

©1986, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

PREFACE

The AT&T UNIX System V User's Manual is a two-volume
reference manual that describes the operating system capabilities of
the AT&T UNIX* PC. It provides the UNIX programmer or
operating system user with an overview of this implementation and
details of commands, subroutines, and other facilities.

This issue of these manuals document version 3.5 of the UNIX PC
software.

The Programmer's Manual describes general purpose UNIX
commands and programs. This manual is further subdivided as
follows:

Section 1
Section 2
Section 3
Section 4
Section 5

Commands and Application Programs
System Calls
Subroutines
File Formats
Miscellaneous Facilities

The Administrator's Manual describes commands and facilities that
are used for administrative maintenance of the UNIX system. This
manual is further divided as follows:

Section 1M
Section 7
CURSES

System Maintenance Commands
Special Files
Curses/terminfo Programmer's Guide

How to Use These Manuals

The Table of Contents in each manual lists the commands and
other facilities in alphabetical order along with brief definitions.
Once you have identified a command by the definition, proceed to
that section number in the manual. If you are not familiar with
the UNIX system commands and facilities, refer to the Permuted
Index.

The Programmer's Manual and the Administrator's Manual each
contain a Permuted Index, which is an alphabetical listing of the

* UNIX is a registered trademark of AT&T

- 1 -

Preface

contents grouped by key words. Locate the topic for which you
seek information in the middle column of the index, then look to
the left column for amplifying information and to the right column
for the section number. Proceed to that section number for a full
description of the topic.

Version 3.5 UNIX software passes SVVS for System V Release 2.
The differences between Version 3.5 for the UNIX PO and System
V Release 2 are summarized below.

Section 1M:

acct{1M)

acctcms{lM)

acctcon{lM)

acctmerg{lM)

ac c tprc{ 1M)

acctsh{lM)

bdblk{lM)

brc{lM)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
C:: .. ,,,hnYlo 'T R",l",,,",,,,,, '>
"-'J IoJU"".L.I..L " ... "''''' ... ,,''''''''''''' I.J.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

- 2 -

cke ckall(1M)

cpset(IM)

crash(IM)

dcopy(IM)

d£skusg(IM)

d£smount(IM)

errdead(IM)

errdemon(1M)

errpt(IM)

errstop(IM)

filesave(IM)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 3 -

Preface

fwtmp(lM)

iv(lM)

instal/elM)

Iddrv(lM)

Hnk{lM)

masterupd(lM)

mkboot(Hvf)

mvdir(lM)

nscloop(lM)

nscmon(lM)

profiler(lM)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the. UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 4-

pwck(lM)

qasurvey(lM)

rboo~lM)

rc{lM)

runacc~lM)

sadp{lM)

sar(lM)

s~lM)

stgetty(lM)

sysdefs{lM)

tic{lM)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5. The command rc{lM) is a
subset of brc{lM).

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Releru?e 2.

- 5 -

Preface

uucico(lM)

vpmsave(lM)

vpmset(lM)

x25pvc(lM)

Section 7:

acu(7)

dr":vers(7)

escape(7)

kbd(7)

ktune(7)

nc(7)

nsc(7)

This command is not documented (but is
available) on System V Release 2, and is
available on the UNIX PC for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on

- 6-

phone(7)

phonedvr(7)

prj(7)

stermz'o(7)

sxt(7)

trace(7)

vpm(7)

w£ndow(7)

x25(7)

Section 8:

Preface

System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 7 -

Preface

mk(8)

rje(8)

Section 1:

acctom(1)

bs(l)

ca/endar(l)

cat(l)

cc(l)

c/ear(l)

cpio(l)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC ior Version 3.5, but is available on
System V Release 2.

The -v, -t, and -e options are not
available on the UNIX PC Version 3.5.

The - T, - G, and - # options are not
available in System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

The K, R, 0, J, and x options are not
available in System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on

- 8 -

ctrace(1)

cu(1)

diif(1)

dircmp(1)

dump(1)

ed(1)

eft(1)

eqn(1)

f77(1)

fc(1)

find(1)

fspli~1)

gdev(1)

Preface

System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - n option is not available on the UNIX
PC Version 3.5.

The -1, -r, -s,-D, and -c options are not
available on the UNIX PC Version 3.5.

The - wn option is not available on the
UNIX PC Version 3.5.

The -g, -c, -p, and -u options are not
available on the UNIX PC Version 3.5.

The - p string option is not available on the
UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - T option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

The - inurn option is not available on the
UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 9-

Preface

ged(l)

get(1)

graph(1)

graph£cs(1)

greek(1)

grep(1)

gut£I(1)

head(1)

hpio(1)

ksh(1)

ld(1)

Hn~1)

login(1)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The -w option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The -i, -e, and -f options are not available
on the UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

The -z, -Z, -T, and -F options are not
available in System V Release 2.

The -c and -0 options are not available on
the UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on

- 10-

Is(1)

machid(1)

mailx(1)

message(1)

more(1)

news(1)

nsctorje(1)

nusend{l)

path{l)

pg(l)

Preface

System V Release 2.

The -0 and -p options are not available on
the UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 11 -

Pre/ace

prs{l)

rat/or{l)

riestat(l)

sag{l)

sar{l)

scrset(l)

send{l)

sh{l)

sh/orm{l)

sno{l)

sort(l)

spell{l)

stat(l)

The c option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The a, f, and h options are not available on
the UNIX PC Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The -y, -z, and -M options are not
available on the UNIX PC Version 3.5.

The - i option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on

- 12 -

st/ogin{l)

timex{l)

toc{1)

tpu(l)

trenter{l)

trotJ(l)

tset{ 1)

uahelp{l)

osend{l)

Preface

System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 13 -

Preface

vi(l)

who(l)

Section 2:

locking(2)

syslocal(2)

Section 3:

acos(3f)

aimag(3f)

aint(3f)

asin(3f)

atan(3f)

The vedit option is not available on the
UNIX PC Version 3.5.

The -H and -g options are not available on
the UNIX PC Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2. Note that is a
FORTRAN library; most functions are
available in the C library.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 14-

atan2{3f)

atoj(3c)

bool(3f)

conjg(3f)

cos(3f)

cosh(3f)

dim(3f)

dprod(3f)

eprintj(3t)

form(3t)

ftape(3f)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 15 -

Preface

getarg(3f)

getenv(3f)

getpen~3f)

iargc(3f)

index(3f)

Idgetname(3x)

len(3f)

lockj(3c)

log(3f)

logl0(3f)

max(3f)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 16 -

mclock{3f)

min(3f)

menu(3t)

message(3t)

mod(3f)

paste(3t)

rand(3f)

sign(3f)

signac(3f)

sin(3f)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 17 -

Preface

s£nh(3f)

sqrt(3f)

strcmp(3f)

std£o(3s)

tam(3t)

tan(3f)

tanh(3f)

track(3t)

w£nd(3t)

wrastop(3t)

x25alnk(3c)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 18-

x25clnk{3c)

x25hlnk{3c)

x25ipvc(3c)

Section 4:

acct{ 4)

adj(4)

errfile(4)

font{ 4)

ups(4)

piot(4)

phone(4)

shlib(4)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release ~.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V R~lease 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC

- 19 -

Preface

term(4)

terminfo(4)

ua(4)

Section 5:

math(5)

modemcap(5)

mptx(5)

prot5)

termcap(5)

values(5)

for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 20-

TABLE OF CONTENTS

1. System Maintenance Commands

intro •••• introduction to maintenance and application programs
accept • • . • • • • • • • • • . • . • allow/prevent LP requests
bcopy • • • • • • • • • • • • • • • . • • interactive block copy
chroot •••••••••.• change root directory for a command
clri • clear i-node
cron • • • • • • . • • • • • • • • • • • • • • • • clock daemon
devnm • device name
df • • • • • • • • • • • • • • • report number of free disk blocks
dismount • • • • • • • • • • • •• remove floppy or cartridge disk
fsck •••••• file system consistency check and interactive repair
fsdb • • • • • • • • • • • • • . • • • • • • file system debugger
fuser. • • • • • • • • identify processes using a file or file structure
getty • • set terminal type, modes, speed, and line discipline
init • • • • • • • • • • • • • • • • • process control initialization
IV ••••••••••••••• initialize and maintain volume
killall • • • • • • • • • • • • • . • • • . kill all active processes
lddrv. • • • • • • • • • • • • • • . • • manage loadable drivers
login • • • • • • • • • • • • • . • • • . • • • • • • • sign on
Ipadmin •••••••••••• configure the LP spooling system
lpsched • start/stop the LP request scheduler and move requests
masterupd •• update the /etc/master file
mkfs. • • • • • • • • • • • • • • • • • • construct a file system
mknod • • • • • • • • • build special file
mount. • •••••• mount and dismount file system
ncheck .• generate names from i-numbers
rc • • • • • • • • • • • • • • • • system initialization shell script
reboot • reboot the system
setmnt • • • . • • • • • • • • establish mount table
sfont • • • • • • • • • • • • • . • • • . • • install or load font
shutdown • • • • • • • • • • • • • • • • terminate all processing
uucico • • file transport program for the uucp system
uuclean • • • • • • • • • • • • • • uucp spool directory clean-up
uusub • • • • • • • • • • • • • • • • • • monitor uucp network
vol copy • • • • • • • • • • • copy file systems with label checking
wall ••••••••••••••••••••• write to all users
w hodo • • • • • • • • • • • • • • . • • • • • who is doing what

7. Special Files

intro. • •
drivers.

• • • • introduction to special files
• . • . • • • loadable device drivers

err • error-logging and eprintf interface
escape • • • • output escape codes for bitmap windows
gd •••• • • • • • • • • • • . • • • • • • general disk driver
kbd • • • • • • • • • • • • • • • • • • • keyboard codes

- 1 -

Table 0/ Contents

ktune. • • • • • • • • • • • • • • • • kernel tunable parameters
lp • . • line printer
mem • . core memory
null • • • • . • • • • • • • • • • • • • • • • • . . the null file
phone • • • • telephony interface and control
phonedvr • • • • • • • • • • Kernel structure interface and control
qt • • • • • • • • • • • • • • . • • QIC-II streaming tape driver
termio •••••••••••••••• general terminal interface
tty •••••••••••.••.• controlling terminal interface
window • • • • • • • • • • • • • • • • • • • . bitmap windows

- 2-

PERMUTED INDEX

LP requests. accept, reject: allow/prevent
kill all: kill all active processes. . . • . .
accept, reject: allow/prevent LP requests.

Ito maintenance and application programs.
bcopy: interactive block copy.

output escape codes for bitmap windows. escape:
window: bitmap windows.

bcopy: interactive block copy. . .
df: report number of free disk blocks.

mknod: build special file.
dismount: remove floppy or cartridge disk.
fsck: file system consistency check and interactive repair.
copy file systems with label checking. volcopy, labelit:

for a command. chroot: change root directory
uuclean: uucp spool directory clean-up. . .

clri: clear i-node.
cron, smgr: clock daemon.

clri: clear i-node.
escape: output escape codes for bitmap windows.

kbd: keyboard codes.
change root directory for a command. chroot: . . .

system. Ipadmin: configure the LP spooling
interactive/ fsck: file system consistency check and

mkfs: construct a file system.
init, telinit: process control initialization.

phone: telephony interface and control.
Kernel structure interface and control. phonedvr:

interface. tty: controlling terminal
bcopy: interactive block copy.

checking. volcopy, labelit: copy file systems with label
mem, kmem: core memory.

cron, smgr: clock daemon.
cron, smgr: clock daemon.
fsdb: file system debugger. . •
drivers: load able device drivers.

devnm: device name.
devnm: device name.

blocks. df: report number of free disk
uuclean: uucp spool directory clean-up. . . •
chroot: change root directory for a command.

type, modes, speed, and line discipline. /set terminal
df: report number of free disk blocks. . .

remove floppy or cartridge disk. dismount: . .
gd: general disk driver. • . . .

mount, umount: mount and dismount file system.
cartridge disk. dismount: remove floppy or
whodo: who is doing what.

gd: general disk driver.
qt: QIC-II streaming tape driver.

drivers: loadable device drivers.
lddrv: manage load able drivers.

drivers. drivers: loadable device
error: error-logging and eprintf interface.

eprintf interface. error: error-logging and
interface. error: error-logging and eprintf

windows. escape: output escape codes for bitmap

- 1 -

accept(lM)
killall(lM)
accept(lM)
intro(lM)
bcopy(lM)
escape(7)
window(7)
bcopy(lM)
df(lM)
mknod(lM)
dismount(1M)
fsck(lM)
volcopY(lM)
chroot(lM)
uuclean(lM)
clri(lM)
cron(lM)
clri(lM)
escape(7)
kbd(7)
chroot(lM)
Ipadmin(lM)
fsck(lM)
mkfs(lM)
init(lM)
phone(7)
phonedvr(7)
tty(7)
bcopy(lM)
volcopy(1M)
mem(7)
cron(lM)
cron(lM)
fsdb(lM)
drivers(7)
devnm(lM)
devnm(lM)
df(lM)
uUclean(1M)
chroot(lM)
gettY(lM)
df(lM)
dismount(lM)
gd(7)
mount(lM)
dismount(lM)
whodo(lM)
gd(7)
qt(7)
drivers(7)
Iddrv(lM)
drivers(7)
err(7)
err(7)
err(7)
escape(7)

Permuted Index

for bitmap windows. escape: output escape codes
setmnt: establish mount table.

masterupd: update the jetcjmaster file.
update the jetcjmaster file. masterupd:

mknod: build special file.
null: the null file.

jidentify processes using a file or file structure.
processes using a file or file structure. jidentify

and interactive repair. fsck: file system consistency check
fsdb: file system debugger.

mkfs: construct a file system.
umount: mount and dismount file system. mount,

volcopy, labeIit: copy file systems with labelj
uucp system. uucico: file transport program for the

intro: introduction to special files.
dismount: remove floppy or cartridge disk.

sfont, setf: install or load font.
df: report number of free disk blocks. . . .

ncheck: generate names from i-numbers. . . .
check and interactive repair. fsck: file system consistency

fsdb: file system debugger.
using a file or filej fuser: identify processes

ncheck: generate names from i-numbers.
modes, speed, and linej getty: set terminal type,

file or filej fuser: identify processes using a .
initialization. init, telinit: process control

init, telinit: process control initialization.
rc: system initialization shell script.

volume. iv: initialize and maintain
clri: clear i-node. . . . • . . .

sfont, setf: install or load font.
bcopy: interactive block copy.

system consistency check and interactive repair. jfile
phone: telephony interface and control.

phonedvr: Kernel structure interface and control.
error-logging and eprintf interface. error:
termio: general terminal interface.
tty: controlling terminal interface.

maintenance and applicationj intro: introduction to
files. intro: introduction to special

and applicationj intro: introduction to maintenance
intro: introduction to special files.

ncheck: generate names from i-numbers.
volume. iv: initialize and maintain

kbd: keyboard codes. . .
control. phonedvr: Kernel structure interface and

ktune: kernel tunable parameters.
kbd: keyboard codes. . . .

kill all: kill all active processes.
processes. killall: kill all active

mem, kmem: core memory ..
parameters. ktune: kernel tunable

copy file systems with label checking. jlabeIit:
with label checking. volcopy, labelit: copy file systems

drivers. lddrv: manage loadable .
type, modes, speed, and line discipline. jset terminal

lp: line printer.
sfont, setf: install or load font. . .

- 2 -

escape(7)
setmnt{lM)
masterupd(1M)
masterupd(lM)
mknod(lM)
nUlI(7)
fuser(lM)
fuser(1M)
fsck(lM)
fsdb(lM)
mkfs{lM)
mount(lM)
volcopY(lM)
uucico(lM)
intro(7)
dismount(lM)
sfont(lM)
df(lM)
ncheck(lM)
fsck{lM)
fsdb(lM)
fuser(lM)
ncheck(lM)
getty(1M)
fuser(lM)
init(lM)
init(lM)
rc(1M)
iv(lM)
clri(lM)
sfont(lM)
bcopy(1M)
fsck(lM)
phone(7)
phonedvr(7)
err(7)
termio(7)
tty(7)
intro(lM)
intro(7)
intro{lM)
intro(7)
ncheck(lM)
iv(lM)
kbd(7)
phonedvr(7)
ktune(7)
kbd(7)
kiIlalI(lM)
killall(lM)
mem(7)
ktune(7)
volcopy(lM)
volcopy(lM)
Iddrv(lM)
getty{lM)
Ip(7)
sfont(lM)

drivers: load able device drivers.
lddrv: manage loadable drivers.

login: sign on.
lp: line printer.

/lpshut, lpmove: start/stop the LP request scheduler and move/
accept, reject: allow/prevent LP requests.

Ipadmin: configure the LP spooling system.
spooling system. Ipadmin: configure the LP

request/ lpsched, lpshut, lpmove: start/stop the LP
start/stop the LP request/ lpsched, lpshut, lpmove:

LP request scheduler/ lpsched, lpshut, lpmove: start/stop the
iv: initialize and maintain volume.

intro: introduction to maintenance and application/
lddrv: manage load able drivers.

/etc/master file. masterupd: update the ..
mem, kmem: core memory.

mem, kmem: core memory.
mkfs: construct a file system.
mknod: build special file.

getty: set terminal type, modes, speed, and line/
uusub: monitor uucp network. .

system. mount, umount: mount and dismount file
setmnt: establish mount table.

dismount file system. mount, umount: mount and
the LP request scheduler and move requests. /start/stop

i-numbers. ncheck: generate names from
uusub: monitor uucp network.

null: the null file.
null: the null file.

windows. escape: output escape codes for bitmap
ktune: kernel tunable parameters.

control. phone: telephony interface and
interface and control. phonedvr: Kernel structure

lp: line printer.
init, telinit: process controlj

killall: kill all active processes.
structure. fuser: identify processes using a file or file
shutdown: terminate all processing.

qt: QIC-II streaming tape driver.
driver. qt: QIC-II streaming tape

shell script. rc: system initialization
reboot: reboot the system.

reboot: reboot the system. . . .
requests'. accept, reject: allow/prevent LP

disk. dismount: remove floppy or cartridge
check and interactive repair. /system consistency

blocks. df: report number of free disk
/lpmove: start/stop the LP request scheduler and move/

reject: allow/prevent LP requests. accept,
LP request scheduler and move requests. /start/stop the . .

chroot: change root directory for a command.
/start/stop the LP request scheduler and move requests.
system initialization shell script. rc:

sfont, setf: install or load font.
setmnt: establish mount table.

font. sfont, setf: install or load
rc: system initialization shell script.

processing. shutdown: terminate all

- 3 -

Permuted Index

drivers(7)
Iddrv(1M)
login(lM)
Ip(7)
Ipsched(lM)
accept(lM)
Ipadmin(lM)
Ipadmin(lM)
Ipsched(lM)
Ipsched(lM)
Ipsched(lM)
iv(lM)
intro(lM)
Iddrv(lM)
masterupd(lM)
mem(7)
mem(7)
mkfs(lM)
mknod(lM)
getty(lM)
uusub(lM)
mount(lM)
setmnt(lM)
mount(lM)
Ipsched(lM)
ncheck(1M)
uusub(lM)
nUll(7)
nUll(7)
escape(7)
ktune(7)
phone(7)
phonedvr(7)
Ip(7)
init(1M)
killall(lM)
fuser(lM)
shutdown(1M)
qt(7)
qt(7)
rc(lM)
reboot(lM)
reboot(1M)
accept(1M)
dismount(lM)
fsck(1M)
df(lM)
Ipsched(lM)
accept(lM)
Ipsched(lM)
chroot(lM)
Ipsched(lM)
rC(lM)
sfont(1M)
setmnt(lM)
sfont(lM)
rC(lM)
shutdown(lM)

Permuted Index

login: sign on.
/set terminal type, modes, speed, and line discipline.

uuclean: uucp spool directory clean-up.
Ipadmin: configure the LP spooling system.

lpsched, lpshut, lpmove: start/stop the LP request/
qt: QIC-II streaming tape driver.

processes using a file or file structure. fuser: identify
control. phonedvr: Kernel structure interface and

setmnt: establish mount table.
qt: QIC-II streaming tape driver.

control. phone: telephony interface and
initialization. init, telinit: process control

termio: general terminal interface. . .
tty: controlling terminal interface. . .

and line/ getty: set terminal type, modes, speed,
shutdown: terminate all processing.
interface. termio: general terminal

system. uucico: file transport program for the uucp
interface. tty: controlling terminal

ktune: kernel tunable parameters.
getty: set terminal type, modes, speed, and line/

file system. mount, umount: mount and dismount
masterupd: update the /etc/master file.

wall: write to all users.
fuser: identify processes using a file or file/

for the uucp system. uucico: file transport program
clean-up. uuclean: uucp spool directory

uusub: monitor uucp network. ..•...
uuclean: uucp spool directory clean-up.

file transport program for the uucp system. uucico:
uusub: monitor uucp network.

iv: initialize and maintain volume.
wall: write to all users. . .

whodo: who is doing what.
whodo: who is doing what.
window: bitmap windows.

output escape codes for bitmap windows. escape:
window: bitmap windows.

wall: write to all users.

- 4 -

10gin(lM)
getty(lM)
uuclean(lM)
Ipadmin(lM)
Ipsched(lM)
qt(7)
fuser(lM)
phonedvr(7)
setmnt(lM)
qt(7)
phone(7)
init(lM)
termio(7)
tty(7)
getty(lM)
shutdown(lM)
termio(7)
uucico(lM)
tty(7)
ktune(7)
gettY(lM)
mount(lM)
masterupd(lM)
wall(lM)
fuser(lM)
uucico(1M)
uuclean{1M)
uusub(lM)
uuclean(1M)
uucico(lM)
uusub(lM)
iv(lM)
wall(lM)
whodo(lM)
whodo(lM)
window(7)
escape(7)
window(7)
wall(lM)

INTRO(1M) INTRO(1M)

NAME
intro - introduction to maintenance and application programs

DESCRIPTION
This section describes, in alphabetical order, commands that are
used chiefly for system maintenance and administration purposes.
The commands in this section should be used along with those
listed in Section 1 of the UNIX System User's Manual. References
to other manual entries not of the form name(lM) or name(7)
refer to entries of that manual.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [opt£on(s)] [cmdarg(s)]
where:

name

optz"on

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < > optarg
where < > is optional white space.

A single letter representing an option without an
argument.

A single letter representing an option requiring an
argument.

Argument (character string) satisfying preceding
argletter.

Path name (or other command argument) not
beginning with - , or - by itself indicating the
standard input.

SEE ALSO
getopt(l), getopt(3C).
UNIX System User's Manual.
UNIX System Adm£nz"strator's Gu£de.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of "hormal" termination) one supplied by the program
(see wait(2) and ex£t(2)). The former byte is 0 for normal termi­
nation; the latter is customarily 0 for successful execution and
non-zero to indicate troubles such as erroneous parameters, bad or
inaccessible data, or other inability to cope. with the task at hand.
It is called variously "exit code", "exit status", or "return codell,
and is described only where special conventions are involved.

Regretfully, many commands do not adhere to the aforementioned
syntax.

- 1 -

ACCEPT (1M) ACCEPT(IM)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/ usr / lib / accept destinations
/usr/lib/reject [-r[reason 11 destinations

DESCRIPTION

FILES

Accept allows Ip(1) to accept requests for the named dest£nations.
A destination can be either a printer or a class of printers. Use
Ipstat(1) to find the status of dest£nations.

Reiect prevents lp(l) from accepting requests for the named dest£­
nations. A destination can be either a printer or a class of
printers. Use Ipstat(1) to find the status of destina#ons. The fol­
lowing option is useful with reiect.

-r[reason 1 Associates a reason with preventing lp from accept­
ing requests. This reason applies to all printers
mentioned up to the next -r option. Reason is
reported by lp when users direct requests to the
named destinat£ons and by lpstat(l). If the -r
option is not present or the -r option is given
without a reason, then a default reason will be
used.

/usr/spool/lp/*

SEE ALSO
enable(l), Ip(l), Ipadmin(lM), Ipsched(lM), Ipstat(1).

- 1 -

BCOPY(lM) (Obsolescent) BCOPY(lM)

NAME
bcopy - interactive block copy

SYNOPSIS
/etc/bcopy

DESCRIPTION
Bcopy dates from a time when neither the UNIX file system nor
the DEC disk drives were as reliable as they are now. Bcopy
copies from and to files starting at arbitrary block (512-byte)
boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting "tol) block number).
from: (you name the file or device to be copied from).
offset: (you provide the starting "from" block number).
count: (you reply with the number of blocks to be

copied).

After count is exhausted, the from question is repeated (giving
you a chance to concatenate blocks at the to+oft'set+count loca­
tion). If you answer from with a carriage return, everything
starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(1).

- 1 -

CHROOT(IM) CHROOT(IM)

NAME
chroot - change root directory for a command

SYNOPSIS
/ etc/ chroot new root command

DESCRIPTION
The given command is executed relative to the new root. The
meaning of any initial slashes U) in path names is changed for a
command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root:
even if a chroot is currently in effect, the newroot argument is
relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files
in the new root file system.

- 1 -

CLRI(IM) CLRI(1M)

NAME
clri - clear i-node

SYNOPSIS
/ etc/ clri file-system i-number ...

DESCRIPTION
Clri writes zeros on the 64 bytes occupied by the i-node numbered
i-number. File-system must be a special file name referring to a
device containing a file system. After cZri is executed, any blocks
in the affected file will show up as "missing)) in an Jsck(IM) of the
file-system. This command should only be used in emergencies
and extreme care should be exercised.

Read and write permission is required on the specified file-system
device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for
some reason appears in no directory. If it is used to zap an i-node
which does appear in a directory, care should be taken to track
down the entry and remove it. Otherwise, when the i-node is real­
located to some new file, the old entry will still point to that file.
At that point removing the old entry will destroy the new file.
The new entry will again point to an unallocated i-node, so the
whole cycle is likely to be repeated again and again.

SEE ALSO
fsck(IM), fsdb(IM), ncheck(IM), fs(4).

BUGS
If the file is open, clri is likely to be ineffective.

- 1 -

CRON(lM) CRON(1M)

NAME
cron, smgr - clock daemon

SYNOPSIS
/etc/cron
/etc/smgr

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to
the instructions in the file /usr/lib/crontab. Because cron
never exits, it should be executed only once. This is best done by
running cron from the initialization process through the file
/ etc/rc (see £nz"t(1M)).

In the UNIX PC, the status manager (/etc/smgr), which displays
the date, time, and message icons on the screen, includes the func­
tionality of cron. Thus cron is not run on the UNIX PC if the
status manager is used.

The file crontab consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns
that specify in order:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
and day of the week (0-6, with O=Sunday).

Each of these patterns may contain:
a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an
inclusive range);
a list of numbers separated by commas (meaning all of
these numbers); or
an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at the
specified time(s). A % in this field is translated into a new-line
character. Only the first line (up to a % or the end of line) of the
command field is executed by the shell. The other lines are made
available to the command as standard input.

Cron examines crontab once a minute to see if it has changed; if
it has, cron reads it. Thus it takes only a minute for entries to
become effective.

jusr jlibj crontab
jusrjadmjcronlog

SEE ALSO
init(IM), sh(I).

DIAGNOSTICS
A history of all actions by cron are recorded in
/ usr / adm/ cronlog.

- 1 -

CRON(lM) CRON(lM)

BUGS
Cron reads crontab only when it has changed, but it reads the
in-core version of that table once a minute. A more efficient algo­
rithm could be used. The overhead in running cron is about one
percent of the CPU, exclusive of any commands executed by cron.

- 2-

DEVNM(lM) DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
fetcfdevnm [names 1

DESCRIPTION
Devnm identifies the special file associated with the mounted file
system where the argument name resides (as a special case, both
the block device name and the swap device name is printed for the
argument name f if swapping is done on the same disk section as
the root file system). Argument names must be full path names.

This command is most commonly used by fetcfrc (see rC(lM)) to
construct a mount table entry for the root device.

EXAMPLE
The command:

/etc/devnm /
produces

fp002 /
if /dev/fp002 is mounted on f.
Or the command:

/etc/devnm /u
produces

fp003 /u
if /dev /fp003 is mounted on /u.

FILES
/etc/mnttab

SEE ALSO
rc(lM), setmnt{lM).

- 1 -

DF(IM) DF(IM)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t 1 [-f 1 [file-systems 1

DESCRIPTION

FILES

Df prints out the number of free blocks and free i-nodes available
for on-line file systems by examining the counts kept in the super­
blocks; file-systems may be specified either by device name (e.g.,
/dev/fp002) or by mounted directory name (e.g., /usr). If the
file-systems argument is unspecified, the free space on all of the
mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported
as well.

If the -f flag is given, only an actual count of the blocks in the
free list is made (free i-nodes are not reported). With this option,
df will report on raw devices.

/dev/fp*
/etc/mnttab

SEE ALSO
fs(4), mnttab(4).

- 1 -

DISMOUNT (1M) DISMOUNT (1M)

NAME
dismount - remove floppy or cartridge disk

SYNOPSIS
dismount [-f 1 [-s 1

DESCRIPTION

Fll..ES

DISMOUNT prevents damage to a floppy or cartridge disk caused
by sudden removal of the disk from its drive. The program waits
for pending input/output on the disk to complete, forbids further
input/output to the disk, unmounts the disk)s file systems, and
clears the pulled flag in the disk)s volume home block. When
dismount finishes without error, it is safe to take the disk out of
the drive. '

-f is the default and dismounts the floppy disk. -s is historical.

A disk that was removed without a prior dismount is noticeable
because its pulled flag is still set. Inserting such a disk in the
drive causes UNIX to print a warning on the system console. If
you receive such a warning, check the consistency of file systems
and databases on the disk.

/etc/mnttab - mounted file system list

SEE ALSO
fsck(lM), update(1), gd(7).

- 1 -

FSCK(IM) FSCK(1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [-y] [-n] [-sx] [-sx] [-t file] [-q] [-D] [-f] [-p]
[file-systems]

DESCRIPTION
Fsck

Fsck audits and interactively repairs inconsistent conditions for
UNIX file systems. If the file system is consistent then the number
of files, number of blocks used, and number of blocks free are
reported. If the file system is inconsistent the operator is
prompted for concurrence before each correction is attempted. It
should be noted that most corrective actions will result in some
loss of data. The amount and severity of data lost may be deter­
mined from the diagnostic output. The default action for each
consistency correction is to wait for the operator to respond yes or
no. If the operator does not have write permission /sck will
default to a -n action.

Fsck has more consistency checks than its predecessors check,
dcheck, /check, and icheck combined.

The following options are interpreted by /sck.

-y Assume a yes response to all questions asked by /sck.

-n Assume a no response to all questions asked by /sck; do not
open the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct
a new one by rewriting the super-block of the file system.
The file system should be unmounted while this is done; if
this is not possible, care should be taken that the system is
quiescent and that it is rebooted immediately afterwards.
This precaution is necessary so that the old, bad, in-core
copy of the superblock will not continue to be used, or
written on the file system.

The -sX option allows for creating an optimal free-list
organization. The following forms of X are supported for
the following devices:

-s3 (RP03)
-s4 (RP04, RP05, RP06)
-sBlocks-per-cylinder:Blocks-to-skip
(for anything else)

If X is not given, the values used when the file system was
created are used. If these values were not specified, then
the value 400: 7 is used.

-SX Conditionally reconstruct the free list. This option is like
-sX above except that the free list is rebuilt only if there
were no discrepancies discovered in the file system. Using
-S will force a no response to all questions asked by /sck.
This option is useful for forcing free list reorganization on

- 1 -

FSCK(lM) FSCK(lM)

uncontaminat~d file systems.

-t If /sck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the-t option is specified, the file
named in the next argument is used as the scratch file, if
needed. Without the -t flag, /sck will prompt the operator
for the name of the scratch file. The file chosen should not
be on the file system being checked, and if it is not a spe­
cial file or did not already exist, it is removed when /sck
completes.

-q Quiet /sck. Do not print size-check messages in Phase 1.
Unreferenced fifos will silently be removed. If /sck requires
it, counts in the superblock will be automatically fixed and
the free list salvaged.

-D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check. Check block and sizes (Phase 1) and check the
free list (Phase 5). The free list will be reconstructed
(Phase 6) if it is necessary.

- p Preen file systems only. Assume that no operator is
present: fix minor problems without asking permission and
if there are major problems, note them and exit with an
error status. Only the following problems are considered
minor:

Unreferenced inodes.
Link counts in inodes too large.
Missing blocks in the free list.
Blocks in the free list also in files.
Counts in the super block wrong.

The -p option ~llows a normal boot without operator
intervention. The startup script that rups !sck U etc/ rc on
the UNIX PC) can specify the -p option to !sck and make a
normal boot contingent upon a normal /sck return status.

If no file-systems are specified, /sck will rea.d a list of default file
systems from the file / etc/ checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one jnode or the free

list.
2. Blocks claimed by an inode or the free list outside

the range of the file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocatE;ld inode.
Inodenumber out of range.

- 2 -

FSCK(lM) FSCK(lM)

FILES

8.

9.
10.

Super Block checks:
More than 65536 inodes.
More blocks for i:p.odes than there are in the
file system.

Bad free block list format.
Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are,
with the operator's concurrence, reconnected by placing them in
the lost+found directory, if the files are nonempty.The user
will be notified if the file or directory is empty or not. If it is
empty, /sck will silently remove them. Fsck will force the recon­
nection of nonempty directories. The name assigned is the inode
number. The only restriction is that the directory lost+found
must preexist in the root of the file system being checked and
must have empty slots in which entries can be made. This is
accomplished by making lost+found, copying a number of files
to the directory, and then removing them (before /sck is executed).

Checking the raw device is almost always faster and should be
used with everything but the root file system.

/ etc / checklist contains default list of file systems to
check.

SEE ALSO

BUGS

clri(1M), ncheck(lM), checklist(4), fs(4).
Setting up UNIX in the UNIX System Admz'nz'strator's Guide.

Inode numbers for. and •• in each directory should be checked for
validity.

DIAGNOSTICS
The diagnostics produced by /sck are intended to be self­
explanatory.

If -p was specified and preening was inadequate, a nonzero status
is returned.

- 3-

FSDB(IM) FSDB(1M)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/rsdb special [- 1

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash.
It has conversions to translate block and i-numbers into their
corresponding disk addresses. Also included are mnemonic offsets
to access different parts of an i-node. These greatly simplify the
process of correcting control block entries or descending the file
system tree.

Fsdb contains several error checking routines to verify i-node and
block addresses. These can be disabled if necessary by invoking
/sdb with the optional - argument or by the use of the 0 symbol.
(Fsdb reads the i-size and f-size entries from the superblock of the
file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must
be prefixed with a zero. During any assignment operation,
numbers are checked for a possible truncation error due to a size
mismatch between source and destination.

Fsdb reads a block at a time and will therefore work with raw as
well as block I/O. A buffer management routine is used to retain
commonly used blocks of data in order to reduce the number of
read system calls. All assignment operations result in an immedi­
ate write-through of the corresponding block.

The symbols recognized by /sdb are:
absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit
>, < save, restore an address

numerical assignment
=+ incremental assignment

decremental assignment
=" character string assignment
o error checking flip flop
p general print facilities
r file print facility
B byte mode
W word mode
D double word mode

escape to shell

The print facilities generate a formatted output in various styles.
The current address is normalized to an appropriate boundary
before printing begins. It advances with the printing and is left at
the address of the last item printed. The output can be ter­
minated at any time by typing the delete character. If a number
follows the p symbol, that many entries are printed. A check is

- 1 -

FSDB(IM) FSDB (1M)

made to detect block boundary overflows since logically sequential
blocks are generally not physically sequential. If a count of zero is
used, all entries to the end of the current block are printed. The
print options available are:

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes

The f symbol is used to print data blocks associated with the
current i-node. If followed by a number, that block of the file is
printed. (Blocks are numbered from zero.) The desired print
option letter follows the block number, if present, or the f symbol.
This print facility works for small as well as large files. It checks
for special devices and that the block pointers used to find the
data are not zero.

Dots, tabs and spaces may be used as function delimiters but are
not necessary. A line with just a new-line character will incre­
ment the current address by the size of the data type last printed.
That is, the address is set to the next byte, word, double word,
directory entry or i-node, allowing the user to step through a
region of a file system. Information is printed in a format
appropriate to the data type. Bytes, words and double words are
displayed with the octal address followed by the value in octal and
decimal. A.B or .D is appended to the address for byte and dou­
ble word values, respectively. Directories are printed as a direc­
tory slot offset followed by the decimal i-number and the character
representation of the entry name. Inodes are printed with labeled
fields describing each element.

The following mnemonics are used for i-node examination and
refer to the current working i-node:

EXAMPLES
386i

In=4

In=+1

fc

md mode
In link count
uid user ID number
gid group ID number
sz file size
a# data block numbers (0 - 12)
at access time
mt modification time
maj major device number
min minor device number

prints i-number 386 in an i-node format. This
now becomes the current working i-node.

changes the link count for the working i-node to
4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated
with the working i-node.

- 2-

FSDB (1M) FSDB (1M)

2i.fd prints the first 32 directory entries for the root
i-node of this file system.

d5i.fc changes the current i-node to that associated
with the 5th directory entry (numbered from
zero) fo'und from the above command. The first
logical block of the file is then printed in ASCII.

512B.pOo prints the superblock of this file system in octaL"

2i.aOb.d7=3 changes the i-number for the seventh directory
slot in the root directory to 3. This example
also shows how several operations can be com­
bined on one command line.

d7 .nm= "name" changes the name field in the directory slot to
the given string. Quotes are optional when used
with nm if the first character is alphabetic.

a2b.pOd prints the third block of the current inode as
directory entries.

SEE ALSO
fsck(lM), dir(4), fs(4).

-3-

FUSER(1M) FUSER(IM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/etc/fuser [-ku] files [-] [[-ku] files]

DESCRIPTION
Fuser lists the process IDs of the processes using the files specified
as arguments. For block special devices, all processes using any
file on that device are listed. The process ID is followed by c, p or
r if the process is using the file as its current directory, the parent
of its current directory (only when in use by the system), or its
root directory, respectively. If the - u option is specified, the
login name, in parentheses, also follows the process ID. In addi­
tion, if the -k option is specified, the SIGKILL signal is sent to
each process. Only the super-user can terminate another user's
process (see k£ll(2)). Options may be respecified between groups of
files. The new set of options replaces the old set, with a lone dash
canceling any options currently in force.

The process IDs are printed as a single line on the standard out­
put, separated by spaces and terminated with a single new line.
All other output is written on standard error.

EXAMPLES

FILES

fuser - ku / dev / dsk 1?
will terminate all processes that are preventing disk drive
one from being unmounted if typed by the super-user, list­
ing the process ID and login name of each as it is killed.

fuser -u /etc/passwd
will list process IDs and login names of processes that have
the password file open.

fuser -ku /dev /dskl? -u /etc/passwd
will do both of the above examples in a single command
line.

Note that the above device names for disks are generic to the
3B20S and may be different on other processors.

/unix
/dev/kmem
/dev/mem

for namelist
f or system image
also for system image

SEE ALSO
mount(lM), ps(l), kill(2), signal(2).

- 1 -

GETTY(lM) GETTY(lM)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
fete/getty [-h 1 [-t timeout 1 line [speed [type [linedisc
1 11
/ ete/ getty -e file

DESCRIPTION
Getty is a program that is invoked by init(1M). It is the second
process in the series, (init-getty-login-shell) that ultimately con­
nects a user with UNIX. Initially getty generates a system
identification message from the values returned by the uname(2)
system call. Then, if / etc/issue exists, it outputs this to the user's
terminal, followed finally by the login message field for the entry
it is using from /ete/gettydefs. Getty reads the user's login
name and invokes the login(1M) command with the user's name
as argument. While reading the name, getty attempts to adapt
the system to the speed and type of terminal being used.

Line is the name of a tty line in /dev to which getty is to attach
itself. Getty uses this string as the name of a file in the / dey
directory to open for reading and writing. Unless getty is invoked
with the -h flag, getty will force a hangup on the line by setting
the speed to zero before setting the speed to the default or
specified speed. The -t flag plus timeout in seconds, specifies that
getty should exit if the open on the line succeeds and no one types
anything in the specified number of seconds. The optional second
argument, speed, is a label to a speed and tty definition in the file
/ ete/ gettydefs. This definition tells getty what speed to initially
run at, what the login message should look like, what the inital
tty settings are, and what speed to try next should the user indi­
cate that the speed is inappropriate. (By typing a < break> char­
acter.) The default speed is 300 baud. The optional third argu­
ment, type, is a character string describing to getty what type of
terminal is connected to the line in question. Getty understands
the following types:

none
vt61
vt100
hp45
clOO

default
DEC vt61
DEC vt100
Hewlett-Packard HP45
Concept 100

The default terminal is none; i.e., any crt or normal terminal
unknown to the system. Also, for terminal type to have any
meaning, the virtual terminal handlers must be compiled into the
operating system. They are available, but not compiled in the
default condition. The optional fourth argument, line disc , is a
character string describing which line discipline to use in commun­
icating with the terminal. Again the hooks for line disciplines are
available in the operating system but there is only one presently
available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the
interface to 300 baud, specifies that raw mode is to be used

- 1 -

GETTY(lM) GETTY(lM)

FILES

(awaken on every character), that echo is to be suppressed, either
parity allowed, newline characters will be converted to carriage
return-line feed, and tab expansion performed on the standard
output. It types the login message before reading the user's name
a character at a time. If a null character (or framing error) is
received, it is assumed to be the result of the user pushing the
"break" key. This will cause getty to attempt the next speed in
the series. The series that getty tries is determined by what it
finds in / etc/ gettydefs.

The user's name is terminated by a new-line or carriage-return
character. The latter results in the system being set to treat car­
riage returns appropriately (see ioctl(2)).

The user's name is scanned to see if it contains any lower-case
alphabetic characters; if not, and if the name is non-empty, the
system is told to map any future upper-case characters into the
corresponding lower-case characters.

In addition to the standard UNIX erase and kill characters (# and
@), getty also understands \b and "'U. If the user uses a \b as an
erase, or "'U as a kill character, getty sets the standard erase char­
acter and/or kill character to match.

Getty also understands the "standard" ESS2 protocols for erasing,
killing and aborting a line, and terminating a line. If getty sees
the ESS erase character, _, or kill character, $, or abort character,
&, or the ESS line terminators, / or !, it arranges for this set of
characters to be used for these functions.

Finally, login is called with the user's name as an argument.
Additional arguments may be typed after the login name. These
are passed to login, which will place them in the environment (see
login(1M)).
A check option is provided. When getty is invoked with the -c
option and file, it scans the file as if it were scanning
/ etc/ gettyders and prints out the results to the standard output.
If there are any unrecognized modes or improperly constructed
entries, it reports these. If the entries are correct, it prints out the
values of the various flags. See ioctl(2) to interpret the values.
Note that some values are added to the flags automatically.

/ etc / gettydefs
/etc/issue

SEE ALSO

BUGS

init(lM), login(IM), ioct1(2), gettydefs(4), inittab(4), tty(7).

While getty does understand simple single character quoting con­
ventions, it is not possible to quote the special control characters
that getty uses to determine when the end of the line has been

- 2-

GETTY (1M) GETTY(lM)

reached, which protocol is being used, and what the erase charac­
ter is. Therefore it is not possible to login via getty and type a #,
0, I, !, _, backspace, "U, AD, or & as part of your login name or
arguments. They will always be interpreted as having their spe­
cial meaning as described above.

- 3 -

INIT(IM) INIT(1M)

NAME
init, telinit - process control initialization

SYNOPSIS
letc/init [0123456SsQq 1
letc/telinit [0123456sSQqabc 1

DESCRIPTION
Init

Init is a general process spawner. Its primary role is to create
processes from a script stored in the file I etc/inittab (see init­
tab (4)). This file usually has init spawn getty's on each line that a
user may log in on. It also controls autonomous processes required
by any particular system.

Init considers the system to be in a Tun-level at any given time. A
Tun-level can be viewed as a software configuration of the system
where each configuration allows only a selected group of processes
to exist. The processes spawned by init for each of these run­
levels is defined in the inittab file. Fnit can be in one of eight Tun­
levels, 0-6 and S or s. The Tun-level is changed by having a
privileged user run I etc/init (which is linked to / etc/telinit).
This user spawned init sends appropriate signals to the original
init spawned by the operating system when the system was
rebooted, telling it which Tun-level to change to.

Init is invoked inside UNIX as the last step in the boot procedure.
The first thing init does is to look for letc/inittab and see if
there is an entry of the type initdefault (see inittab (4)). If there is,
init uses the Tun-level specified in that entry as the initial run­
level to enter. If this entry is not in inittab or inittab is not found,
init requests that the user enter a Tun-level from the virtual sys­
tem console, I dey Isyscori. If an S (s) is entered, init goes into
the SINGLE USER level. This is the only Tun-level that doesn't
require the existence of a properly formated inittab file. If
I etc/inittab doesn't exist, then by default the only legal Tun­
level that init can enter is the SINGLE USER level. In the SINGLE
USER level the virtual console terminal I dey I syscon is opened
for reading and writing and the command Ibin/stl is invoked
immediately. To exit from the SINGLE USER run-level one of two
options can be elected. First, if the shell is terminated (via an
end-of-file), init will reprompt for a new Tun-level. Second, the
init or telinit command can signal init and force it to change the
run-level of the system.

When attempting to boot the system, failure of init to prompt for
a new run-level may be due to the fact that the device
I dey Isyscon is linked to a device other than the physical system
teletype U dey I systty). If this occurs, init can be forced to relink
I dey Isyscon by typing a delete on the system teletype which is
co-located with the processor.

When init prompts for the new run-level, the operator may only
enter one of the digits 0 through 6 or the letters S or s. If S is
entered init operates as previously described in SINGLE USER
mode with the additional result that I dey I syscon is linked to

- 1 -

INIT (1M) INIT(1M)

the user's terminal line, thus making it the virtual system console.
A message is generated on the physical console, / dey /systty,
saying where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SIN­
GLE USER state to normal run states, it sets the ioctl(2) states of
the virtual console, / dey / syscon, to those modes saved in the file
/etc/ioctl.syscon. This file is written by init whenever SINGLE
USER mode is entered. If this file doesn't exist when init wants to
read it, a warning is printed and default settings are assumed.

If a 0 through 6 is entered init enters the corresponding run-level.
Any other input will be rejected and the user will be re-prompted.
If this is the first time init has entered a run-level other than SIN­
GLE USER, init first scans inittab for special entries of the type
boot and bootwait. These entries are performed, providing the
run-level entered matches that of the entry before any normal
processing of inittab takes place. In this way any special initializa­
tion of the operating system,such as mounting file systems, can
take place before users are allowed onto the system. The inittab
file is scanned to find all entries that are to be processed for that
run-level.

