III'

o

Overview of the B1700 -
The Bl700 is a small, general-purpose computer (Burroughs, l97éb) that
is particularly wellsuited for interprétation and emulation. The
features of the B1l700 that make it unique and unprecedented are:

l)'.Dynaﬁically alterable, vertical microprogramming

2) Bit addressable main memory

3) Dynamic control of functional width of processor registers

and busses |

4) Dynamic control of memory access width

5) Microprogram subroutine capability

6) Stack strugture

(For a more detailed. discussion of the B1700, see Wilmer, 1972a).

Principles fifst_eSpoused in the Burroughs B5500 (Burroughs, 1969b)

and in the Burroughs BBSQQw(Burrougﬁs, 1969d) have culminated in the
B1700. The B5500 is designed to process ALGOL, while the B3500 is a
COBOL'5achine. Both of these machines have their designs hard-wired
into them. The B1700, however, is "soft" at the level‘that the others
are "hard". This, combined with a micro-order designed for interpreter
writing, combined with the attributes 1is£ed above, have produced a

machine that is singular in its capacities.

The virtual machines which have been produced for the B1700, including
the SDL machine, are an order of magnitude more powerful at what they
do than are hard-wired systems, Programs represented in these soft

machine languages are from 25% to 75% smaller than on byte-oriented systems.

IV,

The SDL Machine

The SDL language was designed to be used for implementation of the MCP

- and for implementation of the different compilers. In conjunction with

the design of the language, was the design of a "machine" that would

"execute'" the statements of the language.

The SDL machine is a conglomeration of the ideas of many people.
Particularly included are the language-directed design ideas of
McKeeman (McKeeman, 1967), the stack and display mechanism of Randell
and Russell (Randell, 1964), and the design of the Burroughs B6700
(see Hauck, 1968). See also Burroughs, 1969b and Burroughs, 1969c.
The original SDL machine was de;igned by G. Brevier and B. Rappaport
of Burroughs Corporation., Later additions and modifications to the
basic machine design included ideas of C. Kaekel and the apthor, as
well as other employees.of Burroughs Corporatioﬁ.

——

This section will describe the resulting S-machine and S—language;

A, Stack Mechanism

A B1700 pfqgram consists of code segments scattered in memory, one
block of data bounded by a Base Register and a Limit Register, .and a
contiguous, read-only blockK@he Run Structur% containing program
attributes. Also scat;ered throughout memory, in addition to code seg-
ments, are file attribute blocks and segment dictionarieé. The area
inside Base-Limit is divided into two parté: a static part and a
dynamic part. In the case of an SDL program, the static area confains
the.S—machine stacks and the dynamic area contains péged array page

tables and paged array pages (see Figure 1).

The SDL machine stack structure originally evolved from Randell and
Russell (see Randell, 1964) and from the B6700 (see Hauck, 1968)., This
" scheme has proved to be clean and easy to implement, and has resulted
in a relatively small aﬁount of code in the interpreter for stack

management,

R

The ‘structure . of the S-machipe staéks is shown in Figure Z2a.
The inter~relationships among the stacks are shown in Figure 2b.
The Name Stack and the Program Pointer Stack run toward the Base Reg-
ister (toward low memory. addresses); the others run toward the Limit
Register (high memory addresses). The stacks are used as follows:
1) Program Pointer Stack: This is a 32-bit wide stack that holds
code addresses. Entries are pushed onto this stack upon pro-
cedure or DO group entrance, and are popped off upon procedure
or DO group exit.

2) Control Stack: This is a 48-bit wide stack which maintains

3)

4)

5)

6)

the dynamic history of the allocation of data items. Entries
are pushed onto this stack upon entrance to procedures with
parameters and/or local data, and are popped off upon exit

from these procedures.

Name Stack: This is a 48-bit wide stack that holds data des-

criptors. The data descriptors may contain values (self-relative)

or the address of the values (in the Value Stack). Each lexic

level's data descriptors occupy a contiguous block of entries

~in the Name Stack. -

Value Stack: The Value Stack is a variable width stack which
contains values of currently allocated (non self-relative)
data items, as well as the values of temporary data itgms
(i.e., intermediate values of expressions).

Evaluation Stack: The Evaluation Stack is a 48-bit wide stack
which contains data descriptors for intermediate results and
for temporary storage of pr;cedure actual parameters.

Displays Display is a 32-bit wide array, the entries of which
contain the addresses of the blgcks of data allocated by the
currently active lexic levels. The addresses in Display point
into the Name Stack. A lexic level number is used to sub-

script into Display, In other words, Display points to all

the groups of descriptors that can be currently addressed.

B. Opcode Structure

Because of SbL's stack structure and segmeuntation, code and data addresses
_are short, making the.number of bits devoted to opcodes quite signifi-
cant, In fact, more bits are used for opcode representation than for

any other purpose, amounting to over one-third of a program's code space.
Consequently, it was essential that not only should opcodes be represented
in as cémpact manner as possible, but also that decode time for opcodes

should be minimal.,

The SDL S;operators use an encoding based on static frequence of occur-
rence. Operators are 4,6, or 10 bits in length with the most frequently
occurring operators requiring the smaller number of bits.

.
S

The first 10 of the 4-bit codes (016 through 916) represent operators.
The next 5 are escape codes which indicate that the next 2 bits are to
be examined in order to determine which operator is to be used. The

last 4-bit code (F s an escape code which indicates that the next

167 1
6 bits are to be used in order to determine which operator is to be

used (see Figure 3).

