE) contains the runtype, which has the same set of possible
types as the systype; and the forth column (FILE) is the name of the file.

The fonnat is as follows:

OBITYPE
coff
obj

SYSTYPE
bsd4.3
bsd4.2

RUNTYPE FILE
sys5.3 /bin/cc

//node_l/bsd4.2/bin/cc

Note that files of object type OBI, do not have runtypes.

EXAMPLES
$ systype /bin/cc

OBJTYPE
coff

SYSTYPE
bsd4.3

$ systype /bsd4.2/bin/cc

OBJTYPE
obj

SEE ALSO
ce(l),ld(I);

SYSTYPE
bsd4.2

Using Your SysV Environment

Commands

RUNTYPE
sys5.3

RUNTYPE

FILE
/bin/cc

FILE
/bsd4.2/bin/cc

1-585

TABS(l) SysV TABS(l)

NAME
tabs - set tabs on a tenninal

SYNOPSIS
tabs [tabspec] [-Ttype] [+mn]

DESCRIPTION

1-586

tabs sets the tab stops on the user's tenninal according to the tab specification tabspec,
after clearing any previous settings. The user's tenninal must have remotely-settable
hardware tabs. This has no effect on Apollo transcript pads. It is useful on connected
tenninals and VT100 windows.

tabspec Four types of tab specification are accepted for tabspec. They are described
below: canned (-code), repetitive (-n), arbitrary (n] ,n2, ...), and file (-file).
If no tabspec is given, the default value is -8, i.e., UNIX system "standard"
tabs. The lowest column number is 1. Note that for tabs, column 1 always
refers to the leftmost column on a tenninal, even one whose column markers
begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Use one of the codes listed below to select a canned set of tabs. The legal
codes and their meanings are as follows:
-a 1,10,16,36,72

Assembler, ffiM S/370, first fonnat
-a2 1,10,16,40,72

Assembler, ffiM S/370, second fonnat
-c 1,8,12,16,20,55

-c2

-c3

-f

-p

-s

COBOL, nonnal fonnat
1,6,10,14,49
COBOL compact fonnat (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one space
gets you to column 8, and a tab reaches column 12. Files using this
tab setup should include a fonnat specification as follows (see
fspec(4»:

<:t-c2 m6 s66 d:>
1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact fonnat (columns 1-6 omitted), with more tabs than
-c2. This is the recommended fonnat for COBOL. The appropriate
fonnat specification is (see fspec(4»:

<:t-c3 m6 s66 d:>
1,7,11,15,19,23
FORTRAN
1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I
1,10,55
SNOBOL

Commands

TABS(l) SysV TABS(l)

-u 1,12,20,44
UNlVAC 1100 Assembler

-n A repetitive specification requests tabs at columns l+n, 1+2*n, etc. Of par­
ticular importance is the value 8: this represents the UNIX system "stan­
dard" tab setting, and is the most likely tab setting to be found at a terminal.
Another special case is the value 0, implying no tabs at all.

nl ,112 ,... The arbitrary format permits the user to type any chosen set of numbers,
separated by commas, in ascending order. Up to 40 numbers are allowed. If
any number (except the first one) is preceded by a plus sign, it is taken as an
increment to be added to the previous value. Thus, the formats 1,10,20,30,
and 1,10,+10,+10 are considered identical.

-file If the name of a file is given, tabs reads the first line of the file, searching for
a format specification (see fspec(4». If it finds one there, it sets the tab stops
according to it, otherwise it sets them as -8. This type of specification may
be used to make sure that a tabbed file is printed with correct tab settings, and
would be used with the pr(l) command:

tabs - file; pr file

Any of the following also may be used; if a given flag occurs more than once, the last
value given takes effect:

- Ttype tabs usually needs to know the type of terminal in order to set tabs and
always needs to know the type to set margins. type is a name listed in
term(5). If no - T flag is supplied, tabs uses the value of the environment
variable TERM. If TERM is not defined in the environment (see environ(5»,
tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all tabs to be
moved over n columns by making column n+ 1 the left margin. If +m is
given without a value of n, the value assumed is 10. For a TermiNet, the first
value in the tab list should be 1, or the margin will move even further to the
right. The normal (leftmost) margin on most terminals is obtained by +mO.
The margin for most terminals is reset only when the +m flag is given expli­
citly.

Tab and margin setting is performed via the standard output.

EXAMPLES
tabs -a

tabs -8

tabs 1,8,36

Commands

Example using -code (canned specification) to set tabs to the settings
required by the llM assembler: columns 1, 10, 16,36,72.

Example of using -n (repetitive specification), where Il is 8, Causes
tabs to be set every eighth position:
1+(1*8),1+(2*8) which evaluate to columns 9,17, ...

Example of using nl ,1l2 ,... (arbitrary specification) to set tabs at
columns 1, 8, and 36.

1-587

TABS(l)

NOTE

SysV TABS(l)

tabs -$HOME/fspec.list/aU4425
Example of using -file (file specification) to indicate that tabs should
be set according to the first line of $HOME/fspec.list/att4425 (see
fspec(4».

There is no consistency among different terminals regarding ways of clearing tabs and
setting the left margin. tabs clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 64.

WARNING
The tabspec used with the tabs command is different from the one used with the
newform(l) command. For example, tabs -8 sets every eighth position; whereas
newform -i-8 indicates that tabs are set every eighth position.

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

When arbitrary tabs are ordered incorrectly.
When a zero or missing increment is found in an arbitrary
specification.
When a canned code caunot be found.
If -file option used, and file can't be opened.
If -file option used and the specification in that file points to yet
another file. Indirection of this form is not permitted.

SEE ALSO
newform(l), pr(l), tput(l).
fspec(4), terminfo(4), environ(5), term(5) in the SysV Programmer's Reference.

1-588 Commands

TAIL(1) SysV TAIL(l)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±[number][lbc[f]]] [file]

DESCRIPTION

BUGS

tail copies the named file to the standard output beginning at a designated place. If no
file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of
the input (if number is null, the value 10 is assumed). Number is counted in units of
lines, blocks, or characters, according to the appended option I, b, or c. When no units
are specified, counting is by lines.

With the :"'f ("follow") option, if the input file is not a pipe, the program will not ter­
minate after the line of the input file has been copied, but will enter an endless loop,
wherein it sleeps for a second and then attempts to read and copy further records from
the input file. Thus it may be used to monitor the growth of a file that is being written
by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are appended to
fred between the time tail is initiated and killed. As another example, the command:

tail -lScf fred

will print the last 15 characters of the file fred, followed by any lines that are appended
to fred between the time tail is initiated and killed.

Tails relative to the end of the file are stored in a buffer, and thus are limited in length.
Various kinds of anomalous behavior may happen with character special files.

WARNING
The tail command will only tail the last 4096 bytes of a file regardless of its line count.

SEE ALSO
dd(lM)

Commands 1-589

TAR(1) SysV TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
letc/tar -c[vwfb[#s]] device block files .. .
letc/tar -r[vwb[#s]] device block £files ...]
letc/tar -t[vf[#s] device
letc/tar -u[vwb[#s]] device block £files ...]
letc/tar -x[lmovwf[#s]] device £files ...]

DESCRIPTION

1-590

tar saves and restores files on magnetic tape. Its actions are controlled by the key argu­
ment. The key is a string of characters containing one function letter (c, r, t, u, or x)
and possibly followed by one or more function modifiers (v, w, f, b, and #). Other
arguments to the command are files (or directory names) specifying which files are to
be dumped or restored. In all cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Replace. The named files are written on the end of the tape. The c function
implies this function.

x Extract. The named files are extracted from the tape. If a named file matches
a directory whose contents had been written onto the tape, this directory is
(recursively) extracted. Use the file or directory's relative path when
appropriate, or tar will not find a match. The owner, modification time, and
mode are restored (if possible). If no files argument is given, the entire con­
tent of the tape is extracted. Note that if several files with the same name are
on the tape, the last one overwrites all earlier ones.
Table. The names and other information for the specified files are listed each
time that they occur on the tape. The listing is similar to the format produced
by the Is -I command. If no files argument is given, all the names on the tape
are listed.

U Update. The named files are added to the tape if they are not already there, or
have been modified since last written on that tape. This key implies the r key.

c Create a new tape; writing begins at the beginning of the tape, instead of after
the last file. This key implies the r key.

The characters below may be used in addition to the letter that selects the desired func­
tion. Use them in the order shown in the synopsis.

#s This modifier determines the drive on which the tape is mounted (replace #
with the drive number) and the speed of the drive (replace s with I, m, or h for
low, medium or high). The modifier tells tar to use a drive other than the
default drive, or the drive specified with the -f option. For example, with the
Sh modifier, tar would use Idev/mtlSh or Idev/mtO instead of the default
drives /dev/mt/Om or /dev/mtO, respectively. However, if for example, -f
Idev/rmtO Sh appeared on the command line, tar would use Idev/rmtSh or

Commands

TAR(l)

BUGS

SysV TAR(l)

/devmtO. The default entry is Om.

v Verbose. Normally, tar does its work silently. The v (verbose) option causes
it to type the name of each file it treats, preceded by the function letter. With
the t function, v gives more information about the tape entries than just the
name.

w What. This causes tar to print the action to be taken, followed by the name
of the file, and then wait for the user's confirmation. If a word beginning with
y is given, the action is performed. Any other input means "no". This is not
valid with the t key.

f File. This causes tar to use the device argument as the name of the archive
instead of /dev/mt/Om or Idev/mtO. If the name of the file is -, tar writes to
the standard output or reads from the standard input, whichever is appropri­
ate. Thus, tar can be used as the head or tail of a pipeline. tar can also be
used to move hierarchies with the command:

cd fromdir; tar cf - .

b Blocking Factor. This causes tar to use the block argument as the blocking
factor for tape records. The default is I, the maximum is 20. This function
should not be supplied when operating on regular archives or block special
devices. It is mandatory however, when reading archives on raw magnetic
tape archives (see f above). The block size is determined automatically when
reading tapes created on block special devices (key letters x and t).
Link. This tells tar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.

m Modify. This tells tar to not restore the modification times. The
modification time of the file will be the time of extraction.

o Ownership. This causes extracted files to take on the user and group identifier
of the user running the program, rather than those on tape. This is only valid
with the x key.

A Include Apollo-specific information. Allows Domain/OS typed files.

There is no way to ask for the n -th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The current
magnetic tape driver cannot backspace raw magnetic tape. If the archive is on a disk
file, the b option should not be used at all, because updating an archive stored on disk
can destroy it.
The current limit on file name length is 100 characters.
tar doesn't copy empty directories or special files.

Commands 1-591

TAR(1)

FILES
Idev/mt/*
Idev/mt*
Itmp/tar*
Idev/mt/ctape
Idev/mt/Om
Idev/rmt/Om

SysV

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

SEE ALSO
ar(1). cpio(I).ls(I). mt(I).

1-592

TAR(l)

Commands

TB(l) Domain/OS SysV TB(l)

NAME
tb - print process traceback

SYNOPSIS
tb [options] [process_spec]

DESCRIPTION
tb prints a process traceback, listing the name and current line number of each routine
on the call stack. There are two forms of traceback:

Active

Diagnostic

Traces the current state of an executing process.

Traces the state of an aborted process at the time of the fault which
killed it.

process_spec (optional)

OPTIONS
-p[roc]

-d[iagnostic]

-n[ode] node_spec

UNIX process ID (PID), aegis process name, or aegis process
UID. Process names are not recorded in the process dump file, so
dead processes must be referenced by PID or UID. Since PID's
are reused multiple dump file entries for the same PID are possi­
ble, the command will select the most recent.

Default if omitted: perform a diagnostic traceback for the last
child of the invoking process

Traces exactly the specified process. If this option is absent, the
specified process or one of its children may be traced, as
described below.

Prints a diagnostic traceback of an aborted process.

Uses the process dump file on the specified node. Implies -diag­
nostic.

-c[ommand] pathname
Prints diagnostic traceback(s) for processes running the specified
program. pathname must be reachable from the working direc­
tory; command search rules are not applied. Implies -diagnos­
tic.

-s[ince] date Jime _spec

-I[ast] [n]

Commands

Prints diagnostic traceback(s) for processes which aborted after
the specified time. Implies -diagnostic. The format for
date _time _spec is [[[yyyy Ilnun/dd] [.] [hh:mm[:ss]].

Prints the n most recent entries in the process dump file (which
also satisfy other selection criteria if given). n defaults to 1. If
neither -last nor -all is specified tb prints only the most recent
entry. Implies -diagnostic.

1-593

TB(l)

-alII]

-f[ull]

-b[rief]

-t[asks]

Domain/OS SysV TB(l)

Prints all entries in the process dump file (which also satisfy
other selection criteria if given.) If neither -last or -all are
specified, tb prints only the most recent entry. Implies -diagnos­
tic.

Prints additional fault diagnostic information, such as register
values. Implies -diagnostic.

Lists entries in the process dump file that satisfy selection cri­
teria, but do not print trace backs. The listing shows the process,
parent, and group IDs, the time of the dump, the abort status, and
the program that was running.

Traces all tasks in the process. By default only the currently
active task is shown. Ignored if tasking is not enabled. Applies
only to active process tracebacks.

Suppresses output of process 10, dump time, and program name
preceding diagnostic traceback, or of column headers in brief for­
mat. It has no effect on active process traceback.

Diagnostic Tracebacks
A diagnostic traceback shows the state of the call stack at the time of a fault which
causes a process to be aborted. Traceback information is written to
'node_data/system _Iogs/proc _dump at the time of the fault. This is a circular buffer
in which the oldest information is overwritten as needed to make room for new. There
is space for approximately 150-200 dumps. tb prints up to 128 call levels for diagnostic
tracebacks.

tb prints a diagnostic traceback if the command line specifies -diagnostic or any option
which implies it, or if the process specified is not active. If -diagnostic is specified
together with an active process, the most recent aborted child of that process is traced
(or most recent children if -last or -all is specified).

If no options are given (except possibly -f, -b or -h) tb prints a diagnostic traceback
for the most recent aborted child of the process which invoked tb.

Examples of Requesting Diagnostic Tracebacks

1-594

Assume process_5 is an active shell process, and process number 107 is not active.
Traceback process 107.

$ tb 107

Traceback last aborted command invoked from process_5.

Traceback last aborted command from this shell

Commands

TB(l) Domain/OS SysV TB(l)

$tb

Traceback last aborted process running test3

$tb -c test3

List all entries in the process dump file made today

$tb -s today -a -b

Active Process Tracebacks
An active process traceback shows the current state of an executing process, listing the
name and line number of each procedure in the call stack. The process is suspended
while the traceback is taken. tb prints an active process traceback if the command line
specifies 3l\ active process and does not include -diagnostic (or any option that implies
it). If the process is specified by name and has any active children, then the most recent
child is traced. (This allows a process to be specified by the name of its invoking shell
process.) This behavior may be overriden by the -proc switch, or by specifying the
process by pro or UID. Note that the only other option applicable to active process
tracebacks is -task.

Examples of Requesting Active Process Tracebacks
Assume process_7 is an active shell process, from which a command running in pro­
cess 747 has been invoked.

$tb747

Traceback the invoked command

$tb process_7

same

$tb -p process_7

Traceback the shell process itself

Commands 1-595

TD(lG) SysV TD(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see graphics(lG».

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

erase

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corner to n inches.

yvn Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit, hard­
copy generates a screen copy on the unit.

tekset Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

1-596 Commands

TD(lG) SysV TD(1G)

td Translate a GPS to scope code for a Tektronix 4010 series storage tenninal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(l G).
gps(4) in the SysV Programmer's Reference.

Commands 1-597

TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION

SysV TEE(l)

tee transcribes the standard input to the standard output and makes copies in the files.

OPTIONS
-i Ignore interrupts;

-a Causes the output to be appended to thefiles rather than overwriting them.

1-598 COnimands

TEKSET(lG) SysV TEKSET(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . ..]
erase
hardcopy
tekset
td [-ernn] [GPS file . ..]

DESCRIPTION
All of the connnands described below reside in /usr/bin/graf (see graphics(lG».

hpd Translate a GPS (graphical primitive string; see gps(4» to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com­
puted from the maximum and minimum points in file unless the -u or -r
option is provided. If no file is given, the standard input is assumed.

erase

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left comer to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left comer to n inches.

yvn Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit, hard­
copy generates a screen copy on the unit.

tekset

Connnands

Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

1-599

TEKSET(lG) SysV TEKSET(lG)

td Translate a GPS to scope code for a Tektronix 4010 series storage terminal.
A viewing window is computed from the maximum and minimum points in
file unless the -u or -r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
graphics(1 G).
gps(4) in the SysV Programmer's Reference.

1-600 Commands

TELNET(lC) SysV TELNET(lC)

NAME
telnet - user interface to the TELNET protocol

SYNOPSIS
tel net [host [port]]

DESCRIPTION
telnet is used to communicate with another host using the TELNET protocol. If telnet
is invoked without arguments, it enters command mode, indicated by its prompt ("tel­
net>"). In this mode, it accepts and executes the commands listed below. If it is
invoked with arguments, it performs an open command (see below) with those argu­
ments.

Once a connection has been opened, tel net enters an input mode. The input mode
entered will be either "character at a time" or "line by line" depending on what the
remote system supports.

In "character at a time" mode, most text typed is immediately sent to the remote host
for processing.

In "line by line" mode, all text is echoed locally, and (normally) only completed lines
are sent to the remote host. The "local echo character" (initially ""E") may be used to
tum off and on the local echo (this would mostly be used to enter passwords without the
password being echoed).

In either mode, if the localchars toggle is TRUE (the default in line mode; see below),
the user's quit, intr, and flush characters are trapped locally, and sent as TELNET pro­
tocol sequences to the remote side. There are options (see toggle autoflush and toggle
autosynch below) which cause this action to flush subsequent output to the terminal
(until the remote host acknowledges the TELNET sequence) and flush previous tenni­
nal input (in the case of quit and intr).

While connected to a remote host, telnet command mode may be entered by typing the
telnet "escape character" (initially "T'). When in command mode, the normal tenni­
nal editing conventions are available.

COMMANDS
The following commands are available. Only enough of each command to uniquely
identify it need be typed (this is also true for arguments to the mode, set, toggle, and
display commands).

open host [port]

close

Commands

Open a connection to the named host. If no port number is specified, tel­
net will attempt to contact a TEL NET server at the default port. The
host specification may be either a host name (see hosts(4)) or an Internet
address specified in "dot notation" (see inet(3N)).

Close a TELNET session and return to command mode.

1-601

TELNET(lC) SysV TELNET(lC)

1-602

quit

z

mode type

status

Close any open TEL NET session and exit tel net. An end of file (in
command mode) will also close a session and exit.

Suspend telnct. This command only works when the user is using the
csh(l).

Ask the remote host for permission to go into the requested mode. If the
remote host is capable of entering that mode, the requested mode will be
entered. Type is either line (for "line by line" mode) or character (for
"character at a time" mode).

Show the current status of telnet. This includes the peer one is con­
nected to, as well as the current mode.

display [argument ...]

? [command]

Displays all, or some, of the set and toggle values (see below).

Get help. With no arguments, telnet prints a help summary. If a com­
mand is specified, telnet prints the help information for just that com­
mand.

send arguments
Sends one or more special character sequences to the remote host. The
following are the arguments which may be specified (more than one
argument may be specified at a time):

escape Sends the current telnet escape character (initially' 'A]' ').

synch Sends the TEL NET SYNCH sequence. This sequence causes
the remote system to discard all previously typed (but not yet
read) input. This sequence is sent as TCP urgent data (and may
not work if the remote system is a 4.2 BSD system - if it
doesn't work, a lower case "r" may be echoed on the terminal).

brk Sends the TELNET BRK (Break) sequence, which may have
significance to the remote system.

ip Sends the TELNET IP (Interrupt Process) sequence, which
should cause the remote system to abort the currently running
process.

ao Sends the TELNET AO (Abort Output) sequence, which
should cause the remote system to flush all output from the
remote system to the user's terminal.

ayt Sends the TELNET A YT (Are You There) sequence, to which
the remote system mayor may not choose to respond.

ec Sends the TEL NET EC (Erase Character) sequence, which
should cause the remote system to erase the last character
entered.

Commands

TELNET(lC) SysV TELNET(lC)

el Sends the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being
entered.

ga Sends the TELNET GA (Go Ahead) sequence, which likely
has no significance to the remote system.

nop Sends the TELNET NOP (No OPeration) sequence.

? Prints out help information for the send command.

set argument value
Set anyone of a number of tel net variables to a specific value. The spe­
cial value off turns off the function associated with the variable. The
values of variables may be interrogated with the display command. The
variables which may be specified are:

echo This is the value (initially "'E") which, when in "line by line"
mode, toggles between doing local echoing of entered charac­
ters (for normal processing), and suppressing echoing of entered
characters (for entering, say, a password).

escape This is the telnet escape character (initially "T') which causes
entry into tel net command mode (when connected to a remote
system).

interrupt
If telnet is in localchars mode (see toggle localchars below)
and the interrupt character is typed, a TELNET IP sequence
(see send ip above) is sent to the remote host. The initial value
for the interrupt character is taken to be the terminal's intI
character.

quit If telnet is in localchars mode (see toggle localchars below:
and the quit character is typed, a TELNET BRK sequence (set
send brk above) is sent to the remote host. The initial value fo]
the quit character is taken to be the terminal's quit character.

flushoutput
If telnet is in localchars mode (see toggle localchars below
and the f1ushoutput character is typed, a TELNET A(

sequence (see send ao above) is sent to the remote host. The
initial value for the flush character is taken to be the terminal':
flush character.

erase If tel net is in localchars mode (see toggle localchars below)
and if telnet is operating in "character at a time" mode, the]
when this character is typed, a TELNET EC sequence (se,
send ec above) is sent to the remote system. The initial valu<
for the erase character is taken to be the terminal's eras

Commands 1-60

TELNET(lC) SysV TELNET(lC)

character.

kill If tel net is in localchats mode (see toggle localchars below),
and if telnet is operating in "character at a time" mode, then
when this character is typed, a TEL NET EL sequence (see
send el above) is sent to the remote system. The initial value
for the kill character is taken to be the terminal's kill character.

eof If telnet is operating in "line by line" mode, entering this char­
acter as the first character on a line will cause this character to
be sent to the remote system. The initial value of the eof char­
acter is taken to be the terminal's eof character.

toggle arguments ...

1-604

Toggle (between TRUE and FALSE) various flags that control how tel­
net responds to events. More than one argument may be specified. The
state of these flags may be interrogated with the display command.
Valid arguments are:

localchars
If this is TRUE, then the Hush, interrupt, quit, erase, and kill
characters (see set above) are recognized locally, and
transformed into (hopefully) appropriate TELNET control
sequences (respectively ao, ip, brk, ec, and el; see send above).
The initial value for this toggle is TRUE in "line by line"
mode, and FALSE in "character at a time" mode.

autonush
If autoHush and localchars are both TRUE, then when the ao,
intr, or quit characters are recognized (and transformed into
TELNET sequences; see set above for details), telnet refuses
to display any data on the user's terminal until the remote sys­
tem acknowledges (via a TELNET Timing Mark option) that it
has processed those TEL NET sequences. The initial value for
this toggle is TRUE if the terminal user had not done an "stty
noHsh", otherwise FALSE (see stty(l).

autosynch
If autosynch and localchars are both TRUE, then when either
the intf or quit characters is typed (see set above for descrip­
tions of the intf and quit characters), the resulting TELNET
sequence sent is followed by the TELNET SYNCH sequence.
This procedure should cause the remote system to begin throw­
ing away all previously typed input until both of the TELNET
sequences have been read and acted upon. The initial value of
this toggle is FALSE.

Commands

TELNET(lC) SysV TELNET(1C)

BUGS

crmod Toggle carriage return mode. When this mode is enabled, most
carriage return characters received from the remote host will be
mapped into a carriage return followed by a line feed. This
mode does not affect those characters typed by the user, only
those received from the remote host. This mode is not very use­
ful unless the remote host only sends carriage return, but never
line feed. The initial value for this toggle is FALSE.

debug Toggles socket level debugging (useful only to the super-user).
The initial value for this toggle is FALSE.

options Toggles the display of some internal telnet protocol processing
(having to do with TELNET options). The initial value for this
toggle is FALSE.

netdata Toggles the display of all network data (in hexadecimal for­
mat). The initial value for this toggle is FALSE.

? Displays the legal toggle commands.

There is no adequate way for dealing with flow control.

On some remote systems, echo has to be turned off manually when in "line by line"
mode.

There is enough settable state to justify a .telnetrc file.

No capability for a .telnetrc file is provided.

In "line by line" mode, the terminal's eof character is only recognized (and sent to the
remote system) when it is the first character on a line.

SEE ALSO
init(3N), hosts(4), stty(l)

Commands 1-60:

TEST(l) SysV TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION

1-606

test -evaluates the expression expr and, if its value is true, sets a zero (true) exit status;
otherwise, a non-zero (false) exit status is set; test also sets a non-zero exit status if
there are no arguments. When permissions are tested, the effective user ID of the pro­
cess is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line)
must be separate arguments to the test command; normally these items are separated by
spaces.

The following primitives are used to construct expr:

-r file True iffile exists and is readable.

-wfile

-x file

-ffile

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-kfile

-sfile

-t [fildes]

-zsl

-ns1

-L,-S

s1 =s2

s1 != s2

s1

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True iffile exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True iffile exists and is a named pipe (fifo).

True iffile exists and its set-user-ID bit is set.

True iffile exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device.

True if the length of string s1 is zero.

True if the length of the string s1 is non-zero.

True if file exists and is a soft link.

True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.

True if s1 is not the null string.

Commands

TEST(l)

nl -eq n2

SysV TEST(l)

True if the integers nl and n2 are algebraically equal. Any of the com­
parisons -ne, -gt, -ge, -It, and -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-0

(expr)

Unary negation operator.

Binary and operator.

Binary or operator (-a has higher precedence than -0).

Parentheses for grouping. Notice also that parentheses are meaningful to
the shell and, therefore, must be quoted.

WARNING
If you test a file you own (the -r, -w, or -x tests), but the permission tested does not
have the owner bit set, a non-zero (false) exit status will be returned even though the
file may have the group or other bit set for that permission. The correct exit status will
be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators, and
= and != always expect arguments; therefore, = and != cannot be used with the -r
through -0 operators.

If more than one argument follows the -r through -0 operators, only the first argument
is examined; the others are ignored, unless a -a or a -0 is the second argument.

SEE ALSO
find(l), sh(1).

Commands 1-607

TFTP(lC) SysV TFfP(lC)

NAME
tftp - trivial file transfer protocol

SYNOPSIS
trtp [-glg!lplrlw] loealname host foreignname [mode]

DESCRIPTION
trtp is the front-end to the Trivial File Transfer Protocol. It enables you to copy files
among internet hosts without remote user-level access. A minus sign (-) may be substi­
tuted for loealname in which case the standard input (or output) will be used.

tftp requires a switch to dictate the direction of the file transfer. The recognized
switches are:

put (-p, -w) Write the local file (loealname) onto the foreign host's file system as
foreignname. Note that foreignname must be quoted if it contains
shell special characters. (The word put, the switch -p, and the switch
-w are all synonymous).

get (-g. -r) Read the foreign host's file iforeignname) into the local file, loeal­
name. If loealname already exists, trtp will fail with an appropriate
error message.

get! (-g!) Perform a tftp get, overwriting the local file (if it exists). Note that
the exclamation point following the command indicates that the com­
mand will modify a data structure (in this case, it will overwrite an
existing file; the syntax is derived from the Yale!f and MIT/Scheme
naming conventions). Within a UNIX shell, the exclamation point
must be escaped (usually with a backslash) to avoid shell interpreta­
tion.

TRANSFER MODES

NOTES

1-608

Mode may be netascii. or image. netascii, the default mode, transfers the file as stan­
dard ascii characters. Image mode transfers the file in binary, with no character conver­
sion.