Run-level 2 is usually defined by the user to contain all of the ter­
minal processes and daemons that are spawned in the multi-user
environment.

In a multi-user environment, the inittab file is usually set up so
that init will create a process for each terminal on the system.

For terminal processes, ultimately the shell will terminate because
of an end-of-file either typed explicitly or generated as the result
of hanging up. When init receives a child death signal, telling it
that a process it spawned has died, it records the fact and the rea­
son it died in /etc/utmp and /etc/wtmp if it exists (see
who(1)). A history of the processes spawned is kept in
/ etc/wtmp if such a file exists.

To spawn each process in the inittab file, init reads each entry and
for each entry which should be respawned, it forks a child process.
After it has spawned all of the processes specified by the inittab
file, init waits for one of its descendant processes to die, a power­
fail signal, or until init is signaled by init or telinit to change the
system's run-level. When one of the above three conditions
occurs, init re-examines the inittab file. New entries can be added
to the inittab file at any time; however, init still waits for one of
the above three conditions to occur. To provide for an instantane­
ous response the init Q or init q command can wake init to re­
examine the inittab file.

If init receives a power/ail signal (SIGPWR) and is not in SINGLE
USER mode, it scans inittab for special powerfail entries. These
entries are invoked (if the run-levels permit) before any further
processing takes place. In this way inz"t can perform various
cleanup and recording functions whenever the operating system
experiences a power failure.

- 2 -

INIT(lM) INIT(lM)

When init is requested to change run-levels (via telint°t), init sends
the warning signal (SIGTERM) to all processes that are undefined
in the target run-level. [nit waits 20 seconds before forcibly ter­
minating these processes via the kill signal (SIGKILL).

Telinit

FILES

Telinit, which is linked to / etc / init, is used to direct the actions
of init. It takes a one character argument and signals init via the
kill system call to perform the appropriate action. The following
arguments serve as directives to init.

0-6 tells init to place the system in one of the run­
levels 0-6.

a,b,c

Q,q

s,S

tells init to process only those / etc/initta b file
entries having the a, b or c run-level set.

tells init to re-examine the / etc/inittab file.

tells init to enter the single user environment.
When this level change is effected, the virtual
system teletype, /dev/syscon, is changed to
the terminal from which the command was exe­
cuted.

Telinit can only be run by someone who is super-user or a member
of group sys.

/etc/inittab
/etc/utmp
/etc/wtmp
/ etc / ioctl.syscon
/dev /syscon
/ dev /systty

SEE ALSO
getty(1M), login(1M), sh(l), who(l), kill(2), inittab(4), utmp(4).

DIAGNOSTICS
If init finds that it is continuously respawning an entry from
/ etc/inittab more than 10 times in 2 minutes, it will assume
that there is an error in the command string, and generate an
error message on the system console, and refuse to respawn this
entry until either 5 minutes has elapsed or it receives a signal from
a user init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab
file or a program is removed that is referenced in the in ittab °

- 3-

IV(1M) (AT&T UNIX PC only) IV(IM)

NAME
iv - initialize and maintain volume

SYNOPSIS
iv [-iustdwmv] special [descriptionfile 1

DESCRIPTION
Iv initializes and maintains a UNIX PC disk volume. Special and
descriptionfile specify the disk and a description file for it; these
are described below. Iv does one of five operations, specified by
the following options:

-i completely initialize a volume. This consists of five
phases:

1. Initialize iv's internal Volume Horne Block, based
on descriptionfile and the disk type. If the disk
can support bad block handling (all types except
floppies), create an internal Bad Block Table. Put
bad block data from descriptionfile and volume's
existing Bad Block Table (if any) in internal Bad
Block Table.

2. Format medium.

3. Perform a surface check. If the disk can support
bad block handling, add bad blocks to the Bad
Block Table. If the disk cannot support bad block
handling, the first bad spot causes the disk to be
rejected.

4. Write out the Volume Home Block. This has the
effect of dividing the volume into slices (parti­
tions).

5. Allocate and write out the files that share the
Reserved Area (slice 0) with the Volume Horne
Block. If the disk can support bad block handling,
one of these files is the Bad Block Table. Other
files are specified in descriptionfile.

-u Update the volume horne block. This is the same as -i
except that the second and third phases (medium format­
ting and surface check) are skipped.

-s Surface test. Any bad blocks discovered are added to the
bad block table.

-t Tell volume description. Display volume home block in
human-readable form. No description file is needed. The
volume's contents are not affected.

-d Description file display. A description file that describes
the current state of the volume is written to the standard
output. If the Reserved Area contains a loader, the loader
keyword's value is written as /usr/lib/iv/loader. If the
Reserved Area contains a down load image area, the Down
Load Area Description lists files whose names are of the
form

/usr /lib/iv /wsxxx.yyy

- 1 -

IY(1M) (AT&T UNIX PC only) IV(IM)

Where xxx is the numeric device identification; and yyy is
422 if xxx is even, 232 if xxx is odd.

The -f option, equivalent to -u, is provided for compatibility
with older versions of iv. It should not be used, as it may disap­
pear in future releases.

In addition to the single operation option (-i, -u, -s, -t, or -d),
you can specify any or all of the following options:

-v Verbose display output. If the display includes The
Volume Home Block, also include the bad block table.

-I A normal surface test consists of a single pass over the
disk; -I specifies ten passes.

-w A normal surface test pass consists of a read pass; - w
specifies a write pass before each read pass.

File Parameters
Special is the character special file for slice zero on the volume.
This name takes the form /dev/rfpOto, where t is 0 for winches­
ter, 2 for floppy.

Descriptionfile is a text file that describes the volume. It is
required by the -i and -u options. The description file consists of
four parts:

general disk description
reserved area files description
bad blocks description
partition table description

The four descriptions are separated from each other by four lines,
each of which contains only a single dollar sign ($). Specifics for
each of the five descriptions are given under separate headings
below.

General Description
Each line in the General Description begins with a keyword. Some
keywords are followed by values; the value is separated from the
keyword by spaces or tabs. For example:

hitech
cylinders 25

Each keyword is only used once. Here are the valid keywords.

type Mandatory, unless the volume is already initialized in
UNIX PC format. Value is disktype: lID for winchester,
and FD for floppy.

name Mandatory, unless the volume is already initialized in
UNIX PC format. Value is the volume name. Any charac­
ters except spaces or tabs are permitted in the volume
name. The actual name in the Volume Home Block is
always exactly six characters; iv right truncates names
that are too long and right pads with nulls names that are
too short.

cylinders
Mandatory, unless the volume is already initialized in
UNIX PC format. Value is the number of cylinders on the

- 2 -

IV(1M) (AT&T UNIX PC only) IV(1M)

disk. This must be a positive number not greater than
1024.

heads Mandatory, unless the volume is already initialized in
UNIX PC format. Value is the number of heads on the
disk. This must be a positive number not greater than 7.

sectors
Mandatory, unless the volume is already initialized in
UNIX PC format. Value is the number of physical sectors
per track.

steprate
Mandatory, unless the volume is already initialized in
UNIX PC format. Value is a number that is passed to the
disk controller. Currently this number must be o.

exchangeable
If this keyword is present, the disk can be removed from
its drive (floppy).

h itech If this keyword is present, write precompensation is not
required on the disk. See the disk manufacturer's docu­
mentation for further information.

Reserved Area Description
The Reserved Area Description describes the files that share slice
zero with the volume home block. Each line in the Reserved Area
Description consists of a keyword followed by one or more param­
eters; one or more tabs or spaces separates keywords and parame­
ters from each other. Here are the valid keywords and their
meanings. (A logical block is 1024 bytes long.)

loader Describes the loader area. The first, mandatory, parame­
ter is the full pathname of an a.out file to put in the
loader area. The second, optional, parameter is the size of
the loader area in logical blocks. If the second parameter
is missing, the size of the a.out file is used.

badblocktable
Describes the bad block table. The first, mandatory,
parameter is the size of the bad block table in logical
blocks. The second, optional, parameter is only used
when an existing bad block table contains errors; this
parameter is "empty" to clear the bad block table, miss­
ing otherwise.

All lines valid for the Reserved Area Files Description are
optional. However, the bad block table is mandatory on a volume
which supports bad block handling, and the loader area is manda­
tory on a volume which is to hold an operating system. A system
volume cannot have a bootable program area.

Bad Blocks Description
The Bad Block Description explicitly specifies up to 255 bad
blocks to be added to the bad blocks table. Iv merges specified
bad block information with information already in the bad block
table (if there already is one) and bad block information
discovered through the surface test.

- 3-

IY(1M) (AT&T UNIX PC only) IY(1M)

Each bad block entry is a single line. There are two forms: 8

where 8 is a sector number; c h b where c is a cylinder number, h
is a head number, and b is a byte number. Both forms condemn a
single sector, the second the sector that contains the specified
byte.

The last sector on each track serves as a bad block alternate. Iv
chooses its alternates in a way that minimizes extra seeking for
alternate blocks.

Partition Table Description
The Partition Table Description shows where the slices (partitions)
are to begin. Each line in the file consists of a track number, the
starting track of a slice. Slices are listed in ascending numeric
order and begin on successively higher tracks. The beginning of a
slice defines the end of the previous slice. The first track number
is always 0, since slice zero always begins on a track zero.

There can be at most 16 slices on a disk. It is a fatal error to
specify a slice one that doesn)t leave enough room in slice zero for
the Volume Home Block and the slice zero files.

EXAMPLES

FILES

Here is an example of a disk description file.

iv description file for standard floppy disk
type FD
name Data
cylinders 40
heads 2
sectors 8
steprateO
$
$
$
o
1

jdevjrfp*
jusr jlibjiv 1*

disk character special files
prototype description files

SEE ALSO
dismount(lM), update(1), gd(7).

WARNINGS
The -i, -u, and -8 operations are dangerous or fatal to existing
volume data. Always precede these operations with a backUp.

When a new bad block is itself an alternate block, iv may produce
messages that appear spurious but are actually correct. If the bad
block is already in use as an alternate, the ('added bad block)!
message can appear twice for one block.

- 4 -

NAME
killall - kill all active processes

SYNOPSIS
/ ete/killall [signal 1

DESCRIPTION

FILES

Killall is is a procedure used by fete/shutdown to kill all active
processes not directly related to the shut down procedure.

Killall is chiefly used to terminate all processes with open files so
that the mounted file systems wIll be unbusied and can be
unmounted.

Killall sends signal (see kill(l)) to all remaining processes not
belonging to the above group of exclusions. If no signal is
specified, a default of 9 is used.

/etc/shutdown

SEE ALSO
kill(l), ps(l), shutdown(lM), signal(2}

- 1 -

LDDRV(lM) (AT&T UNIX PC only) LDDRV(lM)

NAME
Iddrv - manage loadable drivers

SYNOPSIS
Iddrv [-m master] [-a.bdqsuv] [devname]
Iddrv -a. [v] [-m master] [-0 dfile] devname
Iddrv -d (v 1 (-m master 1 devname
Iddrv -b v -m master devname
Iddrv -u [v l [-m master] devname
Iddrv -q (v (-m master 1 devname
Iddrv -8 v -m master

DESCRIPTION
Lddrv allocates/deallocates space for a specified driver,
loads/unloads a specified driver, and returns the status of specified
driver(s).

The v argument writes driver information to stdout. Without the
v argument, lddrv is silent, even when an error occurs. -m mas­
ter specifies the name of the master file to be used for this partic­
ular lddrv run (default is /etc/master). Use -0 dfile to specify the
name of the file that contains the driver's executable code, if the
name of this file is different from the driver name. The devname
argument is the name of the driver.

The options are:

-a. Allocate space for and load the driver.

-d Unload the driver and deallocate its space.

- b Load (bind) the driver.

-u Unload (unbind) the driver.

-q Return the status of a particular loadable driver.

-s Return the status of all loadable drivers.

The first time Iddrv -a. is run for a new or updated" .0" execut­
able file, the unresolved kernel symbol references are resolved
using the ascii kernel symbol table file /etc/lddrv /unix.sym A
file containing the executable with all symbols resolved is written
to a file whose name is the driver name.

EXAMPLES
To show the following status report, use this format of lddrv
Iddrv -s

DEVNAME II) BLK CHAR LINE SIZE ADDR FLAGS
lipc 0 -1

pIp 1 -1

1

6

-1 Ox5000 Ox3ddOOO ALLOe BOUND
-1 Ox1000 Ox3e2000 ALLOe BOUND

xt 2 -1 9 1 Ox3000 Ox3e3000 ALLOe BOUND

To allocate and load the FP A driver and write binding informa­
tion to stdout, use this format of lddrv : Iddrv -a.v fpa.

To silently unload the FP A driver but leave its memory allocated,
use this format of lddrv : Iddrv -u fpa.

To load (bind) the FPA driver if it is already allocated, use this
format of lddrv : Iddrv -by fpa.

- 1 -

FILES

To unload the FP A driver and deallocate its memory space, use
this format of lddrv : Iddrv -db fps.

To allocate and ioad the driver roo whose executable code is in
foobar.o, use this format of lddtv : Iddrv -av -0 foobar.o foo

fete/master
fetc/drvtab
/etc/lddrv

fetc/lddrv fdrivers

default master file
loadable driver table
directory that contains lddrv and loadable
drivers
a list of drivers
to be loaded automatically during reboot,
one driver name per line.

SEE ALSO
syslocal(2), master(4); drivets(7).

- 2 -

LOGIN(lM) LOGIN(lM)

NAME
login - sign on

SYNOPSIS
login [name [env-var ... 11

DESCRIPTION
The login command is used at the beginning of each terminal ses­
sion and allows you to identify yourself to the system. It may be
invoked as a command or by the system when a connection is first
established. Also, it is invoked by the system when a previous
user has terminated the initial shell by typing a cntrl-d to indicate
an "end-of-file." (See How to Get Started at the beginning of this
volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial com­
mand interpreter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument),
and, if. appropriate, your password. Echoing is turned off (where
possible) during the typing of your password, so it will not appear
on the written record of the session.

At some installations, an option may be invoked that will require
you to enter a second "dialup" password. This will occur only for
dial-up connections, and will be prompted by the message "dialup
password:". Both passwords are required for a successful login.

If you do not complete the login successfully within a certain
period of time (e.g., one minute), you are likely to be silently
disconnected.

After a successful login, accounting files are updated, the pro­
cedure I etcl profile is performed, the message-of-the-day, if any, is
printed, the user-ID, the group-ID, the working directory, and the
command interpreter (usually sh(l)) are initialized, and the file
.profile in the working directory is executed, if it exists. These
specifications are found in the / etc/ passwd file entry for the
user. The name of the command interpreter is - followed by the
last component of the interpreter's pathname (i.e., -sh). If this
field in the password file is empty, then the default command
interpreter, I bini sh is used.

The basic environment (see environ(5)) is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL= lusr Imaill your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying addi­
tional arguments to login, either at execution time or when login
requests your login name. The arguments may take either the
form xxx or xxx=yyy. Arguments without an equal sign are
placed in the environment as

- 1 -

LOGIN(lM) LOGIN(lM)

FILES

Ln=xxx
where n is a number starting at 0 and is incremented each time a
new variable name is required. Variables containing an = are
placed into the environment without modification. If they already
appear in the environment, then they replace the older value.
There are two exceptions. The variables PATH and SHELL can­
not be changed. This prevents people, logging into restricted shell
environments, from spawning secondary shells which aren't res­
tricted. Both login and getty understand simple single character
quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and
tabs.

/etc/utmp
/etc/wtmp
/usr /mail/ your-name
/etc/motd
/etc/passwd
/etc/profile
. profile

accounting
accounting
mailbox for user your-name
message-of -th e-day
password file
system profile
user's login profile

SEE ALSO
mail(l), newgrp(l), sh(l), su(l), passwd(4), profile(4), environ(5).

DIAGNOSTICS
Login incorrect if the user name or the password cannot be
matched.
No shell, cannot open password file, or no directory: consult a
UNIX programming counselor.
No utmp entry. You must exec "login" from the lowest level "sh".
if you attempted to execute login as a command without using the
shell's exec internal command or from other than the initial shell.

- 2 -

LP ADMIN (1M) LPADMIN(1M)

NAME
Ipadmin - configure the LP spooling system

SYNOPSIS
/usr/lib/lpadmin -p printer [options]
/usr/lib/lpadmin -x dest
/usr/lib/lpadmin -d[dest]

DESCRIPTION
Lpadmin configures LP spooling systems to describe printers,
classes and devices. It is used to add and remove destinations,
change membership in classes, change devices for printers, change
printer interface programs and to change the system default desti­
nation. Lpadmin may not be used when the LP scheduler,
Ipsched(lM), is running, except where noted below.

Exactly one of the -p, -d or -x options must be present for
every legal invocation of Ipadmin.

-d[dest] makes dest, an existing destination, the new system
default destination. If dest is not supplied, then
there is no system default destination. This option
may be used when Ipsched{1M) is running. No
other options are allowed with -d.

-xdest removes destination dest from the LP system. If dest
is a printer and is the only member of a class, then
the class will be deleted, too. No other optt"ons are
allowed with -x.

-pprinter names a printer to which all of the options below
refer. If printer does not exist then it will be
created.

The following options are only useful with -p and may appear in
any order. For ease of discussion, the printer will be referred to as
P below.

-cclass inserts printer P into the specified class. Class will
be created if it does not already exist.

-eprinter copies an existing printer's interface program to be
the new interface program for P.

- h indicates that the device associated with P is
hardwired. This option is assumed when creating a
new printer unless the -I option is supplied.

-iinterface establishes a new interface program for P. Interface
is the path name of the new program.

-I indicates that the device associated with P is a login
terminal. The LP scheduler, lpsched, disables all
login terminals automatically each time it is started.
Before re-enabling P, its current devt"ce should be
established using Ipadmin.

-mmodel selects a model interface program for P. Model is
one of the model interface names supplied with the
LP software (see Models below).

- 1 -

LPADMIN(IM)

-rclass

-vdevice

Restrictions.

LPADMIN(1M)

removes printer P from the specified class. If P is
the last member of the class, then the class will be
removed.

associates a new device with printer P. Device is
the pathname of a file that is writable by the LP
administrator, Ip. Note that there is nothing to stop
an administrator from associating the same device
with more than one printer. If only the -p and -v
options are supplied, then Ipadmin may be used
while the scheduler is running.

When creating a new printer, the -v option and one of the -e, -i
or -m options must be supplied. Only one of the -e, -i or -m
options may be supplied. The -b and -I keyletters are mutually
exclusive. Printer and class names may be no longer than 14 char­
acters and must consist entirely of the characters A-Z, a-z, 0-9
and _ (underscore).

Models.
Model printer interface programs are supplied with the LP
software. They are shell procedures which interface between
lpsched and devices. All models reside in the directory
/usr/spool/lp/model and may be used as is with Ipadmin -m.
Alternatively, LP administrators may modify copies of models and
then use Ipadmin -i to associate them with printers. The follow­
ing list describes the models and lists the options which they may
be given on the lp command line using the -0 keyletter.

imagen_S

dumb

dumb_remote

second_remote

n450

For Imagen serial page printer

For dumb parallel line printer

For printer in remote mode. Option:

RAW The request is printed in raw mode (no
post-processing, no CR-LF translation,
high-order bits are passed through
unchanged.)

Modification of dumb_remote to support the
second remote printer. Option:

RAW The request is printed in raw mode (no
post-processing, no CR-LF translation,
high-order bits are passed through
unchanged.)

For dumb serial line printer. Option:

RAW The request is printed in raw mode (no
post-processing, no CR-LF translation,
high-order bits are passed through
unchanged.)

Modification of dumb_S so that NL will not
map to CR-NL. This model is useful when the
user wants to use neqn coupled with nroff on
a Diablo 450 or compatible printer. Option:

- 2 -

RAW The request is printed in raw mode (no
post-processing, no CR-LF translation,
high-order bits are passed through
unchanged.)

EXAMPLES

FILES

l. Assuming there is an existing AT&T 475 line printer named
ATT475, it will use the dumb_S model interface after the
command:

/usr/lib/lpadmin -pATT475 -mdumb_S

2. To qbtain raw mode printing on ATT475, use the cOIIlmand:

lp -dATT475 -oRAW files

3. A Diablo 450 printer called st2 can be added to the LP
configuration using the command:

/usr/lib/lpadmin -pst2 -v/dev/tty001 -mn450

4. A Diablo 1640 printer called stl can be added to the LP
configuration (Note: interface model 1640 is currently not
available on the UNIX PC). Use the command:

/usr/lib/lpadmin -pst1 -v/dev/ttY002 -mdumb_s

5. An nroff document may be printed on stl in any of the fol-
lowing ways:

nroff -T450 files I lp -dstl -of
nroft' - T450-1~ files I lp -dstl -of
nroff - T37 files I col I lp - dstl

6. The following command prints the password file on stl in 12-
pitch: .

lp -dstl -012 /etc/passwd

NOTE: the -12 option to the 1640 model should never be
used in conjunction with nroff.

/usr/spool/lp/*

SEE ALSO
. 450(1), accept(1M), enable(1), lp(1), lpsched(1M), Ipstat(1).

BUGS
The -0 option is not available in Version 3.5.

- 3-

LPSCHED (1M) LPSCHED (1M)

NAME
lpsched, lpshut, lpmove - start/stop the LP request scheduler and
move requests

SYNOPSIS
/usr/lib/lpsched
/usr/lib/lpshut
/usr/lib/lpmove requests dest
/usr/lib/lpmove destl dest2

DESCRIPTION

FILES

Lpsched schedules requests taken by lp(l) for printing on line
printers.

Lpshut shuts down the line printer scheduler. All printers that are
printing at the time lpshut is invoked will stop printing. Requests
that were printing at the time a printer was shut down will be
reprinted in their entirety after lpsched is started again. All LP
commands perform their functions even when lpsched is not run­
ning.

Lpmove moves requests that were queued by lp(l) between LP des­
tinations. This command may be used only when lpsched is not
running.

The first form of the command moves the named requests to the
LP destination, dest. Requests are request ids as returned by lp.
The second form moves all requests for destination destl to desti­
nation dest2. As a side effect, lp will reject requests for destl.

Note that lpmove never checks the acceptance status (see
accept(lM)) for the new destination when moving requests.

/usr /spool/lp / *
SEE ALSO

accept(lM), enable(l), Ip(1), Ipadmin(lM), lpstat(l).

- 1 -

MASTERUPD (1M) MASTERUPD (1M)

NAME
masterupd - update the /etc/master file

SYNOPSIS
masterupd [-abedl 1 [-m master 1 flags devname

DESCRIPTION
Masterupd is used to manage the fete/master file. Using
masterupd you can add entries, delete entries, list entries, or find
the block or character major device numbers for device devname.

The options are as follows:

-a Add an entry to the master table.

- b Get block device number for device devname. Returns
the number as a string on standard output.

-e Get character device number for device devname.
Returns the number as a string on standard output.

-d Delete the entry for device devname from the master
table.

-I List the entries in the master table.

Use -m master to specify a different master file than the default
fete/master. The flags are used only with the -a (add) option,
and may be any of:

-p prefix

-B number
-0 number
bloek
ehar
init
release
open
elose
read
write
ioetl
strategy
print
pwr
lopen
lelose
Iread
Iwrite
lioetl
linput
loutput
Imdmint

fix
fit

subroutine prefix name (if different from
devname)
force a particular block major number
force a particular character major number
device is a block device
device is a character device
device has an init routine
device has a release routine
device has an open routine
device has a close routine
device has a read routine
device has a write routine
device has an ioctl routine
device has a strategy routine
device has a print routine
device has a power failure handler routine
device has a line disipline open routine
device has a line disipline close routine
device has a line disipline read routine
device has a line disipline write routine
device has a line disipline ioctl routine
device has a line disipline input routine
device has a line disipline output routine
device has a line disipline modem interrupt
routine
device has a fixed vector
device has a floating vector

- 1 -

MASTERUPD (1M) MASTERUPD (1M)

EXAMPLES

required
supp
nocnt
once
info

device is a required device
suppress interrupt vector
suppress count field in conf.c
allow only one of these devices
device has an info routine

To add an entry for a loadable parallel printer:

masterupd -a -C 6 -p lp open close
in it release write ioctl
char pIp

To add an entry for a loadable ipc:

masterupd - a init release lipc

To delete the above entry:

masterupd -d lipc

Below is an Install script fragment to install a new character dev­
ice 'xyzzy':

masterupd - a - p xy _ init release open close read write ioctl
char xyzzy
charnum='masterupd -c xyzzy'
for i in 1 2 3 4 5 6
do

/etc/mknod /dev/xy$i c $charnum $i
done

The above example results in the following entry:

xyzzy 1137 000 004 o 11

The following is an Install script fragment that includes some
loadable line discipline flags to add an entry to the master table.

SEE ALSO

masterupd - a char release open close read write ioctl
linput loutput xt

The above example results in the following entry:

xt 1037 140 004 xt o 10

drivers(7), lddrv(lM), master(4).

- 2-

MKFS (1M) MKFS (1M)

NAME
mkfs - construct a file system

SYNOPSIS
/ ete/mkls special blocks[:inodes] [gap blocks/cyl]
/ete/mkls special proto [gap blocks/cyl]
/ete/mkls special

DESCRIPTION
Mk/s constructs a file system by writing on the special file accord­
ing to the directions found in the remainder of the command line.
If the second argument is given as a string of digits, mk/s builds a
file system with a single empty directory on it. The size of the file
system is the value of blocks interpreted as a decimal number.
This is the number of physical disk blocks the file system will
occupy. The boot program is left uninitialized. If the optional
number of inodes is not given, the default is the number of logical
blocks divided by 4.

If the second argument is a file name that can be opened, mk/s
assumes it to be a prototype file proto, and will take its directions
from that file. The prototype file contains tokens separated by
spaces or new-lines. The first token is the name of a file to be
copied onto block zero as the bootstrap program. The second
token is anum ber specifying the size of the created file system in
physical disk blocks. Typically it will be the number of blocks on
the device, perhaps diminished by space for swapping. The next
token is the number of inodes in the file system. The maximum
number of inodesconfigurable is 65500. The next set of tokens
comprise the specification for the root file. File specifications con­
sist of tokens giving the mode, the user ID, the group ID, and the
initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The first charac­
ter specifies the type of the file. (The characters - bed specify
regular, block special, character special and directory files respec­
tively.) The second character of the type is either u or - to
specify set-user-id mode or not. The third is g or - for the set­
group-id mode. The rest of the mode is a three digit octal number
giving the owner, group, and other read, write, execute permis­
sions (see chmod(l)).

Two decimal number tokens come after the mode; they specify the
user and group ID's of the owner of the file.

If the file is a regular file, the next token is a path name whence
the contents and size are copied. If the file is a block or character
special file, two decimal number tokens follow which give the
major and minor device numbers. If the file is a directory, mk/s
makes the entries 0 and 00 and then reads a list of names and
(recursively) file specifications for the entries in the directory. The
scan is terminated with the token $.

- 1 -

MKFS(lM) MKFS(lM)

A sample prototype specification follows:

/stand/ diskboot
4872 110
d--77731
usr d--7773 1

sh ---75531 /bin/sh
ken d--7556 1

$
bO b--'6443 100
cO c- - 644 3 1 0 0
$

$

The third form of the command syntax is recommended, since it
needs no parameters, just special file.

The default will be used if the supplied gap and blocks/ cyl are con­
sidered illegal values or if a short argument count occurs.

SEE ALSO

BUGS

dir(4), fs(4).

If a prototype is used, it is not possible to initialize a file larger
than 64K bytes, nor is there a way to specify links.

- 2 -

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name c I b major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a
special file. The first argument is the name of the entry. In the
first case, the second is b if the special file is block-type (disks,
tape) or e if it is character-type (other devices). The last two
arguments are numbers specifying the major device type and the
minor device (e.g. unit, drive, or line number), which may be
either decimal or octal.

The assignment of major device numbers is specific to each sys­
tem. They have to be dug out of the system source file conr.e.

Mknod can also be used to create fifo's (a.k.a named pipes)
(second case in SYNOPSIS above).

SEE ALSO
mknod(2).

- 1 -

MOUNT(lM) MOUNT(lM)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
fete/mount [special directory [-r 1 1
/ ete/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is
present on the device special. The directory must exist already;
it becomes the name of the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked
with no arguments, mount prints the table.

The optional last argument indicates that the file is to be mounted
read-only. Physically write-protected and magnetic tape file sys­
tems must be mounted in this way or errors will occur when
access times are updated, whether or not any explicit write is
attempted.

Umount announces to the system that the removable file system
previously mounted on device special is to be removed.

fetcfmnttab mount table

SEE ALSO
setmnt(lM), mount(2), mnttab(4).

DIAGNOSTICS

BUGS

Mount issues a warning if the file system to be mounted is
currently mounted under another name.

Umount complains if the special file is not mounted or if it is
busy. The file system is busy if it contains an open file or some
user's working directory.

Some degree of validation is done on the file system, however it is
generally unwise to mount garbage file systems.

- 1 -

NCHECK(lM) NCHECK(lM)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-i numbers 1 [-a 1 [-8 1 [file-system 1

DESCRIPTION
Ncheck with no argument generates a path name vs. i-number list
of all files on a set of default file systems. Names of directory files
are followed by / •. The -i option reduces the report to only those
files whose i-numbers follow, The -a option allows printing of the
names. and ", which are ordinarily suppressed. The -8 option
reduces the report to special files and files with set-user-ID mode;
it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(lM), sort(l}.

DIAGNOSTICS
When the file system structure is improper, ?? denotes the
"parent" of a parentless file and a path name beginning with ...
denotes a loop.

- 1 -

RC(lM) RC(lM)

NAME
rc - system initialization shell script

SYNOPSIS
/etc/rc

DESCRIPTION
This shell procedure is executed via / etc/inittab by init(lM) when
the system state is changed.

The rc procedure clears the mounted file system table,
/ etc/mnttab (see mnttab (4)), performs all the necessary con­
sistency checks to prepare the system to change into multi-user
mode.

The rc procedure starts all system daemons before the terminal
lines are enabled. In addition, file systems are mounted and
accounting, window, status, and telephony management is started.

SEE ALSO
init(1M), shutdown(lM), inittab(4).

- 1 -

NAME
re boot - reboot the system

SYNOPSIS
fetefreboot

DESCRIPTION
Reboot causes the processor to enter its system bootstrap code
thereby rebooting the system.

Reboot will enter the boot sequence immediately, without flushing
the internal system buffers. It must be used with extreme caution.

SEE ALSO
sync(lM).

- 1 -

SETMNT(lM) SETMNT(lM)

NAME
setmnt - establish mount table

SYNYOPSIS
/etc/setmnt

DESCRIPTION

FILES

Setmnt creates the /etc/mnttab table (see mnttab(4)), which is
needed for both the mount{IM) and umount commands. Setmnt
reads the standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system's special file (e.g.)
rfp*) and node is the root name of that file system. Thus filesys
and node become the first two strings in the mnttab (4) entry.

/etcfmnttab

SEE ALSO

BUGS

mnttab{ 4).

Evil things will happen if filesys or node is longer than 10 charac­
ters.
Setmnt silently enforces an upper limit on the maximum number
of mnttab entries.

- 1 -

SFONT(1M) SFONT(lM)

NAME
sfont, setf ~ install or load font

SYNOPSIS
sfont [-s] [fontfile] slotnumber
setf [-s] [fontfile] slotnumber

DESCRIPTION

FILES

There are 16 system slots and 8 window slots available. A font
must be loaded into a window slot to be selectable. Each font
loaded into a window slot is also installed in a system slot to avoid
having multiple copies of that font.

Sfant allows a font to be installed (or deinstalled) into the system
slot (number 0 through 15). If the slot number is 0 through 7, then
windows created subsequently will inherit the font in the
corresponding window slot. If the slot number is 8 through 15, the
font will be installed in the system but not known until a window
loads it.

Setf loads (or unloads) a font into the window slot (number 0
through 7) of the current window immediately and exclusively.

The - s option specifies silent mode. Any errors are reported by
return value.

Omitting the font file argument with either command causes the
slot number to be unloaded or deinstalled.

/usr/lib/wfont
/etc/sfont
/etc/setf

SEE ALSO
syslocal(2), font(4), escape(7), window(7)

SHUTDOWN(IM)

NAME
shutdown - terminate all processing

SYNOPSIS
fete/shutdown

DESCRIPTION

SHUTDOWN (1M)

Shutdown is a shell script that accomplishes the following:

1. Kills all processes {kill all).
2. Stops the lp scheduler (lpshut).

3. Transfers control to / etc/profile Unit), which recognizes
that it is in single-user mode and reboots.

SEE ALSO
mount{lM), sync{l).

- 1 -

UUCICO(lM) UuCICO(lM)

NAME
uucico - file transport program for the uucp system

SYNOPSIS
/usr/lib/uucp/uticieo [-r role_number] [-x debu~level]
"""""s system_name

DESCRIPTION

Fll.,ES

Uucico is the file transport program for uucp work file transfers.
Role numbers for the -r option are the digit 1 for master mode or
o for slave mode (default). The -r option should be specified as
the digit 1 for master mode when uucico is started by a user) pro­
gram) or cron. Uux and uucp both queue jobs that will be
transferred by uucico.

The -x option sets the level of debugging output. If -s is
specified) then a call to l?ystem....;,name is made even if there is no
work for that system in the spool directory. Calls are only made
during the times permitted in /usr/lib/uucp/L.sys. This can
be used to poll sites that cannot initiate a connection.

/usr /lib/tlUcp/modemcap
/usr /lib/uucp/L.sys
/usr /lib/uucp/L-devices
/usr /lib/uucp/L-dialcodes
/usr /spool/uucp*
/usr /spool/uucpublic/*

SEE ALSO
cron(lM)) uucp(lC)) uustat(lC)) uux(1C)) uuclean(lM))
uusub(lM).

- 1 -

UUCLEAN (1M) UUCLEAN (1M)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/u8r/lib/uucp/uuclean [options 1

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified
prefix and delete all those which are older than the specified
number of hours.

The following options are available.

-ddirectory Clean directory instead of the spool directory.

-ppre Scan for files with pre as the file prefix. Up to 10
-p arguments may be specified. A -p without any
pre following will cause all files older than the
specified time to be deleted.

-ntime Files whose age is more than time hours will be
deleted if the prefix test is satisfied. (default time is
72 hours)

-wfile The default action for uuclean is to remove files
which are older than a specified time (see -n
option). The -w option is used to find those files
older than time hours, however, the files are not
deleted. If the argument file is present the warning
is placed in file, otherwise, the warnings will go to
the standard output.

-8SYS Only files destined for system sys are examined. Up
to 10 -8 arguments may be specified.

-mfile The -m option sends mail to the owner of the file
when it is deleted. If a file is specified then an entry
is placed in file.

This program is typically started by cron(lM}.

jusrjlibjuucp directory with commands used by uuclean
internally

jusr jspooljuucp spool directory

SEE ALSO
cron(lM), uucP(lC), uux(lC).

- 1 -

UUSUB(lM) UUSUB(lM)

NAME
uusub - monitor uucp network

SYNOPSIS
/usr/lib/uucp/uusub [options 1

DESCRIPTION

FILES

Uusub defines a uucp subnetwork and monitors the connection
and traffic among the members of the subnetwork. The following
options are available:

-asys Add sys to the subnetwork.
-dsys Delete sys from the subnetwork.
-I Report the statistics on connections.
-r Report the statistics on traffic amount.
-f Flush the connection statistics.
-uhr Gather the traffic statistics over the past hr hours.
-csys Exercise the connection to the system sys. If sys is

specified as all, then exercise the connection to all the
systems in the subnetwork.

The meanings of the connections report are:

sys #call #ok time #dev #login #nack #other

where sys is the remote system name, #call is the number of
times the local system tries to call sys since the last flush was
done, # ok is the number of successful connections, time is the
latest successful connect time, #dev is the number of unsuccessful
connections because of no available device (e.g. ACU), #login is
the number of unsuccessful connections because of login failure,
#nack is the number of unsuccessful connections because of no
response (e.g. line busy, system down), and # other is the number
of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of
bytes sent over the period of time indicated in the latest uusub
command with the -uhr option. Similarly, rfile and rbyte are
the numbers of files and bytes received.

The command:

uusub -c all -u 24

is typically started by cron(lM) once a day.

lust /spool/uucp/SYSLOG
/usr /lib/uucp/L_sub
/usr /lib/uucp/R..sub

system log file
connection statistics
traffic statistics

SEE ALSO
uucp(lC), uustat(lC).

- 1 -

VOLCOPY (1M) VOLCOPY (1M)

NAME
vol copy, labelit - copy file systems with label checking

SYNOPSIS
/ etc/volcopy [options] fsname special! volnamel special2 vol­
name2

/ etc/labelit special [fsname volume [-n]]

DESCRIPTION

FILES

Volcopy makes a literal copy of the file system using a blocksize
matched to the device. Options are:

-a invoke a verification sequence requiring a positive
operator response instead of the standard 10
second delay before the copy is made,

-s (default) invoke the DEL if wrong verification
sequence.

Other options are used only with tapes:

-bpidensity bits-per-inch (i.e., 800/1600/6250),

-feetsize

-reelnum

-buf

size of reel in feet (i.e., 1200/2400),

beginning reel number for a restarted copy,

use double buffered I/O.

The program requests length and density information if it is not
given on the command line or is not recorded on an input tape
label. If the file system is too large to fit on one reel, volcoPll will
prompt for additional reels. Labels of all reels are checked. Tapes
may be mounted alternately on two or more drives.

The jsname argument represents the mounted name (e.g.: root,
ul, etc.) of the filsystem being copied.

The spedal should be the physical disk section or tape (e.g.:
/dev/rdskI5, /dev/rrntO, etc.).

The volname is the physical volume name (e.g.: pk3, t0122, etc.)
and should match the external label sticker. Such label names are
limited to six or fewer characters. Volname may be - to use the
existing volume name.

Speciall and volnamel are the device and volume from which the
copy of the file system is being extracted. Special2 and volname2
are the target device and volume.

Fsname and volname are recorded in the last 12 characters of the
superblock (char fsnarne[6], volnarne[6];).

Labelit can be used to provide initial labels for unmounted disk or
tape file systems. With the optional arguments omitted, labelit
prints current label values. The -n option provides for initial
labeling of new tapes only (this destroys previous contents).

/etc/log/filesave.log

SEE ALSO

a record of file systems/volumes copied

fs(4).

- 1 -

VOLCOPY(lM) VOLCOPY (1M)

BUGS
Only device names beginning / dey / rmt (on DEC systems) or
/ dey /rtp (on 3B20S systems) are treated as tapes.

- 2 -

WALL (1M)

NAME
wall - write to all users

SYNOPSIS
/ etc/wa.ll

DESCRIPTION

WALL(lM)

Wall reads its standard input until an end-of-file. It then sends
this message to all currently logged in users preceded by:

FILES

Broadcast Message from •••

It is used to warn all users, typically prior to shutting down the
system. .

The sender must be super-user to override any protections the
users may have invoked (see mesg(1)).

/dev/tty*

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
II Cannot send to ... " when the open on a user's tty file fails.

- 1 -

WHODO(lM)

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION

WHODO(lM)

Whodo produces merged, reformatted, and dated output from the
who(l) and pS(l) commands.

SEE ALSO
ps(l), who(l).

~ 1 -

INTRO (7) INTRO (7)

NAME
intro - introduction to special files

DESCRIPTION

BUGS

This section describes various special files that refer to specific
hardware peripherals and UNIX device drivers. The names of the
entries are generally derived from names for the hardware, as
opposed to the names of the special files themselves. Characteris~
tics of both the hardware device and the corresponding UNIX dev~
ice driver are discussed where applicable.

While the names of the entries generally refer to vendor hardware
names, in certain cases these names are seemingly arbitrary for
various historical reasons.

~ 1 -

DRIVERS (7) (AT&T UNIX PC Only) DRIVERS (7)

NAME
drivers - loadable device drivers

DESCRIPTION
The following information should be taken into consideration
w hen writing loadable drivers.

A loadable driver is like a fixed, linked-in device driver. It has
access to all kernel subroutines and global data. After it is loaded,
it is effectively part of the running kernel.

Differences between loadable and ordinary drivers involve their
init routines, release routines, and interrupt processing.

Init Routines
Loadable drivers may have an init routine that is executed when
the driver is bound, and a release routine that is executed when
the driver is unbound (see Iddrv(lM) for a description of driver
allocation and bind operations. Init routines check for the
existence of hardware, initialize the hardware, put the interrupt
service routine for the hardware into the interrupt chain, and do
other similar tasks.

Release Routines
Release routines make sure the device or driver is idle, turn off the
device, take the interrupt service routine out of the interrupt
chain, and similar tasks. A typical action for a release routine to
take when the device is not idle is to set an error code in
u_u.error and return. If the device is guaranteed to become idle
in a limited amount of time, the routine may do a sleep() (see
Iprelease in lp.e.

Interrupt Routines
Expansion boards have two interrupt levels available, levelland
level 5 (additional interrupt levels may be made available in the
future). Each interrupt level may have more than one device
associated with it. All the interrupt service routines at a given
level are chained together. When an interrupt occurs, all the rou­
tines in the correct chain are executed until one routine returns
non-zero. If all routines in the chain return zero, a "Spurious
interrupt" message is logged in /usr/adm/unix.log.

It is the responsibility of the interrupt routine for a device to
return 0 if it is called with no interrupt outstanding on its device
and return non-zero and clear the interrupt if one does exist for its
device. In this way drivers need only be aware of their own dev­
ices and not other devices that may interrupt at the same level.

The routines seCint() and clr _int() are provided to add and delete
interrupt service routines from interrupt chains.

The routine getslot() is provided to search for a particular board.
Getslot() returns the slot address of the board, or 0 if not found.
Drivers should use getslot() or scan the table slotsO which is ini­
tialized during boot. Drivers· should not look in the hardware 10
fields of the slots as this may disturb the function of other boards
(see <sys/slot.h».

- 1 -

DRIVERS (7) (AT&T UNIX PC Only) DRIVERS (7)

EXAMPLE
/* init, release, interrupt service routines * /
/* for loadable device xyzzy * /
#include <sys/drv.h>
#define XYZ_LEVEL
#define XYZ_ID

#define XYZJ3USY
#define XYZ_OPEN

1 /* interrupt level * /
Ox1234 /* board id of xyzzy * /

1
/* expansion board * /
/* flags * /

int xyzzintO; /* interrupt service routine * /
struct drv_int xy_int = {O,xyzzying}; 1* struct defined */

int xy_base;
int xy _flags;
xy_initO
{

}

if (!(xy _base=;getslot(XYZJD))
{

u. u_error = ENODEV;
return;

}
set_int(&xy _int, XYZ_LEVEL);

<do hardware initialization>

xy _releaseO
{

}

}

u.u_error = EBUSY;
return;

<turn off device>

xyzzyintO

/* in drv.h * /

{
if (<not interrupt from xyzzy device>)

return 0;

<clear interrupt>

<process interrupt>

return 1;
}

~ 2 -

ERR(7) ERR(7)

NAME
error - error-logging and eprintf interface

DESCRIPTION

FILES

This device is the interface between the kernel's error-record
buffer and user processes. The kernel maintains a ring buffer of
records of the following form:

struct err
{

}

int
char

1* pid of originator * /
/* text of message * /

To read an entry from the queue, a process does a read with
enough space to bold one err structure. If there is nothing in the
queue, the read will block until someone writes to it. On the UNIX
PC, a user-level process called the status manager U etc/ smgr)
generally posts a read on this device and tells the user at the con­
sole about any records which appear in the queue.

To write to the queue, a process does a write call supplying a
pointer to at most ERRLEN-l characters(do not supply a pointer
to an err structure). The kernel will fill in the process' pid at the
time of the write. A print! style interface to the error device is
generally available as eprint!(3T).

In addition to writes i~ued by user processes, the kernel some­
times logs hardware errors, etc., in the error log. In this case, the
pid returned on the read will be zero. A kernel subroutine called
epr£nt! is available for those who wish to write into the error log
from kernel code or loadable device drivers.

/dev /error
/usr /include/sys/err.h
/etc/smgr

SEE ALSO
eprintf(3T).

DIAGNOSTICS
Returns EIO on write of too many characters or read with too lit­
tle memory to hold err structure.

- 1 -

ESCAPE(7) (AT&T UNIX PC only) ESCAPE(7)

NAME
escape - output escape codes for bitmap windows

DESCRIPTION
This lists the escape sequences honored by the / dey / window
device (see window(7)). Pn refers to a numeric parameter (which
defaults to 1). Ps refers to a selective parameter which defaults to
zero.

Cursor Positioning
Name Sequence Operation
BEL \007 Bell (beep); restores screen

display if blanked (see scrset(I))
Backspace 1 column. No-op in
column 1

BS \010

HT \011 Move to next multiple of 8
columns

LF \012 Down 1 line, scrolling as neces-

VT
FF
CR
SO
SI

NEL
RI

IND

CUU
CUD

CUF

CUB
CUP

HVP

\013
\014
\015
\016
\017

ESCE
ESCM

ESCD

ESC [Pn A
ESC [Pn B
ESC [Pn e
ESC [Pn C
ESC [Pn a
ESC [Pn D
ESC [PI; Pc H

ESC [PI; Pc f

sary
See LF (above)
See LF (above)
Cursor to column 1
Shift out (select font 1)
Shift in

Position to column 1 of next line
Negative line feed (scroll down
at top)
See LF (above)

Cursor up Pn lines
Cursor down Pn lines

Cursor forward Pn columns

Cursor backward Pn columns
Cursor position to PI, Pc
(1,1 = home)
See CUP (above)

Scrolling, Deleting, Inserting, and Erasing
SU ESC [Pn S Scroll entire display up Pn lines
SD ESC [Pn T Scroll entire display down Pn lines

DCH
ICH

DL
IL

EL
ELO
ELI
EL2

ESC [Pn P
ESC [Pn @

ESC [Pn M
ESC [Pn L

ESC [PsK
ESC [0 K
ESC [1 K
ESC [2 K

Delete Pn Positions
Insert Pn Positions

Delete Pn lines
Insert Pn lines

Erase parts of line
Erase cursor to EOL
Erase BOL to cursor
Erase entire line

- 1 -

ESCAPE(7) (AT&T UNIX PC only) ESCAPE(7)

ED ESC [Ps J Erase parts of display
EDO ESC [0 J Erase cursor to EOD
EDI ESC [1 J Erase BOD to cursor
ED2 ESC [2 J Erase entire display (clear)

Select Graphic Rendition
SGR ESC [PS;Psj ... m
SGRO ESC [0 m

Select graphic rendition (attribute)
Select normal iJ.ttribute

SGRI ESC [1 m
SGR2 ESC [2 m
SGR4 ESC [4 m
SGR7 ESC [7 m
SGR9 ESC [9 m

Select bold attribute
Select dim (dithered) attribute
Select underline attribute

CTSGR ESC [= Ps ; Ps m

Select reverse video attribute
Select struck .. out attribute (ISO)
1st Ps = on mask

Select Character Set
SGRI0 ESC [10 m
SGR11 ESC [11 m
SGR12 ESC [12 m
SGR13 ESC [13 m
SGR14 ESC [14 m
SGR15 ESC [15 m
SGR16 ESC [16 m
SGR17 ESC [17 m

Cursor Visibility

2nd Ps = off mask
mask = sum of any of:

A_UNDERLINE
A_REVERSE
A_BOLD
A_STRIKE
A_DIM

Select font 0 (see SI)
Select font 1 (see SO)
Select font 2
Select font 3
Select font 4
Select font 5
Select font 6
Select font 7

CTVIS ESC [= Ps C Select cursor visibility and anchoring
Normal (cursor on) CTVISO ESC [= 0 C

CTVISI ESC [= 1 C

Line Wrap
CTWRAP
CTWRAPO
CTWRAP1

SEE ALSO

ESC [= Ps w
ESC [= 0 w
ESC [= 1 w

Invisible (cursor off)

Select line wrap
Wrap off
Wrap on

window(7), kbd(7), ANSI Specification X3.64.

