Burroughs

Reference
Manual

Distribution Code SE Priced Item 1170016
Printed in U.S.A.
December 1985

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material, including
direct, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/or information complies
with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document
should be submitted on a Field Communication Form
(FCF) with the Class specified as "2" (System
Software), the Type specified as "1" (F.T.R.), and
the Product specified as the seven-digit form number
of the manual (for example, "1170016"). The FCF
should be sent to the following address:

Burroughs Corporation
PA&S/Mission Viejo

19 Morgan

Irvine, CA 92718

NN
[

CONTENTS

INTRODUCTION ¢ & & ¢ o o o o o o o o o o =
STRUCTURE OF THIS MANUAL
RELATED DOCUMENTS. « . « « « « . .

B 7000 SOFTWARE FEATURES

FAILURE ANALYSIS e e e e e e e e e e e

FA AND ITS COUNTER MATRIX. e e e e e e e e e e

CPM CONTROL MODES.+ « « « o « « o « o .
MCM FAIL REGISTERS« . « « « « « « « .
CPM INSTRUCTION RETRY.« « « + .+ . .
LOGGING. . . .« « « v v v v v v e v e e e e e e
FA COMMANDS. . . .+ . « ¢ v o« « v v v v v o o o

SYSTEM BALANCING « . « « ¢ « « v v o o o &

SYSTEM MONITORING.« « « « « « « « « « .
UTILIZATION OF PROCESSING.
UTILIZATION OF INPUT/OUTPUT.
IMPLEMENTATION

DYNAMIC VARIATION OF SYSTEM BALANCING PARAMETERS
INTERVAL PARAMETER « « .« . « « . .
IOINTERRUPT PARAMETER.
IMPLEMENTATION « .+ « « « « .
SYSTEM-BALANCING USAGE

DCAUDITOR. ¢ & ¢ v 4 ¢ o o« o o o« o o o «

DCAUDITOR RUN STATEMENT.
OPTIONS. . . .+ v v v ¢ v v v v v v o v v v o o W
SAMPLE REPORT. « + « « v v « v v o « o .

DCSTATUS ¢ ¢ ¢ ¢ ¢ 4 o o o o o o o o o o @
EXECUTION. e e e e e e e e e e e

CANDE DCSTATUS COMMAND e e e e e e e e e e e
DIAGNOSTICMCS DP COMMAND
CANDE AND WFL RUN STATEMENTS

DCSTATUS OPTIONS + « « « « « « .

DUMPANALYZER & & v ¢ v o o« + o o o o« o« « =
GENERAL INFORMATION. « .« « « « « « « « .

DUMPANALYZER FILES « « .+ . .
"SAVED" MEMORY DUMPS« « « « . . .
MCP LEVEL COMPATIBILITY. « « « « « « .

RUNNING DUMPANALYZER + « v « o o « « o &

REMOTE OPERATION« . « « « « « . .
ODT OPERATION. « « « « v o « « o o« .
CARD READER. . . . e e e e e e e e e e e e
INPUT TO DUMPANALYZER. C e e e e e e e e e e e e

BASIC CORSTRUCTS . . .+ + « v v ¢ « v v v o o o o &

SIMPLE ADDRESS+ « « « v o v « o« « o
MULTIPLE ADDRESSES« « « « « « « « « .
SIMPLE VALUE « . « « « « « « o « o « «

e

SN

NoZie oL N ENo NG 1 IS) |

10

17
17
17
18
19
20
21
22
23
23

25
25
26
28

31
32
33
35
37
38

47
47
48
50
51
52
52
53
55
56
56
57
62
64

e
fe

5.3.2 DUMPANALYZER COMMANDS.
ACBTABLEBASE

iv

ALLSTACKS.
AREAS.

ARRAYLIMIT
ASDNUMBER.

ASDTABLEBASE

ASN.

BOX (IOM SYSTEMS).

BOXINFO.
CAND . .

.

CODEINFO (HDU SYSTEMS)

DC .

DCP.
DCTRACE. .
DEADLOCK .
DEBUG.
FIB.

-

GC (MLIP SYSTEMS).

GRAPHS

HARDINFO (HDU SYSTEMS)

HDR. . .
HEADING.
HELP

I0 .

IOCB .
IOTABLE (A
KEEP

LIB.
LINKCHECK.
LINKS.
LOCKS.
MASK .

MD

MEM.
MIX.
MODE
MSCW
NAMES.
OLAYINFO
OPT. . .
PATTERN.

PC or PRINTCODE.

PIB.
PORT
PRINTER.
PRINTVAL

- . . - . . . -

SERIES MLIP SYSTEMS).

MDCODE (HDU SYSTEMS)

-

. .

PROC (MLIP AND MPX SYSTEMS).
PROCS (A SERIES MLIP SYSTEMS).

PROCSTACKS
PV . .
QUEUE.

68
69
70
71
75
76
78
79
80
81
82
83
84
86
87
89
91
92
93
96
96
97
100
102
103
110
111
112
113
116
117
121
122
125
126
127
128
129
133
134
136
137
138
140
142
143
145
146
147
148
149
150
152

6
6.

4
4.

1

RECESS c e e e e e

RELEASE. . . . « « « v v v o o o o o o v v .

RELX « v o v v v v e e e e e

REMOTE

REPEAT .

RESULTQ (HDU AND MLIP SYSTEMS)

RJ . . o e . .

SAVE e e e e e e e e e e e e e e e
SEARCH . . . e e e e e e e e e e
SHAREMEM (B 5900 and B 6900 SYSTEMS) . .
o
STACK. . . ¢ « v v v v v v v v v v o o
STOP . . . « « v v v v« v v e e e e e
SUBPORT. « « ¢ o v v v o v o o
SUMMARY. ¢ ¢ ¢ v v o v v v o &
SWAPANAL « . . .
TRACE. . . « . « v v v v v v o v o o &
USE. . + v v o v v v v o v v e v e e e e e
WHERE. « « ¢ o o« o o v 00
WHO. . . . e e e e e e e .

ERROR MESSAGES

INDEXED SEQUENTIAL ACCESS METHOD

PROGRAM INTERFACE - PRIMITIVE AND STANDARD ISAM.

PRIMITIVE ISAM

STANDARD ISAM.
STRUCTURE OF ISAM FILES.

PRIME DATA AREA.« « « « « .« .

DATA OVERFLOW AREA e e

Prime Data Area Overflow Space
File Overflow Area .

TABLES FOR LOCATING DATA . . e e e

DATA RECORD LINKS.

ISAM'S MANAGEMENT OF OVERFLOW AREAS
PLANNING FOR ISAM FILES. . C e e e e e

MAXIMUM NUMBER OF RECORDS.

COARSE TABLE SIZE. . .

Computing Coarse Table Slze
FINE TABLE SIZE. . ..
Computing Fine Table Slze e e e e ..

INFO RECORD SIZE

AREAS AND AREASIZE . .

MINIMUM RECORD SIZE (MINRECSIZE)

MAXIMUM RECORD SIZE (MAXRECSIZE)

BLOCKSIZE.

EXCLUSIVE USE.

FINE TABLE RATIO

KEY LENGTH

KEY OFFSET .

PRACTICAL CONSIDERATIONS . .
IMPLEMENTATION FOR PRIMITIVE ISAM PROCEDURES
ISAM PROCEDURES. « ¢« « ¢ v « ¢ o« « o .

ISOPEN . . . v v v v v v v v v o v v o o o .

154
155
156
157
158
159
160
16l
162
166
167
le8
173
174
176
178
179
181
182
183
184

187
188
188
188
189
190
191
191
191
192
192
193
194
195
195
195
196
196
197
197
197
198
198
198
199
199
199
200
201
202
202

~N o~
oW

vi

.7

ISCLOSE.
ISREAD
ISWRITE. .
ISREADNEXT
ISREWRITE.
ISKEYWRITE
ISDELETE

.

.

ISAM I/0 RESULT INFORMATION .

PRIMITIVE ISAM

KEYEDIO. . .

PHYSICAL STRUCTURE
COARSE TABLES.
FINE TABLES.

DATA AREA.

LOCATING DATA.

FILE AND KEYEDIO

.

.

OF KEYEDIO FILES.

LIBRARY MANAGEMENT.

REMOVING AND INSTALLING A KEYEDIO LIBRARY.
THE IMPORTANCE OF NOT DSING THE KEYEDIO LIBRARY. .
PROGRAM INTERFACE.
INDEXED (KEYEDIO) FILE ATTRIBUTES.

THE FILEORGANIZATION ATTRIBUTE
SETTING THE VALUE OF THE BUFFERS ATTRIBUTE

.

.

.

.

.

.

.

.

. .

.

. -

- .

Impact of Number of Buffers on Processor Time. .
Impact of Number of Buffers on Save Memory
Rules for Determining the Number of Buffers Used
CHOOSING A VALUE FOR THE BLOCKSIZE ATTRIBUTE .
The Effect of Block Size on Processor Time .
The Effect of Block Size on Save Memory.
Calculating Actual Block Size.

Calculating User-Specified Block Size (2
ATTRIBUTES INTERNAL TO

KEYEDIO PROCEDURES

ISAMOPEN
ISAMCLOSE.
ISAMSTART.

.

.

.

ISAMSEQUENTIALWRITE - ..
ISAMSEQUENTIALREAD
ISAMRANDOMWRITE.

ISAMRANDOMREAD

ISAMREWRITE.

ISAMDELETE

SETUPPERLIMIT.
ISAMPWRITEN.

THE KEYEDIO FILE

.

SEGMENT 0 (ZERO)
BLOCK INFORMATION LAYOUT .
COARSE TABLE LAYOUT. .

FINE TABLE LAYOUT.

. -
. . . .

. . .

. . . .

- . . .

. . . .

OF THE FILE

. . . .

KEY INFO TABLE LAYOUT. . .
LOGICAL LAYOUT OF FILE . .

INSERTING KEYS

RECOVERY . .

-

.

.

.

.

-

SYSTEM/KEYEDIO.

.

. -

- .

Level).

206
207
208
209
210
211
212
213
214

217
218
218
218
218
219
220
221
222
223
224
225
225
226
226
227
229
229
230
231
232
234
236
237
240
241
243
244
245
246
247
249
251
252
254
254
258
259
260
261
262
265
268

8
8.

8.

€.

9

10

11

RECOVERY MESSAGES AND WARNINGS

B 5000/B 6000/B 7000 MEMORY DUMP PROCEDURES.
B 5900 SYSTEM MEMORY DUMP PROCEDURE: "SOFTCON"
DUMP PROCEDURE e e e .
B 6800 SYSTEM MEMORY DUMP PROCEDURE
MAINTENANCE DISPLAY PROCESSOR.
Programmer's Display Panel
Maintenance Display Panel.
Programmer's Display Keyboard.
FLIP-FLOP RESET PROCEDURE.
DUMP PROCEDURE . C e e e e e
B 6900 SYSTEM MEMORY DUMP PROCEDURE "SOFTDISPLAY"
DUMP PROCEDURE
B 7000 SERIES SYSTEM MEMORY DUMP PROCEDURE
DUMP PROCEDURE e e e e e
PURGE PROCEDURES . . + + v v v ¢« ¢ o o o o o« « o =
RECORDING PROCEDURES+ v v v v o « o « .
DUMP TO DISK CAPABILITIES.« + « « « « .
DUMPDISK FILE CHARACTERISTICS. « « « .
THE DNed FILE. . . « ¢ + « v v v v e o o o o o« o o « &
HLDUMPDISK e e e e e e e e e e e e e e e
MCP USE OF DUMPDISKS

MEMORY MANAGEMENT. o ¢ ¢ ¢ ¢ 4 o o o o o« « o« =
PROGRAM SEGMENTATION e e e e e e e e e e
DESCRIPTORS. . . + « v v o o v v v v o v o o o .

Mom Descriptors.

Copy Descriptors . . . ¢« « ¢« + ¢ o v o « « o .

Data Descriptors
ORGANIZATION OF MEMORY AREAS
ALLOCATION OF MEMORY SPACE

Memory Requests. . . .

Overlay of Memory Areas. e e e e e e e e e e e e
MEMORY MANAGEMENT CONTROLS« « & + & o « « o « «

PERIPHERAL TEST DRIVER (PTD) © v ¢ o o o « « o -
PTD STATEMENT.
General Execution Syntax
ODT Execution Examples
ODT Initiation, Remote (Datacomm) D1alog Dev1ce Examples
Remote Execution Examples. . .
PTD DIRECTIVES
MLIP PTD DIRECTIVES. e e e e e e e
SELECTING TEST DEVICES e .
Reserving a Unit and Selectlng a Path to that Unlt
PTD OPERATOR INTERRUPTION. .
TEST CASE EXAMPLE.

PRINTBINDINFO <. ¢ ¢ ¢ ¢ ¢ v o ¢« o o o o o o o« o«
RUNNING PRINTBINDINFO.« « « « . . .

WHAT THE OUTPUT CONTAINS

THE SELECTIDS FILE

269

271
272
273
275
276
276
279
280
284
285
287
288
291
292
294
295
297
298
299
300
301

303
304
305
305
305
306
307
308
309
310
312

315
316
317
317
318
318
319
326
329
330
336
337

339
340
341
342

vii

12

13

13.
13.
13.

NN

.1

13.
13.

Dow

viii

OUTPUT OPTIONS e e e e e e
FILES USED BY PRINTBINDINFO e e e e e e
EXAMPLES

SOFTWARE COMPILATION « ¢« « ¢ ¢ « « « « =
HOW TO RUN THE JOB ’

Required and Generated Flles .
Location of files.
Starting the job

ODT COMMANDS . . .« « ¢ ¢ ¢« o o o o o o o« =
JOB MESSAGES . e e e e e e e .
CREATING PATCHESFOR FILES e e e e e e e
COMPILE-TIME OPTIONS

ALGOL Compile-Time Options .

BACKUP Compile-Time Options.

Backup Processor Utility Compile- T1me Optlon
BASIC Compile-Time Option.
BINDER Compile-Time Option

CANDE Compile-Time Option.

COBOL Compile-Time Options . .

COBOL74 Compile-Time Options . .
DMSII Accessroutines Compile-Time Optlons
Forms Manager Compile-Time Options

FORTRAN Compile-Time Options .
GENERALSUPPORT Compile-Time Option

IDC Compile-Time Options . .

MARC Compile-Time Options.

MCP Compile-Time Options

Pascal Compile-Time Option . . .

PL/I Compile-Time Options. .

REMOTE JOB ENTRY (RJE) Compile- Tlme Optlons

ADDITIONAL INFORMATION

How to Patch the Job e e e
How to Cause New Symbol Files to Be Created

How to Cause Compare Listings to Be Generated.

SUMLOG . . « ¢ « o « o o o o o o o o o o o o o =«
LOG STRUCTURE. ..

LOG ENTRIES.

GENERAL FORMAT

Table 13-1 LINK TO VARIABLE ITEMS

THE MCP WRITELOG PROCEDURE .
LOG ENTRY TYPES.

Table 13-2 LOG ENTRY CLASSES .
Table 13-3 FIRST FOUR LOG ENTRY WORDS .

MAJOR TYPE = 1 Job or Task Entry

Minor Type = 1 BOJ Entry

Minor Type = 3 BOT Entry

Minor Type = 2 EOJ Entry « « .« « . .
Minor Type = 4 EOT Entry e e e e e e
Minor Type = 5 File Open Entry

Minor Type = 6 File Close Entry.

Minor Type = 7 Job Rejected Entry.

343
344
345

349
350
350
351
351
354
356
357
359
359
360
360
360
360
361
361
361
362
363
363
364
365
365
366
369
369
370
372
372
372
372

373
374
376
376
378
381
382
383
389
390
390
390
394
394
402
404
408

Minor
Minor

Type =

Type

MAJOR TYPE =

Table
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor

13-4
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

[jN]

L | | | £ | | O U | B 1

Type =

Type
Type
Type

MAJOR TYPE =

Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor

Type

I w i

Type =

Type
Type
Type
Type
Type
Type
Type

MAJOR TYPE =

Minor
Minor
Minor
Minor
Minor
Minor

Type
Type
Type
Type
Type
Type

MAJOR TYPE =

Minor
Minor
Minor
Minor
Minor
Minor

Type
Type
Type
Type
Type
Type

MAJOR TYPE =

Minor
Minor
Minor
Minor
Minor

Type
Type
Type
Type
Type

MAJOR TYPE =

Minor

Type

O 00 O PN

o

nu

o

nuwn
~N oM N

o

(o) NN 6 I NN OV I o

8

10

Ma
PER

15
16
17
18
19
20
St
1

MC

oW N

DC

Mi

Job/Task Abort History. . . .

File Interval Record
intenance Entry
IPHERAL TYPES
Mainframe Configuration . . .
Peripheral Configuration. . .
Maintenance Log Comment Entry
Memory Error Entry.
SCR Maintenance Records . . .

I/0 Condition Entry.
I/0 Error Entry.
Library Maintenance Compare.
Mainframe Error Entry. . .

.

.

.

Tightly Coupled Configuration Entry.

DFO Error Entry.
B 6800 Abort and Diagnostics

MLIP I/0 Error Entry
Hardware Configuration . . .
Software Configuration . . .

Environment Configuration. .
Internal Processor Errors. .
ring Entry.
RSVP Message Entry.
Fatal Error Message Entry . .
Non-fatal Error Message Entry

System Message Entry.
Unit Message Entry.
Directory Message Entry . . .

Display Message Entry
Status Message Entry.
Unit RSVP Message Entry . . .
S Entry . .« .« .+ o+ o+« . ..
Log-on Entry.
Log-off Entry
RJE Control Card Entry. . . .
MCS Message Entry

Session Accrual Entry
MCS Security Violation Entry.
PENtry . « « « « « o « « o .

DCP Initiate Entry.
MCS Initiate Entry.
DCP Fault Entry
MCS Error Entry
UIO-DC Unsuccessful I/0 . .
UIO-DC Abnormal Termination .

scellaneous Entry
Balt/Load Entry
SETSTATUS Call Entry.
Security Violation Entry. . . .
Deimplementation Warning Entry.
Log Power Off

10 Date/Time Reset Entry.

2

Log created by B 6800

409
410
411
412
416
418
420
421
422
423
423
427
428
438
439
440
442
449
470
486
487
488
488
488
488
488
488
488
488
488
488
489
489
490
492
493
494
495
497
497
498
499
501
503
505
506
506
507
508
510
511
515
515

Minor
Minor
Minor
Minor
Minor
Minor

Type =

Type
Type
Type
Type
Type

MAJOR TYPE =

Table
Table
Table
Table
Table
Table
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor

13-5
13-6
13-7
13-8
13-9
13-10
Type
Type
Type
type
Type

Type =

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

Type =

Type
Type
Type

3 Log created by B 6900
4 Log created by B 5900
11 Log created by B 7700.
12 Log created by B 7800. .
13 Log created by B 7000. .
= 14 Log created by B 7900.
11 BNA Version 1 Entry.
NS ERROR CODES e e e e e e e e e
NSM ERROR CODES. e e e e e
STATION-LEVEL REASON CODES e e e
STATION-LEVEL REPORTS.
STATION TYPES. . . . « ¢ « v « « o « &
X-25 PDNs e e e e e e e e
= 1 Set NSM Attrlbute e e e e e e e
2 Set PLM Attribute e e e .
3 Set Router Attribute.
4 Set SLM Attribute e
= 5 Network Services Manager Phase Change
6
7
8

i}

1]

Add Host. . . ¢« v ¢« v ¢ ¢ v ¢ « e o« .
Add Node. . . « + ¢ ¢ ¢ v e e e e e .
Host Status . . + ¢« ¢ ¢ ¢« v « o o o .

Delete Host . . . + « ¢ v o v o o o &
= 10 Delete Node. + + « v v o o &+ o« o o
= 11 PLM Error Report ¢« « o« .
= 12 PLM Log Report « « + « « + .
Resistance Factor Change
Start Trace.

Routing Refresh. . .

Router Control Frame Sent

Router Control Frame Received.

= 18 Router Frame Error

= 19 Destination Node Status Change

= 20 Router Monitor Frame Copy. . . .

= 21 Router Monitor Traffic Summary

= 24 Router Node Existence. . .

= 25 Modify Station

= 26 Delete Station

= 27 Add Ensemble . .

= 28 Modify Ensemble. . .

= 29 Delete Ensemble.

= 30 Add Connection
= 31 Modify Connection.

= 32 Delete Connection.
Clear Call ¢ ¢ ¢ v « o « .

I
e

Hoa nouon
[W
~N oUW

1l
w
w

= 34 Establish Call
= 35 Await Call « . .« . .
= 36 Send Test.« ¢ « ¢ « « o 4 .
= 37 Test Received.

= 38 Test Response Received
39 Link Reset

= 40 Open Connection Port e e e e e e e
= 41 Close Connection Port.
= 42 Validate and Attach Station.

515
515
515
515
515
515
517
518
523
525
527
529
530
531
531
531
531
532
533
533
534
535
535
536
537
539
540
541
542
542
543
544
546
547
549
550
552
553
554
555
556
556
558
559
560
561
562
563
563
564
565
566
567

13.5
14
14.1

l14.2

14.3

Minor Type = 43 Detach Station
Minor Type = 44 Save Station
Minor Type = 45 Ready Station.
Minor Type = 46 Open Station Dialog.
Minor Type = 47 Close Station Dialog
Minor Type = 48 Station Attach Report.
Minor Type = 49 Station Detach Report.
Minor Type = 50 Neighbor Restart
Minor Type = 51 Neighbor Busy.
Minor Type = 52 Station Log Report
Minor Type = 53 Station Validation Failure . . .
Minor Type = 54 Station Monitor.
Minor Type = 55 Add Station.
Minor Type = 56 Operator Message
Minor Type = 57 Operator Initiated Assign. . . .
Minor Type = 58 SCM Return+ .+ . .
Minor Type = 59 Target Initiated Assign.
Minor Type = 60 SCM Frame Receive.
Minor Type = 61 BNA Version 1 Debug.
MAJOR TYPE = 12 VSID Entry . . « v o v v o o o« « &
Minor Type = 1 Subsystem Initiation Entry. . . .
Minor Type = 2 Subsystem Termination Entry . . .
Minor Type = 3 Unit On-line Entry.
Minor Type = 4 Unit Off-line Entry
Minor Type = 5 Unit Ready Entry.
Minor Type = 6 Unit Not Ready Entry.
Minor Type = 7 Unit In Use Entry
Minor Type = 8 Unit In Use Entry e e
Minor Type = 9 Begin Printing a Copy Entry . e .
Minor Type = 10 Begin Printing a Copy Entry. .
Minor Type = 11 Special Log Information Entry.
Minor Type = 12 Peripheral Interface Error Entry
MAJOR TYPE = 13 BNA Version 2 Entry.
Minor Type = 0 For All BNA Version 2 Records
IAD LOGS . . . e e e e e e e e e e e e e e
SWAPPER. ¢ ¢ 4 ¢ ¢ ¢ o o 2« o o o o« o« o « =
GENERAL INFORMATION. ¢ ¢ « ¢« o o o« o o« « o« &
SWAPPER EXPRESS FACILITY « « « & « « o « .
INTER-PROGRAM COMMUNICATION (IPC).
SWAPPER OPERATION. . . + v v ¢ ¢« ¢« o« o o o o o « «
CREATING SYSTEM/SWAPDISK e e e e e
SWAPPER INITIALIZATION AND SWAPSPACE SIZE.
SWAPPING ON MULTIPLE FAMILIES. c e e

Multiple Families on a Tightly- Coupled System. .
Multiple Swapdisk Families With Different Row Slzes.

OUT OF SWAPDISK MECHANISM. « « .« « .« .
SWAPPER ERROR MESSAGES . . . « « ¢ ¢ « o o« o « « &
EXECUTING TASKS IN SWAPSPACE
I/0 ERROR HANDLING MECHANISM
I/0 Errors on Write Operations
I/0 Errors on Read Operations.

SWAPPER PARAMETERS

568
569
569
570
571
572
573
574
575
576
578
579
581
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
600
601
602
602
603

605
605
606
607
609
609
611
611
612
612
613
614
616
618
618
618
619

xi

14.7

14.8

PARAMETER DESCRIPTION. e e e e e e e e
PARAMETER DISPLAY.« .« ¢ « & v o o o o « o
TIME-SLICE COMPUTATION « « « « « « « « &
TIMESLICING PARAMETERS « « « « v o o o o« =
QUEUE PRIORITY e e e e e e e e e e e e
Queue Priority Effect . .
Queue Priority vValue
PRAGMATICS OF PARAMETERS . .
Changing Swapspace Size via Core81ze Parameter
SWAPPING v ¢ « ¢ v v o o o o o v o o
SWAPPING OUT . . . + « & v o o o o o o o o
SWAPPING IN.« .+ & « ¢ « « o o o + &
EXPRESS TASKS. + « « . .
SWAPPER MECHANISM. . . . e e e e e e e e
B 5000/B 6000 TIGHTLY- COUPLED C e e e e e e
THE SUBSYSTEM TASK ATTRIBUTE . .
SUBSYSTEM VS. SUBSPACES: CONFLICTING SPECIFICATIONS .
PROCESS FAMILY MIGRATION ON A TIGHTLY-COUPLED SYSTEM .
SWAP TASKS AND NONEXCHANGED UNITS. . . .
B 7700/B 7800 TIGHTLY-COUPLED. o ..
SWAP TASKS AND NONEXCHANGED UNITS.
B 7900/A SERIES. . . . e e e e e
SWAP TASKS AND NONEXCHANGED UNITS . ..

UNDERSTANDING RAILROAD DIAGRAMS ¢ ¢ ¢ ¢ &« o ¢ o« o « =

GLOSSARY. . . ¢ & ¢ ¢ 4« ¢ ¢ o o o o o s o s o o o o« o o o o« « =

INDEX .

xii

-

619
623
625
626
627
628
630
631
632
633
633
633
634
635
637
638
639
639
640
641
641
642
642

643

653

663

1 INTRODUCTION

This manual describes some of the important software operations
available to users of Burroughs A Series and B 5000/B 6000/B 7000 Series
computers. These functions include recording system events, testing or
analyzing datacomm facilities, initiating and analyzing memory dumps,
and managing system resources.

This manual is a reference manual intended primarily for use by
Burroughs systems support personnel and customer software support
personnel. The reader is assumed to be familiar with the Burroughs
A Series and B 5000/B 6000/B 7000 Series systems.

The notation used in this manual to represent the syntax for the various
programs 1is the "railroad" syntax diagram, which is frequently used in
Burroughs manuals. For those unfamiliar with this notation, a
description is provided in the "Understanding Railroad Diagrams" section
at the end of this manual.

The remainder of this section describes the structure of this manual and
the documents that relate to this manual.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

STRUCTURE OF THIS MANUAL

Each subject is described in a separate section. The sections are
independent of each other and are arranged in alphabetical order.

This manual is divided into the following sections:

1.

INTRODUCTION

This section introduces this manual. Each section of the
manual is described and related documents are cited.

B 7000 SOFTWARE FEATURES

This section describes the Failure Analysis (FA) and System
Balancing features of B 7000 Series Systems.

DCAUDITOR

This section describes the DCAUDITOR program that performs
analysis of an NSPAUDIT file produced by the
B 5900/B 6900/B 7900 systems and A Series system datacomm
subsystem procedures of the MCP.

DCSTATUS

This section describes the SYSTEM/DCSTATUS utility, which makes
use of the DCSYSTEMTABLES installation intrinsic to produce an
analysis of the datacomm tables maintained by the MCP and the
datacomm subsystem (DCP or NSP).

DUMPANALYZER

This section describes the SYSTEM/DUMPANALYZER wutility, which
can be invoked with various options to analyze a memory dump.

ISAM

This section describes a set of software routines that
implement the indexed sequential access method (ISAM) of
storing and retrieving data records.

KEYEDIO

This section describes the SYSTEM/KEYEDIO library, which
provides the indexed sequential access method (ISAM) for
COBOL74 and RPG. This section also includes descriptions of
keyed file structure, coarse tables, fine tables, file
management, keyed file attributes, and KEYEDIO procedures.

Introduction

8. MEMORY DUMP PROCEDURES
This section describes procedures for forcing memory dumps.

9. MEMORY MANAGEMENT
This section describes the organization, allocation, and
management of memory space on A Series and B 5000/B 6000/B 7000
Series systems.

10. PERIPHERAL TEST DRIVER (PTD)
This section describes the Peripheral Test Drive (PTD) program
that interprets op-codes that are found in test case S-code
files created to test peripheral equipment on a system.

11. PRINTBINDINFO
This section describes the SYSTEM/PRINTBINDINFO utility, which
is wused to print an analysis of the information used by the
Binder when binding a code file.

12. SOFTWARE COMPILATION
This section describes the Work Flow Language Jjob
WFL/COMPILE/SOFTWARE, which is used to compile and install
patches in the system software.

13. SUMLOG
This section describes the system summary log file, SUMLOG,
which is wused on A Series and B 5000/B 6000/B 7000 Series
systems to record information concerning jobs previously run,
past MCP activity, and other related information concerning the
past status of the machine environment.

14. SWAPPER

This section describes the SWAPPER facility, which causes tasks

running in a time-slicing environment to be swapped in and out
of memory according to parameters set by the installation.

In addition an explanation of railroad diagrams and a glossary appear at
the end of this manual.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

RELATED DOCUMENTS

The following documents contain related information:

Document Form No.

ALGOL Reference Manual 1169844

Burroughs Network Architecture (BNA), Version 2,
Operations Interface, Volume III, Program Agent

User's Guide 1188026
COBOL Reference Manual 1169786
COBOL ANSI-74 Reference Manual 1169877
DCALGOL Reference Manual 5014574
DMSII DASDL Reference Manual 1163805

DMSII User Language Interface Software Operation Guide 1180536
FORTRAN Reference Manual 1182441

Mark PTDTESTS Tape

Operator Display Terminal (ODT) Reference Manual 1169612
PL/1 Reference Manual 1169620
Report Program Generator (RPG) Reference Manual 1169760
System Software Site Management Reference Manual 1170008
System Software Utilities Reference Manual 1170024

Work Flow Language (WFL) Reference Manual 1169802

N

B 7000 SOFTWARE FEATURES

This section describes the "Failure Analysis"™ and "System Balancing"
features associated with B 7000 Series systems.

2.1 FAILURE ANALYS]S

The goals of the Failure Analysis (FA) feature of the B 7000 Series
system are simplicity in operation and implementation, reliable error
and action reporting, and above all, FA actions (such as box removal)
that would best preserve system continuity.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

2.1.1 FA AND ITS COUNTER MATRIX

FA monitors the condition of the wvarious components of the system
primarily through a series of counters that are incremented each time a
chargeable hardware error occurs. When an installation determined
THRESHOLD 1is achieved on a component, an attempt is made to eliminate
its disruptive influence. The setting of this action THRESHOLD should
be carefully determined according to the specific operational
considerations and needs of a given installation.

There are four categories of counters:

1. REQUESTOR (8) For charges against CPMs and IOMs.
There is one per box.

2. MCM (8) For charges against MCMs. There is
one per MCM.

3. INTERFACE (64) For the interface each requestor has
to each MCM.

4. MF2 (8) For counting one bit errors on an MCM
basis.

When a counter's THRESHOLD is exceeded, actions taken vary depending
upon counter type and system configuration. Table 2-1 ("FA Threshold
Actions") summarizes these actions.

Incidents that draw the attention of FA and cause counter action are
itemized in Table 2-2 ("FA Chargeable Errors").

Simply stated, action against a requestor involves the offender being
removed without a Halt/Load. Action against an MCM involves a
Halt/Load. For interface errors (those involving an MCM and requestor),
the total of all interface errors for each of the involved modules is
compared, with action being directed at the module with the greatest
number of interface errors.

In all cases, FA actions are logged; also, an MCP independent runner
named CASUALTYREPORT appears in the mix, displaying the action
periodically and requesting acknowledgment. Once acknowledged,
CASUALTYREPORT terminates.

B 7000 software Features

CPM CONTROI, MODES

If a CPM advances to control mode 2 and the interrupt causing the
control mode advance is an acceptable type, the MCP places the CPM back
onto the original stack and performs normal error handling and counter
action. Failing this criteria, the CPM 1is removed from the system
regardless of its FA counter value. Should this be the only CPM in the
system, a Halt/Load will be invoked by way of a fatal dump titled "ONLY
CPM IN CM2".

If a CPM should advance to control mode 3, it will delay momentarily
upon entry to determine if it is the only CPM that has done so. If this
is the case, it will go to a coded "DEAD" stop. System clean-up for
this CPM is handled by the remainder of the system when the "DEAD" CPM
fails to check in.

All CPMs entering control mode 3 are indicative of a catastrophic memory
failure. The action taken here is to determine the failing memory and,
if necessary, reconfigure, then perform a Halt/Load to get the system
going again. Control mode 3 MCM reconfiguration occurs whenever the MCM
containing memory address zero is the memory that has had the major
failure. If the entire MCM 1is lost, then the MCM that contains the
control mode 3 logic is reconfigured to fill in for the lost MCM. If an
MSU is lost, the MCM is configured to exclude this lost storage unit.
The action following reconfiguration is a programmatic Halt/Load.
Following this Halt/Load, CASUALTYREPORT informs the user of what action
or actions were taken.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

MCM FAIIL, REGISTERS

MCM fail registers are handled by FA whenever they are found to contain
error information. Generally, the presence of error information is the
result of a memory fail 1 interrupt to an IOM or CPM. To ensure that
all MCM failure data is kept current, the registers of all MCMs in the
system are polled once every second. When a loaded fail register is
found, 1t 1is analyzed and the appropriate counter incremented. Table
2-2 ("FA Chargeable Errors") indicates the criteria for counter action.

Single bit errors are logged and counted on an MCM-by-MCM basis for a
limit of 25. Once an MCM achieves this limit, one bit errors from it
will thereafter be ignored. One bit logging for a given MCM may be
restored by using the ODT Primitive 7?7?ZFA (Zero Failure Analysis)
command. (Refer to the Operator Display Terminal (ODT) Reference Manual
for more information about the use of this command.)

B 7000 Software Features

CPM INSTRUCTION RETRY

The B 7000 CPM is capable of performing instruction retry in most cases
of processor internal error. It is the responsibility of FA to invoke
this feature. Before doing so, FA verifies that certain hardware and
software criteria are satisfied. If these criteria are not satisfied,
normal error handling is performed.

If the failure reoccurs on the retry, FA again determines that a retry
is in order, and if another CPM 1is available, the next retry is
performed by that CPM. Failure to find another CPM or not meeting retry
criteria invokes normal error handling.

The criteria for instruction retry on the B 7800 CPM for a PROCESSOR
INTERNAL interrupt and a LOOP interrupt are as follows:

a. The CPM is in a normal state.
b. The CPM is not in vectormode.
c. The MES bit in the processor 1is RESET. MES indicates the

processor is in a nonrecoverable state.

For the B 7700 CPM instruction, retry occurs under the same CPM
conditions only for a PROCESSOR INTERNAL interrupt.

10
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LOGGING

The mainframe section of the system log receives entries concerning:
a. All CPM alarm interrupts.

b. All IOM errors.

c. All loaded MCM fail registers found (excluding one bits).
d. Limited single bit error entries (as previously described).
e. All FA actions.

These log entries are grouped and presented by the LOGANALYZER as one of
four types. (Refer to "Mainframe Error Entry" (MAJOR TYPE=2, Minor
Type=12) in the "SUMLOG" section.) These four entry types and their
associated information are as shown in Table 2-3 ("Mainframe Log
Entries").

11

B 7000 Software Features

FA COMMANDS

Messages used to monitor or set FA parameters are as follows:

LOG MAINFRAME

FAS

?7?7SFL <number>

77ZFA <boX type> <box number>

Causes LOGANALYZER to output
mainframe errors.

Causes the FA counter matrix to
be displayed.

Sets the action THRESHOLD used by
FA.

Clears the FA counter for the
indicated box and its associated
interface counters. If <box type>

and <box number> are empty, all FA
counters are cleared.
Table 2-1. FA Threshold Actions
| I |
COUNTER EXCEEDING | INVOLVED MODULE | INVOLVED MODULE | H-L
THRESHOLD | IS REDUNDANT | IS NOT REDUNDANT | REQUIRED
------------------- el el
| I [
REQUESTOR | Module Removed | Module Removal | No
I I |
| | Aborted |
| I |
MCM | MCM Removed | MCM Removal | Yes
| | Aborted |
| I I
INTERFACE | MCM Removed | MCM Removal | Yes
(Reg Err Total | | Aborted |
Lss MCM Err Total)| | |
I I |
INTERFACE | Requestor Removed | Requestor Removal] No
(Reg Err Total | | Aborted |
Gtr MCM Err Total)| | |
I | |
MF2 | Ignore Subject | Ignore Subject | No
I | |

(Count Egl 25)

MCM's 1-Bit Errs

MCM's 1-Bit

12
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Table 2-2. FA Chargeable Errors

I I

MODULE | | I

REPORTING | TYPE OF | MODULE CHARGED]

ERROR | ERROR | WITH ERROR | EXCEPTIONS
| | I
I [I

CPM | Memory Parity | MCM |
| I I

CPM | Processor Internal | REQ | First Retry
| | | Successful
| I |

CPM | Loop | REQ | Interrupted
I | | operator is
| I | linked list
I | | lookup
I | |

CPM | Invalid Address | REQ | Referenced
I | | address is not
I [| in system
I ! |

I10M | Initiate Busy Channel | REQ | None
I [|

IOM | Illegal Home Address | REQ | None
I I |

I0M | Buffer Register Parity | REQ | None
| | I

IOM | Residue Error | REQ | None
I I I

I0M | Address Residue | REQ | None
I | I

I0M | Store Disparity | REQ | None
[I I

I0M | No Access | REQ | Reference
I I | address is not
I I | in system
I | I

I0M | Fetch Disparity | MCM | None
I [|

MCM | Internal | MCM | None
| I I

MCM | 2 Bit | MCM |
I | I

MCM | Control Word Parity | INTERFACE | None
| | I

MCM | Illegal Operation | INTERFACE | None
| I I

MCM | Wrong Address | INTERFACE | None

B 7000 Software Features

Table 2-2. FA Chargeable Errors (cont.)

13

MODULE
REPORTING
ERROR

TYPE OF
ERROR

Data Word Parity
Data Strobe Error

1-Bit Error

INTERFACE

INTERFACE

None

Limit to 25

14
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Table 2-3. Mainframe Log Entries

MODULE | TYPE
REPORTING| NO.
ERROR I

TYPE TITLE AND

|
|

SUB-HEADINGS COMMENTS
I

"X" is the interrupted|
CPM's 1D |

The reason the log
entry was made

Cause

System Configuration
Configuration

Program Interrupt Point Where the interrupt

|
I
|
I
I
I
|
I
| I
| I
| I
| |
| Mainframe |
| |
| |
| |
| occurred. Included are|
| PIR, PSR, SDI, Stack
| No., Job No., Task
| No., LL and NCSFF
| (State).
I
Error Report | The interrupt Pl, P2
| and processor fail
| register are given in
| raw and analyzed form.
]
I0M Type - IOM X Error |
| the reporting IOM.
|
|
|
I
I
[
|
I
I

Tells how the fail RD
was found.

Cause

Mainframe
Configuration.

System Configuration

The fail RD is given
raw and analyzed form.

Error Report

|
|
|
[
|
|
I
I
l
J
"X" is the number of |
I
|
|
|
|
|
|
l
I
|

MODULE !
REPORTING |
ERROR |

MCP

MCP

15

B 7000 Software Features

Table 2-3. Mainframe Log Entries (cont.)

TYPE
NO.

TYPE TITLE AND
SUB-HEADINGS

Cause

System Configuration

Error Report

Type = System Error
Action
Cause

Reason

System Configuration

Type = Mainframe Event

Cause

System Configuration

Report

"X" is the reporting
MCM.

How the fail register
was located.

Mainframe
configuration.

The fail register is
given in raw and
analyzed form.

FA is reporting some
action it performed.

What FA did (or could
not do).

Why the action was
initiated.

configuration
following action.

FA is reporting a
system event.

Event being recorded
(dump or Halt/Load).

Mainframe
configuration.

Halt/Load or dump
reason. For dumps,
includes calling stack
number, job number,
and task number and
whether fatal or non-—-

I
I
I
[
|
I
I
I
|
I
I
I
I
I
I
|
|
|
|
|
I
|
Mainframe |
I
I
|
I
[
|
|
I
|
I
|
|
|
|
|
|
|
I
fatal. |

16

MODULE |
REPORTING |
ERROR I

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Table 2-3. Mainframe Log Entries (cont.)

TYPE
NO.

TYPE TITLE AND
SUB-HEADINGS

Type = System
Reconfiguration
Action

FA is reporting a
voluntary change in
mainframe
configuration.

|
|
I
I
|
Box involved and |
whether SavVed, |
ReadYed or SWAPped (if]|
an MCM). |
l

Mainframe |
l

[

|

|

|

|

I

configuration
following action.

