473
6 | EXPRESSIONS
6.1 EXPRESSIONS: CONCEPTS AND TYPES

An expression describes how a value can be obtained by applying
specified operations to designated operands or primaries.

Syntax

<expression>

---—<arithmetic expression>-----—---—-- !
! |
I-<bit manipulation expression>-|
r : L |
|-<Boolean expression>-——--——--—-- |
; |
|-<case expressiony——----- —————|
i I
|-<complex expression>-————------ |
| ‘ |
|-<conditional expression>------ |
| I
|-<designational expression>----|
b _ e
|-<function expressiony>=———-—-—--— !
I ' !
|-<pointer expressiony-------—-—-- !
l : |

|-<string expression’>---—-—--—---—- |
Semantics

Evaluation of an arithmetic ekpression returns a numerical value.
Evaluation of a Boolean expression returns a Boolean value (TRUE or
FALSE). Evaluatiorn of a complexiexpression returns a complex value--a
value with a real numerical jpart and an imaginary numerical part.
Evaluation of a designational expression returns a label. Evaluation of
a pointer expression returns = a value that can be used to reference a
character position in an array row. Evaluation of a string expression
returns a value that is an EBCDIC, ASCI1, or hexadecimal string.

A bit manipulation expression opérates on bits within words and makes it
possible to "build" the contents?of a word from groups of bits contained
in other words. :

474
ALGOL REFERENCE MANUAL
Case expressions and conditional expressions allow one: of several

alternative expressions to be chosen for evaluation based on a selection
value. '

A function expreséion is a call on a typed procedure. The procedure can
be declared in the program or it can be an intrinsic--a typed procedure

that is a predefined part of the ALGOL language. Intrinsic functions
exist that are predefined arithmetic expressions, predefined Boolean
expressions, predefined complex expressions, predefined pointer
expressions, and predefined string expressions. For example,

SQRT(<arithmetic expression>) is a function expression that returns the
square root of .the value of <arithmetic expression>. Because SQRT
returns a numeric value, it is an arithmetic function--a predefined
arithmetic expression.

NOTE

Expressions that are very large Or deeply
nested can cause the compiler to get a
stack overflow fault. The fault can be
avoided by breaking very large or deeply
nested expre%sions into several separate
expressions or by increasing the maximum
stack size by using the task attribute

STACKLIMIT.

Examples -
X*Y A =B CASE N OF (1,2,4,8)
SWLBL[SWX] - SQRT(X) IF BOOL THEN A ELSE B
POINTER(A) s1 || s2 0 & N [3:4]

RSLT.[19:20] CSIN(C)

: 475
EXpressions ARITHMETIC

ARITHMETIC EXPRESSION -

Arithmetic expressions are expressions that return numerical values by
performing specified operations oh designated arithmetic primaries.

Syntax
<arithmetic expression>
--—-<simple arithmetic expression>---—--—---- i

| i
|-<conditional arithmetic expression>-—|

<simple arithmetic expression>

|<- <arithmetic operator> -|

I~ - -l

<arithmetic operator>

476
ARITHMETIC ALGOL REFERENCE MANUAL

<arithmetic primary>

—--—<unsigned nuUmMber »————=—— = e e e |
b l
|-<arithmetic concatenation expressiond>---—-—--—————————-= |
| ‘ |
|-<string literald--—————--———mo——m— e |
I |
|-<arithmetic variable>-- := --<arithmetic expression>-|
I [

|-<arithmetic operand>-----——————-=-—--————m—————— |

<arithmetic operand>

---~<arithmetic variable>-—--------=——-—me———- l

|

!

|

|-<arithmetic function designator:----—--—-- |
|

|- (—--<arithmetic expression>--) —~——=-een
|

j-<arithmetic case expression>------—-----~ |

| !
|-<arithmetic attributed>————===--oeooe—e-—- |
<arithmetic case expression>
‘ (___________ y TTTTETEETTT I
| !
-~<case head>—- (—---<arithmetic expression>---) --|
<conditional arithmetic expression>

--<if clauser—--<arithmetic expression®>-- ELSE ~—=--—--————mem——wu——n p)

>-<arithmetic exXpression>-———————————— -

<constant arithmetic expression>

An <arithmetic expression> that can be fully evaluated at compile
time.

477

Expressions L ARITHMETIC
See also o :
<arithmetic-attr1bute> c e e e e e i e e e e e e .. 226
<arithmetic concatenation exprescion) e e e e e e e e e . . . 484
<arithmetic function de51gnator> e e e v e 4 e e 4 4w «-% « . 515
<arithmetic variable> 0 e L e e e e e e e 225
<CASE NOAAY v v v« v« & v ¢ 4 e e e e e iw e e e e e e . e . . 263
CIf ClAUSEY v v v 4 & o« « o e 6 4 e 4 e W e e e 4 o we e s . . . 319
<partial word part> 0 e e e e e e e e e e e e 489
CUpdate SYMDOLS . « v o o v eiv o o o o o v a e e e e e e e .. 227
.Examples
Valid ' Invalid
SUM/N L*-A
(A+B)/(C-D) *ENTIER(60)
2% (X+Y) ~4(AC)
(A+B)/(C-D) X*-3
COS(A+B)+C _ 3X + 4Y + Z
Y*3 : ‘ “A(X + 5)
+8 A+X*(B:=X*(C+X(D+X*E))))
(- B+SQRT(D))/(A+A) . P*[X + Y + Z]
-T*3 ‘ X + Y*=X + Z**2
A+X*(B:=X*(C+X*(D+X*E)))
THETA '
Semantics

The evaluatlon of a condltlonal arlthmetlc exXpression is described in
"Conditional Expression."

Arithmetic Primaries

The items on which arithmetic operators act are called arithmetic
primaries. :

A variable or function designator used as .an arithmetic primary in an
arithmetic expression must be of an arithmetic type--INTEGER. REAL, or
DOUBLE.

An attribute used as an arithmetlF primary must have a type that is
INTEGER; REAL, or DOUBLE. For information on file attribute and direct
array attribute types, see the "I/O Subsystem Reference Manual." The
arithmetic-valued task attribuies are described wunder "Arithmetic
Assignment."

478
ARITHMETIC

ALGOL REFERENCE MANUAL

The length.of a string literal used as an arithmetic primary must not

exceed 48§ Dbits. A string

used as an arithmetic primary is

interpreted as either type REAL or type INTEGER, depending on its value.

The arithmetic concatenation expression is described .in "Concatenation

Expression.”

The partial word part is described in "Partial Word Expression.”

The evaluation of an arithmetic case expression is described in "Case

Expression.”
See also
Arithmetic Assignment . . . e e e e e e e e e e e . . 225
Examples
Valid Invalid
5.678 X 1= * 1= Y
X := * + 3 + DC8
(14 + 3.142) B - &
MABEL -(A + B)
R & 3 [1:2] TRUE
Y.[30:4]
"ABCD "
SQRT(X)
CASE I OF (5,15,17)
FYLE.MAXRECSIZE
- Arithmetic Operators
The operators +. -, *, and / have the conventional mathematical meanings

of addition, subtraction, multiplication. and division, respectively.

No two operators can be adjacent,

allowed.

implied multiplication is not

The TIMES and * operators denote multiplication.

) : . , 479
Exprbssions ‘ . ARITHMETIC

The DIV .operator denotes integef division. It has the following
mathematical meaning: ‘ . . . :

Y DIV Z = SIGN(Y/Z) * ENTIER(ABS(Y/Z))
The MOD operator‘denOtes_remainder‘division; For Z greater than or
equal to 1, MOD has the following meaning:

Y MOD Z =Y - (Z * (Y DIV 2))

For Z less than 1, the MOD operatot produces undefined results.

The MUX operator multiplies eiﬂher single- or double-precision
arithmetic primaries, and‘yields'avdouble-precision result.

The ** operator denotes -exponeﬁtiation,' The semantics of the
eXponentiation operator depend on}the types and values of the primaries
‘involved. Table 6-1 explains the various meanings of Y**Z.

Table 6-1. iExponentiation
Meaning of Y**Z

!
- Z: Type Integer
F

! I - | |
‘lz>0 | z2=0 | Z2>0 12=0 |2<0 |
i | ! i I [
---------- el B R Attt Rttt Rttt
| | | ! : l I , i
I Y0 | Note 1 | 1 | Note 2 | Note 2 | 1 | Note 3 |
[-¥<0 | Note 1 | 1 I Npte 2 | Note 4 | 1 | Note 4 |
b Y=0 () | Note 4 | Note 4 0 | Note 4 | Note 4 |
% I | . (I I |
| e e e e e e e e e e |
[o ‘ |
! Note 1: Y**Z = Y*Y*Y ,,. *Y (2 times) |
! Note 2: Y**Z = Reciprocal of Y*Y*Y ...*Y (ABS(Z) times) I
i Note 3: Y**Z = EXP(Z*LN(Y)) L |
I Note 4: Value of the expression is undefined. |
| : ' , : ' I

gl

480
ARITHMETIC ALGOL REFERENCE MANUAL

Precedence of Arithmetic Operators

The sequence in which the operations of an arithmetic expression are
performed is determined by the precedence of the operators involved.
The order of precedence is as follows:

1. *=* (highest precedence)

2. *, /, MOD, DIV, MUX, TIMES

Operators with the same precedence are applied -in their order of
appearance in an expression, from left to right.
The precedence of the assignment operator (:=) is as follows:

1. An expression .to the right of an assignment operator is
evaluated before the assignment. '

2. The: assignment is done before the evaluation of an expression

involving the variable that is the target of the assignment.

Parentheses can be used in normal mathematical fashion to override the
defined order of precedence. An expression in parentheses is evaluated
by itself, and the resulting value is subsequently combined with the
other elements of the exXpression. For example, in the expression

(%X+1)/Y

the addition is performed before the division because of the
parentheses. In the expression

X+1/Y

1 is first divided by Y and then the result is added to X.

| 481
Expressions ARITHMETIC

Table 6-2 illustrates how mathematical notation can be translated to an
ALGOL arithmetic expression.

Table 6-2. Mathematical‘Nofation

I ! !
i Mathematical | ' "Equivalent |
| Expression | ALGOL EXxpression |
! | |

| AXB | A*B I
|—=——mm e mmmm o o |
| B ! |
I A+ - i A+ B/2 8
| 2 | {
ettt ettt J
I X+ 1 S . |
| == | (X + 1)/Y I
! Y | 5
e ettt |
| 2 I |
| D+ E | (D + E**2)/(2 * A) |
| | I
| 2A f {
ittt | momm e e I
! 3 j I
| 4(X + V) |4 * (X +Y) ** 3 |
mmmm e e = e |
| M- N | |
T . |
[-6 | (M - N)/(¥ + N) ** (P + 5@-6) |
| P+ 5 X 10 | !
| (M + N) l |
| i !

Precision of Arithmetic g;gressioné

The value of an arithmetic expression can be expressed in single or
double precision, depending on the precision of its constituents or. in
the case of MUX, on the operator involved. The value of an arithmetic
expression 1is double precision if any variable, function, or number of
which it is composed is of type DOUBLE, or if two primaries are combined
by the double-precision operatof MUX. The MUX operator allows a
double-precision result to be obtained from the multiplication of two
single-precision arithmetic primaries.

482

ARITHMETIC

its

of a conditional arithmetic expression is

arithmetic expression

arithmetic

single-precision
precision, when necessary.

ALGOL REFERENCE MANUAL

Types of Resulting Values

The value of a case expression is double precision if any expression in
expression list is of type DOUBLE. Likewise, the value

double precision if either

is double precision. In either case,

arithmetic expressions are converted to double

on

The type of the value resulting from an arithmetic operation depends
operator and the types of the primaries being combined,
Table 6-3

the arithmetic

except when the resulting value is undefined.

types

primaries.

Table 6-3.

describes

Types of Values Resulting from Arithmetic Operations

| Operand
lon Left

| INTEGER
| INTEGER
| INTEGER
| REAL

| REAL

| REAL

| DOUBLE

|

|

|

!

| Note
|

| Note
|

|

| Operand
jon Right

| INTEGER
| REAL

| DOUBLE
| INTEGER
| REAL

| DOUBLE
| (any)

|

|

|

I

|

|

|

| Note 3
| REAL

| DOUBLE
| REAL

| REAL

| DOUBLE
| DOUBLE
I

REAL
REAL
DOUBLE
REAL
REAL
DOUBLE
DOUBLE

| INTEGER
| INTEGER
| DOUBLE
| INTEGER
| INTEGER
| DOUBLE
| DOUBLE

| INTEGER
| REAL

| DOUBLE
| REAL

| REAL

| DOUBLE
| DOUBLE

| DOUBLE
| DOUBLE
| DOUBLE
| DOUBLE
| DOUBLE
| DOUBLE
| DOUBLE

If the operand on the right is negative or the absolute

value of the result is greater than or equal to 2**39,

REAL:

REAL

otherwise,

INTEGER

REAL

I1f the operand on the right is zero,

INTEGER;

otherwise,

If the absolute value of the result is less than 2**39,
INTEGER; otherwise.

the
of quantities that result from various combinations of arithmetic

i ' 483
Expressions ARITHMETIC

The type of an arithmetic case exprbssion or a conditional arithmetic
expression is DOUBLE if any of its constituent expressions are of type
DOUBLE. (For more information, refer to “Precision of Arithmetic
Expressibns" above.) If ' the conditional arithmetic expression or
arithmetic case expression contains only expressions of type INTEGER and
REAL, its type is REAL. A conditional arithmetic expression or
arithmetic case expression is of type INTEGER only if all = its
constituent expressions are of typé INTEGER.

484
BIT MANIPULATION _ALGOL REFERENCE MANUAL

BIT MANIPULATION EXPRESSION

Bit manipulation expréssions provide a means of isoclating a field of one
or more bits from a word, and allow words to be constructed from fields
Oof one or more bits from other words.

Syntax

<bit manipulation expression>
——-—<concatenation expression>----|

| f
|—<partial word expression>--|

Concatenation Expression

The concatenation expression forms a primary from selected parts of two
or more primaries.

Syntax

<concatenation expression»
---—-<arithmetic concatenation expression>----|
I I
j-<Boolean concatenation expression>—-—-~|
<arithmetic concatenation expression>

--<arithmetic primary>-- & --<arithmetic expressiond—-—-—-—————m——meeo >

2T CON LAt eNAL L ON)~ e e |

<Boolean concatenation expression>

~—-<Boolean primary>-- & —--<Boolean expression>--<concatenation>--|

485

Expressions BIT MANIPULATION
<coh¢atena£ion>j | | |
cm [==<left bit tOd—= 1 —mmmmmmmm e >
| .:-<ieft bit from>—- : —:»
‘>—<numbef of bits>——] ——Ff—e—;f——--Q»f——--——-—--———é -------- —————— |

<left bit to>

-—carithmetic expression>--|

'<1eftbbit fr6m>

~—<arithmetic expression>—-]|

<number -of bits>

--<arithmetic expression>-—|

See also . ‘
<arithmetic primary>. . o . o o o o ot o e v e e e ey e e e 476
<BoOlean PriMary? . o « o o o o 6 o o o o o o o s o o o o « « o 492

Semantics

A concatenation primary is formed by taking a specified part of the bit
_pattern of the value of an expreésion and copying it into the specified
portion of a primary. The rest ‘of the destination primary is not
changed by this operation.

Note that only arithmetic expressions can be concatenated with
arithmetic- primaries, and only éoolean expressions can be concatenated
with Boolean primaries. o ' '

486 C
"BIT MANIPULATION ALGOL REFERENCE MANUAL

Because the concatenation expression is a primary. and the syntax for a
concatenation expression is of the form

<primary> & <expression> <concatenation>
. concatenation_expressions of the following form are allowed:

<primary> & <expression> <(concatenation>
& <expression> <concatenation>

& <expression> <concatenation>

If, as in the example above, more than one concatenation term is used in
a concatenation expression, then these terms are evaluated from left to
right.

<concatenation>

_The <concatenation> construct describes the location in the eXxpression
.of the field to be copied and the location in the destination primary
where the field is to be copied. '

‘The <left bit to> element defines the leftmost bit location of the field
in the destination word. The <left bit from> element defines the
leftmost bit location of the field in the source word. The <number of
bits> element specifies the length of the field to be copied from the
source to the destination.

If the "[<left bit to>:<left bit from>:<number of bits>]" form is used,
the field of bits to be copied starts at <left bit from> in the source
word and is <number of bits> long.

If the "[<left bit to>:<number of bits>]" form is used, then the field
of bits to be copied from the source word starts at bit number (<number
of bits>~1) and extends through bit zerc. That is, the source field is
assumed to be the low-order <number of bits> bits in the source word.

The values of <left bit to> and <left bit from> must lie within the
~range O through 47, where bit 0 is the rightmost, or least significant,
bit in the word. : :

, . 487
Expreesions © ' BIT MANIPULATION

The value of <number of bits> must lie. w1th1n the range 0 . through 48.
I1f the value of <number of bits> exceeds the number of bits to the right
-of the starting bit in either the source or destination words, = these
fields wrap around and are continued at bit 47, the leftmost bit, of the
same word. ‘

If, through the programmer s use of varlables, the ranges for <left Dbit
to>, <left bit from>, oOr <number of b1ts> are exceeded then the program
is discontinued with a fault.

Because a concatenatlon expression’ is a primary, when it appears as an
operand in a larger expre551on, the concatenation expression is
evaluated before other any operatlon is -executed. For example, the
expre551on : ' :

2%*4 & l [O 0: 1]
is evaluated as

2**(4 & 1 [0:0:1]) = 2**5 = 32

and NOT as

(2#*4) & 1 [0:0:1]

H

16 & 1 [O:b:l] =

For the same reason, the Boolean.coﬁcatenation expression
3¢ 7.6& (5> 8) [47:47:20] |

is evaluated as. |
3 ¢ (78 (5> 8) [47:47:20])

which is equivalent tc¢ H
3‘< (7 & FALSE.[47:47320J5

This results in .an error, because the Boolean expression. "FALSE" cannot
be concatenated with the arlthmetlc primary AL ' '

488 :
BIT MANIPULATION ALGOL REFERENCE MANUAL

Examples

Given real variables X, Y, and Z with the following values:

X = 32767 = 4"000000007FFF"
Y = 1024 = 4"000000000400"
Z = 1 = 4"000000000001"

the following are examples of arithmet1c concatenation expressions, and
their values: :

Expression ' Value
X &Y [47:11:4] o "~ 4"400000007FFF"
X &Y [47:12] ‘ 4" 40000000 7FFF"
Y & X [39:20] 4"0007FFF00400"
‘Y & Z [46:1] '4"400000000400"
0 & Y [11:11] - 4"000000000800"
0 & X [23:48] 4"007FFF0O00000"
X & Y [39:12] & 2 [47:1] 4"804000007FFF"
Y & X [19:15:8] 4"00000007F400"

Assume the elements of the real array INFO contain information about the
data in a file. Each element of INFO contains a record number in the
field [19:20], and the length of the data in that record is. in field
[39:20]. That is, each element of INFO stores the location and length
of a record in the data file. Let N be a variable that contains a
record number and let L be a variable that contains the length of that
record. The following declarations and assignment statement could be
used to store a value into an element of INFO.

DEFINE .
REC_NUMF = [19:20]#,
LENGTHF = [39:20]#;

.

REC_NUMF

INFO[I) := 0 & N
v & L LENGTHF;

‘ 489
Expressions BIT_MANIPULATION

Partial Word Expression

A partial word expression isolates .the value of a field of one or more
bits of a specified word. ‘

Syntax

<partial word expression>
----<arithmetic operahd>-——<par£ia1 word part>--|
l v | ' ’ :
| -<Boolean operand>----|
(partial word part>

-, == [——<left bit>---: —-<nﬁmber of bitsy—— 1 ——|

¢left bit>

——<arithmetic expression>—-} .

See also . .
<arithmetic OPErand>. . « « o e e o o o o o o e e e e e e 476
<Boolean operand» i e o« e e e e s e e e et e e e e e e 492

Ccnumber Of DItS . « o . v e e e i e e e e e e e e e e e e e 485

Semantics

The <partial word part> construct &escribes the location in the operand
of the field to be isolated. The isolated field is copied to the low
order (rightmost) field of a word of all zeros.

The <left bit> element defines the leftmost bit location of the field in
the source Wworc. The value of <left bit>» must lie within the range 0
through 47, where bit 0 is the rigﬁtmost. or least significant, bit in
the word. ‘ '

The <number of bits> element specifies the length of the field. The
value of <number of bits> must lie within the range O through 48. 1If
the value of <number of bits> exceeds the number of bits to the right of
<left. bit> in the source word, the field wraps around and is continued
at bit 47, the leftmost bit. of the same word.

490
BIT MANIPULATION ALGOL REFERENCE MANUAL

If, through the programmer's use of variables, these ranges' are
DU e ‘}5 PO

eXceeded, the program is discontinued with a fault.
Examples

Given real variables X, Y, and Z with the following values:

X = 32767 = 4"000000007FFF"
Y = 1024 = 4"000000000400"
Z = 2 = 4"000000000002"

the following are examples of arithmetic partial word expressions and

their values:

‘ExXpression Value

X.[5:6] 4"00000000003F"
Y.[11:4] 4"000000000004"
Z.[19:48] 4"000040000000"
X.[23:24] 4"0000CO000Q7FFF"
X.[23:20] 4"000000000Q7FF"

Using the INFO array example from "Concatenation Expression" above,
following assignments could be used to extract information from INFO.

i

N INFO[I].REC_NUNMF;
L := INFO[I].LENGTHF:

the

‘ : 491
Expressions , ' BOOLEAN

Booleaniexpréssions are expressions that return 1logical values by
applying specified operations to designated Boolean primaries.

Syntax

<Boolean expression>

----<simple Boolean expression>—--------|

I-<conditional Boolean éxprstion>-I

<simple Boolean expression>

| <- <Boolean operator> -]

| I

~-——<Boolean primafy> ———————— !

(Boolean operator>

-—== AND ----|
J [
- OR --|
| |
|- EQV -]

492
BOOLEAN ALGOL REFERENCE MANUAL

<Boolean primary>

‘:— NOT —: :-<Boolean operand>-—————-—-———-——-———;—~ —————— :
t- » ———: 1 . :-<partia1 word part>--—-—--- {
{-<Boolean variable>--- := -—<Boolean primary>—l
: :—<update symbols>—v ——————— :

1
i-<arithmetic relation>--—--————----—-—-——--=—To— i
:—<Boolean concatenation expression>---—-——---- :
l—<comple# relation>-————=-=—-=-----—os-oo=ososoo :
:—<string relation>-———-——--=-—=-—-—-s--—--—o—oo—-o- :
=-<pointer relation>----————===———-———=-—-o-—ooo i
:—<string expression relation>-—------=--——=="=~ :

| I

j-<arithmetic table membership>-——----===—--~""- |

| I
|-<pointer table membership>----—---=-=---="""" |

<Boolean value>

---- TRUE ----- !

I l
|- FALSE -|

<Boolean operand>

--——(Boolean variable>---————==—=-—-—~ f
I |
|-<Boolean function designator>--|

.1 I
|- (--<Boolean expression>--) -
| !
|-<Boolean case expression>--——-- !
! !

. 493
Expressions E BOOLEAN

<Boolean case expression>
_ | o o
--<case head>-- (---<Boolean expression>---) —--|
<arithmetic relation>
--<arithmetic expression>--<relational operator=--—---———m-—-—————ic >

>T arithmetic eXpression>———— s |

<relational operator>

----<string relational operator>----|

b b

<string relational operator>

---- LEQ -—--|
| |

|- <= —|

494 ' '
BOOLEAN ALGOL REFERENCE MANUAL

<complex relation>
_-—<complex expression>--<complex equality operator>———-——4 ————————— >

>-—<complex expression>-—===—--——-—=--==—=sess e — |

<complex equality operator>

<string relation>
-f<pointer part>--<relational operator>-————---———-——-——f————————f—>
>——?<pointer part>-- FOR --<arithmetic expression>--=—---—--—==—==="= l
:—<string literal>——=—-—-——--—=-=—-—-—-s--STooSoooooTTEo {
| :- FOR --<arithmetic expression>-:
<pointer paft>

----------------------- <pointer expression>--|

|-<update pointer>-|

<pointer relation>

-—-<pointer expression>-—<equality operator>--<pointer éxpressioh)—-l

" Expressions

<equality operator>

f- ISNT -|

<string expression relation>

—-<string expression>--<string relational operator>

495
BOOLEAN

»>-<string expression’>=------ ettt |

<arithmetic table membership>

--<arithmetic expression>——‘IN -—<truth set table>--|

<pointer table membership>

--<pointer expression>-- IN —--<truth

set table>

P mmm s oo —mm—m—— s e I

|- FOR --<arithmetic expression>-|
<conditional Boolean expression>
--<if clause>--<Boolean expression>-
See also
<Boolean attribute>

<Boolean concatenation expression..
<Boolean function designator> . . .

<(Boolean variable>.
<case head> . . « « « « « « o « o
<if clause: e e e e
<partial word part>
<truth set table: « « « o .
<update pointer>. o .« o o .

<update symbolsy. . . . & . .« .+ . .

ELSE

--<Boolean

expression>--|

e e . . . 234
. e . . . 484
.+ « . . 515
.« « . . . 234
e e - . . 263
coe ... 319
e« . . . 489
.+ .« . . 382
e« .« . . 379
e e e e . 227

496

BOOLEAN ALGOL REFERENCE MANUAL
Examples
valid | Invalid
B AND TRUE 1+A AND 2>0
1-A > B*(-E) NOT NOT A
(X=Y OR W=K) 1-W*2
X=0 AND Y"=0 (B*2-4XAXC)

A>1 AND (B=0 OR C<D)

(A=B OR C=D) AND (X<2 OR Y<2)
A=B ‘

X EQV Y

NOT B & TRUE [5:1]

Semantics

The evaluation of a conditional Boolean expression is ' described in
"Conditional Expression." '

Oggrators in Boolean Expressions

The following table lists the operators that can be used in Boolean
expressions, along with their meanings. When two operators are listed
on the same line, they are equivalent to each other.

Operator Meaning

NOT g logical NOT

AND logical AND

Ok] logical inclusive OR
IMP logical implication
EQV logical equivalence
IS identical to

ISNT not identical t¢

EQL = ’ equal to

NEQ t= not equal to¢

GTR > greater than

GEQ >= greater than or equal to
LSS < less than

LEQ <= less than or equal to

‘ 497
Expressions BOOLEAN

Logical Operators

The values returned by the logical operators are defined in Table 6-4.

Table o6-4. Resulté of Logical Operators

>
83}
e
<
(v}

l 3 | f I l !

| Operand A | Operand B | NOT A | A AND B | AORB | A IMP B |

I ' l | | i l |

i=:=========j===========[=======!=:=======[========|=========|=========|
| | i I | | | I
| TRUE | TRUE | FALSE | TRUE | TRUE | TRUE | TRUE !
TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE
FALSE	FALSE	TRUE i.. FALSE	FALSE	TRUE { TRUE		
	! I ! l I					

The Boolean operations defined above are performed on all 48 bits of the
Boolean primaries on a bit—by—bii basis. For example, the constant TRUE
(4"000000000001") does not have the same bit pattern as the Boolean
expression NOT FALSE, because NOT complements all 48 bits of the
constant FALSE (4"000000000000")ﬂ generating 4"FFFFFFFFFFFF". Even so,
the constant TRUE and the Boolean expression NOT FALSE have the same
Boolean value of TRUE because the Boolean value of a Boolean primary is
based upon the value of the low-order bit (bit zero) of the Boolean
primary (0 is FALSE; 1 is TRUE).

NOTE

Exception: When NOT operates on an
arithmetic relation, the low-order bit
(bit zero) is complemented; however, the
other 47 bits are not necessarily
complemented. For example, if X=Y
evaluates to TRUE. then NOT(X = Y)
evaluates to FALSQ, not hecessarily to
NOT TRUE as would be expected.

IS and ISNT Operators

The IS relational operator performs a bit-for-bit compare on its twc
operands. It returns TRUE if thé corresponding bits of each operand are
the same. The ISNT operator is the negation of the IS operator.

498 :
BOOLEAN ALGOL REFERENCE MANUAL

"If the IS operator is used to compare a double-precision arithmetic

quantity to a single-precision (integer or real) arithmetic quantity,
the result is always FALSE.

The 1S operator differs from the EQL or = operator. which does an
arithmetic compare on its operands. Two operands can have the same
arithmetié¢ value with different bit patterns. Thus, the following pairs
yield TRUE when compared with the EQL or = operator. but yield FALSE
when compared with the IS operator:

1. +0 and -0

2. A normalized number and the same number not in normalized
format

3. A number with an exponent of +0 and the same number with an
exponent of -0
4, A number. with bit 47 = 0 and the same number with bit 47 =1

Relational Operators

The action of the relational operators GTR; >, GEQ, »>=, LSS, <, LEQ, <=,

EQL. =. NEQ. and "= depends on the kinds of items being compared. For
more information, refer to "<arithmetic relation>." "<complex
relation>," “<string relation>," "<pointer relation>," and "<string

expression relation>" in this section.

Precedence in Boolean Expressions

The components of Boolean expressions are evaluated in the following
order: '

1. All arithmetic, complex, pointer, and string expressions are
evaluated.

2. All relations, table memberships, and assignments are
evaluated. '

. Logical operators are then applied.

_ 499
"EXpressions BOOLEAN

The ordervof precedenbe of -the logical dperators is as follows:

1. NOT (highest precedence)

2. AND
3. OR, |
4. IMP
5. EQV

Operators with the same - precedence are applied in their order of
appearance in an expression, from left to right.
The precedence of the assignment. operator (:=) is as follows:

1. A primary to the right of an assignment operator is evaluated
before the assignment.

2. The assignment is done pefore the evaluation of an expression

involving the variable that is the target of the assignment.

Parentheses can be used to overrlde the deflned order of precedence. An
expression in parentheses is evaluated by itself, and the resulting
value 1is subsequently combined with the other elements of the
expression. For example, in the expression '

X AND (Y OR Z)

the OR is performed before the AND because of the parenthese In the
expression

X AND Y OR Z

the AND is performed before the OK.
Boolean Primaries

The Boolean concatenation expression ig® described in "Concatenation
Expression."

The partial word part is described in "Partial Word ExXpression."

500
BOOLEAN - ALGOL REFERENCE MANUAL

The evaluation of a Boolean case expression is described in “Case
Expression.” e '

‘<Boolean value>

The Boolean value TRUE is represented internally as a’ 48—bit word
containing _4"000000000001". and the Boolean value FALSE is represented
internally as a 48-bit word containing 4"000000000000" .

<arithmetic relation>

An arithmetic relation performs an arithmetic comparison of the values
of two arithmetic expressions. The value of the relation is either TRUE
or FALSE. : 3 ;

<complex relation>

A complex relation performs a comparison between the values of two
complex expressions. Because one of the forms of a complex expression
is ‘an arithmetic expression. the complex relation can also be used toO
compare a complex value and an arithmetic value. 1In a complex relation,
the only allowed relational operators are =, EQL, ~=, and NEQ.

<string relation>

The string relation syntax causes a comparison to be performed' between
two character strings referenced by two pointer expressions, Or between
the character string referenced by a pointer expression and a- string
literal. The character strings are compared according to the EBCDIC
collating sequence. The arithmetic expression specifies the number of
characters to be compared (the repeat count). If a string literal
~follows the relational operator and a repeat count has been specified,
then the string 1literal is concatenated with itself, if necessary, tc
form a 48-bit literal. The comparison is repeated until the repeat
count is exhausted. If no repeat count 1is specified, the string
characters are compared once.

_Expressions : K BOOLEAN

_ <pointer rélationi

A pointer relation determines whether two pointer expressions refer to
the same character position - in the same array row. If the character
sizes of the two pointer expressions are unequal, the comparison . always
yields the value FALSE.

A pointer relation should not be confused With, a string relation. A
string relation compares the .chatacter'strings.referenced by pointer
expressions. - A Vpointer relation compares the pointer expressions
themselves. For example, if pointers Pl and P2 are initialized as
follows: S :

POINTER P1,P2;
REAL ARRAY A.B[0:1]:
Pl := POINTER(A,8);
P2 := POINTER(B,8);
REPLACE P1 BY "A";
REPLACE P2 BY "A";

tﬁen‘the string relation
P; EQL P2 FOR 1
would have the value TRUE, but ﬁhe pdihtér relation
Pl EQL P2>
would have the value FA#SE; bécahée Pl refers to array A and P2 refers
~to array B. ' S

<string expression relation>

The string expression relation compares two string expressions according
to the collating ‘sequence of the character type of the string
expressions. Only string. expressions of the same character type can be
compared.

Two strings are equal'ohly if theklengthé of the two strings are .equal
and 'if every character in one string is equal to the corresponding
character in the other string. Two null strings are equal.

502 .
BOOLEAN ALGOL REFERENCE MANUAL

One string.is strictly greater than a second string only if at least one
of the following conditions is true:

1. The leftmost character in the first string that is not equal to
the corresponding character in the second string compares as
greater than the corresponding character in the second string.

2. The length of the first string is greater than the length of
the second string, and the two strings compare as equal for the
length of the second string.

whenever two string literals can be compared as two arithmetic
primaries, they are so compared. For example, the Boolean expression

"B" > "AA"

yields a value of FALSE, because the two gquoted strings are treated as
two arithmetic primaries. However, if the two string literals "B" and
"AA" were assigned to two string variables T and S, respectively, then
the Boolean expression

T > 8

yields a value of TRUE, because the first character of T is greater than
the first character of S.

For example, if a string S1 is assigned the value "AAB1Z+", then all -of
the following comparisons are TRUE:

S1 EQL TAKE(S1,6)
S1 NEQ HEAD(S1,ALPHA)
S1 GTR HEAD(S1,ALPHA)
S1 LSS DROP(S1,3)
S1 LSS DROP(S1,1)

Table Membership

The table membership constructs allow testing to determine whether a
character is a member of a truth set. The character can be either a
character in a string literal or a character in an array row referenced
by a pointer expression. In a pointer table membership primary, the
"FOR <arithmetic expression»" part applies the membership test to the
first <arithmetic expression: characters to which the pointer expression
points.

The <subscripted variable> form of the <truth set table> construct
allows several truth set tables to be contained in one array row. The
value of the subscript indicates the beginning of the desired table

503

Expressions v BOOLEAN
within the array row. For ;a description of truth sets, refer to
"TRUTHSET Declaration." ' '

Examples
valid v ‘Invalid
TRUE SQRT(X)
BOOL v o - B5.67
B.[11:1] : -X
B := TRUE o R + TRUE
Bl := * AND B2 o CSIN(C1l) > CSIN(C2)
CSIN(Cl) = CSIN(C2) - Pl > P2
X >y S1 IS "ABCD"
NOT B
R =23
PTR = "ABCD"

Pl < P2 FOR 20

S1 || s2 = 83

HAPPENED(E) :
CASE 1 OF (Bl1l, TRUE, X=Y)
NOT FYLE.OPEN

Pl = P2

BOOL & TRUE [19:1]

X IN ALPHAS

P1 IN ALPHA8 FOR 6

504
CASE ALGOL REFERENCE MANUAL

CASE EXPRESSION

Case expressions provide a means of selecting from a list of expressions
one expression for evaluation.

Syntax

<case expression>

--—-—-<arithmetic case expression>------- i
| !
|-<Booclean case expression>--——=--=-- |
| |
| -<complex case expression>—--—----- |
| 1
|-<designational case expression>-|
i |
|-<pointer case expression>------- [

See also .
carithmetic case expression>. « .« + « « « « o .+ 4 . . 476
<Boolean case exXPressiond . . . « .+« « o+« 4 e e . e s e . e 493
<complex case exXpression>« . o+ 4 507
<designational case expression> e e e e e 512
<pointer case exXpression> o L. e e e e e e e e .. 519

Semantics

In a case expression, the 1list of expressions must be composed Of
expressions of the same kind: for example, all arithmetic expressions or
all Boolean expressions. The expression to be evaluated is selected as
follows:

1. The arithmetic exprecssion in the case head is evaluated and
integerized by rounding. if necessary.

2. This value is used as an index into the expression list. The
component expressions of the expression list are numbered
sequentially from O through N-1. where N is the number of
expressions in the list.

3. The expression selected by the index 1is evaluated, and 1its
value is the value of the case expression.

505
Expressions : CASE

If the value of the index lies outside the range 0 through N-1, the

program is discontinued with a fault.

The type of an arithmetic case expression is DOUBLE if any of its
constituent expressions is-of type DOUBLE; in this case, any constituent
expression that is not of type DOUBLE is extended to double precision.
The type of an arithmetic case expression is INTEGER if and only if alil
of its constituent expressions are of type INTEGER. Otherwise, an
arithmetic case expression is of type REAL.

Examples

CASE N OF (2, 20, 100. 37)

CASE X.[27:2) OF (TRUE. FALSE. TkUE. TRUE)

CASE I OF (C1, C2. COMPLEX(X,Y))

CASE TSTS[INDEX] OF (LBL1, LBLZ, AGAIN, NEXT, MORE)

CASE CHAR.SZF OF (PTR, PTS, POINTER(A), PTEMP, POLO)

506
COMPLEX ALGOL REFERENCE MANUAL

COMPLEX EXPRESSION

Complex expressions are expressions that return = complex values
(arithmetic values that consist of a real part and an imaginary part) by
applying specified operations to designated complex primaries.

Syntax

<complex expression>

----<arithmetic expression>-—---—--==~-- i
I i
|-<simple complex expression>---=-~- |
I v ' |
|-<conditional complex expression>-|

<simple complex eXpression>

<~ <complex operator> -|
I f

==--=-<complex primary>-------- I

<complex operator>

—_———— ____l

| |
- - -l
1 |
B
| |
- / -1

<complex primary>
----<arithmetic primary>-------—--—--———————————————————— l

| !
|-<compleX operandy————=———=—————————— -

507
"Expressions COMPLEX

{complex operand>

----<complex variable>~------—=—- e
. | o |
b ' |- := -—<compléx primary>-|
b | | |
f |-<update sSymbols>——===——~ |
l . .

[-<complex function designatory—--—--—-—-—=———————o |
l : ' ' |
- (-—<complex expression>--) —————-—-=cmom—- |
' .

|-<complex case eXpressiond——————=—tm—————————- |
<complex caée_expression>
I : B
--<case head>-- (—--<complex expression>---) -=|

<conditional complex expression>

--<if clause>-—-<complex expression>--_ ELSE --<complex expression>--|

See also
<arithmetic primary>. . . « . ¢ « o v ¢ o o . .0 0. 0 . .. 476
<case head> v v 4 v i i e 4 ee e e e e ee e e e e . 263
<complex function designator> + . ¢ .+« ¢ « « . « . 516
CCOMPlex variable . v o v v v v v v o o 4w o e e e e e e e .. 237
CIf ClAaUSEY v v v v v v e e e e e e e e e e e e e e e e e e .o319
<update symbOlS>. . . & ¢4 v e ek eie e e e e e i e e e e e . 227

Semantics

The imaginary part of a complex value can be equal to zero. Because of
this, an arithmetic expression is,. whenever necessary. considered to be
the real part of a complex expression with a zero imaginary part. No
automatic type conversion from complex to arithmetic exists.

The sequence in which thé operations of a complex expression are
performed is determined by the precedence of the operators involved.
The order of precedence is as follows:

[
*
S~

(highest precedence)

508
COMPLEX ALGOL REFERENCE MANUAL

Operators with the same precedence are applied in their order of
appearance in an expression, from left to right.
The precedence of the assignment operator (:=) is as follows:

1. A primary tc the right of an assignment operator 1is evaluated
before the assignment.

2. The assignment is done before the evaluation of an expression

involving the variable that is the target of the assignment.

Parentheses can be used in normal mathematical fashion to override the
defined order of precedence. An expression in parentheses is evaluated
by itself, and the resulting value 1is subsequently combined with the
other elements of the expression. For example, in the expression

(C2 + Cc1)/c2

the addition is performed before the division because of the
parentheses. In the expression

c2 + Cl/C2
Cl is first divided by C2 and then the result is added to CZ.

The evaluation of a conditional complex expression is . described 1in
"Conditional ExXpression." '

The evaluation of a complex case expression 1is described in "Case
ExXpression.” :

Examples

Cl
C1l+3
C1 ** X

Cl := COMPLEX(X,Y)

Cl := * - C2

509
Expressions COMPLEX

CABS(C1)
(COMPLEX(R,S) * CCON)
‘CASE I OF (Cl1, C2, CLN(C2))

IF BOOL THEN Cl1 ELSE CONJUGATE(C1)

510
CONDITIONAL ALGOL REFERENCE MANUAL

CONDITIONAL, EXPRESSION

A conditional expression is one that returns one of two possible values,
depending upon a specified condition.

Syntax

<conditional expression>

--—-<conditional arithmetic expression>---—---- |
[|
|-<conditional Boolean expression>----—----= b
! I
j—<conditional complex expression>------- |
' |
j-<conditional designational expression>-|

' |

|-<conditional pointer expression’----—---= |

See also
<conditional arithmetic expression> . . . « « « « « « = « « . . 476
<conditional Boolean eXPression®. . « . « « « & « « « o = « « + 495
<conditional complex exXpression’.« « « & « o+ . e o . 507
<conditional designational expression>. <« o -+ .+ o o 512
<conditional pointer expression>.« .+« + . e e e . 520
Semantics

Conditional exprecssions are of the form

IF <Boolean expression> THEN <expression> ELSE <expression>
Either the first or the second expression is selected for evaluation,
depending on the value of the Boolean expression. The two alternative
expressions must be of the same kind; for example, two arithmetic
expressions or two Boolean expressions.
The selection process proceeds as follows:

- The Boolean expression following "IF" is evaluated.

- If the resulting value is TRUE. the expression following "THEN"
is evaluated, and the expression following "ELSE" is ignored.

- If the resulting value is FALSE. the exprecssion following "THEN"
is ignored. and the expression following "ELSE" is evaluated.

511
EXpressions CONDITIONAL

If either of the two expressions is itself a conditional expression, the

process 1is repeated until an unconditional expression is selected for
evaluation. ‘

The type of a conditional arithmetic éexpression is DOUBLE if either of
its constituent expressions is of type DOUBLE: in this case, a
constituent expression that is not ©of type DOUBLE is extended to double
precision. The type of a conditional arithmetic expression is INTEGER
if and only if both of its constituent expressions are of type INTEGER.
Otherwise, a conditional arithmetic expression is of type REAL

Examples

iF’BOOL THEN 47 ELSE 95

IF A = B THEN BOOL ELSE FALSE

IF NOT BOOL THEN Cl ELSE CZ

IF ALLDONE THEN EOJLBL ELSE NEXTLBL

IF CHAR.SZF = 8 THEN PTRINEBCDIC ELSE PTRINHEX

512
DESIGNATIONAL - ALGOL REFERENCE MANUAL

DESIGNATIONAL EXPRESSION

Designational expressions are expressions that return a value that is a
. label. '

Syntax

<designationél expression>
--—--<label designator>--—-——-----———mmm—— I

| I

|-<designational case expressiony--—-———-= |

| I
[-<conditional designational expression>-|
<label designator>
---—<label identifier>-----=-————- e

| I
I-<switch label identifier>-- [--<(subscript>--] -]

<designational case expression>

--<case head>—-- (---<designational expression>-—) ——|

<conditional designational expression>
--<if clause>-—-<designational expression>-- ELSE -~-—————e—mmmmmmee_o >

>—-<designational eXpression’——————— s

See also
<case head> + i i i e e e e e e e e e e e e . . 263
<if claused> . . L . i i i b h e e e e e e e e e e d e e e e .. 319
<label identifier>. v v v v W« . . . 128
<SUDLSCript> o .« &« v v v o v vl e e e e e e e e e e e e e . 43

<(switch label identifier> « v v v 4w v i v v v . 198

- - 513
Expressions DESIGNATIONAL

Semantics

If a designational expression is a label identifier. then the value of
the expression is that label. ’

If a designational expression is a subscripted switch label identifier,
then the numerical value of the subscript designates one of the elements
in the switch label list. The value of the subscript is rounded, if
necessary, to an integer. This - value .is used as an index into the
switch label list. The entries of the list are numbered sequentially
from 1 through N, where N is the number of entries in the list. The
entry corresponding to the value of the subscript is selected. If the
value of the subscript is outside the range of the switch label list,
program control .continues to the ' next statement without any error
indication. (For more information about the switch label list, refer to
"SWITCH LABEL Declaration.™)"-

The evaluation of a designational case exXpression is described in "Case
Expression."

The evaluation of a conditional de51gnat10nal expression is described in
"Conditional Expre551on.

‘ Examples

ENDLABEL
CHOOSELABEL[I+2]
CASE X OF (GOTDATA, GOTERR, GOTREAL, GOTCHANGE, ESCAPE)

IF K = 1 THEN SELECT[2] ELSE START

514
FUNCTION "ALGOL REFERENCE MANUAL

FUNCTION SSION

A function expression is an expression that returns a single value that
is the result of invoking a procedure. The procedure can be declared in
the program, or it can be an intrinsic procedure.

Syntax

<function expression>

- ———=<arithmetic function designator>----|
' |
:4<Boolean function designator>----|
:—<complex function designator>————:
:—<pointer function designator>————:
! |

|-<string function designator>--—--- |
Semantics

There are two kinds of functions: predefined functions, called
intrinsic functions, which are part of the ALGOL language, and
programmer—defined functions, Wwhich are typed procedures that are
declared in the program.

The intrinsic functions are described later in this chapter under the
heading "Intrinsic Functions."

See also _
Intrinsic Functions & v v ¢ v ¢ 4 « « « « « +« « « « . . 528

Arithmetic Function Designator

An arithmetic function designator specifies a function that - returns an
arithmetic value--a value of type INTEGER, REAL, or DOUBLE.

o : : 515
Expressions » FUNCTION

Syntax

<arithmetic function designator>
————<procedure identifiery--=——--==--oTmssmoommomTITEEEETETITT -
l . . !
|-<arithmetic intrinsic name>-| |-<actual parameter part>-|

<arithmetic intrinsic name>

Any of the names listed under the héading "Arithmetic Intrinsic
Names" in this chapter.

See also .
cactual Parameter Partd> . . . « .+ o e e e = oe e s e s 0 346
Arithmetic Intrinsic Names. . . « « « & « o o« o e e s e 528
<procedure identifier>. R 1)
Semantics

The procedure specified by the prdcedure jdentifier must be of type
INTEGER, REAL. or DOUBLE.

Boolean Function Designator

A Boolean function designator sﬁecifies‘ a function that returns &
Boolean value--a value of TRUE or FALSE.

Syntax

<(Boolean function designator?>
-—-——<procedure identifier>--———---=--T--==--= —mm—— e mm |

l—¢Boolean intrinsic name>—| {-<actual parameter part>—i

516 ’ .
FUNCTION ‘ ALGOL REFERENCE MANUAL

<Boolean intrinsic name>

Any of the names listed under the heading "Boolean Intrinsic Names"
in this chapter.

See also
<actual parameter Part> v 4 v 4 4 e 4 v e e e e e e . . 346 .
Boolean Intrinsic Names + +v v 4 4 o v'4e v v . . . 531

<procedure identifier>. v 4 4 v v v 4 e e e v . .165
Semantics

The procedure specified by the procedure identifier must be of type
.BOOLEAN.

. Complex Function Desjgnator

A complex function designator specifies a function that returns a
complex value--a value with a real part and an imaginary part. '

Syntax

<complex function designator>
----<procedure identifier>—-----—-m—memmmmmo i
| I |
i-<complex intrinsic name>-| |-<actual parameter part>-|

<complex intrinsic name>

Any of the names listed under the heading "Complex Intrinsic Names"
in this chapter.

See also
<actual parameter Part> v 4 4 4 e 4 e e e e e . . 346
Compiex Intrinsic Names v v v v « . . . 58531

<procedure identifier>. 4 . v . . .165

: 517
Expressions i . FUNCTION

Semantics

The procedure specified by the procedure identifier must be of type
COMPLEX.

Pointer Function Designator

A pointer function designator specifies,;a function that returns - a
pointer value--a value that can be used to refer to a character position
in an array row.

Syntax

<pointer function designator>

--<pointer intrinsic name>--<actual parameter part>-—|

<pointer intrinsic name>

Any of the names listed under the heading "Pointer Intrinsic Names"
in this chapter. :

See also
<actual parameter Part>« . 4 v " e e e e e e e . o« . . 346
Pointer Intrinsic Names . . . & o v v v ¢ o« « « « « « « 531
Semantics

Unlike the other function designators, the syntax for pointer function
designator does not allow a procedure identifier as part of the syntax.
There is no PROCEDURE declaration that allows declaring a procedure of
type POINTER.

518
FUNCTION ALGOL REFERENCE MANUAL

string Function Designator

A string function designator'specifies-a function that returns a - string
value--a hexadecimal string, an ASCII string, or an EBCDIC string.

Syntax

¢<string function designator>

—--—<(string procedure identifier>-——--——-=--=-----m————————— oo |
i : Lo l

|-<string intrinsic name>------- |]-<actual parameter part>-|

<string intrinsic name>

Any of the names listed under the heading "String Intrinsic Names"
in this chapter.

See also »
<actual parameter PArt> . . o « « o + « + o s e o+ . 4« « « + . 346
String Intrinsic Names. . . +« « « « « '« « o o & o o & + & « .« » 531
<string procedure identifier>« . . . 165

Semantics

A string procedure identifier designates a procedure declared with a
type of HEX STRING, ASCII STRING, or EBCDIC STRING.

519
Expressions = . POINTER

'POINTER EXPRESSION

A pointer expression is an expression that returns a value that 1is a
pointer, which can be used to reference a character position in an array
row. : '

Syntax

(pointer expression>

———--<simple pointer expressiony——=———==——|
! .

[-<conditional pointer expression>-|

<simple pointer expression>

~—-=<pointer primary’>----—--—--- -
IR I |
| f-<skip>~|
| 3
|-<pointer assignment>-------|
| » !

|-<character array part>----- |

<pointer primary>

—-———<pointer identifier>----- e !
I |
|- (-—-<pointer expressiony--) -l
| f
|-<pointer case expression,—==---|
| .

i
|-<pointer function designator>--|

<pointer case expression:

——<case head -- (-—-—<pointer expression>---) --—|

<skip>

———- 4 ——-carithmetic primary>--i

520

<character array part>

POINTER ALGOL REFERENCE MANUAL

—---—<character array row>----—---- e]

: | | ===

l |

<character array row>

An <array row> whose identifier is declared with a <character type>.

<character array name:>
An <array name> whose identifier is
typer.

<conditional pointer expression>

-—<if clause>--<pointer expression>--

See also .
<arithmetic primary>.
Array name>. . .« + « o 4+ o o 4 o e .
CArray row’> . . v v e v e e e e e e

<case head>
<character type>. . « « « « &« « o« & .
<if clause>« 4 4 4 4 e u . .
<pointer assignment>.
<pointer function designator>
<pointer identifier>.
<subscript»

declared with

ELSE -—<pointer

a <character

expression>--|

e e . . 476
e e e o 43
e e .. 43
v e s 4 263
e e .. 42
« + o« . . 319
e e e . . 241
e+ e . . 517
c + « . . 160
.« e« . . 43

: : 521
Expressions POINTER

Semantics
A pointer must be initialized befofe it can be used; otherwise, a
run-time error ~occurs. A pointer can be initialized in the following
ways: ' i

1. By a pointer assignment

2. By appearing'as an update bointer in any of the following:

a_REPLACE statemenﬁ.

- a SCAN stétement

- a string relation in é Boclean expression
- the DOUBLE function

- the INTEGER function

The_evaluation of a conditional pbinter expression 1is described in
"Conditional Expression." :

<pointer primary>

A one—-dimensional array designator or a fully subscripted variable can
be interpreted as a pointer primary whenever context determines that no
conflict exists with other valid constructs (for example. when a pointer
expression is required). This syntax can be used for such constructs as

REPLACE A BY B FOR 10 WORDE
where A and B are one-dimensional arrays.

The evaluation of a pointer case expression is described in "Case
Expression."”

<skip>
I

If the <skip> construct is used, the value of the arithmetic primary
determines the adjustment to the value of the pointer primary. If N is
the value of the arithmetic primary, the pointer is adjusted as follows:

- If N is less than or equal to zero.‘the pointer is not adjusted.

522
POINTER ALGOL REFERENCE MANUAL

- If N is greater than =zero, then the pointer is adjusted N
characters to the right if the <skip> construct specifies "+", or
N characters to the left if it specifies "-". Skipping to the
right is. defined as incrementing the value of the character

index. Skipping to the left 1is defined as decrementing -this
value.

If the adjustment to the value of the pointer primary is given by the
value of an arithmetic expression, note that the arithmetic expression
must be enclosed in parentheses. For example, the expression

PTR + X*Y

is invalid and will get a compile-time error. It is correctly written
as

PTR + (X*Y)
Pragmatics

The use of a pointer expression to skip up and down an array for more
than a few words is expensive. Each word of the array is accessed in
order to ensure that no memory-protected words are encountered. For
pointer moves of more than a few words, it is faster to re-index the
array and use the POINTER function for word arrays, or to re-index the
array for character arrays.

Examples

PTR
TS+1%

PTR := POINTER(A)

(PTEMP + (X*Y))

HEXARAY

HEXARAY[N:

CASE VAL OF (PTR,PTS,PTEMP,PSORCE)
POINTER(INFO.8)

READLOCK(PTR, POLD)

IF BOOL THEN Pl ELSE POINTER(A)

- - 523
ExXpressions v * STRING

STRING EXPRESSION

A string eXpression is an expressidn that returns a Value that i1is a
hexadecimal string, EBCDIC string, or ASCII string.

Syntax

<{string expression>

<(string concatenation operator>

—-—- CAT --—-|
l 1
=11 ==

{string primary:

--=--<string constant>--—¥-f——+———————-%-~!
;-<String variable>-—--—====2--=-= -
! , b
i—<subscripted string variable>4—?-~§
| : |
l-<string funvtlon designator>-—---- |
| .
I-<strihg-valued.1ibrary attribute>—}
| o [

|- (—--<string expression>--) ————- |

{(string constant>

——=— EMPTY ———==———————————— o m— e P
b :] '
|-<EBCDIC string constant>--=---|
i | ,
| -<ASCII strlng constant> ——————— |
: !

| -<hexadecimal string constant\—l

524
STRING ALGOL REFERENCE MANUAL

<EBCDIC string constant>

| -<EBCDIC code>-|
|

!
[
- I
|- 48 ---- " --<hexadecimal string>-- " ---—-|
I | ' !

|

I

|- 480 -

1 .
|- 28 =--- " —--<quaternary string>-- " --=—- |
b | |
|- 280 -1 !
| _ |
|- 18§ ==-- " ——<binary string>-- " —=~—=———v !
| |

|- 180 -}

<ASCII string constant>

}-<ASCII code>-| :
f- 47 —==- " —-<hexadecimal string>-- " ——:
- 470 - |
j= 27 —=—— " --<quaternary string>-- " -—-:
- 270 - |

!

- 17 ---- " -—<binary string>-- " -———-—- l

|- 170 -}

52%

Expressions » o STRING
<hexadecimal string constant>
—_——— EMPT¥4 _________-;_,,-f-g;___,_-;_-___ __________ |
I R oo I
Ll |
[4 = --<hexadecimal string>-- " ----- !
|- 40 -|

!
l | | | 1
|- 24 ===~ " —-<quaternary string>-- " -|
I | ' !
|~ 240 - |
! : : . [
|- 14 ---- " --<binary stringr-- " —-—-——- I
o : (- : :

|= 140 -}

<string variable>

--<string identifier>--|
'ﬂsubscripted»string'variable>

! ~ [

 -—<string array identifier>-- [——-<subscript>--- 1 --|
¢<string-valued library attribute>

-—<library identifiers—- . ————=mm e e

>-<string-valued 1ibrary attribute‘name>—~—-——f4-—~—----~---—-—---—!

<constant string expression> -

A <string expression> that can bé-fully evaluated at compile time.

See also :
<livrary identifier>. J . . . 0 . 0 0 . . v v e e e .. 129
<string array identifier>« <« . « + 4 . 187
<string function designator>. ¢ v + v v . . . 518
<string identifier> ¢ e 4 4 v v e v w4 e . . 185
<string-valued library attribute name>. 129
CSUBSCripty . . . v o v v L . e e s e e e e e e e e . .. 43

526
STRING ALGOL REFERENCE MANUAL

Semantics

In the syntax for EBCDIC string constant. ASCII string constant, and

hexadecimal string constant, the string codes determine 'thé
interpretation of the characters between the quotation marks (") and has
no effect on the justification of a string. A string is always

left-justified; therefore, any "O" in a string code is ignored.

The <hLlTULIC «owe s Cuiatrl'uCl 18 CLo.ries i an wellIT string constant
containing an EBCDIC string only if the default character type is
EBCDIC.. The <ASCII code> construct 1is opticonal in an ASCII string
constant containing an ASCII string only if the default character type
is ASCII. For more information, refer to "String Code" in the chapter
"Language Components" and "Default Character Type" in the appendix "Data
Representation."”

The reserved words EMPTY8, EMPTY?7, and EMPTY4 represent null strings of
the character types EBCDIC, ASCII, and hexadecimal, respectively. The
reserved word EMPTY represents a null string of the default character
type. 4

For more information about string-valued library attributes, refer to
"Library Attributes” in the "Interface to the Library Facility” chapter.

String Concatenation

The operators CAT and || are used to concatenate two strings. The
concatenation of two strings yields a new string whose length is the sum
of the lengths of the two original strings. and whose value is formed by
joining a copy of the second string immediately onto the end of a copy
of the first string.

Only strings of the same character type can be concatenated.

If more than one string primary is used in a concatenation operation,
they are evaluated from left to right.

i : 527
Expressions STRING

Pragmatics

No more than 256 characters can appear between one pair of quotation
marks in a string constant; however, as many as 4095 characters can
appear in an . EBCDIC string ‘constant, ASCII string constant, or
hexadecimal string constant.

See also _
Default Character Type. ¢« v v v v & o o o « o & « . . 817
Library Attributes. . . +« « + .+ . . v« . 4 .« . . 665
String code i vt e e e e e e e e e e e e e e e e e 36

Examples

8"ABCD123" % result = ABCD123

lll!wHY"48"6F“'l"" % reSUlt '= NWHY?"

EMPTYS % result =

s2 || s3

"AC" || s2 || "123"

S1 || TRANSLATE(S2,HEXTOEBCDIC)
HEAD(S,ALPH2)

TAIL(S,NOT "-")

REPEAT("ABC",3)

STRING(256,%)

TAKE(S,2)

DROP(TAKE(S.4).2)

TRANSLATE (S, HEXTOEBCDIC)

528 _ _
Intrinsic Functions ALGOL REFERENCE MANUAL

In;rinsic functions are typed procedures that are predefined in the
ALGOL language; that is, intrinsic functions can be used without being
declared. - ‘

INTRINSIC NAMES BY TYPE RETURNED

The intrinsic functions of ALGOL return values of type INTEGER, REAL,
DOUBLE, BOOLEAN, CCMPLEX, POINTER, and STRING.

