SysV Command
Reference
065753-A00

apollo

SysV Command Reference

Order No. 005798-A00

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc., Chelmsford, Massachusetts.
Unpublished — rights reserved under the Copyright Laws of the United States. All Rights Reserved.

First Printing: July 1988

Copyright 1979, 1980, 1983, 1986 Regents of the University of Califomia and 1979, AT&T Bell Laboratories,
Incorporated.

UNIX is a registered trademark of AT&T in the USA and other countries.
Apollo and Domain are registered trademarks of Apollo Computer Inc.

Concept is a trademark of Human Designed Systems. DEC, PDP, and VT100 are registered trademarks of Digital
Equipment Corporation. Datamedia is a registered trademark of Datamedia Corporation. Diabolo, ETHERNET,
and Xerox are registered trademarks of Xerox Corporation. Hazeltine is a registered trademark of Hazeltine
Corporation. IBM is a registered trademark of International Business Machines Corporation. Imagen is a
registered trademark of Imagen Corporation. Tektronix and Tektronix 4010 are registered trademarks of
Tektronix, Inc. Teletype is a registered trademark of AT&T. VAX is a registered trademark of Digital
Equipment Corporation. Versatec is a registered trademark of Versatec.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C, Domain/ComController,
Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL, Domain/Dialogue, Domain/DQC,
Domain/IX, Domain/Laser-26, Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain
X.25, DPSS, DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel, Network Computing
System, Network License Server, Open Dialogue, Open Network Toolkit, Open System Toolkit, Personal
Supercomputer, Personal Super Workstation, Personal Workstation, Series 3000, Series 4000, Series 10000, and
VCD-8 are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this
publication without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST
SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER
INC. AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO
COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION
CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD
HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

The SysV Command Reference describes the user commands and games available
in Domain®/OS SysV. This manual is intended for users who are familiar with
System V Release 3 UNIX software and Domain/OS. It provides neither a general
overview of Domain/OS SysV nor details of the implementation of the system. We
assume that you are already familiar with the material in Using Your SysV Environ-
ment.

We have divided the SysV Command Reference into two sections:
Commands Section 1 provides reference material on user commands.

Games Section 6 provides reference material on games.

Each section consists of independent entries of a page or so each. The name of the
entry is in the upper corners of its pages, together with the section number, and
sometimes a letter characteristic of a class. For example, the ftp command is 1C.
Each section begins with intro(N), followed by domain(X), where N is the number
of the section. Entries thereafter appear in alphabetical order.

Some entries may describe several features. In such cases, the entry may appear
only once, alphabetized under its ‘‘primary’’ name, the name that appears at the
upper comers of each manual page.

Entries with Domain/OS SysV (as contrasted with a simple SysV) centered at the
top of the page describe features unique to Domain/OS SysV. Each section con-
tains an entry with the name domain that provides an overview of the unique
features in that section.

We use the convention name(N) to cite entry name in section N of this and other
manuals. References to sections other than 1 or 6 mean that name is contained in
another manual. The SysV Programmer’s Reference contains Sections 2, 3, 4, and
S. Managing SysV System Software includes Sections 1M and 7.

Preface i

All entries are based on a common format, not all of whose parts always appear:

NAME
SYNOPSIS

DESCRIPTION
EXAMPLE(S)
FILES

SEE ALSO
DIAGNOSTICS

NOTES
WARNINGS
BUGS
CAVEATS

Gives the name of the feature and briefly states its purpose.

Summarizes the use of the feature being described. In the case
of system calls and subroutines, this summary usually specifies
header files (by way of the appropriate #include <file.h> prepro-
cessor statement) containing definitions needed by the call or
subroutine. This summary also usually contains a set of declara-
tions as they might appear in a C-language function header
defining the call or subroutine.

Describes the feature.

Gives example(s) of usage, where appropriate.
Gives the filenames that are built into the feature.
Gives pointers to related information.

Discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

Gives generally ‘‘helpful hints’’ about the use of the feature.
Points out potential pitfalls.
Gives known bugs and sometimes deficiencies.

Gives details of the implementation that might affect usage.

A “‘Table of Contents’’ and a ‘‘Permuted Index’’ derived from that table precede
Section 1. The Permuted Index is a list of keywords, given in the second of three
columns, together with the context in which each keyword is found. Keywords are
either topical keywords or the names of manual entries. Entries are identified with
their section numbers shown in parentheses. This is important because there is con-
siderable duplication of names among the sections, arising principally from com-
ponents that exist only to exercise a particular system call. The right column lists
the name of the manual page on which each keyword may be found. The left
column contains useful information about the keyword.

Online Access

it Preface

We deliver a machine-readable version of this manual (and Sections 1M and 7) in

the files

/sys5.3/usr/catman/u_man/man[16)/name.[16]class,

and

/sys5.3/usr/catman/a_man/man[17]/name.[1MT7]class,

where name is that of the feature documented, [1671M] is either 1, 6, 7, or IM
depending upon the section, and class (C for communication, G for graphics, etc.)
may or may not appear.

If you have installed these files on your workstation, or you have links from your
workstation to one where these files are installed, you may access them by way of
the man(1) command. (To read about man, type

$ man | man

or refer to man(1) in this book).

Related Manuals

The file /install/doc/apollo/os.v. "latest software release number" __manuals lists
current titles and revisions for all available manuals.

For example, at Software Release 10 (SR10.0) refer to the file
/install/doc/apollo/os.v.10.0__manuals to check that you are using the correct ver-
sion of manuals. You may also want to use this file to check that you have ordered
all of the manuals that you need.

(If you are using the (Aegis™, environment, you can access the same information
through the Help system by typing help manuals.)

Refer to the Domain Documentation Quick Reference (002685) and the Domain
Documentation Master Index (011242) for a complete list of related documents.

For introductory information about the Domain/OS system and details about using
the SysV environment, refer to the following documents:

o Getting Started with Domain/OS (002348)
e Using Your SysV Environment (011022)

o Domain Display Manager Command Reference (011418)

For more information on programming in the Domain/OS SysV environment, refer
to the following documents:

e Domain/OS Call Reference, Volumes 1 and 2 (007196 and 012888)
e Domain/OS Programming Environment Reference (011010)
o Domain Binder and Librarian Reference (004977)

o Domain C Language Reference (002093)

Preface iii

o SysV Programmer’s Reference (005799)

e Managing SysV System Software (010851)

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make it easy for
you to communicate with us, we provide the Apollo® Product Reporting (APR)
system for comments related to hardware, software, and documentation. By using
this formal channel you make it easy for us to respond to your comments.

You can get more information about how to submit an APR by consulting the
appropriate Command Reference manual for your environment (Aegis, BSD, or
SysV). Refer to the mkapr shell command description. You can view the same

description online by typing:

$ man 1 mkapr (in the SysV environment)

% man 1 mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader’s Response form at the back of this manual
to submit comments about the manual.

Documentation Conventions

This manual uses the following symbolic conventions:

literal values

user-supplied values

sample user input

examples

iv Preface

Bold words or characters in formats and command
descriptions represent commands or keywords that you
must use literally. Bold words in text indicate the first
use of a new term. Filenames and pathnames are also
in bold.

Placeholders for symbols that you must supply are
printed in italics. For example, the names chosen for
call arguments appear in italics.

In samples, information that the user enters appears in
bold.

Examples of program code appear in this
typeface.

[siu]
ao

Square brackets enclose optional items in formats and
command descriptions.

Braces enclose a list from which you must choose an
item in formats and command descriptions.

A vertical bar separates items in a list of choices.

Ellipses mean that the previous argument-prototype
may be repeated.

An argument beginning with a minus sign (‘‘~’") usu-
ally means that it is an option-specifying argument
used by the command itself, even if it appears in a
position where a file name could appear. Therefore, it
is unwise to have files whose names begin with ‘="’

This symbol indicates the end of a section.

Preface v

Contents

SysV Commands

1: Commands and Application Programs

introduction to commands

intro(1)
domain(1)

Domain/OS-specific commands and extensions

handle special functions of DASI 300 and 300s terminals
handle special functions of the DASI 450 terminal

create and administer SCCS files

archive and library maintainer for portable archives

interpret ASA carriage control characters

execute commands at a later time

pattern scanning and processing language
make posters

basename(1)
batch(1)

deliver portions of path names

execute commands at a later time

be(l)

arbitrary-precision arithmetic language

bdiff(1)

big diff

bfs(1)

big file scanner

bldt(1)

cal(1)

display time operating system was built
print calendar

calendar(1)

reminder

cancel(1)

send/cancel requests to an LP line printer

cat(1l)
cb(l)

concatenate and print files
C program beautifier

cc(1)

C compiler

cd(l)

change working directory

cde(1)
cflow(1)

change the delta commentary of an SCCS delta
generate C flowgraph

chacl(1)

change access control list

chfn(1)

change password file information

chgrp(1)
chmod(1)

change owner or group
change mode

chown(1l)

change owner or group

chsh(1)

change password file information

cmp(l)
col(1)

compare two files
filter reverse line feeds

Contents vii

comb(1)

combine SCCS deltas

comm(1) select or reject lines common to two sorted files
cp(l) copy files
cpacl(l) copy access control list
cpio(1) copy file archives in and out
cpp(1) the C language preprocessor
cpscr(l) copy the current display to a file
crddf(1) create, display, or modify a device descriptor file
crontab(1) user crontab file
crp(1) create a process on a remote node
crpad(1) create a transcript pad and window
crty(l) create a new type
crtyobj(l) create a type object module for binding
csplit(1) context split
ctrace(1) C program debugger
cu(lc) call another UNIX system
cut(l) cut out selected fields of each line of a file
cvt_font(1) convert fonts from pre-SR10 to SR10 format
cvtname(1).... convert pathnames between upper and lowercase and preserve colons
cvtrgy(1l) convert registry between SR9.x and SR10 formats
cxref(l) generate C program cross-reference
date(1) print and set the date
dbacl(1l) Domain/Dialog based access control list editor
dbx(1) debugger
de(1) desk calculator
dd(1) convert and copy a file
dde(1) Domain Distributed Debugging Environment
delta(1) make a delta (change) to an SCCS file
diff(1) differential file comparator
diff3(1) 3-way differential file comparison
dircmp(1) directory comparison
dirmame(1) deliver portions of path names
disable(1) enable/disable LP printers
dity(1) delete a type
dm(1) Display Manager Commands
dspst(1) display process status graphically
du(l) summarize disk usage
dump(1) dump selected parts of an object file
echo(1) echo arguments
ed(1). text editor
edfont(1) edit a character font
edit(1) text editor (variant of ex for casual users)
edmtdesc(1) edit magtape descriptor file
(723 5 oL 1 O, search a file for a pattern using full regular expressions
emt(l) emulate a dumb terminal
enable(1) enable/disable LP printers
env(l) set environment for command execution
erase(lg) graphical device routines and filters

viii Contents

esa(l) display address of external symbol
ex(1) text editor
expr(l) evaluate arguments as an expression
f77(1) Fortran 77 compiler
factor(1) obtain the prime factors of a number
false(1) provide truth values
fgrep(l) search a file for a character string
file(1) determine file type
find(1) find files
finger(1) user information lookup program
french_to_iso(1) convert files to ISO format
fsplit(1) split FORTRAN or ratfor files
fst(1) print fault status information
ftp(lc) ARPANET file transfer program
gdev(lg) graphical device routines and filters
german_to_iso(1) convert files to ISO format
get(1) get a version of an SCCS file
getopt(1) parse command options
getoptcvt(l) parse command options
getopts(l) parse command options
graph(lg) draw a graph
graphics(1g) access graphic and numeric commands
greek(1) select terminal filter
grep(l) search a file for a pattern
gutil(1g) graphic utilities
hardcopy(1g) graphical device routines and filters
hashcheck(1) find spelling errors
hashmake(1) find spelling errors
help(1) ask for SCCS help
hostid(1) set or print identifier of current host system
hostname(1) set or print name of current host system
hp(l) handle special functions of Hewlett-Packard terminals
hpc(1) program counter histogram
hpd(1g) graphical device routines and filters
id(1) print user and group IDs and names
inlib(1) install a user-supplied library
intm(1) install a type manager
inty(1) install a new type
iperm(l) oeveeeneecnnene remove a message queue, semaphore set, or shared memory id
ipes(1) report inter-process communication facilities status
iso(1) convert files to ISO format
join(1) relational database operator
kbm(1) set/display keyboard characteristics
kill(l) terminate a process
ksh(1) the Komn shell command programming language
las(1) list objects mapped into the address space
Ibr2ar(1) convert lbr libraries to SR10 archive libraries
lem(1) : load a color map

Contents ix

1d(1)

link editor for common object files

lex(1)

generate programs for simple lexical tasks

read one line

line(1)
lint(1)

a C program checker

list(1)

produce C source listing from a common object file

1lib(1)

list installed libraries

1lkob(1)
In(1)

list locked objects
create a hard or soft link

logger(1)

make entries in the system log

login(1)

sign on

logname(1)
lorder(1)

get login name
find ordering relation for an object library

Ip(1)

send/cancel requests to an LP line printer

print LP status information

Ipstat(1)

I1s(1)
Isacl(l)

list contents of directory
list access control list

lty(1)

list installed types

m4(1)

mail(1)

Macro processor
send mail to users or read mail

mailx(1)

interactive message processing system

make(1)

maintain, update, and regenerate groups of programs

man(1)
mces(1)

print entries in this manual
manipulate the object file comment section

mesg(1)

permit or deny messages

mkapr(1)

make an Apollo product report

mkapr(1)
mkdir(1)

make a problem report
make directories

mKSinit(1).eeeenerecaenene

mmt(1)

create initialization code for STREAMS drivers and modules

typeset documents, viewgraphs, and slides

mt(l)
mv(l)

magnetic tape manipulating program
move files

mvt(l)

typeset documents, viewgraphs, and slides

netstat(1)

show network status

newform(1)
newgrp(l)

change the format of a text file
log in to a new group

news(1)

print news items

nice(l)

run a command at low priority

nl(1)
nm(1)

line numbering filter
print name list of common object file

nohup(1)

run a command immune to hangups and quits

nor.dan_to_iso(1l)

obj2coff(1)
od(1)

convert files to ISO format

convert OBJ format modules to COFF format modules

octal dump

pack(1)

compress and expand files

passwd(l)

Paste(l) vevecrrrsnecnnnne

pcat(l)

change password file information

merge same lines of several files or subsequent lines of one file

compress and expand files

pg(l)

file perusal filter for CRTs

x Contents

pr(1) print files

275 (@) U queue a file for printing by Domain/OS Aegis print spooler
prof(1) display profile data
prs(1) print an SCCS file
ps(1) report process status
ptx(1l) permuted index
pwd(l) working directory name
ratfor(1) rational FORTRAN dialect
rbak(1) restore or index a magnetic media backup file
rep(lc) remote file copy
red(l) text editor
regemp(l) regular expression compile
remsh(1c) remote shell
rlogin(1c) remote login
rm(1) remove files or directories
rmail(1) send mail to users or read mail
rmdel(1) remove a delta from an SCCS file
rmdir(1) remove files or directories
rootnode(l) change the node to which the root directory refers
rsh(1)......... the standard,restricted Bourne Shell (command programming language)
ruptime(1c) show host status of local machines
rwho(lc) who’s logged in on local machines
rwmt(1) read/write foreign magtapes
sact(1). print current SCCS file editing activity
sces(l) front end for the SCCS subsystem
scesdiff(1) compare two versions of an SCCS file
scrattr(1) screen attributes
scrto(1) set/show screen timeout
sdiff(1) side-by-side difference program
sed(l) stream editor
sh(1)eeeeeene. the standard/restricted Bourne Shell (command programming language)
size(1) print section sizes in bytes of common object files
sleep(1) suspend execution for an interval
sort(1) sort and/or merge files
spell(1) find spelling errors
spellin(1) find spelling errors
spline(1g) interpolate smooth curve
split(1) split a file into pieces
start_sh(1) start a log-in shell
stat(1g) statistical network useful with graphical commands
stcode(1) translate status code value to text message
strinfo(1) prints STREAMS-related information
SErP(1) veeerenenes strip symbol and line number information from a common object file
stty(1) set the options for a terminal
su(l) become super-user or another user
sum(1) print checksum and block count of a file
swapul(1) rearrange underlining
swedish_to_iso(1) convert files to ISO format

Contents xi

swiss_to_iso(1) convert files to ISO format

sync(1) forces write to disk
systype(l) display version stamp
tabs(1) set tabs on a terminal
tail(1) deliver the last part of a file
tar(1l) tape file archiver
tb(1) print process traceback
td(1g) graphical device routines and filters
tee(1) pipe fitting
tekset(lg) graphical device routines and filters
telnet(1c) user interface to the TELNET protocol
test(1) condition evaluation command
tftp(lc) trivial file transfer protocol
time(1) time a command
(511375 {0 1 J0 time a command; report process data and system activity
touch(1) update access and modification times of a file
tplot(1g) graphics filters
tpm(1) set/display touchpad and mouse characteristics
tput(l) initialize a terminal or query terminfo database
tr(1) translate characters
tr_font(1) transliterate characters within a font
trCONf(1)eveaccnscresrennsenasons list active Streams or configure STREAMS trace modules
trmon(1)... .. print messages collected by trace modules on active Streams
true(l) provide truth values
ts(1) display the module name and time stamp
tsort(1) topological sort
tty(1) get the name of the terminal
tz(1) set or display system time zone
uk_to_iso(1) convert files to ISO format
umask(1) set file-creation mode mask
uname(1) print name of current UNIX system
unget(1) undo a previous get of an SCCS file
uniq(1) report repeated lines in a file
units(1) conversion program
unpack(1) compress and expand files
uucp(lc) UNIX-to-UNIX system copy
uudecode(1C) e rmneesresseessisanee encode/decode a binary file for transmission via mail
uuencode(1C) memmesncssnrsrenssence encode/decode a binary file for transmission via mail
uulog(lc) UNIX-to-UNIX system copy
uuname(lc) UNIX-to-UNIX system copy
uupick(lc) public UNIX-to-UNIX system file copy
uustat(lc) uucp status inquiry and job control
uuto(lc) public UNIX-to-UNIX system file copy
uux(lc) UNIX-to-UNIX system command execution
val(l) validate SCCS file
ve(l) version control
vi(l) screen-oriented (visual) display editor based on ex
vsize(l) set/display VT100 window settings

xii Contents

vt100(1) VT100 terminal emulator
wait(1) await completion of process
wall(1) write to all users
wbak(1) create a magnetic media backup file
we(l) word count
what(1) identify SCCS files
who(1) who is on the system
whois(1) DARPA Internet username directory service
write(1) write to another user
xargs(l) construct argument list(s) and execute command
xdme(1) execute a DM command from the shell
yacc(l) yet another compiler-compiler
6: Games

intro(6) introduction to games
domain(6) Domain/OS-specific games
backgammon(6) the game of backgammon
banner(6) print large banner on printer
* battlestar(6) a tropical adventure game
bed(6) convert to antique media
bgcolor(6) make interesting background colors
bj(6) the game of blackjack
boggle(6) play the game of boggle
btlfortune(6) print a random comment
btlgammon(6) the game of backgammon
btlhangman(6) guess the word
canfield(6) the solitaire card game canfield
craps(6) the game of craps
cribbage(6) the card game cribbage
dmoire(6) Domain/Dialogue-based moire generator
factor(6) factoring program
fish(6) play Go Fish
flake(6) induce terminal dandruff
fortune(6) print a random, hopefully interesting, adage
hangman(6) Computer version of the game hangman
hunt(6) a multi-player multi-terminal game
mastermind(6) Mastermind guessing game
maze(6) generate a maze
melt(6) melt the screen
mille(6) play Mille Bournes
monop(6) Monopoly game
moo(6) guessing game
number(6) convert Arabic numerals to English
primes(6) print prime numbers
puzzle(6) puzzle game
quiz(6) test your knowledge
rain(6) animated raindrops display
random(6) random number generator

Contents xiii

revscr(6)

reverse screen

robots(6) fight off villainous robots
sail(6) multi-user wooden ships and iron men
scramble(6) turn your screen into a scramble puzzle
snake(6) display chase game
strfile(6) create a random access file for storing strings
teachgammon(6) teach the game of backgammon
trek(6) trekkie game
ttt(6) tic-tac-toe
vine(6) grow vines
worm(6) play the growing worm game
worms(6), animate worms on a display terminal
wump(6) the game of hunt-the-wumpus

xiv Contents

PERMUTED INDEX

functions of DASI 300 and/
special functions of DASI
of DASI 300 and 300s/ 300,
functions of DASI 300 and
comparison diff3:
of the DASI 450 terminal
special functions of the DASI
£77: Fortran
of afile touch: update
chacl: change
cpacl: copy
Isacl: list
dbacl: Domain/Dialog based
/funstr: create a random
commands graphics:
collected by trace modules on
STREAMS trace/ trconf: list
current SCCS file editing
report process data and system
random, hopefully interesting,
esa: display
list objects mapped into the
SCCS files
admin: create and
battlestar: a tropical
file for printing by Domain/OS
sort: sort
terminal worms:
rain:
bed: convert to
mkapr: make an
maintainer for portable/
number: convert
language bc:
for portable archives ar:
convert Ibr libraries to SR10
tar: tape file
maintainer for portable
cpio: copy file
command xargs: construct
echo: echo
expr: evaluate
bc: arbitrary-precision
ftp:
expr: evaluate arguments
characters asa: interpret
control characters
help:
a later time
a later time
scrattr: screen
wait:
processing language
backgammon: the game of

300, 300s: handle specialcooeerevcnnnce 300(1)
300 and 300s terminals/handl 300(1)
300s: handle special functions 300(1)
300s terminals/handle special 300(1)

3-way differential file
450: handle special functions
450 terminal450: handle

77 compiler f77(1)
access and modification times touch(1)
access control list chacl(1)

access control list
access control list
access control list editor ...
access file for storing/
access graphic and numeric ..

cpacl(l)
Isacl(1)
..... dbacl(1)
.. strfile(6)
.. graphics(1G)

active Streams/print MesSagesc.ceeoveevene trmon(1)
active S or config trconf(1)
activitysact: print sact(1)

activity/time a cc d timex(1)

adagefortune: print a ...
address of external symbol ...
address spacelas:
admin: create and administer

administer SCCS files
adventure game battlestar(6)
Aegis print spooler/queue a prf(1)

and/or merge files
animate worms on a display .
animated raindrops display ...
antique media
Apollo product report
ar: archive and library
Arabic numerals to English .
arbitrary-precision arithmetic
archive and library maintainer ..
archive librarieslbr2ar:
archiver
archives/archive and library .
archives in and out
argument list(s) and execute .
arguments
arguments as an expression

.. sort(l)
.. worms(6)

arithmetic languag be(l)
ARPANET file transfer program ftp(1C)
as an expression expr(l)

ASA carriage control
asa: interpret ASA carriage

ask for SCCS help .

at, batch: execute co ds at at(1)

at, batch: execute co ds at batch(1)
attributes scrattr(1)
await completion of process . .. wait(1)

.. awk(1)
backgammon(6

awk: pattern scanning and ...
backgammon

Permuted Index xv

xvi

btlgammon: the game of

teachgammon: teach the game of
backgammon

bgcolor: make interesting

or index a magnetic media

wbak: create a magnetic media

banner: print large
printer
editor dbacl: Domain/Dialog
(visual) display editor
portions of path names
portions of path names
later time at,
later time at,
adventure game
arithmetic language

cb: C program

background colors
via mail /encode/decode a
via mail /encode/decode a
a type object module for

bj: the game of
system was built
sum: print checksum and
boggle: play the game of
boggle
rsh: the standard/restricted
rsh: the standard/restricted
mille: play Mille
comment
backgammon

time operating system was
size: print section sizes in
cc:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate

ctrace:

object file list: produce

dc: desk
cal: print

cu:

to an LP line printer lIp,

to an LP line printer Ip,

the solitaire card game
solitaire card game canfield

Permuted Index

backgammon btlg n(6)
backgammon teachgammon(6)
backgammon: the game of .. backgammon(6)
background colors .. bgcolor(6)
backup filerbak: restore tbak(1)
backup file wbak(1)
banner: make POSLErSccoovvueviiriincinnae banner(1)
banner on printer

banner: print large banner on ...

based access control list

based on ex/screen-oriented . vi(l)
basename, dirname: deliver .. basename(1)
basename, dirname: deliver .. dimame(1)
batch: execute commands at a .. at(1)

batch: execute commands at a .. batch(1)
battlestar: a tropical battlestar(6)
bce: arbitrary-precision be(l)

bed: convert to antique media bed(6)

bdiff: big diff bdiff(1)
beautifier cb(l)

bfs: big file scanner <o DES(L)
bgcolor: make interesting bgcolor(6)
binary file for tr ission

uudecode(1C)
binary file for transmission .
bindingcrtyobj: create
bj: the game of blackjack

blackjack

bldt: display time operating ..

block count of a file

boggle boggle(6)
boggle: play the game ofccovvenvininn boggle(6)
Boume Shell (cc d/sh. 1sh(i)
Boume Shell (c« d/sh, sh(1)

Boumes
btlfortune: print a random
btlgammon: the game of ...
btlhangman: guess the word .
builtbldt: display
bytes of common object files ...
C compil

C flowgraph
C language preprocessor ..
C program beautifier ..
C program checker ...
C program cross-refc
C program debugger
C source listing from a common
cal: print calendar
calculator
calendar
calendar: reminder service ...
call another UNIX system ...
cancel: send/cancel requests .
cancel: send/cancel requests .
canfieldcanfield, cfscores:
canfield, cfscores: the ...

btlgammon(6)
... btlhangman(6)
bldt(1)
... size(l)

cfscores: the solitaire

cribbage: the

asa: interpret ASA

text editor (variant of ex for
files

commentary of an SCCS delta

game canfield canfield,
list

delta: make a delta

edfont: edit a

fgrep: search a file for a

kbm: set/display keyboard

set/display touchpad and mouse

interpret ASA carriage control

tr: translate

tr_font: transliterate

snake, snscore: display

lint: a C program

file sum: print
password file information
password file information
password file information
chown,

chown,

group
group
file information chfn,
file information chfn,
file information chfn,

mksinit: create initialization
stcode: translate status
convert OBJ format modules to

active/ trmon: print messages
and lowercase and preserve
Icm: load a

make interesting background

comb:

common to two sorted files
test: condition evaluation
time: time a
argument list(s) and execute
nice: run a
env: set environment for
uux: UNIX-to-UNIX system
xdmc: execute a DM
quits nohup: run a
getopt: parse
getopts, getoptcvt: parse

card game canfieldcanfield,
card game cribbage
carriage control characters
casual users)edit:
cat f1 conc and print
cb: C program beautifier .
cc: C compiler ...
cd: change working
cdc: change the delta
cflow: generate C flowgraph ..
cfscores: the solitaire card .
chacl: change access control ..
(change) to an SCCS file
character font ...
character string .
characteristics
characteristicstpm:
charactersasa: .

characters

characters within a fontccccoocoeeveienennn. tr_font(1)
chase game snake(6)
checker lint(1)
checksum and block count of a ... sum(1)

chin, chsh, passwd: change ...
chifn, chsh, passwd: change
chin, chsh, passwd: change ...
chgrp: change owner or group ..
chgrp: change owner or group
chmod: change mode ..

chown, chgrp: change owner or
chown, chgrp: change owner or
chsh, passwd: change password
chsh, passwd: change password
chsh, passwd: change password
cmp: compare two files
code for STREAMS drivers and/ ...
code value to text m
COFF format modulesobj2coff:
col: filter reverse line feeds
collected by trace modules on ..
colons/between upper
color map
colorsbgcolor: ..
comb: combine SCCS deltas .
combine SCCS deltas
comm - select or reject lines ..
o d

co W e
commandxargs: construct ...
command at low priority
co d execution

co d execution
command from the shell
command immune to hangups and ..
command options
co d options

chin(1)
chsh(1)
passwd(1)
chgrp(l)
... chown(1)
... chmod(1)
chgrp(1)
chown(1)
chin(l)
chsh(1)

getopt(1)

getoptevt(1)

Permuted Index xvii

xviii

getopts, getoptcvt: parse
ksh: the Korn shell

/Bourne Shell

/Bourne Shell

and system/ timex: time a
dm: Display Manager
access graphic and numeric
intro: introduction to
network useful with graphical
domain: Domain/OS-specific
at, batch: execute

at, batch: execute
btifortune: print a random
manipulate the object file
cdc: change the delta

C source listing from a

nm: print name list of

line number information from a
1d: link editor for

section sizes in bytes of
comm - select or reject lines
ipcs: report inter-process
diff: differential file

cmp:

SCCS file sccsdiff:

diff3: 3-way differential file
dircmp: directory

regemp: regular expression
cc:C

£77: Fortran 77

yacc: yet another

wait: await

pack, pcat, unpack:

pack, pcat, unpack:

pack, pcat, unpack:
hangman hangman:

cat f1

test:

trconf: list active Streams or
execute command xargs:
Is: list

csplit:

uucp status inquiry and job
vC: version

asa: interpret ASA carriage
chacl: change access

cpacl: copy access

Isacl: list access
Domain/Dialog based access
units:

dd:

English number:

iso:

iso:

iso:

iso:

Permuted Index

command options getopts(1)
command programming language ... ksh(1)
(command programming language) rsh(1)
(cc d progr ing language) sh(l)
command; report process dataccc.c.. timex(1)

¢ d dm(1)
commandsgraphics:cccoevviiiiinnnnee graphics(1G)
COMMANASoveerviereiiiesrereesireaeseeeereeseeseenens intro(1)
commandsstat: statistical ... stat(1G)
commands and extensions . domain(1)

commands at a later time ...
commands at a later time batch(1)
comment . btitortune(6)
comment SECHONMCS: ...c.ceeevrveereeererrrensennens mcs(1)
commentary of an SCCS delta ede(1)

at(l)

common object file/produce . list(1)
common object file nm(1)
common object file/symbol and strip(1)

.. 1d(1)
size(l)
comm(l)

common object files
common object files/print ..
common to two sorted files

communication facilities/ ipes(1)
comparator diff(1)
compare two files cmp(l)
compare two Versions of ancceceeeeeenee scesdiff(1)
comparison diff3(1)
comparison dircmp(1)
compile regemp(1)
compiler . ce(l)
compiler . £77(1)
compiler-compiler ... yacc(l)

... wait(1)

... pack(1)
peat(l)
unpack(1)
... hangman(6)
... cat(l)
test(1)

completion of process .
compress and expand files
compress and expand files .
compress and expand files .
computer version of the game
concatenate and print files
condition evaluation command .

configure STREAMS trace/ .. trconf(l)
construct argument list(s) and xargs(1)
contents of directory G s()
context split csplit(1)
controluustat: uustat(1C)
control ve(l)
control charactersccoocoveeieeecceeenennn. asa(1)
control list chacl(1)
control list cpacl(1)
control list ... Isacl(1)
control list editordbacl: ... dbacl(1)

... units(1)

... dd(1)

number(6)
french_to_iso(1)
german_to_iso(1)
iso(1)

... nor.dan_to_iso(l)

conversion program ...
convert and copy a file
convert Arabic numerals to
convert files to ISO format
convert files to ISO format
convert files to ISO format
convert files to ISO format ...

iso:

iso:

iso:

SR10 format cvt_font:

archive libraries lbr2ar:

COFF format modules obj2coff:
upper and lowercase/ cvtname:
and SR10 formats cvtrgy:

bed:

rcp: remote file

uuname: UNIX-to-UNIX system
uuname: UNIX-to-UNIX system
uuname: UNIX-to-UNIX system
UNIX-to-UNIX system file
UNIX-to-UNIX system file

dd: convert and

cpacl:

cpio:

cp:

file cpscr:

wc: word

sum: print checksum and block
hpc: program

list

and out

preprocessor

display to a file
craps: the game of

modify a device descriptor/
In:
file wbak:
crty:
node crp:
for storing/ strfile, unstr:
window crpad:
for binding crtyobj:
files admin:
device descriptor file crddf:
STREAMS drivers and/ mksinit:
cribbage: the card game
cribbage
crontab: user

cxref: generate C program
remote node
and window

pg: file perusal filter for

module for binding

cpscr: copy the
set or print identifier of

convert files to ISO format
convert files to ISO format ...
convert files to ISO format
convert fonts from pre-SR10to .
convert lbr libraries to SR10
convert OBJ format modules to .
convert pathnames between ...
convert registry between SR9.x .
convert to antique media
copy
copyuucp, uulog,
copyuucp, uulog,
copyuucp, uulog,
copyuuto, uupick: public
copyuuto, uupick: public

. cvtname(1)

uulog(1C)

10)

<. UUPick(1C)
... uuto(1C)

copy a file dd(1)
copy access control list cpacl(l)
copy file archives in and out cpio(1)
copy files cp(l)
copy the current display to acccovueuenecne cpscr(l)
count we(l)
count of a file sum(1)
counter histogram ... hpc(1)
cp: copy files cp(l)
cpacl: copy access control .. cpacl(1)

cpio: copy file archives in cpio(1)
cpp: the C languag cpp(l)
CPSCT: COpy the currentccovcevvuecneens cpser(l)
craps craps(6)

craps: the game of craps
crddf: create, display, or .
create a hard or soft link
create a magnetic media backup ...
create a new type
create a process on a remote ..
create a random access file .
create a transcript pad and ..
create a type object module

create and administer SCCS

create, display, or modify a ... crddf(1)
create initialization code forceccvevenen mksinit(1)
cribbage cribbage(6)
cribbage: the card gameccoccovvuncnccnnns cribbage(6)
crontab file crontab(1)

crontab: user crontab file
cross-reference
CIp: create a process on a
crpad: create a transcript pad .
CRTs
crty: create a new type
crtyobj: create a type object
csplit: context split
ctrace: C program debugger ..
cu: call another UNIX system ...
current display to a file
current host sy hostid:

crontab(1)
cxref(1)
e CIP(1)
crpad(l)
pg(l)
crty(1)

. crtyobj(1)
. csplit(1)
ctrace(1)
cu(1C)
. Cpser(1)
hostid(1)

Permuted Index xix

hostname: set or print name of
activity sact: print
uname: print name of
spline: interpolate smooth
of each line of a file
each line of a file cut:
pre-SR 10 to SR10 format
between upper and lowercase/
between SR9.x and SR10/
cross-reference
flake: induce terminal
directory service whois:
/handle special functions of
special functions of the
prof: display profile
/time a command; report process
a terminal or query terminfo
join: relational
date: print and set the

access control list editor

Debugging Environment
ctrace: C program
dbx:
dde: Domain Distributed
dity:
basename, dirname:
basename, dimame:
file tail:
delta commentary of an SCCS
delta: make a
delta cdc: change the
rmdel: remove a

to an SCCS file
comb: combine SCCS
mesg: permit or
display, or modify a device
edmtdesc: edit magtape
dc:

file:
create, display, or modify a
/tekset, td: graphical
/tekset, td: graphical
/tekset, td: graphical
/tekset, td: graphical
/tekset, td: graphical
ftekset, td: graphical
ratfor: rational FORTRAN
bdiff: big

comparator

comparison
sdiff: side-by-side
diff:

XX Permuted Index

current host system he 1)
current SCCS file editing sact(1)
current UNIX system (1)
curve spline(1G)
cut: cut out selected fields ... cut(l)

cut out selected fields ofcut(l)
cvt_font: convert fonts fromc.cceueueee. cvt_font(1)
cv : convert path cvtname(1)
cvirgy: convert registry cvtrgy(l)
cxref: generate C program .. cxref(1)
dandruff flake(6)
DARPA Internet username whois(1)
DASI 300 and 300s terminals .300(1)
DASI 450 terminal450: handle .. 450(1)
data prof(1)
data and system activity .. timex(1)
databasetput: initialize tput(1)
database operator join(l)
date date(1)
date: print and set the date date(1)
dbacl: Domain/Dialog based dbacl(l)
dbx: debugger dbx(1)

dc: desk calculator de(l)

dd: convert and copy a file .. .dd(1)

dde: Domain Distributed dde(1)
debugger ctrace(1)
debugger dbx(1)
Debugging Environment ... dde(1)
delete a type dity
deliver portions of path names basename(1)
deliver portions of path names . dimame(1)

deliver the last part of a
deltacdc: change the
delta (change) to an SCCS file
delta commentary of an SCCS
delta from an SCCS file
delta: make a delta (change) ..
deltas
deny 2
descriptor file/create,
descriptor file
desk calculator
determine file type
device descriptor filecrddf
device routines and filters ...
device routines and filters ...
device routines and filters ...
device routines and filters ...
device routines and filters ...

edmtdesc(1)
de(l)

file(1)

. crddf(1)
erase(1G)
gdev(1G)

. hardcopy(1G)
. hpd(1G)

L td(1G)

device routines and filtersccceveererennen. tekset(1G)
dialect ratfor(1)
diff bdiff(1)
diff: differential file diff(1)

. diff3(1)
. sdiff(1)
diff(1)

dift3: 3-way differential file
difference program
differential file comparator

diff3: 3-way

mkdir: make

rm, rmdir: remove files or
rm, rmdir: remove files or
cd: change working

Is: list contents of

dircmp:

pwd: working

the node to which the root
whois: DARPA [nternet username
path names basename,
path names basename,
printers enable,

printers enable,

sync: forces write to

du: summarize

rain: animated raindrops
symbol esa:

snake, snscore:

vi: screen-oriented (visual)
dm:

descriptor/ crddf: create,
graphically dspst:

prof:

tz: set or

Wworms: animate worms on a
time stamp ts:

was built bldt:

cpscr: copy the current
systype:

Environment dde: Domain

xdmc: execute a

moire generator
slides mmt, mvt: typeset
slides mmt, mvt: typeset
Environment dde:
commands and extensions
games
control list editor dbacl:
generator dmoire:
/queue a file for printing by
and extensions domain:
domain:
graph:
/code for STREAMS
graphically

diff3(1)
.. dircmp(1)

differential file comparison ...
dircmp: directory comparison ...

directories mkdir(1)
directories m(l)
directories rmdir(1)
directory cd(l)
directory Is(1)
directory COMPArisoncoevveereininnes dircmp(1)
directory name pwd(l)

directory refers/change .. rootnode(1)
diTeCtOry SEIVICEccvvveveunieieiereecaririercvinenene whois(1)
dirname: deliver portions of b 1)
dimame: deliver portions ofcco..... dirname(l)

disable: enable/disable LP .
disable: enable/disable LP

disk sync(l)
disk usage du(l)
display rain(6)
display address of external

display chase game

display editor based on ex .

Display Manager Commands ...

display, or modify a device ...

display process status ...

display profile data

display system time zone ...

display terminal

display the module name and ... ts(1)
display time operating system .. bldt(1)
display to a file cpscr(l)
display version StAmpccceeveveeeremicrnnnns systype(1)
Distributed Debuggingccccocveviieninnnne dde(l)
dlty: delete a type dity
DM command from the shell xdme(l)

dm: Display Manager Commands
dmoire: Domain/Dialogue-based ..
documents, viewgraphs, and ..
documents, viewgraphs, and ..
Domain Distributed Debugging
domain: Domain/OS-specific ..
domain: Domain/OS-specific
Domain/Dialog based access .
Domain/Dialogue-based moire .
Domain/OS Aegis print spooler
Domain/OS-specific commands
Domain/OS-specific games
draw a graph
drivers and modules
dspst: display process status ..
du: summarize disk usage

.. dm(1)
.. dmoire(6)

graph(1G)
mksinit(1)

emt: a
od: octal
an object file
object file dump:
echo:

dumb inal
dump
dump: dump selected parts of
dump selected parts of an

echo arg
echo: echo argumems

Permuted Index xxi

xxii

edfont:
edmtdesc:
ex for casual users)
sact: print current SCCS file
based access control list
ed, red: text
ex: text
ed, red: text
sed: stream
/(visual) display
1d: link
casual users) edit: text
descriptor file
pattern using tull regular/

emt:
vt100: VT100 terminal
enable/disable LP printers
enable/disable LP printers
enable, disable:
enable, disable:
for/ uuencode,uudecode:
for/ uuencode,uudecode:
sccs: front
convert Arabic numerals to
logger: make
man: print
command execution
Domain Distributed Debugging
execution env: set
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
graphical device/ gdev: hpd,
hashcheck: find spelling
hashcheck: find spelling
hashcheck: find spelling

ed, red: text editor
ed, red: text editor

edfont: edit a character font .
edit a character font
edit magtape descriptor file ..

... ed(l)

red(1)
edfont(1)
edfont(1)
edmtdesc(1)

edit: text editor (variant of ... edit(1)
editing activity sact(l)
editordbacl: Domain/Dialogccoceoevreerenes dbacl(1)
editor ed(l)
editor ex(1)
editor .. red(1)
editor sed(1)
editor based on ex ... vi(l)

editor for common object files .
editor (variant of ex for
edmtdesc: edit magtape
egrep: search a file fora ..
emt: emulate a dumb terminal . emt(l)

emulate a dumb terminal .. .emt(l)

lator vt100(1)

enable, disable: disable(1)
enable, disable: enable(1)
enable/disable LP printerscccecoevceecnnee disable(1)
enable/disable LP printers enable(l)

1d(1)

edit(1)
edmtdesc(l)
egrep(1)

encode/decode a binary file . uudecode(1C)
encode/decode a binary file . uuencode(1C)
end for the SCCS subsystem sces(l)
Englishnumber: number(6)
entries in the system log logger(1)

entries in this manual
env: set environment for ..
Enviror dde:

environment for command
erase, hardcopy, tekset, td:
erase, hardcopy, tekset, td:
erase, hardcopy, tekset, td:
erase, hardcopy, tekset, td: ..
erase, hardcopy, tekset, td:

man(l)
...env(l)

dde(1)
...env(l)
erase(1G)
gdev(1G)

... hardcopy(1G)
... hpd(1G)
td(1G)

hashcheck: find spelling
external symbol

expression expr:

test: condition

display editor based on

edit: text editor (variant of

shell xdmc:

construct argument list(s) and
time at, batch:

time at, batch:

set environment for command
UNIX-to-UNIX system command
sleep: suspend

Permuted Index

erase, hardcopy, tekset, td: tekset(1G)
errors/hashmake, spellin, hashcheck(1)
errors/hashmake, spellin, hashmake(1)
errors/fhashmake, spellin, spell(1)
errors/hashmake, spellin, . .

esa: display address of ..
evaluate arguments as an .
evaluation command
ex/screen-oriented (visual)
ex for casual users)
ex: text editor
execute a DM co

d from the
execute commandxargs:

... xargs(l)

execute commands at a laterat(l)
execute c(ds at a later batch(1)
executionenv: env(l)
executionuux: uux(1C)
execution for an intervalccoccoeveeriernnnn. sleep(1)

pcat, unpack: compress and

pcat, unpack: compress and

pcat, unpack: compress and
expression

expr: evaluate arguments as an

regcmp: regular

a pattern using full regular

commands and

esa: display address of

cat

factors of a number
factor:
factor: obtain the prime
true,
true,
fst: print
col: filter reverse line
character string
robots:
copy the current display to a
or modify a device descriptor
crontab: user crontab
fields of each line of a
dd: convert and copy a
a delta (change) to an SCCS
selected parts of an object
edit magtape descriptor
get: get a version of an SCCS
listing from a common object
change the format of a text
name list of common object
or subsequent lines of one
prs: print an SCCS
index a magnetic media backup
remove a delta from an SCCS
two versions of an SCCS
from a common object
checksum and block count of a
deliver the last part of a
and modification times of a
undo a previous get of an SCCS
report repeated lines in a
val: validate SCCS
create a magnetic media backup
tar: tape
cpio: copy
mcs: manipulate the object
diff: differential
diff3: 3-way differential
rcp: remote
public UNIX-to-UNIX system
public UNIX-to-UNIX system

sact: print current SCCS

expand filespack, pack(l)
expand filespack,ccocooevvreerrcuriennnneene.. peat(l)
expand filespack, unpack(1)
expr: evaluate argi as an expr(l)
expression expr(1)

expression compile
expressions/search a file for ..
extensions/Domain/OS-specific ...
external symbol
f1 concatenate and print files .
£77: Fortran 77 compiler
factor: factoring program
factor: obtain the prime
factoring program ...
factors of a number ..
false: provide truth values ..
false: provide truth values ..
fault status information
feeds
fgrep: search a file fora
fight off villainous robots ...
filecpscr:
filecrddf: create, display,

regcmp(1)

fgrep(1)
robots(6)
cpscr(l)
crddf(1)

file crontab(1)
filecut: cut out selectedceverveeeeruererrennne cut(l)

file dd(1)
filedelta: make delta(1)
filedump: dump dump(1)
fileedmtdesc: edmtdesc(l)
file get(l)
filelist: produce C SOUrCeccoeevervcvcnenne list(1)
filenewform: newform(1)
filenm: print nm(1)
file/lines of several filesccccoovevennirivcnenae paste(1)
file prs(1)

filerbak: restore or
filermdel:
filesccsdiff: compare
file/line number information ..

tbak(1)
rmdel(1)
scesdiff(1)
.. strip(1)

filesum: print sum(1)
filetail: tail(1)
filetouch: update acCessccoeeeuerveincnnnas touch(1)
fileunget: unget(1)
fileuniq: uniq(1)
file val(1)
filewbak: wbak(1)
file archiver tar(1)
file archives in and out cpio(1)

file comment section mcs(1)

file comparator diff(1)

file comparison diff3(1)
file COPY -ovovererernriinrereneiernienes cp(1C)
file copyuuto, UUPICK:c.occcuveuvuivucirencuiinas uupick(1C)
file copyuuto, uupick: uuto(1C)

file: determine file type
file editing activity

Permuted Index xxiii

XXiv

fgrep: search a

grep: search a

regular/ egrep: search a
Aegis print/ prf: queue a
/unstr: create a random access
fencode/decode a binary
/encode/decode a binary
chsh, passwd: change password
chsh, passwd: change password
chsh, passwd: change password
split: splita

pg:

bfs: big

fip: ARPANET

tftp: trivial

file: determine

umask: set

create and administer SCCS
cat f1 concatenate and print
cmp: compare two

lines common to two sorted
cp: copy

find: find

split FORTRAN or ratfor
link editor for common object
mv: move

unpack: compress and expand
unpack: compress and expand
pr: print

in bytes of common object
sort: sort and/or merge
unpack: compress and expand

what: identify SCCS fil

rm, rmdir; remove

rm, rmdir: remove

/merge same lines of several
iso: convert

iso: convert

iso: convert

iso: convert

iso: convert

iso: convert

iso: convert

greek: select terminal

nl: line numbering

pg: file perusal

col:

graphical device routines and
graphical device routines and
graphical device routines and
graphical device routines and
graphical device routines and
graphical device routines and
tplot: graphics

find:

Permuted Index

file for a character Stringcccoevevevcuenns fgrep(1)

file for a pattern grep(1)

file for a pattern using full egrep(l)

file for printing by Domain/OS pri(1)

file for storing strings strfile(6)

file for transmission via mail . .. uudecode(1C)
file for transmission via mail .
file informationchfn, ...
file informationchtn,
file informationchfn, ...
file into pieces
file perusal filter for CRTs .
file scanner
file transfer program ...
file transfer protocol ...

file type ..
file-creation mode maskccveveveeerierenenan umask(1)
filesadmin: admin(1)
files cat(1)
files cmp(l)
filescomm - select Of rejectccvvvverecunenee comm(1)
files cp(l)
files find(1)
filesfsplit: fsplit(1)
filesld: 1d(1)
files mv(l)
filespack, pcat, pack(l)
filespack, pcat, peat(l)
files pr(1)
files/print SECtion SIZescccueunemrveeeinecs size(l)
files sort(1)
filespack, pcat, unpack(1)
es what(1)

files or directories ...
files or directories
files or subsequent lines of/

files to ISO format french_to_iso(1)
files to ISO format german_to_iso(1)
files to ISO format .. iso(1)

files to ISO format ... nor.dan_to_iso(1)
files to ISO format dish_to_iso(1)
files to ISO format ... swiss_to_iso(1)
files to ISO format ... uk_to_iso(1)
filter greek(1)

filter nl(1)

filter for CRTs pe(l)

filter reverse line feeds col(1)
filters/hardcopy, tekset, td. .. erase(1G)
filters/hardcopy, tekset, td: .. gdev(1G)
filters/hardcopy, tekset, td: .. hardcopy(1G)
filters/hardcopy, tekset, td: .. hpd(1G)
filters/hardcopy, tekset, td: . td(1G)
filters/hardcopy, tekset, td: tekset(1G)

filters tplot(1G)

find files find(1)

find: find files find(1)

object library lorder:

hashmake, spellin, hashcheck:

hashmake, spellin, hashcheck:

hashmake, spellin, hashcheck:

hashmake, spellin, hashcheck:
lookup program

fish: play Go

tee: pipe

dandruff
cflow: generate C
edfont: edit a character
characters within a
format cvt_font: convert
rwmt: read/write
fonts from pre-SR 10 to SR10
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
iso: convert files to ISO
OBJ format modules to COFF
modules obj2coff: convert OBJ
newform: change the
between SR9.x and SR10
77:
ratfor: rational
fsplit: split

hopefully interesting, adage
list: produce C source listing
/and line number information
rmdel: remove a delta
cvt_font: convert fonts
xdmc: execute a DM command
subsystem sccs:

ratfor files

information

program
/a file for a pattern using
300, 300s: handle special
terminals hp: handle special
terminal 450: handle special
a tropical adventure

a multi-player multi-terminal
Mastermind guessing
monop: Monopoly

moo: guessing

puzzle: puzzle

snake, snscore: display chase
trek: trekkie

worm: play the growing worm g

cfscores: the solitaire card
cribbage: the card
computer version of the

find ordering relation for an ..

find spelling errorsspell, ... hashcheck(1)
find spelling errorsspell, hashmake(1)
find spelling errorsspell, spell(1)

find spelling errorsspell, spellin(1)
finger: user infOrmMationecceeveecvevceenne finger(1)
Fish fish(6)

fish: play Go Fish fish(6)

fitting
flake: induce terminal .
flowgraph
font
fonttr_font: transliterate
fonts from pre-SR10 to SR10
foreign magtapes
formatcvt_font: convert .
formatcceccvvvuenerincnnne

format ... german_to_iso
format iso(1)