Whether change was
operator requested or
the aftermath of
on-line CPM testing.

17
B 7000 Software Features

2.2 SYSTEM BALANCING

SYSTEM BALANCING is a feature of the MCP that gives the user a set of
functions by which he can "balance" or "tune" his system to a set of
operations. In general, these functions provide the wuser with the
ability to monitor the overall system utilization and the ability to
change various software parameters that affect system utilization.

SYSTEM MONITORING

Mechanisms have been installed in the MCP to gather statistics that
define SYSTEM UTILIZATION in two categories, utilization of processing
and utilization of input/output, over a user-defined time interval. The
description and purpose of the system utilization components follow.

UTILIZATION OF PROCESSING

The utilization of processing is subdivided, into four components, each
described in percentage of the last time interval.

a. Usertime - the time logged directly to user jobs (less the time
spent for handling physical I/0). User time includes all user
Jjobs and "visible" MCP independent runners, such as library
maintenance.

b. I/0 time - the percentage of processing time over the last
interval that is spent handling physical I/0 functions. This
component is critical to system utilization because the amount
of I/0 activity 1is directly dependent on the amount of
processing given to the I/0 subsystem. The user can observe
this component and vary certain "system balancing parameters"”
to achieve a desired amount of I/O activity.

C. MCP time - the percentage of time over the last interval spent
by the operating system (MCP) to "manage" the system.

d. Idle time - the percentage of time that the processor(s) was
(were) not used for user, I/0 or MCP functions above.

18
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

UTILIZATION OF INPUT/OUTPUT

The utilization of I/0 is subdivided into several components, each
described in rates calculated over the last time interval.

a. User I/0 - the average number of user I/0(s) per second and the
number of kilobytes of data transferred per second by user
I1/0(s).

b. MCP I1/0 - this component is expressed in the same terms as user

1/0, but applies to I1/0(s) performed by the MCP. MCP I/O(s)
include such things as overlays and logging.

C. Total I/O - the total system 1/0 activity; the sum of wuser
I/0(s) and MCP I/0(s).

d. I/0 interrupts - the average number of I/0 interrupts per
second calculated over the time interval.

The system utilization can be displayed on the console via invocation of
the ODT U (Utilization) command. This option is also available in the
Automatic Display Mode (ADM) ODT display. An example of this ADM option
is as follows:

ADM (U 7, MSG) DELAY 10.
In this case, the "SYSTEM UTILIZATION" followed by "MESSAGES" would be
displayed on the console every ten seconds. An example of the output of

the utilization message is as follows:

————— SYSTEM UTILIZATION —--—--

CPM: USER = 68% MCP = 5%
I/0 = 10% IDLE = 17%
I1/0: USER = 60 I0/SEC (220 KB/SEC)

MCP = 12 I0/SEC (40 KB/SEC)
TOTAL= 72 I0?SEC (260 KB/SEC)
43 IO-INTERRUPT/SEC

19
B 7000 Software Features

IMPLEMENTATION

The system utilization statistics are kept within the MCP. Since the
nature of the statistics require that they be placed in the main stream
of the MCP, a slight overhead is encountered.

Because these statistics are only meaningful if considered over a time
interval, the MNMCP resets the statistic counters at the end of every
interval. The MCP procedure ONESECONDBURDEN, which is called
approximately once every second, performs this resetting action.
Therefore, the time interval is at least one second and is an integral

multiple of seconds. The system utilization statistics are stored in
two arrays. One array contains the counts from the previous time
interval. The other array contains the counts from the end of the

previous time interval to the present.

A global MCP procedure "SYSTEMSTATISTICS" is responsible for retrieving
these statistics. When called, this procedure calculates an interval's
worth of values by an interpolation of the previous time interval and
the current time interval values. This method is used to allow the
statistics to be interrogated at any point during the time interval.
Procedure SYSTEMSTATISTICS has one parameter, an array. It is a real
procedure that returns a value of zero if no errors were encountered and
a one 1if the 1input array 1is too short. The procedure returns the
following statistics in the array:

WORD # DESCRIPTION

Percentage of idle time.
Percentage of I-0 time.
Percentage of user time.
Percentage of MCP time.

User I-0(s)-per—second.

User I-0 kilobytes-per-second.
MCP I-0O(s)-per-second

MCP I-O kilobytes—per-second.
Total I-0O(s)-per-second.

Total I-0O kilobytes—-per-second.
I-0 interrupts—-per-second.

H O O 003 Ok wiN

(-

20
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

A user program, written in DCALGOL, can obtain these system wutilization
statistics by calling GETSTATUS, using type 2 (MISCREQUEST) and subtype
3. This subtype simply causes the CONTROLLER to make a call on the MCP
procedure SYSTEMSTATISTICS. The system utilization statistics in the
format just described are returned in the array passed to GETSTATUS.
The following call would obtain the current utilization statistics:

B := GETSTATUS (0 & 2 GSTYPEF & 3 GSSUBTYPEF, O, 0, A);

Where "B" is a Boolean, "GSTYPEF" is the
field 7:8, "GSSUBTYPEF" is the field 15:8
and "A" is an array. Before the call on
GETSTATUS, A[0] must contain the value 2.

DYNAMIC VARIATION OF SYSTEM—-BALANCING PARAMETERS

"Dynamic Variation of System-Balancing Parameters" 1is the ability to
change, while the MCP 1is running, certain software parameters that
control the flow of the MCP. 1In particular, the user 1is given the
ability to specify the MCP's I/0 interrupt scheme and the ability to
change the system utilization time interval. Both of these parameters
can be altered or interrogated by using the ODT SBP (System Balancing
Parameters) command. (Refer to the Operator Display Terminal (ODT)
Reference Manual for more information about the use of this command.)

The keyword "SBP" may be entered followed by one of two parameters:
"INTERVAL" (used to change the system utilization time interval) and
"IOINTERRUPT" (used to change the MCP 1I/0 interrupt schemes). "SBp"
with no parameter following it causes the current values of INTERVAL and
IOINTERRUPT to be displayed. The INTERVAL 1is eXxXpressed 1in terms of
seconds and IOINTERRUPT is a choice of four interrupt strategies. The
SBP command may take one of the following forms:

SBP (request display of current balancing parameters)
SBP INTERVAL <number> (for example, SBP INTERVAL 300)
SBP IOINTERRUPT QEMPTY

SBP IOINTERRUPT IOFINISH

SBP IOINTERRUPT IDLE

SBP IOINTERRUPT WAITING

SBP IOINTERRUPT WAITING QEMPTY

21
B 7000 Software Features

INTERVAL PARAMETER

INTERVAL is the system utilization time interval as discussed under

"System Monitoring". A small interval gives an immediate picture of
system utilization, and a large interval gives a more overall, averaged
picture. with a small interval, radical changes are accurately

reflected. With a large interval, radical changes are "smoothed out".
The default interval 1is ten seconds, which can be termed a small
interval. The user may desire a larger interval for an overall picture,
but a smaller one 1is not recommended because the statistics tend to
fluctuate too much.

See also
System Monitoring o . 0 0 0 0 e e e e e e e e e .1

22
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

JOINTERRUPT PARAMETER

IOINTERRUPT is the system balancing feature that allows a choice of four
I/0 interrupt strategies. The differences among the four involve the
way various types of jobs interact and include the amount of CPM time
devoted to handling I1/0 completes. The four interrupt strategies are as
follows:

a. QEMPTY - Specifies that the IOM(s) interrupt a CPM when the
last I/0 request for any unit is completed and on every 1/0
completion if a CPM is idle.

b. IOFINISH - Specifies that IOM(s) interrupt a CPM upon handling
every 1/0 completion. This causes I/0 bound jobs to run in a
shorter elapsed time, but requires more CPM time to handle 1I/0
completions.

c. IDLE - Provides for no I/0 interrupts except when a CPM is
idle. The effect of this is to bias CPM usage toward CPM-bound
jobs. This requires the least amount of CPM time for handling
I/0 completions.

d. WAITING - Specifies that I/0 interrupts occur upon completion
of an I/0 operation only if a process is waiting for that I/0O
or if a CPM is idle. As long as the progress of no process 1is
dependent on the completion of a particular I/0 operation, the
IOM generates no interrupt. The effect of this strategy is to
use just enough CPM time to keep I/0 bound jobs running.

This WAITING interrupt strategy may be specified along with QEMPTY by
using the following form of the ODT SBP command:
SBP IOINTERRUPT WAITING QEMPTY

IOINTERRUPT WAITING QEMPTY is the default strategy when none is
specified.

23
B 7000 Software Features

IMPL.EMENTATION

The SETSTATUS procedure of the MCP handles the SBP command. Within
SETSTATUS, MCP global variables are altered to change the interval or
IOINTERRUPT strategy. If the user wishes to change the system balancing
parameters from a user program, he can use the DCKEYIN function of
DCALGOL, or he can invoke SETSTATUS, in which case he should refer to
procedure "“SYSTEMBALANCINGPARAMETERS"” in the CONTROLLER for specific
details of input formats, and so forth.

SYSTEM-BALANCING USAGE

System balancing can be used in a number of ways. By observing the
system utilization and changing the system-balancing parameters, the
user can "tune" the system to help achieve maximum throughput. He can

"bias" the system toward a specific type of application; for instance,
IOINTERRUPT on idle biases the system towards process—bound jobs and
IOINTERRUPT on every I/0 FINISH biases the system towards I0-bound jobs.
Another use is to record and graph utilization throughout the day,
enabling the user to distribute the "system load" on an equitable basis.
In general, "system balancing" should enhance the user's knowledge and
control of his system.

25

lw

DCAUDITOR

DCAUDITOR is a program that performs analysis of an NSPAUDIT file
produced by the B 5900/B 6900/B 7900 systems and A Series systems
datacomm subsystem procedures of the Master Control Program (MCP).

The user can identify the items to be audited by wusing the 1ID
(Initialize Datacomm) Operator Display Terminal (ODT) command audit
options. 1If the audit options are set while a Network Support Processor
(NSP) is initializing, the MCP audits these requests and creates an
audit file titled "NSPAUDIT/DCINITIAL/<NSP-unitid>". If the audit
options are set after an NSP initializes, the MCP audits these requests
and creates an audit file titled "NSPAUDIT/DCCONTROL/<NSP-unitid>".

DCAUDITOR performs detailed analysis for NSP requests and results;
however, only the TYPE/CLASS field is analyzed for DCP and DCWRITE
formatted request and results.

DCAUDITOR RUN STATEMENT

The run statement of DCAUDITOR is as follows:

RUN *SYSTEM/DCAUDITOR("<DCAUDITOR options>"); VALUE = <nnn>

where <DCAUDITOR options> is a string of options separated by spaces and
<nnn> is the unit number of the NSP whose audit file is to be analyzed.

26
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

OPTIONS

<DCAUDITOR options>

|~ DCINITIAL —-———————- [
: l
|- DCCONTROL -——~—=——— |
| |

| -<backspace count>---|
| |
|- LINES —-—<range>-——-—|
| |
|- LSNS —~-<range>----- |
| |

|- STATIONS --<range>-|
<backspace count>

-—<integer>——|

<range>
--<integer-1>---—-------————=--- |

|[-<integer-2>-|

27
DCAUDITOR

Semantics:

DCINITIAL
DCCONTROL

The DCINITIAL and DCCONTROL options specify which file 1is to be
analyzed. DCINITIAL selects the NSPAUDIT file created during NSP
initialization, and DCCONTROL selects the NSPAUDIT file created
after the NSP has initialized.

If these options are not specified, the file that 1is label-equated
to SCAUDITF is analyzed.

<backspace count>

The <backspace count> option restricts the analysis to <backspace
count> records of the NSPAUDIT file. Valid integers are 1 to
1048575.

LINES

The LINES option allows the selective analysis of NSP requests and
results that pertain to a range of line numbers. A line number is
assigned by the Network Definition Language II (NDLII) compiler and
is the ordinal number of the line in the SOURCENDLII, starting at 1.

If this option 1is wused, no DCWRITE requests and results are
displayed.

LSNS

The LSNS option allows the selective analysis of NSP requests and
results that pertain to a range of logical station numbers. A
logical station number is assigned by the MCP and 1is the ordinal
number of the station in the SOURCENDLII, starting at 2.

If this option 1is wused, no DCWRITE requests and results are
displayed.

STATIONS

The STATIONS option allows a selective analysis of NSP requests and
results that pertain to a range of station numbers. A station
number is assigned by the NDLII compiler and is the ordinal number
of the station in the SOURCENDLII, starting at 1.

If this option 1is used, no DCWRITE requests and results are
displayed.

28
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SAMPLE REPORT

Messages for DCWRITE formatted requests and results are printed in hex.
An example appears in the sample report that follows.

29

DCAUDITOR

IR 2 R AR Z A R R E R R R R R R R E R AR R R R R R R E R R R R R R R R R R E R A R R R R R R R R R R R R R R A N R R R R R R E R R R L R L R R R R R R R A R R A R R A R R R SR R R R R R R SR 2]
003003003050 000000600000 030000000000 100052030000 0030000GIGDD 0D000D000I0D Q00000000000 0CTO02100030
A0v3¥ NOTIVWLS 135347135 = 3dAl 39VSSIH IO
216°0%:€121T = JKVISIHIY TQYOK & = KI9INTIOI EeE3s LNSIM dOQ Bifss
22 A A R E R R R R R RN A N L R A R R R R R R R R R A R R R A R A R R S R R R L R R R N R R R A R A R R R R S R R R L R L R R R L R S R A R R L R R R A R R R 4
(0SI0STINILTEDRESLIOT = 3NIVA (318N01) 4 3IWNN LSINGIY
1S3IND 34 2903THONNIV :(STITZ = INIVA (NDILVHINANI) 3dAl LIns3y
(23003952 = 3INIVA (¥3IDIINIY AIGHAN 17AS3y
(v002)31 = 3INTYA (¥IIIINID INAGD LINSId
66°0% 1T = JRVISIRIL $31KA 0T = H1INI1OI ¥reds LI0S3UIS Farst
[E 2 RS R E R R R R R AR R S R S L R L R R R R R R R R R R L R R A Y R R A R R R A R R A A E R I A R A N R R R R R E R L RS R S R R R A A RS AR R A S R AR E AR X2 AR R R
358£62¥29205 003033003330 010000921262 823£32056000 0000000600000 00D2¥IDGSTIYE 02000200%0¢0 000050910000 000000000057
¥35010523%04 D45454v203)3 €364228252G0 000600000600 GO00T2000000 0020C08YI0S2 0)DDI0DE 100v0 000000000000 6100C0OCHACSC
I9¥SSIW 03TIVIIY = SS¥ID 39VSSIW :LI¥KIC
£6°09:£T121T = dNVISINIL SQ4GH 0T = HLONIIOL Fake 1INSIY FLTARIQ Nidak
LR A R R S R R R E R R R R R R R R SR 2 R 2 R R R R R R A R R R R R R R R R R R R R R R E R R R R A R R R R e R R R R R R L R A R R R L L R RS R S E R R R R E R RS A R S X 24
003000203030 G30D00CI0500 00OLOGOCDLOC T00062000GO0) 00DLN0VINS2 E2{3TEREIT0D 0000G000IGO0 &T00COTOCOSE
$1InS3¥ Q00D = SS¥ID 3D¥SSIK ZIINKIQ
26°09:£1211 = JKVISIWIL 30804 8 = HLONITOL SE007 LTINS ILTIHIO £ 5884
IR Z A2 R A A R R A R R R R R Y R R R R R R R R L I A Y R R R I R A R A A Rl A R A R R L R E R R R R R R R R R R R R R L R E A R
063002303030 000000000000 000000000000 106062000000 000000203030 £3£3TTREITOD 0CH0000000600 00TO0BTOOOY]
INdLIND 17v33¥ = 3dAL Z9V¥SSIH 420
06°Gh:S1:TT = dWYISIWIL SQUOM 4 = HIINITOI s#E¥Y LINS3IY 420 RedRd
A A A2 A R A A R R A R A A R R A E R R R R R A R R R R A R R R R R R R R R R R L R L R R E R R R R R R R L R R R A R S S R A A
(8700372 = 3NTYA (HIIILNID HITRAN ROILVIS
€00020006230 = 32TVA (378000) ¥IZWOK 1SINCI
ACYIY L1ON NOILYLS :(80)8 = 3INTVA (NOILY¥3IANVI) ZdAl L1°0S3Y
(£300)6£2 = INTIVA (4393 INI) &IEHAN LTINSy
(2003221 = 3INTYA (8393IN1) INNOD 17NS3y
] gB*0%¥ LTl = JWVISIKIL 53148 21 = Hi3N3TOT tzess 1INSIUIS EaEak
A R R R R A A R R R R R R R R R R R R R R R R R R R Y R R R R R R R R A R R L A R R A R E R E R I R R R R R R R R R R R R P R R R E R R R R R R RS E R R S R E R R R R]
(2160)%2 = 3NTYA (¥3IIIENI) H33KAN NOTL VIS
(000300G0)0 = 3NTvA (37300G) d3IIHON 153Nb3e
MOILVLS G38¥312 :(10)1 = INIVA (NOIL¥¥34AN3) 3dAL 1°0S3d
(¥300)%€2 = 3NTIvA (233IINIY HAudON 1°0€3d
€300332T = 3NTvA (H¥3IDIINID INMID 17N$T
£8°0%:1:TT = dHY1IS3IAIL S3LA6 2T = HLONITOI #4288 1INTINIS srrat
A AR A R AR S A R A R R E R R R R R R R E R R R A R R R R R R R R R R R A R R R R L R R R R R R R R R L R R R R R R R R R R S RS R R A N E R A R R Y
(350051249)91£08€520T = INTYA (ITEN0A) ¥3ITwON 1S 3NG 3
1S300 58 3503THONNLY 2(SI)I2 = INIVA (NOIL¥MIANNT) 3dAl 1°0S3d
(63500652 = 3NT¥A (HIDIINI) ¥IGNAN 13NS3Y
(v000)0T = 3NTVA (4393INI) INAG3 LNS3H
mummh nu.mmemuxwpzu4=~ mm“umJ:ouu;nmmnm“

auy !
LR L T R S N T N
001003000000 200200000000 000006000000 030309000000 00300003020 0D0000000000 000000600000 GOVOOEO0CO90

AOv3Y INTT 3MVYN = 34X 39VSS3IW dag
28°0% 381211 = JWYIS3RIL SGYOH 8 = HIONITOI ¥ewgy LINS3U 420 ¥akss

LR N Ry T Ny T R T P
: (BS301028)G226%S2%12 = 3NTIVA (37300T) Y3IWON LISZN03Y

1S3Nn834 3TO3TRONYIY s(S1)12 = 3NT¥A (NDLLIVHIWANI) 3dAL 1AS38

(8300)2€2 = 3NTvVA (H4393INI) 43GHAN 1AS3E

(v0oO0D)OT = 3NIVA (¥333INI) 1INNOD 1°0ASSY

C2°0%:ET:I1 = JWVYLIS3INIL S$31A6 0T = HIBNITOI #d2ts ITNS3IHIS Hadaw

LR R T TP R T P P T
(6100)%2 = 3NTYA (¥33I3INI) H3IAWNN NOILVIS

AQY3Y NGILIVLIS 3NVH 3(91)22 = 3INIVA (NOTLY¥43IWNNI) 3dAl 153N0634

(GSO0S6TINIZTIEO0EESL0T = 3INTAIVA (3TINBI) YIIKAN 1SZAY3Y

£2°0%9:ET:TT = dWVEIS3INWIL S31At £ = HLONITOI Baa8¥ 1S3N034IS Hoaty

(AR AN R A A A R R R R L R R R S R R R Y R R R R R R R R R S R R R R

31

£

DCSTATUS

SYSTEM/DCSTATUS is a DCALGOL program that makes use of the
DCSYSTEMTABLES installation intrinsic to produce run-time "snapshots" of
the datacomm tables maintained by the Master Control Program (MCP) and
the datacomm subsystem. (For further information about the
DCSYSTEMTABLES installation intrinsic, refer to the DCALGOL Reference
Manual.)

DCSTATUS analyzes elements of the datacomm subsystem for Data
Communications Processor (DCP) systems (B 6800, B 7700, and B 7800
systems), Message-Level Interface Processor (MLIP) systems (B 5900,
B 6900, A 3, A 9 and A 10 systems), and Host Data Unit (HDU) systems
(B 7900 and A 15 systems). The DCSTATUS options ALL, STATION, TERMINAL,
TABLES, GRAPH, NETWORK, and FILE apply to both DCP and MLIP systems.
The options DCP, CLUSTER, LINE, and MODEM apply only to DCP systems.
The options NSP and LSP apply only to MLIP and HDU systems.

No attempt is made in this section to interpret the results generated by
the DCSTATUS program, because understanding these results requires an
understanding of Network Definition Language (NDL) or Network Definition
Language II (NDLII), as well as a general familiarity with the DCP or
Network Support Processor (NSP). NDL applies to DCP systems and NDLII
applies to MLIP and HDU systems.

32
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

4.1 EXECUTION

The DCSTATUS program can be invoked as follows:
a. Through the CANDE DCSTATUS command.
b. Through the DIAGNOSTICMCS DP command.

c. Through a CANDE or WFL RUN statement.

33
DCSTATUS

CANDE DCSTATUS COMMAND

The CANDE DCSTATUS command may be entered from a remote terminal to
execute DCSTATUS and produce a run-time analysis of the current state of
the datacomm subsystem.

(CANDE dcstatus command>

== DCSTATUS — = oo o e |

A
I
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Semantics:

<(dcstatus option list>

The <dcstatus option list> must consist of a string of standard
options allowed by SYSTEM/DCSTATUS. If <dcstatus option list> is
not specified, the default is the STATION option with the <lsn>
specification set to the user's logical station number (LSN). The
output is directed to the wuser's terminal. (Refer to "DCSTATUS
Options" for a complete description of each option.)

NOTE
The ALL, DCP, NSP, and CLUSTER options
produce voluminous output.
<modifier>

For a definition of <modifier>, refer to the CANDE Reference Manual.

34
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Examples:
DC
#f RUNNING 3854
STATION 13

SYSTEM/DCSTATUS (III.0.90) DATE : 04/20/78 TIME
FILES: ELMONTENDL/NIF, ELMONTENDL/DCPCODE

DATE OF NDL COMPILATION : 03/03/78 , TIME : 0724:44
NO RECONFIGURATION EXECUTED.

STATION 13

STATION NAME = DOCUMENT1

TERMINAL NAME = TD820

DCC STATION TABLE

ENABLED : READY : ATTACHED

MCS = 1: <1lsn> = 13 : WIDTH = 80

PRIMARY Q = 8,CURRENT Q = 8,STN Q = O

DLS : 0,2,2 ATTACHED TO FILE 1 REL STN NO = 1
NORMAL TERMINATION

#

DC CLUSTER 4,2

##IRUNNING 3966

CLUSTER 4,2

SYSTEM/DCSTATUS (III.0.90) DATE : 04/20/78 TIME :
FILES: ELMONTENDL/NIF ELMONTENDL/DCPCODE

DATE OF NDL COMPILATION : 03/03/78 , TIME : 0724:44
NO RECONFIGURATION EXECUTED.

*—-DCP IS NOT NDL DEFINED --- 4 -—-

NORMAL TERMINATION

i

DCSTATUS GRAPH;FILE LINE(KIND=PRINTER)

#RUNNING 40000

#

See also
DCSTATUS Options.

1540:08

1555:50

38

35
DCSTATUS

DIAGNOSTICMCS DP COMMAND
The DIAGNOSTICMCS DP command may be entered from a remote terminal to
initiate SYSTEM/DCSTATUS and produce a run-time analysis of the current

state of the datacomm subsystem. For information beyond that given
here, refer to the DIAGNOSTICMCS Reference Manual.

<diagnosticmcs dp command>

|- ON ——<family name>-| |- SITE —-——|

Semantics:

ON <family name>
The ON <family name> option may be used to specify the family on
which SYSTEM/DCSTATUS resides.

REMOTE
Specifying REMOTE causes DCSTATUS output to be sent to the remote
station initiating the DP.

SITE
Specifying SITE causes DCSTATUS output to be directed to the
printer.

<(dcstatus option>
Refer to "DCSTATUS Options" for a complete description of each

option.

See also
DCSTATUS Options. . « v v ¢ v v v 4 & & o« « o o o« « o o o« « « . . 38

36
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Examples:

?DP REMOTE(STATION 5)
##H# OK
i## FILE OPEN i##

STATION 5

SYSTEM/DCSTATUS (I1.8.60) DATE : 12/16/76¢ TIME : 0623:28
FILES: PACKNDL8/NIF ON PACK, PACKNDL8/DCPCODE ON PACK
DATE OF NDL COMPILATION : 12/12/76¢ , TIME : 0442:59

NO RECONFIGURATION EXECUTED.

STATION 5

STATION NAME = TTY3.

TERMINAL NAME = TELETYPE.

DCC STATION TABLE

LOGOIN : SEQ MODE : ENABLED : READY : ATTACHED

MCS = 3: LSN = 5 : WIDTH = 72

STATION REMOTE TYPE = 0O: RETRY COUNT = 15: NIF INDEX = 267
CONTROL TO CQ:

PRIMARY Q = 33,CURRENT Q = 33,STN Q = O

TRANSFERRED : DLS : 0,12,0 ATTACHED TO FILE 1 REL STN NO =1

NORMAL TERMINATION

FILE CLOSE

37
DCSTATUS

The following CANDE RUN statement may be entered from a remote terminal
to initiate SYSTEM/DCSTATUS:

RUN *SYSTEM/DCSTATUS ("<dcstatus option list>")
or
EXECUTE *SYSTEM/DCSTATUS ("<dcstatus option list>")

The CANDE RUN statement, including the <dcstatus option list>, must be
in capital letters.

The following WFL job deck may be entered from an operator display
terminal (ODT) to initiate SYSTEM/DCSTATUS:

<i> BEGIN JOB
RUN *SYSTEM/DCSTATUS ("<dcstatus option list>")
<i> END JOB

Refer to "DCSTATUS Options" for a complete description of each allowable
DCSTATUS option.

[<task id>] and <task equation list> specifications may be added to the
WFL RUN statement as desired. (Refer to the Work Flow Language (WFL)
Reference Manual for more information about the RUN statement.)

When either the CANDE or WFL RUN statement is used, DCSTATUS output is
sent to the line printer unless LINE is file-equated to KIND=REMOTE.

See also
DCSTATUS OptioNnsS. « v ¢ v ¢« v & v« o o o o o « o o« « « o o« « « « . 38

38
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

4.2 DCSTATUS OPTIONS

The <dcstatus option list> specifies those elements of the datacomm

subsystem that are to be analyzed. These options are shown in the
following diagram 1in this subsection. The following options are
arranged hierarchically so that the earlier elements listed include all
those that follow: ALL, DCP/NSP, CLUSTER/LSP, LINE, STATION. In other

words, each higher-order item 1in the hierarchy (they are listed from
highest to lowest) is inclusive of all lower-order items. For example,
if CLUSTER 1is specified, the analysis is performed on all lines and
stations on that cluster. However, the options TERMINAL, TABLES, MODEM,
NETWORK, GRAPH, and FILE do not fit into this hierarchy. A full
explanation of each option is given in the semantics that follow the
syntax for <dcstatus option list>.

The internal file name for the output file is LINE. When the WFL RUN
statement or the CANDE RUN statement 1is used to initiate DCSTATUS,
output is sent to the line printer by default. When the CANDE DCSTATUS
command or the DIAGNOSTICMCS DP command is used, the output is sent to a
remote terminal by default. The output format 1is modified to fit a
72-character 1line width. The file LINE can be file—-equated in any of
the above cases if an output device different from the default is
wished.

The DCSYSTEMTABLES intrinsic does not lock the various tables that it
accesses. Therefore, the contents of the tables may change while the
intrinsic is accessing them. In addition, more than one <call on the
DCSYSTEMTABLES intrinsic 1is made to obtain the contents of all the
various datacomm tables. If the datacomm tables maintained by the MCP
change between calls, the results produced by DCSTATUS may appear
internally inconsistent. In particular, DCSTATUS results may be
incorrect if the current Network Information File (NIF) or DCPCODE file,
or both, has been replaced by a newer version with the same file titles.
When this situation occurs, DCSTATUS has access only to these new files,
and the information in them may not correspond to that contained in the
MCP tables being analyzed.

By using the FILE statement, analysis can be performed on Network
Definition Language (NDL/NDLII) files other than the currently active
network files. Analysis of inactive network files precludes reporting
information requiring active network files. The following are the only
allowable options for inactive network files:

DCP <DCP number> NDL or DCP NDL

NSP <unit id> NDL or NSP NDL

STATION <station number> NDL or STATION NDL
TERMINAL

MODEM

GRAPH

NETWORK

DCSTATUS

<dcstatus option>

| I |

|
I
| | -<DCP number>- | |
I

|- NSP ---<unit id>----=——————————————— |
| | I
I

I

I [-<unit id>-|

|

I
I
I
|- CLUSTER -—-<DCP number>--- , —-——<cluster number>-|
I
[- ¢« ~| |

|

I

|~ LSP ——<unit id>-———————=—-—-————m—— e |
| | |
| |- , —-——<adaptor number>-------- |
[I I I
I = - |
| |
|-<line specificationg>------—————-——————==-—-—————- I
| |
|- STATION ——=——=-——————mm— e m oo |
I I I |
| |-<lsn>-| |- NDL —————========———————=— I
I I
[~ MODEM ————=—— oo o o [
I I [
| [-<modem number>---------——-——=——=—-————- I
| [
|~ TERMINAL ———————— - oo mm e e |
| I |
| |-<remote type index>--—-————————-——--— |
I I
|~ TABLES ——==-=m— oo oo |
I I
| = GRAPH ———— = m o I
I | |
! |-<DC file prefix>--—-————————=———————=-= |
I I
[= NETWORK ——== === == e oo oo |
I [I
| |-<DC file prefixd>-———————=—-—————=-~-= I
I I
|~ FILE ———————————mm———m oo e |

40

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

<line specifications>

—= LINE —--<DCP number>--- , ——————--=——-—-——=——————— - - oo - —————— >

>===<line nUmMbeY > - - ===
| I
|-<cluster number>--- , —---<adaptor number>-|
| |
f— ¢ -

Where <line number> is <cluster number> * 16 + <adaptor number> and
<adaptor number> is the number of the line's adaptor.

<DC

file prefix>
--<identifier>-----------------r-——————— I

|- ON ——<family name>-|

Semantics:

ALL

DCP

NSP

Produces a complete analysis of the data comm network. Analysis of
all DCP/NSP, cluster/LSP, line and station tables, together with an
analysis of the NDL/NDLII for weach station and terminal, is
performed.

Produces an analysis of clusters, lines, and stations on all DCPs or
on a specific DCP. Use of the NDL option causes reporting to be
based on the information contained in the Network Information File
(NIF) and DCPCODE files instead of the current datacomm tables. The
DCP option applies only to DCP systems.

Produces an analysis of Line Support Processors (LSPs), lines, and
stations on all Network Support Processors (NSPs), or on a specific
NSP. Use of the NDL option causes reporting to be based on the
information contained in the NIFII and DCPCODE files instead of that
contained in the current datacomm tables. The NSP option applies
only to MLIP systems.

41
DCSTATUS

CLUSTER
Produces an analysis of the lines and stations on the designated
cluster. The Cluster option applies only to DCP systems.

LSP
Produces an analysis of the lines and stations on the designated
Line Support Processor (LSP). The <adaptor number> option produces
an analysis of the one designated line and its stations. The LSP
option applies only to MLIP systems.

<line specifications>
Produces an analysis of the designated line and its stations. The
<line specifications> option applies only to DCP systems.

MODEM
Produces an analysis of modem information for a specific modem or
for all modems defined 1in the network. The MODEM option applies
only to DCP systems.

STATION

Produces a station analysis. If no <lsn> is specified, all stations

are analyzed. The normal sources of information for the STATION
option are the data comm tables in main memory or those in DCP or
NSP 1local memory. If the NDL option is specified, the sources of

information are the NIF/NIFII and DCPCODE files.

TERMINAL

Produces a listing of the NDL specifications of all terminals or of
the designated terminal. The <remote type index> is the index used
by the MCP to index into a table that describes each terminal
specified in the NDL/NDLII. Terminals are numbered in the segquence
in which they appear in the NDL/NDLII terminal definitions.

TABLES

Produces a raw hexadecimal dump of the Data Communications
Controller (DCC) tables and the DCP/NSP line and station tables.

42
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

GRAPH

Produces a graph of the data comm network showing the relationship
between the DCPs/NSPs, clusters/LSPs, lines (names, addresses, and
phone numbers for dial-in lines), and stations (names and LSNs).
Because the graph information 1is obtained from the network
definition files specified by the <DC file prefix>, the GRAPH option
can be used whether data comm is running or not. If the <DC file
prefix> is not specified, the one currently being used by the system
is GRAPHed.

NETWORK

Produces a brief tabular network configuration report. Information
in the report includes DCP/NSP, cluster/LSP, line/adaptor, station,
terminal, and MCS data. Because the network information is obtained
from the network definition files specified by the <DC file prefix>,
the NETWORK option can be used whether data comm is running or not.
If the <«DC file prefix> is not specified, the one currently being
used by the system is analyzed.

FILE

When the <DC file prefix> is specified, 1limited analysis can be
performed on any nonactive network definition file. If the <DC file
prefix> is not specified, the one currently being used by the system
is used. For example, if DCSTATUS is supplied with the following
<{dcstatus option list>:

("FILE A/B; NETWORK; GRAPH; FILE; NETWORK; GRAPH")

the first NETWORK and GRAPH reports are generated using A/B/NIF and
A/B/DCPCODE; the remaining reports use the NIF and DCPCODE files
that are currently being used by the system.

Examples:

The following example shows a portion of what DCSTATUS would produce on
the 1line printer wusing the NETWORK option for the B5900. A table of
information about the network is given that includes the headings NSPi,
LSP#, LINE#, STATION type, LSN#, adaptori#, Receive Address (RA),
Transmit Address (TA), terminal type, synchronous or asynchronous mode,
bits-per-second transmitted, class declared for the terminal in the NDL,
and the type of Message Control System (MCS) in use..

“ DATACOMM NETWORK SUMMARY "

" FILES ER69/CJ/NIF ON DISK .

" ER69/CJ/DCPCODE ON DISK "

" DATE 11/15/83 TIME 1439 Q7 .
NSP LSP AD D L S LINE STATION LSN RA TA TERMINAL MODE BPFS CLASS MCS
109:114 00 0:000 000 0022 MT133939 003C 39 39 TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114 01 0 001 000 0023 TD2813G1 0032 Gt Gt TD830TERM ASYN 9600 TDCLASS SYSTEM/CANDE
109 114 01 0:001 001 0023 AP281RP 0033 RP RP AP300TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114 01 0 001 002 0023 TD2813G2 0034 G2 G2 TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 11401 0 001 003 0023 MT283950 0035 S0 50 TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114.01 0°001 004 0023 TD286330 0036 30 30 TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114-01 0.001 005 0023 TD289329 0037 29 29 TDB30TERM ASYN 9600 TOCLASS SYSTEM/CANDE
109 114:01 0:001 006 0023 TD276310 0031 10 10 TD83OTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114 .02 0:002 000 0024 TND576B345 0038 45 45 TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114:02 0 002 001 0024 TD5768308 0039 08 08 TDB3OTERM ASYN 9600 TOCLASS SYSTEM/ CANDE
109:114:02 0 002 002 0024 TDS76B343 0040 43 43 TDB30TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114:02 0.002 003 0024 TDS76B3D2 0041 D2 D2 TDB3OTERM ASYN 9600 TDCLASS SYSTEM/CANDE
109 114:02 0 002 004 0024 TD5768B3D3 0042 D3 D3 TDB3UTERM ASYN 9800 TOCLASS SYSTEM/ CANDE
109:114:02 0:002:005 0024 TDS768346 0043 46 46 TD83OTERM ASYN 9600 TDCLASS SYSTEM/CANDE
109 114:02 0 002 006 0024 TD576B347 0044 47 47 TD83OTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114 23 0.003 000 0025 TD294314 0045 14 14 TDS3OTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114 03 0:003 001 0025 TD2993D0 0046 DO DO TD83IITERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109:114:03 0 003 002 0025 TD3093D1 0047 D1 D1 TDB83OTERM ASYN 9600 TDCLASS SYSTEM/CANDE
109.114 03 0 003 003 0025 TD310391 0048 91 91 TDB83OTERM ASYN 9600 TOCLASS SYSTEM/CANDE
109 114 03 0 003 004 0025 TD3113AK 0049 AK AK TD830TERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114 03 0 003 005 0025 TD312912 0050 12 12 TDB830TERM ASYN 9600 TDCLASS SYSTEM: CANDE
109 114 04 0 004 000 0026 TD316316 0051 16 16 TDB30TERM ASYN 9600 TOCLASS SYSTEM/CANDE
109 114 04 0 004 001 0026 TD3163AA 0052 AA AA TD830TERM ASYN 9600 TOCLASS SYSTEM: CANDE
109 114 04 0 004 002 0026 TD3203Mm7 0053 M7 M7 TD830TERM ASYN 9600 TOCLASS SYSTEM/CANDE
109 114 05 0 00S 000 0027 TD325385 0054 35 85 TDS83IOTERM ASYN 9600 TDCLASS SYSTEM/CANDE
109 114 05 0 005 001 0027 TD3263A7 0055 A7 A7 TDS83IOTERM ASYN 9600 TODCLASS SYSTEM/ CANDE
109 114.05 0 005 002 0027 TD3273C5 0056 C5 CS TD83OTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114 06 0 006 000 0028 TD3I853QP 0057 QP QP TDB30TERM ASYN 9600 TDCLASS SYSTEM: CANDE
109 114 06 0 006 001 0028 TD3I90303 0058 03 03 TDB3OTERM ASYN 9600 TDCLASS SYSTEM!/ CANDE
109 114 06 0 006 002 0028 TD405367 0059 67 67 TD830TERM ASYN 9600 TODCLASS SYSTEM/ CANDE
109 114 06 0 006 003 0028 TD406387 0060 87 87 TD83OTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114 .06 0 006 004 0028 TD407370 0061 70 70 TD83O0TERM ASYN 9600 TDCLASS SYSTEM: CANDE
109 114 07 O 007 000 0029 TD449346 0062 46 46 TDB30TERM ASYN 9600 TDCLASS SYSTEM: CANDE
109 114 07 0 007 001 0029 TD449347 0063 47 47 TDB30TERM ASYN 9600 TDCLASS SYSTEM: CANDE
108 114 07 0 007 002 0029 TD453348 0064 48 48 TD83IOTERM ASYN 9600 TDCLASS SYSTEM/ CANDE
109 114 07 0.007 003 0029 TD453349 0065 49 49 TDB3OTERM ASYN 9600 TDCLASS SYSTEM' CANDE
109 114 08 0 008 000 000t RJUESYSB771 0002 00 00 RJE9600SYSTERM ASYN 9600 TDCLASS SYSTEM RJE | |
109 114 03 0 008 001 0001 RJUEB771SCH 0003 01 0t RJE9BO0SPOTERM ASYN 9600 TDCLASS SYSTEM/RJE |
109 114 08 O 008 002 000t RJEB771CR1 0004 02 02 RJE9600READERTERM ASYN 9600 TDCLASS SYSTEM/RJE} |
109 114 08 0 008 003 0001 RJEB771LP1 0005 03 03 RJUE9B00PRINTTERM ASYN 9600 TDCLASS SYSTEM/RJE I |

SNLVISOA

1374

44
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The following example shows a portion of what would be produced on the
terminal of a B 5900 when the GRAPH option is specified. A chart of the
datacomm network is given showing the NSP, LSPs, designated 1lines, and
line stations. The chart includes the type of terminal associated with
each line station along with the logical station number (LSN) for each
terminal. Other information such as line adaptor numbers is also given.

SYSTEM/DCSTATUS (3.3.321) DATE : 02/03/83 TIME : 1408:39
FILES: B59/010483/NIF ON DISK, B59/010483/DCPCODE ON DISK
DATE OF NDL COMPILATION : 01/04/83 , TIME : 0000:00

NO RECONFIGURATION EXECUTED.