The Domain/OS SysV versions of tftp and tftpd(IM) are adaptations of the MIT Pro­
ject Athena implementations of the tftp protocol. Domain/OS SysV trtp will interface
with any RFC783 compliant implementation. Note, however, that the 4.3BSD distribu­
tion version of tftp does not meet these restrictions.

Commands

TFTP(lC) SysV TFrP(1C)

WARNINGS
tftp and tftpd(lM) comprise an implementation of the Trivial File Transfer Protocol
described in RFC783. They allow you to quickly copy files among hosts on an internet
without regard to ownership or access restrictions. Therefore, the desired security of a
system should be considered before allowing tftp transactions. In an inspired attempt
to prevent accidental destruction of important files, tftp requires that remote file names
be absolute patbnames (that is, beginning with /) containing the string" /tftp/", but not
containing the string" I.J".

EXAMPLES
Each of the following examples presumes that there is a host on the internet called car­
ra ra, running a tft p server.

To copy the local file /tftp/foo to carrara, and deposit it in carrara's /tftp directory
under the name bar:

tftp -p /tftp/foo carrara /tftp/bar

To copy the remote file (on carrara) named /tftp/bar to the local file named Itftp/new:

tftp get /tftp/new carrara /tftp/bar

To coy the remote binary file (on carrara) named /tftp/zed to the local file named
Itftp/new, overwriting the old copy of Itftp/new:

tftp -g\! /tftp/new carrara Itftp/zed image

SEE ALSO
tftpd(lM)
Configuring and Managing TCPI/P.

Commands 1-609

TIME(l) SysV TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
Once a command has executed, time prints the elapsed time during the command, the
time spent in the system, and the time spent in execution of the command. Times are
reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2) in the SysV Programmer's Reference.

1-610 Commands

TIMEX(l) SysV TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time spent in
execution are reported in seconds. Optionally, process accounting data for the com­
mand and all its children can be listed or summarized, and total system activity during
the execution interval can be reported. The output of timex is written on standard error.

OPTIONS
-p List process accounting records for command and all its children. Suboptions r,

h, k, m, r, and t modify the data items reported. The options are as follows:

-f Print the fork/exec flag and system exit status columns in the
output.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its exe­
cution. This "hog factor" is computed as:

(total CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times. The number of
blocks read or written and the number of characters
transferred are always reported.

-0 Report the total number of blocks read or written and total characters transferred
by command and all its children.

-s Report total system activity (not just that due to command) that occurred during
the execution interval of command. All the data items listed in sar(l) are
reported.

WARNING
Process records associated with command are selected from the accounting file
/usr/admlpacct by inference, since process genealogy is not available. Background
processes having the same user-id, terrninal-id, and execution time window will be
spuriously included.

Commands 1-611

TIMEX(l) SysV TIMEX(l)

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

timex -opskmt sh

SEE ALSO
sar(l),

1-612

EOT
session commands

Commands

TOUCH(t) SysV

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION

TOUCH(t)

touch causes the access and modification times of each argument to be updated. The
file name is created if it does not exist. If no time is specified (see date(1» the current
time is used. The -a and -m options cause touch to update only the access or
modification times respectively (default is -am). The -e option silently prevents touch
from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be suc­
cessfully modified (including files that did not exist and were not created).

SEE ALSO
date(l).
utime(2) in the SysV Programmer's Reference.

Commands 1-613

TfLOT(lG) SysV TPLOT(lG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [- Tterminal [-e raster]]

DESCRIPTION

FILES

These commands read plotting instructions (see plot(4» from the standard input and in
general produce, on the standard output, plotting instructions suitable for a particular
terminal. If no terminal is specified, the environment parameter $TERM (see
environ(5» is used. Known terminals are:

300 DASI 300.
300s DASI 300s.
450 DASI450.
4014 Tektronix 4014.
ver Versatec D12ooA. This version of plot(4) places a scan-converted image in

lusr/tmp/raster$$ and sends the result directly to the plotter device, rather
than to the standard output. The -e option causes a previously scan-converted
file raster to be sent to the plotter.

lusrllib/t300
lusr/lib/t300s
lusr/lib/t450
lusr/lib/t4014
lusr/lib/vplot
lusr/tmp/raster$$

SEE ALSO
plot(3X), plot(4), tenn(5) in the SysV Programmer's Reference.

1-614 Commands

TPM(l) Domain/OS SysV TPM(l)

NAME
tpm - set/display touchpad and mouse characteristics

SYNOPSIS
tpm [options]

DESCRIPTION
tpm allows you to define characteristics for the touchpad and mouse. The touchpad
operates in one of three modes: absolute, relative, and absolute/relative. The mode of
operation establishes how movements of your finger on the touchpad affect the position
of the cursor on the screen. The three modes differ primarily in how the cursor moves
when you lift your finger from the touchpad and then replace it. The mouse operates in
relative mode only, and -5 is the only valid option.

The subsections below describe the three operational modes, as well as the other
options.

OPTIONS
If no options are specified, tpm displays the current touchpad characteristics.

-a (default) sSelect absolute mode.

-r Selects relative mode.

-ar Selects absolute/relative mode.

-rerange Sets prescaling factors for touchpad data.

-s x y Sets scaling factors for x and y. Values can range from -32768 to
32767. The default scaling factors are 799 for x and 1023 for y (portrait
displays); and 1023 for x and 799 for y (landscape displays).

--0 x y Sets x and y as the origin for absolute mode. Values must be in raster
units, and can range from 0 to 1023. The default origin is 0,0.

-h n Sets the hysteresis box size. The value must be in raster units, and can
range from 0 to 1023. The default is 5.

DESCRIPTION
Absolute Mode

In absolute mode, using the default scale and origin, the touchpad approximates the
screen, so that the top left edge of the touchpad represents cursor positions at the top
left edge of the screen. Absolute mode is the default setting. When you place your
finger on the touchpad, the cursor jumps to a corresponding position on the screen.
Moving your finger across the touchpad moves the cursor across the screen in the same
direction.

For example, moving your finger from the top of the touchpad to the bottom moves the
cursor from top to bottom on the screen. If you lift your finger from the touchpad, and
later touch the pad again, the cursor jumps to a new position on the screen correspond­
ing to the new finger position.

Commands 1-615

TPM(l) Domain/OS SysV TPM(l)

Relative Mode
In relative mode, cursor movements correspond only to finger movements across the
touchpad. The cursor does not move when you first place your finger on the touchpad.
This differs from absolute mode, where the cursor jumps to a new position when you
lift your finger and then replace it. In effect, relative mode causes the touchpad to
correspond to different areas of the screen, relative to the current cursor position.

This is the only meaningful mode for a mouse: all movement begins from the current
cursor position.

Relative mode is typically used with scale factors less than the defaults. Smaller scale
factors mean that the touchpad maps to a smaller area of the screen. For example, scale
factors of 200 by 256 specify one-sixteenth of a portrait display's screen area. With
small scale factors, relative mode allows fine resolution of the cursor position within a
small area.

To reach distant areas on the screen, you can use several strokes on the touchpad or
mouse, each stroke moving the cursor closer to its final destination. To assist you in
making large movements in relative mode without having to use too many strokes, the
speed of cursor movement is artificially accelerated in relation to the speed of finger or
mouse movement. Thus, a quick motion moves the cursor farther than a slow, deli­
berate motion which covers the same distance.

AbsolutelRelative Mode

1-616

Absolute/relative mode is a combination of absolute and relative modes. It has no
meaning for the mouse. In this mode, the first position of your finger on the touchpad
establishes the first position of the cursor, as in absolute mode. Moving your finger
across the touchpad moves the cursor across the screen. As in relative mode, the scale
is typically smaller than the whole screen.

Unlike absolute and relative modes, however, the effect of lifting your finger from the
touchpad depends on how long you break contact. If you lift and replace your finger
quickly -- within a half second - the cursor does not move, and the effect is the same
as relative mode. If you break contact for more than a half second, however, the cursor
jumps to a new absolute position when you put your finger on the touchpad again.

Absolute/relative mode is useful for jumping the cursor from one place to another, then
carefully positioning it in the new area. For example, this mode is commonly used to
move the cursor in a jump from one window to another, and then point to a character in
the second window.

Commands

TPM(l) Domain/OS SysV TPM(l)

Prescaling the Touchpad
Raw touchpad data varies slightly from one touchpad to another. Prescaling is, in
essence, calibration of the touchpad. Every time you start the node, the touchpad
manager prescales the data to determine an exact range for the device.

To prescale, the touchpad manager observes the first thousand points of touchpad data
(about 30 seconds of use). During this time, you should try to touch all four edges of
the touchpad to ensure that the observed data constitutes an accurate sample. Based on
the observed data, the touchpad manager computes a pre scaling factor which, when
applied to the data, brings all points into the range from -.05 to 1.05. This range
corresponds to the edges of the screen, plus an overlap of 5%, when multiplied by the
default scaling factors. Because of the overlap, you need not touch the internal frame
(under the conductive material) to move the cursor to the edge of the screen.

The -rerange option invokes prescaling. This option is useful if the first 30 seconds of
use did not include the entire range of the touchpad. It is also handy if you change key­
boards on a node, and therefore need to reset the prescaling factors without restarting
the node.

Scale Factors
The touchpad manager translates, or scales, the data into raster units, which the Display
Manager understands. Scale factors, specified with the -s option, are applied to the
pre scaled touchpad data to translate it to raster units for the Display Manager.

The scale factors are multiplied by the prescaled data. The default scale factors are 800
for x and 1024 for y (portrait displays); and 1024 for x and 800 for y (landscape
displays). Applying these factors to prescaled data results in numbers from approxi­
mately 0 to 799 (for x) and 0 to 1023 (for y) for portrait displays, and vice versa for
landscape displays. (Note that the pre scaled data allows a 5% overlap, as mentioned in
the preceding subsection.)

The default scale factors provide for touchpad data corresponding to the whole screen.
Smaller scale factors reduce the area to which the touchpad maps, thereby allowing you
to more finely tune the cursor position. This also applies to mouse movement, allowing
changes in the apparent motion sensitivity of the device.

Setting the Origin
The origin is the point denoted by the upper left comer of the touchpad, in absolute and
absolute/relative mode. In relative mode, the origin has no meaning. By default, the
touchpad origin corresponds to the upper left corner of the screen, that is, the point 0,0
in raster units. By changing the origin, you can use the touchpad (in absolute mode) to
correspond to a portion of the screen.

This feature is useful for applications that need to move the cursor within a fixed win­
dow, rather than across the whole screen. For example, a program that displays a menu

Commands 1-617

TPM(l) Domain/OS SysV TPM(l)

in one window might set the origin to the upper left comer of the menu window. Con­
sequently, the touchpad maps onto the menu window instead of the entire screen.

Hysteresis
The hysteresis value defines the dimensions of a box around your finger position on the
touchpad or the current position of the mouse. Movement within the box does not
change the position of the cursor on the screen.

Specify the hysteresis value in raster units. The touchpad manager compares the value
to the difference between the current and previous finger positions on the touchpad or
the current and previous positions of the mouse. If the difference is less than the hys­
teresis value, the cursor does not move. If the difference is greater than the hysteresis
value, the hysteresis value is subtracted from the difference and the cursor moves the
resulting distance. The default hysteresis value is five.

EXAMPLES

1-618

Display current characteristics.

$ tpm
Mode: absolute
Xscale: 1024, Yscale: 800
Hysteresis: 5
Origin: 0, 0

Set characteristics to absolute/relative mode with half the default scaling sensitivity
(portrait display).

$ tpm -ar -s 400 512

Commands

TPUT(l) SysV TPUT(l)

NAME
tput - initialize a tenninal or query tenninfo database

SYNOPSIS
tput [-TtypeJ capname [parms ... J

tput [-TtypeJ init

tput [-TtypeJ reset

tput [-TtypeJ longname

DESCRIPTION
tput uses the terminfo(4) database to make the values of tenninal-dependent capabili­
ties and infonnation available to the shell (see she I», to initialize or reset the tenninal,
or return the long name of the requested tenninal type. tput outputs a string if the attri­
bute (capability name) is of type string, or an integer if the attribute is of type integer.
If the attribute is of type boolean, tput simply sets the exit code (0 for TRUE if the ter­
minal has the capability, 1 for FALSE if it does not), and produces no output. Before
using a value returned on standard output, the user should test the exit code ($?, see
sh(l» to be sure it is O. (See EXIT CODES and DIAGNOSTICS below.) For a com­
plete list of capabilities and the capname associated with each, see terminfo(4). This
has no effect on Apollo transcript pads. It is useful on connected tenninals and VT100
windows.

OPTIONS
-Ttype

capname

parms

init

reset

Commands

indicates the type of tenninal. Nonnally this option is unnecessary;
because the default is taken from the environment variable TERM. If - T
is specified, then the shell variables LINES and COLUMNS and the layer
size will not be referenced.

indicates the attribute from the terminfo(4) database.

If the attribute is a string that takes parameters, the arguments parms will
be instantiated into the string. An all numeric argument will be passed to
the attribute as a number.

If the terminfo(4) database is present and an entry for the user's tenninal
exists (see - Ttype, above), the following will occur: (1) if present, the
tenninal's initialization strings will be output (isl, is2, is3, if, iprog), (2)
any delays (e.g., newline) specified in the entry will be set in the tty
driver, (3) tabs expansion will be turned on or off according to the
specification in the entry, and (4) if tabs are not expanded, standard tabs
will be set (every 8 spaces). If an entry does not contain the infonnation
needed for any of the four above activities, that activity will silently be
skipped.

Instead of putting out initialization strings, the tenninal's reset strings will
be output if present (rs1, rs2, rs3, rf). If the reset strings are not present,
but initialization strings are, the initialization strings will be output.

1-619

TPUT(l) SysV TPUT(l)

Otherwise, reset acts identically to init.

longname If the terminfo(4} database is present and an entry for the user's terminal
exists (see -Ttype above), then the long name of the terminal will be put
out. The long name is the last name in the first line of the terminal's
description in the terminfo(4} database (see term(5».

EXAMPLES
tput init Initialize the terminal according to the type of terminal in the

environmental variable TERM. This command should be
included in everyone's .pro6Ie after the environmental variable
TERM has been exported, as illustrated on the profile(4} manual
page.

tput -T5620 reset Reset an AT&T 5620 terminal, overriding the type of terminal in
the environmental variable TERM.

tput cup 0 0 Send the sequence to move the cursor to row 0, column 0 (the
upper left comer of the screen, usually known as the "home" cur­
sor position).

tput clear Echo the clear-screen sequence for the current terminal.

tput cols Print the number of columns for the current terminal.

tput -T 450 cols Print the number of columns for the 450 terminal.

bold='tput srnso'

offbold='tput rmso' Set the shell variables bold, to begin stand-out mode sequence,
and offbold, to end standout mode sequence, for the current ter­
minal. This might be followed by a prompt:
echo "${bold}Please type in your name: ${offbold}\c"

tput hc Set exit code to indicate if the current terminal is a hardcopy ter­
minal.

tput cup 23 4 Send the sequence to move the cursor to row 23, column 4.

tput longname Print the long name from the terminfo(4} database for the type of
terminal specified in the environmental variable TERM.

EXIT CODES

1-620

If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE. If cap­
name is of type string, a value of 0 is set if the capname is defined for this terminal type
(the value of capname is returned on standard output); a value of 1 is set if capname is
not defined for this terminal type (a null value is returned on standard output).

If capname is of type integer, a value of 0 is always set, whether or not capname is
defined for this terminal type. To determine if capname is defined for this terminal
type, the user must test the value of standard output. A value of -1 means that cap­
name is not defined for this terminal type. Any other exit code indicates an error, see

Commands

TPUT(l)

FILES

BR DIAGNOSTICS,

lusr/li b/terminfol? I *
lusr/include/curses.h
lusr/include/term.h
lusr/lib/tabset/*

SysV

Compiled tenninal description database
curses(3X) header file
terminfo(4) header file

TPUT(l)

Tab settings for some terminals, in a fonnat appropriate
to be output to the terminal (escape sequences that set
margins and tabs); for more infonnation, see ter­
minfo(4).

DIAGNOSTICS
tput prints the following error messages and sets the corresponding exit codes.

SEE ALSO

Exit Code Error Message

o -1 (capname is a numeric variable that is not specified in the
terminfo(4) database for this tenninal type, e.g.,

tput - T450 lines and tput - T2621 xmc)

I no error message is printed, see EXIT CODES, above.
2 usage error
3 unknown terminal type or no terminfo(4) database
4 unknown terminfo(4) capability capname

stty (l), tabs (1).
profile(4), tenninfo(4) in the SysV Programmer's Reference.

Commands 1-621

TR(l) SysV TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitution or deletion of
selected characters. Input characters found in string] are mapped into the correspond­
ing characters of string2. Any combination of the options -cds may be used.

The following abbreviation conventions may be used to introduce ranges of characters
or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from character a to
character z, inclusive.

[a*n] Stands for n repetitions of a. IT the first digit of n is 0, n is considered octal;
otherwise, n is taken to be decimal. A zero or missing n is taken to be huge;
this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning from any
character in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for the char­
acter whose ASCII code is given by those digits.

OPTIONS
-c Complements the set of characters in string] with respect to the universe of

characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string] .

-s Squeezes all strings of repeated output characters that are in string2 to single
characters.

EXAMPLE

BUGS

The following example creates a list of all the words in file1 one perline in file2, where
a word is taken to be a maximal string of alphabetics. The strings are quoted to protect
the special characters from interpretation by the shell; 012 is the ASCII code for new­
line.

tr -cs "[A-Z][a-zJ" "[\012*]" <.file1 >file2

Will not handle ASCII NUL in string] or string2; always deletes NUL from input.

SEE ALSO
ed(1), sh(I).
ascii(5) in the SysV Programmer's Reference.

1-622 Commands

Domain/OS SysV

NAME
tr font - transliterate characters within a font

SYNOPSIS
tr Jont font_name hex_conversion _table

DESCRIPTION
The tr JODt command allows you to change the order in which characters appear in
fonts. It rearranges the graphic images associated with the characters in font_name,
according to infonnation in the hex_conversion_table. Use it if you create a new font
file from two font files that have different character orders.

tr JODt only worlc:s on fonts already fonnatted for SRIO. It works directly on the font,
without creating a backup. The format for the hex30nversion_table file is:

src ordinal dest ordinal comment
src ordinal dest ordinal comment
src_ordinal dest_ordinal comment

where src_ordinal is the hexidecimal ordinal value of the character whose graphic
image is to be used as the source, dest_ordinal is the ordinal value of the character
which gets the transliterated image, and comment is an optional remark (for the ASCII
character set, the hexidecmal ordinal value 41 represents the character 'A'). If the font
was created by concatenating two fonts with cvt Jont, then the hexidecimal ordinal
value of the lowest possible character in the second font is 80.

EXAMPLE
The following example rearranges the characters in the SRI0 fonnat font file named
courier according to the infonnation in the hex_conversionJable theirs_to_ours.

This is a sample of a hex_conversion_table file.

Al Al !down
A2 A2 cent
A3 A3 sterling
AS AS yen
A7 A7 section
AS A4 currency
AB AB guillemot left
86 86 paragraph

Commands 1-623

TR]ONT(l)

B7 B7 bullet
B8 B8 quitesinglebase
BB BB guill

SEE ALSO
cvtjont(l)

1-624

Domain/OS SysV

Commands

TRCONF(l) SysV TRCONF(l)

NAME
trconf - list active Streams or configure STREAMS trace modules

SYNOPSIS
trconf [-I] [-i streamid moduleno name]

[-r streamid moduleno]

DESCRIPTION

[-c name mtype dir onoff timestamp verbiage]
[-a name trmon]
[-p name pattern]

trconf is the trace module (tracem(7» configuration utility. It allows you to list
currently active Streams in the system, to insert trace module instances into any Stream,
remove trace module instances from any Stream, set parameters of any trace module
instance, associate a tracing instance of the trace module with a reporting instance
(created by a trmon invocation), or set a pattern for the pattern matching function of a
trace module instance.

The push functionality has been extended for the trace module to allow insertion into
Streams at any point below the Stream head and above the Stream tail (driver). The
exception is a lower multiplexed Stream, where insertion is only allowed below the
linked module and above the Stream tail. To overcome this limitation, push the nulm
module onto the lower Stream, prior to linking the Stream under the multiplexor. The
desired tracing configuration can then be achieved by inserting tracem under the nulm
module.

OPTIONS
-I Lists queues in each active Stream.

-i streamid moduleno name
Insert a trace module instance into a Stream above a module. streamid is
a Stream index as returned by the -I option. moduleno is the index of
the module within the Stream. name is a string with the name for this
trace module instance.

-r streamid moduleno
Remove a trace module instance from a Stream. streamid is a Stream
index as returned by the -I option. moduleno is the index of the trace
module instance within the Stream.

-c name mtype dir onoff timestamp verbiage

Commands

Configure the attributes of a trace module instance. name is a string with
the name for this trace module instance. mtype is a vertical bar (I)
separated list of message types. (The vertical bar must be quoted to
prevent the shell from interpreting it as a pipe.) dir is a I separated list of
up or down. onoff is either on or off. timestamp is either accurate, inac­
curate or off. verbiage is an integer from 0 to 7 (ignored).

1-625

TRCONF(l) SysV TRCONF(l)

-a name trmon
Associate a trace module instance with the trmon instance that is to out­
put the messages being traced. name is a string with the name for this
trace module instance. trmon is a string with a name for the trmon
instance.

-p name pattern
Set a pattern for the pattern matching function of a trace module
instance. name is a string with the name for this trace module instance.
pattern is a string containing O's, l's and x's (x matches 0 or 1).

EXAMPLES
List the active Streams.

$ treonf-I
Stream index: 0
Queue 0: strwhead
Queue 1: LOG

Insert a traeem instance named traceml on top of the LOG module above.

$ treonf -i 0 1 traeeml

Set up parameters of this instance.

$ treonf -c traeeml m_data 'I'm_proto up on accurate 7

Enable pattern matching.

$ treonf -p traeemllOlOxxxx

Assign the trmon instance trmonl to the tracem instance traceml. This assumes the
trmon utility has already been used to create the trmon instance called trmonl. All
selected messages passing through traceml will be reported by trmonl .

$ treonf -a traeeml trmon 1

When done tracing, remove the traeem instance.

$ treonf -r 0 1

SEE ALSO
trmon(l), strinfo(l)

1-626 Commands

TRMON(l) SysY TRMON(l)

NAME
trmon - print messages collected by trace modules on active Streams

SYNOPSIS
trmon [-hI [-n name] [-f formatJlle]

DESCRIPTION
trmon prints STREAMS messages collected by instances of tracem modules pushed
onto Streams with trconf. For each reported message, a header containing reporting
instance id, sequence id, message type, timing information, and message direction is
printed. The header is followed (if -f is used) by the contents of the data part of the
message.

OPTIONS
-h

-nname

-f format .file

Commands

Suppress printing of header output.

Give this trmon instance a name. name is an alpha-numeric string.
If no name is given, the trmon instance will have the name trmonn,
where n is its internal id.

Use formatJlle to specify the format to print the data part of the
reported messages. This file is in "modified C struct syntax." Cus­
tomized output formats for any type of message can be formed by
taking structure definitions from the header file of a protocol and
making some minor modifications. The format file consists of a
number of lines for each data field to be recognized as follows:

string type [jieldname] [comment]

where:

string

type

fieldname

comment

is a string delimited by double-quotes ("") and
containing a printf format string, or a null string
("") meaning don't print this field.

is a C basic type, or dump, which produces a hex­
adecimal dump of the rest of the message (like
od(l) -h), or raw, which outputs the raw bytes.

is a C field identifier and is optional and ignored.

is a C comment and is optional and ignored.

1-627

TRMON(l) SysV TRMON(1)

EXAMPLES
The invocation:

trmon -f dump_file

where dump ..file is:

dump a; /* to dump the entire message */

will cause trmon to choose its own name, and dump all messages it receives from all
tracem instances.

The invocation:

trmon -h -n trace ioctl -f ioc file

where ioc file is:

"cmd: %d,"
n uid: %u,"
"gid: %u,"
"id: %u/'
"count: %u,"
It error: %d,"
" rval: %d\n"

- -

int
unsigned short
unsigned short
unsigned int
unsigned int
int
int
dump

ioc_cmd;
ioc_uid;
ioc~id;
ioc_id;
ioc_count;
ioc_error;
ioc_rval;
a;

/* ioctl command */
/* effective uid */
/* effective gid */
/* ioctl id */
/* # bytes of data */
/* error code */
/* return value */
/* dunip data */

will cause trmon to name itself trace ioctl and to format all messages it receives,
without header information. In this case, it is assumed that trconf will be used to
configure a tracem instance that reports only on M_IOClL messages, and to associate
that tracing instance with this trmon instance.

SEE ALSO
trconf(1), tracem(7), strinfo(1)

1-628 Commands

TRUE(l)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

SysV TRUE(l)

true does nothing, successfully. false does nothing, unsuccessfully. They are typically
used in input to sh(1) such as:

DIAGNOSTICS

while true
do

command
done

true has exit status zero; false has exit status nonzero.

SEE ALSO
sh(l).

Commands 1-629

TS(l) Domain/OS SysV TS(l)

NAME
ts - display the module name and time stamp

SYNOPSIS
ts [-nhd] object_module_name

DESCRIPTION
ts displays the time stamp and module name stored in an object module. Shown is the
time and date that the module was created by one of the linkers or compilers. The time
stamp is not affected by copying an object module, so it is a reliable indicator of
whether particular object modules are copies of one another.

OPTIONS
-nhd

1-630

Option does not print the table header. ts outputs in tabular format with
table header by default.

Commands

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
Isort [file]

DESCRIPTION

SysV TSORT(l)

The tsort command produces on the standard output a totally ordered list of items con­
sistent with a partial ordering of items mentioned in the input file. If no file is specified,
the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not ord­
ering.

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

SEE ALSO
lorder(l).

Commands 1-631

TIY(l)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-s]

DESCRIPTION

SysV

Tty prints the pathname of your terminal.

OPTIONS

TIY(l)

-s Inhibit printing of the terminal pathname, allowing testing of the exit
code only.

-I

EXIT CODES
2
o
1

DIAGNOSTICS
not a tty

1-632

Not supported.

if invalid options were specified
if standard input is a terminal
otherwise

Standard input is not a terminal and -s is not specified.

Commands

TZ(l) Domain/OS SysV TZ(l)

NAME
tz - set or display system time zone

SYNOPSIS
tz [tz_name I ute_delta [new_tzll

DESCRIPTION
tz sets the system time zone to a known time zone or to an offset from Coordinate
Universal Time (ute). If no arguments are specified, tz displays the current setting.

tz_name (optional) Specify new time zone. The following are valid names:

Name

EDT
EST
CDT
CST

Time Zone

Eastern Daylight Time
Eastern Standard Time
Central Daylight Time
Central Standard Time

MDT Mountain Daylight Time
MST Mountain Standard Time
PDT Pacific Daylight Time
PST Pacific Standard Time
GMT Greenwich Mean Time
UTC Coordinated Universal Time
TILDE ESCAPES.if 0=0 .nr e. 54565-0-14

Default if omitted: use ute _delta argument

ute _delta (optional) Specify positive or negative offset from ute. The plus sign is
optional for positive offsets. Format for offset is hh:mm (for
example, -10:00 for ten hours earlier than, west of, Coordinated
Universal Time). Only whole or half hour offsets may be
specified. Other fractional offsets produce an error message.

new _tz (optional)

Commands

Default if omitted: use tz _name argument

Specify new time zone name to be assigned to the zone indicated
by the ute_delta argument. Use this argument to create time
zones that are not included in the list above.

Default if omitted: no name assigned

1-633

TZ(I) Domain/OS SysV TZ(I)

EXAMPLES

1-634

Display current time zone.