FOIMAL .ovivenieieeiete et nor.dan_to_iso
format swedish_to_iso
format swiss_to_iso(1
format uk_to_iso(1)
format modules/convert

obj2coff(1)
format modules to COFF format obj
format of a text file
formats/convert registry .
Fortran 77 compiler
FORTRAN dialect
FORTRAN or ratfor files
fortune: print a random,
from a common object file
from a common object file .
from an SCCSfile
from pre-SR10 to SR10 format ...
trom the shell ...
front end for the SCCS
fsplit: split FORTRAN or ..
fst: print fault status
ftp: ARPANET file transfer
full regular expressions
functions of DASI 300 and 300s/ .
functions of Hewlett-Packard ...
functions of the DASI 450
gamebattlestar: .
gamehunt:
gamemastermind:

.. fsplit(1)
fortune(6)
list(1)

.. strip(1)

.. rmdel(1)
cvt_font(1)
xdmc(1)
sces(l)

AME ecrecrenna

game ...

game puzzle(6)

game ... snake(6)

BAME .ottt s trek(6)
ame worm(6)

game canfieldcanfield,c........... canfield(6)

game cribbage .. cribbage(6)

game hangmanhangman: ... hangman(6)

Permuted Index xxv

XXVi

backgammon: the
btigammon: the
teachgammon: teach the
bj: the
boggle: play the
craps: the
wump: the
domain: Domain/OS-specific
intro: introduction to
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
maze:
cflow:
cross-reference cxref:
lexical tasks lex:
Domain/Dialogue-based moire
random: random number
get:
file
logname:
unget: undo a previous
tty:

options getopts,

options getopts,
command options
command options

graph: draw a

graphics: access

gutil:

/network useful with

Jerase, hardcopy, tekset, td:

/erase, hardcopy, tekset, td:

[erase, hardcopy, tekset, td:

ferase, hardcopy, tekset, td:

ferase, hardcopy, tekset, td:

ferase, hardcopy, tekset, td:

dspst: display process status
numeric commands

tplot:

pattern
chown, chgrp: change owner or
chown, chgrp: change owner or
newgrp: log in to a new
id: print user and
update, and regenerate
vine:
worm: play the
btihangman:
mastermind: Mastermind

Permuted Index

game of backgammon back on(6)
game of backgammon btlg on(6)
game of back; n teact n(6)
game of blackjack ... j

game of boggle .

game of craps craps(6)

game of hunt-the-wumpusccoccoevvveeenes wump(6)

games domain(6)
games intro(6)

gdev: hpd, erase, hardcopy,c.ccocceeuceee... €1ase(1G)

gdev: hpd, erase, hardcopy, ..

gdev(1G)
gdev: hpd, erase, hardcopy, .. .
gdev: hpd, erase, hardcopy, ..
gdev: hpd, erase, hardcopy, ..
gdev: hpd, erase, hardcopy,
generate a maze
generate C flowgraph ..
generate C program ...
generate programs for simple ...
generatordmoire:
generator
get a version of an SCCS file
get: get a version of an SCCS ...
get login name
get of an SCCS file
get the name of the terminal .
getopt: parse command options

getoptcvt: parse commandoevevenenenee getoptevi(l)
getoptcvt: parse c¢ d getopts(1)
getopts, getoptcvt: parse ... getoptcvt(l)
getopts, getoptcvt: parse getopts(1)
graph graph(1G)

graph: draw a graph
graphic and numeric commands
graphic utilities

graph(1G)
.. graphics(1G)
.. gutil(1G)

graphical commands ... stat(1G)
graphical device routines and/ ... erase(1G)
graphical device routines and/ gdev(1G)

graphical device routines and/ ..
graphical device routines and/ ..
graphical device routines and/ ..
graphical device routines and/
graphically
graphics: access graphic and ...
graphics filters
greek: select terminal filter
grep: search a file for a
group

.. hardcopy(1G)
. hpd(1G)

. td(1G)
tekset(1G)
dspst(1)

ve... graphics(1G)

group chown(l)
group newgrp(l)
group IDs and namesoceviieiinninenn id(1)
groups of programs/maintain, make(1)
grow vines vine(6)

growing worm game ...
guess the word
g ing game

.. worm(6)
btlhangman(6)
mastermind(6)

moo:

guessing game moo(6)

gutil: graphic utilities gutil(1G)
DASI 300 and 300s/ 300, 300s: handle special functions of . .300(1)
Hewlett-Packard terminals hp: handle special functions of . .hp(1)
the DASI 450 terminal 450: handle special functions of 450(1)
computer version of the game hangmanhangman: hang 6)
the game hangman hangman: computer version of hangman(6)
nohup: run a c d i to h ps and quits nohup(1)

In: create a hard or soft link In(l)
graphical/ gdev: hpd, erase, hardcopy, tekset, td: .. . erase(1G)
graphical/ gdev: hpd, erase, hardcopy, tekset, td: . gdev(1G)
graphical/ gdev: hpd, erase, hardcopy, tekset, td . hardcopy(1G)
graphical/ gdev: hpd, erase, hardcopy, tekset, td. . hpd(1G)
graphical/ gdev: hpd, erase, hardcopy, tekset, td. . td(1G)
graphical/ gdev: hpd, erase, hardcopy, tekset, td: .. . tekset(1G)

spell, hashmake, spellin, hashcheck: find spelling/ hashcheck(1)
spell, hashmake, spellin, hashcheck: find spelling/ hashmake(1)
spell, hashmake, spellin, hashcheck: find spelling/ spell(ly
spell, hashmake, spellin, hashcheck: find spelling/ ... spellin(1)
find spelling errors spell, hashmake, spellin, hashcheck: . hashcheck(1)
find spelling errors spell, hashmake, spellin, hashcheck: . hashmake(1)
find spelling errors spell, hashmake, spellin, hashcheck: . spell(1)
find spelling errors spell, hashmake, spellin, hashcheck: spellin(1)
help: ask for SCCS help help(1)
help: ask for SCCS helpcoeueiurnrcennnce help(1)
handle special functions of Hewlett-Packard terminalshp: hp(1)
hpc: program counter histogram hpc(1)
fortune: print a random, hopefully i ing, adage fortune(6)
ruptime: show host status of local machinescccce..... ruptime(1C)
or print identifier of current host sy hostid: set hostid(1)
set or print name of current host sy h hc 1)
identifier of current host/ hostid: set or print ... hostid(1)
current host system hostname: set or print name of . hostname(1)
of Hewlett-Packard terminals hp: handle special functions hp(1)
hpc: program counter histogram . hpce(1)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . erase(1G)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . gdev(1G)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . hardcopy(1G)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . hpd(1G)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . td(1G)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, . tekset(1G)
multi-terminal game hunt: a multi-player ... hunt(6)
wump: the game of hunt-the-wumpus wump(6)
set, or shared memory id/a ge queue, phore ipcrm(1)
and names id: print user and group IDs ... id(1)
system hostid: set or print identifier of current host .. . hostid(1)
what: identify SCCS files ... what(1)
id: print user and group IDs and names id(1)
nohup: run a co d i to hangups and quits nohup(1)
ptx: permuted index px(1)
file rbak: restore or index a magnetic media backup ... tbak(1)
flake: induce terminal dandruff flake(6)
STREAMS/ mksinit: create initialization code for mksinit(1)
terminfo database tput: initialize a terminal or query . tput(1)
library inlib: install a user-supplied . inlib(1)
uustat: uucp status inquiry and job control ... uustat(1C)

Permuted Index xxvii

XXviii

inty:

intm

library inlib:

Lib: List

Ity: list

system mailx:

print a random, hopefully
bgcolor: make

protocol telnet: user
service whois: DARPA
spline:

characters asa:
facilities/ ipcs: report
suspend execution for an

commands

intro:
intro:

semaphore set, or shared/
communication facilities/
multi-user wooden ships and
format
format
format
format
format
format
format
convert files to
convert files to
convert files to
convert files to
convert files to
iso: convert files to
iso: convert files to
news: print news
operator
characteristics
kbm: set/display

iso:
iso:
iso:
iso:
iso:

quiz: test your
language ksh: the

programming language
scanning and processing
arbitrary-precision arithmetic
Korn shell command programming
Shell (command programming
Shell (command programming
cpp: the C

the address space
libraries Ibr2ar: convert

to SR10 archive libraries

object files

Permuted Index

install a new type inty(1)
install a type manager intm(1)
install a user-supplied inlib(1)
installed libraries 1lib(1)
installed types

interactive message processing
interesting, adagefortune:
interesting background colors
interface to the TELNET ...
Internet username directory
interpolate smooth curve
interpret ASA carriage control ...

inter-process cc ication ipes(1)
intervalsleep sleep(1)
intm install a type manager intm(1)
intro: introduction to intro(1)
intro: introduction to games intro(6)
introduction to cc d intro(1)
introduction to amesceveeereerunnenees intro(6)
inty: install 2 new typecooveemieenennnnn. inty(1)
ipcrm: remove a ge queue, ipcrm(1)
ipCS: TepOIt iNtEr-ProCeSSovveveerecrererrenennes ipes(1)
iron mensail: sail(6)

convert files to ISO .
convert files to ISO .

iso:
iso:

.. french_to_iso(1)
german_to_iso(1)

iso: convert files to ISO . iso(1l)

iso: convert files to ISO . .. nor.dan_to_iso(1)
iso: convert files to ISO . .. swedish_to_iso(1)
iso: convert files to ISO . .. swiss_to_iso(1)
iso: convert files to ISO .. uk_to_iso(1)

ISO format french_to_iso(1)
ISO format german_to_iso(1)
ISO formatcceeveveereereeieeeiee e ennns iso(1)

ISO format ... nor.dan_to_iso(1)
ISO format swedish_to_iso(1)
ISO format swiss_to_iso(1)
ISO format uk_to_iso(1)
items news(1l)

join: relational database
kbm: set/display keyboard .
keyboard characteristics
kill: terminate a process
knowledge
Kom shell command programming
ksh: the Komn shell command
lang k: pattern
languagebc: .
1 ksh: the
language)/Bourne
language)/Boume
language preprocessor ...
las: list objects mapped into ..
Ibr libraries to SR10 archive .
Ibr2ar: convert lbr libraries
lcm: load a color map
1d: link editor for common

Ibr2ar(l)
.. lem(1)
- 1d(1)

simple lexical tasks
generate programs for simple
Ibr libraries to SR10 archive
Lib: list installed
libraries lbr2ar: convert lbr
inlib: install a user-supplied
relation for an object
portable/ ar: archive and
line: read one

col: filter reverse
strip: strip symbol and

nl<

out selected fields of each
send/cancel requests to an LP
send/cancel requests to an LP

files comm - select or reject
uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same
In: create a hard or soft

files Id:

chacl: change access control
cpacl: copy access control
Isacl: list access control
Isacl:
configure STREAMS/ trconf:
Is:
based access control
1lib:
Ity:
1lkob:
address space las:
nm: print name

from a common object file
file list: produce C source
xargs: construct argument

lem:
llkob: list
make entries in the system
newgrp:
rwho: who’s
system log
rlogin: remote
logname: get
start_sh: start a

finger: user information

for an object library
nice: run a command at
/pathnames between upper and

... lex(1)
lex(1)
... Ibr2ar(1)

lex: generate programs for ..
lexical taskslex:
librarieslbr2ar: convert ...

libraries .. 1lib(1)
libraries to SR10 archiveccccoevevervennene. Ibr2ar(1)
TIDFAIY oo inlib(1)

librarylorder: find ordering
library maintainer for
line ...
line feeds
line number information from a/ ..
line numbering filter
line of a filecut: cut ..
line printerlp, cancel:
line printerlp, cancel:
line: read one line .
lines common to two sorted ...
lines in a file
lines of one file/same lines
lines of several files or
link
link editor for common object
lint: a C program checker

TSt oot .. chacl(1)
list cpacl(1)
list Isacl(1)
list access control list Isacl(1)
list active S or trconf(1)
list contents of directory L As()

list editor/Domain/Dialog dbacl(1)
list installed libraries ... lib(1)

list installed types .
list locked objects ...
list objects mapped into the
list of common object file ...
list: produce C source listing .
listing from a common object
list(s) and execute command .
1lib: list installed libraries ...
1lkob: list locked objects .
In: create a hard or soft link ...
load a color map

locked objects

loglogger: logger(1)
log in to a new group ... newgrp(1)
logged in on local machines rwho(1C)
logger: make entries in the logger(1l)
login .. rlogin(1C)
login name logname(1)
log-in shell start_sh(1)
login: sign on login(1)
logname: get login name logname(1)
lookup program finger(1)
lorder: find ordering relationcc.c...t.. lorder(1)
low priority nice(l)
lowercase and preserve colons cvtname(1)

Permuted Index xxix

XXX

requests to an LP line/

requests to an LP line/
send/cancel requests to an
send/cancel requests to an
disable: enable/disable
disable: enable/disable
Ipstat: print

information

list

show host status of local
rwho: who’s logged in on local
mé4:
rbak: restore or index a
wbak: create a
program mt:
edmtdesc: edit
rwmt: read/write foreign
send mail to users or read
send mail to users or read
file for transmission via
file for transmission via
users or read mail

users or read mail
mail, mail: send
mail, mail: send

processing system
regenerate groups of/ make:
ar: archive and library
SCCS file delta:

mkapr:

mkapr:

mkdir:

logger:

colors bgcolor:

regenerate groups of programs
banner:

manual

intm install a type
dm: Display
comment section mcs:
mt: magnetic tape
man: print entries in this
Icm: load a color
las: list objects
umask: set file-creation mode
mastermind:

guessing game
maze: generate a

file comment section
bed: convert to antique
restore or index a magnetic
whbak: create a magnetic

Permuted Index

Ip, cancel: send/cancel
Ip, cancel: send/cancel .
LP line printerlp, cancel
LP line printerlp, cancel
LP printersenable,
LP printersenable,
LP status information ...
Ipstat: print LP status ...
Is: list contents of directory
Isacl: list access control ..
Ity: list installed types ..
m4: macro processor .
machinesruptime: ...
MACKINES ...oeviviiieeicircie s
Macro processor
magnetic media backup file ...
magnetic media backup file ...
magnetic tape manipulating
magtape descriptor file
magtapes
mailmail, rmail:
ilmail, rmail:
mail/encode/decode a binary
mail/encode/decode a binary
mail, rmail: send mail to ..
mail, rmail: send mail to ..
mail to users or read mail
mail to users or read mail ...
mailx: interactive
maintain, update, and
maintainer for portable/ ...
make a delta (change) to.an
make a problem report
make an Apollo product report ..
make directories ..
make entries in the system log
make interesting background .
make: maintain, update, and ..

Ipstat(1)
Ls(L)
.. Isacl(1)

make posters . banner(1)
man: print entries in thiscccccveiiinnns man(1)
manager intm(1)
Manager Commandsocoeeveeereureeunirenens dm(1)
manipulate the object file . .. mes(1)
manipulating program .mt(l)

manual man(1)

map lem(1)
mapped into the address spacecec..... las(1)

mask umask(1)
Mastermind guessing gameccceuens mastermind(6)
mastermind: Mastermindccccoevververenene mastermind(6)
maze

maze: generate a maze
mcs: manipulate the object ...
media
media backup filerbak: ..o rbak(1)
media backup file

melt:

semaphore set, or shared
sort: sort and/or

files or subsequent/ paste:

status code value to text
mailx: interactive

or shared/ ipcrm: remove a
mesg: permit or deny
modules on/ trmon: print
mille: play

report

code for STREAMS drivers and/
viewgraphs, and slides
viewgraphs, and slides
chmod: change
umask: set file-creation
touch: update access and
crddf: create, display, or
criyobj: create a type object
ts: display the
code for STREAMS drivers and
format modules to COFF format
or configure STREAMS trace
/messages collected by trace
obj2coff: convert OBJ format
dmoire: Domain/Dialogue-based

monop:

tpm: set/display touchpad and
mv:
program
game hunt: a
hunt: a multi-player
iron men sail:

viewgraphs, and slides mmt,
viewgraphs, and slides mmt,
nS: show
commands stat: statistical

a text file

news: print
priority
object file
create a process on a remote

rootnode: change the
hangups and quits

melt: melt the SCreencoueueucuevecevennecnns melt(6)

melt the screen melt(6)
memory id/a ge queue, ipcrm(1)
merge files sort(l)
merge same lines of several paste(l)
mesg: permit or deny messages mesg(1)
g ode: tr 1 stcode(1)
message processing system ... mailx(1)

message queue, semaphore set, ipcrm(1)
g mesg(1)
messages collected by tracecoccecucueee. trmon(1)
Mille Bournes mille(6)
mille: play Mille Bournes mille(6)
mkapr: make a problem report . mkapr(1)

mkapr: make an Apollo product
mkdir: make directories

mksinit: create initializationcecececunee mksimit(1)
mmt, mvt: typeset doc mmt(1)
mmt, mvt: typeset doc mvt(l)
mode chmod(1)
mode mask umask(1)

modification times of a file ...
modify a device descriptor/ ..
module for binding
module name and time stamp
modules/create initialization .
modulesobj2coff: convert OBJ .
modules/list active Streams ..
modules on active Streams ...

modules to COFF format modules ..

moire generator dmoire(6)
monop: Monopoly gameccueueuecnnnns monop(6)
Monopoly game monop(6)
moo: guessing game ... moo(6)
mouse characteristicscooeveeververrrenrennncs tpm(1)
move files mv(l)

mt: magnetic tape manipulating ..
multi-player multi-terminal
multi-terminal game
multi-user wooden ships and
mv: move files

mvt: typeset doc
mvt: typeset doc
network status
network useful with graphical ..
newform: change the format of
newgip: log in to a new group
news items
news: print news items
nice: run a c¢ d at low
nl: line numbering filter
nm: print name list of common

netstat(1)
stat(1G)
newform(1)
... newgrp(l)
news(1)

crp(l)

nodecrp:

node to which the root/cccecveeuecnecnnee rootnode(1)
nohup: run a co d i to nohup(1)
nS: show network Statuscccvcvveneecnnee netstat(1)

Permuted Index xxxi

XXXii

nl: line

number: convert Arabic

graphics: access graphic and

format/ obj2coff: convert
modules to COFF format/

dump selected parts of an

C source listing from a common

nm: print name list of common

information from a common

mcs: manipulate the

1d: link editor for common

sizes in bytes of common

find ordering relation for an

crtyobj: create a type

Ilkob: list locked

address space las: list

number factor:

od:

bldt: display time

join: relational database
getopt: parse command
getoptcvt: parse command
getoptcvt: parse command
stty: set the
object library lorder: find
chown, chgrp: change
chown, chgrp: change

and expand files

and expand files

and expand files
crpad: create a transcript
getopt:

getopts, getoptcvt:

getopts, getoptcvt:
information chfn, chsh,
information chfn, chsh,
information chfn, chsh,
chfn, chsh, passwd: change
chfn, chsh, passwd: change
chfn, chsh, passwd: change

several files or subsequent/
dirname: deliver portions of
dirname: deliver portions of
lowercase/ cvtname: convert
grep: search a file for a
processing language awk:
egrep: search a file for a
expand files pack,
expand files pack,
expand files pack,
mesg:
ptx:
pg: file

CRTs
split: split a file into

Permuted Index

numbering filter ...
numerals to English .
numeric commands
OBYJ format modules to COFF

obj2coff: convert OBJ format obj2coff(1)
object filedump: dump(1)
object filelist: producec.ccoovecunneeee.. list(1)
object file nm(l)

object file/and line number ...
object file comment section ...
object files ...
object files/print section .

.. strip(1)
mcs(1)
1d(1)
... size(l)

. lorder(1)

object librarylorder:

object module for binding crtyobj(1)
objects .. llkob(1)
objects mapped into the las(l)

obtain the prime factors of a ... factor(1)
octal dump od(l)

od: octal dump od(l)
operating system was builtcecceeuee. bldt(1)
operator join(1)
options getopt(1)
optionsgetopts, getoptcvt(l)
optionsgetopts, getopts(l)
options for a terminal stty(1)

. lorder(1)
... chgrp(1)
chown(1)
pack(l)

. peat(l)
unpack(1)
crpad(l)
getopt(1)

. getoptcvt(l)
. getopts(1)
. chfn(1)

. chsh(1)

. passwd(1)
. chfn(l)

. chsh(l)

. passwd(1)

ordering relation for an
owner or group
owner or group
pack, pcat, unpack: compress ...
pack, pcat, unpack: compress .
pack, pcat, unpack: compress ...
pad and window
parse command options ..
parse command options ..
parse cc d options .
passwd: change password file .
passwd: change password file .
passwd: change password file .
password file information ...
password file information ...
password file information ...

paste: merge same lines of paste(1)
path namesbasename, b (1)
path namesbasename,occeucvcvinuiinns dirname(1)
pathnames between upper and cvtname(1)
pattern .. . grep(l)
pattern scanning andcceevevrcrunceennnee.. AWK(L)
pattern using full regular/ egrep(l)
pcat, unpack: compress andc.ceeeinene pack(l)
pcat, unpack: cc and peat(1)
Ppcat, unpack: cc and unpack(1)
pemit or deny g mesg(l)

p d index

perusal filter for CRTs ...
pg: file perusal filter for ..
pieces

e PEX(L)
- pg(l)

-pg(l)

.... split(1)

tee:

fish:

mille:

boggle:

worm:

and library maintainer for
basename, dirname: deliver
basename, dirname: deliver
banner: make

cpp: the C language
upper and lowercase and
cvt_font: convert fonts from
unget: undo a

by Domain/OS Aegis print/
factor: obtain the
primes: print

btlfortune:
interesting, adage fortune:

of a file sum:

editing activity sact:

man:

fst:

cat f1 concatenate and

pr:

host system hostid: set or
banner:

Ipstat:

trace modules on/ trmon:
object file nm:

system hostname: set or
system uname:

news:

primes:

tb:

of common object files size:
printing by Domain/OS Aegis
names id:

banner: print large banner on
requests to an LP line
requests to an LP line
disable: enable/disable LP
disable: enable/disable LP
print/ prf: queue a file for
information strinfo:

nice: run a command at low
kill: terminate a

wait: await completion of
timex: time a command; report
cIp: create a

ps: report

dspst: display

pipe fitting tee(l)
play Go Fish ... fish(6)
play Mille Boumes ... mille(6)

play the game of boggle ..
play the growing worm game ..
portable archivesar: archive .
portions of path names ..

... boggle(6)

... worm(6)
ar(1)
basename(1)

portions of path names dimame(1)
posters banner(1)
pr: print files pr(l)
preprocessor cpp(l)

... cvtname(1)
cvt_font(1)
unget(1)
pri(1)

preserve colons/between
pre-SR10 to SR10 format
previous get of an SCCS file
prf: queue a file for printing .

prime factors of a number ... factor(1)
prime numbers primes(6)
primes: print prime numbers primes(6)
print a random c« t btifortune(6,
print a random, hopefull ... fortune(6)

: print an SCCS file ... prs(l)

: print and set the dateccoceveiiininiecnnans date(1)
print calend cal(l)
print checksum and block count ... sum(l)
print current SCCS file sact(1l)

print entries in this manual man(l)

print fault status information ... fst(1)
PNt fIES ...oovniiiii cat(1)
print files pr(1)
print identifier of currentccooeevivinn. hostid(1)

print large banner on printer ...
print LP status information ..
print messages collected by .
print name list of common ...
print name of current host
print name of current UNIX ...
print news items
print prime numbers
print process traceback .
print section sizes in bytes

... banner(6)
Ipstat(1)
trmon(1)
nm(1)
hostname(1;
... uname(1l)
news(1)

print spooler/a file for prf(1)
print user and group IDs and 1d(1)
printer banner(6)

printer/cancel: send/cancel ... cancel(1)

printer/cancel: send/cancel .. L Ip(l)
printersenable, .. disable(1)
printersenable, enable(1)
printing by Domain/OS Aegis . prf(1)

prints STREAMS-related ... strinfo(1)

priority nice(1)
process kill(1)
process wait(1)

process data and system/ ... timex(1)

process on a remote node ... crp(l)
process status ps(l)
process status graphically ... dspst(1)

Permuted Index xxxiii

awk: pattern scanning and
mailx: interactive message

a common object file list:
mkapr: make an Apollo

ksh: the Korn shell command
/Bourne Shell (command
/Bourne Shell (co d

user interface to the TELNET
tftp: trivial file transfer

tb: print process traceback tb(1)

processing 1 g awk(1)
Processing SYStemcovevereeeeevennenrenerennne mailx(1)

m4: macro processor m4(1)
produce C source listing fromccc........ List(1)
product report
prof: display profile datacoovuecuiinnns

prof: display profile data

progr ing language
programming language) ...
progr ing language)
protocoltelnet: .. telnet(1C)
protocol tftp(1C)

true, false: provide truth valuesc..cccoccveevnnnnee.... false(1)

true, false:

your screen into a scramble
puzzie:

tput: initialize a terminal or
Domain/OS Aegis print/ prf:
ipcrm: remove a message
command immune to hangups and

display
rain: animated
strfile, unstr: create a
btlfortune: print a
adage- fortune: print a
random:
generator
fsplit: split FORTRAN or
dialect
ratfor:
magnetic media backup file

rmail: send mail to users or

rmail: send mail to users or

line:

rwmt:

swapul:

ed,

ed,

to which the root directory
compile

make: maintain, update, and

SR10 formats cvtrgy: convert

regcmp:

file for a pattern using full

sorted files comm - select or

lorder: find ordering

join:

calendar:

XXxiv Permuted Index

provide truth values ... true(1)
prs: print an SCCS file

ps: report process status ...

ptx: p d index

puzzlescramble: tumn scramble(6)
puzzle game puzzle(6)
puzzle: puzzle game

pwd: working directory name ..

query terminfo database ...
queue a file for printing by
queue, semaphore set, or/ .
quitsnohup: run a
quiz: test your knowledge

rain: ted raindrops

raindrops display

random access file for storing/ccccccc..... strtile(6)
random cc ... bilfortune(6)
random, hopefully interesting, fortune(6)

... random(6)
... random(6)
fsplit(1)

random number generator
random: random number
ratfor files ... :

ratfor: rational FORTRAN ...
rational FORTRAN dialect
rbak: restore orindex a ..
rcp: remote file copy ..
read mailmail,
read mailmail,
read one line
read/write foreign magtapes
rearrange underlining
red: text editor
red: text editor
refers/change the node
regcmp: regular expression ..
regenerate groups of programs
registry between SR9.x and ..
regular expression compile ...
regular expressions/search a .
reject lines common to two
relation for an object library ...
relational database operator
reminder service

calendar(1)

rep:
rlogin:
Crp: create a process on a

file rmdel:

semaphore set, or/ ipcrm:
m, rmdir:

mm, mdir:

uniq: report

mkapr: make a problem
mkapr: make an Apollo product
communication/ ipcs:
timex: time a command;
ps:

file uniq:

Ip, cancel: send/cancel

Ip, cancel: send/cancel
media backup file rbak:
col: filter

Tevscr:

directories
directories
read mail mail,
read mail mail,
SCCSs file
directories m,
directories rm,
robots: fight off villainous
robots
/change the node to which the
which the root directory/
/Jtekset, td: graphical device
Jtekset, td: graphical device
/tekset, td: graphical device
/tekset, td: graphical device
Jtekset, td: graphical device
/tekset, td: graphical device

Boume Shell (command/ sh,
Boume Shell (command/ sh,
nice:
hangups and quits nohup:
local machines
machines
magtapes
editing activity
and iron men
bfs: big file
language awk: pattern
the delta commentary of an
comb: combine
make a delta (change) to an
get: get a version of an
prs: print an

remote file copy rcp(1C)
remote 10gin ... rlogin(1C)
remote node ..cp(l)
remote shell

remsh(1C)
remove a delta from an SCCS .
remove a ge queue,
remove files or directories ...
remove files or directories
repeated lines in a file

report ...
report
report inter-process
report process data and system/ ...
report process status
report repeated linesina ..
requests to an LP line printer
requests to an LP line printer
restore or index a magnetic
reverse line feeds
reverse screen
eVSCI: reverse screen ...
rlogin: remote login ...
rm, rmdir: remove files or .
rm, rmdir: remove files or .
rmail: send mail to users or
mmail: send mail to users or
mmdel: remove a delta from an
rmdir: remove files or
rmdir: remove files or ...
robots
robots: fight off villainous .
root directory refers
rootnode: change the node to
routines and filters
routines and filters

... gdev(1G)

routines and filters hardcopy(1C
routines and filters .. hpd(1G)
routines and filters .. td(1G)
routines and filters tekset(1G)
rS: remote shellcooveeeverevevereereeeaerenne remsh(1C)
rsh: the dard/restricted

rsh(1)

rsh: the standard/restricted
run a command at low priority ...
run a command i to

ruptime: show host status of
rwho: who’s logged in on local
rwmt: read/write foreign
sact: print current SCCS file

sail: multi-user wooden shipscccceeuue. sail(6)
scanner

scanning and processing

SCCS deltacdc: change

SCCS deltas

SCCS filedelta: delta(1)
SCCS file ... get(l)
SCCS file prs(l)

Permuted Index Xxxv

XXXVi

rmdel: remove a delta from an
compare two versions of an
undo a previous get of an
val: validate
sact: print current
admin: create and administer
what: identify

subsystem
help: ask for
sccs: front end for the

of an SCCS file
turn your screen into a

into a scramble puzzle

melt: melt the

TEVSCI: reverse

scrattr:

scramble: turn your

scrto: set/show

display editor based on/ vi:

program
string fgrep:
grep:
using full regular/ egrep:
the object file comment
common object/ size: print

to two sorted files comm -
greek:

of a file cut: cut out

file dump: dump

ipcrm: remove a message queue,

mail mail, mail:

mail mail, rmail:

line printer Ip, cancel:

line printer 1p, cancel:

/a message queue, semaphore
characteristics kbm:
characteristics tpm:

settings vsize:

scrto:

set/display VT100 window
standard/restricted Bourne/
standard/restricted Bourne/

queue, semaphore set, or

rS: remote

start_sh: start a log-in

execute a DM command from the

language ksh: the Kom

/the standard/restricted Bourne
/the standard/restricted Boumne

sail: multi-user wooden
program sdiff:

login:

lex: generate programs for

Permuted Index

SCCS file
SCCS filesccSdiff:coemvieernicerrercnreneneees
SCCS fileunget:
SCCS file
SCCS file editing activity
SCCS files
SCCS files
sccs: front end for the SCCS
SCCShelp
SCCS subsystem ...
scesdiff: compare two versions .
scramble puzzlescramble:
scramble: tum your screen .
scrattr: screen attributes ...
screen
screen
screen attributes
screen into a scramble puzzle
screen timeout
screen-oriented (visual)
scrto: set/show screen timeout
sdiff: side-by-side difference ..
search a file for a character .
search a file for a pattern .
search a file for a pattern .
sectionmcs: manipulate ...
section sizes in bytes of ...
sed: stream editor
select or reject lines common ...
select terminal filter
selected fields of each line ..
selected parts of an object ..
semaphore set, or shared/ ...
send mail to users orread ...
send mail to users or read ...
send/cancel requests to an LP .
send/cancel requests to an LP .

rmdel(1)
scesdiff(1)
unget(1)
val(l)
sact(1)
admin(1)
what(1)
sces(l)
help(1)

. sces(1)

. scesdiff(1)

. scramble(6)
. scramble(6)
. scrattr(1)

melt(6)

.. revscr(6)
.. scrattr(1)

scramble(6)
scrto(1)

e V(L)

. scrto(1)
. sdiff(1)
- fgrep(1)
- grep(1)
.egrep(l)
.mcs(1)
. size(l)

sed(1)

... comm(1)
. greek(1)

.cut(l)

. dump(1)

. ipcrm(1)

. mail(1)

. rmail(1)

. cancel(1)

-1p(1)

set, or shared memory id . . ipcrm(1)
set/display keyboard kbm(1)
set/display touchpad and mouse . tpm(1)
set/display VT100 window vsize(1)
set/show screen timeout ... scrto(1)
settingsvsize: vsize(1)
sh, rsh: the .. 1sh(l)

sh, rsh: the .. sh(1)
shared memory id/a messagecoeuerneen ipcrm(1)
shell . h(1C)
shell start_sh(1)
shellxdmc: xdmc(1)
shell command programming ... ksh(1)
Shell (command programming/ . . 1sh(1)
Shell (command programming/ . . sh(l)

ships and iron men ...
side-by-side difference ...
sign on
simple lexical tasks

. sail(6)

sdiff(1)
login(1)
lex(1)

bytes of common object files
object/ size: print section
an interval
documents, viewgraphs, and
documents, viewgraphs, and
spline: interpolate
game
snake,
In: create a hard or
canfield, cfscores: the
tsort: topological
sort:

or reject lines common to two
object file list: produce C
mapped into the address
hashcheck: find spelling/
hashcheck: find spelling/
hashcheck: find spelling/
hashcheck: find spelling/
spelling/ spell, hashmake,
spelling/ spell, hashmake,
spelling/ spell, hashmake,
P 1 al spell, hach ke
spellin, hashcheck: find
spellin, hashcheck: find
spellin, hashcheck: find
spellin, hashcheck: find
curve
csplit: context
split:
fsplit:
pieces
by Domain/OS Aegis print
/convert lbr libraries to
convert fonts from pre-SR10 to
registry between SR9.x and
/convert registry between
systype: display version
the module name and time
Shell (command/ sh, rsh: the
Shell (command/ sh, rsh: the
start_sh:

useful with graphical/
with graphical commands stat:
communication facilities
nS: show network
Pps: report process
message stcode: translate
dspst: display process
fst: print fault
Ipstat: print LP
uustat: uucp
ruptime: show host

............................. size(l)

... size(1)
. sleep(1)
. mmt(1)
... mvt(l)
spline(1G)
... snake(6)
... snake(6)

size: print section sizes in
sizes in bytes of common
sleep: suspend execution for .
slidesmmt, mvt: typeset
slidesmmt, mvt: typeset
smooth curve
snake, snscore: display chase ..
snscore: display chase game

soft link .. In(1)
solitaire card game canfield canfield(6)
sort tsort(1)

... sort(l)

. sort(1)
.comm(1l)
L list(1)

... las(1)

sort and/or merge files ...
sort: sort and/or merge files ..
sorted filescomm - select
source listing from a common .
spacelas: list objects

spell, hashmake, spellin, . hashcheck
spell, hashmake, spellin, hashmake(
spell, hashmake, spellin, spell(1)
spell, hashmake, spellin, spellin(1)

. hashcheck
. hashmake(
. spell(1)

spellin, hashcheck: find .
spellin, hashcheck: find ...
spellin, hashcheck: find .

spellin, hashcheck: fmd ... spellin(1)
spelling ermmu hmake hashcheck
spelling errors/hashmake, hashmake(
spelling errors/h.lshm.\ke spell(1)

spelling errors/hash . spellin(1)
spline: interpolate smooth spline(1G}
split csplit(1)

split a file into pieces
split FORTRAN or ratfor files .
split: split a file into
spooler/a file for printing ..
SR10 archive libraries ...
SR10 formatcvt_font:
SR10 formatscvtrgy: convert

... split(1)

. fsplit(1)
... split(1)
<. pri(l)

. Ibr2ar(1)

. cvt_font(1
. evtrgy(l)

SR9.x and SR10 formats ... cvtrgy(l)
stamp systype(l)
stampts: display ts(1)

standard/restricted Bourne
standard/restricted Bourne
start a log-in shell
start_sh: start a log-in shell
stat: statistical network
statistical network useful

status/report inter-process

. 1sh(1)
sh(1)

. start_sh(1
... start_sh(1
... stat(1G)

netstat(1)

status

status ps(1)
status code value to textoovoeerrreeerecenrennen stcode(1)
status graphically dspst(1)

.. fst(1)
Ipstat(1)
. uustat(1C

status information ...
status information ...
status inquiry and job control
status of local machines

value to text

stcode: translate status co

=

Permuted Index Xxxv

XXXViii

a random access file for
sed:
by trace modules on active
/create initialization code for
trace/ trconf: list active
active Streams or configure
strinfo: prints
random access file for/
STREAMS-related information
search a file for a character
random access file for storing
number information from a/
information from a/ strip:
terminal
another user
/same lines of several files or
sces: front end for the SCCS
count of a file
du:
su: become
interval sleep:

display address of external
information from/ strip: strip

tabs: set

a file
tar:
mt: magnetic

programs for simple lexical

/hpd, erase, hardcopy, tekset,
/hpd, erase, hardcopy, tekset,
/hpd, erase, hardcopy, tekset,
/hpd, erase, hardcopy. tekset,
/hpd, erase, hardcopy, tekset,
/hpd, erase, hardcopy, tekset,
teachgammon:
backgammon

gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
gdev: hpd, erase, hardcopy,
telnet: user interface to the
TELNET protocol
functions of the DASI 450
emt: emulate a dumb
stty: set the options for a
tabs: set tabs on a
tty: get the name of the

Permuted Index

storing strings/unstr: createceeeeveeeee. strfile(6)
stream editor sed(1)

St /i ges collected trmon(1)
STREAMS drivers and modules mksinit(1)
Streams or configure STREAMS trconf(1)
STREAMS trace modules/list trconf(1)

STREAMS-related information ..
strfile, unstr: create a
strinfo: prints
stringfgrep:
strings/unstr: create a
strip: strip symbol and line ..
strip symbol and line number .
stty: set the options fora
su: become super-user or .
subsequent lines of one file .
subsystem
sum: print checksum and block ..
summarize disk usage
super-user or another user
suspend execution for an

strinfo(1)
... strfile(6)
strinfo(1)
....... fgrep(l)
strfile(6)
strip(1)
strip(1)
stty(1)
su(l)

... paste(1)
sces(l)

... sum(l)
du(l)
su(l)

... sleep(1)

swapul: rearrange underlining swapul(1)
symbolesa: esa(l)
symbol and line number .. strip(1)

sync: forces write to disk
systype: display version stamp ...

sync(1)
... systype(1)

tabs on a terminal tabs(1)
tabs: set tabs on a terminal tabs(1)
tail: deliver the last part of tail(1)
tape file archiver tar(1)
tape manipulating program mt(1)
tar: tape file archiver ... tar(1)

taskslex: generate lex(1)

tb: print process tracebackcccoovirieinnns tb(1)

td: graphical device routines/ erase(1G)
td: graphical device routines/ .. gdev(1G)
td: graphical device routines/ ..
td: graphical device routines/ ..
td: graphical device routines/ ..
td: graphical device routines/

hpd(1G)
td(1G)
... tekset(1G)

hardcopy(1G)

teach the game of backgammon teachg
teachgammon: teach the game of teachgammon(6)
tee: pipe fitting tee(1)

tekset, td: graphical device/ ...
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
tekset, td: graphical device/
TELNET protocol

... erase(1G)
gdev(1G)

hpd(1G)
td(1G)
tekset(1G)
telnet(1C)

telnet: user interface to the . telnet(1C)
terminal450: handle special 450(1)
terminal emt(l)
terminal stty(1)
terminal tabs(1)
terminal tey(1)

hardcopy(1G)

animate worms on a display

flake: induce

vt100: VT100

greek: select

database tput: initialize a

functions of DASI 300 and 300s

functions of Hewlett-Packard

kill:

initialize a terminal or query
command

quiz:

ed, red:

ex:

ed, red:

casual users) edit:

change the format of a

translate status code value to
protocol

ttt:

execute commands at a later

execute commands at a later

time:

data and system/ timex:

built bldt: display

display the module name and

tz: set or display system
scrto: set/show screen
update access and modification
process data and system/
tsort:
modification times of a file
tpm: set/display

mouse characteristics
query terminfo database

Streams or configure STREAMS
/print messages collected by
tb: print process
crpad: create a
ftp: ARPANET file
tftp: trivial file
tr:
text message stcode:
within a font tr_font:
/a binary file for
/a binary file for
configure STREAMS trace/

trek:

characters within a font
tftp:

collected by trace modules on/
battlestar: a

values

terminalworms: worms(6)
terminal dandruff flake(6)
terminal emulator vtlO0(1)
terminal filter greek(l)
terminal or query terminfo ..o tput(1)
terminals/handle special 300(1)

terminalshp: handle special

terminate a process kill(l)
terminfo databasetput:cccococueneeis tput(l)
test: condition evaluation ... test(1)
test your knowledge quiz(6)
text editor ed(l)
text editor ex(l)
text editor red(1)
text editor (variant of ex forccceeevne. edit(1)
text filenewform: newform(l,
text gestcode: stcode(1)
tftp: trivial file transfer tftp(1C)
tic-tac-toe ttt(6)
timeat, batch: at(l)
timeat, batch: batch(1)
time a command time(1)
time a command; report process timex(1)
time operating system was bldt(1)
time stampts: ts(l)
time: time a commandcco.e.coeeverenrereenean time(1)
time zone tz(1)
timeout scrto(1)
times of a filetouch: touch(1)
timex: time a command; report . .. timex(1)
topological sort .. tsort(1)
touch: update access and touch(1)
touchpad and mouse/ tpm(1)
tplot: graphics filters tplot(1G)

tpm: set/display touchpad and
tput: initialize a terminal or
tr: translate characters
trace modules/list active .
trace modules on active/ ...
traceback
transcript pad and window
transfer program
transfer protocol
translate characters
translate status code value
transliterate characters
transmission via mail
T ission via mail
treonf: list active Streams or ...
trek: trekkie game
trekkie game
tr_font: transliterate
trivial file transfer protocol tftp(1C)
trmon: print g trmon(1)
tropical adventure game battlestar(
true, false: provide truth false(1)

uudecode(
uuencode(
.. treonf(1)
trek(6)
trek(6)
tr_font(1)

Permuted Index xxxi:

values true, false: provide truthccou......... true(l)
true, false: provide truth values false(1)
true, false: provide truth values true(1)
and time stamp ts: display the module name ... e ts(1)
tsort: topological sort .. tsort(1)
ttt: tic-tac-toe ttt(6)
terminal tty: get the name of the ... tty(1)
crty: create a new type crty(l)
dity: delete a type dity
file: determine file tYPecococvivniininniiiicc s file(1)
inty: install a NEW EYPE ..cccoevrruireciiiiceice e inty(1)
intm installa type manager . intm(1)
crtyobj: create a type object module for binding cityobj(1)
Ity: list installed types lty(1)

and slides mmt, mvt:
and slides mmt, mvt:

zone

mask

UNIX system
swapul: rearrange
file unget:

an SCCS file

a file

execution uux:

uucp, uulog, uuname:

uucp, uulog, uuname:

uucp, uulog, uuname:

uuto, uupick: public

uuto, uupick: public

files pack, pcat,

files pack, pcat,

files pack, pcat,

file for storing/ strfile,

times of a file touch:

of programs make: maintain,

[convert pathnames between

du: summarize disk

stat: statistical network

become super-user or another

write: write to another

id: print

crontab:

program finger:

protocol telnet:

whois: DARPA Intemet

(variant of ex for casual

wall: write to all

mail, rmail: send mail to

mail, rmail: send mail to

inlib: install a

/search a file for a pattern

gutil: graphic

control uustat:
UNIX-to-UNIX system copy
UNIX-to-UNIX system copy

xl Permuted Index

typeset documents, viewgraphs,
typeset documents, viewgraphs, .
tz: set or display system time ..
umask: set file-creation mode ..
uname: print name of current .
underlining

. mmt(l)

. mvt(l)

. tz(1)

. umask(1)
. uname(1)
. swapul(1)

undo a previous get of an SCCS . . unget(1)
unget: undo a previous get of ... unget(1)
uniq: report d lines in uniq(1)

units: conversion program ... units(1)

. uux(1C)
. uucp(1C)
. uulog(1C)
. uuname(1C)
. uupick(1C)
. uuto(IC)
. pack(l)
. peat(l)
. unpack(1)
. strfile(6)

UNIX-to-UNIX system command
UNIX-to-UNIX system copy
UNIX-to-UNIX system copy .
UNIX-to-UNIX system copy
UNIX-to-UNIX system file copy
UNIX-to-UNIX system file copy
unpack: compress and expand
unpack: compress and expand
unpack: compress and expand
unstr: create a random access .

update access and modification .. . touch(1)
update, and regenerate groups make(l)
upper and lowercase and/c.ccoviuenene cvtname(1)
usage du(l)
useful with graphical commands stat(1G)
usersu: su(l)

user write(1)
user and group IDs and names id(1)

user crontab file crontab(1)
user information lookup ... finger(1)

- telnet(1C)
" whois(1)
. edit(1)

user interface to the TELNET
username directory service ..
users)edit: text editor

USETS cuveneneenereerenseroressessansentensastsseerssssoneesecsene wall(1)
users or read mail mail(1)
users or read mail rmail(1)
user-supplied library ... inlib(1)
using full regular expressions ... egrep(l)
utilities gutil(1G)

. uustat(1C)
. uucp(1C)
... uulog(1C)

uucp status inquiry and job .
uucp, uulog, uuname: ..
uucp, uulog, uuname: ..

UNIX-to-UNIX system copy
encode/decode a binary file/
encode/decode a binary file/

system copy uucp,

system copy uucp,

system copy uucp,

copy uucp, uulog,

copy uucp, uulog,

copy uucp, uulog,

system file copy uuto,

system file copy uuto,
and job control
UNIX-to-UNIX system file copy
UNIX-to-UNIX system file copy
command execution

val:

stcode: translate status code
true, false: provide truth
true, false: provide truth
users) edit: text editor

ve:
get: geta
hangman: computer
systype: display
scesdiff: compare two

display editor based on ex
a binary file for transmission
a binary file for transmission
mmt, mvt: typeset documents,
mmt, mvt: typeset documents,
robots: fight off

vine: grow

on ex vi: screen-oriented
window settings

vt100:

vsize: set/display
process

backup file

who:

directory service
machines rwho:
create a transcript pad and
vsize: set/display VT100
sail: multi-user
cd: change
pwd:
worm: play the growing
game

uucp, uulog, uuname: ..
uuencode,uudecode: .
uuencode,uudecode: .
uulog, uuname: UNIX-to-UNIX
uulog, uuname: UNIX-to-UNIX ...
uulog, uuname: UNIX-to-UNIX ...
uuname: UNIX-to-UNIX system ..
uuname: UNIX-to-UNIX system ..
uuname: UNIX-to-UNIX system ..
uupick: public UNIX-to-UNIX ..
uupick: public UNIX-to-UNIX ..
uustat: uucp status inquiry ..
uuto, uupick: public ..
uuto, uupick: public
uux: UNIX-to-UNIX system
val: validate SCCS file .

... uuname(1C)
. uudecode(1C

. uuencode(1€

. uucp(1C)

. uulog(1C)

. uuname(1C)

. uucp(1C)

. uulog(1C)

. uuname(1C)

. uupick(1C)

. uuto(1C)

. uustat(1C)

. uupick(1C)

. uuto(1C)

. uux(1C)

val(l)

validate SCCS file val(l)
value to text g stcode(1)
values false(1)
values true(l)
(variant of ex for casualcccceuevrurvreenrnenns edit(1)

VC: VETSI0N CONLIOL ...ovveveeveerecreeerierereenenens ve(l)
version control ve(l)
version of an SCCSfilecceoeevreveiecnrennne get(l)
version of the game h an hangman(6)
version stamp systype(1)
versions of an SC e .. scesdiff(l)
vi: screen-oriented (visual) .. vi(l)

via mail/encode/decode ... uudecode(1t
via mail/encode/decode uuencode(1t
viewgraphs, and slides ... mmt(1)
viewgraphs, and slides ... mvt(1)
villainous robots robots(6)
VINE: GIOW VINES ..oovvoivisiienenininsiienienssssrens vine(6)
vines vine(6)
(visual) display editor based ... e V(L)
vsize: set/display VT100 vsize(1)
VT100 terminal lator vt100(1)
vt100: VT100 terminal emulator vt100(1)
VT100 window settings vsize(1)
wait: await completion of wait(1)
wall: write to all users wall(l)
whbak: create a magnetic media wbak(1)
wc: word count we(l)
what: identify SCCS files what(1)
who is on the system who(1)
who: who is on the system ... who(1)
whois: DARPA Intemet username whois(1)
who’s logged in on local who(1C)
windowcrpad: crpad(l)
window settings vsize(l)
wooden ships and iron men sail(6)
working directory cd(l)
working directory name pwd(l)
worm game worny(6)
worm: play the growing worm worm(6)

Permuted Index xli

xlii

Permuted Index

display terminal
worms: animate
wall:
write:
sync: forces

hunt-the-wumpus
list(s) and execute command
from the shell
compiler-compiler

tz: set or display system time

Wworms: animate worms on a ..
worms on a display terminal ..
write to all users
write to another user
write to disk
write: write to another user
wump: the game of
xargs: construct argument ..
xdmc: execute a DM command
yacc: yet another
zone

yacc(l)

tz(1)

INTRO(1) SysVv INTRO(1)

NAME

intro — introduction to commands

DESCRIPTION

This section describes publicly accessible commands for general utility. In addition,
some special commands for communication purposes are described. All commands are
listed in alphabetic order, and each is suffixed by ‘‘(1)’” to help identify its place in the
SysV Command Reference.

N.B.: Commands that relate to system maintenance, distinguished by (1M) in earlier
UNIX System documentation, are described in Managing SysV System Sofitware.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by the sys-
tem giving the cause for termination, and (in the case of ‘‘normal’’ termination) one
supplied by the program [see wait(2) and exit(2)]. The former byte is 0 for normal ter-
mination; the latter is customarily 0 for successful execution and non-zero to indicate
troubles such as erroneous parameters, or bad or inaccessible data. It is called variously

“‘exit code’’, “‘exit status’’, or ‘‘return code’’, and is described only where special con-
ventions are involved.

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings,and become confused
at encountering a null character (the string terminator) within a line.

SEE ALSO

Section 6 (for computer games), Getting Started with Domain/OS, and Using Your SysV
Environment.