Originally, the SDL S-opérators were encoded using a 3-bit, 9-bit code.
After a fairly large amount of working SDL code had been generated

(in the MCP and the compilers) an analysis was done (on a static basis)

of the operators used in that code in an attempt to verify that the proper
encoding had been chosen, or, alternatively, to empirically arrive at

one that would be optimal,

If Huffman's algorithm fof minimum_ redundancy codes (see Huffman, 1952)
had been used for SDL opcodes, the space reéuirements would have been
minimal, but the time for decoding would have been large. A fixed

field size would have minimizéd decoding time but would have required

a large amount of storage. Using the opcode frequence pptained from

the analysis mentioned above, an encoding was obtained that was very
near the Huffman encoding in spdce required; but still small in decoding

time (see Figure 4a,b).

Appendix I contains the SDL S-operators, along with their arguments and
sizes, It is, perhaps, interesting to note thats -
1) The operator associated with iFmTHEN (IFTH) is a 4-bit operator
while the operator associated with IF-THEN-ELSE (IFEL) is a
6~bit operator .
2) All types of litérals are used frequently enough to warrant
4-bit operators (ZOT, ONE, LITN, LIT)
3) Load Address (LA) is a 4—bit‘operator while Load Value (L) is
a 6-bit operator., This result indiéates (because of the way
that the SDL expression code generator generates code) that
there are more "simple" expressions than "complex" ones.
4) The operator (UNDO) for DO group and simple procedure exits
is a 4-bit operator
5) Comparison for equal (EQL) and unequal (NEQ) are more frequently

used than the other comparison operators (LSS, LEQ, GTR, GEQ)

For further description of Bl1700 memory utilization, see Wilner, 1972b.

C. Déscriétor Formats

Each SDL data item is represented by a descriptor which specifies the
attributes of that data item. The data attributes are thus contained

in the data area, rather thaﬁ being imbedded in the code. The implications
of thié are that there tend to be fewer instructions (for example, there

is one ;ad instruction for all possible.typgs——including mixed types——‘
rather than a bit add, a character add, a fixed add, etc.) and that the

instructions tend to be more compact since they reference descriptors

for attributes, rather than contain the attributes themselves.

Descriptors in SDL are of two types: simple wvariables and arrays (vari-
ables to be subécripted). Simple descriptors are 48 bits in length

while array descriptors are 96 bits in length. (See Figure 5.)

Simple descriptors have a type field (discussed below), a length field,
and a field which contains the data fif the data is not more than 24
bits in ‘length and is not in a structure), or the address of the data

(if the data is more than 24 bits in length or is in a structure).

Array descriptors have a type field, a field giving the length of each
element, a field giving the address of the first element, a field giving
the number of bits to truncate from the right of a subscript to obtain
the page subséfipt (paged arrays.only), a field giving the length
between elements (this is equal to the léngth of the element on the
lowest level onl? of"a structured array), and a field giving the number

of elements in the array.

The bits in the type field (see Figure 5) are used as follows:
Bit Use
0 1 if the value has been loaded to the top of the Value
Stack (used when the descriptor is on the Evaluétion
- Stack only); O otherwise
1 1 if descriptor is non self-relative; 0 otherwise (data
item is in address field)
2 1 if array descriptor; O if simple descriptor
3. 1 if length of element equals length between elements;
0 otherwise (arrays only)
4,5 Data type; BIT (00), FIXED (0l), CHARACTER (10),
VARYING (11) (formal descriptors only)

6 1 if paged array; O otherwise (arrays onlé)

7 1 if length varying (formal descriptors only)

-

It should be pointed éut that the use of descriptérs along with the bit-
addressability of the B1700 allows a greéter variety of data repreéent-
ations, so that the extra bits are more than made up for by not having
to use "unnatural' representations (a byte for a one-bit flag, for

example).

D. Code Addressing .

All code on the B1700 is not only re-entrant, but also automatically
relocatable, since code addressing is done ‘through code pointers
(segment Dictionary entries), rather than with memory addresses (this
is necessary for re-entrancy when ﬁhe code is overlayab’lz, but not
sufficient: see IV—E; Data Addressing). The MCP and compilers tend
to be 1arée programs and,»hence; have a large number of segments since
the segments themselves must be small (due to the memory restrictions
of the B1700). In adaition, in procedure-oriented languages such as
SDL, and in compilers in particular, programs are wrigten in'"passes"
(this is also true for the MCP, to some extent: the collectioun of
procedures to'process control cards, for example, or the procedures to
process I/0 error conditions). In other words, code which is executed
‘together in time is gathered into segments, and segments which are
executed together in time are gathered together into paées. Thus, SDL
code addresses specify (either explicitly or impliéitly) a triple that
"is used to generate an actual memory addrésg if the segment is present,

or a disk address if the segment is missing from memory.

Code addresses in the SDL machine actually appear as pairs, triplets,

or quadruplets (Figure 6).

The Type field indicates the presence or absence of the Segment Number
field and of the Page Number field, as well as the size of the Displace-
ment field. The Page Number is the entry in the master Segment Dictionary

used to find the minor Segment Dictionary to be used (if the minor Segment

Dictionary is not present, then an interrupt is generated). The Segment
Number is used to locate the entry in the minor Segment Dictionary which
gives the location of the desired segment (if the segment is not
present, then an interrupt is generated). The Displacement gives the

relative .offset into the segment of the instruction being referenced.

This encoding allows the SDL machine to directly address 230 bits of
code. This yields a 38.4% savings in space for the SDL machine when
compared ‘to a byte-oriented machine with equal addressing capability

(see Wilner, 1972b).

E. Data Addressing

SDL data addresses are two-part addresses, the first part specifying
‘the lexic level of declaration of the data item, and the second part
specifying the occurrence number of the data item within that‘lexic
level, Thé data addresses do not contain memory addresses: this is
the second condition that is necessary fér re-entrancy. It also allows
SDL procedures to be automatically recursive, and is part of the up-

level addressing scheme.

