Burroughs

B 67OO

Information Processmg Systems
REFERENCE MANUAL |

Burroughs

B 6700
INFORMATION PROCESSING SYSTEMS

REFERENCE MANUAL

B,

Burroughs Corporation
Detroit, Michigan 48232

$7.50

Printed in U. S. America 5-72 1058633

COPYRIGHT© 1969, 1970, 1972 BURROUGHS CORPORATION
AA119114, AA190266

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

TABLE OF CONTENTS

SECTION TITLE PAGE
INTRODUCTION .. o e e i XXi
1 SYSTEMS DESCRIPTION e 1-1
Generalo 1-1
Description of Units i e e 1-1
Systems Options and Requirementsttt 1-2
Auxiliary Cabinet 1-2
Disk File Optimizer e e s e, 1-3
System Power, 1-3
Peripheral Control Cabinet it 1-3
System Organizationttt 1-4
Master Control Program, 1-4
CloCKS .o 1-4
PrOCESSOr .. o 1-4
Processor Statest 1-4
Control Statet e 1-4
Normal State 1-5
Features e 1-5
Interrupt System e 1-5
Interrupt Handling 1-5
Operator-Dependent Processor Interrupts, 1-8
Operator-Independent Processor Interrupts 1-8
External Interrupts 1-8
Main Memory . ..o 1-8
Memory Words oo 1-8
Memory Cycle TImMeSottt e e e e e 1-9
Second Level MEMOTYot 1-9
Input/Output Processor it 1-9
Input/Output Processor Configurationou e, 1-9
Data Switching Channels 1-9
Peripheral Controlsot e 1-9
System EXpansiont 1-9
Peripheral Control Bus i 1-9
Processor-Initiated I/O Operationsu e, 1-9
Peripheral Controls 1-12
Data Communications Processor (DCP), 1-12
Data Communications Adaptersttt 1-12
Real-Time Adaptert 1-13

2 DATA REPRESENTATION 2-1
Generalo 2-1
Internal Character Codes it 2-1
Number Basesot 2-1
Hexadecimal and Octal Notation 0. 2-1
Number Conversion, 2-2
Coded to Decimal Conversionuuuiuinnei i, 2-2
Decimal to Coded 2-2
Decimal and Hexadecimal Table Conversionuuuuiuiunnnn. .. 2-2
Hexadecimal to Decimal 2-2
Decimal to Hexadecimal s 2-2

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Order of Magnitudettt e et e e e e e e e e 2-4
Data Types and Physical Layout e 2-4

Caracter Ty P o v oottt e e e e e e e e e 2-4
OPeraNAdS .. oo e e e e e e e e e e 2-5
Mantissa Field e e 2-6
Logical Operandsttt e e e e e 2-6
Operatorscviivivennen.. T e e e e e e e 2-6
3 STACK AND POLISH NOTATION e e e e 3-1
The StacK .. e e e e e 3-1
General e e e 3-1
Base and Limit of Stack e 3-1
Bi-Directional Data Flow Inthe Stack i ... 3-1
Double-Precision Stack Operation00t 3-1
Data Addressing . ..o vt it e e e e e e 3-1
Data Descriptor e 3-2
Presence Bit e 3-2
Index Bit e 3-2
Invalid Index i e e e e 3-2
Valid IndexXo e e e e e 3-2
Read-Only Bit e e 3-2
Copy Bit . ..o e e 3-2
Polish Notation e i e e e e e 3-3
General . . . e 3-3
Simplified Rules for Generation of Polish String 3-3
Polish String . . . o e 3-4
Rules for Evaluating a Polish String i e 3-4
Simple Stack Operationt 34
Program Structure In Memory i e 3-5
Memory Area Allocation 3-6
Stack-History and Addressing-Environment Lists 3-6
Mark Stack Control Word Linkage 3-6
Stack Deletion 3-7
Relative-Addressing i 3-7

Base of Addressing-Level Segment i e 3-8
Absolute Address COnVersionttt e e 3-8
Multiple Variable with Common Address Couples iinn. ... 3-8
Address Environment Defined 3-8

Mark Stack Control Word Linkage oot e i, 3-8

Stack History SUmmaryt e e e 3-9
Multiple Stacks and Re-Entrant Code i 3-9
Level Definition e e 3-9
Re-Entrance 3-9
Job-Splitting 3-9
Stack Descriploro e 3-9
Stack Vector Descriptor 3-10
Presence Bit Interrupt 3-10

4 MAJOR REGISTERS AND CONTROL PANELS i 4-1
Processor Registers i e 4-1

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
General . . o e e e 4-1
Panel A ..o e e e 4-1

P RIS T . . o e e e e 4-1
CREEISTOr . . . e e e e e e 4-1

A RegISIOr . i e e e e e 4-1

B REISIET . . o vt e e e e 4-1

X RIS O L.t e e 4-1

Y RISt oo e e e 4-1
Panel B ... e e e e e 4-1
ROW A L e e e e 4-1
ICMem Read Select o e e e 4-4

IC Mem Write Select . . oo i i e e e e e et e e i e 4-4
Memory Interface i i e e e 4-4
ContTOl/ RESPONSE « & v o vttt et e 4-4
Memory AddresS . .ottt e e e e e e 4-4
ROW B oo e e e 4-4
Row € e 4-5
Family A .o e 4-5
Arithmetic Control i e e 4-5

ROW D o e e e e e e e 4-5
Family B ... e e e e 4-5
Family € . i e e e e e e 4-5

ROW E L e e e e e 4-6
Family D .. e e e e 4-6
Family E ... e e e 4-6
ROW F o e e 4-6
ROW G L e e e e 4-7
Interrupt Control v e e 4-7

Stack Control . .. i e e e 4-7
Memory Controlo i e e e 4-7

RowW H o e e e e 4-7
Program Control oo i e e e e 4-8
Transfer Controller i i 4-8
General Maintenance Controls it i i e e e 4-8
Power Controlst i i e e e e e e e e e 4-8
General Clear and Halt-Load Function i i ., 4-9
Processor Register Clear i e e 4-9
Input/Output Processor Register Clear i 4-9
MDL Register Clearttt et e e ettt et e et 4-10
MDL Control Switches i i i i e e e e e e 4-10
Display Select SWitChes ... oo it e e e e 4-10
ClocKk ControlS . o oot i i et e e e e 4-10
Single Pulse SWitCh o e e 4-10
Pulse Train SwWitch i e e e e e 4-10
Indicators BO, B, B2 i e e e e e 4-10
MDTR/Normal SWitch e 4-10
FE Reset SWitch . . oo i i i i i e e s e e e e e e 4-10
Halt Load and Load Select SWitChes v ittt i ettt i i eiae s 4-10
Processor Maintenance Controls (Panel E) 4-10
Start SWitCh . . . e e e e e e 4-11

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Conditional Halt SWitcho i e e e 4-11
StOP SWILCHES . . ottt e e 4-11

SECL SWitCh .+ .ot e e e 4-11
INT-L SWILCR oot e e e e e e 4-11
EXT-L SWItC ottt e e e e e e e 4-11
Normal/Control State Switches 4-11
Parity SWItCh e 4-11
Unit Clear SWitCh . . . oot e e e e 4-11
Local/Remote SWitch e 4-11
ADJ (0,0) SWILCH . . vttt it e e 4-11
Read IC Switch R 4-12
Read ICOperationttt e e 4-12
Write IC SWItCh 7 o ot e 4-12
Write IC Operationo vt 4-12
Read Proc Reg Switcheso it e 4-12
Input/Output Processor Registers and Flip Flops e 4-13
RowB e e e e e 4-13
ROW € o e e e e e e 4-13
ROW D o e 4-13
ROW E o e 4-14
ROW B oo e 4-14
ROW G ot e e e e e e e e 4-14
ROW H o e e e e 4-14
Input/Output Processor Maintenance ControlPanel 4-14
WEite SP M o oo e e e e e e 4-16
Read SPM ... e 4-16
Write Main Memory e 4-16
Read Main MemoOry .. .o e et et e e 4-16
Executing I/O DesCriptors oottt e e e e e 4-17
Single Cycle ..o e e 4-17
Recycle .o e e e 4-17
Logic Card Testing . .o oottt ittt et e e e et e e e e e e e 4-17
Operators Control Console ottt e e e e 4-18
Operator Panel e 4-18
Power On (Switch Indicator, White) i 4-18
Power Off (Switch, Brown) i i 4-18

Halt (Switch/Indicator, Red) i e 4-18
Running (Indicator, YelloW) i i i e e 4-18
Load Select (Switch/Indicator, Yellow) 4-18
Load (Switch, Brown) i e e e e e e e 4-18
Card Load Operationttt ittt 4-18

Disk Load Operationttt et 4-18

Visual Message Control Center ittt ittt et 4-19
Keyboard Control Keysttt ettt et et e e 4-19
Memory Tester . . . e e e e e 4-20
Ao 1l - PP 4-20
T O 4-21

5 SYSTEM CONCEPT e e e e e e e e e e e 5-1
General . . . e e e e e e e e 5-1

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
PO 0T o vttt e e e e e e e e e 5-1
Operator Familieso it e e 5-1
Program Controller. i 5-1
Transfer Controllero oottt e e e e e e e e 5-2
StaCK RIS IS & o ittt i e e e e e e e 5-2
Internal Data Transfer Section o ittt e et e 5-2
Mask and StEETINgottt it e e e e e 5-3
Mask and Steering Example i e e 5-3
Arithmetic Controller it e e e e e 5-3
High-Speed Adder e e e e e e 5-3
Interrupt Controllert 5-3
Operator-Dependent Interrupts i i 5-5
Memory Protect . ..ottt e e 5-5
Invalid Operand e 5-6
DIVIAE DY ZEI0O & v ot i it ettt e e e e e 5-6 .
Exponent Overflow and Underflow 5-6
Invalid Index ..ot e e e 5-6
Integer OVerflowttt e e e 5-6
Bottom Of StacK . .. o vttt e e 5-7
Presence Bit ot e e 5-7
Data-Dependent Presence Bit 5-7
Procedure-Dependent Presence Bit il 5-7
Program Restart i 5-7
Segmented AITAY .. .o vttt et e e 5-7
Programed Operatorottt e 5-8
Operator-Independent Interrupts i 5-8
External Interrupts . oo ittt e e e e 5-8
Processor t0 ProCessor ..o vt e 5-9
Interval TIMETottt et e e e 5-9
StaCk OV lOW & o ottt e e e e e 5-9
Input/Output Processor Interrupts i 5-9
Scan Bus Controlot e 59
Priority Handling e 5-10
Priority-Handling Example with IHF Off 5-10
Priority-Handling Example with IHF On 5-10
I/O Finish and Data Communications Interrupts 5-10
General Control Adapter i i 5-10
Alarm Interrupts o e 5-10
L0 ottt e e e e 5-11
Memory Parity 0. 5-11
I/O Processor Parityottt e 5-11
Invalid AdAress . . o vttt e e e e e e 5-12
Stack Underflow ..ot e e e 5-12
Invalid Program Word e e e e e 5-12
Interrupt Handling 5-12
String Operator Controllert e 5-12
Control State/Normal Statettt e et e e 5-12
INPut/OULPUL PrOCESSOT . . v\ttt ettt e et e e et e s 5-14
S AN BUS . . o vttt e e e e e e 5-14
Command Data Register oo ittt et e e e 5-14

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Scratch Pad Memory e 5-14

Tag Register i e e 5-15
Memory Exchange e e e 5-15
Interrupt Network e e 5-15
Time of Day Register e e e e 5-15
Channel Assignment Control ity 5-15
Character Translator i e 5-15
Peripheral Control Interface i i 5-16
Data Communications Interface 5-16
System Clock Control and MDL Processor 5-16
System Clock e e 5-16
Maintenance Diagnostic Processor i, 5-17
Display Mode e 5-17

Diagnose Mode e 5-17

Detect Modeot e e 5-17
Information Flow from Card Reader to Main Memory, 5-17
Alpha Card Read e 5-17
Binary Card Read 5-17
EBCDIC Card Read e e e e 5-17
Memory and Input/Output Processor Controller, 5-18
Memory BUs 5-20
Scan BUS . . .o e e 5-20
Address Adder e 5-20
Integrated Circuit (IC) MEMOTY . .o vttt e e e e e e e e e e e e e 5-20
Main Memory e 5-20
Organization e 5-20
Memory Protection e, 5-21
Cabinet Configuration 5-21
Interfaceo 5-21
PriOmitY . . 5-21
Memory Registerso i 5-22
Memory Addressingt 5-22
Memory Interlacing 5-22
Memory Testingo e 5-23
Stack Controller 5-23

6 PROGRAM OPERATORS e s 6-1
General . . . 6-1
Syllable Addressing and Syllable Identification 6-1
Syllable Format and Addressingo, 6-1
Pand T Registers e e 6-1
OPeTation Ty PeS . . i 6-1
Name Call 6-1
Value Call 6-1
OPETAtOrS . . oottt 6-2
Word Data Descriptor 6-3
String Descriptor o 6-4
Segment Descriptor 6-5
Mark Stack Control Word 6-5
Program Control Word 6-6

SECTION TITLE PAGE
Return Control Word . ..o v i e e e e e e e e e e e 6-6 .
Indirect Reference Word oottt i i et e et e e 6-6
Stuffed Indirect Reference Word oot i e ettt 6-7 .
StepIndex Word e 6-8

7 PRIMARY MODE OPERATORS .. i e e e ettt e 7-1
General e e [7-1
Arithmetic Operatorsot tii ee 7-1

Add (ADD) 80 ..ttt e e e et 7-1
Subtract (SUBT) 81 ..o i it e e e e et e e e 7-1
Multiply (MULT) 82 v i it it it e e et e e e e e e e e ettt e 7-2 .
Extended Multiply (MULX) 8F i i i 7-2
Divide (DIVD) 83 . it e e e s 7-2
Integer Divide (IDIV) 84 7-2 .
Remainder Divide (RDIV) 85 . .o it i e e e e e et e e 7-2 .
Integerize, Truncated (NTIA) 86 i e 7-3 .
Integerize, Rounded (NTGR) 87 i i e 7-3 .
Type-Transfer Operatorsttt ittt ettt et 7-3 .
Set to Single-Precision, Truncated (SNGT)CC e 7-3
Set to Single-Precision, Rounded (SNGL)CD 7-3 .
Set to Double-Precision (XTND) CE i e et 7-3
Logical OPerators . . .o v v vttt it et et e e e e 7-4
Logical And (LAND) 00 . .. o i i e e 7-4
Logical Or (LOR) 91 ... e e e e e e e e 7-4
Logical Negate (LNOT) 92 e e e 7-4
Logical Equivalence (LEQV) 93 i 74
Relational Operatorsottt it e et et et e e et e e 7-4
Logical Equal (SAME) 04 o i 74
Greater Than (GRTR) 8A . .. it e e 7-4
Greater Than or EQual (GREQ) 89 e 7-4 .
Equal (EQUL) 8C i e e 7-4
Less Thanor Equal (LSEQ) 8B i i i ittt et 74
Less Than (LESS) 88 . it e e e e e e e e e e 7-4
Not Equal (NEQL) 8D ittt et e e e i e 7-5 .
Branch Operators . ..o ottt ettt e e e e e 1-5 .
Branch False (BREL) AQ i e ettt e e et et a e 7-5 .
Branch True (BRTR) Al ...t i e e e e e e e et et e e 7-5 .
Branch Unconditional (BRUN) A2 i e et ettt 7-5 .
Dynamic Branch False (DBFL) A8 i i e e e e et 7-5 .
Dynamic Branch True (DBTR) A9 et 7-5
Dynamic Branch Unconditional (DBUN) AA i i, 7-5
Step and Branch (STBR) A4 7-5 .
Universal Operatorsttt ittt ettt it et e 7-6
No Operation INOOP) FE i i et 7-6
Conditional Halt (HALT) DF e et e e 7-6 .
Invalid Operator (NVLD) FF s 7-6 .
SLOTE OPETaLOIS . . o ot ittt et et e i e e e e 7-6 .
Store Destructive (STOD) B8o i e e e 7-6 .
Store Non-Destructive (STON) BO o i e e e e 7-6 .
Overwrite Destructive (OVRD) BA o i e e e e e e e s 7-6

TABLE OF CONTENTS (cont)

SECTION

TABLE OF CONTENTS (cont)

TITLE PAGE

Overwrite Non-Destructive (OVRN) BB i 7-6
Stack Operatorst 7-6
Exchange (EXCH) BO o 7-6
Delete Top Of Stack (DLET) BSo o e, 7-6
Duplicate Top Of Stack (DUPL) B7 i, 7-6
Push Down Stack Registers (PUSH) B4 7-6
Literal Call Operatorsottt i e e e e 7-7
Lit Call Zero (ZERO) BOttt e e e e e 7-7
Lit Call One (ONE) Blot e e e e i 7-7
Lit Call 8 Bits (LT8) B2 . ..ottt e e e e e e s 7-7
Lit Call 16 Bits (LT16) B3 e e e 7-7
Lit Call 48 Bits (LT48) BE o e e e i 7-7
Make Program Control Word (MPCW) BF, 7-7
Index and Load Operators it e 1-7
Index (INDX) AG ..o i e e e 7-7
Index and Load Name (NXLN) AS i i 7-7
Index and Load Value (NXLV) AD 7-7
Load (LOAD) BD 7-8
Scale OpPeratorsttt 7-8
Scale Left (SCLE) COot e e e 7-8
Dynamic Scale Left (DSLF) C1 7-8
Scale Right Save (SCRS) C4 oo 7-8
Dynamic Scale Right Save (DSRS) C5 7-8
Scale Right Truncate (SCRT) C2ottt e 7-8
Dynamic Scale Right Truncate (DSRT) C3 i, 7-8
Scale Right Final (SCRF) C6 i, 7-8
Dynamic Scale Right Final (DSRF) C7 7-9
Scale Right Rounded (SCRR) C8 i, 7-9
Dynamic Scale Right Round (DSRR) CO s, 7-9
Bit Operatorsot 7-9
Bit Set (BSET) 96 o 7-9
Dynamic Bit Set (DBST) 97 e 7-9
Bit Reset (BRST) OF 7-9
Dynamic Bit Reset (DBRS) OFo 7-9
Change Sign Bit (CHSN) 8E e e i 7-9
Transfer Operatorsottt e e 7-9
Field Transfer (FLTR) 98t 7-9
Dynamic Field Transfer (DFTR) 99 7-10
Field Isolate (ISOL) QA i, 7-10
Dynamic Field Isolate (DISO) OBttt e 7-10
Field Insert (INSR) OC e, 7-10
Dynamic Field Insert (DINS) 9D e, 7-10
String Transfer Operatorsttt e 7-10
Transfer Words, Destructive (TWSD) D3 o e e i 7-10
Transfer Words, Update (TWSU)DB 0. 7-11
Transfer Words, Overwrite Destructive (TWOD)D4 0. 7-11
Transfer Words, Overwrite Update (TWOU)DC 7-11
Transfer While Greater, Destructive (TGTD) E2 oo 7-11
Transfer While Greater, Update (TGTU)EA 7-11
Transfer While Greater or Equal, Destructive (TGED)YEL 7-11

X

SECTION

TABLE OF CONTENTS (cont)

TITLE PAGE
Transfer While Greater or Equal, Update (TGEU)E9ot 7-11 |
Transfer While Equal, Destructive (TEQD)E4o 7-11 |
Transfer While Equal, Update (TEQU)EC v 7-12 .
Transfer While Less or Equal, Destructive (TLED)E3ot 7-12
Transfer While Less or Equal, Update (TLEU)EB oo 7-12
Transfer While Less, Destructive (TLSD)YEO i 7-12 .
Transfer While Less, Update (TLSU)E8 o 7-12 .
Transfer While Not Equal, Destructive (TNED)ESoiiiiiantn 7-12 .
Transfer While Not Equal, Update (TNEU)EDo 7-12 .
Transfer Unconditional, Destructive (TUND)EG6o vt 7-12 .
Transfer Unconditional, Update (TUNU)EEo i, 7-12 .
String Isolate (SISO) D5 . .o o v e 7-12°
ComPare OPETALOTS . . . v v vttt e e e et a et a et 7-12 |
Compare Characters Greater, Destructive (CGTD)F2 7-12 .
Compare Characters Greater, Update (CGTU) FAo 7-13 .
Compare Characters Greater or Equal, Destructive (CGED)F1 7-13
Compare Characters Greater or Equal, Update (CGEU)F9 ... i 7-13
Compare Characters Equal, Destructive (CEQD)F4 7-13 .
Compare Characters Equal, Update (CEGU) FCo 7-13
Compare Characters Less or Equal, Destructive (CLED)F3 7-13
Compare Characters Less or Equal, Update (CLEU)FBoooennn 7-13;
Compare Characters Less, Destructive (CLSD)FO 7-13 .
Compare Characters Less, Update (CLSU)F8o 7-13;
Compare Characters Not Equal, Destructive (CNED)F5 ... 7-13;
Compare Characters Not Equal, Update (CNEU) FD ..o e 7-13
Edit OPErators vuvue et ettt 7-13,
Table Enter Edit, Destructive (TEED)DO it 7-13.
Table Enter Edit, Update (TEEU) D8 s 7-14°
Execute Single Micro, Destructive (EXSD)D2 iiiiiiiiien 7-14:
Execute Single Micro, Update (EXSU)DA e 7-14;
Execute Single Micro, Single Pointer Update (EXPU)DD 7-14:
Pack OPEIrators . v v v v v e vttt ittt e et 7-14,
Pack, Destructive (PACD) D1 o 7-14,
Pack, Update (PACU) DOo e 7-14;
Input Convert OPEratorsueu e eneeneunenueeaenaenaeoneaee s e, 7-14;
Input Convert, Destructive JCVD) CA i 7-14,
Input Convert, Update (ICVU)CBo 7-15;
Read True False Flip Flop (RTFF)DE i 7-15;
Set External Sign (SXSN) D6ottt 7-15,
Read and Clear Overflow Flip Flop (ROFF) D7 i 7-15;
SUDIOULINE OPETatOrS + v v v v v vttt e et ettt ee et 7-15,
Value Call (VALC) 00=3F . ..o e 7-15;
Name Call NAMC) 40=TF ... e 7-15;
Exit Operator (EXIT) A3 .. .ottt e i e 7-15,
Return Operator (RETN) A7 . ..o e 7-17,
Enter Operator (ENTR) AB i e 7-17,
Evaluate (EVAL) AC ... ittt it it et e 7-20,
Mark Stack Operator (MKST) AE 7-21
Stuff Environment (STFF)AF e e e e e 7-22,
Insert Mark Stack Operator (IMKS)CF i s 7-22

xi

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
-8 VARIANT MODE OPERATION AND OPERATORS i 8-1
(LT3 1 8-1
Escape to 16-Bit Instruction (VARID) 95 e, 8-1
L0 0S5 11 - 8-1
Set Two Singles to Double (JOIN) 9542 e 8-1
Set Double to Two Singles (SPLT) 9543 i 8-1
Idle Until Interrupt (IDLE) 9544 ettt 8-1
Set Interval Timer (SINT) 9545 (Control State Operator)cvvn... 8-1
Enable External Interrupts (EEXI) 9546 i 8-1
Disable External Interrupts (DEXI) 9547 i e 8-1
AN O PeralOrS . . .o i e e e e e 8-1
Scan In (SCNI) O54A e e 8-2
Read Time Of Day ClocK i e e e et 8-2
Read General Control Adaptert i e 8-2
Read Result Descriptor ...t e e e e 8-3
Read Interrupt Maskt it et et 8-4
Read Interrupt Register o i e e, 8-4
Read Interrupt Literal i 8-5
Interrogate Peripheral Status i 8-5
Interrogate Peripheral Unit Type oo ii it e e e e et 8-6
Interrogate I/O Path i e 8-7
Scan Out (SCNO) 954Bot e e e e e e 8-8
Set Time Of Day ClocKot e e e e e e 8-8
Set General Control Adapter i 8-9
Initiate I/O (Control State Only)ot ittt e e e e e e e e e 8-9
Read Processor Identification (WHOI) 954E e e e e 8-10
Interrupt Other Processor (HEYU) 954F e 8-10
Occurs Index (OCRX) 0585 .. . i e e e e e e 8-10
Integerized, Rounded, Double-Precision (NTGD) 9587 8-11
Leading One Test (LOG2) 958Bo e e et e 8-11
Move To Stack (MVST) O5AFo e e e e e e e s i, 8-11
Set Tag Field (STAG) O5B4t e e e e e e 8-12
Read Tag Field (RTAG) O5BS5t e e e e e e e i, 8-12
Rotate Stack Up (RSUP) O5B6t e e et i e, 8-12
Rotate Stack Down (RSDN) 95B7 i e et 8-12
Read Processor Register (RPRR) 95B8 i s i 8-12
Set Processor Register (SPRR) 95BOottt e 8-13
Read With Lock (RDLK) O5BA e e e 8-13
Count Binary Ones (CBON) 95BB ittt e e i 8-13
Load Transparent (LODT) 95BC it e i, 8-13
Linked List Lookup (LLLU) 95BD e e e e e e e e e e i 8-13
Masked Search for Equal (SRCH) 95BE i e e i, 8-13
Unpack Absolute, Destructive (UABD) 95D i e, 8-14
Unpack Absolute, Update (UABU) 95D9 oot 8-14
Unpack Signed, Destructive (USND) 95D0 i e e e e 8-14
Unpack Signed, Update (USNU) 95D 8 i e 8-14
Transfer While True, Destructive (TWTD) 95D3 8-14
Transfer While True, Update (TWTU)95DB, 8-14
Transfer While False, Destructive (TWFED) 95D2 8-14
Transfer While False, Update (TWFU) 95DAt 8-14

xii

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Translate (TRINS) 05D 7 . ..t e et e e e e e 8-15
Scan While Greater, Destructive (SGTD)Y9SF2 i i 8-15
Scan While Greater, Update (SGTU) 95FA i 8-13
Scan While Greater or Equal, Destructive (SGED) 95F1 8-15
Scan While Greater or Equal, Update (SGEU)95F9 i 8-15
Scan While Equal, Destructive (SEQD) 95F4 i 8-13
Scan While Equal, Update (SEQU) 95FC e 8-13
Scan While Less or Equal, Destructive (SLED)95F3ot 8-13
Scan While Less or Equal, Update (SLEU)O95FB i, 8-13
Scan While Less, Destructive (SLSD) 95FO i 8-13
Scan While Less, Update (SLSU) O5F 8o i i e i e e 8-16
Scan While Not Equal, Destructive (SNED)9SFS it 8-16
Scan While Not Equal, Update (SNEU) 95FD i, 8-16
Scan While True, Destructive (SWTD)95DS 8-16
Scan While True, Update (SWTU) 95DD i i i e 8-16
Scan While False, Destructive (SWFD) 95D4 i 8-16
Scan While False, Update (SWFU) 95DC i, . 8-16

9 EDIT MODE OPERATION AND OPERATORS e 9-1
GENCTal . . o et et e e e e e e e e 9-1
Edit MOde Operatorso v vttt ittt et ettt e e it 9-1

Move Characters (MCHR) D7 e et 9-1
Move Numeric Unconditional (MVNU) D6 i, 9-1
Move With Insert (MINS) DOot e e e e 9-1
Move With Float (MFLT) D1 e e e 9-1
Skip Forward Source Characters (SFSC)D2 i 9-2
Skip Reverse Source Characters (SRSC)D3 o i 9-2
Skip Forward Destination Characters (SFDC)DA 9-2
Skip Reverse Destination Characters (SRDC)DB L. 9-2
Reset Float (RSTEF) D4 it 9-2
End Float (ENDE) D5 ..ttt et e e et et e e e 9-7
Insert Unconditional INSU) DC i i e e 9-27
Insert Conditional (INSC) DD i e e 9-7
Insert Display Sign (INSG) D9 it i i e 9-2
Insert Overpunch (INOP) D8 s 9.3
End Edit (ENDE) DEttt e e e e e e 9-3

10 INPUT/OUTPUT PROCESSOR AND PERIPHERAL CONTROLS 10-}
GEnETaAl vt ot e e e e e e e e e e e e e 10-1
OPETAtION & o vttt et e e e e e 10-1
Descriptor FOrmats vttt e e e 10-Z

FUnction Word oot e e e e e e e e 10-2
ATEa DeSCII P Or . o o ittt e e 10-3
J/O Control Word ..ottt e e 10-7
Result DesCriptorottt e e e e e e 10-2
Peripheral Units and Associated Peripheral Controls 10-3
COMS0LE vttt ettt e e e e e e e 10-2
Card Reader e e e e e e e 10-4
Card PUunCh . .. o e e e e e 10-§
Line Printers . .ot e e e e e e 10-¢

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Magnetic Tape Subsystem i 10-6
Disk File Memory Systemsottt et ettt e e it e 10-11
Paper Tape . ..o e 10-14
Disk Pack Drive Memory Systems, 10-15

11 B6700 DATA COMMUNICATIONS SYSTEMottt e e e e 11-1
General e e 11-1
Data Communications Processor (DCP) it ettt 11-1
Adapter ClUSter . ..ottt e e e e e e e, 11-3
Line Adapler 114

12 DISK FILE OPTIMIZER e e e e e e s 12-1
General e, 12-1
Functional Characteristicsttt ittt e e e e 12-1

Functional Performance Characteristicst 12-1
COMPONENLS . . .ottt et i e 12-2
Operational Characteristicsttt e e e e e 12-2
Accumulation of Control Words e 12-2
Queuing the Control Wordst e e e e, 12-2
Stack Operation 12-3
Stack Erasure and Compressionttt 12-3
Optimizer Dump 12-3
Degraded Mode Operationttt 12-3
EU Conflict Resolution i 12-3
Interface Requirements it 12-3
Interface with the I/O Processorco vt e, 12-3
Control Wordo 12-4
SCan-OUt . e, 12-4
Scan-In .. 12-5
Scan Bus Data Format 12-5
Scan Address Lines (SA)ottt 12-5
Scan-Out Information Lines i 12-6
Scan-In Information Lines (SI)o oottt e e e 12-6
Dynamic Interaction with the B6700 12-6
Optimized Control Word Request 12-7
Top-of-Stack-Control Word Request e, 12-7
Store the Control Word Request 12-7
Clear-the-Stack Requestt e 12-7
First Stack Scan Cycle Incomplete 12-7
Arithmetic Address Converter (AAC) BUSY .. oottt it e e e e e e, 12-7
No Access to OEXo . e 12-7
SUNot Available e 12-7
Optimizer Stack (OS) Empty e 12-8
Control Word Not Available 0ttt e 12-8
Scan Bus Parity Error 12-8
Optimizer Stack (OS) Parity Error 12-8
Disk Address Error o, 12-8
Optimizer Stack Full 12-9
Disk Interface o i 12-9
Signals Sent Directly to the Disk File Subsystemc.uuuuuinn ... 12-9

Xiv

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
Signals Received Directly from the Disk File Subsystem 129
Signals Sent to the Disk File Subsystem Via the Other Optimizer 12-10 .
Signals Received From the Disk File Subsystem Via the Other Optimizer 12-10
Signals Sent to the Other Optimizer i 12-10 .
Signals Received From the Other Optimizer 12-11

Functional Unitsttt i e e ettt e e it e s 12-11
I/O Interface UNit viut ittt it i 12-11 |
Drivers (DR) and Receivers (RX)ottt e e e e 12-11 .
Scan Bus Controls . . v vttt e e e e e 12-11 .
Control Word (CW) ChecKer v ittt e et e e 12-11 .
StatUS CONtIOlS . . v vt e it et e e e e e e e e e e 12-11 .
Disk Address Unitottt e e e et e 12-12 .
Drivers and ReCeivers . .o vttt i it e et e e e e 12-12 .
EU Conflict ResOlUtion ci ittt it it i e ittt ettt e i 12-13
Actual Shaft Position Registers (ASPR) i 12-13 |
Optimizing Unitot it e e e i i s 12-13 .
Arithmetic Address Converter (AAC) it e e e 12-13 .
Optimizer StacK o e 12-13 .
Optimizer Stack Register (OSR) i 12-13 .
Stack Controls (TSR and OAR) i e 12-13
Stack COMTOLS .o oottt e e e e e e 12-13 .
Top-of-the-Stack Register (ISR) i i 12-13 .
Optimizer Address Register (OAR) i, 12-13 .
Delta Generator and Comparator (DGC) 12-13
Delta A Register and Delta B Register (DARand DBR) 12-14 .
Timing Controlsottt e e e e 12-14
APPENDIX A — OPERATORS, ALPHABETICAL LIST i A-1 .
APPENDIX B — OPERATORS, NUMERICAL LIST PRIMARYMODE B-1
APPENDIX C — CONTROL WORD FORMATS i et e e e C-1
APPENDIX D — SCAN FUNCTION CODEWORDS i D-1.
APPENDIX E — DATA REPRESENTATION i E-1,
APPENDIX F — B 6700 EBCDIC/HEX CARDCODE i F-1
APPENDIX G — HEXADECIMAL-DECIMAL CONVERSIONTABLE G-1

Xv

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 Auxiliary Cabinets 1-3
1-2 B 6700 Power Supply e e 1-3
1-3 Peripheral Control Cabinet i e i i 1-4
14 B 6700 Representative Configuration (Two Sheets) 1-6
1-5 Magnetic Tape Subsystem Relationshipst i, 1-10
1-6 Disk File Subsystem Relationships it 1-11
1-7 Input/Output SUbSYStEMottt it e e e 1-12
1-8 Organization of Data Communications Processor Remote Lines 1-13
2-1 BasicWord Structuret 2-1
2-2 Number Base Graphic Charactersu it in ittt e, 2-1
2-3 Binary to Hexadecimal and Octal Conversioncco it it i ie i ennnnn. 2-2
2-4 Relationship of Octal, Decimal and Hexadecimal Numbers 2-2
2-5 Hexadecimal and Octal to Decimal 2-2
2-6 Decimal 101310 to Hexadecimaland Octal 0 .. uuu..... 2-3
2-7 HEX and DEC Table Conversionuuuuiin e, 2-3
2-8 Order of Magnitude Tablettt e 2-4
2-9 (-4259)in 8-, 6-,and 4-Bit Code oottt e, 2-5
2-10 Single-Precision Operand (Hexadecimal)o nnn... 2-5
2-11 Single-Precision Operand (Octal) it 2-6
2-12 Double-Precision Operandt 2-6
2-13 Logical Operand 2-6
3-1 Top of Stack and Stack Bounds Registerscu .. 3-1
3-2 Polish Notation Flow Chart ittt 3-3
3-3 Stack Operation i 3-5
34 Object Program in Memoryt 3-7
3-5 Stack History and Addressing Environment List 3-7
3-6 Stack Cut-Back Operation on Procedure Exit 3-7
3-7 ALGOL Program With Lexicographical Structure Indicated 3-8
3-8 D Registers Indicating Current Addressing Environment 3-8
39 Addressing Environment Tree of ALGOL Programc.uuio. ... 3-9
3-10 Multiple Linked Stacks o i 3-10
4-1 Processor Display Panels. i 4-1
4.2 Processor Register Panel A 4-2
4-3 Processor Display Panel B 4-3
4-4 Power Control 4-9
4-5 Address Register.ot e 4-12
4-6 Panel E ... 4-13
4-7 Input/Output Processor Display Panel B0 .. 4-15
4-8 Panel D Input/Output Processor Maintenance Control Panel 4-17
4-9 Operators Control COnSolettt et e e e e e 4-19
4-10 Visual Message Control Centerovvt e it e it e e e e e 4-19
4-11 Keyboard Format 4-20
4-12 Memory Testert e e e 4-21
4-13 Memory Tester Panel 4-21
5-1 B 6700 Processor Organizationttt e 5-1
5-2 B 6700 Processor Block Diagramo ittt 5-2

FIGURE

1 !

DO DD M = = o e ek

-6
-7

LIST OF ILLUSTRATIONS (cont)

TITLE PAGE
Internal Data Transfer Section 5-4
Mask and Steering i e 5-5
Arithmetic Control e 5-5
Presence Bit Interrupt o 5-8
B 6700 Scan Bus Priority Control i 5-11
Stack Format 5-13
String Op Controllerot e 5-14
E Register Functions e 5-14
Input/Output Processor Block Diagram00 uinnenunnen... 5-15
Command Data Register and Scratch Pad Memory 5-16
Data Information Flow 5-18
Memory Controller Decoding it i i 5-19
Memory Organization vttt 5-21
Information TranSmiSsSion\ttt i e 5-21
B 6700 Memory Configuration it 5-22
Memory Module Selection i 5-23
Memory Registers oo 5-23
Interlace Addressingu vttt i e 5-23
Hardware Stack Adjustment i 5-24
Program Word 6-1
Program Word, Syllable Addressing 6-2
Syllable Decode Table e 6-2
Word Data Descriptor.t 6-3
String Descriptor (Non-indexed) 6-4
Byte/Word Index Field o 6-4
Segment Descriptort 6-4
Mark Stack Control Word i 6-5
Program Control Word 6-6
Return Control Word o 6-6
Indirect Reference Word i 6-7
Stuffed Indirect Reference Word 6-7
Program Level Bit Assignmentt 6-8
Step Index Word 6-8
Flow of Value Call Operatorc.uiinmiini e 7-16
Flow of Value Call Operator (Cont)uuiiiiiim .. 7-17
Flow of EXit Operatort e e e 7-18
Flow of Return Operatort e e 7-19
Flow of Enter Operator i 7-20
Flow of Evaluate Operatorttt i 7-21
Flow of Stuff Environment Operatort i, 7-22
Read Time-of-Day Function Word, 8-2
Time-of-Day Word 8-2
Read General Control Adapter FunctionWord 8-2
Read Result Descriptor FunctionWord 8-3
Result Descriptor . ..o e 8-3
Read Interrupt Mask Function Word 8-3
Interrupt Mask Wordo 8-4

FIGURE

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28

LIST OF ILLUSTRATIONS (cont)

TITLE PAGE
Read Interrupt Register FunctionWord 8-4
Interrupt Register Word ii i e, 84
Read Interrupt Literal FunctionWord 8-5
Interrupt Literal Wordot e 8-5
Interrogate Peripheral Status FunctionWord o 8-5
Status Vector Wordottt e e 8-6
Interrogate Peripheral Unit Type FunctionWord 8-6
Unit Type Function Word e 8-6
Interrogate I/O Path Function Word i 8-7
[/JOPath Result Wordttt e e et e e e ans 8-7
Set Time-of-Day Clock Function Word 8-8
Time-of-Day Word e 8-8
Set General Control Adapter FunctionWord 8-9
Initiate I/O Function Wordttt 8-9
Area Descriptor e . 8-9
I/O Control Word o e e 8-10
Index Control Word oo e e e 8-10
Index Word ... o e e e e 8-11
Top-Of-Stack Control Word (TSCW)o 8-11
Stack Rotation Up oo e e e e 8-12
Stack Rotation Down e 8-12
Input/Output SUDSYSTEIM . . o vttt e et e e et e e 10-1
I/O Descriptor FOrmatsttt e 10-2
Result Descriptor Format e 10-3
Console Control Center vttt e e e 10-3
Single Line Control Result Descriptor 10-4
Single Line Control [/O Control Word 10-4
Card Reader .. .ot e e 10-4
Card Read I/O Control Word vttt e et et e e 10-4
Card Read Result Descriptort et e e 10-5
Card Puncho e e e 10-5
Card Punch I/O Control Word e e 10-5
Card Punch Result Descriptor e e e e e 10-5
Line Printer .. .ottt e e e e e 10-6
Line Printer I[/O Control Word it i e et e 10-6
Line Printer Result Descriptor i i e e 10-6
Free Standing Magnetic Tape Units i 10-7
Cluster Tape Unitot e e e e e e et e e 10-7
Magnetic Tape Configuration i 10-9
I/O Control Word Magnetic Tapeottt it e e e ene 10-10
Magnetic Tape Result Descriptor i e e e 10-10
Basic Disk File Subsystem e 10-11
Disk File Configurations vt i et e et e e e e 10-12
Disk File I/O Control Word i e e e et 10-13
Disk File Result Descriptor e e 10-14
B 9120 Paper Tape Reader i e 10-14
B 9220 Paper Tape Punch e 10-14
Paper Tape I/O Control Word and Operations 10-15
Paper Tape Result Descriptor e e e 10-15

FIGURE

10-29
10-30
10-31
10-32
10-33

TABLE

1-1
2-1
3-1
3-2
6-1
10-1
10-2
10-3
10-4
10-5
10-6
11-1

LIST OF ILLUSTRATIONS (cont)

TITLE PAGE
Disk-Pack Drive and Disk-Pack Drive Controller. 10-15
Disk-Pack Subsystem Block Diagram 10-16
Disk-Pack Recording Surfaces i 10-16
Disk-Pack I/O Control Word (IOCW) i 10-18
Disk-Pack Result Descriptor Format 10-19
B 6700 System Configuration Including Data Communications 11-1
DCP Block Diagramottt et e e e e e 11-2
Adapter CluSter i e e e e 11-3
The Optimizer in the B 6700 System i, 12-1
Optimizer Interface v e 12-2
Scan-Out Signal Sequence e 12-4
Scan-In Signal SeqUENCE .. v ittt 12-5
The Disk File Subsystem (DFS) Interface 12-9
Optimizer Block Diagram with Interface Signalsc.ciiiin i, 12-12

LIST OF TABLES

TITLE PAGE
B 6700 Central Units Chartt eiiinnan 1-1
Negative Sign Configurations ittt e e 2-5
Evaluation of Polish String A7BC+x:= e 3-4
Description of Stack Operation i 3-6
Sub-Field Lengths i e e e 6-7
FField Codes ... i e e e e e e e e 10-2
Peripherals and Controls 10-3
Available Magnetic Tape Subsystems i 10-7
Magnetic Tape Operations vttt i et et e e 10-10
Disk File Memory System Types it 10-13
Disk-Pack Subsystem Characteristics 10-17
Data Communications Terminal Compatibility 11-4

xix

The Burroughs B 6700 is a medium to large,
high-speed Information Processing System. The
following are some of the features incorporated in
this system:

1. Monolythic Circuitry.
2. Memory expandable to 1,048,576 words.

3. Memory Cycle Times of 1.2 microseconds,
1.5 microseconds, and 500 nanoseconds.

4. Peripheral configuration expandable to 256
units.

5. Triple — Input/Output Processor system per-
mitting up to 36 simultaneous Input/Output
(I/O) operations.

6. Data Communication Software for remote
computing and file manipulation.

7. Disk File storage over 36 billion bytes (8-bit
characters).

A unique hardware design, developed from years
of successful experience with the B 5000 series, has
resulted in the parallel design of the B 6700
hardware and software. Whereas hardware tradi-
tionally was designed prior to software develop-
ment, parallel design assures that the hardware
contains all necessary logic for efficient software
packages, which in turn optimizes hardware capa-
bilities. The B 6700 design affords a general
“re-entrant” technique which permits multiple
users to share a common object program. In
addition, the systems further expand the use of
hardware stack organization used in the B 5500.
For example, the Segment Dictionary, a separate
table for each program in the B 5500, has been
placed in the base of the program stack in the B

INTRODUCTION

6700. This part of the stack is used for multiple -
executions of the same program, thus imple-
menting in the hardware many of the bookkeeping -
functions required to implement Master Control:
Program (MCP) re-entrancy.

To provide dynamic storage allocation, the B:
6700 system employs and expands upon the
Burroughs descriptor method of segmentation, first -
used on the B 5500, in lieu of some form of:
fixed-sized “‘paging” technique.

Designed to bring the user simplified pro--
graming, operational ease, and complete freedom
of system expansion, the B 6700 offers a choice of -
problem-oriented languages, some of these lan-
guages are: COBOL for business applications and
ALGOL and FORTRAN for solution of mathe-
matical problems. Operator intervention is mini- .
mized by the MCP, which provides for complete
system management.

The complete flexibility of programing and:
control of the processing pattern provides the B
6700 with smooth growth potential. Starting with’
a minimum configuration, the user may expand his:
system in small increments to accommodate a:
growing work-load. With each addition, the MCP
automatically adjusts to attain increased system:
production and efficiency, expanding system.
multiprograming capabilities.

This reference manual describes the hardware®
characteristics of the B 6700 system. Because of"®
the design concept of the B 6700, there exists a-
strong interdependence between the hardware and"
the Master Control Program (MCP). This material
pertains only to the hardware considerations, .
whereas the MCP is discussed in a separate manual.

GENERAL

This manual explains how the B 6700 Informa-
tion Processing System achieves flexibility and
efficiency through a comprehensive system
approach to problem solving without considering
the areas of computer logic or circuit design. The
program-independent modular system design
efficiently uses available units to process programs
and also permits system configuration changes
without the need to reprogram or recompile. This
approach also offers the user the advantages of
simplified programing, ease of operation and a
complete freedom of system expansion. The
B 6700 is a compiler oriented system designed to
accept the problem-oriented languages: ALGOL,
COBOL, and FORTRAN. The systems auto-
matically handle memory assignments, program
segmentation and subroutine linkages, eliminating
many of the arduous programing tasks that are

SECTION 1
SYSTEMS DESCRIPTION

likely to produce errors. The programs are -
debugged and corrected in the source language.

DESCRIPTION OF UNITS

The B 6700 system configuration varies with .
application and workload requirements.
minimum system includes one processor, one disk :
file storage unit, one magnetic tape unit, one
input/output processor, one memory module, one -
console display unit, one card reader and one
printer. The maximum system configuration .
includes 3 processors, 64 memory modules (16,384
words each), 3 input/output processors, 60
peripheral controls, 8 data
processors, and 256 peripheral units. The central
units are defined in table 1-1. The peripheral units
available with this system, along with their -
characteristics, are listed in section 10. The Data
Communications Sub-System is defined in section
11.

The -

communications -

Table 1-1.
B 6700 Central Units Chart
No. Of Add’L
Styl Prg)ocres Input/ Input/
N}cl) © Description Speed Output Output Notes
) (MHz) Proces- Proces-
sors sors]

B 6711 One processor 2.5/2.5 1 0 Used only with 65k
memory modules.

B 6721 One processor (can have 2.5/2.5 1 1 Used only with 65k
a B 6721-1 second memory modules.
processor)

B 6712 One processor 2.5/5.0 1 lor2 Used with any of the
available memory
modules.

B 6722 Two processors 2.5/5.0 1 lor2 Used with any of the
available memory
modules.

B 6714 One processor 5.0/5.0 1 1or2 Used with any of the
available memory
modules.

B 6724 Two processors 5.0/5.0 1 lor?2 Used with any of the
available memory
modules.

B 6734 Three processors 5.0/5.0 2 1 Used with any of the
available memory
modules.

11

Table 1-1. (Cont'd.)
B 6700 Central Units Chart

No. Of Add’lL
Style Proces- Input/ Input/
N}cl) Description sor d Output Output Notes
: Spee Proces- Proces-
(MHz) sors sors
B 6780 Input/Output Processor
B 6780-1 Data switching channel, — — — Optional.
up to 12 per input/
output processor
B 6790 Maintenance Diagnostic - - - Optional.
Logic Processor for
B 6722,B 6724, &
B 6734 Systems (second
input/output processor is
required).
B 6791 Power Supply - — — Optional.
B 6000 Memory control cabinet — - - Optional.
B 6004-1 98,304 bytes (16,384 - - — —
words (1.2 us memory
module
B 6005-1 393,216 bytes (65,536 — — — —
words) 1.5 us memory
module
B 6006-1 98,304 bytes (16,384 — — - —
words) 500 ns memory
module

SYSTEM OPTIONS AND REQUIREMENTS

The following lists the requirements and some of
the available options for the B 6700 systems:

1. A minimum of one special DC module is

required

in a B 6700 system.

installed in the following cabinets:

a. Input/Output Processor.

b. Processor.

c¢. Peripheral Control.

It can be

precludes the use of any other module in
that same cabinet.

3. A Flip Flop display supply module is required

on the system and must be installed in the
Input/Output Processor cabinet.

4. The Memory cabinets each must contain a

special Memory supply for developing the
regulated voltages required for the memory
operation.

. Each cabinet must contain an inverter for

d. Data Communications.

. A minimum of one + 12 volt inverter module
is required in a B 6700 system. It can be
installed in the following cabinets:

a. Input/Output Processor.
b. Processor.
c¢. Peripheral Control.

NOTE

The use of this module in a cabinet

1-2

supplying power to its regulators. A 600
ampere inverter is required in the Processor,
Input/Output Processor and Data Communi-
cations cabinets. All other cabinets require a
400 ampere inverter.

Auxiliary Cabinet

Peripheral unit exchanges are located within
auxiliary cabinets of the B 6700 system. These
cabinets can accommodate varying combinations
of exchanges. Two of the combinations that are
possible are shown in figure 1-1.

Figure 1-1. Auxiliary Cabinets

The following exchanges are available for use on
the B 6700 system:

1. Tape Exchange
2x10
2x8
4x16

. Disk File Exchange
1x2
2x5
4x 10
4x 20

Disk File Optimizer

The disk file optimizer functions to optimize the
transfer of information between a processor of the
B 6700 system and its associated disk file sub-
system in order to improve the transfer rate. A
detailed description of the disk file optimizer is
given in section 12 of this manual.

System Power

Main power is supplied to the system by 1 to 15

POWER CABINET /1 POWER CABINET 12

free standing AC power cabinets. Each power
cabinet can furnish enough power for eight B 6700
cabinets. The power cabinets receive 3 phase AC .
from the wall breakers and convert it to 220 volt .
pulsating direct current. Each B 6700 cabinet
contains an Inverter which supplies the regulated
supply voltage required for use in its own com- .
ponent sections.

The AC module contains an AC control, the AC/
DC converter and a OV/UV (overvoltage/undervolt-
age) indication panel. Refer to figure 1-2 for a
typical B 6700 power supply configuration.

Peripheral Control Cabinet

The PC cabinet can accommodate up to 10
peripheral controls. A maximum of five large
controls can be used with up to five small controls.
Some of the small controls may be used in place of
the large controls.

The following controls are available:

1. Large
a. Magnetic tape
b. Disk file
c. Console Display
. Small
a. Card reader
b. Card punch
¢. Line printer
d. Paper tape reader
e. Paper tape punch

POWER CADINET €3 POWER CABINET f4

SEQUENCE
CONTROL 8

Iy oV ac VA I VAV aC v
contior INDICATOR contioL INDICATOR coNtROL INDICATOR conTROL INDICATOR
ac ac ac ac
CONVERTER CONVERTER conveRTer convRTER
P D it _— .
] |
! |
Aux A avx
arn Y A f2 cAbra Y P
oA w00a E
A SEQUENCE SEQuUENCE @
v I CONTROL A inv Ny i CONTROL A I

MDL DISPLAY £

SEQUENCE

CONTROL B

MOL DISPLAY 12

25—

7
INV

N

T
_sureLy

02
SUPPLY.

<12
SUPPLY.

23

-

3
oIsPLAY

PROC 10 PROC
” [

PROC
"

1/0 #ROC
c

Figure 1-2. B 6700 Power Supply

1-3

Some of the controls have a two-byte buffer and
others contain a one-byte buffer; therefore, either
8 or 16 bits may be transferred in parallel to the
Input/Output Processor at a time. Local operations
are performed by attaching a “Control switch”
plug-on and “Indicators” plug-ons to various cards
in the control.

LARGE

/ ? CONTROLS
74 OR
SMALL

CONTROLS

SMALL
CONTROLS

&

Figure 1-3. Peripheral Control Cabinet

7

SYSTEM ORGANIZATION

Computer systems are generally organized
around a central system that controls memory
accesses, establishes I/O priority, etc. In the

B 6700 system this central control function has

been distributed throughout the system by pro-
viding each peripheral unit with an associated
control (figure 1-4). These peripheral controls, in
conjunction with the input/output processor, pro-
vide independent but controlled access to main-
memory for each peripheral unit. The peripheral
activity is supervised by the MCP which assigns
outgoing data to the proper units or calls for
required input data from others. Because the MCP
is constantly aware of the available environment,
the user program is efficiently executed regardless
of whether units have been deleted for preventive
maintenance or added because of increased work
loads.

MASTER CONTROL PROGRAM

The Master Control Program (MCP) provides
overall system coordination and control of
processing on the B 6700 system, thus minimizing
operator intervention. The MCP obtains maximum
use of the system conponents by controlling the
sequence of processing, initiating all input/output
operations and providing automatic handling
procedures to meet virtually all processing

1-4

conditions. Because many functions are performed
under MCP control, changes in scheduling, system
configuration and program size are readily
accommodated.

CLOCKS

The MCP for the B 6700 makes use of two
hardware clocks: the real-time clock and the
interval timer. The real-time clock has a 2.4
microsecond resolution and counts up to 24 hours.
It is used by the MCP logging routines to provide
extremely accurate timing information and also
can be read by application programs. This clock is
associated with the input/output processor and
runs continuously, even when the processors are
halted. The interval timer is a clock (one in each
processor) which provides a predetermined timed
interrupt for ““time-slicing,”” loop hang-up, etc. This
interval varies from 512 microseconds to one
second, in 512-microsecond intervals.

PROCESSOR

The B 6700 system accommodates either one,
two or three processors, either capable of accessing
any portion of total memory.

All B 6700 processors are multiprocessing
machines with available clock frequencies of 2.5
megahertz and 5 megahertz. (Refer to table 1-1.)
Processors with different clock rates cannot be
intermixed on the same system. The processor is
basically word oriented, but has extensive multi-
word string manipulation capabilities for four-bit,
six-bit, and eight-bit characters.

Processor States

The processor operates in either of two states:
control state for the MCP or normal state for user
programs and certain MCP functions. In a triple-
processor system either processor may handle
external interrupts. All processors may be in
control state at the same time.

Control State

Entry into a control state occurs when the
processor enters or returns to a procedure marked
as a control state procedure, or when it executes a
Disable External Interrupts operator. In control
state the handling of external interrupts is
inhibited while the processor executes privileged
instructions not available in normal state. Exit

from control state to normal state occurs whenever
the MCP initiates a normal state procedure, exits
back to a normal state procedure or executes an
Enable External Interrupt operator. After an
interrupt has occurred, return to the user’s pro-
gram may or may not be to the program that was
operating when the interrupt occurred.

Normal State

Normal state excludes use of privileged instruc-
tions required by the MCP but allows external
interrupts. Exit from normal state occurs as a
result of a Disable External Interrupt operator or
by a call to a control state procedure; e.g., to
initiate 1/O. Many MCP functions are executed in
normal state.

Features

Some of the processor features are:

1. Program code cannot be modified while in
residence.

2. Hardware stack features provide efficient
handling of temporary storage and subroutine
requirements.

3. Control bits in each word provide efficient
MCP or hardware action, depending upon the
state of the control bits.

4. Memory protection, which prevents one pro-
gram from affecting another, is provided by a
combination of hardware and software fea-
tures. Hardware features include detection of
program attempts to index beyond an
assigned data area. Another feature includes
the use of a memory protect bit in each word
to prevent a user program from altering
program segments, data descriptors, segment
descriptors, memory links, MCP tables, ctc.
The memory protect bits are set by the
software. Attempts to alter information with
this protect bit set will inhibit the write
operation and generate an interrupt.

5. The B 6700 processor is designed to imple-
ment higher-level languages and to function
under MCP control.

6. Major registers and control flip flops in each
of the processors contribute to system multi-
processing capabilities.

INTERRUPT SYSTEM

The method of detecting and servicing system
interrupts contributes to the ability of the B 6700

to process a mix of independent programs in an
efficient manner. Under the constant, automatic
management of the MCP, multiprocessing is the .
normal mode of operation. With one processor in
the system, multiprograming (interleaved pro-
cessing) is employed. A dual- or triple-processor
B 6700 System combines both multiprograming
and parallel processing. The ability to multi-
program, parallel process, or both is defined as
multiprocessing.

Extensive interrupt facilities initiate specific
routines in the Master Control Program (MCP). .
Since the MCP maintains communications control, .
the interrupt transfers control to the MCP thereby
initiating operations that can proceed simulta- -
neously with computation. Some MCP functions :
are as follows: data transfer control, input/output
control, error detection, etc.

There are two interrupt conditions: Internal -
(Processor Dependent) or External (Processor
Independent). Each processor in the B 6700
system is provided with a private, internal interrupt
network to handle processor-dependent interrupts.
Interrupts generated within the processor are fed -
into this network and serviced by that processor. :
The processors also share the handling of external .
interrupts generated by input/output operations :
occurring on any input/output processor. The -
command structure, in conjunction with a stack,
provides the implementation of string notation and
automatic linking of subroutines.

Interrupt Handling

An interrupt causes the processor to perform the
following sequence of operations:

1. Mark the stack.

2. Insert into the stack an Indirect Reference :
Word, which addresses a reserved location of .
the stack where a link to the MCP interrupt -
routine has been stored.

3. Push all pertinent registers into the stack.

4, Insert into the stack an integer value defining
the interrupt.

5. Insert a second parameter into the stack, .
giving other information about the interrupt.

6. Execute an Enter Operator.

The MCP processes the interrupt when it is .
entered by the Enter Operator. The MCP reacti- -
vates the interrupted object program by returning °
through the normal subroutine mechanism.

ADAPTER o oata
C’:gﬂf: Lt-NEi COMMUNICATIONS
uP TO -
16
"7~ ADAPTER _'r
CLUSTERS H
ADAPTER 7Te | PATA
CLUSTER Lings | COMMUNICATIONS
NO. 2 3| NETWORK
ADA| 116 | DATA
CLUSTER Lings | COMMUNICATIONS
DATA NO. 1 NETWORK
COMMUNICATIONS —
PROCESSOR
DATA
COMMUNICATIONS ||
PROCESSOR
DATA
COMMUNICATIONS [~ | 1-16 ADAPTER
16,384 TO 524,288-WORDS PROCESSOR CLUSTERS PER
98,304 TO 3,145,728 BYTES)
¢) DATA pce
MEMORY MEMORY MEMORY COMMUNICATIONS [)
MODULE MODULE MODULE PROCESSOR
1 2 32
™
1
|
' INPUT/ DATA
! OUTPUT | SWITCHING
; PROCESSOR | CHANNELS q
uPTO A 4-10
32
MODULES
! PROCESSOR
1 1
|
1
|
! PROCESSOR
| 2
1
I
|
| PROCESSOR
| 3
t
1
|
! INPUT/ | DATA
1 OUTPUT | SWITCHING
PROCESSOR { CHANNELS
B 4-10
ADAPTER o oata
CLUSYER -
LINE§ | COMMUNICATIONS
NO. 1 NETWORK
DATA
COMMUNICATIONS
PROCESSOR
DATA H
L— COMMUNICATIONS f—» i
PROCESSOR ADAPTER e | DATA
SATE 1216 ADAPTER CLUSTER | -8 E(:mgti?lc;xnom
COMMUNICATIONS [—=} CLUSTERS PER NO. 16
L___PROCESSOR pce
DATA
COMMUNICATIONS [
PROCESSOR
INPUT/ | DATA
OUTPUT | SWITCHING
PROCESSOR | CHANNELS
C 4-10
ADAPTER ol oaTa
CLUSTER | |INEg | COMMUNICATIONS
5 NETWORK
DATA
COMMUNICATIONS
PROCESSOR
DATA
COMMUNICATIONS |—a :
PROCESSOR AGAFTER |~ DATA
BarE 1-16 ADAPTER CLUSTER | 1-16 ﬁ?:xaoﬁlcmom
| COMMUNICATIONS |—) CLUSTERS PER NO. 16
PROGESSOR DCe
DATA

PROCESSOR

COMMUNICATIONS [

Figure 1-4. B 6700 Representative Configuration (sheet 1 of 2)

1-6

? ?1 - 16 TAPE UNITS ? ‘?
PAPER | [PAPER

CARD CARD
printer| |printer| [Tape | [Tape MAGNETIC TAPE EXCHANGE
READER PUNCH READER PUNCH

[[[[| | [[| P 10 5 MORE
carp | | caro PAPER | | PAPER PERIPHERAL CONTROLS
Cororl [Som | [prunter] |eriner] | Tape TAPE ape | | Tare TAPE TAPE

PC PC ReaDEr| |pPunch| | pc PC PC PC
pC PC e

1-20
MAGNETIC _9 6 TAPE DISK FILE _;Q:ITI;OZI%ICS DISK FILE O ELECTRONICS
TAPE EXCHANGEL ~NiTs EXCHANGE | T its PRINTER EXCHANGE |] " uNITS

UP TO 5 MORE
PERIPHERAL CONTROLS

PRINTER
PC

N PAPER PAPER
r READER PUNCH PC PC PC PC
1 PC PC PC PC PC
|
L 1 [1 [| [
i
PT
e[|S0 Jearo | fcaro | [Pt | | ranen | | maghenc sk rue,
KYBD READER | | PUNCH READER PUNCH EXCHANGE
FOR CD TERM

I I

TAPE TAPE DISK DISK UP TO 8 MORE
PC PC PC PC PERIPHERAL CONTROLS

PAPER PAPER
PRINTER TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PC READER [| PUNCH PC PC PC 2 PC
PC PC
PAPER | | PAPER
PRINTER TAPE TAPE TAPE M"&'&‘mﬁl gé\"
READER | | PUNCH CLUSTER

Figure 1-4. B 6700 Representative Configuration (sheet 2 of 2)

1-7

Operator-Dependent Processor Interrupts

The interrupts listed below are set only by the
action of operators.

. Presence bit.

. Invalid index.

. Exponent underflow.
. Exponent overflow.

. Integer overflow.

. Divide by zero.

. Invalid operand.

0 N 0N i AW N —

. Bottom of stack.

\O

. Sequence error.
10.
11.
12.
13.

End of segment.
Memory protect.
Programed operator.
Read-only array.

Within a processor, only one operator-dependent
interrupt is set at any one time.

Operator-Independent Processor Interrupts

The operator-independent interrupts include the
following:

. Memory parity.

. Stack overflow.

. Invalid address.

. Interval timer.

. Instruction timeout.
. Scan bus parity.

. Stack underflow.

0O N O v DWW N~

. Invalid program word.
External Interrupts

External interrupts are fed into the processor
interrupt system. If the interrupt network is
disabled on one processor, the external interrupt
signal is routed to another, since all processors in a
dual-processor or triple-processor system are able
to respond and process external interrupts
independently and simultanecously. The ability of
any processor to handle interrupts is made possible
because of a distributed interrupt network and the
ability of all processors to be in control state at the

1-8

same time. The activities of all processors in
control state are coordinated (interlocked) by the
software through the use of the Read With Lock
mechanism. If all processors are handling
interrupts, additional interrupts are retained for
future processing.

A unique literal value is assigned to each
external interrupt condition. This literal value is
transmitted to the processor and placed into the
stack as the processor acknowledges the external
interrupt and enters the interrupt sequence.

The external interrupts include the following:

1. Processor to Processor.

2. I/O Finish.

3. Data Comm. Attention Needed.
4. General Control Adapter.

5. External Interrupt.

6. Change of peripheral-unit status.

MAIN MEMORY

The main memory for the B 6700 is very
flexible in that many configurations can be
established to meet any requirement. The B 6711
and B 6721 systems are restricted to the use of the
B 6004-1 memory modules with a maximum
storage of four memory modules. However, the B
6712, B 6722, B 6714, B 6724 and B 6734 systems
are available with any combination of the three
types of memory modules with a maximum storage
capacity of 1,048,576 words (6,291,456 bytes).

Memory Words

Each memory word contains 48 information
bits, three control bits, and a parity bit. The three
control bits are used to identify descriptors,
provide memory protection, describe the type of
data, and provide other control functions. The
twenty-bit address field can provide up to
1,048,576 memory addresses. Odd parity is used to
check validity of information storage and transfers
in the B 6700 system.

Each system has a memory test facility used for
fault detection and isolation. When the unit test
facility is used to check one of the modules, the
others are available to the system.

Memory Cycle Times

Three types of main memory modules are
available for the B 6700 with the following cycle
times:

1. 1.5 microsecond cycle time with 65,536
words of storage per module.

2. 1.2 microsecond cycle time with 16,384
words of storage per module.

3. 500 nanosecond cycle time with 16,384
words of storage per module.

Refer to table 1-1 for the B 6700 central units
chart for additional information concerning main
memory.

SECOND LEVEL MEMORY

Burroughs head-per-track disk file subsystems
provide the user with virtually unlimited expansion
capability. The 23- to 40-millisecond average access
time of the various disk file models permits
extremely large programs and data segments to be
stored on the disk and brought into main memory
by the MCP when required.

INPUT/OUTPUT PROCESSOR

The Input/Output Processor and associated
peripheral control modules are used to control the
transfer of data between memory and all peripheral
equipment, independent of the processor. The
input/output processor receives instructions from
the processor and, with its associated peripheral
controls, executes these instructions. One, two or
three input/output processors may be used with
the B 6700 System. Each input/output processor is
capable of processing up to ten simultaneous I/O
operations with up to 20 peripheral units.

Input/Output Processer Configuration

Each Input/Output Processor provides four
separate and independent units:

1. Data switching channels which provide the
necessary linkage between the peripheral
device (excluding data communications) and
main memory.

2. Data communications processors which
permit interfacing of remote devices to the
B 6700.

3. Real-time adapters which permit interfacing -
of real time devices such as wind tunnels and
rocket stands.

4. The peripheral system configuration tables for
software use.

Data Switching Channels

The number of data switching channels deter-
mines the number of simultancous I/O operations -
that can be performed. The channels “float,” and
are assigned by the input/output processor to
peripheral controls upon initiation of an operation :
and released to the input/output processor for -
reassignment upon completion.