The following intrinsic functions return arithmetic values (values of
type INTEGER, REAL, and DOUBLE). ' '

EXpressions

529
Intrinsic Functions

Alphabetical Listing of Arithmetic Intrinsic Functions

The type of the value each function returns, INTEGER, REAL, or DOUBLE,
ie indicated by I, R, or D, respectively, following the name of the

function. -

ABS (R)
ARCCOS (R)
ARCSIN (R)
ARCTAN (R)
ARCTAN2 (R)
ARRAYSEARCH (1)
ATANH (R)
CABS (R)
CHECKSUM (R)
CLOSE (I)
COMPILETIME (R)
CoOs (R)

COSH (R)
COTAN (R)
DABS (D)
DAND (D)
DARCCOS (D)
DARCSIN (D)
DARCTAN (D)
DARCTAN2 (D)
DCos (D)
DCOSH (D)
DECIMAL (D)
DELINKLIBRARY (I)
DELTA (1)
DEQV (D)
DERF (D)
DERFC (D)
DEXP (D)
DGAMMA (D)
DIMP (D)
DINTEGER (D)
DLGAMMA (D)
DLN (D)

DLOG (D)

DMAX (D)

DMIN (D)

DNABS (D)

DNOT (D)

DOR (D)

DOUBLE. (D)
DSCALELEFT (D)
DSCALERIGHT (D)
DSCALERIGHTT (D)
DSIN (D)
DSINH (D)
DSQRT (D)

DTAN (D)

DTANH (D)
ENTIER (I)

ERF (R)

ERFC (R)

EXP (R)

FIRST (R)
FIRSTONE (1)
FIRSTWORD (R)
GAMMA (R)

IMAG (R)
INTEGER (1)
INTEGERT (1)
LENGTH (1)
LINENUMBER (1)
LINKLIBRARY (1)
LISTLOOKUP (1)
LN (R) :
LNGAMMA (R)

LOG (R)
MASKSEARCE (1I)

MAX (R)
MESSAGESEARCHER (1)
MIN (R)

NABS (R)
NORMALIZE (R)
OFFSET (1)

ONES (I)

OPEN (1)

POTC (D)

POTH (D)

POTL (D)
PROCESSID (1)
RANDOM (R)
READLOCK (R)

REAL (R)
REMAININGCHARS (1)
SCALELEFT (I)
SCALERIGHT (1)
SCALERIGHTF (R)
SCALERIGHTT (1)
SECONDWORD (R)
SETACTUALNAME (I)
SIGN (1)

SIN (R)

SINGLE (R)

SINH (R)

'SIZE (1)

SQRT (R)

TAN (R)

TANHE (R)

TIME (R)

VALUE (1)

WAIT (1)
WAITANDRESET (I)

530
Intrinsic Functions . ALGOL REFERENCE MANUAL

Listing of -Arithmetic Intrinsic Functions by Type Returned

Intrinsic Functions Returning Values of Type INTEGER

ARRAYSEARCH* LINKLIBRARY SCALELEFT
CLOSE “LISTLOOKUP SCALERIGHT
DELINKLIBRARY ~MASKSEARCH ' SCALERIGHTT
DELTA MESSAGESEARCHER SETACTUALNAME
ENTIER . OFFSET . - SIGN

FIRSTONE ONES SIZE

INTEGER OPER VALUE
INTEGERT PROCESSID WAIT

LENGTH REMAININGCHARS WAITANDRESET
LINENUMBER .

Intrinsic Functions Returning Values of TYpefREAL

ABS ERFC RANDOM

ARCCOS EXP READLOCK
" ARCSIN FIRST REAL

ARCTAN , FIRSTWORD SCALERIGHTF

ARCTANZ GAMMA - SECONDWORD

ATANH _ IMAG SIN

CABS - : LN SINGLE

CHECKSUM LNGAMMA SINH

COMPILETIME LOG ' SQRT

Ccos MAY TAN

COSH ‘ MIN TANH

COTAN NABS TIME

ERF NORMALIZE

Intrinsic Functions Returning Values of Type DOUBLE

DABS DEXF DOUBLE

DAND : DGAMMA , DSCALELEFT
DARCCOS DIMP DSCALERIGHT
DARCSIN DINTEGER DSCALERIGHTT
DARCTAN DLGAMMA DSIN
DARCTANZ DLN ' DSINE

DCOS DLOG 'DSQRT

DCOSH DMAX DTAN
DECIMAL DMIN DTANE

DEQV DNABS POTC

DERF DNOT POTH

DERFC _ DOR - POTL

531
ExXpressions L Intrinsic Functions

Boolean Intrinsic Names

The following intrinsic functions return values of type BOOLEAN.

ACCEPT READ
. AVAILABLE READLOCK
BOOLEAN REMOVEFILE
CHANGEFILE. SEEK
CHECKPOINT SPACE
FIX : WAIT
FREE WRITE -
HAPPENED

Complex Intrinsic Names

The following intrinsic functions return Qaers of type COMPLEX.

Ccos . CONJUGATE

CEXP o CSIN
CLN CSQRT
COMPLEX

Pointer Intrinsic Names
The following intrinsic'functionsjreturn values of type POINTER.

POINTER
READLOCK

String Intrinsic Names
The following intrinsic functions return values of type STRING.

DROF ‘ STRING7Y

HEAD - .STRINGS
REPEAT - TAIL
STRING TAKE

" STRING4 TRANSLATE

532
Intrinsic Functions ALGOL REFERENCE MANUAL

INTRINSIC FUNCTION DESCRIPTIONS

For arithmetic intrinsic functions, 'all arithmetic parameters are
‘assumed to be call-by-value. For a further description of some of the
arithmetic intrinsic functions, refer <to the chapter "Mathematical
Functions™ in the "System Software Utilities Reference Manual."

<abs function>
-—— ABS -- (--<arithmetic expression>--) —--|

The ABS function returns, as a real value, the absolute value of the
specified arithmetic expression.

<accept statement>

The ACCEPT statement returns a Boolean value. For more information, .
refer to "ACCEPT Statement." ’

<arccos function>
—- ARCCOS -~ (—-—<arithmetic expression>»--) —--|

The ARCCOS function returns, as a real value, the principal value of the
arccosine (in radians) of the specified arithmetic expression, where
-1 < <arithmetic expression> < 1. If the wvalue of the arithmetic
expression is not in this range, a run-time error occurs.

<arcsin function>
—— ARCSIN -~ (--<arithmetic expression»--) —--.

The ARCSIN function returns, as a real value. the principal value of the
arcsine (in radians) of the specified -arithmetic expression, where
-1 < <arithmetic expression> < 1. If the value of the arithmetic
expression is not in this range, a run-time error occurs.

o 533
Expresisions Intrinsic Functions

<arctan function>
~-- ARCTAN -- (--<arithmetic expression>--) --|

The ARCTAN function returns, as a real value, the principal value of the
arctangent (in radians) of the specified arithmetic expression.

<arctan2? function>

-— ARCTAN2 -- (-—-<arithmetic expression>—— . T e)

>-<arithmetic expressiond>--—) —————--—-—m—smm—mm— o e
The ARCTAN2 function returns, as a real value, the arctangent (in
radians) of

first <arithmetic expression> / second <arithmetic expression>

The returned value is adjusted to fall in the rarge (-pi to +pi) by the
following formula: ' '

Let X be the value of the first arithmetic expressioh and Y be the value
of the second arithmetic expression.

If Y > 0,

ARCTAN2(X,Y) = ARCTAN(X/Y)

If Y =0,

ARCTAN2(X,Y) SIGN(X) * pi / 2

If Y < G,

'ARCTANZ(X,Y)‘ ARCTAN(X/Y) + SIGN(X) * pi

534
Intrinsic Functions ALGOL REFERENCE MANUAL

<arraysearch function>

—-- ARRAYSEARCH -- (--<arithmetic expression>-- , ———————=——=—-———= >

s-<arithmetic expression>-- , —---<array row>-——-—-——-—-—--—=--) —————- |
I J

|-<subscripted variable>—|

See also .
CATYAY FOWD v « + + v v o 4 o o o 4 o e e e e e e e e e e e 43
<subscripted variable>. ¢ o . v e e e e e e e e e . 225

The ARRAYSEARCH function searches for a specific value within an array.
The first arithmetic —expression 1is the value being searched for (the
target value). The second arithmetic expression is the mask to be -used
in the search. The third parameter is a row or subscripted variable of
an array of type INTEGER, REAL, BOOLEAN, or COMPLEX.

"If the third parameter is an array row, the search begins with the last
element of the specified array row; otherwise, the search begins with
the element specified by the subscripted variable. FEach element, 1in
turn, is retrieved, logically ANDed with the value of the mask, and
compared, using the IS operator, with the target value, which has also
~been logically ANDed with the mask. If the comparison yields TRUE, the
function returns an integer value equal to the difference between the
subscript of the element where the value is found and the subscript of
the first element in the array. If the comparison yields FALSE, the
subscript of the element to be retrieved is decremented by one, and the
search continues until either a match is found or the first element of
the array has been examined. If no match is found, -1 is returned.

The ARRAYSEARCH function can be used on paged (segmented) arrays and
unpaged (unsegmented) arrays.

<atanh function>
~— ATANE -- { --<arithmetic expression>--) —-—|

The ATANH function returns, as a real value, the hyperbolic arctangent
of the specified arithmetic expression.

535

Ekpressioné ‘ Intrinsic Functions
<available function>
-~ AVAILABLE -- (--<event designator>--) --|
- See .also : . ‘
<event designatord. . . . oL e e e e i e e b e e e .o 18

The AVAILABLE'function is a Boolean funétion’that returns TRUE if the
available state of the specified event is TRUE (available) and returns
FALSE if the available state is FALSE (not available).

<Boolean function>
—- BOOLEAN -- (--<arithmetic expressions--) --|

The BOOLEAN function returns the value of the arithmetic expression as a
Boolean = value. 1f the arithmetic expression is double precision, its
value is first truncated to single precision.

<cabs function>
—- CABS —- (--<complex expression>--) —-|

The CABS function returns, as a real value, the absolute value of the
specified complex expression. -

<ccos function>
-- ¢ccos - (--—-<complex expression>—-- } ——|°

The CCOS function returns, as a complex value, the complex cosine of the
specified complex expression.

536

Intrinsic Functions ALGOL REFERENCE MANUAL

<cexp function>
-~ CEXF -- (—--<complex expressionr-- y —=|

The CEXP function returns. as a complex value.

o "%

<complex expression>
where e is the base of the natural logarithms.
<changefile statement>

The CHANGEFILE statement returns a Boolean value. For more information.
refer to "CHANGEFILE Statement.”

r¢checkpoint statement?

The CHECKPOINT statement returns a Boolean value. For more information,
refer tc "CHECKPOINT Statement."”

537

Expressions Intrinsic Functions

<checksum function>

-— CHECKSUM -- (--<array row»-- , —-—-<starting index>-- , —-——=———-- >

>-<ending index»——) ———m-mmommo oo e m
<(starting index>

-—<arithmetic expression>--|
<ending index>

-—<arithmetic expression>--|
See also

CAYTAY YOW> v v v o o o & o o o o o' s o o o o o o o o o o o« « . 43

The CHECKSUM function returns, as a real-value, a hash function of all
bits in the words of the array row beginning with the word indexed by
(starting index> and up to, but ‘not including, the word indexed by
<ending index>. - Both <starting index> and <ending index> are rounded to
an integer value before they are used to index the array row. The value
of this function can be used to verify the integrity of data being
transferred or stored. The array row must be single precision and
unpaged (unsegmented).

<cln function>
—-— CLN -- (—--<complex expreésion>-—) —=1|

The CLN function returns, as a complex value, the naturai logarithm of
‘the specified complex expression.

<close statement>

The CLOSE statement returns an integer value. For more information,
refer to "CLOSE Statement.”

538
Intrinsic Functions ALGOL REFERENCE MANUAL

<compiletime function>

—— COMPILETIME -- (--<constant arithmetic expression>--) --—|
See alsc _
<constant arithmetic exXpression>. . . « .« v v o o « « « =« « . . 476

The COMPILETIME function obtains various system time values- at compile
time, for use by the object program. ' The form of the value returned by
the COMPILETIME function is the same as that returned by the TIME
function for the same argument. The returned value is computes ° .
compiler using the TIME function at compile time. For more information,
refer to the TIME function in this section.

COMPILETIME(20) returns, in integer form, the program version number as
set by the most recent VERSION compiler control option.

COMPILETIME(21) returns. in integer form, the program cycle . number as
set by the most recent VERSION compiler control option.

COMPILETIME(22) returns. in integer form, the program patch number as
set by the most recent VERSION compiler control opticn.

<complex function>

~- COMPLEX -- (—--<arithmetic expression>-- , ————————————=—====———- >

>-<arithmetic expression>——) ——————————-——————————e— oo |

The COMPLEX function returns. as a compiex value,
first <arithmetic expression> + i * second <arithmetic expression>

where i is the square root of -1. The arithmetic exXpressions are first
routded to egingle precision, if necessary.

ExXpressions ' Intrinsic Functions
<conjugate function>

-- CONJUGATE -- (--<complex expression>--) --—|

The CONJUGATE function returns, as a complex value. the complex
conjugate of the specified compleX expression.

<cos function>
—— COS -- (--<arithmetic expression>--) —-|

The COS function returns, as a réal value, the cosine of an angle of
<arithmetic exXpression> radians.

<cosh function>
-~ COSH -- (-—-<arithmetic expressions>-~) -—|

The COSH function returns, as a heal value., the hyperbolic cosine of the
specified arithmetic expression.

<cotan function>
—-- COTAN —— (-»(arithmetic‘expression>—~) =i

The COTAN function returns, as a .real value, the cotangent of an angle
cf <arithmetic expression> radians. ;

<csin function>
-— CSIN —- (=-<complex expression>--) —-—i

The CSIN function returns, as a complex value. the complex sine <Ci thg
specified complex expression.

540
Intrinsic Functions ALGOL REFERENCE MANUAL
<esgrt function>

-— CSQRT -- (—--<complex expression>--) ——|

The CSQRT function returns, as a complex value, the square root of the
specified complex expression.

<dabs function>
—-- DABS -- (-—-<arithmetic expression>--) ——|

The DABS function returns, as a double-precision value, the absolute
value of the specified arithmetic expression.

<dand function>

-- DAND -- (--<arithmetic expression>-- , —--——-----—-—-—————————— >

>-<arithmetic exXpression’-—) ————-—— - —mm o !

The DAND function returns. as a double-precision value,
first <arithmetic expression> AND second <arithmetic expressiocon»

The arithmetic expressions are first extended to double precision, if
necessary, and the AND operation is performed on all 96 bits.

<darccos function>
-- DARCCOS -- (--<arithmetic expression>--) —-—|

The DARCCOS function returns. as a double-precision value, the principal
value of the arccosine (in radians) of the specified arithmetic
expression, where -1 < <arithmetic expression> < 1. If the value of the
arithmetic expression is not in this range. a run-time error occurs.

541
Expressions Intrinsic Functione

<darcsin function>

-- DARCSIN -- (--<arithmetic ekpression>—~) -1

The DARCSIN function returns, as a double~precision value, the principal
value of the arcsine (in radians) of the specified arithmetic
expression, where -1 < <arithmetic expression» < 1. If the value of the
arithmetic expression is .not in thHis range, a run-time error occurs.

<darctan function>
~— DARCTAN -- (--<arithmetic expression>--) —-—|

The DARCTAN function returns, as a double-precision value. the principal
value of the arctangent (in Tradians) of the specified arithmetic
expression. :

<darctan2 function>

-- DARCTAN2 -- (—-<arithmetic expression>-- , ——-——==-———————=—o== ,
>—<arithmetic eXpression>——) =————=m=————-—m e |
The DARCTANZ - function returns,. as a -double-precision value. the

principal value of the arctangent (in radians) of

first <arithmetic expression> / second <arithmetic expression>
<dcos function>

-~ DCOS -- (--<arithmetic expressions--) —-—|!

The DCOS function returns, as a double-precision value, the cosine of an
angle of <arithmetic expression> radians.

542
Intrinsic Functions ALGOL REFERENCE MANUAL

<dcosh funetion>
-- DCOSH -- (--<arithmetic expression’>--) --|

The DCOSH function .returns, as a double-precision value. the hyperbolic
cosine of the specified arithmetic expression.

<decimal function>
—-- DECIMAL -- (--<string expression:--) —-|

The DECIMAL function returns the double-precision value represented by
the string expression. ' '

The string expression must yield a valid <number> on evaluation (see
"Number" in the chapter "Language Components"). For example, the
assignment

D := DECIMAL(STR):

is valid for the strings

STR = "+5497823"

STR = "1.75@-4¢"
STR = "-4.31468"

STR = "@2"

STR = "+549"||"7823"

However, for the strings

STR = "50 00."

STR = "1,505,278,00"
STR = "1@2.5"
STR = ".573"||"5.82"

the program is given a run-time error.

PR 543
Expressions Intrinsic Functions

<delinklibrary function>
-~ DELINKLIBRARY —- (—-<library identifier>--) --|

See also | o .
<library identifier>. . o« . v vl o o e e e e d e e e e e e 129

The DELINKLIBRARY funo110n ‘delinks the program from the librar.
~spec1f1ed by the llbrary jdentifier. The DELINKLIBRARY function affects
only thg llnkagevbetwepn the program and the indicated 1library; - other
-programs using - the library program are not affected. This function
returns an integer value that indicates 'success or failure and the
reason for failure. The values “returned by the - function can be
interpreted as follows: '

Value ' ' : v © Meaning

1 The library has been delinked from the program.
0 The library was not linked. to the'program.
-1 The library structure could not be accessed; a system fault has
occurred. '

<delta function>)

-- DELTA -- (-—-<pointer expression>-- , —-—<pointer expression>—-——-=v>

The - DELT4 function returns, as an integer value, the number of
characters - between. the character pesition ‘referenced by the first
pointer expression and the character position referenced by the second
‘pointer expr9531on The value is calculated as follows: the character
position referenced by the first pointer expression is subtracted fron
the character position referenced by the second pointer expression.

For a function that returns the number of - characters between the
‘character position referenced by a pointer expression and the beginning
of the arrav row. see the OFFSET {function in this section. For a
function that returns the number of characters between the character
p051t10n referenced by a pointer expression and the end of the array
row, see the REMAININGCHARS function in this section.

544
Intrinsic Functions ALGOL REFERENCE MANUAL

<degv function>

=~ DEQV -- (--<arithmetic expressiond>-- , ——=——==——memmmm >

>T<Arithmetic eXpPression ==) —ccme e I

The DEQV function returns. as a double-precision value,

firwst <arithmetic expression> EQV second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, if
necessary, and the EQV operation is performed on all 96 bits.

<derf function>
-—- DERF -- (--<arithmetic expression>--) —--|

The DERF function returns, as a double-precision value. the value of the
ftandard error function at the specified arithmetic expression. For any
valid N. DERF{(-N) = -DERF(N).

<derfec function>

== DERFC -- (-—-<arithmetic expressiony--)} —-|

The DERFC function returns, as a double-precision value, the complement
of the value of the standard error function at the specified arithmetic
expression. For any valid N, DERFC(N) = i - DERF(N).

<dexp function>

-- DEXP -- (--<arithmetic expressiony»--) --|

3
jog
6}

DEXP function returns. as a double-precision value,

£ *F Karithmetic expression>

where e is the base of the natural logarithme.

v 545
ExXpressions Intrinsic Functions

<dgamma function>
—— DGAMMA -- (--<arithmetic expression>--) --|

’ |
The DGAMMA function returns, as a double-precision value, the value of
the gamma function at the specifiedfarithmetic expression.

<dimp function>

The DIMP function returns. as a double—pfecision value,
first <arithmetic expression> IMP second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, if
necessary. and the IMP operation isiperformed on all 96 bits.

<dinteger function>
—— DINTEGER -- (--<arithmetic expression>--) -1

The DINTEGER function returns thé value of the arithmetic expression as
a double-precision integer value. Specifically. the function returns

DOUBLE(ENTIER(<arithmetic expression> + 0.5))

<dlgamma function>

—— DLGAMMZ —-- (--<arithmetic expression>-—- Y ==

The DLGAMMA function returns, as a double-precision value, the natural
logarithm of the gamma function at the specified arithmetic expression.

Y4 [.
Intrinsic Functions ALGOL REFERENCE MANUAL

PLY -- { --<arithmetic expression>--) —-—|

The DLN function returns, as a double-precision value, the natural

logarithm of the specified arithmetic expression.

it function)

== DLOG -- (--<arithmetic expression>--) i

The DLOG function returns. as a double-precision value, the Dbase-10

logarithm of the specified arithmetic expression.

<dmax function>

DMAX -- (---<arithmetic expression>---)} --=|

The DMAX function returns, as a double-precision value, the maximum of
the values of all the specified arithmetic expressions.

<dmin function>

=~ DMIN -- (---<arithmetic expression>---) ——|
b
i

The DMIN function returns., as a double-precision value, the minimum of
the values of all the specified arithmetic expressions.

547
Expressions Intrinsic Functions

<dnabs function>
-— DNABS -- (——-<arithmetic expression>—-) ——|

The DNABS function returns, as a dduble—precision value, the negative of
the absolute value of the specified arithmetic expression.

<dnot function>
-- DNOT -- (--<arithmetic expressiony--) —-|

The DNOT function returns, as -a double-precision value, the logical
complement of the value of the arithmetic expression. The arithmetic
expression is first extended to double precision, if necessary, and the
NOT operation is performed on all 96 bits. -

<dor function>

-- DOR -- (-—-<arjthmetic expression>-- , e e >

>-<arithmetic expressiony-—) ————-—-=-------sosmooooomoom oo mm T o T ,

The DOR function returns, as. a double—pfecision value,
first <arithmetic expression> OR second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, 1if
necessary, and the OR operation isgperformed on all 9¢ bits.

548
Intrinsic Functions ALGOL REFERENCE MANUAL

<double function>

The DOUBLE function has three forms, each of which returns a
double-precision value.

'—-- DOUBLE -- (—--<arithmetic expression>--) ——|

This form of the DOUBLE function returns the value of the arithmetic
expression extended to a double-precision value.

-— DOUBLE -- (--<arithmetic expression>-- , --<arithmetic expression>->

This form of the DOUBLE function returns a double-precision value in
which the first word is equal to the value of the first arithmetic
expression and the second word is equal to the value of the second
arithmetic expression. The arithmetic expressions are first
truncated to single precision, if necessary.

== DOUBLE —- (-—=-------—-———oom— <pointer expressiond-- , ————=————- 5
[-<update pointer>-|

>-<arithmetic expressiond>-=) ——————mm oo i

See also
<update pointer’s. ¢ ¢ v 4 4 4 e e e e e e e ... 378

This form of the DOUBLE function returns. as a double-precision
value, the decimal value represented by the string of characters
starting with the character pointed to by the pointer expression.
The arithmetic expression specifies the length of the string and
must have a value, when rounded to an integer. less than 24.

A zone field configuration of 1"1101" for 8-bit characters or 1"10"
for o-bit characters in the least significant character position
causes the result of the function to be negative. With 4-bit
characters, a 1"1101" in the most significant character position
results in a negative value.

S

49

Expreéssione Intrinsic Functions

The state of the pointer expression when the count 1is exhausted can
be preserved by using the <update pointer> construct.

<drop function>

—— DROP -- { —--<string expressionr-- , --<arithmetic expression>--->

The DROP function returns a string with a value equal to the value Ot
he string expression with the first carithmetic expression> characters
deleted. The value of the arithmetic expression 1is rounded to an
integer, 1f -necessary. An error7 occurs if the rounded value of the
arithmetic expression is greater than the number of .charaéters in the
string expression or less than zero. I1f the rounded value of the
-ithmetic expression is zero, the result is the same ‘as the value of
e string expression. If the rounded. value of the arithmetic
sression ig equal to the length of the string expression, the result

5

the null string. ‘

"he DROP function and the TAKE function are complementary functions.
This means that for any string expression S and any arithmetic
pression £ in the range 0 <= A <# LENGTH(S)., the following relation is
always TRUE: ' [i

see the TAKE function in this sectjon.

in the examples below. string S has a length of © and contains
3" ABCDEF". ‘ :

HROPLE,2) = gUCDEF”
U}:OP(TAKE(S.Q),Z) = gmCcoD®

DROP{S,6) = the null string

550
Intrinsic Functions ALGOL REFERENCE MANUAL

‘<dscaleleft function>

—- DSCALELEFT -- (--<arithmetic exXpression>-- , =———mmmmmmmmeee o >

>-<arithmetic eXpressiond—-) ————= = mm e

The DSCALELEFT function returns. as a double-precision value,

first <arithmetic expressidn)*(lo ** gecond <arithmetic expression>)
where the second arithmetic expression, rounded to an integer, has a
value in the range O to 12. The DSCALELEFT function is undefined when

the integerized value of the second arithmetic expression is less than 0
or greater than 12. ’ :

<dscaleright function>

-— DSCALERIGHT -- (--<arithmetic expressiond>-- , —————mmmmem—_ >

->-<arithmetic expression>--) —————~——--—————7——————-4—————4 ——————— I
The DSCALERIGHT function Treturns, as a double-precision value, the
rounded result of : '

first <arithmetic expression>/(10 ** second <arithmetic expression>)
Where the second arithmetic expression, rounded to an integer, bhas a
value in the range O to 12. A run-time error occurs if the integerized

value of the second arithmetic expression is less than 0O or greater than

1z.

551

Expressions Intrinsic Functions

<dscalerightt function> - &
-— DSCALERIGHTT -- (--<arithmetic expression>-- , —=-=====7==77=7" >
s—<arithmetic expression>--) ————==-—T-==---T-TToTTooTToTmIEmmmTIIT !

The DSCALERIGHTT function returns, fas, a 'dOuble-precision' value, the
truncated result of ‘ ' : :

first <arithmetic @xpre351on>/(10 * % second carithmetic expression>)

where the second arlthmetlc express1on. rounded to an. integer, has a
value in the range O to 12. A run-— .time error occurs if the integerized
value of the second arithmetic ‘expression is less than O or greater than
12. : S

<{dsin function>
- ﬁSIN == | ——<afithmetic exprésSion>——)y =1

The DSIN function returns, as @a double pr90151on value, the sine of an
angle of <arithmetic expr9551on> radians.

<dsinh function>
—-—- DSINH -- (—-<arithmetic exﬁresSién>——) ==

1The DSINH function returns, as a. double pre0151on value, the hyperbolic
sine of the gspecified arithmetic eXpre551on

<dsqgrt function>
-— DSQRT -- { --<arithmetic expression>--) ——|

The DSQRT function returns. as a double-precision value, the square'root
o0f the specified arithmetic expression‘ The value- of the arithmetic
expression must be greater than or. eoual to zero.

552
Intrinsic Functions ALGOL REFERENCE MANUAL

i{dtan function>

—= DTAN -- (--<arithmetic expression,-- } —-|

The DTAN function returns, as a double-precision value, the tangent of
an angle of <arithmetic expressicn> radians.

fupction>
~~ DTANH -- (-—-<arithmetic expression>--) -- i

The DTANH function returns., as a double—predision value. the hyperbolic
tangent of the specified arithmetic expressiorn. :

<entier function>
—= ENTIEkK -- (--<arithmetic expression>--) —-|

The ENTIER function returns the largest integer not greater than the
value of the arithmetic expression.

cause Cf the limitations of f-nite representation rithmetic,
N

SENTIER function erronecusly returns zero. rather than -1 . for

numbers of small magnitude. For 2 ceingle-prenision exprascion, B
threshold 1s ~0.5 * &**-713 (approximately =—-9.09E-12). This number
correctly yields -1, whereas the next smaller (in magnitude!

single-precision number incorrectly yieids zero. For a double-precision
expression, the threshcld can differ on various systems (because of
different algorithms for double-precision rounding), but it is in the
vicinity of -8**-2¢ (approximately -3.31E-24).

Tne ENTIER function returns an incorrec:t resu'lr far N S L

hegatlive integers less than O©r equal to —(8X%25) The raoo v o4 e
function for an integer expression should be egual to the vaiune of the
expressiorn. However, ENTIER(-6871947673¢) recurns & vaiune of

~68719476737.

iusirared

N T
INTEGERT

The ENTIER function is not a simplie truncation functinn. as
by the examples. For a simple truncation function. sece
function in this section.

! » 553
Expressions . Intrinsic Functions

[

Examples

[
N

ENTIER(2.6)

ENTIER(3.1)

"
W

ENTIER(-0.01) = -1

i}
] .
o

ENTIER(-3.4)

1}
t
N

ENTIER(-1.8)

<erf function>
—— ERF -- {(--<arithmetic expressiom>—- y —|

The ERF function returns, as a real value, the value of the standard
error function at the specified arithmetic expression. For any valid N,
ERF(-N) = -ERF(N). ‘)

<erfc function>
—— ERFC -- (--<arithmetic expression>--) -—|

The ERFC function returns, as a real value; the complement of the value
of the standard error function at the specified arithmetic expression.
For any valid N, ERFC(N) = 1 - ERF(N).

<exp function>
-- EXP —— (--<arithmetic expréssion>—— Y ——1

The EXP function returns. as a real value,
e ** <carithmetic expression>

where e is the base of the natural logarithms.

554
.
pe

ntrinsic Functions ALGOL REFERENCE MANUAL

fuwnction>

-- FIRST -- { --<string exprecsion>--) —-|

The FIRST runction returns, as a real value. the ordinal position in the
EBCDIC, ASCII. or hexadecimal collating sequence of the first character
in the string expression. This function returns an ordinal position in
the EBCDIC collating sequence if the string expression is EBCDIC. an
ordinal position in the ASCII collating sequence 1if the string
expression 1s ASCII. and an ordinal position in the hexadecimal
collating sequence if the string expression is hexadecimal. A run-time
error occurs if the string expression is the null string.

Examples

FIRST("ABC") = 193 (4"C1")
FIRST(7"NNXX") = 78 (4"4E")
FIRST(4"F1F2") = 15 (4"0F")

<firstone function>

~- FIRSTONE -- (--<arithmetic expression>-- } --

The FIRSTONE function returns, as an integer value, the bit number plus
1 of the leftmost nonzero bit in the value of the arithmetic expression.
The FIRSTONE function returns zero if all the bits are zero. If the
expression 1is double precision, only the first word of its value is
examined.

<firstword function>

== FIRSTWORD —= (mmmmmmmmmeee >

>-<arithmetic eXpressiond————————mmmemmmmm) mmmmmem e |

See alsc
<real variable> L L L L0 o e e 447

)

555
Expressions Intrinsic Functions

The FIRSTWORD function returns. as a real value, the first word of the
double-precision arithmetic expression. The arithmetic expression is
first extended to double precision. if necessary. If the real variable
parameter is specified, the second word of the double-precision
arithmetic expression is stored in the variable.

<fix statement>

The FIX statement returns a Boolean value. For more information, refer
to "FIX Statement."”

<free statem_ent >

The FREE statement returns a Boolean value. For more information, refer
to "FREE Statement."”

<gamma function>
—— GAMMA -- (--<arithmetic expression>——) ==

The GAMMA function returns, as a real value, the wvalue of the gamma
function at the specified arithmetic expression.

<happened function>

-~ HAPPENED -- (--<event designator>--) --l
See also :
cevent designatord>. .« .« « o o e . e e e e e e e e ms s 0 78

The HAPPENED function is a Boolean function that returns TRUE 1if the
happened state of the specified event is TRUE (happened) and returns
FALSE if the happened state is FALSE (not happened) .

556
Intrinsic Functions ALGOL REFERENCE MANUAL

<head function>

-- HEAD -- (--<string expression>-- , —--<string character set>--—-->

<string character set>

—————————————— <¢string constant>----|
| I |

|- NOT -i |-<truth set table>-|
See also
{string constant> 4 i u o . v . . .6523
<truth set table> v38

AN

The HEAD function returns a string whose value consists of the leftmost
characters of the string expression up to, but not including, the first
character that is not a member of the string character set. If the
first character of the string exXpression is not a member of the string
character set, the null string is returned. If all characters of the
string expression are members of the string character set, the entire
string expression is returned.

The string character set must be of the same character type as the
string expression. If a truth set tabie is used, it must not be
composed of characters of different character types. "NOT" indicates a
string character set made up of all characters that are not specified in
the string constant or truth set table. but that are of the same
character type as the string expressior.

The HEAD function and the TAIL function are complementary functions.
This means that for any string exXpression S and any string character set
C, the following relation is always TRUE:

S = HEAD(S,C) CAT TAIL(S.C)

See the TAIL function in this sectior.

: 557
Expressions i " Intrinsic Functions

Examples

In the examples below, S -is a 'string of length 9 that contains
8"ABC/1-2+3".

HEAD(S,NOT "/") = §"ABC"
HEAD(S,ALPHA) = 8"ABC"

HEAD(S,"123") = the null string
<imag function>

-- IMAG -- (--<complex expression>--)y =1

The IMAG function returns, as a real value, the imaginary part of the
specified complex expression.

For a function that returns the real part of a complex expre531on see
the REAL function in this section. :

<integer function>

The INTEGER function has two forms, each of whicn returns an integer
value.

-- INTEGER -- (—--<arithmetic expression>--) --|

This form of the INTEGER function returns the value of the
arithmetic expression integerized with rounding. Specifically. it
returns :)

ENTIER(<arithmetic expressiony + C.5) ?

558
Intrinsic Functions ALGOL REFERENCE MANUAL

-- INTEGER -— (------ e by <pointer expression>-- , —----

[-<update pointer>-|

>-<arithmetic exXpressiond>--) —————mr- e o m e mm e
See also
<update pointer>. 0 0 v e e e e e e e e e e e e e

This form of the INTEGER function returns, as an integer value,

the

decimal value represented by the string of characters starting with
-the character pointed to by the pointer expression. The absolute’

value of the integer value to be returned must be less than or
to 549755813887.

equal

The arithmetic expression specifies the length of the string of

characters and must have a value, when rounded to an integer,
than 24. If the rounded value of the arithmetic expression is

less
24 or

greater the " program is terminated with a fault. 1If the length is

zero, a result of zero is returned.

A zone field configuration of 1"1101" for 8-bit characters or

‘ l"lo"

for 6-bit characters in. the least significant character position

causes the result of the function to be negative. With

4-bit

characters, a 1"1101"™ in the most significant character position

results in a negative value.

The state of the pointer expression when the count is exhausted

be preserved by using the <update pointer> construct.

" <integert function>

~— INTEGERT -- (—--<arithmetic expression>--) --|

can

The INTEGERT function returns the value of the arithmetic expression

integerized with truncation.

-The INTEGERT function does not necessarily return the same value as
ENTIER function. For example. INTEGERT(-1.2) = -
ENTIER(-1.2) = -

the
but

‘ ‘ 559
_EXpressiqns Intrinsic Functions
<length function>

-- LENGTH -- (--<string expfession>f—) —=

The LENGTH function returns, ds an integer value, the number of
- characters _in the string that results from evaluation of the string
expression. The null string has 'a length of 2zero.

<linenumber function>
-- LINENUMBER --|

The LINENUMBER function returns,v'as an - integer value, the séquence
number of the source file record‘on which it appears.

<linklibrary function>

-— LINKLIBRARY -- (—--<library identifier>--) --—|
See also v
<library identifier>. « « o & & « a v e e e e e e w5 e 0. . 129

The LINKLIBRARY function determjnes whether or not the program is
currently linked toc. or is capablé.of being linked to the library program
specified by the library identifier. Results indicating a successful
linkage are returned by the LINKLIBRARY function if the program is
presently linked to the library or if the program .is capable of ©being
linked, in which case the LINKLIBRARY function performs the linkage. If
the program cannot be linked to the library, the function returns a
result indicating the reason for the failure. 1In either case, the
program continues to execute: that is, use of the = LINKLIBRARY function
prevents termination or suspension of a program upon an unsuccessful
attempt to link to a library. - . :

During the linkage process, an attempt is made to link to every entry
point exported from .the libfary whose name matches an entry point
declared in the program. Only those names that match are checked for
correct functior type, numbet of parameters, and parameter types.
Therefore, .the LINKLIBRARY funcﬁion does not check that every entry
point declared in the program is also exported from the library.

560

Intrinsic Functions ALGOL REFERENCE MANUAL

The values.returned by the LINKLIBRARY function can be interpreted as

follows:

-10
=11

-12

-14

-15

Meaning

Successful linkage was made to the library, but not all - entry

points were provided.

Successful linkage was made to the library, and all entry
points were provided.

The program was already linked to the specified library at the
time of the LINKLIBRARY call.

The library code file is missing.

The family size of a process running in Swapper was exceeded on
the attempt to link to the library.

A by-calling procedure specified more than one library task.
The library is not a system library.
The number or types of parameters provided by the library do

not correspond to those declared in the program.

The library was terminated, canceled.'or thawed before being

.frozen; therefore, the library was not successfully initiated.

A circular chain of library linkages was detected. A library
cannot reference itself. either directly or indirectly, through
a chain of library references.

A by-calling procedure never specified a library task.

A bad task was passed by a by-calling library procedure.-

A library feature that was used is not implemented.

The library template contained an illegal provision type.

The library template level is obsolete. This program must be
recompiled.

The library directory level is incompatible with the library
template level. The older program must be recompiled.

The program cannot link to & system library.

A task array for a by-calling library was not declared in the
library's stack. :

561

Expressions Intrinsic Functions
Value Meaning
-le This program is not authorized to use this library procedure.
-17 The library is not visible to the program attempting to link to
the library. ‘
<listlookup function> \®
\Q\
QO
-— LISTLOOKUP -- (——<arithmetic expression>—-- , —--<array row>----- >
o |
whtt€ Yoct
>— , —--<arithmetic expression>--) --=----S---—sm-————————o——ooo oo |
See also :
CAYrTAY YOWD & v o o 5 o o o o o o o o o 4 s o o & & e . e s . 43

The LISTLOOKUP function causes a linked list of words to be searched and
returns, as an integer value, an index into the list as follows:

1. The array row is indexediby the value of the second arithmetic
expression and the word is extracted. Each word contains a
value (in field [47:28]) and a link (in field [19:20]) to the
next word of the linked list. '

z2. If the value in the extracted word is greater than or equal to
the value of the firSt arithmetic expression, the operation
stops, and the index of the word whose 1link points to the
extracted word is returned by the function.

3. If the value in the extracted word is less than the value of
the first arithmetic expression,: the link of the extracted word
is used as an index into the array row, a new word 1is
extracted, and the procéss is repeated.

A word with a link of zero terminates the search. The value of a word
is tested only if the ‘link field is nonzerc. If the linked list is
exhausted (if a word with a 1ink of zero is encountered). a value of -1
is returned by the LISTLOOKUP function.

562
Intrinsic Functions ALGOL REFERENCE MANUAL

<1ln function>

~— LN -- (—--<arithmetic expression>--)

The LN function returns, as a real value,

the natural logarithm of the
specified arithmetic expression.

<lngamma function>

-~ LNGAMMA -- (

—-<arithmetic expression>--)

The LNGAMMA function returns, as a real value. the natural logarithm of
the gamma function at the specified arithmetic expression.

<log function>

-— LOG -- (--<arithmetic expression:--)

—

The LOG function returns, as a real value, the base-10 logarithm of the
specified arithmetic expression.

<masksearch function>

-— MASKSEARCH -- (-—-<arithmetic expression:--

>~<arithmetic expression>—-- , —--—-<array rowd———-————me————-

| l

[-<subscripted variable>-|

See aiso
array row. o« . . oo . c e e e . e oo ... 43
{subscripted variable>.

The MASKSEARCH function performes the same operations as the
function, except that it 1is intended for wuse
(unsegmented) arrays.

ARRAYSEARCH
only with unpaged

‘ 5¢3
Expressions Intrinsic Functions

If the third parameter to the MASKSEARCH function is an array row or a
subscripted variable of a paged (segmented) array. then a warning
message is given at run time. This warning message is given only the
first time the statement containing the MASKSEARCH function is eXecuted.

If the third parameter is an array row of a paged array, execution of
the MASKSEARCH function causes a fault.

If the third parameter is a subscripted variable of a paged array, then
no fault 1is generated at run time, but the results can be unexpected.
The MASKSEARCH function searches only the 256-word segment containing
the specified array element. If the target value is found in that array
segment, the inQSE/;ngtive to the beginning of the gegment is returned.
If the target is nct found in that segment, -1 1is returned.

<max function>

~— MAX -- (---<arithmetic expression>---) -—|

The MAX function returns, as a real value, the maximum of the values of
all the specified arithmetic expressions.

<messagesearcher statement>

The MESSAGESEARCHER statement returns an integer value. For more
information, refer to "MESSAGESEARCHER Statement."”

<min function>

-— MIN -- { ---<arithmetic expression>---) -—|

The MIN function returns. as.a real value, the minimum of the values of
all the specified arithmetic expressions.

564
Intrinsic Functions ALGOL REFERENCE MANUAL

<nabs function>
-— NABS —- (--<arithmetic expression>--) --|

The NABS function returns, as a real value, the negative of the absolute
value of the specified arithmetic expression.

<normalize function>
-= NORMALIZE -- (-—-<arithmetic expression>--) --|

The NORMALIZE function returns, as a real value, the value of the
arithmetic expression, normalized and rounded to a single-precision
operand. (For more information on normalized format, refer to "Real
Operand" in the appendix "Data Representation.")

See also
Real Operand. v v v v v v v v v s o v . . .-820

<offset function>
—-— OFFSET -- (--«<pointer expression>--) --

The OFFSET function returns, as an integer value, the number of
characters between the character position referenced by the pointer
expression and the beginning of the array row, not including the:
character at which the pointer expression is pointing. The function
value is in terms of the character size of the pointer expression. If
it ig a word pointer. the offset is given in terms of 8-bit characters.
If the pointer expression points to a paged (segmented) array, the
OFFSET function returns the total offset from the beginning of the first
segment Of the row.

For a function that returns the number of characters between the
character position referenced by a pointer expression and the end of the
array row, see the REMAININGCHARS function in this section.

j Ay
~JE;~7

Expressions Intrinsic Function«

ones funpctiond
~— ONES -- (--<arithmetic exXpressiond--) --

fhe ONES function returns, as an linteger value. the number of nonzero
‘te o in the value of the arlithmetic expression. If the arithmetic
ron 1% double precision, all 96 bits of its value are examined.

=nt yerurns an integer value. For more information,

¥ J

statement.

Gxrinter functiond |

POINTER -= { =~=<array roW === === s e e e e >
i |
{stubscriptied variable>-|
cem o o it o e e e e i) ___________________________________ i

- , =—==—<Character size>--1|i
i I

i—<pointer primary>-il-

<eharacter sizes

S5ee alsc i

CATTAY TOWD v« v v v v o o 4 e e e e el e e e e e e e e e e e e &3
(pointer Pprimary’> . .« .« « v & ¢ v e 4 e e+ 4 4« ¢ 4 « + 4 4 « « . Blo
(subscripted variabler. 228

566
Intrinsic Functions ALGOL REFERENCE MANUAL

The POINTER function generates a pointer to the specified location.

If the first parameter is an array row, the pointer references the first
character of the first word of the specified array row. If the first
parameter is a subscripted variable, the pointer references the - first
character of the array element specified by the subscripted variable.

If the second parameter is not given, the character size of the pointer
'_is siXx or eight bits, depending on the default character type. (For
more information on the default character type, refer to "Default
Character Type" in the appendix "Data Representation.”) :

If the second parameter is a character size of 4, 6, or 8, the character
size of the pointer being generated is four bits, six bits, or eight
bits, respectively. If the second parameter is a character size of 7,
the character size of the pointer is eight Dbits. If the second
parameter is a character size of 0, the pointer. is word-oriented, rather
than character-oriented: it is single precision if the array it points
to is single precision (INTEGER, REAL, or BOOLEAN) and double precision
if the array is double precision {DOUBLE or COMPLEX).

If & pointer primary is given as the second parameter. the character.
size of that pointer primary 1is used for the character size of the
pointer being generated. '

See also ‘
Default Character TYPE. . « « « o o v o + ¢ o o v v o o « «. o « 817

NOTE

The BCL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The .appearance of a BCL
construct that may cause the creation-of
a BCL descriptor, such as a 6-bit
pointer, will cause the program to get a
compile-time warning message.

EXpressions

Examples

BEG

IN
ARRAY Al,A2[0:9]; _
POINTER P1,P2,P3,P4,P5;

Pl := POINTER(Al);

P2 := POINTER(A1[9]):

P3 := POINTER(Al,4);

P4 := POINTER(A2[6].P3);
$ SET BCL

P5 := POINTER(Al):

END.

% LAST STATEMENT

Execution of this program has the following results:

Pl

P2

P3

P4

PS

This pointer has a character

size of eight bits (the

567

Intrinsic Functions

default

character type is EBCDIC when Pl is assigned) and points to the

first 8-bit character of the

This pointer has a-charécter
the first 8-bit character of

This pointer has a character
the first 4-bit character of

This pointer has a character
the first 4-bit character of

This pointer has a charéctef
assigned,
first 6-bit character of the

first element of array Al.

siZe of eight bits and points
element 9 of array Al.

size of four bits and points
the first element of array Al.

size of four bits and points

element 6 of array A2.

size of six bits (when PS5

the default éharacter type is BCL) and points to

first element of array- Al.

to

to

to

is
the

568
Intrinsic Functions ALGOL REFERENCE MANUAL

<pot function>

-——— POTL --- [-—-<arithmetic expression>--] --|
| l
|- POTC -|
| l
|- POTH -|

The POT (Power of Ten) functions, POTL (low), POTC (center), and POTH
(high), together provide the value

10 ** <arithmetic expression>
from three tables that are double-precision, read-only arrays. Each of
the POT functions is defined only for integerized values of the
arithmetic expression falling in the range 0O through 29604. The
complete wvalue of 10 ** <arithmetic expression> can be computed using
the following arithmetic expression:

POTL[<arithmetic expression>.[5:6]]

* POTC[<arithmetic expression>.[11:6]]

* POTH[<arithmetic expression>.[14:3]]

Examples

_RESULT := POTL[X]; % WHERE X < 64

DEFINE POT(T) = (POTL[T.[5.6]] * POoTC[T.[11l:6]] * POTH[T.[14:311)#:
ONEDIVTENTOI := 1 / POT(I);:

<processid function>
-— PROCESSID --|

The PROCESSID function returns a positive integer value that uniquely
identifies the process executing the function.

The PROCESSID function returns a value that ~remains unigque to that
process for the duration of its exXecution. However, the value is not
guaranteed to be the same on every invocation of the PROCESSID function.
For example, upon restarting from @a checkpoint, the wvalue of the
PROCESSID function can have changed. Alsc. after a process terminates,
its PROCESSID value can be assigned to a new process.

569

Expressions - Intrinsic Functions
<random function>
—— RANDOM -- (--<arithmetic variable>--.) --|
See also e
<arithmetic -variable> . . v ¢ v o0 v e e e e e e e el e e e e 225

The RANDOM function returns, as a real value, a random number that is
greater than-or equal to O and less-than 1. The arithmetic variable is
a call-by-name parameter, and its wvalue is changed each time the
function is referenced. A compile-time or run-time error occurs if the
parameter is not a single-precision arithmetic variable.

‘<read statement>

The READ statement returns a Boolean value. For more information, refer
to "READ Statement." i

<readlock function>

Taking only one memory'cycle, the READLOCK function stores the value of
the specified expression 1in khe designated variable and returns the
previous contents cof the variable. ' ‘

The READLOCK fﬁnction has three forms. One form returns a vreal value,
one form returns a Boolean Value, and one form returns a peinter.

-- READLOCK -- (--<arithmetic expression»>-- , —-—<arithmetic variable>->
N s e l
‘See also : .

carithmetic variable> « ¢ o . e e e e e e e e e e e e e 225

This form of the READLOCK function stores the value of the
arithmetic expression in the arithmetic variable and returns the
previous contents of - the variable as a real value. Both the
variable and the expression must be single precision.

570

Intrinsic Functions ALGOL REFERENCE MANUAL

-~ READLOCK -- (--<Boolean expression>--, —--<Boolean variable>--) ~=|

See alsb ‘
<Boqlean variable>. 0 . 0 0 o0 o e e s e e e e 234

This form of the READLOCK function stores the value of the Boolean '
expression in the Boolean variable and returns the previous contents
of the variable as a Boolean value.

—-- READLOCK -- (--<pointeér expression>-- ., --<pointer Variable>~- A f
See also »
<pointer variable>. 0 e e W e e e e e e .. 241

This form of the READLOCK function stores the value of the pointer
expression in the pointer variable and returns the prev1ous contents
of the variable as a pointer value.

<real function>
The REAL function has four forms, each of which returns a real value.
—— REAL -- (—--<arithmetic expression>-=-) --]

This form of the REAL function returns the value of the arithmetié
expression rounded to a single-precision, real value.

-- REAL -- (' -=<(Boolean expression>--) --|

This form of the REAL function returns the. value of the Boolean
expression as a real value. All bits of the Boolean expression are
used.)

; R : : 571
ExXpressions - Intrinsic Functions

-- REAL --'(--<complex expression>--)it

‘This form of .the REAL function returns; as.a real. value, the real
part of the'specified complex expression.

.For a function -that: returds the imaginary‘ part of a - complex
expression, see the IMAG function in this section.

~—- REAL -- (——<pointer‘expressidn>4— , ——<arithmetic expression>--) -|

This form of the REAL functidn’returns, as a real value, the string
of <arithmetic expression> characters starting with the character
indicated by the pointer expression..

If the arithmetic expréssion?indicatés a string of characters. that
is less than or equal to 48 bits long, this string is
.right-justified in one word with leading zeros, 1if necessary, and
this word is returned as the function result. If the arithmetic
expression indicates a String of characters more than 48 bits 1long
but less than or ‘equal to 96 bits 1long, this string is
right-justified with 1eadingizeros."if necessary, .in a two-word
operand, . and - then only the first word is returned as the function
result. If the arithmetic expression ‘indicates a string of
characters more than 96 bits :long, a run-time error occurs.

<remainingchars function>
-~ REMAININGCHARS -- (—-<pointer expression>—-) —-|

‘The REMAININGCHARS function returns, as an integer value, the number - of
‘characters between -the character position referenced by the pointer
expression and the end of the array row, including the character at
which the pointer .expression iis pointing. The returned value is in
terms of the character.size of the pointer expression. If it is a word
pointer, - the wvalue returned is in terms of 8-bit characters. If the
pointer expression points to @ a paged (segmented) array, the
REMAININGCHARS function . gives the number of characters left in the
entire array row. : C : :

For a function that returns the number of characters between the
character position referenced by a pointer expression and the beginning
of the array row, see the OFFSET function in this section.

572
Intrinsic Functions ALGOL REFERENCE MANUAL

<removefile statement>

The REMOVEFILE statement returns a Boolean value. For more information,

refer to "REMOVEFILE Statement."

<repeat function>

—— REPEAT -- (--<string expression>-- , -—-<arithmetic expression>->

The REPEAT function returns a string according to the following rules:

1. If <arithmetic exXpression> = 0, the result of the

function is the null string.

%}

If <arithmetic expression> > 0, the result of the

REPEAT

REPEAT

function 1is the same as if <arithmetic expression> occurrences
of the value of the string expression were all concatenated

together.

3. If <arithmetic expression> < 0, the result of the

function is either a compile-time or a run-time error.

The value of the arithmetic expression is rounded to an integer,

necessary, before it is used as the repeat count.

Examples

REPEAT("ABC",3) = "ABCABCABC"

REPEAT("WON'T WORK",0) = the null string

<scaleleft function>

-— SCALELEFT —- (--<arithmetic expressionr-- , ——————-————————=

>-<arithmetic expressions-—-) ——-——-—m——m e

REPEAT

if

. 573
Expressions Intrinsic Functions

The SCALELEFT function returns. as an integer value,

‘first <arithmetic expression>*(1C ** second <arithmetic expression>)
where the second arithmetic expression, rounded to an integer, has a
value in the range O to 12. The SCALELEFT function is undefined when

the integerized value of the second arithmetic expression is less than O
or greater than 1Z. : S

<scaleright function>

—— SCALERIGHT —-- (--<arithmetic expression>-- , ——-<-—--—-—==-=-=-== >

s—<arithmetic expression>-=-) ——————=---------—--osoooomoomoooommETEE
The SCALERIGHT function returns, as an integer value, the rounded result
of ' S

first <arithmetic expression>/(10 ** second <arithmetic expression>)
where the second arithmetic expression, rounded to -an integer, has a
value in the range 0 to 12. A run—time error occurs if the integerized

value of the second arithmetic expregsion is less than 0 or greater than
12. '

<scalerightf function>

—- SCALERIGHTF -- (--<arithmetic expression>-- , ~——==-———~"—-=====— >

>-<arithmetic expression>-- } ——-——==-——-=--T----oooosoomooosoooTETE

The SCALERIGHTF function returns, as a real value, a left-justified,
packed decimal (4-bit decimal) number representing

first <arithmetic expression> MOD (10 ** second carithmetic expression>)

where the second arithmetic expréssion, rounded to an integer, has a
value in the range 0 to 12. A run-time error occurs if the integerized
value of the second arithmeti¢ expression is less than O or greater than
12, ' ' '

The number of significant digits:returned by the function is equal to
the integerized value of the second arithmetic expression. The external
sign flip-flop (EXTF) is set to reflect the sign of the first arithmetic

574 :
Intrinsic Functions ALGOL REFERENCE MANUAL

expression- for use with the editing phrases specified in a PICTURE
declaration. :

Examples

SCALERIGHTF(1234,4) = 4"12340000000C"

SCALERIGHTF(12345678,12) = 4"000012345678"

<scalerightt function>

-— SCALERIGHTT -- (-—<arithmetic expression>-- , ———=—————s———————— >

>-<arithmetic eXpression>=-) ——————— oo l
The SCALERIGHTT function returns, as an integer value, the truncated
result of

first <arithmetic expression>/(10 ** second <arithmetic expression>)
where the second arithmetic expression, rounded to ‘an integer, has a
value in the range 0 to 1Z. A run-time error occurs if the integerized

value of the second arithmetic expression is less than O or greater than
12.

<secondword function>
—-— SECONDWORD -- (—--<arithmetic expression>--) --|

The SECONDWORD function returns, as a real value, the second word of the
double-precision arithmetic expression. The arithmetic expression is
first extended to double precision, if necessary.

For a function that returns the first word of a double-precision
arithmetic expression, see the FIRSTWORD function in this section.

: 575
Expréessions " Intrinsic Functions

<seek statement>

The SEEK statement returns a Boolean value. For more information, refer
to "SEEK Statement." ' '

<setactualname function>

-- SETACTUALNAME -- (--<library entry point identifier>-- , ———-—- >

s—<pointer expressiond--) —==—-===-=-- e |

<library entry point identifier>

A <proéeduref identifier> - declared with. a <library entry point
specification>.

See also ;
<library entry point specification> . . . ¢ . o 0 . . e e e . 169
<procedure identifier>. . . . i . e e e e e e e e e e e e e 165

The SETACTUALNAME function determihes whether or not the ACTUALNAME of
the 1library entry point specified by the library entry point identifier
can be changed to the name pointed to by the pointer expression. The
function then makes the change, if it is possible. Results of a
successful change are returned upoh completing the ACTUALNAME - change;
otherwise, results indicating the reason for failure are returned.

The ACTUALNAME of an entry point of a linked library cannot be modified.
Therefore, a linked library must be delinked before calling the
SETACTUALNAME function to change the ACTUALNAME of . any of 1its entry
points. The function can be called to modify an entry point of a
library that has not yet been linked. ‘

Starting with the first character pointed to by the pointer expression,
characters are included as the new "entry point name until either a
period is encountered, the maximum allowable number of characters is
included, or the end of the array row is encountered. The last case
results in an error condition. ’

576
Intrinsic Functions ALGOL REFERENCE MANUAL

The SETACTUALNAME function returns the following integer values:

Value Meaning

1 A successful change was made to the ACTUALNAME of the entry
point. .
0 The new ACTUALNAME is the same as the current ACTUALNAME of the

entry point.

-1 The library is linked. The library must be delinked before the
SETACTUALNAME function is called.

-2 The library entry point identifier is not cufrently in an
accessible library template.

-3 A parameter error occurred in the SETACTUALNAME function.

Example

REPLACE NEWEPNAME -BY "ENTRYPOINTZ2.":
SETACTUALNAME(EP2 ,NEWEPNAME) :

Changes the ACTUALNAME of the library entry point EP2 to
"ENTRYPOINT2", if possible. ’ -

<sign function>
-—- 8IGN -- (--<arithmetic expression>--) —-|

The SIGN function returns an integer 1 if the value of the arithmetic
expression is greater than 2zero, an integer O if the value of the
arithmetic expression is equal to zerc. and an integer -1 if the value
of the arithmetic expression is less than zerc.

577
Expressions Intrinsic Functions
“¢sin function>

- SIN'—- (——<arﬂthmetic expression>--) --—|

The SIN function returhs, as a real value, the sine of an angle of
<arithmetic expression> radians.

<single function>
—— SINGLE -- (--<arithmetic expression>--) —-|

The SINGLE function returns, as' a real value, the value of the
arithmetic expression normalized and truncated to single precision.

<sinh function>
—- SINH -- (-—<arithmetic expression>——) —=|

The SINH function returns. as'a real value, the hyperbolic sine of the
specified arithmetic expression. ' :

<size function>

-- SIZE -- (---<array designator>-----) ==
| I

|-<pointer identifier>-|

See alsc
<array designator>.. P K<
<pointer identifier>. o e o0 - e . o o o . 160

The "SIZE(<array designator>)” form of the SIZE function returns, as an
integer value, the size of one dimension of the specified array in
elements. I1f the array designator is an array name. the SIZE function
returns the size of the first dimension of the specified array. If the
array designator contains a subarray selector. the SIZE function returns
the size of the dimension that corresponds to the first asterisk (*)
subscript. : ;

578
Intrinsic Functions ALGOL REFERENCE MANUAL

The "SIZE(<pointer identifier>)" form of the SIZE function returns, as
an 1integer value, the character size of the specified pointer. 1If the
Character size of the pointer is four, six, or eight bits. the wvalue
returned 1is 4, 6, or 8, respectively. If the pointer is word-oriented,
the value. returned is 0 or 2, depending on whether the pointer is single .
precision or double precision, respectively. If the pointer is
uninitialized, the SIZE function returns zerc. See the POINTER function
in this section for a discussion of character size. , :

<space statement>

The SPACE statement returns a Boolean value. For more information,
refer to "SPACE Statement."

<sqgrt. function>
-- SORT —- (--<arithmetic expression>--) --|.

The SQRT {function returns, as a real value, the square root of the
arithmetic expression. The value of the arithmetic expression must be
greater than or equal to zero.

<string function>

-—-—= STRING ---- (—___’“—-;"*'-—“____‘—_’—‘——’-‘—‘--‘-;—_-f ————— >
| :
':— STRING4 —;
!
:— STRING7 —i
:- STRINGS —:
>=——<pointer expression>-- , —-—<arithmetic expression>-----—-) ——-
:—<arithmetic expression>-- —T—<arithmetic expressiop>—:

The STRING function returns a string value. - The function STRING4
returns a hexadecimal string. the function STRING7 returns an ASCII
string, and the function STRING8 returns an EBCDIC string. The function
STRING returns a string of the default character type. (For more

T S _ 579
Expressions - Intrinsic Functions

information on the default character type, see "Default Character Type"
in the appendix "Data Representation.”) ’ '

See also » - : . »
Default Character Type. . .« « « « « = «.« =« G e e e i e e e .. 817

If the first'parameter'to the STRING function is a pointer ‘expression,
the STRING‘function’converts“tbe‘string of characters pointed to by the
pointer expression into & string. The,numbér of .characters converted is
given by the value of the arithmetic expression, rounded to an integer,
if necessary. If this rounded value is less than zero, a compile-time
or run-time error occurs. 1f the rounded value is zero, the null string
is returned. : ' SR R :

1f the first parameter - to the STRING function 1is an arithmetic
‘expression, the STRING function returns a string consisting of a decimal
‘representation of the value of that arithmetic expression. If the
second parameter is also an arithmetic expression, then the value of
this eXpressioh, rounded to an. integer, specifies the length of the
resulting string. = If ~this value is less than zero, a compile-time or
ruri-time error occurs. If this value is_equal to zero, the null string
is returned. If the second parameter is an asterisk (*), the resulting
string is exactly long enough to répresentithe value of the arithmetic
expression with no. blanks. If the value ~of the first arithmetic
expression is zero and the second parameter is an asterisk, the
resulting string is one character long. ‘

When the STRING function is to return an ASCII or EBCDIC string and the
first parameter is an arithmetic expression, its value is converted into
the most efficient form. depending on the length specified by the second
parameter. If both parameters are arithmetic expressions and the
rounded value of the second parameter -is greater than the minimum number
-of characters needed to,repreSeht the first parameter, leading blanks
are inserted ‘in the resulting string. If both parameters are arithmetic
expressions and the rounded value of‘the;Second parameter is less than
the. number of characters needed to represent the first parameter, then a
string of all asterisks is returned. : '

For the function STRING4, when the first '~ parameter is an arithmetic
expression, only the integer portion of the value of this expression is
converted. If both'parameters to STRING4 are arithmetic expressions and
+he rounded value N of the second parameter is less than the number of
characters needed to represent the first parameter, then the rightmost N
digits of . the converted value of the first parameter are returned. If
poth parameters to STRING4 are arithmetic expressions and the rounded
value of - the second parameter is greater than the number of characters
needed to represent the converted value of the first parameter, then
leading zeros are inserted into the resulting string.