SDL data addresses are three-part addresses (see Figure 7). The Type
field specifies the size (and type of contents) of the two following
fields. The lexic level field ipdicateé which entry of Display to use
to subscript into the Name Stack. The occurrence numﬁef field is the
number of 48-bit descriptors to offset to find the indicated descriptor.
If Display and the Name Stack are comnsidered as ;rrays, and V(LL,ON)
is the address represented by a Type, Lexic Level; Occurrence Number
triple, then

V(LL,ON)=NAME.STACK(DIS?LAY(LL)+ON)

represents the formula used to calculate an address in the Name Stack.

F. Descriptor Constructidn Operators

As a procedure (lexic level) is entered, the local data for that lexic
level is created by entering onto the Name Stack the descriptors for
the local data. The descriptérs'are constructed with operators.

Rather than carry the "descriptors intact in the code or ;omewhére else
in memory,: they are carried, in.an encoded.form, in~line pehind the
operatofs which describe how the address field of the descriptor is to
be derived. The in-line descriptor format and the Conmstruct Descriptor
Operators and their arguments are shown in Figure 8a. ' The formulae for

descriptor address calculations are shown in Figure 8b.

The action of eacﬁ of the operators is as follows:

Construct Descriptoy Base Zero (CDBZ): A descriptor is put on the
Name Stack with an address of zero. .

Construct Descriptor Local Data (CDLD): The number of descriptors
specified are constructed using £he current value of the
Value Stack Pointer as the address. The Value Stack Pointer
is kept current as each descriptor is put on the Name Stack
by adding to the Value Stack Pointer the length of the data
item described.

Construct Descriptor From Previous (CDPR), Comstruct Descriptor
From Previous and Add (CDAD), Construct Descriptor From Previous
and Multiply (CDMP): The number of descriptors specified are
constructed using the followiﬁg formulae to calculate the

addresses:

CDPR: A'=A+F
CDAD: A'=A+F+L
CDMP: A'=AfF+L+(E-1)XLB
where
'A' is the new address part
A is the address part of the previous entry in the Name
F is the in-line filler value if present
L is the length part of‘the previous.entry on the Name
Stack
E is the number-of-entries part of the previous entry on
the Name Stack
LB is the length-between part of the previous entry on
the Name Stack
Note that CDMP assumes that the previous euntry on the Name Stack
is an array descriptor.
Construct Descriptor Lexic Leve; (CDLL): A descriptor is constructed
) on the Name Stack which has as its address part the address
of the.value described by the déscriptor specified by the
LL, ON part.
These 6 operators are sufficient to comstruct all tﬁe descriptors
required by all possibleicombinations of arrays, -structures, and filler

as described in II-C.

G. Handling of Control Statements

SDL's sophisticated segmentation allows segment changes to appear
‘virtually anywhere within SDL programs. This mnoun~sequential program
flow combined with the lack of a GO TO in the S-machine created some
interesting complexities. In an attempt to handle all of these com-
plexities in a uniform manner, Vvery heavy use was made of the Program
Pointer Stack. All of the comtrol statement operators (except Cycle)
cause insertion or removal of entries from this stack. All of these
operators can or do affect the next instruction address. The format

of the control statement operators is given -in Figure 9. A description

of the operators follows.

Ci11 (CALL): The Call operator is used to emter DO and DO FOREVER
groups when these do mnot follow THEN and ELSE, and aré not part of
a CASE. The argument of the call is the coée address of the DO
or DO FOREVER. Execution of the Call causes‘the current program
address to be pushed onto the Pfogrém Pointer Stack, and the ﬁext'
instruction to be executed from the address indicated by the
argument.

1f-Then (IFTH): The If-Then operator is~(as might be expected) used

4 to handle the IF-THEN statement. The operator examines the low-
order bit of the value described by the describtor on the top of
the Evalu;tion Stack, If this bit is 1 then the current program
address }s pushed onto the Program Pointer Stack, and the next
instruction to be executed is taken from the address indicated by

the (code address) argument.

I1f-Then-Else (IFEL): The If-Then-Else operator is used to handle

Case

Undo

Undo

the IF-THEN-ELSE statement. The current érogram address is pushed
onto the Program Pointer_Stack. If tHe low-order bit of the value
described by the descriptor on the top of the Evaluation Stack is
1, then the next instruction éddress is indicated Ly the first
code address folléwing the operator; otherwise, the next instruction’

i N

address is indicated by the second code address following the

operator.

(CASE): The Casé operator is used for CASE statements. The value
described by the descriptor on the top of the Evaluation Stack is
compared to the number, N, of code addresses following the operator:
if the vélue'is greater than X or equal to N, then an error occurrs;
otherwise, the valug is used to subscript into the code addresses.
If the code address'ﬁelected is null, then the operator is termi-
nated and the next instruction is executed; otherwise, the current
program address is pushed onto the Program Pointer Stack and the
selected code address is used to obtain tﬁe next instruction
address.
(UNDO): UNDO statements are handled by the Undo operator. Since
more than one level of nesting way be undone by any given UNDO
statement, the number of leveis to undo is contained in the instruc-
tion. The number of levels specified is popped from the Program
Pointer StaékAand the last one popped is used as the address of
the next instruction.
Conditionally (UNDC): The statement

IF. (ondition) THEN UNDO;

is one that causes needless manipulation of the Program Pointer

Stack if handled with the If-Then and Undo operators., Counsequently,
a special operator was devised which is no more than the amalgamation
of these operators: 1if the low-order Bi; of the value described

by the descriptor on the top of the Evaluation Stack is 1, then

an \.Undo ;peration is performed; otherwise, the next imnstruction is
executed,

Cycle (CYCL): DO FOREVER ioops are handled by the‘Cyéle operator, Since
DO (and DO FOREVER) groups are required to terminate in the segment
in which they began, it is sufficient to subtract some amount from
the current program address. The amount to be. subtracted is con-

tained in the field following the Cycle operator.