Peripheral Controls

Two types of peripheral controls are available, :
large and small. The large controls are used with -
high-speed devices such as magnetic tape, disk files,
and display consoles; the small controls are used
with slower peripherals such as printers, card
readers, and card punches. The large controls
contain a two-byte buffer and the small a one-byte
buffer. Each input/output processor can accom-
modate up to ten large and ten small controls. A .
small control may occupy a large control position. °

System Expansion

The maximum configuration with three input/
output processors (20 controls per input/output °
processor) can be expanded further through use of -
exchanges. Figure 1-5 illustrates how the exchanges '
interact between the magnetic tape controls and .
the magnetic tape units. Figure 1-6 depicts how the
exchanges interact between the disk file controls .
and the disk file units.

Peripheral Control Bus

A peripheral control (P.C.) bus extends from the
input/output processor to the various peripheral
controls (figure 1-7). Information in one- or
two-byte groups can be sent along the bus to or
from any peripheral control every 1.2
microseconds.

Processor-Initiated 1/0 Operations

Any processor can initiate an I/O operation on
any input/output processor (in a three processor/ .
three input/output processor configuration) by

LARGE PERIPHERAL. CONTROLS

FREE
STANDING
UNITS

INPUT/OUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC pC PC PC pC PC PC PC
1OR2 TXE Tr06 X B COMMON
ks TAPE EXCH. FREE ELEC. EXCH.
STANDING
UNITS
10R2
TAPE
ICLUSTERS
/-6 Z .
= £ FREE - 23
1-10 2 ° 0 STANDING X
FREE - <& x& UNITS o
STANDING o T Yy
& < & =
~
Vros N T
1708

2x8
TAPE EXCHANGE 4 X 16 TAPE EXCHANGE
INPUT/OUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC PC PC PC PC PC PC PC

LARGE PERIPHERAL CONTROLS

1-16 1-16
= FREE - = FREE -
o5 STANDING o U STANDING
2x UNITS =X UNITS
x x
< - &
2 £ ka
2 TX 8 COMMON = R
ELEC. EXCH. K’
1-2
/\ TAPE
1-6 CLUSTERS
FREE -
STANDING
UNITS
2x8
TAPE EXCH.
INPUT /OUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC PC PC PC - PC PC PC pC

Figure 1-5. Magnetic Tape Subsystem Relationships

1-10

LARGE CONTROLS

INPUT/OUTPUT - - DISK FILE | DISK FILE - DISK FILE | DISK FILE | DISK FILE | DISK FILE { DISK FiLE
PROCESSOR PC PC PC PC PC PC PC PC PC PC

|| I

| 2 x 10 EXCH.

N] x N2 EXCHANGE

117010
ELECTRONICS UNITS

1 TO 20 ELECTRONICS UNIT

1705
DISK MODULES
PER ELECTRONICS
UNIT

1705
DISK FILE MODULES

PER
ELECTRONICS UNIT

17020

170 5
DISK
MODULES
1 ELECT. UNIT
LARGE CONTROLS
INPUT/OUTPUT DISK FILE | DISK FILE | DISK FILE - - - . . . -
PROCESSOR PC PC PC PC pe pC rC e re bC
w3
2|
L QE
9052 895 Ny x Ny
—285 PES EXCHANGE
%o -3
o @
&
LARGE CONTROLS
INPUT /OUTPUT - DISK FILE | DISK FILE - - - - - - DISK FILE
PROCESSOR PC PC PC (% pC pC pC pC pC pC

Figure 1-6. Disk File Subsystem Relationships

1-11

ELECTRONICS UNITS

1705
DISK MODULES

PER
ELECT. UNIT

**INPUT/OUTPUT
PROCESSOR

DATA
SWITCH

CHNLS.

* Total

maximum of 5 large per side

**ONLY ONE 1/0 PROCESSOR

17010 1/O CARD
CARD LINE UNITS OR SUB- PUNCH
READER PRINT SYSTEMS REQ.

SMALL
PERIPH. CONTLS.
MODEL | MODEL ! ! CARD
B 6110 B 6240 PUNCH
11O 10 P.C.
P.C. P.C. P.C.
« PERIPH. CONTLS.
APPROP. | APPROP. 170 10 APPROP. | APPROP.
TAPE TAPE TAPE DISK
P.C. P.C. P.C. FILE
| . P.C.
I I I
CONSOLE
DISPLAY
M/T TERMINAL 2 X 10 EXCH.

&

per side is 10 with a

CLUSTER B 9342-1

(G

17O 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

ILLUSTRATED

Figure 1-7. Input/Output Subsystem

executing an Initiate I/O command. This command
transfers a Function Control Word and an Area
Descriptor to the input/output processor via the
scan bus. The input/output processor then fetches
the I/O Control Word located at the Area Base
Address (in the Area Descriptor) and initiates the
peripheral operation. An I/O Finished Interrupt is
set after the peripheral operation is completed. The
Result Descriptor is returned when any processor
executes a Read Result Descriptor command.

PERIPHERAL CONTROLS

Up to 20 peripheral controls can be used with
each I/O processor. The peripheral controls are
housed in one or two B 6700 peripheral control
cabinets. Each cabinet can accommodate 10 con-
trols, five of which can be large controls and five
small controls. The following peripheral controls
are available:

. Magnetic Tape.

. Card Reader.

. Card Punch.

. Line Printer.

. Paper Tape Reader.

. Paper Tape Punch.

. Disk File.

. Console Monitor and Keyboard.
. Disk-Pack Drive.

O 00 N2 N v AW e

1-12

DATA COMMUNICATIONS PROCESSOR (DCP)

Because the B 6700 is designed for continuous
multiprocessing, the systems readily accommodate
applications and procedures requiring data com-
munications. Realtime operations, remote com-
puting, remote inquiry and on-line programing
become additions to the multiprocessing job mix
of the B 6700. The Data Communications
Processor is the heart of the data communications
network,

The DCP is a small special-purpose computer
which contains sufficient registers and logic to
perform all basic functions associated with sending
and receiving data. Up to four DCP’s can be
connected to an input/output processor, with each
DCP capable of accommodating from 1 to 256
communication lines (figure 1-8). A triple-
input/output processor system can handle up to
eight DCP’s, which provide a maximum
configurated B 6700 system with the ability to
service 2048 data communication lines. In a triple
input/output processor system the Maintenance
Diagnostic Logic processor (MDL) and memory
tester are interfaced to the system through the
word interface of an input/output processor. These
devices each take one of the interface positions and
thus preclude use of DCP’s on this input/output
processor. '

DATA COMMUNICATIONS ADAPTERS

Each communications channel requires an
adapter which provides the logic to interface with a

ADAPTER 170 w,: DATA
! CLUSTIER LINES ECEDTACVAE\)L;TCATIONS
NO. e N
ADDITIONAL ADAPTER
CLUSTERS 2 THROUGH 15
1-16 1-16 1-16 ADAPTER W
ADAPTER ADAPTER ADAPTER > CLUSTER LINES
CLUSTERS || CLUSTERS CLUSTERS NO. 16 -
DATA DATA DATA DATA
COMMUN- | COMMUN- | COMMUN- | COMMUN-
ICATIONS | ICATIONS |ICATIONS |ICATIONS
PROCESSOR | PROCESSOR | PROCESSOR | PROCESSOR
I/O PROCESSOR

Figure 1-8. Organization of Data Communications Processor Remote Lines

c. Up to 2400 BPS.

d. 201 series type Data Set.
e. Serial-by-bit transmission.
f. Half-Duplex mode.

Data Set or to connect directly to a communica-
tions line. The following adapters are available:

1. B 6650-1 with the following characteristics:
a. Direct or modem connect. '
b. Asynchronous.
c. Up to 600 BPS.
d. Two wire or 100 series modem.

4. B 6650-4: same as B 6650-3 except that it can
handle up to 4800 BPS.

5. B 6650-5: same as B 6650-3 except that it can

. Serial-by-bit transmission. handle up to 9600 BPS.

c
f. Half-Duplex mode.
6. B 6650-6: Touch-Tone® Telephone Input.

2. B 6650-2 with the following characteristics:
a. Direct or modem connect.
b. Asynchronous.
c. Up to 1800 BPS.
d. Two wire or 202 series type Data Set.

7. B 6650-7: Audio Response.
8. B 6650-8: Automatic Dial Out.

Real-Time Adapter

o

. Serial-by-bit transmission.
f. Half-Duplex mode.

Real-time adapters may be attached to an
input/output processor. Real-time devices require
custom engineering for interface with the real-time

3. B 6650-3 with the following characteristics: adapters and the software.

a. Modem connect.

b. Synchronous. ® Registered Service Mark of A.T.T. Co.

— W
o »;
O A
@
N S

SECTION 2
DATA REPRESENTATION

[
CONTROL FIELD

PARITY BIT

v
DATA FIELD

Figure 2-1. Basic Word Structure

GENERAL

Several data representations are used in the B
6700 Information Processing Systems for word and
character oriented data. Each word contains 48
information bits, three tag bits and one parity bit
(figure 2-1). The data field may be a 48 bit
single-precision operand, or a sequence of
characters in eight-bit, six-bit or four-bit format.
The tag bits in positions 50 through 48 are control
bits which identify descriptors, provide memory
protection, etc. The tag bits are inaccessible to
normal state (user) programs. The parity bit in
position 51 checks for correct information transfer
between the processor and main memory or from
the scratch pad memory to main memory.

INTERNAL CHARACTER CODES

Extended Binary Coded Decimal Interchange
Code (EBCDIC) is the primary internal character
code of the B 6700. EBCDIC is an eight-bit
alphanumeric code containing four zone and four
numeric bits. The American Standard Code for
Information Interchange (ASCII) is the primary
data communication code. In addition, the
Burroughs Common Language Code (BCL) pro-
vides interface compatibility with peripheral units.
Numeric EBCDIC and BCL codes may be packed
into four-bit digits by internal commands which
delete the zones and compress the numeric portion
of the characters.

NUMBER BASES

Because the arithmetic operators are imple-
mented in octal (base 8) and data display in
registers and certain printed forms is Hexadecimal
(base 16), an understanding of both octal and
hexadecimal numbering systems is useful. A brief
discussion of binary and decimal numbering
systems is also included.

21

The decimal system is based on the first ten
digits, 0, 1, 2, 3, 4, 5, 6,7, 8, and 9, and upon the :
powers of ten. Similarly, the binary system is based °
upon the first two digits, O and 1, and the powers :
of two. Two raised to the third power (23) is 8, the _
base of the octal system. Likewise, 2 raised to the '
fourth power (2%) is 16, the base of the Hexa-
decimal system. The decimal range for each
number system is shown in figure 2-2.

DECIMAL l 01234567891011 1213 1415
BINARY 01

OCTAL 01234567

DECIMAL 0123456789

HEXADECIMAL 0123456789 A 8 CODEF

Figure 2-2. Number Base Graphic Characters

The digits O through 9 and the alphabetic
characters A through F comprise the 16 character
requirement for the hexadecimal numbering
system. The letter A is assigned a value of 10, B |
equals 11, etc., to F which equals 15.

Hexadecimal and Octal Notation

Since binary words are cumbersome to display,
the more efficient methods of Hexadecimal and
Octal notation are employed. The hexadecimal
representation of a binary word is obtained by
dividing the bits into groups of four with each
group assigned a successive power of 16. A
binary-to-octal conversion is obtained by dividing
the bits into groups of three and assigning
successive powers of 8 to each group (figure 2-3).

The relationship between octal, decimal and -
hexadecimal is shown in figure 2-4 using the
decimal number 101310 (equivalent to 17658 and
3F5, ¢ where the subscript 8, 10, or 16 indicates -
the base).

nxi6* Nx16° Nx162 16! Nx16? Nx167! Nx16™2
8 —ﬂ 8 8 8 8 8
4 4 4 4 4 4 4
HEXADECIMAL 2 2 2) 2 2 2
1 1 1 1 1
BINARY l;ﬁh:: g;l:‘ilfﬂ :'mlmzlwoe m+ou|s|zlm |1zel o l 32 I 1e| 8 l 4 l 2] 1 I % | % Ius|1/1s]1/32‘1/s4t|/1zs|1/291
Nx8” N nxg® Nxg’ Nx@ ™! Nx8™2
« | ‘
e alEala ol aln
D | !] NN
BINARY :,f,’; :gs .,32, ;:‘Iswzlmlzow[mu] 512Izsa |128 Iu Iaz lw | 8 I 4 | 2 | 1 Iv. l % l 1/a|1/1s|1/32|1/64]
Figure 2-3. Binary-to-Hexadecimal and Octal Conversion
1765 AN OCTAL CONVERSION - MULTIPLY BY 8
176585|x83 v 7x88 + 6x8 +5x8 = | 8)
1x512 + 7x64 + 6x8 + 5x1 =
512 + 448 + 48 + 5 = 1013 !
10 x 8
8 +7 =1
1013]051x103 +0x102+lx10]+ 3x10 = 8+7 xg
1x1000 + 0x100+ 1x10 + 3x1 = 5o+ 6 = 126
1000 + 0 + 10 + 3 =]013]0 x 8
. 3 2 1 0 1008 + 5 = 1013,
3F516 =0x16" +3x16 + Fx16 + 5x16 =
O0x4096 + 3x256+ Fx16 + 5x1 =
+ + =
0 * 768 240 5 l0]310 3F5 16 (HEXADECIMAL CONVERSION - MULTIPLY BY 16)
Figure 2-4. Relationship of Octal, Decimal l
. 3
and Hexadecimal Numbers <16
8+ 15= 63
x 16

NUMBER CONVERSION
Coded To Decimal Conversion

The conversion to base 10 of the integral value
of a number whose base is other than 10 may be
accomplished by the addition of computed place
positions as shown in figure 2-4. Another method
of conversion is by repeated multiplications and
additions as shown in figure 2-5. The multiplier is
the decimal value of the desired number base when
this system is used (figure 2-5).

Decimal To Coded

The conversion of a Decimal number to any
other base is accomplished by repeatedly dividing
the number by the desired number base and
retaining the successive remainders (figure 2-6).

2-2

1008 + 5 = 1013]0

Figure 2-56. Hexadecimal and Octal To Decimal

Decimal and Hexadecimal Table Conversion

Use figure 2-7 for following computations.

HEXADECIMAL-TO-DECIMAL:

Find the decimal value for each hexadecimal
digit according to its position. Add these values to
obtain the decimal equivalent.

DECIMAL-TO-HEXADECIMAL.:

Find the next lower decimal number and its
Hexadecimal equivalent. Subtract and use the dif-
ference to find the next decimal value and hexa-
decimal equivalent until the complete number is
developed.

126
8 1013I

0 - REMAINDER 5

15

8| 126 - REMAINDER 6 —
1

BI 15 - REMAINDER 7

63

lél 1013]0 - REMAINDER - 5 —
3

16| 63 - REM=15=F
0

16' 3 -~ REMAINDER - 3

0
8[1 - REMAINDERI l 16
176 58
Figure 2-6. Decimal 101310 To Hexadecimal and Octal
6 -5 4 3 2 1

HEX DEC HEX DEC HEX DEC HEX DEC |HEX DEC |HEX DEC
0 0] 0 0] 0 (4] 0 0|0 0 0 0
1 1,048,576 | 1 65,536 | 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 | 2 8,192 2 5122 32 2 2
3 3,145,728 | 3 196,608 | 3 12,288 3 7681 3 48 3 3
4 4,194,304 | 4 262,144 | 4 16,384 4 1,024 | 4 64 4 4
5 5,242,880 | 5 327,680 | 5 20,480 S 1,280 § 80 S 5
6 6,291,456 | 6 393,216 | 6 24,576 6 1,536 | 6 96 6 6
7 7,340,032 | 7 458,752 | 7 28,672 7 1,792 17 112 7 7
8 8,388,608 | 8 524,288 | 8 32,768 8 2,048} 8 128 8 8
9 9,437,184 | 9 589,824 | 9 36,864 9 2,304]9 144 9 9
A 10,485,760 | A 655,360 | A 40,960 A 2,560 | A 160 A 10
B 11,534,336 | B 720,896 | B 45,056 B 2,816 | B 176 B 11
C 12,582912 | C 786,432 | C 49,152 C 3,072 | C 192 C 12
D 13,631,488 | D 851,968 | D 53,248 D 3,328 D 208 D 13
E 14,680,064 | E 917,504 | E 57,344 E 3,584 |E 224 E 14
F 15,728,640 | F 983,040 | F 61,440 F 3,840 | F 240 F 15

HEXADECIMAL TO DECIMIAL

3F516

DECIMAL TO HEXADECIMAL

JFS

16
1013 }
- 768]0

245
- 240
5

Figure 2-7. HEX and DEC Table Conversion

2-3

ORDER OF MAGNITUDE

The order of number magnitude in the 39 bit
mantissa, as decimal numbers and powers of base
16, 8, and 2 is shown in figure 2-8.

DATA TYPES AND PHYSICAL LAYOUT
Character Type

Character representation may be 8-bit bytes,

6-bit characters, or 4-bit digits. The 8-bit EBCDIC
(Extended Binary Coded Decimal Interchange
Code) is the primary B 6700 code. When 8- or 6-bit
numeric characters are used, the sign of the
number is in the zone bits of the least significant
character. For 4-bit digits, the sign is the most
significant digit of the number. The number
(-4259) is represented as 8-, 6-, and 4-bit characters
in figure 2-9.

REGISTER DECIMAL
BIT SET DECIMAL RECIPROCAL HEX. | OCTAL | BINARY

0 111.0 160 g° 20

i 210.5

2 4]0.25 :)

3 810.125 : 8 2

4 16] 0.062 5 16

5 32| 0.031 25) .

6 64 | 0.015 625 8 2

7 128 | 0.007 812 5)

8 256 | 0.003 906 25 16] .

9 512 | 0.001 953 125 8 2

10 1 024 | 0.000 976 562 5

1 2 048 | 0.000 488 281 25 ; . 7]

12 4096 | 0.000 244 140 625 | 16 8 2

13 8 192

14 16 384

15 32 768 . 8> 2!

16 65 536 16

17 131 072

18 262 144 g® 218]

19 524 288 s

20 T 048 576 T6 . 21—

21 2 097 152 8 2

22 4 194 304

23 8 388 408

24 16 777 216 762 88 224

25 33 554 432

26 67 108 864

27 134 217 728 ; 8’ 227

28 268 435 456 16

29 536 870 912

30 1 073 741 824 g0 230]

31 2 147 483 648 o

32 4 294 967 296 16 » 23—

33 8 589 934 592 8 2

34 17 179 869 184

35 34 359 738 368

36 68 719 476 736 167 5'2 336

37 137 438 953 472

38 274 877 906 944

39 549 755 813 887 o o
549 755 813 888 8 2

Figure 2-8. Order of Magnitude Table

2-4

8-BIT BYTE(EBCDIC CODE)

TAG R
T 0 1 2 3 4 5
8 8
0 4 4
0 2 22| 2

1
Z N Z N Z N Z N Z N * N
0 0 4 2 5 9
6-BIT CHARACTER (BCL CODE)
TAG .
"7 2 3 4 5 6 7
ol 8 B Bl4fB 4
Bnn alz [alX[a]z][a]2
o {[8 |1 g[1is[1]s
0 0 0 0 4 2 5 9
4-BIT DIGITS (PACKED BCD)
TAG ~
0 1 2 3 4 5 6 7 8 10 1N
8 8 8
ol 4 7
0|2 2|2 2|2
0 1 1 1
0 0 0 0 0 - 4 2 5 9

0 0
*See Table 2-1.
Figure 2-9. (-4259) in 8-, 6-, and 4-Bit Code

Operands

Operands may be used to represent either
numeric or logical information in the B 6700
System. An operand may be single or double
precision. When the tag bits of a memory word
(bits 50, 49, 48) are 0 (000), they denote a
single-precision operand. When the tag bits are 2
(010), ie., bit 49 set, they denote a double-
precision operand. The structure of a single-
precision operand is illustrated in figure 2-10, in a
hexadecimal register format. Note that since the
exponent is an octal power, the single-precision
operand is also shown for reference purposes, in
octal (figure 2-11). Figure 2-12 illustrates the

double-precision operand in hexadecimal register °
format.

An integer is a single-precision operand with an ~
exponent of 0. The maximum value of an integer is
+77T7TT7777TT77g, 549755813887, or
TFFFFFFFFF | .. '

For example, the decimal number 12 (14,
C,¢») might be represented in any of the following -
forms:

1. In octal format:
0000000000000014 (integer)

1010000000000140 goo0o Lo
1020000000001400 ;;ﬁf’ ’
1131400000000000
2. In hexadecimal format:
00000000000C (integer)
208000000060 . .
210000000300 {loating point)
259800000000
TAG EXPONENT MANIHSA
47 39 i 3
_§L 46 38 2
49 45 5 1
48 |[44 | 4 |9
OCTAL
POINT

Figure 2-10. Single-Precision Operand (Hexadecimal)

[50:3]
[47:1]
[46:1]
[45:1]
[44:6]

Tag field = 0 for single-Precision Operand.
Unused.

Sign of operand = 1 for negative.

Sign of exponent = 1 for negative.
Exponent.

The exponent is a binary number which, with its ~
sign, is an octal scale factor for the mantissa. The .
exponent is used for automatic scaling of operands -
when arithmetic, comparison and integer opera-
tions are being performed. The range of the .
exponent is from +63 to -63 for single-precision °
operands.

Table 2-1. Negative Sign Configurations

SIZE SIGN LOCATION NEGATIVE POSITIVE
8-bit | Zone, least significant char. 1101 Any bit
6-bit | Zone, least significant char. 10 Cf{’}‘:ﬁgélhramt’}?
. . . . other than the
4-bit | Most significant digit 1101 negative
combinations.

25

Mantissa Field

The mantissa is the significant part of the
operand. The magnitude of the operand is obtained
by multiplying the value contained in the mantissa
by eight raised to the value of the exponent sign
and exponent as follows:

V = +Mx8%+E

V = Value of number
+M = Mantissa with sign
+E = Exponent with sign

The range of numbers that can be expressed in
single-precision is (813 -1) x 8t63 t01x 83! and
zero; double-precision is (813 - x 8§¥32,767 5 1x

832,755 and zero.
TAG EXPONENT MANTISSA
50 [|47 || 44 38 P
49 l146 ;
48 [|45 » —13 1%
OCTAL
POINT
Figure 2-11. Single-Precision Operand (Octal)
TAG EXPONENT MANTISSA
A . g o
47 39]| 3
o 56] 2 | FIRST
49 |45 1| woRrD
48[4 | <o .
MANTISSA OCTAL
1AG ExpONENT (EXTENSION) O
e i A
[47 39| 3
0 38 2 | SecoND
| T | woro
48 |[+ o

Figure 2-12. Double-Precision Operand

[50:3] Tag field 2 for
operands.

double-precision

The first word of the operand is identical to
the single-precision operand except for bit position

2-6

49, which indicates that this is one of a pair of
words.

The fractional part of the mantissa is con-
tained in the mantissa extension field of the second
word.

The 15-bit exponent of a double-precision
operand is formed by the concatenation of the
exponent extension with the exponent. The
exponent extension is more significant than the
exponent.

Logical Operands

Logical operands have one of two values: true
(on) or false (off). Logical values are the result of
Boolean operations or relational operations.
Relational operators generate a logical value as the
result of an algebraic comparison of two arithmetic
expressions. Bit 0 contains the logical value.
Relational operators set bit 0, where conditional
operators use bit O for the decision. Logical
(Boolean) operators consider each bit, from 47 to
bit 0, as an individual logical value operating on the
whole operand. A logical value is expressed in the
following form, in figure 2-13 below:

47 3
50 | 46 2
49 | 45 1
49 | 44 0
Figure 2-13. Logical Operand

[50:3] = 0 tag = Single-precision operand

[0:1] =1 true, O false

OPERATORS

The operators used in the B 6700 systems are
divided into three major categories: primary,
variant and edit. Details regarding the formats and
functions of these operators are found in sections
6, 7, 8, and 9.

| SECTION 3

STACK AND POLISH NOTATION

THE STACK
General

The stack is an area of memory assigned to a
job; the stack provides storage for the basic
program and data references for the job. It also
provides for temporary storage of data and -job
history. When a job is activated, four high-speed
registers (A, X, B, and Y) are linked to the job’s
stack (figure 3-1). This linkage is established by the
stack-pointer register (S), which contains the
memory address of the last word placed in the
stack. The four top-of-stack registers (A, X, B and
Y) extend the stack to provide quick access for
data manipulation.

INPUT/ TOP-OFSTACK REGISTER
OUTPUT ..I :‘
PATH OF DATA A T x| ‘
TO STACK I t
[2 s —c—
WORDntx je—
STACK'AREA
ASSIGNED
TO PROGRAM ! TOS WORD TOS WORD
STACK AREA
CURRENTLY [—— —— ISTACK LIMIT REGISTER
IN USE I TR
WORDn ~—L| BOS | _J
~ STACK 4
MEMORY
AREA

Figure 3-1. Top-of-Stack and Stack Bounds Registers

Data are brought into the stack through the
top-of-stack registers in such a manner that the last
operand placed into the stack is the first to be
extrated. Total capacity of the top-of-stack register
is two operands. Loading a third operand into the
top-of-stack registers causes the first operand to be
pushed from the top-of-stack registers into the
stack. The stack-pointer register (S) is incremented
by 1 before a word is placed into the stack and is
decremented by 1 after a word is withdrawn from
the stack and placed in the Top-of-Stack registers.
As a result, the S register continually points to the
last word placed into the job’s stack.

31

Base And Limit Of Stack

A job’s stack is bounded, for memory protec- -
tion, by two registers: the Base-of-Stack register °
(BOSR) and the Limit-of-Stack register (LOSR).
The contents of BOSR define the base of the stack,
and the contents of LOSR define the upper limit
of the stack. The job is interrupted if the S register
is set to the value contained in either LOSR or .
BOSR.

Bi-Directional Data Flow In The Stack

The contents of the top-of-stack registers are
maintained automatically by the processor to meet
the requirements of the current operator. If the -
current operator requires data transfer into the
stack, the top-of-stack registers receive the
incoming data, and the surplus contents, if any, of
the top-of-stack registers, are pushed into the
stack. Words are brought out of the stack into the
top-of-stack registers. These words are used by
operators which require the presence of data in the
top-of-stack registers. These operators, however, do .
no explicitly move data into the stack.

Double-Precision Stack Operation

The top-of-stack registers are operand-oriented °
rather than word-oriented. Calling a double- -
precision operand into the top-of-stack registers .
causes two memory words to be loaded into the .
top-of-stack registers. The first word is loaded into
the A register, where its tag bits are checked. If the .
value indicates double-precision, the second word .
is loaded into the X register. The A and X registers
are concatenated, or linked together, to form the
double-precision operand. The B and Y registers
concatenate when a double-precision operand
reverts to single words as it is pushed from the B
and Y registers into the stack. The concatenation is
repeated when the double-precision operand is :
returned from the stack into the top-of-stack
registers.

DATA ADDRESSING

The B 6700 processor provides three methods
for addressing data or program code:

1. Data Descriptor (DD)/Segment Descriptor .
(SD).

2. Indirect Reference Word (IRW).
3. Stuffed Indirect Reference Word (SIRW).

The Data Descriptor (DD) and Segment
Descriptor (SD) provide for the addressing of data
or program segments located outside of the job’s
stack area. The Indirect Reference Word (IRW) and
the Stuffed Indirect Reference Word (SIRW)
address data located within the job’s stack. The
[IRW and SIRW address components are both
relative. The IRW addresses within the immediate
environment of the job relative to a display register
(described later in Non-local Addressing). The
SIRW addresses beyond the immediate environ-
ment of the current procedure, the addressing
being relative to the base of the job’s stack.
Addressing across stacks is accomplished with an
SIRW.

Data Descriptor

In general, the descriptor describes and locates
data or program code associated with a given job.
The Data Descriptor (DD) is used to fetch data to
the stack or to store data from the stack into an
array located outside the job’s stack area. The
formats of the Data and Segment Descriptors are
illustrated in Section 6. The ADDRESS field in
each of these descriptors is 20 bits in length; this
field contains the absolute address of an array in
either system main memory or in the backup disk
file, as indicated by setting of the Presence bit (P).
The referenced data is in main memory when the
presence bit is set.

PRESENCE BIT

A Presence Bit Interrupt occurs when the job
references data by means of a descriptor in which
the P-bit is equal to 0; i.e., the data is located in a
disk file, rather than in main memory. The Master
Control Program (MCP) recognizes the Presence
Bit Interrupt and transfers data from disk file
storage to main memory. After the data transfer to
main memory is completed, the MCP marks the
descriptor present by setting the P-bit to 1, and
places the new main memory address into the
address field of the descriptor. The interrupted job
is then reactivated.

INDEX BIT

A Data Descriptor describes either an entire
array of data words, or a particular element within
an array of data words. If the descriptor describes
the entire array, the Index bit (I-bit) in the

3-2

descriptor is 0, indicating that the descriptor has
not yet been indexed. The length field of the
descriptor defines the length of the data array.

INVALID INDEX

A particular element of an array is described by
indexing an array descriptor. Memory protection is
ensured during indexing operations by performing
a comparison between the length field of the
descriptor and the index wvalue, An Invalid Index
Interrupt results if the index value exceeds the
length of the memory area defined by the
descriptor, or if the index is less than G.

VALID INDEX

If the index value is valid, the length field of the
descriptor is replaced by the index value, and the
I-bit in the descriptor is set to 1 to indicate that
indexing has taken place. The address and index
fields are added together to generate the absolute
machine address whenever an indexed Data
Descriptor in which the P-bit is set is used to fetch
or store data.

The Double-Precision bit (D) is used to identify
the referenced data as single- or double-precision
and directly affects the indexing operation. The
D-bit equal to 1 signifies double-precision and
causes the index value to be doubled before
indexing.

Read-Only Bit

The Read-Only bit (R) specifies that the
memory area described by the Data Descriptor is
read-only area. If the R-bit of a descriptor is set to
1, and the area referenced by that descriptor is
used for storage purposes, an interrupt results.

Copy Bit

The Copy bit (C) identifies a descriptor as a
copy of a master descriptor and is related to the
presence-bit action. The copy bit links multiple
copies of an absent descriptor (i.c., the presence bit
is off) to the one master descriptor. The copy bit
mechanism is invoked when a copy is made in the
stack. If it is a copy of the original, absent
descriptor, the processor sets the copy bit to 1 and
inserts the address of the master descriptor into the
address field. Thus, multiple copies of absent data
descriptors are all linked back to the master
descriptor.

D.L. = DELIMITER LIST
P.N.S. = POLISH NOTATION STRING PRIORITIES | OPERATORS
3 xl /
2 +, -
EXAMINE FIRST 1 >, <, = (BOOLEAN)
ITEM OF 0 : = (REPLACEMENT)
SOURCE STATE-
MENT STRING
LEFT PARENTHESIS/ RIGHT PARENTHESIS/BRACKET OPERATOR
BRACKET G or] =%,/
PLACE el LAsT 0
w(v OR “[* ENTERED YES vy (LI
INTO D.L DL SYMBOL IS
a) LOWER PRIORITY
oV b (" or ..[..
1 D.L. ISEMPTY
PLACE LAST ¢
SYMBOL ENTERED ' INSERT NO 7
Al D FROM m[e ?3&"& IN oo
BOL FROM ERED D.L.
D.L TO D.L. D.L. MOVE LAST ENT- SYMBOL FROM
P.NLS. ERED D.L. D.L. TOP.N.S.
SYMBOL FROM
D.L. TOP.N.S.
SCAN
NEXT
SOURCE
ITEM
Figure 3-2. Polish Notation Flow Chart

General

Polish notation is an arithmetical or logical

notational

system using only operands

and

operators arranged in sequence or strings, thus

eliminating the

necessity for

defining the

boundaries of any terms. Figure 3-2 presents a flow
chart for conversion to Polish notation.

Simplified Rules For Generation Of Polish String

The source of expression is as follows:

Name

Variable or constant

Operator-separator
4‘(“ OI' (13 [“

Arithmetic or
Boolean operator and
last-entered delimiter
list symbol were as
follows:

Action

variable or
constant in string
being built and
examine next symbol.

Place

Place in delimiter
list and examine next
symbol.

Place operator in
the delimiter list and
examine next source
symbol.

3-3

1. An operator of
lower priority.

2. A left bracket
“[““ or paren-
thesis ““(*‘.

3. A separator.

4. Nothing (deli-
miter list empty).

Arithmetic or
Boolean operator and
last-entered delimiter
list symbol were as
follows: an operator of
priority equal to or
greater than the
symbol in the source.

A right bracket “}”
or parenthesis

[13% 2]
)”.

End of expression.

Remove the opera-
tor from the delimiter
list and place it in the

string being Dbuilt.
Then compare the
next symbol in the

delimiter list against
the source expression
symbol.

Pull from de-
limiter list until cor-
responding left bracket
or parenthesis.

Move last-entered
delimiter list symbols
to Polish notation
string until empty.

Polish String

The essential difference between Polish and
conventional notation is that operators are written
to the right of the operands instead of between
them. For example, the conventional B + C is
written B C + in Polish notation: A=7 x (B +C)
becomes A 7B C+ x :=.

Any expression written in Polish notation is
called a Polish string. In order to fully understand
this concept, the User should know the rules for
evaluating a Polish string.

Rules For Evaluating A Polish String

The following is the procedure for evaluating a
Polish string:

1. Scan the string from left to right.

2. Remember the operands and the order in
which they occur.

3. When an operator is encountered perform the
following:

a. Record the last two operands encountered.
b. Execute the required operation.

¢. Disregard the two operands.
d

. Consider the result of (b) above as a single
operand, the first of the next pair to be
operated upon.

Following this rule, the Polish string
A 7B C+ x := results in A assuming the value 7 x
(B+C) (table 3-1).

NOTE

Because replacement operators vary depend-
ing upon the language used, <, =, and := are
equivalent for this discussion.

Simple Stack Operation

All program information must be in the system
before it can be used. Input areas are allocated for
information entering the system and output areas
are set aside for information exiting the system;
array and table areas are also allocated to store
certain types of data. Thus data is stored in several
different areas: the input/output areas, data tables
(arrays), and the stack. Since all work is done in
the arithmetic registers, all information or data is
transferred to the arithmetic registers and the
stack.

At this point, an ALGOL assignment statement
and the Polish notation equivalent will be related
to the stack concept of operation. The example is
Z:=Y + 2x(W+V), where := means ‘‘is replaced
by.” In terms of a computer program, this assign-
ment statement indicates that the value resulting
from the evaluation of the arithmetic expression is
to be stored in the location representing the
variable Z.

Table 3-1 Evaluation of Polish String A7BC+ x :=
Operands Being
Symbol Remembered and .
sep | Do | SOl | Theroeror | Opmien | Beteo!
Examined Occurrence (1 or 2)
Before Operation
1 B Operand
2. C Operand 1B
3. + Add 2C B+C (B+0O
Operator 1B
4, Operand 1B+ 0O
5. X Multiply 27 7xB+0) 7x(B+C)
Operator 1x(B+C)
6. A Name 17xB+0)
7. = Replace 2A
Operator 17xB+0) A =7x(B+C) A=7x(B +C)

34

When Z:=Y + 2x(W+V) is translated to Polish
notation, the result is ZY2WV+x+:=. Each
element of the example expression causes a certain
type of syllable to be included in the machine
language program when the source problem is
compiled. The following is a detailed description of
each element of the example, the type of syllable
compiled, and the resulting operation (see figure
3-3 and table 3-2).

In the example statement, Z is to be the
recipient of a value, the address of Z must be
placed into the stack just prior to the store
command. This is accomplished by a name call
syllable which places an Indirect Reference Word
(IRW) in the stack. The IRW contains the address
of Z in the form of an ‘“address couple” that
references the memory location reserved in the
stack for the variable Z.

Since Y is to be added to a quantity, Y is
brought into the top of the stack as an operand.
This is accomplished with a Value Call (VALC)
syllable that references Y. The value 2 is then
brought to the stack, with an eight-bit literal
syllable (LT8). Since W and V are to be added, the
respective variables are brought to the stack with
Value Call syilables. The ADD operator adds the
two top operands and places the sum in the top of

Y

ALGOL STATEMENT Z
POLISH STRING NOTATION 7

i

NAMC VALC

stack. This ecxample assumes, for simplicity, !
single-precision operands not requiring use of the X :
and Y registers which are used in double-precision :
operations.

The multiply operator is the next symbol
encountered in the Polish string; when executed, it :
places the product “2x(W+V)” in the top of the !
stack. The next symbol, ADD, when executed, :
leaves the final result “7+2x(W+V)”’ in the top of !
the stack.

The store syllable completes the execution of :
the statement Z:=Y + 2x(W+V). The store °
operation examines the two top-of-stack operands °
looking for an IRW or Data Descriptor. In this :
example, the IRW addresses the location where the
computed value of Z is to be stored. The stack is *
empty at the completion of this statement. '

Program Structure In Memory

When a problem is expressed in a source
language, portions of the source language fall into |
one of two categories. One describes the constants :
and variables that will be used in the program, and
the other the computations that will be executed. °
When the source program is compiled, variables are :
assigned locations within the stack whereas the :
constants are embeded within the code stream that !

W+v)

VALC ADD MULT ADD STOD

"A" REGISTER INV Rw z | Y 2 w - v INV INV INV INV
"8 REGISTER INV INV IRW £ T Y 2 w T (W+V) (W +V)) Y + 2x(W + V] INV
CORE STACK
AREA
-+ 2 - 2 2 2 2
CBILN+5 -~ Y Y \ > Y Y Y
CBILN+4 ™ Rw Z RW 2 RW Z RW 2 IRW 2 - RW Z j RW 2
CBILN+3 z S - 2 [z 2 Z Z Z Z Z =l v2w+w)
CBILN +2 Y Y Y = Y Y Y Y Y Y Y
CBILN +1 w w w w w H w w w w w
CBILN v v v v v v = v \ v v

SYLLABLE TYPES

VALUE CALL

NAME CALL
LITERAL (8 BIT)
STORE DESTRUCTIVE

VALC
NAMC
LT8
STOD

Figure 3-3. Stack Operation

35

Table 3-2. Description of Stack Operation

Execution NI;(;S,[S;H Sr%l;’z;)lzle Function of Syllable During
Sequence Element Compiled Running of the Program
0 Stack location of program variables illustrated.
1 Z Name call Build an indirect reference word that contains the address of
for Z. Z and place it in the top of the stack.
2 Y Value call Place the value of Y in the top of the stack.
forY.
3 2 Literal 2. Place a 2 in the top of the stack.
4 A Value call Place the value of W in the top of the stack.
for W.
5 \" Value call Place the value of V in the top of the stack.
for V.
6 + Operator add. Add the two top words in the stack and place the result in B
register as the top of the stack.
7 X Operator Multiply the two top-of-the-stack operands. The product is
multiply. left in the B register as the top of the stack.
8 + Operator add. Add the two top words in the stack and leave the result in
the B register as the top of the stack.
9 = Operator store | Store an item info memory. The address in which to store is
destructive. indicated by an indirect reference word or a data descriptor.
The address can be above or below the item stored.

forms the computational part. A program residing
in memory occupies separately allocated areas.
“Separately allocated” means that each part of the
program may reside anywhere in memory, and the
actual address is determined by the MCP. In
particular, the various areas are not assigned to
contiguous memory areas. Registers within the
processor indicate the bases of the various areas
during the execution of a program.

MEMORY AREA ALLOCATION

The separately allocated areas of a program are
as follows:

1. Program Segments: These are sequences of
instructions (syllables) that are performed by
the processor in executing the program. Note
that there is a distinction between program
segments and data areas. The program seg-
ments contain no data, and are not modified
by the processor as it executes the program.

2. Segment Dictionary: This is a table con-
taining one word for each program segment.
This word tells whether the program segment

3-6

is in main memory or on the disk, and gives
the corresponding main memory or disk
address of the program segment.

3. Stack Area: This is the pushdown stack
storage, which contains all the variables
associated with the program, including con-
trol words which indicate the dynamic status
of the job as it is being executed.

Stack-History And Addressing-Environment Lists

One very important aspect of the B 6700 is the
retention of the dynamic history for the program
being processed. Two lists of program history are
maintained in the B 6700 stack, the stack-history
list and the addressing-environment list. The stack-
history list is dynamic, varying as the job proceeds
along different program paths with changing sets of
data. Both lists are generated and maintained by
B 6700 hardware.

MARK STACK CONTROL WORD LINKAGE

The stack history is a list of Mark Stack Control
Words (MSCW), linked together by their Displace-

obsECT OBJECT
PROGRAM
D [4]—=| PROGRAM CODE
STACK SEGMENT
CONTAINING (h+1)
D[3 —| vARIABLES
AND-
] DYNAMIC
D [2]—=| sTAT
us OBJECT
PROGRAM
CODE
SEGMENT
OBJECT ()
PROGRAM
SEGMENT
DICTIONARY
S. D. PROG. OBJECT
PROGRAM
S. D. PROG. CODE
SEG. DEC. O. B. OUTER
D []] —] BLOCK
CODE
SEGMENT
MCP STACK _—
AND
SEGMENT
DICTIONARY
0[0]

Figure 3-4. Object Program in Memory

ment Fields (DF) (figure 3-5). An MSCW is
inserted into the stack as a procedure is entered
and is removed as that procedure is exited.
Therefore, the stack history list grows and con-
tracts with the procedural depth of the program.
Mark Stack Control Words identify the portion of
the stack related to each procedure. When the
procedure is entered, its parameters and local
variables are entered in the stack following the
MSCW. When the procedure is executed its para-
meters and local variables are referenced by
addressing relative to the MSCW.,

[I}___. TOS WORD
ADDRESS STACK
PROCEDURE 8 | ~ ENVIRONMENT HISTORY
F LIST List
MSCW | [P —— —[BF =
PROCEDURE A 7 T
MSCW | "[DIsP——" _ [BF .-
PROCEDURE D 7 T
MSCW T Z[®F7
PROCEDURE C 7
MSCW :_.—.
OUTER PROG BLOCK
TMSCW) T _[oFp=—d

Figure 3-6. Stack History and Addressing Environment List

STACK DELETION

Each MSCW is linked to the prior MSCW
through the contents of its DF field in order to
identify the point in the stack where the prior
procedure began. When a procedure is exited, its
portion of the stack is discarded. This action is °
achieved by setting the stack-pointer register (S) to
address the memory cell preceding the most recent
MSCW (figure 3-6). This topmost MSCW, addressed -
by another register (F), is deleted from the °
stack-history list by changing F to address the prior
MSCW, placing this MSCW at the head of the stack
history.

This is an efficient and convenient means of -

subroutine entry and exit.

~ 7 DISCARDED STACK
PORTION HISTORY
[5 =" ""170s WORD] OF STACK LIST

MSCW — L DF peseg
L o ﬁ ‘;
4
T -~ PROI EDURE "A" 1;

MSCW [oF 1

N ~ Pkolcsouxe “D"

Msew | _— [DF 1 4

Figure 3-6. Stack Cut-Back Operation on Procedure Exit
RELATIVE-ADDRESSING

Analyzing the structure of an ALGOL program
results in a better understanding of the relative-
addressing procedures used in the B 6700 stack.
The addressing environment of an ALGOL pro-
cedure is established when the program is
structured by the programmer and is referred to as
the lexicographical ordering of the procedural
blocks (figure 3-7). At compile time, the
lexicographical ordering is used to form address
couples. An address couple consists of two items:

1. The addressing level (MJ of the variable,

2. An index value (§) used to locate the specific
variable within its addressing level.

The lexicographical ordering of the program
remains static as the program is executed, thereby
allowing variables to be referenced via address
couples as the program is executed.

~— BEGIN LEXICOGRAPHICAL LEVEL 2
REAL V1; - 2,8=2
REAL V2; e - 2,8=3
PROCEDURE A; =2,8=4
— BEGIN LEXICOGRAPHICAL LEVEL 3
REAL V3; 2= 3,8=2
PROCEDURE B; &£ = 3,8=3
BEGIN LEXICOGRAPHICAL LEVEL 4
V3 := 3;
Vi = V3;
END;
B
L— END;
PROCEDURE C; e+ 2,8=5
— BEGIN LEXICOGRAPHICAL LEVEL 3
REAL V4; 2= 3,8=2
PROCEDURE D; &= 3,8=3
— BEGIN LEXICOGRAPHICAL LEVEL 4
REAL V5; = 4,8=2
vh = b
V5 = 5;
A;
V2 = Vh;
— END;
D;
\— END;
C;
L—END;

Figure 3-7. ALGOL Program
With Lexicographical Structure Indicated

BASE OF ADDRESSING-LEVEL
SEGMENT. The B 6700 processor contains an
array of D Registers (DO through D31). These
registers address the base of each addressing-level
segment (figure 3-8). The local variables of all
procedures are addressed relative to the D registers.

ABSOLUTE ADDRESS CONVERSION. The
address couple is converted into an absolute
memory address when the variable is referenced.
The addressing level portion of the address couple
selects the D Register which contains the absolute
memory address of the MSCW for the environment
(addressing level) in which the variable is located.
The index value of the address couple is added to
the contents of the D Register to generate the
absolute memory address.

MULTIPLE VARIABLES WITH COMMON
ADDRESS COUPLES. The address couples
assigned to the variables in a program are not

ADDRESS
ENVIRONMENT
STACK LIST
MEMORY

AREA

S —={10Ss WORD

=

N PROCEDURE B

|
MSCW [oise
PCW-B

v3 I PROCEPURE A

]

MSCW DisP | _
D REGISTERS !t .
~ ~ V5 PROCEDURE D
D6 mscw | [oise |4 T
D5 < ~
04 PCW-D ,
D3 va I PROCEDURE C

D2

D1 Mscw | [oisp T _
D0 ~
PCW-C
PCW-A
v2 OUTER PROG BLOCK
Vi
MSCW [oisp _ _

Figure 3-8. D Registers
Indicating Current Addressing Environment

unique. This is true because of the ALGOL
scope-of-definition rules, which imply that if there
is no procedure which can address both of any two
quantities, then these two quantities may
unambiguously have the same address couple. This
addressing system works because, whereas two
variables may have the same address couples, there
is never any doubt as to which variable is being
referenced within any particular procedure.

ADDRESS ENVIRONMENT DEFINED. There is
a unique MSCW which each D Register must
address during the execution of any particular
procedure. The D Registers must be changed, upon
procedure entry or exit, to address the correct
MSCWs. The list of MSCWs which the D registers
address is the addressing environment of the
procedure.

MARK STACK CONTROL WORD
LINKAGE. The addressing environment of the
program is maintained automatically by linking the
MSCWs together in accordance with the lexico-
graphical structure of the program. This linkage is
the Stack Number (Stack No.) and Displacement
(DISP) fields of the MSCW, and is inserted into the

MSCW whenever the procedure is entered. The
addressing environment list is formed by linking
each MSCW to the MSCW immediately below the
declaration for the procedure being entered. This
forms a tree-structured list which indicates the
addressing environment of each procedure (figures
3-8 and 3-9). This list is used to update the D
Registers whenever a procedure entry or exit
occurs.

PROCEDURE "D"

PROCEDURE B

— — LEXICOGRAPHICAL LEVEL 4

PROCEDURE “C"

—— Y = — — —

PROCEDURE. A .

LEXICOGRAPHICAL LEVEL 3

OUTER PROGRAM BLOCK

LEXICOGRAPHICAL LEVEL 2

Figure 3-9.
Addressing Environment Tree of ALGOL Program

STACK HISTORY SUMMARY

The entry and exit mechanism of the Processor
hardware automatically maintains both the stack
history and address-environment lists to reflect the
current status of the program. Interrupt response is
a procedure entry. Therefore, the system is able to
conveniently respond to, and return from,
interrupts. Upon recognition of an interrupt
condition, the processor creates a MSCW, inserts an
indirect reference word into the stack to address
the interrupt-handling procedure, inserts a literal
constant to identify the interrupt condition and a
second parameter, and initiates an MCP interrupt-
handling procedure. The D Registers are updated
upon entry into the interrupt-handling procedure,
to display all legitimate variables. Upon return
from this procedure, the D Registers are updated
to display variables of the former procedure.

Multiple Stacks And Re-Entrant Code
The B 6700 stack mechanism provides a facility

for handling several active stacks, which are
organized in a tree structure. The trunk of this tree

structure is a stack containing MCP global
quantities.
LEVEL DEFINITION

A program is a set of executable instructions,
and a job is a single execution of a program for a
particular set of data. As the MCP is requested to
run a job, a level-1 branch of the basic stack is
created. This level-1 branch contains the

Descriptors pointing to the executable code and
Read-only Data segments for the program.
Emerging from this level-1 branch is a level-2
branch, containing the variables and data for this
job. Starting from the job’s stack and tracing
downward through the tree structure, one finds -
first the stack containing the variables and data for
the job (at level 2), the segment descriptor to be
executed (at level 1), and the MCP’s stack at the
trunk (level 0).

RE—-ENTRANCE

A subsequent request to run another execution
of an already-running program requires that only a -
level-2 branch be established. This level-2 stack
branch emerges from the level-1 stack of the
already-running program. Thus two jobs which are
different executions of the same program have a
common node, at level-1, describing the executable
code. It is in this way that program code is -
re-entrant and shared. This results simply from the
proper tree-structured organization of the various
stacks within the machine. All programs within the
system are re-entrant, including all user programs
as well as the compilers and the MCP.

JOB—SPLITTING

The B 6700 stack mechanism also provides the
facility for a single job to split itself into two
independent jobs. A common use of this facility
occurs when there is a point in a job where two
relatively large independent processes must be
performed. This splitting can be used to make full
use of a multiprocessor configuration, or to reduce
elapsed time by multiprograming the independent
processes.

A split of this type establishes a new limb of the
tree-structured stack, with the two independent
jobs sharing that part of the stack which was
created before the split was requested. The process
is recursively defined and can happen repeatedly at
any level.

STACK DESCRIPTOR

Stack branches are located by an array of
descriptors, the stack vector array (figure 3-10).
There is a data descriptor in this array for every
stack branch. This data descriptor, the stack
descriptor, describes the length of the memory area
assigned to a stack branch and its location in either
main memory or disk.

STACK STACK STACK STACK STACK
VECTOR NO.n NO.4 NO.3 NO.2
4 ;17 > ul ;‘f ,r 1/ ”~ pr I"
MSCW MSCW
DDn-1 [—= TOSCW MSCW MSCW
A ~ ~ MSCW >
D05 TOSCW 4 r Mscw
DD4 TOSCW i
DD3 PROC.ID
DD2 SEGMENT
STACK DESCRIPTORS
oD1 . TRUNK N n
DDO DISPLAY
sb REGISTERS
DD [=—STACK
VECTOR 1 A D31
4 ~ DESCRIPTOR
MSCW f=— 0
MSCW ,
"’ D5
L— TOSCW D4

D3

D2

D1

Figure 3-10. Multiple Linked Stacks

bo

3-10

A stack number is assigned to each stack branch.
The stack number -is the index value of the stack
descriptor in the stack vector array.

STACK VECTOR DESCRIPTOR

The array size of the stack vector and its
location in memory is described by the stack
vector descriptor, located in a reserved position of
the trunk of the stack (figure 3-10). All references
to stack branches are made through the stack
vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT

A Presence Bit Interrupt results when an
addressed stack is not present in memory. This
Presence Bit Interrupt facility permits stack over-
lays and recalls under dynamic conditions. Idle or
inactive stacks may be moved from main memory
to disk as the need arises and, when a stack is
subsequently referenced, a Presence Bit Interrupt is
generated to cause the MCP to recall the non-
present stack from disk.

SECTION 4

MAJOR REGISTERS AND CONTROL PANELS

PROCESSOR REGISTERS
General

The processor registers and flip flops are dis-
played in the display cabinet of the system as
shown in figure 4-1. Panel A displays the stack
registers. Panel B is shared with the input/output

processor. Panels C, D, and E contain indicators
and switches for the entire system.

?

aa‘
.

Figure 4-1. Processor Display Panels

Panel A (figure 4-2).
NOTE

Although Panels A and B are shown
separately in this manual, they are actually
overlayed on one template. The lines and
mnemonics are printed in two colors; one to
identify processor registers and flip flops, and
the other to identify those used in the
input/output processor.

P REGISTER

The P register is a 51-bit instruction register.

C REGISTER

The C register is a 51-bit information register for
general purpose use. It may contain an address, an
IRW, an information word, a character or the
“flash back” from a memory cycle.

4-1

A REGISTER

The A register is a 51-bit information register’
that holds one complete word. This register is the:
top-of-stack when the A Register Occupied flip:
flop (AROF) indicates that it contains a valid.
word. It is used in many ways: arithmetic,.
Boolean, character string, addressing, indexing,:
comparing, etc.

B REGISTER

The B register is a 51-bit information register
considered as the second word in the stack when:
the A register is valid. It, too, has multiple usage"
such as: arithmetic, Boolean, character string,:
addressing, etc. The B register is valid when B:
Register Occupied flip flop (BROF) is on.

X REGISTER

The X register is a 51-bit information register’
used basically as the second word of a double-:
precision operand.

Y REGISTER

The Y register is the counterpart of the X:
register for double-precision operands. It is the
second word of the B-register operand.

Panel B (figure 4-3).

Panel B indicators are shared by the processor”
and input/output processor flip flops.

The PROC/MPX switches located on Panel C.
(figure 4-4) control the display mode of the panel. .

Panel B is divided into related family and’
control groups. The Maintenance Diagnostic Logic:
(MDL) Processor is common to both display -
modes, i.e., processor or input/output processor’
flip flops.

ROW A

This row contains the flip flops for addressing:
the integrated circuit (IC) memories in the Memory °
Controller.

O]E] ADD
o[stk |pisp | [coupLE
]
TRW
E=0 NORMAL
E=1 STUFFED
DS v
0 [E] T|].F
‘] STK | DISP I_DIFF
MSCW
DS =1 DIFF STK
E=0 INACTIVE
E=1 ACTIVE
X [N]
0 9] s [LLF
! [Te| |BASE - DIFF
1[F S-F
TSCW
x| [P IN
olo] |s LLF
1 [Te] |R]PR DI
1 [F
RCW
| P [N
1] | LLF
1 [sTK [R]PIR DI
]
‘ RCW
]
0 [INCR| FV cV
0
SIW
PR
1 [c]olLeNGTH ”DA,?,Q/
o[T]o| INDEX | App
1 [5]p
DATA DESC
PIR]B
T ICIs|Y|iINnDEX|] MEM/
o [1]L|7|worp| DISK
) [s]Ele
STRING DESC
P
5Tc MEM/
1 = |LENGTH| DIsK
‘ ADD
SEGMENT DESC
- |
o[MANTISSA
0 [EXF
OPERAND

Q00O 0O

e

J O OK

O

OO0 2000 »
O0O00O00O00O 0O0O0O0

O00O0O0OO0OO 0000

O OK

N

O

O OK

/4
O

OO0OO0OO0OO0O0O0O OO0OO0OOOOOO 0OOOOL

OO00O0OO00O0

000 <000 x

00000000

O Kx

O
O
O

Figure 4-2. Processor Register Panel A

42

Q0000

O OK

Q

O OKX

O ORL

S

Q

O0000000O0 00000000 00000000

) O OK

O OK

OO0 O

O0O0OO0OO0OOOO OOOLOLOOOO 0000

OO0OO0O0O0O0OOO0O
O0OO0O0OO0OO0OO 0OOO0OOOO0O0

OO0O0OO0O0O0OO0O

OO00O

MEMORY NTERFACE

PROCESSOR

MEMORY ADDRESS

CONTROL /

IC MEM WRITE SELECT ————

OO0 0000
OOOOOO

000000

RESPONSE

o
00

MPRC MAOX

OO

MAL7 MAIT MAG? MADS MAO! MARC MABX | DWisS DVS
MALG MAI2 MADB MAQ4 MAQO MREQ MRDY Iws4 IS0 BwS4 BVS0

000000

3 17 1aS) BaST

000000

Dves2 I 1452 BaS6

0000000

IC MEM READ SELECT ————=m

CQERIAR
DEOSRs

SSSSSSSS

00000000000

F MAOF ¢tRCP BOIF BOSF

OO0 00000000

MAO5 MAO2 | BO2F BOGF

OOOOOOOOOO

MAO7 MAO4 MAQ1 | BOJF BO7F

0000000000

TNFF FECH ERR2 LO2F | MAO® MAGs MAQ3 MAQO | 804F BOSF

OOOOOO
OO0 0000

AIOF CO3F COo

000000

AO2F | AOSF AOBF COIF CO4F CO7

©/|ORCRORORG)

AQ9F CO2F COS Co8F
STRIN

ORE ADDRESS——ATEST CASE
MDL DISPLAY
FAMILY A
CO0000 00000
ANFF TR0 GCBF JRA3 QROOIN QRI0 NCR4 EBRO MYRO

0000000000

R0Z 8SZ JRA2 QRO7 QRO3 QRO? NCR3 EARO MBR2

OLONONOROROROLOROND

XXAl TRO1 QRY JRAL QROs QRO QROB NCR2 MYR2 MER

OOOOOOOOOO

STRA TRO0 JRA4 JRAO QRO5S QROO:A} NCRS NCRI MYRI MBRO

ARITH CONTROL

CQOOO0

QRIN CCAA A2CA EAST QCAA

OOOOOO

QR12 - CTA

OOOOOO

QRIJ A4CA ACA/

QR4 A4AA ATAA AASZ:D) EATA

OO00OO0O
OO0O0O
OO00O0
OO0O0O0O

OOOOO

QBIF IBIF UB7F JBIF TROJ | JCO7 JCO3 | QC7F LLO3

OO00OO0

QCIF

O QOO
OOOO

000000

QROI/ EBTB FSLC.61 FSRC(2: AAIZ FCBC:2)

000000

OXONONO)

OPR3 QE02 JEO4

ONORORO)

OPR2 QE03 JEO2

ONONONONOX®)

QD2F TD2F JDSF JD2F QDAF QDeF

OO00000

QOIF IDIF JDSF JDIF QD9F QOS5F

OO0 0000000

TO4F TOOF JD4F JDOF QODBF QO4F | OPRS OPRI JEl6 JEO)

20001020200 000RE0000
2020001001009 0002200R0
£0000000009290000090

OJORORORONORORONONE)

CNCO CNO4 D204 DBO4 O104 DI04 ©204 OBO4 ICR4 DIG4

0000000000

CNOP CNO2 D202 D802 D102 0202 OB802 ICR2 DIG2

O00O0000000

CNI16 CNOI D201 DBOI ©101 D101 ©201 ©OB801 ICRt DIGI

0000000000

ARF OPR8 TFOF

0000000000

STBH OPR4 KFO3 JFO2 KGO3 JGO4

0000000000

0000000000

0000000000
0000

000000
0000

JGIF QF03 QHO3 DGSF ERO2 TFFF

OO0000O0

JEIF - QFO4 QHO4 LHFF EROI OFFI

SIBG OPR2 KFO2 JFO) KG02 JGO2 DSZ2 S5Z2 DI02 slo2

STBF OPR) KFO! JFOO KGO1 JGO1 DSZ1 §521 DIOV sI0t
FAMILY U

————NTERRUPT CONTROL F oo

OO

QI2F JI03 EXIA INVC SCC2 LTBI

000000

rrel JI0z ITAR EXI8 ICFF LTBO

O0000O

SOIF JIO1 SUFL QLIF SCCl LOAD

O00O00OO0

JI4 JI00 SDIS [IHF HLID SCIL

O OO

ACT8 JO2F

OO0 O

0 0l9 Of
00

QOO0 000000

MEMORY CONTROL

TRIP MAOF CZ SMI9 SMIS SMIL SMO7 SMO3

QOOO0O000000O0

TIMO SPEF SUBF SMIB SMI4 SMI0 SM0s SMO2

0000000000

TIM1 MWRC PETO SMI7 SMI3 SMO? SMO5 SMO1

0000000000

TIM2 REQF PETT MPEF SM20 SMI6 SMI2 SMO8 SMO4 SM00

Q QI
0000
0000
0000
0000

000000

EDIT JPIF SECF INFF QP2F Ql

O0000 0

EEF JP2F CTIR PSR2 SSR2 CSR2

000000

il PSRV SSR1 C

000000

l ROGRAM CONTROL

ORORKOLOROQ
0000000000
0000000000

TOA5 TOAl TOMS TOMI DISS DISY

0000000000

1 68
TRANSFER CONTROL d

Figure 4-3. Processor Display Panel B

4-3

IC Mem Read Select

BRSO = BRS7
IRSO = IRS7

DRSO = DRSS

IC Mem Write Select

BWSO == BWS7
IWSO = IWS7

DWSO == DWSS

MEMORY INTERFACE
Control/Response

MAPL/MTEX

MAOX
MABX

MRDY
MI5St

MPRC
MWRC

MREQ

Memory Address

MAOO = MAI19

ROW B

- Base read, select O

through 7.

- Index read, select O
through 7.

- Display read, select O
through S.

- Base write, select O
through 7.

- Index write, select O
through 7.

- Display write, sclect

0 through S.

- Memory address
level/Memory trans-
mission error.

- Memory access
obtained.

- Memory access
begun.

- Memory ready.

- Memory information
parity bit.

- Memory protect con-
trol flip flop.

- Memory write con-
trol flip flop.

-Memory request to
memory control.

- Memory address

lines.

This row contains the flip flops for the MDL
processor. There are three registers associated with
this processor: AQ1 through A10, BO1 through
B0O8, and CO1 through CO08. These registers are
used for system testing. The other flip flops in row

4-4

B are for MDL control. These flip flops are
discussed later in this section, under INPUT/
OUTPUT PROCESSOR REGISTERS AND FLIP

FLOPS (ROW B).

AOIF = AIOF

BO1F => BOSF

COIF = COS8F

MAOO = MAO9

REQF
AROF
ESTF

TNFF
MAOF

LPF
CERF

FECH
ERCP

AUXF
ERRI1
ERR2

INTF

— A register in the
MDL processor; used
for character/word
buffer for tape input
or as a command/data

register for MDL
processor execution.
— B register in the

MDL processor; used
as control flip flops for
tape input, or test case
number for MDL pro-
cessor execution.

— C register in the
MDL processor; used
as a word buffer to the
tape input or as a
command/data register
for MDL processor
execution.

— Memory address
register for the MDL
processor.

— Memory request flip
flop.

— A and C register
occupied flip flop.

—End of string flip
flop.

— Test not flip flop.

— Memory access
obtained flip flop.

— Longitudinal parity
flip flop.

— Control parity error
flip flop.

— Control flip flop.

— Error
flip flop.

complement

— Auxiliary flip flop.
— Solid error flip flop.

— Intermittent
flip flop.

error

— Enable display cycle
flip flop.

DISF

LO1F

LO2F

ROW C

— Discrepancy flip
flop.

— Sequence counter
flip flop.

— Sequence counter
flip flop.

This row contains Family A flip flops and
one-half of the Arithmetic Controller flip flops.

Family A

TROO = TRO3
JRAO == JRA4
QRO1

QROO (A)

QRO2

QRO3 = QRO7
QRO8 = QRI10O
QR11 = QRI14
QR15
QROO/QRO1/
QROO(N)

NCR1 = NCRS5

MBRO => MBR2

MYRO = MYR2

EARO

EBRO

STRA

XXAl

TRX1

— Contains the OP
code

— Sequence count
used in the OP code
flow

— Pre-Carry into adder

— Carry-in control for
multiply

— High-speed
phase control

clock

— Logic control
— Temporary
— Q Counter
— Interrupt flip flop

storage

— Carry-in reset

control

— Multiply
flip flop

— N counter

carry in

— B-register mantissa
field extension

— Y-register mantissa
field extension

— Extension of A-
register exponent field

— Extension of B-
register exponent ficld

— Family A strobe flip
flop (turned on by the

Program controller
through the Z10 bus)
— Function parallels
STRA
— Function parallels
TRO1

45

Arithmetic Control

All other flip flops in the Arithmetic Controller
are used for logic control. They are as follows:

BBSZ
AAS1
EBTT
EATB
BTBB
ATBB
FSLC (1)
FSLC (2)
FSLC (5)
FSLC (6)
FCBB (1)

ROW D

FCBB (2)
FSRC (1)
FSRC (2)
AA1Z
ECBC
ECCB
ECBB
FCBC (1)
FCBC (2)
FCBS (1)
FCBS (2)

FCBC (1)
QROO/A
CINA

QROO1/

This row contains the Family B and C flip flops.

Family B

TBOF =
JBOF. =
QBIF =

Family C

TROO =

JCOO =

LLOO =>

QP3F
STRC
STRJ
STRK

QCIF =
ANFF
NCSF

TB4F
JB7F

QB3F

TRO3

JCO7

LLO4

QCBF

— Contains the OP code

— Sequence count
used in the OP code
flow

— Logic control

— Contains* the OP .

code

— Sequence count
used in the OP code
flow

— Lexicographical
level flip flops for the
Program flow

— Extension of QPI1F
and QP2F

— Strobe family C
(subroutine)
— Strobe family J
(Value Call)
— Strobe family K
(Name Call)

— Logic control
— Logic control

— Normal/control
State flip flop: When

this flip flop is reset,
“off” signifies normal
state; “on” signifies
control state

The Control State flip flop provides an
extension to the operator set to include additional
operators; it also disables external interrupt
detection by the processor.

CRUN Family C run flip flop
ROW E

This row contains the family D and E flip flops.

Family D
TDOF — Family D strobe
TDIF == TD4F — Contains the OP
code
JDOF => JD7F — Sequence count
used in OP code flow
QDIF = QDYF,
QDAF,
QDBF — Logic control flip
flops
Family E
OPRS — Family E strobe
OPR1 = OPR4 — Contain the OP code
JEO1 = JEl6 — Sequence count
used in OP code flow
DIG1 == DIGS — Length field
ICR1 => ICRS — Input convert
OBO1 = O0OBO4 — Octal buffer bit
0101 = OBO4 — Octal 1 bit
0201 = 0204 - Qctal 2 bit
DBO1 = DBOS8 — Digit buffer bit
DIO1 = D108 — Digit 1 bit
D201 = D208 — Digit 2 bit
CNOl == CNIl6 — Counter
QEO1 = QEO3 — Logical control
FC2A — Transfer CC to AA
KEO1, KEO2 — Logical control
CNCO — Counter control
CNOP — Counter

4-6

ROW F

This row contains the family U (String OP) flip
flops. Family U is the hardware logic for the string
OP controller.