- 2 -

GD(7) (AT&T UNIX PC Only) GD(7)

NAME
gd - general disk driver

DESCRIPTION
Gd provides the interface to the internal winchester disk and the
in ternal floppy disk.

Eight ioetl(2) system calls are available. Two of these use the fol­
lowing structure, defined in <sys/gdioctl.h>:

struct gdctl
{

};

unsigned short
struct gdswprt
short

status; /* Status * /
params; /* Description of the disk* /
dsktyp; /* The type of disk */

#include <sys/gdioctl.h>
ioctl (fildes, command, arg)
struct gdctl *arg;

For additional information on the fields in the gdctl structure,
refer to <sys/gdisk.h>.

The commands are:

GDIOC Returns the driver 10 word. This is a 16 bit quan­
tity where the upper 8 bits are the character 'G'
apd the 8 low order bits are zero.

GDGETA Get gdctl structure.

GDSETA Set gdctl structure.

GDDISMNT Dismount the disk. On floppy disk, this also turns
off the select light.

GDFORMAT Format track command. The format track com­
mand takes a format buffer pointer as its argu­
ment.

Three of the ;oetl calls are available for the floppy only. One of
these, GDCMD, uses the following structure, defined in
<sys/ gdioctl.h > :

struct fdrq
{

char

char

cmd; 1* Command byte to 2797. * /
1* Recognized commands are: * /
1* 100xxxxx Read sector * /
1* 101xxxxx Write sector * /
1* 1100xxxx Read address * /
1* 1110xxxx Read track * /
1* lll1xxxx Write track * /
1* Fields marked x are not checked and * /
1* should be filled in by the caller * /
1* according to information in the * /
/* WD2797 data sheet. * /

cyl; 1* Cylinder to 2797. Note that on a * /
1* double sided floppy a cylinder has * /

- 1 -

GD(7)

FILES

};

(AT&T UNIX PC Only) GD(7)

1* 2 tracks. Which of these tracks is *1
1* addressed is determined by the ssa * I
1* bit in the command byte. On return *1
1* this byte holds the 2797 track *1
1* register contents after operation *1
1* completion. *1

char sec; 1* Sector to 2797. On return this byte *1
1* holds the 2797 sector register contents *1
1* after operation completion. *1

ushort count; 1* Byte count for transfer. The returned *1
1* count's 14 low order bits hold the 2s * I
1* complement of the number of words *1
1* left to do of the DMA transfer. Bits *1
1* 15 and 14 are indeterminate. This *1
1* means that for a successful transfer * I
1* the value should be (xxll)fff. *1

char stat; 1* Status byte from 2797 *1

#include <sys/gdioctl.h>
ioctl (fildes, command, arg)
struct fdrq *arg;

The commands are:

GDCMD

GDRETRY

GDLOCKI

Idev/fp*
Idev/rfp*

The fdrq structure is used by the GDCMD ioctl
for "direct" access to the WD2797 by user pro­
grams. It sits at the head of the data buffer used
for the transfer.

#include <sys/gdioctl.h>
ioctl (fildes, command, arg)
char arg;

Used for turning off/on floppy retries. arg is 1 to
turn off retries, a to turn them back on.

Used to lock out other users from using the floppy
disk drive. arg 1 = Lock floppy, a = Unlock
floppy. GDLOCK is implicit when using GDCMD.

lusr linclude/sys/gdioctl.h
lusr linclude/sys/gdisk.h

- 2-

KBD(7) (AT&T UNIX PC only) KBD (7)

NAME
kbd - keyboard codes

DESCRIPTION
The following table gives the sequence of bytes sent for each key
pressed on the system console.

Legend gives the keycap legend, X gives the sequence sent when
that key alone is pressed, s-X when shift is pressed, c-X when ctrl
(control) is pressed with it.

The Type field identifies the key type:

SYS = no repeating, no caps lock, no num lock (e.g. Exit)
REPT = repeating, no caps lock, no num lock (e.g. Dlete Char)
ALPHA = repeating, caps lock, no num lock (e.g. A)
NUM = no repeating, no caps lock, num lock (e.g. Home)
NUMREPT = repeating, no caps lock, num lock (e.g. Next)

In the sequences sent, \E means ESC (OxlB), \ *n means system
special key class n. Following the digit n is the sequence, thus:
\ *2\EXY means special class 2, send ESC X Y. The classes are
established via the WIOCSYS window "octl (see window(7)).

ILLK refers to an illegal key combination.

Legend X s-X c-X TYEe

Clear Line \EOa \EOA \EOA SYS
Rstrt/Ref \EOb \EOB \EOB SYS
Fl \EOc *I\EOC ILLK SYS
F2 \EOd *I\EOD ILLK SYS
F3 \EOe *I\EOE ILLK SYS
F4 \EOf *I\EOF ILLK SYS
F5 \EOg *I\EOG ILLK SYS
F6 \EOh *I\EOH ILLK SYS
F7 \EOi *I\EOI ILLK SYS
F8 \EOj *I\EOJ ILLK SYS
Exit \EOk \EOK \EOK SYS
Msg *2 32 *2\032 *2\032 SYS
Help \EOm \EOM \EOM SYS
Creat \EOn \EON \EON SYS
Save \EOo \EOO \EOO SYS
Suspd \ *O\EOp *O\EOP *O\EOP SYS
Rsume *O\EOq *O\EOQ *O\EOQ SYS
Opts \EOr \EOR \EOR SYS
Undo \EOs \EOS \EOS SYS
Redo \EOt \EOT \EOT SYS
Del/Esc \033 \177 ILLK REPT
1 1 ! \EPa REPT
2 2 @ \EPb REPT
3 3 # \EPc REPT
4 4 $ \EPd REPT
5 5 % \EPe REPT
6 6 \EPf REPT

- 1 -

KBD (7) (AT&T UNIX PC only) KBD(7)

Legend X s-X c-X T:i:I~e

7 7 & \EPg REPT
8 8 * \EPh REPT
9 9 \EPi REPT

° ° \EPj REPT
\EPk REPT

+ \EPI REPT
Back Space \010 \010 \010 REPT
Reset /Break ILLK \Ec \Ec SYS
Cmd \EOu \EOU \EOU SYS
Close/Open \EOv \EOV \EOV SYS
Canel \EOw \EOW \EOW SYS
Find \EOx \EOX \EOX SYS
Rplac \EOy \EOY \EOY SYS
Tab \011 \EOZ \EOZ REPT
Q q Q \021 ALPHA
W w W \027 ALPHA
E e E \005 ALPHA
R r R \022 ALPHA
T t T \024 ALPHA
Y y Y \031 ALPHA
U u U \025 ALPHA
I I \011 ALPHA
0 0 0 \017 ALPHA
P p P \020 ALPHA
[[{ \033 REPT

\ \ ~
\035 REPT
\034 REPT

((\000 REPT
Print \EOz *O\EOZ *O\EOZ NUM
Clear/Rfrsh \ENa \E [J \E [J NUM
Page \E[U \E[V \E[V NUM
Move \ENc \ENC \ENC SYS
Copy \ENd \END \END SYS
Caps Lock ILLK ILLK ILLK SYS
A a A \001 ALPHA
S s S \023 ALPHA
D d D \004 ALPHA
F f F \006 ALPHA
G g G \007 ALPHA
H h H \010 ALPHA
J j J \012 ALPHA
K k K \013 ALPHA
L 1 L \014 ALPHA

ILLK REPT
" ILLK REPT

Return \015 \015 \015 REPT
Beg \E9 \ENB ENB NUM
Home \E[H \ENM ENM NUM
End \EO \ENN \ENN NUM
Dlete \ENe \ENE \ENE SYS

- 2 -

KBD(7) (AT&T UNIX PC only) KBD(7)

Legend X s-X c-X TYQe

Dlete Char \ENf \ENF \ENF REPT
Left Shift ILLK ILLK ILLK SYS
Z z Z \032 ALPHA
X x X \030 ALPHA
C c C \003 ALPHA
V v V \026 ALPHA
B b B \002 ALPHA
N n N \016 ALPHA
M m M \015 ALPHA

< ILLK REPT
> ILLK REPT

/ / ? ILLK REPT
Right Shift ILLK ILLK ILLK SYS
Enter \012 \012 \012 SYS
Prey \ENg \ENG \ENG NUMREPT
Roll Up \E[A \E [T \E [T NUMREPT
Next \ENH \ENH \ENH NUMREPT
Sleet/Mark \ENi \ENI \ENI SYS
Input Mode \ENj \ENJ \ENJ SYS
Left Ctrl ILLK ILLK ILLK SYS
Space \040 \040 \040 REPT
Right Ctrl ILLK ILLK ILLK SYS
Num Lock ILLK ILLK ILLK SYS
<- \E[D \ENK \ENK NUMREPT
Roll Down \E[B \E [S \E [S NUMREPT
-> \E[C \ENL \ENL NUMREPT

- 3-

KTUNE(7) (AT&T UNIX PC Only) KTUNE(7)

NAME
ktune - kernel tunable parameters

SYNOPSIS
. ktune [options] [files]
ktune [-d] [nbuf=n] [inode=n] [nfile=n]
[nproc=n] [ntext=n] \ nclist=n] [npbuf-n]
[ncall=n] [nttyhog=n [kern=filename]

DESCRIPTION
Ktune provides a way to change values of the following parame­
ters which reside in the file 'filename' specified in the argument
'kern=filename'. If the argument 'kern=filename' is absent, the
program modifies /unix.

The table below summarizes the parameters that can be set using
ktune.

nbuf

ninode

nfile

nproc

Parameter Minimum Value Default

nbuf 25 100
ninode 80 400
nfile 80 300
nproc 30 100
ntext 24 75
nclist 32 150
npbuf 4 16
ncall 16 32
nttyhog 0 1024

Number of system buffers available. These buffers are
used mostly by block device drivers for file system
operations.
Range: 25 up to system capacity.

Number of memory-resident inodes that can be allo­
cated at any time. The inode is the focus of all file
activity in UNIX. There is a unique inode allocated
for each open file, each current directory, each
mounted-on file, text file, and the root.
Range: 80 up to system capacity.

Total number of files that can be opened on the sys­
tem at any time. One file structure is allocated for
each open/creat/pipe call. Note that while nfile con­
trols the total number of files that can be open at any
given time, another parameter, nopen, sets the
number of files that can be open at any given time by
any single process. Nopen is not tunable, and is
currently set to 80.
Range: 80 up to system capacity.

Number of processes that can exist at any time. One
process structure is allocated per active process, and
it contains all the data about the process.
Range: 30 up to system capacity.

- 1 -

KTUNE(7) (AT&T UNIX PC Only) KTUNE(7)

ntext Number of text structures allocated in the kernel.
One text structure is allocated per pure procedure on
swap devices.
Range: 24 up to system capacity.

nclist Number of clist buffers available. These buffers are
used mostly by character device drivers for terminal
I/O operations.
Range: 32 up to system capacity.

npbuf Number of buffer headers available in the raw I/O
pool of headers.
Range: 4 up to system capacity.

ncall Number of callouts allowed in the kernel. When a
process must be sure that it is awakened after a
specific period of time, it calls the kernel timeout rou­
tine with a specified amount of time. The timeout
routine places an entry in the cailout table. ncall
specifies the number of entries in the callout table.
Range: 16 up to system capacity.

nttyhog Maximum number of characters outstanding in the
tty buffer for a given port before the system will flush
that port's queue. If this value is set to 0, the system
will no longer check for the maximum characters out­
standing in the buffers. The tty hog option keeps one
port from using all the clist buffers, ensuring that
each port has enough buffer space.
Range: 0 up to 1024

kern= If an argument 'kern=filename' is present, the pro-
grain modifies file 'filename' instead of / unix.

ktune commands that list only some of the parameters cause only
those parameters to change. An argument consisting of a dash (-)
is taken to be a file name corresporiding to the standard input.
The options may appear in any order but must appear before the
files.

The -d flag lists each parameter and the value which the kernel is
currently using. Note that this might be different than the setting
on the actual file on disk. Each parameter appears on a separate
line, with the value preceded by a keyword (i.e., ninode· 200).
Input lists that list only some of the parameters cause only those
parameters to change. This option displays the actual settings in
use for the running kernel (not the settings stored on the disk).
These settings may be lower than the disk settings due to small
memory size.

There is a table called 'tuhi' which resides in the kernel. Tuning
is accomplished by changing the parameters in this table on the
disk, and requires the user to reboot.

All input parameters are checked against a set of minimum
parameters. Any input with an error on any parameter results in
no changes to any parameters. Input lists containing a value that
violates these minimums result in no changes, and an error return.

- 2 -

KTUNE(7) (AT&T UNIX PC Only) KTUNE(7)

The kernel boot routine is modified to provide for sanity checking
on boot up to insure that enough memory is present for the values
specified, and that the kernel virtual memory addressing limits are
not violated. If the memory found is too small for the values in
'tuhi', the values in core (not on the disk) are adjusted downward
until the resulting kernel runs on the system being booted. If
after ten refinements the values in 'tuhi' a.re still too large, the
default tuning is used.

- 3-

LP(7) (AT&T UNIX PC only) LP(7)

NAME
lp - line printer
rawlp - raw line printer

DESCRIPTION

FILES

Lp provides the interface to any standard Centronics line printer.
When it is opened or closed, a suitable number of page ejects are
generated. Bytes written are printed.

An internal parameter within the driver determines whether or
not the device is treated as having a 96- or 64-character set. In
half-ASCII mode, lower case letters are turned into upper case and
certain characters are escaped according to the following table:

{ f
} -t

The driver correctly interprets carriage returns, backspaces, tabs,
and form-feeds. A new-line that extends over the end of a page is
turned into a form-feed. The default line length is 132 characters,
no indentation and lines per page is 66. Lines longer than the line
length minus the indent (i.e. 132 characters, using the above
defaults) are truncated.

Two ioctl(2) system calls are available:

#include <sys/lprio.h>
ioctl (fildes, command, arg)
struct lprio *arg;

The commands are:

LPRGET Get the current indent, columns per line, and
lines per page and store in the lprio structure
referenced by argo

LPRSET Set the current indent, columns per line, and
lines per page from the structure referenced by
argo

Thus, indent, page width and page length can be set with an
external program.

Rawlp provides a direct interface to the parallel printer with no
modification of the data sent.

/dev/lp
/dev/rawlp

SEE ALSO
Ip(l).

- 1 -

MEM(7) MEM(7)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

Mem is a special file that is an image of the core memory of the
computer. It may be used, for example, to examine, and even to
patch the system.

Byte addresses in mem are interpreted as memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unex­
pected results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual
memory rather than physical memory is accessed.

On the PDP-Ii, the I/O page begins at location 0160000 of kmem
and per-process data for the current process begins at 0140000.

/dev/mem, /dev/kmem.

- 1 -

NULL (7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

- 1 -

NULL(7)

PHONE(7) (AT&T UNIX PC Only) PHONE(7)

NAME
phone - telephony interface and control

DESCRIPTION
The telephone ports support both voice and data functions.
Depending on the operating mode, the lines behave quite
differently. The remainder of this discussion describes the proper
use of the various voice and data features of this device.

There are two ports available for general use. Each port can
operate in either voice or data mode, though switching between
the two modes on the same call is not allowed. Only one port can
operate in data mode at any time, since there is only one data ele­
ment (Bell 212 compatible) shared between the two ports. The
ports can operate in voice mode simultaneously; the handset is
shared on an as-needed basis.

Phone lines are opened and closed via open(2) and close(2). Pro­
grams access the phone lines by opening the file:

/dev/phO
/dev/phl

Device filename for Line 1.
Device filename for Line 2.

Opening the line determines the operating mode of the phone lines
until the line is closed. The modes are:

open ("/dev/phl", O_RDWR I O_NDELAY);
Open the line for outgoing data call. The open
will return immediately for dialing.

open (" /dev/phl", O_RDWR);
Open the line for incoming data call. The open
will not return until an incoming data call has
been received and connection established.

open("/dev/phO", O_RDO NLY) "
Open the line for voice calls. The open will
return immediately ready to make or receive voice
calls.

The easiest way to establish connection for outgoing data calls is
via the dial and undial library routines (see dial(3C). This should
be the preferred method for using the ports because the library
routine has been modified to maintain lock files, and purge and
restore any gettY(IM) whenever the phone or serial ports are used.

In data mode, the port behaves much like a standard asynchro­
nous port, using read(2) and write(2) to perform I/O on the
phone line. In addition to the line parameters and ;octl commands
described in termio(7), the phone device provides additional ioctl
commands which control and monitor telephony operation. The
following structure is used primarily for this function, defined in
<phone.h>:

- 1 -

PHONE(7) (AT&T UNIX PC Only) PHONE(7)

struct updata {
char
char
ushort
ushort
ushort

c_lineparam;
c_ waitdialtone;
c_linestatus;
c_feedback;
c_waitflash;

1* line params * /
/* timeout value * /
/* line status * /
1* ring control * /
1* flash period * /

};
The c_lineparam field describes the functions of the phone lines:

VOICE 001
DATA 002
DTMF 004
PULSE 010
INCMNG 020
MSGWAIT 040
USEALEAD 100

Line used for voice (read only).
Line used for data (read only).
Use digitone for dialing.
Use pulse for dialing.
Answer incoming calls.
Detect Message Waiting
Use A-lead.

VOICE and DATA indicate which mode the line is currently set to.
These are read only and do not change after the initial open.

If DTMF is set, the line will use touch-tone for dialing.

If PULSE is set, the line will use pulse code for dialing.

If INCMNG is set, when ringing is detected on the line, the call will
be answered and a data call connection is attempted. If a connec­
tion is established, the process is notified through either a
wakeup(j or signal(j.

If MSGWAIT is set (valid for line 1 only), whenever the Message
Waiting signal changes from absent to present or from present to
absent, a signal(2) is sent to notify the process of the change.

If USEALEAD is set (most keyset lines), the A-lead is used for all
call functions.

When a line is opened in the data mode, the default parameters
set are DATA and INCMNG. For outgoing data calls, reset the
INCMNG.

The c_waitdialtone field specifies timeout value, in units of
seconds, for dialtone detection. If tone isn't detected within this
interval, an error is returned. The default value is set to 5
seconds.

The c_linestatus field reflects the current state of the line and
should be of interest only to lines which operate in voice mode. If
a voice line changes state, this field is modified and a signal (SIG­
PHONE) is sent to the process. In the signal catching routine, the
process should perform a PIOCGETP to read the current status
and compare it with the previous status for changes.

MESSAGE 0000001 Message waiting detected.

- 2 -

This bit is valid only if MSGWAIT
is set. This bit is set when Mes­
sage Waiting is detected. A sig­
nal is sent to the process when­
ever this bit is modified.

PHONE(7)

SETOFFHOOK

INCOMERING

(AT&T UNIX PC Only) PHONE(7)

0000002 Handset is lifted off the cradle.

This bit is set for the line con­
nected to the handset whenever
the set is lifted. A signal is sent
to the process whenever this bit
is modified.

0000003 Ringing is detected on the line.

This bit follows the ring signal on
the line and therefore a signal is
sent to the process on each tran­
sition.

MODEMCONNECTED 0040000 Modem handshake complete.

This bit is set when the modems
on both ends are synchronized for
data transmission. No signals are
sent when this bit is updated.

The cJeedback field controls the various functions of the onboard
dialer for feedback purposes:

SPEAKERON 0000001 Setting this bit allows the user to moni-

SOFTSPK

NORMSPK
LOUDSPK

RINGON

SOFTRING

NORMRNG
LOUDRNG

LOWRNG
MEDRNG
HlMEDRNG
HIRNG

tor the call through the onboard
speaker.

0000002 Speaker volume control for call monitor­
ing.

0000004
0000006

0000020 Setting this bit causes ringing to be gen­
erated on the onboard speaker instead
of the handset.

0170000 Ringer volume control for incoming
calls.

0070000
0150000

0000000 Ringer pitch control for incoming calls.
0004000
0010000
0020000

The c_waitftash field specifies the amount of time, in units of mil­
liseconds, that the hook switch will remain closed during the £octl
for hook flash.

The £octl(2) system calls are used to set and read the status of the
phone line. They have the form:

ioctl(file des, command, arg)
struct update *arg;

- 3-

PHONE(7) (AT&T UNIX PC Only) PHONE(7)

The commands using this form are:

PIOGETP Get the parameters and status associated with
the phone line and store in the updata struc­
ture referenced by argo

PIOSETP Set the parameters associated with the phone
from the structure referenced by arg. The
read-only portion of the structure is ignored.

Another ioctl(2) call has the form:

ioctl(filedes, command, arg)
char *arg;

The commands using this form are as follows:

PIOCDIAL Dial the digit or perform the function
associated with the character.

Digits "Ill, "211, "311, "411, "5", "6",
"7", "8 11, "9", "Oll, "#", and "*1I are
dialed. The "#" and "*,, characters
are ignored when dialing in digit pulse
mode.

Characters "-1I, "=", and "+" are used
equivalently for pausing for the next
tone. If tone is not detected within the
specified timeout period, an error IS

returned.

Character
seconds.

Character
seconds.

" "

((."

causes a pause of 2

causes a pause of 10

Characters "&" and "! " are used
equivalently for performing a hook
switch flash operation.

Character "$" is used to terminate the
dialing sequence. If the line is used for
data, this call will not return until
either a connection is established or
until the automatic timeout of 32
seconds is reached. In the latter case,
an error is returned.

Character "@" can be used to terminate
the dialing sequence for a data line.
The call returns immediately, the pro­
gram then periodically reads the status
of the line (MODEMCONNECTED of
c_linestatus) to determine if the con­
nection has been established. There is
no timeout limitation in this mode.

- 4-

PHONE(7) (AT&T UNIX PC Only) PHONE(7)

Character "%" begins Touch-tone dial­
ing from that point in the dial string.

Character ((Al l begins pulse dialing from
that point in the dial string.

Characters ((I I" are used for alpha­
betic dialing. Letters typed between the
slashes are translated to the correspond­
ing numbers on the dial pad.

All other characters are ignored.

Additional ,'octl(2) calls for controlling phone line functions:

PIOCOFFHOOK This should be the first ioctl(2) call to
set up the line for dialing. Error will be
returned if resources necessary for the
call are not available.

PIOCDISC

PIOCHOLD

PIOCUNHOLD

PIOCRECONN

PIOCFLASH

PIOC1800

PIOCANSTONE

PIOC2100

PIOCOVRSPD

Terminate the call and release
resources.

Put the line on hold.

Reconnect the call to the handset.

Reconnect the dialer for more dialing.

Perform a hook flash for the specified
interval. This is used after dialing is
completed.

Toggles bit 5 of register 5 (b5R5). If
b5R5 = 1 then an 1807 Hz. guard tone
is transmitted by the answer mode
modem during data transmission. Set­
ting this bit to 0 disables the 1807 Hz.
guard tone (212A compatible).

Toggles bit 0 of register 4 (bOR4). If
bOR4 = 1 then the answer tone is set to
be PSK unscrambled mark (CCITT
compatible). If bOR4 = 0 then the
answer tone is set to be a 2225 Hz. FSK
tone (212A compatible).

Toggles bit 6 of register 5 (b6RS). If
b6R5 = 1 then the 2100 Hz. European
answer tone is set to precede the
handshaking sequence of the answer
mode modem (CCITT compatible) If
b6R5 = 0 then a 212A compatible
handshaking sequence is selected (no
2100 Hz. tone).

Toggles bit 6 of register 4 (b6R4). If
b6R4 = 1 then character overspeed of
2.3% over nominal bit rate will be
applied in asynchronous mode. If b6R4
= 0 then overspeed of 1 % (212A

- S -

PHONE(7) (AT&T UNIX PC Only) PHONE(7)

FILES

PIOCDSRAFT

compatible) will be used.

Toggles bit 7 of register 5 (b7R5). If
b7R5 = 0 then DSR (b4R2) of the
answer mode modem is turned on after
the silent interval following the 2100
Hz. tone (CCITT compatible). If b7R5
= 0 then DSR of the answer mode
modem is turned on when the modem is
connected to the line (212A compatible).

Applications can be interfaced to the phone manager using the
/usr/lib/ua/Comm_pkgs file. The table below summarizes
the actions taken by the phone manager when an application is
invoked.

Port and Device Type: Phone Manager Actions

Phone Port Device Phone Manager Action
Number Type Type Set-up Dial Invoke Macro

yes serial ACU yes yes yes Setup
no serial ACU no no yes Nosetup
yes serial Dffi Error

Condition
no serial Dffi yes no yes Setup
yes ph OBM yes yes yes Setup
no ph OBM no no yes Nosetup

The PHMGR takes one of six paths. Port types are either serial
or ph (phone). Device types are either A CU (Automatic Calling
Unit), which is a serial port to an external modem, DIR (direct)
connection between a serial port and another computer, or OEM
(On Board Modem) connecting to another computer. After deter­
mining whether or not to dial, the terminal emulator is invoked,
and the macro Setup or Nosetup is used.

/dev/ph*

SEE ALSO
phonedvr(7), termio(7), ioctl(2), open(2), ua(4).

- 6 -

PHONEDVR (7) (AT&T UNIX PC Only) PHONEDVR (7)

NAME
phonedvr - Kernel structure interface and control

DESCRIPTION
Phonedvr provides procedures for developers who want to write
their own phone driver.

Four procedures provide the timing needed by communications
applications. These are described below.

int add_hi_scan (func)
*func

This procedure takes a pointer to a function as the input argu­
ment and returns 0 if the add operation is successful or -1 if the
table is completely full and no additional arguments may be
added. The added function will be called sixty times a second
(60MH) and should be used when critical sections of code need to
be executed without interruption. Extreme care must be taken
when using this feature since system £nterrupts are disabled when
the function is executing. Otherwise, the rest of the system will
be locked out for long periods of time. One use of this feature
would be to do accurate timing for pulse dialing.

int rm_hi_scan (runc)
*func

This procedure takes a pointer to a function as the input argu­
ment and returns 0 if the function is found and removed from the
system table, or -1 if the function is not found.

int add_1o_scan (func)
*runc

This procedure takes a pointer to a function as the input argu­
ment and returns 0 if the add operation is successful or -1 if the
table is completely full and no additional arguments may be
added. This function is used for less critical sections of code that
need to be executed sixty times a second (60HZ). It is executed
with interrupts enabled. Functions that can tolerate being inter­
rupted during execution should use this feature.

int rm_Io_scan (rune)
*func

This procedure takes a pointer to a function as the input argu­
ment and returns 0 if the function is found and removed from the
system table, or -1 if the function was not found. This is the
complement to the add_1o_scan procedure.

The above routine is useful for adding or removing functions when
writing loadable device drivers. It is an external function.

SEE ALSO ~

phone(7) termio(7), ioctl(2), open(2), ua(4).

- 1 -

QT(7) (AT&T UNIX PC Only) QT(7)

NAME
qt - QIC-II streaming tape driver

DESCRIPTION
The qt loadable device driver provides the interface to one QIC-II
streaming tape drive via a QIC-II controller on an expansion
board.

Four t'octl(2) system calls are available. They use the following
structure, defined in < sys/ qtioctl.h > :

struct qtio
{

unsigned short
int

status[6]; /* Tape drive status * /

};

bcnt; /* Number of 512 byte blocks * /
/* transferred since last open * /

#include <sys/qtioctl.h>
ioctl (fildes, command, arg)
struct qtio *arg;

The commands are:

QTIOC Returns the driver ID word. This is a 16 bit quan­
tity where the upper 8 bits are the character 'Q' and
the 8 low order bits are the minor device number.

Get qtt'o structure.

Set qt£o structure.

QTGETA

QTSETA

QTCMD Send auxilliary tape command.

QTCMD arguments:

EXAMPLES

ERASE
RETEN

6
7

Erase tape.
Retension tape.

To put a single cpz'o save set on a tape, do the following:

</dev/rmtO

to rewind tape;

find. -print I cpio -ocvT > / dev /rmtO

to backup from current path.

To put several cpio sets on one tape, use / dey /rmt4. To skip to
the next save set when reading, do:

</dev/rmt4

Note that data can only be written from the very beginning of the
tape, or appended to the end after the last save set. If the tape is
at the beginning, writing will occur from the beginning, overwiting
whatever may be on the tape. If the tape is not at the beginning,
writing will start after the last valid data on the tape.

Also note that the cpio -T option should be used whenever possi­
ble to avoid unneccesary tape wear. If the tape was written using
the -B option you must use that option on read. or an error may

- 1 -

QT(7)

FILES

(AT&T UNIX PC Only) QT(7)

occur towards the end of the save set.

/dev/rmto
/dev/rmt4

This device rewinds the tape on close.
This device positions the tape at the
next file mark on close.

- 2 -

TERMIO(7) TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same gen­
eral interface, no matter what hardware is involved. The
remainder of this section discusses the common features of this
interface.

When a terminal file is opened, it normally causes the process to
wait until a connection is established. In practice, users' programs
seldom open these files; they are opened by getty and become a
user's standard input, output, and error files. The very first ter­
minal file opened by the process group leader of a terminal file not
already associated with a process group becomes the control ter­
ma'nal for that process group. The control terminal plays a special
role in handling quit and interrupt signals, as discussed below.
The control terminal is inherited by a child process during a
jork(2). A process can break this association by changing its pro­
cess group using setpgrp(2),

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters may be typed at any time, even
while output is occurring, and are only lost when the system's
character input buffers become completely full, which is rare, or
when the user has accumulated the maximum allowed number of
input characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is
reached, all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is
delimited by a new-line (ASCII LF) character, an end-of-file (ASCII
EOT) character, or an end-of-line character. This means that a
program attempting to read will be suspended until an entire line
has been typed. Also, no matter how many characters are
requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number
of characters may be requested in a read, even one, without losing
information,

During input, erase and kill processing is normally done. By
default, the character # erases the last character typed, except
that it will not erase beyond the beginning of the line. By default,
the character @ kills (deletes) the entire input line, and optionally
outputs a new-line character. Both of these characters operate on
a key-stroke basis, independently of any backspacing or tabbing
that may have been done. Both the erase and kill characters may
be entered literally by preceding them with the escape character
(\), In this case the escape character is not read. The erase and
kill characters may be changed.

Certain characters have special functions on input. These func­
tions and their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal
which is sent to all processes with the associated control
terminal. Normally, each such process is forced to

- 1 -

TERMIO(7) TERMIO(7)

terminate, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed-upon
location; see s,'gnal(2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its
treatment is identical to the interrupt signal except
that, unless a receiving process has made other arrange­
ments, it will not only be terminated but a core image
file (called core) will be created in the current working
directory.

ERASE (#) erases the preceding character. It will not erase
beyond the start of a line, as delimited by a NL, EOF, or
EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or
EOL character.

EOF (Control-d or ASCII EOT) may be used to generate an
end-of-file from a terminal. When received, all the char­
acters waiting to be read are immediately passed to the
program, without waiting for a new-line, and the EOF is
discarded. Thus, if there are no characters waiting,
which is to say the EOF occurred at the beginning of a
line, zero characters will be passed back, which is the
standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be
changed or escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is
not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily
suspend output. It is useful with CRT terminals to
prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored
and not read.

START (Control-q or ASCII DCI) is used to resume output which
has been suspended by a STOP character. While output
is not suspended, START characters are ignored and not
read. The start/stop characters can not be changed or
escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL
may be changed to suit individual tastes. The ERASE, KILL, and
EOF characters may be escaped by a preceding \ character, in
which case no special function is done.

When the carrier signal from the data-set drops, a hangup signal
is sent to all processes that have this terminal as the control ter­
minal. Unless other arrangements have been made, this signal
causes the processes to terminate. If the hangup signal is ignored,
any subsequent read returns with an end-of-file indication. Thus
programs that read a terminal and test for end-of-file can ter­
minate appropriately when hung up on.

- 2 -

TERMIO(7) TERMIO(7)

When one or more characters are written, they are transmitted to
the terminal as soon as previously-written characters have finished
typing. Input characters are echoed by putting them in the out­
put queue as they arrive. If a process produces characters more
rapidly than they can be typed, it will be suspended when its out­
put queue exceeds some limit. When the queue has drained down
to some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The primary
calls use the following structure, defined in < termio.h > :
#define NCC 8
struct termio
{

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_Iflag; / * local modes * /
char c_line; /* line discipline */
unsigned char c_cc[NCC]; / * control chars * /

};
The special control characters are defined by the array c_cc. The
relativ~ positions and initial values for each function are as fol-
lows:

0 INTR DEL
1 QUIT FS
2 ERASE BS
3 KILL @

4 EOF EOT
5 EOL NUL
6 reserved
7 reserved

The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNP AR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip characte'f.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on

IXON
IXANY

IXOFF

input.
0002000 Enable start/stop output control.
0004000 Enable any character to restart

output.
0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error
with data all zeros) is ignored, that is, not put on the input queue
and therefore not read by any process. Otherwise if BRKINT is
set, the break condition will generate an interrupt signal and flush

- 3 -

TERMIO(7) TERMIO(7)

both the input and output queues. If IGNP AR is set, characters
with other framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error which
is not ignored is read as the three character sequence: 0377, 0, X,
where X is the data of the character received in error. To avoid
ambiguity in this case, if ISTRIP is not set, a valid character of
0377 is read as 0377, 0377. If PARMRK is not set, a framing or
parity error which is not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPOK is not
set, input parity checking is disabled. This allows output parity
generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7 bits,
otherwise all 8 bits are processed.

If INLOR is set, a received NL character is translated into a OR
character. If IGNCR is set, a received CR character is ignored (not
read). Otherwise if IORNL is set, a received OR character is
translated into a NL character.

If IUOLO is set, a received upper-case alphabetic character IS

translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A received
STOP character will suspend output and a received START charac­
ter will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character will restart output
which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters
when the input queue is nearly empty/full.

The initial input control value is all bits clear.

The c_oftag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLOUO 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to OR-NL on output.
OORNL 0000010 Map OR to NL on output.
ONOOR 0000020 No OR output at column O.
ONLRET 0000040 NL performs OR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
NLl 0000400
CRDLY 0003000 Select carriage-return delays:
ORO 0
CRl 0001000
OR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.

- 4-

TERMIO(7)

BSDLY
BSO
BSl
VTDLY
VTO
VTl
FFDLY
FFO
FFl

0020000 Select backspace delays:
o
0020000

TERMIO(7)

0040000 Select vertical-tab delays:
o
0040000
0100000 Select form-feed delays:
o
0100000

If OPOST is set, output characters are post-processed as indicated
by the remaining flags, otherwise characters are transmitted
without change.

If OLCUC is set, a lower-case alphabetic character is transmitted
as the corresponding upper-case character. This function is often
used in conjunction with !UCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted
as the NL character. If ONOCR is set, no CR character is transmit­
ted when at column 0 (first position). If ONLRET is set, the NL
character is assumed to do the carriage-return function; the
column pointer will be set to 0 and the delays specified for CR will
be used. Otherwise the NL character is assumed to do just the
line-feed function; the column pointer will remain unchanged.
The column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to
the terminal. In all cases a value of 0 indicates no delay. If OFILL
is set, fill characters will be transmitted for delay instead of a
timed delay. This is useful for high baud rate terminals which
need only a minimal delay. If OFDEL is set, the fill character is
DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2
seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the
carriage-return delays are used instead of the new-line delays. If
OF ILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 is about 0.15
seconds. If OFILL is set, delay type 1 transmits two fill characters,
and type 2 four fill characters.

Horizontal-tab delay type 1 is dependent on the current column
position. Type 2 is about 0.10 seconds. Type 3 specifies that tabs
are to be expanded into spaces. If OFILL is set, two fill characters
will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OF ILL is set, one fill
character will be transmitted.

The actual delays depend on line speed and system load.

- 5 -

TERMIO(7) TERMIO(7)

The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
EXTB
CSIZE
CS5
eS6
eS7
eS8
CSTOPB
CREAD
PARENB
PAR ODD
HUPCL
CLOCAL
CTSCD
HDX

0000017
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0000060
o
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000
0010000
0020000

Baud rate:
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
External B
Character size:
5 bits
6 bits
7 bits
8 bits
Send two stop bits, else one.
Enable receiver.
Parity enable.
Odd parity, else even.
Hang up on last close.
Local line, else dial-up.
Use hardware flow control.
Set line in half-duplex mode.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is
used to hang up the connection. If BO is specified, the data­
terminal-ready signal will not be asserted. Normally, this will
disconnect the line. For any particular hardware, impossible speed
changes are ignored.

The CSIZE bits specify the character size in bits for both transmis­
sion and reception. This size does not include the parity bit, if
any. If CSTOPB is set, two stop bits are used, otherwise one stop
bit. For example, at 110 baud, two stops bits are required.

If P ARENB is set, parity generation and detection is enabled and a
parity bit is added to each character. If parity is enabled, the
P AROPD flag specifies odd parity if set, otherwise even parity is
used.

If CREAD is set, the receiver is enabled. Otherwise no characters
will be received.

If HUPCL is set, the line will be disconnected when the last process
with the line open closes it or terminates. That is, the data­
terminal-ready signal will not be asserted.

- 6-

TERMIO(7) TERMIO (7)

If CLOCAL is set, the line is assumed to be a local, direct connec­
tion with no modem control. Otherwise modem control is
assumed.

If CTSCD is set, flow control is performed using hardware signals.
No data will be sent in the absence of the CTS (Clear To Send)
signal. Outgoing data will be suspended if CTS is lowered,
transmission will resume after CTS is raised.

If HDX is set, the RTS (Request To Send) signal will not be raised
until an £octl command is issued. If a write is attempted before
CTS is present, an error will be returned.

The initial hardware control value after open is B300, CS8,
CREAD, HUPCL.

The c_lflag field of the argument structure is used by the line dis­
cipline to control terminal functions. The basic line discipline (0)
provides the following:

ISIG 0000001
ICANON 0000002

XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH

0000004
0000010
0000020
0000040
0000100
0000200

Enable signals.
Canonical input (erase and kill
processing).
Canonical upper flower presentation.
Enable echo.
Echo erase character as BS-SP-BS.
Echo NL after kill character.
Echo NL.
Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special
control characters INTR and QUIT. If an input character matches
one of these control characters, the function associated with that
character is performed. If ISIG is not set, no checking is done.
Thus these special input functions are possible only if ISIG is set.
These functions may be disabled individually by changing the
value of the control character to an unlikely or impossible value
(e.g. 0377).

If !CANON is set, canonical processing is enabled. This enables the
erase and kill edit functions, and the assembly of input characters
into lines delimited by NL, EOF, and EOL. If ICANON is not set,
read requests are satisfied directly from the input queue. A read
will not be satisfied until at least MIN characters have been
received or the timeout value TIME has expired. This allows fast
bursts of input to be read efficiently while still allowing single
character input. The MIN and TI:ME values are stored in the posi­
tion for the EOF and EOL characters respectively. The time value
represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is
accepted on input by preceding it with a \ character, and is out­
put preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

- 7-

TERMIO(7)

for:

t
{

~

use:

\'
\!
\"
\(

~~

TERMIO (7)

For example, A is input as \80, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When !CANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII
BS SP BS, which will clear the last character from a CRT screen. If
ECHOE is set and ECHO is not set, the erase character is echoed as
ASCII SP BS. If ECHOK is set, the NL character will be echoed
after the kill character to emphasize that the line will be deleted.
Note that an escape character preceding the erase or kill character
removes any special function. If ECHONL is set, the NL character
will be echoed even if ECHO is not set. This is useful for terminals
set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF charac­
ter, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
associated with the quit and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The primary ioctl(2) system calls have the form:

ioctI (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the ter­
minal and store in the termio structure
referenced by argo

TCSETA Set the parameters associated with the ter­
minal from the structure referenced by arg.
The change is immediate.

TCSETAW Wait for the output to drain before setting
the new parameters. This form should be
used when changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then flush the
input queue and set the new parameters.

Additional ioctl(2) calls have the form:

ioctI (fildes, command, arg)
int arg;

- 8-

TERMIO(7) TERMIO (7)

FILES

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0,
tnen send a break (zero bits for 0.25
seconds).

TCXONC

TCFLSH

TCSRTS

Start/stop control. If arg is 0, suspend out­
put; if I, restart suspended output.

If arg is 0, ft.ush the input queue; if I, ft.ush
the output queue; if 2, ft.ush both the input
and output queues.

If arg is 0, turn off RTS; if 1 turn on RTS.
Error will be returned if CTS is not present
within 1 second of turning on RTS. This
command should be used on lines that
operate in half-duplex mode.

/dev/tty*

SEE ALSO
stty(I), ioctl(2), window(7).

- 9 -

TTY(7) TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file j dey jtty is, in each process, a synonym for the control
terminal or window associated with the process group of that pro­
cess, if any. It is useful for programs or shell sequences that wish
to be sure of writing messages on the terminal no matter how out­
put has been redirected. It can also be used for programs that
demand the name of a file for output, when typed output is
desired and it is tiresome to find out what terminal is currently in
use.

/dev/tty
/dev/tty*

SEE ALSO
termio(7), window(7).

- 1 -

WINDOW(7) (AT&T UNIX PC only) WINDOW (7)

NAME
window - bitmap windows

DESCRIPTION
Windows are opened and closed via open(2) and close (2). To
open a new window, the program opens the device
/ dey /window. The kernel will bind a new window to the
returned file descriptor. The window number can be obtained in
the minor device field of a subsequent stat(2) call on the file
descriptor.

The opening of a window creates a dimensionless window which
does not occupy any screen space. The window size is subse­
quently established in one of two ways:

Implicitly. If the program does a read(2), wra"te(2), or certain
t"octl(2) calls on the window, the kernel will
automatically set the window size to a default
(currently full-screen) and then proceed with the
particular system call.

Explicitly. If the program does an
t"octl(wd,WIOCSETD,¶ms), then the window
size is taken from the params given (see
WIOCSETD, below). This is the preferred mechan­
ism for establishing a window's size as it permits the
creation of windows of arbitrary dimensions.

In addition, a program may open /dev/wN where N is the win­
dow number (minor device number) of an already-existing window.
This permits multiple applications to open the same window.

When a window is created, it automatically becomes the current,
active window. As soon as dimensions are established, it will be
displayed at the front of the screen, unobscured by any other win­
dows. In addition, the default system font is loaded into font slot
o.
Any window may be closed via the close(2) system call. When
the last of potentially multiple programs closes the window, its
space on the display is removed.

Read and wra"te calls are used to perform I/O on the window.
Read reads characters from the keyboard and returns them to the
process. Write writes characters to the display.

The data to be read or written is in ANSI X3.64 7-bit ASCII code.
Output sequences exist to control cursor motion, insertion, dele­
tion, erasure, fonts, and various mode settings. Input consists of
characters and control sequences.

In addition, all the standard facilities of the UNIX tty driver are
available, control of echo, raw mode, new-line, padding,
interrupt/quit/kill characters, etc.

Any uncovered window can write to the display without blocking,
regardless of whether or not it is the active window. For example,
this allows status processes to output system update messages
even though they are not the current window.

- 1 -

WINDOW(7) (AT&T UNIX PC only) WINDOW(7)

Reading does not explicitly block non-active wiridows. Rather,
they are allowed to read any input data which was accumulated
(typed ahead) when they were last active. When this data is
exhausted, the process will block on the next read.

In addition to all tty ioctls (TIOCxxxx), the window device sup­
ports its own ioctls which control window functions:

ioctl(wd,WIOCGETD,&uwdata)
ioctl(wd,WIOCSETD,&uwdata)

These calls allow the program to get and set (respectively) param­
eters about the window. The uwdata structure has the following
form:

struct uwdata
{

};

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned char
unsigned char
unsigned char

uw_x;
uw.,-Y;
uw_width;
uw_height;
uw_uflags;
uw_hs;
uw_vs;
uw _baseline;

/* user window * /

/* upper-left-corner x * /
/* upper-left-corner y * /
/* width (pixels) * /
/* height (pixels) * /
/* various flags * /
/* horizontal size (RO) * /
/* vertical size (RO) * /
/* baseline (RO) * /

uw_x and uw_y are the pixel coordinates of the upper left-hand
corner of the window. If the window has borders (see below), then
uw_x and uw_y specify the upper left-hand ,corner of the border.
uw_width and uw_height are the width and height of the window
(in pixels). The width and height never include the border.

uw_vs is the vertical spacing for characters in pixels. uw_hs is the
horizontal spacing for characters. uw_b aseline is the vertical offset
from 0,0 to the baseline position of a character. The baseline is an
imaginary line around which characters are drawn - much like the
ruling on a conventional lined note pad.

uw_vs, uW_hs, and uw_b asel,'ne are read-only parameters (they
are ignored on a WIOCSETD call). They are computed dynami­
cally by the kernel based on the most extreme character loaded
into any font in the window's palette (see WIOCLFONT). All
character-oriented cursor motion uses these values to translate
character addresses to pixel addresses. In addition, if the
VCWIDTH flag is off in uw_uftags (see below), all characters are
displayed in an imaginary cell which is uw_hs X uw_vs pixels. In
this mode, existing UNIX programs (such as vi) can readily address
the display as a "normal" character terminal, even if multiple
"fancy" proportional-space fonts are used instead of the nominal 9
X 12 system font. Smarter applications use pixel addressing for
glyph placement and set the VCWIDTH flag enabling proportional
glyph placement.