It might be noted that, because some of these operators contain code
addresses, it is possible to obtain some nice optimizatioms, In partiF
cular, if UTP is the name of an untyged procedure which has no parameters,
then the following cases may be optimized by merely using the address
of the procedure as part of the instruction;

IF <{condition) THEN UTP;

IF {ondition) THEN ,..; ELSE UTP;

CASE {expression);

END CASE;

H. Procedure Entrance and Exit
Procedure entrance and exit are a form of control statement execution,
‘but are more complex than those statements described in IV-G, since the

Control Stack and the Display may also be affected.

Procedure entrance and exit always affects the Program Pointer Stack
and affect the Control Stack and Display when there is local data and/or

parameters.

A call to a procedure with no local data and no parameters requires
only the Call operator (see IV-G). A céll to a procedure with local
data but no parameters requires a Call operator followed by a Mark
Stack and Update operator executed inside the procedu?e.. A procedure
with parameters and with or without local data requires a Mark Stack
operator,‘followed by the operators to put the a;tual parameters on the

Evaluation Stack, followed by a Call operator. Inside the procedure,

a Construct Descriptor Formal operator is executed. (See Figure 10).

The Call, Mark Stack, and Mark Stack and Update operators will be
described here; the Construct Descriptor.FOrmal operator will be

described in sectioﬁ Iv-1.

Call (CALL): T£e argument of the Call is the code address of the pro-
cedure to be entered. Execution of the Call causes the current
program address to be pushed onto the Program Pointer Stack, and
the next instruction to be executed from the address indicated by

the argument,

Mark Stack (MKS): The Mark Stack 6perator causes construction of an
entry on the top of the Control Stack. This entry contains the
current values of the Name and Value Stack Pointers. The Exited
Lexic Level field of the entry is set to the value of the current
lexic level, and the Entered Lexic Level field is Sét to zero.

Mark Stack and ﬁpdate (MKU): The Mark Sta¢k and Update operator has
as an argument the lexic lével of the procedure beiné entered.
‘This operator causes construction of an entry on.the top of the
Control Stack, The entry contains the current values of the Name
and Value Stack Pointers. The Exited Lexic Level field of the
entry is set to the value of the current lexic level, and the
Entered Lexié Level field is set to the vélue specified as the
operator argument. The Display Stack entry for the specified
lexic level is set.to the current value of the Name Stack Péinter.

The current lexic level is changed to the specified lexic level.

All procedure exits are done with the RETURN statement; however, the
operator generated depends upon whether or not the procedure contains

local data or parameters, and upon whether or not the procedure-is typed.

If the procedure contains‘no local data and has no parameters (and
therefore did not change the Control Stack upon entrance), then an Undo
operator is used to effeét the return., If there is either local data
or parameters and the procedure is not typed, then an Exit operator is
used. If there is either local data or parameters‘and the procedure

is typed, then a Return operator is used. (8ee Figure 10.)

The Undo operétof.was described in IV-G. The Exit operator will be

described here, and the Return operator will be described in section IV-I.

Exit (EXIT): The Name and Value Stack Pointers are set to the values
obtéined'from the top entry of the Control Stack. The Display
entry pointed to by the current lexic level is restored to the
Name Stack value obtained from the first (proceeding from top to
bottom) Control Stack entry, if any, having an.Entered Lexic Level
field equai to the current lexic level (unless a prior or the present
entry has a zero Exited Lexic Level field). The Exited Lexic‘Level
field is used to set the current lexic level, and the top entry is
popped from the Control Stack. The number of levels specified is
popped from the Program Pointer Stack and the last one popbed is

used as the address of the next instruction.

I. Parameter Passing—Returning of Values
The formal parameter statement assigns a type (andilength) to each of
the formal parameters. The SDL programmer has the option of having the
SDL machine (interpreter) verify that the actual parameter maﬁqhes the
formal pafameter. Since this check is time-comsuming, it is typically
not performed once a program has been debugged. The consistency check
is performedvby the Construct Descriptor Formal operator (see Figure 11).
When the check is to be done, this operator has; as its arguments,
"descriptor templates" for each of the formal parameters. The description
of this operator follows:
Construct Descriptor Formal (CDFM)? The Construct Descriptor
Formal operator assumes that a Mark Stack operator was executed
before the actual parameters were placed on the ﬁvaiuation Stack,
The current lexic level is éhanged to the lexic level specified by
the operator. The specified lexic level is-also put into the
Entered Lexic Level field of the top entry iﬁ the Control Stack.
The Display Stack entry for the specified lexic level is set go
tﬁe current value of the Name Stack Pointer. The current lexic
level is set to the specified lexic levél. The number of descriptors
specified is comstructed on the Name Stack using the in-line des-
cripfor information plus the corresponding descriptor information
on the Evaluation Stack., The type and length fields are compared
for consistency between corresponding descriptors on the Evaluation
and Name Stacks. The Evaluation Stack is cut back after construction

of the descriptors; the Value Stack is mnot.

The values returned by typed procedures in SDL should agree in typé

and iength with the formal type of the procedure itself. The SDL
programmer again has the option of specifying whether or not this con-
sistency check is performed by tﬁe interpreter, If this check is to

be performed then the Return operatér contains a descriptor template in-

line following the operator.