OPR1 = OPRS — Contains the OP
code for this controller

KFO1 = KFO3 — Extension of
sequence count for
Family F

JFOO => JFO3 — Sequence count
used in family F OP
code flow

KGOl = KGO3 — Extension of
sequence count for
Family G or H

JGO1 == JGOS8 — Sequence count
used in family G or H
OP code flow

VARF — Variant flip flop to
alter the OP code

DSZ1 — Destination size less
significant bit

DXZ2 — Destination size
more significant bit

SSZ.1 — Source size less
significant bit

SSZ2 — Source size more
significant bit

DIO! == DIOS — Destination
character pointer

SIO1 = SIOS8 — Source character
pointer

EDIT — Edit mode for string
OPS

NVLF — Invalid OP Code

JGIF — JG interrupt state

JFIF — JF interrupt state

QFO1 — Invalid OP interrupt

QFO2 — Presence bit
interrupt

QFO3 — Memory protect
interrupt

QFO4 — Segmented array
interrupt

QHOl == QHO4 — Logical control

XROF — Register occupied

RPZF — Logical control

DGSF
LHFF

ERO1 = EROS

EXTF
FLTF
TFFF
OFFF
STBF
STBG
STBH

ROW G

— Logical control
— Logical control

— E-Register flip flops
(Used for memory
cycle requests during
string OP code flow.)

— External sign

— Float

— True false

— Overflow

— Strobe for family F
— Strobe for family G
— Strobe for family H

This row contains the flip flops used for
Interrupt Control, Stack Control and Memory

Control.

Interrupt Control

JIOO =

SOIF
PTPI

QINF, QI2F
EXIA

EXIB

ITAR
SUFL
SDIS

SCC1, SCC2
ICFF

HLTD
LOAD

SCIL

LTBO, LTBI
INVC

— Sequence count for
controller flow

— Stack overflow

— Processor to
processor interrupt

— Logical control

— External interrupt A
(MPX-A)

— External interrupt B
(MPX-B)

— Interval timer armed
— Stack underflow

— Syllable dependent
interrupt

— Scan Counter Bit 1
and 2

— Interrupt controllier
run

— Halted

— Load

— Scan interlock

— Load timer Bit

— Invalid code (Tag in

P#3)

4.7

IIHF

Stack Control

JOIF = JO3F
ACT8

QS1F, QS2F
AROF

BROF

Memory Control

SMOO = SM20

TRIP

TIMO = TIM2
MAOF

SPEF
MWRC

REQF
CZAF
SUBF

PETO => PET2

MI48
LPBF

MPEF

ROWH

— Set program-
matically to inhibit
external interrupt

handling by the
processor.

— Sequence count for
controller flow

— Address couple to
Z8 bus

— Logical control

— The A register con-
tains a valid word

— The B register con-
tains a valid word

— Address adder out-
put flip flops. These
are for display only.
(No manual set or
reset controls)

— Trip control invalid
address

— Invalid address timer

— Memory address

obtained

— Scan bus parity
error

— Memory write
control

— Memory request
— Carry zero control

— Address adder
subtract

— Information parity
test control register

— Memory protect bit

— Line parity bit from
memory

— Memory parity error

This row contains the flip flops used for
Program Control and Transfer Control.

Program Control

JPOF == JP3F
PROF

VARF

TEEF
EDIT
CPIO, CPII

CTIR

SECF

INFF

PSRO == PSR2

QPIF, QP2F
SSRO SSR2

CSRO => CSR2

Transfer Controller
TOAO = TOAS

— Sequence count for
controller flow

— The P register con-
tains a valid word

— Variant mode flip
flop (Used to enter the
variant mode; see Sec-
tion 8.)

— Table enter edit
— Edit mode

— A two-bit counter
used to back up the
PIR (program index
register)

— A one-bit counter
used to back up the
TIR (table index
register)

— SECL
execute
level) saved

— Inhibit fetch flip
flop (used to inhibit
bringing a new
program word to the P
register)

(syllable
complete

— Program syllable
register O => 5 pointer
(points to next syllable
to be executed from
the P register)

— Logic control

— Syllable saved
register O (Used to
save the current posi-
tion of PSR when in
table mode.)

— Command Syllable
register O => 5. (Used
to save the current
position of PSR.)

— Top-of-Aperture
Register (Used to
select top bit of 48-bit
field to be transferred
through the steering
and mask network.)

TOMO = TOMS — Top-of-mask register
(used to select top bit
of 48-bit field to be
inhibited through the
steering and mask

network)

DISO => DISS — Displacement
register (Used in
steering network to
logically displace bits

of a 48-bit field.)
YTZ6 — Gating flip flops to
XTZ6 the Z6 bus. (Allows
CTZ6 the contents of the
BTZ6 various registers to be
ATZ6 gated to this bus.)
Z6L8 — 76 bus lower to Z8

bus (Allows bits 13:14
to be transferred.)

26T8 — 76 bus top to Z8
bus (Allows bits 39:20
to be transferred.)

Z61.9 — Z6 bus lower to 29
bus (Allows bits 35:16
to be transferred.)

26T9 —Z6 bus top to Z9
bus (Allows bits 39:20
to be transferred.)

GENERAL MAINTENANCE CONTROLS

The maintenance control panel shown in figure
4-4 is panel C. It contains the indicators and
necessary controls for maintenance of the B 6700
system. Units which cannot be controlled from this
panel have their own local maintenance controls.

Power Controls

The power supplied to the B 6700 system is
controlled by sequence control circuits located in
the MDL display cabinet. There are two sequence
control circuits (sequence control circuits A and B)
in one MDL display cabinet; a maximum of two
MDL display cabinets can be used per system.
There are two sets of power control switches
located on the upper-right corner of panel C on the
MDL display cabinet (see figure 4-4A). One set of
these switches controls sequence control circuit A,
and the other controls sequence control circuit B.

In addition, there is also a set of three toggle
switches labeled CONNECT-DISCONNECT A, B,

or C. These switches can connect the selected
sequence control circuit to one common control
(see figure 4-4B). If these three switches are in
position DISCONNECT, ecach sequence control
circuit is controlled by its corresponding set of
power control switches. If toggle switches A and B
are in position CONNECT, sequence control
circuits A and B are placed on a common bus, and
both can be controlled by one set of power on-off
switches. When toggle switch C is in position
CONNECT, it will tie the designated sequence
control circuits to the second MDL display cabinet.

Lamp indicators 1, 2, 4, and 8 indicate the
failure of one of 15 AC modules. For example, if
AC module #7 has failed, indicators labeled 1, 2,
and 4 will turn “on.”

General Clear And Halt-Load Function

On the upper-right corner of control panel C,
there are two pushbutton switches labeled GEN
CLEAR A and GEN CLEAR B. The domain of
each of these switches depends on the position of
the three CONNECT-DISCONNECT switches
(explained above under POWER CONTROLYS).

There is no direct clear switch located at the
operator’s console; however, the system’s general
clear from this unit is provided through the LOAD
switch. Whenever the LOAD switch is depressed,
the system is automatically cleared before the load
command is executed.

The HALT, LOAD, and LD SLCT switches are
duplicated at the maintenance panel (panel C) for
convenience of operation. These switches are
located in the lower-left corner of panel C.

The system can be cleared by means of the
LOAD switch. When the LOAD switch is depressed
at either the console or the maintenance panel, a
clear signal is generated. Both sections A and B are
cleared. When the LOAD switch is released, the
load logic generates the load command which is
transmitted to the data processors.

Processor Register Clear

A set of six pushbutton switches is provided for
individually clearing registers A, B, C, X, Y and P
of the data processor selected by the display select
switch.

Input/Output Processor

The Input/Output Processor registers may be
individually cleared with the switches listed below:

1. Switch D clears the data register.

2. Switch C clears the command register.

3. Switch T clears the tag register.

4. Switch TOD clears the time-of-day register.

4=10 1-10
/
POWER CONTROLS r—————=——7T——- "I r—-————- 11— """
CO0O0000)| | Fid e | T s
A TO AC
OFF ON GEN CLEAR | Disc_~, CON | MOD I o|sc CON Moo
CONNECT | A | A |
&6 6000 o | e | | |
B | L' l l *—
——— B——C=~DISCONNECT OFF ON GEN CLEAR B ’ I
Pnoc REG CLEAR _' | | | |
© 000000 | | |
I | ’
MPXREGCL AR MDLREGCLEAR l I' LA '} : | I' * . '} |
(: :D |
@ @ @ | AC MOD LOC I I AC MOD LO l
T 10D AC (FAILURE LIGHTS) (FAILURE L|GHTS) |
MDL CONYROLS I | | |
@ I l I 1
LOAD STOP RUN DIAGNOSE HALT CYCLE LOCK CLEAR | l |
SYST CLOCK CONTROLS! DISP * o o o o o [
r] I—] I ON OFF CLR ' | ON OFF CLR l
'8 ollo iy A s
HALT F NORMAL SYST PROC 1 MPXI OFF | | |
PROC-1 - I | I
OFF | SEQ BD B | SEQ BD B
LDSICT PULSE [IMDL__ DISPLAY PROC-2 MPX-2 l PROC 2 | | ' l
TRAIN
OO0 OO0 | | | '
OFH
@ MAINT DISPLAY~1 MAINT DISPLAY-2
@ SINGLE 82 Bl IFF RESEY' MPX-2 Liswinr pisreav T ——I L‘ ————— _—
PULSE 'l" -1 1T —J "
=t 7
Figure 4-4A. Panel C General Controls
Figure 4-4B.

Figure 4-4. Power Control

4-9

MDL Register Clear

The MDL registers may be individually cleared
with the switches listed below:

1. Switch MC clears the core address.
2. Switch B clears the TC no.
3. Switch AC clears the string no.

MDL Control Switches

This group of switches is used for loading and
controlling the MDL.

Display Select Switches

This group of switches is composed of three
toggle switches located in the lower-right corner of
the panel. The function of these switches is as
follows:

1. On-Off Switch: When this switch is in posi-
tion ON, the display logic is enabled; when
the switch is in position OFF, the display
logic is disabled.

. Processor select switch: This three-position
toggle switch selects which of two processors
is to be scanned by the MDL.

.I/O Processor (MPX) select switch: This
three-position toggle switch selects which of
two 1/O Processors is scanned by the MDL.
The MPX select switch overrides the processor
select switch.

Clock Controls

The clock control switches provide the means of
inhibiting the system clock to the various com-
ponents of the system.

Clock toggle switches when activated in the
“up’ position inhibit the following.

1. SYST — Entire system

2. PROC-1 — Processor #1

3. MPX-1 —I/O Processor #1

4, MDL — Maintenance
Diagnostic Processor

5. Display — Display Logic

6. PROC-2 — Processor #2

7. MPX-2 —I/O Processor #2

4-10

Single Pulse Switch

This switch is used to produce a single clock
pulse when the clock has been inhibited.

Pulse Train Switch
This switch is used to produce a train of pulses.

Each depression produces all the clock pulses that
normally appear within a 500-nanosecond period.

Indicators BO, B1, B2

These indicators indicate the
division of the pulse train.

logical time

MDTR/Normal Switch

This switch is used to change the system from a
normal mode of operation to that of MDL.

FF Reset Switch

This switch when depressed indicates that a flip
flop in the unit selected is to be reset.

HALT, LOAD, and LOAD SELECT SWITCHES

The functions of these switches are the same as
their corresponding switches at the console. The
HALT switch is used to halt the system without
clearing it. The LOAD switch is used to perform a
load operation from either the card reader or disk
file, depending upon the setting of the LD SLCT
switch indicator, This indicator is lit when card
load is selected.

NOTE

For a detailed description of the load opera-
tion, refer to the description of the Operators’
panel (see figure 4-9).

PROCESSOR MAINTENANCE CONTROLS
(Panel E)

Each processor is provided with an independent
maintenance control panel. These controls are
additions over and above the console controls
(HALT, LOAD, POWER ON/OFF —, etc.) and the
general systems controls (Panel C).

The IC memory registers of the processor are
not displayed by the display unit of the system;
however, certain switch controls located on the

processor control panel allow control and display
of these registers.

The control switches provided on the processor
control panel and their related functions are
described in this section. Refer to figure 4-6, which
shows a front view of Panel E.

Start Switch

The START switch is a pushbutton switch
which functions to start a halted processor and to
execute the next operator syllable pointed to by
PSR, PIR, and PBR. This switch is active only
when the clock of the processor is enabled and
when this switch is depressed it generates a
sequence complete level (SECL) to cause the
execution of the next operator syllable to be
initiated in the normal manner.

Conditional Halt Switch

This is a two-position toggle switch which
enables the conditional halt operation to stop the
data processor. The conditional halt operator
functions as a NO-OP when executed with the
CONDITIONAL HALT switch in position “down”
and functions to stop the data processor when in
position“up” (off).

Stop Switches

The following set of stop switches enables the
data processor to stop upon the occurrence of
specified conditions. The exact action of these
switches is modified by the position of the STOP
MODE switches.

SECL SWITCH

The SECL switch when in position “up” (off),
causes the processor to stop after the execution of
ecach’ operator syllable. It activates the INFL
(inhibit fetch level).

INT-I SWITCH

“When in position ‘“up”, the stop on internal
interrupt switch (INT-I) causes the data processor
to stop upon the occurrence of an internal
interrupt condition. The data processor stops
displaying both the P1 and P2 interrupt parameters
in the A and B registers just prior to entering the
interrupt procedure.

4-11

EXT-I SWITCH

The stop-on-external interrupt switch (ECT-I),
when in position “up” causes the data processor to
stop upon the occurrence of an external interrupt.
The data processor stops displaying the P1 and P2
interrupt parameters in the A and B registers, just
prior to entering the interrupt procedure.

NORMAL/CONTROL STATE SWITCHES

These are two-position toggle switches used to
enable the STOP switches to function when the
data processor is in control state or normal state or
both.

PARITY SWITCH
This switch enables the processor to stop on
a memory parity error.

Unit Clear Switch

The UNIT CLEAR switch is a pushbutton type
switch which when depressed, functions to clear
the flip flops of the related data processor.

Local/Remote Switch

This is a two-position toggle switch which when -
placed in the LOCAL position, places the data
processor in a local state. The processor unit
functions normally when in the LOCAL state
except for the following:

1. The scan bus is isolated from the system
functionally, so that manual intervention
within the processor will not interfere with
the rest of the system.

2. The facilities of the READ PROC REG
switches are enabled.

ADJ (0O, O) Switch

This is a pushbutton switch which activates the
push-down stack register operator to cause all TOS
registers to be stored in memory, thereby saving
the contents of the A and B registers so that these
registers may be used to subsequently manipulate
the data processor’s IC memory via the
maintenance panel switches (READ-IC and
WRITE-IC). The ADJ (O, O) switch is active only
when the processor’s clock is enabled.

Read IC Switch

This is a pushbutton switch which initiates a
read processor register operator to read the con-
tents of a processor IC memory register into the A
register (19:20). The address of the selected IC
memory register must be placed into the B register
prior to depressing this switch. The “READ IC”
switch is active only when the clock of the
processor is enabled.

READ IC OPERATION

To perform the read IC operation, do the
following:

1. Adjust O, O.
2. Load the address in the B register.
3. Set BROF.

4. Depress the READ IC pushbutton; the con-
tents of the addressed cell will appear in the A
register.

Write IC Switch

This switch is a pushbutton switch which
activates a set processor register operator to cause
the contents of a processor IC memory register to
be replaced by the contents of the A register.
(19:20). The address of the selected IC memory
register must be placed into the B register prior to
depressing this switch. The “WRITE IC” switch is
active only when the processor’s clock is enabled.

WRITE IC OPERATION

To perform the write IC operation, do the
following:

1. Adjust O, O.
2.
3.

Load the address in the B register.

Load the information to be written in the A
register.

. Set AROF and BROF.

. Depress the WRITE IC pushbutton; the con-
tents of the A register will be written in the
cell addressed.

Read Proc Reg Switches

These switches enable the read out and display
of the related processor register (IC memory

4-12

register). The contents of the register are displayed
only while the switch is depressed; releasing the
switch allows the processor to revert to its prior
state. The READ PROC REG switches activate a
DC read out of the IC memory cells and as a result
are enabled only when the processor is in LOCAL.
The READ PROC REG switches and their
functions are listed below:

1. Switch S is the read S register switch.

2. Switch F is the read F register switch.

3. Switch PBR is the read PBR register switch.
4. Switch PIR is the read PIR register switch.

5. Switch BOSR is the read BOS register switch.
6. Switch LOSR is the read LOS register switch.

NOTE

These IC memories are displayed in the SM
register.

8 3
BINARY / 4 2 DECODE FOR DESIRED
WEIGHT 2 5 2 . REGISTER
1 4 1 0
N
0 = DISPLAYREG 0 == 15
1 = DISPLAY REG 16 == 31
2 = INDEX REG 0 = 7
3 = BASE REG 0 == 7
MNome. Usage Addres Addres
DOO 0 => 00 =>
D31 Display 31 1F
PIR Program index 32 20
SIR Source index 33 21
DiR Destination index 34 22
TIR (BUF 3) Table index 35 23
LOSR Limit of stack 36 24
BOSR Base of stack 37 25
F MSCW address 38 26
BUF Used for temporary 39 27
storage
PBR Program base 48 30
SBR Source base 49 31
DBR Destination base 50 32
TBR (BUF 2) Table base 51 33
S Top-of-Stack address 52 34
SNR Stack number 53 35
PDR Program segment 54 36
descriptor index
TEMP Temporary storage 55 37

Figure 4-5. Address Register

000

PBR

000

PIR

©)
O

BOSR LOSR
===STOP MO DE==

CONDITIONAL
HALT

Q@ ©

PARITY INT-I

0 ©

CONTROL EXT-I

Input/Output Processor Registers and Flip Flops

The Input/Output Processor registers and flip
flops are displayed on Panel B as shown in figure
4-7, This panel is shared with the Processors for
display mode.

Row B

This row contains the logical elements for MDL.
Each flip flop may be used in one of two ways: 1/O
testing or data processor testing.

Row C

This row contains the 51-bit data register used in
I/O operations, along with the following control
flip flops:

STATE

@@

START NORMQL

0

SECL

UNIT LOCAL

©

CLEAR REMOTE

Figure 4-6. Panel E

FLIP FLOP

FECH
AROF
ESTF
TNFF
MAOF

LPF

CERF
ERR1
ERR2
LO1F, LO2F

MAOO=> MAQO9
BO1F => BOSF
AOIF=> A10f

CO1F=> COS8F

Row D

PSYF — Processor sync

PSRF — Processor scan request
SAOF — Scan access obtained
MATF — Mark access time

STEF — Scan transmission error

This row contains the 60-bit command register
used in I/O operations. Refer to figure 4-7.

USE ON I/O TEST

Off for I/O

Not used

Tape vertical parity
“Test not™ flip flop
Memory access obtained
Bad record memory
Control parity error
Solid error
Intermittent error
Sequence count
Memory address
Tape read control

Character buffer word
buffer

Card address register

4-13

USE ON MDL TEST

On for DP

A, C register occupancy
End-of-string flip flop
“Test not” flip flop
Memory access obtained
Memory info parity bit
Control parity error
Solid error
Intermittent error
Sequence count
Memory address

Data

Command-data

Card address register

Row E

This row contains the 10 sets of associative tag
register flip flops used for scratch-pad memory
assignment. Also within each set of flip flops is the
corresponding read scratch-pad memory (RSPM)
flip flop.

Row E also contains five MTRI flip flops, one
for each pair of Tag registers.

Row F

This row contains the following I/O Processor
control flip flops:

IC 1 => 8 Initiate count cycle for
operational sequence
flow.

Kyi1 = 5 Key register used as com-
paritor selection of
scratch-pad memory
slots.

LK1 = 5 Link register used on
initiate cycle for key
register selection.

Al = A8

Bl g B8 I tt lator digit bit

nput translator ,
c1 = 8 P it bt

D1 = D8

ESCF — Enable service cycle

EICF — Enable initiate cycle

RRDF — Read result descriptor

PCTF — Service priority control

RCDF - Read SPM to command
data register

MTOF — Memory time zero

AP2F - Address plus 2 store

LSAF — Least significant address

MINF - Minus level store

RDAF — Result descriptor access

Row G

This row contains the time-of-day register and
the interrupt status bit flip flops.

TIME OF DAY O == 43 — This register
contains 44 flip flops of which 36 are used for

414

time-of-day. The other eight are used when the
entire register is being used during maintenance
test routines (MTR) logic card test.

ISO =

Row H

9 — Interrupt status bits.

This row contains the following control flip
flops:

MAPL — Memory address parity error
level.

MIPL — Memory information parity
error.

SPEL — Scan parity error.

SIPL — Scan bus information parity.

CRF — Clear flip flop.

SIF2 — Scan in flip flop.

MANF — Memory access needed.
MROF — Memory read obtained.
MAOF — Memory access obtained.

ANXF — Allow next service cycle
control.

IOCB — Input/output complete bus.

STCB — Start channel bus.

ADP2 — Address even bus.

RDAB — Result descriptor available bus.

LSAL — Least significant address.

MINS — Minus bus level

SI06 = SI17

Input/Output Processor Maintenance Control Panel

Panel D (figure 4-8) is used for local main-
tenance operations with the I/O Processor. Four
types of operations can be accomplished using this
panel:

1. Reading and writing the I/O Processor

scratch-pad memory.
2. Reading and writing main memory.
3. Executing I/O descriptors.
4, Logic card testing.
The requirements for these operations are two-
fold: the I/O Processor Local/Remote switch must
be in position LOCAL and the I/O Processor

display mode must be active as well as system
clock.

MEMORY INTERFACE
__CONTROL/ __|

/O PROCESSOR

0000000 PO0000O000000
000000000000 00000000
000000QQO00000O000O00

MALL MAD MAY

OOOOOOOOOOOOOOOOOOOO

MAI2 MAOE MAOE MAOU MREGQ MRD

OOOOOOOO

QQQQOQQOO

PRIAFC LR RS

THEF FECH ERR (02F | MAY MAOS MADS MAOO | 804

OO0 OO0 O O

OO0O0O0O
OO0 OO0
OO00OO

) Ol00 00

CORE ADDRESS——TEST CASE

MDL DISPLAY

OCOO0OO0O0OO0O0O0O0O0OOOO0OO0O0OOO0

OOOOOQMOFQEdOQmOEQOD
ooo#ob@opoo@ooqopooo
00

ooomoogoLooL@odoDo

oogggooooooooooooooo
oooooooooooooooqo@oo
ooooooooooooooomoobo
ooooooooooooooogo@oo

l—-—-—ﬂDORESS—-——l ENGT ONTROL

COMMAND REGISTER:

ROW

TAG REGISTE

00Q000Q000Q000Q000QO0
RIARIRPRYRLRLPR R KR QR @

O@@@Q#@ﬂ@@@ﬂ@@@@@@
QRYARORQOOQQOQ QRO

oJelleYo]leXeYeJoNokolofeXoXel[eXeXoXe
0000|000 QO0OI0000000O0
QOPQRROQO0REYQO000

L I] €ICF MTOF
1c Y [L—

oY)
50
SO0 00 O[O 00 GO O0[00 0 O[O0 00
e
®
O

OOOOOOO

OQQOOOOOOOOOOOOOOOO

/1P 32/1L

O Q Q O O Qv O YIME OF DAY / CARD TEST REGISTER
’O QIS

QIR P22 R AL R R
QO QO oooobon
0 Q9o QQ

/v J°/l .\o/u JJ M)0 TG 24710 /0% y;;ou [09708 0g70H 0J70¢ oo;a

OO0 0O

ooooooooooooggggogog
000000000000 00000000
000000000000 Q0QQ0000
000000000000 QQO00000

Figure 4-7. Input/Output Processor Display Panel B
- 415

The following paragraphs deal with the opera-
tional use of these maintenance switches to accom-
plish the above four I/O Processor modes.

Write SPM

Single or Continuous writing into a scratch-pad
memory (SPM) location addressed by the tag word
is accomplished as follows:

1. Put I/O Processor in local mode.

2. Scan-in tag word into the tag register.

3. Scan-in the same tag word into the key
register.

4. Scan-in the desired contents into the
command and data registers (112 bits).

5. Put READ/WRITE switch on the I/O
Processor maintenance control panel to
the position WRITE.

6. Put MEMORY/SPM switch on the I/O
Processor maintenance control panel to
the position SPM.

7. Activate MAINT MEM/SPM ENABLE
switch on the I/O Processor maintenance
control panel.

8. If single-cycle operation is desired, press
START button for each SPM write cycle.

9. If continuous recycling is desired, activate
the RECYCLE switch and press START
button to commence recycling.

10. To stop recycling, set RECYCLE switch
to position OFF.

Read SPM

Single or Continuous reading of a SPM location
is accomplished as in WRITE SPM, above, except
for the following two steps.

Step 4 — Omit

Step 5 — Put the READ/WRITE switch to posi-
tion READ and proceed as in WRITE
SPM mode.

Write Main Memory

Single words can be written to main memory
from the Data Register in the following manner:

1. Put I/O Processor in local mode.

2. Scan-in memory address into command
register.

3. Scan-in any desired bit pattern into the data
register. (Pattern will clear out of the data
register after each write operation unless bit
66 in the command register is set.)

4. Put READ/WRITE switch on the I/O
Processor maintenance control panel to posi-
tion WRITE.

5.Put MEMORY/SPM switch on the I/O
Processor maintenance control panel to the

position MEM.
6. Activate MAINT. MEM/SPM ENABLE
switch.

7. Press START button for each memory write
cycle.

NOTE

Activating memory request inhibit switch will
disable all logic that might set MANF,
including local maintenance.

Read Main Memory

Main memory cells may be read either singly or
continuously from one address or consecutive
addresses in the following manner:

1. Put I/O Processor in local mode.

2. Scan-in memory address into command
register.

3. If recycling is desired, use “Write SPM”
maintenance logic to write contents of
command/data Register into SPM (highest
priority tag word with zero’s).

4. Put READ/WRITE switch on the I/O
Processor maintenance control panel to posi-
tion READ.

5. Put MAINT MEMORY/SPM switch on the
I/O Processor maintenance control panel to
position MEM.

6. Activate MAINT.
switch.

MEM/SPM ENABLE

7. If single-read cycle operation is desired, press
START button for each memory read cycle.

8. If continuous recycling is desired, activate the
RECYCLE switch and press START button
to commence recycling.

9. To manually stop recycling place RECYCLE
switch in position OFF.

10. If stop on error is desired during recycling,

11.

12.

activate the ERROR STOP switch. If a
memory parity error or time out occurs,
recycling will stop with the error flip flop set.
Pressing the START button will clear the
error and restart the cycling.

Note that activating MEM INHIBIT
REQUEST switch will disable all logic that
might set MANF including local maintenance.

Activating the INHIBIT Mem ADRS COUNT
switch, if so desired, will cause retention of
the original memory address with each cycle.
Otherwise, the memory address will be up-
dated with each memory cycle.

Executing /O Descriptors

SINGLE CYCLE

A single execution of an I/O descriptor found in

the

1.
2.

command/data register is defined below:

Put 1/O Processor in local mode.

Scan-in area and I/O descriptors into
command/data registers. The specified unit
designate field selects the channel on which
the descriptor is to be executed.

. Utilize single “Write SPM” procedure for any
SPM location using a code of 00001 in key
and tag Registers.

NOTE

There must be at least one other tag word
available at the beginning of the test.

4. Place MAINT MEM/SPM ENABLE switch in

position OFF.

5. Place MAINT DESCRIPTOR ENABLE switch

in position ENABLE.
6. Press START button once to execute a single
maintenance descriptor once for each

depression of the START button.

RECYCLE

Continuous executions of I/O descriptor found
in the command data register are accomplished as

foll

1.

OwWS:

Steps 1 through 5 are the same as the
maintenance descriptor (single) procedure.

6. Activate RECYCLE switch.

4-17

7. Press START button to commence recycling °
of the same maintenance descriptor. A new :
cycle will be intitiated upon completion of !
the previous I/O operations defined by the -
maintenance descriptor.

.To manually stop the recycling,
RECYCLE switch to position OFF.

. If stop on error is desired during recycling, -
activate the ERROR STOP switch. Upon :
detection of a result descriptor error from the -
peripheral control or an error in initiating the °
channel, recycling will stop with the error flip -
flop set. Pressing the START button will clear
the error and restart the cycling.

set ;

ENABLE CARD TEST

©

OF
REQUEST

-
O
5
s

MEM |NHIBI

NORMAL NORMAL

MAINT DESCRIPTOR
ENABLE

__I

RECYCLE ERROR STOP

Q

START OFF OFF
MAINT MEM/SPM smmment
MEM WRITE

Q@

ENABLE

OFF

SPM

READ

UNIT

O

CLEAR

LOCAL

@)

REMOTE

Figure 4-8. Panel D Input/Output Processor
Maintenance Control Panel

Logic Card Testing

Logic card testing is accomplished by using a :
MDL test case tape, the time-of-day (TOD) register -
and a special single card slot located on the I/O .
Processor backplane. The testing procedure is :
activated by putting the CARD TEST ENABLE
switch to position “up”’, loading the TOD with the
appropriate test code and activating the CARD .
TEST START switch. The output of the card :
under test will be displayed in the 44 flip flops that
represent the TOD register.

OPERATORS CONTROL CONSOLE

The operators control console (figure 4-9) con-
tains an operators panel and a visual message
control center for communicating with the
operating system. A total of eight devices, such as
Input Display or TC 500, may be used for this
communication.

Operator Panel
includes the following

The operator panel
switches and indicators.

POWER ON (Switch/indicator, white)

This switch/indicator initiates the power-on
cycle for all central system units. The indicator is
lit and remains lit as long as power remains on.

NOTES

1. The power of the peripheral units must be
turned on and off at each peripheral unit.

2. When power is turned on, CARD LOAD is
selected.

POWER OFF (Switch, brown)

This switch initiates the power off cycle for all
central system units.

HALT (Switch/indicator, red)

Halts the system stopping all I/O operations in
an orderly manner. The indicator is lit when all
processors have been halted.

RUNNING (Indicator, yellow)

This indicator is lit when the system is running.
The Run state is established by two-second run
timers, in each processor. Each processor timer is
triggered when that processor executes an
interrogate peripheral unit status operator. The run
indicator is lit when the timer in any processor
which is in remote is ON. If all processors are in
local mode, the run indicator will also be lit.

LOAD SELECT (Switch/Indicator, yellow)

This switch selects between DISK LOAD and
CARD LOAD. Each time the switch is depressed,
the selection is changed. The indicator is lit when
CARD LOAD is selected.

4-18

LOAD (Switch, brown)

The LOAD button is used to perform a load
operation of the system. Two types of load can be
performed as follows:

CARD LOAD OPERATION. The card load opera-
tion is used for initiating the system via the card
reader. This type of initiation is used for reading a
cold start deck or test routine decks. The follow-
ing actions occur when the button is depressed and
then released:

1. The load timer in the processor-interrupt
controller is triggered to produce an
800-nanosecond (LSIG) signal which is sent
to I/O Processor — A.

. Address registers LOSR, BOSR, F, STKNR,
and Display O are set to zero.

. Register S is set to 8192.

. PDR (program dictionary index) is set to a
value of 4.

. PIR (program index register) is set to a value
of 1.

. The processor is forced into an idle state to
await an expected I/O finished interrupt.

. The I/O Processor responds to the load signal
by jamming the appropriate unit number into
the command/data register. The I/O Processor
sequence control logic is set to IC 02, and the
card read cycle is started.

. The information (a bootstrap program) on the
EBCDIC punched card is read into the first
twelve memory locations. This information
contains tag fields. (Seven characters per
word.)

. At the end of the successful card read, the I/O
Processor sends an I/O finish interrupt to the
processor. It responds by entering a hardware
interrupt handling procedure. Memory cell
DO + 3 contains the PCW of the bootstrap
program subsequently used to handle the
interrupt and then causes the remaining card
deck to be loaded.

DISK LOAD OPERATION. The disk load opera-
tion is used for initiating the system by reading
8192 words from the first segments of disk
memory. This type of an operation is used to bring
the first portion of the operating system into core
memory.

The same hardware functions take place as for

card read except for the following:

1. A disk unit

number is placed in the

command/data register because the LOAD
select switch selected a DISK LOAD.

2. The 1/O finish interrupt reflects a disk opera-
tion instead of a card operation.

3. 8192 words are read instead of 12.

VISUAL MESSAGE CONTROL CENTER (Refer

to Figure 4-10)

The visual message control center consists of one
or more input display modules, each of which
contains an input keyboard and a video output

screen.

Figure 4-9. Operators Control Console

Figure 4-10. Visual Message Control Center

Keyboard Control Keys

The following is a list of the keyboard control
keys and their function. (Refer to figure 4-11.)

Key

LOC

Function

Places the system in the
local mode, which lights the
LOCAL indicator.

REC

XMIT

X ETX

4-19

N HOME

LINE ERASE

N CLEAR

ERASE LOCK

TAB

Places the system in the
receive mode, which lights:
the RECEIVE indicator.

Places the system in the -
transmit mode, which lights |
the TRANSMIT indicator. .

End-of-text character. .
Places the end-of-text:
character at the cursor:
location.

Causes the cursor to be:
moved to the home (upper
left) position.

1. LINE ERASE cecrases all
data in the line except
tab flags. Data is erased :
from the cursor position :

(including the cursor:
position) up to and:
including the last’

character in the line.

2. Line Erase will not func-:
tion unless Erase Lock is:
depressed simultaneously :
with Line Erase.

1. Unshifted — CLEAR.
erases all data on the:
screen except tab flags;’
and, with Forms Option,
data bracketed by
Shift-In/Shift-Out.

2. Shifted — CLEAR erases:
all data on the screen and :
all tab flags.

3. CLEAR will not function:
unless ERASE LOCK is

depressed at the same
time as CLEAR.

ERASE LOCK is used as an:
interlock for CLEAR and:
LINE ERASE. ERASE.
LOCK must be depressed to:
permit operation of the:
CLEAR or LINE ERASE..

1. Unshifted — TAB causes:
the cursor to move for-:
ward to the next tab stop;
location. If no tab stop is!

TAB CLEAR

J (Line Feed)

4 (Reverse Line

Feed)

< (Backspace)

-> (Forward Space)

found on a line, the
cursor moves to the left
edge of the next line.

. Shifted — Shifted tab is
tab set. Tab set causes a
tab stop flag to be
entered at the cursor
position in all lines.

Unshifted — TAB CLEAR
causes the removal of the
tab stop flag located at the
cursor position in all lines.

Line Feed (LF) moves the
cursor down one line. When
the cursor is in the bottom
line, Line Feed causes it to
reappear in the top line.

Reverse Line Feed (RLF)
moves the cursor up one
line. When the cursor is in
the top line, RLF causes it
to reappear in the bottom
line.

Backspace (BS) cursor one
character. When the cursor
is at left edge of page, back-
space causes it to reappear
at right edge of page in the
same line.

Forward Space (FS) moves
the cursor one space to the
right. If the cursor is at
right edge of page, Forward
Space causes it to reappear

at the left edge down
shifted one line. If the
cursor is located in last

position of bottom line,
Forward Space causes it to
reappear in the ‘“home”
position.
REPT If the Repeat key (REPT) is
depressed along with any
other key except LOC,
REC, XMIT, TAB CLEAR,
or CLEAR, that other key
will be repeated at a rate of
about 15 Hertz. When
depressed in conjunction
with LOC, REC, XMIT,
TAB CLEAR or CLEAR
Repeat has no effect.

MEMORY TESTER

The B 6700 includes a Memory Tester for
diagnosing and testing any of the memory modules
attached to the system.

The Memory Tester is located in a small cabinet,
with its display panel as shown in figure 4-12. The
NON-TEST/TEST switch places the Memory
Tester in one of two modes: test or non-test, which
is in the following discussion. (See figure 4-13.)

Non-Test

There are three types of operations used in the
non-test mode:

1. Single-cycle read or read/write.

. _ HOME[CLEAR
xmiT | ETX > # $ % & < () |ERASE] = |BACK A
P4 {2] 3 5 1 6 17 18 | 9| 8] - [space NG
ERROR| cor | e « | cr LINE [ERASE
RESET Ql|lw| e R T vy | u | ol » v ERASE|LOCK
Als | o | Floeo|w]|s]lxk]|L|; |® TAB lcLear

REC SHIFT + 131 <> P [sHiFT l T

y4 X C v) N M , . /

SPACE BAR -— | —

Figure 4-11. Keyboard Format

4-20

Figure 4-12. Memory Tester

2. Search memory(s) for specific data; search for
equal or unequal.

3. Sample a given address for changes.

The following operations are performed when the
corresponding test pattern switches
“up” (on). None of the patterns selected checks
for parity errors when the WRITE ONLY/NORM/
READ ONLY switch is in position READ ONLY.
More than one test pattern can be selected, and the

are in position

pattern will run in the order given below:

1.

10.

[MEM NOT READY TEST COMPL PARITY ERR COMPARE MEM ERROK

Test-pattern MANUAL INSERT selected -
enables a fixed test pattern.

. Test-pattern ALL—1 selected runs
all-““one” test.

. Test-pattern ALL—0 selected runs an

all-““zero” test.

. Test-pattern CHECKERBOARD selected runs .

a checkerboard pattern, writing two 0’s, then
two 1’s.

. Test-pattern CHK’BD COMPL selected runs .

the checkerboard complement pattern test.

. Test-pattern BIT COMPLEMENT selected

runs the bit complement pattern test.

. Test-pattern COMPL — BIT COMPL sclected -

runs the complement bit complement pattern
test.

. Test-pattern WALKING—1 selected runs the .

full walking “‘one” pattern test.

. Test-pattern WALKING—O0 selected runs the .

full walking ““zero” pattern test.

Test-pattern MEM CLEAR selected runs the
memory clear pattern master reset test.

WORD WAS PROTECT Q HALT

an

O Q..
g@@@@@@m@@QQQ 00000
5666666/666666(66666
290009[9009690 | 9GO0
0000000000000 | 00000
P o e G
0000900000000 | ¢@®9 9
$6600600/668600 | ¢6l69 ¢
2000000000000 | ef0yee
6600006600000 ¢'e¢¢@
lgsﬂ“'%'u:c txg::""" u.©:2n ﬁ:;'?c;ﬂ éjs K(Z’:IIW WECYW@@ SVMV©§V QP
o o =
ol ©| 9o TET N
8| o| 660
©' 006! 00' O G-
8.,
O @uuen © @ueet O @owoimn
© @wmma‘ovr @ @cm—ancoun @ @Au,o
© @uoein © @uawn O G
© @«Aum-o @ @cww CoMPL © @uwn. INSERT

Figure 4-13. Memory Tester Panel

4-21

GENERAL

The B 6700 system consists of a maximum of
three Processors, a maximum of three I/O Pro-
cessors, Main Memory, a Memory Tester, one or
more Power modules, an Operators Console, one
or two Maintenance Diagnostic Processors (MDL),
one or two Display Pancls, one to six Peripheral
Control cabinets and the associated Peripheral
equipment for Input/Output. This section
generally defines the overall system hardware
operation.

PROCESSOR

The Processor produces the objective results of a
program by performing the necessary arithmetic
and logical functions of the program flow.

The Processor contains two major divisions: the
Functional Resources and Operator Algorithms
(figure 5-1). The Functional Resources are referred
to as the “hardcore” of the Processor.

Operator Families

The Functional Resources are the Arithmetic
Unit, Data Registers, Address Processor Unit and
Seven Functional Controllers. The operator
algorithms provide the logic required to control the
functional flow of the program. The ten groups of
these operators are called the Operator Family
Controllers.

The Operator Family Controllers and Functional
Controllers are linked by 13 busses (ZO through
Z.12). These busses provide for data movement and
signal routing within the processor (figure 5-2).

SECTION 5
SYSTEM CONCEPT

A bus is a group of wires used to transmit signals -
from one place to another. The busses within the
transfer controller are etched on a single card |
connecting the same bit of all “hard registers” -
together, i.e., Bit 1 of Registers A, B, C, X and Y .
are all on the same physical card.

The operators are grouped into 10 groups called
the Operator Families (figure 5-1). The grouping of -
related operators into families minimizes the logic
required in the processor, The 10 families of
operators with a brief purpose for each are:

1. Family A OPS — Arithmetic Operators

2. Family B OPS — Logical Operators

3. Family C OPS — Subroutine Operators

4. Family D OPS — B 6700 Word Oriented
Operators

5. Family E OPS — Scaling Operators

6. Families F,G,H, OPS — String Operators

7. Family J OPS — Value Call

8. Family K OPS — Name Call

PROGRAM CONTROLLER (Refer to Figure 5-2)

This controller controls the program flow in the -
following manner. First, it controls the transfer of .
a program word to the P register via the Memory
Controller and Z3 bus in the Transfer Controller.
This word contains six 8-bit instruction syllables. -
The Program Controller also selects and decodes
the syllable to be executed, and furnishes this OP .
code to all the Family Controllers through the Z10
bus. The Program controller strobes the proper OP
family, allowing that OP family to proceed through
its logical steps of performing the function of that

FUNCTIONAL RESOURCES OPERATOR ALGORITHMS ————]
ADDRESS MEMORY OP. FAMILY OP FAMILY
ARITHMETIC PROC UNIT CONTROLLER CONTROLLER - A CONTROLLER - F
UNIT (960 BIT 1.C.
(48 BIT ADDER) MEMORY & 20 PROGRAM OP. FAMILY OP, FAMILY
BIT ADDER) SEQUENCE CONTROLLER - 8 CONTROLLER -G
CONTROLLER OP. FAMILY OP. FAMILY
DATA REGISTERS STACK CONTROLLER - C CONTROLLER - H
(A, B,C, X, YANDP ADJUST OP. FAMILY OP. FAMILY
51 BITS EACH) CONTROLLER CONTROLLER - D CONTROLLER - J
INTERRUPT OP. FAMILY OP. FAMILY
CONTROLLER CONTROLLER - E CONTROLLER - K
STRING
ARITHMETIC OPERATOR TRAN§FER
CONTROLLER CONTROLLER CONTROLLER

Figure 5-1. B 6700 Processor Organization

5-1

operator. At the completion of the operator, an
SECL (syllable execute complete level) is sensed by
the Program Controller which then decodes the
next syllable of the P register.

TRANSFER CONTROLLER (Refer to figure 5-2)

The Transfer Controller has two major sections:
a hard register section, referred to as stack
registers, for data and program information, and an
internal data transfer section. Six busses, Z1
through Z6, are used for the normal data
movement to and from the hard registers. Z1, Z2
and Z3 are input busses to these registers and Z4,
Z5 and Z6 are output busses. The capacity of each
busis 51 bits.

Two special busses are used for arithmetic
operations. Z7 is used for transferring data from
the A, B or Y registers to the AA register of the
high speed adder. Z0 is used for transferring data

STACK REGISTERS. Each information register
has 51 bit positions. Registers A, B, C, X and Y are
for information handling during program flow.
Register P contains one B 6700 program word. The
P register contents are never written into Main
Memory.

The Z3 and Z4 busses provide for bi-directional
data flow between the hard registers and Main
Memory or the 1/O Processor.

The A and B registers are the Top of Stack
registers, and X and Y are normally second-word
information registers for double-precision
operands. Register C is a general purpose register
which provides temporary storage during syllable
execution.

INTERNAL DATA TRANSFER SECTION (Refer
to figure 5-3). The internal transfer section permits

from the CC register of the high speed adder to the the following data transfers between stack
B, C or Y registers as shown in figure 5-5. registers:
ARITHMETIC PROGRAM CONTROLLER oSPTE'::T%R
CONTROLLER (SYLLABLE DECODE) CONTROLLER
U 210 BUS
1) | | | T | T 1
FAMILY A FAMILY 8 FAMILY C FAMILY D FAMILY E FAMILY J FAMILY K FAMILY F, G, H
ARITHMETIC LOGICAL SUBROUTINE WORD ORIENTED SCALING VALUE CALL NAME CALL STRING
OPS OPS oPs OP$ OoPS op cp OPS
|] | 1 | | L] | |
OPERATOR DEPENDENT INTERRUPTS U 211 8US
\~\ // STACK
U ADJUST
CONTROLLER
EXTERNAL INTERRUPT ALARM FROM CONTROLLERS
AND FAMILY OPS
INTERRUPTS ==—=) CONTROLLER (-: INTERRUPTS \f
™ / Z12 BUS
MEMORY CONTROLLER (MEMORY CYCLE)
N
TRANSFER CONTROLLER MEM
| D DISPLAY -
l:;,m;‘::{ R REG INER= |10 MEmMORY
S 0=031 Tzs U 11’29 >
INPUT [« OUTPUY e li/r\?T ;EE)C m
REG BUS A REG BUS N MEM ADDRESS CZAF FACE
e :
m 23 ¢ I—;- E(0 =7 ADDER
¥ — T MEM |[TO MEMORY
' ADDRESS
A MEM OR 1/O PROC
é 0=>7 *

MEMORY INFO
-—

Figure 5-2. B 6700 Processor Block Diagram

5-2

1. A direct, full-word transfer path using the Z5
and Z2 busses.

2. A logical transfer path to create the results of
the Family B (logical) operators, using the Z4
and Z3 busses. The logical transfer path also
provides one additional full word transfer

path between registers.

. A steering Network and Mask network
providing a field displacement between stack
registers using the Z6 and Z1 busses.

. An Insert Matrix providing character-handling
operators with the ability to store into any of
the 4, 6 or 8-bit fields using the Z5 and Z1
busses.

. A transfer path to the address adder of
Memory/MPX Controller via the Z6 to Z8 or
Z9 busses. This path extracts one of four
fields, (39:20), (35:16), (19:20) or (13:14),
from a stack register during execution of
operator syllables.

. A data movement path to and from the high
speed adder via the Z0 and Z7 busses.

MASK AND STEERING. The mask and steering
network moves bit fields from register to register,
via the Z6 and Z1 busses. All bits are transferred to
and from the busses in parallel. Two pointers set
up a “window” defining the upper and lower limit
of the bits being transferred to the accepting data
register. A displacement register shifts the bits to
the right, 0 to 47 bits from the position previously
held in the sending data register. The three controls
used to steer and mask are as follows:

1. TOA (TOP OF APERTURE) — the highest bit
position of the accepting field (highest bit of
the window).

2. TOM (TOP OF MASK) — the highest bit
position to be inhibited on the transfer
(lowest bit of the window).

3. DIS (DISPLACEMENT) — a right shift of the
bits through the steering matrix.

Registers TOA, TOM, and DIS are set by the
operator families or other controllers.

MASK AND STEERING EXAMPLE. Assume the
C register contains a stuffed indirect reference
word (SIRW) and it is necessary to extract the
STKNR (stack number) field (bits 45:10) and
place these bits into the index field of the C
register. The logic sets the window TOA := 29,

5-3

. TOM :=19, as shown in figure 5-4. The displace-

ment register is set to 16: DIS :=16. The actual
starting bit of the field is calculated as: TOA + DIS
=29+ 16=45.

All Bits in the C register are gated to the Z6 bus.
The bits (except tag) are then shifted 16 places to
the right with only the bits that align with the
window appearing on the Z1 bus. The Z1 bus is
then gated to the C register, with the masked fields
destroyed or retained, depending on the operation
performed.

ARITHMETIC CONTROLLER (Refer to figure
5-2)

- The Arithmetic Controller is a Functional Con-
troller between the Stack Registers (A, B, C, X and
Y) and the Mantissa Adder. This Controller is
enabled by the Arithmetic Family Operators and -
other operator families that require the use of
these facilities.

HIGH-SPEED ADDER. Figure 5-5 depicts the
logical flow of data to and from the high-speed
adder. The adder is made up of three 48-bit
registers: AA, BB, and CC and the associated add -
logic. The add logic receives its input from the AA
and BB registers. The add logic output is fed into
the CC register, which feeds either the BB register
or the hard registers via the Z0 bus.

INTERRUPT CONTROLLER (Refer to figure 5-2)

The Interrupt Controller provides a method of
intervening in the program flow when a
predetermined condition arises.

This controller sets up the necessary control
words in the stack for entry into the Interrupt-
handling procedure. Two identifying words are
placed in the stack by the operator or the Interrupt
controller. Internal interrupts are divided into two
groups, operator-dependent and operator-
independent interrupts.

The operator-dependent interrupts are divided
into two classes. Bit 24 of the interrupt ID
identifies the interrupt as class 1, where the values -
of PIR, PSR, PBR and PDR were not modified by
the operator. Bit 23 identifies class 2 interrupts,

where the values were changed by the operator .

before the interrupt.

4 BIT (PACKED NUMERIC)
6 BIT (BCL)

INSERT
8 BIT (EBCDIC)
—
INSERT
MATRIX
Ja MASK STEERING
zl N NETWORK NETWORK
DIRECT TRANSFER
2 NETWORK
LOGICAL TRANSFER .
23 NETWORK 24
\ N] | /!
| c i
NN ; A/
NN Y s
1 B I
NN N | < 1 /!
\ \ \ i v W /
| -
|

£6
T0

25
Z6

O NN N

(

Z8
OR
Z9

ICONTROL

HIGH
SPEED
ADDER

Figure 5-3. Internal Data Transfer Section

5-4

ADDRESS
ADDER

MEMORY
INTERFACE

Q>

C REG

45

NN N

TOM =19

MASK

WINDOW

P

!

Z1 BUS

Q>

29

N

0

C REG

STKNR

Figure 5-4. Mask and Steering

STACK REGISTERS

OPERATOR-DEPENDENT INTERRUPTS. These
interrupt conditions are sensed by the operator and .
normally result in a premature termination of the
operator under control of the logic of the operator.
The operator inserts both P1 and P2 parameters :
into the TOS and activates the interrupt controller. °
PIR and PSR are reset to the beginning of the
current operator before the interrupt; thus the
operator is restarted upon return to the interrupted
procedure.

The operator-dependent interrupts are:

. Memory Protect

. Invalid Operand

. Divide by Zero

. Exponent Overflow

. Exponent Underflow
. Invalid Index

. Integer Overflow

. Bottom of Stack

. Presence Bit

O 00 1 O Ui AW N

f—
o

. Sequence Error
11. Segmented Array
12. Programed Operator

Memory Protect.

This interrupt occurs under the following °

conditions:

1. A store, overwrite, read/lock or string transfer -
is attempted using a Data Descriptor that has -
the read only bit on (bit 43). The operation is -

20

PMECO®AZON0 N=amITIa—mp

ADD
LOGIC

BUS

Figure 5-5. Arithmetic Control

5-5

terminated prior to the memory access,
leaving the descriptor in the A register.

. A store is attempted into a word in memory

that has a tag field representing program code,
RCW, MSCW, or Segment Descriptor. The
memory write is aborted when bit 48 is
detected in the ‘‘flashback” word that is
placed into the C register. The operation is
terminated leaving the original addressing
word in the A register.

[I

Memory Protect Interrupt ID

0 BIT

[x]

Invalid Operand

This interrupt occurs when operators attempt to
use the wrong types of control words or data.
When control words and data are accessed, they are
checked to ensure that they meet the necessary
requirements of the operator being executed. When
the interrupt occurs, the operator is terminated
prematurely.

24 1 BIT
[|]

Invalid Operand Interrupt ID

Divide by Zero

This interrupt results when a division operator is
attempted with the divisor equal to zero. This
interrupt terminates the operation prematurely,
leaves the A register cleared, the interrupt ID in the
B register, and PSR and PIR backed up to point to

the initiating operator.
24 2

<]

Divide by Zero Interrupt 1D

Exponent Overflow and Underflow

These interrupts occur when the capacity of the
exponent field is exceeded for either single- or
double-precision arithmetic results. The interrupt
ID is dependent on the exponent sign, and both
interrupts clear the A register.

|)::l]BlT

Exponent Overflow Interrupt ID

24
[

-

5-6

BIT

] LT

Exponent Underflow Interrupt ID

Invalid Index

This interrupt is caused by an attempt to index
by less than zero or not less than the upper bound
(length) in the operations:

Family
1. Occurs Index (A)
2. Link List Lookup (B)
3. Index ©
4. Move Stack)
5. Display Update ©)
6. Dynamic Branch ©)
7. Stuffed IRW (pseudo) ©
8. Index and Load Name ©
9. Index and Load Value (&)

If an index outside the prescribed bound is
attempted, the operator is terminated. When the
PSR is being decremented, the PIR is decremented
only during the first two operators.

24 23 5
[x]

I [o]o

Invalid Index Interrupt ID

BIT
O =0N
OR OFF

NOTE
If bit 23 is on, bit 24 is off.
Integer Overflow

This interrupt occurs when an attempt is made
to integerize operands which have a greater than
maximum integer. In general, the checking is
performed before the operand is converted into an
integer by reducing the exponent field. The
following are some of the operators that may
invoke this interrupt.

1. Integer Divide (both
precision)

single and double

2. Integerize Truncated
3. Integerize Rounded
4. Occurs Index

5. Integerize Rounded, Double Precision

If the interrupt is invoked, the operator is
terminated.

[L]]

Integer Overflow Interrupt 1D

BIT

]

Bottom of Stack

This interrupt is used to inform the Operating
System that a Return or Exit Operator has caused
the program stack to be returned to its base. If this
condition arises, the operator will terminate with
the last accessed RCW (Return Control Word) left
in the A register.

BIT

£ CY

Bottom of Stack Interrupt ID

Presence Bit

This interrupt is used to inform the system that
an attempt has been made to access a quantity not
present in main memory. All operators that access
memory with descriptors have the ability to set
this interrupt. Special consideration is given to this
type of an interrupt for data or procedure-
dependent descriptors.

46 24 23 8 BIT
0=oN
L lof [ofe] [x] on OFF

Presence Bit Interrupt 1D
Special Consideration-Presence Bit Interrupts

There are two classes of presence bit interrupt
conditions:

1. Data-Dependent
2. Procedure-Dependent

Each class requires that the PIR and PSR value
for the RCW be manipulated differently.

Data-Dependent Presence Bit. The Data-
Dependent Presence Bit Interrupts are incurred
while the processor is seeking data from within its
current procedural environment. Recovery is
achieved by re-executing the operator upon return
from the “P-bit” interrupt-handling procedure.

The P-bit procedure makes the non-present
reference present prior to returning to the
interrupted program. The PIR and PSR setting for
the current operator are saved in the RCW for
data-dependent presence-bit interrupts.

Procedure-Dependent Presence Bit. The
Procedure-Dependent Presence Bit Interrupts are -
incurred when the processor attempts to enter a -
new procedural environment or to return to an old
procedure. These interrupts occur during display
update and when the processor is trying to access a
non-present segment descriptor. Recovery is
achieved by the exit operator mechanism after the
P-bit procedure has made the referenced area
present. The processor has not yet fetched the first °

~operator of the new procedure when this presence -

5-7

bit interrupt occurs; therefore, the PIR and PSR
settings from the PCW or RCW, depending on
whether an entry or exit was being performed, are
saved when fabricating the RCW upon entry into
the P-bit interrupt procedure.

Program Restart.
operators after a presence bit interrupt, it is -
necessary for the P-bit procedure to return either
an IRW or Data Descriptor. The “RT-bit” in the
presence bit ID (P1)
procedure whether to perform an exit or return
operator when returning to the interrupt program.
The “RT-bit” is manipulated by the hardware prior
to honoring the presence bit interrupt. Figure 5-6
(Presence Bit Interrupt Table) illustrates the (PSR
and PIR), exit/return and “RT-bit” relationship to
the various presence bit interrupt conditions.

Segmented Array

This interrupt is used by the string operators as
an upper limit boundary detection. Arrays in main
memory may be segmented into groups of 256
words each, bounded on both ends by memory
link words. Each word read from memory during
string operator executions is checked for the
presence of bit 48 (memory protect). If the bit is ~
on, the segmented-array interrupt is sct. String
operator interrupts leave a special parameter in the
A register. This parameter indicates how many
words in the stack, below the parameter, will be
needed to restart the operation after the new .
segment of data has been brought to main

memory.,

1 0 BIT
ON

| [o]oTo]°arl

A—Register Parameter

In order to restart some

indicates to the P-bit

T T

Segmented Array Interrupt 1D

Programed Operator

This interrupt is used for the detection of invalid
operator codes. Primary codes BC, E7, EF, F6, and
F7 are detected and cause this interrupt. Each
family controller detects these codes. Any invalid
code not detectable will result in a loop timer
interrupt. The programed operator interrupts are
used as communicate operators to the system.

1 10 0 BIT
I [o[elofofo]o]efo]o]o]o]

Programed Operator Interrupt ID

OPERATOR INDEPENDENT INTERRUPTS.
These interrupts are induced by conditions outside
the operator or processor logic. They are divided
into two groups, External Interrupts and Alarm
Interrupts.

EXTERNAL INTERRUPTS. These interrupt
conditions are anticipated and inform the system
of some change in the external environment. They

Presence Bit RT(?)I t Returning | PIR, PSR Software
Interrupt Condition (bit 46) Operator | New RCW Function
Stack Vector Int.
Stack Vector D.D. L.D. Make stack
during data or stack
reference (1) IRW vector
(stuffed) 0 Exit Sn (4D present.
Data (2) IRW Int. 1 Return Sn 4
Dependent
Data Descriptor (1) D.D. Int. 0 Exit Sn (4) Search stack
during data (copy) IL.D. for copies of
reference not present
(2) D.D. Int. 1 Return Sn (4) D.D., make
(copy) L.D. Mom and
copies pre-
Stack Vector -— D.D. Int. 0 Exit From sent, return
Stack Vector D.D. (copy) I.D. RCW/PCW | D.D. where
during display noted.
Procedure update
Dependent Segment
Descriptor - S.D. Int. 0 Exit From Locate S.D.
(copy) 1.D. RCW/PCW | (Mom) via
copy in P,
AD Field of
Copy points
to Mom.
(1) Value Call or Enter
(2) All operators except Value Call, Enter, or Move Stack

(3)
C)
()

RT bit is packed in the Int. I.D. (Py)

Move Stack operators

S, indicates the PIR and PSR point to current operator syllable

Figure 5-6. Presence Bit Interrupt

5-8

normally result in a momentary interruption of a
program process which will be continued after
handling or recording of the interrupt condition.
The external interrupts are recognized by the
hardware operators. The program sequence con-
troller senses the interrupt condition, inhibits
activation of the next operator, and initiates an
interrupt pseudo-operator in its place. PIR and
PSR fields of the RCW address the next operator
syllable so that the program will be restarted with

the execution of the next syllable wupon
continuation. The external interrupts are as
follows:

1. Processor to Processor interrupt

2. Special Control interrupts
a. Interval timer
b. Stack overflow

3. I/O Processor interrupts
a. I/O finish
b. Data Communications
¢. General Control Adapter
d. Change of Peripheral Status

Processor to Processor

This interrupt is used to interrupt another
Processor on the system. When a Processor
executes a HEYU operator, an external interrupt is
sent to all other system processors. When the
interrupt is recognized by a Processor, its interrupt
controller clears the A register and sets the B
register equal to the ID. The normal Interrupt
Procedure entry is then executed.

21
x|

Processor to Processor Interrupt 1D

BIT

This interrupt also is used to initiate an Idle
Processor on the system. It could also cause
another Processor to suspend its operation on a
program whose stack is about to be overlayed.

Interval Timer

This interrupt is used for programmatic time
slicing. The interval timer is activated by the SINT
(Set Interval Timer) operator. The timer is set to
the value of bits 10:11 of the B register and
decrements every 512 microseconds until equal to
zero. At this time, if the timer is still armed, the
interrupt is set, leaving the ID in the B register and
A register cleared. The maximum interval is one
second. The timer is disarmed whenever the
Processor handles an External interrupt.

5-9

0 BIT

[x]

]

Interval Timer Interrupt ID

L

Stack Overflow

This interrupt is used to inform the operating :
system that the Stack Controller has sensed the use ’
of the highest address allotted for the stack of this °
program (LOSR, limit-of-stack register). The .
program is halted to allow the Operating System °
the option of allocating a larger stack area or .
aborting the program. The interrupt controller
leaves the A register cleared, the interrupt ID in the :
B register, and PIR backed up if PROF is “on.” :

1 BIT

<[]

2
l [x |

Stack Overflow Interrupt ID

Input/Output Processor Interrupts

The Input/Output Processor interrupts may be .
handled by any system processor. A priority is:
established between I/O Processors and Processors :
to determine which Processor responds when an
interrupt is present. This is necessary when :
multiple Processors and I/O Processors are present :
because they all share a common scan bus. :

Since the scan bus allows for only two I/O°
Processor external interrupt paths (EIMA and:
EIMB), provisions have been made to allow I/O
Processor C to use the interrupt path of I/O
Processor B (EIMB). When I/O Processor C com- :
pletes an I/O operation, an I/O finished interrupt is :
sent, via a separate coaxial cable, to the external :
interrupt card in I/O Processor B. I/O Processor :
B sends this interrupt to the appropriate processor .
by means of the I/O Processor B interrupt path, on
the scan bus (EIMB). The processor that accepts:
the interrupt scans-in a read interrupt literal from :
I/O Processor B. The interrupt literal from I/O°
Processor B denotes to the designated processor -
that the external interrupt originated in I/O.
Processor C.

Scan-Bus Control

Scan-bus control is established by a closed loop*:
circuit in which a control bit is passed from one:
Processor to another on every third clock pulse. :

A Processor may initiate a scan-bus operation
when it has the control bit ““on” and IIHF (inhibit
external interrupt flip flop) is “off.”

Priority Handling

The priority is established with left-to-right
priority (LTRP) for I/O Processor A and right-to-
left priority (RTLP) for I/O Processor B, which
allows the appropriate I/O Processor to place its
interrupt in the appropriate processor. Figure 5-7 is
a hypothetical system configuration used for
explanatory purposes.

LTRP is true for processor #1 and RTLP is true
for processor #3. The priorities are passed to
another processor when IIHF is set. If IIHF is set
in processor #!, LTRP is passed to processor #2;
and if IIHF is set in processor #2, LTRP is passed
to processor #3. The same principle applies for
RTLP, with the exception that it is true for
processor #3 and is passed to processor #2. The
priorities in a processor are reestablished when
IIHF is reset in any processor. Only the processor
that has LTRP true and IIHF false can accept
interrupts from I/O Processor A, and only the
processor that has RTLP true and IIHF false can
accept interrupts from I/O Processor B.

Priority-Handling Example With IIHF Off

Assume I/O Processors A and B have I/O
finished interrupts occurring at the same time and
all three processors are in the normal state (IIHF
“off””). LTRP will be true for processor #1, which
gates the external interrupt from I/O Processor A
to processor #1, and RTLP is true for processor #3,
which gates the external interrupt from I/O
Processor B to processor #3. Since only one
processor can communicate on the scan bus at any
given time, the processor with the scan bit on will
have priority and communicates on the scan bus
first.

Priority Handling Example With ITHF On.

Assume I/O Processors A and B have 1/O
finished interrupts occurring at the same time, and
processor #1 and processor #2 are both in control
state (IIHF “on”). LTRP and RTLP will both be
true for processor #2 and the external interrupts
from I/O Processor A and 1/O Processor B are both
gated to processor #2. The hardware in the
interrupt controller of all processors assigns I/O

5-10

Processor A the highest priority; processor #2 will
subsequently scan in the interrupt literal from I/O
Processor A, while I/O Processor B will hold its
interrupt since I/O Processor interrupts are not
reset until a scan-in is performed. RTLP can still be
passed to processor #1 or returned to processor #3
if either should return to normal state while
processor #2 is still in control state; thus, each
system processor is capable of handling external
interrupts from any I/O Processor.

I/O Finish And Data Communications Interrupts

Both interrupts are handled by the Interrupt
Controller as follows:

1. An SCNI (SCAN-IN) operator is forced into
the Processor at the next SECL to read the
interrupt literal into the B Register.

2. The normal operation of entry to the

Interrupt Handling Procedure is then
executed.

20 7 6 543210 BIT
L[] [o[o]o]o]-Jo[o[o]°snoer

*LEFT OPEN FOR FURTHER EXPANSION
External Interrupt 1D

NOTE

Bits 2:3 identify which I/O Processor the
literal was read from.

I/O Processor A=001, I/O Processor B=010,
I/O Processor C=100.

Bits 7:4 identify type of interrupt.

1001=I/O finished

0001=DCP #1

0010=DCP #2

0011=DCP #3

1111=Change of status

General Control Adapter

This interrupt indicates that a special control
device such as an Analog device, a plotter, or some
machine being controlled by the system requires
communication with the Processor.

Alarm Interrupts

These interrupt conditions are not anticipated
and inform the system of some detrimental change
in environment. They normally result from either a
programing error or hardware failure. The alarm
interrupt conditions are recognized upon

occurrence by the interrupt controller. The
interrupt controller assumes control of the
machine, clears the activated operator family,

marks the TOS registers full and activates the
pseudo interrupt operator. In either case (pro-
graming error or hardware failure) the current
operator is terminated prematurely. The alarm
interrupts are:

1. Loop

2. Memory Parity

3. 1/O Processor Parity
4, Invalid Address

5. Stack Underflow

6. Invalid Program Word

Loop

This interrupt is invoked if the Processor hard-
ware fails to provide a SECL (Syllable execute
complete level) at least every 2 seconds. This could
occur if an attempt is made to execute an invalid
operator. If the interrupt occurs, the ID remains in
the ‘B register, the A register is cleared and PIR is
backed up.

n

Loop Interrupt ID

0 BIT

[x]

Memory Parity

This interrupt is invoked if the Memory Con-
troller detects an even number of bits being
transmitted between the Processor and Memory.
Should the interrupt occur, the ID is left in the B .
register, the A register is cleared and PIR is backed |

up.