580
Intrinsic Functions ALGOL REFERENCE MANUAL .

Examples

STRING(P,20)
STRING(POINTER(A),N-3)
STRING(256,*) = 8"256"

8" -335.25"

STRING(-335.25,8)

8".0478"

[}

STRING(4.78@-2,5)
STRING(555000,1) = g"="
STRING(456.789,7) = 8"456.789"
STRIN64(123.456,8) = 4"00000123"

STRING4(12345678,4) = 4"5678"

<tail function>

-- TAIL -- (--<string expression>-- , ——<string character set>---->

it |
See also . .

<¢string character set>.0 oo 556

The TAIL function returns a string whose value consists of the rightmost
characters of the string expression beginning with the first character
that is not a member of the string character set. If all characters in
the string expression are members of the string character set, the null
string is returned. If the first character of the string expression is
not .a member of the string character set. the entire string expression
is returned. :

The string character set must be of the same character type as the
string expression. For an explanation of the string character set, see
the HEAD function in this section.

581
Expressions Intrinsic Functions

The TAIL function and the HEAD function are ,complementary functions.
- This means that for any string expression § and any string character set
C, the following relation is always TRUE:)

S = HEAD(S,C) CAT TAIL(S,C)

See ‘the HEAD .f"unction in this section.

Examples

In the examples below, S is-.a . string 'of length 9 that contains
8"ABC/1-2+3".

TAIL(S,NOT "-") = 8"-2+3"

TAIL(DROP(S,7),"+-") = g"3"

- <take function> -

+— TAKE -- (—--<string expression>-- , —-—<arithmetic expression>--->

The TAKE function returns a string whose value is equal to the first
<arithmetic expression> characters . taken from the value of the string
expression. The value of the arithmetic expression is rounded to an
integer. 1if necessary. An error occurcs if the rounded value of the
arithmetic expression is greater than the number of characters 1in the
string expression or 1less than 2zero. If the rounded value of the
arithmetic expression is zero, the result is the null string. If the
rounded value of the arithmetic expression is equal to the length of the
string expression. the result is the same as the value of the string
expression. h

The TAKE function and the DROP function are complementary functions.
This means that for any string exXpression S and any arithmetic
expression & in the range 0 <= A <= LENGTH(S), the following relation is
always true: :

S = TAKE(S,A) CAT DROP(S,A)

See the DROP function in this section.

582
Intrinsic Functions ALGOL REFERENCE MANUAL

Examples

In the examples below, string S has a length of 6 and contains
8"ABCDEF".

. 8"AB"

TAKE(S,2)

'TAKE(S,4) 8"ABCD"

TAKE(DROP(S,2),2) = 8"CD"
<tan function>
~-— TAN —-- (—--<arithmetic expression>--) —--|

The TAN function returns, as a real value, the tangent of an angle of
<carithmetic expression> radians.

<tanh function>
-— TANH -- (--<arithmetic expression>--) --|

The TANH function returns, as a real value, the hyperbolic tangent of
the specified arithmetic expression.

<time function>
—-— TIME -- (--<arithmetic expression»>--) —--|

The TIME function makes various system time values available. The value
of the arithmetic expression 1is rounded to an integer, if necessary,
before being used. The results returned for different values of ‘the
integerized arithmetic expression are given in the following table. If
the integerized value of the arithmetic expression is not one of the
values listed in the table. the TIME function returns the value zero.

Parameter

N

1C

R - 583
Expressions Intrinsic Functions

Result Returned

TIME(O) returns the current date - in BCL characters‘ in the
format 6"YYDDD", where YY 1s the year and DDD is the day of the
year.

TIME(1) returns the time of day, in sixtieths of a second, as
an 1nteger value. :

TIME(2). returns the elapsed processor time of the program, in

. sixtieths of a second, as an integer value.

TIME(3) returns the elapsed 1/0 time. of the program, 1in
sixtieths of a second, as an integer value.

TIME(4) returns the value of a 6-bit clock that increments 60
times per second.

TIME(5) returns the month day, and year as six BCL characters,
right-justified, in the format 6"00MMDDYY"

TIME(6) returns a unique number for the time and date (a
timestamp) in the following form:

0 & (JULIANDATE—?OOOO) [47:16]'& (TIME(11) DIV 1l6) [31:32]

TIME(7) returns the current date and time in the following
form: ’

[47:12] Year (1900-1999)
[35:06] Month (1-12)
[29:06] Day (1-31)
[23:06] Hour (0-23)
[17:06] Minute (0-59)
[11:06] Second (0-59)
[05:06] Day of the week
(0 = Sunday, 1 = Monday, ..., 6 = saturday)

TIME(9) returns the current time in EBCDIC characters in the
format S"HHMMSS", where HH is the hour. MM is the minute, and
SS is the second.

TIME(10) returns the same value as TIME(O), except that the
time is expressed in EBCDIC characters in the format 8"YYDDD".

TIME(11) returns the same value as TIME(1), except that the
time is expressed in multiples of 2.4 microseconds.

TIME(12) returns the same€ value as TIME(2), except that the

time is expressed in multiples of 2.4 microseconds.

584

Intrinsic Functions ALGOL REFERENCE MANUAL
Parameter : Result Returned
12 TIME(13) returns the same value as TIME(3), except that the

time is expressed in multiples of 2.4 microseconds.

14 TIME(1l4) returns the time elapsed since the last Halt/Load in
multiples of 2.4 microseconds. '

15 TIME(15) returns the current date in EBCDIC characters in' the
format 8"MMDDYY". :

16 TIME(16) returns the same value as TIME(6):

23 TIME(23) returns the system identification information- in - the
following format:

[31:08] ASD System flag.
O - Non-ASD system
1l - Non-ASD system
2 - ASD system
[23:16] System serial number.
[07:08] Type of machine DIV 100
{(for example, 68 means B 6800).
If the system type is not of the form
B XX00, this field contains zero.

24 TIME(24) returns the system type as a real value containing six
EBCDIC characters. The name is left-justified with blank fill.
For example, on a B 5920 or B 5930 system, TIME(24) returns
8"B5900 . :

<translate function>

—— TRANSLATE -- (--<string expression>-- , —-<translate tabled>--—->

) T e |
See also

<translate table>38

The result of the TRANSLATE function is a string of the same length as
the string expression with each character of the string expression
translated according to the translate table.

P - 585
Expressions = Intrinsic Functions

“The translate table used in the TRANSLATE function must not be composed
of items ‘of different character types. - The translate table can be a
translate table identifier declared . in the . program .or one of the
intrinsic translate tables. The wuse of a subscripted variable as a
_ translate table is not allowed in the TRANSLATE function.

Ezamglesv

TRANSLATE(S, HEXTOEBCDIC)

TRANSLATE(TAKE(S,10),MYTT)

<value function>

~- VALUE —- (—--<mnemonic file attribute valuej-----—---- e >

: . _ : \
:~<ari£hmetic—valued file attribute name>------ i
:—ﬂBoolean-valuéd-file attribute named>------—-- ;
:—?pbinter—valuéd-filé attribute name>------—-- !
:—Qtranslate-table—valued file attribute name)—:

- See also o S)
<carithmetic-valued file attribuyte name> 86
(Boolean-valued file attribute Name>. . .« « « « « « « =« « « « . 86
<mnemonic file attribute valuey . . v v v « « o + o o « « + . . 86
<pointer-valued file attribute name>. 86

<translate-table-valued file attribute name>. 86

If a mnemonic file attribute value is specified, the VALUE function
returns the integer value that ' corresponds to that mnemonic file
attribute value. If a file attribute name ~ is specified, the VALUE
function returns the attribute number that corresponds to that attribute
name. . For more information on file attribute names: and mnemonic file
attribute values, refer to the "1/0 Subsystem Reference Manual."

586 :
Intrinsic Functions ALGOL REFERENCE MANUAL

'Examples

F.KIND := VALUE(DISK)
F.INTMODE := VALUE(EBCDIC)
<wait statement>

Depending on the form used, the WAIT statement returns no value, a-
Boolean value, or an integer value. For more information, refer to
"WAIT Statement." ‘ ‘ ’

<waitandreset statement>

The WAITANDRESET ' statement returns an integer value. Fer more
information, refer to "WAITANDRESET Statement." '

<write statement>

The WRITE statement returns a Boolean value. For more information,
refer to "WRITE Statement."

587

2 ~ COMPILING PROGRAMS

This chapter presehts_information outside of the ALGOL language. This

information is necessary to compile- and run an ALGOL program. The
chapter describes the files used by the ALGOL compiler when it compiles
a program, the format of a source record, and compiler control options.

1.1 FILES USED BY THE COMPILER

When the ALGOL compiler compiles a program, it requires, at minimum, one
input file that contains the source code to be compiled. If the compile
is successful, the compiler produces, at minimum, one output file that
.contains executable object code.

Through the use of compiler control options, the compiler can be
directed to use additional input files and to produce additional output
files. Among the optional input files that can be used are files
containing source code that is to be merged .or inserted into the
required source code file, and files containing information needed to
perform separate -compilation and binding. Among the optional output
files that can be produced are a printer listing of the program, a
cross-reference file, an updated source file, an error message file, and
a file containing information needed fior future separate compilation.

Table 7-1 lists the logical input and output files used by the ALGOL
compiler. Each file is listed with values for the INTNAME, KIND,
INTMODE. MAXRECSIZE. BLOCKSIZE, and FILETYPE attributes. Some or all of
the attributes for these files can be changed, using compiler flle
equation, when the compiler is initiated. (For more information, refer
to the "I/0 -Subsystem Reference Manual™ and the "Work Flow Language
(WFL) Reference Manual® for detailed information about file attributes
and compiler file egquation, respectively.) '

OPTIONAL

EXECUTION

588

ALGOL REFERENCE MANUAL

Table 7-1.

Compiler Files

Compiler Input Files

Description INDNAME | Initiation | KIND INTMODE | MAXRECSIZE | BLOCKSIZE
WFL READER Taken from |Taken from

FRIMARY INFUT FILE | CARD CATE bk | o | prysical file | physical file

OPTIONAL SECONDARY WFL and Taken from |Taken from

INPUT FILE TAFE CANDE DIk EBCDIC physical file |physical file

OPTIONAL SOURCE FILES

INFUT BY $ INCLUDE (INCLUDE4 | WFL and DISK ERcprc | Taken from | Taken from

COMPILER CONTROL | files) CANDE physical file |physical file

OPTIONS

OPTIONAL OBJECT FILE WFL ard

INPUT HOST CANDE DISK SINGLE |30 words 270 words
WFL ard Taken from | Taken from

OPTIONAL INFO FILE INFO CANDE DISK SINGLE | pposica) file physical flle
Compiler Output Files
WEL ard

OBJECT CODE FILE CODE CANDE DISK SINGLE | 30 words 270 words

OPTIONAL UPDATED WFL and

I FILE NEWTAPE E DISK EBCDIC | 15 words 420 vords
OPTIONAL WEL ard .
LINE PRINTER LISTDNG | LDNE CANDE PRINTER | EBCDIC |22 words 22 words
ONAL WFL PRINTER

OPTI ERRORFILE EBCDIC {12 words 12 vords

ERROR MESSAGE FILE CANDE REMOTE

OPTIONAL WFL ard

"ROSS REFERENCE FriE | JREFFILE | oo DISK EBCDIC | 510 words | 510 words
WFL ard

OPTIONAL INFO FILE INFO CRTE DISK SINGLE {256 words | 2560 words

589
Compiling Programs

INPUT FILES

The input files used by the'compiler consist of the following:
- CARD, which is the required source code file
- TAPE, which is a source code file that can be merged with CARD

~ INCLUDE files, which are source code files that can be inserted
into CARD or TAPE o :

- HOST, which contains information used for separate compilation
and binding

- INFO, which contains information used for separate compilation

The EXTMODE attribute (the character type of the physical file) of these
input files can be EBCDIC, ASCII, or BCL. The MAXRECSIZE attribute of
these input files must be large enough to. accommodate at least 72
characters. Because the wvalues of the MAXRECSIZE and BLOCKSIZE
attributes for these files are taken from the physical file (when
FILETYPE = 8), these two attributes do not require explicit assignment.

CARD File

The CARD file supplies the primary source input to the compiler and must
be present for each compilation. If the compiler is initiated from the
Work ‘Flow Language (WFL) and compiler file equation is not applied tc
the CARD file, the file is assumed tc be a card reader file. If the
compiler is initiated through CANDE and compiler file equation 1s not
applied to the CARD file, the file is assumed to be a disk file.

TAPE File

The TAPE file supplies secondary source input tc the compiler. Its
presence is optional. If compiler file equation is not applied to the
TAPE file, the file is assumed to be a disk file regardless of whether
the compiler is initiated from WFL or CANDE.

When this file is present and the MERGE option is TRUE. records from the
TAPE file are merged with those of the CARD file on the basis of
sequence numbers. If a record from the CARD file and a record from the
TAPE file have the same sequence number. the record from the CARD file
is compiled and the TAPE record is ignored. For more information on the
MERGE option. see "<merge option>" in this chapter.

590
ALGOL REFERENCE MANUAL

INCLUDE Files

INCLUDE files provide source input to the compiler in addition to that
supplied by the CARD and TAPE files. An INCLUDE file is used only if an
INCLUDE compiler control option appears in the source input being
compiled. For more information on the INCLUDE option, see "<include
option>" in this chapter.

The HOST file provides the compiler with information that allows it to
separately compile and bind to a host program only procedures that are
being changed. This process is called a‘"sepcomp"*and the HOST file 1is
used if the SEPCOMP compiler control option is TRUE. The HOST file is a
special object code file, created by a previous compile when the

MAKEHOST compiler control option was TRUE. The HOST file contains
information about the outer block environment of the program and the
environments of selected procedures. For more information on the

SEPCOMP and MAKEHOST options, see "<sepcomp option>" and "<makehost
option>," respectively, in this chapter.

The INFO file contains the contents of variables and tables used in the
compiler, saved from a previous compile. This file is used for separate
compilation of procedures. It is created by the DUMPINFO compiler
control option and 1is wused as an input file by the LOADINFO compiler
control option. For more information on the DUMPINFO and LOADINFO
options, see "<dumpinfo option>" and "<loadinfo option>," respectively,
in this chapter.

See also
<dumpinfo option> 0 e e e e e .. .61
<include option>. e v e v e v e o . . . 615
<loadinfo option>0 e e e e ... 623
<{makehost option> ¢« v v + 4 i v 4 e e e e e e e e e . . 825
merge option>. L . L o 00 e e e e e e e e e . L. 628

{sepcomp option>. ¢« . e« v e v v <« . . .83

591
Compiling Programs

. OUTPUT FILES

The output files produced by the compiler consist of the following:
- CODE, which is the object code file
- NEWTAPE, which is the updated source code file
- LINE, which is the printer listing of the program
- ERRORFILE, which is the error message file
- XREFFILE, which contains cross-reference information

- INFO, which contains information used for separate compilation
CODE File

The CODE file is produced unconditionally and, contains the executable
object code produced by the compiler. This file ic¢ either stored
permanently, executed and then discarded, or discarded, depending on the
specifications in the WFL or CANDE "COMPILE" statement that initiated
the compiler. and on whether or not syntax errors occurred during the
compilation. For more information on the WFL and CANDE "COMPILE"
statements, refer to the "Work Flow Language (WFL) Reference Manual" and
the "CANDE Reference Manual."

NEWTAPE File

The NEWTAPE file is produced only if the NEW compiler control option is
TRUE. The NEWTAPE file is an updated source file that consists of the
source input from the CARD file, the TAPE file, and (if the INCLNEW
compiler control option is TRUE) the included files that was actually
compiled. 1If compiler file equation is not applied to the NEWTAPE file,
it is a disk file. For more information on the NEW and INCLNEW options,
see "<new option>" and "<inclnew option>," respectively, in this
chapter.

LINE File

The LINE file is produced if either of the compiler control options LIST
or TIME is TRUE. If compiler file equation is not applied to the LINE
file, it is a printer file.

592
ALGOL REFERENCE MANUAL

The contents and format of the LINE file depend on the values of the
following compiler control options:

CODE PAGE
FORMAT SEGS
LISTDELETED SINGLE
LISTINCL STACK
LISTOMITTED TIME
LISTP

The LINE file always contains at least the following information:

1. The title of the source file CARD used as input to the compiler
2. Code segmentation information

3. Error messages and error count, if syntax errors occur

4. Summary information about the compile, such as the number of

lines read and the size of the object code file

For more information about the compiler control options that affect the
LINE file, see "Option Descriptions”™ in this chapter.

ERRORFILE File

The ERRORFILE file is produced only if the ERRLIST compiler control
option 1s TRUE. If compiler file eguation 1is not applied to the
ERRORFILE file, it is a printer file if the compile was initiated
through WFL and a remote file if the compile was initiated through
CANDE. If no syntax errors occur during compilation, no ERRORFILE file
is produced. regardless of the value of the ERRLIST option. .For more
information on the ERRLIST option, see "<errlist option>" in this
chapter.

For every syntax error that occurs during compilation. two records are
written to the ERRORFILE file. The first record is a copy of the source
record that contains the error. The second record contains the sequence
number of that source record (if the source record was sequenced) and
the error message.

5932
Compiling Programs

XREFFILE File

When either of the compiler control options XREF or XREFFILES is TRUE,
the compiler saves raw cross-reference information in the XREFFILE file.
The contents of the file are affected by the compiler control options
XDECS and XREFS. Before this information can be printed or read by
‘SYSTEM/INTERACTIVEXEKEF or the Editor, it must be analyzed by

SYSTEM/XREFANALYZER. The XREFFILE file is given the file name
"XREF/<code file name>", where <code file name> is the file name of the
object - code file ©being produced. For more information about the

cross-reference options, see "Option Descriptions” in this chapter.
INFO File

The INFO file contains the contents of variables and tables used in the
compiler. It is intended ior use in separate compilations of
procedures. This file is created by the DUMPINFO compiler control
option, and it is used as an input file by the LOADINFO compiler control
option.

See also
<errlist option>. ¢ ¢ o . ¢ v 4 ¢ 4 e e e i e e . . . B12
danclnew option>. & . v o .l b o v e e h e e e e e e v e . . 6l4
<new option>. L0 0 0 0w e e e e e e e e e e e ... 629

Option Descriptions + . .+ +« « ¢ « v ¢ e « 4« 4 « < . .« . 603

594 »
ALGOL REFERENCE MANUAL

1.2 SQURCE RECORD FORMAT

The records of a source code file read by the ALGOL compiler can b€ any
size greater than or equal to 72 characters.

Assume that the character positions (called columns) of a source record
are numbered from 1 to n, where n 1is the size of the record in
characters. The compiler divides each source record as follows:

1. The data in columns 1 through 72 is assumed to be ALGOL source
"language as defined in this manual. Any characters that appear
beyond column 72 are not compiled . .as = source language
constructs.

2. Characters in columns 73 through 80 of a record are treated as
a sequence number., which is optional. .

Any information beyond column 80 is ignored.

w

The column in which an ALGOL construct begins is not significant, unless
the source record 1is a compiler control record or the construct
continues beyond column 72. (For more information on compiler control
records, refer to "Compiler Control Records" in this chapter.) The data
in columns 1 through 72 is treated as a continuous stream from record to
record. In other words, no delimiters are implied at the end of a
record, and string literals, identifiers, and all other wvalid ALGOL
constructs can be continued from column 72 of one record.to column 1 of
the succeeding record.

- 595
Compiling Programs

7.3 COMPILER CONTROL OPTIONS
Compiler control options providevvthe programmer with the means to
control many aspects of ‘the compilation of an ALGOL program. These
options can instruct the compiler to use optional input files or to
produce optional output files. In addition to other things, the options
can do all of the following:

- Affect the contents of the printer listing

- Designate the target computer for which éode is to be produced

- Set the default character type

- Cause the compiler to perform separatevcompilation

- Invoke the Binder

- - Invoke debugging features

- ExXclude source records

- Set a limit on the number of syntax errors the program can get

-— Resequence source records

- Check that. sequence numbers are inkordef

- Control code file segmentation

- Flag BCL constructs

596
ALGOL REFERENCE MANUAL

COMPILER CONTROL RECORDS

Compiler control options are included in an ALGOL program by using
special source records called compiler control records.

Syntax

- <compiler control record>

|

| |-<dumpinfo option>-|
I bl N

| |-<loadinfo option>-|

| | |

| [-<include option>--—|

e
|
|
|
|
1
1
|
|
1
|
|
|
|
|
1
|

[
|- SET ---| |-<Boolean option>---| l
! | I ! |
}— POP —-—-| |-<immediate option>-| |
| | | I |
|- RESET —| |-<value option>----- f
g i
I | {mmm e s —— oo P
| I Pl
{- SET ---<Boolean option>-—--—-——--————=———=—==——-———————=--=- I

Compiling Programs
<Boolean option>
A <(Boolean option> can be any of the following:
<$ option> <noBCL option>

<ASCII option> <nobindinfo option>
<autobind option> <nostackarrays option>

<BCL option> <noxreflist option>
<breakpoint option> <oldresize option>
<B7700 option> <omit option>
<check option> <optimize option>
<code option> <(segs option>
<errlist option> <sepcomp option>

<format option> ' <seq option>

<inclnew option> <segerr option>
<inclseqg option> <single option>
<installation option> <stack option>

<intrinsics option>
<library option>
<lineinfo option>
<list option>
<listdeleted option>
<listincl option>
<listomitted option>
<listp option>
<makehost option>
<MCP option>

<merge option>

<new option>
<newsegerr option>

<immediate option>

<(statistics option>
<TADS option>

{time option>

<user option>

<void option>
<voidt option>
{warnsupr option>
<writeafter option>
<Xdecs option>
<xref option>
<xreffiles option>
<Xrefs option>

--——<beginsegment option>----i

|-<breakhost option>-—---|

| -<endsegment option>-—-|

|-<go to option>—---

|-<page option>---—-

598
ALGOL REFERENCE MANUAL

<value option>

——--¢level optiony»---=—=-=-=——----== ‘

I

|-<limit option>-—-—-——=——==—===-=|
I ;
|-<segdescabove option>-——----- i
| :
|-<sequence base option>-—--—-|

| ;
|-<sequence increment option>-|
I i
{-<sharing option>------=------ !
I |
|-<target option>-------—-=--=- I

b
1 i

|-<version option>———————=-——- |

<option expression>

| I
I I
I I I
I I
| I
I |

| |
—-——-<option primary>-——-|

<option primary>

—————————————— <user optiond>---—---------—=--—--
I P I
|- NOT =-| |- TRUE =-—=——=——==---————===—=== |
| b |
|- * ===| |- FALSE —-----———————=-=-------o |

Compiling Programs
<binder command>

-———<bind option’>—-—-—-—-——-—- !
! |
|~<binder option>----- i
| i
|-<external option>--—-|
| |
|-<hcst option>-——---- |
| |
|-<initialize option>-|
' z
|-<purge option>--—--- |
| |
|-<stop option>--——=--- [
‘ 1

|-<use option’——-——=—- :
Semantics

Compiler control records are submitted to the ALGOL compiler as part of
the source input and are distinguished from other constructs by the
dollar sign ($) that must begin every compiler control record.

In a compiler control record, the column in which the initial $ occurs
is significant. Compiler control records with the initial $ in column 1
affect only the current compilation and are not saved 1in the NEWTAPE
file, if any. Compiler control records with the initial $ in column 2
are considered permanent compiler control records and are saved in the
NEWTAPE file, if any. Compiler control records with the initial $ ir
columns 3 through 72, inclusive, are considered both permanent and
conditional, in that they are saved in the NEWTAPE file, if any, and
they are ignored when the OMIT option is TRUE.

A compiler control record can contain tne following:
1. Boolean options

zZ. Value options

3. Immediatevoptioné

4. Special options

5. Binder commands

600
ALGOL REFERENCE MANUAL

A Boolean option is one that 1s either enabled (TRUE) or disabled
(FALSE). When enabled, it causes the compiler to apply an associated
function to all subsequent processing until the option is disabled.

A value option causes the compiler to store a value associated with a
given function.

An immediate option causes the compiler to perform immediately a
function that is not applied to subsequent processing.

The special options (the DUMPINFO option, the LOADINFO option, and the
INCLUDE option), 1like the immediate options, cause the compiler to
perform immediately & function that 1is not applied to subsequent
process.ng. However. they are not grouped with the immediate options
because of special syntactic requirements.

Binder commands are passed directly to the Binder program. For more
information on Binder statements and control options, refer to the
"Binder Reference Manual."

The keywords SET, RESET, and PCP affect the value of Boolean options.
Each Boolean option has an associated "stack" in which the current value
and up to 46 previous values of the option are saved. The management of
this stack of values is described below:

1. If the first keyword to the ieft o©of a Boolean option in a
compiler control record is SET or RESET, the current value of
the option is pushed onto the stack and the option is assigned
a value of TRUE or FALSE. respectively. In other words, the
option is assigned a new value, and the previous value is saved
in the stack.

If the first keyword to the left of a Boolean option in a
compiler control record is POP, the current value of the option
is discarded and the previous value is removed from the top of
the stack and assigned to the option.

N

(o8]

If a Boolean option is not preceded in a compiler control
record by any keyword, then the following actions occur:

a. All resettable standard Boolean options are assigned a
value of FALSE and all previous values in their stacks are
discarded. '

b. The Boolean options appearing in the compiler control

record with no preceding keyword are assigned a value of
TRUE.

601
Compiling Programs

The following is a list of the resettable standard Boolean options that
are affected when a Boolean option appears in a compiler control record
without a preceding keyword:

ASCII : NOXREFLIST

AUTOBIND (if SEPCOMP is FALSE)) OMIT

BCL ' OPTIMIZE

CHECK SEGS

CODE SEQ

FORMAT SEQERR

INCLNEW STACK

INCLSEQ . : STATISTICS

INSTALLATION TIME

INTRINSICS S VOID

LIST VOIDT

LISTDELETED ‘ WARNSUPK

LISTINCL WRITEAFTER

LISTP XREF

MAKEHOST (if the first syntactic - XREFFILES
item has not been seen) XREFS

NEW S

NEWSEQERR

A compiler control record that consists of only an initial $ (a §
followed by all blanks) has no effect unless it is in the CARD file, the
MERGE option is TRUE, and a record is present in the secondary input
file TAPE that has the same sequence number as this compiler control
record. When these three conditions are met, then that TAPE record is
ignored.

In an <option expression>, the Boolean operators have the same
precedence as they do in Boolean expressions; that is, NOT and " are
equivalent and have the highest precedence, followed by AND, OK, 1IMF.
and EQV, in that order. The <option primary> "*" represents the current
value of the Boolean option whcse value is being assigned.' For example.
the compiler control record

$ SET OMIT = * OR DEBUGCODE

causes records from both the CARD and TAPE files to be ignored if either
the OMIT option is TRUE or the user option DEBUGCODE is TRUE.

602
ALGOL REFERENCE MANUAL

Examples

$ SET LIST MERGE NEW RESET SINGLE

This compiler control record assigns a value of TRUE to the LIST
option, MERGE option, and NEW option., and assigns a value of FALSE
to the SINGLE option. The previous value of each of these options
is saved in the corresponding stack.

$ PAGE

This compiler control record invokes the immediate option PAGE,
causing the compiler to skip the printer listing to the top of the
next page (if the LIST option is TRUE). Because the PAGE option is
not a Boolean option, the action described above for Boolean options
not preceded by a keyword does not occur.

$ SET LISTP 135000 POP LIST

This compiler control record assigns a value of TRUE to the LISTP
option, assigns the value 135000 to the sequence base option, and
returns the LIST option to its most recent previous value.

$ LISTP POP MYOPTION

This compiler control record assigns FALSE toc all resettable

- standard Boolean options and discards all previous values in their
stacks, assigns the value TRUE to the LISTP option. and returns the
USER = option MYOPTION to its most recent previous value. The stack
for MYOPTION is unaffected by the purge of the stacks for the
standard resettable Boolean options, because it is not a standard
option.

: ’ E 603
Compiling Programs

The rest of this chapter describes the - individual compiler control
options. ' ‘

" <ASCII option>
-~ ASCII --|
(Type: Boolean, Default value: FALSE)

when TRUE, the ASCII option sets the default character type to ASCII.
For more information, refer to "Default Character Type" in the appendix
"Data Representation." .

If the BCL option is TRUEvand-thevASCII option is assighed the value
TRUE, a syntax error is given.

See also : .
Default Character TYPE. .« + + o o o o« o o o o « o o« « « o« « « . 817

<autobind option>
-~ AUTOBIND --|
(Type: Boolean, Default value: FALSE)

If TRUE, the AUTOBIND option causes the processes of compilation and
program binding to Dbe combined into one job. - During compilation, the
compiler produces a set of instructions to be passed to the Binder
program. In most cases, these Binder instructions are sufficient. If
additional Binder instructions are required, the ALGOL <binder command>
syntax can be used. :

604
ALGOL REFERENCE MANUAL

The AUTOBIND option can be assigned a value at any time during
compilation. However, for the following reasons, it should be assigned
a value only once, at the beginning of compilation:

1. The value of the AUTOBIND option is significant only at the end
of compilation. For example, if =~ four procedures are being
compiled, the first three with the AUTOBIND option FALSE and
the last with the AUTOBIND option TRUE, the Binder attempts to
bind all four procedures to the specified host.

2. When the AUTOBIND option is FALSE, compile-and-go on a separate
procedure 1is not executed. If the AUTOBIND option is TRUE
throughout compilation, execution of the resulting progranm
takes place after binding.

In ALGOL, an outer block or a separate procedure compiled at lexical
(lex) 1level two can serve as a "host" for binding. Separate ALGOL
procedures compiled at lex level three (the default level) or higher can
be bound into a host. Any number of separate procedures, but only one
host, can be compiled in one job. The host must be the last program
unit compiied. If an appropriate host file is compiled with the
AUTOBIND option equal to TRUE, it is assumed to be the host for binding.
(This assumption cannot be overridden by file equation or by use of the
HOST option.) If no eligible host is being compiled, a host must be
specified, either by file equation of the compiler file HOST or by use
of the HOST option.

The object code file of any procedure compilea at 1lex 1level three or
higher with the AUTOBIND option equal to TRUE 1is marked as
nonexecutable. To be executed, the procedure must be bound into a host
file by the Binder program or invoked by a PROCESS or CALL statement.

Object code files of any procedures compiled at 1lex level three or
higher are purged after being bound intc a host by the AUTOBIND option.
To be retained, such a code file must be referenced specifically in
either a BIND option or an EXTERNAL option.

When the batch facility is used. the AUTOBIND option cannot be assigned
a velue. If the TADS option 1is TRUE when the AUTOBIND option is
assigned the value TRUE, then the AUTOBIND option is left equal to FALSE
and a warning message is given.

_ 605
Compiling Programs

<BCL option>
-~ BCL --|
(Type: Boolean, Default value: FALSE)

When TRUE, the BCL option sets the default character type to BCL. For
more information, refer to "Default Character Type" in the appendix
"Data Representation.” ’

If the‘ASCII option is TRUE when the BCL option is assigned the value
TRUE, a syntax error is given.

See also
Default Character TYPE. . .« + « & « o o « + « o o o o« « « « . . 817

NOTE

The BCL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The appearance. of a BCL
construct that may cause the creation of
a BCL descriptor, such as the BCL option,
will cause the program to get a
compile-time warning message.

<beginsegment option>
-- BEGINSEGMENT —- |
(Type: immediate)

The BEGINSEGMENT'option and the ENDSEGMENT option allow the programmer
te. control code file segmentation. = Procedures encountered between &
BEGINSEGMENT option and an ENDSEGMENT option are placed in the same code
segment, which is called a "user segment" because it is user-controlled
instead of compiler-controlled.

606
ALGOL REFERENCE MANUAL

The BEGINSEGMENT option must appear before the declaration of the first
procedure to be included in the user segment. The ENDSEGMENT option
must appear after the last source record of the last procedure to be
included in the user segment.

A procedure cannot be split across user segments. The first procedure
in the user segment must be one for which the compiler would normally
generate a segment; that is, it must have local declarations. External
procedures cannot be declared in'a user segment.

Declarations of global items other than procedures within a user segment
can. result in those items not being initialized. This could cause the
program to get a fault at run time. Declarations of global items other
than procedures cshould be placed outside user segments.

‘User segments can be nested; that is, a BEGINSEGMENT option can appear
in a wuser segment. In this case, an ENDSEGMENT option applies to the
user segment currently being compiled.

If a BEGINSEGMENT option appears before the beginning of a separately
compiled procedure, an ENDSEGMENT option is assumed at the end of the
procedure, even if none appears. The driver procedure created for
procedures compiled at lexical level three is always in a different code
segment.

The segment information in the printer 1listing is modified for user
segments. User segments are numbered consecutively in. a program,
beginning with 1; that is, the first user segment is USERSEGMENTl, the
second user segment 1is USERSEGMENTZ2, and so forth. The code segment
number of each user segment is printed at its beginning; the 1length of
each wuser segment 1is printed at its end. Procedures or blocks whose
segmentation is overridden by user segmentation are printed out as being
"in" that user segment. '

Forward procedure declarations are not affected by user segmentation.

If more than one BEGINSEGMENT option appears before a procedure, the
warning message "EXTRA BEGINSEGMENT IGNORED" is printed. If an
ENDSEGMENT option appears and there has been no BEGINSEGMENT option, the
warning message "EXTRA ENDSEGMENT IGNORED"™ is printed.

The BEGINSEGMENT option and ENDSEGMENT option allow the programmer to
reduce presence-bit overhead by grouping frequently called procedures
and infrequently called procedures in separate segments.

607
Compiling Programs
{bind option>

-~ BIND —-<text>--|

See also
CEEXED e o o o v o o 4 4 v e e e e e s e e e e e e e e e s e e 6l

(Type: Binder command)

During autobinding. the BIND option is passed directly to the Binder
program for analysis. - The format and function of this option are the
same as those of the Binder BIND statement and are described in the
"Binder Reference Manual."

When the batch facility is used, the BIND option cannot be used.

<binder option>
~— BINDER —-<text>--|

See also
CEEXED e o« o o o v o o e e e e e e e e e e e e e e e e e e e 61

(Type: Binder command)

During autobinding, the <text> in the BINDER option is passed directly
to the - Binder program for analysis. The format and function of <text>
are the same as those of the Binder control options and are described in
the "Binder Reference Manual."

608
ALGOL REFERENCE MANUAL

<breakhost option>

~= BREAKHOST —==—=——om— e |

|- (--<input file>--) —|

<input file>

-—<file identifier>--—|

See also
<file identifier> i v e v v e e e e 85

(Type: immediate)

To create the necessary environment for interactive debugging with the
breakpoint intrinsic., the BREAKHOST option must appear in the outer
block of any program that uses the BREAKPOINT option or the BREAKPOINT
statement. This option must appear after the first "BEGIN" of a program
but before the first statement of the outer block.

A part of the environment created by the BREAKHOST option is a remote
file. If a program to be debugged has a remote input file. the name of
that file must be specified as the <input file> to allow the breakpoint
intrinsic to use that remote file, because only one remote input file
can be open for each station.

Another part of the environment created wher the BREAKHOST option 1is
TRUE 1is a 32,768-element real array. If a program that uses the
BREAKHOST option is run with its task attribute OPTION equal to LONG,
the run-time error

DIMENSION SIZE ERROR 1=32768
is given if the overlay row size of the system cannot accommodate an
array of that size.

The BREAKHOST option should not be used in a library program.

For more information about the breakpoint feature, see "BREAKPOINT
Statement"” and the description of the BREAKPOINT option is this section.

609
Compiling Programs

NOTE

The BREAKHOST option, the BREAKPOINT
option, and the BREAKPOINT statement are
being deimplemented on the Mark 3.7
release. For a debugging feature, refer
to the TADS option in this section.

<breakpoint option>
—-- BREAKPOINT --|
(Type: Boolean, Default value: FALSE)

While the BREAKPOINT option is TRUE, the code emitted for each ALGOL
statement is followed by a call on the breakpoint intrinsic. The
execution of the program‘stops (breaks) after each statement in this
range f(and at any explicit call of the breakpoint intrinsic) to allow
debugging through the use of breakpoint commands.

For more information about the breakpoint feature, see "BREAKPOINT
Statement"” and the description of the BREAKHOST option in this section.

NOTE

The EBREAKHOST option, the BREAKPOINT
optior,, and the BREAKPOINT statement are
being deimplemented on the Mark 3.7
release. For a debugging feature, refer
to the TADS option.

<B7700 option>
-- B770C —-|
(Type: Boolean, Default value: TRUE)

When TRUE. the B7700 option causes optimized code to be generated for
the B 7000 Series systems. The B7700 option cannot be assigned a value
if the TARGET option has been used or 1f the computer on which the
program is run is an A Series system.

610 .
ALGOL REFERENCE MANUAL

NOTE

The B7700 option will be deimplemented on
the Mark 3.7 release. For information on
code optimization for a particular
computer. refer to the TARGET option in
this section.

<check option>
-- CHECK --|
(Type: Boolean, Default value: FALSE)

When TRUE., the CHECK option causes an error to be given if the sequence
number on a record of the TAPE or NEWTAPE file is not strictly greater
than the sequence number of the preceding record. 1If a sequence error
occurs in the TAPE file, the word "SEQERR"” followed by the sequence
number of the previous source record is printed at the right side of the
source record on the printer listing. 1If a sequence error occurs in the
NEWTAPE file, the message "NEWTAPE SEQ ERROR" followed by the sequence
number of the previous source record is printed on the listing, and the
message "NEWTAPE SEQ ERR" is displayed on the Operator Display Terminal
(ODT). In the ERRORFILE, the sequence number of the record that caused
the sequence error and the sequence number of the previous source record
appear on the line following the source record.

If the NEW option is FALSE and resequencing is occurring. the old
sequence number is the sequence number that is checked.

<code option>
-— CODE --|
(Type: Boolean, Default value: FALSE)

If both the LIST option and the CODE option are TRUE, the printer
listing includes the compiler-generated object code. If the LIST option
is TRUE but the CODE option is FALSE, the printer listing does 'not
include the object code. The value of the CODE option is ignored if the
LIST option is FALSE.

3 _ 611
Compiling Programs

<dumpinfo option>

—— DUMPINFQ —===—===—=————————mm—em—— = |

|-¢<file specification>-|
<file specification>
———=<titled-——=——=—m—em—m e |
o I
|-<internal file name>-|

! O

|-<name and title>----- |

<title>

A quoted string containing a file title.

<internal file name>

.. -=<identifier>--|

<name and title>

—-—<internal file name>-- = ——<titLe>——|
(Type: special)

The DUMPINFO option is described with the LOADINFO option in this
section. :

<endsegment option>
-- ENDSEGMENT -~ |
(Type: immediate)

The ENDSEGMENT option is described with the BEGINSEGMENT option in this
section.

612
ALGOL REFERENCE MANUAL

<errlist option>

—-— ERRLIST --|

(Type: Boolean, Default value: TRUE for CANDE-originated compiles,
FALSE otherwise)

When TRUE, the ERRLIST option causes syntax error information to be
written to the ERRORFILE file. When a syntax error is detected in the
source input, the source record that contains the error, an error
message, and the syntactical item where the error occurred are written
on two lines in the ERRORFILE file. This option is provided primarily
for use when the compiler is invoked at a terminal by CANDE, but it can
be used regardless of the manner in which the compiler is invoked. When
the compiler 1is invoked from CANDE, the default value of the ERRLIST
option is TRUE, and the ERRORFILE file is automatically equated to the
remote device from which the compiler was invoked.

<external option>

~- EXTERNAL --<text>--|

See also)
R o= S -

(Type: Binder command)

During autobinding, the EXTERNAL option is passed directly to the Binder
program for analysis. The format and function of this option are the
same as those of the Binder EXTERNAL statement and are described in the
"Binder Reference Manual."

When the batch facility is used. the EXTERNAL option cannot be used.

613
Compiling Programs

«format option>
—-— FORMAT --
(Type: Boolean, Default value: FALSE)

1f both the LIST option and the FORMAT option are TRUE, then to aid
readability of the printer 1listing, several blank lines are inserted
after each procedure. If the LIST option is TRUE but the FORMAT option
is FALSE, no blank lines are inserted after procedures. If the LIST
option is FALSE, the value of the FORMAT option is. ignored.

<go to option>

-- GO -———————= <sequence number>—-|

————/8\-<digit>————|
(Type: immediate)

The GO TO option is used to reposition the secondary source input file
TAPE. This option ig intended for use with disk files and does not work
on tape files.

The <sequence number> construct specifies a sequence number appearing on
a record. in the TAPE file. The GO TO option causes the TAPE file to be
repositioned so that the next record from this file used by the compiler
ie¢ the first record with a sequence number greater than or egual to the
specified seguence number. The TAPE file must be properly sequenced in
ascending order; that is, the sequence number on each record in the file
must be strictly greater than the sequence number on the preceding
record. The specified sequence number can be greater than or less than
the sequence number of the record on which the option appears.

614
ALGOL REFERENCE MANUAL

This option cannot appear within a DEFINE declaration or in included
source input, and cannot be used when the batch facility is used.

<host option>

-— HOST —--<text>--|

See also
E o1 = o

(Type: Binder command)

During autobinding, the HOST option is passed directly to the Binder
program for analysis. The format and function of this option are the
same as those of the Binder HOST statement and are described in the
"Binder Reference Manual."

When the batch facility if used, the HOST option cannot be used.

<inclnew option>

—— INCLNEW —-|

(Type: Boolean, Default value: FALSE)

If both the NEW option and the INCLNEW option are TRUE, included source
input is written to the NEWTAPE file. If the NEW option is TRUE but the
INCLNEW option is FALSE, included source input is not written to the
NEWTAPE file. If the NEW option is FALSE. the value of the INCLNEW
option is ignored.

When the batch facility is used, the INCLNEW option cannot be assigned a
value.

615
Compiling Programs
<inclseq option>
—~- INCLSEQ --|

(Type: Boolean, Default value: - FALSE)

1f both the SEQ option and the INCLSEQ option are TRUE, included source
input is resequenced. If the SEQ option is TRUE but the INCLSEQ option
is FALSE. included source input is not resequenced. If the SEQ option
is FALSE, the value of the INCLSEQ option is ignored.

When the batch facility is used, the INCLSEQ option cannot be assigned a
value.

<include option>

—= INCLUDE === mm = o e e — >

|-<file specification>-| |-<¢start specification>-|

f l

|~<stop specification>-|

<start specification>

|-<sequence number>-|

<stop specification’

-~ - —=<sequence number>—-|

See alsc
<file specification>.« « + « « « o e e e e e e e e e e 611
(SEQUEeNCe NUIMDEI> . « « « o v o & o o+« o o o e e e . s e . e 613

(Type: special)

616
ALGOL REFERENCE MANUAL

The INCLUDE option causes the compiler to accept source language input
from files other than the CARD and TAPE files. The included records are
compiled in place of the record on which the INCLUDE option appears.
The included records can themselves contain INCLUDE options; in this
way, included source input can be nested up to five levels deep.

The <file specification> construct specifies the file from which source
input is to be included. If the <title> form is used, the quoted string
specifies the TITLE attribute of the file. The <internal file name>
form provides an internal file name that can be associated with an
actual file through file equation. The <name and title> form provides
both an internal file name available for file equation and a title to be
used if the internal file name is not file-equated.

If the <file specification> construct is not used, the same file as that
specified in the previous INCLUDE option at the same level of nesting is
used. Therefore, the first INCLUDE option at any of the five possible
levels of nesting must contain the <file specification> construct.

The <start specification> construct specifies the record of the included
file at which inclusion is to start. If the <sequence number> form is
specified, inclusion begins with the first record with a sequence number
greater than or equal to the specified segquence number. If the
asterisk (*) form of <start specification> is used, inclusion begins at
the point where it left off the last time inclusion took place from this
file at the same level of nesting. If the <start specification>
construct is not wused, inclusion begins with the first record of the
file.

The <stop specification> construct specifies the record after which
inclusion 1is to stop. If the <stop specification> construct is not
used, inclusion ends after the last record of the file.

Source files suitable for use by the INCLUDE option can be produced by
the compiler by using the NEW option.

Files declared globally in Work Filow Language (WFL) jobs should not be
used as INCLUDE files.

The INCLUDE option must be the last option appearing on a compiler
control record, and it cannot be used when the programmer is using the
batch facility.

617
Compiling Programs

Examples

r

$ INCLUDE FILE8 00001000 - 092000000

This example instructs the compiler to accept as input all records
from the file indicated by the internal name FILE8, with a sequence .
number greater than or equal to 00001000 and less than or equal to
09000000.

it

$ INCLUDE *

This example instructs the compiler to accept as input a portion of
the file accessed by the last INCLUDE option at this level of
nesting. The records to be included are all records that follow the
iast record included by that preceding INCLUDE option. If, for
example, the preceding INCLUDE option was the one in the first
example above, the file that is accessed is FILE8, and the records
that are included are all the records with & sequence number greater
than 09000000.

$ INCLUDE "SOURCE/XYZ." - 900
This example instructs the compiler to accept as input a portion of
the file with the title "SOURCE/XYZ". The included records are all
records of the file with a sequence number less than- - or equal to
00000900.

$ INCLUDE INCL = "SYMBOL/ALGOL/INCLUDELl."
This example instructs the compiler to accept as input all records
of either the file to which the internal name "INCL" was

file—equated or, if the. INCL file was not file-equated, the file
"SYMBOL/ALGOL/INCLUDEl",

<initialize option>
-- INITIALIZE --<text>--|

See also
<text>..............,..v............61

618
ALGOL REFERENCE MANUAL

(Type: Binder command)

During autobinding, the INITIALIZE option 1is = passed directly to the
Binder program for analysis. The format and function of this option are
the same as those of the Binder INITIALIZE statement and are described
in the "Binder Reference Manual.

When the batch facility is used, the INITIALIZE option cannot be used.

<installation option>

== INSTALLATION ~——===m—mmmmmmmmmmmmmmommo |

|-<installation number list>-|

<installation number list>

|- - ——<installation number>-|

<installation number>

——-<unsigned integer>--|

(Type: Boolean, Default value: FALSE)

When TRUE, the INSTALLATION option causes the compiler to recognize one
Oor more groups of installation intrinsics so that they can be referenced
in an ALGOL program. This option must be assigned a value befcre the
first syntactic item in a program. Assigning a value to this option at
any other time has no effect.

An installation number must be an unsigned integer between 1 and 2047,
inclusive. Each installation number in an installation number list must
be strictly greater than the preceding installation number in that list.
Installation numbers larger than 2047 are treated as if they were equal
to 2047.

. . 619
Compiling Programs

An INSTALLATION'éptioh-with no installation number list is equivalent to
one with an installation number list of 100 through 2047.

" When the batch facility is - used, the INSTALLATION option cannot be
assigned a value. o . '

¢<intrinsics option»

—-- INTRINSICS —-|

{Type: Boolean, Default'value: FALSE)

when TRUE, the INTRINSICS option causes separately ~compiled procedures
to be compiled at lexical (lex) level two and allows a <global part>
construct to appear before the procedures. These procedures. can then be
used as ‘installation intrinsics. A <global part> is not normally
allowed when compiling separate procedures at lex level two.

The title of the object code file generated for a ‘procedure when the
INTRINSICS option is TRUE is the same as if the procedure‘Were compiled
at lex level three. Thus, the separate procedures being compiled can be
bound into the intrinsics. when the Binder program is used to bind
procedures into the intrinsics, the INTRINSICS option must be assigned
the value TRUE before the first source statement.

When the batch facility is used. the INTRINSICS option cannot be
assigned a value.

<level option>
-- LEVEL --<outer level>--—|

<outer level>

--<unsigned integer>--|

(Type: value, Default value: 2 for programs, 3 for separately compiled
procedures)

620
ALGOL REFERENCE MANUAL

The LEVEL option allows the programmer to override the lexical (lex)
levels assigned by the compiler. This feature is needed when compiling
separate procedures for binding to a host program. The <outer ' level>
construct specifies the lex level at which compilation is to begin.

The LEVEL option must appear before the first syntactic item in a
program, and it cannot be used when the batch facility is used.

<library option>
—— LIBRARY —-|

(Type: Boolean. Default value: TRUE for CANDE-originated compiles and
when the SEPCOMP option is TRUE, FALSE otherwise)

When compiling multiple separate procedures (such as intrinsics),
assigning TRUE to the LIBRARY option improves the efficiency of the
binding. When TRUE, this option causes all object code from this
compilation to be put in one file, which is marked as a multiprocedure
code file. If the LIBRARY option is FALSE, each separate procedure
produces its own object code file.

The LIBRARY option must appear before the first syntactic item in a
program, and it cannot be assigned a value when the programmer is using
the batch facility.

The LIBRARY option is unrelated to the library facility described in the
chapter "Interface to the Library Facility."

<limit option>
~— LIMIT --<error limit>--|

<error limit>

——<unsigned integer>--|

_ 621
Compiling Programs

(Type: value, Default value: 10 for CANDE-originated compiles, 150
otherwise)

The LIMIT option allows the programmer to specify the number of
compile-time errors that can occur before the compilation is terminated
because of excessive errors.)

A limit of 0 indicates that the program is not to be terminated for
excessive -errors. If, when thée LIMIT option is assigned a value, the
number of syntax errors-already equals or exceeds that value, then the
program is immediately terminated.

<lineinfo option>
—— LINEINFO --

(Type: Boolean, Default value: TRUE. for CANDE-originated compiles,
FALSE otherwise)

When TRUE, the LINEINFO option causes. the compiler to associate sequence
number information - with the object code. This information is then
displayed in the evént of a run-time error. A larger code file is
generated if the LINEINFO option is TRUE than if it is FALSE.

<list option>
-- LIST --|

(Type: Boolean, Default value: PALSE for CANDE-originated compiles,
TRUE otherwise) ’

When TRUE. the LIST option causes scurce input from the CARD and TAPE
files and other information to be printed on the compiler LINE file.

When a value is assigned to the LIST option, the same value is assigned
to the SEGS option.

622
ALGOL REFERENCE MANUAL

<listdeleted option>
-- LISTDELETED --|
(Type: Boolean, Default value: FALSE)

When both the LIST option and the LISTDELETED option are TRUE, the
printer listing includes records from the secondary input file TAPE that
are replaced, voided, or deleted during the compilation. The word
"REPLACED" appears to the right of the source records replaced by a
record from the primary input file, CARD; the word "VOIDT" appears if
the record is voided from the TAPE file by the VOIDT option; and the
word "DELETED" appears if the record is deleted by a compiler control
record that consists of a dollar sign ($) fcllowed by all blanks.

If the LIST option is TRUE but the LISTDELETED option is FALSE, records
from the TAPE file that are replaced, voided, or deleted are not written
to the printer listing. If the LIST option is FALSE, the value of the
LISTDELETED option is ignored. '

<listincl option>
—- LISTINCL —-!
(Type: Boolean, Default value: FALSE)

When both the LIST option and the LISTINCL option are TRUE, source
records. included by using the INCLUDE option are written to the printer
listing. If the LIST option is TRUE but the LISTINCL option is FALSE,
the included records are not written to the printer listing. If the
LIST option is FALSE, the value of the LISTINCL option 1is ignored.

When the batch facility is used, the LISTINCL option cannot be used.

623
Compiling Programs

<listomitted option>
-—- LISTOMITTED ~~|
-(Type: Boolean, Default value: TRUE)

When both the LIST option and the LISTOMITTED option are TRUE, source
records omitted by the OMIT option are written to the printer listing.
In the listing, the word "OMIT" appears next to the sequence number of
each omitted record. If the LIST option is TRUE but the LISTOMITTED
option is FALSE, omitted records are not written to the printer listing.
If the LIST option is FALSE, the value of the LISTOMITTED option is
igrnored.

<listp option>
-— LISTP —-|
(Type: Boolean. Default value: FALSE)

When TRUE, the LISTP option causes records from the primary source input
file, CARD, to be written to the printer listing. Because these records
are also written when the LIST option is TRUE, the LISTP option is
effective only when the LIST option is FALSE.

<loadinfo option>

—— LOADINFO ———-—— == e |
. I
|-<file specification>-|
See alsc
<file specification>. ¢ . . v v v v e v v v . . . o611

(Type: special)

The DUMPINFO option and the LOADINFO option make it possible for the
contents of certain simple variables and arrays of the compiler to be
saved in a disk file and subsequently reloaded for separate compilation.

624 :
ALGOL REFERENCE MANUAL

The <file specification> construct specifies the file to be created by
the DUMPINFO option or loaded by the LOADINFO option. If the <title>
form is used, the quoted string specifies the TITLE attribute of the
file. The <internal file name> form provides an internal file name that
can be associated with an actual file by file equation. The <name and
title> form provides both an internal file name available for-file
equation and a title to be used if the internal file name is not
file-equated. I1f the <«file specification> construct is not used, the
default INFO file or the file that is file-equated to the INFO file is
used. '

These options are used in conjunction with separate compilation of
procedures. Typically, all global declarations are ccmpiled, and then
the DUMPINFO option is used to dump information about the global
declarations from the compiler to the file INFO. When the separate
procedures are to be compiled, the file INFO, containing information
about all of the global declarations, is read in by the LOADINFO option
before the procedures are compiled. For example, consider the following
programs:

Program 1

BEGIN

<global declarations>
$ DUMPINFO
END.

Program 2

%%% LOAD THE GLOBALS
[
$ LOADINFO
<additional global declarations>
]
<separate PROCEDURE declarations>

Each time a loadinfo operation is done. the old information in the

affected variables and tables of the compiler is discarded. Thus,

compiling different portions of the same program. even if they are in:
different environments, can be done in the same compilation.

The loadinfo operation changes all items in th= INFO file to globals and
all procedures already compiled to forward PROCEDURE declarations.
Thus, an INFO file created by & DUMPINFO operation that is done
immediately before a PROCEDURE declaration in a normal compilation is
suitable for loading global declarations when that procedure 1is to be
compiled separately.

. 625
- Compiling Programs

When two or more items with the same identifier are declared at
different lexical (lex) levels, a separate compilation can access only
the last declaration seen before the loadinfo operation occurred.

If the release level of the compiler that performs the dumpinfo
operation to create an INFO file and the release level of the compiler
that performs the loadinfo operation on that file are not the same, a
syntax error 1is given, and the compilation is discontinued. If a
loadinfo operation is attempted and the file specified as the INFO file
is not in fact an INFO file, or the INFO file was created by a compiler
for a different language, a syntax error is given and the compilation is
discontinued.

The DUMPINFO option and LOADINFO. option must be the last options
appearing on a compiler control record, and they cannot be used when
using the batch facility.

<makehost option>

—-— MAKEHOST -- (---<environment>---) —-|

<environment>

--—-<procedure identifier>----|

See also
<procedure identifier>. .165

(Type: Boolean, Default value: FALSE)

Given only the source code and object code o¢f a host program to be
changed and the patches to change it, the sepcomp facility of the
compiler can separately compile and bind to the host program only the
procedures that are being changed. This method, which is particularly
useful for large programs, requires that information not normally
collected and saved during the compilation of the host program be saved.
When TRUE, the MAKEHOST option causes this information to be saved when
compiling a program or a procedure at lexical (lex) level two.

626
ALGOL REFERENCE MANUAL

If the MAKEHOST option is TRUE, information is saved in the object code’
file of the program about the symbolic file used or created by theé
compilation, the sequence ranges of all procedures declared in the outer
block of the program, and the global declarations. The saving of the
outer block environment enables lex-level-three procedures to = be
compiled separately within this environment.

The information saved about the items declared in an environment
describes all of the items in that environment. There is no information
about the relative order of the declarations and therefore which items
are visible from which procedures. Thus, a sepcomp of a patch is not
necessarily equivalent to a full compile of that patch. For example,
given the following host program:

$ SET MAKEHOST
BEGIN
REAL X:
PROCEDURE P;
BEGIN
REAL R;
R := X + 5;
END P:
REAL ARRAY A[0:4];:
P;
END.

If a patéh replaces the statement
R := X + 5;

by the statement
R := X + A[2];

a full compile with the patch fails with a syntax error on the
assignment to R, because array A has not yet been declared. A sepcomp
of the patch, however, 1is successful, because the environment
~information saved for the outer block describes A as well as X and P.

Additional environments can be saved. if desired, so that procedures at
lex levels greater than three can be replaced. The list of environments
can extend across several source records. Environments must be fully
qualified through the outermost level of PROCEDURE declaration, except
that for a program that is a procedure, the name of that procedure must
not appear. A procedure that is specified as an environment must
contain a local declaration. If a specified environment does not
contain a local declaration or if it is never found during the course of
compilation, the compiler gives a syntax error containing .the name of
the environment. Environments can appear in any order, without regard
to the actual block structure of the host program. '

. 627
Compiling Programs

Source records that are inserted into a program using the INCLUDE option
are not ‘included in the environment information saved by the MAKEROST
option. This information is not saved because sequence humbers on
included records can duplicate sequence numbérs occurring in the rest of
the program. »

The information necessary to make a program into a host program includes
the information saved for the Binder program when the NOBINDINFO option
is FALSE; therefore, an error 'is given if both the NOBINDINFO option and
‘the MAKEHOST option are TRUE.

When making a host program, the NEW option should be TRUE if any changes
are made to the host program. The default source file associated with
the host program 3is the NEWTAPE file, if one has been created;
otherwise, it is the TAPE file. '

- The MAKEHOST option must appear before the first syntactic item in a
program, and it cannot be assigned a value when the programmer is using
the batch facility.

Examples

$ SET MAKEHOST
BEGIN
ARRAY A[0:9];
PROCEDURE Pl;
BEGIN
BOOLEAN B;
PROCEDURE INNER;:
BEGIN
REAL R;
IF B THEN
R := * + A[2];
"END INNER;
END PI1;
PROCEDURE P2;
BEGIN

DY

END P2Z;
END.

When the above program is compiled, information about the global
environment is saved in the object code file for the program. If a
patch is made to the body of procedure INNER, then during the
sepcomp process, all of procedure Pl is recompiled and bound to the

628
ALGOL REFERENCE MANUAL

host program. If. however, tne MAKEHOST option was

$ SET MAKEHOST (P1)
then the local environment of Pl is also saved in the object code
file of the program. A sepcomp of a patch to the body of procedure

INNER would cause only INNER to be recompiled and bound to the host
prograrm.

$ SET MAKEHOST
$ SET MAKEHOST (PASSONE, PASSTWO. WRAPUP OF PASSTWO)

In this example, the second compiler control option overrides the

first. saving the -environment of procedures PASSONE, PASSTWO, and
WRAPUP OF PASSTWO in addition to the global environment.

<MCP option>
-- MCP --|
(Type: Boolean, Default value: FALSE)

When TRUE. the MCP option causes all value arrays, translate tables,
truth sets. and constant pools to be allocated at lexical (lex) level
two.

The MCP option cannot be assigned a value after the appearance of the
first syntactical item in a program or when the proegrammer is using the
batch facility.

<merge option>
—- MERGE --|
(Type: Boolean, Default value: FALSE)

When TRUE. the MERGE option causes the primary source input file, CARD,
to be merged with a secondary source input file. TAPE. to form the input
to the compiler. If matching sequence numbers occur, the record f{from
CARD overrides tae record from TAPE. If the MERGE option is FALSE, only
primary .source input is used, and the TAPE file is ignored.

629
. Compiling Programs

The total input to the compiler when the MERGE option is TRUE consists
of all records from the CARD file, all records from the TAPE file that
do not have sequence numbers identical to those on records in the CARD
file, and all records inserted by INCLUDE options. Records in the CARD
file also override INCLUDE options in the TAPE file if matching sequence
numbers are encountered. '

When the batch facility is used. the MERGE option cannot be assigned a
value.. ‘ ’

<new option>
-— NEW -—|
(Type: Boolean, Default value: FALSE)

When the NEW option is TRUE, the source input tc the compiler from the
CARD file is written to the updated source output file NEWTAPE. If the
MERGE option is alsc TRUE, then the merged source input from the CARD
~and TAPE files is written to NEWTAPE. The format of the file written to
NEWTAPE is such that it can later be used as input to the compiler.

Records included in the source input by the INCLUDE option are written
to the NEWTAPE file only if the INCLNEW option is also TRUE. Compiler
control records are written to the NEWTAPE file only if the initial
dollar sign ($) does not appear in column 1.