$tz
Timezone: EST
Delta from UTe: -5:00

Set time zone to Pacific Daylight Time.

$ tz pdt

Create (and set) a time zone named GST that is four and a half hours later than (east of)
Coordinated Universal Time.

$ tz 4:30 gst

Commands

Domain/OS SysV

NAME
uk to iso - convert files to ISO fonnat

SYNOPSIS
uk_to_iso inputJlle outputJlle

DESCRIPTION

FILES

These utilities convert files written with the overloaded 7-bit national fonts to the Inter­
nation Standards Organization (ISO) 8-bit fonnat. The overloaded fonts include any
with a specific language suffix (for example, tix13.french, or din _tixll.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate
for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCII characters and the national characters in one file. The 8-bit fonts
available as of SRlO include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over­
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (inputJlle) and your outputJlle. If outputJlle already exists,
the utilities abort.

The default location for the utilities is /usr/apollo/bin.

/usr/apollo/bin/french_to_iso Converts overloaded French to ISO fonnat

/usr/apollo/bin/german _to _iso Converts overloaded Gennan to ISO fonnat

/usr/apollo/bin/nor.dan_to_iso Converts overloaded Norwegian/Danish to ISO for·
mat

/usr/apollo/bin/swedish_to_iso Converts overloaded Swedish/Finnish to ISO for·
mat

/usr/apollo/bin/swiss_to _iso

/usr/apollo/bin/uk _to _iso

DIAGNOSTICS

Converts overloaded Swiss to ISO fonnat

Converts overloaded U.K. English to ISO fonnat

All messages are generally self-explanatory.

Commands 1-63.

UMASK(l) SysV UMASK(l)

NAME
umask - set file-creation mode mask:

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask: is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chmod(2) and umask(2». The value of each specified digit is subtracted from the
corresponding "digit" specified by the system for the creation of a file (see creat(2».
For example, umask 022 removes group and others write permission (files normally
created with mode 777 become mode 755; files created with mode 666 become mode
644).

If 000 is omitted, the current value of the mask: is printed.

umask is recognized and executed by the shell.

umask can be included in your .profile (see profile(4» and invoked at login to
automatically set your permissions on files or directories created.

SEE ALSO
ciunod(I), sh(I).
ciunod(2), creat(2), umask:(2), proiile(4) in the SysV Programmer's Reference.

1--636 Commands

UNAME(l) SysV

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-snrvma]
uname [-S system name]

DESCRlPTION

UNAME(l)

uname prints the current system name of the UNIX system on the standard output file.
It is mainly useful to detennine which system one is using.

OPTIONS
-s

-n

-r

-v
-m
-a

SEE ALSO

prints the system name (default).

Prints the nodename (the nodename is the name by which the system is
known to a communications network).

Prints the operating system release.

Prints the operating system version.

Prints the machine hardware name.

Prints all the above information.

uname(2) in the SysV Programmer's Reference.

Commands 1-63"

UNGET(l) SysV UNGET(l)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
unget undoes the effect of a get -e done prior to creating the intended new delta. If a
directory is named, unget behaves as though each file in the directory were specified as
a named file, except that non-SeeS files and unreadable files are silently ignored. If a
name of - is given, the standard input is read with each line being taken as the name of
an sees file to be processed.

OPTIONS
-rSID

-s

-n

SEE ALSO

Uniquely identifies which delta is no longer intended. (This would have
been specified by get(l) as the "new delta"). The use of this keyletter is
necessary only if two or more outstanding gets for editing on the same
sees file were done by the same person (login name). A diagnostic
results if the specified SID is ambiguous, or if it is necessary and omitted
on the command line.

Suppresses the printout, on the standard output, of the intended delta's
SID.

Causes the retention of the gotten file which would normally be removed
from the current directory.

delta(1), get(l), sact(l).

1-638 Commands

UNIQ(l) SysV UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-ude [+n] [-n] 1 [input [output 1]

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal case, the second and
succeeding copies of repeated lines are removed; the remainder is written on the output
file. Input and output should always be different. Note that repeated lines must be
adjacent in order to be found; see sort(l). If the -u flag is used, just the lines that are
not repeated in the original file are output. The -d option specifies that one copy of just
the repeated lines is to be written. The normal mode output is the union of the -u and
-d mode outputs.

The -e option supersedes -u and -d and generates an output report in default style but
with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is
defined as a string of non-space, non-tab characters separated by tabs and
spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
comm(l), sort(l).

Commands 1-639

UNITS(l) SysV UNITS(l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

1-640

units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e+00
/3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally preceded by a
numeric multiplier. Powers are indicated by suffixed positive integers, division by the
usual sign:

You have: lSlbs force/in2
You want: atm

* 1.02068ge+00
/ 9.79729ge-Ol

units only does multiplicative scale changes; thus it can convert Kelvin to Rankine, but
not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are
recognized, together with a generous leavening of exotica and a few constants of nature
including:

pi
c
e
g
force
mole
water
au

Ratio of circumference to diameter,
Speed oflight,
Charge on an electron,
Acceleration of gravity,
Same as g,
Avogadro's number,
Pressure head per unit height of water,
Astronomical unit.

Pound is not recognized as a unit of mass; Ib is. Compound names are run together,
(e.g., light year). British units that differ from their U.S. counterparts are prefixed thus:
brgallon. For a complete list of units, type:

cat lusr/lib/unittab

lusrlli b/unitta b

Commands

UNPACK(l) SysV UNPACK(1)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name ...

pcat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever possible and
useful, it replaces each input file name by a packed file name.z with the same access
modes, access and modified dates, and owner as those of name.

If pack is successful, it removes name. Packed files can be restored to their original
form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.

The amount of compression obtained depends on the size of the input file and the char­
acter frequency distribution. Because a decoding tree forms the first part of each .z file,
it is usually not worthwhile to pack files smaller than three blocks, unless the character
frequency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75 percent oftheir original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression, the packed versions being about 90 percent of the original size.
Pack returns a value equaling the number of files not compressed.

No packing occurs if one or more of the following conditions exists:

the file appears to be already packed
the filename has more than 12 characters
the file has links
the file is a directory
the file cannot be opened
no disk storage blocks will be saved by packing
a file called name.z already exists
the .z file cannot be created
an I/O error occurred during processing.

The last segment of the filename must contain no more than 12 characters to allow
space for the appended .z extension. Directories cannot be compressed.

Pcat does for packed files what cat(l) does for ordinary files, except that peat cannot
be used as a filter. The specified files are unpacked and written to the standard output.
To view a packed file named name.z use:

pcat name.z
or just:

pcat name

Commands 1-641

UNPACK(I) SysV UNPACK(l)

To make an unpacked copy, say nnn, of a packed file named name.z (without destroy­
ing name.z) use the command:

pcat name> nnn

Pcat returns the number of files it was unable to unpack, but will fail if one of the fol­
lowing conditions exist:

the filename (exclusive of the .z) has more than 12 characters
the file cannot be opened
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the command, a
search is made for a file called name.z (or just name, if name ends in .z). If this file
appears to be a packed file, it is replaced by its expanded version. The new file has the
.z suffix stripped from its name. It also has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. It will fail
for the same reasons as those listed for peat, as well as for the following additional rea­
sons:

a file with the "unpacked" name already exists
the unpacked file cannot be created.

OPTIONS
(Note that these options are only for use with pack.)

Set an internal flag that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on the stan­
dard output. Additional occurrences of - in place of name cause the
internal flag to be set and reset.

-f Force packing of name. Useful for causing an entire directory to be
packed even if some of the files will not benefit.

NOTES TO SysV USERS
The Apollo version of the pack command creates packed files that have an Apollo file
type of "uasc". The original file type information is not carried over to the packed file.
The unpack command checks the magic number of the unpacked file. If it matches one
of the Apollo object types or archive type, the file type of the unpacked file is changed
from "uasc" to "obj". If the file type of the original file is other than "uasc" or one
of the "obj" types checked for by unpack, the file type must be manually changed
after the file is unpacked.

SEE ALSO
cat(l).

1-642 Commands

UUCP(lC) SysV UUCP(lC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options] -ssystem
uulog [options] system
uulog [options] -fsystem

uuname [-I] [-c]

DESCRIPTION
uucp copies files named by the source-file arguments to the destination-file argument.
A filename may be a patlmame on a machine, or may have the following fonn:

system name!pathname

where system name is taken from a list of system names that uucp knows about. The
system name may also be a list of names such as:

system name!system name!".!system name!pathname

in which case an attempt is made to send the file via the specified route, to the destina­
tion. See NOTES and BUGS below for restrictions. Care should be taken to ensure that
intennediate nodes in the route are willing to forward infonnation.

The question mark (?), asterisk (*), and bracketed ellipsis ([...]) Shell metacharacters
appearing in pathname are expanded on the appropriate system.

Patlmames may be one of the following (anything else is prefixed by the current direc­
tory): A full pathname A patlmame preceded by -user where user is a log-in name on
the specified system and is replaced by that user's log-in directory A path name pre­
ceded by -Idestination where destination is appended to lusr/spool/uucppublic. This
destination will be treated as a file name unless more than one file is being transferred
by this request or the destination is already a directory. To ensure that it is a directory,
follow the destination with a slash mark (/). For example, -/dan! as the destination will
make the directory lusrlspooIluucppublic/dan if it does not exist and put the requested
file(s) in that directory). <.PP If the result is an erroneous pathname for the remote sys­
tem, the copy will fail. If the destination-file is a directory, the last part of the source­
file name is used.

uucp preserves execute pennissions across the transmission and gives 0666 read and
write pennissions. See chmod(2) for more information about permissions. All files
received by uucp will be owned by uucp.

uulog queries a summary log of uucp or uuxqt transactions in the files
lusrlspool/uucp/.Log/uucico/system, or lusrlspool/uucp/.Log/uuxqt/system.

uuname lists the names of systems known to uucp.

Commands 1-64~

UUCP(lC) SysV UUCP(lC)

The DOMAIN/OS version ofuucp supports the Vadic Autodialer.

OPTIONS
uucp options

The following options are interpreted by uucp only:

-C
-d

-f

-ggrade

-j

-m

-nuser

-r

-sfile

-xdebug_level

Does not copy the local file to the spool directory for transfer to the
remote machine (default).

Forces the copy of local files to the spool directory for transfer.

Makes all necessary directories for the file copy (default).

Does not make intennediate directories for the file copy.

Grade is a single letter/number; lower ascii sequence characters cause
the job to be transmitted earlier during a particular conversation.

Output the job identification ASCII string on the standard output. This
job identification can be used by uustat to obtain the status or terminate
a job.

Send mail to the requester when the copy is completed. The -m option
only works sending files or receiving a single file. Receiving multiple
files specified by special shell characters ? * [... J will not activate the
-m option.

Notifies you on the remote system that a file was sent.

Does not start the file transfer. just queuse the job.

Reports status of the transfer to file. Notes that the file must be a full path
name.

Produces debugging output on standard output. The debug level is a
number between 0 and 9; higher numbers give more detailed infonna­
tion. (Debugging will not be available if uucp was compiled with
-DSMALL.)

uulog options

1-644

The following options are used by uulog only; they cause uulog to print logging infor­
mation:

-ssys

-fsystem

Prints infonnation about file transfer work involving system sys.

Does a tail -f of the file transfer log for system. (You must hit BREAK
to exit this function.)

Commands

UUCP(lC) SysV UUCP(lC)

Other options used in conjunction with the above uulog options:

-x Looks in the uuxqt log file for the given system.

-number Indicates that a tail command of number lines should be executed.

uunarne options

NOTES

BUGS

FILES

The following options are used by uuname only:

-c

-I

Returns the names of systems known to cU(l). This list should be the
same as the list of systems known to uucp, unless your machine is using
different Systems files for cu and uucp. See the Sysfiles file.

Return the local system name.

The domain of remotely accessible files may (and for obvious security reasons, usually
should) be severely restricted. You will very likely not be able to fetch files by path­
name. Ask a responsible person on the remote system to send them to you. For the
same reasons, you will probably not be able to send files to arbitrary pathnarnes. As
distributed, the remotely accessible files are those whose names begin with
lusrlspool/uucppublic (equivalent to -/).

The forwarding of files through other systems may not be compatible with the previous
version of uucp. If forwarding is used, all systems in the route must have the same ver­
sion of uucp.

Protected files and files in protected directories that are owned by the requestor can be
sent by uucp. However, if the requestor is root, and the directory is not searchable by
"other" or the file is not readable by "other", the request will fail.

lusrlspool/uucp Spool directory
lusrlspool/uucppublic Public directory for receiving and sending (PUBDIR)
lusrllib/uucp/* Other data and program files

SEE ALSO
mail (1), uustat (1C), uux (1C), uuxqt (1M), chrnod (2).

Commands 1-645

UUDECODE(1C) SysV UUDECODE(lC)

NAME
uuencode,uudecode - encode/decode a binary file for transmission via mail

SYNOPSIS
uuencode [source 1 remotedest I mail sysl !sys2! .. !decode
uudecode [file 1

DESCRIPTION
uuencode and uudecode are used to send a binary file via uucp(lC) or other methods
of sending mail. This combination can be used over indirect mail links even when
uusend(lC) is not available.

uuencode takes the named source file (the default is standard input) and produces an
encoded version on the standard output. The encoding uses only printing ASCII char­
acters, and includes the mode of the file and the remotedest for re-creation on the
remote system.

uudecode reads an encoded file, strips off any leading and trailing lines added by
mailers, and recreates the original file with the specified mode and name.

The intent is that all mail to the user decode should be filtered through the uudecode
program. This way the file is created automatically without human intervention. This
is possible on the uucp network by either using sendmail(8) or by making rmail(l) be a
link to /usr/ucb/mail instead of /bin/mail. In each case, an alias must be created in a
master file to get the automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the remote machine
who can uudecode it manually.

The encode file has an ordinary text form and can be edited by any text editor to change
the mode or remote name.

EXAMPLE

BUGS

The remotedest is the patbname of the file to create on the remote system, for example,

$ uuencode /katelbin/progl/tmplkate.progl.

The file is expanded by 35% (three bytes become four plus control information),
increasing the transmission time.

The user on the remote system who is invoking uudecode (often uucp) must have write
permission on the specified file.

SEE ALSO

1-646

binmail(l), mail(l), uusend(IC), uucp(lC), uux(lC), uuencode(5);
Managing SysV System Software.

Commands

UUENCODE(lC) SysV UUENCODE(lC)

NAME
uuencode,uudecode - encode/decode a binary file for transmission via mail

SYNOPSIS
uuencod.e [source] remotedest I mail sysl !sys2! .. !decode
uudecode [file]

DESCRIPTION
uuencode and uudecode are used to send a binary file via uucp(lC) or other methods
of sending mail. This combination can be used over indirect mail links even when
uusend(lC) is not available.

uuencode takes the named source file (the default is standard input) and produces an
encoded version on the standard output. The encoding uses only printing ASCII char­
acters, and includes the mode of the file and the remotedest for re-creation on the
remote system.

uudecode reads an encoded file, strips off any leading and trailing lines added by
mailers, and recreates the original file with the specified mode and name.

The intent is that all mail to the user decode should be filtered through the uudecode
program. This way the file is created automatically without human intervention. This
is possible on the uucp network by either using sendmail(8) or by making rmail(l) be a
link to lusr/ucb/mail instead of Ibin/mail. In each case, an alias must be created in a
master file to get the automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the remote machine
who can uudecode it manually.

The encode file has an ordinary text form and can be edited by any text editor to change
the mode or remote name.

EXAMPLE

BUGS

The remotedest is the pathname of the file to create on the remote system, for example,

$ uuencode Ikatelbinlprogl/tmplkate.progl.

The file is expanded by 35% (three bytes become four plus control information),
increasing the transmission time.

The user on the remote system who is invoking uudecode (often uucp) must have write
permission on the specified file.

SEE ALSO
binmail(l), mail(l), uusend(1C), uucp(1C), uux(lC), uuencode(5);
Managing SysV System Sojtv.!are.

Commands 1-647

UULOG(1C) SysV UULOG(lC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options] -ssystem
uulog [options] system
uulog [options] -f system

uuname [-I] [-c]

DESCRIPTION

1-648

uucp copies files named by the source-file arguments to the destination-file argument.
A filename may be a pathname on a machine, or may have the following form:

system name!pathname

where system name is taken from a list of system names that uucp knows about. The
system name may also be a list of names such as:

system name!system name!".!system name!pathname

in which case an attempt is made to send the file via the specified route, to the destina­
tion. See NOTES and BUGS below for restrictions. Care should be taken to ensure that
intermediate nodes in the route are willing to forward information.

The question mark (1), asterisk (*), and bracketed ellipsis ([...]) Shell metacharacters
appearing in pathname are expanded on the appropriate system.

Pathnames may be one of the following (anything else is prefixed by the current direc­
tory): A full pathname A pathname preceded by -user where user is a log-in name on
the specified system and is replaced by that user's log-in directory A pathname pre­
ceded by -/destination where destination is appended to /usr/spool/uucppublic. This
destination will be treated as a filename unless more than one file is being transferred by
this request or the destination is already a directory. To ensure that it is a directory, fol­
low the destination with a slash mark (/). For example, -/ dan/ as the destination will
make the directory /usr/spool/uucppublic/dan if it does not exist and put the requested
file(s) in that directory). <.PP If the result is an erroneous pathname for the remote sys­
tem, the copy will fail. If the destination-file is a directory, the last part of the source­
file name is used.

uucp preserves execute permissions across the transmission and gives 0666 read and
write permissions. See chmod(2) for more information about permissions. All files
received by uucp will be owned by uucp.

uulog queries a summary log of uucp or uuxqt transactions in the files
/usr/spool/uucp/.Log/uucico/system, or /usr/spool/uucp/.Logluuxqt/system.

uuname lists the names of systems known to uucp.

Commands

UULOG(IC) SysV UULOG(IC)

The DOMAIN/IX version of uucp supports the Vadic Autodialer.

OPTIONS
uucp options

The following options are interpreted by uucp only:

-c Does not copy the local file to the spool directory for transfer to the
remote machine (default).

-c
-d

-f

-ggrade

-j

-m

-nuser

-r

-sfile

-xdebug_level

uulog options

Forces the copy of local files to the spool directory for transfer.

Makes all necessary directories for the file copy (default).

Does not make intermediate directories for the file copy.

Grade is a single letter/number; lower ascii sequence characters cause
the job to be transmitted earlier during a particular conversation.

Output the job identification ASCII string on the standard output. This
job identification can be used by uustat to obtain the status or terminate
a job.

Send mail to the requester when the copy is completed. The -m option
only works sending files or receiving a single file. Receiving multiple
files specified by special shell characters ? * [... J will not activate the
-moption.

Notifies you on the remote system that a file was sent.

Does not start the file transfer, just queuse the job.

Reports status of the transfer to file. Notes that the file must be a full path
name.

Produces debugging output on standard output. The debug_level is a
number between 0 and 9; higher numbers give more detailed informa­
tion. (Debugging will not be available if uucp was compiled with
-DSMALL.)

The following options are used by uulog only; they cause uulog to print logging infor­
mation:

-ssys

-fsystem

Commands

Prints information about file transfer work involving system sys.

Does a tail -f of the file transfer log for system. (You must hit BREAK to
exit this function.)

1-649

UULOG(lC) SysV UULOG(lC)

Other options used in conjunction with the above uulog options:

-x Looks in the uuxqt log file for the given system.

-number Indicates that a tail command of number lines should be executed.

uuname options

NOTES

BUGS

FILES

The following options are used by uuname only:

-c Returns the names of systems known to cu(l). This list should be the
same as the list of systems known to uucp, unless your machine is using
different Systems files for cu and uucp. See the Sysfiles file.

-I Return the local system name.

The domain of remotely accessible files may (and for obvious security reasons, usually
should) be severely restricted. You will very likely not be able to fetch files by path­
name. Ask a responsible person on the remote system to send them to you. For the
same reasons, you will probably not be able to send files to arbitrary pathnames. As
distributed, the remotely accessible files are those whose names begin with
/usr/spoolluucppublic (equivalent to -/).

The forwarding of files through other systems may not be compatible with the previous
version of uucp. If forwarding is used, all systems in the route must have the same ver­
sion of uucp.

Protected files and files in protected directories that are owned by the requestor can be
sent by uucp. However, if the requestor is root, and the directory is not searchable by
"other" or the file is not readable by "other", the request will fail.

/usr/spoolluucp Spool directory
/usr/spool/uucppublic

Public directory for receiving and sending (PUBDIR)
/usr/lib/uucp/* Other data and program files

SEE ALSO
mail (1), uustat (IC), uux (lC), uuxqt (1M), chmod (2).

Also refer to the discussion of uucp in Using Your SysV Environment.

1-650 Commands

UUCP(lC) SysV UUCP(lC)

NAME
UUCp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options] -ssystem
uulog [options] system
uulog [options] -f system

uuname [-I] [-c]

DESCRIPTION
uucp copies files named by the source-file arguments to the destination-file argument.
A filename may be a pathname on a machine, or may have the following form:

system name !pathname

where system name is taken from a list of system names that uucp knows about. The
system name may also be a list of names such as:

system name!system name !. .. !system name!pathname

in which case an attempt is made to send the file via the specified route, to the destina­
tion. See NOTES and BUGS below for restrictions. Care should be taken to ensure that
intermediate nodes in the route are willing to forward information.

The question mark (?), asterisk (*), and bracketed ellipsis ([...]) Shell metacharacters
appearing in pathname are expanded on the appropriate system.

Pathnames may be one of the following (anything else is prefixed by the current direc­
tory):

• a full pathname

• a pathname preceded by -user where user is a log-in name on the specified system
and is replaced by that user's log-in directory

• a path name preceded by -Idestination where destination is appended to
lusrlspool/uucppubIic. This destination will be treated as a file name unless more
than one file is being transferred by this request or the destination is already a direc­
tory. To ensure that it is a directory, follow the destination with a slash mark (/).
For example, -/dan/ as the destination will make the directory
/usr/spool/uucppubIic/dan if it does not exist and put the requested file(s) in that
directory) .

If the result is an erroneous pathname for the remote system, the copy will fail. If the
destination-file is a directory, the last pan of the source-file name is used.

uucp preserves execute permissions across the transmission and gives 0666 read and
write permissions. See chmod(2) for more information about permissions. All files
received by uucp will be owned by uucp.

Commands 1-651

UUCP(lC) SysV UUCP(lC)

uulog queries a summary log of uucp or uuxqt transactions in the files
/usr/spool/uucp/.Log/uucico/system. or /usr/spool/uucp/.Log/uuxqt/system.

uuname lists the names of systems known to uucp.

The DOMAIN/IX version of uucp supports the Vadic Autodialer.

OPTIONS
The following options are interpreted by uucp only:

-c

-c
-d

-f

-ggrade

-j

-m

-nuser

-r

-sftle

-xdebug_level

Does not copy the local file to the spool directory for transfer to the
remote machine (default).

Forces the copy of local files to the spool directory for transfer.

Makes all necessary directories for the file copy (default).

Does not make intennediate directories for the file copy.

Grade is a single letter/number; lower ascii sequence characters cause
the job to be transmitted earlier during a particular conversation.

Output the job identification ASCII string on the standard output. This
job identification can be used by uustat to obtain the status or tenninate
a job.

Send mail to the requester when the copy is completed. The -m option
only works sending files or receiving a single file. Receiving multiple
files specified by special shell characters ? * [... j will not activate the
-m option.

Notifies you on the remote system that a file was sent.

Does not start the file transfer. just queuse the job.

Reports status of the transfer to file. Notes that the file must be a full path
name.

Produces debugging output on standard output. The debug_level is a
number between 0 and 9; higher numbers give more detailed infonna­
tion. (Debugging will not be available if uucp was compiled with
-DSMALL.)

uulog options

1-652

The following options are used by uulog only; they cause uulog to print logging infor­
mation:

-ssys

-fsystem

Prints infonnation about file transfer work involving system sys.

Does a tail -f of the file transfer log for system. (You must hit BREAK to
exit this function.)

Other options used in conjunction with the above uulog options:

Commands

UUCP(lC) SysV UUCP(lC)

-x Looks in the uuxqt log file for the given system.

-number Indicates that a tail command of number lines should be executed.

uuname options

NOTES

BUGS

FILES

The following options are used by uuname only:

-c

-I

Returns the names of systems known to cu. This list should be the same
as the list of systems known to uucp, unless your machine is using dif­
ferent Systems files for cu and uucp. See the Sysfiles file.

Return the local system name.

The domain of remotely accessible files may (and for obvious security reasons, usually
should) be severely restricted. You will very likely not be able to fetch files by path­
name. Ask a responsible person on the remote system to send them to you. For the
same reasons, you will probably not be able to send files to arbitrary pathnames. As
distributed, the remotely accessible files are those whose names begin with
lusrlspoolluucppublic (equivalent to -/).

The forwarding of files through other systems may not be compatible with the previous
version of uucp. IT forwarding is used, all systems in the route must have the same ver­
sion of uucp.

Protected files and files in protected directories that are owned by the requestor can be
sent by uucp. However, if the requestor is root, and the directory is not searchable by
"other" or the file is not readable by "other", the request will fail.

lusrlspool/uucp spool directory
lusrlspooIluucPPublic

public directory for receiving and sending (PUBDIR)
lusr/lib/uucp/* other data and program files

SEE ALSO
mail (I), uustat (IC), uux (IC), uuxqt (1M), chmod (2).

Also refer to the discussion of uucp in Using Your SysV Environment.

Commands 1-653

UUPICK(lC) SysV UUPICK(lC)

NAME
uulo, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uulo [options] source-files destination
uupick [-s system]

DESCRIPTION

1-654

uulo sends source-files to destination. uuto uses the uucp(1 C) facility to send files,
while it allows the local system to control the file access. A source-file name is a path­
name on your machine. Destination has the fonn

system!user

where system is taken from a list of system names that uucp knows about (see
uuname(l»; user is the log-in name of someone on the specified system.

The files (or sub-trees if directories are specified) are sent to PUBOIR on system, where
PUBOIR is a public directory defined in the uucp source. By default this directory is
lusrlspooI/uucppublic. Specifically the files are sent to

PUBDIRIreceiveluserlmysystemlfiles.

The destined recipient is notified by mail(1) of the arrival of files.

Two uulo options are available:

-p

-m

Copy the source file into the spool directory before transmission.

Send mail to the sender when the copy is complete.

uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBOIR for files destined for the user. For each entry (file or directory) found,
the following message is printed on the standard output:

from system: [file file-namel [dir dirnamel ?

uupick then reads a line from the standard input to determine the disposition of the file:

<new-line>

d

m [dir]

a [dir]

p

q

Go on to the next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not specified as a
complete pathname (in which $HOME is legitimate), a destination
relative to the current directory is assumed. If no destination is
given, the default is the current directory.

The same as m except that it moves all the files sent from system.

Print the content of the file.

Stop.

Commands

UUPICK(lC) SysV UUPICK(lC)

EOT (crRL/D)

!command

*

Same as q.

Escape to the shell to do command.

Print a command summary.

uupick invoked with the -ssystem option will only search the PUBDIR for files sent
from system.

WARNINGS

FILES

To send files that begin with a dot (for example, .profile) the files must by qualified
with a dot. For example: .profile, .prof*, .profil'! are correct; whereas *prof*, ?profile
are incorrect.

PUBDIR/usr/spool/uucppublic Public directory

SEE ALSO
mail(l), uucp(IC), uustat(1C), uux(lC);
uucleanup(lM),
Managing SysV System Software.

Commands 1-655

UUSTAT(lC) SysV UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q]
uustat [-kjobid]
uustat [-r jobid]
uustat [-ssystem] [-uuser]

DESCRIPTION
uustat will display the status of, or cancel, previously specified uucp commands, or
provide general status on uucp connections to other systems.

OPTIONS

1-656

Only one of the following options can be specified with uustat per command execution.

-a Output all jobs in the queue.