25
I [x |

Memory Parity Interrupt 1D

1 BIT

[x]]

I/O Processor Parity

This interrupt is the same as Memory Parity
above, except that it is used for Processor/I/O
Processor transfer.

[<] onl

1/0 Processor Parity Interrupt ID

CONTROL
T
ONLY ON
IN ONE
PROCESSOR
AT A
TIME

~ ~
_ PROC #3 ~
PR EXIA EXIB >~
- ~
- ~
- ~
— ~
- ~
- ~
— ~ o
- ~
-~ VA ~
P ~d

// Ty RTLP ILTRP] l | |RTLP| FROCH 2 N
/ —— e e —— L —_—— —— .\ \
/ EXIB r _! J EXIB \

}

| k> \, | INTERRUPT i </]
\ A | LINES | N /
\ /I I i \ EXIA /

N EXIA | | /

~ J .~
-
/’%t‘?'\ ————————— - ——= ==
SCAN BUS - - _
S— //
=~ - —
~— -—

1/0

_____ }________

1/0
PROC.

Figure 5-7. B 6700 Scan Bus Priority Control

5-11

SCAN BUS~— COMMON TO ALL CABINETS

D P?O..C' B
1" EXTERNAL INTERRUPT
EXTERNAL INTERRUPT PRIORITY
COAXIAL CABLE
L P;(/C?C DCP DCP J
D ..c..' 3 #2 <\
X . ;
i / \
Y

Invalid Address

This interrupt is set by the Memory Controller
when it fails to obtain an acknowledgement to a
memory request within eight clock periods. This
indicates that an attempt has been made to access a
non-existent memory module. The Memory
Controller initiates the interrupt and the Interrupt
Controller leaves the ID in the B register with the
A register clear and PIR backed up.

|

3 BIT

<]]

25
[x]

Invalid Address Interrupt ID

Stack Underflow

This interrupt is invoked if the Stack Controller
detects an attempt to move the S register to an
address less than F during stack adjustment. If this
interrupt occurs, the ID remains in the B register,
the A register is cleared and PIR backed up.

[]

Stack Underflow Interrupt ID

4

[x] |

BIT

Invalid Program Word

This interrupt is invoked if one of the following
conditions is encountered:

1. A word with a tag not equal to 3 is placed in
the P register for execution (except in Table
mode).

2. The Variant operator syllable (95) is followed
by another variant operator syllable (95).

3. The Processor is in Edit mode and a family
strobe is emitted for another operator family.
Should the interrupt occur, the ID is left in
the B register, the A register is cleared and
PIR is backed up.

1 DL]

Invalid Program Word Interrupt ID

BIT

Interrupt Handling

The occurrence of an interrupt condition causes
the processor to enter an interrupt handling
procedure after marking the stacks and inserting
two interrupt parameters into the stack. The

5-12

procedure entered is called from a reserved loca-
tion (DO + 3), relative to the base (trunk) of the
MCP stack. Figure 5-8 depicts the stack format just
prior to and after entering the interrupt procedure.

The two interrupt parameters, P1 and P2,
inserted into the stack as the interrupt condition
are recognized, and supply information describing
the interrupt condition. The P1 parameter
identifies the interrupt type and instructs the
interrupt procedure how to return to the
interrupted program. The P2 parameter supplies
supplementary information about the interrupt
condition (e.g., in the case of some presence bit
interrupts P2 is a copy of the non-present
descriptor).

The interrupt procedure is entered by intro-
ducing an enter operator with an IRW pointing to
DO + 3 at F + 1. The hardware expects to find a
PCW at DO + 3; however, either an IRW or an IRW
chain pointing to a PCW is a legitimate condition.

STRING OPERATOR CONTROLLER

The String Controller controls the character
handling operators. It is integrated with the F, G,
and H family hardware (figure 5-9). This controller
is unique in many ways. One is by having the E
register initiate memory cycle requests, via the
memory controller, during logical stepping of the
operator flow. This allows simultaneous logic flow
with memory cycles, to accelerate the logic flow.
Decoding of the E register is shown in figure 5-10.

The String OP Controller contains one OP code
register for all three families. There are two
sequence registers. The JF registers are used for the
Family F sequence flow, together with a sequence
extension register KF. The JG registers are used for
the Family G and H sequence flow, together with a
sequence extension register KG.

CONTROL STATE/NORMAL STATE

Any of the B 6700 Processors has the ability to
perform in either normal or control state. In
control state, all external interrupts are inhibited
and a few privileged operators are enabled. Both
the normal and control state flip flop (NCSF) and
the inhibit interrupt flip flop (IIHF) must be set
for processing to occur in control state.

The Processor switches to control state upon
entering a procedure via a control state program

/\FI ./
5 OBJECT PROGRAM CODE
! d HEEEEREEEEEE llfﬂ
IRW DO +3 t %
OBJECT MSCW |
PROGRAM < PIR PSR
STACK
OBJECT
PROGRAM
DATA
A
| sosk — TSCW
a4 ~NS
INTERRUPT HANDLING PROCEDURE CODE
D
_ (
SEG DESC. ——— ——)
MCP
stack <
PCW —
S RCW
[DOJ-—’ MSCW
STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE .
NS g
) A
P2
- INTERRUPTED OBJECT PROGRAM CODE
)
OBJECT 7
PROGRAM RCW)
STACK MSCW t
(.
TSCW
INTERRUPT HANDLING PROCEDURE CODE
\
| {
PBR
MCP J PIR
STACK PSR
\

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE

Figure 5-8. Stack Format

5-13

control word or by the execution of disable
external interrupt operator. The Processor switches
to normal state when it enters a procedure via a
normal state program control word or by the
execution of the enable external interrupt
operator.

The following Operators are enabled in Control
State:

1. Scan Out/Interval Timer
2. Scan Out/Initiate I/O

STRING OP CONTROLLER
[OPSF I OP4F l OP2F | OPIF I
OP CODE REG.
[8 4 1 2 1]
E REG.
FAMILY F
KF3
I JF3 | JF2 I JF1 | Jro]
KF2
KF1
FAMILY G, H
‘ KG3
[JG3 I JG2 I JG1] JGO] KG2
KG1

Figure 5-9. String OP Controller

E

REG FUNCTION REG
1 READ Y
2 " B
3 b C
4 " X
5 " A
9 WRITE-PROTECT Y

10 " 8
11 " C
12 " X
13 " A
14 OVER-WRITE X
15 v A

Figure 5-10. E Register Functions

5-14

INPUT/OUTPUT PROCESSOR

The Input/Output Processor and associated
peripheral control modules are used to control
independently of the processor, data transfers
between memory and all peripheral equipment.
The I/O Processor receives instructions from the
processor and, together with its associated
peripheral controls, executes them. Each I/O
Processor is capable of processing up to ten
simultaneous I/O operations from up to 20
peripheral controls, thus handling a combined
maximum of 256 peripheral devices (figure 5-11).

Scan Bus

The Scan Bus is the communications link
between various components as shown in figure
5-11. It consists of 20 Address lines, 48 data
Information lines, one Parity line and 11 Control
lines. I/O Processor or Data Communications
operations are initiated via the Scan Bus.

Command Data Register

This 113-bit register is used with the Scratch Pad
Memory (SPM) for the control of Input Output
data flow. The command portion of this register
accepts an I/O Command from the Processor via
the SCAN BUS and uses the data portion to accept
or send information to the I/O devices via the
peripheral control cabinets. Commands and partial
data words are shuttled to and from the scratch
pad memory between data character times. Full
words are read or written to Main Memory without
Processor intervention. An expanded Command
Data word is shown in figure 5-12.

Scratch Pad Memory

The Scratch Pad Memory contains 120 bits of IC
memory per word. The I/O Processor may contain
from four thru 10 such words. These words
provide temporary storage locations between
command data word character collection times. In
this way one Command Data register can service up
to 10 simultaneous I/O operations. A fixed
assignment (1 through 10) is given during the
initiation of the I/O request and remains as such
until the end of the I/O operation. The unit
designate field as shown in figure 5-12 will contain
this assignment.

MAIN

MEMORY
)
Y
DATA [MEMORY INTERFACE f PERIPHERAL
COMM 4 WORD DEVICES
PROCESSORS INTERFACE SYSTEM CLOCK AND
\ =] MDLPROCESSOR [~
N 16 INFO
- MEMORY EXCH.) s
)
TRANSLATOR
CHANNEL ASSIGNMENT
CO‘r\}ROL
—>| COMMAND/DATA REG p.C.
/" CABINET
PROCESSOR AG \ be.c
MEM BUS (s: SCRATCH PAD REGISTER
- N MEMORY
120 BITS/WD
INFO =N 4+10 WDS 170 PROC TIME
8 INTERRUPT OF
o NETWORK DAY REG
- s { H
CONTROL
SCAN BUS ON T
PERIPHERAL
CONTROL

INTERFACE

Figure 5-11. Input/Output Processor Block Diagram

Tag Register

The Tag Register (five flip flops per Scratch Pad
Memory Word) associates a Scratch Pad Memory
word with a specific I/O channel. This assignment
is made when the I/O request is received from the
Processor.

Memory Exchange

The Memory Exchange allows sharing of the
Memory Interface lines between the I/O Processor
and Data Communications Processors. The Mem-
ory Exchange has eight control lines, 20 address
lines, 51 data lines and one parity line to the
Memory interface.

Interrupt Network

The I/O Processor Interrupt Network informs
the Processors of an interrupt condition in the I/O
Processor. This indication remains true until one of
the Processors reads the interrupt by a Scan-in
command.

5-15

Time Of Day Register

The Time of Day Register is comprised of 36
flip flops used to accumulate increments (2.4us) of
time. The system Processors set or read these
registers via the SCAN BUS.

Channel Assignment Control

The Channel Assignment Control assigns a
priority to specific I/O devices. This is a fixed
physical assignment with respect to system
requirements.

Character Translator

Data flow between the I/O Processor and
Peripheral devices is translated in one of three
ways:

1. Direct (no translation in the /O Processor)
2. Six-bit internal to BCL or vice versa
3. Eight-bit EBCDIC to BCL or vice versa

COMMAND REGISTER DATA REGISTER

CHARACTER TAG
m 91|81 / //
MEMORY |90]80
86| 85|84

CHARACTER POSITIONS (6BIT FORMAT)
1 2 3 4 5 6 7

/COUNTER
0
ADDRESS 89 (79|87

71 ///
"A70]é7]58 50 [47
3| 82
92188 78|77 76|75 74 | 73| 72'] 68 59 51(51| 48 0

8 69
- ~ J \
BUFFER LENGTH

STANDARD
TAG FIELD ERROR FIELD
CONTROL BIT

CONTROL/UNIT (59 == 66)
ERROR FIELD

PARITY FOR DATA WORD

SCRATCH PAD MEMORY

19 n
SAME AS ABOVE

12 0

| UNIT
| DESIGNATE FIELD

\—-‘\

Figure 5-12. Command Data Register and Scratch Pad Memory

Peripheral Control Interface Data Communications Interface

The Peripheral Control Interface consists of 16 The Data Communications Interface consists of
information lines and 12 Control lines which are four, 20-wire cables sharing two word interfaces.
bussed to all of the Peripheral controls. Four Busses 2 and 4, 1 and 3 share the same memory
additional control lines are sent to each Peripheral request logic. Data Communications information is
Control for a total of 80. The additional control routed through the I/O Processor only to utilize
lines are: the Memory Exchange of the 1/O Processor.

System Clock Control and MDL Processor

1. BUSY/ — PCn /
The I/O Processor cabinet contains hardware
. — A R t Level

2. ARL PCn (Access Request Level) that makes up the MDL Processor and System

3. AGL — PCn (Access Granted Level) Clock.

4. CDL — PCn (Channel Designate Level)

SYSTEM CLOCK

The 16 information lines are used
bi-directionally for 8-bit byte or byte pair The system clock is generated by a 10 megahertz
transmission. crystal oscillator and shaped into 25 and 45

5-16

nanosecond width pulses. A Central Control
divides and controls the basic clock for distribution
to the entire system as follows:

1. Processor:
Type
B
C

Basic Clock
5 megahertz
2.5 megahertz

Arithmetic Clock
5 megahertz
2.5 megahertz

width
1.67 megahertz, 25 nanosec pulse width

. Memory:
5 megahertz, 25 nanosec pulse width

. Peripheral Control:
1.67 megahertz 45, nanosec pulse width

. Data Communications Processor:
5 megahertz, 25 nanosec pulse width

. MDL Processor:
1.67 megahertz, 25 nanosec pulse width
5 megahertz, 25 nanosec pulse width

MAINTENANCE DIAGNOSTIC PROCESSOR

The Maintenance Diagnostic Logic processor
(MDL) is a main frame cabinet that consists of one
I/O channel and has its own data processing
capabilities. It is used for fault detection and
isolation in the B 6700 Processors, I/O Processors,
and Peripheral Controls. The MDL Processor
provides for three modes of operation: display,
diagnose, and detect.

DISPLAY MODE. In this mode, the MDL scan-out
of eight flip flops per word processes continuously
in a loop under control of the display logic. It is
used for indication and control of processor and
1/O Processor flip flops.

DIAGNOSE MODE. In this mode the MDL
Processor reads test cases from a tape unit, through
an I/O Channel, to memory. The MDL uses this
information for logical testing of system
components and halts at the end of a string of test
cases when a failure is diagnosed.

DETECT MODE. This mode of operation is
initiated in the same manner as diagnose mode;
however, the test procedure is halted after the first
failure of a test case.

INFORMATION FLOW FROM CARD READER
TO MAIN MEMORY

The information flow between a Card Reader
and main memory is shown in figure 5-13. Three

. I/O Processors: 5 megahertz, 25 nanosec pulse _

5-17

types of cards may be read from the card reader:
alpha, binary, and EBCDIC.

Alpha Card Read

Cards punched in the Alpha mode are decoded
in the card reader from Card Code to six-bit BCL
external code. The character is transmitted to the
information register in the Card Reader Control in
the Peripheral Control Cabinet. The information
(one character) is held until the I/O Processor
honors an access request and places the appropriate
Scratch Pad Memory (SPM) word in its
Command/Data register. I/O descriptor control bits
42 (translate) and 41 (six-or eight-bit) steer the
character through the appropriate translator and
place the character in the next character position
of the Data register. The data register can store 6
or 8 characters depending on the translator used.
When the data register receives the last character of
a word, a memory request cycle is initiated to
write this full 52-bit word in memory. A tag field
read is optional on this type of a card read, with
any tag code (the first character of a word)
allowable in this mode of operation.

Binary Card Read

Cards punched in the binary mode contain twice
as much information as those punched in Alpha
mode. Each card column contains two characters.
Positions 12, 11, 0, 1, 2 and 3 provide for one row
of characters on the upper half while positions 4,
5, 6, 7, 8, and 9 provide for another row of
characters on the lower half. When control bits 42
and 41 are equal to zero, this causes the translator,
to be bypassed and causes a direct transfer of
information into the Data Register. The informa-
tion contained in one card column in strobed twice
(once for each half of the card) and presented to
the 1/O Processor as two 6-bit characters. Tag read
is not permitted in this mode.

EBCDIC Card Read

Cards punched in the EBCDIC mode are read in
a similar fashion as binary mode, upper and lower
half. However, the actions within the Peripheral
Control are quite different. Three translations are
required within the control before an 8 bit
EBCDIC code is presented to the I/O Processor
data register. The first two occur as the upper and
then lower halves of the card are strobed into the
information register. The Information register at
this point represents the 12-, 11-, 0-, 9- and 8-card

punches directly and a binary configuration of
punches 1 through 7 as shown in figure 5-13. The
contents of the information register are decoded
into EBCDIC code before being transferred over
the information lines to the Data register. When six
bytes are collected in the data register, a memory
request cycle is initiated to write the full 52-bit
word. Tag read is optional in this mode with any
tag code being permissible.

NOTE

Two other codes are available for use on the
B 6700 system. They are ICT and BULL
codes. Both are decoded by a special decoder
in the Card Reader.

CARD READER CARD READ CONTROL

MEMORY AND INPUT/OUTPUT PROCESSOR
CONTROLLER

The Memory Controller responds to 21 com-
mands decoded from nine input lines. Figure 5-14
shows the four types of Memory Controller cycles
that respond to these input lines. During a core
memory write, the contents of the cell being
written are “flashed” back to the Processor.
Certain Write operations are aborted by the
memory if the memory protect bit (48) is set.

| (IN PC CABINET) i 1/O PROCESSOR | MEMORY
ALPHA/ 1/C DESCRIPTOR
BINARY I INFO 8L BIT 42 = 1 (TRANSLATE)
D REG | 10 [XT | 41 =0 (6 BIT)
12 E INT [Ix] =1 (88T
¢ I" BIT BCL E 4 BIT BCL EXT 7 N
\ o JXTERNAVTY - X l R DATA REGISTER l |
S o | I I G| (1) 52 BIT WORD 8-6 BIT CHARACTERS
CHR.A=12-1] E BCL PLUS ANY TAG CODE
R | X 70 OR
X i TR 6-8 BIT CHARACTERS
ALPHA CARD READ | " ‘) ~ ‘ PLUS ANY TAG CODE
% | |
1/O DESCRIPTOR
6 BIT UPPER HALF | BIT 42 = 0
UPPER | OR LOWER ai41 -of DWRECT
HALF HALF BINARY E 5 BIT BINARY ‘
LOWER 3 l ; ; DIRECT
o (1) 52 BIT WORD
HALF T E l 12-4 BIT DIGITS
CHR. A=11°3 | (6 BYTES)
PLUS PROGRAM
X ! TAG ONLY
BINARY CARD READ X |
| | |
I J '
| 6T 6 10 8 BIT reacmc DECODER 1/O DESCRIPTOR |..\
UPPER BIT 42=0
UPPER I OR ‘ BIT 41 =1 l
LOWER
HALF T2 Low 8 BIT EBCDIC
WER 1 | BINARY | _
l;-i(iLF | I [> (1) 52 BIT WORD -8 BT (BYTE)
. X CHARACTERS
CHR. A =12°) X BLUS ANY
XX = TAG CODE
EBCDIC CARD READ | | |

Figure 5-13. Data information Flow

5-18

[
712 —1 1 MEMORY
ws) 2 CONTROLLER
INPUT 4
LINES | —>]
3 RESPONDS TO MPRC TO MEMORY
L —Z%—| 21 COMMANDS (PREVENTS MEMORY WRITE WHEN
— Z12-6 IS TRUE AND BIT (48) IS
DETECTED IN WORD BEING
WRITTEN INTO)
TYPE OF MEMORY MEMORY CONTROLLER
REQUESTING | CONTROLLER Z 12 LEVELS PROCESSOR REGISTERS
OPERATOR FUNCTION 8 7 6 543 21 0 USED
1001 A
100 B
READ READ ONLY 100 ! c
100 ! X
100 1 Y
100 ! P
OVERWRITE, : !] A
STACK ADJ., 8
READ WITH OVERWRITE *] 1 c
LOCK ! ! X
! ! Y
NOTE

When the Overwrite function is used the
Memory write is not aborted if the addressed
area has the protect bit on.

The Read With Lock and MVST operators
exchange the contents of the A register with
the contents of memory addressed by the B
register.

Figure 5-14. Memory Controller Decoding

EE A

1o 1
PROTECTED | proteECTED™ * :
WRITE oTEC 1 1 c
(PSEUDO) 1 1 v
1] v
E A
PROTECTED] 1 B

STORE

WRITE/READ 1] c
OPERATORS ITE/! 1] -
1 1 Y

NOTE
When this function is used Memory write is
aborted by detection of Protect bit. (No
indication of abort is given.)

Figure 5-14. Memory Controller Decoding (cont)
5-19

The Memory/I/O Processor Controller contains
the following sections:

1. B 6700 Memory and I/O Processor interface.
2. Address Adder.
3. Integrated Chip Memory.

The interface consists of two sections:

memory bus and a scan bus,

a

MEMORY BUS

The Memory Bus contains 20 address lines, 51
data (information) lines, 1 parity line and eight
control lines. It transmits information bi-
directionally between Memory and Processor “‘hard
registers” A, B, C, X, Y and P.

Control of the memory interface is through the
Z12 bus which is produced by Functional Con-
trollers and Family Operator Controllers when a
memory cycle is desired.

SCAN BUS

The Scan Bus contains 20 address lines, 48 data
information lines, one parity line and 11 control
lines. It provides an asynchronous communication
path between the B 6700 Processors and B 6700
I/O Processors or B 6700 Data Communications
Processors.

Address Adder

The Address Adder is a 20-bit parallel adder
with inputs from the Z8 and Z9 busses, the Carry
flip flop and the Subtract flip-flop. The busses
derive their addressing information from the 48 IC
memories or from the ‘“hard registers” via the Z6
bus in the transfer controller. The Carry flip flop
and Subtract flip flop are used to modify the
output address.

The output of the Address Adder is an input to
the Memory Address register for memory selection
or an input to one of the 20 bit IC memories.

Integrated Circuit (IC) Memory

The Memory Controller contains 48 IC
memories, each containing 20 bits. Thirty-two of
these display the current address of an object
program. These D registers (DO thru D31) provide
for multiple levels of addressing. The D registers
are controlled by Display Read/Write Select logic.

5-20

The other 16 IC memories are divided into two
groups, base and index (0 through 7). Each is a
20-bit memory used by Family Operator logic and

Program sequence flow for base and index
addressing:

1. PBR (0) Program Base

2. SBR (1) Source Base

3. DBR (2) Destination Base

4. TBR (BUF2) (3) Table Base

5.8 (4) Top-Of-Stack Address
6. SNR (5) Stack Number

7. PDR (6) Program Dictionary
8. TEMP (7) Temporary Storage
9. PIR (0) Program Index

10. SIR (1) Source Index

11. DIR (2) Destination Index

12. TIR (BUF3) (3) Table Index

13. LOSR (4) Limit of Stack

14. BOSR (5) Base of Stack

15. F (6) Points to Top MSCW
16. BUF (7) Temporary Storage

MAIN MEMORY
Organization

Main memory in the B 6700 is organized so that
any memory module can send information to, or
receive information from all processors and all I/O
Processors over any one of four information busses
(see figure 5-15).

The modules examine each word that is placed
on the bus to determine whether that particular
module is being addressed; if it is, linkage is set to
receive the word. This eliminates the need for a
central control to establish a linkage directing the
word to the proper module. Two hundred
nanoseconds after the memory cycle is initiated,
the module grants access. In another 200
nanoseconds, the word is available to the bus; 200
nanoseconds later, the word is in the processor or
I/O Processor register. Operation of each memory
module is independent of the operation of any
other memory module. Memory cycles can occur
simultaneously within all four modules.

Information is transmitted along the bus in
parallel, as illustrated in figure 5-16.

MEMORY MEMORY MEMORY
MODULE MODULE MODULE
1 2 n
1/0
Pa D d
PROCESSOR & P D
PROCESSOR o Vo D
1 A %4 Y
10
Pa Pa Va
PROCESSOR & P %))
PROCESSOR Pa) Pa\ %))
2 \v 74 \v 74
o D D 2
PROCESSOR 4 & D
[, Va Va
PROCgSSOR & b 4y}

Figure 5-15. Memory Organization

(" 20 BIT ADDRESS
6 BITS FOR 0-63 MODULES
14 BITS FOR MEMORY ADDRESSES 0-16, 383

6 CONTROL BITS

INFORMATION BUS
4 (READ, WRITE, BUSY, ETC.)

52 INFORMATION BITS
\

Figure 5-16. Information Transmission

Memory Protection

Memory protection prevents one program from
affecting another by means of a combination of
hardware and software features. One of the
hardware features is automatic detection of an
attempt by a program to index beyond its assigned
data area. Another is a memory protect bit in each
word to prevent user programs from writing into
memory words which have the protect bit set. (The
protect bit is set by the software.) Any attempt to
alter protected data is inhibited and an interrupt is
generated. Thus a user program, during execution,
cannot change program segments, data descriptors,
or any program words or MCP tables.

5-21

Cabinet Configuration

The B 6700 Main Memory consists of one to 64
memory modules each of which contains 16,384
words each. Up to three modules and associated:
hardware can be housed in one Memory Cabinet:
(49,152 words). Each cabinet has a memory:
controller which responds to six requestors for
memory accesses. Also available are 65,536 word’
memory modules. (Refer to table 1-1.) The
requestors are:

1. Processor #1, #2, or #3
2. 1/O Processors A, B, or C
3. Memory Tester

4. MDL Processor A or B

Interface

The memory interface of the requesting unit
contains five hubs (except for the MDL Processor).
Each hub has 80 bus lines for bi-directional :
communication with memory. Each memory
cabinet has six hubs, one hub for each possible
requestor. A typical maximum size system is
shown in figure 5-17. Note that the hubs within
the requestors are all tied to the same address and -
information flow lines. Assume, for example, a
Processor requesting access to memory module
zero in cabinet zero. The Processor places the
address and information on the busses. The address
is decoded by all of the memory controls, but is
only accepted by module zero in Memory Cabinet
zero. This means that each Memory Control must
have the ability to accept addresses from six
different requestors and connect them to one of
three memory modules. This is accomplished by a
crosspoint control located within the memory
control (figure 5-18). There are three sets of
crosspoint controls for each requestor within each
memory control. Three requestors may gain
simultaneous access to the same memory cabinet if
they are addressing separate memory modules.

Priority

A priority system, which is activated prior to the
crosspoint controls, prevents conflicts when more
than one requestor is addressing the same memory
modaule.

Request hub #1 has the highest priority and any
of the six requesting units can be attached to this
point by the Field Engineer.

ADDRESS W B P A M
DECODER 1]
UNIT DESIGNATE
MEM e " - AND DATA FLOW 11111
* A * CAB *
MEMORY CONTROL
] l 3 l 2 //////
N
MEM MEM MEM MEM 6 HUBS
CAB CAB * CAB * CAB *
0 4 7 8
80 LINE \\
BUS \ \
1/0 1/0 1/0
PROC PROC “e PSS =+ PROC . PROC | | ** PROC o
i #2 A B R C L
36 LINE
= s —T™
MDL PROC A, MDL
PROC B, AND MDL MDL] MEM -
MEMORY TESTER PROC ** PROC TEST
ARE PIGGYBACKED A B
TOAI/O PERogESSORS
IF ALL MEMORY
HUBS ARE USED UP mDL Ogtgg{%“””\'s
BY OTHER REQUESTORS
NN
| INNNN
| MEMORY 117
BUS
MEM MEM MEM MEM | INTERFACE
CAB * CAB » CAB . CAB . | L 111
3 3 6 10
/ | ADDRESS CTT1T11
A MAXIMUM MEMORY | AND
CONFIGURATION (32 MODS) | DATA
REQUIRES CABINET NO. LINES 1111
10 TO HAVE 2 MODS. |
(32 MODS = 524,288 WORDS.) o REQUESTOR
UNIT S
I
Figure 5-17. B 6700 Memory Configuration 5 HUBS

Memory Registers

Each Memory module contains two core stacks,
an MIR (a 52-bit memory information register),
and the appropriate timing and control logic
necessary for reading and writing (figure 5-19). The
memory cycle is divided into two parts: a
destructive read, in which the information is read
into the MIR’s, and a write into the cores from the
MWR'’s. The MWR’s are loaded from one of the six
requesters. When a memory protect bit (48) is on
during the read portion of the cycle, and the
operation is not overwrite, the information is
rewritten from the MIR’s.

Memory Addressing

Memory modules are addressed by 20 bits
(figure 5-20). Bits O through 13 are used for word

selection, and bits 14 through 19 are used for
module selection.

Memory Interlacing

Each memory module has the ability to interlace
every other word to the next consecutive module.
Interlacing is controlled by a pluggable jumper
located on each module and provides the advantage
of faster memory accesses when consecutive words
are addressed.

Interlacing saves time because the next
consecutive access may be requested in an adjacent
module while the first module is finishing its cycle.
Bit 14 of the module select address is exchanged
with bit zero when interlacing is used. Examples of

5-22

']
I REQ l I

\

REQ MEMORY l

I
| . ‘—’E —\ | mODULE |
| — |
l REQ |
R \ |
CROSSPOINT | I
l CONTROL — I
, Rf? — MEMORY
CROSSPOINT MODULE |

! CONTROL
' CROSSPOINT I I
l CONTROL |
I REQ E > |

L — |
| l
l | memory |
l o —1 mobute

L7S I
| | |
L MEMORY CABINET __I

Figure 5-18. Memory Module Selection

.
I
I
|
I
|
|
]

Sy =

"1 REQ 2

MWR

REQ 3

STACK STACK

REQ 4

REQ 5

MIR

(LI

MEMCRY
MCDULE '

Figure 5-19. Memory Registers

module and word selection, using the interlace
option, are shown in figure 5-20. This feature can
be quickly enabled or disabled by a field engineer.

HEXADECIMAL INTERLACE
ADDRESS ADDRESS MODULE |{ WORD
00000 00000 0 0
00001 04000] 0
04000 00001 0 !
04001 04001 1 .
08000 08000 2 0
08001 0C000 3 0
0C000 08001 2 1
0C000 0C000 3 1
10000 10000 4 0
10001 14000 5 0
MODULE WORD
SELECT SELECT
19 15 N 7 3

18 14 10 6 2

17 13 9 5 !

16 12 8 4 0

Figure 5-20. Interlace Addressing

Memory Testing

Each system includes a facility which can test
any of the memory modules. When the test facility
is being used with one of the memory modules, the
other modules can be used by the system, provided -
the module being tested is not interlaced. If it is, °
the option must be disabled before testing can take
place.

Stack Controller

The B 6700 provides
adjustment as required by the operators. These
requirements are supplied to the Stack Controller
on the Z11 bus from the Operator Families and
other Functional Controllers.

The Stack Controller manipulates data between
Main Memory and the A and B registers during °
both the pop-up and push-down cycles. The X and
Y registers are included in the adjustment cycles
when double-precision operands are involved.

A typical program stack is shown in figure 5-21.
The Stack Controller determines whether a pop-up
or push-down cycle will be initiated. All other
Controllers remain idle until an ADJC (Adjust
Complete) is sent to the Controller that initiated
the adjustment.

automatic stack .

[aror |

—

[sroF |

~

T i

| |

| |

PUSH —» | PUSH__, |

uP | DOWN |

| I

I I

[Losr [I
| 1%
| I

//

I 2~

| P

| |

——

[¢ MSCW
/‘ILJ
~ T
~
| sosk |—= TSCW

>

| xrec

| vree

STACK CONTROLLER FUNCTIONS

ADJ(FLOW)
NOTATION | COMMAND | OPERATION RESULT
AROF | BROF
(0,0) Z110 |EMPTYAANDB | 0 0
©,1 Zim EMPTY A, FILLB | © 1
(1,0) Z12 |EMPTYB, FILLA| 1 0
a,1 zZn3 FILL BOTH 1 1
(0,2) Z14 |EMPTY A 0 -
a,2) Z115 FILL A 1 -
NOTE:
0 = UNOCCUPIED
SOFTWARE 1 = OCCUPIED
ALLOCATED - = STATUS WILL NOT BE USED BY
MEMORY THE OPERATOR CAUSING THE
AREA ADJUSTMENT

Figure 5-21. Hardware Stack Adjustment

5-24

GENERAL

The machine language operators are composed
of syllables in a program string. The operators are
divided into three major classes, Primary, Variant
and Edit.

SYLLABLE ADDRESSING AND SYLLABLE
IDENTIFICATION

Syllable Format And Addressing

A machine language program is a string of
syllables which are normally executed sequentially.
Each word in memory contains six eight-bit
syllables. The first syllable of a program word is
labeled syllable O and is formed by bits 47 through
40 (figure 6-1).

P And T Registers

The P Register contains the currently active
program word. The T Registers are the control
(instruction) registers. There is one four-bit T
register in each operator family. These registers
contain the operation to be executed in a
particular operator family. The four high-order bits
of the operator syllable are decoded to select the
operator family to receive the strobe pulse
(execute pulse). The PSR (Program Syllable
Register) points to the next syllable to be used and
also determines when a new program word is
required in the P register.

When a new program word is required it is

brought from the memory location indicated by
the sum of PBR (Program Base Register) and PIR
(Program Index Register). This program word is
placed in the P register and PSR is set to the first

SECTION B
PROGRAM OPERATORS

syllable of the next operator. PIR is incremented
by 1 to address the next required program word
(figure 6-2).

Operation Types

Operations are grouped into three classes: Name

Call, Value Call, and operators. The two high-order -

bits (bits 7 and 6) determine whether a syllable
begins a Value Call, Name Call or operator (figure
6-3).

NAME CALL

Name Call builds an Indirect Reference Word in
the stack. Stack adjustment takes place so that the
A register is empty. The six low-order bits of the
first syllable of this operator are concatenated with
the eight bits of the following syllable to form a
14-bit address couple. The address couple is placed,
right-justified, into the A register, with the
remainder of the A register filled with 0’s. The
TAG field of the A register is set to 001 and the
register is marked full.

VALUE CALL

Value Call loads into the top of the stack the
operand referenced by the address couple. The
operator is formed in the same manner as in the
Name Call operator. If the referenced Memory
Location is an Indirect Reference Word or a Data
Descriptor, additional memory accesses are made
until the operand is located. The operand is then
placed in the top of stack registers. The operand
may be either single-or double-precision, causing
either one or two words to be loaded into the
stack.

SYLLABLE SYLLABLE SYLLABLE
0 1 2

47 | 43 | 39 | 35 3| 27

46 | 42 38 | 34 30 | 26

45 | 4 37 | 33 29 | 25

44 | 40 | 36 | 32 28 | 24

SYLLABLE SYLLABLE SYLLABLE
3 4 5
19 151 1 7 3
18 14 | 10 6 | 2
17 13 9 5 1
16 12 8 4 |0

Figure 6-1. Program Word

6-1

PROGRAM

SEGMENT
PROGRAM WORD . . . n W PROGRAM INDEX REGISTER lﬁ
~ ~
4 PROGRAM WORD 3 p—" -r———t—— PROGRAM BASE REGISTER
PROGRAM WORD 2 i
L PROGRAM WORD |) cT - l 1_
PROGRAM WORD 0 o ADDRESS
ADDER
A
J] "pv REGISTER |
3] E 3
2 2 |
1] 1] |1 |
[0] 0] 0] 0]
L -~)
OPERATOR FAMILY “T"” REGISTERS
Figure 6-2. Program Word, Syllable Addressing
characters. Word operators work with operands
(BITS 7 Syllable No. of . (single-or double-precision) in the top of the stack.
and 6) Function
Ident Type Syllables
ent. String operators are used for transferring, com-
. paring, scanning, and translating strings of digits,
00 Value Call 2 Brings an oper- characters, or bytes. In addition, a set of micro-
and into the operators provides a means of formatting data for
stack. input/output.
01 Name Call 2 Brings an IRW
into the stack. The string operators use source and destination
1X Other 1 =7 Performs the pointers which are located in the stack. These
Operators specified pointers set for following hardware registers:
operation. 1. Source Base Register — (SBR).
Figure 6-3. Syllable Decode Table 2. Source Word Index Register — (SIR).
3. Source Byte Index Register — (SIB).
OPERATORS 4, Source Size Register — (SSZ).
5. Destination Base Register — (DBR).
Operators vary from one to seven syllables in 6. Destination Word Index Register — (DIR).
length. The first syllable of each operator deter- L .
mines the number of additional syllables forming 7. Destination Byte Index Register — (DIB).
the operator. Upon completion of each operator, 8. Destination Size Register — (DSZ).

the program counter addresses the first syllable
beyond all of the syllables comprising the operator.

Operators work on data as either full words (48
data bits plus tag bits), or as strings of data

6-2

In some of the string operators the source
pointer may not be used. In this case, an operand
may be in the stack; its characters are circulated as
it is being used.

String operators have an optional Update func-
tion, 1ie., producing updated source and
destination pointers and count. At completion of
an operation the source and destination pointers
are updated as follows:

1. If the source is an operand it remains in the
stack.

2. If the pointer is a descriptor, the Word Index
fields and Byte Index fields are updated from
SIR/DIR and SIB/DIB. The String Size fields
are updated from SSZ/DSZ.

3. If the pointer is a Data Descriptor or a
non-indexed String Descriptor, it is converted
to an Indexed String Descriptor and updated.

If both the source and destination descriptors
have size fields equal to 0, the size registers
indicate 8-bit character size. When both a source
and destination are required and the size field of
one is equal to 0 and the other is not, then the size
field of the non-zero descriptor is used.

If neither size field is equal to O and the size
fields are not equal and the operator is not
Translate, the invalid operand interrupt is set and
the operator is terminated. The size field is
considered equal to O when the source is an
operand.

WORD DATA DESCRIPTOR

Word Data descriptors refer to data areas,
including input/output buffer areas. The Word data
descriptor defines an area of memory starting at
the base address contained in the descriptor. The
size of the memory area in operands is contained in
the length field of the descriptor. Word Data
descriptors may directly reference any memory
word address from O through 1,048,576. The
structure of the Word Data descriptor is illustrated
in figure 6-4 and contains the following:

1. Bits 50:3, a tag of 101.

2.

Bit 47:1, the presence bit, indicates the’
presence or absence of data in main memory. .
A O causes a presence bit interrupt whenever -
the descriptor is used by a processor to obtain -
non-present data. A 1 indicates that the data
described is in main memory. ‘

. Bit 46:1, the copy bit. A 0 indicates that this

is the original descriptor for the particular
data area. A 1 indicates that this descriptor is -
a copy of the original descriptor (MOM).

. Bit 45:1, the indexed bit. A 0 indicates that

an indexing operation is required before the
descriptor may be used to obtain data. A 1
indicates that indexing has already taken
place and the index value is stored in bit
positions 39:20 (Length/Index).

. Bit 44:1, the segmented bit. A O indicates

that the data is not segmented. A 1 indicates
that the data is divided into segments.

. Bit 43:1, the read-only bit. A O indicates that °

the data may be referenced for reading or
writing. A 1 indicates that the area cannot be
used for data storage.

.Bits 42:2, a 0 indicates a word data
descriptor.

.Bit 40:1, the double-precision bit. A 0
indicates single-precision operands, a 1

indicates double-precision operands.

. Bits 39:20, contain either the length of the

memory area (If bit 45 = 0) or an index value
(Gf bit 45 1). If bit 45 equals 0, the
descriptor has not been indexed. This field is °
used for size checking during the indexing °
operation. If bit 45 equals 1, the descriptor |
has been indexed. For a double-precision
operation, the index is doubled after index -
size checking, and the result is stored in the
index field.

39| 35| 31 27 19 15) 11 71 3
LENGTH/INDEX MEM/D{SK ADDRESS

38] 34| 30 26 18] 14 10) 2]

37) 33] 29| 25 17] 13 9 5 1

36| 32| 28| 24 16 12 8 4 0

Figure 6-4. Word Data Descriptor

6-3

39| 35| 31| 27| 23 19 15 11} 7| 3
1 LENGTH [N CHARACTERS MEM/DISK ADDRESS

38| 34| 30| 26| 22§ 18] 14 10| 6] 2
0 2

37| 33| 29| 25| 21§ 171 13] 9| 5| 1
] :

36| 32| 28| 24| 20 16| 12| 8/ 4] o0

Figure 6-5. String Descriptor (Non-indexed)

10. Bits 19:20, contain either a main memory or
disk address. If the presence bit (bit 47)
equals 1, this field contains the memory
address of data. If the presence bit equals O
and the copy bit (bit 46) equals 0O, this field
contains the disk address of the data. If the
presence bit equals 0 and the copy bit equals
1, this field contains the memory address of
the original descriptor.

STRING DESCRIPTOR

String Descriptors refer to strings of 4-bit digits,
6-bit characters or 8-bit bytes. The String
Descriptors defines an area of memory starting at
the base address contained in the descriptor. The
size of the memory area in characters is contained
in the length field of the descriptor. The structure
of the String Descriptor is illustrated in figure 6-5
and contains the following information:

1. Bits 50:3, a tag of 101.

2. Bit 47:1 the presence bit. A O causes a
presence bit interrupt if the descriptor is used
to access data. A 1 indicates the data is
present in main memory.

. Bit 46:1, the copy bit. A 0 indicates that this
is the original descriptor for the particular
data area. A 1 indicates that this descriptor is
a copy of the original descriptor.

. Bit 45:1, the indexed bit. A 0 indicates
indexing is required. A 1 indicates that
indexing has taken place and the word and

character index are in the length/index field
(see figure 6-6).

. Bit 44:1, the segmented bit. A O indicates

that the data area is not segmented. A 1
indicates that the date is segmented.

. Bit 43:1, the read only bit. A 0 indicates that

the data may be referenced for reading or
writing. A 1 indicates that the data can be
read only.

. Bits 42:3, character size field. 100 indicates

8-bit bytes, 011 indicates 6-bit characters, and
010 indicates 4-bit digits.

. Bits 39:20, contain either the length of the

memory area (bit 45=0) or an index value (bit
45=1). When bit 45 equals O, this field
contains the length of the area in digits,
characters or bytes. During indexing opera-
tions this field is used for size checking. When
bit 45 is equal to 1, bits 39:4 contain a byte
index and bits 35:16 contain a word index as
illustrated in figure 6-6.

271 23
INDEX

0| 26| 22

25| 21

24| 20

Figure 6-6. Byte/Word Index Field

39] 35 31 27 191 15[NI 7 3
LENGTH MEM/DISK ADDRESS
38| 34 30| 26 18] 14] 10| 6 2
37| 33 29{ 25 171 13 9l 5 1
36| 32 28] 24 16 12 8 4 0

Figure 6-7. Segment Descriptor

6-4

9. Bits 19:20, contain either a main memory or
a disk address. If the presence bit (bit 47) is 1,
the field contains a memory address of the
data. If both the presence bit and the copy bit
(bit 46) are equal to 0O, the field contains the
disk address of the non-present data. If the
presence bit is O and the copy bit is 1, the
field contains the memory address of the
original descriptor.

SEGMENT DESCRIPTOR

The segment descriptor (figure 6-7) describes a
program segment and contains the following
information:

1. Bits 50:3, a tag of O11.

2. Bit 47:1, the presence bit. A O indicates that
the segment is absent from main memory.

3. Bit 46:1, the copy bit. A 0 bit indicates that
this is the original segment descriptor. A 1
indicates that this is a copy of the original
segment descriptor.

4. Bit 45:1, unused.
5. Bits 44:5, unused.

NOTE
Unused bits may be either O or 1.

6. Bits 39:20, specify the length of the program
segment in words.

7. Bits 19:20 contain either the main memory
address or the disk file address. If the
presence bit (bit 47 equals 1, the field
contains the main memory address of the
program segment. If both the presence bit and
the copy bit (bit 46) equal 0, the field
contains the disk address of the non-present
program segment. If the presence bit equals O
and the copy bit equals 1, the field contains
the absolute memory address of the original
program segment descriptor.

MARK STACK CONTROL WORD

The Mark Stack Control Word (MSCW), together
with the Return Control Word (RCW), provides a -
linking mechanism for the history of previous :
control-register settings through the stack.

The MSCW is placed in the stack by the Mark
Stack operator. The MSCW is organized as:
illustrated in figure 6-8 and provides the following
data:

1. Bits 50:3, a tag of 011.

2. Bit 47:1, the different-stack bit. A O indicates .
that the stack-number field refers to the .
current stack. A 1 indicates that the stack-
number field refers to a different stack. '

3. Bit 46:1, the environment bit. A O indicates
an inactive MSCW, generated directly by the .
Mark Stack operator. The procedure entry has
not been performed. A 1 denotes an active
MSCW generated upon entry into a:
procedure, at which time the environment .
fields (stack number, displacement, value, and
LL fields) are stored into the MSCW.

4. Bits 45:10, the stack-number field, contain -
the number of the stack from which the PCW _
was obtained at procedure-entry.

5. Bits 35:16, the displacement field, which,
when added to the stack base address, locate :
the MSCW of the prior lexicographic level.

6. Bit 19:1, the value bit. A 0 indicates that the
MSCW was generated during any operation -
that will be restarted from the beginning. A 1
indicates that the operator must continue -
after the Exit or Return which refers to this .
MSCW (e.g., an accidental entry by a Value *
Call). ’

7. Bits 18:5, the LL field denote the lexico- :

graphical level at which the program will run
when the procedure is entered.

8. Bits 13:14, denote the stack history. This .
field is used to locate in the stack, the :
preceding MSCW (i.e., the previous “F”°
register setting).

35| 31| 27 1l 7| 3

DISPLACEMENT

34| 30| 26 10 6] 2
(DF) PREVIOUS "F"

33| 29| 25 13 9 5, 1

32| 28] 24 12| 8 4] o

Figure 6-8. Mark Stack Control Word

6-5

PROGRAM CONTROL WORD

The Program Control Word (PCW), and the
MSCW are used during entry into a procedure. The
organization of the PCW is illustrated in figure 6-9
and contains the following:

1. Bits 50:3, a tag of 111.

. Bit 47:1, unused.

. Bit 46:1, unused.

. Bits 45:10, stack number containing the PCW.

. Bits 35:3, define the program syllable within
the word located by PIR.

6. Bits 32:13, an index to the Program Base
Register.

7. Bit 19:1, normal state (0) or control state (1).

8. Bits 18:5, the level of the procedure being
entered.

9. Bits 13:14, the segment descriptor index. Bits
12 through O specify the value to be added to
the address located by either D-register O or 1.
When bit 13 equals 0, D-register O is selected;
when bit 13 equals 1, D-register 1 is selected.

wi AW

RETURN CONTROL WORD

The Return Control Word (RCW) and the MSCW
are used for subroutine handling. The Return
Control Word stores the environment to which the
subroutine will return. The organization of the
RCW is illustrated in figure 6-10 and contains the
following:

. Bits 50:3, a tag of O11.

. Bit 47:1, External Sign flip flop.
. Bit 46:1, Overflow flip flop.

. Bit 45:1, True/False flip flop.

. Bit 44:1, Float flip flop.

.Bit 43:1 is TFOF, True/False flip flop
occupied flip flop.

7. Bits 35:3, the program syllable of the
operator to be executed after return from the
subroutine.

8. Bits 32:13, the PIR setting of the operator to
be executed next in the calling routine.

NN AW

9. Bit 19:1, a normal state (0) or control state
(1) procedure.

10. Bits 18:5, the level of the calling procedure
when the RCW was generated (at procedure
entry).

11. Bits 13:14, the segment descriptor index. Bits
12 through 0 specify the value to be added to
the address located by either D-register O or 1.
When bit 13 = 0, D-register is selected; when
bit 13 = 1, D register 1 is selected.

INDIRECT REFERENCE WORD

Referencing a variable within the current
addressing environment of a procedure is
accomplished through the address couple in the
Indirect Reference Word (IRW). References are
relative to the D register specified by the address
couple. The bit format of the IRW is shown in
figure 6-11.

31 27 3
1 P.1.R.

30| 26 2
1

29| 25]
1

28 24 0

31 27
1R,
30| 26
29| 25
28] 24

Figure 6-10. Return Control Word

6-6

STUFFED INDIRECT REFERENCE WORD

Reference to variables outside the current
environment is accomplished by a Stuffed Indirect
Reference Word. This addressing is relative to the
base of the stack in which the variable is located.

The SIRW contains the stack number, the
location (DISP) of the MSCW, and the index to the
variable relative to the MSCW. The absolute
memory location of the variable is formed by
adding the contents of DISP and index to the base
address of the referenced stack from the stack
descriptor. The contents of the SIRW (with the
exception of index) are dynamic and are
accumulated as the program is executed. The stack
number and DISP fields are entered into the SIRW
oy the Stuff Environment (STFF) operator. The
yit format of the SIRW is shown in figure 6-12.

1. Bits 50:3, tag of 001.
2. Bit 47:1, unused.

3. Bit 46:1, the environment bit. A 1 indicates a
Stuffed IRW. A 0 indicates an IRW.

4. Bits 45:10, stack number. When bit 46 equals
1, it specifies the number of the stack
containing the address.

5. Bits 45:26, unused, when bit 46 equals 0.

6. Bits 35:16, displacement field. When bit 46
equals 1, this value added to the stack base
address locates a Mark Stack Control Word.

7. Bits 19:6, unused.
8. Bits 12:13, index field. When bit 46 equals 1,

the memory address is computed by adding
the index field to the address of the MSCW
specified by the stack number and displace-
ment fields. Bit 13 is always 0.

9. Bits 13:14, when bit 46 equals 0, are divided

into two functional fields (figure 6-13). Each
field is variable in length. The first subfield,
designated LL, selects one of the D registers.
The second subfield is an index value which is
added to the contents of the sclected D
register to form an absolute address. The
lengths of the subfields are defined by the
current program level as shown in table 6-1.

Table 6-1
Sub-Field Lengths

Length of
Program Length of LL Index
Level Field (Bits) Field (Bits)
0-1 1 13
2-3 2 12
4-7 3 11
8-15 4 10
16-31 5 9

1 7 3
DDRESS COUPLE

100 6 2

13 9 5 1

12 8 4 0

Figure 6-11. Indirect Reference Word
35 31 27 23
DISPLACEMENT
34 30| 26 22
33 291 25| 21
32 28| 24 20§

Figure 6-12. Stuffed Indirect Reference Word

6-7

PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL
0-1 2-3 4-7 8-15 16-31

7 7 4
1 11 1
8 8
INDEX INDEX INDEX 10] {NDEX 10} INDEX
FIELD 1 FIELD 1 FIELD 1 FIELD 1 116 | FIELD
13 12-0 13 11-0 13 10-0 13 9-0 13 9l 8-0
2 2 2 2
12 12 12 12

47] 43 39 31 27 151 1N 7 3
INCREMENT INAL VALUE CURRENT VALUE

461 421 38 301 26 14] 10) 2
45| 41| 37 291 25 13 9 5 1
44| 40 36 ¢ 28| 24 12 8 4 0

Figure 6-14. Step Index Word

NOTE
The bit order of the LL field is inverted.
STEP INDEX WORD

The Step Index Word (SIW) (figure 6-14) is used
by the Step and Branch operator, to increase
efficiency in iteration loops. This word contains
the following information:

1. Bits 50:3, a tag of 100.

2. Bits 47:12, the value of the increment to be
added to the current value field.

3. Bits 35:16, the final value, used to terminate
the iteration loop.

4. Bits 19:4, must contain all 0’s.
5. Bits 15:16, the current value or count.

SECTION 7

PRIMARY MODE OPERATORS

GENERAL

This section defines the functions of the primary
operators. In each case, the name of the operator,
corresponding mnemonic, and hexadecimal code
are shown.

The universal operators are also included in this
- section.

ARITHMETIC OPERATORS

The arithmetic operators usually require two
operands in the top of stack registers. These
operands are combined by the arithmetic process
specified with the result placed in the top of the
stack. The operands may be either single-precision,
double-precision, or intermixed. The specified
arithmetic process adapts automatically to the data
environment,
invoked if both operands are of the single-precision
type and the double-precision process invoked if
either operand is of the double-precision type.

Each double-precision operand occupies two
words. The second word of the operand is an
extension of the first word of the operand, i.e., the
mantissa of the first word of the operand may be
an integer but the mantissa of the second word is
always a fraction. When the top of stack registers
are full, the first word of the first operand is in the
A register; the second word of the first operand
occupies the X register. The first word of the
second operand resides in the B register; the second
word of the second operand occupies the Y
register. Therefore, double-precision arithmetic
processes operate on four words in the stack,
instead of two as in single-precision operations.
Double-precision arithmetic leaves a two-word
result in the top of the stack.

Add, Subtract, and Multiply operations which
use two integer operands yield an integer result if
no overflow occurs. If one or both operands are
non-integer, or if the result generates an overflow,
the result is non-integer.

When an operator has been entered, the hard-
ware stack-adjust function fills or empties the top
of stack register as required by the operator. If
either register contains an incorrect word, the
operator is terminated by an invalid operand
interrupt.

Add (ADD) 80

The operands in the A register and the B register
are added algebraically, with the sum left in the B

with the single-precision process -

7-1

register. At the end of the operation, the A register .
is marked empty, and the B register is marked full.

If only one of the operands is double-precision, -
the single-extension register containing the single-
precision operand is set to all 0’s. The B register is -
marked as a double-precision operand at com- .
pletion of the operation.

If the mantissa signs and the exponents are
equal, the mantissas are added and™the sum placed
in the B register. If the sum exceeds 13(26) octal .
digits, the mantissa of the sum is shifted right one .
octade, rounded, and the exponent is algebraically
increased by 1.

If the exponents are equal but the manitssa signs
are unequal, the difference of the mantissas plus -
the appropriate sign are placed in the B register.

If the exponents are unequal, the operands are
first aligned. If the alighment causes the smaller :
operand to be shifted right 14(27) octal places, the |
larger operand is the result.

If the alignment causes the smaller operand to be .
shifted right, but less than 14(27) octal places, the |
digits of the smaller operand shifted out of the
register are saved and used to obtain the rounded .
result.

If the signs of the operands are cqual, the .
mantissas are added and the sum placed in the B .
register. If the sum does not exceed 13(26) octal
digits, the last digit shifted out of the register is °
used to round the result. If the sum is 14(27) .
octades, the mantissa in B (Y) is rounded to 13 :
(26) digits.

If the signs of the operands are unequal, an -
internal subtraction takes place, with the rounded :
result placed in the B register.

If the result has an exponent greater than +63
(+32,767), the exponent overflow interrupt is set.
If the result has an exponent less than -63
(-32,767), the exponent underflow interrupt is set. .

Subtract (SUBT) 81

The operand in the A register is algebraically
subtracted from the operand in the B register with :
the difference left in the B register. The operation :
is the same as for the Add operator except for
initial sign comparisons.

Multiply (MULT) 82

The operand in the A register is algebraically
multiplied by the operand in the B register. The
rounded product is Ieft in the B register.

If the mantissa of either operand is 0, the B
register is set to all O’s.

If both mantissas are non-zero, the product of
the mantissas is computed. If the product contains
more than 13(26) digits, it is normalized and
rounded to 13(26) digits. A mantissa of all 7’s is
not rounded.

If the result has an exponent greater than +63
(+32,767), an exponent overflow interrupt is set. If
the result has an exponent less than -63 (-32,767),
an exponent underflow interrupt is set.

Extended Multiply (MULX) 8F

The operands in the A and B registers are
algebraically multiplied and a double-precision
product is placed in the B and Y registers. The A
register is marked empty and the B register marked
full.

The actions outlined for Multiply operations
also apply to this operator.

If either or both operands are double-precision,
then a normal double-precision operation occurs.

Divide (DIVD) 83

The operand in the B register is algebraically
divided by the operand in the A register, with the
quotient left in the B register. After the operation
the A register is marked empty, and the B register
is marked full.

If the mantissa of the B register is 0, the B
register is set to all O’s. If the A register mantissa is
equal to O, the divide by zero interrupt is set. In
either case the operation is terminated.

If the mantissas of both operands are non-zero,
they are normalized and the operand in the B
register is divided by the operand in the A register.
The quotient is developed to 14(27) digits,
rounded to 13(26) digits, and remains in the B
register.,

7-2

If the result has an exponent greater than +63
(32,767) the exponent overflow interrupt is set. If
the result has an exponent less than -63 (-32,767)
the exponent underflow interrupt is set.

Integer Divide (IDIV) 84

The operand in the B register is algebraically
divided by the operand in the A register and the
integer part of the quotient is left in the B register.
After the operation the A register is marked empty
and the B register is marked full.

If the mantissa of the B register is 0, the B
register is set to all 0’s. If the mantissa of the A
register is 0, the divide-by-zero interrupt is set. The
operation is terminated in either case.

If the mantissas of both operands are non-zero,
they are normalized. If the exponent of the B
register is algebraically less than the exponent of
the A register after both operands have been
normalized, the B register is set to all 0’s. If the
exponent of the B register is algebraically equal to
or greater than the exponent of the A register, the
divide operation proceeds until an integer quotient
or a quotient of 13(26) significant digits is
calculated.

If an integer quotient is developed, the quotient
is left in the B register with a O exponent for single
precision and the exponent set to 13 for double
precision. If a non-integer quotient is developed,
the integer overflow interrupt is set.

Remainder Divide (RDIV) 85

The operand in the B register is algebraically
divided by the operand in the A register to develop
an integer quotient. The remainder of this Division
stays in the B register.

If the mantissa of the B register is 0, the B
register is set to all 0’s. If the mantissa of the A
register is 0, the divide by zero interrupt is set. In
either case the operation is ferminated.

If both mantissas are non-zero, both operands
are normalized. If the exponent of the B register is
algebraically less than the exponent of the A
register after both operands have been normalized,
the operand in the B register is the result. If the
exponent of the B register is algebraically equal to
or greater than the exponent in the A register, the
divide operation proceeds until an integer quotient

is developed; the remainder is then placed in the B
register.

If a non-integer quotient is developed, the
integer overflow interrupt is set and the operation
is terminated.

Integerize, Truncated (NTIA) 86

The operand in the B register is converted to
integer form without rounding and remains in the
B register.

If the operand in the B register cannot be
integerized, i.e., the exponent is greater than the
number of leading zeros in the operand, the integer
overflow interrupt is set and the operation is
terminated.

Intergerize, Rounded (NTGR) 87

The operand in the B register is converted to
integer form. Rounding takes place if the absolute
value of the fraction is greater than 4. The rounded
result is left in the B register.

If the operand in the B register cannot be
integerized, i.e., the exponent is greater than the
number of the leading zeros. in the operand, the
integer overflow interrupt is set and the operation
is terminated.

The operand is rounded, if necessary, by adding
1 to the mantissa. If a non-integer results from this
operation, the integer overflow interrupt is set.

TYPE-TRANSFER OPERATORS
Set To Single-Precision, Truncated (SNGT) CC

The operand in the B register is normalized and
set to a single-precision operand; or in the case of a
data descriptor, the double-precision bit is set to 0.

If the word in the B register is a non-indexed,
double-precision data descriptor, the double-
precision bit is cleared to O and the length field
multiplied by 2.

If the double-precision operand in the B register
has an exponent greater than +63 after
normalization, the exponent overflow interrupt is
set. If the exponent is less than -63 after
normalization, the exponent underflow interrupt is
set, and the operation is terminated.

7-3

If the operand in the B register is a double-
precision operand with an exponent less than +63
or greater than -63; the operand is normalized, and
the tag field in the B register is set to
single-precision.

If the word in the B register is neither an
operand nor a Data Descriptor, the invalid operand -
interrupt is set and the operation terminated.

If the operand is single-precision, it
normalized and the operation is terminated.

Set To Single-Precision, Rounded (SNGL) CD

The operand in the B register is changed to a -
rounded, single-precision operand.

If the double-precision operand in the B register
has an exponent greater than +63 the exponent .
overflow interrupt is set. If the exponent is less -
than -63, the exponent underflow interrupt is set.
In either case, the operation is terminated.

If the operand in the B register is a double-
precision operand with an exponent less than +63
or greater than -63, the operand is normalized; the .
tag field in the B register is set to single-precision,
the operand in the B register is rounded from the Y .
register, and the Y register is set to all 0’s.

If a carry is developed during the rounding
operation, the operand is adjusted and the new .
exponent is checked in the manner discussed in the |
preceding paragraph.

If the operand is a single-precision operand, it is -
normalized and no rounding occurs.

Set To Double-Precision (XTND) CE

The word in the B register is set to a double- .
precision operand and the Y register is set to all
0’s. If a single-precision data descriptor is present
in the B register, the double precision bit is set to
1.

If the word in the B register is a data descriptor
with both the index bit and double-precision bit O,
the double-precision bit is set to 1 and the length
field is divided by 2.

If the operand in the B register is a double- .
precision operand, the operation is complete. If it .
is a single-precision operand, the tag field in the B .

is

register is set to double-precision and the Y register
is set to all O’s.

If the word in the B register is neither an
operand nor a Data Descriptor, the invalid operand
interrupt is set and the operation terminated.

LOGICAL OPERATORS

If only one of the operands LAND, LOR, or
LEQV is in double-precision form, the other
operand is considered as double-precision with the
least significant 13 octades equal to all O’s.

Logical And (LAND) 90

Each bit of the B operand, except for the tag
bits, is set to 1 where a 1 appears in the
corresponding bit positions in both the A operand
and the B operand. The other information bits of
the B operand are set to 0. The tag of the B
operand is not disturbed, unless the tag of the A
operand specifies double-precision; in that case, the
B operand tag is set to double-precision.

Logical Or (LOR) 91

Each bit position of the B operand except for
the tag bits, is set to 1 if the corresponding bit
position in either the A operand or the B operand
is 1, otherwise, the bit is set to 0. The tag bits are
set to the value of the second item in the stack
except when the A operand is double-precision;in
which case, the B register tag is set to
double-precision.

Logical Negate (LNOT) 92

Each bit in the A operand is complemented
except for the tag bits, which remain unchanged.

Logical Equivalence (LEQV) 93

Each bit of the B operand is set to 1, except for
the tag bits, when the corresponding bits of the A
operand and the B operand are equal. Each bit of
the B operand is set to O except for the tag bits,
when the corresponding bits of the A and B
operands are not equal. The tag field is normally
set to the value of the second item in the stack
except when the A operand is double-precision; in
that case, the B-register tag is set to
double-precision.

74

RELATIONAL OPERATORS

The relational operators perform an algebraic
comparison on the operands in the A register and
the B register. The single precision result is left in
the B register and the B register is marked full. The
result is an operand in integer form with the value
1 if the relationship has been met or an operand
with all information bits set to O if the relationship
was not met. All relational operations compare the
B operand to the A operand.

Logical Equal (SAME) 94

All bits, including tag bits, of the A operand and
B operand are compared. If all bits are equal, a
single-precision operand with bit O set to 1 and all
other information bits set to O is stored in the B
register. Otherwise, a single-precision operand with
all information bits set to O is stored in the B
register.

Greater Than (GRTR) 8A

If the B operand is algebraically greater than the
A operand, the B register is set to an integer form
1. Otherwise, all bits in the B register are set to 0.

Greater Than Or Equal (GREQ) 89

If the B operand is algebraically greater than or
equal to the A operand, the B register is set to an
integer form 1. Otherwise, all bits in the B register
are set to 0.

Equal (EQUL) 8C

If the operands in the B and A registers are
algebraically equal, the B register is set to an
integer form 1. Otherwise, all bits in the B register
are set to zero.

Less Than Or Equal (LSEQ) 8B

If the B operand is algebraically less than or
equal to the operand in the A register, the B
register is set to an integer form 1. Otherwise, all
bits in the B register are set to 0.

Less Than (LESS) 88

If the operand in the B register is algebraically
less than the operand in the A register, the B
register is set to an integer form 1. Otherwise, all
the bits in the B register are set to zero.

Not Equal (NEQL) 8D

If the operand in the B register is not
algebraically equal to the operand in the A register,
the B register is set to an integer form 1.
Otherwise, all the bits in the B register are cleared
to 0.

BRANCH OPERATORS

Branch instructions break the normal sequence
of serial instruction fetches. Branching may be
either relative to the base address of the current
program segment or to a location in another
program segment. Branch operators may be
conditional or unconditional.

Branch False (BRFL) AO

If the low order bit of the A register is O, the
Program Index Register (PIR) and Program
Syllable Register (PSR) are set from the next two
syllables in the program string. Otherwise, PIR and
PSR are advanced three syllable positions.

The two syllables following the actual operator
syllable form the new PIR and PSR settings as
follows. The three high order bits are placed into
PSR and the next 13 low order bits are placed in
the PIR. The Program Register (P) is marked
empty to cause an access to the new program
word.

Branch True (BRTR) A1

If the low order bit of the A register is one, the
PIR and PSR are set from the next two syllables in
the program string. Otherwise, PIR and PSR are
advanced three syllable positions. The Branch True
Operator uses the two syllables as described for the
Branch False operator (BRFL), above.

Branch Unconditional (BRUN) A2

The PIR and PSR are set from the next two
syllables of the program string. The Branch
Unconditional operator uses the two syllables as
described for the Branch False operator (BRFL).

Dynamic.Branch False (DBFL) A8

If the low order bit of the B register is O and the
word in the A register is a Program Control Word
(PCW) or an indirect reference to one, a branch is
made to the specified syllable of that program
segment.

75

If the low order bit of the B register is 0 and the
word in the A register is an operand, PIR and PSR
are set from this operand.

If the word in the A register is an operand, it is
used in the following manner. The operand is made
into an integer. If it is negative or is greater than
16,384, the invalid index interrupt is set and the
operation is terminated. If bit zero of the operand
is 0, PSR is set to 0, otherwise PSR is set to 011.
The next higher order 20 bits are placed in the
PIR. The Program Register is then marked empty
to cause access to the new program word.

Dynamic Branch True (DBTR) A9

If the low order bit of the B register is 1 and the
word in the A register is a PCW, or an indirect
reference to one, a branch is made to the specified
syllable of the program segment.

If the low order bit of the B register is 1 and the
word in the A register is an operand, PIR and PSR
are set from this operand.

The operand in the A register is used in this
operator in the manner described for the Dynamic .
Branch False operator (DBFL).

Dynamic Branch Unconditional (DBUN) AA

If the word in the A register is a PCW or an
indirect reference to one, a branch is made to the
specified syllable of the program segment.

If the word in the A register is an operand, PIR
and PSR are set from this operand.

The operand in the A register is used in this
operator in the same manner described for the
Dynamic Branch False operator (DBFL).

Step And Branch (STBR) A4

The increment field of the step-index word
(SIW) addressed by the contents of the A register is
added to its current-value field. If the current-value
field is.then greater than the final-value field, the .
PIR and PSR are set from the next two syllables in
the program string. Otherwise, the PIR and the
PSR are advanced three syllables. The SIW is
replaced in memory.