The NEWTAPE file is created whether or not syntax errors occur in the
source input.

If the MAKEHOST option is TRUE and the first syntactic item has Dbeen
compiled, any attempt to assign a value to the NEW option results in a
syntax error. ‘

When the batch facility is used, the NEW option cannot be assigned a
value.

630
ALGOL REFERENCE MANUAL

<newsegerr -option>

-— NEWSEQERR —-|

(Type: Boolean, Default value: FALSE)

When TRUE, the NEWSEQERR option causes an error to be given 1if the
sequence - number on a record of the NEWTAPE file is not strictly greater
than the sequence number of the preceding record. If seguence errors
occur and the NEWSEQERR option is TRUE, the NEWTAPE file is not locked,
the message "NEWTAPE NOT LOCKED" is displayed on the Operator Display
Terminal (ODT), and the message "NEWTAPE NOT LOCKED <number of errors>
NEWTAPE SEQUENCE ERRORS" is printed on the printer listing. The
NEWSEQERR option is effective even if the CHECK option is FALSE.

Wwhen the batch facility is used, the NEWSEQERR option cannot be assigned
a value.

<noBCL option>

-- NOBCL --|

(Type: Boolean. Default value: FALSE)

when TRUE. the NOBCL option causes a syntaX €rror to be given whenever a
BCL construct that may lead to the creation of a BCL descriptor is
encountered. This option is intended tc aid in the elimination of BCL
constructs from a program so that the program can run on non-BCL
systems.

631
Compiling Programs

<nobindinfo option>
~—-NOBINDINFO --|
(Type: Boolean, Default value: FALSE)

when TRUE, the NOBINDINFO option prevents information needed by the
Binder preogram from being written to the object code file. The
resulting object code file can be executed, but it cannot be used as an
input file to the Binder program. Object code files that do not contain
binding information (bindinfo) are smaller than object code files that
contain bindinfoc. '

Object code files that contain ‘the timing code provided by the

STATISTICS option cannot be bound. Thus, the NOBINDINFO option is
assigned the value TRUE if the STATISTICS option is assigned the value
TRUE. If the STATISTICS option is TRUE when the NOBINDINFO option is

assigned the value FALSE, a syntax error is given.

If the MAKEHOST option is TRUE when the NOBINDINFO option 1is assigned
the value TRUE, a syntax error is given.

Wwhen the batch facility 1is used. the NOBINDINFO option cannot be
assigned a value.

<nostackarrays option>
—— NOSTACKARRAYS --—|
(Type: Boolean, Default value: FALSE)

When TRUE, the NOSTACKARRAYS option prevents arrays from being allocated
within the stack. '

when the NOSTACKARRAYS option is FALSE. the data from certain arrays 1is
allocated within the stack. Such arrays are referred to as "in-stack
arrays." and can be accessed slightly faster than an array whose data
area is allocated in memory.

632
ALGOL REFERENCE MANUAL

<noxreflist option>
—— NOXREFLIST --|
(Type: Boolean, Default value: FALSE)

When TRUE, the NOXREFLIST option prevents the SYSTEM/XREFANALYZER
program from being initiated by the compiler when cross-reference
information is being saved (that is, when either the XREF option or the
XREFFILES option 1is TRUE). 1Instead, the file "XREF/<code file name>",
where <code file name> is the name of the object code file generated by
the compiler, remains on disk. SYSTEM/XREFANALYZER can be run later
using the file "XREF/<code file name>" as input. The NOXREFLIST option
has no effect 1if both the XREF option and the XREFFILES option are
FALSE.

For more information on cross-referencing, refer to the description of
the XREF option in this section.

<oldresize option>
~—- OLDRESIZE —-|
(Type: Boolean, Default value: FALSE)

The OLDRESIZE option. which affected the semantics of the RESIZE
statement, no longer has any effect. The pre-Mark 3.3 semantics are no
longer available for newly compiled programs. Any compiler control
record that assigns the wvalue TRUE tc the OLDRESIZE option causes a
syntax error to be given. Any other appearance of the OLDRESIZE option
in a compiler control record causes a warning message to be given.

Compiling Programs

<omit option>
-~ OMIT --

(Type: - Boolean, Default value: FALSE)

wWhen TRUE, the OMIT option causes records from the CARD file (and, if
the MERGE option is TRUE, from the TAPE file) to be ignored (not
compiled). If both the LIST option and the LISTOMITTED option are TRUE,
ther in the printer 1listing, the word "OMIT" appears next to the
sequence number of each omitted record. When the OMIT option 1is TRUE,
compiler control reécords with the 1initial dollar sign ($) in either
column 1 or column 2 are recognized, but compiler control records with
the $ in columns 3 through 72, inclusive, are ignored.

<optimize option>
-— OPTIMIZE --|
(Type: Boolean. Default value: FALSE)

When TRUE, the OPTIMIZE option causes additional analysis of Boolean
expressions to be performed, and object code is generated to permit
early termination of the expression evaluation. Any portion of the
Boolean expression that could cause side effects is always evaluated.

<page option>
-- PAGE --°
(Type: immediate)

When the LIST option is TRUE and the PAGE option appears, the printer
listing is spaced to the top of the next page.

634
ALGOL REFERENCE MANUAL

<purge option>

—— PURGE --<text>--—|

See also
CEOXLED e v v o s e 61

(Type: Binder command)

During autobinding, the PURGE option is passed directly to the Binder
program for analysis. The format and function of this option are the
same as those of the Binder PURGE statement and are described in the
"Binder Reference Manual."

When the batch facility is used, the PURGE option cannot be used.

<segdescabove option>

-= SEGDESCABOVE ——-==—==—-=—--—-==--—-=--- %
| l
|-<unsigned integer>-|

(Type: value, Default value: none)

The SEGDESCABOVE option is used when compiling large programs that may
have difficulty in addressing the segment dictionary.

When a host program is compiled, this option causes all code segment
descriptors to be allocated starting at the word in the D1 stack
specified by the unsigned integer. The unsigned integer must be in the

range 4 to 4095, inclusive. If the option is used after the first
syntactic item has been compiled, the given value is added to the
current size of the Dl stack. The Binder program preserves the
segdescabove specification. Care should be taken when wusing this

option, because unused Dl stack locations below the code segment
descriptors occupy "save" memory when the program is running.

This option is intended to be used when compiling host files and 1is
ignored when separate procedures are compiled. When the batch facility
is used. the SEGDESCABOVE option cannot be used.

635
Compiling Programs

<segs option>
-- SEGS --|

(Type: Boolean, Default value: FALSE for CANDE-originated compiles,
TRUE otherwise)

If both the LIST option and the - SEGS option are TRUE, the printer
listing will contain beginning and ending segment messages. Assigning a
value to the LIST option assigns the same wvalue to the SEGS option.
However, to suppress the segment messages, the SEGS option can be
assigned the value FALSE even though the LIST option is TRUE. When the
value of the LIST option 1is FALSE, the value of the SEGS option is
ignored.

<sepcomp option>

—— SEPCOMP --=———m—mm—e e |
[l
|-<title>—|
See also
Ctitled o v v v e .oB1

(Type: Boolean, Default value: FALSE)

When TRUE, the SEPCOMP option invokes the automatic separate compilation
and binding facility. called the "sepcomp facility."

The title of the host program can be specified weither by using the
<title> syntax of the SEPCOMP option or by file—equating the HOST file
of the compiler. The <title> specification takes precedence over file
“equation. The title of the default source file is stored in the host
program, but this title can be overridden by file equation of the
compiler file TAPE.

Compiler control records with blank seguence numbers are accepted
following the compiler control reccrd that assigns TRUE to the SEPCOMP
option and before the first "patch record." A patch record is a source
record with ~a nonblank sequence number: at least one patch record is
required in a sepcomp. Seguence number errors among patch records are
not allowed. The SEPCOMP option examines the patch records, decides

636
ALGOL REFERENCE MANUAL':

which procedures of the host program must be recompiled, and generates
Binder input for ©binding these procedures to the host progran. The
SEPCOMP option always tries to compile procedures at the highest
possible lexical (lex) level. Therefore, the number of extra
environments specified when making a host program affects the choices
available to the SEPCOMP option.

when TRUE, the SEPCOMP option assigns TRUE to both the AUTOBIND option
and the LIBRARY option, causing all procedures to be compiled into one
multiprocedure code file (a temporary file used by the Binder program).
Explicitly assigning FALSE to the AUTOBIND option prevents the Binder
from being called and causes the object code file to be locked on disk
if the LIBRARY option 1is TRUE. Explicitly assigning FALSE to the
LIBRARY option causes each procedure compiled to be put in a separate,
permanent object code file. Binding still occurs, but at a somewhat
slower rate.

If procedures are put in separate code files, the titles of the code
files are determined in the standard way, Wwith the procedure name
replacing the last identifier from the title on the compile statement
that invoked the compiler. Procedures compiled at lex level four and
higher have the name of their environment in the code file name also.
In the following example. when twc lex-level-four procedures are
compiled having the same name but different environments, two code files
are produced (titled "A/PASSONE/Q" and "A/PASSTWO/Q") in addition to the
new host file titled "A/HOST" (assuming that PASSONE and PASSTWO were
specified as exXtra environments when A/HOST was made).

$ SEPCOMP "A/HOST"

$ RESET LIBRARY
% PATCH CARD TO Q OF PASSONE <sequence number>
% PATCH CARD TO Q OF PASSTWO <sequence number:>

The special information associated with a host program is always copied
by the Binder to the object code file of the new program so it can be
used as & host. This information is not updated by either the Binder or
the compiler during the sepcomp process. Following a sepcomp, this
information can inaccurately reflect the actual structure and content of
the host program with which it is associated.

Because the arrangement of data in a bound cocde file differs from that
of an unbound code file, binding to a bound host is faster than binding
to an unbound host. For this reason, assigning TRUE to the AUTOBIND
option when compiling a host program can be advantageous, because it
causes the Binder to be invoked.

637
Compiling Programs

If the release level of the compiler that creates the host code file and
the release 1level of the compiler that is attempting a sepcomp to that
file are not the same, a syntax error is given and the compilation is
discontinued. If the code file specified as the host program was not
compiled with the MAKEHOST option equal to TRUE, or if the host program
was compiled by a compiler for a different language, a syntax error is
given and the compilation is discontinued.

The SEPCOMP option automatically assigns values to several other
compiler control options in order to simplify operation. The- MERGE
option is unavailable for use while the SEPCOMP option 1is TRUE.
Assigning TRUE to the MERGE option before assigning TRUE to the SEPCOMP
option is not allowed because it destroys the default file equation of
the source file to be used for the patches.

wWhen the batch facility is used. the SEPCOMP option cannot be assigned a
value. If the TADS option is TRUE when the SEPCOMP option is assigned
the value TRUE, the value of the SEPCOMP option is left equal to FALSE
and a warning message is given. The SEPCOMP option cannot be assigned a
value after the first syntactic item of a program has been compiled.
Multiple SEPCOMP option settings are not allowed because, when first
assigned TRUE, the SEPCOMP option initiates preprocessing of the source
input from the CARD file. ‘

For more information on the sepcomp facility, refer to the description
of the MAKEHOST option in this section.

{seq option>
-- SEQ --|
(Type: Boolean, Default value: FALSE)

When TRUE. the SEQ option causes the printer 1listing and the updated
source file, NEWTAPE, to contain new sequence numbers. These new
sequence numbers are determined by the current values of the sequence
base option and the sequence incréement option.

This option is effective only when the LIST option or NEW option is
TRUE. The sequence numbers that appear on the records in these files
when the SEQ option is FALSE are identical to the sequence numbers on
the corresponding records in the input files.

638
ALGOL REFERENCE MANUAL

The sequence base option and the seguence increment option are described
in this section.

<segerr option>
-— SEQERR --|
(Type: Boolean, Default value: FALSE)

When TRUE, the SEQERR option causes an error tc be given if the sequence
number on a record of the TAPE file is not strictly greater than the
sequence number of the preceding record. If seqguence errors occur and
the SEQERR option is TRUE. the object code file is not locked, the
message "CODE FILE NOT LOCKED" is displayed on the Operator Display
Terminal (ODT), and the message "CODE FILE NOT LOCKED <number of errors>
TAPE SEQUENCE ERRORS" is printed on the printer listing. The SEQERR
option is effective even when the CHECK option is FALSE.

<sequence base option>

—-——=/8\-<¢digit>-—---|
(Type: value, Default value: 1000)

The sequence base option specifies the sequence number that 1is to be
assigned to the next record when the SEQ option is TRUE. After each
record is resequenced, the value of the sequence base option is
increased by the value of the sequence increment option.

Compiling Programs

(sequence increment option>

-— + -—-/8\-<digit>----|

(Type: value, Default value: 1000)

The value of the sequence increment option is used to increment

639

the

value - of the sequence base option when records are resequenced because

the SEQ option is TRUE.

<sharing option)

-- SHARING -— = - DONTCARE. ——————————— |
;— PRIVATE ---—---—= :

:- SHAREDBYALL ----- :

:— SHAREDBYRﬁNUNIT -

(Type: value, Default value: DONTCARE)

The SHARING option is used in a library program tc specify how

programs are to share the library.

DONTCARE

other

If the SHARING option has the value DONTCARE, the Master
Control Program (MCP) determines the sharing, and it is unknown

to all users invoking the library. DONTCARE 1is the
value of the SHARING opticn.

PRIVATE
If the SHARING option. has the value PRIVATE. &

default

separate

instance of the library is started for each invocation of the
library. Any changes made to global items in the library by a
block that invoked the library apply only to that user of the

library.

640
ALGOL REFERENCE MANUAL

SHAREDBYALL
If the SHARING option has the value SHAREDBYALL, all
invocations of the 1library share the same instance of the
library. Any changes made to global items in the library by a
block that has invoked the library apply to all users of that
library.

SHAREDBYRUNUNIT

A run unit consists of a program and all libraries that are
initiated either directly or indirectly by that program. A
"program,”" in this context, does not include either a 1library
that 1is not frozen or any tasks that are initiated by the
program (that is, a process family is not a run unit). If the
SHARING option has the value SHAREDBYRUNUNIT, all invocations
of a library within a run unit share the same instance of the
library.

Note that a library is its own run unit until it freezes. For
example, program P initiates library A and, before library A
freezes, it in turn initiates library B. Now library B is in
library A's run unit, not in program P's run unit.- Had library
A initiated library B after freezing., both 1library A and
library B would be in program P's run unit.

The SHARING option must appear before the first syntactic item in the
program, and it cannot appear when the batch facility is used.

<single option>
-— SINGLE --|

(Type: Boolean, Default value: TRUE if the compiler was compiled with
the DOUBLESPACE compiler-generation option equal to FALSE, FALSE
ctherwise)

When TRUE, the SINGLE option causes the printer listing to be
single-spaced. When FALSE. the SINGLE option causes the printer listing
to be double-spaced.

641
Compiling Programs

<stack option>

~—.STACK --|

(Type: Boolean, Default value: FALSE)

If both the LIST option and the STACK option are TRUE, the printer
listing includes the relative stack addresses, in the form of address
couples, for all program variables. If the LIST option is TRUE but the
STACK option is FALSE, the printer 1listing does not contain these
address couples. The value of the STACK option is ignored if the LIST
option is FALSE.

<statistics option>

—— STATISTICS —-=—w=——==—=——————=——————— === |

|- SET --—-|
I [
|- RESET ~-|

(Type: Boolean, Default value: FALSE)

when TRUE, the STATISTICS option causes timing statistics to Dbe
gathered. The option is examined at the beginning of each procedure or
block and, if it is TRUE at that time, timing statistics are gathered
for that procedure or block. Although the value of the option can be
altered at any time, only its value at the beginning of procedures and
blocks is significant in determining whether timings are made.

The Binder program cannot bind object code files that contain the timing
code necessary for statistics: therefore, if the NOBINDINFO option is
FALSE when the STATISTICS option 1is assigned the wvaluve TRUE, the
NOBINDINFO option . is assigned the value TRUE and a warning message 1is
given. If the STATISTICS option is TRUE when the NOBINDINFO option is
assigned the value TRUE, a syntax error is given.

642
ALGOL REFERENCE MANUAL

If statistics are taken for a procedure or block, the freguency of
execution of that procedure or block is measured, along with the length
of time spent in that procedure or block. When the program is completed
for any reason (including both normal and abnormal termination), the
statistics of the executing task are printed out to the TASKFILE.

On the statistics output listing, an asterisk (*) indicates that doubt
exists about the timing for the specific procedure whose name precedes
the asterisk. 1In addition, timings are invalid for any procedure oOr
block that is resumed by a "bad go to." '

Only the first sixX characters of any identifier are printed on the
listing.

For any procedure or block that has statistics gathered, the timings can
be broken down to the label level within that procedure or block by
using the LABELS syntax. The word "LABELS" can be preceded by "SET" or
"RESET"; if both are omitted, SET is assumed. For example,

$ SET STATISTICS (LABELS)
begins timing of label breakpoints, and

$ SET STATISTICS (RESET LABELS)

ends timing of label breakpoints. The words "SET" or "RESET" inside the
parentheses affect only the LABELS specification.

<stop option>
-— STOP ——<text>——|

See also
CEeXE 2. v v i e« b1

(Type: Binder command)

During autobinding, the STOP option is passed directly to the Binder
program for analysis. The format and function of this option are the
same as those of the Binder STOP statement and are described in the
"Binder Reference Manual."

When the batch facility is used., the STOP option cannot be used.

643
Compiling Programs

<TADS option>

m = TADS = mmm e e e l
{ l
| | (e , mmm—— e —— e | |
| | | |
- (———= /1\- FREQUENCY —~—-—==——========——=—-) -
\ » i
|-/1\- REMOTE --<file identifier>-|
See also

(file identifier> « + v v o & v v e e e e e e e e e e e 4 . . . 85
(Type: Boolean, Default value: FALSE)

When the TADS option is TRUE, special debugging code and tables are
generated as part of the object code file. The tables are generated to
support the symbolic debugging environment of the ALGOL Test and Debug
System (TADS). For more information on ALGOL TADS, refer tc the "ALGOL
Test and Debug System (TADS) User's Guide."

The FREQUENCY option causes additional code and tables to be generated
for coverage and frequency analysis. This option must be specified if
either the TADS "FREQUENCY" command or the TADS "COVERAGE" command is to
be used to determine the number of times individual statements have been
executed or which statements have not been executed.

The REMOTE option allows TADS to share a remote file with the program
being tested. Sharing a file might be necessary, because only one
remote input file can be open for each station. If specified, the <file
identifier> must correspond to a file identifier declared in a FILE
declaration occurring later in the outer block of the program. The file
must have the attributes KXIND equal to REMOTE, UNITS equal to
CHARACTERS, and FILEUSE equal to IO. The MAXRECSIZE attribute must not
be less .than 72. The file must not be declared to be a direct file.

If the AUTOBIND option, the MAKEHOST option, or the SEPCOMP option is
TRUE when the TADS option is assigned the value TRUE, then the TADS
option is assigned the value FALSE and -a warning message 1is given.
Programs compiled with the TADS option equal to TRUE cannot assign TRUE
to the MAKEHOST opticn, -the AUTOBIND option, or the SEPCOMP option, and
they cannot be used as input files to the Binder program.

644
ALGOL. REFERENCE MANUAL

The TADS option must appear before the first syntactic item in a
program.

<target option>

-~ TARGET -- = --- THIS ------ |

|- LEVELO -|
: |
{- LEVEL1 -|
| |
|- B5900 —-|
{ |
|- B680C -—|
| oo
|- B6900 —-1|
| J
|- B7000 --|
| |
- B7700 --|
| |
|- B7800 —--|
[|
{- B7900 -—|
I !
= A 2 ————|
| |
- A 9 ———=|
| |
[- A 10 ———|

(Type: Value, Default value: installation-defined)

The TARGET option specifies the computer family for which the generated
code 1is to be optimized. The keyword "THIS" indicates that code is to

be optimized for the computer on which it is compiled. The keyword
"LEVELO" indicates that code is to be optimized for the
B 5000/B 6000/B 7000 Series of computers. The keyword "LEVEL1"

indicates that code 1is to be optimized for the A Series of computers.
The generated object code can be run on any computer that is
code-compatible with the specified family. Table 7-2 indicates
code—-compatible families.

645
Compiling Programs

Table 7-2. Code~Compatible Families

|

i

|

|
| l
| LEVELO |
| B5900 |
| B6800 |
| B6900 |
| B7000 |
| B7700 |
| B7800 .|
| |
| |
| |
| |
i !
| !

b

Mod X X X X X X
Mo oM X X M X X
XXX X X X X
XX oM X X X XX
MOoX oM X X X X X
MoX oM X X X X
Mo oM X X X X X

B7900
LEVEL1
A3

5
Oox X X X M X X X X X X

Moo X M X M X X X XX

For information on how an installation defines the default target
computer family, refer to the "COMPILERTARGET" command in the "Operator
Display Terminal (ODT) Reference Manual."

This option must appear before the first syntactical item 1in the
program. It cannot be used in the same program as the B770C option.

<time option>
-— TIME --|
(Type: Boolean, Default value: FALSE)

When TRUE. the TIME coption causes trailer information, such as the
number of errors. the number of code segments, and the compilation time,
to be printed on the printer listing. Because this trailer information
iz also printed when the LIST option is TRUE, the value of the TIME
option is effective only when the LIST option is FALSE.

646
ALGOL REFERENCE MANUAL

<use option>
-- USE -—-<text>--|

See also
B = 5

(Type: Binder command)

During autobinding, the USE option is passed directly to the Binder
program for analysis. The format and function of this option are the
same as those of the Binder USE statement and are described in the
"Binder Reference Manual."

When the batch facility is used, the USE option cannot be used.

<user option>
—-—<identifier>--|
(Type: Boolean, Default value: FALSE)

If an identifier on a compiler control record is not recognized as one
of the predefined options, it is considered to be a user option. A user
option can be manipulated exactly like any other Boolean option; that
is, it can be assigned values by using the SET, RESET, and POP keywords.
In addition, it can be used in option expressions to assign values to
standard Boolean options or to other user options.

647
Compiling Programs

<version option>

-——-<replace version>-—--|

| l
|-<append version>--|

{replace version>

|- . -—<patch number>-|

<version increment>

——<digit>——<digito-—|

<cycle increment>

u—<digit>——<digit>--<digit>—-|

(patch number>

——ddigit>-—<digitr-—<digit>——|

<append version»

~— VERSION -- + —--<version increment>-- . —-—- + --<cycle increment>->

- . —-—<patch number>-|
(Type: value. Default value: 00.000.000)

The VERSION option allows the user to specify an initial version number
for a program, replace an existing version number, or append to an
existing version number.

If the NEW option is TRUE. a VERSION option appears in- the TAPE file,
and the CARD file contains a <replace version> or <append version>, then
the VERSION option record in the NEWTAPE file 1is wupdated with the
version., cycle, and patch number in the last VERSION option record in

648
ALGOL REFERENCE MANUAL

the CARD file. The sequence number of the VERSION option ip the CARD
file must be less than the sequence number of the VERSION option in the
TAPE file.

The functions COMPILETIME(20). COMPILETIME(21), and COMPILETIME(22)
allow a programmer tO access the current version, cycle, and patch
numbers, respectively. For more information, see "<(compiletime
function>" in the chapter "Expressions."

When the batch facility is used. the VERSION option cannot be used.

See also
<compiletime function>. « v v+ 6538

Examples

$ VERSION 25.010.010

Sets the current version to 25.010.010.

S VERSION +01.+001.010

Increments the current version by 01 in the version increment, by
001 in the «cycle increment, and assigns 010 to the patch number.
For example, if the existing version is 25.010.005 and this VERSION
option is compiled, the resulting version is 26.011.010.

<void option>
-— VOID —-|
(Type: Boolean, Default value: FALSE)

When TRUE. the VOID option causes all source input other than compiler
contrel records from both the TAPE and CARD files to be ignored by the
compiler until the VOID option is assigned the value FALSE. The ignored
source input is neither listed nor included in the updated source file,
regardless of the values of the LIST option and the NEW option. Once
the VOID option 1is assigned TRUE, it can be assigned FALSE only by a
compiler control record in the CARD file.

649
Compiling Programs

<voidt option>
-—- VOIDT --|
(Type: Boolean, Default value: FALSE)

If the MERGE option is TRUE and the VOIDT option is TRUE, all source
input from the - TAPE file 'is ignored by the compiler until the VOIDT
option is assigned the value FALSE. Therefore, while the VOIDT option
is TRUE, only primary source input from the file CARD is compiled. The
ignored input is neither listed nor included in the updated source file,
regardless of the values of the LIST option and the NEW option. Once
the VOIDT option is assigned TRUE, it can be assigned FALSE only by a
compiler control record in the CARD file. 1If the MERGE option is FALSE,
the value of the VOIDT option is ignored.

{warnsupr option>
-- WARNSUPR ——|
(Type: Boolean, Default value: FALSE)

When TRUE, the WARNSUPR option prevents warning messages from being
given.

<writeafter option>
-- WRITEAFTER —-|
(Type: Boolean, Default value: FALSE)

The WRITEAFTER option provides the ability to desighate whether carriage
contrcl is performed before or after a write operation. The option can
be assigned values repeatedly in order to select before-write or
after-write carriage control for individual files and I1/0 statements.

Normally in ALGOL, carriage control 1s performed following a write
operation.

650
ALGOL REFERENCE MANUAL

If the WRITEAFTER option is TRUE when a FILE declaration is compiled,
then for all I/0 statements that explicitly reference the file, carriage
control is done ©before a write operaticn. For any 1I/0 statement
compiled when the WRITEAFTER option is TRUE, carriage control is done
before the write operation.

The WRITEAFTER option does not apply to direct files or direct 1I/0
statements.

<xdecs option>
—~ XDECS --

(Type: Boolean, Default value: TRUE if either the XREF option or the
XREFFILES option is TRUE, FALSE otherwise)

When the compiler is saving cross-reference information because the XREF
option or the XREFFILES option is TRUE, only identifiers declared while
the XDECS option 1is TRUE are included in the cross—-reference

information. This option is assigned TRUE when the XREF option or the
XREFFILES option is assigned TRUE and can be assigned a value as many
times as desired. If the XDECS option is assigned the value TRUE and

both the XREF option and the XREFFILES option are FALSE, the XDECS
option is assigned FALSE and a syntax error is given.

For more information on cross-referencing, refer to the description of
the XREF option in this section.

<xref option>

[-<linewidth>—|

<linewidth>

An <integer> between 72 and 16C, inclusive.

(Type: Boolean, Default value: FALSE)

. 651
Compiling Programs

Depending on the values of several related compiler control options. the
compiler optionally generates cross-reference information containing an
alphabetized list of identifiers that appear in the program and, for
each identifier, the type of the item named by that identifier, the
sequence number of the source input record on which the identifier is
declared, the sequence numbers of the input records on which the
identifier is referenced, and other relevant information. The following
factors can be controlled through the use of compiler control options:

1. wWhether or not the compiler saves cross-reference information
as it is processing the source input

2. Which identifiers and which references to these identifiers are
cross-referenced

3. Whether or not the SYSTEM/XREFANALYZER program 1s initiated
' automatically by the compiler

4. 1f SYSTEM/XREFANALYZER is automatically initiated, whether it
is to produce printed output, disk files suitable for input to
SYSTEM/INTERACTIVEXREF and the Editor, or both

The compiler saves cross-reference information if either the XREF option
or the XREFFILES option or both options are TRUE. This information is
discarded if any syntax errors occur during compilation. If used, these
options should ' be assigned TRUE befcre any source input has been
processed. Once assigned TRUE, these options cannot be assigned FALSE.

The identifiers and their references toc be cross-referenced can be
selected by the XDECS option and the XREFS option, respectively.
Neither of these options can be used if cross-reference information is
not being saved by the compiler (that is. if both the XREF option and
the XREFFILES option are FALSE):

When the compiler is saving cross-reference information, this
information is written to a disk file in raw form. Before this
information-can be printed or read by SYSTEM/INTERACTIVEXREF and the
Editor, . it must be analyzed by SYSTEM/XREFANALYZER. If the NOXREFLIST
option is FALSE, the compiler automatically initiates
SYSTEM/XREFANALYZER to process the raw cross-reference file. 1If the
NOXREFLIST option is TRUE, SYSTEM/XREFANALYZER is not initiated, and the
compiler's raw file is 1left on disk with the title "XREF/<code file
name>". where <code file name> is the name of the object code file
produced by ‘the compiler; this file can be analyzed at a later time by
running SYSTEM/XREFANALYZER directly.

If the compiler initiates SYSTEM/XREFANALYZER = (that is, if the
NOXREFLIST option -is FALSE), the program produces either a printed
listing or a pair of disk files suitable for the Editor and

652
ALGOL REFERENCE MANUAL

SYSTEM/INTERACTIVEXREF. 1f the XREF option is TRUE, a listing is
produced. If the XREFFILES option is TRUE., the pair of disk files 1is
produced; these files are titled "XREFFILES/<code file name> /XREFS" and
"XREFFILES/<code file name>/XDECS". 1If both the XREF option and the
XREFFILES option are TRUE, both a 1listing and the disk files are
produced.

The line width, in characters, of the listing produced by
SYSTEM/XREFANALYZER can be specified by the <linewidth> construct. If
not specified, the line width is 132.

User options are included in the cross-reference information.

SYSTEM/XREFANALYZER is described under "XREFANALYZER" 1in the "System
Software Utilities Reference Manual," and SYSTEM/INTERACTIVEXREF is
described under "INTERACTIVEXREF" in the "System Software Utilities
Reference Manual." The Editor is described in the "Editor User's Guide."

<xreffiles option>
-- XREFFILES --|
(Type: Boolean, Default value: FALSE)

When TRUE, the XREFFILES option causes cross-reference information to be
saved by the compiler and causes the SYSTEM/XREFANALYZER program, if it
is initiated by the compiler, to produce files that can be used by the
Editor and SYSTEM/INTERACTIVEXREF. These files have the titles
"XREFFILES/<code file name>/XDECS" and "XREFFILES/<code file
name>/XREFS", where <code file name> is the name of the object code file
that the compiler is generating.

For more information on cross-referencing, refer to the description of
the XREF option in this section.

653
Compiling Programs

<Xrefs option>
-= XREFSv——!

(Type: Boolean, Default value: TRUE if either the XREF option or the
XREFFILES option is TRUE, FALSE otherwise))

When the compiler is saving cross-reference information because the XREF
option .or the XREFFILES option is TRUE, only identifier references that
are encountered while the XREFS option 1is TRUE are included in the
cross-reference information. This option is assigned TRUE when the XREF
option or the XREFFILES option is assigned TRUE, and it can be assigned
a value as many times as desired. If the XREFS option is assigned the
value TRUE when both the XREF option and the XREFFILES option are FALSE,
then the XREFS option is assigned FALSE and a syntax error is given.

For more information on cross-referencing, refer to the description of
the XREF option in this section.

<$ option>:
-~ $ --}
(Type: Boolean, Default value: FALSE)

If both the LIST option and the $ option are TRUE, the printer 1listing
includes 'all compiler control records. If the LIST option is TRUE but
the $ option is FALSE, only compiler control records with an initial
dollar sign ($) in columns 2 through 72, inclusive, appear in the
printer listing. If the LIST option is FALSE, the value of the $§ option
is ignored.

655
8 . INTERFACE TO THE LIBRARY FACILITY

The library facility is a feature that can be used to structure
processes. A library is a program containing one or more procedures
that can be called by other programs, which are referred to as "calling
programs.” These procedures are "entry points" into the library. Unlike
a regular program, which is always entered at the beginning, a 1library
can be entered at any. entry point.

Libraries provide all the benefits of procedures plus the added
advantages that they can be reused, and they can be shared by a number
of programs. Consolidating logically related functions into a 1library
can make programming easier. and program structure more visible. A call
on a procedure in a library is egquivalent to a call on a procedure in
the calling program.

Libraries offer the following improvements over binding:
1. Interlanguage communication is significantly improved.
2. ~ Standard packages of functions (such as plotting and
statistics) need not be copied into any calling programs.

Libraries offer the following improvements over installation intrinsics:

1. A library can have its own global files, databases, transaction
bases, and so on.

2. Libraries can contain initialization and termination code.
3. Libraries can themselves call other libraries.
4. Individual users can create their own libraries without

possessing special privileges.

5. Libraries can be written in more languages than can the
installation intrinsics.

6. More than one version of a library can be in use at a time.

656
ALGOL REFERENCE MANUAL

FUNCTIONAIL . DESCRIPTION OF LIBRARIES

This section describes how the library facility operates.

Library Programs

A library program is a program that specifies entry points (procedures)
for use by calling programs and is distinguished by the occurrence of
EXPORT declarations and FREEZE statements. A procedure in a library is
specified to be an entry point by appearing in an EXPORT declaration. A
library program becomes a library after execution of a FREEZE statement.

Calling Programs

A calling program is a program that calls entry points provided by a
library and 1is distinguished by the appearance of LIBRARY declarations
and PROCEDURE declarations that contain the <library entry point
specification> construct. ’

A library can itself function as a calling program and call other
libraries. The only restriction is that a chain of library linkages
must never be circular. That is, a 1library cannot reference itself,
either directly or indirectly. through a chain of library references.

Library Directories and Templates

The information used by the Master Control Program (MCP) to match entry
points 1in a library with entry points declared in a calling program is
contained in a pair of data structures called the "directory" and the
"template," which are built by the compilers.

When a program exports entry points and contains a FREEZE statement, the
object code file for that program contains a library directory. One
directory exists for each block that contains an EXPORT declaration.
After a library. "“freezes" (executes a FREEZE statement), only one
directory is in effect until the library program finishes executing.

A library directory contains a description of all the entry points in
the library. This description includes the following information:

1. The name of the entry point

. 657
Interface to the Library Facility

2. The entry point's type
3. A description of the entry point's parameters
4, Information on how the entry poiht is provided (see "Linkage

Provisions" later in this chapter)

When a program declares a library and entry points in that library, the
object code file for the program contains a library template that
describes the library and the declared entry points. One template
.exists for each library declared in the calling program. A template
contains the following information:

1. A description of the attributes of the library

2. A description of all the entry points of the library that are
declared by the program. Each description includes the
following information:
a. The name of the entry point
b. The entry point's type
c. A description of the entry point's parameters

The SETACTUALNAME function can be used to change the name of an entry

point . in an unlinked library template. (For more information, refer to
the SETACTUALNAME function in the chapter "ExXpressions.")

See also
Linkage Provisions. . . . « + « « « « & « & + « & + « « « . . . 659

(setactualname funCtioON>. . « « « « « « + « « o« = « « o« « « « « 575

- Library Initiation

On the first call on an entry point of a library or at an explicit
linkage request, .the calling program is suspended. The description of
the entry point in the 1library template of the calling program is
compared to the description of the entry point with the same name in the
library directory associated with the referenced library.

If the entry point does not exist in the library, or if - the two entry
point descriptions are not compatible, a run-time error is given and the
calling program is terminated. If the entry point exists and the two
entry point descriptions are compatible, the MCP automatically initiates
the library program (if it has not already been initiated). The library
program runs normally until it executes a FREEZE statement, which makes

658
ALGOL REFERENCE MANUAL

the entry points available. All of the entry points of the library that
are declared irn the calling program are linked to the calling program,
and the calling program resumes execution.

If a calling program declares an entry point that does not exist in the
library, no error is generated when the library is initiated:; however, a
subsequent call on that entry point causes a "MISSING ENTRY POINT"
run-time error, and the calling program is terminated.

A library can be specified to be permanent or temporary. A permanent
library remains available until it is terminated either by the Operator
Display Terminal (ODT) commands DS (Discontinue) or THAW, or by
‘execution of a CANCEL statement. A temporary library remains available
as long as users of the library remain. A temporary library that is no
longer in use "unfreezes" and resumes running as a regular program.

The PERMANENT or TEMPORARY specifications of the FREEZE statement
control the duration of a library. Any running program that executes a
FREEZE statement becomes & library. When a 1library 1is initiated by
explicitly running the library program instead of by calling an entry
point, the FREEZE statement should specify PERMANENT. (If TEMPORARY is
specified, the library immediately unfreezes because it has no users.)
After a library unfreezes, it must not execute another FREEZE statement
in an attempt to become a library again.

Because a library program initially runs as a regular program, the flow
of execution <can be such that the execution of a FREEZE statement is
conditional and can occur anywhere in the program.

If a calling program causes a library program to be initiated and the
library program terminates without executing a FREEZE statement (for
example, because it was not actually a library program and, thus. had nc
FREEZE statement), the attempted linkage to the library entry points
cannot be made, and the calling program is terminated.

Linkage tc a library can be explicitly requested by using the
LINKLIBRARY function, which is described in the cnapter "ExXpressions."

See also _
<linklibrary function>. « « .+ ¢« « « « + « « « « « . . 559

659
Interface to the Library Facility

Linkage Provisions

Entry points declared in a calling program are linked to corresponding
entry points provided by a library in one of three ways:

1. Directly
2. Indirectly

3. Dynamically

The library program specifies the form of linkage. Indirect and dynamic
linkages allow - linkage to be established to libraries other than the
library specified by the calling progran. The <calling program can
control the library invocation to which it is linked only by specifying
the object code file title or the function name of the library or, for
dynamic linkage, by specifying the LIBPARAMETER library attribute.
Depending on the value of the LIBACCESS library attribute, the TITLE
attribute or FUNCTIONNAME attribute is used to specify the object code
file title of the library. (For a discussion of the library attributes,
refer to "Library Attributes” in this chapter.)

Direct linkage occurs when the library program contains the procedure
that is named in the EXPORT declaration of the library.

Indirect linkage occurs when the library program exports a procedure
that' is declared as an entry point of another library. The MCP then
atﬁémpts to 1link the calling program to this second library. which can
provide the entry point directly, indirectly, or dynamically.

Dynamic linkage allows a library program to determine at link time which
library task the calling program will be linked to. The library program
must provide a selection procedure that accepts the wvalue of the
LIBPARAMETER library -attribute as a parameter. Based on the value of
LIBPARAMETER, the selection procedure selects and initiates a library
task. The selection procedure must .also acceg:, as a second parameter,
a procedure. This procedure, which is provided by the MCP to verify
that the 1library task is valid and complete, must be called before the
selection procedure is exited. The MCP calls the selection procedure at
link time. (Refer to "Library Examples" in this chapter for a more
detailed explanation and examples of 1libraries that provide dynamic
linkage.)

660
ALGOL REFERENCE MANUAL

The only restrictions on the complexity of indirect and dynamic linkages
are as follows:

1. Eventually, some library must provide the entry point directly.

2. The chain of referenced libraries must never become circular.
See also

Library Attributes. « « « ¢+ e e 0 e e e e e e e 665

Library EXamples. . . .« « « ¢ « ¢ o o o o+« 4 e e e e e e s 671

Discontinuing Linkage

A program can delink from a library program by using either the CANCEL
statement or the DELINKLIBRARY function.

The CANCEL statement causes the library program to unfreeze and resume
running as a regular program. The CANCEL statement can be used only on
PRIVATE and SHAREDBYRUNUNIT libraries.

The DELINKLIBRARY function affects only the linkage between the program
executing the DELINKLIBRARY function and the specified library. Any
other programs linked to the specified library are not affected. (For
more information, see the DELINKLIBRARY function in the chapter
"Expressions.")

See also
<delinklibrary function>. « « « + ¢ « + « + o e e s e . 543

Error Handling

Any fault caused (and ignored) by a procedufe in a 1library that is
invoked by a calling program is treated as a fault in the calling
program. If ignored by the calling program, this fault causes the
calling program to be terminated but has nc effect on the status of the
library.

If a library program faults (or 1is otherwise terminated) Dbefore
executing a FREEZE statement, then all calling programs that are waiting
to link to that library program are also terminated.

661
Interface to the Library Facility

If a library is terminated while calling programs are linked to 1it.
those calling programs are also terminated.

The first call on.an entry point in a library causes library linkage to
be made. In this phase, an attempt is made to locate and establish
links to all entry points declared by the calling program. If an entry
point declared in the calling program does not exist in the library, its
linkage cannot be established, and any subsequent calls to that entry
point result in a "MISSING ENTRY POINT" error. This error continues to
occur whenever a calling program links to that instance of the library
and calls that entry point. Thus, it 1is advisable to remove that
instance of the library (by either a THAW or DS (Discontinue) ODT
command) and initiate a correct version of the library. (For more
information, refer to the "Operator Display Terminal (ODT) Reference
Manual" for a description of these commands.)

662 A
ALGOL REFERENCE MANUAL

CREATING LIBRARIES

A library program is created by using the EXPORT declaration to declare
procedures to be exported as entry points, and by using the FREEZE
statement. The duration of a library program following initiation is
controlled by the TEMPORARY or PERMANENT specification of the FREEZE
statement. The allowed sharing of a library program 1is controlled by
the SHARING compiler control option, described below.

Library Sharing Specifications

Users of a library can be restricted through the normal file access
features provided by the system. The allowed simultaneous usage of a
library can be specified by the creator of the library at compile time
through the SHARING compiler control option. The library sharing can be
PRIVATE, SHAREDBYALL, SHAREDBYRUNUNIT, or DONTCARE.

PRIVATE A
A separate instance of the library 1is started for each
invocation of the library. Any changes made to global items in
the library by the program unit (block, procedure, or external
task) invoking the library apply only to that particular
calling program.

SHAREDBYALL
All invocations of the library share the same instance of the
library. Any changes made to global items in the library by a

program unit that has invoked the library apply to all users of
that library.

SHAREDBYRUNUNIT

A run unit consists of a program and all libraries that are
called, either directly or indirectly, by that program. A
"program," in this context, exXcludes both a library that is not
frozen and any tasks that are initiated by the program (that
is, a process family is not a run unit). All invocations of a
library within a run unit share the same instance of the
library.

Note that a library is its own run unit until it freezes. For
example. program P initiates library A and. before library A
freezes, it in turn initiates library B. Now library E is in
library A's run unit, not in program P's run unit. Had library
A initiated library B after freezing. both library A and
library B would be in program P's run unit.

6632
Interface to the Library Facility

DONTCARE

The MCP determines the sharing. This determination is unknown
to all users invoking the library.

The default value of the SHARING compiler control option is DONTCARE.

664
ALGOL REFERENCE MANUAL

REFERENCING LIBRARIES

To use a library, the calling program does the following:

- Declares the library in a LIBRARY declaration, specifying the
attributes of the library

- Declares the entry points of the library in PROCEDURE
declarations with <library entry point specification> parts

When an entry point is invoked or at an explicit 1linkage regquest, the
MCP automatically creates the library linkage. If the library program
has not already been initiated, the MCP initiates it; then, when the
library is frozen, the MCP links the library to the calling program.
The MCP attempts to make linkages to all entry points referenced in a
library at the time that the library is first invoked.

The LINKLIBRARY function can be used to determine whether or not the
calling program is currently linked to or is capable of being linked to
a particular library program. If the calling program is not currently
linked but is capable of being linked, the linkage is performed. During
the linkage process, an attempt is made to link to every entry point
exported from the library whose name matches an entry point declared in
the calling program. Only those names that match are checked for
correct function type, number ©Of parameters, and parameter types.
Therefore, the LINKLIBRARY function does not check that every entry
point declared in the calling program is also exported from the library.
(For more information, see the LINKLIBRARY function in the "ExXxpressions"
chapter.)

See also
<linklibrary function>. + « ¢« + + « « « « « « « « « . 559

The CANCEL statement and the DELINKLIBRARY function can be used to
terminate the 1linkage between a calling program and a library. The
CANCEL statement causes the library to unfreeze and resume running as a
regular program regardless of whether it is temporary or permanent.
Only PRIVATE libraries or SHAREDBYRUNUNIT 1libraries can be canceled.
The DELINKLIBRARY function has no effect on any other users of the
library. (For more information on the DELINKLIBRARY function, refer to
the description of the function in the chapter."Expressions.")

See alsco
<delinklibrary function>. v « « « & « + o + o o« &« « « . 543

665
Interface to the Library Facility

The SETACTUALNAME function determines whether or not - the name of a
particular library entry point can be changed in the template to a
particular character string and, if possible, makes the change. The
name of an entry point of a linked library cannot be modified.
Therefore, a linked library must be delinked before the SETACTUALNAME
function can be called to change the name of any of its entry points.
(For more. information, see the SETACTUALNAME function in the chapter
"Expressions.")

See also
‘ (setactualname functiond. . . « « « « « « « & + o« « o+ « « « « « 575

Library Attributes

Libraries, like files. have attributes that can be assigned values and
tested programmatically. '

The calling program can change library attributes dynamically: however,
since the MCP ignores.any changes made to library attributes of linked
libraries, these changes must not be made while the program is linked to
the library. Any library attribute changes must be made before the
calling program has linked to the library or after the library has been
~ delinked from the program.

This section describes the library attributes. The first line of each
description tells whether the attribute can be read or written or both;
its type: and its default value. if any.
FUNCTIONNAME
(Read/Write, EBCDIC string-valued)
FUNCTIONNAME specifies the system function name used to find the
target object "code’ file for the library. (For more information,
refer to the LIBACCESS attribute.)
INTNAME

(Read/Write, EBCDIC string—&alued)

INTNAME specifies the internal identifier for the library.

666

ALGOL REFERENCE MANUAL

LIBACCESS

{Read/Write, mnemonic-valued, Default value: BYTITLE)

LIBACCESS specifies the way in which a library object code file 1is
accessed when a library 1is «called. LIBACCESS has one of the
mnemonic values BYTITLE or BYFUNCTION. 1If the value is BYTITLE, the
TITLE attribute of the 1library is used to locate the object code
file. If the value is BYFUNCTION, the value of the FUNCTIONNAME
attribute of the library is used to access the MCP library function
table, and the object code file associated with that FUNCTIONNAME is
used.

LIBPARAMETER

(Read/Write, EBCDIC string-valued)

LIBPARAMETER is wused to transmit information from the calling
program to the selection procedures of libraries that provide entry
points dynamically.

TITLE

(Read/Write, EBCDIC string-valued)

TITLE specifies the object code file title of the library. (For
more information, refer to the LIBACCESS attribute.)

667
Interface to the Library Facility

Example

The following program shows examples of how the LIBACCESS, TITLE, and
FUNCTIONNAME library attributes can be used.

BEGIN
% LIBRARY1l, DECLARED BELOW, IS NOT A SYSTEM LIBRARY. ITS LIBACCESS
% ATTRIBUTE, SET TO BYTITLE, INDICATES THAT THE TITLE ATTRIBUTE
% 1S USED TO LOCATE THE LIBRARY'S CODE FILE. '

LIBRARY LIBRARY1(TITLE="OBJECT/LIBRARY1l.",LIBACCESS=BYTITLE):
REAL PROCEDURE PROC1; '
LIBRARY LIBRARY1;
REAL PROCEDURE PROCZ;
LIBRARY LIBRARY1l;
REAL PROCEDURE PROC3;
LIBRARY LIBRARY1l;

, THE LIBRARY DECLARED BELOW IS A SYSTEM LIBRARY. ITS LIBACCESS

, ATTRIBUTE. SET TO BYFUNCTION, INDICATES THAT THE FUNCTIONNAME

% ATTRIBUTE OF THE LIBRARY IS LOOKED UP IN THE MCP LIBRARY FUNCTION
TABLE, AND THE CODE FILE ASSOCIATED WITH THE FUNCTIONNAME,

% SYSTEMLIB, IS USED. ‘

3¢ 3@

3@

LIBRARY LIBRARYZ(FUNCTIONNAMB="SYSTEMLIB.“,LIBACCESS=BYFUNCTION);
PROCEDURE SYSTEMLIBPROC;
LIBRARY LIBRARYZ;

<executable statements>

END.

668
ALGOL REFERENCE MANUAL

Entry Point Type Matching

Library entry points can be either typed or untyped, and they can have
parameters. Type matching is performed on entry points during library
linkage. If the description of an entry point in the template does not
match the description of the entry point in the directory, the linkage
is not made, and the calling program is terminated. Matching is based
on several factors: the procedure type, the number of parameters, the
parameter types, and the ways in which the parameters are passed.
Parameters are passed as call-by-value, call-by-reference, oOr
call-by—-name. ‘
An ALGOL library entry point can be any of the following:

- ASCII string procedure

- Boolean procedure

- Complex procedure

- Double procedure

- EBCDIC string procedure

- Hexadecimal string procedure

- Integer procedure

- Real procedure

- Untyped procedure
The parameters of an ALGOL 1library entry point can be any of the
following:

-~ Boolean variable, array, or direct array

" - Double variable, array, or direct array

- Real variable, array. or direct array

- Integer variable, array, or direct array

- CompleXxX variable or array

- EBCDIC string variable or array

- ASCII string variable or array

. 669
Interface to the Library Facility

- Hekadecimal string vafiable or array

- EBCDIC character array or direct array

- ASCII character array or direct array

- Hexadecimal character array orkdirect array
- . Event variable or arfay.’

- ‘Task variable. or arfay

- File or direct file

- Pointer

- A fully-specified procedure (declared using "FORMAL") with the

above restrictions on its possible parameters and type

Parameter Passing

If a library program declares a parameter to be call-by-name, the
calling program can declare the parameter to be call-by-name,
call—by—reference,'or call-by-value. - If a library program declares a
_parameter to be call-by-reference, the calling program can declare the
parameter to be call-by-name, call—byFreference, or call-by-value. If a
library program declares a parameter to be call-by-value, the calling
program can declare the parameter only to be call-by-value.

Table 81 illustrates the parameter passing rules.

Table 8-1. Parameter Passing Rules

4 | | |
Library Program | Name | Reference | Value |
[~ f—————— [=——mm [———m - |
| Name o X ! X | X |
f———— == | m—m | === !
| Reference | X I X | X |
[—~mmmm e | === [== | ————m—— |
| Value i i | X I

I i |

670
ALGOL REFERENCE MANUAL

In ALGOL programs, parameters are declared to be either call-by-value or
call-by-name. In ALGOL 1library programs, parameters to entry points
that are declared tc be call-by-value are described in the directory as
call-by-value; parameters declared to be call-by-name are described in
the directory as call-by-reference, except for formal procedures and
Boolean, complex, double, integer, and real variables, which are
described in the directory as call-by-name. In ALGOL calling programs,
parameters to entry points that are declared to be call-by-value are
described in the template as call-by-value; parameters declared to be
call-by-name - are described in the template as call-by-reference, except
for Boolean, complex, double, integer, and real variables, which are
described in the template as call-by-name.

An array parameter in ALGOL that is declared with any of its lower
bounds as an asterisk (*) lower bound is described in the template or
directory as N+1 parameters, where N is the number of dimensions of the
formal array. The first parameter is the array itself, followed by the
N lower bounds described as call-by-value integer variables.

671
Interface to the Library Facility

LIBRARY EXAMPLES

This section gives examples of libraries and calling programs that call
these libraries.

Library: OBJECT/FILEMANAGER/LIB

The following library program illustrates dynamic linkage. This library
provides a set of file management routines. The users of this library
would assign the title of the file to be used to the - LIBPARAMETER
attribute. LIBPARAMETER is then used at link time to determine to which
library task the user 1is to be linked.

This library represents features of dynamic linkage but does not
necessarily represent efficient programming.

S SHARING = PRIVATE
BEGIN
TASK ARRAY LIBTASKS[0:10]: % PROVIDES UP TO 11 DIFFERENT LIBRARY
% TASKS
STRING ARRAY FILETITLES[0:10]; % LIBPARAMETER FOR EACH OF THE TASKS

PROCEDURE FILEMANAGER(TASKINDEX);
VALUE TASKINDEX:
INTEGER TASKINDEX;

BEGIN
PROCEDURE READFILE:
BEGIN

END READFILE:
PROCEDURE WRITEFILE;
BEGIN

END WRITEFILE:

EXPORT READFILE,WRITEFILE;
FREEZE(TEMPORARY) ;
FILETITLES[TASKINDEX] HE N
END FILEMANAGER;

672
ALGOL REFERENCE MANUAL

PROCEDURE SELECTION(USERSFILE, MCPCHECK)
VALUE USERSFILE;

EBCDIC STRING USERSFILE;

PROCEDURE MCPCHECK(T); TASK T; FORMAL;

BEGIN

INTEGER TASKINDEX;

BOOLEAN FOUND;

% LOOK"AT ALL THE FILETITLES, CHECKING TO SEE IF A LIBRARY TASK
% HAS ALREADY BEEN INITIATED FOR FILE TITLE USERSFILE.

WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
BEGIN :
IF FILETITLES{TASKINDEX] = USERSFILE THEN
FOUND ':= TRUE
ELSE
TASKINDEX := *+1;
END;

IF NOT FOUND THEN
BEGIN
% A LIBRARY TASK DOES NOT EXIST FOR THIS FILE TITLE.
WHILE NOT FOUND DO % FIND AN UNUSED TASK
BEGIN
TASKINDEX := 0}
WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
IF LIBTASKS[TASKINDEX].STATUS LEQ O THEN
FOUND := TRUE
ELSE
TASKINDEX := *+1;
IF NOT FOUND THEN
% WAIT A SECOND AND MAYBE A LIBRARY TASK WILL GO TO EOT.
WAIT((1));
END;

PROCESS FILEMANAGER(TASKINDEX) [LIBTASKS[TASKINDEX]]:

WHILE LIBTASKS[TASKINDEX].STATUS NEQ VALUE(FROZEN) DO
WAIT((1));

FILETITLES[TASKINDEX] := USERSFILE;

END;

MCPCHECK(LIBTASKS[TASKINDEX])
END SELECTION; :

673
Interface to the Library Facility

PROCEDURE READFILE:

BY CALLING SELECTION:
PROCEDURE WRITEFILE:

BY CALLING SELECTION;

EXPORT READFILE,WRITEFILE:
FREEZE(TEMPORARY) ;
END.

At library linkage time, the procedure SELECTION is invoked. SELECTION
accepts two parameters, USERSFILE and MCPCHECK.

USERSFILE is passed the value of the LIBPARAMETER attribute, which was
assigned a value by the calling program. The SELECTION procedure checks
to see if a library task has been initiated for the file specified by
USERSFILE. If it has. then the calling program is linked to that task.
If no library task exists for that file, then "a new library task 1is
initiated and the calling program is linked to it.

Only one call is made on the SELECTION procedure per linkage; that 1is,
all 1links to entry points in this library are resolved during linkage.
Therefore, any changes made to any library attributes after linkage is
made are ignored. The attributes can be changed if the library is
delinked.

MCPCHECK is a procedure that is provided by the MCP and must be called
before exiting the SELECTION procedure. The parameter to MCPCHECK 1is
the task variable of the library task to which the calling program is to
be linked. MCPCHECK verifies that the task is valid and complete. The
actual library linkage is not performed until SELECTION has been exited.

674 :
ALGOL REFERENCE MANUAL

Calling Program #1

The following calling program invokes the dynamic library
OBJECT/FILEMANAGER/LIB previously described. In this example, the user
has set the LIBPARAMETER attribute to "MYFILE", which is the name of the
file to Dbe accessed. At library linkage time, which occurs during the
call on READFILE, the library procedure SELECTION is invoked. All links
to the library's entry points are resolved during linkage. Changes to
the library attributes are ignored after linkage is made. However, the
program can delink from the library and change the library attributes
before any re—linking.(

BEGIN
LIBRARY L (TITLE="OBJECT/FILEMANAGER/LIB."):
PROCEDURE READFILE;
LIBRARY L;
PROCEDURE WRITEFILE;
LIBRARY L;

L.LIBPARAMETER := "MYFILE";

READFILE; % LINKAGE IS MADE
CANCEL(L); % LINKAGE IS BROKEN
L.LIBPARAMETER := "OTHERFILE"; % LIBPARAMETER CAN BE CHANGED.

% BECAUSE THE LIBRARY HAS BEEN
% CANCELED.

WRITEFILE; % LINKAGE IS MADE AGAIN AND NEW
% VALUE OF LIBPARAMETER IS USED
END.

Interface to the Library Facility

Library: OBJECT/SAMPLEE/LIBRARY

675

The following ALGOL library, compiled as OBJECT/SAMPLE/LIBRARY, provides

its entry points directly.

BEGIN
ARRAY MSG[0:120];

INTEGER PROCEDURE FACT(N):
INTEGER N:

BEGIN
IF N LSS 1 THEN -
FACT 1
ELSE
FACT := N * FACT(N - 1):
END: % OF FACT

PROCEDURE DATEANDTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

BEGIN
REAL T
POINTER PTR;

T := TIME(7):
PTR := POINTER(TOARRAY,8) + WHERE:
CASE T.[5:6] OF

BEGIN

0: REPLACE PTR:PTR BY "SUNDAY, ";

1: REPLACE PTR:PTR BY "MONDAY, ";

2: REPLACE PTR:PTR BY "TUESDAY. ";
3: REPLACE FTR:PTR BY "WEDNESDAY, ";
4: REPLACE FTR:PTR BY "THURSDAY, ":
5: REPLACE PTR:PTR BY "FRIDAY, ";

6: REPLACE PTR:PTR BY "SATURDAY, ";
END:

REPLACE PTR BY T.[35:6] FOR 2 DIGITS,
T.[29:6] FOR 2 DIGITS,
T.[47:12] FOR 4 DIGITS,
T.[23:6] FOR 2 DIGITS,
T.[17:6] FOR 2 DIGITS,
T.[11:6] FOR 2 DIGITS;
END; % OF DATEANDTIME

»

"o
’

" "
» s
", n
. ’
"w o, n
. s

676 .
‘ ALGOL REFERENCE MANUAL

EXPORT FACT,DATEANDTIME AS "DAYTIME":
REPLACE POINTER(MSG,8) BY
" - SAMPLE LIBRARY STARTED",
" " FOR 94; '
DATEANDTIME(MSG,60);
DISPLAY(MSG);
FREEZE (TEMPORARY) ;
REPLACE POINTER(MSG,8)+19 BY "ENDED ";
DATEANDTIME(MSG,60);
DISPLAY(MSG);
END.

In this library program, two procedures are exported, making them entry
points that can be called by calling programs. The two procedures, FACT
and DATEANDTIME, are contained witnin the library program, so they are
provided directly.

In the EXPORT declaration, the procedure DATEANDTIME is given the name
DAYTIME in an AS clause. 1In the directory built for this library, the
name of this entry point will be DAYTIME. Calling programs must use the
name DAYTIME to call this entry point.

Library: OBJECT/SAMPLE/DYNAMICLIB

The following ALGOL 1library, compiled .as OBJECT/SAMPLE/DYNAMICLIE,
illustrates dynamic and indirect 1library 1linkage.. This library
references the library OBJECT/SAMPLE/LIBRARY previously described.

BEGIN
TASK LIB1TASK,LIB2TASK:; .
LIBRARY SAMLIB(TITLE="OBJECT/SAMPLE/LIBRARY.");

% ENTRY POINT PROVIDED INDIRECTLY
INTEGER PROCEDURE FACT(N}); °
INTEGER N:

LIBRARY SAMLIE;

% POSSIBLY CALLED BY THE SELECTION PROCEDURE
PROCEDURE DYNLIB1:

BEGIN % PRINTS DATE WITH TIME

LIBRARY SAMLIB(TITLE="OBJECT/SAMPLE/LIBRARY."):

% ENTRY POINT PROVIDED INDIRECTLY

PROCEDURE DAYTIME(TCARRAY,WHERE):

ARRAY TOARRAY[*];

INTEGER WHERE;

LIBRARY SAMLIB;

Interface to the Library Facility

EXPORT DAYTIME;
FREEZE(TEMPORARY) ;
END; % OF DYNLIBI1

9 POSSIBLY CALLED BY THE SELECTION PROCEDURE
PROCEDURE DYNLIBZ2;

BEGIN % PRINTS DATE WITHOUT TIME.