-m

-p

-q

-kjobid

-rjobid

Report the status of accessibility of all machines.

Execute a ps -Up for all the process-ids that are in the lock files.

List the jobs queued for each machine. If a status file exists for the
machine, its date, time and status information are reported. In addition,
if a number appears in 0 next to the number of C or X files, it is the age
in days of the oldest C./X. file for that system. The "Retry" field
represents the number of hours until the next possible call. The
"Count" is the number of failure attempts. NOTE: for systems with a
moderate number of outstanding jobs, this could take 30 seconds or more
ofreal-time to execute.

Kill the uucp request whose job identification is jobid. The killed uucp
request must belong to the person issuing the uustat command unless
one is the super-user.

Rejuvenate jobid. The files associated with jobid are touched so that
their modification time is set to the current time. This prevents the
cleanup daemon from deleting the job until the jobs modification time
reaches the limit imposed by the deamon.

Either or both of the following options can be specified with uustat.

-ssys

-uuser

Report the status of all uucp requests for remote system sys.

Report the status of all uucp requests issued by user.

Commands

UUSTAT(lC) SysV UUSTAT(lC)

EXAMPLES

FILES

The following example shows the output produced by the -q option.

eagle 3C 04/07-11:07
mh3bs3 2C 07/07-10:42

NO DEVICES AVAILABLE
SUCCESSFUL

The above output tells how many command files are waiting for each system. Each
command file may have zero or more files to be sent (zero means to call the system and
see if work is to be done). The date and time refer to the previous interaction with the
system, and are followed by the status of the interaction.

Output for both the -s and -u options has the following format:

eaglenOOOO
eagleNlbd7
eagleClbd8

4/07-11:01:03
4/07-11:07
4/07-11:07
4/07-11:07

(POLL)
S eagle dan
S eagle dan
S eagle dan

522 /usr/dan/A
59 D.3b2a12ce4924
rmail mike

With the -s and -u options, the first field is the jobid of the job. This is followed by the
date/time. The next field is either an "S" or "R" depending on whether the job is to
send or request a file. This is followed by the user-id of the user who queued the job.
The next field contains the size of the file, or in the case of a remote execution (rmail -
the command used for remote mail), the name of the command. When the size appears
in this field, the filename is also given. This can either be the name given by the user or
an internal name (e.g., D.3b2alce4924) that is created for data files associated with
remote executions (rmail in this example).

When no options are given, uustat outputs the status of all uucp requests issued by the
current user.

/usr/spool/uucp/* Spool directories

SEE ALSO
uucp(lC);
Managing SysV System Software.

Commands 1-657

UUTO(lC) SysV UUTO(lC)

NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system 1

DESCRIPTION

1-658

uuto sends source-files to destination. uuto uses the uucp(IC) facility to send files,
while it allows the local system to control the file access. A source-file name is a path­
name on your machine. Destination has the fonn

system! user

where system is taken from a list of system names that uucp knows about (see
uuname(l)); user is the log-in name of someone on the specified system.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where
PUBDIR is a public directory defined in the uucp source. By default this directory is
lusrlspool/uucppublic. Specifically the files are sent to

PUBDIRIreceivel userlmysystemlfiles.

The destined recipient is notified by mail(1) of the arrival of files.

Two uuto options are available:

-p
-m

Copy the source file into the spool directory before transmission.

Send mail to the sender when the copy is complete.

uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory) found,
the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

uupick then reads a line from the standard input to detennine the disposition of the file:

<new-line>

d

m [dir]

a [dir]

p

q

Go on to the next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not specified as a
complete pathnarne (in which $HOME is legitimate), a destination
relative to the current directory is assumed. If no destination is
given, the default is the current directory.

The same as m except that it moves all the files sent from system.

Print the content of the file.

Stop.

Commands

UUTO(lC)

EOT (CTRL/D)

!command

*

SysV

Same as q.

Escape to the shell to do command.

Print a command sununary.

UUTO(lC)

uupick invoked with the -ssystem option will only search the PUBDIR for files sent
from system.

FILES
PUBDIR/usr/spool/uucppublic

WARNINGS

Public directory

To send files that begin with a dot (for example, .profile) the files must by qualified
with a dot. For example: .profile, .prof*, .profil? are correct; whereas *prof*, ?profile
are incorrect.

SEE ALSO
mail(I), uucp(IC), uustat(IC), uux(IC);
uucleanup(IM),
Managing SysV System Software.

Commands 1-659

UUX(lC) SysV UUX(lC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
uux gathers zero or more files from various systems, executes a command on a
specified system, and then sends standard output to a file on a specified system.

The command-string is made up of one or more arguments that look like a shell com­
mand line, except that the command and filenames may be prefixed by system-name!.
A null system-name is interpreted as the local system.

Filenames may be one of the following: a full path name a path name preceded by -xxx
where xxx is a login name on the specified system and is replaced by that user's login
directory; anything else is prefixed by the current directory. <.PP Any special shell
characters such as <>;1 should be quoted, either by quoting the entire command-string,
or by quoting the special characters as individual arguments.

uux attempts to get all files to the execution system. For output files, the filename must
be escaped using parentheses. uux notifies you if the requested command on the
remote system was disallowed. This notification can be turned off by the -0 option.
The response comes by remote mail from the remote machine.

OPTIONS

1-660

The following options are interpreted by uux:

-aname

-b

-c

-c
-ggrade

-j

-0

-p

The standard input to uux is made the standard input to the command­
string.

Use name as the user identification replacing the initiator user-id.
(Notification will be returned to the user.)

Return whatever standard input was provided to the uux command if the
exit status is non-zero.

Do not copy local file to the spool directory for transfer to the remote
machine (default).

Force the copy of local files to the spool directory for transfer.

Grade is a single letter/number; lower ASCn sequence characters will
cause the job to be transmitted earlier during a particular conversation.

Output the jobid ASCII string on the standard output which is the job
identification. This job identification can be used by uustat(1) to obtain
the status or terminate a job.

Do not notify the user if the command fails.

Same as -: The standard input to uux is made the standard input to the
command-string.

Commands

UUX(lC) SysV UUX(lC)

NOlES

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebug_level

-z

Produce debugging output on the standard output. The debug_level is a
number between 0 and 9; higher numbers give more detailed informa­
tion.

Send success notification to the user.

For security reasons, most installations limit the list of commands executable on behalf
of an incoming request from uux, permitting only the receipt of mail (see maiJ(l».
(Remote execution permissions are defined in /usrllib/uucp/Permissions.)

EXAMPLES

BUGS

The command

uux a!cut -fl b!/usr/file \(c!/usr/file\)

gets /usr/file from system b and sends it to system a, performs a cut(l) command on
that file and sends the result of the cut command to system c.

The command

uux "!diff usg!/usr/dan/filel pwba!/a4/danlfile2 > rldan/file.diff"

will get the filel and file2 files from the machines usg and pwba, execute a diff(l) com­
mand, and put the results in file.diff in the local PUBDIR/dan/ directory.

Only the first command of a shell pipeline may have a system-name!. All otber com­
mands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do. The
shell tokens « and » are not implemented.

The execution of commands on remote systems takes place in an execution directory
known to the uucp system. All files required for the execution will be put into this
directory unless they already reside on that machine. Therefore, the simple filename
(without path or machine reference) must be unique within the uux request. The fol­
lowing command will NOT work:

uux "a!diff b!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

but the command

uux "a!diff a!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff'

will work. (If diff(l) is a permitted command.)

Protected files and files that are in protected directories that are owned by the requestor
can be sent in commands using uux. However, if the requestor is root, and the direc­
tory is not searchable by "other", the request will fail.

Commands 1-661

UUX(lC)

FILES
lusrllib/uucp/spool
lusr/Iib/uucp/Permissions
lusr/lib/uucp/*

SEE ALSO

SysV

Spool directories
Remote execution permissions
Other data and programs

cut(l), mail(l), uucp(lC), uustat(IC),
Managing SysV System Software.

1-662

UUX(1C)

Commands

VAL(l) SysV VAL(l)

NAME
val - validate sees file

SYNOPSIS
val -
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION
val detennines if the specified file is an sees file meeting the characteristics specified
by the option used.

val has a special argument, -, which reads standard input until it reaches an end-of-file
(EOF) condition. Each line read is independently processed as if it were a command
line argument list.

val generates diagnostic messages on the standard output for each command line and
file processed, and also returns a single 8-bit code on exit as described below.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can be inter­
preted as a bit string where (moving from left to right) set bits are interpreted as fol­
lows:

OPTIONS
-s

-rSID

-mname

-ytype

Commands

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 = cannot open file or file not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = % Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Silences the diagnostic message nonnally generated on the standard out­
put for any error detected while processing each named file on a given
command line.

The argument value SID (SeeS IDentification String) is an sees delta
number. val with this option checks to detennine if the SID is ambigu­
ous (for example, rl is ambiguous because it physically does not exist
but implies 1.1, 1.2, etc., which may exist) or invalid (for example, rl.O
or r l.l.O are invalid because neither case can exist as a valid delta
number). If the SID is valid and not ambiguous, val with this option
checks to detennine if it actually exists.

Compares the argument value name with the sees %M% keyword in
file.

Compares the argument value type with the sees %Y% keyword infile.

1-663

VAL(l)

NOTE

SysV VAL(l)

val can process two or more files on a given command line and in tum can process mul­
tiple command lines (when reading the standatd input). In these cases an aggregate
code is returned - a logical OR of the codes generated for each command line and file
processed.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

val can process up to 50 files on a single command line. Any number above 50 will
fail.

SEE ALSO
admin(l), delta(l), get(l), help(I), prs(I), sccs(I).

1-664 Commands

VC(l) SysV VC(l)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-echar] [-s] [keyword=value ... keyword=value]

DESCRIPTION
vc copies lines from the standard input to the standard output under control of its argu­
ments and control statements encountered in the standard input. In the process of per­
forming the copy operation, user declared keywords may be replaced by their string
value when they appear in plain text and/or control statements.

The copying of lines from the standard input to the standard output is conditional, based
on tests (in control statements) of keyword values specified in control statements or as
vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -e keyletter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to the
standard output with the backslash removed. Lines beginning with a backslash fol­
lowed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed(1); a numeric value is an unsigned
string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by control
characters is encountered on a version control statement. The -a keyletter (see below)
forces replacement of keywords in all lines of text. An uninterpreted control character
may be included in a value by preceding it with \. If a literal \ is desired, then it too
must be preceded by \.

Keyletter Arguments

-a

-t

-echar

-s

Commands

Forces replacement of keywords surrounded by control characters with
their assigned value in all text lines and not just in vc statements.

All characters from the beginning of a line up to and including the first
ta b character are ignored for the purpose of detecting a control state­
ment. If one is found, all characters up to and including the tab are dis­
carded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are normally printed on the
diagnostic output.

1-665

VC(l)

1-666

SysV VC(I)

Version Control Statements

:dcl keyword{, ••.• keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the assignment for the
corresponding keyword on the vc command line and all previous asg's for that key­
word. Keywords declared, but not assigned values have null values.

:if condition

:end
Used to skip lines of the standard input. If the condition is true all lines between
the if statement and the matching end statement are copied to the standard out­
put. If the condition is false, all intervening lines are discarded, including control
statements. Note that intervening if statements and matching end statements are
recognized solely for the purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not" 1 <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(" <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<" I tI>"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

Commands

VC(l)

::text

:on

:off

SysV VC(l)

The > and < operate only on unsigned integer values (e.g., : 012> 12 is false).
All other operators take strings as arguments (e.g., : 012 != 12 is true). The pre­
cedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence. Values must be
separated from operators or parentheses by at least one blank or tab.

Used for keyword replacement on lines that are copied to the standard output.
The two leading control characters are removed, and keywords surrounded by
control characters in text are replaced by their value before the line is copied to
the output file. This action is independent of the -a keyletter.

Tum on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ... (915)
on the diagnostic output. vc halts execution, and returns an exit code of 1.

EXIT CODES
O-normal
1- any error

Commands 1-66~

VI(I) SysV VI(I)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag 1 [-r file 1 [-wn 1 [-R 1 [+command 1 name ...
view [-t tag 1 [-r file 1 [-wn 1 [-R 1 [+command 1 name
vedit [-t tag 1 [-r file 1 [-wn 1 [-R 1 [+command 1 name

DESCRIPTION
vi (visual) is a display-oriented text editor based on an underlying line editor ex(l). It is
possible to use the command mode of ex from within vi and vice-versa.

When using vi, changes you make to the file are reflected in what you see on your ter­
minal screen. The position of the cursor on the screen indicates the position within the
file.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. The report flag is set to 1, and the
show mode and novice flags are set. These defaults make it easier to get started learn­
ing the editor.

OPTIONS
-t tag Edits the file containing the tag and positions the editor at its definition.

-rfile Recoversfile after an editor or system crash. Iffile is not specified, a list
of all saved files is printed.

-wn Sets the default window size to n. This is useful when using the editor
over a slow-speed line.

-R Reads only mode; the readonly flag is set, preventing accidental
overwriting of the file.

+command The specified ex command is interpreted before editing begins.

VI MODES
Command

Input

Last line

Normal and initial mode. Other modes return to command mode upon
completion. ESC (escape) is used to cancel a partial command.

Entered by the following options a i A I 0 0 c C s S R. Arbitrary text
may then be entered. Input mode is normally terminated with ESC char-
acter, or abnormally with interrupt.

Reading input for : / .? or !; terminate with a carriage return to execute,
interrupt to cancel.

COMMAND SUMMARY
Sample commands

~!i -4

hjkl

1-668

Arrow keys move the cursor
Same as arrow keys

Commands

VI(l) SysV VI(l)

itextESC Insert text abc
cwnewESC Change word to new
easESC Pluralize word
x Delete a character
dw Delete a word
dd Delete a line
3dd ... 3Iines
u Undo previous change
ZZ Exit vi, saving changes
:q!CR Quit, discarding changes
ltextCR Search for text
CTRLlU CTRLlD Scroll up or down
:excmdCR Any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are interpreted in one of
these ways:
line/column number z G I
scroll amount CTRLlD CTRLlU
repeat effect Most of the rest

Interrupting, canceling
ESC
DEL
CTRLlL
CTRLlR

File manipulation
:wCR
:qCR
:q!CR
:e nameCR
:e!CR
:e + nameCR
:e +nCR
:e#CR

:w nameCR
:w! nameCR
:shCR
:!cmdCR
:nCR
:n argsCR

Commands

End insert or incomplete ctnd
(Delete or rubout) interrupts
Reprint screen if DEL scrambles it
Reprint screen if CTRL/L is ~ key

Write back changes
Quit
Quit, discard changes
Edit file name
Reedit, discard changes
Edit, starting at end
Edit starting at line n
Edit alternate file
Synonym for :e #
Write file name
Overwrite file name
Run shell, then return
Run cmd, then return
Edit next file in arglist
Specify new arglist

1-66'

VI(I)

CTRL/G
:ta tagCR
CTRLI]

SysV

Show current file and line
To tag file entry tag
:ta, following word is tag

VI(I)

In general, any ex or ed command (such as substitute or global) may be typed, pre­
ceded by a colon and followed by a carriage return.

Positioning within file
CTRL/F
CTRL/B
CTRL/D
CTRL/U
G
lpat
?pat
n
N
lpatl+n
?pat?-n
]]
[(
(
)
{
}
%

Adjus~g the screen
CTRL/L
CTRL/R
zCR
z-CR
z.CR
lpatlz-CR
:m.CR
CTRL/E
CTRL/Y

Marlcing and returning

1-670

mx
'x
'x

Forward screen
Backward screen
Scroll down half screen
Scroll up half screen
Go to specified line (end default)
Next line matching pat
Prev line matching pat
Repeat last I or ? .
Reverse last I or ?
nth line after pat
nth line before pat
Next section/function
Previous section/function
Beginning of sentence
End of sentence
Beginning of paragraph
End of paragraph
Find matching () { or }

Clear and redraw
Retype, eliminate @ lines
Redraw, current at window top
... at bottom
... at center
pat line at bottom
Use n line window
Scroll window down I line
Scroll window up 1 line

Move cursor to previous context
... at first non-white in line
Mark current position with letter x
Move cursor to mark x
... at first non-white in line

Commands

VI(l)

Line positioning
H
L
M
+

CR
J, or j
i or k

Character positioning

o
$
hor~

lor~

CTRLlH
space
fx
Fx
tT
Tx

%

Words, sentences, paragraphs

SysV

Top line on screen
Last line on screen
Middle line on screen
Next line, at first non-white
Previous line, at first non-white
Return, same as +
Next line, same colurrm
Previous line, same colurrm

First non white
Beginning of line
End of line
Forward
Backwards
Same as ~
Same as ~
Find x forward
fbackward
Up to x forward
Back uptox
Repeat last f F t or T
Inverse of;
To specified colurrm
Find matching ({) or}

w Word forward
b Back word
e End of word
) To next sentence
} To next paragraph
(Back sentence
{ Back paragraph
W Blank delimited word
B BackW
E To end ofW

Commands

VI(l)

1-671

VI(l) SysV VI(l)

Corrections during insert
CTRLlH Erase last character
CTRLIW Erase last word
erase Your erase, same as CTRL/H
kill Your kill, erase input this line
\ Quotes CTRL/H, your erase and kill
ESC Ends insertion, back to command
DEL Interrupt, terminates insert
CTRLlD Backtab over autoindent
tCTRLlD Kill auto indent, save for next
OCTRLlD ... but at margin next also
CTRLlV Quote non-printing character

Insert and replace
a Append after cursor

Insert before cursor
A Append at end of line
[Insert before first non-blank
0 Open line below
0 Open above
rx Replace single char with x
RtextESC Replace characters

Operators
Operators are followed by a cursor motion, and affect all text that would have been
moved over. For example, since w moves over a word, dw deletes the word that would
be moved over. Double the operator, e.g., dd to affect whole lines.

1-672

d
c
y
<
>

Delete
Change
Yank lines to buffer
Left shift
Right shift
Filter through command
Indent for LISP

Commands

VI(l)

Miscellaneous Operations
C
D
s
S
J
x
X
Y

Yank: and Put

SysV

Change rest ofline (c$)
Delete rest of line (d$)
Substitute chars (cl)
Substitute lines (cc)
Join lines
Delete characters (dl)
... before cursor (dh)
Yank lines (yy)

VI(l)

Put inserts the text most recently deleted or yanked. However, if a buffer is named, the
text in that buffer is put instead.

p
p
"xp
"xy
"xd

Put back text after cursor
Put before cursor
Put from buffer x
Yank to buffer x
Delete into buffer x

Undo, Redo, Retrieve
u Undo last change

Restore current line
Repeat last change
Retrieve d'th last delete

NOTES

BUGS

Fn..ES

U

"dp

In the Domain/OS SysV implementation of vi, the w (word) and CTRLI] (tag) com­
mands both recognize a $ as part of the word. The w command also recognizes a dash
(-) as part of a word, if liSP mode is on.

Software tabs using CTRLlT work only immediately after the autoindent.

Left and right s4ifts on intelligent terminals do not make use of insert and delete char­
acter operations in the terminal.

lusrllib/terminfol?l* Compiled terminal description database

SEE ALSO
ed(l), edit(l), ex(l).

Commands 1-673

VSIZE(l) Domain/OS SysV VSIZE(l)

NAME
vsize - set/display VT100 window settings

SYNOPSIS
vsize [options]

DESCRIPTION
The vsize command allows you to set the dimensions of the VT100 emulator window
pane. This command is valid only from within the VT100 emulator (which is invoked
with the VT100 command); attempting to use it directly from the shell causes an error.

OPTIONS
IT no options are specified, vsize displays the current window pane settings.

-I n Specifies the height of the window pane in lines. IT this option is omitted, the
height remains unchanged.

-c n Specifies the width of the window in columns. IT this option is omitted, the
width remains unchanged.

-std Sets the height of the window to 24 lines and the width to 80 columns. This is
the same as saying -I 24 -c 80.

EXAMPLES

1-674

Invoke VT100 emulator and Display current settings.

$ vt100
$ vsize
Screen size is 18 lines by 70 columns.

Change the width. Exit the emulator and return to the shell.

$ vsize -c 60
Old screen size is 18 lines by 70 columns.
New screen size is 18 lines by 60 columns.

$ *** EOF ***
$

Commands

VT100(l) Domain/OS SysV VT100(l)

NAME
vt100 - VT100 terminal emulator

SYNOPSIS
vt100 [options] fpathname [argl arg2 ...]]

DESCRIPTION
The vt100 command creates a window running the VT100 terminal emulator and starts
up a shell within the window.

The VT 1 00 terminal emulation package is intended for use with two types of programs.
When used in conjunction with remote communications packages such as Domain
TCP/IP or X.25, the VT100 terminal emulator allows you to interact with the remote
system as if you were logged into a VT100 connected to that system. Using the VT100
terminal emulator with programs that take advantage of VT100 special features allows
you to run these programs on a Domain node without having to tailor them to the
Domain environment.

pathname [argl arg2 ...] (optional)

OPTIONS

Specify the name of a command or program for the shell in the VT100
window to invoke. You must give the full pathname; for example,
Icomlld. argl. arg2, ... are valid arguments to the selected command (or
program): for example, Icomlld lImy _ node/my _home _ dir. The default
is to invoke the value of the variable $SHELL, or if $SHELL is not set,
invoke Icomlsh.

If any options are specified, they must precede the argument(s). Once vt100 is running,
you may change the window size with the vsize command.

-std Set up a VT100 window that is 24 lines by 80 columns (the standard size
of a VT100 screen).

-lines n Set up a VT100 window with the number of lines specified by n. The
number of lines cannot exceed the number of lines in the DM window
running the VT100 emulator.

-columns n Set up a VT100 window with the number of columns specified by n.
The number of columns cannot exceed the number of columns of the
DM window running the VT100 emulator.

The VT 100 terminal emulation package consists of the following:

• The terminal emulation software, which performs the functions of a VT100 temti­
nal, such as handling VT100-type escape sequences. The terminal emulator
redirects the handling of keyboard input and screen output to stream manager opera­
tions. The terminal emulator is invoked within a DM window by the vt100 shell
command.

Commands 1-675

VT100(l) Domain/OS SysV VT100(l)

• The terminal emulator driver, which performs keyboard input functions such as
erasing or echoing characters.

EXAMPLES
1. Create a window running the VT100 emulator and start a shell running within the

window.

$ vt100

2. Open a connection to the remote system specified by hostname and create a win­
dow running the VT100 emulator.

$ vt100 login hostname

KEYBOARD LAYOUT

1-676

The table below shows how the keys on a Domain low-profile keyboard map to the
keys of a VT100. This assumes that you are running the VT100 Keyboard Emulation
package on your node. Note that the VT100 definitions for the F2, F3, and F7 keys
supersede the usual emt definitions for these keys.

Domain key Vt100 keypad
<INS MODE> <ESC>
<CHAR DEL> <RUBOUT>

<F2> <PF1>
<F3> <PF2>
<F4> <PF3>
<F5> <PF4>

SHIFT/<F2> <7>
SHIFT/<F3> <8>
SHIFT/<F4> <9>
SHIFT/<F5> <->
CTRU<F2> <4>
CTRL/<F3> <5>
CTRU<F4> <6>
CTRL/<F5> <,>

<F6> <1>
<F7> <2>

SHIFT/<F6> <3>
SHIFT/<F7> <ENTER>
CTRU<F6> <0>
CTRU<F7> <.>

Commands

WAIT(l) SysV WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait [n 1

DESCRIPTION
wait awaits a background process whose process id is n, and reports its termination
status. If n is omitted, all the shell's currently active background processes are waited
for, and the return code is zero.

1be shell itself executes wait, without creating a new process.

CAVEAT
If you get the error message cannot fork, too many processes, try using wait to clean up
your background processes. If this doesn't help, the system process table is probably
full or you have too many active foreground processes. (There is a limit to the number
of process ids associated with your login, and to the number the system can keep track
of.)

CAUTIONS
Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus
cannot be waited for.

If n is not an active process id, all your shell's currently active background processes
are waited for and the return code will be zero.

SEE ALSO
sh(1).

Commands 1-677

WALL(l)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

SysV WALL(l)

wall reads its standard input until an end-of-file. It then sends this message to all
currently logged-in users preceded by:

FILES

Broadcast Message from •..

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may have invoked
(see mesg(I».

/dev/tty.

DIAGNOSTICS
Cannot send to ... when the open on a user's tty file fails.

SEE ALSO
mesg(I), write(l)

1-678 Commands

WBAK(l) Domain/OS SysV WBAK(l)

NAME
wbak - create a magnetic media backup file

SYNOPSIS
wbak -f fileno [-de v I m[unitl I f I ctl

[-fulll-incri-af dtml-bef dtm]

DESCRIPTION

[-tid id] [-own id] [-vid vol id]
[-slal-nsla] [-wlal-nwla] [-nhi] [-pdtu]
[-reo] [-retenl-nreten] [-no_eot]
[-sysboot] HI-ldl-lfl-lI] [-to filename]
[-type uasclunstructlhdru]
[-r] [-stdout] [-presrlO] pathname ...

wbak writes one or more objects to either a removable media, disk file or standard
output. These objects may be directory trees, files, or links. For each object, the infor­
mation saved includes the name, object data, and attributes associated with the object,
such as the access control list. This lets you reconstruct files, the directory tree, or any
portion of the tree using the rbak command.

The wbak and rbak commands are intended both for disk backup and for interchanging
information between separate Apollo installations. Use the rwmt command to read and
write magnetic media that are used for interchanging information with non-Apollo ins­
tallations.

pathllame (required) Specify the name of the object to be written to backup media.

OPTIONS

This may be a directory, file, or link. If it is a file, then the file is
written as specified. If it is a link, then the link is resolved and
the resolution object is written to backup media. If it is a direc­
tory, all subordinate files and subdirectories in the tree are writ­
ten. Note that the pathname specified reflects the way the direc­
tory is stored on the backup media, and that the same name must
be used when reading files using pathnames in rbak. Multiple
pathnames and wildcarding are permitted. If you omit this argu­
ment, wbak will prompt you for it. ¥ou may specify a hyphen
(-) as an argument to direct wbak to standard input for further
arguments and options.

The -f option is required, as it specifies where on the backup media the new file is to be
written. If you omit it, wbak will prompt you for it.

Tape File Identifiers
-fid file _id

Commands

Specify a 1-17 character file ID to be written in the file header
label for use when writing a file to a labeled volume. If this
option is omitted, the file is not named and can only be restored
by the file number.

1-679

WBAK(J)

-f [position 1

Mode Control

Domain/OS SysY WBAK(J)

Specify the file position for the write operation. Valid values for
position are cur, end, or a nonzero integer. A position of cur
specifies that the file should be written at the current position on
the backup media; the media must have been previously written
by wbak and its position must not have been disturbed.

A position of end specifies that the file should be written at the
end of the backup media file set. This causes wbak to append the
specified disk file (pathname argument) to the very end of the file
set.

A position specified by a nonzero integer value causes the file to
be written at that absolute position in the backup media volume.
If multiple pathname arguments are supplied, the value of posi­
tion is incremented by one after each file has been written.

The default value for position is 1.

The object specified by the pathname argument must be a directory for either -full or
-incr to have meaning.

-full (default) Specify a full backup; save all files in specified trees.

-incr

-afdtm

-bef dtm

Label Control
-\VIa (default)

-nwla

-own id

-vid vol id

1-680

Specify an incremental backup; save files that were modified
since the last backup recorded in the backup_history file stored
in the pathname directory.

Save all files modified after the given date and time; dtm is in the
form yylmmldd.hh:mm. The date defaults to today, and the time
to midnight if either of those are omitted from dtm.

Save all files last modified before the given date and time.

Write the backup media volume label if the backup file number is
1.

Suppress writing of the backup media volume label.

Specify backup media volume owner (1-14 character name).
This option is only meaningful when used with the -\VIa option.