If no SIW is in memory, and if an operand is
found, it is left in the stack. The A register is set to

all 0’s, the PIR and PSR are advanced and the next
operator is executed. If no operand is encountered,
the invalid operand interrupt is set.

UNIVERSAL OPERATORS
No Operation (NOOP) FE

No operation takes place when this syllable is
encountered. PIR and PSR are advanced to the
next operator. This operator is also valid in the
Variant and Edit modes.

Conditional Halt (HALT) DF

This operator halts the processor if the condi-
tional halt switch is in the ON position. If the
conditional halt switch is OFF, the operator is
treated as a NOOP. This operator is also valid in
the Variant and Edit modes.

Invalid Operator (NVLD) FF

This operator sets the invalid operand interrupt.
This operator is also valid in Variant and Edit
modes.

STORE OPERATORS

The store operators use the words in the A
register and B register. The operand in the B
register is stored in memory at the location
addressed by an Indirect Reference Word (IRW) or
a Data Descriptor. If the A register contains an
operand, a hardware interchange takes place so
that the operand is transferred to the B register.

Store Destructive (STOD) B8

If the word in the A register is an operand, the A
and B operands are interchanged. The Data
Descriptor or IRW in the A register is the address
in memory where the operand in the B register (B,
Y registers for double-precision) is stored. After
the operand is stored, the A register and B register
are marked empty and the operation is complete.

If the word addressed by the IRW is a Program
Control Word, accidental procedure entry occurs.
The spontaneously created Return Control Word
(RCW) causes the Store Destructive (STOD)
operator to be re-executed upon return from the
procedure.

7-6

If the word addressed by the Data Descriptor
has the memory protect bit on (bit 48), the
memory protect interrupt is set and the operation
is terminated.

If the presence bit in the Data Descriptor is O,
the presence bit interrupt is set. After the informa-
tion has been made present, the operation is
restarted.

Store Non-Destructive (STON) B9

This operator functions in virtually the same
way as the STOD operator, however, at the
completion of this operator, the BROF remains
set, and the operand is retained in the B register.

Overwrite Destructive (OVRD) BA

This operator functions in the same way as the
STOD operator, except that the OVRD operator
overrides memory protection checks.

Overwrite Non-Destructive (OVRN) BB

This operator functions in the same way as the
STON operator, except that the OVRN operator
overrides memory protection checks.

STACK OPERATORS
Exchange (EXCH) B6

The operands in the A register and the B register
are exchanged. The A and B registers may contain
either operands or control words. The control
words are treated as operands by this operator.

Delete Top Of Stack (DLET) B5

This operator marks the Top-of-Stack register
empty.

Duplicate Top Of Stack (DUPL) B7

The operand found in the B register is copied
into the A register. The A register is marked full.

Push Down Stack Registers (PUSH) B4

This operator stores the valid word(s) from the
A register and/or B register into the memory
portion of the stack. The A and B registers are
marked empty.

LITERAL CALL OPERATORS
Lit Call Zero (ZERO) BO

This operator sets the A register to all 0’s and
marks the register full. The result is a
single-precision operand.

Lit Call One (ONE) B1

This operator sets the A register low order bit
(bit 0) to 1, leaving all other bits set to 0. The A
register is marked full. The result is a single-
precision operand.

Lit Call 8 Bits (LT8) B2

The syllable following the operator is the literal
value to be placed in bits 7:8 of the A register. The
rest of the A register is set to all 0’s. The A register
is marked as full and the PSR is set to the syllable
following the literal.

Lit Call 16 Bits (LT16) B3

The next two syllables following the operator
are a 16-bit literal value that is placed in bits 15:16
of the A register. The rest of the register is set to
all 0’s. The A register is marked full and PSR is
advanced past the 16-bit literal.

Lit Call 48 Bits (LT48) BE

The next program word is placed in the A
register, and the A register tag is set to all 0’s. The
A register is marked full, and the PIR and PSR are
advanced to the program syllable following the
48-bit literal value. This operator requires that the
48 bit literal in the program string be word
synchronized. If the operator syllable is in any
syllable position other than syllable 5, the
intervening syllables are not executed.

Make Program Control Word (MPCW) BF

This operator performs a “Lit Call 48 Bits”
(LT48) as described above; however, the tag is set
to a PCW (111) and the Stack Number Register is
placed in bits 45:10. The A register is marked full.

INDEX AND LOAD OPERATORS
Index (INDX) A6

The Index operator places the integerized value
of the B register into the 20-bit length/index field

7-7

of the Descriptor in the A register. The Descriptor
is marked indexed (bit 45 is set to 1).

If the word in the A register is an operand, the A
operand is exchanged with the B operand. If the
word in the A register is neither a Descriptor nor
an IRW pointing to a Descriptor, the invalid
operand interrupt is set and the operation is
terminated.

If the indexing value is negative or greater than
or equal to the length field of the descriptor, the
invalid index interrupt is set and the operation is
terminated.

If the descriptor represents an array which is -
segmented, the index is partitioned into two
portions by dividing it by the proper divisor which
is determined by the type of data referenced by
the descriptor, (double-precision word-128, single-
precision word-256, four-bit digit-3072, six-bit
character-2048, or eight-bit byte-1536). The
quotient is used as an index to the given descriptor
to fetch the array-row descriptor. The remainder is
used to index the row descriptor.

If the double-precision bit (bit 45) in the
descriptor is 1, the index value in the B register is
doubled. The balance of the operation is as
described in the first paragraph of the description
of this operator (INDX).

Index And Load Name (NXLN) A5

This operator performs an index operation; after -
the word in the A register has been indexed, the
Data Descriptor pointed to by this word is brought
into the A register. The copy bit (bit 46) of the
Data Descriptor is set to 1 and the A register is
marked full. If the presence bit (bit 47) is off, the .
address of the original descriptor is placed in the
address field of the stack copy. If the word
accessed by the indexed word in the A register is
not a Data Descriptor, the invalid operand
interrupt is set and the operation is terminated.

If the Data Descriptor accessed by the indexed
word in the A register has the Index bit (bit 45) set .
to 1, the invalid operand interrupt is set and the
operation is terminated.

Index And Load Value (NXLV) AD

This operator performs an index operation; after
the word in the A register has been indexed the

operand pointed to by this descriptor is brought to
the A register. The A register is marked full.

If the word accessed is other than an operand,
the invalid operand interrupt is set and the
operator is terminated.

Load (LOAD) BD

The Load operator places the word addressed by
the IRW or Indexed Data Descriptor in the A
register.

If at the start of this operator the A register
contains other than a Data Descriptor or an IRW
pointing at a Data Descriptor, the invalid operand
interrupt is set and the operation is terminated.

If the word pointed at by the Data Descriptor is
another Data Descriptor, the latter is marked as a
copy (copy bit [bit 46] is set to 1), and if the
presence bit (bit 47) is off, the address of the
original is placed in bits 19:20 of the copy in the
stack.

SCALE OPERATORS

Higher-level languages such as COBOL require
integer arithmetic. The Scale Operators provide the
means of aligning decimal points prior to the time
that the arithmetic operations are performed. In
addition, the Scale Right operators provide for
binary-to-decimal conversions.

Scale Left (SCLF) CO

This operator uses the second syllable as the
scale factor. The operand to be scaled is placed in
the B register and integerized. The resulting integer
is then multiplied by 10 raised to the power
specified by the scale factor.

If scaling of a single-precision operand results in
overflow, the single-precision operand is converted
to a double-precision integer. A double-precision
integer is defined as a double-precision operand
with an exponent equal to 13.

If scaling of the operand results in an exponent
greater than 13, (double-precision operand), the
overflow flip flop is set to 1.

Dynamic Scale Left (DSLF) C1

This operator performs virtually the same

7-8

operation as the Scale Left (SCLF) operator;
however, the scale factor is taken from the A
register rather than from the program syllable
following the operation syllable. The operand in
the A register is integerized before scaling takes

place. ‘

Scale Right Save (SCRS) C4

This operator uses its second syllable as the scale
factor. The operand to be scaled is placed in the B
register and is then integerized. The resultant
integer is divided by 10 raised to the power
specified by the scale factor.

The quotient resulting from the division is left in
the A register. The operand in the B register is the
remainder which is converted to decimal (four-bit
digits) and is left-justified. The A and B registers
are both marked full.

If the scale factor is greater than 12, the invalid
operand interrupt is set and the operation is
terminated.

Dynamic Scale Right Save (DSRS) C5

This operator performs virtually the same
operation as the Scale Right Save (SCRS) operator;
however, the scale factor is obtained from the A
register rather than from the program syllable
following the operation syllable. The operand in
the A register is integerized before being used.

Scale Right Truncate (SCRT) C2

This operator performs a Scale Right function
using its second syllable as the scale factor. The B
register is marked as empty at the conclusion of
this operator.

Dynamic Scale Right Truncate (DSRT) C3

This operator performs the same operation as
the Scale Right Truncate except that the scale
factor is found in the A register and is first
integerized by the operator.

Scale Right Final (SCRF) C6

This operator performs a Scale Right operation
except that the quotient in the A register is deleted
by marking the A register empty. The sign of the
quotient is placed in the external sign flip flop.

If the quotient was non-zero at the conclusion
of the operation, the overflow flip flop is set.

Dynamic Scale Right Final (DSRF) C7

This operator performs a Scale Right Final
operation with the scale factor found in the A
register which is integerized by the operator before
use.

Scale Right Rounded (SCRR) C8

This operator performs a Scale Right operation
and the quotient is rounded by adding one to it if
the most-significant digit of the remainder is equal
to or greater than five. The remainder is deleted
from the stack by marking the B register empty.

Dynamic Scale Right Round (DSRR) C9

This operator performs a Scale Right Rounded
operation using the scale factor found in the A
register.

BIT OPERATORS

The Bit operators are concerned with a specified
bit in the A register and/or B register.

Bit Set (BSET) 96

This operator sets a bit in the A register. The bit
that is set is specified by the program syllable
following the operation syllable.

If the program syllable defining the bit to be set
has a value greater than 47, the invalid-operand
interrupt is set and the operation is terminated.

Dynamic Bit Set (DBST) 97

This operator performs a Bit Set Operation upon
the bit specified by the operand in the top of stack
register. This word is integerized before it is used as
a bit number,

If the word in the top of stack register is not an
operand, an invalid operand interrupt is set and the
operation is terminated.

If after being integerized the operand is less than
0 or greater than 47, an invalid operand interrupt is
set and the operation is terminated.

7-9

Bit Reset (BRST) 9E

This operator resets a bit in the A register. The
bit that is reset is specified by the syllable
following the operation syllable.

If the program syllable defining the bit to be
reset has a value greater than 47, an invalid-
operand interrupt is set and the operation is
terminated.

Dynamic Bit Reset (DBRS) 9F

This operator performs a Bit Reset operation
upon the bit specified by the operand in the
top-of-stack register.

If the word in the top-of-the-stack register is not
an operand, an invalid operand interrupt is set and
the operation is terminated.

If after being integerized the operand is less than
0 or greater than 47, an invalid operand interrupt is
set and the operation is terminated.

Change Sign Bit (CHSN) 8E

The sign bit (bit 46) of the top-of-stack operand
is complemented, i.e., if it is a 1, it is set to O; if it
is a 0, the bit is set to 1.

TRANSFER OPERATORS

The Transfer Operators transfer any field of bits
from one word in the stack to any field of another
word in the stack.

Field Transfer (FLTR) 98

This operator uses its following three syllables to
establish the pointers used in the field transfer.
This is done in the following manner. The second
syllable of the operator is K. The third syllable of
the operator is G. The fourth syllable of the
operator is L.

The field in the A register, starting at the bit
position addressed by G, is transferred into the B
register, starting at the bit position addressed by K.
The length of the field in the A and B registers is -
defined by L. When the specified number of bits
have been transferred, the A register is set to
empty, the B register is marked full and the
operation is complete.

If the second or third syllables of the operator
are found to be greater than 47, or the fourth
syllable is greater than 48, the invalid operand
interrupt is set and the operation is terminated.

Dynamic Field Transfer (DFTR) 99

This operator performs a Field Transfer
operation with the exception that the B register
operand is L. The B register is then reloaded from
the stack and this operand is G. The B register is
again loaded from the stack and this operand is K.

If any of the three operands is a non-integer, it is
first integerized. Each is checked for a value less
than zero or greater than 47 or 48, as specified in
Field Transfer above. If either of these conditions
exists in any one of the three operands, an invalid
operand interrupt is set and the operation is
terminated.

Field Isolate (ISOL) 9A

This operator isolates a field of the word in the
A register, placing it right-justified in the B register.
The balance of the B register is cleared to 0’s. The
A register is marked empty and the B register is
marked full.

This operator uses its second and third syllables
as the BIT pointers. The second syllable of the
operator addresses the starting bit of the field in
the A register. The third syllable of the operator
specifies the length of the field to be isolated.

If the value of the second syllable is greater than
47 or the value of the third syllable is greater than
48, an invalid operand interrupt is set and the
operation is terminated.

Dynamic Field Isolate (DISO) 9B

This operator performs a Field Isolate operation
except that the first item in the stack specifies the
length of the field to be isolated. The second
operand in the stack addresses the bit in the word
of the third item in the stack that is to be isolated.

If after being integerized the value of the first
item in the stack is less than O or greater than 47,
an invalid operand interrupt is set and the
operation is terminated.

If after being integerized the value of the second
item in the stack is less than O or greater than 48,

7-10

an invalid interrupt is set and the operation is
terminated.

Field Insert (INSR) 9C

This operator inserts a field from the A register
into the B register word. The field in the A register
is right justified with the length of the field
specified by the third syllable of the operator. The
second syllable of the operand addresses the
starting bit of the field in the B register. At
completion the A register is marked empty and the
B register is marked full.

If the value of the second syllable of the
operator is greater than 47, an invalid operand
interrupt is set and the operation is terminated.

If the value of the third syllable of the operator
is greater than 48 an invalid operand interrupt is
set and the operation is terminated.

Dynamic Field Insert (DINS) 9D

This operator performs a Field Insert operation
except the first item in the stack is used as the
insert field data. The second item in the stack is
used to specify the length of the field. The third
item in the stack is used to address the starting bit
in the receiving field in the B register. When the
operation is complete the A register is marked
empty and the B register is marked full.

If after being integerized the value of the second
item in the stack is less than O or greater than 48,
an invalid operand interrupt is set and the
operation is terminated.

If after being integerized the value of the third
item in the stack is less than O or greater than 47,
an invalid operand interrupt is set and the
operation is terminated.

STRING TRANSFER OPERATORS

String Transfer operators give the system the
ability to transfer characters or words from one
location in memory to another location in
memory. The source and destination pointers are
set from String Descriptors in the stack.

Transfer Words, Destructive (TWSD) D3

This operator requires three items in the top-of-
the-stack: an operand, a String Descriptor or

operand, and a String Descriptor. The first operand
is integerized and used as the count or repeat field.
The second item is either the source data or a
descriptor which points at the source string and the
third item is used to address the destination string.
The number of words specified by the repeat field
are transferred from the source to the destination.
At completion of the operation, the A and the B
registers are marked empty.

If the memory protect bit is found on during the
execution of the Transfer Words operator, the
segmented array interrupt is set and the operation
is terminated.

Transfer Words, Update (TWSU) DB

This operator performs the Transfer Words
operator except that at the completion of the
transfer of data, the source and destination
pointers are updated to point to the location in
memory where the transfer ended. The A and B
registers are both marked full.

Transfer Words, Overwrite Destructive (TWOD) D4

This operator performs a Transfer Words,
Destructive operation, except that it overrides the
memory protection checks.

Transfer Words, Overwrite Update (TWOU) DC

This operator performs a Transfer Words,
Update operation, except that it overrides the
memory protection checks.

Transfer While Greater, Destructive {TGTD) E2

This operator transfers characters from a loca-
tion in memory pointed to by the source pointer,
to a location in memory pointed to by the
destination pointer, until the number of characters
specified has been transferred or the comparison
fails.

The first item in the stack is used as the
delimiter. The second item in the stack, bits 19:20,
is the maximum number of characters to be
transferred. The third item in the stack is the
source data or a source pointer, and the fourth
item in the stack is the destination pointer.

The source and destination strings are checked
for memory protection. The source character is
then compared with the delimiter. The result of

the comparison is set in the True/False flip flop
(TFFF). If the condition is met the TFFF is set to.
1, if it is not met it is set to O.

If the number of characters transferred was:
equal to the repeat field the TFFF will remain set:
to 1. The A and B registers are marked empty and:
the operation is complete.

If the comparison fails, the TFFF is set to 0.

If the first operand in the stack is not a:
single-precision operand, an invalid operator
interrupt is set and the operation is terminated.

If either the source or destination word has a:
memory protect bit on (bit 48=1), the segmented.
array interrupt is set and the operation is
terminated.

If the second item in the stack is a descriptor, it
is used as the source pointer and the length field or.
repeat field is set to 1,048,575. All comparisons
are binary (EBCDIC collating sequence).

Transfer While Greater Update (TGTU) EA

This operator performs a Transfer While Greater
operation and updates the source pointer and
destination pointer to point at the next characters
in the source and destination strings. The repeat
count is updated to give the number of characters
not transferred. If the operation is terminated
because the relationship is not met, the source
pointer points at the character that failed the
comparison.

Transfer While Greater Or Equal, Destructive
(TGED) E1

This operator performs a Transfer While opera:
tion using the relation greater than or equal to
comparison.

Transfer While Greater Or Equal, Update (TGEU)
E9

This operator performs a Transfer While Greatet
or Equal operation. The source pointer, destination
pointers, and count are updated at the conclusion
of the operation. ‘

Transfer While Equal, Destructive (TEQD) E4

This operator performs a Transfer While
operation with the relation used in the comparison
being equal.

Transfer While Equal, Update (TEQU) EC

This operator performs a Transfer While Equal
operation. The source pointer, the destination
pointer and count are updated at the conclusion of
the operation.

Transfer While Less Or Equal, Destructive (TLED)
E3

This operator performs a Transfer While
operation, using the Less than or Equal
comparison.

Transfer While Less Or Equal, Update (TLEU) EB

This operator performs a Transfer While Less or
Equal operation. The source pointer, destination
pointer and count are updated at the conclusion of
the operation.

Transfer While Less, Destructive (TLSD) EO

This operator performs a Transfer While opera-
tion using the Less than comparison.

Transfer While Less, Update (TLSU) E8

This operator performs a Transfer While Less
operation. The source pointer, destination pointer
and count are updated at the conclusion of the
operation.

Transfer While Not Equal, Destructive (TNED) E5

This operator performs a Transfer While opera-
tion, using the not equal comparison.

Transfer While Not Equal, Update (TNEU) ED

This operator performs a Transfer While Not
Equal operation. The source pointer, the
destination pointer and count are updated at the
conclusion of the operation.

Transfer Unconditional, Destructive (TUND) EG

This operator performs a Transfer While Greater
or Equal, Destructive operation forcing a zero
delimiter. This causes all characters to be equal or
greater than the delimiter, thus transfer will
continue for the length of the repeat field.

Transfer Unconditional, Update (TUNU) EE

This operator performs a Transfer Unconditional
operation. The source pointer and the destination

712

pointer are updated at the conclusion of the
operation.

String Isolate (SISO) D5

This operator places in the top-of-the-stack,
right justified, the number of characters specified
by the repeat field. The first item in the stack is
the number of characters in the repeat field. The
second item in the stack is either an operand or a
descriptor used as the source pointer.

If the number of bits to be transferred is greater
than 48, the item is double-precision.

If the number of bits is greater than 96, an
invalid operand interrupt is set and the operation is
terminated.

If the source data has the memory protect bit
(bit 48) set to 1, the segmented array interrupt is
set and the operation is terminated.

COMPARE OPERATORS

The Compare Operators perform the specified
comparison of two strings of data. The TFFF is
conditioned by the results of the comparison.

Compare Characters Greater, Destructive (CGTD)
F2

This operator compares the characters of the
two character strings. If the characters in the B
string are greater than the characters in the A
string, the TFFF is set to 1. If not, the TFFF is sct
to 0.

The first item in the stack is an operand which
contains the length of the fields being compared.
The second item in the stack is an operand or a
descriptor pointing at the character string to be
compared against. The third item in the stack is a
descriptor pointing at the character string to be
compared.

Thus the operator compares characters until it
encounters a pair which are unequal. If the B string
character is greater than the A string character, the
TFFF is left set, otherwise it is reset. Memory
access then continues until the repeat count is
exhausted.

If the repeat count is less than or equal to 0, the
TFFF is reset.

If either of the data strings has the memory

protect bit on (bit 48=1), the segmented array

interrupt is set and the operation is terminated.

All comparisons are by the binary character
position in the collating sequence.

Compare Characters Greater, Update (CGTU) FA

This operator performs a Compare Characters
Greater operation. The source pointer and
destination pointer are updated at the conclusion
of the operation.

~ Compare Characters Greater Or Equal, Destructive
(CGED) F1
This operator performs the Compare Characters
operation with the comparison being greater than
or equal. If the repeat count < 0, the TFFF is set
to 0.

Compare Characters Greater Or Equal, Update
(CGEU) F9

This operator performs a Compare Character
Greater or Equal operation. The source pointer and
destination pointer are updated at the conclusion
of the operation.

Compare Characters Equal, Destructive (CEQD) F4

This operator performs the Compare Characters
operation using the Equal comparison. If the
repeat count < 0, then TFFF is set to 1.

Compare Characters Equal, Update (CEQU) FC

This operator performs a Compare Characters
Equal operation. The source pointer and
destination pointer are updated at the conclusion
of the operation.

Compare Characters Less Or Equal, Destructive
(CLED) F3

This operator performs the Compare Characters
operation with the Less than or Equal comparison.
If the repeat count < 0, then TFFF is set to O.

Less Or Update

Compare Characters Equal,

(CLEU) FB

This operator performs a Compare Characters
Less or Equal operation. The source pointer and
destination pointers are updated at the conclusion
of the operation.

7-13

Compare Characters Less, Destructive (CLSD) FO

This operator performs the Compare Characters
operation using the Less than comparison. If the
repeat count < 0, the TFFF is set to 0.

Compare Characters Less, Update (CLSU) F8

This operator performs a Compare Characters.
Less operation. The source pointer and the
destination pointer are updated at the conclusion:
of the operation.

Not Destructive

Compare Characters

(CNED) Fb

Equal,

This operator performs the Compare Characters
operation using the Not equal relation. If the
repeat count £ 0, then TFFF is set to O.

Compare Characters Not Equal, Update (CNEU)
FD

This operator performs a Compare Characters
Not Equal operation. The source pointer and the
destination pointer are updated at the conclusion
of the operation.

EDIT OPERATORS
Table Enter Edit, Destructive (TEED) DO

This operator is used to control edit micro-
instuctions. These edit micro-instructions are cons
tained in memory as a table and not as part of the
normal program string. When this operator is
entered, program execution is transferred to a table
of micro-instructions. The last micro-instruction in
this table must be the End Edit operator (see
section 9). The table contains Edit Mode operators.

The first item in the stack is a descriptor
pointing to the table of Edit Micro-Instructions;
The second item in the stack is a single-precision
operand or a descriptor pointing at the source
string. The third item in the stack is a descriptor
pointing at the destination.

If the first item in the stack is not a descriptor,
the invalid operand interrupt is set and the
operation is terminated.

If the second item in the stack is a singler
precision operand, it is the source string.

If the third item in the stack is not a descriptor,
the invalid operand interrupt is set and the
operation is terminated.

Table Enter Edit, Update (TEEU) D8

This operator performs a Table Enter Edit
operation and updates the source pointer and
destination pointer at the completion of the
operation.

Execute Single Micro, Destructive (EXSD) D2

This operator performs the same function as the
Table Enter Edit operator with the following
exceptions: There is only one micro-operator and
it follows this syllable. The first item in the stack is
a single-precision operand that defines the length
field.

Execute Single Micro, Update (EXSU) DA

This operator performs the same functions as an
Execute Single Micro operator, except that it
updates the source pointer and destination pointer
at the completion of the operation.

Execute Single Micro, Single Pointer Update
(EXPU) DD

This operator performs the same functions as an
Execute Single Micro Update operator, except that
one pointer is used as both source and destination
pointer. The destination pointer is updated at the
completion of the operation.

PACK OPERATORS
Pack, Destructive (PACD) D1

This operator packs data, addressed by the
source pointer, into the top of the stack in four-bit
(digit) format. The TFFF is set to 1 if the source
data is negative. A negative number for an eight-bit
(byte) format has a zone bit configuration of 1101
in the least significant byte. The six-bit (BCL)
format for a negative number has a configuration
of 10 in the least significant character position.
The four-bit (digit) format has a 1101 con-
figuration in the most-significant digit position.
Data is right-justified as it is placed in the
top-of-stack.

The operand in the top-of-the-stack is used as
the length field. The second item is the source

pointer. The operation then continues until the
number of digits specified by the length/repeat
field have been packed.

If the length is less than 13, the operand in the
top-of-the-stack is a single-precision operand. If the
operand is 13 or greater, the result is a double-
precision operand.

If the length is not less than 25, an invalid
operand interrupt is set and the operation
terminated.

If the second item in the stack is an operand, it
is the source string and is comprised of eight-bit
bytes.

If the source data has the memory protect bit
(bit 48) set to 1, the segmented array interrupt is
set and the operation is terminated.

Pack, Update (PACU) D9

This operator performs a Pack operation, up-
dating the source pointer at the completion of the
operation.

INPUT CONVERT OPERATORS
Input Convert, Destructive (ICVD) CA

This operator converts either six-bit BCL code,
eight-bit EBCDIC or four-bit digit code to an
operand for internal arithmetic operations.

The first item in the stack is an operand that is
integerized to form the repeat field. The second
item in the stack is a descriptor used as a source
pointer.

The Input Convert operator calls on the Pack
operator. After this operation is complete, the
four-bit digit operand is converted to an operand
of the equivalent binary value.

The sign of the converted operand is then set
from the TFFF. If the converted operand is a
single-precision operand, the TFFF is then set to 1.
If the converted operand is a double-precision
operand, the TFFF is set to 0.

At the completion of the operation the B
register is marked full. The tag field is set to
indicate either a single- or a double-precision
operand.

If after being integerized, the item in the
top-of-stack is greater than 23, the invalid operand
interrupt is set and the operation is terminated.

Input Convert, Update (ICVU) CB

This operator performs an Input Convert
operation. The source pointer is updated at the
completion of the operation.

Read True False Flip Flop (RTFF) DE

This operator places the status of the TFFF into
the low-order bit position of the A register. The
rest of the A register is set to all 0’s. The A register
is marked full at completion of this operation.

Set External Sign (SXSN) D6

This operator places the mantissa sign of the top
word of the stack in the External Sign flip flop.
This operand is not deleted from the stack at the
end of the operation.

Read And Clear Overflow Flip Flop (ROFF) D7

This operation places the status of the Overflow
flip flop in the least-significant bit of the A
register, sets the rest of the A register to all O’s,
marks the register full, and sets the Overflow flip
flop to O.

SUBROUTINE OPERATORS
Value Call (VALC) 00 => 3F

This operator loads into the A register the
operand addressed by the address couple formed
by the concatenation of the six low order bits of
the first syllable and the eight bits of the following
syllable. The A register is marked full. Figures 7-1
and 7-2 are simplified flow charts of the Value Call
operator.

This operator makes multiple memory accesses

if the word accessed is either an indexed
descriptor, PCW, or an IRW.
If the word accessed is an indexed data

descriptor, the word addressed by the data
descriptor is brought to the top-of-the-stack. If the
double-precision bit (bit 40) in the Data Descriptor
is equal to 1, the other half of the double-precision
operand is brought to the X register.

7-15

If the word accessed is a non-indexed word data
descriptor, the word is indexed using the second
word in the stack for the index value. The word
addressed by the non-indexed Data Descriptor is
brought to the top-of-the-stack. If the double-
processor bit (40) in the Data Descriptor is equal
to 1, the other half of the double-processor
operand is brought to the X register.

If the word accessed by the Data Descriptor is
another indexed Data Descriptor, the word
addressed by the Data Descriptor is brought to the
top-of-the-stack, and one of the two above para-
graphs is repeated.

If a Data Descriptor does not address an
operand, SIRW, or a word descriptor or indexed
string descriptor, an invalid operand interrupt is set
and the operation is terminated.

If the word accessed by the value call is an
Indirect Reference Word (IRW) the word addressed
by the IRW is accessed and evaluated. If the word
is an operand, it is placed in the top-of-the-stack.

If the word accessed by the IRW is another IRW,
the operation continues as described above.

If the word accessed by the IRW is an indexed
or non-indexed Data Descriptor, the operator
proceeds as described above for Data Descriptors.

If the word accessed by the IRW is a Program
Control Word (PCW), an accidental entry into the
subroutine addressed by the PCW is initiated. A
Mark Stack Control Word (MSCW) and a Return
Control Word (RCW) are placed in the stack and an
entry is made into the program. Upon completion
of the program, a return operator will re-enter the
flow value call at the label IRW, (figure 7-1).

Name Call (NAMC) 40 =>7F

This operator builds an IRW in the A register.
The address couple is formed by concatenating the
six low-order bits of the first syllable and the eight
bits of the following syllable. The A register is
marked full and the operation is complete.

Exit Operator (EXIT) A3

This operator returns to a calling procedure
from a called procedure resetting all control
registers from the RCW and the MSCW. The Exit
operator does not return a value to the calling

DESC.
FIG
7-2

(OPERAND

REMEMBER
ALL
VALUE
CALL
DATA

1S
STACK
ADJUSTMENT
NEEDED

YES ADJ.

©,2)

1S
WORD
AN [RW,
OPERAND OR
DESC.

PLACE
OPERAND
IN
"A" REGISTER

IS
OPERAND
SINGLE
PRECISION

NO

OBTAIN OTHER
HALF OF OPERAND
IN
"X" REGISTER

OP.
COMPLETE

SIT
NORMAL
OR
STUFFED
IRW

NORMAL

STUFFED

OBTAIN
WORD ADDRESSED
BY IRW

"ACCIDENTAL
ENTRY"

(CALLON A

PROCEDURE)

YES

IS
THIS

Y
ES AN

OPERAND

Figure 7-1. Flow of Value Call Operator

7-16

routine. Figure 7-3 shows a simplified flow chart of
the Exit operator.

Return Operator (RETN) A7

This operator performs the same functions as an
Exit operator with the exception that an operand
or name in the B register is returned to the calling
procedure. If a name is returned, and the V bit (bit
19) in the MSCW is on, the name is evaluated to
yield an operand as described in the VALC
operator. Figure 7-4 shows a simplified flow chart
of the Return operator.

1S
THIS
DESCRIPTOR
INDEXED

NO

ADJ. 0,1

INVALID
OPERAND
INTERRUPT

i

OBTAIN WORD
ADDRESSED
BY DESC

1S

THIS
A WORD

DESCRIPTOR

NVALID
OPERAND
INTERRUPT

OPERAND

- INDEX
DESCRIPTOR

OPERAND
FIG.
7-1

Enter Operator (ENTR) AB

This operator is used to cause an entry into a
procedure from a calling procedure. Entry is to the
program segment and syllable addressed by the
PCW. Figure 7-5 shows a simplified flow chart of
the Enter operator.

The Enter operator accesses the IRW at F + 1,
which points to the PCW. The operator then builds
a RCW into the stack at F + 1.

DIFFERENT
STACK

OBTAIN
STACK VECTOR
DESC.

OBTAIN WORD
ADDRESSED

Figure 7-2. Flow of Value Call Operator (Cont)

EXIT

ADJ (0, 0)

OBTAIN
RCW
AT (F+1)

SET UP
REGISTERS TO RETURN
TO PRIOR PROCEDURE,

SAVE BOSR AND CUT
BACK THE STACK

BOTTOM
OF STACK
INTERRUPT

OBTAIN WORD
ADDRESSED
BY (F)

IS THIS A
MSCW

INTERRUPT

COMPUTE
ADDRESS OF
PREVIOUS
MSCW

STACK| vEs
UNDERFLOW
INTERRUPT

ADDRESS
LESS THAN
BOSR

|

OBTAIN PREVIOUS
MSCW AND
SAVE ADDRESS

IS

THIS YES OBTAIN NEW

FOR A STACK
DIFFERENT

STACK ADDRESS

OBTAIN SEG. DESC.

ADDRESSED BY PDR.

SET PBR TO ADDRESS
IN S.D. & CAUSE A FETCH

OPER.
COMPLETE

Figure 7-3. Flow of Exit Operator

7-18

UPDATE D[££]
AND

OBTAIN NEW
MSCW

SEQ.ERROR
INTERRUPT,

RETURN

ADJ (0, 1)
(SAVE RETURNED VALUE)

OBTAIN .
RCW
AT (F+1)

SET UP
REGISTERS TO RETURN
TO PRIOR PROCEDURE,

SAVE BOSR AND CUT
BACK THE STACK

IS

EOTTOM
Or srack| YES THIS THE
INTERRUPT BOTTOM

OF STACK

OBTAIN WORD
ADDRESS
BY (F)

SEQ.
ERROR
INTERRUPT

COMPUTE ADDRESS
OF PREVIOUS
MSCW AND

SAVE VALUE BIT

s
NEW
ADDRESS
LESS THAN
BOSR

NO

.

OBTAIN PREVIOUS
MSCW AND
SAVE ADDRESS

IS
THIS A

MSCW AND HAS
IT BEEN
ENTERED

OBTAIN NEW
STACK
ADDRESS

A DIFFERENT
STACK

UPDATE D[44]
AND OBTAIN
NEW MSCW

OBTAIN SEG. DESC.
ADDRESSED BY PDR
SET PBR TO ADDRESS IN
S.D. & CAUSE FETCH

SEQ. ERROR
INTERRUPT

VAS GO TO EVAL
VALUE OPERATOR
BIT EQUAL &
TO ONE SET "T" REG.
TO VALC OP.

OPER.
COMPLETE

Figure 7-4. Flow of Return Operator

7-19

ADJ (0, 0)
AND OBTAIN WORD
ADDRESSED BY
(F+1)

INVALID
OPERAND
INTERRUPT

NORMAL

STUFFED

OBTAIN WORD
ADDRESSED BY
IRW

IS
NO THIS

A
PCW

YES

SAVE OFF PRESENT
REGISTER SETTINGS
(RCW)

DISTRIBUTE
PCW
REGISTER SETTINGS

STORE
RCW AT
(Fr1)

Evaluate (EVAL) AC

This operator loads the A register with an
indexed Data Descriptor or an IRW that addresses
A ““target,” which may be an SIW, an Un-Indexed
Data Descriptor, a String Descriptor, or an
operand. The “target” may be referenced through
a chain of accidental entries, or IRW. In any case
memory accesses will continue to be made until
the target is located. The A register is left
containing the Data Descriptor or the IRW which
addresses the target. Figure 7-6 is a simplified flow
chart of the Evaluate operator.

OBTAIN
MsCw
AT
(F)

COMPLETE THE MSCW
AND STORE IT BACK
AT (F)

OBTAIN WORD
ADDRESSED BY
NEW PDR

IS
THIS A
SEGMENT
DESCRIPTOR

PLACE PROGRAM
ADDRESS IN
PBR AND FORCE
A FETCH

OPER.
COMPLETE

Figure 7-5. Flow of Enter Operator

7-20

An indexed Data Descriptor is left in the A
register when the target is referenced by an

EVAL indexed Data Descriptor; a stuffed IRW is left in
the A register when the target is referenced by
IRW’s.

ADJ (1, 2) If the A register does not contain a Data
Descriptor or an IRW at the start of this operator,
an invalid operand interrupt is set and the opera-
tion is terminated.

1> * s INVALID
THIS N
THIS NO lo] THIS NO, | SPERAND
AN AN A INTERRUP
IRW OPERAND DESCRIPTOR
YES YES YES
SAVE THE
s IRW IN
THIS "A" REGISTER
NO
A l ‘ YES
N%w“ OPER.
COMPLETE
YES ARE THE NO NO
STACK NUMBERS
OBTAIN WORD THE SAME
ADDRESSED BY 1S
IRW YES ITA
STRING
VES DESCRIPTOR
OBTAIN WORD
ADDRESSED BY
SIRW y NO
J LEAVE THE DESCRIPTOﬁI
IN THE "A"
REGISTER
OBTAIN
STACK VECTOR OPERATION
DESCRIPTOR AT COMPLETE
DO +2

ISIT
A VALID

STACK
NUMBER

OBTAIN WORD
ADDRESSED BY
SIRW

Mark Stack Operator (MKST) AE

This operator places a Mark Stack Control Word
in the B register which contains a pointer to the
previous MSCW in the stack. It adjusts the stack to
push the MSCW into Memory.

This operator is used to mark the stack when
entry into a procedure is anticipated.

Figure 7-6. Flow of Evaluate Operator

7-21

ADJ(1,2)
NVALID IS
OPERAND [NO A AN IRW
NTERRUPT]
YES
OBTAIN
WORD
ADDRESSED BY
"D" REGISTER

THE STACK
NUMBER OF THE

MSCW EQUAL
TO SNR AND THE .

E BIT OF THE MSCW
EQUALTO O

SAVE STACK
NUMBER OF
MSCW

4

OBTAIN STACK
VECTOR AT
[DO+2]

L

OBTAIN WORD
ADDRESSED BY

ADDRESS OF
THIS MSCW-
MSCW. DF

INVALI

NUMBER A INDEX

VALID

COMPUTE DISP
FIELD SET LL FIELD
TO ZERO AND
MARK AS STUFFED

OPERATION
COMPLETE

Stuff Environment (STFF) AF

This operator changes a normal IRW to a stuffed
IRW so that a quantity may be referenced from a
different addressing environment. The displace-
ment field locates the MSCW below the quantity
and the index field locates the quantity relative to
the MSCW. Figure 7-7 shows a simplified flow
chart of the Stuff Environment operator.

If the word in the A register at the start of the
operation is not an IRW, an invalid operand
interrupt is set and the operation is terminated.

If, when creating this stuffed IRW, other than an
MSCW is accessed, a sequence error interrupt is set
and the operation is terminated.

Insert Mark Stack Operator (IMKS) CF

This operator builds an MSCW and places it
below the two top-of-stack quantities.

Figure 7-7. Flow of Stuff Environment Operator

7-22

SECTION 8

VARIANT MODE OPERATION AND OPERATORS

GENERAL

Escape To 16-Bit Instruction (VARI) 95

The Variant Mode of operation extends the
number of operation codes. These operators are
not used as often and require two syllables; the
first is the “Escape to 16-Bit Instruction” (VARI)
operator. When the VARI operator is encountered,
the following syllable is the actual operation and
the syllable pointer is positioned beyond the two
syllables. The VARI operator is valid only for the
syllables covered in this section.

Variant codes EO through EF are detected and
cause a programed operator interrupt. All other
unassigned variant codes cause no action and result
in a loop timer interrupt.

Variant Mode operations are both word- and
string-oriented operators.

OPERATORS
Set Two Singles To Double (JOIN) 9542

The operands in the A and B registers are
combined to form a double-precision operand that
is left in the B and Y registers.

The operand in the A register is placed in the Y
register. The A register is marked empty and the B
register tag field is set to double-precision.

Set Double To Two Singles (SPLT) 9543

The SP(DP) operand in the B register is changed
to two single-precision operands which are placed
in the A and the B registers; both registers are
marked full.

If the operand in the B register is a single-
precision operand, the A register is set to all 0’s
and the A and B registers are marked full. Both the
A and the B register tag fields are set to
single-precision.

If the operand in the B register is a double-
precision operand, the Y register operand is placed
in the A register and the tag fields of both the A
and B registers are set to single-precision.

8-1

Idle Until Interrupt (IDLE) 9544

This operator suspends processor program
execution until the program is restarted by an
external interrupt. The Normal Control State flip
flop (NCSF) and the Inhibit Interrupt flip flop
(IIFF) are unconditionally set to allow external
interrupts.

Set Interval Timer (SINT) 9545 (Control State
Operator)

This operator places the 11 low-order bits of the
B register into the Interval Timer register, and arms
the timer. The Interval Timer decrements cach 512
microseconds. The processor is interrupted when
the timer reaches O and is still armed. The Interval
Timer is disarmed when the processor is
interrupted by an external interrupt.

The operand used to set the Interval Timer is
integerized before the 11 low-order bits are used. If
the operand can not be integerized, an integer
overflow interrupt is set and the operation is
terminated.

Enable External Interrupts (EEX1) 9546

This operator causes the processor to enter
normal state, allowing it to respond to external
interrupts. This is accomplished by setting the
NCSF and the (ITHF) flip flops to O’s.

Disable External Interrupts (DEXI) 9547

This operator causes the processor to ignore
external interrupts. This is accomplished by setting
the ITHF to 1 and entering control state.

SCAN OPERATORS

The Scan operators communicate between the
processor and the Input/Output, Data
Communications or General Control Subsystems
via the scan bus. The scan bus consists of 20
address lines, 12 control lines, and 48 data lines.
The Scan-In functions read information from the
subsystem to the top-of-stack register in the
processor. The scan-out functions write informa-
tion from the top-of-stack registers in the processor
to the given subsystem.

Parity is checked during transmission of both
address and information and a scan-bus parity error
interrupt is generated if the check fails.

19

18

17

16

31 27] 23 19| 151 114 7] 3

300 26| 22 18] 14| 101 6| 2
TIME OF DAY

29, 25, 2Wy 17, 13, 91 3 1

28] 24 20 16 12| 8 4} O

Figure 8-3. Read General Control Adapter Function Word

Scan In (SCNI) 954A

Scan In uses the A register to specify the type of
input required and the I/O Processor that is to
respond. The input data is placed in the B register.
The A register is empty and the B register full at
the completion of the operation.

Read Time-Of-Day Clock

This operation transfers the contents of the
time-of-day register from the I/O processor to the
B register. Note that if the system has more than
one I/O processor, only one time-of-day clock is
active. I/O Processor A responds when an I/O
processor is not designated.

As this operation is initiated, the A register
contains the function word shown in figure 8-1.

The time-of-day word resulting from this opera-
tion is shown in figure 8-2. The B register is
marked full and the A register marked empty at
the completion of this operation.

8-2

Read General Control Adapter

This operation places the contents of one of the
four general control registers into the B register.
Figure 8-3 shows the format of the function word
present in the A register as the operation is
initiated.

There are four General Control designations:

1. Z=0001, GCA A
2.2=0010,GCA B
3.Z=0100,GCA C
4.Z=1000,GCAD

The N field is used to address or read one of
four, 48-bit general control adapter registers. The
following are these registers and their addresses:

1. N = 00, Input register.

2. N =01, Interrupt mask.

3. N =10, Interrupt register.

4. N =11, Output register.

The A register is marked empty; the B register the I/O processor has no result descriptor.
contains the word read from the general control
adapter and is marked full as this operation is

completed. The result descriptor error field is divided intoa -

STANDARD error field bit assignments are defined

Read Result Descriptor
P individually for each peripheral control:

This operation places a result descriptor into the

B register from the I/O Processor specified. The A 1. Bit 0: Exception.
register contains the function word shown in figure 2. Bit 1: Attention.
8-4. 3. Bit 2: Busy.

I/O Processor designations are as follows: 4. Bit 3: Not ready.

1. Z = 0001, I/O Processor A. 5. Bit 4: Descriptor error.

2.7 = 0010, 1/O Processor B. 6. Bit 5: Memory address.

3.7 =0100, /O Processor C. 7. Bit 6: Memory parity error.

8. Bit 16: Memory protect.

At the completion of this operation, the B
register contains the result descriptor shown in The unit error field (U.N.) in figure 8-5 is the
figure 8-5. The B register is marked full and the A unit number field. The C.C. represents the
register is marked empty. The result is undefined if character count field.

43| 39| 35] 31 15] 11 71 3
STANDARD

42] 38| 34} 30 14] 10] 6] 2
IMEMORY ADDRESS ERROR FIELD

41 37 33 29 139 5 1

401 36| 32 12) 8) 4 0

Figure 8-6. Read Interrupt Mask Function Word
8-3

STANDARD error field and unit error field. The .

Figure 8-7. Interrupt Mask Word

Figure 8-9. Interrupt Register Word

Read Interrupt Mask

This operation places the interrupt mask word
into the B register from the I/O processor
specified. The A register contains the function
word shown in figure 8-6.

1. Z = 0001, I/O Processor A.
2. Z=0010, I/O Processor B.
3. Z = 0100, I/O Processor C.

At the completion of this operation, the B
register contains the interrupt mask word as shown
in figure 8-7. The B register is marked full, the A
register is marked empty.

The following are the mask bit assignments:
(D.C.P. is Data Communications Processor)

1. Bit O: Status change.
2.Bit1: D.C.P. — 1.
3.Bit 2: D.C.P. — 2.

4. Bit 3: D.C.P. — 3.
5.Bit 4: D.C.P. — 4.

6. Bit 9: 1/O finished.

The bit is set in the interrupt mask if recognition
of the interrupt is inhibited.

84

Read Interrupt Register

This operation places an interrupt register word
from the I/O Processor specified into the B
register. The A register contains the function word
shown in figure 8-8.

1. Z =0001, I/O Processor A.
2. Z=0010, I/O Processor B.
3. Z = 0100, I/O Processor C.

At the completion of this operation, the B
register contains the interrupt register word as
shown in figure 8-9, and is marked full; the A
register is marked empty.

The interrupt register bit assignments are shown
below:

1. Bit O: Status change.
2.Bit 1: D.C.P. — 1.
3.Bit 2: D.C.P. — 2.
4. Bit 3: D.C.P. — 3.
5.Bit4: D.C.P. — 4.
6. Bit 9: I/O Finish.

The bit is on in the Interrupt Status Register if
the interrupt is pending.

Read Interrupt Literal

This function places the interrupt literal word
from the I/O Processor specified into the ‘B
register. The A register contains the function word
shown in figure 8-10.

I/O Processor designations are as follows:

1. Z = 0001, I/O Processor A.
2. Z =0010, I/O Processor B.
3. Z =0100, I/O Processor C.

At the completion of this operation, the B
register contains the interrupt literal word as
shown in figure 8-11 and is marked full; the A
register is marked empty.

The following are the
assignments:

interrupt literal bit

1. Bits 3:4, 0001 =I/O Processor A.
0010 =1/O Processor B.
0100 =1/0O Processor C.
0001 =D.CP. — 1.
0010=D.C.P. — 2.
0011 =D.C.P. — 3.

2. Bits 7:4,

0100 =D.C.P. — 4.

1001 = I/O Processor I/O finished.
1111 = Status change.

0000 = No external device.

0101 =1/O Processor external
interrupt.

Interrogate Peripheral Status

This operation places one of eight status vector:
words from one of the I/O Processors into the B!
register. A B 6700 may have up to 256 peripheral:
units designated in the system. This configuration:
requires eight status vector words, each indicating:
the ready status of 32 units. Vector-word O.
displays the status of units O through 31,
vector-word 1 the status of units 32 through 63,:
etc. The A register contains the function word:
shown in figure 8-12.

I/O Processor designations are as follows:

1. Bit O: M = 0, All I/O Processors are to:
respond.
M = 1, I/O Processor designated by
Z to respond.

2. Bits 4:4: Z = 0001, I/O Processor A.

01]

0
10

0

8

Figure 8-12. Interrogate Peripheral Status Function Word

85

191 15 3]
STATUS BITS

18, 14, 10

177 13 9

16{ 12 8

15 11

UNIT

14, 10
T
NUMBER

13 9

12}

Figure 8-14. Interrogate Peripheral Unit Type Function Word

Figure 8-15.

Z = 0010, 1/O Processor B.
Z = 0100, I/O Processor C.

N = Status vector number, 0
through 7.

N = Status change vector, 8.

3.Bits 11:3:

At completion of this operation, the B register
contains the status vector word addressed by the
value of N with the status vector word in a format
shown in figure 8-13. The B register is marked full
and the A register is marked empty.

A status-change bit is assigned to each line
printer or display unit and indicates completion of
paper-motion or input request. Only bits 1 = 30
are used for status change vector result.

The X-bit in the status vector word is on if the
word is valid.

8-6

Unit Type Function Word

Interrogate Peripheral Unit Type

This operation places the peripheral-unit-
type-word into the B register from one of the 1/O
Processors. The A register contains the function
word shown in figure 8-14.

1.M=0,
2.M=1,

All I/O Processors to respond.

I/O Processor designated by Z to
respond.

When M = 1, the Z field MPX designations are:

I.Z=0001, 1/O Processor A.
2.Z=0010, 1/O Processor B.
3.Z=0100, I/O Processor C.

Upon completion of this operation, the B
register contains the peripheral-unit-type function
word as shown in figure 8-15 and is marked full;
the A register is marked empty.

The codes shown below identify the following

units:

S T

11.

12.

Code Unit

00 No unit.
01 Disk file.

02 Display.

04 Paper-tape reader.

05 Paper-tape punch.

06 Buffered line-printer,
BCL drum.

07 Unbuffered line-printer,
BCL drum.

09 Card reader.
OB (11)Card punch.

OD (13)Magnetic
channel).

With status vec-

tor information,

tape (7

OE (14) Magnetic tape (9 channel
N.R.Z)).

With status vec-

tor information.

OF (15)Magnetic tape (9 channel
P.E).

With status vec-

tor information.

13. ID (29)Magnetic
channel).

No status vector

information.

14. 1E (30) Magnetic tape (9 channel :
N.R.Z)).

tape (7 -

No status vector
information.

15. 1F (31) Magnetic tape (9 channel
P.E.).

No status vector -

information.

16. 26 (38) Buffered line-printer, .
EBCDIC-subset drum.

17. 27 (39) Unbuffered line-printer,
EBCDIC-subset drum.

Interrogate 1/0 Path

This operation determines the availability or
absence of an access to a specified unit. The result .
word is placed in the B register. The A register |
contains the function word shown in figure 8-16. .

Primary 1/O Processor designations are as
follows:
1. M=0, All 1/O Processors .
respond.
2. M=1, 1/O Processor designated

by Z to respond.

15
UNIT
14 1

NUMBER
13

1

15

UNIT :
14, 10}

NUMBER |
13,

1

Figure 8-17. 1/O Path Result Word

8-7

I/O Processor designations with M=1 are shown
below:

1. Z = 0001, I/O Processor A.
2. Z = 0010, I/O Processor B.
3. Z =0100, I/O Processor C.

At the completion of this operation, the B
register contains the result word shown in figure
8-17 and is marked full; the A register is marked
empty.

The A-bit indicates path availability:

1. A=0,No path available.
2. A =1, Path is available.

The Z field identifies the I/O processor when a
path is available.

1. Z =0001, Path is via I/O
Processor A.

2. Z=0010, Path is via I/O
Processor B.

3. Z=0011, Path is via either
I/O Processor A or
B.

4. Z =0100, Path is via I/O
Processor C.

5. Z=0101, Path is via I/O

Processor A and C.

6. Z =0110, Path is via I/O
Processor B and C.

7. Z=0111, Path via all I/O
Processors.

A data path consists of a data switching channel
and a peripheral control.

Scan Out (SCNO) 954B

Scan-out places bits O through 19 of the
top-of-stack word on the scan-bus address lines,
and also places the second stack word on the
scan-bus information lines. An Invalid Address
interrupt results if the address word is invalid. The
A and B registers are empty upon successful
completion of a Scan-Out.

Set Time-Of-Day Clock

This operation transfers the time of day infor-
mation from the B register to the time-of-day
register in the I/O Processor (figure 8-19). The
function word shown in figure 8-18 is in the A
register. I/O Processor responds when an I/O
Processor is not designated. An invalid operand
interrupt results if the processor is not in control
state.

At the completion of this operation, the A and
B registers are marked empty.

31 27) 23 19 151 11 7 3

30 26/ 22| 18 14, 10 6 2
TIME OF DAY

29 251 21, 17 13 9 5 1

28] 24| 20} 16 12 8 4 0

Figure 8-19. Time-of-Day Word

8-8

1
39| 35| 31 27| 23 191 15 " 7 3
0 BUFFER AREA
38 34, 30, 26 22 18 14i 10, 6 2
T T ¥
0 LENGTH BASE ADDRESS
37 33 29 25 21 17 13 9 5 1
0
36 32 28 24 20 16 12 8 4 0
Figure 8-22. Area Descriptor
Set General Control Adapter 1. N =00, Output.
) . 2. N=01, Interrupt mask
This operation sets one of three addressable register.
general control adapter registers from the word in .
3. N =10, Interrupt register.

the B register. The three general control adapter
registers that can be set are the output register,
interrupt mask register and the interrupt register.

The A register contains the function word
shown in figure 8-20, and the B register contains
the output, the interrupt mask or the interrupt
word.

I/O Processor designations are as follows:

1. Z = 0001, I/O Processor A.
2. Z = 0010, I/O Processor B.
3. Z = 0100, 1/O Processor C.

Output, interrupt mask, or interrupt register
designations are as follows:

8-9

At the completion of this operation, both the A
and B registers are marked empty.

Initiate 1/0 (Control State Only)

This operation initiates an I/O unit specified by
the function word in the A register. The code word .
format is shown in figure 8-21.

The B register holds the area descriptor and has
the format shown in figure 8-22. The area .
descriptor points to the base address of the I/O
area where the I/O control word is located (figure
8-23).

At completion of this operator the A and B
registers are marked empty.

47 43
STANDARD
46, 42i
CONTROL
45, 41,
L) T
FIELD
44, 404
Figure 8-23. 1/0 Control Word
43 39 31 27 23 15 1 7 3
0
42 38 30 26 22 14 10 6 2
0 LENGTH SIZE OFFSET
41 37 29| 25 21 13 9 5 1
0
40 36 28 24 20 12 8 4 0

Figure 8-24.

The I/O control word pointed to by the area
descriptor is transferred to the I/O Processor. This
word is divided into a standard control field and a
unit control field. The unit control field bit
assignments are defined individually for each
control. For additional information concerning
unit control field bit assignments for each control,
refer to section 5 of the B 6700 System Handbook.

Bit Assignment Bit=0 Bit=1
47 Reserved - — - —
46 Reserved - — - —
45 Attention No Yes
44 Read/write write read
43 Memory inhibit No Yes
42 Translate No Yes
41 Frame length 6-bit 8-bit
40 Memory protect No Yes
39 Backward transfer No Yes
38 Test No Yes
37-36 Tag field transfer 37=1 36=1
37-36 Store program tag 37=0 36=1
37-36 Store single-precision tag 37=0 36=0
37-36 Store double-precision tag 37=1 36=1

Index Control Word

8-10

Read Processor ldentification (WHOI) 954E

This operator places in the A register a single-
precision operand containing the value of the
processor ID register. The A register is marked full.

Interrupt Other Processor (HEYU) 954F

This operator sets the processor interrupt flip
flop of the other processor(s).

Occurs Index (OCRX) 9585

This operator places the following in the B
register: a new index value calculated from the
Index Control Word (ICW) in the A register (figure
8-24) and the operand in the B register (figure
8-25).

The index word in the B register is integerized.
If the index is greater than the maximum integer
value (549,755,813,887), the integer overflow
interrupt is set and the operation terminated.

The LENGTH field of the ICW [47:16] is
multiplied by the index value [15:16] minus 1,
and that value is added to the OFFSET field of the
ICW. This result is the new index. The A register is
marked empty and the B register is marked full.

39 35 31 27 23 19 15 11 7 3
38 34 30 26 22 18 14 10 <) 2
. INDEX
37 33 29 25 21 17 13 9 5 1
36 32 28 24 20 16 12 8 4 0
Figure 8-25. Index Word
DsF DFF

ES - EXTERNAL SIGN FLIP FLOP DSF -
© - OVERFLOW FLIP FLOP N -
T - TOGGLE, TRUE-FALSE FLIP FLOP L -
F - FLOAT FLIP FLOP DFF -

DELTA S-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR
NORMAL-CONTROL STATE FLIP FLOP

ADDRESSING LEVEL

DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO (S

Figure 8-26. Top-of-Stack Control Word (TSCW)

If cither the ICW or the operand has a value of
0, the invalid index interrupt is set and the
operation is terminated.

If the index value is less than O or greater than
the SIZE field [31:16] of the ICW, the invalid
index interrupt is set and the operation is
terminated.

Integerized, Rounded, Double-Precision (NTGD)
9587

This operator creates from the operand in the B
register a double-precision, rounded integer in the
B register. The B register is marked full. If the
word in the B register at the start of this operator
is not an operand, the invalid operand interrupt is
set and the operation is terminated.

If the operand in the B register is larger than 8 +
26-1 in absolute value, the integer overflow
interrupt is set and the operation is terminated.

The B register is marked as a double-precision
operand (tag bits set to 010) and the exponent is
set to 13.

Leading One Test (LOG2) 958B

This operator locates the most significant one-
bit of the word in the B register and places the
location of that bit into the B register (bit number
+1).

If a one-bit is not sensed, the B register is set to
all 0’s.

The B register is marked full.

Move To Stack (MVST) 95AF

This operator causes the environment of the
processor (or addressing space) to be moved from
the current stack to the program stack specified by
the operand in the B register.

The operator builds a Top-of-Stack Control
Word (TSCW) (figure 8-26) and places it at the
base of the current stack as addressed by the
Base-of-Stack Register.

The operand in the B register is integerized and
checked against the stack vector for invalid index.
The value in the B register is added to the address
field of the stack vector Descriptor (at D[0]+2), to
address the descriptor for the new stack.

The Data Descriptor for the requested stack is
accessed. If the presence bit is ““on,” the address
field is placed into the Base-of-Stack Register. The
TSCW is brought up and the stack is marked
“active’ by storing the processor ID at the base of
the stack. The TSCW is distributed and the D
registers are updated.

If during the integerization the operand in the B
register is too large, the integer overflow interrupt
is set and the operation is terminated.

If the index value is less than O or greater than
the length field of the Data Descriptor for the
stack vector array, an invalid index interrupt is set
and the operation is terminated.

Set Tag Field (STAG) 95B4

This operator sets the tag field (bits 50:3) in the
B register to the value of bits 2:3 of the operand in
the A register. At the completion of the operation,
the A register is marked empty and the B register is
left full.

Read Tag Field (RTAG) 95B5

This operator replaces the word in the A register
with a single-precision operand equal to the tag
field of that word. The tag bits are placed in bits
2:3. The A register is marked full.

Rotate Stack Up (RSUP) 95B6).

This operator permutes the top three operands
of the stack so that the first operand has become
the second, the second has become the third, and
the third has become the first (see figure 8-27).

BEFORE ROTATION

A WORD ONE
% WORD TWO
S— | WORD THREE
AFTER ROTATION
rA WORD THREE
B WORD ONE
s—s| WORD TWO

Figure 8-27. Stack Rotation Up

Rotate Stack Down (RSDN) 95B7

8-12

This operator permutes the top three operands
of the stack so that the first has become the third,
the second has become the first, and the third has
become the second (see figure 8-28).

BEFORE ROTATION

rA WORD ONE

B WORD TWO

S—s | WORD THREE
AFTER ROTATION

rA WORD TWO

rB WORD THREE

S—s| WORD ONE

Figure 8-28. Stack Rotation Down

Read Processor Register (RPRR) 95B8

This operator reads the contents of one of the
eight Base registers, eight Index registers or one of
the 32 D registers into the A register.

The six low order bits of the A register selects
the processor register to be read.

The decoding of these six bits is as follows:

Bits 5:2 =10 = Index register
Bits 2:3 =0, =PIR

=1, = SIR

=2, =DIR

=3, =TIR, BUF 3

=4, = LOSR

=35, = BOSR

=6, =F

=17, = BUF
Bits 5:2 =11 = Base register
Bits 2:3 =0, =PBR

=1, =IBR

=2, =DBR

=3, = TBR, BUF 2

= 4’ =g

=35, =SNR

=0, =PDR

=17 = TEMP

If bit 5 is 0, bits 4:5 select the D register equal
to the binary value of the bits; i.c., bits 4:5 =
00101 select D register 5.

At the completion of this operation the A
register contains the contents of the selected
register, and is marked full.

Set Processor Register (SPRR) 9589

This operator places the contents of the address
field of the A register into one of the eight Base
* registers, eight Index registers or 32 D registers
selected by the six low-order bits of the word in
the B register.

The decoding of the six low-order bits is the
same as in the Read Processor Register operator
(RPRR) discussed under the previous heading.

The A and B registers are marked empty.

Read With Lock (RDLK) 95BA

This operator performs the same operation as
the Overwrite operator (see section 7), with the
exception that the word which was in memory
before the overwriting is left in the A register.

Count Binary Ones (CBON) 95BB

This operator counts the number of one-bits in
the single-precision (double-precision) operand in
the A register. At the completion of the operation,
the total count is left in the A register with the
register marked full.

Load Transparent (LODT) 95BC

This operator performs a Load operator (see
section 7) if the word in the A register is a Data
Descriptor or an Indirect Reference Word. If it is
neither of these, bits 19:20 of the A register are
used as the address to bring an operand to the A
register. Copy bit action does not occur.

Linked List Lookup (LLLU) 95BD
This operator searches a linked list of words.

The operator starts with an operand in the top
of the stack as the index pointer. The second word
in the stack is a non-indexed Data Descriptor to
the array containing the linked list. The third word
in the stack is an operand that is the argument.

813

The base address of the linked list, the length of
the list and the argument value are saved through-
out the entire operator process.

The word addressed by the base address plus the
index value are read and checked for a value of O in
the address (Link) portion of the word (0 denotes
the end of the linked list). If the link is non-zero,
bits 47:28 are compared to the argument value. 1f
the argument of the linked-list word is less than the
argument value, the actions described in this
paragraph are repeated using the link as the new
index.

When the value of the argument field of the
linked-list word is equal to or greater than the
argument value, the operation is complete. The
index pointing to the word whose link points to
the argument which satisfies the test is left in the A
register and is marked full.

If the value of the link portion of the linked-list
word is equal to O, the A register is set to minus
one (-1), and marked full as the operation is
completed.

If the index value in the linked list word is
greater than the length value from the descriptor,
an invalid index interrupt is set and the operation
is terminated.

When the first word in the stack at the start of
this operator is not an operand an invalid-operand
interrupt is set and the operation is terminated.

If the Data Descriptor has been indexed, the
invalid-operand interrupt is set and the operation is
terminated.

Masked Search For Equal (SRCH) 95BE

At the start of this operator, the word in the A
register must be a Data Descriptor. The operand in
the B register is a 51-bit mask. The Data Descriptor
in the A register and the mask in the B register are
saved, and the 51-bit argument word is placed into
the B register. If the descriptor is indexable (bit 45
equal to 0), the index bit (bit 45) is set and 1 is
subtracted from the length field. If bit 45 is equal
to 1, the data descriptor is already indexed;
therefore, that index is the starting value.

The word addressed by the descriptor is placed
in the A register and ANDed with the mask word.
The result of this AND function is tested to
determine if it is identical to the argument word.

If the comparison is not equal, the index field of
the descriptor is decreased by 1 and the operation
is repeated. If the index field is equal to O, the A
register is set to a minus one value and marked full.
The B register is marked empty.

If an equal comparison is made, the A register
contains the index pointing at the last word
compared and is marked full. The B register is
marked empty.

Unpack Absolute, Destructive (UABD) 95D 1

This operator unpacks a string of 4-bit digits
into 6-bit characters or eight-bit bytes. At the start
of the operator, the word in the A register defines
the length of the operand in the B register; i.c., the
string of digits to be unpacked.

The third word in the stack is a string descriptor
addressing the destination of the string.

As the specified number of digits are transferred
to the destination, zone fill is as follows:

1. If the destination size is six-bit (BCL) format,
the characters are transferred to the
destination with the two zone bits set to O.

. If the destination size is eight-bit (EBCDIC)
format, the bytes are transferred to the
destination string with the four zone bits set
tol1111.

. If the destination size is 0, it is set to eight-bit
format and handled as in (b) above.

Unpack Absolute, Update (UABU) 95D9

This operator performs an Unpack Absolute
operation; at the completion of the operation, the
destination pointer is updated and left in the stack.

Unpack Signed, Destructive (USND) 95DO

This operator performs an Unpack operation,
plus an added function if the External Sign flip
flop is set, then a zone of 10 is set in the last
character for six-bit or a zone of 1101 is set in the
last byte for eight-bit.

If the destination size is four-bit, the first digit
position of the destination string is set to 1101
provided the External Sign flip flop is set. If the
External Sign flip flop is O, the first digit is set to
1100.

8-14

Unpack Signed, Update (USNU) 95D8

This operator performs an Unpack Signed
operation; at the completion of the operation, the
destination pointer is updated.

Transfer While True, Destructive (TWTD) 95D3

This operator transfers characters from the
source string to the destination string for the
number of characters specified by the length
operand while the stated relationship is met. If the
relationship is not met, the transfer is terminated
at that point. The relationship is determined by
using the source character to index a table. If the
bit indexed is a 1, the relationship is true.

The operator uses the top four words in the
stack as follows. The top word addresses the table;
the second word is the length of the string to be
transferred; the third word in the stack is an
operand or a descriptor addressing the source string
or a single-precision operand which is the source
string; and the fourth word in the stack is a
descriptor pointing at the destination string.

The table is indexed as follows to obtain the
decision bit. The source character is expanded to
eight bits, if necessary, by appending two or four
leading O bits. The three high-order bits of these
eight select a word from the table, indexing the
table pointer. The remaining five bits of the
expanded source character select a bit from this
word by their value.

Transfer While True, Update (TWTU) 95DB

This operator performs a Transfer While True
operation, but updates the source pointer, the
destination pointer and repeat count.

If all the characters specified by the length field
are transferred, the True/False flip flop (TFFF) is
set to 1 (true); otherwise, it is set to 0 (false).

Transfer While False, Destructive (TWFD) 95D2

This operator performs a Transfer While
operation and tests for a zcro bit in the table.