Return (RTRN): ‘The Return is the same as the Exit operator prior to
popping entries off the Program Pointer Stack. At this point, the
data descriptor on the Evaluation Stack is comparéd to tﬁe in-line
descriptor for consistency. If the data is on the Value Stack,
then after cutting back the Value Stéck, the data is moved to the
new top of the Value Sfack. The number of levels specified is
popped from the Program Pointer Stack and the last one popped is

used as the address of the next imstructiomn.

J. Special Oﬁerators

In order to illustrate further the complexi;y and flexibility possible
with a machine such as the B1700, several of the special operators
will also be described. |

Search Linked List

The Search Linked List operator is used principally by the MCP to
allocate memory space., This operator compares a value with a list of
linked structures, searching for the indicated relationship or the end
of the list, The argument specifies the compare type: less, less or
equal, equal, not equal, greater or equal, greater. There are four
descriptors on the Evaluation Stack. The descriptors represent:

1) Link Index: the relative offset in the structure,and the size,
of the field which contains the address of the next structure
to be examined

2) Compare Variable: the variable to be compéred to the linked
structure

3) Argument Index: the relative offset in the structure, and the

size, of the field to which Compare Variable is to be compared

4) Record Address: the address of the first structure to examine

The operator returns the address of the structure whose compare field
was in the desired relationship to the Compare Variable, or it returns

an indicator that there were no structures in the desired relationship.

Reinstate

The Reinstate operator is the operator used by the MCP to reinstate a

S

user prdgram. The éescriptor on the top of the Evaluation Stack is
assumed to describewa field in the Run Structure of the program to be
feinstated. The reinstating program's M-machine state is stored in
its own Run Structure (each program currently executing has a Run
1Structure which contains the program's execution attributes). The
~address of the reinstating program's Run Structure is stored in the
reinstated program's Run Structure, The descriptor at the top of the

Evaluation Stack is removed. The address field of this descriptor

addresses the Run Structure of the program which is then reiunstated.

Next Token

The Next Token operator is used by compilers to scan source images,
The first argument is the data address of a descriptof which describes
the first character to be examined. It is assumed that this character
is non-blank., The second argument is a "separatér" character (such as

"." in COBOL). The third argument is the "numeric-to-alpha indicator",

If the character described by the first argument is a special character,
then the operator is exited with a descriptof on the top of the Evalu-
ation Stack which describes this character, and with the descriptor
described by the first argument advanted.to point to the next character

in the source image.

If numeric-to-alpha indicator is 1 then the stopper is set to "A"; other-

wise, if the first character is numeric then the stopper is set to "O";

otherwise, the stopper is set to "A". Characters are sequentially

compared to the stopper until one is found which is less than the stopper

and not equal to the separator. The operator then exits with a descriptor
on tﬁe top of the Evaluation Stack which describes the token just found,
and with the descriptor described by the first argument advanced-to

point to the next character in the source image. (The EBCDIC collating

sequence is assumed). “

Conclusion

In this brief description of the B1700 Softwgre Development Language
(SDL), and its underlying S-machine, I have attempted to give some
indication ofethe flavor of SDL but, more importanfly, to illustrate

the extréme flexibility and suitability of the B1700 for the tasks for
which it was desiguned: ' the writing of (lanéuage) interpreters and
emulators. We who have usea SDL feel that it is well-suited for the
type of programming for which it was designed. We could not agree more
with Saltzer et al (MIT, 1976) that one of our best decisions was to
program the operating system in a higher-level language, However,

the degree of success of the software depends very heavily upon the
suitability of the hardware to the software and to the language in which
the software is written. The Burroughs Bl1700, by its very nature, has
proven to be quite suitable to the tasks to which»it has been assigned.
1t should be pointed out, that because all of the software for the B1700
has been written in a higher-level language, all of it (including the
MCP) is theoretically tran;portable to any other system which has soft

interpretation (of the flexibility of the B1700).

VIi.

Acknowledgements

This paper would be incomplete without acknowledgement to the people
who are responsible for the original design of the SDL language and
the SDL machine: G. Brevier, C. Kaekel, and B. Rappaport, all of
Burroughs Corporation. Thanks also goes to W. Wilner for review and
critique of this paper, and for analysis and evaluation of the SDL

desigun.

VII. APPENDIX I:

RELATIONAL OPERATORS

NAME

EQUAL TO

LESS THAN

LESS THAN CR EQUAL TO -
GREATER THAN

GREATER THAN OR EQUAL TO
NOT EQUAL TO

ARITHMETIC OPERATORS
NAME

ADD

SUBTRAGT

MULTIPLY

DIVIDE

MODULO

REVERSE SUBTRACT
REVERSE DIVIDE
REVERSE MODULO
NEGATE

CONVERT TO DECIMAL’
CONVERT TO BINARY

LOGICAL OPERATORS
NAME

AND

OR
EXCLUSIVE-OR
NOT

STRING OPERATORS

NAME
CONCATENATE
SUBSTRING TWO
SUBSTRING THREE

SDL S-OPERATORS

MNEMONIC

EQL
LSS
LEQ
GTR
GEQ'
NEQ

MNEMONIC

ADD
SUB
MUL
D1V
MOD
RSUB
RDIV
RMOD
NEG
DEC
BIN

MNEMONIC

AND
OR

XOR
NOT

MNEMONIC

CAT
ss2
SS3

OP CODE

SIZE

ARGUMENTS

6
10
10
10
10

6

OP CODE

SIZE

ARGUMENTS

6
6
10
10
-10
10
10
10
10
10
10

OP CODE

SIZE

ARGUMENTS

10
10
10
10

OP CODE

SIZE

ARGUMENTS

SDL S-OPERATORS (CONTINUED)