% ENTRY POINT PROVIDED DIRECTLY

PROCEDURE DAYTIME(TOARRAY,WHERE);

ARRAY TOARRAY[*];

INTEGER WHERE;

BEGIN

REAL T;

T := TIME(7):

REPLACE POINTER(TOARRAY,8) + WHERE

BY T.[35:6] FOR 2 DIGITS, "-",

‘T.[29:6] FOR 2 DIGITS, "-",
T.[47:12] FOR 4 DIGITS;

END; % OF DAYTIME

EXPORT DAYTIME;
FREEZE(TEMPORARY);
END; % OF DYNLIBZ

% THE SELECTION PROCEDURE

PROCEDURE THESELECTIONPROC(LIBPARSTR,NAMINGPROC);
VALUE LIBPARSTR;

EBCDIC STRING LIBPARSTR;

PROCEDURE NAMINGPROC(LIBTASK); TASK LIBTASK; FORMAL;

BEGIN
IF LIBPARSTR EQL "WITH TIME" THEN
BEGIN A
IF LIB1TASK.STATUS NEQ VALUE(FROZEN) THEN
PROCESS DYNLIB1 [LIB1TASK]:;

NAMINGPROC(LIB1TASK);
DISPLAY(" *** CALLING DYNLIBl ");
END
ELSE
BEGIN

IF LIB2TASK.STATUS NEQ VALUE(FROZEN) THEN
PROCESS DYNLIB2 [LIB2TASK];
NAMINGPROC(LIB2TASK);
DISPLAY(" *** CALLING DYNLIB2 ");
END;
END; % OF THE SELECTION PROCEDURE

677

678

ALGOL REFERENCE MANUAL

% ENTRY POINT PROVIDED DYNAMICALLY
PROCEDURE DAYTIME(TOARRAY,WHERE):

ARRAY TOARRAY([*]:
INTEGER WHERE;

BY CALLING THESELECTIONPROC:

EXPORT FACT, % PROVIDED INDIRECTLY
DAYTIME; % PROVIDED DYNAMICALLY
FREEZE(TEMPORARY) ;
END. :

Calling Program #2

The following calling program

library described previously.

BEGIN

invokes OBJECT/SAMPLE/DYNAMICLIB, the

LIBRARY MYLIB(TITLE="OBJECT/SAMPLE/DYNAMICLIB.");
INTEGER PROCEDURE FAKTORIAL(N);

INTEGER N;

LIBRARY MYLIB(ACTUALNAME="FACT");

PROCEDURE DAYTIME(A,W);
ARRAY A[*];
INTEGER W;

LIBRARY MYLIB;

REAL T;
ARRAY DATIME[0:120];

MYLIB.LIBPARAMETER := "WITH TIME":
REPLACE POINTER(DATIME[O],8) BY

" 13 FACTORIAL IS ",

FAKTORIAL(13) FOR 12 DIGITS,

" ",

DAYTIME(DATIME[*],40);
DISPLAY(DATIME[O]):
END.

In this program, the declaration of the library entry point FAKTORIAL
specifies that the ACTUALNAME of the entry point is FACT. 1In the

template built for the library
FACT, SO for linkage to
OBJECT/SAMPLE/DYNAMICLIB must

However, within the program.

FAKTORIAL.

MYLIB, the name of this entry point is
occur, the directory of the library
contain an entry point named FACT.

the entry point 1is referred to as

679

9 DMSII INTERFACE

An interface to Burroughs Data Management System II (DMSII) is provided
in the BDMSALGOL (Burroughs Data Management System ALGOL) language. The
BDMSALGOL language is based on Burroughs Extended ALGOL and contains
extensions that enable a programmer to declare and use databases. These
extensions provide the following capabilities:

Invoking a database

Manipulating data through data management statements

Using database items through a mapping syntax
- Processing exceptions
Programs written in the BDMSALGOL language must be compiled with the

BDMSALGOL compiler. Typically, this compiler is titled
"SYSTEM/BDMSALGOL".

The extensions to ALGOL that make up the BDMSALGOL language are
described in this chapter.

680
ALGOL REFERENCE MANUAL

9.1 INVOKING A DATABASE
DATABASE DECLARATION

Like all variables, a database must be declared in a BDMSALGOL program
before it 1is referenced. However, a DATABASE declaration is unlike
other declarations in that it is actually an invocation. of a database
that has already been fully described and declared in a Data and
Structure Definition Language (DASDL) program. '

If the compiler control options LIST and LISTDB. are both TRUE, all
invoked structures, together with the record formats, item and key
descriptions, database titles, and other pertinent information, are
written on the program listing. The LISTDB option should be used, and
the resulting information studied carefully, when database application
programs are being developeﬁ. For more information on the LISTDB
option, see "BDMSALGOL Compiler Control Options" in this chapter.

See also _
<listdb option> 0 . L e e e e e e e e e e e e e T2

Syntax

<(database declaration>

—-— DATABASE --<database reference>--|

<database reference:>

|- <internal name> = -| |- <logical database name> CF -]

>=<database Name > == —— o e e e e e e e >

681
DMSII Interface

<internal name>

-—<BDMS identifier>--|

<logical database name>

—-—<BDMS identifier>--|

{database name>
~—<BDMS identifier>--|
(database title>
A properly formed <file title constant> (as defined in the "Work

Flow Language (WFL) Reference Manual") that has only one node: that
15, that contains no slashes (/).

<data set reference>

| ' S | |

|- <internal name> = -} |- (<set part») -|

<data set name>

-—~<BDMS identifier>--|

<set part>

———————————————————————————— <set name>--|

|- <internal name> = -]

682
ALGOL REFERENCE MANUAL

<(set name>

—-—<BDMS identifier>--|

See also
<BDMS identifier> v 891

Semantics

A DATABASE declaration declares a database and specifies which database
or which parts of a database are to be invoked. If no <data set
reference> parts and no <set reference> parts are specified in a
DATABASE declaration, then all data sets and all sets for each data set
are implicitly invoked.

The <internal name> construct assigns an internal name by which a
database, data set, set, or subset is known within the program. When an
internal name is specified, all subsequent references to the structure
must use this internal name.

A database, data set, set, or subset can be invoked more than once;
however, the external name (the name in the description file) can be
used to reference only one invocation of a structure. Internal names
must be wused to provide unique names for all other invocations of a
structure. The default internal name of a structure is its eXternal
name.

By using the internal names in the <data set reference> or the <set
reference> constructs, multiple record areas or set paths can be
established. Thus, several records of a single data set can be
manipulated simultaneously.

The <logical database name> construct allows the program to reference a

logical database. A program can invoke structures selectively from a

logical database. or it can invoke the entire logical = database.

Selective invocations are specified in the same manner as for physical
databases: however, the choice of structures is limited to those

structures included in the logical database.

The <database name> gives the external name of the database to be
invoked.

683
DMSII Interface

The <database title> construct is an alphanumeric string. The usercode,
if any, is the usercode of the control file. The single node of the
title is the directory node under which the database files are stored.
The family name, if any, is the family name of the control file. The
default database title is the external name of the database plus the
control .file usercode. and family name, if any, from the description
file. When opening the database, the Master Control - Program (MCP)
builds the control file title from the database title specified in the
declaration. See the "DMSII DASDL Reference Manual" for a discussion of
control files and description files.

This title equation is used only at run time, and cannot be wused at
compile time to specify the title of the database description file. The
primary use of the <database title> construct is for modeling. See the
"DMSII DASDL Reference Manual" for a description of modeling.

The <data set reference> construct specifies a particular data set from
the declared database. If a <data set reference> is used, only the
specified structures are invoked. A data set reference must be used to
invoke a disjoint data set.

The <data set name> construct gives the external name of the data set to
be invoked. '

The <set part> construct invokes specific sets from the data set
declared in the <data set reference> that contains it. If the <set
part> construct is omitted, all sets are implicitly - invoked. If the
<set part> construct is used, all sets (ALL), no sets (NONE), or only
the specified sets are invoked.

The <set reference> construct establishes a set that is not implicitly
associated with any particular record area. To load a record area using
the set name specified in a set reference, The "<data set> VIA" form of
the <selection expression> must be used. ’

The <set name> construct gives the external name of the set to be
invoked.

684
ALGOL REFERENCE MANUAL

Pragmatics

Only disjoint structures can be explicitly invoked. Embedded data sets,
sets, and subsets are always implicitly invoked if their master data
sets are (implicitly or explicitly) invoked. When a data set containing
an embedded set associated with a disjoint data set is invoked, or a
data set containing a link to another. disjoint data set is invoked, then
a path is established. However, the user must invoke the disjoint data
set if it is to be used.

Multiple invocations of a structure provide multiple record areas or set
paths. or both, so that several records of a single data set can be
manipulated simultaneously. Selecting only needed structures for UPDATE
and INQUIRY provides better use of system resources; a smaller Structure
Information Block (SIB) is required, -and fewer files can be opened.

If remaps are declared in DASDL, they aré invoked in the same manner as
conventional data sets.

Examples: Simple Database

The following examples apply to the database DB described by the
following DASDL description:

D DATA SET (
K NUMBER (6);
R NUMBER (5):
)3

S1 SET OF D KEY K:

S2 SET OF D KEY R;

DATABASE DB: D

This declaration establishes one current record area for the data
set D, one path for the set S1 of data set D, and one path for the
set 52 of data set D. The statements "FIND S1", "MODIFY S1", "FIND
S2", and "MODIFY S2" automatically load the data into the D record
area.

‘685
DMSII Interface

DATABASE DB: D, X=D (NONE)

This declaration establishes two current record areas (D and X) and
two paths (S1 and S2). The sets Sl and S2 are implicitly associated
with the D record area. The set part NONE prevents a set from being
associated with X. Thus, the statements "FIND S1" and "FIND S2"
. load the D record area. The statements "FIND X VIA S1" and "FIND X
VIA S2" must be executed to load the X record area using’h set.

DATABASE DB: D, X=D

This declaration shows how multiple current record areas and
multiple current paths can be established. The statement "FIND Sl
OF D" loads the D record area without disturbing the path 81 OF X,
and the statement "FIND S1 OF X" loads the X record area without
disturbing the path S1 OF D. Qualification of S1 is necessary to
distinguish the paths.

DATABASE DB: D (SET $1), X=D (SET S1), Y=D (NONE)

This declaration shows how more current record areas than paths can
be established. Three record areas (D, X, and Y) are established,
but only two paths (S1 OF D, and S1 OF X). The program must execute

" the statement "FIND Y VIA S1 OF D", "FIND Y VIA S1 OF X", or "FIND
Y" to load the Y record area.

DATABASE DB: X=D (SET S1), Y=D (SET T=S1)

This declaration uses the <set part> syntax to explicitly associate
a set with a given work area. The statement "FIND S1" loads the X
record area, and the statement "FIND T" loads the Y record area. Sl
and T both use the same key. o .

DATABASE DB: D, SY=Sl

This declaration shows how a set reference can be used to establish

:a set that is not implicitly associated with any particular record
area. The statement "FIND D VIA SY" must be executed to 1load a
record area using the set Sl.

686
ALGOL REFERENCE MANUAL

Example: Invoking Disjoint Data Sets

The following example shows when a data set reference must be used to
invoke disjoint data sets. The database DB 1is described by the
following DASDL description:

F DATA SET (
FI NUMBER (4);
):
E DATA SET (
EK NUMBER (8):
)i
D DATA SET (
A NUMBER (6);
SE SET OF E KEY EK;
LINK REFERENCE TO F;
)

If data set references are not specified to invoke E and F, as in the
declaration

DATABASE DB: D
the paths are established by invoking the embedded set SE and the 1link
item LINK. However, these paths cannot be used unless data set
references for E and. F are specified t¢ establish record areas

associated with these paths, as in the declaration

DATABASE DB: D,E,F

687
DMSII Interface

Example: Invoking a Logical Database

In this example, the database EXAMPLEDB is described by the following
DASDL description:

D1 DATA SET (
A REAL:
B NUMBER (5):
C ALPHA (10):
) ,
S1A SET OF D1 KEY IS A:
S1B SET OF Di KEY IS (A,B,C):
L. DATA SET ('
X FIELD (8);:
Y NUMBER (2):
7 REAL;
E DATA SET (
V1 REAL;
V2 ALPHA (2):
)t
SE SET OF E KEY IS V1;
)
S2A SET OF D2 KEY IS X;
S2B SET OF D2 KEY IS (X,Y,Z);
LDB1 DATABASE (D1(NONE), D2(SET S$=S2A)):
LDB2 DATABASE (D1(SET S1=S1B), D2(SET S2=S2B)):
LDB3 DATABASE (D=D2):

688
ALGOL REFERENCE MANUAL

The following BDMSALGOL program invokes the logical database LDB1 of
EXAMPLEDB. The program can see data sets D1 and D2, but not any of the
sets associated with D1, and can see only set S2A associated with D2.
S2A appears as set S. The output produced by the LISTDB compiler
control option is shown with the program. ' '

$ SET LIST LISTDB
‘BEGIN

DATABASE LDBl1 OF EXAMPLEDB:
*DATABASE TITLE: EXAMPLEDB ON DISK
*01 D1: DATA SET (i#2)

* INVOKED SETS:
* RECORD ITEMS:

*02 REAL A

*02 INTEGER B: NUMBER (5)

*02 - STRING C: ALPHA (10)

*01 D2: DATA SET (#5) ~
* INVOKED SETS: '

* S (#8, AUTOMATIC), KEY = X

* RECORD ITEMS:

*02 REAL X: FIELD (8)

*02 INTEGER Y: NUMBER (2)

*02 REAL 2

*02 E: DATA SET (it6)

* INVOKED SETS:

* SE (#7, AUTOMATIC), KEY = V1
* RECORD ITEMS: ‘

*03 REAL V1

*03 STRING V2: ALPHA (2)

*DESCRIPTION TIMESTAMP: 06/09/82 @ 17:30:34
END.

689
DMSII Interface

DATABASE ‘EQUATION

The term "database equation" refers to three separate operations:

1. Specification of database titles during compilation.

2. Work Flow . Language (WFL) database equation to override
compiled-in titles. (For more information, refer to the "DMSII
User Language Interface Software Operation Guide™ for ‘the WFL
syntax.)

3. Run-time manipulation of database titles.

To take advantage of the re-entrance capability of the Accessroutines,
the user must be able to specify the title of a database at run time.
Database equation allows the database title to be specified at run time,
and allows access to databases ctnhat are stored under other usercodes and
on families that are not visible to a task.

Database equation is operationally similar to file equation. WFL
database equation overrides the specification of a database title in the
DATABASE declaration, and run-time modification of a database title
overrides both WFL database equation and the DATABASE declaration.
However, database equation differs from file equation in that a run-time
error results if a BDMSALGOL program attempts to assign a value to or
examine the TITLE attribute of a database while it 1is open. For an
explanation of the TITLE database attribute, refer to "DATABASE
Declaration™ in this chapter.

The following syntax shows how the database TITLE attribute can be
manipulated during program execution,

Syntax

<(database attribute assignment statement>

--<string-valued database attribute>-- := --<string expression>--|

<string-valued database attribute>

--<internal name>-- . -- TITLE --|

See also
<internal NamMe> . v v v v v e« 4 e e e e e e e e 4 e« +« « . . 681

690
ALGOL REFERENCE MANUAL

Semantics

The string expression must evaluate to a string in the form of a
database title. '

The <string-valued database attribute> construct can be used anywhere a
string expression is valid.

Database titles never end with a period, and a replace pointer—valued
attribute statement 1is not valid for making assignments to database
titles.

NOTE

BDMSALGOL programs employing database
equation must be compiled with a Mark 3.2
or later BDMSALGOL compiler.

Example

BEGIN
STRING S;
DATABASE MYDB (TITLE="LIVEDB"):
OPEN UPDATE MYDE;

CLOSE MYDB:
MYDB.TITLE := "(UC)TESTDB ON TESTPACK";
OPEN UPDATE MYDB;

CLOSE MYDB;
S := TAKE(MYDB.TITLE,S5);

END.

In this example, the first BDMS "OPEN" statement opens the database with
the title "“LIVEDB". whose data and control files are stored under the
user's directory. The second OPEN statement 1invokes the database
"TESTDB", whose files are stored on TESTPACK under the usercode UC.

. 691
DMSII Interface

9.2 BDHSALGOL BASIC LANGUAGE CONSTRUCTS
The following constructs are used within the DATABASE declaration and in
data management statements and functions. These sections describe the

_forms of names for databases, data sets, sets, items, and so on; input
mapping and output mapping: and the selection expression.

9.2.1 BDMS IDENTIFIERS AND QUALIFICATION

Naming conventions in DASDL for databases and their components follow
COBOL rules: that is, names can contain hyphens, and some item and
structure names can redquire qualification. Although both of these
conventions contradict normal ALGOL naming rules, they must be allowed
in programs that declare and use databases.

BDMS 1 ENTIFIERS

The identifier of a database, data set, set, item, and so on is in the
form of a <BDMS identifier>.

Syntax

<BDMS identifier>.

Semantics
The <BDMS identifier> construct must be fewer than 64 characters long.
Examples

1f a database is described in DASDL by the following:

D-S DATA SET (
A-1 NUMBER (5):
A-2 NUMBER (10):
)3

692
ALGOL REFERENCE MANUAL

then in a BDMSALGOL program, the data set D-S and the items A-1 and A—f
~can be referenced as in the following examples: v

INTEGER I;
CGET D-S (I := A-1);
PUT D-S (A-2 := I):

IDENTIFIERS OF OCCURRING ITEMS

If an item is declared in the DASDL description to have an OCCURS
clause, then its identifier must be subscripted to denote which of its
occurrences 1is to be used.

Syntax

<subscripted BDMS identifier>

—-<BDMS identifier>-- [---<arithmetic expression>---] --|
Semantics

The leftmost arithmetic expression denotes the subscript of the -
outermost OCCURS clause that affects the item, the next arithmetic
expression to the right denotes the subscript of the next outermost
OCCURS clause, and so on.

693
DMS1II Interface

Examples

If items A and B are described in DASDL as follows:

DS DATA SET (
G GROUP (
A ALPHA (10):
B NUMBER (4) OCCURS 3 TIMES:
)

OCCURS 2 TIMES;
)
there are two occurrences of A, denoted

Al1] : Al2]

and there are six occurrences of B, denoted

B[1,1] B[2,1]

B[1,2)] B[2,2]

B[1,3] B[2,3]
QUALIFICATION -

Database item names need not be unique within a'database. Qualification
is used to distinguish between database items with the same names.

Syntax

<qualification>

|-<subscripted BDMS identifier>-—|
Semantics

An item name can be dqualified by the name of any structure that
physically contains the item. Any number of qualification names desired
can be used, provided that the. result 1is unique. If - improper or
insufficient qualification is used, a syntax error is given.

694
ALGOL REFERENCE MANUAL

A set name.can be qualified by the name of the data set it spans.
A group name can be used to qualify an item it contains.

Qualification need not be used if the unqualified name is unique.
Qualification must be used whenever there is ambiguity. A variable name
can be declared with the same name as a database item ~in BDMSALGOL
without requiring gualification of the item name.

Examples

1f a database is described in DASDL as follows:

DS1 DATA SET (
N NUMBER (4);
)

DS2 DATA SET (
N NUMBER (4);
)

then the following BDMSALGOL statements indicate how qualification 1is
used to distinguish between the two data items named N.

SET N OF DS1 TO NULL:
SET N OF DS2 TO NULL;

695
DMSII Interface

9.2.2 REFERENCING DATABASE ITEMS

The record area (user work area) is not directly accessible to a
BDMSALGOL program. Instead, an explicit mapping between database data
items and program variables must be specified whenever access to those
items is desired.

Mappings specify the source and destination of data to be transferred
into or out of a user work area. Mappings are of two kinds: input
mappings and output mappings.

Example

If a database is described in DASDL by the following:

D1 DATA SET (
A NUMBER (5);
X NUMBER (5) OCCURS 3 TIMES:
):

then the items of data set D1 can be referenced in the following ways:

INTEGER B,Y1,Y2,Y3;

% THE FOLLOWING STATEMENT TRANSFERS THE VALUE OF DATABASE ITEM A
% TO THE LOCALLY DECLARED INTEGER B.

GET D1 (B := A);

% THE FOLLOWING STATEMENT TRANSFERS THE VALUE OF LOCALLY DECLARED
% INTEGER B TO THE WORK ARE4 FOR D1.
PUT D1 (A := B);

% THE FOLLOWING STATEMENT TRANSFERS THE VALUES OF ALL THREE
% QCCURRENCES OF X INTO Y1, Y2, AND Y2.
GET D1 (Y1 := X[1],

Y2 := X[2],

Y3 := X[3]):

% THE FOLLOWING STATEMENT TRANSFERS THE VALUES OF LOCALLY DECLARED
% INTEGERS Y1, Y2, AND Y3 INTO THE THREE OCCURRENCES OF DATABASE
% ITEM X. : .
PUT D1 (X[1] Y1,
X[2] := Y2,
X[3] := ¥3);

696
ALGOL REFERENCE MANUAL

INPUT MAPPING

Input mappings can be used with the "retrieval" statements DELETE, FIND,
GET, BDMS "LOCK," and MODIFY. Input mappings transfer the value of a
DASDL-declared data item to a program variable. If the data item is an
occurring item (that is, if the item 1is declared in DASDL with an OCCURS
clause), it must be subscripted appropriately.

Syntax

<input mapping>

————<input assignment>—-——|

<input assignment>

————<arithmetic variable>-- := —---<count item name>--—----—-= |
| | | |
| |-<field item name>-----——- |
! | |
| [-<numeric item name>----—- |
f | |
| |-<population item name>—-—|
| I T
} |-<real item name>---—---—--- [

f

|

|-<record type item name>-—|

|-<Boolean variable>-- := --<Boolean item name>-—-—----= |

| |
|-<pointer variable>-- := ---<alpha item name>---------- |
' | |
|-<group item name>---—------- |

| |

l-<numeric item named>-—-—————-— |

697
DMSII Interface

<alpha item name>
<Boolean item name>
<count item name>
<field item name>
<group item name>
<numeric item name>
<population item name>
(real item name>
<record type item name>

————<BDMS identifier>----—--——-=——--—-|
| |

|-<subscripted BDMS identifier>-|

See also »
<arithmetic variable> . v v v v« o « o + 4 v o e e e e e o . o« . 225
CBDMS identifier> . .« « v v v « v o o « o + o o e« e+« o« « . 691
CBOOlEan Variable?. « &« « « « « o o o o 4 4 e 4 e 4 e 4 e . . . 234
<pointer variable>. o . o . o e e e e e e e e e e . . 241
<subscripted BDMS identifier> + ¢« « . « o o . . . 692
Semantics

An arithmetic variable can be an integer, real, or double simple or
subscripted variatle. A Boolean variable can be a Boolean simple or
subscripted variable. A pointer variable can be a pointer identifier or
an element of a character array.

<arithmetic variable> := <field item name>

If the field item is defined to contain N bits, then N bits are stored
right-justified in the arithmetic variable. All other bits are set to
zZero.

<numeric item name>
= <real item name>

i

<arithmetic variable> :
<arithmetic variable> :

The numeric item or real item is converted into a binary value with a
scale facter of =zero (its true value). The value is stored in the
arithmetic variable as in a normal arithmetic assignment:; that is, it is
integerized or extended. if necessary. An error termination results if
necessary integerization is not possible, as in normal ALGOL arithmetic
assignments.

698
ALGOL REFERENCE MANUAL

<arithmetic variable = <count item name>

> ¢
<arithmetic variable> := <population item name>
<arithmetic variable> := <record type item name>

The value of the count item, population item, or record type item is

placed 1in the arithmetic wvariable. Use of a count item, population
item, or record type item allows read-only access to the particular
field. Those items cannot be changed directly. They are accessed only

through input mappings, and cannot be used in output mappings.
<(Boolean variable> := <Boolean item name>

The Boolean variable is assigned the truth value (the value of bit 0) of
the Boolean item. Bits 1 through 47 of the Boolean variable are set to
Zero.

<pointer variable> := <alpha item name>
<pointer variable> := <group item name>

If the alpha item or group item 1is defined to contain N EBCDIC
characters, then N characters are transferred to the location pointed to
by the pointer variable. A fault results 1if one of the following
conditions is satisfied:

1. The pointer is uninitialized.

2. The pointer is not an EBCDIC (8-bit) pointer.

3. Fewer than N character positions remain 1in the referenced
array.

A group item is treated as if it were an alpha item; all subordinate
data items are transferred without change.

699
DMSII Interface

<pointer variable> := <numeric item name>

This assignment takes advantage of the fact that a numeric item is
maintained as a hexadecimal string. ~If the numeric item is defined to
contain N digits (including the sign digit, 1if specified), the N
hexadecimal characters are transferred to the location pointed to by the
pointer variable. A fault results if one of the following conditions is
satisfied:

1. The pointer is uninitialized.
2. The pointer is not a hexadecimal (4-bit) pointer.

3. Fewer than N hexadecimal character positions remain in the
' referenced array.

700
ALGOL REFERENCE MANUAL

OUTPUT MAPPING

Output mappings can be used with the "storage" statements PUT and STORE.
Output mappings transfer the value of a program variable or expression
to a DASDL-declared data item. If the data item is an occurring item
(that 1is, 1f the item is declared in DASDL with an OCCURS clause), it
must be subscripted appropriately.

Syntax

<output mapping>

--——-<output assignment>----|

<output assignment>

--—-—-<field item name>----- := ——<arithmetic expression>---—-|
! | I
f~<numeric item name>-| |
I | I
|-<real item name>-——-| |

!

|-<Boolean item name>-- := --<Boolean expression>----- !
! |
|-<alpha item name>----- := ---<pointer expression>---|
f I l I
|-<group item name>---| -<string literal>------- |

|-<numeric item name>-—|

See alsco
<alpha item name> 0 0 v e e e e e e e e .. 697
<Boolean item name> 4 i i 4w e v e e e e .. 097
<field dtem name> ¢ v v i v e v e e e d e e e e e e e . 697
CEroup item name’> v 4 e e h e e e e e e e e e e . 897
cnumeric item name> . . . L L 0 0 i e i e e e e e e e e e e .. 69T
{numeric item name> i e e i 4 e e e e e e e e e .. 697

<real item Name>. ¢ ¢ i v i e e e e e e e e e e e e . 897

701
DMSII Interface

Semantics

An arithmetic expression used in an output mapping can be single
precision or double precision. :

<field item name> := <arithmetic expression>

If the field item is defined to contain N bits, then the N rightmost
bits of the value of the arithmetic expression are assigned, unaltered,
to the field item. Care should be taken if the arithmetic value is real
or double precision, (that is, not integer) because the value might be
normalized. in which case the N rightmost bits would not contain the
value.

<pumeric item name> := <arithmetic expression>
<real item name> := <arithmetic expression>

The value of the <arithmetic expression .is scaled appropriately and
assigned to the numeric item or real item. If the numeric item or real
item is unsigned, the absolute value of the arithmetic expression 1is
used.

<Boolean item name> := <Boolean expression>

The truth value (the value of bit 0) of +the Boolean expression 1is
assigned to the Boolean item. Bits 1 through 47 of the value of the
Boolean expression are ignored.

<alpha item name> := <pointer expression>
<group item .name> := <pointer expression>

If the alpha item or group item is defined to contain XN EBCDIC
characters, then N characters are transferred from the location pointed
to by the pointer expression to the alpha or group item. A fault
results if any of the following conditions is satisfied:

1. The value of the pointer expression is an uninitialized
pointer.

2. The value of the pointer expression is not an EBCDIC (8-bit)
pointer.

3. Fewer than N character positions remain in the referenced

array.

702
ALGOL REFERENCE MANUAL

<numeric item name> := <pointer expression>

This mapping takes advantage of the fact that a numeric item 1is
maintained as a hexadecimal string. If the numeric item is defined to
contain N digits (including the sign digit, if specified), then N
hexadecimal characters are transferred to the numeric item from the
location pointed to by the pointer expression. The user is responsible
for ensuring that the string is a valid representation of the item
declared in DASDL: that is, the proper sign and numeric characters, 1in
the proper format, must be used. A fault results if any of the
following conditions is true:

1. The value of the pointer expression is an uninitialized
pointer.

2. The value of the pointer expression 1is not a hexadecimal
(4-bit) pointer.

. Fewer than N hexadecimal character positions remain in the
referenced array.

= <string literal>

<alpha item name> :
:= <string literal>

>
<group item name>
The string literal is transferred to the alpha item or group item. The
string literal must be EBCDIC, or a syntax error results. If the string
literal is shorter than the alpha item or group item, it is exXtended
with ©Dblank fill characters on the right. If the string literal is

longer than the alpha item or group item, the excess characters on the
right are truncated.

<numeric item name> := <string literal>

The string literal is transferred to the numeric item. The string
literal must be a hexadecimal string and must contain the exact number
of characters for the numeric item or a syntax error results. The user
is responsible for ensuring that the string 1literal 1is a wvalid
representation of the numeric item.

~ 703
DMSII Interface

9.2.3 THE SELECTION EXPRESSION

A selection expression is used in DELETE, FIND, BDMS "ILOCK," and MODIFY
statements to identify a particular record in a data set.

Syntax

(selection expression>

|- FPIRST -—|
| i
|- LAST ——|
I l
|- NEXT ——|
! l
|- PRIOR -]

<data set>

-—<qualification>--|

<{set selection expression>

———————————————— (SR Y =mmmm e mmm |

| [bl ‘ |

|- FIRST -| |-<subset>-| |- AT —-——-—-—- <key condition>-|

| | l |

|- LAST —-| |- WHERE -|

t : |

|- NEXT --}

| !

[- PRIOR -!

set>

-—<qualification:——|

704
ALGOL REFERENCE MANUAL

<subset>

-—-<qualification>--|

<key condition>

<numeric relation>

-—-——<numeric item identifier>---<relational operatory>————-—————me———
! I
|-<field item identifier>---|
| ' !
|-<real item identifier>-—--{

>--—<arithmetic exXpression>—————r— - oo

|-<pointer expression>----|

<{numeric item identifier>
<field item identifier>
<real item identifier>

-—-<BDMS identifier>—--|

<alphanumeric relation>
——<alpha item identifier>--<relational operator>———————memmmee
»—==<constant string eXpPressSiOn ————————m
| . !
|-<pointer expressions>—---—--—---—-—-

<alpha item identifier>»

--<BDMS identifier>--|

. 705
‘ DMSII Interface

<link item>

~-—<qualification>--|
See also _ :
CBDMS identifi€r> . v v v v v & o« o « o o o o o « e o e 4 s . . 691
<constant String eXpression®. . . « « + + + + « + + + + o . . . 525
<qualification . . . v v o ciei. v sTeie e e e e e e e e e . e 692
<relational OPErator> . . « o « o « o o o o o o o o s 2 e s e 493
Semantics

A set selection expression selects the record to which the set path
refers. A NOTFOUND exception is returned if the record has been deleted
or if the path does not refer to a valid current recorgd.

The construct "<data set> VIA" identifies the record area and current
path to be affected if the desired record is found. This option is used
for link items and for sets that are not implicitly associated with the
data set. : '

The <link item> form is used to specify a link item defined in the DASDL
description. The record to which the link item refers is selected. An
exception is returned if the link item is NULL.

The <data set> form is used to select the record to which the data set
path refers. A NOTFOUND exception is returned if the record has been
deleted or if the path does not refer to a valid current record.

The word "FIRST" selects the first record in the specified data set,
set, or subset. If a key condition is also specified, the first record
of the specified set or subset - that satisfies the key condition is
selected. FIRST is assumed by default.

The word "LAST" selects the last record in the specified data set, set,
or subset. If a key condition is also specified, the last record of the
specified set or subset that satisfies the key condition is selected.

The word "NEXT" selects the next record relative to either the set path
(if a set or subset .is specified) or the data set path (if a data set is
specified). 1If a key condition is also specified, the next record
(relative to the current path) of the specified set or subset that
satisfies the key condition is selected.

706
ALGOL REFERENCE MANUAL

The word "PRIOR" selects the prior record relative to either the set
path (if a set or subset is specified) or the data set path (if a data
set is specified). 1If a key condition is also specified, the prior
record (relative to the current path) of the specified set or subset
that satisfies the key condition is selected.

In a set selection expression, the <set> or <subset> construct selects
the record to which the set or subset path refers. A NOTFOUND exception
is returned if the record has been deleted or if the path does not refer
to a valid current record.

The words "AT" or "WHERE" indicate that a key condition follows. AT and
WHERE are synonyms.

A key condition specifies values used to locate specific records in a
data set referenced by a particular set or subset. If the name of a
data item specified in a key condition 1is not unique, the compiler
provides implicit qualification through the set or subset of the. set
selection expression. Qualification of the item name by the name of the
data set that contains the item, while not necessary, is allowed;
however, the compiler handles this qualification as documentation only.

The expressions that appear in a key condition cannot contain any
transaction item references.

A numeric relation specifies a particular numeric, field, or real item
and compares it to the value of an arithmetic expression or a pointer
expression. The pointer expression must evaluate to a hexadecimal
pointer.

An alphanumeric relation specifies a particular alpha item and compares
it to the value of a constant string expression or a pointer expression. -
The pointer expression must evaluate to an EBCDIC pointer. The constant
string expression must be an EBCDIC string.

Examples

These examples use the database described in DASDL by the following:

D DATA SET (
A ALPHA (3);
N NUMBER (5);
)
S SET OF D KEY IS N, DATA A:

707
DMSII Interface

LOCK S WHERE N NEQ 10

This LOCK statement acts upcon the first S where the value of N is
not equal to 10.
FIND S AT A = "ABC" AND (N = 50 OR N = 90)

This statement locates the first S where A is equal to the string
"ABC" and either N is equal to 50 or N is equal to 90.

708
ALGOL REFERENCE MANUAL

9.3 BDMSALGOL STATEMENTS
The following data management statements allow a BDMSALGOL program to

use and manipulate the data 1in & database. These statements are
described in this section.

<assign statement> <insert statement>
<begintransaction statement> <BDMS lock statement>
<BDMS close statement> <midtransaction statement>
<create statement> <modify statement>

{(delete statement> <BDMS open statement>
<dmterminate statement> <put statement>
<endtransaction statement> <recreate statement>

<find statement> <remove statement>

<BDMS free statement> <BDMS set statement>
<generate statement> <store statement>

<get statement>

o . 709
DMSII Interface ASSIGN

ASSIGN STATEMENT

The ASSIGN statement establishes a link from one record in a data set to
another record of the same data set. It assigns either the value of the
current record in a data set or the value in a link item to another link

item. The value of the second link iteilm, called the target link item,
then allows the system to locate the record in the referenced data set.

The ASSIGN statement is effective immediately, therefore the record
containing the target link item does not need to be stored unless data
items of this record have been modified.

Syntax

<assign statement>

| -<exception handling>-|

See also
<AALE SELE . & v v e e e e e e e e e e e 4 e e e e e e e e ... 103
<exception handling>. . . . « « « « « ¢ 4 4 4 e 4 e e o . o« . . 168
Clink $LOMY « v v v 4 e e e e e e e e e e e e e e e e e woe o . o. 105
Semantics

The data set must be declared in DASDL as- the object - data set of the
target link item. A value that points to the current record in the data
set is assigned to that link item.

If the <data set> form is used. the current path of the specified data
set must be valid, but the record need not be locked. If the data set
path is not valid, an exception occurs.

710 :
ASSIGN ALGOL REFERENCE MANUAL

If the word "NULL" is used, the relationship between records is severed
by assigning a NULL value to the target link item. - If that link item is
already NULL, this option is ignored. A FIND, BDMS "LOCK," or MODIFY
statement on a NULL link item results in an exception.

If the ASSIGN statement specifies twc link items, the value of the first
link item is assigned to the target link item. The first link item must
be declared in DASDL to have the same object data set as the target link
item and be the same type of link (counted link, self-correcting link,
symbolic link, unprotected link, or verified link). If the 1link items
are counted links, the count item is automatically updated, even if the
record that is referenced is locked by another programn.

The current path of the data set containing the first 1link must be
valid, but the record need not be locked. 1If the data set path is not
valid, an exception occurs.

After the ASSIGN statement has executed, the target link item points to
either the current vrecord in the specified data set or tc the record
pointed to by the first link item.

The current path of the data set containing the target link item must be
valid, and the record must be locked; otherwise, an exception occurs.

If the target link item references a disjoint data set. then that 1link
item can point to any record in the data set. If the target link item
references an embedded data set, then only certain records in the data
set can be referenced. 1In this case, the record being referenced must
be owned by the record containing the target link item or by an ancestor
of the record containing this link item. (An ancestor is the owner of

the record, the owner of the owner, and so forth.)

If an exception is returned. the ASSIGN statement is not completed, and
a NULL value is assigned to the target link item.

711
DMSII ‘Interface ASSIGN

Example

If the database EXAMPLEDB is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
L IS IN E VERIFY ON N:
)
$ SET OF D KEY A;

E DATA SET (
N NUMBER (3);:
R REAL:
)yoo
T.SET OF E KEY N;

then the following BDMSALGOL program uses the ASSIGN statement to assign
the value of the current record of data set E to link item L.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE EXAMPLEDB:
EBCDIC ARRAY X[0:2];
INTEGER Y:

OPEN UPDATE EXAMPLEDB;

WHILE NOT READ(CARD_FILE,<A3,I3>,X,Y) DO
BEGIN
FIND S AT A X1
FIND T AT N = Y3
ASSIGN E TO L3
END:

CLOSE EXAMPLEDB:

END.

[}

712
BEGINTRANSACTION ALGOL REFERENCE MANUAL

BEGINTRANSACTION STATEMENT

The BEGINTRANSACTION statement places a program in transaction state.
This statement can be used only with audited databases.
The BEGINTRANSACTION statement performs the following steps in order:

1. Captures the restart data set if AUDIT is specified

2. Places a program in transaction state

Refer to the "DMSII User Language Interface Software Operation Guide”
for further details regarding audit and recovery.

Syntax

<begintransaction statement>

== BEGINTRANSACTION —=-—-m=—mmmmm e ——m e >
|- (-—<transaction record variable>--) -|

| I
R Nl R L —— |

I l
Rl (o i)) e — |

>Tirestart data set -—--mmeoemmm e |

|-<exception handling>-|

{transaction record variable>

The <transaction record variable> syntax is defined in the “DMSII
Transaction Processing System (TPS) Programmer's Manual."

{restart data set>

-—<gualification>--|

See also
<exception handling>. e e e e v e W . . 768
<qualification> e+ 4+ . . 693

713
DMSII Interface BEGINTRANSACTION

Semantics>

If the <transaction rebofd variable> construct is used, it is the formal
input transaction record variable, and NOAUDIT is the default action.

The word "AUDIT" causes the restart area to be captured. The path of
the specified restart data set is not altered when the restart record is
stored. AUDIT is the default action.

The word "NOAUDIT" causes the restart area to not be captured. The
¢restart - data set> construct specifies the restart data set to be
updated.

An .exception is returned if the BEGINTRANSACTION statement is attempted
while the program is in transaction state.

If any exception is returned, the program is not placed in transaction
state. If an ABORT exceptionh is returned, all records that the program
had locked are freed. '

'Pragmatics
Deadlock can occur during execution of a BEGINTRANSACTION statement.

Any attenmpt to modify an audited database when the program is not in
transaction . state results in a fault. The BDMSALGOL statements that
modify databases are the following:

ASSIGN statement
DELETE statement
GENERATE statement
INSERT statement
REMOVE statement
STORE statement

714
BEGINTRANSACTION ALGOL REFERENCE MANUAL

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT):
R RESTART DATA SET (
P ALPHA (10):
Q ALPHA (100);
)
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)
S SET OF D KEY N:

then the following BDMSALGOL program demonstrates
BEGINTRANSACTION statement can be used.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;
MY N := 1;
WHILE MY_N < 100 DO
BEGIN
CREATE L
PUT D (N := MY_N):
BEGINTRANSACTION R;:

STORE D;
ENDTRAKSACTION R;
MY N = * + 1;
END;
WHILE NOT READ(CARD_FILE,<I3,A3>,MY_N,MY A[0]) DO
BEGIN

LOCK S AT N = MY_N;
BEGINTRANSACTION R:
PUT D (A := MY _A[0]);
STORE D;
ENDTRANSACTION R:
END;

CLOSE DBASE:

END.

how

the

, . 715
DMSII Interface : BDMS CLOSE

BDMS CLOSE STATEMENT

The BDMS "CLOSE" statement closes a databaée when further access is no
longer required. : i

The CLOSE statement performs the following steps-in order:

1. Closes the database
2. Frees all locked records
Syntax

<BDMS close statement>
—-— CLOSE --<database identifier>---—-—-—-—-—==-—==——————=——===== |
| |
|-<exception handling>-|

<database identifier>

-—<BDMS identifier>——|

See also
<BDMS identifier> . . v v v v o o o e o e e el e e e e e e e 691
cexception handling>. . . « « o « ¢ o o e o e e e e e e e 768
Semantics
The database identifiet specifies the database to be closed. If the

database was declared to have an internal name, this internal name is
the database identifier. If the database does not have an internal name
but is a logical database, then the logical database name is the
database identifier. If the database does not have an internal name and
it is not a logical database, then the database name is the database
identifier. :

An exception is returned 1f the specified database is not open.

716
BDMS CLOSE ALGOL REFERENCE MANUAL

Pragmatics

Use of the CLOSE statement is optional; the system closes any open
database at the time a program terminates.

The CLOSE statement is the only BDMSALGOL statement in which the status
word has meaning when no exception is indicated. Therefore, after a
CLOSE statement, the status word should be examined by the program - and
appropriate action taken, whether or not an exception. is returned. An
ABORT exception can be obtained in this manner.

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT):
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

) :
D DATA SET (

A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

):
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR:
X SUBSET OF D BIT VECTOR:
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR:

then the following BDMSALGOL program shows how to use the CLOSE
statement to close DBASE.

DMSII Interface

BEGIN .
FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER):
DATABASE DBASE:
BOOLEAN MB;
REAL MR;
INTEGER MN:
EBCDIC ARRAY MA[0:2]:

OPEN INQUIRY DBASE; }

WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN ' .
FIND S AT N = MN:

GET D (MA[O] := MB := B);
IF MB THEN
GET D (MR := N)
ELSE
MR := O: ‘
WRITE(PRINT_FILE,<I3." ",A3," ",L5," ",E4.2>,

MN,MA{O].MB,MR);
END: :

CLOSE DBASE;
END.

717
BDMS CLOSE

718
CREATE ALGOL REFERENCE MANUAL

CREATE STATEMENT

The CREATE statement initializes the user work area of a data set
record.

The CREATE statement performs the following steps in order:

1. Frees the current record of the specified data set

2. Reads any specified expression to determine the format of the
record to be created

3. Initializes data items to one of the following values:
a. The DASDL-declared INITIALVALUE, if present
b. The DASDL-declared NULL, if present

c. The default NULL

Syntax

<create statement>
—— CREATE --<data set ————————= === e e e — e >

|- (--<arithmetic expression>--) —|

|-<exception Landling>-|

See also
<data S€LY>. . v v v v 4 e e e e e e e e e e e e e e e e e e e . 703
<exception handling>. « . « « ¢« + + « + « + « « +« . . 768
Semantics
The <data set> construct specifies the data set to be initialized. The

current path of the data set is not changed until a subsequent STORE
statement has completed successfully.

The arithmetic expression specifies the type of record to be created.
Thig arithmetic expression is required when a variable-format record is
created; otherwise, it must not appear.

: 719
DMSII Interface CREATE

An exception is returned if the arithmetic expression does not represent
a valid record type.

Pragmatics

Normally, the CREATE statement is eventually followed by a STORE
statement, which places the newly created record into the data set.
However, if a subsequent STORE Operation is not desired, the CREATE
statement can be nullified by @a subsequent CREATE, DELETE, FIND,
BDMS "FREE." BDMS "LOCK," MODIFY, or RECREATE statement.

The CREATE statement sets up only a record area. If the record contains
embedded structures, the master record must be stored before entries can
be created in the embedded structures. If only entries in the embedded
structure are created (that is. if items in the master are not altered).
the master need not be stored a second time.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (10);
B BOOLEAN:
N NUMBER (3);
)

S SET OF D KEY N:

then the following BDMSALGOL program shows how a record of data set D
can be created and stored.

720
CREATE ALGOL REFERENCE MANUAL

BEGIN .

FILE CARD_FILE(KIND=READER);
DATABASE DBASE:

EBCDIC ARRAY X[0:9]:

INTEGER Y.Z:

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE.<A10,Il,13>,x[0],Y,Z) DO
BEGIN
CREATE D;
PUT' D (A& := X[0]):
IF Y = 1 THEN

PUT D (B := TRUE):

PUT D (N := Z);
STORE D;
END;

CLOSE DBASE;

END.

. o 721
DMSII Interface DELETE

'DELETE STATEMENT

The DELETE statement is identical to the FIND statement except that if a
record is found, it is locked and then deleted.

The DELETE statement performs the following steps in order:

1. Frees the current record, unless the selection expression 1is
the name of the data set. and the current record is locked. 'In
that case, the locked status is not altered.

2. Alters the current path to point to the record specified by the
selection expression, and locks this record.

3. Transfers that record'to the user work area.

4, Removes the record from all sets and automatic subsets, but not
from manual subsets.

5. Removes the record from the data set.

If the record is found but cannot be deleted, an exception is returned
and the DELETE statement terminates, leaving the current path pointing
to the record specified by the selection expression.

If a set selection expression is used and the record is not found. then
an exoeptibn is returned and the set path is changed and invalid. It
refers to a location between the last key less than the condition and
the first key greater than the condition. A set selection expression
using NEXT or PRIOE can be done from this point provided Kkeys greater
than and less than the condition exist. The current path of the data
set ., the current record, and the current paths of any other sets for
that data set remain unchanged.

It is the requnsibility of the programmer to ensure that no manual
subset refers to the record being deleted.

722
DELETE ALGOL REFERENCE MANUAL

Syntax

<delete statement>

-- DELETE --<selection expression>--—————-===—=——————————m—— >

|- (--<input mapping>--) —|{

See also _
<exception handling>. « . . « . . . o o . . o . v . . . 768
¢input mapping> 0 o 0 . . o 0 o s e e e s e e e e . . 698
<selection eXpression>. . . .« .+ + ¢ « v ¢ e 4 e e o 4 4+ « . . 703
Semantics

The selection expression identifies the record to be deleted.

An exception is returned and the record is not deleted if the record has
counted 1links pointing to it, or if the record contains a non-NULL 1link
or a non-empty embedded structure.

Pragmatics

When the DELETE statement completes, the current paths still refer tc
the deleted record. Therefore, a FIND statement on the current record
results in a NOTFOUND exception; however. "FIND NEXT" and "FIND PRIOR"
statements are still appropriate.

723
DMSII Interface DELETE

Example

If the database DBASE isvdescribed‘in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)3
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the DELETE
statement to delete a record of the data set D where item N is equal to
the value of X.

BEGIN
FILE CARD_FILE(KIND=READER):
DATABASE DBASE;

INTEGER X; '

OPEN . UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
DELETE S AT N = X;
CLOSE DBASE;
END.

724
DMTERMINATE ALGOL REFERENCE MANUAL

DMTERMINATE STATEMENT

The DMTERMINATE statement aborts the current action. When an exception
occurs that the program does not handle., the DMTERMINATE statement can
be called to produce the same results as if the exception-handling
syntax had not been specified in the statement; that is, the DMTERMINATE
statement causes the program to terminate with a fault.

Syntax

<dmterminate statement>

-— DMTERMINATE ---<Boolean identifier>----|
1 l
f-<integer identifier>-|
i f
|-<real identifier,—---|

See also
<Boolean identifier>. . .« « + « ¢ ¢« o 4 o e e e e e e e e e e 5%
<integer identifier>. . . . ¢ o . . . o . e e e e e e e e e 123
<real identifier> P 1 - ¥4

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3):
B BOOLEAN;
N NUMBER (3):
R REAL:
)3
S SET OF D KEY N;

‘ 725
DMSII Interface DMTERMINATE

then the following BDMSALGOL program shows an example of the use of the
DMTERMINATE statement.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
BOOLEAN RSLT:
'REAL RRSLT = RSLT:
INTEGER X; ’

OPEN UPDATE DBASE;
FIND FIRST D :RSLT;
IF RSLT THEN

BEGIN
DISPLAY("D IS EMPTY DATA SET"):
DMTERMINATE(RSLT); '

'END

ELSE _

WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN

DELETE S AT N = X :RSLT;
IF RRSLT.DMERROR = NOTFOUND THEN
DMTERMINATE(RSLT)
END;
CLOSE DBASE;
END.

726
ENDTRANSACTION ALGOL REFERENCE MANUAL

ENDTRANSACTION STATEMENT

The ENDTRANSACTION statement takes a program out of transaction state.
This statement can be used only with audited databases.

The ENDTRANSACTION statement performs the following steps in order:

1. Captures the restart area if AUDIT is specified
2. Forces a syncpoint if the SYNC option is specified
3. Implicitly frees all records of the database that the program

has locked

Refer to the "DMSII User Language Interface Software Operation Guide"
for information regarding audit and recovery.

Syntax

<endtransaction statement>

~= ENDTRANSACTION === oo o oo o m e — o oo oo o >

y— <restart data Set> —————m——————————m—— o m oo oo oo

|- SYNC -| |-<exception handling>-—|

<endtransaction parameters:
-—<transaction record variable>-- , -=-—-==-——-——---—-——ToToooooomooes >

>-<saveoutput procedure identifier>-—-—-——------—-——---—--————-———————o= |

(saveoutput procedure identifier>

—-—-<procedure identifier>--|

727

DMSII Interface ENDTRANSACTION
See also :
<exception handling>. . . « « « + « +« ¢ « « « « + + + « < <« . . 168
<procedure identifier>.+ .« <« « « « o+ < 165
<restart data@ S@t>. . . « 4 4« e a e 4 s 6 6 e e e e e e e e . . 112
<transaction record variable>« ¢« ¢ o« o+« « . . . 712
Semantics

If the <endtransaction parameters> form is used, the transaction record
variable is the formal input transaction record variable. The
saveoutput procedure identifier is the name of the SAVEOUTPUT formal
procedure. For more information about the SAVEOUTPUT procedure, refer
to the "DMSII Transaction Processing System (TPS) Programmer's Manual."

The word "AUDIT" causes the restart area to be captured. The path of
the restart data set is not altered when the restart record is stored.

The word "NOAUDIT" causes the restart .area to not be captured. NOAUDIT
is the default action.

The <restart data set> construct specifies the restart data set to be
used.

The word "SYNC" forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and
the program is not in transaction state.

Records are freed in all cases. If an exception occurs, the transaction
is not applied to the database.

728
ENDTRANSACTION ALGOL REFERENCE MANUAL

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT):
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)
D DATA SET (
A ALPHA (3);
N NUMBER (3);
s
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the ENDTRANSACTION
statement can be used.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;
MY N := 1
WHILE MY_N < 100 DO
: BEGIN
CREATE D;
PUT D (N := MY_N);
BEGINTRANSACTION R:

STORE D;
ENDTRANSACTION R:
MY N = * + 1:
END;
" WHILE NOT READ(CARD_FILE,<I3,A3>,MY_N,MY_A[0]) DO
BEGIN

LOCK S§ AT N = MY_N;
BEGINTRANSACTION R;
PUT D (A := MY_A[O0]);
STORE D:
ENDTRANSACTION R;
END;
CLOSE DBASE;
END.

FIND

729
DMSII Interface FIND

STATEMENT

The FIND statement transfers a record to the user work area associated
with a data set or global data.

The FIND statement performs the following steps in order:

1.

Syntax

Frees a locked record in the data set 1f a data set is
specified in the FIND statement, or frees a locked record in
the associated data set if a set is specified in the FIND
statement

Alters the current path to point to the record specified by the
selection expression or database name

Transfers that record to the user work area

<find statement>

See

i
{
!
f-

FIND ---<selection expressiond>—-—-——-——-————————————————————————— >
| C |
|-<database identifier>----—---——---- |
i |

FIND KEY OF --<set selection expression>-—|

j-<exception handling>-| |- (--<input mapping>--) -—|
also
<database identifier> . . « v v o « v 4 e v 4 e e e w4« 4 . . 115
<exception handling>. « « + ¢+ ¢+ 4 e 4+« « « . . 168
<input MAapPPINg> .« ¢« ¢ ¢ v v 4 e b e e e e e e e e e e e e . . . 69D
<selection eXPression>. .« v .« + e+ v 4 e e 4 e e e e e e . o« . 103

<set

selection eXpPression>. . . o « « ¢ ¢ « 4 e+ e « o « o . . 103

730
FIND ALGOL REFERENCE MANUAL

Semantics

The <selection expression> form is used to specify the record to be
transferred to the user work area.

The <database identifier> form is used to specify the global data record
to be transferred to the user work area associated with the global data.
If no global data was described in DASDL for the database, a syntax
error occurs.

The form "FIND KEY OF <set selection expression>" moves the key and anv
associated data (as specified in DASDL) from the key entry to the user

work area. A physical read 1s not performed on the data set:
consequently. all items in the record area that do not appear in the key
entry retain whatever value they had before the FIND statement. The

current path of the data set is not affected.

If an exception is returned, the record is not freed.

An exception is returned if no record satisfies the selection
expression.

If a set selection expression is used and the record is not found, then
an exception 1is returned and the set path is changed and invalid. It
refers to a location between the last key less than the condition and
the first key greater than the condition. .A set selection expression
using NEXT or PRIOR can be done from this point provided keys greater
than and less than the condition exist. The current path of the data
set, the current record, and the current paths of any other sets for
that data set remain unchanged.

To access data items. input mapping is required.

DMSII Interface
Examples
FIND FIRST EMP AT DEPT-NO = 1019 :RSLT:

IF RSLT THEN
- POP-EMPS[1019]

0:

FIND EMP AT EMP-NO
IF RSLT THEN
ERR_OUT(INV_EMP_NO_ERR);

SSN :RSLT;

FIND NEXT EMP :RSLT:
IF RSLT THEN
GO NO_MORE_EMP;

FIND FIRST OVR-65 AT DEPT-NO = 1019 :RSLT:
IF RSLT THEN ’
POP-OVR-65[1019] := 0

731
FIND

732
BDMS FREE ALGOL REFERENCE MANUAL

BDMS FREE STATEMENT

The BDMS "FREE" statement unlocks the current record.

A FREE statement can be executed after any operation. If the current
record is already free. or if no current record is present, the FREE
“statement is ignored.

The FREE statement can be used to unlock a record that the user
anticipates cannot be implicitly freed for a relatively long time. A
FREE statement executed on a record allows other programs to 1lock the
record.

Syntax

<(BDMS free statement>

~-- FREE ---<data set)=—————————————— o m |
| (. I
|-<database identifier>-| }-<exception handling>-|
See alsoc
<AAtA SEL . v 4 4 4 e e e e e e e e e e e e e e e e e e e .. . 703
<database identifier>« 4 s o« . . 115
<exception handling>. « + ¢« ¢ v v 4+« o« a o« . . 168
Semantics

The <data set> form is used to specify the data set whose current record
is to be unlocked. The data set path and current record area remain
unchanged.

The <database identifier> form is used tc specify the global data record
to be unlocked. The data set path and current record area remain
unchanged.

If an exception 1is returned. the state of the database remains
unchanged.

733
DMSII Interface BDMS FREE

Pragmatics

The FREE statement is opticnal in many situations because DELETE, FIND,
BDMS "LOCK," and MODIFY statements can free a record before ‘they
execute. FIND, LOCK, and MODIFY statements that use sets or subsets can
free the locked record only if a new record is successfully retrieved.
Otherwise, the previously locked record remains locked. In general, .an
implicit FREE statemént is performed, if necessary, during any operation
that establishes a new data set path.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3):
R REAL:
)

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the FREE
statement to unlock the current record of data set D.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE: :
INTEGER X:

OPEN UPDATE DBASE;:
WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D ‘
ELSE ‘
FREE D;
END;
CLOSE DBASE;
END.

734
GENERATE ALGOL REFERENCE MANUAL

GENERATE STATEMENT
The GENERATE statement creates an entire subset in one operation. All
subsets must be disjoint bit vectors. :

The GENERATE statement performs the following steps in order:

1. Deletes all the records from the subset tc be generated if it
is not already empty

2. Assigns either a NULL value. the records in another subset, or

a combination of the records in two other subsets to the subset
that is generated

Syntax

<generate statement>

—- GENERATE --<subset>-- = --- NULL -—---——-—----——————=-=—————————=—= >

|- AND ---<subset>-|
| !
|- OR --|
! i

|-<exception handling>»-i

See also
<exception handlingr. « ¢« « v « v « « 4 e« o 4+ . . . 168
CSUDSEtY>. v v v« v v e e e e e e e e e e e e e e e e e e e . . 104

735
DMSII Interface GENERATE

Semantics

v

The (subset> to the left of the equal sign (=) is the name of the subset
to be generated. This subset must be a manual subset, which must be a
disjoint bit vector.

The word "NULL" assigns a NULL value to the generated subset.

If <subset> follows the equal sign, it is the name of the subset whose
records are to be assigned to the generated subset. This subset must be
of the same data set as the generated subset. and it must be a disjoint
bit vector.

If to the right of the equal sign there are two <subset>s joined by the
operation AND, OR, +, or -, then these two subsets are to be combined in
the specified manner. The result is then assigned to the generated
subset. The two subsets must be of the same data set, and must be
disjoint bit vectors.

The operator "AND" specifies that the intersection of the two subsets is
to be assigned to the generated subset. The intersection is defined to
be all the records in the first subset that are also in the second
subset.

The operator "OR" specifies that the union of the two subsets is to be
assigned to ‘the generated subset. The union is defined to be all the
records that are in either the first subset or the second subset.

The operator "+" specifies that the exclusive OR of the two subsets 1isg
to be assigned = to the generated subset. The exclusive OR consists of
the records in either the first subset or the second subset. but not the
records that appear in both subsets.

The operator "-" specifies that the subset difference of the two subsets
i to be assigned to the generated subset. The subset difference is
defined to be the records in the first subset that are not in the second
subset.

736
GENERATE ALGOL REFERENCE MANUAL

Example

If the database DBASE is described in DASDL as the following:

D DATA SET (
A ALPHA (3);
B BOOLEAN:
N NUMBER (3);
R REAL;
)
X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR:
Y SUBSET OF D WHERE (R LSS 1000) BIT VECTOR:
7 SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the GENERATE statement
can be used to assign all the records that are in both X and Y to subset
Z.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY S[0:2]:
INTEGER T,U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CTARD_FILE,<A2,I11,I3,I4>,S,T,U.V) DO
BEGIN
CREATE D;
PUT D (A := 8);
IF T = 1 THEN
PUT D (B := TRUE):
PUT D (N := U);
PUT D (R V):
STORE D;
END:
GENERATE Z = X AND Y;
CLOSE DBASE;
END.

: 737
DMSII Interface GET

GET STA N

=]

The GET statement is used to transfer information from the user Wwork

area associated with a data set or global data record into program
variables or arrays.

The GET statement does not access the database; it assumes that prior

database operations have loaded the proper record or data items into the
user work area. i

syntax

(get statement>

—-— GET ---<data set>--------—-——---- (—--<input mapping>--) —-—|
’ | ' |
|-<database identifier>-|

See also v .
<AAta SELD. v + + 4 e 4 e e e e e e e s e e e s s e e e e s e . 703
(database identifier> . . ¢ « ¢ « 4« e e e e e e e e v e e . . 715
Cinput MAPPINg> « « « . . o e e e e s e e e e e s e e e e e e 696
. Semantics

The <data set> construct is used to transfer information from the user
work area associated with this data. set into a program variable or
array.

The <(database identifier> is used to transfer information from the user
work area associated with the global data record into a program variable
or array.

Pragmatics

No exceptions are associated with the GET statement. However, 1if the
database containing the referenced data set or global data record has
not been opened at the time execution of the GET statement is attempted,
the program terminates with a fault.

738
GET ALGOL REFERENCE MANUAL

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3):
B BOOLEAN:
N NUMBER (3):
R REAL;
):
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the GET statement
can be used to assign current values of data items to program variables
and arrays.

BEGIN

FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER):

DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ{(CARD_FILE,<I3>,MN) DC
BEGIN
FIND S AT N = MN;

GET D (MA[O] := A.MB := B):
IF MB THEN
GET D (MR := R)
ELSE
MR := O3
WRITE(PRINT_FILE.<I3," ",A3Z.," ".L5," " E4.2>,

MN,MA[O],MB,MR):
END:
CLOSE DBASE;
END.

739
DMSII Interface INSERT

INSERT STATEMENT

The

INSERT statement places a record into:-a manual subset.