Transfer While False, Update (TWFU) 95DA

This operator performs a Transfer While False
operation, but updates the source pointer, the
destination pointer, and the repeat count.

If all the characters specified by the length field
are transferred, the True/False flip flop (TFFF) is
set to 1 (true); otherwise, it is set to O (false).

Translate (TRNS) 95D7

This operator translates the number of
characters specified as they are transferred from
the source string to the destination string.

The translation uses a table containing the
translated characters. The word in the top of the
stack is a descriptor that addresses the translation
table. The second operand in the stack specifies the
length of the string. The third word in the stack is
a descriptor addressing the source string (or an
operand which is the source string), and the fourth
word in the stack is a descriptor addressing the
destination string. The source and destination are
updated at the end of the operation.

The translation occurs as follows. The specificd
string character is used as an index into the table to
locate a character. The located character is
transferred to the destination string.

The least significant 32 bits of each table word
provide four eight-bit characters. The table sizes
are as follows:

1. Four-bit digits provide a 4-word table length.

2. Six-bit characters provide a 16-word table
length.

3. Eight-bit bytes
length.

provide a 64-word table

Scan While Greater, Destructive (SGTD) 95F2

This operator scans a string while the characters
in the source string are greater than a delimiter
character or until the number of characters
specified have been scanned.

If all the characters have been scanned at the
completion of this operation, TFFF is set to 1. If
the scan was stopped by the delimiter test before
the end of the string, the TFFF is set to O.

At the start of this operator the delimiter
character is right justifiecd in the top word of the
stack. The length of the string to be scanned is the
second word of the stack. The source pointer is the
third word in the stack.

8-15

If the second word in the stack is a descriptor, it
is the source pointer and the length of the
character string is set to 1,048,575.

Scan While Greater, Update (SGTU) 95FA

This operator performs a Scan While Greater
operation and also updates the count and the
source pointer. The updated source pointer locates
the character that stopped the scan. The number of
characters not scanned is placed in the A register,
and the register is marked full.

Scan While Greater Or Equal, Destructive (SGED)
95F1

This operator performs a Scan While operation
while the characters in the source string are equal
to or greater than the delimiter character.

Scan While Greater Or Equal, Update (SGEU)
95F9

This operator performs a Scan While Greater or
Equal operation, but also updates the count and
the source pointer.

Scan While Equal, Destructive (SEQD) 95F4

This operator performs a Scan While operation
while the characters in the source string are equal
to the delimiter character.

Scan While Equal, Update (SEQU) 95FC

This operator performs a Scan While Equal
operation, but also updates the count and the
source pointer.

Scan While Less Or Equal, Destructive (SLED)
95F3

This operator performs a Scan While operation
while the characters in the source string are equal
to or less than the delimiter character.

Scan While Less Or Equal, Update (SLEU) 95FB

This operator performs a Scan While Less or
Equal operation, but also updates the count and
source pointer.

Scan While Less, Destructive (SLSD) 95FO

This operator performs a Scan While operation

while the characters in the source string ate less
than the delimiter character.

Scan While Less, Update (SLSU) 95F8

This operator performs a Scan While Less
operation, but also updates the count and the
source pointer.

Scan While Not Equal, Destructive (SNED) 95F5

This operator performs a Scan While operation
while the characters in the source string are not
equal to the delimiter character.

Scan While Not Equal, Update (SNEU) 95FD

This operator performs a Scan While not Equal
operation, but also updates the count and the
source pointer.

Scan While True, Destructive (SWTD) 95D5

This operator uses each source character as an
index into a table to locate a bit in the same
fashion as the transfer while True operators. If the
bit located contains the value of 1, the relationship
is true and the scan continues.

8-16

The first word in the stack is a descriptor
addressing the table. The second and third words in
the stack are the same as for all Scan While
operators,

Scan While True, Update (SWTU) 95DD

This operator performs a Scan While True
operation, but also updates the count and the
source pointer. The number of characters not
scanned is placed in the A register.

Scan While False, Destructive (SWFD) 95D4

This operator performs a Scan While False
operation, except the relation is true if the bit
found by indexing into the table contains the value
of zero.

Scan While False, Update (SWFU) 95DC

This operator performs a Scan While False
operation, but also updates the count and the
source pointer.

SECTION g

EDIT MODE OPERATION AND OPERATORS

GENERAL

The purpose of the Edit Mode operators is to
perform editing functions on strings of data. The
editing functions are those which are normally
involved in preparing information for output. They
include such operators as Move, Insert, and SKip, in
the form of micro-operators in either the program
string or in a separate table. In the program string,
they are single micro-operators and are entered by
use of the Execute Single Micro or Single Pointer
operators (see section 7). If the micro-operators are
in a table, the table becomes the program string
that is to be executed. This table is entered by
means of the Table Enter Edit operators (see
section 7), and is exited through the End Edit
micro-operator as defined later in this section.

If the source or destination data has the memory
protect bit (bit 48) equal to one, the segmented-
array interrupt is set and the current
micro-operator is terminated.

EDIT MODE OPERATORS

The Edit Mode operators are described in the
following paragraphs of this section.

Move Characters (MCHR) D7

This micro-operator transfers characters from
the source string to the destination string.

If this micro-operator is entered by the Table
Enter Edit operator (see section 7), the number of
characters to be transferred is specified by the
syllable following the operator syllable.

If this micro-operator is entered by the Execute
Single Micro operator (see section 7), the number
of characters to be transferred is specified by the
operand in the top of the stack.

Move Numeric Unconditional (MVNU) D6

This micro-operator transfers the four low-order
bits of the characters of the source string to the
destination string. If the destination string
character size is 6 bits (BCL) the zone bits are set
to 00. If the destination string character size is 8
bits (EBCDIC), the zone bits are set to 1111.

If this micro-operator was entered by use of the
Table Enter Edit operator (see section 7), the

9-1

number of characters to be transferred is specified
by the syllable following the micro-operator
syllable.

If this micro-operator is entered by executing
the Execute Single Micro operator (see section 7),
the number of characters to be transferred is
specified by the operand in the top of the stack.

Move With Insert (MINS) DO

This micro-operator performs a Move Numeric
Unconditional or an insert operation under the
control of the Float flip flop.

In Table Edit mode the second syllable is the
repeat value and the third syllable is the character
to be inserted under control of the Float flip flop.

In Execute Single Micro mode the repeat field
value is the top word of the stack and the insert
character is in the syllable following the micro-
operator syllable.

If the Float flip flop equals O and the numeric
portion of the source characters equals zero, the
insert character is moved to the destination string.

If the Float flip flop equals 0, or if the Float flip
flop is “on,” the Float flip flop is set and the
source character, with numeric zone, is moved to
the destination.

The number of characters transferred from the
source string to the destination string is defined by
the repeat value.

Move With Float (MFLT) D1

In Table Edit mode the second syllable is the
repeat value (the number of characters to transfer).
The third, fourth, and fifth syllables are the three
insert characters. In single-micro mode, the three
insert characters are in the second, third, and
fourth syllables.

If the Float flip flop equals 0 and the numeric
portion of the character in the source string equals
0, the first-insert character is transferred to the
destination string.

If the Float flip flop equals O and the numeric
portion of the character in the source string is not
0 the Float flip flop is set. If the External Sign flip

flop equals 1, the second-insert character is trans-
ferred to the destination string. If the External
Sign flip flop equals 0, the third-insert character is
transferred to the destination string. The numeric
version of the source character is then transferred.

If the Float flip flop equals 1, the numeric
equivalent of the source character is transferred to
the destination.

This operation continues for the number of
characters defined by the repeat field value.

This operator can be entered by the Execute
Single Micro operator, with the repeat field value
in the top word of the stack.

Skip Forward Source Characters (SFSC) D2
This micro-operator increments the source
pointer registers.

If this micro-operator or any of the following
Skip micro-operators is entered by the execution
of the Execute Single Micro operator, the number
of characters to be skipped is specified by the
operand in the top of the stack. If entry is by the
execution of the Table Enter Edit operators, the
number of characters to be skipped is specified by
the syllable following the micro-operator syllable.

Skip Reverse Source Characters (SRSC) D3

This micro-operator decrements the source

pointer registers.

Also see Skip Forward Source Characters
micro-operator, second paragraph.

Skip Forward Destination Characters (SFDC) DA

This micro-operator increments the destination
pointer registers.

Skip Reverse Destination Characters (SRDC) DB

This micro-operator decrements the destination
pointer registers.

Reset Float (RSTF) D4

This micro-operator sets the Float flip flop to 0.

92

End Float (ENDF) D5

This micro-operator transfers the character in
the second syllable of this operator to the
destination string if the Float flip flop contains a 0
and the External Sign flip flop is 1.

If the Float flip flop contains a 0 and the
External Sign flip flop also equals 0, then the
character in the third syllable of this operator is
transferred.

If the Float flip flop contains a 1, then it is reset
and no characters are transferred.

Insert Unconditional (INSU) DC

This micro-operator places an insert character
into the destination string for the number of times
specified by the repeat value. When entered by a
Table Enter Edit operator, the repeat value is in
the syllable following the micro-operator syllable,
and the insert character is in the next syllable.

If this micro-operator is entered by an Execute
Single Micro operator, the character to be inserted
is in the second syllable and the repeat value is
specified by the operand in the top of the stack.

Insert Conditional (INSC) DD

This micro-operator inserts a string consisting of
one of two characters into the destination string.
The length of the string is given by the repeat value
from the table or the stack.

If the Float flip flop contains a 0, the first insert
character is inserted into the destination string.

If the Float flip flop contains a 1, the second
insert character is inserted into the destination
string.

The insert characters follow the repeat value
syllable in Table Enter Edit operation or the
micro-operator syllable in Execute Single Micro
operations.

Insert Display Sign (INSG) D9

This micro-operator places in the destination
string the character defined by the syllable
following the micro-operator syllable, if the
External Sign flip flop is equal to 1.

If the External Sign flip flop is equal to 0, this
operator places in the destination string the
character defined by the third syllable of this
operator.

Insert Overpunch (INOP) D8

If the External Sign flip flop is equal to 1, this
micro-operator places a sign overpunch in the
destination string character of either 10 for BCL or
1101 for EBCDIC.

9-3

If the External Sign flip flop is equal to O, the
operator leaves the destination string character
unaltered.

End Edit (ENDE) DE

This operator terminates a string of Edit micro-

operators in Table Enter Edit operation mode.

The micro program string in the table must end
with the End Edit operator.

SECTION 1 ﬂ

INPUT/ OUTPUT

PROCESSOR AND PERIPHERAL CONTROLS

GENERAL

The internal processing speed of the B 6700 is
complemented by equally powerful input/output
(I/0) hardware to achieve a well-balanced com-
puting system. Transfer of all data between
memory and all peripheral devices is controlled
independently of the processor by the I/O pro-
cessor. A maximum of three I/O processors may be
attached to a B 6700, each one capable of pro-
cessing up to 12 I/O operations simultaneously,
from any of 128 peripheral devices.

OPERATION

A peripheral control bus extends from the I/O
processor to the various peripheral devices.
Attached along this bus are from one to 20
peripheral controls (figure 10-1). Information in

one or two-byte groups can be sent along the bus
to or from any peripheral control, every 1.2
microseconds.

Any processor can initiate an operation on any
I/O processor in a three processor/three I/O pro-
cessor configuration, by executing a Scan Out
instruction. This instruction transfers a function
word and a data word to an I/O processor. If the
function word specifies an Initiate I/O operation,
then the data word is an Area Descriptor. The I/O
processor fetches the I/O Control Word located at
the Area Base Address (from the Area Descriptor)
and initiates the peripheral operation. Upon com-
pletion of this operation, the I/O Finish Interrupt
is set. The Result Descriptor is returned when the
processor executes a Read Result Descriptor
command.

17010 1/O
CARD LINE UNITS OR SUB- :S:J%H
READER PRINT SYSTEMS REQ.
SMALL
PERIPH. CONTLS.
MODEL | MODEL ! ' CARD
B6110 | B 6240 PUNCH
170 10 P.C.
P.C. P.C. P.C.
“*INPUT/OUTPUT DATA * PERIPH. CONTL
PROCESSOR SWITCH eon:
CHNLS. APPROP. | APPROP. 170 10 APPROP. | APPROP.
TAPE TAPE TAPE DISK
p.C. P.C. P.C. FILE
) | P.C.
1 | I
CONSOLE
DISPLAY
M/T TERMINAL 2 X 10 EXCH.
CLUSTER B 9342-)

G

1 TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

Tota! per side is 10 with a
maximum of 5 large per side

ONLY ONE 1/O PROCESSOR
(LLUSTRATED

Figure 10-1. Input/Output Subsystem

10-1

DESCRIPTOR FORMATS

The formats of the function word, area
descriptor, and I/O control word, respectively, are
illustrated in figure 10-2.

47 0 0
UNIT
0 [NnO. Fl2Z
0
UM
44 20116]12) 8 4 0
FUNCTION WORD
IC 19
H
A BUFFER AREA
R LENGTH BASE
s WORDS ADDRESS
20 0
AREA DESCRIPTOR
43 (39 | 35
45
44 | 40 | 36 | 32 0

1/O CONTROL WORD

Figure 10-2. 1/0O Descriptor Formats
Function Word

When M of the function word equals 0, all active
I/O processors respond to the descriptor. When M
equals 1, the I/O processor specified by the Z field
responds to the command. (The three-bit Z field
designates a specific I/O processor.) When Z equals
001 and M is 1, I/O processor A is selected. When
Z equals 010 and M is 1, I/O processor B is
selected. When Z equals 100 and M is 1, I/O
processor C is selected. All other bit combinations
in the Z field are not used. F-field codes are listed
in table 10-1.

Area Descriptor

The area base address specifies the base address
of the memory area. Buffer length indicates the
size of the area. The first word of the area is the
I/O Control Word.

10-2

1/0 Control Word

The I/O Control Word contains a standard
control field and a unit control field. Bits 35
through 0, the unit control field, are unique for
each peripheral control. Bits 45 through 36, the
standard control field, are defined as follows:

Bit Assignment Bit=0 Bit=1
45 Attention No Yes
44 Read/write Write Read
43 Memory inhibit No Yes
42 Translate in unit No Yes
41 Frame length 6-bit 8-bit
40 Memory protect No Yes
39 Backward No Yes
38 Test No Yes
37 1001 (tag bit
36 0101 field)
l‘_— Store double-precision.

Store single-precision.

Store program tags.

Tag field transfer.

Table 10-1 F Field Codes

Scan F Bits I/O Processor
Oper. 8765 Operation

0000 Designated 1/O Processor to
initiate an I/O operation. Bits
16 through 9 contain Unit
Designate.

ouT 0011 Set the time-of-day-register.

0100 Set the interrupt mask
register.

0000 Interrogate I/O path for up-
coming initiate I/O
operation.

0001 Interrogate peripheral status
of the designated status
vector.

IN 0010 Read result descriptor.

0011 Read time-of-day register.

0100 Read interrupt register or
interrupt mask register.

0110 Interrogate peripheral unit
type.

1111 Read interrupt literal.

Result Descriptor

The format of the Result Descriptor is shown in
figure 10-3.

Bits 47:20 indicate the final memory address at
which the I/O operation terminated. Bits 16:17,
the error field, are subdivided into a standard error
field and a unit error field. The unit error field bit
assignments, bits 15:9, are unique for each peri-
pheral control. The standard error field bit assign-
ments, bits 6:7 and 16, are as follows:

PERIPHERAL UNITS AND
ASSOCIATED PERIPHERAL CONTROLS

Up to 256 I/O devices may be attached to a dual
or triple I/O processor system. These devices
communicate with the I/O processor through a
maximum of 20 peripheral controls. One
peripheral control cabinet houses 10 controls, five
large and five small. Table 10-2 lists the peripheral
controls available, excluding the magnetic tape and
disk file controls which are listed separately.

Console
Bit Assignment
I _— The Console Control Center (figure 10-4)
16 Memory Protection Error includes the Operator Display Terminal, which .
6 Memory Parity Error allows the operator to communicate with the
5 Memory Address Error system. The B 6341 Control connects the Console
4 Descriptor Error Control Center and the I/O processor. Up to eight
3 Not Ready Operator Display Terminals may be included in a
2 Busy system. Figures 10-5 and 10-6 depict the result
1 Attention descriptor and the 1/O Control word for the Single
0 Exception Line Control.
lCHA
C]
o | unm
MEMORY u | No. ERROR
ADDRESS N FIELD
T
44 28| 24 16 0
Figure 10-3. Result Descriptor Format
Figure 10-4. Console Control Center
Table 10-2. Peripherals and Controls
PC PC
Style Peripheral Units Style Type Peripheral Controls
BOll11 800 CPM Card Reader B 6110 Small Card Reader Control
B9112 1400 CPM Card Reader B6110 Small Card Reader Control
B 9120 500-1000 CPS Paper Tape Reader B 6120 Small Paper Tape Reader Control
B 9213 300 CPM Punch B 6212 Small Card Punch Control
B 9220 100 CPS Paper Tape Punch B 6220 Small Paper Tape Punch Control
B 9242-11 860 LPM Printer (120 Prt. Pos.) B 6240 Small Line Printer Control
B 9243-11 1100 LPM Printer (120 Prt. Pos.) B 6240 Small Line Printer Control
B 9342-1 Operator Display Terminal B 6341 Large Operator Display Control

10-3

47 27 15 11 |7
14 [10 | 6
25 17 | 13 9
28 | 24 16] 12 0

6:7 Standard error field
7 Memory access error
7 & 9 Information parity error
10 Control message
11 No ETX
12 Unit ID — B 9342-11
15 Time out
16 Memory protect error (read only)
24 : 8 Unit designate
27 :3 Character count
47:20 Memory address

Figure 10-5. Single Line Control Result Descriptor

43 | 39

42 | 38

41 | 37

44 | 40 | 36

45 = Attention

44 =1 read 40=0
= 0 write 39=0

43=0 38=0

42=0 37=0 -

41 =1 8bit 36=0 } tag-bit field

Figure 10-6. Single Line Control 1/0 Control Word

Card Reader

The B 6110 Card Reader Control can be used
with either the B 9111 (800 cpm) or B 9112 (1400
cpm) card readers (figure 10-7). The input hopper
and the output stacker have a capacity of 2400
cards each. The card readers accept alpha, binary
or EBCDIC card codes. The card reader converts
alpha card code to BCL, which is then converted
into internal BCL or EBCDIC by translators in the
I/O Processor. EBCDIC card code is converted to
internal EBCDIC by the B 6110 card reader
control. When binary punched cards are read no
translation is made.

The card readers can read 51-, 60-, or 80-column
punched cards. Optional features include the
ability to read 40-column Treasury checks and
round holes in Postal Money Orders. Cards of
varying thickness are acceptable; however, card
thickness and length must be consistent during any
one run. Figures 10-8 and 10-9 depict the I/O
control word and the result descriptor for card
reader operations.

Figure 10-7. Card Reader

42

41 | 37

44 | 40 |36
44 =1
40 = 1 Memory protect
39=0
38=0
Alpha EBCDIC
42 =1 42=0
41 =0 6 bit 41 =1
41 =1 8 bit
Binary
42=0 37 tag bit
41=0 36 field
37=0

Figure 10-8. Card Read 1/0 Control Word

47 27 7
10| 6
25 17 9
28 | 24 16 8 0

6:7 Standard error field
7 Memory access error
8 Read check
7 & 9 Validity error
10 Control card (alpha only)
16 Memory protect error
24 :8 Unit designate
27:3 Character count
47:20 Memory address

Figure 10-9. Card Read Result Descriptor
Card Punch

The B 6212 Card Punch Control is used with the
B 9213 Card Punch (figure 10-10), which can
punch either binary, alpha, or EBCDIC code at a
rate of 300 cards per minute. Pre-punched cards
may be used, but previously punched columns
cannot be repunched. The card punch has a

Figure 10-10. Card Punch

105

1000-card capacity input hopper, and three output
stackers (primary, auxiliary and error) which have
a capacity of 1200 cards each. Stacker selection is
accomplished programmatically. Figures 10-11 and
10-12 depict the I/O control word and the result
descriptor for the card punch operation.

42| 38
a7
44 36 | 32
44 =0 37 tag bit
38=0 36=0 field
32 =1 Auxiliary stacker
BCL
42 =1
41 = 0 (6-bit internal frame size)
Binary
42=0
41=0
37=0
EBCDIC
42=0

41 = 1 (8-bit internal frame size)

Figure 10-11. Card Punch 1/O Control Word

47 27 7
10] 6
25 17 »
28| 24 0

6:7 Standard Error Field
7 Punch Check
7 & 10 Memory Access Error
24:8 Unit Designate
27:3 Character Count
41:20 Memory Address

Figure 10-12. Card Punch Result Descriptor

Line Printers

Two basic line printers (figure 10-13) are avail-
able for use on the B 6700 system. The B 9242-11
prints 860 lines per minute (LPM) and the
B 9243-11, 1100 LPM. Both printers are available
with either 120 or 132 print positions. OCR
printers are also available with printing speeds of
725 LPM and 900 LPM. All printers have vertical
skipping and end-of-page formatting controlled by
a punched paper tape and include the forms
self-align feature. The B 6240 Line Printer Control
connects the printer to the I/O Processor. Trans-
lators in the I/O Processor convert internal BCL or
EBCDIC into BCL for transmission to the printer
control. Figures 10-14 and 10-15 show the Printer
I/O control word and the printer result descriptor.

Figure 10-13. Line Printer

43 35| 3

42138 [34| 30

41137 |33

44 36 |32

44=0
43 =0 Print

Space — Inhibit data transfer

42 =1 Translate to BCL

41=0 6Dbit{ [nternal frame size
= 8 bit

38=0

10-6

37 tag bit
36=0 % field
35:4 Skip to Channel 1 =) 11
31 =1 Double space é only if 35:5
'30=1 Single space) equalszero
Figure 10-14. Line Printer 1/0 Control Word
47 27 7
6
25 17 9
28 | 24 12 8 0
6:7 Standard error field
8:2 Bit transfer error
10:1 Print check
11:1 Low paper
12:1 End of page
24:8 Unit designate
27:3 Character count
47:20 Memory address

Figure 10-15. Line Printer Result Descriptor

Magnetic Tape Subsystem

A magnetic tape subsystem can include from
one to four tape controls servicing from one to 16
magnetic tape units. Within a single tape system all
tape units must be used at the same speed, and all
controls must be of the same type.

A magnetic tape exchange is required when
more than one control or more than six magnetic
tape units are used.

The number of magnetic tape units on a system
is limited only by the number of exchanges and
peripheral controls employed. The user may
choose either 7-channel or 9-channel tape. These
may be intermixed, provided this is not attempted
on the same subsystem. The user may also select
any of four packing densities up to 1600 bits per
inch and transfer rates from 9000 to 400,000 bytes
per second.

A choice of physical construction may be made
between free standing devices which house one
tape unit per cabinet (figure 10-16), or the cluster
unit (figure 10-17), which houses up to four tape
units per cabinet. The magnetic tape units are

Figure 10-16. Free-Standing Magnetic Tape Units

capable of reading and spacing in either a forward
or reverse direction. Table 10-3 lists the available
magnetic tape subsystems. Figure 10-18 shows
possible configurations of these subsystems.

Figure 10-17. Cluster Tape Unit

Table 10-3
Available Magnetic Tape Subsystems

Style

Description

Magnetic Tape Units

B 9381-12
B 9381-13
B 9381-14

B 9381-22
B 9381-23
B 9381-24

B 9382-12
B 9382-13
B 9382-14

B 9382-22
B 9382-23
B 9382-24

18 KB Cluster, 2 Station, NRZ, 9-Channel, 800 BPI
18 KB Cluster, 3 Station, NRZ, 9-Channel, 800 BPI
18 KB Cluster, 4 Station, NRZ, 9-Channel, 800 BPI

36 KB Cluster, 2 Station, NRZ, 9-Channel, 800 BPI
36 KB Cluster, 3 Station, NRZ, 9-Channel, 800 BPI
36 KB Cluster, 4 Station, NRZ, 9-Channel, 800 BPI

36 KB Cluster, 2 Station, PE, 9-Channel, 1600 BPI
36 KB Cluster, 3 Station, PE, 9-Channel, 1600 BPI
36 KB Cluster, 4 Station, PE, 9-Channel, 1600 BPI

72 KB Cluster, 2 Station, PE, 9-Channel, 1600 BPI
72 KB Cluster, 3 Station, PE, 9-Channel, 1600 BPI
72 KB Cluster, 4 Station, PE, 9-Channel, 1600 BPI

B 9383-12
B 9383-13
B 9383-14

18/36 KB Cluster, 2 Station, NRZ/PE, 9-Channel, 800/1600 BPI
18/36 KB Cluster, 3 Station, NRZ/PE, 9-Channel, 800/1600 BPI
18/36 KB Cluster, 4 Station, NRZ/PE, 9-Channel, 800/1600 BPI

Table 10-3 (Cont'd.)
Available Magnetic Tape Subsystems

Style Description

Magnetic Tape Units (cont.)

B 9383-22 36/72 KB Cluster, 2 Station, NRZ/PE, 9-Channel, 800/1600 BPI
B 9383-23 36/72 KB Cluster, 3 Station, NRZ/PE, 9-Channel, 800/1600 BPI
B 9383-24 36/72 KB Cluster, 4 Station, NRZ/PE, 9-Channel, 800/1600 BPI

B 9391 18/50/72 KC, Free-Standing Unit, 7-Channel, 200/556/800 BPI

B 9392 72 KB, Free-Standing Unit, 9-Channel, 800 BPI

B 9393-1 144 KB, Free-Standing Unit, 9-Channel, 1600 BPI
B 9393-3 240 KB, Free-Standing Unit, 9-Channel, 1600 BPI

B 9394-1 24/66/96 KC, Free-Standing Unit, 7-Channel, 200/556/800 BPI
B 93942 96 KB, Free-Standing Unit, 9-Channel, 800 BPI

B 9495-5 320 KB, Free-Standing Unit, 9-Channel, 1600 BPI

B 9495-6 400 KB, Free-Standing Unit, 9-Channel, 1600 BPI

Magnetic Tape Subsystem Controls, Exchanges and Features
B 6381-11 18/36 KB NRZ Control, 9-Channel (For B 9381-12, 13, 14, 22, 23, 24)

B 6381-12 36/72 KB PE Control, 9-Channel (For B 9382-12, 13, 14, 22, 23, 24)

B 6381-14 18/36 KB DUAL NRZ Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) (For B
9381-12, 13, 14, 22, 23, 24)

B 6381-15 36/72 KB DUAL PE Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) For
B9382-12, 13, 14, 22, 23, 24)

B 6381-16 DUAL NRZ/PE Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) (For B 9383-12,
13, 14, 22, 23, 24)

B 6391-3 72KC Control, 7-Channel, (For B 9391)

B 6391-4 96KC Control, 7-Channel, (For B 9394-1)

B 6393-1 72KB Control, 9-Channel, (For B 9392)

B 6393-2 144/240 KB Control, 9-Channel, (For B 9393-1,-3)

B 6393-3 96KB Control, 9-Channel, (For B 9394-2)

B 6395-5 320/400 KB Dual Control, 9-Channel, (For B 9495-5, -6)

B 6490 2 x 10 Exchange (For B 9391, B 9392, B 9394-1, -2)

B 6492 4 x 16 Exchange (For B 9391, B 9392, B 9394-1, -2)

B 6493-1 1 x 8 Common Electronics Exchange (For B 9393-1, -2)

B 6493-2 2 x 8 Common Electronics Exchange (For B 9393-1, -2)

B 6495-1 Basic Electronics/Exchange, 2 x 8 (For B 9495 Series Only)

B 6495-2 Electronics/Exchange Extension, up to 4 x 16 (For B 6495-1)

B 6680-1 7-Channel NRZ Control Adapter (1 required per 7-Channel Port) (For B 6381-11, 14)
B 9989-1 7-Channel NRZ Station Adapter (For B 9381-12, 13, 14, 22, 23, 24)

10-8

LARGE PERIPHERAL CONTROLS

| INPUT/OQUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC PC PC PC PC PC PC PC
10R2
TAPE 2X8 1706
CLUSTERS TAPE EXCH. FREE
STANDING
10R2
TAPE
ICLUSTERS] _l
1 [1-16
: : FREE -
] © Q STANDING
FREE - o3 fof UNITS
STANDING ~ W i~
UNITS % <
- -
/ 1708
FREE FRE
STANDING
UNITS STANDING
2x8
TAPE EXCHANGE 4 X 16 TAPE EXCHANGE J
_‘ INPUT/OUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC PC PC PC PC PC PC PC
LARGE PERIPHERAL CONTROLS
1-16 1-16
= FREE -) FREE -
oV STANDING o U STANDING
o UNITS ok UNITS
- - &
< <
Ll 1 X 8 COMMON =
ELEC. EXCH.
1-2
TAPE
1-6 \ CLUSTERS
FREE -
STANDING
UNITS
2x8
TAPE EXCH.
INPUT/OUTPUT TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE TAPE
PROCESSOR PC PC PC PC 9 PC PC PC PC PC

Figure 10-18. Magnetic Tape Configuration

10-9

Figure 10-19 shows the B 6700 magnetic tape
I/O control word used to depict the various types
of magnetic tape operations listed in table 10-4.
When an operation is finished, the result descriptor
returned is shown in figure 10-20.

Table 10-4
Magnetic Tape Operations

OPERATION STANDARD CONTROL FIELD
44 43 42 4] 40 39 38 37 3
READ B8CL 1 0 1 @ @ 0
READ BINARY 1 0 0 0 @ 0
READ EBCDIC 1 0 0 1 @ 0 @
SPACE 1 1 @ 0
WRITE 8CL 0 0 1 @ 0 0 @
WRITE BINARY 0 0 0 0 0 0 @
WRITE EBCDIC 0 0 0 ! 0 0 @
ERASE [1 @ @ 0 0 @
WRITE T™M 0 0 0 0
REWIND 0 1 1 0
TEST 1
BIT 35 =0 AND 34 = |
@=1lor0
43| 391 35| 31 | 27| 23
42f 38| 34|30 2
4 [37|33 29
441 40 | 36132 | 28 16
44 =1 Tape read
=0 Tape write
43 =1 Memory inhibit
42 =1 Translate
41=0 6 bit; =1 8 bit
40=1 Memory protect
39=0 Forward; = 1
backward
38=0
37:2 Tag bit field
35:2 Equal to zero

Figure 10-19. 1/0 Control Word Magnetic Tape

33:4 Format

1000 800 BPI
1010 555 BPI (7-track only)
1100 200 BPI

1111 1600 BPI (9-track only)

0000 Unit-selected density
30 = 0 (even parity)
=1 (odd parity)
@®=1lor0

9 Track Read only

29 =1 CRC Correcticn

28:2 If 29 = 1 then track to be corrected.
Space Only

23:8 decimal value of number of records to

be spaced, 100 max.

Figure 10-19. 1/O Control Word Magnetic Tape (cont.)

47 27 1511 |7
14 10| 6
25 17 |73 [9
28 | 24 16 1121 8 0
6:7 Standard error field
7 Memory access error
8 End of tape or beginning of tape
9 Read - end of file; write - lock out
10 Incomplete record
11 Oversized record

11:2 Density (test only)

00 — 800 BPI
01 — 200 BPI
10 — 555 BPI
11 — 1600 BPI

7&10& 11 Mag tape parity error

12 CRC correction possible, bits 15:3
defines track

13 Non-present option
14 Unit is in a rewind when bit 12 is off

Figure 10-20. Magnetic Tape Result Descriptor

10-10

15

16
24:8
27:3
47:20

Six-ft. blank tape

Memory protect error (read only)
Unit designate

Character counter

Memory address

Figure 10-20. Magnetic Tape Result Descriptor (cont)

Disk File Memory Systems

The Disk File Memory Systems are extremely
high-speed, modular, random information storage
systems. A basic system consists of one electronics
unit and from one to five storage units (see figure

10-21). If more than one basic subsystem is used,
then an exchange may be installed to connect the
two subsystems to a disk file control. Figure 10-22
shows various disk file configurations allowed on a
B 6700 system. The exchanges involved are located
within the auxiliary cabinets that are attached to
the peripheral control cabinets. All of the disk file
controls are the large size controls; therefore, they
must be located only in positions O through 4 in
the peripheral control cabinet.

The various types of disk file memory systems
and their capacities and speeds are indicated in
table 10-5. Figures 10-23 and 10-24 indicate the
disk file I/O control word and the disk file result
descriptor.

I
STORAGE MODULES

ELECTRONICS UNIT

Figure 10-21. Basic Disk File Subsystem

10-11

LARGE CONTROLS

INPUT/OUTPUT - - DISK FILE | DISK FILE - DISK FILE | DISK FILE | DISK FILE | DISK FILE
PROCESSOR PC PC PC PC PC PC PC PC PC

DISK FILE
PC

| I

L 2 x 10 EXCH.] l N, x N, EXCHANGE —l

170 20
ELECTRONICS UNITS

170 5
DISK MODULES

PER
ELECT. UNIT

IR N . 1 TO 20 ELECTRONICS UNIT
1105 1705 ’
DISK MODULES DISK FILE MODULES
PER ELECTRONICS PER
UNIT ELECTRONICS UNIT
1705
DISK
MODULES
1 ELECT. UNIT
LARGE CONTROLS
INPUT/OUTPUT DISK FILE | DISK FILE | DISK FILE - - - - . . .
PROCESSOR PC PC PC PC PC PC PC pC e rC
e
gi 4
0RO, ez
998z |of% Ny x Ny
—2Y5 =5 EXCHANGE
¥o -4
ag =
o
LARGE CONTROLS [
INPUT/OUTPUT - DISK FILE | DISK FILE - - - - - - DISK FILE
PROCESSOR PC PC PC PC PC PC pC PC PC PC

Figure 10-22. Disk File Configurations

10-12

Table 10-5
Disk File Memory System Types

Style Description

Head-Per-Track Disk Files

B 9379-20 20 Million Byte, 23 ms Disk File (Includes 1 DFEU)

B 9379-21 20 Million Byte, 23 ms Increment for B 9379-20 (4 max. per B 9379-20)
B 9379-30 20 Million Byte, 40 ms Disk File (Includes 1 DFEU)

B 9379-31 20 Million Byte, 40 ms Increment for B 9379-30 (4 max. per B 9379-30)
Head Per-Track Memory Banks

B 9375-1 100 Million Byte, 23 ms (Ineludes 1 DFEU)

B 9375-2 20 Million Byte, 23 ms Increment for B 9375-1

B 9375-4 100 Million Byte, 40 ms (Includes 1 DFEU)

B 9375-5 20 Million Byte, 40 ms Increment for B 9375-4

Disk File Electronics Units

B 9371-8 Optional Additional DFEU for B 9379-20, B 9375-1

B 9371-9 Optional Additional DFEU for B 9379-30, B 9375-4

Disk File Controls, Exchanges and Features

B 6373 Disk File Control

B 6471 N1 x N2 Disk File Exchange (Up to 4 x 20)

B 6471-5 Control Adapter (N1 Side, up to 4 per B 6471)

B 6471-6 EU Adapter (N2 Side, up to 20 per B 6471)

B 6471-7 Exchange Extension (For over 10 DFEU’s)

B 6473 1 x 2 Disk Exchange

Disk File Optimizer and Features

B 6375 Basic Disk File Optimizer (DFO) (Includes 8 Words of DFO Memory)
B 6675-1 DFO Memory Increment of 8 Words (32 Words Maximum)

B 9971-11 DFSU Adapter for DFO (1 required per DFSU controlled by DFO)

43|39 3 44 =0 .

” 43=0 s Write

“1% 42=0 No translation

44 140 | 36 0 41 =1 8-bit characters
44 = 1 . 40 =1 Memory protect
43=0 % Disk file read 39 =1 Maintenance segment
37 Tag bit

44 =1 36 % Field

s Read check

43 =1 31:24 Disk file address (decimal)

Figure 10-23. Disk File 1/0 Control Word
10-13

47

27

25

28 | 24

7&9
11

15

16
24:8
27:3
47:20

Standard error field

Memory access error or read error or write
lockout

Unit busy

Write lock out

Disk read error

Went not ready

Time out

Memory protect (read only)
Unit designate

Character counter

Memory address

Figure 10-24. Disk File Result Descriptor

:

seprENnNN

Figure 10-25. B 9120 Paper Tape Reader

10-14

Paper Tape

The B 9120 Paper Tape Reader (figure 10-25) is
capable of reading punched paper tape at a rate of
1000 characters per second and metalized mylar
tape or fanfold tape at a rate of 500 characters per
second. Baudot and BCL to EBCDIC code trans-
lation is automatic. All other codes are read
directly into memory and may be translated
programmatically. The reader can accommodate 5-,
6-, 7-, or 8-channel tape as selected by the
operator. Tape widths of 11/16, 7/8, or 1 inch are
interchangeable.

Figure 10-26. B 9220 Paper Tape Punch

The B 9220 Paper Tape Punch (Figure 10-26) is
capable of punching a standard paper tape format
in either BCL or Baudot code. The punch accom-
modates 5-, 6-, 7-, or 8-channel tape at a maximum
rate of 100 characters per second, punching 10
characters to the inch. Standard tape widths of
11/16, 7/8, and 1 inch may be used in either the
oiled paper tape, dry paper tape, metalized mylar
tape, or laminated mylar tape.

Each paper tape 1/O control, reader or punch,
can accommodate only one paper tape unit. The
controls are the small-size controls which can be
set into a PCC cabinet as either a right hand or a
left hand control.

Figure 10-27 indicates the paper tape control
word and the various paper tape —operations
possible on the B 6700. Figure 10-28 indicates the
paper tape result descriptor.

43139135

42 |1 38 | 34

37

44 36

44 =1 Tape read
=0 Tape punch
43 =1 Inhibit data transfer
42 =1 Translate
39 = 0 Forward; = 1 backward
38 =1 Test
37:2 Tag field bits

35 & 36 Formats:
10 - 8 bit no parity bit
00 - 7 bit information plus 1 parity bit
01 - 6 bit information plus 1 parity bit

Punch — low tape
7&9
10 Incomplete record

Read — tape parity error

16 Memory protect error

Figure 10-28. Paper Tape Result Descriptor

Disk-Pack Drive Memory System

The Magnetic Actuator Disk-Pack Drive Memory
Systems are extremely high-speed, modular,
random information storage systems. A basic disk-
pack drive memory subsystem includes the
disk-pack drive controller, dual disk-pack drive,
and the interconnecting cables. (See figure 10-29.)

44 43 42 41 40 39 38 37 36 35 34
READ BCL 1 0 1 0 0O 0 0 O O 0 1
READ BINARY 10 0o 0O 0 0 0 O O 0 o
WRITE BCL 0 0 1 0 0 0 0 O 0 0 1
WRITE BINARY o 0 o 0 0 0 0 O 0 O O
PUNCH LEADER 0o 1 c O 0 0 O 0
FWD SPACE 1 1 @) o 0 0
BKWD SPACE 1 1 @] | 0 0
REWIND 0o 1 1 0

Figure 10-27. Paper Tape 1/0 Control Word and Operations

47 27 7
0] 6
25 17 9
28 | 24 16 8 0

6:7 = Standard error field

7 Memory access error or tape read parity
error

8 Read — EOT or BOT

Figure 10-29.
Disk-Pack Drive and Disk-Pack Drive Controller

The controller acts upon I/O instructions from
the B 6700 I/O processor, powers the disk-pack
drive, and transfers information between disk-pack
drives and the B 6700 I/O processor. The con-
troller performs the operation specified by the OP
code (and variants) of the I/O descriptor, and, at
the completion of the operation, generates a result
descriptor which contains operation and/or error
status information.

10-15

The disk-pack drive controller with single access
capabilities may be used with eight disk-pack
spindles (four dual drives) in a one-by-eight con-
figuration, or two groups of eight disk-pack
spindles (eight dual drives) in a one-by-16
configuration. Selection of each group is deter-
mined by a variant in the I/O descriptor. The
disk-pack drive controller with dual access
capability may be used in a two-by-eight configura-
tion in which the disk-pack drive controller con-
tains two internal control units. This allows the I/O
processor to execute two simultaneous operations
(two reads, two writes, or a read and a write). This
configuration can be expanded to a two-by-16
configuration. See figure 10-30 for a subsystem
block diagram.

BASIC
sst?EM‘ [CONTROLLER "l
1 x8

POWER
SEQUENCIN
UNIT

SINGLE DISK-PACK DRIVE CONTROLLER

=== |
1 I
BASIC H :
10 —
SYSTEM CONTROLLER '--—-‘:-—-- o7
Pt
.1"__‘:.--- \ ._,/
PR L
- , \
Elx fI H)
é - N
EEvl I J oniell S
x A
% = EXIM N | % [
G 1—
E|% [—
* [—
* DRIVE
g
T0 L § BASIC
-t POWER
SYSTEM CONTROLLER S EQUENCING!
UNIT
DUAL DISK-PACK DRIVE CONTROLLER

Figure 10-30. Disk-Pack Subsystem Block Diagram

Each disk pack contains 11 disks and 20
recording surfaces, each surface accessed by an
individual arm from the actuator. Each disk surface
contains 406 tracks. (See figure 10-31 for details of
the recording surfaces.)

TRACK

CYLINDER

ACCESS ARMS

DISK

READWRITE SURFACES
HEADS
w0

Figure 10-31. Disk-Pack Recording Surfaces

The data transfer is bit-serial. The maximum
byte capacity, transfer rate, and other pertinent
information for the various disk-pack subsystems
are presented in table 10-6. Figures 10-32 and
10-33 delineate the disk pack I/O control word and
the disk-pack result descriptor, respectively.

10-16

DISK
PACK
DRIVE
STYLE
NO.

DESCRIP-
TION

AVERAGE

Table 10-6.

Disk-Pack Subsystem Characteristics

STORAGE
CAPACITY PER

DISK-PACK DRIVE DATA

ACCESS AVERAGE MULTI- FULL

TIME
(MS)

TRANS-

LATENCY SECTOR TRACK FER
(MS) MODE* MODE*

RATE

PACK DATA

MAX.

RECORDING TRACK
DENSITY DENSITY STYLE

(BPI)

(TPD)

DISK-
PACK

NO.

B 9484-3

B 9485-3

B 9486-3

B 94844

B 94854

B 94864

B 948645

Dual drive
with single

access disk-

pack drive
controller
(B6380-1)

Dual drive
with simul-
taneous

access disk-

pack drive
controller
(B 6380-2)

Dual drive
add on
increment
without
disk-pack
drive
controller

Dual drive
wtih single
access disk-
pack drive
controller
(B6383-1)

Dual drive
with simul-
taneous

access disk-

pack drive
controller
(B6383-2)

Dual drive
add on
increment
without
disk-pack
drive
controller

Add on
increment
without
disk-pack
drive
controller

*Million eight-bit bytes

30

30

30

30

30

30

30

12.5

12.5

12.5

12.5

12.5

12.5

12.5

95.5 121.0

95.5 1210

95.5 1210

174 4 2420

174 4 2420

1744 2420

87.2 1210

10-17

3125KB

312.5KB

312.5KB

625.0KB

625.0KB

625.0KB

625.0 KB

2200

2200

2200

4400

4400

4400

4400

200

200

200

200

200

200

200

B 9974-1

B 9974-1

B 9974-1

B 99744

B 99744

B 99744

B 99744

44143[142141)|40| 39| 38{37]36(35|34|33(32|31|30]29(28|27]26{25]| 24
WRITE ojofof1{ofoflofl@|o|o]|F|vs|va|valvi]o| olss]ss|ss|s
READ 11010 1[@]0[00| 0|0][F1|Vg|Va|Va|Vi| 0| 0]|Sg|S4[S2]|S;
TEST 0000001000F1000000V8V4V2V1
INITIALIZE| 0 {0 [0 | 100|000 1[F|vs|va|va[vi|o|o|si|sa|s2]s;
VERIFY Ljojo|1|efofloflo|o|1|Fr|Vg|valValvi]o]o]si]sa]sals
RELOCATE | 0 {1 [0| 1] 0| 0| 0[0|0|0]|F;|Ng/Na[NaNi| 0 0]sg|salsa]sy

F=0 standard format (33 sectors per track) F=1 single sector per track format

WRITE:
S1=1 Initiate conditional seek

S1 =0 Initiate unconditional seek

S2 =1 Disable automatic restore function
following a seek run condition

Sq4=1 Execute a parity check on all sectors
written upon completion of write
operation

V4=1 Reserved for file protect memory
(FPM)

Vg =1 Enable EBCDIC-ASCII translator

READ:
S1 =1 Initiate conditional seek

S1 =0 Initiate unconditional seek

S4=1 Read binary address field only into
memory address specified" by begin
memory address (A).

S4 =0 Initiate normal read

S2 =1 Disable automatic restore function
following a seek error condition

S8 =1 Disable error correction
Vi=1
Vo=1
Vg =1 Enable EBCDIC-ASCII translator.

Reserved for FPM

TEST:
Vi=1 Power down (take off line) the
selected drive for pack removal

Write test data pattern in each sector
as specified at the begin address

Initialize entire pack

Initialize designated cylinder
Initialize designated track

Verify entire pack and terminate
on first error encountered

Verify and report all errors within the
designated cylinder

Verify and report all errors within the
designated track

Verify data bits by comparing with
16-bit data pattern beginning at the
begin address

Verify test data pattern within an
initialize

Disable automatic restore function
following a seek error condition

INITIALIZE:
Vga=1
Vi=0
Vo2=0
Vi=1
Vo=1

VERIFY:
Vi=0
Vo2=0
Vi=1
Vi=0
Vo=1
Vg=1
Vg=1 g
V4=0
Sy =1

RELOCATE:

N=1=>5

Spare sector in 28 through 32 on the
designated cylinder

Figure 10-32. Disk-Pack 1/0 Control Word (10CW)

10-18

Result Descriptor

A result descriptor is generated by the controller
at the completion of each I/O operation. This de-
scriptor is stored in a fixed location of reserved
memory dependent on the I/O channel that is being
used.

NOTE

An automatic restore function (restore
heads to cylinder 000) is normally per-
formed on all I/O operations when either
a seek time-out or seek error condition
occurs,

The format of the result descriptor is:

Bits [1[2[3|4|5|6|7|8[9|1o|11|12|13|14|15|16J

The bit assignments for the result descriptor are:

BITS SET DESCRIPTION

Operation complete
Exception condition

Disk-pack not ready or 'unsafe"

3, 4 Control cleared during operation
4 Data error (data error on read, or
memory parity error on write)
4, 5 Memory access error
4, 5, 9 Transmission parity error
4, 8 Memory interface parity error
4, 9 Speed error
4, 10 Reserved (FPM)
5 Address parity error
5, 6 First action with drive
5, 7 Write lockout
5, 8 Sector time-out (see note above)
5, 9 Address position error (verify)
5, 10 Reserved (FPM)
6 Drive seeking

6, 7 Invalid command descriptor
6, 8 Seek initiated
7, 8

Single bit error correction

8 Seek error (see note above)
8, 9 Seek time-out

9 Disk-pack drive busy (time-out)
9, 10 Reserved (FPM)

10, 11, 12 Disk-pack drive identification
during test operations

15, 16 Processor identification (test)

13, 14, 15, Unit designate (all operations
16 except test)

Figure 10-33. Disk-Pack Result Descriptor Format

10-19

SECTION 1 1

B 6700 DATA COMMUNICATIONS SYSTEM

GENERAL

The B 6700 Data Communications System is
comprised of one or more of each of the following
units:

1. Data Communications Processor (DCP).
Each B 6700 I/O Processor accommodates up
to four DCP’s through the word interfaces.
The word interfaces provide access to the
B 6700 main memory.

2. Adapter Cluster.

One Adapter Cluster services up to 16 Line
Adapters which may have dissimilar character-
istics. A maximum of 16 Adapter Clusters
may be connected to one DCP. It is also
possible to connect an Adapter Cluster
between two DCP’s. This allows the Adapter
Cluster to be serviced from either DCP.

3. Line Adapter.
Each communication line requires at least one
Line Adapter. With some types of terminals
two Line Adapters may be required. Up to 16
Line Adapters are accommodated by one
Adapter Cluster.

The B 6700 Data Communications System can
service a maximum of 2048 communications lines.
A typical system configuration with only two
processors and two 1/O processors illustrated is
shown in figure 11-1.

DATA COMMUNICATIONS PROCESSOR (DCP)

The Data Communications Processor (DCP) is a
special purpose processor. It handles the trans-
mitting and receiving of messages over the many
data communications lines. A part of that task is -
answering calls, terminating calls, observing the
formal line disciplines, polling operations and the .
formatting of messages.

PERIPHERAL CONTROL BUS

1-16 ADAPTER CLUSTERS

1-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS |

MEMORY | | MEMORY MEMORY
MOC])ULE MO%ULE MOS)%JLE T T T t
— DATA
| 1/0 SWITCHING
1 PROCESSOR | CHANNELS
upPTO 4-10
32
MODULES
] PROCESSOR
[1
|
! PROCESSOR
1 2
!
|
| DATA
] 1/0 SWITCHING
PROCESSOR |CHANNELS
4-10

PERIPHERAL CONTROL BUS r]_] r|_l rL| l‘Ll (J'L
ADAPTER | | ADAPTER ADAPTER
CLUSTER CLUSTER LUSTER
= W CLUSTE
COMMUNICATIONS
PROCESSOR
DATA
COMMUNICATIONS v
PROCESSOR 1-16 ADAPTER CLUSTERS
DATA T T 1
COMMUNICATIONS ADAPTER ADAPTER | [ADAPTER
PROCESSOR CLUSTER CLUSTER CLUSTER
J J o
DATA 1-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS .
COMMUNICATIONS
PROCESSOR

Figure 11-1. B 6700 System Configuration Including Data Communications.

111

Q

Q¥om| 41vH 4 _ _
O34 QYOM L AYOWIW ,_qsﬁ Vi x_> a _<_ OV VY
SNOILDNYISNI I Ll Ut ||
r _ r QYoM JTVH) J
1§ J
SY¥IISNVYL QYOM J1VH
Z AIOWIW
AV1dSia ALIAVd
lllllllllllllll .
T | |
) Al |
_ ¥31SIOT QIOM J [IERE [V][dO}- - »NoOILv¥Id0 |
A J} avean ! " _, _
4 —-——
<z : \ NOILDT13S
=] I S ntebe |
331193y
Jrtr-—-+ ¥ _
| NOLVISNVY] | f]
14921901 | [I # y /v *
Lowvilans-aavl, l
Y 3STIAAVY \ \
(o=t 53HaN
| “ 4
] f] L -
~———— 4Vd ROLVas \ R 1“
TO4INOD _ —] Al lx w | [ovl [ve IDVAIINI
$S3DDV L AJONaW - daLsmo _
Tty " [vai JLC- L=
I (XdW VIA = 153135 | 31Ae
“ IDVHEINT | \
SNg AYOWIW %
! 0049 4 “VA' P —_ 43USION - —— - — — —
L 2 T Ss3yaav H -——
00£9 ¢ D e
P T
| SNENvDs | N
- vl
L_0o8 | R e
XdW OL TO4INOD

L1dNYYIINT «— I NVOIS ONV
LdNYY¥IINI

I — — » NIO©38 Ol HONVig

Figure 11-2. DCP Block Diagram.

11-2

The DCP is a stored program computer which
obtains its program instructions either from
B 6700 main memory or from an optional local
memory. Through the use of the local memory the
throughput of the DCP is significantly increased
due to the reduction in instruction fetch time.

If the optional local memory is not present, the
DCP shares the B 6700 system main memory with
the other units of the B 6700. Memory allocation
for the DCP is controlled by the B 6700 Master
Control Program. Data exchanges occur when the
B 6700 processor initiates a DCP operation and
when the DCP finishes an operation, i.e., I/O
complete signal from the DCP.

The internal form of the DCP is shown in figure
11-2. The DCP is an elementary micro-programed
processor. Two-address and three-address instruc-
tions, operating on eight-bit bytes, are used by the
DCP. The byte organization fits into a basic
half-word (three byte) structure permitting
efficient half-word transfers within the DCP. The
functions of the DCP are accomplished with a

small array of intercommunicating registers, a
simple arithmetic-logical unit and an eight-word |
scratch pad memory.

For complete information on all DCP registers
and memories, refer to the Data Communications
Processor Reference Manual (form 1054384).

ADAPTER CLUSTER

The Adapter Cluster is the interface between the
DCP and the data-communication Line Adapters.
Each Adapter Cluster services up to 16 Line
Adapters. Data transmission rates of from 45.5 to
4800 BPS are handled simultaneously by the
Adapter Cluster.

Figure 11-3 shows a block diagram of the .
Adapter Cluster. The Adapter Cluster basic func- |
tions are:

1. Line termination: clocking and
temporary storage.

scanning,

SUBSYSTEM

CLOCK (5 MHz).

IC MEMORY = 48 BITS/ADAPTER

31415(6](7

REAL TIME
CLOCK AND
DESIGNATE
CONTROL

8

9 t1of11 12|13 15

CROSSPOINTS

~ ok

ADAPTER SWITCHING MATRIX
TO AND FROM 16 LINE ADAPTERS

/ /
/ || ocrh
B C |—»
- A \ nyay
* e R le—| | DCP*2
-
\ MAINTENANCE

S l

=

=

8

! Y 1 p
9

BERR

||

BEEREE

ADAPTER INTERFACES TO AND FROM 16 DATA COMMUNICATION LINES
Figure 11-3. Adapter Cluster.

11-3

. Character assembly and disassembly.
. Synchronization attainment and maintenance.
. Timer operation to maintain line discipline.

wn bW N

. Some character recognition. (Mainly synchro-
nization characters for the various line
disciplines.)

6. Information exchange with one or two DCP’s.

The Adapter Cluster functions in a manner that
makes it appear transparent to most characters and
message formats. However, as stated in item (5)
above it does recognize the synchronization
characters in order to attain and retain synchroni-
zation when operating in the synchronous mode.

LINE ADAPTER

The Line Adapter types that are provided allow
the DCP to interface with data sets, Voice
Response Systems and the direct connection to
remote devices. Each Line Adapter terminates one
line. The Line Adapter handles the exchange of
bits or characters between the Adapter Cluster and
the data communication line. The buffer of each
Line Adapter contains either one bit or one
character, depending on the type. Table 11-1
shows a table of terminal compatibility.

For more detailed information on all phases of
the Data Communications Processor, refer to the
Data Communications Processor Reference Manual
(form 1054384).

Table 11-1
Data Communications Terminal Compatibility
Modem
Leased | Switched | Conn. | Asynch. | Synch. | Type Speed Range
TWX Service X X 811B | Up to 150 BPS
W. E. Model 33 X X X 103 Up to 110 BPS
W. E. Model 35 (also 8A1 X X X 103 Up to 110 BPS
Sel Calling)
W. E. Model 37 X X X 103 Up to 165 BPS
B 9353 Series Display X X X X 103, Up to 2400 BPS
202 or
201
B 9352 Series Display X X X X 103, Up to 2400 BPS
202 or
201
Model 28/83B3 (or equiv. X X X Up to 110 BPS
Western Union Service)
TC 500 Terminal X X X X 202 Up to 1200 BPS
B 300/B 340/B 500 X X X X 201 Up to 2400 BPS
B 2500/B 3500/B 4700 X X X X 201 Up to 2400 BPS
B 5500/B 5700 X X X X 201 Up to 2400 BPS
Honeywell 120 X X 201 Up to 2400 BPS
IBM 1030 X X X 202 Up to 14.8 CPS
Automatic Calling Unit X 801

GENERAL

This section describes the functional
characteristics for the Disk File Optimizer used
with the B 6700 Information Processing Systems.
The optimizer functions to optimize the transfer of
information between a processor of the B 6700
System and its associated disk file subsystem in
order to improve the transfer rate. The optimizer
communicates with the B 6700 via the scan bus,
and with the disk file subsystem directly, or
indirectly via another optimizer. Figure 12-1 shows
the relationship of the optimizer to the other units
in the B 6700 System.

SECTION 1 2

DISK FILE OPTIMIZER
FUNCTIONAL CHARACTERISTICS

Functional Performance Characteristics

The basic functions of the optimizer are:

1. Accumulate control words from the B 6700
with each control word representing a disk
transfer operation.

2. Select the optimum control word from among
the accumulated control words to minimize
access time to the disk file (queuing).

3. Transmit the optimum control word to the
B 6700 upon request.

DFC
#o

OFC
#

DP
#o0

DFC

1/0 —T— oo 4 X 20
PROC]

EU
#0

OPTIMIZER |
7 #o

EU
o

-

o [| DFC
#3

PCC#0

P CCH

DFC

EV

DFC
#1 =

1/0

PROC
2 < [:;c 1
2

#0

H

OPTIMIZER

I

EV
#i9

|_J

OFC
#3

NOTE: For illustrative purposes only, a two processor, two 1/0 processor system is shown.

Figure 12-1. The Optimizer in the B 6700 System.

The function of the optimizer is to optimize
access time for the disk file controllers sharing the
B 6700. Figure 12-2 depicts all of the devices that
interface with the optimizer.

Components

The optimizer consists of the following func-
tional units:

1. Input/Output (I/O) Interface Unit.
2. Disk Address Unit.
3. Queuing Unit.

4. MDL Interface Unit.
OPERATIONAL CHARACTERISTICS
Accumulation of Control Words

The B 6700 sends a control word to the
optimizer by performing a scan-out operation. The
optimizer checks the control word function code;
if the code is acceptable, the desired disk starting
address portion of the control word is converted
from binary-coded decimal format to the time
equivalent of the desired starting segment address
(desired shaft position). After this conversion, the
control word is stored in the optimizer stack
memory. The optimizer stack is of sufficient size
to accumulate 32 control words. The following
depicts the format of a control word in the
optimizer stack:

47 2827 222120 1615 1312 10
lML,SP |E|EU| SUIDSPI;IFIELD
where:
ML [47:20] Memory link.
SP [27:6] Spare bits. Not used.
E [21:1] = 1 Exchange designate disk
exchange B.
= 0 Exchange designate disk
exchange A.
EU [20:5] Electronics unit number (EU).
SU [15:3] Storage unit number (SU).
DSP [12:12] Desired shaft position.
S [0:1] Shaft bit. (Differentiates the

two shafts of a storage unit,
when applicable.)

12-2

EU#0

DIAGNOSTIC
PROCESSOR

EU #9

MDL INTERFACE UNIT

EU #10

DP

1/0
INTER-

A =

|
|
B 6700 ! [
|
I

| QUEUING | orsx EU# 19

ADDRESS
UNIT

FACE

unir | UNT
B 6700 |

to
PROC

OPTIMIZER # 0 Eu#o0

]

1

EU# 9

EU# 10

T

EU# (9

OPTIMIZER # |

Figure 12-2. Optimizer Interfaces.

Queuing The Control Words

A search for the optimum control word stored
in the optimizer stack begins when the first control
word from the bottom of the optimizer stack is
read. The EU and SU numbers and the exchange
bit of the control word, are used to gate actual
shaft position information of the addressed storage
unit from the desired EU into the optimizer. A
comparison between the desired and actual shaft
positions is then made. If the actual shaft position
subtracted from the desired shaft position is a
positive number greater than a certain minimum
value, called the threshold, the difference, called
delta, and the optimizer stack address of the
control word are inserted into the Delta A or the
Delta B register, as specified by the control word
exchange bits. (Threshold value will be determined
by the total MCP/hardware subsystem response
time, which starts with the receipt of the control
word from the optimizer and extends through the
disk starting segment number comparison by the
controller.) The other control words stored in the
optimizer stack undergo the same process

sequentially from the bottom of the stack. As each
word is processed, if a delta is generated which is
smaller than the contents of the appropriate Delta
register, and greater than the threshold, the smaller
delta replaces the larger one in the register. The
optimizer continuously scans through its stack of
accumulated control words, when it is not engaged
in control word transfers at the I/O processor
interface. A complete pass through the list of
accumulated control words constitutes a stack scan
cycle.

Stack Operation

A control word suitable for execution by the
disk system (a queued control word) is not sent to
the. I/O processor until the optimizer has
completed at least one full scan through its
memory stack since the last scan-in or scan-out
operation. If, during the middle of a scan cycle, a
scan-in operation (referencing an exchange) occurs,
the optimizer restarts the scan cycle at the
beginning and does not send a queued control
word (referencing the same exchange) until at least
one full scan cycle has been completed. If,
however, during the middle of a scan cycle, a
scan-out operation (referencing an exchange)
occurs, the optimizer continues that scan cycle and
does not send a queued control word (referencing
the same exchange) until at least that scan cycle
has been completed.

Stack Erasure And Compression

'When a control word is transmitted to the I/O
processor, this word is erased from the optimizer
stack. Erasure is accomplished by transferring the
word at the top of the optimizer stack into the
location marked for erasure. The top-of-the-stack
pointer is then decremented by one.

Optimizer Dump

The optimizer has the capability of executing a
read top-of-the-stack instruction. The Optimizer
Dump function is implemented by successive
applications of this instruction. When the function
code defines a read top-of-stack instruction, this
then becomes the next operation. Then, whether
the referenced EU is busy or not, the command
word located at the top of the optimizer stack is
transmitted to the I/O processor, unless a
malfunction is to be reported. '

Degraded Mode Operation

If one optimizer or I/O processor fails,
optimizing responsibility for the disk file sub-
system will be assumed by the remaining optimizer
and 1/O processor. Thus, the following situation
may prevail:

1. Access to any disk file will still be possible via
the remaining optimizer/I/O processor pair
(optimizer or I/O processor failure). '

2. The remaining optimizer will be able to queue
jobs involving any of the disks (optimizer
failure).

3. The remaining I/O processor will continue to
be able to transfer control words to and from .
either optimizer (I/O processor failure).

EU Conflict Resolution

Logic exists to prevent both optimizers of an
optimizer pair from accessing the same EU bus
simultaneously. The optimizer-to-optimizer signals
required to implement this conflict resolution are
described later in this section.

INTERFACE REQUIREMENTS
Interface With The 1/0 Processor

The I/O processor communicates with the
optimizer for the following reasons:

1.To send a control word to the optimizer
(store control word request).

2. To request a control word selected by the
optimizing process to govern the execution of .
the next disk transfer (optimized control |
word request).

3.To receive an optimized control word from .
the top of the optimizer stack (top-of-the-
stack control word request).

4.To clear the optimizer stack (clear-the-stack
request). '

The I/O processor interface communications are .
accomplished with a scan-out sequence for output -
operations and with a scan-in sequence for input
operations.

Control Word

Each control word sent to the optimizer
contains the following information:

1. Desired Disk Starting Address. Eight bits of
the desired disk starting address are used to
define the desired exchange and EU, The
remaining 26 bits are used to define the
desired SU, shaft (if applicable), face, zone,
track and segment.

. Function Code. The function code, together
with the Scan Write Control (SWRC) signal, is
used to define one of the operations.

. Memory Link. The memory link points to an
address in main memory wherein the disk
operation is defined. This address is returned
to the I/O processor and identifies the next
disk operation to be performed.

Scan-Out

When the MCP has a control word for the
optimizer, the MCP initiates the scan-out sequence
by making the Scan Write Control (SWRC) line
come true, and it then sends a Scan Request
(SREQ) signal to the optimizer as indicated in
figure 12-3. If the optimizer stack is not full, the
optimizer responds by making its Scan Ready
(SRDY) signal come true. At this time, the
information being sent to the optimizer is available
on the interface lines: 20 bits are transferred on
the Scan Address SA (00 thru 19) lines, and 48 bits
are transferred on the Scan Information SI (00
thru 47) lines. Two odd parity bits accompany the
signals received from the I/O processor: Scan
Address Parity Level (SAPL) for signals SA (00
thru 19), SREQ, and SWRC; and Scan Information
Parity Bit (SI51) for signals SI (00 thru 47). The
optimizer indicates receipt of the signal by making

SCAN - OUT SIGNAL SEQUENCE

NEW SCAN

r

SIGNAL ((_
A
SREQ
(C
1)
SRDY
((
)]
SA(00 - 19)
(C
)]
SAPL
(C
))
SWRC
SAOX
STEX
(C
)7
SI(00 - 47)
c
)
SIS}

NOTE

a. SREQ must be off at least one clock between scans (after the fall of SOAX).
b. SRDY must be held on for at least one clock after SAOX is turned on.
c. Since the system in asynchronous, the processor may recognize SAOX and drop its signals later than

shown.

Figure 12-3. Scan-Out Signal Sequence.

12-4

the Scan Access Obtained (SAOX) signal come
true. If the optimizer detects a parity error during
transmission of the control word, it will make the
Scan Transmission Error (STEX) signal come true.

Scan-In

When the MCP requests a control word from the
optimizer, the MCP initiates the scan-in sequence
by keeping the Scan Write Control (SWRC) line
low, while sending a Scan Request (SREQ) signal
to the optimizer, as indicated in figure 12-4. The
optimizer responds by raising its Scan Ready
(SRDY) signal. At this time, control information is
transferred to the optimizer over the 20 Scan
Address lines SA (00 thru 19), and a Parity signal
(SAPL) is sent to the optimizer to maintain odd
parity on signals SA (00 thru 19), SREQ, and
SWRC. The optimizer responds by generating a
Scan-In word, the contents of which are
determined by the status controls, together with an
odd parity signal for this word (SI51) and raises

SCAN-IN SIGNAL SEQUENCE

the Scan Access Obtained (SAOX) signal to inform
the I/O processor that the control word is available
on the interface lines. In addition, if the optimizer
detected a parity error during the transmission of
control information over the 20 SA (00 thru 19)
lines, it makes the Scan Transmission Error (STEX)
signal come true at this time.

Scan Bus Data Format

Data is transferred on the scan bus over the
uni-directional (I/O processor to optimizer) Scan
Address lines and over the bi-directional Scan
Information lines.