LOAD OPERATORS
NAME

MAKE DESCRIPTOR
VALUE DESCRIPTOR
DESCRIPTOR

NEXT OR PREVIOUS ITEM
-LOAD VALUE

LOAD ADDRESS

ARRAY LOAD VALUE
ARRAY LOAD ADDRESS
INDEXED LOAD VALUE
INDEXED LOAD ADDRESS
LOAD LITERAL

LOAD 10-BIT LITERAL
- LOAD LITERAL ZERO
LOAD LITERAL ONE

STACK OPERATORS

NAME

BUMP VALUE STACK POINTER
DUPLICATE

DELETE

EXCHANGE

FORCE VALUE STACK

STORE OPERATORS

NAME

STORE DESTRUCTIVE |
STORE NON-DESTRUCTIVE LEFT
STORE NON-DESTRUCTIVE RIGHT
CONSTRUCT DESCRIPTOR OPERATORS
NAME

CONSTRUCT DES. BASE ZERO
CONSTRUCT DES. LOCAL DATA

CONSTRUCT DES, FORMAL
CONSTRUCT DES, FORMAL-V2

MNEMONIC

MDSC
VDSC
DESC
NPIT
L
LA
AL
“ALA
IL
ILA
LIT
LITN
20T
ONE

MNEMONIC

BVSP
DUP
DEL
XCH'
FVS

MNEMONIC

STOD
SNDL
SNDR

MNEMONIC

CDBZ
CDLD
CDFM
CDFM:

OP CODE

ARGUMENTS

SIZE
10
10
6 DA
10 v,DA
6 DA
4 DA
10 DA
6 DA
10 DA
4 DA
4 D,LITERAL
4 LITERAL
s
4
OP CODE SIZE ARGUMENTS
10
6
10
6
6
OP CODE SIZE ARGUMENTS
4
6
10
OP CODE SIZE . ARGUMENTS
10 D
6 N,D1,...,DN
10 LL,E
10 LL,E,Dl,...,DN

SDL S-OPERATORS (CONTINUED)

CONSTRUCT DESCRIPTOR OPERATORS (CONTINUED)

NAME

CONSTRUCT DES., FROM PREV,

CONSTRUCT DES. FROM PREV. & ADD
CONSTRUCT DES, FROM PREV. &

MULTIPLY
CONSTRUCT DES., LEXIC LEVEL

PROCEDURE OPERATORS
NAME

CALL

IF THEN

IF THEN ELSE
CASE

URDO

UNDO CONDITIONALLY
RETURN=V1
RETURN-V2

EXIT

CYCLE

MARK STACK
MARK AND UPDATE

MISCELLANEOUS OPERATORS
NAME

SWAP

INTERRUPT STATUS
FETCH

DISPATCH

HALT :
READ CASSETTE
LENGTH ‘
LOAD SPECIAL
CLEAR
COMMUNICATE
REINSTATE

FETCH CMP
ADDRESS

SAVE STATE
HARDWARE MONITOR
OVERLAY

PROFILE _
SEARCH LINKED L38T

MNEMONIC

CDPR
CDAD

CDMP
CDLL

MNEMONIC

CALL
IFTH
ITEL
CASE
UNDO
UNDC
RTRN

RTRN:

EXIT
CYCL
MKS
MKU

MNEMONIC

SWAP
I1S
FECH

DISP

HALT
RDCS
LENG
LSP
CLR
coMM
"REIN
FCMP

ADDR

SVST
HMON
OVLY
PRFL
SLL

OP CODE SIZE ARGUMENTS
6 N’ Dl] L ’DN
6 N,Dl,...,DN
10 N,Dl,...,DN
10 DA,D
QP CODE SIZE ARGUMENTS
4 CA
4 CA
6 TYPE, CA, CA
10 N,TYPE,CAl, ..., CAN
4 "L
10 L
10 L
10 L,D
6 L
6 DISPLACEMENT
6
‘10 LL
QP CODE SIZE ARGUMENTS
10
10
10
10
10
10
10
10 \
10
10
10
10
10
10
10
‘10
10 N
10 v

Burrougﬂs, 1968

Burroughs, 1969a
Burroughs, 1969b
Burroughs, 1969c

Burroughs, 1969d
Burroughs, 1971

Burroughs, 1972a

Burxroughs, 1972b

Cheatham, 1966

Corbato, 1969

Dijkstra, 1968

Hauck, 1968
Huffman, 1952

Lucas, 1969

REFERENCES

Burroughs B5500 ESPOL Reference Manual, 1032638

Burroughs B5500 Extended ALGOL Reference Manual,- 1028024

Burroughs B5500 Systems Reference Manual, 1021326

Burroughs B6700 System Reference Manual-: 1043676

"Burroughs B2500 and B3500 Systems Reference Manual,

1025475

Burroughs B6700 Extended ALGOL ILanguage Information

Manual, 5000128

Burroughs‘Small Systems Software Development Language

Manual, (to be released)

Burroughs B1700 Systems Reference Manual, 1057155

Cheatham, T. E,, Jr., "The Introduction of Definitional
Facilities into Higher Level Programming Languages',
proc. FJCC, Vol, 29 (1966))

Corbato, F, J.,, "PL/I as a Tool for System Programming",
Datamation, Vol. 15, No. 5, (May, 1969)

Dijkstra, Edsger W., "Go To Statement Considered
Harmful", CACM, Vol. 11, No. 3, (March, 1968: Letters
to the Editor)

Hauck, E. A., and Dent, B, A., "Burroughs’ B6500/B7500
Stack Mechanism'', Proc., SJCC, Vol. 32 (1968)

Huffman, D. A., "A Method for the Construction of
Minimum Redundancy Codes", Proc, IRE, Vol. 40 (1952)