KoKk K kK K K kR X Kk kKK kkkkkkk Kok kKKK kk ok ok ko KAXKKKA KK KKK K X X
* * * * * DL = 0:1 * * DLS = 0:1:0 *
* NSP 108 ****x%x*x% 7Gp 112 *****x*xx TDLINE ¥xxx%x% TD19920HG *
* ook % * * * ADAPTER=0 * * * TD830TERM *
* * * * * * * LGN = 4 *

* % % %k %k Kk K ok %k Xk %k FHIXK KK KKK XK X % %k %ok ook ok ok %ok ok % KooK Kk K kK Kok kR KX

FK KKK KK KR KKK KK
* DLS = 0:1:1 *
** TD19920G1l *
* TD830TERM *
* LSN = 5 *

LR A o

L S 2 . S R
L A I B I R)

#

%

Fok Kok K FK ok KK ok k Kk
* DLS = 0:1:2 *
** TD19920HE *
* TD830TERM *
* LLSN = 6 *

ERE S S

¥ % %
¥ O O0% % ¥ % % W 0% ¥ % ¥ ¥ ¥ X W ¥ %

*

R SRR S EEEEEE S
* * DLS = 0:1:3 *
*** TD19920HF *
* TD830TERM *
* SN = 7 *

%*
%
% koK Kok ok ok ok Yook kokok ok ok ok
*

¥0% ¥ %% % 0% % % % % ¥ ¥
LI . B -

*
LI A A

*

45
DCSTATUS

The following example shows the output from the DCSTATUS option TERMINAL
on the line printer or at a remote terminal connected to a B 5900. The
NDL settings for the terminals are given in categories such as MAXINPUT,
MAXOUTPUT, RECEIVE-ADDRESS-SIZE, and so forth.

SYSTEM/DCSTATUS (3.4.140) DATE 05/18/83 TIME 1003:49
FILES: MV69/D/NIF ON DISK, MV69/D/DCPCODE ON DISK
DATE OF NDL COMPILATION 05/05/83 , TIME 0000:00
NO RECONFIGURATION EXECUTED.

TERMINAL = TD830TERM
UNIQUE-ID =1
MAX-INPUT = 1920
MAX-OUTPUT = 1920
RECEIVE-ADDR-SIZE = 2
TRANSMIT-ADDR-SIZE =2
RECEIVE-DELAY =0
TRANSMIT-DELAY =0
TERMINAL-TYPE = TD830TYPE
PAGE-SIZE = 24
PAGE-COUNT =2
LINE-WIDTH = 80
SCREEN = TRUE
WRAP-AROUND = TRUE
CLASS = TDCLASS
UNIQUE-ID = 6
MODE = ASYNC.
VERTICAL-PARITY = EVEN
HORIZONTAL-PARITY = TRUE
CRC-POLYNOMIAL = X7+1
CRC-INITIAL =0
CRC-FINAL =0
BIT-RATE = 9600
STOPBITS-TYPE = LONG

46
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The following example shows the output from the DCSTATUS option STATION
on a B 5900 line printer. The station name and terminal name are given

along with information about the DCC station table.

SYSTEM/DCSTATUS (3.4.140) DATE : 05/18/83 TIME : 1003:49
FILES: MV69/D/NIF ON DISK, MVe9/D/DCPCODE ON DISK
DATE OF NDL COMPILATION : 05/05/83 , TIME : 0000:00
NO RECONFIGURATION EXECUTED.

STATION 3

STATION NAME = ADMSTA

TERMINAL NAME = ADMTERM

DCC STATION TABLE

500040030050 WRAPAROUND : ENABLED : READY

MCS = 1: LSN = 3 : WIDTH = 80

6F000A64003E STATION REMOTE TYPE = O: RETRY COUNT = 10:NIF INDEX =
000000000000

PRIMARY QUEUE = O,CURRENT Q = 0,STN Q = 0,PSEUDOMCS=0

000000000000 DLS : UNASSIGNED

62

47

5 DUMPANALYZER

5.1 GENERAI. INFORMATION

The SYSTEM/DUMPANALYZER wutility produces user-specified subsets of
information from a memory dump and analyzes that information according
to parameters given by default or supplied by the user.

This section 1is intended as a reference source for experienced
programmers who are familiar with the workings of the Master Control
Program (MCP). Because no single memory dump is typical, no attempt is
made here to explain how a memory dump is read. This ability can be
acquired only through experience and a thorough knowledge of the system
sof tware.

System types are identified within this section as follows:

HDU - B 7900, A 15

IOM - B 7700, B 7800

MLIP - A 3, A 9, A 10, B 5900, B 6900

48
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

DUMPANALYZER FILES

SYSTEM/DUMPANALYZER uses three files: OPTIONS, TAPEIN, and MCPCODEFILE.
File-equating these files 1is sometimes desirable when DUMPANALYZER is
run using a Command AND Edit (CANDE) language or Work Flow Language
(WFL) RUN statement or using Menu-Assisted Resource Control (MARC).

OPTIONS

OPTIONS is the file name of the user input file. When DUMPANALYZER
is run from an ODT, OPTIONS should be file-equated to SPO. For
example:

RUN SYSTEM/DUMPANALYZER;FILE OPTIONS{KIND=SPO)

TAPEIN

The memory image created by the memory dump routine in the Master
Control Program (MCP) is stored in a file named MEMORY/DUMP.

When DUMPANALYZER is run it accepts as input a file titled TAPEIN.
That file can be file-equated to any of the following kinds of
files.

a. A file that is titled MEMORY/DUMP, <created when the system
takes a dump.

b. A "pseudorecovery" file that has the title
DP/<MMDDYY>/<HHMM>/<REASON_ID>

where MMDDYY represents month, day, and year and HHMM
represents hour and minutes.

C. A SAVEd dump file, created using the DUMPANALYZER SAVE command.

MCPCODEFILE

The code file of the MCP that was running at the time of the dump.
This file contains the MCP names and index arrays (and may contain
LINEINFO information) for analyzing stack bases, program information
blocks (PIBs), and file information blocks (FIBs). The file may be
successfully file-equated only to MCP code files closely related to
the code file that took the dump. (The code file must differ by
only a few patches.) This file is not required when a previously
SAVEd file is equated to TAPEIN.

49
DUMPANALYZER

PSEUDORECOVERY FILE

During the initialization sequence of DUMPANALYZER, the MEMORY/DUMP
file 1is accepted as input and certain data structures are built up.
When initialization is complete, this data structure information is
saved in a ‘"pseudorecovery" file under the user's usercode. This
file has the name

DP/<MMDDYY>/<HHMM>/<REASON_ID>

where MMDDYY represents month, day, and year, and HHMM represents
hour and minutes.

If the DUMPANALYZER run is interrupted by a Halt/Load or terminated
by an operator, this pseudorecovery file can be file-equated to
TAPEIN and used as input to DUMPANALYZER.

If for any reason the user wishes to exit from the DUMPANALYZER
session, considerable time and resource savings will be made if the
RECESS command is used rather than the STOP or BYE command. The
RECESS command does not remove the pseudorecovery file, while the
other two commands do. In all cases DUMPANALYZER does not remove
the file that was used as input.

The user should also be aware that the pseudorecovery file is
removed if the SAVE command is issued and successfully completed.
To save creation time and disk space, the SAVE command should be
used only if the MCP code file information will not be available at
a later time. In all other cases, the user should use the
pseudorecovery file as input and DUMPANALYZER will pick up the
relevant MCP information while going through initialization.

If SYSTEM/DUMPANALYZER is running with FAMILY substitution in effect,
the program first 1looks for MCP and program code files without FAMILY
specifications; it then looks for such files with FAMILY specifications.

See also
"SAVED" Memory DUMPS. . + « &« & « o « « o o o v v v « v v v v . .50
S N

50
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

"SAVED" MEMORY DUMPS

It is usually advisable to take a raw memory dump and run the SAVE
command on it in a separate DUMPANALYZER session before the main
analysis of the dump is performed. Running SAVE on the dump provides
more complete MCP information for the eventual analysis than would be
available if DUMPANALYZER were run on a raw dump. When a SAVEd dump 1is
analyzed, the MCP running on the system need not be identical to the MCP
running when the dump was taken. No file equation of the MCP code file
is necessary when running DUMPANALYZER on a SAVEd dump.

In the DUMPANALYZER session when the SAVE command is run, the MCP that
is file-equated to MCPCODEFILE should be identical to the one that was
running on the system when the raw dump was taken. After the SAVE
command is run on the raw dump, the resultant disk file is called a
SAVEd dump. The SAVEd dump contains the memory image from the dump tape
and the relevant data from the MCP code file. The SAVEd dump is usually
an extremely large file and is often stored on tape.

When the DUMPANALYZER session for the main analysis is initiated, the
SAVEd dump file is file-equated as the TAPEIN file, and the MCPCODEFILE
does not need to be file-equated.

51
DUMPANALYZER

MCP LEVEL COMPATIBILITY

SYSTEM/DUMPANALYZER checks to determine the difference between the
DUMPANALYZER Mark level and the MCP Mark level on the dump tape. If the
levels are not the same, DUMPANALYZER terminates with an error message
similar to the following:

CANNOT ANALYZE nn MEMORY DUMP WITH mm DUMPANALYZER

where nn is the MCP Mark level and mm is the DUMPANALYZER Mark level.

In scme cases, SYSTEM/DUMPANALYZER allows analysis of a wrong level MCP
when the run-time option MEMONLY is chosen. The error message indicates
when this is the case. It is always better to use the correct level
DUMPANALYZER.

If the MCP code file does not have the same timestamp as the MCP at the
time of the memory dump, the following error message is displayed:

ACCEPT: WRONG CODE FILE--OK OR RESTART

The operator enters OK if DUMPANALYZER should continue using the same
MCP code file. If RESTART 1is entered, the code file is closed and
SYSTEM/DUMPANALYZER will look for a file on DISK titled MCPCODEFILE. The
operator should then use the FA (File Attribute) Operator Display
Terminal (ODT) command to specify the desired MCP code file.

52
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

5.2 RUNNING DUMPANALYZER

DUMPANALYZER can be run from a remote terminal, ODT, or card reader.
Each command is processed before the following command has been parsed.

REMOTE OPERATION

To initialize a DUMPANALYZER remote operation, the following command 1is

entered from a CANDE or MARC session:

RUN *SYSTEM/DUMPANALYZER

A MARC menu selection for running DUMPANALYZER also exists.

when necessary, file-equate the input dump file to TAPEIN and the MCP
that was running to MCPCODEFILE in the RUN statement.

After the RUN statement, DUMPANALYZER displays the following messages:

DUMPANALYZER VERSION 36.000.00000
SELECT RUN TIME OPTIONS: PRINTER, REMOTE, DEBUG, MEMONLY

Enter the desired option and transmit. To select the default option,
transmit a blank line. DUMPANALYZER then initializes. When
DUMPANALYZER 1is ready to accept commands it displays the prompt
" :READY".

Semantics:

By default, the output is routed to the remote terminal. PRINTER causes
output to be routed to the printer. REMOTE causes output to be routed
to the remote terminal. DEBUG causes diagnostic information related to
DUMPANALYZER to be displayed. MEMONLY allows a restricted analysis of
memory dumps.

Examples:

RUN *SYSTEM/DUMPANALYZER ON MYPACK:
FILE TAPEIN(KIND=DISK,TITLE=ER/DUMP)

R *SYSTEM/DUMPANALYZER;VALUE=1;FILE TAPEIN(SERIALNO="10046");FILE
MCPCODEFILE(KIND=DISK,TITLE=SYSTEM/CMP34180)

53
DUMPANALYZER

ODT OPERATION

Three methods can be used to initiate DUMPANALYZER using the ODT. Only
limited output is sent to the ODT, such as the HELP command information.
Output from most commands is sent to the printer as soon as the session

terminates. If the RELX command is in effect, information is sent to
the printer during the session.

Method 1

In the first method, enter the following:
RUN SYSTEM/DUMPANALYZER; FILE OPTIONS(KIND=SPO)
When necessary, file-equate the input dump file to TAPEIN and the MCP
that was running to MCPCODEFILE in the RUN statement.
The following message is then displayed:
INITIALIZING

FUNCTIONS CURRENTLY AVAILABLE ARE

A list of commands is then displayed, and the system displays the
following message:

"HELP" FOR THIS LIST, "HELP HELP" FOR MORE INFO
DUMPANALYZER continues to initialize and then displays the following

message:

ENTER REQUESTS

DUMPANALYZER commands can now be entered.

54
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Method 2
The second method uses the DA (Dump Analyzer) ODT command. Refer to the

Operator Display Terminal (ODT) Reference Manual for a complete
description of the DA command.

Enter the appropriate form of the DA command and transmit. The
following message is then displayed:
INITIALIZING

FUNCTIONS CURRENTLY AVAILABLE ARE

A list of commands is then displayed, and the system displays the
following message:

"HELP" FOR THIS LIST, "HELP HELP" FOR MORE INFO
DUMPANALYZER continues to initialize and then displays the following

message:

ENTER REQUESTS

DUMPANALYZER commands can now be entered.

Method 3

If DUMPANALYZER is run on an ODT configured in datacomm mode, it should
be initiated using MARC. This is done by entering "77MARC"™, logging on
to MARC, and proceeding with the REMOTE OPERATION instructions.

DUMPANALYZER

CARD READER

The following execution deck is entered at the card reader:

7RUN SYSTEM/DUMPANALYZER
7DATA OPTIONS

% COMMAND LIST

.

7END
All output is printed on the line printer.

Example:

BEGIN JOB ANALYSIS;

RUN SYSTEM/DUMPANALYZER;
DATA OPTIONS

SUMMARY

LOCKS

DEADLOCK

IO UINFO NAMES ALL

OPT

MEM

TRACE

BOXINFO

SWAPANAL

MODE + ALL

ALLSTACKS SUMMARY ACTIVE
NAMES

NETWORK

AREAS AVAIL CODE LINKS DESC
DC

?

END JOB

55

56
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

5.3 INPUT TO DUMPANALYZER

The following subsection, "Basic Constructs", describes the syntactic
variables commonly used in the addressing and value schemes specified in
various DUMPANALYZER commands. "DUMPANALYZER Commands" in this section
provides detailed descriptions of each of the commands that can be used
as input to DUMPANALYZER.

5.3.1 BASIC CONSTRUCTS

The addressing and value schemes used 1in the syntax diagrams of
DUMPANALYZER commands commonly employ certain basic syntax constructs.
These basic constructs are defined as follows:

<number>

—---—-<hexadecimal number>------- |

| |
|- DEC --<decimal number>-|

|- OCT --<octal number>-—-|
Semantics:

<hexadecimal number>

A number in base 16, each of whose digits ranges from O to F. In
DUMPANALYZER commands, <number> is assumed to be hexadecimal unless
it is preceded by a prefix such as DEC (decimal) or OCT (octal),
indicating another base.

<decimal number>
A number in base 10, each of whose digits ranges from O to 9. In
DUMPANALYZER commands, <number> 1s decimal when it is preceded by
the prefix DEC.

<octal number>

A number in base 8, each of whose digits ranges from O to 7. In
DUMPANALYZER commands, <number> is octal when it is preceded by OCT.

57
DUMPANALYZER

SIMPLE ADDRESS

A <simple address> represents a location in memory. A <simple address>
is made up of an <absolute address> or a <simple location> followed by
an optional offset. Three types of <simple location>s exist:
stack-related, global, and indirect. <offset> 1s a number that
indicates the displacement of the <simple address> from the given
<simple location> or <absolute address>.

<simple address>

---—-<absolute address>-—-=-——-—--=—-——-—-—————— |

|-<simple location>--| |- + -——<offset>—]
| I
I- - -

<absolute address>

——<number>——|

<simple location>

----<stack id>-—————————-————————— R uintalll I

I | |
|-<stack offset>--—————————-—- |

}
|
| |- BASE ---<attribute name>--—-]
| | l
| |- # ——<offset>—————- |
|

|- PIB --<stack number>---<attribute name>-|

l |- # ——<offset>-——-|
l |
|- G —--<global id)—---—-—-————————————— |

| | |
| |- # --<offset>—————-————- Bttty |

| I
|- RV --<simple valued>-—————--———————————— I
l I
|- VIA --<ASD number>———-—-—-—==—=————————— |

58
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

<stack id>
—-——— STK --<hexadecimal stack number>----------———-— |
I [|
|- @ ——mmmmmmmmm e | 1- sD -
<(stack offset>
--—- LOSR ----|
| |
|- BOSR -}
| |
|- SREG -|

<offset>

——<number>—-|

Semantics:
<absolute address>

A hexadecimal, decimal, or octal number that specifies an address
within a present, on-line memory module. The prefixes DEC and OCT
are required if decimal or octal numbers are specified. The address
specified by <hexadecimal address>, <decimal address>, and <octal
address> must be in the range from 0 to 4"FFFFF".

<simple location>

Specifies locations in memory that are stack-relative, global
identifiers, or indirect.

The following groups of tokens represent valid <simple location>s;
expansions of some of the tokens within those groups are included:

<stack id>
A <simple location> may consist of a <stack 1id>. A <stack id>

specifies a stack by number or uses the last stack explicitly
referenced. An expansion of the token <stack id> follows:

STK
STK
cl

@ sb

59
DUMPANALYZER

<hexadecimal stack number>
<hexadecimal stack number> SD

These four statements are all expansions of the token <stack 1id>.
STK indicates that a stack is involved. <hexadecimal stack number>
specifies the hexadecimal number that identifies the stack. The
last stack explicitly referenced 1is represented by the "at" sign
(@). Referencing a stack by its hexadecimal number sets up the @
for subsequent use. The segment dictionary of the stack may be
referenced if the stack number or the "at" sign (@) is followed by
SD.

<(stack id> <stack offset>

A <simple location> can consist of a <stack id> (as defined
previously), followed by a specific location within the stack, which
is called the <stack offset>. An expansion of the token <{stack
offset> follows:

LOSR The Limit of Stack Register.
BOSR The Bottom of Stack Register.
SREG The S Register.

<stack id> BASE <attribute name>
<(stack id> BASE <offset>

PIB
PIB

<stack number> <attribute name>
<stack number> <offset>

For some other possible <simple location>s, the stack BASE and
program information block (PIB) of the stack may also be used; a
<stack id> (with BASE) or <stack number> (with PIB) must be
specified. In addition, either an <offset> or an attribute name
must be identified. The <attribute name>s are listed in the MCP
symbolic: they change with each new release. Since the availability
of the cell names depends on the presence of the MCP code file,
these cell names are not valid if the task (PIB) and stack index
arrays cannot be generated.

60

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

G <global id>
G <offset>

These are <simple location>s that are global ids (MCP D[0] cells).
The G denotes that the location is global. <offset> indicates a
displacement of a given number of words away from D[O].

RV <simple value>

VIA

Addresses can also be indirectly specified by wusing the RV ("the
reference value"), option. For example, if a cell contains an
absolute address, an indirect reference word (IRW), or a stuffed
indirect reference word (SIRW), the RV option allows the contents of
this cell to be used as an indirect address. (An IRW would require
that an environment be set up, but an SIRW would not; a set up
environment implies that a stack has already been referenced.) An
absolute address would be used as is. The actual value that can be
used for indirect addressing is a <simple value>, which 1is defined
later in this subsection. Each level of indirection is printed as
it occurs so that each chain of addresses can be seen along with the
referenced data.

<ASD number>

A <(simple location> pointed to by an <ASD number>. <ASD number> can
be any number from 1 through the largest valid ASD that is specified
in ASD1{0].

+ <offset>
- <offset>

An <offset> 1s a hexadecimal, decimal, or octal number that
specifies the number of words away from a reference point such as a

<simple location>, that a particular address 1s located. If an
<offset> is specified in decimal form, DEC should precede it. If an
<offset> is specified in octal form, OCT should precede it. The

of fset either increases (+) or decreases (-) the address.

61
DUMPANALYZER

Examples:
In the following examples, blank spaces and special characters function

as delimiters. Delimiters are needed whenever two alphanumeric items
are juxtaposed.

41ACO %ABSOLUTE ADDRESS

DEC 47990 %ABSOLUTE ADDRESS

OCT 170071 %ABSOLUTE ADDRESS

STK 4A SD BASE BDINFO %BASE ADDRESS (STACK-RELATED)
PIB 2E7 SERIAL %PIB ADDRESS (STACK-RELATED)

PIB 2E7 # SF %PIB ADDRESS (STACK-RELATED)

@ SD LOSR %INVARIANT STACK-RELATED ADDRESS
G HLUNIT %GLOBAL IDENTIFIER ADDRESS

RV M[47AB] %INDIRECT ADDRESS

62
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

MULTIPLE ADDRESSES

<multiple addresses> provides for the specification of more than one
address. The addresses generated by these expressions are treated as
sequences; that is, the first address in the sequence is generated and
passed to the execution routine that requires 1it. Then, the next
address is generated, and so forth, until the 1list 1is exhausted. The
addresses are generated in the proper order, with memory addresses
increasing, except in the case of stack-related addresses, in which
case, the addresses are generated from LOSR to BOSR. These rules hold
true even when the specification by the user differs from the proper
order.

<multiple addresses>

|-<until part>-|

<until part>

-——— FOR ---<simple value>--——|
| | 0
| |- ALL —————————- I
I I
|- TO ———<offset>-———-——- |

Semantics:

<until part>

The <until part> specifies over what range a 1list of <multiple
addresses> should extend, from an initial location.

FOR ALL

Indicates that all the addresses from the initial location to the
end of the area referenced by the descriptor that provided the
initial location are to Dbe included as part of the <multiple
addresses>.

63
DUMPANALYZER

FOR <simple value>
Here the <simplé value> indicates the number of consecutive
addresses to be included in the <multiple addresses> list. <simple
value> is defined later in this subsection.

TO <offset>

Here the <offset> indicates the displacement of the highest address
to be included in that part of the <multiple addresses>.

TO <stack offset>
Here the <(stack offset> indicates that all addresses up to the
indicated location in the stack (BOSR, LOSR, SREG) are to be

included as part of the <multiple addresses>.

TO END
Indicates that all the addresses from the initial 1location to the
end of the area referenced by the descriptor that provided the

initial location are to be included as part of the <multiple
addresses>.

Pragmatics:

Only one <absolute address> per statement is allowed. Multiple stack
references must reference the same stack.

Examples:
The following are examples of possible <multiple addresses>. Each
example uses a different form of the <until part>.

3BAC FOR 20

3BAC TO 3BCB

STK 32 LOSR TO BOSR

RV STK 11C BASE SWAPHOLD FOR ALL

64
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SIMPLE VALUE

A <simple value> is a single scalar value either defined by the user or
derived from a value 1in a memory location or in a stack. A <simple
value> is a <word value> followed by an optional <concatenation> value.

<simple value>

--<word valued———————-————————— e — e]

-—— & —-—-<concatenation>—-—-

<word value>
-—<simple word>--—-—------——----——————————— |

|- . -—<partial word>-|

<simple worad>

---- M —- [--<hexadecimal address>--] —————---————-o-—— |

I I

|- ¢ == (--—-<simple location>-—---) —————=-=—————-——-

I | I |

| |-<absolute address>-|

I |

| =<number >--———————- - |
I |
|-<simple location>—---- [--<simple index list>--] —|
I | |
|-<absolute address>-—| |

|

|- (--<simple value>--) —-———————————-—————————————

<simple index list>

-—-——<gimple value>-——-|

65

DUMPANALYZER
<partial word>
--—— [-—<simple value>-- : --<simple valuey--] ----|

| |

|- TAG ====== e |
<concatenation>
—WOrd ValUE)~ m e o im o e e e e e e >
>=—= [--<left bit to>-- : --<left bit from>-- : --<bit count>--] --—-]

| l
|- [--<left bit to>-- : —-=<bit count>--] ———--——-—--—-ommommm |

<left bit to>

--<simple value>——|

<left bit from>

--<simple value>—-|

<(bit count>

--<simple value>--—|

Semantics:
<word value>
A <word value> is a <simple word> with an optional <partial word>.

The following groups of tokens represent valid <simple word>s;
expansions of these tokens are also given.

M [<simple address>]

"M" signifies memory. The contents of the memory 1location at
<hexadecimal address> 1is one type of <simple word>. This operation
is the same as subscripting the MEMORY array.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

C (<simple location>)

C (<absolute address>)
"C" signifies contents. The C option may be used to obtain the
contents of any <simple location> or <absolute address>. <(simple
location> and <absolute address> are defined under <simple address>,
one of the preceding "Basic Constructs".

<(number >

A <(simple word> may be specified as a hexadecimal, decimal, or octal
number.

<simple location> [<simple index list>]
<absolute address> [<simple index list>]

A <simple location>» or <absolute address> may be indexed, and the
derived value may be used as a <simple word>. This method of
forming values is valid only if the word specified (which can be
reached through an IRW chain) is an unindexed data descriptor, and
the number of indexes specified matches the number of dimensions 1in
the array.

<partial word>

A <partial word> is an optional component of a <word value>. When a
partial word is present, the <word value> is the value of a selected
group of bits within the <simple word>. <partial word> specifies a
particular group of bits within the <simple word>.

<simple value>:<simple value>

TAG

Two <simple value>s separated by a colon (:) make up a <partial
word>. The first <simple wvalue> 1indicates the number of the
starting bit in a range. The second <simple value> indicates how
many bits the range extends over (heading from 47 down to 0).

When TAG is specified as the <partial word>, then <word value> is
the value of the 3-bit TAG in the attached <simple word>.

67
DUMPANALYZER

(concatenation>

<(simple value> consists of a <word value> & <concatenation>. 1In the
context of concatenation, <word wvalue> 1is a 48-bit, binary word.
<concatenation> includes within itself a second <word value>, along
with bit specifiers and a bit count; the specifiers and count
indicate a substitution of certain bits to be made from the second
word value 1into the first. For further information about bit
manipulation see the ALGOL Reference Manual chapter on "Expressions"
under "<concatenation>".

<word value> [<left bit to>:<left bit from>:<bit count>]

Here, <word value> represents a binary, 48-bit word with a three-bit
tag value. The word value in the <concatenation> is the "source
word", while the word value that preceded the ampersand (&) is the
"destination word". <left bit to> defines the highest (ranging from
0-47) bit number in the destination word. <left bit from> defines
the highest (ranging from O0-47) bit location in the source word.
The <bit count>, ranging from 1-48, specifies the length of the data
field to be moved from the source word to the destination word.

<word value> [<left bit to>:<bit count>]

<word value> represents a binary, 48-bit word with a 3-bit tag
value. <left Dbit to> defines the highest (ranging from 0-47) bit
number in the destination word. 1In this case, the <left bit from>
specification 1is wunderstood to coincide with the <left bit to>
specification. Again, <bit count> specifies the length of the data
field to be moved from the source word to the destination word.

<word value> TAG

Here <word value> represents a binary, 48-bit word with a 3-bit tag
value. TAG indicates that the TAG of the source word should be
substituted for the TAG in the destination word.

Examples:

In the following examples, blank spaces and special characters function
as delimiters. Delimiters are needed whenever two alphanumeric items
are juxtaposed.

M[47AC] %MEMORY LOCATION
C (G HLUNIT) %CONTENTS OF SIMPLE LOCATION
DEC 123456 & 3 TAG %CONCATENATION

C (STK 53 BOSR).[6:2] %PARTIAL WORD

68
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

5.3.2 DUMPANALYZER COMMANDS

The following describes the commands that can be used when running
SYSTEM/DUMPANALYZER. These commands allow the user to select the type
of analyses to be done on the dumped data. Multiple commands separated
by semicolons can be entered on the same line.

69
DUMPANALYZER

ACBTABLEBASE

The ACBTABLEBASE command displays the base of the ACB table or specifies
a new <simple address> for future computations. An error message is
displayed if this command is used on non-MCP/AS systems.

<acbtablebase>

~— ACBTABLEBASE —~—=-—===——-———-—ooo—— |

|-<simple address>-|

Semantics:

ACBTABLEBASE

This form of the command displays the base of the ACB table.

ACBTABLEBASE <simple address>

This form of the command sets the base of the ACBTABLE to the
specified <simple address> for future computations.

70
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ALLSTACKS

The ALLSTACKS command causes an analysis of stacks in the system to be
printed. If the MODE command is previously selected, the 8-bit arrays
are displayed in EBCDIC format as well as hexadecimal format.

<allstacks>
—— ALLSTACKS —=——— - e e |
| |
| [¢m=——mmmmm (I
| | |
|- SUMMARY -————————=—=—————————— |
| |
|- ACTIVE ———-|
l I
|- DMSIIJOBS -|
| |
[- DUMPING ---|
Semantics:
ALLSTACKS

All stacks in the system are analyzed.

ALLSTACKS SUMMARY ACTIVE
A full analysis of all stacks that were alive at the time of the
dump is given, with summary information given for all other stacks.
ALLSTACKS SUMMARY DMSIIJOBS
A full analysis of task stacks that were using DMSII, the database
stack, and the database task stack 1is given, with summary
information given for all other stacks.

ALLSTACKS SUMMARY DUMPING

A full analysis of the stack that took the dump 1is given, with
summary information given for all other stacks.

71
DUMPANALYZER

AREAS
The AREAS command prints the contents of memory areas. Areas are

continuous portions of memory surrounded by clusters of words that serve
as memory links.

<areas>

f-~ LINKSONLY ——————=————————=— |
- ODDBALL --<oddballfield>-—-|
l |
|- RANGE --<multiple address>-|

|- SIZE --<number>---—-——-—--—= |

72

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

<oddballfield>

--—- BUFFERHEADER

DIRECTIOBUFF —-|

DOPEVECT ------ |

IOCBAREA ---—-- |
NORMALAREA ——--|
OLDSIBMARK ————:
PIBMARK —-—=——-- I
SEGDOPE ------- |
SEGSEG -=-==—=—==-
SIBMARK —-----—- [
SORTAB ——-——--- [

STACKMARK —-—--- !

SWAPSPACEMARK - |

Semantics:

AREAS

The contents of all memory areas that are not

read-only are given.

AREAS AVAIL

available,

The contents of available memory areas are given.

AREAS CODE

code,

The contents of resident code segments and read-only data areas
given.

or

are

73
DUMPANALYZER

AREAS DESC

A descriptor analysis is performed on all areas that are printed.

AREAS DOUBLE

The output from the AREAS command is double-spaced.

AREAS LINKSONLY

LINKSONLY inhibits the printing of the contents of the memory areas,
and only the links around the memory areas are given.

ODDBALL refers to one of the fields in the memory link words that gives
information about the contents of the memory area. The command "AREAS
ODDBALL <oddballfield>»" prints the contents of all memory areas that
contain the items specified in the <oddballfield>.

The items that can be found in the <oddballfield> are defined as
follows:

BUFFERHEADER The area contains information about input/output
(I/0) buffers.

DIRECTIOBUFF The area contains a direct array.

DOPEVECT The area contains a dope vector; this dope
vector includes mom descriptors.

DSKHEADER The area contains information about disk file
headers.

EVENTARRAY The area contains an event array.

FIBMARK The area contains a file information block
(FIB).

IOCBAREA The area contains an Input/Output Control Block
(IOCB).

NORMALAREA The area 1is a "normal" area that does not

contain any of the structures indicated in the
rest of the option list.

OLDSIBMARK The area contains a Data Management System I1I
(DMSII) Structure Information Block (SIB)
created on Mark 3.4 or earlier releases.

74

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PIBMARK The area contains a program information block
(PIB) or task variable, or a segment dictionary
pseudo-PIB.

SEGDOPE The area contains the dope vector for a

segmented (that is, "paged") array.
SEGSEG The area is a page of a segmented array.

SIBMARK The area contains a DMSII "SIB" created on Mark
3.5 or later releases.

SORTAB The area contains a sort table listing absolute
addresses.

STACKMARK The area contains a stack or a segment
dictionary.

SWAPSPACEMARK The area contains space suballocated by the
SWAPPER utility.

AREAS RANGE <multiple address>

The analysis of memory areas is restricted to the specified address
range. Areas partially or completely 1in the desired range are
analyzed. The omission of the RANGE modifier causes all areas in all
memory subsystems to be analyzed.

AREAS SIZE <number>

The contents of all memory areas consisting of <number> words are
printed.

AREAS STATS

Statistics regarding the memory areas associated with each stack are
collected. These statistics are reported in a memory usage summary.

When using the STATS option repeatedly, totals are reset and not
accumulated.

AREAS STATSONLY

All area displays are omitted and only the final statistics are
given.

75
DUMPANALYZER
ARRAYLIMIT

The ARRAYLIMIT command limits the size of each array printed to the
number of lines specified by the positive <decimal number>.

<arraylimit>

—— ARRAYLIMIT --<decimal number>--—|

Semantics:

If the <decimal number> is O, the printing of arrays is suppressed.

For multidimensional arrays, the limit is applied cumulatively for both
the dope vector entries and the data entries.

76

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ASDNUMBER

The ASDNUMBER command prints out information about ASDs.
message is displayed if this command is used on a non-MCP/AS system.

<asdnumber>

An error

—— ASDNUMBER ~—-——<nUmMber >— === === e o |

I | |
|- UNTIL <number> --|

|
| | I
} |- FOR <number> ----|
|
j- STACK --<number>------——-=--—- |

|- VIRGIN -|
Semantics:

ASDNUMBER <number >

|- EXPAND -|

This form of the command prints out ASD1 through ASD4

specified ASD number.

ASDNUMBER <number> UNTIL <number>

This form of the command prints out ASD1 through ASD4

specified range of ASDs.

ASDNUMBER <number> FOR <number>

for the

for the

This form of the command prints out ASD1 through ASD4 for the number
of ASDs specified starting at the designated ASD number.

ASDNUMBER STACK <number>

This form of the command prints a list of the ASDs for the specified

stack.

ASDNUMBER STACK <number> VIRGIN

This form of the command prints a list of the virgin ASDs associated

with the specified stack.

77
DUMPANALYZER

EXPAND

When the EXPAND parameter is used, the information 1is printed in
greater detail.

78
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ASDTABLEBASE

The ASDTABLEBASE command displays the base of the ASD table or specifies
a new <simple address> for future computations. An error message is

displayed if this command is used on non-MCP/AS systems.

<asdtablebase>
—— ASDTABLEBASE ————————=—=———————————— |

|-<simple address>-|

Semantics:

ASDTABLEBASE

This form of the command displays the base of the ASD table.

ASDTABLEBASE <simple address>

This form of the command sets the base o0f the ASDTABLE to
specified <simple address> for future computations.

the

79
DUMPANALYZER

The function of the ASN (Addressing Space Number) command is equivalent

to that of the BOX command. ASN, 1like "box", refers to a memory
subsystem in an extended memory system (such as the B 7900) or a
tightly-coupled system. The ASN command specifies all local addresses

referred to in any following commands as residing in the ASN specified
by <number>. ASN may be substituted for BOX on all systems. BOX is an
invalid command on B 7900 and A 15 systems; thus, ASN is the only choice
for those systems.

This command is invalid on systems using MCP/AS.

|-<decimal number>-|

Semantics:

ASN

The current setting for the ASN is displayed.

ASN <decimal number>

All local addresses are interpreted as residing in the ASN specified
by <decimal number>. The <decimal number>s constructs are specified
either in the configuration file or by the EC Operator Display
Terminal (ODT) command (refer to the Operator Display Terminal (ODT)
Reference Manual for further information).

Pragmatics:

A STACK command overrides an ASN setting. A stack command for a stack
in a 1local box <causes ASN to be set to that local box. (Refer to
"Stack".)

See also
BOX (IOM SYSTEMS) . . . « « v v ¢ v v v « 4 v o o v v v « v« . . 80
STACK . & & v v v v e v v v e v 4 e e e e e e e e e e e e .. J168

80
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

BOX (IOM SYSTEMS)

Each memory subsystem in a tightly-coupled system 1is called a "box".
The BOX command indicates that all addresses referred to in any
following commands are in the box specified by <number>. The BOX
command can also be used to interrogate the current box setting. BOX is
a synonym for ASN. The BOX command cannot be used on A 15 and B 7900
systems; the ASN command must be used instead. This command is invalid
on systems using MCP/AS.

<box>
-- BOX —===m—————————— |
! |
| —<number>-|
Semantics:
BOX

Use of the word BOX alone, without a number, displays the current
setting; the response is displayed on the ODT when running
DUMPANALYZER from the ODT.

BOX <number>
BOX followed by a number sets the box number. <number> designates
which box 1is being referred to. The "Global Memory Subsystem" is

box 0. The box number of a local memory subsystem is its associated
processor id number.

Pragmatics:

A STACK command for a stack in a local box automatically changes the box
setting to the number of the box the stack is in.

BOXINFO

81

DUMPANALYZER

The BOXINFO command causes the box information arrays to be printed for

each box in the system.

<boxinfo>

-- BOXINFO --—|

Example:

The following is

a

partial

returned by the BOXINFO command:

DUMP OF BOXINFO[3]

FC79A/00000
FC7A1/00007
FC7AB/000OQE
FC7AF/00015
FC7B6/0001C
FC7BD/00023
FC7C4/0002A
FC7CB/00031
FC7D2/00038
FC7D9/0003F

QO MNMNOOOOOO

000000
000000
000000
000000
000000
000000
000000
00ooccC
000000
000066

000000
000000
000000
0039A2
000000
000000
080528
6A7869
04CAlA
2B77E2

example

Each array is printed as a raw array.

of the box information arrays

82
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

CAND

The CAND command analyzes a "candidate" for a port-matching structure.
The candidate is a subport that has ©been offered for interprocess
communication and has not yet found a matching subport. (Refer to the
example under "PORT".) The CAND command is only valid for BNA Version 1.
<cand>
—-— CAND ---<index>-———-———=--= |
| !

|- AT --<address>-|

Semantics:

CAND <index>

The subport with the indicated <index> is analyzed. The index 1is
found in the library info word of the File Information Block (FIB).

CAND AT <address>

The subport at the given <address> is analyzed.

See also
PORT. « v v e v e w143

83
DUMPANALYZER

CODEINFO (HDU SYSTEMS)

The CODEINFO command displays the attributes of code memory for the code
environment of the current ASN.

<codeinfo>

—- CODEINFO --|

Semantics:

If the current ASN is not split, this command has no effect. The
CODEINFO command displays the current ASN's code memory management
table, which is divided into memory areas. The information displayed for
each area appears as follows:

<code addr> <table entry> <mom/link word> <attribute word>
<attributes for this code area>

Attributes of a code area include available, in-use, saved, currently
saved, to be saved, orphaned, and guardian.

84
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

DC

The DC command causes a full data communications analysis to be printed.
(Refer to Figure 5-1.)

Semantics:

The DCP option causes an analysis of the DCP tables to be printed. This
analysis includes DCP 1line vectors, DCP line tables, and DCP station
tables in addition to the DCC table analysis.

The MSG option causes messages in nontanked datacomm dueues in the
DCALGOL queue to be analyzed.

DATA COMMUNICATIONS ANALYSIS

DC

INPUT

DUMPANALYZER

”~ ~ ~
- - n
" w ")
~ ~r -~
H " "
> » >
w (7] (W]
[=] (=] (=]
z z =
- — -t
(" 'S S
— - -
z = =
L) . -
(=] o o
) U it
» » >
bt Wl L~
[=1=] (=]~ Q0
L Z 1 x i
(1% L] -tn
© w (=)
zZX X ZX
[~]=] [=]=] o0
[l - -0
2 =] -2
-l -« -l
L W (X1
[XT-% -, ~a.
-l -l -l
~O. e [- TN [-W'TN
a0 G lat a.uJd
NxE <X <z ~ ~
"o (=) [~] V-] «
Xz ~aE -~z [o
(3R] [Nl [N Lall] ~ ~
[=L 1) il Nl] "
i 0t 11 - b »
IR bt X 2l [[*¥]
LA™ P, P 0Tl e (=)
ab= (=1] (=11 x x
Ll ALY et L) 00 [ALY (] [21a)
[N 47} =ud =l 4
w =3 (=3 [L bt
[Y- . .o L -
Mz - -ro x - 1%)
Hn LN "o x
& Lupo Nl A Lt o . L
[~T-% 4 oo.xE [B1-%-4 L -
Lud e b 3) =>ul -~ 0 A e
7] o -0 - N o o mMm nND
i~ Quloe alJas aliog N « O <«
W -« gD Opm D Q=D W L e
> Ly =IX] weoo wWow 2 Vv a s
(<] - rx Tx ® J © 40
- en Qldea Ol . T 1Y)
= el -l - el [I Y, BT
o b~ Z ~ O L~] w k& v ro
< Q.0 [BY= - a0 W ") bt
x ZzyZ <h O <k O X s X W=
- [T} [y} W it Q wnE -EN
o [YY-39 [Xv-3 % [XV-2 O HeQ ON
o >B X »E »E o -V i |ENQ I
Q- QW Qwre QeF OwNZ
Q < || X - il x - X [el ot d Ll ol nd 2]
W uw = (=] [F1]. Il iR L L L QAN IDLNO .
o DN N [+ 4.1- 4 CEXO KXo b 3G o bt 2
Q WM e (=] [) T Qo™ b-4-91) - 4-SyT1 [N L. X1-9- 1]
o Dy (=] WO W "W O WO N OEOLE 0O
"N A=z] 1 QX Qauiten Qujeen [- 4% e o
w Nt w I WOono Wi WO QW AaZOL! aLE
D >WNE]) LJEWE -l LM I OTLIM NO»>OWQMTO
W eEnz lad [l X] Q=D |kt W Ol OO
= 1% =) 2 - Z MELV) BN MO L e Qi) o e
o TEx -} ZEOD Wl ZODS EODL T Ty
L wWhian WROOD WO O sk ol R
Q bt b= > T ot et N il i EQ) N
-9 =] [+4 = - o "
%% 4 e (%] (] o
[=]=] [k 4 -HOMO D WP OO N RN QU -
ZTE ot DIVOS 4O FLOO DN QAN
awn et MO0 DeO® QEOL VILMOVLM ©
FO U —-a. L {-1-1-1~ QW Oolin ALLWOOWLIOO W
< IO o NODO WMEOM JOOM OV Ce ©
O AaREOL ~ . wWeooo OO0 MO0 QONOIONO @
SO N N et p - z Q (=]
TOEZX i~ e HOWLOO OLOQ QLOO EEQMOYXOm™ O
[] =N W PO OICOOOIORO O OO0 OO0 ©
DdMDD et b= D= NH - OMOO HNOFOOHOIOO LECOCOXON ©
DTN W ITNLAHXANE >y COOOOO COOOANOQOO WoOoOuWOD O
OUF=OLIUQ WO >0 VL «TOLOC AL OORRLOO WOOOKOO ©
= OO 1t EDOQ OO0 JNOOLVNLD O
= O e 00 o [) 3 Lal mno >
(INTE T REE- XY -] (ol AN -1-1-1-] OO IIOO00D «KJNONJANS N
(el M o S 7] -t [&]
N ™M - -y - -l [-
b -’ - Q Q d
[] v < & "
[ZNE] (X} oo . (1) (1= -
r x = VI n [t -l
LW 5%}
(S = x (534 k4
L ") w (A1) et
[~ =) - -l Qu -~

Data Communications Analysis

Figure 5-1.