SCAN ADDRESS LINES (SA)

The following is the B 6700 Scan Address line
word format:

19 16 15 87 635 43 0
I DT l EUD l SP [FC l SP :l FIELD

NEXT SCAN

SIGNAL {t l/r
1]
SREQ
L
]}
SRDY
_{L
11J
SA(00-19)
{L
77
SAPL
SWRC
SAOX
STEX
$1(00-47)
SISl

NOTE

a. SREQ must be off at least one clock between scans (after the fall of SOAX).
b. SRDY must be held on for at least one clock after SAOX is turned on.
c. Since the system is asynchronous, the processor may recognize SAOX and drop its signals later than

shown.

Figure 12-4. Scan-In Signal Sequence.

125

where:

DT [19:4] Device Code 1001 selects the

Type optimizer.
EUD [15:8] Electronic Defines the exchange
Unit and the EU number
Designate associated with the

job.

SP [7:2] Spare Not used.

[3:4] Spare Not used.
FC [5:2] Function Defines the operation
Code requested by the I/O
processor as follows:
a. During a scan-out
operation (SWRC

signal is high), the
coding of this field
has the following
significance:

Code 01 defines a
Store Control Word
request.

Code 10 defines a
clear-the-stack

request.
b. During a scan-in
operation (SWRC

signal is low), the
coding of this field
has the following
significance:

Code 01 defines an
Optimized Control
Word request.

Code 10 defines a
Top-of-the-Stack
Control Word
request.

SCAN-OUT INFORMATION LINES

The word format of the B 6700 scan-out infor-
mation lines is as follows:

28 27 26 25

ML DA

0
—’ FIELD

12-6

where:

ML [47:20] Memory Defines the complete

link memory address. Bit
47 is the most-
significant bit.
SP [27:2] Spare Not used.
DA [25:26] Disk Defines the six BCD
Address characters plus the two

expansion bits of the
desired disk starting
address, not including

the desired EU or
desired disk file
exchange (DEX).

SCAN-IN INFORMATION LINES (SI)

The word format of the B 6700 scan-in informa-
tion lines is as follows:

47 4039 2726 76 10
L SR | Sp l ML] SP I A—I FIELD
where:
SR [47:8] Status Contains codes
report describing the
nature of the op-
timizer response.
SP [39:13] Spare Not used.
[6:6] Spare Not used.
ML [26:20] Memory The complete
link memory address.
A [0:1] Attention When set to 1 alerts

the MCP to examine
the SR field.

Dynamic Interaction With The B 6700

During communications with the MCP while any
one or more of the conditions listed below is
applicable, the optimizer responds as described in
the following paragraphs:

Optimized Control Word request.
Top-of-Stack Control Word request.
Store Control Word request.
Clear-the-Stack request.

First stack scan cycle incomplete.

Arithmetic Address
busy.

A

Converter (AAC)

. No access to the Optimizer Exchange
(OEX).

SU not available.

Optimizer Stack (OS).

Control Word (CW) not available.
Scan bus parity error.

8.

9.
10.
11.
12.
13.
14.

OS parity error.
Disk address errot.
OS full.

OPTIMIZED CONTROL WORD REQUEST

If the MCP requests a queued control word
(referencing an exchange) during a scan-in
operation and the optimizer has an optimized
control word (referencing the same exchange)
ready for transmission, the optimizer responds
with the memory location of that control word
and an appropriate status code. (The optimizer
obtains the memory location by reading a control
word from the OS, from the location determined
by the appropriate Delta register at the topmost
filled position of the memory stack and the stack
scan-information (SI) register, DAR or DBR.)

TOP-OF-STACK CONTROL WORD REQUEST

If the MCP requests the control word located at
the topmost filled position of the OS and the stack
is not empty, the optimizer responds with the
memory location of that control word and an
appropriate status code.

STORE THE CONTROL WORD REQUEST

If the MCP requests a control word be loaded
into the OS (via the scan-out operation), the
optimizer responds by accepting that control word,
sends the DA portion of the control word to the
AAC section for processing (unless unable to do so
because of an error condition), and then stores the
control word in the OS in the format indicated
above.

CLEAR-THE-STACK REQUEST

If the MCP requests the OS be cleared (via a
scan-out operation), the optimizer sets TSR to the
position indicating an empty optimizer stack
location, thus effectively erasing the OS. All
error-detecting flip flops previously set are reset.

127

FIRST STACK SCAN CYCLE INCOMPLETE

If the MCP initiates an Optimized Control Word
request (referencing an exchange) prior to the
completion of a full stack scan cycle since the last
scan bus operation (referencing the same exchange)
with that optimizer, the optimizer answers the
SREQ signal of the I/O processor with a SRDY
signal, and then waits until completion of a scan
cycle before sending an Optimized Control Word
accompanied by an SAOX signal.

ARITHMETIC ADDRESS CONVERTER
(AAC) BUSY

If the MCP performs a scan-out operation while
the AAC section of the optimizer is still busy
converting the control word it received during the
previous scan-out operation, the optimizer
responds to the SREQ of the I/O processor signal
with an SRDY signal. The optimizer then waits
until completion of the address conversion before
accepting the new control word along with the
SAOX signal.

NO ACCESS TO OEX

If the optimizer does not receive a strobe
(accompanying the time equivalent of angular shaft
position) from an EU, in response to a request for
shaft position information, the optimizer
immediately stops optimizing and responds in the
following manner. If the next scan bus operation is
a Store Control Word request, the optimizer will
process the new control word in the normal
manner and load it into the optimizer stack.
Subsequent Store Control Word requests (if any)
are similarly processed. A Clear-the-Stack request is
also honored, if it occurs. However, when a request
for an Optimized Control Word or a Top-of-Stack
Control Word takes place (and a Clear-the-Stack
request has not occurred), the optimizer responds
with the memory location of the control word
associated with the No-Access-To-OEX error and
an appropriate status code. Optimizing then
resumes.

SU NOT AVAILABLE

If, during optimizing, in response to a request .
for shaft position information, the optimizer does
not receive an SU Ready level, the optimizer '
immediately halts and the following occurs. If the .
next scan bus operation is a Store Control Word |
request, the optimizer processes the new control

word in the normal manner and loads it into the
optimizer stack. Subsequent Store Control Word
requests (if any) are similarly processed. A
Clear-the-Stack request is also honored, if it occurs.
However, when a request for an Optimized Control
Word or a Top-of-the Stack Control Word takes
place (and a Clear-the-Stack request has not
occurred), the optimizer responds with the
memory location of the control word associated
with the SU Not Available error and an appropriate
status code. Optimizing then resumes.

OPTIMIZER STACK (OS) EMPTY

If the MCP requests an optimized control word,
referencing an exchange, and the OS does not
contain control words referencing the same
exchange; or if the MCP requests the control word
from the top-of-the-stack and the OS is completely
empty (contains no control words), the optimizer
responds with a memory location of all 0’s and an
appropriate status code.

CONTROL WORD NOT AVAILABLE

If, after completion of a full stack scan cycle,
the MCP requests an optimized control word
(referencing an exchange), and one is unavailable
for transmission because all of the control words
stored in the OS (referencing the requested
exchange) reference EU’s which are busy, the
optimizer returns a memory link of all 0’s and an
appropriate status code (unless an error condition
is to be reported).

SCAN BUS PARITY ERROR

If, during a scan-out operation, the optimizer
detects a parity error on either the Scan Address
lines or the Scan Information lines, the optimizer
responds with an SRDY signal and then an SAOX
signal accompanied by an STEX signal. The
optimizer loads the received control word into the
OSR and ignores it; that is, the new control word
will not be sent to the AAC for processing nor will
it be loaded into the optimizer stack. If, during a
Scan-In operation, the optimizer detects a parity
error on the Scan Address lines, the optimizer
responds with a SRDY signal, then an SAOX signal
accompanied by a STEX signal, and by a memory
link of all 0’s.

12-8

OPTIMIZER STACK (OS) PARITY ERROR

The optimizer generates a parity bit for each
control word loaded into the OS. Parity is checked
whenever a control word is read from the OS. If an
OS parity error is detected, optimizing is halted
immediately and the optimizer responds in the
following manner: If the next scan bus operation is
a scan-out, the optimizer will process the new
control word in the normal manner and load it into
the OS. Subsequent scan-out operations, if any, are
similarly processed. A Clear-the-Stack request will
be honored, if it occurs. However, when a request
for an Optimized Control Word or Top-of-Stack
Control Word takes place (and a Clear-the-Stack
request has not occurred), the optimizer responds
with the memory link of the control word
associated with the error and an appropriate status
code. Optimizing then resumes.

NOTE

The memory link may not be valid at this
time.

DISK ADDRESS ERROR

The AAC section of the optimizer checks if the
EUD or DA portions of the last received control
word contains one of the following error
conditions:

1. The Electronic Unit Designate (EUD) or Disk
Address (DA) portion of the control word is
not properly coded (BCD), either when it is
received by the AAC or subsequently during
the conversion process.

. During conversion, it is determined that the
number of SU’s exceeds five, or the number
of faces exceeds eight, or the number of
tracks exceeds 50.

Then, the optimizer immediately halts address
conversion and optimizing. Consequently this
control word is not loaded into the optimizer
stack, and the optimizer responds in the following
manner: If the next scan bus operation is a Store
Control Word request, the optimizer will not
respond (that is, the SRDY signal is low). A
Clear-the-Stack request will be honored, if it
occurs. However, when a request for an Optimized
Control Word takes place (and a Clear-the-Stack
request has not occurred), the optimizer responds
with the memory link of the control word
associated with the Disk Address Error and an
appropriate status code.

OPTIMIZER STACK FULL

If the MCP inaugurates a Store Control Word
request scan-out operation (by sending the SREQ
and SWRC signals with the appropriate function
code), and the optimizer stack is full, the optimizer
does not respond; that is, it keeps the SRDY signal
low.

DISK INTERFACE

The disk file subsystem (DFS) consists of
electronics units (EU’s) and their associated storage
units (SU’s). Each optimizer has the capability to
communicate directly with up to 20 EU’s
associated with one disk file exchange (by means
of two 10-EU busses); each optimizer can also
communicate indirectly with up to 20 EU’s
associated with another disk file exchange via
another optimizer, as depicted in figure 12-5. In
normal operation, each optimizer is restricted to
direct communication with its associated 20 EU’s
but each optimizer does have the ability to access
all 40 EU’s (on a pair of disk exchanges), if
necessary.

v |
#0
OPTIMIZER #0 f
T o
| o 3
| o #9
a 24 x
| o v O
o v K
| I p N
| S R
K ET ~ A
s
I3 @ v
| #10
t . 4 %20
: Max
®l© :
#19
olo
EU
(#0
:
. D
OPTIMIZER # 1 .
|| Eu E
#9
24 x
| a
| o Pwu
0
|
by = (o &
e € 2 Ev
| s #10
| s - 4 x20
| : Max
L v |
#19

Figure 12-5. The Disk File Subsystem (DFS) Interface.

12-9

The following signals, which the optimizer sends
and receives on the disk file subsystem interface,
are also shown in figure 12-6:

1. Signals sent directly to the DFS.

.Signals sent to the DFS via the other -
optimizer.

. Control signals sent to the other optimizer.
. Signals received directly from the DFS.

. Signals received from the DFS via the other
optimizer.

Signals Sent Directly To The
Disk File Subsystem

The following signals are sent directly to the
disk file subsystem:

1. Select 1. This signal enables communication
between the optimizer and the first set of 10
EU’s on the disk file exchange normally
associated with this optimizer. The EU’s use
this signal to gate out information from the
desired SU to the optimizer.

. Select 2. This signal enables communication .
between the optimizer and the second set of |
10 EU’s on the exchange normally associated -
with this optimizer. The EU’s use this signal -
to gate out information from the desired SU
to the optimizer.

.EU select 1. These signals are transmitted over
four lines to define one of 10 EU’s designated
by select 1.

. SU select 1. These signals are transmitted over
four lines to define one of five SU’s in the EU .
referenced by EU select 1, and one of two
shafts, when applicable.

. EU select 2. These signals are transmitted over
four lines to define one of 10 EU’s designated
by select 2.

. SU select 2. These signals are transmitted over
four lines to define one of five SU’s in the EU
referenced by EU select 2, and one of two
shafts, when applicable.

Signals Received Directly From The
Disk File Subsystem

The following signals are received directly from:
the disk file subsystem:

1. Shaft position 1. This is the output of a 12-bit

counter containing the time equivalent of the
angular shaft position of the desired SU
referenced by SU select signal 1.

2. Shaft position 2. This is the output of a 12-bit
counter containing the time-equivalent of the
angular shaft position of the desired SU
referenced by SU select signal 2.

3. Strobe 1. This signal indicates the existence of
valid information on the 12 shaft position 1
lines.

4. Strobe 2. This signal indicates the existence of
valid information on the 12 shaft position 2
lines.

5. Storage unit ready level 1. This signal
indicates that the SU referenced by SU select
1 has power up, is up to speed, is on-line, and
is otherwise operational.

6. Storage unit ready level 2. This signal
indicates that the SU referenced by SU select
2 has power up, is up to speed, is on-line, and
is otherwise operational.

7. EU busy 1. This signal indicates that the EU
referenced by EU select 1 is busy.

8. EU busy 2. This signal indicates that the EU
referenced by EU select 2 is busy.

Signals Sent To The Disk File Subsystem
Via The Other Optimizer

The following signals are sent to the disk file
subsystem via the other optimizer of an optimizer
pair:

1. Select 3. This signal enables communication
between the optimizer and the first set of 10
EU’s on the DFX not normally associated
with this optimizer, via the other optimizer.
The EU’s use this signal to gate out
information from the desired SU to the
optimizer.

2. Select 4. This signal enables communication
between the optimizer and the second set of
10 EU’s on the disk file exchange not
normally associated with this optimizer, via
the other optimizer. The EU’s use this signal
to gate out information from the desired SU
to the optimizer.

3. EU select 3. These signals are transmitted over
four lines and define one of 10 EU’s
designated by select 3.

4. SU select 3. These signals are transmitted over

four lines and define one of five SU’s in the
EU referenced by select 3, and one of two
shafts, when applicable.

. EU select 4. These signals are transmitted over

four lines and define one of 10 EU’s
designated by select 4.

. SU select 4. These signals are transmitted over

four lines and define one of five SU’s in the
EU referenced by select 4, and one of two
shaft, when applicable.

Signals Received From The Disk File Subsystem
Via The Other Optimizer

The following signals are received from the disk
file subsystem via the other optimizer:

L.

Shaft position 3. This is the output of a 12-bit
counter containing the time equivalent of
angular shaft position of the desired SU
referenced by SU select 3.

. Shaft position 4. This is the output of a 12-bit

counter containing the time equivalent of
angular shaft position of the desired SU
referenced by SU select 4.

. Strobe 3. This signal indicates the existence of

valid information on the 12 shaft position 3
lines.

. Strobe 4. This signal indicates the existence of

valid information on the 12 shaft position 4
lines.

. Storage unit ready level 3. This signal

indicates that the SU referenced by SU select
3 has power up, is up to speed, is on-line, and
is otherwise operational.

. Storage unit ready level 4. This signal

indicates that the SU referenced by SU select
4 has power up, is up to speed, is on-line, and
is otherwise operational.

. EU busy 3. This signal indicates that the EU

referenced by EU select 3 is busy.

. EU busy 4. This signal indicates that the EU

referenced by EU select 4 is busy.

Signals Sent To The Other Optimizer

The following control signals are sent to the
other optimizer:

12-10

1. Access request. This signal requests access

to an EU normally associated with the
other optimizer.

Access granted. This signal enables the
other optimizer to access an EU not
normally associated with it, if the bus to
the requested EU is not being used.

. Shaft position 1. Identical to the signals
described above.

Shaft position 2. Identical to signals
described above.

Strobe 1. Identical to signals described
above.

Strobe 2. Identical to signals described
above.

. Storage unit ready level 1. Identical to
signals described above.

Storage unit ready level 2. Identical to
signals described above.

EU busy 1. Identical to signals described
above.

10. EU busy 2. Identical to signals described

above.

Signals Received From The Other Optimizer

The following control signals are received from
the other optimizer:

1. Access granted. This signal enables the
optimizer to access an EU not normally
associated with it, if the bus to the requested
EU is not being used by the optimizer
normally associated with it (the other
optimizer).

. Access request. This signal, from the other
optimizer, requests access to an EU not
normally associated with it.

.Select 1. This signal indicates a request to
raise the signal described above.

.Select 2. This signal indicates a request to
raise the signal described above.

. EU select 1. This signal indicates a request to
raise the signal described above.

. SU select 1. This signal indicates a request to
raise the signal described above.

. EU select 2. This signal indicates a request to
raise the signal described above.

. SU select 2. This signal indicates a request to
raise the signal described above.

12-1

FUNCTIONAL UNITS

The optimizer consists of the components °
specified earlier. Figure 12-6 is a block diagram of .
the optimizer. It details the sections, (other than °
the MDL interface unit) which compose each .
functional unit, and illustrates their
inter-relationship.

1/O Interface Unit

The 1/O Interface Unit communicates with the
MCP; it accepts control words from the MCP and
returns control words and status reports to the
MCP. The following sections are included in this
unit:

1. Drivers and receivers (DR and RX).
2. Scan bus controls.

3. Control word (CW) checker.

4, Status controls.

DRIVERS (DR) AND RECEIVERS (RX)

The lines involved in the optimizer/B 6700
interface constitute the scan bus. The scan bus |
lines were discussed previously. The DR and RX
sections provide the optimizer with the capability .
of driving and receiving all of the optimizer/B 6700
interface signals.

SCAN BUS CONTROLS

The receipt, processing and transmission of the .
control signals of the optimizer/B 6700 interface is :
performed under the supervision of the scan bus .
controls.

CONTROL WORD (CW) CHECKER

The CW Checker examines the scan interface :
lines in order to determine if the scan operation is:
addressed to the optimizer. If so, the CW Checker !
then checks to see if a scan parity error exists.

STATUS CONTROLS

The Status Controls store information defining
optimizer response to the request at the B 6700
interface, and load the Status Report (SR) field of ©
the Scan-In word with a code to describe the:
response. The Status Controls monitor the condi-.
tions listed below, load the Memory Link (ML):
field of the Scan-In word with the information:
indicated below, and set the indicated bit of the!
SR field:

mMINEpEare Ve, T e - - A
['1/0 NTERFaCE | | OPTIMIZER UNIT 1 loisk |
| UNIT | IADDRESS i
| || UNIT e TOLELE: R
spEq r‘@* SBCL‘: | OPTIMIZER STACK _CONTROLS | | EU SEL 18 2 ;lEGNrfrALs
SRDY © I mOa ON- ‘t‘?J STACK —r.—“ L TO DFS
m@%—: @—{rRos| | | |G suseiz OIRECTLY
SCAN-BUS SAPL,STEX OPTIMIZER | OPTIMIZER/
SIGNALS SWRC ®® l: 11 CON- ! @lswr POS 182 g‘-’g
SI1(00-47) o - FLICT | v
SIS0 ® I ’ ~ RESOL- STROBE 18 2
—-ﬁm—'@_—’c l 'I‘ 1 1 | I UTION _:_@)'__—- E:%%'é?‘list;o
v = | | Il (et ter 182 (R
|5 [cweneexer l o0sR
|18 11 I [@.sum.naz
s I I o|! SEL 38 4
! H-G)EL28s.
| | I || R ' SioNALS
| e ¥ I | [t o
v
Ik r L e i Hr@mmses |, JESTE
| v | CORNERTER I s L1 (G2)eSHAPT POS 384
status |, | | |
| s CONTROLSL H Il 8 | (R)eSlR0BE3B4 RECEIVED
ik I ! STECS
I I I | R @ 'Eu BUSY 38 4 " OTHE';!
l | I E SURL 38 o OPTIMIZER
c 364
| i | I el ACC REQ & OPTIMIZER/
| l ' 1 —l—@i‘:_ﬂ-—. OPTIMIZER
| ’ : | I : ! @ SHAFT POS 182 8us
I R STROBE 1 @ 2 SIONALS
| | I s fE@emeety ten
IMIZER
| |' I ’®EUBUSY|82 R OoPT
[| | II @ SURL 182 /
| (| ACC REQ &
| | | | | (:).Acc GR
| .
' I | | SEL 182 SIGNALS
' | ¥ I
EUSELIB 2
o ¥ | O e
SUSEL 182
!______.!L. ________ _lL___._:J_l /

Figure 12-6. Optimizer Block Diagram With Interface Signals
(Omitting The Maintenance Diagnostic Interface)

Memory | Status

Status Condition Link Report
No access to OEX ACW* 47
SU not available ACW* 46
OS parity error ACW* 45
Disk address error ACW* 44
Optimized control word ACW#* 43
Top-of-stack control word ACW* 42
Stack empty Zeros 41
Control word not available Zeros 40

*Associated Control Word — control word
associated with the generation of the status

report.

12-12

Disk Address Unit

The Disk Address Unit activates the Address
Select lines to indicate the desired EU and SU, and
receives shaft position and control signal informa-
tion from the selected EU. This unit includes the
following:

1. Drivers and receivers (DR and RX).
2. Electronics units conflict resolution.
3. Actual shaft position register (ASPR).

DRIVERS AND RECEIVERS

Capability to address and receive signals from up
to 20 EU’s directly, and up to 20 EU’s indirectly,
is provided by the Drivers and Receivers discussed
above.

EU CONFLICT RESOLUTION

The EU Conflict Resolution previously defined
is used in the EU Conflict Resolution discussed
above.

ACTUAL SHAFT POSITION
REGISTERS (ASPR)

The time-equivalent of the angular shaft position
of the desired SU of the desired EU is stored in the
ASPR.

Optimizing Unit

The Optimizing Unit is capable of accumulating
up to 32 control words and selecting the best one
in terms of minimum access time. This unit
includes the following:

. Arithmetic address converter (AAC).
. Optimizer Stack (OS).
. Optimizer Stack register (OSR).

.Stack Controls. Top-of-the Stack register
(TSR), and Optimizer Address register
(OAR).

. Delta Generator and Comparator (DGC).

. Delta A register (DAR) and Delta B register
(DBR).

Timing controls.

B W —

(%]

7.
ARITHMETIC ADDRESS CONVERTER (AAC)

The AAC accepts the 26 bits of the disk address
made available to the optimizer during a Scan-Out
operation. This information is in BCD format and
consists of the desired disk starting address other
than the desired exchange number (A or B) and the
desired EU number. The AAC converts this infor-
mation into the desired SU number, and a 12-bit
binary number representing the desired starting
segment number in terms of the time-equivalent of
angular shaft position of the desired SU. The AAC
performs the conversion by successively
subtracting, from the number obtained from the
OSR, constants obtained from a configuration card
which defines the type of the SU and from
parameter cards which define the storage capa-
bilities of the SU type. (The optimizer can accom-
modate disk systems consisting of a mix of up to
four SU types: 1C-3, IC-4, IC-5, and II-B; however,
all SU’s attached to a given EU must be of the
same type.) In this manner, the AAC calculates the

12-13

desired segment number. The segment number is
then converted into the corresponding shaft posi-
tion, expressed in segments of time, taking into
account the SU type and the zone of the disk
address. After conversion, the SU number (three
bits) and the shaft position information (12 bits)
are loaded into the OSR along with the EU number
(five bits) and exchange bit.

OPTIMIZER STACK

The optimizer stack provides storage for up to
32 control words. The disk starting address portion
of these control words is compatible in format
with the addresses received from the SU’s.

OPTIMIZER STACK REGISTER (OSR)

The OSR acts as a link to the optimizer stack.
Control words to be written into the stack are first
loaded into the OSR.

Control words stored in the stack may, when
desired, be read into the OSR. The OSR also acts
as the link to the scan bus by receiving and
transmitting the data interchanged on that bus.

STACK CONTROLS (TSR AND OAR)

The stack controls and the TSR and OAR
selections supervise writing into or reading from
the optimizer stack, indicate the extent to which
the stack is occupied, and find the stack location
of the current interest.

STACK CONTROLS. Overall supervision of .
writing into or reading from the optimizer stack is °
performed by the stack controls.

TOP-OF-THE-STACK REGISTER (TSR). The
TSR indicates the extent to which the optimizer
stack is occupied by registering the topmost
position of the stack which is occupied. As a
control word is added to the optimizer stack, the
TSR is incremented by 1. Whenever a control word
is erased from the stack, the TSR is decremented
by 1.

OPTIMIZER ADDRESS REGISTER (OAR). The
OAR points to the optimizer stack location .
currently being used.

DELTA GENERATOR AND
COMPARATOR (DGC)

The DGC accepts the desired shaft position from
the OSR and the actual shaft position from the .

ASPR. It then generates a delta, compares this
delta with the delta stored in the appropriate Delta
register, DAR or DBR, and stores the smaller of
the two deltas in the proper Delta register, DAR or
DBR. The DGC erases a stored delta when it
becomes obsolete.

DELTA A REGISTER AND DELTA B
REGISTER (DAR AND DBR)

The DAR contains the best control word (in
terms of minimum access time) referencing
Exchange A. Similarly, the DBR contains the best

12-14

control word referencing Exchange B. In either
case, a control word is referenced by storing its
optimizer stack address and its delta, in the DAR
and DAB respectively. Each Delta register has a
flag associated with it, indicating that an optimized
control word is available.

TIMING CONTROLS

The Timing Controls of the optimizing unit
provide the overall basic timing coordination for
consistent operation and initiate operation of the
various functional units at the proper time.

NAME

ADD

BIT RESET

BIT SET

BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL

CHANGE SIGN BIT

COMPARE CHARACTERS EQUAL DESTRUCTIVE
COMPARE CHARACTERS EQUAL, UPDATE

COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE

COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS GREATER, UPDATE

COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARE CHARACTERS LESS, DESTRUCTIVE
COMPARE CHARACTERS LESS, UPDATE

COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS NOT EQUAL, UPDATE
CONDITIONAL HALT (all modes)
COUNT BINARY ONES

DELETE TOP OF STACK

DISABLE EXTERNAL INTERRUPT
DIVIDE

DUPLICATE TOP OF STACK
DYNAMIC BIT RESET

DYNAMIC BIT SET

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

DYNAMIC BRANCH UNCONDITIONAL
DYNAMIC FIELD INSERT

DYNAMIC FIELD ISOLATE

DYNAMIC FIELD TRANSFER
DYNAMIC SCALE LEFT

DYNAMIC SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT ROUND
DYNAMIC SCALE RIGHT SAVE

A-1

MNEMONIC

ADD
BRST
BSET
BRFL
BRTR
BRUN
CHSN
CEQD
CEQU

CGED

CGEU
CGTD
CGTU

CLED
CLEU
CLSD
CLSU

CNED
CNEU
HALT
CBON
DLET
DEXI
DIVD
DUPL
DBRS
DBST
DBFL
DBTR
DBUN
DINS
DISO
DFTR
DSLF
DSRF
DSRR
DSRS

APPENDIX A
OPERATORS, ALPHABETICAL LIST

HEXA-
DECIMAL
CODE

80
9E
96
A0
Al
A2
8E
F4
FC

F1

F9
F2
FA

F3
FB
FO
F8

FS
FD
DF
95BB
BS
9547
83
B7
9F
97
A8
A9
AA
9D
9B
99
Cl
C7
C9
C5

PAGE

7-1
7-9
7-9
7-5
7-5
7-5
79
7-13
7-13

7-13

7-13
7-12
7-13

7-13
7-13
7-13
7-13

7-13
7-13
7-6
8-13
7-6
8-1
7-2

7-10
7-10
7-10

7-9
7-9
7-8

APPENDIX A (Cont'd.)

NAME

DYNAMIC SCALE RIGHT TRUNCATE
ENABLE EXTERNAL INTERRUPTS
END EDIT (edit mode)

END FLOAT (edit mode)

ENTER

EQUAL

ESCAPE TO 16-BIT INSTRUCTION
EVALUATE

EXCHANGE

EXECUTE SINGLE MICRO, SINGLE POINTER
UPDATE

EXECUTE SINGLE MICRO, DESTRUCTIVE
EXECUTE SINGLE MICRO, UPDATE
EXIT

EXTENDED MULTIPLY

FIELD INSERT

FIELD ISOLATE

FIELD TRANSFER

GREATER THAN

GREATER THAN OR EQUAL

IDLE UNTIL INTERRUPT

INDEX

INDEX AND LOAD NAME

INDEX AND LOAD VALUE

INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT UPDATE

INSERT CONDITIONAL (edit mode)
INSERT DISPLAY SIGN (edit mode)
INSERT MARK STACK

INSERT OVERPUNCH (edit mode)
INSERT UNCONDITIONAL (edit mode)
INTEGER DIVIDE

INTEGERIZE, ROUNDED
INTEGERIZE, TRUNCATED

INTEGERIZE, ROUNDED DOUBLE-PRECISION

INTERRUPT OTHER PROCESSORS
INVALID OPERATOR (all modes)
LEADING ONE TEST

LINKED LIST LOOKUP

LESS THAN

LESS THAN OR EQUAL

LIT CALL ONE

MNEMONIC

DSRT
EEXI

ENDE
ENDF
ENTR
EQUL
VARI
EVAL
EXCH

EXPU
EXSD
EXSU
EXIT
MULX
INSR
ISOL
FLTR
GRTR
GREQ
IDLE
INDX
NXLN
NXLV
ICVD
ICVU
INSC
INSG
IMKS
INOP
INSU
IDIV
NTGR
NTIA
NTGD
HEYU
NVLD
LOG2
LLLU
LESS
LSEQ
ONE

HEXA-

DECIMAL

CODE

C3
9546
DE
D5
AB
8C
95
AC
B6

DD
D2
DA
A3
8F
9C
9A
98
8A
89
9544
A6
A5
AD
CA
CB
DD
D9
CF
D8
DC
84
87
86
9587
954F
FF
958B
95BD
88
8B
Bl

PAGE

7-8
8-1
9-3
9-2
7-17
7-4
8-1
7-20

7-6

7-14
7-14
7-14
7-15
7-2
7-10
7-10
7-9
7-4
7-4
8-1
7-7
7-7
7-7
7-14
7-15
9-2
9.2
7-22
9-3
9.2
7-2
7-3
7-3
8-11
8-10
7-6
8-11
8-13
7-4
7-4
7-7

NAME

LIT CALL ZERO

LIT CALL 8 BITS

LIT CALL 16 BITS

LIT CALL 48 BITS

LOAD

LOAD TRANSPARENT

LOGICAL AND

LOGICAL EQUAL

LOGICAL EQUIVALENCE
LOGICAL NEGATE

LOGICAL OR ,
MAKE PROGRAM CONTROL WORD
MARK STACK

MASKED SEARCH FOR EQUAL
MOVE CHARACTERS (edit mode)

MOVE NUMERIC UNCONDITIONAL (edit mode)

MOVE TO STACK

MOVE WITH FLOAT (edit mode)
MOVE WITH INSERT (edit mode)
MULTIPLY

NAME CALL

NO OPERATION (all modes)

NOT EQUAL

OCCURS INDEX

OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
PACK DESTRUCTIVE

PACK UPDATE

PUSH DOWN STACK REGISTERS
READ AND CLEAR OVERFLOW FLIP FLOP
READ PROCESSOR IDENTIFICATION
READ PROCESSOR REGISTER
READ TAG FIELD

READ TRUE/FALSE FLIP FLOP
READ WITH LOCK

REMAINDER DIVIDE

RESET FLOAT (edit mode)
RETURN

ROTATE STACK DOWN

ROTATE STACK UP

SCALE LEFT

SCALE RIGHT FINAL

A-3

MNEMONIC

ZERO
LT8 -
LTI16

LT48

LOAD
LODT
LAND
SAME
LEQV
LNOT
LOR

MPCW
MKST
SRCH
MCHR
MVNU
MVST
MFLT
MINS
MULT
NAMC
NOOP
NEQL
OCRX
OVRD
OVRN
PACD
PACU
PUSH
ROFF
WHOI
RPRR
RTAG
RTFF
RDLK
RDIV
RSTF
RETN
RSDN
RSUP
SCLF
SCRF

APPENDIX A (Cont'd.)

HEXA-
DECIMAL
CODE

BO
B2
B3
BE
BD
95BC
90
94
93
92
91
BF
AE
95BE
D7
D6
95AF
Dl
DO
82
40==>7F
FE
8D
9585
BA
BB
D1
D9
B4
D7
954E
95B8
95B5
DE
95BA
85
D4
A7
95B7
95B6
Co
Cé6

PAGE

8-13

9-1

7-17
8-12
8-12
7-8

APPENDIX A (Cont'd.)

NAME

SCALE RIGHT ROUNDED

SCALE RIGHT SAVE

SCALE RIGHT TRUNCATE

SCAN IN

SCAN OUT

SCAN WHILE EQUAL, DESTRUCTIVE

SCAN WHILE EQUAL, UPDATE

SCAN WHILE FALSE, DESTRUCTIVE

SCAN WHILE FALSE, UPDATE

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE
SCAN WHILE GREATER OR EQUAL, UPDATE
SCAN WHILE GREATER, DESTRUCTIVE
SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE LESS, UPDATE

SCAN WHILE NOT EQUAL, DESTRUCTIVE
SCAN WHILE NOT EQUAL, UPDATE

SCAN WHILE TRUE, DESTRUCTIVE

SCAN WHILE TRUE, UPDATE

SET DOUBLE TO TWO SINGLES

SET EXTERNAL SIGN

SET INTERVAL TIMER

SET PROCESSOR REGISTER

SET TAG FIELD

SET TO DOUBLE-PRECISION

SET TO SINGLE-PRECISION, ROUNDED

SET TO SINGLE-PRECISION, TRUNCATED
SET TWO SINGLES TO DOUBLE

SKIP FORWARD DESTINATION
CHARACTERS (edit mode)

SKIP FORWARD SOURCE CHARACTERS (edit mode)

SKIP REVERSE DESTINATION
CHARACTERS (edit mode)

SKIP REVERSE SOURCE CHARACTERS (edit mode)
STEP AND BRANCH

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE

STRING ISOLATE

STUFF ENVIRONMENT

SUBTRACT

A4

MNEMONIC

SCRR
SCRS

SCRT
SCNI

SCNO
SEQD
SEQU
SWEFD
SWFU
SGED
SGEU
SGTD
SGTU
SLED
SLEU
SLSD

SLSU

SNED
SNEU
SWTD
SWTU
SPLT

SXSN
SINT

SPRR
STAG
XTND
SNGL
SNGT
JOIN -

SFDC
SFSC

SRDC
SRSC
STBR
STOD
STON
SISO

STFF

SUBT

HEXA-
DECIMAL
CODE

C8
C4
C2
954A
954B
95F4
95FC
95D4
95DC
95F1
95F9
95F2
95FA
95F3
95FB
95F0
95F8
95F5
95FD
95D5
95DD
9543
D6
9545
95B9
95B4
CE
CD
CC
9542

DA
D2

DB
D3
A4
B8
B9
DS
AF
81

PAGE

8-15
8-15
8-16
8-16
8-15
8-15
8-15
8-15
8-15
8-15
8-15
8-16
8-16
8-16
8-16
8-16
8-1

7-15

8-13
8-12
7-3

7-3
8-1

9-2

9-2
9-2
7-5

7-6
7-12
7-22

NAME

TABLE ENTER EDIT, DESTRUCTIVE

TABLE ENTER EDIT, UPDATE

TRANSFER UNCONDITIONAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, UPDATE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, UPDATE

TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE GREATER OR EQUAL,
UPDATE

TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE GREATER, UPDATE
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE
TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, DESTRUCTIVE
TRANSFER WHILE TRUE, UPDATE

TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE LESS, UPDATE

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER WORDS OVERWRITE DESTRUCTIVE
TRANSFER WORDS OVERWRITE UPDATE
TRANSFER WORDS, DESTRUCTIVE

TRANSFER WORDS, UPDATE

TRANSLATE

UNPACK ABSOLUTE, DESTRUCTIVE

UNPACK ABSOLUTE, UPDATE

UNPACK SIGNED, DESTRUCTIVE

UNPACK SIGNED, UPDATE

VALUE CALL

A5

MNEMONIC

TEED
TEEU
TUND
TUNU
TEQD
TEQU

TGED

TGEU
TGTD
TGTU
TLED

TWFD
TWFU
TWTD
TWTU
TLEU

TLSD

TLSU

TNED
TNEU
TWOD
TWOU
TWSD
TWSU
TRNS

UABD
UABU
USND
USNU
VALC

APPENDIX A (Cont'd.)

HEXA-
DECIMAL
CODE

DO
D8
E6
EE
E4
EC

El

E9
E2
EA
E3
95D2
95DA
95D3
95DB
EB
EO
E8

E5
ED
D4
DC
D3
DB
95D7
95D1
95D9
95D0
95D8
00 = 3F

PAGE

7-13
7-14
7-12
7-12
7-11
7-12

7-11
7-11
7-11
7-12
8-14
8-14
8-14
8-14
7-12
7-12
7-12
7-12
7-12
7-11
7-11
7-10
7-11
8-15
8-14
8-14
8-14
8-14
7-15

APPENDIX B
OPERATORS, NUMERICAL LIST

PRIMARY MODE

HEXA-
DECIMAL NAME MNEMONIC PAGE
CODE
00 = 3F VALUE CALL VALC 7-15
40 = TF NAME CALL NAMC 7-15
80 ADD ADD 7-1
81 SUBTRACT SUBT 7-1
82 MULTIPLY MULT 7-2
83 DIVIDE DIVD 7-2
84 INTEGER DIVIDE IDIV 7-2
85 REMAINDER DIVIDE RDIV 7-2
86 INTEGERIZE, TRUNCATED NTIA 7-3
87 INTEGERIZE, ROUNDED NTGR 7-3
88 LESS THAN LESS 7-4
89 GREATER THAN OR EQUAL GREQ 7-4
8A GREATER THAN GRTR 7-4
8B LESS THAN OR EQUAL LSEQ 7-4
8C EQUAL EQUL 7-4
8D NOT EQUAL NEQL 7-5
8E CHANGE SIGN BIT CHSN 7-9
8F EXTENDED MULTIPLY MULX 7-2
90 LOGICAL AND LAND 7-4
91 LOGICAL OR LOR 7-4
92 LOGICAL NEGATE LNOT 7-4
93 LOGICAL EQUIVALENCE LEQV 7-4
94 LOGICAL EQUAL SAME 7-4
95 ESCAPE TO 16-BIT INSTRUCTION VARI 8-1
96 BIT SET BSET 79
97 DYNAMIC BIT SET DBST 7-9
98 FIELD TRANSFER FLTR 7-9
99 DYNAMIC FIELD TRANSFER DFTR 7-10
9A FIELD ISOLATE ISOL 7-10
9B DYNAMIC FIELD ISOLATE DISO 7-10
9C FIELD INSERT INSR 7-10
9D DYNAMIC FIELD INSERT DINS 7-10
9E BIT RESET BRST 79
SF DYNAMIC BIT RESET DBRS 7-9
AO BRANCH FALSE BRFL 7-5
Al BRANCH TRUE BRTR 7-5
A2 BRANCH UNCONDITIONAL BRUN 7-5
A3 EXIT EXIT 7-15
A4 STEP AND BRANCH STBR 7-5

A5 INDEX AND LOAD NAME NXLN 7-7

B-1

APPENDIX B (Cont'd.)

PRIMARY MODE

HEXA-
DECIMAL
CODE

A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
BS5
B6
B7
B8
B9
BA
BB
BD
BE
BF
Co
Cl
C2
C3
C4
CS
C6
C7
C8
C9
CA
CB
cC
CD
CE
CF
DO

NAME

INDEX

RETURN

DYNAMIC BRANCH FALSE
DYNAMIC BRANCH TRUE
DYNAMIC BRANCH UNCONDITIONAL
ENTER

EVALUATE DESCRIPTOR

INDEX AND LOAD VALUE
MARK STACK

STUFF ENVIRONMENT

LIT CALL ZERO

LIT CALL ONE

LIT CALL 8 BITS

LIT CALL 16 BITS

PUSH DOWN STACK REGISTERS
DELETE TOP OF STACK
EXCHANGE

DUPLICATE TOP OF STACK
STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE _
OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
LOAD

LIT CALL 48 BITS

MAKE PROGRAM CONTROL WORD
SCALE LEFT

DYNAMIC SCALE LEFT

SCALE RIGHT TRUNCATE
DYNAMIC SCALE RIGHT TRUNCATE
SCALE RIGHT SAVE

DYNAMIC SCALE RIGHT SAVE
SCALE RIGHT FINAL

DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUNDED
DYNAMIC SCALE RIGHT ROUND
INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT, UPDATE

SET TO SINGLE-PRECISION, TRUNCATED

SET TO SINGLE-PRECISION, ROUNDED
SET TO DOUBLE-PRECISION

INSERT MARK STACK

TABLE ENTER EDIT, DESTRUCTIVE

B-2

MNEMONIC

INDX
RETN
DBFL
DBTR
DBUN
ENTR
EVAL
NXLV
MKST
STFF
ZERO
ONE
LTS8
LT16
PUSH
DLET
EXCH
DUPL
STOD
STON
OVRD
OVRN
LOAD
LT48
MPCW
SCLF
DSLF
SCRT
DSRT
SCRS
DSRS
SCRF
DSRF
SCRR
DSRR
ICVD
ICVU
SNGT
SNGL
XTND
IMKS
TEED

PAGE

7-7
7-17
7-5
7-5
7-5
7-17
7-20
7-7
7-21
7-22
7-7
7-7
-7
7-7
7-6
7-6
7-6
7-6
7-6
7-6
7-6
7-6
7-8
7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-9
79
7-9
7-14
7-15
7-3
7-3
7-3
7-22
7-13

APPENDIX B (Cont'd.)
PRIMARY MODE

HEXA-
DECIMAL NAME MNEMONIC PAGE
CODE

D1 PACK DESTRUCTIVE PACD 7-14
D2 EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD 7-14
D3 TRANSFER WORDS, DESTRUCTIVE TWSD 7-10
D4 TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD 7-11
D5 STRING ISOLATE SISO 7-12
D6 SET EXTERNAL SIGN SXSN 7-15
D7 READ AND CLEAR OVERFLOW FLIP FLOP ROFF 7-15
D8 TABLE ENTER EDIT, UPDATE TEEU 7-14
D9 PACK UPDATE PACU 7-14
DA EXECUTE SINGLE MICRO, UPDATE EXSU 7-14
DB TRANSFER WORDS, UPDATE TWSU 7-11
DC TRANSFER WORDS OVERWRITE UPDATE TWOU 7-11
DD EXECUTE SINGLE MICRO, SINGLE POINTER

UPDATE EXPU 7-14
DE READ TRUE/FALSE FLIP FLOP TRFF 7-15
DF CONDITIONAL HALT HALT 7-6
EO TRANSFER WHILE LESS, DESTRUCTIVE TLSD 7-12
El TRANSFER WHILE GREATER OR EQUAL,

DESTRUCTIVE TGED 7-11
E2 TRANSFER WHILE GREATER, DESTRUCTIVE TGTD 7-11
E3 TRANSFER WHILE LESS OR EQUAL,

DESTRUCTIVE TLED 7-12
E4 TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD 7-11
E5 TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED 7-12
E6 TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND 7-12
E8 TRANSFER WHILE LESS, UPDATE TLSU 7-12
E9 TRANSFER WHILE GREATER OR EQUAL,

UPDATE TGEU 7-11
EA TRANSFER WHILE GREATER, UPDATE TGTU 7-11
EB TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU 7-12
EC TRANSFER WHILE EQUAL, UPDATE TEQU 7-12
ED TRANSFER WHILE NOT EQUAL, UPDATE TNEU 7-12
EE TRANSFER UNCONDITIONAL, UPDATE TUNU 7-12
FO COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD 7-13
F1 COMPARE CHARACTERS GREATER OR EQUAL,

DESTRUCTIVE CGED 7-13
F2 COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD 7-12
F3 COMPARE CHARACTERS LESS OR EQUAL,

DESTRUCTIVE CLED 7-13
F4 COMPARE CHARACTERS EQUAL, DESTRUCTIVE CEQD 7-13
F5 COMPARE CHARACTERS NOT EQUAL,

DESTRUCTIVE CNED 7-13
F8 COMPARE CHARACTERS LESS, UPDATE CLSU 7-13

B-3

APPENDIX B (Cont'd.)

PRIMARY MODE

HEXA-
DECIMAL
CODE

F9

FA
FB
FC
FD
FE
FF

VARIANT MODE

9542

9543

9544

9545

9546

9547

954A
954B
954E
954F
9585

9587

958B
95AF
95B4
95B5
95B6
95B7
95B8
95B9
95BA
95BB
95BC
95BD
95BE
95D0
95D1

95D2
95D3
95D4
95D5
95D7

NAME

COMPARE CHARACTERS GREATER OR EQUAL,

UPDATE
COMPARE CHARACTERS GREATER, UPDATE

COMPARE CHARACTERS LESS OR EQUAL, UPDATE

COMPARE CHARACTERS EQUAL, UPDATE
COMPARE CHARACTERS NOT EQUAL, UPDATE
NO OPERATION

INVALID OPERATOR

SET TWO SINGLES TO DOUBLE

SET DOUBLE TO TWO SINGLES

IDLE UNTIL INTERRUPT

SET INTERVAL TIMER

ENABLE EXTERNAL INTERRUPTS
DISABLE EXTERNAL INTERRUPTS
SCAN IN

SCAN OUT

READ PROCESSOR IDENTIFICATION
INTERRUPT OTHER PROCESSORS
OCCURS INDEX

INTEGERIZE, ROUNDED, DOUBLE-PRECISION
LEADING ONE TEST

MOVE TO STACK

SET TAG FIELD

READ TAG FIELD

ROTATE STACK UP

ROTATE STACK DOWN

READ PROCESSOR REGISTER

SET PROCESSOR REGISTER

READ WITH LOCK

COUNT BINARY ONES

LOAD TRANSPARENT

LINKED LIST LOOKUP

MASKED SEARCH FOR EQUAL
UNPACK SIGNED, DESTRUCTIVE
UNPACK ABSOLUTE, DESTRUCTIVE
TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE TRUE, DESTRUCTIVE
SCAN WHILE FALSE, DESTRUCTIVE
SCAN WHILE TRUE, DESTRUCTIVE
TRANSLATE

MNEMONIC

CGEU
CGTU
CLEU
CEQU
CNEU
NOOP
NVLD

JOIN
SPLT
IDLE
SINT
EEXI
DEXI
SCNI
SCNO
WHOI
HEYU
OCRX
NTGD
LOG2
MVST
STAG
RTAG
RSUP
RSDN
RPRR
SPRR
RDLK
CBON
LODT
LLLU
SRCH
USND
UABD
TWFD
TWTD
SWFD
SWTD
TRNS

PAGE

7-13
7-13
7-13
7-13
7-13
7-6

7-6

8-1

8-1

8-1

8-1

8-1

8-1

8-2

8-8

8-10
8-10
8-10
8-11
8-11
8-11
8-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-13
8-14
8-14
8-14
8-14
8-16
8-16
8-15

VARIANT MODE

HEXA-
DECIMAL
CODE

95D8
95D9
95DA
95DB
95DC
95DD
95DF
95F0

95F1

95F2
95F3
95F4
95F5
95F8
95F9
95FA
95FB
95FC
95FD
95FE
95FF

EDIT MODE

DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
FE
FF

NAME

UNPACK SIGNED, UPDATE
UNPACK ABSOLUTE, UPDATE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, UPDATE
SCAN WHILE FALSE, UPDATE
SCAN WHILE TRUE, UPDATE
CONDITIONAL HALT

SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE GREATER OR EQUAL,
DESTRUCTIVE

SCAN WHILE GREATER, DESTRUCTIVE
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
SCAN WHILE EQUAL, DESTRUCTIVE

SCAN WHILE NOT EQUAL, DESTRUCTIVE
SCAN WHILE LESS, UPDATE

SCAN WHILE GREATER OR EQUAL, UPDATE
SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE EQUAL, UPDATE

SCAN WHILE NOT EQUAL, UPDATE

NO OPERATION

INVALID

MOVE WITH INSERT

MOVE WITH FLOAT

SKIP FORWARD SOURCE CHARACTERS
SKIP REVERSE SOURCE CHARACTERS
RESET FLOAT

END FLOAT

MOVE NUMERIC UNCONDITIONAL

MOVE CHARACTERS

INSERT OVERPUNCH

INSERT DISPLAY SIGN

SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL

INSERT CONDITIONAL

END EDIT

CONDITIONAL HALT

NO OPERATION

INVALID

B-5

APPENDIX B (Cont'd.)

MNEMONIC

USNU
UABU
TWFU
TWTU
SWFU
SWTU
HALT
SLSD

SGED
SGTD
SLED

SEQD
SNED
SLSU

SGEU
SGTU
SLEU

SEQU
SNEU
NOOP
NVLD

MINS
MFLT
SFSC
SRSC
RSTF
ENDF
MVNU
MCHR
INOP
INSG
SFDC
SRDC
INSU
INSC
ENDE
HALT
NOOP
NVLD

PAGE

8-14
8-14
8-14
8-14
8-16
8-16
7-6

8-15

8-15
8-15
8-15
8-15
8-16
8-16
8-15
8-15
8-15
8-15
8-16
7-6

7-6

9-1
9-1
9-2
9-2
9-2
9-2
9-1
9-1

9-2
9-2
9-2
9-2
9-2
9-3
7-6
7-6
7-6

APPENDIX C

CONTROL WORD FORMATS

DATA DESCRIPTOR

35| 31| 27 N 71 3
LENGTH/INDEX ISK ADDRESS
34] 30 26 10 6 2
33} 29| 25 91 5 1
32y 28| 24 8 4 0

P = PRESENCE BIT C = COPY BIT I = INDEX BIT S = SEGMENTED
BIT

1 = PRESENT IN 1 = A COPY 1 = INDEXED 1 = AREA

MAIN MEMORY SEGMENTED
0 = NOT PRESENT IN 0 = ORIGINAL 0 = NON INDEXED 0 = NOT

MAIN MEMORY SEGMENTED
READ ONLY BIT 42& 41 D = DOUBLE-PRECISION BIT
1 = READ ONLY MUST = 00 1 = DOUBLE-PRECISION DATA
0 = READ/WRITE FOR DATA DESC. 0 = SINGLE-PRECISION DATA

11

7 3

ADDRESS COUPLE
100 6 2

9

5 |

8

4 0

NORMAL INDIRECT REFERENCE WORD

C1

APPENDIX C (Cont'd.)

35 31 27 7| 3
DISPLACEMENT INDEX FIELD
34| 30| 26 0] 6] 2
33 29| 25| 2 sl 5] 1
32| 28| 24 8] 4] o
STUFFED INDIRECT REFERENCE WORD
35| 31| 27 11| 7] 3
DISPLACEMENT
34| 30| 26 410l 6] 2
REVIOUS "F"
33 29| 25 9] 5, 1
32| 28| 24 8| 4] o

MARK STACK CONTROL WORD

D.S. = DIFFERENT E. = ENVIRONMENT V.. = VALUE BIT
STACK BIT
1 = A NON-CURRENT 1 = ACTIVE MSCW 1 = RETURN A VALUE
STACK
0 = THIS CURRENT 0 = INACTIVE MSCW 0 = RESTART FROM BEGIN
STACK

27

P.1.R.
26

25

24

PROGRAM CONTROL WORD

C-2

I

NORMAL/CONTROL STATE

CONTROL STATE

FF SD = SEGMENT DESCRIPTOR

APPENDIX C (Cont'd.)

NORMAL STATE

RETURN CONTROL WORD

[a—

= EXTERNAL SIGN | 0 = OVERFLOW FF
BIT
= NEGATIVE 1 = OVERFLOW T = TRUE/FALSE FF
= POSITIVE 0 = NO OVERFLOW 1 = TRUE
0 = FALSE
TFOF = TRUE/FALSE FF
OCCUPIED FF
1 = TFFF VALID
0 = TFFF NOT DETERMINED
= FLOAT FF N = NORMAL/CONTROL FF
= FLOAT 1 = CONTROL STATE
= NO FLOAT 0 = NORMAL STATE

43 39

INCREMENT
424 38

35 31 27

FINAL VALU
34 301 26

15 11 7 3

CURRENT VALUE
14 10 6

41 37 33 29| 25 13 9 5 1

40| 36 | 32) 28] 24 12 8 4 0

STEP INDEX WORD

C-3

APPENDIX C (Cont'd.)

39| 35| 31| 27| 2af 19] 15 1| 7| 3
1 LENGTH IN CHARACTERS MEM/DISK ADDRESS
38| 34| 30| 26| 22} 18] 14] 10| 6| 2
0
37| 33| 29| 250 20 170 131 9l 5|
1
36| 32| 28| 24| 20f 16] 12| 8] 4] 0
STRING DESCRIPTOR (NON-INDEXED)
P = PRESENCE BIT C = COPY BIT I = INDEX BIT S = SEGMENTED
BIT
1 = PRESENT IN 1 = A COPY 1 = STRING
MAIN MEMORY SEGMENTED
0 = NOT PRESENT IN 0 = ORIGINAL 0 = NON-INDEXED 0 = NOT
MAIN MEMORY SEGMENTED
R = READ ONLY BIT SIZE = 4 = 8-BIT BYTE
1 = READ ONLY SIZE = 3 == 6-BIT CHARACTER
0 = READ/WRITE SIZE = 2 == 4-BIT DIGIT
8
;/ 39 35| 31| 27| 23
E WORD INDEX
| 38 34| 30] 26| 22
|
[N 371 33| 29| 25| 21
% 36 32| 28| 24| 20
STRING DESCRIPTOR (INDEXED)
P = PRESENCE BIT C = COPY BIT I = INDEX BIT S = SEGMENTED
BIT
1 = PRESENT IN 1 = A COPY 1 = INDEXED 1 = STRING
MAIN MEMORY SEGMENTED
0 = NOT PRESENT IN 0 = ORIGINAL 0 = NOT
MAIN MEMORY SEGMENTED
R = READ ONLY BIT SIZE = 4 = 8-BIT BYTE
I = READ ONLY SIZE = 3 == 6-BIT CHARACTER
0 = READ/WRITE SIZE = 2 == 4-BIT DIGIT

(o)

APPENDIX D

SCAN FUNCTION CODE WORDS

(SCAN IN)
19 015 0
10 (0 |0
118 14
0
17} 13
0
16] 12
Function Word Read Time of Day Clock (0011)
271 23] 19f 150 | 7 3
26 22| 18 14 10 6 2
TIME OF DAY
25 21, 17 13 9 5 1
24 201 16 12 8 4 0
0
Function Word Read General Control Adapter (0101)
Z = 0001, GCA A is to respond N = 00, Read GCA Input Register
Z = 0010, GCA B is to respond N = 01, Read GCA Interrupt Mask Register
Z = 0100, GCA C N = 10, Read GCA Interrupt Register
Z = 1000, GCA D N = 11, Read GCA Output Register
47! 43| 39| 35 31| 27| 23 190 15 1N 7 3
46 42 38 34 30 26 22 18 14 10 6 2
INDEX
45 41 37 33 29 25 21 17 13 9 5 1
44 40 36 32 28 24 20 16 12 8 4 0

a. G.C.A. Register Word Returned
b. G.C.A. Register Word Sent To I/O Processor

D-1

APPENDIX D (Cont'd.)

(SCAN IN) (Cont’d.)

Bit O
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 16

0

16

Result Descriptor Word Returned

Exception

Software Attention

Busy

Not Ready

Descriptor Error

Memory Address Error
Memory Parity Error
Memory Protection Error

Bits 15:9 are Unit Error Field (see I/O Processor section)

15
14 0

Function Word Read Interrupt Mask (10100)

(SCAN IN) (Cont’d.)

Interrupt Mask Word Returned

Bit 9 = I/O Processor I/O Finish

Bit 1 = Data Communications Processor 1
Bit 2 = Data Communications Processor 2
Bit 3 = Data Communications Processor 3
Bit 4 = Data Communications Processor 4
Bit 0 = Status Change

APPENDIX D (Cont'd.)

Function Word Read Interrupt Register (0100)

Interrupt Register Word Returned

D-3

APPENDIX D (Cont'd.)

(SCAN IN) (Cont’d.)

Bit 9 = I/O Processor I/O Finish
Bit 1 = Data Communications Processor 1
Bit 2 = Data Communications Processor 2
Bit 3 = Data Communications Processor 3
Bit 4 = Data Communications Processor 4
Bit O = Status Change Interrupt

15 0
0
14

o] o] o] ©

13

12k

Interrupt Literal Word Returned

Bits 2:3 =001 = I/O Processor A
010 = I/O Processor B
100 = I/O Processor C
Bits 7:4 =0001 =DCP 1
0010=DCP 2
0011 =DCP 3
0100 =DCP 4

1001 =I/O Finished
1111 = Status Change

D-4

(SCAN IN) (Cont’d.)

Z ZNNNEZZ

APPENDIX D (Cont'd.)

0
1

001
010
100

0
8

Function Word Interrogate Peripheral Status (0001)

Designates I/O Processor A

Designates I/O Processor B
Designates I/O Processor C

All I/O Processors to respond
I/O Processor designated by Z to respond

=> 7 Status Vector Number (in Binary)

Status Change Vector

31 271 23 19] 15 A
STATUS BITS

30 261 22 18, 14 10

291 25] 21 17] 13 9

281 24| 20 16 12 8

Status word not present
Status word present

Unit Status Word Returned

D-5

APPENDIX D (Cont'd.)

(SCAN IN) (Cont’d.)

Function Word Interrogate Peripheral Type (0110)

Unit'Type Word Returned

Type Code = 00 = No Unit
01 = Disk File
02 = Display
04 = Paper-Tape Reader
05 = Paper-Tape Punch
06 = Line-Printer, Buffered, BCL drum
07 = Line-Printer, Unbuffered, BCL drum
09 = Card Reader
OB (11) = Card Punch

0D (13) = Magnetic Tape (7-track)

OE (14) = Magnetic Tape (9-track NRZ) } Exchange

OF (15) = Magnetic Tape (9-track P.E.)

1D(29) = Magnetic Tape (7-track)

1E (30) = Magnetic Tape (9-track NRZ) } Serial or Cluster

IF (31) = Magnetic Tape (9-track P.E.)

D-6

APPENDIX D (Cont'd.)

(SCAN IN) (Cont’d.)

Type Code = 26 (38) = Line-Printer, Buffered, EBCDIC drum
(Cont’d.) 27 (39) = Line-Printer, Unbuffered, EBCDIC drum

15 N
UNIT [
14, 10}
NUMBER |;
13,

Input/Output Path Word Returned

= 101 = Path via I/O Processor A and C
= 110
= 111

Path via I/O Processor B and C
Path via all I/O Processors

A = 0 = No Path Available

A = 1 = Pathis Available

Z = 001 = Path via I/O Processor A
Z = 010 = Path via I/O Processor B
Z = 011 = Path via Either I/O A or B
Z = 100 = Path via I/O Processor C
Z

Z

Z

D-7

APPENDIX D (Cont'd.)

(SCAN OUT)

350 31 271 23 19 15{ 11

50 34{ 300 26| 274 18 14| 10
0 TIME OF DAY

49 331 29, 25, 21 17, 13, 9

48 32] 28 24| 200 16 12| 8

Time of Day Word (Binary) To 1/O Processor

Function Word Set General Control Adapter (0101)

APPENDIX D (Cont'd.)

(SCAN OUT) (Cont’d.)

Z = 0001 = GCA A isto Respond

Z = 0010 = GCA B isto Respond

Z = 0100 = GCA C

Z = 1000 = GCA D

N = 00 = Set GCA Output Register

N = 01 = Set GCA Interrupt Mask Register
N = 10 = Set GCA Interrupt Register

Function Word Set Interrupt Mask (0100)

Bit 9 = I/O Processor
Bit 1 = Data Communications Processor 1

Bit 2 = Data Communications Processor 2

Bit 3 = Data Communications Processor 3

Bit 4 = Data Communications Processor 4
Bit O = Status Change Interrupt

35 31 27 19 15 LR 7 3
BUFFER AREA

34, 30, 26 18 14, 10, 6 2
} +— t 4
LENGTH BASE ADDRESS

33 29 25 17 13 9, 5 |

32 28 24 16 12 8 4 0

Area Descriptor Word Sent To 1/O Processor

D-9

APPENDIX E
DATA REPRESENTATION

EBCDIC DECIMAL| EBCDIC HEX. EBCDIC BCL BCL BCL
GRAPHIC | BCL | VALUE |INTERNAL |{GRAPHIC [CARD CODE | CARD CODE | OCTAL INTERNAL | EXTERNAL
BLANK 64 0100 0000 40 No Punches | No Punches 60 11 0000 01 0000
[74 0100 1010 4A 12 8 2 12 8 4 33 01 1011 11 1100
. 75 0100 1011 4B 1283 1283 32 011010 11 1011
< 76 0100 1100 4C 12 8 4 1286 36 011110 111110
(77 0100 1101 4D 1285 12 8 5 35 01 1101 11 1101
+ 78 0100 1110 4E 128 6 11 1010
! « 79 0100 1111 4F 1287 1287 37 01 11M 111111
& 80 0101 0000 50 12 12 34 011100 11 0000
] 90 0101 1010 BA 1182 086 76 111110 011110
$ 91 0101 1011 5B 118 3 1 8 3 52 10 1010 10 1011
* 92 0101 1100 5C 18 4 11 8 4 53 10 1011 10 1100
) 93 0101 1101 5D 11856 1186 65 10 1101 10 1101
; 94 0101 1110 5E 186 11 8 6 56 101110 10 1110
- < 95 0101 1111 5F 1187 1 87 57 101111 101111
- 96 0110 0000 60 11 1 54 10 1100 10 0000
/ 97 0110 0001 61 01 01 61 11 0001 01 0001
, 107 0110 1011 6B 083 08 72 111010 011011
% 108 0110 1100 6C 084 084 73 111011 011100
— # 109 0110 1101 6D 085 082 74 111100 011010
> 110 01101110 6E 086 86 16 00 1110 00 1110
? 111 0110 1111 6F 087 * 14 00 1100 00 0000
: 122 01111010 7A 8 2 85 15 00 1101 00 1101
123 01111011 7B 8 3 83 12 00 1010 00 1011
@ 124 0111 1100 7C 8 4 8 4 13 00 1011 00 1100 | .
! 2 125 0111 1101 7D 856 87 17 00 1111 00 1111 :
= 126 01111110 7E 86 085 75 11 1101 011101
" 127 0111 1111 7F 87 087 77 11111 01 1111
(+)PZ + 192 1100 0000 Cco 12 0 120 20 01 0000 11 1010
A 193 1100 0001 C1 12 1 12 1 21 01 0001 11 0001
B 194 1100 0010 c2 12 2 12 2 22 010010 11 0010
C 195 1100 0011 Cc3 12 3 12 3 23 010011 110011
D 196 1100 0100 Cca 12 4 12 4 24 010100 110100
E 197 11000101 C5 12 6 126 25 01 0101 110101
F 198 11000110 C6 12 6 12 6 26 010110 110110 |:
G 199 11000111 Cc7 12 7 127 27 010111 110111 |
H 200 1100 1000 Cc8 12 8 12 8 30 01 1000 11 1000
I 201 1100 1001 Cc9 12 9 12 9 31 01 1001 11 1001
‘MULT
(hmz X 208 1101 0000 DO 110 1 0 40 10 0000 10 1010
J 209 1101 0001 D1 11 1 11 41 10 0001 10 0001
K 210 1101 0010 D2 1 2 11 2 42 10 0010 100010 |,
L 21 1101 0011 D3 11 3 11 3 43 10 0011 100011 |!
M 212 1101 0100 D4 1 4 11 4 44 100100 100100 |,
N 213 1101 0101 D5 1156 115 45 10 0101 10 0101 |.
0] 214 1101 0110 D6 11 6 11 6 46 100110 100110 |:
P 215 1101 0111 D7 17 117 47 100111 100111

* All other codes

E-1

APPENDIX E (Cont'd.)

DATA REPRESENTATION

EBCDIC DECIMAL| EBCDIC HEX. EBCDIC BCL BCL BCL
GRAPHIC | BCL | VALUE [INTERNAL |GRAPHIC [CARD CODE | CARD CODE | OCTAL |INTERNAL| EXTERNAL
Q 216 1101 1000 D8 11 8 11 8 50 10 1000 10 1000
R 217 1101 1001 D9 1 9 119 51 10 1001 10 1001
¢ 224 1110 0000 EO 082 00 0000
S 226 1110 0010 E2 02 02 62 11 0010 010010
T 227 11100011 E3 03 03 63 110011 010011
U 228 11100100 E4 04 04 64 11 0100 010100
\Y 229 1110 0101 ES 05 05 65 11 0101 010101
W 230 11100110 E6 06 06 66 110110 010110
X 231 11100111 E7 07 07 67 110111 010111
Y 232 1110 1000 E8 08 08 70 11 1000 01 1000
z 233 1110 1001 E9 09 09 71 11 1001 01 1001
0 240 1111 0000 FO 0 0 00 00 0000 00 1010
1 241 1111 0001 F1 1 1 01 00 0001 00 0001
2 242 11110010 F2 2 2 02 00 0010 00 0010
3 243 11110011 F3 3 3 03 000011 000011
4 244 11110100 F4 4 4 04 000100 00 0100
5 245 11110101 F5 5 5 05 000101 00 0101
6 246 11110110 F6 6 6 06 000110 000110
7 247 11110111 F7 7 7 07 000111 00 0111
8 248 1111 1000 F8 8 8 10 00 1000 00 1000
9 249 1111 1001 F9 9 9 11 00 1001 00 1001
NOTES 5. The EBCDIC graphics and BCL graphics are the

same except as follows:

1. EBCDIC 0100 1110 also translates to BCL 11
1010. BCL EBCDIC

2. EBCDIC 1100 1111 is translated to BCL 2 (Single quote)
00 0000 with an additional flag bit on the most x (multiply) !
significant bit line (8th bit). This function is <)
used by the unbuffered printer to stop scanning. = — (not)
3.EBCDIC 11100000 is translated to BCL F 7 (underscore)
00 0000 with an additional flag bit on the next «

to most significant bit line (7th bit). As the print
drums have 64 graphics and space this signal can
be used to print the 64th graphic. The 64th
graphic is a “CR” for BCL drums and a “¢” for
EBCDIC drums.