- 2-

WINDOW(7) (AT&T UNIX PC only) WINDOW(7)

In addition, uw hs and uw vs control the size of the character
cursor in the window. In the future, applications will have far
more control over the appearance and size of both the character
and mouse cursor.

The uw_uflags field contains flags:

#define NBORDER Oxl 1* borderless * /
#define VCWIDTH Ox2 1* variable chr spacing * /
#define BORDHSCROLL Ox4 1* border hscroll icons * /
#define BORDVSCROLL Ox8 /* border vscroll icons * /
#define BORDHELP Oxl0 1* border help patch * /
#define BORDCANCEL Ox20 1* border cancel patch * /
#define BORDRESIZE Ox40 1* border re-size patch * /
#define BORDWNUM Ox80 1* border window num * /
#define UNCOVERED Oxl00 /* uncovered (RO) * /
#define KBDWIN Ox200 1* keyboard (RO) * /
#define NOCLEAR Ox400 1* don't clear window * /
NBORDER turns off the window's borders by forcing the four
margin parameters to zero. This bit is vestigial and will probably
be deleted shortly. Callers should explicitly zero the four margin
parameters to eliminate window borders.

VCWIDTH, when set, enables proportional character placement.
When set, the cursor is advanced by the displayed character's hor­
izontal increment, rather than the window-wide maximum charac­
ter width (readable as uw_hs).

The BORDxxxx flags enable the corresponding border icons.
HSCROLL enables the horizontal scrolling icons, VSCROLL the
vertical. HELP, CANCEL and RESIZE enable the help, cancel
and window re-sizing icons. When the mouse is clicked on an
enabled icon, the corresponding keyboard sequence is transmitted.

UNCOVERED is set whenever the window is totally visible. This
flag is read-only.

KBDWIN is set when this window is the current (keyboard) win­
dow. This flag is read-only.

Setting NOCLEAR prevents the system from clearing out the con­
tents of the window upon its creation. This flag is intended for
use only by window management system software.

ioctl(wd, WI OCSELECT)
This ioetl causes the window wd to become the current keyboard
(active) window. This call is normally issued only by window
management software, not by applications.

ioctl(wd,WIOCREAD,&pixmap)
This ioetl causes the pixel image of the entire display to be
"dumped" into the memory at pixmap. Pixmap should be 15660
unsigned shorts arranged as 348 rows each containing 45 unsigned
shorts. The least significant bit of the first short in the array con­
tains the upper-left-hand display pixel.

- 3 -

WINDOW(7) (AT&T UNIX PC only)

ioctl(wd,WIOCSETTEXT,&ut)
ioctl(wd, WI OCGETTEXT, &ut)

WINDOW (7)

These ioetls allows the application to associate textual data with a
window's two screen-labeled key (SLK) lines, command line, and
prompt line. These four lines are the bottom four on the display
and switch with the selected window. In addition, the application
may program the window's label line (the top border) and a non­
displayed "user" line which is generally used to describe the win­
dow to window management software.

The ut (user text) structure has the following form:

struct utdata /* user text data * /
{

short ut_num; /* number (see above) * /
char ut_text[WTXTLENJ; /* text * /

};

uCnum is the text item number (WTXTSLKl, WTXTSLK2,
WTXTPROMT, WTXTCMD, WTXTLABEL, WTXTUSER) and
uCtext contains the null-terminated data.

ioctl(wd,WIOCSYS,num)
ioctl(wd,WIOCGSYS,num)

The WIOCSYS ioetl declares window wd to be system window
number num. WIOCGSYS returns the process group associated
with an existing system window number num. There are currently
three system windows. Each system window "owns" a number of
keys on the keyboard, regardless of the currently selected window.
If one of these keys is struck, it is queued for reads in the
appropriate system window and is not sent to the currently active
one. No other action is taken (specifically, the system window is
not selected). The following table lists the special system keys:

SYSWMGR(O) Window Manager:
Suspd, s-Suspd, Rsume, s-Rsume, s-Print

SYSPMGR(1) Phone Manager:
All shifted function keys (FI-F8)

SYSSMGR(2) Status Manager:
Msg, s-Msg

ioctl(wd,WIOCGETMOUSE,&umdata)
ioctl(wd, WI OCSETMOUSE,&umdata)

These ioetls control the mouse. Once enabled, the mouse sends
"reports" to the application in the same stream as keyboard
input. If the mouse has not been enabled, no reports are sent.

The umdata structure is as follows:

#define MSDOWN Oxl /* buttons go down * /
#define MSUP Ox2 /* buttons go up * /
#define MSIN Ox4 /* mouse is in rectangle * /
#define MSOUT Ox8 /* mouse is outside rect * /

struct umdata /* mouse data * /

- 4-

WINDOW(7)

{

};

(AT&T UNIX PC only) WINDOW(7)

char
short
short
short
short
struct icon

urn_flags;
urn_x;
um--y;
um_w;
um_h;
*um_icon;

1* wakeup flags * /
/* motion rectangle * /

/* ptr to icon * /

The umJiags field contains flags which are used to determine
when mouse reports should be sent. MSUP and MSDOWN cause
reports to be sent when buttons go up or down, respectively.
MSIN and MSOUT cause reports to be sent when the mouse is
located within (MSIN) or outside (MSOUT) the rectangular region
specified with um_x, um_y, um_w, and um_h (x, y, width, and
height, in pixels).

um_icon is an optional pointer to an icon structure (see jont(4)).
This icon will be used as the mouse-track cursor. If um_icon is
zero, the standard system mouse-track is used.

Mouse reports take the form:

ESC [? {x-pos} ; {y-pos} ; {buttons} ; {reason} M

Where ESC is the ASCII escape character (\033) followed by left
square-bracket, question mark and four ASCII decimal numbers
separated by semicolons. The sequence is terminated by a capital
M character.

{x-pos} and {y-pos} are the x and y positions of the mouse-track
relative to the window. {buttons} is a single digit character in the
range 0 (\060) to 7 (\067) representing three mouse buttons as
bits. The most significant bit is the left-most mouse button.

{reason} is an ASCII decimal string explaining what event caused
the mouse report. The number consists of combinations of the
MSUP, MSDOWN, MSIN, and MSOUT bits (above). Whenever a
mouse report is generated due to MSIN or MSOUT, the enable bit
for the condition is clear. These wakeup conditions are one-shot.
Whenever a WIOCSETMOUSE £octl is issued with the MSIN or
MSOUT bits set in umJiags, a check is made to see whether an
immediate report is necessary because the mouse already satisfies
the wakeup condition.

Some typical mouse reports are:

ESC [? 100 ; 20 ; 1 ; 1 M
The reason is MSDOWN (I), the button state is 1 (right­
most button down, others up). The mouse-track is at
100,20.

- 5-

WINDOW(7) (AT&T UNIX PC only) WINDOW(7)

ESC [? 10 ; 54 ; 0 ; 4 M
The reason is MSIN (4), there are no buttons down (0),
the mouse-track is at 10,54 which is within the bounds
defined by the rectangle in the last WIOCSETMOUSE
ioctl.

ioctl(wd,WIOCRASTOP,&urdata)
The WIOCRASTOP ioctl provides user programs with direct
access to a window's pixel data. This "raster operation" z"octl IS

controlled by the urdata structure:

struct urdata 1* user rastop data * /
{

unsigned short *ur_srcbase; /* ptr to source data * /
unsigned short ur_srcwidth; /* number bytes/row * /
unsigned short *ur_dstbase; 1* ptr to dest data * /
unsigned short ur_dstwidth; /* number bytes/row * /
unsigned short ur_srcx; 1* source x * /
unsigned short ur_srcy; /* source y * /
unsigned short ur_dstx; /* destination x * /
unsigned short ur_dsty; /* destination y * /
unsigned short ur_width; /* width * /
unsigned short ur_height; 1* height * /
char ur_srcop; /* source operation * /
char ur_dstop; /* destination operation * /
unsigned short * ur_pattern; 1* pattern pointer * /

};

1* rastop source operators * /
#define SRCSRC 0 1* source * /
#define SRCP AT 1 /* pattern * /
#define SRCAND 2 /* source and pattern * /
#define SRCOR 3 /* source or pattern * /
#define SRCXOR 4 /* source xor pattern * /

/* rastop destination operators * /
#define DSTSRC 0 /* srcop(src) * /
#define DSTAND 1 /* srcop(src) and dst * /
#define DSTOR 2 /* srcop(src) or dst * /
#define DSTXOR 3 /* srcop(src) xor dst * /
#define DSTCAM 4 /* not(srcop) and dst * /

The first four members of the structure determine the memory
addresses of the source and destination planes. src base and
dstbase may point to the address of the first short of an
arbitrarily-sized array of shorts. Each row of pixels consists of
srcwz"dth (or dstwidth) number of bytes from this array. Thus, the
first pixel row exists from srcbase to ((char *)srcbase) + srcwidth.
Within each short, the least significant bit is the left-most when
displayed on the screen.

Alternatively, srcbase and/or dstbase may contain 0, in which
case the source or destination is assumed to be the window
specified by the first arg to the ioctl(wd). The caller need not
supply any value for the srcwidth if srcbase is 0, nor dstwidth if

- 6-

WINDOW(7) (AT&T UNIX PC only) WINDOW(7)

dstbase is zero. It is therefore possible to perform raster opera­
tions from user space to user space, user space to screen, screen to
user space, or screen to screen.

The next four members of the urdata structure contain pixel
addresses within the specified pixel plane. 0,0 is always the
upper-left-hand corner of the display. Note that raster operations
are completely aware of the problems associated with overlapping
rectangles: the memory operations will be done front to back or
back to front as necessary.

The width and height parameters give the rectangle's width and
height in pixels.

The srcop (source operation) and dstop (destination operation)
fields together determine the algorithm which will be applied to
the two rectangles. The basic behavior of rastop conforms to the
following vector description:

dst = dstop(srcop(src ,pattern))

where srcop and dstop are vector functions. There are five source
operations. SRCSRC is the identity function whose value is the
unmodified source rectangle itself. SRCP AT's value is that of the
"pattern" (see below) and bears no relationship to the source.
SRCOR is the inclusive or of the source and the pattern;
SRCAND, the and; SRCXOR, the exclusive or.

DSTSRC is the identify function, returning the result of the
source operation unchanged. DSTAND is. the and of the destina­
tion with the result of the source, DSTOR is the inclusive or, and
DSRXOR the exclusive or. DSTCAM and's the one's-complement
of the source operation into the destination. DSTCAM is the
inverse of DSTOR: where DSTOR would turn on pixels, DSTCAM
will turn them off.

The pattern field is required for SRCP AT, SRCAND, SRCOR,
and SRCXOR operations only. It points to an array of 16 X 16
pixels arranged as 16 consecutive shorts. As with source and des­
tination rectangles, the LSB of the first short in the vector
corresponds to the upper-left-hand pixel of the pattern. Patterns
are automatically aligned with the destination.

Since WIOCRASTOP is really an output operation, the process is
blocked until the window is exposed. In addition, the raster
operation waits for previously-output characters to appear on the
screen before commencing.

ioctl(wd,WIOCLFONT,&ufdata)
ioctl(wd, WI OCUFO NT ,&ufdata)
ioctl(wd,WIOCGFONT,&itable) , .

WIOCLFONT and WIOCUFONT control the loading and unload­
ing of fonts for a particular window. Each window has 8 font
"slots" which are addressable with ANSI X3.64 character strings
(SGR, SI, SO, SS2, etc; see escape(7) for details of these
sequences). Two calls support installable fonts, SYSL_LFONT and
SYSL_UFONT; see syslocal(2) for details. The WIOCLFONT
call loads a font into a slot, automatically unloading any font

- 7 -

WINDOW(7) (AT&T UNIX PC only) WINDOW(7)

previously loaded there. WIOCUFONT explicitly unloads a font
from a slot. The WIOCGFONT call gets the inode number of
fonts currently loaded. The entry in itable [] is NULL (0) for unas­
signed slots, including slot 0 if no font has been explicitly assigned
there. Loaded fonts tie up system resources (although the kernel
will automatically ((share" identical fonts across multiple win­
dows) so it is good practice to unload fonts when they are no
longer needed. Note that the font in slot #0 is known as the
((system font." and is called upon to produce window text mes­
sages and SLK labels. If the font file is malformed, a -1 is
returned from the £octl and errno is set to EBFONT.

The ufdata structure is very simple:

#define FNSIZE 60 1* font name size * /

struct uf data 1* user font data * /
{

short uCslot; /* slot number * /
char uCname[FNSIZEJ; 1* font name (file name) * /

};
uf_slot is the font slot number (0-7) and uf_name is the path
name where a suitably-formatted font file can be found. See
font(4) for more information about fonts.

The £table structure is of the form:

int itable[8]

Each element of the array contains the inode number of the font
in the equivalent slot number. Unassigned slots are NULL (0).

When a new font is loaded, the kernel checks to see if it contains
any character more extreme than the one reflected in the current
uw_hs, uw_vs, and uw_b aselt"ne variables. If it does, the three
values are updated. When a font is unloaded, the kernel com­
putes new values for uw_hs, uw_vs, and uw_baselt"ne.

ioctl(wd,WIOCPGRP,dummy)
This £octl sets the window's controlling process group to that of
the process issuing the ioctl. It is especially useful in those cases
where the parent has opened a new window which it wishes to
give to the child. If the child does a setpgrp(2) call, it will be iso­
lated from the parent's process group. If the child does not issue
this ioctl, the signals generated by interacting with the child (e.g.
SIGINT) will go to the process group that opened the window (the
parent), but the child will not see these signals because it has done
the setpgrp (2) call.

The recommended sequence is:

open the window
forkO

CHILD:
setpgrpO
dups and closes for stdin, out, err
ioctl(O,WIOCPRGP)

- 8-

WINDOW (7) (AT&T UNIX PC only) WINDOW(7)

exec

PARENT:
waitO, etc.

ioctl (wd,WIOCGCURR,dummy)
This z"octl returns the window number of the currently selected
window. If no window is selected, ENXIO is returned.

ioctl(wd,WIOCGPREV,dummy)
This ,"octl returns the window number of the previously selected
window. If no window was selected, ENXIO is returned.

ioctl(wd,WIOCSCR,num)

FILES

This z"octl sets the delay value, in seconds, before the screen will
dim. The delay takes effect from the last key hit on the keyboard,
or the last time the mouse is touched. If num is 0, the screen save
feature is disabled. Any positive integer will set the delay to that
value. A negative value will dim the screen without changing the
value of the delay. This call always returns the previous value of
the delay.

/dev /window*
/usr /include/sys/window.h

SEE ALSO

BUGS

termio(7), font(4), tam(3T), wrastop(3T), syslocal(2)

The VCWlDTH of uw -uflags structure is inoperative on the UNIX
PC.

- 9 -

Installing the AT&T UNIX® PC
Curses/Terminfo Programmer's Package

The Curses/Terminfo Programmer's Package is included with
Version 3.5 of the AT&T UNIX PC UNIX Utilities and runs on the
UNIX PC Version 3.5 system software. This package complies
with the UNIX System V Operating System V Interface Definition
(SVID) and therefore allows developers to take applications from
the AT&T 382 computer and port, without making any code
changes, to the UNIX PC. As in previous versions of UNIX PC
software, the curses library cannot be used with TAM or shared
libraries.

This package consists of one disk labeled "Curses/Terminfo
Programmer's Disk."

To install the disk:

1. From the Office of install, open 1 Administration I.

You see the Administration menu.

2. Select 1 Software Setup 1 and press <Enter>.

You see the Software window.

3. Select 1 Install Software from Floppy 1 and press <Enter>.

4. Insert the disk and press <Enter>.

You see a window asking you to insert the floppy disk.

Shortly there after you see the message: Install in progress
on your screen.

1

5. You are notified when to remove the floppy disk and when
the installation is complete.

6. When the installation is complete, close the Software
windows.

2

Note: If you remove this package, the previous version of
curses will be restored.

Appendix

Curses/Term info Programmer's Guide

PAGE

Introduction•... '. • . • . . . • . . . • . . • 1

Overview... 3

What is curses? •. . . . • • . . . • • • 3

What Is terminfo?••. . .•.•.. .. . 5

How curses and terminfo Work Together...•. 7

Other Components of the Terminal Information

Utilities.•. . . .•. .••.•. .. . 8

Working with curses Routines . . • . • . • . 9

What Every curses Program Needs . 9

Compiling a curses Program••.....•............. 14

Running a curses Program . • • • • . 14

More about initscrO and Lines and Columns. • 15

More about refreshO and Windows. •.. ..•.•. ..• 15

Getting Simple Output and Input • . . . • 22

Controlling Output and Input ...•...•...............•.•. 41

Building Windows and Pads. • • • 53

Using Advanced curses Features. • • • . . . • 64

Working with terminfo Routines. • • • . . . 70

What Every terminfo Program Needs...• 71

Compiling and Running a terminfo Program 72

An Example terminfo Program ..•...••.•................ 72

Working with the terminfo Database. • • 77

Writing Terminal Descriptions.•. 77

Comparing or Printing term info Descriptions . • • . . . 90

Converting a termcap Description to a terminfo

Description. • . . . • • • • • • 91

curses Program Examples 92

The editor Program. 92

The highlight Program 100

The scatter Program .. 102

The show Program 104

The two Program. • 106

The window Program .. 110

Appendix

CursesjTerminfo
Programmer' 5

Guide

Introduction

Screen management programs are a common component of many
commercial computer applications. These programs handle input
and output at a video display terminal. A screen program might
move a cursor, print a menu, divide a terminal screen into
windows, or draw a display on the screen to help users enter and
retrieve information from a database.

This tutorial explains how to use the Terminal Information
Utilities package, commonly called curses/terminfo, to write
screen management programs on a UNIX system. This package
includes a library of C routines, a database, and a set of UNIX
system support tools. To start you writing screen management
programs as soon as possible, the tutorial does not attempt to
cover every part of the package. For instance, it covers only the
most frequently used routines and then points you to curses(3X)
and terminfo(4) in the Programmer's Reference Manual for more
information.

1

Appendix: Curses/Terminfo Programmer's Guide

Keep the manual close at hand; you'll find it invaluable when you
want to know more about one of these routines or about other
routines not discussed here.

Because the routines are compiled C functions, you should be
familiar with the C programming language before using
curses/terminfo. You should also be familiar with the UNIX
systemiC language standard I/O package (see" System Calls and
Subroutines" and" Input/Output" in Chapter 2 and stdio(3S».
With that knowledge and an appreciation for the UNIX
philosophy of building on the work of others, you can design
screen management programs for many purposes.

This chapter has five sections:

2

• Overview

This section briefly describes curses, terminfo, and the other
components of the Terminal Information Utilities package.

• Working with curses Routines

This section describes the basic routines making up the
curses(3X) lib~ary. It covers the routines for writing to a
screen, reading from a screen, and building windows. It also
covers routines for more advanced screen management
programs that draw line graphics, use a terminal's soft labels,
and work with more than one terminal at the same time.
Many examples are included to show the effect of using these
routines.

• Working with terminfo Routines

This section describes the routines in the curses library that
deal directly with the terminfo database to handle certain
terminal capabilities, such as programming function keys.

Appendix: Curses/Terminfo Programmer's Guide

• Working with the terminfo Database

This section describes the terminfo database, related support
tools, and their relationship to the curses library.

• curses Program Examples

This section includes six programs that illustrate uses of curses
routines.

Overview

What is curses?

curses(3X) is the library of routines that you use to write screen
management programs on the UNIX system. The routines are C
functions and macros; many of them resemble routines in the
standard C library. For example, there's a routine printwO that
behaves much like printf(3S) and another routine getchO that
behaves like getc(3S). The automatic teller program at your bank
might use printwO to print its menus and getchO to accept your
requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi(l) might also use
these and other curses routines.

The curses routines are usually located in jusrjlibjlibcurses.a.
To compile a program using these routines, you must use the cc(l)
command and include -1 curses on the command line so that the
link editor can locate and load them:

cc file.c -lcurses -0 file

The name curses comes from the cursor optimization that this
library of routines provides. Cursor optimization minimizes the
amount a cursor has to move around a screen to update it.

3

Appendix: Curses/Terminfo Programmer's Guide

For example, if you designed a screen editor program with curses
routines and edited the sentence

curses/terminfo is a great package for creating screens.

to read

curses/terminfo is the best package for creating screens.

the program would output only the be s t in place of a
g rea t. The other characters would be preserved. Because the
amount of data transmitted-the output-is minimized, cursor
optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner
appropriate for the terminal on which a curses program is run.
This means that the curses library can do whatever is required to
update many different terminal types. It searches the terminfo
database (described below) to find the correct description for a
terminal.

How does cursor optimization help you and those who use your
programs? First, it saves you time in describing in a program how
you want to update screens. Second, it saves a user's time when
the screen is updated. Third, it reduces the load on your UNIX
system's communication lines when the updating takes place.
Fourth, you don't have to worry about the myriad of terminals on
which your program might be r~n.

Here's a simple curses program. It uses some of the basic curses
routines to move a cursor to the middle of a terminal screen and
print the character string BullsEye. Each of these routines is
described in the following section " Working with curses
Routines" in this chapter. For now, just look at their names and
you will get an idea of what each of them does:

4

Appendix: Curses/Terminfo Programmer's Guide

#include <curses.h>

main()
{

initscr();

move(LINES/2 - I, COLS/2 - 4);
addstr(" Bulls");
refresh () ;
addstr(" Eye");
refresh();
endwin() ;

Figure -1. A Simple Curses Program

What Is terminfo?

terminfo refers to both of the following:

• It is a group of routines within the curses library that handles
certain terminal capabilities. You can use these routines to
program function keys, if your terminal has programmable
keys, or write filters, for example. Shell programmers, as well
as C programmers, can use the terminfo routines in their
programs.

• It is a database containing the descriptions of many terminals
that can be used with curses programs. These descriptions
specify the capabilities of a terminal and the way it performs
various operations-for example, how many lines and
columns it has and how its control characters are interpreted.

5

Appendix: Curses/Terminfo Programmer's Guide

Each terminal description in the database is a separate,
compiled file. You use the source code that terminfo(4)
describes to create these files and the command tic(lM) to
compile them.

The compiled files are normally located in the directories
/usr/lib/terminfo/? These directories have single character
names, each of which is the first character in the name of a
terminal. For example, an entry for the AT&T Teletype 5425
is normally located in the file /usr/lib/terminfo/a/att5425.

Here's a simple shell script that uses the terminfo database.

Clear the screen and show the 0,0 position.

tput clear
tput cup a a
echo" <- this is a 0"

or tput home

Show the 5,10 position.

tput cup 5 10
echo "<- this is 5 10"

Figure -2. A Shell Script Using terminfo Routines

How curses and term info Work Together

A screen management program with curses routines refers to the
terminfo database at run time to obtain the information it needs
about the terminal being used-what we'll call the current
terminal from here on.

6

Appendix: Curses/Terminfo Programmer's Guide

For example, suppose you are using an AT&T Teletype 5425
terminal to run the simple curses program shown in Figure 1. To
execute properly, the program needs to know how many lines and
columns the terminal screen has to print the BullsEye in the
middle of it. The description of the AT&T Teletype 5425 in the
database has this information. All the curses program needs to
know before it goes looking for the information is the name of
your terminal. You tell the program the name by putting it in the
environment variable $TERM when you log in or by setting and
exporting $TERM in your .profile file (see profile(4)). Knowing
$TERM, a curses program run on the current terminal can search
the terminfo database to find the correct terminal description.

For example, assume that the following example lines are in a
.profile:

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports
it. (See profile(4) in the Programmer's Reference Manual.) The
third line of the example tells the UNIX system to initialize the
current terminal. That is, it makes sure that the terminal is set up
according to its description in the terminfo database. (The order
of these lines is important. $TERM must be defined and exported
first, so that when tput is called the proper initialization for the
current terminal takes place.) If you had these lines in your
. profile and you ran a curses program, the program would get the
information that it needs about your terminal from the file

/usr/lib/terminfo/a/att5425, which provides a match for
$TERM.

7

Appendix: Curses/Terminfo Programmer's Guide

Other Components of the Terminal Information Utilities

We said earlier that the Terminal Information Utilities is
commonly referred to as curses/terminfo. The package, however,
has other components. We've mentioned some of them, for
instance tic(lM). Here's a complete list of the components
discussed in this tutorial:

captoinfo(1 M)

curses(3X)

infocmp(lM)

tabs(l)

terminfo(4)

tic(lM)

a tool for converting terminal
descriptions developed on earlier
releases of the UNIX system to
terminfo descriptions

a tool for printing and comparing
compiled terminal descriptions

a tool for setting non-standard tab
stops

a tool for compiling terminal
descriptions for the terminfo database

tput(l) a tool for initializing the tab stops on a
terminal and for outputting the value
of a terminal capability

We also refer to profile(4), scr_dump(4), term(4), and term(5).
For more information about any of these components, see the
Programmer's Reference Manual and the User's Reference Manual.

8

Appendix: Curses/Terminfo Programmer's Guide

Working with curses Routines

This section describes the basic routines for creating interactive
screen management programs. It begins by describing the
routines and other program components that every program
needs to work properly. Then it tells you how to compile and run
a program. Finally, it describes the most frequently used
routines that

• write output to and read input from a terminal screen

• control the data output and input - for example, to print
output in bold type or prevent it from echoing (printing back
on a screen)

• manipulate multiple screen images (windows)

• draw simple graphics

• manipulate soft labels on a terminal screen

• send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple
example programs as the routines are introduced. We also refer to
a group of larger examples located in the section " curses Program
Examples" in this chapter. These larger examples are more
challenging; they sometimes make use of routines not discussed
here. Keep the curses(3X) manual page handy.

What Every curses Program Needs

All programs need to include the header file <curses.h> and call
the routines initscrO, refreshO or similar related routines, and
endwinO·

9

Appendix: Curses/Terminfo Programmer's Guide

The Header File <curses.h>

The header file <curses.h> defines several global variables and
data structures and defines several routines as macros.

To begin, let's consider the variables and data structures defined.
<curses .. h> defines all the parameters used by routines. It also
defines the integer variables LINES and COLS; when a program
is run on a particular terminal, these variables are assigned the
vertical and horizontal dimensions of the terminal screen,
respectively, by the routine initscrO described below. The header
file defines the constants OK and ERR, too. Most routines have
return values; the OK value is returned if a routine is properly
completed, and the ERR value if some error occurs.

Note: LINES and COLS are external (global) variables
that represent the size of a terminal screen. Two similar
variables, $LINES and $COLUMNS, may be set in a
user's shell environment; a curses program uses the
environment variables to determine the size of a screen.
Whenever we refer to the environment variables in this
chapter, we will use the $ to distinguish them from the C
declarations in the <curses.h> header file.

For more information about these variables, see the following
sections" The Routines initscr(), refreshO, and endwinO" and
" More about initscrO and Lines and Columns."

N ow let's consider the macro definitions. <curses.h> defines
many curses routines as macros that call other macros or curses
routines. For instance, the simple routine refreshO is a macro.

10

Appendix: Curses/Terminfo Programmer's Guide

The line

#define refresh() wrefresh(stdscr)

shows when refresh is called, it is expanded to call the routine
wrefreshO. The latter routine in turn calls the two routines
wnoutrefreshO and doupdateO. Many other routines also group
two or three routines together to achieve a particular result.

Caution: Macro expansion in curses programs may cause
problems with certain sophisticated C features, such as the
use of automatic incrementing variables.

One final point about <curses.h>: it automatically includes
<stdio.h> and the <termio.h> tty driver interface file. Including
either file again in a program is harmless but wasteful.

The Routines initscr(}, refresh(}, endwin(}

The routines initscrO, refreshO, and endwinO initialize a terminal
screen to an "in state," update the contents of the screen, and
restore the terminal to an " out of state," respectively. Use the
simple program that we introduced earlier to learn about each of
these routines.

11

Appendix: Curses/Terminfo Programmer's Guide

#include <curses.h>

main()
{

initscr(); /* initialize terminal settings and <curses.h>
data structures and variables */

move(LINES/2 - 1, COLS/2 - 4);
addstr (" Bulls") ;
refresh(); /* send output to (update) terminal screen */
addstr (" Eye") ;
refresh(); /* send more output to terminal screen */
endwin(); /* restore all terminal settings */

Figure -3. The Purposes of initscrO, refreshO, and endwinO in a
Program

A curses program usually starts by calling initscrO; the program
should call initscrO only once. Using the environment variable
$TERM as the section " How curses and terminfo Work
Together" describes, this routine determines what terminal is
being used. It then initializes all the declared data structures and
other variables from <curses.h>. For example, initscrO wOllld
initialize LINES and COLS for the sample program on whatever
terminal it was run. If the Teletype 5425 were used, this routine
would initialize LINES to 24 and COLS to 80. Finally, this
routine writes error messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled
by routines like moveO and addstrO in the sample program. For
example,

move(LINES/2 - 1, COLS/2 - 4);

12

Appendix: Curses/Terminfo Programmer's Guide

says to move the cursor to the left of the middle of the screen.
Then the line

addstr("Bulls");

says to write the character string Bull s. For example, if the
Teletype 5425 were used, these routines would position the cursor
and write the character string at (11,36).

Note: All curses routines that move the cursor move it
from its home position in the upper left corner of a screen.
The (LINES,COLS) coordinate at this position is (0,0) not
(1,1). Notice that the vertical coordinate is given first and
the horizontal second, which is the opposite of the more
common 'x,y' order of screen (or graph) coordinates. The
-1 in the sample program takes the (0,0) position into
account to place the cursor on the center line of the
terminal screen.

Routines like moveO and addstrO do not actually change a
physical terminal screen when they are called. The screen is
updated only when refreshO is called. Before this, an internal
representation of the screen called a window is updated.

This is a very important concept, which we discuss below under
" More about refreshO and Windows."

Finally, a program ends by calling endwinO. This routine
restores all terminal settings and positions the cursor at the lower
left corner of the screen.

13

Appendix: Curses/Terminfo Programmer's Guide

Compiling a curses Program

You compile programs that include curses routines as C language
programs using the cc(l) command (documented in the
Programmer's Reference Manual), which invokes the C compiler
(see Chapter 2 in this guide for details).

The routines are usually stored in the library JusrJlibJlibcurses.a.
To direct the link editor to search this library, you must use the -1
option with the cc command.

The general command line for compiling a curses program
follows:

cc file.c -I curses -0 file

file.c is the name of the source program; and file is the executable
object module.

14

Appendix: Curses/Terminfo Programmer's Guide

Running a curses Program

curses programs count on certain information being in a user's
environment to run properly. Specifically, users of a program
should usually include the following three lines in their .profile
files:

TERM=current terminal type
export TERM

tput init

For an explanation of these lines, see the section" How curses
and terminfo Work Together" in this chapter. Users of a curses
program could also define the environment variables $LINES,
$COLUMNS, and $TERMINFO in their .profile files. However,
unlike $TERM, these variables do not have to be defined.

If a curses program does not run as expected, you might want to
debug it with sdb(I), which is documented in the Programmer's
Reference Manual). When using sdb, you have to keep a few
points in mind. First, a curses program is interactive and always
has knowledge of where the cursor is located. An interactive
debugger like sdb, however, may cause changes to the contents of
the screen of which the curses program is not aware.

Second, a curses program outputs to a window until refreshO or a
similar routine is called. Because output from the program may be
delayed, debugging the output for consistency may be difficult.

Third, setting break points on routines that are macros, such as
refreshO, does not work. You have to use the routines defined for
these macros, instead; for example, you have to use wrefreshO
instead of refreshO. See the above section, " The Header File
<curses.h> ," for more information about macros.

15

Appendix: Curses/Terminfo Programmer's Guide

More about initscrO and Lines and Columns

After determining a terminal's screen dimensions, initscrO sets the
variables LINES and COLS. These variables are set from the
terminfo variables lines and columns. These, in turn, are set
from the values in the terminfo database, unless these values are
overridden by the values of the environment $LINES and
$COLUMNS.

More about refreshO and Windows

As mentioned above, routines do not update a terminal until
refreshO is called. Instead, they write to an internal
representation of the screen called a window. When refreshO is
called, all the accumulated output is sent from the window to the
current terminal screen.

A window acts a lot like a buffer does when you use a UNIX
system editor. When you invoke vi(l), for instance, to edit a file,
the changes you make to the contents of the file are reflected in
the buffer. The changes become part of the permanent file only
when you use the w or ZZ command. Similarly, when you
invoke a screen program made up of curses routines, they change
the contents of a window. The changes become part of the
current terminal screen only when refreshO is called.

16

Appendix: Curses/Terminfo Programmer's Guide

<curses.h> supplies a default window named stdscr (standard
screen), which is the size of the current terminal's screen, for all
programs using routines. The header file defines stdscr to be of
the type WINDOW*, a pointer to a C structure which you might
think of as a two-dimensional array of characters representing a
terminal screen. The program always keeps track of what is on
the physical screen, as well as what is in stdscr. When refreshO
is called, it compares the two screen images and sends a stream of
characters to the terminal that make the current screen look like
stdscr. A curses program considers many different ways to do
this, taking into account the various capabilities of the terminal
and similarities between what is on the screen and what is on the
window. It optimizes output by printing as few characters as is
possible. Figure 4 illustrates what happens when you execute the
sample curses program that prints BullsEye at the center of a
terminal screen (see Figure 1). Notice in the figure that the
terminal screen retains whatever garbage is on it until the first
refreshO is called. This refreshO clears the screen and updates it
with the current contents of stdscr.

17

Appendix: Curses/Terminfo Programmer's Guide

initscr()

move (LINES/2-1,
COLS/1-4)

[2, 3]

addstr("Bulls")

refresh()

stdscr

D

stdscr

D

stdscr

Bulls D

stdscr

Bulls D

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

physical screen

Bulls D

Figure -4. The Relationship between stdscr and a Terminal
Screen (Sheet 1 of 2)

18

Appendix: Curses/Terminfo Programmer's Guide

stdscr physical screen
addstr("Eye")

BullsEye D Bulls D

stdscr physical screen

refresh()
BullsEye D BullsEye D

stdscr physical screen
endwin()

BullsEye D BullsEye

D

Figure -4. The Relationship Between stdscr and a Terminal
Screen (Sheet 2 of 2)

19

Appendix: Curses/Terminfo Programmer's Guide

You can create other windows and use them instead of stdscr.
Windows are useful for maintaining several different screen
images. For example, many data entry and retrieval applications
use two windows: one to control input and output and one to
print error messages that don't mess up the other window.

It's possible to subdivide a screen into many windows, refreshing
each one of them as desired. When windows overlap, the
contents of the current screen show the most recently refreshed
window. It's also possible to create a window within a window;
the smaller window is called a subwindow. Assume that you are
designing an application that uses forms, for example, an expense
voucher, as a user interface. You could use subwindows to
control access to certain fields on the form.

Some curses routines are designed to work with a special type of
window called a pad. A pad is a window whose size is not
restricted by the size of a screen or associated with a particular
part of a screen. You can use a pad when you have a particularly
large window or only need part of the window on the screen at
anyone time. For example, you might use a pad for an
application with a spread sheet.

Figure 5 represents what a pad, a subwindow, and some other
windows could look like in comparison to a terminal screen.

20

Appendix: Curses/Terminfo Programmer's Guide

terminal screen

window window

0 pad

pad I SUbPadl
SUb£ndow

window I

Figure -5. Multiple Windows and Pads Mapped to a Terminal
Screen

The section" Building Windows and Pads" in this chapter
describes the routines you use to create and use them. If you'd
like to see a curses program with windows now, you can turn to
the window program under the section " curses Program
Examples" in this chapter.

21

Appendix: Curses/Terminfo Programmer's Guide

Getting Simple Output and Input

Output

The routines that provides for writing to stdscr are similar to
those provided by the stdio(3S) library for writing to a file. They
let you

• write a character at a time - addchO

• write a string - addstrO

• format a string from a variety of input arguments - printwO

• move a cursor or move a cursor and print character(s) -
moveO, mvaddchO, mvaddstrO, mvprintwO

• clear a screen or a part of it - clearO, eraseO, clrtoeolO,
clrtobotO

Following are descriptions and examples of these routines.

22

Caution: The curses library provides its own set of
output and input functions. You should not use other I/0
routines or system calls, like read(2) and write(2), in a
curses program. They may cause undesirable results
when you run the program.

Appendix: Curses/Terminfo Programmer's Guide

addchO

SYNOPSIS

#indude <curses.h>

int addch(ch)
chtype Chi

NOTES

• addchO writes a single character to stdscr.

• The character is of the type chtype, which is defined in
<curses.h>. chtype contains data and attributes (see" Output
Attributes" in this chapter for information about attributes).

• When working with variables of this type, make sure you
declare them as chtype and not as the basic type (for example,
short) that chtype is declared to be in <curses.h>. This will
ensure future compatibility.

• addchO does some translations. For example, it converts

1. the <NL> character to a clear to end of line and a move
to the next line

2. the tab character to an appropriate number of blanks

3. other control characters to their AX notation

• addchO normally returns OK. The only time addchO returns
ERR is after adding a character to the lower right-hand corner
of a window that does not scroll.

• addchO is a macro.

23

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

main ()
{

initscr();
addch('a');
refresh() ;
endwin () ;

The output from this program will appear as follows:

a

$0

Also see the show program under" curses Example Programs" in
this chapter.

24

Appendix: Curses/Terminfo Programmer's Guide

addstrO

SYNOPSIS

#include <curses.h>

int addstr(str)
char *str;

NOTES

• addstrO writes a string of characters to stdscr.

• addstrO calls addchO to write each character.

• addstrO follows the same translation rules as addchO.

• addstrO returns OK on success and ERR on error.

• addstrO is a macro.
EXAMPLE

Recall the sample program that prints the character string
BullsEye. See Figures I, 2, and 4.

25

Appendix: Curses/Terminfo Programmer's Guide

printwO

SYNOPSIS

#include <curses.h>

int printw(fmt [,arg ...])
char *fmt

NOTES

• printwO handles formatted printing on stdscr.

• Like printf, printwO takes a format string and a variable
number of arguments.

• Like addstrO, printwO calls addchO to write the string.

• printwO returns OK on success and ERR on error.

26

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

main()

char* title

int no = 0;

"Not specified";

1* Missing code. *1

initscr();

1* Missing code. *1

printw("%s is not in stock.\n", title);

printw("Please ask the cashier to order %d for you.\n",

no) ;

refresh () ;

endwin() ;

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$0

27

Appendix: Curses/Terminfo Programmer's Guide

moveO

SYNOPSIS

#inc1ude <curses.h>

int move(y, x);
int y, x;

NOTES

• moveO positions the cursor for stdscr at the given row y and
the given column x.

• Notice that moveO takes the y coordinate before the x
coordinate. The upper left-hand coordinates for stdscr are
(0,0), the lower right-hand (LINES - I, COLS - 1). See the
section" The Routines initscrO, refreshO, and endwinO" for
more information.

• moveO may be combined with the write functions to form

1. mvaddch(y, x, ch), which moves to a given position and
prints a character

2. mvaddstr(y, x, str), which moves to a given position
and prints a string of characters

3. mvprintw(y, x, fmt [,arg ...]),
which moves to a given position and prints a formatted

string.

• moveO returns OK on success and ERR on error. Trying to
move to a screen position of less than (0,0) or more than
(LINES - I, COLS - 1) causes an error.

• moveO is a macro.

28

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

main()

initscr() ;

addstr("Cursor should be here --> if move() works.");

printw("\n\n\nPress <CR> to end test. H);

move(O,25);

refresh() ;

getch();

endwin() ;

1* Gets <CR>; discussed below. *1

Here's the output generated by running this program:

Cursor should be here -->Oif move() works.

Press <CR> to end test.

After you press <CR> I the screen looks like this:

Cursor should be here -->

Press <CR> to end test.
$0

See the scatter program under" curses Program Examples" in this
chapter for another example of using moveO.

29

Appendix: Curses/Terminfo Programmer's Guide

clearO and eraseO

SYNOPSIS

#include <curses.h>

int clearO
int eras eO

NOTES

• Both routines change stdscr to all blanks.

• clearO also assumes that the screen may have garbage that it
doesn't know about; this routine first calls eras eO and then
clearokO which clears the physical screen completely on the
next call to refreshO for stdscr. See the curses(3X) manual
page for more information about clearokO.

• initscrO automatically calls clearO.

• clearO always returns OK; eraseO returns no useful value.

• Both routines are macros.

30

Appendix: Curses/Terminfo Programmer's Guide

c1rtoeolO and c1rtobotO

SYNOPSIS

#inc1ude <curses.h>

int c1rtoeolO
int c1rtobotO

NOTES

• c1rtoeolO changes the remainder of a line to all blanks.

• c1rtobotO changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

31

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

The following sample program uses clrtobotO.

#include <curses.h>

maine)

initscr();

addstr("Press <CR> to delete from here to the end \

of the line and on.");

addstr("\nDelete this too.\nAnd this.");

move(O,30) ;

refresh();

getch () ;

clrtobot() ;

refresh() ;

endwin();

Here's the output generated by running this program:

Press <CR> to delete from hereOto the end of the line and on.
Delete this too.
And this.

Notice the two calls to refreshO: one to send the full screen of text
to a terminal, the other to clear from the position indicated to the
bottom of a screen.

32

Appendix: Curses/Terminfo Programmer's Guide

Here's what the screen looks like when you press <CR>:

$0

See the show and two programs under" curses Example
Programs" for examples of uses for clrtoeolO.

Input

routines for reading from the current terminal are similar to those
provided by the stdio(3S) library for reading from a file. They let
you

• read a character at a time - getchO

• read a <NL>-terminated string - getstrO

• parse input, converting and assigning selected data to an
argument list - scanwO

The primary routine is getchO, which processes a single input
character and then returns that character. This routine is like the
C library routine getcharO(3S) except that it makes several
terminal- or system-dependent options available that are not
possible with getcharO. For example, you can use getchO with
the curses routine keypadO, which allows a program to interpret
extra keys on a user's terminal, such as arrow keys, function keys,
and other special keys that transmit escape sequences, and treat
them as just another key. See the descriptions of getchO and
keypadO on the curses(3X) manual page for more information
about keypadO.

33

Appendix: Curses/Terminfo Programmer's Guide

getchO SYNOPSIS

#include <curses.h>

int getchO

NOTES

• getchO reads a single character from the current terminal.

• getchO returns the value of the character or ERR on 'end of
file,' receipt of signals, or non-blocking read with no input.

• getchO is a macro.

• See the discussions about echoO, noechoO, cbreakO,
nocbreakO, rawO, norawO, halfdelayO, nodelayO, and
keypadO below and in curses(3X).

34

Appendix: Curses/Terminfo Programmer's Guide

The following pages describe and give examples of the basic
routines for getting input in a screen program.

EXAMPLE

#include <curses.h>

main()

int ch;

initscr() ;

cbreak () ;

addstr("Press any character: ");

refresh () ;

ch = getch();

printw("\n\n\nThe character entered was a '%c' .\n",

ch) ;

refresh () ;

endwin();

The output from this program follows. The first refreshO sends
the addstrO character string from stdscr to the terminal:

35

Appendix: Curses/Terminfo Programmer's Guide

Then assume that a w is typed at the keyboard. getchO accepts
the character and assigns it to ch. Finally, the second refreshO is
called and the screen appears as follows:

Press any character: w

The character entered was a 'w'.

$0

For another example of getchO, see the show program under
" c~rses Example Programs" in this chapter.

36

Appendix: Curses/Terminfo Programmer's Guide

getstrO

SYNOPSIS

#include <curses.h>

int getstr(str)
char *stri

NOTES

• getstrO reads characters and stores them in a buffer until a
<CR>, <NL>, or <ENTER> is received from stdscr. getstrO
does not check for buffer overflow.

• The characters read and stored are in a character string.

• getstrO is a macro; it calls getchO to read each character.

• getstrO returns ERR if getchO returns ERR to it. Otherwise it
returns OK.

• See the discussions about echoO, noechoO, cbreakO,
nocbreakO, rawO, norawO, halfdelayO, nodelayO, and
keypadO below and in curses(3X).

37

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

main()

char str[256];

initscr() ;

cbreak() ;

addstr("Enter a character string terminated by <CR>;\n\n");

refresh () ;

getstr (str) ;

printw("\n\n\nThe string entered was \n'%s'\n", str);

refresh () ;

endwin () ;

Assume you entered the string 'I enjoy learning about the UNIX
system.' The final screen (after entering <CR» would appear as
follows:

Enter a character string terminated by <CR>:

I enjoy learning about the UNIX system.

The string entered was
'I enjoy learning about the UNIX system.'

$0

38

Appendix: Curses/Terminfo Programmer's Guide

scanwO

SYNOPSIS

#include <curses.h>

int scanw(fmt [, arg ...])
char *fmt;

NOTES

• scanwO calls getstrO and parses an input line.

• Like scanf(3S), scanwO uses a format string to convert and
assign to a variable number of arguments.

• scanwO returns the same values as scanfO.

• See scanf(3S) for more information.

39

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

maine)

char string[100];

float number;

initscr();

cbreak () ;

echo () ;

1* Explained later in the *1

1* section "Input Options" *1

addstr("Enter a number and a string separated by \

a comma: ");

refresh () ;

scanw("%f,%s",&number,string);

clear () ;

printw("The string was \"%s\" and the number was %f.",

string,number);

refresh() ;

endwin() ;

Notice the two calls to refreshO. The first call updates the screen
with the character string passed to addstrO, the second with the
string returned from scanwO. Also notice the call to dearO.
Assume you entered the following when prompted: 2,twin. After
running this program, your terminal screen would appear, as
follows:

The string was "twin" and the number was 2.000000.

$0

40

Appendix: Curses/Terminfo Programmer's Guide

Controlling Output and Input

Output Attributes

When we talked about addchO, we said that it writes a single
character of the type chtype to stdscr. chtype has two parts: a
part with information about the character itself and another part
with information about a set of attributes associated with the
character. The attributes allow a character to be printed in reverse
video, bold, underlined, and so on.

stdscr always has a set of current attributes that it associates with
each character as it is written. However, using the routine
attrsetO and related curses routines described below, you can
change the current attributes. Below is a list of the attributes and
what they mean:

• A_BLINK - blinking

• A_BOLD - extra bright or bold

• A_DIM - half bright

• A_REVERSE - reverse video

• A_STANDOUT - a terminal's best highlighting mode

• A_UNDERLINE - underlining

• A_AL TCHARSET - alternate character set (see the section
"Drawing Lines and Other Graphics" in this chapter)

To use these attributes, you must pass them as arguments to
attr~etO and related routines; they can also be ORed with the
bitwise OR (I) to addchO.