86

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The DCP command is similar to the DC command
only the DCP tables, not the DCC tables.

<dcp»

Semantics:
The MSG option causes messages in
DCALGOL queue to be analyzed.

See also
DC. . . .+ ¢ o o ¢ v v e e e

nontanked

except that it

datacomm queues

analyzes
in the
.. 84

87
DUMPANALYZER

DCTRACE

The DCTRACE command displays or prints a summary of the 1last 250
requests or results of the specified Data Communication Processor
(DCP)/Network Support Processor (NSP). These reguests or results are
listed 1in the chronological order they were processed by the DCCONTROL
stack of the specified DCP/NSP; thus, requests and results are
interspersed in the summary. The summary includes such items as request
type, associated logical station number (LSN) or DCP number, 1line
number, station number (DLS) and associated error values.

<dctrace>

—- DCTRACE --<relative DCP/NSP number>--|

Examples:

The following are examples of DCTRACE input and the subsequent output on
an NSP system and a DCP systemn.

NSP System Example

Input: DCTRACE 3

Ooutput:

<timestamp> REQUEST 7: ADD EDITOR REQUEST FOR EDITOR 1
LENGTH 3944

<timestamp> RESULT 7: ACK RESULT IN RESPONSE TO REQUEST NUMBER 7
LENGTH 10

<timestamp> REQUEST 8: OUTPUT REQUEST FOR LSN 285, TEXT LENGTH 32
LENGTH 68

<timestamp> REQUEST 9: OUTPUT REQUEST FOR LSN 286, TEXT LENGTH 32
LENGTH 68

<timestamp> RESULT 8: OUTPUT STATUS RESULT FOR LSN 285 IN
RESPONSE TO REQUEST NUMBER 8
LENGTH 28

<timestamp> RESULT 9: OUTPUT STATUS RESULT FOR LSN 286 IN
RESPONSE TO REQUEST NUMBER 9
LENGTH 28

88

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

DCP System Example

Input: DCTRACE 2

Output:

<timestamp>

<timestamp>

{timestamp>

<timestamp>

<timestamp>

<timestamp>

REQUEST:

RESULT:

REQUEST:

REQUEST:

RESULT:

RESULT:

SET STATION TYPE(23) FOR DLS 2:0D:00
LENGTH 48

FOR SET STATION TYPE(23) REQUEST FOR DLS
2:0D:00
RESULT BYTE INDEX IS GOOD RESULT

WRITE REQUEST(7) FOR DLS 2:0D:00, TEXT
LENGTH 22
LENGTH 60

WRITE REQUEST(7) FOR DLS 2:0D:01, TEXT
LENGTH 22
LENGTH 60

FOR WRITE REQUEST(7) REQUEST FOR DLS
2:0D:00
RESULT BYTE INDEX IS GOOD RESULT

FOR WRITE REQUEST(7) REQUEST FOR DLS
2:0D:00
RESULT BYTE INDEX IS GOOD RESULT

89
DUMPANALYZER

DEADLOCK
The DEADLOCK command causes information to be printed regarding stacks

that hold 1locks or are waiting for a lock. The following items are
analyzed.

a. Global locks
b. Header locks
c. Directory locks
d. Userdisk locks
e. 1/0 waits (on MPX systems only)
f. Operator Reply Waits
If a stack is waiting on any of these items, the stack is printed. In

addition, any of the locks that the stack holds are listed.

All EVENTs and EVENT ARRAYs declared in the MCP outer block are
considered, but "hard" locks are not reported.

A stack is reported as waiting for a unit or path only when the stack is
actually waiting, and not when the stack simply has 1/0s requested.

<deadlock>

|- CRITICAL -—|

| |

| -<number >---|
Semantics:

DEADLOCK

All stacks that either hold locks or are waiting for a 1lock are
listed by stack number, along with the names of the events or locks.

90
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

DEADLOCK CRITICAL

CRITICAL is specified to indicate that only stacks that hold 1locks
and are also waiting on locks are to be listed. CRITICAL deadlocks
may indicate an MCP problem.

DEADLOCK <number>

<number> specifies a particular stack. When a <number> is given,
only locks for the stack identified by <number> are listed.

Example:

The following is a sample of the information that is printed regarding
stacks that either hold locks or are waiting for locks:

INPUT: DEADLOCK
LOCK AND WAITING STACK ANALYSIS

STACK OlE WAITING FOR EVENT 262 ANABOLEVENT

STACK 048 WAITING FOR EVENT 3CB DCPHEYU[0003]

STACK 049 WAITING FOR EVENT 3CB DCPHEYU[0002]

STACK 04B WAITING FOR IO VIA UNIT OOE (14)

STACK 28D WAITING FOR REPLY #2

STACK 363 WAITING FOR IO VIA UNIT 0C4 (196)
PROCURED EVENT 355 HEADERLOCKS[0066]

91
DUMPANALYZER

DEBUG

The DEBUG command dynamically sets, disables, or interrogates the DEBUG
option. If DEBUG is set, a program dump is produced to aid in debugging
SYSTEM/DUMPANALYZER.

<debug>

Semantics:

DEBUG
DEBUG +

Sets the DEBUG option.

DEBUG -

Disables the DEBUG option.

DEBUG 7

Shows whether or not the DEBUG option is set.

Example:

The following DEBUG command sets the DEBUG option:
DEBUG +

DEBUG SET

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

FIB

The FIB command causes DUMPANALYZER:

a. to assume that a file information block (FIB) starts at an
arbitrary address, and

b. to analyze that FIB.

The FIB specified at <simple address> is printed. Text contained in
buffers is printed unconditionally.

-- FIB —~————————~ <simple address>--|

FIB <simple address>
FIB AT <simple address>

The FIB starting at <simple address> and an analysis of that FIB are
printed.

93
DUMPANALYZER

GC (MLIP SYSTEMS)
The GC command displays the configuration of the system at the time of
the dump. The resources of the system and information about the I/0O
subsystem are given, including all DLPs base by base for all bases and
DLPs configured at the time of the dump. The GC command is valid only
for MLIP systems.

<ge>

-- GC —-|

Example:

The following is an example of the GC command display and an explanation
of some of its terminology.

94
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

INPUT: GC

¥%xx* GROUP CONFIGURATION ****=x
GROUP ID: SYSTEMA

PROCESSORS:
PROC ID. 2;
OPERATIONS:
DL BACKUP DISK;
DL LOG DISK;
DL USERDATA DISK;
DL JOBS DISK;

DL CATALOG DISK;
DL OVERLAY DISK;
DL SORT DISK;
HN SYSTEMA;
PERIPHERALS ALLOWED TO GROUP:
5,29-33,61,64,71,108,112,117,132-134,140;

I/0:
BASE 0/2/0
HOST 2 % PATH = MLIP PORT O LEMPORT 0
ADDRESS 1 DLPID 8 CR1 %%%% DLP STATUS = ABSENT
ADDRESS 2 DLPID 132 ODT1
ADDRESS 3 DLPID 5 TPl
ADDRESS 4 DLPID 60 HT1
ADDRESS 6 DLPID 140 HC?2
ADDRESS 7 DLPID 28 MT1;
BASE 1/2/0
HOST 2 % PATH = MLIP PORT 2 LEMPORT 0O
ADDRESS 4 DLPID 108 NSP3;:
BASE 2/3/0
HOST 2 % PATH = MLIP PORT 3 LEMPORT 0
; % NO DLPS ASSIGNED TO THIS HOST
BASE 3/2/0
HOST 2 % PATH = MLIP PORT 1 LEMPORT 0
ADDRESS 1 DLPID 112 LSP1;:
DEPENDENT HOST 4 DLPID 108 %% DC STATUS = NOT SEEN
ADDRESS 1 DLPID 112 LSP1
ADDRESS 2 DLPID 117 LSP3;: %%%% DLP STATUS = NOT SEEN
BASE 3/3/0
DEPENDENT HOST 6 DLPID 111 %% DC STATUS = NOT SEEN
ADDRESS O DLPID 115 LSP1 %%%% DLP STATUS = NOT SEEN
ADDRESS 1 DLPID 113 LSP1 %%%% DLP STATUS = NOT SEEN
ADDRESS 2 DLPID 124 LSP1 %%%% DLP STATUS = NOT SEEN
ADDRESS 4 DLPID 121 LSP1 %%%% DLP STATUS = NOT SEEN
ADDRESS 5 DLPID 122 LSP1 %%%% DLP STATUS = NOT SEEN
ADDRESS 6 DLPID 123 LSP1: %%%% DLP STATUS = NOT SEEN

DUMPANALYZER

PROC 1ID.
A unique number identifying a host processor

PATH
A description of the unique path from a host to a unit's DLP,
consisting of an MLIP and a LEM port
MLIP PORT
The relative Message-Level Interface Port (MLIP) that the
path traverses (there can be up to eight ports per processor)
LEMPORT
The relative Line Expansion Module (LEM) port that the path
traverses
BASE

A description of the base in which the unit's DLP resides

DEPENDENT HOST
If a path to a unit or units is through an outboard host
(such as an NSP), a description of the outboard host

95

96
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL
GRAPHS

The GRAPHS command causes MCP stack graphs to be printed one level deep.

<graphs>
-—- GRAPHS ---———--———————- |

| -<number>-|

Semantics:

GRAPHS

All MCP stack graphs are printed one level deep.

GRAPHS <number>

The graphs for the stack identified by <number> are printed.

HARDINFO (HDU SYSTEMS)

The HARDINFO (Hardware Information) command displays various system
state registers and data. HARDINFO 1is wvalid only when analyzing a
standalone tape dump for an extended memory system.

<hardinfo»

—- HARDINFO --]

97
DUMPANALYZER

The HDR command causes an analysis of the disk file header stack or a
particular header and prints out that analysis. (Refer to Figure 5-2.)

|- ROWS -|
| I
|- RAW ——|

Semantics:

HDR

HDR

HDR

HDR

The HDR form of the command prints an analysis of all the file
headers that existed in memory when the dump was taken. Row address
words are not printed.

SUMMARY
The HDR SUMMARY form of the command prints a 1list containing the

location and names of all the headers that existed in memory when
the dump was taken.

ROWS
The HDR ROWS form of the command produces a printout with all the

information that the HDR form produces plus an analysis of the row
address words.

<number>

The HDR <number> form of the command prints the same information as
HDR, but only for the header specified by <number>.

98

HDR

HDR

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL
<number > ROWS
The HDR <number> ROWS form of the command prints the same
information as HDR ROWS, but only for the header specified by
<number>.

<number > RAW

The HDR <number> RAW form of the command produces a printout in hex
format of the entire header specified by <number>.

Pragmatics:

The

RAW,

first time that DUMPANALYZER encounters the HDR command without the
ROWS, or SUMMARY option the following message is printed:

x% WARNING * : ROW ADDRESS WORDS PRINTED ONLY WITH THE ROWS OPTION

This warning will be removed in the Mark 3.7 Release.

INPUT: HDR &F

HOR [004F)
HDROCOO04F)

AT 5 800003 77843¢
0 000900 000500

coon
ocact
coce
0203
0004
000S
0006
0007
0008
coG9
000A
0008
000¢
0000
000€
000F
oo1e
0011

OWOOUODODLDOLCLOOLOOLOLOOOO0O

3F3F06
0010c0
04800C
005060
JAAAOF
630G14
0920001
0AR0200
011033
60oooo
SAAADF
JAAAOF
3AARDF
ooooeco
ocooco
00coC0
pogoaco
oooaco

e00000
612063
acoood
oneoso
AE12R8
HU 2]
000000
Gecoooo
c0%001
000000
AEOCHY?
AECCB9
AEOCB9
oenNedd
8ROOGF
ooooco
o0ue00
000000

(LENGTH = S55) NAME : (SITE)TESTUSR! ON DISK
LENGTH = 0, LOCATION = O, BASE UNIT = 9

ALOCKLENGTH = 55, LOCATION = 0
OPENCOUNT = 1, FILEKIND = 192(DATA), WRITTEM ON, FIXEDSIZE = 18

FIBINFO (EXTMODE = ERCDIC, FILETYYPE = 0, SIZE: WMODE = D/OFFSET = O/SIIE = 0)

DISKALOCKING (BLOCKSIZE = 80, MINRECSIZE = O, MAXRECSI?E = B0)
TIRESTAMP (DATE = A5018, TIME = 2:48:21.7376)

VERSION = &, SECURITY = 3, RIY SECURITY = 0, MOSE = 07 ROUS = 20, A0USIXE

SAVEFACTOR = O, AVAILSPACE = 0, FILEORG = [

OPT ATTRIBUTES = 2, TINESTAMPSYNCF, FLATHORLENGTH = 0
TITLEINDEXY = S1, TITLESIZE = 17, BASEUNIT s 9, LASTUNIT = 9
DISK EOFY = D, DISK EOFV = 0 -

CREATION TIMESTAMP (DATE = 85018, TINE = 2:48:21.6787)
ALTER TIMESTAMP (DATE = 35018, TIME = 2:48:21.6787)

ACCESS TIMESTAMP (DATE = 85018, VIME = 2:48:21,.67387)
MULTIUSE WORD

ORIGHDRVERSION = O, CONTENDORS = O, OPENER = 139, COREINDEX = 79
NOT USED

NOT USED

NOT USED

NUMBRER OF ALLOCATED ROWS = 1

OPTIONAL ATTRIBUTE WORDS:

0000 0 080200 420023

ooo1

0 DCC3GOD 000403

ATTNO 2 (SECURITY GUARD)» TYPE = BYTE LIST, SIZE = 66, OFFSET = 40
VALUE : (JAGANITESTING/OPTIONAL/ATTRISUTES/SECURITY/GUARD/AND/USER/INFO.,

ATTNO = 3 (USERINFO), TYPE = FIELD
VALUE : 00000400 (DEC) : 1024

Figure 5-2. Disk File Header Analysis

JAZATVNVARNA

66

100
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

HEADING

The HEADING command causes the heading (first page) of a dump to be
printed at the terminal or line printer.

The information provided in the header includes the title of the MCP,
the cause of the memory dump, and the processor that initiated the dump.
<heading>

-- HEADING --|
Example:
The following is an example of the information returned by the HEADING
command:

INPUT: HEADING

DUMPANALYZER VERSION: 34.542.177

ok % K %ok ok v ok B ok %k ok v F R K K Kk Kk dkook Feodkok ok okok ok ok kkok ok Rk

* B 6800 MEMORY DUMP *
* (SYSTEM SERIAL: # 123) *
* B6900 MCP: MARK 34.542.3022 *
* 5/15/83 23:08 *
* THIS 1S THE ANALYZED DUMP FROM MT 15 *
* TAPE SERIAL: DMP857 *

J3 ok %ok %k %k ok ok %o 3k sk ok ok sk Sk %k %k %k % % %k %k K%k ok % %k %k %k ok 3k 3k ok gk %k X b K

CLOCK = 0000010CC80C (04:27:32 SINCE HALT/LOAD)
ACTUAL CLOCK = 000815AAC121 (23:08:55)
DUMPING MCP: *SYSTEM/MCP ON DISK.
CREATION TIMESTAMP: 09/15/83 22:12:34
ANALYZED MCP: *SYSTEM/MCP ON $YS228
CREATION TIMESTAMP: 09/16/83 21:04:37

HOSTNAME: XYZ3

INTRINSIC NAME: (NOT SPECIFIED)

CAUSE OF DUMP: CONTROLLER DIED

MEMDUMP CALLED @ ODA4:0026:4 (42844740) DCATTACHDETACH

MEMORY DUMP PERFORMED BY: PROCESSOR 4 IN STACK 00OB S=0B13B

101
DUMPANALYZER

DESCKIPTION

Cause of dump: the value following "MEMDUMP CALLED @" specifies
the segment and relative address where memdump was called.

Memory dump performed by: the processor that initiated the
dump, the stack number in hexadecimal, and the S register
setting. Any other active processors are then printed with
their stack numbers and S register settings.

When the memory dump procedure is invoked, it ‘"seizes" all
processors with a processor-to-processor (HEYU) interrupt.
This information indicates the position of the processors at
the time they were seized.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LP

The HELP command provides information about DUMPANALYZER commands. When
DUMPANALYZER is run from the ODT, the response to HELP is displayed on
the ODT.

<help>

| -<dumpanalyzer command>-—|
| |

|-<meta-item>--—~————-———- |

Semantics:

HELP

A list of available DUMPANALYZER commands is given.

HELP <dumpanalyzer command>
A railroad syntax diagram and a brief explanation of the commands 1is
given.

HELP <meta-item>
A further explanation of most metalinguistic items (for example,

<number>) 1is provided. The broken brackets are required for
meta-items.

103
DUMPANALYZER

The I0 command invokes input/output (I/0) analysis of all peripherals.
(Refer to Figures 5-3 and 5-4 for examples of output from the IO
command.)

<io>

S IO >

D I
| [P I
bl e | | |- SUMMARY -| |- RESULTQ -|
I I |
| —=——- /1\-<unit spec.>---——------- I |
| I I I
| |-/1\- UINFO --—-=-=--———- I |
| I I I
| [- NAMES -| |
! | | I
I |- ALL ---| I
| |
|-<active speC. »——————— |

<unit spec.>

-= UNIT === <decimal number>----|

I— INTERNAL -I I

I— LOGICAL -—I I

| I
|-<unit typed>-----————-—--—m—u |
I— CATALOG —==—==—=—=—————=———mmm I
I— OFFLINEUNIT ———-——------————- I
I— VOLUNIT —==——m———mmommmmomeam I
I— TAPEUNIT ————-———m—ommmmm o I

104
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

<active spec.>

= ACTIVE === == mmmmmmmm o oo oo

|- INTERNAL -|
| l

|- LOGICAL —-|
<unit type>

S J—

|- DT -]
|- EN -}
|- IP -]
- HY -|

|- sp —|

105
DUMPANALYZER

AX (Accept) Message Command of the 10 command

-= ? == AX --- WHERE ----|
| |
|- STOP --|
| |
|- SKIP --|
Semantics:

I0

Each I/0 peripheral is analyzed and result queues are displayed.

IC ACTIVE

On non-MLIP systems, any wunit with a non-empty I/0 queue is
considered "active." It can also be assigned to an MCP stack.

On MLIP systems (B 5900, B 6900, A 3, A 9, and A 10), the IO ACTIVE
form searches for active IOCBs; this search can be asynchronously
monitored and controlled by entering the AX (Accept) message command
after the IO ACTIVE form has been initiated.

The WHERE option displays the location of the search, the number of
the physical unit now being searched, and the number of active I0CBs
found so far.

The STOP option cancels the search and prompts the user with the
":READY" message: no information from the search is saved.

The SKIP option stops the search of the current unit and skips to
the next unit (if any). The search occurs from the high end of
memory toward O; thus, memory indices printed in response to 7?AX
WHERE decrease.

The IO ACTIVE form of the command has no effect when analyzing a
dump created by a B 7900 or A 15 system.

106

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

IO UNIT <decimal number>

I0

I0
IO
I0
I0

I0
I0
I0

IO

The IO UNIT <decimal number> form of the command causes the analysis
of the designated I1/0 peripheral. Each I/0 peripheral has a unique
physical unit number associated with it. It is that number that is
used as the decimal number in this form of the command.

The IO UNIT form of the command can also indicate whether the unit
number used is an internal unit number or a logical unit number. If
neither INTERNAL nor LOGICAL 1is wused, the <decimal number> 1is
assumed to be an external unit number. An example of this form of
the command is "IO UNIT INTERNAL 27".

UNIT <unit type>

This form of the command causes the analysis of the designated 1I/0
peripheral unit type.

UNIT CATALOG
UNIT OFFLINEUNIT
UNIT VOLUNIT
UNIT TAPEUNIT

These forms of the command provide specific table information
concerning catalog units. To give significant information, these
forms of the command must be followed by a UINFO option.

UINFO

UINFO NAMES

UINFO ALL

If the UINFO option is specified by itself. a unit information
analysis 1is provided. A basic analysis of each I/0 peripheral,
identical to that provided by the IO form of the I0 command, 1s
given; in addition, a UINFO entry for each peripheral is given. The
UINFO option 1lists the contents of each UINFO entry as an
uninterpreted array. when the UINFO ©NAMES option 1is used, it
provides a columnar listing of the entries and the purpose of each
word. The mass—-storage lists and other arrays attached to the UINFO
entry are not printed. These lists can be obtained by wusing the
UINFO ALL option. The UINFO ALL option applies only to pack and
disk.

RESULTQ

The IO RESULTQ form of the command provides the user with result
gueues that are otherwise suppressed. This option is only valid on
MLIP and HDU systems. An example of this option is "IO UNIT MNT
RESULTQ".

107
DUMPANALYZER

IO SUMMARY

The IO SUMMARY form of the command provides a skeleton analysis of
the specified I/0 peripheral unit(s). The unit table and I/0 queue
expansion are suppressed from the output. An example of the use of
this option is "IO UNIT MT RESULTQ SUMMARY".

(A

L a3 FET17»

a
743»

TCONTIR
£ 3 FD

UINFO NAMES

I0 UNIT 58

NPUT

.
H

108
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

IOCB SHOWN IS FROM A B 6800; THE 10CB FORMAT FOR THE

B 6900 IS DIFFERENT.

W
ar
c
>Soo © -
ace o -
~NOC O —
coo o© -
V00 O @« -
oQCo © (=] z
—
o000 o 1
oo .
coc < »o e
coo b r wn
coco « - W
coo o « >
a o~
oD O ui™
wooEmn
- (=]} -~
occo n T - -
[olal RS - i o
~oeo o w bl [
coo o > xEx [
coc ™ TO S
Q00 o w = x -~
(=} (g -5 o ~
DOO e * ~ x (=]
S0 o r W Vi B3 — = w
60 — » e @ =) x EZ T
oo O - - lx [("] = N -
~00 W x et - =] @ W D242 ﬁ
oo o - [S1Ve) -
* g <X w m A, o rﬁw
coo © o Z @ -3 . -4 T m <«
- 5 E523 o
oo © - A O @ » m w0 od . o <
coo o© @ xwn o a w w oI w =
oo o o~ we Ol [I = | w o
Owmo © O b ~e W Q a5k o b4 o)
oo > © ¥ - O =) = =33 < =
cen © w - S50 Qs z o e Za < D W
W o De Du = z w oD, - w
com o [e W= 3] ~ — a2 .w w
Ooe © "n o~y ZE< — w - o =w> = T I
con © > «m ~T ox “ I — L> g R S
oo © T a0 O =X [= IS o o
NOo 2 o o = ~ o s . s] (@) D 2 :
o%0 a T Om QO e O - © =< = = 2]
5z Ow e - o " Ll w5 9
coo o T T4 T o n N w I o @)
L] = - sz = =
© AT am LD o O < — w Om x w
oco W med W T s O = Xy g Z w T
o9 W [T o L Q) bt 2 oo W~ - N
Qoo o L Wes QO =0l b b . AL [a) = =
o000 o) 0 o <l b - . Z ¥ ¢ W < w
oeo ™ O W ~ [N=l=3==L " » L g o
oeo © O Oem e - ZDO DD - 0" - x s o
X 0 < ~ << " x -} > n W w o w
. OO0 - D O T HM Ak lO (W) 1 [hs T (@] [a) 173
~ ©oe c Vil B €Ho0o - x o > = > = 0
" o000 - A« XL 0O A x) [P £ o
w eed o & ETO ST oD = - = 0= r &
=} Qe N " o VD W o v - w > - Z Q o
1 eoo © L Xem OZZ 0o < »n sS&£w> r 9 o
Y WO owx WECOOR > o . n
G oee o o @ ~do CoEcER A o W oW o w «
- > VX OO0 -~ w TTAL . = o) >
- — G XDy QONIXXEZ T 4 w
» e~0o To O Dv BNV Ko = SskF©J W ow o
- oVO o x o -« -~] o - a < m T T [e)
Soc A0S < M XerTo o o ~ O g+« - - s
o eocend > T @ o W e WO » O P
W Coo-od w T ™ JONCOO el W D > @aw=0 woow w
] - ® Dl D WIWOAOIY NOXL] €€ (@] e
- —_HOQWOO @ b Ll AENEHOCCOOW LIOM- W IDZ - 6] Z2Z - (%] w w
w CO0000 H O L €D HZCNAODOD b O T it T bk b = nss5 = =
" OoOND= L N I »0 ESF>WOoOOOXZRUOWIVITVL o Z 0 < = =z 5
€« D00 O~ & = = N0 O0OIE = e CY QOO OLI O !l FRwuwl w w o
o0oDoN O I € e 0 X D OO O L i bt OF (et b b bt o 1] ~ ~
L OOOROO L W A » W ©o0s O x<JJdE @]
- x *x » O - == (%} g - 0D = zZ z %]
- OCO=DD O « ROHNCOOOLODOOIAKODONIORO w = W< Z @) (@] a2]
[B - T WUITOOOOOCMUCODANIOCBOTmO ol hreEF>D O O «
-~ <« U X XAOMODONOMOORNNOOOWONOO
o oco®erd « D ® nooc« CAMOODDOXOD
A OODS8mO & =M LOVTMOODDOODRDONO0OO0OVOO
i COOCAOS ™M =i s OV ONoawx cNLVOOOOSCoo
oL o006 N ZL W m o0 e n
ODC COOCON D DS ! ¥IWCOMSANMmArLOMOO0000CO
MmOWMEOonoo It O = NEOOUID Dl FmANOOOOIOONMA
O & i L A A CAOmDLOCCKONENOOOO00OQ0S
QUICNOOQRON & ZU = 10 QIOOINNNINOCORDO0IOMS
FTLEOOOOOS F LT X CI00000«CCtO~O00OMOIIND s
VOO DOm XmXm] XO 1H0000DDCMILO~NOO0DIO0
CECQCOOOOC ISt FrmO [T L Q 0 G e
0L DOOROTMNME DIDR ICOO0COTIATIONNOOOIONOD -
w OO0 © M N J -
[&] o M e -0 h
¢V DOCCOO00O oJ o« e
o -3 mown
~ O meammmme [~ 4 o be-]
« DOVONADE e e e
" OO el Z o =
c NOCooRoD O =<
— CQOCOD= L xr wn
— P o b ot b ot e [——
A COND e b e
T M eeaNE Z X Z
D o 5> > o5 >
Aod
< o (= -] -<
o (™ (= -] M e
o =z o ® = @
~ g Q ™M M e
Lad = o ™M N O
o o = - -
o 0O © = ©
2 o @ o o
o - © O
o M o oD o
L woe [I]
Lo o0 a2 D
- Le] o [~

F
3
<
axsaakstnsr SCSB asranasnss

Peripheral Unit Analysis (Beginning)

Figure 5-3.

ITEM

I4PUT: 10 UNIT 64 UINFO NAMES
(essenssssns PGl sevsssasse
0 440C00 019120 UNITL040) PX6

-
—
[~
o

ZNG) -
=mm oe

XAAZO»m

z

RARXRZ
L 2.2 2 Jg)
O DO
LI =
S NN -
vesten e)

N VO00000CGC oLz
MMM

~

~

(-] (=]
SV RTVVOUMOTVVOVT

D T I et B B O 2) (1 20 B 32 e 2

001 0 00000N 0000
HAPPENED)

A

T

S

000

C(HA

SKLOCK: (HAPPENED)

(€3 ¢

AMP
[

P

S

<
w
OWZOX F»Ow MREMAE M VOOFOIZOCIOR-OOOON

O>X ™M R

S
M
(EU=6& SFEG=726797)

DSOOOMNNINAN VOO oW
COCONOCOOF: WLOLDE WEROOLOOCOCOO®D

QOO0 QLWELOC OCLOLLDOOOVIOL

COCONOCOLOO COHOOOO OO OLRDOTOOOM
C COOOOMDOOVO CODIOO COLOLO™OOIOVIORNL
Z ZOOOmUINDODO COmMOOCO O0LOOVSOORUOr s,
- QOO IOOOOTONLOOIMOOMMSAVWIIOOTOLrO

- -

Al
(-]
AOOONDWOOOOOOWOAOWOO WS N 2OR00OMmW NG
MOCOOUNWOMOr OANNMOW WsobwToLooNwOoO

9 000200 000000
9 00000Q 4«04CCO

O HMOOOONPOOOLANDOVDLLINODOO~OOOOMNOD
O O0OOmMFr OO MMOOLALNIOCHWihr SO a oW
Z2 MOOOMYOOOIUOIHMYOOOROMARDKWIILOOOHOO

-
T DOCOOMNOOROWEHMOOTWONSHMONOOOMNIO

O omoZCTvC

~ o
-
ADLOCHEC DD im0

(=]

E
XFQRF=2
Nr, UNTTACTIVE=IDLE
U 000801 534040 UNITHAPLO04O]
0 01C409 384868 GIVETAKERCH(O
0 000000 141414 UNITSTATUSICA

MASK OF READY STATUS =
QUE IS EMPTY)

DESCRIPTION

CONTENTS OF THE WORD INDEXED IN THE FOLLOWING TABLES:
UNIT, UNITIOERR, UNITCONTROL, UNITMAP, GIVETAKERCW,
UNITSTATUS.

PACKCPENCOUNT: INCREMENTED WHEN A REQUEST IS MADE AND
DECREMENTED WHEN A REQUEST HAS BEEN COMPLETED.

PACKLINKAGE PARAMETERS MUST BE THE SAME FOR ALL FAMILY
MEMBERS.

GETHEAD AND FOGRGETHEAD: LOCATION OF A SPACE USED TO
ALLOCATE DISK.

PACKLIST: LIST GF AVAILABLE SPACE. AVAILLIST: COMPLEMENTS
PACKLIST.

00

WRITE RING»

T3 BE DONE.

7
KBASEEU=64» LABELPRESENT, TIMESTAMPEC», UBEENVERIFYED, TN PAST)

SSTARTF=726», USERSTARTF=391)

ISTSF» UMHASPATHF» UMHARDTYPEF=19 (BX385)., UMLOGF=6&4» UMPHYSF=64

E

HGROQUP=9» NEW FIRMWARE», DECIMAL» PSEUDD-BUSYABLE

X

T TAKEN 3 0B6B:0093:2 (8354540C) STARTSYSTEM 8Y STACK 01C

OA» 30X MASK OF EXISTING PATHS = 0A» BOX MASK OF USASLE PATHS = 0A

©

@0 Q@

PACKINFO: LIST OF FAMILY MEMBERS.

LINKS: PACK SEGMENT NUMBER WHERE THE INDICATED TABLES
ARE LOCATED.

BACKUPLIST: ENTRY FOR EACH DUPLICATE DIRECTORY (OR MCP).
THESE LOCKS ONLY EXIST IN THE BASE UNIT OF THE FAMILY.

UBLOCKS: FILES THAT ARE INDEXED BY AN ASTERISK AND FILES
THAT ARE INDEXED BY A USERCODE IN THE FAST DIRECTORY.

PACKTIMESTAMP. TIME AT WHICH THE LAST SPACE WAS ALLOCATED

USEGCLOC. LOCATION OF SEG (0] FOR THE PACK OR FAMILY FILE
DIRECTORY.

Figure 5-4. Peripheral Unit Analysis (End)

JAZATVYNVIRNA

60T

110
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The IOCB command prints the Input/Output Control Block (IOCB) specified
by <number>.

<iocb>

Semantics for the B 7900 and A 15 Systems:

The IOCB command analyzes both IOCBs and Hardware Control Blocks (HCBs)
for the B 7900 and A 15 systems. The word located at the <number> is a
descriptor that may refer to either an IOCB or an HCB. If the
descriptor refers to an IOCB and an HCB has been allocated for that IOCB
then both structures are analyzed. Word three of the structure pointed
to by the descriptor is checked to determine if the the descriptor is
for an HCB or an IOCB. If the tag of the word is 5 (indicating that it
is a data descriptor), then the word is assumed to be the HCB Self
Pointer and the descriptor is assumed to point to an HCB: otherwise, the
descriptor is assumed to point to an IOCB.

Semantics for MCP/AS systems:

For systems using the MCP/AS, the IOCB command prints the IOCB specified
by the <ASD number>.

DUMPANALYZER

IOTABLE (A SERIES MLIP SYSTEMS)

111

The IOTABLE command gives I/0 information pertaining to the specified
MLIP. This information includes expansion of the IOCB queue pointed to

by the I/0 table.

<iotable>

-— IOTABLE --< MLIP number >--—|

Semantics:

<MLIP number>

An integer between 0 and 7.

Example:

IOTABLE 2

I/0 TABLE FOR MLIP# 2 @ 5 CO0O001l 120347 HHEHE
:0 10C000 000000
IOCB QUE HEAD PTR:5 COO0000 3202F8

1/0 TABLE CW

MLIP QUE CW
MLIP QUE HEAD
MLIP QUE TAIL
EMP DEST. SET
MLIP DEST. SET
SCRATCH AREA

SN e elNeNelNel

e oo

10C200
000000
000000
000000
000000
E00001

000000
000000
000000
000400
000006
C1D551

(IOCB QUEUE)

IOCB QUE CW :0 10C100 000000
IOCB QUE HEAD:0 000000 000060
IOCB QUE TAIL:0 000000 000000

EMP#10.
MLIP #1, MLIP#2.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The KEEP command causes the last command entered to be saved for future
use. This command 1is stored in a 10-deep, first-in-first-out queue.
Each entry has a number between 0 and 9, inclusive, which is used if the
entry is recalled by the USE command. (Refer to "USE".)

<keep>

| —<number >— |

Semantics:
KEEP

The last command entered is saved at the next available number
between 0 and 9. The command is retrieved by the USE command.

KEEP <number>
Assigns a command to be stored at the specified number between 0 and

9.

See also
USE .« v v v vt ot i e e e e e e e e e i e e e e e e e e e e .o.o181

IB

The

113
DUMPANALYZER

LIB command causes library information to be analyzed and printed.

<lib>

-- LIB --- AT --<simple address>----—- |
I |
|- VIA --<ASD number>--—--- |

|- MAP ——==—=—m - —— |
I | I
| | -<number>---—----- |
| | |
| I~ ASN —--<number>-|
| ; I
| |- BOX --<number>-|
| | I
| |- GLOBAL ---———-- |
| I
|- 8L == |

Semantics:

LIB
LIB

LIB

LIB

LIB
LIB
LIB

AT <simple address>
VIA <ASD number>

Analyzes the contents of the indicated 1location of memory as a
library structure.

MAP

Displays the contents of the library map and the pointers for each
of the address spaces into the map. Empty slots in the map are not
displayed.

MAP <number>

Displays the contents of a linked list chain in the 1library map,
starting at the given index.

MAP ASN <number>
MAP BOX <number>
MAP GLOBAL

Displays the contents of the linked list chain in the 1library map
for the indicated address space.

114
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LIB SL

Displays the system library function definitions.

Examples:

INPUT: LIB AT 45A8

---- HEADER --—-
LEVEL = 3, LOCKED.
STACK INFORMATION: IMP AT 001D IN STK 090 = (*,0009).

-——-~ USEINFO ---—-
LINKED TO STACKS: EXP AT 0019 IN STK OAl.

-——= AREAS ----
FREE 0031
USEINFO 002D
STACKREF 0006
IMPORTS 000B
EXPORTS 0000
TYPES OOCOE
NAMES 0012
ATTRIBS 001A

~——— IMPORT OBJECTS ----
([V] = BY VALUE, [R] = BY REFERENCE, [N] = BY NAME)
ALSOLINKED IS A INTEGER FUNCTION (1 PARAMETER);
INTEGERIV];
INDEX = 12, OBJECT = (*,000B).
-——= ATTRIBUTES ----
VALUE = -5 H 400 0000 00005, INTNAME = L,
TITLE LIBRARY/MULTIPLELINKERROR.

It

INPUT: LIB MAP
LIB MAP ASN[O]
LIB MAP ASN[1]

I
o N

MAP[1] = ASN, STK O5E, HDR 0055

MAP[2] = GLOBAL, STK CA9, HDR 0057, NEXT = 3
MAP[3] = GLOBAL, STK 0A2, HDR 0O05A, NEXT = 1
MAP[4] = ASN, HDR, 0042

MAP[6] = RUN-UNIT, STK 083, HDR 0051, NEXT = 4

INPUT: LIB MAP GLOBAL
LIB MAP ASN[O] = 2

il
w

MAP[2]
MAP[3]
MAP[1]

GLOBAL, STK 0A9, HDR 0057, NEXT
GLOBAL, STK 0A2, HDR 005A, NEXT =
ASN, STK 05E, HDR 0055)

|
—

DUMPANALYZER

INPUT: LIB SL

SL BNASUPPORT = *36/SYSTEM/BNASUPPORT
ONLY 1, LINKCLASS 1

SL COMSSUPPORT = *SYSTEM/COMS
LINKCLASS 1, TRUSTED, HDR 0057

SL DATACOMSUPPORT = *36/SYSTEM/DATACOMSUPPORT
ONLY 1, LINKCLASS 1, HDR O0OO0O5A

SL GENERALSUPPORT = *36/SYSTEM/GENERALSUPPORT
HDR 0055

SL MCPSUPPORT = ">> CURRENT MCP <<"

MCPLIB, STK 010, HDR FFFF

115

116
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LINKCHECK

The LINKCHECK command examines each memory 1link in the in-use and
available areas of memory. If an error is found, an error message is
displayed and DUMPANALYZER recovers and continues.

<linkcheck>

—— LINKCHECK --|

AX (Accept) Command

-— ? -~ AX --- WHERE ----|
| |

|- STOP —-}
| l
|~ +T ———-|
| |
|~ =T —==-|
Semantics:
7AX WHERE
Asks where the LINKCHECK is.
?7AX STOP

Stops the LINKCHECK and reprompts the user with a ":READY" message.

7AX +T
7AX -T

7AX +T allows the printing of the 1listing of text. 7AX -T
suppresses the printing of the listing of text.
Example:

A typical response to the LINKCHECK command is as follows:

LINKCHECK

TAG ERR & 27621-27620 : O 000000000000

117
DUMPANALYZER

|
I~
=
7]

The LINKS command prints the addresses and contents of each link of the
memory area that contains a specified <simple address>. The analysis
also includes the following memory area attributes, which are encoded in
the links:

a. Whether the area is available, save, csave (currently saved),
or olay (overlayable).

b. If in-use, whether it is code, data or read-only.

c. The area size.

d. The area MOM address.

e. Whether or not the MOM address for the area is in the MCP D[O0]

stack and, if the name of that cell is available, the D[0] MOM
address name.

f. The area stack number.

g. If present, the link C RCW.

h. The memory priority of the area.

i. If the area is available, the RCW trace of FORGETSPACE.

LINKS operates on only one memory subsystem in a tightly-coupled system.
Use the BOX or ASN command to select the subsystem to be searched.

<links>
-- LINKS --<simple address>-——=————--=—===— |

|- EXPAND —|

Semantics:

The LINKS <simple address> EXPAND form of the command is valid only on
systems using MCP/AS. It expands the fields of ASDs.

118
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Examples:

The format of the information displayed by the LINKS command 1is given
below. Formats are given for both in-use and available memory areas.