Specify a 1-6 character volume ID for use when labeling a
volume. This option is only meaningful when the backup file
number is 1. The default volume 1D is ' , (blank).

Commands

WBAK(l)

-sla (default)

-nsla

Listing Control

Domain/OS SysV WBAK(1)

Display the label infonnation written for this backup file on stan­
dard output.

Suppress output of label infonnation.

You may include the -I option, or any combination of -Id, -If, and -II.

-I

-If

-Id

-II

Backup Device Control
-dev d[unitj

-to filename

Write the names of all files, directories, and links saved to stan­
dard output.

Write the names of all files saved to standard output.

Write the names of all directories saved to standard output.

Write the names of all links saved to standard output.

Specify device type and unit number. d must be either m (for
reel-to-reel magnetic tape), ct (for cartridge tape), or f (for
floppy), depending on which drive is being used. unit is an
integer (0-3). Both are required for reel-to-reel tapes (that is,
-dev m2). A unit number is not required for floppy disks and
cartridge tapes (that is, -dev f). If this option is omitted, rbak
assumes device mO.

CAUTION: Floppy disk support for this command is
limited. In particular, error detection dur­
ing reads and writes is poor. do not use
this command with floppy disks when the
data being placed on the floppy disks are
critical and unrecoverable.

Backup output is written to the specified streams object rather
than removable media. TIris can then be restored using the -from
option in rbak. If the file already exists, use the -r option to
replace it. If -type option is not specified the file will be
assigned the default type. You cannot use the -file n option with
streams.

-type [uasc I unstruct I hdruj

-r

Commands

Specify the type of the object filename. It can be one of ASCII
(uasc), Unstructured (unstruct) or Streams header-undefined
(hdru) type.

If the object specified with the -to option already exists, this
option allows it to be replaced. The type of filename is however
left unchanged.

1-681

WBAK(I) Domain/OS SysV WBAK(I)

-stdout

-reo

The backup output is written to standard output.

Force previous backup media volume to be reopened, and
suppress reading of backup media volume label. Use only when
backup media has not been repositioned since last wbak or rbak.

Special Cartridge Tape Control Options
-reten Retension the cartridge tape (unwind to the end, then rewind).

This can be helpful if you have encountered cartridge tape read­
ing errors. Retensioning requires about 1.5 minutes to complete.

-nreten (default) Do not retension the cartridge tape.

-sysboot

Suppress the writing of two tape marks at the end of the tape file,
which are the standard signal for end of tape. The cartridge can't
position between the two tape marks to be ready for a successive
call to wbak (as it does on magtape), without rewinding the tape
and searching forward, so this option speeds up multiple invoca­
tions of wbak. It should not be used on the last invocation of
wbak. Also, -f cur should be used on all wbak invocations in a
series except the first one.

Permit use of a bootable tape that has a special boot program at
the beginning. This option causes wbak to skip over the first file
on the tape. This option is only necessary when the first file on
the tape is being written (-f 1).

Miscellaneous Control Options

1-682

-nhi Suppress update of the backup history file.

- (hyphen)

-pdtu

-presrlO

Read standard input for further arguments or options; input is
accepted until wbak receives an EOF.

Preserves the last date/time-used information on objects. After
each object is backed up on tape, the date/time-used information
is reset to the value it had before the backup.

Allows you to make a tape with pre-SRI0 format from an SRlO
node. This tape will have no ACLs by default. You can restore it
to a pre-SRI0 volume by means of the pre-SRlO rbak. If you
make a tape without this option it will not be readable on a pre­
SR 1 0 system.

Commands

WBAK(1) Domain/OS SysV WBAK(1)

EXAMPLES
$ wbak //maskiwby -f l-af 87/11/19.12.00 -lid wby-L

This command writes the directory //mask/wby to tape. The directory is written out to
tape file one, and the file ID wby is written to the file's label. Disk files from directory
wby are written to the tape only if they have been modified since noon on November
19, 1987. The label and the names of the files written to tape are printed to standard
output.

When this command is executed, wbak writes the following information to standard
output:

Label:
File number:
File section:
File id:
Date written:

Starting write:

1
1
wby

1987/11/20 10:47:58 EST

(file) "//mask/wby/among" written
(file) "//mask/wby/school" written
(file) "//mask/wby/children" written
(file) "/ /mask/wby /backup _history" written
(dir) "//mask/wby/" written.

Write complete.

This command backs up the entire contents of the node whose entry directory name is
gooey. Note that the file ID is specified as "node 27 backup" to make it easy to iden­
tify when you want to reload it, and that the command assigns volume and owner IDs.

$ wbak -f I-oWD "john doe" -vid "volbk2" -lid "node 27 backup" //gooey

Commands 1-683

WBAK(l) Domain/OS SysV WBAK(l)

1-684

When this command is executed, wbak writes the following information to standard
output:

Label:
Volume id:
Owner id:
File number:
File section:
File id:
File written:

Starting write:

Write complete.

VOLBK2
john doe
1

1

n 27 backup
1987/02/17 18:00:39 EST

This command uses wildcards to match only those files in the ug subdirectory of the
current working directory whose names begin with the letters a through f and end with
_example.

$ wbak -f l--own "john doe" -vid "volbkl" ug![a-f*Lexample-1

When this command is executed, wbak writes the following information to standard
output:

Label:
Volume id:
Owner id:
File number:
File section:
File id:
File written:

Starting write:

VOLBK1
john doe
1
1

(no id specified)
1988/02/17 17:58:52 EST

(file) "ug/cmf_example" written.
(file) "ug/cmt_examp1e" written.
(file) "ug/cpboot_example" written.
(file) "ug/cpf_example" written.
(file) "ug/cpt_example" written.
(file) "ug/fpat_example" written.
(file) "ug!fppmask_example" written.
(file) "ug/fst_example" written.

Write complete.

Commands

WBAK(l) Domain/OS SysV WBAK(l)

$ wbak src -to Ibackup/bck _ out.file

This command writes the backup output for the directory src to the file
Ifredlbck _ out.file. The directory can be restored in either of the following two ways:

rbak src -from Ibackup/bck_out.file
or
cat Ifred/bck _ out.file I rbak src -stdin

Using streams as a backup output media, it is possible to stage the backup output to
intennediate disks and then use rwmt to write the intennediate file to the magnetic
tape. The sequence to use is as follows

$ wbak Ilotter -to Ilbackup/ot wbak Ilotter -to Ilbackup/tmpi

This writes the backup output to an intennediate file //backup/tmpl followed by

rwmt -f 2 -w Ilbackup/tmpi-raw -r18192 -nobs -ansi

When the magtape unit is available at a later time the intennediate file is written to the
magtape. Note that it is ESSENTIAL to use the -raw, -rl 8192 and the -nobs options
of rwmt, for rbak to be able to read the backup from tape. All tapes used for this must
must have the ANSI speified volume label. You can only use this sequence for mag­
netic tapes. rbak will not be able to restore data written using the above sequence for
cartridge tapes instead of magnetic tapes. This sequence has exactly the same effect as
using

wbak Ilotter -de v mt -f 2

You can then use rbak as follows to retrieve the data

rbak Ilotter -f 2 -dev mt

SEE ALSO
rbak(l), rwmt(l)

Commands 1-685

WC(l) SysV WC(l)

NAME
we - word count

SYNOPSIS
we [-Iwe] [names]

DESCRIPTION

1-686

we counts lines, words, and characters in the named files, or in the standard input if no
names appear. It also keeps a total count for all named files. A word is a maximal
string of characters delimited by spaces, tabs, or newlines.

The options I, w, and e may be used in any combination to specify that a subset of lines,
words, and characters are to be reported. The default is -Iwe.

When names are specified on the command line, they will be printed along with the
counts.

CommandS

WHAT(l)

NAME
what - identify SCCS files

SYNOPSIS
what [-s] files

DESCRIPTION

SysV WHAT(l)

whatfl searches the given files for all occurrences of the pattern that get(l) substi­
tutes for %Z% (this is @(#) at this printing) and prints out what follows until the first -,
>, newline, \, or null character. For example, if the C program in file f.c contains

char identD = "@(#)identification infonnation ";

and f.c is compiled to yield f.o and a.out, then the command

what f. c f. 0 a • out

will print

f.c:

f.o:

a.out:

identification information

identification information

identification information

get(l), which automatically inserts identifying infonnation, can also be used where the
information is inserted manually.

OPTIONS
-s Quit after finding the first occurrence of pattern in each file.

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. Use help(l) for explanations.

BUGS
It is possible that an unintended occurrence of the pattern @(#) could be found just by
chance, but this causes no harm in nearly all cases.

SEE ALSO
get(l).

Commands 1-687

WHO(l) SysV WHO(l)

NAME
who - who is on the system

SYNOPSIS
who [-bdHlpqrstTu] [file]

who [-bdHlpqstTu] [-a I -d I -n arg]

who am i

who am I

DESCRIPTION
who lists the name, terminal line, login time, elapsed time since activity occurred on the
line, and the process-ID for each current UNIX system user. It examines the /etc/utmp
file at login time to obtain its information. If file is given, that file (which must be in
utmp(4) format) is examined. file is usually /etc/wtmp, which contains a history of all
the logins since the file was last created.

who with either the am i or am I option identifies the invoking user.

The general format for output is:

name [state JUne time [idle] [Pid] [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the system clock, as
well as other processes spawned by the init process.

OPTIONS

1-688

-a
-b

-d

-fnodefile

-H
-I

Processes /etc/utmp or the named file with all options turned on.

Indicates the time and date of the last reboot.

Displays all processes that have expired and not been respawned by init.
The exit field appears for dead processes and contains the termination
and exit values (as returned by wait(2», of the dead process. This can
be useful in determining why a process terminated.

Specifies nodes for which /etc/utmp are processed. node file should con­
tain lines in the form: IInodename or [net.]nodeid, one per line. A
pound sign (#) in the first column causes that line to be treated as a com­
ment.

Prints column headings above the regular output.

Lists only those lines on which the system is waiting for someone to'
login. The name field is LOGIN in such cases. Other fields are the same
as for user entries except that the state field does not exist.

-nargl [,arg2]
Specificies nodes for which /etc/utmp are processed. arg lists the nodes
to be processed, and should be in the form: IInodename or [net.]nodeid.
If more than one node is specified they should be either separated by
commas or separated by whitespace and the entire argument in quotes.

Commands

WHO(l)

NOTES

FILES

-p

-q

-r

-s

-t

-T

-u

SysV WHO(l)

Lists any other process which is currently active and has been previously
spawned by init. The name field is the name of the program executed by
init as found in /etc/inittab. The state, line, and idle fields have no
meaning. The comment field shows the id field of the line from
/etc/inittab that spawned this process. See inittab(4).

Displays only the names and the number of users currently logged on.
When this option is used, all other options are ignored.

Indicates the current run-level of the init process. In addition, it pro­
duces the process termination status, process id, and process exit status
(see utmp(4» under the idle, pid, and comment headings, respectively.

Lists only the name, line, and time fields. This is the default option.

Indicates the last change to the system clock (via date(l» by root. See
sue!).

The same as -s except that the state of the terminal line is printed. The
state describes whether someone else can write to that terminal. A +
appears if the terminal is writable by anyone; a - appears if it is not.
root can write to all lines having a + or a - in the state field. If a bad
line is encountered, a ? is printed.

Lists only those users who are currently logged in. name is the user's
login name. line is the name of the line as found in the directory /dev.
time is the time that the user logged in. idle column contains the number
of hours and minutes since activity last occurred on that particular line.
A dot (.) indicates that the terminal has seen activity in the last minute
and is therefore "current". If more than twenty-four hours have elapsed
or the line has not been used since boot time, the entry is marked old.
This field is useful when trying to determine whether a person is working
at the terminal or not. The comment is the comment field associated
with this line as found in /etc/inittab (see inittab(4». This can contain
information about where the terminal is located, the telephone number of
the dataset, type of terminal if hard-wired, etc.

All options produce name, line, and time information except -q; only - T produces
state information:

After a shutdown to the single-user state, who returns a prompt; the reason is that since
/etc/utmp is updated at login time and there is no login in single-user state, who cannot
report accurately on this state. who am i, however, returns the correct information.

/etc/utmp
/etc/wtmp

Commands 1-689

WHO(l) SysV WHO(l)

SEE ALSO
date(l),login(l), mesg(l), su(lM).
init(lM) in the Managing SysV System Software.
wait(2), inittab(4), utmp(4) in the SysV Programmer's Reference.

1-690 Commands

WHOIS(l) SysV WHOIS(l)

NAME
whois - DARPA Internet usemame directory service

SYNOPSIS
whois name

DESCRIPTION
Entering the command whois help produces a helpful message similar to the following:

Please enter a name or a handle ("ident") such as "Smith" or "SRI-NIC". Starting
with a period forces a name-only search; starting with an exclamation point forces
handle-only. Examples:

Smith [looks for name or handle SMITH 1
!SRI-NIC [looks for handle SRI-NIC only 1
.Smith, John [looks for name JOHN SMITH only

Adding" ... " to the argument matches anything from that point, e.g. "ZU ... " matches
ZUL, ZUM, etc.

To have the entire membership list of a group or organization, shown with the record,
use an asterisk (*) directly preceding the given argument. You can, of course, use an
exclamation point and asterisk, or a period and asterisk together.

Commands 1-691

WRITE(t) SysV WRlTE(t)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

FILES

1-692

write copies lines from your termiual to that of another user. When first called, it sends
the message:

Message from yourname (tty??) [date] •••

to the person you want to talk to. When it has successfully completed the connection, it
also sends two bells to your own termiual to iudicate that what you are typiug is beiug
sent.

The recipient of the message should write back at this poiut. Communication contiuues
until an end of file is read from the termiual, an iuterrupt is sent, or the recipient has
executed mesg n. At that poiut write writes EOT on the other termiual and exits.

If you want to write to a user who is logged iu more than once, the line argument may
be used to iudicate which liue or termiual to send to (e.g., ttyOO); otherwise, the first
writable iustance of the user found iu /etc/utmp is assumed and the followiug message
posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(1) command. Writiug
to others is normally allowed by default. Certaiu commands, such as pr(l) disallow
messages iu order to prevent iuterference with their output. However, if the user has
super-user permissions, messages can be forced onto a write-inhibited termiual.

If the character! is found at the begiuning of a liue, write calls the shell to execute the
rest of the liue as a command.

The followiug protocol is suggested for usiug write: when you first write to another
user, wait for them to write back before startiug to send. Each person should end a
message with a distiuctive signal (Le., (0) for "over") so that the other person knows
when to reply. The signal (00) (for "over and out") is suggested when conversation is
to be termiuated.

/etc/utmp

/bin/sh

To find user

To execute!

Commands

WRITE(l) SysV WRITE(l)

DIAGNOSTICS
user is not logged on

If the person you are trying to write to is not logged on.

Permission denied
If the person you are trying to write to denies that pennission (with
mesg).

Warning: cannot respond, set mesg-y
If your terminal is set to mesg n and the recipient cannot respond to you.

Can no longer write to user

SEE ALSO

If the recipient has denied pennission (by using mesg n) after you had
started writing.

mail(I), mesg(I), pr(l), sh(l), who(I).

Commands 1-693

XARGS(l) SysV XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
xargs combines the fixed initial-arguments with arguments read from standard input to
execute the specified command one or more times. The number of arguments read for
each command invocation and the manner in which they are combined are determined
by the flags specified.

command, which may be a shell file, is searched for, using one's $PATH. If command
is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of charac­
ters delimited by one or more blanks, tabs, or newlines; empty lines are always dis­
carded. Blanks and tabs may be embedded as part of an argument if escaped or quoted.
Characters enclosed in quotes (single or double) are taken literally, and the delimiting
quotes are removed. Outside of quoted strings a backslash (\) will escape the next char­
acter.

Each argument list is constructed starting with the initial-arguments, followed by some
number of arguments read from standard input (Exception: see -i flag). Flags -i, -I,
and -n determine how arguments are selected for each command invocation. When
none of these flags are coded, the initial-arguments are followed by arguments read
continuously from standard input until an internal buffer is full, and then command is
executed with the accumulated args. This process is repeated until there are no more
args. When there are flag conflicts (e.g., -I vs. -n), the last flag has precedence.

Flag Values

1-694

-Inumber The specified command is executed for each non-empty
number lines of arguments from standard input. The last invo­
cation of command will be with fewer lines of arguments if
fewer than number remain. A line is considered to end with
the first new-line unless the last character of the line is a blank
or a tab; a trailing blank/tab signals continuation through the
next non-empty line. If number is omitted, 1 is assumed.
Option -x is forced.

-ireplstr Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in
initial-arguments for each occurrence of replstr. A maximum
of 5 arguments in initial-arguments may each contain one or
more instances of replstr. Blanks and tabs at the beginning of
each line are thrown away. Constructed arguments may not
grow larger than 255 characters, and option -x is also forced.
{ } is assumed for replstr if not specified.

Commands

XARGS(l)

-nnumber

-t

-p

-x

-ssize

-eeo/str

SysV XARGS(l)

Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer argu­
ments will be used if their total size is greater than size charac­
ters, and for the last invocation if there are fewer than number
arguments remaining. If option -x is also coded, each number
arguments must fit in the size limitation, else xargs tenninates
execution.

Trace mode: The command and each constructed argument list
are echoed to file descriptor 2 just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (-t) is turned on to print the com­
mand instance to be executed, followed by a ? •• prompt. A
reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return, skips
that particular invocation of command .

Causes xargs to tenninate if any argument list would be
greater than size characters; -x is forced by the options -i and
-1. When neither of the options -i, -I, or -n are coded, the
total length of all arguments must be within the size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal to
470. If -s is not coded, 470 is taken as the default. Note that
the character count for size includes one extra character for
each argument and the count of characters in the command
name.

The specified eo/str is taken as the logical end-of-file string.
Underbar (_) is assumed for the logical EOF string if -e is not
coded. The value -e with no eo/str coded turns off the logical
EOF string capability (underbar is taken literally). xargs reads
standard input until either end-of-file or the logical EOF string
is encountered.

xargs will terminate if either it receives a return code of -I from, or if it cannot exe­
cute, command. When command is a shell program, it should explicitly exit (see sh(l»
with an appropriate value to avoid accidentally returning with-I.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo each move
command just before doing it:

Is $1 I xargs -i -t

Commands 1-695

XARGS(l) SysV XARGS(l)

The following will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file log:

(Iogname; date; echo $0 $*) I
The user is asked which files in the current directory are to be archived and archives
them into arch one at a time,

Is I xargs -p -I ar

or many at a time:
Is I xargs -p -I I

The following will execute diff(I) with successive pairs of arguments originally typed
as shell arguments:

echo $* I xargs -n2 diff

SEE ALSO
sh(l).

1-696 Commands

XDMC(1) Domain/OS SysV XDMC(1)

NAME
xdmc - execute a DM command from the shell

SYNOPSIS
xdmc dmJommand [args ...]

DESCRIPTION
xdmc allows you to invoke Display Manager commands from the command shell or
from within a shell script. This is similar to pressing <CMD> on the keyboard and then
typing the DM command in the DM input window, which is the usual way to perfonn
DM operations.

dm_command (required)

args ... (optional)

EXAMPLES
$ xdmcdq

Specifies the Display Manager command to be executed.

Specifies any arguments to be passed to the DM com­
mand.These are sent directly to the DM without further
processing by the command shell.

Default if omitted: no arguments passed

Cause the DM to send a quit fault to the current process.

$ xdmc cp Icomlsh

Cause the DM to create a new process and invoke the shell. This is the same as press­
ing <SHELL>.

Commands 1-697

YACC(l) SysY YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION
The yacc command converts a context-free grammar into a set of tables for a simple
automaton which executes an LR(l) parsing algorithm. The grammar may be ambigu­
ous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex, as
well as main and yyerror, an error handling routine. These routines must be supplied
by the user; lex(l) is useful for creating lexical analyzers usable by yacc

If the -v flag is given, the file y.output is prepared, which contains a description of the
parsing tables and a report on conflicts generated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements that asso­
ciate the yacc -assigned "token codes" with the user-declared "token names". This
allows source files other than y.tab.c to access the token codes.

If the -I flag is given, the code produced in y.tab.c will not contain any #line con­
structs. This should only be used after the grammar and the associated actions are fully
debugged.

Runtime debugging code is always generated in y.tab.c under conditional compilation
control. By default, this code is not included when y.tab.c is compiled. However,
when yacc's -t option is used, this debugging code will be compiled by default.
Independent of whether the -t option was used, the runtime debugging code is under
the control of YYDEBUG, a preprocessor symbol. If YYDEBUG has a non-zero value,
then the debugging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the runtime
debugging code will be smaller and slightly faster.

CAVEAT

Fll..ES

1-698

Because filenames are fixed, at most one yacc process can be active in a given directory
at a given time.

y.output

y.tab.c

y.tab.h

yacc.tmp

Defines for token names

yacc.debug, yacc.acts
Temporary files

Commands

YACC(l) SysV YACC(l)

usr/Iib/yaccpar
Parser prototype for C programs

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard error
output; a more detailed report is found in the y.output file. Similarly, if some rules are
not reachable from the start symbol, this is also reported.

SEE ALSO
lex(l).

Commands ---8B--- 1-69

INTRO(6)

NAME
intro - introduction to games

DESCRIPTION

SysV INTRO(6)

This section describes the recreational and educational programs found in the directory
lusr/games.

SEE ALSO
domain(6)

Games 6-

DOMAIN(6) Domain/OS SysV DOMAIN(6)

NAME
domain - Domain/OS-specific games

DESCRIPTION
While providing all of the significant functionality of System V Release 3, Domain/OS
SysV actually represents only a subset of the greater functionality of Domain/OS.
Furthermore, Domain/OS SysVomits some features of Sy.stem V Release 3, that are
irrelevant to Apollo® workstations. The following paragraphs list additional games
available in the Domain/OS lusr/gam~ directory.

Domain/OS Additions to the SysV Environment
The lusr/games directory includes standard 4.3BSD games, System V games, and
Domain/OS-specific games Pages that describe Domain/OS-specific games have the
heading, "Domain/OS SysV"; pages documenting standard UNIX games are identified
with the heading "SysV".

bgcolor Make interesting background colors
bj The game of blackjack
btlfortune Bell Telephone Labs' version of fortune
btlgammon Bell Telephone Labs' version offortune
btl hangman Bell Telephone Labs' version of hangman
craps The game of craps
dmoire Domain/Dialogue-based moire generator
factor Factoring program
flake Induce tenninal dandruff
mastermind Mastermind guessing game
maze Generate a maze
melt "Melt" the screen
moo Guessing game
primes Print prime numbers
puzzle A puzzle game
random Random number generator
revscr Reverse screen
scramble Turn your screen into a scramble puzzle
teachgammon Teach the game of backgammon
ttt The game of tic-tac-toe
vine Grow vines

SEE ALSO
domain(l), intro(6), domain(lM)

6-2 Games

ARlTHMETIC(6) SysV ARITHMETIC(6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION

NOTES

Games

arithmetic presents simple arithmetic problems, and waits for you to type an answer.
If the answer is correct, it replies "Right!", and supplies a new problem. If the answer
is wrong, it replies "What?", until you respond correctly.

The first optional argument determines the kind of problem to be generated. A plus sign
(+), minus sign (-), lowercase x, and a slash (j) produce addition, subtraction, multipli­
cation, and division problems respectively. Specifying more than one of these charac­
ters on a command line generates a variety of problem types, all mixed in random
order. Specifying any characters other than the four mentioned here also produces a
random mix of problem types. If you specify no argument to arithmetic, subtraction
problems appear by default.

The second optional argument is range, a decimal number. If used, all addends, sub­
trahends, differences, multiplicands, divisors, and quotients will be less than or equal to
this number. The default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the
respondent makes a mistake, the numbers in the problem which was missed become
more likely to reappear.

Every twenty problems, it publishes statistics on correctness and the time required to
answer. Specifically, the program tells you the number of correct and incorrect answers
that you have given, as well as the total percentage of those correct. It also tells you
how much time (in seconds) has elapsed, and the average number of seconds it took you
to answer each problem. For example, the program may output something like this:

Rights 20; Wrongs 1; Score 95%
Total time 50 seconds; 2.5 seconds per problem

To quit the program, type an interrupt (usually CIRL/C).

As a matter of educational philosophy, arithmetic does not supply correct answers,
since the learner should be able to calculate them. Thus, it does not try to teach number
facts, but instead serves as a drill program for those just past the first learning stage of
arithmetic. Usually, the most relevant statistic it provides is time per problem, not per­
cent correct.

6-3

BACKGAMMON(6) SysV BACKGAMMON(6)

NAME
backgammon - the game of backgammon

SYNOPSIS
iusrigamesibackgammon [options] (file]

DESCRIPTION
This program lets you play backgammon against the computer or against a friend. All
commands consist of only one letter, so you don't need to type a carriage return except
at the end of a move. The program is mostly self documenting; typing a question mark
(?) will usually get some help. If you answer y when the program asks if you want the
rules, you will get text explaining the rules of the game, some hints on strategy, instruc­
tions on how to use the program, and a tutorial consisting of a practice game against the
computer.

OPTIONS
-n Don't ask for rules or instructions.

-r Player is red (implies n).

-w Player is white (implies n).

-b Two players, red and white (implies n).

-pr Print the board before red's turn.

-pw Print the board before white's turn.

-pb Print the board before both players' turns.

Several arguments may be concatenated together. If your terminal has capabilities for
direct cursor movement, backgammon "fixes" the board after each move so that you
need not reprint the board each time. (In this case, all -pr, -pw, and -pb options are
ignored.)

COMMANDS

6--4

When the program prompts by typing only your color, type a space or carriage return to
roll, or

d Double

p Print the board

q Quit

s Save the game for later

When the program prompts with "Move:", type

p Print the board

q Quit

s Save the game

Games

BACKGAMMON(6) SysV BACKGAMMON(6)

FILES

or a move, which is a sequence of

s-f Move from s to f

sir Move one man on s the roll r

separated by commas or spaces and ending with a newline. Available abbreviations are

s-fl-f2 means s-n,n-f2

slrlr2 means s/rl,s/r2

Use b for bar and h for home, or 0 or 25 as appropriate.

/etc/termcap Terminal capability database

/usr/gameslteachgammon Rules and tutorial

Games 6-5

BANNER(6) SysV BANNER(6)

NAME
banner - print large banner on printer

SYNOPSIS
/usr/gameslbanner [-wn] [message]

DESCRIPTION
banner prints a large, high quality banner on the standard output. If message is omit­
ted, banner prompts for and reads one line of its standard input. The output should be
printed on a hardcopy device up to 132 columns wide, with no breaks between the
pages.

OPTIONS

BUGS

6-6

-wn Size output for device of width n. If n is omitted, a value of 80 is assumed.

Several ASCII characters are not defined, notably <, >, [,], \ -, _, (. }, I, and -. Also,
the characters", " and & are funny looking (but in a useful way.)

The -w option is implemented by skipping some rows and columns. The smaller it
gets, the grainier the output. Sometimes it runs letters together.

Games

BA'ITLESTAR(6) SysV BA'ITLESTAR(6)

NAME
baUlestar - a tropical adventure game

SYNOPSIS
battlestar [-r]

DESCRIPTION
battlestar is an adventure game in the classic style. However, it's slightly less of a
puzzle and more a game of exploration. There are a few magical words in the game,
but on the whole, simple English should suffice to make one's desires understandable to
the parser.

THE SETTING
In the days before the darkness came, when battlestars ruled the heavens ...

Three He made and gave them to His daughters,
Beautiful nymphs, the goddesses of the waters.
One to bring good luck and simple feats of wonder,
Two to wash the lands and chum the waves asunder,
Three to rule the world and purge the skies with thunder.

In those times great wizards were known and their powers were beyond belief. They
could take any object from thin air, and, uttering the word 'su' could disappear.

In those times men were known for their lust of gold and desire to wear fine weapons.
Swords and coats of mail were fashioned that could withstand a laser blast.