41

Appendix: Curses/Terminfo Programmer's Guide

Note: Not all terminals are capable of displaying all
attributes. If a particular terminal cannot display a
requested attribute, a curses program attempts to find a
substitute attribute. If none is possible, the attribute is
ignored.

Let's consider a use of one of these attributes. To display a word
in bold, you would use the following code:

printw("A word in H);
attrset(A_BOLD);
printw("boldface");
attrset(O);
printw(" really stands out.\n");

refresh();

Attributes can be turned on singly, such as attrset(A_BOLD) in
the example, or in combination. To turn on blinking bold text, for
example, you would use attrset(A_BLINK I A_BOLD). Individual
attributes can be turned on and off with the curses routines
attronO and attroffO without affecting other attributes. attrset(O)
turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to
make text attract the attention of a user. The particular hardware
attribute used for standout is the most visually pleasing attribute a
terminal has. Standout is typically implemented as reverse video
or bold. Many programs don't really need a specific attribute,
such as bold or reverse video, but instead just need to highlight
some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions, standoutO and
standendO can be used to turn on and off this attribute.
standendO, in fact, turns of all attributes.

42

Appendix: Curses/Terminfo Programmer's Guide

In addition to the attributes listed above, there are two bit masks
called A_CHARTEXT and A_ATTRIBUTES. You can use these bit
masks with the curses function inchO and the C logical AND (&)
operator to extract the character or attributes of a position on a
terminal screen. See the discussion of inchO on the curses(3X)
manual page.

Following are descriptions of attrsetO and the other curses
routines that you can use to manipulate attributes.

43

Appendix: Curses/Terminfo Programmer's Guide

attronO, attrsetO, and attroffO

SYNOPSIS

#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

to attronO turns on the requested attribute attrs in addition to
any that are currently on. attrs is of the type chtype and is
defined in <curses.h>. '

to attrsetO turns on the requested attributes attrs instead of any
that are currently turned on.

• attroffO turns off the requested attributes attrs if they are on.

• The attributes may be combined using the bitwise OR (I).

• All return OK.
EXAMPLE

See the highlight program under" curses Example Programs" in
this chapter.

44

Appendix: Curses/Terminfo Programmer's Guide

standoutO and standendO

SYNOPSIS

#include <curses.h>

int standoutO
int standendO

NOTES

• standoutO turns on the preferred highlighting attribute,
A_STANDOUT, for the current terminal. This routine is
equivalent to attron(A_STANDOUT).

• standendO turns off all attributes. This routine is equivalent
to attrset(O).

• Both always return OK.
EXAMPLE

See the highlight program under" curses Example Programs" in
this chapter.

45

Appendix: Curses/Terminfo Programmer's Guide

Bells, Whistles, and Flashing Lights

Occasionally, you may want to get a user's attention. Two
routines were designed to help you do this. They let you ring the
terminal's chimes and flash its screen.

flashO flashes the screen if possible, and otherwise rings the bell.
Flashing the screen is intended as a bell replacement, and is
particularly useful if the bell bothers someone within ear shot of
the user. The routine beepO can be called when a real beep is
desired. (If for some reason the terminal is unable to beep, but
able to flash, a call to beepO will flash the screen.)

beepO and flashO

SYNOPSIS

#include <curses.h>

int flashO
int beepO

NOTES

• flashO tries to flash the terminals screen, if possible, and, if
not, tries to ring the terminal bell.

• beepO tries to ring the terminal bell, if possible, and, if not,
tries to flash the terminal screen.

• Neither returns any useful value.

46

Appendix: Curses/Terminfo Programmer's Guide

Input Options

The UNIX system does a considerable amount of processing on
input before an application ever sees a character. For example, it
does the following:

• echoes (prints back) characters to a terminal as they are typed

• interprets an erase character (typically #) and a line kill
character (typically @)

• interprets a CTRL-D (control d) as end of file (EOF)

• interprets interrupt and quit characters

• strips the character's parity bit

• translates <CR> to <NL>

Because a curses program maintains total control over the screen,
curses turns off echoing on the UNIX system and does echoing
itself. At times, you may not want the UNIX system to process
other characters in the standard way in an interactive screen
management program. Some curses routines, noechoO and
cbreakO, for example, have been designed so that you can change
the standard character processing. Using these routines in an
application controls how input is interpreted. Figure 6 shows
some of the major routines for controlling input.

Every program accepting input should set some input options.
This is because when the program starts running, the terminal on
which it runs may be in cbreakO, rawO, nocbreakO, or norawO
mode. Although the program starts up in echoO mode, as Figure
6 shows, none of the other modes are guaranteed.

47

Appendix: Curses/Terminfo Programmer's Guide

The combination of noechoO and cbreakO is most common in
interactive screen management programs. Suppose, for instance,
that you don't want the characters sent to your application
program to be echoed wherever the cursor currently happens to
be; instead, you want them echoed at the bottom of the screen.
The curses routine noechoO is designed for this purpose.
However, when noechoO turns off echoing, normal erase and kill
processing is still on. Using the routine cbreakO causes these
characters to be uninterpreted.

48

Appendix: Curses/Terminfo Programmer's Guide

Input Characters
Options Interpreted U ninterpreted

Normal interrupt, quit
'out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Normal echoing All else
curses 'start up (simulated) undefined.
state'

cbreakO interrupt, quit erase, kill
and echoO stripping EOF

echOing

cbreakO interrupt, quit echOing
and noechoO stripping erase, kill

EOF

nocbreakO break, quit echOing
and noechoO stripping

erase, kill
EOF

nocbreakO See caution below.
and echoO

n10 <CR> to <NL>

nonl0 <CR> to <NL>

rawO break, quit
(instead of stripping
cbreakO)

Figure -6. Input Option Settings for curses Programs

49

Appendix: Curses/Terminfo Programmer's Guide

Caution: Do not use the combination nocbreakO and
noechoO. If you use it in a program and also use getchO,
the program will go in and out of cbreakO mode to get
each character. Depending on the state of the tty driver
when each character is typed, the program may produce
undesirable output.

In addition to the routines noted in Figure 6, you can use the
curses routines norawO, halfdelayO, and nodelayO to control
input. See the curses(3X) manual page for discussions of these
routines.

The next few pages describe noechoO, cbreakO and the related
routines echoO and nocbreakO in more detail.

50

Appendix: Curses/Terminfo Programmer's Guide

echoO and noechoO

SYNOPSIS

#include <curses.h>

int echoO
int noechoO

NOTES

• echoO turns on echoing of characters by curses as they are
read in. This is the initial setting.

• noechoO turns off the echoing.

• Neither returns any useful value.

• curses programs may not run properly if you turn on echoing
with nocbreakO. See Figure 6 and accompanying caution.
After you turn echoing off, you can still echo characters with
addchO·

EXAMPLE

See the editor and show programs under" curses Program
Examples" in this chapter.

51

Appendix: Curses/Terminfo Programmer's Guide

cbreakO and nocbreakO

SYNOPSIS

#include < curses.h >
int cbreakO
int nocbreakO

NOTES

• cbreakO turns on 'break for each character' processing. A
program gets each character as soon as it is typed, but the
erase, line kill, and CTRL-D characters are not interpreted.

• nocbreakO returns to normal 'line at a time' processing. This
is typically the initial setting.

• Neither returns any useful value.

• A curses program may not run properly if cbreakO is turned
on and off within the same program or if the combination
nocbreakO and echoO is used.

• See Figure 6 and accompanying caution.
EXAMPLE

See the editor and show programs under " curses Program
Examples" in this chapter.

52

Appendix: Curses/Terminfo Programmer's Guide

Building Windows and Pads

An earlier section in this chapter, " More about refreshO and
Windows" explained what windows and pads are and why you
might want to use them. This section describes the curses
routines you use to manipulate and create windows and pads.

Output and Input

The routines that you use to send output to and get input from
windows and pads are similar to those you use with stdscr. The
only difference is that you have to give the name of the window
to receive the action. Generally, these functions have names
formed by putting the letter w at the beginning of the name of a
stdscr routine and adding the window name as the first
parameter. For example, addch(' c') would become
waddch(mywin, 'c') if you wanted to write the character c to the
window my win. Here's a list of the window (or w) versions of
the output routines discussed in " Getting Simple Output and
Input."

• waddch(win, ch)

• mvwaddch(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win, fmt [, argo .. J)

• mvwprintw(win, y, x, fmt [, arg ... J)

• wmove(win, y, x)

53

Appendix: Curses/Terminfo Programmer's Guide

• wc1ear(win) and werase(win)

• wc1rtoeoUwin) and wc1rtobot(win)

• wrefreshO

You can see from their declarations that these routines differ from
the versions that manipulate stdscr only in their names and the
addition of a win argument. Notice that the routines whose
names begin with mvw take the win argument before the y, x
coordinates, which is contrary to what the names imply. See
curses(3X) for more information about these routines or the
versions of the input routines getch, getstrO, and so on that you
should use with windows.

All w routines can be used with pads except for wrefreshO and
wnoutrefreshO (see below). In place of these two routines, you
have to use prefreshO and pnoutrefreshO with pads.

The Routines wnoutrefreshO and doupdateO

If you recall from the earlier discussion about refreshO, we said
that it sends the output from stdscr to the terminal screen. We
also said that it was a macro that expands to wrefresh(stdscr) (see
"What Every curses Program Needs" and" More about refreshO
and Windows").

The wrefreshO routine is used to send the contents of a window
(stdscr or one that you create) to a screen; it calls the routines
wnoutrefreshO and doupdateO. Similarly, prefreshO sends the
contents of a pad to a screen by calling pnoutrefreshO and
doupdateO·

54

Appendix: Curses/Terminfo Programmer's Guide

Using wnoutrefreshO-or pnoutrefreshO (this discussion will be
limited to the former routine for simplicity)-and doupdateO, you
can update terminal screens with more efficiency than using
wrefreshO by itself. wrefreshO works by first calling
wnoutrefreshO, which copies the named window to a data
structure referred to as the virtual screen. The virtual screen
contains what a program intends to display at a terminal. After
calling wnoutrefreshO, wrefreshO then calls doupdateO, which
compares the virtual screen to the physical screen and does the
actual update. If you want to output several windows at once,
calling wrefreshO will result in alternating calls to wnoutrefreshO
and doupdateO, causing several bursts of output to a screen.
However, by calling wnoutrefreshO for each window and then
doupdateO only once, you can minimize the total number of
characters transmitted and the processor time used. The following
sample program uses only one doupdateO:

#include <curses.h>

main()
{

WINDOW *w 1, *w2;

initscr();
w1 = newwin(2,6,O,3)
w2 = newwin(1,4,5,4)
waddstr(w1, "Bulls")
wnoutrefresh(w1);
waddstr(w2, "Eye");
wnoutrefresh(w2);
doupdate() ;
endwin () ;

55

Appendix: Curses/Terminfo Programmer's Guide

Notice from the sample that you declare a new window at the
beginning of a curses program. The lines

w1 newwin(2,6,O,3);
w2 newwin(1,4,5,4);

declare two windows named w 1 and w2 with the routine
newwinO according to certain specifications. newwinO is
discussed in more detail below.

Figure 7 illustrates the effect of wnoutrefreshO and doupdateO on
these two windows, the virtual screen, and the physical screen:

56

initscr ()

wI = newwin
(2,6,0,3)

w2 = newwin
(1,4,5,4)

Appendix: Curses/Terminfo Programmer's Guide

stdscr@ (0,0) virtual screen physical screen

o o
(garbage)

stdscr@ (0,0) virtual screen physical screen

o o
(garbage)

wl@ (0,3)

~
stdscr@ (0,0) virtual screen physical screen

o o
(garbage)

wl@ (0,3) w2@ (5,4)

~ ~

Figure -7. The Relationship Between a Window and a
Terminal Screen (Sheet 1 of 3)

57

Appendix: Curses/Terminfo Programmer's Guide

stdscr@ (0,0) virtual screen physical screen
wnoutrefresh (w2)

0 Bulls

(garbage)

Eye D

wl@ (0,3) w2@ (5,4)

I BUllSOI S
stdscr@ (0,0) virtual screen physical screen

doupdate () D Bulls Bulls

EyeD Eye D

wl@ (0,3) w2@ (5,4)

I BullsO I S
stdscr@ (0,0) virtual screen physical screen

endwin () D Bulls Bulls

EyeD
D

Eye

wl@ (0,3) w2@ (5,4)

I BUllSOI S
Figure -7. The Relationship Between a Window and a

Terminal Screen (Sheet 2 of 3)

58

waddstr (wI,
"Bulls")

Appendix: Curses/Terminfo Programmer's Guide

stdscr@ (0,0) virtual screen physical screen

o
(garbage)

wl@ (0,3) w2@ (5,4)

I Bulls ° I ~
stdscr@ (0,0) virtual screen physical screen

wnoutrefress (wI) 0 Bulls

waddstr (w2,
"Bulls")

(garbage)

wl@ (0,3) w2@ (5,4)

I BUllSOI ~
stdscr@ (0,0) virtual screen physical screen

o Bulls 0

(garbage)

wl@ (0,3) w2@ (5,4)

I BUllSOI S
Figure -7. The Relationship Between a Window and a

Terminal Screen (Sheet 3 of 3)

59

Appendix: Curses/Terminfo Programmer's Guide

New Windows

Following are descriptions of the routines newwinO and
subwinO, which you use to create new windows. For information
about creating new pads with newpadO and subpadO, see the
curses(3X) manual page.

60

Appendix: Curses/Terminfo Programmer's Guide

newwinO

SYNOPSIS

#include <eurses.h>

WINDOW *newwin(nlines, neols, begin_y, begin_x)
int nlines, neols, begin_y, begin_xi

NOTES

· newwinO returns a pointer to a new window with a new data
area.

• The variables nlines and neols give the size of the new
window.

· begin_y and begin_x give the screen coordinates from (0,0) of
the upper left corner of the window as it is refreshed to the
current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 7. Also
see the window program under" curses Program Examples" in
this chapter.

61

Appendix: Curses/Terminfo Programmer's Guide

subwinO

SYNOPSIS

#include <curses.h>

WINDOW *subwin(orig, nlines, neols, begin_y, begin_x)
WINDOW *orig;
int nlines, neols, begin_y, begin_x;

NOTES

• subwinO returns a new window that points to a section of
another window, orig.

• nlines and neols give the size of the new window.

• begin_y and begin_x give the screen coordinates of the upper
left corner of the window as it is refreshed to the current
screen.

• Subwindows and original windows can accidentally overwrite
one another.

62

Caution: Subwindows of subwindows do not work (as of
the copyright date of this Programmer's Guide).

Appendix: Curses/Terminfo Programmer's Guide

EXAMPLE

#include <curses.h>

main ()

WINDOW *sub;

initscr();

box(stdscr, 'w', 'w');

mvwaddstr(stdscr,7,10,"------- this is 10,10");

mvwaddch(stdscr,8,10,' I');

mvwaddch(stdscr,9, 10, 'v');

sub = subwin(stdscr,10,20,10,10);

box (sub, , s ' , , s ') ;

wnoutrefresh(stdscr);

wrefresh(sub);

endwin();

This program prints a border of ws around the stdscr (the sides of
your terminal screen) and a border of s's around the subwindow
sub when it is run. For another example, see the window
program under" curses Program Examples" in this chapter.

63

Appendix: Curses/Terminfo Programmer's Guide

Using Advanced curses Features

Knowing how to use the basic curses routines to get output and
input and to work with windows, you can design screen
management programs that meet the needs of many users. The
curses library, however, has routines that let you do more in a
program than handle I/O and multiple windows. The following
few pages briefly describe some of these routines and what they
can help you do-namely, draw simple graphics, use a terminal's
soft labels, and work with more than one terminal in a single
curses program.

You should be comfortable using the routines previously discussed
in this chapter and the other routines for I/O and window
manipulation discussed on the curses(3X) manual page before you
try to use the advanced curses features.

Caution: The routines described under" Routines for
Drawing Lines and Other Graphics" and" Routines for
Using Soft Labels" are features that are new for UNIX
System V Release 3.0. If a program uses any of these
routines, it may not run on earlier releases of the UNIX
system. You must use the Release 3.0 version of the
library on UNIX System V Release 3.0 to work with
these routines.

Routines for Drawing Lines and Other Graphics

Many terminals have an alternate character set for drawing simple
graphics (or glyphs or graphic symbols). You can use this
character set in curses programs. curses use the same names for
glyphs as the VT100 line drawing character set.

To use the alternate character set in a curses program, you pass a
set of variables whose names begin with ACS_ to the curses

64

Appendix: Curses/Terminfo Programmer's Guide

routine waddchO or a related routine. For example,
ACS_ULCORNER is the variable for the upper left corner glyph.
If a terminal has a line drawing character for this glyph,
ACS_ULCORNER's value is the terminal's character for that glyph
OR'd (I) with the bit-mask A_ALTCHARSET. If no line drawing
character is available for that glyph, a standard ASCII character
that approximates the glyph is stored in its place. For example,
the default character for ACS_HLINE, a horizontal line, is a -
(minus sign). When a close approximation is not available, a +
(plus sign) is used. All the standard ACS_ names and their
defaults are listed on the curses(3X) manual page.

Part of an example program that uses line drawing characters
follows. The example uses the curses routine boxO to draw a box
around a menu on a screen. boxO uses the line drawing
characters by default or when I (the pipe) and - are chosen. (See
curses(3X).) Up and down more indicators are drawn on the box
border (using ACS_UARROW and ACS_DARROW) if the menu
contained within the box continues above or below the screen:

box(menuwin, ACS_VLINE, ACS_HLINE);

/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACS_DARROW);
else

waddch(menuwin, ACS_HLINE);

65

Appendix: Curses/Terminfo Programmer's Guide

Here's another example. Because a default down arrow (like the
lowercase letter v) isn't very discernible on a screen with many
lowercase characters on it, you can change it to an uppercase V.

if (! (ACS_DARROW & A_ALTCHARSET»
ACS_DARROW = 'V';

For more information, see curses(3X) in the Programmer's Reference
Manual.

Routines for Using Soft Labels

Another feature available on most terminals is a set of soft labels
across the bottom of their screens. A terminal's soft labels are
usually matched with a set of hard function keys on the keyboard.
There are usually eight of these labels, each of which is usually
eight characters wide and one or two lines high.

The curses library has routines that provide a uniform model of
eight soft labels on the screen. If a terminal does not have soft
labels, the bottom line of its screen is converted into a soft label
area. It is not necessary for the keyboard to have hard function
keys to match the soft labels for a curses program to make use of
them.

Let's briefly discuss most of the curses routines needed to use soft
labels: slk_initO, slk_setO, slk_refreshO and slk_noutrefreshO,
slk_clear, and slk_restore.

When you use soft labels in a curses program, you have to call
the routine slk_intO before initscrO. This sets an internal flag for
initscrO to look at that says to use the soft labels. If initscrO

66

Appendix: Curses/Terminfo Programmer's Guide

discovers that there are fewer than eight soft labels on the screen,
that they are smaller than eight characters in size, or that there is
no way to program them, then it will remove a line from the
bottom of stdscr to use for the soft labels. The size of stdscr and
the LINES variable will be reduced by 1 to reflect this change. A
properly written program, one that is written to use the LINES
and COLS variables, will continue to run as if the line had never
existed on the screen.

slk_initO takes a single argument. It determines how the labels
are grouped on the screen should a line get removed from stdscr.
The choices are between a 3-2-3 arrangement as appears on AT&T
terminals, or a 4-4 arrangement as appears on Hewlett-Packard
terminals. The curses routines adjust the width and placement of
the labels to maintain the pattern. The widest label generated is
eight characters.

The routine slk_setO takes three arguments, the label number
(1-8), the string to go on the label (up to eight characters), and the
justification within the label (0 = left justified, 1 = centered, and 2
= right justified).

The routine slk_noutrefreshO is comparable to wnoutrefreshO in
that it copies the label information onto the internal screen image,
but it does not cause the screen to be updated. Since a wrefreshO
commonly follows, slk_noutrefreshO is the function that is most
commonly used to output the labels.

Just as wrefreshO is equivalent to a wnoutrefreshO followed by a
doupdateO, so too the function slk_refreshO is equivalent to a
slk_noutrefreshO followed by a doupdateO.

To prevent the soft labels from getting in the way of a shell
escape, slk_clearO may be called before doing the endwinO. This
clears the soft labels off the screen and does a doupdateO. The
function slk_restoreO may be used to restore them to the screen.

67

Appendix: Curses/Terminfo Programmer's Guide

See the curses(3X) manual page for more information about the
routines for using soft labels.

Working with More than One Terminal

A curses program can produce output on more than one terminal
at the same time. This is useful for single process programs that
access a common database, such as multi-player games.

Writing programs that output to multiple terminals is a difficult
business, and the curses library does not solve all the problems
you might encounter. For instance, the programs-not the library
routines-must determine the file name of each terminal line, and
what kind of terminal is on each of those lines. The standard
method, checking $TERM in the environment, does not work,
because each process can only examine its own environment.

Another problem you might face is that of multiple programs
reading from one line. This situation produces a race condition
and should be avoided. However, a program trying to take over
another terminal cannot just shut off whatever program is
currently running on that line. (Usually, security reasons would
also make this inappropriate. But, for some applications, such as
an inter-terminal communication program, or a program that takes
over unused terminal lines, it wQuld be appropriate.) A typical
solution to this problem requires each user logged in on a line to
run a program that notifies a master program that the user is
interested in joining the master program and tells it the
notification program's process ID, the name of the tty line, and the
type of terminal being used. Then the program goes to sleep until
the master program finishes. When done, the master program
wakes up the notification program and all programs exit.

A curses program handles multiple terminals by always having a
current terminal. All function calls always affect th~ current
terminal. The master program should set up each terminal, saving

68

Appendix: Curses/Terminfo Programmer's Guide

a reference to the terminals in its own variables. When it wishes
to affect a terminal, it should set the current terminal as desired,
and then call ordinary curses routines.

References to terminals in a curses program have the type
SCREEN*. A new terminal is initialized by calling newterm(type,
outfd, infd). newterm returns a screen reference to the terminal
being set up. type is a character string, naming the kind of
terminal being used. outfd is a stdio(3S) file pointer (FILE*) used
for output to the terminal and infd a file pointer for input from the
terminal. This call replaces the normal call to initscrO, which
calls newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call set_term(sp) where sp is the
screen reference to be made current. set_termO returns a
reference to the previous terminal.

It is important to realize that each terminal has its own set of
windows and options. Each terminal must be initialized
separately with newtermO. Options such as cbreakO and
noechoO must be set separately for each terminal. The functions
endwinO and refreshO must be called separately for each
terminal. Figure 8 shows a typical scenario to output a message to
several terminals.

69

Appendix: Curses/Terminfo Programmer's Guide

for (i = ° ; i < n term; i ++)
{

set term(terms[i]);
mvaddstr(O, 0, "Important message");
refresh();

Figure -8. Sending a Message to Several Terminals

See the two program under" curses Program Examples" in this
chapter for a more complete example.

Working with terminfo Routines

Some programs need to use lower level routines (i.e., primitives)
than those offered by the curses routines. For such programs, the
terminfo routines are offered. They do not manage your terminal
screen, but rather give you access to strings and capabilities which
you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to use terminfo
routines. The first is when you need only some screen
management capabilities, for example, making text standout on a
screen. The second is when writing a filter. A typical filter does
one transformation on an input stream without clearing the screen
or addressing the cursor. If this transformation is terminal
dependent and clearing the screen is inappropriate, use of the
terminfo routines is worthwhile. The third is when you are
writing a special purpose tool that sends a special purpose string
to the terminal, such as programming a function key, setting tab
stops, sending output to a printer port, or dealing with the status
line. Otherwise, you are discouraged from using these routines:

70

Appendix: Curses/Terminfo Programmer's Guide

the higher level curses routines make your program more portable
to other UNIX systems and to a wider class of terminals.

Note: You are discouraged from using terminfo routines
except for the purposes noted, because curses routines
take care of all the glitches present in physical terminals.
When you use the terminfo routines, you must deal with
the glitches yourself. Also, these routines may change
and be incompatible with previous releases.

What Every terminfo Program Needs

A terminfo program typically includes the header files and
routines shown in Figure 9.

#include <curses.h>
#include <term.h>

setupterm((char*)O, 1, (int*)O);

putp(clear_screen);

reset shell mode();
exit(O); -

Figure -9. Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required because
they contain the definitions of the strings, numbers, and flags used
by the terminfo routines. setuptermO takes care of initialization.
Passing this routine the values (char*)O, 1, and (int*)O invokes
reasonable defaults. If setuptermO can't figure out what kind of

71

Appendix: Curses/Terminfo Programmer's Guide

terminal you are on, it prints an error message and exits.
reset_shell_modeO performs functions similar to endwinO and
should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to
setuptermO. It can be output using the terminfo routines putpO
or tputsO, which gives a user more control. This string should not
be directly output to the terminal using the C library routine
printf(3S), because it contains padding information. A program
that directly outputs strings will fail on terminals that require
padding or that use the xonJxoff flow control protocol.

At the terminfo level, the higher level routines like addchO and
getchO are not available. It is up to you to output whatever is
needed. For a list of capabilities and a description of what they
do, see terminfo(4); see curses(3X) for a list of all the terminfo
routines.

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for
running a program with terminfo routines are the same as those
for compiling any other curses program. See the sections
" Compiling a curses Program" and" Running a curses Program"
in this chapter for more information.

An Example terminfo Program

The example program termhl shows a simple use of terminfo
routines. It is a version of the highlight program (see" curses
Program Examples") that does not use the higher level curses
routines. termhl can be used as a filter. It includes the strings to
enter bold and underline mode and to turn off all attributes.

72

Appendix: Curses/Terminfo Programmer's Guide

j*
* A terminfo level version of the highlight program.
*j

#include <curses.h>
#include <term.h>

ipt ulmode = 0; j* Currently underlining * j

main(argc, argv)
int argc;

{
char * * argv;

FILE *fd;
int c, c2;
int outchO;

if (argc > 2)
{

}

fprintf(stderr, " Usage: termhl [file]\n");
exit(l);

if (argc == 2)
{

}

fd = fopen(argv[l], " r");
if (fd == NULL)
{

perror(argv[l]);
exit(2);

else
{

fd = stdin;
}
setupterm«char*)O, 1, (int*)O);

73

Appendix: Curses/Terminfo Programmer's Guide

}

for (;;)
{

}

c = getc(fd);
if (c == EOF)
break;
if (c == '\')
{

}

c2 = getc(fd);
switch (c2)
{

}

case 'B':
tputs(enter_bold_mode, 1, outch);
continue;
case 'U':
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;
case 'N':
tputs(exit_attribute_mode, 1, outch);
ulmode = 0;
continue;

putch(c);
putch(c2);

else
putch(c);

fc1ose(fd);
fflush(stdout);
resettermO;
exit(O);

/*
* This function is like putchar, but it checks for underlining.

*/
putch(c)

74

Appendix: Curses/Terminfo Programmer's Guide

/*

int c;

outch(c);
if (ulmode && underline_char)
{

}

outch('\b');
tputs(underline_char, 1, outch);

* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*/

outch(c)
int c;

putchar(c);

Let's discuss the use of the function tputs(cap, affcnt, outc) in this
program to gain some insight into the terminfo routines. tputsO
applies padding information. Some terminals have the capability
to delay output. Their terminal descriptions in the terminfo
database probably contain strings like $<20>, which means to pad
for 20 milliseconds (see the following section" Specify
Capabilities" in this chapter). tputs generates enough pad
characters to delay for the appropriate time.

tputO has three parameters. The first parameter is the string
capability to be output. The second is the number of lines
affected by the capability. (Some capabilities may require padding
that depends on the number of lines affected. For example,
insert_line may have to copy all lines below the current line, and
may require time proportional to the number of lines copied. By
convention affcnt is 1 if no lines are affected. The value 1 is used,
rather than 0, for safety, since affcnt is multiplied by the amount

75

Appendix: Curses/Terminfo Programmer's Guide

of time per item, and anything multiplied by 0 is 0.) The third
parameter is a routine to be called with each character.

For many simple programs, affent is always 1 and oute always
calls putchar. For these programs, the routine putp(eap) is a
convenient abbreviation. termhl could be simplified by using
putpO·

Now to understand why you should use the curses level routines
instead of terminfo level routines whenever possible, note the
special check for the underline_char capability in this sample
program. Some terminals, rather than having a code to start
underlining and a code to stop underlining, have a code to
underline the current character. termhl keeps track of the current
mode, and if the current character is supposed to be underlined,
outputs underline_char, if necessary. Low level details such as
this are precisely why the curses level is recommended over the
terminfo level. curses takes care of terminals with different
methods of underlining and other terminal functions. Programs at
the terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of the terminfo
routines. It is more complex than it need be in order to illustrate
some properties of terminfo programs. The routine vidattr (see
curses(3X» could have been used instead of directly outputting
enter_bold_mode, enter_underline_mode, and
exit_attribute_mode. In fact, the program would be more robust
if it did, since there are several ways to change video attribute
modes.

76

Appendix: Curses/Terminfo Programmer's Guide

Working with the terminfo Database

The terminfo database describes the many terminals with which
curses programs, as well as some UNIX system tools, like vi(l),
can be used. Each terminal description is a compiled file
containing the names that the terminal is known by and a group
of comma-separated fields describing the actions and capabilities
of the terminal. This section describes the terminfo database,
related support tools, and their relationship to the curses library.

Writing Terminal Descriptions

Descriptions of many popular terminals are already described in
the terminfo database. However, it is possible that you'll want to
run a curses program on a terminal for which there is not
currently a description. In that case, you'll have to build the
description.

The general procedure for building a terminal description is as
follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as
necessary.

Building a terminal description is sometimes easier when you
build small parts of the description and test them as you go along.
These tests can expose deficiencies in the ability to describe the
terminal. Also, modifying an existing description of a similar

77

Appendix: Curses/Terminfo Programmer's Guide

terminal can make the building task easier. (Lest we forget the
UNIX motto: Build on the work of others.)

In the next few pages, we follow each step required to build a
terminal description for the fictitious terminal named" my term."

Name the Terminal

The name of a terminal is the first information given in a
terminfo terminal description. This string of names, assuming
there is more than one name, is separated by pipe symbols (I).
The first name given should be the most common abbreviation for
the terminal. The last name given should be a long name that
fully identifies the terminal. The long name is usually the
manufacturer's formal name for the terminal. All names between
the first and last entries should be known synonyms for the
terminal name. All names but the formal name should be typed
in lowercase letters and contain no blanks. Naturally, the formal
name is entered as closely as possible to the manufacturer's name.

Here is the name string from the description of the AT&T
Teletype 5420 Buffered Display Terminal:

54201att54201AT&T Teletype 5420,

Notice that the first name is the most commonly used
abbreviation and the last is the long name. Also notice the
comma at the end of the name string.

78

Appendix: Curses/Terminfo Programmer's Guide

Here's the name string for our fictitious terminal, my term:

mytermlmytmlminelfancYlterminallMy FANCY Terminal,

Terminal names should follow common naming conventions.
These conventions start with a root name, like 5425 or my term,
for example. The root name should not contain odd characters,
like hyphens, that may not be recognized as a synonym for the
terminal name. Possible hardware modes or user preferences
should be shown by adding a hyphen and a 'mode indicator' at
the end of the name. For example, the 'wide mode' (which is
shown by a -w) version of our fictitious terminal would be
described as myterm-w. term(5) describes mode indicators in
greater detail.

Learn About the Capabilities

After you complete the string of terminal names for your
description, you have to learn about the terminal's capabilities so
that you can properly describe them. To learn about the
capabilities your terminal has, you should do the following:

• See the owner's manual for your terminal. It should have
information about the capabilities available and the character
strings that make up the sequence transmitted from the
keyboard for each capability.

• Test the keys on your terminal to see what they transmit, if
this information is not available in the manual. You can test
the keys in one of the following ways - type:

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow (--) transmits.
<CR>
<CTRL-D>

79

Appendix: Curses/Terminfo Programmer's Guide

or

sUyecho

cat> / dev /null
Type in the escape sequences you want to test;
for example, see what \E [H transmits.
<CTRL-D>

• The first line in each of these testing methods sets up the
terminal to carry out the tests. The <CTRL-D> helps return
the terminal to its normal settings.

• See the terminfo(4) manual page. It lists all the capability
names you have to use in a terminal description. The
following section, " Specify Capabilities," gives details.

Specify Capabilities

Once you know the capabilities of your terminal, you have to
describe them in your terminal description. You describe them
with a string of comma-separated fields that contain the
abbreviated terminfo name and, in some cases, the terminal's
value for each capability. For example, bel is the abbreviated
name for the beeping or ringing capability. On most terminals, a
CTRL-G is the instruction that produces a beeping sound.
Therefore, the beeping capability would be shown in the terminal
description as bel= ~ G,.

The list of capabilities may continue onto multiple lines as long as
white space (that is, tabs and spaces) begins every line but the
first of the description. Comments can be included in the
description by putting a # at the beginning of the line.

The terminfo(4) manual page has a complete list of the
capabilities you can use in a terminal description. This list

80

Appendix: Curses/Terminfo Programmer's Guide

contains the name of the capability, the abbreviated name used in
the database, the two-letter code that corresponds to the old
termcap database name, and a short description of the capability.
The abbreviated name that you will use in your database
descriptions is shown in the column titled" Capname."

Note: For a curses program to run on any given terminal,
its description in the terminfo database must include, at
least, the capabilities to move a cursor in all four
directions and to clear the screen.

A terminal's character sequence (value) for a capability can be a
keyed operation (like CTRL-G), a numeric value, or a parameter
string containing the sequence of operations required to achieve
the particular capability. In a terminal description, certain
characters are used after the capability name to show what type of
character sequence is required. Explanations of these characters
follow:

This shows a numeric value is to follow. This character
follows a capability that needs a number as a value. For
example, the number of columns is defined as cols#80;.

This shows that the capability value is the character
string that follows. This string instructs the terminal
how to act and may actually be a sequence of
commands. There are certain characters used in the
instruction strings that have special meanings. These
special characters follow:

This shows a control character is to be used. For
example, the beeping sound is produced by a
CTRL-G. This would be shown as ~G.

81

Appendix: Curses/Terminfo Programmer's Guide

82

\E or \e These characters followed by another character
show an escape instruction. An entry of \EC would
transmit to the terminal as ESCAPE-C.

\n These characters provide a <NL> character
sequence.

\1 These characters provide a linefeed character
sequence.

\r These characters provide a return character
sequence.

\ t These characters provide a tab character sequence.

\b These characters provide a backspace character
sequence.

\f These characters provide a formfeed character
sequence.

\s These characters provide a space character
sequence.

\nnn This is a character whose three-digit octal is nnn,
where nnn can be one to three digits.

$< > These symbols are used to show a delay in
milliseconds. The desired length of delay is
enclosed inside the" less than/greater than"
symbols « ». The amount of delay may be a
whole number, a numeric value to one decimal
place (tenths), or either form followed by an
asterisk (*). The * shows that the delay will be
proportional to the number of lines affected by the
operation. For example, a 20-millisecond delay per
line would appear as $<20*>. See the terminfo(4)
manual page for more information about delays and
padding.

Appendix: Curses/Terminfo Programmer's Guide

Sometimes, it may be necessary to comment out a capability so
that the terminal ignores this particular field. This is done by
placing a period (.) in front of the abbreviated name for the
capability. For example, if you would like to comment out the
beeping capability, the description entry would appear as

.bel= A G,

With this background information about specifying capabilities,
let's add the capability string to our description of my term. We'll
consider basic, screen-oriented, keyboard-entered, and parameter
string capabilities.

Basic Capabilities Some capabilities common to most terminals
are bells, columns, lines on the screen, and overstriking of
characters, if necessary. Suppose our fictitious terminal has these
and a few other capabilities, as listed below. Note that the list
gives the abbreviated terminfo name for each capability in the
parentheses following the capability description:

• An automatic wrap around to the beginning of the next line
whenever the cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction
required to produce the beeping sound is A G (bel).

• An 80-column wide screen (cols).

• A 3D-line long screen (lines).

• Use of xonjxoff protocol (xon).

83

Appendix: Curses/Terminfo Programmer's Guide

By combining the name string (see the section" Name the
Terminal") and the capability descriptions that we now have, we
get the following general terminfo database entry:

mytermlmytmlminelfancYlterminallMy FANCY terminal,

am, bel=AG, cols#80, lines#30, xon,

Screen-Oriented Capabilities Screen-oriented capabilities
manipulate the contents of a screen. Our example terminal
my term has the following screen-oriented capabilities. Again, the
abbreviated command associated with the given capability is
shown in parentheses.

• A <CR> is a CTRL-M (cr).

• A cursor up one line motion is a CTRL-K (cuul).

• A cursor down one line motion is a CTRL-J (cudl).

• Moving the cursor to the left one space is a CTRL-H (cubl).

• Moving the cursor to the right one space is a CTRL-L (cufl).

• Entering reverse video mode is an ESCAPE-D (smso).

• Exiting reverse video mode is an ESCAPE-Z (rmso).

• A clear to the end of a line sequence is an ESCAPE-K and
should have a 3-millisecond delay (el).

• A terminal scrolls when receiving a <NL> at the bottom of a
page (ind).

84

Appendix: Curses/Terminfo Programmer's Guide

The revised terminal description for my term including these
screen-oriented capabilities follows:

mytermlrnytrnlminelfancYlterrninallMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,
srnso=\ED, rrnso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities Keyboard-entered capabilities are
sequences generated when a key is typed on a terminal keyboard.
Most terminals have, at least, a few special keys on their
keyboard, such as arrow keys and the backspace key. Our
example terminal has several of these keys whose sequences are,
as follows:

• The backspace key generates a CTRL-H (kbs).

• The up arrow key generates an ESCAPE-[A (kcuul).

• The down arrow key generates an ESCAPE-[B (kcudl).

• The right arrow key generates an ESCAPE-[C (kcufl).

• The left arrow key generates an ESCAPE-[D (kcubl).

• The home key generates an ESCAPE-[H (khome).

85

Appendix: Curses/Terminfo Programmer's Guide

Adding this new information to our database entry for my term
produces:

mytermlmytmlminelfancYlterminallMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,

Parameter String Capabilities Parameter string capabilities are
capabilities that can take parameters - for example, those used to
position a cursor on a screen or turn on a combination of video
modes. To address a cursor, the cup capability is used and is
passed two parameters: the row and column to address. String
capabilities, such as cup and set attributes (sgr) capabilities, are
passed arguments in a terminfo program by the tparmO routine.

The arguments to string capabilities are manipulated with special
'%' sequences similar to those found in a printf(3S) statement. In
addition, many of the features found on a simple stack-based RPN
calculator are available. cup, as noted above, takes two
arguments: the row and column. sgr, takes nine arguments, one
for each of the nine video attributes. See terminfo(4) for the list
and order of the attributes and further examples of sgr.

Our fancy terminal's cursor position sequence requires a row and
column to be output as numbers separated by a semicolon,
preceded by ESCAPE-[and followed with H. The coordinate
numbers are I-based rather than O-based. Thus, to move to row
5, column 18, from (0,0), the sequence would be output.

Integer arguments are pushed onto the stack with a '%p' sequence
followed by the argument number, such as '%p2' to push the

86

Appendix: Curses/Terminfo Programmer's Guide

second argument. A shorthand sequence to increment the first
two arguments is '%i'. To output the top number on the stack as
a decimal, a '%d' sequence is used, exactly as in printf. Our
terminal's cup sequence is built up as follows:

or

cu =

\E[
%i

%p1
%d

%p2
%d
H

Meanin

output ESCAPE-[
increment the two arguments
push the 1st argument (the row) onto the stack
output the row as a decimal
output a semi-colon
push the 2nd argument (the column) onto the stack
output the column as a decimal
output the trailing letter

cup=\E[%i%p1%d;%p2%dH,

Adding this new information to our database entry for my term
produces:

mytermlmytmlminelfancYlterminallMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,
cup=\E[%i%p1%d;%p2%dH,

See terminfo(4) for more information about parameter string
capabilities.

87

Appendix: Curses/Terminfo Programmer's Guide

Compile the Description

The terminfo database entries are compiled using the tic compiler.
This compiler translates terminfo database entries from the source
format into the compiled format.

The source file for the description is usually in a file suffixed with
.ti. For example, the description of my term would be in a source
file named myterm.ti. The compiled description of my term
would usually be placed in /usr/lib/terminfo/m/myterm, since
the first letter in the description entry is m. Links would also be
made to synonyms of my term, for example, to If/fancy. If the
environment variable $TERMINFO were set to a directory and
exported before the entry was compiled, the compiled entry would
be placed in the $TERMINFO directory. All programs using the
entry would then look in the new directory for the description file
if $TERMINFO were set, before looking in the default
/usr/lib/terminfo. The general format for the tic compiler is as
follows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and output
information about its progress. The -c option causes a check for
errors; it may be combined with the -v option. file shows what
file is to be compiled. If you want to compile more than one file
at the same time, you have to first use cat(l) to join them
together. The following command line shows how to compile the
terminfo source file for our fictitious terminal:

tic -v myterm.ti<CR>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(lM) manual page in the System Administrator's
Reference Manual for more information about the compiler.

88

Appendix: Curses/Terminfo Programmer's Guide

Test the Description

Let's consider three ways to test a terminal description. First, you
can test it by setting the environment variable $TERMINFO to
the path name of the directory containing the description. If
programs run the same on the new terminal as they did on the
older known terminals, then the new description is functional.

Second, you can test for correct insert line padding. by
commenting out xon in the description and then editing (using
vi(l» a large file (over 100 lines) at 9600 baud (if possible), and
deleting about 15 lines from the middle of the screen. Type u
(undo) several times quickly. If the terminal messes up, then
more padding is usually required. A similar test can be used for
inserting a character.

Third, you can use the tput(l) command. This command outputs
a string or an integer according to the type of capability being
described. If the capability is a Boolean expression, then tput sets
the exit code (0 for TRUE, 1 for FALSE) and produces no output.
The general format for the tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is
identified with the - Ttype option. Usually, this option is not
necessary because the default terminal name is taken from the
environment variable $TERM. The capname field is used to show
what capability to output from the terminfo database.

The following command line shows how to output the" clear
screen" character sequence for the terminal being used:

tput dear
(The screen is cleared.)

89

Appendix: Curses/Terminfo Programmer's Guide

The following command line shows how to output the number of
columns for the terminal being used:

tput col8
(The number of columns used by the terminal appears here.)

The tput(l) manual page found in the User's Reference Manual
contains more information on the usage and possible messages
associated with this command.

Comparing or Printing terminfo Descriptions

Sometime you may want to compare two terminal descriptions or
quickly look at a description without going to the terminfo source
directory. The infocmp(lM) command was designed to help you
with both of these tasks. Compare two descriptions of the same
terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic 01d5420.ti
TERMINFO=/tmp/new tic new5420.ti
infocmp -A /tmp/old -B /tmp/new -d 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type

infocmp -I 5420

90

Appendix: Curses/Terminfo Programmer's Guide

Converting a termcap Description to a term info
Description

Caution: The terminfo database is designed to take the
place of the termcap database. Because of the many
programs and processes that have been written with and
for the termcap database, it is not feasible to do a
complete cutover at one time. Any conversion from
termcap to terminfo requires some experience with both
databases. All entries into the databases should be
handled with extreme caution. These files are important
to the operation of your terminal.

The captoinfo(lM) command converts termcap(4) descriptions to
terminfo(4) descriptions. When a file is passed to captoinfo, it
looks for termcap descriptions and writes the equivalent terminfo
descriptions on the standard output. For example,

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving
comments and other extraneous information within the file. The
command line

captoinfo

looks up the current terminal in the termcap database, as specified
by the $TERM and $TERMCAP environment variables and
converts it to terminfo.

If you must have both termcap and terminfo terminal
descriptions, keep the terminfo description only and use infocmp
-C to get the termcap descriptions.

91

Appendix: Curses/Terminfo Programmer's Guide

If you have been using cursor optimization programs with the
-ltermcap or -ltermlib option in the cc command line, those
programs will still be functional. However, these options should
be replaced with the -lcurses option.

curses Program Examples

The following examples demonstrate uses of curses routines.

The editor Program

This program illustrates how to use curses routines to write a
screen editor. For simplicity, editor keeps the buffer in stdscr;
obviously, a real screen editor would have a separate data
structure for the buffer. This program has many other
simplifications: no provision is made for files of any length other
than the size of the screen, for lines longer than the width of the
screen, or for control characters in the file.

Several points about this program are worth making. First, it uses
the moveO, mvaddstrO, flashO, wnoutrefreshO and clrtoeolO
routines. These routines are all discussed in this chapter under
" Working with curses Routines."

Second, it also uses some curses routines that we have not
discussed. For example, the function to write out a file uses the
mvinchO routine, which returns a character in a window at a
given position. The data structure used to write out a file does not
keep track of the number of characters in a line or the number of
lines in the file, so trailing blanks are eliminated when the file is
written. The program also uses the inschO, delchO, insertlnO,
and deletelnO routines. These functions insert and delete a
character or line. See curses(3X) for more information about these
routines.

92

Appendix: Curses/Terminfo Programmer's Guide

Third, the editor command interpreter accepts special keys, as well
as ASCII characters. On one hand, new users find an editor that
handles special keys easier to learn about. For example, it's easier
for new users to use the arrow keys to move a cursor than it is to
memorize that the letter h means left, j means down, k means up,
and I means right. On the other hand, experienced users usually
like having the ASCII characters to avoid moving their hands from
the home row position to use special keys.

Note: Because not all terminals have arrow keys, your
curses programs will work on more terminals if there is
an ASCII character associated with each special key.

Fourth, the CTRL-L command illustrates a feature most programs
using curses routines should have. Often some program beyond
the control of the routines writes something to the screen (for
instance, a broadcast message) or some line noise affects the
screen so much that the routines cannot keep track of it. A user
invoking editor can type CTRL-L, causing the screen to be cleared
and redrawn with a call to wrefresh(curscr).

Finally, another important point is that the input command is
terminated by CTRL-D, not the escape key. It is very tempting to
use escape as a command, since escape is one of the few special
keys available on every keyboard. (Return and break are the only
others.) However, using escape as a separate key introduces an
ambiguity. Most terminals use sequences of characters beginning
with escape (Le., escape sequences) to control the terminal and
have special keys that send escape sequences to the computer. If
a computer receives an escape from a terminal, it cannot tell
whether the user depressed the escape key or whether a special
key was pressed.

editor and other curses programs handle the ambiguity by setting
a timer. If another character is received during this time, and if

93

Appendix: Curses/Terminfo Programmer's Guide

that character might be the beginning of a special key, the
program reads more input until either a full special key is read,
the time out is reached, or a character is received that could not
have been generated by a special key. While this strategy works
most of the time, it is not foolproof. It is possible for the user to
press escape, then to type another key quickly, which causes the
curses program to think a special key has been pressed. Also, a
pause occurs until the escape can be passed to the user program,
resulting in a slower response to the escape key.