In-use area format on non-MCP/AS machines:

<area addr> <area type> : LENGTH=<length> MOM ADDR=<MOMADDRF>:<offset>

LINK A : [<link addr>] 6 <link contents>
D[0O] MOM ADDRESS NAME : <name, if in MCP stack>
TEMPSAVEF : <from Link A>
PRECURSAVF : <from Link A>

LINK B : <link address> 7 <link contents>
MOM STACK : <STKNRF from Link B>
OVERLAYCF : <from Link B>
USAGEF : <from Link B>

LINK C : <link addr> 3 <link contents>»
LINK C RCW : <if present, the RCW in Link C>

LINK Z : <link addr> 3 <link contents>

MEMORY PRIORITY : <from link 2>

Available area format on non-MCP/AS machines:
<area addr> AVAILABLE AREA: LENGTH=<area length>

AVAIL-A : [<link addr>] 1 <link contents>
AVAIL-B : [<link addr>] 0 <link contents>
AVAIL-Y : [<link addr>] 0O <link contents>
AVAIL-Z : [<link addr>] 1 <link contents>

RCW TRACE OF FORGETSPACE---
STACK: <stack number>
@<RCW> (<line number>) <procedure name>
@<RCW> (<line number>) <procedure name>
@<RCW> (<line number>)} <procedure name>

119
DUMPANALYZER

In-use area format on MCP/AS systems:

<area addr> <area type> : LENGTH=<length> MOM ADDR=<MOMADDRF>:
<offset>
ASD(1): [<ASD1 addr>] TAG <ASD1 contents>
ASD1_PRESENTTOPROCF <content of ASD1_PRESENTTOPROCF>
ASD1_NOTSTACKF <content of ASD1_NOTSTACKF>
ASD1_PRESENTFORIOF = <content of ASD1_PRESENTFORIOF>

]

-
.

ASD(2): [<ASD2 addr>] TAG <ASD2 contents>

ASD2_SPACEUSAGEF = <content of ASD2_SPACEUSAGEF>
ASD2_ABSENTADDRF = <content of ASD2_ABSENTADDRF>
ASD2_SIZEF = <content of ASD2_SIZEF>
ASD(3): [<ASD3 addr>] = <ASD3 contents>
ASD(4): [<ASD4 addr>] = <ASD4 contents>

LINK A : [«<link addr>] 6 <link contents>
SPACE USAGE = <spaceusage>
INUSE_SEGSTATEF <content of INUSE_SEGSTATEF>
INUSE_ASDINDEXF = <content of INUSE_ASDINDEXF>
INUSE_SIZEF = <(content of INUSE_SIZEF>

1t

LINK C : [<link addr>] 3 <link contents>
LINK C RCW : <if present, the RCW in Link C>

LINK Z : [<link addr>] 3 <link contents>
INUSE_SIZEF = <content of INUSE_SIZEF>

120
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Available area format on MCP/AS systems:
<area addr> AVAILABLE AREA: LENGTH=<area length>

AVAIL-A : [<link addr>] 1 <link contents>
AVAIL_SIZEF = <content of AVAIL_SIZEF>

AVAIL-B : [<link addr>] 0 <link contents>
AVAIL-C : [<link addr>] 0 <link contents>
AVAIL-D : [<link addr>] O <link contents>
AVAIL-E : [<link addr>] 0 <link contents>

AVAIL-Z : [<link addr>] 1 <link contents>
AVAIL_SIZEF = <content of AVAIL_SIZEF>
ROW TRACE OF FORGETSPACE---

STACK: <stack number>

@<RCW> (<link number>) <procedure name>
@<RCW> (<link number>) <procedure name>
@<RCW> (<link number>) <procedure name>

121
DUMPANALYZER

LOCKS

Locks or events are defined as being in one of two states: normal or
abnormal. An abnormal event 1is one that is procured or has a stack
waiting on it. All EVENTs and EVENT ARRAYs declared in the MCP outer
block are considered, but only abnormal ones are listed. Hard locks are
not reported.

<locks>

-— LOCKS --|

Example:
INPUT: LOCKS
DO EVENTS (PROCURED OR WITH WAITERS)

3CB 2 000000 008490 2 000000 000000 DCPHEYU[0002]
(WAITING: STK 049)
2 000000 008480 2 000000 000000 DCPHEYU[0003]
(WAITING: STK 048)
355 2 3637DF 000005 2 000000 000000 HEADERLOCKS[0066]
(UNAVAILABLE, HAPPENED, PROCURED BY STK 363 in SEG 7DF)
262 2 000000 OOO1EO 2 000000 0OO0OO0O0 ANABOLEVENT

WARNING

The MCP global events and event arrays
are located from bindinfo data in the MCP
code file. 1If the analyzed code file
does not match the dumping MCP code file,
the event analysis may be incorrect.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The MASK command is used to set or examine the mask register. The MASK
command is wused in conjunction with the PATTERN and SEARCH commands to
search a dump for all words that contain a particular pattern of bits.
The mask register modifies the pattern 1in the pattern register by
masking certain bits in the pattern. The SEARCH command searches for
all words which match that part of the pattern which is not masked.
(Refer to the PATTERN and SEARCH commands for further information.)

<{mask>
—— MASK ———~—————— |

| |
[-<simple value>-|
| !
|- ABSENTDESC —---|
| |
|- ABSENTCOPY —--|
| I
|- MOMDESC ---——- |

Semantics:

MASK

MASK specified by itself displays the contents of the mask register.
The default for the MASK register is 7 FFFFFF FFFFFF.

MASK <simple value>

Places a mask that can be expressed as a given <simple value> into
the mask register. A mask 1is a distribution of 1ls and Os in a
48-bit word and its 3-bit tag. The mask indicates which bits are
significant and which are irrelevant within the current pattern set
by the PATTERN command. All bits in a mask that have a value of 1
are significant digits in the pattern. All bits in a mask that have
a value of 0 are disregarded in the pattern. The mask most recently
specified is stored in the mask register.

123
DUMPANALYZER

The mask can include the 3- bit tag for a word. To specify a TAG,
the concatenation form of simple value should be used; input would
specify 12 hexadecimal digits "& <number> TAG". The tag value
should be no larger than 7; however, if it is larger than 7, the tag
value is placed in the tag using modulus 8. If no tag is specified,
the tag is assumed to be 0.

Although the mask represents 48 binary bits and a tag value of three
binary bits, it is displayed and is most often set in hexadecimal.
Refer to the following diagram of a word that contains a mask value,
with its hexadecimal equivalent stated below it:

SR |
TAG 470 | o o Jo Jo o Jo o |1 1 1 |1 |3
f=———] [=== === |~ e el e e el el Dl Bl il |
' | 4610 JO |O tO |0 JoOo o o |1 }1 t1 1 |2
[==—= [—=== ===~ == | === === === === | === | === | === | === | ==~]
/1 | 410 | 0O J0O 0O 0O]lo Jo Jo |1 t1 |1 11 1
| —=—=1 | === === | = Rl el Rl e el el el Rl Il
1 | 44/ 0 o Jo Jo Jo o o o |1 {1 |1 |1 |o
[=== [—=—= === ||| | = | = | | e e = | - |

7 0 0 0 0 0 0 0 0 F F F F

To indicate that the last 16 bits of the pattern word and its tag
are significant, the corresponding mask command would be MASK FFFF &
TAG 7. (It is understood that there are eight 1leading zeros.) The
mask register would display its contents as 7 000000 OOFFFF.

The default for the MASK register is 7 FFFFFF FFFFFF; in this case,
all bits including the three tag bits (represented by the 7) are set
to one, and therefore are significant in the pattern register.

MASK ABSENTDESC
The value 7 CO0000 000000 is placed into the mask register, in
preparation to search for an absent mom descriptor. An absent mom
descriptor references a data structure on disk.

MASK ABSENTCOPY
The value 7 CO0000 000000 is placed into the mask register, in

preparation to search for an absent copy descriptor. An absent copy
descriptor references a data structure on disk.

124
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

MASK MOMDESC

The value 7 CO0O000 000000 is placed 1into the mask register, in
preparation to search for a present mom descriptor. A present mom
descriptor references a data structure in core.

Examples:

INPUT: MASK
MASK: 7 FFFFFF FFFFFF

INPUT: MASK ABSENTCOPY
MASK: 7 CO0000 000000

INPUT: MASK MOMDESC
MASK: 7 CO0000 000000

INPUT: MASK 123456789ABC
MASK: 0 123456 789ABC

INPUT: MASK 1324 & 5 TAG
MASK: 5 000000 001324

See also
PATTERN . & v v i e e v e e v e e e e e e e e e e e e e e e e . .138
SEARCH. v v v v v v v e . L1662

MD

125
DUMPANALYZER

The MD (Memory Dump) command dumps the contents of a group of addresses
in memory with no analysis.

<md>

-- MD --<multiple addresses>--|

Example:

A small subset of the raw dump analysis, which is output from the MD
command follows:

ITEM

INPUT: MD C119D to C1200

C119D/00000 0 C00040 190Ce6D 7 001200 0O8OC7F
C11A4/00007 0 000000 000000 0 300023 000096
C11AB/0000E 0 400000 OOCF62 0 000000 000074
C11B2/00015 0 000000 000000 0 000000 000000
C11B9/0001C 0 000000 000000 THRU C11DB(0O0C3E)
C11DC/0003F 1 4000A0 000000 6 CO001C 180C5A
C11E3/00046 3 B20695 B4AE42 3 4E601A AFB208
DESCRIPTION

The only editing done is the recognition of repeated words.
For example, in the block of zero operands, Cl1B9 and C1l1lDB are
the addresses of the first and last 2zero operand, in hex.
0001C and (OO03E) represent relative addresses; in a raw dump,
they are relative to the beginning address requested. They
cycle every 4000 (hex) words. Each word is broken into tag,
upper half and lower haif.

126
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

MDCODE (HDU SYSTEMS)

The MDCODE (Memory Dump Code) command dumps the contents of a group of
addresses 1in the code environment of memory. No analysis of the
contents is done. If the ASN does not have a separate code environment,
the MDCODE command gives the same result as the MD command.

<mdcode>

—— MDCODE --<multiple addresses>--|

See also
MD . v i e w125

127
DUMPANALYZER

The MEM (memory) command lists the memory modules present and the range
of addresses contained 1in each module on the system when a dump was
taken.

Example:
INPUT: MEM

MEMORY MODULE CONFIGURATION
BOX 0: 32 (80000) - 63 (FFFFF)
BOX 1: 0 (00000) - 31 (7FFFF)
BOX 2: 0 {00000) - 31 (7FFFF)
BOX 3: 0 (00000) - 31 (7FFFF)
TOTAL MODS READY: 128

The following example shows the format for displaying the memory
configuration on B 7900 and A 15 systems. The display is based on the
memory granule "page", since the page is the smallest unit of memory
that can be saved or readied on B 7900 and A 15 systems. A page is 128K
words. The display is grouped according to ASN number with address
ranges shown for each valid ASN. An example of the format follows:

MEMORY CONFIGURATION

GLOBAL: 4 PAGES, 0-3 ; (00000) - (7FFFF)
ASN 1: 3 PAGES, 4-5,7 ; (80000) - (BFFFF), (E0000) - (FFFFF)
ASN 2: 4 PAGES, 4-7 ; (80000) - (FFFFF)
ASN 46: 1 PAGE , 4 ; (80000) - (9FFFF)

TOTAL PAGES READY : 12

128
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

IX

The MIX command displays the contents of the task stack or segment
dictionary stack associated with the supplied mix number. The results
are the same as for the STACK command.

mix>

-— MIX --<decimal number>---------—-- |

Semantics:

MIX <decimal number>
The contents of the task stack associated with the supplied mix
number (<decimal number>) are displayed.

MIX <decimal number> SD
The contents of the segment dictionary stack associated with the

supplied mix number are displayed.

See also
STACK . + . & v v vttt « e« & v e v e e 4« e 4 e e e e . . . 168

129
DUMPANALYZER

MODE

The MODE command allows the user to control the mode in which words are
expanded in the ALLSTACKS, MIX, and STACK commands. It is also used to
control how <simple value>s are expanded in the PV command. (Refer to
the PV command.)

<{mode>

== MODE —== 7 —====———— e |
| |
[- + ——-<mode option>-}
| l
= - -

<{mode option>

130
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Semantics:

MODE?

The current mode(s) is displayed.

MODE+ <mode option>

The specified mode is added.

MODE- <mode option>

The specified mode is deleted.

ALL

The ALL modifier is inclusive of all of the following modes.

ARRAY

If ARRAY mode is used, mom descriptors are expanded subject to the
limit established by the ARRAYLIMIT command. If the array is
multidimensional, each dimension is exXpanded as it 1s encountered.
Information concerning the current level 1is printed in the left
margin when multidimensional arrays are expanded.

BCL

Burroughs Common Language. The word is translated into Burroughs
Common Language characters.

CODE

DEC

EBC

FIB

131
DUMPANALYZER

If the CODE option is used, DUMPANALYZER expands and lists code
areas and read-only data areas. When analyzing a stack, the code
for return control words (RCWs) is expanded into mnemonics for the
operators and names of items at the D[0] level.

Op codes for all systems are recognized. An op code that is not
defined for any of the systems is displayed in the form m*hh, where
hh is the code syllable in hexadecimal and m is a letter indicating
the context in which the syllable was encountered:

P: Primary (normal context)

V: Variant (right after code 95)

E: Edit (right after EXSD, EXSU, EXPU)

A: Vector(Array) = (in the word after VMES, or between VMEM and
either VMEX or VEBR)

Decimal. The word is translated into a decimal number.

EBCDIC. The word is translated into Extended Binary Coded Decimal
Interchange Code (EBCDIC) characters.

Expansion of FIBs in the stack is controlled by the FIB option.
Buffers are dumped and analyzed.

FILE

IOCB

FIB and FILE are synonyms.

If IOCB mode is used, descriptors in the stack referencing an IOCB
are expanded.

132
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LIB
If the LIB option is used, library structures are expanded and
analyzed. This applies to both library templates and library
directories. (Refer to the LIB command.)

LOCK
If the LOCK option 1is used, the specified wvalue 1is analyzed to
determine whether it is a "hard lock" (tag of 0) or a "soft lock"
(tag of 2).

OCT

Octal. The word is translated into an octal number.

PIB

If PIB mode is used, arrays that have an unusual field of PIB marks
in their memory links are displayed as PIBs.

PCW

Program Control Word. A word is analyzed as if it were a program

control word. The expansion of PCWs 1in stacks 1is optional;
normally, PCWs are not expanded, but they are expanded if PCW 1is
set.

SIB
If SIB mode 1is wused, SIB descriptors are expanded. Any SIB
descriptor found in the dumping stack will be analyzed as a SIB
stack.

See also
= & 10

O i I

133
DUMPANALYZER

MSCW

The MSCW command helps to analyze stacks that have a corrupt Mark Stack
Control Word (MSCW) or are in a state in which DUMPANALYZER cannot
analyze them correctly.

Mmscw>

—-— MSCW -- FOR —--<number>--- AT —-—-<number>----—|
| |

R |

Semantics:

MSCW FOR <number> AT <number>
The first <number> is the number of the specified stack. The second
<number> is an offset, which must be the location of a valid MSCW in
the stack. All MSCWs below this MSCW must also be valid. The MSCW
indicated by <number> is marked off in the stack, so that when the
stack is examined the following message appears in the MSCW's place:

MSCW ASSUMED AT THIS POINT BY USER SPECIFICATION

An MSCW 1is reset by setting the second <number> to zero; that is,
the offset is zero.

MSCW FOR <number> 7

The setting of the MSCW for the specified stack is interrogated.

134
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

NAMES

The NAMES command causes the entire list of MCP names and addresses to
be printed. SORT intrinsics are invoked to sort the names

alphabetically. (See Figure 5-5.)

<{names>

-- NAMES —-—|

IDENTIFIER-ORDERED MCP STACK ADDRESSES FOR *SYSTEN/MCP32252A/FMLYINX002

PROCEDURE ALDDRESSES ARE SHOWN AS PCW/SEGMENT

S

NAME

:

NPUT

%]
)
=

oo [N
(o bt 22 [

(%24 2 -t W

[alad W= XL &

b B Z LI O
z

& QU b
EL L L L LTI L L LT EL L L
ool oA
SO NO L N~ o
DEO0 O - o -
O00C QO » o o
NN WS]

-~
CEOOD-NON L ONMIATO
OO F MMt O LD X O DD
NOD OB IN eilN O N AN et O D
CooCoOPSanoCococ

a
b= v =
bt o x -
z bt b L
> - @ nm
i O T Zidrs
O «x = D wWwxe o
v 00 « Z =y O
T ol Td O G0
< Ofe OF <l LIWxOV
e O (D O e e LA T
O JEZONZ =00
W AW OT Tt

QAQOIINIZNDLUITEO
QOO EZO XXXV

U €O N “
@ MO ANN -«
B SO ANDY k)
o o0 ocoo o
WM NNS ~

v

v

b

x

-4

(=] w

L (-4

Lt =)

- ad [¥¥)

x r o o

Ll [S B VPR o)

= r a4V«)
@ < eI ¥ z
W W 2o [SER 1l
- LY |NEx o Oy
-~ AP TWXn Zgo«wo
Y Q) Ol)b L

MR A ZA AT~
EL L L L £ L L L LLL S

o W el %)
W L OV Y
«© Lo N XY) ¥
o Q OOCO (=]
~ NSNS ~

~
MO N Pw IO T
BROC I N FODLCOOD
VNN Ne-INMO oM
COO00 OCOOCOoODOC

C DIFTWOLIZ it
bl WO O~ Tew LZOL W
ZZ e b o 0 AT
DRNTHEDZOOOL X0
ONODUOHNOADNE T Lalhn
COPPA T d N B OLIE W
ROl d Z L0 F XN
L L 4L & &L L LE L L X 4

(1= <
o "
0N @
o o0 (=]
N~OONS ~

MO o o e o C IS0 L O TE A
OO DU MM et P Ol WM
WA AT ATALA O O A M gt O 0D

ADDRESS-DRDERED MCP-STACK IDENTIFIERS FOR «SYSTEM/NCP32252A/FMLYINX00Q2

:NOTES CODE SEGMENT

/0

DUMPANALYZER

ISKHEADER

Wad®t Dl TOO

ENTANDSAVE

EFER-L) A D XN
O ZEXCODXACIO0 o =t
R O LD JZNET O

POOO AN DT NO LM
OO O vt ot =t N NN NI M MY IV
OO0 CROQCOOODOOO
OROVOCQOVAODDDOO

-3
o u
- > Qo = >
o Q o = W
w e <D '
- Q EDQ U
o x = Ot =
< O Q> WE
W O b 07
@ PelWOm DX WO
CENE Tl NE=ON>K

I el L)t o) O b e O - D)
QLUOALEE ML CAQXA (D

MODOOLREDm NN QAL
OO eietetet NN N MMM
OO0 O0O000Q0O0D
OO0 UOOCOOOOSC

z
o o
[l &
o -
© o
[~ = =
O - DX «
- v e L O e
xQ = (L]
W) - v _FORO
O>»> @ O DOE =
Wadld = W = Q. O o L)
afa Z 0O eV I»e
MMND = e kel

Ca0Q0W JTAN=OJma
e XS FCOD N DD XA
OOt QL EO T O
NEOZ T ALLATVIEQLED

ANNALMOUOLOLD IR e
ODOQ e NINN MMM
DOCOOOCOOOOROO0C
OQOOOCOOQOOOOOO

o

b x

wl w

- -

v ol

w! -

- -

] -

- 0.

- 2

- -4

bl o ax
w W L
= Q. w (=]
W 2 ¥ QL <
W == D [T Y
[l =] <D 0 T
T XY T Qbe N W
O wa < D b ZA
- e Eood QO W=
W QFOUNZE =00

WONMELCOLTON WL

SN NOLMA QLM DS
OO ol vt o NN BN MM A
DAAO0DDIINOMDHIOODO
DODODSOOOOODODO
~~

Identifier and Address-Couple Ordered Stack Listing

WHEN A TABLE OF NAMES AND ADDRESSES IS PRODUCED, EITHER NON-INTERACTIVELY
Figure 5-5.

OR IN RESPONSE TO THE NAMES COMMAND, THE SORT INTRINSICS ARE INVOKED TO
SORT THE NAMES ALPHABETICALLY . WHILE THIS SORT IS TAKING PLACE, THE HI

RESPONSE IS “SORTING MCP NAMES"'.

136
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

OLAYTNFO

The OLAYINFO command analyzes overlay file allocation. This command 1is
used when overlay file corruption is suspected.
<olayinfo>

-— OLAYINFO --——====——=———mm————mmmm e |

|-<olayadd>-|

Semantics:

OLAYINFO
DUMPANALYZER finds all descriptors to present or absent overlayable
data, checks for overlapping allocation or other errors, and
compares the descriptors with OLAYINFODESC bit vectors. All stacks
are analyzed.

OLAYINFO <(stack>

If <stack> is present, only the specified stack is analyzed.

OLAYADD <stack> <olayadd>

If <olayadd> is present, overlay allocations neighboring <olayadd>
are shown.

OP

The OPT command lists the compile-time and run-time option

137
DUMPANALYZER

settings in

effect when the dump was taken.

<opt>

-= OPT --|

Example:
INPUT: OPT

OPTIONS:

RESET:

SET:

TERMINATE, NOCHECK, LPBDONLY, AUTORM, AUTORECOVERY,
TRANSWARNINGS, AUTODC, CPBDONLY, NEWPERETRY,
SERIALNUMBER, CONTROLCLDWFL, BNARECOVERY

OPEN, DIAGNOSTICS, CDONLY, DUPSUPERVISOR, NODUMP,
DUPINTRINSICS, CRUNCH, BACKUPBYJOBNR, FULLTRANSLATION,
NOFETCH, RESOURCECHECK, NOSUMMARY, DIRDEBUG,
CATALOGING, OKTIMEANDDATE, LOGPOSITIONING, ARCHIVING,
LOCKTRACE, IORANGECHECK, SWAPALLJOBS, NORVRSPAPERTAPE,
MIRRORING, DIAGNOSTICDUMP, AUDIT, FILESATURATION,
EOTSTATISTICS, PATHBALANCING, GMMDEBUG, ISCDEBUG,
IODIAGNOSTICS, PORTDEBUG, USECATDEFAULT, CATTEST,
MCPTEST

COMPILETIME OPTIONS SET
DIAGNOSTICS
EXPERIMENTAL
LINEINFO
LOCKTRACE
READLOCK
READLOCKTIMEOUT
RESTART
SWAPALL
TRACE
CATALOGLEVEL = O

MODULE ALTERNATIVES SELECTED: PORTS_BNA_V2

INITFILE_BOOTCODE
DIALSEARCH
CONFIGCONTROL60O
B6XXXPROCCONTROL
HDPMAINTENANCE
DCPHDPSERVICES
NIFHDPCONTROL
PHYSICALIOHDP

138
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PATTERN

The PATTERN command is used to set or examine the pattern register.

The PATTERN command can be used with the SEARCH command to search for
all words which contain a pattern involving only a subset of the bits
within a word and its tag. In this case, the MASK command must be used
to mask off some of the bits in the pattern as non-significant. (Refer
to the MASK and SEARCH commands for further information.)

(pattern>
-= PATTERN -————-——————————————= |

|-<simple value>-|

Semantics:
PATTERN

If no <simple value> follows PATTERN, the contents of the PATTERN
register are displayed.

PATTERN <simple value>

The pattern register is loaded with <simple value>, which may then
be used as a nonvolatile search pattern.

A pattern is a distribution of 1ls and Os in a 48-bit word and 1its
3-bit tag. This pattern of ones and zeros is used by the SEARCH
command to search the dump for all words that match the given
pattern, bit for bit. The pattern most recently specified 1s stored
in the pattern register.

The pattern includes the 3-bit tag for a word. To specify a TAG,
the concatenation form of simple value is used - input would specify
12 hexadecimal digits "& <number> TAG". The tag value should be no
larger than 7; however, if it is larger than 7, the tag value is
placed in the tag using modulus eight. If no tag is specified, the
tag is assumed to be 0.

139
DUMPANALYZER

Although the pattern represents 48 binary bits and a tag value of
three binary bits, the pattern is displayed and is most often set in
hexadecimal. A diagram of a word that constitutes a pattern is
given, with its hexadecimal equivalent stated below it, as follows:

bit#|-—————— |
4790 o |o Jo o o Jo Jo J1 t1 |1 J1 I3

| ———=] |———=)] [= | === | === | == | === | = ——— |
| 460 | O |0 o |1 {1 Jo o |1 |1 |12 |1 1|2

[————1 e el el R R el el e Rl R el Kl
| 450 (0o 0o JO Jo Jo |1 |1 {1 1 |1 |1 |1

[————1 | ===]~ === == | == | == | === | ===~ |
| 440 JoO to o |oOo |JoOo o (0o |2 |1 |1 [1 Io

! | | | | I I | ! | I

To put the pattern of bits shown in the word above into the pattern
register, the corresponding pattern command would be
PATTERN 4422FFFF & 7 TAG (it 1is wunderstood that there are four
leading 2zeros). The pattern register would display its contents as
7 000044 22FFFF.

The default for the PATTERN register 1is displayed as 0 000000
000000.

Examples:

See

INPUT: PATTERN
PATTERN: O 000000 000000

INPUT: PATTERN 404040404040
PATTERN: O 404040 404040

INPUT: PATTERN 123456789ABC & DEC 10 TAG
PATTERN: 2 123456 789ABC

also
MASK. . & v v i e k122
SEARCH. . & & v v v v v e Jl62

140
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PC or PRINTCODE

The PC or PRINTCODE command translates code words into their mnemonic
equivalents and prints the results.

<pc>
-——— PC —==——m———— <simple address>——-—————-—-—-—-—-————--——————————— >
I I l [|
|- PRINTCODE - | |- : =-—=<PWI>-] |-<until part>-|
D [
| |
|- LL --<lex level>-|
Semantics:

Translation of code begins on or before the designated <simple address>,
which 1is the segment base. Translation of code ceases when both of the
following conditions are true:

1) The length specified is achieved.
2) The instruction word is complete.

<PWI> is a number that specifies a 1location relative to the segment
base. The default value for <PWI> is O.

If no length (<until part>) is specified, the default 1length 1is three
words.

The <lex level>, a number, indicates the running environment level. If
it is not specified, a lex level of 3 is assumed. If the lex level of
the running environment is not 3, the lex level must be specified to
ensure proper interpretation of operators that contain address couples,
such as NAMC and VALC.

Non-tag-three words are translated, but a warning is also displayed.

All display headings (such as, in the example, the 1lines from "CODE
ANALYSIS:" to the underline) are suppressed from remote output but
appear in the printer output.

141
DUMPANALYZER

Example:
PC 85EE5:2B FOR 4 LL 1
CODE ANALYSIS:

SEGMENT BASE: 85EES
WORD OFFSET : 0002B

LENGTH : 00004
LEX LEVEL : 1
PWI:PSI MNEMONICS HEX CODE
002B:0 ZERO BO
002B:1 ZERO BO
002B:2 PUSH B4
002B:3 MPCW 000600090BC3 BFFFFF000600090BC3
002D:0 ISOL 15:48 9A0F30 ** NOT TAG-3 **
002D:3 NAMC 00,01B3 41B3 GETFORGET
002D:5 RDLK 95BA
002E:1 DUPL . B7
002E:2 BRFL 0005:3 A06005
O02E:5 LT8 1A(26) B21A
See also
SIMPLE ADDRESS. « « © v v v v v v v e e e i e e e i e 8T

MULTIPLE ADDRESSES. + ¢ v v v v v v v v v v v v v .82

142
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

1B

The PIB command prints the contents of a program information block
(PIB). A PIB is a task variable associated with a process stack. The
descriptor for active PIBs is in a SPIBVECTOR parallel to STACKVECTOR.
<pib>

-- PIB --—<number>-----——--—-—-—--—=—-- |

| |

|- AT --<simple address>-—|

Semantics:

PIB <number>

The PIB associated with the stack specified by <number> is printed.

PIB AT <simple address>

The PIB located at memory address <simple address> is printed.

143
DUMPANALYZER

PORT
The PORT command causes an analysis of a port file to be printed. A
system response of "PORT OVERLAYED" implies that the port file was not
in memory when the dump was taken. (See Figure 5-6.)
<port>

—— PORT --—-<port index>------- |

| l

|- AT —-<address>-—|
Semantics:
Port <port index>
The <port index> is stored in the LIBRARYINFO word of a FIB using

the port. The port with the given index is analyzed.

Port AT <address>

The port at the specified address is analyzed.

144

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PORT 6

INPUT:2

[
-

780)

< ~

Y- 2 Tl Lt P VY T X
O ONONMO W
L O o ot o I O ©
MOALLNON-OrmMO -
(=T TR TR IR LI I IO L LN TR}

800000 DOCA

€D ol WA ND W

KO we DUIDAL. VODKOOEOOTOON

Cgpm bl NAIDNOETL

CHAPPENED)

ANALYSIS:

T

oo

8)
ENT ANALYSIS:

9(9)

c

NT ANALYSIS:

18)

Lt
> =

OQZTCOO

-

-
Q
Ll
z
ud
o
a.
-
4
-t
.
v
bt -~
v -1 4"
> WD
-l noa
-< N
z <N
< <
~
el -
Z2wvie s O
Whe s« O
@»HHNN O
3 on
@
)
Qe e
(=14 [=}
[=1-4 Q=
[=3-4 xxwn
o0 = il
(=1} -0
a S
(3= O w3
=34 x xOxX
(=4 « QD=
COX > »AaXx

- 4 el Ee

T.TC'.BSEBSCEUEZZOOOEOOEZZY Ld bt o) 2

NTONTOIEOTOIL
W

U

D!

0
02¢02) 0 000200 010000
035{(03) 0 078000 030000
04(04) I 000A00 080009

PORTL

INPUT

U5¢05) 0 000700 080000 INTEV

LW EE-O D

g OPENPENDING)

EDC
ROR

~ b [-1-3
<LQLINNINVINLLIVIWA AL A~

~ W
P L A T L LT T)

(LI TTIN [U T T 1 I}

STNAMEWASNULL

LLZOLLLLL

0 L il W LI D2 1) o iy b L] OO bee 1A
WD e E XD ZZNX OO0 Lo
MO ICZEAALIEED Ok OO

02¢02) 0 30000F 000000

Lo
-t

xno
[S1=1-]
Viedo
wow
[=Lel 3
(1
™
oo
-
[~Lolal
O o
[=1-1-]
Bwiw
<O
oo

)

29¢09) 0 000000 000000 SUBFILES 4-7 UNUSED

Subport and Candidate Analysis

Port,

Figure 5-6.

145
DUMPANALYZER

PRINTER

The PRINTER command routes output to the line printer instead of the
terminal. The standard DUMPANALYZER header page is printed as a
preamble. Each command that causes the information to be dumped is also
printed.

{printer>

—— PRINTER --|

146
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PRINTVAL

This command is a synonym for the PV (or PRINTVAL) command. Refer to
the PV command.

See also
=12 510

147
DUMPANALYZER

PROC (MLIP AND MPX SYSTEMS)

The PROC command controls the resolution of addresses not in Global
Memory. All non-Global addresses are interpreted as being in the
processor specified by <number>. The PROC command with no modifier
displays the current processor and box setting or the message NOT
TIGHTLY COUPLED. When using ODT operation, the system response is
displayed on the ODT. PROC is not valid on B 7000 Series systems;
instead, the ASN command should be used to access the memory of a local
ASN, both for tightly-coupled and extended memory systems.

<proc>

See also
e A

148
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PROCS {A SERIES MLIP SYSTEMS)
The PROCS command causes all processors that were running on the system
(both E-mode and MLIP) to be displayed.

<procs>

-- PROCS --|

Example:
PROCS

PROCESSORS CURRENTLY ON THE SYSTEM ARE:
MLIP #1

MLIP #2

EMP #9 1IN STACK 036 S=1E4EE

EMP #10 IN STACK 011 S=1FEb55

149
DUMPANALYZER

PROCSTACKS

The PROCSTACKS command displays the contents of each stack that has a
processor currently on it. The stack that requested the memory dump is
also displayed. The contents of the stacks are formatted and
interpreted before they are displayed.

<procstacks>

—- PROCSTACKS --|

150

The

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PV or PRINTVAL command displays the specified <simple value> in

several different possible forms.

<pv>
| (mmmmmm e |
| |
-- PV --<simple valued>-—--———-———=--==-——--———— l
I |
|-<mode option>--—|
| |
|- MODE ------—--- |
I I
|- RCW ———=—————- |
| I
- EBC -- ARRAY -|
Semantics:
PV <simple value>

PV <

PV <

The specified <simple value> is displayed in hexadecimal form.

simple value> <mode option>

The specified <simple value> is displayed 1in the desired <mode
option>. (Refer to the MODE command.)

simple value> MODE

Displays the specified <simple value> in the modes that are
currently set. (Refer to the MODE command.)

In the FIB mode, <simple value> 1is expanded as a FIB. <simple
value> must be a present descriptor. If the 1length field is
incorrect, a warning message indicating that the value 1is probably
not a FIB is displayed.

In the IOCB mode, the I0CB word in the base of the stack and any
descriptor may be analyzed as an IOCB.

On B 7900 or A 15 systems, the PV command in the IOCB mode analyzes
both IOCBs and HCBs. The word whose contents are <simple value> is
a descriptor that may refer to either an IOCB or an HCB. If the
descriptor refers to an IOCB and an HCB has been allocated for that

151
DUMPANALYZER

IOCB then both structures are analyzed. Word three of the structure
pointed to by the descriptor is checked to determine 1if the
descriptor is for an HCB or an IOCB. If the tag of the word is 5
(indicating that it is a data descriptor), then the word is assumed
to be the HCB Self Pointer and the descriptor is assumed to point to
an HCB; otherwise, the descriptor is assumed to point to an IOCB.

If the MCP option READLOCK is set, each hard 1lock 1is shown with
sequence number and procedure name in the LOCK mode.

In the construct "PV ¥[a] . . .", if M[a] and M[a + 1] are both
Tag-2 words, they are analyzed together as a double operand. This
construct is effective in DEC, OCT, BCL, EBC, or LOCK modes.

PV <simple value> RCW

In the RCW mode, <simple value> is analyzed as if it were an RCW.

PV <simple value> EBC ARRAY
In the EBC ARRAY mode, an array is displayed in both hexadecimal and
EBCDIC formats.

See also
MODE. . & ¢ ¢ 6 e v e 129

152
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

QUEUE
The QUEUE command displays DCALGOL queues. QUE 1is an acceptable
abbreviation.
<{queue>
-- QUEUE -----—=—-=———————————————— |
| [I
|-<number>-| |- MSG -—|
QUEUE

If QUEUE is specified with no <number>, all DCALGOL queues are
printed.
QUEUE <number>

If <number> is specified, the indicated queue is printed.

MSG

If MSG is specified, an analysis of messages in the queues 1is also
printed.

Example:

The foll

153
DUMPANALYZER

owing is an example of the results returned when "QUEUE 157" is

specified:

INPUT:

QUEUE 157

DUMP OF DCALGOL QUEUE STACK (3EE) : 5 800016 1A563D

QUEUVE
NUMBER

0157

A.-—-

ITEM

5 800000 D92354 (QUEUE ADDR = 92354)

/

0000 O O00863E 0979F1 QLINKAGE (QTAIL=863ED,QHEAD=979F1)
0001 O 000821 570001 QINFO (ACTIVATING SNR=082, USERS=1)
0002 ©O 000023 00002B QSIZE (TOTAL SIZE=35, MEMORY SIZE=43)
0003 O 000000 080154 QMSGINFO (MSGCOUNT=8,MEMORYLIMIT=340)%****
0004 O 000000 OAO05A QTANKINFO (ROWSIZE=10,BLOCKSIZE=900)
0005 © 000000 000000 QBUFFDESC

0006 © 000000 000000 QLOCKEVENT

0007 O 000000 000000

0008 2 000000 000001 QINSERTEVENT

0009 2 000000 000000

000A O 000000 000000 QTIBDESC

OO00B 0O 000000 000000 QLOCKCONTEND

000C 0O 000000 000000 QL.OCKOWNER

DESCRIPTION

The queue stack 1is a non-running stack of descriptors
referencing the actual queue.

The asterisks at the end of this entry imply that there are
messages to be removed from the queue. MSGCOUNT, here,
indicates that there are eight messages to be removed.

QTIBDESC: Queue task information block.

154
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

RECESS
The RECESS command allows the user to exit from DUMPANALYZER without
removing the "pseudorecovery" file created during DUMPANALYZER'Ss
initialization process. For information on the usage of the
pseudorecovery file, refer to "DUMPANALYZER FILES" in this section.
(recess>

-- RECESS —-|

See also
DUMPANALYZER FILES. . « + v v v v v v o« o o« o o« o« o o o &

DUMPANALYZER

RELEASE

The RELEASE command closes the current line printer file and opens a new
one.

(release>

-~ RELEASE --|

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The RELX command causes the current line printer file to be printed
while the program 1is still running. When the line printer file is
printed, it is preceded by a heading page containing the usercode and
mix number of the DUMPANALYZER task, as well as the title "ANALYZEDUMP".
RELX is only valid when DUMPANALYZER is run in PRINTER mode.

<{relx>

—-— RELX —-|

157
DUMPANALYZER

REMOTE

The REMOTE command routes output to the terminal rather than to the line
printer. REMOTE is not valid when DUMPANALYZER is run from the ODT.

{(remote>

-- REMOTE --|

158

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

REPEAT

The REPEAT command causes the previous interactive command to be
repeated. The output from the command is routed to either the printer
or the remote terminal.

<repeat>

~— REPEAT —-—-=—-=———=——————————— |

Semantics:

REPEAT

The previous command is repeated. Output is repeated to whatever
peripheral device has been initially specified.

REPEAT PRINTER
REPEAT TO PRINTER

The previous command is repeated and the output is directed to the
line printer. If REMOTE operation is in effect, each REPEAT to the
printer is in a separate printer backup file. This version of the
REPEAT command can be used to obtain a hard copy of command output
during an interactive session at a remote terminal.

159
DUMPANALYZER

RESULTQ (HDU AND MLIP SYSTEMS)

The RESULTQ command invokes output of the result queues generated by I/0
operations. These result queues display the linking together of IOCBs
after the I/0 operations are complete. This command is only valid on
MLIP and HDU systems.

<resultqg>

-~ RESULTQ --|

160
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

RJ

The RJ or RIGHTJUST command enables (sets) or disables (resets) right
justification of terminal output. The default state 1s right
justification enabled. When right justification 1is enabled, terminal
output that exceeds the terminal width is displayed right—justified on

the succeeding line. When right justification is disabled, this excess
will be left-justified on the next line.

|- RIGHTJUST -1 |- + -]

Semantics:
RJ
RJ +

Enables right justification.

Disables right justification.

RJ ?

Shows the current state of right justification.

Examples:

INPUT : RJ
** RIGHT JUSTIFICATION IS SET **

INPUT : RJ -
** RIGHT JUSTIFICATION IS RESET **

INPUT : RJ ?
** RIGHT JUSTIFICATION IS RESET **

16l
DUMPANALYZER

The SAVE command saves the contents of memory dump tapes and relevant
information from the MCP code file in a disk file for later analysis.
The file is saved under the <file title> given; <file title> must appear
in quotes. LINEINFO must be set and the MCP global names must be
available. The AREASIZE of the saved file 1is 10 records or 500
segments.

The file created by the SAVE command can be quite large (from 30,000 to
150,000 disk segments). It may be desirable to copy the file to tape
rather than leaving it on disk for this reason.

The file created using the SAVE command is not removed when DUMPANALYZER
is exited. It must be removed using CANDE commands or MARC screen
functions.

<save>

—-— SAVE -- " -—«<file title>-- " —-

162
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SEARCH

The SEARCH command, when used in conjunction with the MASK and PATTERN
commands, provides the ability to check each word in a memory dump for a
specified pattern of bits; this pattern may include all 48 Dbits within
the word and its three tag bits, or it may search for all words that
have a subset of those 48 bits in common. SEARCH can cause a search for
a pattern that is specified by the PATTERN command and limited by the
mask set in the MASK command. Patterns for a search may also be
specified within the SEARCH command; these patterns do not use the mask
and pattern registers.

The addresses of the words that match the specified pattern, along with
the contents of those words, can be saved in auxiliary storage so that
they can be retrieved as desired. The saved words may be searched again
with different search patterns.

The SEARCH command operates on only one memory subsystem in a
tightly-coupled system. The BOX or ASN command is used to select the
subsystem to be searched. (Refer to the BOX and ASN commands.)

<search>
~= SEARCH === = mm o= e e e e e >
| |
| - ABSENTCOPY -—|
l |
|- ABSENTDESC -|
| l
|~ MOMDESC --——-|
l |
|- PREVIOUS ---|
| ¢(mmmmmmmmm s e |
| I
) ___
| | | |
|-/1\- REFS --<simple address>-—-—-—--— | ! | (m——————~ | |
| | | | []
|-/1\- RANGE --<multiple addresses>-—| |- ¢ —=——== T ———— |
| | | l
|-/1\- MASK --<simple value>---—----- | |- K -}

| |
|-/1\- PATTERN --<simple value>----- i

163
DUMPANALYZER

Semantics:

SEARCH
If SEARCH is used without any modifying tokens, the contents of the
pattern and mask registers are used in the search. Refer to the
MASK and PATTERN commands for information about how these registers
are set.