4. The remaining 189 EBCDIC codes are translated
to BCL 00 0000 (? code).

E-2

APPENDIX F

B 6700 EBCDIC/HEX CARD CODE

N L _ _ q
N
o]0 0 0 0 0 0 0
6 |6 16 |6 6 6 6 6 Z
_
WAN XdH dlala |o v]ié6 |8 Llo]l S |H ¢ 4 T 0 _ﬂ XAH{|WAN
lIL||I .
-_—
L8 a w|e|-|| Qgens |1ag | sn | IS 4 || L8
98 q =l<]| ¢ |+ MOV sy 0S q 98
) a) VN [ONT | s | dD a || ss
%8 D o1%| * |> ©0a sd Jd o) 18
£3 qd # ¢ $. g £
z8 v S HEER v || 28
6 6 6 |z | |I z |x |T WA 6 18
8 3 g |X|® |H L£1Db |y NVD 8 Q
L L LIx|a |» x |d |8 10d | Dsd Tdd L L
9 9 9 |M|g |4 mlo |3 qg1d sqg 9 9
q g ¢ AN |4 A lu |o il LH 9 g
Ui Ui h | R {d njwp Ui Ui
€ ¢ clx |1 |0 1|1 [° ¢oa | xid ¢ ¢
P Z 2 ls | |4 s |3 NAS 2oa | XIs Z 4
T T T . r|v ~|r Tl
| R A B i o |
WAN XdH Jalala |o Llo} ¢ XdH _ZDz
61616 |6 6 6 6 6 d
0 0 0 olo 0 0 N
- - |- -1-1- - 0
+ + |+ + + |+ + Z

F-1

APPENDIX F (Cont'd.)

B 6700 EBCDIC/HEX CARD CODE

Use of the B 6700 EBCDIC/HEX Card Code
Chart.

1. Locate the desired EBCDIC graphic code
within the table.

2. The two-part Hexadecimal Code is read as
follows:

a. The first part is found in the vertical
column above or below the desired
EBCDIC code.

b. The second part is found in the horizontal
row either to the right or left of the desired
EBCDIC code.

(1) Examples:
SYN = 32
F = Cé6

3. The two-part Card Code is found in the same
manner as HEX (2) except the zone and
numeric bits are read from the very outer
portion of the table.

a. Examples:
SYN =9 2
F =+ 6

b. The card code exceptions to the above
procedure are enclosed in heavy lines on
the chart and are defined below:

(1) 00=+0981 (NUL)
(2) 10=+-981 (DLE)
(3) 20=-0981

4) 30=+-0981

(5) 40=BLANK

(6) 50=+(&)

(7) 60=-()

(8) 70=+-0

@ co=+0{)®
(10) DO=-0(}) (3)
(11) EO=082 ()
(12) FO=0(0)

(13) 61=01()

(14) E1=-091

(15) 6A=+-()

F-2

APPENDIX G
HEXADECIMAL-DECIMAL CONVERSION TABLE

The table in this appendix provides for direct
conversion of decimal and hexadecimal numbers in

the ranges:
Hexadecimal Decimal
000 to FFF 0 to 4095

For numbers outside the range of the table, add
the following values to the table figures:

Hexadecimal Decimal
1000 4096
2000 8192
3000 12288
4000 16384
5000 20484
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
B0O0O 45056
C000 49152
D000 53248
E000 57344
FO000 61440

G-1

APPENDIX G (Cont'd.)

11$
1114
6LY
€9V

inw
1en
siv
66¢

€8¢
19¢
(143
SEE

61¢
€0¢€
i8¢
128

1114
6€2
£2e
408

161
Sit
6st
(1A

21
1
§6
64

£9
it
1€
[

0ls
veov
glv
e9n

oby
0tV
viw
g6t

28t
99¢
0S¢
pEE

gle
(4413
98¢
0¢

wse
ged
cec
902

o6t
il
8sl
enl

921
ot
veé
84

29
9n

0€
LA

60S
131
L0
9%

144
62w
€ly
16¢

313
S9¢
6UE
€EE

i1€
10€
s8¢
69¢

3 T4
} 124
jc2
02

681
€41
451
132}

(14
601
€6
id

19
(14
68
el

80§
4.1
9i%
05w

122
gew
(4%}
96t

08¢
t9€
8ve
(134

9i¢
00¢€
vee
892

1414
9t2
oece
%02

881
it
9st
orl

LI
801
c6
9.

09
ve

82
et

L4068
160

Siv
65k

134
X4}
iy
S6¢E

6.t
E9¢E

in€
1E€

Sig
662
£8e
492

162
134
sle
goc

81
et
86T
6€l

€ct
01
16
§4

6S
£v

2
11

906
o6t
biv
1Y

gy
9ch
ol
1113

84¢
¢9t
9vE
(1133

viE
gé6e
r1.14
99¢

0s¢c
vee
gl
éoe

9t
041
LA
gEl

2zt
901
06
ve

8&
(44

9c
ot

S0S
68Y
€L0
i80

132
1144
60%
1313

1.8
19¢

1113
62¢

21

62
13:1-
(174

64
€ege
i1
1o2

12
691
€51
€1

12t
SOt
68
£

is
11
14

voS
CEL
Ly
9sh

ovy
vir
g0y
26¢€

9.¢
09¢

tve
8ce

¢ie
962
082
v9e

8ve
(1%
912
002

vl
891
est
9tl

oct
vol
88
23

9s
ov
ve

€0S
i8%
Tiv
Gsth

6Ed
€y
0%
T6¢

it
6S¢

Ene
12€

(113
1.1
642
£9¢

i9e
1€2
stz
661

€el
191
1St
SET

611
€0t
8
12

SS
6t
¥4

205%
98¥
oLv
11

eEY
8cv
90k
66€

8l€
8s€
eveE
92€E
01€
v62
842
#92
9y
pec
pie
T}

gl
991
oSl
pel

81l
£01
98
0l

vs
8¢
gc

108
1124
691
€Sy

it
1344
S0y
68¢€

£LE
4S€
134%
143

60€
€62
422
192

(114
6¢¢
€iz
L61

181
G91
601
£€T

411
101
a8
69

€S
FXY
12

00s
ey
89r
sty

9EY
ocy
pov
98¢

¢l
95¢€
(1323
e

80¢
4.1
9i¢
09¢

2 14
- 114
2iz
961

08l
791
1A}
2el

911
00?1
ve
!9

es
9¢
oc

66%
€gv
9%
ist

SEY
61%
€0y
418€

[¥3%
1113
6€E
14

d0¢
162
(X4
662

Eve
2
(11
s61

641
€91
V3 A1
1€l

sti
66
€8
49

is
S€
61

86t
141/
99%
ost

vEY
gl
coy
98¢

0L€
L2
9t €
149

90¢
062
vic
852

4 74
9¢éc
(1] ¥4
vel

8Lt
291
9nt
o€l

LAY
86
28
99

0s
ve
81

d6%
1114
1124
6ut

(33
1%
1oy
11°1Y

69¢
(343
Fi33
12¢

So€
68¢
€l
i8¢

1344
gee
602
£61

a2t
191
sl
621

[B
l6
LX)
59

6
133
i1

96%
oeh
LA
124

2€v
9tn
oov
bet

89¢€
2st
9¢¢E
0ce

vot
88e
242
9cé

ove
vee
80¢
[4-1

941
091
vel
gel

49
96
08
v

ev
2t
91

043
031
4
oat
031

o081
ovi
061
0el

0l1
091
ogt
otl

0€El
0zt
01t
oot

040
030
oqo
030

080
ovo

060
080

0.0
090
060
ovo

0€0
0eo
0to
000

G-2

APPENDIX G (Cont'd.)

geot
4001
166
Gi6

6G6
€6
126
116

G668
648
€98
g

ie8
%]
664
(37

191
1573
Ssel
614

€04
189
149
669

6€9
£c9
109
16S

$i8
6GS

EnS
12s

gcol
9001
066
vi6

8S6
A
9¢6
016

768
848

298
9ve

0E8
yie
864
284l

991
084
rel
81l

c04s
989
049
wa9

9€9
ec9
909
065

L FA4
856

42
92s

1eol
S00}%
686
€16

196
137
Ge6
606

€68
8
198
sve

628
€1e
164
8L

S99l
60l
€€l
VA Y]

1oL
S89
699
€59

i£9
129
S09
686

€48
186

s
ses

020t
ool
886
cl6

956
oveé
vee
806

1.1}
9.8
098
wne

gze
2ig
964
084

L))
'}]
2el
91l

002
ve9
899
es9

9€9
0c9
%09
88s

2is
986§

0es
ves

6101
£E00T
iB6
L6

5§56
6E6
¥4
406

168
S8
658
134"

8
1ie
173
644

€91
ivl
1€
172

669
£89
199
159

SE9
619
€09
48§

145
114

6€S
£¢s

8101
2001
986
046

vs6
8E6
14}
906

068
rig
8%8
ene

9¢8
018
w6l
8il

292
9l

0El
w1l

869
289
999
0s9

vE9
819
co09
98S

048
129

(131
(24

2101
1001
586
696

€56
86
126
06

688
€48
488
ive

1
608
€64
Ll

192
Syl
6cl
[¥)

169
189
599
649

€E9
119
109
1411

695
€56
188
1es

9107
0001
vee6
896

es6
96
026
v06

888
éie

968
ove

bee
808
26l
94l

092
L1}
8¢l
ell

969
089
n99
89

(1%
919
009
ves

898
(499

1231
0es

ciol
666
€86
196

166
(1%
616
€06

188
148
11
6te

€28
408
164
ell

654
£vl
22l
1L

G669
649
£99
19

1€9
154
668
€86

19S
16s
13
61¢

L

#101
866
geé
896

056
BES
816
806
288
0de

»58
BES

éc8
908
064
il

864
(124
9cl
014

969
849
299
99

0E9
{ 2%4
665
28s%

996
0SS
vES
#1s

9

€0l
166
186
696

606
€E6
416
106

88
698
€58
18

1£4°]
508
684
€14

451
il
gel
604

€69
149
199
ar9

689
el
468
186

95
(121

€ES
FATY

S

2iotl
966
086
96

gveé
2te
916
006

L2°1)
898
2s8
9¢8

0ce
voe
884l
el

96l
ovl
el
804

269
949
099
ve9

8¢9
219
965
08S

v9s
gns
2¢€s
91g

L

itot
966
66
€96

i96
1€6
st16
668

£e8
198
158
cES®

618
€08
i84
144

1173
68l
gcd
lod

169
S49
659
€9

129
119
$6S
61S

£9S
1S

1€S
s1s

0t0T
vé6
816
296

96
0t6
916
868

288
998
058
vES

818
2o
98l
01l

sl
8t L
écl
90l

069
"9
8g9
en9

929
019
65
8.8

29S
9Ins

0€£S
nis

6001
€66
LL6
196

Své
626
€16
168

18
598
6h8
€€9

18
tos
sel
694

€SL
i€l
124
S0l

689
€19
199
1v9

69
609
£6S
115

19¢
1A

62S
€1

8001
266
916
096

wné
8éé
216
968

088
798
gne
(4% "]

9i8
008

ved
894

(473
9€ 4l
02l
ol

989
2i9
9%9
o9

{24
809
26S
915

09S
1223

82s
eis

0

04t
03¢
oae
03¢

08¢
oveE
06€E
(1]:13

04t
09¢
06t
0vE

0t€
oce

ote
0ot

042
032
0ae
032

08e
ove
062
cge

0.2
09¢
0se
ove

otee
0ee

otz
002

G-3

APPENDIX G (Cont'd.)

SEST
6161
€0S1
8%t

1912
131
132
eent

2001
161
GltEl
65¢1

EpEl
2¢€1
Tiet
6621

6L21
€9t
inel
1ect

cict
6611

€ell
511

1gil
sett
6111
eo0tt

1801
1401

sG0T
6£01

1131}
gisl

c0sil
98wl

0Lnl
wehi
gEnl
et

S0vl
06€E1
niEd
86El

evel
9¢El
0T€El
v6cl

gLclt
Zg9ci
9vel
0ect

121
8611
eell
9911

osti
119 %
gl
2011

9801
04071
LA
€01

€EST
1ist
105}
s8yl

691
€shl
P14 A
1241

Sopl
68¢ET
€€l
Fi14}

Tred
scel
60€t
€621

1221
1921
suel
6cel

giel
4611
181l
Q911

6ntil
€ETl
2111
1011

807
69013
£s07
180°%

gest
9181
0061
venl

8oyl
4121
9eyl
114 2

voul
88¢E1
¢lEl
9GE1T

OvEl
veel
BOET
c6ct

94i21
0921
1114}
geel

cizl
9611
0811
2911

eytl
ettt
9111
0011

veol
8901
2501
9¢€01

1est
sigt
6641
€ent

L1981
1312
SEyl
61wl

Eowl
48€1
1.€1
SGET

6EE]
ECET
10€1
1621

PXA
652t

(3 T4
221

11et
S611

6411
E911

PR A%
TETT
121
6601

£8071
4901
1s01
SE01

0kEst
#1st
86wl
carl

99ut
oswl
1232
CAS A

covl
98€1l
04€1
#SEl

BEET
2cel
90€1
0sct

it
852l
4.4
922e1

oict
1113}
8411
(223

9vil
0ETl
1223}
8801

280l
9501
0501
veol

626t
€161
L6091
eyl

sovl
6l
EERT
4191

Towl
S8El
69¢€1
€6E]

LEET
12€el
SO€ET
682l

€Lzl
1521
Tyel
Geel

6021
€611
1t
1911

Syt
6211
€Il
4601

1801
S901
§v01
€E0T

8esl
cist
9641
osvl

voul
122
cERl
911

oovt
L1148
89€1
esel

9tEl
ocel
voEd
8gel

¢y
9621
ow21
veel

8021
133
9211
0911

vell
TA%
(A%}
9601

ogol
v901
erol
2eot

2251
1ist
(13 A
6i%1

€91
A2 At
TERT
Sint

66E1T
€8ET
19¢€1
1s€l

GEET
61€1
€0€ET
i8¢l

1221
ss21
6€21
gzet

102t
1611

PAR
6S11

EVit
4211
1231
G601

6401
€901
it01
1E0T

92st
01sl
woul
givl

41 2%
122 2%
(1 A4
vivl

114
€8tl
99¢ET
0GET

pEET
8I€El

2oEl
g8l

0421
vsel
gect
aect

9021
06ll
vill
gstt

euil
' TAR
etil
9601

g201
2901
$%01
Q€01

sest
6061
€641
i1

(322}
Syl
6enl
€yl

16¢€1
I8E1l
S9ET
6HET

EEET
LIET
10¢el
Gcect

6921
€621
i€21
1221

S021
6811
€411
811

1323
T4
6011
€601

4401
1901
sbol
6201

Hest
gosi
26%1
9Lnt

091
(222
geyl
rA% 3¢

96€1
08¢El
79¢€1l
8vEl

133
9IEl
00€1
vgct

89ct
1114}
9¢€ci
ocetl

voet
8811
2l
9all

(AR
wetl
8011
2601

9401
0901
evol
8eotl

€est
4081
1641
I PA A

6Gh1
Evvl
eht
1234

S6¢€1
6481
€9€1
i9ET

Ieel
SIET
6621
€8ct

19¢1
iget
sgct
61t

€0ct
1811
1211
19 3¢

6€T1
€2t
Loti
1601

6201
6507

Evol
1201

aest
9061
0691

42)
el
otel

r6cl
8lE1
29¢el
9vET

0EET
L%
g6ct
2gel

9921
oset

veel
8idl

o2l
9811
oLt
vell

g€ll
ezl
sott
0601

vi01
8501
evot
9201

12si
sost
68yl
€201

stl
oyl
c2ul
60wt

€6El
24181
19€t
Sheld

62¢t
E€1€l

62t
igel

592t
6421
tect
4121

toct
selt
6911
€61t

€11
tetlt
S0t
6801

€201
4501
ot
szot

oest
oS}
88yl
2inl

9ISkl
(A%
pepl
gonl

26€1
9.¢1
09€1
PyET

gcel
2iel
9621
0eet

9l
evel
2eel
9i21

002t
®ell

9911

estl

9tll
0zit
2011
88071

2401
9501

‘ovot

eo1

046
03s
oas
02§

08as
ovs
114
08§

028
09s
0SS
0vsS

0€g
02s
ols
00S

04b
03¢y
oay
0dv

o8y
oYy
o6v
oey

0.y
09y
(1
ony

(114
o0y

oty
00y

G-4

APPENDIX G (Cont'd.)

1902
Teoe
6102
6661

1 4-1-24
1961
156t
seeél

6161
E06Y
le8l
1281

6591
6€81
geat
08t

16i1
Sl

6641
Endl

lell
111
691
6491

€991
1191
1€9T
c191

66S1
tgst

4981
1661

902
0€0¢
vioe
8661

cesl
9961
0661
veE6T

giél
206t
9881
0s81

regl
eg8l
cesl
9081

0641
L FVAS
8541
2nil

9241
014t

7691
gi9t

2991
9r9l
0E9T
7191

8661
¢esl
9951
0sst

svoe
62028
€loc
1661

t8esl
961
6%61
€E6l

1161
1061
88l
6981

gasl
€81
1281
808l

6811
€441

I 7
Twit

sell
6021
€691
2291

1991
Su9l
6291

€iol

1661
1est

5961
6951

yvoe
geoe
2ioe
9661

086l
1961
gv6l
ee6l

9161
0061
veel
8981

ésel
9e81
ozet
voel

8841
2Ll
961
owll

vell
80it

2691
9491

0991
ve91
8291
¢i9tl

961
osst

vosi
8ps1

Evoe
202
1102
s661

6i61
€961
1961
1€61

sT6l
6681
cest
4981

1sel
11°2¢
618t
£081

4821
1211

ss4t
6€L1

(XY
4011
1691
§491

6591
Ev9t
1291
1191

g6sl
6451

£9s1
L4951

2voce
9202
oloc
v66l

8461
296t
96t
ot6l

16l
8681
e¢sel
9981

0sel
pe8t
elgl
zost

9941
04l1
#sill
8ELl

ceLl
9041
0691
v91

85891
en9l
9291
0191

121
8481

c9sl
9tsl

131114
G20¢
6002
e66t

1161
1961
sy6l
6261

€161
4581
igel
s981

6u81
€EBT
18t
To8t

cgll
6941
€641
1841

1241
50.1

6891
€291

4591
13224
29t
6091

gest
L1281
19st
syst

ovol
veol
800¢
661

9.61
0961
tvel
8ce6tl

ci6l
9681
ogst
981

eyal
ceet
918l
oosl

vell
8941
[4 73
9€4l

0cit
volt
8891
etL91

9591
ovel
vcot
8091

c6st
9451
09S1
st

6802
g€cod
4002
1661

sl61
6561
Ev6t
1261

1161
s681
64871
€98t

1981
1€81
(421
6641

€841
192%
1sdt
SELY

6141
t04t
1891
1491

691
691
€291
L0971

1651
6261

6561
1 24

8€02
820¢
p00¢c
0661

vi61
8561
aveél
9261

gtél
LT
g8t
2981

98l
0€8t
rigtl
Bedl

gell
9941
esit
vell

aldl
20l1
8891
0491

9591
el
829t
9091

0651
L FAY)
8551

2vst

€02
1eoe
8002
6861

L6l
1561
Tvel
5261

6061
€68l
1481
1981

svgl
6281
gigl
1611

1841
S911

“6vdl

eell

ivit
1021
s891
6991

€591
i€91
1291
G091

6851
€461
4661
1est

9€0¢
0c02
%002
8861

2161
9561
ovel
ve6l

8061
2681
9.81
0981

veel
8¢8l
zigl
9611

081
LAFNS
gvil
el

911
0041

¥891
8991

2891
9¢91
0c9t
y091

gest
24st
96st
oust

sg02
61023
£008
186%

1261
6661
6€61
¥

Lo61
1601
9481
6583

€vel
4281
121°)
s6il

6143
£94%
941
Tedt

1733
6691
€891
1991

1691
SE9T
6191
€091

4861
1258%

s6st
6€S1

veoc
8loc
2002
9861

olst
1561
8e6t
2261

9061
0681
w81
gcgt

28l
9281
otel
v6ll

8.4t
2941
9nLl
oest

LAFY)
8691

c891
9991

0691
ve9l
glol
2091

9ssi
(¥

veal
8est

€eo0e
i10¢
1002
sg6l

6961
€56t
LE6T
1zel

sp6l
6881
€281
1681

trel
s2el
6081
€641

43
1921
svsl
6241

€1t
2691
1991
§991

6491
€E91
4191
109t

cgsl
6951

gsst
lest

2eoe
9102
0002
veel

8961
2661
9e6t
0261

voél
888l
248l
9681

ovel
7281
so8l
2611

9441
0941
L2 7R
82l1

el
9691

0891
¥991

8v9l
¢egl
9191
0091

vesl
89s1

2881
9esl

042
034
0al
034

08l
ovi
064
08l

0ll
092
052
onl

19
02l
otl
00

049
039
0a9
039
089
ove

069
089

0.9
099
089
0v9

0€9
0Z9

olsg
009

G-6

APPENDIX G (Cont'd.)

6562
13 114

lese
1162

s6ve
61v2
£9he
Lot2

leve
sive
66€¢
£ge2

19¢€2
13134
GEEC
61€2

€0€e
1922
viéee
gsee

6€ce
ggee
l02¢
1612

si12
ssle
Eniz
1212

1924
§602

6402
€902

85852
¢se
92s¢
01s2

1 2144
8iwe
e9ve
ovwe

otve
1 2% 14
86€¢C
2gec

99¢€c
06EC
#EEC
glee

20¢ee
9822
0léee
LT

gece
c¢eee
90e¢
0612

viie
gsie
4 2%
9cic

0lic
602

8402
¢90¢

1868
Inge
sese
6058

€642
P31
tone
Gope

62
€iye
L6€8
1eee

s9¢€e
6vee
€EEC
1€

toee
sgee
6922
€622

le22
1eee
s0¢ec¢
6812

€i1e
1512
13- 2%4
céie

601¢
€60¢
4208
1902

956¢
oyse
yese
80se

(43
90
09he
13 2.7

geve
cine
96€2
0g€c

¥9€C
gvee
éege
91c€e

ooee
reee
892¢
4144

9tz
ocee
#0cé
8etle

il
9512
oyt
veie

g01¢
2602
9.02
0902

§562
(3444
(X414
40628

1602
6L42
6542
1.2 44

dene
1331

§6€¢
6l€2

gE9Ee
LyE2
1€€C
11114

6622
€gce
49¢e
Igee

ct2e
s6lee
£0ce
1812

1412
11984
6ETZ
gcie

L0128
1602
§l0¢
650¢

vsse
11
2égse
9062

o6y
vive
Bgswe
2vh2

9ene
oive

retc
8ifc

Z9¢€e
121 %4
ogee
vige

gsee
2gee
9922
ogée

veee
gice
éoee
9gle

04i1¢
nele
gele
eele

9ot
060¢
?102
8502

€66
lese
tése
08¢

68be
€42
160¢
TenZ

(14 1
60%2
£6€¢
i€

Toed
SheS
6ec€e
€r1ee

lgce
Tgee
s9ee
6vcc

€gee
11¢e
loee
sgle

6912
€€l
Le12
1e1e

sole
6802
€02
4502

éese
9ese
0Zse
?0sce

8gre
cine
9she
0552

vene
BOwe
4114
9.¢€2

09ge
(2214
8eeed
clee

9622
082e
v9ece
'3 244

ceze
9ize
00¢e
reic

891¢
éstle
9etle
ocie

vote
8g0¢
élLoc
9502

igse
14
61s2
€062

lane
1ive
asve
§E42

gcwe
i0%e
16€2
Sl€2

65€2
EpEe
lcee
11€2

1.144
6422
£9¢2
inee

| 3344
siee
6612
131 ¥4

912
isi2
(12 ¥4
6112

€012
1802
1l02
§502

(11494
11314
gise
8052

p8we
0ive
st
sene

gene
14

06€2
L PEYA

-1 1X4
1%
9cEe
pree

11144
gaee
8§9¢¢e
9pee

pgce
yice
foie
881c

9912
oste
(19 74
13X

8012
9802
0i08
vs0e

60se
£€ge
1182
1062

s8ve
694¢
€ste
FAS 1

¥4 1
sowve
68€¢
€4€e

4588
Tvee
44 X4
60€2C

g€6ce
1lee
i9ce
14 144

6cee
glee
L1612
1812

g91¢
6wl
€ETS
L4112

1ol
ceoe

690¢
€608

] 194
e¢ese
9tlge
0062

vgwe
aone
eane
eV

(174 I
wobe
ggce
2lee

9s¢€d
oveES
ycee
g0€¢e

26ce
94¢e
0922
(4 T2

geee
eiee
961¢e
08l

912
gpic
eele
gtie

00i¢
¥e0c
8902
2¢s0e

L1982
1134
sise
66he

ey
4942
1312
SEVE

6112
Eove
L9E2
1i¢€2

(1114
[13%4
€eee
20€2

1622
glcd
66228
£ved

ieez
I1ee
s618
6412

€918
inte
Telg
ciia

6602
€802
490¢
1s0¢

9nse
oege
vige
864c

eene
994
oswe
7Eve

give
cove
9g¢€c
0.€2

veee
geee
ecec
90€¢

0622
w22
8see
4 144

92ee
otee
7612
8l1¢

2é9te
9Inie
oele
viie

860¢
2goe
9902
0602

Shse
6252
€162
léwe

11:114
sove
6ve
g€gne

Fa3 14
love
11:134
69€2

€gec
L£€8
12¢c
So0€¢

6822
g€lee
4822
inee

(1444
602¢
€6l¢
4118

191¢
shic
621¢
€11

4602
1802
5902
6402

12474
82a
2ise
964

ogve
vove
g
cEve

91 v
oove
1211
89¢€c

csee
9€€¢
0cee
L 11 X4

g82c
iz
96ée
owee

veee
80de
4354
9i1e

09te
vyie
gele
2ile

960¢
080¢
¥90¢
902

046
036
006
036

086
ové
066
086

046
096
0sé
oré

0ts
026
016
006

04de
038
0as
0de

ode
ove
068
08e

ole
09@
ose
ove

(]
oce
ote
oog

G-6

APPENDIX G (Cont'd.)

1.0€
1 -{]4
6€0¢E
€20¢

100¢€
1662
562
6662

£4962
1262
1162
5682

6182
£98c
AL
1e82

sige
6642
£84¢
1942

1642
ged2
6142
€042

1892
1192

66928
6£92

€292
1092
1662
6182

0.0¢
7G0¢
gEot
2¢0E

900¢
066¢
yl62
856¢

evee
926¢d
ole6d
7682

8i8e
298¢
9vec
0gse

i
864¢
28ie
994¢

0542
v€L2
glie
zosz

9892
0492
vs9¢
8E9C

2e9ve
9092

0652
vise

690¢
€50€
iE0¢t
1¢o0¢

c00¢
6862
€168
1662

134X
Ggese
6062
€68¢

ll82
1982
1214
628¢

€ige
1622
1842
§94¢

6vic
139X
i1ie
1042

$892
6992
€492
€92

1292
5092

6862
€452

890¢
2s0¢
9E0E
0co¢

#00¢
8862
2i68
9562

ovee
w2sc
8062
268¢

9i8¢
098¢
12414
gese

c¢ige
96.¢
08ie
w9l

8nie
eeLe
9tle
0012

v892
8992
zs92
9£92

0292
%092

886¢c
e¢ise

190€
150¢E
GEQE
610€E

£E00E
1862
1262
11914

6€62
X414
106¢
1682

6482
65682
gnee
282

118
1.7
6li¢8
£94¢

inic
1ele
sile
6692

£€89¢
1992
1s9¢
eg9¢

6192
€092

41882
1262

990€
050¢
[2411
810¢€

e¢00¢e
986C
0i62
hg62

8g62
4411
906¢
068¢

vi8c
858¢
avge
9¢8¢

olge
yoli2
8lld
29lc

9428
oeLe
viie
8692

cu9¢
9992
0592
ve9e

8192
2092

g8se
0468

590¢€
60t
EEOE
L10€

100¢€
1-1.14
6962
€562

LE62
1262
sp6e
6882

€482
ig¢2
irge
geec

608¢
€642
lil2
1942

1 FX4
62l
g1le
169¢

1 3:374
6992
61792
€€9¢

4192
109¢

11114
6952

v90¢E
8vo¢t
[49+1%
910¢

000€
t86c
8962
[491.Y

9e6e
0262
vo6e
8882

ciL92
9582
ovec
vege

8082
6l
9Ll2
09l

tvie
8eLe
c¢iic
9692

0g9e
9992
gv9e
ze9e

9192
0092

rese
8962

€90€
LW0E
1€0€
sloE

6662
£862

1962
1562

Q€62
6162
€062
i88¢

1482
§682
6€8¢
€cge

L082
16i2
silec
6542

evie
leie
1142
G692

6492
€992
Lv92
1€92

gisz
66S¢C

£gse
1982

g90¢
940€
0E0€
y10¢E

0662
g6l
8962
06568

be6d
g162
2068
9882

0482
v58¢
€8¢
éc8d

9082
0642
wll2
864

8nid
92l
) 9%
7692

8.9¢
899¢
9v9¢e
0€9e

2192
8652
8852
9956¢

190€
shot
620¢
elo¢e

L66¢
1862
5962
6h6d

€€6e
1162
1062
6882

6982
£€sge
iEgd
128¢

S08¢
68.¢
€242
16l

(3. FXA
cele
60.¢
€692

1492
1992
s¥9¢
6292

£lg9e
1662
(3114
6962

090¢€
LA 21X
8¢0¢
210¢

9662
0862
962
8v6¢c

2t6c
9162
0062
ne8c

898¢
2s8¢
9€8¢
0c¢ee

708¢
88l¢
eLLe
9642

ovie
veLe
g04¢
269¢

9.9¢
099¢

#v9¢
8¢9¢e

2192
9662

0852
96

6G60¢
EvO0¢
120€
110€

G662
6l62
€968
Lh62

te6e
sl6e
668¢
€982

1982
1682
4131
618¢

€082
1812
1148
(1 ¥4

6€42
€ele
l04e
1692

si92
6592
Ev93e
1é9¢

1192
6642

6452
€968

BG0¢E
evot
920¢
010€

9662
8.l62
2962
9n6e

og6¢
visc
868¢
2gge

9982
0gge
vege
g1ge

2oge
98.¢
0Lle
96428

8¢€.L8
eele
90.¢
069¢

vi9e
8g92
[4 1
9292

0192
%662

8152
2962

1G0E
13213
S20¢
600¢€

€662
1162
1962
Shec

6262
£162

4682
188¢

5992
6492
13414
1192

1082
sgld
69.¢2
€622

2842
122¢

5042
689¢

€292
169¢
13214
G292

609¢
€662

lise
1952

950¢
ov0Et
veot
800¢

2662
9162
096¢
12114

ga6ce
2162
96828
088¢

v982c
gvec
2€8¢
918c

0082
w8l
g94¢
(4734

9€28
0éle
9042
8892

2492
9692
ow9¢
1292

8092
2652

9482
09%¢2

048
038
oas
028

[L: 1)
ovd

o068
088

old
094
0s8
ova

o€Es
08
oig
008

04v
03V
oav
0oV

ogv
ovy
osv
osy

0Ly
09v
osv
ovy

113
ozv
oty
oov

G-7

APPENDIX G (Cont'd.)

€8GE
1958¢
1341
GESGE

616¢E
€0SE
£90E
Tive

SSUE
6EVE
€2re
L00€

T6EE
SiE¢

6GEE
EpEE

L2E€
TIgE
S&2¢€
6.42¢

£9ct
i92¢
1ece
glee

661€
€EglE
91¢€
1gle

GETE
611¢€
€01¢€
480€

[4+19
996Gt
0ssE
1 2399

gisgt
20s¢
9BLE
Oéive

12723
gENE

cert
90nE

06EE
RLEE
8GEE
4133

9cEE
OIEE
v6ct
gice

¢9ce
9vee
oece
vice

B61E
[4:13%
991¢€
0s1¢

RETE
g1te

20i¢g
980¢

1gs€
§96¢€
6¥GE
£ESE

1€
105€
1123
690t

(371
LEYE
13423
SOovE

68E¢E
€4EE

45€¢
Teee

Gl
60€€
€62t
212¢

192¢
(1749

6e2¢
g€1e¢e

161€
183¢
S91€
(1239

EETE
L11¢€

101€
G80¢€

086Gt
v9se
1A%
4313

91s¢E
00S¢E
vene
g9t

1143
9EpE
ocre
rove

9BEE
elee
9SEE
OVEE

yeee
80E¢E
62t
9i2¢

09¢cE
vhee
gede
cize

961¢E
08lE
LA D%
eriE

49 §3
911¢€

00t¢g
v80€

626¢E
E9SE
iW5E
| £33

2313
660¢€
13123
{90t

(£ 4%
SEbE
61p¢
EODE

L8EE
T4€E
SGEE
6EEE

ECEE
10€¢€
162€
G42¢E

662¢
Ebce
ieee
11ee

S61E
641¢
E91¢
F1213

11343
glie

660€
£E80¢

8iGE
(1713
9t SE
0€gE

12319
gevE
2ebhe
99vE

0SPE
vEvE
8lve
eove

9u€t
04EE

12743
BEEE

¢cte
90¢E
06t
vice

8%cE
ewee
9ect
oieeg

#61¢€
8L1E
coite
9ntle

0tleg
piile
860€
¢BoE

118¢€
T9s¢e
SySE
62GE

€16E
FY349
Teve
S9PE

6tvE
EEVE
LittE
Tove

GREE
69EE
EGEE
LEEE

12€€
GOEE
682¢€
€ie¢

L8CE
Tveg
1143
60¢¢e

€61¢€
LL1E
I9l¢g
SHIE

621¢E
(2813

L60E
180¢

946¢
09s€
14 1413
826t

cigt
96h€
08bE
L2 4%

1213
(4314
9lvE
00vE

UBEE
B9EE

1114%
9€EE

0CEE
voEE
8gee
clz¢e

952¢
ovee
vece
802E

Zelt
941¢

09t1¢E
vyite

‘T2 33
eile

960¢E
080¢E

S.SE
6SGE
€vGE
l2S¢

1173
seve
6.L4€
€90

ihueE
11323
1313
66E€E

EBEE
L9¢€
1313%
GEEE

61EE
€0EE
i82¢
142¢

(1443
6E2E
g£dee
102¢

11333
saie
6G1E
EnlE

121
1i1e

G60€
640€

v.6E
96SE
-3 2413
925¢€

e1GE
L 1.1 2%
gLve
d9v¢E

[224
pEVE
pive
R6EE

§8€¢e
99€EE

0SEE
DEEE

glEe
2ote
982¢E
042€

pect
9ece
2ece
po0ee

861¢
vile
gsle
gnle

T4
arie
960€
gi0¢€

€16¢
156¢€
(329%
6esE

606t
E6VE
Li4¢
T9vE

ShyeE
6SHe
193 19
L6EE

1 1:143
S9€E
6hEE
€EEE

LIE€
10€€
G8eE
692¢

€sce
1€2¢€
1eee
s0ce

681¢
€L1€
L81¢€
(5237

g2le
601¢€

€60¢
lL0€

P13Y
966¢
(12 213
vise

80s¢
26n¢g
9iv¢
09%€E

12 22%
gche
A4 1%
96ttt

08EE
hotE
guEeE
2eEee

9IEE
00€EE
w8cE
g92¢e

114%
9tcE
ocee
voce

g81¢
eiie
961¢
ovte

neie
901¢€

260¢€
940¢€

T15¢
GG5SE
6€5¢E
¥4 4

40S€
11-14>
7123
-1 /4

EVvE
lene
TioE
S6t¢E

6.E€
£9EE
PR 13>
JEEE

STEE
66C¢
€6¢E
492k

1scs
gEcs
612§
£0CE

181¢
9217
sgle
6E1E

g2ie
Lole
160¢
Sl0¢€

048¢
1 2193
1313
éést

90s¢€
o6veE
vive
8GvE

14113
92hE
(%19
L2113

8LEE
4144
99EE
ogee

vice
86c¢
2eie
992¢

0get
rece
114
2ocet

9¢81¢€
0l1¢€
12113
9ElE

eele
got¢e
060¢€
720€

69S¢€
(X143
F1 343
Tgse

S0sE
680 e
Lt
ishe

13214
1141

60vE
€6EE

LLE€
11235
SHEE
62¢¢

€1€E
162¢€
1g2¢
c9et

692€E
€gct
212¢
foce

sgle
691¢€
EGTE
LETE

teie
Sol€
680¢€
€10¢€

89S¢E
26s¢
9t &€
02S€E

vost
gereE
2ive
9qhe

ovbE
veve
g0vE
413

9.EE
09€€
PUEE
1433

elee
962€
oece
#92¢

1 144
eece
9tee
00c¢

#8l€
891¢
2gieg
9ETE

o02le
wole
8g0¢
¢l0¢

040
03a
oaa
0da

oaa
ova
06Q
(-1}

0.0
094a
0sa
ova

0€0
o2a
ota
0oa

043
039
002
039

089
0V
069
08

042
093
0S)
00d

0€d
022
012
003

APPENDIX G (Cont'd.)

S60%
64L0%
gE90Y
190v

1e0Y
SI0%
666€
€96¢

196¢E
13119
SE6E
616€

£06€
188¢€
128€E
3-1:14

6E8E
X413
08¢
16i¢t

SLLE
6S.E
€vit
121t

114¢€
G69¢
649€

£99€

199¢
1€9¢

G19¢
66SE

v60Y
8Ll0%
290v
9o

0E0V
riov
866¢
286t

996€E
066¢
vE6t
816€

206t
988¢
048t
14114

14°19
2eeeE
908¢
064t

| PUAY
g6lt
enit
92.t

0tit
169t
849¢
299¢

9b9t
0E9E
7i9¢€
865t

€60
l.l0%
190%
Svov

6204
£l0v
166€
186¢€

696¢
66t
gEot
L16t

306¢€
S588¢
698¢€
€G8€

LEBE
114:13
soge
68.¢

€L.1€
FAYAY
|5 1Y
celt

60.LE
£69¢€
Li9E
199¢

(1111
62C9¢€

€19¢€
L168€

4.1}
9.0%
090Y%
Yooy

gcow
ciov
966¢
086¢

v96t
86t
CE6E
916¢

006€
12113
g98¢t
1411

9€gE
1413
v08¢
88.¢

eLLt
9.t
ovit
wele

804¢€
269¢
949t
099¢

#H9¢t
geoE

2¢i9¢e
965S€

160%
Sl0¥
6500
Evov

i20%
Ptov
S66¢€
616¢

€96t
Lv6E
1€6€
111

668E
£88¢
98¢
11113

<1 4:13
618¢
£08¢
181¢

1448
§G.¢
6€LE
£2L¢€

404¢
169¢€
§529¢
659¢

19 2°19
29t
119¢
G66¢

060Y
viov
111
Zvov

9c0v
otov
v66¢E
8L6E

296¢
9v6¢E
0E6t
1 21-13

868t
2113
998t
0S8E

nEBE
818t
4713
96l

0448
1 2713
8t LE
2ele

90.E
069¢
be9t
869¢

eyt
929¢
019¢
11113

6Q0Y
e€L00
L6509
134114

SZov
600%
€E66€
Ll6¢

196€
SH6€
626€
€16€

168¢
11°1:1%
S98E
6 8¢

13313
118€
1o89¢
11243

69.E
€84t
LelE
124¢

S0.E
68%¢
£.L9¢E
L189€

199t
G2ot

609¢
€6SE

geov
L0t
950%
ovov

weov
goov
266¢
9L6¢

096€
(2111
8c6t
ci6t

968¢
088¢
v9gt
8veE

13113
918t
008¢
P8LE

89.¢
4713
9€lt
0cit

vOoLE
889t
2i9t
959¢

09t
veoe
809¢
cest

4800
140%
SG0Y
6E0h

€20y
Lo0®
166¢€
Gl6E

6S6€
EV6E
L26¢
116¢

G68E
648¢
£98¢
LV8E

T1E8€
SIRE
664€
€84¢€

191¢
161¢€
GELE
611t

€04€
189¢
149¢
GG9E

6E9¢E
£29¢€

109¢
16SE

9g0v
ai0v
1194
gEOY

Zcoy
900%
#66¢€
¥16t

9S6E
r17.15
926¢€
p16¢€

968¢
gi8¢
898¢€
998¢

pEBE
(281
864¢
38lt

P9.€
064¢€
{ 193
ptie

204¢
989¢
9.49¢
$69¢€

gESE
2e9t
909¢
065S¢€

S8QV
6907
£GQn
LE0%

cow
S00v
686€
EL6F

156¢
Tv6€E
26t
606€

£68€
L18¢
198€
(1 1°]

628¢
£18E
l6l¢
18.¢

§9.€
6V LE
£ELE
L1i¢

10.¢
se9t
699¢
£G9¢E

1€9€
129¢
s09¢
68SE

veov
89OV
260V
9t 0

020
goov
886€
2l6t

956¢
ov6t
1 7413
806¢€

268¢
948¢
098¢
#heE

:14°1%
2ise
961t
08.€

¥9LE
gt lE
4954
9t it

00.¢

#89¢

899¢
269¢

9€9¢€
0e9t
#09¢
28st

€g0v
290V
1600
GEOF

610¥
E0OY
196€
1l6¢

SS6€
6£6€
€268
106€

168€
G18¢
6S8¢€
£y8E

l28¢
118€
964€
614¢

€94€
inl€
1€48
1913

669¢
tg9¢
1996
169¢€

1347
619¢
€09¢
18586

[1:111
990%
0G0v
vEob

glov
200v
986¢€
046€

1271
8E6¢€
(1413
906¢

068¢€
i8¢
858¢
14113

928¢
018¢
v6it
8li¢

c9lt
IvLE
0€ i€
v1i¢

869¢
2g9¢
999¢
0G9€E

pE9¢E
819¢
209¢
985t

Tgov
s9ov
690V
Ecoy

i1ov
Toov
sg6t
696¢

€g6t
1E6¢€
126¢€
c06¢

688¢
€l9¢
158¢
1y8¢E

114°1%
608¢€
€648
L1

19.¢€
Shit
621¢€
£T4¢€

169¢
1g9¢
S99¢
649¢€

EE9E
119¢

109¢€
19:113

080w
n90w
8w ow
cEon

AL
000w
N6t
896¢%

2q6t
9t 6¢
0c6t
o6t

898t
2ist
968¢
ov8t

y28E
08¢
C64€
9Li¢

094€
12 PA3
T FRY
2iie

969¢€
089¢
v99¢€
gv9t

2€9¢
919¢

009¢
vB8st

044
034
004
034

0Rd
ovd
064
084

043
094
064
o4

0t 4
024
oli4
004

043
033
003
023

083
0v3

063
083

043
093
063
on3

0€3
023

013
003

G-9

Absolute Address Conversion, 3-8
Accumulation of Control Words, 12-2
Adapter Cluster, 11-3

Add, 7-1

Adder, High Speed, 5-3

Address Adder, 5-20

Address Environment Defined, 3-8
ADJ (0,0) Switch, 4-11

Alarm Interrupts, 5-10

Alpha Card Read, 5-17

Area Descriptor, 8-9, 10-2

A Register, 4-1

Arithmetic,Address Converter Busy, 12-7
Arithmetic Address Converter, 12-13
Arithmetic Controller, 5-3
Arithmetic Operators, 7-1

Auxiliary Cabinet, 1-2

Base and Limit of Stack, 3-1

Base of Addressing-Level Segment, 3-8
Binary Card Read, 5-17

Bit Operators, 7-9

Bit Reset, 7-9

Bit Reset Dynamic, 7-9

Bit Set, 7-9

Bit Set Dynamic, 7-9

Bit Sign Change, 7-9

Bottom of Stack, 5-7

Branch False, 7-5

Branch False Dynamic, 7-5

Branch Operators, 7-5

Branch True, 7-5

Branch True Dynamic, 7-5

Branch Unconditional, 7-3

Branch Unconditional Dynamic, 7-5
B Register, 4-1

Card Load Operation, 4-18

Card Punch, 10-5

Card Reader, 10-4

Channel Assignment Control, 5-15
Character Codes, Internal, 2-1
Character Translator, 5-15

Character Type Data, 2-4

Clear and Halt Load, 4-9

Clear the Stack Request, 12-7

Clock Controls, 4-10

Clocks, 1-4

Coded to Decimal Conversion, 2-2
Command Data Register, 5-14
Compare Characters Equal Destructive, 7-13

INDEX

Compare Characters Equal Update, 7-13

Compare Characters Greater, Destructive, 7-12

Compare Characters Greater or Equal,
Destructive, 7-13

Compare Characters Greater or Equal Update, 7-13

Compare Characters Greater, Update, 7-13

Compare Characters Less Destructive, 7-13

Compare Characters Less or Equal
Destructive, 7-13

Compare Characters Less or Equal Update, 7-13

Compare Characters Less Update, 7-13

Compare Characters Not Equal Destructive, 7-13

Compare Characters Not Equal Update, 7-13

Compare Operators, 7-12

Conditional Halt, 7-6

Conditional Halt Switch, 4-11

Console, 10-3

Control, Interrupt, 4-7

Control, Memory, 4-7

Controller, Memory and I/O Processor, 5-18

Control, Program, 4-8

Control, Stack, 4-7

Controller, String Operator, 5-12

Controller, Transfer

Control Panels, 4-1

Control State, 1-4

Control State/Normal State, 5-12

Control Word Checker, 12-11

Control Word Not Available, 12-8

Copy Bit, 3-2

Count Binary Ones, 8-13

C Register, 4-1

Data Addressing, 3-1

Data Communications Adapters, 1-12

Data Communications Interface, 5-16

Data Communications Interrupt, 5-10

Data Communications Processor, 1-12, 11-1

Data Communications System, 11-1

Data-Dependent Presence Bit, 5-7

Data Descriptor, 3-2

Data Representation, 2-1

Data Switching Channels, 1-9

Data Types and Physical Layout, 2-4

Decimal to Coded Number Conversion, 2-2

Decimal and Hexadecimal Table Conversion, 2-2

Degraded Mode Operation, 12-3 ’

Delete Top of Stack, 7-6

Delta Generator and Comparator, 12-13

Description of Units, 1-1

one

INDEX (cont)

Descriptor Formats, 10-2

Detect Mode (MDP), 5-17

Diagnose Mode (MDP), 5-17

Disable External Interrupts, 8-1
Disk Address Error, 12-8

Disk Address Unit, 12-12

Disk File Optimizer, 1-3, 12-1

Disk File Memory Systems, 10-11
Disk Interface, 12-9

Disk Load Operation, 4-18

Disk Pack Subsystem

Display Mode (MDP), 5-17

Display Select Switches, 4-10
Divide, 7-2

Divide by Zero Interrupt, 5-6
Drivers and Receivers, 12-11, 12-12
Duplicate Top of Stack, 7-6
Dynamic Branch False, 7-5
Dynamic Branch True, 7-5

Dynamic Branch Unconditional, 7-5
Dynamic Interaction with B 6700, 12-6
EBCDIC Card Read, 5-17

Edit Mode Operation, 9-1

Edit Mode Operators, 9-1

Enable External Inetrrupts, 8-1

End Edit, 9-3

End Float, 9-2

Enter Operator, 7-17

Equal, 7-4

Escape to 16-bit instruction, 8-1

EU Conflict Resolution, 12-3, 12-13
Evaluate, 7-20

Exchange, 7-6

Execute Single Micro Destructive, 7-14
Execute Single Micro Single Pointer Update, 7-14
Execute Single Micro Update, 7-14
Executing I/O Descriptors, 4-17
Exit Operator, 7-15

Exponent Overflow and Underflow Interrupt, 5-6
EXT-1 Switch, 4-11

External Interrupts, 5-8

Family A, 4-5

Family B, 4-5

Family C, 4-5

Family D, 4-6

Family E, 4-6

Features, 1-5

FF Reset Switch, 4-10

Field Insert, 7-10

Field Insert Dynamic, 7-10

Field Isolate, 7-10

Field Isolate Dynamic, 7-10

Field Transfer, 7-9

Field Transfer Dynamic, 7-10

First Stack Scan Cycle Incomplete, 12-7

Functional Performance Characteristics, 12-1

Function Word, 10-2

General Control Adapter Interrupt, 5-10

Greater Than, 7-4

Greater Than or Equal, 7-4

Halt Load and Loan Select Switches, 4-10

Halt Switch, 4-18

Hexadecimal and Octal Notation, 2-1

Hexadecimal to Decimal Table Conversion, 2-2

Idle Until Interrupt, 8-1

Index, 7-7

Index and Load Name, 7-7

Index and Load Operators, 7-7

Index and Load Value, 7-7

Index Bit, 3-2

Index, Invalid, 3-2

Index, Valid, 3-2

Indicators BO, B1, B2, 4-10

Indirect Reference Word, 6-6

Information Flow (Card Reader to Main Memory),
5-17

Initiate I/O, 8-9

Input Convert Destructive, 7-14

Input Convert Operators, 7-14

Input Convert Update, 7-15

Input/Output Processor, 1-9, 4-9, 5-14

Input/Output Processor Configurator, 1-9

Input/Output Processor Interrupts, 5-9

Input/Output Processor Register Clear, 4-9

Input/Output Processor Register and Flip Flops,
4-13

Input/Output Processor Maintenance Control
Panel, 4-14

Insert Conditional, 9-2

Insert Display Sign, 9-2

Insert Mark Stack Operator, 7-22

Insert Overpunch, 9-3

Insert Unconditional, 9-2

Integer Divide, 7-2

Integerized Rounded, D.P,8-11

Integerize Rounded, 7-3

Integerize Truncated, 7-3

Integer Overflow Interrupt, 5-6

Integrated Circuit (IC) Memory, 5-20

INT-I Switch, 4-11

two

Interface Requirements, 12-3

Internal Character Codes, 2-1

Internal Data Transfer Section, 5-2
Interrogate I/O Path, 8-7

Interrogate Peripheral Status, 8-5
Interrogate Peripheral Unit Type, 8-6
Interrupt Control, 4-7

Interrupt Controller, 5-3

[nterrupt Handling, 1-5, 5-12
Interrupt Network, 5-15

Interrupt Other Processor, 8-10
Interrupt System, 1-5

Interrupts, Alarm, 5-10

Interrupts, External, 1-8, 5-8
Interrupts, Operator Dependent, 1-8, 5-5
Interrupts, Operator Independent, 1-8
Interval Timer Interrupt, 5-9

Invalid Address Interrupt, 5-12
Invalid Index Interrupt, 5-6

Invalid Operand Interrupt, 5-6

Invalid Operator, 7-6

Invalid Program Word Interrupt, 5-12
1/O Control Word, 10-2

1/O Descriptor, Execute Recycle, 4-17
1/O Descriptor, Execute Single Cycle, 4-17
[/O Finish and Data Comm Interrupts, 5-10
/O Operations, Processor Initiated, 1-9
I/O Processor Parity, 5-11
Job-Splitting, 3-9

Keyboard Control Keys, 4-19

Leading One Test, 8-11

Less Than, 7-4

Less Than or Equal, 7-4

Level Definition, 3-9

Line Adapter, 11-4

Line Printer, 10-6

Linked List Lookup, 8-13

Lit Call Zero, 7-7

Lit Call One, 7-7

Lit Call 8 Bits, 7-7

Lit Call 16 Bits, 7-7

Lit Call 48 Bits, 7-7

Literal Call Operators, 7-7

Load, 7-8

Load Select Switch, 4-18

Load Switch, 4-18

Load Transparent, 8-13
Local/Remote Switch, 4-11

Logical And, 7-4

Logical Equal, 7-4

INDEX (cont)

Logical Equivalence, 7-4

Logical Negate, 7-4

Logical Operands, 2-6

Logical Operators, 7-4

Logical Or, 7-4

Logic Card Testing, 4-17

Loop Interrupt, 5-11

Magnetic Tape Subsystem, 10-6

Main Memory, 1-8, 5-20

Maintenance Controls General, 4-8

Maintenance Diagnostic Processor, 5-17

Make PCW, 7-7

Mantissa Field, 2-6

Mark Stack Control Word, 6-5

Mark Stack Control Word Linkage, 3-6

Mark Stack Operator, 7-21

Mask and Steering, 5-3

Mask and Steering Example, 5-3

Masked Search for Equal, 8-13

Master Control Program, 1-4

MDL Control Switches, 4-10

MDL Register Clear, 4-10

MDTR/Normal Switch, 4-10

Memory Addressing, 5-22

‘Memory and Input/Output Processor Con-
troller, 5-18

Memory Area Allocation, 3-6

Memory Bus, 5-20

Memory Cabinet Configuration, 5-21

Memory Control, 4-7

Memory Cycle Times, 1-9

Memory Exchange, 5-15

Memory Interface, 4-4, 5-43

Memory Interlacing, 5-22

Memory Organization, 5-20

Memory Parity Interrupt, 5-11

Memory Priority, 5-21

Memory Protect Interrupt, 5-5

Memory Protection, 5-21

Memory Registers, 5-22

Memory Second Level, 1-9

Memory Stack Controller, 5-23

Memory Tester, 4-20

Memory Tester Non-Test Operation, 4-20

Memory Tester Test Operation, 4-21

Memory Testing, 5-23

Memory Words, 1-8

Move Characters, 9-1

Move Numeric Unconditional, 9-1

Move To Stack, 8-11

three

INDEX (cont)

Move With Float, 9-1 Options and Requirements for System, 1-2
Move With Insert, 9-1 Order of Magnitude, 2-4

Maintenance Control Panel, I/O Processor, 4-14 Overflow FF, Read and Clear, 7-15
Operation, 10-1 Overwrite Destructive, 7-6

Multiple Stacks and Re-Entrant Code, 3-9 Overwrite Non-Destructive, 7-6
Multiple Variables (Common Address Couples), 3-8 Pack Destructive, 7-14

Multiply, 7-2 Pack Operators, 7-14

Multiply (Extended) 7-2 Pack Update, 7-14

Name Call, 6-1, 7-15 Panel A. 4-1

No Access to OEX, 12-7 Panel B, 4-1

No Operation, 7-6 Paper Tape, 10-14

Normal/Control State Switches, 4-11 Parity, I/O Processor, 5-11

Normal State, 1-5 Parity Switch, 4-11

Not Equal, 7-5 Peripheral Controls, 1-12

Number Bases, 2-1 Peripheral Control Bus, 1-9

Number Conversion, 2-2 Peripheral Control Cabinet, 1-3
Occurs Index, 8-10 Peripheral Control Interface, 5-16
Octal Notation, 2-1 Peripheral Controls, 1-9, 1-12
Operands, 2-5 Peripheral Units, 10-5

Operation Types, 6-1 Polish Notation, 3-3

Operators Control Console, 4-18 Polish String, 3-4

Operator Dependent Interrupts, 5-5 Polish String, Rules for evaluating, 3-4
Operator Families, 5-1 Polish String, Rules for generating, 3-3
Operator Independent Interrupts, 5-8 Power Controls, 4-8

Operator Panel, 4-18 Power Off Switch, 4-18

Operators, 2-6, 6-2, 8-1 Power On Switch, 4-18

Optimized Control Word Request, 12-7 Power, System, 1-3

Optimizer Control Word, 12-4 P Register, 4-1, 6-1

Optimizer Control Word Checker, 12-11 Presence Bit, 3-2, 5-7

Optimizer Disk Address Unit, 12-12 Presence Bit Interrupt, 3-10, 5-7
Optimizer Disk File, 1-3 Primary Mode Operators, 7-1
Optimizer Drivers & Receivers, 12-11 Priority Handling, 5-10

Optimizer Dump, 12-3 Priority Handling with IIHF Off/On, 5-10
Optimizer EU Conflict Resolution, 12-3, 12-13 Procedure-Dependent Presence Bit, 5-7
Optimizer Functional Units, 12-11 Processor, 1-4, 5-1

Optimizer Interface, 12-3 Processor Features, 1-5

Optimizer I/O Interface Unit, 12-11 Processor Initiated I/O Operations, 1-9
Optimzer Scan Address Line, 12-5 Processor Maintenance Controls (Panel E), 4-10
Optimizer Scan Bus Controls, 12-11 Processor Register Clear, 4-9
Optimizer Scan Bus Data Format, 12-5 Processor States, 1-4

Optimizer Scan-In, 12-5 Processor System Concept, 5-1
Optimizer Scan Information, 12-6 Processor to Processor Interrupt, 5-9
Optimizer Scan-Out, 12-4 Program Control, 4-8

Optimizer Stack, 12-13 Program Controller, 5-1

Optimizer Stack, Empty, 12-8 Program Control Word, 6-6

Optimizer Stack, Full, 12-9 Programed Operator, 5-8

Optimizer Stack Parity Error, 12-8 Program Operators, 6-1

Optimizer Status Controls, 12-11 Program Restart, 5-7

Optimizer Address Register, 12-13 Program Structure in Memory, 3-5
Optimizing Unit, 12-13 Pulse Train Switch, 4-10

four

INDEX (cont)

Push Down Stack Registers, 7-6
Queuing Control Words, 12-2
Read and Clear Overflow FF, 7-15
Read GCA, 8-2

Read IC Operation, 4-12

Read IC Switch, 4-12

Read Interrupt Literal, 8-5

Read Interrupt Mask, 8-4

Read Interrupt Register, 8-4

Read Main Memory, 4-16

Read Only Bit, 3-2

Read Processor Identification, 8-10
Read Processor Register, 8-12
Read Processor Register Switches, 4-12
Read Result Descriptor, 8-3

Read SPM, 4-16

Read Tag Field, 8-12

Read Time of Day Clock, 8-2
Read True False FF, 7-15

Read with Lock, 8-13

Real-Time Adapter, 1-13
Receivers, 12-11

Recycle Execution I/O Descriptor, 4-17
Re-Entrance, 3-9

Register, A, 4-1

Register, B, 4-1

Register, C, 4-1

Register, P, 4-1

Register, X, 4-1

Register, Y, 4-1

Relational Operators, 7-4
Relative-Addressing, 3-7
Remainder Divide, 7-2

Reset Float, 9-2

Result Descriptor, 10-3

Return Control Word, 6-6

Return Operator, 7-17

Rotate Stack Down, 8-12

Rotate Stack Up, 8-12

Rules for Generating Polish String, Simplified, 3-3
Running Indicator, 4-18

Scale Left, 7-8

Scale Left Dynamic, 7-8

Scale Operators, 7-8

Scale Right Dynamic Final, 7-9
Scale Right Dynamic Save, 7-8
Scale Right Dynamic Truncate, 7-8
Scale Right Final, 7-8

Scale Right Round Dynamic, 7-9
Scale Right Rounded, 7-9

Scale Right Truncate, 7-8

Scan Bus, 5-14, 5-20

Scan Bus Control, 5-9, 12-11

Scan Bus Data Format, 12-5

Scan Bus Parity Error, 12-8

Scan In, 8-2, 12-5

Scan Operators, 8-1

Scan Out, 8-8, 12-4

Scan While Equal, Destructive, 8-15
Scan While Equal, Update, 8-15
Scan While False, Destructive, 8-16
Scan While False, Update, 8-16
Scan While Greater, Destructive, 8-15
Scan While Greater, Update, 8-15

Scan While Greater or Equal, Destructive, 8-13

Scan While Greater or Equal, Update, 8-15
Scan While Less, Destructive, 8-15

Scan While Less or Equal, Destructive, 8-15
Scan While Less or Equal, Update, 8-15
Scan While Less, Update, 8-16

Scan While Not Equal, Destructive, 8-16
Scan While Not Equal, Update, 8-16

Scan While True, Destructive, 8-16

Scan While True, Update, 8-16
Scratchpad Memory, 5-14

SECL Switch, 4-11

Second Level Memory, 1-9

Segmented Array, 5-7

Segment Descriptor, 6-5

Set Double to Two Singles, 8-1

Set External Sign, 7-15

Set GCA, 8-9

Set Interval Timer, 8-1

Set Processor Register, 8-13

Set Tag Field, 8-12

Set Time of Day Clock, 8-8

Set to Double-Precision, 7-3

Set to Single-Precision Rounded, 7-3

Set to Single-Precision Truncated, 7-3
Set Two Singles to Double, 8-1

Signal Handling, 12-9, 12-10

Single Cycle Execution I/O Descriptor, 4-17
Single Pulse Switch, 4-10

Skip Forward Destination Characters, 9-2
Skip Forward Source Characters, 9-2
Skip Reverse Destination Characters, 9-2
Skip Reverse Source Characters, 9-2
Stack, 3-1

Stack, Base and Limit, 3-1

Stack, Bi-Directional Data Flow, 3-1

five

Stack Controller, 5-23

Stack Controls, 12-13

Stack Deletion, 3-7

Stack Descriptor, 3-9

Stack, Double-Precision Operation, 3-1

Stack Erasure and Compression, 12-3

Stack-History and Addressing- Environment
Lists, 3-6

Stack History, Summary, 3-9

Stack Operation, 12-3

Stack Operators, 7-6

Stack Overflow Interrupt, 5-9

Stack Registers, 5-2

Stack, Simple Operation, 3-4

Stack Underflow Interrupt, 5-12

Stack Vector Descriptor, 3-10

Start Switch, 4-11

States, Processor, 1-4

Status Controls, 12-11

Step and Branch, 7-5

Step Index Word, 6-8

Stop Switches, 4-11

Store Control Word Request, 12-7

Store Destructive, 7-6

Store, Non-Destructive, 7-6

Store Operators, 7-6

String Descriptor, 6-4

String Operator Controller, 5-12

String Transfer Operators, 7-10

Stuff Environment, 7-22

Stuffed Indirect Reference Word, 6-7

Subroutine Operators, 7-15

Subtract, 7-1

SU Not Available, 12-7

Syllable Addressing, 6-1

Syllable Format, 6-1

Syllable Identification, 6-1

System Clock, 5-16

System Clock Control and MDL Processor, 5-16

System Concept, 5-1

System Description, 1-1

System Expansion, 1-9

System Options and Requirements, 1-2
System Organization, 1-4

System Power, 1-3

Table Enter Edit Destructive, 7-13
Table Enter Edit Update, 7-14
Tag Register, 5-15

Time of Day Register, 5-15
Timing Controls, 12-14

INDEX (cont)

Top-Of-Stack Control Word Request, 12-7
Top-Of-Stack Register, 12-13

Transfer Controller, 5-2

Transfer Operators, 7-9

Transfer Unconditional, Destructive, 7-12
Transfer Unconditional, Update, 7-12
Trasnfer While Equal, Destructive, 7-11
Transfer While Equal, Update, 7-12
Transfer While False, Destructive, 8-14
Transfer While False, Update, 8-14
Transfer While Greater, Destructive, 7-11
Transfer While Greater or Equal, Destructive, 7-11
Transfer While Greater or Equal, Update, 7-11 '
Transfer While Greater Update, 7-11

Transfer While Less, Destructive, 7-12
Transfer While Less, Update, 7-12

Transfer While Less or Equal, Destructive, 7-12
Transfer While Less or Equal, Update, 7-12
Transfer While Not Equal, Destructive, 7-12
Transfer While Not Equal, Update, 7-12
Transfer While True, Destructive, 8-14
Transfer While True, Update, 8-14

Transfer Words Destructive, 7-10

Transfer Words, Overwrite Destructive, 7-11
Transfer Words, Overwrite Update, 7-11
Transfer Words, Update, 7-11

Translate, 8-15

T Register, 6-1

True False FF, Read, 7-15

Type Transfer Operators, 7-3

Unit Clear Switch, 4-11

Universal Operators, 7-6

Unpack Absolute Destructive, 8-14

Unpack Absolute Update, 8-14

Unpack Signed Destructive, 8-14

Unpack Signed Update, 8-14

Valid Index, 3-2

Value Call, 6-1, 7-15

Variant Mode Operation and Operators, 8-1
Visual Message Control Center, 4-19

Word Data Descriptor, 6-3

Write IC Operation, 4-12

Write IC Switch, 4-12

Write Main Memory, 4-16

Write SPM, 4-16

X Register, 4-1

Y Register, 4-1

six

Burroughs Corporation Remarks Form
Title: B 6700 Information Processing Systems
Reference Manual Form: 1058633

Date:

CHECK TYPE OF SUGGESTION

[] Addition []Deletion [JRevision []Error

GENERAL COMMENTS AND/OR SUGGESTIONS FOR
IMPROVEMENT OF PUBLICATION

From: Name Date
Title |
Company
Address

FOLD, STAPLE, AND MAIL

W e S S G G — — N G S— ——— — — W D GEw — S T — —) G G — G G CEED SN G ——— —— — — — — — — — — — — —

No
Postage Stamp
Necessary

Postage
Will Be Paid
by 1f Mailed in the

United States

Addressee

BUSINESS REPLY MAIL
First Class Permit No. 381; City of Industry, Ca. 91744

Burroughs Corporation
P.O. Box 1223
City of Industry, Calif. 91744
attn: Publications Department
Teclinical Information Center

—_—————

FOLD, STAPLE, AND MAIL

Av 1o

3NIT d3HSva

775) »
ERE PRV,
g { é{« /,,/A:/",// -

AN
Wherever There’s
Business There's [Burroughs

1058633 572 Printed in U. S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB
	x_back