Commands 1-1

DOMAIN(1) Domain/OS SysV DOMAIN(1)

NAME

domain — Domain/OS-specific commands and extensions

DESCRIPTION

While providing all of the significant capacity of System V Release 3, Domain/OS
SysV actually represents only a subset of the greater capacity of Domain/OS. Further-
more, Domain/OS SysV omits some features of System V that are irrelevant to
Apollo® workstations. The following paragraphs describe aspects that are visible to
the Domain/OS SysV user and summarize features of System V not implemented under
Domain/OS SysV.

Domain/OS Additions to SysV

Pages that describe the Domain/OS-specific commands are identified with the page
heading ‘‘Domain/OS SysV;”’ pages describing standard System V UNIX commands
are “‘SysV”’.

The /usr/apollo/bin Directory

All systems, even if they only have the Aegis environment, now have a /usr/apollo

directory. It contains certain Domain extensions to the UNIX environment. It also
includes C include files for Domain system calls, as well as other added-value files.

The /usr/apollo/bin directory contains Domain commands that apply to all three
environments or extend the UNIX environment. The following Domain/OS-specific
commands appear in /usr/apollo/bin:

bldt Displays information about the version of Domain/OS.

chacl Changes the entries in an object’s access control list (ACL).

cpacl Copies access control lists (ACLs).

cpscr Copies the current screen image, without clearing it, to the file you
specify.

crddf Creates, displays, or modifies a device descriptor file (DDF).

crp Creates a process on a remote node.

crpad Creates a transcript pad, copies a file (or standard input) into that

pad, and then opens a window into the pad.

crty Creates a new type. It creates an identifier for the new type, and
associates it with the supplied type name. New types are used to
identify a new kind of manager for streams.

crtyobj Creates an object module that contains a global symbol with the type
UID. This module is bound with type managers. The variable is
passed into calls to trait_$mgr_dcl to declare support for the

specified type.
cvt_font Converts SR font files to the new font format for SR10.

Commands

DOMAIN(1)

cvtname

cvtrgy

dbacl

dde

dity

dm
dspst

edfont
edmtdesc

emt

€sa

fst

hpc

intm

inty

kbm

las

Commands

Domain/OS SysV DOMAIN(1)

Converts SR9 pathnames between upper and lowercase and preserve
colons.

Allows the system administrator to generate an SR10 format registry
database from SR9.7 registry files, or generates SR9.7 registry files
with data from the SR10 registry.

Provides an interactive menu-based editor for manipulating Access
Control Lists (ACLs).

Allows you to load and debug programs written in any programming
language supported by the Domain/OS operating system, including
assembler.

Deletes a type and any installed type manager.
Contains a list of Display Manager commands.

Displays process statistics in a graphical, bar-chart fashion within the
current process window.

Allows you to create, edit and view character font files.

Allows you to create, list, and modify the magnetic tape descriptor
object.

Allows your node to emulate an ASCII terminal connected to another
computer. This asynchronous connection exists through a stream
opened on one of the node’s SIO lines. emt also permits ASCII file
transfer between your node and the remote host.

Displays the address of an external symbol in an installed library.
This command is primarily intended for system-level debugging.

Prints information about the most recent fault that occurred in the
process.

The hpc (histogram_program_counter), part of Domain/PAK
(Domain Performance Analysis Kit), looks at the performance of
programs at the PC level.

Installs a type manager for the type_name.
Installs a type from one node to another.

Converts files written with the overloaded 7-bit national fonts to the
International Standards Organization (ISO) 8-bit format. This
includes: french_to_iso, german_to_iso, nor.dan_to_iso,
swedish_to_iso, swiss_to_iso, and uk_to_iso

Allows you to set the characteristics for the keyboard.

Produces a list of objects mapped into the address space.

DOMAIN(1)

1-4

Ibr2ar

Icm
1lib

llkob

Isacl

Ity
mkapr
obj2coff

prf
rbak

rwmt

scrattr

scerto
stcode
th

tpm
tr_font

ts

tz

Domain/OS SysV DOMAIN(1)

Converts pre-SR10 lbr library files containing object modules in
OBJ format to SR10 ar library archive files containing object
modules in COFF format.

Loads a color map from a file that specifies a set of color map
entries.

Lists those libraries which have been installed in the current process
via the build-in inlib shell.

Lsts the locked objects resident on volumes mounted on this node,
and objects resident in other nodes that are locked by processes run-
ning locally.

Shows the access control list (ACL) associated with the files and
directories specified.

Lists the types currently installed on a volume.
Makes an Apollo product report.

Converts SR9.5 or later object format modules to SR10 COFF format
modules. Either individual modules, or complete bound programs
may be converted.

Queues a file for printing.

Restores objects from the backup input media written by wbak
(write_backup). The backup input media can be magnetic media, file
or standard input.

Reads tapes from non-Domain installations and writes tapes that can
be read by non-Domain installations. rwmt can read and write u nla-
beled tapes, as well as ANSI level 1-4 labeled tapes.

Lists the X and Y dimensions of the display in pixels.

Sets or displays the number of minutes the system waits before it
shuts off the display screen. It begins counting minutes after the last
input event or window configuration change.

Prints the text message associated with a hexadecimal status code.

Prints a process traceback, listing the name and current line number
of each routine on the call stack.

Allows you to define characteristics for the touchpad and mouse.
Allows you to change the order in which characters appear in fonts.

Displays the time stamp and module name stored in an object
module.

Sets the system time zone to a known time zone or to an offset from
Coordinate Universal Time (utc).

Commands

DOMAIN(1)

vsize

vt100

wbak

xdmc

Domain/OS SysV DOMAIN(1)

Allows you to set the dimensions of the VT100 emulator window
pane. This command is valid only from within the VT100 emulator
(which is invoked with the VT100 command); attempting to use it
directly from the shell causes an error.

Creates a window running the VT100 terminal emulator and starts up
a shell within the window.

Writes one or more objects to either a removable media, disk file
or standard output.

Allows you to invoke Display Manager commands from the com-
mand shell or from within a shell script.

Domain/OS SysV Extensions
' This section describes Apollo extensions to standard UNIX commands.

ar

cC

cp

csh

ksh

Commands

Domain/OS SysV ar builds a module name table and a long name table
in addition to the symbol table; these tables are stored in files that are
never mentioned or accessible. This makes ranlib obsolete.

cc is the Domain/OS SysV interface to the preprocessor (cpp), the
Domain C compiler, and the link editor (Id). The Domain/OS SysV cc
command provides some unique options; not all standard UNIX options
are available. The —A option identifies a unique set of Domain/OS exten-
sions to cc and Id.

The cp command includes a number of Domain/OS extensions. See
cp(1) for a complete description of these extensions.

limit —h resource maximum-use. You cannot use limit to set the stack
size, and the coredumpsize limit is always 0 in Domain/OS. path. The
default search path in Domain/OS SysV is (. /usr/ucb /bin /usr/bin
/usr/apollo/bin). However, this may vary from system to system. For the
super-user, the default search path is (/etc /bin /usr/bin /usr/apollo/bin),
which may also vary.

Domain/OS SysV includes support for the Korn shell and adds some
extensions to this shell. See ‘‘UNIX Shell Extensions’’, below for a
brief summary of the added features.

The Domain/OS SysV version of Id includes support for features that are
not available on System V Release 3. Domain/OS ld supports the follow-
ing extensions: static resource information records (.sri), module infor-
mation records (.mir), and control of global variable visibility. The —A
option identifies a unique set of Domain/OS SysV extensions to cc and
1d.

Symbolic links in Domain/OS are implemented as soft links. These are
identical in behavior, except that soft links to not have protections asso-
ciated with the links themselves.

DOMAIN(1)

login

lorder

mkdir

passwd

ps
ranlib

strip

tftp

Domain/OS SysV DOMAIN(1)

The login command is a merge of the System V and 4.3BSD login com-
mands. The —p argument causes the remainder of the environment to be
preserved, otherwise any previous environment is discarded.

Domain/OS login includes new security features for dial-up lines,
letc/d_users and /etc/d_passwd. /etc/d_users is simply a file containing
a list of users authorized to log in on this node. /etc/d_passwd is a file
containing lines which specify a user’s log-in shell, and the dial-in pass-
word for the specified shell as returned by crypt(3). If an entry for the
user’s log-in shell is not found in this file, the password for /bin/sh is
used.

The need for lorder has vanished on Domain/OS systems, since ar(l)
and ld(1) cooperate to create randomly accessed libraries.

If you specify —T with the —I option, it shows the Domain/OS “‘type”’ of
each file.

The mechanism for assigning the initial file ACL and initial directory
ACL for the directory created by the mkdir command has been changed.
The initial file ACL and initial directory ACL are now inherited from the
parent directory.

The —Ag option checks KGT (Known Global Table) to see if undefined
globals are defined in global libraries. If specified with the —u option,
nm will not print those undefined symbols that are defined in global
libraries.

On Domain/OS systems, the /etc/passwd file is a typed file, which is
automatically generated by the registry daemon. The registry administra-
tor can make the person information in the registry read-only, in which
case normal users cannot change the ‘‘Name’’ field.

The Domain/OS nodename option shows information about processes
running on the specified node.

ranlib is not necessary on Domain/OS SysV systems; however, it is pro-
vided as a no-op for compatibility.

The —Aa option strips all debugging information, including that needed
for traceback. The .blocks and .lines sections, if present, will be
removed. This option strips more information than the default strip
behavior, and is added for users who wish to remove all symbolic infor-
mation.

The Domain/OS SysV versions of tftp and tftpd(1M) are adaptations of
the MIT Project Athena implementations of the tftp protocol.
Domain/OS SysV tftp will interface with any RFC783 compliant imple-
mentation.

Commands

DOMAIN(1) Domain/OS SysV DOMAIN(1)

uucp Domain/OS SysV supports ‘‘HoneyDanBer’’ uucp for both the SysV
and SysV environments. (See ‘‘UUCP Support’’ below).

who The who command includes a number of Domain/OS extensions.

UNIX Shell Extensions
Domain/OS includes support for the additional shell built-in commmands inlib, root-
node, and ver.

rootnode causes / to refer to the node entry directory of //nodename instead of the
current node entry directory.

inlib installs a library at the current shell level; it remains installed until the shell that
installed it exits. The newly installed library will be used to resolve external references
of programs (and libraries) loaded after its installation.

ver changes, temporarily or permanently, the UNIX version of commands that are exe-
cuted by the shell. The command also displays the version in use.

csh and sh also include support for a new command line option, —Dname=value. This
option sets the parameter name to value, then passes it to the shell’s environment. This
option is useful for tailoring the environment of a shell invoked from a program that
isn’t a shell (such as the Display Manager).

ksh has also been extended to support editing commands in Display Manager pads. If
the value of the variable EDITOR ends in emacs, gmacs, or vi and the VISUAL is not
set, the corresponding option is turned on. This value should be unset for shells running
in Apollo transcript pads.

For Apollo transcript pads, the variable FCEDIT should be set to ’pad’. With dialup
lines or in VT100 windows, values like vi or emacs are useful.

The in-line editing options are not useful in Apollo transcript pads. The command input
pane associated with Transcript pads allows full command line editing. Setting
VISUAL or EDITOR in Apollo transcript pads causes the pad to flip in and out of raw
mode.

TCP/IP Support
At SR10, Domain/OS supports TCP/IP in the Aegis, BSD and SysV environments. One
version operates in all environments.

Commands 1-7

DOMAIN(1) Domain/OS SysV DOMAIN(1)

Unsupported Commands
The following commands from System V are not supported.
4014 bs ct
cw eqn ged
hpio ismpx jterm
jwin login mm
nroff sag sar
shl sysadm tbl
toc troff

At this revision nroff, troff, tbl, and associated text processing tools are bundled and
sold as a separate package for System V users.

SEE ALSO
intro(1), domain(1M), domain(7),
Using Your SysV Environment,
Managing SysV System Software.

1-8 Commands

300(1)

NAME

SysV 300(1)

300, 300s — handle special functions of DASI 300 and 300s terminals

SYNOPSIS

300[+12] [—n] [—=dtlc]
300s [+12 1 [—n] [—dt]c]

DESCRIPTION

The 300 command supports special functions and optimizes the use of the DASI 300
(GSI 300 or DTC 300) terminal; 300s performs the same functions for the DASI 300s
(GSI 300s or DTC 300s) terminal. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. In the following discussion of
the 300 command, it should be noted that unless your system contains the
DOCUMENTER’'S WORKBENCH Software, references to certain commands (e.g., nroff,
neqn, eqn,) will not work. It also attempts to draw Greek letters and other special sym-
bols. It permits convenient use of 12-pitch text. It reduces printing time S to 70%.
You can use the 300 command to print equations neatly, in the sequence:

OPTIONS
+12

—ds,l ¢

Commands

neqn file . . . | nroff | 300

Permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals normally
allow only two combinations: 10-pitch, 6 lines/inch, or 12-pitch, 8
lines/inch. To obtain the 12-pitch, 6 lines per inch combination, tum the
PITCH switch to 12, and use the +12 option.

Controls the size of half-line spacing. A half-line is, by default, equal to
4 vertical plot increments. Because each increment equals 1/48 of an
inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch line-
feed needs only 6. The first digit of n overrides the default value, thus
allowing for individual taste in the appearance of subscripts and super-
scripts. For example, nroff half-lines can be made to act as quarter-lines
by using —2. You can also obtain appropriate half-lines for 12-pitch, 8
lines/finch mode by using the option —3 alone, having set the PITCH
switch to 12-pitch.

controls delay factors. The default setting is —d3,90,30. DASI 300 ter-
minals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non-identical
characters. One null (delay) character is inserted in a line for every set
of ¢ tabs, and for every contiguous string of ¢ non-blank, non-tab charac-
ters. If a line is longer than / bytes, 1+(total length)/20 nulls are inserted
at the end of that line. Items can be omitted from the end of the list,
implying use of the default values. Also, a value of zero for ¢ (¢) results
in two null bytes per tab (character). The former may be needed for C
programs, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and the load

1-9

300(1)

NOTE

Sysv 300(1)

on a system, you may have to experiment with these values to get correct
output. The —d option exists only as a last resort for those few cases that
do not otherwise print properly. For example, you can print the file
/etc/passwd using —d3,30,5. The value —d0,1 is a good one to use for C
programs that have many levels of indentation.

You can use 300 with the nroff —s flag or .rd requests, when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of pressing
RETURN in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff =T300 files . . . and nroff files. . | 300
nroff —T300-12 files ... and nroff files.. | 300 +12

Using 300 can often be avoided unless special delays or options are required; in a few
cases, however, the additional movement optimization of 300 can produce better-
aligned output.

The neqn names of, and resulting output for, the Greek and special characters sup-
ported by 300 are shown in greek(5).

The delay control interacts heavily with the prevailing carriage return and line-feed
delays. The stty(1) modes nl0 cr2 or nl0 cr3 are recommended for most uses.

WARNING

BUGS

If your terminal has a PLOT switch, make sure it is turned ON before 300 is used.

Some special characters cannot be correctly printed in column 1 because the print head
cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a tendency to
slip when reversing direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

SEE ALSO

450(1), mesg(1), graph(1G), stty(1), tabs(1), tplot(1G).
greek(5) in the SysV Programmer’s Reference.

Commands

450(1)

NAME

SysV 450(1)

450 — handle special functions of the DASI 450 terminal

SYNOPSIS

450

DESCRIPTION

The 450 command supports special functions of, and optimizes the use of, the DASI 450
terminal, or any terminal that is functionally identical, such as the Diablo 1620 or
Xerox 1700. It converts half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts to draw Greek letters and other
special symbols in the same manner as 300(1). Use 450 to print equations neatly, in the
sequence:

neqn file ... | nroff | 450

Use 450 with the nroff —s flag or .rd requests when it is necessary to insert paper manu-
ally or change fonts in the middle of a document. Instead of RETURN in these cases,
you must use the line-feed key to get any response.

Frequently, you can eliminate using 450 in favor of one of the following:

nroff —T450 files ...
or
nroff —T450-12 files ...

Using 450 can thus often be avoided unless special delays or options are required; in a
few cases, however, the additional movement optimization of 450 can produce better-
aligned output.

neqn names of, and resulting output for, the Greek and special characters supported by
450 are shown in greek(5).

NOTE
Unless your system contains DOCUMENTER'S WORKBENCH Software, certain com-
mands (e.g., eqn, nroff, tbl) will not work.

WARNING
Make sure the PLOT switch on your terminal is ON before you use 450. The SPAC-
ING switch should be put in the desired position (either 10— or 12—pitch). In either
case, vertical spacing is 6 lines/inch, unless dynamically changed to 8 lines/inch by an
appropriate escape sequence.

BUGS

Some special characters cannot be correctly printed in column 1 because the print head
cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a tendency to
slip when reversing direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

Commands 1-11

450(1) SysV 450(1)

SEE ALSO
300(1), mesg(1), stty(1), tabs(1), graph(1G), tplot(1G).
eqn(l), nroff(1l), tbl(1) in the UNIX System V Documentor’s Workbench Reference
Manual.
greek(5) in the SysV Programmer’s Reference.

1-12 Commands

ADMIN(1) SysV ADMIN(1)

NAME

admin - create and administer SCCS files

SYNOPSIS

admin [-n] [~i[name]] [-rrel] [-tlname]] (—{flaglflag-vall] [-dflag(flag-vall]
[-alogin] [—elogin] [-m[mrlist]] [-y[comment]] [-h] [~z] files

DESCRIPTION

admin creates new SCCS files and changes parameters of existing ones. Options to
admin can appear in any order and must be preceded by a dash (-), and named files
(note that SCCS file names must begin with the characters s.). If a named file does not
exist, it is created, and its parameters are initialized according to the specified options.
Parameters not initialized by an option are assigned a default value. If a named file
does exist, parameters corresponding to specified options are changed, and other param-
eters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the pathname
does not begin with s.) and unreadable files are silently ignored. If a name of — is given,
the standard input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are silently
ignored.

OPTIONS

-n Indicates that a new SCCS file is to be created.

—ifname] The name of a file from which the text for a new SCCS file is to be taken.
The text constitutes the first delta of the file (see —r option for delta
numbering scheme). If i is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encoun-
tered. If this option is omitted, then the SCCS file is created empty.
Only one SCCS file can be created by an admin command on which the i
option is supplied. Using a single admin to create two or more SCCS
files requires that they be created empty (no —i option). Note that the —i
option implies the —n option.

—rrel The release into which the initial delta is inserted. This can only be used
if —i is also used. If —r is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by default initial del-
tas are named 1.1).

~t[name] The name of a file from which descriptive text for the SCCS file is to be
taken. If —t is used and admin is creating a new SCCS file (the —n
and/or —i options also used), the descriptive text file name must also be
supplied. In the case of existing SCCS files: (1) using —t without a file
name causes removal of descriptive text (if any) currently in the SCCS
file, and (2) using —t with a file name causes text (if any) in the named
file to replace the descriptive text (if any) currently in the SCCS file.

Commands 1-13

ADMIN(1)

1-14

SysV ADMIN(1)

—fflag Specifies a flag, and, possibly, a value for the flag, to be placed in the
SCCS file. You can use several —f’s on a single admin command line.
The allowable flags and their values are:

b

cceil

ffloor

dSID

i[str]

Vist

<list>

Allows use of —b on a get(1) command to create branch
deltas.

The highest release (i.e., ‘‘ceiling’’), a number greater
than O but less than or equal to 9999, which can be
retrieved by a get(1) command for editing. The default
value for an unspecified c flag is 9999.

The lowest release (i.e., ‘‘floor’’), a number greater than
0 but less than 9999, which can be retrieved by a get(1)
command for editing. The default value for an
unspecified f flag is 1.

The default delta number (SIDs+1) to be used by a get(1)
command.

Causes the "No id keywords (ge6)" message issued by
get(1) or delta(l) to be treated as a fatal error. In the
absence of this flag, the message is only a warning. The
message is issued if no SCCS identification keywords [see
get(1)] are found in the text retrieved or stored in the
SCCS file. If a value is supplied, the keywords must
exactly match the given string, however the string must
contain a keyword, and no embedded newlines.

Allows concurrent get(1) commands for editing on the
same SIDs+1 of an SCCS file. This allows multiple con-
current updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be made
(get —e against one of these ‘‘locked’’ releases fails). The
list has the following syntax:

1= <range> | <list> , <range>
<range>"::= la

The character a in the /ist is equivalent to specifying all
releases for the named SCCS file.

Causes delta(1) to create a ‘‘null’’ delta in each of those
releases (if any) being skipped when a delta is made in a
new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
‘‘anchor points’’ so that branch deltas may later be
created from them. The absence of this flag causes
skipped releases to be non-existent in the SCCS file,

Commands

ADMIN(1)

Commands

qtext

mmod

ttype

vpgm

—dflag

Wist

—alogin

—elogin

—m/[mrlist]

SysV ADMIN(1)

preventing branch deltas from being created from them
in the future.

User definable text substituted for all occurrences of the
%Q% keyword in SCCS file text retrieved by ge (1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by get(1l). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y % keyword in SCCS file text retrieved
by get(1).

Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number vali-
dity checking program [see delta(1)]. (If this flag is set
when creating an SCCS file, the m option must also be
used even if its value is null).

Causes removal (deletion) of the specified flag from an SCCS file.
The —d option can be specified only when processing existing
SCCS files. Several —d options can be supplied on a single admin
command. See the —f option for allowable flag names.

A list of releases to be ‘‘unlocked’’. See the —f oprion
for a description of the | flag and the syntax of a list.

A login name, or numerical UNIX system group ID, to be added to
the list of users which may make deltas (changes) to the SCCS file.
A group ID is equivalent to specifying all Jogin names common to
that group ID. Several a options can be used on a single admin
command line. As many Jogins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is
empty, anyone can add deltas. If login or group ID is preceded by
a ! they are to be denied permission to make deltas.

A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the SCCS file. Specify-
ing a group ID is equivalent to specifying all Jogin names common
to that group ID. You can use several —e’s on a single admin
command line.

The list of Modification Requests (MR) numbers is inserted into
the SCCS file as the reason for creating the initial delta in a manner
identical to delta(1). The v flag must be set and the MR numbers

1-15

ADMIN(1)

SysV ADMIN(1)

are validated if the v flag has a value (the name of an MR number
validation program). Diagnostics occur if the v flag is not set or
MR validation fails.

—y[comment] The comment text is inserted into the SCCS file as a comment for
the initial delta in a manner identical to that of delta(l). Omission
of the —y option results in a default comment line being inserted in
the form:

date and time created YY/MM /DD HH:MM:SS by login

The —y option is valid only if the —i and/or —n options are
specified (i.e., a new SCCS file is being created).

-h Causes admin to check the structure of the SCCS file [see
scesfile(5)], and to compare a newly computed check-sum (the
sum of all the characters in the SCCS file except those’in the first
line) with the check-sum that is stored in the first line of the SCCS
file. Appropriate error diagnostics are produced. This option inhi-
bits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when pro-
cessing existing files.

- The SCCS file check-sum is recomputed and stored in the first line
of the SCCS file (see —h, above).

Note that use of this option on a truly corrupted file can prevent
future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name. New
SCCS files are given mode 444 [see chmod(1)]. Write permission in the pertinent
directory is, of course, required to create a file. All writing done by admin is to a
temporary x-file, called x.file-name, [see get(1)], created with mode 444 if the
admin command is creating a new SCCS file, or with the same mode as the SCCS
file if it exists. After successful execution of admin, the SCCS file is removed (if
it exists), and the x-file is renamed with the name of the SCCS file. This ensures
that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCS files themselves be mode 444. The mode of the directories allows only the
owner to modify SCCS files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be
changed to 644 by the owner allowing use of ed(1). Care must be taken! The
edited file should always be processed by an admin —h to check for corruption
followed by an admin —z to generate a proper check-sum. Another admin —h is
recommended to ensure the SCCS file is valid.

Commands

ADMIN(1) SysV ADMIN(1)

admin also makes use of a transient lock file (called z.file-name), which is used
to prevent simultaneous updates to the SCCS file by different users. See get(1)
for further information.

FILES
g—file Existed before the execution of delta; removed after completion of
delta.
p—file Existed before the execution of delta; may exist after completion of
delta.
q—file Created during the execution of delta; removed after completion of
delta.
x—file Created during the execution of delta; renamed to SCCS file after com-
pletion of delta.
z—file Created during the execution of delta; removed during the execution of
delta.
d-file Created during the execution of delta; removed after completion of
delta.
/usr/bin/bdiff Program to compute differences between the ‘‘gotten’’ file and the g-
file.
DIAGNOSTICS
Use help(1) for explanations.
SEE ALSO

delta(1), get(1), prs(1), sccs(1), what(1), sccsfile(4).
ed(1), help(1) in the Using Your SysV Environment.

Commands 1-17

AR(1)

NAME

SysV AR(1)

ar — archive and library maintainer for portable archives

SYNOPSIS

ar key [posname] afile [name] . . .

DESCRIPTION

OPTION

ar maintains groups of files combined into a single archive file. Although its main use
is to create and update library files as used by the link editor, ar can be used for any
similar purpose. The magic string and the file headers used by ar consist of printable
ASCH characters. If an archive is composed of printable files, the entire archive is
printable.

When ar creates an archive, it produces headers in a format that is portable across all
machines. The portable archive format and structure is described in detail in ar(4).
The link editor uses the archive symbol table to effect multiple passes over libraries of
object files in an efficient manner. The link editor is further described in 1d(1).

ar creates and maintains an archive symbol table and module name table only when
there is at least one object file in the archive. The archive symbol table is in a specially
named file which is always the first file in the archive. This file is never mentioned or
accessible. Whenever ar creates or updates the contents of such an archive, it also
rebuilds the symbol table. Domain/OS SysV ar builds a module name table and a long
name table in addition to the symbol table; these tables are stored in files that are never
mentioned or accessible.

key is an optional dash (-) followed by one character from the drqtpmx set, optionally
concatenated with one of more characters from the vuaibcls set. posname is the name
of an optional positioning character. afile is the archive file.

A This option may or may not begin with a dash (=), and is used with the mxtd
keys to move, extract, list or delete by module name.

KEY CHARACTERS

d Deletes named files from the archive file.

r Replaces named files in the archive file. If the optional character u is used
with r, then only those files with dates of modification later than the archive
files are replaced. If an optional positioning character from the set abi is used,
then the posname argument must be present and specifies that new files are to
be placed after (a) or before (b or i) posname. Otherwise new files are placed
at the end.

q Quickly appends named files to the end of the archive file. Optional position-
ing characters are invalid. Do not check whether the added members are
already in the archive. Useful for avoiding quadratic behavior when creating a
large archive piece-by-piece. Unchecked, the file can grow exponentially up
to the second degree.

Commands

AR(1)

SysV AR(1)

Prints a table of contents of the archive file. If no names are given, table all
files. If names are given, table only those files named.

Prints named files in the archive.

Moves named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

Extracts named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

KEY ARGUMENTS

v

Gives a file-by-file description of the making of a new archive file from the old
archive and the constituent files. When used with t, give a long listing of all
information about the files. When used with x, precede each file with a name.

Creates afile and suppress the message produced by default when afile is
created.

Places temporary files in the local (current working) directory rather than in
the default temporary directory, TMPDIR.

Forces the regeneration of the archive symbol table even if ar(l) is not
invoked with a command that modifies the archive contents. Useful for restor-
ing the archive symbol table after the strip(1) command has been used on the
archive.

NOTES
If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

FILES
$TMPDIR/* Temporary files
$TMPDIR is usually /ust/tmp but can be redefined by setting the environment variable
TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

1d(1), lorder(1), strip(1), tmpnam(3S), a.out(4), ar(4) in the SysV Programmer’s Refer-

ence.

Commands

ASA(1) SysV ASA(1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that use ASA carriage control charac-
ters. It processes either the files whose names are given as arguments or the standard
input if no filenames are supplied. The first character of each line is assumed to be one
of the following control characters:

(Blank) Single newline before printing;
Double newline before printing;

New page before printing;

+ =~ o

Overprint previous line.

If a line begins with anything other than the above characters, asa automatically inter-
prets it as beginning with a * ’, and produces an appropriate diagnostic on the standard
error. It never prints the first character of a line, and it always forces the first line of
each input file to start on a new page.

SEE ALSO
ratfor (1).

1-20 Commands

AT(1) Sysv AT(1)
NAME
at, batch — execute commands at a later time
SYNOPSIS
at time [date] [+ increment]
at —rjob...
at -1 [job ...]
batch
DESCRIPTION
at and batch read commands from standard input to be executed at a later time. at
allows you to specify when the commands should be executed, while jobs queued with
batch execute when system load level permits.
Standard output and standard error output are mailed to you, unless you redirect them
elsewhere. Shell environment variables, current directory, umask, and ulimit are
retained when you execute either at or batch. Open file descriptors, traps, and priority
are lost.
You can use at if your name appears in the file /usr/lib/cron/at.allow. If that file does
not exist, the file /usr/lib/cron/at.deny determines whether or not you are allowed to
use at. If neither file exists, only root can submit a job. The allow/deny files consist of
one user name per line. These files can only be modified by the superuser.
batch submits a batch job. It is equivalent to the command at now with the exceptions
that batch goes into a differenct queue and responds earlier with error messages.
OPTIONS

The following options apply to at only:

[time] [+ increment]
Specify time when commands are to be executed. One- and two-digit numbers
indicate hours, four-digit numbers show hours and minutes. You may alter-
nately specify the time as two numbers separated by a colon, meaning
hour :minute. You can also append an am or pm suffix; otherwise the com-
mands assume a 24-hour clock. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

You can specify an optional date as either a month name followed by a day number
(and possibly a year number preceded by an optional comma), or a day of the week
(fully spelled or abbreviated to three characters). Two special ‘‘days’’, today and
tomorrow are recognized. If you have not provided a date, today is assumed if the
given hour is greater than the current hour and romorrow is assumed if it is less. If the
given month is less than the current month (and no year is given), next year is assumed.

The optional increment is a number suffixed by one of the following: minutes, hours,
days, weeks, months, or years. (The singular form is also accepted.)

Commands 1-21

AT(1)

SysV AT(1)

—-rjob Remove jobs previously scheduled with at.
-1 [job] Report all jobs (by job number) scheduled for the invoking user.

EXAMPLES :

FILES

at and batch read from standard input the commands to be executed at a later time.
sh(1) provides different ways of specifying standard input. Within your commands, it
may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
sort filename >outfile
<control-D> (hold down "CTRL" and press *D’)

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):
batch <<!

sort filename 2>&1 >outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by including
code similar to the following within the shell file:
echo "sh shellfile" | at 1900 thursday next week

Some examples of simple, yet valid at command lines are shown here:
at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

Jusr/lib/cron Main cron directory
/usr/lib/cron/at.allow List of allowed users
/usr/lib/cron/at.deny List of denied users
/usr/lib/cron/queue Scheduling information
lusr/spool/cron/atjobs Spool area

DIAGNOSTICS

Complains about various syntax errors and times out of range.

SEE ALSO

1-22

kill(1), mail(1), nice(1), ps(1), sh(1), sort(1).
cron(1M) in Managing SysV System Software.

Commands

AWK(1)

NAME

Sysv AWK(1)

awk — pattern scanning and processing language

SYNOPSIS

awk [=Fc 1[prog 1 [parameters] [files]

DESCRIPTION

awk scans each input file for lines that match any of a set of patterns specified in prog.
With each pattern in prog there can be an associated action that will be performed when
a line of a file matches the pattern. The set of patterns may appear literally as prog, or
in a file specified as —f file. The prog string should be enclosed in single quotes (°) to
protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name —
means the standard input. Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ...; $0 refers to the
entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a
sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric values
as appropriate, and are built using the operators +, —, *, /, %, and concatenation (indi-
cated by a blank). The C operators ++, —, +=, —=, *=, /=, and %= are also available
in expressions. Variables may be scalars, array elements (denoted x[i]) or fields. Vari-
ables are initialized to the null string. Array subscripts may be any string, not neces-
sarily numeric; this allows for a form of associative memory. String constants are
quoted (").

Commands 1-23

AWK(1) SysV AWK(1)

The print statement prints its arguments on the standard output (or on a file if >expr is
present), separated by the current output field separator, and terminated by the output
record separator. The printf statement formats its expression list according to the for-
mat [see printf(3S) in the SysV Programmer’s Reference].

The built-in function length returns the length of its argument taken as a string, or of
the whole line if no argument. There are also built-in functions exp, log, sqrt, and int.
The last truncates its argument to an integer; substr(s, m, n) returns the n-character
substring of s that begins at position m. The function sprintf(fmt, expr, expr, ...) for-
mats the expressions according to the printf(3S) format given by fimt and returns the
resulting string.

Patterns are arbitrary Boolean combinations (!, || , &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded by
slashes and are as in egrep (see grep(l)). Isolated regular expressions in a pattem
apply to the entire line. Regular expressions may also occur in relational expressions.
A pattern may consist of two patterns separated by a comma; in this case, the action is
performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where: relop is any of the six relational operators in C, and a matchop is either (for
contains) or ! (for does not contain). A conditional is an arithmetic expression, a rela-
tional expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with:
BEGIN{FS=c}
or by using the —Fc¢ option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name of
the current input file; OFS, the output field separator (default blank); ORS, the output
record separator (default new-line); and OFMT, the output format for numbers (default
% .6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72

1-24 Commands

AWK(1) SysV AWK(1)

Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=81}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; —i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }
command line: awk —f program n=5 input
BUGS

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string (" ") to it.

SEE ALSO
grep(1), sed(1).
lex(1), printf(3S) in the SysV Programmer’s Reference.

Commands 1-25

BANNER(1) SysV BANNER(1)

NAME
banner — make posters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on the stan-
dard output.

SEE ALSO
echo(1).

1-26 Commands

BASENAME(1) SysV BASENAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution
marks (‘ ¢) within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles the
named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out ‘basename $1 \.c’*

The following example sets the shell variable NAME to /usr/src/cmd:
NAME-="‘dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(1).

Commands 1-2

BATCH(1) SysV BATCH(1)

NAME

at, batch — execute commands at a later time

SYNOPSIS

at time [date] [+ increment]
at —rjob...
at -l [job ...]

batch

DESCRIPTION

at and batch read commands from standard input to be executed at a later time. at
allows you to specify when the commands should be executed, while jobs queued with
batch execute when system load level permits.

Standard output and standard error output are mailed to you, unless you redirect them
elsewhere. Shell environment variables, current directory, umask, and ulimit are
retained when you execute either at or batch. Open file descriptors, traps, and priority
are lost.

You can use at if your name appears in the file /usr/lib/cron/at.allow. If that file does
not exist, the file /usr/lib/cron/at.deny determines whether or not you are allowed to
use at. If neither file exists, only root can submit a job. The allow/deny files consist of
one user name per line. These files can only be modified by the superuser.

batch submits a batch job. It is equivalent to the command at now with the exceptions
that batch goes into a differenct queue and responds earlier with error messages.

OPTIONS

1-28

The following options apply to at only:

[time] [+ increment]
Specify time when commands are to be executed. One- and two-digit numbers
indicate hours, four-digit numbers show hours and minutes. You may alter-
nately specify the time as two numbers separated by a colon, meaning
hour :minute. You can also append an am or pm suffix; otherwise the com-
mands assume a 24-hour clock. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

You can specify an optional date as either a month name followed by a day number
(and possibly a year number preceded by an optional comma), or a day of the week
(fully spelled or abbreviated to three characters). Two special ‘‘days’’, foday and
tomorrow are recognized. If you have not provided a date, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is less. If the
given month is less than the current month (and no year is given), next year is assumed.

The optional increment is a number suffixed by one of the following: minutes, hours,
days, weeks , months, or years. (The singular form is also accepted.)

Commands

BATCH(1) SysV BATCH(1)

—rjob Remove jobs previously scheduled with at.
-1 [job 1 Report all jobs (by job number) scheduled for the invoking user.

EXAMPLES

at and batch read from standard input the commands to be executed at a later time.
sh(1) provides different ways of specifying standard input. Within your commands, it
may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
sort filename >outfile

CTRL/D

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):

batch <<!

sort filename 2>&1 >outfile | mail loginid

]

To have a job reschedule itself, invoke ar from within the shell procedure, by including
code similar to the following within the shell file:
echo "sh shellfile" | at 1900 thursday next week

Some examples of simple, yet valid at command lines are shown here:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday
FILES
/usr/lib/cron Main cron directory
/usr/lib/cron/at.allow List of allowed users
/usr/lib/cron/at.deny List of denied users
/usr/lib/cron/queue Scheduling information
/usr/spool/cron/atjobs Spool area
DIAGNOSTICS
Complains about various syntax errors and times out of range.
SEE ALSO

kill(1), mail(1), nice(1), ps(1), sh(1), sort(1).
cron(1M) in Managing SysV System Software.

Commands 1-2¢

BC(1) SysV BC(1)

NAME
be — arbitrary-precision arithmetic language

SYNOPSIS
be[—c][-11[file...]

DESCRIPTION
be is an interactive processor for a language that resembles C but provides unlimited
precision arithmetic. It takes input from any files given, then reads the standard input.
The be(1) utility is actually a preprocessor for dc(1), which it invokes automatically
unless the —c option is present. In this case the dc input is sent to the standard output
instead.

Tt value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on arithmetic operations in the
manner of dc(1). Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple variable simultane-
ously. All variables are global to the program. ‘‘Auto’’ variables are pushed down dur-
ing function calls. When using arrays as function arguments or defining them as
automatic variables, empty square brackets must follow the array name.

PROGRAM SYNTAX
The syntax for be programs is shown below; (L means letter a—z, E means expression,
S means statement).

Comments
Enclosed in /* and */

Names
Simple variables: L
Array elements: L [E]
The words ‘‘ibase’’, ‘‘obase’’, and ‘‘scale’’

Other Operands
Arbitrarily long numbers with optional sign and decimal point
(E)
sqrt (E)
length (E) Number of significant decimal digits
scale (E) Number of digits right of decimal point
L(E,..,E)

Operators
+ — * [% " (% is remainder; " is power)
++ — (Prefix and postfix; apply to names)
== <= >= !: < >
= =+ =— =X =/ =% =

1-30 Commands

BC(1)

SysV

Statements

E

{S;...;S}
if(E)S

while (E) S
for(E;E;E)S
null statement
break

quit

Function Definitions

define L(L,...,L){
autoL, ..., L
S;...S
return (E)

}

Functions in —1 Math Library

All function arguments are passed by value.

OPTIONS
-—c

-1
EXAMPLE

scale

s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent
j(n,x) Bessel function

Compile only. The output is send to the standard output.

BC(1)

Argument stands for the name of an arbitrary precision math library.

= 20

define e (x) {

Commands

auto a, b, ¢, i, s

a =1
b =1
s =1
for(i=1l; 1l==1; i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+cC

BC(1)

BUGS

FILES

Sysv BC(1)

defines a function to compute an approximate value of the exponential function
and

for(i=1; i<=10; i++) e (i)
prints approximate values of the exponential function of the first ten integers.

The be command does not yet recognize the logical operators, && and| | .
For statement must have all three expressions (E’s).
Quit is interpreted when read, not when executed.

lusr/lib/lib.b Mathematical library
Jusr/bin/dc Desk calculator proper

SEE ALSO

1-32

de(1).

Commands

BDIFF(1) SysV BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [—s]

DESCRIPTION
bdiff is used in a manner analogous to diff(1) to find which lines in two files must be
changed to bring the files into agreement. Its purpose is to allow processing of files
which are too large for diff.

OPTIONS
filel (file2) The name of a file to be used. If filel (file2) is —, the standard input is
read.

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too
large for diff, causing it to fail.

- Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff (1), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of each
file into n-line segments, and invokes diff upon corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the
segmenting of the files (that is, to make it look as if the files had been processed whole).
Note that because of the segmenting of the files, bdiff does not necessarily find a smal-
lest sufficient set of file differences.

FILES

DIAGNOSTICS
Use help(1) for explanations.

SEE ALSO
diff(1), help(1).

Commands 1-33

BFS(1) SysV BFS(1)

NAME
bfs — big file scanner

SYNOPSIS
bfs [—] name

DESCRIPTION

bfs is like ed(1) except that it is read-oniy and processes much larger files. Files can be
up to 1024K bytes and 32K lines, with up to 512 characters, including new-line, per line
(255 for 16-bit machines). bfs is usually more efficient than ed(1) for scanning a file,
since the file is not copied to a buffer. It is most useful for identifying sections of a
large file where csplit(1) can be used to divide it into more manageable pieces for edit-
ing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w command. The optional — suppresses printing of sizes. Input is prompted
with # if P and a carriage retum are typed, as in ed(1). Prompting can be turned off
again by inputting another P and carriage return. Note that messages are given in
response to errors if prompting is turned on.

All address expressions described under ed(l) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?: > indicates down-
ward search without wrap-around, and < indicates upward search without wrap-around.
There is a slight difference in mark names: only the letters a through z may be used,
and all 26 marks are remembered.

Thee, g, v, kK, p, q, W, =, ! and null commands operate as described under ed(1). Com-
mands such as —, +++—, +++=, —12, and +4p are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only prints the name of the file being
scanned; there is no remembered file name. The w command is independent of output
diversion, truncation, or crunching (see the xo, xt and x¢c commands, below). The fol-
lowing additional commands are available:
xf file
Further commands are taken from the named file. When an end-of-file is

reached, an interrupt signal is received or an error occurs, reading resumes
with the file containing the xf. The xf commands may be nested to a depth

of 10.
xn List the marks currently in use (marks are set by the k command).
xo [file]

Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666 (readable and writable by every-
one), unless your umask setting (see umask(1)) dictates otherwise. If file
is missing, output is diverted to the standard output. Note that each diver-
sion causes truncation or creation of the file.

1-34 Commands

BFS(1) SysV BFS(1)

: label
This positions a label in a command file. The labe!l is terminated by new-
line, and blanks between the : and the start of the label are ignored. This
command may also be used to insert comments into a command file, since
labels need not be referenced.

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:
1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made to /abel. This
command is the only one that does not issue an error message on bad
addresses, so it may be used to test whether addresses are bad before other
commands are executed. Note that the command

xb/"/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a
terminal. If it is read from a pipe only a downward jump is possible.

Xt number
Output from the p and null commands is truncated to at most number char-
acters. The initial number is 255.

xvldigit] [spaces] [value]
The variable name is the specified digit following the xv. The commands
xv5100 or xv5 100 both assign the value 100 to the variable 5. The com-
mand xv61,100p assigns the value 1,100p to the variable 6. To reference a
variable, put a % in front of the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

&/%5/p

would globally search for the characters 100 and print each line containing
amatch. To escape the special meaning of %, a \ must precede it.

g/" ™\J[cdsl/p

Commands 1-35

BFS(1) Sysv BFS(1)

could be used to match and list lines containing printf of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output from a
UNIX system command can be stored into a variable. The only require-
ment is that the first character of value be an !. For example:

W junk

xvS!cat junk
Irm junk

lecho "%S5"
xv6lexpr %6 + 1

would put the current line into variable S, print it, and increment the vari-
able 6 by cne. To escape the special meaning of ! as the first character of
value, precede it with a \.

xv7\!date
stores the value !date into variable 7.
xbz label

xbn label
These two commands will test the last saved return code from the execu-
tion of a UNIX system command (!command) or nonzero value, respec-
tively, to the specified label. The two examples below both search for the
next five lines containing the string size.

xv55

1

[size/

xv5'expr %5 -1
1if 0%5 '= 0 exit 2
xbnl

xv45

1

/size/

xvé4lexpr %4 — 1
1if 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if switch
is 0 it is not. Without an argument, xc reverses switch. Initially switch is

1-36 Commands

BFS(1) SysV BFS(1)

set for no crunching. Crunched output has strings of tabs and blanks
reduced to one blank and blank lines suppressed.

DIAGNOSTICS
? for errors in commands, if promrting is turned off. Self-explanatory error messages
when prompting is on.

SEE ALSO
csplit(1), ed(1), umask(1).

Commands 1-37

BLDT(1) Domain/OS SysV BLDT(1)

NAME
bldt — display time operating system was built
SYNOPSIS
bldt [options] [node_id]
DESCRIPTION
bldt displays the time at which the running version of Domain/OS was built.
node_id (optional) Display the build time of the node whose network root directory
is pathname.
Default if omitted: display build time of current node
OPTIONS
—n node_spec ... Display build time of specified node[s].
-a Display build time of all nodes.
EXAMPLES
$ bldt //ward

%k Node 29C27.4B51 *¥ "//ward"
Domain/OS kernel(3), revision 10.0, bl20.1 April 15, 1988 1:02:54 pm

5 bldt —n //june

*%kk Node 29C27.CBB9 #k#kx "//june”
Domain/OS kernel(8), revision 10.0, bll7.3 February 9, 1988 8:12:37 am

$ bldt —n CBB9
*¥kxk Node 29C27.CBBO #¥*x "//june”

Domain/OS kernel (8), revision 10.0, bl1l7.3 \
February 9, 1988 8:12:37 am

1-38 Commands

CAL(1) SysV CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for a specified month and/or year. If neither is specified, cal prints
a calendar for the present month only.

Both year and month must be Arabic numbers. The range for year
is 1-9999. The range for month is 1-12.

EXAMPLES
To print a calendar for the entire year of 1988, type the following:

cal 1988
To print a calendar for December, 1988, type:
cal 12 1988

BUGS
The year always starts in January.

Note that ‘‘cal 88’ refers to the year 88, not 1988.

Commands 1-39

CALENDAR(1) SysV CALENDAR(1)

NAME
calendar — reminder service
SYNOPSIS
calendar [-]
DESCRIPTION
calendar provides an individual reminder sevice by consulting the file calendar in your
login directory and printing out lines containing today’s or tomorrow’s date. You must
create the file before calendar can successfully run.
A typical line in your calendar file may look like this:
12/15 Departmental meeting at 3 p.m.
calendar recognizes most month-day entries (e.g., 12/15, Dec. 15, december 15), but
not day-month items (e.g., 15 December, 15/12). On weekends, "tomorrow" extends
through Monday.
When an argument is present, calendar looks in all users’ login directories for a file
named calendar and sends any positive results by mail(1).
BUGS
Your calendar must be public information for you to get reminder service.
calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.
FILES
fusr/lib/calprog to figure out today’s and tomorrow’s dates /etc/passwd /tmp/cal*
SEE ALSO

1-40

mail(1).

Commands

CANCEL(1)

NAME

SysV CANCEL(1)

Ip, cancel — send/cancel requests to an LP line printer

SYNOPSIS

Ip [—] [—ddest] [-m] [-nnumber] [—ooption] [—s] [—ttitle] [-wfiles]
cancel [ids] [printers]

DESCRIPTION

Ip arranges for the named files and associated information (collectively called a
"request") to be printed by a line printer. If no file names are mentioned, the standard
input is assumed. A dash (=) used as a file name indicates the standard input and may
be supplied on the command line in conjunction with named files. The order in which
files appear is the same order in which they will be printed.

Ip associates a unique "id" with each request and prints it on the standard output. This
id can be used later to cancel (see cancel) or find the status (see Ipstat(1)) of the

request.
OPTIONS

The following options to Ip may appear in any order and may be intermixed with file

names:

—C

—ddest

—m

—nnumber

—ooption

Commands

Makes copies of the file(s) to be printed immediately when Ip is invoked.
Nommally, files will not be copied, but will be linked whenever possible.
If the —c option is not given, then you should be careful not to remove
any of the file(s) before the request has been printed completely.
Without the —c option, any changes made to the named files after the
request is made, but before it is printed, will be reflected in the printed
output.

Chooses dest as the printer or class of printers where printing will take
place. If dest is a printer, the request will be printed only on that specific
printer. If dest is a class of printers, the request will be printed on the
first available printer that is a member of the class. Under certain condi-
tions (printer availability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(1M) and lIpstat(1)). By
default, dest is taken from the environment variable LPDEST (if it is
set). Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see 1pstat(1)).

Sends mail after the files have been printed (see mail(1)). By default, no
mail is sent.

Prints number copies of the output (default is 1).

Specifies a printer-dependent or class-dependent option. Several such

options may be collected by specifying —0 more than once. For more
information about what are valid options, see Models in Ipadmin(1M).

CANCEL(1) Sysv CANCEL(1)

-s Suppresses messages from Ip(1) such as "request id is ...".
—ttitle Prints title on the banner page of the output.
-w Writes a message to your terminal after the files have been printed. If

you are not logged in, mail is sent instead.

Cancel cancels line printer requests made by Ip(1). The command line arguments can
be either request ids (as returned by Ip(1)) or printer names (for a complete list of
printer names, use Ipstat(1)). Specifying a request id cancels the associated request
even if it is currently printing. Specifying a printer cancels the request which is
currently printing on that printer. In either case, the cancellation of a request that is
currently printing frees the printer to print its next available request.

FILES
/usr/spool/lp/*

SEE ALSO
enable(1), Ipstat(1), mail(1).
accept(1M), Ipadmin(1M), Ipsched(1M) in the Managing SysV System Software.

1-42 Commands

CAT(1)

NAME

SysV CAT(1)

cat — concatenate and print files

SYNOPSIS

cat [-u] [-s][—v [-t] [-e]] file ...

DESCRIPTION

cat reads each file in sequence and writes it on the standard output. If no input file is

given, or if the argument

OPTIONS
-u

—S

-V

—t
—e

is encountered, cat reads from the standard input file.

Produce unbuffered output. (The default is buffered output.)
Ignore non-existent files.

Make non-printing characters visible (except for tabs, new-lines and form-
feeds). Print control characters (CTRL key and X) as ""X", the delete charac-
ter (DELETE key - octal 0177) as a caret with a question mark "*?", and non-
ASCII characters (with the high bit set) as M-x, where x is the character
specified by the seven low-order bits.

With the —v option, print tabs as L.

With the —v option, print a dollar sign ($) at the end of each line (prior to the
new-line).

The —t and —e options are ignored if the —v option is not specified.

EXAMPLES

To write filel on standard output, type the following:

cat filel

To write standard input to filel, use this command:

cat >filel

To write filel and file2 to file3, type this:

BUGS

cat filel file2 >file3

Command formats such as cat filel file2 >filel destroy the original data in filel. Be
careful when using shell special characters.