ABSENTCOPY
ABSENTCOPY causes a search for all absent copy descriptors. An
absent copy descriptor references a data structure on disk.

ABSENTDESC
ABSENTDESC causes a search for all absent mom descriptors. An
absent mom descriptor references a data structure on disk.

MOMDESC
MOMDESC causes a search for all present mom descripteors. A present
mom descriptor references a data structure in core.

PREVIOUS

PREVIOUS causes a search from among a group selected from a previous
SEARCH command and stored via the K option described below.

le4
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

REFS <simple address>

REFS causes a search for present descriptors that reference the
section of memory including the specified address.

RANGE <multiple addresses>

RANGE <multiple addresses> indicates a range of memory over which to
search. <multiple addresses> indicates which set or sets of
addresses constitute the range. The syntax for <multiple addresses>
is provided in "Basic Constructs".

MASK <simple value>

MASK <simple value> may be used to specify a mask to be used for the
duration of the search only, but not to be placed in the mask
register. The contents of the mask is <simple value>, a hexadecimal
representation of a 48-bit word with an optional tag, which places a
1 in each bit that is significant in the pattern, and a 0 to mask
all insignificant bits.

PATTERN <simple value>

PATTERN may be used to specify a pattern for which to search;
however, this pattern will not be placed in the pattern register.
The contents of the pattern is <simple value>, a hexadecirmal
representation of a 48-bit word with an optional tag, whose
significant bits are pointed to by the mask. The SEARCH command
takes this pattern and finds words which match the pattern in the
significant bits which have been selected by the mask.

:T
":T" lists the words that match the current pattern modified by the
current mask and the hexadecimal 5-digit address for each word next
to its contents.

:K

":K" retains a list of all words that match the current pattern
modified by the current mask, and the addresses for those words.
This list may be SEARCHed again later using the PREVIOUS modifier.
All of memory is searched unless RANGE or PREVIOUS is used.

165
DUMPANALYZER

7AX
The search may be controlled asynchronously through the ?AX (Accept)
option. The search occurs from the high end of memory toward O:
thus., memory indices printed in response to ?AX WHERE decrease. The
different combinations of tokens for the ?AX command follow.

?AX WHERE

The WHERE option asks where the search is.

7AX STOP
The STOP option stops the search and reprompts the user with a
":READY" message.
7AX -TEXT
7AX +TEXT
The +TEXT and -TEXT options turn the listing of the text on and off,
respectively.
?AX -KEEP
The -KEEP option suppresses the formation of the 1list of kept
matches.
7AX SKIP
The SKIP option abandons the current range and skips to the next
range (if any).
Examples:

SEARCH RANGE STK 368 BOSR TO LOSR

SEARCH MOMDESC RANGE 0 TO END :K #FIND MOMS IN MEMORY
SEARCH REFS 381F6 PREV : T %FIND MOMS POINTING HERE

See also
Y £
BOX (IOM SYSTEMS) . . +v v « « v v v v v v v v v v v v v v o ... 80
MASK. . . o « o « o o o o o s s s s s e e e e e e e e e s e e s 122

PATTERN « . ¢ « . . v v v« v v v v v v v v 138

166
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SHAREMEM (B 5900 and B 6900 SYSTEMS)

The SHAREMEM command displays the status of shared memory on a
loosely-coupled system. This command 1is invalid on systems using
MCP/AS.

<(sharemem>

-~ SHAREMEM --—---——————-~~ |

|—<number >- |

Semantics:

SHAREMEM

The status of shared memory on all memory modules is displayed.

SHAREMEM <number>

The status of the memory module identified by <number> is displayed.

167

DUMPANALYZER
SI
<sib>
—— SIB -- VIA --<simple address>--|
Semantics:

The SIB command causes the SIB whose descriptor is 1located at <simple
address> to be printed.

A Structure Information Block (SIB) is the local data for each user of a
data base. The SIB consists of a group of workareas and SIRWs for local
data set/set manipulation followed by a D[04] portion for each structure
invoked by the data base user. A descriptor to the SIB is located in
the user stack.

Examples:

The following command causes the SIB whose descriptor is located at the
absolute address 13702 to be printed:

SIB VIA 13702
The following command causes the SIB whose descriptor is located in

stack EE offset 1B from BASE, to be printed:

SIB VIA STK EE BASE #1B

le8
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL
STACK

The STACK command causes the contents of a stack, formatted and
interpreted, to be displayed.

<stack>

—- STACK --<number>—-—--———=--—=————===——-———- |

| —<number>—|

Semantics:

STACK <number>

The contents of the entire stack identified by <number> are

formatted and interpreted. All of this information is displayed,
starting with the top of the stack and continuing to the base of the
stack.

STACK <number> <number>

The contents of the stack identified by the first <number> are
formatted and interpreted, then displayed. Here only the section of
the stack from the starting or upper bound offset into the specified
stack (identified by the second <number>) to the base is displayed.

STACK <number> <number> <number>
As in the preceding case, the contents of the stack starting from a
given offset are formatted and interpreted, then displayed. Here an
ending or lower-bound within the stack is indicated by the third
<number>, further 1limiting what portion of the stack will be

displayed. (Refer to Figures 5-7., 5-8, and 5-9 for sample stack
dumps .)

Examples:

The example below lists stack 368 from 10B through F5:

STACK 368 10B F5

MIX NUMBSER 4530/4961 LOCAL MEMORY OF PRCC t (BOX 23

0657:0 3 (00005000) ¢

STACKDUMP FOR STACK 368
ALGOL 33.12

(DONATO)CANDE/CODE1370 ON COMPHMAST.
DSED

LANGUAGE:

00283 (643)
-
LJ

)
hod

0657:0)

LENGTH

05C81

e

LOSR

059FE

0 ..

08 MESSAGES

BEURROERRRABRBLNORASANQRSNANNE QRN RN LEER PROCESSOR 1 TOOK DUMP FROM THIS STACK S22 eisassssspssstunsssnsssssseszsseeses
J

33SR

(A

169
DUMPANALYZER

4 (2107400001

>3 B195B4& ABAZ8N< 3 SLAEAD 1ABEFF
1 (11182850)1

>3 ABBSA3 A3FFFF< 3 B0BOLO BOBOBO

. “ -
[. b=
- w [}
(=1 Lol -y
o S (=]
. o w
8 ~ w
&~ ~ »
V- N
o (=] x
=}
i) 1]
[- x
- ~ o
"2} o - —~
b Y IS 0o
uw "] 7]
< « =
© v o
- o Ly -3 - =
>z ™ Z< x
Vw © weo W [=]
NI P W XOCe o
+0O -0 PO EIO = = o0
W Lo P NWEND - —)
on [v
* M O ety - m
Nad O ~“NAZ W o ~—
CUM NQQOr « X =
MEX - MemXl) = O x
O » NOwWeE VO xr o 0
—~O e oS« = o - o
ON Wz ey EOZ x - 7
O Ol WM O s - >
rO Ol o0 x«< "
ONn XL OO wED e » —
< QLD "w Tuo W -~ N ©
b= =) ~e e o (%] N >X IS
wmi | T 12 1O wetOX [Tl
e Lo e I Onex T <
ZO b~ LU o QOO - oz
e e Wi 1O MLkt B Y3
O QO 1N ~OOX z x (3}
- e toe 0 = W =~
" =) > - 0 (Y]
—\ Men Ny Mas - “e)
ne o o e O FO~D " NO 175}
O L o M A L ooul < WO
“«M O e NN O O EmSOoX -
*OWL © NOWE & ZFOow o< oM
OV BN o rbee 3N wWood =) - .
MMl ANIEOMe Toob o ~
D Ome O NN & voouw o o
(VR I-T=3 3 Vlox L = - 3~ I
) NN =N NOO > O Te]
ar o0 NL O cOx A wno
o X NetEOS X OO0 S e o
oM NGO OO Q~ o
O ZONWN NSZONY OO | +NS S
IENMEIR-1-] NOO UD doco® =Dl =
— M NN MO bo
[PV S NG A D
At AW wened O o
Wb 0 L Ll LR Fxy
e Qe OMEE [XYEIRIVY. "]
oCJn o OCiai o
(] m
. O e Qerer
X o0 WE o Wk
[- S0 JLTa 18] IO
0 OLIOW Y R IWI= TP
NoTVLET SIS IRE &
- «
(nw \ \ Wik ©
-om = [l a
NoY o [P 1Y) =3
1= * e GO -
Whe © DY wLom o
TR e« (R ©
-1ebd o e UL =]
Mmoo & L O 2
oo o o =
PO - wLOo -
- o oS o
oo [x] woo [x}
—~om " oom ~
A A
I it
-~ Lol Latal Ll ~
Moy - Ny M -
oo o 0o oo =)
oo - QO oo -t
oo o oo oo 2}
[N] - (Y]
—] - -t - 1}
oo 1 oo oo 1
et) Nt ot Nt)
T o Y]) o~
ond o oo oo o
Ll — e ol gt -
Gdalad o oo ocon =

ITEM

170
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

DESCRIPTION

@ 86 0 00600

=)

STACK NUMBER, MIX NUMBER, NAME OF THE STACK, ABSOLUTE MEMORY ADDRESS OF THE BASE OF THE
STACK AREA, ABSOLUTE MEMORY ADDRESS OF THE UPPER LIMIT OF THE STACK AREA, AND LENGTH OF THE
STACK AREA IN HEXADECIMAL AND DECIMAL NOTATION.

INDICATION AS TO WHETHER OR NOT THE STACK WAS DSED, ODT MESSAGES BUILT FOR STACK (RSVP, DISPLAY,
OR ACCEPT), PROCESS TYPE, KIND OF STACK, LANGUAGE IN WHICH THE PROGRAM WAS WRITTEN, MARK -
LEVEL-PATCH OF THE COMPILER THAT PRODUCED THE PROGRAM, AND STATUS OF THE STACK AT DUMP TIME.
NOTE

THE ACTUAL DUMPING OF THE STACK

IS DONE FROM THE S REGISTER DOWN,

ONE WORD PER LINE.
RELATIVE ADDRESS AND ADDRESS COUPLE (WHEN APPLICABLE) PRECEDE THE HEX PRINTOUT OF EACH WORD.
STUFFED INDIRECT REFERENCE WORD (SIRW) PRINTOUT INDICATES THE OFFSET INTO THE SPECIFIED STACK.
RETURN CONTROL WORD (RCW) PRINTOUT INCLUDES THE LEXICOGRAPHICAL LEVEL, WHETHER IN CONTROL
OR NORMAL STATE, THE SEGMENT NUMBER AND RELATIVE ADDRESS WITHIN THAT SEGMENT WHERE PRO-
CEDURE ENTRY OCCURRED, AND THE SYMBOLIC CODE LINE SEQUENCE NUMBER OF THAT MCP PROCEDURE.
SEGMENT DESCRIPTOR S FOLLOWED BY THE NAME OF THE MCP PROCEDURE REFERENCED BY THE RCW.

LEFT AND RIGHT BROKEN BRACKETS IN THE CODE LINE INDICATE THE WORD WHERE PROCEDURE ENTRY
OCCURRED.

MARK STACK CONTROL WORDS ARE PRECEDED BY AN ASTERISK FOR CLARITY; FOR EACH MSCW, THE POSI-
TION OF THE PREVIOUS MCSW IS INDICATED.

OPERANDS ARE PRINTED IN OCTAL, DECIMAL AND EBCDIC ACCORDING TO THE FOLLOWING CONDITIONS:

1. DECIMAL OPERAND VALUES CAN BE FORMATTED IN INTEGER, FIXED-POINT OR EXPONENTIAL NOTATION,
AS APPROPRIATE.

2. EBCDIC OPERANDS ARE SO PRINTED ONLY IF ALL CHARACTERS ARE GRAPHICS. HOWEVER, IF AN OPERAND
CONTAINS RIGHT-JUSTIFIED EBCDIC CHARACTERSWITH NULL FILL, THE EBCDIC CHARACTERS ARE PRINTED.

3. NO EXPANSION OF ANY KIND IS MADE INTERACTIVELY UNLESS THE APPROPRIATE EXPANSION MODES
ARE SET (REFER TO MODE IN THIS SECTION). IF ALL MODES ARE SPECIFIED, BCL IS NOT SET AND MUST BE
SET SEPARATELY, IF DESIRED.

PCW PRINTOUT INCLUDES THE LEXICOGRAPHICAL LEVEL OF THE PROCEDURE BEING ENTERED, THE SEGMENT
NUMBER AND RELATIVE ADDRESS WITHIN THAT SEGMENT WHERE PROCEDURE ENTRY OCCURS, AND THE
INTERRUPT STATE.

SOFTWARE CONTROL WORD (SCW) PRINTOUT INDICATES TYPE OR DIMENSION OF ARRAYS (OR BOTH), KIND
OF DECLARATION (FILE, INTERRUPT, OR FAULT), OR PRESENCE OF A NON-LOCAL GO TO.

WORD DATA DESCRIPTOR (DESC), INDICATING DATA PRESENCE IN, OR ABSENCE FROM, MAIN MEMORY,
WHETHER DATA-ITEM IS A COPY OR THE ORIGINAL DESCRIPTOR, TYPE AND LENGTH OF DATA-ITEM, AND
(IF REQUIRED) ADDRESS OF THE DATA-ITEM.

DESCRIPTORS FOR ACTIVE PIBS ARE IN A SPIBVECTOR PARALLEL TO THE STACK VECTOR.

STEP INDEX WORD (SIW) PRINTOUT INDICATES CURRENT VALUE, INCREMENT VALUE, AND FINAL VALUE OF
AN ITERATION STATEMENT.

DOUBLE-PRECISION OPERAND (DPOP) PRINTOUT INDICATES THE VALUE OF EACH WORD IN OCTAL,
SCIENTIFIC NOTATION, AND DOUBLE-PRECISION SCIENTIFIC NOTATION.

Figure 5-7. Stack Analysis (Beginning) (Cont.)

171

DUMPANALYZER

54CE IN STACK 3F9

DIRE]

>3 FFP54C E0B010 «MSCH: PREVIODUS MSCH 2 00015

-=-=-=0{021}

0711

A
r)
x
xra
2« < &
T >3 cwn

ded =L =)

SO [-1=3 [=1=

Oz Ch WO
WEED CAOUEL
DTDO Pt A Z R B O
HELL DT JWLXOCOLE
L Y RED DO ™3 E Il
HEEOEOOZ €<~ LDN
T O) O b o A Z kil O
NN D DNOCTNOCmE N

INKS
TMSCW

€XOCOROOOOLCLIOONO~
UO00OmoOOOQUICOLIOO
COOOODOOOPIORODOCO
NCOoOOOOONONOONDCO
TOOOODVOONOOOCSOQ
MOOOMOITOOODDVODOOC

OO0 OOOOCOOOOCOCD
QOOOOOVOO=OODODOC
SCO0ODORONOQCOODOOO
DOOOODOODOVDODODTO
NCOOOOODOOPYOTOOVO
NOOOOTCOOOVMVDOIND

NOOOOONOINNNYOOMD

QWO Cr NN IMN =D
=_OODOOODDODOOOCTIO
NOCCOSOOOODONOODO
DUCAODOIVDINATOIOODD

DECLARED BY STACK 082

MOM Q 06ES3,

5 £00008 3954CE

GSPIBVECTORISBBJ

369

SEG DICY
4
1
5

x wWED
v O e
< L€ TpO
A ZZ X
KOO

[- S {BIRISTETI TR

SLINILML OV

DOD=MODOO
DoONLoOCOD

0ODOOCOCOC
VOCOQO00OC
o00oCcoQCo
-OODOSOO0OD
[~1el 1Tl To o1
QOO0

MOQOOSOOO

£ i B MY S (A OO
SOONDISOO0

ITEM

o
o

DESCRIPTION

PIBVECTOR THAT IS PARALLEL TO THE STACK VECTOR.

]

SPIBVECTOR. DESCRIPTORS FOR ACTtVE PIBS ARE IN THE

STACK ATTRIBUTES.

[k
b

Stack Analysis (End)

Figure 5-8.

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

YCANDE/CODEL370 ON COMPMAST.)

STACK 368 ~ - ~

172

NUSINFO

CK IS NOT SWAPPARLE

ON COMPMAST

A - o
e c o

. ~

o - L

w o

. <

w X =«
(=3 a @
O JdowW T o~
w ONnNe O o
Z T Ol
" ~o <
T ENn» N1=<Z
G W zc
2 Ve OO

XOLCXTZNEDOXT
A DED QT
SOV T

Ot OIONOR

OO0 OTOo®

oocwueoQee
OCOVOCOOOC
CCOmOOCOO
OO0V
CcCQOOO0Ca0
COoOCIIOVOV

Doocoonon

< ~N ~
< - -
[} U i
N ODLIMPINnT
DONDOO vt

-4
w
z »
Lot "
-4 i
< .8
o~ >
~ -
L] x
- [L-]
" [
z 3
Wy o
x.J (g
- z M s
T~ 2 N ©
ladll = [T
e 4 "Wl
@O - NoQ
ax L Oet >
o < OWNn
WO Ok O¢ X
T N Mo =
[t il -0
Ow & NNl =

O o
OO0 = = L
e el Z
I T ENX
CE bttt Z L
ZO 0w dddnOa
OXOr T« A

ocao.caunnnen
A A AAA
n Houwny

-

OOOOCOMBNOM
CODIOOmNOOOO
ODmOOONODOO
coroooNOoOO

CCOOOQLmCOOX
OODOOOOARC
OCOQOO0COOC
DOVOOOVODOO
CO0OOCOVOOOO
DOODOOMOOOC

COoODOCOoDOoQQ

~ (5]

N<J O

] []
OO DD 00 O

(THIS MESSAGE IS NOT DISPLAYED, BUT IS PRINTED IN
Stack Analysis (Graphs)

THE STACK AT THE FIRST REFERENCE TO THE USER FILE))

DOES NOT HAVE THE PROPER CHECK FLAG. ANY RESPONSE CAUSES
Figure 5-9.

ONE OF THE THREE ARRAYS FOR TASKS (PIBS), STACKS, AND FIBS
THAT ARRAY TO BE MARKED BAD AND PROCESSING TO CONTINUE.
A USER FILE IS NOT PRESENT FOR THE PURPOSE OF READING ITS
LINEINFO, OR THE LINEINFO IS INCONSISTENT. PROCESSING

ARROW INDICATES THAT THE ATTRIBUTE IS ACTIVE.

TASK OR PIB ATTRIBUTES.
FILE NOT PRESENT/IN ERROR; <file name >

DESCRIPTION
GRAPHS.
CONTINUES.

WAITLIMIT
ERROR MESSAGE: ACCEPT: BAD INDEX ARRAY

(o00®

0 000000 400000

TA

173
DUMPANALYZER

The STOP command terminates SYSTEM/DUMPANALYZER. A synonym for STOP is
BYE.

<stop>

-— STOP --—|

174
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SUBPORT

The SUBPORT command prints analysis of a specified subport. Groups of
subports are associated with different port files. Each subport of a
port file can be connected to a different process. There are two

syntaxes for this command; one for BNA Version 1 and one for BNA Version
2. (Refer to Figure 5-6.)

BNA Version 1 Syntax:

-— SUBPORT ---<index>---——===—==—- |
| I

|- AT ——-<address>-|

Semantics:

SUBPORT <index>
The subport with the given index is analyzed. The index is found in
port data structure.

SUBPORT AT <address>

The subport at the given address is analyzed.

BNA Version 2 Syntax:

—= SUBPORT ---<indexX>-—=———=—-=——————————- <port index>-——-|
| ! 1 | |
| |- OF -] |- PORT -| |
| |
|- AT --<address>-——-—=—=—----—————————— |

175
DUMPANALYZER

Semantics:

SUBPORT <index> <port index>

SUBPORT <index> OF <port index>
SUBPORT <index> PORT <port index>
SUBPORT <index> OF PORT <port index>

The subport with the given index within the port having the given
port index 1is @&analyzed. The port index is found in the library
information word of the File Information Block (FIB). The subport
index specifies the index of the subport within the port.

SUBPORT AT <address>

The subport at the given address is analyzed.

176
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SUMMARY

The SUMMARY command provides a list of the stacks in the machine and the
status of these stacks at the time that a dump was taken. Active stacks
and the stack that took the dump are alsc indicated. (Refer to Figure
5-10.) All swap jobs displayed by SUMMARY can be identified by the pound
sign (##) placed after the job type.

<summary >

—-— SUMMARY —-|

177

DUMPANALYZER

SUMMARY

INPUT:

ACT

o (%]
TEREIREIRZEZRC ZTT T o T °OF ICOE
22D DDDDDOD 02D D & D KD Dxxd
L4-4-4-1-4.4-4-4-4. 4.9 e x o o 4k aan

Q QO OO0 O 0 0O O OO O 0 o

UU ODDD OD

[Ll o Ll Wl WL W W W W W W W W

20 > = bod P 3= O/ I D= e e =D e = O
VOOOT U JULOCODOVLVO OCO OV CVVY OUO CLOFOTDLIDVLACOUOUDLO, OUE O
zZZ= LOZZ2Z IS dZZZIZ ITZ IZILTZANZEZZ IZ 2] d AZIZAZJIZIZD A A2
[P 2 Lid bt L a.o.a AL R LB P L0 bt et L O e L L O WO e O i O, bt O bt O, G, e B Pt A L O AL P A L,
N o e 3 oy i e b EEX T X o e TN T b ENT e N K bbb N e TN EOEQOE L X L L T O L X » L
Ol 1wt et O S et ot et P Lt) i L) bt 0t] €0 L ot d C et €30 L ot bt ot €3 Lyt L E el 0 et i e bt L Lt i it i) st L et i et
RAAAEELASAAANNNNAAANRNANRNARNAAAR“ANRNDNENANANANN‘NANONLNANLN
LR E R DS D E R R DL D XL DL O EE LI ED LD DEDEDIEDEDOEDIR DD XS

© 09000t IxEREXE O OYO OX QIXK QKO O O 1 OXCUNDXCOXD O Oroxroxe
Q. O 0 OF 0 (2 08 O A OF 0 (e b boe oa OF X L IED LI O B/ DD KA D SN MO DI E O WA D DA DAA D BB DTN DN IAG
€00 CTTZTZ ¢ 1 LI C LI i) 1 L L LI Ol S €L D K LD LI O WO L Sl €

A A S U2 el e [2 b U L) A T3 S e (Y Q3 U8 e 0 D U Y A T e 0 B (A B (8

waNNN A o (%) 00 i 2ZTo.a
<M MMM o o A K« << < - NN ONN (==} + 4
AN MM T XM o ¢ b pny Y (L) A NAY LOOC
V3= P e 3om A QL G AN NN d alal N B e (5138
AWV NNEZNNNMIM AN NN <L LI zZ

PROC

RUN

Joss
CALL
CALL

RUN

CALL
PROC
Joss
Jo8s
CALL ACT
PROC DUNP

YED
YED

c

b {~1~]=]] N “NzZurwv ENN ~N NNX N ID noa

Oy LN e lnleied ZZAATITHNNDO NAVII =AY § @TINAQTDIAI > O thede im0
NN [~1-4-4.4.4 [=]= PRl) T - - N CdaiNalal LEOCOHTOOOMENY i €GLADDOQ

LU 1-4-3 AN b= o e K)L TNQO N << <« Du COOC<KORAQ [l =l=1=l=01 N0 8
- NEZZZ W e EEEA DD MNEZZEEE gl T mAammamamZZ s LA QL
M fmimimial QO L b= v L L) s A UL OUOUWWS PZOIIITIITIO0QOOIWWOLAOR

bda?A & ¢ Ndadedod ZEEZTZODT TN~ INZE ZZ0. = oooocfa Wi.e) JluliEE
NN\ LI eI CRKLILINNLIW S e QWO QLI DU €O UL WL O Ok DD e i) €
EXxrCOQQACO T b= - CLOOIROOWLL WeIOWWOEO I ETLIVAVVNVVLILICA Ju b QCO0
N QOO JAMNNNN INNNSNOONNMNN INMNNANNN N OO\ N OOOCOODN N O JINENN OO~
Eded d AN TTIIE FIL T WUITNETF O NE T XX T DTIMN)b i | KEEAAOES
WO A O O O b L) L L M O bt lad B ™D ™ L L N) 4 €2 O i 1 €3 €20 L Lad (A e 24 GO 00 00 B0 N A OV LD (0 55 o D= D i D A e e
'NNN///NNROQTTT[,,tT,TBBTT-TTLE-TIEEI'RnAE“““““EEYDL.Y'EE‘A
NEXETUWWEC e DNNABNNLLAVNAADIONNINONE=INANRDAND ETINARNNNNNTID) - AANZZZE
3 Lid L G o e e Ld Lid B 0) 3 3 3 S £ (5 0w 3o 3w Som 494 2% 3w 3= M) 3m 3 O (0 MY 3w D= D CD 3= 3= TE DD NN N NN AN Dt F X E > 2 D OO
N QO Qe EOZE NVVNDQAUNNNNAGANNE NNODE NVOEVN VI OO it et (DO LXODDANTIIOA
LW —LIKOC S S A X A8 5 AU S AU TS AN QOA AN AP R SR B L W ww d AOLE e §www

CP32252A/F RLYINX002 O M
/
[
c
[%
c
K
¢
0
0
0
g
/
]
0
/
Q
o]
]
0
/
/
S
R
/
/
S
B
8
3
3

O e -

N M

« N @00 &
COOCOCOOCOMO T il
NNNNNNNNNNNSN S SN
CO0O0OOOOINON —ONAN
o™ M

o o oo

M ™ Lgloel ol

Ln ML O
Jo -~
on ~oo
M OMm
NSNS
[NTK-1 YN
"o e
N -1 .1 -]
M MM

383973839
427274273
334273842

Y

7
387373884
391573915
474674746
4746/AT4B
412474125
412674126
4129/4130

/
4866/4866
487174871
487174872
475574959
453074961

T
NMIINOCDOWOMINOTOANCDLCD L NOOCOANL OOOVNUCMICDOOCDLOADLLINONMTC A

-
COCCH i rim i i N T T L L LI ODVOD OO AN A AL LCTVOVSTONNMMENOACOLLCCDODDANORRNDOOD O
COOO00COCOOOEOOO0OCOCCO0COCTCOOOCOTO OO G e v ot o o =1 o ot 1t w0 v omd (\ A A AT A R I N MM N

79 AIMILID LSO ORI O ot MU O A st 1t VY MY AT AU A N U5 O I MY it ot (9 0T o ol N0 A1 A] 0 0t) M)) N R) 1N N9) ot g

summary

MULTIPROCESSOR SYSTEM: G FOR GLOBAL, 1 FOR PROCESSOR 1
Figure 5-10.

(BOX 2), AND SO FORTH. THE COLUMN iS BLANK FOR A STACK

THE MEMORY SUBSYSTEM FOR EACH STACK OF A B 6800
WHOSE BOX IS NOT CURRENTLY ASSIGNED.

DESCRIPTION

ITEM

o

178
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

SWAPANAL

The SWAPANAL command analyzes SWAPPER internal queues and prints a 1list
of the SWAPPER parameters, 1if they are available. This command is
invalid on systems using MCP/AS.

<(swapanal>

~— SWAPANAL --|

Example:

The following is an example of the SWAPPER parameter analysis produced
by the SWAPANAL command:

INPUT: SWAPANAL

¥kxXxXXXXXSWAPPER PARAMETER ANALYSIG***®* % *kx%

*%x RUNNING *** SWAPCOREMAX = 90 SLOTS(89100 WORDS)

ACTUALCORESIZE = 90 SLOTS(89100 WORDS) MINTIMESLICE = 3 SECONDS
MAXSLICENR = 7 RATIO = 4

MAXCORESLOTS = 30SLOTS(29700 WORDS) EXPRESERVE = 0 SLOTS(0O WORDS)
EXPMAXCORE = O SLOTS(0O WORDS) PRIORITYBIAS = 0O

UTILIZATIONBIAS = 6 EXPRESSMAXTIME = 1 SECOND(S)

IOBIAS = 0 MEMORYBIAS = O

MAXIOSIZE = 15 SLOTS(14850 WORDS) MINCHUNKSIZE = 90 SLOTS(89100 WORDS)
NOSWAPTRANSTATE

Kk kK kK kx PACKS ok X %Ok Kk K %

SWAPPACK (SWHDR=259) SWAPPER2(SWHDR=260) SWAPPACK1(SWHDR=261)

7(***************SWAPPER QUEUE ANALYSIS******************
AXKKKKKXXKAXX XXX XPAGKS WATITING FOR COREF*H K% % %k %Kk k% % %

STACK 27A, PRIO = (007,000) - (*BS/OBJECT/BS9150 ON SYSTEMPACK.)
STACK 308, PRIO (007,000) - (*BC/OBJECT/BC0150 ON SYSTEMPACK.)
STACK 180, PRIO = (007,000) - (*BC/OBJECT/BC0100 ON SYSTEMPACK.)
xxExxKXXEAXXNO INACTIVE TASKS IN COREFHFH* % ks ks kkokx

Under the heading SWAPPER PARAMETER ANALYSIS are all the SWAPPER
parameters set by the system operator. Under the heading PACKS is a
list of all the packs used by SWAPPER.

179
DUMPANALYZER

-3
s
Q
o]

The TRACE command causes the current tracetable, or a portion of the

tracetable, to be printed. The tracetable is generated by the trace
facility, a general purpose MCP debugging aid available when the MCP
compile-time option TRACE is set. The TRACE facility allows for

tracetable entries to be made at predefined points in the MCP called
CONDITIONALDUMP stops, each o©f which is associated with a particular
statement in the MCP. Each stop has two parameters, a stop number and
an 1info word. The stop number 1is a two digit hex number that is
different for each stop. A new set of CONDITIONALDUMP stops 1is in
effect for each mark level release. Information about the conditions
under which the stops are reached is given in the tracetable entry. The
tracetable holds about 1650 entries in a circular queue; when the last
slot has been filled, the next entry overwrites the first entry.

The TRACE facility is controlled by the primitive ODT commands 77CD and
?7?TRACE. (Refer to the Operator Display Terminal (ODT) Reference Manual
for information about the ?77CD and ?77TRACE commands.)

<trace>
| (mmmmmmm oo e |
I |
== TRACE —=———————=———————omm oo |
| |
[=/I\-————————— <number >-|
l | |
|-/1\- STACK -] |
I | I
|-/1\- CPM -—-| |
| I
! | ¢ |
| | Lo
|-/1\- CD —-—-—<number>----|
TRACE
Entering "TRACE" alone prints the entire tracetable. "TRACE" may be

followed and modified by <number>, STACK <number>, CPM <number> or
CD <number>, or a combination of these items.

TRACE <number>

The most recent <number> of entries to the tracetable are printed.
If CPM, STACK, or CD are specified, and a <number> precedes them,
the preceding <number> indicates how many trace entries are to be
searched (not printed).

180
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

TRACE <number> STACK <number>

The most recent <number> of entries to the tracetable are searched,
and those in the specified STACK <number> are printed.

TRACE <number> CPM <number>
The most recent <nﬁmber> of entries to the tracetable are searched,
and and those in CPM <number> are printed.

TRACE <number> CD <number>
The most recent <number> of entries to the tracetable are searched,

and those with CD (conditional dump) <number> are printed.

Example:

The following is the output from the command "TRACE 11" run on a B 6900
dump. Ordinarily, all the headings would appear on one line; of
necessity they are split up into two groups below.

CD# P2 PARAMETER IN PROCEDURE @ SEQ# / RCW CPM
18 0 000039 000100 HARDWAREINTERRUPT68 (11307600) 4
18 5 0Bl669 080100 HARDWAREINTERRUPT68 (11307600) 4
18 3 02C879 000100 HARDWAREINTERRUPT68 (11307600) 4
08 0 000000 00000B UPDATESTACKPROCS (12782000) 4
18 0 000008 100091 HARDWAREINTERRUPT68 (11307600) 4
08 0 000000 000014 UPDATESTACKPROCS (12782000) 4
18 O 000009 000800 HARDWAREINTERRUPT6S (11307600) 4
o8 0 000000 00000B UPDATESTACKPROCS (12782000) 4
07 1 000000 OOC39E FORKHANDLER (15944000) 4
08 0 000000 000009 UPDATESTACKPROCS (12782000) 4
32 0 000000 000029 INITIATE (18619000) 4
STK CALLED BY PROCEDURE @ SDI:PIR:PSR / SEQUENCE

00B MESSER OFE3:005A:2 (77617120)

0O0B MESSER OFE3:0063:5 (77616934)

00OB PROCESSKILL 0B87:0000:0 (21035610)

00B WAITP 0AA7:0199:2 (12471200)

014 DISABLEP 0AA8:02FA:0 (12866500)

014 HARDWAREINTERRUPT68 0B41:0048:1 (11323200)

00B CUTBACKAITARRAY 0B08:0000:0 (04973000)

00B HARDWAREINTERRUPT68 0B41:019A:1 (11371000)

00B ONESECONDBURDEN OAAB8:0195:3 (12374700)

009 MULTIPLEWAIT 0AA7:0279:3 (12542400)

022 ANABOLISM OB6D:005E: 4 (17275000)

181
DUMPANALYZER

SE

The USE command lists commands that were saved by the KEEP command.
(Refer to the KEEP command.)
<use>

-- USE ---<number>----|

|- 7 ———mm |

Semantics:
USE <number>
The command that was saved and labeled <number> by the KEEP command

is 1listed. <number> must evaluate to a decimal integer between O
and 9.

USE?

A list of the commands saved by the KEEP command is printed.

Example:

INPUT: USE 7

00 : HDR

01 : MD 1C33 FOR 6

02 : MD STK 6A BOSR FOR 3
See also

KEEP. + v v v o v o o e w12

182
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

WHERE

The WHERE command displays the location of a specified <MCP global
name>. The location is expressed as the offset relative to D[O].

All aliases for MCP stack cells are retained and recognized by the WHERE
command. When WHERE 1is entered from the ODT, the system response is
displayed on that ODT.

{where>

-~ WHERE --<MCP global name>--|

Example:

INPUT : WHERE FROCK
268 FROCK

183
DUMPANALYZER

WHO

The WHO command displays the MCP global name for the specified D[O]
offset (cell). An outer-block procedure PCW is shown as SEG:PIR:PSR
from the D[0O] stack image. For an outer-block procedure code segment,
the names, PCW D[0O] offsets, and PCWs are shown for all procedures in
that segment.

All aliases for MCP stack cells are retained and are returned by the WHO
command. When WHO 1is entered from the ODT, the system response is
displayed on that ODT.

<who>

-- WHO —--<number>--—|

Examples:

INPUT: WHO 0316
316 MAXQUEUERS

INPUT: WHO 320
320 (PCW 7D6:0044:0) CCCHECK FORMORE

INPUT: WHO 321

321 (SEG)
:0000:0 (PCW 035) WAITIO
:003D:0 (PCW 043) DISKWAIT

184
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

5.4 ERROR MESSAGES

The following error messages are displayed 1f an abnormal condition

occurs.

ACCEPT: WRONG CODE FILE -- OK OR RESTART.

The code file timestamp on disk did not match the timestamp on the
dump tape. The operator should enter OK to use the code file on disk
or RESTART to cause the code file to be closed and
SYSTEM/DUMPANALYZER to be suspended. DUMPANALYZER proceeds if OK is
specified.

DISPLAY: DUMP TAPE HAS BAD INFORMATION IN RECORD <{#>, AT LOCATION <i>.
Data on the dump tape failed the consistency check, causing
DUMPANALYZER to terminate.

DISPLAY: BAD DATA RECOVERY IN RECORD <i#>, AT LOCATION <i>.

Data on the dump tape failed the consistency check, but redundancies
in the way that these data were stored on the tape allowed limited
recovery of that data. DUMPANALYZER then proceeds.

DISPLAY: ERROR UNABLE TO GENERATE GLOBAL IDENTIFIERS, CAUSE = <cause>.

One of four <cause>s caused failure in the MCP global identifier

routine. Two of these <(cause>s indicate either improper
compilation, a DUMPANALYZER bug, or code file corruption (LEVEL and
SIZE). I/0 exceptions give rise to the other two <cause>s, RDMCP

(code file) and RDFILE (internal file). Global name generation 1is
terminated, NONAMES is invoked, and DUMPANALYZER analysis proceeds.
DUMPANALYZER can be rerun with the DEBUG command to get a program
dump of the terminated global identifier routine.

DISPLAY: CANNOT ANALYZE - MCP INCOMPATIBLE WITH DUMPANALYZER.

The MCP level recorded on the dump tape did not match the level of
DUMPANALYZER. This incompatibility can be avoided by ensuring that
the level of DUMPANALYZER is always exactly the same as the level of
the MCP that wrote the dump tape.

185
DUMPANALYZER

DISPLAY: CANNOT ANALYZE -- USE PREVIOUS DUMP ANALYZER

The level c¢f the MCP as recorded on the dump tape was lower than the
level compiled into SYSTEM/DUMPANALYZER, causing DUMPANALYZER
termination. The proper level of SYSTEM/DUMPANALYZER must be used
for a rerun.

DISPLAY: BAD DUMPANALYZER INPUT CARDS

DUMPANALYZER was unable to decipher an input card. The card image
appears on the printout with a line of asterisks (*) pointing to the
unknown word, and processing terminates.

DISPLAY: BAD MCP STACK POINTER

DUMPANALYZER found that the stack vector descriptor at D[0]+2 did
not address present memory. This condition is usually due to a
premature end-of-file condition on the dump tape or to improperly
taking the last memory module off-line when no MEMDUMP disk is
available, causing termination of processing. DUMPANALYZER should
be rerun with RAWDUMP and DEBUG set; DUMPANALYZER then produces a
raw dump of the contents of the tape without checking D[0O]+2.

DUMPANALYZER FAULT <#> messages are given for the first, second, third,
fourth, and tenth faults and for every tenth fault thereafter (20, 30,

40,

and so forth).

187

6 INDEXED SEQUENTIAI. ACCESS METHOD

This section describes a set of software routines that implement indexed
sequential access methods o©of storage and retrieval of data records.
Indexed sequential access method, hereafter referred to as ISAM, allows
a keyed file to be processed in both random and serial fashion. This
section is intended for use as a reference document for experienced
programmers. ’

This section contains some subsections that apply to both standard and
primitive ISAM and other subsections that apply only to primitive ISAM.
A discussion of the differences between standard and primitive ISAM 1is
given directly following this introduction. The first four subsections,
ending with "Practical Considerations”", apply to both standard and
primitive ISAM. The last three subsections deal only with primitive
ISAM. Most of the material concerning standard ISAM, including lists of
exception codes, 1is contained in the PL/I Language Reference Manual in
the chapters titled "Data Description” and "Input/Output", and in the
COBOL Language Reference Manual 1in the section describing ANSI74
enhancements.

The ISAM facility is only accessible using the COBOL (with or without
the $SANSI74 option), PL/I, and ALGOL compilers. The COBOL74 and RPG
compilers do not use ISAM; they use KEYEDIO. (Refer to KEYEDIO for
information about KEYEDIO). ISAM-like capabilities are also available
through DMSII. For further information, vrefer to the DMSII DASDL
Reference Manual and the DMSII User Language Interface Software
Operation Guide.

The support procedures for ISAM are contained in the PLISUPPORT library.
All documentation notes pertaining to ISAM appear under the heading
PLISUPPORT. To initiate PLISUPPORT, the SL (System Library) ODT command
is used. (Refer to the Operator Display Terminal (ODT) Reference
Manual.)

See also
KEYEDIO « « v o v v v v v v v e e e e e e e e e e e e e L2117

188
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

6.1 PROGRAM INTERFACE - PRIMITIVE AND STANDARD ISAM

The following paragraphs define the two ways of invoking ISAM, the
primitive method and the standard method.

PRIMITIVE ISAM

A set of ISAM procedures for creating and updating ISAM files are listed
later in the "General Implementation Information For Primitive ISAM" and
"ISAM Procedures" sections. Primitive ISAM involves direct calls of the
procedures that perform the ISAM functions rather than use of special
language syntax. Parameters must be passed explicitly. Each procedure
returns a value indicating its results. In primitive ISAM, the program
must detect exception conditions by interpreting the result word whose
contents are explained at the end of this section. ISAM exception
conditions do not cause program termination when primitive ISAM is used.
Primitive 1ISAM allows the highest amount of selection and control.
ALGOL must use primitive ISAM. COBOL may select either primitive or
standard ISAM. PL/I must use standard ISAM.

STANDARD ISAM

The standard interface simplifies programming effort by allowing normal,
higher level language input/output statements such as READ and WRITE to
be used, rather than directly invoking the ISAM procedures. No loss of
efficiency results when standard ISAM 1is used. PL/I must use the
standard method. COBOL may select either the standard or primitive
method. PL/I and COBOL each have unique implementation features.