The INSERT statement performs the following steps in order:
1. Inserts the current record of the specified data set into the
specified subset
2. Alters the set path for the specified subset to point to the
inserted recocrd
Syntax

<insert statement>

—— INSERT --<data set>—- INTO —--<subsetr-————=-—=-----——=---"—=7=7% [

See alsc
CAALtE SELY. v v & o e s e e e e e e e e e e e e e e e e e s e 703
cexception handling>. . . « « « o o . . e e e e e s e w s 768
CSUDSEL Y. o o o e v e e e e e e e e e e e e e s e e e e e e e 704

Semantics

The <data set> construct specifies the data set whose current record 1s

inserted into the =subset specified by <subset>. The path of the
specified data set must be the object data set of the specified subset.

The

path of the specified data set must refer tc a valid record: if not,

an exception is returned.

The

subset must be a manual subset, and it must be a subset of the

specified data set.

An exception is returned in the following cases:

1. 1f duplicates are not allowed for the specified subset and the
record to be inserted has a key identical to that of a record
currently in that subset

740 -
INSERT

2.

Example

ALGOL REFERENCE MANUAL

If the specified subset is embedded in a data set that does not
have a valid current record

If "LOCK TO MODIFY DETAILS" was specified in DASDL and the
current record is not locked

If the database DBASE is described in DASDL as follows:

D DATA SET (

A ALPHA (3);
B BOOLEAN;

N NUMBER (3);
R REAL;

-
.

X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the INSERT statement can
be used to place the current record of data set D into subset X.

BEGIN

DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN:

OPEN UPDATE DBASE:
SET D TO BEGINNING;
FIND NEXT D :RSLT:
WHILE NOT RSLT DO

BEGIN
GET D (MN := N);
IF MN > 10 THEN

INSERT D INTO X;

FIND NEXT D :RSLT;
END;

CLOSE DBASE;

END.

741
DMSII Interface BDMS LOCK

BDMS LOCK STATEMENT

The BDMS "LOCK" statement is similar to the FIND statement, except that
if a record is found, it is locked against a concurrent modification by
another user.

"1,0CK" and "MODIFY" are synonyms.

If the record to be locked has already been locked by another program,
the system performs a contention analysis. In this case, the present
program waits until the record is unlocked. However, if a wait would
result in a deadlock, all records locked by the program with the lowest
priority involved in the deadlock are unlocked, and the operation 1in
that program terminates with a DEADLOCK exception.

The LOCK statement performs the following steps in order:
1. Frees a locked record in the data set if the LOCK statement
specifies a data set, Or frees a locked vrecord in the

associated data set if the LOCK statement specifies a set

2. Alters the current path to point to the record specified by the
selection expression or database identifier

(o8]

Locks the specified record and then transfers that record to
the user work area

Syntax
<(BDMS lock statement>

—-—-—- LOCK ——=———- <gelection expression>--———————————=—-oToT oo TTmTTE >

| ' | bl |
|- MODIFY -| |-<database identifier>--| [-<eXception handling>—|

{- (-—<input mapping>--) —|

See also
<database identifier> . . « « « + o+ e e e e e e e e e e e e e e 71%
cexception handlingr. . « « « v o o o o o o s e e e s e e e e 768
<input MAaPPIng> .« « -« o e e e e e e e e e e e e e e e e s 696

(selection eXpressSiON’. . . .« .« & « o o+« e e e e e e e e 703

742
BDMS LOCK ALGOL REFERENCE MANUAL

Semantics

The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be
locked.

If an exception is returned, the record is not freed.

If a LOCK statement wusing a set selection expression returns an
eXception, the current path of the specified set is invalid. However,
the current path of the data set, the current record, and the current
paths of any other sets for that data set remain unaltered.

To access data items. the <input mapping> construct must appear.

Pragmatics

Because no other user can lock a record once it is locked, a record must
be freed when it is no longer required to be locked. A record can be
freed explicitly by a BDMS "FREE" statement or implicitly by a
subsequent CREATE, DELETE, FIND, BDMS "LOCK," or RECREATE statement on
the same data set.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN:
N NUMBER (3);
R REAL:
)i
X SUBSET OF D BIT VECTOKR;

then the following BDMSALGOL program demonstrates the use of the LOCK
statement to lock records -of subset X.

DMSII Interface

BEGIN _
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN:

OPEN UPDATE DBASE;
SET X TO BEGINNING;
LOCK NEXT X :RSLT;
WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN <= 10 THEN
BEGIN
REMOVE D FROM X;:
DELETE D;
END
ELSE
BEGIN
PUT D (B := TRUE);
STORE D:
END:
LOCK NEXT X :RSLT:
END: .
CLOSE DBASE:
END.

743
BDMS LOCK

744
MIDTRANSACTION ALGOL REFERENCE MANUAL

MIDTRANSACTION STATEMENT
The MIDTRANSACTION statement causes the compiler to generates

the given procedure immediately before the call on the DMS proc:
the Accessroutines.

Refer to the "DMSII Transaction Processing System (TPS) Programmer's
Manual" for more information on transaction processing.

Syntax

<midtransaction statement>
—— MIDTRANSACTION -- (—-<midtransaction parametersd>--) =—-——————m—— >
>=<Krestart data Set)———m e e e |

|-<exception handling>-|

<midtransaction parameters>
-—<transaction record variabled>-=- , ——mmmm e >

>-<saveinput procedure identifierd>---—--—=—--commmmmm !

<{saveinput procedure identifier>

——<procedure identifier>--i

See also
<exception handling>». v v v v e . . 768
<procedure identifier>. W v e v e . . . 165
<restart data set>. 0 e e e e e e e e e s T12

<{transaction record variable> v v e e w v v . T12

Semantics

The transaction record variable is the formal input transaction record
variable.

The saveinput procedure identifier is the name of the SAVEINPUT formal
procedure.

745
DMSII Interface. » MIDTRANSACTION

The <restart data set> construct specifies the restart data set to be
used.

Example

MIDTRANSACTION (TRIN,SAVEINPUT) RDS :RSLT;

746 o
MODIFY , ALGOL REFERENCE MANUAL ', .

MODIFY STATEMENT

_.iThe HODIFY statement
‘sectiofi.)IF

747
DMSII Interface BDMS OPEN

BDMS OPEN STATEMEN
The BDMS "OPEN" Statement opens a database for subsequent access and
specifies the access mbaeb
The OPEN statement performs the following steps in order:
1. Opens an existing database. Appropriate "NO FILE" messages are
displayed if files required for invoked structures are not
present in the system directory.

2. Performs an implicit CREATE statement on the restart data set.
Syntax

<BDMS open statement>

|- INQUIRY --|
I i
|- TRUPDATE - |
|]
|- UPDATE -—-|

|-<exception handling>-|

See also
<database identifier> . . . + « ¢ 4 + e 4 4« e o e e o o o o . . 7115
<exception handlingr. . + « ¢ « ¢ o « o o o o s e e e e e e e . 768
Semantics
The word "INQUIRY" enforces read-only access to the database. This
option is specified when no update operations are to be performed on the
database. An eXception 1is returned if the following BDMSALGOL

statements ' are used when the database has been opened with the INQUIRY
option:

ASSIGN statement GENERATE statement
BEGINTRANSACTION statement INSERT statement
DELETE statement . REMOVE statement

ENDTRANSACTION statement STORE statement

748
BDMS OPEN ALGOL REFERENCE MANUAL

The data management system does not open any audit files if the "OPEN
INQUIRY" form has been used by all programs accessing the database.

The word "UPDATE" allows the program to modify the database being
opened. The UPDATE option must be specified in order to use the
BDMSALGOL statements listed above under the INQUIRY option. UPDATE is
the default option.

The word "TRUPDATE" must be specified in order to use the MIDTRANSACTION
statement or the <transaction record variable> form of the
BEGINTRANSACTION or ENDTRANSACTION statements.

The database identifier specifies the database to be opened.

If an eXxception 1is returned, the state of the database remains
unchanged.

An exception is returned if the database is already open.
Pragmatics

An OPEN statement must be executed before the first access of the
database; otherwise, the program terminates with a fault.

Examples

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)3
D DATA SET (

A ALPHA (10);:

B BOOLEAN;

N NUMBER (3);

)i
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR:
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

749
DMSII Interface BDMS OPEN

then the following BDMSALGOL program demonstrates the use of the OPEN
statement with the INQUIRY option to open database DBASE and perform
read-only actions on the database.

BEGIN :

FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER);

DATABASE DBASE;
BOOLEAN MB;
REAL MR:
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;

WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN; :
GET D (MA[O] := A,MB := B);

IF MB THEN

GET D (MR := N)

ELSE o
MR := 03

WRITE(PRINT_FILE,<I3," ",A3," ",L5," ",E4.2>,

MN,MA[O],MB,MR);
END;
CLOSE DBASE;

END.

The following BDMSALGOL program demonstrates the use of the OPEN
statement with the UPDATE option to open database DBASE and perform
update actions on the database.

BEGIN. _
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D:
END:
CLOSE DBASE;
END.

750
PUT ALGOL REFERENCE MANUAL

PUT STATEMENT

The PUT statement transfers information from program expressions into
the user work area associated with a data set or global data record.

The PUT statement does not update the database; a subsequent STORE
statement must be executed to place the data in the user work area into
the database.

Any number of PUT statements can be used to update items before a STORE
statement is executed.

Syntax

<put statement>

-- PUT ---<data set>----~———=--~-—- (--<output mapping>--) --|

| i

|-<database identifier>-|

See also
<data set>.t i Lt i e e e e e e e e e e e e d e e .. 703
{database identifier>« . . . < 715
<output mapping>. 0 i et i d e e e e e e e . .. 700
Semantics

The <data set> form is used to transfer information associated with this
data set into the user work area.

The <database identifier> form 1is wused to transfer information
associated with the global data record into the user work area.

Pragmatics

No exceptions are associated with the PUT statement. However, if the
database containing the specified data set or the specified database has
not been opened, the program terminates with a fault.

751
DMSII Interface PUT

Example

If

the
can

BEG

the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3):
B BOOLEAN;
N NUMBER (3);
R REAL;
)
X SUBSET OF D BIT VECTOR;

n the following BDMSALGOL program demonstrates how the PUT statement
be used to assign values to data items.

IN .

FILE CARD_FILE(KIND=READER):
DATABASE DBASE;

EBCDIC ARRAY S[0:2]:

INTEGER T.U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<A3,I1,13,I4>.8[0],T,U,V) DO
BEGIN
CREATE D;
PUT D (A := S);
IF T = 1 THEN
PUT D (B := TRUE);
PUT D (N := U,R := V);
STORE D;
END;
CLOSE DBASE;

END.

752 .
RECREATE ALGOL REFERENCE MANUAL

RECREATE STATEMENT
The RECREATE statement partially initializes the user Wwork area. All

data items remain unaltered; however, control items such as links, sets,
counts, and data sets are unconditionally set to NULL.

For variable-format records, the record type supplied must be the same
as that supplied in the CREATE statement that created the record. If
not, the subsequent STORE statement results in a DATAERROR subcategory
4. :

The RECREATE statement performs the following steps in order:

1. Frees the current record of the specified data set

2. Reads any specified arithmetic expression to determine the
format of the record to be created

3. Unconditionally sets links, sets, counts, and data sets to NULL

Syntax

<recreate statement>
-— RECREATE --<data set)>--——-——-—-—=-=-———-—————————=————oe oo e >

|- (--<arithmetic expression»—--) —|

|-<exception handling>-|

See also
CAATA SEL s v + 4 ¢ o 4 e e s e e e e e e e e e e e e e e . o. . 703
<exception handling>. . . « + « « v v v v 4 e e 4 e e e . oe .. 168
Semantics

The <data set> construct specifies the data set to be initialized.

The arithmetic expression specifies a value indicating the type of
record to be created. This arithmetic expression is reguired when a
variable-format record is created: ctherwise, it must not appear.

753
DMSII Interface : RECREATE

An exception is returned if the arithmetic expression does not represent
a valid record type.)

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (
P ALPHA (10)3
Q ALPHA (100);
)5
D DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);
)s
S SET OF D KEY N;
" 8S SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
"Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates how the RECREATE
statement canh be used to partially initialize a record of data set D.

BEGIN .
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y.Z:

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE,<A10,I1,I3>,X[0],Y.Z2) DO
BEGIN '
CREATE D;:
PUT D (A := X[0]):
IF Y = 1 THEN

PUT D (B := TRUE);

PUT D (N := Z):
STORE D
RECREATE D;
PUT D (N := Z+1);
STORE D;
END;

CLOSE DBASE;

END.

754

REMOVE ALGOL REFERENCE MANUAL

REMOVE STATEMENT

The REMOVE statement is similar to the FIND statement, except that if a
record 1is found, it {is 1locked and then removed from the specified
subset. :

The REMOVE statement performs the following steps in order:

1. Frees the current record

2. Alters the current path to point tc the record specified by
CURRENT or the data set

w
.

Locks the previously found record and then removes the record
from the specified subset ’ <

If an exception occurs after step 2, the current path is invalid.

If an exception occurs after step 3, the operation terminates, leaving
the current path pointing to the record specified by CURRENT or by the
data set.

Syntax

<remove statement>

-— REMOVE --- CURRENT —-—- FROM --<SUbSEt>-—====-==—-mmmmmmmmmmee o >
I |

l—<data set>-|

: |
|-<exception handling>-|

See also
<data Set?. .« ¢« v v v e e e e e s 4 e e e s e ee e e e e 4 . . 703
<exception handling>. ¢ . « v . « v 4 4 v ce 4w o . . . 768

subsSet . . . L . L L . L o s s e e s e e 4 e e e e e e. . T04

S 755
DMSII Interface REMOVE

‘ émpyes:the current record from the specified subset.
ont ig. specified, '.the subset - must have a valid current
does' not: have a valid current record, an exception 1is

; uspusédvtd find and remove from the specified
.referenced by the current path. An exception is
rd is not in .the subset.

ata set, the data set must have a

uﬁset‘ié embedded in a data set. and the data
a.current record defined and locked

recdrd. a subsequent FIND statement on the
e §ulp5'inha NOTFOUND eXxception. However, the "“FIND
D BRIOR" forms of the FIND statement give valid results.

756
REMOVE ALGOL REFERENCE MANUAL

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3):
B BOOLEAN;
N NUMBER (3):
R REAL;
)
SS SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the REMOVE
statement to lock and remove the record of data set D that is referenced
by the current path from the subset SS.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;

SET SS TO BEGINNING:

FIND NEXT SS :RSLT;

WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN < 10 THEN

REMOVE D FROM SS;

FIND NEXT SS :RSLT;:
END:

CLOSE DBASE;

END.

v 757
DMSII Interface BDMS SET

BDMS SET STATEMENT

The BDMS "SET" statement alters the current path or changes the value of
an item in the current record. Only the record area is affected. The
data set is not affected until a subsequent STORE statement is executed.
The SET statement performs the following steps in order:

1. Frees the current path of the data set., set, or subset

2. Performs one of the following actions:

a. Alters the current path of the data set, set, or subset to
point to the beginning or the ending of the indicated
structure

b. Alters the set or subset path to point to the current path
of another data set
b. Assigns a NULL value to a particular item

Syntax

<BDMS set statement>

-- SET —-—<setd>——-—--- TO ---<data set>-—=---- <exception handling>----|
! | | | |
|—<subset>-| |- BEGINNING --1| J
| | ¥ |
I |- ENDING ----- | |
| _ : | i
|-<data set»-— TO —-—— BEGINNING -| I
! I : 1 I
| j~ ENDING —-—-- |
I _ l
|-<itemd>== TO —= NULL ————r==m=m = oo |

<item>

--<qualification>--|

See also
<A@ SEL . « v + 4 4 e e e e e e e e e e e e e e e e o .. 703
<cexception handliNg€>. . « + « v « « « o = o o « e o « o« « . . 768
<gualification> . . . + . . .V i 4 e v v e e e e e e 4 e . . . 693
CSEEDY v v v 4 e . . 103

CSUDSELEY . v & v v o e o s e e e e e e e e e e e e e e e e e .. 104

758
BDMS SET ALGOL REFERENCE MANUAL

Semantics

The constructs <data set>, <set>, or <subset> following the word "SET"
specify the data set, set, or subset. Trespectively, whose path is
altered.

If "TO <data set>" is specified, the current path of the set or subset
is altered to point to the current record of the specified data set.

If "TO BEGINNING" is specified. the current path of the set, subset, or
data set 1is altered to point to the beginning of the set, subset, or
data set, respectively.

If "TO ENDING" is specified, the current path of the set, subset, or
data set 1is altered to point to the ending of the set, subset, or data
set, respectively.

The <item> construct specifies an item of the current record that is
assigned a NULL value. The item cannot be & link item. NULL is the
DASDL-declared NULL value if present; otherwise, it 1s the - system
default NULL value. ‘

Pragmatics

After a "SET TO BEGINNING" form of the SET statement, the "FIND NEXT"
and "FIND FIRST" forms of the FIND statement are eguivalent; similarly,
after a "SET TO ENDING", a "FIND PRIOR" and "FIND LAST" are equivalent.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (20);
B BOOLEAN;
N NUMBER (2):
R REAL;
)3
S SET OF D KEY (N):
SS SUBSET OF D WHERE (N = 3):

: 759
DMSII Interface BDMS SET

then the foLlowing BDMSALGOL program demonstrates different ways to use
the SET statement.

BEGIN

FILE CARD_FILE(KIND=READER),
PRINT_FILE(KIND=PRINTER);

DATABASE DBASE:

BOOLEAN MB,RSLT;

REAL MR;

INTEGER MN;

EBCDIC ARRAY MA[0:2];

LABEL CLOSE_DATABASE:

OPEN INQUIRY DBASE;
SET SS TO BEGINNING :RSLT;
IF RSLT THEN
BEGIN
WRITE(PRINT_FILE, <"** NO ENTRIES IN S8S. **">);
GO CLOSE_DATABASE;
END;
WHILE NOT READ(CARD_FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
SET SS TO D :RSLT;
IF RSLT THEN
WRITE(PRINT_FILE,<I2," NOT IN $S.">,MN)
ELSE
BEGIN
GET D(MA[O} := A,MB := B):
IF MB THEN
GET D (MR := R)
ELSE
MR := 0:
WRITE(PRINT_FILE,<I3," ".AZ." ",L5," ",E4.2>,
MN,MA[O],MB,MR);
END;
END;

CLOSE_DATABASE:

CLOSE DBASE:

END.

760
STORE ' ALGOL REFERENCE MANUAL

STORE STATEMENT

The STORE statement places a new or modified record into a data set or a
global record area. The data from the user work area for the data set
or global record is inserted into the data set or global record area.

The STORE statement performs the following actions depending on the
prior operation.

1. After a CREATE or RECREATE statement:

a. Checks the data in the user work area for validity 1if a
VERIFY condition is specified in the DASDL

b. Tests the record for validity for insertion in each set in
the data set (for example, tests whether or not duplicates
are aliowed)

c. Evaluates the WHERE condition for each automatic subset

d. Inserts the record into all sets and automatic subsets 1if
all conditions are satisfied

€. Locks the new record
f. Alters the data set path to point to the new record
2. After a BDMS "LOCK" or MODIFY statement:

a. Checks the data in the user work area for validity 1f a
VERIFY condition is specified in the DASDL.

b. Re-evaluates the conditions if items involved in the
insertion conditiors have changed. If the condition
yields FALSE, the record is removed from each automatic
subset that contains the record. If the condition yields
TRUE. the record is inserted into each automatic subset
that does not contain the record.

c. Deletes and re-inserts the record in the proper position
if a key used in the ordering of a set or automatic subset
is modified sco that the record must be moved within that
set or automatic subset.

d. Stores the record in a manual subset, but performs no
reordering on that subset. The user is responsible for
maintaining manual subsets. A subsequent reference to the
record using that subset produces undefined results.

761

DMSII Interface STORE
Syntax
{(store statement>
—— STORE ---<datd@ Set dm—m——m=m s e e e >
! i l
f-<database identifier>-|. |-<exception handling>-|

|- (-—-<output mapping>--) -|

See also
<data Set>. . v i i 4t h e e e e e e e e e e e e e e e e e . . 703
<database identifier>+ + ¢ ¢ ¢ + e 4 « o « + . o 115
<exception handling>. . . . ¢ & « + v ¢« ¢ ¢« + « o« 4 + « « « . . 168
<COUtpPUt MAPPINE>. + & ¢ ¢ « ¥ 4 + v o« o o o o ¢ 4 e 4 e« « « . 700
Semantics

If the <data set> form is used, the data in the user work area for the
data set is returned to the specified data set.

If the <database identifier> form is used, the data in the user work
area for the global data is returned to the giobal data record area.
The global data record must be locked before a STORE statement
references it; otherwise, the STORE statement is terminated with an
exception. ‘

An exception is returned and the record is not stored if the record does
not meet any of the validity conditions.

An exception is returned if thévdata set path is valid and the current
record is not locked, or if the global data record is not locked.

762
STORE ALGOL REFERENCE MANUAL

Example

If the database DBASE ic described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100):
)
D DATA SET (
A ALPHA (3);
N NUMBER (3):
)
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the STORE
statement can be used to place a record into the data set D.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY_A[0:2]:
INTEGER MY_N;

OPEN UPDATE DBASE;
MY N := 1;
WHILE MY_N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY_N);
BEGINTRANSACTION R:

STORE D;
ENDTRANSACTION R;
MY _N := *+1;
END;
WHILE NOT READ(CARD_FILE,<13,A3>,MY_N,MY_A[O]) DC
BEGIN

LOCK-S AT N = MY_N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]):
STORE D:
ENDTRANSACTION R:
END;

CLOSE DBASE;
"END.

. 763
DMSII Interface

9.4 BDMSALGOL FUNCTIONS

There are two data management functions availéble in the BDMSALGOL
language: DMTEST arid STRUCTURENUMBER. -These functions are described in
this section. :

DMTEST E!EQEIQE.

The DMTEST function determines whether an item is NULL. The function

returns a Boolean value, which is TRUE if the value of the relationship
expressed between the parentheses is TRUE and FALSE otherwise. No

status value is associated with the DMTEST function.

Syntax

<dmtest function>

-- DMTEST -- (---<alpha item>---~--- EQL ----— NULL --) --|
| o I

|-<link item>=-—-} |- = ———-|
| ‘ b |

|-<numeric item>-{ |- I8 -—-|
| o |
|-<real item>--—-—| |- NEQ --—|
1 !
|- t= ===
l E
f- ISNT -|
<alpha item>
<numeric item>
<real item>
--<qualification>--—|
See also
C1iNR ZLEMY v v v v e 4 e e e e e e e e e e e e e e e e e e o . 105

<Qualification’? « . « « & 4 4 e 4 e e e e e e e e e e e .. . 693

764
ALGOL REFERENCE MANUAL

Semantics

The <alpha item> construct specifies an alpha item declared 1in the
DASDL. The alpha item contains a NULL value after a "SET <item> TO -
NULL" form of the BDMS "SET" statement, where <item> is the alpha item.

The <numeric item> construct specifies a numeric item declared in the
DASDL. The numeric item contains a NULL value after a "SET <item> TO
NULL" form of the BDMS "SET" statement, where <item> is the numeric
item.

The <real item> construct specifies a real item declared in the DASDL.
The real item contains a NULL value after a "SET <item> TO NULL" form of
the BDMS "SET" statement, where <item> is the real item.

The <link item> construct specifies a link item declared in the DASDL.
The link item contains a NULL value if either of the following is TRUE:

1. The link item does not point to a record.

2. No current record is present for the data set that contains the
link item. This condition occurs following a BDMS "OPEN"
statement, following the "SET TO BEGINNING" and "SET TO ENDING"
forms of the BDMS "SET" statement, or when the record
containing the link item has been deleted.

The link item contains a non-NULL value if the link - item points to a
record. even if that record has been deleted.

The word "NULL" represents the DASDL-defined NULL value.

765
DMSII Interface

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
© A ALPHA (3);:
B BOOLEAXN;
N NUMBER (3):
R REAL:
)3
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the DMTEST
function can be used to determine whether or not the alpha item A is
NULL.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X3
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

766
ALGOL . REFERENCE MANUAL

STRUCT FUNCTION

The STRUCTURENUMBER function allows the programmer to determine
programmatically the structure number of a data set, set, subset, or of
global data. This function can be used to analyze the result of
exception conditions.

This capability is most useful when several sets span a data set and the
previous operation against the data set yielded an exception. The
program can determine which structure caused the exception from the
corresponding structure number.

Syntax

<{structurenumber function>

-- STRUCTURENUMBEEK —-- (---<database identifier»>---) --|
l :
-<data set’---—--—-—---- I
{ !

[-<(set>———=-=--mmmmmm—e !
| !
|-<subset>~-----==—=—u—- !
See also
<AAtA SELY. v 4 4« 4 4 e 4 e 4 e e e e e e e e e e e e e e s . . 703
<database identifier> « ¢ ¢ ¢ ¢ 4 ¢ « « e e+« « « o 115
CSEEY v v v 4 e . . 703
CSUDLSELY>. & v v v 4 e .. 04
Semantics

If the <database identifier> construct is wused, the STRUCTURENUMBER
function returns the structure number of the global data. Otherwise,
the function returns the structure number of the data set, set, or
subset specified, respectively, by the <data set>, <(set>, or <subset>
construct.

7167
DMSII Interface

Pragmatics

when a partitioned structure is declared in DASDL, it is assigned one or
more structure numbers, depending on <unsigned integer> in the
"OPEN PARTITIONS = <unsigned integer>" form of the DASDL "OPEN" data set
option. (For more information. refer to the "DMSII DASDL Reference
Manual.") For example, if "OPEN PARTITIONS = 3" is specified, three
structure humbers are assigned to the partitioned structure. The
STRUCTURENUMBER function returns the smallest structure number assigned
to the structure; however, DMSTRUCTURE, the value in the exception
status word, can evaluate to any of these values; that is, it does not
necessarily evaluate to the same structure number every time.

Example

REAL ERRORWORD:
IF STRUCTURENUMBER(D) = ERRORWORD.DMSTRUCTURE THEN
REPLACE EA BY "D FAULT";

768
ALGOL REFERENCE MANUAL

9.5 EXCEPTION PROCESSING

When executing BDMSALGOL statements, any onhe of several exception
conditions, which prevent the operation from being performed as
specified, can be encountered. These conditions result if the operation
encounters a fault or does not produce the expected action. For
example, execution of the statement

FIND S AT NAME = "JONES"

would result in an exception if there is no entry in S that has a Value
of "JONES" for the key item. If the operation terminates normally, no
exXception occurs.

A database status word is returned to the BDMSALGOL program at the
conclusion of each BDMSALGOL statement. The value of this word
indicates whether or not an exception has occurred and specifies the
nature of the exception.

DATABASE STATUS WORD

In a BDMSALGOL statement, the user must specify the name of a real
variable or Boolean variable in which the value of the database status
word is stored at the completion of the BDMSALGOL statement. If no- such
variable is specified, the status value cannot be interrogated.

The <exception handling> construct is used in the syntax of the
BDMSALGOL statements to denote those statements where a program variable
can be designated to receive the value of the database status word.

Syntax

<exception handling>

-- : --<exception variable>--|

<(exception variable>

—-—-——<(Boolean variable>----|
i !

|-<real variable>—-—--|

769
DMSII Interface

See also
<Boolean variable>. . . ¢ . ¢ ¢ . 4 4 4 4 e 4 e e 4 e o s o . . 234
<real variable> . . . i e 4t e e e e e e e e e e e e e e . 447
Semantics

A Boolean variable is a Boolean simple variable or an element of a
Boolean -array. A real variable is a real simple variable or an element
of a real array.

Example

REAL ERRORWORD:
OPEN UPDATE DBASE :ERRORWORD:

CEPTION HANDLING

If the.database status word is treated as a Boolean quantity, its value
is TRUE if the operation containing it results 1in an exception;
otherwise, it is FALSE.

If an exception results from a database operation, but the value of the
database status word 1is not assigned to an exception variable in the
program, the program is terminated. 1If the value 1is assigned to an
exception variable, no other indication of the exception is given. The
BDMSALGOL program is responsible for determining the nature of the
exception and responding appropriately. Failure to do so can cause
unpredictable results.

To determine the nature of an exception, the database status word is
interrogated by specifying a period (.) and an attribute name following
the exception variable. The attribute names are recognized by the
BDMSALGOL compiler as representations of the appropriate fields of the
database status word.

770
ALGOL REFERENCE MANUAL

Syntax

<exception value>

-—<exception variable>-- . --- DMERROR --—--——-- |
l }
|-~ DMERRORTYPE ~-|
l I
i~ DMSTRUCTURE -|

Semantics

The attribute "DMERROR" yields a numeric value identifying a major
category. Mnemonic names are also available to represent these numeric
values. Either the category number or the category mnemonic can be used
to test for a particular category.

The attribute "DMERRORTYPE" yields a numeric value identifying the
subcategory of the major category.

The attribute "DMSTRUCTURE" yields a numeric value identifying the
structure number of <*he structure involved 1in the eXception. The
structure numbers of all invoked structures are shown in the program
listing if the program was compiled with the compiler control options
LIST and LISTDB equal to TRUE.

Example

The following example illustrates one way of handling exceptions in a
BDMSALGOL program:

REAL ERRORWORD:
OPEN UPDATE DBASE :ERRORWORLD:
IF BOOLEAN(ERRORWORD) THEN
IF ERRORWORD.DMERROR = OPENERROR THEN
-IF ERRORWORD.DMERRORTYPE = 1 THEN
DISPLAY("I/0 ERROR ON ACCESSROUTINES CODE FILE"}:

771
DMSII Interface

If the exception variable is a Boolean variable, the

preceding example
is changed as follows:

BOOLEAN ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD:
IF ERRORWORD THEN
IF REAL(ERRORWORD).DMERROR = OPENERROR THEN
IF REAL(ERRORWORD).DMERRORTYPE = 1 THEN
DISPLAY("I/0 ERROR ON ACCESSROUTINES CODE FILE"):

772
ALGOL REFERENCE MANUAL

9.6 BDMSALGOL, COMPTILER CONTROI, OPTIONS

The following compiler control options are available in the BDMSALGOL
language 1in addition to the options available in the ALGOL language.
For information on the compiler control options available in ALGOL,
refer to "Compiler Control Options" in the chapter "Compiling Programs."

See also
Compiler Control Options. . . .« ¢ + « ¢« « v 4 « & &+ & « « « « o 595

<datadictinfo option>
~~ DATADICTINFO --|
(Type: Boolean, Default value: FALSE)

If the DATADICTINFO option is TRUE, - information about the usage of
database structures and items is placed into the object code file. This
usage information shows which database structures and items were invoked
by the program and whether they were read or written. This option
cannot be assigned a value after the appearance of the first syntactical
item in the progranm.

<listdb option>
-- LISTDB --|
(Type: Boolean, Default value: FALSE)

If both the LIST option and the LISTDB option are TRUE, the printer
listing contains information about the invoked databases, structures,
and items, including the declared database titles. If the LIST option
is TRUE but the LISTDB option is FALSE, the printer listing does not
contain this information. The value of LISTDB is ignored if the LIST
option is FALSE.

773
DMSII Interface

<nodmdef ines option>

—-- NODMDEFINES —-—|

(Type: Boolean, Default value: FALSE)

1f the NODMDEFINES option is TRUE, no defines are expanded in BDMSALGOL
constructs.

When the NODMDEFINES option is FALSE, defines in BDMSALGOL constructs
are expanded. including defines in the following situations:
i. A database item has the same identifier as a define.

2. An alphanumeric string that is part of a database item

jdentifier (between two hyphens, before the first hyphen, oOr

after the last hyphen) is the same as the identifier of a
define.

<tracedb option>

-- TRACEDB --!

(Type: Boolean. Default value: FALSE)

If the TRACEDB option is TRUE, the printer listing contains a trace of
the communication between the BDMSALGOL compiler and the
DATABASE/INTERFACE program. The action cf this option is independent of
the value of the LIST option.

774
ALGOL REFERENCE MANUAL

9.7 BINDING AND SEPCOMP OF DATABASES
BINDING

Programs that declare and reference databases can be bound together by
the Binder program. The following exXample shows a BDMSALGOL host
program that declares a database and an external procedure, and a
separate procedure that is to be bound to the host and that declares the
database in its global part.

The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10);
);
AGE NUMBER (2):
SEX ALPHA (1):
SSNO ALPHA (9):
)
NAMESET SET OF DS KEY (LAST, FIRST):

The following program, compil®d with the name SEP/HCST, is the BDMSALGOL
host program:

BEGIN
DATABASE TESTDB:
PROCEDURE P;: EXTERNAL;
OPEN UPDATE TESTDB:
P
CLOSE TESTDE;

END.

DMSII Interface

The following separate procedure, P, compiled with
be bound to the external procedure P of the host.
TESTDB is declared in the global part.

[DATABASE TESTDB:]
PROCEDURE P;
BEGIN
BOOLEAN EXCEPTIONWORD:
EXCEPTIONWORD := FALSE;
SET NAMESET TO BEGINNING:
WHILE NOT EXCEPTIONWORD DO
BEGIN
FIND NEXT NAMESET AT LAST = "SMITH"
AND FIRST = "JOHN" :EXCEPTIONWORL;
% OTHER STATEMENTS
END;
END;

The separate procedure P in SEP/F can be bound to
using the following Work Flow Language (WFL) job.
code file is named GLOBDB.

?BEGIN JOB BIND/GLOB;

BIND GLOBDB WITH BINDER LIBRARY:
BINDER DATA

HOST 1S SEP/HOST:

BIND P FROM SEP/P;

7END JOB.

775

the name SEP/P, is to
Note how the database

the host SEP/HOST
The resulting bound

776
ALGOL REFERENCE MANUAL

SEPCOMP

Programs that declare and use databases can also make use of the sepcpmp
facility of the compiler, as shown in the following example. :

The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10):
)
AGE NUMBER (2):
SEX ALPHA (1}:
SSNO ALPHA (9):
)i
NAMESET SET OF DS KEY (LAST, FIRST):

Because the MAKEHOST compiler control option is TRUE, the following
program, compiled as MY/HOST, can be used as a host program for SEPCOMP.

$ SET MAKEHOST

BEGIN 1
DATABASE TESTDB; 2
PROCEDURE P: 3

BEGIN 4
BOOLEAN EXCEPTIONWORD; 5
EXCEPTIONWORD := FALSE: &
SET NAMESET TO ENDING: 7
WHILE NOT EXCEPTIONWORD DO 8
BEGIN 9

FIND NEXT NAMESET AT LAST = "SMITH" 10

AND FIRST = "JOHN": EXCEPTIONWORD: 11

% OTHER STATEMENTS 12

END; 3

END; 14
OPEN UPDATE TESTDE: 15
P; 16
CLOSE TESTDB; 17
END. 1g

The following source input invokes the SEPCOMP facility tc change the
record of the host MY/HOST with sequence number 7, recompile the

o)

procedure P. and bind the new P to .the host.

$ SET SEPCOMP "MY/HOST" % PATCH FOLLOWS
SET NAMESET TO BEGINNINC:

10 COMPILE-TIME FACILITY

The compile-time facility is used to conditionally and iteratively
compile ALGOL -source data. This chapter describes the declaration and
use of compileftime variables, compile-time identifiers, compile-time
statements, an extension to the DEFINE declaration, and compiler control
options that pertain to the compile-time facility.

The compile-time facility is available only in ALGOL compilers that have
been compiled with the CTPROC compiler-generation option set toO TRUE.

COMPILE-TIME VARIABLE
.Syn tax

<compile-time variable declaration>

|- := -—<starting value>----|

I f
|- [--<vector length>-—-] —|
<number identifier>
An <identifier> that is associated with a compile-time variable in a
compile-time variable declaration.
<starting value>

-—<compile-time arithmetic expression>—-—|

<compile-time arithmetic expression>
Any <arithmetic expression> that can be fully evaluated at compile
time. A compile-time arithmetic expression consists of constants
and <compile-time variable’s.

<vector length>

--<compile—~time arithmetic expression>--|

778
ALGOL REFERENCE MANUAL

<compile-time variable>

--<number identifierd————--mmmmmmmmee >

|- [-—<compile-time arithmetic expression>--] —|

Semantics

An identifier declared in a compile-time variable declaration is a
"number variable" or an arithmetic compile—time wvariable. A
compile-time variable represents a single-precision arithmetic value.
It can be wused wherever an arithmetic value is allowed and represents
the value most recently assigned to it. The value of a compile-time
variable can be changed at any time during compilation by using the
compile-time 'LET statement. A compile-time variable can be declared
with a starting value; if a starting value is not explicitly declared,
the starting value is zero.

If a compile-time variable is declared with a vector length, a vector or
"array" of compile-time variables is created. When an identifier
declared in this way is used, it must be subscripted by a compile-time
arithmetic exXpression with a value in the range 0 through
(vector length - 1). The value of the vector length must be in the
range 1 to 1023.

779
Compile-Time Facility

COMPILE-TIME IDENTIFIER
Syntax

<compile-time identifier>

——<identifier>-- ' —--<number identifier>--|
Semantics

A compile-time identifier can appear anywhere an identifier can be used,
including declarations. . No blank characters can appear between
<identifier> and the apostrophe ('). The created identifier is the
<identifier». followed by an apostrophe, followed by numeric characters
corresponding to the value of the number identifier, with leading 2zeros
suppressed.

78C
ALGOL REFERENCE MANUAL

COMPILE-TIME STATEMENTS
Syntax

<compile-time statement>

--——<compile-time begin statement>----- }
:—<compile—time define statement>—:
:-<compile—time for statement>-——-:

t
:-<compile—time if statement)>——--- ;
:—<compile—time invoke statement>—:
:—<compile—time let statement)—-——:
|
i~<compile—time thru statement>—--:
‘ |

|-<compile-time while statement>--|
Semantics

Compile-time statements begin with an apostrophe ("), which
distinguishes them from other ALGOL constructs. They are recognized at
a very primitive level in the compiler and can, therefore, appear almost
anywhere (for example, between any two ALGOL language components).

The compile-time statements are intended to provide a method for
altering the normal flow of compilation, primarily by conditional and
iterative compilation.

Compile-time statements are terminated in the same manner as ALGOL
statementes.

Note that through the use of compile-time variables, a compile-time
arithmetic or Boolean expression can be fully evaluated at compile time
and yet not have the same value each time it is evaluated.

BRI 781
Compile-Time Facility

'BEGIN Statement
Syntax

<compile-time begin statement>

—-—- 'BEGIN ——(compile4time text>-- 'END --<end remark>--|

<compile-time text>

Any ALGOL source text, including complete compile-time statements.

Semantics

A "BEGIN statement delimits a portion of ALGOL source text. It is
normally used in conjunction with 'FOR statements, 'IF statements, and
*THRU statements. ' If the 'BEGIN statement is executed, the compiler
processes all the delimited text; otherwise, the compiler skips
(ignores) the text. Anything following the 'END up to the first special
character, END, ELSE, ‘'END, 'ELSE, or UNTIL is considered tc be an <end
remark> and is ignored. '

'DEFINE Statement
Syntax

<compile-time define statement>

-— 'DEFINE --<identifier>-- = —-<compile-time statement>--|

<compile-time define identifier>

An <identifier> that is associated with a compile-time statement 1in
a compile-time define statement.

782
ALGOL REFERENCE MANUAL

Semantics

The 'DEFINE statement declares an identifier to represent a compile-time
statement.

The compile-time statement is processed when it is referenced by the
identifier in a subsequent 'INVOKE statement.

'FOR Statement
Syntax

<compile-time for statement>

-— 'FOR --<number identifierd>—- (= —m—emmmemmmmm e
>-<compile-time arithmetic expression>-- STEP ——~=———mm——mmmmmmmmmo >
>-<compile-time arithmetic expression>-- UNTIL ----—-—-memmmuue——— >
>-<compile-time arithmetic expression>-- DO —===-e-———mmmmmm o >

>-<compile-time statement >————=———mm e |
Semantics

The 'FOR statement provides iterative compilation of ALGOL source input.
The value of the compile-time arithmetic expression following "STEP" can
be positive or negative but must not be equal to zerc.

The action of this statement is similar to that of the non-compile-time
FOR statement. One eXxception is that the compile~-time arithmetic
expressions following "STEP" and "UNTIL" are evaluated only once, at the
beginning of the 'FOR statement., and are not re-evaluated, even though
their compile-time components can change value.

~J
o0
)

- Compile-Time Facility

‘IF Stgtemgnt
Syntax

<compile~time if statement>

--— 'IF -—-<compile-time Boolean expréssion>—— THEN —--—-——————— et >

>-<compile-time statement>--—--——————m-o e I

i-— 'ELSE -—-<compile-time statement>-|

<compile-time Boolean expression>

Any <Boolean expression> that can be fully evaluated at compile
time. A compile-time Boolean expression consists of constants and
<compile-time variable>s.

Semantics

The 'IF statement provides conditional compilation of ALGOL source
input.

If the value of the compile-time Boolean expression is TRUE. then the
compile-time statement following "THEN" is processed: if it is FALSE,
the compile-time statement following "'ELSE" is processed. if present.
In either case, compilation continues with the statement following the
'IF statement.

784
ALGOL REFERENCE MANUAL
*INVOKE Statement

Syntax

<compile-time invoke statement>

~- 'INVOKE --<compile-time define identifier>—-|

Semantics

The 'INVOKE statement causes the compile-time statement previously
associated with the compile-time define identifier in a ‘'DEFINE
statement to be processed.

'LET Statement

Syntax

<compile-time let statement>

-- 'LET --<compile-time variable>-- := —---—----------mTTTTmmEETTO >

Semantics

The 'LET statement is used to modify the value of a compile-time
variable. I1f the compile-time variable was declared using the <vector
length> construct, it must be subscripted by a compile-time arithmetic
expression with a value in the range 0 to {vector length - 1).

785
Compile-Time Facility
'THRU Statement

Syntax.

<compile-time thru statement>

-~ 'THRU —-<cbmpile-time arithmetic expression>-- DC mmm e >
>-<compile-time Statement>——=—-———m—mmmmommmoo |
Semantics

The 'THRU statement provides iterative compilation of ALGOL source
input. The compile-time arithmetic expression must have a value greater
than or equal to zero.

The compile-time statement following "DO" is processed <{compile-time
arithmetic expression> times. If this wvalue 1is 2zero, the 'THRU
statement is skipped.

'WHILE Statement

Syntax

<compile-time while statement>

—— 'WHILE --<compile-time Booiean expression>—-- DO —=————=——————eee—o >
>—<compile-time statement y———————m
Semantics

The 'WHILE statement provides iterative compilation of ALGOL source
input. The 'compile-time Boolean. expression is evaluated at the
beginning of the statement. If it is TRUE. the compile-time statement
is processed. the compile-time Boolean expression is evaluated again,
and this sequence 1is repeated. Whenever the compile-time Boolean
expression 1is FALSE, the 'WHILE statement is finished, and compilation
continues with the following statement.

786
ALGOL REFERENCE MANUAL

EXTENSION TO THE DEFINE DECLARATION

The following extension to the DEFINE declaration 1is available when .
using the compile-time facility. ' R

Syntax
<definition>
-—¢identifier>--—===m—mm—mco—emem e = mmmm e — e — e)
| | |
j-<formal symbol part>-| |- := —|
>-<compile-time textd>-- # —--=----s—--—---s-—e—-soosoooooosmETETEETT
See also
<formal SYMbOl PArt>. . + « « o o o o o « 5 o o o s s e e e = 60
Semantics

If a define identifier is declared using the assignment operator (:=).
then any compile-time statements in the compile-time text are evaluated
once at the time of, and in the scope of, the DEFINE declaration.
Otherwise., the compile-time items in the compile-time text are evaluated
on each invocation of the define identifier.

787
Compile-Time Facility

COMPILE-TIME COMPILER CONTROL OPTIONS

The following compiler control options are available only in the
compile-time facility. For more informaticn on compiler control options
and the printer listing file of the compiler, refer to the "Compiling
Programs" chapter.

<ctlist option>
-— CTLIST --|
(Type: Boolean, Default value: FALSE)

If both the LIST option and the CTLIST option are TRUE, all input
records processed are written to the printer listing. In particular,
during iterative compile-time statements, input records that are
compiled repeatedly are listed repeatedly. These input records are
identified by an asterisk (*) just to the left of the sequence number.
If the LIST option is TRUE but the CTLIST option is FALSE, input records
are written to the printer 1listing only the first time they are
compiled. The value of the CTLIST option is ignored if the LIST option
is FALSE. '

<ctmon option>
-—- CTMON --|
(Type: Boolean, Default value: FALSE)

1f both the LIST option and the CTMON option are TRUE, all assignments
to compile-time variables are ' monitored and written to the printer
listing. The current value of a compile-time variable when it is
referenced and the new value when it is changed are listed. If the LIST
option is TRUE and the CTMON option is FALSE, this monitor information
does not appear in the printer listing. The value of the CTMON option
is ignored if the LIST option is FALSE.

788
ALGOL REFERENCE MANUAL

<cttrace option>
—-- CTTRACE --|
(Type: Boolean, Default value: FALSE)

" If both the LIST option and the CTTRACE option are TRUE, values of
certain expressions that are components of compile-time statements are
written to the printer listing. If the LIST option is TRUE and the
CTTRACE option is FALSE, this information does not appear in the printer
listing. The value of the CTTRACE option is ignored if the LIST option

is FALSE.

<listskip option>
—— LISTSKIP --|
(Type: Boolean, Default value: TRUE)

If both the LIST option and the LISTSKIP option are TRUE. all records
are written to the printer 1listing whether or not they are skipped.
Skipped records are denoted in the iisting by the word "SKIP" to the
right of .the sequence number. If the LIST option is TRUE and the
LISTSKIP option is FALSE. source records that are skipped by the
compile-time facility are not written to the printer listing. The value
of the LISTSKIP option is ignored if the LIST option is FALSE.

7846
11 BATCH FACILITY

The batch facility allows more efficient use of system resources by
enabling -a group of programs possessing certain common characteristics
to share many system overhead functions normally associated with
individual jobs. Overhead functions that can be shared include job
initialization, jotr termination, linking of intrinsics. memory
allocation, and so on.

Programs submitted as part of a batch are compiled and executed
according to the following restrictions:

1. The programs are compiled for syntax errors only or for
one-time execution.

2. If a program declares more than one printer file, all output is
directed tc the same physical file. Likewise. if a prograrm
declares more than one card file, all input is taken from the
same physical file.

3. 'If a program explicitly opens or closes the printer file. that
program is discontinued. and the next program in the batch is

initiated.

4. If a program requires operator intervention, it is
discontinued, and the next program in the batch is initiated.

5. If a program attempts to initiate a task, it is discontinued.
and the next program in the batch is initiated.

6. WAIT statements are allowed but have no effect.

7. The source records of all programs in the batch must use the
same character type.

&. In FILE declarations, the values assigned to file attributes
must not be variables or expressions involving variables.

790
ALGOL REFERENCE MANUAL

9. The following compiler control options are invalid or ignored.
AUTOBIND INTRINSICS PURGE
BIND LEVEL SEGDESCABOVE
BINDER LIBRARY SEPCOMP
DUMPINFC LINEINFO SHARING
ERRLIST LISTINCL STOP
EXTERNAL LOADINFO TARGET
GO TO MAKEHOST TIME
HOST MCP USE
INCLNEW MERGE VERSION
INCLSEG NEW XDECS
INCLUDE NEWSEQERK XREF
INITIALIZE NOBINDINFC XREFFILES

INSTALLATION NOXREFLIST - XREFS

Batch Facility

BATCH SOURCE INPUT

The ALGOL compiler performs batch compilation only if the compiler
initiated by the Work Flow Language (WFL), and the source input is
the form of <batch source input>. If a <«job specifier> occurs in
CANDE-initiated compilation, the compilation is discontinued.

All batch source input must have. the following form:

Syntax

———————————————————————————— <job>—---|
| !
|-<time restrictions>-|
<time restrictions>
| (m=mommm e e oo e |
| !
| | (mmmmm et e ————— e | 1
| | i
————§ mm——- <processtime restriction’----—---- |

<processtime restriction>

-- PROCESSTIME -- = ~--<decimal number>--|

<iotime restriction>

-- IOTIME —- = -~-<decimal number:--!

el
[)

is
in
a

762
ALGOL REFERENCE MANUAL

<job>

-— § -—<job specifiery-—-—-—=----—---—-—-—-—-—---—- <block>-- . —=—=———= >

i—<data>—|

<job specifier>

|-<job title>-|

<job title>

Any valid file title.

<entry specifier>

-- ENTRY --|

<data>

Input data to be read by the program when it is executed.

Semantics

Batch source input consists of one or more individual programs oOr
“"jobs." Jobs are delimited in batch source input by "$ <job specifier>"
records. Each job can be either compiled for syntax only or compiled
and then executed. A job is executed if it contains a "$ ENTRY" record,.
and if the job needs input during its execution, this data follows the
"S$ ENTRY" record. Maximum processor times. and I/0 times can be
specified for each job or for all jobs in a batch. Printed output for
all jobs in a batch is written to the same file and is printed in one
listing.’

The <processtime restriction>, <iotime restriction>,. <(job specifier:.
and <entry specifier> constructs are valid only for batch compilatiorn
and are not compiler control options.

792
Batch Facility

The individual syntactic constructs of <batch source input:> are
described in more detail in the following paragraphs.

<time restrictions>

The <processtime restriction>» and <iotime restriction> constructs
specify the maximum processor time and maximum I/0 time, respectively,
allowed for the execution of a job before it is discontinued.

If the time restrictions appear before the first job in a batch, they
apply to the execution of every job in the batch. If the time
restrictions appear within a job, they apply to the execution of that
job only, but they are meaningful only if they specify less time than
the time restrictions, if any, appearing before the first job in the
batch.

<job>

Each job in the batch source data consists of a complete program that is
compiled for syntax only or for one-time execution. A job can include
its own time restrictions and compiler control records.

<job specifier>

The first record in each job must be the "$ <job specifier>" record. If
a job title is specified in the <job specif;er> construct. it 1is used tc
identify the printed output produced by that jok.

<block>

The <block> and any compiler control records that follow the
"$ <job specifier>" record and precede the next "$ ENTRY" record, if
any, or "$ <job specifier>" record make up the ALGOL program.

<entry specifier>

The "$ <entry specifier>" record specifies that the program 1is to be
executed 1if no syntax errors are found and indicates the beginning of
any input data to be used during executior. If nc "$ <entry specifier>"
record appears in the job. B then the program is compiled for syntax
errors only; it is not executed.

794

ALGOL REFERENCE MANUAL

<data>

If a job needs input data during execution, the input data appears after
the "$ ENTRY" record and before the next job, if any.

Example

?BEGIN JOB EXAMPLEBATCH;
?COMPILE BATCHA ALGOL:
?ALGOL DATA
$ PROCESSTIME = 5.5 IOTIME =
$ JOB Al
$ SET LIST SEQ
BEGIN
FILE RDR(KIND = READER);
INTEGER I:
ARRAY Z[0:2];

READ(RDR,/,FOR I := O STEP 1 UNTIL 2 DO 2Z[I]):

END.
$ ENTRY
2.315,3.71828,.5772,
$ JOB A2
BEGIN

INTEGER A,B,C:

A := B ++ C; % A SYNTAX ERROR

END.
$ ENTRY
$ JOB A3
BEGIN
REAL PI;
PI := 22/7:
END.
$ JOB A4
$ PROCESSTIME = 2.5 IOTIME =
BEGIN
LABEL AGAIN;
REAL X;
AGAIN:
X := 355/133;
GO TO AGAIN:
END.
$ ENTRY
7END JOB

This example shows a WFL
batch contains four programs or jobs.

job consisting of one batch

compilation. The

more than 5.5 seconds of processor time or 1 second of I1/0 time.

‘No job in this batch is allowed

' 795
Batch Facility

Job Al compiles correctly and is executed-using the one record of data
immediately following its "$ ENTRY" record. Job A2 is not executed
‘because it contains a syntax error but would be executed if it were free
of ~errors. Job A3, though syntactically correct. 1is not executed
because it does not contain a "$ ENTRY" record.

Job A4 is allowed only 2.5 seconds of processor time and 0.5 seconds of
1/0 time, compared ”t0‘5.5'seconds and 1 second, respectively, for the
other three jobs in the batch. Job . A4 - compiles correctly and is
executed; however, because it contains an infinite 1loop, it is
discontinued after its allotted 2.5 seconds of processor time.

796
ALGOL REFERENCE MANUAL

IMPL NTATION SCHEME

The goal of the batch facility is to eliminate as much system overhead
as possible by reducing the number of tasks initiated within the running
environment of A Series and B 5000/B 6000/B 7000 Series systems.

An entire batch is presented to the compiler as one file, thereby
avoiding repeated initiation of the compiler. The compilation process
for each individual job within a batch is virtually the same as that for
nonbatched programs and yields equally efficient object code. When the
compiler finishes compiling the batch, it generates special object code
that 1links each job to the next one. When a job is not tc be executed
(the "$ ENTRY" record is not present or syntax errors occurred during
compilation), it is not linked to the other jobs. When compilation is
complete, the object code for all jobs in the batch resides in one disk
file.

The printed output from the compiler is directed to a backup printer
file with an altered BDNAME task attribute so that the output is not
automatically printed. Logging information regarding the compilation is
also saved in this file. The execution of the object code proceeds as
follows:

1. The D2 stack is built.

2. The batchmonitor intrinsic is called and passed a procedure
that serially calls each individual job.

3. The batchmonitor intrinsic processes the procedure passed to
it. If any job causes a fatal run—-time error. the batchmonitor
intrinsic executes a procedure that goes automatically tc the
next individual job.

4. The batchmonitor intrinsic rewinds the twe backup printer
files, extracts the 1logging information, collates the output
into a new printer file, and returns control to the Master
Control Program (MCP).

All iobs share the same printer file and intrinsics and can even share
the same object code segments. The individual jobs run serially and
share the same stack space.

797
Batch Facility

A job is protected from previous jobs by the batchmonitor intrinsic. If
one job is discontinued with an error. execution is re-initiated by the
batchmonitor intrinsic at the next individual job. If any Jjob uses
excessive 1I/0 or processor time. the batchmonitor intrinsic terminates
that job. Likewise, the batchmonitor intrinsic enforces the rule that
no operator messages requiring responses are allowed by terminating any
job that causes such a message.

The batchmonitor intrinsic extraects the logging information from the two
printer files and summarizes it at the end of the output for each job.
This summary procedure is easily modified to provide an interface with
the accounting system of a given installation. Two words in each log
record furnished by the compiler and the individual job are spares, thus
facilitating any installation extensions.

799

A RESERVED WORDS

A <reserved word> in Extended ALGOL has the same syntax as an
identifier. The reserved words are divided into three types.

A reserved word of type 1 can never be declared as an identifier; that
is, 1t has a predefined meaning that cannot be changed. For example,
because LIST is a type 1 reserved word, the declaration

ARRAY LIST[0:999]

is flagged with a syntax error.

A reserved word of type 2 can be redeclared as an identifier: it then
loses its predefined meaning in the scope of that declaration. For
example, because IN is a type 2 reserved word, the declaration

FILE IN(KIND = READER)
is legal, but in the scope of the declaration, the statement
SCAN P WHILE IN ALPHA

is flagged with a syntax error on the word "IN".

If a type 2 reserved word is used as a variable in a program but it is
not declared as a variable, then the error message that results is not
the expected "UNDECLARED IDENTIFIER." Instead. it may be *“NO STATEMENT
CAN START WITH THIS."

A reserved word of type 3 is context-sensitive. It can be redeclared as
an identifier, and. if it 1is wused where the syntax calls for that
reserved word., it carries the predefined meaning; otherwise, it carries
the user-declared meaning. The different meanings for the type 3
reserved word STATUS are illustrated in the following example.

BEGIN
TASK T:
REAL ‘STATUS:
% IN THE NEXT STATEMENT, "STATUS"™ IS A REAL VARIABLE
STATUS := 4.5
% IN THE NEXT STATEMENT, "STATUS"™ IS A TASK ATTRIBUTE
IF T.STATUS = VALUE(TERMINATED) THEN
% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE
STATUS := 10.0:
END. '

800
ALGOL REFERENCE MANUAL

Type 3 reserved words include the following:
- File attribute names
- Task attribute names
- Library attribute names
- Direct array_attribute names

Mnemonics for attribute values

All file attributes, direct array attributes, and mnemonics described in
the "I/0 Subsystem Reference Manual" are type 3 reserved words in ALGOL.
All task attributes and mnemonics described in the "Work Flow Language
(WFL) Reference Manual" are type 3 reserved words in ALGOL.