SEE ALSO

cp(1), pg(1), pr(1).

Commands

1-43

CB(1) SysV CB(1)

NAME
cb — C program beautifier

SYNOPSIS
eb[-s]1[—jI[—-1leng][file ...]

DESCRIPTION
cb reads C programs from its arguments or from the standard input, and writes them on
the standard output with spacing and indentation displaying the structure of the code.
Under default options, cb preserves all user new-lines.

OPTIONS
-s Causes code to conform to the style of Kemighan and Ritchie in The C
Programming Language .
-j Puts split lines back together.
—l leng Splits lines that are longer than leng.

BUG
Punctuation that is hidden in preprocessor statements causes indentation errors.

SEE ALSO
ce(l).
The C Programming Language. Prentice-Hall, 1978.

1-44 Commands

CC(1)

NAME

SysV ccq)

cc — C compiler

SYNOPSIS

cc [options] files

DESCRIPTION

cc is an interface to the preprocessor (cpp), the Domain C compiler, and the link editor
(Id). cc processes the supplied options and then executes the various tools with the
proper arguments. cc¢ accepts several types of files as arguments:

Files whose names end with .c are taken to be C source programs and may be prepro-
cessed, compiled, and link edited. The compilation process may be stopped after the
completion of any pass if the appropriate options are supplied. If the compilation pro-
cess runs through the compiler then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .c. However, the .o file is nor-
mally deleted if a single C program is compiled and then immediately link edited. Files
whose names end in .i are taken to be preprocessed C source programs and may be
compiled and link edited. Files whose names do not end in .c, or .i are handed to the
link editor.

Assembly source programs (files whose names end in .s) are not supported.

Since cc usually creates files in the current directory during the compilation process, it
is necessary to run cc in a directory in which a file can be created.

Not all standard UNIX options are available. Furthermore, some unique options are
provided by the Domain cc command. If the cc command does not recognize an option
as a preprocessor or compiler option, it assumes that it is an option for the link editor
(Id) and passes it along. The options the cc interface recognizes as preprocessor options
are: —C, ~D, —H, I, and —U. The link editor options are: —a, -1, -L, -m, -M, —o, -,
-8, —t, —u, =V, —x and —z. Options that are recognized but ignored are: —ds, —dl, —f,
—F and —S. When you use these options, you get a warning that they are not supported.

OPTIONS

—A cpu,id Generates code for a particular class of processor. Legal values for id
are:

any Standard M68000 code
160 DSP160 code

460 DN460 code

660 660 code

90 DSP90 code

330 DN330 code

560 DNS560 code

570 DN570 code

580 DN580 code

3000 DN3000 code

Commands 1-45

cc(l)

1-46

SysV CC(1)

4000 DN4000 code
FPX Floating-Point Accelerator Board
PEB Performance Enhancement Board

—A nansi Does not compile with ANSI rules. This option passes —ntype to the
compiler and does not define the preprocessor symbol __ STDC__.

—A runtype,type
Passes type information to compiler and linker.

—A systype,type
Defines the target system type (systype) for the compiled object. type can
be one of:

TYPE DESCRIPTION
any Version independent
bsd4.2 Berkeley version 4.2
bsd4.3 Berkeley version 4.3
sysS UNIX System V
sys5.3 UNIX System V.3
This replaces the —T option.

— Suppresses the linking phase of the compilation and forces an object file
to be produced, even if only one program is compiled.

-E Runs only cpp(1) on the named C programs, and sends the result to the
standard output.

-g Causes the compiler to generate additional information needed for using
dbx(1) or dde(1).

-H (cpp switch) Prints out to stderr the pathname of each file included dur-
ing this compilation.

—0 outfile Produces an output object file named outfile. The name of the default
file is a.out. This is a link editor option.

-0 Tums on compilation phase optimitzations.

-p Produces code that counts the number of times each routine is called;
also, automatically calls monitor(3C). Produces a mon.out file at nor-
mal terminal execution of the object program. An execution file is then
generated by using prof(1).

-P Runs only cpp(1) on the named C programs, and leaves the result on
corresponding files suffixed with .i. Passes this option to cpp(1).

—qg Produces profiled code that allows profiling with gprof(1). Produces a

gmon.out file at normal termination of execution of the object program.

Commands

CC(1)

—-qp

~T systype

-V

Sysv ccq)

Produces profiled code where the p argument produces identical results
to the —p option (allows profiling with prof(1)).

Defines the target system type (systype) for the compiled object. systype
can be one of:

any Version independent
bsd4.2 Berkeley version 4.2
bsd4.3 Berkeley version 4.3
sysS UNIX System V
sys5.3 UNIX System V.3

Note this option is identical to the —A systype,rype option, but may
become obsolete in a future release. We recommend using —A

systype,systype.
Prints the version of the compiler and/or link editor that is invoked.

-Wc,argl [arg2..]

Hands off the arguments argi to pass ¢ where c is one of p, 0, or |, indi-
cating the preprocessor, compiler, or link editor, respectively. Using
—WO0 enables you to use /com/cc options that are not available with
/bin/cc. For example: —W0, —pic passes —pic to the compiler.

~Y[pOISILU], dir

—Bstring

Specifies a new pathname, dirname, for the locations of the tools and
directories designated by the first argument.

Preprocessor (cpp)

Compiler (cc)

Link editor (Id)

Directory containing start-up routine (/usr/lib/crt0.0)

Default include directory searched by preprocessor (/usr/include)
First default library directory searched by link editor (/usr/lib)
Second default library directory searched by link editor (no default)

comwn—os

If the location of a tool is being specified, the new pathname for the tool
will be /dirname/tool. If more than one —Y option is applied to any one
tool or directory, the last occurrence holds.

—t[p02al] These options will be removed in the next release. Use the =Y
option.

cc also recognizes —C, —D, —H, —I and —U and passes these options and their agru-
ments directly to the preprocessor without using the —W option. Similarly, cc recog-

nizes —a, -,

-L, -m, -M, -0, —r, —s, —t, —u, =V, —x, —z and passes these options and

their arguments directly to the loader. See cpp(1) and Id(1).

Commands

1-47

cc() SysV ccq)
Other agruments are taken to be C compatible object programs, typically produces by
an earlier cc run, or perhaps libraries of C compatible routines and are passed directly to
the link editor. These programs, together with the results of any compilations specified,
are link edited (in order given) to produce an executable program with name a.out
unless the —o option of the link editor is used.
If cc is put in file prefixcc the prefix will be parsed off the command and used to call the
tools, i.e., prefixtool. For example, OLDcc will call OLDcpp, OLDcomp, OLDoptim,
OLDas and OLDId and will link OLDcrtl.o. Therefore, one MUST be carefule when
moving cc around. The prefix will apply to the preprocessor, compiler, link editor, and
the start-up routines.

NOTES
By default, the return value from a compiled C program is completely random. The
only two guaranteed ways to return a specific value are to explicitly call exit(2) or to
leave the function main() with a ‘‘return expression;’’ construct.

FILES
file.c C source file
file.i Preprocessed C source file
file.o object file
a.out Link edited output
LIBDIR/crt0.0 Start-up routine
TMPDIR/* Temporary files
LIBDIR/cpp Preprocessor, cpp(1)
/usr/apollo/lib/cc Compiler
BINDIR/Id Link editor, 1d(1)
LIBDIR is usually /usr/lib
BINDIR is usually /bin
TMPDIR is usually /usr/tmp but can be redefined by setting the environment variable
TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

1-48

1d(1), cpp(1), gencc(1), lint(1), prof(1), dbx(1), tmpnam(3S).

Domain C Language Reference

"The C Programming Language”, Kemighan, B.W. and Ritchie, D.M. Prentice-Hall,
1978.

Commands

CD(1) SysV CD(1)

NAME
cd — change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, cd uses the value of shell parameter $HOME as the new
working directory. If directory specifies a complete path starting with a slash (/), a
period (.), or two consectutive periods (..), directory becomes the new working direc-
tory. If neither case applies, cd tries to find the designated directory relative to one of
the paths specified by the SCDPATH shell variable. $CDPATH has the same syntax as,
and similar semantics to, the $PATH shell variable. c¢d must have execute (search) per-
mission in directory .

Because a new process is created to execute each command, c¢d would be ineffective if
it were written as a normal command; therefore, it is recognized by, and is interal to,
the shell.

EXAMPLES
To change your working directory to the directory called mydata, type the following:

cd mydata

To advance your working directory one level up in the naming hierarchy, use this com-
mand:

#ed..

SEE ALSO
pwd(l), sh(l).
chdir(2) in the SysV Programmer’s Reference.

Commands 149

CDC(1)

NAME

Sysv CDC(1)

cdc —change the delta commentary of an SCCS delta

SYNOPSIS

cde —rSID [-m[mulist]] [-y[comment]] files

DESCRIPTION

cdc changes the delta commentary for the SID (SCCS IDentification string) specified by
the —r option, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and comment infor-
mation normally specified via the delta(l) command (—m and —y arguments).

If a directory is named, cdc behaves as though each file in the directory were specified
as a named file, except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is given, the
standard input is read (see BUGS) and each line of the standard input is taken to be the
name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of options and file names.
All options described below apply independently to each named file.

OPTIONS

1-50

-rSID Specifies the SCCS IDentification (SID) string of a delta for which the
delta commentary is to be changed.

—mmrlist Supplies a list of MR numbers to be added and/or deleted in the delta
commentary of the SID specified by the —r option. The SCCS file must
have the v flag set. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of
delta(l). In order to delete an MR, precede the MR number with the
character ! (see EXAMPLES). If the MR to be deleted is currently in the
list of MR, it is removed and changed into a ‘‘comment’”’ line. A list of
all deleted MRs is placed in the comment section of the delta commen-
tary and preceded by a comment line stating that they were deleted.

If —m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see —y option).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(l)], it is taken to be the
name of a program (or shell procedure) which validates the correctness
of the MR numbers. If a non-zero exit status is retumed from the MR
number validation program, cdc terminates and the delta commentary
remains unchanged.

Commands

CDC(1)

SysV CDC(1)

—y[comment] Arbitrary text used to replace the comments already existing for the delta
specified by the —r option. The previous comments are kept and pre-
ceded by a comment line stating that they were changed. A null com-
ment has no effect.

If —y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

EXAMPLES

BUGS

FILES

cdc -rl1.6 -m"bl78-12345 1b177-54321 bl79-00001" —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the MR list,
and adds the comment trouble to delta 1.6 of s.file.

cdc —rl.6 s.file
MRs? !'bl77-54321 bl78-12345 b179-00001
comments? trouble

does the same thing.

If SCCS file names are supplied to the cdc command via the standard input (- on the
command line), then the —m and —y keyletters must also be used.

To modify the delta commentary, you must be either (1) the creator of the delta, or (2)
the owner of the SCCS file and directory.

x-file [see delta(1)]
7-file [see delta(1)]

DIAGNOSTICS

Use help(1) for explanations.

SEE ALSO

admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(l) in the Using Your SysV Environment.

Commands 1-51

CFLOW(1) SysV CFLOW(1)

NAME

cflow — generate C flowgraph

SYNOPSIS

cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

cflow analyzes a collection of C, yacc, lex, and object files and attempts to build a graph
charting the external references. Files suffixed with .y, .1, and .c are yacced, lexed, and
C-preprocessed as appropriate. The results of the preprocessed files, and files suffixed
with .iz are then run through the first pass of lint(1). Files suffixed with .0, have infor-
mation extracted from their symbol tables. The results are collected and tumed into a
graph of external references, which is displayed on the standard output.

Each line of output begins with a reference number, followed by a suitable number of
tabs indicating the level, then the name of the global symbol followed by a colon and its
definition. Usually only function names that do not begin with an underscore are listed
(see the -i options below). For information extracted from C source, the definition con-
sists of an abstract type declaration (char, for instance), and, delimited by angle brack-
ets, the name of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in C-style extemnal names
are deleted.

Once a definition of a name has been printed, subsequent references to that name con-
tain only the reference number of the line where the definition may be found. For
undefined references, only < > is printed.

OPTIONS

1-52

In addition to the —D, —I, and —U options [which are interpreted just as they are by
cc(1) and cpp(1)], the following options are interpreted by cflow:

-r Reverses the ‘‘caller:callee’” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexico-
graphical order by callee.

—ix Includes external and static data symbols. The default is to include only

functions in the flowgraph.

—i Includes names that begin with an underscore. The default is to exclude
these functions (and data if —ix is used).

—dnum The num decimal integer indicates the depth at which the flowgraph is
cut off. By default this is a very large number. Attempts to set the cut-
off depth to a nonpositive integer will be ignored.

Commands

CFLOW(1) SysV CFLOW(1)

EXAMPLE
As an example, given the following in file.c:

int i;

main ()

{
£();
g();
£();

}

£()

{
i=nh(;

}
the command
cflow —ix file.c

produces the output

1 main: int (), <file.c 4>

2 f: int (), <file.c 11>

3 h: <>

4 i: int, <file.c 1>
5

g: <>

When the nesting level becomes too deep, the output of cflow can be piped to pr(1),
using the —e option, to compress the tab expansion to something less than every eight
spaces.

DIAGNOSTICS
Notifies you of bad options. Complains about multiple definitions and only believes the
first. Other messages may come from the various programs used (e.g., the C-
preprocessor).

BUGS
Files produced by lex(1) and yacc(l) cause the reordering of line number declarations
which can confuse cflow. To get proper results, feed cflow the yacc or lex input.

SEE ALSO
cc(1), cpp(1), lex(1), lint(1), nm(1), yacc(1).
pr(1) in Using Your SysV Environment.

Commands 1-53

CHACL(1)

NAME

Domain/OS SysV CHACL(1)

chacl — change access control list

SYNOPSIS

chacl [—odfvLR] <spec> file...

chacl [—odfvLR] -D <sid> file ...

chacl [—odfvLR] [—u <owner>] [—g <group> 1 [—z <organization>] file...
chacl [~odfvLR] { —c | =1 | —n } file ...

chacl [-vLR] { —B | =S } file...

DESCRIPTION

The chacl command changes the entries in an object’s access control list (ACL). Use
the specification (spec) part of the command line either to set the rights for a given sub-
ject identifier (sid), or to change the inheritance mechanisms of a directory. The
specification syntax, shown below, is similar to chmod’s symbolic mode form.

<spec>:
<sid>:
<regq>:
<op>:
<inh>:
<rights>:

OPTIONS
-B
-S

1-54

<sid><op><rights> | <req><op><inh>| <spec>[,<spec>...]
%.%.% | <req>

[ugzo] | a

=l+l-

[UP]

[prwxksI]

The —B (BSD) and S (SysV) options simply set a directory to use the
appropriate semantics. Any existing ACLs are removed, and the protec-
tions on the directory are determined by the current umask(2). Owner,
group, and organization inheritance are determined using the appropriate
semantics (SysV, all from current process; BSD, owner from current
process, group from directory. Organization is marked ‘‘ignore’’ for
both).

Force calculation of the extended entry mask. The mask represents the
maximum rights of all extended ACL entries, and is automatically calcu-
lated each time chacl is run. This option is used to undo the effects of
the chmod command, as chmod affects the mask as well as the world
required entry (%.%.%) when changing rights for ‘‘other’’.

Set local access. With local access set, an object can be accessed only
from the node on which it is located.

Set network access.

Make the changes on the ACL itself for the objects specified. If the —o,
—d, or —f options are not specified, —o is assumed These options can be
used in any combination.

Commands

CHACL(1) Domain/OS SysV CHACL(1)

-d Make the changes on the initial directory ACL.

—f Apply the changes to the initial file ACL.

-V (verbose) List each destination as the ACL is changed.

-L Follow any soft links encountered, and operate on the object to which

the link points. Since soft links in Domain/OS do not have ACLs,
attempting to change a soft link without the —L flag simply results in a
warning, with no change.

-R Apply the changes recursively to any directories encountered among the
files listed. Be very careful when combining this option with the —L
option!

-D Delete extended entries from an ACL. Required entries may not be
deleted, so <sid> must be an actual subject identifier (see below).

-u Set the owner field in an ACL.

-g Set the group field in an ACL.

-7 Set the organization field in an ACL.

SUBJECT IDENTIFIERS

The sid (Subject IDentifier) used in the first form (<sid><op><rights>) is a way of
specifying a user or set of users. It may include a username, group name and organiza-
tion name, any of which may be replaced with the wildcard %, or left off, as described
in acl(7). The special cases u, g, z and o refer to the required entries in the ACL for
user, group, organization and world. The special case a refers to the all of the above
(user, group, organization and world), as does a null SID field. These special cases do
not affect required entries that are marked ‘‘Ignore’’. Short user IDs that are a combi-
nation of the letters u, g, z and o are distinguished from the special cases by the use of
the % syntax described above. Thus 0z+x adds execute rights for other and organiza-
tion, whereas 0z.%.%+x or oz..+X adds execute rights for just the user oz.

ACCESS RIGHTS
Access rights are specified by the op (operator) and rights parameters to chacl. Valid
operators are =, +, and —. The = operator specifies absolute rights for the SID. If the
ACL already contains an entry for this SID, acl changes it to contain the rights listed.
Otherwise, it adds an entry with the specified SID and access rights.

If you specify the + operator, the rights are added to any existing rights for the specified
SID. Likewise, the — operator removes the rights from the ACL entry for the SID. If no
entry exists for the SID, the entire ACL is searched for more general entries that apply
to this SID. The specified rights are then added to or removed from this aggregate set
of rights, and a new entry is created for the specific SID.

Commands 1-55

CHACL(1)

1-56

Domain/OS SysV CHACL(1)

Access rights consist of any combination of the following letters:

Files

p Protect rights; allow rights to be changed

r Read rights; allows file to be read

w Write rights; allows file to be written

X Execute rights: allows file to be executed

k Keep; prevents file from being deleted or having its name changed

s Set ID; usable only with u, g and z (user, group, and
organization); causes this executable to be run with
the effective ID of the user, group or organization

Directories:

p Protect rights; allow rights to be changed

r Read rights; allows directory to be listed

w Write rights; allows names to be added, changed or deleted

X Execute rights; allows subordinate objects to be used, without allowing
the directory to be listed; also called search rights

k Keep; prevents directory from being deleted or having its name changed

The following is used alone, and overrides any other rights specified:

I

Ignore; used to ignore the rights in the required owner, group,
organization, and other entries

To change the inheritance properties of a directory, use the second form of ACL
specification (<req><op><inh>). In this case, the first field must consist only of
required entries u, g, #z, or a (user, group, organization, all) and the second field
specifies the inheritance option.

The valid inheritance options are as follows:

U

Umask; the rights for new objects in this directory are those
requested by the process creating them as modified by the umask(2)
of that process

Process; inherit user, group or organization from the
process creating a new object in this directory

Commands

CHACL(1) Domain/OS SysV CHACL(1)

EXAMPLES
chacl g+w *

Add write rights for the group to each file in this directory.
chacl a=rx foo
Give owner, group, organization and world read and execute rights to the file foo.
chacl ugz=I.
Ignore the required entries for owner, group and organization.
chacl %.0s=prwx .
Give the os group full rights to this directory.
chacl ..mktg—pw,..r_d=prwx.

Be sure that the mktg organization does not have write or protect rights and that r_d
has full rights to the current directory.

chacl —B /usr/u/bar

Strip any extended ACLs from /usr/u/bar, and set it up as a BSD directory.
chacl —D arnold.staff *

Delete any ACL entries referring to arnold.staff.
chacl —od susan+x /usr/u/zap

Always allow susan to use objects in /usr/u/zap directory, and to search any new sub-
directories.

chacl —odf user= magicdir

Insure that user has no rights to magicdir, nor to any files or sub-directories subse-
quently created in magicdir.

chacl —f ugz=UP .

Newly created files in the current directory inherit owner, group, and organization (and
the associated rights) from the process.

chacl —df g-P.

Do not inherit group from the process, that is, inherit it from this directory for new files
and sub-directories.

SEE ALSO
Isacl(1), cpacl(1), chmod(1), chgrp(1), chorg(1),chown(2), umask(2), salacl(1M), acl(5)

Commands 1-57

CHFN(1) Sysv CHFN(1)

NAME

chfn, chsh, passwd — change password file information

SYNOPSIS

passwd [—s] [—f] [name]
chsh shell
chfn

DESCRIPTION

1-58

The passwd command changes or installs a password, log-in shell (—s option), or
GECOS information field (—f option) associated with the user name (your own name by
default).

chsh changes a log-in shell, and is equivalent to passwd —s.
chfn changes the GECOS information field, and is equivalent to passwd —f.

When altering a password, passwd prompts for the current password and then for the
new one; you must supply both. You must type the new password twice to forestall
mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough.

Only the owner of the name or the super-user can change a password; owners must
prove they know the old password.

When altering a log-in shell, (using passwd —s or chsh) the program displays the
current log-in shell and then prompts for the new one. The new log-in shell must be
one of the approved shells listed in /etc/shells unless you are the super-user. If
/etc/shells does not exist, the only shells that can be specified are /bin/sh, /bin/csh,
/bin/ksh, and /com/sh.

The super-user can change anyone’s log-in shell; normal users can only change their
own log-in shell(s).

When altering the GECOS information field, (using passwd —f or chfn), the program
displays the current information, broken into fields, as interpreted by the finger(1) pro-
gram (among others) and prompts for new values. These fields can include a user’s
“‘real life’” name, office room number, office phone number, and home phone number.
Each prompt includes a default value, which is enclosed between brackets. The default
value is accepted simply by typing a carriage return. To enter a blank field, the word
‘‘none’’ can be typed. Phone numbers can be entered with or without hyphens. It is a
good idea to run finger after changing the GECOS information to make sure everything
is set up properly.

The super-user can change anyone’s GECOS information; normal users can only
change their own.

Commands

CHFN(1)

EXAMPLE

SysV CHFN(1)

Below is a sample run:

NOTES

% passwd —f

Name [Biff Studsworth II]:

Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863

Home Phone (Ex: 987532) [5771546]: none

On Domain/OS systems, the /etc/passwd file is a typed file, which is automatically gen-
erated by the registry daemon. The registry administrator can make the person informa-
tion in the registry read-only, in which case normal users cannot change the ‘‘Name”’

field.

FILES
letc/passwd The file containing all of this information
letc/shells The list of approved shells

SEE ALSO

login(1), finger(1), passwd(4), crypt(3C), edrgy(1M);
Using Your SysV Environment

Commands

1-5¢

CHGRP(1) SysvV CHGRP(1)

NAME

chown, chgrp — change owner or group

SYNOPSIS

chown owner file ...
chown owner directory ...
chgrp group file ...
chgrp group directory ...

DESCRIPTION

NOTES

FILES

chown changes the owner of the files or directories to owner. The owner may be either
a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group may be
either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the owner or group of that file.

In a Remote File Sharing environment, you may not have the permissions that the out-
put of the Is —] command leads you to believe.

/etc/passwd
/etc/group

SEE ALSO

1-60

chmod(1).
chown(2), group(4), passwd(4) in the SysV Programmer’s Reference.

Commands

CHMOD(1) Sysv CHMOD(1)

NAME
chmod — change mode

SYNOPSIS
chmod mode file ...

chmod mode directory ...

DESCRIPTION
chmod allows the permissions of the named files or directories to be changed accord-
ing to mode, which may be absolute or symbolic. An absolute mode is an octal number
constructed from the OR of the following modes:

4000 set user ID on execution

2040 set group ID on execution if #is 7, 5, 3, or 1
enable mandatory locking if # is 6, 4,2, or 0

1000 sticky bit (sticky bit is not supported in SysV)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access classes and to
the individual permissions themselves. Permissions to a file may vary depending on
your user identification number (UID) or group identification number (GID). Permis-
sions are described in three sequences each having three characters:

User Group Other
WX wx wx

In this example, user, group, and others all have reading, writing, and execution per-
mission to a given file. There are two categories for granting permissions: the access
class (who) and the permissions themselves. Thus, to change the mode of a file’s (or
directory’s) permissions using chmod’s symbolic method, use the following syntax:

[who] operator [permission(s)], ...
A command line using the symbolic method would appear as follows:
chmod g+rw file
This command would make file readable and writable by the group.

who is a combination of the letters u for owner’s permissions), g (group), and o (other).
The letter a stands for ugo, the default if who is omitted.

Operator can be plus (+) to add permission to the file’s mode, minus (-) to take away
permission, or equal (=) to assign permission absolutely (reset all other bits).

Permission is any compatible combination of the following letters:

Commands 1-61

CHMOD(1) SysV CHMOD(1)

reading permission

writing permission

execution permission

user or group set-ID is turned on

sticky bit (sticky bit is not supported in SysV)
mandatory locking will occur during access

——el e g

Multiple symbolic modes separated by commas can be given, though no spaces may
appear between these modes. Operations are performed in the order given. Multiple
symbolic letters following a single operator cause the corresponding operations to be
performed simultaneously. The letter s is only useful with u or g, and t only works with
u.

EXAMPLES

BUGS

1-62

chmod a—x file
chmod 444 file

The first examples deny execution permission to all. The absolute (octal) example per-
mits only reading permissions.

chmod go+rw file
chmod 606 file
These examples make a file readable and writable by the group and others.
chmod +l file
This causes a file to be locked during access.
chmod =rwx,g+s file
chmod 2777 file

These last two examples enable all to read, write, and execute the file; and they tum on
the set group-ID.

Mandatory file and record locking (1) refers to a file’s ability to have its reading or writ-
ing permissions locked while a program is accessing that file. It is not possible to per-
mit group execution and enable a file to be locked on execution at the same time. In
addition, it is not possible to turn on the set-group-ID and enable a file to be locked on
execution at the same time. The following examples,

chmod g+x,+l file

chmod g+s,+l file

are, therefore, illegal usages and will elicit error messages.

Commands

CHMOD(1) SysV CHMOD(1)

Only the owner of a file or directory (or the super-user) may change a file’s mode. Only
the super-user may set the sticky bit. In order to turn on a file’s set-group-ID, your own
group ID must correspond to the file’s, and group execution must be set.

The DOMAIN system’s single-level store requires that all files be mappable and, there-
fore, readable by the OS. This means that SysV does not recognize execute-only or
write-only files. For example, if you type chmod 111 foo, SysV automatically sets read
permissions for the owner as follows:

-r-xr-xr-x 1 owner unix 5 May 22 11:47 fc

Also, if you type chmod 222 foo, SysV automatically sets read permissions for owner
as follows:

-rw-rw-rw- 1 harper sys 5 May 22 11:50 foo

Only the owner of a file (or the super-user) may change its mode.

To set the group ID, the group associated with the file must correspond to your current
group ID.

SEE ALSO
Is(1).
chmod(2) in the SysV Programmer’s Reference.

Commands 1-6!

CHOWN(1) Sysv CHOWN(1)

NAME

chown, chgrp — change owner or group

SYNOPSIS

chown owner file ...
chown owner directory ...
chgrp group file ...
chgrp group directory ...

DESCRIPTION

NOTES

FILES

chown changes the owner of the files or directories to owner. The owner may be either
a decimal user ID or a login name found in the password file.

chgrp changes the group ID of the files or directories to group. The group may be
either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the owner or group of that file.

In a Remote File Sharing environment, you may not have the permissions that the out-
put of the Is =1 command leads you to believe. For more information see the "Mapping
Remote Users" section of Chapter 10 of the SysV System Administrator’s Guide.

/ete/passwd
/etc/group

SEE ALSO

chmod(1).
chown(2), group(4), passwd(4) in the SysV Programmer’s Reference.

Commands

CHSH(1) SysV CHSH(1)

NAME

chfn, chsh, passwd — change password file information

SYNOPSIS

passwd [—s] [—f] [name]
chsh shell
chfn

DESCRIPTION

The passwd command changes or installs a password, log-in shell (—s option), or
GECOS information field (—f option) associated with the user name (your own name by
default).

chsh changes a log-in shell, and is equivalent to passwd —s.
chfn changes the GECOS information field, and is equivalent to passwd —f.

When altering a password, passwd prompts for the current password and then for the
new one; you must supply both. You must type the new password twice to forestall
mistakes.

New passwords must be at least four characters long if they use a sufficiently rich
alphabet, and at least six characters long if monocase. These rules are relaxed if you
are insistent enough.

Only the owner of the name or the super-user can change a password; owners must
prove they know the old password.

When altering a log-in shell, (using passwd —s or chsh) the program displays the
current log-in shell and then prompts for the new one. The new log-in shell must be
one of the approved shells listed in /etc/shells unless you are the super-user. If
/etc/shells does not exist, the only shells that can be specified are /bin/sh, /bin/csh,
/bin/ksh, and /com/sh.

The super-user can change anyone’s log-in shell; normal users can only change their
own log-in shell(s).

When altering the GECOS information field, (using passwd —f or chfn), the program
displays the current information, broken into fields, as interpreted by the finger(1) pro-
gram (among others) and prompts for new values. These fields can include a user’s
‘‘real life’’ name, office room number, office phone number, and home phone number.
Each prompt includes a default value, which is enclosed between brackets. The default
value is accepted simply by typing a carriage return. To enter a blank field, the word
‘‘none’’ can be typed. Phone numbers can be entered with or without hyphens. It is a
good idea to run finger after changing the GECOS information to make sure everything
is set up properly.

The super-user can change anyone’s GECOS information; normal users can only
change their own.

Commands 1-65

CHSH(1)

EXAMPLE

SysV CHSH(1)

Below is a sample run:

NOTES

% passwd —f

Name [Biff Studsworth II]:

Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863

Home Phone (Ex: 987532) [5771546]: none

On Domain/OS systems, the /etc/passwd file is a typed file, which is automatically gen-
erated by the registry daemon. The registry administrator can make the person informa-
tion in the registry read-only, in which case normal users cannot change the ‘‘Name’’

field.

FILES
/etc/passwd The file containing all of this information
letc/shells The list of approved shells

SEE ALSO

login(1), finger(1), passwd(4), crypt(3C), edrgy(1M);
Using Your SysV Environment

1-66

Commands

CMP(1) Sysv CMP(1)

NAME
cmp — compare two files

SYNOPSIS
emp [-1][-s] filel file2

DESCRIPTION
cmp compares two files. (If filel is —, the standard input is used.) Under default
options, cmp makes no comment if the files are the same,; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial subse-
quence of the other, that fact is noted.

OPTIONS
-1 Prints the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Prints nothing for differing files; return codes only.

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible
or missing argument.

SEE ALSO
comm(1), diff(1).

Commands 1-67

COL(1)

NAME

SysV COL(1)

col — filter reverse line feeds

SYNOPSIS

col [—bfh]

DESCRIPTION

col reads the standard input and writes the standard output. It performs the line over-
lays implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half
line feeds (ESC-9 and ESC-8). col is particularly useful for filtering multicolumn out-
put made with the .rt command of nroff(1) and output resulting from using the tbi(1)
PIeprocessor.

Although col accepts half line motions in its input, it normally does not emit them on
output. Instead, it moves text that would appear between lines to the next lower full
line boundary.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end
text in an alternate character set. col remembers the character set (primary or alternate)
associated with each printing character read. On output, col generates SO and SI char-
acters where necessary to maintain the correct treatment of each character.

All control characters are removed from the input except space, backspace, tab, return,
newline, and ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last
character is an alternate form of full reverse line feed, for compatibility with some other
hardware conventions. All other non-printing characters are ignored.

OPTIONS
-b Assumes that the output device in use is not capable of backspacing. If
several characters are to appear in the same place, only the last one read
will be taken.
—f Allows the output to contain half-line feeds (ESC-9). Even with this
option it will never contain either kind of reverse line motion.
-h Converts white space to tabs to shorten printing time.
BUGS

col can’t back up more than 128 lines.
There can be no more than 800 characters, including backspaces, on a line.

SEE ALSO

1-68

troff(1), tbl(1)

Commands

COMB(1) SysV COMB(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb files

DESCRIPTION

BUGS

FILES

comb generates a shell procedure [see sh(1)] which, when run, reconstructs the given
SCCS files. The reconstructed files will, hopefully, be smaller than the original files.
The arguments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-SCCS files (last component of
the path name does not begin with s.) and unreadable files are silently ignored. If a
name of — is given, the standard input is read; each line of the input is taken to be the
name of an SCCS file to be processed; non-SCCS files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named
file is to be processed, but the effects of any keyletter argument apply independently to
each named file. each get —e generated, this argument causes the reconstructed file to
be accessed at the release of the delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor. Use of the —o keyletter may decrease
the size of the reconstructed SCCS file. It may also alter the shape of the delta tree of
the original file. This argument causes comb to generate a shell procedure which, when
run, produces a report giving, for each file: the file name, size (in blocks) after combin-
ing, original size (also in blocks), and percentage change computed by:

100 * (original — combined) / original

It is recommended that before any SCCS files are actually combined, one should use this
option to determine exactly how much space is saved by the combining process. SCCS
IDentification string (SID) of the oldest delta to be preserved. All older deltas are dis-
carded in the reconstructed file. A list (see get(1) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact,
it is possible for the reconstructed file to actually be larger than the original.

s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

Commands 1-69

COMB(1) SysV COMB(1)

Use help(1) for explanations.

SEE ALSO
admin(1), delta(1), get(1), prs(1), sccsfile(4).

1-70 Commands

COMM(1) SysV COMM(1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

comm reads filel and file2, which should be ordered in ASCII collating sequence (see
sort(1)), and produces a three-column output: lines only in file! ; lines only in file2; and
lines in both files. The file name — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm —12 prints
only the lines common to the two files; comm —23 prints only lines in the first file but
not in the second; comm —123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), unig(1).

Commands 1-71

CP(1)

NAME

cp — copy files

SYNOPSIS
cp [—CcfiopPsv 1 filel file2

cp [—CcfiopPrsv] file ... directory
DESCRIPTION

cp copies filel
already exists;

Sysv CP(1)

onto file2. By default, cp preserves the mode and owner of file2 if file2
otherwise it uses the mode of the source file modified by the current

umask(2) is used.

In the second form, one or more files are copied into the directory with their original

filenames.

cp refuses to copy a file onto itself.
OPTIONS

-P

-T

Prompt the user with the filename whenever the copy will cause an old
file to be overwritten. An answer of ’y’ causes cp to continue. Any other
answer prevents it from overwriting the file.

Attempt to preserve (duplicate) in copies the modification times and
modes of the source files, ignoring the present umask.

If any of the source files is a directory, copy each subtree rooted at that
name; in this case the destination must be a directory.

Domain/OS SysV OPTIONS

1-72

Change the names of any existing files which would have been overwrit-
ten. The current date is appended to the filename, in the format
@mm.dd[.n]. If this name already exists, an additional number is
appended. If you specify the —C option, the files copied in will not adopt
the mode and owner of the existing files.

Change the names of any existing files which would have been overwrit-
ten. The current date is appended to the filename, in the format
.mm.dd[.n]. If this name already exists, an additional number is
appended. If you specify the —c option, the files copied in do not adopt
the mode and owner of the existing files.

Force locked files to be overwritten, and mark the overwritten files to be
deleted when they become unlocked. If you specify the —f option, the
files copied in do not adopt the mode and owner of the existing files.

Copy each file as a typed object, without attempting to open a stream to
the file. This is useful in cases where opening a stream would succeed,
but not yield the entirety of the underlying object.

Commands

CP(1) SysV CP(1)

-s Treat symbolic links as files to be copied, rather than copying the desti-
nation of the link. This is especially useful when the —r option is used to
copy an entire directory tree that may contain links to other file systems.

-v Print the name of each file copied, on the standard output (verbose).

-P Attempt to preserve any extended access control list (ACL) on the
source files, ignoring both the present umask and the destination ACL.

SEE ALSO
cat(1), cpacl(1), mv(1), rcp(1C), acl(7)

Commands 1-73

CPACL(1)

Domain/OS SysV CPACL(1)

cpacl — copy access control list

cpacl [—odfitvLR] source destinations ...

cpacl copies access control lists (ACLs). If you do not specify an option, cpacl
assumes —0.

The first argument specifies the object from which to copy the ACL. This ACL is then
applied to the remaining files and directories as specified. Since only directories have
fields specifying ACL inheritance, use of the —d, —f, and —i options requires that the
source object be a directory. The destinations can be anything, and the appropriate set
of fields are applied (see below).

NAME
SYNOPSIS
DESCRIPTION
OPTIONS
_0
-d
—f
-
-t
-v
-L
-R
1-74

Copies the object ACL associated with source to each of destinations. This is
the default if you do not specify an option.

Copies the initial directory ACL associated with the specified directory to all
destinations that are directories.

Copies the initial file ACL associated with the specified directory to all desti-
nations that are directories.

Copies an initial default ACL onto an object ACL. The source must be a
directory; destinations that are files receive the initial file ACL of the source,
and directories w receive the initial directory ACL of the source. If you use -i
in combination with the -d or -f options, cpacl copies the initial directory or
initial file ACL in the usual way.

Uses the object ACL of the source as a template for the initial file or directory
ACL of the destination. If the source is a file,cpacl copies its ACL to the ini-
tial file ACL of any directories. If the source is a directory, cpacl copies its
ACL only to the initial directory ACL of target directories.

Produce verbose output; that is, show the name of each target as an ACL is
copied to it.

Directs cpacl to follow any soft links encountered, and operate on the object to
which the link points. Since soft links in Domain/OS do not have ACLs,
attempting to copy to or from a soft link without the —L flag produces just a
warning, with no change.

Recursively descends any directories encountered among the destination
objects. Be very careful when you combine this option with the —L option!

Commands

CPACL(1) Domain/OS SysV CPACLQ1)

EXAMPLES
To copy the ACL on foo to objects bar and zap, enter the following:

cpacl foo bar zap

To copy the ACL, initial directory ACL, and initial file ACL on the /usr/u/fred direc-
tory to all objects in the current directory (files will have only the object ACL applied),
enter the following:

cpacl —odf /usr/u/fred *

To copy the initial file ACL on fred to all files in that directory, and the initial directory
ACL on fred to all sub-directories (also, copy the initial file and directory ACLs to the
initial file and directory ACLs of any subdirectories), enter the following:

cpacl —idf /usr/u/fred /usr/u/fred/*

To copy the object ACL on file-template to the initial file ACL of the current directory,
enter the following:

cpacl —t /usr/u/fred/file-template

To copy the object ACL on dir-template to the initial directory acl of the current direc-
tory, enter the following:

cpacl —t /usr/u/fred/dir-template

SEE ALSO
cp(1), chacl(l), Isacl(l), dbacl(l), chmod(1l), chgrp(l), chorg(l), chown(l), acl(5),
umask(2), salacl(1M)

Commands 1-75

CPIO(1)

NAME

SysV CPIO(1)

cpio — copy file archives in and out

SYNOPSIS

cpio —o[acBv]
cpio —i[BcdmrtuvfsSb6] [pattems]

cpio —p[adimuyv] directory

DESCRIPTION

cpio —0 (copy out) reads the standard input to obtain a list of path names and copies
those files onto the standard output together with path name and status information.
Output is padded to a 512-byte boundary.

cpio —i (copy in) extracts files from the standard input, which is assumed to be the pro-
duct of a previous cpio —0. Only files with names that match patterns are selected.
Patterns are regular expressions given in the name-generating notation of sh(1). In pat-
terns, meta-characters ?, *, and [...] match the slash / character. Multiple patterns
may be specified and if no parterns are specified, the default for patterns is * (ie.,
select all files). Each pattern should be surrounded by double quotes. The extracted
files are conditionally created and copied into the current directory tree based upon the
options described below. The permissions of the files will be those of the previous cpio
—0. The owner and group of the files will be that of the current user unless the user is
super-user, which causes cpio to retain the owner and group of the files of the previous
cpio —o.

cpio —p (pass) reads the standard input to obtain a list of path names of files that are
conditionally created and copied into the destination directory tree based upon the
options described below. '

OPTIONS

a Resets access times of input files after they have been copied. Access
times are not reset for linked files when cpio -pla is specified.

B Blocks input/output 5,120 bytes to the record. (Does not apply to the
pass option; meaningful only with data directed to or from a character
special device, e.g. /dev/rmt/Om.)

d Creates directories as needed.

c Writes header information in ASCII character form for portability. Use
this option when origin and destination machines are different types.

r Interactively renames files. If you type a null line, the file is skipped.
(Not available with cpio -p.)

t Prints a table of contents of the input. No files are created.

u Copies unconditionally (normally, an older file will not replace a newer

1-76

file with the same name).

Commands

CPIO(1)

NOTES

Sysv CPIO(1)

v (verbose) Causes a list of file names to be printed. When used with the t option,
the table of contents looks like the output of an Is —I command (see

Is(1)).
1 Links files rather than copying them. Usable only with the —p option.
m Retains previous file modification time. This option is ineffective on

directories that are being copied.

f Copies in all files except those in patterns.
Swaps bytes within each half word. Use only with the —i option.
Swaps halfwords within each word. Use only with the —i option.

Reverses the order of the bytes within each word. Use only with the —i
option.

6 Processes an old (i.e. UNIX System Sixth Edition format) file. Only use-
ful with —i (copy in).

If cpio —i tries to create a file that already exists and the existing file is the same age or
newer, cpio will output a wamning message and not replace the file. (The -u option can
be used to unconditionally overwrite the existing file.)

cpio assumes four-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing to (-0) or
reading from (-i) a character special device, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and carriage return. You may want to continue by direct-
ing cpio to use a different device. For example, if you have two floppy drives you may
want to switch between them so cpio can proceed while you are changing the floppies.
(A carriage return alone causes the cpio process to exit.)

Path names are restricted to 256 characters.
Only the super-user can copy special files.
Blocks are reported in 512-byte quantities.

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio —o, it groups the files so they can
be directed (>) to a single file (../newfile). Instead of "Is," you could use find, echo, cat,
etc. to pipe a list of names to cpio. You could direct the output to a device instead of a
file.

Commands 1-77

CPIO(1) SysV CPIO(1)

Is| cpio -0 >./newfile

cpio —i uses the output file of cpio —o (directed through a pipe with cat in the example),
takes out those files that match the patterns (memol/al, memo/b*), creates directories
below the current directory as needed (-d option), and places the files in the appropriate
directories. If no patterns were given, all files from "newfile" would be placed in the
directory.

cat newfile | cpio —id memo/al memolb*
cpio —p takes the file names piped to it and copies or links (-1 option) those files to
another directory on your machine (newdir in the example). The -d options says to
create directories as needed. The —m option says retain the modification time. (It is
important to use the -depth option of find to generate path names for cpio. This elim-
inates problems cpio could have trying to create files under read-only directories.)

find . —depth —print | cpio —pdlmv newdir

SEE ALSO
ar(1), find(1), 1s(1), tar(1).
cpio(4) in the SysV Programmer’s Reference.

1-78 Commands

CPP(1)

NAME

SysV CPP(1)

cpp - the C language preprocessor

SYNOPSIS

LIBDIR/cpp [option . . .] [ifile [ofile 1]

DESCRIPTION

cpp is invoked as the first pass of any C compilation by the cc(1) command. Therefore,
cpp’s output is designed to be in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of the C compilation package
are modified to follow these changes.

cpp optionally accepts two file names as arguments. ifile and ofile are respectively the
input and output for the preprocessor. They default to standard input and standard out-
put if not supplied.

OPTIONS
-P

-C

~Uname

—Dname
—Dname

-T

-Idir

Commands

Preprocesses the input without producing the line control information used by
the next pass of the C compiler.

Passes along C-style comments (except those found on cpp directive lines). By
default, cpp strips out C-style comments.

Removes any initial definition of name, where name is a reserved symbol that
is predefined by the particular preprocessor. Following is the current list of
these possibly reserved symbols. On Apollo computers, unix, apollo, and
aegis are defined.

operating system: unix, dmert, gcos, ibm, os, tss, aegis
hardware: interdata, pdpll, u370, u3b, u3b5, u3b2,
u3b20d, vax, apollo
UNIX system variant: RES,RT
lint(1): lint
=def

Defines name with value def as if by a #define. If no =def is given, name is
defined with value 1. The —D option has lower precedence than the —U option.
That is, if the same name is used in both a —U option and a —D option, the
name will be undefined regardless of the order of the options.

Uses only the first eight characters to distinguish preprocessor symbols. This
option is included for backward compatibility.

Changes the algorithm for searching for #include files whose names do not
begin with a slash (/) to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in double quotes
(" ") are searched for first in the directory of the file with the #include line,
then in directories named in —I options, and last in directories on a standard

1-79

CPP(1)

SysV CPP(1)

list. For #include files whose names are enclosed in angle brackets (<>), the
directory of the file with the #include line is not searched.

=Ydir Uses directory dir in place of the standard list of directories when searching
for #include files.

-H Prints, one per line on standard error, the path names of included files.

—tsys Sets the environment variable SYSTYPE to sys while cpp is running. This
option is useful for setting the resolution of systype-dependent links. For
example, if your systype is sys5.3 and you specify —tbsdd4.3, the file
/usr/include/rdmb.h resolves to /bsd4.3/usr/include/ndmb.h instead of
/sys5.3/usr/include/ndmb.h.

Two special names are understood by cpp. The name __LINE__ is defined as the
current line number (as a decimal integer) as known by cpp, and __FILE__ is defined
as the current file name (as a C string) as known by cpp. They can be used anywhere
(including in macros) just as any other defined name.

DIRECTIVES

1-80

All cpp directive lines start with # in column 1. Any number of blanks and tabs is
allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string .

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace subsequent
instances of name followed by a (, a list of comma-separated sets of tokens,
and a) followed by roken-string, where each occurrence of an arg in the
token-string is replaced by the corresponding set of tokens in the comma-
separated list. When a macro with arguments is expanded, the arguments are
placed into the expanded token-string unchanged. After the entire token-string
has been expanded, cpp re-starts its scan for names to expand at the beginning
of the newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on. No addi-
tional tokens are permitted on the directive line after name.

#ident "string”
Put string into the .comment section of an object file.

#include "filename”

#include <filename>
Include at this point the contents of filename (which will then be run through
cpp). When the <filename> notation is used, filename is only searched for in
the standard places. See the —I and —Y options above for more detail. No
additional tokens are permitted on the directive line after the final " or >.

Commands

CPP(1)

SysV CPP(1)

#line integer-constant "filename”

#endif

Causes cpp to generate line control information for the next pass of the C com-
piler. Integer-constant is the line number of the next line and filename is the
file from which it comes. If "filename” is not given, the current file name is
unchanged. No additional tokens are permitted on the directive line after the
optional filename.

Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each
test directive must have a matching #endif. No additional tokens are permitted
on the directive line.

#ifdef name

The following lines appear in the output only if name has been the subject of a
previous #define and not the subject of an intervening #undef. No additional
tokens are permitted on the directive line after name.

#ifndef name

The following lines appear in the output only if name has not been the subject
of a previous #define. No additional tokens are permitted on the directive line
after name.

#if constant-expression

The following lines appear in the output only if the constant-expression evalu-
ates to non-zero. All binary non-assignment C operators, the ?: operator, the
unary —, !, and ~ operators are all legal in constant-expression. Operator pre-
cedence is the same as defined by the C language. There is also a unary opera-
tor defined, which can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility of #ifdef and
#ifndef in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In particular,
the sizeof operator is not available.

To test whether either of two symbols, foo and fum , are defined, use

#if defined(foo) Il defined(fum)

#elif constant-expression

Commands

An arbitrary number of #elif directives is allowed between a #if, #ifdef, or
#ifndef directive and a #else or #endif directive. The lines following #elif
appear in the output only if the preceding test directive evaluates to zero, all
intervening #elif directives evaluate to zero, and the constant-expression
evaluates to non-zero. If constant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any constant-expression
allowed in a #if directive is allowed in a #elif directive.

1-81

CPP(1)

NOTES

SysV CPP(1)

#else The following lines appear in the output only if the preceding test directive
evaluates to zero, and all intervening #elif directives evaluate to zero. No
additional tokens are permitted on the directive line.

The test directives and the possible #else directives can be nested. In addition, the fol-
lowing directives are recognized by cpp and passed to the Domain C compiler:

apollo

apollo_bit
debug

eject

list

module
nolist

systype
backstop
section
inhibit

attribute
options

Using cpp other than through the cc(l) command is not suggested. See md(1) for a
general macro processor.

The unsupported —W option enables the #class directive. If it encounters a #class
directive, cpp exits with code 27 after finishing all other processing. This option pro-
vides support for ‘‘C with classes’’.

Because the standard directory for included files may be different in different environ-
ments, use the following form of the #include directive:

#include <file.h>
rather than one with an absolute path, like:
#include "/usr/include/file.h"

cpp warns about the use of the absolute pathname.

FILES
INCDIR Standard directory list for #include files, usually /usr/include
LIBDIR usr/lib
DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The file name
and line number where the error occurred are printed along with the diagnostic.
SEE ALSO

1-82

cc(1), lint(1), m4(1). Domain C Language Reference.

Commands

CPSCR(1) Domain/OS SysV CPSCR(1)

NAME

cpscr — copy the current display to a file

SYNOPSIS

cpser [—inv] [-append] [-gpr{_bitmap]l] pathname

DESCRIPTION

cpscr copies the current screen image, without clearing it, to the file you specify. Use
the prf (print_file) command to print the file.

Use the DM command cpo to copy the screen without creating a new process window
or changing the current transcript pad. cpo invokes the cpscr command from the DM
without creating a pad or window. Thus, press <CMD> and type

cpo /usr/apollo/bin/cpscr pathname

You may copy small portions of a black and white screen (such as a single window)
with the DM command xi.

By default, black and white screens are copied into a GMF file. Color screens are
copied into a GPR bitmap.

pathname (required) Specify file to that the screen is copied.

OPTIONS

—inv Invert image. Use this option to store the image in reverse video.
Black screen pixels become white and white screen pixels
become black. Do not used this option with the —gpr_bitmap
option or on color nodes.

—append Appends a black and white screen image to an existing GMF file.
You cannot use this option with the —gpr_bitmap option or on
color nodes.

—gpr_bitmap Use this option to copy a black and white screen into a GPR bit-
map file rather than a GMF file. This option has no meaning for
color nodes since color screens are already copied into GPR bit-
maps.

EXAMPLES

Invert and copy the current screen image to the specified file. Since the command line
is echoed in the shell’s process transcript pad prior to execution, this command will
appear in the resulting image.