Lucas, P., and Walk, K,, "6n the Formal Description

of PL/I", Annual Review in Automatic Programming, Vol. 6,

Part 3, (1969)

Lyle, 1971

McKeeman, 1967

McKeeman, 1970

MIT, 1970

Randall, 1964

Sammett, 1971

Slimick, 1871

Weinberg, 1971

Wilner, 1972a

Wilner, 1972b

Lyle, Don M., "A Hierarchy of High Order Languages

for Systems Programming', Proc. ACM SIGPIAN Symposium on

" Languages for Systems Implementation, SIGPLAN Notices,

Vol, 6, Noy» 9 (October, 1971)

McKeeman, W, M., "Language Directed Computer Design',
Proc. FJCC, Vol. 31 (1967)

McKeeman, W, M,, Horning, J. J., and Wortman, D. B.,

A Compiler Generator, Prentice Hall, Inc., Englewood

Cliffs, N, J. (1970)

Progress Report VII, Project MAC, Massachusetts Institute

of Technology, Cambridge, Mass., p. 6 (July 1969 to

-

July 1970)

Randall, B., and Russell, L. J., ALGOL 60 Implementation,

Academic Press, London (1964)
Sammet; Jean E., "A Brief Survey of Languages Used in

Systens Implementation', Proc, ACMvSIGPLAN Symposium

6n Languagés for Systems Implementation, SIGPLAN Notices,
Vol. 6, No. 9 (1971)
Slimick, John, "Current Systems Implementation Languages:

One User's View", Proc. ACM SIGPIAN Symposium on Langu-

ages for Systems Implementation, SIGPLAN Notices, Vol.
6, No. 9 (1971)

Weinberg, Gerald M., The Psychology of Computer Pro-

gramming, Von Nostrand Reinhold Company, New York (1971)
Wilner, W, T., "Design of the B1700", Proc, FJCC, Vol.
41 (1972)

-------- , "B1700 Memory Utilization", op. cit,

3

SDL MEMORY STRUCTURE

Value Stack

/I\

Name Stack

Display

Control Stack

Evaluation Stack

s - — ——— — — — — —

\

¢L

Program Pointer Stack

Paged Array
pages and

page tables

Run Structure

FIGURE 1.

Base Register

Program Static Memory

Program Dynamic Memory

Limit Register

MR 00 W7 LAWY A R RV ek WA Vas

DISPLAY NAME STACK EVALUATION STACK
32 8 16 24 8 16 24
; , ADDRES : ADDRESS
NAME STACK POINTER TYPE |LGTH | of EALU TYPE LGTH . (RPPRFP2
Nor '
CONTROL STACK PROGRAM POINTER STACK
20 4 4 20 10 22
NSP EXH,ED ENEEREL VSP SEG DISPLACEMENT
Csp
VALUE STACK

VSP

FIGURE 2a,

Display

Name
Stack

Value
Stack

SDL STACK INTER-RELATIONSHIP

Control
W\ Stack

Stack

Evaluation

Fa

.

FIGURE 2b.

LN
S~

Control Stack Entry 1 describes a currently inactive lexic level.

—_—

-SDL OPCODE STRUCTURE

0 thru 9

| 4 bits [2 bits
10 thru 14)
0 thru 3

{4 bits | 6 bits 1B
15 ° 0 thru 64

FIGURE 3.

ENCODING METHOD

HUFFMAN
SDL 4,6,10

8-BIT FIELD

MCP OPERATOR ENCODING

TOTAL BITS FOR
MCP'S OPCODES

172, 346
184,966

301,248

UTILIZATION
IMPROVEMENT

43%

39%

0%

FIGURE 4a,

DECODING
PENALTY

17.2%

2.6%

0.0%

100% |

Eight-bit field

4 e = it o3+ < o - oA o

Decoding time

FIGURE 4b,

90%-|
w
S so
2 80%
5 |
E
o
2 70%+ |
A SDL 4-6-10
O . , . .
€ 619 / Huffman encoding
= 60%f - \

57% T-—
50% — - i i i :
100 1.026 1.05 110 Lis LI7 1.20

e i betin o rnianar B

[

SDL. DESCRIPTOR FORMATS

SIMPLE DESCRIPTOR:

TYPE LENGTH ADDRESS OR DATA

8 16 24

ARRAY DESCRIPTOR:

TYPE LENGTH OF ELEMENT ADDRESS OF FIRST ELEMENT
SCRIPT 81zg| ELmwents | NUMBER OF ELEMENTS
8 16 24
TYPE FIELD:
0 1 2 3 4 j 5 6 2
| I
) NOT USED

1 FOR PAGED ARRAY

DATA TYPE: BIT(00), FIXED(OL),
CHARACTER(10), VARYING(11)

1 IF LENGTH OF ELEMENT = LENGTH BETWEEN
ELEMENTS (CONTIGUOUS ARRAY)

1 IF ARRAY DESCRIPTOR

-
.

NON SELF-RELATIVE
SELF-RELATIVE (DATA ITEM IS IN ADDRESS FIELD)

Q
.

NAME-VALUE BIT

FIGURE 5,

SDL. CODE ADDRESS

TYPE | SEGMENT NO. { PAGE NO. DISPLACEMENT

3 0 OR 6 “ 0 OR & 12,16,0R20
TYPE SEGMENT NO. PAGE NO. DISPLACEMENT TOTAL BITS
000 CURRENT CURRENT 12 BITS 15
001 CURRENT CURRENT 16 BITS 19
010 6 BITS CURRENT 12 BITS 21
oll 6 BITS CURRENT 16 BITS 25
100 6 BITS 4 BITS 12 BITS 25
101 6 BITS -+ &4 BITS 16 BITS 29
110 6 BITS " 4 BITS 20 BITS . 33

111 Co- - - 3

FIGURE 6.