RESERVED WORDS LIST

The following is an alphabetical list of reserved words for Extended
ALGOL. The number in parentheses following each word indicates the type
of the reserved word. For example, "FOR (1)" indicates that FOR is a
type 1 reserved word. '

ABS (2) BACKUPPREFIX (3) CHECKSUM (2)
ACCEPT (2) BASE (3) CLASS (3)
ACTUALNAME (3) BCL (2) CLN (2)

ALL (3) BCLTOASCII (3) CLOSE (2)
ALPHA (1) BCLTOEBCDIC (3) CODE (32)

ALPHA6 (3) BCLTOHEX (3) COMMENT (1)
ALPHA7 (3) BEGIN (1) COMPILETIME (2)
ALPHA8 (3) BOOLEAN (1) COMPILETYPE (3)
AND (2) BREAKPOINT (2) COMPLEX (2)
ANYFAULT (3) BY (2) CONJUGATE (2)
ARCCOS (2) BYFUNCTION (3) CONTINUE (1)
ARCSIN (2) BYTITLE (3) COREESTIMATE (3)
ARCTAN (2) CABS (2) cos (2)

ARCTAN2 (2) CALL (2) COSH (2)

ARRAY (1) CALLING (2) COTAN (2)
ARRAYS (3) CANCEL (2) CRUNCH (3)
ARRAYSEARCH (2) CASE (2) CSIN (2)

AS (3) CAT (2) CSQRT (2)

ASCII (2) . CAUSE (2) DABS (2)
ASCIITOBCL (3) CAUSEANDRESET (2) DAND (2)
ASCIITOEBCDIC (3) CCOoS (2) DARCCOS (2)
ASCIITOHEX (3) CEXP (2) DARCSIN (2)
ATANH (2) CHANGEFILE (2) DARCTAN (2)
ATTACH (2) CHARGECODE (3) DARCTANZ (2)

AVAILABLE (2)

CHECKPOINT (Z)

DBS (3)

DCOS (2)

DCOSH (2)
DEALLOCATE (2)
DECIMAL (2)
DECIMALPOINTISCOMMA (3)
DECLAREDPRIORITY (3)
DEFINE (2)
DELINKLIBRARY (2)
DELTA (2)

DEQV (2)

DERF (2)

DERFC (2)
DETACH (2)

DEXP (2)
DGAMMA (2)
DICTIONARY (2)
DIGITS (2)
DIMP (2)
DINTEGER (2)
DIRECT (1)
DISABLE (2)
DISCARD. (3)
DISK (3)
DISKPACK (3)
DISPLAY (2)

DIV (2)

DLGAMMA (2)

DLN (2)

DLOG (2)

DMAX (2)

DMIN (2)

DNABS (2)

DNOT (2)

DO (1)
DONTWAIT (2)
DOR (2)

DOUBLE (1)

DROP (2)
DSCALELEFT (2)
DSCALERIGHT (2)
DSCALERIGHTT (2)
DSIN (2

DSINH (2)
DSQRT (2)

DTAN (2)

DTANH (2)

DUMP (2)

EBCDIC (2)
EBCDICTOASCII (3)
EBCDICTOBCL (3)
EBCDICTOHEX (3)

Reserved Words,

Reserved Words

ELAPSEDTIME (3)
ELSE (1)

EMPTY (2)

EMPTY4 (2)

EMPTY?7 (2)

EMPTYS (2)

ENABLE (2)

END (1)

ENTIER (2)

EQL (2)

EQV (2)

ERF (2)

ERFC (2)

EVENT (1)
EXCEPTIONEVENT (3)
EXCEPTIONTASK (3)
EXCHANGE (2)

EXP (2)
EXPONENTOVERFLOW (3)

'EXPONENTUNDERFLOW (3)

EXPORT (2)
EXTERNAL (2)
FALSE (1)
FAMILY (3)
FILE (1)
FILECARDS (3)
FILES (3)
FILL (2)
FIRST (2)
FIRSTONE (2)
FIRSTWORD (2)
FIX (2)

FOR (1)
FORMAL (2)
FORMAT (1)
FORWARD (2)
FREE (2)
FREEZE (2)
FUNCTIONNAME (3)
GAMMA (2)

GEQ (2)

GO (1)

GTR (2)
HAPPENED (2)
HEAD (2)

HEX (2)
HEXTOASCII (3)
HEXTOBCL (3)
HEXTOEBCDIC (3)
HISTORY (3)
IF (1)

Continued

801

IMAG (2)

IMP (2)

IN (2)

INITIATOR (3)
INTEGER (1)
INTEGEROVERFLOW (3)
INTEGERT (2)
INTERRUPT (2)
INTNAME (3)
INVALIDADDRESS (3)
INVALIDINDEX (3)
INVALIDOP (3)
INVALIDPROGRAMWORD (3)
IS (2)

ISNT (2)
JOBNUMBER (3)
LABEL (1)

LB (2)

LENGTH (2)

LEQ (2)
LIBACCESS (3)
LIBERATE (2)
LIBPARAMETER (3)
LIBRARIES (3)
LIBRARY (2)

LINE (2)
LINENUMBER (2)
LINKLIBRARY (2)
LIST (1)
LISTLOOKUP (2)
LN (2)

LNGAMMA (2)

LOCK (2)

LOCKED (3)

LOG (2)

LONG (1)

LOOP (3)

LSS (2)
MASKSEARCH (2)
MAX. (2)

MAXCARDS (3)
MAXIOTIME (3)
MAXLINES (3)
MAXPROCTIME (3)
MEMORYPARITY (3)
MEMORYPROTECT (3)
MERGE (2)
MESSAGESEARCHER (2)
MIN (2)

MOD (2)

MONITOR (2)

802
ALGOL REFERENCE MANUAL

Reserved Words, Continued

MUX (2) READLOCK (2) STRING (2)
MYJOB (2) REAL (1) STRINGPROTECT (3)
MYSELF (2) REEL (3) STRING4 (2)
NABS (2) REFERENCE (1) STRING7 (2)
NAME (3) REMAININGCHARS (2) STRINGS (2)
NEQ (2) REMOVEFILE (2) SUBFILE (2)

NO. (2) REPEAT (2) SUBSPACES (3)
NORMALIZE (2) REPLACE (2) SWITCH (1)

NOT (2) RESET (2) TADS (3)
NUMERIC (2) RESIZE (2) TAIL (2)

OF (2) RESTART (3) TAKE (2)

OFFER (3) RETAIN (3) TAN (2)

OFFSET (2) REWIND (2) TANH (2)

ON (2) RUN (2) TARGETTIME (3)
ONES (2) SCALELEFT (2) TASK (1)

OPEN (2) SCALERIGHT (2) TASKATTERR (3)
OPTION (3) SCALERIGHTF (2) TASKFILE (3)
OR (2) SCALERIGHTT (2) TASKVALUE (3)
ORGUNIT (3) SCAN (2) TEMPORARY (3)
OUT (3) SCANPARITY (3) THEN (1)
OUTPUTMESSAGE (2) SDIGITS (2) THRU (2)

OWN (1) SECONDWORD (2) TIME (2)

PACK (3) SEEK (2) TIMELIMIT (2)
PAGED (3) SET (2) TIMES (2)
PARTNER (3) SETACTUALNAME (2) TITLE (3)
PERMANENT (3) SIBS (3) TO (2)

PICTURE (2) SIGN (2) TRANSLATE (2)
POINTER (1) SIN (2) TRANSLATETABLE (1)
POTC (2) SINGLE (2) TRUE (1)

POTH (2) SINH (2) TRUTHSET (1)
POTL (2) SIZE (2) TYPE (3)
PRIVATELIBRARIES (3) SKIP (2) UNTIL (1)
PROCEDURE (1) SORT (2) USERCODE (3)
PROCESS (2) SPACE (2) VALUE (1)
PROCESSID (2) SQRT (2) WAIT (2)
PROCESSIOTIME (3) STACKER (2) WAITANDRESET (2)
PROCESSTIME (3) STACKNO (3) WHEN (2)
PROCURE (2) STACKSIZE (3) WHILE (1)
PROGRAMDUMP (2) STARTTIME (3) WITH (2)
PROGKAMMEDOPERATOR (3) STATION (2) WORDS (2)
PURGE (2) STATUS (3) WRITE (2)
RANDOM (2) STEP (1) ZERODIVIDE (3)
RB (2) STOP (2) -~ ZIP (1)

READ (2) STOPPOINT (3)

RESERVED WORDS BY TYPE

Type 1 Reserved Words

ALPHA
ARRAY
BEGIN
BOOLEAN
COMMENT
CONTINUE
DIRECT
DO
DOUBLE
ELSE
END
EVENT
FALSE

Type 2 Reserved Words

ABS

ACCEPT

AND

ARCCOS
ARCSIN
ARCTAN
ARCTANZ
ARRAYSEARCH
ASCII
ATANH
ATTACH
AVAILABLE
BCL
BREAKPOINT
BY

CABS

CALL
CALLING
CANCEL
CASE

CAT

CAUSE
CAUSEANDRESET
CCos

CEXP
CHANGEFILE
CHECKPOINT
CHECKSUM
CLN

Reserved Words

FILE

‘'FOR

FORMAT
GO

IF
INTEGER
LABEL
LIST
LONG
OWN
POINTER
PROCEDURE
REAL

CLOSE
COMPILETIME
COMPLEX
CONJUGATE
Ccos

COSH

COTAN

CSIN

CSQRT

DABS

DAND
DARCCOS
DARCSIN
DARCTAN
DARCTANZ
DCOS

DCOSH
DEALLOCATE
DECIMAL
DEFINE
DELINKLIBRARY
DELTA

DEQV

DERF

DERFC
DETACH
DEXP
DGAMMA
DICTIONARY

8032

REFERENCE
STEP
SWITCH
TASK

THEN
TRANSLATETABLE
TRUE
TRUTHSET
UNTIL
VALUE
WHILE

ZIP

DIGITS
DIMP
DINTEGER
DISABLE
DISPLAY
DIV
DLGAMMA
DLN

DLOG

DMAX

DMIN

DNABS

DNOT
DONTWAIT
DOR

DROP
DSCALELEFT
DSCALERIGHT
DSCALERIGHTT
DSIN

DSINH
DSQRT

DTAN

DTANH

DUMP
EBCDIC
EMPTY
EMPTY4
EMPTY?

804

EMPTY®
ENABLE
ENTIER
EQL

EQV

ERF

ERFC
EXCHANGE
EXP
EXPORT
EXTERNAL
FILL
FIRST
FIRSTONE
FIRSTWORD
FIX
FORMAL
FORWARD
FREE
FREEZE
GAMMA

GEQ

GTK
HAPPENED
HEAD

HEX

IMAG

IMP

IN
INTEGERT
INTERRUPT
IS

ISNT

LB

LENGTH
LEQ
LIBERATE
LIBRARY
LINE
LINENUMBER
LINKLIBRARY
LISTLOOKUP
LN
LNGAMMA
LOCK

ALGOL REFERENCE MANUAL

Type 2 Reserved Words.

LOG
LSS
MASKSEARCE
MAX

MERGE
MESSAGESEARCHER
MIN

MOD

MONITOR

MUX

MYJOB
MYSELF

NABS

NEQ

NO
NORMALIZE
NOT

NUMERIC

OF

OFFSET

ON

ONES

OPEN

OR
OUTPUTMESSAGE
PICTURE
POTC

POTH

POTL
PROCESS
PROCESSID
PROCURE
PROGRAMDUMP
PURGE
RANDOM

RB

READ
READLOCK
REMAININGCHARS
REMOVEFILE
REPEAT
REPLACE
RESET
RESIZE
REWIND

Continued

RUN
SCALELEFT
SCALERIGHT
SCALERIGHTF
SCALERIGHTT
SCAN
SDIGITS
SECONDWORD
SEEK

SET
SETACTUALNAME
SIGN

SIN

SINGLE
SINH

SIZE

SKIP

SORT

SPACE

SQRT
STACKER
STATION
STOP
STRING
STRING4
STRING?Y
STRINGE
SUBFILE
TAIL

TAKE

TAN

TANH

THRU

TIME
TIMELIMIT
TIMES

TO
TRANSLATE
WAIT
WAITANDRESET
WHEN

WITE

WORDS
WRITE

Type 3 Reserved Words

ACTUALNAME
ALL

ALPHAG

ALPHA7

ALPHAS8
ANYFAULT
ARRAYS

AS
ASCIITOBCL
ASCIITOEBCDIC
ASCIITOHEX
BACKUPPREFIX
BASE
BCLTOASCII
BCLTOEBCDIC
BCLTOHEX
BYFUNCTION
BYTITLE
CHARGECODE
CLASS

CODE
COMPILETYPE
COREESTIMATE
CRUNCH

DBS
DECIMALPOINTISCOMMA
DECLAREDPRIORITY
DISCARL

DISK

DISKPACK
EBCDICTOASCII
EBCDICTOBCL
EBCDICTOHEX
ELAPSEDTIME

Reserved Words

EXCEPTIONEVENT
EXCEPTIONTASK
EXPONENTOVERFLOW
EXPONENTUNDERFLOW
FAMILY
FILECARDS

FILES
FUNCTIONNAME
HEXTOASCII
HEXTOBCL
HEXTOEBCDIC
HISTORY
INITIATOR
INTEGEROVERFLOW
INTNAME
INVALIDADDRESS
INVALIDINDEX
INVALIDOP
INVALIDPROGRAMWORD
JOBNUMBER
LIBACCESS
LIBPARAMETER
LIBRARIES
LOCKED

LOOP

MAXCARDS
MAXIOTIME
MAXLINES
MAXPROCTIME
MEMORYPARITY
MEMORYPROTECT
NAME

OFFER

OPTION

ORGUNIT

ouT

PACK

PAGED

PARTNER
PERMANENT
PRIVATELIBRARIES
PROCESSIOTIME
PROCESSTIME
PROGRAMMEDOPERATOR
REEL

RESTART
RETAIN
SCANPARITY
SIBS

STACKNO
STACKSIZE
STARTTIME
STATUS
STOPPOINT
STRINGPROTECT
SUBSPACES
TADS
TARGETTIME
TASKATTERK
TASKFILE
TASKVALUE
TEMPORARY
TITLE

TYPE

USERCODE
ZERODIVIDE

807
B DATA REPRESENTATION
FIELD NOTATION

The notation "[m:n]" is used in this manual tc describe fields within
data words. The 48 accessible bits of a data word are considered to be
numbered, with the leftmost bit numbered as bit 47 and the rightmost bit
numbered as bit 0. 1In the notation [m:n], "m" denotes the number of the
leftmost bit of the field being described, and "n" denotes the number of
bits in the field. For example, the field indicated by the shaded area
in Figure B-1 (bits 28 through 24) is described as [28:5].

47 43 39 385 3i ; Zf 23 19 18 11 7)
46 42 38 34 “ 26 22 18 14 10 e 2
48 41 37 33 2 25| 21 17 13 8 5 1
44 40 .36 32 'z;. L e 20 16 12 8 4 0

Figure B-1. Field Notation, [28:5]

All data words have a field associated with them that 1is called the
"tag" of the word. The tag identifies the type of the data word; that
is, whether the word is an operand, descriptor, and so on. The tag is
not accessible to ALGOL programs.

Hexadecimal format is used extensively in this manual to indicate word
contents. Thies format is particularly suited to describe the value of a
data word, because each hexadecimal digit indicates the contents of a
4-bit field. Such fields can be visualized as the columns in Figure
B-1.

808
ALGOL REFERENCE MANUAL

CHARACTER REPRESENTATION

Characters are stored in fields of one, two. three, four, six, or eight
bits. In the table below, the Character Type column lists the valid
ALGOL character types. The Field Size and Bits Used columns show the
field size in bits and the number of bits within that field,
respectively. that are used for storing each type of character. The
Valid Constructs column shows the character-oriented ALGOL constructs
that are used to manipulate each character type.

Field Bits

Character Type Size Used Valid Constructs

EBCDIC 8 8 pointer, character array,
string, string literal

ASCII 8 7 pointer, character array,
string, string literal

BCL 6 6 pointer, character array,
string literal

Hexadecimal (HEX) 4 4 pointer, character array,
string, string literal

Octal 3 3 string literal

Quaternary 2 2 string literal

Binary 1 1 string literal

Figures B-2 through B-5 illustrate how the various character types are
stored within a data word.

Data Representation

809

(l) } 2 3 4 5
) | | |]
Ve N N N N
47 43 39 GISI 31! 27 23 18 i5 11 7 3
l 46 42 38 a4 30 26 22 18 14 10 6 2
45 41 37 33 29 28 21 17 13 g S 1
444 40 36 32 28 24 20 16 12 8 4 o]
_\. s
S __,_T____/
Most Significant Least Significant
Character Character

Figure B-3 shows that ASCII characters,

stored 1in 8-bit fields (as are EBCDIC characters).

Figure B-Z.

EBCDIC Characters (8-Bit Fields)

which are 7-bit characters,
The zeros shown for

are

bits 7. 15. 23. 31, 39, and 47 indicate that these bits are 0 when ASCII
characters are stored.

0 2 3 tll Fl>
I
/ v N N N N
47 43 39 35 31 27[23 19| 15 11 . 7 3
46 42 38 34 30 26 22 1848 14 10 6 2
45 41 37 33 29 25 21 17| 13 S 1
44 40 1 36 32 28 ZJ 20 16L 12 4 [o]
______I__—_/‘/ . ___‘___-—/
Most Significant Least Significant
Character Character
Figure B-3. ASCII Cnharacters (8-Bit Fields)

810
ALGOL REFERENCE MANUAL

Most Significant
Character

0 2 4 6
/——_‘_ﬂ\ /—_J—“'\ /___J__"\ /_—J—\ |

Figure B-4. BCL Characters (6-Bit Fields)

0 1 2 3 4 5 6
l

1 I |
I 47 I 43 39 35 | 31 a7 23
46 | 42 38 34 30 26 22
45 41 37 33 29 25 21
44 I 40 36 32 28 24 20
Most
Signifi ¢
Character

Figure B-5. Hexadecimal Characters (4-Bit Fields)

. : 811
" Data Representation

Character Values and g;ggg;gg‘

The following is a list of the 256 EBCDIC values represented in binary,
octal, - decimal, and hexadecimal formats. The corresponding BCL, ASCII,
and EBCDIC graphics (as they appear when printed using an EBCDIC96 print
train) are also shown. In the EBCDIC column, corresponding standard
mnemonics appear for some nonprintable EBCDIC values.

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

——— e —— - ————— - o o o i e e e e e — o

00000000 000 0 00 0 NUL
00000001 001 1 01 1 SOH
00000010 002 2 02 2 STX
00000011 003 3 03 2 ETX
00000100 004 4 04 4

00000101 005 5 05 5 HT
00000110 006 6 06 6

00000111 007 7 07 7 DEL
00001000 010 8 08 &

00001001 011 9 09 9

00001010 012 10 0A #

00001011 013 11 OB e VT
00001100 0l4 12 oc ? FF
00001101 015 13 oD : CR
00001110 016 14 OE > e
00001111 017 15 OF ' sI
00010000 020 le 10 + DLE
00010001 021 17 11 A DC1
00010010 022 18 12 B DC2
00010011 023 19 13 C DC3
00010100 024 20 14 D

00010101 025 21 15 E NL
00010110 02¢ 22 16 F BS
00010111 027 23 17 G

0001100C 030 24 18 H CAN
00011001 031 25 19 1 EM
0001101C 032 26 14 .

00011011 033 27 1B [

00011100 034 28 1C s FS
00011101 035 29 1D (GS
00011110 036 30 1E < RS
00011111 037 31 1F ! Us
00100000 040 32 20 }

00100001 041 33 21 J !
00100010 042 - 34 2 K "
00100011 043 5 23 L #
00100100 044 3¢ 24 M $
00100101 045 37 25 N % LF
00100110 046 38 26 o & ETB
00100111 047 39 27 P ' ESC
001010006 050 40 28 ¢

812
ALGOL REFERENCE MANUAL

'

Character Values and Graphics, continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

00101001 051 4] 29 R)
00101010 052 42 24 s *
00101011 053 43 2B * +
00101100 054 44 2¢C -

00101101 055 45 2D) - ENQ
00101110 056 46 2E : . ACK
00101111 057 47 2F . / BEL
00110000 060 48 30 0
00110001 061 49 31 / 1
00110010 062 50 32 S 2 SYN
00110011 063 51 33 T 3
00110100 064 52 34 U 4
00110101 065 53 35 \ 5
00110110 066 54 36 W 6
00110111 067 55 37 X 7 EOT
00111000 070 56 38 Y 8
00111001 071 57 39 Z 9
00111010 072 58 34 :
00111011 073 59 3B % :
00111100 074 60 3C _ < DC4
00111101 075 61 3D = = NAK
00111110 076 62 3E] >
00111111 077 63 3F " ? SUB
01000000 100 64 40 @ SP (blank)
01000001 101 65 41 A
01000010 102 66 42 B
01000011 103 67 43 o
01000100 104 68 44 D
01000101 105 69 45 E
01000110 106 70 46 F
01000111 107 71 47 G
01001000 110 72 48 H
01001001 111 73 49 I
01001010 112 74 4A J [
01001011 113 75 4B K .
01001100 114 76 4C L <
01001101 115 77 4D M (
01001110 1l 78 4E N +
01001111 117 79 4F o] !
01010000 120 80 50 P &
01010001 121 81 51 o}
01010010 122 82 52 R
01010011 123 83 53 S
01010100 124 84 54 T
01010101 125 85 55 U
01010110 126 8¢ 56 v
01010111 127 87 57 W
01011000 130 88 58 X
01011001 131 8¢ 59 Y

Character Values and Graphics,

Binary
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101

- 01110110

01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110

01111111

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010

Octal Decimal Hexadecimal BCL ASCII EBCDIC

et o e e e 4 P o e e e e S et e e S e

Data Representation

continued

v —rm NS X ECE N O0TVTOSERRGLGKEIRSOQALOOTD

L= A SRR B B o T 0 B o 2 v

813

814
ALGOL REFERENCE MANUAL

Character Values and Graphics, continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

10001011 213 139 8B
10001100 214 140 8C
10001101 215 141 8D
10001110 216 142 8E
10001111 217 143 8F
10010000 220 144 90
10010001 221 145 91 J
10010010 222 146 92 k
10010011 223 147 93 1
10010100 224 148 94 m
10010101 225 149 95 n
10010110 226 150 96 o
10010111 227 151 97 p
10011000 230 152 98 q
10011001 231 153 99 r
10011010 232 154 9A
10011011 233 155 9B
10011100 234 156 9C
10011101 235 157 9D
10011110 236 158 9E
10011111 237 159 9F
10100000 240 160 AOD
10100001 241 l6l Al ~
10100010 242 162 A2 s
10100011 243 163 A3 t
10100100 244 164 A4 u
10100101 245 165 A5 v
10100110 246 le6 Ab w
10100111 247 167 A7 X
10101000 250 le8 A8 y
10101001 251 169 A9 z
10101010 252 170 AA
10101011 253 171 AB
10101100 254 172 AC
10101101 255 173 AD
10101110 256 174 AE

- 10101111 257 175 AF
10110000 260 176 BO
10110001 261 177 Bl
10110010 262 178 B2
10110011 263 179 B3
10110100 264 18C B4
10110101 265 181 BS
10110110 266 182 Be
10110111 267 183 B7
10111000 270 184 B&
10111001 271 185 B¢
10111010 272 18¢ BA

10111011 273 187 BE

Character Values and Graphics, continued

Binary
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010

11011011

11011100
iloillol
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100

Octal Decimal Hexadecimal BCL ASCII EBCDIC

Data Representation

BC
BD
BE
BF
co
Cl
Cc2
C3
C4
Cc5
Ce
c7
C8
c9
CA
CB
cC
CD
CE
CF
DO
Dl
D2
D3
D4
D5

D6

D7
D8
D9
DA
DB
DC
DD
DE
DF
EC
El
E2
E3
E4
ES
Ee
E7
E8
E9
EA
EB
EC

HIQTEHOOW>» -~

MO WO 2Z RN G W

~

N<XE<cadwm

815

816
ALGOL REFERENCE MANUAL

Character Values and Graphics, continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

11101101 355 237 ED
11101110 356 238 EE
11101111 357 239 EF
1111000¢C 360 240 FC o
11110001 36l 241 Fl 1
11110010 362 242 FZ 2
11110011 363 243 F3 3
11110100 364 244 F4 4
11110101 365 245 F5 5
11110110 366 246 Fe 6
11110111 367 247 F7 7
11111000 370 248 F8 8
11111001 371 249 F9 9
11111010 372 250 FA&
11111011 373 251 FB
11111100 374 252 FC
11111101 375 253 FD
11111110 376 254 FE

11111111 377 255 FF

v 817
Data Representation

Default Character Type

The default character type is the character type assumed by pointers,
string wvariables, string 1literals, and so on when a character type is
not explicitly specified. The default character type is also used as
the default value of the INTMODE file attribute. For more information
on INTMODE, refer to the "I/O Subsystem Reference Manual."

Two compiler control options affect the default character type: the
ASCII option and the BCL option. (For moreée information, refer to the
ASCII option and the BCL option under -"<ASCII option>" and "<BCL
option>," respectively, in the "Compiling Programs" chapter.) If the
ASCII option is TRUE, the default character type is ASCII. If the BCL
option is TRUE, the default character type is BCL. If neither the ASCII
option nor the BCL cption is TRUE, the default character type is EBCDIC.

Free-field and formatted 1I/0 generate either EBCDIC or BCL data
depending on the default character type. If the default character type
is BCL, BCL data is generated. 1f the default character type is EBCDIC
or ASCII, EBCDIC data is generated.

The example programs below demonstrate the effects of different default
character types.

See also
CASCII OPtiON”. v & v v v v ¢ & ei e v 4 o o o 4 o « 4« « « « . 603
<BCL OPLiON . v v v v & v 4« o v o v o o o o o o o « v « « « < . €05
Examples

%%% PROGRAM 1 %%%

BEGIN

% OPTION RECORD
FILE F(KIND=DISK,NEWFILE=TRUE);
ARRAY A[0:9]:

POINTER P;

STRING S: % DECLARATION OF &
OPEN(F);

P := POINTER(A):

S := "ABC";: % STRING ASSIGNMENT

END,

818
ALGOL REFERENCE MANUAL

If this example is compiled and executed as is, the default character
type 1is EBCDIC. Thus, the INTMODE attribute of file F is EBCDIC, the
character size of pointer P is eight bits, the string type of string S
is EBCDIC, and, after the string assignment is executed, S contains the
EBCDIC string "ABC".

If "% OPTION RECORD" on the third 1line 1is replaced by the compiler
control record "S$ SET ASCII", and the program is compiled and executed,
the default character type is ASCII. Thus, the INTMODE of file F 1is
ASCII, the character size of pointer P is eight bits, the string type of
string S is ASCII, and, after the string assignment is executed, S
contains the ASCII string "ABC".

If program 1 is compiled after "% OPTION RECORD" 1is replaced by the
compiler control record "$ SET BCL", the default character type is BCL
and the program 1is flagged with two syntax errors--one on the
declaration of string S and one on the string assignment--because string
variables cannot be of type BCL.

%%% PROGRAM 2 %%%

BEGIN

$ SET BCL
FILE F(KIND=DISK,NEWFILE=TRUE):
ARRAY A[0:9];

POINTER P;

OPEN(F):

P := POINTER(A);

REPLACE P BY "ABC"; % REPLACE STATEMENT
END.

Program 2 contains the compiler control record "$ SET BCL" and has no
string constructs. It compiles without error. If program 2 is compiled
and executed, the default character type is BCL. Thus, the INTMODE of
file F 1is BCL, the character size of pointer P is six bits, and, after
the REPLACE statement is executed, P references the BCL characters "ABC"
stored in array A.

Program 2 is flagged with & warning message when it is compiled, because
the BCL character type is not supported on all A Series and
B 5000/B 6000/B 7000 Series systems.

. 819
Data Represéntation

Signs of Numeric Fields

Certain operations in ALGOL require an indication of a numeric sign in

character data.

8-bit characters

6-bit characters

4-bit digits

The sign of a numeric field is represented as follows:

The sign 1is 1in the zone field of the least
significant character (field [7:4] of the character).
A bit configuration of 1"1101" (4"D") 1indicates a
negative number:; any other bit configuration
indicates a positive number.

The sign 1is in the 2zone field of the least
significant character (field [5:2] of the character).

A bit configuration of 1"10" indicates a negative

number; any other bit configuration indicates a

positive number.

The sign is carried as a separate digit, and it 1is

.the most significant digit of the field. A Dbit

configuration of 1"1101" (4"D") indicates a negative
number; any other bit 'configuration indicates a

positive number.

820
ALGOL REFERENCE MANUAL

ONE-WORD OPERAND

Real, integer, and Boolean operands each require one word of storage.

Real Operand

The internal structure of a real operand is illustrated in Figure B-¢.

as 35 31 27 23 19 15 11 7 3
as 34 30 26 22 18 14 10 6 2
37 33 20 26 21 17 13) 5 1
36 32 28 24 20 16 12 8 4 0

Field Use

Tag c

[47:1) Not used

[46:1] Sign of mantissa: 1 = negative., C = positive

[45:1] Sign of exponent: i = negative, G = positive

[44:6] Exponent

[38:29] Mantissa

Figure B-o. Real Operand
Real {single-precision. floating-point) values are represented

internally in signed-magnitude, mantissa-and-exponent notation. The
sign of the mantissa is contained in bit 46. and the sign of the
exponent is contained in bit 45. A minus sign is denoted by a 1 in the
appropriate sign bit. The magnitude of the exponent 1is contained in
field [44:6]; hence, the maximum absolute value of an exponent in a real
operand is 2**e-~1 = 63. The magnitude of the mantissa is contained in
field [38:39]; hence, the maximum absolute value of a mantissa in a real
operand is 2**39-1. Tnere is an implied radix point to the right of bit
zerc.

Data Representation

The value represented by a real operand can be obtained by the following
formula:

(mantissa) * 8**(exponent)

Certain operations, such as the NORMALIZE function, return a
"normalized" real operand as their result. A normalized real operand ic
a real operand in which the leftmost octade (3-bit field) of the
mantissa 1s nonzero. For example, the real value 0.5, in normalized
form, is represented internally as 4"26C000000000". In this example,
the mantissa is 4 * 8**12 and the exponent is -13.

Integer Operand

The internal structure of an integer operand is illustrated 1in Figure
B-7.

36 31 27 23 19 15 11 4 3
Magnitude
34 30 26 22 18 14 10 8 2
33 20 25 21 17 13) 5 1
32 28 24 20 16 12 8 4)
Field Use
Tag 0
[47:1] Not used
[46:1] Sign: 1 = negative, 0 = positive
[45:1] Not used
[44:6] o]
[38:39] Magnitude

Figure B-7. Integer - Operand

Integer values are represented internally in signed-magnitude notation.
The sign of the value is denoted by bit 46 of the data word. A minus
sign is denoted by a 1 in bit 46. The magnitude of the value is stored
in field [38:39]. The maximum absolute value of an integer operand is
2**39-]1, There is anh implied radix point to the right of bit zeroc.

822
ALGOL REFERENCE MANUAL

For example, the internal representation of the integer 10 1is
4"00000000000A"
The internal representation of -10 is
4"400000000004"
The internal representation of 99,999,999,999 is
4"00174876E7FF"
The internal representation
4"Q07FFFFFFFFF"
represents the decimal value 549,755,813,887 (the maximum value an

integer operand can contain). A larger value would have to be stored in
a real operand or a double-precision operand.

Note that the internal format of an integer operand is the same as the
internal format of a real operand with an exponent of zero.

823
Data Representation

" Boolean Operand

The internal structure of a Boolean operand 1is 1illustrated in Figure
B-8.

viv|iv|vi|iv|v|v|Vv|vV
47 | 43 | 39 as 3 27 23 19 15
viv|v|v|iv|v|vVv]|Vv]|V
46 42 38 34 30 26 22 18 14
vivi|iv|v|v|v]|v|Vv|vV
45 41 | ‘37 33 29 25 21 17 13
viviv|v|iv|v|v|Vv|vV
44 40 36 32 2 20 16 12

8 24 |

Field Use
Tag 0 :
[47:47] Any bit or field within this field can be referenced

as a Boolean value using the <partial word part> or
<concatenation> constructs.
[0:1] The Boolean value of the operand as a whole.

Figure B-8. Boolean Operand

Booclean operations are performed on a bit-by-bit basis on all 48 bits of
a Boolean operand. The one exception is the NOT operation performed on
an arithmetic relation, where NOT is performed on the low-order bit (bit
zero), but not necessarily on the other 47 bits. However, when a
Boolean operand is referenced as a whole, only the low-order bit (bit
zero) is significant (C is FALSE, 1 is TRUE).

In Figure B-8, the shaded V's indicate that each bit of the entire
48-bit Boolean operand can be used to store an individual Boolean value.
The individual bits can be referenced by using the <partial word part>
and <concatenation> constructs.

824
ALGOL REFERENCE MANUAL
TWO-WORD OPERAND

Double-precision and complex operands each require two words of storage.

Double-Precision Operand

The internal structure of a double-precision operand is illustrated in |
Figures B-9 and B-10. /

35 a1 27 23 19 18 11 4 3
Mantissa
34 a0 26 22 18 14 10 [2
(Most Significant Part)
33 28 25 21 17 13 9 5 1
az 28 24 20 16 1z 8 4 0
Field Use
Tag 2
[47:1] Not used
[46:1] Sign of mantissa: 1 = negative, 0 = positive
[45:1] Sign of exponent: 1 = negative, 0 = positive
[44:6] Least significant portion of the exponent
[38:39) Most significant portion of the mantissa

Figure B-9. First Word, Double-Precision Operand

825
Data Representation

E (M.lut sxgalittmt
Part)
X a7 as| 31 27 23 19 1s 11 [4 3
p | | Mantissa
| Oss «zf 38 34 3o 26 22 18 14 10 6 2
n | ~ |(Least Significant Part)
__‘345 41 37 33 29 25 21 17 13) 5 1
n
T 40 36 32 28 24 20 16 12 B 4 o
Field Use
Tag 2 , _ :
[47:9] Most significant portion of the exponent
[38:39] Least significant portion of the mantissa

Figure B~10. Second WOrd,'Double—Precision Operand

Double-precision values are represented internally in signed-magnitude,
mantissa-and-exponent notation. The sign of the mantissa is contained
in bit 46 of the first data word, and the sign of the exponent Iis
~contained in bit 4% of the first data word. A minus sign is denoted by
a 1 in the appropriate sign bit.

The magnitude of the exponent of a double-precision operand is contained
in a . total of 15 bits. The most significant nine of these 15 bits are
contained in field [47:9] of the second data word. The least
significant six of these 15 bits are contained in field [44:6] of the
first data word. '

The magnitude. of the mantissa of & double-precision operand is
represented by a total of 78 bits. The most significant 39 bits are
contained in fielid [38:39] of the first data word. The least
significant 39 bits are contained in field [38:39] of the second data
word. There is an implied radix pcint to the right of bit zZero of the
first data word: that is. between the mcst significant and least
significant parts of the mantissa.

826
ALGOL REFERENCE MANUAL

The value represented by a double-precision operand can be obtained by
the following formula:

(MM + LM * 8**(-13)) * 8**(ME * 2**¢ + LE)
where

- MM is the most significant part of the mantissa.

- LM is the least significant part of the mantissa.

- ME is the most significant part of the exponent.

- LE is the least significant part of the exponent.
Certain operations return a "normalized" double-precision operand as
their result. A normalized double-precision operand is a
double-precision operand in which the leftmost octade (3-bit field) of
the full 78-bit mantissa is nonzero. For example, the double-precision
value 1@E0, in normalized form. is represented internally as

4"261000000000". 4"00000000000C"

In this example, the mantissa is 1 * 8**12 and the exponent is -12.

Complex Operand

A complex operand requires two words of storage. The first word
contains the real part of the complex value: the second word contains
the imaginary part. The internal structure of both the real and

imaginary parts of the complex value 1is identical to the internal
structure of a real operand. (For more information, refer to "Real
Operand” -in this appendix.)

. 827
Data Representation

DATA DESCRIPTORS AND POINTER

‘An unindexed-data: descriptor is the mechanism used on A Series and
B 5000/B 6000/B 7000 ©Series systems to represent the contents of an
array. An indexed data descriptor is used to reference one element of a
word ‘array. A pointer references one character within a word or
character array.

The internal structures of . unindexed data descriptors, indexed data
descriptors., and pointers ‘are illustrated in Figures B-11, B-12, and
B-13, respectively.

828

ALGOL REFERENCE MANUAL

39 35 31 27 23 19 15 11 4 3
38 34 30 26 22 18 14 10 8 2
(Memory or Disk)
a7 - a3 29 25 21 17 13 9 5 1
36 a2 28 24 20 16 12 8 4 0
Field Use
Tag 5
[47:1] Presence bit: 1 = present, 0O = absent
[46:1] Copy bit: 1 = copy, O = mom (original)
[45:1] Indexed bit: 0 = unindexed
{44:17 Paged bit: 1 = paged. G = unpaged
[43:1] ‘Read-only bit: 1 = read-only. 0 = read/write
[42:3] Element size (type of the array):

0 = single precision, 1 = double precision.
2 = hexadecimal. 3 = BCL, 4 = EBCDIC/ASCIZ
[39:20] Length (number of elements in the array)
{19:20; Address:
- when present, the memory address of the beginning
of the array
- When absent and mom, the software—encoded address
of the array in storage
- When absent and copy, the memory address of the
associated mom descriptor

Figure B-11. Unindexed Data Descriptor

, 82¢9
Data Kkepresentation

39 1 31 27 19 1B 11 7 3
Index | Address
38| 24 30 26 18] - 14 10 6 2
ar 33 20| 25 17 13 9 5 1
36 32 28 | 24 16 12 8 4 0
Field Use
Tag 5 ,
[47:1] Presence bit: 1 = present, 0 = absent
[46:1] Copy bit: 1 = copy
[45:1] Indexed bit: 1 = indexed
[44:1] Paged biti 0 = unpaged
[423:2] = Read-only bit: 1 = read-only, 0 = read/write
[42:3] Element size (type of the array): '
0 = single precision. 1 = double precision
[39:20] Index of the elemént in the array (relative to
_ ' zero) :
[19:20] Address:

- When present, the memory address of the beginning
of the array

- When absent, the memory address of the associated
unindexed mom data descriptor

Figure B-1l2. 1Indexed Data Descriptor

830

ALGOL REFERENCE MANUAL

C v
h.2® as a1 27 23 19 1s 11 7 3
? Word Index Address
a8 34 30 26 22 18 14 10 6 2
|
n
d-27 a3 29 26 21 17 13 9 [1
e
X
a6 a2 28 24| 2o 16 12 8 4 0
Field Use
Tag 5
[47:1] Presence bit: 1 = present, 0 = absent
[46:1] Copy bit: 1 = copy
[45:1] Indexed bit: 1 = indexed
[44:1] Paged bit: 0 = unpaged
[43:1] Read-only bit: 1 = read-only, 0 = read/write
[42:3] Element size (type of the pointer):
2 = hexadecimal, 3 = BCL, 4 = EBCDIC/ASCII
[39:4 Character index: the zero-relative index in the
word of the referenced character
[35:16] Word index: the zero-relative index in the array of
the referenced word
[19:20] Address:

- When present. the memory address of the beginning
of the array

- When absent, the memory address of the associated
unindexed mom data descriptor

Figure B-13. Pointer

831

C BEH:ILQE,FORHAI~ERQOB MESSAGES

Free-field Input

The meanings of the format-error numbers pertaining to free-field input
are given in the following table.

420

442

443

444

462

467

473

484

Error Message

An error occurred on free-field input.

Evaluation of a list element caused an I1/0 action on the current
file. ’
Input from the <core-to-core file part> required more records
than allowed by the <core-to-core blocking part>.

The input data corresponding to a single-precision 1list element
consisted of a hexadecimal string of more than 12 significant
digits.

The input data .contained a hexadecimal string containing

‘nonhexXadecimal characters.

The input data corresponding to a double-precision list element
consisted of a hexadecimal string of more than 24 significant
digits.

The next list element was a pointer. and the corresponding input
data consisted of a quoted string that had been only partially
assigned.

The input data contained a value greater than the maximum value
allowed for the corresponding list element.

The input data contained a string with no trailing quotation mark
character.

An expression was used as a list element on input.

ALGOL REFERENCE MANUAL

Formatted Output

The meanings of the format-error numberc pertaining to formatted output
are given in the following table. '

Number

100

102

103

104

105

10¢

107

109

110

111

113

114

1le

117

~

Error Message

An error occurred on formatted output.

The editing phrase letter was V, and the data specified by the
list element did not produce an A, C. L. E, F, G. H, I, J. K, L.
O, P. R, S. T, U, %, or Z in the appropriate character position.

The editing phrase was of the form rV, and the resulting
specifier required a <field width>.

The editing phrase was of the form rV. and the resulting
specifier required a <«field width> and <decimal places>.

The editing phrase was of the form Fw.d, and d was 1less than
zero.

The editing phrase used was Fw.d, and d was less than zero.

The editing phrase used was Ew.d or Dw.d, and ¢ was less than
zerc.

The editing phrase used was Zw, and the corresponding 1list
element was not of type INTEGER or BOOLEAN.

The type of the input data was not compatible with the type of
the corresponding list element.

The editing phrase was of tne form Zw.d. The phrase chosen to
edit the output was Ew.d. but d was less than zero.

The editing phrase used was Ew.d or Dw.d, and w was less than or
equal to d.

The value of a dynamic w or d part was greater than the maxXimum
allowabie integer (549,755.812.887).

Evaluation of a list element caused an I/0 action on the current
file (recursive I1/0).

An attempt was made to write a number of characters greater than
the record size.

Output to the <core-tc-core file part> required more records than
allowed by the <core-tc—-core blocking part:.

Number

133

163

The value
allowable

The value
allowable

The value
allowable

The record size was not iarge enough to allow the

Run-Time Format-Error Messages
Formatted Output, continued

Error Message

——— o ——

of a dynamic r part was greater

real value (4.31359146673 * 10**68).

of a dynamic w part was greater
integer (549.755.813.887).

of a dynamic d part was greater
integer (549,755.812.887).

write specified.

than the
than the
than the

maximum

maximum

maximum

free-field

834

ALGOL REFERENCE MANUAL

Formatted Input

The meanings of the format-error numbers pertaining to formatted input
are given in the following table. :

Number

200

202

203

204

205

206

207

20¢9

210

213

214

216

217

Error Message

An error occurred on formatted input.

The editing phrase letter was V, and the data specified by the
list element did not produce an A, C, D, E, F, G, H, I, J, K, L,
0, P, R. £§, T, U, X, or Z in the appropriate character position.

The editing phrase was of the form rV, and the resulting
specifier required a <field width>.

The editing phrase was of the form rV, and the resulting
specifier required a <field width> and <decimal places>.

The editing phrase was of the form rVw, and the resulting
specifier required <decimal places>.

The editing phrase used was Fw.d, and d was lecss than zero.

The editing phrase used was Ew.d or Dw.d, and d was 1less than
zero.

The editing phrase used was 2w, and the corresponding 1list
element was not of type INTEGEKR or BOOLEAN.

The type of a 1list element was incompatible with the
corresponding editing phrase.

The editing phrase used was Ew.d or Dw.d, and w was less than or
equal to d.

The value of a dynamic w or d part was greater than the maximum
allowable integer (549,755,813.887).

Evaluation of a list element caused an I/0 action on the current
file (recursive 1/0).

An attempt was made to read a number of characters greater than
the record size. ’

The editing phrase letter was H or K, but the input data
contained nonblank, nonhexadecimal characters or nonblank,
nonoctal characters, respectively.

231

233

250
271
281
284

285

286

291

292

293

294

295

835
Run-Time Format-Error Messages

Formatted Input, continued

Error Message

Input from the <core-to-core file part> required more records
than allowed by the <core-to-core blocking part>.

The value of a dynamic r part -was greater than the maximum
allowable real value (4.31359146673 * 10**68).

The value of a dynamic w part was greater than the maximum
allowable integer (549,755,813,887).

The value of a dynamic d part was greater than the maximum
allowable integer (549,755,813,887).

Input was attempted using a U editing phrase.

Input was attempted using a $ or P format modifier.

The input data was invalid for an I editing phrase.

An expression was used as a list e;ément on input.

The list element was of type REAL, but the corresponding input
data contained a value greater than the maximum allowable real
value (4.31359146673 * 10**68).

The list element was of type INTEGER or BOOLEAN, but the input
data contained a value greater than the maximum allowable integer
(549,755.813,887).

The input _data corresponding tc a numeric editing phrase
contained a nondigit character in the exponent part following at

least one valid digit.

The input data corresponding to a numeric editing phrase
contained more than one sign in the exponent part.

The input data corresponding. to ‘a. numeric editing phrase
contained an invalid character after the exponent sign and before
the exponent value.

The input data corresponding to a numeric editing phrase
contained an invalid character after the decimal point.

The input data corresponding to .a numeric editing phrase
contained more than one sign in the mantissa.

837
UNDERSTANDING RAILROAD DIAGRAMS
WHAT IS A RAILROAD DIAGRAM?

A railroad diagram is a way of representing the syntax of a command oOr
statement graphically. It shows which items are required or optional.
the order in which they should appear. how often you can repeat them,
and any required punctuation.

HOW TO READ A RAILROAD DIAGRAM

Normally, you read a railroad diagram from left to right. However,
there are some exceptiong; in those = cases, arrows indicate a
right-to-left direction.

1f a diagram is too long to fit on one line and must continue on the
next, a right arrow (>) appears at the end of the first line and another
at the beginning of the next line, like this:

The end of a railroad diagram is denoted by a vertical bar (|) or
percent sign %) The vertical bar means the command or statement can
be followed by a semicolon and another command Or statement. The
percent sign means the command or statement must be on a line by itself.

CONSTANTS AND VARIABLES

Consider a hypothetical command for giving instructions' to a house
painter:

—-— PAINT —-———=————————" LIVING ROOM ---<color>--|
——— ! !
i— THE —‘ ‘— DINING ROOM -i
:- BEDROOM —-———- ;
!
:‘ BATHROOM -*—-i
;— KITCHEN --——- 1

838 ,
ALGOL REFERENCE MANUAL

This command tells the painter to paint a designated room in the color
you specify.

The example introduces twc important features of railroad diagrams:
~ Constants

- Variables
Constants

Constants are items that you cannot vary. You must enter a constant as
it appears in the diagram, either in full or abbreviated. If you
abbreviate a constant, you must enter everything that is underlined in
the railroad diagram, optionally f{ollowed by one or more of the
remaining characters.

You can recognize constants in railroad diagrams by the fact that they
are never enclosed in angle brackets.

In the example, the word PAINT is a constant. You could enter PAINT in
full or abbreviate it to PAI or PAIN, but not to PA or PAN. If no part
of the constant is underlined, you cannot abbreviate it at all.

Variables

Variables are items that you can replace with other data to suit a
particular situation: that is, you can vary the information you enter in
place of the variable, subject to rules defined for the particular
command Oor statement.

Variables appear in a railroad diagram enclosed in angle brackets (<>).

In the example, <cclor> is a variable item. 1If the description of the
PAINT command defines the allowable colors as BLUE, GREEN, PINK, and
YELLOW, you can enter any one of these in your command.

. 839
Understanding Railroad Diagrams

FOLLOWING THE PATHS OF A RAILROAD DIAGRAM

The paths of a railroad diagram lead you through the diagram from
beginning to - end. They are represented by horizontal and vertical
lines.

A path shows the allowable syntax. Some diagrams have just one path
that goes from the beginning to the end of the diagram. Others contain
several paths. each covering a part of the diagram. A path shows which
items you can include in a command or statement, which you can omit, and
the number of times you can include a particular item or group of items.

Tc follow a path through a railroad diagram, you need to understand the
items you may encounter along the way. These items are

-~ Required items and punctuation

1

Opticnal items

- Loops

A description of each item follows.

Required Items and Punctuation

Required items and punctuation must be entered in the command or
statement: you cannot omit them. A required item appears by itself in a
path (horizontal line). A required item can be either a constant or a
variable. For example, if a railroad diagram indicates

~- PAINT -- BEDROOM --<coior>—-—:
the words PAINT and BEDROOM are required constants, and <color> 1is a
required variable. You could chreCtly enter

PAINT BEDROOM BLUE

but not

PAINT BEDROOM

because the required item <color> would be missing.

840
ALGOL REFERENCE MANUAL

Optional Items

Optional items appear one below another in a vertical 1list. You can
choose any one of the items in the list. If the list also contains an
empty path (all dashes), you can omit the item entirely. An optional
item can be either a variable or a constant. The PAINT command in the
example containe two lists. The first is

which gives you two options:
- Enter the constant THE

- Omit it (because there is an empty path)
The second list has five optional constants:

—-—-—— LIVING ROOM ----|
:‘ DINING ROOM *:
:— BEDROOM ——--- :
:‘ BATHROOM ----:
:— KITCHEN —---- :

You must enter one of the optional itemg (LIVING ROOM, DINING ROOM,
"BEDROOM, BATHROOM. or KITCHEN) because there is no empty path in this
list. '

Loops

A loop is an item or group of items that you can repeat. The number of
repetitions allowed is controlled by an item called the bridge.

841
Understanding Railroad Diagrams

A loop can span all or part of a railroad diagram. It always consists
of at least two horizontal lines, one below the other, like this:

or

|<~- <bridge> -- <return character> --|
l .
--------- <content of the loop> ~===—=————--

‘The bridge shows the maximum number of times you can go through the
loop. The ' bridge can precede the contents of the loop, or it can
precede the return character on the upper line of the loop to specify
the number of times the right-to-left path can be traversed. The bridge
is an integer enclosed in sloping lines. / \, for example, /4\. Not all
loops have bridges. Those that do not can be repeated any number of
times.

The top line is a right-to-left path that contains information about
repeating the loop. The return character is the character to use before
each repetition of the loop (often, a comma). Not all loops contain a
return character; if nohe is shown, just enter one or more spaces before
repeating the loop.

The other lines show the content of the loop (the data you enter each
time you go through the loop). This can be any combination of optional
items, required items, lists, and even other loops. The content of a
loop can range f{rom simple (one item), to very complex (many items,
lists, and loops).

Example 1. A Simple Loop

The PAINT command as first shown is of limited usefulness. To tell the
painter to do several rooms, you need a separate command for each roOm.
It would be much easier if you could tell him to do several rooms in one
commanc.

You can do that by making the list of rooms into a loop. The command
would then look like this:

842
ALGOL REFERENCE MANUAL

-- PAINT mmemme———————/5\=—= LIVING ROOM -—--—- <color>--|
[~ THE -| |- DINING ROOM - |
| - BEDROOM ----- |
|~ BATHROOM -—--|

| |
|- KITCHEN ----- |

The bridge has a value of 5, sO you can go through the loop up to five
times, for a total of five rooms: The return character is a comma,
which you must enter before repeating the loop content.

You can now enter

PAINT THE LIVING ROOM, BEDROOM, KITCHEN YELLOW

or

PAINT DINING ROOM, BEDROOM, BATHROOM BLUE
or

PAINT BEDROOM PINK
or

PAINT BEDROOM, BATHROOM, BEDROOM, BEDROOM BLUE
or any other valid combination.

This simple loop makes the PAINT command more versatile, but a
significant drawback remains. Although you can include up to five rooms
in a command, you cannot specify different colors.

Understanding Railroad Diagrams

Example 2. A More Complex Loop

843

If the content of the loop were to include the color, you could specify

a different color for each room.

DINING ROOM -|

LIVING ROOM ---<color>——--—|
!

BEDROGM
BATHROOM —----i

l
KITCHEN

The content of the loop now consists of the

- List of optional constants that indicate rooms

- Required variable <color>

The bridge value is 5, and the return character is a comma. Given
railroad diagram, some valid PAINT commands would be

PAINT THE BEDROOM PINK

PAINT THE LIVING ROOM BLUE, DINING ROOM GREEN, KITCHEN YELLOW

PAINT BEDROOM GREEN, KITCHEN

and so on.

BLUE

this

844
ALGOL REFERENCE MANUAL

Example 3. Another Loop

In some bridges an asterisk follows the number. For example,

-~ PAINT ------=--=--=-—- LIVING ROOM ---<CcoOlOr»--—-|
:- THE -: ;— DINING ROOM -:
':7 BEDROOM —---- :
:- BATHROOM -—--;
:— KITCHEN ----- :

The asterisk means you must take the right-to-left path at least once.
You cannot, for example., enter PAINT BEDROOM BLUE; you must tell the
painter at least two rooms to paint. The maximum number of rooms to be
painted 1is still five: - the first time through the loop with up to four
repetitions.

A valid form of the command would be

PAINT BEDROOM BLUE, KITCHEN YELLOW
Example 4. Another Use of the Bridge

A bridge can also control the number of times you take an individual
path within a loop. For example, another command to the painter might
be:

f———m- /1\- EVENINGS ----- !

{=/1\- WEEKENDS -

i=/1\- HOLIDAYS -

: 845
Understanding Railroad Diagrams

Each bridge /1\ 'indicates you can take that path once or not at all.
That 1is. +you ~can enter each of the items EVENINGS, WEEKENDS, and
HOLIDAYS once at most. Some valid commands are

WORK EVENINGS WEEKENDS HOLIDAYS

WORK WEEKENDS

WORK HOLIDAYS EVENINGS

but

WORK EVENINGS EVENINGS
ig¢ invalid.

A FINAL WORD

To familiarize you with railroad diagrams, this explanation describes
the elements of the diagrams and gives a few simplified examples. Some
of the actual diagrams you will encounter in a book may be considerably
more complex.

However. the principles are the same no matter how complex the diagram.
The more you work with railroad notation. the more easily you will
understand even the most complex diagrams.

847

accidental entry

See "thunk."

address bouple

A representation of the address of an item in a program. An address
couple consists of two numbers: the first number is a lexical
level, and the gecond number is a displacement (offset) within that
lexical level. :

address equation

The process of declaring an identifier to nave the same address as a
previously declared identifier.

ASCI1

American Standard Code for Information Interchange. A 7- or 8-bit
code representing a set of 128 control and graphic characters.

asynchronous process

bad

BCL

A procedure initiated by a program as a Separate task that is
dependent -on the initiating program for globals but otherwise runs
independent of and in parallel with the initiating program.

BO to

A GO TO statement in an inner block that transfers control to a
label that is global to that block. A necessary side effect of a
"bad go to" is that the block in which it occurs is exited abruptly
and local variables are deallocated immediately.

See "Burroughs Common Language.“

848

ALGOL REFERENCE MANUAL

Burroughs Common Language (BCL)

An obsolete code using b-bit character representation. BCL is not
available on A Series or on most B 5000/B 6000/B 7000 Series systems
(such as B 5900 systems).

call-by-name

A method of passing a parameter to a procedure where every reference
to the formal parameter within the procedure body causes the actual
parameter to be evaluated. Any change made to the value of the
formal parameter within the procedure body also changes the value of
the corresponding actual parameter outside the procedure body.

call-by-reference

A method of passing a parameter to a procedure where the actual
parameter's address 1is evaluated once and passed to the formal
parameter. Every reference to the formal parameter within the
procedure body thus references this address. Any change made to the
value of the formal parameter within the procedure body also changes
the value of the corresponding actual parameter outside the

.procedure body.

call-by—-value

A method of passing a parameter to a procedure where the value of
the actual parameter is assigned to the formal parameter. which is
thereafter handled as a variable that is 1local to the procedure
body. Any change made to the value of a call-by-value formal
parameter has no effect outside the procedure body .

CANDE

Command AND Edit. A Burroughs Message Control System (MCS) that
provides generalized file preparation and updating capabilities and
task control in an interactive. terminal-oriented environment.

character array

An array whose elements are ASCII, BCL, EBCDIC, or hexadecimal
characters.

849
Glossary

code segment descriptor

A deScriptor that references a code segment.

control variable

The variable that controls the repetitive execution of an iterative
statement.

copy descriptor

A descriptor that has a one in the copy bit (bit 46). A copy
descriptor 1is derived from a mom descriptor, and there can be
multiple copy descriptors to the same data segment.

coroutine

A process in which two programs execute in parallel, but not
simultaneously, passing control back and forth to each other and
running alternately.

c¢ritical block

The block within a program initiating an asynchronous process Or a
coroutine that must not be exited until the process or coroutine
finishes executing. As long as the critical block is not exited.
the process or coroutine has access to necessary globals in the
initiating program.

descriptor

A word, distinguished by its format, that is used to refer to data
segments and code segments.

D1 stack (D[1] stack)

A stack created for each object code file that contains code segment
descriptors anc¢ descriptors to read-only arrays. The Dl stack is
also referred to as the "segment dictionary."

850
ALGOL REFERENCE MANUAL

D2 stack (D[2] stack)
A stack initiated for each executing program that is wused for
storage of items declared in the outer block and other items
allocated at lexical level two.

EBCDIC
Extended Binary Coded Decimal 1Interchange Code. An 8-bit code,
capable of representing 256 graphic and control characters that are
the native character set of A Series and B 5000/B 6000/B 7000 Series
systems. '

equivalent array
“An array that is declared to refer to the same data as another
array.

external sign flip-fiop (EXTF)
A hardware flip-flop (a register that has two states) that is
assigned values by and affects - the actions of certain hardware
operators. The state of EXTF reflects information about ‘the signs
of numeric quantities.

EXTF

See "external sign flip-flop."

fault

An error encountered by a hardware operator.

FIB

See "File Information Block."

file equation

A mechanism for specifying the values of file attributes when a
program is compiled or executed.

‘ 851
Glossary

File Information Block (FIB)
A data structure in an object code file that contains information
describing a file.

float flip-flop (FLTF)
A hardware flip-flop (a regiSter_-that has two states) that is
assigned values by and affects the actions of certain hardware
operators. The state ' of FLTF reflects information about the
insertion of floating characters into character strings.

FLTF

See "float flip-flop."

fully spécified formal procedure
A procedure parameter (formal procedure) that is declared with the
word "FORMAL" in its declaration. With such procedures, the
compiler checks the parameters of the actual procedure passed to it
at compile time. -

global identifier
Within a given block, an identifier that is declared in an outer
block. A global identifier retains its values and characteristics
as the blocks to which it is global are entered and exited.

Halt/Load
A system—initialization pfocedure that loads a fresh version of the
Master Control Program (MCP) from disk or pack to main memory.

host program

A program to which separately compiled procedures can be bound by
the Binder program or by using the sepcomp facility.

lex

ALGOL REFERENCE MANUAL

level -

See "lexical level."

lexical level (lex level)

A number that indicates the relative level of a local addressing
space within the stack of an executing program. The outer block of
an ALGOL program is allocated at lexical level two. Procedures
declared at the outer blecck level execute at lexical level three,
procedures declared within those procedures execute at lexical level
four. and so on, up to lexical level 15 or 31, depending on the
computer family. The first number in an address couple 1is the
lexical level of the item.

library

A program containing one Or more procedures or "entry points" that
can be called by other programs. Unlike a regular program, which is
always entered at the beginning, a library can be entered at any of
these entry points.

local identifier

Within a given block, an identifier that is declared in that ©block.
The value or values associated with that identifier inside the block
are not associated with that identifier outside the block. 1In other
words, on entry to a block, the values of local identifiers are
undefined: on exit from the block, the values of local identifiers
are lost.

Master Control Program (MCP)

MCP

The operating system on A Series and B 5000/B 6000/B 7000 Series
systems: the program that controls the operational environment of
the system. This control includes memory management, job selection,
peripheral management, systen utilization, program segmentation,
subroutine linkage. and error logging.

See "Master Control Program."

853
Glossary

mom descriptor

A deScriptor that has a zerc in the copy bit (bit 46). For every
~data segment in a program, there is one and only one mom descriptor.

OFFF

- See "overflow flip-flop."

original array

An array that ‘is déclared with ‘a ‘bound pair 1list. Each original
array is distinct from all other original arrays.

overflow flip-flop (OFFF)
A hardware flip-flop (a register that has two states) that is
assigned values by and affects the actions of certain hardware
operators. The state of OFFF reflects whether or not an overfliow

occurred when a numeric quantity was converted to a character string
of fixed length.

paged array

An array that is automatically divided ("paged" or "segmented") at
run -time into segments of 256 words each.

Primary coroutihe

A program that initiates a procedure as a coroutine.

ready queue

A queue of tasks that are capable of running. Tasks that are to
begin executing are taken from this queue by the system.

referred array

An array identifier that--through array row -equivalence, an array
reference assignment, or because it is a formal array--refers to
data in another array.

854
ALGOL REFERENCE MANUAL

save Remory
An area of memory that cannot be overlaid as long as the item with
which it is associated is allocated.

scope
The portion of an ALGOL program in which an identifier can
successfully be used to denote its corresponding values and
characteristics.

secondary coroutine

A procedure that is initiated as a coroutine by a program.

segment dictionary

See "D1 stack."

segmented array

See "paged array."

separately compiled procedure
A procedure that is compiled on its own, rather than as part of &
program, so that it can be bound into a host program by the Binder
program.

SIB

See "Structure Information Biock."

stack

A contiguous area in memory assigned tc a task during its execution.

Structure Information Block (SIB)

On Mark 2.4 and earlier releases. & "pseudo-stack" that contains
addressing environments for each structure of a database. SIBs do

not exist on Mark 3.5 and later releasescs.

Glossary

subroutine
A procedure to which program control 1is transferred when it is
invoked and that transfers control back to the statement following
‘the invocation statement whern it is eXited.

task
A single, complete unit of work performed by the system, such as
compiling or executing a program or copying a file from one disk to
another. Tasks are initiated by a job, by another task, or directly
by a user.

thunk
A compiler-generated typed procedure that calculates and returns the
value of an expression passed to a call-by-name formal parameter of
a procedure. The value of the expression is calculated and returned
each time the formal parameter is used. A thunk is also referred to
as "accidental entry."

touched array

“An array that has been referenced by a statement.

unpaged array
An array that is not automatically divided ("paged" or "“segmented")
at run time into segments of 256 words each. Arrays smaller than
1024 words are always unpaged.

unsegmented array

See "unpaged array."

up—-level event
The situation that arises when either of the following is true:

1. The block containing ar event 1is exited before the block
containing the interrupt attached to the event is eXxited.

2. The block containing the finished event for a direct 1I/C
statement 1is exited before the block containing the direct
array is exited.

856

ALGOL REFERENCE MANUAL

up-level pointer assignment

Any construct that could result in a pointer pointing to an array
declared at a higher lexical level than that at which the pointer is
declared. Such a construct is disallowed by the compiler, because

the array can be deallocated., leaving the pointer pointing to an
invalid portion of memory.

See "Work Flow Language."

word

A unit of computer memory . Oon Burroughs A Series and
B 5000/B 6000/B 7000 Series systems, a word consists of 48 bits used

for storage plus a tag field used to indicate how the word 1is
interpreted.

word array

An array whose elements are single- or double-precision operands.

work Flow Language (WFL)

The Burroughs language used to write jobs that control the

flow of
programs and tasks on the operating system.
zone field
The leftmost (high order) four bits of an ASCII or EBCDIC character

or the leftmost two bits of a BCL character.

Index

<abs function>, 532

<accept statement>, 221

Accidental entry (thunk), 171

<action labels or finished event>, 362
semantics, 371

~<actual parameter>, 347.