But when the darkness fell, the rightful reigns were toppled. Swords and helms and
heads of state went rolling across the grass. The entire fleet of battlestars was reduced
to a single ship.

COMMANDS

Games

For commands which manipulate objects, the "shadow" of the next word stays around
if you want to take advantage of it: that is, saying take knife and then drop will drop
the knife you just took.

take Take an object

drop

wear

draw

puton

take off

Drop an object

Wear an object you are holding

Carry an object you are wearing

Take an object and wear it

Draw an object and drop it

throw object direction
Throw an object in the specified direction

6--7

BATILESTAR(6) SysV BATTLESTAR(6)

BUGS

6-8

N SEW Move in one of the four compass directions. You may use these commands
only if you have a compass.

R LAB Move right/left/ahead/back. Directions printed in room descriptions are
always printed using these relative directions.

inven Display inventory

save Save the game in a file named Bstar. Saved games can be restarted using
the -r option.

Escape to a shell

score Display current score

Countless.

Games

BCD(6)

NAME
bcd - convert to antique media

SYNOPSIS
/usr/gamesJbcd text

DESCRIPTION

SysV

bcd converts the literal text into a form familiar to old-timers.

SEE ALSO
dd(l)

Games

BCD(6)

6-9

BGCOLOR(6) Domain/OS SysV BGCOLOR(6)

NAME
bgcolor - make interesting background colors

SYNOPSIS
/usr/games/bgcolor [options]

DESCRIPTION
bgcolor changes the display's background colors.

OPTIONS

BUGS

6-10

-s[lot] num Specify the color as value from the color table. The default value is 4.

-c[olor] rgbva/ Specify the color as an RGB value.

-f[ade] Change color continuously, cycling through RGB values.

-i[ncrement] num
Change RGB value by num for each color update induced by the
-fade option. Higher values cause the background color to cycle
more quickly. Default value is 1.

-d[evice] name Set the device to be used by bgcolor. Possible values for name are
borrow (use entire display), borrow _ nc (same as borrow but doesn't
clear screen first), direct (in current window only), and bg (use
display background).

-nb Display no borders around target window.

bgcolor produces unpredictable results on monochrome displays.

Games

BJ(6) SysV BJ(6)

NAME
bj - the game of blackjack

SYNOPSIS
/usr/games/bj

DESCRIPTION

Games

bj is a serious attempt at simulating the dealer in the game of blackjack (or twenty-one)
as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2. Simul­
taneous dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, you can make an "insurance" bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If
the bet is taken, it is a side bet where you win $2 if the dealer has a natural,
and lose $1 if the dealer does not.

If dealt two cards of the same value, you can "double", that is, play two
hands, each with one of these cards. The bet also doubles ($2 on each hand).

If a dealt hand totals 10 or 11, you may "double down". This means that you
may double the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, you may "hit" (draw a card) as long as your total isn't
over twenty-one. If you "bust" (go over twenty-one), the dealer wins the bet.

When you "stand" (decide not to hit), the dealer hits until attaining a total of
seventeen or more. If the dealer busts, you win the bet.

If both you and the dealer stand, the one with the largest total wins. A tie is a
push.

The machine deals and keeps score. The following questions are asked at appropriate
times. You must answer each question by a y and a carriage return for "yes", or just a
carriage return for "no".

?
Insurance?
Double down?

(This means "do you want a hit?")

Every time the deck is shuffled, the dealer so states and the "action" (total bet) and
"standing" (total won or lost) is printed. To exit, type an interrupt and the action and
standing are printed.

6-11

BOGGLE(6) SysV BOGGLE(6)

NAME
boggle - play the game of boggle

SYNOPSIS
lusr/games/boggle [+[+]]

DESCRIPTION

FILES

6-12

This program is intended for people wishing to sharpen their skills at Boggle (TM
Parker Bros.). If you invoke the program with 4 arguments of 4 letters each (e.g.,
"boggle appl epie moth erhd"), the program forms the obvious Boggle grid and lists
all the words from lusr/dict/words found therein. If you invoke the program without
arguments, it will generate a board for you, let you enter words for 3 minutes, and then
tell you how well you did relative to lusr/dict/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4
grid of letters. Words may be formed from any sequence of 3 or more adjacent letters in
the grid. The letters may join horizontally, vertically, or diagonally. However, no posi­
tion in the grid may be used more than once within anyone word. In competitive play
amongst humans, each player is given credit for those of his words which no other
player has found .•

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will
ring when there is 2:00, 1:00,0:10,0:02,0:01, and 0:00 time left. You may complete
any word started before the expiration of time. You can surrender before time is up by
hitting an interrupt key. While entering words, your erase character is only effective
within the current word and your line kill character is ignored.

Advanced players may wish to invoke the program with one or two plus signs (+) as the
argument. The first + removes the restriction that positions can only be used once in
each word. The second + causes a position to be considered adjacent to itself as well as
its (up to) 8 neighbors.

lusr/dict/words

Games

BlLFORTUNE(6) SysV

NAME
btlfortune - print a random comment

SYNOPSIS
/usr/games/btlfortune

DESCRIPTION

BlLFORTUNE(6)

This is Bell Telephone Labs' version of fortune. btlfortune prints a fortune, anecdote,
saying, or other random comment. All lines are derived from the default fortune data­
base in /usr/gamesllib/btlfortunes.

Games 6-13

BlLGAMMON(6) SysV

NAME
btJgammon - the game of backgammon

SYNOPSIS
/usr/games/btJgammon

DESCRIPTION

BlLGAMMON(6)

This is Bell Telephone Labs' version of backgammon. It will ask whether you need
instructions.

6-14 Games

BTLHANGMAN(6)

NAME
btlhangman - guess the word

SYNOPSIS
/usr/games/btlhangman [arg 1

DESCRIPTION

SysV BTI...HANGMAN(6)

This is Bell Telephone Labs' version of hangman. btl hangman chooses a word at
least seven letters long from a dictionary. You must guess letters, one at a time, until
you guess the word.

The optional argument arg names an alternate dictionary.

FILES
/usr/games/lib/w2006 Dictionary

NOTES
Hyphenated compounds are run together.

Games 6-15

CANFIELD(6) SysV CANFIELD(6)

NAME
canfield, cfscores - the solitaire card game canfield

SYNOPSIS
/usr/games/canfield
/usr/games/cfscores [-a] [user]

DESCRIPTION

FILES

6-16

If you have never played solitaire before, it is recommended that you consult a solitaire
instruction book. In Canfield, tableau cards may be built on each other downward in
alternate colors. An entire pile must be moved as a unit in building. Top cards of the
piles are available to be played on foundations, but never into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be
played on foundations or built on tableau piles. After the stock is exhausted, tableau
spaces may be filled from the talon and the player may keep them open until he wishes
to use them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no
more cards in the hand or the player quits. To have cards dealt onto the talon the player
types ht for his move. Foundation base cards are also automatically moved to the foun­
dation when they become available.

The command c causes canfield to maintain card counting statistics on the bottom of
the screen. When properly used this can greatly increase one's chances of winning.

The rules for betting are somewhat less strict than those used in the official version of
the game. The initial deal costs $13. You may quit at this point or inspect the game.
Inspection costs $13 and allows you to make as many moves as possible without mov­
ing any cards from your hand to the talon. (The initial deal places three cards on the
talon; if all these cards are used, three more are made available.) Finally, if the game
seems interesting, you must pay the final installment of $26. At this point you are
credited at the rate of $5 for each card on the foundation; as the game progresses you
are credited with $5 for each card that is moved to the foundation. Each run through
the hand after the first costs $5. The card counting feature costs $1 for each unknown
card that is identified. If the information is toggled on, you are only charged for cards
that became visible since it was last turned on. Thus the maximum cost of information
is $34. Playing time is charged at a rate of $1 per minute.

With no arguments, the program cfscores prints out the current status of your canfield
account. If a user name is specified, it ptints out the status of their canfield account. If
the -a flag is specified, it prints out the canfield accounts for all users that have played
the game since the database was set up.

/usr/games/canfield
usr/games/cfscores
of scores

The game itself
The database printer /usr/games/Iib/cfscores The database

Games

CRAPS(6) SysV CRAPS(6)

NAME
craps - the game of craps

SYNOPSIS
/usr/gameslcraps

DESCRIPTION

Games

craps is a fonn of the game of craps that is played in Las Vegas. The program simu­
lates the roller, while you place bets. At any time, you may choose to bet with the roller
or with the House. A bet of a negative amount is taken as a bet with the House; any
other bet is a bet with the roller.

At the start of the game, you have a "bankroll" of $2,000. The program begins prompt­
ingwith:

"bet?"

The bet can be all or part of your bankroll. Any bet over the total bankroll is rejected
and the program continues prompting until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules apply (you win
or lose, depending on whether the bet is placed with the roller or with the House; the
odds are even). The first roll is the roll immediately following a bet:

1. On the first roll:

7 or 11 -- wins for the roller;

2,3, or 12 -- wins for the House;

any other number is the point, so roll again (Rule 2 applies)

2. On subsequent rolls:

point -- roller wins;

7 -- House wins;

any other number -- roll again.

If you lose your entire bankroll, the House offers to lend you an additional $2,000. The
program prompts as follows:

"marker?"

A yes (or y) consummates the loan. Any other reply terminates the game.

If you owe the House money, the House reminds you, before you can place a bet, how
many markers are outstanding.

If, at any time, you have outstanding markers and your bankroll exceeds $2,000, the
House asks:

"Repay marker?"

6-17

CRAPS(6) SysV CRAPS(6)

A reply of yes (or y) indicates your willingness to repay the loan. If only 1 marker is
outstanding, the debt is immediately repaid. However, if more than 1 marker is out­
standing, the House asks:

"How many?"

matkers you want to repay. If you enter an invalid number or just a carriage return, the
program prints an appropriate message and prompts with

"How many?"

until you provide a valid number.

If you accumulate 10 markers (a total of $20,000 borrowed from the House), the pro­
gram tells you and then exits.

Should your bankroll exceed $50,000, the House automatically deducts from it the total
amount of money needed to payoff all outstanding markers.

If you accumulate $100,000 or more, you break the bank. The program then prompts:

"New game?"

to give the House a chance to win back its money.

The program usually considers any reply other than a yes to be a no. Exceptions to this
are when the program asks you if you want to place a bet (i.e., bet?) and when it asks
how many markers you want to payoff (i.e., How many?).

To exit, send an interrupt (CTRL/I). Before exiting, the program tells you whether you
won, lost, or broke even.

MISCELLANEOUS

6-18

The random number generator for the die numbers uses the seconds from the time of
day. Depending on system usage, these numbers, at times, may seem strange but
occurrences of this type in a real dice situation are not uncommon.

Games

CRIBBAGE(6) SysV CRffiBAGE(6)

NAME
cribbage - the card game cribbage

SYNOPSIS
lusrlgames/cribbage [-req] name ...

DESCRIPTION

Games

cribbage allows you to play the card game cribbage. The program plays one hand and
you play the other. At the beginning of the game, the program asks if you need to see
the rules of the game. If so, it will print out the appropriate section from According to
Hoyle with more(l).

cribbage first asks you whether you wish to playa short game ("once around", to 61)
or a long game ("twice around", to 121). A response of's' results in a short game; any
other response results in a long game.

At the start of the first game, the program asks you to cut the deck to determine who
gets the first crib. You should respond with a number between 0 and 51, indicating how
many cards down the deck is to be cut. Whoever cuts the lower ranked card gets the
first crib. If more than one game is played, the loser of the previous game gets the first
crib in the current game.

For each hand, the program first prints your hand, whose crib it is, and then asks you to
discard two cards into the crib. The cards are prompted for one per line, and are typed
as explained below.

After discarding, the program cuts the deck (if it is your crib) or asks you to cut the
deck (if it's the program's crib). In the latter case, the appropriate response is a number
from 0 to 39 indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the player who doesn't have the
crib) leading the first card. Play continues until all cards are exhausted. The program
keeps track of the scoring of all points and the total of the cards on the table.

After play, the hands are scored. The program asks you to score your hand (and the
crib, if yours) by printing out the appropriate cards (and the cut card enclosed in brack­
ets). Play continues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest
legal value; when cutting the deck, this is equivalent to choosing the top card.

Cards are specified as rank followed by suit. You may specify ranks by typing a one­
character identifier, or by spelling out the rank as a word. Following are valid entries:

a ace
2 two
3 three
4 four
5 five
6 six
7 seven

6-19

CRIBBAGE(6) SysV CRIBBAGE(6)

8 eight
9 nine

ten
j jack
q queen
k king

Suits may be specified as:

s spaces
h hearts
d diamonds
c clubs

A card may be specified as: <rank> " " <suit> or <rank> " of" <suit>. If the single
letter rank and suit designations are used, the space separating the suit and rank may be
left out. Also, if only one card of the desired rank is playable, typing the rank is
sufficient. For example, if your hand is "2H, 4D, 5C, 6H, IC, KD" and you want to
discard the king gf diamonds, any of the following could be typed: "k", "king",
"kd", "k d", "k of d", "king d", "king of d", "k diamonds", "k of diamonds",
"king diamonds", or "king of diamonds".

OPTIONS
-e

-q

-r

6-20

If you make a mistake scoring your hand or crib, provide an explanation of the
correct score. (This is especially useful for beginning players.)

Print a shorter fonn of all messages. (This is only recommended for users who
have already played the game without specifying this option.)

Instead of asking the player to cut the deck, randomly cut the deck.

Games

DMOIRE(6) Domain/OS SysV DMOIRE(6)

NAME
dmoire - Domain/Dialogue-based moire generator

SYNOPSIS
/usr/games/dmoire [-w I -b I -i] [-inv -nb -nd] [-fg color] [-bg color]

DESCRIPTION
dmoire creates moire patterns by moving simple geometric shapes across the display
and allowing these shapes to overlap. By default, dmoire draws in the background of
the screen, but will also use a separate window, borrow the display, or even the window
its own menus are in.

This program was adapted from a public domain desk accessory.

OPTIONS

BUGS

Games

-w[indow]

-b[orrow]

-i[ndialog]

-inv[erse]

-nb[order]

-nd[ialog]

-fg

-bg

Draw moires in a new window.

Borrow the display and draw a simple moire.

Draw inside the menu interface.

Invert the background and foreground colors.

Use with -w to remove the window border.

Do not supply dialog menus.

Specify a foreground color as an index into your color map (0-
255).

Specify a background color.

The -i option is a hack which doesn't work very well.

6-21

FACTOR(6)

NAME
factor - factoring program

SYNOPSIS
/usr/games/factor [number]

DESCRIPTION

SysV FACTOR(6)

factor prints the prime factors of the integer number and then exits. If you run factor
without an argument, it reads lines from the standard input, factoring each number
given. Entering a blank line or a non-numeric character causes factor to exit.

6-22 Games

FISH(6) SysV FISH(6)

NAME
&h - play "Go Fish"

SYNOPSIS
lusr/gameslfish

DESCRIPTION

Games

&h plays the game of "Go Fish," a childrens' card game. The object is to accumulate
"books" of 4 cards with the same face value. The players alternate turns; each turn
begins with one player selecting a card from his hand, and asking the other player for
all cards of that face value. If the other player has one or more cards of that face value
in his hand, he gives them to the first player, and the first player makes another request.

Eventually, the first player asks for a card which is not in the hand of the second player,
who replies "GO FISH!" The first player then draws a card from the pool of undealt
cards. If this is the card he had last requested, he draws again. When a book is made,
either through drawing or requesting, the cards are laid down and no further action
takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, S, 6, 7, 8, 9, 10, j, q, or
k when asked. Pressing <RETURN> gives you information about the size of your
opponent's hand and the pool, and tells you about your opponent's books. Entering the
command p in place of your first guess puts you into the "pro" level. The default is not
very difficult.

6-23

FLAKE(6) Domain/OS SysV

NAME
flake - induce tenninal dandruff

SYNOPSIS
/usr/games/flake

DESCRIPTION

FLAKE(6)

flake causes bits of the screen display io fall off. Type CTRL/Q to put a stop to it.

6-24 Games

FORTUNE(6) SysV FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
lusr/games/fortune [-] [-wslao 1 [-m pattern 1 [file 1

DESCRIPTION
fortune with no arguments prints out a random adage. You may specify an alternate file
of adages from which to read. This file must be created by strfile(6). Only one such
file may be named in a single command line; subsequent ones are ignored.

OPTIONS

FILES

-w Wait before termination for an amount of time calculated from the
number of characters in the message. This is useful if fortune is exe­
cuted as part of the logout procedure to guarantee that the message can
be read before the screen is cleared.

-s Short apothegms only.

-I Long dicta only.

-0 Choose from an alternate list of aphorisms, often used for potentially
offensive ones.

-a Choose from either list of maxims.

-m pattern Print all fortunes which match the regular expression pattern. See
regexp(3).

/usr/gamesllib/fortunes.dat

SEE ALSO
regexp(3), strfile(6)

Games 6-25

HANGMAN(6) SysY

NAME
hangman - Computer version of the game hangman

SYNOPSIS
lusr/games/hangman

DESCRIPTION

HANGMAN(6)

In hangman, the computer picks a word from the online word list and you must try to
guess it. The computer keeps track of which letters have been guessed and how many
wrong guesses you have made on the screen in a graphic fashion.

FILES
lusr/dict/words Online word list

6-26 Games

HUNT(6) SysV HUNT(6)

NAME
hunt - a multi-player multi-terminal game

SYNOPSIS
/usr/games/hunt [-q] [-m] [hostname] [-I name]

DESCRIPTION

Games

The object of the game hunt is to kill off the other players. There are no rooms, no
treasures, and no monsters. Instead, you wander around a maze, find grenades, trip
mines, and shoot down walls and players. The more players you kill before you die, the
better your score is.

hunt normally looks for an active game on the local network; if none is found, it starts
one up on the local host. You may specify the location of the game by providing a
hostname argument.

hunt only works on screens with at least 24 lines, 80 columns, and cursor addressing.
The screen is divided into 3 areas. On the right hand side is the status area. It shows
you how much damage you've sustained, how many charges you have left, who's in the
game, who's scarming (shown by an asterisk in front of the name), who's cloaked
(shown by a plus sign in front of the name), and other players' scores. The rest of the
screen is taken up by your map of the maze, except for the 24th line, which is used for
longer messages that don't fit in the status area.

The screen symbols used in hunt are as follows:

-1+
/\

g

a
o
@
s
$
><AV
I { i!

*
\ 1/

walls
diagonal (deflecting) walls
doors (dispersion walls)
small mine
large mine
shot
grenade
satchel charge
bomb
small slime bomb
big slime bomb
you facing right, left, up, or down
other players facing right, left, up, or down
explosion

- * - grenade and large mine explosion
/1\

Satchel and bomb explosions are larger than grenades (5x5, 7x7, and 3x3 respectively).

Your score is the ratio of number of kills to number of times you entered the game and
is only kept for the duration of a single session of hunt.

6-27

HUNT(6) SysV HUNT(6)

hunt nonnally drives up the load average to be about (number_oCplayers + 0.5)
greater than it would be without a hunt game executing. A limit of three players per
host and nine players total is enforced by hunt.

COMMANDS
hj k 1

yubn

f

g

F

G

o

o
s

c

Move left/downlup/right. (Note that hunt uses the same keys as vi(1) for
movement.) To change the direction you're facing, use the upper case ver­
sion of the key.

Move in a diagonal direction.

Fire in the direction you're facing. Takes 1 charge.

Throw grenade in the direction you're facing. Takes 9 charges.

Throw satchel charge. Takes 25 charges.

Throw bomb. Takes 49 charges.

Throw small slime bomb. Takes 15 charges.

Throw big slime bomb. Takes 30 charges.

Scan ~how where other players are). Takes 1 charge.

Cloak (hide from scanners). Takes 1 charge.

CTRLlL

q

OPTIONS

Redraw screen

Quit

-1 name Specify player name. This command syntax was chosen for rlogin/rsh com­
patibility.

-m Enter game as monitor: you can see the action but may not participate.

-q Query the network and report if an active game is found. This is useful for
.Iogin scripts.

HELPFUL HINTS
• You can only fire in the direction you are facing.
• You can only fire three shots in a row, then the gun must cool.
• A shot only affects the square it hits.
• Shots and grenades move 5 times faster than you do.
• To stab someone, you must face that player and move at them.
• Stabbing does 2 points worth of damage and shooting does 5 points.

6-28 Games

HUNT(6) SysV HUNT(6)

FILES

• Slime does 5 points of damage each time it hits.
• You start with 15 charges and get 5 more for every new player.
• A grenade affects the nine squares centered about the square it hits.
• A satchel affects the twenty-five squares centered about the square it hits.
• A bomb affects the forty-nine squares centered about the square it hits.
• Slime affects all squares it oozes over (15 or 30 respectively).
• One small mine and one large mine is placed in the maze for every new player. A

mine has a 5% probability of tripping when you walk directly at it; 50% when going
sideways on to it; 95% when backing up on to it. Tripping a mine costs you 5 points
or 10 points respectively. Defusing a mine is worth 1 charge or 9 charges respec­
tively.

• You cannot see behind you.
• Scanning lasts for 20*(number of players) turns. Scanning takes 1 ammo charge, so

don't waste all your charges scanning.
• Cloaking lasts for 20 turns.
• Whenever you kill someone, you get 2 more damage capacity points and 2 damage

points taken away.
• Maximum type-ahead is 5 characters.
• A shot destroys normal (i.e., non-diagonal, non-door) walls.
• Diagonal walls deflect shots and change orientation.
• Doors disperse shots in random directions (up, down, left, right).
• Diagonal walls and doors cannot be destroyed by direct shots but may be destroyed

by an adjacent grenade explosion.
• Slime goes around walls, not through them.
• Walls regenerate, reappearing in the order they were destroyed. One percent of the

regenerated walls will be diagonal walls or doors. When a wall is generated directly
beneath a player, he is thrown in a random direction for a random period of time.
When he lands, he sustains damage (up to 20 percent of the amount of damage he had
before impact); that is, the less damage he had, the more nimble he is and therefore
less likely to hurt himself on landing.

• The environment variable HUNT is checked to get the player name. If you don't
have this variable set, hunt will ask you what name you want to play under. If it is
set, you may also set up a single character keyboard map, but then you have to
enumerate the options; for example,

setenv HUNT "name=Sneaky,mapkey=zoFfGglf2g3F4G"
sets the player name to Sneaky, and the maps z to 0, F to f, G to g, 1 to f, 2 to g, 3 to
F, and 4 to G. The mapkey option must be last.

• It's a boring game if you're the only one playing.

/usr/games/lib/hunt.driver Game coordinator

Games 6-29

MASTERMIND(6) SysV MASTERMIND(6)

NAME
mastermind - Mastennind guessing game

SYNOPSIS
/usr/games/mastermind

DESCRIPTION

6--30

This program plays the game of "mastermind". The playing field is a number of slots, in
which a number of colored pegs can be placed. The object of the game is to guess what
color peg is in each slot. You and the program take turns trying to guess each other's
configuration.

Before play begins, mastermind asks you whether you want instructions. Respond by
typing a "y" for yes or an "n" for no. Following this, you have a chance to decide
how many slots and how many colors you want to use. When you enter a guess, type
the names of the colors, separated by spaces. When the program makes a guess, respond
with two digits separated by spaces.

A guess consists of a possible sequence of colored pegs. The guesser's opponent
answers with two numbers: the number of pegs in the guess that exactly match the
corresponding pegs in the configuration, and the number of pegs in the guess that match
in color but not in position. For example, suppose you are playing with five slots, and
the following situation occurs:

my configuration: red
your guess: blue

red
red

yellow
green

blue
red

brown
red

The two numbers would then be 1 and 2. The 1 applies because both you and the pro­
gram have a red peg in the second slot. In addition, your blue matches the program's
blue, though the position is wrong, and one of your reds matches the program's red in
the first slot. Only two of your reds match because the program only has two reds in its
configuration.

Any time it is your tum to enter a guess, you can ask the program what happened by
typing "review" instead of your guess. You get one point for each guess that the pro­
gram has to make, and it gets one point for each guess that you have to make.

Games

MAZE(6) SysV MAZE(6)

NAME
maze - generate a maze

SYNOPSIS
lusr/gameslmaze [seed [-0]]

DESCRIPTION

BUGS

Garnes

maze generates a conventional rectangular labyrinth. To set the random number gen­
erator to a particular seed value, supply an integer seed as the argument. Invoking
maze with a given seed always produces the same maze.

If you provide a seed value, maze also shows the solution to the labyrinth. To suppress
this effect, use the -0 option.

Assumes hardcopy output when displaying the solution.

6-3]

MELT(6)

NAME
melt - "melt" the screen

SYNOPSIS
lusr/games/meIt

DESCRIPTION

Domain/OS SysV

This program creates a melted screen effect.

6-32

MELT(6)

Games

MILLE(6) SysV MILLE(6)

NAME
mille - play Mille Bournes

SYNOPSIS
lusr/games/mille [file]

DESCRIPTION

Games

mille plays a two-handed game reminiscent of the Parker Brother's game of Mille
Bournes with you. The rules are described below. If a file name is given on the com­
mand line, the game saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of com­
mands. They are;

P Pick a card from the deck. This card is placed in the "P" slot in your hand.

D Discard a card from your hand. To indicate which card, type the number of
the card in the hand (or "P" for the just-picked card) followed by a
<RETURN> or <SPACE>. The <RETURN or <SPACE> is required to allow
recovery from typos which can be very expensive, like discarding safeties.

U Use a card. The card is again indicated by its number, followed by a
<RETURN> or <SPACE>.

o Toggle ordering the hand. By default off, if turned on it will sort the cards in
your hand appropriately. This is not recommended for the impatient on slow
terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting
<DELETE> (or <RUBOUT» is equivalent.

S Save the game in a file. If the game was started from a file, you will be given
an opportunity to save it on the same file. If you don't wish to, or you did not
start from a file, you will be asked for the file name. If you type a <RETURN>
without a name, the save will be terminated and the game resumed.

R Redraw the screen from scratch. The command CTRL/L will also work.

W Toggle window type. This switches the score window between the startup
window (with all the command names) and the end-of-game window. Using
the end-of-game window saves time by eliminating the switch at the end of the
game to show the final score. Recommended for hackers and other miscreants.

If you make a mistake, an error message will be printed on the last line of the score
window, and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If not
it will ask you if you want to save the game. If you do, and the save is unsuccessful
play will be resumed as if you had said you wanted to play another hand/game. Thi!
allows you to use the "S" command to reattempt the save.

6-3:

MILLE(6) SysV MILLE(6)

CARDS

RULES

6-34

Here is some useful information. The number in parentheses after the card name is the
number of that card in the deck:

Hazard

Out of Gas (2)
Flat Tire (2)
Accident (2)
Stop (4)
Speed Limit (3)

Repair

Gasoline (6)
Spare Tire (6)
Repairs (6)
Go (14)
End of Limit (6)

Safety

Extra Tank (I)
Puncture Proof (1)
Driving Ace (1)
Right of Way (1)

25 - (10), 50 - (10), 75 - (10),100 - (12), 200 - (4)

Object: The point of this game is to get a total of 5000 points in several hands. Each
hand is a race to put down exactly 700 miles before your opponent does. Beyond the
points gained by putting down milestones, there are several other ways of making
points.

Overview: The game is played with a deck of 101 cards. Distance cards represent a
number of miles traveled. They come in denominations of 25, 50, 75, 100, and 200.
When one is played, it adds that many miles to the player's trip so far this hand.
Hazard cards are used to prevent your opponent from putting down Distance cards.
They can only be played if your opponent has a Go card on top of the Battle pile. The
cards are Out of Gas, Accident, Flat Tire, Speed Limit, and Stop. Remedy cards fix
problems caused by Hazard cards played on you by your opponent. The cards are
Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards prevent your
opponent from putting specific Hazard cards on you in the first place. They are Extra
Tank, Driving Ace, Puncture Proof, and Right of Way, and there are only one of
each in the deck.