The standard interface includes the use of ISAM file options.
Functionally, ISAM file options are similar to file attributes but exist
only for ISAM files. Unlike file attributes, ISAM file options may not
be assigned a value or be modified by control cards or programmatic file
attribute statements. Each ISAM file option is assigned a value when
the file 1is created and opened as OUTPUT. Examples of COBOL ISAM file
options include the settings for KEYSPERENTRY, AREAOVERFLOW, and
FILEOVERFLOW. Some keyed file options for PL/I include KEYLENGTH,
KEYORDER, FILEOVERFLOW, and WAITUPDATEIO.

Standard ISAM deals with exception conditions differently than primitive
ISAM. ISAM procedures return an information word to reflect the results
of the ISAM invocation. In standard ISAM, the compiler emits code for
observing the results and initiating appropriate action. ISAM exception
conditions may occasionally cause program termination when standard ISAM
is used. Tables listing the exception codes for standard ISAM are given
in the COBOL Language Manual and the PL/I Language Reference Manual.

Indexed Sequential Access Method

6.2 STRUCTURE OF ISAM FILES

An ISAM file consists of three 1logical sections within one
file:

a. The prime data area
b. The prime data area overflow space

c. The file overflow area

These three sections are defined in the following paragraphs.

189

physical

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The prime data area holds all the keyed data records that are entered
when the file 1s first created. The maximum size of this area (in
records) can be determined by multiplying the wvalues of two file
attributes: AREAS and AREASIZE. The number of prime data area rows is
specified by the value of the AREAS attribute. The number of records in
each prime data area row 1is specified by the value of the AREASIZE
attribute. File space is automatically reserved by the ISAM program for
nondata purposes (coarse and fine tables); the amount reserved is
determined by the values of the attributes AREAS and AREASIZE.

ISAM files do not assume the default values of a normal file for AREAS
and AREASIZE because these values should be carefully chosen for optimum
performance. The values associated with AREAS and AREASIZE must be
specified when creating (and opening as OUTPUT) an ISAM file, but they
do not need to be specified at any other time.

When an ISAM file is created, all unused space contained in the final
row of the prime data area is incorporated into overflow space for the
final row, and totally unused prime data area rows are incorporated into
the file overflow area.

191
Indexed Sequential Access Method

DATA OVERFLOW AREA
The data overflow area of the file is the unoccupied data area. Records
added after file creation are always placed in an overflow area. Two

types of physical overflow areas are provided: the prime data area
overflow space and the file overflow area.

Prime Data Area Overflow Space

Area overflow space may be provided in each row containing prime data
and is specified when the file is created (it is opened as OUTPUT at
file creation time.) In standard ISAM, row overflow space 1is indicated
by a file option such as AREAOVERFLOW in COBOL. 1In primitive ISAM, row
overflow space is indicated through a parameter to the ISOPEN procedure.
When records are deleted, the occupied space can be returned to the
overflow pool in the prime data area row in which the record resides.
The deleted record option, set to ON when the file is created (and
opened as OUTPUT), specifies the disposition of the space occupied by
deleted records.

File Overflow Area

A file overflow area outside of the prime data area may also be
specified when the file 1is created (and opened as OUTPUT). Again, a
file option in standard ISAM or the ISOPEN procedure in primitive ISAM
indicates the size of the overflow area. Records are placed in the file
overflow area only after all available overflow space in the specific
prime data area row in which the record would normally reside has been
filled.

192
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

TABLES FOR LOCATING DATA

Two levels of tables are used by the ISAM procedures: fine tables and
coarse tables. Each prime data area row of the file contains a fine
table. The fine table is a list of keys and associated file addresses.
One key (and address) is placed in the table for each n records, where n
is a program-selected value when the ISAM file is first created. The
fine table is stored at the physical end of its corresponding file area.

The entire file has one coarse table that contains pairs of keys and
addresses. Each key entry is identical to the first key entry of the
corresponding fine table, and the address entry is the address of the
fine table rather than the address of a data record. The coarse table
is stored at the physical beginning of the file overflow area.
Therefore, an ISAM file always has at least one physical row of file
overflow space.

DATA RECORD LINKS

ISAM data records are linked together 1in a 1logical sequence. Each
record automatically contains both a forward and backward link to its
logical successor and predecessor. A link 1s an address of a data
record. The first data record contains a backward link that is zero,
and the last data record contains a forward link that is zero. Forward
links are used to locate data records. Both forward and backward links
are used to insert and delete data records. Data record links are the
innermost level of file structure in an ISAM file.

The coarse table serves to locate-a fine table; the fine table, in turn,
locates a data record. The data record links are utilized in following
the trail to the desired record when necessary. Data records are not
physically moved to accommodate additions and deletions. Instead, the
data record links are modified, so that file changes are handled in a
logical rather than physical fashion. Because links are physically
contained in every data record, ISOPEN must increase the record size to
provide space for the links. 1Increasing record size is accomplished by
rounding the original record size up to the nearest full word and then
adding one more word to contain the links.

193
Indexed Sequential Access Method

ISAM'S MANAGEMENT OF OVERFLOW AREAS

When an ISAM file is created, unoccupied space may be reserved in each
prime data area row, and at least one entire row may be reserved for
overflow records. The fine table that corresponds to a row also
contains information that provides a 1link to the next available
unoccupied space. Overflow space that is reserved when an ISAM file is
created is allocated in serial fashion. 1If deleted record space is
subsequently made available for reuse (an option selected by the
program), the deleted record(s) are linked into the available record
chain for the corresponding area and reassigned on a last-in, first-out
(LIFO) basis. Record space made available for reassignment is reused
before unused space is assigned.

The coarse table contains the link to the next available space 1in the
file overflow area. Space assignment in the file overflow area is the
same as overflow assignment in a prime data row. New records are not
placed in the file overflow area if they can be placed in the prime data
area. A given record is never eligible for placement in more than one
prime data area row, and the only alternative placement for it is in the
file overflow area.

194
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

6.3 PLANNING FOR ISAM FILES

ISAM provides a specific set of capabilities that must be considered
during preparation for application programs and systems. Trade-offs can
be made to favor a particular course of action. All features of the
ISAM procedures are not available to every mode of operation and every
language. The following paragraphs discuss the factors that should be
considered when planning for ISAM files.

195
Indexed Sequential Access Method

MAXIMUM NUMBER OF RECORDS

The maximum number of records that can be contained in a single ISAM
file 1is 16,777,215. Some of this space is required for a coarse table,
fine tables, and an INFO record. Data records can occupy the remaining
space.

COARSE TABLE SIZE

One coarse table is created for the entire file.

Coarse table size is determined by the number of prime data area rows
used during file creation; however, the number of rows used cannot
exceed the value of AREAS requested because the coarse table cannot
expand. Not more than 999 prime data area rows may be requested because
at least one row is required for file overflow. The default value of
AREAS is 1. One entry is made in the coarse table for each prime data
area row. The table is contracted when fewer prime data area rows are
used than specified. Key length also has a direct effect on table size.

The coarse table size must not exceed 393,210 bytes, or an error message
will be issued. To compute the number of bytes needed for coarse table
size, refer to the following subsection.

Computing Coarse Table Size

All units are bytes (8-bit characters).

Coarse table size =

(number of table entries * (key length + 3)
+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.

Record space loss to coarse table =

coarse table size DIV BLOCKSIZE * number of records per block.

196

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

FI

SIZE

TABLE

One fine table is created for each prime data area row.

is a row of the ISAM file that
being created. All other rows of
overflow and do not
tables have identical size.

area

A fine table ratio is specified to determine the number
ratio may range between 1 and 63; the default

table. The
value is 1. When duplicate records
in the duplicate set is
counted in meeting the fine table
affects fine table size. Space
allocated for the fine table by the

each fine

The fine table size must not exceed
is given. To compute the number
refer to the following subsection.

Computing Fine Table Size

contain fine tables.

eligible

A prime data
was written into while the file was
the file are allocated to file
In any ISAM file, all fine

of entries in
are permitted, only the first record
for entry in the fine table or is
ratio. Key 1length also directly

for the fine table is automatically

ISAM program.

393,210 bytes, or an error message
of bytes needed for fine table size,

All units are bytes (8-bit characters).

Fine table size

(number of table entries *

(key length + 3)

+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.

Record space loss to fine table

fine table size DIV BLOCKSIZE * number of records per block
* pnumber of fine tables.

197
Indexed Sequential Access Method

The first record of each ISAM file is a special record that contains
attribute information about that particular ISAM file. This INFO record
is essential for proper access of the ISAM file's data records. The
current length of the INFO record is 7 words. One data record space is
normally required to contain the INFO record, but more may be wused if
the data record length is less than 7 words (42 bytes).

AREAS AND AREASIZE

The file attributes AREAS and AREASIZE are more important to ISAM files
than to non-ISAM files. Both attributes must be specified when creating
a new ISAM file, but are not needed at other times. The default value
is 1 for ©both attributes (non-ISAM file defaults are different). The
value of AREAS indicates the number of prime data area rows expected for
the ISAM file; the value of AREAS cannot exceed 999. When an ISAM file
is first created, a few more areas than needed should be specified. The
value of AREASIZE, as specified by the program, indicates the number of
data records per prime data area row.

The value of the AREASIZE attribute is automatically increased by the
ISAM program to allow the fine table to be written in the same area (or
row) of the file as the data it represents. The value of the AREASIZE
attribute 1is also increased by the number of overflow records per area
that are specified by a file option in standard ISAM or by an ISOPEN
procedure in primitive ISAM. Similarly, the wvalue of the AREAS
attribute is increased by the number of file overflow areas specified by
a file option in standard ISAM or by an ISOPEN procedure in primitive
ISAM. This increase is very similar to allowing the file to expand via
the FLEXIBLE attribute; the increase does not affect the size of the
coarse table. When a given ISAM file is closed, the AREAS and AREASIZE
attributes are reset to their original values.

MINIMUM RECORD SIZE (MINRECSIZE)

ISAM does not provide for variable length records. Therefore, the value
of the MINRECSIZE attribute should be O or identical to the value of the
MAXRECSIZE attribute.

198
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

MAXIMUM RECORD SIZE (MAXRECSIZE)

The value chosen for the MAXRECSIZE attribute is entirely dependent upon
the needs of the program and the absolute limits allowed by the system.
ISAM increases the value of the MAXRECSIZE attribute by at least 1 word
(6 bytes) and at most 11 bytes. The program should not assign a new
value to the MAXRECSIZE of a given ISAM file except when the file is
first created and opened. When the ISAM file is closed, the MAXRECSIZE
attribute is reset to its original value. The maximum usable values for
MAXRECSIZE are 65,534 words or 65,535 characters.

BLOCKSIZE

The BLOCKSIZE attribute is wused in association with the MAXRECSIZE
attribute to determine the number of records per block. The value of
BLOCKSIZE is always changed by ISAM. When the program specifies a
nonzero value for BLOCKSIZE, ISAM retains the number of records per
block specified by the program. The value of BLOCKSIZE is increased to
accommodate larger records. When the program specifies a BLOCKSIZE of
zero, ISAM computes a new value for BLOCKSIZE in order to conserve disk
storage space. After the value MAXRECSIZE has been increased, ISAM
computes the smallest number of records that exactly fits into a
multiple of 30-word disk segments. The BLOCKSIZE attribute is restored
to its original value when the file is closed.

EXCLUSIVE USE

The EXCLUSIVE attribute is a Boolean attribute that is set to TRUE by
ISAM when an ISAM file is opened as INPUT-OUTPUT. ISAM files may not be
shared except when all programs open the file as INPUT only.

199
Indexed Sequential Access Method

FINE TABLE RATIO

The programmer may select any value from 1 through 63 for the fine table
ratio; a value of 1 signifies a table entry for each record, and 63
signifies a table entry for each 63 records. The most successful choice

is highly data- and program-dependent. A small value is generally
appropriate when records are often accessed randomly rather than
sequentially. In order to improve or restore performance, programmatic

reorganization of the file may be desirable after a number of changes
have occurred.

KEY LENGTH

Some key modes allow specific maximum key lengths of 5, 6, or 11 bytes
(Refer to the "Mode of key" section under the ISOPEN procedure for a
full list of key modes.) Character keys of 4-bit or 8-bit characters are
limited only by the 14-bit field that contains key length. The maximum
usable key lengths are 8-bit characters for 1020 bytes and 4-bit
characters for 508 bytes (1016 hex characters). Shorter keys yield
faster performance and smaller fine and coarse tables.

See also
ISOPEN. v v v v e . w202

KEY OFFSET

A 15-bit field is allowed that permits an offset of 32767 for 8-bit
characters and 16382 for 4-bit characters.

200
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PRACTICAL CONSIDERATIONS

In an unstable environment, ISAM files may beccme corrupted, a condition
in which the <coarse table, fine tables, or data record links do not
concur. Corruption of ISAM files may occur when the physical file on
disk has not yet been updated to reflect the changes that have been made
to buffers in memory. If an event occurs that prevents the updated
buffers from being written into the physical file, the file may become
corrupted. Use of standard ISAM helps to prevent this situation.

In those cases where the program terminates prematurely (because of an
invalid index, a divide-by-zero error, a DS, or some other reason),
standard ISAM performs an orderly close of the ISAM file, while
primitive ISAM may not be able to close the file properly. However, the
possibility of file corruption exists only after the file has been
opened as INPUT-OUTPUT and writes or deletions have occurred. File
damage is by no means inevitable, and two file options (WAITUPDATEIO and
PHYSICALUPDATE) are available to further reduce such a possibility.
(Refer to the WAITUPDATEIO and PHYSICALUPDATE options discussed under
the ISOPEN procedure.)

ISAM files may not be specified as input or output files to the SORT
utility, except in PL/I. They must be read and written by INPUT or
OUTPUT procedures. Other system software may also encounter similar
situations when attempting to process ISAM files in a direct fashion
without use of the ISAM procedures.

ISAM files may be accessed simultaneously by several programs, if they
all open the file as INPUT. Only one program may access the file while
it is open as OUTPUT or INPUT-OUTPUT.

Direct I/0 is used by ISAM procedures to access the data. Therefore,
the ISAM file must be a direct file. 1In primitive ISAM, the program
must declare the file as direct. The compiler properly declares the
file 1in the standard method. The direct arrays used by the ISAM
procedures are created by ISOPEN and returned by ISCLOSE. The program
does not need other direct arrays to access the data.

- ISAM files may not be used in an Inter-Program Communication (IPC)
environment in which the file is passed from one task to another.

201
Indexed Sequential Access Method

6.4 IMPLEMENTATION FOR PRIMITIVE ISAM PROCEDURES

ISAM is implemented by a set of procedures in the PLISUPPORT support
library. Symbolics for these procedures are contained in the PLISUPPORT
symbol file. The procedures called directly from programs are as
follows:

1. ISOPEN - Open and set up file.

2. ISCLOSE - Close file.

3. ISREAD - Randomly read a record.

4. ISWRITE - Add a record to the file.

5. ISREADNEXT - Read the next sequential record.
6. ISREWRITE - Rewrite the record just read.

7. ISKEYWRITE - Randomly rewrite a record.

8. ISDELETE - Delete a record.

These ISAM procedures must be used to OPEN, CLOSE, create, and access
ISAM files. Non-ISAM files cannot be accessed by these procedures.
Non-ISAM file OPEN, CLOSE, READ, and WRITE statements and accesses via
file attributes are not disallowed; however, the use of any of them may
cause unexpected results that may be detrimental to the integrity of the
ISAM file. The ISCLOSE procedure should be used to CLOSE the ISAM file.
An implicit CLOSE of an ISAM file caused by exiting a block does not
properly save the file.

A SSET INSTALLATION 1 record must appear at the ©beginning of the
symbolic for all ALGOL programs that invoke ISAM procedures.

202
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

6.4.1 1SAM PROCEDURES

The following subsections describe the system procedures that
collectively institute the ISAM methodology. Each procedure is defined
in terms of its function or functions within the general ISAM operating
method and in terms of 1its interaction, if any, with other ISAM
procedures. The standard program interface does not require direct use
of these procedures and their parameters. However, the primitive
program interface uses these procedures directly.

1SOPEN

The ISOPEN procedure opens an ISAM file for INPUT, OUTPUT, or
INPUT-OUTPUT. ISAM files require additional information not provided
for non-ISAM files. The ISOPEN procedure uses and creates the

additional information according to the method of file opening.
Non-ISAM files may not be opened by this procedure.
ISAM CALLING SEQUENCE:

ALGOL: RS := ISOPEN(FILE,VALUE,STACK);

COBOL (PRIMITIVE): COMPUTE RS = ISOPEN (FILE, VALUE, STACK).

RS The result word returned to the program. RS is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file being opened. FILE must be declared as a
DIRECT FILE in ALGOL and COBOL.

VALUE Specifies how the ISAM file is to be opened:
1 - open as INPUT
2 - open as OUTPUT
3 - open as INPUT-OUTPUT

INPUT and INPUT-OUTPUT require an existing ISAM file. OUTPUT always
means creation of a new file.

203
Indexed Sequential Access Method

OUTPUT requires specification of additional file information. High

order bits

in this parameter (VALUE) are utilized to convey certain

information used for file creation. Bits and fields contained in this
parameter are as follows:

47:1

46:15

31:2

29:14

15:4

11:1

Separate key (PL/I only).
Offset of the key, in bytes, from the start of the record.
It is the TRUE (zero-relative) offset. A value of zero

means the start of the record.

Open action (open as INPUT or as INPUT-OUTPUT only).

0 Open the file.
1 - Use PRESENT attribute to open.

Use AVAILABLE attribute.

N
!

3 - Not used.

Actual key length in bytes.

Mode of key. Values are as follows:

0 - BINARY (6-byte maximum)

1 - 8-Bit character

2 - 8-Bit unsigned numeric (11 bytes maximum)

3 - 8-Bit MSD signed numeric (11 bytes maximum)

4 - 8-Bit LSD signed numeric (11 bytes maximum)

5 - 4-Bit characters

6 - 4-Bit unsigned numeric (5 bytes maximum)

7 - 4-Bit MSD signed numeric (6 bytes maximum)

8 - 4-Bit LSD signed numeric (6 bytes maximum)

Duplicate key option. If this field is Zzero, records with
duplicate keys may not be added to the file. If this
field is one, duplicates are chained in first-in,

first-out (FIFO) sequence. A duplicate key condition
exists when the keys in two records are equal.

204
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

10:1 Deleted record option. If this field 1is 2zero, deleted
records are physically delinked and their record space
becomes available for reuse. If this field 1is one,

deleted records are flagged by having 4"FF" (all bits ON)
placed in the first byte of the record. Records marked as
deleted can be retrieved using READNEXT if bit 2 of this
parameter word equals 1.

9:1 Sequence option. If this field is zero, the file 1is in
ascending sequence. If this field is one, the file is in
descending sequence.

8:6 Fine table ratio. During file <creation, this field
controls the number of entries made in the fine table(s)
and specifies the number of unique records to be added to
the file between fine table entries.

2:1 See deleted record option. If this field is zero, deleted
records are not visible to the program. If this field is
one, deleted records may be visible to the program if the
deleted record option is set to 1 and READNEXT is used.

1:2 Open type (previously described).

0 - invalid

1 - INPUT
2 — OUTPUT
3 - INPUT-OUTPUT

STACK specifies the first of four consecutive words in the program's
stack. The location of the first word is used by ISOPEN to build data
descriptors in all four words. The location is retained in the FIB for
use as long as the file remains open. The program must provide the
space by declaring the four consecutive stack locations preferably with
four type REAL variables in ALGOL and four usage COMP-1 in COBOL. The
four words are not usable by the program while the ISAM file is open. A
program reference to any of the four words during the time the file is
open causes an invalid operator.

205
Indexed Sequential Access Method

Additional file information is conveyed to ISOPEN by use of the first of
the four consecutive words.

47:24

23:1

22:1

21:6

15:16

Number of overflow records per prime record area row.
This field 1is wused only when the file is opened output.
At file creation, this field is used to increase the value
of AREASIZE specified for the file. The new, larger value
of AREASIZE becomes a permanent attribute of the file.
Unoccupied space, large enough to contain the number of
records specified by this field, is allocated in each row
of the file.

Wait update 1/0 field. 1If one, this field causes ISAM
procedures to wait for I/0 completion of all outstanding
I/0s before returning to the program. This field cannot
be set to one if the ANSI74 option is set in COBOL.

Physical update I/0 field. 1If one, this field causes the
ISAM procedures to initiate I/0s for all buffers and
tables that have been modified and need to be rewritten.
This field cannot be set to one if the ANSI74 option is
set in COBOL.

Unused at present but reserved for future implementation.

Number of file overflow area rows. This field 1is wused
only when the file is opened as OUTPUT. At file creation,
this field is used to increase the value of the AREAS
attribute specified for the file. The new, larger area
becomes a permanent attribute. Any areas represented by
this field are not used to contain prime data. Prime data
area rows unused at file creation are, however, placed 1in
the file overflow area pool. Therefore, when in doubt, it
is better to make the AREAS attribute larger.

206

ISCLOSE

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The ISCLOSE procedure closes an ISAM file in an orderly fashion. The
normal CLOSE statement is not sufficient to close an ISAM file properly.
Certain additional file information is saved within the file by the

ISCLOSE procedure,
restored.

and the four consecutive stack words are cleared or

Non-ISAM files may not be closed by this procedure.

PROGRAM CALLING SEQUENCE:

ALGOL:

:= ISCLOSE (FILE, TYPE);

COBOL (PRIMITIVE): COMPUTE RS = ISCLOSE (FILE, TYPE).

RS

FILE

TYPE

The result word returned to the program. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

The ISAM file to be closed.

A numeric value that specifies how the ISAM file is to be
closed:

0

Close the file and release it from the program. This
numeric value indicates a normal close. The file
does not remain on disk unless it has been previously
locked.

Close the file with lock. The file is entered into
the directory and remains on disk. Any previous file
with a duplicate name may be removed.

Close the file and purge 1its entry from the
directory. Any disk space occupied by the file
becomes available for reassignment by the system.

207
Indexed Sequential Access Method

ISREAD
The ISREAD procedure reads a record in a random fashion wusing the
program-supplied key. If the program-supplied key matches a record in

the ISAM file, the matching record is returned. When no matching record
exists, the next logically sequential record is returned.

The ISAM file must be opened as INPUT or INPUT-OUTPUT in order to read
records. The ISREAD procedure may not be used to read non-ISAM files.
The ISAM file must be opened by the ISOPEN procedure before the ISREAD
procedure can be used to read records.
PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREAD (FILE, KEY, AREA);

COBOL (PRIMITIVE): COMPUTE RS = ISREAD (FILE, KEY, AREA).

RS The result word returned to the program. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file.

KEY The key identifying the record to be read. For ALGOL, KEY
must be a pointer. For COBOL, KEY must be a data item.

AREA The area to contain the record to be read. The AREA must
be at least as large as the record. For ALGOL, AREA must
be a pointer. For COBOL, AREA must be a data item.

208
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISWRITE

The ISWRITE procedure writes a record, using the provided key, from the
provided area. This procedure never overwrites or rewrites previously
existing records but always adds (or attempts to add) records to the
file.

When the ISAM file is opened as OUTPUT, a new file 1is created. The
ISWRITE procedure 1is used to create coarse and fine tables in addition
to placing records into the ISAM file. Records must be presented in the
sequence specified by the program when the ISAM file is created.
Duplicate record acceptance depends on the setting of the duplicate Kkey
option.

When the ISAM file is opened as INPUT-OUTPUT, a previously existing file
is wutilized. Records need not be presented in any special sequence.
The records are written into area overflow or file overflow space and
appropriately linked into the ISAM file.

The file must be opened as OUTPUT or INPUT-OUTPUT. The ISWRITE
procedure may not be used for non-ISAM files. The file must be opened
by the ISOPEN procedure before the ISWRITE procedure can be used.

PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISWRITE (FILE, KEY, AREA);

COBOL (PRIMITIVE): COMPUTE RS = ISWRITE (FILE, KEY, AREA).

RS The result word returned to the program. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file.

KEY The key identifying the record. The value associated with
KEY must match the wvalue in the key location in the
record. For ALGOL, KEY must be a pointer. For COBOL, KEY
must be a data item.

AREA The record to be written. The area must be at least as
large as the record. For ALGOL, AREA must be a pointer.
For COBOL, AREA must be a data item.

209
Indexed Sequential Access Method

ISREADNEXT

The ISREADNEXT procedure reads the next logically sequential record.
The record returned to the program is the record whose key immediately
follows in sequence after the most recent record obtained by ISREAD or
ISREADNEXT.

The ISAM file must be opened as INPUT or as INPUT-OUTPUT by the ISOPEN
procedure before the ISREADNEXT procedure can be used. procedure.
Non-ISAM files may not be accessed by the ISREADNEXT procedure.

The purpose of the ISREADNEXT procedure 1is to provide a sequential
processing capability. When ISREADNEXT 1s wused in combination with
ISREAD and ISREWRITE, records may be sequentially processed and updated
for all or part of any ISAM file. ISREADNEXT may be used to read an
entire ISAM file in a sequential manner.

PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISREADNEXT(FILE, AREA);

COBOL (PRIMITIVE): COMPUTE RS = ISREADNEXT (FILE, AREA).

RS The result word returned to the progran. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file.
AREA The area to contain the record to be read. The area must

be at least as large as the record. For ALGOL, AREA must
be a pointer. For COBOL, AREA must be a data item.

210
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISREWRITE

The ISREWRITE procedure replaces the record previously read with the
data currently in the record area. This procedure allows records to be
updated. Either the ISREAD or ISREADNEXT procedure must immediately
precede the ISREWRITE procedure. The key contained in the record to be
rewritten must match the key in the record that was read by the
immediately preceding file operation.

The file must be an ISAM file and must be opened as INPUT-OUTPUT.
Additional records may not be added to the file by the ISREWRITE
procedure.
PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREWRITE(FILE, AREA);

COBOL (PRIMITIVE): COMPUTE RS = ISREWRITE (FILE, AREA).

RS The result word returned to the program. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file.
AREA The record to be written. The area must be at 1least as

large as the record. For ALGOL, AREA must be a pointer.
For COBOL, AREA must be a data item.

Indexed Sequential Access Method

ISKEYWRITE

211

The ISKEYWRITE procedure provides a random access update capability for
ISAM files. "It replaces a currently existing record from the file with

the record provided by the program.

The file must be an ISAM file and must be opened as INPUT-OUTPUT. The
ISKEYWRITE procedure provides update capability and does not add

additional records to the file.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISKEYWRITE(FILE, KEY, AREA);

COBOL (PRIMITIVE): COMPUTE RS = ISKEYWRITE (FILE, KEY, AREA).

RS The result word returned to the program.
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

RS is type

FILE The ISAM file.

KEY The key identifying the record to be replaced. The value
associated with KEY must match the wvalue in the key
location in the record passed in the AREA parameter. For

ALGOL, KEY must be a pointer. For COBOL, KEY must be a

data item.

AREA The record to be written. The area must be

at least as

large as the record. For ALGOL, AREA must be a pointer.

For COBOL, AREA must be a data item.

212
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISDELETE
The ISDELETE procedure drops or deletes records from the file. When

duplicate records are allowed, the first (that is oldest) record is
deleted. This procedure provides random access delete capability.

The file must be an ISAM file and must be opened as INPUT-OUTPUT. The
ISDELETE procedure deletes the first (that is, oldest) record with a
matching key. The record may be physically or 1logically deleted

depending on the DELETED RECORD OPTION.

PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISDELETE(FILE, KEY);
COBOL (PRIMITIVE): COMPUTE RS = ISDELETE (FILE, KEY).

RS The result word returned to the program. RS 1is type
BOOLEAN in ALGOL and COMPUTATIONAL in COBOL.

FILE The ISAM file.
KEY The key identifying the record to be deleted. For ALGOL,
KEY must be a pointer. For COBOL, KEY must be a data

item.

213
Indexed Sequential Access Method

6.5 ISAM I/0 RESULT INFORMATION

The ISAM procedures return result values to the calling program. These
result values indicate success or failure of the program request. Each
value returned is a 48-bit word. 1In primitive ISAM, the result word is
type BOOLEAN in ALGOL and COMP-1 or COMP in COBOL. 1In standard ISAM,
PL/I uses CONDITION CODES and COBOL uses FILE STATUS. The PL/I Language
Reference Manual describes CONDITION CODES. FILE STATUS is described in
the COBOL Language Manual.

214
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

PRIMITIVE ISAM

The value returned when primitive ISAM is used is a 48-bit word that 1is
nonzero when an exception condition exists and zero when no exception
condition occurs. Specific, individual bits are utilized to indicate
the exception condition. If several different exceptions occur, the
corresponding bit is turned ON for each condition and creates the
possibility of reporting back several exceptions for a single request.
The rightmost and least significant bit (bit 0) is used for a specific
purpose. Bit O is turned ON when any exception condition occurs and
turned OFF when no exception exists. The remaining bits convey the
following meanings:

1:1 A hardware error, (for example, a parity error), occurred
while processing the request. Another bit (7, 8, 9, or
10) is turnea ON to further define the problem.

2:1 An attempt was made to read or write beyond end-of-file.

3:1 No record was found in the file whose key matches the
requested key.

431 No space is available in the file to contain the record
just written. (This condition applies for adding records
to the file; it does not apply to file creation.)

5:1 A request was made to add a record to the file, and the
key contained in the record matched a record that existed
in the file. Refer to bit 6.

6:1 A record was added to the file (the key of the record
matched an existing record of the file). The duplicate
key option permits or disallows this situation. When

duplicates are allowed, both bit 5 and bit 6 are ON to
indicate that a duplicate record has been added. Refer to
bit 5.

7:1 A hardware error occurred in reading a data record. Bit 1
is also ON.

8:1 A hardware error occurred in writing a data record. Bit 1
is also ON.

9:1 A hardware error occurred in reading an ISAM table. Bit 1
is also ON.

10:1 A hardware error occurred in writing an ISAM table. Bit 1
is also ON.

11:1 This bit is not used.

12:1

13:1

14:1

15:1

16:1

17:1

18:1

19:1

20:1

21:1

22:1

23:1

215
Indexed Sequential Access Method

An attempt was made to open the ISAM file, and the
parameters passed to ISOPEN failed to meet one or more
requirements. The "first of four stack words" parameter
must be a Stuffed 1Indirect Reference Word (SIRW). The
file must be declared in a block that will be entered no
sooner than the block in which the four stack words
reside. The file must not reside 1in a different stack
from the program doing the open. The block containing the
four stack words must also contain a file, an array, or
something that causes a tag-6 word for the block. The
tags of all four stack words must be zero. The key must
be defined to be contained in the records, have a size
greater than zero, and have a valid mode.

An attempt was made to open a non-ISAM file.

The file has not been opened or the open type does not
permit the request. (For example, an ISWRITE on a file
opened as INPUT.)

An ISREWRITE was requested, and the key of the record
being rewritten does not match the key in the last record
read, or the previous request was not an ISREAD or an
ISREADNEXT.

The ISAM file 1is being created, and the record just
written did not maintain proper file sequence. Records
must be presented in sequence during file creation. A
duplicate record also causes this bit to be ON when
duplicates are not allowed.

The value of AREAS specified 1s not large enough to
contain the data records written in the prime data area
during file creation.

ISOPEN is requested to open an already open file.

In an IPC environment, one program closed an ISAM file,
and another attempted an I1/0 after the file was closed.

An ISWRITE is requested, and the key supplied does not
match the key contained in the supplied record.

The ISAM file is not a direct file.

An attempt was made to write a record containing the
deleted record indicator (hex FF in first byte).

This bit indicates a PL/I program error condition. The
program is requesting an I/0 that is not allowed for keyed
files. An ON condition is raised in the PL/1 program.

216

24:

43:

46:

1

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

This bit is ON if ISOPEN is requested (by way of an open
action) to open the ISAM file using the PRESENT or
AVAILABLE file attributes; this bit also indicates that
the desired file could not be located. Refer to bits
43:8.

This field contains the result of testing the PRESENT or
AVAILABLE file attributes in the ISOPEN procedure. If the
file could not be opened, bit 24:1 1is also ON.

This bit is ON if the physical update 1I/0 action is ON,
the wait update I/0 option 1is OFF, and an I/O error
occurred as the result of doing an update I/0 in the
previous invocation of an ISAM procedure. Bit 1:1 is ON,
and 8:1 or bit 10:1 is ON.

217

I~
s
I~
O

The COBOL74 and RPG indexed sequential access method allows a file
sequenced by keys to be processed in both random and sequential modes.
The COBOL74 and RPG indexed sequential access method is provided by the
SYSTEM/KEYEDIO library (KEYEDICO) and has the same capabilities as the
ISAM intrinsic in the SYSTEM/PLISUPPORT library. However, files created
by PLISUPPORT cannot be referenced by KEYEDIO, nor can files created by
KEYEDIO be referenced by PLISUPPORT. Access to KEYEDIO procedures can
only be obtained through compiler-generated code.

218
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

1.1 PHYSICAL STRUCTURE OF KEYEDIO FILES

KEYEDIO files consist of three logical areas contained within one
physical file: coarse tables, fine tables, and data. The size of these
areas increases during the life of a file as records are added and
deleted. The areas are not distinct from one another and are intermixed
throughout the file. Each block of data in a KEYEDIO file contains
information for a single type of area. Control information describing
the block and how to access it is appended to the Dbeginning of each
block in the file.

COARSE TABLES

Coarse tables contain key values that describe fine tables or other
coarse tables. One entry exists in the coarse tables for each fine
table. Several coarse tables are created if more fine tables are
present than can be indexed by a single coarse table. These coarse

tables are then ordered by another level of coarse tables. This
hierarchy continues until only one table remains at the top level; this
table is called the "root table". A coarse table entry consists of a

key value equal to the largest key in the next lower table and a pointer
to that table.

FINE TABLES

Fine table blocks contain one key entry for each record. A key entry
consists of a key value and a pointer to the data record associated with
that key value.

DATA AREA

Data blocks contain the user's records. The records are stored in these
blocks exactly as they were written, but the record size is increased if
the user specifies that relative keys are to be used. This addition 1is
internal to the file only and need not be used when calculating record
size (MAXRECSIZE). A data block 1is accessed by going through fine
tables.

219
KEYEDIO

LOCATING DATA

To find a specific record, the wuser's key wvalue 1is first compared
against the key values in the coarse tables. The first key value in the
coarse table that is greater than or equal to the user's key value is
used to locate the coarse table at the next 1level. This process
continues until a fine table is encountered. The fine table 1is then
searched for the user's key value, and the data referenced by that key
entry is returned.

Because fine tables are sequentially ordered, they are 1linked together
so that only the fine tables and the data areas need to be read when
accessing the file sequentially.

A set of coarse and fine tables is created for each key defined by the
user. Also, coarse and fine tables are created for the relative key.

There is a limit of 4& keys per KEYEDIO data file. If the number of keys
exceeds 48, one of the following error messages 1is given:
FILE CONTAINS TOO MANY KEYS (GREATER THAN 48) FOR KEYEDIO TO HANDLE

USER OPEN REQUEST DECLARES TOO MANY KEYS (GREATER THAN 48) FOR
KEYEDIO TO HANDLE

220
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

7.2 FILE AND KEYEDIO LIBRARY MANAGEMENT

All KEYEDIO file-management routines are contained in the SYSTEM/KEYEDIO
library. Information about all of the users of the file is also
contained in the library stack. The library mechanism allows multiple
users to access the same file and also allows linkage of all users of
the same file to the same library stack. The wuser's position in the
file is maintained by a "current record pointer" that points to the fine
table entry corresponding to the user's current record in the file.

At file-open time, if the FILEORGANIZATION file attribute is equal to
INDEXED or INDEXEDNOTRESTRICTED, the wuser program 1is linked to the
SYSTEM/KEYEDIO library routines instead of the normal FIBSTACK
procedures. The KEYEDIO open routine performs certain checks to ensure
file integrity. (Refer to the section titled "Special Topics"” in the I/0
Subsystem Manual.)

If the file is declared to be of type INDEXED, all keys declared when
the file was created must be declared by the user program each time the
file is opened, and these keys must match exactly. If the file 1is of
type INDEXEDNOTRESTRICTED, keys not known (not declared) by the user
program are still updated.

When the file is updated, recovery information is stored so that file
integrity may be maintained 1in the event of abnormal termination.
Because of the overhead involved, this information is not saved when the
file is being created.

KEYEDIO files may be used by more than one user program at a time. Any
number of user programs may be reading the file, but when one of the
programs attempts to update (add, delete, or rewrite) the file, other
users of the file are 1locked out for the duration of the update
transaction. This lockout feature allows more than one program to have
the file open in update mode, while also preserving the integrity of the
data. No mechanism exists for locking out other users for more than a
single transaction; record level lockout is not provided.

The KEYEDIO library keeps track of the number of programs currently
reading and writing to the file. To do an update, both the reader and
writer counts must equal zero. To do a read, the write count must equal
Zero.

221
KEYEDIO

The KEYEDIO library is written and compiled in NEWP. The base library
is frozen permanently. Because the base library is frozen, the
following steps must be taken if the SYSTEM/KEYEDIO library needs to be
removed from the active library list:

1. Find the mix number of the KEYEDIO library by entering the LIBS
(Library Task Entries) Operator Display Terminal (ODT) command.
(Refer to the Operator Display Terminal (ODT) Reference Manual
for further information about this and other ODT commands.)

2. Enter "<mix number> THAW" at the ODT to remove the KEYEDIO
library from the list.

NOTE
KEYEDIO will terminate only when no tasks
are using it.

The KEYEDIO library job summary will then be printed.

After the old KEYEDIO library has terminated, a new KEYEDIO library can
be installed by using the SL (System Library) ODT command.

222
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

THE IMPORTANCE OF NOT DSING THE KEYEDIO LIBRARY

It is imperative that the KEYEDIO library stack and the library stacks
it processes for each open KEYEDIO file not be DSed. If these libraries
are DSed, KEYEDIO files will be hung or a fatal system dump will
eventually occur. In order to prevent these libraries from being DSed
accidentally, they are automatically locked by an implicit LP (Lock
Program) ODT command when they are initiated.

223
KEYEDIO

7.3 PROGRAM INTERFACE

Only COBOL74 and RPG can create files that define keys within a record.
All languages may use the INDEXEDNOTRESTRICTED value of the
FILEORGANIZATION attribute to access or create files with relative keys.
Files created and later opened as INDEXEDNOTRESTRICTED have all keys
updated during an update, even if the user has not specified all the
keys.

The procedures provided by the KEYEDIC library may only be used through
normal compiler I/0 constructs. No direct interface exists between the
user program and the library.

224
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

7.4 INDEXED (KEYEDIO) FILE ATTRIBUTES

There are two kinds of attributes discussed 1in this section: file
attributes that must be set in a special way when indexed files are
created and accessed (FILEORGANIZATION, BUFFERS and BLOCKSIZE), and
attributes that are internal to SYSTEM/KEYEDIO and can only be accessed
by the compilers (ISAMKEYS and ACCESSMODE).

To ensure maximum processing efficiency and minimum use of save memory,
the BLOCKSIZE and BUFFERS attributes should be set carefully. (Refer to
the I/0 Subsystem Reference Manual for descriptions of these and other
file attributes.)

Increasing the number of buffers used by KEYEDIO reduces the time needed
to process an indexed file at the expense of increased usage of save
memory. In contrast, reducing the number of buffers increases
processing time and decreases save memory usage.

Increasing the block size to allow for one- or two-level access to data
in the indexed file decreases processing time but also increases usage
of save memory. Decreasing block size to allow for three- or four-level
data access increases processing time and decreases save memory usage.

The needs of a particular installation must be considered when choosing
values for the BLOCKSIZE and BUFFERS attributes. Suggestions for how to
choose BUFFERS and BLOCKSIZE attributes are given 1in the following
paragraphs.

225
KEYEDIO

THE FILEORGANIZATION ATTRIBUTE

The FILEORGANIZATION attribute can be set in one of two ways for an

indexed file: indexed files that have relative keys have
FILEORGANIZATION attribute equal to INDEXEDNOTRESTRICTED. (RPG files
have relative keys by default.) Indexed files that do not have relative
keys have FILEORGANIZATION attribute equal to INDEXED. The

FILEORGANIZATION attribute must be set each time the indexed file is
opened. (Refer to the 1I/0 Subsystem Reference Manual for further
information about the FILEORGANIZATION attribute.)

The number of buffers used by the KEYEDIO 1library in processing an
indexed file may be controlled by the user.

A program may indicate the number of buffers KEYEDIO is to use by
setting the value of the BUFFERS attribute of the indexed file. The
value of the BUFFERS attribute is used by the library to determine how
many buffers to allocate for processing that indexed file.