Many existing programs use escape as a fundamental command,
which cannot be changed without infuriating a large class of users.
These programs cannot make use of special keys without dealing
with this ambiguity, and at best must resort to a time-out solution.
The moral is clear: when designing your curses programs, avoid
the escape key.

j* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*j

#include <stdio.h>
#include <curses.h>

#define CTRL(c) «c) & 037)

main(argc, argv)
int argc;
char **argv;
{

94

extern void perrorO, exitO;
int i, n, 1;
int c;
int line = 0;
FILE *fd;

Appendix: Curses/Terminfo Programmer's Guide

if (argc != 2)
{

}

fprintf(stderr, " Usage: %s file\n" , argv[O]);
exit(l);

fd = fopen(argv[1], " r");
if (fd == NULL)
{

}

initscrO;

perror(argv[l]);
exit(2);

cbreakO;
nonlO;
noechoO;
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

j* Read in the file * j
while ((c = getc(fd» != EOF)
{

if (c == '\n')
line++;

if (line > LINES - 2)
break;

addch(c);
}
fclose(fd);

move(O,O);
refreshO;
editO;

j* Write out the file * j
fd = fopen(argv[l], " w");
for (1 = 0; 1 < LINES - 1; 1++)

95

Appendix: Curses/Terminfo Programmer's Guide

}

}

n = len(l);
for (i = 0; i < n; i++)

putc(mvinch(l, i) & A_CHARTEXT, fd);
putc('\n', fd);

fclose(fd);

endwinO;
exit(O);

len(lineno)
int lineno;
{

}

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) == ' ')
linelen--;

return linelen + 1;

j* Global value of current cursor position * j
int row, col;

editO
{

96

int c;

for (;;)
{

move(row, col);
refreshO;
c = getchO;

j* Editor commands * j
switch (c)
{

Appendix: Curses/Terminfo Programmer's Guide

/* hjkl and arrow keys: move cursor
* in direction indicated * /

case 'h':
case KEY_LEFT:

case 'j':

if (col> 0)
col--;

else
flashO;

break;

case KEY_DOWN:

case 'k':

if (row < LINES - 1)
row++;

else
flashO;

break;

case KEY_UP:

case '1':

if (row> 0)
row--;

else
flashO;

break;

case KEY_RIGHT:
if (col < COLS - 1)

col++;
else

flashO;
break;

/* i: enter input mode * /
case KEY_IC:
case 'i':

inputO;
break;

97

Appendix: Curses/Terminfo Programmer's Guide

}

98

j* x: delete current character * j
case KEY_DC:
case 'x':

delchO;
break;

j* 0: open up a new line and enter input mode * j
case KEY_IL:
case '0':

move(++row, col = 0);
insertlnO;
inputO;
break;

j* d: delete current line * j
case KEY _DL:
case'd':

deletelnO;
break;

j* AL: redraw screen * j
case KEY_CLEAR:
case CTRL('L'):

wrefresh(curser);
break;

j* w: write and quit * j
case 'w':

return;
j* q: quit without writing * j
case 'q':

default:

endwinO;
exit(2);

flashO;
break;

Appendix: Curses/Terminfo Programmer's Guide

j*
* Insert mode: accept characters and insert them.
* End with ~D or EIC
*j

inputO
{

}

int c;

standoutO;
mvaddstr(LINES - 1, COLS - 20, " INPUT MODE");
standendO;
move(row, col);
refreshO;
for (;;)
{

}

c = getchO;
if (c == CTRL('D') n c == KEY_EIC)

break;
insch(c);
move(row, ++col);
refreshO;

move(LINES - 1, COLS - 20);
clrtoeol();
move(row, col);
refreshO;

99

Appendix: Curses/Terminfo Programmer's Guide

The highlight Program

This program illustrates a use of the routine attrsetO. highlight
reads a text file and uses embedded escape sequences to control
attributes. \U turns on underlining, \B turns on bold, and \N
restores the default output attributes.

Note the first call to scrollokO, a routine that we have not
previously discussed (see curses(3X». This routine allows the
terminal to scroll if the file is longer than one screen. When an
attempt is made to draw past the bottom of the screen, scrollokO
automatically scrolls the terminal up a line and calls refreshO.

j*
* highlight: a program to turn \ V, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*j

#include <stdio.h>
#include <curses.h>

main(argc, argv)
int argc;
char **argv;
{

100

FILE *fd;
int c, c2;
void exitO, perrorO;

if (argc != 2)
{

}

fprintf(stderr, " Vsage: highlight file\n");
exit(l);

fd = fopen(argv[l], " r");

Appendix: Curses/Terminfo Programmer's Guide

if (fd == NULL)
{

}

perror(argv[l]);
exit(2);

initscrO;
scrollok(stdscr, TRUE);
nonlO;
while «c = getc(fd)) != EOF)
{

if (c == '\ \')
{

else

}
fclose(fd);
refreshO;
endwinO;
exit(O);

c2 = getc(fd);
switch (c2)
{
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':

}

attrset(O);
continue;

addch(c);
addch(c2);

addch(c);

101

Appendix: CursesjTerminfo Programmer's Guide

The scatter Program

This program takes the first LINES - 1 lines of characters from the
standard input and displays the characters on a terminal screen in
a random order. For this program to work properly, the input file
should not contain tabs or non-printing characters.

j*
* The scatter program.
*j

#include
#include

<curses.h>
<sysjtypes.h>

extern time_t timeO;

#define MAXLINES 120
#define l\1AXCOLS 160
char s[MAXLINES][MAXCOLS]; j* Screen Array * j
int T[MAXLINES][MAXCOLS]; j* Tag Array - Keeps track of *

mainO
{

102

* the number of characters *
* printed and their positions. * j

register int row = O,col = 0;
register int c;
int char_count = 0;
time_t t;
void exitO, srandO;

initscrO;
for(row = O;row < MAXLINES;row++)

for(col = O;col < MAXCOLS;col++)
s[row][col]=' ';

col = row = 0;

}

Appendix: Curses/Terminfo Programmer's Guide

j* Read screen in * j
while «c=getcharO) != EOF && row < LINES) {

}

if(c != '\n')
{

}
else
{

j* Place char in screen array * j
s[row][col++] = c;
if(c != ' ')

col = 0;
row++;

char_count++;

time(&t); j* Seed the random number generator * j
srand((unsigned)t);

while (char_count)
{

}

row = randO % LINES;
col = (randO » 2) % COLS;
if (T[row][col] != 1 && s[row][col] != ' ')
{

move(row, col);
addch(s[row][col]);
T[row][col] = 1;
char_count--;
refreshO;

endwinO;
exit(O);

103

Appendix: Curses/Terminfo Programmer's Guide

The show Program

show pages through a file, showing one screen of its contents
each time you depress the space bar. The program calls cbreakO
so that you can depress the space bar without having to hit return;
it calls noechoO to prevent the space from echoing on the screen.
The nonlO routine, which we have not previously discussed, is
called to enable more cursor optimization. The idlokO routine,
which we also have not discussed, is called to allow insert and
delete line. (See curses(3X) for more information about these
routines). Also notice that c1rtoeolO and c1rtobotO are called.

By creating an input file for show made up of screen-sized (about
24 lines) pages, each varying slightly from the previous page,
nearly any exercise for a cursesO program can be created. This
type of input file is called a show script.

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char * argv[];
{

104

FILE *fd;
char linebuf[BUFSIZ];
int line;
void doneO, perrorO, exitO;

if (argc != 2)
{

}

fprintf(stderr, "usage: %s file\n" , argv[O]);
exit(1);

if «(fd=fopen(argv[1], " r" » == NULL)
{

Appendix: Curses/Terminfo Programmer's Guide

}

perror(argv[l D;
exit(2);

signal(SIGINT, done);

initscrO;
noechoO;
cbreakO;
nonlO;
idlok(stdscr, TRUE);

while(l)
{

move(O,O);
for (line = 0; line < LINES; line++)

}

{

}

if (!fgets(linebuf, size of linebuf, fd»
{

}

clrtobotO;
doneO;

move(line, 0);
printw(" %s" , linebuf);

refreshO;
if (getchO = = 'q')

doneO;

void doneO
{

move(LINES - I, 0);
clrtoeolO;
refreshO;
endwinO;
exit(O);

105

Appendix: Curses/Terminfo Programmer's Guide

The two Program

This program pages through a file, writing one page to the
terminal from which the program is invoked and the next page to
the terminal named on the command line. It then waits for a
space to be typed on either terminal and writes the next page to
the terminal at which the space is typed.

two is just a simple example of a two-terminal curses program. It
does not handle notification; instead, it requires the name and
type of the second terminal on the command line. As written, the
command" sleep 100000" must be typed at the second terminal to
put it to sleep while the program runs, and the user of the first
terminal must have both read and write permission on the second
terminal.

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *seLtermO;

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)
int argc;
char **argv;
{

106

void doneO, exitO;
unsigned sleepO;
char *getenvO;
int c;

if (argc != 4)
{

fprintf(stderr, " Usage: two othertty otherttytype inputfile\n")
exit(l);

Appendix: Curses/Terminfo Programmer's Guide

}
fd = fopen(argv[3], " r");
fdyou = fopen(argv[1], " w+");
signal(SIGINT, done); j* die gracefully * j

me = newterm(getenv(" TERM"), stdout, stdin); j* initialize my tty * j
you = newterm(argv[2], fdyou, fdyou);j* Initialize the other terminal * j

set_term(me); j* Set modes for my terminal * j
noecha(); j* turn off tty echo * j
cbreakO; j* enter cbreak mode * j
nonlO; j* Allow linefeed * j
nodelay(stdscr, TRUE); j* No hang on input * j

seLterm(you); j* Set modes for other terminal * j
naechoO;
cbreakO;
nonlO;
nodelay(stdscr, TRUE);

j* Dump first screen full on my terminal * j
dump_page(me);

j* Dump second screen full on the other terminal * j
dump_page(you);

for (;;) j* for each screen full * j
{

seLterm(me);
c = getchO;
if (c == ' q') j* wait for user to read it * j
done();
if (c == ' ')
dump_page(me);

set_term(you);
c = getch();
if (c == 'q') j* wait for user to read it * j

107

Appendix: Curses/Terminfo Programmer's Guide

}
}

doneO;
if (c == ' ')
dump_page(you);
sleep(l);

dump_page(term)
SCREEN *term;

{

}

/*

int line;

set_term(term);
move(O,O);
for (line = 0; line < LINES - 1; line++) {

}

if (fgets(linebuf, size of linebuf, fd) == NULL) {
clrtobotO;
don eO;
}
mvaddstr(line, 0, linebuf);

standoutO;
mvprintw(LINES - 1, 0, II --More--");
standendO;
refreshO; /* sync screen * /

* Clean up and exit.

*/
void doneO
{

108

/* Clean up first terminal * /
set_term(you);
move(LINES - 1,0); /* to lower left corner * /

clrtoeolO;
refreshO;
endwinO;

/* clear bottom line * /
/* flush out everything * /
/* curses cleanup * /

}

Appendix: Curses/Terminfo Programmer's Guide

/* Clean up second terminal * /
seLterm(me);
move(LINES - I,D); /* to lower left corner * /
clrtoeolO; /* clear bottom line * /
refreshO; /* flush out everything * /
end winO; /* curses cleanup * /
exit(O);

109

Appendix: Curses/Terminfo Programmer's Guide

The window Program

This example program demonstrates the use of multiple windows.
The main display is kept in stdscr. When you want to put
something other than what is in stdscr on the physical terminal
screen temporarily, a new window is created covering part of the
screen. A call to wrefreshO for that window causes it to be
written over the stdscr image on the terminal screen. Calling
refreshO on stdscr results in the original window being redrawn
on the screen. Note the calls to the touchwinO routine (which we
have not discussed - see curses(3X» that occur before writing
out a window over an existing window on the terminal screen.
This routine prevents screen optimization in a curses program. If
you have trouble refreshing a new window that overlaps an old
window, it may be necessary to call touchwinO for the new
window to get it completely written out.

#include <curses.h>

WINDOW *cmdwin;

mainO

110

int i, c;
char buf[120];
void exitO;

initscrO;
nonlO;
noechoO;
cbreakO;

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines * /
for (i = 0; i < LINES; i++)

mvprintw(i, 0, " This is line %d of stdscr" , i);

for (;;)

{

}

}

Appendix: Curses/Terminfo Programmer's Guide

refreshO;
c = getchO;
switch (c)

{

case ' c': /* Enter command from keyboard * /
werase(cmdwin);
wprintw(cmdwin, " Enter command:");
wmove(cmdwin, 2, 0);
for (i = 0; i < COLS; i++)

waddch(crndwin, , -');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf);
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.

*/

case 'q':
endwinO;
exit(O);

}

111

CAPTOINFO(1M) (Terminal Information Utilities) CAPTOINFO (1M)

NAME
captoinfo - convert a termcap description into a terminfo descrip­
tion

SYNOPSIS
captoinfo [-v ...] [-V] [-1] [-w width] file ...

DESCRIPTION

FILES

captoinfo looks in file for termcap descriptions. For each one
found, an equivalent terminfo(4) description is written to standard
output, along with any comments found. A description which is
expressed as relative to another description (as specified in the
termcap tc= field) will be reduced to the minimum superset before
being output.

If no file is given, then the environment variable TERMCAP is
used for the filename or entry. If TERM CAP is a full pathname
to a file, only the terminal whose name is specified in the environ­
ment variable TERM is extracted from that file. If the environ­
ment variable TERM CAP is not set, then the file /etc/termcap is
read.

-v print out tracing information on standard error as the
program runs. Specifying additional -v options will
cause more detailed inf.ormation to be printed.

- V print out the version of the program in use on standard
error and exit.

-1 cause the fields to print out one to a line. Otherwise,
the fields will be printed several to a line to a max­
imum width of 60 characters.

-w change the output to width characters.

I usr IIi bl terminfol? 1* com piled terminal descri ption database

CAVEATS
Certain termcap defaults are assumed to be true. For example,
the bell character (terminfo bel) is assumed to be -G. The linefeed
capability (termcap nl) is assumed to be the same for both
cursor _down and scrollJorward (terminfo cudl and ind, respec­
tively.) Padding information is assumed to belong at the end of
the string.

The algorithm used to expand parameterized information for
termcap fields such as cursor_position (termcap cm, term info cup)
will sometimes produce a string which, though technically correct,
may not be optimal. In particular, the rarely used termcap opera­
tion %n will produce strings that are especially long. Most
occurrences of these nOh-optimal strings will be flagged with a
warning message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of names in
a termcap entry, a hold-over from an earlier version of the UNIX
system, has been removed.

- 1 -

CAPTOINFO(1M) (Terminal Information Utilities) CAPTOINFO(lM)

DIAGNOSTICS
tgetent failed with return code n (reason).

The termcap entry is not valid. In particular,
check for an invalid 'tc=' entry.

unknown type given for the termcap code cc.
The term cap description had an entry for cc
whose type was not boolean, numeric or string.

wrong type given for the boolean (numeric, string) termcap code cc.
The boolean termcap entry cc was entered as a
numeric or string capability.

the boolean (numeric, string) termcap code cc is not a valid name.
An unknown termcap code was specified.

tgetent failed on TERM=term.
The terminal type specified could not be found in
the termcap file.

TERM=term: cap cc (info ii) is NULL: REMOVED
The termcap code was specified as a null string.
The correct way to cancel an entry is with an
'@', as in ':bs@:'. Giving a null string could
cause incorrect assumptions to be made by the
software which uses termcap or terminfo.

a function key for cc was specified, but it already has the value vv.
When parsing the ko capability, the key cc was
specified as having the same value as the capa­
bility cc, but the key cc already had a value
assigned to it.

the unknown termcap name cc was specified in the ko termcap capability.
A key was specified in the ko capability which
could not be handled.

the vi character v (info ii) has the value xx, but rna gives n.
The rna capability specified a function key with a
value different from that specified in another
setting of the same key.

the unknown vi key v was specified in the rna termcap capability.
A vi(l) key unknown to captoinfo was specified
in the rna capability.

Warning: termcap sg (nn) and termcap ug (nn) had different values.
terminfo assumes that the sg (now xrnc) and ug
values were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be
rewritten by hand.

Null termname given.
The terminal type was null. This is given if the
environment variable TERM is not set or is null.

cannot open file for reading.
The specified file could not be opened.

- 2 -

CAPTOINFO (1M) (Terminal Information Utilities) CAPTOINFO(1M)

SEE ALSO

NOTES

infocmp(1M), tic(1M).
curses (3X), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 in the Programmer's Guide.

captoinfo should be used to convert termcap entries to terminfo(4)
entries because the termcap database (from earlier versions of
UNIX System V) may not be supplied in future releases.

- 3 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

NAME
curses - terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS
- compiling information
- summary of parameters used by curses routines
- alphabetical list of curses routines, showing their parameters

In DESCRIPTION:
- An overview of how curses routines should be used

In ROUTINES, descriptions of each curses routines, are grouped
under the appropriate topics:
- Overall Screen Manipulation
- Window and Pad Manipulation
- Output
- Input
- Output Options Setting
- Input Options Setting
- Environment Queries
- Soft Labels
- Low-level Curses Access
- Terminfo-Level Manipulations
- Termcap Emulation
- Miscellaneous
- Use of curscr

Then come sections on:
- ATTRIBUTES
- FUNCTION CALLS
- LINE GRAPHICS

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h> (automatically includes <stdio.h>,
<termio.h>, and <unctrl.h».

The parameters in the following list are not global variables,
but rather this is a summary of the parameters used by the
curses library routines. All routines return the int values ERR
or OK unless otherwise noted. Routines that return pointers
always return NULL on error. (ERR, OK, and NULL are all
defined in <curses.h>.) Routines that return integers are not
listed in the parameter list below.

bool bf
char **area,*boolnames[], *boolcodes[], *boolfnames[], *bp
char *cap, *capname, codename[2], erasechar, *filename, *fmt
char *keyname, killchar, *label, *longname
char *name, *numnames[], *numcodes[], *numfnames[]
char *slk_Iabel, *str, *strnames[], *strcodes[], *strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

- 1 -

CURSES(3X) (Terminal Information Utilities)

chtype attrs, ch, horch, vertch
FILE *infd, *outfd
int begin_x, begin-y, begline, bot, c, col, count

CURSES(3X)

int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes
int (*init(», labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int pI, p2, p9, pmincol, pminrow, (*putc(», row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, Y

SCREEN *new, *newterm, *set_term
TERMINAL *cur_term, *nterm, *oterm
va_list varglist
WINDOW *curscr, *dstwin, *initscr, *newpad, *newwin, *orig
WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin, *win

addch(ch)
addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vertch, horch)
cbreakO
clear()
clearok(win, bf)
clrtobot()
clrtoeol()
copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,

dmaxrow, dmaxcol, overlay)"
curs_set(visibility)
def_prog_mode()
def_shell_mode()
del_curterm(oterm)
delay _output(ms)
delch()
deleteln()
delwin(win)
doupdate()
draino(ms)
echo()
echochar(ch)
endwin()
erase()
erasechar()
filter()
flash()
flushinp()
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()

- 2 -

CURSES(3X) (Terminal Information Utilities)

getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(ten ths)
has_ic()
has_il()
idlok(win, bf)
inch()
initscr()
insch(ch)
insertln()
intrflush(win, bf)
isendwin()
keyname(c)
keypad(win, bf)
killchar()
leaveok(win, bf)
longname()
meta(win, bf)
move(y, x)
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg ... J)
mvscanw(y, x, fmt [, arg ...])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, y, x)
mvwinch(win, y, x)
mvwinsch(win, y, x, ch)
mvwprintw(win, y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])
napms(ms)
newpad(nlines, ncols)
newterm(type, outfd, infd)
newwin(nlines, ncols, begin-y, begin_x)
nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

- 3 -

CURSES(3X)

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

pechochar(pad, ch)
pnoutrefresh(pad, pm in row, pmincol, sminrow, smincol, smaxrow
smaxcol)"
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, sm2
printw(fmt [, arg ... J)
putp(str)
raw()
refresh()
reset_prog_mode()
reset_shell_mode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw(fmt [, arg ... J)
scr_dump(filename)
scr _init(filename)
scr _restore(filename)
scroll(win)
scrollok(win, bf)
set_curterm(nterm)
set_term(new)
setscrreg(top, bot)
setsyx(y, x)
setupterm(term, fildes, errret)
slk_clear()
slk_init(fmt)
slk_Ia bel(labn urn)
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()
standend()
standout()
subpad(orig, nlines, ncols, beginJ, begin_x)
subwin(orig, nlines, ncols, beginJ, begin_x)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum(capname)
tigetstr(capnam-e)
touchline(win, start, count)
touch wine win)
tparm(str, pI, p2, ... , p9)
tputs(str, count, putc)
traceoff()
traceon()
typeahead(fildes)
unctrl(c)
ungetch(c)

- 4 -

CURSES(3X) (Terminal Information Utilities)

vida ttr(a ttrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ch)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt [, arg ...])
wrefresh(win)
wscanw(win, fmt [, arg ...])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION

CURSES(3X)

The curses routines give the user a terminal-independent method
of updating screens with reasonable optimization.

In order to initialize the routines, the routine initscr() or
newterm() must be called before any of the other routines that
deal with windows and screens are used. (Three exceptions are
noted where they apply.) The routine endwinO must be called
before exiting. To get character-at-a-time input without echoing,
(most interactive, screen oriented programs want this) after cal­
ling initscr() you should call "cbreak(); noecho();" Most pro­
grams would additionally call "nonl(); intrflush (stdscr,
FALSE); keypad(stdscr, TRUE);".

Before a curses program is run, a terminal's tab stops should be
set and its initialization strings, if defined, must be output. This
can be done by executing the tput init command after the shell
environment variable TERM has been exported. For further
details, see pro/ile(4), tput(l), and the" Tabs and Initialization"
subsection of termin/o(4).

The curses library contains routines that manipulate data struc­
tures called windows that can be thought of as two-dimensional
arrays of characters representing all or part of a terminal screen.
A default window called stdscr is supplied, which is the size of
the terminal screen. Others may be created with newwin().

- 5 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Windows are referred to by variables declared as WINDOW *; the
type WINDOW is defined in <curses.h> to be a C structure.
These data structures are manipulated with routines described
below, among which the most basic are move() and addch().
(More general versions of these routines are included with names
beginning with w, allowing you to specify a window. The routines
not beginning with w usually affect stdscr.) Then refresh() is
called, telling the routines to make the user's terminal screen look
like stdscr. The characters in a window are actually of type
chtype, so that other information about the character may also
be stored with each character.

Special windows called pads may also be manipulated. These are
windows which are not constrained to the size of the screen and
whose contents need not be displayed completely. See the descrip­
tion of newpad() under "Window and Pad Manipulation" for
more information.

In addition to drawing characters on the screen, video attributes
may be included which cause the characters to show up in modes
such as underlined or in reverse video on terminals that support
such display enhancements. Line drawing characters may be
specified to be output. On input, curses is also able to translate
arrow and function keys that transmit escape sequences into sin­
gle values. The video attributes, line drawing characters, and
input values use names, defined in <curses.h>, such as
A_REVERSE, ACS_HLINE, and KEY_LEFT.

curses also defines the WINDOW * variable, curscr, which is used
only for certain low-level operations like clearing and redrawing a
garbaged screen. curscr can be used in only a few routines. If
the window argument to clearok() is curscr, the next call to
wrefresh() with any window will cause the screen to be cleared
and repainted from scratch. If the window argument to
wrefresh() is curscr, the screen in immediately cleared and
repainted from scratch. This is how most programs would imple­
ment a "repaint-screen" function. More information on using
curscr is provided where its use is appropriate.

The environment variables LINES and COLUMNS may be set to
override terminfo's idea of how large a screen is. These may be
used in an AT&T Teletype 5620 layer, for example, where the size
of a screen is changeable.

If the environment variable TERM INFO is defined, any program
using curses will check for a local terminal definition before check­
ing in the standard place. For example, if the environment vari­
able TERM is set to att4425, then the compiled terminal defini­
tion is found in /usr/lib/terminjo/a/att4425. (The a is copied
from the first letter of att4425 to avoid creation of huge direc­
tories.) However, if TERMINFO is set to $HOME/myterms, curses
will first check $HOME/myterms/a/att4425 , and, if that fails, will
then check /usr/lib/terminjo/a/att4425. This is useful for
developing experimental definitions or when write permission on
lusrlliblterminjo is not available.

- 6 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

The integer variables LINES and COLS are defined in
<curses.h>, and will be filled in by initscr() with the size of the
screen. (For more information, see the subsection "Terminfo­
Level Manipulations".) The constants TRUE and FALSE have the
values 1 and 0, respectively. The constants ERR and OK are
returned by routines to indicate whether the routine successfully
completed. These constants are also defined in <curses.h>.

ROUTINES
Many of the following routines have two or more versions. The
routines prefixed with w require a window argument. The rou­
tines prefixed with p require a pad argument. Those without a
prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to
move to before performing the appropriate action. The mv() rou­
tines imply a call to move() before the call to the other routine.
The window argument is always specified before the coordinates.
y always refers to the row (of the window), and x always refers to
the column. The upper left corner is always (0,0), not (1,1). The
routines prefixed with mvw take both a window argument and y
and x coordinates.

In each case, win is the window affected and pad is the pad
affected. (win and pad are always of type WINDOW *.) Option­
setting routines require a boolean flag bf with the value TRUE or
FALSE. (bf is always of type bool.) The types WINDOW, bool,
and chtype are defined in <curses.h>. See the SYNOPSIS for a
summary of what types all variables are.

All routines return either the integer ERR or the integer OK,
unless otherwise noted. Routines that return pointers always
return NULL on error.

Overall Screen Manipulation
WINDOW *initscr()

The first routine called should almost always
be initscr(). (The exceptions are
slk_init(), filter(), and ripoffline().) This
will determine the terminal type and initial­
ize all curses data structures. initscr() also
arranges that the first call to refresh() will
clear the screen. If errors occur, initscr()
will write an appropriate error message to
standard error and exit; otherwise, a pointer
to stdscr is returned. If the program wants
an indication of error conditions,
newterm() should be used instead of
initscr(). initscr() should only be called
once per application.

- 7 -

CURSH:S(3X)

endwin()

(Terminal Information Utilities) CURSES(3X)

A program should always call endwin()
before exiting or escaping from curses mode
temporarily, to do a shell escape or
system(3S) call, for example. This routine
will restore tty(7) modes, move the cursor to
the lower left corner of the screen and reset
the terminal into the proper non-visual
mode. To resume after a temporary escape,
call wrefresh() or doupdate().

isendwin() Returns TRUE if endwin() has been called
without any subsequent calls to wrefresh().

SCREEN *newterm(type, outfd, infd)
A program that outputs to more than one
terminal must use newterm() for each ter­
minal instead of initscr(). A program that
wants an indication of error conditions, so
that it may continue to run in a line-oriented
mode if the terminal cannot support a
screen-oriented program, must also use this
routine. newterm() should be called once
for each terminal. I t returns a variable of
type SCREEN* that should be saved as a
reference to that terminal. The arguments
are the type of the terminal to be used in
place of the environment variable TERM;
outfd, a stdio(3S) file pointer for output to
the terminal; and infd, another file pointer
for input from the terminal. When it is done
running, the program must also call
endwin() for each terminal being used. If
newterm() is called more than once for the
same terminal, the first terminal referred to
must be the last one for which endwin() is
called.

SCREEN *set_term(new)
This routine is used to switch between dif­
ferent terminals. The screen reference new
becomes the new current terminal. A pointer
to the screen of the previous terminal is
returned by the routine. This is the only
routine which manipulates SCREEN
pointers; all other routines affect only the
current terminal.

Window and Pad Manipulation
refresh()
wrefresh (win) These routines (or prefresh(),

pnoutrefresh(), wnoutrefresh(), or
doupdate()) must be called to write output
to the terminal, as most other routines
merely manipulate data structures.
wrefresh() copies the named window to the
physical terminal screen, taking into account

- 8 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

what is already there in order to minimize
the amount of information that's sent to the
terminal (called optimization). refresh()
does the same thing, except it uses stdscr as
a default window. Unless leaveok() has
been enabled, the physical cursor of the ter­
minal is left at the location of the window's
cursor. The number of characters output to
the terminal is returned.

Note that refresh() is a macro.

wnou trefresh(win)
doupdate() These two routines allow multiple updates to

the physical terminal screen with more effi­
ciency than wrefresh() alone. How this is
accomplished is described in the next para­
graph.

curses keeps two data structures representing
the terminal screen: a physical terminal
screen, describing what is actually on the
screen, and a virtual terminal screen,
describing what the programmer wants to
have on the screen. wrefresh() works by
first calling wnoutrefresh(), which copys
the named window to the virtual screen, and
then by calling doupdate(), which compares
the virtual screen to the physical screen and
does the actual update. If the programmer
wishes to output several windows at once, a
series of calls to wrefresh() will result in
alternating calls to wnoutrefresh() and
doupdate(), causing several bursts of out­
put to the screen. By first calling
wnoutrefresh() for each window, it is then
possible to call doupdate() once, resulting
in only one burst of output, with probably
fewer total characters transmitted and cer­
tainly less processor time used.

WINDOW *newwin(nlines, ncols, beginJ, begin_x)
Create and return a pointer to a new window
with the given number of lines (or rows),
nlines, and columns, ncols. The upper left
corner of the window is at line begin_y,
column begin_x. If either nlines or ncols is
0, they will be set to the value of
lines-begin_y and cols-begin_x. A new
full-screen window is created by calling
newwin(O,O,O,O).

mvwin(win, y, x) Move the window so that the upper left
corner will be at position (y, x). If the move
would cause the window to be off the screen,
it is an error and the window is not moved.

- 9 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

WINDOW *subwin(orig, nlines, ncols, begin-y, begin_x)
Create and return a pointer to a new window
with the given number of lines (or rows),
nlines, and columns, ncols. The window is at
position (begin_y, begin_x) on the screen.
(This position is relative to the screen, and
not to the window orig.) The window is
made in the middle of the window orig, so
that changes made to one window will affect
both windows. When using this routine,
often it will be necessary to call touchwin()
or touchline() on orig before calling
wrefresh().

delwin(win) Delete the named window, freeing up all
memory associated with it. In the case of
overlapping windows, subwindows should be
deleted before the main window.

WINDOW *newpad(nlines, ncols)
Create and return a pointer to a new pad
data structure with the given number of lines
(or rows), nlines, and columns, ncols. A pad
is a window that is not restricted by the
screen size and is not necessarily associated
with a particular part of the screen. Pads
can be used when a large window is needed,
and only a part of the window will be on the
screen at one time. Automatic refreshes of
pads (e.g. from scrolling or echoing of input)
do not occur. It is not legal to call
wrefresh() with a pad as an argument; the
routines prefresh() or pnoutrefresh()
should be called instead. Note that these
routines require additional parameters to
specify the part of the pad to be displayed
and the location on the screen to be used for
display.

WINDOW *subpad(orig, nlines, ncols, begin-y, begin_x)
Create and return a pointer to a subwindow
within a pad with the given number of lines
(or rows), nlines, and columns, ncols. Unlike
subwin(), which uses screen coordinates,
the window is at position (begin_y, begin_x)
on the pad. The window is made in the mid­
dle of the window orig, so that changes made
to one window will affect both windows.
When using this routine, often it will be
necessary to call touchwin() or touch­
line() on orig before calling prefresh().

- 10 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol:
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow,

smaxcol)" These routines are analogous to
wrefresh() and wnoutrefresh() except
that pads, instead of windows, are involved.

Output

The additional parameters are needed to
indicate what part of the pad and screen are
involved. pminrow and pmincol specify the
upper left corner, in the pad, of the rectangle
to be displayed. sminrow, smincol, smaxrow,
and smaxcol specify the edges, on the screen,
of the rectangle to be displayed in. The
lower right corner in the pad of the rectangle
to be displayed is calculated from the screen
coordinates, since the rectangles must be the
same size. Both rectangles must be entirely
contained within their respective structures.
Negative values of pminrow, pmincol, smin­
row, or smincol are treated as if they were
zero.

These routines are used to "draw" text on windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

The character ch is put into the window at
the current cursor position of the window
and the position of the window cursor is
advanced. Its function is similar to that of
putchar (see putc(3S». At the right margin,
an automatic newline is performed. At the
bottom of the scrolling region, if scrollok()
is enabled, the scrolling region will be
scrolled up one line.

If ch is a tab, newline, or backspace, the cur­
sor will be moved appropriately within the
window. A newline also does a clrtoeol()
before moving. Tabs are considered to be at
every eighth column. If ch is another control
character, it will be drawn in the AX nota­
tion. (Calling winchO after adding a con­
trol character will not return the control
character, but instead will return the
representation of the control character.)

Video attributes can be combined with a
character by or-ing them into the parameter.
This will result in these attributes also being
set. (The intent here is that text, including
attributes, can be copied from one place to
another using inch() and addch().) See
standout(), below.

- 11 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

echochar(ch)
wechochar(win, ch)

Note that ch is actually of type chtype, not
a character.

Note that addch(), mvaddch(), and
mvwaddch(), are macros.

pechochar(pad, ch) These routines are functionally equivalent to
a call to addch(ch) followed by a call to
refresh(), a call to waddch(win, ch) fol­
lowed by a call to wrefresh(win), or a call
to waddch(pad, ch) followed by a call to
prefresh(pad). The knowledge that only a
single character is being output is taken into
consideration and, for non-control charac­
ters, a considerable performance gain can be
seen by using these routines instead of their
equivalents. In the case of pechochar(),
the last location of the pad on the screen is
reused for the arguments to prefresh().

addstr(str)

Note that ch is actually of type chtype, not
a character.

Note that echochar() is a macro.

waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str) These routines write all the characters of the

null-terminated character string str on the
given window. This is equivalent to calling
waddch() once for each character in the
string.

a ttroff(a ttrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)
standout()
wstandout(win)

Note that addstr(), mvaddstr(), and
mvwaddstr() are macros.

These routines manipulate the current attri­
butes of the named window. These attributes
can be any combination of A_STANDOUT,
A_REVERSE, A_BOLD, A_DIM, A_BLINK,
A_UNDERLINE, and A_ALTCHARSET.
These constants are defined in <curses.h>
and can be combined with the C logical OR (I
) operator.

- 12 -

CURSES(3X)

beep()
flash()

(Terminal Information Utilities) CURSES(3X)

The current attributes of a window are
applied to all characters that are written
into the window with waddch(). Attributes
are a property of the character, and move
with the character through any scrolling and
insert/delete line/character operations. To
the extent possible on the particular termi­
nal, they will be displayed as the graphic
rendition of the characters put on the screen.

attrset(attrs) ,sets the current attributes of
the given window to attrs. attroff(attrs)
turns off the named attributes without turn­
ing on or off any other attributes.
attron(attrs) turns on the named attributes
without affecting any others. standout() is
the same as attron(A_STANDOUT). stan­
dend() is the same as attrset (0), that is,
it turns off all attributes.

Note that attrs is actually of type chtype,
not a character.

Note that attroff(), attron(), attrset(),
standend(), and standout() are macros.

These routines are used to signal the termi­
nal user. beep() will sound the audible
alarm on the terminal, if possible, and if not,
will flash the screen (visible bell), if that is
possible. flash() will flash the screen, and if
that is not possible, will sound the audible
signal. If neither signal is possible, nothing
will happen. Nearly all terminals have an
audible signal (bell or beep) but only some
can flash the screen.

box (win, vertch, horch)

erase()
werase(win)

A box is drawn around the edge of the win­
dow, win. vertch and horch are the charac­
ters the box is to be drawn with. If vertch
and horch are 0, then appropriate default
characters, ACS_ VLINE and ACS_HLINE,
will be used.

Note that vertch and horch are actually of
type chtype, not characters.

These routines copy blanks to every position
in the window.

Note that erase() is a macro.

- 13 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

clear()
wclear(win)

clrtobot()
wclrtobot(win)

clrtoeol()
wclrtoeol(win)

These routines are like erase() and
werase(), but they also call clearok(),
arranging that the screen will be cleared
completely on the next call to wrefresh()
for that window, and repainted from scratch.

Note that clear() is a macro.

All lines below the cursor in this window are
erased. Also, the current line to the right of
the cursor, inclusive, is erased.

Note that clrtobot() is a macro.

The current line to the right of the cursor,
inclusive, is erased.

Note that clrtoeol() is a macro.

delay _output(ms) Insert a ms millisecond pause in the output.
It is not recommended that this routine be
used extensively, because padding characters
are used rather than a processor pause.

delch()
wdelch(win)
mvdelch(y, x)
mvwdelch(win, y, x)

deleteln()
wdeleteln(win)

getyx(win, y, x)

The character under the cursor in the win­
dow is deleted. All characters to the right on
the same line are moved to the left one posi­
tion and the last character on the line is
filled with a blank. The cursor position does
not change (after moving to (y, x), if speci­
fied). (This does not imply use of the
hardware "delete-character" feature.)

Note that delch(), mvdelch(), and
mvwdelch() are macros.

The line under the cursor in the window is
deleted. All lines below the current line are
moved up one line. The bottom line of the
window is cleared. The cursor position does
not change. (This does not imply use of the
hardware "delete-line" feature.)

Note that deleteln() is a macro.

The cursor position of the window is placed
in the two integer variables y and x. This is
implemented as a macro, so no "&" is neces­
sary before the variables.

- 14 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

getbegyx(win, y, x)
getmaxyx(win, y, x)

insch(ch)

Like getyx(), these routines store the
current beginning coordinates and size of the
specified window.

Note that getbegyx() and getmaxyx() are
macros.

winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch(y, x, ch) The character ch is inserted before the char­

acter under the cursor. All characters to the
right are moved one space to the right, possi­
bly losing the rightmost character of the
line. The cursor position does not change
(after moving to (y, x), if specified). (This
does not imply use of the hardware "insert­
character" feature.)

insertln()
winsertln(win)

move(y, x)
wmove(win, y, x)

Note that ch is actually of type chtype, not
a character.

Note that insch(), mvinsch(), and
mvwinsch() are macros.

A blank line is inserted above the current
line and the bottom line is lost. (This does
not imply use of the hardware "insert-line"
feature.)

Note that insertln() is a macro.

The cursor associated with the window is
moved to line (row) y, column x. This does
not move the physical cursor of the terminal
until refresh() is called. The position speci­
fied is relative to the upper left corner of the
window, which is (0, 0).

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay srcwin on top of
dstwin; that is, all text in srcwin is copied
into dstwin. scrwin and dstwin need not be
the same size; only text where the two win­
dows overlap is copied. The difference is
that overlay() is non-destructive (blanks
are not copied), while overwrite() is des­
tructive.

- 15 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,
dmaxrow, dmaxcol, overlay)
This routine provides a finer grain of control
over the overlayC) and overwrite() rou­
tines. Like in the prefresh() routine, a rec­
tangle is specified in the destination window,
(dminrow, dmincol) and (dmaxrow, dmax­
col), and the upper-left-corner coordinates of
the source window, (sminrow, smincol). If
the argument overlay is true, then copying is
non-destructive, as in overlay().

printw(fmt [, arg ...])
wprintw(win, fmt [, arg ...])
mvprintw(y, x, fmt [, arg ...])
mvwpr.ntw(win, y, x, fmt [, arg ... J)

These routines are analogous to printf(3).
The string which would be output by
printf(3) is instead output using waddstr()
on the given window.

vwprintw(win, fmt, varglist)

scroll(win)

This routine corresponds to vfprintf(3S). It
performs a wprintw() using a variable
argument list. The third argument is a
va_list, a pointer to a list of arguments, as
defined in <varargs.h>. See the
vprintf(3S) and varargs(5) manual pages for
a detailed description on how to use variable
argument lists.

The window is scrolled up one line. This
involves moving the lines in the window data
structure. As an optimization, if the window
is stdscr and the scrolling region is the
entire window, the physical screen will be
scrolled at the same time.

touchwin(win)
touchline(win, start, count)

Throwaway all optimization information
about which parts of the window have been
touched, by pretending that the entire win­
dow has been drawn on. This is sometimes
necessary when using overlapping windows,
since a change to one window will affect the
other window, but the records of which lines
have been changed in the other window will
not reflect the change. touchline() only
pretends that count lines have been changed,
beginning with line start .

- 16 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Input
getch()
wgetch(win)
mvgetch(y, x)
mvwgetch(win, y, x)

A character is read from the terminal associ­
ated with the window. In NODELA Y mode, if
there is no input waiting, the value ERR is
returned. In DELAY mode, the program will
hang until the system passes text through to
the program. Depending on the setting of
cbreak(), this will be after one character
(CBREAK mode), or after the first newline
(NOCBREAK mode). In HALF-DELAY mode,
the program will hang until a character is
typed or the specified timeout has been
reached. Unless noecho() has been set, the
character will also be echoed into the desig­
nated window. No refresh() will occur
between the move() and the getch() done
within the routines mvgetch() and
mvwgetch().

When using getch(), wgetch(),
mvgetch(), or mvwgetch(), do not set
both NOCBREAK mode (nocbreak()) and
ECHO mode (echo()) at the same time.
Depending on the state of the tty(7) driver
when each character is typed, the program
may produce undesirable results.

If keypad(win, TRUE) has been called, and
a function key is pressed, the token for that
function key will be returned instead of the
raw characters. (See keypad() under
"Input Options Setting.") Possible function
keys are defined in <curses.h> with
integers beginning with 0401, whose names
begin with KEY_. If a character is received
that could be the beginning of a function key
(such as escape), curses will set a timer. If
the remainder of the sequence is not received
within the designated time, the character
will be passed through, otherwise the func­
tion key value will be returned. For this rea­
son, on many terminals, there will be a delay
after a user presses the escape key before the
escape is returned to the program. (Use by a
programmer of the escape key for a single
character routine is discouraged. Also see
notimeout() below.)

Note that getch(), mvgetch(), and
mvwgetch() are macros.

- 17 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

getstr(str)
wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

A series of calls to getch() is made, until a
newline, carriage return, or enter key is
received. The resulting value is placed in the
area pointed at by the character pointer str.
The user's erase and kill characters are
interpreted. As in mvgetch(), no
refresh() is done between the move() and
getstr() within the routines mvgetstr()
and mvwgetstr().

Note that getstr(), mvgetstr(), and
mvwgetstr() are macros.

flushinpO Throws away any typeahead that has been
typed by the user and has not yet been read
by the program.

ungetch(c) Place c back onto the input queue to be
returned by the next call to wgetchO.

inch()
winch(win)
mvinch(y, x)
mvwinch(win, y, x) The character, of type chtype, at the

current position in the named window is
returned. If any attributes are set for that
position, their values will be OR'ed into the
value returned. The predefined constants
A_CHARTEXT and A_ATTRIBUTES,
defined in <curses.h>, can be used with the
C logical AND (&) operator to extract the
character or attributes alone.

Note that inch(), winch(), mvinch(), and
m vwinch() are macros.

scanw(fmt [, aj'g .-.<])
wscaJlWtWill, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ... J)
mvwscanw(win, y, x, fmt [, arg ...])

These routines correspond to scanj(3S), as do
their arguments and return values.
wgetstr() is called on the window, and the
resulting line is used as input for the scan.

vwscanw(win, fmt, ap)
This routine is similar to vwprintw() above
in that performs a wscanw() using a vari­
able argument list. The third argument is a
va_list, a pointer to a list of arguments, as
defined in <varargs.h>. See the
vprintj(3S) and varargs(5) manual pages for
a detailed description on how to use variable
argument lists.

- 18 -

CURSES(3X) (Terminal Information Utili ties) CURSES(3X)

Output Options Setting
These routines set options within curses that deal with output. All
options are initially FALSE, unless otherwise stated. It is not
necessary to turn these options off before calling endwin().

clearok(win, bf)

idlok(win, bf)

leaveok(win, bf)

If enabled (bj is TRUE), the next call to
wrefresh() with this window will clear the
screen completely and redraw the entire
screen from scratch. This is useful when the
contents of the screen are uncertain, or in
some cases for a more pleasing visual effect.

If enabled (bj is TRUE), curses will consider
using the hardware "insert/delete-line"
feature of terminals so equipped. If disabled
(bj is FALSE), curses will very seldom use
this feature. (The "insert/ delete-character"
feature is always considered.) This option
should be enabled only if your application
needs "insert/delete-line", for example, for a
screen editor. It is disabled by default
because "insert/delete-line" tends to be visu­
ally annoying when used in applications
where it isn't really needed. If
"insert/ delete-line" cannot be used, curses
will redraw the changed portions of all lines.

Normally, the hardware cursor is left at the
location of the window cursor being
refreshed. This option allows the cursor to
be left wherever the update happens to leave
it. It is useful for applications where the
cursor is not used, since it reduces the need
for cursor motions. If possible, the cursor is
made invisible when this option is enabled.

setscrreg(top, bot)
wsetscrreg(win, top, bot)

These routines allow the user to set a
software scrolling region in a window. top
and bot are the line numbers of the top and
bottom margin of the scrolling region. (Line
o is the top line of the window.) If this
option and scrollok() are enabled, an
attempt to move off the bottom margin line
will cause all lines in the scrolling region to
scroll up one line. (Note that this has noth­
ing to do with use of a physical scrolling
region capability in the terminal, like that in
the DEC VT100. Only the text of the window
is scrolled; if idlok() is enabled and the ter­
minal has either a scrolling region or
"insert/delete-line" capability, they will
probably be used by the output routines.)

Note that setscrreg() and wsetscrreg()
are macros.

- 19 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

scrollok(win, bf)

nl()
nonl()

Input Options Setting

This option controls what happens when the
cursor of a window is moved off the edge of
the window or scrolling region, either from a
newline on the bottom line, or typing the last
character of the last line. If disabled (bf is
FALSE), the cursor is left on the bottom line
at the location where the offending character
was entered. If enabled (bf is TRUE),
wrefresh() is called on the window, and
then the physical terminal and window are
scrolled up one line. (Note that in order to
get the physical scrolling effect on the termi­
nal, it is also necessary to call idlok().)

These routines control whether newline is
translated into carriage return and linefeed
on output, and whether return is translated
into newline on input. Initially, the transla­
tions do occur. By disabling these transla­
tions using nonl(), curses is able to make
better use of the linefeed capability, resulting
in faster cursor motion.