Board Layout: The board is split into several areas. From top to bottom, they are:
SAFETY AREA (unlabeled): This is where the safeties will be placed as they are
played. HAND: These are the cards in your hand. BATTLE: This is the Battle pile.
All the Hazard and Remedy Cards are played here, except the Speed Limit and End of
Limit cards. Only the top card is displayed, as it is the only effective one. SPEED:
The Speed pile. The Speed Limit and End of Limit cards are played here to control
the speed at which the player is allowed to put down miles. MILEAGE: Miles are
placed here. The total of the numbers shown here is the distance traveled so far.

Play: The first pick alternates between the two players. Each turn usually starts with a
pick from the deck. The player then plays a card, or if this is not pos3ible or desirable,
discards one. Normally, a play or discard of a single card constitutes a turn. If the card
played is a safety, however, the same player takes another tum immediately.

Games

MILLE(6) SysV Mll..LE(6)

Games

This repeats until one of the players reaches 700 points or the deck runs out. If some­
one reaches 700, they have the option of going for an Extension, which means that the
play continues until someone reaches 1000 miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent's Battle and
Speed piles. Remedy Cards are used for undoing the effects of your opponent's nasti­
ness.

Go (Green Light) must be the top card on your Battle pile for you to play any
mileage, unless you have played the Right of Way card (see below).
Stop is played on your opponent's Go card to prevent them from playing mileage
until they playa Go card.
Speed Limit is played on your opponent's Speed pile. Until they play an End of
Limit they can only play 25 or 50 mile cards, presuming their Go card allows
them to do even that.
End of Limit is played on your Speed pile to nullify a Speed Limit played by
your opponent.
Out of Gas is played on your opponent's Go card. They must then playa Gaso­
line card, and then a Go card before they can play any more mileage.
Flat Tire is played on your opponent's Go card. They must then playa Spare
Tire card, and then a Go card before they can play any more mileage.
Accident is played on your opponent's Go card. They must then playa Repairs
card, and then a Go card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding
Hazard cards on you for the rest of the hand. It cancels an attack in progress, and
always entitles the player to an extra turn.

Right of Way prevents your opponent from playing both Stop and Speed Limit
cards on you. It also acts as a permanent Go card for the rest of the hand, so you
can play mileage as long as there is not a Hazard card on top of your Battle pile.
In this case only, your opponent can play Hazard cards directly on a Remedy card
other than a Go card.
Extra Tank When played, your opponent cannot play an Out of Gas on your
Battle Pile.
Puncture Proof When played, your opponent cannot playa Flat Tire on your
Battle Pile.
Driving Ace When played, your opponent cannot play an Accident on your Bat­
tle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle
pile, or a Right of Way in your Safety area and are not stopped by a Hazard Card. They
can be played in any combination that totals exactly 700 miles, except that you cannot
play more than two 200 mile cards in one hand. A hand ends whenever one player gets
exactly 700 miles or the deck runs out. In that case, play continues until neither some­
one reaches 700, or neither player can use any cards in their hand. If the trip is com­
pleted after the deck runs out, this is called Delayed Action.

6-35

MILLE(6) SysV M1LLE(6)

6-36

Coup Fourre: This is a French fencing tenn for a counter-thrust move as part of a
parry to an opponents attack. In Mille Bournes, it is used as follows: If an opponent
plays a Hazard card, and you have the corresponding Safety in your hand, you play it
immediately, even before you draw. This immediately removes the Hazard card from
your Battle pile, and protects you from that card for the rest of the game. This gives
you more points (see "Scoring" below).

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed
the trip. The tenns used in the Score window have the following meanings:

Milestones Played: Each player scores as many miles as they played before the
trip ended.
Each Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safetie~ are played.
Each Coup Fourre : 300 points for each Coup Fourre accomplished.

The following bonus scores can apply only to the winning player.

Trip Completed: 400 points bonus for completing the trip to 700 or 1000.
Safe Trip :.300 points bonus for completing the trip without using any 200 mile
cards.
Delayed Action : 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1000 mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played
any mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand
Total), the game (Overall Total), and number of games won (Games).

Games

MONOP(6) SysV MONOP(6)

NAME
monop - Monopoly game

SYNOPSIS
lusr/games/monop

DESCRIPTION
monop is reminiscent of the Parker Brothers game Monopoly for 1 to 9 players. The
program assumes that the rules of Monopoly are known. It follows the standard rules,
with the exception that if a property goes up for auction and there are only two solvent
players, no auction is held and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which
you carmot afford. However, as soon as a person goes into debt, he must "fix the prob­
lem", (i.e., make himself solvent) before play can continue. If this is not possible, the
player's property reverts to his debtee (either a player or the bank). A player can resign
at any time to any person or the bank, which puts the property back on the board
unowned.

Any time that the expected response to a question is a string, (for instance, a name,
place or person) you can type a question mark (?) to get a list of valid answers. It is not
possible to input a negative number, nor is it ever necessary.

COMMANDS

Games

quit Quit the game. Asks for confirmation.

print Print out the current board. The columns have the following meanings:

Name The first ten characters of the name of the square

Own The player number of the owner of the property

Price The cost of the property (if any)

Mg This field has an asterisk (*) in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such
owned by the owner. If the property is land, this is the number of
houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where Tell where all the players are. An asterisk (*) indicates the current player.

own holdings
List your own holdings (money, "get out of jail free" cards, and property).

holdings Look at anyone's holdings. The program will ask you whose holdings you
wish to look at. When you are finished, type "done".

shell Escape to a shell. When the shell dies, the program continues where you left
off.

6-37

MONOP(6) SysV MONOP(6)

FILES

BUGS

6-38

mortgage
Display a list of mortgageable property. Asks which you wish to mortgage.

unmortgage
Unmortgage mortgaged property.

buy Display a list of monopolies on which you can buy houses. If there is more
than one, asks you which you want to buy for, and then asks you how many
for each piece of property, giving the current amount in parentheses after the
property name. If you build in an unbalanced manner (a disparity of more
than one house within the same monopoly), asks you to re-enter values.

sell Display a list of monopolies from which you can sell houses. It operates in a
manner analogous to buy.

card Use a "get out of jail free" card. Informs you if you're not in jail, or you
don't have such a card.

pay Pay $50 to get out of jail, whence you are put on the Just Visiting space.

trade Trade with another player. Asks you whom you wish to trade with, and then
asks you what each wishes to give up. You can get a summary at the end,
and, in all cases, it asks for confirmation of the trade before completing it.

resign Resign to another player or the bank. If you resign to the bank, all property
reverts to its virgin state, and "get out of jail free" cards revert to the deck.

save Save the current game in a file for later play. You can continue play later on
either by giving the save file's name as an argument to the monop command,
or by using the restore command (see below). Asks you which file you wish
to save to; if the file exists, asks you to confirm that you wish to overwrite it.

restore Read in a previously saved game from a file. Leaves the file intact.

roll Roll the dice and move forward to your new location. If you simply press
<RETURN> without entering a command, a roll is performed.

/usr/games/lib/cards.pck Chance and Community Chest cards

No command can be given an argument instead of a response to a query.

Games

MOO(6) SysV MOO(6)

NAME
moo - guessing game

SYNOPSIS
lusr/games/moo

DESCRIPTION

Games

moo is a guessing game imported from England. The computer picks a four-digit
number which you try to guess; moo scores you on each guess. A "cow" is a correct
digit in an incorrect position. A' 'bull" is a correct digit in a correct position. The
game continues until you guess the number (a score of four bulls).

6-39

NUMBER(6) SysV

NAME
number - convert Arabic numerals to English

SYNOPSIS
lusr/games/number

DESCRIPTION

NUMBER(6)

number copies the standard input to the standard output, changing each decimal
number to a fully spelled-out version.

6-40 Games

PRIMES (6)

NAME
primes - print prime numbers

SYNOPSIS
/usr/games/primes [number 1

DESCRIPTION

SysV PRIMES(6)

primes displays the prime numbers equal to or greater than the input number. If you do
not provide an argument, primes reads a line from the standard input. To exit the pro­
gram, type an interrupt.

Games 6-41

PUZZLE(6)

NAME
puzzle - puzzle game

SYNOPSIS
/usr/games/puzzle

DESCRIPTION

Domain/OS SysV PUZZLB(6)

puzzle lets you play the familiar IS-tile game. To obtain online help, position the cur­
sor over the puzzle border and press the HELP key.

COMMANDS
Each of the mouse buttons has a particular function:

Left Use to select items from the menu, and to move individual tiles.

Middle

Right

SEE ALSO
scramble(6)

6-42

Back up one move.

Move one step forward in solving the puzzle.

Games

QUIZ(6) SysV QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [category1 category2]

DESCRIPTION
quiz gives associative knowledge tests on various subjects. It asks items chosen from
category1 and expects answers from category2. If no categories are specified, quiz
gives instructions and lists the available categories.

quiz tells a correct answer whenever you type a bare newline. At the end of input, upon
interrupt, or when questions run out, quiz reports a score and terminates.

The lines of the index file have the following syntax:

line = category newline I category ':'line
category = alternate I category 'I' alternate
alternate = empty I alternate primary
primary = character I '[' category T I option
option =' (, category ')'

The first category on each line of an index file names an information file. The remain­
ing categories specify the order and contents of the data in each line of the information
file. Information files have the same syntax. Use a backslash (\) as with sh(1) to quote
syntactically significant characters or to insert transparent newlines into a line. When
either a question or its answer is empty, quiz will refrain from asking it.

OPTIONS

FILES

BUGS

Games

-t

-ifile

Enable tutorial mode, where missed questions are repeated later, and
material is gradually introduced as you learn.

Substitute the named file for the default index file.

/usr/gameslquiz.k/*

The construct 'al ab' doesn't work in an information file. Use 'alb)'.

6-43

RAIN(6) SysV RAIN(6)

NAME
rain - animated raindrops display

SYNOPSIS
lusr/games/rain

DESCRIPTION

FILES

6-44

rain simulates the pitter-patter of raindrops falling on your tty. It looks best at 9600
baud or faster. As with all programs that use termcap(3), the TERM environment vari­
able must be set (and exported) to the type of the terminal being used.

rain can only be halted with an interrupt.

letc/termcap

Garnes

RANDOM(6) SysV RANDOM(6)

NAME
random - random number generator

SYNOPSIS
/usr/games/random [numbers] [characters]

DESCRIPTION
random is a random number generator that accepts input of numbers or characters.
There is about a 50% probability that the program will match and output the lines that
you use as input. You can also perform a particular task (e.g., combining lines in a file,
listing a directory, etc.) and then use random in a pipeline to produce a random sam­
pling of the output. The random comand is a likely candidate for use in other games
that require the use of a random number generator.

EXAMPLE

Games

The following command line lists a random percentage (about 50%) of the contents of
mydir:

$ Is mydir I random

6-45

REVSCR(6)

NAME
revscr - reverse screen

SYNOPSIS
lusr/gameslrevscr

DESCRIPTION

Domain/OS SysV REVSCR(6)

revscr reflects the display image twice, first about the horizontal axis and then about
the vertical axis. The effect is to tum the image upside down. Press any key to restore
the display to its nonnal state.

OPTIONS
-short Reflect about the horizontal axis only. Useful on machines which perfonn the

second reflection slowly.

6-46 Games

ROBOTS(6) SysV ROBOTS(6)

NAME
robots - fight off villainous robots

SYNOPSIS
/usr/garnesl robots [-sjta] [score file]

DESCRIPTION
robots pits you against evil robots who are trying to kill you (which is why they are
evil). Fortunately for you, although they are evil they are not very bright. The robots
have a habit of bumping into each other, thus turning themselves into junkpiles. In
order to survive, you must get them to kill each other off, since you have no offensive
weaponry. You are endowed with one defensive measure: a teleportation device.

When two robots run into each other or a junk pile, they die. If a robot runs into you,
you die. When a robot dies, you get 10 points, and when all the robots die, you start on
the next field. This keeps up until they finally get you.

Robots are represented on the screen by plus signs (+), the junk heaps resulting from
their collisions by asterisks (*), and you (the good guy) by an at sign (@).

Only five scores are allowed per user on the score file. If you make it into the score file,
you will be shown the list at the end of the game. If an alternate score file is specified,
that will be used instead of the standard file for scores.

COMMANDS

Games

All commands can be preceded by a count. For all commands except w, the program
saves you from typos by stopping you short of being eaten. However, with w you take
the risk of dying by miscalculation.

h Move one square left

Move one square right

k

j

Y

u

b

n

Move one square up

Move one square down

Move one square up and left

Move one square up and right

Move one square down and left

Move one square down and right

• or <SPACE> Do nothing for one turn

HJKLBNYU Run as far as possible in the given direction

> Do nothing for as long as possible

Teleport to a random location

6-47

ROBOTS(6) SysV ROBOTS(6)

w Wait until they all die (or you do). If you use the w command and sur­
vive to the next level, you will get a bonus of 10% for each robot which
died after you decided to wait. If you die, however, you get nothing.

q

"L

OPTIONS

Quit

Redraw the screen

FILES

6-48

-s Don't play, just show the score file

-j Jump, i.e., when you run, don't show any intermediate positions; only show
things at the end. This is useful on slow terminals.

-t Teleport automatically when you have no other option. This is a little discon­
certing until you get used to it, and then it is very nice.

-a Advance into the higher levels directly, skipping the lower, easier levels. You
receive a 600-point bonus for successful completion of the first field.

/usr/gameslIib/ robots_roll Score file

Games

SAIL(6) SysV SAIL(6)

NAME
sail - multi-user wooden ships and iron men

SYNOPSIS
sail [-s [-I 1 1 [-x 1 [-b 1 [num 1

DESCRIPTION
sail is a computer version of Avalon Hill's game of fighting sail originally developed
by S. Craig Taylor.

Players of sail take command of an old fashioned Man of War and fight other players or
the computer. They may re-enact one of the many historical sea battles recorded in the
game, or they can choose a fictional battle.

As a sea captain in the sail Navy, the player has complete control over the workings of
his ship. He must order every maneuver, change the set of his sails, and judge the right
moment to let loose the terrible destruction of his broadsides. In addition to fighting the
enemy, he must hamess the powers of the wind and sea to make them work for him.
The outcome of many battles during the age of sail was decided by the ability of one
captain to hold the "weather gauge."

OPTIONS
-s Print the names and ships of the top ten sailors.

-I Show the login name. Only effective with -so

-x Play the first available ship instead of prompting for a choice.

-b No bells.

mSTORICAL INFO

Games

Old Square Riggers were very maneuverable ships capable of intricate sailing. Their
only disadvantage was an inability to sail very close to the wind. The design of a
wooden ship allowed only for the guns to bear to the left and right sides. A few guns of
small aspect (usually 6 or 9 pounders) could point forward, but their effect was small
compared to a 68 gun broadside of 24 or 32 pounders. The guns bear approximately
like so:

\

---0
b----------------
\

\
\ up to a range of ten (for round shot)

\
\

\

6-49

SAIL(6)

6-50

SysV SAIL(6)

An interesting phenomenon occurred when a broadside was fired down the length of an
enemy ship. The shot tended to bounce along the deck and did several times more dam­
age. This phenomenon was called a rake. Because the bows of a ship are very strong
and present a smaller target than the stem, a stem rake (firing from the stem to the bow)
causes more damage than a bow rake.

b

00
a

Stern rake!

Most ships were equipped with carronades, which were very large, close range cannons.
American ships from the revolution until the War of 1812 were almost entirely armed
with carronades. The period of history covered in sail runs approximately from the
1770's until the end of Napoleonic France in 1815.

Fighting ships came in several sizes classed by armament. The mainstays of any fleet
were its "Ships of the Line", or "Line of Battle Ships". They were so named because
these ships fought together in great lines. They were close enough for mutual support,
yet every ship could fire both its broadsides. We get the modem words "ocean liner," or
"liner," and "battleship" from "ship of the line." The most common size was the the 74
gun two decked ship of the line. The two gun decks usually mounted 18 and 24
pounder guns.

The pride of the fleet were the first rates. These were huge three decked ships of the
line mounting 80 to 136 guns. The guns in the three tiers were usually 18,24, and 32
pounders in that order from top to bottom.

Various other ships came next. They were almost all "razees," or ships of the line with
one deck sawed off. They mounted 40-64 guns and were a poor cross between a frigate
and a line of battle ship. They neither had the speed of the former nor the firepower of
the latter.

Next came the "eyes of the fleet." Frigates came in many sizes mounting anywhere
from 32 to 44 guns. They were very handy vessels. They could outsail anything bigger
and outshoot anything smaller. Frigates didn't fight in lines of battle as the much
bigger 74's did. Instead, they harassed the enemy's rear or captured crippled ships.
They were much more useful in missions away from the fleet, such as cutting out
expeditions or boat actions. They could hit hard and get away fast.

Lastly, there were the corvettes, sloops, and brigs. These were smaller ships mounting
typically fewer than 20 guns. A corvette was only slightly smaller than a frigate, so one
might have up to 30 guns. Sloops were used for carrying dispatches or passengers.
Brigs were something you built for land-locked lakes.

Games

SAIL(6) SysV SAIL(6)

SAIL PARTICULARS
Ships in sail are represented by two characters. One character represents the bow of the
ship, and the other represents the stem. Ships have nationalities and numbers. The first
ship of a nationality is number 0, the second number I, etc. Therefore, the first British
ship in a game would be printed as "bO". The second Brit would be "bl", and the fifth
Don would be "s4".

Ships can set normal sails, called Battle Sails, or bend on extra canvas called Full Sails.
A ship under full sail is a beautiful sight indeed, and it can move much faster than a
ship under Battle Sails. The only trouble is, with full sails set, there is so much tension
on sail and rigging that a well aimed round shot can burst a sail into ribbons where it
would only cause a little hole in a loose sail. For this reason, rigging damage is doubled
on a ship with full sails set.

A ship with full sails set has a capital letter for its nationality. For example, a French
ship, normally "fO", with full sails set would be printed as "FO".

When a ship is battered into a listing hulk, the last man aboard "strikes the colors."
This ceremony is the ship's formal surrender. The nationality character of a surren­
dered ship is printed as "!". Thus, the French ship of the last example would soon be
n!o".

A ship has a random chance of catching fire or sinking when it reaches the stage of list­
ing hulk. A sinking ship has a tilde n printed for its nationality, and a ship on fire and
about to explode has a pound sign (#) printed.

Captured ships become the nationality of the prize crew. Therefore, if an American
ship captures a British ship, the British ship will have an "a" printed for its nationality.
In addition, the ship number is changed to "&","''', "(", ,")", "*", or "+" depending upon
the original number, be it 0,1,2,3,4, or 5. E.g., the "bO" captured by an American
becomes the "a&". The "s4" captured by the French becomes the "f*".

MOVEMENT

Games

Movement is the most confusing part of sail to many. Ships can head in 8 directions:

b

o
b

o
bO

o
b

o
b

o
b Ob b

o

The stem of a ship moves when it turns. The bow remains stationary. Ships can always
tum, regardless of the wind (unless they are becalmed). All ships drift when they lose
headway. If a ship doesn't move forward at all for two turns, it will begin to drift. If a
ship has begun to drift, then it must move forward before it turns, if it plans to do more
than make a right or left tum, which is always possible.

6-51

SAIL(6)

6-52

SysV SAIL(6)

Movement commands to sail are a string of forward moves and turns. An example is
"13". It will tum a ship left and then move it ahead 3 spaces. In the drawing above, the
"bO" made 7 successive left turns. When sail prompts you for a move, it prints three
characters of import, e.g.,

move (7,4):
The first number is the maximum number of moves you can make, including turns. The
second number is the maximum number of turns you can make. Between the numbers
is sometimes printed a single quote ('). If the quote is present, it means that your ship
has been drifting, and you must move ahead to regain headway before you tum (see
note above). Some of the possible moves for the example above are as follows:

move (7, 4): 7
move (7, 4): 1
move (7,4): d
move (7, 4): 6r
move (7,4): Sri
move (7, 4): Ilrlr2

/* drift, or do nothing */

Because square riggers performed so poorly sailing into the wind, if at any point in a
movement command you tum into the wind, the movement stops there:

move (7, 4): 1114
Movement Error;
Helm: 111

Moreover, whenever you make a tum, your movement allowance drops to the lesser of
a) what's left and b) what you would have at the new attitude. In short, if you tum
closer to the wind, you most likely won't be able to sail the full allowance printed in the
"move" prompt.

Old sailing captains had to keep an eye constantly on the wind. Captains in sail are no
different. A ship's ability to move depends on its attitide to the wind. The best angle
possible is to have the wind off your quarter, that is, just off the stem. The direction
rose on the side of the screen gives the possible movements for your ship at all positions
to the wind. Battle sail speeds are given first, and full sail speeds are given in
parenthesis.

o 1 (2)

\11
-"-3(6)

11\
I 4 (7)

3 (6)

Games

SAIL(6) SysV SAIL(6)

Pretend the bow of your ship (the "''') is pointing upward and the wind is blowing from
the bottom to the top of the page. The numbers at the bottom "3(6)" will be your speed
under battle or full sails in such a situation. If the wind is off your quarter, then you can
move "4(7)". If the wind is off your beam, "3(6)". If the wind is off your bow, then
you can only move "1(2)". Facing into the wind, you can't move at all. Ships facing
into the wind were said to be "in irons" .

WINDSPEED AND DIRECITON
The windspeed and direction is displayed as a little weather vane on the side of the
screen. The number in the middle of the vane indicates the wind speed, and the + to -
indicates the wind direction. The wind blows from the + sign (high pressure) to the -
sign (low pressure). E.g.,

I
3
+

The wind speeds are 0 = becalmed, 1 = light breeze, 2 = moderate breeze, 3 = fresh
breeze, 4 = strong breeze, 5 = gale, 6 = full gale, 7 = hurricane. If a hurricane shows
up, all ships are destroyed.

GRAPPLING AND FOULING
If two ships collide, they run the risk of becoming tangled together. This is called
"fouling." Fouled ships are stuck together, and neither can move. They can unfoul
each other if they want to. Boarding parties can only be sent across to ships when the
antagonists are either fouled or grappled.

Ships can grapple each other by throwing grapnels into the rigging of the other.

The number of fouls and grapples you have are displayed on the upper right of the
screen.

BOARDING
Boarding was a very costly venture in terms of human life. Boarding parties may be
formed in sail to either board an enemy ship or to defend your own ship against attack.
Men organized as Defensive Boarding Parties fight twice as hard to save their ship as
men left unorganized.

The boarding strength of a crew depends upon its quality and upon the number of men
sent.

CREW QUALITY

Games

The British seaman was world renowned for his sailing abilities. American sailors,
however, were actually the best seamen in the world. Because the American Navy
offered twice the wages of the Royal Navy, British seamen who liked the sea defected
to America by the thousands.

6-53

SAIL(6) SysV SAIL(6)

In sail, crew quality is quantized into 5 energy levels. "Elite" crews can outshoot and
outfight all,other sailors. "Crack" crews are next. "Mundane" crews are average, and
"Green" and "Mutinous" crews are below average. A good rule of thumb is that
"Crack" or "Elite" crews get one extra hit per broadside compared to "Mundane" crews.
Don't expect too much from "Green" crews.

BROADSIDES
Your two broadsides may be loaded with four kinds of shot: grape, chain, round, and
double. You have guns and carronades in both the port and starboard batteries. Car­
ronades only have a range of two, so you have to get in close to be able to fire them.
You have the choice of firing at the hull or rigging of another ship. If the range of the
ship is greater than 6, then you may only shoot at the rigging.

The types of shot and their advantages are:

Round Range of 10. Good for hull or rigging hits.

Double Range of 1. Extra good for hull or rigging hits. Double takes two turns
to load.

Chain

Grape

Range of 3. Excellent for tearing down rigging. Cannot damage hull or
guns, though.

Range of 1. Sometimes devastating against enemy crews.

On the side of the screen is displayed some vital infonnation about your ship:

Load D! R!
Hull 9
Crew442
Guns 4 4
Carr 2 2
Rigg 5555

"Load" shows what your port (left) and starboard (right) broadsides are loaded with. A
"!" after the type of shot indicates that it is an initial broadside. Initial broadside were
loaded with care before battle and before the decks ran red with blood. As a conse­
quence, initial broadsides are a little more effective than broadsides loaded later. A "*"
after the type of shot indicates that the gun crews are still loading it, and you cannot fire
yet. "Hull" shows how much hull you have left. "Crew" shows your three sections of
crew. As your crew dies off, your ability to fire decreases. "Guns" and "Carr" show
your port and starboard guns. As you lose guns, your ability to fire decreases. "Rigg"
shows how much rigging you have on your 3 or 4 masts. As rigging is shot away, you
lose mobility.

EFFECTIVENESS OF FIRE

6-54

It is very dramatic when a ship fires its thunderous broadsides, but the mere opportunity
to fire them does not guarantee any hits. Many factors influence the destructive force of
a broadside. First of all, and the chief factor, is distance. It is harder to hit a ship at

Games

SAIL(6) SysV SAIL(6)

range ten than it is to hit one sloshing alongside. Next is raking. Raking fire, as men­
tioned before, can sometimes dismast a ship at range ten. Next, crew size and quality
affects the damage done by a broadside. The number of guns firing also bears on the
point, so to speak. Lastly, weather affects the accuracy of a broadside. If the seas are
high (5 or 6), then the lower gunports of ships of the line can't even be opened to run
out the guns. This gives frigates and other flush decked vessels an advantage in a
storm. The scenario Pellew vs. The Droits de L' Homme takes advantage of this peculiar
circumstance.

REPAIRS
Repairs may be made to your Hull, Guns, and Rigging at the slow rate of two points per
three turns. The message "Repairs Completed" will be printed if no more repairs can be
made.

PECULIARITIES OF COMPUTER SHIPS
Computer ships in sail follow all the rules above with a few exceptions. Computer
ships never repair damage. If they did, the players could never beat them. They play
well enough as it is. As a consolation, the computer ships can fire double shot every
turn. That fluke is a good reason to keep your distance. The driver figures out the
moves of the computer ships. It computes them with a typical distance function and a
depth-first search to find the maximum "score."

COMMANDS

Games

Commands are given to sail by typing a single character. You will then be prompted
for further input.

f Fire broadsides if they bear

I

L

m

i

I

F

s

b

B

c

r

u

g

Reload

Unload broadsides (to change ammo)

Move

Print the closest ship

Print all ships

Find a particular ship or ships (e.g. "a?" for all Americans)

Send a message around the fleet

Attempt to board an enemy ship

Recall boarding parties

Change set of sail

Repair

Attempt to unfoul

Grapple/ungrapple

6-55

SAIL(6) SysV

v Print version number of game

CTRLlL Redraw screen

Q Quit

C Center your ship in the window

U Move window up

D, N Move window down

H Move window left

J Move window right

S Toggle window to follow your ship or stay where it is

SCENARIOS
Here is a summary of the scenarios in sail:

Ranger vs. Drake:
Wind from the N, blowing a fresh breeze.

(a) Ranger
(b) Drake

The Battle of F1amborough Head:

19 gun Sloop (crack crew) (7 pts)
17 gun Sloop (crack crew) (6 pts)

Wind from the S, blowing a fresh breeze.

SAIL(6)

This is John Paul Jones' first famous battle. Aboard the Bonhomme Richard, he was
able to overcome the Serapis's greater firepower by quickly boarding her.

(a) Bonhomme Rich
(b) Serapis

Arbuthnot and Des Touches:

42 gun Corvette (crack crew) (11 pts)
44 gun Frigate (crack crew) (12 pts)

Wind from the N, blowing a gale.