SDL D

ATA ADDRESSES

TYPE | LEXIC LEVEL | OCGURRENCE NO.
2 1 0R 4 5 OR 10
TYPE LEXIC LEVEL OCCURRENCE. NO. TOTAL BITS
00 4 BITS 10 BITS 16
o1 4 BITS 5 BITS 11
10 1 BIT * 10 BITS 13
11 1 BIT =* 5 BITS 8

* 0: LEXIC LEVEL 0

1: CURRENT LEXIC LEVEL

FIGURE 7.

SDL CONSTRUCT DESCRIPTOR OPERATORS

IN-LINE DESCRIPTOR FORMAT:

LENGTH BETWEEN | PAGE SUBSCRIPT| NUMBER OF
TYPE | LENGTH |FILLER ELEMENTS SIZE ELEMENTS
8 6 OR 17 0,6,0R 0,6, OR 17 0 OR 8 0, 6, 17
17
6- OR 17-BIT FIELDS:
01 5 BITS 1 16 BITS
CONSTRUCT DESCRIPTOR OPERATORS:
OPERATOR MNEMONIC OPCODE ARGUMENTS
BASE ZERO CDBZ 1111 10 0100 D
LOCAL DATA CDLD 1110 00 N,D1,...,DN
FROM PREVIOUS CDPR 1110 10° N,D1,...,DN
FROM PREVIOUS AND ADD CDAD 1110 01 N,Dl,...,DN
FROM PREVIOUS AND MULTIELY - CDMP 1111 10 olol N,Dl1,.,.,DN
LEXIC LEVEL CDLL 1111 10 0011 DA,D

WHERE D AND DI ARE IN-LINE DESCRIPTORS, AND DA IS A DATA ADDRESS
(TYPE, LEXIC LEVEL, OCCURRENCE NUMBER)

FIGURE 8a.

SDL CONSTRUCT DESCRIPTOR ADDRESS CALCULATIONS

OPERATOR ADDRESS
CDBZ A' =0
CDLD ' At =V
CDPR ' A' = A+ F
CDAD A' =A+F +1
CDMP A' = A+ F +1L1+ (E-1) x LB
CDLL A' = ADDRESS(DA) + F
WHERE

A' IS THE NEW ADDRESS PART

V IS THE VALUE STACK POINTER

A IS THE ADDRESS PART OF THE PREVIOUS ENTRY IN THE

" NAME STACK ‘

F IS THE IN-LINE FILLER VALUE, IF PRESENT

1 IS THE LENGTH OF THE PREVIOUS ENTRY ON THE
NAME STACK

E IS THE NUMBER-OF-ENTRIES PART OF THE PREVIOUS
ENTRY ON THE NAME STACK

1B IS THE LENGTH-BETWEEN-ENTRIES PART OF THE PREVIOUS

" ENTRY ON THE NAME STACK
DA IS THE IN-LINE DATA ADDRESS

FIGURE 8b,

SDL CONTROL STATEMENT OPERATORS

OPERATOR

CALL

IF-THEN
IF-THEN-ELSE

CASE

UNDO

UNDO CONDITIONALLY
CYCLE

WHERE

MNEMONIC

CALL
- IFTH
IFEL
CASE
UNDO
UNDC
CYCL

‘OPCODE

0111

1001

1101 10

1111 01 0100
1000

1111 01 0011
1110 11

ARGUMENTS

CA

cA

AT,CA,CA
N,AT,CAl,...,CAN
L

L

D

CA IS A CODE ADDRESS (TYPE, SEGMENT NUMBER, PAGE
NUMBER, DISPLACEMENT)

AT 1S THE CODE ADDRESS TYPE

w

N IS THE NUMBER OF CODE ADDRESSES
L IS THE NUMBER OF LEVELS TO UNDO
D IS THE NUMBER OF BITS OF DISPLACEMENT

FIGURE 9.

SDL. PROCEDURE ENTRANCE AND EXIT OPERATORS

OPERATOR

MARK STACK
MARK STACK
CALL

EXIT

UNDO
.RETURN

WHERE

LL IS
CA IS

MNEMONIC

MKS

AND UPDATE MKU
' CALL
EXIT
UNDO
RTRN

THE ENTERED LEXIC LEVEL
A CODE ADDRESS

OPCODE ARGUMENTS
1011 11

1111 01 1111 1L

0111 cA

1101 11

1000

1111 ol olol - L,D

L IS THE NUMBER OF LEVELS TO REMOVE FROM THE

D IS

PROGRAM POINTER STACK -
A TYPE, LENGTH PAIR

FIGURE 10,

SDL CONSTRUCT DESCRIPTOR FORMAL

OPERATOR . ' MNEMONIC OPCODE ARGUMENTS
CONSTRUCT DESCRIPTOR FORMAL ° CDFM 1111 0l 000l .L,E,Dl,...,DN
WHERE

L IS THE ENTERED LEXIC LEVEL

E IS THE NUMBER OF 48-BIT ENTRIES ON THE EVALUATION
STACK

DI ARE IN-LINE DESCRIPTOR TEMPLATES OF THE FORM:

o, NUMBER OF
TYPE | LENGTH ENTRIES
8 0,16 0,16
TYPE:
0 1 2 3 4 5 6 7
l 1 IF LENGTH VARYING
1 IF ARRAY BOUND VARYING
DATA TYPE: BIT(Q0), FIXED(01)
CHARACTER(10), VARYING(1l)
0
_ 1 IF ARRAY
L
4]

FIGURE 11.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