These routines set options within curses that deal with input. The
options involve using ioctl(2) and therefore interact with curses
routines. It is not necessary to turn these options off before cal­
ling endwin().

For more information on these options, see Chapter 10 of the
Programmer's Guide.

cbreak()
nocbreak() These two routines put the terminal into and

out of CBREAK mode, respectively. In
CBREAK mode, characters typed by the user
are immediately available to the program
and erase/kill character processing is not
performed. When in NOCBREAK mode, the
tty driver will buffer characters typed until a
newline or carriage return is typed. Inter­
rupt and flow-control characters are unaf­
fected by this mode (see termio(7)). Initially
the terminal mayor may not be in CBREAK
mode, as it is inherited, therefore, a program
should call cbreak() or nocbreak() expli­
citly. Most interactive programs using
curses will set CBREAK mode.

Note that cbreak() overrides raw(). See
getch() under "Input" for a discussion of
how these routines interact with echo() and
noecho().

- 20 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

echo()
noecho()

halfdelay(tenths)

intrflush(win, bf)

keypad(win, bf)

meta(win, bf)

These routines control whether characters
typed by the user are echoed by getch() as
they are typed. Echoing by the tty driver is
always disabled, but initially getch() is in
ECHO mode, so characters typed are echoed.
Authors of most interactive programs prefer
to do their own echoing in a controlled area
of the screen, or not to echo at all, so they
disable echoing by calling noecho(). See
getch() under "Input" for a discussion of
how these routines interact with cbreak()
and nocbreak().

Half-delay mode is similar to CBREAK mode
in that characters typed by the user are
immediately available to the program. How­
ever, after blocking for tenths tenths of
seconds, ERR will be returned if nothing has
been typed. tenths must be a number
between 1 and 255. Use nocbreak() to
leave half-delay mode.

If this option is enabled, when an interrupt
key is pressed on the keyboard (interrupt,
break, quit) all output in the tty driver queue
will be flushed, giving the effect of faster
response to the interrupt, but causing curses
to have the wrong idea of what is on the
screen. Disabling the option prevents the
flush. The default for the option is inherited
from the tty driver settings. The window
argument is ignored.

This option enables the keypad of the user's
terminal. If enabled, the user can press a
function key (such as an arrow key) and
wgetch() will return a single value
representing the function key, as in
KEY_LEFT. If disabled, curses will not
treat function keys specially and the pro­
gram would have to interpret the escape
sequences itself. If the keypad in the termi­
nal can be turned on (made to transmit) and
off (made to work locally), turning on this
option will cause the terminal keypad to be
turned on when wgetch() is called.

If enabled, characters returned by wgetch()
are transmitted with all 8 bits, instead of
with the highest bit stripped. In order for
meta() to work correctly, the km
(has_meta_key) capability has to be specified
in the terminal's terminfo(4) entry.

- 21 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

nodelay(win, bf) This option causes wgetch() to be a non­
blocking call. If no input is ready, wgetch()
will return ERR. If disabled, wgetch() will
hang until a key is pressed.

notimeout(win, bf) While interpreting an input escape sequence,
wgetch() will set a timer while waiting for
the next character. If notimeout(win,
TRUE) is called, then wgetch() will not set
a timer. The purpose of the timeout is to
differentiate between sequences received
from a function key and those typed by a
user.

raw()
noraw() The terminal is placed into or out of raw

mode. RA W mode is similar to CBREAK
mode, in that characters typed are immedi­
ately passed through to the user program.
The differences are that in RAW mode, the
interrupt, quit, suspend, and flow control
characters are passed through uninterpreted,
instead of generating a signal. RAW mode
also causes 8-bit input and output. The
behavior of the BREAK key depends on other
bits in the tty(7) driver that are not set by
curses.

typeahead(fildes) curses does "line-breakout optimization" by
looking for typeahead periodically while
updating the screen. If input is found, and it
is coming from a tty, the current update will
be postponed until refresh() or doupdate()
is called again. This allows faster response
to commands typed in advance. Normally,
the file descriptor for the input FILE pointer
passed to newterm(), or stdin in the case
that initscr() was used, will be used to do
this typeahead checking. The typeahead()
routine specifies that the file descriptor
fildes is to be used to check for typeahead
instead. If fildes is -1, then no typeahead
checking will be done.

Environment Queries

Note that fildes is a file descriptor, not a
<stdio.h> FILE pointer.

baudrate() Returns the output speed of the terminal.
The number returned is in bits per second,
for example, 9600, and is an integer.

char erasechar() The user's current erase character IS

returned.

True if the terminal has insert- and delete­
character capabilities.

- 22 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

has_il() True if the terminal has insert- and delete­
line capabilities, or can simulate them using
scrolling regions. This might be used to
check to see if it would be appropriate to
turn on physical scrolling using scrollok().

char killchar() The user's current line-kill character is
returned.

char *longname() This routine returns a pointer to a static
area containing a verbose description of the
current terminal. The maximum length of a
verbose description is 128 characters. It is
defined only after the call to initscr() or
newterm(). The area is overwritten by
each call to newterm() and is not restored
by set_term(), so the value should be saved
between calls to newterm() if longname()
is going to be used with multiple terminals.

Soft Labels
If desired, curses will manipulate the set of soft function-key
labels that exist on many terminals. For those terminals that do
not have soft labels, if you want to simulate them, curses will take
over the bottom line of stdscr, reducing the size of stdscr and
the variable LINES. curses standardizes on 8 labels of 8 charac­
ters each.

slk_init(labfmt) In order to use soft labels, this routine must
be called before initscr() or newterm() is
called. If initscr() winds up using a line
from stdscr to emulate the soft labels, then
labfmt determines how the labels are
arranged on the screen. Setting labfmt to 0
indicates that the labels are to be arranged
in a 3-2-3 arrangement; 1 asks for a 4-4
arrangement.

slk_set(labnum, label, labfmt)

slk_refresh()

labnum is the label number, from 1 to 8.
label is the string to be put on the label, up
to 8 characters in length. A NULL string or
a NULL pointer will put up a blank label.
labfmt is one of 0, 1 or 2, to indicate
whether the label is to be left-justified, cen­
tered, or right-justified within the label.

slk_noutrefresh() These routines correspond to the routines
wrefresh() and wnoutrefresh(). Most
applications would use slk_noutrefresh()
because a wrefresh() will most likely soon
follow.

- 23 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

char *sIk_IabeI(labnum)

sIk_restore()

Low-Level curses Access

The current label for label number labnum,
with leading and trailing blanks stripped, is
returned.

The soft labels are cleared from the screen.

The soft labels are restored to the screen
after a slk_clear().

All of the soft labels are forced to be output
the next time a sIk_noutrefresh() is per­
formed.

The following routines give low-level access to various curses func­
tionality. These routines typically would be used inside of library
routines.

def_prog_mode()
def_sheII_mode() Save the current terminal modes as the "pro­

gram" (in curses) or "shell" (not in curses)
state for use by the reset_prog_mode()
and reset_sheII_mode() routines. This is
done automatically by initscr().

reset_prog_mode()
reset_sheII_mode()

resetty()
savetty()

getsyx(y, x)

Restore the terminal to "program" (in
curses) or "shell" (out of curses) state.
These are done automatically by endwin()
and doupdate() after an endwin(), so they
normally would not be called.

These routines save and restore the state of
the terminal modes. sa vetty() saves the
current state of the terminal in a buffer and
resetty() restores the state to what it was
at the last call to savetty().

The current coordinates of the virtual screen
cursor are returned in y and x. Like
getyx(), the variables y and x do not take
an "&" before them. If Ieaveok() is
currently TRUE, then -1,-1 will be
returned. If lines may have been removed
from the top of the screen using ripoffline()
and the values are to be used beyond just
passing them on to setsyx(), the value
y+stdscr-> _yoffset should be used for
those other uses.

Note that getsyx() is a macro.

- 24 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

setsyx(y, x)

ripoffline(line, init)

The virtual screen cursor is set to y, x. If y
and x are both -1, then leaveok() will be
set. The two routines getsyx() and set­
syx() are designed to be used by a library
routine which manipulates curses windows
but does not want to mess up the current
position of the program's cursor. The library
routine would call getsyx() at the begin­
ning, do its manipulation of its own windows,
do a wnoutrefresh() on its windows, call
setsyx(), and then call doupdate().

This routine provides access to the same
facility that slk_init() uses to reduce the
size of the screen. ripoffline() must be
called before initscr() or newterm() is
called. If line is positive, a line will be
removed from the top of stdscr; if negative,
a line will be removed from the bottom.
When this is done inside initscr(), the rou­
tine init() is called with two arguments: a
window pointer to the I-line window that has
been allocated and an integer with the
number of columns in the window. Inside
this initialization routine, the integer vari­
ables LINES and COLS (defined in
<curses.h» are not guaranteed to be accu­
rate and wrefresh() or doupdate() must
not be called. I t is allowable to call
wnoutrefresh() during the initialization
routine.

ripoffline() can be called up to five times
before calling initscr() or newterm().

scr_dump(filename)
The current contents of the virtual screen
are written to the file filename.

scr_restore(filename)
The virtual screen is set to the contents of
filename, which must have been written
using scr_dump(). The next call to doup­
date() will restore the screen to what it
looked like in the dump file.

scr_init(filename) The contents of filename are read in and
used to initialize the curses data structures
about what the terminal currently has on its
screen. If the data is determined to be valid,
curses will base its next update of the screen
on this information rather than clearing the
screen and starting from scratch. scr_init()
would be used after initscr() or a
system (3S) call to share the screen with
another process which has done a

- 25 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

scr_dump() after its endwin() call. The
data will be declared invalid if the time­
stamp of the tty is old or the terminfo(4)
capability nrrmc is true.

curs_set(visibility) The cursor is set to invisible, normal, or very
visible for visibility equal to 0, 1 or 2.

draino(ms) Wait until the output has drained enough
that it will only take ms more milliseconds to
drain completely.

garbagedlines(win, begline, numlines)
This routine indicates to curses that a screen
line is garbaged and should be thrown away
before having anything written over the top
of it. It could be used for programs such as
editors which want a command to redraw
just a single line. Such a command could be
used in cases where there is a noisy commun­
ications line and redrawing the entire screen
would be subject to even more communica­
tion noise. Just redrawing the single line
gives some semblance of hope that it would
show up unblemished. The current location
of the window is used to determine which
lines are to be redrawn.

napms(ms) Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to
deal directly with the terminfo(4) database to handle certain ter­
minal capabilities, such as programming function keys. For all
other functionality, curses routines are more suitable and their use
is recommended.

Initially, setupterm() should be called. (Note that setupterm()
is automatically called by initscr() and newterm().) This will
define the set of terminal-dependent variables defined in the ter­
minfo(4) database. The terminfo(4) variables lines and columns
(see terminfo(4» are initialized by setupterm() as follows: if the
environment variables LINES and COLUMNS exist, their values
are used. If the above environment variables do not exist and the
program is running in a layer (see layers(l», the size of the
current layer is used. Otherwise, the values for lines and
columns specified in the terminfo(4) database are used.

The header files <curses.h> and <term.h> should be included,
in this order, to get the definitions for these strings, numbers, and
flags. Parameterized strings should be passed through tparm()
to instantiate them. All terminfo(4) strings (including the output
of tparm(» should be printed with tputs() or putp(). Before
exiting, reset_shell_mode() should be called to restore the tty
modes. Programs which use cursor addressing should output
enter_ca_mode upon startup and should output exit_ca_mode
before exiting (see terminfo(4». (Programs desiring shell escapes
should call reset_shell_mode() and output exit_ca_mode

- 26 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

before the shell is called and should output enter_ca_mode and
call reset_prog_mode() after returning from the shell. Note
that this is different from the curses routines (see endwin()).

setupterm(term, fildes, errret)
Reads in the terminfo(4) database, initializ­
ing the terminfo(4) structures, but does not
set up the output virtualization structures
used by curses. The terminal type is in the
character string term; if term is NULL, the
environment variable TERM will be used.
All output is to the file descriptor fildes. If
errret is not NULL, then setupterm() will
return OK or ERR and store a status value
in the integer pointed to by errret. A status
of 1 in errret is normal, 0 means that the
terminal could not be found, and -1 means
that the terminfo(4) database could not be
found. If errret is NULL, setupterm() will
print an error message upon finding an error
and exit. Thus, the simplest call is setup­
term «char *)0, 1, (int *)0), which uses all
the defaults.

The terminfo(4) boolean, numeric and string
variables are stored in a structure of type
TERMINAL. After setupterm() returns
successfully, the variable cur_term (of type
TERMINAL *) is initialized with all of the
information that the terminfo(4) boolean,
numeric and string variables refer to. The
pointer may be saved before calling setup­
term() again. Further calls to setup­
term() will allocate new space rather than
reuse the space pointed to by cur_term.

set_curterm(nterm)

del_curterm(oterm)

nterm is of type TERM IN AL *
set_curterm() sets the variable cur_term
to nterm, and makes all of the terminfo(4)
boolean, numeric and string variables use the
values from nterm.

oterm is of type TERMIN AL *
del_curterm() frees the space pointed to by
oterm and makes it available for further use.
If oterm is the same as cur_term, then
references to any of the terminfo(4) boolean,
numeric and string variables thereafter may
refer to invalid memory locations until
another setupterm() has been called.

- 27 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

restartterm(term, fildes, errret)
Like setupterm() after a memory restore.

char *tparm(str, PI' P2' ... , P9)
Instantiate the string str with parms p.. A
pointer is returned to the result of str \vith
the parameters applied.

tputs(str, count, putc)
Apply padding to the string str and output it.
str must be a terminfo(4) string variable or
the return value from tparm(), tgetstr(),
tigetstr() or tgoto(). count is the number
of lines affected, or 1 if not applicable.
putcO is a putchar(3S)-like routine to which
the characters are passed, one at a time.

putp(str) A routine that calls tputs (str, 1,
putcharO)·

vidputs(attrs, put c) Output a string that puts the terminal in the
video attribute mode attrs, which is any com­
bination of the attributes listed below. The
characters are passed to the putchar(3S)-like
routine putc().

vida ttr(a ttrs) Like vidputs(), except that it outputs
through putchar(3S).

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

The following routines return the value of the capability
corresponding to the terminfo(4) capname passed to them, such as
xenl.

tigetflag(capname) The value -1 is returned if capname is not a
boolean capability.

tigetnum(capname) The value -2 is returned if capname is not a
numeric capability.

tigetstr(capname) The value (char *) -1 is returned if capname
is not a string capability.

char *boolnames[], *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *strnames[], *strcodes[], *strfnames[]

These null-terminated arrays contain the
capnames, the termcap codes, and the full C
names, for each of the terminfo(4) variables.

- 28 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Termcap Emulation
These routines are included as a conversion aid for programs that
use the termcap library. Their parameters are the same and the
routines are emulated using the terminfo(4) database.

tgetent(bp, name) Look up termcap entry for name. The emu­
lation ignores the buffer pointer bp.

tgetflag(codename) Get the boolean entry for codename.

tgetnum(codes) Get numeric entry for codename.

char *tgetstr(codename, area)
Return the string entry for codename. If
area is not NULL, then also store it in the
buffer pointed to by area and advance area.
tputs() should be used to output the
returned string.

char *tgoto(cap, col, row)
Instantiate the parameters into the given
capability. The output from this routine is
to be passed to tputs().

tputs(str, affcnt, putc)

Miscellaneous
traceoff()
traceon()

unctrl(c)

See tputs() above, under "Terminfo-Level
Manipulations" .

Turn off and on debugging trace output when
using the debug version of the curses library,
/usr/lib/libdcurses.a. This facility is avail­
able only to customers with a source license.

This macro expands to a character string
which is a printable representation of the
character c. Control characters are
displayed in the ~X notation. Printing char­
acters are displayed as is.

unctrl() is a macro, defined in <unctrl.h>,
which is automatically included by
<curses.h>.

char *keyname(c) A character string corresponding to the key c
is returned.

filter()

Use of curser

This routine is one of the few that is to be
called before initscr() or newterm() is
called. It arranges things so that curses
thinks that there is a l-line screen. curses
will not use any terminal capabilities that
assume that they know what line on the
screen the cursor is on.

The special window curser can be used in only a few routines. If
the window argument to clearok() is curser, the next call to
wrefresh() with any window will cause the screen to be cleared

- 29 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

and repainted from scratch. If the window argument to
wrefresh() is curscr, the screen is immediately cleared and
repainted from scratch. (This is how most programs would imple­
ment a "repaint-screen" routine.) The source window argument to
overlay(), overwrite(), and copywin() may be curscr, in
which case the current contents of the virtual terminal screen will
be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in pro­
grams written for older versions of the curses library. These rou­
tines are all emulated as indicated below.

crmode()

fixterm()

gettmode()

nocrmode()

resetterm()

saveterm()

setterm()

ATTRIBUTES

Replaced by cbreak().

Replaced by reset_prog_mode().

A no-op.

Replaced by nocbreak().

Replaced by reset_shell_mode().

Replaced by def_prog_mode().

Replaced by setupterm().

The following video attributes, defined in <curses.h>, can be
passed to the routines attron(), attroff(), and attrset(), or
OR'ed with the characters passed to addch().

A_STANDOUT Terminal's best highlighting mode
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set

Bit-mask to extract character (described under
winch())
Bit-mask to extract attributes (described under
winch())
Bit mask to reset all attributes off
(for example: attrset (A_NORMAL)

- 30 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

FUNCTION-KEYS
The following function keys, defined in <curses.h>, might be
returned by getch() if keypad() has been enabled. Note that
not all of these may be supported on a particular terminal if the
terminal does not transmit a unique code when the key is pressed
or the definition for the key is not present in the termin/o(4) data­
base.

Name Value Key name

KEY_BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys '"
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+left arrow)
KEY _BACKSP ACE 0407 backspace (unreliable)
KEY_FO 0410 Function keys. Space for 64 keys is

reserved.
KEY_F(n) (KEY_FO+(n)) Formula for f .
KEY_DL 0510 Delete line n
KEY_IL 0511 Insert line
KEY_DC 0512 Delete character
KEY_IC 0513 Insert char or enter insert mode
KEY_EIC 0514 Exi t insert char mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send
KEY_SRESET 0530 soft (partial) reset
KEY_RESET 0531 reset or hard reset
KEY_PRINT 0532 print or copy
KEY_LL 0533 home down or bottom (lower left)

keypad is arranged like this:
A1 up A3
left B2 right
C1 down C3

KEY_Al 0534 Upper left of keypad
KEY_A3 0535 Upper right of keypad
KEY_B2 0536 Center of keypad
KEY_Cl 0537 Lower left of keypad
KEY_C3 0540 Lower right of keypad
KEY_BTAB 0541 Back tab key
KEY_BEG 0542 beg(inning) key
KEY_CANCEL 0543 cancel key
KEY_CLOSE 0544 close key
KEY_COMMAND 0545 cmd (command) key

- 31 -

CURSES(3X)

KEY_COPY
KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY _MESSAG E
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY _SCANCEL
KEY _SCOMMAND
KEY_SCOPY
KEY _SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY _SOPTIONS
KEY _SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY _SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY _SUSPEND
KEY_UNDO

(Terminal Information Utilities) CURSES(3X)

0546
0547
0550
0551
0552
0553
0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616
0617
0620
0621
0622
0623
0624
0625
0626
0627
0630

- 32 -

copy key
create key
end key
exit key
find key
help key
mark key
message key
move key
next object key
open key
options key
previous object key
redo key
ref(erence) key
refresh key
replace key
restart key
resume key
save key
shifted beginning key
shifted cancel key
shifted command key
shifted copy key
shifted create key
shifted delete char key
shifted delete line key
select key
shifted end key
shifted clear line key
shifted exit key
shifted find key
shifted help key
shifted home key
shifted input key
shifted left arrow key
shifted message key
shifted move key
shifted next key
shifted options key
shifted prev key
shifted print key
shifted redo key
shifted replace key
shifted right arrow
shifted resume key
shifted save key
shifted suspend key
shifted undo key
suspend key
undo key

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

LINE GRAPHICS
The following variables may be used to add line-drawing charac­
ters to the screen with waddch(). When defined for the termi­
nal, the variable will have the A_ALTCHARSET bit turned on.
Otherwise, the default charcter listed below will be stored in the
variable. The names were chosen to be consistent with the DEC
VT100 nomenclature.

Name Default Glyph Description

ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee (~)
ACS_LTEE + left tee (~)
ACS_BTEE + bottom tee (..1)
ACS_TTEE + top tee (t)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUES
All routines return the integer OK upon successful completion and
the integer ERR upon failure, unless otherwise noted in the
preceding routine descriptions.

All macros return the value of their w version, except
setscrreg(), wsetscrreg(), getsyx(), getyx(), getbegy(),
getmaxyx(). For these macros, no useful value is returned.

Routines that return pointers always return (type *) NULL on
error.

- 33 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

BUGS
Currently typeahead checking is done using a nodelay read fol­
lowed by an ungetch() of any character that may have been read.
Typeahead checking is done only if wgetch() has been called at
least once. This will be changed when proper kernel support is
available. Programs which use a mixture of their own input rou­
tines with curses input routines may wish to call typeahead(-1)
to turn off typeahead checking.

The argument to napms() is currently rounded up to the nearest
second.

draino (ms) only works for ms equal to O.

WARNINGS
To use the new curses features, use the Release 3.0 version of
curses on UNIX System Release 3.0. All programs that ran with
System V Release 2 curses will run with System V Release 3.0.
You may link applications with object files based on the Release 2
curses/terminfo with the Release 3.0 'libcurses.a library. You may
link applications with object files based on the Release 3.0
curses/termiryifo with the Release 2 libcurses.a library, so long as
the application does not use the new features in the Release 3.0
curses/termiryifo.

The plotting library plot(3X) and the curses library curses(3X)
both use the names erase() and move(). The curses versions are
macros. If you need both libraries, put the plot(3X) code in a dif­
ferent source file than the curses(3X) code, and/or #undef
move() and erase() in the plot(3X) code.

Between the time a call to initscr() and endwin() has been
issued, use only the routines in the curses library to generate out­
put. Using system calls or the "standard 110 package" (see
stdio(3S)) for output during that time can cause unpredictable
results.

SEE ALSO
cc(I), Id(I), ioctl(2), plot(3X), putc(3S), scanf(3S), stdio(3S),
system(3S), vprintf(3S), profile(4), term(4), terminfo(4), varargs(5).
termio(7), tty(7) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

- 34 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

NAME
infocmp - compare or print out terminfo descriptions

SYNOPSIS
infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u] [-s
dlilllc] [-v] [-V] [-1] [-w width] [-A directory] [-B direc­
tory] [termname ..]

DESCRIPTION
in/ocmp can be used to compare a binary terminfo(4) entry with
other terminfo entries, rewrite a terminfo(4) description to take
advantage of the use= terminfo field, or print out a terminfo(4)
description from the binary file (term(4)) in a variety of formats.
In all cases, the boolean fields will be printed first, followed by the
numeric fields, followed by the string fields.

Default Options
If no options are ~pecified and zero or one termnames are speci­
fied, the -I option will be assumed. If more than one termname is
specified, the -d option will be assumed.

Comparison Options [-d) [-c) [-n]
infocmp compares the terminfo(4) description of the first terminal
termname with each of the descriptions given by the entries for
the other terminal's termnames. If a capability is defined for only
one of the terminal s, the value returned will depend on the type of
the capability: F fi)r boolean variables, -1 for integer variables,
and NULL for strillg variables.

-d produce a tist of each capability that is different. In this
manner, if one has two entries for the same terminal or
similar terminals, using infocmp will show what is dif­
ferent between the two entries. This is sometimes neces­
sary when more than one person produces an entry for
the same terminal and one wants to see what is different
between the two.

-c produce a list of each capability that is common between
the two en tries. Capabilities that are not set are ignored.
This optiOll can be used as a quick check to see if the -u
option is worth using.

-n produce a list of each capability that is in neither entry.
If no termnames are given, the environment variable
TERM will be used for both of the termnames. This can
be used as a quick check to see if anything was left out of
the description.

Source Listing Options [-I] [-L] [-C] [-r]
The -I, - L, and -C options will produce a source listing for each
terminal named.

-I use the terminfo(4) names

- L use the long C variable name listed in <term.h>

-C use the termcap names

-r when using -C, put out all capabilities in termcap form

- 1 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

If no termnames are given, the environment variable TERM will
be used for the terminal name.

The source produced by the -C option may be used directly as a
termcap entry, but not all of the parameterized strings may be
changed to the termcap format. infocmp will attempt to convert
most of the parameterized information, but that which it doesn't
will be plainly marked in the output and commented out. These
should be edited by hand.

All padding information for strings will be collected together and
placed at the beginning of the string where termcap expects it.
Mandatory padding (padding information with a trailing 'I') will
become optional.

All termcap variables no longer supported by terminfo(4), but
which are derivable from other terminfo(4) variables, will be out­
put. Not all terminfo(4) capabilities will be translated; only those
variables which were part of termcap will normally be output.
Specifying the -r option will take off this restriction, allowing all
capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the
capability, not all capabilities are output, mandatory padding is
not supported, and termcap strings were not as flexible, it is not
always possible to convert a terminfo(4) string capability into an
equivalent termcap format. Not all of these strings will be able to
be converted. A subsequent conversion of the termcap file back
into terminfo(4) format will not necessarily reproduce the original
terminfo(4) source.

Some common term info parameter sequences, their termcap
equivalents, and some terminal types which commonly have such
sequences, are:

Terminfo Termcap Representative Termim

%pl%c
%pl%d
%pl%'x'%+%c

%.
%d
%+x

%i %i
%pl % ?%'x'%>%t%pl%'y'%+%; %>xy
% p2 is printed before % pI % r

Use= Option [-u]

adm
hp, ANSI standard, vtlO
concept
ANSI standard, vt100
concept
hp

-u produce a terminfo(4) source description of the first ter­
minal termname which is relative to the sum of the
descriptions given by the entries for the other terminals
termnames. It does this by analyzing the differences
between the first termname and the other termnames and
producing a description with use= fields for the other
terminals. In this manner, it is possible to retrofit gen­
eric terminfo entries into a terminal's description. Or, if
two similar terminals exist, but were coded at different
times or by different people so that each description is a
full description, using infocmp will show what can be
done to change one description to be relative to the other.

- 2 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP (1M)

A capability will get printed with an at-sign (@) if it no longer
exists in the first termname, but one of the other termname
entries contains a value for it. A capability's value gets printed if
the value in the first termname is not found in any of the other
term name entries, or if the first of the other term name entries
that has this capability gives a different value for the capability
than that in the first termname.

The order of the other termname entries is significant. Since the
terminfo compiler tic(1M) does a left-to-right scan of the capabili­
ties, specifying two use= entries that contain differing entries for
the same capabilities will produce different results depending on
the order that the entries are given in. infocmp will flag any such
inconsistencies between the other termname entries as they are
found.

Alternatively, specifying a capability after a use= entry that con­
tains that capability will cause the second specification to be
ignored. Using infocmp to recreate a description can be a useful
check to make sure that everything was specified correctly in the
original source description.

Another error that does not cause incorrect compiled files, but will
slow down the compilation time, is specifying extra use= fields
that are superfluous. infocmp will flag any other termname use=
fields that were not needed.

Other Options [-s dlilllc] [-v] [-V] [-1] [-w width]
-s sort the fields within each type according to the argument

below:

d leave fields in the order that they are stored in the
terminfo database.

sort by term info name.

sort by the long C variable name.

c sort by the termcap name.

If no -s option is given, the fields printed out will be
sorted alphabetically by the terminfo name within each
type, except in the case of the -C or the - L options,
which cause the sorting to be done by the termcap name
or the long C variable name, respectively.

-v print out tracing information on standard error as the
program runs.

-V print out the version of the program in use on standard
error and exit.

-1 cause the fields to printed out one to a line. Otherwise,
the fields will be printed several to a line to a maximum
width of 60 characters.

-w change the output to width characters.

Changing Databases [-A directory] [-B directory]
The location of the compiled terminfo(4) database is taken from
the environment variable TERMINFO. If the variable is not
defined, or the terminal is not found in that location, the system

- 3 -

INFOCMP (1M) (Terminal Information Utilities) INFOCMP(1M)

FILES

terminfo(4) database, usually in /usl'/lib/terminfo, will be used.
The options -A and - B may be used to override this location.
The -A option will set TERM INFO for the first termname and
the -B option will set TERM INFO for the other termnames.
With this, it is possible to compare descriptions for a terminal
with the same name located in two different databases. This is
useful for comparing descriptions for the same terminal created by
different people. Otherwise the terminals would have to be named
differently in the terminfo(4) database for a comparison to be
made.

/usr/lib/terminfo/?/* compiled terminal description database

DIAGNOSTICS
malloc is out of space!

There was not enough memory available to pro­
cess all the terminal descriptions requested. Run
infocmp several times, each time including a sub­
set of the desired term names.

use= order dependency found:
A value specified in one relative terminal specifi­
cation was different from that in another relative
terminal specification.

'use=term' did not add anything to the description.
A relative terminal name did not contribute any­
thing to the final description.

must have at least two terminal names for a comparison to be done.
The -U, -d and -c options require at least two
terminal names.

SEE ALSO

NOTE

tic(1M), curses(3X), term(4), terminfo(4) in the Programmer's
Reference Manual.
captoinfo(1M) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

The termcap database (from earlier releases of UNIX System V)
may not be supplied in future releases.

- 4 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
lusr/lib/terminfol? 1*

DESCRIPTION
terminfo is a compiled database (see tic(lM)) describing the capa­
bilities of terminals. Terminals are described in terminfo source
descriptions by giving a set of capabilities which they have, by
describing how operations are performed, by describing padding
requirements, and by specifying initialization sequences. This
database is used by applications programs, such as vi(l) and
curses(3X), so they can work with a variety of terminals without
changes to the programs. To obtain the source description for a
terminal, use the -I option of infocmp(lM).

Entries in terminfo source files consist of a number of comma­
separated fields. White space after each comma is ignored. The
first line of each terminal description in the terminfo database
gives the name by which terminfo knows the terminal, separated
by bar (I) characters. The first name given is the most common
abbreviation for the terminal (this is the one to use to set the
environment variable TERM in $HOME/.profile; see profile(4)), the
last name given should be a long name fully identifying the termi­
nal, and all others are understood as synonyms for the terminal
name. All names but the last should contain no blanks and must
be unique in the first 14 characters; the last name may contain
blanks for readability.

Terminal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece of
hardware making up the terminal should have a root name chosen,
for example, for the AT&T 4425 terminal, att4425. Modes that
the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. See term(5) for
examples and more information on choosing names and synonyms.

CAP ABILITIES
In the table below, the Variable is the name by which the C pro­
grammer (at the terminfo level) accesses the capability. The Cap­
name is the short name for this variable used in the text of the
database. It is used by a person updating the database and by the
tput(l) command when asking what the value of the capability is
for a particular terminal. The Termcap Code is a two-letter
code that corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit
of 5 characters has been adopted to keep them short. Whenever
possible, names are chosen to be the same as or similar to the
ANSI X3.64-1979 standard. Semantics are also intended to match
those of the specification.

All string capabilities listed below may have padding specified,
with the exception of those used for input. Input capabilities,
listed under the Strings section in the table below, have names
beginning with key _. The following indicators may appear at the
end of the Description for a variable.

- 1 -

TERM INFO (4) (Terminal Information Utilities) TERMINFO (4)

(G) indicates that the string is passed through tparmO with
parameters (parms) as given (# /

(*) indicates that padding may be based on the number of
lines affected.

(#) . d· h ·th i III lcates t e ~ parameter.

Variable Cap- Termcap Description
name Code

Booleans:
auto_left_margin bw bw cub! wraps from column 0 to last

column
auto_righLmargin am am Terminal has automatic margins
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
ceoLstandou t~li tch xhp xs Standout not erased by

overwriting (hp)
eaLnewline~litch xenl xn Newline ignored after 80 cols (Conce
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g. dialup, switch
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see.
has_meta_key km km Has a meta key (shift, sets parity bi1
has_status_line hs hs Has extra" status line"
insert_n ull~li tch in in Insert mode distinguishes nulls
memory_above da da Display may be retained above the

screen
memory_below db db Display may be retained below the

screen
move_insert_mode mir mi Safe to move while in insert mode
move_standouLmode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won't work, xon/xoff requir,
non_rev _rmcu p nrrmc NR smcup does not reverse rmcup
no_pad_char npc NP Pad character doesn't exist
over_strike os os Terminal overstrikes on hard-copy

terminal
prtr _silen t mc5i 5i Printer won't echo on screen.
status_line_esc_ok eslok es Escape can be used on the status line
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char

(tl06!)
tilde~litch hz hz Hazeltine; can't print tildesC)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers:
columns cols co Number of columns in a line
init_tabs it it Tabs initially every # spaces.
labeLheight Ih Ih Number of rows in each label
labeLwidth lw lw Number of cols in each label
lines lines Ii Number of lines on screen or page
lines_oLmemory 1m 1m Lines of memory if > lines; 0 means

varies
magic_cookie~litch xmc sg Number blank chars left by smso or

rmso

- 2 -

TERMINFO(4) (Terminal Information Utilities) TERM INFO (4)

num_Iabels nlab NI Number of labels on screen (start at 1)
padding_baud_rate pb pb Lowest baud rate where padding

needed
virtuaLterminal vt vt Virtual terminal number

(UNIX system)
width_status_line wsl ws Number of columns in status line

Strings:
acs_chars acsc ac Graphic charset pairs aAbBcC -

def=vt100+
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
carriage_return cr cr Carriage return (*)
change_scrollJegion csr cs Change to lines #1 thru #2 (vt100) (G)
char _padding rmp rP Like ip but when in replace mode
clear_alI_tabs tbc ct Clear all tab stops
clear_margins mgc Me Clear left and right soft margins
clear_screen clear cl Clear screen and home cursor (*)
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display (*)
column_address hpa ch Horizontal position absolute (G)
command_character cmdeh CC Term. settable cmd char in prototype
cursor_address cup cm Cursor motion to row #1 col #2 (G)
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 Ie Move cursor left one space.
cursor _mem_address mrcup CM Memory relative cursor addressing (G)
cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right cufl nd Non-destructive space (cursor right)
cursor_to_ll 11 11 Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor _ visi ble cvvis vs Make cursor very visible
delete_character dch1 dc Delete character (*)
delete_line dll dl Delete line (*)
dis_status_Iine dsl ds Disable status line
down_halCline hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate char set
enter _alt_charseCmode smacs as Start alternate character set
en ter _am_mode smam SA Turn on automatic margins
enter _blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
en ter _ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
en ter _insert_mode smir im Insert mode (enter);
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_secure_mode invis mk Turn on blank mode (chars invisible)
en ter _standou Cmode smso so Begin standout mode
enter _underline_mode smul us Start underscore mode
en ter _xon_mode smxon SX Turn on xon/xoff handshaking

- 3 -

TERMINFO (4) (Terminal Information Utilitif's) TERMINFO (4)

erase_chars ech ec Era se #1 characters (G)
exit_alt_charseCmode rmacs ae End alternate character set
exiCam_mode rmam RA Turn off automatic margins
exi Ca ttri bu te_mode sgrO me Turn off all attributes
exiCca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exi t_insert_mode rmir ei End insert mode;
exit_standout_mode rmso se End standout mode
exiCunderline_mode rmul ue End underscore mode
exiCxon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject (*)
from_status_line fsl fs Return from status line
init_lstring isl il Terminal initialization string
iniC2string is2 is Terminal initialization string
init_3string is3 i3 Terminal initialization string
init_file if if Nane of initialization file containing is
iniCprog iprog iP Path name of program for init.
insert_character ichl ic Ins('rt character
insert_line ill al Add new blank line (*)
insert_padding ip ip Ins(,rt pad after character inserted (*)
key_al kal Kl KEY_AI, 0534, Upper left of keypad
key_a3 ka3 K3 KEY _A3, 0535, Upper right of keypad
key_b2 kb2 K2 KEY _B2, 0536, Center of keypad
key _backspace kbs kb KEY_BACKSPACE, 0407, Sent by

backspace key
key_beg kbeg @l KEY _BEG, 0542, Sent by

beg(inning) key
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab key
key_c1 kc1 K4 KEY_Cl, 0537, Lower left of keypad
key_c3 kc3 K5 KEY _C3, 0540, Lower right of keypad
key_cancel kcan @2 KEY_CANCEL, 0543, Sent by

canr,el key
key_catab ktbc ka KEY_CATAB, 0526, Sent by

clea r-all-tabs key
key_clear kclr kC KEY_CLEAR, 0515, Sent by clear-screen

or erase key
key_close kclo @3 KEY _CLOSE, 0544, Sent by close key
key_command kcmd @4 KEY _COMMAND, 0545, Sent by cmd

(command) key
key_copy kcpy @5 KEY_COPY, 0546, Sent by copy key
key_create kcrt @6 KEY_CREATE, 0547, Sent

by c:reate key
key_ctab kctab kt KEY_CTAB, 0525, Sent by

clear-tab key
key_dc kdchl kD KEY_DC, 0512, Sent by

delete-character
key

key_dl kdll kL KEY_DL, 0510, Sent by delete-line key
key_down kcud1 kd KEY_DOWN, 0402, Sent by terminal

down-arrow key
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or smir

in insert mode
key_end kend @7 KEY_END, 0550, Sent by end key

- 4 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO(4)

key_enter kent @8 KEY_ENTER, 0527, Sent by
enter/send key

key_eol kel kE KEY_EOL, 0517, Sent by
clear-to-end -of -line key

key_eos ked kS KEY_EOS, 0516, Sent by
clear-to-end -of -screen key

key_exit kext @9 KEY_EXIT, 0551, Sent by exit key
key30 kfO kO KEY_F(O), 0410, Sent by function

key fO
key_fl kfl k1 KEY_F(l), 0411, Sent by function

key fl
key_f2 kf2 k2 KEY_F(2), 0412, Sent by function

key f2
key33 kf3 k3 KEY_F(3), 0413, Sent by function

key f3
key_f4 kf4 k4 KEY_F(4), 0414, Sent by function

key f4
key_f5 kf5 k5 KEY_F(5), 0415, Sent by function

key f5
key_f6 kf6 k6 KEY_F(6), 0416, Sent by function

key f6
key_f7 kf7 k7 KEY_F(7), 0417, Sent by function

key f7
key38 kf8 k8 KEY _F(8), 0420, Sent by function

key f8
key_f9 kf9 k9 KEY_F(9), 0421, Sent by function

key f9
key_flO kflO k; KEY_F(10),0422, Sent by function

key flO
key_fl1 kfll F1 KEY_F(11), 0423, Sent by function

key fll
key_f12 kfl2 F2 KEY_F(12), 0424, Sent by function

key f12
key_fl3 kfl3 F3 KEY_F(13), 0425, Sent by function

key f13
key_fl4 kfl4 F4 KEY_F(14), 0426, Sent by function

key fl4
key_fl5 kfl5 F5 KEY_F(15), 0427, Sent by function

key fl5
key_fl6 kfl6 F6 KEY_F(16), 0430, Sent by function

key fl6
key_fl7 kfl7 F7 KEY_F(17), 0431, Sent by function

key fl7
key318 kf18 F8 KEY_F(18), 0432, Sent by function

key f18
key_f19 kfl9 F9 KEY_F(19), 0433, Sent by function

key fl9
key_f20 kf20 FA KEY_F(20), 0434, Sent by function

key f20
key321 kf21 FB KEY_F(21), 0435, Sent by function

key f21
key322 kf22 Fe KEY_F(22), 0436, Sent by function

key f22

- 5 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO(4)

key323 kf23 FD KEY_F(23), 0437, Sent by function
key f23

key_f24 kf24 FE KEY_F(24), 0440, Sent by function
key f24

key_f25 kf25 FF KEY _F(25), 0441, Sent by function
key f25

key_f26 kf26 FG KEY_F(26), 0442, Sent by function
key f26

key_f27 kf27 FH KEY_F(27), 0443, Sent by function
key f27

key328 kf28 FI KEY_F(28), 0444, Sent by function
key f28

key_f29 kf29 FJ KEY_F(29), 0445, Sent by function
key f29

key_f30 kf30 FK KEY_F(30), 0446, Sent by function
key f30

key_f31 kf31 FL KEY_F(31), 0447, Sent by function
key f31

key_f32 kf32 FM KEY_F(32), 0450, Sent by function
key f32

key_f33 kf33 FN KEY_F(13), 0451, Sent by function
key f13

key334 kf34 FO KEY _F(34), 0452, Sent by function
key f34

key335 kf35 FP KEY_F(35), 0453, Sent by function
key f35

key_f36 kf36 FQ KEY_F(36), 0454, Sent by function
key f36

key_f37 kf37 FR KEY _F(37), 0455, Sent by function
key f37

key: .. J38 kf38 FS KEY_F(38), 0456, Sent by function
key f38

key339 kf39 FT KEY_F(39), 0457, Sent by function
key f39

key340 kf40 FU KEY _F(40), 0460, Sent by function
key f40

key_f41 kf41 FV KEY_F(41), 0461, Sent by function
key f41

key342 kf42 FW KEY_F(42), 0462, Sent by function
key f42

key343 kf43 FX KEY_F(43), 0463, Sent by function
key f43

key344 kf44 FY KEY_F(44), 0464, Sent by function
key f44

key_f45 kf45 FZ KEY_F(45), 0465, Sent by function
key f45

key346 kf46 Fa KEY_F(46), 0466, Sent by function
key f46

key347 kf47 Fb KEY_F(47), 0467, Sent by function
key f47

key348 kf48 Fc KEY_F(48), 0470, Sent by function
key f48

key_f49 kf49 Fd KEY_F(49), 0471, Sent by function
key f49

- 6 -

TERM INFO (4) (Terminal Information Utilities) TERMINFO (4)

keyj50 kf50 Fe KEY_F(50), 0472, Sent by function
key f50

keyj51 kf51 Ff KEY_F(51), 0473, Sent by function
key f51

key_f52 kf52 Fg KEY_F(52), 0474, Sent by function
key f52

keyj53 kf53 Fh KEY_F(53), 0475, Sent by function
key f53

keyj54 kf54 Fi KEY_F(54), 0476, Sent by function
key f54

key_f55 kf55 Fj KEY_F(55), 0477, Sent by function
key f55

keyj56 kf56 Fk KEY_F(56), 0500, Sent by function
key f56

key_f57 kf57 FI KEY_F(57), 0501, Sent by function
key f57

key_f58 kf58 Fm KEY_F(58), 0502, Sent by function
key f58

keyj59 kf59 Fn KEY_F(59), 0503, Sent by function
key f59

keyj60 kf60 Fo KEY_F(60), 0504, Sent by function
key f60

keyj61 kf61 Fp KEY_F(61), 0505, Sent by function
key f61

key_f62 kf62 Fq KEY_F(62), 0506, Sent by function
key f62

keyj63 kf63 Fr KEY_F(63), 0507, Sent by function
key f63

keyjind kfnd @O KEY_FIND, 0552, Sent by find key
key-help khlp %1 KEY_HELP, 0553, Sent by help key
key_home khome kh KEY_HOME, 0406, Sent by home key
key-ic kich1 kI KEY_Ie, 0513, Sent by ins-char/enter

ins-mode key
key_il kill kA KEY_IL, 0511, Sent by insert-line key
key_left kcub1 kl KEY_LEFT, 0404, Sent by terminal

left-arrow key
key_ll kll kH KEY_LL, 0533, Sent by home-down key
key-mark kmrk %2 KEY_MARK, 0554, Sent by mark key
key_message kmsg %3 KEY_MESSAGE, 0555, Sent by

message key
key_move kmov %4 KEY_MOVE, 0556, Sent by move key
key_next knxt %5 KEY_NEXT, 0557, Sent by

next-object key
key_npage knp kN KEY_NPAGE, 0522, Sent by

next-page key
key_open kopn %6 KEY_OPEN, 0560, Sent by open key
key_options kopt %7 KEY_OPTIONS, 0561, Sent by

options key
key_ppage kpp kP KEY_PPAGE, 0523, Sent by

previous-page key
key_previous kprv %8 KEY_PREVIOUS, 0562, Sent by

previous-object key
key-print kprt %9 KEY_PRINT,0532, Sent by print or

copy key

- 7 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

keYJedo krdo %0 KEY_REDO, 0563, Sent by redo key
key_reference kref &1 KEY_REFERENCE, 0564, Sent by

ref(erence) key
key_refresh krfr &2 KEY_REFRESH, 0565, Sent by

refresh key
keYJeplace krpl &3 KEY_REPLACE, 0566, Sent by

replace key
key_restart krst &4 KEY_RESTART,0567, Sent by

restart key
key_resume kres &5 KEY_RESUME, 0570, Sent by

resume key
key_right kcufl kr KEY_RIGHT, 0405, Sent by terminal

right-arrow key
key_save ksav &6 KEY_SAVE, 0571, Sent by save key
key_sbeg kBEG &9 KEY_SBEG, 0572, Sent by shifted

beginning key
key _scancel kCAN &0 KEY_SCANCEL,0573, Sent by shifted

cancel key
key _scommand kCMD *1 KEY_SCOMMAND,0574, Sent by shifted

command key
key_scopy kCPY *2 KEY_SCOPY, 0575, Sent by shifted

copy key
key_screate kCRT *3 KEY_SCREATE, 0576, Sent by shifted

create key
key_sdc kDC *4 KEY _SDC, 0577, Sent by shifted

delete-char key
key_sdl kDL *5 KEY _SDL, 0600, Sent by shifted

delete-line key
key_select kslt *6 KEY_SELECT, 0601, Sent by select key
key_send kEND *7 KEY_SEND, 0602, Sent by shifted

end key
key_seol kEOL *8 KEY _SEOL, 0603, Sent by shifted

clear-line key
key_sexit kEXT *9 KEY_SEXIT, 0604, Sent by shifted

exit key
key_sf kind kF KEY_SF, 0520, Sent by

scroll-forward/down key
key_sfind kFND *0 KEY_SFIND, 0605, Sent by shifted

find key
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted

help key
key_shome kHOM #2 KEY_SHOME, 0607, Sent by shifted

home key
key_sic kIC #3 KEY_SIC, 0610, Sent by shifted

input key
key_sleft kLFT #4 KEY_SLEFT, 0611, Sent by shifted

left-arrow key
key _smessage kMSG %a KEY_SMESSAGE, 0612, Sent by

shifted message key
key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted

move key
key_snext kNXT %c KEY_SNEXT, 0614, Sent by shifted

next key

- 8 -

'ERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key _soptions kOPT %d KEY_SOPTIONS, 0615, Sent by shifted
options key

key _sprevious kPRV %e KEY_SPREVIOUS, 0616, Sent by
shifted prev key

key_sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted
print key

key_sr kri kR KEY_SR, 0521, Sent by
scroll-backward/up key

key_sredo kRDO %g KEY_SREDO,0620, Sent by shifted
redo key

key _sreplace kRPL %h KEY_SREPLACE, 0621, Sent by
shifted replace key

key_sright kRIT %i KEY_SRIGHT, 0622, Sent by shifted
right-arrow key

key_srsume kRES %j KEY_SRSUME, 0623, Sent by shifted
resume key

key_ssave kSAV 11 KEY_SSAVE, 0624, Sent by shifted
save key

key_ssuspend kSPD !2 KEY_SSUSPEND, 0625, Sent by
shifted suspend key

key_stab khts kT KEY_STAB, 0524, Sent by set-tab key
key_sundo kUND !3 KEY_SUNDO, 0626, Sent by shifted

undo key
key_suspend kspd &7 KEY_SUSPEND, 0627, Sent by

suspend key
key_undo kund &8 KEY_UNDO, 0630, Sent by undo key
key_up kcuu1 ku KEY_UP, 0403, Sent by terminal

up-arrow key
keypad_local rmkx ke Out of "keypad-transmit"

mode
keypad_xmit smkx ks Put terminal in "keypad-transmit" mode
lab_fO If 0 10 Labels on function key fO if not fO
lab_fl If1 11 Labels on function key f1 if not fl
lab_f2 If2 12 Labels on function key f2 if not f2
lab_f3 If3 13 Labels on function key f3 if not f3
lab_f4 If4 14 Labels on function key f4 if not f4
lab_f5 If5 15 Labels on function key f5 if not f5
lab_f6 If6 16 Labels on function key f6 if not f6
lab_f7 If7 17 Labels on function key f7 if not f7
lab_f8 If8 18 Labels on function key f8 if not f8
lab_f9 lf9 19 Labels on function key f9 if not f9
lab_flO IflO la Labels on function key flO if not flO
labeLoff rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off" meta mode"
meta_on smm mm Turn on" meta mode" (8th bit)
newline nel nw Newline (behaves like cr followed by If)
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars (G*)
parm_delete_line dl DL Delete #1 lines (G*)
parm_down_cursor cud DO Move cursor down #1 lines. (G*)
parm_ich ich IC Insert #1 blank chars (G*)
parm_index indn SF Scroll forward #1 lines. (G)
parm_inserCline il AL Add #1 new blank lines (G*)

- 9 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

parm_Ieft_cursor cub LE Move cursor left #1 spaces (G)
parmJigh t_cursor cuf RI Move cursor right #1 spaces. (G*)
parmJindex rin SR Scroll backward #1 lines. (G)
parm_up_cursor cuu UP Move cursor up #1 lines. (G*)
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_Iocal pfloc pI Prog funct key #1 to execute string #2
pkey_.xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pIn pn Prog label #1 to show string #2
prinLscreen mcO ps Print contents of the screen
prtcnon mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtcon mc5 po Turn on the printer
repeaLchar rep rp Repeat char #1 #2 times (G*)
req_for _input rfi RF Send next input char (for ptys)
reseLl string rs1 r1 Reset terminal completely to

sane modes
reset_2string rs2 r2 Reset terminal completely to

sane modes
reset_3string rs3 r3 Reset terminal completely to

sane modes
reseLfile rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row _address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position.
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
seLattributes sgr sa Define the video attributes #1-#9 (G)
set_IefLmargin smgl ML Set soft left margin
setJighLmargin smgr MR Set soft right margin
set_tab hts st Set a tab in all rows, current column.
seLwindow wind wi Current window is lines #1-#2

cols #3-#4 (G)
tab ht ta Tab to next 8 space hardware tab stop.
to_sta tus_line tsl ts Go to status line, col #1 (G)
underline_char uc uc Underscore one char and move past it
up_halCline hu hu Half-line up (reverse 1/2 linefeed)
xofCcharacter xoffc XF X -off character
xon_character xonc XN X -on character

- 10 -

TERM INFO (4) (Terminal Information Utilities) TERMINFO (4)

SAMPLE ENTRY
The following entry, which describes the Concept-100 terminal, is
among the more complex entries in the terminfo file as of this
writing.

concept100 I c1001 concept I c1041 c100-4p I concept 100,

am, db, eo, in, mir, ul, xenl,

cols#80, lines#24, pb#9600, vt#8,

bel=AG, blank=\EH, blink=\EC, clear=AL$<2*>,

cnorm=\Ew, cr=AM$<9>, cub1=AH, cud1=AJ,

cuf1=\E=, cup=\Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis=\EW, dch1=\E AA$<16*>, dim=\EE,

d11=\E AB$<3*>, ed=\EAC$<16*>, el=\EAU$<16>,

flash=\Ek$<20>\EK, ht=\t$<8>, i11=\EAR$<3*>,

ind=AJ, .ind=AJ$<9>, ip=$<16*>,

is2=\EU\Ef\E7\ES\E8\El\ENH\EK\E\0\Eo&\0\Eo\47\E,

kbs=Ah, kcub1=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;,

kf1=\ES, kf2=\E6, kf3=\E7, khome=\E?,

prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,

rmir=\E\O, rmkx=\Ex, rmso=\Ed\Ee, rmul=\Eg,

rmul=\Eg, sgrO=\EN\O, smcup=\EU\Ev\s\s8p\Ep\r,

smir=\EAP, smkx=\EX, smso=\EE\ED, smul=\EG,

Entries may continue onto multiple lines by placing white space at
the beginning of each line except the first. Lines beginning with
"#" are taken as comment lines. Capabilities interminfo are of
three types: boolean capabilities which indicate that the terminal
has some particular feature, numeric capabilities giving the size of
the terminal or particular features, and string capabilities, which
give a sequence which can be used to perform particular terminal
operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Con­
cept has automatic margins (Le., an automatic return and linefeed
when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric
capabilities are followed by the character I#, and then the value.
Thus cols, which indicates the number of columns the terminal
has, gives the value 80 for the Concept. The value may be speci­
fied in decimal, octal or hexadecimal using normal C conventions.