226
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Impact of Number of Buffers on Processor Time

Increasing the number of buffers used by KEYEDIO reduces the time needed
to process an indexed file at the expense of increased usage of save
memory. Reducing the number of buffers decreases save memory usage but
increases processing time. In general, programs doing random accesses
to the indexed file are more sensitive to the number of buffers than
programs doing serial accesses.

The effect of changing the number of buffers on the time needed to
process a file tends to be proportional to the reciprocal of the number
of buffers: that is, reducing the number of buffers lengthens the
processing time more than increasing the number of buffers by the same
amount decreases the time. For this reason, decisions to decrease the
number of buffers below KEYEDIO's default of ten buffers should be the
result of careful consideration and measurement.

Impact of Number of Buffers on Save Memory

Increasing the number of buffers increases the save memory usage of the
KEYEDIO library; save memory is equal to the number of Dbuffers
multiplied by the actual block size (discussed under "CHOOSING A VALUE
FOR THE BLOCKSIZE ATTRIBUTE"). The overall performance of the system,
as well as the processing time of the specific application, should be
taken into account when deciding to increase the number of buffers.

The value specified for the BUFFERS attribute at file creation time 1is
especially important because this value becomes the permanent default
number of buffers to be allocated whenever the file is used later. The
time needed to create the file is usually not as strongly affected by
the number of buffers as later uses of the file are. For this reason,
specifying the proper number for the permanent default is generally of
greatest importance when specifying the BUFFERS value to use for file
creation.

227
KEYEDIO

Rules for Determining the Number of Buffers Used

KEYEDIO determines hcw many buffers to use for processing an indexed
file according to the following rules:

1.

First, the value of the BUFFERS attribute specified when the
file is created is stored permanently in the file itself. This
value is used by the KEYEDIO library both when creating the
file and as the default number of buffers to allocate each time
the file is subsequently opened.

If the value of the BUFFERS attribute is not specified at file
creation time or the value of the BUFFERS attribute specified
is two or less, KEYEDIO uses its default value of ten buffers
both for file creation and as the default number of buffers for
subsequent opens of the file when the file is being accessed by
a single user.

Second, the value of the BUFFERS attribute specified when an
existing indexed file is opened is used to indicate the number
of buffers the KEYEDIO library should use in processing that
file. KEYEDIO determines the number of buffers to use for an
existing file in the following way:

a. When the file is not being used by any other programs at
the time it 1is opened, and if the number of buffers
specified 1is 3 or greater, allocate that number of
buffers. Otherwise, allocate the default number of
buffers established at the time the file was created.
Also, allocate an additional buffer for the rocot table of
each key.

b. When the file is being used by other programs at the time
it 1s opened, increase the total number of buffers
allocated by the number of ©buffers specified or by a
default determined by the compiler (as described under
c.). When there are multiple users of an indexed file,
the buffers are allocated in a common pool by the KEYEDIO
library and are shared by all the users.

C. Some compilers automatically set the value of BUFFERS even
when the program has not specified a value for BUFFERS.
In particular, the COBOL74 compiler sets BUFFERS to two if
it 1is not specified; the RPG compiler sets BUFFERS to one
if it is not specified for an indexed file. 1In order to
keep the number of KEYEDIO buffers at the default value
when an existing indexed file 1is opened, the BUFFERS
specification for the indexed file should be set to zero.

228

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The compiler-set defaults will not interfere with the
default assignment of 10 buffers at file creation time for
an indexed file (because the compiler default 1is two oOr
less) or the assignment of 10 buffers by default when a
single access is made to an already existing indexed file.
The compiler default would have an impact when many
programs access an indexed file. Each new program
accessing the indexed file would increment the number of
buffers in use by the compiler default setting.

The maximum value that may be set for the BUFFERS file attribute is 63.
The maximum total number of buffers used by the KEYEDIO library is 255.
Once this 1limit is reached, additional buffers will not be allocated,
regardless of the BUFFERS specifications of later users.

If the BUFFERS attribute of an indexed file is interrogated, the value

returned
program,

is

the value currently established for that file by the

not the total number of BUFFERS that are actually being used by

KEYEDIO at that time.

229
KEYEDIO

The actual block size used by KEYEDIO is different from the block size
provided by the wuser because space must be added to round the record
size up to an exact multiple of six characters, to allow room for the
relative Kkeys of an INDEXNOTRESTRICTED file, and to provide for the ten
words of header information in each block. Actual block size is used to
calculate how much save memory is actually occupied by the KEYEDIO file.
If the actual block size that has been calculated is not satisfactory to
the programmer, it may be necessary to adjust the user-specified block
size, that is, the attribute BLOCKSIZE.

The user-specified block size is saved in the KEYEDIO file and is
returned as the value of the BLOCKSIZE file attribute when the indexed
file is open. If this attribute 1is interrogated when the file is
closed, it always returns the value of 30, which is the value that the
KEYEDIO library uses when creating the file. (This is a side effect of
the fact that the KEYEDIO 1library manipulates the file using DIRECT
1/0.)

The proper specification of block size is extremely important to the
performance of applications that use indexed files because the actual
block size (calculated according to the algorithm given under
"Calculating Actual Block Size") is used not only for storing the data
but also as the size of the key index tables used to access the data.
The size of these tables and the number of records in the file determine
how many tables must be searched in order to find a particular record.
Each additional table that must be searched increases the processor and
I/0 time that is required to access a record.

The most efficient access is obtained when only a single table must be
searched 1in order to find the key. A single-table search requires that
the block size be large enough to hold the keys for all the records in
the file; thus, this block size is usually not a practical choice except
for files with a small number of records.

The next most efficient access is obtained when only two tables (a
coarse table and a fine table) must be searched to find the key. A
two-table search requires a block size large enough to hold a number of
keys equal to the square root of the number of records in the file. A
block size of this value is generally the most suitable choice for all
but very small or very large indexed files. A block size smaller than
this square root value requires multiple table accesses and noticeably
increases the time required for random accesses to the file.

230
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The buffers used by KEYEDIO occupy save memory. The amount of save
memory to be used for a given indexed file can be approximated by
multiplying the actual block size (calculated according to the algorithm
given in "Calculating Actual Block Size") by the number of buffers to be
used for the file.

If the save memory requirements for block sizes that provide one- oOr
two-level access to data are too great, a new block size should be
calculated that provides three- or four-level access. This block size
may be calculated using the algorithm given under "Calculating
User-specified Block Size (2 Level Search)"; but at step 2 compute the
cube root or 4th root of the number of records instead of the square
root.

231
KEYEDIO

Calculating Actual Block Size

The actual block size used by KEYEDIO is different from the BLOCKSIZE
attribute specified by the user because space must be added to round the
record size up to an exact multiple of sixX characters, to allow room for
the relative keys of an INDEXEDNOTRESTRICTED file, and to provide for
the ten words of header information in each block.

The algorithm used by KEYEDIO to compute the actual block size for a
file is as follows:

1. Divide the wuser-specified BLOCKSIZE by the user-specified
record size (MAXRECSIZE), truncating any remainder. This gives
the user-specified records per block.

2. Round the user-specified record size up to the next multiple of
six characters, if it is not already an exact multiple of six
characters. Convert this record size to the number of words
required to hold the record by dividing by six.

3. If this is an INDEXEDNOTRESTRICTED file, add one (word) to the
record size to allow space for the relative key.

4. Compute a trial block size by multiplying the record size in
words (calculated in steps 2 and 3) by the user-specified
records per block (calculated in step 1). Then add ten words
to provide space for the header information in each block.

5. Calculate the actual block size by rounding the trial block
size from step 4) up to the next multiple of 30 words, if it is
not already an exact multiple of 30 words.

Once the actual block size has been calculated, as many records as will
fit are placed in each block. That is, if the rounding process of step
5 adds enough space to the block for additional records, that space will
be used, and the actual records per block will be greater than the
user—-specified records per block calculated in step 1.

232

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

Calculating User-Specified Block Size (2 Level)

To calculate the proper block size for an indexed file, assuming the
two-level table search is desired, make the following calculation:

Calculate the number of records the file will contain over its
lifetime.

Compute the square rocot of the number of records. Then
multiply this value by an "adjustment” factor to allow for the
fact that not all the tables will be completely filled. The

result of this computation is the desired number of keys per
block.

The value of the "adjustment" factor is determined by the way

the file 1is created and updated. If the file is created
sequentially with the entries for all the keys in ascending
order, and few records will be added later, a small

"adjustment" factor of 1.1 can be used. If the file is created
sequentially, but more records are to be added, use an
"ad justment" factor of about 1.3 (or greater, if many records
will be added). If the file is created with the entries for
some of the keys occurring in random order, use an "adjustment"
factor of 2.0.

Compute the size of the largest key entry by performing the
following steps:

a. Find the size of the largest key in the record.

b. Round this size up to the next multiple of six characters,
if it is not already a multiple of six characters.

C. Add six characters to allow space for the key entry's
pointer to the data record.

Compute the desired block size by multiplying the desired
number of keys per block (from step 2) by the size of the
largest key entry (from step 3).

Round this desired block size up to the next multiple of the
record size, 1if it 1is not already a multiple of the record
size. This last step ensures that the Dblock size chosen is
suitable for storing the data records as well as the keys.

233
KEYEDIO

The block size calculated by this procedure provides two-level access,
but its impact on the system must be determined before deciding that
this block size is the correct block size to use. In particular, the
effects of the block size on memory usage must be considered. (Refer to
"The Effect of Block Size on Save Memory".)

See also

The Effect of Block Size on Save Memory + « « « « « « . 2230

234
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ATTRIBUTES INTERNAL TO SYSTEM/KEYEDIO

The opening of keyed files requires additional information for which no
provision is made 1in non-keyed files. The attributes ISAMKEYS and
ACCESSMODE provide this information. ISAMKEYS and ACCESSMODE may only be
accessed by the compilers.

The ISAMKEYS attribute describes the keys declared by the user program.
Each Kkey 1is one word of information put into the file description and
marked as an ISAMKEYS attribute (attribute number = 148). The ISAMKEYS
attribute 1is passed to the KEYEDIO 1library at file-open time. The
meaning of the various fields within the value returned by the ISAMKEYS
attribute are as follows:

Name Field Value Meaning
KEYFLAGF [46:01] Relative or keyed key.

0 Relative key.

1 KEYEDIO key.
ALTERNATEKEYF [45:01] Alternate or primary

0 Primary key.

1 Alternate key.
DUPLICATEF [44:01] Duplicates.

0 No duplicates.

1 Duplicates.
KEYORGANIZATIONF [43:01] Key organization.

0 Descending.

1 Ascending.
KEYSIGNPOSITIONF [39:04] Sign information.

0 No sign:

alphanumeric data.
1 Leading separate:

numeric data, leading

separate sign.

Trailing zone:

numeric data, trailing

zone.

3 Leading zone:
numeric data, leading
zone sign.

4 Trailing separate:
numeric data, trailing
separate sign.

5 Operand.

6 Two's complement.

N

235

KEYEDIO
Name Field Value Meaning
KEYTYPEF [35:04] Type of key.
0 Word.
2 HEX field.
4 HEX or EBCDIC field.
8 EBCDIC.
8 ASCII.
KEYLENGTHF [31:16] Length in KEYTYPEF
units.
KEYOFFSETF [15:16] Offset in record in
KEYTYPEF units.
The ACCESSMODE attribute determines the way the file is accessed. The

ACCESSMODE attribute is also contained in the file description. The
values and mnemonics of the ACCESSMODE attribute are as follows:

Value Mnemonic Meaning
0 SEQUENTIALACCESS File access 1s sequential only.
1 RANDOMACCESS File access is random only.
2 DYNAMICACCESS File access 1is sequential and

random.

236
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

~
[&]

KEYEDIO PROCEDURES

The procedures that are exported from the KEYEDIO library are described
in the following subsections. These procedures are invoked by commands
in the appropriate languages; refer to the Report Program Generator
(RPG) Reference Manual and the COBOL ANSI-74 Reference Manual.

237
KEYEDIO

ISAMOPEN

ISAMOPEN opens a file that has its FILEORGANIZATION attribute equal to
INDEXED or INDEXEDNOTRESTRICTED. If a new file is being created, the
file is initialized and the key information is saved. Initialization
includes creation of a key root table for each key defined by the user
program. If the user program is accessing an existing file, the user's
file declaration and key information are checked against those of the
existing file, and the user's current record pointer and current key of
reference are established.

The ISAMOPEN procedure uses the following parameters and returns an open
result:

ISAMOPEN (ISAMFILE,FILEINFO,OPENTYPE)

ISAMFILE The user's file. When creating a new file, the
attributes contained in ISAMFILE are used to set
up the keyed file.

FILEINFO An array that contains information about the
program opening the file and the keys declared
within that program. The meanings of the wvalues
returned from the array are given in the
following table. Not all the values provided
for are wused by the compilers or supported by
KEYEDIO.

Field Value Meaning

[47:04] Format level.
(Current level is 3.)
1 Initial implementation.
Language field is valid.
3 Attribute information
is passed.

N

[43:04] Status of file.
Closed.

Open Input.

Open Output.

Open Input/Output.
Locked.

O W N+ O

[39:08] Language of program
opening the file;
same values as in the
MCP language table.

238

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

[31:04]

[27:01]

[26:01]

[25:01]

{15:08]

[19:04]

[07:08]

[first key]

Value

[

(@]

Meaning

Type of access to use
on file.

Sequential.

Random.

Dynamic.

Deleted record flag.
Deleted records are not
visible.

Deleted records are
visible.

Presence of relative
keys.

No relative keys.
Relative keys.

Record Units.
Words.
Characters.

Relative index into
FILEINFO of first key
of first key attribute
(in words).

Record length flag.
Fixed.
Variable.

Number of keys.

For the number of keys,
list of the keys in
ISAMKEYS attribute
format.

239

KEYEDIO
OPENTYPE Specifies how the file 1is to be opened.

OPENTYPE has the same value as the FILEUSE
attribute.
Value Meaning

1 Input.

2 Output.

3 Input/Output.

The open result is an index into a table containing information about
the user's state and position within the file.

240
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISAMCLOSE

ISAMCLOSE flushes buffers, unlocks any remaining locks (present due to
abnormal termination), and closes the file.

The ISAMCLOSE procedure requires the following parameters and returns a
close result:
ISAMCLOSE (CLOSETYPE, MYINFO)
CLOSETYPE Specifies how the file is to be closed.
MYINFO An index into a table describing the current

state of the wuser's file. MYINFO is the value
returned by ISAMOPEN.

The close result is an indication that all cleanup has been done in
ISAMCLOSE.

241
KEYEDIO

ISAMSTART

ISAMSTART positions the user's current record pointer to the logical
record currently in the file whose key satisfies the comparison. If the
comparison is not satisfied by any record in the file, a "record not
found" result is returned (bits O ‘and 9 SET). A successful start
operation establishes the RECORDKEY parameter as the key of reference;
(the key of reference 1is the key that is used on any subsequent
sequential operations). No data is transferred during a start operation.

The ISAMSTART procedure requires the following parameters and returns a
start result:

ISAMSTART (RECORDKEY, KEYLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to be used for the start
operation. If the KEYFLAGF (bit 46) is SET, a
keyed start is indicated, and RECORDKEY

specifies the key in the same format as the
ISAMKEYS attribute. If the KEYFLAGF is not SET,
a relative start is indicated and the value
contained in RECORDKEY is used as the relative
key.

KEYLENGTH The length of the key to be used in the start
operation. KEYLENGTH must be less than or equal
to the key-length field of the RECORDKEY. 1If
KEYLENGTH 1is 1less than the key-length field of
the RECORDKEY, a partial key start is indicated.

RECORD The user's record area.

242

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

CHOOZE Specifies the type of start to be done, as
indicated in the following table:

15

20

Meaning

Start equal. (Finds the key
with the same value as the
key in the user's record.)

Start greater than or egual.
(Finds the first key with a
value greater than or equal
to the key in the key in the
user's record.)

Start greater than. (Finds
the first key with a value
greater than the key in the
user's record.)

MYINFO An index into a table describing the current

state

the wuser's file. MYINFO is the value

returned by ISAMOPEN.

The start result values are listed in the following table:

Field Value
[0:01] 1

0
[9:01] 1

Meaning

Error occurred.
No error occurred.

No key met conditions.

243
KEYEDIO

ISAMSEQUENTIALWRITE

ISAMSEQUENTIALWRITE updates the file with the user's record and updates
all key tables. Recovery information is saved before the key tables are
updated. A write physically updates the keyed file. ISAMSEQUENTIALWRITE
does not affect the current record pointer.

The ISAMSEQUENTIALWRITE procedure regquires the following parameters and
returns a sequential write result:
ISAMSEQUENTIALWRITE(RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)
RECORDKEY Not used for sequential writes.

RECORDLENGTH The length of the record to be written.

RECORD The user's record area.
CHOOZE Not used.
MYINFO An index into a table describing the current

state of the wuser's file. MYINFO is the value
returned by ISAMOPEN.

The sequential write result values are listed in the following table:

Field Value Meaning
[0:01] 0 No errors.
1 Error occurred.
[5:01] 1 Duplicate key found and

duplicates not allowed.

[6:01] 1 Primary keys are not in
sequential order.

244
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISAMSEQUENTIALREAD

ISAMSEQUENTIALREAD reads the record specified by the current record
pointer. The current record pointer is then updated to point to the
next record in the file.

The ISAMSEQUENTIALREAD procedure requires the following parameters and
returns a sequential read result:
ISAMSEQUENTIALREAD(RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)
RECORDKEY Not used for sequential reads.

RECORDLENGTH The length of the record to be read.

RECORD The user's record area.
CHOOZE Not used.
MYINFO An index into a table describing the current

state of the user's file. MYINFO is the value
returned by ISAMOPEN.

The sequential read result values are listed in the following table:

Field Value Meaning
[0:01] o] No errors.
1 Error occurred.

[9:01] 1 End of file.

245
KEYEDIO

ISAMRANDOMWRITE

ISAMRANDOMWRITE physically updates the KEYEDIO file with the wuser's
record and updates all key tables. Recovery information is saved before
the key tables are updated. ISAMRANDOMWRITE does not affect the current
record pointer.

The ISAMRANDOMWRITE procedure requires the following parameters and
returns a random write result:

ISAMRANDOMWRITE (RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to be used for the write. If
the KEYFLAGF (bit 46) is SET, a keyed write is
indicated, and RECORDKEY has the same format as
the ISAMKEYS attribute. If the KEYFLAGF is
RESET, a relative write is indicated, and the
value contained in RECORDKEY 1is wused as the
relative key.

RECORDLENGTH The length of the record to be written.

RECORD The user's record area.
CHOOZE Not used.
MYINFO An index into a table describing the current

state of the wuser's file. MYINFO is the value
returned by ISAMOPEN.

The random write result values are listed in the following table:

Field Value Meaning
[0:1] 0 No errors.
1 Error occurred.
[5:1] 1 Duplicate key found and

duplicates not allowed.

246
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISAMRANDOMREAD

ISAMRANDOMREAD reads the record specified by RECORDKEY. The key
specified by RECORDKEY becomes the key of reference, and the current
record pointer is updated to point to the next record.

The ISAMRANDOMREAD procedure requires the following parameters and
returns a random read result:

ISAMRANDOMREAD (RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to be used for the read. If
the KEYFLAGF (bit 46) is SET, a keyed read is
indicated, and RECORDKEY has the same format as
the ISAMKEYS attribute. If the KEYFLAGF 1is
RESET, a relative read 1is indicated, and the
value contained in RECORDKEY is wused as the
relative key.

RECORDLENGTH The length of the record to be read.

RECORD The user's record area.
CHOOZE Not used.
MYINFO An index into a table describing the current

state of the user's file. MYINFO is the value
returned by ISAMOPEN.

The random read result values are listed in the following table:

Field Value Meaning
[0:01] 0 No errors.
1 Error occurred.

[9:01] 1 Record not found.

247
KEYEDIO

ISAMREWRITE

ISAMREWRITE rewrites the record specified by RECORDKEY. If a serial
rewrite is done, the next record specified by the current record pointer
is rewritten. If a random rewrite 1is done, RECORDKEY specifies the
record to be rewritten. ISAMREWRITE does not affect the current record
pointer.

The ISAMREWRITE procedure requires the following parameters and returns
a rewrite result:

ISAMREWRITE(RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to use for the rewrite. If
the KEYFLAGF (bit 46) is SET, a keyed rewrite is
indicated. RECORDKEY then has the same format as
the ISAMKEYS attribute. If KEYFLAGF is RESET, a
relative write 1is indicated, and the wvalue
contained in RECORDKEY is used as the relative
key.

RECORDLENGTH The length of the record to be rewritten.
RECORD The user's record area.

CHOOZE Specifies whether a serial rewrite or a
sequential rewrite is to be done.

Value Meaning

16 Rewrite serial. File must
be opened with ACCESSMODE
sequential or dynamic, and
the previous operation on
the file must have been a
successful read.

18 Rewrite random. Replaces
the record specified by
RECORDKEY with the record
contained in RECORD.

MYINFO An index into a table describing the current
state of the user's file. MYINFO is the value
returned by ISAMOPEN.

248
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The rewrite result values are listed in the following table:

Field Value Meaning
[0:01] 0 No errors.
1 Error occurred.
[6:01] 1 Primary keys are not equal.

[9:01] 1 Record not found.

249

KEYEDIO
ISAMDELETE
ISAMDELETE deletes the specified record. The previous I/0 operation
must have been a successful read if & serial delete is to be done. A
serial delete deletes the record previously read. A random delete

deletes the record specified by RECORDKEY. ISAMDELETE does not affect
the current record pointer.

The ISAMDELETE procedure requires the following parameters and returns a
delete result:

ISAMDELETE(RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to be used for the delete. If
the KEYFLAGF is SET, a keyed delete is
indicated, and RECORDKEY has the same format as
the ISAMKEYS attribute. If the KEYFLAGF is
RESET, a relative delete is indicated, and the
value contained in RECORDKEY is wused as the
relative key.

RECORDLENGTH The length of the record to be deleted.
RECORD The user's record area.

CHOOZE Specifies whether a serial or random delete is
to be done.

Value Meaning
17 Delete serial; deletes the
record previously read. File
must be opened with

ACCESSMODE sequential or
dynamic, and the previous
operation must have been a
successful sequential read.

19 Delete random; deletes the
record specified by
RECORDKEY.
MYINFO An index into a table describing the current

state of the wuser's file. MYINFO is the value
returned by ISAMOPEN.

250
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

The delete result values are listed in the following table:

Field Value Meaning
[0:01] 0 No errors.
1 Error occurred.
[6:01] 1 Primary keys are not equal.

[9:01] 1 Record not found.

KEYEDIO

SETUPPERLIMIT

SETUPPERLIMIT defines the upper ‘bounds of the file.

251

This logical

end-of-file (EOF) is set only for the key defined by RECORDKEY. The

user's RECORD contains the value of the upper bound. If
set and an attempt is made to access beyond this limit,
(eof) condition is returned.

UPPERLIMIT 1is
an end-of-file

The SETUPPERLIMIT procedure reqﬁires the following parameters and

returns a set-upper-1limit result:

SETUPPERLIMIT (RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key whose logical

end-of-file is

set. If the KEYFLAGF (bit 46) 1is SET, a
set-upper-limit for a KEYEDIO key is 1indicated,

and RECORDKEY has the same

format as the

ISAMKEYS attribute. If the KEYFLAGF 1is RESET,
the value contained in RECORDKEY is used as the

upper limit of the relative keys.

RECORDLENGTH Used as the length of the key. RECORDLENGTH 1is
used in place of the KEYLENGTHF field of

RECORDKEY.

RECORD The user's record area.

CHOOZE Must have value of 21 (set upper limit) in
[6:6].

MYINFO An index into a table describing the current

state o©of the wuser's file. MYINFO is the value

returned by ISAMOPEN.

The set-upper—-limit result values are listed in the following table:

Field Value Meaning

[9:01] 1 RECORDKEY is invalid.

252
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

ISAMPWRITEN

ISAMPWRITEN performs a random write, delete, or rewrite operation.
ISAMPWRITEN calls the appropriate I/0 routine to handle the operation
specified by CHOOZE.

The ISAMPWRITEN procedure requires the following parameters and returns
a PWRITEN result:

ISAMPWRITEN (RECORDKEY, RECORDLENGTH, RECORD, CHOOZE, MYINFO)

RECORDKEY Specifies the key to be used for the update. If
KEYFLAGF (bit 46) 1is SET, a keyed update is
indicated, and RECORDKEY has the same format as
the ISAMKEYS attribute. If KEYFLAGF is RESET, a
relative update is indicated, and the value
specified by RECORDKEY is used as the relative
key.

RECORDLENGTH The length of the record to be read.

RECORD The user's record area.
CHOOZE Specifies the type of operation to be done.
Value Meaning
16 Rewrite serial; performs a

rewrite operation, updating
the record specified by the
current record pointer.

17 Delete serial; deletes the
record specified by the
current record pointer.

18 Rewrite random; updates the
record specified by
RECORDKEY.

253

KEYEDIO
Value Meaning
19 Delete random; deletes the
record specified by
RECORDKEY.

21 Set upper 1limit; sets the
: logical end-of-file for the
key specified by RECORDKEY

to the key value in RECORD.
MYINFO An index into a table describing the current

state of the wuser's file. MYINFO is the value
returned-by ISAMOPEN.

The PWRITEN result values depend on the type of operation defined in the
CHOOZE word.

254
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL
1.6 THE KEYEDIO FILE

The following subsection describes the structure of the KEYEDIO file.

SEGMENT 0 (ZERO) OF THE FILE

When a KEYEDIO file is created, the following information about the file
is saved in segment O of the file. Words in segment 0 are specified as
offsets from the standard block information area at the start of every
block. Since the block information area is currently 10 words long,
word O of segment O is actually located at word 10 of the block.

Word O Describes the physical characteristics of the file. The
values stored in this word are calculated at file creation
time based on the wuser's file declarations and space
requirements needed for maintaining the file.

Field Meaning

[47:08] The offset into the recovery area where the
contents of the new record are stored for
recovery of a rewrite operation.

[39:08] The default number of buffers to allocate when
this file is opened. This default 1is
established by the setting of the BUFFERS
attribute when the file was created.

[31:16] The size of the records contained in the file in
words. This wvalue may be different from the
user's declared MAXRECSIZE because of relative
keys. If the user program has specified relative
keys, the record size is adjusted to allow
relative keys.

[15:16] The block size of the file in words. This value
is different from the user's declared block
size.

255

Word 1 Contains information about the keys and the program that

created the

file.

word 1is copied directly from

FILEINFO [0] in ISAMOPEN at file creation time.

Field

[47:04)

[43:04]

[39:08]

[31:04]

[27:01]

[26:01]

[25:01]

[15:08]

[19:04]

Value

O W N+ O

-

Meaning

File format level (currently 1).

Status of file.
Closed.

Open Input.

Open Output.

Open Input/Output.
Locked.

Language of program
opening the file;
same values as in the
MCP language table.

Type of access to use
on file.

Sequential.

Random.

Dynamic.

Deleted record flag.
Deleted records are not
visible.

Deleted records are
visible.

Presence of relative
keys.

No relative keys.
Relative keys.

Record Units.
Words.
Characters.

Relative index into
FILEINFO of first key
of first key attribute
(in words).

Record length flag.
Fixed.
Variable.

256
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

[07:08] Number of keys.

[first key] For the number of keys,
list of the keys in
ISAMKEYS attribute
format.

word 2 Specifies the timestamp of the last update. The timestamp
is used 1in recovery. The current value of TIME (6) is
stored in this word whenever the file is about to be
updated. Every block that 1is written because of the
update contains this timestamp. (Refer to the "Recovery"
section.)

word 3 Specifies the segment that describes the keys (the key
information table).

Field Meaning
[39:20] Length of the key information.
[19:20] Relative segment number of

key information block.

word 4 Not currently used.

Word 5 Specifies the first block in the file that has never been
used. All blocks beyond the specified one are available
for use.

Field Meaning
[43:24] Relative segment number of the first

available block.

Word o Specifies the next available record slot. When adding a
record, the new record is stored at the location specified
by this word.

Field Meaning

[43:24] The relative segment number of the
current block.

[19:20] The offset into the block of the
next record location.

See

Word

Word

Word

Word

Word

Word

Word

Word

Word

also

Recovery.

7

8

9

10

11

12

13

14

15

257
KEYEDIO

Specifies the last user record to be updated. This word is

only

valid

section.)

The next relative key to be allocated.

have been specified,

[47:04])

[43:24]

[19:20]

if- non-zero. (Refer to the "Recovery"

Meaning

The type of update in process.

The relative segment number of the last
updated block.

The offset into the block of the last
updated record.

If relative Kkeys
this word contains the next relative

key value to be allocated.

User

User

User

User

User

User

User

specified
specified
specified
specified
specified
specified

specified

MINRECSIZE when the file was created.

MAXRECSIZE when the file was created.

BLOCKSIZE when the file was created.

FRAMESIZE when the file was created.

BLOCKSTRUCTURE when the file was created.

UNITS when the file was created.

EXTMODE when the file was created.

.268

258

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

BLOCK INFORMATION LAYOUT

A keyed file is made up of data and tables. Data and tables have the
same size, and each block contains the following control information:

Word O

Word 1

Word 2

Word 3

Word 4

Word 5

Contains information about the block, table organization,
and key size.

Field Value Meaning
[47:04] Type of block.
1 Coarse table.
2 Fine table.
3 Data block.
[43:01] Table organization (only valid
for coarse and fine tables).
0 Descending order by key.
1 Ascending order by key.
[15:16] Size of each key entry (only

valid for coarse and fine tables)

Contains information about the keys (only valid for coarse
and fine tables).

Field Meaning

[47:16] First key entry (word offset).
[31:16] Number of keys currently in table.
[15:16] Maximum number of key entries

that can fit in the table.
Address (relative segment number) of this block.

Address (relative segment number) of the next sequential
fine table. This word links fine tables together so that
the file can be accessed sequentially. (Only valid if this
is a fine table block.)

Address (relative segment number) of the previous
sequential fine table. This word maintains the sequentia.
ordering of fine tables. (Only valid if this is a fine
table block.)

Timestamp of the block. This word is used in recovery.

259
KEYEDIO

COARSE TABLE LAYOUT

Coarse tables are made up of keys and table pointers. The key value 1is
the value of the last key contained in the block specified by the table
pointer. The table pointers are relative segment numbers into the file
of the next table down in the structure. Table pointers are aligned on

word boundaries.
Figure 7-1 describes a coarse table layout.

[<-SIZE OF EACH |
| KEY ENTRY--->]

Figure 7-1. Coarse Table Layout

260
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

FINE TABLE LAYOUT

Fine tables are made up of keys and pointers. The key value is the same
value that the record specified by the data pointer contains. The
pointers are made up relative segment numbers into the file of the data
block and a word offset of where the data starts within the block. The
data pointers have the following format:

Field Meaning

[43:24] The relative segment number of the block
that contains the record.

[19:20] The word offset into the block of the
beginning of the record.

Figure 7-2 describes a fine table layout.

[<-SIZE OF EACH |
| KEY ENTRY-—->]|

l	I I				
f	DATA PTR		DATA PTR		DATA PTR
l					
BLOCK INFO	KEY	(segment)	KEY	(segment)	KEY

| ! | (offset) | | (offset) | | (offset) |
| ! | | | | | I

Figure 7-2. Fine Table Layout

261
KEYEDIO

KEY INFO TABLE LAYOUT

The key information table contains 3 word entries that describe each key
in the file and the first tables to be used in accessing the file with
that key.

The first word of each key information table entry describes the key.
It contains the same information 1in the same format as used for the
ISAMKEYS file attribute discussed under "Indexed (KEYEDIO) File
Attributes" .

The second word of each entry contains the relative segment address of
the root table of the index tables for this key. 1If all the entries for
this key will fit into a single table, the root table will be a fine
table. Otherwise it will be a coarse table. The root table is the
highest block in the hierarchical structure of index tables: it is the
first table to be searched when accessing a file randomly.

The third word of each key information table entry contains the relative
segment address of the first fine table for this key. It is used to
find the first record when accessing the file sequentially.

See also
Indexed (Keyedio) File Attributes v o« v v v v o« . . 224

262
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

LOGICAL LAYOUT OF FILE

The logical layout of a KEYEDIO file is illustrated in Figure 7-3.

KEY INFO WORD

{word 3 of segment ze

KEYEDIO

ro)

KEY INFO TABLE

3 word entry per key

3 word entry per key

o KEY ROOT FIRST KEY ROOT FIRST
DATA TABLE | FINE DATA TABLE FINE
cw #) —— keyvalues — (07 70 ##)
7 { #is an EOF marker) N
ROOT : ROOT
{abe) /f (k t w) (xy #) {01 0307)/ (18 32 70) (75 80 ##)
COARSE | COARSE COARSE COARSE COARSE COARSE
(coarse (coarse (coarse (coarse
tables) tables) tables) tables)
(o fk) (nqgt) (uvw) (09 15 18)/ (21 27 32) \(33 50 70)
COARSE COARSE COARSE COARSE COARSE COARSE
/1T\ /| / 1\ / 1\
(fine tables) (fine tables) {fine tables) (fine tables)
(Il mn) (opa) (rst) (19 20 21)/ (22 25 27) \(30 31 32)
FINE FINE FINE FINE FINE FINE
(rec 1) {rec 8) (rec 9) (rec 6) (rec 9) (8)
(rec 3) (rec 7) (rec 4) (rec 4) (rec 7) {rec 3)
(rec 5) (rec 6) {rec 2) (rec 2) (rec 5) (rec 1)
DATA DATA DATA
rec 1 rec 2 rec 3 rec 4 rec 5 rec 6 rec 7 rec 8 rec 9
Figure 7-3. Logical Layout of File

263

The end-of-file (EOF) marker is actually a key entry of all bits SET and
a data pointer of zero.

264
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

KEY INFORMATION ROOT PTR lst FINE
T I
| key flag =1 | I |
| alternate key = FALSE I I |
| duplicate keys = TRUE | | |

KEY INFO TABLE | key organization = ascending | 5 | 21 |
——————————————— | key sign = no sign I . | |
(SEGMENT #1) | key type = EBCDIC | | f |
| keylength = 7 | | | |
| keyoffset =3 | | | |
[==———m—m s mm e e j === |
|
I
___ |
|
| ——==>|—=—m——=m— e m oo — oo — oo m— e I
| I I I I I I I
ROOT TABLE | BLOCK | | | I | I l
———————————— | INFO | JOHNSON | 9 | WILLIAM | 91 | ##HHHHE | O |
SEGMENT #5 |---——-- | ————m [l Rl B | === ===
—————————————————————————— | note:
I *4HEEHEEE is the EOF marker
| ====> | ——m—————m = m oo I

| I

I |
—————————————— | INFO | BAKER | 19

I |

SEGMENT #9 e el el | —=|=————mmmm | o | = | I
__________________________ |
|
| ———=> | m == |
| I I | | | I I
COARSE TABLE | BLOCK | I | | | | |
—————————————— | INFO | ALLEN | 21 | ANDREWS | 57 | BAKER | 47 |
SEGMENT #19 |[-———=--— |-m—m e el Rl ==
___ |
|
st e |
| | | I | |
FINE TABLE | BLOCK | | SEGMENT 111 | | SEGMENT 321 |
————————————— | INFO | ANDERS | OFFSET 23 | ANDREWS | OFFSET 36 |
SEGMENT #57 |-———-—- | —=mmm e |——mmm - |—=== | == o |
________________________________ |
I WORD WORD
I 10 23
e I
| | | |
DATA BLOCK | BLOCK | | |
———————————— | INFO | OOLABCDEFG 12345 ! 002ANDERS 34567 |
(SEGMENT #111)|-—--——— [—m—— e e |

Figure 7-4. Example of Locating Data

265
KEYEDIO

INSERTING KEYS

Information contained in the block information is used for determining
how to add the new key. The first entry in the table, the number of
entries currently in the table, and the maximum number of entries that
can fit in the table are saved in the block information. If the number
of entries is less than the maximum number of entries, keys to the left
of the new key are moved to the left, and the new key is inserted. To
add a new key entry to a table that is already full, the table is split.
When the split is made, all entries to the left of the new key and the
new key go into one table, and all entries to the right go into another
table.

NOTE

The tables are always right-justified.

An Example of Inserting a Key:

| (===~ KEY-~————~ >| <--DATA PTR->|
l -t 4+ + 3 3 3+ 3 3 44—+ 41+ 3 33 4
FINE | ! |
TABLE | BBBBBB l 137 |
KEY I | 23 [
ENTRY | | [
I ===C===============:============= l
added to
| CUNUSED AREA FOR|
| <BLOCK | ADDITIONAL | ¢<===KEY--> | <DATA| <———KEY--> | <DATA|
| INFO>| KEY ENTRIES>| | PTR>| | PTR>|
j 4ttt e 3 T 7 =43+ 31 —— - o e e ——
| | N | [| | |
FINE | INFO | //////// | //// | AAAAAA | 157 | CCCCCC | 147 |
TABLE | \ /7777777 /777 | : | 10 | I 36 |
I ===:=======: I
becomes
| <BLOCK | <~==KEY-->| <DATA |<-—-KEY—->|<DATA|<—-~KEY-—> | <DATA |
| INFO>| - | PTR> | [PTR>| | PTR> |
|:=:::=:=::=:=:::::=====:====:===:::::::t::::ﬁ::::::::::::::I
I I ‘ f o | | . | |
FINE | INFO | AAAAAA | 157 | BBBBBB | 137 | ccceccec | 147 |

266

An Example of Inserting a Key into a Full Table:

added to

FINE
TABLE

becomes

COARSE
TABLE

SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

| <———~KEY--> | <DATA|

| | PTR> |
| ================|
FINE | I I
TABLE | AAABBB | 173 |
ENTRY | | 23 |

| <BLOCK |(——-KEY—->|<DATA|<———KEY——>|<DATA|<———KEY——>|(DATAI

INFO>		PTR>
	I	
INFO	AAAAAA	157
I | | 10 |

(SEGMENT 10)

| <~UNUSED AREA |

PTR> |

PTR> |

| <BLOCK |FOR ADDITIONAL | ¢<=—=KEY~--> | <TABLE| <-—=KEY--> | <TABLE|

| INFO>| KEY ENTRIES ->|

/1177777 V777
l v /777777 V117

(SEGMENT 14)

PTR> |

PTR> |

267
KEYEDIO

| <~UNUSED AREA |
| ¢BLOCK |FOR ADDITIONAL |<---KEY-->|<DATA | <=—~KEY—-->| <DATA |

| INFO>| KEY ENTRIES ->| | PTR> | | PTR> |
I | I | | I I I
FINE | INFO | /////// | /// | AAAAAA | 157 | AAABBB | 173 |
TABLE | V7777777V 1770 I 10 | bo23 |

(SEGMENT 15)

| <-UNUSED AREA |
| <tBLOCK |FOR ADDITIONAL |<--—-KEY-->|<DATA |<---KEY-->|<DATA |
| INFO>| KEY ENTRIES ->| | PTR> | | PTR> |

FINE | INFO | //////// |

(SEGMENT 51)

268
SYSTEM SOFTWARE SUPPORT REFERENCE MANUAL

7.7 RECOVERY

To ensure that the file 1is always in a consistent state, recovery
information 1is saved before any updating is done to the file. The
recovery information consists of a timestamp and a pointer to the record
that 1is being updated. Recovery information is not saved when the file
is being created.

The following sequence of events takes place when a file is updated:
1. The recovery information is saved in segment 0 of the file.

2. The writes to the file are done in a careful order so that
information 1is not lost if the writes are not completed. The
data record affected by the update is the last record changed.

If the update is terminated before step 2 is finished, the update is
completed the next time the file is opened. The recovery process begins
when the record referenced by the recovery information in segment zero
is read. The file is then updated with that record. During the update
process, if a block is read that has a timestamp equal to that of the
recovery timestamp, that block 1is treated as already reflecting the
update. After the update is done, the recovery information is zeroed
out, and segment zero is rewritten.

269
KEYEDIO

RECOVERY MESSAGES AND WARNINGS

The following warning message is displayed when a KEYEDIO file has
Mark 3.3 PR1 or earlier recovery information:

FILE TOO OLD FOR HALTLOAD RECOVERY.
FILE MUST BE RE-CREATED WITH 3.4.1 OR LATER KEYEDIO.

The recovery can still be attempted, if necessary. If KEYEDIO is unable
to begin recovery with the information 1in the file, the following
message is displayed:

INSUFFICIENT RECOVERY STATE.

If there is sufficient information to begin recovery but the recovery
cannot be completed, the following message is displayed:

UNABLE TO RECOVER FILE.

For both of these conditions, the wuser also receives the following
message:

WARNING: FILE MAY BE CORRUPTED.

THIS FILE SHOULD BE RELOADED USING 3.4.1 OR
LATER KEYEDIO.

'HI' TO CONTINUE, 'DS' TO ABORT.

Enter HI to resume processing and terminate the recovery attempt. Enter
DS to discontinue the application.

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270