<actual parameter part>, 346

<actual text part>, 62

ACTUALNAME, 173

Addition, 478

ALPHA, 208

<alpha item>, 763

<alpha item identifier>, 704

<alpha item name>, 697

<alpha string literal>, 34

<alphanumeric relation>, 704

ALPHA6, 208

ALPHA7, 208

ALPHA8, 208

AND, 490

<append version>, 647

<arccos function>, 532

<arcsin function>, 532

<arctan function>, 533

<arctan2 function>, 533

<arithmetic assignment>, 225

<arithmetic attribute>, 226

<arithmetic attribute specification>,

<arithmetic case exXpression>, 476

<arithmetic concatenation expression>,

<arithmetic direct array attribute>, 22¢

<arithmetic expression>, 475

precision of, 481
<arithmetic file attribute>. 226
<arithmetic function designator>, 515
<arithmetic intrinsic name»>, 515

alphabetical listing of. 52¢
<arithmetic operand>». 476
<arithmetic operator>, 475
Arithmetic operators, 478

DIV, 479 '

MOD, 479

MUX, 479

precedence of, 480

TIMES, 478

+, -, *, [/, 478

** 479
Arithmetic primaries, 477

strings used as, 478
<arithmetic primary>, 476
<arithmetic relation>, 493
<arithmetic table membership>, 495
<arithmetic task attribute>, 227

857

858
ALGOL REFERENCE MANUAL

carithmetic type transfer variable>, 226
<carithmetic update assignment>, 227
<arithmetic variable>, 225
Arithmetic-valued attributes
assigning values
arithmetic assignment target <arithmetic attribute>, 226
FILE declaration, 85
multiple attribute assignment statement, 332
interrogating
arithmetic operand <arithmetic attribute>, 476
VALUE function, 585
<arithmetic-valued direct array attribute name>, 227
<arithmetic-valued file attribute name>, 86
<arithmetic-valued task attribute name>, 227
Array
allocation, 44
array class, 45
array reference, 52
array row, 49
array row eguivalence, 47
array row read, 370
array row write, 467
bits per element, 45
bound pair 1list, 46
character array, 45
default type, 45
descriptor, 46
dimensions, 47
direct array, 68
element width, 45
equivalent, 47
in sort procedures, 443
long (unpaged), 44
lower and upper bounds, 46
original, 4¢
own, 44
paged (segmented), 44
referenced (touched), 50
referred, 46
resizing referenced unpaged (unsegmented) arrays. 420
row selector, 49
string array, 187
subarray selector, 49
unpaged (unsegmented), 44
value array, 214
word array. 45
ZIP WITH array. 47C
carray class>, 41
<array declaration>, 41
<array designator>, 43
Array handling
ARRAY declaration, 41
array reference assignment, 231

Index

Array handling (cont.)
ARRAY REFERENCE declaration, 52
ARRAYSEARCH function, 534
CHECKSUM function, 537 -
DEALLOCATE statement, 287
DIRECT ARRAY declaration, 68
FILL statement, 300 '
LISTLOOKUP function, 561
MASKSEARCH function, 562
NOSTACKARRAYS option, 631
RESIZE statement, 415
SIZE function, 577
STRING ARRAY declaration, 187
VALUE ARRAY declaration, 214
<array identifier>, 42
<array name)>, 43 '
Array parameters, 171, 174
“<array reference assignment>, 231
<array reference declaration>, 52
<array reference identifier>, 52
<array reference variable>, 231
carray row>, 43 ,
.in LIST declaration, 134
<array row equivalence>, 43
Array row read, 370
<array row resize parameters>, 415
Array row write, 467
<array specification>, 168
<carray type>, 168
Arrays of strings, 187
<arraysearch function>, 534
<ASCII character»>, 36
¢ASCII code>, 35
<ASCII option>, 603
<ASCII string>», 35
<ASCII string constant>, 524
<assign statement>, 709
<assignment statement>, 223
Assignment statement, 223
arithmetic assignment, 225
array reference assignment, 231
Boolean assignment, 234
complex assignment, 237
mnemonic attribute assignment, 239

multiple attribute assignment statement,

peinter assignment, 241
string assignment, 243
swap statement, 447
task assignment, 24¢
<atanh function>, 534
<attach statement>, 248
Attribute handling

assigning arithmetic-valued attributes

859

860
ALGOL REFERENCE MANUAL

Attribute handling (cont.)

arithmetic assignment target <arithmetic attribute>, 226

FILE declaration, 85

multiple attribute assignment statement, 332
assigning Boolean-valued attributes

Boolean assignment target <Boolean attribute>, 234

FILE declaration, 85

multiple attribute assignment statement, 332
assigning pointer-valued attributes

FILE declaration, 85

multiple attribute assignment statement, 332

replace family-change statement, 409

replace pointer-valued attribute statement, 411
assigning string-valued attributes

LIBRARY declaratior, 129

string assignment target <string-valued library attribute>, 24

assigning task-valued attributes
task assignment, 246
assigning the LIBACCESS library attribute
LIBRARY declaration, 129
mnemonic attribute assignment, 239
assigning translate-table-valued attributes
FILE declaration, 85
multiple attribute assignment statement, 332
interrogating arithmetic-valued attributes
arithmetic operand <arithmetic attribute>, 476
interrogating Boolean-valued attributes
Boolean operand <Boolean attribute>, 492
interrogating event-valued attributes
<event designator>, 78
interrogating pointer-valued attributes
REPLACE statement source part <pointer-valued attribute>,
407
interrogating string-valued attributes
string primary <string-valued library attribute’, 523
interrogating task-valued attributes
<task designator>, 200
VALUE function, 585
<attribute parameter list>, 22¢
<attribute parameter specification>, 226
<attribute specifications>, 85
<autobind option>, 6032
<available function>, 535

Bad go to, 312

<(basic symbol>, 1lé

Batch source input, 791
<BCL code>, 35

<BCL option>, 605

<BCL string>, 3%

<BDMS close statement>, 715
<BDMS free statement>, 732

3

Index

<BDMS identifier>, 691
<BDMS lock statement>, 741
<BDMS open statement>, 747
<BDMS set statement>, 757
BDMSALGOL, 679

<alpha item>, 763
<alpha item identifier>, 704
<alpha item name>, 697
<alphanumeric relation>, 704
<assign statement>, 709
<BDMS close statement>, 715
<BDMS free statement>, 732
<BDMS identifier>, 691
<BDMS lock statement>, 741
<BDMS open statement>, 747
<BDMS set statement>, 757
<begintransaction statement>, 712
binding databases, 774
<Boolean item name>, 697
compiler control options, 772
DATADICTINFO option, 772
LISTDB option, 772
NODMDEFINES option, 773
TRACEDB option, 773
<count item name>, 697
<create statement>, 718
<data set>, 703
<data set name>, 681
<data set reference>, 681
<(database attribute assignment statement>,
<database declaration>, 680
<(database identifier>, 71%
<database name>, 681
<database reference>, 680
<database title>, 681
<datadictinfo option>, 772
<(delete statement>, 722
{dmterminate statement>, 724
<dmtest function>, 763
<endtransaction parameters>, 726
<endtransaction statement>, 726
<exception handling>, 768
<exception value>», 770
<exception variable>, 768
<field item identifier>, 704
<field item name>, 697
<find statement>, 729
(generate statement>, 734
<get statement>, 737
<group item name>, 697
<input assignment>, 69¢
<input mapping>, 696
<insert statement>, 739

689

861

862

ALGOL REFERENCE MANUAL

BDMSALGOL (cont.)
<internal name>, 681
<item>, 757
<key condition>. 704
<link item>, 705
<listdb option>, 772
<logical database name>. 681
<midtransaction parameters:’, 744
<midtransaction statement>, 744
<modify statement>

as synonym for <BDMS lock statement>, 74l

<nodmdef ines option>, 773

<numeric item>, 763

<numeric item identifier>, 704
<pumeric item name>, 697

<numeric relation>, 704

<output assignment>, 700

<output mapping>. 70C

<population item name>, 697

<put statement>, 750

<qualification>, 69:

<real item>., 763

<real item identifier>. 704

<real item name>, 697

<record type item name>, 697
<recreate statement>, 752

<remove statement>, 754

<restart data set>, 712

¢<saveinput procedure identifier>., 744
<saveoutput procedure identifier>, 72¢
<selection expression>, 703

separate compilation (sepcomp) of databases,

<set>, 703
<set name>, 682
<set part>, 681
<set reference>», 681
<set selection expression>, 703
<store statement>, 76i
<string-valued database attr:bute>, &8¢
<structurenumber function>, 76¢
<subscripted BDMS identifier>. 692
<subset>, 704
<tracedb option>». 772
<transaction record variable:r, 712
<beginsegment option>, 605
<begintransaction statement>, 71Z
<binary code>, 3l
Binary read., 36¢
<binary string>. 3.
Binary write, 4b6¢
<bind option>, 607
<binder command>, 59¢
<binder option>, 607

77¢

863
Index

Binding
AUTOBIND option, 603
BIND option, 607
BINDER option, 607
DUMPINFO option, 61l
EXTERNAL option, 6lz
HOST option, 6l4
INITIALIZE option. 617
INTRINSICS option. 619
LEVEL option, 619
LIBRARY option. 620
LOADINFO option, 623
of databases, 774
PURGE option., 634
STOP option, 642
USE option, 64t
Bit manipulation, 484
concatenation expression, 484
partial word expression, 489
<bit manipulation expression>, 484
<block>. 9
<Boolean assignment>, 234
<Boolean attribute>, 234
<Boclean attribute specification>, 86
<Boclean case expression>, 493
<Boolean concatenation expression>, 484
Boclean data type
Boolean array declaration, 41
Boolean array reference declaration, 52
Boolean assignment, 234
BOCLEAN declaration, 5%
Boolean expression, 491
Boolean functions
ACCEPT statement, 22z
AVAILABLE function, 535
BOOLEAN function. 535
CHANGEFILE statement, 270
CHECKPOINT statement, 274
FIYX statement, 303
FREE statement, 311
HAPPENED function, 555
READ statement, 363
READLOCK function. 570
REMOVEFILE statement., 377
SEEK statement. 433
SPACE statement, 445
WAIT statement, 454
WRITE statement, 462
Boolean operand internal structure, 823
Boolean procedure declaration, 160
Boolean value array declaratior. 214
direct Boolean array declaration. 6&
functions with Boolean parameters

864
ALGOL REFERENCE MANUAL

Boolean data type (cont.)
READLOCK function, 570
REAL function, 570
intrinsic functions returning values of type BOOLEAN, 531
width of Boolean array elements, 45
<Boolean declaration>. 55
(Boolean direct array attribute>, 235
<Boolean expression>, 491
<Boolean file attribute>, 235
<Boolean function>, 535
<Boolean function designator>, 515
<Boolean identifier>, 55
<(Boolean intrinsic name>, 51le
alphabetical listing of., 531
(Boolean item name>, 697
<Boolean operand>, 492
Boolean operand internal structure, 823
<{Boolean operator>, 491
Boolean operators, 496
precedence of, 498
<Boolean option>, 597
Boolean primaries, 499
<Boolean primary>, 492
<Boolean task attribute>, 235
<Boolean type transfer variable>, 234
<Boolean update assignment>, 235
<Boolean value>, 492
<Boolean variable>, 234)
Boolean-valued attributes
assigning values
Boolean assignment target <Boolean attribute>, 234
FILE declaration, 85
multiple attribute assignment statement, 332
interrogating
Boolean operand <Boolean attribute>, 492
VALUE function, 585
<Boolean-valued direct array attribute name>., 235
<Boolean-valued file attribute name>, 86
<Boolean-valued task attribute name>. 235
<bound pair>, 42
<bound pair list>. 42
Bound pair lists in array declarations, 46
<bounds part>, 74
<(bracket>, 17
<{breakhost option>, 608
Breakpoint
BREAKHOST option, 608
breakpoint intrinsic, 251
BREAKPOINT option, 609
BREAKPOINT statement, 250
control commands, 252
display commands, 251
reformat commands, 254

Index

(breakpoint option>, 609
(breakpoint statement>, 250
By-calling procedure, 172
'<B7700 option>, 609

<cabs function>, 535
<call statement>. 259
Call-by-name parameters, 170
Call-by-reference parameters, 171
Call-by-value parameters, 170
Calling procedures with parameters, 348
<cancel statement>, 261
CARD file, 589
<case body>, 263
<case expression>, 504
<case head>, 263
<case statement>, 263
CAT, 526
(cause statement>, 266
<causeandreset statement>, 268
<ccos function>, 535
<cexp function>, 536
<changefile statement>, 270
Character array, 45
<character array identifier>, 42
<character array hame>, 520
<character array part>, 520
<character array row>, 520
<character set>, 203
<character size>, 565
Character string manipulation
ASCII collating sequence, 811
ASCII option, 603 '
BCL collating sequence, 811
BCL option. 605
character array, 45
default character type, 817
DELTA function, 543
DOUBLE function, 548
EBCDIC collating sequence, 811
INTEGER function, 558 :
internal representation of characters, 808

intrinsic functions returning values of type POINTER, 531

OFFSET function, 5¢4
PICTURE declaration, 147
pointer assignment, 241
POINTER declaration, 160
pointer expression, 519
POINTER function, 565
pointer relation, 501
READLOCK function, 57C
REAL function, 571

865

866

ALGOL REFERENCE MANUAL

Character string manipulation (cont.)
REMAININGCHARS function, 571
REPLACE statement, 379
SCAN statement, 427
SIZE function, 577
string literal, 30
string relation, 500
TRANSLATETABLE declaration, 202
TRUTHSET declaration, 207

<character type>, 42

<check option>, 610

Checkpoint, 273
checkpoint/restart messages, 277
effect on the PROCESSID function, 568
with the sort intrinsic, 441

<checkpoint statement>, 272

<checksum function>, 537

<cln function>, 537

<close option>, 280

<close statement>, 280

<closed text>, 62

CODE file, 591

Code optimization
BEGINSEGMENT option, 605
B7700 option, 609
ENDSEGMENT option, 611
OPTIMIZE option, 633
TARGET option, 644

<code option>, 610

Code-compatible families, 645

<column width>, 361

<comment characters>, 27

<comment remark>, 27

<commentary>, 372

<compare procedure>, 437

Compile-time facility
<compile-time arithmetic expression>,
<compile-time begin statement>, 781

<compile-time Boolean expression>, 783
compile-time compiler control options,

CTLIST option, 787

CTMON option, 787

CTTRACE option, 788

LISTSKIP option, 788
<compile-time define identifier>, 781
<compile-time define statement>, 781
<compile-time for statement>, 782
<compile-time identifier>, 779
<compile-time if statement>. 782
<compile-time invoke statement>, 784
<compile-time let statement>, 784
<compile-time statement>, 780
<compile-time text>, 781

777

787

) 867
Index

Compile-time facility (cont.)
<compile-time thru statement>, 785
<compile-time variable>, 778
<compile-time variable declaration>, 777
<compile-time while statement>, 785
<ctlist option>, 787
<ctmon option>, 787
<cttrace option>, 788
<definition>, 786
<listskip option>, 788
<number identifier>, 777
<starting value>, 777

. <vector length>, 777

Compiler control options, 603
ASCII option, 603
AUTOBIND option, 603
BCL option, €05
BEGINSEGMENT option, 605
BIND option, 607
BINDER option, 607
BREAKHOST option, 608
BREAKPOINT option, 609
B7700 option, 609
CHECK option, 610
CODE option, 610
DUMPINFO option, 611
ENDSEGMENT option. 611
ERRLIST option, 612
EXTERNAL option, 612
FORMAT option, 613
GO TO option, 613
HOST option, 614
INCLNEW option, 614
INCLSEQ option, 615
INCLUDE option, 615
INITIALIZE option, 617
INSTALLATION option, 618
INTRINSICS option, 619
LEVEL option, 619
LIBRARY option, 620
LIMIT option, 620
LINEINFO option, 621
LIST option, 621
LISTDELETED option, 622
LISTINCL option, 622
LISTOMITTED option, 623
LISTP option, 623
LOADINFO option, 623
MAKEHOST option, 625
MCP option, 628
MERGE option, 628
NEW option, 629
NEWSEQERR option, 630

868
ALGOL REFERENCE MANUAL

Compiler control options (cont.)
NOBCL option, 630
NOBINDINFO option, 631
NOSTACKARRAYS option, 631
NOXREFLIST option, 632
OLDRESIZE option, 632
OMIT option, 633
OPTIMIZE option, 633
PAGE option, 633
PURGE option, 634
SEGDESCABOVE option, 634
SEGS option, 635
SEPCOMP option, 635
SEQ option, 637
SEQERR option, 638
sequence base option, 638
sequence increment option, 639
SHARING option, 639
SINGLE option, 640
STACK option, 641
STATISTICS option, 641
STOP option, 642
TADS option, 643
TARGET option, 644
TIME option, 645
USE option, 646
user option, 646
VERSION option, 647
VOID option, 648
VOIDT option, 649
WARNSUPR option, 649
WRITEAFTER option, 649
XDECS option, 650
XREF option, 650
XREFFILES option, 652
XREFS option, 653
$ option, 653

<compiler control record>, 596

Compiler input files, 589

Compiler output files, 591

<compiletime function>, 538

<complex assignment>, 237

<complex case expression>, 507

Complex data type
complex array declaration. 41
complex array reference declaration, 52
complex assignment, 237
COMPLEX declaration, 58
complex expression, 506
complex functions

CCOS function, 535
CEXP function, 536
CLN function, 537

Index

Ccomplex data type (cont.)
COMPLEX function, 538
CONJUGATE function, 539
CSIN function, 539
CSQRT function, 540
complex operand internal structure, 826
complex procedure declaration, 165
complex relation, 500
complex value array declaration, 214
functions with complex parameters
CABS function, 535
IMAG function, 557
REAL function, 571

intrinsic functions returning values of type COMPLEX, 531

width of complex array elements, 45
(complex declaration>, 58
(complex equality operator>, 494
(complex expression>. 506
ccomplex function>, 538
<complex function designator>, 516
<complex identifier>, 58
<complex intrinsic name>, 516

alphabetical listing of, 531
<complex operand>, 507
Complex operand internal structure, 826
<complex operator>, 506
<complex primary>, 506
<complex relation>. 494
<complex update assignment>, 237
<complex variable>, 237
<compound statement>, 9
<concatenation>, 485
(concatenation expression>, 484
<condition>, 381
<conditional arithmetic expression>. 476
<conditional Boolean expression>, 495
<conditional complex expression>»>, 507
<conditional designational expression>, 512
<conditional expression>, 510
<conditional pointer expression>, 520
<conjugate function>, 539
<constant>, 214 ‘
<constant arithmetic expression>, 476
<constant expression>, 214
<constant list>, 214
<constant string expression>, 525
Contents of printer listing

CODE option, 61C

FORMAT option, 613

LIST option, 621

LISTDELETED option, 622

LISTINCL option, 622

LISTOMITTED option, 623

869

870

Contents of p
LISTP opti
PAGE opztio
SEGS optio
SINGLE opt
STACK opti
TIME optio
WARNSUPR ©
S option,

ALGOL REFERENCE MANUAL

rinter listing (cont.)
on., 623

n, 63:Z

n. 63%

ion, 640

on, 641

n, e64%

ption. 649

653

<continue statement>. 285
<control character>, 149
<control part>, 73
<copy number>. 298
<core-to-core blocking>, 360
<core-to-core blocking part>, 360
(core-to—-core file part>, 360
<core-to-core part>, 360
<core-to-core record size>, 360
<cos function>, 539
<cosh function>, 539
<cotan function>, 539
<count >, 252
<count item name>, 697
<count part>, 381
(create statement>, 718
Critical block, 351
Cross reference, 650
NOXREFLIST option, 632
XDECS option, 650
XREF option, 650
XREFFILE file, 593
XREFFILES option, 652
XREFS option, 653
<csin function>, 539
<csqgrt function>, 540
<cycle increment>, 647

<dabs function>, 540
<dand function>, 540
<darccos function>, 540
<darcsin function>, 541
<darctan function>, 541
<darctan2 function>, 541
<data>, 792
Data descriptors

internal structure, 827
<data error label>, 362
<data exponent part>, 102
Data number, 102°
<data set>, 703
<data set name>, 681
<data set reference>, 681

<database attribute assignment statement>, 089

<database declaration>, 68C
<database identifier>», 715
<database name>, 681
<database reference:>, 680
(database title>, 681
Databases

binding of, 774

separate compilation of,
(datadictinfo option>, 772
¢<dcos function>. 541
<dcosh function>, 542
~<deallocate statement>, 287
{decimal fractionr, 23
(decimal function>. 542
<decimal number:. 23
<decimal places>, 92
<declaration>, 39
<declaration list>. 9
Default character type, 817
<define declaration>, 60
(define identifier>, 60
<define invocation>, 62
<definition>. 60

extension in the compile-time facility. 786

(delete statement>, 722
{delimiter>, 16

77¢

{delinklibrary function>, 543

<delta function»>., 543
<deqv function>, 544
<derf function>, 544
<derfc function>, 544

Index

<designational case expression>, 512
«<designational expression>, 512

<destination>, 379

<destination characters>, 203

<detach statement>, 288

<device>, 273

<dexp function>, 544

<dgamma .function>, 545

Diagnostic tools
BREAKHOST option, 608
BREAKPOINT option, 609

BREAKPOINT statement, 250

DUMP declaration, 73
MONITOR declaration, 136

PROGRAMDUMP statement, 355

STATISTICS option, 641
TADS option, 643
<digit>, 1le
<digit convert part>, 380

Dimensionality of arrays, 47

<dimp function>, 545

871

872
ALGOL REFERENCE MANUAL

<dinteger function>, 545
<direct array declaration>, 68§
<direct array identifier>, 68
<direct array name>, 69
<direct array reference identifier>, 52
<direct array row>, 68
<direct array row equivalence>, 68
<direct file identifier>, 85
Direct 1/0, 3le
<direct switch file identifier>, 189
<directory element>, 270
<disable statement>, 289
<disabling on statement>, 336
<disk size>, 437
<display statement>, 291
{disposition>, 273
DIV, 479
Division, 478
<{dlgamma function>, 545
<dln function>, 546
<dlog function>, 546
<dmax function>, 546
<dmin function>, 546
<{dmterminate statement>, 724
<dmtest function>, 763
<dnabs function>, 547
<dnot function>, 547
<(do statement>, 293
<dor function>, 547
Double data type
arithmetic assignment, 225
arithmetic expression, 475
arithmetic relation, 500
direct double array declaration, 68
double array declaration, 41
double array reference declaration. 52
DOUBLE declaration, 71
double functions
DABS function, 540
DAND function, 540
DARCCOS function, 540
DARCSIN function, 541
DARCTAN function, 541
DARCTAN2 function, 541
DCOS function, 541
DCOSH function, 542
DECIMAL function, 542
DEQV function, 544
DERF function, 544
DERFC function, 544
DEXP function. 544
DGAMMA function, 545
DIMP function, 545

Index

Double data type (cont.)
DINTEGER function, 545
DLGAMMA function, 545
DLN function, 546
DLOG function, 546
DMAX function, 546
DMIN function, 546

- DNABS function, 547
DNOT function, 547
DOR function, 547 }
DOUBLE function, 548
DSCALELEFT function, 550
DSCALERIGHT function, 550
DSCALERIGHTT function, 551
DSIN function, 551
DSINH function, 551
DSQRT function, 551
DTAN function, 552
DTANH function, 552 °
<pot function>, 568
POTC function, 568
POTH function, 568
POTL function, 568
double procedure declaration, 165
double value array declaration, 214
- double-precision operand internal structure, 824

functions for manipulating double-precision expressions

BOOLEAN function, 535
FIRSTWORD function, 554
INTEGER function, 557
INTEGERT function, 558
REAL .-function, 571
SECONDWORD function, 574
SINGLE function, 577
STRING function, 578

intrinsic functions returning values of type DOUBLE, 530

width of double array elements, 45
<double declaration>, 71
<double function>, 548
<double identifier>, 71
<double variable>, 447
Double-precision operand internal structure, 824
<drop function>, 549
DS (Discontinue) ODT command, 661
<dscaleleft function»>, 550
<dscaleright function>, 550
<dscalerightt function>, 551
<dsin function>, 551
.<dsinh function>, 551
<dsqrt function>, 551
<dtan function>, 552
¢dtanh function>, 552
<dump declaration», 73

873

874
ALGOL REFERENCE MANUAL

<dump list>, 73

<dump parameters>, 73

<dumpinfo option>, 61l

<dynamic procedure specification>, 169

<EBCDIC character>, 35
<EBCDIC code>, 35
<EBCDIC string>, 35
<EBCDIC string constant>, 524
<editing modifier>, 92
<editing phrase>, 91
Editing phrase
A editing phrase letter, 98
using pointers and string variables, 99
C editing phrase letter, 98
using pointers and string variables, 99
D editing phrase letter, 102
decimal places, 96
E editing phrase letter, 104
editing modifiers, 120
F editing phrase letter, 104
field width, 96
editing phrase letter, 105
editing phrase letter, 106
editing phrase letter, 108
editing phrase letter, 110
editing phrase letter, 106
editing phrase letter, 111
multiple editing phrases, 93
O editing phrase letter, 112
P editing modifier, 120
R editing phrase letter, 113
repetition of, 95
S editing phrase letter, 114
simple string literal, 94
T editing phrase letter, 1l
U editing phrase letter, 116
V editing phrase letter, 117
variable editing phrases, 97
X editing phrase letter, 118
Z editing phrase letter, 119
$ editing modifier, 120
<editing specifications>, 90
EMPTY, 526
EMPTY6, 526
EMPTY7, 52¢
EMPTY8, 526
<enable statement>, 295
<enabling on statement>, 334
<end remark>, 27
<end-of-record>, 373
<ending index>, 537

CERGHDOD®

Index

<endsegment option>, 611
<endtransaction parameters>, 726
<endtransaction statement>, 726
<entier function>, 552
Entry point, See Library entry point
<entry specifier>, 792
<environment>, 625
<eof label>, 362
<equality operator>, 495
<equation part>, 55
EQV, 490
<erf function>, 553
<erfc function>, 553
<errlist option>, 61z
Error handling for libraries, 660
<error limit>, 620
Error messages
for formatted input, 834
for formatted output, 832
for free-field input, 831
ERRORFILE file, 592
<escape remark>, 27
<escape text>, 27
<event array declaration>, 78
<event array designator>, 79
<event array identifier>, 78
<event declaration>, 78
<event designator>, 78
Event handling ’
ATTACH statement, 248
AVAILABLE function, 535
CAUSE statement. 266
CAUSEANDRESET statement, 268
DETACH statement, 288
EVENT ARRAY declaration, 78
EVENT declaration, 78
FI¥ statement, 303
FREE statement, 311
HAPPENED function, 555
LIBERATE statement, 324
PROCURE statement, 353
RESET statement. 414
SET statement, 435
up-level event
in ATTACH statement., 248
in direct I/0, 317
WAIT statement, 452
WAITANDRESET statement, 456
<event identifier>, 78
<event list>, 452
<event statement>, 297

Event-valued attributes, See also Event handling

interrogating

875

876
ALGOL REFERENCE MANUAL

Event-valued attributes (cont.)
<event designator>, 78
<event-valued task attribute>, 79

<event-valued task attribute name>, 79
<exception handling>, 768
<exXception value>, 770
<exception variable>, 768
<exchange statement>, 298
<exp function>, 553
<explicit delimiter>, 373
<exponent part>, 24
Exponentiation, 479
<export declaration>, 81
<expression>, 473
<external option>, 612

<family designator>, 409
<fault action>, 336
«fault information part>, 335
<fault list>, 334
<fault name>, 335
<fault number>, 335
<fault stack history>», 335
<field>, 372
<field delimiter>, 372
<field item identifier>, 704
<field item name>, 697
Field notation, 807
<field width>, 91
<file declaration>, 85
<file designator>, 189
File handling, See 1/0
<file identifier>, 85
File parameters, 178
<file part>, 359

semantics, 364
<file specification>, 611
<file-valued task attribute name>, 46l
<fill statement>, 300
<find statement>, 729
<first function>, 554
<firstone function>, 554
<firstword function>, 554
<fix statement>, 303
<for list element>, 305
<for statement>, 305
<formal parameter>, 166
<formal parameter list>, 166
<formal parameter part>, 166
<formal parameter specifier>, 168
Formal parameters, 173
<formal symbol>, 60

877
Index

<formal symbol part>, 60
<format and list part>, 361 ,

semantics for READ statement, 368

semantics for WRITE statement, 465
<format declaration>, 89
<format designator>, 192
<format identifier>, 89
<format option>. 613
<format part>, 89
Format—-error. messages

formatted input, 834

formatted output, 832

free-field input, 831
Formatted input format—-error messages. 834
Formatted output format—-error messages, 832
Formatted read, 368
Formatted write, 465
<forward interrupt declaration>, 121
(forward procedure declaration>, 121
<forward reference declaration>, 121
<forward switch label declaration>, 121°
<free statement>, 311
Free-field data format, 371
Free-field data record, 372
Free-field input format—error messages, 831
<free-field part>, 36l
<freeze statement>, 312
Fully-specified formal procedure, 173
<function expression>, 514
FUNCTIONNAME library attribute, 665
Functions, 528

ABS function, 532

ACCEPT statement, 222

ARCCOS function, 532

ARCSIN function, 532

ARCTAN function, 533

ARCTAN2 function, 533

ARRAYSEARCH function, 534

ATANH function, 534

AVAILABLE function, 535

BOOLEAN function, 535

CABS function, 535

CCOS function, 535

CEXP function, 536

CHANGEFILE statement, 270

CHECKPOINT statement, 274

CHECKSUM function, 537

CLN function, 537

CLOSE statement, 281

COMPILETIME function, 538

COMPLEX function, 538

CONJUGATE function, 53¢

CO0S function, 539

878

Functions (cont.)
COSH function,

COTAN function,

CSIN function,

CSQRT function,

DABS function,
DAND function,

ALGOL REFERENCE MANUAL

53¢

539

539

540

540
540

DARCCOS function, 540
DARCSIN function, 541
DARCTAN function, 541
DARCTAN2 function, 541

DCOS function,

DCOSH function.

541

542

DECIMAL function, 542
DELINKLIBRARY function, 542

DELTA function,

DEQV function,
DERF function,

DERFC function,

DEXP function,

DIMP function,

543

544
544

544

544
DGAMMA function,
545

545

DINTEGER function, 545
DLGAMMA function, 54%

DLN function,
DLOG function,
DMAX function,
DMIN function,

DNABS function,

DNOT function,
DOR function,

DROP function,

546
546
546
546

547

547
547
DOUBLE function,
549

548

DSCALELEFT function., 550
DSCALERIGHT function. 550
DSCALERIGHTT function. 551

DSIN function,

DSINH function,
DSQRT function,

DTAN function,

DTANH functior,
ENTIER function,
552
552
553
FIRST function.

ERF function,
ERFC function,
EXP function,

551

551
551

552

552
552

554

FIRSTONE function, 554
FIRSTWORD function, 554

FIX statement,

FREE statement,
GAMMA function,

303

311
555

HAPPENED function, 555

HEAD function,

556

Functions (cont.)

IMAG function, 557

INTEGER function,

587

INTEGERT function, 558

intrinsic
intrinsic

intrinsic

intrinsic
intrinsic
intrinsic
intrinsic

LENGTH function,
LINENUMBER function,
LINKLIBRARY function,

functions
functions
functions
functions
functions
functions
functions

559

returning
returning
returning
returning
returning
returning
returning

559
559

LISTLOOKUP function, 561

LN function,

562

LNGAMMA function, 562

LOG function,
MASKSEARCH function.
MAX function,
MESSAGESEARCHER statement, 331
MIN function,
NABS function,

562

563

563
564

562

NORMALIZE function. 564

OFFSET function,

ONES function, 565

OPEN statement,

340

564

POINTER function, 565

<pot function>,
POTC function,
POTH function,
POTL function,

PROCESSID

RANDOM function,
READ statement,

READLOCK function,

REAL function,
REMAININGCHARS function,
REMOVEFILE statement,
REPEAT function,

SCALELEFT

SCALERIGHT function, 573

SCALERIGHTF function,
SCALERIGHTT function,
SECONDWORD function,

SEEK statement,
SETACTUALNAME function,
SIGN function,
SIN function,

SINGLE function,
SINH function.
SIZE function,
SPACE statement,

568
568
568
568
function, 56§
569
363
5¢9
570
571
377
572
function, 572
573
574
574
432
575

576
577

577
577

577

44%

Index

values
values
values
values
values
values
values

of
of
of
of
of
of
of

type
type
type
type
type
type
type

BOOLEAN, 531
COMPLEX, 531
DOUBLE, 530

INTEGER, 530
POINTER, 531
REAL, 530
STRING, 531

879

880
ALGOL REFERENCE MANUAL

Functions (cont.)
SQRT function, 578
STRING function, 578
STRING4 function, 578
STRING7 function, 578
STRING8 function, 578
TAIL function, 580
TAKE function, 581
TAN function, 582
TANH function, 582
TIME function, 582

. TRANSLATE function, 584

VALUE function, 585
WAIT statement, 453
WAITANDRESET statement, 456
WRITE statement, 462

<gamma function>, 555
<generate statement>, 734
<get statement>, 737
Global identifiers, 13
<global part>, 10

<go to option>, 613

(go to statement>, 313
<group item name>, 697

<happened function>, 555

<head function>, 556

<hex string>, 372

<hexadecimal character>, 34

<hexadecimal code>, 33

<hexadecimal string>, 33

<héxadecimal string constant>, 525

Hexadecimal strings in free-field data records, 374
HOST file, 590

<host option>, 614

1/0

ACCEPT statement, 221

DIRECT ARRAY declaration, 68

direct 1/0. 3le

DISPLAY statement, 291

file handling, See also Attribute handling
CHANGEFILE statement, 270
CLOSE statement, 280
EXCHANGE statement, 298
FILE declaration, 85
LOCK statement, 325
MERGE statement, 327
multiple attribute assignment statement. 33

LS)

I/0 (cont.)
OPEN statement, 340
REMOVEFILE statement, 377
REWIND statement, 423
SEEK statement, 433
SPACE statement, 44°%
SWITCH FILE declaration, 18

formatting

FORMAT declaration, 89
free-field data format, 371
LIST declaration, 132

Index

9

run—-time format-error messages,

SWITCH FORMAT declaration,
SWITCH LIST declaration, 19
I/0 statement, 315
normal I/0, 316
READ statement, 359
serial I/0 operation, 433
WRITE statement, 461
WRITEAFTER option, 649
<1/0 statement>, 315
<identifier>, 21
<if clause>, 319
<if statement>, 319
<imag function>, 557
<immediate option>, 597
IMP, 496 '
<in-out part>, 89
<inclnew option>, 614
<inclseq option>, 615
INCLUDE files, 590
<include option>, 615
<index>, 252
<index and count>, 252
<index or range>, 252
INFC file, 590, 593
<initial part>, 305
<initial value>r, 300
<initialize option>, 617
Initialized pointer, 161
<input- assignment>, 696
<input file>, 608
<input mapping>, 696
<input option>, 436
<input procedure>, 436
<insert statement>, 739
<installation number>, 618
<installation number list>, 618
<installation option>, 618
<integer>, 24
Integer data type
arithmetic assignment, 225
arithmetic expression, 47%

192 -
7

881

882
ALGOL REFERENCE MANUAL

Integer data type (cont.)
arithmetic relation, 500
direct integer array declaration, 68
functions for manipulating integer expressions
BOOLEAN function, 535
DINTEGER function, 545
" DOUBLE function, 548
NORMALIZE function, 564
STRING function, 578
integer array declaration, 41
integer array reference declaration, 52
INTEGER declaration, 123
integer functions
ARRAYSEARCH function, 534
CLOSE statement, 281
DELINKLIBRARY function, 543
DELTA function, 543
ENTIER function, 552
FIRSTONE function, 554
INTEGER function, 557
INTEGERT function, 558
LENGTH function., 559
LINENUMBER function, 559
LINKLIBRARY function, 559
LISTLOOKUP function, 56l
MASKSEARCH function, 562
MESSAGESEARCHER statement, 331
OFFSET function, 564
ONES function, 565
OPEN statement, 340
PROCESSID function, 568
REMAININGCHARS function, 571
SCALELEFT function, 572
SCALERIGHT function, 573
SCALERIGHTT function, 574
SETACTUALNAME function, 575
SIGN function, 576
SIZE function, 577
VALUE function, 585
WAIT statement, 453
WAITANDRESET statement, 456
integer operand internal structure, 821
integer procedure declaration, 165
integer value array declaration, 214
intrinsic functions returning values of type INTEGER, 530
width of integer array elements, 45
<integer declaration>, 123
<integer function>, 557
<integer identifier>, 123
Integer operand internal structure, 821
<integer variable>, 447
<integert function>, 558
<internal file name>, 611

883
.Index

<internal name>, 681

<interrupt declaration>, 126

Interrupt handling
ATTACH statement, 248
DETACH statement, 288
DISABLE statement, 289
ENABLE statement, 295
INTERRUPT declaration, 126
interrupt statement, 322

~ ON statement, 334

<interrupt identifier>, 126

<interrupt statement>, 322

INTNAME library attribute, 665

Intrinsic functions, See Functions

<intrinsic translate table>, 383

<intrinsics option>, 619

<introduction>, 148

<introduction code>, 148

<invocation statement>, 323

Invoking defines, 6l

<ictime restriction>, 791

IS, 497

ISNT, 497

<item>, 757

<iteration clause>, 133

<iteration part>, 305

<job>, 792

Job and task control, See also Attribute handling
CALL statement, 259
'CHECKPOINT statement, 273
CONTINUE statement, 285
PROCEDURE declaration, 165
PROCESS statement, 350
PROCESSID function, 568§
RUN statement, 425
TASK ARRAY declaration, 199
task assignment, 246
TASK declaration, 199
ZIP statement, 470

<job specifier>, 792

<job title>, 792

<key condition>, 704

<label counter>, 74

<label counter modulus>, 73
<label declaration>, 128
<label designator>, 512
<label identifier>, 128

884
ALGOL REFERENCE MANUAL

<labeled statement>, 220
<language component>, 15
<language name>, 142
<language specification>, 329
<left bit>, 489
<left bit from>, 485
<left bit to>, 485
<length function>, 559
Length of string literals, 387
<letter>, 16
<letter string>, 17
<level option>, 619
<level 2 procedure>, 10
<lex level restriction part>, 160
LIBACCESS library attribute, 666
assigning values
LIBRARY declaration, 129
mnemonic attribute assignment, 239
<liberate statement>, 324
LIBPARAMETER library attribute, 66¢
<library attribute specifications>, 129
<library declaration>, 129
Library entry point
allowed parameters, 82
allowed types, 82
at initiation, 657
declaration of in calling program, 172
declaration of in library program, 81
matching types, 668
passing parameters, 669
<library entry point identifier>, 575
<library entry point specification>, 169
Library handling
ACTUALNAME, 173 ,
assigning values to LIBACCESS library attribute, 129, 239
assigning values to string-valued library attributes, 129, 243
attributes, 665
calling programs, 656
CANCEL statement, 261, 660
creation of libraries, 662
delinking, 660
DELINKLIBRARY function, 543, 660
description of libraries, 655
direct linkage, 659
duration, 658
dynamic linkage, 659
entry points
allowed parameters, 82
allowed types., 82
‘at initiation, 657
declaration of in calling program, 172
declaration of in library program, 81
matching types, 668

Index

Library handling {(cont.)
passing parameters, 669
error handling, 660
examples
calling programs, 674, 678
direct linkage, 675
dynamic linkage, 671, 676
indirect linkage, 676
EXPORT declaration, 81
FREEZE statement, 312
functional description of libraries, 656
indirect linkage, 659
initiation, 657

interrogating string-valued library attributes,

LIBRARY declaration, 129
library directories, 656
library programs, 656
library templates, 656
linkage provisions, 659
LINKLIBRARY function, 559, 664
parameter passing rules, 669
permanent. specification, 658
PROCEDURE declaration, 165
referencing libraries, 664
restricting use, 662
SETACTUALNAME function, 575, 665
SHARING option, 639, 662
temporary specification, 658

<livrary identifier>, 129

<library option>, 620

Library SHARING option
DONTCARE, 639, 663
PRIVATE, 639, 662
SHAREDBYALL, 639, 662
SHAREDBYRUNUNIT, 639, 662

<limit option>, 620

LINE file, 591

<lineinfo option>, 621

<linenumber function>, 55¢

<linewidth>, 650

<link item>, 70%

<linklibrary function>, 559, 664

<list>, 361

<list declaration>, 132

<list designator>, 197

<list element>, 133

<list identifier>, 132

<(list option>, 621

<listdb option>, 772

(listdeleted option>, 622

<listincl option>, 622

<listlookup function>, 561

<listomitted option>, 623

523

885

886
ALGOL REFERENCE MANUAL

<listp option>, 623
<1n function>. 562
<lngamma function>, 562
<loadinfo option>, 623
Local identifiers, 13
<lock option>, 325
<lock statement>, 325
<log function>, 562
<logical database name>, 681
<logical operator>, 18
Logical operators, 497

AND, 496

EQV, 496

IMP, 496

NOT, 496

OR, 496

precedence of, 499

results of, 497
Long (unpaged) arrays, 44
<lower bound>, 42
<lower bound list>, 168
<lower bounds>, 52
<lower limit>, 74

<makehost option>, 625
<masksearch function>, 562
<max function>, 563
<MCP option>, 628
<membership expression>, 207
<membership primary>, 208
<memory size>, 437
<merge option>, 628
<merge statement>, 327
<merging option>, 327
<merging option list>, 327
<messagesearcher statement>, 329
<(midtransaction parameters>, 744
<midtransaction statement>, 744
<min function>, 563
MLS, See MultiLingual System (MLS)
<mnemonic attribute>, 239
<mnemonic attribute assignment>, 239
<mnemonic attribute value>, 239
<mnemonic file attribute value>, 86
<mnemonic library attribute>, 239
<mnemonic library attribute specification>, 130
<mnemonic library attribute value>, 130
<mnemonic-valued library attribute name>., 130
MOD, 479
<modify statement>
as synonym for <BDMS lock statement>, 741
<monitor declaration>, 13¢

Index

{monitor element>, 136

<multidimensional array designator>, 415

MultilLingual System (MLS)
MESSAGESEARCHER statement, 329
OUTPUTMESSAGE ARRAY declaration. 141

<multiple attribute assignment statement>, 332

Multiplication. 47&
MUX, 476

<nabs function>, 564
<name and title>, 611
<{new character>, 148
<new option>, 629
<new size>, 415
<new value>, 255
<newsegerr option>, 630
NEWTAPE file, 591
<noBCL option>, 630
<nobindinfc option>, 631
<nodmdefines option>, 7723
Normal I/0. 31le
<normalize function>, 564
Normalized form
double precision, 826
cingle precision, 8§21
<nostackarrays option>, 631
NOT, 49¢
<noxreflist option>., 632
Null statement, 219
<number>, 23
<number list>, 263
<number of bits>, 485
<number of columns>, 36l
<number of tapes>. 437
<numbered statement group>, 263
<numbered statement list>, 262
Numbers
compiler conversion, 26
exponents, 26
in free-field data records, 374
ranges in ALGOL, 25
<numeric convert part>, 380
{numeric item>, 763
<numeric item identifier>, 704
<numeric item name>, 697
<numeric relation>, 704
Numeric sign, 819
<numeric string literal>, 30

<octal character>, 33
<octal code>, 32

887

888
ALGOL REFERENCE MANUAL

<octal string>, 32
<offset function>, 564
<oldresize option>, 632
<omit option>, 633
<on statement>, 334
<one-dimensional array name>, 43
<one-dimensional direct array name>, 68
<ones function>. 565
<open option>, 340
<open statement>, 340
<operator>, 17
<optimize option>, 633
Optimizing code
BEGINSEGMENT option, 605
B7700 option. 609
ENDSEGMENT option, 611
OPTIMIZE option, 633
TARGET option, 644
<option expression>, 598
<option phrase>, 596
<option primary>, 598
OR, 496
<outer level>, 619
<{output assignment>, 700
<output mapping>, 700
<output message>, 142
{output message array>, 141l
<output message array declaration>, 141
<output message array identifier>, 141
<output message case expression>, 143
<output message case part>, 143
<output message number>, 142
<output message parameter>, 143
<output message parameter number>, 143
<output message parameter value>, 143
<output message part>, 141
<output message segment>, 142
<output option>, 436
<output procedure>, 436
Oown
arrays, 44
pointers, 1lo6l
simple variables, 123

<(pack size>. 437
<page option>, 633
Paged (segmented) arrays., 44
<parameter delimiter>, 17
(parameter element>, 329
Parameters
array parameters, 171, 174
array specification, 171

889
Index

Parameters (cont.)
call-by-name, 170
call-by-reference, 171
call-by-value, 170
complex call-by-name parameters, 170
event parameters, 179
file parameters, 178
format parameters, 179
label parameters, 179
list parameters, 179
parameters that can be call-by-value, 173
passing parameters to CANDE-initiated procedures, 171
passing parameters to procedures, 348 '
passing parameters to WFL-initiated procedures, 171
picture parameters, 179
pointer parameters, 179
procedure parameters, 175
restrictions on call-by-name pointer parameters, 164
simple variable parameters, 176 '
string parameters, 178
task parameters, 179
<parity error label>», 362
(partial word expression>, 489
<partial word part>, 489
<patch number>, 647
<picture>, 147
<picture character>, 149
<picture declaration>, 147
<picture identifier>, 147
<picture skip>, 148
<picture symbol>, 147
Pictures
affects of hardware flip-flops on picture symbols, 150
character fields affected by picture symbols, 151
characters used by picture symbols, 151
control characters, 153
in REPLACE statement, 402
introduction codes, 152
picture characters, 154
picture skip characters, 153
single picture characters, 153
string literals in pictures, 152
<pointer assignment>, 241
<pointer attribute specification>. 8¢
<pointer case expression>, 519
<pointer declaration>, 160
<pointer expression>, 519
<pointer function>, 565
<pointer function designator>, 517
Pointer handling, See Character string manipulation
<pointer identifier>, 160
<pointer intrinsic name>, 517
alphabetical listing of, 531

890
ALGOL REFERENCE MANUAL

<pointer part>, 494
<pointer primary>, 519
<pointer relation>, 494
<pointer statement>, 342
<pointer table membership>, 495
<pointer update assignment>, 241
<pointer variable>, 241
<pointer-valued attribute>, 411
Pointer-valued attributes
assigning values
FILE declaration, 85
multiple attribute assignment statement, 332
replace family-change statement, 409
replace pointer-valued attribute statement, 411
interrogating
REPLACE statement source part <pointer-valued attribute>,
407
VALUE function, 585
<(pointer-valued file attribute>, 411
<pointer-valued file attribute name>, 86
<pointer-valued task attribute>, 411
<pointer-valued task attribute name>, 412
Pointers
functions with pointer parameters
DELTA function, 543
DOUBLE function, 548
INTEGER function, 558
OFFSET function, 564
READLOCK function, 570
REAL function, 571
REMAININGCHARS function, 571
SIZE function, 577
STRING functiocn, 578
initialized, 161
internal structure, 827
intrinsic functions returning values of type POINTER, 53%
iexical level restrictions, 16.
own, 161
pointer assignment, 241
POINTER declaration, 160
pointer expression, 51¢
pointer functions
POINTER function, 565
READLOCK function, 570C
pointer relation, 501
string relation, 500
up-level pointer assignment, 1le6l
<population item name>, 697
<pot function>, 568
POTC, 568
POTH, 568
POTL, 568

380,

891
Index

Precedence
of arithmetic operators, 480
of Boolean operators, 499
Precision of arithmetic expressions, 481
Primary coroutine, 259
<procedure body>, 169
<procedure declaration>, 165
<procedure heading>, 165
<procedure identifier>. 165
<procedure invocation statement>, 346
Procedure parameters, 175
<procedure specification>, 167
<procedure type>, 165
Procedures
allowed parameters, 173
array parameters, 171, 174
as functions, 169
by-calling, 172
CALL statement. 259
call-by-name parameters, 170
call-by-reference parameters, 171
call-by-value parameters, 170
CONTINUE statement, 285
external, 172
file parameters, 178
formal, 173
formal parameters, 170
forward procedure declaration, 121
initiated through CANDE, 171
initiated through Work Flow Language (WFL), 171
library entry points, 172
passing parameters to, 348
PROCEDURE declaration, 165
procedure invocation statement, 346
procedure parameters, 175
PROCESS statement, 350
RUN statement. 425
selection procedure, 172
simple variable parameters, 176
string parameters, 178
<process statement>, 350
<processid function>, 568
<processtime restriction>, 791
<procure statement>, 353
<program unit>, 9
<programdump option>, 355
<programdump statement>, 355
<purge option>, 634
<put statement>, 750

<qualification>, 693
<quaternary code>, 32

892
ALGOL REFERENCE MANUAL

<quaternary stringr, 32
<quoted string>, 372
Quoted strings in free-field data records, 374

Railroad diagrams, explanation of, 837
<random function>, 569
Range of numbers, 25
<read statement>, 359
READ statement
array row read, 370
binary read, 369
formatted read, 368
free-field data format, 371
free-field data record
hexadecimal strings, 374
numbers, 374
quoted strings, 374
unquoted strings, 373
<readlock function>, 569
Ready queue, 26¢
Real data type
arithmetic assignment, 225
arithmetic expression, 475
arithmetic relation, 500
direct real array declaration, 68
functions for manipulating real expressions
BOOLEAN function, 535
DINTEGER function, 545
DOUBLE function, 548
ENTIER function, 552
INTEGER function, 557
INTEGERT function, 558
NORMALIZE function, 564
STRING function, 578
intrinsic functions returning values of type REAL,
real array declaration, 4l
real array reference declaration, 52
REAL declaration, 182
real functions
ABS function, 532
ARCCOS function, 532
ARCSIN function, 532
ARCTAN function, 533
ARCTAN2 function, 533
ATANH function, 534
CABS function, 535
CHECKSUM function, 537
COMPILETIME function, 538
COS function, 539
COSH function, 539
COTAN function, 539
ERF function, 553

530

Index

Real data type (cont.)
ERFC function, 553
EXP function, 553
FIRST function, 554
FIRSTWORD function, 554
GAMMA function, 555
IMAG function, 557
LN function, 562
LNGAMMA function, 562
LOG function, 562
MAX function. 563
MIN function, 563
NABS function, 564
NORMALIZE function, 564
RANDOM function, 569
READLOCK function, 569
REAL function, 570
SCALERIGHTF function, 573
SECONDWORD function, 574
SIN function, 577
SINGLE function, 577
SINH function, 577
SQRT function, 578
TAN function, 582
TANH function, 582
TIME function, 582
real operand internal structure, 820
real procedure declaration, 165
real value array declaration, 214
width of real array elements, 45
<real declaration>, 182
<real function>, 570
<real identifier>, 182
<real item>, 763
<real item identifier>, 704
<real item name>, 697
Real operand internal structure, 820
<real variable>, 447
<record length>, 437
<record number>, 433
<record number or carriage control>, 359
<record type item name>, 697
<recreate statement>, 752
<relational operator>, 493
<remainingchars function>, 571
<remark>, 27
<remove statement>, 754
<removefile statement>, 377
<repeat function>, 572
<repeat part>, 90
<repeat part value>, 149
<replace family-change statement>. 409
<replace pointer-valued attribute statement>,

411

893

894
ALGOL REFERENCE MANUAL

<replace statement>, 379
REPLACE statement
short and long string literals, 387
string literals interpreted as arithmetic expressions, 392
<replace version>, 647
<reserved word>, 79¢
Reserved words, 80C

type 1, 8Q3
type 2, 803
type 3, 805

<(reset statement>, 414
Resettable standard Boolean options, 601
<residual count>, 381

{(resize statement>, 41°%
<restart data set>, 712
<restart specifications>, 437
<result>, 360

<result length>. 329

<{result pointer>, 329

<rewind statement>, 423

<row number>, 298§

<row selector>, 43

<row/copy numbers>, 298

{run statement>. 425

<saveinput procedure identifier>, 744
{saveoutput procedure identifier>, 726
<(scale factor>, 92
<scaleleft function>, 572
<scaleright function>, 572
<scalerightf function>, 573
<scalerightt function>, 574
<scan part>, 381
<(scan statement>, 427
Scope, 12

global identifiers. 13

local identifiers, 132
Secondary coroutine, 259
<secondword function:, 574
<seek statement>, 432
<segdescabove option>, 634
<(segs option>, 635
<selection expression>, 703
<selection procedure identifier>, 166
Separate compilation. See Sepcomp facility s
(separate procedure>, 10
Sepcomp facility

MAKEHOST option, 625

SEPCOMP option, 635

sepcomping databases, 776
<sepcomp option>, 6235
<seq option>, 637

Index

<segerr option>, 638

<sequence base option>, 638
<sequence increment option>, 639
<sequence number>, 613

<set>, 703

<set name>, 682

<(set part>, 681

<(set reference>, 681

<set selection expression>, 703
<set statement>, 435
<(setactualname function>, 575
<sharing option>, 639

Short and long string literals, 387
<sign>, 23

<sign function>, 576

Signs of numeric fields, 819
<simple arithmetic expression>, 475
<simple Boolean expression>, 491
<simple complex expression>, 500
<simple pointer expression>, 519
<simple source>, 409

<simple string literal>, 30
<simple variable>, 225

Simple variable parameters, 176
<sin function:», 577

<single function>, 577

<single option>, 640

<single picture character>, 149
<single space>, 19

<sinh function>, 577

<size function>, 577

<size specifications>, 437
<skip>, 519

<skip count>, 253

<sort statement>, 436

<source>, 381

<source characters>, 202

<gsource part>, 380

<source part list>, 379

<{gpace>, 16

<space statement>. 445

<special array resize parameters>, 415
<special destination character>, 203
<special new character>, 148
<specification>. 1lé6e

<specified lower bound>, 168
<specifier>. 167

<sqrt function>. 578

<stack option>. 641

<start specification>, 615
<starting index>. 537
<statement>, 21¢

{statement list>, ¢

895

896
ALGOL REFERENCE MANUAL

<(statistics option>, 641
<{stop option>, 642
<stop specification>, 615
(store statement>, 761
<string array declaration>, 187
<string array designator>, 187
<string array identifier>, 187
<(string assignment>, 242
<string character set>, 556
String code, 36
String concatenation, 526
<string concatenation operator>, 523
<string constant>, 523
String data type
functions with string parameters
DECIMAL function, 542
DROP function, 549
FIRST function. 554 .
HEAD function, 556
LENGTH function, 559
REPEAT function, 572
TAIL function, 580
TAKE function, 581
TRANSLATE function, 584

intrinsic functions returning values of type STRING,

STRING ARRAY declaration, 187
string assignment, 243
string concatenation, 526
STRING declaration, 185
string expression, 523
string expression relation, 501
string functions
DROP function, 549
HEAD function, 556
REPEAT function, 572
STRING function, 57§
STRING4 function, 578
STRING7 function, 578
STRING8 function, 578
TAIL function, 580
TAKE function, 581
TRANSLATE function, 584
string parameters in procedures, 178
STRING PROCEDURE declaration, 16%
(string declaration>, 185
<(string designator>, 243
<string expression>, 523
String expression
in REPLACE statement, 408
<(string expression relation>. 495
<string function:, 57&
<string function designator>., 518
<string identifier>, 18%

531

Index

<string intrinsic name>, 518
alphabetical listing of, 531

<string library attribute specification>,

<string literal>, 30

String literal
as an arithmetic primary, 478
ASCII string. 38
BCL string, 37
binary string, 31
character size, 36
default character type, 817
dollar signs in strings, 38
EBCDIC string, 35
hexadecimal string, 33
in editing specifications, 93, 94
in pictures, 152
in REPLACE statement source parts,

interpreted as arithmetic expression in REPLACE statement.

maximum léngth of, 37

octal string, 32

pool array, 37

quaternary string, 32
quotation marks in -strings, 38
string code, 36

string length, 387

129

String manipulation, See Character string manipulation

String parameters, 178
<string primary>, 523
<string procedure identifier>, 165
<string relation>, 494
<string relational operator>, 493
<string type>, 185
<string variable>, 525
String-valued attributes

assigning values

LIBRARY declaration, 129

string assignment target <string-valued library attribute>, 243

interrogating

string primary <string-valued library attribute>, 523

<string-valued database attribute>, 689

<string-valued library attribute>, 525

<string-valued library attribute name>, 129

STRING4, 578

STRING7, 578

STRING8, 578

<structurenumber function>, 766
<subarray selector>, 44

<subfile index>, 280

<subfile specification>, 360
<subscript>. 43

<subscripted BDMS identifier>, 692
<subscripted string variable>, 525
<(subscripted variable>, 225

392

897

898
ALGOL REFERENCE MANUAL

<subset>, 704

Subtraction, 478

<swap statement>. 447

<switch file delaration>, 189
<switch file identifier>, 189
<switch file list>, 189

<switch format declaration>, 192
<switch format identifier>, 192
<switch format list>, 192
<switch format segment>, 192
<switch label declaration>, 195
<switch label identifier>, 195
<switch label 1list>, 195
<switch list declaration>, 197
<switch list identifier>, 197
<symbol construct>, 15

<TADS option>, 643
<tail function>, 580
<take function>, 581
<tan function>, 582
<tanh function>, 582
TAPE file, 589
<target option>, 644
<task array declaration>, 199
<(task array designator>, 200
<(task array identifier>, 199
<task assignment>, 246
<task declaration>, 199
<task designator>, 200
Task handling, See Job and task control
<task identifier>, 199
Task-valued attributes, See also Job and task control

assigning values

task assignment, 246
interrogating
<task designator>, 200

<task-valued task attribute name>, 200
<text>, 61
THAW (Thaw Frozen Library) ODT command, 661
<thru statement>, 450
Thunk, 171
<time>, 452
<time function>, 582
<(time option>, 645
<time restrictions>, 791
TIMES, 47%
<title>, 611
TITLE library attribute, 666
Touched array, 50
<(tracedb option>, 773
<transaction record variable>, 712

Index

<transfer part>, 381
<translate function>, 584
<translate part>, 382
<translate table>, 382
Translate table

in REPLACE statement, 401
<translate table declaration>, 202
<translate table element>, 202
<translate table identifier>, 202
<translate-table attribute specification>, 8¢
Translate-table~valued attributes

assigning values

FILE declaration, 85

multiple attribute assignment statement, 332

VALUE function, 585

<£ranslate—tab1e-valued file attribute name>, 8o

{translation specifier>, 202
<{translator's help text>, 142
<truth set declaration>, 207
<truth set identifier>, 207
<truth set table>, 382
Truth set table
in Boolean expressions, 502
in REPLACE statement, 404, 406
in SCAN statement, 430, 431
<type:, 41
<type declaration>, 212
Type declarations
BOOLEAN, 55
COMPLEX, 58
DOUBLE, 71
INTEGER, 123
POINTER, 160
REAL, 182
STRING, 185
Type transfer functions
BOOLEAN function, 535
COMPLEX function, 538
DECIMAL function, 542
DINTEGER function, 545
DOUBLE function. 548§
ENTIER function, 552
FIRST func:ion. 554
FIRSTWORD function, 554
IMAG function, 557
INTEGER function. 557
INTEGERT function, 558
REAL function, 570
SECONDWORD function, 574
SINGLE function, 577
STRING function, 578

Types resulting from arithmetic operations, 482

899

900
- ALGOL REFERENCE MANUAL

Uninitialized pointer, ‘16l
<unit count>, 380
<unlabeled statement>, 220 .
Unpaged (long) arrays, 44
<unquoted string>, 372
Ungquoted strings in free-field data records. 373
Unsegmented arrays, See Unpaged (long) arrays
<unsigned integer>, 22
<unsigned number>, 23
<up or down>, 409
Up-level event

in ATTACH statement,

in direct 1/0, 317
Up-level pointer assignment, 16l
<update pointer>, 379
<update symbols>, 227
<upper bound>, 42
<upper limit>, 74
<use option>, 646
<user option>, 646

248

214
214

«value
<value
<value
<value
<value

array declaration>,
array identifier>,
function>, 585
list>, 300
option>, 598
<value part>, 166
<variable>, 225
<version increment>,
<version option>, 647
<void option>, 648
<voidt option>, 649

647

<wait parameter list>, 452
<wait statement>, 452

<waitandreset statement>, 45¢

<warnsupr option>, 649
<when statement>, 458
<while statement>, 459

Width of array elements,
Word array, 45

<word array identifier>,
<write file part>, 4ol
semantics, 463
<write statement>. 46l
WRITE statement
array row write. 467
binary write, 466
formatted write, 465
<writeafter option>, 649

45

42

Index

(xdecs option>, 650
<xref option>, 650
XREFFILE file, 593
Xreffiles option>, 652
<Xrefs option>, 653

ZIlp
with.array., 470
with file, 471
<zip statement>, 470

<$ option>, 653
S (exponéntiation operator), 479

| (OR), 49¢
|} (string concatenation operator), 526

901

	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873
	874
	875
	876
	877
	878
	879
	880
	881
	882
	883
	884
	885
	886
	887
	888
	889
	890
	891
	892
	893
	894
	895
	896
	897
	898
	899
	900
	901
	902