$ cpscr —inv //us/looky_there

Commands 1-83

CPSCR(1) Domain/OS SysV CPSCR(1)

<cmd>
Command: cpo /usr/apollo/bin/cpscr —inv //us/looky_there

Same result as in the previos example, but the cpscr line will not appear in the plotted
output.

1-84 Commands

CRDDF(1) Domain/OS SysV CRDDF(1)

NAME

crddf — create, display, or modify a device descriptor file
SYNOPSIS

crddf [options ...] pathname
DESCRIPTION

crddf creates, displays, or modifies a device descriptor file (DDF). A DDF defines a
peripheral bus unit (PBU) device for which you have written a driver. See Writing Dev-
ice Drivers with GPIO Calls for details on both DDFs and PBUs.

crddf is valid only if the general purpose input/output (GPIO) software is running on
your network.

pathname (required) Specify name of the DDF to be created, modified, or displayed.

OPTIONS
- Reads further options from standard input. Signal completion
with —end.

—at Specifies that device lives on the AT-compatible bus.

—call_library pathname
Specifies pathname of the call side of the device driver library.
This option is required.

—check Checks the DDF to ensure that all required fields have been
specified.

—cleanup_routine [entry_name]
Specifies the entry-point name of the clean-up routine in the call
library. Omitting the entry name deletes a previously existing
clean-up routine.

—csr_offset port_number
Specifies the offset into the control status register (CSR) page, in
hexadecimal format, at which the device’s control/status registers
are located. Device drivers may use this information during con-
troller initialization.

—CSr_page iova Specifies the hexadecimal address of the CSR page for the device
in the bus address space. The following information applies to
the particular bus structure implemented on your system:

e Multibus: optional

e VME bus: optional. If specified, must be page-aligned and in
the range C000-D000.

Commands 1-85

CRDDE(1) Domain/OS SysV CRDDF(1)

1-86

e AT-compatible bus: If specified, may indicate a range (for
example, —csr_page 200 21F). If the second parameter is
missing, a range of 8 consecutive bytes is assumed (for exam-
ple, —csr_page 200 assumes a range of 200-207).

—debug Sets a flag that can be used to tum on debugging logic in a driver.
—display Displays the current contents of the DDF.

—dma_channel channel-number
Specifies to the driver the DMA channel number used by AT-
compatible device. This is a Version 3 option.

—end Closes the updated DDF and exit.

—initialization_routine entry_name (required)
Specifies the entry-point name of the initialization routine in the
call library.

—interrupt_library pathname
Specifies the pathname of the interrupt side of the device driver
library.

—interrupt_routine level [entry_name] (required)
Specifies a level at which the device interrupts and the entry-
point name of an optional interrupt routine.

—major ddevice_number
Specifies the DDF’s major device number in range 0-31.

—minor ddevice_number
Specifies the DDF’s minor device number in range 0-511.

—memory_base iova Specifies the MULTIBUS address that marks the base of a
controller’s local memory. If the specified iova is less than 64K
this is a Version 2 option, if iova is greater than 64K, this is a
Version 3 option.

—memory_size length
Specifies the size, in hexadecimal format, of the controller
memory. If the specified iova less than 64K, this is a Version 2
option; if greater than 64K, this is a Version 3 option.

—multiple Specifies that the device driver supports more than one device
and cause the crddf command to check the driver entry-point
names listed in the DDF for each device to ensure that it doesn’t
load multiple copies of the same driver.

Commands

CRDDF(1) Domain/OS SysV CRDDF(1)
Y

—node[f] {node number|*} (required)
Specifies the hexadecimal node ID of the node to which the dev-
ice is physically connected. —nodef suppresses the check which
makes certain the node exists. You may use an asterisk (¥)
instead of the node ID to indicate the local node.

—quit Exits without modifying the original DDF.

—remddf //node name
Specifies a remote node on which the DDF resides.

—replace Replaces (i.e., overwrite) an existing DDF with a new version.
To modify only selected portions of an existing DDF, use
—update.

—revision [srring] Specifies an optional revision number as an 8-character string.

—serial_number [string]
Specifies an optional serial number as a 16-character string.

—share Specifies a DDF for a controller that can be shared among multi-
ple processes.

—stack_size [decimal number]
Specifies the number of bytes, in decimal, to be allocated to the
interrupt stack (default is 1024).

—type type name Specifies the DDF’s type. The type must already be installed on
the node.

—unit unit number (required)
Specifies the unit number of the device (must be equal to the
lowest interrupt level on which the device interrupts).

e MULTIBUS: Must be in range 0-5.
o VME bus: Must be in range 8-14.
o AT-compatible bus: Must be in range 0-15.

—update Modifies selected portions of an existing DDF. If this option is
specified, it must precede all other options on the command line.
To replace a DDF completely, use —replace.

—user_info [string] Specifies up to 64 characters of optional user information (no
embedded blanks).

—vme Specifies that device lives on VME bus. This is a Version 3
option.

—20_bit_addressing Specifies 20-bit memory address size of controller. You must use
PBU?2 calls.

Commands 1-87

CRDDEF(1)

EXAMPLES
1. Create a new DDF specifying only the required information.

1-88

$ crddf /dev/mt0 —
New DDF.
> —unit 3
> -node 2F
> -csr_page
>
>
>
>
> -check

Domain/OS SysV

1400

No missing fields.

> -end

2. Display a DDF.

$ crddf /dev/mt0 —display

ddf version:
device uid:

initialization entry point:

1

-call library /lib/mt.lib
~initialization_routine mt_$init
-interrupt_library /lib/mt.int.lib
-interrupt_routine 3 mt_S$int

00030003 0000002F (unit 3,
csr page iova: 1400
call library:
interrupt library:

cleanup entry point:

interrupt stack size:

interrupt routines:

level
level
level
level
level
level
level
level

N o W N HE O

[unused]
[unused]
[unused]
mt_$int
[unused]
[unused]
[unused]
[unused]

serial number:

revision:

user info:

1024

/lib/mt.1lib
/lib/mt.int.lib
mt_$init
mt_$cleanup

node 2F)

CRDDF(1)

Commands

CRDDF(1)

Domain/OS SysV

3. Change the name of the interrupt routine in an existing DDF.

5.

Commands

$ crddf /dev/mt0 —update —interrupt_routine 3 mt_$sio

Replace a DDF on the node //grip with a new version.

$ crddf —remddf //grip /dev/x25 —

>

VVVVVVYVVVVVVVYV

-replace

-unit 2

-node *

-call_ library /sys/x25/x25_driver.lib
-interrupt_library /sys/x25/x25_driver_int.lib
-initialization_routine x25_driver_ S$init
-cleanup_routine x25 driver_S$cleanup
-interrupt_routine 2 x25 driver_$int
-memory_base 7000

-memory size 1000

-revision 7.0

-serial number

-user_info release

-display

-end

Create a new DDF for a device that will be accessed through s

installed type foodev:
$ crddf /dev/foodev —
New DDF.
> -unit 3
> -node *
> -csr_page 1400
> -call library /lib/foodev.lib
> -initialization_routine foodev_$init
> -interrupt_library /lib/foodev.int.lib
> -interrupt_routine 3 mt_S$int
> -type foodev
> -check
No missing fields.
> -end
$

CRDDF(1)

treams for the

1-89

CRONTAB(1) SysV CRONTAB(1)

NAME

crontab — user crontab file

SYNOPSIS

crontab [file]
crontab —r
crontab -1

DESCRIPTION

1-90

crontab copies the specified file, or standard input if no file is specified, into a directory
that holds all users’ crontabs.

You can use crontab if your name appears in the file /usr/lib/cron/cron.allow. If that
file does not exist, crontab checks the file /usr/lib/cron/cron.deny to determine if you
should be allowed access. If neither file exists, only root is allowed to submit a job. If
cron.allow does not exist and cron.deny exists but is empty, global usage is permitted.
The allow/deny files contain one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0—6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of
elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). If both are
specified as a list of elements, both are adhered to. For example, 0 0 1,15 * 1 would run
a command on the first and fifteenth of each month, as well as on every Monday. To
specify days by only one field, the other field should be set to * (for example, 0 0 * * 1
would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated to a
new-line character. Only the first line (up to a % or end of line) of the command field is
executed by the shell. The other lines are made available to the command as standard
input.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire
to have their .profile executed must explicitly do so in the crontab file. Cron supplies a
default environment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh),
and PATH(=:/bin:/usr/bin:/usr/Ibin).

Commands

CRONTAB(1) Sysv CRONTAB(1)

If you do not redirect the standard output and standard error of your commands, any
generated output or errors is mailed to you.

OPTIONS
-r Removes your crontab from the crontab directory.
-1 Lists the crontab file for the invoking user.
WARNING

If you inadvertently enter the crontab command with no argument(s), do not try to get
out with a CTRL/D. This causes all entries in your crontab file to be removed. Instead,

exit with a DEL.
FILES
/usr/lib/cron Main cron directory
/usr/spool/cron/crontabs Spool area
/usr/lib/cron/log accounting Information
/usr/lib/cron/cron.allow List of allowed users
/usr/lib/cron/cron.deny List of denied users
SEE ALSO
sh(1).

cron(1M) in the Managing Your SysV System Software.

Commands 1-9

CRP(1)

Domain/OS SysV CRP(1)

Crp — create a process on a remote node

crp —on node_spec [options] [command line]

Crp creates a process on a remote node.

Specify command line to be executed by the remote process. If
the command string contains embedded blanks, enclose it in quo-
tation marks.

The following option, which specifies the remote node, is required:

Specify the remote node on which the process is to be created.

You can specify one of the following options.

Create a remote process running with standard streams connected
to the current window. The option is not valid if —cpo or —cps is
specified.

Do not create a window-pane legend indicating that the local
window is connected to a remote process. Use with the —cp
option only.

Create a remote process without a connection to the current win-
dow, and an identity of user.none.none. This option is not valid
if —cp or —cps is specified. To stop these processes, you must
first create a visible remote process running the shell, then issue
the sigp command to stop the background process.

Create a remote process without a connection to the current win-
dow, and an identity of user.server.none. This option is not
valid if —cp or —cpo is specified. To stop these processes, you
must first create a visible remote process running the shell, then
issue the sigp command to stop the background process.

Specify the name of the remote process. If this option is not
specified, the default is user id.node_id. This allows remote
processes to be traced to their originator.

Specify the log-in sequence for the remote process on the com-
mand line. If the password is omitted, the system prompts you for
it. A null (zero-length) password is specified by the null string

<

NAME
SYNOPSIS
DESCRIPTION

command line (optional)
OPTIONS

—on node_spec

—cp (default)

-nwp

—ctpo

—cps

~n name

—login name [password]
1-92

Commands

CRP(1) Domain/OS SysV CRP(1)

Normally —login appears with —cp. However, you may use
—login with —cpo and —cps as well. If —login is specified with
either —cpo or —cps, the identity of the created process is the
same as that of the caller (as opposed to user.none.none or
user.server.none, respectively). This means that —cpo and ~cps
are identical if —login is also specified.

If you use —login with —cpo or —cps, you must place both the
name and the password on the command line. No prompting is
available in this case.

—me Specified instead of —login. If —me is specified, the created pro-
cess on the remote node inherits the caller’s working directory,
naming directory, home directory text string, and SID. This is
similar to popping up another shell except that the process is run-
ning on another node. If —me is specified with either —cpo or
—cps, the identity of the created process is also that of the caller’s
(as opposed to user.none.none or user.server.none, respec-
tively). This means that —cpo and —cps are identical if —me is
also specified.

—quiet Suppress connection/disconnection messages in the transcript
pad.

EXAMPLES
Create a process on node 532 running the shell, and login with the user ID joe.

$ crp —on 532 —login joe

Create a process on node aef running the shell, and inherit the current process state
information.

$ crp —on Oaef —me

Commands 1-9.

CRPAD(1) Domain/OS SysV CRPAD(1)

NAME

crpad — create a transcript pad and window
SYNOPSIS

crpad [options] [pathname]
DESCRIPTION

crpad creates a transcript pad, copies a file (or standard input) into that pad, and then
opens a window into the pad. This new pad is not related to the transcript pad attached
to processes running the shell; it is for viewing file contents only. This is primarily use-
ful for displaying output being produced inside a pipeline without interrupting the flow
of control in the pipe.

You cannot edit transcript pads. If you wish to place a file in a pad for editing, use the
EDIT key or the DM command ce.

crpad —input behaves differently. This creates an edit pad and lets you create what-
ever text you want. When you close the edit pad (with we or the EXIT key), that text is
copied to standard output.

pathname (optional) Specify the file to be copied into the pad. Not valid if —input is
used.

Default if omitted: copy standard input

OPTIONS
—i[nput] Copies data from a temporary edit window to standard output.
Not valid if —tee or —pn are specified.

~p[n] pathname Specify a pathname for the pad. If you specify a pathname, the
pad is saved in that file. Note that you can also save the pad after
it is created by using the DM command pn (pad_name).

—t[ee] Copy output to standard output in addition to the new pad.

EXAMPLES
Create a pad that displays the file test.data.

$ crpad test.data

Display the intermediate results in a pipeline.

$ $grep 256- phone.book | crpad -tee | sort >phone.book.local

1-94 Commands

CRPAD(1) Domain/OS SysV CRPAD(1)

Create an edit pad. When the pad is closed, sort the text edited and display it in a tran-
script pad.

$ crpad -input | sort | crpad

Commands 1-95

CRTY(1) Domain/OS SysV CRTY(1)

NAME
crty — create a new type

SYNOPSIS
crty [options] type_name

DESCRIPTION
crty creates a new type. It creates an identifier for the new type, and associates it with
the supplied type name. New types are used to identify a new kind of manager for
streams.

type_name (required) Specify the name to assign to the created type.

OPTIONS
—n node_spec Specify the node on which the type is to be created. You may
also specify the entry directory of a volume mounted for software
installation, as shown in the example below. If this option is
omitted, the type is created on the current node.

-1 List the type name/type identifier pair that is created.

—blinary] pathname Create the type from the specified object module (which was
created by crtyobj). This allows you to use an object module
(shipped on media like floppies, magnetic tapes, etc) to add a
new type to a system.

—u high.low Create the type with the specified unique identifier (UID). Give
the high and low addresses for the UID as indicated.

Note: Use this option only for system debugging.
Misuse of this option may cause programs to
behave incorrectly.

EXAMPLES
$ crty example_type -1
"example_type" 24BFI9F41.100001FB created.

$ crty example_type —n //test_vol -1
"example_type" 24BFA6F8.200001FB created on volume //test_vol.

1-96 Commands

CRTY(1) Domain/OS SysV CRTY(1)

In the following example, the disk has been mounted for software installation. The
disk’s top level directory (cataloged as /mount_disk by the mount(1IM) command)

must contain a sys directory. If it does not, you get a "type manager directory not
found" error.

$ crty example_type —n /mount_disk —1

"example_ type” 24BFB71E.200001FB
created on volume //my_node/mount_disk.

SEE ALSO
dlty(1), inty(1), Ity(1), mount(1M)

Commands 1-97

CRTYOBIJ(1)

NAME

Domain/OS SysV CRTYOBJ(1)

crtyobj — create a type object module for binding

SYNOPSIS

crtyobj [options] type_name [variable_name)]

DESCRIPTION

crtyobj creates an object module that contains a global symbol with the type UID. This
module is bound with type managers. The variable is passed into calls to
trait_$mgr_dcl to declare support for the specified type.

type_name (required) Specify the name of the type for which an object module is to

be created.

variable_name (optional)

OPTIONS
~b bin_name

—sect section_name

~u high.low

EXAMPLES

Specify the variable name for the type UID.

Default if omitted: name the variable rype_name_$uid

Specify the output binary file name. The default is
type_name.bin.

Specify the section name for the data area in which the variable
is declared. The default section name is .data.

Specify the type UID explicitly with the high and low addresses
in the positions indicated.

NOTE: Use this option only for system debugging.

$ crtyobj example_type example_$uid
$ bind —b example_mgr example_main.bin example_calls.bin example_type.bin

SEE ALSO

crty(1), dity(1), ley(1)

1-98

Commands

CSH(1)

NAME

SysV CSH(1)

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—cefinstvVxX] [—Dname=value 1 [arg ...]

DESCRIPTION

csh is a command-language interpreter that incorporates a history mechanism (see His-
tory Substitutions), job control facilities (see Jobs), interactive filename and username
completion (see Filename Completion), and a C-like syntax.

csh begins by executing commands from the .cshre file in your home directory. If this
is a log-in shell, then it also executes commands from your .login file. CRT users often
place an stty crt command in their .login files, and also invoke tset(1) there. To be
able to use its job control facilities, users of csh must (and automatically) use the tty
driver fully described in tty(4). This tty driver allows you to generate interrupt charac-
ters from the keyboard to tell jobs to stop. See stty(1) for details on setting options in
the tty driver.

Normally, the shell then begins reading commands from the terminal, prompting with
“% *’ . Upon reading a line of command input, the shell breaks it into words, places
this sequence of words on the command-history list, parses it, and then executes each
command in the line.

When a log-in shell terminates, it executes commands from the .logout file in your
home directory.

LEXICAL STRUCTURE

Usually, esh splits input lines into words at blanks and tabs. The following, however,
are exceptions to this:

e The characters: &, |, ;, >, <, (, and) form separate words. If doubled in & &, ||, <<,
>>, these pairs form single words. You can make these parser metacharacters part
of other words or prevent their special meaning by preceding them with a \
(backslash) character. A newline preceded by a backslash is equivalent to a blank.

e Strings enclosed in matched pairs of quotation marks, °, , or ", form parts of a
word; metacharacters in these strings, including blanks and tabs, do not form
separate words. Within pairs of ~ or " characters, a newline preceded by a
backslash gives a true newline character.

e When the shell’s input is not a terminal, the # character introduces a comment that
continues to the end of the input line. To prevent this special meaning, you can pre-
cede the # by a \ or place it in quotations, using *, ", and ".

Commands 1-99

CSH(1) SysV CSH(1)

COMMANDS
A simple command is a sequence of words, the first of which specifies the command to
be executed. A simple command or a sequence of simple commands separated by |
characters forms a pipeline. The output of each command in a pipeline is connected to
the input of the next. Sequences of pipelines may be separated by ; characters, and are
then executed sequentially. A sequence of pipelines can be placed in the background
by adding an & character at the end.

Any of the above may be placed in parentheses to form a simple command (which may
be a component of a pipeline, and so on). You can also separate pipelines with || or &&
characters to indicate, as in the C language, that the second is to be executed only if the
first fails or succeeds, respectively (see Expressions).

JOBS
csh associates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started asyn-
chronously with an &, csh prints a line similar to the following:

[1] 1234

This indicates that the job, which was started asynchronously, was job number 1 and
had one (top-level) process whose process ID was 1234.

To suspend a running job, you must send it a stop signal, usually with CTRL/Z. Once
csh has indicated that the job has been stopped (and has printed a prompt), you can
manipulate the state of this job. You can put it in the background with the bg com-
mand, or run some other commands and then eventually bring the job back into the
foreground with the fg command. A suspend takes effect immediately, causing csh to
discard pending output and unread input. There is another special key, CTRL/Y, which
does not generate a STOP signal until a program attempts to read(2) it. Type CTRL/Y
ahead when you have prepared some commands for a job that you wish to stop after the
program has read them. CTRL/Y is not supported in the Display Manager.

A job being run in the background stops if it tries to read from the terminal. Back-
ground jobs are normally allowed to produce output, but you can disable this by speci-
fying the stty tostop command. Specifying stty tostop causes background jobs to stop
when they try to produce output just as they do when they read input.

There are several ways to refer to jobs in the shell. The % character introduces a job
name. Job number 1, for example, becomes % 1. Naming a job brings it to the fore-
ground; thus, %1 is a synonym for fg %1, bringing job 1 back into the foreground.
Similarly, specifying %1 & resumes job 1 in the background. Jobs can also be named
by prefixes of the string typed in to start them, if the prefix is unambiguous. For exam-
ple, %ex nommally restarts a suspended ex(1) job, if there is only one suspended job
whose name begins with the string ‘‘ex’’. You can also specify % ?string, to indicate a
job whose text contains string, if there is only one such job.

1-100 Commands

CSH(1)

SysV CSH(1)

csh maintains a notion of the current and previous jobs. In output pertaining to jobs, it
marks the current job with a + and the previous job with a — The abbreviation %+
refers to the current job, and %-— refers to the previous job. For close analogy with the
syntax of the history mechanism (described below), a % % also represents the current
job.

STATUS REPORTING

csh knows immediately when the state of a process changes. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just
before it prints a prompt. (This is so that it does not otherwise disturb your work.) How-
ever, if you set the notify shell variable, csh immediately reports status changes in
background jobs. The notify shell command also marks a single process so that its
status changes are immediately reported. By default, notify marks the current process.
Thus, you only have to type notify after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you are wamed that ‘“You have
stopped jobs.”” You can use the jobs command to see which jobs are stopped. A second
attempt to exit causes the suspended jobs to terminate without waming.

FILENAME COMPLETION

When the filename completion feature is enabled by setting the shell variable filec (see
set), csh interactively completes filenames and usemames from unique prefixes, when
they are input from the terminal followed by the escape character (the escape key, or
CTRL/L). For example, if the current directory looks like

DSCOLD bin cmd lib xmpl.c
DSC.NEW chaosnet cmtest mail xmpl.o
bench class dev mbox xmpl.out

and the input is
% vi ch<ESC>
csh completes the prefix ‘‘ch’’ to the only matching filename ‘‘chaosnet’’, changing the
input line to
% vi chaosnet
However, if you specify
% vi D<ESC>
csh expands the input only to
% vi DSC.
and sounds the terminal bell to indicate that the expansion is incomplete, because two
filenames match the prefix ‘‘DSC’’.

If a partial filename is followed by the end-of-file character (usually CTRL/D), then,
instead of completing the name, csh lists all filenames matching the prefix. For exam-
ple, the input

% vi D<CTRL/D>

Commands 1-101

CSH(1) SysV CSH(1)

causes all files beginning with ‘‘D’’ to be listed:
DSC.NEW DSC.OLD
while the input line remains unchanged.

You can use the same system of escape and end-of-file to expand partial usernames, if
the word to be completed (or listed) begins with the character *“”’. For example, typ-
ing

cd ro<CTRL/D>
may produce the expansion

cd “root

Set the variable nobeep, to inhibit the use of the terminal bell to signal errors or multi-
ple matches.

Normally, all files in the particular directory are candidates for name completion. Files
with certain suffixes can be excluded from consideration by setting the variable fignore
to the list of suffixes to be ignored.

Thus, if you set fignore by the command

% set fignore = (.0 .out)
then typing

% vi x<ESC>
results in the completion to

% vi xmpl.c
ignoring the files xmpl.o and xmpl.out. However, if the only completion possible
requires not ignoring these suffixes, they are not ignored. Also, fignore does not affect
the listing of filenames by CTRL/D. All files are listed regardless of their suffixes.

HISTORY SUBSTITUTIONS

History substitutions place words from previous command input as portions of new
commands, making it easy to repeat commands, repeat arguments of a previous com-
mand in the current command, or fix spelling mistakes in a previous command with lit-
tle typing and much confidence. History substitutions begin with the character ! and
can start anywhere in the input stream (providing that they do not nest). Precede the !
with a \ to prevent its special meaning. For convenience, a ! is passed unchanged when
it is followed by a blank, tab, newline, =, or (. History substitutions also occur when an
input line begins with a " (see below). Before being executed, input lines containing his-
tory substitution are echoed on the terminal as they could have been typed without his-
tory substitution.

csh saves input commands consisting of one or more words on the history list. The his-
tory substitutions reintroduce sequences of words from these saved commands into the
input stream. The size of the history list is controlled by the history variable. The previ-
ous command is always retained, regardless of its value. Commands are numbered
sequentially from 1.

1-102 Commands

CSH(1)

SysV CSH(1)

For example, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but you can make the current event number part of the prompt by plac-
ing an ! in the prompt string.

Supposing the current event is 13, you can refer to previous events by event number, as
in !11 for event 11; relatively, as in !-2 for event 11; by a prefix of a command word, as
in !d for event 12 or !wri for event 9; or by a string contained in a word in the com-
mand, as in !?mic?, also referring to event 9.

These forms, without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special case, !! refer to the pre-
vious command. Thus, !! alone is essentially a redo.

To select words from an event, you can follow the event specification by a : and a
designator for the desired words. The words of an input line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being 1, and so
on. The basic word designators are:

0 First (command) word

n n’th argument

" First argument, ie. ‘1’

$ Last argument

% Word matched by (immediately preceding) ?s? search

x=y Range of words
-y Abbreviates ‘0-y’

* Abbreviates ‘*—$’, or nothing if only 1 word in event
X* Abbreviates ‘x—$’
x= Like ‘x *’ but omitting word ‘$’

The : separating the event specification from the word designator can be omitted if the
argument selector begins with a *, $, * — or %. After the optional word designator can
be placed a sequence of modifiers, each preceded by a :. The following modifiers are
defined:

h Remove a trailing pathname component, leaving the head.

r Remove a trailing ‘.xxx’ component, leaving the root name.
e Remove all but the extension ‘.xxx’ part.

s/lfr| Substitute / for r

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g. ‘g&’.

Commands 1-103

CSH(1)

SysV CSH(1)
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
X Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a g, the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left-hand side of substitutions are not regular expressions in the sense that they are
in the editors (ed, vi, and so on) rather they are strings. You can use any character as
the delimiter in place of a /. A \ quotes the delimiter into the / and r strings. The char-
acter & on the right-hand side is replaced by the text from the left. A \ also quotes an
&. A null / uses the previous string either from an / or from a contextual scan string §
in !?s?. The trailing delimiter in the substitution, as well as the trailing ? in a contex-
tual scan, can be omitted if a newline follows immediately.

You can specify a history reference without an event specification, for example, !$. In
this case, the reference is to the previous command unless a previous history reference
occurred on the same line (in which case this form repeats the previous reference).

Thus, !?f00?" !$’ gives the first and last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first non-blank character
of an input line is a *. This is equivalent to !:s” and provides a convenient shorthand for
substitutions on the text of the previous line. Thus, "Iblib fixes the misspelling of lib in
the previous command. Finally, a history substitution may be surrounded with { and }
if necessary, to insulate it from the characters that follow. Thus, after Is —Id “paul you
might type !{1}a to do Is —Id “paula while !la looks for a command starting with la.

QUOTATIONS WITH SINGLE AND DOUBLE QUOTES

Placing strings in single and double quotation marks prevents all or some of the remain-
ing substitutions. Those enclosed in single quotation marks are prevented any further
interpretation; those in double quotation marks may be expanded as described below.

In both cases, the resulting text becomes all or part of a single word. In only one spe-
cial case (see COMMAND SUBSTITUTION below) does a double-quoted string yield
parts of more than one word; single-quoted strings never do.

ALIAS SUBSTITUTION

1-104

csh maintains a list of aliases that can be established, displayed, and modified by the
alias and unalias commands. After it scans a command line, csh parses the line into
distinct commands and checks the first word of each command, left-to-right, for an
alias. If it finds one, it rereads the text that is the alias for that command (with the his-
tory mechanism available) as though that command were the previous input line. The
resulting words replace the command and argument list. If no reference is made to the
history list, csh leaves the argument list unchanged.

For example, if the alias for Is is Is —1, the command Is /usr maps to Is —1 /usr and the
argument list is undisturbed. Similarly, if the alias for lookup is grep !" /etc/passwd,
then lookup bill maps to grep bill /etc/passwd.

Commands

CSH(1)

SysV CSH(1)

Every time csh finds an alias, it transforms the input text and begins the aliasing process
again on the reformed input line. Prevent looping (if the first word of the new text is
the same as the old) by flagging the first word to prevent further aliasing. csh detects
other loops and returns an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus, you can
specify alias print “pr \!* | Ipr” to make a command that pr’s its arguments to the line
printer.

VARIABLE SUBSTITUTION

csh maintains a set of variables, each having as value a list of zero or more words. csh
sets some of these variables, and merely refers to others. For instance, the argv variable
is an image of the shell’s argument list, and words of its value are referred to in special
ways.

You can display and change the values of variables by using the set and unset com-
mands. Some of the variables the shell refers to are toggles. The shell does not care
what their value is, only whether they are set. For instance, the verbose variable is a
toggle that causes command input to be echoed. Use the command line option —v to set
this variable.

Other operations treat variables numerically. The command represented by the at sign,
@, permits numeric calculations to be performed, with the result assigned to a variable.
However, variable values are always represented as (zero or more) strings. In numeric
operations, the null string is considered to be zero, and the second and subsequent
words of multiword values are ignored.

After csh has aliased and parsed the input line, and before executing each command, it
performs variable substitution keyed by $ characters. You can prevent this expansion
by preceding the $ with a \, except within double quotation marks ("), where it always
occurs, and within single quotation marks (") where it never occurs. Strings enclosed in
single quotation marks are interpreted later (see COMMAND SUBSTITUTION below),
so the dollar sign ($) substitution does not occur until later, if at all. A $ is passed
unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable-
expanded separately. Otherwise, the command name and entire argument list are
expanded together. Therefore, the first (command) word to this point can generate
more than one word; the first word becomes the command name, and the rest become
arguments.

Unless you enclose the results of variable substitution in double quotation marks or
specify the :q modifier, they may eventually be command and filename substituted.
Within double quotation marks, a variable whose value consists of multiple words
expands to a portion of a single word, with the words of the variable’s value separated
by blanks. When the :q modifier is applied to a substitution, the variable expands to
multiple words with each word separated by a blank and enclosed in quotation marks to
prevent later command or filename substitution.

Commands 1-105

CSH(1)

1-106

Sysv CSH(1)

The following metasequences are provided to introduce variable values into the shell
input. Except as noted, you cannot reference a variable that is not set. You can apply
the :h, :t, :r, :gh, :gt, and :gr modifiers to most of the substitutions below. Substitu-
tions that you cannot do this with are marked accordingly. If braces appear in the com-
mand form, you must put the modifiers within the braces. You can apply only one
modifier beginning with a colon (:) on each expansion preceded by a dollar sign ($).

$name
${name}

$namelselector)
${name[selector]}

$#name
${#name}

$0
$number
${number}
$*
$?name

$?{name}

$20

3

Replace text by the words of the value of variable name, each
separated by a blank. Braces insulate name from following char-
acters, which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters and digits starting with a
letter. The underscore character (_) is considered a letter. If
name is not a shell variable, but is set in the environment, that
value is returned. However, colon (:) modifiers and the other
forms given below are not available in this case.

Select only some of the words from the value of name. The selec-
tor is subjected to $ substitution and may consist of a single
number or two numbers separated by a dash (=). The first word
of a variable’s value is numbered 1. If you omit the first number
of a range, the number defaults to 1. If you omit the last member
of a range, the number defaults to $#name. The selector * selects
all words. It is not an error for a range to be empty if you omit
the second argument or it is in range.

Give the number of words in the variable. This is useful for later
use in a “‘[selector]’’.

Substitute the filename from which command input is being read.
An error occurs if the name is not known.

This sequence is equivalent to $argv[number].

This sequence is equivalent to $argv[+].

Substitute the string 1 if name is set; 0 if it is not. This substitu-
tion cannot be modified with modifiers preceded by a :.

Substitute 1 if the current input filename is known; 0 if it is not.
This substitution cannot be modified with modifiers preceded by
a:.

Substitute the decimal process number of the parent shell. This
substitution cannot be modified with modifiers preceded by a :.

Commands

CSH(1) SysV CSH(1)

$< Substitute a line from the standard input, with no further interpre-
tation. This sequence is useful for reading from the keyboard in a
shell script. This substitution cannot be modified with modifiers
preceded by a :.

COMMAND AND FILENAME SUBSTITUTION
csh applies the remaining substitutions, command and filename substitution, selectively
to the arguments of built-in commands. This means that portions of expressions not
evaluated are not subjected to these expansions. Names for commands that are not
intemnal to the shell are substituted separately from the argument list. This occurs very
late, after input/output redirection is performed, and in a child of the main shell.

COMMAND SUBSTITUTION
Enclosing a command in closing quotation marks (q) indicates command substitution.
csh usually breaks the output from such a command into separate words at blanks, tabs,
and newlines. It discards null words, and uses the modified text to replace the original
string. Within double quotation marks, only newlines force new words; blanks and tabs
are preserved.

In any case, the single final newline does not force a new word. Note that it is thus pos-
sible for a command substitution to yield only part of a word, even if the command out-
puts a complete line.

FILENAME SUBSTITUTION
If a word contains any of the characters *, ?, [, {, or it begins with ~, that word is a can-
didate for filename substitution, also known as ‘‘globbing.”’ csh regards the word as a
pattern, replacing it with an alphabetically sorted list of filenames that match the pat-
tem. In a list of words specifying filename substitution, at least one pattern must match
an existing filename, but each pattern need not match. Only the metacharcters *, ?, and
[imply pattern matching. The characters ~ and { are like abbreviations.

In matching filenames, you must match a . at the beginning of a filename or immedi-
ately following a / explicitly. This is also true for the / itself. An * matches any string
of characters, including the null string. A ? matches any single character. The
sequence [...] matches any one of the characters enclosed. Within such a sequence, a
pair of characters separated by a — matches any character lexically between the two.

The character ~ at the beginning of a filename refers to home directories. Standing
alone, it expands to your home directory (reflected in the value of the variable home).
When the ~ is followed by a name consisting of letters, digits, and —, csh searches for a
user with that name and substitutes his home directory. Thus, "ken might expand to
/usr/ken and "ken/chmach to /usr/ken/chmach. If the ~ is followed by a character
other than a letter or /, or if it appears somewhere other than at the beginning of a word,
the shell leaves it undisturbed.

The metanotation a{b,c,d}e is shorthand for abe ace ade. Left-to-right order is
preserved. The results of matching are sorted separately at a low level to preserve this
order (nesting is acceptable). Thus, “source/sl/{oldls,Js}.c expands to

Commands 1-107

CSH(1)

1-108

Sysv CSH(1)

{usr/source/s1/oldls.c /usr/source/sl/Is.c whether or not these files exist, without any
chance of error if the home directory for source is /usr/source. Similarly,
../{memo,*box} might expand to ../memo ../box ../mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case, the shell passes all single
unmatched braces or an empty pair of braces undisturbed.

INPUT/OUTPUT
To redirect the standard input and standard output of a command, use the following

syntax:

< hame

<< word

> name
>! name
>& name
>&! name

>> name
>>& name
>>! name
>&!> name

Open the file name (which is first variable-, command-, and filename-
expanded) as the standard input.

Read the shell input up to a line identical to word. word is not subjected
to variable-, filename-, or command-substitution. Each input line is
compared to word before any substitutions are done on this input line.
Unless a quoting \, "', or * character appears in word, csh performs vari-
able and command substitution on the intervening lines, allowing \ to
quote a $, a\, and *. Commands that are substituted have all blanks and
tabs preserved. All newlines except for the final one are also preserved.
The resulting text is placed in an anonymous temporary file, which is
given to the command as standard input.

Use the file name as standard output. If the file does not exist, create it;
if the file does exist, truncate it, discarding its previous contents.

If the variable noclobber is set, the file must not exist, or it must be a
character special file (for example, a terminal or /dev/null), or an error
results. This helps prevent accidental destruction of files. The ! forms
suppress this check.

Forms involving & route the diagnostic output, as well as the standard
output, into the specified file. name is expanded in the same way as
input filenames beginning with < are.

Use the file name as standard output, but place output at the end of the
file. If the variable noclobber is set, it is an error for the file not to exist
unless you specify one of the forms beginning with !.

Commands

CSH(1)

SysV CSH(1)

A command receives the environment in which the shell was invoked, as modified by
the input/output parameters and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of shell commands have no
access to the text of the commands by default; rather, they receive the original standard
input of the shell. The << mechanism should be used to present in-line data. This per-
mits shell command scripts to function as components of pipelines and allows the shell
to block-read its input. Note that the default standard input for a command run
detached is not modified to be the empty file /dev/null. Rather, the standard input
remains as the original standard input of the shell. If this is a terminal and if the process
attempts to read from the terminal, the process blocks and you are notified (see JOBS
above.)

Diagnostic output may be directed through a pipe withthe standard output. Simply use
the form |& instead of | to do this.

EXPRESSIONS

A number of the built-in commands take expressions that have operators similar to
those used for the C language, with the same precedence. These expressions appear in
the @, exit, if, and while commands. The following operators are available:

& | 7" & ==I==I"<=>=<><<>>+ -/ % !~ ()

Here the precedence increases to the right, The following characters are, in groups, at
the same level:

AN
v

<= D=
<< >>

+ -

* /%

The following operators compare their arguments as strings:

= = = I

All others operate on numbers. The operators =~ and !~ are like == and != except that
the right-hand side is a pattern (containing, for example, asterisks, question marks, and
instances of [...] characters) against which the left-hand operand is matched. This
removes the need to use the switch statement in shell scripts when all you need is
pattern-matching.

Commands 1-109

CSH(1)

SysV CSH(1)

csh considers strings beginning with a zero to be octal numbers. It interprets null or
missing arguments as zero. The results of all expressions are strings, which represent
decimal numbers. Note that no two components of an expression can appear in the
same word. You should surround them by spaces, except when they are adjacent to
components of expressions that are syntactically significant to the parser (&, |, <, >, (,

)

Also available in expressions as primitive operands are command executions enclosed
in braces ({ and }), and file enquiries of the form —/ name where [is one of the follow-
ing:

Read access

Write access

Execute access

Existence

Ownership

Zero size

Plain file

Directory

a=NOC®xg-

csh performs command and filename expansion on the specified name, and then checks
to see if it has the specified relationship to the real user. If the file does not exist, or if it
is inaccessible, all inquiries return false (0). Command executions succeed, returning
true (1), if the command exits with status 0; otherwise, they fail, returning false (0). If
you require more detailed status information, execute the command outside an expres-
sion and examine the status variable.

CONTROL FLOW

csh contains a number of commands to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from terminal input. These commands
all operate by forcing the shell to reread or skip in its input and, due to the implementa-
tion, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if—then—else form of the if
statement require that the major keywords appear in a single simple command on an
input line, as shown below.

If the shell’s input is not seekable, the shell buffers input whenever a loop is being read
and performs seeks in this internal buffer to accomplish the rereading implied by the
loop. (To the extent that this allows, backward gotos succeed on non-seekable inputs.)

BUILT-IN COMMANDS

1-110

Built-in commands are executed within the shell. If a built-in command occurs as any
component of a pipeline except the last, it is executed in a sub-shell.

alias Print all aliases.

alias name
Print the alias for name.

Commands

CSH(1)

SysV CSH(1)

alias name wordlist
Assign the specified wordlist as the alias of name. The wordlist is command-
and filename-substituted. name cannot be alias or unalias.

alloc Show the amount of dynamic memory acquired, broken down into used and
free memory. With an argument, this command shows the number of free and
used blocks in each size category. The categories start at size eight and double
at each step. This command’s output may vary across system types.

bg

bg %job ...
Put the current or specified jobs into the background, continuing them if they
were stopped.

break Resume execution after the end of the nearest enclosing foreach or while.
Execute the remaining commands on the current line. Thus you can have
multi-level breaks by writing them all on one line.

breaksw
Break from a switch, resuming after the endsw.

case label:
Specify a label in a switch statement.

cd

cd name

chdir

chdir name
Change the shell’s working directory to directory name. If you do not specify
an argument, change to the home directory of the user.

If name is not found as a subdirectory of the current directory and does not
begin with /, ./, or ../, check each component of the variable cdpath to see if it
has a subdirectory name. Finally, if all else fails but name is a shell variable
whose value begins with /, check to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. Execute remain-
ing commands on the current line.

default: Label the default case in a switch statement. This command should follow all
case labels.

dirs Print the directory stack. The top of the stack is at the left, and the first direc-
tory in the stack is the current directory.

echo wordlist

echo —n wordlist
Write the specified words to the shell’s standard output, separated by spaces,
and terminated with a newline, unless you specify the —n option.

Commands 1-111

CSH(1)

1-112

SysV CSH(1)

else

end

endif

endsw See the description of the foreach, if, switch, and while statements below.

evalarg ...
Read the arguments as input to the shell, executing the resulting command(s)
in the context of the current shell. This occurs as in sh(1). The command is
generally used to execute commands generated as the result of command or
variable substitution, since parsing occurs before these substitutions. See
tset(1) for an example of using eval.

exec command
Execute the specified command in place of the current shell.

exit Exit with the value of the status variable.

exit(expr)
Exit with the value of the specified expr.

fg

fg %job ...
Bring the current or specified jobs into the foreground, continuing them if they
were stopped.

foreach name (wordlist)

end Successively set the variable name to each member of wordlist, and execute
the sequence of commands between this command and the matching end.
(Both foreach and end must appear alone on separate lines.)

Use the continue command to continue the loop prematurely. Use the break
command to terminate it prematurely. When the shell reads this command
from the terminal, it reads the loop once, prompting with *? ** before execut-
ing any statements in the loop. If you make a mistake typing in a loop at the
terminal, you can interrupt it.

glob wordlist
Perform the same function as the echo command, but do not recognize
backslash escapes, and delimit words by null characters in the output. Use this
command with programs that use the shell to filename-expand a list of words.

goto word
Perform filename- and command-expansion on the specified word to yield a
string of the form label. Cause the shell to rewind input as much as possible
and search for a line of the form /abel: (possibly preceded by blanks or tabs).
Continue execution after the specified line.

Commands

CSH(1)

Sysv CSH(1)

hashstat
Print a statistics line indicating how effective the internal hash table has been
at locating commands and avoiding instances of the exec command. An exec
is attempted for each component of the path where the hash function indicates
a possible hit, and in each component that does not begin with a slash.

history Display the history event list.

history n
Print only the #» most recent events in the history event list.

history —r n
Print the most recent events first (rather than printing the oldest first).

history —h n
Print the history event list without leading numbers. Use this command to pro-
duce files suitable for sourcing with the —h option to the source built-in com-
mand.

if (expr) command
If the specified expression evaluates true, execute the single command with
arguments. Variable substitution on command happens early, at the same time
it does for the rest of the if command. The command must be a simple com-
mand, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, in which case, command is
not executed.

if (expr) then
else if (expr2) then
else

endif If the specified expr is true, execute the commands to the first else; otherwise if
expr2 is true, execute the commands to the second else, and so on. Any
number of else-if pairs are possible; only one endif is needed. The else part is
optional. (The words else and endif must appear at the beginning of input
lines; the if must appear alone on its input line or after an else.)

inlib /ib Install a user-supplied library specified by /ib in the shell process. The library
is used to resolve external references of programs (and libraries) loaded after
its installation. Note that the library is not loaded into the address space unless
it is needed to resolve an extemal reference. The list of inlibed libraries is
passed to all children of the current shell. Use llib(1) to examine this list.

jobs List the active jobs.

jobs -1 List the active jobs, and include process IDs.

Commands 1-113

CSH(1)

1-114

SysV CSH(1)

kill %job

kill —sig %job ...

kill pid

kill —sig pid ...

kill -1 Send either the TERM (terminate) signal or the specified signal to the jobs or
processes indicated. Provide signals by number or by names (as given in
/usr/include/signal.h, stripped of the SIG prefix). A kill -l lists the signal
names. There is no default process for this command. If the signal being sent
is TERM (terminate) or HUP (hangup), the job or process is sent a CONT
(continue) signal as well.

limit

limit resource

limit resource maximum-use

limit —h

limit —h resource

limit —h resource maximum-use
Limits the consumption by the current process and each process it creates, to
not individually exceed maximum-use on the specified resource. If you do not
specify maximum-use, the current limit is printed; if you do not specify
resource, all limitations are given. If you specify the —h flag, the hard limits
are used instead of the current limits. The hard limits impose a ceiling on the
values of the current limits. Only the super-user can raise the hard limits, but a
user can lower or raise the current limits within the legal range.

Resources controllable currently include cputime (the maximum number of
CPU seconds to be used by each process), filesize (the largest single file that
you can create), datasize (the maximum growth of the data+stack region via
sbrk(2) beyond the end of the program text), stacksize (the maximum size of
the automatically-extended stack region), and coredumpsize (the size of the
largest core dump that will be created). NOTE: You cannot use limit to set
stacksize; the coredumpsize limit is always 0 in Domain/OS.

You can specify the maximum-use as a (floating point or integer) number fol-
lowed by a scale factor. For all limits other than cputime the default scale is
‘K’ or ‘kilobytes’ (1024 bytes); you can also us a scale factor of ‘m’ or ‘mega-
bytes’. For cputime the default scaling is ‘seconds’, but you can specify ‘m’
for minutes or ‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes and
seconds.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

login Terminate a log-in shell, replacing it with an instance of /bin/login. This is one
way to log out, and it is included for compatibility with sh(1).

logout Terminate a log-in shell. This command is especially useful if ignoreeof is
set.

Commands

CSH(1)

SysV CSH(1)

nice Set the nice(1) scheduling priority for this shell to 4.

nice +number
Set the nice(1) priority to the given number.

nice command
Run command at nice(1) priority 4.

nice +number command
Run command at positive number nice(1) priority. The greater the number, the
lower CPU priority the process gets. The super-user can specify negative

priority by using nice —number The command is always executed in a
sub-shell, and the restrictions placed on commands in simple if statements
apply.

nohup When you specify this command in a shell script, ignore hangups for the
remainder of the script.

nohup command
Run the specified command with hangups ignored. This happens to all
processes detached with &.

notify

notify %job ...
Notify the user asynchronously when the status of the current or specified jobs
changes (normally, notification is presented before a prompt). This is
automatic if the shell variable notify is set.

onintr Restore the default action of the shell on interrupts (to terminate shell scripts
or to return to the terminal command input level). In any case, if the shell is
running detached and interrupts are being ignored, all forms of onintr have no
meaning, and interrupts continue to be ignored by the shell and all invoked
commands.

onintr —
Ignore all interrupts.

onintr label
Execute a goto label when an interrupt is received or a child process ter-
minates because it was interrupted.

popd Pop the directory stack, returning to the new top directory. The elements of
the directory stack are numbered from zero, starting at the top.

popd +n
Discard the nth entry in the directory stack.

pushd Exchange the top two elements of a directory stack.

pushd name
Change to name directory and push the old current working directory onto the
directory stack.

Commands 1-115

CSH(1)

1-116

Sysv CSH(1)

pushd +n
Rotate the nth argument of the directory stack around to be the top element
and change to it. The members of the directory stack are numbered from zero,
starting at the top.

rehash Recompute the intemnal hash table of the contents of the directories in the path
variable. This is needed if new commands are added to directories in the path
while you are logged in. This should be necessary only if you add commands
to one of your own directories, or if someone changes the contents of one of
the system directories.

repeat count command
Execute the specified command (subject to the same restrictions as the com-
mand in the one-line if statement above) count times. I/O redirections occur
exactly once, even if count is zero.

rootnode arg
Change the current node entry directory to arg. See rootnode(1).

set Show the value of all shell variables. Variables that have other than a single
word as their value appear as a parenthesized word list.

set name
Set name to the null string.

set name=word
Set name to the single word. In all cases, the value is command- and filename-
expanded.

set namelindexl=word
Set the indexth component of name to word. This component must already
exist. In all cases, the value is command- and filename-expanded.

set name=(wordlist)
Set name to the list of words in wordlist. In all cases, the value is command-
and filename-expanded. You can repeat these arguments to set multiple values
in a single set command. Note, however, that variable expansion happens for
all arguments before any setting occurs.

setenv List all current environment variables.
setenv name
Set name to an empty string.

setenv name value
Set the value of the environment variable name to be value, a single string.
The most commonly used environment variables — USER, TERM, and PATH
— are automatically imported to and exported from the esh variables user,
term, and path. You do not have to use setenv for these.

Commands

CSH(1)

SysV CSH(1)

shift Shift the members of argv to the left, discarding argv[1]. It is an error for the
argy variable not to be set or to have less than one word as its value.

shift variable
Shift the specified variable to the left, discarding variable([1].

source name
Read commands from name. You may nest source commands, but if you nest
them too deeply, the shell may run out of file descriptors. An error in a source
at any level terminates all nested source commands.

source —h name
Place commands in the history list without executing them. Normally, input
during source commands is not placed on the history list.

stop Stop the current job that is executing in the background.

stop %job ...
Stop the specified job that is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with CTRL/Z. This is most often used to stop shells started by su(1)

switch (string)
case strl:

breaksw

default:

breaksw
endsw

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters *, ? and [...]
may be used in the case labels, which are variable expanded. If none of the
labels match before a ‘‘default’’ label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels as
in C. If no label matches and there is no default, execution continues after the
endsw.

time Print a summary of time used by this shell and its children.

time command
If arguments are given the specified simple command is timed and a time

Commands 1-117

CSH(1)

1-118

Sysv CSH(1)

summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask Display the file-creation mask (in octal).

umask value
Set the file-creation mask to the specified value. Common values for the mask
are 002 (giving all access to the group and read and execute access to others)
or 022 (giving all except write access to users in the group or others).

unalias pattern
Discard all aliases whose names match the specified pattern. Thus, unalias *
removes all aliases. It is not an error for nothing to be unaliased.

unhash Disable the internal hash table mechanism, normally used to speed location of
executed programs.

unlimit

unlimit resource

unlimit —h

unlimit —h resource
Removes the limitation on resource. If you do not specify resource, all
resource limitations are removed. If you specify —h, the corresponding hard
limits are removed. Only the super-user can do this.

unset pattern
Remove all variables whose names match the specified pattem. Thus, unset *
removes all variables. This has noticeably distasteful side-effects. It is not an
error for nothing to be unset.

unsetenv pattern
Remove all variables whose names match the specified pattern from the
environment. Also refer to the setenv built-in shell command, above, and the
printenv(l) command.

ver [systype [command 1]
With no arguments, return the current value of the SYSTYPE environment
variable. With a systype argument, change the SYSTYPE environment vari-
able to either bsd4.3 or sys5.3, depending on which is specified.

wait Wait for all background jobs. If the shell is interactive, an interrupt can dis-
rupt the wait, and the shell prints the names and job numbers of all jobs known
to be outstanding.

which Identify which file would be executed if the command were submitted for exe-
cution. The command is submitted to normal alias and variable substitutions.

while (expr)

end While the specified expression evaluates to nonzero, evaluate the commands
between the while and the matching end. You can use break and continue to

Commands

CSH(1) SysV CSH(1)

terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs the first time through the loop, as
for the foreach statement if the input is a terminal.