6-56

(b) America
(b) Befford
(b) Adamant
(b) London
(b) Royal Oak
(f) Neptune
(f) Duc Bougogne
(f) Conquerant
(f) Provence
(f) Romulus

64 gun Ship of the Line (crack crew) (20 pts)
74 gun Ship of the Line (crack crew) (26 pts)
50 gun Ship of the Line (crack crew) (17 pts)
98 gun 3 Decker SOL (crack crew) (28 pts)
74 gun Ship of the Line (crack crew) (26 pts)
74 gun Ship of the Line (average crew) (24 pts)
80 gun 3 Decker SOL (average crew) (27 pts)
74 gun Ship of the Line (average crew) (24 pts)
64 gun Ship of the Line (average crew) (18 pts)
44 gun Ship of the Line (average crew) (10 pts)

Games

SAIL(6) SysV

Suffren and Hughes:
Wind from the S, blowing a fresh breeze.

(b) Monmouth
(b) Hero
(b) Isis
(b) Superb
(b) Burford
(f) Flamband
(f) Annibal
(f) Severe
(f) Brilliant
(f) Sphinx

74 gun Ship of the Line (average crew) (24 pts)
74 gun Ship of the Line (crack crew) (26 pts)
50 gun Ship of the Line (crack crew) (17 pts)
74 gun Ship of the Line (crack crew) (27 pts)
74 gun Ship of the Line (average crew) (24 pts)
50 gun Ship of the Line (average crew) (14 pts)
74 gun Ship of the Line (average crew) (24 pts)
64 gun Ship of the Line (average crew) (18 pts)
80 gun Ship of the Line (crack crew) (31 pts)
80 gun Ship of the Line (average crew) (27 pts)

Nymphe vs. Cleopatre:
Wind from the S, blowing a fresh breeze.

(b) Nymphe
(f) Cleopatre

36 gun Frigate (crack crew) (11 pts)
36 gun Frigate (average crew) (10 pts)

Mars vs. Hercule:
Wind from the S, blowing a fresh breeze.
(b) Mars 74 gun Ship of the Line (crack crew) (26 pts)
(f) Hercule 74 gun Ship of the Line (average crew) (23 pts)

Ambuscade vs. Baionnaise:
Wind from the N, blowing a fresh breeze.

(b) Ambuscade
(f) Baionnaise

32 gun Frigate (average crew) (9 pts)
24 gun Corvette (average crew) (9 pts)

Constellation vs. Insurgent:
Wind from the S, blowing a gale.

(a) Constellation
(f) Insurgent

38 gun Corvette (elite crew) (17 pts)
36 gun Corvette (average crew) (11 pts)

Constellation vs. Vengeance:
Wind from the S, blowing a fresh breeze.

(a) Constellation
(f) Vengeance

38 gun Corvette (elite crew) (17 pts)
40 gun Frigate (average crew) (15 pts)

The Battle of Lissa:

Games

Wind from the S, blowing a fresh breeze.

(b) Amphion
(b) Active

32 gun Frigate (elite crew) (13 pts)
38 gun Frigate (elite crew) (18 pts)

SAIL(6)

6-57

SAIL(6)

(b) Volage
(b) Cerberus
(1) Favorite
(1) Flore
(1) Danae
(1) Bellona
(1) Corona
(1) Carolina

Constitution vs. Guerriere:

SysV

22 gun Frigate (elite crew) (11 pts)
32 gun Frigate (elite crew) (13 pts)
40 gun Frigate (average crew) (IS pts)
40 gun Frigate (average crew) (15 pts)
40 gun Frigate (crack crew) (17 pts)
32 gun Frigate (green crew) (9 pts)
40 gun Frigate (green crew) (12 pts)
32 gun Frigate (green crew) (7 pts)

Wind from the SW, blowing a gale.

(a) Constitution
(b) Guerriere

United States vs. Macedonian:

44 gun Corvette (elite crew) (24 pts)
38 gun Frigate (crack crew) (15 pts)

Wind from the S, blowing a fresh breeze.

(a) United States
(b) Macedonian

Constitution vs. Java:

44 gun Frigate (elite crew) (24 pts)
38 gun Frigate (crack crew) (16 pts)

Wind from the S, blowing a fresh breeze.

(a) Constitution
(b) Java

Chesapeake vs. Shannon:

44 gun Corvette (elite crew) (24 pts)
38 gun Corvette (crack crew) (19pts)

Wind from the S, blowing a fresh breeze.

(a) Chesapeake
(b) Shannon

The Battle of Lake Erie:

38 gun Frigate (average crew) (14 pts)
38 gun Frigate (elite crew) (17 pts)

Wind from the S, blowing a light breeze.

(a) Lawrence
(a) Niagara
(b) Lady Prevost
(b) Detroit
(b) Q. Charlotte

Wasp vs. Reindeer:

20 gun Sloop (crack crew) (9 pts)
20 gun Sloop (elite crew) (12 pts)
13 gun Brig (crack crew) (5 pts)
19 gun Sloop (crack crew) (7 pts)
17 gun Sloop (crack crew) (6 pts)

Wind from the S, blowing a light breeze.

(a) Wasp
(b) Reindeer

6-58

20 gun Sloop (elite crew) (12 pts)
18 gun Sloop (elite crew) (9 pts)

SAIL(6)

Games

SAIL(6) SysV

Constitution vs. Cyane and Levant:
Wind from the S, blowing a moderate breeze.

(a) Constitution
(b) Cyane
(b) Levant

Pellew vs. Droits de L'Homme:

44 gun Corvette (elite crew) (24 pts)
24 gun Sloop (crack crew) (11 pts)
20 gun Sloop (crack crew) (10 pts)

Wind from the N, blowing a gale.

(b) Indefatigable
(b) Amazon
(0 Droits L'Hom

Aigeciras:

44 gun Frigate (elite crew) (14 pts)
36 gun Frigate (crack crew) (14 pts)
74 gun Ship of the Line (average crew) (24 pts)

Wind from the SW, blowing a moderate breeze.

(b) Caesar
(b) Pompee
(b) Spencer
(b) Hannibal
(s) Real-Carlos
(s) San Fernando
(s) Argonauta
(s) San Augustine
(OIndomptable
(0 Desaix

Lake Champlain:

80 gun Ship of the Line (crack crew) (31 pts)
74 gun Ship of the Line (crack crew) (27 pts)
74 gun Ship of the Line (crack crew) (26 pts)
98 gun 3 Decker SOL (crack crew) (28 pts)
112 gun 3 Decker SOL (green crew) (27 pts)
96 gun 3 Decker SOL (green crew) (24 pts)
80 gun Ship of the Line (green crew) (23 pts)
74 gun Ship of the Line (green crew) (20 pts)
80 gun Ship of the Line (average crew) (27 pts)
74 gun Ship of the Line (average crew) (24 pts)

Wind from the N, blowing a fresh breeze.

(a) Saratoga
(a) Eagle
(a) Ticonderoga
(a) Preble
(b) Confiance
(b) Linnet
(b) Chubb

Last Voyage of the USS President:

26 gun Sloop (crack crew) (12 pts)
20 gun Sloop (crack crew) (11 pts)
17 gun Sloop (crack crew) (9 pts)
7 gun Brig (crack crew) (4 pts)
37 gun Frigate (crack crew) (14 pts)
16 gun Sloop (elite crew) (10 pts)
11 gun Brig (crack crew) (5 pts)

Wind from the N, blowing a fresh breeze.

Games

(a) President
(b) Endymion
(b) Pomone
(b) Tenedos

44 gun Frigate (elite crew) (24 pts)
40 gun Frigate (crack crew) (17 pts)
44 gun Frigate (crack crew) (20 pts)
38 gun Frigate (crack crew) (15 pts)

SAIL(6)

6-59

SAIL(6) SysV SAIL(6)

Hornblower and the Natividad:
Wind from the E, blowing a gale.

A scenario for you Horny fans. Remember, he sank the Natividad against heavy odds
and winds. Hint: don't try to board the Natividad, her crew is much bigger, albeit
green.

(b) Lydia 36 gun Frigate (elite crew) (13 pts)
(s) Natividad 50 gun Ship of the Line (green crew) (14 pts)

Curse of the Flying Dutchman:
Wind from the S, blowing a fresh breeze.

Just for fun, take the Piece of cake.

(s) Piece of Cake
(f) Flying Dutchy

24 gun Corvette (average crew) (9 pts)
120 gun 3 Decker SOL (elite crew) (43 pts)

The South Pacific:
Wind from the S, blowing a strong breeze.

(a) USS Scurvy
(b) HMS Tahiti
(s) Australian
(f) Bikini Atoll

136 gun 3 Decker SOL (mutinous crew) (27 pts)
120 gun 3 Decker SOL (elite crew) (43 pts)
32 gun Frigate (average crew) (9 pts)
7 gun Brig (crack crew) (4 pts)

Hornblower and the battIe of Rosas
Wind from the E, blowing a fresh breeze.

The only battle Hornblower ever lost. He was able to dismast one
ship and stem rake the others though. See if you can do as well.

(b) Sutherland
(f) Turenne
(f) Nightmare
(f) Paris
(f) Napolean

74 gun Ship of the Line (crack crew) (26 pts)
80 gun 3 Decker SOL (average crew) (27 pts)
74 gun Ship of the Line (average crew) (24 pts)
112 gun 3 Decker SOL (green crew) (27 pts)
74 gun Ship of the Line (green crew) (20 pts)

Cape Hom:

6-60

Wind from the NE, blowing a strong breeze.

(a) Concord
(a) Berkeley
(b) Thames
(s) Madrid
(f) Musket

80 gun Ship of the Line (average crew) (27 pts)
98 gun 3 Decker SOL (crack crew) (28 pIS)
120 gun 3 Decker SOL (elite crew) (43 pIS)
112 gun 3 Decker SOL (green crew) (27 pts)
80 gun 3 Decker SOL (average crew) (27 pts)

Games

SAIL(6) SysV

New Orleans:
Wind from the SE, blowing a fresh breeze.

Watch that little Cypress go!

(a) Alligator
(b) Firefly
(b) Cypress

120 gun 3 Decker SOL (elite crew) (43 pts)
74 gun Ship of the Line (crack crew) (27 pts)
44 gun Frigate (elite crew) (14 pts)

Botany Bay:
Wind from the N, blowing a fresh breeze.

(b) Shark
(f) Coral Snake
(f) Sea Lion

64 gun Ship of the Line (average crew) (18 pts)
44 gun Corvette (elite crew) (24 pts)
44 gun Frigate (elite crew) (24 pts)

Voyage to the Bottom of the
Wind from the NW, blowing a fresh breeze.

This one is dedicated to Richard Basehart and David Hedison.

(a) Seaview
(a) Flying Sub
(b) Mermaid
(s) Giant Squid

120 gun 3 Decker SOL (elite crew) (43 pts)
40 gun Frigate (crack crew) (17 pts)
136 gun 3 Decker SOL (mutinous crew) (27 pts)
112 gun 3 Decker SOL (green crew) (27 pts)

Frigate Action:
Wind from the E, blowing a fresh breeze.

(a) Killdeer
(b) Sandpiper
(s) Curlew

40 gun Frigate (average crew) (15 pts)
40 gun Frigate (average crew) (15 pts)
38 gun Frigate (crack crew) (16 pts)

The Battle of Midway:

Games

Wind from the E, blowing a moderate breeze.

(a) Enterprise
(a) Yorktown
(a) Hornet
(j) Akagi
(j) Kaga
(j) Soryu

80 gun Ship of the Line (crack crew) (31 pts)
80 gun Ship of the Line (average crew) (27 pts)
74 gun Ship of the Line (average crew) (24 pts)
112 gun 3 Decker SOL (green crew) (27 pts)
96 gun 3 Decker SOL (green crew) (24 pts)
80 gun Ship of the Line (green crew) (23 pts)

SAIL(6)

6-6

SAIL(6) SysV SAIL(6)

Star Trek:
Wind from the S, blowing a fresh breeze.

(a) Entetprise
(a) Yorktown
(a) Reliant
(a) Galileo
(k) Kobayashi Maru
(k) Klingon II
(0) Red Orion
(0) Blue Orion

450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)
450 gun Ship of the Line (elite crew) (75 pts)

IMPLEMENTATION
sail is really two programs in one. Each player starts up a process which runs his own
ship. In addition, a driver process is forked (by the first player) to run the computer
ships and take care of global bookkeeping.

Because the driver must calculate moves for each ship it controls, the more ships the
computer is playing, the slower the game will appear.

If a player joins a game in progress, he will synchronize with the other players (a rather
slow process for everyone), and then he may play along with the rest.

To implement a multi-user game, the communicating processes must use a common
temporary file as a place to read and write messages. In addition, a locking mechanism
must be provided to ensure exclusive access to the shared file. For example, sail uses a
temporary file named /tmp/#sailsink.21 for scenario 21, and corresponding file names
for the other scenarios. To provide exclusive access to the temporary file, sail uses a
technique stolen from an old game called "pubcaves" by Jeff Cohen. Processes do a
busy wait in the loop

for (n = 0; link(sync_file, sync_lock) < 0 && n < 30; n++)
sleep(2);

until they are able to create a link to a file named /tmp/#SaiIIock.?? The "??"
correspond to the scenario number of the game. Since UNIX guarantees that a link will
point to only one. file, the process that succeeds in linking will have exclusive access to
the temporary file.

CONSEQUENCES OF SEPARATE PLAYER AND DRIVER

6-62

When players do something of global interest, such as moving or firing, the driver must
coordinate the action with the other ships in the game. For example, if a player wants
to move in a certain direction, he writes a message into the temporary file requesting the
driver to move his ship. Each' 'tum," the driver reads all the messages sent from the
players and decides what happened. It then writes back into the temporary file new
values of variables, etc.

Games

SAIL(6)

Games

SysV SAIL(6)

The most noticeable effect this communication has on the game is the delay in moving.
Suppose a player types a move for his ship and hits return. What happens then? The
player process saves up messages to be written to the temporary file in a buffer. Every
7 seconds or so, the player process gets exclusive access to the temporary file and writes
out its buffer to the file. The driver, running asynchronously, must read in the move­
ment command, process it, and write out the results. This takes two exclusive accesses
to the temporary file. Finally, when the player process gets around to doing another 7
second update, the results of the move are displayed on the screen. Hence, every move­
ment requires four exclusive accesses to the temporary file (anywhere from 7 to 21
seconds depending upon asynchrony) before the player sees the results of his moves.

In practice, the delays are not as annoying as they would appear. There is room for
"pipelining" in the movement. After the player writes out a first movement message, a
second movement command can then be issued. The first message will be in the tem­
porary file waiting for the driver, and the second will be in the file buffer waiting to be
written to the file. Thus, by always typing moves a turn ahead of the time, the player
can sail around quite quickly.

IT the player types several movement commands between two 7 second updates, only
the last movement command typed will be seen by the driver. Movement commands
within the same update "overwrite" each other, in a sense.

6-63

SCRAMBLE(6) Domain/OS SysV SCRAMBLE(6)

NAME
scramble - tum your screen into a scramble puzzle

SYNOPSIS
scramble [-den] [-c num] [-i num] [-p sec] [-x size] [-y size]
[message-line ...]

DESCRIPTION
scramble turns your bitmap screen into a scrambling puzzle. If you solve the puzzle,
you reclaim control of the screen. You can also quit by typing <EXIT> or CTRL/Q.

If you specify any message-line arguments, scramble displays the text in the empty
square, one line per message-line. To include spaces in a single message-line, use
backslash (\) or double-quote (") in the conventional manner.

Note: It is not nice to crp(l) or rlogin(l) onto other people's nodes and run this, since
it scrambles their screens while they're trying to do important work (wink, wink).

OPTIONS
-d

-e

-n

-cnum

-inum

-psec

-x size

-y size

COMMANDS

Run in the current DM window, not on the entire screen.

If the scrambling is to stop, just exit when done; don't give the player a
chance to solve it.

Don't number the pieces.

Scramble num times, then stop.

Keep scrambling the puzzle until you hit a recognized key (see below),
but scramble a minimum of num times (default 0).

After you solve the puzzle, pause for sec seconds before exiting so you
can admire your skill (default 0).

Make the puzzle size squares across (default 5).

Make the puzzle size squares high (default 4).

<EXIT> Quit scramble.

t-, -7, i, ! Move a square into the empty box from the right, the left, above,
or below, respectively.

~, -7/ Move the entire row into the empty box from the right or left,
respectively.

Boxed arrow keys Move the empty box to the left, to the right, up, or down.

Mouse buttons Clicking any mouse button with the cursor in a square shifts the
entire row from that piece onward towards the empty square. If
the cursor is in neither the row nor the column of the empty square,
this has no effect.

6-64 Games

SNAKE(6) SysV SNAKE(6)

NAME
snake, snscore - display chase game

SYNOPSIS
lusr/games/snake [-wn] [-In]
lusr/games/snscore

DESCRIPTION

Games

snake is a display-based game which must be played on a termcap(5) supported
screen. The object of the game is to make as much money as possible without getting
eaten by the snake. The -I and -w options allow you to specify the length and width of
the field. By default the entire screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is
represented by S's. The money is $, and an exit is #. Your score is posted in the upper
left hand comer.

You can move around using the same conventions as vi(l), the h, j, k, and I keys work,
as do the arrow keys. Other possibilities include:

sefe These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same row or
column as the money. This does not let you jump away from the snake, but
rather saves you from having to type a key repeatedly. The snake still gets all
histums.

SEFC Likewise for the upper case versions on the left.

ATPB These keys move you to the four edges of the screen. Their position on the
keyboard is the mnemonic, e.g. P is at the far right of the keyboard.

x This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape

CTRLlZ
Suspend the snake game, on systems which support it. Otherwise an interac­
tive shell is started up.

To earn money, move to the same square the money is on. A new $ will appear when
you earn the current one. As you get richer, the snake gets hungrier. To leave the
game, move to the exit (#).

A record is kept of the personal best score of each player. Scores are only counted if
you leave at the exit, getting eaten by the snake is worth nothing.

6-65

SNAKE(6) SysV SNAKE(6)

FILES

BUGS

6-66

As in pinball, matching the last digit of your score to the number which appears after
the game is worth a bonus.

To see who wastes time playing snake, run lusr/games/snscore.

Database of personal bests
Log of games played

/usr/games/lib/snakerawscores
lusr/games/lib/snake.log
lusr/games/busy Program to detennine if system too busy

When playing on a small screen, it's hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen. A perfect function to do
this equitably has not been devised.

Games

STRFILE(6) SysV STRFILE(6)

NAME
strfile, unstr - create a random access file for storing strings

SYNOPSIS
strfile [options] source file [datafile]

unstr [-0] [--ex] data file [outjile]

DESCRIPTION

Games

strfile converts a file containing a set of strings into a data file which contains those
strings along with a seek pointer table to the beginning of each. This allows random
access to the strings. strfile's main use is to add entries to the fortune(6) database.

strfile creates data file from a source file that consists of strings separated by lines start­
ing with "%%" or "%-". Anything following these characters on the line will be
ignored, so comments can be placed on these lines. A "%%" simply separates strings;
a "%-" separates not only strings but sections. A file can have up to four sections (in
other words, up to three delimiters). This can be used in a program-defined way.

If you do not specify a data file on the command line, strfile creates a file named
source file .dat. The data file contains a header describing its contents, the seek pointers
to the beginning of each string, and the strings themselves (terminated by null bytes).

The format of the header is

define MAXDELIMS 3

define STR_RANDOM
define STR_ORDERED

typedef struct {

Oxl
Ox2

unsigned long str_numstr; /* # of strings in the file */
unsigned long str_Ionglen; /* length of longest string */
unsigned long str_shortIen; /* length of shortest string */
long str_delims[MAXDELIMS]; /* delimiter markings */
ofCt str_dpos[MAXDELIMS]; /* delimiter positions */
short str_flags; /* bit field for flags */

} STRFILE;

The values in str _ delirns are the indices of the first string which follows each "%-" in
the file. The field str _Hags has the bit stcrandom set if the -r flag was specified, or
str_ordered if the --0 flag was specified.

unstr undoes the work of strfile. It serves primarily as an emergency backup in case
you accidentally delete your source file but still have your data file. unstr reads a data
file and creates a corresponding output file of raw strings and delimiters.

You can invoke unstr with the name of the data file, the name of the output file, or
both. If you specify both, unstr treats them literally as the input and output files. If

6-67

STRFILE(6) SysV STRFILE(6)

you provide a single argument ending in ".dat," unstr assumes this to be the data file,
and writes its output to that filename stripped of the" .dat" suffix. If the single argu­
ment doesn't end in ".dat," the program treats this as the name of the output file, and
consequently reads its input from outputfile .dat.

If you want a character other than "%" as your delimiter, use the -c option to change
it.

unstr normally prints out the strings in the order they occur in the data file. If you give
it the -0 option, it will write them out in the seek pointer order, which is different if the
file was randomized or alphabetized when created. Using this option, you can created
sorted versions of your input file by using strfile -0, and then using unstr -0 to dump
them out in the table order.

OPTIONS
Following are the options for strfile. Only the -0 and -c options may be used with
unstr.

-ex

-s

-v

-0

-i

-r

Print a usage summary.

Use character x as the delimiter instead of %.

Run silently; do not summarize processing at the end of the run.

Use verbose mode; summarize processing at the end of the run (default).

Order the strings alphabetically. strfile stores the strings in the same
order in the data file as in the source, but the seek pointer table will be
sorted in alphabetical order of the strings pointed to. Any initial non­
alphanumeric characters are ignored. This sets the str_ordered bit in the
str_flags field of the header.

Ignore case when ordering.

Randomize the order of the seek pointers in the table. The strings will
be stored in the same order in datafile as in source file , but the seek
pointer table will be randomized. This sets the str_random bit in the
str_flags field of the header.

EXAMPLES

6-68

To convert a file called scene which consists of lines like
%%
Hofstadter's Law:

%%

It always takes longer than you expect, even when you take
Hofstadter's Law into account.

"It is bad luck to be superstitious."
-- Andrew W. Mathis

%%
If A = B and B = C, then A = C, except where void or prohibited by law.

-- Roy Santoro

Games

STRFILE(6) SysV

FILES

use the following command:
$ strfile scene
"scene" converted to "scene.dat"
There were 1168 strings
Longest string: 1156 bytes
Shortest string: 0 bytes

strfile.h

SEE ALSO
fortune(6)

Header file

Games

STRFILE(6)

6-69

TEACHGAMMON(6) SysV

NAME
teachgammon - teach the game of backgammon

SYNOPSIS
/usr/games/teachgammon

DESCRIPTION

TEACHGAMMON(6)

This program teaches you the rules for backgammon, supplies hints on strategy, and
provides a tutorial consisting of a practice game against the computer.

FILES
/etc/termcap

SEE ALSO
backgammon(6)

6-70

Terminal capability database

Games

TREK(6) SysV TREK(6)

NAME
trek - trekkie game

SYNOPSIS
lusr/games/trek [[-a] file]

DESCRIPTION
trek is a game of space glory and war.

If a filename is given, a log of the game is written into that file. If the -a flag is given
before the filename, that file is appended to, not truncated.

trek asks what length game you would like. Valid responses are "short", "medium",
and "long". You may also type "restart", which restarts a previously saved game.
The program then prompts for the skill level, to which you must respond "novice",
"fair", "good", "expert", "commodore", or "impossible". You should nonnally
start out with "novice" and work up.

In general throughout the game, if you forget what is appropriate the game will tell you
what it expects if you type a question mark.

COMMAND SUMMARY

Games

abandon
cloak up/down
computer request; ...
destruct
help
lrscan
phasers automatic amount
phasers manual amtl coursel spreadl ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warpjactor

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

6-71

TIT(6) SysV TIT(6)

NAME
ttt - tic-tac-toe

SYNOPSIS
lusr/gameslttt

DESCRIPTION

Fll..ES

ttl is the popular X and 0 game, but it is also a learning program that never makes the
same mistake twice.

When you begin, the program prompts you with

Accumulated knowledge? (Yes or No)

You must respond with a yes or no. The program tells you how many "words" of
knowledge it currently has in its learning file. Then ttt states whether or not this is a
new game, prints a three-by-three grid of numbers 1-9, and prompts with "Your
move?" as shown below:

new game

123
456
789
Your move?

As you specify numbers in the grid, the program places an "X" in the location where
the number once was. After you move, the program takes a tum, placing an "0" in an
available spot. This continues until either you or the program wins by creating a verti­
cal, horizontal, or diagonal line of three of the same characters in a row on the grid. To
exit the game, type an interrupt.

Although it learns, ttt learns slowly. It must lose nearly 80 games to completely know
the game.

lusr/gamesilib/ttt.a Learning file

6-72 Games

VINE(6) Domain/OS SysV VINE(6)

NAME
vine - grow vines

SYNOPSIS
/usr/games/vine [options]

DESCRIPTION
vine creates interesting growing things on your screen. To halt the kudzu-like
onslaught, type an interrupt.

OPTIONS
-e

-c

-h

-r

-i[num]

-s[size]

-d device

-v[num]

-bnum

-Inum

-Rnum

Grow vines along the edge of the window.

Grow vines from the center of the window.

Exit if the RETURN key is pressed.

Display in reverse video.

Interleave black/white leaves, one black for every num white ones. If
num is negative, perform white/black interleaving.

Set maximum size of/eaves (default is 2).

Use alternate device. Possible values for device are borrow (use entire
display), borrow_ne (same as borrow but doesn't clear screen first),
direct (in current window only), and bg (use display background).

Grow num vines from the top of the window.

Specify num as probability of branching (default 5).

-q

EXAMPLE

As num increases (to maximum 35), more leaves grow from each stem.

Specify num different leaf directions; rotate num degrees for each leaf.

Display usage information.

An especially pretty liana can be generated with

vine -e-i2

CAUTION

Games

The -c option creates immense numbers of forks, perhaps taking over your machine for
lengthy periods.

6-73

WORM(6) SysV WORM(6)

NAME
worm - play the growing wonn game

SYNOPSIS
lusr/gameslworm [size]

DESCRIPTION

BUGS

6-74

In worm, you are a little wonn; your body is the string of "o"s on the screen and your
head is the "@". You move with the "hjkl" keys as in the game snake(6). If you
don't press any keys, you continue in the direction you last moved. The uppercase
"HJKL" keys move you as if you had pressed the corresponding lowercase key several
times (9 for HL and 5 for JK) unless you run into a digit, in which case you stop.

On the screen you will see a digit. If your wonn eats the digit, it will grow longer; the
actual atnount depends on the digit eaten. The object of the game is to see how long
you can make the wonn grow.

The gatne ends when the wonn runs into the sides of the screen or itself. The current
score (how much the wonn has grown) is shown in the upper left comer of the screen.

The optional argument, if present, sets the initial length of the worm.

If the initial length of the wonn is set to less than 1 or more than 75, various strange
things happen.

Gatnes

WORMS(6) SysY

NAME
worms - animate wonns on a display terminal

SYNOPSIS
/usr/games/worms [optiolls 1

DESCRIPTION

WORMS (6)

worms generates squinning annelid-like creatures on your display. This is an adapta­
tion of an older program called WORM.

OPTIONS

FILES

BUGS

Games

-field Make a "field" for the wonn(s) to eat.

-trail Make each wonn leave a trail behind it.

-length I Make each wonn I characters long.

-number II Create II wonns.

/etc/termcap

The lower right-hand character position will not be updated properly on a tenninal that
wraps at the right margin.

Tenninal initialization is not perfo~ed.

6-75

WUMP(6) SysV WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION

6-76

wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that lives in a
cave with several rooms connected by tunnels. You wander among the rooms, trying to
shoot the Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and
falling into Bottomless Pits. There are also Super Bats which are likely to pick you up
and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more
detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2
(November 1973).

---88--- Games

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: SysV Command Reference
Order No.: OOS798-AOO
Date of Publication: July, 1988

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _
__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the Apollo system? _______________________ _

What pans of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to incJude? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.) _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U. S.

fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POST AGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

fold

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: SysV Command Reference
Order No.: 005798-AOO
Date of Publication: July, 1988

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _
__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the Apollo system? ________________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to indude? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.} _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U. S.

fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

fold

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

11II