Finally, string-valued capabilities, such as el (clear to end of line
sequence) are given by the two- to five-character capname, an '=',
and then a string ending at the next following comma. A delay in
milliseconds may appear anywhere in such a capability, enclosed
in $< .. > brackets, as in el=\EK$<3>, and padding characters are
supplied by tputs() (see curses(3X)) to provide this delay. The
delay can be either a number, e.g., 20, or a number followed by an
'*' (Le., 3*), a 'I' (i.e., 51), or both (Le., 10*/). A '*' indicates that
the padding required is proportional to the number of lines
affected by the operation, and the amount given is the per­
affected-unit padding required. (In the case of insert character,
the factor is still the number of lines affected. This is always one
unless the terminal has in and the software uses it.) When a '*' is

- 11 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO (4)

specified, it is sometimes useful to give a delay of the form 3.5 to
specify a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.) A 'I' indicates that the padding is man­
datory. Otherwise, if the terminal has xon defined, the padding
information is advisory and will only be used for cost estimates or
when the terminal is in raw mode. Mandatory padding will be
transmitted regardless of the setting of xon.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. Both \E and \e
map to an ESCAPE character, ~x maps to a control-x for any
appropriate x, and the sequences \n, \1, \r, \t, \b, \f, and \s give
a newline, linefeed, return, tab, backspace, formfeed, and space,
respectively. Other escapes include: \ ~ for caret (); \ \ for
backslash (\); \, for comma (,); \: for colon (:); and \0 for null.
(\0 will actually produce \200, which does not terminate a string
but behaves as a null character on most terminals.) Finally, char­
acters may be given as three octal digits after a backslash (e.g.,
\123).

Sometimes individual capabilities must be commented out. To do
this, put a period before the capability name. For example, see
the second ind in the example above. Note that capabilities are
defined in a left-to-right order and, therefore, a prior definition
will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by
imitating the description of a similar terminal in terminfo and to
build up a description gradually, using partial descriptions with
vi(1) to check that they are correct. Be aware that a very unusual
terminal may expose deficiencies in the ability of the terminfo
file to describe it or the inability of vi(1) to work with that termi­
nal. To test a new terminal description, set the environment vari­
able TERM INFO to a pathname of a directory containing the com­
piled description you are working on and programs will look there
rather than in /usr/lib/terminfo. To get the padding for insert­
line correct (if the terminal manufacturer did not document it) a
severe test is to comment out xon, edit a large file at 9600 baud
with vi(1), delete 16 or so lines from the middle of the screen, then
hit the u key several times quickly. If the display is corrupted,
more padding is usually needed. A similar test can be used for
insert-character.

Basic Capabilities
The number of columns on each line for the terminal is given by
the cols numeric capability. If the terminal has a screen, then
the number of lines on the screen is given by the lines capability.
If the terminal wraps around to the beginning of the next line
when it reaches the right margin, then it should have the am
capability. If the terminal can clear its screen, leaving the cursor
in the home position, then this is given by the clear string capa­
bility. If the terminal overstrikes (rather than clearing a position
when a character is struck over) then it should have the os capa­
bility. If the terminal is a printing terminal, with no soft copy
unit, give it both hc and os. (os applies to storage scope

- 12 -

TERMINFO(4) (Terminal Information Utilities) TERM INFO (4)

terminals, such as Tektronix 4010 series, as well as hard-copy and
APL terminals.) If there is a code to move the cursor to the left
edge of the current row, give this as cr. (Normally this will be
carriage return, control M.) If there is a code to produce an audi­
ble signal (bell, beep, etc) give this as bel. If the terminal uses
the xon-xoff flow-control protocol, like most terminals, specify
xon.

If there is a code to move the cursor one position to the left (such
as backspace) that capability should be given as cubl. Similarly,
codes to move to the right, up, and down should be given as cufl,
cuul, and cudl. These local cursor motions should not alter the
text they pass over; for example, you would not normally use
"cufl=\s" because the space would erase the character moved
over.

A very important point here is that the local cursor motions
encoded in terminfo are undefined at the left and top edges of a
screen terminal. Programs should never attempt to backspace
around the left edge, unless bw is given, and should never attempt
to go up locally off the top. In order to scroll text up, a program
will go to the bottom left corner of the screen and send the ind
(index) string.

To scroll text down, a program goes to the top left corner of the
screen and sends the ri (reverse index) string. The strings ind
and ri are undefined when not on their respective corners of the
screen.

Parameterized versions of the scrolling sequences are indn and
rin which have the same semantics as ind and ri except that they
take one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge
of the screen when text is output, but this does not necessarily
apply to a cufl from the last column. The only local motion
which is defined from the left edge is if bw is given, then a cubl
from the left edge will move to the right edge of the previous row.
If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the
terminal has switch selectable automatic margins, the terminfo
file usually assumes that this is on; i.e., am. If the terminal has a
command which moves to the first column of the next line, that
command can be given as nel (newline). It does not matter if the
command clears the remainder of the current line, so if the termi­
nal has no cr and If it may still be possible to craft a working nel
out of one or both of them.

These capabilities suffice to describe hardcopy and screen termi­
nals. Thus the model 33 teletype is described as

331 tty33 1 tty 1 model 33 teletype, bel =~ G, cols#72, cr= ~M,
cudl= -J, hc, ind= -J, os,

while the Lear Siegler ADM-3 is described as

adm31lsi adm3,
cub1=~H, cudl=~J,

am, bel = ~ G, clear= ~Z, cols#80, cr= ~M,
ind= ~J, lines#24,

- 13 -

TERMINFO (4) (Terminal Information Utilities) TERM INFO (4)

Parameterized Strings
Cursor addressing and other strings requiring parameters in the
terminal are described by a parameterized string capability, with
printf(3S)-like escapes (%x) in it. For example, to address the
cursor, the cup capability is given, using two parameters: the row
and column to address to. (Rows and columns are numbered from
zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory relative cursor
addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to
manipulate it in the manner of a Reverse Polish Notation (postfix)
calculator. Typically a sequence will push one of the parameters
onto the stack and then print it in some format. Often more com­
plex operations are necessary. Binary operations are in postfix
form with the operands in the usual order. That is, to get x-5 one
would use %gx%{5}%-.

The % encodings have the following meanings:

% % outputs '%'
% [[:l/Zags] [width[.precision]] [doxXs]

as in printf, flags are [-+#] and space
% c print popO gives % c

% p[1-9]
%P[a-z]
%g[a-z]
%'c'
% {nn}
%1

h .th pus ~ parm
set variable [a-z] to popO
get variable [a-z] and push it
push char constant c
push decimal constant nn
push strlen(popO)

%+ %- %* %/ %m

%& %1 % A

%= %> %<
%A %0
%!%-
%i

arithmetic (% m is mod): push(popO op popO)
bit operations: push(popO op popO)
logical operations: push(popO op popO)
logical operations: and, or
unary operations: push(op popO)
(for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

% ? expr % t then part % e else part %;
if-then-else, % e elsepart is optional;
else-if's are possible ala Algol 68:
%? c

i
% t b

i
% e c

2
% t b

2
% e c

3
% t b

3
% e c 4

%tb
4

%eb%;
c. are condi£ions, b. are bodies.

1 1

If the "-" flag is used with "% [doxXs]", then a colon (:) must be
placed between the "%" and the "-" to differentiate the flag from
the binary "% -" operator, .e.g "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and
column 12, needs to be sent \E&a12c03Y padded for 6 mil­
liseconds. Note that the order of the rows and columns is inverted
here, and that the row and column are zero-padded as two digits.

- 14 -

TERMINFO(4) (Terminal Information Utilities) TERM INFO (4)

Thus its cup capability is
"cup=\E&a%p2%2.2dc%pl %2.2dY$<6>".

The Micro-Term ACT-IV needs the current row and column sent
preceded by a AT, with the row and column simply encoded in
binary, "cup=AT%pl %c%p2%c". Terminals which use "%c" need
to be able to backspace the cursor (cubl), and to move the cursor
up one line on the screen (cuul). This is necessary because it is
not always safe to transmit \n, An, and \r, as the system may
change or discard them. (The library routines dealing with ter­
minfo set tty modes so that tabs are never expanded, so \t is safe
to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus
"cup=\E=% pI % '\s'% +% c% p2% ,\s'% +% c". After sending
"\E=", this pushes the first parameter, pushes the ASCII value
for a space (32), adds them (pushing the sum on the stack in place
of the two previous values), and outputs that value as a character.
Then the same is done for the second parameter. More complex
arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper
left corner of screen) then this can be given as home; similarly a
fast way of getting to the lower left-hand corner can be given as
ll; this may involve going up with cuul from the home position,
but a program should never do this itself (unless II does) because
it can make no assumption about the effect of moving up from the
home position. Note that the home position is the same as
addressing to (0,0): to the top left corner of the screen, not of
memory. (Thus, the \EH sequence on Hewlett-Packard terminals
cannot be used for home without losing some of the other
features on the terminal.)

If the terminal has row or column absolute-cursor addressing,
these can be given as single parameter capabilities hpa (horizon­
tal position absolute) and vpa (vertical position absolute). Some­
times these are shorter than the more general two-parameter
sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup. If there are parameterized local motions (e.g.,
move n spaces to the right) these can be given as cud, cub, cuf,
and cuu with a single parameter indicating how many spaces to
move. These are primarily useful if the terminal does not have
cup, such as the Tektronix 4025.

Area Clears
If the terminal can clear from the current position to the end of
the line, leaving the cursor where it is, this should be given as el.
If the terminal can clear from the beginning of the line to the
current position inclusive, leaving the cursor where it is, this
should be given as ell. If the terminal can clear from the current
position to the end of the display, then this should be given as ed.
ed is only defined from the first column of a line. (Thus, it can be
simulated by a request to delete a large number of lines, if a true
ed is not available.)

- 15 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO (4)

Insert/ delete line
If the terminal can open a new blank line before the line where
the cursor is, this should be given as ill; this is done only from
the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the
cursor is on, then this should be given as dll; this is done only
from the first position on the line to be deleted. Versions of ill
and dll which take a single parameter and insert or delete that
many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the
VT100) the command to set this can be described with the csr
capability, which takes two parameters: the top and bottom lines
of the scrolling region. The cursor position is, alas, undefined
after using this command. It is possible to get the effect of insert
or delete line using this command -- the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the
top or bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is often fas­
ter even on terminals with those features.

To determine whether a terminal has destructive scrolling regions
or non-destructive scrolling regions, create a scrolling region in
the middle of the screen, place data on the bottom line of the
scrolling region, move the cursor to the top line of the scrolling
region, and do a reverse index (ri) followed by a delete line (dll)
or index (ind). If the data that was originally on the bottom line
of the scrolling region was restored into the scrolling region by
the dll or ind, then the terminal has non-destructive scrolling
regions. Otherwise, it has destructive scrolling regions. Do not
specify csr if the terminal has non-destructive scrolling regions,
unless ind, ri, indn, rin, dl, and dll all simulate destructive
scrolling.

If the terminal has the ability to define a window as part of
memory, which all commands affect, it should be given as the
parameterized string wind. The four parameters are the starting
and ending lines in memory and the starting and ending columns
in memory, in that order.

If the terminal can retain display memory above, then the da
capability should be given; if display memory can be retained
below, then db should be given. These indicate that deleting a
line or scrolling a full screen may bring non-blank lines up from
below or that scrolling back with ri may bring down non-blank
lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character operations which can be described using
terminfo. The most common insert/delete character operations
affect only the characters on the current line and shift characters
off the end of the line rigidly. Other terminals, such as the Con­
cept 100 and the Perkin Elmer Owl, make a distinction between
typed and untyped blanks on the screen, shifting upon an insert or
delete only to an untyped blank on the screen which is either elim­
inated, or expanded to two untyped blanks. You can determine the

- 16 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO (4)

kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type "abc def" using local
cursor motions (not spaces) between the abc and the def. Then
position the cursor before the abc and put the terminal in insert
mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does
not distinguish between blanks and untyped positions. If the abc
shifts over to the def which then move together around the end of
the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which
stands for "insert null". While these are two logically separate
attributes (one line versus multiline insert mode, and special treat­
ment of untyped spaces) we have seen no terminals whose insert
mode cannot be described with the single attribute.

terminfo can describe both terminals which have an insert mode
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as smir the sequence to get into
insert mode. Give as rmir the sequence to leave insert mode.
Now give as iehl any sequence needed to be sent just before send­
ing the character to be inserted. Most terminals with a true insert
mode will not give iehl; terminals which send a sequence to open
a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to iehl. Do not give both unless
the terminal actually requires both to be used in combination.) If
post-insert padding is needed, give this as a number of mil­
liseconds padding in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character
may also be given in ip. If your terminal needs both to be placed
into an 'insert mode' and a special code to precede each inserted
character, then both smir/rmir and iehl can be given, and both
will be used. The ieh capability, with one parameter, n, will
repeat the effects of iehl n times.

If padding is necessary between characters typed while not in
insert mode, give this as a number of milliseconds padding in
rmp.

It is occasionally necessary to move around while in insert mode
to delete characters on the same line (e.g., if there is a tab after
the insertion position). If your terminal allows motion while in
insert mode you can give the capability mir to speed up inserting
in this case. Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the way their
insert mode works.

Finally, you can specify dehl to delete a single character, deh
with one parameter, n, to delete n characters, and delete mode by
giving smde and rmde to enter and exit delete mode (any mode
the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as eeh with one
parameter.

- 17 -

TERMINFO(4) (Terminal Information Utilities) TERM INFO (4)

Highlighting, Un(lerlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these
can be represented in a number of different ways. You should
choose one display form as standout mode (see curses(3X»,
representing a good, high contrast, easy-on-the-eyes, format for
highlighting error messages and other attention getters. (If you
have a choice, reverse-video plus half-bright is good, or reverse­
video alone; however, different users have different preferences on
different terminals.) The sequences to enter and exit standout
mode are given as smso and rmso, respectively. If the code to
change into or out of staridout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xmc should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as
smul and rmul respectively. If the terminal has a code to unde:r­
line the current character and move the cursor one space to the
right, such as the Micro-Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include
blink (blinking), bold (bold or extra-bright), dim (dim or half­
bright), invis (blanking or invisible text), prot (protected), rev
(reverse-video), sgrO (turn off all attribute modes), smacs (enter
alternate-character-set mode), and rmacs (exit alternate­
character-set mode). Turning on any of these modes singly mayor
may not turn off other modes. If a command is necessary before
alternate character set mode is entered, give the sequence in
enacs (enable altern a te-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking nine parameters.
Each parameter is either 0 or non-zero, as the corresponding
attribute is on or off. The nine parameters are, in order: standout,
underline, reverse, blink, dim, bold, blank, protect, alternate char­
acter set. Not all modes need be supported by sgr, only those for
which corresponding separate attribute commands exist. (See the
example at the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which affect
the display algorithm rather than having extra bits for each char­
acter. Some terminals, such as the Hewlett-Packard 2621,
automatically leave standout mode when they move to a new line
or the cursor is addressed. Programs using standout mode should
exit standout mode before moving the cu:rsor or sending a newline,
unless the msgr capability, asserting that it is safe to move in
standout mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement), then this can be given as flash;
it must not move the cursor. A good flash can be done by chang­
ing the screen into reverse video, pad for 200 ms, then return the
screen to normal video.

If the cursor needs to be made more visible than normal when it is
not on the bottom line (to make, for example, a non-blinking
underline into an easier to find block or blinking underline) give

- 18 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

this sequence as cvvis. The boolean chts should also be given. If
there is a way to make the cursor completely invisible, give that
as civis. The capability cnorm should be given which undoes the
effects of either of these modes.

If the terminal needs to be in a special mode when running a pro­
gram that uses these capabilities, the codes to enter and exit this
mode can be given as smcup and rmcup. This arises, for exam­
ple, from terminals like the Concept with more than one page of
memory. If the terminal has only memory relative cursor address­
ing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to
work properly. This is also used for the Tektronix 4025, where
smcup sets the command character to be the one used by ter­
minfo. If the smcup sequence will not restore the screen after
an rmcup sequence is output (to the state prior to outputting
rmcup), specify nrrmc.

If your terminal generates underlined characters by using the
underline character (with no special codes needed) even though it
does not otherwise overstrike characters, then you should give the
capability ul. For terminals where a character over striking
another leaves both characters on the screen, give the capability
os. If overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Example of highlighting: assume that the terminal under question
needs the following escape sequences to turn on various modes.

tparm attribute escape sequence
parameter

none \E[Om
p1 standout \E[O;4;7m
p2 underline \E[O;3m
p3 reverse \E[0;4m
p4 blink \E[O;5m
p5 dim \E[0;7m
p6 bold \E[O;3;4m
p7 invis \E[O;8m
p8 protect not available
p9 altcharset ~O (off) ~N(on)

Note that each escape sequence requires a 0 to turn off other
modes before turning on its own mode. Also note that, as sug­
gested above, standout is set up to be the combination of reverse
and dim. Also, since this terminal has no bold mode, bold is set up
as the combination of reverse and underline. In addition, to allow
combinations, such as underline+blink, the sequence to use would
be \E[O;3;5m. The terminal doesn't have protect mode, either, but
that cannot be simulated in any way, so p8 is ignored. The
altcharset mode is different in that it is either ~O or ~N depending
on whether it is off or on. If all modes were to be turned on, the
sequence would be \E[O;3;4;5;7;8m ~N.

Now look at when different sequences are output. For example, ;3
is output when either p2 or p6 is true, that is, if either underline

- 19 -

TERM INFO (4) (Terminal Information Utilities) TERMINFO(4)

or bold modes are turned on. Writing out the above sequences,
along with their dependencies, gives the following:

sequence when to output terminfo translation

\E[O
;3
;4
;5
;7
;8
m
~N or ~O

always
if p2 or p6
if p1 or p3 or p6
if p4
if p1 or p5
if p7
always
if p9 ~N, else ~O

\E[O
% ?%p2%p6%I%t;3%;
% ?%p1 %p3%I%p6%I%t;4%;
% ?%p4%t;5%;
% ?%p1 %p5%I%t;7%;
% ?%p7%t;8%;
m
% ?%p9%t~N%e~O%;

Putting this all together into the sgr sequence gives:

sgr=\E[O% ?%p2%p6%I%t;3%;% ?%p1 %p3%I%p6%I%t;4%;% ?%p5
5%;% ?%p1 %p5%I%t;7%;% ?%p7%t;8%;m% ?%p9%t~N%e~O

Keypad
If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not pos­
sible to handle terminals where the keypad only works in local
(this applies, for example, to the un shifted Hewlett-Packard 2621
keys). If the keypad can be set to transmit or not transmit, give
these codes as smkx and rmkx. Otherwise the keypad is
assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as keubl, keufl, keuul,
keudl, and khome respectively. If there are function keys such
as fO, f1, ... , f63, the codes they send can be given as kfO, kfl, ... ,
kf63. If the first 11 keys have labels other than the default fO
through flO, the labels can be given as If 0, If 1 , ... , IflO. The codes
transmitted by certain other special keys can be given: kll (home
down), kbs (backspace), ktbe (clear all tabs), ketab (clear the
tab stop in this column), kclr (clear screen or erase key), kdehl
(delete character), kdll (delete line), krmir (exit insert mode),
kel (clear to end of line), ked (clear to end of screen), kichl
(insert character or enter insert mode), kill (insert line), knp
(next page), kpp (previous page), kind (scroll forward/down), kri
(scroll backward/up), khts (set a tab stop in this column). In
addition, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as kal, ka3,
kb2, kcl, and ke3. These keys are useful when the effects of a 3
by 3 directional pad are needed. Further keys are defined above in
the capabilities list.

Strings to program function keys can be given as pfkey, pfloe,
and pfx. A string to program their soft-screen labels can be given
as pIn. Each of these strings takes two parameters: the function
key number to program (from 0 to 10) and the string to program it
with. Function key numbers out of this range may program unde­
fined keys in a terminal-dependent manner. The difference
between the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string; pfloe
causes the string to be executed by the terminal in local mode; and

- 20 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO (4)

pfx causes the string to be transmitted to the computer. The
capabilities nIab, Iw and Ih define how many soft labels there are
and their width and height. If there are commands to turn the
labels on and off, give them in smIn and rmIn. smIn is normally
output after one or more pIn sequences to make sure that the
change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the
next tab stop can be given as ht (usually control I). A "backtab"
command which moves leftward to the next tab stop can be given
as ebt. By convention, if the teletype modes indicate that tabs are
being expanded by the computer rather than being sent to the ter­
minal, programs should not use ht or ebt even if they are present,
since the user may not have the tab stops properly set. If the ter­
minal has hardware tabs which are initially set every n spaces
when the terminal is powered up, the numeric parameter it is
given, showing the number of spaces the tabs are set to. This is
normally used by tput init (see tput(1)) to determine whether to
set the mode for hardware tab expansion and whether to set the
tab stops. If the terminal has tab stops that can be saved in non­
volatile memory, the terminfo description can assume that they
are properly set. If there are commands to set and clear tab stops,
they can be given as tbe (clear all tab stops) and hts (set a tab
stop in the current column of every row).

Other capabilities include: isl, is2, and is3, initialization strings
for the terminal; iprog, the path name of a program to be run to
initialize the terminal; and if, the name of a file containing long
initialization strings. These strings are expected to set the termi­
nal into modes consistent with the rest of the terminfo description.
They must be sent to the terminal each time the user logs in and
be output in the following order: run the program iprog; output
isl; output is2; set the margins using mge, smgI and smgr; set
the tabs using tbe and hts; print the file if; and finally output
is3. This is usually done using the init option of tput(1); see pro­
file (4).

Most initialization is done with is2. Special terminal modes can
be set up without duplicating strings by putting the common
sequences in is2 and special cases in isl and is3. Sequences that
do a harder reset from a totally unknown state can be given as
rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The
method using files, if and rf, is used for a few terminals, from
/usr/lib/tabset/*; however, the recommended method is to use the
initialization and reset strings.) These strings are output by tput
reset, which is used when the terminal gets into a wedged state.
Commands are normally placed in rsl, rs2, rs3, and rf only if
they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set a terminal into
80-column mode would normally be part of is2, but on some termi­
nals it causes an annoying glitch on the screen and is not nor­
mally needed since the terminal is usually already in 80-column
mode.

- 21 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

If a more complex sequence is needed to set the tabs than can be
described by using tbc and hts, the sequence can be placed in is2
or if.

If there are commands to set and clear margins, they can be given
as mgc (clear all margins), smgI (set left margin), and smgr (set
right margin).

Delays
Certain capabilities control padding in the tty(7) driver. These are
primarily needed by hard-copy terminals, and are used by tput
init to set tty modes appropriately. Delays embedded in the capa­
bilities cr, ind, cubl, ff, and tab can be used to set the appropri­
ate delay bits to be set in the tty driver. If pb (padding baud
rate) is given, these values can be ignored at baud rates below the
value of pb.

Status Lines
If the terminal has an extra "status line" that is not normally
used by software, this fact can be indicated. If the status line is
viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit h19's 25th line, or
the 24th line of a VT100 which is set to a 23-line scrolling region),
the capability hs should be given. Special strings that go to a
given column of the status line and return from the status line can
be given as tsl and fsI. (fsI must leave the cursor position in the
same place it was before tsl. If necessary, the sc and rc strings
can be included in tsl and fsI to get this effect.) The capability
tsl takes one parameter, which is the column number of the status
line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work
while in the status line, the flag eslok can be given. A string
which turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to save and
restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest
of the screen, e.g., cols. If the status line is a different width
(possibly because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

- 22 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

Line Graphics
If the terminal has a line drawing alternate character set, the
mapping of glyph to character would be given in acsc. The defini­
tion of this string is based on the alternate character set used in
the DEC VT100 terminal, extended slightly with some characters
from the AT&T 4410vl terminal.

glyph name vtloo+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner I
lower left corner m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (~) t
right tee (~) u
bottom tee (..L) v
top tee (t) w
vertical line x
bullet

The best way to describe a new terminal's line graphics set is to
add a third column to the above table with the characters for the
new terminal that produce the appropriate glyph when the termi­
nal is in the alternate character set mode. For example,

glyph name vtloo+ new tty
char char

upper left corner R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Now write down the characters left to right, as in
"acsc=IRmFkTj Gq\,x.".

- 23 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

Miscellaneous
If the terminal requires other than a null (zero) character as a
pad, then this can be given as pad. Only the first character of the
pad string is used. If the terminal does not have a pad character,
specify npc.

If the terminal can move up or down half a line, this can be indi­
cated with hu (half-line up) and hd (half-line down). This is pri­
marily useful for superscripts and subscripts on hardcopy termi­
nals. If a hardcopy terminal can eject to the next page (form
feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number
of times (to save time transmitting a large number of identical
characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus,
tparm(repeat_char, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the
Tektronix 4025, this can be indicated with cmdch. A prototype
command character is chosen which is used in all capabilities.
This character is given in the cmdch capability to identify it. The
following convention is supported on some UNIX systems: If the
environment variable CC exists, all occurrences of the prototype
character are replaced with the character in ce.
Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and network,
should include the gn (generic) capability so that programs can
complain that they do not know how to talk to the terminal. (This
capability does not apply to virtual terminal descriptions for
which the escape sequences are known.) If the terminal is one of
those supported by the UNIX system virtual terminal protocol, the
terminal number can be given as vt. A line-turn-around sequence
to be transmitted before doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control, give
xon. Padding information should still be included so that routines
can make better decisions about costs, but actual pad characters
will not be transmitted. Sequences to turn on and off xon/xoff
handshaking may be given in smxon and rmXOD. If the charac­
ters used for handshaking are not AS and A Q, they may be specified
with xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, setting
the 8th bit of any character transmitted, this fact can be indicated
with km. Otherwise, software will assume that the 8th bit is par­
ity and it will usually be cleared. If strings exist to turn this
"meta mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be indicated
with 1m. A value of Im#O indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to
the terminal can be given as mcO: print the contents of the screen,
mc4: turn off the printer, and mc5: turn on the printer. When

- 24 -

TERMINFO (4) (Terminal Information Utilities) TERMINFO (4)

the printer is on, all text sent to the terminal will be sent to the
printer. A variation, mc5p, takes one parameter, and leaves the
printer on for as many characters as the value of the parameter,
then turns the printer off. The parameter should not exceed 255.
If the text is not displayed on the terminal screen when the
printer is on, specify mc5i (silent printer). All text, including
mc4, is transparently passed to the printer while an mc5p is in
effect.

Special Cases
The working model used by terminfo fits most terminals reason­
ably well. However, some terminals do not completely match that
model, requiring special support by terminfo. These are not meant
to be construed as deficiencies in the terminals; they are just
differences between the working model and the actual hardware.
They may be unusual devices or, for some reason, do not have all
the features of the terminfo model implemented.

Terminals which can not display tilde C) characters, such as cer­
tain Hazeltine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap,
such as the Concept 100, should indicate xenl. Those terminals
whose cursor remains on the right-most column until another
character has been received, rather than wrapping immediately
upon receiving the right-most character, such as the VT100, should
also indicate xenl.

If el is required to get rid of standout (instead of writing normal
text on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved
over to blanks, should indicate xt (destructive tabs). This capabil­
ity is also taken to mean that it is not possible to position the cur­
sor on top of a "magic cookie" therefore, to erase standout mode,
it is instead necessary to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the
escape or control-C characters, should specify xsb, indicating that
the f1 key is to be used for escape and the f2 key for control-C.

Similar Terminals
If there are two very similar terminals, one can be defined as
being just like the other with certain exceptions. The string capa­
bility use can be given with the name of the similar terminal.
The capabilities given before use override those in the terminal
type invoked by use. A capability can be canceled by placing xx@
to the left of the capability definition, where xx is the capability.
For example, the entry

att4424-2lTeletype 4424 in display
function group ii,

rev@, sgr@, smul@,
use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr,
and smul capabilities, and hence cannot do highlighting. This is
useful for different modes for a terminal, or for different user
preferences. More than one use capability may be given.

- 25 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO (4)

FILES
lusr/lib/terminfol?l*
lusr/lib/.COREterm/?l*

lusr/lib/tabsetl*

compiled terminal description database
subset of compiled terminal description
database
tab settings for some terminals, in a
format appropriate to be output to the
terminal (escape sequences that set
margins and tabs)

SEE ALSO
curses(3X), printf(3S), term(5).
captoinfo(IM), infocmp(IM), tic(IM), tty(7) in the System
Administrator's Reference Manual.
tput(l) in the User's Reference Manual.
Chapter 10 of the Programmer's Guide.

WARNING

NOTE

As described in the "Tabs and Initialization" section above, a
terminal's initialization strings, is!, is2, and is3, if defined, must
be output before a curses (3X) program is run. An available
mechanism for outputting such strings is tput init (see tput(l)
and profile(4».

Tampering with entries in /usr/lib/.COREterm/?/* or
/usr/lib/terminjo/?/* (for example, changing or removing an
entry) can affect programs such as vi(l) that expect the entry to
be present and correct. In particular, removing the description for
the" dumb" terminal will cause unexpected problems.

The termcap database (from earlier releases of UNIX System V)
may not be supplied in future releases.

- 26 -

TIC(lM) (Terminal Information Utilities) TIC(lM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION

FILES

tic translates a terminfo(4) file from the source format into the
compiled format. The results are placed in the directory
lusr/liblterminfo. The compiled format is necessary for use with
the library routines described in curses(3X).

-vn (verbose) output to standard error trace information
showing tic's progress. The optional integer n is a
number from 1 to 10, inclusive, indicating the desired
level of detail of information. If n is omitted, the default
level is 1. If n is specified and greater than 1, the level of
detail is increased.

-c only check file for errors. Errors in use= links are not
detected.

file contains one or more terminfo(4) terminal descriptions in
source format (see terminfo(4)). Each description in the
file describes the capabilities of a particular terminal.
When a use=entry-name field is discovered in a terminal
entry currently being compiled, tic reads in the binary
from lusr/liblterminfo to complete the entry. (Entries
created from file will be used first. If the environment
variable TERM INFO is set, that directory is searched
instead of lusr/liblterminfo.) tic duplicates the capabili­
ties in entry-name for the current entry, with the excep­
tion of those capabilities that explicitly are defined in the
current entry.

If the environment variable TERMINFO is set, the compiled
results are placed there instead of lusr/liblterminfo.

lusr/lib/terminfol?l* compiled terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4) in the Programmer's Reference
Manual.
Chapter 10 in the Programmer's Guide.

WARNINGS

BUGS

Total compiled entries cannot exceed 4096 bytes. The name field
cannot exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated to 14
characters and a warning message will be printed.

When the -c option is used, duplicate terminal names will not be
diagnosed; however, when -c is not used, they will be.

To allow existing executables from the previous release of the
UNIX System to continue to run with the compiled terminfo
entries created by the new terminfo compiler, cancelled capabili­
ties will not be marked as cancelled within the terminfo binary

- 1 -

TIC(lM) (Terminal Information Utilities) TIC(lM)

unless the entry name has a '+' within it. (Such terminal names
are only used for inclusion within other entries via a use= entry.
Such names would not be used for real terminal names.)

For example:

4415+nl, kf1@, kf2@,

4415+base, kf1=\EOc, kf2=\EOd,

4415-n1l4415 terminal without keys,
use=4415+nl, use=4415+ base,

The above example works as expected; the definitions for the keys
do not show up in the 4415-nl entry. However, if the entry
4415+nl did not have a plus sign within its name, the cancellations
would not be marked within the compiled file and the definitions
for the function keys would not be cancelled within 4415-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation
of the source file are preceded with the approximate line number
and the name of the terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be
the list of terminal names.

Token after a seek(2) not NAMES
Somehow the file being compiled changed during the com­
pilation.

Not enough memory for use_list element
or

Out of memory
Not enough free memory was available (malloc(3) failed).

Can't open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled file ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within
tic.

Unknown Capability - II ••• "

The named invalid capability was found within the file.

- 2 -

TIC(lM) (Terminal Information Utilities) TIC(lM)

Wrong type used for capability" ... "
For example, a string capability was given a numeric
value.

Unknown token type
Tokens must be followed by '@' to cancel, ',' for booleans,
'#' for numbers, or '=' for strings.

" ... ": bad term name
or

Line ... : Illegal terminal name - " ... "
Terminal names must start with a letter or digit

The given name was invalid. Names must not contain
white space or slashes, and must begin with a letter or
digit.

" ... " : terminal name too long.
An extremely long terminal name was found.

" ... " : terminal name too short.
A one-letter name was found.

filename too long, truncating to " ... "
The given name was truncated to 14 characters due to
UNIX file name length limitations.

defined in more than one entry. Entry being used is " ... " .
An entry was found more than once.

Terminal name" ... " synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
A t least one of the names of the terminal should begin
with a letter.

Illegal character - " ... "
The given invalid character was found in the input file.

Newline in middle of terminal name
The trailing comma was probably left off of the list of
names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not
exist is to cancel it.

Very long string found. Missing comma?
self-explanatory

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
self-explanatory

non-existant or permission denied
The given directory could not be written into.

- 3 -

TIC(lM) (Terminal Information Utilities)

.. .. is not a directory
self -explanatory

..... " : Permission denied
access denied .

.. ... " : Not a directory

TIC(lM)

tic wanted to use the given name as a directory, but it
already exists as a file

SYSTEM ERROR!! Fork failed!!!
A fork (2) failed.

Error in following up use-links. Either there is a loop in the links
or they reference non-existant terminals. The following is a list of
the entries involved:

A terminfo(4) entry with a use=name capability either
referenced a non-existant terminal called name or name
somehow referred back to the given entry.

- 4 -

TPUT(l) (Terminal Information Utilities) TPUT(l)

NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]

tput [-Ttype] init

tput [-Ttype] reset

tput [-Ttype] longname

DESCRIPTION
tput uses the terminfo(4) database to make the values of
terminal-dependent capabilities and information available to the
shell (see sh(l)), to initialize or reset the terminal, or return the
long name of the requested terminal type. tput outputs a string if
the attribute (capability name) is of type string, or an integer if
the attribute is of type integer. If the attribute is of type boolean,
tput simply sets the exit code (0 for TRUE if the terminal has the
capability, 1 for FALSE if it does not), and produces no output.
Before using a value returned on standard output, the user should
test the exit code ($?, see sh(l)) to be sure it is o. (See EXIT
CODES and DIAGNOSTICS below.) For a complete list of capa­
bilities and the capname associated with each, see terminfo(4).

-Ttype indicates the type of terminal. Normally this option is
unnecessary, because the default is taken from the
environment variable TERM. If -T is specified, then
the shell variables LINES and COLUMNS and the
layer size (see layers(l)) will not be referenced.

capname indicates the attribute from the terminfo(4) database.

parms If the attribute is a string that takes parameters, the
arguments parms will be instantiated into the string.
An all numeric argument will be passed to the attri­
bute as a number.

init If the terminfo(4) database is present and an entry for
the user's terminal exists (see -Ttype, above), the fol­
lowing will occur: (1) if present, the terminal's initiali­
zation strings will be output (isl, is2, is3, if, iprog),
(2) any delays (e.g., newline) specified in the entry will
be set in the tty driver, (3) tabs expansion will be
turned on or off according to the specification in the
entry, and (4) if tabs are not expanded, standard tabs
will be set (every 8 spaces). If an entry does not con­
tain the information needed for any of the four above
activities, that activity will silently be skipped.

reset Instead of putting out initialization strings, the
terminal's reset strings will be output if present (rsl,
rs2, rs3, rf). If the reset strings are not present, but
initialization strings are, the initialization strings will
be output. Otherwise, reset acts identically to init.

- 1 -

TPUT(l) (Terminal Information Utilities) TPUT(l)

longname If the terminfo(4) database is present and an entry for
the user's terminal exists (see -Ttype above), then the
long name of the terminal will be put out. The long
name is the last name in the first line of the
terminal's description in the terminfo(4) database (see
term(5».

EXAMPLES
tput init Initialize the terminal according to the type of

terminal in the environmental variable TERM.
This command should be included in everyone's
.profile after the environmental variable TERM
has been exported, as illustrated on the pro­
file(4) manual page.

tput -T5620 reset

tput cup 0 0

tput clear

Reset an AT&T 5620 terminal, overriding the
type of terminal in the environmental variable
TERM.

Send the sequence to move the cursor to row 0,
column 0 (the upper left corner of the screen,
usually known as the" home" cursor position).

Echo the clear-screen sequence for the current
terminal.

tput co Is Print the number of columns for the current
terminal.

tput -T450 cols Print the number of columns for the 450 termi­
nal.

bold='tput smso'

offbold='tput rmso'
Set the shell variables bold, to begin stand-out
mode sequence, and offbold, to end standout
mode sequence, for the current terminal. This
might be followed by a prompt:
echo "${bold} Please type in your name:
${ offbold} \ c"

tput he Set exit code to indicate if the current terminal
is a hardcopy terminal.

tput cup 23 4 Send the sequence to move the cursor to row
23, column 4.

tput longname Print the long name from the terminfo(4) data­
base for the type of terminal specified in the
environmental variable TERM.

- 2 -

TPUT(l) (Terminal Information Utilities) TPUT(l)

FILES
I usr lli bl terminf ol? 1*
I usr I incl udel curses.h
lusr linclude/term.h
lusr/lib/tabset/*

compiled terminal description database
curses(3X) header file
terminfo(4) header file
tab settings for some terminals, in a
format appropriate to be output to the
terminal (escape sequences that set
margins and tabs); for more informa­
tion, see the" Tabs and Initialization"
section of terminfo(4)

SEE ALSO
stty (1), tabs (1).
profile(4), terminfo(4) in the Programmers Reference Manual.
Chapter 10 of the Programmer's Guide.

EXIT CODES
If capname is of type boolean, a value of 0 is set for TRUE and 1
for FALSE.

If capname is of type string, a value of 0 is set if the capname is
defined for this terminal type (the value of capname is returned on
standard output); a value of 1 is set if capname is not defined for
this terminal type (a null value is returned on standard output).

If capname is of type integer, a value of 0 is always set, whether
or not capname is defined for this terminal type. To determine if
capname is defined for this terminal type, the user must test the
value of standard output. A value of -1 means that capname is
not defined for this terminal type.

Any other exit code indicates an error; see DIAGNOSTICS, below.

DIAGNOSTICS
tput prints the following error messages and sets the correspond­
ing exit codes.

exit
code error message

o -1 (capname is a numeric variable that is not specified
in the terminfo(4) database for this terminal type, e.g.
tput -T450 lines and tput -T2621 xmc)

1 no error message is printed, see EXIT CODES, above.
2 usage error
3 unknown terminal type or no terminfo(4) database
4 unknown terminfo(4) capability capname

- 3 -

	0001
	0002
	001-01
	001-02
	001-03
	001-04
	001-05
	001-06
	001-07
	001-08
	001-09
	001-10
	001-11
	001-12
	001-13
	001-14
	001-15
	001-16
	001-17
	001-18
	001-19
	001-20
	002-01
	002-02
	003-01
	003-02
	003-03
	003-04
	01-001_intro_1m
	01-002_accept
	01-003_bcopy
	01-004_chroot
	01-005_clri
	01-006_cron
	01-007
	01-008_devnm
	01-009_df
	01-010_dismount
	01-011_fsck
	01-012
	01-013
	01-014_fsdb
	01-015
	01-016
	01-017_fuser
	01-018_getty
	01-019
	01-020
	01-021_init
	01-022
	01-023
	01-024_iv
	01-025
	01-026
	01-027
	01-028_killall
	01-029._lddrvtif
	01-030
	01-031_login
	01-032
	01-033_lpadmin
	01-034
	01-035
	01-036_lpsched
	01-037_masterupd
	01-038
	01-039_mkfs
	01-040
	01-041_mknod
	01-042_mount
	01-043_ncheck
	01-044_rc
	01-045_reboot
	01-046_setmnt
	01-047_sfont
	01-048_shutdown
	01-049_uucico
	01-050_uuclean
	01-051_uusub
	01-052_volcopy
	01-053
	01-054_wall
	01-055_whodo
	02-001_intro_7
	02-002_drivers
	02-003
	02-004_err
	02-005_escape
	02-006
	02-007_gd
	02-008
	02-009_kbd
	02-010
	02-011
	02-012_ktune
	02-013
	02-014
	02-015_lp
	02-016_mem
	02-017_null
	02-018_phone
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024_phonedvr
	02-025_qt
	02-026
	02-027_termio
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036_tty
	02-037_window
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	03-001_curses
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	03-111
	03-112
	03-113
	03-114
	03-115
	04-001_captoinfo
	04-002
	04-003
	04-004_curses
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038_infocmp
	04-039
	04-040
	04-041
	04-042_terminfo
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068_tic
	04-069
	04-070
	04-071
	04-072_tput
	04-073
	04-074