%job Bring the specified job number into the foreground.

%0 job &
Continue the specified job in the background.

@ Print the values of all the shell variables.

@ name = expr
Set the specified name to the value of expr. If the expression contains a >, <,
&, or | character, you must enclose at least that part in parentheses.

@ namelindex] = expr
Assign the value of expr to the indexth argument of name. Both name and its
indexth component must already exist.

The operators *=, +=, etc., are available as in C. The space separating the
name from the assignment operator is optional. However, spaces are manda-
tory in separating components of expr that would otherwise be single words.
Special postfix ++ and —— operators increment and decrement name, respec-
tively, for example, @ i++.

PREDEFINED AND ENVIRONMENT VARIABLES
The following variables have special meaning to csh. Of these, the shell sets argv, ewd,
home, path, prompt, shell, and status. Except for cwd and status, this setting occurs
only at initialization. These variables will not then be modified unless you explicitly
perform the modification.

csh copies the USER environment variable into the user variable; TERM into term;
and HOME into home. It then copies these back into the environment whenever the
normal shell variables are reset.

csh handles the PATH environment variable in a similar manner. Do not worry about
the setting for PATH other than in the file .cshre. Inferior csh processes import the
definition of path from the environment, and re-export it if you then change it.

argy Set to the arguments to the shell. It is from this variable that posi-
tional parameters are substituted, that is, $argv[1] replaces $1, etc.

cdpath Give a list of alternate directories searched to find subdirectories in
chdir commands.

cwd Give the full pathname of the current directory.

echo Echo each command and its arguments just before the command is

executed. This variable is set when you specify the —x command
line option. For non-built-in commands all expansions occur before
echoing. Echo built-in commands before command and filename
substitution, since these substitutions are then done selectively.

Commands 1-119

CSH(1)

1-120

filec

histchars

history

home
ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

SysV CSH(1)

Enable filename completion.

Change the characters used in history substitution, if you specify a
string value. Use the first character of its value as the history substi-
tution character, replacing the default character !. The second char-
acter of its value replaces the " character in quick substitutions.

Control the size of the history list. If you specify a numeric value, do
not discard any command that has been referenced in that many
events. The last executed command is always saved on the history
list. The shell may run out of memory if the value of history is too
large.

Represents the home directory of the invoker, initialized from the
environment. The filename expansion of ~ refers to this variable.

If set, ignore the end-of-file from terminal input devices. This
prevents shells from accidentally being killed by an EOF.

Represent the files where the shell checks for mail. This is done after
each command completion that results in a prompt, if a specified
interval has elapsed. The shell will tell you that you have new mail,
if the file exists with an access time not greater than its modify time.
If the first word of the value of mail is numeric, it specifies a dif-
ferent mail-checking interval (in seconds) than the default (10
minutes). If you specify multiple mail files, the shell tells you that
you have new mail in name, when there is mail in the file name .

Restrict output redirection to ensure that files are not accidentally
destroyed, and that redirections done with >> refer to existing files.

If set, inhibit filename expansion. Use this in shell scripts that do not
deal with filenames, or after you have obtained a list of filename,s
and further expansions are not desirable.

If set, it is not an error for a filename expansion not to match any
existing files; rather, the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed, that is, echo [still
gives an error.

If set, notify the user asynchronously of job completions. By default,
the shell presents job completions just before printing a prompt.

Each word of the path variable specifies a directory in which com-
mands are to be sought for execution. A null word specifies the
current directory. If there is no path variable, csh executes only full
pathnames. The default search path in Domain/OS SysV is (.
/usr/ucb /bin /usr/bin /usr/apollo/bin). However, this may vary
from system to system. For the super-user, the default search path is
(/ete /bin /usr/bin /usr/apollo/bin), which may also vary. A shell

Commands

CSH(1)

prompt

savehist

shell

status

time

verbose

SysV CSH(1)

that is given neither the —c¢ nor the —t option normally hashes the
contents of the directories in the path variable after reading .cshrc,
and each time the path variable is reset. If new commands are added
to these directories while the shell is active, it may be necessary to
give the rehash comand, or the new commands may not be found.

The string printed on the c¢sh command line, before the shell reads
commands from an interactive terminal input. If ! appears in the
string, replace it by the current event number (unless a preceding
backslash is given). The default prompt is ‘“%’’; for the super-user,
the default prompt is “‘#”’.

Give a numeric value to control the number of history list entries
saved in "/.history at log-out time. Save any command that has been
referenced in that many events. During start-up, the shell sources
“/.history into the history list, enabling history to be saved across
log-ins. If the value of savehist is too large, the shell is slow during
start-up.

Represent the file in which the shell resides. This is used in forking
shells to interpret files that have execute bits set, but are not execut-
able by the system. (See the description of Non-Built-in Command
Execution, below.) This variable is initialized to the (system-
dependent) home of the shell.

Give the status returned by the last command. If it terminated abnor-
mally, add 0200 to the status. Built-in commands that fail return exit
status 1. All other built-in commands set status 0.

Control automatic timing of commands, if a numeric value is sup-
plied. If set, print the user, system, a utilization percentage, and real
times for any command that takes more than this many CPU seconds,
when the command terminates. A utilization percentage is the ratio
of user time plus system time to real time.

Print the words of each command after history substitution. This
variable is set by the —v command-line option to csh.

NON-BUILT-IN COMMAND EXECUTION
When a command to be executed is found to be something other than a built-in com-
mand, csh attempts to execute it via execve(2). Each word in the variable path names a
directory from which the shell attempts to execute the command. If you do not specify
either a — or a —t option, the shell hashes the names in these directories into an internal
table so that it tries an exec in a directory only if the command potentially resides there.
This greatly speeds command location when a lot of directories are present in the search
path. For each directory component of path that does not begin with a /, the shell con-
catenates with the given command name to form a pathname of a file that it then
attempts to execute. The shell also does this if the internal hash table mechanism is

Commands

1-121

CSH(1)

Sysv CSH(1)

turned off (via unhash), or a —c¢ or —t command-line option is specified in csh.

Commands in parentheses are always executed in a sub-shell. Thus, (cd ; pwd) ; pwd
prints the home directory, leaving you where you were (printing this after the home
directory). On the other hand, cd ; pwd leaves you in the home directory. Commands
in parentheses are most often used to prevent chdir from affecting the current shell.

If a file has execute permissions but is not an executable binary to the system, csh
assumes it to be a file containing shell commands, and spawns a new shell to read it.

If there is an alias for shell, the words of the alias are prefixed to the argument list to
form the shell command. The first word of the alias should be the full pathname of the
shell (for example, $shell). Note that this is a special, late-occurring, case of alias sub-
stitution, and it only allows words to be prefixed to the argument list without
modification.

COMMAND LINE OPTIONS

1-122

~b This flag forces a break from option processing, causing any further shell argu-
ments to be treated as non-option arguments. The remaining arguments are not
interpreted as shell options. You can use the -b to pass options to a shell script
without confusion or possible subterfuge. The shell will not run a set-user ID
script without this option.

—c Commands are read from the (single) following argument, which must be
present. Any remaining arguments are placed in argv.

~Dname=value
Set the parameter name to value, then pass it to the shell’s environment. This
option is useful for tailoring the environment of a shell invoked from a program
that isn’t a shell (such as the DM). For example, if your key definition sets the —D
variable as follows: kd cp /bin/csh -DNEWPAD-=true ke, the .cshre script can
use the value of the NEWPAD variable to execute additional commands or per-
form special processing. You can specify a number of —D options.

—e The shell exits if any invoked command terminates abnormally or yields a
Nonzero exit status.

—f The shell starts faster, because it neither searches for nor executes commands
from the file .cshre in the invoker’s home directory.

—i The shell is interactive and prompts for its top-level input, even if it appears not
to be a terminal. Shells are interactive without this option if their inputs and out-
puts are terminals.

-n Parse commands, but do not execute them. This aids in syntactic checking of
shell scripts.

—s Take command input from the standard input.

—t Read and execute a single line of input. Use a backslash (\) to escape the newline
at the end of this line and continue onto another line.

Commands

CSH(1)

SysV CSH(1)

—v Set the verbose variable, causing command input to be echoed after history sub-
stitution.

—X Set the echo variable, so that commands are echoed immediately before execu-
tion.

—V Set the verbose variable even before .cshrc is executed.

—X Set the echo variable even before .cshre is executed.

ARGUMENT LIST PROCESSING

If argument O to the shell starts with a dash (=), this is a log-in shell. If arguments
remain after command-line options are processed, but you did not specify one of the —,
—i, —s, or —t options, the first argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for possible resubstitution by $0.
Since many systems use either the standard version 6 or version 7 shells whose shell
scripts are not compatible with this shell, csh executes a standard shell if the first char-
acter of a script is not a pound sign (#), that is, if the script does not start with a com-
ment. Remaining arguments initialize the argyv variable.

SIGNAL HANDLING

csh normally ignores quit signals. Jobs running detached, either by &, or the bg or
%... & commands, are immune to signals generated from the keyboard, including hang-
ups. Other signals have the values the shell inherited from its parent. Use onintr. to
control the shell’s handling of interrupts and terminate signals in shell scripts. Log-in
shells catch the TERM (terminate) signal. Otherwise, this signal is passed on to chil-
dren from the state in the shell’s parent. In no case are interrupts allowed when a log-in
shell is reading the file .logout.

LIMITATIONS

BUGS

Words can be no longer than 1024 characters. The system limits argument lists to
10240 characters. The number of arguments to a command that involves filename
expansion is limited to one-sixth the number of characters allowed in an argument list.
Command substitutions may substitute no more characters than are allowed in an argu-
ment list. To detect looping, the shell restricts the number of alias substitutions on ¢
single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in i
this is different from the current directory; this can be misleading (that is, wrong) as the
job may have changed directories intemally.

Shell built-in functions are not stoppable/restartable. Command sequences of the forn
‘a; b c’ are also not handled gracefully when stopping is attempted. If you suspenc
‘b’, the shell immediately executes ‘c’. This is especially noticeable if this expansio
results from an alias. It suffices to enclose the sequence of commands in parentheses t¢
force it to a subshell, for example, ‘(a;b;c)’.

Commands 1-12

CSH(1) Sysv CSH(1)

Control over tty output after processes are started is primitive; perhaps this will inspire
someone to work on a good virtual terminal interface. In a virtual terminal interface
much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; you should
use shell procedures rather than aliases.

Commands within loops, prompted for by ‘‘?’’, are not placed in the history list. Con-
trol structure should be parsed rather than being recognized as built-in commands. This
would allow control commands to be placed anywhere, to be combined with |, and to be
used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. All
and more than one : modifier should be allowed on $ substitutions.

The way the filec facility is implemented is ugly and expensive.

FILES
“/.cshre Read at beginning of execution by each shell.
“/.login Read by log-in shell, after .cshre at login.
“I.logout Read by log-in shell, at logout.
/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh* Temporary file for ‘<<’.
/etc/passwd Source of home directories for ““name’.
SEE ALSO
sh(l), access(2), execve(2), fork(2), pipe(2), umask(2), wait(2), tty(4), a.out(5),
environ(7);

Using Your SysV Environment.

1-124 Commands

CSPLIT(1)

NAME

SysV CSPLIT(1)

csplit — context split

SYNOPSIS

csplit [-s] [-k] [f prefix] file argl [... argn]

DESCRIPTION

csplit reads file and separates it into n+1 sections, defined by the arguments argl. ..
argn. By default the sections are placed in xx00 ... xxn (n may not be greater than
99). These sections get the following pieces of file:

00:

01:

n+l:

From the start of file up to (but not including) the line referenced by
argl.
From the line referenced by argl up to the line referenced by arg2.

From the line referenced by argn to the end of file.

If the file argument is a — then standard input is used.

OPTIONS
-S

-k

—f prefix

file (argl ...

lrexp/

% rexp %

Inno

Commands

Suppresses the printing of all character counts. csplit normally prints the
character counts for each file created.

Leaves previously created files intact. csplit normally removes created
files if an error occurs.

If the —f Names created files prefix00 . . . prefixn. The default is xx00
«.. XX

A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. The current line becomes the line con-
taining rexp. This argument may be followed by an
optional + or — some number of lines (e.g., /Page/-5).

This argument is the same as /rexp/, except that no file is
created for the section.

A file is to be created from the current line up to (but not
including) /nno. The current line becomes Inno.

1-12%

CSPLIT(1) SysvV CSPLIT(1)

{ num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows inno,
the file is split every Inno lines (num times) from that
point. Enclose all rexp type arguments that contain
blanks or other characters meaningful to the shell in the
appropriate quotes. Regular expressions may not contain
embedded new-lines. csplit does not affect the original
file; it is your responsibility to remove it.

EXAMPLES

csplit —f cobol file ‘/procedure division/” /parS./ /par16./

This example creates four files, cobol00 ... cobol03. After editing the ‘‘split”’ files,
they can be recombined as follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.

csplit —k file 100 {99}
This example would split the file at every 100 lines, up to 10,000 lines. The —k option
causes the created files to be retained if there are less than 10,000 lines; however, an
error message would still be printed.

csplit -k prog.c “%main(%’ ’/*}/+1” {20}
Assuming that prog.c follows the normal C coding convention of ending routines with

a } at the beginning of the line, this example will create a file containing each separate
C routine (up to 21) in prog.c.

DIAGNOSTICS

Self-explanatory except for:
arg — out of range

which means that the given argument did not reference a line between the current posi-
tion and the end of the file.

SEE ALSO

1-126

ed(1), sh(1).
regexp(5) in the SysV Programmer’s Reference.

Commands

CTRACE(1) SysV CTRACE(1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options] [file]
DESCRIPTION

ctrace allows you to follow the execution of a C program, statement-by-statement. The
effect is similar to executing a shell procedure with the —x option. ctrace reads the C
program in file (or from standard input if you do not specify file), inserts statements to
print the text of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. You must put the
output of ctrace into a temporary file because the cc(l) command does not allow the
use of a pipe. You then compile and execute this file.

As each statement in the program executes it will be listed at the terminal, followed by
the name and value of any variables referenced or modified in the statement, followed
by any output from the statement. Loops in the trace output are detected and tracing is
stopped until the loop is exited or a different sequence of statements within the loop is
executed. A waming message is printed every 1000 times through the loop to help you
detect infinite loops. The trace output goes to the standard output so you can put it into
a file for examination with an editor or the bfs(1) or tail(1) commands.

OPTIONS
—f functions Traces only these functions.

—v functions Traces all but these functions.

You may want to add to the default formats for printing variables. Long and pointer
variables are always printed as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int variables are also printed as signed
integers and, if appropriate, as characters. Double variables are printed as floating point
numbers in scientific notation. String arguments to the string(3C) functions and return
values from fgets(3S), gets(3S), and sprintf(3S) are printed as strings.

ADDITIONAL VARIABLE OPTIONS
You can request that variables be printed in additional formats, if appropriate, with
these options:

-0 Octal

-X Hexadecimal
-u Unsigned

—-e Floating point

SPECIAL CIRCUMSTANCE OPTIONS
These options are used only in special circumstances:

~In Checks n consecutively executed statements for looping trace output,
instead of the default of 20. Use O to get all the trace output from loops.

Commands 1-127

CTRACE(1) SysV CTRACE(1)

-S Suppresses redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by use
of the = operator in place of the == operator.

~tn Traces n variables per statement instead of the default of 10 (the max-
imum number is 20). The Diagnostics section explains when to use this
option.

-P Runs the C preprocessor on the input before tracing it. You can also use

the —D, —I, and —U cpp(1) oprions. These options are used to tailor the
run-time trace package when the traced program will run in a non-UNIX
System environment:

-b Uses only basic functions in the trace code, that is, those in ctype(3C),
printf(3S), and string(3C). These are usually available even in cross-
compilers for microprocessors. In particular, this option is needed when
the traced program runs under an operating system that does not have
signal(2), fflush(3S), longjmp(3C), or setjmp(3C).

—p string Changes the trace print function from the default of ’"printf(’. For exam-
ple, 'fprintf(stderr,” would send the trace to the standard error output.

-rf Uses file fin place of the runtime.c trace function package. This lets you
change the entire print function, instead of just the name and leading
arguments (see the —p option).

EXAMPLE
If the file lc.c contains this C program:

1 #include <stdio.h>

2 main() /* count lines in input */
3 {

4 int ¢, nl;

5

6 nl = 0;

7 while ((c = getchar()) != EOF)

8 if (¢ = '\n’)

9 ++nl;

10 print £ ("$d\n", nl);

11 }

and you enter these commands and test data:
ccle.c
a.out

1
(CTRL/d)

1-128 Commands

CTRACE(1)

SysV

CTRACE(1)

the program will be compiled and executed. The output of the program will be the
number 2, which is not correct because there is only one line in the test data. The error
in this program is common, but subtle. If you invoke ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:

2 main ()

6

nl = 0;
/* nl == 0 */

while ((c = getchar()) != EOCF)

The program is now waiting for input. If you enter the same test data as before, the out-

put will be:

If you now enter an end of file character (CTRL/d) the final output will be:

10

/* ¢ == 49 or "1’ */

if (¢ = '\n’)
/* ¢ == 10 or '\n’ */
++nl;

/* nl == 1 */
while ((c = getchar()) != ECF)
/* ¢ == 10 or "\n’ */

if (c = '\n’)
/* ¢ == 10 or '\n’ */
++nl;

/* nl == 2 x/

while ((c = getchar()) != EOF)

/* c == -1 %/

printf ("$d\n", nl);
/% nl == 2 %/2
return

Note that the program output printed at the end of the trace line for the nl variable.
Also note the return comment added by ctrace at the end of the trace output. This

shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value ’1’ in line 7, but in line 8 it
has the value "n’. Once your attention is drawn to this if statement, you will probably

Commands

1-129

CTRACE(1) SysV CTRACE(1)

realize that you used the assignment operator (=) in place of the equality operator (==).
You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you use the —f
or —v options to trace specific functions. This does not give you statement-by-statement
control of the tracing, nor does it let you tum the tracing off and on when executing the
traced program.

You can do both of these by adding ctroff() and ctron() function calls to your program
to turn the tracing off and on, respectively, at execution time. Thus, you can code arbi-
trarily complex criteria for trace control with if statements, and you can even condition-
ally include this code because ctrace defines the CTRACE preprocessor variable. For
example:

#ifdef CTRACE
if (c == 7!’ && i > 1000)
ctron();
#endif

You can tumn the trace off and on by setting static variable tr_ct_ to 0 and 1, respec-
tively. This is useful if you are using a debugger that cannot call these functions
directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(l), since the traced
code often gets some cc warning messages. You can get cc error messages in some rare
cases, all of which can be avoided.

ctrace Diagnostics

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out of
tree space; simplify expression” error. Use the —t option to increase this
number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are using tabs
to indent your code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in the middle
of a C statement, or by a semicolon at the end of a #define preprocessor state-
ment.

"if ... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try —P option

1-130 Commands

CTRACE(1) SysV CTRACE(1)

Use the —P option to preprocess the ctrace input, along with any appropriate
—D, —I, and —U preprocessor oprions. If you still get the error message, check
the Wamings section below.

cc Diagnostics

warning: illegal combination of pointer and integer

warning: statement not reached

warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error” message above.

yacc stack overflow
See the ctrace "’if ... else if’ sequence too long" message above.

out of tree space; simplify expression
Use the —t option to reduce the number of traced variables per statement from
the default of 10. Ignore the "ctrace: too many variables to trace” warnings
you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of the last ele-
ment declaration in a structure or union, just before the right brace (}). This is optional
in some C compilers. Defining a function with the same name as a system function
may cause a syntax error if the number of arguments is changed. Just use a different
name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will cause a
syntax error.

ctrace does not know about the components of aggregates like structures, unions, and
arrays. It cannot choose a format to print all the components of an aggregate when an
assignment is made to the entire aggregate. ctrace may choose to print the address of
an aggregate or use the wrong format (e.g., 3.149050e-311 for a structure with two
integer members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-file pro-
gram. This can result in functions called from a loop still being traced, or the elimina-
tion of trace output from one function in a file until another in the same file is called.

/usr/lib/ctrace/runtime.c Run-time trace package

Commands 1-131

CTRACE(1) SysV CTRACE(1)

SEE ALSO
signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).
bfs(1), tail(1) in the Using Your SysV Environment.

1-132 Commands

Cu(co)

NAME

SysV Cu(1C)

cu — call another UNIX system

SYNOPSIS

cu [—sspeed] [—lline] [-h] [-t] [-d] [-o | —e] [—n] telno
cu[-sspeed] [-h][-d][-0o!-e]-Iline
cu [-h] [-d] [-o0 | —e] systemname

DESCRIPTION

cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible ASCII file transfers.

After making the connection, cu runs as two processes: the transmit process reads data
from the standard input and, except for lines beginning with a tilde (7), passes it to the
remote system,; the receive process accepts data from the remote system and, except for
lines beginning with a tilde (7), passes it to the standard output. Normally, an automatic
DC3/DC1 protocol is used to control input from the remote so the buffer is not overrun.
Lines beginning with a tilde () have special meanings. Both the transmit and the
receive processes are described in the sections below.

‘When cu is used on system X to connect to system Y and subsequently used on system
Y to connect to system Z, commands on system Y can be executed by using a double
tilde (7). Executing a tilde command reminds the user of the local system uname. For
example, uname(1) can be executed on Z, X, and Y as follows:

uname
Z
“[X]'uname
X
“[Y]'uname
Y

In general, a tilde (7) causes the command to be executed on the original machine; a
double tilde ("7) causes the command to be executed on the next machine in the chain.

The SysV version of cu supports the Vadic 212 Autodialer.

OPTIONS

—sspeed Specifies the transmission speed (300, 1200, 2400, 4800, 9600); The
default value is "Any" speed which will depend on the order of the lines
in the /usr/lib/uucp/Devices file. Most modems are either 300 or 1200
baud. Directly connected lines may be set to a speed higher than 1200
baud.

—lline Specifies a device name to use as the communication line. Can be used
to override searching for the first available line having the right speed.
When this option is used without the —s option, the speed of a line is
taken from the /usr/lib/uucp/Devices file. With the —s option, the

Commands 1-133

cu@c)

SysV cuac)

Devices file is searched for the requested speed for the requested line. If
possible, the connection is made at the requested speed; otherwise, an
error message is printed and the call is not made. The specified device is
generally a directly connected asynchronous line (e.g., /dev/ttyab) in
which case a telephone number (telno) is not required. The specified
device need not be in the /dev directory. If the specified device is asso-
ciated with an auto dialer, a telephone number must be provided. Use of
this option with systemname rather than relno will not give the desired
result (see systemname below).

Emulates local echo, supporting calls to other computer systems that
expect terminals to be set to half-duplex mode.

Sets appropriate mapping of carriage-return to carriage-return-line-feed
pairs. Used when dialing an ASCII terminal set to auto answer.

Prints diagnostic traces.
Generates even parity for data sent to the remote system.
Generates odd parity for data sent to the remote system.

Prompts you to provide the telephone number to be dialed rather than
taking it from the command line (for added security).

SPECIAL ARGUMENTS

TRANSMIT PROCESS

1-134

telno

systemname

When using an automatic dialer, telno is the telephone number
with equal signs for secondary dial tone or minus signs placed
appropriately, for delays of 4 seconds.

Systemname is a uucp system name that may be used rather than
a phone number. Cu obtains an appropriate direct line or phone
number from /usr/lib/uucp/Systems. Cu tries each phone
number or direct line for systemname in the Systems file until a
connection is made or all the entries are tried. Note: the system-
name option should not be used in conjunction with the —I and —s
options, as cu will connect to the first available line for the sys-
tem name specified, ignoring the requested line and speed.

The transmit process interprets the following:

-1

emd . ..

Terminate the conversation.
Escape to an interactive shell on the local system.

Run cmd on the local system, via the —c option to the sh(1)
command.

Run cmd locally and send its output to the remote system.

Commands

Cu(10) SysV Cu(1C)

“%ocd Change the directory on the local system. NOTE: A “lcd
causes the command to be run by a sub-Shell, which was prob-
ably not what was intended.

“otake from [to] Copy file from (on the remote system) to file fo on the local
system. If to is omitted, the from argument is used in both
places.

“Joput from [to] Copy file from (on the local system) to file z0 on the remote
system. If fo is omitted, the from argument is used in both
places.

For both “%take and put commands, as each block of the file
is transferred, consecutive single digits are printed to the ter-
minal.

= line Send the line ~ line to the remote system.

"% break Transmit a BREAK to the remote system (this option can also
be specified as “%b).

"% debug Toggle the -d debugging option on or off (this option can also
be specified as “%d).

t Print the values of the termio structure variables for the user’s
terminal (useful for debugging).

1 Print the values of the termio structure variables for the remote
communication line (useful for debugging).

"% nostop Toggle between DC3/DC1 input control protocol and no input
control. This is useful when the remote system is one which
does not respond properly to the DC3 and DC1 characters.

RECEIVE PROCESS
The receive process normally copies data from the remote system to its standard output.
Internally the program accomplishes this by initiating an output diversion to a file when
a line from the remote begins with ~.

Data from the remote is diverted (or appended, if >> is used) to file on the local system.
The trailing "> marks the end of the diversion.

Using "% put requires stty(1) and cat(1) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to the current ones
on the local system. Backslashes are inserted at appropriate places. There is an
artificial slowing of transmission during the ~% put operation, so that loss of data is
unlikely.

Using “%take requires echo(l) and cat(1) on the remote system. The stty tabs mode
should also be set on the remote system, if tabs are to be copied without expansion.

Commands 1-135

cu@c) SysV CU(10)

EXAMPLES
To dial a system whose number is 9 201 555 1212 using 1200 baud (where you expect a
dialtone after the 9), use the following command:

cu —s1200 9=12015551212
If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line, type this (where XX is a valid TTY
number):

cu -1 /dev/ttyXX
or
cu —I ttyXX

To dial a system with the specific line and a specific speed, type this (where XX is a
valid TTY number):

cu —s1200 -1 /dev/ttyXX

To dial a system using a specific line associated with an auto dialer, execute the follow-
ing command (where XX is a line number):

cu —1 culXX 9=12015551212

To use a system name, use this command (where YYYZZZ is the name of the system):

#cuYYYZZZ

BUGS
If you cu to a DOMAIN node whose default start-up shell is /com/sh (as opposed to
/bin/sh or /bin/csh), you should either: 1) change your command search rules (i.e., do a

csr —a /bin /usr/bin ...

inside the AEGIS Shell) so that the cu transmit process can properly locate SysV com-
mands, or 2) have the remote start-up AEGIS Shell invoke a SysV Shell (i.e., /bin/sh) so
that the cu receive process can properly parse the request (since the tilde character has a
special meaning in the AEGIS Shell).

Cu buffers input internally.

The cu command does not do any integrity checking on data it transfers. Data fields
with special cu characters may not be transmitted properly. Depending on the intercon-
nection hardware, it may be necessary to use a ~. to terminate the conversion even if
stty 0 has been used. Non-printing characters are not dependably transmitted using
either the "% put or "%take commands. cu between an IMBRI1 and a penril modem
will not return a login prompt immediately upon connection. A carriage return will
return the prompt.

1-136 Commands

Cu(0) SysV

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
[usr/spool/locks/LCK.. (tty-device)

DIAGNOSTICS

Exit code is zero for normal exit, one otherwise.

SEE ALSO
cat (1), echo (1), stty (1), uname (1), uucp (1C).

Commands

CU(1C)

1-137

CUT(1)

NAME

Sysv CUTQ)

cut — cut out selected fields of each line of a file

SYNOPSIS

cut —clist [file...]
cut —flist [-dchar] [-s] [file...]

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of a file; in data base
parlance, it implements the projection of a relation. The fields as specified by /ist can
be fixed length, i.e., character positions as on a punched card (—c option) or the length
can vary from line to line and be marked with a field delimiter character like tab (—f
option). cut can be used as a filter; if no files are given, the standard input is used. In
addition, a file name of ‘‘~’’ explicitly refers to standard input.

OPTIONS

list Creates a comma-separated list of integer field numbers (in increasing
order), with optional — to indicate ranges [e.g., 1,4,7; 1-3,8; —5,10 (short
for 1-5,10); or 3— (short for third through last field)].

—clist —c¢ (no space) Specifies character positions (e.g., —c1-72 would pass the
first 72 characters of each line).

~flist Lists fields assumed to be separated in the file by a delimiter character
(see —d); e.g., —f1,7 copies the first and seventh field only. Lines with
no field delimiters will be passed through intact (useful for table sub-
headings), unless —s is specified.

—dchar Delimits the field (—f option only). Default is zab. Space or other char-
acters with special meaning to the shell must be quoted.

- Suppresses lines with no delimiter characters in case of —f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the —c or —f option must be specified.

Use grep(l) to make horizontal ‘‘cuts’’ (by context) through a file, or paste(l) to put
files together column-wise (i.e., horizontally). To reorder columns in a table, use cut
and paste.

EXAMPLES

1-138

Mapping of user IDs to names:

cut —d: —f1,5 /etc/passwd

Setting name to current login name:

name="who ami | cut —f1 —d" ""

Commands

CUT(1)

DIAGNOSTICS

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

SysV CUT(1)

line too long
A line can have no more than 1023 characters or fields, or there is no
new-line character.

bad list for c/ f option
Missing —c or —f option or incorrectly specified list. No error occurs
if a line has fewer fields than the list calls for.

no fields
The list is empty.

no delimeter
Missing char on —d option.

cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>

SEE ALSO

Either filename cannot be read or does not exist. If multiple
filenames are present, processing continues.

grep(1), paste(1).

Commands

1-139

CVT_FONT(1) Domain/OS SysV CVT_FONT(1)

NAME

cvt_font — convert fonts from pre-SR10 to SR10 format

SYNOPSIS

cvt_font destination sourcel [source2]

DESCRIPTION

The cvt_font command creates a new font file formatted for SR10. If one source name
is given, it is converted and placed in the destination file. If two source names are
given, then the characters in the second source font are concatenated with the characters
in the first font, converted, then placed in the destination font file.

The source font(s) must be in pre-SR10 format. Since all pre-SR10 fonts have space
pre-allocated for 128 characters, the new font can contain up to 256 characters.

If the destination font file already exists, or if cvt_font fails to find either source file, an
error is printed, and the command terminates without changing any fonts.

EXAMPLES

The following example takes the vt100s font from /sys/dm/fonts and formats it for
SR 10 in the file vt100s in the working directory:

$ cvt_font vt100s /sys/dm/fonts/vt100s
The following example takes the courierl) and courierl0.a font files from
/sys/dm/fonts, concatenates them, and formats them for SR10 in the file courier10 in

the working directory:

$ cvt_font courier10 /sys/dm/fonts/courier10 /sys/dm/fonts/courier10.a

SEE ALSO

1-140

tr_font(1)

Commands

CVTNAME(1) Domain/OS SysV CVTNAME(1)

NAME

cvtname — convert pathnames between upper and lowercase and preserve colons

SYNOPSIS

cvtname [options]

DESCRIPTION

Prior to SR10, the colon (:) was used as an escape character for the purpose of storing
mixed-case names. For example, the filename ‘‘Readme’’ was stored as ‘‘:readme’’.
Domain/OS programs mapped ‘“:r”’ and interpreted it as ‘‘R’’. In pre-SR10 Aegis-only
environments, colons used in pathnames were treated as literal characters, since Aegis
was not case sensitive.

Colon-character constructs in pathnames from pre-SR10 file systems are converted to
the appropriate uppercase letter (or special character) automatically when they are
copied to SR10 systems. The cvtname command allows you to selectively undo that
process and thereby restore literal colons to pathnames. cvtname also allows you to
convert pathnames to all uppercase or all lowercase. The tool operates on entire path-
names. That is, you cannot convert one capital letter in an SR10 pathname back to a
"colon-character” sequence without converting them all.

Regardless of the mode specified, cvtname queries you before converting each path-
name, unless you specify —nq, in which case the changes are applied to all objects
subordinate to the pathname specified.

OPTIONS

Without options, cvtname converts capital letters back to colon-character sequences.

—m pathname Convert capital letters in the names of all objects in pathname
back to colon-character sequences. If —li is also specified, poten-
tial changes are listed but no changes are made. If —nq is
present, the changes are done automatically and all modified
names are listed. (The default is —-m without —nq)

-l pathname Convert pathname and subordinate object names to all lowercase.
If —li is also specified, potential changes are listed but no changes
are made. If —nq is present, the changes are done automatically
and all modified names are listed.

—u pathname Convert pathname and subordinate object names to all uppercase.
If i is also specified, potential changes are listed but no changes
are made. If —nq is present, the changes are done automatically
and all modified names are listed.

EXAMPLES

The following example allows you to convert the capital letters or colon-character con-
structs in pathnames in the directory leduc, querying you before making any changes.
Output is shown under the command line. The left-hand column shows unconverted
name; right shows converted. Type y to convert, n to keep old name.

Commands 1-141

CVTNAME(1) Domain/OS SysV CVTNAME(1)

1-142

$ cvtname /ledu

/ledu/:C /ledu/:::c n
/ledu/CAT /ledu/:c:a:t y
/ledu/CAT converted to /ledu/:c:a:t

The following example allows you to selectively convert pathnames in ledu to upper-
case.

$ cvtname —upper /ledu

/ledu /LEDU n

/ledu/:c /ledu/:C n

/ledu/:c:a:t /ledu/:C:A:T n
/ledu/acl_from whoville /ledu/ACL_FROM WHOVILLE y
/ledu/acl_from whoville converted to /ledu/ACL_FROM WHOVILLE
/ledu/backup.pas /ledu/BACKUP.PAS n
/ledu/f£f1l /ledu/FFl1 vy

/ledu/f£f1l converted to /ledu/FF1
/ledu/TD/backup_history /ledu/TD/BACKUP_HISTORY n

Commands

CVTRGY(1) Domain/OS SysV CVTRGY(1)

NAME

cvtrgy — convert registry between SR9.x and SR10 formats

SYNOPSIS

cvtrgy [—from9to10 | —from10to9 [—favor_etc]] —readonly |
-owner pgo | —first | —nq | —from source_rgy —to dest_rgy

DESCRIPTION

The cvtrgy command allows the system administrator to generate an SR10 format
registry database from SR9.7 registry files, or generates SR9.7 registry files with data
from the SR10 registry. The tool operates on SR9.7 nodes only. Both the rgyd and
llbd servers must be running on the SR10 node, except when the —first option is used.
Run cvtrgy the first time when you add SR10 nodes to your network, and periodically
thereafter to keep the pre-SR10 and SR10 registry information synchronized.

You must specify either —from9tol0 or —from10to9. By default, cvtrgy creates a
read-only registry of the destination type. That is, cvtrgy —from9to10 creates a read-
only SR10 format master registry, while cvtrgy —from10to9 creates a read-only SR9.x
format master registry. You can then propagate the information to replica registries in
the appropriate way.

Whenever the conversion from SR10 to SR9 occurs, if the registry files exist at the des-
tination node specified in the command line, the tool quits without updating. This
means that before running cvtrgy —from10to9, you should rename (or move) the SR9.x
registry database on the destination node.

The cvtrgy tool assigns UNIX identifiers automatically during the conversion process if
you prefer. However, if your pre-SR10 node runs Domain/OS, you should preserve the
identifiers associated with accounts in your current (pre-SR10) /etc/passwd and
/etc/group files. In normal operation, cvtrgy looks for the /etc/passwd and /etc/group
files and assigns identifiers from them, if they exist. Therefore, you should run cvtrgy
on a 9.7 node that either contains your master /etc/passwd and /etc/group files or has a
link to them.

If evtrgy doesn’t find the /etc/passwd and /etc/group files and an /ete directory exists,
it queries you before assigning new UNIX identifiers, unless the —nq (no query) flag is
tumed on, in which case cvtrgy exits with an error.

In order to add or change accounts and other registry data, you must edit the writable
registry with the tool appropriate to the registry’s format (i.e., with edrgy on SR10,
edacct and edppo on SR9.x) on a node running the same software release as the format
of the writable registry. Thus, if your SR9.x registries were writable, you’d have to edit
them using edacct and edppo, from a node running SR9.7. Once your SR10 registry is
the writable one, use edrgy.

The cvtrgy tool resides in the /install/tools/cvtrgy after an SR10 installation and must
be copied to an SR9.7 node before you run it. After running cvtrgy, you must also run
the crpasswd command on an SR9.x node to update the /etc/passwd and /etc/group
files. The SR10 directory /install/tools contains a new version of crpasswd which you

Commands 1-143

CVTRGY(1)

Domain/OS SysV CVTRGY(1)

should copy to all SR9.7 nodes that need to run crpasswd. (You can rename or replace
the old version of crpasswd.) See the SR10 Transition Guide for further details on run-

ning cvtrgy.

OPTIONS
—from9to10

—~from10to9

—from source_rgy

—to dest_rgy

—owner pgo

—first

—readonly

—favor_etc

Convert SR9.x registry files to SR10 registry format

Convert SR10 registry data to SR9.7 format and place in SR9.7
registry files

Specify source for registry data to be converted. For
—from9tol0, must be in the form
//node_name/registry/rgy_site. For —froml10to9, must be
//node_name. Either or both registry sites may be remote from
the node running cvtrgy.

Specify destination for converted registry data. For —from9to10,
must be in the form //node_name/registry/rgy site. For
—from10to9, must be //node_name. Either or both registry sites
may be remote from the node running cvtrgy.

Specify SR10 registry owner, in the SID form p.g.o, where all
pgo names and the pgo account already exist in the SR9.7 regis-
try. pgo is a string of the form pers.group.org. You must specify
with every invocation of —from9to10. This option is meaningful
only with the ~from9to10 option.

Specify that this is the first invocation of cvtrgy. In this case
only, cvtrgy runs without rgyd and llbd servers running. Use
only once. Only meaningful with —from9to10.

Make SR9.7 registries read-only, permanently. Only meaningful
with —from9to10. Can only be run in this mode once; after run-
ning, cannot use —from9to10 again.

No query. Silent mode. Don’t query before assigning new
UNIX identifiers (cvtrgy quits). Don’t query for owner (cvtrgy
quits).

If you’ve edited UNIX IDs (numbers) in the SR9.7 /etc/passwd
or /etc/group after you’ve already run cvtrgy at least once, you
should propagate the new numbers to the SR10 registry. Run-
ning cvtrgy with this option, in the —from9to10 direction, pro-
pagates the new UNIX IDs to the SR10 registry. After running
cvtrgy with this option, you must also run /etc/syncids on all
SR10 disks. Only meaningful with —from9to10.

CONVERTING FROM SR9.7 TO SR10
You must be root to run evtrgy. Use the following command line. The node_namel is

the SR9.7 node.

Commands

CVTRGY(1) Domain/OS SysV CVTRGY(1)

$ cvtrgy —from9to10 —from //node_namel/registry/rgy_site
—to //node_name2 —owner pgo —first

CONVERTING FROM SR10 TO SR9.7
The person who runs the tool must be logged in as root or locksmith. Use the following
command line. The node_namel is the SR10 node.

$ cvtrgy —from10to9 —from //node_namel —to //node_name2/registry/rgy_site

EXAMPLE
The following is a sample transcript from a cvtrgy session that converts SR9.x registry
data files to an SR10 format registry database. This is the first time cvtrgy has been run
on the network. A single collision is shown to illustrate cvtrgy’s warning message for-
mat; you may see more warnings at your site.

$ cvtrgy —from9to10 —from //dog/registry/rgy_sitel —to //cat —first —owner %.sys_admin. %
Phase 1 - opening registry files:
Phase 2 - modifying SR9 registry files:

Converted person file saved in registry
//dog/registry/rgy sitel

Converted project file saved in registry
//dog/registry/rgy_sitel

Converted org file saved in registry
//dog/registry/rgy sitel

Phase 3 - converting person file:
? (cvtrgy) Warning - unix id collision:
person bin sr9 reassigned from 3 to 10002

Converted person file saved in registry
//dog/registry/rgy sitel

Commands 1-145

CVTRGY(1) Domain/OS SysV

Phase 4 - converting project file:
?(cvtrgy) Warning - unix id collision:
project backup reassigned from 1001 to 3
Converted project file saved in registry
//dog/registry/rgy_sitel

Phase 5 - converting org file:

Converted org file saved in registry
//dog/registry/rgy_sitel

Phase 6 - converting accounts:
Phase 7 - adding default accounts:

Converted account file saved in registry
//dog/registry/rgy_sitel

Phase 8 - closing the sr9 registry files:

Phase 9 - writing conversions to srl0 registry:

Conversion completed successfully:

SEE ALSO

1-146

passwd(4), group(4)

CVTRGY(1)

Commands

CXREF(1) SysV CXREF(1)

NAME

cxref — generate C program cross-reference
SYNOPSIS

cxref [options] files
DESCRIPTION

cxref analyzes a collection of C files and attempts to build a cross-reference table.
cxref uses a special version of cpp to include #define’d information in its symbol table.
It produces a listing on standard output of all symbols (auto, static, and global) in each
file separately, or, with the —c option, in combination. Each symbol contains an asterisk
(*) before the declaring reference.

In addition to the —D, —I and —U options [which are interpreted just as they are by ce(1)
and cpp(1)], the following options are interpreted by cxref.

OPTIONS
- Prints a combined cross-reference of all input files.

—-w<num> Formats output no wider than <num> (decimal) columns. Defaults to 80
if <num> is not specified or is less than S1.

—o file Directs output to file.
- Operate silently; do not print input file names.
-t Lists format for 80-column width.
FILES
LLIBDIR usually /usr/lib
LLIBDIR/xcpp special version of the C preprocessor.
DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot compile these
files.
BUGS

cxref considers a formal argument in a #define macro definition to be a declaration of
that symbol. For example, a program that #includes ctype.h, contains many declara-
tions of the variable c.

SEE ALSO
cc(l), cpp(1).

Commands 1-147

DATE(1) SysV DATE(1)

NAME

date — print and set the date

SYNOPSIS

date [mmddhhmm(yy] 11 +formar]

DESCRIPTION

1-148

If no argument is given, or if the argument begins with +, the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the
day number in the month; kA is the hour number (24 hour system); the second mm is
the minute number; yy is the last 2 digits of the year number and is optional. For exam-
ple:

date

10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is men-
tioned. The system operates in GMT. date takes care of the conversion to and from
local standard and daylight time. Only the superuser can change the date.

If an argument begins with +, the output of date is under the control of the user. All
output fields are of fixed size (zero padded if necessary). Each field descriptor is pre-
ceded by % and is replaced in the output by its corresponding value. A single % is
encoded by % %. All other characters are copied to the output without change. The
string is always terminated with a new-line character.

Field Descriptors:

Insert a new-line character
Insert a tab character

Month of year - 01 to 12

Day of month — 01 to 31

Last 2 digits of year — 00 to 99
Date as mm/dd/yy

Hour - 00 to 23

Minute - 00 to 59

Second — 00 to 59

Time as HH:MM:SS

Day of year — 001 to 366

Day of week — Sunday =0
Abbreviated weekday — Sun to Sat
Abbreviated month — Jan to Dec
Time in AM/PM Notation

Ts®mg——HuzImo<aeg o

Commands

DATE(1) Sysv DATE(1)

EXAMPLE
The following input:

date ‘+DATE: %m/%d/%y%nTIME: %H:%M: %S’
would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
no permission You are not the super-user and you try to change the date.
bad conversion
The date set is syntactically incorrect.
bad format character
The field descriptor is not recognizable.

Commands 1-149

DBACL(1) Domain/OS SysV DBACL(1)

NAME

dbacl — Domain/Dialog™-based access control list editor

SYNOPSIS

dbacl [file]

DESCRIPTION

dbacl provides an interactive menu-based editor for manipulating Access Control Lists
(ACLs). It is primarily designed with novice or occasional ACL users in mind.
chacl(1), cpacl(l), and Isacl(l) are better suited to complicated actions on large
numbers of ACLs.

To use dbacl, press the left mouse key (or the F1 key) to select items on the screen such
as buttons or ACL entries. The bar at the top of the screen contains a "Quit" button, and
names of menus. By pressing the mouse key over one of the menu names, you are
presented with a pop-up menu with commands. Pull down and release the key over the
name of a command to select it.

If a command appears in grayed-out text, it is not currently selectable. For example,
before selecting "Cut" from the "Entry” menu, you must select an entry to cut, by click-
ing on it with the mouse.

You can use the right mouse key (or the F3 key) as a short cut for selecting an entry and
choosing the "Change Entry" command.

If a button has a double outline, you can select it by pressing the RETURN key any-
where in its window. Likewise, the ESC key nearly always cancels the current com-
mand.

SEE ALSO

1-150

chacl(1), cpacl(1), Isacl(1), acl(5), salacl(1M)

Commands

DBX(1)

NAME

SysV DBX(1)

dbx — debugger

SYNOPSIS

dbx [-r1[i1 [-Idir][-no_src][—no_frame] [—c file] [objfile]

DESCRIPTION

dbx is a tool for source level debugging and execution of programs under SysV. The
objfile is an object file produced by a compiler with the appropriate flag (usually —g)
specified to produce symbol information in the object file. The machine level facilities
of dbx can be used on any program.

The object file contains a symbol table that includes the name of the all the source files
translated by the compiler to create it. These files are available for perusal while using
the debugger.

If the file .dbxinit exists in the current directory then the debugger commands in it are
executed. ,B dbx also checks for a .dbxinit in your home directory if there isn’t one in
the current directory.

dbx creates a separate transcript pad for debugger interactions unless the —no_frame
option is specified. dbx also creates a window to display source code unless —no_src is
specified.

OPTIONS

-r Executes objfile immediately. If it terminates successfully dbx exits.
Otherwise the reason for termination will be reported and the user
offered the option of entering the debugger or letting the program fault.
dbx reads from /dev/tty when —r is specified and standard input is not a
terminal. Unless —r is specified, dbx just prompts and waits for a com-
mand.

—i Forces dbx to act as though standard input is a terminal.

—I dir Adds dir to the list of directories that are searched when looking for a
source file. Normally dbx looks for source files in the current directory
and in the directory where objfile is located. The directory search path
can also be set with the use command.

—c file Executes the dbx commands in the file before reading from standard
input.

—no_sre Disables source display.
—no_frame Does not create a separate debugger transcript pad.

Execution and Tracing Commands

run [args] [< filename] [> filename]
rerun [args] [< filename] [> filename]
Start executing objfile, passing args as command line arguments; < or > can be

Commands 1-151

DBX(1)

1-152

Sysv DBX(1)

used to redirect input or output in the usual manner. When rerun is used
without any arguments the previous argument list is passed to the program;
otherwise it is identical to run. If objfile has been written since the last time
the symbolic information was read in, dbx will read in the new information.

trace [in procedurelfunction] [if condition]

trace source-line-number [if condition]

trace procedure/function [in procedure/function] [if condition]

trace expression at source-line-number [if condition]

trace variable [in procedure/function] [if condition]
Have tracing information printed when the program is executed. A number is
associated with the command that is used to turn the tracing off (see the delete
command).

The first argument describes what is to be traced. If it is a source-line-number,
then the line is printed immediately prior to being executed. Source line
numbers in a file other than the current one must be preceded by the name of
the file in quotes and a colon, e.g. "mumble.p":17.

If the argument is a procedure or function name then every time it is called,
information is printed telling what routine called it, from what source line it
was called, and what parameters were passed to it. In addition, its return is
noted, and if it’s a function then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expres-
sion is printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed
whenever it changes. Execution is substantially slower during this form of

tracing.

If no argument is specified then all source lines are printed before they are exe-
cuted. Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be printed
only while executing inside the given procedure or function.

Condition is a boolean expression and is evaluated prior to printing the tracing
information; if it is false then the information is not printed.

Commands

DBX(1) SysV DBX(1)

stop if condition

stop at source-line-number [if condition]

stop in procedurelfunction [if condition]

stop variable [if condition]
Stop execution when the given line is reached, procedure or function called,
variable changed, or condition true.

status [> filename]
Print out the currently active trace and stop commands.

delete command-number ...
The traces or stops corresponding to the given numbers are removed. The
numbers associated with traces and stops are printed by the status command.

catch number

catch signal-name

ignore number

ignore signal-name
Start or stop trapping a signal before it is sent to the program. This is useful
when a program being debugged handles signals such as interrupts. A signal
may be specified by number or by a name (e.g., SIGINT). Signal names are
case insensitive and the "SIG" prefix is optional. By default all signals are
trapped except SIGCONT, SIGCHILD, SIGALRM and SIGKILL.

cont integer

cont signal-name
Continue execution from where it stopped. If a signal is specified, the process
continues as though it received the signal. Otherwise, the process is continued
as though it had not been stopped. Execution cannot be continued if the pro-
cess has "finished", that is, called the standard procedure "exit".

step Execute one source line.

next Execute up to the next source line. The difference between this and step is
that if the line contains a call to a procedure or function the step command will
stop at the beginning of that block, while the next command will not.

return [procedure]
Continue until a return to procedure is executed, or until the current procedure
returns if none is specified.

call procedure(parameters)
Execute the object code associated with the named procedure or function.

Commands 1-153

DBX(1) SysV DBX(1)

Printing Variables and Expressions

Names are resolved first using the static scope of the current function, then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message
"[using qualified name]" is printed. The name resolution procedure may be overridden
by qualifying an identifier with a block name, e.g., "module.variable". For C, source
files are treated as modules named by the file name without ".c".

Expressions are specified with an approximately common subset of C and Pascal (or
equivalently Modula-2) syntax. Indirection can be denoted using either a prefix "*" or a
postfix """ and array expressions are subscripted by brackets ("[]"). The field reference
operator (".") can be used with pointers as well as records, making the C operator "->"

unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by
using "type-name(expression)". When there is no corresponding named type the special
constructs "&type-name" and "$$tag-name" can be used to represent a pointer to a
named type or C structure tag.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [> filename]
Print the names and values of variables in the given procedure, or the current

one if none is specified. If the procedure given is ".", then the all active vari-
ables are dumped.

print expression [, expression ...]
Print out the values of the expressions.

whatis name
Print the declaration of the given name, which may be qualified with block
names as above.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the
identifier is associated with.

up [count]

down [count]
Move the current function, which is used for resolving names, up or down the
stack count levels. The default count is 1.

where Print out a list of the active procedures and function.

whereis identifier
Print the full qualification of all the symbols whose name matches the given
identifier. The order in which the symbols are printed is not meaningful.

1-154 Commands

DBX(1)

SysV DBX(1)

Accessing Source Files

[regular expression[/}
Tregular expression[?]

Search forward or backward in the current source file for the given pattem.

edit [filename]
edit procedurelfunction-name

Invoke an editor on filename or the current source file if none is specified. If a
procedure or function name is specified, the editor is invoked on the file that
contains it. Which editor is invoked by default depends on the installation.
The default can be overridden by setting the environment variable EDITOR to
the name of the desired editor.

file [filename]

Change the current source file name to filename. If none is specified then the
current source file name is printed.

func [procedure/function]

Change the current function. If none is specified then print the current func-
tion. Changing the current function implicitly changes the current source file
to the one that contains the function; it also changes the current scope used for
name resolution.

list [source-line-number [, source-line-numberl]
list procedurelfunction

List the lines in the current source file from the first line number to the second
inclusive. If no lines are specified, the next 10 lines are listed. If the name of
a procedure or function is given lines n-k to n+k are listed where n is the first
statement in the procedure or function and £ is small.

use directory-list

Commands

Set the list of directories to be searched when looking for source files. The
directory-list is used if the specified file cannot be found, or if the file is found
but the modified time does not match the time in the object module. If a file is
found using directory-list, or if the file’s modified time is different then the
source display banner will display the filename being displayed as well as the
stored filename in parentheses.

1-15:

DBX(1) SysV DBX(1)

Command Aliases and Variables

alias name name

alias name "string"

alias name (parameters) "string"
When commands are processed, dbx first checks to see if the word is an alias
for either a command or a string. If it is an alias, then dbx treats the input as
though the coiresponding string (with values substituted for any parameters)

had been entered. For example, to define an alias "rr" for the command
"rerun", one can say

alias rr rerun
To define an alias called "b" that sets a stop at a particular line one can say
alias b(x) "stop at x"

Subsequently, the command "b(12)" will expand to "stop at 12"

set name [= expression]
The set command defines values for debugger variables. The names of these
variables cannot conflict with names in the program being debugged, and are
expanded to the corresponding expression within other commands. The fol-
lowing variables have a special meaning:

$hexchars

S$hexints

S$hexoffsets

$hexstrings
When set, dbx prints out out characters, integers, offsets from registers, or
character pointers respectively in hexadecimal.

$listwindow
The value of this variable specifies the number of lines to list around a function
or when the list command is given without any parameters. This value is also
used when displaying source in the source window. The current line is posi-
tioned so that as much of the listwindow as possible is visible. Its default
value is 10.

$unsafecall

$unsafeassign
When "$unsafecall” is set, strict type checking is turned off for arguments to
subroutine or function calls (e.g. in the call statement). When "$unsafeassign”
is set, strict type checking between the two sides of an assign statement is

1-156 Commands

DBX(1) SysV

DBX(1)

turned off. These variables should be used only with great care, because they

severely limit dbx’s usefulness for detecting errors.

unalias name
Remove the alias with the given name.

unset name
Delete the debugger variable associated with name.

Machine Level Commands

tracei [address] [if cond]

tracei [variable] [at address] [if cond)
stopi [if cond]

stop at address [if cond]

Tumn on tracing or set a stop using a machine instruction address.

stepi

nexti Single step as in step or next, but do a single instruction rather than source

line.

address ,address/ [mode)]
address | [count] [mode]

Print the contents of memory starting at the first address and continuing up to
the second address or until count items are printed. If the address is ".", the
address following the one printed most recently is used. The mode specifies
how memory is to be printed; if it is omitted the previous mode specified is
used. The initial mode is "X". The following modes are supported:

Print the machine instruction
Print a short word in decimal
Print a long word in decimal
Print a short word in octal

Print a long word in octal

Print a short word in hexadecimal
Print a long word in hexadecimal
Print a byte in octal

Print a byte as a character

Print a single precision real number
Print a double precision real number

NN - -

Print a string of characters terminated by a null byte

Symbolic addresses are specified by preceding the name with an "&". Registers are
denoted by $D0-$D7, for the data registers, and $A0-$A7, for the address registers. For

convenience, $DB, $SB, $SP, and $PC are also available.

Commands

Addresses may be

1-157

DBX(1)

NOTES

SysV DBX(1)

expressions made up of other addresses and the operators "+", "-", and indirection
(unaly ll*"

Miscellaneous Commands

help Print out a synopsis of dbx commands.
quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL environment
variable determines which shell is used.

source filename
Read dbx commands from the given filename.

Assignments to structures with bit fields does not work, and assigning through a pointer
variable may cause dbx to have a stack underflow and abort.

Some problems remain with the support for individual languages. Fortran problems
include: inability to assign to logical, logical*2, complex and double complex vari-
ables; inability to represent parameter constants which are not type integer or real;
peculiar representation for the values of dummy procedures (the value shown for a
dummy procedure is actually the first few bytes of the procedure text; to find the loca-
tion of the procedure, use "&" to take the address of the variable).

FILES
a.out Object file
.dbxinit Initial commands
SEE ALSO
ce(1)

1-158

Commands

Sysv DC(1)

dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. (See be(1), a preprocessor for dc that provides infix notation
and a C-like syntax that implements functions. bc also provides reasonable control
structures for programs.) The overall structure of dc is a stacking (reverse Polish) cal-
culator. If an argument is given, input is taken from that file until its end, then from the

The value of the number is pushed on the stack. A number is an unbro-
ken string of the digits 0—9. It may be preceded by an underscore () to
input a negative number. Numbers may contain decimal points.

The top two values on the stack are added (+), subtracted (—), multiplied
(*), divided (/), remaindered (%), or exponentiated (*). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack and
the value is pushed on it.

The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the | is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.
Interprets the top of the stack as an ASCII string, removes it, and prints it.
All values on the stack are printed.

Exits the program. If executing a string, the recursion level is popped by
two.

Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

Treats the top element of the stack as a character string and executes it as
a string of dc commands.

DC()
NAME

dc — desk calculator
SYNOPSIS

dc [file]
DESCRIPTION

standard input.
OPTIONS

number

+—/%%"

SX

Ix

d

p

P

f

q

Q

X

X

Commands

Replaces the number on the top of the stack with its scale factor.

1-159

DC(1)

<X >X =X

SysvV DC(1)

Puts the bracketed ASCII string onto the top of the stack.

The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a UNIX system command.
All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I Pushes the input base on the top of the stack.

[The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

HH are used by be(1) for array operations.

EXAMPLE
This example prints the first ten values of n!:
[lal+dsa*plalO>y]sy
Osal
lyx
DIAGNOSTICS

1-160

X is unimplemented
x is an octal number.

stack empty

Not enough elements on the stack to do what was asked.

Out of space

The free list is exhausted (too many digits).

Out of headers

Too many numbers being kept around.

Commands

DC(1) SysV DC(1)

Out of pushdown
Too many items on the stack.

Nesting Depth
Too many levels of nested execution.

SEE ALSO
be(1).

Commands 1-161

DD(1) SysV DD(1)

NAME
dd -~ convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output with possible conversions. By
default, it uses the standard input and output. You may specify the input and output
block size. After completion, dd reports the number of whole and partial input and out-

put blocks.
OPTIONS/VALUE PAIRS

ibs=n Inputs block size n bytes; 512 is the default.

obs=n Outputs block size; 512 is the default.

bs=n Sets both input and output block size, superseding ibs and obs.

cbs=n Conversion buffer size; used only if conv=ascii or conv=ebcdic is
specified. In the former case, cbs characters are placed into the conver-
sion buffer, converted to ASCII, and trimmed of any trailing blanks.
Newlines are then added before sending the line to the output. In the
latter case, ASCIH characters are read into the conversion buffer, con-
verted to EBCDIC, and blanks are added to make up an output block of
size cbs.

skip=n Skips n input blocks before starting copy.

seek=n Seeks n blocks from the beginning of the output file before copying.

count=n Copies only » input blocks.

conv=ascii Converts EBCDIC to ASCIL
ebedic Converts ASCII to EBCDIC.
ibm Maps ASCII to EBCDIC in a slightly different way than the above case.
Icase Maps alphabetics to lowercase.
ucase Maps alphabetics to uppercase.
swab Swaps every pair of bytes.
noerror
Does not stop processing on an error.
sync Pads every input block to ibs.
..+y... Represents several comma-separated conversions.

‘Where sizes are specified, a number of bytes is expected. A number may end with k, b,
or w to specify multiplication by 1024, 512, or 2, respectively; a pair of numbers may
be separated by x to indicate a product.

The ASCII/EBCDIC conversion tables are taken from the 256-character standard of the
CACM (November, 1968). The ibm conversion, while less accepted as a standard,
corresponds better to certain IBM print train conventions.

1-162 Commands

DD(1) SysV DD(1)

EXAMPLE
To read an EBCDIC tape blocked with ten 80-byte EBCDIC card images per block into
the ASCII file x, use the following:

dd if=/dev/rmt0 of=x ibs=800 cbs=80

BUGS
SysV does not support some raw I/O devices typically used with dd.

Newlines are inserted only on conversion to ASCII. Padding is done only on conver-
sion to EBCDIC. These should be separate options.

DIAGNOSTICS
f+p blocks infout) ~ Numbers of full and partial blocks read(written).

SEE ALSO
cp (1)

Commands 1-163

DDE(1) Domain/OS SysV DDE(1)

NAME
dde — Domain Distributed Debugging Environment

SYNOPSIS
dde [-do "cmd_list"]
[[-on target_machine] [-target_type target_type]
{ [-input pathname] [—output pathname [—ao]]
[-errors pathname [—ael] program_invocation
| —attach process_id }]

DESCRIPTION
The dde command invokes the Domain Distributed Debugging Environment, the stan-
dard debugger for the Domain/OS operating system at SR10. For complete information
about this debugger and its commands, consult the Domain Distributed Debugging
Environment Reference (011024) or invoke the debugger’s own help command for
online assistance.

OPTIONS
—do "cmd _list” Execute cmd_list (a list of debugger commands) before executing
any startup files or debugging the program. The sample option
specification -do "property layout -notarget" illustrates a common
use of this option (to inhibit the creation of a separate window for
the target program).

—on target_machine Debug the program or process on the specified target machine,
where target_machine is a node name or node ID.

—target_type target_type
Specify the type of target machine; arget type must be "m68k”
for SR10. :

—input pathname Read target program input from pathname.

—output pathname [—ao]
Direct target program output to pathname. With -ao, append out-
put to pathname.

—errors pathname [—ae]
Direct target program error output to pathname. With -ae,
append error output to pathname. To redirect error output and
standard output to the same file, use the same pathname on both
options or use "&1" as an argument to the -errors option.

program_invocation Invoke program_invocation (the pathname of an executable
image, plus any arguments) for debugging. This specification
must be last on the dde command line.

1-164 Commands

DDE(1) Domain/OS SysV DDE(1)

—attach process_id Attach to a running process identified by the UNIX pid
process_id. Use the /bin/ps or /com/pst -un commands to get
the pid of a process.

Commands 1-165

DELTA(1)

NAME

SysV DELTA(1)

delta — make a delta (change) to an SCCS file

SYNOPSIS

delta [-rSID] [-s] [-n] [—glist] [-m[mrlist]] [-y[comment]] [—p] files

DESCRIPTION

delta permanently introduces into the named SCCS file changes that were made to the
file retrieved by get(1) (called the g—file, or generated file).

delta makes a delta to each named SCCS file. If a directory is named, delta behaves as
though each file in the directory were specified as a named file, except that non-SCCS
files (last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of — is given, the standard input is read (see WARNINGS);
each line of the standard input is taken to be the name of an SCCS file to be processed.

delta can issue prompts on the standard output depending on certain options and flags
[see admin(1)] that may be present in the SCCS file (see —m and —y options below).

OPTIONS

Option arguments apply independently to each named file.

-rSID

-n

—glist

—m/[mrlist]

1-166

Uniquely identifies which delta is to be made to the SCCS file. It is only
necessary to use this option if two or more outstanding gets for editing
(get —e) on the same SCCS file were done by the same person (login
name). The SID value specified with the —r option can be either the SID
specified on the get command line or the SID to be made as reported by
the get command [see get(1)]. A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the command line.

Suppresses the issue, on the standard output, of the created delta’s SID,
as well as the number of lines inserted, deleted and unchanged in the
SCCS file.

Specifies retention of the edited g—file (normally removed at completion
of delta processing).

Creates a list (see get(1) for the definition of /ist) of deltas which are to
be ignored when the file is accessed at the change level (SID).

If the SCCS file has the v flag set [see admin(1l)] then a Modification
Request (MR) number must be supplied as the reason for creating the
new delta.

If —m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see —y option).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Commands

DELTA(1)

—y[comment]

-p

BUGS

SysV DELTA(1)

Note that if the v flag has a value [see admin(1)], it is taken to be the
name of a program (or shell procedure) which will validate the correct-
ness of the MR numbers. If a non-zero exit status is returned from the
MR number validation program, delta terminates. (It is assumed that the
MR numbers were not all valid.)

Arbitrary text used to describe the reason for making the delta. A null
string is considered a valid comment.

If —y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

Causes delta to print (on the standard output) the SCCS file differences
before and after the delta is applied in a diff(1) format.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
SCCS file unless the SOH is escaped. This character has special meaning to SCCS [see
scesfile(4) (5)] and will cause an error.

Avoid using a get of many SCCS files, followed by a delta of those files, when the get
generates a large amount of data. Instead, use multiple get/delta sequences.

If the standard input (-) is specified on the delta command line, —m (if necessary) and
—y must also be present. Omission of these options causes an error.

Comments are limited to text strings of at most 512 characters.

FILES
g—file

p—file
g—file
x—file
z—file

d—file

Existed before the execution of delta; removed after completion of
delta.

Existed before the execution of delta; may exist after completion of
delta.

Created during the execution of delta; removed after completion of
delta.

Created during the execution of delta; renamed to SCCS file after com-
pletion of delta.

Created during the execution of delta; removed during execution of
delta.

Created during the execution of delta; removed after completion of
delta.

/usr/bin/bdiff Program to compute differences between the ‘‘gotten’’ file and the

DIAGNOSTICS

g—file.

Use help(1) for explanations.

Commands

1-167

DELTA(1) SysvV DELTA(1)

SEE ALSO
admin(1), cde(1), get(1), prs(1), rmdel(1), sces(1), scesfile(4).
bdiff(1), help(1) in Using Your SysV Environment.

1-168 Commands

DIFF(1)

NAME

SysV DIFF(1)

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

diff tells what lines must be changed in two files to bring them into agreement. If filel
(file2) is —, the standard input is used. If filel (file2) is a directory, then a file in that
directory with the name file2 (filel) is used. The normal output contains lines of these
forms:

nl an3.n4
nl,n2 dn3
nl,n2 cn3.néd

These lines resemble ed commands used to convert file! into file2. The numbers after
the letters pertain to file2. In fact, by using a instead of d and reading backward, you
can see how to convert file2 into filel . As in ed, identical pairs, where nl =n2 orn3 =
nd4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged
by <, then all the lines that are affected in the second file flagged by >.

OPTIONS

BUGS

-b Causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

— Produces a script of a, ¢, and d commands for the editor ed, which recreates
file2 from filel .

—f Produces a similar script, not useful with ed, in the opposite order. In connec-

tion with —e, the following shell program may help maintain multiple versions
of a file. Only an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3,...) made by A ‘latest version’’ appears on the standard output.

(shift; cat $*; echo ’1,$p")| ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differ-
ences.

-~h Does a fast, half-hearted job. It works only when changed stretches are short
and well separated, but does work on files of unlimited length. Options — and
—f are unavailable with —h.

Editing scripts produced under the —e or —f option are naive about creating lines con-
sisting of a single period (.).

Commands 1-169

DIFF(1) SysV DIFF(1)

WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are different,
they will be flagged and output; although the output will seem to indicate they are the
same.

FILES

/usr/lib/diffh for —h

DIAGNOSTICS
Exit status is O for no differences, 1 for some differences, 2 for trouble.

SEE ALSO
bdiff(1), cmp(1), comm(1), ed(1).

1-170 Commands

DIFF3(1) SysV DIFF3(1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged
with these codes:

==== all three files differ
=== filel is different
====2 file2 is different
==== file3 is different

The type of change suffered in converting a given range of a given file to some other is
indicated in one of these ways:

:nl a Text is to be appended after line number n! in file f, where
ppe
f=1,2,0r3.
finl ,n2c Text is to be changed in the range line nl to line n2. If nl

= n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the
contents of two files are identical, the contents of the lower-numbered file is suppressed.

OPTIONS
- Publishes a script for the editor ed that incorporates into filel all changes
between file2 and file3. That is, the changes that normally would be
flagged ==== and ====3.
-x(-3) Produces a script to incorporate only changes flagged ==== (====3).
The following command applies the resulting script to filel .
(cat script; echo 1,$p”)| ed — filel
FILES
/tmp/d3*
lusr/lib/diff3prog
BUGS

Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

SEE ALSO

diff(1).

Commands 1-171

DIRCMP(1) SysV DIRCMP(1)

NAME
dircmp — directory comparison
SYNOPSIS
diremp [-d] [-s] [—wn] dirl dir2
DESCRIPTION
dircmp examines dirl and dir2 and generates various tabulated information about the
contents of the directories. It generates lists of files that are unique to each directory for
all the options. If no option is entered, a list is output indicating whether the file names
common to both directories have the same contents.
OPTIONS
—d Compares the contents of files with the same name in both directories
and outputs a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(1).
-S Suppresses messages about identical files.
-wn Changes the width of the output line to »n characters. The default width
is 72.
SEE ALSO

cmp(1), diff(1).

1-172 Commands

DIRNAME(1) SysV DIRNAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution
marks (* *) within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles the
named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out ‘basename $1 \.c’

The following example sets the shell variable NAME to /usr/src/cmd:
NAME-=‘dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(1).

Commands 1-173

DISABLE(1) Sysv DISABLE(1)

NAME
enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [—c] [-r[reason]] printers

DESCRIPTION
enable activates the named printers, enabling them to print requests taken by Ip(1).
Use Ipstat(1) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests taken by
1p(1). By default, any requests that are currently printing on the designated printers are
reprinted in their entirety either on the same printer or on another member of the same
class. Use Ipstat(1) to find the status of printers.

OPTIONS FOR DISABLE ONLY
- Cancels any requests that are currently printing on any of the designated
printers.

—r[reason] Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next —r option. If the —r
option is not present or the —r option is given without a reason, a default
reason is used. Reason is reported by Ipstat(1).

FILES
usr/spool/lp/*

SEE ALSO
Ip(1), Ipstat(1).

1-174 Commands

DLTY(1) Domain/OS SysV DLTY(1)

NAME
dity — delete a type

SYNOPSIS
dity [options] type_name

DESCRIPTION
dity deletes a type and any installed type manager.

type_name (required) Specify the name of the type to be deleted.

OPTIONS
—n node_spec Specify the node on which the type is to be deleted. You may
also specify the entry directory of a volume mounted for software
updates, as shown in the example below. If you omit the —n
node-spec the type is deleted on the current node.
-1 List the type name/type identifier pair that is deleted.
EXAMPLES

$ dity example_type -1
"example type” 24BF9F41.100001FB deleted.

$ dity example_type —n //test_vol -1
"example_ type" 24BFA6F8.200001FB
deleted from volume //test_vol.

In the following example, the disk has been mounted for software updates. The disk’s
top level directory (cataloged as /mount_disk by the /etc/mount(1M) command) must
contain a "sys" directory. If it does not, you get a "types file not found" error.

$ mtvol w /mount_disk
$ dity example_type -n /mount_disk -1
"example_ type" 24BFB71E.200001FB deleted
from volume //my_node/mount_disk.

SEE ALSO
crty(1), inty(1), lty(1), mount(1M)

Commands 1-175

DM(1)

NAME

Domain/OS SysV DM(1)

DM commands - Display Manager commands

DESCRIPTION

Following is a list of DM commands sorted by function.

CURSOR CONTROL COMMANDS:

al

ar
ad
au

asxy

Move cursor left 1 character position.
Move cursor right 1 character position.
Move cursor down 1 line.

Move cursor up one line.

Set scale factors for arrow keys, in raster units.

curs [—onl—off]

tl
tr
tt

Enable/disable cursor positioning via tn.
Move cursor to the left edge of the pad.
Move cursor to the end of the line.

Move cursor to top edge of the window.

tb Move cursor to the last line in the window.

twb {-ll-rl-tl-b}

th
thl

tdm
tiw
tn
tni
ti

Move cursor to the specified window border.
Move cursor right to the next horizontal tab stop.
Move cursor left to the next horizontal tab stop.

ts nl n2...[-r] Set tab stops in columns nl, n2, etc., optionally repeating
the last interval.

Move cursor to the Display Manager’s input window.
Move cursor to the previous window.

Move cursor to the next window on the display.
Move cursor to next unobscured icon on the display.

Move cursor to the next window in which input is enabled.

PROCESS CREATION COMMANDS:
cp [—il—¢ char] pathname [-n process_name] [args...]]

1-176

Create a new process, input and transcript pads, and associated windows;
the process executes pathname; —i makes the window an icon; —c¢
specifies the icon character; —n names the process.

Commands

DM(1) Domain/OS SysV DM(1)

cpo pathname [—n process_name [args...]]
Create a process and execute pathname; do not create pads or windows.

cps pathname [—n process_name [args...]]
Like cpo, except assign the process the SID ’user.server.none’.

PROCESS CONTROL COMMANDS:
dq [-sl-bl—c nn]
Cause a quit fault, which normally terminates program execution; —s
also stops the process; —b blasts the process, —¢ generates an arbitrary
asynchronous fault with the specified hex status code.

ds Suspend execution of the process.
dc Continue execution of a suspended process.

WINDOW/PAD CREATION COMMANDS:
ce pathname Create an edit pad and associated window.

cv pathname Create a view, that is, a read only edit pad.

cc Create a copy of an existing window.
WINDOW CONTROL COMMANDS:

wg Grow or shrink a window.

wge Grow or shrink a window with feedback.

wm Move a window.

wme Move a window with feedback.

wp [window_namelgroup_name] [—tl-b]
Push (named) window (or window group) to bottom of pile if unob-
scured, else pop to top. —t and —b will force a window to the bottom or
to the top.

we [-f] [-q] [-a] [-s]
Close (delete) a window. Use —a to automatically close and delete a win-
dow after a "Z and —s to reverse auto-close mode.

wa [—onl-off] Toggle auto-hold mode.

ws [—onl—off] Toggle window-at-a-time scroll mode.

wh [—onl-off]

Toggle hold mode.
wdf [n] Set the n’th default window creation boundaries.
PAD CONTROL COMMANDS:
pb Move the bottom of the pad into window.

Commands 1-177

DM(1) Domain/OS SysV DM(1)

pt Move the top of the pad into window.
pp [Fln Move the pad forward [backward] n pages (n may be decimal fraction).
pv [-]n Move the pad forward [backward] r lines (» may be decimal fraction).

ph [-In Move the pad n character positions horizontally (n may be decimal frac-
tion).

pn pathname Save the pad under pathname (transcript pads only).

WINDOW GROUP AND ICON COMMANDS:

icon [entry_name] [~i] [-w] [-c ’char’]
Make a window or group of windows into an icong(s).

wi [entry_name] [—i] [-w]
Make a window or group of windows invisible.

wgra group name [entry_name]
Add a window to a group of windows.

wgrr group_name [entry_name]

Remove a window from a group of windows.
¢pb group_name

Display a list of the windows in a group.

idf Set icon positioning vector.
PAD EDITING COMMANDS:
Set modes:

ro [-onl—off] Change pad from write to read-only mode or vice versa.
ei [-onl—off] Change from insert to overstrike mode or vice versa.

Insert text:
es ’string’ Insert ’string’ at the current cursor position.

en Insert a new line character.
er nn Send raw hexadecimal data byte nn to user program.
eef Insert a stream end-of-file indicator.
Delete text:
ed Delete the character at the cursor position.
ee Delete the character immediately preceding the cursor.

Cut and Paste:
x¢ [—r] [-f pathname | name]
Copy text into a paste buffer or file.

xd [-r] [-f pathname | name]
Copy text into a paste buffer or file and delete text.

1-178 Commands

DM(1)

Domain/OS SysV DM(1)

xp [-r] [-f pathname | name]

Insert contents of paste buffer or file into pad.

xi [—f pathname]

Search:
/regular exp/

\regular exp\

// or\\
sq
sc [—onl—off)

Substitute:
s/re/replace/

so/re/replace/

Miscellaneous:
undo

pw
echo [-r]

abrt

Copy display image to graphics map file for above cut and paste com-
mands: use —r for a rectangular cut. use —f to specify a file name.

Search forward in the pad for a string which matches the regular expres-
sion; for help on regular expressions, type help patterns.

Search backward in the pad for a string which matches the regular
expression.

Repeat last search forward or backward.
Abort search.

Enable/disable case sensitivity for searches.

Substitute the replacement text for all strings in the range which match
the regular expression .

Substitute the replacement text for the first string in each line in the
range which matches the regular expression.

Undo file changes in an input pad or an edit pad; successive undos will
undo further back in history.

Write edit pad to new file, but don’t close pad or delete window.

If a grow/move is in progress, then end feedback. Else begin text
highlighting feedback if the cursor is on text.

Abort text or window feedback, abort a search, or clear mark stack.

case [—ul-ll-s]

Change the case of the letters in a marked text range.
—s Switch to inverse case (default)

—-u Change to upper case

-1 Change to lower case

KEY DEFINITION COMMANDS:
kd key [[def] ke]

kbdn

Commands

Set or display a DM key definition.

Declare keyboard type; n must be '3’ if your node has a Domain Pro-
grammable Keyboard (with numeric keypad); » must be "2’ if your node
has a Low Profile Keyboard; » must be * ’ if your node has an 880 key-
board; this command is only valid during node boot.

1-179

DM(1) Domain/OS SysV DM(1)

&’prompt” Write the optional prompt string in the input pad, then read a line of

input
DISPLAY MANAGEMENT COMMANDS:
Login/Logout:
I pers [group [org]]
Login (valid only when logged out); the ’1’ is optional when preceded by
the "login:" prompt.
lo [-f] Logout (valid only when logged in)
ex Exit DM to boot shell.

shut [-f] Shutdown the system
Place/Clear Marks:

dr Place a mark (for window control or cut and paste).
gm Go to mark.
cms Clear mark stack.
rm Push last mark back on the stack.
Miscellaneous:
= Display line, column number, and x,y pixel values of current cursor posi-
tion.
aa Acknowledge DM alarm.
ap Acknowledge DM alarm and pop the associated window .

bl [—il—c] [I_char] [r_char]
Check and/or balance delimiting characters.

env var [value]
Set or display an environment variable; setting an environment variable
is only valid during login startup.

bgc [—onl—off]
Tum on or off the gray scale background color (monochrome monitor).

inv [-onl—off] Invert the screen to black on white, or vice-versa (monochrome moni-
tor).

mono [—onl-off]
Enable/disable monochrome mode (color monitor).

msg ’string’ Display a message in the DM output window.

1-180 Commands

DM(1) Domain/OS SysV DM(1)

rs Refresh the entire screen.
rw [-r] Refresh current window; —r option reenables window.

fl pathname [—i]
Load a font to be used in later pads; —i indicates an icon font.

cmdf pathname
Execute DM script.

Commands 1-181

DSPST(1) Domain/OS SysV DSPST(1)

NAME
dspst — display process status graphically

SYNOPSIS
dspst [-r n] [-p] [-L1] [-os] [-m]
[-io] [-a] [-n node_spec]
[-large|-small]
DESCRIPTION
dspst displays process statistics in a graphical, bar-chart fashion within the current pro-
cess window. The chart is updated periodically (see —r below). The default action of

this command is to display the brief Domain/OS process list, all user processes and all
I/O information in a font size automatically selected based on window size.

While dspst is running, the following keys are interpreted as follows:

All Keyboards:

CRTL/T Move to top

CRTL/B Move to bottom

RETURN Exit

CRTL/N Exit

CRTL/Y Exit and save current image

Boxed up arrow Scroll backward 1/2 window

Boxed down arrow Scroll forward 1/2 window

Shifted up arrow Scroll backward 1 line

Shifted down arrow Scroll forward 1 line

EXIT or ABORT Exit

SAVE Exit and save current image

OPTIONS

-rn Specify that the display should be repeatedly updated every n
seconds. If this option is omitted, the display is updated every 4
seconds.

-p Show process information.

-1 Show Domain/OS and user-process information.

—0s (default) Show brief Domain/OS and full user-process information.

-m Show missing CPU time.

—io (default) Show I/O statistics.

-a Show all information (same as —11 —io —m).

—n node_spec Specify remote node whose process statistics are to be listed.

1-182 Commands

DSPST(1) Domain/OS SysV DSPST(1)
—large (default) Force use of large font for display.
—small Force use of small font for display.

EXAMPLES

1. Display Domain/OS, user process, and I/O status.
$ dspst

2. Display Domain/OS, user process, and I/O status for the node named //fred using
the large font.

$ dspst —n //fred —large

Commands 1-183

DU(1) SysV DU(1)

NAME
du — summarize disk usage

SYNOPSIS
du [—ars] [names]

DESCRIPTION
du prints the number of blocks (1024 bytes per block) contained in all files and direc-
tories specified by the names argument. The block count includes the indirect blocks of
the file. A file with two or more links is only counted once. If the names argument is
missing, a period (.) is used.

OPTIONS
—-a Generates an entry for each file.
-r Generates messages about such things as directories that cannot be read
and files that cannot be opened. du is normally silent about these things.
-s Prints only the grand total of blocks for each of the specified names.
BUGS

Absence of the —a or —s options causes an entry to be generated for each directory only.
If the —a option is not used, nondirectories given as arguments are not listed.
If too many distinct linked files exist, du counts the excess files more than once.

Files with holes in them will get an incorrect block count.

1-184 Commands

DUMP(1) Sysv DUMP(1)

NAME

dump — dump selected parts of an object file
SYNOPSIS

dump [options] files
DESCRIPTION

The dump command dumps selected parts of each of its object file arguments.

dump accepts both object files and archives of object files. It processes each file argu-
ment according to one or more of the following options.

OPTIONS
-a Dumps the archive header of each member of each archive file argument.

—- Dumps the string table.
~f Dumps each file header.
-g Dumps the global symbols in the symbol table of an archive.

—h Dumps section headers.
-l Dumps line number information.
-L Interprets and prints the contents of the ./ib sections.

-0 Dumps each optional header.
-r Dumps relocation information.
- Dumps section contents.

-t Dumps symbol table entries.

Dumps line number entries for the named function.
—Aa Dumps the longname table and module table of an archive.
—Ai Interprets and prints the contents of the .inlib section.
—Am Interprets and prints the .mir section records.
—Ar Interprets and prints the .rwdi section records.
—AR Interprets and prints the contents of the .rwdi section.
-As Interprest and prints the .sri section records.
—AS Interprets and prints section contents.

MODIFIERS
The following modifiers are used in conjunction with the options listed above to modify
their capabilities.

—d number Dumps the section number, number, or the range of sections starting at
number and ending at the number specified by +d.

Commands 1-185

DUMP(1)

1-186

SysV DUMP(1)

+d number Dumps sections in the range either beginning with first section or begin-

—N name

-p
—t index

+t index

-u

-V

ning with section specified by —d.

Dumps information pertaining only to the named entity. This modifier
applies to —~h, —s, —r, -1, and —t.

Suppresses printing of the headers.

Dumps only the indexed symbol table entry. The —t used in conjunction
with +t, specifies a range of symbol table entries.

Dumps the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the —t option.

Underlines the name of the file for emphasis.

Dumps information in symbolic representation rather than numeric (e.g.,
C_STATIC instead of 0X02). This modifier can be used with all the above
options except —s and —0 options of dump.

—z name ,number

Dumps line number entry or range of line numbers starting at number for
the named function.

+z number Dumps line numbers starting at either function name or number specified

by —z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the —z option may be replaced by a blank.

dump attempts to format the information it dumps in a meaningful way, printing cer-
tain information in character, hex, octal or decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

Commands

ECHO(1) SysV ECHO(1)

NAME
echo — echo arguments
SYNOPSIS
echo[arg] ...
DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on the stan-
dard output. It also understands C-like escape conventions; beware of conflicts with the
shell’s use of \:
\b Backspace
\c Print line without new-line
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\On Where n is the 8-bit character whose ASCII code is the 1-, 2- or 3-
digit octal number representing that character.
echo is useful for producing diagnostics in command files and for sending known data
into a pipe.
CAVEATS
When representing an 8-bit character by using the escape convention \On, the n must
always be preceded by the digit zero (0).
For example, typing: echo "WARNING:\07" will print the phrase WARNING: and
sound the ‘‘bell’’ on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the ‘“\’’ that precedes the ““07°’.
For the octal equivalents of each character, see ascii(5), in the SysV Programmer’s
Reference.
SEE ALSO
sh(l).

Commands 1-18

ED(1)

SysV ED(1)

NAME

ed, red — text editor
SYNOPSIS

ed [—s] [—p string] [file]

red [—s] [—p string] [file]
DESCRIPTION

ed is the standard text editor. If the file argument is given, ed simulates an ¢ command
(see below) on the named file; that is, the file is read into ed’s buffer so that it can be
edited.

ed operates on a copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

red is a restricted version of ed. It only allows editing of files in the current directory.
It prohibits executing shell commands using the !shell command. Attempts to bypass
these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in stty —tabs or
stty tab3 mode (see stty(1)), specified tab stops are automatically used when scanning
file. For example, if the first line of a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: while inputing text, tab characters when typed are expanded
to every eighth column as is the default.

OPTIONS
- Suppresses the printing of character counts by e, r, and w commands, of
diagnostics from e and ¢ commands, and of the ! prompt after a
!shell command. Also, see the WARNING section at the end of this
manual page.
-p Allows you to specify a prompt string. Commands to ed have a simple

1-188

and regular structure: zero, one, or two addresses followed by a single-
character command,, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer. Every com-
mand that requires addresses has default addresses, so that the addresses
can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode,

Commands

ED(1)

SysV ED(1)

no commands are recognized; all input is merely collected. Input mode is left by typ-
ing a period (.) alone at the beginning of a line, followed immediately by a carriage
return.

ed supports a limited form of regular expression notation; regular expressions are used
in addresses to specify lines and in some commands (s, for example) to specify portions
of a line that are to be substituted. A regular expression (RE) specifies a set of character
strings. A member of this set of strings is said to be matched by the RE.

REGULAR EXPRESSIONS
The following one-character REs match a single character:

An ordinary character (not one of those discussed below) is a one-character RE that
matches itself.

A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

— ., %[, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets.

— ~ (caret or circumflex), which is special at the beginning of an entire RE, or
immediately follows the left of a pair of square brackets.

— $ (dollar sign), which is special at the end of an entire RE.

— The character used to bound (i.e., delimit) an entire RE, which is special for that
RE (for example, see how slash (/) is used in the g command, below.)

A period (.) is a one-character RE that matches any character except new-line.

A non-empty string of characters enclosed in square brackets ([]) is a one-character
RE that matches any one character in that string. If, however, the first character of
the string is a circumflex (~), the one-character RE matches any character except
new-line and the remaining characters in the string. The ~ has this special meaning
only if it occurs first in the string. The minus () may be used to indicate a range of
consecutive ASCII characters; for example, [0—9] is equivalent to [0123456789].
The — loses this special meaning if it occurs first (after an initial ~, if any) or last in
the string. The right square bracket (]) does not terminate such a string when it is
the first character within it (after an initial ~, if any); e.g., []Ja—f] matches either a
right square bracket (1) or one of the letters a through f inclusive. The four charac-
ters listed in 1.2.a above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

Commands

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (*) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost
string that permits a match is chosen.

1-18¢

ED(1)

SysV ED(1)

e A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a
range of occurrences of the one-character RE. The values of m and n must be non-
negative integers less than 256, \{m\} matches exactly m occurrences; \{m,\}
matches at least m occurrences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

e The concatenation of REs is a RE that matches the concatenation of the strings
matched by each component of the RE.

e ARE enclosed between the character sequences \(and) is a RE that matches what-
ever the unadomed RE matches.

e The expression \n matches the same string of characters as was matched by an
expression enclosed between \(and \) the sub-expression specified is that beginning
with the n~th occurrence of \(counting from the left. For example, the expression
~\(.*\)\1$ matches a line consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final seg-
ment of a line (or both).

e A circumflex (~) at the beginning of an entire RE constrains that RE to match an ini-
tial segment of a line.

e A dollar sign ($) at the end of an entire RE constrains that RE to match a final seg-
ment of a line.

The construction ~entire RE $ constrains the entire RE to match the entire line.

The null RE (e.g., /) is equivalent to the last RE encountered. See also the last para-
graph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com-
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

— The character . addresses the current line.
— The character $ addresses the last line of the buffer.
— A decimal number n addresses the n-th line of the buffer.

— ’x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the kX command described below.

— A RE enclosed by slashes (/) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stopping
at the first line containing a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched. See also the last paragraph
before FILES below.

Commands

ED(1)

SysV ED(1)

— A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If neces-
sary, the search wraps around to the end of the buffer and continues up to and
including the current line. See also the last paragraph before FILES below.

— An address followed by a plus sign (+) or a minus sign (—) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of
lines. The plus sign may be omitted.

— If an address begins with + or —, the addition or subtraction is taken with respect
to the current line; e.g, —5 is understood to mean .—5.

- If an address ends with + or —, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and the rule immediately above, the
address — refers to the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character ~ in addresses is entirely
equivalent to —.) Moreover, trailing + and — characters have a cumulative effect,
so — refers to the current line less 2.

— For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
() stands for the pair .,$.

COMMANDS

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first
address, and only then is the second address calculated. This feature can be used to
determine the starting line for forward and backward searches. The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses.
The parentheses are not part of the address; they show that the given addresses are the
default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by |, n, or p in which case the current
line is either listed, numbered or printed, respectively, as discussed below under the /,
n, and p commands.

(.)a

<text>

Commands 1-191

ED(1)

1-192

(.)e

<text>

(.,.d

e file

E file

f file

Sysv ED(1)

The append command reads the given text and appends it after the addressed
line; . is left at the last inserted line, or, if there were none, at the addressed
line. Address 0 is legal for this command: it causes the ‘‘appended’’ text to be
placed at the beginning of the buffer. The maximum number of characters that
may be entered from a terminal is 256 per line (including the new-line charac-
ter).

The change command deletes the addressed lines, then accepts input text that
replaces these lines; . is left at the last line input, or, if there were none, at the
first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were ori-
ginally at the end of the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and
then the named file to be read in; . is set to the last line of the buffer. If no file
name is given, the currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is remembered for
possible use as a default file name in subsequent e, r, and w commands. If file
is replaced by !, the rest of the line is taken to be a shell (sh(1)) command
whose output is to be read. Such a shell command is not remembered as the
current file name. See also DIAGNOQSTICS below.

The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

If file is given, the file-name command changes the currently-remembered file
name to file; otherwise, it prints the currently-remembered file name.

(1,$)g/RE/command list

In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed with .
initially set to that line. A single command or the first of a list of commands
appears on the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \; @, i, and ¢ commands and associ-
ated input are permitted. The . terminating input mode may be omitted if it
would be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V commands are not permit-
ted in the command list. See also BUGS and the last paragraph before FILES
below.

Commands

ED(1)

SysvV ED(1)

(1,$)G/RE/

(i

<text>

(.,.+1)j

(-)kx

(.,

(.y.)ma

Commands

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, . is
changed to that line, and any one command (other than one of the a, ¢, i, g, G,
v, and V commands) may be input and is executed. After the execution of that
command, the next marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of
the execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal (ASCII DEL
or BREAK).

The help command gives a short error message that explains the reason for the
most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the previous ? if
there was one. The H command alternately tums this mode on and off; it is
initially off.

The insert command inserts the given text before the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. This com-
mand differs from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum number of characters
that may be entered from a terminal is 256 per line (including the new-line
character).

The join command joins contiguous lines by removing the appropriate new-
line characters. If exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a
lower-case letter. The address ‘x then addresses this line; . is unchanged.

The /ist command prints the addressed lines in an unambiguous way: a few
non-printing characters (e.g., tab, backspace) are represented by visually
mnemonic overstrikes. All other non-printing characters are printed in octal,
and long lines are folded. An/ command may be appended to any other com-
mand other thane, f,r, or w.

The move command repositions the addressed line(s) after the line addressed

1-193

ED(1)

1-194

Sysv ED(1)

by a. Address 0 is legal for @ and causes the addressed line(s) to be moved to
the beginning of the file. It is an error if address a falls within the range of
moved lines; . is left at the last line moved.

(.y.)n
The number command prints the addressed lines, preceding each line by its
line number and a tab character; . is left at the last line printed. The n com-
mand may be appended to any other command other thane, f, r, or w.

(.5)p
The print command prints the addressed lines; . is left at the last line printed.
The p command may be appended to any other command other than e, f, r, or
w. For example, dp deletes the current line and prints the new current line.

P
The editor will prompt with a * for all subsequent commands. The P com-
mand altemately turns this mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a file is done;
however, see DIAGNOSTICS, below.

Q

The editor exits without checking if changes have been made in the buffer
since the last w command.

($)r file

The read command reads in the given file after the addressed line. If no file
name is given, the currently-remembered file name, if any, is used (see e and f
commands). The currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked. Address 0 is legal for
r and causes the file to be read at the beginning of the buffer. If the read is
successful, the number of characters read is typed; . is set to the last line read
in. If file is replaced by !, the rest of the line is taken to be a shell (sh(1)) com-
mand whose output is to be read. For example, "$r !ls" appends current direc-
tory to the end of the file being edited. Such a shell command is not remem-
bered as the current file name.

(.,.)S/RE[replacement/ or

(.,.)S/RE/replacement/g or

(.,.)S/RE[replacement/n n=1-512
The substitute command searches each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all (non-overlapped)
matched strings are replaced by the replacement if the global replacement
indicator g appears after the command. If the global indicator does not appear,
only the first occurrence of the matched string is replaced. If a number n
appears after the command, only the n th occurrence of the matched string on
each addressed line is replaced. It is an error for the substitution to fail on all

Commands

ED(1)

(.y.)ta

Sysv ED(1)

addressed lines. Any character other than space or new-line may be used
instead of / to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last paragraph before FILES
below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this context
may be suppressed by preceding it by \. As a more general feature, the charac-
ters \n, where n is a digit, are replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character % is the only
character in the replacement, the replacement used in the most recent substi-
tute command is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of more
than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \. Such substitution
cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the last
line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, ¢, d, g,i,j,m,r,s,
t,v,G,or V command.

(1,$)V/RE/command list

This command is the same as the global command g except that the command
list is executed with . initially set to every line that does not match the RE.

(1,$)V/RE/

This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do nor match the
RE.

(1,$)w file

Commands

The write command writes the addressed lines into the named file. If the file
does not exist, it is created with mode 666 (readable and writable by every-
one), unless your umask setting (see umask(l)) dictates otherwise. The
currently-remembered file name is not changed unless file is the very first file
name mentioned since ed was invoked. If no file name is given, the
currently-remembered file name, if any, is used (see ¢ and f commands); . is
unchanged. If the command is successful, the number of ¢ haracters written is

1-195

ED(1)

SysV ED(1)

typed. If file is replaced by !, the rest of the line is taken to be a shell (sh(1))
command whose standard input is the addressed lines. Such a shellcommand
is not remembered as the current file name.

($)=
The line number of the addressed line is typed; . is unchanged by this com-
mand.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell (sh(1)) to
be interpreted as a command. Within the text of that command, the unescaped
character % is replaced with the remembered file name; if a ! appears as the
first character of the shell command, it is replaced with the text of the previous
shell command. Thus, !! will repeat the last shell command. If any expansion
is performed, the expanded line is echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line
alone is equivalent to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command list,
and 64 characters per file name. The limit on the number of lines depends on the
amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters. Files (e.g., a.out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed adds one and outputs a message
explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last
character before a new-line, that delimiter may be omitted, in which case the addressed
line is printed. The following pairs of commands are equivalent:

s/sl/s2 s/s1/s2/p

g/sl g/sl/p

?s1 ?s1?

WARNINGS

BUGS

1-196

The — option, although supported in this release for upward compatibility, will no
longer be supported in the next major release of the system. Convert shell scripts that
use the — option to use the —s option, instead.

A ! command cannot be subject to a g or a v command.

The / command and the ! escape from the e, r, and w commands cannot be used if the
editor is invoked from a restricted shell (see sh(1)).

The sequence \n in a RE does not match a new-line character.

Commands

ED(1)

FILES

SysV ED(1)

Characters are masked to 7 bits on input.
If the editor input is coming from a command file (e.g., ed file < ed-cmd-file), the editor
will exit at the first failure.

lusr/tmp Default directory for temporary work file.

$TMPDIR If this environmental variable is not null, its value is used in place of
/usr/tmp as the directory name for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

DIAGNOSTICS

? Command error.
? file An inaccessible file.
(use the help command for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed wams the user if an attempt is made to destroy ed’s buffer via the ¢ or ¢
commands. It prints ? and allows one to continue editing. A second e or ¢ command
at this point will take effect. The —s command-line option inhibits this feature.

SEE ALSO

edit(1), ex(1), grep(1), sed(1), sh(1), stty(1), umask(1), vi(1).
fspec(4), regexp(5) in the SysV Programmer’s Reference.

Commands 1-197

EDFONT(1) Domain/OS SysV EDFONT(1)

NAME

edfont — edit a character font

SYNOPSIS

edfont [file | —v]

DESCRIPTION

1-198

edfont is an interactive program with both menu-driven and command-line interfaces.
It allows you to create, edit, and view character font files. You can specify the font file
with the file parameter, or use the ‘“‘Open Font’’ entry in the ‘‘File’’ menu. If the —v
option is used, edfont will print its version number and exit.

Generally, you must press the left mouse button <M1> to activate commands in the
menu-driven interface. When you must enter a string (for example, when you designate
which font you want to open) and there is a ‘‘Done’’ field on the menu, enter the string,
point to ‘‘Done”” and press <M1> to activate. If ‘“‘Done’’ does not appear when you
must enter a string, simply type the string and press <KRETURN> to activate the com-
mand.

When using the menu-driven interface, you may notice that you cannot always select
every menu choice. For example, you can’t select ‘‘Open Font’’ if you already have
one open, and likewise it’s invalid to try to close a font when no font is open. When
commands are invalid, as in these cases, their places on the menus are grayed out so
that they can’t be selected.

edfont lets you select a character (glyph) in a variety of ways. The utility interprets

input this way:

o Any three-character string whose first character is a lowercase ¢ has its final two
characters interpreted as a compose sequence (e.g., ca” for lowercase a with a
circumflex accent)

e Any string that begins with Ox is interpreted as a hexadecimal code (e.g., 0x41 for
uppercase A)
e Any string that begins with 0 (zero) is interpreted as octal (e.g., 0101 for A)

e Any string that begins with a digit other than zero is considered to be decimal (e.g.,
65 for A)

e Any other string is considered to be an ASCII character (e.g., A for A)

For more information on compose sequences, see your system’s User’s Guide. For a
list of decimal, octal, and hexadecimal values for the characters in Apollo’s default
character set, as well as a list of the compose sequences, see the files in the /usr/pub
directory.

When you invoke edfont, it sets default values for several variables. You can change
those defaults using either the appropriate command in the menu-driven interface or set
in the command-driven interface. For more information on these interfaces see the sec-
tion on command interfaces, below.

Commands

EDFONT(1)

Domain/OS SysV EDFONT(1)

The following table lists variables, their types, default values (if any), and purpose.

Variable/Type
fontpath/string
fontservers/string
fill/string
fontorigin/coord
fontsize/coord
fontspacing/coord
glyphoffset/coord
glyphsize/coord

glyphwidth/coord

mask/string

Default
:/sys/dm/fonts
/usr/apollo/lib/edfont
outline

none

none

none

none

none

none

src " dst

Description

List of directories, separated by colons,
in which edfont should search for fonts
The search path for the font servers
directory

The name of the current fill pattemn

The coordinate value that tells the
number of pixels below and to the left
of the font origin

The width and height of the font bound-
ing box

The horizontal and vertical font spacing
(leading)

The offset of the current glyph from the
font origin

The width and height of the bitmap for
the current glyph

The number of pixels from the right
edge of the current glyph to the left
edge of the next glyph

The current mask

(raster operation)

edfont handles fonts created using Apollo’s current and pre-SR10 formats, as well as

Adobe BDF fonts.
Menu Interface

Note: You can get additional information about any item on the display by pressing the
HELP key at the cursor position where you need help. This pops a help box. To return
to the original display, move the cursor out of the help box.

Font When you position the cursor here and press <M1>, edfont displays a
menu with the following choices:

Commands

Open Font

Close Font
Select Glyph
Font Params
Glyph Params

Quit

EDFONT(1) Domain/OS SysV EDFONT(1)

1-200

Use these choices to open and close the font you want to edit, select an individual
glyph (character) to edit, and examine or change the font’s parameters or a single
glyph’s parameters.

Tools If you press <M1>, you will see the following choices:
Grid
Metrics

By default, both are turned on. If you tum off Grid, you no longer will see the pixel-
by-pixel bitmap grid in the edit window. If you turn off Metrics, the glyph fills the edit
window.

Metrics shows these three attributes of your glyph and font:
e Origin and baseline (fine dotted line)

e Glyph-bounding box (long dashed line)

e Font-bounding box (short dashed line)

Commands If you press <M1>, you will see the following choices:

Undo Undo remembers your last 10 changes to the current glyph. Undo
does not work on parameter changes, however.

Run Commands You can set up a file of commands and direct edfont to execute
that file. For more information on the commands you can use, see
the description of the command interface, below.

Copy Glyph Copies a glyph from elsewhere in your font or from another font.
Delete Glyph This deletes a glyph.
Rotate Glyph This rotates a glyph by the number of degrees you specify.
Draw When you position the cursor here and press <M1>, you will see the fol-

lowing choices:

Pixel Manipulate individual pixels

Freehand Draw freehand

Line Draw lines

Box Draw boxes

Circle Draw circles

Cut Select and delete a pixel or range of pixels

Copy Select and copy a pixel or range of pixels

Commands

EDFONT(1) Domain/OS SysV EDFONT(1)
Paste Paste in a pixel or range of pixels that you have previ-
ously cut or copied
Zoom Zoom in on a selected portion of the glyph
Note that after you Cut or Copy, edfont automatically changes the Draw
mode to Paste. You can manually change it to something else if you
prefer.

Fill When you position the cursor here and press <M1>, you will see the fol-
lowing choices:

Outline this is the default

25% gray

50% gray

75% gray

black

bricks

chex

/stripes right-leaning stripes

\stripes left-leaning stripes

Istripes vertical stripes

—stripes horizontal stripes

tri

waves

The way edfont fills an entity such as a circle or box depends on which
fill you choose. If you choose 50% gray, for example, and then create a
box, edfont turns on half of the pixels inside the box to create a 50%
gray effect. If you choose 75% or 25% gray, edfont turns on proportion-
ally more or fewer pixels to get the desired effect.

Mask When you position the cursor here and press <M1>, you will see the fol-
lowing choices (where ‘‘src’’ means source, ‘‘dst’’ means destination,
and the other characters are logical operators):

Menu Choices Logical Operation

clear Assign zero to all new destination values

src & dst Assign source AND destination to new destination

src & “dst Assign source AND complement of destination to new destina-

tion

sIC Assign source values to new destination

“src & dst Assign complement of source AND destination to new destina-

Commands

tion

1-201

EDFONT(1) Domain/OS SysV EDFONT(1)

dst Assign all destination values to new destination

src ~ dst Assign source EXCLUSIVE OR destination to new destination
(default)

src | dst Assign source OR destination to new destination

“(src | dst) Assign complement of source AND complement of destination to
new destination

src == dst Assign source EQUIVALENCE destination to new destination

“dst Assign complement of destination to new destination

src | "dst Assign source OR complement of destination to new destination

src Assign complement of source to new destination

“src | dst Assign complement of source OR destination to new destination

“(src & dst) Assign complement of source OR complement of destination to

new destination
set Assign 1 to all new destination values

Setting the mask value turns pixels on. That is, if you select a pixel or range of pixels
with this mask, all the pixels turn black, regardless of whether they already were black.
The mask clear turns a pixel or range of pixels off (white), regardless of the pixel’s ini-
tial value.

The default mask src " dst toggles pixels. That is, if they already were black, they
become white, and vice versa. However, if you are drawing in Freehand mode, this
mask toggles the first pixel you cross and then sets the rest of the pixels you cross to
that first pixel’s value.

When you have a font open, the menu-driven interface also includes two boxes on the
right side of the display labeled ‘‘<<<’’ and ‘‘>>>’’. The two are for displaying the pre-
vious and next glyph, respectively, in the current font. Move the cursor over either box
and press <M1> to activate.

Command Interface

1-202

In addition to edfont’s menu-driven interface, you can use the following commands in
the input pad at the bottom of the edfont window, or embed them in edfont scripts.

Commands (Arguments) Description

!shell-command Run a shell command in the edfont win-
dow.

box x!I yl x2 y2 Draw a box that is bounded by (x/,y/) and
(x2,y2).

circlexyr Draw a circle which has its center at (x,y)

and a radius of r.

Commands

EDFONT(1)

close [-save|-nosave]

copy glyphcode [fontfile]

delete
grid on | off
help [command]

line xI yI x2 y2

metrics on | off
next

open fontfile
pixel x y

previous

quit [-save|-nosave]
Commands (Arguments)
rotate degrees

select glyphcode

set var=value

source filename
undo
unzoom

zoom xI yl x2 y2

Commands

Domain/OS SysV EDFONT(1)

Close the font. If you specify —save,
edfont saves your changes, while if you
specify —nnsave, edfont ignores them.

Copy the specified glyph to the current
glyph. If you specify a fontfile, edfont
copies the glyph from that font; otherwise,
it copies the glyph from the current font.

Delete the current glyph.
Turn the bitmap grid on or off.

Get a list of available commands, or get
help on the specified command.

Draw a line that begins at (x/,yI) and ends
at (x2,y2).

Turn the font metrics display on or off.
Go to the next glyph in the current font.
Open the specified fontfile.

Draw a pixel at (x,y).

Go to the previous glyph in the current
font.

Exit edfont, closing the current font (if one
is open). See close for information on
—save and —nosave.

Description

Rotate the current glyph by the specified
number of degrees.

Go to the specified glyph. For information
on entering a glyph or glyphcode see the
Description section above.

Set var to the specified value. var can be
one of the edfont’s parameters, as
described in the Description section above.

Execute the command-script filename.
Undo the last bitmap operation.
Zoom out one level.

Zoom in so that the view is filled with the
box bounded by (x/, yI) and (x2,y2).

1-203

EDIT(1)

NAME

SysV EDIT(1)

edit — text editor (variant of ex for casual users)

SYNOPSIS

edit [-r] name ...

DESCRIPTION

edit is a variant of the text editor ex recommended for new or casual users who wish to
use a command-oriented editor.

OPTION

1-204

-r Recovers file after an editor or system crash. The following brief intro-
duction should help you get started with edit. If you are using a CRT ter-
minal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command *‘edit name’” to the
shell. edit makes a copy of the file which you can then edit, and tells you how many
lines and characters are in the file. To create a new file, just make up a name for the file
and try to run edit on it; you will cause an error diagnostic, but do not worry.

edit prompts for commands with the character ‘:’, which you should see after starting
the editor. If you are editing an existing file, then you will have some lines in edit’s
buffer (its name for the copy of the file you are editing). Most commands to edit use its
““current line’’ if you do not tell them which line to use. Thus if you say print (which
can be abbreviated p) and hit carriage return (as you should after all edit commands)
this current line will be printed. If you delete (d) the current line, edit prints the new
current line. When you start editing, edit makes the last line of the file the current line.
If you delete this last line, then the new last line becomes the current one. In general,
after a delete, the next line in the file becomes the current line. (Deleting the last line is
a special case.)

If you start with an empty file or wish to add some new lines, then the append (a) com-
mand can be used. After you give this command (typing a carriage return after the
word append) edit will read lines from your terminal until you give a line consisting of
just a ““.”’, placing these lines after the current line. The last line you type then
becomes the current line. The command insert (i) is like append but places the lines

you give before, rather than after, the current line.

edit numbers the lines in the buffer, with the first line having number 1. If you give the
command ‘‘1”’ then edit types this first line. If you then give the command delete edit
deletes the first line, line 2 will become line 1, and edit prints the current line (the new
line 1) so you can see where you are. In general, the current line is always the last line
affected by a command.

You can make a change to some text within the current line by using the substitute (s)
command. Use s/old/new/ where old is replaced by the old characters you want to get
rid of and new is the new characters you want to replace it with.

Commands

EDIT(1) Sysv EDIT(1)

The command file (f) tells you how many lines there are in the buffer you are editing
and will say ‘‘[Modified]’’ if you have changed it. After modifying a file you can put
the buffer text back to replace the file by giving a write (w) command. You can then
leave the editor by issuing a quit (q) command. If you run edit on a file, but do not
change it, it is not necessary (but does no harm) to write the file back. If you try to quit
from edit after modifying the buffer without writing it out, you are warned that there
has been ‘‘No write since last change’” and edit awaits another command. If you wish
not to write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see lines in the
file you can make any changes you desire. You should learn at least a few more things,
however, if you are to use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply (as
in append you give lines up to a line consisting of only a ‘“.”’). You can tell change to
change more than one line by giving the line numbers of the lines you want to change,
ie., “‘3,5change”. You can print lines this way too. Thus ‘‘1,23p”’ prints the first 23
lines of the file.

The undo (u) command reverses the effect of the last command you gave which
changed the buffer. Thus if you give a substitute command which does not do what
you want, you can say undo and the old contents of the line will be restored. You can
also undo an undo command so that you can continue to change your mind. edit gives
you a warning message when commands you do affect more than one line of the buffer.
If the amount of change seems unreasonable, you should consider doing an undo and
looking to see what happened. If you decide that the change is ok, then you can undo
again to get it back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage retum. To look at a
number of lines hit "D (control key and, while it is held down D key, then let up both)
rather than carriage return. This will show you a half screen of lines on a CRT or 12
lines on a hardcopy terminal. You can look at the text around where you are by giving
the command ‘‘z.”’. The current line will then be the last line printed; you can get back
to the line where you were before the ‘‘z.”” command by saying ‘‘*(rq’. The z com-
mand can also be given other following characters ‘‘z—"" prints a screen of text (or 24
lines) ending where you are; ‘‘z+’’ prints the next screenful. If you want less than a
screenful of lines, type in "z.12" to get 12 lines total. This method of giving counts
works in general; thus you can delete 5 lines starting with the current line with the com-
mand ‘‘delete 5.

To find things in the file, you can use line numbers if you happen to know them; since
the line numbers change when you insert and delete lines this is somewhat unreliable.
You can search backwards and forwards in the file for strings by giving commands of
the form /text/ to search forward for text or ?text? to search backward for text. If a
search reaches the end of the file without finding the text it wraps, end around, and con-
tinues to search back to the line where you are. A useful feature here is a search of the

Commands 1-205

EDIT(1)

SysV EDIT(1)

form /“text/ which searches for rext at the beginning of a line. Similarly /text$/
searches for text at the end of a line. You can leave off the trailing / or ? in these com-
mands.

The current line has a symbolic name *‘.”’; this is most useful in a range of lines as in
¢ $print’’ which prints the rest of the lines in the file. To get to the last line in the file
you can refer to it by its symbolic name ‘‘$’’. Thus the command ‘‘$ delete’’ or *‘$d”’
deletes the last line in the file, no matter which line was the current line before. Arith-
metic with line references is also possible. Thus the line ‘‘$-5"’ is the fifth before the
last, and ““.+20°’ is 20 lines after the present.

You can find out which line you are at by doing ‘‘.="’. This is useful if you wish to
move or copy a section of text within a file or between files. Find out the first and last
line numbers you wish to copy or move (say 10 to 20). For a move you can then say
¢“10,20delete a’’ which deletes these lines from the file and places them in a buffer
named a.edit and has 26 such buffers named a through z. You can later get these lines
back by doing ‘‘put a’’ to put the contents of buffer a after the current line. If you want
to move or copy these lines between files you can give an edit (¢) command after copy-
ing the lines, following it with the name of the other file you wish to edit, i.e., ‘‘edit
chapter2’’. By changing delete to yank above you can get a pattem for copying lines.
If the text you wish to move or copy is all within one file then you can just say
“10,20move $’’ for example. It is not necessary to use named buffers in this case (but
you can if you wish).

SEE ALSO

1-206

ed(1), ex(1), vi(1).

Commands

EDMTDESC(1) Domain/OS SysV EDMTDESC(1)

NAME

edmtdesc — edit magtape descriptor file
SYNOPSIS

edmtdesc {options) pathname
DESCRIPTION

edmtdesc allows you to create, list, and modify the magnetic tape descriptor object.
The descriptor file provides information to the streams manager so that it can handle
subsequent tape operations.

pathname (required) Specify name of magtape descriptor file to be created, listed, or
edited.

OPTIONS
At least one of the following options must be specified.

- Create a new magtape descriptor object with the name given in
the pathname argument.

~l [var...] List the values of the variable(s) specified. If no variables are
named, the entire magtape descriptor is listed.

—s {var value}... Set the variable(s) indicated to the specified value(s). At least
one variable/value pair is required if —s is specified. Multiple
variable/value pairs are permitted, separated by blanks.

Variables
The variables known to edmtdesc are listed below, along with their types and default
values. The variable types are: integer (int), Boolean (y/n), character string of n letters
(c [n]), and date (in format yy/mm/dd.hh:mm).

Name Type Default Definition

dev c[1] m Device type ('m’ for magtape, 'c’ for car-
tridge)

u int 0 Magtape unit number (normally 0)

lab y/n yes Yes’ if magtape is ANSI labeled, 'no’ if
unlabeled

reo y/n no ’Yes® to reopen previously used volume,
'no’ to open new volume (’yes’ suppresses
rewind)

clv y/n yes ’Yes’ closes volume when file is closed,

’no’ leaves volume open

Commands 1-207

EDMTDESC(1) Domain/OS SysV EDMTDESC(1)

Name Type Default Definition

spos y/n no "Yes’ saves volume position when volume is
closed (for reopen), 'no’ rewinds volume
when closed

vid c[6] —auto Volume identifier (labeled volumes)

vace c[1] Volume accessibility (labeled volumes)

own c[14] —auto Volume owner (labeled volumes)

f int* 1 file sequence number: integer or "cur" for
current file, or "end" for new file at end of
labeled volume

if c[1] D record format -- "f" for fixed length, "d" for
variable length, "s" for spanned, "u" for
undefined

bl int 2048 block length, in bytes

il int 2048 (maximum) record length, in bytes

ascnl y/n yes "Yes’ for ASCII newline handling (strip

newlines on write, supply them on read),
’no’ for no newline handling

fsect int 1 File section number (labeled volumes)

fid c[17] File identifier (labeled volumes)

fsid c[6] File set identifier (labeled volumes)

gen int 1 Generation of file (labeled volumes)

genv int 1 Generation version of file (labeled volumes)
cdate date —auto Creation date of file (labeled volumes)
edate date —auto Expiration date of file (labeled volumes)
facc c[1] File accessibility (labeled volumes)

sysc c[xx] System code (labeled volumes)

sysu c[xx] System use (labeled volumes)

boff int 0 Buffer offset (labeled volumes, should be 0)

For cartridge tape (dev ¢), you must change the block length (bl) and the record length
(rl) to be 512 or less and the record format to be fixed ("rf f").

EXAMPLES

1-208

Edit file set_tape; set the tape unit number to 1; declare tape as ANSI labeled.
$ edmtdesc set_tape —s u 1 lab yes

Create descriptor file ct for cartridge tape, blocking 4 records of maximum length 128
to each block.

$ edmtdesc ct —c —s dev ¢ bl 512 rl 128 rf f

Commands

EGREP(1) SysV EGREP(1)

NAME

egrep — search a file for a pattern using full regular expressions

SYNOPSIS

egrep [options] full regular expression [file...]

DESCRIPTION

egrep (expression grep) searches files for a pattern of characters and prints all lines that
contain that pattern. egrep uses full regular expressions (expressions that have string
values that use the full set of alphanumeric and special characters) to match the pat-
temns. It uses a fast deterministic algorithm that sometimes needs exponential space.

egrep accepts full regular expressions as in ed(1), except for \(and \), with the addition
of:

o A full regular expression followed by + that matches one or more occurrences of
the full regular expression.

o A full regular expression followed by ? that matches 0 or 1 occurrences of the full
regular expression.

o Full regular expressions separated by | or by a new-line that match strings that are
matched by any of the expressions.

o A full regular expression that may be enclosed in parentheses () for grouping.

Be careful using the characters $, *, [, , |, (,), and \ in full regular expression, because
they are also meaningful to the shell. It is safest to enclose the entire full regular
expression in single quotes *...".

The order of precedence of operators is [], then * ? +, then concatenation, then | and
new-line.

If no files are specified, egrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS

-b Precedes each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

- Prints only a count of the lines that contain the pattern.

—i Ignores upper/lower case distinction during comparisons.

-1 Prints the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

-n Precedes each line by its line number in the file (first line is 1).

-v Prints all lines except those that contain the pattern.

Commands 1-209

EGREP(1) SysV EGREP(1)

—e special_expression
Searches for a special expression (full regular expression that begins
with a —).

~f file Takes the list of full regular expressions from file.

BUGS
Ideally there should be only one grep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ char-
acters; longer lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.

DIAGNOSTICS
Exit status is O if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files (even if matches were found).

SEE ALSO
ed(1), fgrep(1), grep(1), sed(1), sh(1).

1-210 Commands

EMT(1)

NAME

Domain/OS SysV EMT(1)

emt — emulate a dumb terminal

SYNOPSIS

emt [pathname]

DESCRIPTION

emt allows your node to emulate an ASCII terminal connected to another computer.
This asynchronous connection exists through a stream opened on one of the node’s SIO
lines. emt also permits ASCII file transfer between your node and the remote host.

pathname (optional) Specify file containing emt commands.

Default if omitted: read commands from standard input
emt begins execution in local mode, and displays the following prompt:
emt>
To enter remote mode, press F1. (The emt command dl no longer exists.) In remote
mode, your terminal operates as if it were physically connected to the remote computer

("host"). You can log on and enter remote host commands.

To retum to local mode, press F1 again.

INPUT/OUTPUT STREAMS

emt uses the four standard streams: standard input, standard output, error input, and
error output, as follows:

e emt commands are read from an emt command file or from standard input. The
command filename may be specified on the command line or using the emt run
command. Up to four levels of command files may be nested. When EOF is
reached in a command file, commands are read from the previous file or from stan-
dard input. If EOF is reached on standard input, emt exits.

e Keystrokes to be sent to the host computer are read from standard input only.

e The emt command responses and all messages from the host are written to standard
output.

e Error messages from Aegis system calls are written to error output. Optional moni-
toring (monit) may also be written to error output (or to a named file).

You may use redirection of standard input, command-line specification of a command
file or the emt run command to automate emt usage and use emt in shell scripts. emt
behaves slightly differently with regard to host transmissions, depending on which of
these techniques you use and you may select the method that best suits your purpose.

When input is redirected to standard input ("emt <emtfilel’), lines in the command file
that are sandwiched between F1 commands (enter/exit remote mode) are transmitted to

Commands 1-211

EMT(1) Domain/OS SysV EMT(1)

the host. Other lines outside F1 commands are interpreted and executed as emt com-
mands.

Contents of emtfilel:

Command Description

interm If Sets input terminator.

outterm 1f Sets output terminator.

list Lists emt state settings.

F1 Invokes remote mode (communication to host).
hello host This and succeeding lines get sent to host.
goodbye host Last line sent to host.

“1i emtesc char, specifies 'F1°, return to local mode.
list Back in local mode, lists emt state settings.

q Exit from emt.

When a command file is invoked either via the command line (emt emtfile2) or by
using the run command (run emtfile2), the behavior is different in that lines following
F1 commands are not transmitted to the host. This is because host transmissions are
read from standard input and standard input has not been redirected to the file:

Contents of emtfile2:

Command Description

interm If Sets input terminator.

outterm If Sets output terminator.

list Lists emt state settings.

F1 Invokes remote mode (communication to host). All

host input is now taken from the keyboard (or from
standard input if it has been otherwise redirected).
Finally user types ~1 or presses F1 to return to local

mode.

list Local mode, emt commands read from emtfile2
again.

q Exit from emt.

You may also use the xmit command to transmit a file (of commands or data) to the
host. Use the emt rcv command to receive host transmissions to a Domain file.

1-212 Commands

EMT(1)

Domain/OS SysV EMT(1)

TRANSFERRING FILES

You can transfer files using emt’s receive (rcv) or transmit (xmit) commands. xmit
sends a Domain file to the remote host. rcv opens a Domain file to receive information
from the remote host. For example, if you type (in local mode)

emt> xmit fileA

emt displays the following message:
Ready to transmit file fileA
Next, press F1. emt enters remote mode, and transmits fileA to the remote host.
If you type:
emt> rev fileB
emt displays this message:
Ready to receive file fileB.
Next, enter remote mode by pressing F1. Use a remote host command to display the

information that you want fileB to receive. emt automatically writes this and all subse-
quent host transmissions into fileB. To stop the rcv, press F2.

TRANSMISSION CONVENTIONS

Use the emt command interm to specify the line terminator used by the host. If you do
not know what the host uses as a line terminator, experiment by changing interm. Use
the emt command outterm to specify the line terminator to be transmitted to the host.

emt allows you to open only one Domain file at a time. If emt receives a xmit or rcv
command while another Domain file is active, it closes the open Domain file, and exe-
cutes the new command.

During remote mode, emt waits on both the keyboard and SIO line for characters to
process, and monitors the data for characters of special interest to emt.

You can specify which keyboard characters emt should interpret by placing the key-
board in raw or cooked mode. In raw mode, emt passes all keyboard input (except the
function keys, keys L1 through L12, and keys R1 through R4), directly to the host.
Cooked mode lets you use many of the Display Manager’s features for editing the input
pad. emt places your keyboard in cooked mode by default.

Commands 1-213

EMT(1) Domain/OS SysV EMT(1)

COMMANDS
The following commands are available while running emt:

Command Description

F1 Switch between local and remote modes.
F2 Interrupt a file transfer and close the file.
F3 Tum tee on or off. tee on causes emt to display file transmission records

on the screen. You can use this feature to monitor file transfers, and
decide if and when you should stop or interrupt a transfer. The default is
tee on.

F8 Send a break to the host.
CTRL/F7 Display function key definitions.

These function keys may be simulated by typing the emt ESC character followed by the
function key number (that is, "1 for F1). When emt is used from the VT100 emulator,
use shift F1 instead of F2, and CTRL F1 instead of F3.

Command Description
ae Abort on error.

asconly | notasconly
Sift out most non-printing ASCII codes. Eliminates triangles, allows BS,
CR, ESC, FF, LF, TAB. The default is notasc.

break [n] Set the break duration value to n milliseconds. The default is 200. If set
to 0, the F8 (break) key does nothing.

close Deactivate an rcv file. See the rev command for related information.

code [xx | none]
Set the host-command-code to the hexadecimal number xx. The default
is none.

cooked Place the keyboard in cooked mode. This enables many DM features for
editing the input pad, and provides an escape sequence for sending con-
trol characters to the remote host. To send the host a CTRL character,
precede the character with a tilde (7). The sequence ~_ transmits a delete
character. To send the host a single tilde character, type ™.

1-214 Commands

EMT(1)

Domain/OS SysV EMT(1)

The emt default is cooked mode. Cooked mode always echos keys-
trokes, so it does not require a full duplex connection to the host. (See
the raw command for related information.)

Note: The cooked and raw commands refer only to the transcript pad
and keyboard input. The SIO line itself is always in raw mode.

emtesc [chrinone]
Set the emt escape character to chr. Use none to disable the escape
character. Default is ~ for "cooked" mode, none for "raw" mode.

The following three commands are useful when standard input is redirected to a file of
emt commands:

f1 Enter remote mode (Simulate function key F1).

f2 Terminate file transfer (Simulate function key f2).

f3 Toggle tee mode (Simulate function key F3).

hangup Cause modem to break connection with the remote host.

help [¢ctl] Display information about emt commands or about tctl commands.

line {11213|pathname}
Select the SIO line. Pathname must specify an SIO device descriptor (for
example, /dev/sio2). The default SIO line is 1 (/dev/siol).

1 Display the current SIO line, all emt switch settings and the receive
filename, if any.

monit [pathname])
Write every character received over the SIO line to pathname. If a
filename is not specified, the previous specification or error output is

used.
nomonit Stop monitoring.
quit End the emt session.

raw [—-echol—noecho] [—IfI—nolf)

Place the keyboard in "raw" mode. This sends keyboard input directly to
the remote host, interpreting only function keys. The —echo option echos
keystrokes on standard output; you should use it when the host is in
half-duplex mode. The default is —noecho. The —If option converts car-
riage return (CR) to line feed (LF) for lines echoed. The default is
—nolf. (See the cooked command for related information.) Note: The
—echo and —If options are purely local functions that enable you to read
what you type. They do not in any way change host/node transmissions.

Commands 1-215

EMT(1) Domain/OS SysV EMT(1)

rev [-r] [-keys|—nokeys] [pathname]
Prepare the Domain file specified to receive remote host transmissions.
If pathname already exists, emt appends the transmission to it, unless
you specify —r. The receive begins when you enter remote mode F1. If
you omit the pathname, emt uses the previous name, if any. The —keys
option writes keystrokes to the file along with received data. The default
is —nokeys.

emt allows you to interrupt an rcv command at any time by pressing F2.
emt remains in whatever mode it was in, but keeps the rev file active.
When you are ready to continue receiving host transmissions, you may
type rcv again (in local mode) without a filename, and emt uses the
same rcv file.

If you omit filename and no rcv file is active, emt issues an error mes-
sage. If you specify a new rcv file while another rev file is active, rev
closes the active file, and prepares the new file to receive the transmis-
sion.

Use the close command to deactivate an rcv file.

tetl {¢ctl commands)
If you are running under Aegis, pass this command line to the shell com-
mand tctl to configure the SIO line. If this SIO line is not the default
line, then you must use the —line command. The speed and sync com-
mands have been superseded by this direct invocation of tctl. If only
UNIX is installed, use stty to perform this action. If both UNIX and
Aegis are installed, you can use either tctl or stty.

stty See tctl.

interm {cr|If|crif|vax!|’hex’}
Select the input line terminator. The default is crif.

outterm {cr|If|crifl’hex’}
Select the output line terminator. The default is cr. emt transmits the
selected hexadecimal value as the terminator for each line.

Xmit pathname
Prepare to transmit the Domain file specified to the remote host. ‘If you
omit pathname, or if you specify a file that does not exist, emt issues an
error message. When you issue this command, emt remains in local
mode. emt transmits the file when you press F1.

1-216 Commands

EMT(1)

Commands

Domain/OS SysV EMT(1)

When emt completes the transfer, it closes the file and retumns to the
previous mode. emt does not send an end-of-file (EOF) signal to the
remote host. If the host requires an EOF, enter remote mode and
transmit it manually.

emt can also receive commands from the host. If the host transmits the
sequence

host-command-code (emt command string) line-terminator

emt interprets the string as an emt command. Use the emt command
code to define [host-command-code].

Line Terminators emt Response

crlf Converts sequence to a line feed, ignoring any
null characters that may separate the pair.

cr Converts sequence to a line feed and ignores LFs.

If Interprets it as a line feed, and ignores CRs.

vax Interprets both CR and CR-LF as terminators and

converts them to line feed.

’hex’ Converts the given hexadecimal value to LF.

1-217

ENABLE(1) SysV ENABLE(1)

NAME
enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason]] printers

DESCRIPTION
enable activates the named printers, enabling them to print requests taken by Ip(1).
Use Ipstat(1) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests taken by
Ip(1). By default, any requests that are currently printing on the designated printers are
reprinted in their entirety either on the same printer or on another member of the same
class. Use Ipstat(1) to find the status of printers.

OPTIONS FOR DISABLE ONLY
- Cancels any requests that are currently printing on any of the designated
printers.
—r[reason] Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next —r option. If the —r
option is not present or the —r option is given without a reason, a default
reason is used. Reason is reported by Ipstat(1).
FILES
/usr/spool/lp/*
SEE ALSO
Ip(1), Ipstat(1).

1-218 Commands

ENV(1) SysV ENV(1)

NAME

env — set environment for command execution
SYNOPSIS

env [-] [name=value] ... [command args]
DESCRIPTION

env obtains the current environment, modifies it according to its arguments, then exe-
cutes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is exe-
cuted. The — flag causes the inherited environment to be ignored completely, so that
the command is executed with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair
per line.
SEE ALSO
sh(l).
exec(2), profile(4), environ(S) in the SysV Programmer’s Reference.

Commands 1-219

ERASE(1G)

NAME

SysV ERASE(1G)

gdev: hpd, erase, hardcopy, tekset, td — graphical device routines and filters

SYNOPSIS

hpd [— options] [GPS file ...]

erase
hardcopy
tekset

td [—ernn] [GPS file ...]

DESCRIPTION

All of the commands described below reside in /usr/bin/graf (see graphics(1G)).

hpd

erase

hardcopy

tekset

1-220

Translate a GPS (graphical primitive string; see gps(4)) to instructions for
the Hewlett-Packard 7221A Graphics Plotter. A viewing window is com-
puted from the maximum and minimum points in file unless the —u or —r
option is provided. If no file is given, the standard input is assumed.

hpd Options

cn Select character set n, n between 0 and 5.

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport’s lower left corner to n inches.
xvn Set width of viewport to n inches.

ydn Sety displacement of the viewport’s lower left comer to n inches.
yva Set height of viewport to n inches.

Send characters to a Tektronix 4010 series storage terminal to erase the
screen.

When issued at a Tektronix display terminal with a hard copy unit, hard-
COpy generates a screen copy on the unit.

Send characters to a Tektronix terminal to clear the display screen, set the
display mode to alpha, and set characters to the smallest font.

Commands

ERASE(1G)

td

SEE ALSO

SysV ERASE(1G)

Translate a GPS to scope code for a Tektronix 4010 series storage terminal.
A viewing window is computed from the maximum and minimum points in
file unless the —u or —r option is provided. If no file is given, the standard
input is assumed.

td Options

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

graphics(1G).
gps(4) in the SysV Programmer’s Reference.

Commands

1-22:

ESA(1) Domain/OS SysV ESA(1)

NAME
esa — display address of external symbol
SYNOPSIS
esa symbol_name
DESCRIPTION
esa displays the address of an external symbol in an installed library. This command is
primarily intended for system-level debugging.
symbol_name (required) Specify the symbol whose address you wish to display. esa is
case sensitive with respect to the symbol name. Lowercase
must be used to refer to symbols defined in FORTRAN and
Pascal programs. Mixed case may be used, as needed, for
symbols defined in C programs.
EXAMPLES

This command displays the address of gpr_$init. This symbol resides within the GPR
library, which was installed at system start-up time.

$ esa gpr_$init

A1580C
$

1-222 Commands

EX(1) SysV EX(1)
NAME
ex — text editor
SYNOPSIS
ex[—]1[-v][-ttagl[-r][-R][+command] name ...
DESCRIPTION

ex is the root of a family of editors that includes ex and vi. ex is a superset of ed, with
the most notable extension being a display editing capability. Display based editing is
the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see
vi(1), which is a command that focuses on the display editing portion of ex.

For ed Users

If you have used ed you will find that ex has a number of new features useful on CRT
terminals. Intelligent terminals and high-speed terminals are very pleasant to use with
vi. Generally, the editor uses far more of the capabilities of terminals than ed does, and
uses the terminal capability data base and the type of the terminal you are using from
the variable TERM in the environment to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and which is the central mode of
editing when using vi(1).

ex contains a number of new features for easily viewing the text of the file. The z com-
mand gives easy access to windows of text. Pressing CTRL/D causes the editor to
scroll a half-window of text and is more useful for quickly stepping through a file than
just pressing return. Of course, the screen-oriented visual mode gives constant access
to editing context.

ex gives you more help when you make mistakes. undo (u) allows you to reverse any
single change. ex gives you a lot of feedback, normally printing changed lines, and
indicating when more than a few lines are affected by a command so that it is easy to
detect when a command has affected more lines than it should have.

The editor also prevents overwriting existing files unless you edited them so that you do
not accidentally clobber with a wrire a file other than the one you are editing. If the
system (or editor) crashes, or you accidentally hang up the telephone, you can use the
editor recover command to retrieve your work. This gets you back to within a few
lines of where you left off.

ex has several features for dealing with more than one file at a time. You can give it a
list of files on the command line and use the next (n) command to deal with each in
tum. The next command can also be given a list of file names, or a pattern as used by
the shell to specify a new set of files to be dealt with. In general, file names in the edi-
tor may be formed with full shell metasyntax. The metacharacter ‘%’ is also available
in forming file names and is replaced by the name of the current file.

Commands 1-22:

EX(1)

SysV EX(1)

For moving text between files and within a file the editor has a group of buffers, named
a through z. You can place text in these named buffers and carry it over when you edit
another file.

There is a command & in ex that repeats the last substitute command. In addition,
there is a confirmed substitute command. You give a range of substitutions to be done
and the editor interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. ex aiso allows regu-
lar expressions which match words to be constructed. This is convenient, for example,
in searching for the word ‘‘edit’’ if your document also contains the word *‘editor.”’

INVOCATION OPTIONS
- Suppresses all interactive-user feedback. Useful in processing editor
scripts.
-v Invokes vi.
—t tagfl Edits the file containing the fag and positions the editor at its definition.
—r file Recovers file after an editor or system crash. If file is not specified a list

of all saved files is printed.
-R Readonly mode set, prevents accidentally overwriting the file.

+command Begins editing by executing the specified editor search or positioning
command .

The name argument indicates files to be edited.

COMMAND NAMES AND ABBREVIATIONS

1-224

abbrev. ab next n undo u
append a number nu unmap unmap
args ar preserve pre version ve
change ¢ print p visual vi
copy co put pu write w
delete d quit q Xit X
edit e read re yank ya
file f recover rec window z
global g rewind rew escape !
insert i set se Ishift <
join J shell sh printnext CR
list 1 source S0 resubst &
map stop stop rshift >
mark ma substitute s scroll ‘D
move m unabbrev una

Commands

EX(1) SysV EX(1)
COMMAND ADDRESSES
n line n /pat next with pat
. current ?pat previous with pat
$ last x-n n before x
+ next X,y x through y
- previous x marked with x
+n n forward : previous context
% L$
STATES
Command Normal and initial state. Input prompted for by :.
Your kill character cancels partial command.
Insert Entered by a, i, or ¢. Arbitrary text may be
entered. Insert is normally terminated by a line having
only . on it, or abnormally with an interrupt.
Visual Entered by vi, terminates with Q or *\.
INITIALIZING OPTIONS
EXINIT Place set’s here in environment var.
$HOME/.exrc Editor initialization file
J.exrc Editor initialization file
set x Enable option
set nox Disable option
set x=val Give value val
set Show changed options
set all Show all options
set x? Show value of option x
MOST USEFUL OPTIONS
autoindent ai Supply indent
autowrite aw Write before changing files
ignorecase ic In scanning
list Print "I for tab, $ at end
magic . [* special in patterns
number nu Number lines
paragraphs para Macro names which start ...
redraw Simulate smart terminal
scroll Command mode lines
sections sect Macro names ...
shiftwidth swW For < >, and input "D
showmatch sm To) and } as typed
showmode smd Show insert mode in vi
slowopen slow Stop updates during insert
window Visual mode lines
wrapscan ws Around end of buffer?
wrapmargin wm Automatic line splitting

Commands

1-225

EX(1)

SysV EX(1)

SCANNING PATTERN FORMATION

Beginning of line

$ End of line
. Any character
\< Beginning of word
\> End of word
[ser] Any char in str
Tsir} ... Ot in str
[x-yl] ... between x and y
* Any number of preceding
Viex
BUGS
The undo command causes all marks to be lost on lines changed and then restored if
the marked lines were changed.
undo never clears the buffer modified condition.
The z command prints a number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.
File input/output errors do not print a name if the command line ‘-’ option is used.
There is no easy way to do a single scan ignoring case.
The editor does not warn if text is placed in named buffers and not used before exiting
the editor.
Null characters are discarded in input files and cannot appear in resultant files.
FILES
/usr/lib/ex?.?strings Error messages
[usr/lib/ex?.?recover Recover command
/usr/lib/ex?.?preserve Preserve command
usr/lib/*/* Describes capabilities of terminals
$HOME/.exrc Editor startup file
J.exrc Editor startup file
/tmp/Exnnnnn Editor temporary
/tmp/Rxnnnnn Named buffer temporary
lusr/preserve/login Preservation directory
(where login is the user’s login)
SEE ALSO
awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).
curses(3X), term(4), terminfo(4) in the SysV Programmer’s Reference.
1-226 Commands

EXPR(1) SysV EXPR(1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the
standard output. Terms of the expression must be separated by blanks. Characters spe-
cial to the shell must be escaped. Note that 0 is returned to indicate a zero value, rather
than the null string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus sign. Internally,
integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by \. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr\| expr
Returns the first expr if it is neither null nor 0, otherwise returns the second
expr.

expr \& expr
Returns the first expr if neither expr is null or 0,
otherwise returns 0.

expr { =,\>, \>=, \«, \<=, != } expr
Retumns the result of an integer comparison if both arguments are integers, oth-
erwise returns the result of a lexical comparison.

expr { +,— } expr
Addition or subtraction of integer-valued arguments.

expr { *,/, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second argument
which must be a regular expression. Regular expression syntax is the same as
that of ed(l), except that all patterns are ‘‘anchored’’ (i.e., begin with °) and,
therefore, " is not a special character, in that context. Normally, the matching
operator returns the number of characters matched (0 on failure). Alternatively,
the \(...\) pattern symbols can be used to return a portion of the first argument.

Commands 1-227

EXPR(1) SysV EXPR(1)

EXAMPLES
To add 1 to the shell variable a:

a=-expr $a + 1.

To return the last segment of a path name (i.e., file). Watch out for / alone as an argu-
ment: expr takes it as the division operator (see BUGS below).

-For $a equal to either "/usr/abe/file" or just "file" -
expr $a : - *#\(.*¥\)- \| $a

To return the number of characters in $VAR:
expr $VAR : - *x-

BUGS
After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:
expr $a = -=-
looks like:
expr = = =
as the arguments are passed to expr (and they are all be taken as the = operator). The
following works:
expr X$a = X=
DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values:
0 If the expression is neither null nor 0
1 If the expression is null or 0
2 For invalid expressions.
syntax error Operator/operand error.
non-numeric argument
Arithmetic was attempted on such a string.
SEE ALSO

ed(1), sh(l).

1-228 Commands

F77(1) SysV F77(1)

NAME
f77 — Fortran 77 compiler

SYNOPSIS
77 [options] files

DESCRIPTION
f77 is the UNIX Fortran 77 compiler; it accepts several types of file arguments: Argu-
ments whose names end with .f are taken to be Fortran 77 source programs; they are
compiled, and each object program is left in the current directory in a file whose name
is that of the source, with .0 substituted for .f. Arguments whose names end with .r are
taken to be RATFOR source programs. These are first transformed by the appropriate
preprocessor, then compiled by f77, producing .o files. Arguments whose names end
with .c are taken to be C source programs and are compiled, producing .o files. Argu-
ments whose names end with .e or .s (EFL and assembly source programs) are not sup-
ported.

OPTIONS
The following options have the same meaning as in cc(l) (see ld(1) for link editor
options):
— Suppresses link editing and produce .o files for each source file.
-0 Causes optimized code to be generated.
—ooutput Names the final output file output, instead of a.out.
-g Generates additional information needed for the use of dbx(1).

The following options are peculiar to f77:
-C Generates code for run-time subscript range checking.

—I[24] Changes the default size of integer variables (only valid on machines where
the ‘“‘normal’’ integer size is not equal to the size of a single precision real).
—I2 causes all integers to be 2-byte quantities. The default, —I4, causes all
integers to be 4-byte quantities. (The —Is option is not supported.)

-v Prints the version number of the compiler, and the name of each pass as it exe-
cutes.

-w Suppresses all warning messages. (—w66 is not supported).

-F Applies the RATFOR preprocessor to relevant files, puts the result in files

whose names have their suffix changed to .f. (No .o files are created.)

-m Applies the M4 preprocessor to each RATFOR source file before transforming
it with the ratfor(1) processor.

-R The remaining characters in the argument are used as a RATFOR flag argument
whenever processing a .r file.

The following options are not supported in the SysV version of f77: -8, —f, —onetrip,
—-1,-66,-U, —u, and -E.

Commands 1-229

F77(1) SysV F77(1)

Other arguments are taken to be either link-editor option arguments or f77-compilable
object programs (typically produced by an earlier run), or libraries of f77-compilable
routines. These programs, together with the results of any compilations specified, are
linked (in the order given) to produce an executable program with the default name

a.out.
FILES
file.[frc] Input file
file.o Object file
a.out Linked output
/usr/lib/libF77.a Intrinsic function library
/usr/lib/libI77.a Fortran I/O library
/usr/apollo/lib/ftn Compiler
The following files are not supported:
Jfort[pid].? Temporary
usr/lib/f77passl Compiler
/usr/lib/f77pass2 Pass 2
Nlib/c2 Optional optimizer
DIAGNOSTICS

The diagnostics produced by {77 itself are intended to be self-explanatory. Occasional
messages may be produced by the link editor, 1d(1).

SEE ALSO
asa(1), cc(1), fsplit(1), 1d(1), m4(1), prof(1), ratfor(1), dbx(1).

1-230 Commands

FACTOR(1) SysV FACTOR(1)

NAME
factor — obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to give it an integer. After
you give it a positive integer less than or equal to 10", it factors the integer, prints its
prime factors the proper number of times, and then waits for another integer. factor
exits if it encounters a zero or any non-numeric character.

If you invoke factor with an argument, it factors the integer as described above, and
then it exits.

The maximum time to factor an integer is proportional to Vn. factor takes this time
when n is prime or the square of a prime.

DIAGNOSTICS
QOuch For input out of range or for garbage input.

Commands 1-231

FALSE(1) Sysv FALSE(1)

NAME
true, false — provide truth values

SYNOPSIS
true

false

DESCRIPTION
true does nothing, successfully. false does nothing, unsuccessfully. They are typically
used in input to sh(1) such as:

while true

do
command
done
DIAGNOSTICS
true has exit status zero; false has exit status nonzero.
SEE ALSO
sh(1).

1-232 Commands

FGREP(1) Sysv FGREP(1)

NAME

fgrep — search a file for a character string

SYNOPSIS

fgrep [options] string [file ...]

DESCRIPTION

fgrep (fast grep) seaches files for a character string and prints all lines that contain that
string. fgrep is different from grep(l) and egrep(l) because it searches for a string,
instead of searching for a pattern that matches an expression. It uses a fast and compact
algorithm.

The characters $, *, [, *, |, (,), and \ are interpreted literally by fgrep, that is, fgrep
does not recognize full regular expressions like egrep does. Since these characters
have special meaning to the shell, it is safest to enclose the entire string in single quotes

If no files are specified, fgrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS

-b Precedes each line by the block number on which it was found. Useful
in locating block numbers by context (first block is 0).

— Prints only a count of the lines that contain the pattern.

—i Ignores upper/lower case distinction during comparisons.

-1 Prints the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

-n Precedes each line by its line number in the file (first line is 1).

-v Prints all lines except those that contain the pattern.

-X Prints only lines matched entirely.

BUGS

—e special_string
Searches for a special string (string begins with a —).

—f file Takes the list of sirings from file.

Ideally there should be only one fgrep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ char-
acters; longer lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.

Commands 1-233

FGREP(1) Sysv FGREP(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files (even if matches were found).

SEE ALSO
ed(1), egrep(1), grep(1), sed(1), sh(1).

1-234 Commands

FILE(1)

NAME

SysV FILE(1)

file — determine file type

SYNOPSIS

file [—c][—f ffile] [-m mfile] arg ...

DESCRIPTION

The file command performs a series of tests on each argument in an attempt to classify
it. If an argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file prints the version stamp,
if it is greater than zero.

The file command uses the file /etc/magic to identify files that have some sort of
‘‘magic number’’, that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of /etc/magic explains its format.

OPTIONS
—

—f ffile

—m mfile

FILES
/etc/magic

SEE ALSO
filehdr(4)

Commands

Check the magic file for format errors. This validation is not normally
carried out, for efficiency reasons. No file typing is done under —c.

Take the next argument to be a file containing the names of the files to
be examined.

Use an alternate magic file, mfile.

1-235

FIND(1)

NAME
find - find files

SYNOPSIS

SysV FIND(1)

find path-name-list expression

DESCRIPTION

find recursively descends the directory hierarchy for each pathname in the path-name-
list, seeking files that match a Boolean expression written in the primaries given below.
The SysV implementation of find does not follow symbolic links.

EXPRESSIONS

(In the descriptions below, the argument » is used as a decimal integer where +n means
more than n, —n means less than n, and » means exactly n).

—name file

—perm onum

—type ¢

—links n

—user uname

—group gname

—size n[c]
—atime n

—mtime n
—ctime n

—exec cmd

1-236

True if file matches the current filename. Normal shell argument
syntax may be used if escaped, but watch out for [, ? and *.

True if the file permission flags exactly match the octal number
onum. If onum is prefixed by a minus sign, only the bits that are
set in onum are compared with the file permission flags, and the
expression evaluates true if they match. Information about file
permissions is found in chmod(1).

True if the type of the file is ¢, where ¢ is b (block special file), ¢
(character special file), d (directory), p (FIFO, or named pipe), f
(plain file), or / (softlink).

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric
and does not appear as a log-in name in the /etc/passwd file, it is
taken as a user ID.

True if the file belongs to the group gname. If gname is numeric
and does not appear in the /etc/group file, it is taken as a group
ID.

True if the file is n blocks long (1024 bytes per block). If n is
followed by a c, the size is in characters.

True if the file has been accessed in n days. The access time of
directories in path-name-list is changed by find itself.

True if the file has been modified in n days.
True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current pathname.

Commands

FIND(1)

—ok cmd

—print

—cpio device
—newer file

—depth

—mount

—local
(expression)

OPERATORS

SysV FIND(1)

Like —exec, except this prints the generated command line with a
question mark first, and executes only if you respond by typing y.

Always true; print the current pathname.

Always true; write the current file on device in cpio(4) format
(5120-byte records).

True if the current file has been modified more recently than the
argument file.

Always true; descend the directory hierarchy so that all entries in
a directory are acted on before the directory itself. Can be useful
when find is used with cpio(l) to transfer files contained in
directories without write permission.

Always true; restricts the search to the file system containing the
directory specified, or if no directory was specified, the current
directory.

True if the file physically resides on the local system. Note: This
expression has no effect on Apollo systems.

True if a parenthetical expression is true (parentheses are special
to the shell and must be escaped).

The primaries listed above may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary nor operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of

two primaries).

3) Altemation of primaries (—o is the or operator).

EXAMPLE

To remove all files named a.out or *.0 that have not been accessed for a week:

#find / \(—name a.out —o —name ’*.0’\) —atime +7 —exec rm {} \;

FILES
[etc/passwd
/etc/group

BUGS

find / /-depth always fails with the message:

find:

SEE ALSO

stat failed: : No such file or directory

chmod (1), cpio (1), sh (1), test (1), stat (2), umask (2), cpio (4).

Commands

1-237

FINGER(1) SysV FINGER(1)

NAME
finger — user information lookup program

SYNOPSIS
finger [options] name ...

DESCRIPTION
By default finger lists the log-in name, full name, terminal name and write status (as a
‘‘*’” before the terminal name if write permission is denied), idle time, log-in time, and
office location and phone number (if they are known) for each current user. (Idle time
is minutes if it is a single integer, hours and minutes if a ‘‘:’’ is present, or days and
hours if a ‘‘d’’ is present.)
A longer format also exists and is used by finger whenever you specify a list of
people’s names. Account names as well as users’ first and last names are accepted.
This format is multiline, and includes all the information described above as well as the
user’s home directory and log-in shell, any plan which the person has placed in the file
.plan in his home directory, and the project he is working on from the file .project, also
in the home directory.
finger can be used to look up users on a remote machine. Specify the user as
“‘user@host’’. If you omit the usemame, finger provides the standard format listing on
the remote machine.

OPTIONS
-m Match arguments only on username.
-1 Force long output format.
-p Suppress printing of the .plan files
-s Force short output format.

FILES
/etc/utmp who file
/etc/passwd For users names, offices, ...
/usr/adm/lastlog Last log-in times
“/.plan Plans
“I.project Projects

NOTES
finger performs poorly in large registries, unless you use the —m option.

BUGS

finger prints only the first line of the .project file.
The encoding of the gcos field is UCB dependent.

You cannot pass arguments to the remote machine, as finger uses an internet standard
port.

1-238 Commands

FINGER(1) SysV FINGER(1)

A user information database is in the works and will radically alter the way the informa-
tion that finger uses is stored. finger will require extensive modification when this is
implemented.

Domain/OS does not support /usr/adm/lastlog.

SEE ALSO
chfn(1), who(1)

Commands 1-239

FRENCH_TO_ISO(1) Domain/OS SysV FRENCH_TO_ISO(1)

NAME

french_to_iso — convert files to ISO format

SYNOPSIS

french_to_iso input_file output_file

DESCRIPTION

These utilities convert files written with the overloaded 7-bit national fonts to the Inter-
nation Standards Organization (ISO) 8-bit format. The overloaded fonts include any
with a specific language suffix (for example, f7x13.french, or din_f7x11.german). If
you created and/or edited a file using one of the national fonts, that file is a candidate

for conversion.

You are not required to convert files, but probably will want to because

1. The overloaded fonts replace certain ASCII characters with national ones, have that
subset of ASCI characters and the national characters in one file. The 8-bit fonts
available as of SR10 include all the ASCII characters and the national characters.

2. The 8-bit fonts also include a wider range of national characters, so you can enter
any character in any western European language. This was not always possible
with the overloaded fonts. For example, there was not enough space in the over-
loaded font to include all the French characters, but they all exist in the 8-bit fonts.

There are two parameters to the conversion utilities. You must provide the name of the
file you want to convert (input_file) and your output_file. If output_file already exists,

the utilities abort.

The default location for the utilities is /usr/apollo/bin.

FILES
/usr/apollo/bin/french_to_iso

[usr/apollo/bin/german_to_iso

/usr/apollo/bin/nor.dan_to_iso
/usr/apollo/bin/swedish_to_iso

[usr/apollo/bin/swiss_to_iso
[usr/apollo/bin/uk_to_iso
DIAGNOSTICS

Converts overloaded French to ISO format
Converts overloaded German to ISO format

Converts overloaded Norwegian/Danish to ISO for-
mat

Converts overloaded Swedish/Finnish to ISO for-
mat

Converts overloaded Swiss to ISO format

Converts overloaded U.K. English to ISO format

All messages are generally self-explanatory.

1-240

Commands

FSPLIT(1)

NAME

SysV FSPLIT(1)

fsplit — split FORTRAN or ratfor files

SYNOPSIS

fsplit options files

DESCRIPTION

The fsplit command splits the named file(s) into separate files, with one procedure per
file. A procedure includes blockdata, function, main, program, and subroutine pro-
gram segments. Normally,